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\S 1. Introduction

In [F], A. Floer introduced a new invariant for homology 3-spheres.
In this paper we generalize his invariant to arbitrary closed and oriented
3-manifolds. In the case when the first homology group of the manifold
is torsion free and nonzero, we also define invariants $I_{k}^{s}(M)$ for $s<$

$3$ , which, in the case $s=0$ , is a generalization of Floer’s one. The
construction of this invariant is closely related also to the Donaldson’s
polynomial for closed 4-manifolds [D4]. The construction is based on
the study of the moduli space of selfdual connections over $M$ $\times R$ and
its compactification.
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In this section, we describe briefly the construction of our invariant.
Throughout this paper, we let $M$ be an oriented 3-manifold, $\sigma$ a Rie-
mannian metric on it. It induces the Hodge $*$-operator, $*_{\sigma}$ : $\Lambda^{k}(M)\rightarrow$

$\Lambda^{3-k}(M)$ . We consider the trivial $SU(2)$ bundle over $M$ . Let

$A(M)=\{d+a|a\in\Gamma(M, \Lambda^{1}\otimes su(2))\}$

be the set of all smooth connections of it. (In later sections, we work
with Sobolev spaces but in this section we omit those details.) Put

$\hat{\mathcal{G}}(M)=$ { $g$ : $M\rightarrow SU(2)|C^{\infty}$ -maps},

$\mathcal{G}(M)=\{g \in\hat{\mathcal{G}}(M)|degg =0\}$ ,

$B(M)=A(M)/\hat{\mathcal{G}}(M)$ ,

$\overline{B}(M)=A(M)/\mathcal{G}(M)$ ,

where $\mathcal{G}(M)$ acts on $A(M)$ by

$g^{*}(d+a)=d+g^{-1}dg+g^{-1}ag$ .

Following Taubes [T4] and Floer [F], we define a functional $c\epsilon$ : $\overline{B}(M)\rightarrow$

$R$ by

(1.1) $c\epsilon(a)=\int_{M}$ Tr $(\frac{1}{2}a\wedge da+\frac{1}{3}a\wedge a\wedge a)$

(Here and hereafter, we shall write $a$ in place of $d+a.$ ) It is well known
that the right hand side is $\mathcal{G}(M)$ -invariant. The gradient flow of this
functional is described by

(1.2) $\frac{\partial a_{t}}{\partial t}=*_{\sigma}F^{a_{t}}$ .

The idea of Floer and Taubes is to use this gradient flow in order to define
the $\infty/2$-dimensional homology group of $B(M)$ . It is not in general
true that $gradc\epsilon$ is a Morse-Smale flow, then in [T4], [F], they used a
perturbation of it. In their case, where $M$ is a homology sphere, the

singular locus $SB(M)$ and the set of critical points of the flow $gradc\epsilon$

intersect at one point, the trivial connection. (Recall that the singular
locus of $B(M)$ is the set of reducible connections, and a critical point of
the flow $gradc\epsilon$ is a flat connection.) In our case the intersection is

(1.3) $Hom(\pi_{1}(M), U(1))/Z_{2}$ .
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which is $b_{1}(M)$ -dimensional. In \S 2, using the sum of the traces of the
holonomy along the generators of $H_{1}(M;Z)$ , we shall find a functional
$f$ : $B(M)\rightarrow R$ , such that the equation

(1.4) $*_{\sigma}F^{a}-grad_{a}f=0$

has only a finite number of solutions, each of which is nondegenerate
(see \S 2 for definition.) A connected component of elements of the set of
elements $SB(M)$ , the reducible connections, satisfying (1.4) is identified
to an element of

(1.5.1) $Hom(TorH_{1}(M;Z), U(1))/Z_{2}$ .

And each connected component is identified to

(1.5.2) $Hom(\frac{H_{1}(M\ovalbox{\tt\small REJECT} Z)}{TorH_{1}(M\cdot Z)},’ Z_{2})$

or its quotient by $Z_{2}$ . Put

(1.6.1) $Fl$ $=$ { $a\in\overline{B}(M)|$ a $satis5^{r}(1.4)$ },

(1.6.2) $Fl_{0}=$ { $a\in Fl|$ $a$ is irreducible}.

For $a$ , $b\in Fl_{0}$ , we set

$\Lambda 4(a, b)=\{a_{t}$ $ a_{t}.\cdot(-\infty, \infty)\rightarrow\overline{B}(M)t\rightarrow\infty t\rightarrow-\infty$

’
$a_{t}$ satisfies (1.7),

$\}$ .
$\lim a_{t}=b$ , $\lim a_{t}=a$

(The precise definition is in \S 3.) Here

(1.7) $\partial a_{t}=*_{\sigma}F^{a}-grad_{a_{t}}f$ .
$\overline{\partial t}$

In a way similar to [F], we can find a map $\mu$ : $Fl_{0}\rightarrow Z$ such that

$dim$ A4 $(a, b)=\mu(a)-\mu(b)$ ,

for $a$ , $b\in Fl_{0}$ $(5.)$ We can also prove that $\mathcal{M}(a, b)$ is orientable (6).
Then, following Witten [W1] and Floer [F], we put

(1.8)
$C_{k}^{0}=\mu(a)=ka\in Fl_{O}\oplus Z[a]$
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We define a boundary operator $\partial$ : $C_{k}^{0}\rightarrow C_{k-1}^{0}$ as follows. (Again our
construction is the same as Floer’s.) The action of $R$ on $M\times R$ induces
a free action of $R$ on $\Lambda 4(a, b)$ . We put, for $a\in Fl_{0}$ , $\mu(a)=k$ ,

$\partial([a])=\sum_{\mu(b)=k-1}\langle\partial a, b\rangle[b]$
,

where $\langle\partial a, b\rangle$ is the difference of the number of connected components
of A4 $(a, b)$ for which the direction of its orientation and the $R$ action
coincide and the number of connected components for which the orien-

tation is the opposite direction to the $R$-action. In a way similar to [F],
we can prove $\partial\partial=0$ . Then we define

$I_{k}^{0}(M)=.\frac{Ker\partial.C_{k}^{0}\rightarrow C_{k-1}^{0}}{Im\partial\cdot C_{k+1}^{0}\rightarrow C_{k}^{0}}.$ ,

which, we shall prove, is an invariant of M. (In fact, we need to fix a
basis of $H_{1}(M;Z).)$

As is pointed out by Donaldson, Atiyah [A] and Witten [W2], Floer
homology is closely related to the Donaldson polynomial [D4]. In fact,
in the case when $M$ is a homology sphere and is a boundary of a 4-
manifold satisfying some additional assumptions, it is possible to define
a relative Donaldson polynomial, which has a value in $I_{k}^{0}(M)$ . But in
the case when the first Betti number of $M$ is positive, it seems that the
above boundary operator is not enough for such a purpose. Then we
construct other boundary operators. To motivate our construction we
recall the definition of relative Donaldson polynomial very briefly. (Our
description is not precise since it is anounced that the precise description
will appear in [DFK].) Let $X$ be a 4 manifold such that its boundary
$\partial X=M$ is a homology sphere. Let $[\Sigma_{1}]$ , $\cdots$ , $[\Sigma_{\ell}]\in H_{2}(X)$ , $a\in Fl_{0}$ . By
$\Lambda 4_{k}(X;a)$ , we denote the set of all gauge classes of self dual connections
$\nabla$ with $c^{2}(\nabla)=k$ , $\nabla|_{\partial X}=a$ . Define a line bundle $\mathcal{L}_{\Sigma_{i}}$ on it by

$\mathcal{L}_{\Sigma_{i}}(\nabla)=top\wedge(Ker6_{\nabla 1\Sigma}i)^{*}\otimes top\wedge Coker6_{\nabla 1\Sigma}i$ ,

where $6_{\nabla 1\Sigma}i$ is a Dirac operator on $\Sigma_{i}$ twisted by the restriction of $\nabla$ to
$\Sigma_{i}$ . We put

$Q_{\ell}([\Sigma_{1}], \cdots, [\Sigma_{\ell}])(a)=\int_{\mathcal{M}_{k}(X;a)}c^{1}(\mathcal{L}_{\Sigma_{1}})\cup\cdots\cup c^{1}(\Sigma_{\ell})$ .

Here we choose $k$ , $\ell$ so that $dim\lambda\Lambda_{k}(X, a)$ $=$ $ 2\ell$ . We regard
$Q_{\ell}([\Sigma_{1}], \cdots, [\Sigma_{\ell}])$ as a cochain, an element of $Hom(C_{m}, 0)$ with $m=$
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$\mu(a)$ . Under an appropriate assumtion this cochain is a cocycle and its
cohomology class is an invariant of $X$ .

In case $\partial X_{1}=\partial X_{2}=M$ , $X=X_{I}$ $II_{M}$ $X_{2}$ , $\Sigma_{1}\cdots\Sigma_{\ell_{1}}\subset X_{2}$ ,
$\Sigma_{1}’\ldots\Sigma_{\ell_{2}}’\subset X_{2}$ , one can prove, under appropriate assumption, that

$Q\ell_{1}+\ell_{2}(\Sigma_{1}, \cdots, \Sigma_{\ell_{1}},\Sigma_{1}’, \cdots, \Sigma_{\ell_{2}}’)$

(1.9)
$=\langle Q_{\ell_{1}}(\Sigma_{1}, \cdots, \Sigma_{\ell_{1}}), Q_{\ell_{2}}(\Sigma_{1}’, \cdots, \Sigma_{\ell_{2}}’)\rangle$ ,

where $\langle , \rangle$ is a coupling between Floer cohomologies of $M$ and $M^{-}$ ,

($M$ with opposite orientation). Note that in case $H_{1}M=0$ , we have
$H_{2}X=H_{2}X_{1}\oplus H_{2}X_{2}$ .

Now we remove the assumption $H_{1}M=0$ . Assume, for example
$H_{1}X_{1}=H_{1}X_{2}=0$ . Then we have Mayer-Vietoris exact sequence:

$H_{2}X_{1}\oplus H_{2}X_{2}\rightarrow H_{2}X\rightarrow H_{1}M\rightarrow 0$ .

Fix a section $s$ : $H_{1}M\rightarrow H_{2}X$ . This is equivalent to choose, for each
$[\gamma]\in H_{1}M$ , surfaces $\Sigma_{(i)}(\gamma)\subset X_{i}$ with $\partial\Sigma_{i}(\gamma)=\gamma$ such that $s([\gamma])=$

$[\Sigma_{(1)}(\gamma)\cup\Sigma_{(2)}(\gamma)]=[\Sigma(\gamma)]$ . To generalize (1.9) one needs to calculate

$Q_{\ell_{1}+\ell_{2}+\ell_{3}}(\Sigma_{1}, \cdots, \Sigma_{\ell_{1}}, \Sigma(\gamma_{1}), \cdots, \Sigma(\gamma\ell_{3}), \Sigma_{1}’, \cdots, \Sigma_{\ell_{2}}’)$ ,

in terms of invariants of $X_{1},X_{2}$ . So it is natural to consider cochains
such as

$Q_{\ell+\ell’}(\Sigma_{(1)}, \cdots, \Sigma_{\ell}, \Sigma_{(1)}(\gamma_{1}), \cdots, \Sigma_{1}(\gamma_{\ell’}))(a)$

$=\int_{\Lambda 4_{k}(X_{1},a)}\mathcal{L}_{\Sigma_{1}}\cup\cdots\cup \mathcal{L}\Sigma_{\ell}\cup \mathcal{L}_{\Sigma_{(1)(\gamma_{1})}}\cup\cdots\cup \mathcal{L}_{\Sigma_{(1)}(\gamma_{l’})}$ .

But one finds that this cochain is not a cocycle in general. Hence in our
situation, the relative Donaldson polynomial should not take a value on
usual Floer cohomology but a generalization of it. Our purpose is to
find such a generalization.

We assume that $H_{1}(M;Z)$ is torsion free. Choose a set of closed
loops $\{\gamma_{1}, \cdots, \gamma_{d}\}$ representing a basis of $H_{1}(M;Z)$ . Put $\Sigma_{i}=\gamma_{i}\times R\subset$

$ M\times$ R. Let $a_{t}\in \mathcal{M}(a, b)$ , $a$ , $b\in Fl_{0}$ . It induces a connection of a trivial
$SU(2)$ bundle over $\Sigma_{i}$ . Let $6_{a_{t}}$ be the Dirac operator on $\Sigma_{i}$ twisted by
the connection. We may assume that $a(\gamma_{i})\neq 1$ for each $a\in Fl_{0}$ . It
implies that $6_{a_{t}}$ is Fredholm. Put

$Det6_{a_{t}}=top\wedge(Ker6_{a_{t}})^{*}\otimes top\wedge Coker6_{a_{t}}$

.
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By taking $(Det6_{a_{t}})^{\otimes 2}$ and moving $a_{t}$ on $\mathcal{M}(a, b)$ , we obtain a complex

line bundle on A4 $(a, b)$ , which is denoted by $\mathcal{L}_{i}^{(2)}$ . (The reason why we
have to take the square will be explained in \S 7.) Now, let $a$ , $b\in Fl_{0}$ with

$\mu(a)-\mu(b)=2\ell+1$ . Put $\overline{\Lambda 4}(a, b)=\mathcal{M}(a, b)/R$ . Then we can “define”
the Chern number

$\int_{\overline{\lambda 4}(a,b)}c^{1}(\mathcal{L}_{i_{1}}^{(2)})\cup\cdots\cup c^{1}(\mathcal{L}_{i_{\ell}}^{(2)})\in Z$ .

This number is denoted by $\langle\partial_{i_{1},i\ell}\cdots,a, b\rangle$ . (Since $\overline{\mathcal{M}}(a, b)$ has a boundary,
the above number is, in fact, not well defined. This problem is discussed
in 12.) We define $\partial_{i_{1},i_{\ell}}\cdots$, : $C_{k}^{0}\rightarrow C_{k-2\ell-1}^{0}$ by

$\partial_{i_{1}}$ , , $i_{\ell}([a])=\sum_{b}\langle\partial_{i_{1},ip}\cdots,a, b\rangle[b]$
.

Now we can state the main result of this paper. Let $\alpha\in\{1, \cdots, d\}^{\ell}/S_{\ell}$ .
(Here $S_{\ell}$ stands for the symmetric group.) We put $\partial_{\alpha}=\partial_{\alpha_{1}}$ , $\cdot,\alpha\ell$

.

Theorem 1.10. If $\#\alpha<3$ , and if $H_{1}(M;Z)$ is torsion free, then

$\sum_{\alpha^{1}\cup\alpha^{2}=\alpha}\partial_{\alpha^{1}}\partial_{\alpha^{2}}=0$
.

Remark 1.11. In case when $\alpha=(1,1)$ the formula is:

$\partial\partial_{1,1}+2\partial_{1}\partial_{1}+\partial_{1,1}\partial=0$ .

Remark 1.12. For $Q\alpha>2$ the formula is $noi$ correct. We discuss
the reason in \S 12. There we also discuss why the formula may not be
correct for $s>0$ if $H_{1}(M;Z)$ has a torsion.

Now let $S^{p}H_{1}(M;Z)$ be the symmetric power. We put

$C_{k}^{s}=\oplus_{s}\ell\leq S^{\ell}H_{1}(M;Z)\otimes C_{k+2\ell}^{0}$
.

Define $\partial_{k}^{s}$ : $C_{k}^{s}\rightarrow C_{k-1}^{s}$ by

$\partial_{k}^{s}(\gamma_{\alpha}\otimes[a])=\sum_{\alpha^{1}\cup\alpha^{2}=\alpha}\gamma_{\alpha^{1}}\otimes\partial_{\alpha^{2}}[a]$
,

where $\gamma_{\alpha}=\gamma_{\alpha_{1}}\otimes\cdots\otimes\gamma_{\alpha_{\ell}}$ . Theorem 1.10 immediately implies
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Corollary 1.13. Suppose that $H_{1}(M;Z)$ is torsion free. For $s<3$

we have
$\partial_{k-1}^{s}\partial_{k}^{s}=0$ .

We put

$I_{k}^{s}(M)=\frac{Ker\partial_{k}^{s}}{Im\partial_{k-1}^{s}}$ .

Theorem 1.14. Suppose that $H_{1}(M;Z)$ is torsion free. $I_{k}^{s}(M)$

does not depend on the choices of the metrics, $\gamma_{i}$ ’s, etc, and is an in-

variant of $M$ , equipped with a basis of $H_{1}(M;Z)$ .

By construction we have an exact sequence of complexes

$0\rightarrow C_{k}^{s}\rightarrow C_{k}^{s+1}\rightarrow S^{s+1}(H_{1}(M;Z))\otimes C_{k+2s+2}^{0}\rightarrow 0$

It follows that:

Theorem 1.15. Suppose that $H_{1}(M;Z)$ is torsion free. There
exists a long exact sequence

$\rightarrow I_{k}^{s}(M)\rightarrow I_{k}^{s+1}(M)\rightarrow S^{s+1}(H_{1}(M, Z))\otimes I_{k+2s+2}^{0}(M)\rightarrow$

for $s=0$ or 1. The exact sequence is also an invariant of $M$ .

The proof of these theorems is based on the detailed analysis of the
end of the moduli space $\Lambda 4(a, b)$ . The results on it is in \S 7. In fact, we
shall prove more general results than we need to construct our invariants.
In the course, we develop various techniques, which might be useful in
other situations.

Using our invariant $I_{k}^{s}(M)$ , we can partially generalize the definition
of relative Donaldson polynomial to the case when the boundary is not
necessary a homology sphere. Those applications will appear elsewhere.

The organization of this paper is as follows.
In 2,3, we perturb the equation.
In \S 4, we review the sum formula for the index of the elliptic oper-

ators. We also discuss the sum formula of the family of indices.
This result is used in \S 5 to define the degree $\mu$ . In \S 5 we study also

neighborhoods of various reducible connections.
In \S 6 we define the orientation of the moduli space. The fact that

every oriented 3-manifolds bounds an oriented 4-manifold, is essentially
used in the proof.

7-11 are devoted to the study of the end of moduli space $\mathcal{M}(a, b)$ .

The results of these sections are stated in \S 7.
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In \S 8, we prove that the patching procedure of selfdual connections
as in [T1] is possible in our situation, where various reducible connections
must be dealt with.

In \S 9, we shall prove that the selfdual connections constructed in \S 8,
contains all the connections in the end of the moduli space, except the
concentrated ones. For this purpose, we establish a decay estimate such
as in [FU].

Combining the results of \S \S 8,9 we obtain a chart for a neighborhood
of each point at infinity. In order to patch those charts, we introduce,
in \S 10, the local action of the groups. This notion is a generalization of
one introduced in [CG] to study the end of Riemannian manifolds. We

use it to study the end of the moduli space.

The line bundle $\mathcal{L}_{i}^{(2)}$ is constructed and is extended to the boundary
in \S 11. For this purpose we use the sum theorem for index bundles in

\S 4 and the existence of the lift of the local action to the bundle.
Using the results of 7-11, we define the boundary operator in \S 12

and prove Theorem 1.10. As is remarked before, the Chern number

of the bundle $\mathcal{L}_{i}^{(2)}$ is not well defined. We shall prove in \S 12 that the
boundary operator is well defined modulo isomorphism. In \S 12, we also
discuss the case when $s=3$ and describe why Theorem 1.10 does not

hold in that case.
Finally we shall prove Theorems 1.14 and 1.15 in \S 13.
As the reader can find easily, this paper heavily depends on the

brilliant ideas due to Donaldson, Floer, Taubes e.t.c. in their papers.
Before this work is completed the author is informed (without the precise

statement) that A. Floer generalized his invariant to homology $S^{1}\times S^{2}$ .

\S 2. Perturbation

Let $L_{\ell}^{p}$ be the Sobolev space of the sections, namely the set of sec-
tions $L^{p_{-}}$norms of whose $\ell$-th derivatives are finite. Put

$A_{\ell}^{p}(M)=\{d+a|a\in L_{\ell}^{p}(M, \wedge^{1}\otimes su(2))\}$

$\mathcal{G}\ell(M)=the$ set of maps : $M\rightarrow SU(2)$ of $L_{\ell}^{2}$ -class.

$A_{\ell}^{2}$ is denoted by $A_{\ell}$ . We choose sufficiently large $\ell$ and fix it throughout
this paper. $\mathcal{G}_{\ell+1}$ acts on $A_{\ell}$ . (See [FU].) Put

$B_{\ell}(M)=A_{\ell}(M)/\mathcal{G}_{\ell+1}(M)$ .

Let $a\in A_{\ell}(M)$ . Then the set

(2.1) $\{u\in L_{\ell}^{2}(M, \wedge^{1}\otimes su(2))|d_{a}^{*}u=0\}$
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is the orthonormal complement of $T_{a}\mathcal{G}_{\ell+1}a$ in TaAi(M). In the case
when $a$ is irreducible, the set (2.1) can be identified to $T_{[a]}B_{\ell}(M)$ . (See

[FU].) We let the set (2.1) be denoted by $T_{[a]}B_{\ell}(M)$ also in the case

when $a$ is reducible. In that case, $[a]$ is a singular point of $B_{\ell}(M)$ .

The purpose of this section is to perturb the functional $c\epsilon$ and the
equation (1.2), so that (1.4) has only a finite number of solutions each
of which is nondegenerate. We put

$H_{1}’(M;Z)=\frac{H_{1}(M,Z)}{Torsion}.$ .

First we deal with singular points on

$Hom(H_{1}’(M;Z), SU(2))/conjugate$ $\subset B_{\ell}(M)$ .

Choose a set of loops $\{\ell_{1}^{0}, \cdots, \ell_{d}^{0}\}$ representing a basis of $H_{1}’(M;Z)$ .

Extend $\ell_{?}^{0}$. to an embedding $\ell_{i}^{0}$ : $S^{1}\times D^{2}\rightarrow M$ . Choose a nonnegative

function $u$ on $D^{2}$ with compact support such that

$\int_{D^{2}}u(x)dx=1$ .

For a loop $\ell$ : $S^{1}\rightarrow M$ and $a\in A(M)$ , let $h_{\ell}(a)\in SU(2)$ be the
holonomy along $\ell$ . Define a functional $f_{0}$ on $B_{\ell}(M)$ by

(2.2) $f_{0}(a)=\epsilon\sum_{i=1}^{d}\int Tr(h_{\ell_{i}^{O}(\cdot,x)}(a))u(x)dx$ ,

where $\epsilon$ is a small positive number. Then by [F] $1b.1$ , $grad_{a}f_{o}\in$

TaBi(M) is well defined. Similarly we can define the hessian, $Hess_{a}f_{0}$ :
$T_{[a]}B_{\ell}(M)\rightarrow T_{[a]}B_{\ell}(M)$ .

Here we examine the set, $FR$ , of the flat reducible connections
in $B_{\ell}(M)$ . The set of the conjugacy classes of the elements of
$Hom(TorH_{1}(M, Z)$ , $U(1))$ has a one to one correspondence to $\pi_{0}(FR)$ .

For $\varphi\in Hom(Tor H_{1}(M, Z)$ , $U(1))$ , let $FR_{\varphi}$ be the corresponding com-

ponent. $FR_{\varphi}$ is diffeomorphic to $T^{d}$ if $Im(\varphi)\not\subset\{\pm 1\}$ , and is diffeomor-

phic to $T^{d}/Z_{2}$ if $Im(\varphi)\subset\{\pm 1\}$ . Let $1\in Hom(Tor H_{1}(M, Z)$ , Z) be the
trivial representation.

Lemma 2.3. There exists a neighborhood $U$ of $FR_{1}$ such that, for
sufficiently small $\epsilon$ , the set of elements of $U$ satisfying

(2.4) $*_{\sigma}F^{a}-grad_{a}f_{0}=0$
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is identifified to $Hom(H_{1}’(M, Z)$ , $Z_{2})\simeq\{\pm 1\}^{d}$ .

Proof. By identifying $FR_{1}=\{(e^{i\theta_{1}}, \cdots, e^{i\theta_{d}})\}/Z_{2}$ , we have

(2.5) $f_{0}(e^{i\theta_{1}}, \cdots, e^{\theta_{d}})=2\epsilon\sum\cos\theta_{i}$ .

The lemma follows immediately.

Lemma 2.6. Let $a\in Hom(H_{1}’(M, Z)$ , $Z_{2})$ . Then $c\epsilon-f_{0}$ is non-
degenerate at $a$ . In other words

$*_{\sigma}d_{a}-Hess_{a}f_{0}$ : $T_{[a]}B_{\ell}(M)\rightarrow T_{[a]}B_{\ell-1}(M)$

is invertible.

Remark 2.7. $Hess_{a}$ $c\epsilon=*_{\sigma}d_{a}$ . See $[F],[T4]$ .

Proof. We have

$Ker*_{\sigma}d_{a}\simeq H^{1}(M;R)\otimes su(2)\simeq su(2)^{d}$ .

On this space $Hess_{a}f_{0}$ is given by $-\epsilon\sum x_{i}^{2}$ . Hence the lemma follows
from the invertibility of the matrix

$\left(\begin{array}{ll}A+\epsilon E & \epsilon B\\\epsilon C & \epsilon D\end{array}\right)$

for small $\epsilon$ and invertible $A$ and $D$ .

We take $\epsilon$ in (2.2) such that Lemma 2.6 holds and fix it.

Next we use a method similar to [D3] and [F]. Let $p_{0}\in M$ and
$v_{0}\in T_{p0}M$ . Choose an embedding $I$ : $D^{2}\rightarrow M$ , such that $I(0)=p_{0}$ ,

and that $I_{*}(T_{0}D^{2})$ is transversal to $v_{0}$ . Let $\Gamma_{1}(p_{0}, I, v)$ be the set of

smooth embeddings such that $\ell(1,0)=p_{0}$ , $\frac{D\ell}{dt}(1, 0)=v_{0}$ , $\ell(0, x)=I(x)$ .

We put

$\Gamma_{m}=(p_{0},v_{O},I)\cup(\Gamma_{1}(p_{0}, v_{0}, I))^{m}$
.

Let $L_{m}=SU(2)^{m}/SU(2)$ , where $SU(2)$ acts by conjugation. Define a
map

$\overline{\Phi}’$ : $A_{\ell}(M)\times\Gamma_{m}\rightarrow Map(D^{2}, SU(2)^{m})$

by
$\overline{\Phi}’(a, (\ell_{1}, \cdots, \ell_{m}))(x)=(h_{\ell_{1}(\cdot,x)}(a), \cdots, h_{\ell_{m}(\cdot,x)}(a))$ .
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$\overline{\Phi}’$ induces a map

$\Phi’$ : $B_{\ell}(M)\times\Gamma_{m}\rightarrow Map(D^{2}, L_{m})$ .

Following [F], we choose $(\beta_{i})_{i\in}z_{+}(\beta_{i}>0)$ . and put

$C^{\beta}(L_{m}, R)=\{\psi\in C^{\infty}(L_{m}, R)|||\psi||_{\beta}<\infty\}$ ,

where

$||\psi||_{\beta}=\sum_{i=1}^{\infty}\beta_{i}\max_{x\in L_{m}}|D^{i}\psi(x)|$ .

Fix a function $u:D^{2}\rightarrow[0, \infty)$ as before and define

$\Phi$ : $B_{\ell}(M)\times\Gamma_{m}\times C^{\beta}(L_{m}, R)\rightarrow R$

by

$\Phi([a], (\ell_{1}, \cdots, \ell_{m}), \psi)=\int_{D^{2}}\psi(\Phi’([a], (\ell_{1}, \cdots, \ell_{m})(x))u(x)dx$ .

For $v\in\Gamma_{m}\times C^{\beta}(L_{m}, R)$ , we put $f_{v}([a])=\Phi([a], v)$ . For $\lambda=(\ell_{1}, \cdots, \ell_{m})$

$\in L_{m}$ and $\lambda’=(\ell_{1}’, \cdots, \ell_{m’}’)\in L_{m’}$ , we say $\lambda$ $\prec\lambda’$ if $\{\ell_{1}, \cdots, \ell_{m}\}$

$\subset\{\ell_{1}’, \cdots, \ell_{m’}’\}$

Lemma 2.8. There exists $\lambda_{0}\in\Gamma_{m_{O}}$ and $\delta>0$ such that for each
$\lambda_{0}\prec\lambda$ , the set of $\psi\in C^{\beta}((L_{m}), R)$ satisfying the following conditions
is of fifirst category in $\{\psi|||\psi||_{\beta}<\delta\}$ .

(2.8.1) The set $Fl(\psi)$ of the solution of

$*_{\sigma}F^{a}=grad_{a}(f_{0}+f_{(\lambda,\psi)})$ .

is fifinite.
(2.8.2) For each $a\in Fl(\psi)$ the map

$*_{\sigma}d-Hess_{[a]}(f_{0}+f_{(\lambda,\psi)})$ : $T_{a}B_{\ell}(M)\rightarrow T_{a}B_{\ell-1}(M)$

is invertible.

Proof. As is well known, (2.8.2) implies (2.8.1). Hence the prob-
lem is local on $B_{\ell}(M)$ . The argument in a neighborhood of irreducible
connections is the same as [F] $2c.1$ . Then we study the neighborhood of
the set of reducible connections. Precisely, we first take a perturbation
so that (2.8.2) holds in a neighborhood of the set of the reducible con-
nections, next we perturb again so that (2.8.1) and (2.8.2) holds, in the
set of irreducible connections, as well.
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Let $\varphi\in Hom(TorH_{1}(M, Z)$ , $SU(2))$ . In the case when $Im\varphi\subset\{\pm 1\}$ ,

the proof of Lemma 2.6 works in a neighborhood of $FR_{\varphi}$ . Then we
assume that $Im(\varphi)\not\subset\{\pm 1\}$ . By the proof of Lemma 2.3, $f_{0}$ is a Morse

function on $Fl_{\varphi}$ and has exactly $2^{d}$ singular points on it. The same
holds for $f_{0}+f_{\lambda,\psi}$ if $||\psi||_{\beta}$ is small. Hence it suffices to work at a
neighborhood of each singular point $a_{0}$ . Choose a neighborhood $U$ of $a_{0}$

with is of bounded $L_{\ell}^{2}$ norm.

Sublemma 2.9. The set of $\psi$ such $that*_{\sigma}d_{a}-Hess_{a}(f_{0}+f_{\lambda,\psi})$

is invertible for each a $\in U\cap Fl(\psi)$ , is open.

Proof First we remark that the set

$Fl(\psi)=\{[a]\in B_{\ell}(M)|*_{\sigma}F^{a}=grad_{a}(f_{0}+f_{\lambda+\psi})\}$

is independent of $\ell$ because the equation is elliptic modulo gauge trans-
formation. Hence we can find a bounded subset $L$ in $L_{\ell+2}^{2}(M, \wedge^{1}\otimes su(2))$

such that if

(2.10.1) $||\psi’-\psi||_{\beta}<\delta$

(2.10.2) $[a]\in Fl(\psi)$

(2.10.3) $[a]\in U$

then $[a]=[a_{0}+u]$ for some $u\in L$ . Now, if the sublemma is false, then,
there exists $\psi,\psi_{i}$ and $a_{i}$ such that

(2.11.1) $\lim_{i\rightarrow\infty}||\psi_{i}-\psi||_{\beta}=0$ ,

(2.11.2) $[a_{i}]\in Fl(\psi_{i})$ ,

(2.11.3) $[a_{i}]\in U$ ,
(2.11.4) $*_{\sigma}d_{a_{i}}-Hess_{a_{i}}(f_{0}+f_{\lambda,\psi_{i}})$ is not invertible,
(2.11.5) $*_{\sigma}d_{a}-Hess_{a}(f_{0}+f_{\lambda,\psi})$ is invertible for each $a\in Fl(\psi)\cap U$ .

We can choose $u_{i}\in L$ such that $[a_{0}+u_{i}]=[a_{i}]$ . By Rellich’s
Theorem, we can find a subsequence such that $u_{i}$ converges to $u_{\infty}$ in
$L_{\ell+1}^{2}$ . Hence by (2.11.1),(2.11.2) and (2.11.3), we have $[a_{0}+u_{\infty}]=$

$[a_{\infty}]\in U\cap Fl(\psi)$ . Therefore $*_{\sigma}d_{a_{\infty}}-Hess_{a_{\infty}}(f_{0}+f_{\lambda,\psi})$ is invertible.
On the other hand, we remark that the map

$A_{\ell+1}(M)\times L_{\ell}^{2}(M, \wedge^{1}\otimes su(2))\rightarrow L_{\ell-1}^{2}(M, \wedge^{1}\otimes su2))$

: $(a, u)\mapsto*_{\sigma}d_{a}u-Hess_{a}(f_{0}+f_{\lambda},\psi)u$

is continuous. (See [FU]). It follows that $*_{\sigma}d_{a_{i}}-Hess_{a_{i}}(f_{0}+f_{\lambda,\psi_{i}})$ is

invertible for sufficiently large $i$ . This contradicts (2.11.4). The proof of
Sublemma 2.9 is now complete.
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Hence it suffices to show that the set of $\psi$ for which

$*_{\sigma}d_{a_{0}}-Hess_{a_{O}}(f_{0}+f_{(\lambda,\psi)})$

is surjective, is dense. We can choose a loop $\ell_{0}$ so that $\varphi(\ell_{0})\not\in\{\pm 1\}$

and assume $\{\ell_{0}\}\prec\lambda=(\ell_{1}, \cdots, \ell_{m})$ . Put

$\overline{\Phi}’(a_{0}, \lambda)(0)=(g_{1}, \cdots, g_{m})$ .

We have

(2.12) $\{g\in SU(2)|g^{-1}(g_{1}, \cdots, g_{m})g=(g_{1}. \cdots, g_{m})\}\simeq U(1)$

Hence $[g_{1}, \cdots, g_{m}]$ is contained in $U(1)^{m}/Z_{2}\subset SU(2)^{m}/SU(2)$ and is a
regular point of $U(1)^{m}/Z_{2}$ . Put

$B_{\ell}^{red}(M)=$ { $[a]\in B_{\ell}^{red}(M)|$ $a$ is reducible.}

It follows from (2.12) that $[a_{0}]$ is a regular point of $B_{\ell}^{red}(M)$ . Therefore,
by a $U(1)$ analogue of [F] $2c.1$ , we may assume that

(2.13) $*_{\sigma}d_{a_{O}}-Hess_{a_{O}}(f_{0}+f_{\lambda},\psi)$ : $T_{[a_{0}]}(B_{\ell}^{red}(M))\rightarrow T_{[ao]}(B_{\ell}^{red}(M))$

is invertible. Put

$K_{\psi}=\{u\in T_{[ao]}B_{\ell}(M)|*_{\sigma}d_{a_{0}}u-Hess_{a_{O}}(f_{0}+f_{\lambda,\psi})u=0\}$

By the invertibility of (2.13) we have

(2.14) $K_{\psi}\cap T_{[a_{O}]}B_{\ell}^{red}(M)=\{0\}$ .

The group

(2.15) $U(1)=\{g\in \mathcal{G}_{\ell}(M)|g^{*}a_{0}=a_{0}\}$

acts on $K_{\psi}$ . By (2.14) and the finite dimensionality of $K_{\psi}$ , we can

identify $K\psi\simeq C^{k}$ . Therefore by taking sufficiently large $\lambda$ and $m$ we
may assume that

$P:K_{\psi}\rightarrow T_{(g_{1},\cdot\cdot,g_{m})}SU(2)^{m}$

is injective, where $P$ is the differential at $[a_{0}]$ of the map : $[a]\mapsto$

$\overline{\Psi}’(a, \lambda)(0)$ : $A_{\ell}(M)$ $\rightarrow$ $SU(2)^{m}$ . By (2.8), $U(1)$ acts on
$T_{(g_{1}}$ , , $g_{\mathfrak{m}})SU(2)^{m}$ , which we can identify to $C^{m}\oplus R^{m}$ . The map $P$
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is $U(1)$ invariant. Hence we may assume that $P(K_{\psi})\subset C^{m}$ . We define
a function $\psi’$ in a neighborhood of $(g_{1}, \cdots, g_{m})$ by

(2.16) $\psi’(\exp_{(g_{1},,g_{m})}\cdots(z_{1}, \cdots, z_{m}, t_{1}, \cdots, t_{m}))=-\sum|z_{i}|^{2}$ ,

and extend it to a $SU(2)$ invariant function on $SU(2)^{m}$ . We obtain a
function on $L_{m}$ , for which we use the same symbol. Now it is easy to
see that

$*_{\sigma}d_{a_{O}}-Hess_{a_{0}}(f_{0}+f_{\lambda,\psi+\epsilon\psi’})$

is invertible for each sufficiently small $\epsilon$ . The proof of Lemma 2.7 is now
completed.

Note that a linear function is used in [F] for the perturbation in a
neighborhood of an irreducible connection. Here we use quadratic func-
tion to perturb the equation in a neighborhood of a reducible connection.

Remark 2.17. We choose the perturbation so that the zero eigen-
values $of*_{\sigma}d-Hess_{a}(f_{0}+f_{(\lambda,\mu)})$ is perturbed to positive one, if $a$ is
a reducible connection and if the corresponding eigenspace is identified
to $C^{k}$ with respect to the $U(1)$ action. The set of such connections is a
subset of first category in an open set. This choice is used in the proof
of Theorem 5.6. (See Remark 5.7.)

Now we put $f=f_{0}+f_{\lambda,\psi}$ $fr$ generic $\psi$ , and define $Fl$ and $Fl_{0}$ by
(1.6.1) and (1.6.2).

\S 3. Local structure of moduli space

Let $p$ : $M\times R\rightarrow M$ be the projection, $p^{*}(\wedge^{i}M)$ be the pull back
of the vector bundles on $ M\times$ R. Let $\delta$ be a number sufficiently close
to 0. Choose a $C^{\infty}$ -map $||||$ : $R\rightarrow[0, \infty)$ , such that $||t||=|t|$ outside a

compact subset, put $e_{\delta}(t)=e^{\delta||t||}$ . For a smooth section $u$ of $ p^{*}(\wedge^{i}M)\otimes$

$su(2)$ with compact support, we put

$(||u||_{\ell,\delta}^{p})^{p}=\sum_{k\leq\ell}\int_{M\times R}e_{\delta}(t)|\nabla^{k}u|^{p}dxdt$ .

Let $L_{\ell,\delta}^{p}(M\times R, su(2)\otimes p^{*}(\wedge^{i}M))$ be the completion with respect to

this norm. We put

$\mathcal{L}_{\ell,\delta}^{i}=L_{\ell,\delta}^{2}(M\times R, su(2)\otimes p^{*}(\wedge^{i}M))$ .
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Define $L_{\ell,\delta}^{p}(M\times R, su(2)\otimes\wedge^{i}(M\times R))$ in a similar way. Let $ L_{p\delta}^{p},(M\times$

$R$ , $su(2)\otimes\bigwedge_{\pm}^{2}(M\times R))$ be the subspace of $L_{\ell,\delta}^{p}(M\times R, su(2)\otimes\wedge^{2}(M\times R))$

consisting of the elements $u$ satisfying $\overline{*}_{\sigma}u=\pm u$ , respectively. Here and
hereafter $\overline{*}_{\sigma}$ denotes the Hodge *operator on $M\times R$ with respect to
the product metric $\sigma\oplus dt^{2}$ . The Hodge operator on $M$ induces $*_{\sigma}$ :
$p^{*}(\wedge^{k}M)\rightarrow p^{*}(\wedge^{3-k}M)$ . We define isomorphisms

$I_{\pm}^{2}$ : $ L_{\ell,\delta}^{p}(M\times R, su(2)\otimes p^{*}(\wedge^{1}M))\rightarrow$

$L_{\ell,\delta}^{p}(M\times R, su(2)\otimes\bigwedge_{\pm}^{2}(M\times R))$

$I^{1}$ : $ L_{\ell,\delta}^{p}(M\times R, su(2)\otimes p^{*}(\wedge^{0}M\oplus\wedge^{1}M))\rightarrow$

$L_{\ell,\delta}^{p}(M\times R, su(2)\otimes\wedge^{1}(M\times R))$

$I^{0}$ : $L_{\ell,\delta}^{p}(M\times R, su(2))\rightarrow L_{\ell,\delta}^{p}(M\times R, su(2))$

by

$I_{\pm}^{2}(\alpha)=\alpha\pm(*_{\sigma}\alpha)\wedge dt$

$ I^{1}(\varphi, \alpha)=\varphi dt+\alpha$

$I^{0}=identify$ .

We put

$\Omega_{\ell,\delta}^{0}=L_{\ell,\delta}^{2}(M\times R, su(2))$

$\Omega_{\ell,\delta}^{1}=L_{\ell,\delta}^{p}(M\times R, su(2)\otimes\wedge^{1}(M\times R))$

$\Omega_{\ell,\delta}^{2}=L_{\ell,\delta}^{2}(M\times R, su(2)\otimes\bigwedge_{-}^{2}(M\times R))$

and identify $\mathcal{L}_{\ell,\delta}^{0}\simeq\Omega_{\ell,\delta}^{0}$ , $\mathcal{L}_{\ell,\delta}^{0}\oplus \mathcal{L}_{\ell,\delta}^{1}\simeq\Omega_{\ell,\delta}^{1}$ , $\mathcal{L}_{p\delta}^{1},\simeq\Omega_{\ell,\delta}^{2}$ , by $I^{i}$ .

For $a$ , $b\in Fl$ , choose a connection $d+A^{a,b}$ of the trivial $SU(2)$

bundle on $M\times R$ such that $A^{a,b}=b$ if $t>1$ and that $A^{a,b}=a$ if
$t<-1$ . We put

$A_{\ell,\delta}(a, b)=\{d+A^{a,b}+\alpha|\alpha\in\Omega_{\ell,\delta}^{1}\}$ .

Clearly this space is independent of the choice of $A^{a,b}$ . Hereafter we
write $A$ in place of $d+A$ . Let $\mathcal{G}_{\ell,\delta}^{0}(M\times R)$ be the set of all locally
$L_{\ell}^{2}$ map $g$ : $M\times R\rightarrow SU(2)$ such that there exists $\psi\in \mathcal{L}_{\ell,\delta}$ satisfying
$\exp\psi=g$ outside a compact subset.

Lemma 3.1. $\mathcal{G}_{\ell+1,\delta}^{0}(M\times R)$ acts on $A_{\ell,\delta}(a, b)$ by

$g^{*}A=g^{-1}dg+g^{-1}Ag$ .
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The action is free if $\delta$ is positive or $a$ , $b\in Fl_{0}$ .

We omit the proof. (See $[FU],[T3],[F].$ )

For $a\in A_{\ell}(M)$ , $A\in A_{\ell,\delta}(a, b)$ , we put

$G_{a}=\{g\in \mathcal{G}_{\ell+1}(M)|g^{*}a=a\}$

$G_{A}=$ { $g:M\times R\rightarrow G|g$ is a locally $L_{\ell+1}^{2}$ map satisfying $g^{*}A=A.$ }

Remark 3.2. $G_{A}\subset G_{a}\cap G_{b}$ .

Put

$B_{\ell,\delta}^{reg}(a, b)=\{[A]|A\in A_{\ell,\delta}(a, b), G_{A}\neq\{\pm 1\}\}$

$T_{[A]}B_{\ell,\delta}(a, b)=\{\alpha\in\Omega_{\ell,\delta}^{1}|e_{\delta}d_{A}^{*}e_{\delta}^{-1}\alpha=0\}$ .

$G_{A}$ acts on $B_{\ell,\delta}(a, b)$ and $T_{[A]}B_{\ell}(a, b)$ .

Lemma 3.3. The map $T_{[A]}B_{\ell,\delta}(a, b)\rightarrow B_{\ell,\delta}(a, b)$ : $\alpha\mapsto[A+\alpha]$ ,

induces a $G_{A}$ -invariant diffeomorphism from a neighborhood of 0 onto $a$

neighborhood of $A$ , if $a$ , $b\in Fl_{0}$ , or if $\delta>0$ .

The proof is in [FU], [T3], [F].

Lemma 3.4. $G_{a}\times G_{b}$ acts on $B_{\ell,\delta}(a, b)$ . The action is compatible
with the diagonal inclusion : $G_{A}\rightarrow G_{a}\times G_{b}$ .

Proof. For each $g_{1}\in G_{a}$ and $g_{2}\in G_{b}$ choose a map $g$ : $ M\times R\rightarrow$

$SU(2)$ such that $g_{t}=g_{1}$ if $t$ $<-1$ and that $g_{t}=g_{2}$ if $t>1$ . For
$[A]\in B_{\ell,\delta}(a, b)$ the element $g^{*}A$ is contained in $A_{\ell,\delta}(a, b)$ , and $[g^{*}A]$

depends only on $[A]$ and $g_{1}$ , $g_{2}$ . Clearly this induces a desired action.

Hereafter we put

$g_{1}[A]g_{2}^{-1}=(g_{1}, g_{2})[A]$

for $A\in B_{\ell,\delta}(a, b)$ , $g_{1}\in G_{a}$ , $g_{2}\in G_{b}$ . Then $G_{a}$ and $G_{b}$ act from left and
right on $B_{\ell,\delta}(a, b)$ , respectively.

Remark 3.5. The action is trivial if $\delta<0$ .

Now we consider a differential equation

(3.6) $F^{A}-\overline{*}_{\sigma}F^{A}-grad_{a_{t}}f\wedge dt+*_{\sigma}grad_{a_{t}}f=0$ ,
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for $A\in A_{\ell,\delta}(a, b)$ . Here we put $A=I^{1}(a_{t}, \varphi)$ . Let $\overline{\mathcal{M}}_{\ell,\delta}(a, b)$ be the set

of all solutions of (3.6) in $A_{\ell,\delta}(a, b)$ . Since $grad_{g_{t}^{*}a_{t}}f=g_{t}^{-1}(grad_{a_{t}}f)g_{t}$ ,

it follows that

$F^{g^{*}A}-\overline{*}_{\sigma}F^{g^{*}A}-grad_{g_{t}^{*}a_{t}}f\wedge dt+*_{\sigma}grad_{g_{t}^{*}a_{t}}f=$

$g^{-1}(F^{A}-\overline{*}_{\sigma}F^{A}-grad_{a_{t}}f\wedge dt+*_{\sigma}grad_{a_{t}}f)g$ .

Therefore $\overline{M}_{\ell,\delta}(a, b)$ is $\mathcal{G}_{\ell+1,\delta}^{0}$ invariant. We put

$\mathcal{M}_{\ell,\delta}(a, b)=\overline{M}_{\ell,\delta}(a, b)/\mathcal{G}_{\ell+1,\delta}^{0}$ .

By a standard elliptic regularity estimate, $\mathcal{M}_{\ell,\delta}(a, b)$ is independent of
$\ell$ . Then we omit $\ell$ and write $\lambda\Lambda_{\delta}(a, b)$ .

Here we remark that the set $G_{a}\backslash \mathcal{M}_{\delta}(a, b)/G_{b}$ is identified to the set
$\mathcal{M}(a, b)$ in \S 1. In fact, the elements of the set $\Lambda 4(a, b)$ have a one to one
correspondence to the set of $a_{t}$ ’s satisfying (1.7) and $\lim_{t\rightarrow-\infty}a_{t}=a$ ,
$\lim_{t\rightarrow\infty}[a_{t}]=[b]$ . Put $\lim_{t\rightarrow\infty}a_{t}=b’$ . There exists $g_{\infty}$ such that
$g_{\infty}^{*}b’=b$ . Choose $g_{t}$ such that $\lim_{t\rightarrow-\infty}g_{t}=1$ , $\lim_{t\rightarrow\infty}g_{t}=g_{\infty}$ . It is
easy to see that $g^{*}(d+a_{t})\in \mathcal{M}_{\delta}(a, b)$ . This element depends only on $[a_{t}]$

and is independent of $a_{t}$ . Conversely, if $A\in\overline{\lambda\Lambda}_{\delta}(a, b)$ , we can find $g$ such
that $g^{*}A$ has no $dt$ factor. Let $(g^{*}A)(\cdot, t)=a_{t}$ . Then $[a_{t}]\in \mathcal{M}(a, b)$ .

