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§1. Introduction

In [F], A. Floer introduced a new invariant for homology 3-spheres.
In this paper we generalize his invariant to arbitrary closed and oriented
3-manifolds. In the case when the first homology group of the manifold
is torsion free and nonzero, we also define invariants I (M) for s <
3, which, in the case s = 0, is a generalization of Floer’s one. The
construction of this invariant is closely related also to the Donaldson’s
polynomial for closed 4-manifolds [D4]. The construction is based on
the study of the moduli space of selfdual connections over M x R and
its compactification.
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2 K. Fukaya

In this section, we describe briefly the construction of our invariant.
Throughout this paper, we let M be an oriented 3-manifold, ¢ a Rie-
mannian metric on it. It induces the Hodge *-operator, *, : A¥(M) —
A3~*(M). We consider the trivial SU(2) bundle over M. Let

AM) ={d+a|acT(M A ®su(2))}

be the set of all smooth connections of it. (In later sections, we work
with Sobolev spaces but in this section we omit those details.) Put

where G(M) acts on A(M) by
g*(d+a)=d+g 'dg+g 'ag.

Following Taubes [T4] and Floer [F], we define a functional ¢s : B(M) —
R by

(1.1) cs(a):/ Tr(2aAda+ ~anana)
v 3

(Here and hereafter, we shall write a in place of d +a.) It is well known
that the right hand side is G(M)-invariant. The gradient flow of this
functional is described by

— at
(1.2) 5 = *o 1O,
The idea of Floer and Taubes is to use this gradient flow in order to define
the oo/2-dimensional homology group of B(M). It is not in general
true that gradcs is a Morse-Smale flow, then in [T4], [F], they used a
perturbation of it. In their case, where M is a homology sphere, the
singular locus SB(M) and the set of critical points of the flow grad cs
intersect at one point, the trivial connection. (Recall that the singular
locus of B(M) is the set of reducible connections, and a critical point of
the flow grad c¢s is a flat connection.) In our case the intersection is

(1.3) Hom(m (M),U(1))/Z2.
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which is b; (M)-dimensional. In §2, using the sum of the traces of the
holonomy along the generators of Hy(M;Z), we shall find a functional
f:B(M) — R, such that the equation

(1.4) *o I —grad, f =0

has only a finite number of solutions, each of which is nondegenerate
(see §2 for definition.) A connected component of elements of the set of
elements SB(M), the reducible connections, satisfying (1.4) is identified
to an element of

(1.5.1) Hom(Tor Hy(M;Z),U(1))/Zs.

And each connected component is identified to

H1 (M, Z)
(1.5.2) Hom (TorHl(M;Z)’Z2)

or its quotient by Zsy. Put

(1.6.1) Fl={a € B(M) | a satisfy (1.4)},
(1.6.2) Flg ={a € Fl | a is irreducible}.

For a,b € Fly, we set

ay : (—00,00) — B(M), a; satisfies (1.7), |
M(a,b) = a¢ .

lim a; = b, lim a; =a
t—o0 t——o0

(The precise definition is in §3.) Here

(1.7) %E = %, F"* — grad, f.

In a way similar to [F], we can find a map p : Flg — Z such that
dim M(a,b) = p(a) — pu(b),

for a,b € Fly (§5.) We can also prove that M(a,b) is orientable (§6).
Then, following Witten [W1] and Floer [F], we put

(1.8) = P 2zl

acFlg
u(a)=k
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We define a boundary operator 9 : Cp — C3_, as follows. (Again our
construction is the same as Floer’s.) The action of R on M x R induces
a free action of R on M(a,b). We put, for a € Fly, u(a) = k,

oal) = > (9a,b)[b],

u(b)=k—1

where (9a,b) is the difference of the number of connected components
of M(a,b) for which the direction of its orientation and the R action
coincide and the number of connected components for which the orien-,
tation is the opposite direction to the R-action. In a way similar to [F],
we can prove 90 = 0. Then we define

_ Ker 9 : C’g — Cg_l

)= Im8:02+1—>02’

oM

which, we shall prove, is an invariant of M. (In fact, we need to fix a
basis of Hy(M;Z).)

As is pointed out by Donaldson, Atiyah [A] and Witten [W2], Floer
homology is closely related to the Donaldson polynomial [D4]. In fact,
in the case when M is a homology sphere and is a boundary of a 4-
manifold satisfying some additional assumptions, it is possible to define
a relative Donaldson polynomial, which has a value in Ip(M). But in
the case when the first Betti number of M is positive, it seems that the
above boundary operator is not enough for such a purpose. Then we
construct other boundary operators. To motivate our construction we
recall the definition of relative Donaldson polynomial very briefly. (Our
description is not precise since it is anounced that the precise description
will appear in [DFK].) Let X be a 4 manifold such that its boundary
0X = M is a homology sphere. Let [£4],---,[X¢] € H2(X), a € Fly. By
M (X;a), we denote the set of all gauge classes of self dual connections
V with ¢*(V) =k, V|sx = a. Define a line bundle Ly, on it by

top top

£5,(9) = N\ (Kerdys, ) ® \ Cokerdys,.

where Oy, is a Dirac operator on ¥; twisted by the restriction of V to
3. We put

Q) B = [ es)u e

Here we choose k, £ so that dimMy(X,a) = 2. We regard
Qe([X1],---,[X¢]) as a cochain, an element of Hom(C,,,0) with m =
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p(a). Under an appropriate assumtion this cochain is a cocycle and its
cohomology class is an invariant of X.

In case 0X, = 00Xy = M, X = X; Uy Xo, Xy---3y, C Xy,
¥ ---%,, C Xa, one can prove, under appropriate assumption, that

Qfl—}—fz(zla' ' 'azfl 72,17' "’222)

(1.9) , ,
= <Q51(217 T 72@1)’62(2(21’ o '1252»7

where { , ) is a coupling between Floer cohomologies of M and M,
(M with opposite orientation). Note that in case HiM = 0, we have
Hy X = Hy X1 & Hy X5.

Now we remove the assumption Hy M = 0. Assume, for example
H;X; = Hi X5 = 0. Then we have Mayer-Vietoris exact sequence:

H2X1 &) H2X2 — H2X R HlM — 0.

Fix a section s : HiM — HyX. This is equivalent to choose, for each
[v] € H1 M, surfaces X(;)(y) C X; with 9%;(y) = v such that s([7]) =
[X1)(7) U Z(2)(v)] = [E(v)]. To generalize (1.9) one needs to calculate

Qe1+£2+€3(217 T z3517 Z(’Yl)a o '72(783)72113 Tty 182)7

in terms of invariants of X;,X5. So it is natural to consider cochains
such as

Qere X1y, -+ X0, X1y(11), -+ Z1(ver)) (a)

:/ [,21 U--'UﬁgeUﬁg(l)(,\/l)U---Uﬁg(l)(w,).
Mk(Xl,G,)

But one finds that this cochain is not a cocycle in general. Hence in our
situation, the relative Donaldson polynomial should not take a value on
usual Floer cohomology but a generalization of it. Our purpose is to
find such a generalization.

We assume that Hy(M;Z) is torsion free. Choose a set of closed
loops {71, -,74} representing a basis of H;(M;Z). Put ¥; =v; xR C
M xR. Let a; € M(a,b), a,b € Fly. It induces a connection of a trivial
SU(2) bundle over ¥;. Let 9,, be the Dirac operator on ¥; twisted by
the connection. We may assume that a(y;) # 1 for each a € Fly. It
implies that 9,, is Fredholm. Put

top top

Detd,, = /\ (Kerd,,)" ® /\ Coker 0, .
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By taking (Det 8,,)®? and moving a; on M(a,b), we obtain a complex

line bundle on M(a,b), which is denoted by 552) . (The reason why we
have to take the square will be explained in §7.) Now, let a,b € Fly with

p(a) — u(b) = 26+ 1. Put M(a,b) = M(a,b)/R. Then we can “define”
the Chern number

/ AePyu-ud(L?) e z.
M(a,b)

This number is denoted by (6, ... ;,a,b). (Since M(a, b) has a boundary,
the above number is, in fact, not well defined. This problem is discussed

in §12.) We define 9;, ... ;, : C§ — CQ_,, | by

Oiy e ([a]) =) (i 00, D) (D).

b

Now we can state the main result of this paper. Let o € {1,---,d}*/S,.
(Here S, stands for the symmetric group.) We put 8, = 04, .- a,-

Theorem 1.10. Iffa < 3, and if Hi(M;Z) is torsion free, then

Remark 1.11. In case when o = (1,1) the formula is:

8011 + 20,01 + 01,10 = 0.

Remark 1.12. For fa > 2 the formula is not correct. We discuss
the reason in §12. There we also discuss why the formula may not be
correct for s > 0 if H,(M;Z) has a torsion.

Now let S¢H,(M;Z) be the symmetric power. We put

Ci =P S*H1(M;2) ® CP, 5.
£<s
Define 8; : C}, — C;_; by
82(70 ® [a]) = Z Yar @ Oy2 [a'],
alUa?=«a

where 74 = Yo, ® -+ - ® Ya,.- Theorem 1.10 immediately implies
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Corollary 1.13.  Suppose that H1(M;Z) is torsion free. Fors < 3
we have

On_105 = 0.
We put
Ker 02
L(M)=—"1k.
k(M) Imo;_,

Theorem 1.14. Suppose that Hy(M;Z) is torsion free. I;(M)
does not depend on the choices of the metrics, 7;’s, etc, and is an in-
variant of M, equipped with a basis of H1(M;Z).

By construction we have an exact sequence of complexes
0 — Cf — Gyt — S (H\(M;Z)) ® Cyraayn — 0
It follows that:

Theorem 1.15. Suppose that H,(M;Z) is torsion free. There
exists a long exact sequence

— [i(M) — [T (M) — ST (H1(M, 2)) ® I y5042(M) —
for s =0 or 1. The exact sequence is also an invariant of M.

The proof of these theorems is based on the detailed analysis of the
end of the moduli space M(a,b). The results on it is in §7. In fact, we
shall prove more general results than we need to construct our invariants.
In the course, we develop various techniques, which might be useful in
other situations.

Using our invariant I§(M ), we can partially generalize the definition
of relative Donaldson polynomial to the case when the boundary is not
necessary a homology sphere. Those applications will appear elsewhere.

The organization of this paper is as follows.

In §2,3, we perturb the equation.

In 84, we review the sum formula for the index of the elliptic oper-
ators. We also discuss the sum formula of the family of indices.

This result is used in §5 to define the degree p. In §5 we study also
neighborhoods of various reducible connections.

In 36 we define the orientation of the moduli space. The fact that
every oriented 3-manifolds bounds an oriented 4-manifold, is essentially
used in the proof.

§87-11 are devoted to the study of the end of moduli space M(a,b).
The results of these sections are stated in §7.
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In §8, we prove that the patching procedure of selfdual connections
as in [T'1] is possible in our situation, where various reducible connections
must be dealt with.

In §9, we shall prove that the selfdual connections constructed in §8,
contains all the connections in the end of the moduli space, except the
concentrated ones. For this purpose, we establish a decay estimate such
as in [FUJ.

Combining the results of §§8,9 we obtain a chart for a neighborhood
of each point at infinity. In order to patch those charts, we introduce,
in §10, the local action of the groups. This notion is a generalization of
one introduced in [CG] to study the end of Riemannian manifolds. We
use it to study the end of the moduli space.

The line bundle LIZ(.Q) is constructed and is extended to the boundary
in §11. For this purpose we use the sum theorem for index bundles in
84 and the existence of the lift of the local action to the bundle.

Using the results of §§7—11, we define the boundary operator in §12
and prove Theorem 1.10. As is remarked before, the Chern number
of the bundle £* is not well defined. We shall prove in §12 that the
boundary operator is well defined modulo isomorphism. In §12, we also
discuss the case when s = 3 and describe why Theorem 1.10 does not
hold in that case.

Finally we shall prove Theorems 1.14 and 1.15 in §13.

As the reader can find easily, this paper heavily depends on the
brilliant ideas due to Donaldson, Floer, Taubes e.t.c. in their papers.
Before this work is completed the author is informed (without the precise
statement) that A. Floer generalized his invariant to homology S x S2.

§2. Perturbation

Let LY be the Sobolev space of the sections, namely the set of sec-
tions LP-norms of whose /-th derivatives are finite. Put

AD(M) = {d+a|ac L)(M,N" @ su(2))}
G¢(M) = the set of maps : M — SU(2) of L3-class.

A? is denoted by A,. We choose sufficiently large £ and fix it throughout
this paper. Gpy1 acts on A,. (See [FU].) Put

Be(M) = Ag(M)/Gey1 (M).
Let a € Ay(M). Then the set

(2.1) {ue LA(M, A @ su(2)) | dtu =0}
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is the orthonormal complement of T,Gyy1a in T, A¢(M). In the case
when a is irreducible, the set (2.1) can be identified to T} B,(M). (See
[FUJ.) We let the set (2.1) be denoted by T}, B¢(M) also in the case
when a is reducible. In that case, [a] is a singular point of By(M).

The purpose of this section is to perturb the functional ¢s and the
equation (1.2), so that (1.4) has only a finite number of solutions each
of which is nondegenerate. We put

H,(M;Z)

Torsion

H{(M;Z) =
First we deal with singular points on
Hom (H{(M;Z),SU(2))/conjugate C Be(M).

Choose a set of loops {£3,---,£9} representing a basis of Hj(M;Z).
Extend £? to an embedding £ : S x D? — M. Choose a nonnegative
function v on D? with compact support such that

/Dz w(@)ds = 1.

For a loop £ : S* — M and a € A(M), let hy(a) € SU(2) be the
holonomy along ¢. Define a functional fy on By(M) by

d
(2:2) fola) = €3 [ T (hag@)) ),

where € is a small positive number. Then by [F| 1b.1, grad, f, €
T,Be(M) is well defined. Similarly we can define the hessian, Hess, fo :
Tiq) Bo(M) — Tiq) Be(M).

Here we examine the set, FFR, of the flat reducible connections
in By(M). The set of the conjugacy classes of the elements of
Hom(Tor H{(M,Z),U(1)) has a one to one correspondence to mo(FR).
For ¢ € Hom(Tor H1(M,Z),U (1)), let F R, be the corresponding com-
ponent. FR, is diffcomorphic to 7% if Im(p) ¢ {+1}, and is diffeomor-
phic to T¢/Z, if Im(p) C {£1}. Let 1 € Hom(Tor H;(M,Z),Z) be the
trivial representation.

Lemma 2.3. There exists a neighborhood U of F Ry such that, for
sufficiently small €, the set of elements of U satisfying

(2.4) xo F'* —grad, fo =0
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is identified to Hom(H!(M,Z),Zy) ~ {+1}¢.

Proof. By identifying FRy = {(e®*,---,e%4)} /Z, , we have

(2.5) fo(e®r, - ) = 262 cos ;.
The lemma follows immediately.

Lemma 2.6. Let a € Hom(H{(M,Z),Z3). Then ¢s — fy is non-
degenerate at a. In other words

*oda — HeSSa fo : T[a] Bg (M) — T[a] Bg_l(M)
18 invertible.
Remark 2.7. Hess, ¢s = *,d,. See [F|,[T4].

Proof. We have
Ker x,d, ~ H*(M;R) ® su(2) ~ su(2)%.

On this space Hess, fo is given by —e . z2. Hence the lemma follows
from the invertibility of the matrix

A+ eFE €B
eC eD
for small € and invertible A and D.

We take € in (2.2) such that Lemma 2.6 holds and fix it.

Next we use a method similar to [D3] and [F]. Let pyp € M and
vy € Tp, M. Choose an embedding I : D? — M, such that I(0) = po,
and that I,(TpD?) is transversal to vo. Let I'y(po, I,v) be the set of
smooth embeddings such that £(1,0) = po, 2£(1,0) = v, £(0, ) = I(x).
We put

I'm = U (T'1(po, vo, I))™.
(po,vo,I)

Let L,, = SU(2)™/SU(2), where SU(2) acts by conjugation. Define a
map

& : Ay(M) x T, — Map(D?, SU(2)™)
by ~
(I),(av (Ela T 7€m))(x) = (hfl(wl‘)(a)7 A hgm('ﬂ?)(a))'



Floer Homology for Oriented 3-Manifolds 11

&' induces a map
@' : By(M) x I',, — Map(D?, L,,).
Following [F], we choose (8;)icz, (8; > 0). and put

CP(Lm,R) = { € C®(Lm, R) | [[9]p < o0},
where -
llls = 6 max |D*yp(z).
i=1 "
Fix a function u : D? — [0, 00) as before and define
® : By(M) x Ty, x CP°(L, R) = R
by
(I)([a‘]’ (Kla T aem)/‘b) = D "/J((I)/([GL (617 T ,ﬁm)(:c))u(a:)d:z:

Forv € mecﬁ(Lm7R)> we pUt fv([a]) = (I)([a],'l)). For A = (ely e a€m>
€ Ly and X = (¢},---,0/ ) € Ly, we say A < XN if {¢1,---, 4.}
c{e,---, 0.}

Lemma 2.8. There exists Ay € I'np, and 6 > 0 such that for each
Ao < A, the set of ¢ € CP((Lnm),R) satisfying the following conditions
is of first category in {4 | ||¥||g < 6}.

(2.8.1) The set Fl(v) of the solution of

*o F'* = grad, (fo + foru))-

s finite.
(2.8.2)  For each a € Fl(¢) the map

*od — Hessq) (fo + fia,u)) : TaBe(M) — ToBy_1 (M)
is invertible.

Proof. As is well known, (2.8.2) implies (2.8.1). Hence the prob-
lem is local on By(M). The argument in a neighborhood of irreducible
connections is the same as [F] 2c.1. Then we study the neighborhood of
the set of reducible connections. Precisely, we first take a perturbation
so that (2.8.2) holds in a neighborhood of the set of the reducible con-
nections, next we perturb again so that (2.8.1) and (2.8.2) holds, in the
set of irreducible connections, as well.
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Let ¢ € Hom(Tor Hy(M,Z),SU(2)). In the case when Im ¢ C {£1},
the proof of Lemma 2.6 works in a neighborhood of F'R,. Then we
assume that Im(y) ¢ {£1}. By the proof of Lemma 2.3, f, is a Morse
function on Fl, and has exactly 2% singular points on it. The same
holds for fo + fa if ||9|lg is small. Hence it suffices to work at a
neighborhood of each singular point ay. Choose a neighborhood U of ay
with is of bounded L% norm.

Sublemma 2.9. The set of ¢ such that x,d, — Hessg(fo + )
is invertible for each a € U N Fl(v), is open.

Proof. First we remark that the set
Fl(y) = {la] € Be(M) | %o F* = grad,(fo + fa+y)}

is independent of £ because the equation is elliptic modulo gauge trans-
formation. Hence we can find a bounded subset L in L7 ,(M, A'®su(2))
such that if

(2.10.1) 19" =g <6
(2.10.2) la] € Fl(y)
(2.10.3) [al €U

then [a] = [aop + u] for some u € L. Now, if the sublemma is false, then,
there exists 1,%; and a; such that

( ) limioo [|9hs — 9llg = 0,

( ) [a’l} S Fl(wl)a

(2.11.3) [a;] € U,

( ) *oda, —Hess,, (fo + fi 4, ) is not invertible,

( ) #*ods — Hess,(fo + fi,y) is invertible for each a € Fl(¢) N U.

We can choose u; € L such that [ag + u;] = [a;]. By Rellich’s
Theorem, we can find a subsequence such that u; converges to u in
L7,,. Hence by (2.11.1),(2.11.2) and (2.11.3), we have [ag + U] =
laso] € U N Fl(1p). Therefore x,d,., — Hessq_ (fo + fa,p) is invertible.
On the other hand, we remark that the map

App1 (M) x L2M, A @ su(2)) — L2_; (M, A\ @ su2))
: (a,u) — *,dau — Hessq(fo + fap)u

is continuous. (See [FU]). It follows that *,d,, — Hessg, (fo + fa,p,) is
invertible for sufficiently large i. This contradicts (2.11.4). The proof of
Sublemma 2.9 is now complete.
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Hence it suffices to show that the set of 1 for which

*5dg, — Hessg, (fo+ f()\,q/,))

is surjective, is dense. We can choose a loop ¢y so that ¢(£y) ¢ {£1}
and assume {lp} < A= (¢1,---,€m). Put

(5/(a07 )‘)(0) = (gla e ’gm)
We have

(2.12) {g€SU@2) g7 g1, 9m)g = (91, 9m)} = U(1)

Hence [g1,- -, gm] is contained in U(1)™/Zy C SU(2)™/SU(2) and is a
regular point of U(1)™/Zy. Put

By (M) = {[a] € Bi*(M) | a is reducible.}

It follows from (2.12) that [ao] is a regular point of B:*d(M). Therefore,
by a U(1) analogue of [F] 2c.1, we may assume that

(2.13)  *oda, — Hessa, (fo + fap) ¢ Tiao) (B (M) — Tiy) (B (M)
is invertible. Put
K¢ = {”LL € T[aO]Bg(M) | *Udaou — HeSSa0 (fo -+ f)\’w)u = 0}

By the invertibility of (2.13) we have

(2.14) Ky N T B4 (M) = {0}
The group
(2.15) U(1) ={g € Ge(M) | g"a0 = ao}

acts on K. By (2.14) and the finite dimensionality of K, we can

identify K, ~ CF. Therefore by taking sufficiently large A and m we
may assume that

P: Ky — T . qm)SU2)™

is injective, where P is the differential at [ag] of the map : [a] —
U'(a,\)(0) : Ay(M) — SU2)™. By (2.8), U(1l) acts on
Tigy,,gm)SU(2)™, which we can identify to C™ & R™. The map P
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is U(1) invariant. Hence we may assume that P(K,) C C™. We define
a function ¢’ in a neighborhood of (g1, -+, gm) by

(2.16) W (€XP(gy gy (21, 5 Zmy b1,y tm)) = — 3 |2,

and extend it to a SU(2) invariant function on SU(2)™. We obtain a
function on L,,, for which we use the same symbol. Now it is easy to
see that

*o dgy — HeSSao(fO + f)\,w+61_/)’)

is invertible for each sufficiently small e. The proof of Lemma 2.7 is now
completed.

Note that a linear function is used in [F| for the perturbation in a
neighborhood of an irreducible connection. Here we use quadratic func-
tion to perturb the equation in a neighborhood of a reducible connection.

Remark 2.17. We choose the perturbation so that the zero eigen-
values of x,d — Hess,(fo + f(x ) is perturbed to positive one, if a is
a reducible connection and if the corresponding eigenspace is identified
to C* with respect to the U(1) action. The set of such connections is a
subset of first category in an open set. This choice is used in the proof
of Theorem 5.6. (See Remark 5.7.)

Now we put f = fo + fx 4 for generic ¢, and define F'l and F'l; by
(1.6.1) and (1.6.2).

§3. Local structure of moduli space

Let p: M x R — M be the projection, p*(A*M) be the pull back
of the vector bundles on M x R. Let § be a number sufficiently close
to 0. Choose a C*°-map |||| : R — [0, 00), such that ||t|| = [t| outside a
compact subset, put es(t) = °lltl. For a smooth section u of p* (A'M) ®
su(2) with compact support, we put

p \? / k
U = E es(t)|VEulPdzdt.
(“ ||e,5) y 6( )\ |

k<¢

Let Lj s(M x R, su(2) ® p*(A*"M)) be the completion with respect to
this norm. We put

Lys=Ljs(M xR, su(2) ® p*(A'M)).
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Define Lj (M x R, su(2) ® AY(M x R)) in a similar way. Let Ly 5(M x
R, su(2)®A% (M xR)) be the subspace of LZ(S(MXR, su(2)@A2(M xR))
consisting of the elements u satisfying *,u = +u, respectively. Here and
hereafter *, denotes the Hodge * operator on M x R with respect to
the product metric o @ dt?>. The Hodge operator on M induces *, :
p*(N*M) — p*(A3~*M). We define isomorphisms
I3 . Ly s(M x R, su(2) R p*(AN'M)) —
L} s(M x R, su(2) ® AL(M x R))
It: Ly s(M x R, su(2) Rp*(A\°M & A'M)) —
Ly s(M x R, su(2) ® A(M x R))
I°: L} s(M x R, su(2)) — Ly s(M x R, su(2))

by
I3 (a) = a+ (x,a) Adt
I'p,a) = pdt + a
I° = identify.
We put

QP s = L s(M x R, su(2))
Vs = Ly s(M xR, su(2) ® A'(M x R))
Q) 5 = Li s(M x R, su(2) ® A> (M x R))
and identify £ 5 ~ 92,6’ L5 D E},é ~ Q},ﬁ, L5~ Qié, by I*.
For a,b € Fl, choose a connection d + A*® of the trivial SU(2)

bundle on M x R such that A% = b if t > 1 and that A% = q if
t < —1. We put

Aps(a,b) ={d+ A*" + o | a € Q4.

Clearly this space is independent of the choice of A%?. Hereafter we
write A in place of d + A. Let G7s(M x R) be the set of all locally

L? map g : M x R — SU(2) such that there exists ¢ € Ly s satisfying
exp 1) = g outside a compact subset.

Lemma 3.1. G}, (M x R) acts on Ay s(a,b) by

g A=g 'dg+g 'Ag.
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The action is free if 6 is positive or a,b € Flj.

We omit the proof. (See [FU],[T3],[F].)
For a € Ay(M), A € A;5(a,b), we put

Go =19 € Ge1(M) | g*a=a}
Ga={9: M xR — G| g is alocally L?H map satisfying g*A = A.}

Remark 3.2. G4 C Gy N Gy.
Put
B,$(a,b) = {[A] | A € Ags(a,b),Ga # {£1}}
TiaBe,s(a,b) = {a € Q5 | esdyes ' = 0}.
G A acts on By s(a,b) and Tj4B¢(a,b).

Lemma 3.3. The map TjaBys(a,b) — Bys(a,b) : a— [A+a],
induces a G 4-tnvariant diffeomorphism from a neighborhood of O onto a
neighborhood of A, if a,b € Flgy, or if 6§ > 0.

The proof is in [FU], [T3], [F].

Lemma 3.4. G, x Gy acts on By s(a,b). The action is compatible
with the diagonal inclusion : G4 — G4 X Gy.

Proof. For each g; € G, and g2 € Gy choose amap g: M xR —
SU(2) such that g, = ¢; if t < —1 and that g, = g if t > 1. For
[A] € Bis(a,b) the element g*A is contained in Ay s(a,b), and [g*A]
depends only on [A] and g1, g2. Clearly this induces a desired action.

Hereafter we put

g1 [A]Qz_l = (91392)[14]

for A € Bys(a,b), g1 € Gg, g2 € Gp. Then G, and Gy, act from left and
right on By s(a, b), respectively.

Remark 3.5. The action is trivial if 6 < 0.

Now we consider a differential equation

(3.6) FA—%,FA— grad,, f Adt + *,grad,, f =0,
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for A € Az s(a,b). Here we put A = I'(as, ). Let M\g,g(a,, b) be the set
of all solutions of (3.6) in Ags(a,b). Since grad ., f = g9; (grad,, f)g:,
it follows that

FI4 —3,F9 4 — gradgq, f Adt+ %o gradgs,, f =
g " (P4 =% F" —grad,, f A dt + %, grad,, f) g.

Therefore J/\Zgﬁ(a, b) is GY 11,6 invariant. We put

My s(a,b) = M\Iz,é (a, b)/g?+1,6'

By a standard elliptic regularity estimate, My s(a,b) is independent of
. Then we omit ¢ and write Ms(a, b).

Here we remark that the set G,\Ms(a,b)/G} is identified to the set
M(a,b) in §1. In fact, the elements of the set M(a, b) have a one to one
correspondence to the set of a;’s satisfying (1.7) and lim;_, ., a; = a,
limtoofa:] = [b]. Put lim;_,ca: = b'. There exists goo such that
g b/ = b. Choose g; such that lim; , o g: = 1, lim; 00 gt = Goo- It is
easy to see that g*(d+a;) € Ms(a,b). This element depends only on [a;]
and is independent of a;. Conversely, if A € M (a,b), we can find g such
that g* A has no dt factor. Let (¢*A)(-,t) = a;. Then [a;] € M(a,b).

Remark 3.7. It is not in general true that the set of loops joining
[a] and [b] in By(M) has one to one correspondence to By s(a,b). This is
valid if the loop is contained in Be(M) — SBy(M)

For A € Ay(a,b), we define Dy : 0} — Q2 | by
Daa = (da — *,d ) — Hess,, f(u),

where a = I (u¢, p), d+A = d+a;+pdt. If we identify Q%,é ~ E%’(SEBE?)‘S,
le”—l,é‘ ~ ﬁ%—mv we have

0
(3.8) Da(u,p) = ——79% + (x%oda, — Hessq, f — eA)u + dg, 0.
Recall that M(a,b) is a C°°-manifold in a neighborhood of [A] if D4 is

surjective.

Lemma 3.9. There exists \g and mg such that, for each Ao < A,
the set of 1 € CB(L,,, R) satisfying the following is of first category in
an open set. Let a,b € Fl, f = f) y.

(3.9.1)  Ms(a,b) is a finite dimensional smooth manifold.
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(3.9.2)  For each [A] € Ms(a,b), Da is surjective.

Proof. We write Mg’(a, b), Djf; while proving Lemma 3.9. In the
set of irreducible connections, the proof of [F] 2¢.2 works. Hence we

study ./\/[g’(a, b) in the neighborhood of reducible connections. Put

By (a,b) = {[A] € Bgs(a,b) | Ga =U(1)}
MY (a,b) = B (a, b) N MY (a,b)
Then by a U(1) analogue of the argument by Floer [F] 2c.2, we may

assume that Mged’w(a, b) is a C*-manifold, and, for each [A4] €
Mfg’w(a, b), the map

DR L s(M x Ru(l) @ A" (M x R)) —
L7 1 5(M x R,u(l) ® AZ(M x R))

is surjective. Let [A4] € MF®Y. Choose a neighborhood U of [A] in
ng,e (a,b), which is bounded in L? norm.

Sublemma 3.10. The set of all ¢’ such that Df 18 surjective for
all A€ UN MY (a,b), is open.

The proof is similar to one for Sublemma 2.9 and is omited.

Sublemma 3.11. For each € > 0 and 1, there exists ' and a
neighborhood U’ of A, such that ||¢||g < € and that Dﬁ,ﬂbl is surjective
for each [A' € U'N M?+¢/(a, b).

Proof. By an argument similar to the proof of Sublemma 2.9, it

suffices to find ¢’ such that ||¢’||s < €, and that Dﬁﬂb/ is surjective. We
put

Cok = Ker (D%)* C L},
Ker={u€ L} s|Dau=0,d} u; =0}

The group U(1) >~ G4 acts on Ker and Cok. By the surjectivity of
Dﬁ’md, we have Cok ~ C* as U(1) module. By the index calculation in
§5, we can find a U(1) invariant subspace K of Ker which is isomorphic

to C*¥ as U(1) module. (See Remark 5.7.) Choose an isomorphism
Q : Cok — K. For each t, let K, Cok; C T},,1B¢(M) be the projection of
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K and Cok. By the unique continuation theorem ([Ar]), the projections
K — K,;,Cok — Cok; are isomorphisms. Let Q); : Cok; — K; be the
projection of Q. We can choose sufficiently large m and A such that
the curve ¢ — W¥’(a;, A)(0) = @, is injective, and P, : T, (Be(M)) —
T, SU(2)™ is injective on K; + Cok; for each t. Since the action of
U(1) has no trivial component on Coky, it follows that P;(K; + Coky) is
transversal to the tangent vector of the curve a;. Hence we can find a
function vy € CP(Lym,, R) such that

(HeSSa; 1,/10) (PtV, PtW) = (QtV; W>,

for each V € Cok; and W € K. It is easy to see that ' = 1) + 61)g has
the required property.

Lemma 3.9 follows easily from Sublemmas 3.10 and 3.11.

§4. Sum formula for index bundles

It seems that many parts of this section are well known to experts.
But we include it here because of the lack of appropriate reference and
because we need a part of the proof in §11. However we omit the detail
of the proof since the results are essentially known. First we shall work
in the following situation.

Situation 4.1. Let X™t! be an oriented complete Riemannian man-
ifold, E, F' be vector bundles on it, K a compact subset. Suppose that
X — K is isometric to the direct product M X (0,00). Let V' be a vector
bundle on M and Ug : E — p*V, and ¥ : F — p*V be isomorphisms
of vector bundles. (Here p : M x (0,00) — M is the projection.) Let
DY : T (V) - I'(V) and D : I'(E) — I'(F) be elliptic operators of first
order. Suppose that D° is selfadjoint. Assume that M is decomposed
to My II M_ such that

0
D=V (= +D")VUg
ot
respectively on My x (0,00). Let {\;]i € Z} be the set of all eigenvalues

of DY, Put A\gp = min;ez \?.

Theorem 4.2. Suppose A\g > 0. Then D is Fredholm. Moreover,
for X\ < Xg, there exists a finite dimensional subspace Ly of L?(E), such
that

(42.1)  Ifu € L then [Dul > VA|u

complement of Ly

.. Here L)f 1s a orthonormal
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(4.2.2) L) is generated by the vectors v satisfying D*Dv = Nv with
A<

We omit the proof. See [LM],[T3]. Theorem 4.2 implies that
Index D = dim Ker D — dim Ker D*
is well defined.

Situation 4.3. Let X;, M,, E;, F;, V},Di,D? be as in Situation 4.1.
We assume that there are unions of connected components, say Mﬂ n
and MY , of My + and My _ respectively, and an orientation reversing
diffeomorphism from M{” 4 to MZO,_, by which we can identity Vi, DY
and V2, D}. We patch X; — M? | x (T, 00) and X3 — M3 _ x (T, 00) by
the diffeomorphism M , x {T'} — M3 _ x {T} to obtain X(T'). (Figure
1)

X, — (MY, x [T,00)) Xz — (M3 _ x [T, 0))

Il T,
N T
N
}
N
M, =M)_
X N~
Figure 1.

Let E(T') (resp. F(T)) be a vector bundle on X(T') obtained by
patching Fy and Fj (resp. F;) by \IIE;;\II g, (resp. 1111221\11 F, ). Define an
operator D : T'(E(T)) — I'(F(T)) by

{ Dl on X1
D=
DQ on XQ
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Theorem 4.4. If Ao > 0 then we have
IndexD = Index Dy + Index D,.

Proof. Let 0 < A < A\g. We may assume that \ is not an eigenvalue
of D*D or DiD;. Let Ly C L*(E) be the vector space generated by the
vectors v such that D*Dv = Mo with X' < A. Define L} C L?(F), L,
L% in the same way. Note that an embedding X; — M7 | x [T,00) — X

can be extended to an embedding X; — Mﬁ+ x [2T,00). Let MR+ X
[0,2T] — X be its restriction. Put d(¢t) = min(|¢|, |27 — t|).

Lemma 4.5. Ifu € Ly then

[VFel(I(,t)) < Cre™V2 O Ju] .

Proof. We may assume D*Du = XNu, A’ < A. Let ¢1,--- be the
eigenvectors of D;Dy. We put

ul(z,6) = Y ui(t)ei(a).

Since
* 82 0\2
D*D = 5 + (D)7,
we have )
d“u;

It follows that
ug(t)] < Ce™V 2N max{|u; (0)], |us (1)1},

from which the lemma follows by the standard estimates for elliptic
operators.

Let x : [-1,1] — [0, 1] be a nondecreasing C* function such that

0 if t<—-1
1 if t>1.

x(t) =

We define P : Ly — T'.(X;, E;) as follows. (Here I'. stands for the set
of smooth sections with compact support.)

(Plu)(z,t) = (1 — x(55)u(z,t) if (z,t) € M, x [0,2T]
(Plu)(z,t) =0 if (x,t) € MY, x [2T,0)

(P{u)(z) = u(z) if z¢ M, x[0,00)



22 K. Fukaya

(Pju)(z,t) = x(5F5)u(z,t) if (z,t) € MJ_ x [0,2T)
(Piu)(z,t) = if (z,t) € M3 _ x [2T,00)
(Plu)(2) = u(2) if 2 ¢ MJ_ x [0,00)

Let P;(u) be the orthonormal projection of P/(u) to Li. Put Py =

(P, P2) : Ly — LY@ L3. Then using Lemma 4.5 we can prove that Py is
an isomorphism for large T'. Similarly we can construct an isomorphism
P{: L} — Li* &5, Li*. On the other hand, D defines an isomorphism:
Lyn (Ker D)t — L3 N (Ker D*)L. Therefore

IndexD = dim Ly — dim L}.
Similarly, we have
Index D; = dim L} — dim LY.

The theorem follows immediately. (Recall that Index DT does not de-
pend on T'.)

Remark 4.6. By the same method, we can prove that, if Dy is
invertible, then the Ce™V*~AT/C_peighborhood of the set

{eigenvalues of DT*DT smaller than Ay}
contains the set

{eigenvalues of D, D] smaller than Ao}

U {eigenvalues of DyD; smaller than A\g}.

Also the Ce=V*~AT/C_peighborhood of the later set contains the former
set.

Moreover we can prove the following:

Corollary 4.7. In Situation 4.1, let Mf:, M?O be unions of com-
ponents of M, M_, respectively. Suppose that MR, together with Do,V
on it, is diffeomorphic to M°. Construct X(T),E(T), F(T),DT, e.t.c.
as before. (Figure 2) Then we have

Index DT = Index D.

In §6 and §11, we need also a family version of Theorem 4.4.
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MY = M°

X(T)
Figure 2.

Situation 4.8. Let Y be a manifold, p; : W; — Y, q: Z — Y
be fibre bundles. Let FE;, F; :(— W;, V — Z be vector bundles and
D; : T(E;) — I'(F;), D° : T(V) — I'(V) be families of elliptic operators.
Suppose that p; (y) = X(y), 7' (v) = M(y), Ei| o = Fw) Fi),

i\Y
V(y), D;i(y), D°(y) are as in Situation 4.3, for each y € Y. As before,
we can construct, W(T') = Y, E(T),F(T) - W(T), D(T) : I'(E(T)) —
T'(F(T)). As in [AS], the index bundles

Index D;, Index DT € K(Y),
are well defined if D°(y) is invertible.

Theorem 4.9. Suppose D°(y) is invertible for each y, then we
have

Index D; + Index Dy = Index D7,
in K(Y).

Theorem 4.9 follows from the proof of Theorem 4.4, since P, and
Ly, e.t.c. there depend smoothly on operators.
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Remark 4.10. The results of this section hold in the case when,
for example, in Situation 4.1 the operator D is not exactly equal to
Ul (£2 + D°)Up, but the difference is estimated by Ce~I/C. (See
T3],

§5. Dimension of moduli space

We put Ms(a,b) = G,\Ms(a,b)/Gy. Recall that the action of
G4 x Gy is trivial if § < 0. We can prove that Mg(a,b) is independent
of 6. Hence we write M(a,b).

Theorem 5.1. There exists a map p : Fl — Z such that u(1) =0
and that

(5.1) dim M(a,b) = p(a) — pu(b) — dim G,
except the component containing no irreducible connection.

Proof. First we assume that a,b € Fly. In this case dim M(a,b) =
dim M (a, b). We can use the perturbed Atiyah-Hitchin-Singer complex

0 da ~1 DPa A2
(5.2) Qor10 — Qo — Y10

(definitions of operators and spaces are in §3), to calculate the dimension
as

KerDy

dim Ms(a,b) = dim Tmds

Since a € Fly, it follows that d4 is injective. By Lemma 3.9, D4 is
surjective. Hence dim Mg(a,b) is equal to the index of the complex
(5.2). We put

(Da,dy) : Q},o — Q%,o ©® Q2—1,0-

Then we have:
dim M(a,b) = Index(D 4, d% ).

We identify Q; and QF & Q) to L} ® L), as in §3. For a € A(M),
define

D, : LZ(M,(A' @ A?) @ su(2)) — Li(M, (A © A?) ® su(2))

D, (u,p) = (xodqu — Hess, u + dap, dju).
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Then when ¢t — oo the operator (D4, d% ) is asymptotic to —% + Dy and

when ¢t — —o0 it is asymptotic to —% + D,. Since a,b € Flj it follows
that

do : L*(M, su(2)) — L*(M,A\' ® su(2))
is injective. Hence by (2.8.2), D, and D, are invertible. Therefore
by Theorem 4.3, (Dy,d%) is Fredholm for each A € By s(a,b). Since

By s(a,b) is connected, it follows that its index is independent of A.
Therefore, we can use Theorem 4.4 to show

Index(Dg,ds) = Index(Da,dy) + Index(Dp, dp),

for A € Ms(a,b), B € Ms(b,c), C € Ms(a,c), a,b,c € Fly. In the case

when b is reduced, way we can prove

Index(Dc, esdie; ') =Index(Da, esdies ) + Index(Dp, esdie; )
— dim Gb,

in a similar way, for § > 0. Therefore the theorem follows by putting
(a) = Index(Da, esdie; ') — 3,
for an element [A] € By 5(1,a).

Next we study the neighborhood of a reducible connection
A € Ms(a,b). There are two cases:

Case 1. dimG, =dim Gy, =3, G4 = U(1).
CaseII.  dimG, =dim G, =1, G4 = U(1).

In case I, there exists ¢ : Tor H1(M,Z) — {£1} C U(1) such that
a,b € RF,. (See §2.) Then we can renumber the loops £, - - -, 9, which
we choose at the beginning of §2, such that

a(fo)=1<:>i§p

(3

b)) =1 i<p+k.

(At this point, it is not yet clear that k > 0.)

Replacing the element b by a gauge equivalent one, we may assume
that there exists a; € Ag(M) such that d + A = d + a;. (Namely A
has no dt component.) The group U(1) = G4 acts on the complex
(Da,esdye; ). Tt follows that its index is a U(1) module.
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Lemma 5.3.

CkH1gRFL if §>0
Index(Da, esde; ) ~
(Dasesdacs™) {ck—l@Rk—l if §<0.

Proof. We replace the complex (D4, d% ) by (D4 1+¢€,d%+€), where
p A : A

0
DA,l(u7 (P) = —8_?; + *adatu + datSO-

Put
Index(Da 1 + ¢, d5 +¢) = C @ RF=2,

The trivial su(2) bundle together with (nontrivial) connection d + a; on
M x R splits into a real line bundle £® and a complex line bundle £€,
since d+a; is reducible. Note that the image of holonomy representation
of a and b is contained in {+1}, the center of SU(2). Therefore the line
bundles together with their connections, have canonical trivializations

on their ends. Hence we can apply Corollary 4.7 to obtain bundles o
and ZC on M x S such that

k1 = dimc Index ((P_dA, diy) ® ZC)
ko = dimpg Index ((P_dA, %) ® ZR) :

Here

Z° 24 NN (M x SN @ L0 EH A2 (M x SHY e L,

and similarly for . Therefore, as in Atiyah-Hichin-Singer [AHS], we
have

- p! (M x §Y) gy, CED) ACED)
2 (PO (1 )

3 2
=0,
since
c Btk
L) =Y Iulsh).
t=p-+1

Similarly ko = 0.
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Next we compare the index of (Dai + €,d% + €) to one of

(DA,egdj‘eé_l). For this purpose, we use the notion of spectral flow
due to Atiyah-Patodi-Singer [APS]. Put

Dat71 (’U,, 50) = (*Udatu + dat(p’ d;th)

The spectral flow of the operator D,, 1 + € gives the index of (D4 +
€,d% + €). The operator D, ; has zero as eigenvalue. The eigenspace is
identified to (C@® R)%*! ~ (Ho(M;R) ® H;(M;R)) ® su(2). Replacing
Da by Da + € is equivalent to push these eigenvalues a bit to positive
direction. Next we examine the effect of the perturbation. We put

Dat,Z(ua QD) = (*5datu - HeSSat f(u) + dat ' d::t 30)

We take the basis (z1, -+, 24,t1, -, tq) of Hi(M;R) ® su(2) such that
z; and t; correspond to #. Then, by (2.5) and our choice of a and b,
replacement of D,, ; by D,, 2 is equivalent to push the zero eigenvalues

corresponding z1,---,2, and t¢1,---,t, a bit to positive direction and
the others to negative direction while ¢ — —oo, and to push the zero
eigenvalue corresponding to 21, - - -, zp4r and ty, - - -, {4 & @ bit to positive

direction and the others to negative direction while ¢t — oco. It follows
from k; = k2 = 0 that the index of the spectral flow D,, » is Ck o R*.

Finally we examine the effect replacing D,, by (D,,, €5d26(;1). If
6 > 0, this is equivalent to push the zero eigenvalues in Ho(M; R)®su(2)
to positive direction while ¢ — oo and push them to negative direction
while ¢ — —oo. If § < 0 this is equivalent to the perturbation to the
opposite direction. Lemma 5.3 follows.

Lemma 5.3 implies £ > 0. Using Lemma 5.3, we have a description
of the moduli space in a neighborhood of reducible connections. First
let k=1, 6 > 0. The group SU(2) x SU(2) x R acts on Ms(a,b). Here
SU(2) x SU(2) ~ G, x G} acts on Mg(a,b) by Lemma 3.4, and the
action of R is induced by its action on M x R. Since G4 = U(1) there
exists an embedding

SU(2) x SU(2)
U(1)

x R — Ms(a,b).

By Lemma 5.3, this map is a diffeomorphism onto a connected compo-
nent containing [A]. It follows that all the connections on this component
is reducible. In the case k > 2 we can use a similar argument. Summing
up we obtain
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Theorem 5.4. Suppose dim G, =dim Gy =3, dimG4 =1, [A] €
Ms(a,b), 6 > 0. Then p(a) = 3k + p(b) for some k < d and that there
exists a diffeomorphism from

SU(2) x Ck=1 x SU(2)
U0

x R*

onto a neighborhood of the G, x G, xR orbit of [A]. The diffeomorphism
is compatible with G, x G, x R ~ SU(2) x SU(2) x R action.

Remark 5.5. In case k = 1 the formula (5.1) does not hold for this
component. This is similar to the fact that the virtual dimension of the
trivial connection on S is —3. In case k > 1 the neighborhood of [4]
in M(a,b) is diffeomorphic to the product of CCP*~1 x R¥. Here C
means the cone. (Compare [D1].)

By a similar but simpler argument we can examine the case when
Go = U(1) and obtain:

Theorem 5.6. Let G, = G, = Ga = U(1), A € Ms(a,b) and
6 > 0. Then p(a) = u(b) + k for some k < d. All the connections
contained in the connected component of Ms(a,b) containing [A] are
reducible.

Remark 5.7. We used the above index calculation in the proof of
Sublemma 3.10. The fact we used there is that the C-part of the index
is always of nonnegative dimension.

If we use different perturbation from one we gave in §§2,3, (for ex-
ample if we change the sign in Formula (2.16) from point to point) then
the above fact is no longer true. As the consequence, Lemma 3.9 does
not necessary hold in that case, and we have an obstruction in second
homology of Atiyah-Hitchin-Singer complex.

Finally we remark:

Lemma 5.8. Let[a],[b] € Fl, b= g*a, where g : M — SU(2) and
degg = k. Then,

p(b) = 8k + p(a).

For the proof see [F].

§6. Orientation of moduli space

Lemma 6.1. Mgs(a,b) is orientable.
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Proof. Let DET (a,b) = DST(’DA,egd*Aegl) be the determinant
bundle of the Atiyah-Hitchin-Singer complex (5.2). We can extend
DET (a,b) to a real line bundle on By s(a,b). On Ms(a,b), the bun-
dle DET (a,b) is isomorphic to the bundle of dim M;(a, b)-forms. Hence
it suffices to show :

Lemma 6.2. The bundle DET (a,b) on By s(a,b) is trivial.

Proof. Since My s(a,b) is not simply connected, the argument in
[D1],[F|, can not be applied directly to our situation. Instead we shall
proceed as follows. Since 3-dimensional oriented cobordism group is
trivial, we can find oriented manifolds X 1 such that 0X . = M, 0X_ =
M™, where M~ is the manifold M with opposite orientation. Let W
be a closed oriented 4-manifold obtained by patching X, and X_ along
M. Take trivial SU(2) bundles on them. Let Ay(W) be the set of all L?
connection on W, and G,(W) be the group of transformations. We put
By(W) = Ag(W)/Ggy1(W). Put a metric on X4 = X4 — X4, such
that X4 — K is isometric to M x (0, 00) for some compact subset K.
Let es be a function on X4 such that es(z,t) = e8It outside K. For
a € Fl choose a connection d+ A® on X4 such that A% = a outside K.
Put

(| uis a locally L7 section)

of Al ® su(2)
L 5(Xx, A ® su(2)) = { u >

£
Z/ es|VFu| < oo
\ | k=0 X= J

Aps(Xy,a)={d+A"+ulue L%’é(Xi,/\l ® su(2))}.

Define Gy s as in §2. Put

Bs(Xi,a) = Aps(Xe,a)/G0yq1.6(Xs).

Let DET 4+ (a) be the determinant bundle of Atiyah-Hitchin-Singer com-
plex on By s(X+,a). First we shall prove that DET 4 (a) is trivial. For
simplicity, we assume that a € Fly. It suffices to show that DET L(a) is
trivial on each compact subset L1 of By s(X+,a). We define a map Pat :
Ly x L_ — By s(W) as follows. Define a Riemannian manifold X (T) by
patching X and X_ along M as in Situation 4.3. Then M x [0,27] is
embedded in X (7). Choose a C* function x : [-1,1] — [0,1] by

(t)—{o if t<-—1
XUZ01 i s
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For [d+ A] € Ly,[d+ B] € L_ define Pat([A], [B]) by
Pat([A4], [B])(z) = A(z) if ze€ X; — M x (0,00)

Pat([A], [B])(z, ) = (1 “y (t—;z)) Az, ) + (t—;z) B(z, 1)
Pat([A], [B])(z) = B(z) if z€ X_ —M x (0,00)

Let DET x(1y — Be(X(T)) be the determinant bundle of the Atiyah-
Hitchin-Singer complex on X (7"). By Theorem 4.9, we have

Pat*(DET x(T)) ~ DET +(a) @ DET _(a).

For sufficiently large T. By [D3], DET x(r) is trivial. It follows that
DET 1 (a) is trivial.

Next, Let L C By s(a,b), L' C By s(X*,a) be compact subsets. In a
similar way, we define a map Pat : L x L' — By s(X*,b). By Theorem
4.9, we have

Pat™(DET ;. (b)) ~ DET (a,b) ® DET 4 (a).

Therefore the trivializations of DET 4 (a) and DET 4 (b) induces a triv-
ialization of DET (a,b), if a,b € Fly. The case when a and/or b are
reducible can be proved in a similar way, by using a perturbation of
the complex around the boundaries. The proof of Lemma 6.2 is now
complete.

§7. Partial compactification of moduli space

Let M);(a,b), M (a,b) be the quotients of Ms(a,b) and M(a,b) by
the R-action. The proof of the theorems in §1 is based on the following

Theorems 7.1 and 7.3 on the structure of the ends of M’ (a,b). Hereafter
we fix sufficiently small positive number 6 and write M(a,b) e.t.c. in
place of M;(a,b).

Theorem 7.1. For a,b € Fl, let CM (a,b) be the disjoint union
of

k—1
T/I—/(a, co) X H ]/l_,(c,-,ciﬂ) X ./_\/l—,(ck, b),
i=0
for co,---,cx € Fl, with p(a) > p(co) > -+ > plex) > w(b). Put
m = dimﬂ,(a, b).
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Then we can define a smooth structure on CM—/(CL, b) such that the
following holds.

(7.11)  If

k-1

x € ./—\/l—/(a,co) X H m/(Ci,Cz‘+1) X ﬂ,(ck,b),
i=0

with G., = {£1}. Then a neighborhood of = in C—./\Z,(a, b) is diffeomor-
phic to [0,00)F+! x Rm—k~1,
(7.12)  Ifz = ([A],[B]) € M (a,c) x M (c,b), with G, = U(1),G4 =
Gp = {£1}. Then a neighborhood of x is diffeomorphic to R™.
(7.13)  Ifz = ([A),[B]) € M (a,c) x M (c,b), with G, = SU(2),
Ga = Gpg = {£1}. Then a neighborhood of  is diffeomorphic to

(714) Ifz = (A,B,C) € M (a,c1) % _M_/(cl,cz) X M/(CQ,b), with
Ge, =G, =8SU(2),Gg=U(1), Ga = G¢o = {£1}, 3k = p(c1) —p(ca).
Then a neighborhood of x is diffeomorphic to

(2202022500 ) 1) e

where ~ s defined by

(l91, 2, gal; (00, 1)) ~ [919, 2, g2, (00, 1))

([917 Z,gz], (ta OO)) ~ [gla Z>gg2]a (t’ OO))
(7.1.5)  Ifz = ([A],[B],[C]) € M (a,c1) x M (c1, c3) X M (c2,b), with
G., =G., =Gp=U(Q1), G4 = G¢ = {£1}. Then a neighborhood of =

s diffeomorphic to R™.
(7.1.6) Let A € Ry. Then the set

M (a,b; A) = {[A] € M (a,b) | sup |F4| < A}
is relatively compact in Cﬂl(a, b).
(7.1.7)  The orientations of .A—/{/(Ci,cri_i_l) are compatible in Cm,(a, b).

Remark 7.2. (7.1.1) ... (7.1.5) above do not cover all the possible
cases. The general case is the combination of them and the reader can
easily supply it.
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Next we construct the bundles in §1. Choose a set of loops
{71, *,va} representing a basis of H{(M;Z). Put ¥, = v, xR C M xR.
The surface ¥; has a canonical spin structure. For A € Ay s(a,b), we let

3y Do(Ss, su(2) ® C) — Tu(Sy, su(2) ® C)

be the Dirac operator twisted by the connection A. For each a,b € F1I,
0% + ¢ is a Fredholm operator. (We add e since 8 is not Fredholm when
a or b is reducible.) Then we obtain a complex line bundle

Ei(a, b) — B&g (a, b)

by

top top
Li(a,b)| 4 = /\ (Ker(8% + e))* ® /\ Coker(d% + €).

(Note the action of Gy ¢ is free on Ay s(a,b)). The action of G, x Gy
on By s(a,b) is lifted to this line bundle. The group {£1} acts trivially
on By s(a,b). The lift of the action of {1} to £;(a,b) is not necessary
trivial. (Compare [D2], where the similar action is trivial because the
numerical index of the Dirac operator on a closed surface is zero.) Then
we consider the tensor product £;(a,b) ® L£;(a,b). It induces a complex

line bundle Zz@)(a, b) on M. (a,b), the set of irreducible connections in

M/(a, b). (If we want to “define” the first Chern class c'(£;(a,b)) itself,
we have to invert 2.)

Theorem 7.3. Collection of line bundles

k—1
L (a,¢0)®- - @LE (e, b) — M., (a, co) % H M. (ci, cir1) x M. (ci, b),

i=0
can be patched together to give a complex line bundle on C_./W; (a,b).

Here and hereafter M, stands for the set of irreducible connections.
We can not extend the line bundle to the neighborhood of the connec-
tions described in Theorems 5.4 and 5.6. This is the reason why Theorem
1.10 does not hold for s > 2 when H;(M;Z) is torsion free and s > 0
when H'(M;Z) has a torsion. (We shall explain this point a bit more
detail in §12.) '

The proofs of Theorems 7.1 and 7.3 occupy §§7-11. We include the
analysis of the structure of moduli space and the line bundle on it in
the neighborhood of the connection described in Theorems 5.4 and 5.6,
though the author does not know how to use it to deduce a topological
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information. In order to explain the outline of the proofs of Theorems
7.1 and 7.3, we introduce the following notion. (Compare Donaldson

[D2].)

Definition 7.4. Let Ko C M (a,co),- -+, K C M (c, b) be com-
pact subsets and €,T,C > 0. We say that [A] € H,(a, b) is a standard
model of type (Ko, -+, K, T,€,C), if there exist [A;] € K;, Siy1 >
T + S;, and [A'] = [A], with the following property.

Let I; : Mx[—T,T] — M xR be the embedding defined by I;(z,t) =
(z,t+ S;). Then we have

(7.4.1) 113 (A)) — Aslloe (z,8) < e,

(7.4.2) |A" — ci|ce(z,t) <
Cexp{— min{|S; + T/2 — t],S:41 —~ T/2 ~ t]}/C},

ift e [Sz + T/Q,Si_{_l - T/2]

Sic1 S; Siv1
T T T
R
Figure 3.

The proof of Theorem 7.1 is based on the following two Theorems
7.5 and 7.6.

Theorem 7.5. There exists C such that, for each T, A,e > 0, we
can find a compact subset Ko of M(a,b) for each a,b € Fl, with the
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following property. If [A] € M(a,b), sup|F4| < A, and if [A] ¢ Ka,
then there exist cg,- -, ci € Fl such that [A] is a standard model of type
(Ka,607 T ’ch,ba Ta €, C)

Theorem 7.6. For each compact set Ko C ﬂ/(a,co),-u,Kk

C M,(ck,b) and C, there exist ¢ = €(Ko, - ,K,C) and T =
T(Ko,---,Kk,C), such that the set of elements of M’'(a,b) which is
a standard form of type (Ko, -, Kk, €,T,C) is parametrized by

% > I k+1
KO XGCO Kl XG01 XGck Kk, X (T, OO) + .

Here I~Q C M'(¢i-1,¢;) is the lift of K;.

Here Ko X g, K1 is the quotient of Kox K, by the action g([4], [B]) =
([Alg~?, g[B]) of Go. The proof of Theorem 7.6 is in §8. For the proof of
Theorem 7.1, we need a bit more complicated version of Theorem 7.5.

Theorem 7.5'. For each A > 0 we can find K, ;, C M(a,b) and
Cy such that the conclusion of Theorem 7.5 holds for

€ = 6(I{CL,CQ; R ch,ba Ck))
Tk — T(Ka,coa Tty ch,ba Ck)

where €(---), T'(--+), and C(--+) are as in Theorem 7.6.

The proof of Theorem 7.5 is in §9. Now we are ready to explain
the outline of the proof of Theorem 7.1. Let a,b € Fly. Choose K. »
for pu(a) > p(c) > u(c’) > u(b), as in Theorem 7.5'. For ¢ = (co, -, k),
Let €(c) and T'(c) be the number in Theorem 7.6. Define an equivalence
relation ~ on

~

Koo X -+ % Koy X (T(c), 00]F+1

by
(m cee . t ...t )N(.’I} DR ] _1:1': ...t )
0, s Lk4+15 L0y y Uk+1 0, ) ’Lg)g +1 y Uk+1
for each tg, -, tk41
($0""7$k+1’t07“'>tk+1) ~ ('TO7“')"L"L'g)xi+17”'7tk+1)

if t; = oo.
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Put
Ty = Kameo X Ry x (T(6), 0]+

Y

X(¢) = Ga\X(¢) /Gy,

To(e) = Ko X0 x Ky x (T(0),00)*

Y

X(¢) = Go\X°(c)/ G-

By Theorem 7.6, we have a diffeomorphism

P : X(c) — M (a,b).
to its image. If ¢/ C ¢, we have, by Theorem 7.6,

e X(0) = Ga\M'(a,5) X, %G, M (chs,b)/Gy x [T, 00" .

k)l
We put
Ule,d)={z¢€ X(c) | D, (2) € X()}.

If @ ®, . = P, is true, then we are able to use these maps to define the
smooth structure on CM’(a, b). But the above equality does not exactly
hold but holds modulo some small difference. Hence we have to perturb
them. The argument needed for it is in §10, where we define the notion
of local action and construct it on the end of M'(a,b). To extend line

bundle we use an argument similar to the proof of the theorems in §4
and a lift of the local action to the line bundle.

§8. Taubes construction

We prove Theorem 7.6 in this section. Theorem 7.6 corresponds
Donaldson [D2] §4. There Donaldson used the “alternating method”.
His method might work in our situation, where we have to deal with var-
ious types of reducible connections. But, since the organization needed
for alternating method is a bit complicated, we use here more direct
argument. (Maybe this is one Donaldson suggested in [D2] p 302.)

For simplicity of notation, we shall prove a special (but the most
difficult) case. Let a,cy,ca,b € Fl such that G, = G, = {£1}, G, =

G., = SU(2), u(c1) = plcz) + 3, and K C M'(cy,¢2) be a component
consisting of reducible connections. (We have, by Theorem 5.4,
~  SU(2) x SU(2)
K ~
U(1)

-)
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Let K; C ﬂ,(a, c1), Ko C ﬂ/(CQ,b) be compact subsets and K; C
M'(a,c1), K3 € M (cy,b) be their lifts. We shall construct a diffeomor-
phism ®x g, K, : K, X G, K Xa,, Ko x [T, 0)? x R — M(a, b), whose
image contains all standard model of type (K1, K, K2,T,¢,C).

Choose a finite open covering

Ulu---uUx D K,
Ulu---uUx 2D Ko,

and sections 3} : U; — K;. Let s; : Uj1 — Aps(a,ci), 332- : Uj2 —

Ay s(cz, b) be their lifts. Choose also an open covering
Viu---uUVy = SU(2),
such that V) is contractible. We have maps

Ji Vi x R — SU(2)
J2: Vi x R — SU(2)

such that
{%@ﬂ:lﬁt<—1
Jig,t)=g if t>0
{ﬁ@ﬂ:1ﬁt>1
Ji(g,t) =g if t<O.

Let d 4 a? € Ags(c1,cz) be a representative of G, \ K /Ge, = one point.
Choose a nonincreasing smooth function x : R — [0, 1] such that

(t)—{l if t<0
XV 0 i > 1

Now, we define a map

@’ L UL X Vi X Vigy x U2, x [T,00)2 x R — Ay 5(a,b),

J1,j2,k1,k2
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as follows. Let A; = st ([A;]), S; € [T, ), S € R, g; € Vi,. Then

Ji

&);‘1,3'2,]61,1;2([141]’91792,[A2]751>SZ,S)
= (Jkl(gl,)*Al)(iL',t-—S) for t<S+Sl/3

L [t—8-%/3) ,
—X(——S:/—?)—>91Al($>t S)

(o (T e
for te[S+51/3,5+25,/3]
0

=0a;_g_g, for tE[S+2Sl/3,S+Sl+SQ/3]

t—S—-5—5/3\ ,
=X 52/3 a;_g,-8

t—S—8 —S/3 .

(1n (5 ) st
for tE[S+Sl+SQ/3,S+Sl+252/3]

= (Jp (92,) A2)(5,t =S — Sy = S2)  for >S5+ 8 +25,/3.

Here Ji(g,) is regarded as a map M x R — SU(2) and a gauge trans-
formation.

i, (g1, -)* A} d+a! Jiy (g2, )* Ag

\\___—,

28 S.
S S+ S+Si+3 - S+58 45,
S 25
S+= S+ 8 S+5+22
3 3
R
Figure 4

We remark that, by the compactness of K, we have a constant C.
such that

- a et/
61) {|(d+A1) (d+a)| < Ce¥/©,

[(d+ A1) — (d+e1)| < Ce V€,
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for A; € K;. (Compare the decay estimate in next section.) A similar
estimate holds for K, and K. Using (8.1) we can prove the following:
Lemma 8.2. If
1 1

[A2) € U, NUZ,

g1 € Vi, NV,

g2 € Vi, N Vklz,

then there exists a gauge transformation g, such that

@\*591,3‘2,kl,k2([Al],glag% [A2], 81, 52, 8)(t,x) =
IIV)/" i’ k’l’ké([Al]agthy [AQ])SlaS27S)(t?x)7

J1+d2>

if t ¢ [S+51/3,S+251/3] U [S+Sl +Sz/3,S+Sl +252/3], and

Ia*(b;l,j2,k1,k2 - (I);’;,jé,kg,k’zl < e(S1, S2).

Here and hereafter, we put

e(S1,82) = Cexp(— min{S;, S2}/C).

Choose an embedding U(1) C SU(2) such that a? is invariant by
the image. By Lemma 8.2 and the construction, we can apply the par-
tition of unity associated to the coverings {U }} and {U JQ} to prove the

following;:

Lemma 8.3. There exists

5;’1’j2,k1’k2 . Ujl1 X Vi, X Vi, X Ui x [T,00)® x R — Ay s(a,b),
such that
(8.3.1) 1B kks — B o ks k| < €(S1,S2),
(8.3.2) the maps :I;;.'l Ja.k1.ks Cam be patched together to give a map
KKKy K, X sU(2) SU(2)U>(<1SgU(2) X sU(2) K, x [T,0)? xR
— By s(a,b).

By (8.1) we have:
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Lemma 8.4. Let [A] € Im @ j i, then

]FA +F,FA — grad,, f A dt —x*,grad,, f|L§ < e(S1,52).

We put
1“16,51,52,5 = |U|Lg(M><R) + |U|L;(st,s+sl+s2)-
Then we have also

Lemma 8.4'. Let [A] € Im @} x ., then
|FA +%,F% — grad,, f Adt — x, grad,, fle,s, s,,s < e(S1,S2).
We shall apply Taubes’ method as in [FU], to deform ®% x g, to

a map to M(a,b). For this purpose, the following estimate is essential.

Lemma 8.5. There exists A > 0 independent of S; such that if
AcIm®y ., u € Qf we have

[ DaDyulrz__ > Alulpz.
This lemma is an immediate consequence of Lemma 3.9 and Remark

4.6. Furthermore since a — grad, f is a C* map with respect to the L?
norm for large ¢, it follows that

grad,, ., f =grad,, f+ (Hessg, f)(u) + E(a,u)

with

IB(a,u)] 3 < Clul?

|E(a,u)|e,s1,55,5 < Cluli s, 5,,5-
Hence we can apply the argument of [FU] pp.132-139, and obtain

Lemma 8.6. There exists Ty, and (5j1,j2,k17k2 . Ujl1 X Vi, X Vi, X

Uz, x [Tp,0) X R — M(a, b) such that
(8.6.1) EI;jl a.ki.ks COT be patched together to give a map

~ SU(2) x SU(2 ~
Dy, K.k, : K1 Xsu(2) ( 2](1) @) X su(2) K2 x [T,00)* x R

— M(a, b).
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~

8.6.2 C,IV)U : —®. oLk < e(S1,57).
( ) J17]27k17k2 J1,J2,K1,K2 01,6,51,82,5 ( ? )

The definition of the norm in (8.6.2) is as follows. Uj x Vi, X Vi, x
UZ, x [Tp, 00) x R has a natural Riemannian metric. We define a norm
on Ay s(a,b) by using (¢, S1,S2,S)-norm. Then the norm in (8.6.2) is
the C'-norm with respect to this metric and norm.

Note that the linear equation solved in [FU] pp.132-139 is gauge
invariant. (8.6.1) follows from this fact.

We shall prove that the map ®k, x k, is an immersion, surjective
to the set of standard model, and that injective.

Let 91,92 € Viy, Vi, and II C Ty, ,)(Viy s Vi,) be an orthonormal
complement of Ty, 4,)(U(1) - (g1, 92))-

Lemma 8.7. There exists C independent of Sy, So such that, for
each v € Il we have:

|(I);'1,j2,k1,k:2*(v)‘575152,5 Z CI’U',

for sufficiently large S;. Here we choose [A;] € U}i, S;,S and regard

H C T([Al]vglag2a[A2]7sl7327S)(Uj11 X Vkl X VkZ X U‘]Qz X [T’ 00)2 X R)

Remark 8.8. The lemma does not hold if we replace the ||,s,,s,,5-
norm by L2-norm, since c; and cy are reducible.

Proof. For simplicity, we put g = g2 = 1. Set

A= (I);'iyjz,khkz([Al]v 1,1, [AQ]a S1, 52, S)

v = (U1,T2) € su(2) ® su(2).
Define v; : R — su(2), by

d _.
’Ui(t) = %J}ct(]‘ + Sﬁi,t)
s=0

Then by definition

(d41vy)(z,t — S)

_ for t<S
(8.9) DY o ks ks (V1 02) = { (d%202) (2,8 — S1 — 52 — 5)
for t>5+51+95;

0 otherwise.

Let the differential form in the above formula be denoted by w. Lemma
8.7 is a consequence of the following:
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Lemma 8.10. There exists C such that

lw — dAule,Sl,SQ,S > C(|v1]| + |va2])

for each u € Q| and sufficiently large S;.
(In the statement we omit 6, since a and b are irreducible.)

Proof. We prove by construction. Then we assume that we have
op € su(2) with |97 = 1, and S — oo, [A?],u™ such that

lim ‘w" — dA = 0.
n—o00 2,817,878

Since [A?'] and U] move on compact sets, we may assume that they are
independent of n. Hence we have

S;t — oo

}w” —dA — 0.

£,87,80,8

Here w™ is as in (8.9) with S; = S, and

A" = O’

.717j27

kl,kz([Al]a 1a 17 [AQ]a S?’ Sga S)'

(Since everything is invariant by the R action, we may assume that S
is independent of n.) By construction, there exists a independent of n
such that

(8.11)
|d4+ A" —d| oo < Ce P W/C if te 8+ a,[S+ ST —a]

|d+ A" —d|pe < Ce™P2W/C if tc [S+ 8T +a,S+ ST+ SY —al,
where

B1(t) =d(t, 0[S + o, S + ST — a)
Ba(t) = d(t,0]S + ST + o, S + ST + 53 — al).

Hence, by (8.9), we have, for each o’ > «, that

n —-o'/C
|du |L;(s+a1.s+sy+sg—a/) <én +Ce ;
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where €,, — 0. Therefore there exists s7, s5 € su(2) such that

ju™ — s7|qer (z,t) < Cen + Ce P ()/C
if te[S+a,S+S57 -]
[u™ — 83| (2,t) < Cep + Ce™P20/C
if te[S+ST+d,S+S57+Sy—<d].
(This is the step we can not work with L? norm.)

Then patching u with s7 and s, we have u},uf,uf € L? (M x
R, su(2)) such that

(8.12.1) |d4 (v — ul)|per < Cep,
(8.12.2) |d42 (vy — ud)|ger < Cen
(8.12.3) |d% ug| e < Céy,

(8.12.4) [ul (t, ) — 7| < Ce t/C
(8.12.5) [uB(t,z) — 5| < Cet/C
(8.12.6) lul(t, ) — s3] ge < Ce™/C
(8.12.7) [uB(t,z) — s%|ce < Cet/C

(uf,uf, and u} are constructed from the restrictions of u™ to (—o0, S +
S7/3], [S+ ST +257/3,00), [S+ 257 /3,5 + ST + S5/3], respectively.)

We may assume that lim s} = s; and lim s} = s3. Therefore, by
(8.12.3), (8.12.6),(8.12.7) and the fact Goo = U(1) imply that s1 = s €

u(1) C su(2). (u(l) is a Lie algebra of G40 = U(1).) Hence, using the
fact that (U;,72) is perpendicular to u(1) C su(2) & su(2), we can find
to such that
(8.13) lvy — ul|(z,to) > C
or

vz — ug|(z, —to) > C,

for some C independent of n. Suppose, for example (8.13) holds. By
scaling, we can find (u™)" such that

0o > Cq > |(u™)'|(z,tp) > C; >0

}dAl (Un)llce < €y, — 0.
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Therefore, by taking a subsequence, (u™)' converges to u’' such that
d41u’ = 0, with respect to the compact uniform topology. This contra-
dicts the irreducibility of A;. The proof of Lemma 8.10 is now complete.

An estimate similar to Lemma 8.7 for TK; direction and [T, 00)? xR
direction is easier. Then, combined with (8.6.2), they imply:

Lemma 8.14. IfV is a tangent vector of

~ SU(2) x SU(2 ~
Ky Xsyu(2) ( 2](1) 2) xsu(z) Kz x [T,0)? x R,

at ([A1], 91, 92, [A2], S1, S2,5), then we have

i(I)Kl,K,Kz.*(VNe,sl,sg,s > ClV|.

Lemma 8.14 implies that ®x, i k, is of maximal rank.
Remark 8.15. By Holder’s inequality, we have
|le,s,,52,8 < C(S1+ S2)l| L2
Hence, Lemma 8.14 implies

Clv|
S1+ 52

[Pk, K, Kox (V)| 12 >

It seems that this reflects the fact that the sectional curvature K of
M(a,b) at ®(A1, 1,92, Az, 81,52, S) is estimated as |[K| < C(S1+52)2.

Lemma 8.16. For each C, there exist T',S,e, such that if [A] is a
standard model of type (K1, K, K»>,T,€,C), then

[A] € ¥k, k. x,(K: X G, K xg., Ksx [S,00)? xR).

Proof. The definition of the standard model implies that there exist
[A1],[A2],91,92,51,52,S such that

1,%2,k1,k2

| ([A1], 91, g2, [A2), 5152, S) — Ang < e(51, S2).

Here A is a representative of A, and A; € U;;, g; € V;;. Let £:[0,1] —
Ayg,s(a, b) be the straight line connecting them. The length of £ is smaller
than e(S1, S2). By [FU] pp.132-139, we can deform this path to a path ¢’

in ./(/l\(a, b) connecting 51:1’7:2,]{;1,]62([141]791,92, [Az], S1, S2,S) and A. The
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length of ¢’ is also estimated by e(S1, S2). By using Lemma 8.14, we can
lift this path to £: [0,1] — K1 Xa,, K Xa., Kz x[T,00)? x R such that

£(0) = ([A1], 91, 92, [A2], S1, S2, S). Therefore

~

Dk, kK, (£(1)) = [4],
as required.
Finally we shall prove that ®x, i k, is injective.
Lemma 8.17. If
Pk, kK, ([A1], 91, g2, [A2],51, 52, 5) =
®K17K3K2 ([Ai]’ gia gl2> [AIZ]’ Si ) Séa S/)
then
|‘Az - Aﬂe,sl,&,s < e(Sla SQ)
|Sz — S:| < 6(51,52)
|S — 8’| < e(S1,S2),

and there exists h € SU(2) such that

|hg: — gi| < e(S1, S2).

Proof. The proof is similar to the proof of Lemma 8.7. Suppose
Aj; e U, A;- € Uig, 9; € Vi;, g € ng. The proof of the statement on S;

and S is easy, then we assume that S; = S], S = §’, for simplicity. By
assumption, there exists a gauge transformation g : M x R — SU(2)
such that

T @iy iz e oz ([A1], 915 92,[A3), 1, Sa, S) =
Oy o ks ([AY), 940 g5, [A5], S1, 52, ).
Then
|§*€){il,i2,k1,k2 ([A1], 91, 92, [A2], 51, 52, 5)—
B i s, (A5, 91,05, (A5, 51, 52, 9)|e,51,5,,5 < €(S1, S2).

SR
Therefore, we have

Gl < Ce PM/C §f te[S+a,5+ S —q]
4
gle Ce P2(/C if te[S+ S +a,S+S51+S2—a]
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Here 3; is as in (8.11). Hence we have g¢ € SU(2) such that
G- g% < CePW/C i te[S+a,S+S5 —a
15— g% < Ce™®M/C §f te[S+S+a,S+S5 +S5—a].

Hence as in the proof of Lemma 8.10, we obtain g; : M x R — SU(2),
1 =1,2,3, such that

(B18.1) 1@ (91,)) A1 — T} (61, )" ALz < e(S1, 53)
(8182) (@2 (92 ) Az — T3, (g )" Ablzz < e(51,52)
(8.18.3) |95a? — a?lL% < e(S1, S2)

and

(8.18.4)  [Gu(z,t) — g%lce < Ce™H/C

(8.18.5) G2(x, ) — 9] ce < Cet/©

(8.18.6)  [Gs(e,) — glloe < Cet/C

(8.18.7)  |Gs(z,t) — g% e < Cet/©

(8.18.3),(8.18.6),(8.18.7) and G0 = U(1) implies that we have h € U(1)

such that

90 — Bl < e(S1, 52).
Hence (8.18.1),(8.18.2),(8.18.4),(8.18.5) and the irreducibility of A;, A}
imply

lg; — hgs| < e(S1,S52)
|AZ — A;|Lg < 6(51,52).

The proof of Lemma 8.17 is now complete.

Lemma 8.19. For sufficiently large T', the map ®k, k K, is in-
jective.

Proof. Let A;, AL, gi, g, Si, S, S, S’ be as in the proof of Lemma
8.17. Replacing g; by hg;, we may assume that |g; — gi| < e(S1, S2).
Hence we can find a path ¢ : [0,1] — K, XG., K XG., Ky x [T, 0)% x
R connecting ([A1], 91, g2, [A2], S1, 52, 5) and (A}, g1, 95, A5, 51, 55,5).
The length of ¢ is smaller than e(S7,S2). We may assume that A; and
A;- are in the same U ;, and that g; and gg- are in the same Vj ;. Therefore
the map

Z = 6UJ'11’U_1'227‘/J'1 Vig o/l : [0, 1] — ./\//T(a, b)
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is well defined. Note £(0) = £(1) and the length of £ with respect to
the ||¢,s,,5,-norm is smaller than e(S;,S2). Hence we can find H :

D? — Ay s(a,b) such that H|spz = £. By [FU] pp.132-139, we can
deform H to H' : D> — M, 4(a,b) such that H = H’ on dD?. Since
the diameter of H'(D?) is smaller than e(S;,S;), we can lift H' to
K, XG., K Xa., K3 x [T, 0)? x R, by Lemma 8.14. We conclude £(0) =
£(1). The proof of Lemma 8.19 is complete.

Thus, we have proved that the set of the standard model of type
(K1, K, Ko, T,¢e,C) in M'(a,b) is parametrized by

~ SU(2) x SU(2 ~
K1 Xsu(2) ( 2](1) 2) Xsu(2) Ka-

We divide it by G, x G = {£1} x {£1} and obtain

SO(3) x SO(3)

K.
U) Xsu(2) 2

K 1 X5U(2)

This proves Theorem 7.6, in our case. The proof of the general case is
the same, but the notations will be more complicated.

Remark 8.20. It seems that the proofs of Lemmas 8.17 and
8.19 reflect the fact that the injectivity radius of ﬂ’(a,b) at
Pk, K, K, ([A1], 91, 92, [A2], S1, S2, S) is larger than C(|—ST}F|S—2|)

§9. Decay estimate

In this section we shall prove Theorem 7.5'. This theorem corre-
sponds to [FU] §9. There Weitzenbeck formula was used for the proof.
We can not use it here because, in our case, M is not S* and because
we perturbed the equation.

Lemma 9.1. There exist €, and C independent of T such that
if d+ a; is a su(2) connection on M x [—=T,T) without dt component,
c€ Fl and if

(9.2.1) las —clpz <e

9a;
dt
(9.2.3) diag =0,

(9.2.2) = x, F* —grad, f
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then we have
(9.3) la; — cng < CeMr),
Here Bp(t) = inf{T —t,T + t}.

Proof. We put u(t) = a; — c. We have

*UFc+u(t) . gradc f
= xod.u(t) — Hess. f (u(t)) + E(u(t)),

with
(9.4) B(u(®)lzz < Clu()l2,

for sufficiently large £. Decompose u(t) = a(t) + 5(t) with

dia(t) =0
B(t) € Imd,

Then we have

(95.1)  |a(t)|[zz <Ce Bz < Ce¢,
da(t)

952) 220 = s dea(t) - Hess. f(a(t) + Bi(a(t), 6(1)
053 U gy, p0)

with

06)  [Bat). B0z < (ol + 1802z ) -

We decompose
ot) = oy (£) + o (8),

where o, a_ belong to the spaces spanned by positive and negative
eigenspaces of *,d. — Hess. f, respectively. (Note that by Lemma 2.8,
zero is not an eigenvalue of *,d. — Hess. f.) We put g4 (t) = |ax(t)|Le,
h(t) = |B(t)|r2- By (9.2.2) and (9.4), we have

|E1(a(t), B(t))|= < Clg+(t) + g-(t) + h()*.
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Therefore, we have

d
(9.7.1) =L > Mgy — Colg- + 1),
dg_
(9.7.2) == < —hg- + Colgs + h)?,
dh

Hence, by elliptic regularity, it suffices to show the following:

Sublemma 9.8. There exists a constant C and € depending only
on Cy and X\ and s independent of T such that if g4 ,9— and h be non-
negative functions satisfying (9.7.1)—(9.7.3) and

(9.7.4) l9+(8)] < & [h()] <
(9.7.5) h(0) =0,

then

(9.9) 92 ()], |R(t)] < Cem P,

Proof. First we replace the assumption (9.7.5) by |h(0)| < é, and
prove

9+ ()], [h(t)] < O™ 1 6).

when 62T < po, €I’ < g for some pg depending only on Cy and X. For
this purpose we prove

(9.10.211) |h| < C’O(Gn + ce B (t) + 5)
(9.11.2n.4) lg+| < Co(€™ + ce— T (t) + 6)

by an induction on n. (Here n is a half integer.) Assume (9.10.2n). Let
to € [-T,T]. We put

o~

gy (t) = e Mg (1),

Then, by (9.7.1),(9.7.4),(9.10.2n), and (9.11.2n — 1,+), we have:
ee” M1 > G, (T)

T
> g4 (to) — / C3e ™ t=t0)(n=1/2 4 oM7) 4 )24,

to
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(9.11.2n,+) follows. For the proof of (9.11.2n,—), we use g_ =
eMt=to)g_ () in a similar way.
It is easy to see that (9.10.2n) and (9.11.2n) imply (9.10.2n+1).
For general T', we proceed as follows. Apply the first step to Ty =
po/€, and 6 = 0. We have h(3T,/4) < Coe~ 1A%, Then we apply the
first step to g+ (t —3Tp/4), h(t — 3Tp/4) and T = T. We obtain

sup  |g(t)] < Coe PToN12
0<t<4Ty/3

sup  |h(t)] < Coe2Tor/12,
0<t<4T0/3

if 37To/2 < T. And similarly for —475/3 < t < 0. Hence we can apply
the first step to T' = 4T, /3. Tterating this, we obtain the desired result.
The proof of Lemma 9.1 is now complete.