Remark 3.7. It is not in general true that the set of loops joining
$[a]$ and $[b]$ in $B_{\ell}(M)$ has one to one correspondence to $B_{\ell,\delta}(a, b)$ . This is

valid if the loop is contained in $B_{\ell}(M)-SB_{\ell}(M)$

For $A\in A_{\ell}(a, b)$ , we define $D_{A}$ : $\Omega_{\ell}^{1}\rightarrow\Omega_{\ell-1}^{2}$ by

$D_{A}\alpha=(d_{A}-\overline{*}_{\sigma}d_{A})\alpha-Hess_{a_{t}}f(u_{t})$ ,

where $\alpha=I_{1}(u_{t}, \varphi)$ , $d+A=d+a_{t}+\psi dt$ . If we identify $\Omega_{\ell,\delta}^{1}\simeq \mathcal{L}_{\ell,\delta}^{1}\oplus \mathcal{L}_{\ell,\delta}^{0}$ ,

$\Omega_{\ell-1,\delta}^{2}\simeq \mathcal{L}_{\ell-1,\delta}^{1}$ , we have

(3.8) $ D_{A}(u, \varphi)=-\frac{\partial u}{\partial t}+(*_{\sigma}d_{a_{t}}-Hess_{a_{t}}f-\psi_{t}\wedge)u+d_{a_{t}}\varphi$ .

Recall that $\mathcal{M}(a, b)$ is a $C^{\infty}$ -manifold in a neighborhood of $[A]$ if $D_{A}$ is
surjective.

Lemma 3.9. There exists $\lambda_{0}$ and $m_{0}$ such that, for each $\lambda_{0}\prec\lambda$ ,

the set of $\psi\in C^{\beta}(L_{m}, R)$ satisfying the following is of fifirst category in
an open set. Let $a$ , $b\in Fl$ , $f=f_{\lambda,\psi}$ .

(3.9.1) $\Lambda 4_{\delta}(a, b)$ is $a$ fifinite dimensional smooth manifold.
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(3.9.2) For each $[A]\in \mathcal{M}_{\delta}(a, b)$ , $D_{A}$ is surjective.

Proof. We write $\mathcal{M}_{\delta}^{\psi}(a, b)$ , $D_{A}^{\psi}$ while proving Lemma 3.9. In the

set of irreducible connections, the proof of [F] $2c.2$ works. Hence we

study $\mathcal{M}_{\delta}^{\psi}(a, b)$ in the neighborhood of reducible connections. Put

$B_{\ell,\delta}^{red}(a, b)=\{[A]\in B_{\ell,\delta}(a, b)|G_{A}=U(1)\}$

$\mathcal{M}_{\delta}^{red,\psi}(a, b)=B_{\ell,\delta}^{red}(a, b)\cap \mathcal{M}_{\delta}^{\psi}(a, b)$

Then by a $U(1)$ analogue of the argument by Floer [F] $2c.2$ , we may

assume that $\mathcal{M}_{\delta}^{red,\psi}(a, b)$ is a $C^{\infty}$ -manifold, and, for each $[A]$ $\in$

$\mathcal{M}_{\ell,\delta}^{red,\psi}(a, b)$ , the map

$D_{A}^{red}$ : $ L_{\ell,\delta}^{2}(M\times R,u(1)\otimes\wedge^{1}(M\times R))\rightarrow$

$L_{\ell-1,\delta}^{2}(M\times R, u(1)\otimes\bigwedge_{-}^{2}(M\times R))$

is surjective. Let $[A]\in \mathcal{M}_{\delta}^{red,\psi}$ . Choose a neighborhood $U$ of $[A]$ in
$B_{\delta,\ell}^{\psi}(a, b)$ , which is bounded in $L_{\ell}^{2}$ norm.

Sublemma 3.10. The set of all $\psi’$ such that $D_{A}^{\psi’}$ is surjective for
all A $\in U\cap \mathcal{M}_{\delta}^{\psi’}(a, $b), is open.

The proof is similar to one for Sublemma 2.9 and is omited.

Sublemma 3.11. For each $\epsilon>0$ and $\psi$ , there exists $\psi’$ and $a$

neighborhood $U’$ of $A$ , such that $||\psi’||_{\beta}<\epsilon$ and that $D_{A}^{\psi+\psi’}$, is surjective

for each $[A’]\in U’\cap\lambda\Lambda_{\delta}^{\psi+\psi’}(a, b)$ .

Proof. By an argument similar to the proof of Sublemma 2.9, it

suffices to find $\psi’$ such that $||\psi’||_{\beta}<\epsilon$ , and that $D_{A}^{\psi+\psi’}$ is surjective. We
put

$Cok=Ker(D_{A}^{\psi})^{*}\subset \mathcal{L}_{\ell,\delta}^{1}$ ,

$Ker=\{u\in \mathcal{L}_{\ell,\delta}^{1}|D_{A}u=0, d_{a_{t}}^{*}u_{t}=0\}$

The group $U(1)\simeq G_{A}$ acts on $Ker$ and $Cok$ . By the surjectivity of
$D_{A}^{\psi,red}$ , we have $Cok\simeq C^{k}$ as $U(1)$ module. By the index calculation in

\S 5, we can find a $U(1)$ invariant subspace $K$ of $Ker$ which is isomorphic

to $C^{k}$ as $U(1)$ module. (See Remark 5.7.) Choose an isomorphism
$Q$ : $Cok\rightarrow K$ . For each $t$ , let $K_{t}$ , $Cok_{t}\subset T_{[a_{t}]}B_{\ell}(M)$ be the projection of
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$K$ and $Cok$ . By the unique continuation theorem ([Ar]), the projections
$K\rightarrow K_{t}$ , $Cok\rightarrow Cok_{t}$ are isomorphisms. Let $Q_{t}$ : $Cok_{t}\rightarrow K_{t}$ be the
projection of $Q$ . We can choose sufficiently large $m$ and $\lambda$ such that

the curve $t\mapsto\overline{\Psi}’(a_{t}, \lambda)(0)=a_{t}’$ is injective, and $P_{t}$ : $ T_{[a_{t}]}(\mathcal{B}_{\ell}(M))\rightarrow$

$T_{a_{t}’}SU(2)^{m}$ is injective on $K_{t}+Cokt$ for each $t$ . Since the action of
$U(1)$ has no trivial component on Cokt, it follows that $P_{t}(K_{t}+Cok_{t})$ is
transversal to the tangent vector of the curve $a_{t}’$ . Hence we can find a

function $\psi_{0}\in C^{\beta}(L_{m}, R)$ such that

$(Hess_{a_{t}’}\psi o)(P_{t}V, PtW)=\langle Q_{t}V, W\rangle$ ,

for each $V\in Cok_{t}$ and $W\in K_{t}$ . It is easy to see that $\psi’=\psi+\delta\psi_{0}$ has
the required property.

Lemma 3.9 follows easily from Sublemmas 3.10 and 3.11.

\S 4. Sum formula for index bundles

It seems that many parts of this section are well known to experts.
But we include it here because of the lack of appropriate reference and
because we need a part of the proof in \S 11. However we omit the detail
of the proof since the results are essentially known. First we shall work
in the following situation.

Situation 4.1. Let $X^{n+1}$ be an oriented complete Riemannian man-
ifold, $E$ , $F$ be vector bundles on it, $K$ a compact subset. Suppose that
$X-K$ is isometric to the direct product $M\times(0, \infty)$ . Let $V$ be a vector
bundle on $M$ and $\Psi_{E}$ : $E\rightarrow p^{*}V$ , and $\Psi_{F}$ : $F\rightarrow p^{*}V$ be isomorphisms
of vector bundles. (Here $p$ : $ M\times$ (0, $\infty)\rightarrow M$ is the projection.) Let
$D^{0}$ : $\Gamma(V)\rightarrow\Gamma(V)$ and $D$ : $\Gamma(E)\rightarrow\Gamma(F)$ be elliptic operators of first
order. Suppose that $D^{0}$ is selfadjoint. Assume that $M$ is decomposed
to $M_{+}$ $II$ $M_{-}$ such that

$D=\Psi_{F}^{-1}(\pm\frac{\partial}{\partial t}+D^{0})\Psi_{E}$

respectively on $M_{\pm}\times(0, \infty)$ . Let $\{\lambda_{i}|i\in Z\}$ be the set of all eigenvalues

of $D^{0}$ . Put $\lambda_{0}=\min_{i\in Z}\lambda_{i}^{2}$ .

Theorem 4.2. Suppose $\lambda_{0}>0$ . then $D$ is Fredholm. Moreover,

for $\lambda<\lambda_{0}$ , there exists $a$ fifinite dimensional subspace $L_{\lambda}$ of $L^{2}(E)$ , such
that

(4.2.1) If $u\in L_{\lambda}^{\perp}$ then $|Du|>\sqrt{\lambda}|u|$ . $\circ Here$ $L_{\lambda}^{\perp}is$ $a$ orthonormal
complement of $L_{\lambda}$
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(4.2.2) $L_{\lambda}$ is generated by the vectors $v$ satisfying $D^{*}Dv=\lambda’v$ with
$\lambda’\leq\lambda$ .

We omit the proof. See $[LM],[T3]$ . Theorem 4.2 implies that

Index $=dimKer$D-dim $KerD^{*}$

is well defined.

Situation 4.3. Let $X_{i}$ , $M_{i}$ , $E_{i}$ , $F_{i}$ , $V_{i}$ , $D_{i}$ , $D_{i}^{0}$ be as in Situation 4.1.
We assume that there are unions of connected components, say $M_{1,+}^{0}$

and $M_{2-}^{0}$ , of $M_{1,+}$ and $M_{2,-}$ respectively, and an orientation reversing

diffeomorphism from $M_{1,+}^{0}$ to $M_{2,-}^{0}$ , by which we can identity $V_{1}$ , $D_{1}^{0}$

and $V_{2}$ , $D_{1}^{0}$ . We patch $X_{1}-M_{1,+}^{0}\times(T, \infty)$ and $X_{2}-M_{2,-}^{0}\times(T, \infty)$ by

the diffeomorphism $M_{1,+}^{0}\times\{T\}\rightarrow M_{2,-}^{0}\times\{T\}$ to obtain $X(T)$ . (Figure

1)

Figure 1.

Let $E(T)$ (resp. $F(T)$ ) be a vector bundle on $X(T)$ obtained by

patching $E_{1}$ and $E_{2}$ (resp. $F_{i}$ ) by $\Psi_{E_{2}}^{-1}\Psi_{E_{1}}$ (resp. $\Psi_{F_{2}}^{-1}\Psi_{F_{1}}$ ). Define an

operator $D:\Gamma(E(T))\rightarrow\Gamma(F(T))$ by

$D=\{$
$D_{1}$

$D_{2}$

on $X_{1}$

on $X_{2}$
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Theorem 4.4. If $\lambda_{0}>0$ then we have

Index $=Index$ $D_{1}+IndexD_{2}$ .

Proof. Let $0<\lambda<\lambda_{0}$ . We may assume that $\lambda$ is not an eigenvalue
of $D^{*}D$ or $D_{i}^{*}D_{i}$ . Let $L_{\lambda}\subset L^{2}(E)$ be the vector space generated by the

vectors $v$ such that $D^{*}Dv=\lambda’v$ with $\lambda’<\lambda$ . Define $L_{\lambda}^{*}\subset L^{2}(F)$ , $L_{\lambda}^{i}$ ,
$L_{\lambda}^{i*}$ in the same way. Note that an embedding $X_{1}-M_{1,+}^{0}\times[T,$ $\infty\grave{)}\rightarrow X$

can be extended to an embedding $X_{1}-M_{1,+}^{0}\times[2T, \infty)$ . Let $ M_{1,+}^{0}\times$

$[0,2T]\rightarrow X$ be its restriction. Put $d(t)=\min(|t|, |2T-t|)$ .

Lemma 4.5. If $u\in L_{\lambda}$ then

$|\nabla^{k}\varphi|(I(x, t))<C_{k}e^{-\sqrt{\lambda_{O}-\lambda}d(t)}||u||_{L^{2}}$ .

Proof. We may assume $D^{*}Du=\lambda’u$ , $\lambda’<\lambda$ . Let $\varphi_{1}$ , $\cdots$ be the

eigenvectors of $D_{0}^{*}D_{0}$ . We put

$u(I(x, t))=\sum_{i=1}^{\infty}u_{i}(t)\varphi_{i}(x)$ .

Since

$D^{*}D=-\frac{\partial^{2}}{\partial t^{2}}+(D^{0})^{2}$ ,

we have

$-\frac{d^{2}u_{i}}{dt^{2}}+\lambda_{i}^{2}u_{i}=\lambda’u_{i}$ .

It follows that

$|u_{i}(t)|\leq Ce^{-\sqrt{\lambda_{0}-\lambda’}d(t)}\max\{|u_{i}(0)|, |u_{i}(T)|\}$ ,

from which the lemma follows by the standard estimates for elliptic
operators.

Let $\chi$ : $[-1, 1]\rightarrow[0,1]$ be a nondecreasing $C^{\infty}$ function such that

$\chi(t)=\{$

0 if $t<-1$

1 if $t>1$ .

We define $P_{i}’$ : $L_{\lambda}\rightarrow\Gamma_{c}(X_{i}, E_{i})$ as follows. (Here $\Gamma_{c}$ stands for the set
of smooth sections with compact support.)

$\{$

$(P_{1}’u)(x, t)=(1-\chi(\frac{t-T}{T}))u(x, t)$ if $(x, t)\in M_{1,+}^{0}\times[0,2T]$

$(P_{1}’u)(x, t)=0$ if $(x, t)\in M_{1,+}^{0}\times[2T, \infty)$

$(P_{1}’u)(z)=u(z)$ if $z\not\in M_{1,+}^{0}\times[0, \infty)$
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$\{$

$(P_{2}’u)(x, t)=\chi(\frac{t-T}{T})u(x, t)$ if $(x, t)\in M_{2,-}^{0}\times[0,2T]$

$(P_{1}’u)(x, t)=0$ if $(x, t)\in M_{2,-}^{0}\times[2T, \infty)$

$(P_{1}’u)(z)=u(z)$ if $z\not\in M_{2,-}^{0}\times[0, \infty)$

Let $P_{i}(u)$ be the orthonormal projection of $P_{i}’(u)$ to $L_{\lambda}^{i}$ . Put $P_{\lambda}=$

$(P_{1}, P_{2})$ : $L_{\lambda}\rightarrow L_{\lambda}^{1}\oplus L_{\lambda}^{2}$ . Then using Lemma 4.5 we can prove that $P_{\lambda}$ is
an isomorphism for large $T$ . Similarly we can construct an isomorphism
$P_{\lambda}^{*}$ : $L_{\lambda}^{*}\rightarrow L_{\lambda}^{1*}\oplus L_{\lambda}^{2*}$ . On the other hand, $D$ defines an isomorphism:
$ L_{\lambda}\cap$ $(Ker D)^{\perp}\rightarrow L_{\lambda}^{*}\cap(KerD^{*})^{\perp}$ . Therefore

Index $D=dim$ $L_{\lambda}-dimL_{\lambda}^{*}$ .

Similarly, we have

$IndexD_{i}=dimL_{\lambda}^{i}-dimL_{\lambda}^{i*}$ .

The theorem follows immediately. (Recall that Index $D^{T}$ does not de-
pend on $T.$ )

Remark 4.6. By the same method, we can prove that, if $D_{0}$ is

invertible, then the $Ce^{-\sqrt{\lambda_{0}-\lambda}T/C_{-}}$neighborhood of the set

{eigenvalues of $D^{T*}D^{T}$ smaller than $\lambda_{0}$ }

contains the set

{eigenvalues of $D_{1}D_{1}^{*}$ smaller than $\lambda_{0}$ }
$\cup$ {eigenvalues of $D_{2}D_{2}^{*}$ smaller than $\lambda_{0}$ }.

Also the $Ce^{-\sqrt{\lambda_{0}-\lambda}T/C_{-}}$neighborhood of the later set contains the former
set.

Moreover we can prove the following:

Corollary 4.7. In Situation 4.1, let $M_{+}^{0}$ , $M_{-}^{0}$ be unions of com-

ponents of $M_{+}$ , $M_{-}$ , respectively. Suppose that $M_{+}^{0}$ , together with $D_{0},V$

on it, is diffeomorphic to $M_{-}^{0}$ . Construct $X(T)$ , $E(T)$ , $F(T)$ , $D^{T}$ , $e.t.c$ .

as before. {Figure 2) Then we have

Index $D^{T}=Index$ V.

In \S 6 and \S 11, we need also a family version of Theorem 4.4.
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$M_{+}^{0}=M_{-}^{0}$

$X(T)$

Figure 2.

Situation 4.8. Let $Y$ be a manifold, $p_{i}$ : $W_{i}\rightarrow Y$ , $q$ : $Z\rightarrow Y$

be fibre bundles. Let $\overline{E}_{i},\overline{F}_{\dot{x}}:\rightarrow W_{i},\overline{V}\rightarrow Z$ be vector bundles and
$\overline{D}_{i}$ : $\Gamma(\overline{E}_{i})\rightarrow\Gamma(\overline{F}_{i}),\overline{D}^{0}$ : $\Gamma(\overline{V})\rightarrow\Gamma(\overline{V})$ be families of elliptic operators.

Suppose that $p_{i}^{-1}(y)=X_{i}(y)$ , $q^{-1}(y)=M(y),\overline{E}_{i}|_{X_{i}(y)}=E_{i}(y)$ , $F_{i}(y)$ ,

$V(y)$ , $D_{i}(y)$ , $D^{0}(y)$ are as in Situation 4.3, for each $y\in Y$ . As before,

we can construct, $W(T)\rightarrow Y,\overline{E}(T),\overline{F}(T)\rightarrow W(T)$ , $D(T)$ : $\Gamma(\overline{E}(T))\rightarrow$

$\Gamma(\overline{F}(T))$ . As in [AS], the index bundles

Index $D_{i}$ , $IndexD^{T}\in K(Y)$ ,

are well defined if $D^{0}(y)$ is invertible.

Theorem 4.9. Suppose $D^{0}(y)$ is invertible for each $y$ , then we
have

Index $D_{1}+IndexD_{2}=IndexD^{T}$ ,

in $K(Y)$ .

Theorem 4.9 follows from the proof of Theorem 4.4, since $P_{\lambda}$ and
$L_{\lambda}$ , e.t.c. there depend smoothly on operators.
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Remark 4.10. The results of this section hold in the case when,
for example, in Situation 4.1 the operator $D$ is not exactly equal to
$\Psi_{F}^{-1}(\pm\frac{\partial}{\partial t}+D^{0})\Psi_{E}$ , but the difference is estimated by $Ce^{-|t|/C}$ . (See

[T3].)

\S 5. Dimension of moduli space

We put $\overline{\mathcal{M}}_{\delta}(a, b)=G_{a}\backslash \mathcal{M}_{\delta}(a, b)/G_{b}$ . Recall that the action of
$G_{a}\times G_{b}$ is trivial if $\delta<0$ . We can prove that $\overline{M}_{\delta}(a, b)$ is independent

of $\delta$ . Hence we write $\overline{\mathcal{M}}(a, b)$ .

Theorem 5.1. There exists a map $\mu$ : $Fl$ $\rightarrow Z$ such that $\mu(1)=0$

and that

(5.1) $dim\overline{\Lambda 4}(a, b)=\mu(a)-\mu(b)-dimG_{a}$ ,

except the component containing no irreducible connection.

Proof. First we assume that $a$ , $b\in Fl_{0}$ . In this case $dim\overline{\mathcal{M}}(a, b)=$

$dim\mathcal{M}_{\delta}(a, b)$ . We can use the perturbed Atiyah-Hitchin-Singer complex

(5.2) $\Omega_{\ell+1,0}^{0}\rightarrow\Omega_{\ell,0}^{1}d_{A}\rightarrow\Omega_{\ell-1,0}^{2}D_{A}$ .

(definitions of operators and spaces are in \S 3), to calculate the dimension
as

$dim\mathcal{M}_{\delta}(a, b)=dim\frac{KerD_{A}}{Imd_{A}}$ .

Since $a\in Fl_{0}$ , it follows that $d_{A}$ is injective. By Lemma 3.9, $D_{A}$ is
surjective. Hence $dim\mathcal{M}_{\delta}(a, b)$ is equal to the index of the complex
(5.2). We put

$(D_{A}, d_{A}^{*})$ : $\Omega_{\ell,0}^{1}\rightarrow\Omega_{\ell,0}^{2}\oplus\Omega_{\ell-1,0}^{0}$ .

Then we have:
$dim\mathcal{M}_{\delta}(a, b)=Index(D_{A}, d_{A}^{*})$ .

We $identi5^{r}\Omega_{\ell}^{1}$ and $\Omega_{\ell}^{2}\oplus\Omega_{\ell}^{0}$ to $\mathcal{L}_{\ell,\delta}^{1}\oplus \mathcal{L}_{p\delta}^{0}$

, as in \S 3. For $a\in A_{\ell}(M)$ ,

define

$D_{a}$ : $L_{\ell}^{2}(M, (\wedge^{1}\oplus\wedge^{2})\otimes su(2))\rightarrow L_{\ell}^{2}(M, (\wedge^{1}\oplus\wedge^{2})\otimes su(2))$

by
$D_{a}(u, \varphi)=(*_{\sigma}d_{a}u-Hess_{a}u+d_{a}\varphi, d_{a}^{*}u)$ .
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Then when $t$ $\rightarrow\infty$ the operator $(D_{A}, d_{A}^{*})$ is asymptotic to $-\frac{\partial}{\partial t}+D_{b}$ and

when $t$ $\rightarrow-\infty$ it is asymptotic to $-\frac{\partial}{\partial t}+D_{a}$ . Since $a$ , $b\in Fl_{0}$ it follows
that

$d_{a}$ : $L^{2}(M, su(2))\rightarrow L^{2}(M, \wedge^{1}\otimes su(2))$

is injective. Hence by (2.8.2), $D_{a}$ and $D_{b}$ are invertible. Therefore
by Theorem 4.3, $(D_{A}, d_{A}^{*})$ is Fredholm for each $A\in B_{\ell,\delta}(a, b)$ . Since
$B_{\ell,\delta}(a, b)$ is connected, it follows that its index is independent of $A$ .

Therefore, we can use Theorem 4.4 to show

Index(VB,$ d_{C}^{*}$ ) $=Index(VB, d_{A}^{*})+Index(VB, d_{B}^{*})$ ,

for $A\in \mathcal{M}_{\delta}(a, b)$ , $B\in \mathcal{M}_{\delta}(b, c)$ , $C\in \mathcal{M}_{\delta}(a, c)$ , $a$ , $b$ , $c\in Fl_{0}$ . In the case
when $b$ is reduced, way we can prove

Index(VB,$ e_{\delta}d_{C}^{*}e_{\delta}^{-1}$ ) $=Index(D_{A}, e_{\delta}d_{A}^{*}e_{\delta}^{-1})+Index(D_{B}, e_{\delta}d_{B}^{*}e_{\delta}^{-1})$

$-dimG_{b}$ ,

in a similar way, for $\delta>0$ . Therefore the theorem follows by putting

$\mu(a)=Index(D_{A}, e_{\delta}d_{A}^{*}e_{\delta}^{-1})-3$ ,

for an element $[A]\in B_{\ell,\delta}(1, a)$ .

Next we study the neighborhood of a reducible connection
$A\in \mathcal{M}_{\delta}(a, b)$ . There are two cases:

Case I. $dimG_{a}=dimG_{b}=3$ , $G_{A}=U(1)$ .

Case $II$ . $dimG_{a}=dimG_{b}=1$ , $G_{A}=U(1)$ .

In case $I$ , there exists $\varphi$ : $TorH_{1}(M, Z)\rightarrow\{\pm 1\}\subset U(1)$ such that
$a$ , $b\in RF_{\varphi}$ . (See \S 2.) Then we can renumber the loops $\ell_{1}^{0}$ , $\cdots$ , $\ell_{d}^{0}$ , which
we choose at the beginning of \S 2, such that

$a(\ell_{i}^{0})=1\Leftrightarrow i\leq p$

$b(\ell_{i}^{0})=1\Leftrightarrow i\leq p+k$ .

(At this point, it is not yet clear that $k>0.$ )

Replacing the element $b$ by a gauge equivalent one, we may assume
that there exists $a_{t}\in A_{\ell}(M)$ such that $d+A=d+a_{t}$ . (Namely $A$

has no $dt$ component.) The group $U(1)=G_{A}$ acts on the complex
$(D_{A}, e_{\delta}d_{A}^{*}e_{\delta}^{-1})$ . It follows that its index is a $U(1)$ module.
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Lemma 5.3.

Index(PA,$ e_{\delta}d_{A}^{*}e_{\delta}^{-1}$ ) $\simeq\{$

$C^{k+1}\oplus R^{k+1}$ if $\delta>0$

$C^{k-1}\oplus R^{k-1}$ if $\delta<0$ .

Proof. We replace the complex $(D_{A}, d_{A}^{*})$ by $(D_{A,1}+\epsilon, d_{A}^{*}+\epsilon)$ , where

$ D_{A,1}(u, \varphi)=-\frac{\partial u}{\partial t}+*_{\sigma}d_{a_{t}}u+d_{a_{t}}\varphi$ .

Put
$Index(D_{A,1}+\epsilon, d_{A}^{*}+\epsilon)=C^{k_{1}}\oplus R^{k_{2}}$ .

The trivial $su(2)$ bundle together with (nontrivial) connection $d+a_{t}$ on
$M\times R$ splits into a real line bundle $\mathcal{L}^{R}$ and a complex line bundle $\mathcal{L}^{C}$ ,

since $d+a_{t}$ is reducible. Note that the image of holonomy representation
of $a$ and $b$ is contained in $\{\pm 1\}$ , the center of $SU(2)$ . Therefore the line
bundles together with their connections, have canonical trivializations

on their ends. Hence we can apply Corollary 4.7 to obtain bundles
$\overline{\mathcal{L}}^{R}$

and
$\overline{\mathcal{L}}^{C}$

on $M\times S^{1}$ such that

$k_{1}=dimc$ Index $((P_{-}d_{A}, d_{A}^{*})\otimes\overline{\mathcal{L}}^{C})$

$k_{2}=dim_{R}$ Index $((P_{-}d_{A}, d_{A}^{*})\otimes\overline{\mathcal{L}}^{R})$ .

Here
$\overline{\mathcal{L}}^{C}\rightarrow d_{A}\wedge^{1}(M\times S^{1})\otimes\overline{\mathcal{L}}^{C}P_{-}d_{A}\rightarrow\bigwedge_{-}^{2}(M\times S^{1})\otimes\overline{\mathcal{L}}^{C}$ ,

and similarly for
$\overline{\mathcal{L}}^{R}$

Therefore, as in Atiyah-Hichin-Singer [AHS], we
have

$k_{1}=\int_{M\times S^{1}}(2+\frac{p^{1}(M\times S^{1})}{3})(1+c^{1}(\overline{\mathcal{L}}^{C})+\frac{c^{1}(\overline{\mathcal{L}}^{C})\wedge c^{1}(\overline{\mathcal{L}}^{C})}{2})$

$=0$ ,

since

$c^{1}(\overline{\mathcal{L}}^{C})=\sum_{i=p+1}^{p+k}[\ell_{i}^{0}]\cup[S^{1}]$ .

Similarly $k_{2}=0$ .
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Next we compare the index of $(D_{A,1}+\epsilon, d_{A}^{*}+\epsilon)$ to one of
$(D_{A}, e_{\delta}d_{A}^{*}e_{\delta}^{-1})$ . For this purpose, we use the notion of spectral flow
due to Atiyah-Patodi-Singer [APS]. Put

$D_{a_{t},1}(u, \varphi)=(*_{\sigma}d_{a_{t}}u+d_{a_{t}}\varphi, d_{a_{t}}^{*}\varphi)$ .

The spectral flow of the operator $ D_{a_{t},1}+\epsilon$ gives the index of $(D_{A}+$

$\epsilon$ , $d_{A}^{*}+\epsilon)$ . The operator $D_{a,1}$ has zero as eigenvalue. The eigenspace is

identified to $(C\oplus R)^{d+1}\simeq(H_{0}(M;R)\oplus H_{1}(M;R))\otimes su(2)$ . Replacing
$D_{A}$ by $ D_{A}+\epsilon$ is equivalent to push these eigenvalues a bit to positive
direction. Next we examine the effect of the perturbation. We put

$D_{a_{t},2}(u, \varphi)=(*_{\delta}d_{a_{t}}u-Hess_{a_{t}} f(u)+d_{a_{t}}\varphi, d_{a_{t}}^{*}\varphi)$ .

We take the basis $(z_{1}, \cdots, z_{d}, t_{1}, \cdots, t_{d})$ of $H_{1}(M;R)\otimes su(2)$ such that
$z_{i}$ and $t_{\dot{\iota}}$ correspond to $\ell_{i}^{0}$ . Then, by (2.5) and our choice of $a$ and $b$ ,

replacement of $D_{a_{t},1}$ by $D_{a_{t},2}$ is equivalent to push the zero eigenvalues
corresponding $z_{1}$ , $\cdots$ , $z_{p}$ and $t_{1}$ , $\cdots$ , $t_{p}$ a bit to positive direction and
the others to negative direction while $t$ $\rightarrow-\infty$ , and to push the zero
eigenvalue corresponding to $z_{1}$ , $\cdots$ , $z_{p+k}$ and $t_{1}$ , $\cdots$ , $t_{p+k}$ a bit to positive
direction and the others to negative direction while $ t\rightarrow\infty$ . It follows
from $k_{1}=k_{2}=0$ that the index of the spectral flow $D_{a_{t},2}$ is $C^{k}\oplus R^{k}$ .

Finally we examine the effect replacing $D_{a_{t}}$ by $(D_{a_{t}}, e_{\delta}d_{A}^{*}e_{\delta}^{-1})$ . If
$\delta>0$ , this is equivalent to push the zero eigenvalues in $H_{0}(M;R)\otimes su(2)$

to positive direction while $ t\rightarrow\infty$ and push them to negative direction
while $ t\rightarrow-\infty$ . If $\delta<0$ this is equivalent to the perturbation to the
opposite direction. Lemma 5.3 follows.

Lemma 5.3 implies $k>0$ . Using Lemma 5.3, we have a description
of the moduli space in a neighborhood of reducible connections. First
let $k=1$ , $\delta>0$ . The group $SU(2)\times SU(2)\times R$ acts on $\sqrt{}\backslash 4_{\delta}(a, b)$ . Here
$SU(2)\times SU(2)\simeq G_{a}\times G_{b}$ acts on $\mathcal{M}_{\delta}(a, b)$ by Lemma 3.4, and the
action of $R$ is induced by its action on $ M\times$ R. Since $G_{A}=U(1)$ there
exists an embedding

$\frac{SU(2)\times SU(2)}{U(1)}\times R\rightarrow \mathcal{M}_{\delta}(a, b)$ .

By Lemma 5.3, this map is a diffeomorphism onto a connected compo-
nent containing $[A]$ . It follows that all the connections on this component
is reducible. In the case $k\geq 2$ we can use a similar argument. Summing
up we obtain



28 K. Fukaya

Theorem 5.4. Suppose $dimG_{a}=dimG_{b}=3$ , $dimG_{A}=1$ , $[A]\in$

$\mathcal{M}_{\delta}(a, b)$ , $\delta>0$ . Then $\mu(a)=3k+\mu(b)$ for some $k\leq d$ and that there
exists a diffeomorphism from

$\frac{SU(2)\times C^{k-1}\times SU(2)}{U(1)}\times R^{k}$

onto a neighborhood of the $G_{a}\times G_{b}\times R$ orbit of $[A]$ . The diffeomorphism
is compatible with $G_{a}\times G_{b}\times R\simeq SU(2)\times SU(2)\times R$ action.

Remark 5.5. In case $k=1$ the formula (5.1) does not hold for this
component. This is similar to the fact that the virtual dimension of the
trivial connection on $S^{3}$ is -3. In case $k>1$ the neighborhood of $[A]$

in $\overline{\mathcal{M}}(a, b)$ is diffeomorphic to the product of $CCP^{k-1}\times R^{k}$ . Here $C$

means the cone. (Compare [D1].)

By a similar but simpler argument we can examine the case when
$G_{0}=U(1)$ and obtain:

Theorem 5.6. Let $G_{a}=G_{b}=G_{A}=U(1)$ , $A\in\Lambda 4_{\delta}(a, b)$ and
$\delta>0$ . Then $\mu(a)=\mu(b)+k$ for some $k\leq d$ . All the connections

contained in the connected component of $\lambda\Lambda_{\delta}(a, b)$ containing $[A]$ are
reducible.

Remark 5.7. We used the above index calculation in the proof of
Sublemma 3.10. The fact we used there is that the $C$-part of the index
is always of nonnegative dimension.

If we use different perturbation from one we gave in 2,3, (for ex-
ample if we change the sign in Formula (2.16) from point to point) then
the above fact is no longer true. As the consequence, Lemma 3.9 does
not necessary hold in that case, and we have an obstruction in second
homology of Atiyah-Hitchin-Singer complex.

Finally we remark:

Lemma 5.8. Let $[a]$ , $[b]\in Fl$ , $b=g^{*}a$ , where $g$ : $M\rightarrow SU(2)$ and
$degg=k$ . Then,

$\mu(b)=8k+\mu(a)$ .

For the proof see [F].

\S 6. Orientation of moduli space

Lemma 6.1. $\mathcal{M}_{\delta}(a, $b) is orientable.
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Proof. Let $D\mathcal{E}\mathcal{T}(a, b)=D\mathcal{E}\mathcal{T}(D_{A}, e_{\delta}d_{A}^{*}e_{\delta}^{-1})$ be the determinant

bundle of the Atiyah-Hitchin-Singer complex (5.2). We can extend
$D\mathcal{E}\mathcal{T}(a, b)$ to a real line bundle on $B_{\ell,\delta}(a, b)$ . On $\mathcal{M}_{\delta}(a, b)$ , the bun-

dle $D\mathcal{E}\mathcal{T}(a, b)$ is isomorphic to the bundle of $dim\mathcal{M}_{\delta}(a, b)$ -forms. Hence
it suffices to show :

Lemma 6.2. The bundle $D\mathcal{E}\mathcal{T}(a, b)$ on $B_{\ell,\delta}(a, b)$ is trivial.

Proof. Since $\mathcal{M}_{\ell,\delta}(a, b)$ is not simply connected, the argument in
[D1], [F], can not be applied directly to our situation. Instead we shall
proceed as follows. Since 3-dimensional oriented cobordism group is

trivial, we can find oriented manifolds $\overline{X}_{\pm}$ such that $\partial\overline{X}_{+}=M$ , $\partial\overline{X}_{-}=$

$M^{-}$ , where $M^{-}$ is the manifold $M$ with opposite orientation. Let $W$

be a closed oriented 4-manifold obtained by patching $X_{+}$ and $X_{-}$ along
$M$ . Take trivial $SU(2)$ bundles on them. Let $A_{\ell}(W)$ be the set of all $L_{\ell}^{2}$

connection on $W$ , and $\mathcal{G}_{\ell}(W)$ be the group of transformations. We put
$B_{\ell}(W)=A_{\ell}(W)/\mathcal{G}_{\ell+1}(W)$ . Put a metric on $X\pm=\overline{X}_{\pm}-\partial\overline{X}_{\pm}$ , such
that $X\pm-K\pm is$ isometric to $M\times(0, \infty)$ for some compact subset $ K\pm\cdot$

Let $e_{\delta}$ be a function on $X\pm such$ that $e_{\delta}(x, t)=e^{-\delta||t||}$ outside $K_{\pm}$ . For
$a\in Fl$ choose a connection $d+A^{a}$ on $X_{\pm}$ such that $A^{a}=a$ outside $K_{\pm}$ .

Put

$L_{\ell,\delta}^{2}(X_{\pm}, \wedge^{1}\otimes su(2))=\left\{\begin{array}{lll} & .alocallyuisL_{\ell}^{2}section & \\ & of\wedge^{1}\otimes su(2) & \\u & \sum_{k=0}^{\ell}\int_{x_{\pm}} & e_{\delta}|\nabla^{k}u|<\infty\end{array}\right\}$

$A_{\ell,\delta}(X_{\pm}, a)=\{d+A^{a}+u|u\in L_{\ell,\delta}^{2}(X_{\pm}, \wedge^{1}\otimes su(2))\}$ .

Define $\mathcal{G}_{\ell,\delta}^{0}$ as in \S 2. Put

$B_{\ell,\delta}(X_{\pm}, a)=A_{\ell,\delta}(X_{\pm}, a)/\mathcal{G}_{\ell+1,\delta}^{0}(X_{\pm})$ .

Let $D\mathcal{E}\mathcal{T}_{\pm}(a)$ be the determinant bundle of Atiyah-Hitchin-Singer com-
plex on $B_{\ell,\delta}(X_{\pm}, a)$ . First we shall prove that $D\mathcal{E}\mathcal{T}_{\pm}(a)$ is trivial. For
simplicity, we assume that $a\in Fl_{0}$ . It suffices to show that $D\mathcal{E}\mathcal{T}_{\pm}(a)$ is
trivial on each compact subset $ L\pm$ of $\mathcal{B}_{\ell,\delta}(X\pm, a)$ . We define a map Pat :
$L_{+}\times L_{-}\rightarrow B_{\ell,\delta}(W)$ as follows. Define a Riemannian manifold $X(T)$ by

patching $X_{+}$ and $X_{-}$ along $M$ as in Situation 4.3. Then $M\times[0,2T]$ is
embedded in $X(T)$ . Choose a $C^{\infty}$ function $\chi$ : $[-1, 1]\rightarrow[0,1]$ by

$\chi(t)=\{$
0

1

if $t<-1$

if $t>1$ .
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For $[d+A]\in L_{+}$ , $[d+B]\in L_{-}$ define Pat([A], $[B]$ ) by

$\{$

Pat([A], $[B]$ ) $(z)=A(z)$ if $z\in X_{+}-M\times(0, \infty)$

Pat([A], $[B]$ ) $(x, t)=(1-\chi(\frac{t-T}{T}))A(x, t)+\chi(\frac{t-T}{T})B(x, t)$

Pat([A], $[B]$ ) $(z)=B(z)$ if $z\in X_{-}-M\times(0, \infty)$

Let $D\mathcal{E}\mathcal{T}_{X(T)}\rightarrow B_{\ell}(X(T))$ be the determinant bundle of the Atiyah-

Hitchin-Singer complex on $X(T)$ . By Theorem 4.9, we have

Pat* $(D\mathcal{E}\mathcal{T}_{X}(T))\simeq D\mathcal{E}\mathcal{T}_{+}(a)\otimes D\mathcal{E}I_{-}(a)$ .

For sufficiently large $T$ . By [D3], $D\mathcal{E}\mathcal{T}_{X(T)}$ is trivial. It follows that
$D\mathcal{E}I_{\pm}(a)$ is trivial.

Next, Let $L\subset B_{\ell,\delta}(a, b)$ , $L’\subset B_{\ell,\delta}(X^{+}, a)$ be compact subsets. In a

similar way, we define a map Pat : $L\times L’\rightarrow B_{\ell,\delta}(X^{+}, b)$ . By Theorem
4.9, we have

Pat* $(D\mathcal{E}\mathcal{T}_{+}(b))\simeq D\mathcal{E}\mathcal{T}(a, b)\otimes D\mathcal{E}\mathcal{T}_{+}(a)$ .

Therefore the trivializations of $D\mathcal{E}\mathcal{T}_{+}(a)$ and $D\mathcal{E}\mathcal{T}_{+}(b)$ induces a triv-
ialization of $D\mathcal{E}\mathcal{T}(a, b)$ , if $a$ , $b\in Fl_{0}$ . The case when $a$ $and/or$ $b$ are
reducible can be proved in a similar way, by using a perturbation of
the complex around the boundaries. The proof of Lemma 6.2 is now
complete.

\S 7. Partial compactification of moduli space

Let $\mathcal{M}_{\delta}’(a, b)$ , $\overline{\mathcal{M}}^{J}(a, b)$ be the quotients of $\mathcal{M}_{\delta}(a, b)$ and $\overline{\mathcal{M}}(a, b)$ by
the $R$-action. The proof of the theorems in \S 1 is based on the following

Theorems 7.1 and 7.3 on the structure of the ends of $\overline{\sqrt{}\backslash \Lambda}’(a, b)$ . Hereafter
we fix sufficiently small positive number $\delta$ and write $\Lambda 4(a, b)$ e.t.c. in
place of $\Lambda 4_{\delta}(a, b)$ .

Theorem 7.1. For $a$ , $b\in Fl$ , let $C\overline{\mathcal{M}}^{J}(a, b)$ be the disjoint union

of

$\overline{\mathcal{M}}^{J}(a, c_{0})\times\prod_{i=0}^{k-1}\overline{\mathcal{M}}^{J}(c_{i}, c_{i+1})\times\overline{\mathcal{M}}’(c_{k}, b)$ ,

for $c_{0}$ , $\cdots$ , $c_{k}\in Fl$ , with $\mu(a)>\mu(c_{0})>\cdots>\mu(c_{k})>\mu(b)$ . Put
$m=dim\overline{\mathcal{M}}’(a, b)$ .



Floer Homology for Oriented 3-Manifolds 31

Then we can defifine a smooth structure on $C\overline{\mathcal{M}}’(a, b)$ such that the
following holds.

(7.1.1) If

$x\in\overline{\mathcal{M}}’(a, c_{0})\times\prod_{i=0}^{k-1}\overline{\mathcal{M}}’(c_{i}, c_{i+1})\times\overline{\mathcal{M}}^{J}(c_{k}, b)$ ,

with $G_{c_{x}}=\{\pm 1\}$ . Then a neighborhood of $x$ in $C\overline{\mathcal{M}}’(a, b)$ is diffeomor-
phic to $[0, \infty)^{k+1}\times R^{m-k-1}$ .

(7.1.2) If $x=([A], [B])\in\overline{\mathcal{M}}’(a, c)\times\overline{\mathcal{M}}’(c, b)$ , with $G_{c}=U(1)$ , $G_{A}=$
$G_{B}=\{\pm 1\}$ . Then a neighborhood of $x$ is diffeomorphic to $R^{m}$ .

(7.1.3) If $x=([A], [B])\in\overline{\mathcal{M}}’(a, c)\times\overline{\lambda\Lambda}’(c, b)$ , with $G_{c}=SU(2)$ ,
$G_{A}=G_{B}=\{\pm 1\}$ . Then a neighborhood of $x$ is diffeomorphic to

$\frac{C^{2}}{Z_{2}}\times R^{m-4}$ .

(7.1.4) If $x=(A, B, C)\in\overline{\mathcal{M}}’(a, c_{1})\times\overline{\mathcal{M}}’(c_{1}, c_{2})\times\overline{\mathcal{M}}’(c_{2}, b)$ , with
$G_{c_{1}}=G_{c_{2}}=SU(2)$ , $G_{B}=U(1)$ , $G_{A}=G_{C}=\{\pm 1\}$ , $3k=\mu(c_{1})-\mu(c_{2})$ .

Then a neighborhood of $x$ is diffeomorphic to

$((\frac{SO(3)\times C^{k-1}\times SO(3)}{U(1)}\times(0, \infty]^{2})/\sim)\times R^{m-2k-5}$ ,

where $\sim is$ defifined by

$([g_{1}, z, g_{2}], (\infty, t))\sim[g_{1}g, z, g_{2}]$ , $(\infty, t))$

$([g_{1}, z, g_{2}], (t, \infty))\sim[g_{1}, z, gg_{2}]$ , $(t, \infty))$ .

(7.1.5) If $x=([A], [B], [C])\in\overline{\vee\wedge\Lambda}’(a, c_{1})\times\overline{\mathcal{M}}^{J}(c_{1}, c_{2})\times\overline{\mathcal{M}}^{J}(c_{2}, b)$ , with
$G_{c_{1}}=G_{c_{2}}=G_{B}=U(1)$ , $G_{A}=G_{C}=\{\pm 1\}$ . Then a neighborhood of $x$

is diffeomorphic to $R^{m}$ .

(7.1.6) Let $\Lambda\in R_{+}$ . Then the set

$\overline{\mathcal{M}}^{J}(a, b;\Lambda)=\{[A]\in\overline{\mathcal{M}}’(a, b)|\sup|F^{A}|<\Lambda\}$

is relatively compact in $C\overline{\mathcal{M}}’(a, b)$ .

(7.1.7) The orientations of $\overline{\mathcal{M}}^{J}(c_{i}, c_{i+1})$ are compatible in $C\overline{\mathcal{M}}’(a, b)$ .

Remark 7.2. (7.1.1). . . (7.1.5) above do not cover all the possible
cases. The general case is the combination of them and the reader can
easily supply it.
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Next we construct the bundles in \S 1. Choose a set of loops
$\{\gamma_{1}, \cdots, \gamma_{d}\}$ representing a basis of $H_{1}’(M;Z)$ . Put $\Sigma_{i}=\gamma_{i}\times R\subset M\times$ R.

The surface $\Sigma_{i}$ has a canonical spin structure. For $A\in A_{\ell,\delta}(a, b)$ , we let

$6_{A}^{i}$ : $\Gamma_{c}(\Sigma_{i}, su(2)\otimes C)\rightarrow\Gamma_{c}(\Sigma_{i}, su(2)\otimes C)$

be the Dirac operator twisted by the connection $A$ . For each $a$ , $b\in Fl$ ,
$ 6_{A}^{i}+\epsilon$ is a Fredholm operator. (We add $\epsilon$ since $6_{A}^{i}$ is not Fredholm when
$a$ or $b$ is reducible.) Then we obtain a complex line bundle

$\mathcal{L}_{i}(a, b)\rightarrow B_{\ell,\delta}(a, b)$

by

$\mathcal{L}_{i}(a, b)|_{[A]}=top\wedge(Ker(6_{A}^{i}+\epsilon))^{*}\otimes top\wedge Coker(6_{A}^{i}+\epsilon)$

.

(Note the action of $\mathcal{G}_{\ell,\delta}$ is free on $A_{\ell,\delta}$ ( $a$ , $b$)). The action of $G_{a}\times G_{b}$

on $B_{\ell,\delta}(a, b)$ is lifted to this line bundle. The group $\{\pm 1\}$ acts trivially
on $B_{\ell,\delta}(a, b)$ . The lift of the action of $\{\pm 1\}$ to $\mathcal{L}_{i}(a, b)$ is not necessary
trivial. (Compare [D2], where the similar action is trivial because the
numerical index of the Dirac operator on a closed surface is zero.) Then
we consider the tensor product $\mathcal{L}_{i}(a, b)\otimes \mathcal{L}_{i}(a, b)$ . It induces a complex

line bundle $\overline{\mathcal{L}}_{i}^{(2)}(a, b)$ on $\overline{\Lambda 4}_{*}^{J}(a, b)$ , the set of irreducible connections in
$\overline{\mathcal{M}}’(a, b)$ . (If we want to “define” the first Chern class $c^{1}(\mathcal{L}_{i}(a, b))$ itself,
we have to invert 2.)

Theorem 7.3. Collection of line bundles

$\mathcal{L}_{i}^{(2)}(a, c_{0})\otimes\cdots\otimes \mathcal{L}_{i}^{(2)}(c_{k}, b)\rightarrow\overline{\mathcal{M}}_{*}^{J}(a, c_{0})\times\prod_{i=0}^{k-1}\overline{\mathcal{M}}_{*}’(c_{0}, c_{i+1})\times\overline{\mathcal{M}}_{*}’(c_{k}, b)$ ,

can be patched together to give a complex line bundle on $C\overline{\mathcal{M}}_{*}^{J}(a, b)$ .

Here and hereafter $\mathcal{M}_{*}$ stands for the set of irreducible connections.
We can not extend the line bundle to the neighborhood of the connec-
tions described in Theorems 5.4 and 5.6. This is the reason why Theorem
1.10 does not hold for $s>2$ when $H_{1}(M;Z)$ is torsion free and $s>0$

when $H^{1}(M;Z)$ has a torsi.o $n$ . (We shall explain this point a bit more
detail in 12.)

The proofs of Theorems 7.1 and 7.3 occupy 7-11. We include the
analysis of the structure of moduli space and the line bundle on it in
the neighborhood of the connection described in Theorems 5.4 and 5.6,
though the author does not know how to use it to deduce a topological
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information. In order to explain the outline of the proofs of Theorems
7.1 and 7.3, we introduce the following notion. (Compare Donaldson
[D2].)