Lemma 9.12. For each 6, C, there exists € such that if a €
A(M),

[*UF“—gradaflL? <€

|a'|L% < C7
then there exists ¢ € Fl and g € Gpy1 such that

lg%a —¢[rz < 6.

Proof. 1If not, there exists a; € Ay(M) and é > 0, such that

(9.13.1) lim | %, F'* —grad, f[pz =0,
(9.13.2) lail 2 < C,
(9.13.3) lgiai —clpz > 6

for each i, g; € Gyyq, and ¢ € Fl. (9.13.2) implies that, by taking
a subsequence, a; converges to an element ao, of Ay_1 s(a,b). Then,
(9.13.1) implies that

| %o Fo= — grad, _ fl2 =0.

Hence there exists g; € Gg11(M) and ¢ € Fl such that gfa; converges to
cin A, (M). By replacing g; if necessary, we may assume that

(9.14) d:(gfa; —c) = 0.
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(See FU.) By (9.13.1) we have

(9.15) lim | %, F9% % — gradg-,, fIL%; = 0.

By (9.14),(9.15), lim [gfa; —c[r2 = 0, and an elliptic estimate, we have

(9.16) lim [g7a; —c[zz = 0.

1—00
(9.16) contradicts (9.13.3).
Using this lemma, we can improve Lemma 9.1 as follows.

Lemma 9.17. There exists Ty,e,\, and C, such that if d + a; be
a su(2)-connection on M x [T, T| without dt component, and if

(9.18.1) T > To
(9.18.2) %9; = %o " — grad,, f
]
(9.18.3) e
Ot |4
£

then there exists ¢ € Fl and g € Goy1(M) such that
(9.19) lg%as — c|p2 < Ce=r(®),

Here g is regarded as a gauge transformation on M x R independent of
the R factor. The constants C,e,\ are independent of T.

Proof. Let ¢y be the number determined in Lemma 9.1, and S be
a sufficiently large positive number determined later. Put § = €,/28S.
Then we obtain € by Lemma 9.12. We may assume that ¢ < §. By
Lemma 9.12, we obtain ¢ € Fl. Replacing a; by gauge transformation
independent of ¢, we may assume that

(9.20.1) a0 — |z <6
(9.20.2) d*(ag — ¢) = 0.

By (9.20.1),(9.18.3), and 2Se < €, we can apply Lemma 9.1 to M x
[—S, S], and obtain
las — |z < Ce s (),

Hence by taking S sufficiently large, we have
(9211) |CL33/4 —C‘Lg < EO/K
(9212) |a_3s/4 - C!Lﬁ < GO/K.
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Here K is a sufficiently large positive number determined later. There-
fore there exists g € Gy11(M) such that
l9— 1|2 < Ceo/K

d:(g*asg/s —c) =0
9" ass/a — c|L§ < Ce/K.

Here C' depends only on M. Hence we can apply Lemma 9.1 to
g*aty3s5/4, on M x [—S, S]. By choosing S sufficiently large, we obtain

lg"a; — Cng < Ce/K,

for t € [0,45/3], provided 35/2 < T. By taking K sufficiently large, we
have

iCLt — C|L? < (S,

for t € [0,45/3]. By using (9.21.2) we have the same estimate for t &
[—35/4,0]. Hence we can apply Lemma 9.1 to M x [-45/3,45/3] if
3S5/2 < T. Repeating this we obtain the lemma.

Lemma 9.22. There ezists 0 > 0 such that, if [A] € Ms(a,b)
with p(a) # w(b), and if g*A = d + a4, where d + a; is a connection
without dt factor, then we have

[l
Mxm | dt

Proof. By [F] p122, the integral in the lemma is independent of A
but depends only on a and b. Hence the lemma follows from (2.8.1).

2
dxdt > 0.

Proof of Theorem 7.5'. Fix a,b € Fl. Put kg = u(a) — u(b). We
shall prove that, for each u(a) > u(c) > p(c’) > p(b) there exists K. o,
such that the conclusion of Theorem 7.5 holds for

G(Ka,C()? o b ch,b)
ok
T(KCL,CQ7 e 7ch,b)
2k '

€ =

T =

The proof is by induction on k. The first step is obvious, since ml(c, ')
is a finite set if pu(c) = u(c’) + 1. Hence it is enough to show the last
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step of the induction. We assume that the last step is false. Then we
have A; € M’(a, b), such that

(9.23.1) sup |FAi < A,
(9.23.2) [4;] is unbounded in M (a, b),
(9.23.3) non of A; is a standard model.

Let g; be a gauge transform such that gf A; = d+a’ has no dt component.
We have

da’ i
c;tt = % % — grada:- f.
If
da’
i < €,
Ly

were true for each ¢, then Lemma 9.17 would imply that a! = ¢ for some
c € Fl. Tt would follow that a = b. This is a contradiction. Hence there
exists t] such that

Oajs

dt

> €.

L3

2T; 2T; 2T; 2T;

Figure 5.

Lemmia 9.24. There exists L independent of ¢, and there exist T;,
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th, ... 5% such that
(9.24.1) 6; < L,
(9.24.2) lim 7T} = oo,
8 i
(9.24.3) Bl <
at LZ
£
if [t —t]| > Ty for each i,
(9.24.4) -t | >T; ifj#7.

Proof. The existence of the upperbound L of ¢; independent of
¢ is the essential part of the statement. Hence, if Lemma 9.24 is not
true, then, by taking a subsequence, we may assume that there exist
tl -+ t% € R, T; such that (9.24.2),(9.24.4) and

(9.24.5) lim¥¢; = oo
8aij
9.24.6 :
( ) | e
L2

14

hold. By |a;| < A, and by Uhlenbeck’s theorem [FU] p117, we can find
g} € Gpy1(M) such that a subsequence of the connection

J* i

t—g; at——tf’

converges to an element d+a$5 of M(cj, c;), for fixed 7, (in C? topology
on any compact set.) Here ¢;,c; € FI. By (7.24.6), we have ¢; # ¢;.

Hence by Lemma 9.22
/ ‘8&‘;‘}
Mxr| dt

for each j. Therefore, Fatou’s lemma implies

2

dt > 0,

c 2
1
aat

li dt
zi»I]él() ot
s 8a> |2
>) —Ltat| dt
j=1 /MxR ‘ dt

= OQ.



54 K. Fukaya

This contradicts the fact that

2
dt

i
Oa;

dt

/

is independent of i but depends only on a and b. The proof of the lemma
is complete.

By Lemma 9.24 and |F*

that the following holds : ¢; = ¢ is independent of ¢ : let Zii’j = a:_tq- :

]

< A, we can take a subsequence such

. . * /\'L’j o0
there exists g; ; such that lim,_, g; ja;” converges to an element q,

of M(c},cj) uniformly on every compact set, for some ¢}, cj. If £ =1,

we can easily prove that A; is bounded in M'(a,b). This contradicts
(9.23.2). On the other hand, by induction hypothesis, @, is either an

element of Kc;,cf_/, or a standard model. Therefore, using Lemma, 9.17

and (9.24.3), we can prove that A; is a standard model for large i. This
contradicts (9.23.3). The proof of Theorem 7.5" is now complete.

§10. Local action on the end of moduli space

Using the results in §§8,9, we obtain charts @, : X (¢) — /T/((a, b) for
each ¢. As we pointed out in §7 these charts are not compatible. Then
we have to perturb them. Also, in order to extend bundles EZ(-Z) to the
boundary, we have to examine its behaviour on the image of each chart.
For these purposes, it is useful to use the notion, local action of groups,
which is a generalization of one introduced by Cheeger-Gromov [CG].
They used the local action to study the end of Riemannian manifolds
with bounded curvature. In their case, a special kind of local action,
F-structure, (that is the local action of Torus,) arises, and the direction
of the orbits is the collapsed one. In our case, the curvature is not
bounded from above. (It might be bounded from below.) Hence the
group acting on the end is not necessary Abelian. (The group SU(2)
arises as well.) However the end is also collapsed and the collapsed
direction is homogeneous. (For example, in the case we studied in §8,
the collapsed direction is parametrized by SO(3) x SO(3)/S*.

Before stating our result we shall discuss examples. First consider
the case, when G, = Gy = {£1}, G. = G = U(1), p(a) > plc) >
p(c’) > pu(b). Choose a compact subset K. . of ﬂ/(c, '), consisting
of irreducible connections. Then, by Theorem 7.6, the intersection of

X/t—,(a, b) and a neighborhood of K, . X K. X Ko in C.X/l—/(a, b) is
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diffeomorphic to
Ga\f(a,c X G, I?QC/ Xa., I?Cz,b/Gb x (T, 00)2.
On this set we can define an action of U(1) x U(1) = G, x G by
(h,h)([z,y, 2],t, 8) = ([zh,y, h'2],t, s).

Note that I?a,c — K, is a principal U(1) bundle, hence U(1) acts on

K, . Asin §7, we have a map

q)(c,c’),(c’) : Ga\féa,c Xa, I?c,c’ Xa, I?c’,b/Gb X (T,OO)2
— Go\M'(a,¢') xa, Ko /Gy x (T, 00)

(D(c,c’),(c) : Ga\iza,c XGe I?C,C’ XG o I?C',b/Gb X (TJ 00)2
— G \M'(a,¢) g, Kep/Gp x (T, 00)

Let Z,, Z, be inverse images of Ga\I?,I,c/ Xa,, I?C/,b/Gb x (T, 00) and
G’a\Iz'a’C Xa, I?C,b/Gb x (T,00) respectively. (See Figure 6.)
Ga\I?a,C/ XG. I?C/,b/Gb x (T, 00) has a U(1) action. This action is iden-
tified to the action on the second factor of U(1) x U(1) on Zs. Similarly
the U(1) action of G,I\Iz'a,C Xa., I?C,b/Gb X (T, 00) is identified to the ac-
tion of the first factor of U(1) x U(1) on Z;. This is exactly the situation
of T-structure defined in [CG].

{1} x U(1)-action

‘I/(c,c')(c')(W2)

U(1) x U(1)-action

By (W) m (a,c) x M (c,¢) x m'(c',b)

Figure 6
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Next, consider the case, G, = G, = {£1}, G. = SU(2). A neigh-
borhood of K, . x K. in Cﬂl(a, b) is diffeomorphic to

Ga\-i{'a,c X sU(2) I?c,b/Gb X (T) OO)

On this set SU(2) does not has a global action, but has a local ac-
tion in the following sense. Consider the principal SU(2) bundle :

IN{G,C — NQ,C/SU(2). Let SU(2) act on itself by conjugation, and
P — ~a,c/SU(2) be the associated bundle. P’ has a structure of Lie
group bundle. P’ induces a bundle P — K, ./G. x GC\IA{'C,b. P has a

fibrewise action to

I?a,c XG, I?c,b - I?a,c/Gc X GC\I?C,bﬂ

induced from the fibrewise action of P’ to K a,p from left. (Note SU(2)

act globally on K, from right.) This fibrewise action defines a local
action. If u(c) > u(c’) > u(b), the local action of G. = SU(2) can be
made to be compatible with the local action of G, x G .

Note that this action is not an action of a sheaf of groups in the

sense of [CG], because the fibre bundle P — K, ./G. x G¢\K, is not
flat, in general.

Take a principal bundle I?Qb — SU (2)\[?0,(, and construct a Lie

group bundle Q — ~a7c/GC X GC\I?C’I, in a similar way. ) has also a
fibrewise action on

Ga\jza,,c ><SU(Q) I?c,b/Gb X (T7 OO)

This action does not coincide to the action of P. But they have the
same orbits. By convention, we use only the action of P.

Definition 10.1. Let X be a C° manifold. A local action on X
is a collection (U;, G;, ; j) such that

(10.1.1)  U; is an open covering of X.

(10.1.2) -: G; x U; — Uj; is a smooth action of a Lie group G; on U;.
(10.1.3)  U;nU; is G; and G; invariant.

(10.1.4)  Let Em(G;,G;) be the set of all injective homomorphisms.
For i < j, there exists a smooth map ¢; ; : U’gin — Em(G;, Gj) such
that

9(x) = ¢i;([2])(9)(2)
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holds for each z € U; NUj, g € G;.

Example 10.2. Let X — N be a principal G bundle. (G acts on
X from right.) Let P = X X,4 G. P is a Lie group bundle and has a
fibrewise left action on X. This gives a local action on X.

Example 10.3. Let X °(c) be as in §7. There exists a fibration
X°(c) = Go\Ka,co/Gey X -+ X Go \Key b/ G % (T(c), 00)*+1

the fibre of which is G, x G, X --+ X G, X G. We have a Lie group
bundle

P — Go\Kqco/Gey X -+ X G \Kg, v/ Gp x (T(c), c0)F+1

whose fibre is G X G, X -+ X G¢, X Gp. The bundle P has a fibrewise
action to X°(c). This gives a local action on X°(c).

Theorem 10.4. There exist a local action on _M/(a, b) and maps

T, : )%(c) — M (a,b),
U, o U(e, ) — X(¢),

such that

(10.4.1)  The restriction by W, of the local action on X(c) of the local
action coincides to one in Example 10.3.
(104.2) U VU, =W (The subset U(c,¢') C X(c) is as in §7.)

Theorem 7.1 follows immediately from Theorem 10.4. We have also
(10.5) |, — V.|(2) < e(S1, -, Sk)-

Here ®, is the map constructed in §8, z = ([41,- -, Ak], S1,- -+, Sk) and
e(S1,+,Sk) = ZCe‘Si/C.

To prove Theorem 10.4, we modify the maps ¥, inductively on c.
First we take ¢ which is maximal with respect to the inclusion and put
¥, = &.. We do not change ¥, while modifying ®. with ¢’ O ¢. For
simplicity of the notation, we discuss one step of modifications. We
consider the following case. Let p(a) < p(c) < p(c’) < w(b), with
G, = {1}, G. = G¢ = Gy = U(1), and consider the component
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of K. consisting of irreducible connections. Suppose, by induction
hypothesis, we have

~ ~ ~

Uiy Kae xa, Koo Xa,, Kerp x (T, 00)?
— M'(a,b)
e, (e) - KocXa, Koo Xa, Korp x (T, 00)?
— M’(a, c) xg, M'(c,b) x (T, 00)
(I;(c,c’),(c’) : Koo xg, Ke oo Xa,, Ko p % (T, 00)?
— M'(a,¢) x@,, M'(c/,b) x (T, 00),

and a local action on the image of ¥, ..). We shall define ¥,y and ¥ .
such that

Vi) ¥(c,e),(e) = ¥(e,e)

on
Wi =00 o Kae Xa. Kep x [T,00)),
and
Ve ¥(e,en), () = Y(ee)
on

~ ~

W2 = \Ij_l (Ka,c’ XGc’ Kc’,b X [T, OO))

(c,e"),(c")
(See Figure 6.) By induction hypothesis, ¥ (. o) ) and ¥(c o) (/) Pre-
serves G. X Gy and G x G} actions respectively. (In this case, those
actions are defined globally since the groups are abelian.) The maps
VU ) and ¥ () we shall construct must be G} invariant. Once we obtain
such maps ¥(.) and ¥y we can define a local action on their images
by pushing out one by those maps. These local actions can be patched
together with one on the image of ¥ (. ) by the G. X Gy and G X Gy
invariance of the maps ¥ (. ), () and ¥(c c), ()
We begin the construction of ¥.. We choose an open coverings U ].1,
Uf, UJ:-)’, U;-l, of IN{a’c/Gc, K¢, GC/\I?C/,b/Gb, I?a,c//GC,, respectively.
Let Vi be an open covering of U(1). Take maps J} and J? as in §8.

Choose sections s : U} — Ag(a,c) and s3,s3.57. As in §8, define a map

~

: Ujll X Uj22 x U;S X Vi, X sz X (T’ OO) X R — AE,:S((Z, b)

’
(I)jl 2J2,d3,k1,k2

by

& ks (A1), [43], [43], 91, 92, 51, S2, 5)
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(= (Jk,(g1,") A1)(z,t = S) for t<S+51/3

t—S—5,/3
— ([ —— Y2 ) * A (2.t — S
x( E )91 1(z, )

+ (1 Sy (%@)) Ag(t— S — 1)
for te[S+51/3,5+25/3]

< :Ag(t—S—Sl) for tE[S+251/3,S+Sl+52/3]

— (t‘ 5‘5;9/13‘ 52/3) Aa(t— 51— 8)

/3
for te [S+Sl +52/3,S+Sl +252/3]

By perturbing this map as in §8, we obtain a map

~

t—S5—-5—-52/3
+(1—x( 1= 5/ ))QSAs(xat—S”Sl_Sﬂ

\ = (J,gz(QQ, ')*Ag)(s,t - S - Sl - Sg) for t> S + Sl + 252/3

59

.77l 2 3 A
®j11j2,j37k17k2 . Ujl X sz X Uj3 X Vi, X Vi, X (Ta OO) xR — Mg,(s(a,b)

which is a lift of the map ®(. .y of Theorem 7.6. By construction in §8,

we have
I
DL o sk ke — Rinsgardakskz| < €(S1,S52).

Similarly we have

&Sl(l) : Uj11 X Uji X Vkl X (Tv OO) xR — .Ag(a, C,)

jl,j2ak1
(5(1) : Uj'll X U]22 X Vi, X (T,OO) xR — M\e(a’ C/)’

Ji,dz.k1

such that &v);i?j% ks is a lift of

Do) : G\Kae Xa, Koo /Ger x (Ty00) x R — M(a, ).

Here 52)]’2 ks is obtained by a similar patching procedure as
T/
J1,J2,33:k1,k2? and that
&/(1) _ &M
| jlijvkl le,j2,k1l < e(Sl)'

We may assume that for each j;,j52 with

Ga\ﬁjll X@a, ﬁjzz Xa, I?c’,b X (T, 00)2 C Wy,
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there exists j = j(41, j2, k1) such that
Im @, j b, C Uj-
We have maps

&) U X U2 x Vi, x (T,00) x R — Ag(a,b)

j1j3a

a)fj?a,kl : UJ4 X U.?B X ng X (T’ oo) xR — Mz(a’ b)

such that 55’23)3 ks is a lift of

(I)(c’) : I?a,c’ XG, -R:c’,b/Gb X (T, OO) xR — M(a, b),

=(2) . . " . =
Here ® i3 ks 1S obtained by a similar patching procedure as 1 danis k1 k2

and that
12 3@ | <e(S,).

jaj3ak2 jaj3ak2

By construction, we can choose lifts sjl- e.t.c. so that

=1(2 =1(1
q’;((j)l,jz,kl),js,kz (‘I)j(l,;z,kl ([A1], [A2], g1, 51, 5), [As], g2, Sz, S’)
= é;hjz»js,kl,kz([Al]’ [Az], [A3]’gl7gz’ 51, 52, S")‘
(Here S” is determined by S,5’,S; and S.) It follows that
I@(C/)@(C,Cl)’(c/) - (I)(c,c')l < e(Sl, 52)
Using induction hypothesis (10.5), we obtain
@) ¥ (e,e) ) — Yeen| < e(S1,52)-

Let "i;Jl )j27j33k17k2 a'nd il(l)

12da ke be the lifts of . and ¥ (. (), respec-

tively. Then we have

.7(.71 aj2$kl)aj3vk2

- lijl,jzvjavkl,kz([Al]; [A2], [A3],91,92, 51,52, S”)l < 6(517 SZ)

50 (T80 (A1) ) 0,50, 4], 02,52, )

Therefore we can define

= : Uy, X Ujy x Ujy X Vi, X Vigy X (T, 00)? x [0,1] — Aq(a,b)/R

h’jl7j2aj31k:1,k?
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by
§;1,j2,j3,k1,k2([A1]7 [A2]’ [A3]7glag27 Sly 525 3) =
T (2 T.(1
(1 - S) ' (I)g(;h]'z,kl),js,b (qlg'l?jz,h([Al]’ [AZ]’gla S1, S)’ [A3],g2, S2, S’)
ts- E,jhjz,js,kl,kz([Al]’ [A2]7 [AS]’glag% S1, 52, S”)-

Since gauge transformation is an affine map (namely g*(sA+(1—s5)B) =
sg* A+ (1 — s)g* B holds for each connections A, B and gauge transfor-
mation g), it follows from an argument similar to the proof of Lemma

8.3 that we can perturb Z% . . . . so that it defines a map Z' :

W1 x [0,1] — By(a,b), which is G, invariant. Using Taubes’ method
as in §8, we can perturb this map and obtain Z : Wy x [0, 1] — Mj(a,b).
This map Z is an isotopy between V(. .y and @)U (. ) (). Take a
small open neighborhood W] of W7 in

M(a,c) xg, M(c,c) xg,, M(c,b) x (T, 0)2.

= can be extend to W{. Let ¢ : W] — [0,1] be a Gp-invariant function
such that

{ e(z) =0 if z e W], and if W oy () (z) € X(g)
e(z)=1 if zeWi.

(See Figure 7.) Define ¥y on W, o) () (W]) by

Vo) (¥ (e,e), () (@) = E(z, o(x)).

m (a,c) x ™ (c,b)

m(a,¢) x M (c,b) gy, m'(a,¢) x m(c,¢) x (¢, b)

Figure 7.
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Since
E(x,0) = @) U (c,en), (') (%),

we can extend V), by putting ¥y = @) outside ¥ (. ) ) (W7).
Since

E(xz, 1) = \Il(cycf)(:r),

we have WU 1 () = Y(c ), on Wi. The inequality (10.5) holds
by construction. Using Lemma 8.14, we can prove that ¥ is a dif-
feomorphism to its image. Thus the patching argument for the proof of
Theorem 10.2 is completed in our case. The proof of general case is the
same, but the notation will be more complicated.

Remark 10.6. If we can establish rigorously what we suggested in
Remarks 8.15 and 8.20 we might be able to prove Theorem 10.2 using
the center of mass technique in Riemannian geometry. (See [GK].) But
the direct argument we gave above might be simpler.

§11. Extension of the line bundle to the boundary

In this section, we shall prove Theorem 7.3. First we consider the
case when none of ¢; are reducible. We put

k—1
Clml(a, b) = U M/(a, cp) X H m_/(Ci,Ci+1) X ./\_/ll(ck,b).
o, ek, Ge; ={£1} i=0

Lemma 11.1. Let ¢ = (co, - -,ck), pla) > plco) > -+ > plek) >
u(b), G, = {£1}, and

Vet Koo X [[ Kevieips X Kepp % (T, 00)* — M (a,b)

be the map given in §10. Then there exists an isomorphism of line
bundles

©L \Ilfﬁgz)(a, b) — Egz)(a, )R ® E(-Z)(ck, b).

(]

This lemma follows from Theorem 4.9 and the construction of ¥..
Hereafter we write

L) = £P(a,c0) ® - ® L (cx, b).
Similarly, for ¢’ C ¢, we have an isomorphism

0o L) — £ (o).



Floer Homology for Oriented 3-Manifolds 63

Lemma 11.2. On
Kaac[) X HKCi,Ci-H x KCk,b X {(Sla o 7Sk)}

we have ' . .
H(pz,c’ o 902’ - @i” < 6(513 Ty Sk)

This lemma follows from the construction of ¢!. By Lemma 11.2,
we can perturb ¢, goﬁ,c, such that

Soc,c’ °OPe = Pe-

Using these isomorphisms, we can patch the bundles Egz) (c) and obtain

a line bundle over le/l—/(a, b).
Next we consider the case when some ¢; are reducible. The following
three results are used for this purpose.

Theorem 11.3. The local action on ﬂ,(a,b) constructed in §10,
can be lifted to Egz) (a,b).

Hence, for each ¢, the line bundle \IJ:/:,EQ)(CL, b) on I?a,cO XGep """ XGey

I?Ck’b x (T,00)* has a local G x G¢, X - X G, X Gy action. Therefore

we obtain a bundle \Ifjﬁgz)(a, b) on
K} oo % [ K2 erns X Ko % (T, 00)".

a,co c

Here K, Cita denotes the set of reducible connections. As before we put
£2() = £ (a,c0) 8- © L (cx,b),
which is a line bundle on

K* X HK:iaCi+1 X K:k,b X (T,OO)k,

a,Co

Lemma 11.4. There exist isomorphisms
oh: UL (a,b) — £ ()
el U LP(e) = £7(0),

Lemma 11.5. On

Koo % [T Kz eors % Kip x {(S1,7+, Sk)}
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we have . ' .
lpe,cr 0 per — el < e(S1,--+, Sk)-

Using these results, we can prove Theorem 7.3 in a way similar to
the case when none of ¢; are reducible. The proof of Lemmas 11.4 and
11.5 are similar to one of Lemma 11.1 and 11.2 respectively. In the rest
of this section, we prove Theorem 11.3.

First we lift the action on the image ¥ (X°(c)) C M’(a,b). We
are studying the determinant bundle of the operator &, + € defined on
¥ ~ S x R C M x R. On their ends, these operators are asymptotic
to 2 + 8% + €, for some a € Fl. Here the operator &% is defined on S*.
We choose \g such that the first eigenvalue of (8¢ + €)* (8¢, + ¢€) is larger
than Mg for each a.

For simplicity, we shall consider the case where ¢ = (¢), G, # {£1}.
In this case, ¥ is a perturbation of the map ® defined below. (See §8.)

Choose an open covering

UlU---UUx 2 K,
UZu---UU% 2 Ky,
Viu.---uUVy =G,

and sections sjl : U; — Ay s(a,c), s?
Vi Xx R — G, be a map such that

: U? — Ags(c,b). Let Jy :

1 ift< -1
g ift>0

Ji(g,t) = {
Then the map
6;1’]'2’]‘; . U_]ll X Vk X lj",lz2 X [T, OO) X R e d A£,6(a/, b)
is defined by

o . x([A1],9,[42], S, S)

( (Ju(g, )" A1) (z,t - S)  ift<S+5/3.
t—S—5/3\ ,

(T ) o a9

+ (1—X (%))Az(t—S—S’)

ifS+5/3<t<S+25/3
( A(t—S—S5") ift>S+25/3.

N\
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Here x is the cut function in §8. The maps (AI;;l’j%k induce a map & :
X°((c)) — By s(a,c). They satisfy

(2 () — ®)([41], 9, [A2], S, S) 12 < Ce™ /€.

Therefore, there exists an isomorphism ‘I”{C)EEQ)(CL, b) — @*Z£2)(a, b).
We shall lift the local action of G. on I?a’c Xa, I?C’b, to a local action
on @*£§2)(a, c).

Replacing U}, and U7, by a smaller one if necessary, we can find
positive numbers Aj, ;, < Ao, such that the following holds.

(11.6.1)  If [a;] € U}, then )j, j, is not an eigenvalue of (34, +€)*(8a, +
€) on ¥;.
(11.6.2)  If[as] € UZ, then ), j, is not an eigenvalue of (34, +€)* (81,1 +
€) on ¥;.

Then, by Remark 4.6, A;, j, is not an eigenvalue of (84 +¢€)*(04 +¢)
on Y;, if

1 2
[A] € @(U;, x Ge x U, x (T',00) x R)

for sufficiently large T'. Let [A;] € Ujll, [Aq] € Uj22, g eV, CG, and
A=3d ([A1], 9,[A2], S, S), we put

]lvk’jZ

L(Al7gaA27S,aS): @ {ul(8A+€)*(8A+€)U:/\U},
AL

1,92
L'(A1,9,42,5,8) = P {ul|(8a+e)(0a+e) u=Iu},
A<Aj1 .52
L= |J L(A1,9,4,,5,9),
AlvgvA27SI7S
= |J I'(41,9,45,59).
Al,g,Az,S’,S

By (11.6.1) and (11.6.2), the dimensions of L and L’ are constant. By
definition,

@*(L?(a,)|((A1].0.(421,5".5)

top top ®2
~ (/\ (L(A1,9,45,58,8)" ® /\L’(Al,g,Az,S’,S)) .
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Lemma 11.7. Lett € [S+S5’/3,5+25'/3], u € L(A1,g, A2,S5",S).
Then

u(z, )] r < Ce™ VIR mPO[y |
Here B(t) = d(t,0[S + S'/3,S5 + 25'/3])
The proof of the lemma, is similar to one of Lemma 4.5.
For uw € L(A,,g,A2,5,5), g,h € G, with g, hg € Vi, we put
I (h)(u)(t, x) =
[ Ji(hg,t — S)Jk(g,t — S) tu(z,t) ift<S+5'/3.

<x(5:§%i@)hwan+(1—x(t¥§%$@))m%@
if S+ 5'/3 <t < §5+28'/3,

| u(z, t) if t > S +25/3.

Let I3(h)(u) 1is the orthonormal projection of I;(h)(u) to
L(A1,hg.As,S",S). Lemma 11.7 implies:

Lemma 11.8.

I1T2(R) (w) = Li(R) ()22 < Ce™57Cul] 2.

Lemma 11.9. Ifg € Vi, hg € Vi and h'hg € Vi, then

I72(W'h)(w) = L(W) I (R) ()| 12 < Ce™/C|lul| 2.

Next we extend Iy to Is which is defined also for h such that g € V
and hg ¢ Vi. Note that G, = U(1) or = SU(2). Hence, in fact, we
need only two charts V; and V5 to cover G.. (This fact is not essential
for the proof but we use it to simplify the notation.) Choose gy €
VinVs,. For g € Vi, hg € V5, we take hy and hs such that h;g = g¢ and
hohy = h. Then, for h € L(A1,g,A2,5,5), the element I(hi)(u) €
L(A1, go,A2,S’,S) is well defined. We put

I3(h)(u) = I2(h2)I2(h1)(u).

Since ha(h1g),h1g € Va, it follows that I3(hg) in the above formula is
well defined. Choose x : G, — [0, 1] such that

X(g):{l ifgeVl—(Vlﬂvg).

0 ifgeVo—(ViNnW).
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Put
Iz(h)(u) if hg eV — (Vl N Vz),

x(hg)I2(h)(v) + (1 — x(hg))I3(h)(u)
if hg evVin Vz,
I3(h)(u)  ifhge Vo — (ViNTa).

I;(u) =

In the case when g € V,, we define I7(h) in a similar way. Finally we
put, for u € L(A, g, A2, 5, S)
(I;(M)(w) ifgeVi—(VinVy),
X(9) 15 () (u) + (1 = x(9)) I3 (h)(w)
if g€ VinVa,
L F(h)(uw)  ifge Vo — (ViNVy).

Is(h)(u) = 4

Then I5 is defined for every h and g and depends smoothly on them. By
perturbing Is a bit we obtain Ig(h) which is a linear isometry

L(Ahga A27 S/a S) - L(Ala hga A23 S,’ S)
By construction, we have
(11.10) 1 I6(h'R) (u) — Is(R)Is(h)(w)|| 12 < Ce=5/C|ul| 2.

Next we use the center of mass technique, to perturb I and obtain
I satisfying I(h)I(h’) = I(hh'). Namely we use the following:

Lemma 11.11. For each compact Lie group G and n,e > 0, there
exists 6,(G,€) > 0, such that the following holds.

Let w: L — X be a hermitian vector bundle of rank n, G act on X,
and ¢ : G X L — L be a map. Suppose

(11.12.1) m(0(g,v)) = g(w(v)),
(11.12.2) @ 1s a linear isometry on each fibre,
(11.12.3) (g1, 92,v) — (g1(0(92,v))| < 6n(G,€).

Then, there exists a lift of the action of G to L, such that

lo(g,v) —g-v| <e.

In the case when X is a point, Lemma 11.11 means that an almost
homomorphism G — U(n) is approximated by a homomorphism. This
case is proved in [GKR]. The proof of Lemma 11.11 is identical to that



68 K. Fukaya

case and hence is omitted. (See also [BK] p138.) Note that 4, (G,€) in
the lemma is independent of X.

Now, using Lemma 11.11, we can perturb Ig to obtain a lift I of
the local action on Uj, x G x UZ, x (T,00) x R to the vector bundle

L(A,9,A5,5,S) on it. In a similar way, we can lift the action to
L'(Ay,g,A5,5',S). Hence we obtain a lift of the action to the restriction

of ‘I)*Zf,z); to (7}1 X@. (73-22 x (T,00) x R=U} x G, x UZ x (T,00) x R.

(Here U} and U7, are the inverse images of Uj and U7, in K, and

K., respectively.) We denote the lift by I ;,. By construction, we
have, on (U}, xg, UZ,) N (Ujl1 Xa, szé) x (T,o00) x R,

(I, 5, (R), Ijz 1 (b)) < Ce™T/€.

Hence using a partition of unity, we can patch them as an almost action.
Therefore, using Lemma 11.11, we obtain a lift of the local action to
* £ (a,b).

In order to lift the local action on M(a,b), we have to patch those
lifts we constructed above. By construction, they are compatible mod-
ulo a difference estimated by e(Sy,---,Sk) on --- x {(S1,---,5%)} x R.
Hence we can apply a similar patching procedure as above. The proof
of Theorem 11.3 is now complete.

§12. Boundary operators

In this section, we define the boundary operators
9:CY—CY_,
Oy : Cf — Ci_3
8‘71 Y2 - Clg - 02—5'

The definition of 9 is the same as Floer’s. Let a,b € Fl, with

p(a) = p(b) + 1. Then, ﬂ/(a,b) consists of finitely many points each
of which is given an orientation + or —. We let (Ja, b) be the number
of the points with + orientation minus the number of points with —

orientation. Put
dla] =) (a,b)[b].

Next we define 0,. For a closed loop v on M we obtain a line bundles
Egz)(c, c’), over M’(c, c’). We choose sections s, (c, c’) to [,fyz)(c, '), such
that the following holds.
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(12.1.1) For each a,b € Fl, the collection of the sections
sy(a,c0) ® -+ ® sy(ck,b)

to
Eﬁf)(a, c)® - ® ng) (ck,b)

can be patched together to give a smooth section on Cﬂ,(a, b). (We use
the symbol s, (a,b) also for this extension.)

(12.1.2) The zeros of s,(c,c’) are transversal and transversal to each
other.

Since we restrict ourselves to the case when s < 3 if H1(M;Z) is
torsion free, and when s = 0 otherwise, then we need only to study
the case when p(a) < u(b) + 8, Hi(M;Z) is torsion free and a and
b are irreducible. In this case, if u(a) > p(c) > p(c’) > p(b), and if
M(a,c) # 0, M(c',b) # 0, then M(c,c’) does not contain a reducible
connection. Also in our case, Lemma 5.8 implies that bubbling off of
instanton does not happen. Hence (7.1.6) implies that the set Cﬂl(a, b)
is compact. The later fact is not really necessary for the argument. (We
can discuss as in Donaldson [D4], in case when a and b are irreducible.)
However the former point is essential. We discuss it at the end of this
section.

Now, let u(a) = p(b) + 3. Set

% (a,b) = {a: e CM (a,b)|s,(a, b)(z) = o} .

Dimension counting, the compactness of Cﬂl(a, b) and the transversal-
ity (12.1.2) imply

. (a,b) NOCM (a,b) = 0
12+ (a, b) < oco.
The orientation of /V/(a,, b) induces an orientation of each point of ¥;.

We define (8,a,b) by
(Oya,b) = 3,

Here and hereafter § stands for the number of points with + orientation
minus the number of points with — as orientation. We set

dyla] = > (8ya,b)[b].

b



70 K. Fukaya

For u(b) = p(a) + 5, and loops 7; and 72, we put

S (a,b) = {& € CM (a,b)]54, (a,b)(z) = 54, (a,b)(z) = 0.},
and define

(371,720,, b> = 121 7 (a’ b)
a’Yl,’Yz la] = Z<8’Y1 2@ b) [b]

b

Now we prove Theorem 1.10. For simplicity, we discuss the case
a = {v}, and prove 8,0 + 80, = 0. Let a,b € Fl with p(a) = pu(b) + 4.

The line bundle 5(72)(@, b) — m/(a, b) can be extended to Cﬂl(a, b) by
Theorem 7.3. Since dim —M—,(a, b) = 3, the set

. (a,b) = {z € CM (a,b)|s,(a,b)(z) = 0}
is one dimensional oriented manifold. And
8% (a,b) = . (a,b) NOM (a,b).
By transversality and dimension counting We have
8%, (a,b) = {(z,y) € M (a,b) x M (c,b)|

sy(a,c)(x) - sy(c,b)(y) = 0, c is irreducible.}.
= I =t xMbu
p(c)=p(b)+1

]_[ M (a,c) x S(c,b).

(e )=p(b)+2
The orientations are also compatible. Therefore we have

D (8ya,¢)(Be,b) + Y (a,c) (D¢, b) = 0.

C

Hence 8,90 + 88, = 0, as required.
The proof of 8,, ~,0 + 05,0, + 0,0, + 009,, 4, = 0 is similar.

Now put
Ci = P S HI(M,Z) ® CY_y,,

£<s
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and define 9 : Ci; — Cy_y, by

(1 ®la) = D Yar ®0a2[a].

alUua?=a

(Here we fix a basis 71, - -+, 74 of the first homology group and put

Z [16:5.05, -,

1,° ’]l 7

if o= (3 Crjlyil- 22, Cegelvs]). Later, in Lemma 12.10, we
shall prove that 0, are additive with respect to .) Theorem 1.10 implies
88 = 0.

As we pointed out in §1, the boundary operator 8 itself does depend

on the choice of the sections s, (c, ¢’), because the spaces C_Ml(c, ') have

boundaries. Next we prove that the chain complex (C?, 5) is independent
of the choice of the section.

Theorem 12.2. Suppose H1(M;Z) is torsion free and s < 3. Let
s(a,b) and s’ (a,b) are the sections satisfying (12.1.1) and (12.1.2). Let

(C*#,8) and (C*,8') be the corresponding chain complezes. Then there
exist maps ¥, : C° — C? such that

(12.2.1) & =d
(12.2.2) O = &
(12.2.3) Y = 1 = identity.

Proof. For each loop v and ¢, ¢’ € Fl, we choose a section s(c,c’)
to Ef(yz)(c, ) x[0,1] — T/l—,(c, ') x [0,1] such that

(12.3.1)

~

5 ()@ 1) = 5 (¢, &) (2)
(12.3.2) For each a,b € FI, the collections of sections
8y(a,c0) ® -+~ ®54(ck, b)

can be patched together to give a smooth section on C_./T/l—/(a, b) x [0, 1].
(12.3.3) The zeros of s,, are transversal and are transversal to each
other.
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Now, let u(a) = pu(b) + 3, and put
=, (a,b) = {(z,t) € CM (a,b) x [0, 1]|3, (a,b)(z,t) = 0}.

Then dim 3 (a,b) = 1. Note that (12.3.2) implies that

5 (a,b) N (M (a,¢) x M (c,b) x [0,1]) # 0
only if ¢ is irreducible and p(c) = u(b) + 1 or 2. Therefore

(12.4)
0%+ (a,b) =
{(z,0)[sy(a,b)(z,0) = 0} U {(x, 1)[5y(a, b)(z,1) = O}U
[ [{(@1, z2,1)[5, (c,b) (21, 1) - 3, (a, c) (w2, t) = O}.

Figure 8.
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For each a,c € Fl, with pu(a) = p(c) + 2, we put

(pra,c) = t{(z,t) € M (a,c) x [0,1]|5,(z,t) = 0}.

Note the set in the right hand side is a finite set, by (12.3.3) and dimen-
sion counting. Define ¢., : Cp — CY_, by

pylal = Z {pya, e}

Then (12.4) implies

(12.5) By — 3, + dpy — 40 = 0.

Now define ¢, : C* — C! by

p(1®[a]) = 1®[a]
(v ® [a]) = v ®[a] + 1 @ p4]a],
P(1®la]) =1®|a]
P(y®a]) =7 ® [a] — 1 ® p,[a]

Then using (12.5), it is easy to verify (12.2.1),(12.2.2), and (12.2.3).

Next we consider the case s = 2. Let p(a) = p(b) + 5. Put

571,72 (a7 b) = {(:l:,t) € C—M/(a’vb) X [0> 1]|§’Y1 ($7t) = g’)’z (xvt) = 0}'
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We have
(12.6)
0%y, vz (a,b) =
{(z,0)54,(a,b)(z) = 54,(a, b)(z) = 0}
U{(z,1)ls7, (a,b)(x) = 5, (a, b)(z) = 0}

U I @) eM(ae)x Me,b) x [0,1]]
pler)=p(b)+1

Sy (a7 cl)(x7t) = Sy, (CL, cl)(ma t) = O}’
U I @yt e M (a,ca) x M (cs,b) x [0,1]]
p(ca)=p(b)+4
g’h (ca,b) (CE, t) = ’572(64, b)(y,t) = 0},

(2., 1) € M (a,cz) x M (cz,b) x [0,1]
U ]_[ { (CE, Y, t) I Sy (a’7 62)($7t) =0= Sz (cQ, b)(yv t) }

or
c2)=p(b)+2 ~ 3.
p(cz2)=n(b) 5, (co,b)(z,t) = 0= 3s,(a,c2)(y,t)

(xLy’ t) € /_\/l_’(a, c3) X —J\Z,(c;),,b) x [0,1]
u I {@wyl O (a,03)(2,t) = 0 = 53 (ca,b)(9,1)

(cs)=n(b)+3 _ o
Sy, (03’ b)(x, t) =0= S’Yz(a> 63)(% t)

Let Ag, As, A1, Ay, Ao, A3 be the sets in the above formula, respectively.
We have

(12.7.1) ﬁAO = <8’)’1,’)’2a7b>a
(12.7.2) tAs = —(& . a,b).

Y1,72

For a,c € Fl with p(a) = u(c) + 4, we put

<30’Yl,"/2a’ C) = ﬁ{(l‘,t) € M/(aa C) X [O’ l]lg’n (:L')t) = gw(l‘,t) = 0}'

Then we have

(12'7'3) A = Z(Qp'h 2@ Cl> <8Cla b)?

C1

(12.7.4) Ay == (8, ca)(r 1Casb).

Cq
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To examine fA; and #A3, we remark that the sections s,(c,c’) can be
defined by an induction on u(c) — p(c’). Then, we can assume the
following conditions (12.8). For ¢,c¢’ € Fl with p(c) = p(cd') + 2, we put

T(c,c') = sup{t|3z (z,t) € £,(c, )},
S(c, ) = inf{t|3z (z,t) € &,(c,)}.

(12.8.1) If p(e) = pu(d) +3 =p(c") +5, and if t > T(/,¢”) then
s (e, )z, t) =5 (¢, )(x,1)
(12.8.2) If p(e) = p(d) +2=p(") + 5, and if t < S(c, ), then

s, ") (z,t) =5, (,c")(x,0)
Using (12.8.1), we can prove:

Ay = | [{z € M (a, e2)|s), (x) = 0} x

Cc2

{(y,t) € M (c2,b) x [0,1]|5,, (y,2) = 0}
U] [{z € M'(a,c2)Is!,, (z) = 0} x

{(y,t) € M (c2,b) x [0,1][3,, (y,t) = 0}

Therefore

(12.9.1)  #A; = Z (0,0, c2)(prpc2,0) = Y (8, , c2) (2, b).

c2

Similarly, using (12.8.2), we can prove:

(1292) fiAs = Z<(p’)’1 a, C3> <6’72 €3, b> + Z<<P~,2a, C3> (8’71 C3, b>

c3 C3

By (12.6.1),(12.7),(12.9), we have
(12.10)
871a72 + (70’}’1 8’72 + (p"/l 3’)’2 + (10717’728 6’91 sY2 + a,yl ‘1072 + aflyz 90’}'1 + 8,90’)’1,72 .

Now we put

e(mr2®[a]) =712 ® ]+ 71 ® rlal + 72 ® ¢y, [a] + 1 ® 4, 4, [a]
1/)('7172 ® [a‘]) =M [a] — V1 ® P, [a] — Y2 @ Py, [a

—1® (Pyy,75 + Py Py + Py Py )al.

J
]
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Formulas (12.2.1),(12.2.2),(12.2.3) follow immediately from (12.5) and
(12.10). The proof of Theorem 12.2 is now complete.

Next we shall prove the following:

Lemma 12.11. Let v1,72,7,7 be closed loops on M with [y,] +
[v2] = [y] in Hi(M;Z). Then we can find collections of sections
Sy (€, ¢'),84,(c, ), sq(c, '), sy (c, ) with (12.1.1), (12.1.2) such that the
corresponding boundary operators satisfy

(12.11.1) 8., + 8y, = 0,
(12.11.2) Byt + Doy = Dy

Proof. Let u(a) = u(b)+ 3. Consider CM(a,b). (We do not divide
it by the R action.) Let ¥ be a surface on M x R which is asymptotic
to (1 Uy2) x Rast — —o0, and to v x R as t — co. Using the Dirac

operator on X, we can define a line bundle L’,g)(a, b) on CM(a,b) =
CM (a,b) x R. We put

CCM(a,b) = CM(a,b) x [—o0, 0.

By construction and Theorem 4.9, the bundles C(g )(a, b) on CM(a,b),
and Egzl)(a, b) ® Eﬁ,zz)(a, b) on CM (a,b) X {—o0}, and E,(f)(a,b) on
CM (a,b) x {oo} can be patched together to give a line bundle over
CCM(a,b). We extend the sections s, (a,b) ® s, (a,b) and s,(a,b) to

a section on CCM(a,b). Then, by an argument similar to the proof of
Theorem 12.2, we can find ¢, such that

Oy = (Oy, + 8y,) = 8oy — 04 0.

Using this map ¢, we can modify the section s, such that (12.11.1) is
satisfied. The proof of (12.11.2) is similar.

Finally, we discuss what happens when s > 1 in case H;(M;Z) has
a torsion, and when s > 3 in case H;(M;Z) is torsion free.

Suppose first that Hq,(M;Z) has a torsion, and p(a) = p(b) + 5.
In this case, there may be reducible connections ¢ and ¢’ such that
G.= Gy =U(1) and that p(c) = u(c’) + 1 = u(b) + 2. Then

dim ./\_/I’(a, ¢) = dim ﬂ,(c, ') = dim —./\-/l_/(c’, b) = 0.
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The set M (c,c’) may have a 0 dimensional orbit M. 4(c,¢’) which
consists only of reducible connections. (See Theorem 5.6.) A neighbor-
hood of each point of M (a,c) x m;ed(c, ) x M (¢,b), in Cf/l_l(a, b)
is identified to (0,00] x (0,00] x U(1)/ ~, where (t,s,91) ~ (t,5,92)
if and only if ¢ = oo or s = oco. Here {oco} x (0,00) x U(1)/ ~
and (0,00) x {00} x U(1)/ ~ are identified to J_\/i—,(a, c) X /\_/l_/(c, b) and
M,(a, /) x M’ (', b) respectively. The bundle ng) (a,b) is extended out-
side 0o x 0o x U(1)/ ~= point. The neighborhood of this point is a cone
of $2. (It may be more natural to regard that this S? has two singular
points.)

Using the basis [¢;] of H{(M;Z), chosen at the beginning of §2, we
can find ¢;, such that

(12.12.1) c(b;) =)  if i # .
(12.12.2) clli,) =1, ) =-1.

In this case we can prove that the restriction of the line bundle Egz (a,b)

to this S? is nontrivial. (Its chern number is +1.) (See the proof of
Lemma 12.13 below.) Then the formula

0,0+ 0,0=0
does not hold in general.

Next suppose that H,(M;Z) is torsion free. Let ¢ and ¢’ be reducible
connections such that G, = G = SU(2), A € M (c,c'), G4 = U(1),
p(c) = p(c’) + 3. Then, if a,b € Fl and if M(a,c) # 0, M(c/,b) # 0,
then p(a) > p(e) + 4,u(b) < u(c’) — 1. Hence, the first case we are to
examine is the case when p(a) = p(b)+8 = u(c’) +7 = p(c) +4. In this

case,

dim M (a, c) = dim M. 4(c, ¢') = dim M’ (¢, b) = 0.

Here ﬂ;ed(c, ') is the component of [A], which consists of one point.
By Theorem 7.1 a neighborhood of each point of

/

M (a,c) x M. 4(c,c’) x M (c/,b)

in CM (a,b) is

SO(3) x SO(3) ,
( 0 X(O’“])/”
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where ~ is as in (7.1.4). In other words, it is a cone of CP?/Zy = X.
(See the proof of Lemma 12.13.) Here Z3 acts by

T[zo,zl,z2723] = [Zo,Zl, —22, —23]-

The fixed points set of this action has two components. The fixed points

correspond to the singular points of X. Those singular locus are identi-
fied to

SO(3) x SO(3)
(200 st x (0,000 )/ ~

C M (a,c) x M (c,b),

and

(0599 ) -
c M'(a,c) x M(c,b),

respectively. We can find 4;, such that (12.12.1) and (12.12.2) are satis-
fied. '

Lemma 12.13.

/ AL (a,b))? = +4.
X ‘0

Proof. Let a? be a representative of ﬂ’(c, ¢') = point, (used in §8.)
On ¢;, x R, a? converges to the trivial connection as t goes to —oo, and,

as t goes to oo, it converges to a flat connection —1 whose holonomy,
p_1:Z=m(S') — SU(2) is given by p_1(1) = —1.

Sublemma 12.14.

Index(Tg0 + €) = —1.

Proof. We put S = R/2nZ. Let z be the coordinate of S'. We
have

o .0
Otrivial = — + 1 —

ot Ox

We can perturb a? so that it is a connection with holonomy
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(ad is a trivial connection and a) = —1.) Then the spectral flow cor-
responding to the operator aa? + € is as in Figure 9. (Here we take

€>0.)

eigenvalue

2+6/

3.,
/ 2
1+ef<

1
-———‘—~—’—‘_———————_——f—”’) 2
—1+e€

-2+ €

-

Figure 9.

The sublemma follows.

Remark 12.15. In our case, the half spin bundle ® C? together with
connection af splits to the direct sum of two complex line bundles. The
dotted lines in Figure 9 correspond to the second factor and the others
to the first factor.

The group U(1) = I,0 acts on the eigenspaces, and the index in
Sublemma 12.14 can be regarded as an element of the representation
ring R(U(1)) ~ Z[t,t~1]. Here t be the representation corresponding to
2z zand t71 to z — 27!, where we identify U(1) = {z||z| = 1}. By
Figure 9, The index is equal to —¢71.

If we choose € < 0 then the index is t.

Now we consider the map = : SU(2) x SU(2) — M/(¢,c’) con-
structed in Theorem 5.4. Let £;(c,c’) be the line bundle defined in §7.
(We have not yet divided it by G. x G.) 7*L;(c,c') is trivial.
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On SU(2) x SU(2), the group U(1) = I,0 acts by

h(g1,92) = (91h, h ' g2).

This action lifts to 7*(L;(c, ¢)). The quotient is identified to the restric-
tion of L;(c,c') to the image of 7, which is diffeomorphic to SU(2) x
SU(2)/U(1). By Sublemma 12.14 and Remark 12.15, the action of U(1)
on 7*(L;(c,c’)) is given by

(12'16) h((gl,g2),v) = ((glh—lahg2)7hv)7
(in both cases € > 0 and € < 0.)
We put

F SU(2) x SU(2) x [0,1]’

Y

where

(91792,0) - (giaQZ’O)a

(91792a 1) = (gla 9/2) 1)
X is diffeomorphic to S”. By Theorem 7.1,
X= 2

U(l) X Z2

Here h € U(1) and 7 = —1 € Z; acts on X by

h([glag% t]) = [glh, h_lgz, t],
7([91, 92, t]) = [~ 91, 92, t].

Hence X/U(1) ~ CP3. By (12.16), the bundle £;(a,b) on X/U(1) C
CM!'(a,b) is isomorphic to the canonical bundle on CP3. Hence, its
Chern class is equal to the generator, u. Therefore,

/X ¢ (£, b)>3 - /C z=a

The proof of Lemma 12.13 is now complete.

Using Lemma 12.13, we can discuss as in the proof of Theorem 1.10,
to show

Y 05,0y, =4 M (a,0)- M (1),

aiUas=« c,c’
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in the case when a = (4, 4., ¥4, )-

It might be possible to define an invariant mod 4 using the above
formula. But the author does not try to do it here, because he suspects
if it is a correct way.

From the above observation, it seems that we need to examine the
reducible connections more seriously when we generalize the invariant
for larger s.

§13. Independence of the metrics and the perturbations

The proof of Theorem 1.14 is based on an argument similar to one
in §§7-12 and [F]. Let 01,09 be two metrics on M and fi,f; be two
perturbations as in §§2,3. Let Fl; and F'l; be the set of solutions of

*q, ¢ — grad, f1 =0,

and
%o, F'* — grad, fo =0,

respectively. Let (C(sl),al) and (ng),aQ) be corresponding complexes
constructed in §12. Choose a family of metrics g; such that

(13.1.1) o =07 fort< —1.
(13.1.2) o =09 fort>1.

Choose x such that

x(t)=1 fort>1,
x(t) =0 fort<O0.

Let o; be the metric o, ® dt? on M x R. We consider the equation
(13.2) FA —%,, FA—x(—t) (grad,, fi A dt — x,, grad,, f1)
— x(t) (grad,, f2 A dt — %o, grad f2) =0,

for A € A;s(a,b). (Compare (3.6).) Here a € Fl; and b € Fl;. The
linearization of (13.2) is given by

0= DA (’LL, (P) =
Oou
= 57 + (to,da, — Pt = x(—t) Hessq, f1 — X(t) Hessq, fo) Au+da,gp
Here u, ¢ e.t.c are the same as in (3.8). Let D} and D% be the operators

in (3.8) for 0 = 01 ® dt?,00 & dt? and f = f1, f2, respectively.
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Lemma 13.3. If A€ Ay-(a,b) witha € Fl1 b € Fly, then

dim Coker D4 < oo.

Proof. If not we have (u;, ;) such that

D7 (ui, pi) = 0,
< (us, @3), (uj, p;) >=8; ;.

Then, by elliptic regularity, we have |t;| — oo such that

|(ui(m01ti):90i(w07ti))| > Cy > 0.

We may assume that ¢; — oco. Put u}(t,z) = u;(t — t;,z), ©i(t,x) =
@i(t — ti,x). By taking a subsequence we may assume that (u},¥})
converges to (u,p) with respect to the C* topology on each compact
set. Then we have

D" (@, %) = 0
(@,) #0.

This contradicts (2.6).

Using Lemma 13.3, we can apply the argument of [D3] to obtain a
perturbation Q(-), such that the linearized operator D’, of

(13.4) FA—%, FA - x(—t)(grad,, fi Adt — *,, grad,, f1)
— x(t)(grad,, fo A dt — *,, grad, f2)+ Q(A) =0.

is surjective. Here Q(A) depends only on a restriction of A to M X
[~1,1] and its support is also contained in it. Let M(a,b) be the set

of solutions of (13.4) divided by gauge transformations. Let -M_’(l)(a, b)

and ﬂ’@)(a, b) be the set of solutions of (3.6) for ¢ = oy, f = f; and

o = o0q, [ = fa, divided by the gauge transformations and R action,
respectively.

Theorem 13.5. For a € Fl; and b € Fl,, let CM(a,b) be the
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disjoint union of

M(a,b),

CL CO X H M(z) CI,C,+1) X M 2)(Ck, ),

k—1
m1(1)(0, co) X H H,(l)(ciaci-iﬂ) x M(cg, b),

i=0

'k:o-—l
— — -
M1)(a, co) x H My (cis Ci1) X M(ckos Chot1)

=1

k-l — _—
X H M(2)<Ci,c7;+1) X M(2)(Ck, b)
1=ko+1

Then CM(a,b) has a smooth structure with properties similar to (7.1.1)
—(7.1.7).

The proof is similar to the proof of Theorem 7.1 and is omitted.

We remark here the reason why we need to fix a basis of H{(M;Z).
Let pq,uo be the maps defined in Theorem 5.1 for metrics 01,00 and
let f1 and fs be functions we used in sections 2 and 3. If we use the
same basis of H{(M;Z) (or more precisely H{(M;Z)RZ,), then we have
p1(c) = pe(c) for each reducible connection c. This fact is essential for
the argument of the rest of this section. In fact, suppose, for example,
there exists reducible ¢ such that

pa(c) = pa(e) — 10.

Then for some a € Fly,b € Fly with py(a) = po(b) +1, the space M(a, b)
may have an end described by

ﬂl(l)(a, c) x M(c,c) x H/@)(C, b).

And p;(a) — p1(c) can be greater than 7. Therefore, in the compactifica-

tion of _./\_/l—,(l) the end we discussed at the end of §12 can appear. These
ends can cause serious problem for the argument of the well definedness.
The point is that the virtual dimension of M(a,b) is —10 but we can
not find perturbation to make it empty

The author has no explicit example which shows that our invariant
does depend on the choice of the basis of Hi(M;Z). But it seems quite
unlikely that it is independent.
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We return to the proof of invariance. For v ~ S' C M, we define
bundles

»C,(yz,i (CL, CL/) on H(l)*(a‘a a’l)7

Lb,5) on Mz, b),
; -

E,(y )(a,b) on M(a,b).

Theorem 13.6. The tensor products of £ 3 and Eg) can

71,20
be patched together to give a line bundle on CM,(a,b).

The proof is the same as the proof of Theorem 7.3.

Now we define ¢ : (C(Sl),i?l) — (0(32),82). We put

< ¥y (a)7 b>= ﬁm—(aa b)

if u(a) = p(b). (Here § is the same as in §12.) Set

ela) = 3 < ga,b> [b].
b

This defines the map ¢ : 0?1) — C(02).

Next we fix sections s,(a,b), sy,1(a,a’), sy,2(b,¥’) to L(yz)(a,b),
£E{2’i(a,a’), Ef}z(b, b') such that (12.1.2) holds and that they can be

patched together to give a section of the line bundle obtained in Theorem
13.6. Now, for u(a) = u(b) + 2, we put

< pya,b >={z € M(a,b)|s,(z) = 0.}.
For p(a) = p(b) + 4, we put
< Py e b >= t{z € M(a,b)|sy, (x) = s, (z) = 0}.
Set

oylal = Z < @~ a,b > [b],
b
Pyla] = Z < Pry172 @5 b > [b].
b

Lemma 13.7. If |a| < 3, then

Z 8(211 Paz = Z Qoalaclxz-

aijUoaz=a ajUas=a
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(If |a| > 0 we assume that Hy(M;Z) is torsion free.)

The proof is the same as the proof of Theorem 1.10 in §12. Put

Z Ya; @ Yaz Q-

ai1Uas=ao
Lemma 13.7 implies that ¢ : (C'(Sl), ') — (C(z), 0?) is a chain map.

Lemma 13.8. The chain map ¢ modulo chain homotopy is inde-
pendent to the choice of the homotopy o: of the metrics and the pertur-
bation Q in (13.4).

Proof. Let o},02,Q1,Q2 be the homotopies and perturbations and
1, @2 be corresponding chain maps. Choose homotopies o} and @,

among them. Let M., (a,b) be the set of solutions of (13.4) for o; = o
and Q = Q. Let Cﬂ;(a, b) be the disjoint union of

M (a,b)

L k=1 _

Mu(a, co) x H Mg)(ci, cit1) X Mz)(ck, b),
i=0

M(l) a,co) HM(I) Ci, Cir1) X X My(ck,b),

ko—1

ﬂl(l)(a co) X H M(l) (cis Cig1) X M u(Cho» Cho+1)

1=0

X H M(z) (cs,cit1) XM(z)(Ck, b).
Z—ko+1

(Here we do not assume that p(a) > p(co) > -+ > p(ex) > u(b).) (Note
that My (a, b) # Mi(a,b).)
Put

HM(a,b) = Uﬂu(a, b) x {u},

CHM(a,b) = UCM a,b) x {u}.

Theorem 13.9. We can take o and Q, such that CHM(a,b)
has a smooth structure which has properties similar to (7.1.1)—(7.1.7).
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The proof of Theorem 13.9 is a bit more difficult than that of The-
orem 7.1. The reason is that we can mot assume that the operator
Dg‘) obtained by linearizing (13.4) is surjective for every u, (even if we
choose o} and @, to be generic.) Then we have to use the Kuranishi
map as in [T2], [D2]. For simplicity we prove the case p(a) = u(b). Here
a € Flyi,b € Fl,. Then dimHM/(a,b) = 1. In this case, Theorem 13.9
follows immediately from the following two lemmas.

Lemma 13.10. Suppose that the sequence (A;,u;) € HM(a,b) is
unbounded. Then, by taking a subsequence if necessary, there exist either

c € Fly, t;, B€ My(a,c), C € ./V/@)(c, b) with pu(c) = pu(a)+1 orc €
Fly, t,, B' € My)(a,c), C' € My(c,b) with pu(c') = p(a) — 1 such that
the Conditions (13.10.1)—(13.10.3) or (13.10.1) —(13.10.3)" below hold.

(13.10.1) u; — U

(13.10.2) |A;(z,t) — B(z,t)] — 0
(13.10.3) |Ai(z,t —t;) — C(x,t)] — 0
(13.10.2)’ |A;(z,t +t;) — B'(z,t)| = 0
(13.10.3)’ |A;(z,t) — C'(z,t)| — 0.

(See Figure 10.) Note that My(a,c) = 0 = M,(c,b) for generic u.
(The virtual dimension of them is —1.) But ”1-parameter family of —1-
dimensional spaces is a finite set”. Hence by a generic choice of o% and
Q. there exist a finite number of u’s, for which M, (a, c) or M, (c’,b) is
nonempty.

! (M x R,0")

Figure 10. ¢, (M, ) -
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Lemma 13.11. Let B € My(a,c), C € HI(Q)(C, b). Then there

ezist u(v) : (0,00) — 0,1, A(v) € Myy)(a,b) and t(v),t'(v) € R, such
that

(13.11.1) Ulirglou(v) =u
(13.11.2) lim |A(v)(2,t— t(v)) — B(z, )] = 0
(13.11.3) Jim |A(v)(z,t +t (v)) — C(z,t)| = 0.

Moreover, if A; satisfies (13.10.1) - (13.10.3) then [A;] = [A(v;)] for
large i. A similar statement holds for c'.

The proof of Lemma, 13.10 is similar to the proof in §9 and is omitted.
Before proving Lemma 13.11 we complete the proof of Lemma 13.8 in
the case when s = 0.

In this case, Theorem 13.9 implies

BHﬂ(a, b) - ﬂl (a, b) - ./_\;1-2 (a, b)
= JM.(a,c) x Mz (e, b) U | Mi)(a,¢) x Mu(c',b).

We put
< ®a,c >= Z M, (a,c)
< ®c,b>=) M,(c,b),
and

Pla] = Z < ®a,c > [

o] =) < ®,b> [b].
b

Then we have
P1 — P2 =0 — 0.

Here ¢; and (5 are the chain maps constructed using o}, Q; and o2, Qs,
respectively. This proves Lemma 13.8 when s = 0. The case when s > 0
can be proved by combining the methods of §§7 - 12 and Theorem 13.9.
(In fact, the case s > 0 is simpler, because we do not have to use
Kuranishi map in that case.)



88 K. Fukaya

Proof of Lemma 13.11. Let DY be the operator obtained by lin-
earizing the equation (13.4) for o, = o and @ = Q,. By the generic
choice of of and @, we have dim Coker D% = 1. We consider the set X
of the connections which is a standard form of type ({B}, {C},¢,T). By
Remark 4.6, there exists a positive number Ag, such that, if A € X and if

|lu—u'| < €, then, there is exactly one eigenvalue of DX'D%* smaller than
Ao. Let II; be the orthonormal projection to this eigenspace, (which is
isomorphic to R). Put II;; = identify —II;. For A € A(a,b), v’ € [0,1]
we consider the equation

(13.12)
O (FA — %, F* — xu(—t)(grad,, fi A dt — x_. grad,, fi)

- Xu/ (t) (gra‘dat f2 Adt — *o;‘/ gradat f2) + Qu’ (A)) =0.

0B(a,b) x [0,1] D B(a,c) x B(c,b) x [0,1]

Z x{c} =CY = (~1,1)

((B,u),C) = one point

Figure 11.

The set of solutions of (13.12) divided by gauge transformations
consists a 2-dimensional family Y. Let Z be the set of solutions of (13.12)
for A € A(a,c) and v’ € [0,1]. (dim Z = 1.) Then, using the method of
the proof of Theorem 7.1, we can compactify Y by adding Z x {C'}. Put
CY =Y U(Z x {C}). A neighborhood of ((B,u),C) in CY is identified
to [0,1) x (0,1), where {0} x (0,1) C Z x {C}. (See Figure 11.) For
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(A,u’), we put
FlA) =L (FA =% w FA = xow (=t)(grad,, fi Adt — *,.0 grad,, f1)
— xw (t)(grad,, fo Adt — * gu! grad,, f2) + Qu (4)).

We identify the image of II; to R and regard f as a function. Using the
decay estimate in §9 we can extend the function f to a smooth function
on CY. The set of zero’s of f is identified to a neighborhood of ((B, u),C)
in CHM(a,b). We consider the restriction of f to {0} x (0,1) C Z. If
we choose g}* and @, generic, we may assume that the derivative of
this restriction is nonzero at ((B,u),C) € {0} x (0,1). It follows from
implicit function theorem that the zero of f in CY is diffeomorphic to
[0,1) where 0 € [0,1) corresponds to ((B,u),C). Lemma 13.11 follows
immediately.

The proof of Lemma 13.8 is now complete.

Next we take another metric o3 and another perturbation fs.
Choose homotopies o, 2 and o2? from oy to oy and from oy to o3.
Choose also perturbations (1,2 and Q2.3. Let ¢ 2 and ¢33 be the chain
maps obtained by them, respectively.

Lemma 13.12. We can find homotopy of metric 07:1,3 from o, to
o3 and a perturbation Q13 such that the chain map @13 : C’fl) — 053)

satisfies
©3,2¢91,2 = ¥1,3-

Proof. We put
1,2 2,3
O-f = X(_t - S)Ut—{—Zs + X(t - S)Ut—2s'

We shift the perturbation @1 2 by 2s to the negative direction and shift
Q2,3 by 2s to the positive direction. Let Q] 3 be the sum of them. We
consider the equation

(13.13)
FA — 10317‘4 — x(~t — s)(grad,, fi A dt — . grad,, f1)
—x(t +s)x(s — t)(grad,, f2 A dt — *,s grad,, f2)
— x(t — s)(grad,, fs A dt — x,s grad,, f3) + Q1,3(4) =0

Let M(s;a,e) be the set of solutions of (13.13) divided by gauge trans-
formations. Let M o(a,b) and Mj 3(b,e) be the moduli spaces used in
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the definitions of 12 and @2 3 respectively. (Here a € Fli, b € Fla,
ec F lg)
By using Remark 4.6, we can prove that the linearized equation for

(13.13) is surjective for sufficiently large s. Consider the disjoint union
of

CM(s;a,e) x {s} s € [s0,00)

and
ko—1
J— —
T My (ei civa) x Maa(ckys cora)
i=-1
k-1
x [ Mileircirr) x Mas(cr,, crt1)
1=ko+1

k2
X H MEg)(C,;,C,H_l) X {OO}

1=k1+1

(Here we put a = c_1, € = cg,+1.) The later one is a compactification of
Up My 2(a,b) x Mz 3(b,e). Let CCM (a, e) be the union. Using this mod-
uli space, the proof of the lemma goes in a way similar to the argument
of §87 - 13.

Now we are in the position to complete the proof of Theorem 1.14.
Suppose 01 = 03, in Lemma 13.12. Then we can take a trivial homotopy
o3 = o1 and Q13 = 0. In this case, it is easy to see that the corre-
sponding chain map is the identity map. Therefore by Lemma 13.12
and Lemma 13.8, ¢3 31 2 is chain homotopic to identity. (In this case
w23 = @p21.) Thus the chain map ¢; 2 we constructed gives an iso-
morphisms on the homology groups. Also the isomorphism is canonical
because of Lemma 13.8. The proof of Theorem 1.14 is now complete.

The proof of the independence of the exact sequence 1.15 is similar.
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§1. Introduction

A hyperbolic manifold will be a riemannian manifold with constant
sectional curvature —1. It is shown by Epstein and Penner [1] that every
noncompact complete hyperbolic manifold of finite volume, hence having
cusps, is decomposed by ideal polyhedra. The decomposition supplies a
quite convenient block to study several geometries of the cusped manifold
especially in dimension three. See [4] for instance.

A variant of the construction by Epstein and Penner would estab-
lish a decomposition of a compact hyperbolic manifold with nonempty
geodesic boundary by truncated polyhedra as well, which we plan to
discuss in a forthcoming paper [3]. However the process will be rather
unseen in the manifold.

In this paper, taking advantage of working only in dimension three,
we give a more visible construction of this decomposition. In fact we
directly show

Theorem. Let N be a compact hyperbolic 3-manifold with non-
empty totally geodesic boundary. Then the topological decomposition of
N dual to the cut locus of ON modulo boundary is homotopic by straight-
ening to a polyhedral decomposition.

The visible process is expected to lead us to the deep understanding
of geometry of those manifolds. We apply it for example to find the
minimum of their volumes in [2].

Received February 23, 1990.
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We describe the rule of the decompostion in the next section with
some detailed accounts of truncated polyhedra. We study the cut locus
of the boundary and its topological dual decomposition in §3. Then we
show in the subsequent sections that the straightening of the dual along
its internal edges yields the final polyhedral decomposition. The proof
of Proposition 5.2 thus finishes the proof of the theorem.

I am grateful to Tomoyoshi Yoshida for showing his idea to decom-
pose cusped manifolds by ideal polyhedra.

§2. Truncated polyhedra

We start with describing a basic piece of truncated polyhedra, called
truncated tetrahedra. An ideal tetrahedron is a hyperbolic polyhe-
dron identified with a finite volume region in the hyperbolic 3-space
H* bounded by four geodesic planes, every two of which intersect each
other, and every three of which intersect at infinity. An ultra ideal tetra-
hedron is one identified with a similar region bounded by four planes,
every two of which intersect each other again but no three of which in-
tersect even at infinity. If we are in the projective model, an ultra ideal
tetrahedron is one whose vertices are located outside of the model disk.

An ultra ideal tetrahedron is of infinite volume. The truncation is
the device to cut off its thick end by a geodesic plane which intersects
three planes towards the end perpendicularly. Such truncation is always
uniquely possible since

Lemma 2.1. For any three metric disks on the euclidean plane
which have no points in common but each two of which have a common
region, there is a unique circle intersecting their boundaries perpendicu-
larly.

Proof. Let us name three disks by A, B and C. By conformal
change, we may assume that one of the intersection points of A and
OB is located at infinity. Then 0A and 0B are the lines intersecting say
at the origin. By the assumption on the position of disks, C' does not
contain the origin. Hence we have a unique circle centered at the ori-
gin intersecting OC perpendicularly. This circle automatically intersects

both 0A and 9B perpendicularly. Q.E.D.

Regard the boundaries of these disks as the ends of the geodesic
planes which make up a thick end of an ultra ideal tetrahedron. The
circle obtained in Lemma 2.1 will be the boundary of the plane for
truncation. This plane intersects three planes perpendicularly. Cutting
off each thick end by truncation, we get a compact polyhedron. This is a
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truncated tetrahedron. The surface of a truncated tetrahedron consists
of four right angle hexagons on the planes to bound the region, and four
triangles produced by the truncation.

Fig. 1.

A convex truncated polyhedron can be described in a similar man-
ner. Start with a finite set of geodesic planes in H>, no three of which
intersect even at infinity. Assume that it bounds a noncompact convex
region each thick end of which admits truncation. Then cutting off each
end of the region by truncation, we get a compact polyhedron. This
is a convex truncated polyhedron. The surface of a convex truncated
polyhedron consists of right angle polygons on the planes, which we call
internal faces, and the other polygons produced by the truncation, which
we call external faces. The union of internal faces is connected, while
external faces are mutually disjoint.

A tetrahedron is a basic piece of a polyhedron even in this situation.

Lemma 2.2. A convex truncated polyhedron is decomposed by
truncated tetrahedra without producing vertices in the interior.

Proof. Choose an external face 7 and introduce the shortest geo-
desic paths from the face to the other external faces. Such a path
uniquely exists for each face. It lies on the boundary if 7 and the ter-
minal face are joined by just one face. Obviously it lies on this joining
face then. Otherwise the paths go through interior of the polyhedron.

The internal faces touching 7 are now subdivided into right angle
hexagons. Subdivide then the other internal faces by a geodesic path
into right angle hexagons arbitrarily. Each geodesic path introduced
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here joins two external faces. It together with the shortest paths as-
signed to the terminal faces span a right angle hexagon in the interior
of the polyhedron. Because two paths determine a geodesic plane in-
tersecting three external faces involved perpendicularly and hence this
plane must contain the last path. The collection of these hexagons di-
vides the original polyhedron into truncated tetrahedra. Q.E.D.

A polyhedral decomposition of a hyperbolic 3-manifold with totally
geodesic boundary is a geometric cellular decomposition by (convex)
truncated polyhedra so that their external faces form the boundary.
This justifies our naming for faces. We also call an edge internal if it is
an intersection of two internal faces, and external otherwise. Notice in
this decomposition that every internal edge is a geodesic path from the
boundary to the boundary.

Let us describe a parametrization of isometry classes of labelled
truncated tetrahedra to show its variation, though the result is not
needed for the proof of the theorem. The isometry class of a trun-
cated tetrahedron is determined by the mutual position of the internal
faces, since the truncation is unique. Label the internal edges as in Fig-
ure 1.1 and denote the dihedral angle along the edge j by 6;. 6;’s are
quantities to describe mutual position. The sum of three dihedral angles
having a common external face must be less than 7 because otherwise
three planes towards the end meet in the real world. Thus we have a
necessary condition,

(01402 +03 <7
01 +05+60 <
Oy +04+0 <m

L 03+94+95 <.
Conversely,

Lemma 2.3. For 64, ...,0¢ satisfying the above inequalitites, there
is a unique labelled truncated tetrahedron with these dihedral angles.

Proof. Make four geodesic triangles using 61, ...,6¢ which would
form external faces. They have twelve edge lengths as data we can use.
Choose a triple from these twelve lengths that would be assigned to the
external edges of an internal face we expect to make. Then there is a
unique right angle hexagon having these as non adjacent edge lengths,
which is a candidate of the internal face. Applying the same for the
other triples, we get four right angle hexagons.
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The expected truncated tetrahedra should be obtained by gluing
these faces in H®, and what we need to show now is that the length of a
common internal edge for each pair of hexagons made are the same. We
do this for the internal edge 1. By the hyperbolic cosine rule, we have

cos 0; cos 8; + cos O,

(*) cosh/;; =

sin 0; sin 6 ’

where {4, j, k} corresponds to 3 angles of a triangle and ¢;; is the length
of the external edge connecting edges ¢ and 5. We made two hexagons
having the edge 1. By the hexagon rule [4], the length ¢; of the edge 1
computed in the hexagon having the edges 2 and 6 is given by

cosh / cosh £12 cosh £16 + cosh 626
08 =
! sinh £15 sinh ¢4 ’

and the same having the edges 3 and 5 is given by

cosh £3 cosh #15 + cosh #35

hey =
costi sinh ¢13 sinh f15

It is then easy to check by substitution of (*) that right hand sides of
both identities are the same. Q.E.D.

§3. Cut locus

Studying several properties of the cut locus of the boundary in this
section, we will find a topological cellular decomposition of a hyperbolic
manifold with totally geodesic boundary. It is dual to the cut locus
modulo boundary and turns out to be equivalent to the final one. The
decomposition will be denoted by K. A

Here we start with making a few conventions used throughout the
sequel. Let N be a compact hyperbolic 3-manifold with totally geodesic
boundary ON. Let 7 : N — N be the universal covering of N. We
use the symbol X to denote the preimage of a subspace X of N in N.
We always identify the universal cover N with a subspace in H*. Then

the boundary ON of the universal cover N or the preimage ON of the
boundary AN is formed by geodesic planes in H®. We often identify a
cell complex with its underlying polyhedron. The symbol Y *) will be
used to denote the k-skeleton of a cell complex Y as usual.

We define three terminologies for our convenience. To each pair of
components of ON , associated is a unique shortest path connecting them.
We call this path a short cut. Also there is an associated bisectorial
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geodesic plane to the short cut in H?. We call this plane a middle fence.
A short cut descends to the geodesic path in N from the boundary to
the boundary. We call such a path a return path. Though it may come
back to a different component, we wish to emphasize by this name that
it comes back to the boundary anyway. These are the terminologies we
shall use frequently.

The cut locus C of AN in N is a subset in int [N which consists of the
points that admit at least two distinct shortest paths to dN. Obviously
a point on C lifts to a point on the middle fence of some short cut.
C is canonically stratified by grouping the points which have the same
number of shortest paths to the boundary. This stratification is quite
nice in our case since

Proposition 3.1. The stratification defines a convex cellular de-
composition of the cut locus C.

A point on C is in a 2-cell if it admits precisely two shortest paths
to the boundary, however the number of shortest paths the point admits
is rather unrelated with the dimension of the cell in the other case. To
see this proposition, we need a few preliminaries.

Lemma 3.2. Suppose that A and B are ultra parallel planes of
distance d in H®. Then the orthogonally projected image of A to B is
an open metric disk of radius arccosh(cothd).

Proof. This is an easy consequence of length calculus for a hyper-
bolic rectangle with one ideal vertex and three vertices of right angle as
in Figure 2.

<

Fig. 2.
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The hyperbolic cosine rule shows the identities;

1
sina’
1 1
sin(7/2 —a) cosa’

coshd =

coshr =

Then we are done by solving the relation between d and r in terms of

. Q.E.D.

Corollary 3.3. There exist only finitely many return paths with
bounded length.

Proof. Choose a component S of ON , and project the other bound-
ary components orthogonally to S. Then we get an open disk packing on
S invariant under the action of the covering transformations preserving
S. Hence 7(S) C N is packed by open balls. It is obvious by definition
that the packing on 7(S) does not depend on the choice of a component
S of m~1(w(S)). Applying the same process to all ‘the other components,
we get a ball packing on ON. The radius of each ball is related to the
length of the associated return path by Lemma 3.2. Since ON is com-
pact, the number of balls packing ON with bounded radius away from
zero is obviously finite. Hence there are only finitely many return paths
of bounded length. Q.E.D.

Proof of Proposition 3.1. Choose a component U of the comple-
ment of C in N and let S be its boundary in ON. U is invariant under
the action of covering transformations preserving S. We are interested
in the internal boundary of the closure U of U not meeting ON. It is a
part of C and formed by a part of middle fences. Since N is compact,
its diameter is bounded, and the points on C have bounded distance to
ON. The shortest arc from a point on C to dN is lifted to an arc in
Y. In particular, the distance between S and any point on the internal
boundary of U is bounded. Hence the middle fences involved in this
boundary are associated with the short cuts of bounded length.

By Corollary 2.3, there are only finitely many return paths with
bounded length. Hence the middle fences involved in the internal bound-
ary of U belong to only finitely many orbits of middle fences by the
action of covering transformations preserving S. The internal boundary
of U thus gets a locally finite invariant cellular decomposition induced
by the intersection of middle fences involved. It descends to a cellular

decomposition of the internal boundary of #(U).
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We can apply the same argument to the other component. It is
an exercise to check that the cell structures for the common part of
different internal boundaries are identical. Hence we get an invariant
cellular decomposition of C and hence a cell complex structure of C.
Each 2-cell of C is convex since it lifts to a convex polygon on some

middle fence bounded by the intersections with a finite number of the
other middle fences. Q.E.D.

From now on, let us mean by C not only the cut locus itself but
endowed with this cellular decomposition by virtue of the proposition.
In the universal cover, we say a 2-cell of C faces a component of ON if
the cell can be projected orthogonally to the component by the shortest

paths to ON. Each 2-cell faces two boundary components associated
to the middle fence containing it. The set of orthogonal projections
for each 2-cell to these components glves rise to an equivariant one-to-

finite orthogonal projection : C — ON. The number of the 1mage of
p E C is equal to the number of the shortest paths from p to ON. The
cellular decomposition of Cis conveyed to an invariant convex polygonal

decomposition of ON. In particular, the cellular decomposition of C
induces a convex polygonal decomposition of ON.

Now, we would like to build up a topological cellular decomposition
K of N dual to C modulo boundary. Start with defining a compact
3-cell, which we call a block, in the universal cover. Its interior will
be a 3-cell in the precise definition of the cell complex K. Take an in-

variant graph G on C under the action of 71(N) which is dual to the
L-skeleton C(Y). Here we mean by dual, the 1-dimensional subcomplex
of the barycentric like subdivision of C spanned by vertices not in Cc,
Then project it by the one-to-finite orthogonal projection to ON. The
trace of the projection determines a fence which divides N into equiv-
ariant pieces homeomorphic to a ball. This is a block to built up K.
Let us next define a compact cell which we call a face, an edge or
a vertex according to its dimension. The intersection of two blocks is
the trace of the star subgraph of a vertex of G on a 1-cell of C by the

orthogonal projection. Hence take it as a dual face to the 1-cell of C on
which the center is located, and call it an internal face. We also take
a component of the intersection of a block and ON as an external face.
A face will be either an internal or external face. The intersection of
two internal faces is the trace of a vertex of G on a 2-cell of C. Hence
take it as a dual edge to the 2-cell containing the vertex, and call it
an internal edge. We also take a component of the intersection of an
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internal face and N as an external edge. An edge will be either an
internal or external edge. Finally a vertex will be a terminal point of an
edge.