Definition 7.4. Let $K_{0}\subset\overline{\Lambda 4}’(a, c_{0})$ , $\cdots$ , $K_{k}\subset\overline{\mathcal{M}}^{J}(c_{k}, b)$ be com-

pact subsets and $\epsilon$ , $T$ , $C>0$ . We say that $[A]\in\overline{\mathcal{M}}^{J}(a, b)$ is a standard
model of type $(K_{0}, \cdots, K_{k}, T, \epsilon, C)$ , if there exist $[A_{i}]\in K_{i}$ , $S_{i+1}>$

$T+S_{i}$ , and $[A’]=[A]$ , with the following property.
Let $I_{i}$ : $M\times[-T, T]\rightarrow M\times R$ be the embedding defined by $I_{i}(x, t)=$

$(x, t+S_{i})$ . Then we have

(7.4.1) $||I_{i}^{*}(A’)-A_{i}||_{C^{p}}(x, t)<\epsilon$ ,

(7.4.2) $|A’-c_{i}|_{C^{\ell}}(x, t)<$

$C\exp\{-\min\{|S_{i}+T/2-t|, |S_{i+1}-T/2-t|\}/C\}$ ,

if $t$ $\in[S_{i}+T/2, S_{i+1}-T/2]$ .

$F^{A}|$

Figure 3.

The proof of Theorem 7.1 is based on the following two Theorems
7.5 and 7.6.

Theorem 7.5. There exists $C$ such that, for each $T$ , $\Lambda$ , $\epsilon>0$ , we
can fifind a compact subset $K_{a,b}$ of $\overline{\mathcal{M}}(a, b)$ for each $a$ , $b\in Fl$ , with the
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following property. If $[A]\in\overline{\mathcal{M}}(a, b)$ , $\sup|F^{A}|<\Lambda$ , and if $[A]\not\in K_{a,b}$ ,

then there exist $c_{0}$ , $\cdots$ , $c_{k}\in Fl$ such that $[A]$ is a standard model of type
$(K_{a,c_{0}}, \cdots, K_{c_{k},b}, T, \epsilon, C)$ .

Theorem 7.6. For each compact set $K_{0}\subset\overline{\mathcal{M}}^{J}(a, c_{0})$ , $\cdots$ , $K_{k}$

$\subset$
$\overline{\mathcal{M}}^{J}(c_{k}, b)$ and $C$ , there exist $\epsilon$ $=$ $\epsilon(K_{0}, \cdots, K_{k}, C)$ and $T$ $=$

$T(K_{0}, \cdots, K_{k}, C)$ , such that the set of elements of $\Lambda 4’(a, b)$ which is
a standard form of type $(K_{0}, \cdots, K_{k}, \epsilon, T, C)$ is parametrized by

$\overline{K}_{0}\times_{G_{c_{0}}}\overline{K}_{1}\times c_{c_{1}}\cdots\times c_{c_{k}}\overline{K}_{k}\times(T, \infty)^{k+1}$ .

Here $\overline{K}_{i}\subset\sqrt{}\backslash \Lambda’(c_{i-1}, c_{i})$ is the lift of $K_{i}$ .

Here $\overline{K}_{0}\times_{G_{O}}\overline{K}_{1}$ is the quotient of $\overline{K}_{0}\times\overline{K}_{1}$ by the action $g([A], [B])=$

$([A]g^{-1}, g[B])$ of $G_{0}$ . The proof of Theorem 7.6 is in \S 8. For the proof of
Theorem 7.1, we need a bit more complicated version of Theorem 7.5.

Theorem 7.5’. For each $\Lambda>0$ we can fifind $K_{a,b}\subset\overline{\mathcal{M}}(a, b)$ and
$C_{k}$ such that the conclusion of Theorem 7.5 holds for

$\epsilon_{k}=\epsilon(K_{a,c_{O}}, \cdots, K_{c_{k},b}, C_{k})$ ,

$T_{k}=T(K_{a,c_{0}}, \cdots, K_{c_{k},b}, C_{k})$

where $\epsilon(\cdots)$ , $T(\cdots)$ , and $C(\cdots)$ are as in Theorem 7.6.

The proof of Theorem 7.5’ is in \S 9. Now we are ready to explain
the outline of the proof of Theorem 7.1. Let $a$ , $b\in Fl_{0}$ . Choose $K_{c,c’}$

for $\mu(a)\geq\mu(c)\geq\mu(c’)\geq\mu(b)$ , as in Theorem 7.5’. For $c=(c_{0}, \cdots, c_{k})$ ,

Let $\epsilon(c)$ and $T(c)$ be the number in Theorem 7.6. Define an equivalence
relation $\sim on$

$\overline{K}_{a,c_{0}}\times\cdots\times\overline{K}_{c_{k},b}\times(T(c), \infty]^{k+1}$

by

$\{$

$(x_{0}, \cdots, x_{k+1}, t_{0}, \cdots, t_{k+1})\sim(x0, \cdots, x_{i}g, g^{-1}x_{i+1}, \cdots, t_{k+1})$

for each $t_{0}$ , $\cdots$ , $t_{k+1}$

$(x_{0}, \cdots, x_{k+1}, t_{0}, \cdots, t_{k+1})\sim(x_{0}, \cdots, x_{i}g, x_{i+1}, \cdots, t_{k+1})$

if $ t_{i}=\infty$ .
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Put

$\overline{X}(c)=\underline{\overline{K}_{a,c_{0}}\times\cdots\times\overline{K}_{c_{k},b}\times(T(c),\infty]^{k+1}}\sim$

,

$X(c)=G_{a}\backslash \overline{X}(c)/G_{b}$ ,

$\overline{X}^{o}(c)=\mathring{\underline{\overline{K}_{a,c}\times\cdots\times\overline{K}_{c_{k},b}\times(T(c),\infty)^{k+1}}}\sim$ ,

$\mathring{X}(c)=G_{a}\backslash \overline{X}^{o}(c)/G_{b}$ .

By Theorem 7.6, we have a diffeomorphism

$\Phi_{c}$ : $\mathring{X}(c)\rightarrow\overline{\mathcal{M}}’(a, b)$ .

to its image. If $c’\subset c$ , we have, by Theorem 7.6,

$\Phi_{c,c’}$ : $X(c)\rightarrow G_{a}\backslash \mathcal{M}’(a, c_{0}’)\times_{G_{c_{\acute{O}}}}\cdots\times c_{c_{k’}^{l}}\mathcal{M}’(c_{k’}’, b)/G_{b}\times[T, \infty]^{k’+1}$ .

We put

$U(c, c’)=\{z\in X(c)|\Phi_{c,c’}(z)\in\mathring{X}(c’)\}$ .

If $\Phi_{c’}\Phi_{c,c’}=\Phi_{c}$ is true, then we are able to use these maps to define the

smooth structure on $C\Lambda 4’(a, b)$ . But the above equality does not exactly
hold but holds modulo some small difference. Hence we have to perturb
them. The argument needed for it is in \S 10, where we define the notion
of local action and construct it on the end of $\lambda\Lambda’(a, b)$ . To extend line
bundle we use an argument similar to the proof of the theorems in \S 4
and a lift of the local action to the line bundle.

\S 8. Taubes construction

We prove Theorem 7.6 in this section. Theorem 7.6 corresponds
Donaldson [D2] \S 4. There Donaldson used the “alternating method”.
His method might work in our situation, where we have to deal with var-
ious types of reducible connections. But, since the organization needed
for alternating method is a bit complicated, we use here more direct
argument. (Maybe this is one Donaldson suggested in [D2] $p302.$ )

For simplicity of notation, we shall prove a special (but the most
difficult) case. Let $a$ , $c_{1}$ , $c_{2}$ , $b\in Fl$ such that $G_{a}=G_{b}=\{\pm 1\}$ , $G_{c_{1}}=$

$G_{c_{2}}=SU(2)$ , $\mu(c_{1})=\mu(c_{2})+3$ , and $\overline{K}\subset\Lambda 4’(c_{1}, c_{2})$ be a component
consisting of reducible connections. (We have, by Theorem 5.4,

$\overline{K}\simeq\frac{SU(2)\times SU(2)}{U(1)}$ . )
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Let $K_{1}\subset\overline{\mathcal{M}}’(a, c_{1})$ , $K_{2}\subset\overline{\mathcal{M}}’(c_{2}, b)$ be compact subsets and $\overline{K}_{1}\subset$

$\lambda 4’(a, c_{1}),\overline{K}_{2}\subset \mathcal{M}’(c_{2}, b)$ be their lifts. We shall construct a diffeomor-

phism $\Phi_{K,K_{1},K_{2}}$ : $\overline{K}_{1}\times c_{c_{1}}\overline{K}\times_{G_{c_{2}}}\overline{K}_{2}\times[T, \infty)^{2}\times R\rightarrow \mathcal{M}(a, b)$ , whose

image contains all standard model of type $(K_{1}, K, K_{2}, T, \epsilon, C)$ .

Choose a finite open covering

$U_{1}^{1}\cup\cdots\cup U_{N}^{1}\supseteq K_{1}$

$U_{1}^{2}\cup\cdots\cup U_{N}^{2}\supseteq K_{2}$ ,

and sections $\overline{s}_{j}^{i}$ : $U_{j}^{i}\rightarrow\overline{K}_{i}$ . Let $s_{j}^{1}$ : $U_{j}^{1}\rightarrow A_{\ell,\delta}(a, c_{1})$ , $s_{j}^{2}$ : $ U_{j}^{2}\rightarrow$

$A_{\ell,\delta}(c_{2}, b)$ be their lifts. Choose also an open covering

$V_{1}\cup\cdots\cup V_{N}=SU(2)$ ,

such that $V_{k}$ is contractible. We have maps

$J_{k}^{1}$ : $V_{k}\times R\rightarrow SU(2)$

$J_{k}^{2}$ : $V_{k}\times R\rightarrow SU(2)$

such that

$\{$

$J_{k}^{1}(g, t)=1$ if $t$ $<-1$

$J_{k}^{1}(g, t)=g$ if $t>0$

$\{$

$J_{k}^{2}(g, t)=1$ if $t>1$

$J_{k}^{2}(g, t)=g$ if $t<0$ .

Let $d+a_{t}^{0}\in A_{\ell,\delta}(c_{1}, c_{2})$ be a representative of $G_{c_{1}}\backslash \overline{K}/G_{c_{2}}=one$ point.
Choose a nonincreasing smooth function $\chi$ : $R\rightarrow[0,1]$ such that

$\chi(t)=\{$

1 if $t$ $<0$

0 if $t>1$ .

Now, we define a map

$\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}’$ : $U_{j_{1}}^{1}\times V_{k_{1}}\times V_{k_{2}}\times U_{j_{2}}^{2}\times[T, \infty)^{2}\times R\rightarrow A_{\ell,\delta}(a, b)$ ,
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as follows. Let $A_{i}=s_{j_{i}}^{i}([A_{i}])$ , $S_{?}$. $\in[T, \infty)$ , $S\in R$ , $g_{i}\in V_{k_{i}}$ . Then

$\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}’([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)$

$=(J_{k_{1}}(g_{1}, \cdot)^{*}A_{1})(x, t-S)$ for $t$ $<S+S_{1}/3$

$=\chi(\frac{t-S-S_{1}/3}{S_{1}/3})g_{1}^{*}A_{1}(x, t-S)$

$+(1-\chi(\frac{t-S\prime-S_{1}/3}{S_{1}/3}))a_{t-S-S_{1}}^{0}$

for $t$ $\in[S+S_{1}/3, S+2S_{1}/3]$

$=a_{t-S-S_{1}}^{0}$ for $t\in[S+2S_{1}/3, S+S_{1}+S_{2}/3]$

$=\chi(\frac{t-S-S_{1}-S_{2}/3}{S_{2}/3})a_{t-S_{1}-S}^{0}$

$+(1-\chi(\frac{t-S-S_{1}-S_{2}/3}{S_{2}/3}))g_{2}^{*}A_{2}(x, t-S-S_{1}-S_{2})$

for $t\in[S+S_{1}+S_{2}/3, S+S_{1}+2S_{2}/3]$

$=(J_{k_{2}}^{2}(g_{2}, \cdot)^{*}A_{2})(s, t-S-S_{1}-S_{2})$ for $t$ $>S+S_{1}+2S_{2}/3$ .

Here $J_{k}^{x}(g, \cdot)$ is regarded as a map $M\times R\rightarrow SU(2)$ and a gauge trans-
formation.

Figure 4

We remark that, by the compactness of $K_{1}$ , we have a constant $ C\sim$

such that

(8.1) $\{$

$|(d+A_{1})-(d+a)|<Ce^{t/C}$ ,

$|(d+A_{1})-(d+c_{1})|<Ce^{-t/C}$ ,
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for $A_{1}\in K_{1}$ . (Compare the decay estimate in next section.) A similar
estimate holds for $K_{2}$ and $K$ . Using (8.1) we can prove the following:

Lemma 8.2. If

$[A_{1}]\in U_{j_{1}}^{1}\cap U_{j_{1}’}^{1}$ ,

$[A_{2}]\in U_{j_{2}}^{1}\cap U_{j_{2}’}^{2}$ ,

$g_{1}\in V_{k_{1}}\cap V_{k_{2}}’$ ,

$g_{2}\in V_{k_{2}}\cap V_{k_{2}}’$ ,

then there exists a gauge transformation $\hat{g}$, such that

$\hat{g}^{*}\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}’([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)(t, x)=$

$\overline{\Phi}_{j_{1}’,j_{2}’,k_{1}’,k_{2}’}’([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)(t, x)$ ,

if $t\not\in[S+S_{1}/3, S+2S_{1}/3]\cup[S+S_{1}+S_{2}/3, S+S_{1}+2S_{2}/3]$ , and

$|\hat{g}^{*}\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}’-\overline{\Phi}_{j_{1}’,j_{2}’,k_{1}’,k_{2}’}’|<e(S_{1}, S_{2})$ .

Here and hereafter, we put

$e(S_{1}, S_{2})=C$ $\exp(-\min\{S_{1}, S_{2}\}/C)$ .

Choose an embedding $U(1)\subset SU(2)$ such that $a_{t}^{0}$ is invariant by
the image. By Lemma 8.2 and the construction, we can apply the par-
tition of unity associated to the coverings $\{U_{j}^{1}\}$ and $\{U_{j}^{2}\}$ to prove the

following:

Lemma 8.3. There exists

$\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}’’$ : $U_{j_{1}}^{1}\times V_{k_{1}}\times V_{k_{2}}\times U_{j_{2}}^{2}\times[T, \infty)^{2}\times R\rightarrow A_{\ell,\delta}(a, b)$ ,

such that

(8.3.2) $|\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}^{JJ}-\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}’|<e(S_{1}, S_{2})$ ,

(8.3.2) the maps $\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}’’$ can be patched together to give a map

$\Phi_{K_{1},K,K_{2}}’$ : $\overline{K}_{1}\times_{SU(2)}\frac{SU(2)\times SU(2)}{U(1)}\times_{SU(2)}\overline{K}_{2}\times[T, \infty)^{2}\times R$

$\rightarrow B_{\ell,\delta}(a, b)$ .

By (8.1) we have:
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Lemma 8.4. Let $[A]\in Im\Phi_{K_{1},K,K_{2}}’$ then

$|F^{A}+\overline{*}_{\sigma}F^{A}-grad_{a_{t}}f\wedge dt-*_{\sigma}grad_{a_{t}}f|_{L_{\ell}^{2}}<e(S_{1}, S_{2})$ .

We put

$|u|_{\ell,S_{1},S_{2},S}=|u|_{L_{\ell}^{2}(M\times R)}+|u|_{L_{\ell}^{1}(M\times S,S+S_{1}+S_{2})}$ .

Then we have also

Lemma 8.4’. Let $[A]\in Im\Phi_{K_{1},K,K_{2}}’$ then

$|F^{A}+\overline{*}_{\sigma}F^{A}-grad_{a_{t}}f\wedge dt-*_{\sigma}grad_{a_{t}}f|\ell,s_{1},s_{2},s<e(S_{1}, S_{2})$ .

We shall apply Taubes’ method as in [FU], to deform $\Phi_{K_{1},K,K_{2}}’$ to

a map to A4 $(a, b)$ . For this purpose, the following estimate is essential.

Lemma 8.5. There exists $\lambda>0$ independent of $S_{i}$ such that if
$A\in Im\Phi_{K_{1},K,K_{2}}’$ , $u\in\Omega_{\ell}^{2}$ we have

$|D_{A}D_{A}^{*}u|_{L_{\ell-2}^{2}}>\lambda|u|_{L_{\ell}^{2}}$ .

This lemma is an immediate consequence of Lemma 3.9 and Remark
4.6. Furthermore since $a\rightarrow grad_{a}f$ is a $C^{2}$ map with respect to the $L_{\ell}^{2}$

norm for large $\ell$ , it follows that

$grad_{a_{t}+u_{t}}f=grad_{a_{t}}f+(Hess_{a_{t}}f)(u_{t})+E(a, u)$

with

$|E(a, u)|_{L_{\ell}^{2}}\leq C|u|_{\ell}^{2}$

$|E(a, u)|_{l,S_{1},S_{2},S}\leq C|u|_{\ell,S_{1},S_{2},S}^{2}$ .

Hence we can apply the argument of [FU] pp.132-139, and obtain

Lemma 8.6. There exists $T_{0}$ , and $\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}$ : $ U_{j_{1}}^{1}\times V_{k_{1}}\times V_{k_{2}}\times$

$U_{j_{2}}^{2}\times[T_{0}, \infty)\times R\rightarrow\overline{M}(a, b)$ such that

(8.6.1) $\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}$ can be patched together to give a map

$\Phi_{K_{1},K,K_{2}}$ : $\overline{K}_{1}\times_{SU(2)}\frac{SU(2)\times SU(2)}{U(1)}\times_{SU(2)}\overline{K}_{2}\times[T, \infty)^{2}\times R$

$\rightarrow\sqrt{}\backslash \Lambda(a, b)$ .
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(8.6.2) $|\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}^{JJ}-\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}|_{C^{1},\ell,S_{1},S_{2},S}<e(S_{1}, S_{2})$ .

The definition of the norm in (8.6.2) is as follows. $ U_{j_{1}}^{1}\times V_{k_{1}}\times V_{k_{2}}\times$

$U_{j_{2}}^{2}\times[T_{0}, \infty)\times R$ has a natural Riemannian metric. We define a norm

on $A_{\ell,\delta}(a, b)$ by using $(\ell, S_{1}, S_{2}, S)$ -norm. Then the norm in (8.6.2) is

the $C^{1}$ -norm with respect to this metric and norm.
Note that the linear equation solved in [FU] pp.132-139 is gauge

invariant. (8.6.1) follows from this fact.
We shall prove that the map $\Phi_{K_{1},K,K_{2}}$ is an immersion, surjective

to the set of standard model, and that injective.
Let $g_{1}$ , $g_{2}\in V_{k_{1}}$ , $V_{k_{2}}$ , and $\Pi\subset T_{(g_{1},g_{2})}(V_{k_{1}}, V_{k_{2}})$ be an orthonormal

complement of $T_{(g_{1},g_{2})}$ $(U(1). (g_{1}, g_{2}))$ .

Lemma 8.7. There exists $C$ independent of $S_{1}$ , $S_{2}$ such that, for
each $ v\in\Pi$ we have:

$|\Phi_{j_{1},j_{2},k_{1},k_{2}*}’(v)|_{\ell,s_{1}s_{2},s}\geq C|v|$ ,

for sufficiently large $S_{i}$ . Here we choose $[A_{i}]\in U_{j_{i}}^{i}$ , $S_{i},S$ and regard

$\Pi\subset T_{([A_{1}],g_{1},g_{2},[A_{2}],S_{1},S_{2},S)}(U_{j_{1}}^{1}\times V_{k_{1}}\times V_{k_{2}}\times U_{j_{2}}^{2}\times[T, \infty)^{2}\times R)$ .

Remark 8.8. The lemma does not hold if we replace the $||\ell,s_{1},s_{2}$ , s-
norm by $L_{\ell}^{2}$ -norm, since $c_{1}$ and $c_{2}$ are reducible.

Proof. For simplicity, we put $g_{1}=g_{2}=1$ . Set

$A=\overline{\Phi}_{j_{i},j_{2},k_{1},k_{2}}’([A_{1}], 1,1, [A_{2}], S_{1}, S_{2}, S)$

$v=(\overline{v}_{1}, \overline{v}_{2})\in su(2)\oplus su(2)$ .

Define $v_{i}$ : $R\rightarrow su(2)$ , by

$v_{i}(t)=\frac{d}{ds}J_{k_{i}}^{i}(1+s\overline{v}_{i}, t)|_{s=0}$

Then by definition

(8.9) $\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}*}’(v_{1}, v_{2})=\{$

$(d^{A_{1}}v_{1})(x, t-S)$

for $t<S$

$(d^{A_{2}}v_{2})(x, t -S_{1}-S_{2}-S)$

for $t>S+S_{1}+S_{2}$

0 otherwise.

Let the differential form in the above formula be denoted by $w$ . Lemma
8.7 is a consequence of the following:
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Lemma 8.10. There exists $C$ such that

$|w-d^{A}u|_{\ell,S_{1},S_{2},S}>C(|v_{1}|+|v_{2}|)$

for each $u\in\Omega_{\ell+1}^{0}$ and sufficiently large $S_{i}$ .

(In the statement we omit $\delta$ , since $a$ and $b$ are irreducible.)

Proof. We prove by construction. Then we assume that we have
$\overline{v}_{i}^{n}\in su(2)$ with $|\overline{v}_{i}^{n}|=1$ , and $ S_{i}^{n}\rightarrow\infty$ , $[A_{i}^{n}],u^{n}$ such that

$\lim_{n\rightarrow\infty}|w^{n}-d^{A_{i}^{n}}u^{n}|_{\ell,s_{1}^{n},s_{2}^{n},s}=0$ .

Since $[A_{i}^{n}]$ and $\overline{v}_{i}^{n}$ move on compact sets, we may assume that they are
independent of $n$ . Hence we have

$ S_{i}^{n}\rightarrow\infty$

$|w^{n}-d^{A^{n}}u^{n}|_{\ell,s_{1}^{n},s_{2}^{n},s}\rightarrow 0$ .

Here $w^{n}$ is as in (8.9) with $S_{i}=S_{i}^{n}$ , and

$A^{n}=\overline{\Phi}_{j_{1},j_{2},k_{1},k_{2}}’([A_{1}], 1,1, [A_{2}], S_{1}^{n}, S_{2}^{n}, S)$ .

(Since everything is invariant by the $R$ action, we may assume that $S$

is independent of $n.$ ) By construction, there exists $\alpha$ independent of $n$

such that

(8.11)

$|d+A^{n}-d|_{C^{\ell’}}<Ce^{-\beta_{1}(t)/C}$ if $ t\in S+\alpha$ , $[S+S_{1}^{n}-\alpha]$

$|d+A^{n}-d|_{C^{\ell’}}<Ce^{-\beta_{2}(t)/C}$ if $t\in[S+S_{1}^{n}+\alpha, S+S_{1}^{n}+S_{2}^{n}-\alpha]$ ,

where

$\beta_{1}(t)=d(t, \partial[S+\alpha, S+S_{1}^{n}-\alpha])$

$\beta_{2}(t)=d(t, \partial[S+S_{1}^{n}+\alpha, S+S_{1}^{n}+S_{2}^{n}-\alpha])$ .

Hence, by (8.9), we have, for each $\alpha’>\alpha$ , that

$|du^{n}|_{L_{\ell}^{1}(S+\alpha’.S+S_{1}^{n}+S_{2}^{n}-\alpha’)}<\epsilon_{n}+Ce^{-\alpha’/C}$ ,
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where $\epsilon_{n}\rightarrow 0$ . Therefore there exists $s_{1}^{n}$ , $s_{2}^{n}\in su(2)$ such that

$|u^{n}-s_{1}^{n}|_{C^{p\prime}}(x, t)<C\epsilon_{n}+Ce^{-\beta_{1}(t)/C}$

if $t\in[S+\alpha’, S+S_{1}^{n}-\alpha’]$

$|u^{n}-s_{2}^{n}|_{C^{\ell’}}(x, t)<C\epsilon_{n}+Ce^{-\beta_{2}(t)/C}$

if $t\in[S+S_{1}^{n}+\alpha’, S+S_{1}^{n}+S_{2}^{n}-\alpha’]$ .

(This is the step we can not work with $L^{2}$ norm.)

Then patching $u$ with $s_{1}^{n}$ and $s_{2}^{n}$ , we have $u_{1}^{n}$ , $u_{2}^{n}$ , $ u_{3}^{n}\in L_{\ell+1}^{2}(M\times$

$R$ , $su(2))$ such that

(8.12.1) $|d^{A_{1}}(v_{1}-u_{1}^{n})|_{C^{\ell’}}<C\epsilon_{n}$

(8.12.2) $|d^{A_{2}}(v_{2}-u_{2}^{n})|_{C^{\ell’}}<C\epsilon_{n}$

(8.12.3) $|d^{a_{t}^{0}}u_{3}|_{C^{p\prime}}<C\epsilon_{n}$

(8.12.1) $|u_{1}^{n}(t, x)-s_{1}^{n}|_{C^{\ell’}}<Ce^{-t/C}$

(8.12.1) $|u_{2}^{n}(t, x)-s_{2}^{n}|_{C^{p\prime}}<Ce^{t/C}$

(8.12.1) $|u_{3}^{n}(t, x)-s_{2}^{n}|_{C^{\ell!}}<Ce^{-t/C}$

(8.12.7) $|u_{3}^{n}(t, x)-s_{1}^{n}|_{C^{\ell!}}<Ce^{t/C}$

( $u_{1}^{n},u_{2}^{n}$ , and $u_{3}^{n}$ are constructed from the restrictions of $u^{n}$ to $(-\infty,$ $S+$

$S_{1}^{n}/3]$ , $[S+S_{1}^{n}+2S_{2}^{n}/3, \infty)$ , $[S+2S_{1}^{n}/3, S+S_{1}^{n}+S_{2}^{n}/3]$ , respectively.)

We may assume that $\lim s_{1}^{n}=s_{1}$ and $\lim s_{2}^{n}=s_{2}$ . Therefore, by
(8.12.3), (8.12.6),(8.12.7) and the fact $G_{a_{t}^{0}}=U(1)$ imply that $ s_{1}=s_{2}\in$

$u(1)\subset su(2)$ . ($u(1)$ is a Lie algebra of $G_{a_{y}^{0}}=U(1).$ ) Hence, using the

fact that $(\overline{v}_{1}, \overline{v}_{2})$ is perpendicular to $u(1)\subset su(2)\oplus su(2)$ , we can find
$t_{0}$ such that

(8.13) $|v_{1}-u_{1}^{n}|(x, t_{0})>C$

or
$|v_{2}-u_{2}^{n}|(x, -t_{0})>C$ ,

for some $C$ independent of $n$ . Suppose, for example (8.13) holds. By
scaling, we can find $(u^{n})’$ such that

$\infty>C_{2}>|(u^{n})’|(x, t_{0})>C_{1}>0$

$|d^{A_{1}}(u^{n})’|_{C^{\ell}}<\epsilon_{n}\rightarrow 0$ .
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Therefore, by taking a subsequence, $(u^{n})’$ converges to $u’$ such that
$d^{A_{1}}u’=0$ , with respect to the compact uniform topology. This contra-
dicts the irreducibility of $A_{1}$ . The proof of Lemma 8.10 is now complete.

An estimate similar to Lemma 8.7 for $TK_{i}$ direction and $[T, \infty)^{2}\times R$

direction is easier. Then, combined with (8.6.2), they imply:

Lemma 8.14. If $V$ is a tangent vector of

$\overline{K}_{1}\times_{SU(2)}\frac{SU(2)\times SU(2)}{U(1)}\times_{SU(2)}\overline{K}_{2}\times[T, \infty)^{2}\times R$ ,

at $([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)$ , then we have

$|\Phi_{K_{1},K,K_{2},*}(V)|_{\ell,S_{1},S_{2},S}>C|V|$ .

Lemma 8.14 implies that $\Phi_{K_{1},K,K_{2}}$ is of maximal rank.

Remark 8.15. By H\"older’s inequality, we have

$||\ell,s_{1},s_{2},s<C(S_{1}+S_{2})||_{L^{2}}$ .

Hence, Lemma 8.14 implies

$|\Phi_{K_{1},K,K_{2}*}(v)|_{L^{2}}>\frac{C|v|}{S_{1}+S_{2}}$ .

It seems that this reflects the fact that the sectional curvature $K$ of
$\mathcal{M}(a, b)$ at $\Phi(A_{1}, g_{1}, g_{2}, A_{2}, S_{1}, S_{2}, S)$ is estimated as $|K|<C(S_{1}+S_{2})^{2}$ .

Lemma 8.16. For each $C$ , there exist $ T,S,\epsilon$ , such that if $[A]$ is $a$

standard model of type $(K_{1}, K, K_{2}, T, \epsilon, C)$ , then

$[A]\in\Phi_{K_{1},K,K_{2}}(\overline{K}_{1}\times c_{c_{1}}\overline{K}\times c_{c_{2}}\overline{K}_{2}\times[S, \infty)^{2}\times R)$ .

Proof. The definition of the standard model implies that there exist
$[A_{1}],[A_{2}],g_{1},g_{2},S_{1},S_{2},S$ such that

$|\overline{\Phi}_{i_{1},i_{2},k_{1},k_{2}}’([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}S_{2}, S)-A|_{L_{\ell}^{2}}<e(S_{1}, S_{2})$ .

Here $A$ is a representative of $A$ , and $A_{j}\in U_{i_{j}}$ , $g_{j}\in V_{i_{j}}$ . Let $\ell$ : $[0, 1]\rightarrow$

$A_{\ell,\delta}(a, b)$ be the straight line connecting them. The length of $\ell$ is smaller
than $e(S_{1}, S_{2})$ . By [FU] pp. 132-139, we can deform this path to a path $\ell’$

in $\overline{\mathcal{M}}(a, b)$ connecting $\overline{\Phi}_{i_{1},i_{2},k_{1},k_{2}}([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)$ and $A$ . The
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length of $\ell’$ is also estimated by $e(S_{1}, S_{2})$ . By using Lemma 8.14, we can

lift this path to $\overline{\ell}:[0,1]\rightarrow\overline{K}_{1}\times_{G_{c_{1}}}\overline{K}\times_{G_{c_{2}}}\overline{K}_{2}\times[T, \infty)^{2}\times R$ such that

$\overline{\ell}(0)=([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)$ . Therefore

$\Phi_{K_{1},K,K_{2}}(\overline{\ell}(1))=[A]$ ,

as required.

Finally we shall prove that $\Phi_{K_{1},K,K_{2}}$ is injective.

Lemma 8. 17. If

$\Phi_{K_{1},K,K_{2}}([A_{1}], g_{1}, g_{2}, [A_{2}],S_{1}, S_{2}, S)=$

$\Phi_{K_{1},K,K_{2}}([A_{1}’], g_{1}’, g_{2}’, [A_{2}’], S_{1}’, S_{2}’, S’)$

then

$|A_{\dot{x}}-A_{i}’|\ell,s_{1},s_{2},s<e(S_{1}, S_{2})$

$|S_{i}-S_{i}’|<e(S_{1}, S_{2})$

$|S-S’|<e(S_{1}, S_{2})$ ,

and there exists $h\in SU(2)$ such that

$|hg_{i}-g_{i}’|<e(S_{1}, S_{2})$ .

Proof. The proof is similar to the proof of Lemma 8.7. Suppose
$A_{j}\in U_{i_{j}}$ , $A_{j}’\in U_{i_{j}’}$ , $g_{j}\in V_{k_{j}}$ , $g\in V_{k_{j}’}$ . The proof of the statement on $S_{i}$

and $S$ is easy, then we assume that $S_{i}=S_{i}’$ , $S=S’$ , for simplicity. By
assumption, there exists a gauge transformation $\hat{g}$ : $M\times R\rightarrow SU(2)$

such that

$\hat{g}^{*}\overline{\Phi}_{i_{1},i_{2},k_{1},k_{2}}([A_{1}], g_{1}, g_{2},[A_{2}], S_{1}, S_{2}, S)=$

$\overline{\Phi}_{i_{1}’,i_{2}’,k_{1}’,k_{2}’}([A_{1}’], g_{1}’, g_{2}’, [A_{2}’], S_{1}, S_{2}, S)$ .

Then

$|\hat{g}^{*}\overline{\Phi}_{i_{1},i_{2},k_{1},k_{2}}’([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)-$

$\overline{\Phi}_{i_{1},i_{2}’,k_{1}’,k_{2}’}’,([A_{1}’], g_{1}’, g_{2}’, [A_{2}’], S_{1}, S_{2}, S)|\ell,s_{1},s_{2},s<e(S_{1}, S_{2})$ .

Therefore, we have

$|d\hat{g}|_{C^{\ell}}<\{$

$Ce^{-\beta_{1}(t)/C}$ if $t$ $\in[S+\alpha, S+S_{1}-\alpha]$

$Ce^{-\beta_{2}(t)/C}$ if $t$ $\in[S+S_{1}+\alpha, S+S_{1}+S_{2}-\alpha]$ .
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Here $\beta_{i}$ is as in (8.11). Hence we have $g_{i}^{0}\in SU(2)$ such that

$|\hat{g}-g_{1}^{0}|<Ce^{-\beta_{1}(t)/C}$ if $t$ $\in[S+\alpha, S+S_{1}-\alpha]$

$|\hat{g}-g_{2}^{0}|<Ce^{-\beta_{2}(t)/C}$ if $t\in[S+S_{1}+\alpha, S+S_{1}+S_{2}-\alpha]$ .

Hence as in the proof of Lemma 8.10, we obtain $\hat{g}_{i}$ : $M\times R\rightarrow SU(2)$ ,

$i=1,2,3$ , such that

(8.18.1) $|(\hat{g}_{1}J_{k_{1}}^{1}(g_{1}, \cdot))^{*}A_{1}-J_{k_{1}}^{1},(g_{1}’, \cdot)^{*}A_{1}’|_{L_{p}^{2}}<e(S_{1}, S_{2})$

(8.18.2) $|(\hat{g}_{2}J_{k_{2}}^{2}(g_{2}, \cdot))^{*}A_{2}-J_{k_{2}’}^{2}(g_{2}’, \cdot)^{*}A_{2}’|_{L_{\ell}^{2}}<e(S_{1}, S_{2})$

(8.18.3) $|\hat{g}_{3}^{*}a_{t}^{0}-a_{t}^{0}|_{L_{\ell}^{2}}<e(S_{1}, S_{2})$

and

(8.18.4) $|\hat{g}_{1}(x, t)-g_{1}^{0}|_{C^{\ell}}<Ce^{-t/C}$

(8.18.5) $|\hat{g}_{2}(x, t)-g_{2}^{0}|_{C^{\ell}}<Ce^{t/C}$

(8.18.6) $|\hat{g}_{3}(x, t)-g_{2}^{0}|_{C^{p}}<Ce^{-t/C}$

(8.18.7) $|\hat{g}_{3}(x, t)-g_{1}^{0}|_{C^{\ell}}<Ce^{t/C}$

(8.18.3),(8.18.6),(8.18.7) and $G_{a_{t}^{0}}=U(1)$ implies that we have $h\in U(1)$

such that
$|g_{i}^{0}-h|<e(S_{1}, S_{2})$ .

Hence (8.18.1),(8.18.2),(8.18.4),(8.18.5) and the irreducibility of $A_{i}$ , $A_{i}’$

imply

$|g_{i}’-hg_{i}|<e(S_{1}, S_{2})$

$|A_{i}-A_{\dot{x}}’|_{L_{p}^{2}}<e(S_{1}, S_{2})$ .

The proof of Lemma 8.17 is now complete.

Lemma 8.19. For sufficiently large $T$ , the map $\Phi_{K_{1},K,K_{2}}$ is in-

jective.

Proof. Let $A_{i}$ , $A_{i}’$ , $g_{i}$ , $g_{i}’$ , $S_{i}$ , $S_{i}’$ , $S$ , $S’$ be as in the proof of Lemma
8.17. Replacing $g_{i}$ by $hg_{i}$ , we may assume that $|g_{i}-g_{i}’|<e(S_{1}, S_{2})$ .

Hence we can find a path $\ell$ : $[0, 1]\rightarrow\overline{K}_{1}\times_{G_{c_{1}}}\overline{K}\times_{G_{c_{2}}}\overline{K}_{2}\times[T, \infty)^{2}\times$

$R$ connecting $([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)$ and $(A_{1}’, g_{1}\prime, g_{2}\prime, A_{2}’, S_{1}’, S_{2}’, S’)$ .

The length of $\ell$ is smaller than $e(S_{1}, S_{2})$ . We may assume that $A_{j}$ and
$A_{j}’$ are in the same $U_{j_{i}}^{i}$ , and that $g_{j}$ and $g_{j}’$ are in the same $V_{k_{j}}$ . Therefore

the map

$\overline{\ell}=\overline{\Phi}_{U_{j_{1}}^{1},U_{j_{2}}^{2},V_{j_{1}},V_{j_{2}}}\circ\ell$ : $[0, ^{1}]\rightarrow\overline{\mathcal{M}}(a, b)$
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is well defined. Note $\overline{\ell}(0)=\overline{\ell}(1)$ and the length of $\overline{\ell}$ with respect to
the $||p,S_{1},S_{2}$ -norm is smaller than $e(S_{1}, S_{2})$ . Hence we can find $H$ :

$D^{2}\rightarrow A_{\ell,\delta}(a, b)$ such that $H|_{\partial D^{2}}=\overline{\ell}$ . By [FU] pp.132-139, we can

deform $H$ to $H’$ : $D^{2}\rightarrow\overline{\mathcal{M}}_{\ell,\delta}(a, b)$ such that $H=H’$ on $\partial D^{2}$ . Since

the diameter of $H’(D^{2})$ is smaller than $e(S_{1}, S_{2})$ , we can lift $H’$ to
$\overline{K}_{1}\times_{G_{c_{1}}}\overline{K}\times_{G_{c_{2}}}\overline{K}_{2}\times[T, \infty)^{2}\times R$ , by Lemma 8.14. We conclude $\ell(0)=$

$\ell(1)$ . The proof of Lemma 8.19 is complete.

Thus, we have proved that the set of the standard model of type
$(K_{1}, K, K_{0}, T, \epsilon, C)$ in $\Lambda 4’(a, b)$ is parametrized by

$\overline{K}_{1}\times_{SU(2)}\frac{SU(2)\times SU(2)}{U(1)}\times_{SU(2)}\overline{K}_{2}$ .

We divide it by $G_{a}\times G_{b}=\{\pm 1\}\times\{\pm 1\}$ and obtain

$\overline{K}_{1}X_{SU(2)}\frac{SO(3)\times SO(3)}{U(1)}\times_{SU(2)}\overline{K}_{2}$ .

This proves Theorem 7.6, in our case. The proof of the general case is
the same, but the notations will be more complicated.

Remark 8.20. It seems that the proofs of Lemmas 8.17 and

8.19 reflect the fact that the injectivity radius of $\overline{\mathcal{M}}’(a, b)$ at
$\Phi_{K_{1},K,K_{2}}([A_{1}], g_{1}, g_{2}, [A_{2}], S_{1}, S_{2}, S)$ is larger than $C(\frac{1}{|S_{1}|+|S_{2}|})$ .

\S 9. Decay estimate

In this section we shall prove Theorem 7.5’. This theorem corre-
sponds to [FU] \S 9. There Weitzenbeck formula was used for the proof.

We can not use it here because, in our case, $M$ is not $S^{3}$ and because
we perturbed the equation.

Lemma 9.1. There exist $\epsilon,\lambda$ and $C$ independent of $T$ such that

if $d+a_{t}$ is a $su(2)$ connection on $M\times[-T, T]$ without $dt$ component,
$c\in Fl$ and if

(9.2.1) $|a_{t}-c|_{L_{l}^{2}}<\epsilon$

(9.2.1) $\partial a_{t}=*_{\sigma}F^{a_{t}}-grad_{a_{t}}f$

$\overline{dt}$

(9.2.3) $d_{c}^{*}a_{0}=0$ ,
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then we have

(9.3) $|a_{t}-c|_{L_{\ell}^{2}}\leq Ce^{-\lambda\beta_{T}(t)}$ .

Here $\beta_{T}(t)=\inf\{T-t, T+t\}$ .

Proof. We put $u(t)=a_{t}-c$ . We have

$*_{\sigma}F^{c+u(t)}-grad_{c}f$

$=*_{\sigma}d_{c}u(t)-Hess_{c}f(u(t))+E(u(t))$ ,

with

(9.4) $|E(u(t))|_{L_{p}^{2}}\leq C|u(t)|_{L_{\ell}^{2}}^{2}$ ,

for sufficiently large $\ell$ . Decompose $u(t)=\alpha(t)+\beta(t)$ with

$\{$

$d_{c}^{*}\alpha(t)=0$

$\beta(t)\in Imd_{c}$

Then we have

(9.5.1) $|\alpha(t)|_{L_{p}^{2}}<C\epsilon$ , $|\beta|_{L_{\ell}^{2}}<C\epsilon$ ,

(9.5.2) $\frac{\partial\alpha(t)}{\partial t}=*_{\sigma}d_{c}\alpha(t)-Hess_{c}f(\alpha(t))+E_{1}(\alpha(t), \beta(t))$

(9.5.3) $\frac{\partial\beta(t)}{\partial t}=E_{2}(\alpha(t), \beta(t))$ ,

with

(9.6) $|E_{i}(\alpha(t), \beta(t))|_{L_{p}^{2}}<C(|\alpha(t)|_{L_{p}^{2}}+|\beta(t)|_{L_{\ell}^{2}})^{2}$

We decompose

$\alpha(t)=\alpha_{+}(t)+\alpha_{-}(t)$ ,

where $\alpha_{+}$ , $\alpha_{-}$ belong to the spaces spanned by positive and negative
eigenspaces $of*_{\sigma}d_{c}-Hess_{c}$ $f$ , respectively. (Note that by Lemma 2.8,
zero is not an eigenvalue $of*_{\sigma}d_{c}-Hess_{c}f.$ ) We put $g\pm(t)=|\alpha\pm(t)|_{L^{2}}$ ,
$h(t)=|\beta(t)|_{L^{2}}$ . By (9.2.2) and (9.4), we have

$|E_{1}(\alpha(t), \beta(t))|_{L^{\infty}}<C(g+(t)+g-(t)+h(t))^{2}$ .
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Therefore, we have

(9.7.1) $\frac{dg_{+}}{dt}\geq\lambda g_{+}-C_{0}(g_{-}+h)^{2}$ ,

(9.7.2) $\frac{dg-}{dt}\leq-\lambda g-+C_{0}(g_{+}+h)^{2}$ ,

(9.7.3) $|\frac{dh}{dt}|\leq C_{0}(g_{+}+g-+h)^{2}$ .

Hence, by elliptic regularity, it suffices to show the following:

Sublemma 9.8. There exists a constant $C$ and $\epsilon$ depending only
on $C_{0}$ and $\lambda$ and is independent of $T$ such that if $g_{+},g-$ and $h$ be non-
negative functions satisfying (9.7.1)-(9.7.3) and

(9.7.4) $|g\pm(t)|<\epsilon$ , $|h(t)|<\epsilon$ ,

(9.7.5) $h(0)=0$ ,

then

(9.9) $|g\pm(t)|$ , $|h(t)|<Ce^{-\lambda\beta_{T}(t)}$ .

Proof First we replace the assumption (9.7.5) by $|h(0)|<\delta$ , and
prove

$|g\pm(t)|$ , $|h(t)|<C(e^{-\lambda\beta_{T}(t)}+\delta)$ .

when $\delta^{2}T<\mu_{0}$ , $\epsilon T<\mu_{0}$ for some $\mu_{0}$ depending only on $C_{0}$ and $\lambda$ . For
this purpose we prove

$(9.10.2n)$ $|h|<C_{0}(\epsilon^{n}+\epsilon e^{-\lambda\beta\tau(t)}+\delta)$

$(9.11.2n.\pm)$ $|g\pm|<C_{0}(\epsilon^{7L}+\epsilon e^{-\lambda\beta_{T}(t)}+\delta)$

by an induction on $n$ . (Here $n$ is a half integer.) Assume $(9.10.2n)$ . Let
$t_{0}\in[-T, T]$ . We put

$\hat{g}_{+}(t)=e^{-\lambda(t-t_{0})}g_{+}(t)$ .

Then, by (9.7.1),(9.7.4),(9.10.2n), and $(9.11.2n -1,\pm)$ , we have:

$\epsilon e^{-\lambda(T-t_{O})}\geq\hat{g}+(T)$

$\geq g_{+}(t_{0})-\int_{t_{O}}^{T}C_{0}^{3}e^{-\lambda(t-t_{0})}(\epsilon^{n-1/2}+\epsilon e^{-\lambda\beta_{T}(t)}+\delta)^{2}dt$ .
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$(9.11.2n,+)$ follows. For the proof of $(9.11.2n,-)$ , we use $\hat{g}_{-}$ $=$

$e^{\lambda(t-t_{0})}g_{-}(t)$ in a similar way.
It is easy to see that $(9.10.2n)$ and $(9.11.2n)$ imply $(9.10.2n+1)$ .

For general $T$ , we proceed as follows. Apply the first step to $T_{0}=$

$\mu_{0}/\epsilon$ , and $\delta=0$ . We have $h(3T_{0}/4)<C_{0}e^{-T_{0}\lambda/4}$ . Then we apply the
first step to $g\pm(t-3T_{0}/4)$ , $h(t-3T_{0}/4)$ and $T=T_{0}$ . We obtain

$\sup_{0<t<4T_{0}/3}|g\pm(t)|<C_{0}e^{-5T_{0}\lambda/12}$

$\sup_{0<t<4T_{0}/3}|h(t)|<C_{0}e^{-5T_{0}\lambda/12}$ ,

if $3T_{0}/2<T$ . And similarly for $-4T_{0}/3<t<0$ . Hence we can apply
the first step to $T$ $=4T_{0}/3$ . Iterating this, we obtain the desired result.
The proof of Lemma 9.1 is now complete.

Lemma 9.12. For each $\delta$ , $C$ , there exists $\epsilon$ such that if $ a\in$

$A_{\ell}(M)$ ,

$|*_{\sigma}F^{a}-grad_{a}f|_{L_{\ell}^{2}}<\epsilon$

$|a|_{L_{\ell}^{2}}<C$ ,

then there exists $c\in Fl$ and $g\in \mathcal{G}_{\ell+1}$ such that

$|g^{*}a-c|_{L_{\ell}^{2}}<\delta$ .

Proof. If not, there exists $a_{i}\in A_{l}(M)$ and $\delta>0$ , such that

(9.13.1) $\lim_{i\rightarrow\infty}|*_{\sigma}F^{a_{i}}-grad_{a_{i}}f|_{L_{\ell}^{2}}=0$ ,

(9.13.2) $|a_{i}|_{L_{p}^{2}}<C$ ,

(9.13.3) $|g_{i}^{*}a_{i}-c|_{L_{\ell}^{2}}>\delta$

for each $i$ , $g_{i}\in G_{\ell+1}$ , and $c\in Fl$ . (9.13.2) implies that, by taking
a subsequence, $a_{i}$ converges to an element $a_{\infty}$ of $A_{\ell-1,\delta}(a, b)$ . Then,

(9. 13. 1) implies that

$|*_{\sigma}F^{a_{\infty}}-grad_{a_{\infty}}f|_{L_{\ell}^{2}}=0$ .

Hence there exists $g_{i}\in \mathcal{G}_{\ell+1}(M)$ and $c\in Fl$ such that $g_{i}^{*}a_{i}$ converges to
$c$ in $A_{\ell-1}(M)$ . By replacing $g_{i}$ if necessary, we may assume that

(9.14) $d_{c}^{*}(g_{i}^{*}a_{i}-c)=0$ .
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(See $FU.$ ) By (9.13.1) we have

(9.15) $\lim_{i\rightarrow\infty}|*_{\sigma}F^{g_{i}^{*}a_{i}}-grad_{g_{i}^{*}a_{i}}f|_{L_{p}^{2}}=0$ .

By (9.14),(9.15), $\lim|g_{i}^{*}a_{i}-c|_{L_{\ell-1}^{2}}=0$ , and an elliptic estimate, we have

(9.16) $\lim_{i\rightarrow\infty}|g_{i}^{*}a_{i}-c|_{L_{\ell}^{2}}=0$ .