Then let K be a cellular decomposition of N by the interior of blocks,
faces, edges and vertices. Since it is invariant under the action of 7 (N),

it determines a cellular decomposition K = w(K) of N. This is what
we call a dual to C modulo boundary. Notice that 0K is dual to the
convex polygonal decomposition of N induced by the cut locus.

We describe the compact cells of K more locally to visualize the
situation. Each block contains a unique 0-cell of C. We call this a center.
Choose a block o with the center p and let us describe its combinatorial
structure of the boundary by identifying p with the origin of the 3-
dimensional Poincaré disk. p has the shortest rays to finitely many
components of ON , say S1, 59, ..., S,. 0 can be identified with a regular
neighborhood of the union of these rays. The ray extends and terminates
in the sphere at infinity S% . The terminal point g; is the center of the
metric circle 8S; on SZ with respect to the canonical spherical metric,
where j = 1, 2, ..., m. Notice that the radii of circles are the same because
the distances from the origin are the same.

Take the cut locus D of the point set {qi, ..., gm} on SZ,. D consists
of the points on S2% which admit at least two shortest paths to the
set {q1,.--,qm }- D is unit tangentially equivalent to C at p and hence
determines a convex polygonal decomposition on S2 .

A topological dual decomposition D* of D on S2 with vertices
qi,---» §m 1s identified with one obtained from the cellular decomposition
of 0o by collapsing each external face to g;. Notice by the definition of
the cut locus that the vertices of a face of D* have the same distance to
the vertex of D in this face. This fact will be used later.

We may assume that each edge of D* is straight at least in the disks
bounded by 85;’s. Replacing the part of D* in each disk by 95;, we get
a cellular decomposition D** on S$% . D** is equivalent to 0.

There are several immediate correspondence by the identification
of 80 and D**. The external faces correspond to the faces bounded
by 0S;’s, and the internal faces do to the others. The external edges
correspond to the edges on 0S;’s, while the internal edges do to the
others. The vertices on the circle 95; correspond to 2-cells of C which
touches p and faces S;. Both are arranged in the same order.

The final decomposition is obtained by straightening each edges of
K. The straightening here is the device first to replace each internal
edges by homotopic short cuts, and then to replace external edges by
geodesic paths using their end points. The straight map we get is sup-
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D * **
= >
Fig. 3.

ported on the 1-skeleton K1) at the beginning and there is no obvious
reasons why it creates something good. The rest of this paper is to check
the reason why it does.

The first step is to observe that the image of 8KV by the straight
map, which will be denoted by dAM, turns out to be a l-skeleton of
a convex polygonal decomposition of 0N, denoted by 0A. This will be
done in the next section. The second step starts by showing that the
map can be straightened over the 2-skeleton K (®). The main step is
then to observe that the straightened image of K(?), denoted by A®),
turns out to be a 2-skeleton of a convex polyhedral decomosition of N,
denoted by A. Since we define the final decomposition A from the lower
dimensional skeletons, the accessories for A we use is not appropriate in
fact, but will be justified by the end of the paper.

§4. Polygonal decomposition

We study the effect of straightening on the boundary in this section,
and prove that the straightening defines a convex polygonal decomposi-
tion of ON equivalent to OK. The argument will be given mainly in the
universal cover. B _

An internal edge of K bridges two components of ON. Hence to
each internal edge, assigned is a unique middle fence and a unique short
cut. Recall that an internal edge is a dual to a 2-cell of C which lies
on this middle fence. The number of orbits of short cuts associated to
2-cells of C by the action of 71 (V) was finite. Let R be the set of these
short cuts, and R = w(f{) be the set of descending return paths in N.
R is a finite set.
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The straightening device at this stage is precisely to connect vertices

of R by geodesic paths if the corresponding two vertices in OK©) are
joined by an external edge. We denote the resultant geodesic 1-complex

by OAM in the abstract sense. The accessories in the notation should
be ignored for the moment. The definition does not immediately tell

us that AWM is an embedded 1-complex. What we obviously know by
definition is that &AM is invariant under the action of m (N), and that
there is an equivariant graph isomorphism # : OKM — 9AM),

Since the connection rule to build up 0AM was followed by the
rule for 9K, 9AM should be very similar to 8K(1). The claim to
be proved is that 8AWM is in fact a 1-skeleton of an invariant convex
polygonal decomposition OA of ON, and h extends to an equivariant
cellular isomorphism of OK. The statement in N is hence

Proposition 4.1. 9A() = 7(8AMW) turns out to be a 1-skeleton

of a convex polygonal decomposition 0A = 7T(8A~) of ON equivalent to
oK.

To see this, we need a few observations about local structure of edges
in 8A(M . The first one is about the image of the boundary of a face of
oK.

Lemma 4.2. The image of the boundary of a face of oK by h
bounds a convex polygon on S. The canonical extension of h to the face
preserves the orientation.

Proof. Choose a face 7 of OK and assume that it lies on a block
o with the center p. The cellular decomposition of o was described by
D**. The external face 7 is identified with a face bounded by a metric
circle 8S on S% . The center q of 85 is the terminal point of an extension
of the shortest path from p to S.

Label the vertices of 7 by v; with 7 = 0,1,...,n — 1 in counter-
clockwise order. Each vertex is a projected image of a dual vertex to a
2-cell in C touching p and facing S. Hence we also label the 2-cell of C
corresponding to v; by Fj.

Each F} is on the middle fence of a short cut from a point on S
since F; faces S. Hence we let its starting point on S by w;. Because
of the definition of labeling, any adjacent w;’s are joined by an edge in

0AM). h(07) is then a 1-complex formed by geodesic paths w,w;41 with
j=0,1,...,n — 1, where j counts modulo n as usual.
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We show that the vertices wj,, w;, , w;, span a triangle Aw;, w;, wj,,
and its orientation assigned by how the vertices round induces the coun-
terclockwise orientation on S as long as jp < j1 < j2 up to cyclic per-
mutation. Then using this property, we will get the conclusion by con-
tradiction.

Identify S with the 2-dimensional Poincaré disk and ¢ with the ori-
gin. The middle fences containing F}, F}, , F, respectively are orthog-
onally projected to three open metric disks Bj,, Bj,, Bj, on S including
the origin. The vertices w;,,w;,,w;, are the centers of these disks. The
outside of 0S5 is reflected into the inside by the orthgonal projection to
S. The picture of the projection is shown in Figure 4.

Fig. 4.

By the convexity of D, Bj,, B;, and B;, are arranged in counter-
clockwise order as in the second picture in Figure 4. We named the
intersections of the boundary of balls as in the figure. Then o), a;j,,
and a;, determine the oriented triangle Ao, a5, o, inducing the coun-
terclockwise orientation on S.

Here is an elementary geometry. Let v;,;,,7;, be the bisectors to
the segments o, ;,, aj,;, and oj o , on S respectively. These three
lines meet at the center 3 of the circumscribed circle of the triangle
Aaj g, 05,. wj is on 7y;, where j = jo,J1,J2. Since Bj,, B;, , B;, do
not contain o, oj,, o, respectively, the direction of the vector Sw;
is the same as that of the outward vector from the triangle Aaj, o5, o,
along 7;. Hence the centers wj,, w;,,w;, are arranged in counterclock-
wise order from the viewpoint 3, and determines an oriented triangle
Awj,wj, w;, inducing the counterclockwise orientation on S.

Suppose now that the union of geodesic paths wjw;41 with j =
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0,...,m — 1 does not bound a convex polygon on S. Then since any
three vertices determines a nondegenerate triangle, there are suffices
0 < j3,j4 < n —1 so that wj,wj,+1 meets the biinfinite extension of
wj, Wj,+1 at an interior point. Then the induced orientations on S by the
triangles Awj;,w;, wj,+1 and Aw;, 11w;, w41 are different each other.
This contradicts what we have proved.

Since the vertices v;’s of 7 and the corresponding vertices w;’s of
the convex polygon mapped by h are both arranged in counterclockwise
order, a canonical extension of h preserves the orientation. Q.E.D.

We need one more observation about the structure around the vertex
of K. Label all the edges coming to the vertex of OK. Then by the

connection rule of BA(l), this labeling is canonically conveyed to the

labeling of the edges of 8AM which terminate at the corresponding
vertex.

Lemma 4.3. The counterclockwise orders of the labeling at a ver-

tex of OKW and the corresponding vertex of 0AQM) are the same up to
cyclic permutation.

Proof. Choose a vertex v of 0K and assume that it lies on a block
o. The cellular decomposition of 9o is described by D**. v is identified
with a vertex on the metric circle 9S.

Choose an adjacent vertex v’ to v on the same circle 8S. v and v’

correspond to 2-cells F' and F” in C facing S and touching the center of
o. Recall that the adjacency is reflected by the property that these 2-
cells F and F’ have a common 1-cell. Denote by w and w’ the vertices of

R corresponding to v and v’ respectively. Here is a geometric relation
between the adjacency of v, v’ and w,w’. The middle fence L containing
F has an intersection line ! with the middle fence L’ containing F’.
F' is orthogonally projected to a convex polygon P on S and [ is to a
geodesic lg which is an biinfinite extension of an edge of P. The plane
determined by short cuts from w and w’ is orthogonal to both L and
L’, and in particular to . Hence the geodesic path connecting w and w’
extends to a biinfinite path w orthogonal to [g.

What we have seen is that to each pair of v and v’, and hence to
each edge coming to v, associated is an biinfinite extension lg of an edge
of P, and that w’ lies on the geodesic w through w and orthogonal to
ls. Furthermore, though the vertices w and w’ may not be separated by
ls, the vector from w to w’ is directed towards the component of S — g
not containing P, as the vector from v to v’ obviously is.

Now identify S with the 2-dimensional Poincaré disk. The biinfinite
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extensions of the edges of P determine a line configulation on S. Each
line inherits a label from the associated edge coming to v. To each
labelled line, we assign the orthogonal ray from v endowed with the
same label. The counterclockwise order of the labeling for orthogonal
rays is the same as that for edges of 0K coming to v.

Then for each point on S, draw orthogonal rays to the geodesic
lines again keeping the outward direction from P. Then the assignment
of the counterclockwise order of the labeling of rays is a continuous
function on S to the set of cyclic orders possibly with singularities. The
singularity occurs only if two rays coincide. This may happen when two
geodesic lines are ultra parallel. However in this case, the direction of
associated two rays must be opposite since the region bounded by such
lines contains a convex polygon P. Hence this continuous function has
no singularities with discrete image. In particular, the order at w is the
same as one at v. Q.E.D.

Proof of Proposition 4.1. By Lemma 4.2, extending a graph iso-
morphism b : 0K — 9AM) | we get a map h (still using the same
notation) of oK by assigning to each face of 0K a polygon bounded

by corresponding edges of 8AM) . Here h is a local homeomorphism on
the interior of faces. Since h preserves the orientation for each face, it
must be a homeomorphism also around edges. Lemma 4.3 shows that
the corners of convex polygons fill up a neighborhood of the vertices.
Hence h is a local homeomorphism also around the vertices. It is easy
to see that h is surjective. Since the image is simply connected, h is a
global homeomorphism.

8AM now determines a convex polygonal decomposition dA of ON.
The decomposition is invariant under the action of 7y (N), and the map h
can be chosen to be equivariant. Hence it determines a convex polygonal

decomponsition A = W(@Z) of 9N with a descending equivalence from
0K to 0A. } Q.E.D.

85. Polyhedral decomposition

In this section, we study the effect of straightening in the interior
and finish to prove that the straightening determines a convex polyhedral
decomposition of N, which we promised to denote by A. The argument
will be given again mainly in the universal cover.

The map h : OK® — 9AM ¢ AN we had at the beginning was
a graph isomorphism. The main claim in §4 was that h extends to a
cellular map h on OK to OA. It obviously further extends as a cellular
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isomorphism to h : OKUK®M — 9AUR C N. We then will see first
that the map h extends as a straight map over the 2-skeleton K @)
showing that the image of the boundary of each internal face of K spans
a geodesic polygon. Namely, OA U R extends to a geodesic 2-complex
A®) in N in the abstract sense.

Lemma 5.1. The image of the boundary of an internal face oflz'
by h bounds a right angle polygon on a geodesic plane in N.

Proof. Choose an internal face 7 and assume that it lies on a block
o. The cell decomposition of 9o was described in D** by identifying the
center p of ¢ with the origin of the 3-dimensional Poincaré disk. There
are metric circles 85y, ...,8S,, on S2 which are the boundaries of the

nearest components of ON from p. The centers q1, ..., ¢, of these metric
circles are also the endpoints of the rays extending the shortest path
from the origin to the component S;. The circles 95y, ...,05,,, having
the same radius, lie in the complement of the cut locus D of {q1,...,qm }
on S2 .

The face 7 is identified with a face not bounded by 985;’s. We
rearrange 05;’s so that Ot passes through 85;,05S;,...,0S in counter-
clockwise order. 7 contains a vertex u of a cut locus D. Recall as we
noted in the description of D and D" that every 0S; has the same
distance from u. In particular, there is a circle H on S2,, bounding
a geodesic plane H in the 3-dimensional Poincaré disk, that intersects
orthogonally to each 0S54, ...,0S, simultaneously. Moreover, 0H passes
through 0S54, ..., 05 in counterclockwise order also.

h(0T) is a piecewise geodesic whose bent occurs only at the end of
external and hence internal edges. Each internal edge is mapped to the
short cut between S; and S;y;. It must lie on the plane H since it
intersects both S; and S;;; orthogonally. In particular, the image of
internal edges is on a geodesic plane H. The image of external edges
is on S;’s and on H since the intersection of S; and H is a geodesic
passing two end points of the short cuts. It is then obvious by the order
of intersections to 05;’s that h(07) bounds a convex polygon on H.

Q.E.D.

Denote by A® the collection of the straight image of each internal

faces by Lemma 5.1 and OAUR. The accessories in this notation should
be ignored for the moment. The definition does not immediately tell

us that A® is an embedded 2-complex. What we obviously know by
definition is that A(®) is invariant under the action of 7;(N), and that
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there is an equivariant cellular isomorphism h : K® — A® which
extends the original h. The claim to be proved is that A is in fact a
2-skeleton of an invariant convex polyhedral decomosition A of N, and

h extends to an equivariant cellular isomorphism of K. The statement
in N is our final goal.

Proposition 5.2. A® = W(Z@)) turns out to be a 2-skeleton of
a convex polyhedral decomposition A = W(AN) of N equivalent to K.

We have shown so far that if we restrict the map h to the set of
external faces or to each internal face, then h is an embedding. What
we still do not know is if the image of some internal faces intersect. To
see our final proposition, we proceed further to a local study.

Lemma 5.3. The image of the boundary of a block of K by h
bounds a convex polyhedron in N.

Proof. Choose a block o and recall that the cell decomposition of
do is described by D** on S% . Assigned to each external face was
a geodesic boundary S;, and assigned to each internal face 7; now by
Lemma 5.1 is a geodesic plane H; in H3. Using this description, we
will define a continuous deformation {h} of a restriction of h to do,
hlas = ho, so that it eventually pushes the image of internal faces out
to S2 . Then by referring to the fact that /2 is @ homeomorphism, we
will establish the stable cellularity of h; to conclude the claim.

For each internal face 7;, a neighborhood of h¢(7;) in ho(80) is con-
tained in one side of H® separated by H;. We call the other side of H;
outwards. The outside of S;’s is similarly defined using the image of
external faces. Let H;! be the equidistant surface outside of H; with the
distance f(f secAdf. This is not a geodesic plane but is a surface which
intersects H; = H,° at S2 with dihedral angle ¢. It can be seen also
as an intersection of an euclidean metric sphere with the Poincaré disk
meeting the unit sphere S2 with dihedral angle ¢. The angle ¢ varies
from 0 to 7/2. As t increases, H;! is gradually pushed out towards SZ .

To define the image of an internal face 79 = 7, let us rearrange 7;’s
in such a way that Ot passes through ho(71), S1, ho(72), S2, ..., ho(Tk)
and Sy in cyclic order. ho(7) and ho(7;) meet on the intersection of
Ho® = H° and H;°. Take two internal faces ho(7) and ho(7;,) having a
common internal edge, and identify the edge with a segment on the z-
axis in the upper half space model so that it meets S;, at the bottom end.
See Figure 5 which shows the situation locally. H;,° is a geodesic plane
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Fig. 5.

containing ho(7;, ). Ho' and H;,* are described in the second picture. In
this coordinate, they are euclidean hyperplanes through the origin.

The original hg(7) is a convex polygon on H® bounded by the in-
tersections with H,%’s and S;’s where 1,5 = 1,..., k. As t increases, this
region is gradually slided to again a convex region on H* bounded by the
intersections with H;*’s and S,’s, and eventually reaches to a circular
polygon on S%.. This bounded region on each H® is the image of T by
hy. We have not ruled out the possibility that H* intersects S, for some
j > k, but it will turn out that this never happen.

We next describe how to map the external faces. The trace of the
deformation of H;*’s on the external boundary S;, viewed from the above
is described in Figure 6. The image of an external face on S;, by h; is
a convex region on S;, bounded by the intersections with H;'’s. Ast
increases, the region is getting enlarged keeping convexity and finally
fills up S;,,.

h: is obviously a continuous deformation for 0 < t < 7/2, and is
still continuous at t = 7/2 if we topologize H U S2 as a 3-ball. What
is saved in this deformation is the property that h; is an embedding on
the set of external faces or on each internal face.

Modify h, /o a bit to /fz,, /2 1 00 — S2 by pushing each S; outward
to the disk on S2, bounded by S;. We claim that ’i;,r /2 and hence hr /g,

and moreover h; with ¢ near 7/2 is a homeomorphism. A/, is a local
homeomorphism on the interior of each faces of do by the definition. It
is also a local homeomorphism around edges and around vertices by the
definition of h; (see Figures 5, 6). Hence it is a local homeomorphism to
S2 . Since 9o is compact and the image is simply connected, it must be
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Fig. 6.

a homeomorphism. A/, is not quite different from /fz,r /2 and is clearly a

homeomorphism since so is ,l\Lﬂ s2- The bent of the image by h; is mild for
t near 7/2, and therefore, h; is also necessarily to be a homeomorphism
up to some moment.

For any 0 < t < /2, each H;' separates H? into a convex inward
region and its complementary outward region. The intersections of any
two of H;'’s look quite simple and are classified by the intersection of
their boundaries on S2. If the intersection on S2 is nonempty and
transversal, then surfaces intersect transversely for all t. If the intersec-
tion on S2_ is empty, then as t decreases, the intersection of surfaces is
gradually changed from a circle, a point of contact to an empty set. It
may be empty from the beginning. If the boundaries of surfaces on S2
are the same, then the intersection is empty for 0 < ¢ < 7/2 unless they
are the same surface. The transversality of the intersections of H;!’s is
missed only when either different surfaces without intersections for ¢ > 0
coinside at t = 0, or surfaces with circular intersection at the beginning
contact at some moment.

We thus have a family of very visible stratifications of H> defined
by the intersections of H;'’s and S;’s. The intersection of their convex
inward regions in H® is a compact convex stratum. The convex stratum
bounded by H;'’s and S,’s is certainly nonempty for ¢ near 7/2. On
the other hand, by the continuity of the deformation, h;(9c) bounds a
locally convex and hence a convex region in H? also for ¢ near 7/2. It
is the same as the stratum bounded by H;"’s and S,’s because of its
convexity. Hence h; is a cellular map : o — h.(90) with respect to the

stratification of H® for ¢ close enough to /2.
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In this stratification, every surface, that is any one of H;'’s and
S;’s, plays a role to determine a face of the convex stratum for ¢ near
7 /2. A consequence to this stable property is that the map h; is cellular

with respect to the stratification of H> on an open interval in [0, 7/2]
including 7/2. It also concludes that H;"’s are different each other for
all 0 <t <m/2.

As t decreases form 7/2, this compact convex stratum is continu-
ously compressed. If the stratum does not degenerate and the structure
of the stratification on the boundary is kept in the deformation up to
t = 0, then we are done since hg turns out to be an embedding and the
image bounds a convex polyhedron.

Otherwise, there is the first moment ¢ty > 0 at which A; fails to be
cellular since the cellularity is open. Then by continuity of k¢, hy, (00)
either still bounds a convex region, which is the convex stratum bounded
by H;%’s and S;’s, or degenerates to a convex set on some geodesic plane

in H®. In the first case, the surfaces still in fact intersect transversely
at ty, but some edge of the stratification on the boundary of the convex
stratum degenerates. Then two vertices must be close each other if ¢ is
near tg. However the vertices of the stratification on hy(do) for t > tg is
the image of the vertices of do by the definition of ¢y, and hence their
mutual distance is bounded away from zero by the definition of h;. This
is contradiction. In the second case, the faces of do are mapped on
the same geodesic plane by h;,. Hence three vectors from a vertex of
0o to adjacent vertices in the image of h;, must be linearly dependent.
However they are always independent by the definition of hy;. This is
also a contradiction. Q.E.D.

Proof of Proposition 5.2 and Theorem. Assigning to each block of
K a polyhedron bounded by the image of its boundary, we get a map
from K extending h : K® - A@ It is a local homeomorphism on the
interior of blocks. We have already seen that it is a homeomorphism
on the boundary. Hence it is a local homeomorphism everywhere since
there is no vertices in the interior and every cell meets the boundary.
The surjectivity is obvious. Since the image is simply connected, it must
be a homeomorphism.

A® now determines a convex polyhedral decomposition A of N.
The decomposition is invariant under the action of 7;(/V) and the map
can be chosen to be equivariant. Hence it determines a convex polyhedral

decomposition A on N with a descending equivalence from K to A.
Q.E.D.
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Behavior of Knots under Twisting

Masaharu Kouno, Kimihiko Motegi and Tetsuo Shibuya

§1. Introduction

This paper is a continuation of [6] in the study of the twist move
of knots. First we recall some notations. Let K be an unoriented
smooth knot in the oriented 3-sphere S2, and V a solid torus endowed
with a preferred framing which contains K in its interior and satis-
fies wy(K) > 2. (wy(K) denotes the geometric intersection number
of K and a meridian disk of V.) Let f, be an orientation preserv-
ing homeomorphism of V satisfying f,(meridian) = (meridian) and
fn(longitude) = (longitude) + n(meridian) in H;(8V). (We shall not
distinguish notationally between a homeomorphism and an isomorphism
on a homology group induced by it.) We denote the knot f,(K) in S3
by Kv . If there exsists an orientation preserving homeomorphism of
S3 carrying K to Ko, then we write K; = K,. Note that K; & K5 is
the same as saying that K; and K, are ambient isotopic in S3. We note
that for a given knot K, a solid torus V and an integer n determine a
unique knot type. For a given knot K, we have an abundant solid tori
which contain K to carry out a twist move. Sect.2 is directed towards
the following question : for a given knot K, is it possible to obtain the
same knot by twistings along distinct solid tori from K7 Concerning the
case when an original knot is trivial, we give Example 2.1 and Theorem
2.2. In the case when both solid tori are knotted, we shall give Theorem
2.6 and Examples (see Figures 4, 5). In Sect.3, the behavior of Gromov
invariants under twistings will be studied. In Sect.4, we study the effects
of twistings on primeness of knots. Throughout this paper N(X), X
and int X denote the tubular neighborhood of X, the boundary of X
and the interior of X respectively.

§2. On twistings along distinct solid tori

Let V7 and V5 be solid tori containing a knot K. We write V; = V,
provided that there exists an orientation preserving homeomorphism f
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of S such that f(V1) = Vs, f(K) = K. Note that Ky, , & Ky, ,, holds
for any integer n when V; = V,. To begin with, we give an example as
follows.

Example 2.1. In Figure 1, V; 2 V5 because the winding number
of O in V; equals 2 and that of O in V; equals 3. But Oy, _; = Oy, _;.

(-1) ~twist

N/

D

Fig. 1.

For twistings of the unknot, we prove the following theorem.

Theorem 2.2. Let O be the unknot and V; (i = 1,2) a solid torus
containing O with wy,(0) > 1. If Oy, n, = Ov,,n, holds for infinitely
many integers n;, then Vi = V,.

To prove this, we prepare some lemmas. Let V be a solid torus
containing a knot K in its interior with wy (K) > 1. Then V —int N(K)
is a boundary irreducible Haken manifold. Consider the torus decom-
position of V —int N(K) in the sense of Jaco-Shalen [3] and Johannson
[4]. Combining Thurston’s uniformization theorem [7], they assert that
V —int N(K) is uniquely decomposed by a family of tori into pieces each
of which is Seifert fibred or admits a complete hyperbolic structure of
finite volume in its interior. Moreover each Seifert piece is one of torus
knot spaces, cable spaces and composing spaces (see [3]). We denote the
piece which contains OV by Py, and the piece containing N (K) by P.
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If V is an unknotted solid torus in S® which contains K, then S —int V
is also a solid torus, and we denote it by V;. When we perform (—1/n)-
Dehn surgery on the unknot J (the core of V), then the result is also
S3 and the image of K becomes a new knot K. The next lemma is an
interpretation of a twisting.

Lemma 2.3. Ky, =K.

It follows that S®—int N(Ky.,,) is homeomorphic to V; |J
—int N(K)).

o (V

szﬁm

Lemma 2.4 ([6]). If Py is a cable space in which a regular fibre
is presented by fPm? (p > 2), then V;J Py is a Seifert fibred
manifold with two exceptional fibres of indices p, |pn+q|. The dual knot
of J, J: in ViU Py is a fibre of index |pn + q|.

my=€m—"

myj=fm—"
Lemma 2.5 ([6]). If Py is hyperbolic, then there exists Ny g such
that Vi Py is also hyperbolic for |n| > Ny k. Moreover for

any € > 0, there exsits Ny k(e) such that J;; is a closed geodesic of
length < e in VyJ Py for |n| > Ny k(e).

my=€m—"

my=€m—"

Proof of Theorem 2.2. If wy, (O) =1 (resp. wy,(0O) = 1), then by
the assumption and Theorem 4.2 in [6], wy, (O) =1 (resp. wy, (0) =1)
must hold. In this case O is a core of both V; and V5, so we have
Vi &2 V5. Assume wy, (O) > 2 and consider the torus decomposition of
V. —int N(O). Let P; be the piece containing 0V;. Since O is trivial,
P; can not be a composing space. We remark that V; is necessarily
unknotted by the assumption (see [9]), and S® — intV; is also a solid
torus Vj,. Then we can characterize the core of Vj, in E(Oy, ) =
Vi, Umj:eimi_n(vg — int N(O)), which is denoted by J7,, as follows.
There exists a constant Ny, o such that J, is an exceptional fibre of
unique maximal index or a unique shortest closed geodesic in E(Oy; )
by Lemmas 2.4 and 2.5 for [n| > Ny, 0. Now we take n as above. Let
f be an orientation preserving homeomorphism of S* sending Oy, ,, to
Ov, n. Then by an ambient isotopy, we may assume f maps N(Ovy; )
to N(Ov,,») and maps Jf,, to Js , (see also [8]). From this, we see that
flv, is an orientation preserving homeomorphism from V; to V, with
flv, (O) = O. Moreover f|y, maps £ym] " to £5m, " (¢ = £1). This
implies that f|y, maps £; to £5. By extending f|y, to S°, we get a
required homeomorphism. This completes the proof of Theorem 2.2.

Q.E.D.

If we require both V; and V5 are knotted, the following result holds.
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Theorem 2.6. Let K be a knot in S3 and V; a knotted solid torus
containing K. Suppose that Vi C V5 and the core Cy1 of Vi satisfies
wy, (C1) > 2 and wy,(K) > 2. Then Kv,m ¥ Kv,n for any pair
(m,n) # (0,0) (Figure 2).

s

&l
=

Fig. 2.

Proof. Let f,, : Vi — V; and g, : Vo — V, be twist homeo-
morphisms with m-twist and n-twist respectively. By Theorem 2.1 in
6], gn(C1) % C; for any integer n # 0. Meanwhile f,,(C;) =& C; for
any integer m. So the composition g, o f-! : V; — ¢,(V1) sends C;
to g,(C1) % C,. We remark that C; and g,(C;) are knotted in S3,
because they are geometrically essential in the knotted solid torus V5.
Also g, o f,.1 satisfies g, o f,1(Kv;,m) = Kv, n. Using Theorem [5], we
can conclude Ky, ., 2 Ky, n, if n # 0. In the case of n =0, Ky, , = K
but Kv, m» = K holds only when m = 0 by Theorem 2.1 [6]. It follows
that Ky, , # Ky, for any pair (m,n) # (0,0). Q.E.D.

Remark. Inthe above theorem, the condition wy, (C7) > 2 excludes
the following trivial example.

Also in general, if both solid tori V; and V, are knotted then by
Schubert’s Satz 1 ([12]), we may assume one of the following occurs by
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an ambient isotopy of S® which leaves K fixed. (1) V; C V5 or Vo C V4,
(2) Vi UV, = 83, and (3) there exists a solid torus W in int V; N int V3
such that wy, (Cw) = wy, (Cw) = 1 for the core of Cy, of W.

Theorem 2.6 corresponds to the case (1). As for cases (2) and (3),
there exist inessential examples as in Figure 4 and Figure 5 respectively.

/‘_‘3"\

Fig. 4.
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v, \&

Fig. 5.

§3. Gromov invariants

The notion of the Gromov invariant of closed manifolds was intro-
duced by Gromov [1]. In the 3-dimensional case, Thurston defined the
Gromov invariant of compact 3-manifolds whose boundaries consists of
tori [14]. In this section we shall study the Gromov invariant of the
exterior of a knot K in S° which we simply call the Gromov invariant of
K and we denote it by || K||. For the definition of the Gromov invariant,
the reader is referred to [1], [14] and [13].

First we prove the following.

Theorem 3.1. Let K be a knot in S and V a knotted solid torus
containing K. Then || Ky | = || K|| holds for any integer n.

Proof. If wy(K) < 1, then Ky, = K for any integer n. So we
assume wy (K) > 2. The exterior of Ky, (Ky,o = K) is described as
(8% —int V), (V —int N(K)) for some gluing homeomorphism A,
Since V is knotted, 8(S® —int V') is an incompressible torus. Also 8V is
an incompressible torus in V' —int N(K) because wy (K) > 2. Hence we
have the following equality independent of n by Soma’s theorem [13].

HKV,n

| = IE(Kv,n)ll = [I(S° — int V) I (V — int N (K))].

It follows that |Kv.,| = | K] Q.E.D.
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Hence, in Theorem 2.6, Ky, ,, and Ky, , have the same Gromov
invariants for any pair (m,n).
The following is straightforward from Theorem 3.1.

Corollary 3.2. Suppose that K, and Ky are knots with || K1 #
|K2||. Then Ky can not be obtained by a sequence of twistings along
knotted solid tori from K.

On the other hand, if V is unknotted we have:

Proposition 3.3. Let O be the unknot in S®. For any real num-
ber r, there exists an unknotted solid torus V containing O such that
10vall > 7.

Proof. Consider a solid torus V' as in Figure 6. Then in the exterior
of Oy1, there exist incompressible tori which decompose it into k figure
eight knot spaces, 1 Whitehead link space and 1 composing space. Hence
|Ov.1ll = 1/vs(k Vol(figure eight knot complement) + Vol(Whitehead
link complement)), where vs is the volume of the regular ideal simplex
(see [14] [13]). Thus the result holds for some integer k& > 0. Q.E.D.

Fig. 6.

This also shows that for any knot K and any real number r, there
exists an unknotted solid torus V' such that Ky, > r.
But the Gromov invariants behave as follows once V is fixed.

Proposition 3.4. Let K be a knot in S3 and V an unknotted solid
torus containing K. Then || Ky ,|| is less than a constant Cy i for any
integer n.
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Proof. We may assume wy (K) > 2. If Py is a cable space, ||Kv,.||
is constant for all but at most two integers n such that a regular fibre is
presented by #Pm for some p. If Py is a composing space, then twisting
along V is reduced to that along a knotted solid torus W bounded by the
torus (C 8P,) which separates K and 9V (see Sublemma 3.7 [6]). Hence
Theorem 2.1 in [6] implies the result. Suppose that P, is hyperbolic, by
Lemma 2.3 V; Umjzﬁm_n P, is also hyperbolic for |n| > Ny . Then
we have Vol(int(Vy U, ,—¢m-» £o)) < Vol(int Fy) by Thurston’s theorem
(6.5.6 Theorem [14]), and from this we have the following inequality for
1n| > NV,K;

IKvall =1/0%C Y Vol(int )+ Vol(int(V; | R)))
P;:hyperbolic my=~fm—"
1#0

<1/0°(C > Vol(int P;) + Vol(int Py))

P;:hyperbolic

i£0
=||KLJ|.
Now we set C; = max{||Kv,| : |n|] < Nvk} and we take Cy g =
max{C1, |K II J||}, then Cv k is the required constant. Q.E.D.

Example 3.5 (Thurston [14)).

lol=0 _ “Ov,1 ” =2
Fig. 7.

The Gromov invariants of these knots tend from below to a finite
limit (= 3.6).

84. Primeness of knots under twistings

In this section, we investigate the effects of twistings on primeness
of knots. To begin with, we consider the case when a twisting solid torus
is knotted.
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Theorem 4.1. Let K be a knot in S® and V a knotted solid torus
containing K. Then K is prime if and only if Ky, is prime for any
integer .

Proof. We may assume wy (K) > 2. Consider the torus decom-
position of V — int N(K) and denote the piece containing ON(K) by
P. Suppose that K is a prime knot, then it turns out P is not a com-
posing space. Now we consider the torus decomposition of E(Ky,,) =
(8% —int V), (V —int N(K)). In E(Kv,,), P is also a decomposing
piece. It follows that Ky, is also prime for any integer n. Q.E.D.

If V is unknotted, then the following example exists.

Example 4.2. In Figure 8, K is a prime knot, but Ky, is a
composite knot for any nonzero integer n.

Fig. 8.

In this example K has a locally knotted arc in V (i.e. there is a
3-ball B C V such that (B, BN K) is a knotted ball pair). If K does
not have a locally knotted arc in V, then we get the following.

Theorem 4.3. Let V be an unknotted solid torus containing K
without a locally knotted arc. Then Ky, is prime for all but at most
finitely many integers n.

Proof. Consider the torus decomposition of V' — int N(K), and let
P be a piece containing N (K) and P, a piece containing 0V.

Sublemma. Suppose that K C V' does not have a local knot. Then
P can not be a composing space. ‘

Proof of Sublemma. Suppose that P is a composing space. Let T be
a component of 9P which does not separate 0V and ON (K). Note that T'
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bounds a nontrivial knot exterior F, and a regular fibre of P coincides
a boundary of a meridian disk of N(K). Hence we have a saturated
annulus A" which joins T and N(K). Then D' = A’ U D becomes a
meridian disk of W = §% —int E. Since K N D’ and K N D consist of
one point, K has a locally knotted arc in V. This is a contradiction.
Q.E.D.

If Py is a cable space, V;J,,,—ym-~ Fo is a (nontrivial) torus knot
exterior except for at most only two integers n by Lemma 2.4. If Py is
a k-fold composing space, then V;J,, _gm-n Po is a (k — 1)-fold com-
posing space for any integer n. Finally we consider the case when Fj is
hyperbolic. By Lemma 2.5, we see that V; UszeTn—n P, is also hyper-
bolic except for at most finitely many integers n. It follows that in any
case, V; UmJ: sm—n Fo is boundary irreducible Haken manifold. Now we
divide into two cases depending upon whether P = P, or not. If P = P,
then V;U,.. —¢m—n» P = Vs Up,—sm-» Fo can not be a composing space
by Sublemma and the above, and it becomes a decomposing piece in
E(Kvy.). Thus Ky, is prime except for at most finitely many integers
n. If P # Py, then it turns out that P is still a decomposing piece in
E(Ky,,). Since P is not a composing space, Ky, is prime except for at
most finitely many integers n. Q.E.D.

Remark 4.4. Even if K does not have a locally knotted arc in V,
there is an example such that Ky, is a composite knot for some integer
n (see Figure 9).

Fig. 9.

When an original knot is trivial, Scharlemann-Thompson [11],
Eudave-Munoz and Gordon have shown the following result, which is
a generalization of the theorem — “Unknotting number one knots are
prime [10]”.
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Theorem 4.5 ([11]). Let V be a solid torus containing the unknot
O with wy (0) < 2. Then Oy, is prime for any integer n.

Since the unknot can not have a locally knotted arc, as an applica-
tion of Theorem 4.3, we have the following.

Corollary 4.6. Let V be a solid torus containing the unknot O.
Then Oy, is prime for all but at most finitely many integers n.

We conclude this paper with the following question.
Question. Is the result of tunsting of the unknot always prime?

Acknowledgement. Authors wish to thank K. Miyazaki for sug-
gesting that the local knottedness is essential in Theorem 4.3. They also
wish to thank the referee for helpful comments.
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Polynomial Invariants
of 2-Bridge Links through 20 Crossings

Taizo Kanenobu* and Toshio Sumi

In this paper, we calculate the homfly polynomial Py (v, z), Kauff-
man polynomial F,(a, z), Jones polynomial V7,(t), Q polynomial Qy,(z),
2-variable Conway polynomial V[ (t;,%s), and reduced Conway polyno-
mial V 1(2) of a 2-bridge link L with crossing number < 20 and list all
the pairs sharing the same polynomial invariants (Table 2). This paper
is a continuation of [9], where these polynomial invariants except for the
2-variable Conway polynomial for 2-bridge knots through 22 crossings
are calculated and all the pairs having the same polynomial invariants
are listed. The total number of the links is 44,118, where we ignore the
orientations of both a link and its ambient space. If we consider them,
this amounts 175,788. The program is written in Turbo Pascal for the
NEC PC-9801 Series as before.

We observe the following for 2-bridge links through 20 crossings:

Fact 1. Pp(v,2) = Pp(v,z) iff Vo(t) = Vi(t) and Vi(2) =
VL/(Z).

Fact 2. If P (v,2z) = Pp/(v,z) and Pra(v,z) = Pria(v,z), then
VL(tl,tQ) = VL/(tl,tz).

Fact 3. The number of links having the same homfly or Kauffman
polynomaal is at most two.

Fact 4. Pp(v,2) = Pra(v,2) iff Vi(ti,t2) = Via(t,ta) (=
~Vi(th t2)).
Here L” is a 2-bridge link obtained from L by reversing the orien-

tation of one of the 2 components. Facts 1 and 3 are the same as those
in [9]. For Fact 3, we do not consider the pair of 2-bridge links L and

Received June 29, 1990.
*This work was supported in part by Grant-in-Aid for Encouragement of
Young Scientist (No. 01740057), Ministry of Education, Science and Culture.
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L’ which share the same Kauffman polynomial and have linking number
zero (such as “3800 1669, 2429” of 19 crossing links in Table ). For these
links, it holds F = F, = Frpn = Fria. The “only if” part of Fact 4
cannot be deduced from only Table 2. We must check the 2-variable
Conway polynomials. The example as in Fact 4 is constructed in [5,
Theorem 9. :

For the pair L and L/, where L # L’,L'", sharing the same Q
polynomial, the cases given in Table 1 occur, where the last column gives
an example for each case from Table 2. For example, Case 5 indicates the
pair such that VL == VL/ (VL/\ = VL/A), PL': PL/, PL/\ 75 PL/A, FL = FL’
(FL/\ = FL/A), V/: VL/ (VL/\ 7& VL/A), VL - VL/, VL’\ # VL”\-
Cases 3-5 explain Fact 2. Relating to Cases 2 and 3, we can construct
the following examples:

(i) Arbitrarily many skein equivalent fibered 2-bridge links with the
same 2-variable Conway polynomial ([5, Theorem 7]).

(ii) Arbitrarily many skein equivalent 2-bridge links which have mutu-
ally distinct 2-variable Conway polynomials ([6, Theorem 2]).

Relating to Cases 4-6, we can construct the following examples:

(iii) A pair of skein equivalent 2-bridge links with the same Kauffman
polynomial but distinct 2-variable Conway polynomials ({6, Theo-
rem 7)).

(iv) Arbitrarily many skein equivalent fibered 2-bridge links which have
the same Kauffman and 2-variable Conway polynomial ([8, Theo-
rem 2]).

Relating to Case 7, we can construct the following example:

(v) Arbitrarily many 2-bridge links which have the same Q and 2-
variable Conway polynomial, but distinct Jones polynomials ({7,
Theorem]).
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Table 1

Case| Vi, P, Pra Fr, Vi Vi Vinler  p q,T

1 | = # # # # # # |14 196 69,155
2 | = = #£ #£ £ = £ |11 98  29,-55
3 = = = #* = = = 15 392 139,—309
4 = = = = = = = 18 1010 313,293
b | = = #£ = # = = |17 1250 —799,—699
6 | = # # = # # £ |12 130  57,-47
T | #£ £ #£ £ = = = |15 504 181,197
8 | #£ #£ £ #£ #£ = # |17 930 421,601
9 # #F F F F£ F F 19 24 9,11

§1. 2-bridge link

The 2-bridge links are classified in Schubert’s normal form S(p, q)
[10], where p > 0, —p < g < p, and p and q are coprime integers.

Proposition 1. S(p,q) and S(p',q’) are isotopic as oriented (resp.
unoriented) links if and only if:

p=70, ¢ =¢ mod2p (resp. mod p).

The following properties are easily seen from Schubert’s normal form
(cf. [1, Proposition 12.5]):

Proposition 2. (1) A 2-bridge link L = K; U K is interchange-
able, that is, there is an isotopy ¢ of S* such that p(K;) = K;, i # j.

(2) A 2-bridge link L = K; U Ky is invertible, that is, there is an
isotopy ¥ of S® such that ¥(K;) = —K;, 1= 1,2.

Let L be an oriented 2-bridge link. Then we denote by L™ a 2-bridge
link obtained by reversing the orientation of one of the two components
of L, and by L a mirror image of L. So if L = S(p,+q), ¢ > 0, then

L" = S(p,+(q — p)) and T = S(p, Fq). Note that (L") = (Z)A =
S(p, =(p — q)), which we denote by L". Thus according as the isotopy
types of the four oriented 2-bridge links L, L", L, and ZA, L = S(p,q),
there are three types for the 2-bridge link:

Type A: L = " # L= L", that is, g(p — q¢) =1 mod 2p.

Type B: L=I" £L =1, that is, q(p—q) = —1 mod 2p.
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Type C: No two of L, L, L", and " are isotopic, that is, q(p — q) # £1

mod 2p.
Given a 2-bridge link in Schubert’s normal form S(p,q), it can be
put in Conway’s normal form C(ay,ag,...,ax), (cf. [9, Fig. 3]), where
P 1 1
1 - =a;+ — —.
W q ' az + -+ ag

Note that this is a normal form for an unoriented 2-bridge link.

Let p,q > 0 and a4,as,...,a; > 0. Since ay = (ax — 1) + 1/1, if we
suppose ag > 1 or fix the parity of k, this expression is unique and the
crossing number is a; + ag + - - - + ag.

Proposition 3. Every 2-bridge link S(p,q), ¢ > 0, of Type A can
be expressed as C(ai,az,...,0an,an,...,02,01), a; > 0, and vice versa.

Proof. Suppose that

where b; > 0 and £ is even. Then we have

s g\ _(0 1 0O 1) (0 1
rp) \1 b\l b 1 b )°
where p > ¢ >s>0,p>r>s>0, and ps —rqg =1 (cf. [11]). Since

(¢*+1)/p € Z,

2 2 2 2
1 — 1
e _ + (ps —ar) _ 1 + r? — 2qrs + ps® € Z.
p p p

Let z = (¢>+1)/pand y = (r?+1)/p. Since zp—qq = 1 and sp—rq = 1,
there exists an integer a such that s — x = aq and r — ¢ = ap. Since
yp—rr = 1 and sp—qr = 1, there exists an integer b such that s—y = br
and g—r = bp. Then we have a = b = 0 and ¢ = r. From the uniqueness
of the continued fraction, we have by = by, ba = bg_1, ..., by/a = bg/o41.
The converse is easy, and the proof is complete.

Proposition 4. FEvery 2-bridge link S(p,q), ¢ > 0, of Type B can
be expressed as C(a1,az,...,an,2a — 1,ay,...,a2,a1), a; > 0, a > 0,
and vice versa.

Proof. Since g(p—q) = —1 mod 2p, there is an integer b such that

(2) q> — 1 =p(q+2b).
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First we show that there exist positive integers z,y, z, w satisfying:

o (20 )G )= )

and
(4) Tw—yz=¢e==x1, x >y.
From (2), we have

q—;—lq—;—l = Z(q + 2b),

which is even, and thus p/4 is also even, that is, p = 0 mod 8. Let

p+ = g.c.d.(p/4,(g+1)/2) > 0. Since g.c.d.((¢g+1)/2,(g—1)/2) =1,
we have pyp_ = p/4. Let z = py + p_, which is an odd integer. Let

(z,) = { (2p4,(g—1)/2p-) if py <p-,
’ (2p—,(g+1)/2py) if p_ <py.
Since %gp;_l = q + 2b is odd, both (¢ +1)/2p, and (¢ — 1)/2p_ are
odd, so let w = %(%% + g;—_l). Then z,y, z, w satisfy (3) and (4). Since
z > x > 0, there are integers a and u such that z = ax + u, a > 0 and
x>u>0. Let v=w — ay. Then xv — yu = £, and there exist positive
integers ai, as, ..., a, such that

()=0a)ba)-Ga)

Then € = (—1)" and

vy 0 1 v u) _ (q+2b ¢
(u w) (1 2a—1) (y fff) —( q p)’
and so S(p, q) can be expressed as C(a1,az,...,a,,2a—1,a,,...,as,a1).
Conversely, if n is odd, a rotation through 7 about the axis F as shown in
Fig. 1, where o = S S7%* ... 83" 8] "% and o = 8] ®S5~...S; **S5",
gives an isotopy of S which reverses the orientation of one of the two

components. If n is even, we have a similar isotopy of S2. This completes
the proof.

Let £,, be the set of the unoriented 2-bridge links C(ay, as, ..., ax)’s
satisfying the following:

(5) a’laak229 az,...,0k-1 > 1.
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() ¥
Q
_

o
=12

Fig. 1.

(6) Either a; = ag_;4q for all i > 1 or a3 = ak,a2 = ak—1,...,0,-1 =
Qk42—4, i > Gk4+1—; for some ¢ > 1.

(7) a,+ag+ - +ap=n.

In other words, this is the set of representatives of unoriented 2-bridge
links with n crossings up to chirality. Let AL, and BL, be the
subsets of L, consisting of the unoriented 2-bridge links of the form
C(by,...,be,bg,...,b1) and C(cy,...,cp,2¢c — 1,¢q,...,c1), respectively.
There is a bijective mapping

Y ALoy, — BLom—1
defined by

’(/J(C'(bl,...,be,bg,...,bl))
_{C’(bl,...,bg—l,l,bg—1,...,b1) if by >1
L Cby,. . bp_2,2bpy +1,by_g, ... by) if by =1.

The explicit numbers of £, and AL,, are given by Ernst and Sumners
[3], in which they are denoted by T'L,, and ATL,. Thus we can know
the number of BL,,, which equals ATL,. Let TL}* denote the number
of oriented 2-bridge links of n crossings up to isotopy. Since

TL** = ATL, — 2ATL, 1 — 2ATL,,

we have:
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Proposition 5.

ppee_ [ @72 42F 22T £2)/3 if n=0 mod2,
" (22 -2)/3 if n=1 mod 2.

Remark. TL3* = 2 and TL* = 0. 20 TL, = 44,118 and
2 0 1 n=0
Yoo oTLY =175,788.

§2. Conway polynomial

Let L be a 2-component link and V(t;,t,) € Z[t{', tE!] its Conway
polynomial, where the components correspond to the labels t; and ¢5.
This is a uniquely determined invariant of the isotopy type of an oriented
link and is related to the 2-variable Alexander polynomial A(zq,z3) by

A(t2,12) = 752V (1, ta),

where +t7't2? is a unit (cf. [2,4]). Let L,, n € Z, be the 2-component
links with labels ¢; and t9, which contain a 2-braid ¢ and are identical
except near the 2-braid. Let V,(t1,t2) be the Conway polynomial of
L,.

(8) Suppose that the 2-braid consists of the different components with
orientation not parallel. Then

Va(ti, ta) + V_o(t1,t2) = (t1ty 1 + 7 42) Vo (t1, t2).

(9) Suppose that the 2-braid consists of the same component having
label t; and parallel orientation. Then

Vi(t1,t2) = V_1(t1,t2) + (t; — ti—l)vO(tlatQ)-

(10) Let LEL’ be the connected sum of two 2-component links L and L’
such that the connection takes place between the components with the
same label ¢;. Then

Vi = (ti —t7 VLV .
(11) For the split 2-component link L, V = 0.
(12) For the Hopf link L with linking number +1, V = *1.

Let V(b1,ba,...,by,) be the Conway polynomial of the 2-bridge link
D(by,bg,...,by), m odd (cf. [9, Fig. 2]). Hartley [4, (6.4)] shows that

V(by,bs,...,bm) is an integral polynomial in f = t1t, + t7 ;! and
g =tity; ' +t; 'ts. More precisely we have:
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Proposition 6.

V(blabQ’ o )bm) = (1,O)Amebm"1 .. .Ab3Bb2Ab1 <?)’

(g -1 . 1 0
A-(l O)andB—(f_g 1).

Note that z_lﬁ(z), where %(z) is the reduced Conway polynomial
[2, p-340], is obtained from V(by,bs,...,by,) by substituting f = 22 + 1
and g = 2.

where

Proof. Apply (9) and (10) to one of the crossings in the 2-braid
with 2b,,_1 crossings. Then

V(bl7 s abm—27 bm—17 bm) = v(b17 SRR bm—27 bm—l - 17 bm)
+ (t1 —t7 ) (te — t; Vb1, ... b2)V (bm).

So by induction on b,,_1, we have:

V(bl, ooy bm_2,bm_1, bm) = V(bl, vy b9+ bm)
b (ts — 7 (b2 — 5DV (b, e ey bn—2)V(byn).

Apply (8) to the 2-braid with 2b,, crossings. Then

V(bl, e ,bm—l,bm) + V(bl, ceiybm—1,bm — 2)
= QV(bl, . -;bm—labm — 1),

and so we have
V(bi,...,bm) _ 4 V(by,...,b;p—1)
Vb1, ... bm —1) ) V(by,...,b;m —2) )"
Then we have

v(bla e >bm—3a bm—-2 + bm)
V(bl, s 7bm—3’ bm—2 + bm - 1)

o T01 b, b)
V(b1 . b3,y —1) )’

(80%) ()

and
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since V(0) =0 by (11) and V(—1) = 1 by (12). Therefore
V(bl, .. m la m)
V(b,.. bm 1,bm — 1)
:Abm V(bl, . m 2)
V(b,... bos—1)

0
+ bm—l(tl — tl_l)(tz — t2 )V(bl, .. m Q)Abm <1)

=Abm< 1 0)( V(b1,...,bm_2) )
bn_1(t1 —t7)(te —t3Y) 1)\ V(by,..., b2 —1)

b b1 V(bi,...,bm—2)
—ATE (V(bl,...,bm_z—l)

_ Abm gbmo1 ... gb2 gbr (0>
1 Y

and we have the desired formula.

§3. Computational process

From [9, Sect.2, Step 1], we have the set £,,. Let C(a1,az,...,ax)
€ L, and p, q be the integers obtained from the continued fraction (1).
Let

P 1 1
= =2b
q 't g -+ 25
and ) .
p
—_— =9%2¢; + —
q—p AT 2t 2

where m and £ are odd. If let L = D(by,bo,...,by), then L =
D(cy,ca,...,c¢). We denote these 2-bridge links by T'(p, q) and T'(p,q —
p) (= T(p,q)"). Then T(p, q) is isotopic to either S(p, q) or S(p,q—p).*
We first compute the homfly polynomials P, = P(by,bs,...,by), Pra =
P(cy,ca,...,¢q), the Kauffman polynomials Fy, = F'(by,bs,...,b,,) , and
the Conway polynomials Vj = V(by,bs,...,by,) using [9, Propositions
1 and 4] and Proposition 6. Then we compute: Py, Pra, Frn, Fr, Fia,
Vi~, VE, and Vz», using the following:

Pf(v’ Z) = PL(U_laz)a

*Note added in proof. T. Kanenobu and Y. Miyazawa proved that T'(p,q) =
S(p,a —p).
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Fir(a,2z) = a*Fr(a, 2),
Fr(a,z) = Fr(a™', 2),
Via(ts,ta) = =Vi(t,t; 1),
Vi(t1,t2) = —Vi(t1,t2),
where A = —by — by —--- —b,, = ¢; +¢o + -+ ¢p is the linking number

of L.

Next we compute the Jones, Q, and reduced Conway polynomials
by suitable substitutions. Finally we search all the pairs of 2-bridge
links through 20 crossings having the same homfly, Kauffman, Jones,
and Q polynomials as in [9, Sect.3, Step 3|. For the Conway and re-
duced Conway polynomials, we examine for the pairs having the same
Q polynomials.

84. Computational results

»

In Table 2, the three numbers “p ¢,7” represent the pair of the
2-bridge links {T'(p, q), T'(p, )} sharing the same Q polynomial. If there
is an entry “V” (resp. “P”, “F”, “A” “C”), they also share the same
Jones (resp. homfly, Kauffman, 2-variable Conway, reduced Conway)
polynomial. We do not list the pairs L and L” having the linking number
zero if they are not contained in Cases 1-5. These links have the same
Kauffman polynomial.

The two numbers “p q” represent the pair of the 2-bridge links
{T(p,q), T(p,q)"} sharing the same homfly and 2-variable Conway poly-
nomials (cf. Fact 4). Note that we do not list the pair sharing only the

(194

same 2-variable Conway or reduced Conway polynomial. The entries “a
and “b” indicate that the links are of types A and B, respectively.

Table 2

9 crossing 13 crossing 242 -177,87 P 1370 153,-207 F

248 109 370 -217,163 F

24 5,11 b 110 19,51 256 95 380 137,167 F

11 crossing 124 39,23 264 115 380 -243,213 F

A 132 25,29 280 123 15 crossing
78 17,35 132 25,59 14 crossing

84 19,25 132 29,59 120 29,19 b
98 29,-55 P |138 31,43 188 35,59 186 41,83
98 -69,43 v |162 37,73 P |196 69,-155 vV |192 43,61
128 47 162 -125,-89 V |196 -127,41 vV |228 59,47
12 crossing 196 57,-111 P |196 45,37 234 101,43
196 -139,85 vV 1220 61,39 238 109,75

60 11,19 200 61 252 71,55 A {242 111,197 V

130 57,-47 Fa |232 101 264 71,49 242 -131,45 P
130 -73,47 Fa |240 71,89 b [324 127,233 V |252 115,47
242 65,-155 vV (324 -197,91 V{252 115,79



252
260
294
294
304
308
308
324
324
336
338
338
350
350
352
352
368
374
380
384
388
392
392
392
392
400
400
402
406
406
408
416
418
434
448
450
450
468
468
476
476
484
484
488
494
504
504
504
504
504
504
512
520
522
522
536
574
574
578
578
648
648

47,79
61,49
127,-209
-167,85
79,63
65,87
83,97
73,145
-251,-179
89,103
79,-233
-259,105
93,-243
-257,107
161
161,63
169
69,169
103,87
143
85,89
139,83
139,-309
-253,83
-253,-309
121

183
125,143
93,121
-313,-285
121,127
191
111,89
177,115
137,201
97,133
-353,-317
101,-211
-367,257
109,277
-367,-199
131,-309
-353,175
213
105,131
221
221,-115
221,389
-283,-115
-283,389
181,197
223

227
119,155
-403,-367
235
131,159
-443,-415
169,237
-409,-341
253,181
253,-467
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648
648
722
722

256
256
296
316
322
324
352
352
354
374
374
378
396
402
406
456
462
462
462
484
484
506
508
510
516
516
516
564
572
572
572
576
588
588
594
594
620
620
624
630
630
630
630
630
630
638
638
644
644
666
666
676
676
702
702
704

Table 2 (continued)

-395,181

-395,-467 PA

305,-455
417,267

16 crossing

81,49
-175,-207
47,137
59,99
71,57
77,61
163,291
-189,-61
73,163
167,303
-207,-71
137,67
73,91
83,113
73,143
107,125
127,83
127,97
83,97
109,197
-375,-287
137,93
135,119
107,233
121,223
121,113
223,113
245,131
125,333
-447,-239
155,131
107,125
209,-463
-379,125
163,-413
431,181
253,-347
-367,273
145,175
193,-227
-437,403
193,277
-437,-353
227,-277
-403,353
139,371
-499,-267
289,473
-355,-171
241,-203
-425,463
287,183
-389,-493
197,-487
-505,215
149,299

\'

P
\

A%

<<

<< <<TT<<c<g O <<

728
728
742
742
748
972
972
1016
1032
1130
1130

240
246
338
338
342
370
380
380
380
388
390
392
392
406
406
462
464
464
472
476
476
484
484
486
486
488
496
496
512
512
512
512
512
528
528
536
536
552
560
560
564
570
578
578
594
598
598
600
602

215,327
-513,-401
303,515
-439,-227
159,317
271,-593
-701,379
397,-651
379,-661
437,-467
-693,467

>R <<<<

jralieo!
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17 crossing

107,53
55,79
53,157
-285-181 V
53,109
89,59
119,71
119,61
71,61
73,93
01,61
113,-223
-279,169
187,-277
-219,129
79,101
101,-379
-363,85
221
151,-257
-325,219
221,-395
-263,89
217,109
-269,-377
229
157,405
-339,-91
191
161,97
161,-415
-351,97
-351,-415
163,427
-365,-101
251
93,85
259
107,-437
-453,123
179,197
181,169
203,-477
-375,101
271,107
113,425
-485.-173
181
163,191

<<<§;<ﬁ << <UEC<SS << <<<T
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602
616
636
638
638
644
672
672
676
676
686
686
714
720
722
722
726
726
728
728
736
738
742
744
748
752
754
756
756
760
760
764
770
772
774
774
776
776
784
784
784
784
784
786
792
798
798
800
808
814
814
834
840
846
846
854
864
864
868
868
874
874

-439,-411
279,113
167,151
135,-525
-503,113
141,153
209,239
211,197
209,-519
-467,157
181,209
-505,-477
155,127
317,133
151,-533
-571,189
263,-529
-463,197
333
333,229
337
137,331
233,339
325
141,163
345
199,225
235,163
-521,-593
333

349
203,179
137,277
181,177
349,167
-425,607
355

339

359
279,167
279,-617
-505,167
-505,-617
163,361
347
251,223
143,283
367

371
173,-663
-641,151
233,173
379,181
193,-371
-653,475
153,181
269,197
-595,-667
353,-639
-515,229
245,-675
-629,199

135
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894
896
896
924
930
936
936
936
936
938
942
942
950
954
954
966
966
968
968
968
968
990
990
992
994
994
994
994

247,187
205,261
-691,-635
415,283
421,601
205,277
205,-659
731,277
-731,-659
409,275
431,197
203,215
199,249
427,-209
-527,745
409,745
-557,-221
395,219
395,-749
-573,219
-573,-749
223,-437
767,553
447,639
303,-549
-691,445
431,767
-563,-227
996 227,449
996 275,233
1008 227,299
1008 -781,-709
1022 285,313
1022 285,-751
1022 -737,271
1022 285,299
1022 313,271
1022 313,-723
1022 -709,299
1022 271,299
1024 447
1026 215,269
1034 285,219
1036 317,303
1036 317,275
1036 317,-747
1036 -719,289
1036 303,-761
1036 -733,275
1036 303,289
1036 275,289
1056 241,463
1056 247,457
1058 459,-737
1058 -599,321
1058 231,415
1058 -827,-643
1064 299,243
1064 299,-821
1064 -765,243
1064 -765,-821
1102 251,-793
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Table 2 (continued)

1102 -851,309
1104 257,479
1120 297,457
1122 245,-811
1122 -877,311
1134 509,347
1140 241,301
1144 309,243
1156 339,475
1156 -817,-681
1164 271,325
1190 321,349
1216 257,321
1242 379,343
1242 -863,-899
1250 451,551
1250 -799,-699
1278 391,-461
1278 -887,817
1292 295,-929
1292 -997,363
1296 505,361
1296 505,-935
1296 -791,361
1296 -791,-935
1298 349,-1015
1298 -949,283
1314 401,-475
1314 -913,839
1316 543,355
1330 389,579
1350 377,413
1350 -973,-937
1352 365,573
1352 365,-779
1352 -987,573
1352 -987,-779
1372 405,-995
1372 -967,377
1444 533,-835
1444 -911,609
1456 393,407
1458 541,433
1458 -917,-1025
1528 549,-931
1544 555,571
1682 637,-1219
1682 -1045,463
1784 653

1800 659

1922 805,-1179
1922 -1117,743
2024 741

2040 781,749
2056 755

2296 843

2312 885

18 crossing

210 29,41
400 139,-341
400 -261,59

A%

v
\'

o<

T<E»<T U<

U<

Ab

A%

444
452
532
544
558
558
576
576
576
576
684
686
686
688
702
702
704
704
704
720
732
736
736
738
738
748
760
764
768
768
770
770
772
780
782
784
784
800
800
812
812
832
832
836
836
858
858
858
868
868
870
870
880
880
882
882
882
896
896
896
896
900

83,139
109,85
109,137
93,189
131,-301
-427,257
119,263
119,-313
457,263
-457,-313
145,107
141,-531
-545,155
123,307
163,-557
-539,145
161,129
-543,-575
127,193
169,151
337,151
135,503
-601,-233
173,-583
565,155
203,137
159,121
183,199
241,145
-527,-623
159,-541
-611,229
185,169
161,239
135,169
141,-475
-643,309
153,553
-647,-247
151,-633
-661,179
191,159
-641,-673
217,-543
-619,293
301,-635
557,223
181,233
179,-381
-689,487
353,-487
-517,383
317,-387
563,493
199,163
205,-479
-677,403
375,-185
375,711
-521,-185
521,711
209,-511

<<<< << <<<49<<<
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900
900
900
936
936
942
948
952
952
952
956
964
976
976
980
980
994

-691,389
247,-617
-653,283
295,-329
-641,607
287,221
289,199
345,-775
-607,177
205,171
227,251
229,221
181,213
-795,-763
209,-631
771,349
275,-789
994 -719,205
996 209,455
1002 235,433
1008 187,-653
1008 -821,355
1008 187,691
1008 -821,-317
1008 355,-317
1008 -653,691
1010 313,293
1010 -697,-293
1020 239,271
1024 225,289
1024 225,-735
1024 -799,289
1024 -799,-735
1032 185,271
1040 197,717
1040 -843,-323
1044 329,-751
1044 -715,293
1062 233,197
1064 277,221
1072 235,203
1072 -837,-869
1078 493,885
1078 -585,-193
1078 475,-225
1078 -603,853
1100 203,603
1100 -897,-497
1102 235,293
1106 197,239
1118 245,-787
1118 -873,331
1148 241,-935
1148 -907,213
1156 307,-645
1156 -849,511
1158 269,503
1162 263,-409
1162 -899,753
1162 417,207
1164 515,527
1164 433,343

<<<<<

<<

<<<<<<

Vv
A%
A\
A%
\%
v

PFAa
PFAa

<<d<< <<<<P»
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1166 303,-841
1166 -863,325
1188 211,545
1190 431,-269
1190 -759,921
1190 423,213
1218 559,253
1218 373,283
1232 229,555
1246 223,265
1260 263,-913
1260 -997,347
1266 347,377
1266 263,353
1272 571,277
1274 537,269
1274 279,-561
1274 -995,713
1278 343,361
1288 269,381
1288 269,-907
1288 -1019,381
1288 -1019,-907
1296 397,-827
1296 -899,469
1316 571,403
1316 -745,-913
1320 371,349
1320 371,389
1320 349,389
1326 277,367
1330 353,733
1330 -977,-597
1342 377,-987
1342 -965,355
1342 379,291
1342 -963,-1051
1374 311,377
1374 629,287
1378 513,293
1380 379,301
1414 635,411
1414 -779,-1003
1428 401,311
1428 583,991
1428 -845,-437
1430 607,303
1434 529,427
1452 329,593
1452 -1123,-859
1456 431,319
1456 431,-1137
1456 -1025,319
1456 -1025,-1137
1462 575,-309
1462 -887,1153
1462 607,1015
1462 -855,-447
1470 617,-307
1470 -853,1163
1474 313,625
1482 335,653
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Table 2 (continued)

1484 409,-1159 V
1484 -1075,325 V
1488 439,409
1536 689,335
1536 359,425
1542 349,679
1582 345,-1111
1582 -1237,471
1590 473,587
1596 691,373
1620 631,-1169
1620 -989,451
1634 347,433
1634 617,579
1644 611,485
1644 713,383
1650 463,373
1666 377,-1303
1666 -1289,363
1666 699,-365
1666 -967,1301
1690 759,359
1704 397,475
1716 727,703
1758 523,493
1782 389,1037
1782 -1393,-745
1786 661,-783
1786 -1125,1003
1804 477,-1163
1804 -1327,641
1804 391,479
1804 -1413,-1325
1826 679,-1313
1826 -1147,513
1846 391,495
1848 773,-403
1848 773,1445
1848 -1075,-403
1848 -1075,1445
1860 1081,841
1870 763,-1097
1870 -1107,773
1876 823,-409
1876 -1053,1467
1880 737,-767
1880 -1143,1113
1890 523,-1313
1890 -1367,577
1904 557,837
1904 -1347,-1067V
1918 835,1383 V.
1918 -1083,-535 V.
1926 517,743

1926 695,-589 V.
1926 -1231,1337 V
1936 747,-1365 V
1936 -1189,571 V
1962 599,-709 V
1962 -1363,1253 V
1962 527,769

1984 895,1151 C

<<
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1998 557,-1387
1998 -1441,611
2014 845,-1131
2014 -1169,883
2028 859,547
2028 -1169,-1481
2040 797,-1307
2056 739,-1293
2116 873,-1335
2116 -1243,781
2142 593,-1675
2142 -1549,467
2198 957,649
2198 -1241,-1549V
2210 863,-837 Fa
2210 -1347,837 Fa
2212 933,1565
2212 -1279,-647
2318 1017,-1339
2318 -1301,979
2500 1051,-1549
2500 -1449,951
2546 935,-1117
2546 -1611,1429
2610 719,701
3064 1133,-1899
3080 1131,-1941

<< <<<<<pragd<<<
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19 crossing

131,65
97,67
83,59
67,61
61,-239
-389,211
215,73
211,-349
-279,141
159,95
125,97
281
277,-107
-331,501
289
149,99
101,121
239
289,145
-359,-503
101,137
319
99,177
105,313
-571,-363
327
115,-493
-607,229
133,-395
593,331
251,233
113,153
235,217

294
300
426
438
450
450
472
490
490
508
516
592
608
608
608
620
630
640
648
648
666
672
676
676
676
688
722
722
726
726
726
728
732

U< <
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754
800
800
800
800
800
808
816
836
840
850
858
882
882
884
892
900
928
928
936
942
944
944
948
968
968
976
976
976
984
988

353,111
119,279
119,-521
-681,279
-681,-521
241
167,127
139,173
151,381
193,263
133,303
389,157
211,-713
671,169
139,309
215,231
197,217
163,-733
765,195
149,427
329,299
221,-771
723,173
295,301
351,-705
-617,263
457
179,667
-797,-309
461
173,211
992 173,-787
992 -819,205
1000 469

1000 437

1008 473

1014 235,-701
1014 -779,313
1014 161,265
1016 445

1024 193,321
1024 193,-703
1024 -831,321
1024 -831,-703
1032 451

1040 487

1048 459

1048 491

1050 487,163
1058 183,275
1058 -875,-783
1062 229,337
1062 -833,-725
1064 337,167
1064 337,489
1064 167,489
1064 499

1072 503

1072 205,741
1072 -867,-331
1078 501,893
1078 -577,-185
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138

1080 233,-487
1080 -847,593
1092 491,251
1100 189,589
1100 -911,-511
1102 175,347
1104 211,-845
1104 -893,259
1120 209,239
1120 257,513
1120 513

1136 521

1148 275,299
1152 239

1152 239,527
1152 239,-625
1152 -913,527
1152 -913,-625
1152 527

1156 203,-749
1156 -953,407
1156 265,277
1156 531,251
1162 475,267
1162 341,369
1162 -821,-793
1162 337,365
1168 535

1176 251,419
1176 251,-757
1176 -925,419
1176 -925,-757
1178 245,207
1184 543

1188 271,-521
1188 -917,667
1190 377,547
1206 383,275
1206 -823,-931
1206 551,283
1206 223,533
1218 557,383
1224 553,281
1224 547,227
1232 563,387
1276 335,303
1278 587,299
1278 -691,-979
1284 301,305
1288 363,405
1288 409,-695
1288 -879,593
1298 345,-931
1298 -953,367
1300 383,583
1300 -917,-717
1312 229,-603
1312 -1083,709
1330 607,303
1358 625,-927
1358 -733,431
1360 613,237
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Table 2 (continued)

1364 2451075 V
1364 -1119,289 V
1386 317,401 P
1386 -1069,-985 V
1394 487,241

1414 381,325

1422 295,331 V.
1422 -1127,-1091V
1422 421,313 P
1422 -1001,-1109V
1426 255,301
1440 643,-317
1440 -797,1123
1444 379,-1141
1444 -1065,303
1456 317,-1123
1456 -1139,333
1456 317,-619
1456 -1139,837
1456 333,837
1456 -1123,-619
1458 593,269
1458 -865,-1189
1458 305,341
1458 -1153,-1117V
1472 337,273V
1472 337,-1199 V
1472 -1135,273 V
1472 -1135,-1199V
1476 653,-331 P
1476 -823,1145 V
1484 641,1145 V
1484 -843,-339 P
1484 471,415 V.
1484 -1013,-1069V
1488 277,-1163 'V
1488 -1211,325 V
1494 335,443 P
1494 -1159,-1051V
1496 533,269
1496 685

1498 267,323
1504 279,-473
1504 279,1031
1504 -1225,-473
1504 -1225,1031
1512 479,409
1518 703,263
1520 411,1171
1520 -1109,-349
1520 477,1237
1520 -1043,-283
1528 701

1536 671

1540 283,-1213
1540 -1257,327
1544 707

1550 461,411
1552 293,1069
1552 -1259,-483
1552 421,1197
1552 -1131,-355

LTUCLTUCLCLLULCL'T
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1554 355,439

P

1554 -1199,-1115V

1554 277,557
1562 337,359
1562 295,863
1562 -1267,-699
1564 703,473
1566 487,343

v
v

P

1566 -1079,-1223V

1568 281,617
1568 281,-951
1568 -1287,617
1568 -1287,-951
1568 487,-297
1568 487,1271
1568 -1081,-297
1568 -1081,1271
1576 723

1582 563,283
1582 419,363
1584 709,1285
1584 -875,-299
1584 709,-347
1584 -875,1237
1584 299,-1237
1584 -1285,347
1586 329,277
1596 331,733
1600 303,367
1600 303,-1233
1600 -1297,367

PA

A%

1600 -1297,-1233V

1602 733,373
1602 -869,-1229
1610 507,367
1610 493,723
1616 371,-1261
1616 -1245,355
1624 471,703
1628 309,727
1638 349,293
1644 341,503
1650 343,757
1652 379,505
1656 373,-731
1656 373,925
1656 -1283,-731
1656 -1283,925
1672 299,365
1672 439,351
1674 521,377

A\
Vv

A\
v

P
A\
\'%
\'%

P

1674 -1153,-1297V

1680 733,-1187
1680 -947,493
1682 753,521
1682 -929,-1161
1682 737,365
1692 355,731
1698 353,473
1700 467,297
1702 363,-1385
1702 -1339,317

\'
Vv
Vv
P

\'
Vv

1708 481,523
1708 481,495
1708 481,-1255
1708 -1227,453
1708 523,-1213
1708 -1185,495
1708 523,453
1708 495,453
1708 521,451
1710 401,781
1722 457,527
1722 457,-1223
1722 -1265,499
1722 457,485
1722 527,499
1722 527,-1237
1722 -1195,485
1722 499,485
1734 319,455
1734 713,509 V
1734 -1021,-1225P
1748 367,459

1758 487,367

1758 385,787

1760 373,483

1768 315,485

1778 545,405

1786 407,467

1792 389,333  V
1792 -1403,-1459V
1800 419,779 V
1800 419,-1021 PA
1800 -1381,779 PA
1800 -1381,-1021V
1804 767,381

1806 377,827

1806 479,737

1812 397,391

1812 553,379

1820 817,557

1820 543,-1433 V
1820 -1277,387 V
1826 773,389

1848 491,421

1860 401,419

1860 389,851

1862 519,491 V
1862 -1343,-1371V
1862 519,393

1862 519,421

1862 491,393

1862 491,421

1862 393,421  PA
1862 -1469,-1441 PA
1870 507,397

1872 589,517  PA
1872 -1283,-1355 PA
1908 671,-601 PA
1908 -1237,1307 PA
1914 431,787

1914 431,863

1914 787,863

<<<<
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<<
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1922 557,433 V
1922 -1365,-1489 P
1922 683,-1053 V
1922 -1239,869 P
1924 5151357 V
1924 -1409,567 V
1932 359,695 V.
1932 -1573,-1237V
1936 439,791  PA
1936 439,-1145 V
1936 -1497,791 V
1936 -1497,-1145PA
1938 409,511

1944 757,541  PA
1944 757,-1403 'V
1944 -1187,541 V
1944 -1187,-1403PA
1946 579,411 P
1946 -1367,-1535V
1946 593,-1075 V
1946 -1353,871 V
1958 449,797

1958 427,361

1960 573,517 V
1960 573,-1443 V
1960 -1387,517 V
1960 -1387,-1443V
1968 449,431
1976 451,413
1976 535,-1545
1976 -1441,431
1978 613,-1107
1978 -1365,871
1980 623,-697
1980 -1357,1283 PA
1984 415,353

1988 705,369  V
1988 -1283,-1619V
1990 617,-1383
1990 -1373,607
1992 587,421
2010 583,1387
2010 -1427,-623
2014 435,-1473 V
2014 -1579,541 V
2016 563,635 PA
2016 -1453,-1381 PA
2022 905,461

2022 617,473

2028 599,-1585 V
2028 -1429,443 V
2048 577,449 PA
2048 577,-1599 V
2048 -1471,449 V
2048 -1471,-1599 PA
2072 601,559

2074 439,371

2076 485,575

2080 453,-1523 V
2080 -1627,557 V
2082 901,487

2082 919,469

o
><<1<<§

PFA
PFA

PFA
PFA

Table 2 (continued)

2108 951,375
2114 873,485
2116 919,-1473 P
2116 -1197,643 V
2116 829,461 V
2116 -1287,-1655P
2128 395,451 V
2128 -1733,-1677V
2132 577,-1503 V
2132 -1555,629 V
2136 481,487
2136 925,499
2142 871,-1577 V
2142 -1271,565 V
2156 601,657 V
2156 -1555,-1499V
2166 913,-1367
2166 -1253,799
2170 647,-1213
2170 -1523,957
2170 883,573
2178 925,-1715
2178 -1253,463
2184 509,947
2198 907,593
2210 467,597
2212 957,641
2238 971,521
2240 473,-983 V
2240 473,1257 P
2240 -1767,-983 V
\Y
A

<" <Y<

2240 -1767,1257
2244 625,523

2254 687,659

2254 -1567,-1595V
2254 993,1777 V
2254 -1261,-477 P
2268 925,517

2268 949,1789 V
2268 -1319,-479 P
2296 947,523

2298 703,535

2310 521,499

2312 613,1021 PA
2312 613,-1291 V
2312 -1699,1021 V
2312 -1699,-1291 PA
2314 645,-1695
2314 -1669,619
2320 913,607
2332 641,-1823
2332 -1691,509
2336 989,1053
2338 533,1049
2338 697,-1307 P
2338 -1641,1031 V
2338 659,631

2338 829,1809 PA
2338 -1509,-529 PA
2352 533,701 P
2352 -1819,-1651V
2356 537,499

<< <<

2358 697,733 P
2358 -1661,-1625V
2366 851,1831 PA
2366 -1515,-535 PA
2398 519,1007
2412 751,-857 P
2412 -1661,1555 V
2436 743,1091
2448 761,-871 P
2448 761,1577 V
2448 -1687,-871 V
2448 -1687,1577 V
2450 531,1371 P
2450 -1919,-1079V
2450 687,-1777
2450 -1763,673 V
2450 911,-1889 V
P
Y

<

2450 -1539,561
2464 667,723

2464 -1797,-1741V
2464 1103,751 V
2464 1103,-1713 V
2464 -1361,751 V
2464 -1361,-1713V
2482 725,-1723 V
2482 -1757,759 V
2494 659,975

2496 673,737

2500 1101,901 F
2500 -1399,-1599 PF
2502 779,743 P
2502 -1723,-1759V
2508 679,-1961 V
2508 -1829,547 V
2530 899,711

2538 775,703  PA
2538 -1763,-1835 PA
2546 673,581

2546 689,-1991 V
2546 -1857,555 V
2552 917,-1555 A
2552 917,675

2552 -1555,675
2562 709,541 P
2562 -1853,-2021V
2568 757,923

2568 757,955

2568 923,955 A
2574 787,-929 PA
2574 -1787,1645 PA
2592 793,937  PA
2592 793.-1655 V
2592 -1799,937 V
2592 -1799,-1655 PA
2600 567,-1097 V
2600 -2033,1503 V
2610 943,-797 PA
2610 -1667,1813 PA
2622 1183,565

2626 555,1109

2632 725,557 P
2632 725,-2075 V

139

2632 -1907,557 V
2632 -1907,-2075V
2646 769,-1919 V
2646 -1877,727 V
2646 737,809  PA
2646 -1909,-1837PA
2660 737,793 P
2660 -1923,-1867V
2660 787,563 P
2660 -1873,-2097 V
2676 1201,583
2678 1107,-1961 V
2678 -1571,717 V
2680 821

2684 581,1127
2686 727,795 V
2686 -1959,-1891 P
2704 729,1145 V
2704 729,-1559 PA
2704 -1975,1145 PA
2704 -1975,-1559 V
2724 809,587

2724 761,803

2728 1587,-1525 C
2730 739,-1601 V
2730 -1991,1129 V
2738 591,1035 P
2738 -2147,-1703V
2738 815,-1997 V
2738 -1923,741 P
2744 811,755 P
2744 811,-1989 V
2744 -1933,755 V
2744 -1933,-1989V
2756 1237,813 V
2756 -1519,-1943V
2758 597,821 P
2758 -2161,-1937V
2758 625,1605 P
2758 -2133,-1153V
2772 1031,733
2778 767,827

2782 1179,589
2784 769,607

2784 601,823

2786 1215,817
2794 993,751

2800 821,1221
2828 613,837 P
2828 -2215,-1991V
2832 791,617

2842 797,-2003 V
2842 -2045,839 V
2842 643,615  PA
2842 -2199,-2227PA
2852 1841,1289 C
2856 835,1243 V
2856 835,-1613 V
2856 -2021,1243 V
2856 -2021,-1613P
2856 619,787 P
2856 619,-2069 V
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2856 -2237,787 V
2856 -2237,-2069 V
2886 1301,623
2886 653,797
2892 853,799
2914 1315,1879 C
2916 865,1081 P
2916 -2051,-1835V
2924 1273,865 V
2924 -1651,-2059P
2924 1285,619
2926 1283,2263 V
2926 -1643,-663 P
2940 869,671
2940 641,1319
2946 877,1087
2994 677,1319
2996 809,683
3014 895,807 V
3014 -2119,-2207P
3038 1275,2395 V
3038 -1763,-643 P
3038 883,-2141 V
3038 -2155,897 V
3038 1761,-1699 C
3040 853,-2347 V
3040 -2187,693 V
3042 1327,-1793 V
3042 -1715,1249 P
3048 899,1133
3052 853,895
3054 691,1345
3054 697,1339
3058 663,1775 V
3058 -2395,-1283V
3074 1105,909
3078 833,-2407
3078 -2245,671 V
3080 901,859
3094 863,-2257 V
3094 -2231,837 V
3094 863,-2189 V
\'
\%
P

<

3094 -2231,905
3094 837,905

3094 -2257,-2189
3102 707,1361
3102 1145,923
3122 845,873 V
3122 -2277,-2249V
3122 859,-1817 P
3122 -2263,1305 V
3162 715,883

3172 841,-2487 V
3172 -2331,685 V
3198 677,859

3200 879

3216 733,955

3220 1347,2523 V
3220 -1873,-697 P
3222 865,901

3230 737,-2323 V
3230 -2493,907 V

T. Kanenobu and T. Sumi

Table 2 (continued)

3232 1407
3234 1357,2533
3234 -1877,-701
3248 1425,-703
3248 1425,2545
3248 -1823,-703
3248 -1823,2545
3268 917,-2523
3268 -2351,745
3270 973,913
3298 1009,-2323
3298 -2289,975
3332 755,923
3332 -2577,-2409V
3346 1467,-2357 V
3346 -1879,989 P
3352 1243

3360 991

3362 901,1229 V
3362 -2461,-2133P
3362 1311,1475 P
3362 -2051,-1887V
3362 985,-1967 P
3362 -2377,1395 V
3364 927,-2089 P
3364 -2437,1275 V
3374 1423,941