(9.16) contradicts (9.13.3).

Using this lemma, we can improve Lemma 9.1 as follows.

Lemma 9.17. There exists $ T_{0},\epsilon,\lambda$ , and $C$ , such that if $d+a_{t}$ be
a $su(2)$ -connection on $M\times[-T, T]$ without $dt$ component, and if

(9.18.1) $T>T_{0}$

(9.18.2) $\partial a_{t}=*_{\sigma}F^{a_{t}}-grad_{a_{t}}f$

$\overline{\partial t}$

(9.18.3) $|\frac{\partial a_{t}}{\partial t}|_{L_{\ell}^{2}}<\epsilon$ ,

then there exists $c\in Fl$ and $g\in \mathcal{G}_{\ell+1}(M)$ such that

(9.19) $|g^{*}a_{t}-c|_{L_{\ell}^{2}}<Ce^{-\lambda\beta_{T}(t)}$ .

Here $g$ is regarded as a gauge transformation on $M\times R$ independent of
the $R$ factor. The constants $ C,\epsilon,\lambda$ are independent of $T$ .

Proof Let $\epsilon_{0}$ be the number determined in Lemma 9.1, and $S$ be
a sufficiently large positive number determined later. Put $\delta=\epsilon_{0}/2S$ .

Then we obtain $\epsilon$ by Lemma 9.12. We may assume that $\epsilon<\delta$ . By
Lemma 9.12, we obtain $c\in Fl$ . Replacing $a_{t}$ by gauge transformation
independent of $t$ , we may assume that

(9.20.1) $|a_{0}-c|_{L_{\ell}^{2}}<\delta$

(9.20.2) $d_{c}^{*}(a_{0}-c)=0$ .

By (9.20.1),(9.18.3), and $2S\epsilon<\epsilon_{0}$ , we can apply Lemma 9.1 to $ M\times$

$[-S, S]$ , and obtain
$|a_{t}-c|_{L_{p}^{2}}<Ce^{-\lambda\beta_{S}(t)}$ .

Hence by taking $S$ sufficiently large, we have

(9.21.1) $|a_{3S/4}-c|_{L_{\ell}^{2}}<\epsilon_{0}/K$

(9.21.2) $|a_{-3S/4}-c|_{L_{\ell}^{2}}<\epsilon_{0}/K$ .
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Here $K$ is a sufficiently large positive number determined later. There-
fore there exists $g\in \mathcal{G}_{\ell+1}(M)$ such that

$|g-1|_{L_{p}^{2}}<C\epsilon_{0}/K$

$d_{c}^{*}(g^{*}a_{3S/4}-c)=0$

$|g^{*}a_{3S/4}-c|_{L_{p}^{2}}<C\epsilon_{0}/K$ .

Here $C$ depends only on $M$ . Hence we can apply Lemma 9.1 to
$g^{*}a_{t+3S/4}$ , on $M\times[-S, S]$ . By choosing $S$ sufficiently large, we obtain

$|g^{*}a_{t}-c|_{L_{\ell}^{2}}<C\epsilon_{0}/K$ ,

for $t$ $\in[0,4S/3]$ , provided $3S/2<T$ . By taking $K$ sufficiently large, we
have

$|a_{t}-c|_{L_{\ell}^{2}}<\delta$ ,

for $t$ $\in[0,4S/3]$ . By using (9.21.2) we have the same estimate for $ t\in$

$[-3S/4,0]$ . Hence we can apply Lemma 9.1 to $M\times[-4S/3,4S/3]$ if

$3S/2<T$ . Repeating this we obtain the lemma.

Lemma 9.22. There exists $\theta>0$ such that, if $[A]\in \mathcal{M}_{\delta}(a, b)$

with $\mu(a)\neq\mu(b)$ , and if $g^{*}A=d+a_{t}$ , where $d+a_{t}$ is a connection

without $dt$ factor, then we have

$\int_{M\times R}|\frac{\partial a_{t}}{dt}|^{2}dxdt>\theta$ .

Proof. By [F] pi22, the integral in the lemma is independent of $A$

but depends only on $a$ and $b$ . Hence the lemma follows from (2.8.1).

Proof of Theorem 7.5’. Fix $a$ , $b\in Fl$ . Put $k_{0}=\mu(a)-\mu(b)$ . We
shall prove that, for each $\mu(a)\geq\mu(c)\geq\mu(c’)\geq\mu(b)$ there exists $K_{c,c’}$ ,

such that the conclusion of Theorem 7.5 holds for

$\epsilon=\mathring{\frac{\epsilon(K_{a,c},,K_{c_{k},b})}{2^{k}}}\cdots$

$ T=\frac{T(K_{a,c_{0}},,K_{c_{k},b})}{2^{k}}\cdots$ .

The proof is by induction on $k$ . The first step is obvious, since $\overline{\mathcal{M}}^{J}(c, c’)$

is a finite set if $\mu(c)=\mu(c’)+1$ . Hence it is enough to show the last
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step of the induction. We assume that the last step is false. Then we

have $A_{i}\in\overline{\mathcal{M}}’(a, b)$ , such that

(9.23.1) $\sup|F^{A_{i}}|<\Lambda$ ,

(9.23.2) $[A_{i}]$ is unbounded in $\overline{\mathcal{M}}’(a, b)$ ,

(9.23.3) non of $A_{i}$ is a standard model.

Let $g_{i}$ be a gauge transform such that $g_{i}^{*}A_{i}=d+a_{t}^{i}$ has no $dt$ component.
We have

$\frac{da_{t}^{i}}{dt}=*_{\sigma}F^{a_{t}^{i}}-grad_{a_{t}^{i}}f$ .

If

$|\frac{\partial a_{t}^{i}}{dt}|_{L_{\ell}^{2}}<\epsilon$ ,

were true for each $t$ , then Lemma 9.17 would imply that $a_{t}^{i}=c$ for some
$c\in Fl$ . It would follow that $a=b$ . This is a contradiction. Hence there
exists $t_{i}^{1}$ such that

$|\frac{\partial a_{t_{i}^{1}}^{i}}{dt}|_{L_{\ell}^{2}}>\epsilon$ .

$t_{i}^{1}$
$t_{i}^{2}$

. $\ldots$ .
$t_{i}^{l.-1}$

$t_{i}^{l_{1}}$

Figure 5.

Lemia 9.24. There exists $L$ independent of $i$ , and there exist $T_{i}$ ,
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$t_{i}^{1}$ , $\ldots,t_{i}^{\ell_{i}}$ , such that

(9.24.1) $\ell_{i}<L$ ,

(9.24.2) $\lim T_{i}=\infty$ ,

(9.24.3) $|\frac{\partial a_{t}^{i}}{\partial t}|_{L_{\ell}^{2}}<\epsilon$

$if|t-t_{i}^{j}|>T_{i}$ for each $i$ ,

(9.24.4) $|t_{\dot{x}}^{j}-t_{i}^{j’}|>T_{i}$ if $j\neq j’$ .

Proof. The existence of the upperbound $L$ of $\ell_{i}$ independent of
$i$ is the essential part of the statement. Hence, if Lemma 9.24 is not
true, then, by taking a subsequence, we may assume that there exist
$t_{i}^{1}$ , $\cdots$ , $t_{i}^{\ell_{i}}\in R$ , $T_{i}$ such that (9.24.2),(9.24.4) and

(9.24.5) $\lim\ell_{i}=\infty$

(9.24.6) $|\frac{\partial a_{t_{i}^{j}}^{i}}{dt}|_{L_{p}^{2}}>\epsilon$

hold. By $|a_{t}|<\Lambda$ , and by Uhlenbeck’s theorem [FU] p117, we can find
$g_{i}^{j}\in \mathcal{G}_{\ell+1}(M)$ such that a subsequence of the connection

$t\mapsto g_{i}^{j*}a_{t-t_{i}^{j}}^{i}$ ,

converges to an element $d+a_{j,t}^{\infty}$ of $\lambda\Lambda(c_{j}, c_{j}’)$ , for fixed $j$ , (in $C^{2}$ topology

on any compact set.) Here $c_{j}$ , $c_{j’}\in Fl$ . By (7.24.6), we have $c_{j}\neq c_{j’}$ .

Hence by Lemma 9.22

$\int_{M\times R}|\frac{\partial a_{j,t}^{\infty}}{dt}|^{2}dt>\theta$ ,

for each $j$ . Therefore, Fatou’s lemma implies

$\lim_{i\rightarrow\infty}\int|\frac{\partial a_{t}^{i}}{\partial t}|^{2}dt$

$\geq\sum_{j=1}^{\infty}\int_{M\times R}|\frac{\partial a_{j,t}^{\infty}}{dt}dt|^{2}dt$

$=\infty$ .
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This contradicts the fact that

$\int|\frac{\partial a_{t}^{i}}{dt}|^{2}dt$

is independent of $i$ but depends only on $a$ and $b$ . The proof of the lemma
is complete.

By Lemma 9.24 and $|F^{a_{i}}|<\Lambda$ , we can take a subsequence such

that the following holds : $\ell_{i}=\ell$ is independent of $i$ : let $\hat{a}_{t}^{i,j}=a_{t-t_{i}^{j}}^{i}$ :

there exists $g_{i,j}$ such that $\lim_{i\rightarrow\infty}g_{i,j}^{*}\hat{a}_{t}^{i,j}$ converges to an element $a_{i}^{\infty,j}$

of $\Lambda 4(c_{j}’, c_{j}’’)$ uniformly on every compact set, for some $c_{j}’$ , $c_{j}’’$ . If $\ell=1$ ,

we can easily prove that $A_{i}$ is bounded in $\mathcal{M}’(a, b)$ . This contradicts

(9.23.2). On the other hand, by induction hypothesis, $\hat{a}_{t}^{\infty,j}$ is either an
element of $K_{c_{j}’,c_{j}’’}$ , or a standard model. Therefore, using Lemma 9.17

and (9.24.3), we can prove that $A_{i}$ is a standard model for large $i$ . This
contradicts (9.23.3). The proof of Theorem 7.5’ is now complete.

\S 10. Local action on the end of moduli space

Using the results in 8,9, we obtain charts $\Phi_{c}$ : $X(c)\rightarrow\overline{\mathcal{M}}’(a, b)$ for
each $c$ . As we pointed out in \S 7 these charts are not compatible. Then

we have to perturb them. Also, in order to extend bundles $\mathcal{L}_{i}^{(2)}$ to the
boundary, we have to examine its behaviour on the image of each chart.
For these purposes, it is useful to use the notion, local action of groups,
which is a generalization of one introduced by Cheeger-Gromov [CG].
They used the local action to study the end of Riemannian manifolds
with bounded curvature. In their case, a special kind of local action,
$F$-structure, (that is the local action of Torus,) arises, and the direction
of the orbits is the collapsed one. In our case, the curvature is not
bounded from above. (It might be bounded from below.) Hence the
group acting on the end is not necessary Abelian. (The group $SU(2)$

arises as well.) However the end is also collapsed and the collapsed
direction is homogeneous. (For example, in the case we studied in \S 8,
the collapsed direction is parametrized by SO(3) $\times SO(3)/S^{1}$ .

Before stating our result we shall discuss examples. First consider
the case, when $G_{a}=G_{b}=\{\pm 1\}$ , $G_{c}=G_{c’}=U(1)$ , $\mu(a)>\mu(c)>$

$\mu(c’)>\mu(b)$ . Choose a compact subset $K_{c,c’}$ of $\overline{\mathcal{M}}^{J}(c, c’)$ , consisting
of irreducible connections. Then, by Theorem 7.6, the intersection of
$\overline{\Lambda 4}^{J}(a, b)$ and a neighborhood of $K_{a,c}\times K_{c,c’}\times K_{c’,b}$ in $C\overline{\mathcal{M}}’(a, b)$ is
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diffeomorphic to

$G_{a}\backslash \overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,c’}\times c_{c’}\overline{K}_{c’,b}/G_{b}\times(T, \infty)^{2}$ .

On this set we can define an action of $U(1)\times U(1)=G_{c}\times G_{c’}$ by

$(h, h’)([x, y, z], t, s)=([xh, y, h’z], t, s)$ .

Note that $\overline{K}_{a,c}\rightarrow K_{a,c}$ is a principal $U(1)$ bundle, hence $U(1)$ acts on
$\overline{K}_{a,c}$ . As in \S 7, we have a map

$\Phi_{(c,c’),(c’)}$ : $G_{a}\backslash \overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,c’}\times c_{c’}\overline{K}_{c’,b}/G_{b}\times(T, \infty)^{2}$

$\rightarrow G_{a}\backslash \mathcal{M}’(a, c’)\times_{G_{c’}}\overline{K}_{c’,b}/G_{b}\times(T, \infty)$

$\Phi_{(c,c’),(c)}$ : $G_{a}\backslash \overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,c’}\times_{G_{c’}}\overline{K}_{c’,b}/G_{b}\times(T, \infty)^{2}$

$\rightarrow G_{a}\backslash \mathcal{M}’(a, c)\times_{G_{c}}\overline{K}_{c,b}/G_{b}\times(T, \infty)$

Let $Z_{2}$ , $Z_{1}$ be inverse images of $G_{a}\backslash \overline{K}_{a,c’}\times c_{c’}\overline{K}_{c’,b}/G_{b}\times(T, \infty)$ and
$G_{a}\backslash \overline{K}_{a,c}\times c_{c}\overline{K}_{c,b}/G_{b}\times(T, \infty)$ respectively. (See Figure 6.)
$G_{a}\backslash \overline{K}_{a,c’}\times_{G_{c’}}\overline{K}_{c’,b}/G_{b}\times(T, \infty)$ has a $U(1)$ action. This action is iden-

tified to the action on the second factor of $U(1)\times U(1)$ on $Z_{2}$ . Similarly

the $U(1)$ action of $G_{a}\backslash \overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,b}/G_{b}\times(T, \infty)$ is identified to the ac-
tion of the first factor of $U(1)\times U(1)$ on $Z_{1}$ . This is exactly the situation
of $T$-structure defined in [CG].

$\{1\}\times U(1)-\uparrow$

action

$)(c’)(W_{2})$

$\left(c,c & \prime\right)\times\overline{m}(\prime c,b)$

Figure 6
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Next, consider the case, $G_{a}=G_{b}=\{\pm 1\}$ , $G_{c}=SU(2)$ . A neigh-

borhood of $K_{a,c}\times Kc,b$ in $C\overline{\mathcal{M}}^{J}(a, b)$ is diffeomorphic to

$G_{a}\backslash \overline{K}_{a,c}\times_{SU(2)}\overline{K}_{c,b}/G_{b}\times(T, \infty)$ .

On this set $SU(2)$ does not has a global action, but has a local ac-
tion in the following sense. Consider the principal $SU(2)$ bundle :
$\overline{K}_{a,c}\rightarrow\overline{K}_{a,c}/SU(2)$ . Let $SU(2)$ act on itself by conjugation, and
$P’\rightarrow\overline{K}_{a,c}/SU(2)$ be the associated bundle. $P’$ has a structure of Lie

group bundle. $P’$ induces a bundle $P\rightarrow\overline{K}_{a,c}/G_{c}\times G_{c}\backslash \overline{K}_{c,b}$ . $P$ has a
fibrewise action to

$\overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,b}\rightarrow\overline{K}_{a,c}/G_{c}\times G_{c}\backslash \overline{K}_{c,b}$ ,

induced from the fibrewise action of $P’$ to $\overline{K}_{a,b}$ from left. (Note $SU(2)$

act globally on $\overline{K}_{ab}$ from right.) This fibrewise action defines a local
action. If $\mu(c)>\mu(c’)>\mu(b)$ , the local action of $G_{c}=SU(2)$ can be
made to be compatible with the local action of $G_{c}\times G_{c’}$ .

Note that this action is not an action of a sheaf of groups in the

sense of [CG], because the fibre bundle $P\rightarrow\overline{K}_{a,c}/G_{c}\times G_{c}\backslash \overline{K}_{c,b}$ is not
flat, in general.

Take a principal bundle $\overline{K}_{c,b}\rightarrow SU(2)\backslash \overline{K}_{c,b}$ and construct a Lie

group bundle $Q\rightarrow\overline{K}_{a,c}/G_{c}\times G_{c}\backslash \overline{K}_{c,b}$ in a similar way. $Q$ has also a
fibrewise action on

$G_{a}\backslash \overline{K}_{a,c}\times_{SU(2)}\overline{K}_{c,b}/G_{b}\times(T, \infty)$ .

This action does not coincide to the action of $P$ . But they have the
same orbits. By convention, we use only the action of $P$ .

Definition 10.1. Let $X$ be a $C^{\infty}$ manifold. A local action on $X$

is a collection $(U_{i}, G_{i}, \varphi_{i,j})$ such that

(10.1.1) $U_{i}$ is an open covering of $X$ .

(10.1.2) . : $G_{i}\times U_{i}\rightarrow U_{i}$ is a smooth action of a Lie group $G_{i}$ on $U_{i}$ .

(10.1.3) $U_{i}\cap U_{j}$ is $G_{i}$ and $G_{j}$ invariant.

(10.1.4) Let $Em(G_{i}, G_{j})$ be the set of all injective homomorphisms.

For $i<j$ , there exists a smooth map $\varphi_{i,j}$ : $\frac{U_{i}\cap U_{j}}{G_{i}}\rightarrow Em(G_{i}, G_{j})$ such

that

$g(x)=\varphi_{i,j}([x])(g)(x)$
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holds for each $x\in U_{i}\cap U_{j}$ , $g\in G_{i}$ .

Example 10.2. Let $X\rightarrow N$ be a principal $G$ bundle. ( $G$ acts on
$X$ from right.) Let $P=XX_{ad}$ G. $P$ is a Lie group bundle and has a
fibrewise left action on $X$ . This gives a local action on $X$ .

Example 10.3. Let $\overline{X}^{o}(c)$ be as in \S 7. There exists a fibration

$\overline{X}^{o}(c)\rightarrow G_{a}\backslash \overline{K}_{a,c_{0}}/G_{c_{0}}\times\cdots\times G_{c_{k}}\backslash \overline{K}_{c_{k},b}/G_{b}\times(T(c), \infty)^{k+1}$

the fibre of which is $G_{a}\times G_{c_{0}}\times\cdots\times G_{c_{k}}\times G_{b}$ . We have a Lie group
bundle

$P\rightarrow G_{a}\backslash \overline{K}_{a,c_{0}}/G_{c_{0}}\times\cdots\times G_{c_{k}}\backslash \overline{K}_{c_{k},b}/G_{b}\times(T(c), \infty)^{k+1}$

whose fibre is $G_{a}\times G_{c_{0}}\times\cdots\times G_{c_{k}}\times G_{b}$ . The bundle $P$ has a fibrewise

action to $\overline{X}^{o}(c)$ . This gives a local action on $\overline{X}^{o}(c)$ .

Theorem 10.4. There exist a local action on $\overline{\mathcal{M}}^{J}(a, b)$ and maps

$\Psi_{c}$ : $\mathring{X}(c)\rightarrow\overline{\mathcal{M}}’(a, b)$ ,

$\Psi_{c,c’}$ : $U(c, c’)\rightarrow X(c)$ ,

such that

(10.4.1) The restriction by $\Psi_{c}$ of the local action on $\mathring{X}(c)$ of the local
action coincides to one in Example 10.3.
(10.4.2) $\Psi_{c’}\Psi_{c,c’}=\Psi_{c}$ . (The subset $U$ ( $c$ , $c’)\subset X(c)$ is as in\S 7.)

Theorem 7.1 follows immediately from Theorem 10.4. We have also

(10.5) $|\Phi_{c}-\Psi_{c}|(z)<e(S_{1}, \cdots, S_{k})$ .

Here $\Phi_{c}$ is the map constructed in \S 8, $z=([A_{1}, \cdots, A_{k}], S_{1}, \cdots, S_{k})$ and

$e(S_{1}, \cdots, S_{k})=\sum Ce^{-S_{i}/C}$ .

To prove Theorem 10.4, we modify the maps $\Psi_{c}$ inductively on $c$ .

First we take $c$ which is maximal with respect to the inclusion and put
$\Psi_{c}=\Phi_{c}$ . We do not change $\Psi_{c’}$ while modifying $\Phi_{c}$ with $c’\supset c$ . For
simplicity of the notation, we discuss one step of modifications. We
consider the following case. Let $\mu(a)<\mu(c)<\mu(c’)<\mu(b)$ , with
$G_{a}=\{\pm 1\}$ , $G_{c}=G_{c’}=G_{b}=U(1)$ , and consider the component
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of $K_{c,c’}$ consisting of irreducible connections. Suppose, by induction
hypothesis, we have

$\Psi_{(c,c’)}$ : $\overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,c’}\times c_{c’}\overline{K}_{c’,b}\times(T, \infty)^{2}$

$\rightarrow\lambda 4’(a, b)$

$\Psi_{(c,c’),(c)}$ : $\overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,c’}\times c_{c’}\overline{K}_{c’,b}\times(T, \infty)^{2}$

$\rightarrow\overline{\mathcal{M}}’(a, c)\times_{G_{c}}\mathcal{M}’(c, b)\times(T, \infty)$

$\hat{\Psi}_{(c,c’),(c’)}$ : $\overline{K}_{a,c}\times c_{c}\overline{K}_{c,c’}\times c_{c’}\overline{K}_{c’,b}\times(T, \infty)^{2}$

$\rightarrow\overline{M}’(a, c’)\times c_{c’}\mathcal{M}’(c’, b)\times(T, \infty)$ ,

and a local action on the image of $\Psi_{(c,c’)}$ . We shall define $\Psi_{(c)}$ and $\Psi_{(c’)}$

such that
$\Psi_{(c)}\Psi_{(c,c’),(c)}=\Psi_{(c,c’)}$

on
$W_{1}=\Psi_{(c,c’),(c)}^{-1}(\overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,b}\times[T, \infty))$ ,

and
$\Psi_{(c’)}\Psi_{(c,c’),(c’)}=\Psi_{(c,c’)}$

on
$W_{2}=\Psi_{(c,c’),(c’)}^{-1}(\overline{K}_{a,c’}\times_{G_{c’}}\overline{K}_{c’,b}\times[T, \infty))$ .

(See Figure 6.) By induction hypothesis, $\Psi_{(c,c’),(c)}$ and $\Psi_{(c,c’),(c’)}$ pre-

serves $G_{c}\times G_{b}$ and $G_{c’}\times G_{b}$ actions respectively. (In this case, those
actions are defined globally since the groups are abelian.) The maps
$\Psi_{(c)}$ and $\Psi_{(c’)}$ we shall construct must be $G_{b}$ invariant. Once we obtain
such maps $\Psi_{(c)}$ and $\Psi_{(c’)}$ we can define a local action on their images
by pushing out one by those maps. These local actions can be patched
together with one on the image of $\Psi_{(c,c’)}$ by the $G_{c}\times G_{b}$ and $G_{c’}\times G_{b}$

invariance of the maps $\Psi_{(c,c’),(c)}$ and $\Psi_{(c,c’),(c’)}$ .

We begin the construction of $\Psi_{c}$ . We choose an open coverings $U_{j}^{1}$ ,

$U_{j}^{2}$ , $U_{j}^{3}$ , $U_{j}^{4}$ , of $K-a,c/G_{C}$ , $K_{c,c’}$ , $G_{c’}\backslash \overline{K}_{c’,b}/G_{b},\overline{K}_{a,c’}/G_{c’}$ , respectively.

Let $V_{k}$ be an open covering of $U(1)$ . Take maps $J_{k}^{1}$ and $J_{k}^{2}$ as in \S 8.
Choose sections $s_{j}^{1}$ : $U_{j}^{1}\rightarrow A_{\ell}(a, c)$ and $s_{j}^{2},s_{j}^{3}.s_{j}^{4}$ . As in \S 8, define a map

$\overline{\Phi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}’$ : $U_{j_{1}}^{1}\times U_{j_{2}}^{2}\times U_{js}^{3}\times V_{k_{1}}\times V_{k_{2}}\times(T, \infty)\times R\rightarrow A_{\ell,\delta}(a, b)$

by
$\overline{\Phi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}’([A_{1}], [A_{2}], [A_{3}], g_{1}, g_{2}, S_{1}, S_{2}, S)$
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$\{$

$=(J_{k_{1}}(g_{1}, \cdot)^{*}A_{1})(x, t-S)$ for $t$ $<S+S_{1}/3$

$=\chi(\frac{t-S-S_{1}/3}{S_{1}/3})g_{1}^{*}A_{1}(x, t-S)$

$+(1-\chi(\frac{t-S-S_{1}/3}{S_{1}/3}))A_{2}(t-S-S_{1})$

for $t$ $\in[S+S_{1}/3, S+2S_{1}/3]$

$=A_{2}(t-S-S_{1})$ for $t\in[S+2S_{1}/3, S+S_{1}+S_{2}/3]$

$=\chi(\frac{t-S-S_{1}-S_{2}/3}{S_{2}/3})A_{2}(t-S_{1}-S)$

$+(1-\chi(\frac{t-S-S_{1}-S_{2}/3}{S_{2}/3}))g_{2}^{*}A_{3}(x, t-S-S_{1}-S_{2})$

for $t\in[S+S_{1}+S_{2}/3, S+S_{1}+2S_{2}/3]$

$=(J_{k_{2}}^{2}(g_{2}, \cdot)^{*}A_{3})(s, t -S-S_{1}-S_{2})$ for $t>S+S_{1}+2S_{2}/3$ .

By perturbing this map as in \S 8, we obtain a map

$\overline{\Phi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}$ : $U_{j_{1}}^{1}\times U_{j_{2}}^{2}\times U_{j_{3}}^{3}\times V_{k_{1}}\times V_{k_{2}}\times(T, \infty)\times R\rightarrow\overline{\mathcal{M}}_{\ell,\delta}(a, b)$

which is a lift of the map $\Phi_{(c,c’)}$ of Theorem 7.6. By construction in \S 8,
we have

$|\overline{\Phi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}’-\overline{\Phi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}|<e(S_{1)}S_{2})$ .

Similarly we have

$\overline{\Phi}_{j_{1},j_{2},k_{1}}^{J(1)}$ : $U_{j_{1}}^{1}\times U_{j_{2}}^{2}\times V_{k_{1}}\times(T, \infty)\times R\rightarrow A_{\ell}(a, c’)$

$\overline{\Phi}_{j_{1},j_{2},k_{1}}^{(1)}$ : $U_{j_{1}}^{1}\times U_{j_{2}}^{2}\times V_{k_{1}}\times(T, \infty)\times R\rightarrow\overline{\mathcal{M}}_{\ell}(a, c’)$ ,

such that $\overline{\Phi}^{(1)}$

.
$\gamma_{1},j_{2},k_{1}$

is a lift of

$\Phi_{(c)}$ : $G_{a}\backslash \overline{K}_{a,c}\times_{G_{c}}\overline{K}_{c,c’}/G_{c’}\times(T, \infty)\times R\rightarrow\overline{\Lambda 4}(a, c’)$ .

Here $\overline{\Phi}_{j_{1},j_{2},k_{1}}^{(1)\prime}$ is obtained by similar patching procedure as
$\overline{\Phi}’$

.
$\gamma_{1},j_{2},j_{3},k_{1},k_{2}$ ’and that

$|\overline{\Phi}_{j_{1},j_{2},k_{1}}^{\prime(1)}-\overline{\Phi}_{j_{1},j_{2},k_{1}}^{(1)}|<e(S_{1})$ .

We may assume that for each $j_{1},j_{2}$ with

$G_{a}\backslash \overline{U}_{j_{1}}^{1}\times_{G_{c}}\overline{U}_{j_{2}}^{2}\times c_{c’}\overline{K}_{c’,b}\times(T, \infty)^{2}\subset W_{1}$ ,
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there exists $j=j(j_{1},j_{2}, k_{1})$ such that

$Im\overline{\Phi}_{j_{1},j_{2},k_{1}}\subset U_{j}^{4}$ .

We have maps

$\overline{\Phi}_{j,j_{3},k_{2}}^{\prime(2)}$ : $U_{j}^{4}\times U_{j_{3}}^{3}\times V_{k_{2}}\times(T, \infty)\times R\rightarrow A_{\ell}(a, b)$

$\overline{\Phi}_{j,j_{3},k_{1}}^{(2)}$ : $U_{j}^{4}\times U_{j_{3}}^{3}\times V_{k_{2}}\times(T, \infty)\times R\rightarrow\overline{\mathcal{M}}_{\ell}(a, b)$

such that $\overline{\Phi}_{j,j_{3},k_{2}}^{(2)}$ is a lift of

$\Phi_{(c’)}$ : $\overline{K}_{a,c’}\times_{G_{c’}}\overline{K}_{c’,b}/G_{b}\times(T, \infty)\times R\rightarrow\overline{\mathcal{M}}(a, b)$ ,

Here $\overline{\Phi}_{j,j_{3},k_{2}}^{(2)\prime}$ is obtained by a similar patching procedure as $\overline{\Phi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}’$ ,

and that
$|\overline{\Phi}_{j,j_{3},k_{2}}^{\prime(2)}-\overline{\Phi}_{j,j_{3},k_{2}}^{(2)}|<e(S_{2})$ .

By construction, we can choose lifts $s_{j}^{1}$ e.t.c. so that

$\overline{\Phi}_{j(j_{1},j_{2},k_{1}),j_{3},k_{2}}^{\prime(2)}(\overline{\Phi}_{j_{1},j_{2},k_{1}}^{\prime(1)}([A_{1}], [A_{2}], g_{1}, S_{1}, S),$ $[A_{3}]$ , $g_{2}$ , $S_{2}$ , $S’)$

$=\overline{\Phi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}’([A_{1}], [A_{2}], [A_{3}], g_{1}, g_{2}, S_{1}, S_{2}, S’’)$ .

(Here $S’’$ is determined by $S,S’,S_{1}$ and $S_{2}.$ ) It follows that

$|\Phi_{(c’)}\Phi_{(c,c’),(c’)}-\Phi_{(c,c’)}|<e(S_{1}, S_{2})$ .

Using induction hypothesis (10.5), we obtain

$|\Phi_{(c’)}\Psi_{(c,c’),(c’)}-\Psi_{(c,c’)}|<e(S_{1}, S_{2})$ .

Let $\overline{\Psi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}$ and $\overline{\Psi}_{j_{1},j_{2},k_{1}}^{(1)}$ be the lifts of $\Psi_{c,c’}$ and $\Psi_{(c,c’)(c’)}$ , respec-

tively. Then we have

$|\overline{\Phi}_{j(j_{1},j_{2},k_{1}),j_{3},k_{2}}^{(2)}(\overline{\Psi}_{j_{1},j_{2},k_{1}}^{(1)}([A_{1}], [A_{2}], g_{1}, S_{1}, S),$ $[A_{3}]$ , $g_{2}$ , $S_{2}$ , $S’)$

$-\overline{\Psi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}([A_{1}], [A_{2}], [A_{3}], g_{1}, g_{2}, S_{1}, S_{2}, S’’)|<e(S_{1}, S_{2})$ .

Therefore we can define

$-=\prime j_{1},j_{2},j_{3},k_{1},k_{2}-$ : $U_{j_{1}}\times U_{j_{2}}\times U_{j_{3}}\times V_{k_{1}}\times V_{k_{2}}\times(T, \infty)^{2}\times[0,1]\rightarrow A_{\ell}(a, b)/R$
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by

$--=\prime j_{1},j_{2},j_{3},k_{1},k_{2}([A_{1}], [A_{2}], [A_{3}], g_{1}, g_{2}, S_{1}, S_{2}, s)=$

$(1-s)\cdot\overline{\Phi}_{j(j_{1},j_{2},k_{1}),j_{3},k_{2}}^{(2)}(\overline{\Psi}_{j_{1},j_{2},k_{1}}^{(1)}([A_{1}], [A_{2}], g_{1}, S_{1}, S)$ , $[A_{3}]$ , $g_{2}$ , $S_{2}$ , $S’)$

$+s\cdot\overline{\Psi}_{j_{1},j_{2},j_{3},k_{1},k_{2}}([A_{1}], [A_{2}], [A_{3}], g_{1}, g_{2}, S_{1}, S_{2}, S’’)$ .

Since gauge transformation is an affine map (namely $g^{*}(sA+(1-s)B)=$

$sg^{*}A+(1-s)g^{*}B$ holds for each connections $A$ , $B$ and gauge transfor-
mation $g$ ), it follows from an argument similar to the proof of Lemma

8.3 that we can perturb $--=\prime j_{1},j_{2},j_{3},k_{1},k_{2}$ so that it defines a map $---J$ :
$W_{1}\times[0,1]\rightarrow B_{\ell}(a, b)$ , which is $G_{b}$ invariant. Using Taubes’ method
as in \S 8, we can perturb this map and $obtain---:W_{1}\times[0,1]\rightarrow \mathcal{M}_{\ell}’(a, b)$ .
This map $---is$ an isotopy between $\Psi_{(c,c’)}$ and $\Phi_{(c’)}\Psi_{(c,c’),(c’)}$ . Take a
small open neighborhood $W_{1}’$ of $W_{1}$ in

A4 $(a, c)\times c_{c}$ A4 $(c, c’)\times c_{c’}\mathcal{M}(c’, b)\times(T, \infty)^{2}$ .

$---can$ be extend to $W_{1}’$ . Let $\varphi$ : $W_{1}’\rightarrow[0,1]$ be a $G_{b}$-invariant function
such that

$\{$

$\varphi(x)=0$ if $x\in\partial W_{1}’$ , and if $\Psi_{(c,c’),(c’)}(x)\in X_{(c)}$

$\varphi(x)=1$ if $x\in W_{1}$ .

(See Figure 7.) Define $\Psi_{(c’)}$ on $\Psi_{(c,c’),(c’)}(W_{1}’)$ by

$\Psi_{(c’)}(\Psi_{(c,c’),(c’)}(x))=---(x, \varphi(x))$ .

Figure 7.
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Since
— $(x, 0)=\Phi_{(c’)}\Psi_{(c,c’),(c’)}(x)$ ,

we can extend $\Psi_{(c’)}$ , by putting $\Psi_{(c’)}=\Phi_{(c’)}$ outside $\Psi_{(c,c’),(c’)}(W_{1}’)$ .
Since

— $(x, 1)=\Psi_{(c,c’)}(x)$ ,

we have $\Psi_{(c’)}\Psi_{(c,c’),(c’)}=\Psi_{(c,c’)}$ , on $W_{1}$ . The inequality (10.5) holds
by construction. Using Lemma 8.14, we can prove that $\Psi_{(c’)}$ is a dif-
feomorphism to its image. Thus the patching argument for the proof of
Theorem 10.2 is completed in our case. The proof of general case is the
same, but the notation will be more complicated.

Remark 10.6. If we can establish rigorously what we suggested in
Remarks 8.15 and 8.20 we might be able to prove Theorem 10.2 using
the center of mass technique in Riemannian geometry. (See [GK].) But
the direct argument we gave above might be simpler.

\S 11. Extension of the line bundle to the boundary

In this section, we shall prove Theorem 7.3. First we consider the
case when none of $c_{i}$ are reducible. We put

$C_{1}\overline{\mathcal{M}}’(a, b)=c_{0},\cdots,c_{k},G_{c_{i}}=\{\pm 1\}\cup\overline{\mathcal{M}}^{J}(a, c_{0})\times\prod_{i=0}^{k-1}\overline{\mathcal{M}}’(c_{i}, c_{i+1})\times\overline{\Lambda 4}’(c_{k}, b)$ .

Lemma 11.1. Let $c$ $=(c_{0}, \cdots, c_{k})$ , $\mu(a)>\mu(c_{0})>\cdots>\mu(c_{k})>$

$\mu(b)$ , $G_{c_{i}}=\{\pm 1\}$ , and

$\Psi_{c}$ : $K_{a,c_{0}}\times\prod K_{c_{i},c_{i+1}}\times K_{c_{k},b}\times(T, \infty)^{k}\rightarrow\overline{\vee\wedge\Lambda}^{J}(a, b)$

be the map given in \S 10. Then there exists an isomorphism of line
bundles

$\varphi_{c}^{i}$ : $\Psi_{c}^{*}\mathcal{L}_{i}^{(2)}(a, b)\rightarrow \mathcal{L}_{i}^{(2)}(a, c_{0})\otimes\cdots\otimes \mathcal{L}_{i}^{(2)}(c_{k}, b)$ .

This lemma follows from Theorem 4.9 and the construction of $\Psi_{c}$ .

Hereafter we write

$\mathcal{L}_{i}^{(2)}(c)=\mathcal{L}_{\dot{x}}^{(2)}(a, c_{0})\otimes\cdots\otimes \mathcal{L}_{i}^{(2)}(c_{k}, b)$ .

Similarly, for $c’\subset c$ , we have an isomorphism

$\varphi_{c,c’}^{i}$ : $\Psi_{c,c’}^{*}\mathcal{L}_{i}^{(2)}(c’)\rightarrow \mathcal{L}_{\dot{x}}^{(2)}(c_{J}^{\backslash }$ .
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Lemma 11.2. On

$K_{a.c_{0}}\times\prod K_{c_{i},c_{i+1}}\times K_{c_{k},b}\times\{(s_{1}, \cdots, S_{k})\}$

we have
$||\varphi_{c,c’}^{i}o\varphi_{c’}^{i}-\varphi_{c}^{i}||<e(S_{1}, \cdots, S_{k})$ .

This lemma follows from the construction of $\varphi_{c}^{i}$ . By Lemma 11.2,
we can perturb $\varphi_{c}^{i}$ , $\varphi_{c,c’}^{\dot{\iota}}$ such that

$\varphi_{c,c’}^{i}o\varphi_{c’}^{i}=\varphi_{c}^{i}$ .

Using these isomorphisms, we can patch the bundles $\mathcal{L}_{i}^{(2)}(c)$ and obtain

a line bundle over $C_{1\vee}\overline{\Lambda\Lambda}’(a, b)$ .

Next we consider the case when some $c_{i}$ are reducible. The following
three results are used for this purpose.

Theorem 11.3. The local action on $\overline{\sqrt{}\vee l}^{J}(a, b)$ constructed in\S 10,

can be lifted to $\mathcal{L}_{i}^{(2)}(a, b)$ .

Hence, for each $c$ , the line bundle $\Psi_{c}^{*}\mathcal{L}_{i}^{(2)}(a, b)$ on $\overline{K}_{a,c_{0}}\times c_{c_{0}}\cdots\times c_{c_{k}}$

$\overline{K}_{c_{k},b}\times(T, \infty)^{k}$ has a local $G_{a}\times G_{c_{0}}\times\cdots\times G_{c_{k}}\times G_{b}$ action. Therefore

we obtain a bundle $\Psi_{c}^{*}\mathcal{L}_{i}^{(2)}(a, b)$ on

$K_{a,co}^{*}\times\prod K_{c_{i},c_{i+1}}^{*}\times K_{c_{k},b}^{*}\times(T, \infty)^{k}$ .

Here $K_{c_{i},c_{i+1}}^{*}$ denotes the set of reducible connections. As before we put

$\mathcal{L}_{i}^{(2)}(c)=\mathcal{L}_{i}^{(2)}(a, c_{0})\otimes\cdots\otimes \mathcal{L}_{i}^{(2)}(c_{k}, b)$ ,

which is a line bundle on

$K_{a,c_{0}}^{*}\times\prod K_{c_{i},c_{i+1}}^{*}\times K_{c_{k},b}^{*}\times(T, \infty)^{k}$ .

Lemma 11.4. There exist isomorphisms

$\varphi_{c}^{i}$ : $\Psi_{c}^{*}\mathcal{L}_{i}^{(2)}(a, b)\rightarrow \mathcal{L}_{i}^{(2)}(c)$

$\varphi_{c,c^{J}}^{i}$ : $\Psi_{c,c^{J}}^{*}\mathcal{L}_{i}^{(2)}(c’)\rightarrow \mathcal{L}_{i}^{(2)}(c)$ .

Lemma 11.5. On

$K_{a,c_{0}}^{*}\times\prod K_{c_{i},c_{i+1}}^{*}\times K_{c_{k},b}^{*}\times\{(S_{1}, \cdots, S_{k})\}$



64 K. Fukaya

we have
$||\varphi_{c,c’}^{i}o\varphi_{c’}^{i}-\varphi_{c}^{i}||<e(S_{1}, \cdots, S_{k})$ .

Using these results, we can prove Theorem 7.3 in a way similar to
the case when none of $c_{i}$ are reducible. The proof of Lemmas 11.4 and
11.5 are similar to one of Lemma 11.1 and 11.2 respectively. In the rest
of this section, we prove Theorem 11.3.

First we lift the action on the image $\Psi_{c}(\overline{X}^{o}(c))\subset \mathcal{M}’(a, b)$ . We

are studying the determinant bundle of the operator $ 6_{A}^{i}+\epsilon$ defined on
$\Sigma_{i}\simeq S^{1}\times R\subset M\times$ R. On their ends, these operators are asymptotic

to $\frac{\partial}{\partial t}+6_{a}^{i}+\epsilon$ , for some $a\in Fl$ . Here the operator $6_{a}^{x}$ is defined on $S^{1}$ .

We choose $\lambda_{0}$ such that the first eigenvalue of $(6_{a}^{i}+\epsilon)^{*}(6_{a}^{i}+\epsilon)$ is larger
than $\lambda_{0}$ for each $a$ .

For simplicity, we shall consider the case where $c$ $=(c)$ , $G_{c}\neq\{\pm 1\}$ .

In this case, $\Psi_{c}$ is a perturbation of the map $\Phi$ defined below. (See \S 8.)
Choose an open covering

$U_{1}^{1}\cup\cdots\cup U_{N}^{1}\supseteq K_{a,c}$ ,

$U_{1}^{2}\cup\cdots\cup U_{N}^{2}\supseteq K_{c,b}$ ,

$V_{1}\cup\cdots\cup V_{N}=G_{c}$ ,

and sections $s_{j}^{1}$ : $U_{j}^{1}\rightarrow A_{\ell,.\delta}(a, c)$ , $s_{j}^{2}$ : $U_{j}^{2}\rightarrow A_{\ell,\delta}(c, b)$ . Let $J_{k}$ :
$V_{k}\times R\rightarrow G_{c}$ be a map such that

$J_{k}(g, t)=\{$
1 if $t<-1$

$g$ if $t$ $>0$

Then the map

$\overline{\Phi}_{j_{1},j_{2},k}’$ : $U_{j_{1}}^{1}\times V_{k}\times U_{j_{2}}^{2}\times[T, \infty)\times R\rightarrow A_{\ell,\delta}(a, b)$

is defined by

$\overline{\Phi}_{j_{1},j_{2},k}’([A_{1}], g, [A_{2}], S’, S)$

$=\{$

$(J_{k}(g, \cdot)^{*}A_{1})(x, t-S)$ if $t<S+S’/3$ .

$\chi(\frac{t-S-S’/3}{S’/3})g^{*}A_{1}(x, t-S)$

$+(1-\chi(\frac{t-S-S’/3}{S’}))A_{2}(t-S-S’)$

if $S+S’/3<t<S+2S’/3$

$A_{2}(t-S-S’)$ if $t>S+2S’/3$ .
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Here $\chi$ is the cut function in \S 8. The maps $\overline{\Phi}_{j_{1},j_{2},k}’$ induce a map $\Phi$ :

$\overline{X}^{o}((c))\rightarrow B_{\ell,\delta}(a, c)$ . They satisfy

$||(\Psi_{(c)}-\Phi)([A_{1}], g, [A_{2}], S’, S)||_{L_{\ell}^{2}}<Ce^{-S’/C}$ .

Therefore, there exists an isomorphism $\Psi_{(c)}^{*}\mathcal{L}_{i}^{(2)}(a, b)\rightarrow\Phi^{*}\overline{\mathcal{L}}_{i}^{(2)}(a, b)$ .

We shall lift the local action of $G_{c}$ on $\overline{K}_{a,c}\times c_{c}\overline{K}_{c,b}$ , to a local action

on $\Phi^{*}\mathcal{L}_{i}^{(2)}(a, c)$ .

Replacing $U_{j_{1}}^{1}$ and $U_{j_{2}}^{2}$ by a smaller one if necessary, we can find

positive numbers $\lambda_{j_{1},j_{2}}<\lambda_{0}$ , such that the following holds.

(11.6.1) If $[a_{t}]\in U_{j_{1}}^{1}$ then $\lambda_{j_{1},j_{2}}$ is not an eigenvalue of $(6_{a_{t}}+\epsilon)^{*}(6_{a_{t}}+$

$\epsilon)$ on $\Sigma_{i}$ .

(11.6.2) If $[a_{t}]\in U_{j_{2}}^{2}$ then $\lambda_{j_{1},j_{2}}$ is not an eigenvalue of $(6_{a_{t}}+\epsilon)^{*}(6_{1,t}+$

$\epsilon)$ on $\Sigma_{i}$ .

Then, by Remark 4.6, $\lambda_{j_{1},j_{2}}$ is not an eigenvalue of $(6_{A}+\epsilon)^{*}(6_{A}+\epsilon)$

on $\Sigma_{i}$ , if
$[A]\in\Phi(U_{j_{1}}^{1}\times G_{c}\times U_{j_{2}}^{2}\times(T, \infty)\times R)$

for sufficiently large $T$ . Let $[A_{1}]\in U_{j_{1}}^{1}$ , $[A_{2}]\in U_{j_{2}}^{2}$ , $g\in V_{k}\subset G_{c}$ , and

$A=\overline{\Phi}_{j_{1},k,j_{2}}’([A_{1}], g, [A_{2}], S’, S)$ , we put

$L(A_{1}, g, A_{2}, S’, S)=\lambda<\lambda_{j,j_{2}}\oplus_{1}\{u|(6_{A}+\epsilon)^{*}(6_{A}+\epsilon)u=\lambda u\}$
,

$L’(A_{1}, g, A_{2}, S’, S)=\lambda<\lambda_{j,j_{2}}\oplus_{1}\{u|(6_{A}+\epsilon)(6_{A}+\epsilon)^{*}u=\lambda u\}$
,

$L=A_{1},g,A_{2},S’,S\cup L(A_{1}, g, A_{2}, S’, S)$
,

$L’=A_{1},g,A_{2},S’,S\cup L’(A_{1}, g, A_{2}, S’, S)$
.

By (11.6.1) and (11.6.2), the dimensions of $L$ and $L’$ are constant. By
definition,

$\Phi^{*}(\mathcal{L}_{i}^{(2)}(a, b))|_{([A_{1}],g,[A_{2}],S’,S)}$

$\simeq(to\wedge p(L(A_{1}, g, A_{2}, S’, S))^{*}\otimes top\wedge L’(A_{1}, g, A_{2}, S’, S))^{\otimes 2}$
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Lemma 11.7. Let $t\in[S+S’/3, S+2S’/3]$ , $u\in L(A_{1}, g, A_{2}, S’, S)$ .
The

$|u(x, t)|_{C^{\ell}}<Ce^{-\sqrt{\lambda_{0}-\lambda_{j_{1},j_{2}}}\beta(t)}||u||_{L^{2}}$

Here $\beta(t)=d(t, \partial[S+S’/3, S+2S’/3])$

The proof of the lemma is similar to one of Lemma 4.5.
For $u\in L(A_{1}, g, A_{2}, S’, S)$ , $g$ , $h\in G_{c}$ with $g$ , $hg\in V_{k}$ , we put

$I_{1}(h)(u)(t, x)=$

$\{$

$J_{k}(hg, t-S)J_{k}(g, t -S)^{-1}u(x, t)$ if $t$ $<S+S’/3$ .

$\chi(\frac{t-S-S’/3}{S’/3})hu(x, t)+(1-\chi(\frac{t-S-S’/3}{S’/3}))u(x, t)$

if $S+S’/3<t<S+2S’/3$ ,

$u(x, t)$ if $t$ $>S+2S’/3$ .

Let $I_{2}(h)(u)$ is the orthonormal projection of $I_{1}(h)(u)$ to
$L(A_{1}, hg.A_{2}, S’, S)$ . Lemma 11.7 implies:

Lemma 11.8.

$||I_{2}(h)(u)-I_{1}(h)(u)||_{L^{2}}<Ce^{-S’/C}||u||_{L^{2}}$ .

Lemma 11.9. If $g\in V_{k}$ , $hg\in V_{k}$ and $h’hg\in V_{k}$ , the

$||I_{2}(h’h)(u)-I_{2}(h’)I_{2}(h)(u)||_{L^{2}}<Ce^{-S’/C}||u||_{L^{2}}$ .