3388 1475,991

3440 1049

3444 1411,1459
3456 1519

3458 971,-2669 V
3458 -2487,789 V
3468 1421,1433
3576 1309

3586 1065,2297 V
3586 -2521,-1289 P
3592 1333

3600 1319

3650 1609,1509 F
3650 -2041,-2141PF
3674 1351,2583 P
3674 -2323,-1091V
3696 1609

3698 1547,1031 P
3698 -2151,-2667V
3700 1329,-1631 F
3700 -2371,2069 PF
3710 1027,803 P
3710 -2683,-2907V
3712 1617

3728 1623

3800 1669,-1371 F
3800 1669,2429 F
3800 -2131,-1371F
3800 -2131,2429 PF
3816 1397

3824 1401

3832 1421

3844 1487,-2233 P
3844 -2357,1611 V
3848 1427

U< <UL <TL

3850 1591,1691 F
3850 -2259,-2159PF
3870 1039,1499
3872 1495,1143 V
3872 1495,-2729 PA
3872 -2377,1143 PA
3872 -2377,-2729V
3906 1049,1525
3936 1729

3952 1737

3984 1751

4064 1489

4088 1517

4088 1517,1549 A
4088 1549

4096 1503

4104 1507

4104 1507,1523 A
4104 1523

4120 1219

4192 1825

4208 1833

4232 1563,1747 V
4232 1563,-2485 PA
4232 -2669,1747 PA
4232 -2669,-2485V
4240 1847

4246 1261,1173 V
4246 -2985,-3073 P
4328 1605

4336 1591

4344 1595

4360 1651

4418 1693,-3195 P
4418 -2725,1223 V
4464 1961

4480 1969

4496 1975

4554 1223,1259
4600 1749,1701 Ab
4600 1707

4616 1749

4624 1769

4736 2063

4802 1863,-3037 V
4802 -2939,1765 P
4888 1851

5000 2101,1901 PFA
5000 2101,-3099 F
5000 -2899,1901 F
5000 -2899,-3099 PFA
5024 2207

20 crossing

67,155 \%
-417-329 V
179,107
141,109
159,89

125,89

103,91
115,131

484
484
572
580
610
642
654
744

836
858
884
890
918
918
946

153,265
155,131
415,129
131,409
157,-659
-761,259
259,171
956 183,175
990 181,269
1020 247,263
1024 159,415
1024 -865,-609
1028 249,225
1064 339,899
1064 -725,-165
1078 481,205
1084 343,207
1092 337,209
1100 509,191
1102 345,925
1102 -757,-177
1110 169,229
1110 169,511
1110 229,511
1118 165,295
1120 453,-627
1120 -667,493
1130 407,-497
1130 -723,633
1158 365,239
1184 217,281
1184 -967,-903
1200 419,-1021
1200 -781,179
1206 331,-821
1206 -875,385
1216 249,313
1216 385,993
1216 -831,-223
1240 567,193
1242 431,-397
1242 -811,845
1248 199,329
1256 509,195
1258 327,191
1258 -931,-191
1276 219,241
1280 401,241
1280 -879,-1039
1292 593,-223
1292 -699,1069
1304 205,531
1308 607,269
1340 323,347
1344 415,1087
1344 -929,-257
1348 309,325
1350 431,-469
1350 -919,881
1368 253,307
1372 293,-883
1372 -1079,489
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1376 263,327

v

1376 -1113,-1049V

1386 443,-997
1386 -943,389
1390 211,361
1406 221,297
1422 293,-1003
1422 -1129,419
1428 335,449
1434 451,301
1444 341,645
1444 -1103,-799
1444 265,417

1444 -1179,-1027

1482 677,235
1482 677,311
1482 235,311
1488 349,643
1496 313,233
1508 267,-661
1508 -1241,847
1532 367,399
1540 369,361
1548 713,-319
1548 -835,1229
1548 341,287
1554 289,275
1562 271,723
1564 245,279
1566 341,-1243
1566 -1225,323
1568 275,851
1568 -1293,-717
1576 247,327
1584 301,707
1586 713,-899
1586 -873,687
1596 419,379
1598 733,-287
1598 -865,1311
1600 281,681
1600 -1319,-919
1652 341,-1171
1652 -1311,481
1692 383,-913
1692 -1309,779
1710 353,-787
1710 -1357,923
1712 299,771
1728 791,359
1728 791,-1369
1728 -937,359
1728 -937,-1369
1734 373,-1259
1734 -1361,475
1748 515,1435
1748 -1233,-313
1750 361,-759
1750 -1389,991
1752 407,761
1764 799,463
1764 -965,-1301

\
\'

A\
A\

\'
\'
Vv
\
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Table 2 (continued)

1778 753,-367 V
1778 -1025,1411 V
1802 335,505

1804 823,1479 V
1804 -981,-325 V
1812 571,421
1816 317,285
1826 827,1491
1826 -999,-335
1832 841,287
1836 793,-431
1836 -1043,1405
1836 379,-1421
1836 -1457,415
1854 565,-1271
1854 -1289,583
1854 853,-383
1854 -1001,1471
1862 333,1313
1862 -1529,-549
1876 527,-1489
1876 -1349,387
1886 335,499
1886 -1551,-1387V
1888 331,395 V
1888 -1557,-1493V
1890 337,407

1890 863,-397 V
1890 -1027,1493 V
1904 333,299

1924 865,695 V
1924 -1059,1229 V
1926 677,-607 V
1926 -1249,1319 V
1936 331,419 V
1936 -1605,-1517V
1946 429,359

1946 361,767

1946 347,697

1950 581,529

1952 341,405 V
1952 -1611,-1547V
1952 425,457 V.
1952 425,-1495 V
1952 -1527,457 V
1952 -1527,-1495V
1962 691,-617 'V
1962 -1271,1345 V
1968 365,461 V
1968 -1603,-1507V
1972 557,-1619 V
1972 -1415,353 'V
1974 367,773
1974 613,703
1974 613,353
1974 703,353
1978 537,365
1980 409,-1391
1980 -1571,589
1998 467,-1081
1998 -1531,917
1998 595,-1529

<LK <<

<< <<<

1998 -1403,469 V
2000 373,437 V
2000 -1627,-1563V
2000 371,1371 V
2000 -1629,-629 V
2002 523,607 P
2002 -1479,-1395V
2002 613,865 V
2002 -1389,-1137V
2016 535,-473 V
2016 535,1543 V
2016 -1481,-473 V
2016 -1481,1543 V
2016 535,-905 V
2016 535,1111 V
2016 -1481,-905 V
2016 -1481,1111 V
2016 473,905 V
2016 473,-1111 V
2016 -1543,905 V
2016 -1543,-1111V
2030 433,363

2032 637,1653 V
2032 -1395,-379 V
2034 929,-427 V
2034 -1105,1607 V
2034 623,-1393 V
2034 -1411,641 V
2050 443,607 V
2050 -1607,-1443V
2052 431,-1441 V
2052 -1621,611 V
2054 929,449

2058 631,547 V
2058 -1427,-1511V
2064 643,1675 V
2064 -1421,-389 V
2068 555,731 V
2068 -1513,-1337V
2076 569,647

2080 553,-487 V
2080 553,1593 V
2080 -1527,-487 V
2080 -1527,1593 V
2082 955,433

2090 359,579 V
2090 -1731,-1511V
2096 459,395V
2096 -1637,-1701V
2096 651,1699 V
2096 -1445,-397 V
2100 607,943 V
2100 -1493,-1157V
2112 595,485

2114 647,1251 V
2114 -1467,-863 V
2128 635,373

2128 499,403 V
2128 -1629,-1725V
2130 443,593

2142 445,-1643 V
2142 -1697,499 V

141

2142 461,-1555
2142 -1681,587
2144 503,471
2144 503,-1673
2144 -1641,471
2144 -1641,-1673
2156 457,915
2166 493,-1559
2166 -1673,607
2178 455,-1669
2178 -1723,509
2178 511,457
2178 511,-1685
2178 -1667,493
2178 511,475
2178 457,493
2178 457,-1703
2178 -1721,475
2178 493,475
2190 481,979
2190 457,607
2196 497,479
2196 497,-1735
2196 -1699,461
2196 497,515
2196 479,461
2196 479,-1681
2196 -1717,515
2196 461,515
2200 779,581
2200 933,467
2204 657,387
2204 933,1009
2222 599,-1645
2222 -1623,577
2238 1025,467
2238 629,695
2240 513,417 V
2240 -1727,-1823V
2254 1021,685 V
2254 -1233,-1569V
2266 609,389  V
2266 -1657,-1877V
2268 883,-1637 V
2268 -1385,631 V
2272 397,1229 V
2272 -1875,-1043V
2272 423,1559 V
2272 -1849,-713 V
2278 399,801

2282 827,421

2288 525,931

2288 809,-647 V
2288 809,1641 V
2288 -1479,-647 V
2288 -1479,1641 V
2292 515,629

2298 505,631

2304 529,625 V
2304 -1775,-1679V
2304 535,679 V.
2304 535,-1625 V
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2304 -1769,679 V
2304 -1769,-1625V
2322 685,-1835
2322 -1637,487
2322 541,-1259
2322 -1781,1063
2336 441,1609
2336 -1895,-727
2340 529,-1271
2340 -1811,1069
2352 491,-1021
2352 -1861,1331
2352 733,835
2352 421,-1427
2352 -1931,925
2356 1039,-1393
2356 -1317,963
2358 553,-1019
2358 -1805,1339
2366 439,425
2368 447,543
2368 -1921,-1825V
2376 701,557 V
2376 701,-1819 V
2376 -1675,557 V
2376 -1675,-1819V
2380 673,503
2398 677,853
2398 1095,431
2400 1061,539
2406 871,733
2412 1057,-551 V
2412 -1355,1861 V
2420 549,989 V
2420 -1871,-1431V
2422 447,853
2430 523,-1097 V
2430 -1907,1333 V
2442 1105,449
2448 1103,-529 V
2448 1103,1919 V
2448 -1345,-529 V
2448 -1345,1919 V
\Ys
\Ys
\Ys
\Ys

< <<<<<C<C <K<K

2448 965,-1339
2448 -1483,1109
2450 1107,743
2450 -1343,-1707
2454 689,539

2460 511,1129
2484 541,-1907 V
2484 -1943,577 V
2484 1135,-521 V
2484 -1349,1963 V
2486 571,659

2502 1087,-581 V
2502 -1415,1921 V
2508 767,521

2508 767,653

2508 521,653

2514 691,781

2516 441,543

2530 887,-1873 V
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Table 2 (continued)

2530 -1643,657 V
2530 669,449  V
2530 -1861,-2081V
2534 711,-2005 V
2534 -1823,529 V
2538 1097,-595 V
2538 -1441,1943 V
2546 677,543

2550 703,533

2552 895,-1889 'V
2552 -1657,663 V
2552 453,717  V
2552 453,-1835 V
2552 -2099,717 V
2552 -2099,-1835V
2552 575,1049
2562 785,755

2562 745,-2027 V
2562 -1817,535 V
2562 563,1145
2568 577,1135
2616 725,611

2616 815,929

2616 779,797

2620 1083,-1557 F
2620 -1537,1063 F
2622 1177,571
2626 783,1187
2628 1159,1087
2630 1037,-1067 F
2630 -1593,1563 F
2640 553,1097
2652 575,745

2664 1195,619 V
2664 1195,-2045 V
2664 -1469,619 V
2664 -1469,-2045V
2676 601,751

2676 1159,625
2676 817,559

2678 799,1203
2682 623,-1165 V
2682 -2059,1517 V
2686 579,477

2698 565,707

2700 629,-1531 V
2700 -2071,1169 V
2702 821,709 P
2702 -1881,-1993V
2704 571,987 V
2704 -2133,-1717V
2718 745,-2099 V
2718 -1973,619 V
2724 1181,635
2724 1247,569
2728 615,769

2736 625,769 V
2736 625,-1967 V
2736 -2111,769 V
2736 -2111,-1967V
2744 573,-1163 V
2744 573,1581 V

2744 -2171,-1163V
2744 -2171,1581 V
2744 601,-1191 V
2744 -2143,1553 V
2744 839,727 V
2744 -1905,-2017V
2754 1243,-593 V
2754 -1511,2161 V
2758 579,509
2760 859,509
2772 599,-2257 'V
2772 -2173,515 V
2772 599,-1993 'V
2772 -2173,779 V
2772 491,601
2772 515,779  V
2772 -2257,-1993V
2778 863,989
2778 605,851
2782 1257,829
2784 853,1003
2784 775,649
2794 519,739 V
2794 -2275,-2055V
2794 641,1137
2826 613,649
2832 641,863
2834 837,-2215
2834 -1997,619
2838 865,619
2844 895,-2057
2844 -1949,787
2844 661,-1235
2844 -2183,1609 V
2852 1009,1561 V
2852 -1843,-1291 P
2860 787,-2117
2860 -2073,743 V
2862 665,-2215 V
2862 -2197,647 V
\Y%
\

<<< <<

<

2880 1013,-907
2880 -1867,1973
2882 1073,765
2892 901,811
2912 1045,-2371 V
2912 -1867,541 V
2914 1037,1601 V
2914 -1877,-1313P
2924 1035,519
2926 851,-2285
2926 -2075,641
2944 899,853
2952 929,-1039
2952 -2023,1913
2954 647,-2125
2954 -2307,829
2968 551,-1913
2968 -2417,1055
2988 941,-2155
2988 -2047,833
2990 907,927

<< <<<<<< <<

PFA
2990 -2083,-2063PFA

2992 565,829 V
2992 -2427,-2163V
2992 653,685 V
2992 -2339,-2307V
2092 653,1741 V
2992 -2339,-1251V
2992 685,1741 V
2992 -2307,-1251V
2994 653,1343
3000 679,1321
3010 873,2077

3014 1117,2213 V
3014 -1897,-801 V
3014 1239,679
3038 687,-2393 V
3038 -2351,645 V
3042 655,-2189 V
3042 -2387,853 V
3042 707,-2137 V
3042 -2335,905 V
3048 689,1343
3054 931,901

3056 701,2229 V
3056 -2355,-827 V
3058 667,1779 V
3058 -2391,-1279V
3060 661,-2219 V
3060 -2399,841 V
3064 1197,-1963 A
3072 673,865 V
3072 673,-2207 V
3072 -2399,865 V
3072 -2399,-2207V
3078 1351,-701 V
3078 -1727,2377 V
3080 1147,-1973 A
3088 707,2251 V
3088 -2381,-837 V
3096 851,707 V
3096 851,-2389 V
3096 -2245,707 V
3096 -2245,-2389 V
3102 725,947
3104 1297,1393
3104 919,951
3108 577,-2447
3108 -2531,661
3122 663,-2193
3122 -2459,929
3130 1277,-1227 F
3130 -1853,1227 Fa
3136 953,1289 V
3136 -2183,-1847V
3136 1329,-687 V
3136 1329,2449 V
3136 -1807,-687 V
3136 -1807,2449 V
3146 593,681 V
3146 -2553,-2465V
3152 691,723 V
3152 -2461,-2429V

<<<<

PFA
3010 -2137,-933 PFA



3162 1369,739
3168 1127,841
3178 1397,921 V
3178 -1781,-2257V
3182 845,-2251
3182 -2337,931
3186 973,-2303
3186 -2213,883
3192 1381,-899
3192 1381,2293
3192 -1811,-899
3192 -1811,2293
3210 1157,983
3212 597,685
3216 985,727
3222 985,-1163
3222 -2237,2059
3230 847,677
3256 689,711
3258 1177,-995
3258 -2081,2263
3264 995,1181
3268 691,863
3278 871,1179 V
3278 -2407,-2099 V
3294 1007,-2377 V
3294 -2287,917 V
3300 623,887 V
3300 -2677,-2413V
3306 1295,-2533 V
3306 -2011,773 V
3318 1439,773
3322 881,749

3328 981,1493 V
3328 -2347,-1835V
3330 1193,1373
3358 623,715

3378 1033,787
3380 911,1431 V
3380 -2469,-1949V
3384 731,-1525 V
3384 731,1859 V
3384 -2653,-1525V
3384 -2653,1859 V
3402 775,-1493 V
3402 -2627,1909 V
3404 987,1033
3406 735,1423
3420 781,-1499
3420 -2639,1921
3430 1511,-729
3430 -1919,2701
3432 1051,1021
3444 1003,-2693
3444 -2441,751
3458 927,1031
3468 749,-2515
3468 -2719,953
3468 1531,-2549
3468 -1937,919
3484 1029,-2723
3484 -2455,761

<< <<<<<
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Polynomial Invariants of 2-Bridge Links

Table 2 (continued)

3484 759,2007 V
3484 -2725,-1477V
3498 1261,-2555
3498 -2237,943
3498 799,755
3514 795,-1249
3514 -2719,2265
3520 763,653
3520 931,-2269
3520 -2589,1251
3542 801,-1271
3542 -2741,2271
3562 961,753
3600 781,1381
3600 -2819,-2219V
3612 767,-1585 V
3612 -2845,2027 V
3626 1597,-783 V
3626 -2029,2843 V
3640 773,-1523 V
3640 773,2117 V
3640 -2867,-1523V
3640 -2867,2117 V
3668 1587,1083 V
3668 -2081,-2585V
3682 1563,2615 V
3682 -2119,-1067V
3710 809,-1571 V
3710 -2901,2139 V
3738 1621,-815 V
3738 -2117,2923 V
A%
\%
C
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3762 1055,-2905
3762 -2707,857
3782 2197,1709
3800 1003,803
3838 815,1017
3844 1673,1425 PA
3844 -2171,-2419PA
3850 871,1579 A
3888 1189,-2483 V
3888 -2699,1405 V
3894 889,1589 A
3906 2267,1763 C
3918 1453,1159
3934 849,-2763 V
3934 -3085,1171 V
3952 1061,1165 V
3952 -2891,-2787V
3952 1733,-1459 V
3952 -2219,2493 V
3962 1719,1159 V
3962 -2243,-2803V
3972 1477,1171
3976 1115,-1725 V
3976 1115,2251 V
3976 -2861,-1725V
3976 -2861,2251 V
3978 1681,841
3982 1119,1053
3982 1119,1075
3982 1119,-2885 V
3982 -2863,1097 V

3982 1053,-2907 V
3982 -2929,1075 V
3982 1053,1097
3982 1075,1097
4002 1651,1697
4004 1103,-2945 V
4004 -2901,1059 V
4004 1103,1125
4004 1103,873
4004 1103,1081
4004 1103,-3153 V
4004 -2901,851 V
4004 1059,1125
4004 1059,873
4004 1059,1081
4004 1059,851 V
4004 -2945,-3153V
4004 1125,-3131 V
4004 -2879,873 V
4004 1125,-2923 V
4004 -2879,1081 V
4004 1125,851
4004 873,1081 V
4004 -3131,-2923V
4004 873,851

4004 1081,851

4010 1183,1223 PFAa
4010 1223,2827 PFAa

4018 867,-3109 V
4018 -3151,909 V
4020 1193,1103
4032 1193,857 V
4032 1193,-3175 V
4032 -2839,857 V
4032 -2839,-3175V
4080 889,1831
4096 1215,1727 V
4096 -2881,-2369V
4096 1601,1473 PA
4096 1601,-2623 V
4096 -2495,1473 V
4096 -2495,-2623 PA
4108 1103,895 V
4108 -3005,-3213V
4128 1217,1151
4130 877,-2987 V
4130 -3253,1143 V
4134 1751,875
4142 1751,-2429 V
4142 -2391,1713 V
4160 1227,1123 V
4160 -2933,-3037V
4180 1757,-2347 V
4180 -2423,1833 V
4186 1731,1501
4188 1159,913
4200 1243,907 V
4200 1243,-3293 V
4200 -2957,907 V
4200 -2957,-3293V
4228 913,-3063 V
4228 -3315,1165 V
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4236 923,1181
4242 1165,1255
4246 917,961 A
4256 1853,1237 V
4256 -2403,-3019V
4270 1241,2461 V
4270 -3029,-1809 V
4278 1765,1535
4290 1277,1187
4296 1267,1189
4318 1773,2997 V
4318 -2545,-1321V
4332 989,-3115 V
4332 -3343,1217 V
4344 1949,947
4344 1289,1607
4352 1331,2555 V
4352 -3021,-1797V
4356 1651,1915 PA
4356 -2705,-2441 PA
4394 1981,1305
4398 1217,995
4398 1301,1235
4452 1655,1313
4458 1645,1327
4462 1891,1845
4466 1587,-3285 V
4466 -2879,1181 V
4484 1891,-2517 V
4484 -2593,1967 V
4488 1261,1669 V
4488 1261,-2819 V
4488 -3227,1669 V
4488 -3227,-2819V
4488 1237,973 V
4488 1237,-3515 V
4488 -3251,973 V
4488 -3251,-3515V
4506 1985,1019
4512 1339,1669
4550 963,1223
4566 2011,1033
4592 991,-1921 V
4592 991,2671 V
4592 -3601,-1921V
4592 -3601,2671 V
4606 979,-1933 V
4606 -3627,2673 V
4614 1703,1373
4620 997,-2027 V
4620 -3623,2593 V
4624 1701,1293 V
4624 -2923,-3331V
4628 1955,3619 V
4628 -2673,-1009 V
4674 1303,1057
4674 1687,-2741 V
4674 -2987,1933 V
4708 1305,1019
4712 1733,-2067 V
4712 1733,2645 V
4712 -2979,-2067P
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4712 -2979,2645 V
4722 1751,1397
4756 1315,1257
4782 1333,1423
4784 1411,2147 V
4784 -3373,-2637V

T. Kanenobu and T. Sumi

Table 2 (continued)

4978 -3641,1075 V
5018 1399,1347 V
5018 -3619,-3671V
5050 1969,-2071 F
5050 -3081,2979 F
5074 1981,1803

5434 -3187,-3967V
5434 2247,-3473 V
5434 -3187,1961 V
5434 1467,-3473 V
5434 -3967,1961 V
5456 1521,2017 V

5828 2131,3259
5850 1571,2281
5966 2467,-3461
5966 -3499,2505
6094 1677,-4395
6094 -4417,1699

4796 1337,-3503 V 5112 1933,-3211 A 5456 1521,-3439 V 6136 2325,-3859
4796 -3459,1293 V 5128 1907,-3245 A 5456 -3935,2017 V 6152 2275,-3869
4802 2015,-1037 V 5150 2161,-3039 F 5456 -3935,-3439V 6348 2345,-3727
4802 -2787,3765 V 5150 -2989,2111 F 5456 1181,1467 6348 -4003,2621
4836 1435,1357 5166 1441,1387 5546 2339,-3113 V 6498 1799,1745
4850 2039,-2861 F 5172 2119,2191 5546 -3207,2433 V 6578 2569,-4035
4850 -2811,1989 F 5196 2129,2153 5704 3189,2085 C 6578 -4009,2543
4898 2149,3097 P 5278 1139,-3817 V 5776 1595,2203 V 6604 2501,-2579
4898 -2749,-1801V 5278 -4139,1461 V 5776 -4181,-3573V 6604 -4103,4025

4950 2029,-1931 F
4950 -2921,3019 F
4950 1073,1337 V
4950 -3877,-3613V
4978 1337,-3903 V

5302 1425,1469
5336 1469,1411
5382 1445,2225 V
5382 -3937,-3157V
5434 2247,1467 V

5798 1565,1617 V
5798 -4233,-4181V
5808 2243,-4093 V
5808 -3565,1715 V
5814 1561,2255

6900 2899,2851
7500 3151,-4649
7500 -4349,2851
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Invariants of Spatial Graphs

Jun Murakami

§1. Introduction

The purpose of this paper is to construct invariants of spatial graphs
from regular isotopy invariants of non-oriented link diagrams of knit trace
type. Kauffman’s bracket polynomial [4], which is a version of the Jones
polynomial, is of knit trace type. The Dubrovnik polynomial [5], which
is used in the definition of the Kauffman polynomial, is also of knit
trace type [6]. Hence these two invariants are generalized to invariants
of spatial graphs by our method. The Yamada polynomial introduced in
[10] is the non-trivial simplest one of our invariants. A similar invariants
are introduced in [9] for ribbon graphs. They use quasi-triangular Hopf
algebras. But we use representations of knit semigroups or braid groups
instead of Hopf algebras.

To introduce regular isotopy invariants of link diagrams of knit trace
type, we need notion of a Markov knit sequence. Let C be the field of
complex numbers. Knit semigroups K,, (n = 1,2, ---) are introduced in
[6] defined by the following generators and relations.

Kn: <7_1""7Tn~1’ 7_1—-1’"'77-77,_—11’ €1y " E€pq I
TiTi—l = Ti_lTi =1, 7T =77 (li — 7] > 2),

TiTiv1Ti = Tit1T;Tiqp1,  Ti€5 = €574 (|2 =3l > 2),
€;€i416; == €4y E;&5; = €& (I —J1 > 2),

_ -1 -1 __
€iTit1 = €&i+1T; »  &iTi1 = €&i+1Th

| -1_ _
Ti41€; = T; €418 Tz‘:tlsi‘Tisi:tlsi>

The generators of K,, are presented graphically as in Figure 1. In the
graphical presentation, the product of two elements of K, corresponds
to the composite of two diagrams as in the case of braid groups. Let

Received July 6, 1991.
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\ /

m 10 11 s (TN} ~ (LN}
\ f :
1..i-1lii+li+2..n 1..ilii+li+2..n 1. ilii+li+2..n

-1
T Ti €;

Fig. 1. Generators of K.

CK,, be the semigroup algebra of K,, over C. We regard the braid group
B,, as a subsemigroup of K, generated by 7,,75, -, T, _;.

Let v be a non-zero complex number. Knit semigroup algebra with
writhe factor v, denoted by K,,(7), is a quotient algebra of CK,, defined
by the following.

Kn(y) = (CKn/('r,L-ilei — fyilsz-, s,ﬂ'fl - 'yilsi (1<i<n-1)).

Let A be a semisimple C-algebra. Let A be the set of equivalence
classes of irreducible representations of A. A C-linear map T from A to
C is called a trace if T is a linear combination of irreducible characters

of A, i.e.

(1.1) T(z) = Z a, Trace(p(z)) (a, € C)
peA

The trace T is called faithful if all the coefficients a, are not equal to
0. A sequence Ay, Ag, -+, Ay, --- of semisimple C-algebras are called a
knit type sequence if they satisfy the following.

(1) There is an algebra epimorphism p, from K,(y) to A, and
monomorphism 7, from A, to A,4; such that j,op,, = ppy101,
forn=1,2,---, where i, is an inclusion from K, (v) to Kp4+1(7)
which sends 751 € K, (7) to 75! € K,11(7) and ¢; € K, (7) to
g, € Knyi(y) for 1 <i<n—1.

(2) There are a complex number p and a faithful trace T,, from A,, to
C which satisfy the following. For any z € Ay, Th41(j,(z)) =
BTa(@), Tu(®) = 7 Tarr (o () Prys (7)) and  To(z) =
Tot1(z pri(en))-
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For z € K, let Z denote the link diagram obtained from the closure of
z (Figure 2). A regular isotopy invariant X of link diagrams is called of
knit trace type if there is a Markov knit sequence and X is obtained by
the traces of it, i.e. X (&) = T,,(p,,(z)) for z € K,,. Kauffman’s bracket
polynomial [4] is of knit trace type (see Section 3 of [7]). The Dubrovnik
polynomial is also of knit trace type [6].

diagram of x I

Fig. 2. Closure of x € K.

Remark. Let X be a regular isotopy invariant of knit trace type
with writhe factor 7. For an oriented link diagram z, there are a positive
integer n and y € K, such that g is equal to z without orientation.
Let w(z) be the sum of signatures of the crossings of z. Let X'(z) =

~v%(*) X(3). Then X' is an invariant of links.

Now we define spatial graphs in S3. Let V is a set of 2-disks and
€ be a set of edges homeomorphic to [0,1] in S3. Each edge has an
orientation induced by the orientation of [0,1]. The terminal points of
an edge corresponding to 0 and 1 are called the initial point and the final
point of the edge respectively. The pair I' = (V, £) is called an oriented
spatial graph if it satisfies the following. The disks in V are mutually
disjoint and the edges in £ are mutually disjoint. Also assume that the
interiors of the disks in V and edges in £ are mutually disjoint. Terminal
points of edges in £ are contained in the boundaries of disks in V. Two
spatial graphs I" and I" are called equivalent if there is an isotopy of
S3 which sends I' to I'V. A spatial graph I is called an embedding of a
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Fig. 3. Reidemeister moves.

tri-valent graph if the degree of all the vertices of I" are equal to 3. A
diagram of a spatial graph is defined as in the case of a link.

Proposition 1. Two spatial graphs I' and I are equivalent if and
only if there is a sequence of Reidemeister moves of types (SRI)—(SRV)
sending a diagram of T to a diagram of T”.

For a spatial graph I', we define a diagram of I' as in the case of
links. Let Aq, Ao, --- be a Markov knit sequence. For each edge E of T,
we associate a non-negative integer N(E), an irreducible representation
R(E) € Ay and a signature S(E). The triple (N, R, S) is called a
coloring of T if it satisfies the following. For a vertex v of ', let £, be a
set of edges with terminal point v Then

(12) ) N(E)=evenand 2N(E)< >  N(E')forall E € &,.
Ec&, E'et,
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We construct an invariant of spatial graphs colored as above. First,
we generalize link invariants of braid trace type to invariants of colored
oriented tri-valent graph embeddings in S® in §2. And then we generalize
invariants of knit trace type to invariants of colored spatial graphs in §3.
By attaching the same color to all the edges of graphs, we get invariants
of spatial graphs. In §4, we give some examples.

§2. Invariants of colored oriented tri-valent graphs

In this section, we generalize link invariants of braid trace type to
invariants of embeddings of colored oriented tri-valent graphs in S3. To
introduce link invariants of braid trace type, we need notion of a Markov
braid sequence.

Definition. A sequence (A1,7T1), (A2,T%), ---, (A, Ty), -+ of
pairs of a semisimple C-algebra and its trace are called a Markov braid
sequence if they satisfy the following.

(1) There is an algebra homomorphism p,, from CB,, to 4,, and j,
from A, to A,4, such that j, op, =p, 01, forn=1,2,..,
where ¢,, is an inclusion from CB,, to CB,,;1 which sends o, €
CBptoo, € CByyq for1 <t <n—1.

(2) There is a faithful trace T, from A, to C and u, c € k\ {0} which
satisty pTn(z) = Tn1(Jn(2)), Tn(2) = c¢Tnt1(2Ppyq(0,)) and
Tn(CU) = C—l Tn-i—l(xpn—l—l(o.n—l)) for any r € An-

From a Markov braid sequence, we get a C-valued link invariant.
For a braid b = 0(1)*(") 0(2)5® -+~ 005" € By, let w(b) = >_;_, e(3).
Then w(b) is a sum of signatures of all the crossings of b. For a braid b,
let b denote the link obtained from the closure of b. Let

X (5) = ) T (p, (1))

Then Alexander’s theorem and Markov’s theorem ([1], Theorem 2.1 and
2.2) implies that X is an invariant of links. Link invariant obtained
from a Markov braid sequence as above is called of braid trace type.
Jones polynomial, HOMFLY polynomial and Kauffman polynomial are
all of braid trace type and the associated braid type sequences are Jones
algebras, Iwahori’s Hecke algebras and a g-analogue of Brauer’s algebras
respectively ([2], [3], [6], [8])-

From now on, fix an invariant X of braid trace type and let (A1, 7}),
(A2, T3), - - - be the Markov braid sequence of X. Since A, is a semisim-
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ple algebra, we have
An= @& Mqy,)(C)
pPEA,

where d(p) is the degree of p. Let g, be an element of A, such that
v(q,) = 6up id € My, (C)  for v e A,

Let g, be an element of CB,, such that p, (q,) = q,- Note that g, is not
unique. Let h, = 0,09--:0,,_10, -0, _o --0,090;. We call h, the
half twist of B,,. Let f, = h,* and we call f,, the full twist of B,. It is
known that f, commute with every element of B,, and so p(p,(f,)) is
a scalar matrix, i.e. p(p,(f,)) = a, id.

A formal C-linear combination of link diagrams are called a virtual
link diagram. We generalize the link invariant X to a function from
virtual link diagrams to C formally as follows. For a virtual link diagram
L=Y"_,a;L;(a; €k, L;isalink diagram), let X (L) = >"._, a; X (L;).

As in the case of links, we define a diagram of an oriented tri-valent
graph embedded in S3. Let G be an oriented tri-valent graph. We define
a coloring of GG. For each edge E of G, associate a non-negative inte-
ger N(E), an irreducible representation R(E) € An( g) and a signature
S(E) = £1. The triple (N, R, S) is called a coloring of G if it satisfies
the following. For a vertex v of G, let E be a set of edges with end
point v and E;} a set of edges with start point v. Then

Y N(E)= > N(E).

Ec€E; EecEf

Let I be a diagram of an embedding of an oriented tri-valent graph
G colored by (N, R,S). We identify the edge sets of I and G. For an

edge F of T', let B(E) = %QR(E) (1+S(E) a}_a(lg) h,) € CBn(g)- Replace

every vertices and edges as in Figure 4, we get a virtual link diagram

I(V.R.S) For a edge E of T, let ¢(E) = S(E) ai{é)'

Theorem 2. LetI and IV be equivalent embeddings of an oriented
tri-valent graph G colored by (N, R,S). Then, for every edge E of G,
there is an integer d(E) such that

N,R,S
(2.1) X(IMRS) = T e(B)4®) x @/ ™9,
Ee&

Proof. We check (2.1) for Reidemeister moves (SRI)-(SRV). Let I'
and IV be diagrams of embeddings of G. We identify the sets of edges
of I and IV with that of G.
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N3 | N3 /

Fig. 4. Replace vertices and edges.

Case 1. Assume that I' and I are regular isotopic, i. e. there is a

sequence of Reidemeister moves of types (SRII), (SRIII), (SRIV) sending

I' to I'. Then the associated virtual link diagrams I'V-/:5) and TV (N,R,S)

are equivalent. Hence we have

Case 2. In this and the next cases, we check (2.1) for (SRI) moves.
Assume that T" and IV are identical except within a ball where they are
as shown in Figure 5. Let E be the edge of G embedded differently by I'
and I'V. Let n = N(FE), p= R(FE), s= S(F) and § = f(E). Then there
are positive integer N and a braid b € CBy such that the associated
link diagrams I'N:E:S) and T (NRS) are equivalent to the closures of
b, = bn(B) and b, = bn(B) f,, where n is an algebra homomorphism
from CB,, to CBy defined by n(o;) = 0, for 1 <i < n —1. Since X
is an invariant of trace type, there is an algebra homomorphism J from
A, to Ay such that pyy on = Jop,. From the definition of trace type
invariants, we have

X(i?z) =Tn(pn(by)) = Tn(pn(b1(B) f1))-

The definitions of g, and 8 imply that p,(8hE') = (s ab/)Ep ().
Hence we have

Tn (pn(01(8) fa)) = T (pn (6) I (P (B R, *)))
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=Tn(pn (b)J (0, P (5))) = ap T (pn (6)J (P, (5))),

and so we get

X(B2) =, X(i)l)
In other words,
(2.3) X([TMVRS)) = o) X(I/VFRS).
r T
Fig. 5.

Case 3. Let I and I be diagrams of colored tri-valent graphs iden-
tical except within a ball where they are as shown in Figure 6. Then, as
in Case 2, we have

_ N,R,S
(2.4) X@EWRS)) = apt x (@),

Fig. 6.
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Case 4. To check (SRV), it is suffice to verify the theorem for moves
illustrated in Figures 7-10. Assume that ' and I are identical except
within a ball where they are as shown in Figure 7. Let n(i) = N(E;),
P(Z) = R(Ez'), 3(1) = S(Ei)a q; = qp(i)a 9 = 9p5)) Pi = Pn(s)) hi = hn(i)
and B, = B(F;) for i = 1,2,3. Then there are positive integer N and

b € CBy such that the associated link diagrams I'(V:E:5) and (V. 15)
are equivalent to the closures of

by =bny(B1) 12(B2) 13(B3),
by =bn, (6,) 772(fn(2) Bs) On(1),n(2) I3 (Bs),

where Tn1),n(2) = Zn@)%n()+1" " Tn1)4+n@)-1 n(1)-1" " Tn(1)+n(2)-2
SO0y Oy and 7, , 1y 15 are algebra homomorphisms from (CBn(l),

CBn(Q) CBn(B) to CBy defined by the following. n,(0,) = o, for 1 <
i <n(l) =1, na(0;) = 0,3y, for 1 <4 < n(2) — 1 and n3(0) = o; for
1 <i<n(3)—1. Weknow that 1y (R, 1))72 (R 2)T01),n(2) = 13(Rp3))-
Hence we have

by = bny (B, hfl)nz (B2 ha)ns(hsfBs).
Since X is an invariant of trace type, there are algebra homomorphisms
Ji, J2 and J3 from A1), Ap2) and A,y to Ay such that py on, =
J ©Pp(s) for s = 1,2, 3. From the definition of the trace type, we have
X (by) =Tn(pn(b2))
=T'n(py (b (B h1_1) 2Bz ha) n3(hs B3))
=Tn(pn(b) J1(p1 (B4 hl_l)) J2(P2(Bs hy)) J3(p3(hs Bs)))-

The definition of qp and G(E) implies that
+
p (B REY) = S(t) e " pu(B)  (1=1,2,3).

Hence we have

Tn(pn () J1(p1 (5, hfl)) Ja(po (B2 hy)) J3(p3(hs B5)) )

=(IT5®) a0 aniay i T (par (B) Ji (p1.(B1)) J2(p2(Ba)) J(P3(B5)),

t=1

and so we get

7 — 1/2 1/2 7
X (by) = s(1) o) 5(2) af) 5(3) ouylz) X (by).
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In other words,

- 1/2 N,R,S
(25)  X(CMRD) = 5(1) 0,7 5(2) 0tz 5(3) ey X (),

R &

Fig. 7.

Case 5. Assume that I" and I are identical except within a ball
where they are as shown in Figure 8. Then, as in Case 4, we have

_1/2 _ N,R,S
(26)  X(@ITWES) = 5(1)alf? 5(2) a3 8(3) a ) ? X (),

E; Eq
Ex r, Es E2 p, Ej

Fig. 8.

Case 6. Assume that I" and I are identical except within a ball
where they are as shown in Figure 9. Then, as in Case 4, we have

- N,R,S
27)  XTMR) = s(1) a7 8(2) agiy) 5(3) ap)” X (@),
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E;, E;
Fig. 9.

Case 7. Let I and I be diagrams of colored tri-valent graphs iden-
tical except within a ball where they are as shown in Figure 10. Then,
as in Case 4, we have

N = —1/2 2 N,R,S
(28)  X(ITMR) = s(1) o) s(2) o) s(3) gy X (O,

E, E;

Y

Fig. 10.
The above formulas (2.2)—(2.8) implies Theorem 2. Q.E.D.

§3. Invariants of non-oriented spatial graphs

Let X be a regular isotopy invariant of link diagrams of knit trace
type with writhe factor v. Let G be an abstract graph. For each edge
E of G, we attach a non-negative integer N (F), an irreducible represen-
tation R(E) € An(g) and a signature S(E) = £1. If these data satisfy
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(1.2) in §1, they are called a coloring of G and denoted by (N, R, S).
Let &£, be the subset of edges of G with a terminal point v.

From now on, fix an invariant X of knit trace type and let (A, 7T}),
(Ag,T3), - - - be the Markov knit sequence of X. Since A,, is a semisimple
algebra, we have

An = @& Ma)(C)

pEA,

where d(p) is the degree of p. Let g, be an element of A, such that
v(q,) = b, id € My(,)(C) for veA,.

Let g, be an element of CK, such that pn(cjp) = q,. Note that g, is
not unique. Let h, =TTy T, 1Ty T_o - T;To 7. We call b, the
half twist of K,,. Let f,, = hn2 and we call f,, the full twist of K,,. It is
known that f,, commute with every element of K, and so p(p,(f,)) is

a scalar matrix, i.e. p(p,(f,)) = a, id.

Let G be an abstract graph colored by (N, R, S). Let I be a colored
non-oriented spatial graph equal to G as an abstract graph. We identify
the sets of edges of I' and G. Let v be a vertex of I'. Let Fq, Es, ---, E,
be the edges with a terminal point v. Let &;, &;, - -+, £, be the terminal
points of Ey, Fs, ---, E, on the boundary of v and N(i) = N(E;) for

1 =1, 2, ---, r. Replace these points by Cfl), C£2), RN CfN(l)), Cél), RN
CQ(N(Q)), e T(l), e (N s in Figure 11. Let n, = (3_;_, N(7))/2.
A diagram D on v is a set of mutually disjoint n,, curves connecting 7{((11))

to 73((22)). Two diagrams D and D’ on v are called equivalent if there is an

isotopy of v sending D to D’ which fixes the boundary of v. A diagram
D on v is called essential if D satisfies the following.

(*) Let 'yf((ll)) and fygg)) be distinct boundary points of a curve of D.
Then (1) # i(2).

We denote by D, the set of equivalence classes of essential diagrams on
v. If the valency of v is equal to 3, then D, has only one element. If
the valency of v is equal to 4 and N(E;) =2 fori =1, ---, 4, then D,
consists of 3 elements as in Figure 12.

Let B(E) - %qR(E) (1 + S(E) aé(ng) h’n) € (CBN(E). Let F(N’R’S)
be the virtual link diagram obtained by replacing each vertex v by a

sum of the all elements of D, and each edge F by B(F) as in the case
of embeddings of oriented tri-valent graphs. For a edge E of I', let

c(E) = S(F) aiz/(zE).
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Fig. 11. Replace &, ---, & by ¢, ..., ¢V e
CN@) e LN,

Fig. 12. Elements of D,,.

M.R,$) N /

Bl — B® /

Fig. 13. Replace edges and vertices.

Theorem 3. Let T and I be colored spatial graphs isomorphic to
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a graph G colored by (N, R,S) as abstruct graphs. Identify the sets of
edges of I' and I with that of G. IfT" and I are equivalent as spatial
graphs, then there are integers d and d(E) for every edge E of G such
that

(3.1 XM = 4t T By @ x (@ ™).
Eeg

Proof. We check (3.1) for Reidemeister moves (SRI)-(SRV). Let
I' and T be diagrams of colored spatial graphs isomorphic to G. We
identify the sets of edges of I' and IV with that of G.

Case 1. Assume that I' and I are regular isotopic, i. e. there is a
sequence of reidemeister moves of types (SRII), (SRIII), (SRIV) sending

I" to I". Then the associated virtual link diagrams I'™V::5) and I (N.R,S)

are equivalent and we have
(3.2) X(F(NvRvs)) — X(F,(N,R’S))

Case 2. In this and the next cases, we check (2.1) for (SRI) moves.
Assume that I and I'V are identical except within a ball where they are as
shown in Figure 5. Let n = N(E), p= R(F), s = S(F) and § = B(E).
Then there are positive integer IV and b € CK y such that the associated

link diagrams I'V-F:5) and T’ (NRS) are equivalent to the closures of
b, = bn(B) and b, = bn(B) h2 where 7 is an algebra homomorphism
from CK,, to CKy defined by n(c;) = o, for 1 < i < n—1. Since
X is a regular isotopy invariant of knit trace type, there is an algebra
homomorphism J from A, to Ay such that py on = Jop,. From the
definition of trace type invariants, we have

X(gz) = Tn(pn(by)) = Tn(pn (b0(B) hnz))'
The definition of  implies that

Pa(BRY) = s ?p (B).

Hence we have

T (pn (57(8) hy?)) =T (o () J (P (B ,7))
=0, Ty (pn ()] (0 (8))),

and so we get

X (by) = a, X(by).
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In other words,
N,R,S
X(@TWRS)) = o x (1),

Case 3. Assume that I" and IV are identical except within a ball
where they are as shown in Figure 6. Then, as in Case 2, we have

(3.3) X(F(N’R)S)) — a;l X(I\/(N,R,S)). .

Case 4. Assume that I' and IV are identical except within a ball
where they are as shown in Figure 14. Let Fy, E5, ---, E,. be edges
around the vertex v. Let n(i) = N(F,) for ¢ = 1,2,---,r and n =
dioin(i). Let e, , = €653+ €9, 1 € K.

around vertex v around vertex V'

E\E; ... E

Fig. 14.

Let h,, e, and €] be the element of K,, corresponding to the diagram
in Figure 15. Let m; ,, (1,5 > 0, k > 0, z'—{— k < j) be a semigroup
homomorphism from K; to K; which sends Ti , €; € K to TE o k, Eivk €

__an
h’neu =7 €y

hnev = e; ¢1,n(hn(1 )Qsz n( n(2) ) T (br,n(hn(r))a

and so we have
(34) e;) = ,yn ev ¢1,n( n(l )¢2 ”(h ) o ¢ (h_(r))

Let p(i) = R(FE;), s(i) = S(F;) and B(i) = B(E;) fori =1, 2, - -,
r. Then there are an integer N and an element b € CK,, such that the
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n(1) n(rt—1) n(r)

Fig. 15. Diagrams of h,, e, and e,,.

associated link diagrams I'™:%:5) and T’ (N.R,S)

closures of

are equivalent to the

by :bnn,N,O(ev) ¢1,N(ﬁ(1)§p(1))¢2,N(ﬁ(2)§p(2)) ¢T,N(/8(T)qp('r‘))'
by =bn, no(enhy) 01,8 (B(1)dp1)) 2,8 (B(2)dp(2) *++ G0 N (B(r)dp(ry)-

From (3.4), we have

(3.5) by = '7nb77n,N,0(ev) ¢1,N(h;(11)ﬁ(1)§p(1)) ¢r,N(h;(1r)ﬁ(7”)§p(r))-

Recall that the definition of Ap(m) and B(FE) implies that

+1/2
Qo)) (B By ™) = 5(8) @21 1) Py (B(D))

for t =1,2,---,r. Hence formula (3.5) implies
(3.6) X (by) =[] St) o,)* X (By),
i=1

because X is of knit trace type.
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Case 5. Assume that I" and IV are identical except within a ball
where they are as shown in Figure 16. Then, as in Case 4, we have

r

(3.7) X (by) = [ s(t) eyfy X (By).
i=1
El E2 ees E I-"
r
Fig. 16.
Formulas (3.2), (3.3), (3.6), (3.7) show Theorem 3. Q.E.D.

Let N be a positive even number. Let R be an irreducible repre-
sentation of the algebra Ay associated with the link invariant X. Let S
be 1 or —1. For a spatial graph T, let (N’, R’, S’) be the coloring of T’
defined by N'(E) = E, R'(E) = Rand S’(E) = S for every edge E of I.
Let X(N-RS) (1) = X(DVRSS)) Then X(NV:8:5) is a regular isotopy
invariant of diagrams of spatial graphs.

Corollary 4. LetT' and IV be diagrams of the same spatial graph
G. Then, there are integers d and d' such that

X(N,R,S) (F) — ,Yd aRd/ X(N,R,S) (I'\/).
The proof is similar to that of Theorem 2.

84. Examples

KauffmanUs bracket polynomial (.) is a regular isotopy invariant
of knit trace type and the Jones polynomial is obtained from (.) as
in Remark in §1. To fix the notation, we give the definition of the
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bracket polynomial (.) [4]. Let A € C\ {0} which is not equal to any
roots of unity. The bracket polynomial with parameter A is a regular
isotopy invariant of non-oriented link diagrams defined by the following
relations.

<LO> =1,
(Lz) = A(Ly)) + A" (Loo),

where Lo is a trivial knot and L, L, L are link diagrams identical
except within a ball where they are as shown in Figure 17.

Lo Ly L.

Fig. 17. Diagrams of Ly, L||, L.

Let A be a non-zero complex number which is not equal to any roots
of unity. Let J,(A) be the Jones algebra defined over C by the following.

Jn(A) = (€1, €9, yen_1|e e 6, =€, € €; = €;€; (Ji =3l >2),

e2 = —(A%?+ A7 %)e,).

1

The Markov knit sequence of KauffmanUs bracket polynomial (.) is
J1(A4), J2(A), ---. The algebra homomorphism p,, from CK, to J,(A)
is defined by p,(¢;) = €;, p,(;) = A+ A7 le,and p, (77 ') = A1+ Ae,.
Let p,, be the linear representation of J,(A) sending e, €5, --+, €, _; to
0. Since p,(p,,(7;)) = A, we have

(4.1) plhy) = AT/,

Let o, = A"V and VO = A™(»=1)/2 The Yamada polynomial in

[10] is coming from (.} as in Corollary 4 with N =2, R = p, and S = 1.
Let 'y and I'y be two diagrams of spatial graphs as in Figure 18.
The diagrams I'y and I'; are colored as in the figure. Let Ci, Cy

denote the above coloring for I'; and I's respectively. Since p,(1+ (A2 +
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2, p2, 1) 2, p2,

1“1 I,

$€ e A,pD 4, p11D)

Fig. 18. Diagrams of spatial graphs I'1 and I'z.

o
f
@ 1 \/D
PRy AT

Fig. 19. Virtual link diagrams I'{* and I'S2.

A™?)"1e,) = g, the virtual diagrams I'Y* and I'S? associated to the
colorings are given in Figure 19.

Hence we have
A%+ At +1

(L1) = AT

and

-A32-|-A28+A20+A8+1

([2) = - ABS (A% 11)



166 J. Murakami

By (4.1) and Theorem 3, we know that I'y and I'; are not equivalent as
spatial graphs.

To investigate the invariants associated with the Jones polynomial
more closely, Section 4 of [7] may be helpful.

The HOMFLY polynomial P is an oriented link invariant of trace
type. Hence we get invariants of colored oriented tri-valent graph em-
beddings from the HOMFLY polynomial.

The Kauffman polynomial F' is an oriented link invariant obtained
from the Dubrovnik polynomial [5], which is a regular isotopy invariant
of unoriented link diagrams. It is shown in [2], [7], [8] that the Dubrovnik
polynomial is of knit trace type. Hence we get invariants of spatial
graphs from the Dubrovnik polynomial. To investigate properties of
these invariants, Section 5 of [7] may be helpful.
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Introduction

A flat conformal structure on an n-dimensional manifold N is a
maximal system of local charts taking values on S™, with transition
functions Moebius transformations. In short it is a geometric structure
modelled on (M(S™), S™), where M(S™) denotes the group of Moebius
transformations on S™. Equivalently, it is a conformal equivalence
class of conformally flat Riemannian metrics on N if n > 3. See
§1 for Liouville’s theorem. By certain abuse we denote a flat conformal
structure by the same letter as the underlying manifold.

In dimension 2, flat conformal structures are usually called projec-
tive structures and have been extensively studied by various authors in
the field of function theory. Analytic methods such as the theory of
quasiconformal maps often play crucial roles there. In dimension > 3,
however, the situation is quite different. Topology, instead of analysis,
provides major tools of study.

The concept of flat conformal structures was first introduced by
Kuiper ([35],[36],[37]) around 1950. Thereafter it had been forgotten
for some time, until it was revived by Kulkarni ([40],[41],[42],[43]), re-
lated with his study of discrete group actions in general. Then came
an important turning point when Fried ([13]) established a remarkable
theorem concerning closed similarity manifolds. It solved a fundamental
and annoying problem which one encounters in the primary stage of the
theory, thereby making it possible to have a good grip on elementary
flat conformal structures, with Goldman ([15]) and Kamishima ([25])
contributing significantly to this direction.
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Revised June 13, 1991.
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At the same time various interesting examples have been piled up by
many authors including Thurston [56], Bestvina-Cooper [4], Freedman-
Skora [10], Gromov-Lawson-Thurston [19], Kuiper [38] and, quite re-
cently,

Kapovich-Potyagailo [32], making the field even more active.

This article has two objectives. One is to provide the basic knowl-
edge of flat conformal structures and to serve as an introductory guide
of the field. The other is to show some new pieces of knowledge. §1 ~ §3
are devoted to the former purpose, where the reader can find exposition
of fundamental properties of Moebius transformations and flat confor-
mal structures. No original results are included in these early sections.
However for the full understanding of later sections, they are helpful, or
even indispensable.

84 and §5 are also mainly expository, though they include some
slightly improved (new) results. Hereafter let N be a connected closed
flat conformal manifold of dimension > 3. In §4, we prove the following
version of Fried’s theorem.

Theorem (4.4). If the holonomy group of N has a fixed point
in S™, then N is either S™, an FEuclidean space form or a Hopf
mansfold.

Unlike the original theorem ([13]), we no longer postulate that the
developing map misses the fixed point. This yields clearer understand-
ing of the limit set (§5) and a wider range of applications. Using Theo-
rem (4.4), various results (mostly known) can be proved by elementary
and straightforward arguments. Although the proof of Theorem (4.4)
is nothing but a small modification of the argument in [13], it might be
worth while to record it. The same result was obtained independently
by R. Miner [58], who mainly worked in the context of spherical CR
structures.

In §5, we define the limit set L(NN) of a flat conformal manifold N.
Five different ways are possible and in Theorem (5.18), they are shown
to coincide eventually. Especially we get that the limit set defined by
means of the holonomy group is identical to the one obtaind by looking
at the behaviour of the developing map. (Most of these facts are already
known to Kulkarni-Pinkall [43].) As immediate corollaries we have the
followings.

Corollary (5.23). If the developing map of N is not onto S",
then it is a covering map onto its image.

Corollary (5.24). Suppose the following (1) and (2).
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(1) S™\ L(N) is connected and the fundamental group w1 (S™\
L(N)) 1is finitely generated.

(2) For any point x € L(N), there exists an arbitrarily small
neighbourhood U of x such that U\ L(N) is connected.

Then the developing map is a covering map onto S™\ L(N).

In dimension 2, Corollary (5.23) is well known and easy to show
using hyperbolic metric. For higher dimension, it was first proved by
Kamishima. Again our method is short and straightforward. Corol-
lary (5.24) can be found in Kulkarni-Pinkall [45], where condition (2)
is mistakingly dropped. In §5, we also characterize those flat conformal
manifolds whose developing maps are covering maps (onto the images)
and whose holonomy groups are indiscrete. (Theorem (5.26).) In dimen-
sion 3, this was first obtained by Kamishima ([24]) and independently
by Gusevskii-Kapovich ([20]) in dimension 3.

N is called elementary if the limit set is finite. N is called a
C-structure if it is a connected sum of elementary structures and is not
itself elementary. In dimension 3, we have the following result.

Theorem (6.12). Suppose dim(N) = 3. Then N is a C-structure
if and only if the limit set L(N) is a tame Cantor set.

Recall that a Cantor set T in S™ is called tame if there exists a
self homeomorphism of S™ which carries T into S!. Otherwise it is
called wild.

The above theorem is proved along the argument of Kulkarni ([43]),
in which Stalling’s theorem ([54],[55]) concerning ends of groups plays
a central part. The theory of ends are summarized in the appendix for
the convenience of the reader.

After preparing Poincaré’s polyhedral theorem in §7 (in the frame-
work of flat conformal manifolds), we shall show the following theorem
in §8.

Theorem (8.1). There exists a flat conformal manifold N of
dimension 3 whose limit set L(N) is a wild Cantor set.

This theorem is an improvement of the work of Bestvina-Cooper
([4]) who constructed such examples for open 3-manifolds. Our example
in Theorem (8.1) is compact.

Literature concerning flat conformal structures is extensively col-
lected in the reference, though not complete, of course.
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§1. Conformal map and Liouville’s theorem

In this section, we give definitions of a conformal map and a Moebius
transformation of the n-sphere. After providing fundamental properties,
we show that a locally defined conformal map is the restriction of a
Moebius transformation if n > 3. (Liouville’s theorem.)

Definition (1.1). A real n x n matrix A is called a conformal
matriz if A = AP for XA >0 and an orthogonal matrix P.

Thus A is conformal precisely when A preserves the angle of given
two vectors. Notice that the products and the inverses of conformal
matrices are again conformal.

Let R' =R"U {oc} be the one point compactification of R™.

Points in R~ is indicated by letters a,x and so forth. For z =
(1,...,%,) € R™,

n

2| = (> aH)"?

i=1
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denotes the Euclidean norm of z. To endow ﬁn the structure of an

oriented manifold, the following local charts (U;,¢;) are commonly used
(i=1,2).

U =R", g =1id:U; — R"”,
{ U, =R"\ {0}, ¢:U; — R",
where ¢ is defined by
@o(T1, .. Tp) = #(zl,...,xn_l, —Iy).

In the above definition and in all that follows, if the image of oo by a
map is clear by the continuity, we do not explicitly state it. An important
property of ¢, is that the differential matrix D,gs at any point
a € R"\ {0} is a conformal matrix. Verification is left to the reader.

Let U be a domain (i.e. a connected open subet) of R".

Definition (1.2). A C'map f:U — R" is called a conformal
map if the following condition is satisfied. For any a € U, if a € U;
and f(a) € U;, then the differential Dg,(q)(g; Ofoql-_l) is a conformal
matrix.

Since for any b € R™\ {0}, Dy(q2 0 ¢; ') is a conformal matrix,
Definition (1.2) is invariant under possible changes of local charts around
a and f(a). A conformal map is a submersion and thus has a local
inverse, which is again a conformal map. Also the composite of two
conformal maps is conformal.

Lemma (1.3). Suppose f:U — R" is a C! submersion, where

U s a domain of R". If D,f 1is a conformal matriz for any a €
UNR"N f~Y(R"), then f is a conformal map.

Proof. This follows at once from the fact that the conformal ma-
trices form a closed subset in the general linear group. Q.E.D.

Let us give examples of conformal maps. Let 0 < p <n . By

. . . An 0 . . 3
a dimension p sphere in R , we mean either a dimension p metric
sphere in R™ or a dimension p plane in R™ plus {oco}. A dimension
p sphere is sometimes called a codimension n — p sphere.

Definition (1.4). Let o be a codimension one sphere in R".

The inversion at o

J,: R —
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is defined as follows.
(1) If o is the sphere of radius r centered at a, then for any
z € R™\ {a},

,’,,2

Jd($) (x—a)-}-a.

-4
(2) If o contains a codimension one plane, J, is the reflexion at
that plane.

See Figure (1.1). The inversion is an orientation reversing involution
with the fixed point set o.

az - aJ,(z) = r?

Figure (1.1)

Definition (1.5). Composite of inversions is called a Moebius

A~

transformation. The group of all the Moebius transformations of R
is denoted by M(ﬁn)

Proposition (1.6). Moebius transformation is a conformal map

. . An . .
and carries a sphere in R to a sphere of the same dimension.

Proof. Computaion shows that an inversion is a conformal map.
Also it is well known, very easy to show by Euclidean geometry, that an
inversion maps a codimension one sphere to a codimension one sphere.
Therefore a sphere of arbitrary dimension, the intersection of several
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codimension one spheres, is mapped to a sphere of the same dimension.
The proposition follows from this. Q.E.D.

Proposition (1.7). The following maps are Moebius transforma-
tions.

(a) Translation by a, x+— x+a.
(b) Magnification by A >0, z— Az.
(c) Orthogonal transformation by P € O(n), x— Puz.

Proof. Translation is the composite of two inversions at parallel
planes. This shows (a). Likewise positive magnification is the composite
of two inversions at concentric spheres and orthogonal transformation is
the composite of several inversions at planes through 0, showing (b) and

(c). Q.E.D.

Lemma (1.8). Let f: R" - R" be a Moebius transformation.
If f(0)=0, f(co)=o00, Dof =E, then f=id.

Proof. Moebius transformations carry circles to circles. Since f
keeps 0 and oo fixed, f preserves the (singular) dimension one
foliation £ formed by the straight lines through 0. Since f is a
conformal map, f also preserves the codimension one foliation £+ of
spheres centered at 0. See Figure (1.2). Notice also that f keeps the
leaf of £ invariant, since Dgf = E. Thus we obtain

R
flz) = e
on the sphere |z| =r. The conformality of f implies
R _ R
dr 1’
Therefore we have R =ar. But a =1 since Dyf = E. This shows
f=id. Q.E.D.

Proposition (1.9).

(1) f is a Moebius transformation such that f(co) = oo if and

only if
f(z) = Az +b.
(2) f is a Moebius transformtion such that f(oo) # co if and only
of

f(z)=AJ(x—b)+ec.
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ﬁ-L

Figure (1.2)

Here A is a conformal matriz, b and c are points of R™ and J
is the inversion at the unit sphere {|z| =1}.

Proof. Tt is a direct consequence of Lemma (1.7) that the trans-
formations of the above expressions are Moebius transformations. Con-
versely suppose that f is a Moebius transformation with f(co0) = oo.
Let f(0)=b and Dof = A. Define g(z) = Az +b. Then g 'of
satisfies the hypothesis of Lemma (1.8). Thus g = f. This completes
the proof of (1). On the other hand, suppose that f is a Moebius
transformation with f(oco) # co. Let f(b) = oco. Define h by
h(z) = J(z —b). Then foh™! is a Moebius transformation which
keeps oo fixed. By (1), we have

foh ™l (z)= Az +c
This completes the proof of (2). Q.E.D.

We shall finish this section with the following celebrated theorem of
Liouville.
Theorem (1.10). Let n > 3. Suppose f :U — R" isa

conformal map, where U is a domain of R".  Then f is the
restriction of a Moebius transformation.
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As a matter of fact, this theorem does not hold for n = 2. In
fact the Riemann mapping theorem asserts the abundance of conformal
maps which are not restrictions of Moebius transformations.

Theorem (1.10) was first proved by J. Liouville in his 1850 paper
([46]), under the additional assumption that f be of class C3. Since
then, it had been an open problem, astonishingly difficult, to weaken
the differentiability assumption, until at last in 1969, P. Hartman gave
a complete proof for C* maps ([21]).

Independently, F.W. Gehring, among others, developed the the-
ory of quasiconformal maps in dimension > 3. Specifically he defined
1-quasiconformal maps, which is a genaralization of conformal maps,
where no differentiability assumption is made. In [14], Gehring showed
that a locally defined 1-quasiconformal map is the restriction of a Moe-
bius transformation.

However these results need involvement in deep general treatment
and cannot be collected here. Instead, we give a simple elementary
proof essentially due to R. Nevanlinna ([49]) assuming that the given
conformal map f is C2. (Nevanlinna postulated that f is C*.)

Proof of Theorem (1.10). We use the following convention. z;

denotes the i-th coordinate of R™ and for f:U — ﬁn, fziy feiz;
and so forth denote the first and the second partial derivatives and so
forth. They are vectors of R™. In the first place, since f is conformal,
we have

(fituij) = Tzéij)

where 7(z) = ||D.f|| is the mapping norm of the Jacobi matrix. Dif-
ferentiating by =z, we get for 7 = j,

(f:cimk’ fmz) = Trl‘k

and for i # j,
(fzimk7f$j) + (fmz, f:rjzz;k) == 0

For mutually distinct indices ¢,j and k, by permuting the indices, we
have

(faizes fz;) = 0.

Since j can be any index except ¢ and k and fz,,..., fz, are mutually
orthogonal, we have

fwiwk = /J'fzi + szky

where

m= (fmiwkafﬂci)/r2 = chk/r
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v=ry,]T

Letting p = 1/r, we have

Differentiating by z;, we obtain
pf.’l:iiltj.’llk + ptl:j f:t,;:l:k + piL‘lf.’L'ka + p:ckf:czwj

By permutation of the indices, we obtain for j # k,
pm]‘:l:k - 0
By rotating the coordinates by 45 degrees in the (z;, zk)-plane, we have

Pzjz; = Prizy-

Now since pg,z, =0 for any k# j p,, isconstant on the hyperplane
{z; = c¢}. Thus it follows that p, ., is constant on {z; = c}. That
18, Ppig, = = Pz,z, Iisconstantin U.

By composing f with a suitable Moebius transformation if neces-
sary, we may assume that 0 € U and f(0) = co. Then the image by
f of an arbitrarily small ball |z| < & contains |z| > K for some large
K > 0. By the volume formula, this implies that p(a,) — 0 for some
sequence a,, — 0. On the other hand, since pg,,; = 2aé;; for some
a >0, p is a quadratic function on U \ {0}, with the leading term
alz|?. Since p is positive valued on U\ {0} and p(a,,) — 0, we have

p(x) = alaf?.

Notice that the same value of p is also attained by the inversion g
which is defined by

Thus by the chain rule, the composite h = gof~!: f(U) — R" satisfies
|Dph|| =1 for any p € f(U)\ {oo}. Thatis, h is an isometry with
respect to the Euclidean metric on R™. This implies that h(z) = Pxz+b
for some orthogonal matrix P and b € R™. In fact, all that needs
proof is that h is an affine transformation. But since

(hwi ) hxk) = 673]"
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by differentiating we get
(h'.’L‘i.’Ej ) h’:Bk) - 0)

showing that h;,,, = 0. Thisimplies that h is an affine transformation.
Thus h and hence f are the restrictions of Moebius transformations,
as is required. Q.E.D.

§2. More on Moebius transformation
Denote by M(ﬁn) the group of Moebius transformations of R".

Lemma (2.1). Let f € M(ﬁn) and let ¢ CR" be a codimen-
ston one sphere. Then,

fod, Of_1 = Jf(a)-

Proof. Clearly g = foJ,of toJ (o) 18 an orientation preserving
Moebius transformation which keeps points in f(o) fixed. Thus for an
arbitrary Moebius transformation h such that h(f(co)) = {z, =0}, we
have that k=hogoh™! keeps {z, =0} pointwise fixed. Especially
we obtain that k(0) = 0, k(co) = co and Dok = E since k is
orientation preserving. Therefore by (1.8), we obtain k = id. This
shows (2.1). Q.E.D.

~n ~n+1 .
Let :: R — R be the standard embedding, i.e.,
(Z1,...,zn) = (21,...,2p,0).

—~ ~n+1
As usual R’ is considered to be a subset of R by ¢ Let o

be an (n — 1)-dimensional sphere in R". Then the inversion J, :

~N ~N . . A'n.+1 /\n‘f—l
R — R can be extended to the inversion J, : R — R at

the n-dimensional sphere 7 orthogonal to R" suchthat R N7 =o0.
This yields an injection.

i MR )-> MR ).
Again M(ﬁn) is considered to be a subgroup of M(ﬁ,nH) by 3.
On the other hand let

S ={zx e R"" | |z| =1}.
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Let 7 be an n-dimensional sphere in ﬁnH which is perpendicular to
S™. Since inversions are conformal maps which send spheres to spheres,
J, 1is a transformation which keeps S™ invariant. Composites of such
inversions constitute a Lie group M(S™) of Moebius transformations
of S™. Denote the inclusion by

jiM(SY) — MR,

~n+1
Define v € M(R * ) by v=TodJyoJ;. where J; is the reflexion
at the plane z,y1 = —1/2, J; is the inversion at the sphere |z| = 2
and T is the translation by (0,...,0,1). See Figure (2.1).

|

AN N

A5

Figure (2.1)

Ji

%
[y
&
—————

Notice that v(ﬁn) = S". Define

~n+1

e MR - MER™

co(f)=vo fovl.
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Proposition (2.2). ¢, maps the subgroup M(ﬁn) tsomorphi-
cally onto the subgroup M(S™).

Proof. v maps an n-sphere 7 perpendicular to R to the n-
sphere v(7) which is perpendicular to S™. On the other hand it
follows from (2.1) that ¢,(J;) = Jy(r). This shows (2.2). Q.E.D.

Let
D"t = {z c R"| |z| < 1},

H"' ={z e R"! | 2,4, > 0}.
Proposition (2.3). We have
MER") = {f e MR") | ™) = H™Y),
M(8™) = {f € MR") | f(D™) = D™y,

Proof. By virtue of (2.2), it suffices to show the statement only
for R (Notice that v(H™*!) = D™*1.) The inclusion C is clear.

~n+1

Conversely, suppose that f € M(R ) satisfies that f(H""!) =
H™t1. First of all, consider the case where f(co) = oo . Then by
(1.9), f(z) = APz +b, where A >0, P O(n+1) and b€ Rt
Since f(R"™) =R", we have that b € R". Further since f preserves

H™*t1  we also obtain that
_(Q 0
b= (0 1)

where @Q € O(n). Thus it follows from (1.7) that f € M(R ). The

remaining case can easily be reduced to this case. Details are left to the

reader. Q.E.D.
We need some standard terminologies in geometry.

Definition (2.4). Two Riemannian metrics ¢g; and g, on a
manifold M are said to be conformally equivalent , if there exists a
positive valued function g on M such that g, = ug;.

Definition (2.5). A C'map f:(Mi,g1) — (Mz,g2) of Rieman-
nian manifolds is called a Riemannian conformal map if the induced
metric f*go is conformally equivalent to g;.

Riemannian conformal maps are usually called conformal maps in
the literature. However in order to avoid confusion with Definition (1.2),
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we call them Riemannian conformal maps in this article. The following
three Riemannian metrics are important in what follows.

Definition (2.6). Denote by gg the Euclidean metric on R",
ie. gg =) ,dz?, by gs the spherical metric on S™, that is, the
restriction of the Euclidean metric on R™! to the submanifold S
and by gy the hyperbolic metric on D", i.e.,

_ 4 Z?:l dmf
== =P)2

It is well known that gg has constant sectional curvature 1 and that
(D™, gg) is a complete Riemannian manifold with constant sectional
curvature —1.

Proposition (2.7). Let U be a domain in R". A C! map

f:U —>R" is a conformal map in the sense of Definition (1.2) if and
only if vo fov™!:v(U)— S™ is a Riemannian conformal map w.r.t.
the spherical metric.

Proof. First notice that for a domain U C R",
f:(U,gg) — (R",gE)

is a Riemannian conformal map if and only if D, f is a conformal matrix
for any a € U. On the other hand, the following two maps

v:R" — S§",
vogy: R" — S"
are Riemannian conformal maps from (R",gg) to (S™,gs), where

go is the coordinate chart of R defined in §1. (2.7) follows from
this. Q.E.D.

Thus Liouville’s theorem can be rephrased as follows.

Let UC S™ (n>3) be a domain. Then a Riemannian conformal
map f:U — S™ w.r.t. the spherical metric is the restriction of a
transformation in M(S™).

Hereafter we focus our attention to the action of M(S™) on S™
and D™t!. Thus Moebius transformations are considered primarily as
acting on S™. However there are some occasions where the coordinates

of R" is more convenient. In what follows, frequent use will be made
of the following lemma, which is a special case of (2.1). As before J €

S+l . .
M(Rn ) denotes the inversion at S™.
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Lemma (2.8). For fe M(S™), we have Jo f= fol.

To study the action of M(S™), the transformations are classified
according to whether they preserve oo or not. In the first place, we
have the following proposition.

Proposition (2.9). For f € M(S™), the following statements
are equivalent.

2) (0) =o.
3) f induces an isometry of (S™,gs).
4) f(x) = Px for some P € O(n+1).

Proof. By virtue of (2.8), We have (1) & (2). (1) = (4) follows
from the expression of (1.9), (4) = (1) and (4) = (3) is clear and (3)
= (4) follows from the next lemma. Q.E.D.

Lemma (2.10). Suppose that a Lie group G acts on a connected
n-dimensional Riemannian manifold N transitively and isometrically.
Suppose also that the first derivative gives an isomorphism G, = O(n),
where G, s the isotropy subgoup at some x € N. Then G s
precisely the group of all the isometries of N.

Proof. For any isometry f, there exists a unique element g € G
such that ¢g7'o f(z) =z and D,(g o f)=FE. Then g 'of keeps
any point on any geodesic ray at x fixed. That is, g7 o f = id.

Q.E.D.

Next for f with f(oco) # oo, we define the isometric sphere and
use it to describe a geometric decomposition of f. For an n X n matrix
A, ||A|l denotes the mapping norm. In particular if A is a conformal

matrix, then we have ||A]| = (detA)Y/™.

Definition (2.11). For a transformation f € M(ﬁnH) with
f(00) # oo, the isometric sphere I(f) of f is defined by

I(f)={z e R"™ | |IDof]| =1}.

The isometric sphere cannot be defined for transformations which
keep oo fixed. Recall that by (1.9), f can be expressed as

f(z) =APJ(z —b) +c,
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where A >0, P€ O(n+1)and bce€ R"". Note that f(b) = oo
and f(oo) =c. For z € R™"! | we have

A

| Dz f|| = EEEh

Thus the isometric sphere I(f) is the codimension one sphere of radius
AL/2 centered at f~!(co). We summarize fundamental properties of
isometric sphere in the following proposition. The proof is left to the
reader.

~n+1
Proposition (2.12). For fec M(R " ) such that f(o0) # oo,
we have the following.

(1) The center of the isometric sphere I(f) is the point f—l(éo).
(2) f carries I(f) to I(f~1) and induces an isometry there. In
particular, I(f) and I(f™') have the same radius.

(3) f carries the interior of I(f) to the exterior of I(f~1).
(4) The interior of the isometric sphere I(f) consists precisely of
those points = for which ||Dyf|| > 1 holds.

Proposition (2.13). For f e M(S™) such that f(oco) # oo, the
isometric sphere I(f) is perpendicular to S™.

Proof. Since the action of f on S™ is not an isometry, there
are points in S™ where the norms of the derivatives of f are less
than or greater than 1. This implies that I(f) intersects S™ in an
(n — 1) sphere. f induces an isometry from I(f) to I(f~!) which
sends the sphere I(f) N S™ to the sphere I(f~!)N S™ . Thus for
z € I(f), the spherical distance in I(f) between x and I(f) N S™
coincides with the spherical distance in I(f~!) between f(z) and
I(f~')nS™. Thatis, for = € I(f) , we have |z| = |f(z)| and
consequently |[|DzJ|| = ||Ds(g)J||. See Figure (2.2). Differentiating
the equation J o f = foJ, we obtain that |D,f|| = 1 implies
|Dyz fll =1. Thatis, J(I(f))=I(f). This shows (2.13). Q.E.D.

Proposition (2.14). A transformation f € M(S™) such that
f(00) # oo can be decomposed as

f=Jniy 0 Jig o P(f),

where P(f) is a transformation in ‘O(n~|—1) which preserves I(f) and
7(f) is the bisector of the centers of I(f) and I(f~1) if I(f) # I(f1)
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Figure (2.2)

and an arbitrary hyperplane which passes through the center of I(f) and
0 if I(f) =I(f"'). See Figure (2.3).

Proof. The transformation g = Jr(y)oJy(s) clearly carries I(f) to
I(f~!) and there the norm of the differential is 1. That is, I(g) = I(f)
and I(g71') = I(f~1). It follows that g~! o f preserves the sphere
I(f) and is an isometry there. Notice also that g=! o f preserves the
interior of I(f). Applying (2.9) to a transformation of I(f), it follows
that g~lof = P(f) keeps oo fixed. Since P(f) preserves S™, P(f)
is a transformation in O(n + 1). Q.E.D.

It is a well known fact that M(S™) is a Lie group of dimension
2(n+1)(n+2) with two connected components.

Definition (2.15). Let {fi}x=1,2,. be a sequence of elements of
M(S™). We say fr — oo if and only if for any compact subset C of
M(S™), there exists ko > 0 such that fr & C for k > ko.

Thus fi — oo if and only if f; has no subsequence which converges
to an element of M(S™).
For f e M(S™), we define

|Dflls» = sup{||Df|| |z € S"}.
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(f)

Jx(f) © J1(s)

I(f)

Figure (2.3)

Proposition (2.16). For a sequence {fir} in M(S™), the fol-
lowing conditions are equivalent.

(1) Jfi — oo.
(2) [|Dfells» — oo.
(3) Except for finite k, fr(oco)# oo andradiusI(fi) — 0.

Proof. First we shall show the equivalence of (2) and (3). Assume
for simplicity that fi(co) # oo for any k. Let

fi(@) = riPpJ(z — b)) + ck.

We have )

"k
I:E — bklz’

where 7 = radiusI(fx). Since I(fx) is perpendicular to S™, we

obtain

2 (V147 +1)?
(V14712 —1)2 2 '
See Figure (2.4). From this follows the equivalence of (2) and (3).

Next, (2) = (1) is obvious. To show the converse, we assume that
(2) , hence (3), does not hold and will show that (1) fails, that is, fx has

|1 D fill =

1D fells» =
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Figure (2.4)

a subsequence which converges in M(S™). Thus in the course of the
proof, we are free to pass to a subsequence, if necessary. If fi(oc0) = 00
for infinitely many k, then such fr belongs to a compact subgroup
O(n+1) of M(S™), showing that (1) does not hold. Therefore we may
assume (passing to a subsequence) that fi(oc0) # oo for any &k > 1
and rp — p for some 0< p<oo.

Assume for a while that 0 < p < oco. Then in the decomposition
of (2.14), the sphere I(f;) may be assumed to converge. That is, the
inversion Jy(s,) converges in M(S™). Likewise we may assume that
Jx(s) and P(fy) also converge in M(S™). This shows that (1) does
not hold.

Next consider the case where p = co. Notice that p = oo if and
only if f,'(co) — oo, since the sphere I(fi) centered at f, '(oo)
is always perpendicular to the fixed sphere S™. Take an arbitrary
transformation g of M(S™) such that g(b) = co for some b # oo
and consider the sequence frog. Then g~!o f.!(co) — b. That is,
radius I(fy 0g) — r (0 <7 < 00). Therefore this case can be reduced
to the former case. Q.E.D.

Next we shall show that a Moebius transformation in M(S™) in-
duces an isometry of (D™*! gg). The key step is the following lemma.
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Lemma (2.17). Let f € M(S") andlet z € R""'\ S™. Then

_ )2
D211 = - H5E

Proof. Both hand sides decompose as products when f decom-
poses as a composite. Thus it is sufficient to show (2.17) only for the
inversion J; at an n-dimensional sphere 7 = {|z —a| = r} which is
perpendicular to S™. We have

_ 2(@—a)
J-(x)=r o= al? +a

and

7“2

Dy J-|| = T_ap

Since the sphere 7 is perpendicular to S™, we have
la]> =1+ 72

Then it is easy to show by calculation that

T‘2

[T (@)* =1 = ——=(l«[* — 1).

|z —af?
This shows (2.17). Q.E.D.

Corollary (2.18). An element f € M(S™) induces an isometry
of (D", gm).

The converse can also be shown using (2.10), once we establish the
following lemma.

Lemma (2.19). For any point a € D™ there exists a trans-
formation f € M(S™) such that f(0)=a.

Proof. Let | be the radius through a. Forany z €l, let o,
be the codimension one sphere perpendicular to [ at z and orthogonal
to S™. Then J, € M(S™) sends O to some point in [. Clearly we
have

iii% Js,(0) =0, ;}Eﬁ; Js,(0) = b,

where b is the end point of [. By the continuity of J,_(0), we obtain
apoint z in ! such that J,_ (0)=a. Q.E.D.
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;]_.‘lheorem (2.20). M(S™) is precisely the group of isometries of
(D", grr).

Theorem (2.21). In (D"*!,gy), the geodesics are the circles
that are orthogonal to S™. Denoting the distance in (D™ gy) by
dy, we also have for a € D™t1

1+ |al
1—|a|

dg(0,a) = log

Proof. First let us find the shortest path combining 0 and a (a #
0). Let ~(t) be an arbitrary smooth arc such that ~(0) = 0 and
~v(1) = a. Schwartz’s inequality yields

@' < 1Y (@)1

Thus we have

1 / 1 7
eneah(r) = [ 2@l [* AN ) dt
0 0

1—|y(t)]? 1—|v(@)[2
lal 2ds 1+ |al
> — =1 .
_/0 1—s2 Og1—|a|

This shows the last part of (2.21) and that the geodesic through 0 and
a are the radius.

Now consider the general case. Let a,b € D", By (2.19), there
exists f € M(S™) suchthat f(0) =a. Since f~! isanisometry, f~!
maps the geodesics to the geodesics. Further since f~! is a Moebius

transformation, f~! maps the diameter through f(b) to the circle
through a and b which is orthogonal to S™. Q.E.D.

Finally we shall classify transformations in M(S™) according to
its dynamics on Cl(D™*1). By (2.3), they keep Cl(D™*!) invariant,
where Cl denotes the closure.

Proposition (2.22). Let f &€ M(S™). For the induced transfor-
mation
f:Cl(D™) — CcyD™,

we have the followings.

(1) f has at least one fived point in Cl(D™+1).
(2) If f has three or more fized points in S™, then f has a fized
point in D™T1
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Proof. (1) follows from Brouwer’s fixed point theorem. To show
(2), coordinates of R" and H™*' are more convenient. By conjugating

T

g=c,'(f) e MR")

by a suitable element of M(f{n), we may assume that g keeps fixed O,
oo and another point a. By (1.9), we have for z € R", g(z) = APz,

where A >0 and
_(Q 0
P“(o 1)

where @ € O(n). Since g also keeps a fixed, it follows that A = 1.
Thus for example, (0,y) € H™*! (y > 0) is fixed by g. This completes
the proof of (2). Q.E.D.

Definition (2.23). f & M(S™) (resp. M(ﬁn)) is called elliptic
if f has fixed points in D"*! (resp. H"1), lozodromic if f is

not elliptic and has exactly two fixed points in S™ (resp. ﬁn) and
parabolic otherwise.

Notice that by (2.22), a parabolic transformation has precisely one
fixed point in S™ (resp. ﬁn)

Next we shall describe the standard forms of conjugacy classes of
these three types of transformations. For elliptic transformations, it is
convenient to work with the coordinates of S™ and to conjugate so that

0 is the fixed point. However for the other types, the coordinates of R"
is preferable. Notice that parabolic (resp. loxodromic) transformations
can be conjugated so that they keep oo (resp. oo and 0 ) fixed.

Proposition (2.24).

(1) Let fe M(S™) be an elliptic transformation such that f(0) =
0. Then we have f(x)= Px for some P &<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>