Next we extend $I_{2}$ to $I_{5}$ which is defined also for $h$ such that $g\in V_{k}$

and $hg\not\in V_{k}$ . Note that $G_{c}=U(1)$ or $=SU(2)$ . Hence, in fact, we
need only two charts $V_{1}$ and $V_{2}$ to cover $G_{c}$ . (This fact is not essential
for the proof but we use it to simplify the notation.) Choose $ g_{0}\in$

$V_{1}\cap V_{2}$ . For $g\in V_{1}$ , $hg\in V_{2}$ , we take $h_{1}$ and $h_{2}$ such that $h_{1}g=g_{0}$ and
$h_{2}h_{1}=h$ . Then, for $h\in L(A_{1}, g, A_{2}, S’, S)$ , the element $ I_{2}(h_{1})(u)\in$

$L(A_{1}, g_{0}, A_{2}, S’, S)$ is well defined. We put

$I_{3}(h)(u)=I_{2}(h_{2})I_{2}(h_{1})(u)$ .

Since $h_{2}(h_{1}g)$ , $h_{1}g\in V_{2}$ , it follows that $I_{2}(h_{2})$ in the above formula is
well defined. Choose $\chi$ : $G_{c}\rightarrow[0,1]$ such that

$\chi(g)=\{$
1 if $g\in V_{1}-(V_{1}\cap V_{2})$ .

0 if $g\in V_{2}-(V_{1}\cap V_{2})$ .
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Put

$I_{4}^{1}(u)=\{$

$I_{2}(h)(u)$ if $hg\in V_{1}-(V_{1}\cap V_{2})$ ,

$\chi(hg)I_{2}(h)(u)+(\acute{1}-\chi(hg))I_{3}(h)(u)$

if $hg\in V_{1}\cap V_{2}$ ,

$I_{3}(h)(u)$ if $hg\in V_{2}-(V_{1}\cap V_{2})$ .

In the case when $g\in V_{2}$ , we define $I_{4}^{2}(h)$ in a similar way. Finally we
put, for $u\in L(A_{1}, g, A_{2}, S’, S)$

$I_{5}(h)(u)=\{$

$I_{4}^{1}(h)(u)$ if $g\in V_{1}-(V_{1}\cap V_{2})$ ,

$\chi(g)I_{4}^{1}(h)(u)+(1-\chi(g))I_{4}^{2}(h)(u)$

if $g\in V_{1}\cap V_{2}$ ,

$I_{4}^{2}(h)(u)$ if $g\in V_{2}-(V_{1}\cap V_{2})$ .

Then $I_{5}$ is defined for every $h$ and $g$ and depends smoothly on them. By
perturbing $I_{5}$ a bit we obtain $I_{6}(h)$ which is a linear isometry

$L(A_{1}, g, A_{2}, S’, S)\rightarrow L(A_{1}, hg, A_{2}, S’, S)$ .

By construction, we have

(11.10) $||I_{6}(h’h)(u)-I_{6}(h’)I_{6}(h)(u)||_{L^{2}}<Ce^{-S’/C}||u||_{L^{2}}$ .

Next we use the center of mass technique, to perturb $I_{6}$ and obtain
I satisfying $I(h)I(h’)=I(hh’)$ . Namely we use the following:

Lemma 11.11. For each compact Lie group $G$ and $n$ , $\epsilon>0$ , there
exists $\delta_{n}(G, \epsilon)>0$ , such that the following holds.

Let $\pi$ : $L\rightarrow X$ be a hermitian vector bundle of rank $n$ , $G$ act on $X$ ,

and $\varphi$ : $G\times L\rightarrow L$ be a map. Suppose

(11.12.1) $\pi(\varphi(g, v))=g(\pi(v))$ ,

(11.12.2) $\varphi$ is a linear isometry on each fifibre,

(11.12.3) $|\varphi(g_{1}, g_{2}, v)-\varphi(g_{1}(\varphi(g_{2}, v))|<\delta_{n}(G, \epsilon)$ .

Then, there exists a lift of the action of $G$ to $L$ , such that

$|\varphi(g, v)-g$ . $ v|<\epsilon$ .

In the case when $X$ is a point, Lemma 11.11 means that an almost
homomorphism $G\rightarrow U(n)$ is approximated by a homomorphism. This
case is proved in [GKR]. The proof of Lemma 11.11 is identical to that
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case and hence is omitted. (See also [BK] p138.) Note that $\delta_{n}(G, \epsilon)$ in
the lemma is independent of $X$ .

Now, using Lemma 11.11, we can perturb $I_{6}$ to obtain a lift I of
the local action on $U_{j_{1}}^{1}\times G_{c}\times U_{j_{2}}^{2}\times(T, \infty)\times R$ to the vector bundle
$L(A_{1}, g, A_{2}, S’, S)$ on it. In a similar way, we can lift the action to
$L’(A_{1}, g, A_{2}, S’, S)$ . Hence we obtain a lift of the action to the restriction

of $\Phi^{*}\overline{\mathcal{L}}_{a,b}^{(2)}$ to $\overline{U}_{j_{1}}^{1}\times c_{c}\overline{U}_{j_{2}}^{2}\times(\dot{T}, \infty)\times R=U_{j_{1}}^{1}\times G_{c}\times U_{j_{2}}^{2}\times(T, \infty)\times R$ .

(Here $\overline{U}_{j_{1}}^{1}$ and $\overline{U}_{j_{2}}^{2}$ are the inverse images of $U_{j_{1}}^{1}$ and $U_{j_{2}}^{2}$ in $\overline{K}_{a,c}$ and

$\overline{K}_{c,b}$ , respectively.) We denote the lift by $I_{j_{1},j_{2}}$ . By construction, we

have, on $(\overline{U}_{j_{1}}^{1}\times_{G_{c}}\overline{U}_{j_{2}}^{2})\cap(\overline{U}_{j_{1}’}^{1}\times c_{c}\overline{U}_{j_{2}’}^{2})\times(T, \infty)\times R$ ,

$d(I_{j_{1},j_{2}}(h), I_{j_{1}’,j_{2}’}(h))<Ce^{-T/C}$ .

Hence using a partition of unity, we can patch them as an almost action.
Therefore, using Lemma 11.11, we obtain a lift of the local action to
$\Phi^{*}\mathcal{L}_{i}^{(2)}(a, b)$ .

In order to lift the local action on $\lambda\Lambda(a, b)$ , we have to patch those
lifts we constructed above. By construction, they are compatible mod-
ulo a difference estimated by $e(S_{1}, \cdots, S_{k})$ on $\cdots$ $\times\{(S_{1}, \cdots, S_{k})\}\times R$ .

Hence we can apply a similar patching procedure as above. The proof
of Theorem 11.3 is now complete.

\S 12. Boundary operators

In this section, we define the boundary operators

$\partial$ : $C_{k}^{0}\rightarrow C_{k-1}^{0}$

$\partial_{\gamma}$ : $C_{k}^{0}\rightarrow C_{k-3}^{0}$

$\partial_{\gamma_{1},\gamma_{2}}$ : $C_{k}^{0}\rightarrow C_{k-5}^{0}$ .

The definition of $\partial$ is the same as Floer’s. Let $a$ , $b\in Fl$ , with

$\mu(a)=\mu(b)+1$ . Then, $\overline{\mathcal{M}}’(a, b)$ consists of finitely many points each
of which is given an orientation $+or-$ . We let $\langle\partial a, b\rangle$ be the number
of the points with $+orientation$ minus the number of points with -

orientation. Put
$\partial[a]=\sum\langle\partial a, b\rangle[b]$ .

Next we define $\partial_{\gamma}$ . For a closed loop $\gamma$ on $M$ we obtain a line bundles
$\mathcal{L}_{\gamma}^{(2)}(c, c’)$ , over $\overline{\mathcal{M}}’(c, c’)$ . We choose sections $s_{\gamma}(c, c’)$ to $\mathcal{L}_{\gamma}^{(2)}(c, c’)$ , such
that the following holds.
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(12.1.1) For each $a$ , $b\in Fl$ , the collection of the sections

$s_{\gamma}(a, c_{0})\otimes\cdots\otimes s_{\gamma}(c_{k}, b)$

to
$\mathcal{L}_{\gamma}^{(2)}(a, c_{0})\otimes\cdots\otimes \mathcal{L}_{\gamma}^{(2)}(c_{k}, b)$

can be patched together to give a smooth section on $C\overline{\mathcal{M}}^{J}(a, b)$ . (We use
the symbol $s_{\gamma}(a, b)$ also for this extension.)

(12.1.2) The zeros of $s_{\gamma}(c, c’)$ are transversal and transversal to each
other.

Since we restrict ourselves to the case when $s<3$ if $H_{1}(M;Z)$ is
torsion free, and when $s$ $=0$ otherwise, then we need only to study

the case when $\mu(a)<\mu(b)+8$ , $H_{1}(M;Z)$ is torsion free and $a$ and
$b$ are irreducible. In this case, if $\mu(a)\geq\mu(c)\geq\mu(c’)\geq\mu(b)$ , and if
$\mathcal{M}(a, c)\neq\emptyset$ , $\mathcal{M}(c’, b)\neq\emptyset$ , then $\mathcal{M}(c, c’)$ does not contain a reducible
connection. Also in our case, Lemma 5.8 implies that bubbling off of

instanton does not happen. Hence (7.1.6) implies that the set $C\overline{\mathcal{M}}’(a, b)$

is compact. The later fact is not really necessary for the argument. (We
can discuss as in Donaldson [D4], in case when $a$ and $b$ are irreducible.)
However the former point is essential. We discuss it at the end of this
section.

Now, let $\mu(a)=\mu(b)+3$ . Set

$\Sigma_{\gamma}(a, b)=\{x\in C\overline{\mathcal{M}}’(a, b)|s_{\gamma}(a, b)(x)=0\}$ .

Dimension counting, the compactness of $C\overline{\mathcal{M}}^{J}(a, b)$ and the transversal-
ity (12.1.2) imply

$\Sigma_{\gamma}(a, b)\cap\partial C\overline{\mathcal{M}}’(a, b)=\emptyset$

$\#\Sigma_{\gamma}(a, b)<\infty$ .

The orientation of $\overline{\lambda\Lambda}’(a, b)$ induces an orientation of each point of $\Sigma_{i}$ .
We define $\langle\partial_{\gamma}a, b\rangle$ by

$\langle\partial_{\gamma}a, b\rangle=\#\Sigma_{\gamma}$ .

Here and hereafter $\#$ stands for the number of points $with+orientation$

minus the number of points with–as orientation. We set

$\partial_{\gamma}[a]=\sum_{b}\langle\partial_{\gamma}a, b\rangle[b]$
.
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For $\mu(b)=\mu(a)+5$ , and loops $\gamma_{1}$ and $\gamma_{2}$ , we put

$\Sigma_{\gamma_{1},\gamma_{2}}(a, b)=\{x\in C\overline{\mathcal{M}}’(a, b)|s_{\gamma_{1}}(a, b)(x)=s_{\gamma_{2}}(a, b)(x)=0.\}$ ,

and define

$\langle\partial_{\gamma_{1},\gamma 2}a, b\rangle=\#\Sigma_{\gamma_{1},\gamma 2}(a, b)$

$\partial_{\gamma_{1},\gamma_{2}}[a]=\sum_{b}\langle\partial_{\gamma_{1},\gamma_{2}}a, b\rangle[b]$
.

Now we prove Theorem 1.10. For simplicity, we discuss the case
$\alpha=\{\gamma\}$ , and prove $\partial_{\gamma}\partial+\partial\partial_{\gamma}=0$ . Let $a$ , $b\in Fl$ with $\mu(a)=\mu(b)+4$ .

The line bundle $\mathcal{L}_{\gamma}^{(2)}(a, b)\rightarrow\overline{\mathcal{M}}’(a, b)$ can be extended to $C\overline{\mathcal{M}}’(a, b)$ by

Theorem 7.3. Since $dim\overline{\mathcal{M}}^{J}(a, b)=3$ , the set

$\Sigma_{\gamma}(a, b)=\{x\in C\overline{\mathcal{M}}^{J}(a, b)|s_{\gamma}(a, b)(x)=0\}$

is one dimensional oriented manifold. And

$\partial\Sigma_{\gamma}(a, b)=\Sigma_{\gamma}(a, b)\cap\partial\overline{\mathcal{M}}^{J}(a, b)$ .

By transversality and dimension counting we have

$\partial\Sigma_{\gamma}(a, b)=\{(x, y)\in\overline{\mathcal{M}}’(a, b)\times\overline{\Lambda 4}’(c, b)|$

$s_{\gamma}(a, c)(x)\cdot s_{\gamma}(c, b)(y)=0$ , $c$ is irreducible.}.

$=\prod_{\mu(c)=\mu(b)+1}\Sigma_{\gamma}(a, b)\times\overline{\mathcal{M}}’(c, b)\cup$

$\prod_{\mu(c’)=\mu(b)+2}\overline{\Lambda 4}’(a, c’)\times\Sigma_{\gamma}(c’, b)$
.

The orientations are also compatible. Therefore we have

$\sum_{c}\langle\partial_{\gamma}a, c\rangle\langle\partial c, b\rangle+\sum_{c’}\langle\partial a, c’\rangle\langle\partial_{\gamma}c’, b\rangle=0$
.

Hence $\partial_{\gamma}\partial+\partial\partial_{\gamma}=0$ , as required.
The proof of $\partial_{\gamma_{1},\gamma_{2}}\partial+\partial_{\gamma_{1}}\partial_{\gamma_{2}}+\partial_{\gamma_{2}}\partial_{\gamma_{1}}+\partial\partial_{\gamma_{1},\gamma_{2}}=0$ is similar.

Now put

$C_{k}^{s}=\oplus_{s}S^{p}H_{1}\ell\leq(M, Z)\otimes C_{k-2\ell}^{0}$
,
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and define $\hat{\partial}:C_{k}^{s}\rightarrow C_{k-1}^{s}$ , by

$\hat{\partial}(\gamma_{\alpha}\otimes[a])=\sum_{\alpha^{1}\cup\alpha^{2}=\alpha}\gamma_{\alpha^{1}}\otimes\partial_{\alpha^{2}}[a]$
.

(Here we fix a basis $\gamma_{1}$ , $\cdots$ , $\gamma_{d}$ of the first homology group and put

$\partial_{\alpha}=\sum_{j_{1},\cdot\cdot,jp}\prod_{i}C_{i,j_{i}}\partial_{\gamma_{j_{1}}\gamma_{jp}}\cdots$

if $\alpha=(\sum_{j_{1}}C_{1,j_{1}}[\gamma_{j_{1}}], \cdots, \sum_{jp}C_{\ell,jp}[\gamma_{jp}])$ . Later, in Lemma 12.10, we

shall prove that $\partial_{\gamma}$ are additive with respect to $\gamma.$ ) Theorem 1.10 implies
$\hat{\partial}\hat{\partial}=0$ .

As we pointed out in \S 1, the boundary operator $\hat{\partial}$ itself does depend

on the choice of the sections $s_{\gamma}(c, c’)$ , because the spaces $C\overline{\mathcal{M}}’(c, c’)$ have

boundaries. Next we prove that the chain complex $(C^{s}.,\hat{\partial})$ is independent
of the choice of the section.

Theorem 12.2. Suppose $H_{1}(M;Z)$ is torsion free and $s<3$ . Let
$s_{\gamma}(a, b)$ and $s_{\gamma}’(a, b)$ are the sections satisfying (12.1.1) and (12.1.2). Let
$(C^{s},\hat{\partial})$ and $(C^{s},\hat{\partial}’)$ be the corresponding chain complexes. Then there
exist maps $\psi$ , $\varphi$ : $C^{s}\rightarrow C^{s}$ such that

(12.2.1) $\hat{\partial}’\varphi=\varphi\hat{\partial}$

(12.2.2) $\hat{\partial}\psi=\psi\hat{\partial}’$

(12.2.3) $\varphi\psi=\psi\varphi=identity$ .

Proof. For each loop $\gamma$ and $c$ , $c’\in Fl$ , we choose a section $\overline{s}_{\gamma}(c, c’)$

to $\mathcal{L}_{\gamma}^{(2)}(c, c’)\times[0,1]\rightarrow\overline{\mathcal{M}}^{J}(c, c’)\times[0,1]$ such that

$\overline{s}_{\gamma}(c, c’)(x, 0)=s_{\gamma}(c, c’)(x)$

(12.1.1)
$\overline{s}_{\gamma}(c, c’)(x, 1)=s_{\gamma}’(c, c’)(x)$

(12.3.2) For each $a$ , $b\in Fl$ , the collections of sections

$\overline{s}_{\gamma}(a, c_{0})\otimes\cdots\otimes\overline{s}_{\gamma}(c_{k}, b)$

can be patched together to give a smooth section on $C\overline{\mathcal{M}}^{J}(a, b)\times[0,1]$ .

(12.3.3) The zeros of $\overline{s}_{\gamma_{i}}$ are transversal and are transversal to each
other.
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Now, let $\mu(a)=\mu(b)+3$ , and put

$\overline{\Sigma}_{\gamma}(a, b)=\{(x, t)\in C\overline{\mathcal{M}}’(a, b)\times[0,1]|\overline{s}_{\gamma}(a, b)(x, t)=0\}$ .

Then $dim\overline{\Sigma}_{\gamma}(a, b)=1$ . Note that (12.3.2) implies that

$\overline{\Sigma}_{\gamma}(a, b)\cap(\overline{\mathcal{M}}^{J}(a, c)\times\overline{\mathcal{M}}^{J}(c, b)\times[0,1])\neq\emptyset$

only if $c$ is irreducible and $\mu(c)=\mu(b)+1$ or 2. Therefore

(12.4)
$\partial\overline{\Sigma}_{\gamma}(a, b)=$

$\{(x, 0)|\overline{s}_{\gamma}(a, b)(x, O)=0\}\cup\{(x, 1)|\overline{s}_{\gamma}(a, b)(x, 1)=0\}\cup$

$\prod_{c}\{(x_{1}, x_{2}, t)|\overline{s}_{\gamma}(c, b)(x_{1}, t)\cdot\overline{s}_{\gamma}(a, c)(x_{2}, t)=0\}$
.

$\partial_{\gamma}’$

$c’)x\overline{m}(\prime c,b)$

$\times\overline{m}(\prime cb\prime,)$

$\overline{m}(\prime a,c)x\overline{m}^{J}(c,b)$

Figure 8.
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For each $a$ , $c\in Fl$ , with $\mu(a)=\mu(c)+2$ , we put

$\langle\varphi_{\gamma}a, c\rangle=\#\{(x, t)\in\overline{\mathcal{M}}^{J}(a, c)\times[0,1]|\overline{s}_{\gamma}(x, t)=0\}$ .

Note the set in the right hand side is a finite set, by (12.3.3) and dimen-
sion counting. Define $\varphi_{\gamma}$ : $C_{k}^{0}\rightarrow C_{k-2}^{0}$ by

$\varphi_{\gamma}[a]=\sum\langle\varphi_{\gamma}a, c\rangle[c]$ .

Then (12.4) implies

(12.5) $\partial_{\gamma}-\partial_{\gamma}’+\partial\varphi_{\gamma}-\varphi_{\gamma}\partial=0$ .

Now define $\varphi$ , $\psi$ : $C^{1}\rightarrow C^{1}$ by

$\varphi(1\otimes[a])=1\otimes[a]$

$\varphi(\gamma\otimes[a])=\gamma\otimes[a]+1\otimes\varphi_{\gamma}[a]$ ,

$\psi(1\otimes[a])=1\otimes[a]$

$\psi(\gamma\otimes[a])=\gamma\otimes[a]-1\otimes\varphi_{\gamma}[a]$ .

Then using (12.5), it is easy to verify (12.2.1),(12.2.2), and (12.2.3).

Next we consider the case $s=2$ . Let $\mu(a)=\mu(b)+5$ . Put

$\overline{\Sigma}_{\gamma_{1},\gamma_{2}}(a, b)=\{(x, t)\in C\overline{\mathcal{M}}’(a, b)\times[0,1]|\overline{s}_{\gamma_{1}}(x, t)=\overline{s}_{\gamma_{2}}(x, t)=0\}$ .
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We have

(12.6)
$\partial\overline{\Sigma}_{\gamma_{1},\gamma 2}(a, b)=$

$\{(x, 0)|s_{\gamma 1}(a, b)(x)=s_{\gamma_{2}}(a, b)(x)=0\}$

$\cup\{(x, 1)|s_{\gamma_{1}}’(a, b)(x)=s_{\gamma_{2}}’(a, b)(x)=0\}$

$\cup\prod_{\mu(c_{1})=\mu(b)+1}\{(x, y, t)\in\overline{\mathcal{M}}’(a, c_{1})\times\overline{\Lambda 4}’(c_{1}, b)\times[0,1]|$

$\overline{s}_{\gamma 1}(a, c_{1})(x, t)=\overline{s}_{\gamma 2}(a, c_{1})(x, t)=0\}$ ,

$\cup\prod_{\mu(c_{4})=\mu(b)+4}\{(x, y, t)\in\overline{\mathcal{M}}’(a, c_{4})\times\overline{\mathcal{M}}’(c_{4}, b)\times[0,1]|$

$\overline{s}_{\gamma_{1}}(c_{4}, b)(x, t)=\overline{s}_{\gamma_{2}}(c_{4}, b)(y, t)=0\}$ ,

$(x, y, t)\in\overline{\mathcal{M}}^{J}(a, c_{2})\times\overline{\lambda\Lambda}’(c_{2}, b)\times[0,1]$

$\cup\prod_{\mu(c_{2})=\mu(b)+2}\{(x, y, t)| \overline{s}_{\gamma_{1}}(a, c_{2})(x, t)=0or=\overline{s}_{\gamma_{2}}(c_{2}, b)(y, t) \}$

$\overline{s}_{\gamma_{1}}(c_{2}, b)(x, t)=0=\overline{s}_{\gamma 2}(a, c_{2})(y, t)$

$(x, y, t)\in\overline{\mathcal{M}}^{J}(a, c_{3})\times\overline{\mathcal{M}}’(c_{3}, b)\times[0,1]$

$\cup\prod_{\mu(c_{3})=\mu(b)+3}\{(x, y, t)$

$|$

or

$\overline{s}_{\gamma_{1}}(a, c_{3})(x, t)=0=\overline{s}_{\gamma_{2}}(c_{3}, b)(y, t)$

$\}$ .

$\overline{s}_{\gamma_{1}}(c_{3}, b)(x, t)=0=\overline{s}_{\gamma_{2}}(a, c_{3})(y, t)$

Let $\Lambda_{0}$ , $\Lambda_{5}$ , $\Lambda_{1}$ , $\Lambda_{4}$ , $\Lambda_{2}$ , $\Lambda_{3}$ be the sets in the above formula, respectively.
We have

(12.7.1) $\beta\Lambda_{0}=\langle\partial_{\gamma_{1},\gamma 2}a, b\rangle$ ,

(12.7.1) $\beta\Lambda_{5}=-\langle\partial_{\gamma_{1},\gamma_{2}}’a, b\rangle$ .

For $a$ , $c\in Fl$ with $\mu(a)=\mu(c)+4$ , we put

$\langle\varphi_{\gamma_{1},\gamma_{2}}a, c\rangle=\#\{(x, t)\in\overline{\mathcal{M}}’(a, c)\times[0,1]|\overline{s}_{\gamma_{1}}(x, t)=\overline{s}_{\gamma_{2}}(x, t)=0\}$ .

Then we have

(12.7.3)
$\beta\Lambda_{1}=\sum_{c_{1}}\langle\varphi_{\gamma_{1},\gamma_{2}}a, c_{1}\rangle\langle\partial c_{1}, b\rangle$

,

(12.7.4)
$\#\Lambda_{4}=-\sum_{c_{4}}\langle\partial a, c_{4}\rangle\langle\varphi_{\gamma_{1},\gamma_{2}}c_{4}, b\rangle$

.
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To examine $\#\Lambda_{2}$ and $\#\Lambda_{3}$ , we remark that the sections $\overline{s}_{\gamma}(c, c’)$ can be
defined by an induction on $\mu(c)-\mu(c’)$ . Then, we can assume the
following conditions (12.8). For $c$ , $c’\in Fl$ with $\mu(c)=\mu(c’)+2$ , we put

$T(c, c’)=\sup\{t|\exists x(x, t)\in\overline{\Sigma}_{\gamma}(c, c’)\}$ ,

$S(c, c’)=\inf\{t|\exists x(x, t)\in\overline{\Sigma}_{\gamma}(c, c’)\}$ .

(12.8.1) If $\mu(c)=\mu(c’)+3=\mu(c^{JJ})+5$ , and if $t>T(c’, c’’)$ then

$\overline{s}_{\gamma}^{f}(c, c’)(x, t)=\overline{s}_{\gamma}’(c, c’)(x, 1)$

(12.8.2) If $\mu(c)=\mu(c’)+2=\mu(c’’)+5$ , and if $t<S(c, c’)$ , then

$\overline{s}_{\gamma}^{f}(c’, c’’)(x, t)=\tilde{s}_{\gamma}(c’, c’’)(x, 0)$

Using (12.8.1), we can prove:

$\Lambda_{2}=\prod_{c_{2}}\{x\in\overline{\lambda\Lambda}’(a, c_{2})|s_{\gamma 1}’(x)=0\}\times$

$\{(y, t)\in\overline{\mathcal{M}}’(c_{2}, b)\times[0,1]|\overline{s}_{\gamma_{2}}(y, t)=0\}$

$\cup\prod_{c_{2}}\{x\in\overline{\mathcal{M}}’(a, c_{2})|s_{\gamma_{2}}’(x)=0\}\times$

$\{(y, t)\in\overline{\Lambda 4}’(c_{2}, b)\times[0,1]|\overline{s}_{\gamma_{1}}(y, t)=0\}$ .

Therefore

(12.9.1)
$\#\Lambda_{2}=-\sum_{c_{2}}\langle\partial_{\gamma_{1}}’a, c_{2}\rangle\langle\varphi_{\gamma_{2}}c_{2}, b\rangle-\sum_{c_{2}}\langle\partial_{\gamma_{2}}’a, c_{2}\rangle\langle\varphi_{\gamma_{1}}c_{2}, b\rangle$

.

Similarly, using (12.8.2), we can prove:

(12.9.2)
$\#\Lambda_{3}=\sum_{c_{3}}\langle\varphi_{\gamma_{1}}a, c_{3}\rangle\langle\partial_{\gamma_{2}}c_{3}, b\rangle+\sum_{c_{3}}\langle\varphi_{\gamma_{2}}a, c_{3}\rangle\langle\partial_{\gamma_{1}}c_{3}, b\rangle$

.

By (12.6.1),(12.7),(12.9), we have
(12.10)
$\partial_{\gamma_{1},\gamma_{2}}+\varphi_{\gamma_{1}}\partial_{\gamma_{2}}+\varphi_{\gamma_{1}}\partial_{\gamma_{2}}+\varphi_{\gamma_{1},\gamma_{2}}\partial=\partial_{\gamma_{1},\gamma_{2}}’+\partial_{\gamma_{1}}’\varphi_{\gamma_{2}}+\partial_{\gamma_{2}}’\varphi_{\gamma_{1}}+\partial’\varphi_{\gamma_{1},\gamma_{2}}$ .

Now we put

$\varphi(\gamma_{1}\gamma_{2}\otimes[a])=\gamma_{1}\gamma_{2}\otimes[a]+\gamma_{1}\otimes\varphi_{\gamma 2}[a]+\gamma_{2}\otimes\varphi_{\gamma 1}[a]+1\otimes\varphi_{\gamma_{1},\gamma 2}[a]$

$\psi(\gamma_{1}\gamma_{2}\otimes[a])=\gamma_{1}\gamma_{2}\otimes[a]-\gamma_{1}\otimes\varphi_{\gamma 2}[a]-\gamma_{2}\otimes\varphi_{\gamma_{1}}[a]$

$-1\otimes(\varphi_{\gamma_{1},\gamma 2}+\varphi_{\gamma 1}\varphi_{\gamma 2}+\varphi_{\gamma 2}\varphi_{\gamma_{1}})[a]$ .
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Formulas (12.2.1),(12.2.2),(12.2.3) follow immediately from (12.5) and
(12.10). The proof of Theorem 12.2 is now complete.

Next we shall prove the following:

Lemma 12.11. Let $\gamma_{1}$ , $\gamma_{2}$ , $\gamma$ , $\gamma’$ be closed loops on $M$ with $[\gamma_{1}]+$

$[\gamma_{2}]=[\gamma]$ in $H_{1}(M;Z)$ . Then we can fifind collections of sections
$s_{\gamma_{1}}(c, c’),s_{\gamma_{2}}(c, c’)$ , $s_{\gamma}(c, c’),s_{\gamma’}(c, c’)$ with (12.1.1), (12.1.2) such that the
corresponding boundary operators satisfy

(12.11.1) $\partial_{\gamma_{1}}+\partial_{\gamma_{2}}=\partial_{\gamma}$

(12.11.2) $\partial_{\gamma_{1},\gamma’}+\partial_{\gamma_{2},\gamma’}=\partial_{\gamma,\gamma’}$ .

Proof. Let $\mu(a)=\mu(b)+3$ . Consider $C\overline{\mathcal{M}}(a, b)$ . (We do not divide
it by the $R$ action.) Let $\Sigma$ be a surface on $M\times R$ which is asymptotic
to $(\gamma_{1}\cup\gamma_{2})\times R$ as $ t\rightarrow-\infty$ , and to $\gamma\times R$ as $t$ $\rightarrow\infty$ . Using the Dirac

operator on $\Sigma$ , we can define a line bundle $\mathcal{L}_{\Sigma}^{(2)}(a, b)$ on $C\overline{\mathcal{M}}(a, b)=$

$C\overline{\mathcal{M}}’(a, b)\times$ R. We put

$CC\overline{\mathcal{M}}(a, b)=C\overline{\mathcal{M}}(a, b)\times[-\infty, \infty]$ .

By construction and Theorem 4.9, the bundles $\mathcal{L}_{\Sigma}^{(2)}(a, b)$ on $C\overline{\mathcal{M}}(a, b)$ ,

and $\mathcal{L}_{\gamma_{1}}^{(2)}(a, b)\otimes \mathcal{L}_{\gamma_{2}}^{(2)}(a, b)$ on $C\overline{\mathcal{M}}’(a, b)\times\{-\infty\}$ , and $\mathcal{L}_{\gamma}^{(2)}(a, b)$ on
$C\overline{\mathcal{M}}’(a, b)\times\{\infty\}$ can be patched together to give a line bundle over
$CC\overline{\mathcal{M}}(a, b)$ . We extend the sections $s_{\gamma_{1}}(a, b)\otimes s_{\gamma_{2}}(a, b)$ and $s_{\gamma}(a, b)$ to

a section on $CC\overline{\mathcal{M}}(a, b)$ . Then, by an argument similar to the proof of
Theorem 12.2, we can find $\varphi_{\gamma}$ such that

$\partial_{\gamma}-(\partial_{\gamma_{1}}+\partial_{\gamma 2})=\partial\varphi_{\gamma}-\varphi_{\gamma}\partial$ .

Using this map $\varphi_{\gamma}$ , we can modify the section $s_{\gamma}$ such that (12.11.1) is

satisfied. The proof of (12.11.2) is similar.

Finally, we discuss what happens when $s\geq 1$ in case $H_{1}(M;Z)$ has
a torsion, and when $s$ $\geq 3$ in case $H_{1}(M;Z)$ is torsion free.

Suppose first that $H_{1}(M;Z)$ has a torsion, and $\mu(a)=\mu(b)+5$ .

In this case, there may be reducible connections $c$ and $c’$ such that
$G_{c}=G_{c’}=U(1)$ and that $\mu(c)=\mu(c’)+1=\mu(b)+2$ . Then

$dim\overline{\mathcal{M}}’(a, c)=dim\overline{\mathcal{M}}’(c, c’)=dim\overline{.\wedge\Lambda}’(c’, b)=0$ .
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The set $\overline{\sqrt{}\vee l}’(c, c’)$ may have a 0 dimensional orbit $\overline{\mathcal{M}}_{red}^{J}(c, c’)$ which
consists only of reducible connections. (See Theorem 5.6.) A neighbor-

hood of each point of $\overline{\mathcal{M}}’(a, c)\times\overline{\mathcal{M}}_{red}’(c, c’)\times\overline{\mathcal{M}}’(c’, b)$ , in $C\overline{\mathcal{M}}^{J}(a, b)$

is identified to $(0, \infty]$ $\times(0, \infty]\times U(1)/\sim$ , where $(t, s, g_{1})\sim(t, s, g_{2})$

if and only if $t$ $=\infty$ or $ s=\infty$ . Here $\{\infty\}\times(0, \infty)\times U(1)/\sim$

and $(o, \infty)$ $\times\{\infty\}\times U(1)/\sim are$ identified to $\overline{\lambda\Lambda}’(a, c)\times\overline{\lambda\Lambda}^{J}(c, b)$ and
$\overline{\mathcal{M}}’(a, c’)\times\overline{\mathcal{M}}’(c’, b)$ respectively. The bundle $\mathcal{L}_{\gamma}^{(2)}(a, b)$ is extended out-
side $\infty\times\infty\times U(1)/\sim=point$ . The neighborhood of this point is a cone
of $S^{2}$ . (It may be more natural to regard that this $S^{2}$ has two singular
points.)

Using the basis $[\ell_{i}]$ of $H_{1}’(M;Z)$ , chosen at the beginning of \S 2, we
can find $\ell_{i_{0}}$ such that

(12.12.1) $c(\ell_{i})=c’(\ell_{i})$ if $i\neq i_{0}$ .

(12.12.2) $c(\ell_{i_{0}})=1$ , $c’(\ell_{i_{O}})=-1$ .

In this case we can prove that the restriction of the line bundle $\mathcal{L}_{p_{i_{0}}}^{(2)}(a, b)$

to this $S^{2}$ is nontrivial. (Its chern number is $\pm 1.$ ) (See the proof of
Lemma 12.13 below.) Then the formula

$\partial_{\gamma}\partial+\partial_{\gamma}\partial=0$

does not hold in general.

Next suppose that $H_{1}(M;Z)$ is torsion free. Let $c$ and $c’$ be reducible

connections such that $G_{c}=G_{c’}=SU(2)$ , $A\in\overline{\mathcal{M}}^{J}(c, c’)$ , $G_{A}=U(1)$ ,
$\mu(c)=\mu(c’)+3$ . Then, if $a$ , $b\in Fl$ and if $\mathcal{M}(a, c)\neq\emptyset$ , $(c’, b)$ $\neq\emptyset$ ,

then $\mu(a)\geq\mu(c)+4,\mu(b)\leq\mu(c’)-1$ . Hence, the first case we are to
examine is the case when $\mu(a)=\mu(b)+8=\mu(c’)+7=\mu(c)+4$ . In this
case,

$dim\overline{\mathcal{M}}’(a, c)=dim\overline{\mathcal{M}}_{red}’(c, c’)=dim\overline{\mathcal{M}}’(c’, b)=0$ .

Here $\overline{\mathcal{M}}_{red}’(c, c’)$ is the component of $[A]$ , which consists of one point.
By Theorem 7.1 a neighborhood of each point of

$\overline{\mathcal{M}}’(a, c)\times\overline{\Lambda 4}_{red}’(c, c’)\times\overline{\mathcal{M}}’(c’, b)$

in $C\overline{\mathcal{M}}’(a, b)$ is

$(\frac{SO(3)\times SO(3)}{U(1)}\times(0, \infty]^{2})/\sim$
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$where\sim is$ as in (7.1.4). In other words, it is a cone of $CP^{3}/Z_{2}=X$ .

(See the proof of Lemma 12.13.) Here $Z_{2}$ acts by

$\tau[z_{0}, z_{1}, z_{2}, z_{3}]=[z_{0}, z_{1}, -z_{2}, -z_{3}]$ .

The fixed points set of this action has two components. The fixed points
correspond to the singular points of $X$ . Those singular locus are identi-
fied to

$(\frac{SO(3)\times SO(3)}{U(1)}\times\{\infty\}\times(0, \infty))/\sim$

$\subset\overline{\mathcal{M}}^{J}(a, c)\times\overline{\mathcal{M}}^{J}(c, b)$ ,

and

$(\frac{SO(3)\times SO(3)}{U(1)}\times(0, \infty)\times\{\infty\})/\sim$

$\subset\overline{\mathcal{M}}^{J}(a, c’)\times\overline{\mathcal{M}}(c’, b)$ ,

respectively. We can find $\ell_{i_{0}}$ such that (12.12.1) and (12.12.2) are satis-
fied.

Lemma 12.13.

$\int_{X}c^{1}(\mathcal{L}_{\ell_{i_{0}}}^{(2)}(a, b))^{3}=\pm 4$ .

Proof. Let $a_{t}^{0}$ be a representative of $\overline{\mathcal{M}}’(c, c’)=point$ , (used in \S 8.)
On $\ell_{i_{0}}\times R$ , $a_{t}^{0}$ converges to the trivial connection as $t$ goes to $-\infty$ , and,
as $t$ goes to $\infty$ , it converges to a flat connection -1 whose holonomy,
$\rho_{-1}$ : $Z=\pi_{1}(S^{1})\rightarrow SU(2)$ is given by $\rho_{-1}(1)=-1$ .

Sublemma 12.14.

$Index(6_{a_{t}^{0}}+\epsilon)=-1$ .

Proof. We put $S^{1}=R/2\pi Z$ . Let $x$ be the coordinate of $S^{1}$ . We
have

$6_{trivial}=\frac{\partial}{\partial t}+i\frac{\partial}{\partial x}$ .

We can perturb $a_{t}^{0}$ so that it is a connection with holonomy

$\left(\begin{array}{ll}e^{\pi it} & 0\\0 & e^{-\pi it}\end{array}\right)$ .
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( $a_{0}^{0}$ is a trivial connection and $a_{1}^{0}=-1.$ ) Then the spectral flow cor-
responding to the operator $ 6_{a_{t}^{0}}+\epsilon$ is as in Figure 9. (Here we take
$\epsilon>0.)$

eigenvalue

0

-1 1

Figure 9.

The sublemma follows.

Remark 12.15. In our case, the half spin $bund1e\otimes C^{2}$ together with
connection $a_{t}^{0}$ splits to the direct sum of two complex line bundles. The
dotted lines in Figure 9 correspond to the second factor and the others
to the first factor.

The group $U(1)=I_{a_{t}^{0}}$ acts on the eigenspaces, and the index in

Sublemma 12.14 can be regarded as an element of the representation
ring $R(U(1))\sim Z[t, t^{-1}]$ . Here $t$ be the representation corresponding to
$z\mapsto z$ and $t^{-1}$ to $z\rightarrow z^{-1}$ , where we identify $U(1)=\{z||z|=1\}$ . By

Figure 9, The index is equal to $-t^{-1}$ .

If we choose $\epsilon<0$ then the index is $t$ .

Now we consider the map $\pi$ : $SU(2)\times SU(2)\rightarrow \mathcal{M}’(c, c’)$ con-
structed in Theorem 5.4. Let $\mathcal{L}_{i}(c, c’)$ be the line bundle defined in \S 7.
(We have not yet divided it by $G_{c}\times G_{c’}.$ ) $\pi^{*}\mathcal{L}_{i}(c, c’)$ is trivial.
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On $SU(2)\times SU(2)$ , the group $U(1)=I_{a_{t}^{0}}$ acts by

$h(g_{1}, g_{2})=(g_{1}h, h^{-1}g_{2})$ .

This action lifts to $\pi^{*}(\mathcal{L}_{i}(c, c’))$ . The quotient is identified to the restric-
tion of $\mathcal{L}_{i}(c, c’)$ to the image of $\pi$ , which is diffeomorphic to $ SU(2)\times$

$SU(2)/U(1)$ . By Sublemma 12.14 and Remark 12.15, the action of $U(1)$

on $\pi^{*}(\mathcal{L}_{i}(c, c’))$ is given by

(12.16) $h((g_{1}, g_{2}),$ $v)=((g_{1}h^{-1}, hg_{2})$ , $hv)$ ,

(in both cases $\epsilon>0$ and $\epsilon<0.$ )
We put

$\hat{X}=\underline{SU(2)\times SU(2)\times[0,1]}\sim$

’

where

$(g_{1}, g_{2},0)=(g_{1}’, g_{2},0)$ ,

$(g_{1}, g_{2},1)=(g_{1}, g_{2}’, 1)$ .

$\hat{X}$ is diffeomorphic to $S^{7}$ . By Theorem 7.1,

$\hat{X}$

$X=\overline{U(1)\times Z_{2}}$
.

Here $h\in U(1)$ and $\tau=-1\in Z_{2}$ acts on $\hat{X}$ by

$h([g_{1}, g_{2}, t])=[g_{1}h, h^{-1}g_{2}, t]$ ,

$\tau([g_{1}, g_{2}, t])=[-g_{1}, g_{2}, t]$ .

Hence $\hat{X}/U(1)\simeq CP^{3}$ . By (12.16), the bundle $\mathcal{L}_{i}(a, b)$ on $\hat{X}/U(1)\subset$

$C\mathcal{M}’(a, b)$ is isomorphic to the canonical bundle on $CP^{3}$ . Hence, its
Chern class is equal to the generator, $u$ . Therefore,

$\int_{X}c^{1}(\mathcal{L}_{i}^{(2)}(a, b))^{3}=\int_{CP^{3}}(2u)^{3}/2=4$ .

The proof of Lemma 12.13 is now complete.

Using Lemma 12.13, we can discuss as in the proof of Theorem 1.10,
to show

$\sum_{\alpha_{1}\cup\alpha_{2}=\alpha}\partial_{\gamma_{\alpha_{1}}}\partial_{\gamma_{\alpha_{2}}}=4\sum_{c,c’}\#\overline{\mathcal{M}}’(a, c)$

. $\Downarrow\overline{\mathcal{M}}’(c’, b)$ ,
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in the case when $\alpha=(\ell_{i_{0}}, \ell_{i_{0}}, \ell_{i_{0}})$ .

It might be possible to define an invariant $mod 4$ using the above
formula. But the author does not try to do it here, because he suspects
if it is a correct way.

From the above observation, it seems that we need to examine the
reducible connections more seriously when we generalize the invariant
for larger $s$ .

\S 13. Independence of the metrics and the perturbations

The proof of Theorem 1.14 is based on an argument similar to one
in 7-12 and [F]. Let $\sigma_{1}$ , $\sigma_{2}$ be two metrics on $M$ and $f_{1},f_{2}$ be two
perturbations as in 2,3. Let $Fl_{1}$ and $Fl_{2}$ be the set of solutions of

$*_{\sigma_{1}}F^{a}-grad_{a}f_{1}=0$ ,

and
$*_{\sigma_{2}}F^{a}-grad_{a}f_{2}=0$ ,

respectively. Let $(C_{(1)}^{s}, \partial^{1})$ and $(C_{(2)}^{s}, \partial^{2})$ be corresponding complexes

constructed in \S 12. Choose a family of metrics $g_{t}$ such that

(13.1.1) $\sigma_{t}=\sigma_{1}$ for $t$ $<-1$ .

(13.1.2) $\sigma_{t}=\sigma_{2}$ for $t>1$ .

Choose $\chi$ such that

$\chi(t)=1$ for $t>1$ ,

$\chi(t)=0$ for $t<0$ .

Let $\sigma_{t}$ be the metric $\sigma_{t}\oplus dt^{2}$ on $M\times R$ . We consider the equation

(13.2) $F^{A}-\overline{*}_{\sigma_{t}}F^{A}-\chi(-t)(grad_{a_{t}}f_{1}\wedge dt-*_{\sigma_{t}}grad_{a_{t}}f_{1})$

$-\chi(t)(grad_{a_{t}}f_{2}\wedge dt-*_{\sigma_{t}}gradf_{2})=0$ ,

for $A\in A_{p\delta},(a, b)$ . (Compare (3.6).) Here $a\in Fl_{1}$ and $b\in Fl_{2}$ . The
linearization of (13.2) is given by

$0=D_{A}(u, \varphi)=$

$-\frac{\partial u}{\partial t}+(*_{\sigma_{t}}d_{a_{t}}-\psi_{t}-\chi(-t)Hess_{a_{t}}f_{1}-\chi(t)Hess_{a_{t}}f_{2})\wedge u+d_{a_{t}}\varphi$

Here $u$ , $\varphi$ e.t.c are the same as in (3.8). Let $D_{A}^{1}$ and $D_{A}^{2}$ be the operators

in (3.8) for $\sigma=\sigma_{1}\oplus dt^{2}$ , $\sigma_{2}\oplus dt^{2}$ and $f=f_{1}$ , $f_{2}$ , respectively.
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Lemma 13.3. If $A\in A_{l,\gamma}(a, b)$ with $a\in Fl_{1}b\in Fl_{2}$ , then

$dimCoker$ $D_{A}<\infty$ .

Proof. If not we have $(u_{i}, \varphi_{i})$ such that

$D_{A}^{*}(u_{i}, \varphi_{i})=0$ ,

$<(u_{i}, \varphi_{i})$ , $(u_{j}, \varphi_{j})>=\delta_{i,j}$ .

Then, by elliptic regularity, we have $|t_{i}|\rightarrow\infty$ such that

$|$ $(u_{i}(x_{0}, t_{i})$ , $\varphi_{i}(x_{0}, t_{i}))|>C_{0}>0$ .

We may assume that $ t_{i}\rightarrow\infty$ . Put $u_{i}’(t, x)=u_{i}(t-t_{i}, x)$ , $\varphi_{i}’(t, x)=$

$\varphi_{i}(t-t_{i}, x)$ . By taking a subsequence we may assume that $(u_{i}’, \varphi_{i}’)$

converges to $(\text{{\it \^{u}}}, \hat{\varphi})$ with respect to the $C^{\infty}$ topology on each compact
set. Then we have

$D_{b}^{(2)*}$ $(\text{{\it \^{u}}}, \hat{\varphi})=0$

$(\text{{\it \^{u}}}, \hat{\varphi})\neq 0$ .

This contradicts (2.6).

Using Lemma 13.3, we can apply the argument of [D3] to obtain a
perturbation $Q(\cdot)$ , such that the linearized operator $D_{A}’$ of

(13.4) $F^{A}-\overline{*}_{\sigma_{t}}F^{A}-\chi(-t)(grad_{a_{t}}f_{1}\wedge dt-*_{\sigma_{t}}grad_{a_{t}}f_{1})$

$-\chi(t)(grad_{a_{t}}f_{2}\wedge dt-*_{\sigma_{t}}grad_{a_{t}}f_{2})+Q(A)=0$ .

is surjective. Here $Q(A)$ depends only on a restriction of $A$ to $ M\times$

$[-1,1]$ and its support is also contained in it. Let $\overline{\sqrt{}\vee 1}(a, b)$ be the set

of solutions of (13.4) divided by gauge transformations. Let $\overline{\mathcal{M}}_{(1)}’(a, b)$

and $\overline{\mathcal{M}}_{(2)}’(a, b)$ be the set of solutions of (3.6) for $\sigma=\sigma_{1}$ , $f=f_{1}$ and
$\sigma=\sigma_{2}$ , $f=f_{2}$ , divided by the gauge transformations and $R$ action,
respectively.

Theorem 13.5. For $a\in Fl_{1}$ and $b\in Fl_{2}$ , let $C\overline{\mathcal{M}}(a, b)$ be the
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disjoint union of

$\overline{\mathcal{M}}(a, b)$ ,

$\overline{\mathcal{M}}(a, c_{0})\times\prod_{i=0}^{k-1}\overline{\Lambda 4}_{(2)}’(c_{i}, c_{i+1})\times\overline{\mathcal{M}}_{(2)}^{J}(c_{k}, b)$ ,

$\overline{\mathcal{M}}_{(1)}^{J}(a, c_{0})\times\prod_{i=0}^{k-1}\overline{\lambda\Lambda}_{(1)}’(c_{i}, c_{i+1})\times\overline{\lambda\Lambda}(c_{k}, b)$ ,

$\overline{\mathcal{M}}_{(1)}^{J}(a, c_{0})\times\prod_{i=1}^{k_{0}-1}\overline{\mathcal{M}}_{(1)}’(c_{i}, c_{i+1})\times\overline{\mathcal{M}}(c_{k_{0}}, c_{k_{0}+1})$

$\times\prod_{i=k_{0}+1}^{k-1}\overline{\mathcal{M}}_{(2)}^{J}(c_{i}, c_{i+1})\times\overline{M}_{(2)}^{J}(c_{k}, b)$ .

Then $C\overline{\mathcal{M}}(a, b)$ has a smooth structure with properties similar to (7.1.1)
$-(7.1.7)$ .

The proof is similar to the proof of Theorem 7.1 and is omitted.
We remark here the reason why we need to fix a basis of $H_{1}’(M;Z)$ .

Let $\mu_{1},\mu_{2}$ be the maps defined in Theorem 5.1 for metrics $\sigma_{1},\sigma_{2}$ and
let $f_{1}$ and $f_{2}$ be functions we used in sections 2 and 3. If we use the
same basis of $H_{1}’$ ($M$ ; Z) (or more precisely $H_{1}’(M;Z)\otimes Z_{2}$ ), then we have
$\mu_{1}(c)=\mu_{2}(c)$ for each reducible connection $c$ . This fact is essential for
the argument of the rest of this section. In fact, suppose, for example,
there exists reducible $c$ such that

$\mu_{1}(c)=\mu_{2}(c)-10$ .

Then for some $a\in Fl_{1},b\in Fl_{2}$ with $\mu_{1}(a)=\mu_{2}(b)+1$ , the space $\overline{\mathcal{M}}(a, b)$

may have an end described by

$\overline{\Lambda 4}_{(1)}’(a, c)\times\overline{\mathcal{M}}(c, c)\times\overline{\mathcal{M}}_{(2)}’(c, b)$ .

And $\mu_{1}(a)-\mu_{1}(c)$ can be greater than 7. Therefore, in the compactifica-

tion of $\overline{\mathcal{M}}_{(1)}’$ the end we discussed at the end of \S 12 can appear. These

ends can cause serious problem for the argument of the well definedness.
The point is that the virtual dimension of $\overline{\mathcal{M}}(a, b)$ is -10 but we can
not find perturbation to make it empty

The author has no explicit example which shows that our invariant
does depend on the choice of the basis of $H_{1}(M;Z)$ . But it seems quite

unlikely that it is independent.
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We return to the proof of invariance. For $\gamma\simeq S^{1}\subset M$ , we define
bundles

$\mathcal{L}_{\gamma,1}^{(2)}(a, a’)$ on $\overline{\sqrt{}\backslash \Lambda}_{(1)*}(a, a’)$ ,

$\mathcal{L}_{\gamma,2}^{(2)}(b, b’)$ on $\overline{\mathcal{M}}_{(2)*}(b, b’)$ ,

$\mathcal{L}_{\gamma}^{(2)}(a, b)$ on $\overline{\mathcal{M}}(a, b)$ .

Theorem 13.6. The tensor products of $\mathcal{L}_{\gamma,1}^{(2)},\mathcal{L}_{\gamma,2}^{(2)}$ , and $\mathcal{L}_{\gamma}^{(2)}$ can

be patched together to give a line bundle on $C\overline{\mathcal{M}}_{*}(a, b)$ .

The proof is the same as the proof of Theorem 7.3.

Now we define $\varphi$ : $(C_{(1)}^{s}, \partial^{1})\rightarrow(C_{(2)}^{s}, \partial^{2})$ . We put

$<\varphi_{0}(a)$ , $b>=\beta\overline{\mathcal{M}}(a, b)$

if $\mu(a)=\mu(b)$ . (Here $\#$ is the same as in 12.) Set

$\varphi[a]=\sum_{b}<\varphi_{\emptyset}a$
, $b>[b]$ .

This defines the map $\varphi$ : $C_{(1)}^{0}\rightarrow C_{(2)}^{0}$ .

Next we fix sections $s_{\gamma}(a, b)$ , $s_{\gamma,1}(a, a’)$ , $s_{\gamma,2}(b, b’)$ to $\mathcal{L}_{\gamma}^{(2)}(a, b)$ ,

$\mathcal{L}_{\gamma,1}^{(2)}(a, a’)$ , $\mathcal{L}_{\gamma,2}^{(2)}(b, b’)$ such that (12.1.2) holds and that they can be

patched together to give a section of the line bundle obtained in Theorem
13.6. Now, for $\mu(a)=\mu(b)+2$ , we put

$<\varphi_{\gamma}a$ , $b>=\#\{x\in\overline{\lambda\Lambda}(a, b)|s_{\gamma}(x)=0.\}$ .

For $\mu(a)=\mu(b)+4$ , we put

$<\varphi_{\gamma_{1},\gamma_{2}}a$ , $b>=\#\{x\in\overline{\mathcal{M}}(a, b)|s_{\gamma_{1}}(x)=s_{\gamma 2}(x)=0\}$ .

Set

$\varphi_{\gamma}[a]=\sum_{b}<\varphi_{\gamma}a$
, $b>[b]$ ,

$\varphi_{\gamma_{1},\gamma 2}[a]=\sum_{b}<\varphi_{\gamma_{1},\gamma_{2}}a$
, $b>[b]$ .

Lemma 13.7. $If|\alpha|<3$ , the

$\sum_{\alpha_{1}\cup\alpha_{2}=\alpha}\partial_{\alpha_{1}}^{2}\varphi_{\alpha_{2}}=\sum_{\alpha_{1}\cup\alpha_{2}=\alpha}\varphi_{\alpha_{1}}\partial_{\alpha_{2}}^{1}$
.
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( $If|\alpha|>0$ we assume that $H_{1}(M;Z)$ is torsion free.)

The proof is the same as the proof of Theorem 1.10 in \S 12. Put

$\varphi(\gamma_{\alpha}\otimes a)=\sum_{\alpha_{1}\cup\alpha_{2}=\alpha}\gamma_{\alpha_{1}}\otimes\gamma_{\alpha_{2}}a$
.

Lemma 13.7 implies that $\varphi$ : $(C_{(1)}^{s}, \partial^{1})\rightarrow(C_{(2)}^{s}, \partial^{2})$ is a chain map.

Lemma 13.8. The chain map $\varphi$ modulo chain homotopy is inde-
pendent to the choice of the homotopy $\sigma_{t}$ of the metrics and the pertur-
bation $Q$ in (13.4).

Proof Let $\sigma_{t}^{1},\sigma_{t}^{2},Q_{1},Q_{2}$ be the homotopies and perturbations and
$\varphi_{1}$ , $\varphi_{2}$ be corresponding chain maps. Choose homotopies $\sigma_{t}^{u}$ and $Q_{u}$

among them. Let $\overline{\mathcal{M}}_{u}’(a, b)$ be the set of solutions of (13.4) for $\sigma_{t}=\sigma_{t}^{u}$

and $Q=Q_{u}$ . Let $C\overline{\mathcal{M}}_{u}’(a, b)$ be the disjoint union of

$\overline{\mathcal{M}}_{u}(a, b)$

$\overline{\mathcal{M}}_{u}(a, c_{0})\times\prod_{i=0}^{k-1}\overline{\mathcal{M}}_{(2)}’(c_{i}, c_{i+1})\times\overline{\lambda\Lambda}_{(2)}’(c_{k}, b)$ ,

$\overline{\mathcal{M}}_{(1)}’(a, c_{0})\times\prod_{i=0}^{k-1}\overline{\mathcal{M}}_{(1)}^{J}(c_{i}, c_{i+1})\times\times\overline{\mathcal{M}}_{u}(c_{k}, b)$ ,

$\overline{\mathcal{M}}_{(1)}’(a, c_{0})\times\mathring{\prod_{i=0}^{k-1}}\overline{\mathcal{M}}_{(1)}’(c_{i}, c_{i+1})\times\overline{\mathcal{M}}_{u}(c_{k_{0}}, c_{k_{0}+1})$

$\times\prod_{i=k_{O}+1}^{k-1}\overline{\mathcal{M}}_{(2)}’(c_{i}, c_{i+1})\times\overline{\mathcal{M}}_{(2)}’(c_{k}, b)$ .

(Here we do not assume that $\mu(a)>\mu(c_{0})>\cdots>\mu(c_{k})>\mu(b).$ ) (Note

$that\mathcal{M}_{(1)}Put(a, b)\neq \mathcal{M}_{1}(a, b).)$

$\mathcal{H}\overline{\mathcal{M}}(a, b)=\cup\overline{\mathcal{M}}_{u}(a, b)\times\{u\}$ ,

$CH\overline{\mathcal{M}}(a, b)=\cup C\overline{\mathcal{M}}_{u}(a, b)u\times\{u\}$
.

Theorem 13.9. We can take $\sigma_{t}^{u}$ and $Q_{u}$ such that $C7\{\overline{\mathcal{M}}(a, b)$

hasa smooth structure which has properties similar to (7.1.1)-(7.1.7).
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The proof of Theorem 13.9 is a bit more difficult than that of The-
orem 7.1. The reason is that we can not assume that the operator
$D_{A}^{(u)}$ obtained by linearizing (13.4) is surjective for every $w$ , (even if we
choose $\sigma_{t}^{u}$ and $Q_{u}$ to be generic.) Then we have to use the Kuranishi
map as in [T2], [D2]. For simplicity we prove the case $\mu(a)=\mu(b)$ . Here
$a\in Fl_{1},b\in Fl_{2}$ . Then $dimH\mathcal{M}’(a, b)=1$ . In this case, Theorem 13.9
follows immediately from the following two lemmas.

Lemma 13.10. Suppose that the sequence $(A_{i}, u_{i})\in H\overline{\mathcal{M}}(a)b)$ is

unbounded. Then, by taking a subsequence if necessary, there exist either

$c\in Fl_{1}$ , $t_{i}$ , $B\in\overline{\mathcal{M}}_{u}(a, c)$ , $C\in\overline{\mathcal{M}}_{(2)}’(c, b)$ with $\mu(c)=\mu(a)+1$ or $ c’\in$

$Fl_{2}$ , $t_{i}’$ , $B’\in\overline{\mathcal{M}}_{(1)}(a, c’)$ , $C’\in\overline{\mathcal{M}}_{u}(c’, b)$ with $\mu(c’)=\mu(a)-1$ such that

the Conditions (13.10.1) $-(13.10.3)$ or (13.10.1) $-(13.10.3)$
’ below hold.

(13.10.1) $u_{i}\rightarrow u$

(13.10.2) $|A_{i}(x, t)-B(x, t)|\rightarrow 0$

(13.10.3) $|A_{i}(x, t-t_{i})-C(x, t)|\rightarrow 0$

(13.10.2) $|A_{i}(x, t+t_{i})-B’(x, t)|\rightarrow 0$

(13.10.3)’ $|A_{i}(x, t)-C’(x, t)|\rightarrow 0$ .

(See Figure 10.) Note that $\overline{\mathcal{M}}_{u}(a, c)=\emptyset=\overline{\mathcal{M}}_{u}(c’, b)$ for generic $u$ .

(The virtual dimension of them is-l.) But” -parameter family of-l-
dimensional spaces is a finite set”. Hence by a generic choice of $\sigma_{t}^{u}$ and
$Q_{u}$ there exist a finite number of $w$

’
$s$ , for which $\overline{\mathcal{M}}_{u}(a, c)$ or $\overline{\mathcal{M}}_{u}(c’, b)$ is

nonempty.

$|$
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Lemma 13.11. Let $B\in\overline{\mathcal{M}}_{u}(a, c)$ , $C\in\overline{\mathcal{M}}_{(2)}^{J}(c, b)$ . Then there

exist $u(v)$ : $(0, \infty)\rightarrow 0,1$ , $A(v)\in\overline{\mathcal{M}}_{u(v)}(a, b)$ and $t(v)$ , $t’(v)\in R$ , such
that

(13.11.1) $\lim_{v\rightarrow\infty}u(v)=u$

(13.11.2) $\lim_{v\rightarrow\infty}|A(v)(x, t -t(v))-B(x, t)|=0$

(13.11.3) $\lim_{v\rightarrow\infty}|A(v)(x, t+t’(v))-C(x, t)|=0$ .

Moreover, if $A_{i}$ satisfifies (13.10.1) - (13.10.3) then $[A_{i}]=[A(v_{i})]$ for
large $i$ . A similar statement holds for $c’$ .

The proof of Lemma 13.10 is similar to the proof in \S 9 and is omitted.
Before proving Lemma 13.11 we complete the proof of Lemma 13.8 in
the case when $s=0$ .

In this case, Theorem 13.9 implies

$\partial H\overline{\mathcal{M}}(a, b)-\overline{\mathcal{M}}_{1}(a, b)-\overline{\mathcal{M}}_{2}(a, b)$

$=\cup\overline{\mathcal{M}}_{u}(a, c)u,c\times\overline{\mathcal{M}}_{(2)}’(c, b)\cup u,c’\cup\overline{\lambda\Lambda}_{(1)}’(a, c’)\times\overline{\mathcal{M}}_{u}(c’, b)$
.

We put

$<\Phi a$ , $c>=\sum\beta\overline{\mathcal{M}}_{u}(a, c)$

$<\Phi c’$ , $b>=\sum Q\overline{\mathcal{M}}_{u}(c’, b)$ ,

and

$\Phi[a]=\sum_{c}<\Phi a$
, $c>[c]$

$\Phi[c’]=\sum_{b}<\Phi c’$
, $b>[b]$ .

Then we have
$\varphi_{1}-\varphi_{2}=\partial\Phi-\Phi\partial$ .

Here $\varphi_{1}$ and $\varphi_{2}$ are the chain maps constructed using $\sigma_{t}^{1}$ , $Q_{1}$ and $\sigma_{t}^{2}$ , $Q_{2}$ ,
respectively. This proves Lemma 13.8 when $s=0$ . The case when $s>0$

can be proved by combining the methods of \S \S 7- 12 and Theorem 13.9.
(In fact, the case $s$ $>0$ is simpler, because we do not have to use
Kuranishi map in that case.)
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Proof of Lemma 13.11. Let $D_{A}^{u}$ be the operator obtained by lin-
earizing the equation (13.4) for $\sigma_{t}=\sigma_{t}^{u}$ and $Q=Q_{u}$ . By the generic
choice of $\sigma_{t}^{u}$ and $Q_{u}$ we have $dimCoker$ $D_{B}^{u}=1$ . We consider the set $X$

of the connections which is a standard form of type $(\{B\}, \{C\}, \epsilon, T)$ . By
Remark 4.6, there exists a positive number $\lambda_{0}$ , such that, if $A\in X$ and if
$|u-u’|<\epsilon$ , then, there is exactly one eigenvalue of $D_{A}^{u’}D_{A}^{u’*}$ smaller than
$\lambda_{0}$ . Let $\Pi_{I}$ be the orthonormal projection to this eigenspace, (which is
isomorphic to $R$). Put $\Pi_{II}=identify$ $-\Pi_{I}$ . For $A\in A(a, b)$ , $u’\in[0,1]$

we consider the equation

(13.12)

$\square _{II}(F^{A}-\overline{*}_{\sigma_{t}^{u’}}F^{A}-\chi_{u’}(-t)(grad_{a_{t}}f_{1}\wedge dt-*_{\sigma_{t}^{u’}}grad_{a_{t}}f_{1})$

$-\chi_{u’}(t)(grad_{a_{t}}f_{2}\wedge dt-*_{\sigma_{t}^{u’}}grad_{a_{t}}f_{2})+Q_{u’}(A))=0$ .

$|u$

Figure 11.

The set of solutions of (13.12) divided by gauge transformations
consists a 2-dimensional family Y. Let $Z$ be the set of solutions of (13.12)
for $A\in A(a, c)$ and $u’\in[0,1]$ . $(dimZ=1.)$ Then, using the method of
the proof of Theorem 7.1, we can compactify $Y$ by adding $Z\times\{C\}$ . Put
$CY$ $=Y\cup(Z\times\{C\})$ . A neighborhood of $((B, u),$ $C)$ in $CY$ is identified
to $[0, 1)$ $\times(0,1)$ , where {0} $\times(0,1)\subset Z\times\{C\}$ . (See Figure 11.) For
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$(A, u’)$ , we put

$f(A, u’)=\Pi_{I}(F^{A}-\overline{*}_{\sigma_{t}^{u’}}F^{A}-\chi_{u’}(-t)(grad_{a_{t}}f_{1}\wedge dt-*_{\sigma_{t}^{u’}}grad_{a_{t}}f_{1})$

$-\chi_{u’}(t)(grad_{a_{t}}f_{2}\wedge dt-*_{\sigma_{t}^{u’}}grad_{a_{t}}f_{2})+Q_{u’}(A))$ .

We identify the image of $\Pi_{I}$ to $R$ and regard $f$ as a function. Using the
decay estimate in \S 9 we can extend the function $f$ to a smooth function
on $CY$ . The set of zero’s of $f$ is identified to a neighborhood of $((B, u),$ $C)$

in $CH\overline{\mathcal{M}}(a, b)$ . We consider the restriction of $f$ to {0} $\times(0,1)\subset Z$ . If
we choose $g_{t}^{u}$ and $Q_{u}$ generic, we may assume that the derivative of
this restriction is nonzero at $((B, u)$ , $C)\in\{0\}\times(0,1)$ . It follows from
implicit function theorem that the zero of $f$ in $CY$ is diffeomorphic to
$[0, 1)$ where $0\in[0,1)$ corresponds to $((B, u),$ $C)$ . Lemma 13.11 follows
immediately.

The proof of Lemma 13.8 is now complete.

Next we take another metric $\sigma_{3}$ and another perturbation $f_{3}$ .

Choose homotopies $\sigma_{t}^{1,2}$ and $\sigma_{t}^{2,3}$ from $\sigma_{1}$ to $\sigma_{2}$ and from $\sigma_{2}$ to $\sigma_{3}$ .

Choose also perturbations $Q_{1,2}$ and $Q_{2,3}$ . Let $\varphi_{1,2}$ and $\varphi_{2,3}$ be the chain
maps obtained by them, respectively.

Lemma 13.12. We can fifind homotopy of metric $\sigma_{t}^{1,3}$ from $\sigma_{1}$ to
$\sigma_{3}$ and a perturbation $Q_{1,3}$ such that the chain map $\varphi_{1,3}$ : $C_{(1)}^{s}\rightarrow C_{(3)}^{s}$

satisfifies
$\varphi_{3,2}\varphi_{1,2}=\varphi_{1,3}$ .

Proof. We put

$\sigma_{t}^{s}=\chi(-t-s)\sigma_{t+2s}^{1,2}+\chi(t-s)\sigma_{t-2s}^{2,3}$ .

We shift the perturbation $Q_{1,2}$ by $2s$ to the negative direction and shift
$Q_{2,3}$ by $2s$ to the positive direction. Let $Q_{1,3}^{s}$ be the sum of them. We

consider the equation

(13.13)
$F^{A}-\overline{*}_{\sigma_{t}^{s}}F^{A}-\chi(-t-s)(grad_{a_{t}}f_{1}\wedge dt-*_{\sigma_{t}^{s}}grad_{a_{t}}f_{1})$

$-\chi(t+s)\chi(s-t)(grad_{a_{t}}f_{2}\wedge dt-*_{\sigma_{t}^{s}}grad_{a_{t}}f_{2})$

$-\chi(t-s)(grad_{a_{t}}f_{3}\wedge dt-*_{\sigma_{t}^{s}}grad_{a_{t}}f_{3})+Q_{1,3}(A)=0$

Let $\overline{\mathcal{M}}(s;a, e)$ be the set of solutions of (13.13) divided by gauge trans-

formations. Let $\overline{\mathcal{M}}_{1,2}(a, b)$ and $\overline{\mathcal{M}}_{2,3}(b, e)$ be the moduli spaces used in
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the definitions of $\varphi_{1,2}$ and $\varphi_{2,3}$ respectively. (Here $a\in Fl_{1}$ , $b\in Fl_{2}$ ,
$e\in Fl_{3}.)$

By using Remark 4.6, we can prove that the linearized equation for
(13.13) is surjective for sufficiently large $s$ . Consider the disjoint union
of

$C\overline{\lambda\Lambda}(s;a, e)\times\{s\}$ $s$ $\in[s_{0}, \infty)$

and

$\prod_{i=-1}^{k_{0}-1}\overline{\mathcal{M}}_{(1)}^{J}(c_{i}, c_{i+1})\times\overline{\mathcal{M}}_{1,2}(c_{k_{O}}, c_{k_{0}+1})$

$\times\prod_{i=k_{0}+1}^{k_{1}-1}\overline{\mathcal{M}}_{(2)}’(c_{i}, c_{i+1})\times\overline{\mathcal{M}}_{2,3}(c_{k_{1}}, c_{k_{1}+1})$

$\times\prod_{i=k_{1}+1}^{k_{2}}\overline{\Lambda 4}_{(3)}’(c_{i}, c_{i+1})\times\{\infty\}$ .

(Here we put $a=c_{-1}$ , $e=c_{k_{2}+1}.$ ) The later one is a compactification of
$\bigcup_{b}\overline{\mathcal{M}}_{1,2}(a, b)\times\overline{\mathcal{M}}_{2,3}(b, e)$ . Let $CC\overline{M}(a, e)$ be the union. Using this mod-
uli space, the proof of the lemma goes in a way similar to the argument
of \S \S 7- 13.

Now we are in the position to complete the proof of Theorem 1.14.
Suppose $\sigma_{1}=\sigma_{3}$ , in Lemma 13.12. Then we can take a trivial homotopy
$\sigma^{1,3}=\sigma_{1}$ and $Q_{1,3}=0$ . In this case, it is easy to see that the corre-
sponding chain map is the identity map. Therefore by Lemma 13.12
and Lemma 13.8, $\varphi_{2,3}\varphi_{1,2}$ is chain homotopic to identity. (In this case
$\varphi_{2,3}=\varphi_{2,1}.)$ Thus the chain map $\varphi_{1,2}$ we constructed gives an iso-
morphisms on the homology groups. Also the isomorphism is canonical
because of Lemma 13.8. The proof of Theorem 1.14 is now complete.
The proof of the independence of the exact sequence 1.15 is similar.
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\S 1. Introduction

A hyperbolic manifold will be a riemannian manifold with constant
sectional curvature-l. It is shown by Epstein and Penner [1] that every
noncompact complete hyperbolic manifold of finite volume, hence having
cusps, is decomposed by ideal polyhedra. The decomposition supplies a
quite convenient block to study several geometries of the cusped manifold
especially in dimension three. See [4] for instance.

A variant of the construction by Epstein and Penner would estab-
lish a decomposition of a compact hyperbolic manifold with nonempty
geodesic boundary by truncated polyhedra as well, which we plan to
discuss in a forthcoming paper [3]. However the process will be rather
unseen in the manifold.

In this paper, taking advantage of working only in dimension three,

we give a more visible construction of this decomposition. In fact we
directly show

Theorem. Let $N$ be a compact hyperbolic 3-manifold with non-
empty totally geodesic boundary. Then the topological decomposition of
$N$ dual to the cut locus of $\partial N$ modulo boundary is homotopic by straight-
ening to a polyhedral decomposition.

The visible process is expected to lead us to the deep understanding
of geometry of those manifolds. We apply it for example to find the
minimum of their volumes in [2].

Received February 23, 1990.
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We describe the rule of the decompostion in the next section with
some detailed accounts of truncated polyhedra. We study the cut locus
of the boundary and its topological dual decomposition in \S 3. Then we
show in the subsequent sections that the straightening of the dual along
its internal edges yields the final polyhedral decomposition. The proof
of Proposition 5.2 thus finishes the proof of the theorem.

I am grateful to Tomoyoshi Yoshida for showing his idea to decom-
pose cusped manifolds by ideal polyhedra.

\S 2. Ikuncated polyhedra

We start with describing a basic piece of truncated polyhedra, called
truncated tetrahedra. An ideal tetrahedron is a hyperbolic polyhe-
dron identified with a finite volume region in the hyperbolic 3-space
$H^{3}$ bounded by four geodesic planes, every two of which intersect each
other, and every three of which intersect at infinity. An ultra ideal tetra-
hedron is one identified with a similar region bounded by four planes,
every two of which intersect each other again but no three of which in-
tersect even at infinity. If we are in the projective model, an ultra ideal
tetrahedron is one whose vertices are located outside of the model disk.

An ultra ideal tetrahedron is of infinite volume. The truncation is
the device to cut off its thick end by a geodesic plane which intersects
three planes towards the end perpendicularly. Such truncation is always
uniquely possible since

Lemma 2.1. For any three metric disks on the euclidean plane
which have no points in common but each two of which have a common
region, there is a unique circle intersecting their boundaries perpendicu-
larly.

Proof Let us name three disks by $A$ , $B$ and $C$ . By conformal
change, we may assume that one of the intersection points of $\partial A$ and
$\partial B$ is located at infinity. Then $\partial A$ and $\partial B$ are the lines intersecting say
at the origin. By the assumption on the position of disks, $C$ does not
contain the origin. Hence we have a $ur_{\perp}ique$ circle centered at the ori-
gin intersecting $\partial C$ perpendicularly. This circle automatically intersects
both $\partial A$ and $\partial B$ perpendicularly. Q.E.D.

Regard the boundaries of these disks as the ends of the geodesic
planes which make up a thick end of an ultra ideal tetrahedron. The
circle obtained in Lemma 2.1 will be the boundary of the plane for
truncation. This plane intersects three planes perpendicularly. Cutting
off each thick end by truncation, we get a compact polyhedron. This is a
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truncated tetrahedron. The surface of a truncated tetrahedron consists
of four right angle hexagons on the planes to bound the region, and four
triangles produced by the truncation.

Fig. 1.

A convex truncated polyhedron can be described in a similar man-

ner. Start with a finite set of geodesic planes in $H^{3}$ , no three of which
intersect even at infinity. Assume that it bounds a noncompact convex
region each thick end of which admits truncation. Then cutting off each
end of the region by truncation, we get a compact polyhedron. This
is a convex truncated polyhedron. The surface of a convex truncated
polyhedron consists of right angle polygons on the planes, which we call
internal faces, and the other polygons produced by the truncation, which
we call external faces. The union of internal faces is connected, while
external faces are mutually disjoint.

A tetrahedron is a basic piece of a polyhedron even in this situation.

Lemma 2.2. A convex truncated polyhedron is decomposed by
truncated tetrahedra without producing vertices in the interior.

Proof. Choose an external face $\tau$ and introduce the shortest geo-
desic paths from the face to the other external faces. Such a path
uniquely exists for each face. It lies on the boundary if $\tau$ and the ter-

minal face are joined by just one face. Obviously it lies on this joining
face then. Otherwise the paths go through interior of the polyhedron.

The internal faces touching $\tau$ are now subdivided into right angle
hexagons. Subdivide then the other internal faces by a geodesic path
into right angle hexagons arbitrarily. Each geodesic path introduced
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here joins two external faces. It together with the shortest paths as-
signed to the terminal faces span a right angle hexagon in the interior

of the polyhedron. Because two paths determine a geodesic plane in-
tersecting three external faces involved perpendicularly and hence this
plane must contain the last path. The collection of these hexagons di-
vides the original polyhedron into truncated tetrahedra. Q.E.D.

A polyhedral decomposition of a hyperbolic 3-manifold with totally
geodesic boundary is a geometric cellular decomposition by (convex)
truncated polyhedra so that their external faces form the boundary.

This justifies our naming for faces. We also call an edge internal if it is
an intersection of two internal faces, and external otherwise. Notice in
this decomposition that every internal edge is a geodesic path from the
boundary to the boundary.

Let us describe a parametrization of isometry classes of labelled
truncated tetrahedra to show its variation, though the result is not
needed for the proof of the theorem. The isometry class of a trun-
cated tetrahedron is determined by the mutual position of the internal
faces, since the truncation is unique. Label the internal edges as in Fig-
ure 1.1 and denote the dihedral angle along the edge $j$ by $\theta_{j}$ . $\theta_{j}$ ’s are
quantities to describe mutual position. The sum of three dihedral angles
having a common external face must be less than $\pi$ because otherwise
three planes towards the end meet in the real world. Thus we have a
necessary condition,

$\{$

$\theta_{1}+\theta_{2}+\theta_{3}<\pi$

$\theta_{1}+\theta_{5}+\theta_{6}<\pi$

$\theta_{2}+\theta_{4}+\theta_{6}<\pi$

$\theta_{3}+\theta_{4}+\theta_{5}<\pi$ .

Conversely,

Lemma 2.3. For $\theta_{1}$ , $\ldots$ , $\theta_{6}$ satisfying the above inequalitites, there
is a unique labelled truncated tetrahedron with these dihedral angles.

Proof. Make four geodesic triangles using $\theta_{1}$ , $\ldots$ , $\theta_{6}$ which would
form external faces. They have twelve edge lengths as data we can use.
Choose a triple from these twelve lengths that would be assigned to the
external edges of an internal face we expect to make. Then there is a
unique right angle hexagon having these as non adjacent edge lengths,
which is a candidate of the internal face. Applying the same for the
other triples, we get four right angle hexagons.
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The expected truncated tetrahedra should be obtained by gluing

these faces in $H^{3}$ , and what we need to show now is that the length of a
common internal edge for each pair of hexagons made are the same. We
do this for the internal edge 1. By the hyperbolic cosine rule, we have

$(^{*})$ $\cosh\ell_{ij}=\frac{\cos\theta_{i}\cos\theta_{j}+\cos\theta_{k}}{\sin\theta_{i}\sin\theta_{j}}$ ,

where $\{i, j, k\}$ corresponds to 3 angles of a triangle and $\ell_{ij}$ is the length
of the external edge connecting edges $i$ and $j$ . We made two hexagons
having the edge 1. By the hexagon rule [4], the length $\ell_{1}$ of the edge 1
computed in the hexagon having the edges 2 and 6 is given by

$\cosh\ell_{1}=\frac{\cosh\ell_{12}\cosh\ell_{16}+\cosh\ell_{26}}{\sinh\ell_{12}\sinh\ell_{16}}$ ,

and the same having the edges 3 and 5 is given by

$\cosh\ell_{1}=\frac{\cosh\ell_{13}\cosh\ell_{15}+\cosh\ell_{35}}{\sinh\ell_{13}\sinh\ell_{15}}$ .

It is then easy to check by substitution of $(^{*})$ that right hand sides of
both identities are the same. Q.E.D.

\S 3. Cut locus

Studying several properties of the cut locus of the boundary in this
section, we will find a topological cellular decomposition of a hyperbolic
manifold with totally geodesic boundary. It is dual to the cut locus
modulo boundary and turns out to be equivalent to the final one. The
decomposition will be denoted by $K$ .

Here we start with making a few conventions used throughout the
sequel. Let $N$ be a compact hyperbolic 3-manifold with totally geodesic

boundary $\partial N$ . Let $\pi$ : $\overline{N}\rightarrow N$ be the universal covering of $N$ . We

use the symbol $\overline{X}$ to denote the preimage of a subspace $X$ of $N$ in $\overline{N}$ .

We always identify the universal cover $\overline{N}$ with a subspace in $H^{3}$ . Then

the boundary $\partial\overline{N}$ of the universal cover $\overline{N}$ or the preimage $\overline{\partial N}$ of the

boundary $\partial N$ is formed by geodesic planes in $H^{3}$ . We often identify a
cell complex with its underlying polyhedron. The symbol $Y^{(k)}$ will be
used to denote the $k$-skeleton of a cell complex $Y$ as usual.

We define three terminologies for our convenience. To each pair of

components of $\partial\overline{N}$ , associated is a unique shortest path connecting them.
We call this path a short cut. Also there is an associated bisectorial



98 S. Kojima

geodesic plane to the short cut in $H^{3}$ . We call this plane a middle fence.
A short cut descends to the geodesic path in $N$ from the boundary to
the boundary. We call such a path a return path. Though it may come
back to a different component, we wish to emphasize by this name that
it comes back to the boundary anyway. These are the terminologies we
shall use frequently.

The cut locus $C$ of $\partial N$ in $N$ is a subset in int $N$ which consists of the
points that admit at least two distinct shortest paths to $\partial N$ . Obviously
a point on $C$ lifts to a point on the middle fence of some short cut.
$C$ is canonically stratified by grouping the points which have the same
number of shortest paths to the boundary. This stratification is quite
nice in our case since

Proposition 3.1. The stratification defines a convex cellular de-
composition of the cut locus C.

A point on $C$ is in a 2-cell if it admits precisely two shortest paths
to the boundary, however the number of shortest paths the point admits
is rather unrelated with the dimension of the cell in the other case. To
see this proposition, we need a few preliminaries.

Lemma 3.2. Suppose that $A$ and $B$ are ultra parallel planes of
distance $d$ in $H^{3}$ . Then the orthogonally projected image of $A$ to $B$ is
an open metric disk of radius arccosh(coth $d$).

Proof. This is an easy consequence of length calculus for a hyper-
bolic rectangle with one ideal vertex and three vertices of right angle as
in Figure 2.

$d$
$\{$

–

$F$

Fig. 2.
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The hyperbolic cosine rule shows the identities;

$\cosh d=\frac{1}{\sin\alpha}$ ,

$\cosh r=\frac{1}{\sin(\pi/2-\alpha)}=\frac{1}{\cos\alpha}$ .

Then we are done by solving the relation between $d$ and $r$ in terms of
$r$ . Q.E.D.

Corollary 3.3. There exist only finitely many return paths with
bounded length.

Proof. Choose a component $S$ of $\partial\overline{N}$ , and project the other bound-
ary components orthogonally to $S$ . Then we get an open disk packing on
$S$ invariant under the action of the covering transformations preserving
$S$ . Hence $\pi(S)\subset N$ is packed by open balls. It is obvious by definition
that the packing on $\pi(S)$ does not depend on the choice of a component
$S$ of $\pi^{-1}(\pi(S))$ . Applying the same process to all ’the other components,

we get a ball packing on $\partial N$ . The radius of each ball is related to the
length of the associated return path by Lemma 3.2. Since $\partial N$ is com-
pact, the number of balls packing $\partial N$ with bounded radius away from
zero is obviously finite. Hence there are only finitely many return paths
of bounded length. Q.E.D.

Proof of Proposition 3.1. Choose a component $U$ of the comple-

ment of $\overline{C}$ in $\overline{N}$ and let $S$ be its boundary in $\partial\overline{N}$ . $U$ is invariant under
the action of covering transformations preserving $S$ . We are interested

in the internal boundary of the closure $\overline{U}$ of $U$ not meeting $\partial\overline{N}$

. It is a

part of $\overline{C}$ and formed by a part of middle fences. Since $N$ is compact,
its diameter is bounded, and the points on $C$ have bounded distance to
$\partial N$ . The shortest arc from a point on $C$ to $\partial N$ is lifted to an arc in
$\overline{Y}$ . In particular, the distance between $S$ and any point on the internal

boundary of $\overline{U}$ is bounded. Hence the middle fences involved in this
boundary are associated with the short cuts of bounded lengh.

By Corollary 2.3, there are only finitely many return paths with
bounded length. Hence the middle fences involved in the internal bound-
ary of $\overline{U}$ belong to only finitely many orbits of middle fences by the
action of covering transformations preserving $S$ . The internal boundary
of $\overline{U}$ thus gets a locally finite invariant cellular decomposition induced
by the intersection of middle fences involved. It descends to a cellular
decomposition of the internal boundary of $\pi(\overline{U})$ .
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We can apply the same argument to the other component. It is
an exercise to check that the cell structures for the common part of

different internal boundaries are identical. Hence we get an invariant

cellular decomposition of $\overline{C}$ and hence a cell complex structure of C.
Each 2-cell of $C$ is convex since it lifts to a convex polygon on some
middle fence bounded by the intersections with a finite number of the
other middle fences. Q.E.D.

From now on, let us mean by $C$ not only the cut locus itself but
endowed with this cellular decomposition by virtue of the proposition.

In the universal cover, we say a 2-cell of $\overline{C}$ faces a component of $\partial\overline{N}$ if
the cell can be projected orthogonally to the component by the shortest

paths to $\partial\overline{N}$ . Each 2-cell faces two boundary components associated
to the middle fence containing it. The set of orthogonal projections
for each 2-cell to these components gives rise to an equivariant one-to-

finite orthogonal projection : $\overline{C}\rightarrow\partial\overline{N}$ . The number of the image of
$p\in\overline{C}$ is equal to the number of the shortest paths from $p$ to $\partial\overline{N}$ . The

cellular decomposition of $\overline{C}$ is conveyed to an invariant convex polygonal

decomposition of $\partial\overline{N}$ . In particular, the cellular decomposition of $C$

induces a convex polygonal decomposition of $\partial N$ .

Now, we would like to build up a topological cellular decomposition
$K$ of $N$ dual to $C$ modulo boundary. Start with defining a compact
3-cell, which we call a block, in the universal cover. Its interior will
be a 3-cell in the precise definition of the cell complex $K$ . Take an in-

variant graph $G$ on $\overline{C}$ under the action of $\pi_{1}(N)$ which is dual to the

1-skeleton $\overline{C}^{(1)}$ . Here we mean by dual, the 1-dimensional subcomplex

of the barycentric like subdivision of $\overline{C}$ spanned by vertices not in $\overline{C}^{(0)}$ .

Then project it by the one-to-finite orthogonal projection to $\partial\overline{N}$ . The
$trace$ of the projection determines a fence which divides $\overline{N}$ into equiv-

ariant pieces homeomorphic to a ball. This is a block to built up $K$ .

Let us next define a compact cell which we call a face, an edge or
a vertex according to its dimension. The intersection of two blocks is

the $trace$ of the star subgraph of a vertex of $G$ on a 1-cell of $\overline{C}$ by the

orthogonal projection. Hence take it as a dual face to the 1-cell of $C$ on
which the center is located, and call it an internal face. We also take

a component of the intersection of a block and $\partial\overline{N}$ as an external face.
A face will be either an internal or external face. The inters$-ection$ of
two internal faces is the $trace$ of a vertex of $G$ on a 2-cell of C. Hence
take it as a dual edge to the 2-cell containing the vertex, and call it

an internal edge. We also take a component of the intersection of an
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internal face and $\partial\overline{N}$ as an external edge. An edge will be either an
internal or external edge. Finally a vertex will be a terminal point of an
edge.

Then let $\overline{K}$ be a cellular decomposition of $\overline{N}$ by the interior of blocks,
faces, edges and vertices. Since it is invariant under the action of $\pi_{1}(N)$ ,

it determines a cellular decomposition $K=\pi(\overline{K})$ of $N$ . This is what
we call a dual to $C$ modulo boundary. Notice that $\partial K$ is dual to the
convex polygonal decomposition of $\partial N$ induced by the cut locus.

We describe the compact cells of $\overline{K}$ more locally to visualize the

situation. Each block contains a unique 0-cell of $\overline{C}$ . We call this a center.
Choose a block $\sigma$ with the center $p$ and let us describe its combinatorial
structure of the boundary by identifying $p$ with the origin of the 3-
dimensional Poincar\’e disk, $p$ has the shortest rays to finitely many

components of $\partial\overline{N}$ , say $S_{1}$ , $S_{2}$ , $\ldots$ , $S_{m}$ . $\sigma$ can be identified with a regular
neighborhood of the union of these rays. The ray extends and terminates
in the sphere at infinity $S_{\infty}^{2}$ . The terminal point $q_{j}$ is the center of the

metric circle $\partial S_{j}$ on $S_{\infty}^{2}$ with respect to the canonical spherical metric,
where $j=1,2$ , $\ldots$ , $m$ . Notice that the radii of circles are the same because
the distances from the origin are the same.

Take the cut locus $D$ of the point set $\{q_{1}, \ldots, q_{m}\}$ on $S_{\infty}^{2}$ . $D$ consists
of the points on $S_{\infty}^{2}$ which admit at least two shortest paths to the
set $\{q_{1}, \ldots, q_{m}\}$ . $D$ is unit tangentially equivalent to $C$ at $p$ and hence
determines a convex polygonal decomposition on $S_{\infty}^{2}$ .

A topological dual decomposition $D^{*}$ of $D$ on $S_{\infty}^{2}$ with vertices
$q_{1}$ , $\ldots$ , $q_{m}$ is identified with one obtained from the cellular decomposition

of $\partial\sigma$ by collapsing each external face to $q_{j}$ . Notice by the definition of
the cut locus that the vertices of a face of $D^{*}$ have the same distance to
the vertex of $D$ in this face. This fact will be used later.

We may assume that each edge of $D^{*}$ is straight at least in the disks
bounded by $\partial S_{j}$ ’s. Replacing the part of $D^{*}$ in each disk by $\partial S_{j}$ , we get

a cellular decomposition $D^{**}$ on $S_{\infty}^{2}$ . $D^{**}$ is equivalent to $\partial\sigma$ .
There are several immediate correspondence by the identification

of $\partial\sigma$ and $D^{**}$ . The external faces correspond to the faces bounded
by $\partial S_{j}$ ’s, and the internal faces do to the others. The external edges
correspond to the edges on $\partial S_{j}$

’
$s$ , while the internal edges do to the

others. The vertices on the circle $\partial S_{j}$ correspond to 2-cells of $C$ which
touches $p$ and faces $S_{j}$ . Both are arranged in the same order.

The final decomposition is obtained by straightening each edges of
$\overline{K}$ . The straightening here is the device first to replace each internal
edges by homotopic short cuts, and then to replace external edges by
geodesic paths using their end points. The straight map we get is sup-
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$D$ $D^{*}$ $D^{**}$

Fig. 3.

ported on the 1-skeleton $K^{(1)}$ at the beginning and there is no obvious
reasons why it creates something good. The rest of this paper is to check
the reason why it does.

The first step is to observe that the image of $\partial K^{(1)}$ by the straight

map, which will be denoted by $\partial\Delta^{(1)}$ , turns out to be a 1-skeleton of
a convex polygonal decomposition of $\partial N$ , denoted by $\partial\Delta$ . This will be
done in the next section. The second step starts by showing that the

map can be straightened over the 2-skeleton $K^{(2)}$ . The main step is

then to observe that the straightened image of $K^{(2)}$ , denoted by $\Delta^{(2)}$ ,

turns out to be a 2-skeleton of a convex polyhedral decomosition of $N$ ,

denoted by $\Delta$ . Since we define the final decomposition $\Delta$ from the lower
dimensional skeletons, the accessories for $\Delta$ we use is not appropriate in
fact, but will be justified by the end of the paper.

\S 4. Polygonal decomposition

We study the effect of straightening on the boundary in this section,
and prove that the straightening defines a convex polygonal decomposi-
tion of $\partial N$ equivalent to $\partial K$ . The argument will be given mainly in the

universal cover.
An internal edge of $\overline{K}$ bridges two components of $\partial\overline{N}$ . Hence to

each internal edge, assigned is a unique middle fence and a unique short

cut. Recall that an internal edge is a dual to a 2-cell of $\overline{C}$ which lies
on this middle fence. The number of orbits of short cuts associated to

-

2-cells of $C$ by the action of $\pi_{1}(N)$ was finite. Let $R$ be the set of these

short cuts, and $R=\pi(\overline{R})$ be the set of descending return paths in $N$ .
$R$ is a finite set.
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The straightening device at this stage is precisely to connect vertices

of $\overline{R}$ by geodesic paths if the corresponding two vertices in $\partial\overline{K}^{(0)}$ are
joined by an external edge. We denote the resultant geodesic 1-complex

by $\partial\overline{\Delta}^{(1)}$ in the abstract sense. The accessories in the notation should
be ignored for the moment. The definition does not immediately tell

us that $\partial\overline{\Delta}^{(1)}$ is an embedded 1-complex. What we obviously know by

definition is that $\partial\overline{\Delta}^{(1)}$ is invariant under the action of $\pi_{1}(N)$ , and that

there is an equivariant graph isomorphism $h$ : $\partial\overline{K}^{(1)}\rightarrow\partial\overline{\Delta^{(1)}.}$ .

Since the connection rule to build up $\partial\overline{\Delta}^{(1)}$ was followed by the

rule for $\partial\overline{K}^{(1)}$ , $\partial\overline{\Delta}^{(1)}$ should be very similar to $\partial\overline{K}^{(1)}$ . The claim to

be proved is that $\partial\overline{\Delta}^{(1)}$ is in fact a 1-skeleton of an invariant convex

polygonal decomposition $\partial\overline{\Delta}$ of $\partial\overline{N}$ , and $h$ extends to an equivariant

cellular isomorphism of $\partial\overline{K}$ . The statement in $\partial N$ is hence

Proposition 4.1. $\partial\Delta^{(1)}=\pi(\partial\overline{\Delta}^{(1)})$ turns out to be $a$ 1-skeleton

of a convex polygonal decomposition $\partial\Delta=\pi(\partial\overline{\Delta})$ of $\partial N$ equivalent to
$\partial K$ .

To see this, we need a few observations about local structure of edges

in $\partial\overline{\Delta}^{(1)}$ . The first one is about the image of the boundary of a face of
$\partial\overline{K}$ .

Lemma 4.2. The image of the boundary of a face of
$\partial\overline{K}$ by $h$

bounds a convex polygon on S. The canonical extension of $h$ to the face
preserves the orientation.

Proof. Choose a face $\tau$ of $\partial\overline{K}$ and assume that it lies on a block
$\sigma$ with the center $p$ . The cellular decomposition of $\partial\sigma$ was described by
$D^{**}$ . The external face $\tau$ is identified with a face bounded by a metric
circle $\partial S$ on $S_{\infty}^{2}$ . The center $q$ of $\partial S$ is the terminal point of an extension
of the shortest path from $p$ to $S$ .

Label the vertices of $\tau$ by $v_{j}$ with $j=0,1$ , $\ldots$ , $n$ $-1$ in counter-

clockwise order. Each vertex is a projected image of a dual vertex to a

2-cell in $\overline{C}$ touching $p$ and facing $S$ . Hence we also label the 2-cell of $\overline{C}$

corresponding to $v_{j}$ by $F_{j}$ .

Each $F_{j}$ is on the middle fence of a short cut from a point on $S$

since $F_{j}$ faces $S$ . Hence we let its starting point on $S$ by $w_{j}$ . Because
of the definition of labeling, any adjacent $w_{j}$ ’s are joined by an edge in
$\partial\overline{\Delta}^{(1)}$

. $h(\partial\tau)$ is then a 1-complex formed by geodesic paths $w_{j}w_{j+1}$ with
$j=0,1$ , $\ldots$ , $n-1$ , where $j$ counts modulo $n$ as usual.
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We show that the vertices $w_{j_{0}}$ , $w_{j_{1}}$ , $w_{j_{2}}$ span a triangle $\triangle w_{j_{o}}w_{j_{l}}$
$w_{j_{2}}$ ,

and its orientation assigned by how the vertices round induces the coun-
terclockwise orientation on $S$ as long as $j_{0}<j_{1}<j_{2}$ up to cyclic per-
mutation. Then using this property, we will get the conclusion by con-
tradiction.

Identify $S$ with the 2-dimensional Poincar\’e disk and $q$ with the ori-

gin. The middle fences containing $F_{jo}$ , $F_{j_{1}}$ , $F_{j_{2}}$ respectively are orthog-
onally projected to three open metric disks $B_{j_{0}}$ , $B_{j_{1}}$ , $B_{j_{2}}$ on $S$ including
the origin. The vertices $w_{j_{0}}$ , $w_{j_{1}}$ , $w_{j_{2}}$ are the centers of these disks. The
outside of $\partial S$ is reflected into the inside by the orthgonal projection to
$S$ . The picture of the projection is shown in Figure 4.

$S$

Fig. 4.

By the convexity of $D$ , $B_{j_{0}}$ , $B_{j_{1}}$ and $B_{j_{2}}$ are arranged in counter-
clockwise order as in the second picture in Figure 4. We named the
intersections of the boundary of balls as in the figure. Then $\alpha_{j_{0}}$ , $\alpha_{j_{1}}$ ,
and $\alpha_{j_{2}}$ determine the oriented triangle $\triangle\alpha_{j_{0}}\alpha_{j_{1}}\alpha_{j_{2}}$ inducing the coun-
terclockwise orientation on $S$ .

Here is an elementary geometry. Let $\gamma_{j_{o}}$ , $\gamma_{j_{1}}$ , $\gamma_{j_{2}}$ be the bisectors to
the segments $\alpha_{j_{2}}\alpha_{j_{0}}$ , $\alpha_{j_{o}}\alpha_{j_{1}}$ and $\alpha_{j_{1}}\alpha_{j_{2}}$ on $S$ respectively. These three
lines meet at the center $\beta$ of the circumscribed circle of the triangle
$\triangle\alpha_{jo}\alpha_{j_{1}}\alpha_{j_{2}}$ . $w_{j}$ is on $\gamma_{j}$ , where $j=j_{0}$ , $j_{1}$ , $j_{2}$ . Since $B_{jo}$ , $B_{j_{1}}$ , $B_{j_{2}}$ do
not contain $\alpha_{j_{1}}$ , $\alpha_{j_{2}}$ , $\alpha_{j_{o}}$ respectively, the direction of the vector $\beta w_{j}$

is the same as that of the outward vector from the triangle $\triangle\alpha_{j_{0}}\alpha_{j_{1}}\alpha_{j_{2}}$

along $\gamma_{j}$ . Hence the centers $w_{j_{o}}$ , $w_{j_{1}}$ , $w_{j_{2}}$ are arranged in counterclock-
wise order from the viewpoint $\beta$ , and determines an oriented triangle
$\triangle w_{j_{0}}w_{j_{l}}w_{j_{2}}$ inducing the counterclockwise orientation on $S$ .

Suppose now that the union of geodesic paths $w_{j}w_{j+1}$ with $j=$
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0, $\ldots$ , $n$ $-1$ does not bound a convex polygon on $S$ . Then since any
three vertices determines a nondegenerate triangle, there are suffices
$0\leq j_{3}$ , $j_{4}\leq n-1$ so that $w_{j_{3}}w_{j_{3}+1}$ meets the biinfinite extension of
$w_{j_{4}}w_{j_{4}+1}$ at an interior point. Then the induced orientations on $S$ by the
triangles $\triangle w_{j_{3}}w_{j_{4}}w_{j_{4}+1}$ and $\triangle w_{j_{3}+1}w_{j_{4}}w_{j_{4}+1}$ are different each other.
This contradicts what we have proved.

Since the vertices $v_{j}$ ’s of $\tau$ and the corresponding vertices $w_{j}$ ’s of
the convex polygon mapped by $h$ are both arranged in counterclockwise
order, a canonical extension of $h$ preserves the orientation. Q.E.D.

We need one more observation about the structure around the vertex
of $\partial\overline{K}$ . Label all the edges coming to the vertex of $\partial\overline{K}$ . Then by the

connection rule of $\partial\overline{\Delta}^{(1)}$ , this labeling is canonically conveyed to the

labeling of the edges of $\partial\overline{\Delta}^{(1)}$ which terminate at the corresponding
vertex.

Lemma 4.3. The counterclockwise orders of the labeling at a ver-

tex of $\partial\overline{K}^{(1)}$ and the corresponding vertex of $\partial\overline{\Delta}^{(1)}$ are the same up to
cyclic permutation.

Proof. Choose a vertex $v$ of $\partial\overline{K}$ and assume that it lies on a block
$\sigma$ . The cellular decomposition of $\partial\sigma$ is described by $D^{**}$ . $v$ is identified
with a vertex on the metric circle $\partial S$ .

Choose an adjacent vertex $v^{J}$ to $v$ on the same circle $\partial S$ . $v$ and $v’$

correspond to 2-cells $F$ and $F^{J}$ in $\overline{C}$ facing $S$ and touching the center of
$\sigma$ . Recall that the adjacency is reflected by the property that these 2-
cells $F$ and $F’$ have a common 1-cell. Denote by $w$ and $w’$ the vertices of
$\partial\overline{R}$ corresponding to $v$ and $v’$ respectively. Here is a geometric relation
between the adjacency of $v$ , $v’$ and $w$ , $w’$ . The middle fence $L$ containing
$F$ has an intersection line $l$ with the middle fence $L^{l}$ containing $F^{/}$ .
$F$ is orthogonally projected to a convex polygon $P$ on $S$ and $l$ is to a
geodesic $l_{S}$ which is an biinfinite extension of an edge of $P$ . The plane
determined by short cuts from $w$ and $w’$ is orthogonal to both $L$ and
$L^{J}$ , and in particular to $l$ . Hence the geodesic path connecting $w$ and $w^{J}$

extends to a biinfinite path $\omega$ orthogonal to $l_{S}$ .

What we have seen is that to each pair of $v$ and $v^{/}$ , and hence to
each edge coming to $v$ , associated is an biinfinite extension $l_{S}$ of an edge
of $P$ , and that $w^{/}$ lies on the geodesic $\omega$ through $w$ and orthogonal to
$l_{S}$ . Furthermore, though the vertices $w$ and $w’$ may not be separated by
$l_{S}$ , the vector from $w$ to $w^{J}$ is directed towards the component of $S-l_{S}$

not containing $P$ , as the vector from $v$ to $v^{/}$ obviously is.

Now identify $S$ with the 2-dimensional Poincar\’e disk. The biinfinite
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extensions of the edges of $P$ determine a line configulation on $S$ . Each
line inherits a label from the associated edge coming to $v$ . To each

labelled line, we assign the orthogonal ray from $v$ endowed with the
same label. The counterclockwise order of the labeling for orthogonal

rays is the same as that for edges of $\partial\overline{K}$ coming to $v$ .

Then for each point on $S$ , draw orthogonal rays to the geodesic
lines again keeping the outward direction from $P$ . Then the assignment
of the counterclockwise order of the labeling of rays is a continuous
function on $S$ to the set of cyclic orders possibly with singularities. The
singularity occurs only if two rays coincide. This may happen when two
geodesic lines are ultra parallel. However in this case, the direction of
associated two rays must be opposite since the region bounded by such
lines contains a convex polygon $P$ . Hence this continuous function has
no singularities with discrete image. In particular, the order at $w$ is the
same as one at $v$ . Q.E.D.

Proof of Proposition 4.1. By Lemma 4.2, extending a graph iso-

morphism $h$ : $\partial\overline{K}^{(1)}\rightarrow\partial\overline{\Delta}^{(1)}$ , we get a map $h$ (still using the same

notation) of $\partial\overline{K}$ by assigning to each face of $\partial K$ a polygon bounded

by corresponding edges of $\partial\overline{\Delta}^{(1)}$

. Here $h$ is a local homeomorphism on
the interior of faces. Since $h$ preserves the orientation for each face, it
must be a homeomorphism also around edges. Lemma 4.3 shows that
the corners of convex polygons fill up a neighborhood of the vertices.
Hence $h$ is a local homeomorphism also around the vertices. It is easy
to see that $h$ is surjective. Since the image is simply connected, $h$ is a
global homeomorphism.

$\partial\overline{\Delta}^{(1)}$ now determines a convex polygonal decomposition $\partial\overline{\Delta}$ of $\partial\overline{N}$ .

The decomposition is invariant under the action of $\pi_{1}(N)$ , and the map $h$

can be chosen to be equivariant. Hence it determines a convex polygonal

decomponsition $\partial\Delta=\pi(\partial\overline{\Delta})$ of $\partial N$ with a descending equivalence from
$\partial K$ to $\partial\Delta$ . Q.E.D.

\S 5. Polyhedral decomposition

In this section, we study the effect of straightening in the interior
and finish to prove that the straightening determines a convex polyhedral
decomposition of $N$ , which we promised to denote by $\Delta$ . The argument
will be given again mainly in the universal cover.

The map $h$ : $\partial\overline{K}^{(1)}\rightarrow\partial\overline{\Delta}^{(1)}\subset\partial\overline{N}$ we had at the beginning was
a graph isomorphism. The main claim in \S 4 was that $h$ extends to a

cellular map $h$ on $\partial\overline{K}$ to $\partial\overline{\Delta}$

. It obviously further extends as a cellular
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isomorphism to $h$ : $\partial\overline{K}\cup\overline{K}^{(1)}\rightarrow\partial\overline{\Delta}\cup\overline{R}\subset\overline{N}$ . We then will see first

that the map $h$ extends as a straight map over the 2-skeleton $\overline{K}^{(2)}$ ,

showing that the image of the boundary of each internal face of $\overline{K}$ spans

a geodesic polygon. Namely, $\partial\overline{\Delta}\cup\overline{R}$ extends to a geodesic 2-complex
$\overline{\Delta}^{(2)}$ in $\overline{N}$ in the abstract sense.

Lemma 5.1. The image of the boundary of an internal face of
$\overline{K}$

by $h$ bounds a right angle polygon on a geodesic plane in $\overline{N}$ .

Proof. Choose an internal face $\tau$ and assume that it lies on a block
$\sigma$ . The cell decomposition of $\partial\sigma$ was described in $D^{**}$ by identifying the
center $p$ of $\sigma$ with the origin of the 3-dimensional Poincar\’e disk. There
are metric circles $\partial S_{1}$ , $\ldots$ , $\partial S_{m}$ on $S_{\infty}^{2}$ which are the boundaries of the

nearest components of $\partial N$ from $p$ . The centers $q_{1}$ , $\ldots$ , $q_{m}$ of these metric
circles are also the endpoints of the rays extending the shortest path
from the origin to the component $S_{j}$ . The circles $\partial S_{1}$ , $\ldots$ , $\partial S_{m}$ , having

the same radius, lie in the complement of the cut locus $D$ of $\{q_{1}, \ldots, q_{m}\}$

on $S_{\infty}^{2}$ .

The face $\tau$ is identified with a face not bounded by $\partial S_{j}$

’
$s$ . We

rearrange $\partial S_{j}$ ’s so that $\partial\tau$ passes through $\partial S_{1}$ , $\partial S_{2}$ , $\ldots$ , $\partial S_{k}$ in counter-
clockwise order, $\tau$ contains a vertex $u$ of a cut locus D. Recall as we
noted in the description of $D$ and $D^{*}$ that every $\partial S_{j}$ has the same

distance from $u$ . In particular, there is a circle $\partial H$ on $S_{\infty}^{2}$ , bounding
a geodesic plane $H$ in the 3-dimensional Poincar\’e disk, that intersects
orthogonally to each $\partial S_{1}$ , $\ldots$ , $\partial S_{k}$ simultaneously. Moreover, $\partial H$ passes
through $\partial S_{1}$ , $\ldots$ , $\partial S_{k}$ in counterclockwise order also.

$h(\partial\tau)$ is a piecewise geodesic whose bent occurs only at the end of
external and hence internal edges. Each internal edge is mapped to the

short cut between $S_{j}$ and $S_{j+1}$ . It must lie on the plane $H$ since it
intersects both $S_{j}$ and $S_{j+1}$ orthogonally. In particular, the image of
internal edges is on a geodesic plane $H$ . The image of external edges
is on $S_{j}$ ’s and on $H$ since the intersection of $S_{j}$ and $H$ is a geodesic
passing two end points of the short cuts. It is then obvious by the order
of intersections to $\partial S_{j}$ ’s that $h(\partial\tau)$ bounds a convex polygon on $H$ .

Q.E.D.

Denote by $\overline{\Delta}^{(2)}$ the collection of the straight image of each internal

faces by Lemma 5.1 and $\partial\overline{\Delta}\cup\overline{R}$ . The accessories in this notation should
be ignored for the moment. The definition does not immediately tell

us that $\overline{\Delta}^{(2)}$ is an embedded 2-complex. What we obviously know by

definition is that $\overline{\Delta}^{(2)}$ is invariant under the action of $\pi_{1}(N)$ , and that
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there is an equivariant cellular isomorphism $h$ : $\overline{K}^{(2)}\rightarrow\overline{\Delta}^{(2)}$ which

extends the original $h$ . The claim to be proved is that $\overline{\Delta}^{(2)}$ is in fact a

2-skeleton of an invariant convex polyhedral decomosition $\overline{\Delta}$ of $\overline{N}$ , and
$h$ extends to an equivariant cellular isomorphism of $\overline{K}$ . The statement
in $N$ is our final goal.

Proposition 5.2. $\Delta^{(2)}=\pi(\overline{\Delta}^{(2)})$ turns out to be a 2-skeleton of
a convex polyhedral decomposition $\Delta=\pi(\overline{\Delta})$ of $N$ equivalent to $K$ .

We have shown so far that if we restrict the map $h$ to the set of
external faces or to each internal face, then $h$ is an embedding. What
we still do not know is if the image of some internal faces intersect. To
see our final proposition, we proceed further to a local study.

Lemma 5.3. The image of the boundary of a block of
$\overline{K}$ by $h$

bounds a convex polyhedron in $\overline{N}$ .

Proof. Choose a block $\sigma$ and recall that the cell decomposition of
$\partial\sigma$ is described by $D^{**}$ on $S_{\infty}^{2}$ . Assigned to each external face was
a geodesic boundary $S_{j}$ , and assigned to each internal face $\tau_{i}$ now by

Lemma 5.1 is a geodesic plane $H_{i}$ in $H^{3}$ . Using this description, we
will define a continuous deformation $\{h_{t}\}$ of a restriction of $h$ to $\partial\sigma$ ,
$h|_{\partial\sigma}=h_{0}$ , so that it eventually pushes the image of internal faces out
to $S_{\infty}^{2}$ . Then by referring to the fact that $h_{\pi/2}$ is a homeomorphism, we
will establish the stable cellularity of $h_{t}$ to conclude the claim.

For each internal face $\tau_{i}$ , a neighborhood of $h_{0}(\tau_{i})$ in $h_{0}(\partial\sigma)$ is con-

tained in one side of $H^{3}$ separated by $H_{i}$ . We call the other side of $H_{i}$

outwards. The outside of $S_{j}$ ’s is similarly defined using the image of

external faces. Let $H_{i}^{t}$ be the equidistant surface outside of $H_{i}$ with the

distance $\int_{0}^{t}\sec\theta$ dO. This is not a geodesic plane but is a surface which

intersects $H_{i}=H_{i}^{0}$ at $S_{\infty}^{2}$ with dihedral angle $t$ . It can be seen also
as an intersection of an euclidean metric sphere with the Poincar\’e disk
meeting the unit sphere $S_{\infty}^{2}$ with dihedral angle $t$ . The angle $t$ varies

from 0 to $\pi/2$ . As $t$ increases, $H_{i}^{t}$ is gradually pushed out towards $S_{\infty}^{2}$ .

To define the image of an internal face $\tau_{0}=\tau$ , let us rearrange $\tau_{i}$ ’s
in such a way that $\partial\tau$ passes through $h_{0}(\tau_{1})$ , $S_{1}$ , $h_{0}(\tau_{2})$ , $S_{2}$ , $\ldots$ , $h_{0}(\tau_{k})$

and $S_{k}$ in cyclic order. $h_{0}(\tau)$ and $h_{0}(\tau_{i})$ meet on the intersection of
$H_{0}^{0}=H^{0}$ and $H_{i}^{0}$ . Take two internal faces $h_{0}(\tau)$ and $h_{0}(\tau_{i_{0}})$ having a
common internal edge, and identify the edge with a segment on the z-
axis in the upper half space model so that it meets $S_{i_{O}}$ at the bottom end.

See Figure 5 which shows the situation locally. $H_{i_{O}}^{0}$ is a geodesic plane
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Fig. 5.

containing $h_{0}(\tau_{i_{0}})$ . $H_{0}^{t}$ and $H_{i_{0}}^{t}$ are described in the second picture. In
this coordinate, they are euclidean hyperplanes through the origin.

The original $h_{0}(\tau)$ is a convex polygon on $H^{0}$ bounded by the in-

tersections with $H_{i}^{0}$ ’s and $S_{j}$ ’s where $i$ , $j=1$ , $\ldots$ , $k$ . As $t$ increases, this

region is gradually slided to again a convex region on $H^{t}$ bounded by the
intersections with $H_{i}^{t}$ ’s and $S_{j}$ ’s, and eventually reaches to a circular

polygon on $S_{\infty}^{2}$ . This bounded region on each $H^{t}$ is the image of $\tau$ by
$h_{t}$ . We have not ruled out the possibility that $H^{t}$ intersects $S_{j}$ for some
$j>k$ , but it will turn out that this never happen.

We next describe how to map the external faces. The $trace$ of the
deformation of $H_{i}^{t}$ ’s on the external boundary $S_{i_{0}}$ viewed from the above
is described in Figure 6. The image of an external face on $S_{i_{O}}$ by $h_{t}$ is
a convex region on $S_{i_{0}}$ bounded by the intersections with $H_{i}^{t}$ ’s. As $t$

increases, the region is getting enlarged keeping convexity and finally
fills up $S_{i_{O}}$ .

$h_{t}$ is obviously a continuous deformation for $0\leq t<\pi/2$ , and is

still continuous at $t=\pi/2$ if we topologize $H^{3}\cup S_{\infty}^{2}$ as a 3-ball. What
is saved in this deformation is the property that $h_{t}$ is an embedding on
the set of external faces or on each internal face.

Modify $h_{\pi/2}$ a bit to $\hat{h}_{\pi/2}$ : $\partial\sigma\rightarrow S_{\infty}^{2}$ by pushing each $S_{j}$ outward

to the disk on $S_{\infty}^{2}$ bounded by $\partial S_{j}$ . We claim that $\hat{h}_{\pi/2}$ and hence $h_{\pi/2}$ ,

and moreover $h_{t}$ with $t$ near $\pi/2$ is a homeomorphism. $\hat{h}_{\pi/2}$ is a local
homeomorphism on the interior of each faces of $\partial\sigma$ by the definition. It
is also a local homeomorphism around edges and around vertices by the
definition of $h_{t}$ (see Figures 5, 6). Hence it is a local homeomorphism to
$S_{\infty}^{2}$ . Since $\partial\sigma$ is compact and the image is simply connected, it must be



110 S. Kojima

Fig. 6.

a homeomorphism. $h_{\pi/2}$ is $nt$ quite different from $\hat{h}_{\pi/2}$ and is clearly a

homeomorphism since so is $\hat{h}_{\pi/2}$ . The bent of the image by $h_{t}$ is mild for
$t$ near $\pi/2$ , and therefore, $h_{t}$ is also necessarily to be a homeomorphism
up to some moment.

For any $o\leq t<\pi/2$ , each $H_{i}^{t}$ separates $H^{3}$ into a convex inward
region and its complementary outward region. The intersections of any
two of $H_{i}^{t}$ ’s look quite simple and are classified by the intersection of
their boundaries on $S_{\infty}^{2}$ . If the intersection on $S_{\infty}^{2}$ is nonempty and
transversal, then surfaces intersect transversely for all $t$ . If the intersec-
tion on $S_{\infty}^{2}$ is empty, then as $t$ decreases, the intersection of surfaces is
gradually changed from a circle, a point of contact to an empty set. It
may be empty from the beginning. If the boundaries of surfaces on $S_{\infty}^{2}$

are the same, then the intersection is empty for $0<t<\pi/2$ unless they
are the same surface. The transversality of the intersections of $H_{i}^{t}$ ’s is
missed only when either different surfaces without intersections for $t>0$

coinside at $t=0$ , or surfaces with circular intersection at the beginning
contact at some moment.

We thus have a family of very visible stratifications of $H^{3}$ defined
by the intersections of $H_{i}^{t}$ ’s and $S_{j}$ ’s. The intersection of their convex

inward regions in $H^{3}$ is a compact convex stratum. The convex stratum
bounded by $H_{\dot{x}}^{t}$ ’s and $S_{j}$ ’s is certainly nonempty for $t$ near $\pi/2$ . On
the other hand, by the continuity of the deformation, $h_{t}(\partial\sigma)$ bounds a

locally convex and hence a convex region in $H^{3}$ also for $t$ near $\pi/2$ . It
is the same as the stratum bounded by $H_{i}^{t}$ ’s and $S_{j}$ ’s because of its
convexity. Hence $h_{t}$ is a cellular map : $\partial\sigma\rightarrow h_{t}(\partial\sigma)$ with respect to the

stratification of $H^{3}$ for $t$ close enough to $\pi/2$ .
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In this stratification, every surface, that is any one of $H_{i}^{t}$ ’s and
$S_{j}$ ’s, plays a role to determine a face of the convex stratum for $t$ near
$\pi/2$ . A consequence to this stable property is that the map $h_{t}$ is cellular

with respect to the stratification of $H^{3}$ on an open interval in $[0, \pi/2]$

including $\pi/2$ . It also concludes that $H_{i}^{t}$ ’s are different each other for
all $0<t<\pi/2$ .

As $t$ decreases form $\pi/2$ , this compact convex stratum is continu-
ously compressed. If the stratum does not degenerate and the structure
of the stratification on the boundary is kept in the deformation up to
$t=0$ , then we are done since $h_{0}$ turns out to be an embedding and the
image bounds a convex polyhedron.

Otherwise, there is the first moment $t_{0}\geq 0$ at which $h_{t}$ fails to be
cellular since the cellularity is open. Then by continuity of $h_{t}$ , $h_{t_{0}}(\partial\sigma)$

either still bounds a convex region, which is the convex stratum bounded
by $H_{i}^{t_{O}}$ ’s and $S_{j}$ ’s, or degenerates to a convex set on some geodesic plane

in $H^{3}$ . In the first case, the surfaces still in fact intersect transversely
at $t_{0}$ , but some edge of the stratification on the boundary of the convex
stratum degenerates. Then two vertices must be close each other if $t$ is
near $t_{0}$ . However the vertices of the stratification on $h_{t}(\partial\sigma)$ for $t>t_{0}$ is

the image of the vertices of $\partial\sigma$ by the definition of $t_{0}$ , and hence their
mutual distance is bounded away from zero by the definition of $h_{t}$ . This
is contradiction. In the second case, the faces of $\partial\sigma$ are mapped on
the same geodesic plane by $h_{t_{0}}$ . Hence three vectors from a vertex of
$\partial\sigma$ to adjacent vertices in the image of $h_{t_{0}}$ must be linearly dependent.
However they are always independent by the definition of $h_{t}$ . This is
also a contradiction. Q.E.D.

Proof of Proposition 5.2 and Theorem. Assigning to each block of
$\overline{K}$ a polyhedron bounded by the image of its boundary, we get a map

from $\overline{K}$ extending $h$ : $\overline{K}^{(2)}\rightarrow\overline{\Delta}^{(2)}$ . It is a local homeomorphism on the
interior of blocks. We have already seen that it is a homeomorphism
on the boundary. Hence it is a local homeomorphism everywhere since
there is no vertices in the interior and every cell meets the boundary.
The surjectivity is obvious. Since the image is simply connected, it must
be a homeomorphism.

$\overline{\Delta}^{(2)}$ now determines a convex polyhedral decomposition $\overline{\Delta}$ of $N$ .

The decomposition is invariant under the action of $\pi_{1}(N)$ and the map

can be chosen to be equivariant. Hence it determines a convex polyhedral
decomposition $\Delta$ on $N$ with a descending equivalence from $K$ to $\Delta$ .

Q.E.D.
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Behavior of Knots under Twisting

Masaharu Kouno, Kimihiko Motegi and Tetsuo Shibuya

\S 1. Introduction

This paper is a continuation of [6] in the study of the twist move
of knots. First we recall some notations. Let $K$ be an unoriented
smooth knot in the oriented 3-sphere $S^{3}$ , and $V$ a solid torus endowed
with a preferred framing which contains $K$ in its interior and satis-
fies $w_{V}(K)\geq 2$ . ( $w_{V}(K)$ denotes the geometric intersection number
of $K$ and a meridian disk of $V.$ ) Let $f_{n}$ be an orientation preserv-
ing homeomorphism of $V$ satisfying $f_{7\iota}$ (meridian) $=$ (meridian) and
$f_{n}$ (longitude)=(longitude)+n(meridian) in $H_{1}(\partial V)$ . (We shall not
distinguish notationally between a homeomorphism and an isomorphism
on a homology group induced by it.) We denote the knot $f_{n}(K)$ in $S^{3}$

by $K_{V,n}$ . If there exsists an orientation preserving homeomorphism of
$S^{3}$ carrying $K_{1}$ to $K_{2}$ , then we write $K_{1}\cong K_{2}$ . Note that $K_{1}\cong K_{2}$ is
the same as saying that $K_{1}$ and $K_{2}$ are ambient isotopic in $S^{3}$ . We note
that for a given knot $K$ , a solid torus $V$ and an integer $n$ determine a
unique knot type. For a given knot $K$ , we have an abundant solid tori
which contain $K$ to carry out a twist move. Sect.2 is directed towards
the following question : for a given knot $K$ , is it possible to obtain the
same knot by twistings along distinct solid tori from $K$? Concerning the
case when an original knot is trivial, we give Example 2.1 and Theorem
2.2. In the case when both solid tori are knotted, we shall give Theorem
2.6 and Examples (see Figures 4, 5). In Sect.3, the behavior of Gromov
invariants under twistings will be studied. In Sect.4, we study the effects
of twistings on primeness of knots. Throughout this paper $N(X)$ , $\partial X$

and int $X$ denote the tubular neighborhood of $X$ , the boundary of $X$

and the interior of $X$ respectively.

\S 2. On twistings along distinct solid tori

Let $V_{1}$ and $V_{2}$ be solid tori containing a knot K. We write $V_{1}\cong V_{2}$

provided that there exists an orientation preserving homeomorphism $f$

Received June 20, 1990.
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of $S^{3}$ such that $f(V_{1})=V_{2}$ , $f(K)=K$ . Note that $K_{V_{1},n}\cong K_{V_{2},n}$ holds
for any integer $n$ when $V_{1}\cong V_{2}$ . To begin with, we give an example as
follows.

Example 2.1. In Figure 1, $V_{1}\not\cong V_{2}$ because the winding number
of O in $V_{1}$ equals 2 and that of O in $V_{2}$ equals 3. But $O_{V_{1},-1}\cong O_{V_{2},-1}$ .

$\searrow$ $\swarrow$

Fig. 1.

For twistings of the unknot, we prove the following theorem.

Theorem 2.2. Let $O$ be the unknot and $V_{i}(i=1,2)$ a solid torus
containing $O$ with $w_{V_{\iota}}(O)\geq 1$ . If $O_{V_{1},n_{j}}\cong O_{V_{2},n_{j}}$ holds for infinitely
many integers $n_{j}$ , then $V_{1}\cong V_{2}$ .

To prove this, we prepare some lemmas. Let $V$ be a solid torus
containing a knot $K$ in its interior with $w_{V}(K)\geq 1$ . Then $V-$ int $N(K)$
is a boundary irreducible Haken manifold. Consider the torus decom-
position of $V-$ int $N(K)$ in the sense of Jaco-Shalen [3] and Johannson
[4]. Combining Thurston’s uniformization theorem [7], they assert that
$V-$ int $N(K)$ is uniquely decomposed by a family of tori into pieces each
of which is Seifert fibred or admits a complete hyperbolic structure of
finite volume in its interior. Moreover each Seifert piece is one of torus
knot spaces, cable spaces and composing spaces (see [3]). We denote the
piece which contains $\partial V$ by $P_{0}$ , and the piece containing $\partial N(K)$ by $P$ .
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If $V$ is an unknotted solid torus in $S^{3}$ which contains $K$ , then $S^{3}-$ int $V$

is also a solid torus, and we denote it by $V_{J}$ . When we perform $(-1/n)-$

Dehn surgery on the unknot $J$ (the core of $V_{J}$ ), then the result is also
$S^{3}$ and the image of $K$ becomes a new knot $K_{n}^{*}$ . The next lemma is an
interpretation of a twisting.

Lemma 2.3. $K_{V,n}\cong K_{n}^{*}$ .

It follows that $S^{3}-$ int $N(K_{V,n})$ is homeomorphic to $V_{J}\bigcup_{m_{J}=\ell m^{-n}}(V$

$-$ int $N(K))$ .

Lemma 2.4 ([6]). If $P_{0}$ is a cable space in which a regular fibre
is presented by $\ell^{p}m^{q}(p\geq 2)$ , then $V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ is a Seifert fibred
manifold with two exceptional fibres of indices $p$ , $|pn+q|$ . The dual knot

of $J$ , $J_{n}^{*}$ in $V_{J}\bigcup_{m_{J}=lm^{-n}}P_{0}$ is a fibre of index $|pn+q|$ .

Lemma 2.5 ([6]). If $P_{0}$ is hyperbolic, then there exists $N_{V,K}$ such
that $V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ is also hyperbolic for $|n|\geq N_{V,K}$ . Moreover for
any $\epsilon>0$ , there $exs\dot{\iota}tsN_{V,K}(\epsilon)$ such that $J_{n}^{*}$ is a closed geodesic of
length< $\in inV_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ for $|n|\geq N_{V,K}(\in)$ .

Proof of Theorem 2.2. If $w_{V_{1}}(O)=1$ (resp. $w_{V_{2}}(O)=1$ ), then by
the assumption and Theorem 4.2 in [6], $w_{V_{2}}(O)=1$ (resp. $w_{V_{1}}(O)=1$ )
must hold. In this case $O$ is a core of both $V_{1}$ and $V_{2}$ , so we have
$V_{1}\cong V_{2}$ . Assume $w_{V_{l}}(O)\geq 2$ and consider the torus decomposition of
$V_{i}-$ int $N(O)$ . Let $P_{i}$ be the piece containing $\partial V_{?}.$ . Since $O$ is trivial,
$P_{i}$ can not be a composing space. We remark that $V_{\dot{\iota}}$ is necessarily
unknotted by the assumption (see [9]), and $S^{3}-$ int $V_{?}$. is also a solid
torus $V_{J_{i}}$ . Then we can characterize the core of $V_{J_{i}}$ in $E(O_{V_{\dot{x}},n})=$

$V_{J_{i}}\bigcup_{m_{J_{i}}=\ell_{\dot{z}}m_{i}^{-n}}$ ( $V_{i}-$ int $N(O)$ ), which is denoted by $J_{\dot{0},n}^{*}$ , as follows.

There exists a constant $N_{V_{i},O}$ such that $J_{i,n}^{*}$ is an exceptional fibre of

unique maximal index or a unique shortest closed geodesic in $E(O_{V_{i},n})$

by Lemmas 2.4 and 2.5 for $|n|\geq N_{V_{i},O}$ . Now we take $n$ as above. Let
$f$ be an orientation preserving homeomorphism of $S^{3}$ sending $O_{V_{1},n}$ to
$O_{V_{2},n}$ . Then by an ambient isotopy, we may assume $f$ maps $N(O_{V_{1},n})$

to $N(O_{V_{2},n})$ and maps $J_{1,n}^{*}$ to $J_{2,n}^{*}$ (see also [8]). From this, we see that
$f|_{V_{1}}$ is an orientation preserving homeomorphism from $V_{1}$ to $V_{2}$ with
$f|_{V_{1}}(O)=O$ . Moreover $f|_{V_{1}}$ maps $\ell_{1}m_{1}^{-n}$ to $\ell_{2}^{\in}m_{2}^{-\in n}(\in=\pm 1)$ . This

implies that $f|_{V_{1}}$ maps $\ell_{1}$ to $\ell_{2}^{\Xi}$ . By extending $f|_{V_{1}}$ to $S^{3}$ , we get a
required homeomorphism. This completes the proof of Theorem 2.2.

Q.E.D.

If we require both $V_{1}$ and $V_{2}$ are knotted, the following result holds.
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Theorem 2.6. Let $K$ be a knot in $S^{3}$ and $V_{i}$ a knotted solid torus
containing K. Suppose that $V_{1}\subset V_{2}$ and the core $C_{1}$ of $V_{1}$ satisfies
$w_{V_{2}}(C_{1})\geq 2$ and $w_{V_{1}}(K)\geq 2$ . Then $K_{V_{1},m}\not\cong K_{V_{2},n}$ for any pair
$(m, n)\neq(0,0)$ (Figure 2).

Fig. 2.

Proof. Let $f_{m}$ : $V_{1}\rightarrow V_{1}$ and $g_{n}$ : $V_{2}\rightarrow V_{2}$ be twist homeo-
morphisms with $m$ twist and $n$-twist respectively. By Theorem 2.1 in
[6], $g_{n}(C_{1})\not\cong C_{1}$ for any integer $n$ $\neq 0$ . Meanwhile $f_{m}(C_{1})\cong C_{1}$ for
any integer $m$ . So the composition $g_{n}of_{m}^{-1}$ : $V_{1}\rightarrow g_{n}(V_{1})$ sends $C_{1}$

to $g_{n}(C_{1})\not\cong C_{1}$ . We remark that $C_{1}$ and $g_{n}(C_{1})$ are knotted in $S^{3}$ ,
because they are geometrically essential in the knotted solid torus $V_{2}$ .
Also $g_{n}of_{m}^{-1}$ satisfies $g_{n}of_{m}^{-1}(K_{V_{1},m})=K_{V_{2},n}$ . Using Theorem [5], we
can conclude $K_{V_{1},m}\not\cong K_{V_{2},n}$ , if $n$ $\neq 0$ . In the case of $n$ $=0$ , $K_{V_{2},n}\cong K$

but $K_{V_{1},m}\cong K$ holds only when $m=0$ by Theorem 2.1 [6]. It follows
that $K_{V_{1},m}\not\cong K_{V_{2},n}$ for any pair $(m, n)\neq(0,0)$ . Q.E.D.

Remark. In the above theorem, the condition $w_{V_{2}}(C_{1})\geq 2$ excludes
the following trivial example.

Also in general, if both solid tori $V_{1}$ and $V_{2}$ are knotted then by
Schubert’s Satz 1 ([12]), we may assume one of the following occurs by
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Fig. 3.

an ambient isotopy of $S^{3}$ which leaves $K$ fixed. (1) $V_{1}\subset V_{2}$ or $V_{2}\subset V_{1}$ ,

(2) $V_{1}\cup V_{2}=S^{3}$ , and (3) there exists a solid torus $W$ in int $V_{1}\cap int$ $V_{2}$

such that $w_{V_{1}}(C_{W})=w_{V_{2}}(C_{W})=1$ for the core of $C_{W}$ of $W$ .

Theorem 2.6 corresponds to the case (1). As for cases (2) and (3),
there exist inessential examples as in Figure 4 and Figure 5 respectively.

Fig. 4.
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Fig. 5.

\S 3. Gromov invariants

The notion of the Gromov invariant of closed manifolds was intro-
duced by Gromov [1]. In the 3-dimensional case, Thurston defined the
Gromov invariant of compact 3-manifolds whose boundaries consists of
tori [14]. In this section we shall study the Gromov invariant of the

exterior of a knot $K$ in $S^{3}$ which we simply call the Gromov invariant of
$K$ and we denote it by $||K||$ . For the definition of the Gromov invariant,
the reader is referred to [1], [14] and [13].

First we prove the following.

Theorem 3.1. Let $K$ be a knot in $S^{3}$ and $V$ a knotted solid torus
containing K. Then $||K_{V,n}||=||K||$ holds for any integer $n$ .

Proof. If $w_{V}(K)\leq 1$ , then $K_{V,n}=K$ for any integer $n$ . So we
assume $w_{V}(K)\geq 2$ . The exterior of $K_{V,n}(K_{V,0}\cong K)$ is described as

( $S^{3}-$ int $V$ ) $\bigcup_{h_{n}}$ ($V-$ int $N(K)$ ) for some gluing homeomorphism $h_{n}$ .

Since $V$ is knotted, $\partial$ ( $S^{3}-$ int $V$ ) is an incompressible torus. Also $\partial V$ is
an incompressible torus in $V-$ int $N(K)$ because $w_{V}(K)\geq 2$ . Hence we
have the following equality independent of $n$ by Soma’s theorem [13].

$||K_{V,n}||=||E((K_{V,n})||=||$ ( $S^{3}-$ int $V$ ) $II$ ($V-$ int $N(K)$ ) $||$ .

It follows that $||K_{V,n}||=||K||$ . Q.E.D.
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Hence, in Theorem 2.6, $K_{V_{1},m}$ and $K_{V_{2},n}$ have the same Gromov
invariants for any pair $(m, n)$ .

The following is straightforward from Theorem 3.1.

Corollary 3.2. Suppose that $K_{1}$ and $K_{2}$ are knots with $||K_{1}||\neq$

$||K_{2}||$ . Then $K_{2}$ can not be obtained by a sequence of twistings along
knotted solid tori from $K_{1}$ .

On the other hand, if $V$ is unknotted we have:

Proposition 3.3. Let $O$ be the unknot in $S^{3}$ . For any real num-
$berr$ , there exists an unknotted solid torus $V$ containing $O$ such that
$||O_{V,1}||>r$ .

Proof. Consider a solid torus $V$ as in Figure 6. Then in the exterior
of $O_{V,1}$ , there exist incompressible tori which decompose it into $k$ figure
eight knot spaces, 1 Whitehead link space and 1 composing space. Hence
$||O_{V,1}||=1/v_{3}(k$ Vol(figure eight knot complement) $+Vol(Whitehead$

link complement)), where $v_{3}$ is the volume of the regular ideal simplex
(see [14] [13]). Thus the result holds for some integer $k>0$ . Q.E.D.

$\rightarrow$

$0_{\vee 1}$

‘

Fig. 6.

This also shows that for any knot $K$ and any real number $r$ , there
exists an unknotted solid torus $V$ such that $K_{V,1}>r$ .

But the Gromov invariants behave as follows once $V$ is fixed.

Proposition 3.4. Let $K$ be a knot in $S^{3}$ and $V$ an unknotted solid
torus containing K. Then $||K_{V,n}||$ is less than a constant $C_{V,K}$ for any
integer $n$ .
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Proof. We may assume $w_{V}(K)\geq 2$ . If $P_{0}$ is a cable space, $||K_{V,n}||$

is constant for all but at most two integers $n$ such that a regular fibre is

presented by $\ell^{p}m$ for some $p$ . If $P_{0}$ is a composing space, then twisting
along $V$ is reduced to that along a knotted solid torus $W$ bounded by the
torus $(\subset\partial P_{0})$ which separates $K$ and $\partial V$ (see Sublemma 3.7 [6]). Hence
Theorem 2.1 in [6] implies the result. Suppose that $P_{0}$ is hyperbolic, by
Lemma 2.3 $V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ is also hyperbolic for $|n|\geq N_{V,K}$ . Then

we have $Vol(int(V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}))<Vol(intP_{0})$ by Thurston’s theorem

(6.5.6 Theorem [14]), and from this we have the following inequality for
$|n|\geq N_{V,K}$ ,

$||K_{V,n}||=1/v^{3}(\sum_{i\neq 0P_{i}:hyperbo1ic}Vol(intP_{i})+Vol(int(V_{J}\cup P_{0})))m_{J}=\ell m^{-n}$

$<1/v^{3}(\sum_{i\neq 0P_{i}:hyperbo1ic}Vol(intP_{i})+Vol(intP_{0}))$

$=||KII$ $J||$ .

Now we set $C_{1}=\max\{||K_{V,n}|| : |n|<N_{V,K}\}$ and we take $C_{V,K}=$

$\max\{C_{1}, ||KII J||\}$ , then $C_{V,K}$ is the required constant. Q.E.D.

Example 3.5 (Thurston [14]).

$\rightarrow\cdots$

$||0||=0$ $||0_{\vee,\uparrow}||=2$

Fig. 7.

The Gromov invariants of these knots tend from below to a finite
limit $(=. 3.6)$ .

\S 4. Primeness of knots under twistings

In this section, we investigate the effects of twistings on primeness
of knots. To begin with, we consider the case when a twisting solid torus
is knotted.
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Theorem 4.1. Let $K$ be a knot in $S^{3}$ and $V$ a knotted solid torus
containing K. Then $K$ is prime if and only if $K_{V,n}$ is $p\dot{r}ime$ for any
integer $n$ .

Proof. We may assume $w_{V}(K)\geq 2$ . Consider the torus decom-
position of $V$ – int $N(K)$ and denote the piece containing $\partial N(K)$ by
$P$ . Suppose that $K$ is a prime knot, then it turns out $P$ is not a com-
posing space. Now we consider the torus decomposition of $E(K_{V,n})=$

( $S^{3}-$ int $V$ ) $\bigcup_{h_{n}}$ ($V-$ int $N(K)$ ). In $E(K_{V,n})$ , $P$ is also a decomposing

piece. It follows that $K_{V,n}$ is also prime for any integer $n$ . Q.E.D.

If $V$ is unknotted, then the following example exists.

Example 4.2. In Figure 8, K is a prime knot, but $K_{V,n}$ is a
composite knot for any nonzero integer n.

$\rightarrow$

$K_{\vee}|\cap$

Fig. 8.

In this example $K$ has a locally knotted arc in $V$ (i.e. there is a
3-ball $B\subset V$ such that $(B, B\cap K)$ is a knotted ball pair). If $K$ does
not have a locally knotted arc in $V$ , then we get the following.

Theorem 4.3. Let $V$ be an unknotted solid torus containing $K$

without a locally knotted arc. Then $K_{V,n}$ is prime for all but at most
finitely many integers $n$ .

Proof. Consider the torus decomposition of $V-$ int $N(K)$ , and let
$P$ be a piece containing $\partial N(K)$ and $P_{0}$ a piece containing $\partial V$ .

Sublemma. Suppose that K $\subset V$ does not have a local knot. Then
P can not be a composing space.

Proof of Sublemma. Suppose that $P$ is a composing space. Let $T$ be
a component of $\partial P$ which does not separate $\partial V$ and $\partial N(K)$ . Note that $T$
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bounds a nontrivial knot exterior $E$ , and a regular fibre of $P$ coincides
a boundary of a meridian disk of $N(K)$ . Hence we have a saturated
annulus $A’$ which joins $T$ and $\partial N(K)$ . Then $D’=A’\cup D$ becomes a

meridian disk of $W=S^{3}-$ int $E$ . Since $K\cap D^{J}$ and $K\cap D$ consist of
one point, $K$ has a locally knotted arc in $V$ . This is a contradiction.

Q.E.D.

If $P_{0}$ is a cable space, $V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ is a (nontrivial) torus knot

exterior except for at most only two integers $n$ by Lemma 2.4. If $P_{0}$ is
a $k$-fold composing space, then $V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ is a $(k-1)$ -fold com-
posing space for any integer $n$ . Finally we consider the case when $P_{0}$ is
hyperbolic. By Lemma 2.5, we see that $V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ is also hyper-

bolic except for at most finitely many integers $n$ . It follows that in any
case, $V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ is boundary irreducible Haken manifold. Now we
divide into two cases depending upon whether $P=P_{0}$ or not. If $P=P_{0}$ ,

then $V_{J}\bigcup_{m_{J}=\ell m^{-n}}P=V_{J}\bigcup_{m_{J}=\ell m^{-n}}P_{0}$ can not be a composing space

by Sublemma and the above, and it becomes a decomposing piece in
$E(K_{V,n})$ . Thus $K_{V,n}$ is prime except for at most finitely many integers
$n$ . If $P\neq P_{0}$ , then it turns out that $P$ is still a decomposing piece in
$E(K_{V,n})$ . Since $P$ is not a composing space, $K_{V,n}$ is prime except for at
most finitely many integers $n$ . Q.E.D.

Remark 4.4. Even if $K$ does not have a locally knotted arc in $V$ ,

there is an example such that $K_{V,n}$ is a composite knot for some integer
$n$ (see Figure 9).

$\rightarrow$

$K_{\bigvee_{\iota}1}$

Fig. 9.

When an original knot is trivial, Scharlemann-Thompson [11],
Eudave-Munoz and Gordon have shown the following result, which is
a generalization of the theorem–“Unknotting number one knots are
prime [10]”.
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Theorem 4.5 ([11]). Let $V$ be a solid torus containing the unknot
$O$ with $w_{V}(O)\leq 2$ . Then $O_{V,n}$ is prime for any integer $n$ .

Since the unknot can not have a locally knotted arc, as an applica-

tion of Theorem 4.3, we have the following.

Corollary 4.6. Let $V$ be a solid torus containing the unknot $O$ .

Then $O_{V,n}$ is prime for all but at most finitely many integers $n$ .

We conclude this paper with the following question.

Question. Is the result of twisting of the unknot always prime $.p$

Acknowledgement. Authors wish to thank K. Miyazaki for sug-
gesting that the local knottedness is essential in Theorem 4.3. They also
wish to thank the referee for helpful comments.
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Polynomial Invariants
of $2$-Bridge Links through 20 Crossings

Taizo Kanenobu* and Toshio Sumi

In this paper, we calculate the homfly polynomial $P_{L}(v, z)$ , Kauff-
man polynomial $F_{L}(a, z)$ , Jones polynomial $V_{L}(t)$ , $Q$ polynomial $Q_{L}(z)$ ,

2-variable Conway polynomial $\nabla_{L}(t_{1}, t_{2})$ , and reduced Conway polyno-

mial $\overline{\nabla}_{L}(z)$ of a 2-bridge link $L$ with crossing number $\leq 20$ and list all
the pairs sharing the same polynomial invariants (Table 2). This paper
is a continuation of [9], where these polynomial invariants except for the
2-variable Conway polynomial for 2-bridge knots through 22 crossings
are calculated and all the pairs having the same polynomial invariants
are listed. The total number of the links is 44,118, where we ignore the
orientations of both a link and its ambient space. If we consider them,
this amounts 175,788. The program is written in Turbo Pascal for the
NEC $PC$-9801 Series as before.

We observe the following for 2-bridge links through 20 crossings:

Fact 1. $P_{L}(v, z)=P_{L’}(v, z)$ iff $V_{L}(t)=V_{L’}(t)$ and $\overline{\nabla}_{L}(z)=$

$\overline{\nabla}_{L’}(z)$ .

Fact 2. If $P_{L}(v, z)=P_{L’}(v, z)$ and $P_{L}\wedge(v, z)=P_{L’}\wedge(v, z)$ , then
$\nabla_{L}(t_{1}, t_{2})=\nabla_{L’}(t_{1}, t_{2})$ .

Fact 3. The number of links having the same homfly or Kauffman
polynomial is at most two.

Fact 4. $P_{L}(v, z)=P_{L^{\wedge}}(v, z)$ iff $\nabla_{L}(t_{1}, t_{2})=\nabla_{L}\wedge(t_{1}, t_{2})(=$

$-\nabla_{L}(t_{1}^{-1}, t_{2}))$ .

Here $L^{\wedge}$ is a 2-bridge link obtained from $L$ by reversing the orien-
tation of one of the 2 components. Facts 1 and 3 are the same as those
in [9]. For Fact 3, we do not consider the pair of 2-bridge links $L$ and

Received June 29, 1990.
$*This$ work was supported in part by Grant-in-Aid for Encouragement of

Young Scientist (No. 01740057), Ministry of Education, Science and Culture.
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$L’$ which share the same Kauffman polynomial and have linking number
zero (such as “3800 1669, 2429” of 19 crossing links in Table ). For these
links, it holds $ F_{L}=F_{L’}=F_{L}\wedge=F_{L’}\wedge$ . The “only if” part of Fact 4
cannot be deduced from only Table 2. We must check the 2-variable
Conway polynomials. The example as in Fact 4 is constructed in [5,
Theorem 9].

For the pair $L$ and $L’$ , where $L\neq L’$ , $L^{\prime\wedge}$ , sharing the same $Q$

polynomial, the cases given in Table 1 occur, where the last column gives
an example for each case from Table 2. For example, Case 5 indicates the
pair such that $V_{L}=V_{L’}(V_{L}\wedge=V_{L’}\wedge)$ , $P_{L}=P_{L’}$ , $ P_{L^{\wedge}}\neq P_{L^{\gamma}}\wedge$ , $F_{L}=F_{L’}$

$(F_{L^{\wedge}}=F_{L’}\wedge)$ , $\nabla\Gamma-\nabla_{L’}(\nabla_{L^{\wedge}}\neq\nabla_{L^{J\wedge}}),\overline{\nabla}_{L}=\overline{\nabla}_{L’},\overline{\nabla}_{L^{\wedge}}\neq\overline{\nabla}_{L^{l\wedge}}$ .

Cases 3-5 explain Fact 2. Relating to Cases 2 and 3, we can construct
the following examples:

(i) Arbitrarily many skein equivalent fibered 2-bridge links with the
same 2-variable Conway polynomial ([5, Theorem 7]).

(ii) Arbitrarily many skein equivalent 2-bridge links which have mutu-
ally distinct 2-variable Conway polynomials ([6, Theorem 2]).

Relating to Cases 4-6, we can construct the following examples:

(iii) A pair of skein equivalent 2-bridge links with the same Kauffman
polynomial but distinct 2-variable Conway polynomials ([6, Theo-
rem 7]).

(iv) Arbitrarily many skein equivalent fibered 2-bridge links which have
the same Kauffman and 2-variable Conway polynomial ([8, Theo-
rem 2]).

Relating to Case 7, we can construct the following example:

(v) Arbitrarily many 2-bridge links which have the same $Q$ and 2-
variable Conway polynomial, but distinct Jones polynomials ([7,
Theorem]).
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Table 1

\S 1. $2$-bridge link

The 2-bridge links are classified in Schubert’s normal form $S(p, q)$

$[10]$ , where $p>0,$ $-p<q<p$ , and $p$ and $q$ are coprime integers.

Proposition 1. $S(p, q)$ and $S(p’, q’)$ are isotopic as $ori$ented (resp.
unoriented) links if and only if:

$p=p’$ , $q^{\pm 1}\equiv q’$ $mod 2p$ (resp. $mod p$).

The following properties are easily seen from Schubert ’s normal form
(cf. [1, Proposition 12.5]):

Proposition 2. (2) A 2-bridge link $L=K_{1}\cup K_{2}$ is interchange-

able, that is, there is an isotopy $\varphi$ of $S^{3}$ such that $\varphi(K_{i})=K_{j}$ , $i\neq j$ .

(2) A 2-bridge link $L=K_{1}\cup K_{2}$ is invertible, that is, there is an

isotopy $\psi$ of $S^{3}$ such that $\psi(K_{i})=-K_{i}$ , $i=1,2$ .

Let $L$ be an oriented 2-bridge link. Then we denote by $L^{\wedge}$ a 2-bridge
link obtained by reversing the orientation of one of the two components

of $L$ , and by $\overline{L}$ a mirror image of $L$ . So if $L=S(p, \pm q)$ , $q>0$ , then

$L^{\wedge}=S(p, \pm(q-p))$ and $\overline{L}=S(p, \mp q)$ . Note that $\overline{(L^{\wedge})}=(\overline{L})^{\wedge}=$

$S(p, \pm(p-q))$ , which we denote by
$\overline{L}^{\wedge}$

Thus according as the isotopy

types of the four oriented 2-bridge links $L$ , $L^{\wedge}$ , $\overline{L}$ , and
$\overline{L}^{\wedge}$

, $L=S(p, q)$ ,

there are three types for the 2-bridge link:

Type $A:L=\overline{L}^{\wedge}\neq\overline{L}=L^{\wedge}$ , that is, $q(p-q)\equiv 1mod 2p$ .

Type $B:L=L^{\wedge}\neq\overline{L}=\overline{L}^{\wedge}$ , that is, $q(p-q)\equiv-1mod 2p$ .
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Type $C$ : No two of $L$ , $\overline{L}$ , $L^{\wedge}$ , and $\overline{L}^{\wedge}$ are isotopic, that is, $q(p-q)\not\equiv\pm 1$

$mod 2p$ .

Given a 2-bridge link in Schubert’s normal form $S(p, q)$ , it can be
put in Conway’s normal form $C(a_{1}, a_{2}, \ldots, a_{k})$ , (cf. [9, Fig. 3]), where

(1)
$\underline{p}=a_{1}+\underline{1}$

$\underline{1}$

.
$q$ $a_{2}+\cdots+a_{k}$

Note that this is a normal form for an unoriented 2-bridge link.
Let $p$ , $q>0$ and $a_{1}$ , $a_{2}$ , $\ldots$ , $a_{k}>0$ . Since $a_{k}=(a_{k}-1)+1/1$ , if we

suppose $a_{k}>1$ or fix the parity of $k$ , this expression is unique and the
crossing number is $a_{1}+a_{2}+\cdots+a_{k}$ .

Proposition 3. Every 2-bridge link $S(p, q)$ , $q>0$ , of Type $A$ can
be expressed as $C(a_{1}, a_{2}, \ldots, a_{n}, a_{n}, \ldots, a_{2}, a_{1})$ , $a_{i}>0$ , and vice versa.

Proof Suppose that

$\frac{p}{q}=b_{1}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{\ell}}$ ,

where $b_{i}>0$ and $\ell$ is even. Then we have

$\left(\begin{array}{ll}s & q\\r & p\end{array}\right)=$ $\left(\begin{array}{ll}0 & 1\\1 & b_{1}\end{array}\right)\left(\begin{array}{ll}0 & 1\\1 & b_{2}\end{array}\right)\ldots\left(\begin{array}{ll}0 & 1\\1 & b_{\ell}\end{array}\right)$ ,

where $p>q>s>0$ , $p>r>s>0$ , and $ps-rq$ $=1$ (cf. [11]). Since
$(q^{2}+1)/p\in \mathbb{Z}$ ,

$\frac{r^{2}+1}{p}=\frac{r^{2}+(ps-qr)^{2}}{p}=\frac{q^{2}+1}{p}r^{2}-2qrs+ps^{2}\in \mathbb{Z}$ .

Let $x=(q^{2}+1)/p$ and $y=(r^{2}+1)/p$ . Since xp-qq $=1$ and sp-rq $=1$ ,

there exists an integer $a$ such that $s-x=aq$ and $r-q=ap$ . Since
yp-rr $=1$ and sp-qr $=1$ , there exists an integer $b$ such that $s-y=br$

and $q-r$ $=bp$ . Then we have $a=b=0$ and $q=r$ . From the uniqueness
of the continued fraction, we have $b_{1}=b_{\ell}$ , $b_{2}=b_{\ell-1}$ , $\ldots$ , $b_{\ell/2}=b_{\ell/2+1}$ .

The converse is easy, and the proof is complete.

Proposition 4. Every 2-bridge link $S(p, q)$ , $q>0$ , of Type $B$ can
be expressed as $C(a_{1}, a_{2}, \ldots, a_{n}, 2a-1, a_{n}, \ldots, a_{2}, a_{1})$ , $a_{i}>0$ , $a>0$ ,

and vice versa.

Proof Since $q(p-q)\equiv-1mod 2p$ , there is an integer $b$ such that

(2) $q^{2}-1=p(q+2b)$ .
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First we show that there exist positive integers $x$ , $y$ , $z$ , $w$ satisfying:

(3) $\left(\begin{array}{ll}w & y\\z & x\end{array}\right)\left(\begin{array}{ll}0 & 1\\1 & -1\end{array}\right)\left(\begin{array}{ll}w & z\\y & x\end{array}\right)=\left(\begin{array}{lll}q & +2b & q\\ & q & p\end{array}\right)$

and

(4) $xw-yz=\xi j=\pm 1$ , $x>y$ .

From (2), we have

$\frac{q+1}{2}\frac{q-1}{2}=\frac{p}{4}(q+2b)$ ,

which is even, and thus $p/4$ is also even, that is, $p\equiv 0mod 8$ . Let
$p\pm=g.c.d.(p/4, (q\pm 1)/2)>0$ . Since g.c.d. $((q+1)/2, (q-1)/2)=1$ ,

we have $p_{+}p-=p/4$ . Let $z=p_{+}+p_{-}$ , which is an odd integer. Let

$(x, y)=\{$
$(2p_{+}, (q-1)/2p-)$ if $p_{+}<p_{-}$ ,

$(2p_{-}, (q+1)/2p_{+})$ if $p_{-}<p_{+}$ .

Since $\frac{q+1}{2p+}\frac{q-1}{2p-}=q+2b$ is odd, both $(q+1)/2p_{+}$ and $(q-1)/2p-$ are

odd, so let $w=\frac{1}{2}(\frac{q+1}{2p+}+\frac{q-1}{2p-})$ . Then $x$ , $y$ , $z$ , $w$ satisfy (3) and (4). Since

$z>x>0$ , there are integers $a$ and $u$ such that $z=ax+u$ , $a>0$ and
$x>u>0$ . Let $v=w-ay$ . Then xv-yu $=\in$ , and there exist positive
integers $a_{1}$ , $a_{2}$ , $\ldots$ , $a_{n}$ such that

$\left(\begin{array}{ll}v & y\\u & x\end{array}\right)=$ $\left(\begin{array}{ll}0 & 1\\1 & a_{1}\end{array}\right)\left(\begin{array}{ll}0 & 1\\1 & a_{2}\end{array}\right)\ldots\left(\begin{array}{ll}0 & 1\\1 & a_{n}\end{array}\right)$ .

$Then\in=(-1)^{n}$ and

$\left(\begin{array}{ll}v & y\\u & x\end{array}\right)\left(\begin{array}{lll}0 & & 1\\1 & 2a & -1\end{array}\right)\left(\begin{array}{ll}v & u\\y & x\end{array}\right)=\left(\begin{array}{lll}q & +2b & q\\ & q & p\end{array}\right)$ ,

and so $S(p, q)$ can be expressed as $C(a_{1}, a_{2}, \ldots, a_{n}, 2a-1, a_{n}, \ldots, a_{2}, a_{1})$ .

Conversely, if $n$ is odd, a rotation through $\pi$ about the axis $E$ as shown in

Fig. 1, where $\alpha=S_{2}^{a_{1}}S_{1}^{-a_{2}}\ldots S_{2}^{a_{n}}S_{1}^{1-a}$ and $\alpha’=S_{1}^{1-a}S_{2}^{a_{n}}\ldots S_{1}^{-a_{2}}S_{2}^{a_{1}}$ ,

gives an isotopy of $S^{3}$ which reverses the orientation of one of the two
components. If $n$ is even, we have a similar isotopy of $S^{3}$ . This completes
the proof.

Let $\mathcal{L}_{n}$ be the set of the unoriented 2-bridge links $C(a_{1}, a_{2}, \ldots, a_{k})$ ’s
satisfying the following:

(5) $a_{1}$ , $a_{k}\geq 2$ , $a_{2}$ , $\ldots$ , $a_{k-1}\geq 1$ .
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$E$

Fig. 1.

(6) Either $a_{i}=a_{k-i+1}$ for all $i\geq 1$ or $a_{1}=a_{k}$ , $a_{2}=a_{k-1}$ , $\ldots$ , $a_{i-1}=$

$a_{k+2-i}$ , $a_{i}>a_{k+1-i}$ for some $i\geq 1$ .

(7) $a_{1}+a_{2}+\cdots+a_{k}=n$ .

In other words, this is the set of representatives of unoriented 2-bridge
links with $n$ crossings up to chirality. Let $A\mathcal{L}_{n}$ and $B\mathcal{L}_{n}$ be the
subsets of $\mathcal{L}_{n}$ consisting of the unoriented 2-bridge links of the form
$C(b_{1}, \ldots, b_{\ell}, b_{\ell}, \ldots, b_{1})$ and $C(c_{1}, \ldots, c_{\ell}, 2c-1, c_{\ell}, \ldots, c_{1})$ , respectively.
There is a bijective mapping

$\psi:A\mathcal{L}_{2m}\rightarrow B\mathcal{L}_{2m-1}$

defined by

$\psi(C(b_{1}, \ldots,b_{\ell}, b_{\ell}, \ldots, b_{1}))$

$=\{$

$C(b_{1}, \ldots, b_{\ell}-1,1, b_{\ell}-1, \ldots, b_{1})$ if $b_{\ell}>1$

$C(b_{1}, \ldots, b_{\ell-2},2b_{\ell-1}+1, b_{\ell-2}, \ldots, b_{1})$ if $b_{\ell}=1$ .

The explicit numbers of $\mathcal{L}_{n}$ and $A\mathcal{L}_{n}$ are given by Ernst and Sumners
[3], in which they are denoted by $TL_{n}$ and ATLn. Thus we can know
the number of $B\mathcal{L}_{n}$ , which equals ATLn. Let $TL_{n}^{**}$ denote the number
of oriented 2-bridge links of $n$ crossings up to isotopy. Since

$TL_{n}^{**}=4TL_{n}-2ATL_{n+1}-2ATLn$ ,

we have:
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Proposition 5.

$TL_{n}^{**}=\{$

$(2^{n-2}+2^{\frac{n+2}{2}}-2^{\frac{n-2}{2}}+2)/3$ if $n\equiv 0$ $mod 2$ ,

$(2^{n-2}-2)/3$ if $n\equiv 1$ $mod 2$ .

Remark. $TL_{0}^{**}=2$ and $TL_{1}^{**}=0$ . $\sum_{n=0}^{20}TL_{n}=44,118$ and
$\sum_{n=0}^{20}TL_{n}^{**}=175,788$ .

\S 2. Conway polynomial

Let $L$ be a 2-component link and $\nabla_{L}(t_{1}, t_{2})\in \mathbb{Z}[t_{1}^{\pm 1}, t_{2}^{\pm 1}]$ its Conway
polynomial, where the components correspond to the labels $t_{1}$ and $t_{2}$ .

This is a uniquely determined invariant of the isotopy type of an oriented
link and is related to the 2-variable Alexander polynomial $\triangle(x_{1}, x_{2})$ by

$\triangle(t_{1}^{2}, t_{2}^{2})=\pm t_{1}^{n_{1}}t_{2}^{n_{2}}\nabla(t_{1}, t_{2})$ ,

$where\pm t_{1}^{n_{1}}t_{2}^{n_{2}}$ is a unit (cf. [2,4]). Let $L_{n}$ , $n$ $\in \mathbb{Z}$ , be the 2-component
links with labels $t_{1}$ and $t_{2}$ , which contain a 2-braid $\sigma_{1}^{n}$ and are identical
except near the 2-braid. Let $\nabla_{n}(t_{1}, t_{2})$ be the Conway polynomial of
$L_{n}$ .

(8) Suppose that the 2-braid consists of the different components with
orientation not parallel. Then

$\nabla_{2}$ ( $t_{1}$ , $t_{2}$ ) $+\nabla_{-2}(t_{1},$ $t_{2})=(t_{1}t_{2}^{-1}+t_{1}^{-1}t_{2})\nabla_{0}(t_{1}$ , $t_{2})$ .

(9) Suppose that the 2-braid consists of the same component having
label $t_{i}$ and parallel orientation. Then

$\nabla_{1}(t_{1}, t_{2})=\nabla_{-1}(t_{1}, t_{2})+(t_{i}-t_{i}^{-1})\nabla_{0}(t_{1}, t_{2})$ .

(10) Let $L\# L’$ be the connected sum of two 2-component links $L$ and $L’$

such that the connection takes place between the components with the
same label $t_{i}$ . Then

$\nabla_{L\beta L’}=(t_{i}-t_{i}^{-1})\nabla_{L}\nabla_{L’}$ .

(11) For the split 2-component link $L$ , $\nabla_{L}=0$ .

(12) For the Hopf link $L$ with linking $number\pm 1$ , $\nabla_{L}=\pm 1$ .

Let $\nabla(b_{1}, b_{2}, \ldots, b_{m})$ be the Conway polynomial of the 2-bridge link
$D(b_{1}, b_{2}, \ldots, b_{m})$ , $m$ odd (cf. [9, Fig. 2]). Hartley [4, (6.4)] shows that
$\nabla(b_{1}, b_{2}, \ldots, b_{m})$ is an integral polynomial in $f=t_{1}t_{2}+t_{1}^{-1}t_{2}^{-1}$ and
$g=t_{1}t_{2}^{-1}+t_{1}^{-1}t_{2}$ . More precisely we have:
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Proposition 6.

$\nabla(b_{1}, b_{2}, \cdots, b_{m})=(1,0)A^{b_{m}}B^{b_{m-1}}\cdots A^{b_{3}}B^{b_{2}}A^{b_{1}}$ $\left(\begin{array}{l}0\\1\end{array}\right)$ ,

where

$A=\left(\begin{array}{ll}g & -1\\1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0\\f-g & 1\end{array}\right)$ .

Note that $z^{-1}\overline{\nabla}(z)$ , where $\overline{\nabla}(z)$ is the reduced Conway polynomial

[2, p.340], is obtained from $\nabla(b_{1}, b_{2}, \ldots, b_{m})$ by substituting $f=z^{2}+1$

and $g=2$ .

Proof. Apply (9) and (10) to one of the crossings in the 2-braid
with $2b_{m-1}$ crossings. Then

$\nabla(b_{1}, \ldots, b_{m-2}, b_{m-1}, b_{m})=\nabla(b_{1}, \ldots, b_{m-2}, b_{m-1}-1, b_{m})$

$+(t_{1}-t_{1}^{-1})(t_{2}-t_{2}^{-1})\nabla(b_{1}, \ldots, b_{m-2})\nabla(b_{m})$ .

So by induction on $b_{m-1}$ , we have:

$\nabla(b_{1}, \ldots, b_{m-2}, b_{m-1}, b_{m})=\nabla(b_{1}, \ldots, b_{m-2}+b_{m})$

$+b_{m-1}(t_{1}-t_{1}^{-1})(t_{2}-t_{2}^{-1})\nabla(b_{1}, \ldots, b_{m-2})\nabla(b_{m})$ .

Apply (8) to the 2-braid with $2b_{m}$ crossings. Then

$\nabla(b_{1}, \ldots, b_{m-1}, b_{m})+\nabla(b_{1}, \ldots, b_{m-1}, b_{m}-2)$

$=g\nabla(b_{1}, \ldots, b_{m-1}, b_{m}-1)$ ,

and so we have

$(_{\nabla(b_{1},,b_{m}-1)}^{\nabla(b_{1},,b_{m})}\ldots\cdots)=A$ $\left(\begin{array}{llll}\nabla(b_{1} & \cdots & b_{m} & -1)\\\nabla(b_{1} & \cdots & b_{m} & -2)\end{array}\right)$ .

Then we have

$(_{\nabla(b_{1},,b_{m-3},b_{m-2}+b_{m}-1)}^{\nabla(b_{1},,b_{m-3},b_{m-2}+b_{m})}\ldots\cdots)$

$=A^{b_{m}}(_{\nabla(b_{1},,b_{m-3},b_{m-2}-1)}^{\nabla(b_{1},,b_{m-3},b_{m-2})}\ldots\cdots)$ ,

and

$\left(\begin{array}{l}\nabla(b_{m})\\\nabla(b_{m}-1)\end{array}\right)=A^{b_{m}}$ $\left(\begin{array}{l}0\\1\end{array}\right)$ ,
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since $\nabla(0)=0$ by (11) and $\nabla(-1)=1$ by (12). Therefore

$(_{\nabla(b_{1},,b_{m-1},b_{m}-1)}^{\nabla(b_{1},,b_{m-1},b_{m})}\ldots\cdots)$

$=A^{b_{m}}(_{\nabla(b_{1},,b_{m-2}-1)}^{\nabla(b_{1},,b_{m-2})}\ldots\cdots)$

$+b_{m-1}(t_{1}-t_{1}^{-1})(t_{2}-t_{2}^{-1})\nabla(b_{1}, \ldots, b_{m-2})A^{b_{m}}$ $\left(\begin{array}{l}0\\1\end{array}\right)$

$=A^{b_{m}}(_{b_{m-1}(t_{1}}-t^{\frac{1}{1}1})(t_{2}-t_{2}^{-1})$ $01)(_{\nabla(b_{1},,b_{m-2}-1)}^{\nabla(b_{1},,b_{m-2})}\ldots\cdots)$

$=A^{b_{m}}B^{b_{m-1}}(_{\nabla(b_{1},,b_{m-2}-1)}^{\nabla(b_{1},,b_{m-2})}\ldots\cdots)$

$=A^{b_{m}}B^{b_{m-1}}\cdots B^{b_{2}}A^{b_{1}}$
$\left(\begin{array}{l}0\\1\end{array}\right)$ ,

and we have the desired formula.

\S 3. Computational process

From [9, Sect.2, Step 1], we have the set $\mathcal{L}_{n}$ . Let $C(a_{1}, a_{2}, \ldots, a_{k})$

$\in \mathcal{L}_{n}$ and $p$ , $q$ be the integers obtained from the continued fraction (1).
Let

$\frac{p}{q}=2b_{1}+\frac{1}{2b_{2}}+\cdots+\frac{1}{2b_{m}}$

and

$\frac{p}{q-p}=2c_{1}+\frac{1}{2c_{2}}+\cdots+\frac{1}{2c_{\ell}}$ ,

where $m$ and $\ell$ are odd. If let $L=D(b_{1}, b_{2}, \ldots, b_{m})$ , then $L^{\wedge}=$

$D(c_{1}, c_{2}, \ldots, c_{\ell})$ . We denote these 2-bridge links by $T(p, q)$ and $T(p,$ $q-$

$p)(=T(p, q)^{\wedge})$ . Then $T(p, q)$ is isotopic to either $S(p, q)$ or $S(p, q-p).*$

We first compute the homfly polynomials $P_{L}=P(b_{1},$ $b_{2}$ , $\ldots$ , $b_{m)}^{\backslash }$ , $P_{L^{\wedge}}=$

$P(c_{1}, c_{2}, \ldots, c_{\ell})$ , the Kauffman polynomials $F_{L}=F(b_{1}, b_{2}, \ldots, b_{m})$ , and
the Conway polynomials $\nabla_{L}=\nabla(b_{1}, b_{2}, \ldots, b_{m})$ using [9, Propositions
1 and 4] and Proposition 6. Then we compute: $P_{\overline{L}}$ , $ P_{L}\wedge$ , $ F_{L}\wedge$ , $F_{\overline{L}}$ , $ F_{\overline{L}}\wedge$ ,
$\nabla_{L}\wedge$ , $\nabla_{\overline{L}}$ , and $\nabla_{\overline{L}}\wedge$ , using the following:

$P_{\overline{L}}(v, z)=P_{L}(v^{-1}, z)$ ,

$*Note$ added in proof. T. Kanenobu and Y. Miyazawa proved that $T(p, q)=$

$S(p, q-p)$ .
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$F_{L}\wedge(a, z)=a^{4\lambda}F_{L}(a, z)$ ,

$F_{\overline{L}}(a, z)=F_{L}(a^{-1}, z)$ ,

$\nabla_{L^{\wedge}}(t_{1}, t_{2})=-\nabla_{L}(t_{1}, t_{2}^{-1})$ ,

$\nabla_{\overline{L}}(t_{1}, t_{2})=-\nabla_{L}(t_{1}, t_{2})$ ,

where $\lambda=-b_{1}-b_{2}-\cdots-b_{m}=c_{1}+c_{2}+\cdots+c_{\ell}$ is the linking number
of $L$ .

Next we compute the Jones, $Q$ , and reduced Conway polynomials
by suitable substitutions. Finally we search all the pairs of 2-bridge
links through 20 crossings having the same homfly, Kauffman, Jones,
and $Q$ polynomials as in [9, Sect.3, Step 3]. For the Conway and re-
duced Conway polynomials, we examine for the pairs having the same
$Q$ polynomials.

\S 4. Computational results

In Table 2, the three numbers $‘‘ p$
$q$ , $r$

” represent the pair of the
2-bridge links $\{T(p, q), T(p, r)\}$ sharing the same $Q$ polynomial. If there
is an entry $‘‘ V$

” (resp. $‘‘ P’’$ , $‘‘ F’’$ , $‘‘ A’’$ , “ $C’’$ ), they also share the same
Jones (resp. homfly, Kauffman, 2-variable Conway, reduced Conway)
polynomial. We do not list the pairs $L$ and $L^{\wedge}$ having the linking number
zero if they are not contained in Cases 1-5. These links have the same
Kauffman polynomial.

The two numbers $‘‘ pg$
” represent the pair of the 2-bridge links

$\{T(p, q), T(p, q)^{\wedge}\}$ sharing the same homfly and 2-variable Conway poly-
nomials (cf. Fact 4). Note that we do not list the pair sharing only the
same 2-variable Conway or reduced Conway polynomial. The entries $‘‘ a$

”

and $‘‘ b$
” indicate that the links are of types A and $B$ , respectively.

Table 2

9 crossing

24 5,11 b

11 crossing

7817,35
8419,25
9829,-55P
98-69,43V
12847

12 crossing

60 11,19

130130 -73,4757,-47 FaFa

13 crossing

110 19,51
124 39,23
132 25,29
132 25,59
132 29,59
138 31,43
162 37,73 P
162 -125,-89 V
196 57,-111 P
196 -139,85 V
200 61
232 101
240 71 , 89 b
242 65 ,-155 V

242 -177,87 P
248 109
25695
264115
280123

14 crossing

188 35,59
196 69,-155 V
196 -127,41 V
196 45,37
220 61 , 39
252 71,55 A
264 71,49
324 127,-233 V
324 -197,91 V

370 153,-207 F
370 -217,163 F
380 137,-167 F
380 -243,213 F

15 crossing

120 29,19 b
186 41,83
192 43,61
228 59,47
234 101,43
238 109,75
242 111,-197 V
242 -131,45 P
252 115,47
252 115,79
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Table 2 (continued)

25247,79648-395,181V
26061,49648-395,-467PA
294127,-209V722305,-455P
294 -167,85 P 722 -417,267 V
304 79 ,63

16 crossing
308 65,87
308 83,97 25681,49V
324 73,145 $P$ 256 -175,-207 $V$

324 -251,-179 V 296 47, 137
336 89,103316 59,99
338 79,-233 V 322 71,57
338 -259,105 P 324 77,61
350 93,-243 V 352 163,291 V
350 -257, 107 V 352 -189,-61 V
352 161354 73,163
352161,63374167,303V
368169374-207,-71V
37469,169378 137,67
380103,87396 73,91
384143402 83, 113
38885,8940673,143
392139,83V456107,125
392139,-309PA462127,83
392 -253,83 $PA$ 462 127,97
392 -253,-309 V 462 83,97
400 121484 109,197 V
400 183484 -375,-287 V
402125,143506137,93
40693,121 $P$ 508 135,119 A
406-313,-285V510107,233
408121,127516121,223
416191516121,113A
418111,89516223,113
434177,115564245,131
448137,201572125,333V
450 97,133 P 572 -447,-239 V
450 -353,-317 $V$ 572 155,131
468 101,-211 $P$ 576 107,125
468 -367,257 $V$ 588 209,-463 $V$

476 109,277 P 588 -379,125 V
476 -367,-199 V 594 163,-413 V
484 131,-309 $V$ 594 -431, 181 $V$

$484$ -353,175 $P$ 620 253,-347 $F$

488 213620 -367,273 F
494105,131624145,175
504221630193,-227V
504 221,-115 P 630 -437,403 V
504 221,389 V 630 193,277 V
504 -283,-115 P 630 -437,-353 V
504 -283,389 V 630 227,-277 F
504181,197 Ab630 -403,353 $F$

512223638139,371V
520 227638 -499,-267 V
522 119,155 P 644 289,473 V
522 -403,-367 V 644 -355,-171 V
536 235666 241,-203 V
574 181159 P 666 -425,463 V
574 -443,-415 V 676 287,183 V
578 169,237 V 676 -389,-493 V
578 -409,-341 $P$ 702 197,-487 $V$

648 253, 181 PA 702 -505,215 V
648 253,-467 V 704 149,299

728 215,327 V
728 -513,-401 V
742 303,515 V
742 -439,-227 V
748 159,317
972 271,-593 V
972 -701,379 V
1016397,-651 A
1032379,-661A
1130437,-467 Fa
1130 -693,467 Fa

17 crossing

240107,53
24655,79
33853,157P
338 -285,-181 V
342 53,109
370 89,59
380 119,71
380 119,61
380 71,61
388 73,93
390 $f01,61$

392 113,-223 P
392 -279,169 V
406 187,-277 V
406 -219,129 V
462 79, 101
464 101,-379 V
464 -363,85 V
472 221
476 151,-257 V
476 -325,219 V
484 221 ,-395 V
484 -263,89 P
486 217,109 P
486 -269,-377 V
488 229
496 157,405 V
496 -339,-91 V
512 191
512 161,97 V
512 161,-415 PA
512 -351,97 PA
512 -351,-415 V
528 163,427 V
528 -365,-101 V
536 251
53693,85
552259
560 107,-437 V
560 -453, 123 V
564 179,197
570 181169
578 203,-477 P
578 -375,101 V
594 271,107
598 113,425 V
598 -485,-173 V
600 181
602 163,191 V

602 -439,-411 V
616 279,113
636 167,151
638 135,-525 V
638 -503,113 V
644 141,153
672 209,239
672 211,197
676 209 ,-519 P
676 -467,157 V
686 181,209 V
686 -505,-477 V
714 155,127
720 317,133
722 151,-533 P
722 -571,189 V
726 263 ,-529 P
726 -463,197 V
728 333
728333,229
736337
738137,331
742233,339
744325
748141,163
752345
754199,225
756235,163P
756-521,-593V
760 333
760 349
764203,179
770137,277
772181,177
774 349 ,-167 P
774 -425,607 V
776 355
776 339
784 359
784 279,167 V
784 279,-617 PA
784 -505,167 PA
784-505,-617V
786163,361
792347
798251223
798143,283
800367
808 371
814 173 ,-663 V
814 -641,151 V
834 233,173
840 379,181 b
846 193,-371 P
846 -653,475 V
854 153,181
864 269,197 P
864 -595,-667 V
868 353,-639 V
868 -515,229 V
874 245 ,-675 V
874 -629,199 V
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894247,187
896205,261P
896-691,-635V
924 415,283
930 421,601 C
936 205,277 P
936 205,-659 V
936 -731,277 V
936 -731,-659 V
938 409,275
942 431,197
942 203,215
950 199,249
954 427,-209 P
954 -527,745 V
966 409,745 V
966 -557,-221 P
968 395,219 PA
968 395,-749 V
968 -573,219 V
968 -573,-749 PA
990 223,-437 P
990 -767,553 V
992 447,639 C
994 303,-549 V
994 -691,445 V
994 431,767 V
994 -563,-227 P
996 227,449
996 275,233
1008227,299 P
1008-781,-709 V
1022 285,313
1022 285,-751 V
1022-737,271 V
1022 285,299
1022313,271
1022313,-723 V
1022-709,299V
1022271,299
1024447
1026215,269
1034285,219
1036317,303
1036 317, 275
1036317,-747 V
1036-719,289 V
1036303,-761 V
1036-733,275 V
1036303,289
1036 275,289
1056241,463 b
1056 247,457
1058459,-737 P
1058-599,321 V
1058231,415 V
1058-827,-643 P
1064299,243 P
1064299,-821 V
1064-765,243 V
1064-765,-821 V
1102 251 ,-793 V

1102-851,309 V
1104257,479
1120 297,457
1122245,-811 V
1122-877,311 V
1134509,347
1140 241 ,301
1144309,243
1156339,475 V
1156-817,-681 P
1164271,325
1190321,349
1216 257,321
1242379,343 PA
1242-863,-899 PA
1250451,551 F
1250-799,-699 PF
1278391,-461 PA
1278-887,817 PA
1292295,-929 V
1292-997,363 V
1296 505,361 PA
1296 505,-935 V
1296-791,361 V
1296-791,-935 PA
1298349,-1015 V
1298-949,283 V
1314401,-475 PA
1314-913,839 PA
1316543,355
1330389,579
1350377,413 PA
1350-973,-937 PA
1352365,573 V
1352365,-779 PA
1352-987,573 PA
1352-987,-779 V
1372405,-995 V
1372-967,377 V
1444533,-835 V
1444-911,609 P
1456 393,407
1458 541,433 P
1458-917,-1025 V
1528 549,-931 A
1544555,571 A
1682637,-1219V
1682-1045,463P
1784653
1800659
1922805,-1179V
1922-1117,743P
2024 741
2040781,749Ab
2056755
2296843
2312885

18 crossing

21029,41
400139,-341V
400 -261,59 V

44483,139
452109,85
532109,137
544 93,189
558 131 ,-301 V
558 -427,257 V
576 119,263 V
576 119,-313 V
576 -457,263 V
576 -457,-313 V
684 145,107
686 141,-531 V
686 -545,155 V
688 123,307
702 163,-557 V
702 -539,145 V
704 161 , 129 V
704 -543,-575 V
704 127,193
720 169,151
732 337, 151
736 135,503 V
736 -601,-233 V
738 173,-583 V
738 -565,155 V
748 203,137
760 159,121
764 183,199 A
768 241,145 V
768 -527,-623 V
770 159 ,-541 V
770 -611,229 V
772 185,169 A
780 161,239
782 135,169
784 141,-475 V
784 -643,309 V
800 153,553 V
800 -647,-247 V
812 151,-633 V
812 -661,179 V
832 191,159 V
832 -641,-673 V
836 217,-543 V
836 -619,293 V
858 301,-635 V
858 -557,223 V
858 181,233
868 179,-381 V
868 -689,487 V
870 353,-487 F
870 -517,383 F
880 317,-387 F
880 -563,493 F
882 199,163
882 205,-479 V
882 -677,403 V
896 375,-185 V
896 375,711 V
896 -521 ,-185 V
896 -521,711 V
900 209,-511 V

900 -691,389 V
900 247,-617 V
900 -653,283 V
936 295,-329 V
936 -641,607 V
942 287,221
948 289,199
952 345,-775 V
952 -607,177 V
952 205,171
956 227,251
964 229,221
976 181,213 V
976 -795,-763 V
980 209 ,-631 V
980 -771,349 V
994 275,-789 V
994 -719,205 V
996 209,455
1002235 ,433
1008 187,-653 V
1008-821,355 V
1008 187,691 V
1008-821,-317 V
1008355,-317 V
1008-653,691 V
1010313,293 PFAa
1010 -697,-293 PFAa
1020239,271 A
1024225,289 V
1024225,-735 V
1024-799,289 V
1024-799 ,-735 V
1032 185,271
1040 197,717 V
1040-843 ,-323 V
1044329 ,-751 V
1044-715,293 V
1062233,197
1064277,221
1072235,203 V
1072-837,-869 V
1078493,885 V
1078-585,-193 V
1078475 ,-225 V
1078-603,853 V
1100203,603 V
1100-897,-497 V
1102235,293
1106 197,239
1118245 ,-787 V
1118-873,331 V
1148241,-935 V
1148-907,213 V
1156307,-645 V
1156-849,511 V
1158269,503
1162263 ,-409 V
1162-899,753 V
1162417,207
1164515,527
1164433,343
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Table 2 (continued)
1166 303,-841 V
1166-863,325 V
1188 211,545
1190431,-269 V
1190-759,921 V
1190423,213
1218 559,253
1218373,283
1232 229,555
1246 223,265
1260 263,-913 V
1260-997,347 V
1266347,377
1266 263,353
1272 571,277
1274537,269
1274279,-561 V
1274-995,713 V
1278 343,361
1288269,381 V
1288269,-907 V
1288-1019,381 V
1288-1019,-907 V
1296397,-827 V
1296-899,469 V
1316 571,403 V
1316-745,-913 V
1320 371,349
1320371,389
1320349,389
1326 277,367
1330353,733 V
1330-977,-597 V
1342377,-987 V
1342-965,355 V
1342 379,291 V
1342-963,-1051 V
1374311,377
1374629,287
1378 513,293
1380 379,301
1414635,411 V
1414-779,-1003 V
1428401,311
1428 583,991 V
1428-845,-437 V
1430607,303
1434529,427
1452 329,593 V
1452-1123,-859 V
1456431,319 V
1456431,-1137 V
1456-1025,319 V
1456-1025,-11374
1462 575,-309 V
1462-887, 1166 V
1462 607, 1014 V
1462-855 ,-447 V
1470 617,-307 V
1470-853,1163V
1474313,625
1482335,653

1484409,-1159 V
1484-1075,325 V
1488439,409
1536689,335
1536 359,425
1542349,679
1582 345,-1111 V
1582-1237,471 V
1590473,587
1596 6911378
16206311188 V
1620-989,451 V
1634347,433
1634617,579
1644611,485
1644 713,383
1650463,373
1666377,-1303 V
1666-1289,363 V
1666699 ,-365 V
1666-967, 1804 V
1690 759,359
1704397,475
1716 727,703
1758 523,493
1782389,1037 V
1782-1393,-745 V
1786661,-783 V
1786-1125,1003 V
1804477,-1163 V
1804-1327,641 V
1804391,479 V
1804-1413,-1325V
1826679,-1313 V
1826-1147,513 V
1846391,495
1848 773,-403 V
1848 773,1445 V
1848-1075,-403 V
1848-1075,1445 V
1860 1081,841 C
1870 763,-1097 F
1870-1107,773 F
1876823,-409 V
1876-1053,1467 V
1880 737,-767 F
1380-1143,1113 F
1890523,-1313 V
1890-1367,577 V
1904557,837 V
1904-1347,-1067V
19188361188 V
1918-1083,-535 V
1926517,743
1926 695,-589 V
1926-1231,1337 V
1936 747,-1365 V
1936-1189,571 V
1962 599,-709 V
1962-1363,1253V
1962527,769
1984895,1151C

1998 557,-1387 V
1998-1441,611 V
2014845,-1131 V
2014-1169,883 V
2028 859,547 V
2028-1169,-1481V
2040797,-1307 A
2056 7391288 A
2116 873,-1335 V
2116-1243,781 V
2142 593,-1675 V
2142-1549,467 V
2198 957,649 V
2198-1241,-1549V
2210863,-837 Fa
2210 -1347,837 Fa
2212933,1565 V
2212-1279,-647 V
2318 1017,-1339 V
2318-1301,979 V
2500 1051,-1549 F
2500-1449,951 F
2546935 ,-1117 V
2546-1611,1429 V
2610719,701
30641133,-1899A
30801131,-1941A

19 crossing

294131,65
30097,67
42683,59
438 67,61
450 61 ,-239 P
450 -389,211 V
472 215,73
490 211,-349 V
490 -279,141 P
508159,95
516125,97
592281
608 277,-107 V
608 -331,501 V
608 289
620149,99
630101,121
640239
648289,145P
648-359,-503V
666101,137
672319
67699,177
676105,313P
676-571,-363V
688 327
722 115 ,-493 V
722 -607,229 P
726 133,-395 P
726 -593,331 V
726251,233
728113,153
732235,217

754353,111
800119,279V
800 119,-521 PA
800 -681,279 PA
800 -681,-521 V
800 241
808167,127
816139,173
836151,381
840 193,263
850 133,303
858 389,157
882 211,-713 V
882 -671,169 P
884 139,309
892 215,231
900 197,217
928 163,-733 V
928 -765,195 V
936 149,427
942 329,299
944 221 ,-771 V
944 -723,173 V
948 295 ,301
968 351,-705 P
968 -617,263 V
976 457
976 179,667 V
976 -797,-309 V
984 461
988173,211
992173,-787V
992 -819,205 V
1000469
1000437
1008473
1014235,-701 V
1014-779,313P
1014161,265
1016445
1024 193,321 V
1024 193,-703 PA
1024-831,321 PA
1024-831,-703 V
1032451
1040487
1048459
1048491
1050487,163
1058183,275P
1058-875,-783V
1062229,337 P
1062-833,-725 V
1064337,167
1064337,489
1064167,489
1064499
1072503
1072 205,741 V
1072-867,-331 V
1078501 ,893 V

.
1078 -577,-185 $V$
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1080233,-487P
1080-847,593V
1092 491,251
1100 189,589 V
1100-911,-511 V
1102 175,347
1104211,-845 V
1104-893,259 V
1120209,239b
1120257,513
1120513
1136 521
1148275,299
1152239
1152 239,527 V
1152239,-625 V
1152-913,527 V
1152-913,-625 V
1152 527
1136203,-749 V
1156-953,407 P
1156 265,277
1156 531,251
1162475,267
1162 341,369 V
1162-821,-793V
1162337,365
1168535
1176251,419 V
1176251,-757 PA
1176-925,419 PA
1176-925,-757V
1178245,207
1184543
1188271,-521P
1188-917,667V
1190377,547
1206383,275 P
1206-823,-931 V
1206 551,283
1206 223,533
1218 557,383
1224553,281
1224547,227
1232 563,387
1276 335,303
1278 587,299 V
1278-691,-979 V
1284301,305
1288 $363_{\rangle}405$

1288409,-695 V
1288-879,593 V
1288345,-931 V
1288-953,367 V
1300383,583 V
1300-917,-717 V
1312229,-603 V
1312-1083,709 V
1330607,303
1358625,-927 V
1358-733,431V
1360613,237

1364245,-1075 V
1364-111288 V
1386 317,401 P
1386-1069,-985 V
1394487,241
14143811826
1422 295,331 V
1422-1127,-1091V
1422 421,313 P
1422-1001,-1109V
1426 255,301
1440643,-317 P
1440-797, 1120 V
1444379,-1141 V
1444-1065,303 P
1456317,-1123 V
1456-1139,333 V
1456 317,-619 V
1456-1139,837 V
1456333,837 P
1456-1123,-619 V
1458 593,269 V
1458-865,-1189 P
1458 305,341 V
1458-1153,-11176
1472337,273 V
1472 337,-1199 V
1472-1135,273 V
1472-1135,-1199V
1476653,-331 P
1476-823,1136 V
14846411148 V
1484-843,-339 P
1484471,415 V
1484-1013,-1069V
1488 277,-1163 V
1488-1211,325 V
1494335,443 P
1494-1159,-1051V
1496 533,269
1496685
1498267,323
1504279,-473V
1504279,1080 V
1504-1225,-473 V
1504-1225,1031 V
1512479,409
1518 703,263
1520411,1171 V
1520-1109,-349 V
1520477,1232 V
1520-1043,-283 V
1528 701
1536671
1540283,-1213 V
1540-1257,327 V
1544707
1550461,411
1552293,1069V
1552-1259,-483 V
1552 421,1184 V
1552-1131,-355 V

1554355,439P
1554-1199,-1115V
1554277,557
1562337,359
1562 295,863 V
1562-1267,-699 V
1564 703,473
1566487,343 P
1566-1079,-1223V
1568281 ,617 PA
1568 281,-951 V
1568-1287,617 V
1568-1287,-951 PA
1568487,-297 V
1568487, 1276 V
1568-1081,-297 V
1568-1081,1271 V
1576 723
1582563,283
1582419,363
1584709,1285V
1584-875,-299 V
1584 709,-347 P
1584-875,1237 V
1584 299,-1237 V
1584-1285,347 V
1586 329,277
1586331,733
1600303,367 V
1600303,-1233 V
1600-1297,367 V
1600-1297,-1233V
1602 733,373 V
1602-869,-1229 V
1610 507,367
1610493,723
1616371,-1261 V
1616-1245,355 V
16244711708
1628309,727
1638 349,293
1644341 , 503
1650343,757
1652 379,505
1656 373,-731 P
1656 373,925 V
1656-1283,-731 V
1656-1283,925 V
1672 299,365
1672439,351
1674521,377 P
1674-1153,-1297V
1680 733 ,-1187 V
1680-947,493 V
1682 753,521 V
1682-929,-1161 P
1682 737,365
1692 355,731
1698353,473
1700467,297
1702363,-1385 V
1702-1339,317 V

17084811528
17084811488
1708481,-1255V
1708-1227,453 V
1708523,-1213 V
1708-1185,495 V
1708523,453
1708495,453
1708521,451
1710401 ,781
1722457,527
1722457,-1223 V
1722-1265,499 V
1722457 ,485
1722527,499
1722527,-1237 V
1722-1195,485 V
1722499,485
17343191458
1734713,509 V
1734-1021,-1225P
1748367,459
1758487,367
1758385,787
1760373,483
1768315,485
1778545,405
1786407,467
1792389,333 V
1792-1403,-1459V
1800419,779 V
1300419 ,-1021 PA
1800-1381,779 PA
1300-1381 ,-1021V
1804767,381
1806377,827
1806479,737
1812397,391
1812553,379
1820817,557
1820543,-1433 V
1820-1277,387 V
1826773,389
1848491,421
1360401,419
1860389,851
1862519,491 V
1862-1343,-1371V
1862 519,393
1862519,421
1862491,393
1862491 ,421
1862491,421 PA
1862-1469,-1441PA
1870507,397
1872281,617 PA
187212881386PA
1908671,-601 PA
1908-1237, 1300 PA
1914431,787
1914431,863
1914787,863
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1922 557,433 V
1922-1365 ,-1489P
1922 683,-1053 V
1922-1239,869 P
1924515,-1357 V
1924-1409,567 V
1932359,695 V
1932-1573 ,-1237V
1936439,791 PA
1936439,-1145 V
1936-1497,791 V
1936-1497,791145PA
1938409,511
1944 757,541 PA
1944 757,-1403 V
1944-1757,541 V
1944-1187,-1403PA
1946 579,411 P
1946-1367,-1535V
1946593,-1075 V
1946-1353,871 V
1958449,797
1958427,361
1960573,517 V
1960 573,-1443 V
1960-1387,517 V
1960-1387,-1443V
1968449,431
1976451,413
1976 535,-1545 V
1976-1441,431 V
1978613,-1107 V
1978-1365,871 V
1980 623,-697 PA
1980-1357,1283 PA
1984415,353
1988 705,369 V
1988-1283,-1619V
1990617,-1383 PFA
1990-1373,607 PFA
1992 587,421
2010 583,1387 PFA
2010-1427,-623 PFA
2014435,-1473 V
2014-1539,561 V
2016563,635 PA
2016-1453,-1381PA
2022 905,461
2022 617,473
2028599,-1585 V
2028-1429,443 V
2048577,449 PA
2048 577,-1599 V
2048-14712448 V
2048-1471,-1599PA
2072601,559
2074439,371
2076485,575
2080453,-1523 V
2080-1627,557V
2082901,487
2082919,469

2108951,375
2114873,485
2116919,-1473P
2116-1197,643 V
2116 829,461 V
2116-1287,-1655P
2128 395,451 V
2128-1733,-1677V
2132 577,-1503 V
2132-1555,629 V
2136481,487
2136 925,499
2142 871 ,-1577 V
2142-1271,565 V
2156 601,657 V
2156-1555,-1499V
2166 913,-1367 P
2166-1253,799 V
2170647,-1213 P
2170-1523,957 V
2170883,573
2178925,-1715 P
2178-1253,463 V
2184509,947
2198 907,593
2210467,597
2212 957,641
2238 971,521
2240473,-983 V
2240473,1257 P
2240-1767,-983 V
2240-1767, 1257 V
2244625,523
2254687,659 V
2254-1567,-1595V
2254993,1777 V
2254-1261,-477 P
2268 925,517
2268 949,1938 V
2268-1319,-479 P
2296 $947_{\backslash }523$

2298 703,535
2310 521,499
2312613,1021 PA
2312613 ,-1291 V
2312-1699,1021 V
2312-1699,-1291PA
2314645,-1695 V
2314-1669,619 V
2320913,607
2332 641,-1823 V
2332-1691,509 V
2336989,1958
2338533,2048
2338697,-1307 P
2338-1641,1031 V
2338659,631
2338829,1809 PA
2338-1509,-529 PA
2352 533,701 P
2352-1819,-1651V
2356537,499

2358697,733P
2358-1661,-1625V
2366 851,1831 PA
2366-1515,-535 PA
2398 519,1007
2412 751 ,-857 P
2412-1661,1555 V
2436 743,1091
2448 761 ,-871 P
2448 761,1577 V
2448-1687,-871 V
2448-1687, 1577 V
2450 531,1371 P
2450-1919,-1079V
2450 687,-1777 V
2450-1763,673 V
2450 911,-1889 V
2450-1539,561 P
2464667,723 V
2464-1797,-1741V
2464 1103,751 V
2464 1103,-1713 V
2464-1361,751 V
2464-1361,-1713V
2482 725,-1723 V
2482-1757,759 V
2494659,975
2496 673,737
2500 1101,901 F
2500-1399,-1599PF
2502 779,743 P
2502-1723,-1759V
2508 679,-1961 V
2508-1829,547 V
2530 899,711
2538 775,703 PA
2538-1763,-1835PA
2546 673,581
2546 689,-1991 V
2546-1857,555 V
2552 917,-1555 A
2552 917,675
2552-1555,675
2562 709,541 P
2562-1853,-2021V
2568 757,923
2568 757,955
2568923,955 A
2574787,-929 PA
2574-1787, 1645 PA
2592 793,937 PA
2592 793,-1655 V
2592-1799,937 V
2592-1799,-1655PA
2600 567,-1097 V
2600-2033,1503 V
2610 943,-797 PA
2610-1667, 1813 PA
2622 1183,565
2626 555,1109
2632 725,557 P
2632 725,-2075 V

2632-1907,557 V
2632-1907,-2075V
2646769 ,-1919 V
2646-1877,727 V
2646737,809 PA
2646-1909,-1837PA
2660737,793 P
2660-1923,-1867V
2660787,563 P
2660-1873,-2097V
2676 1201,583
2678 1107,-1961 V
2678-1571,717 V
2680821
2684581,1127
2686727,795V
2686-1959,-1891P
2704729,1145 V
2704729 ,-1559 PA
2704-1975,1145 PA
2704-1975,-1559V
2724809,587
2724761,803
2728 1587,-1525 C
2730739,-1601 V
2730-1991,1129 V
2738591,1035 P
2738-2147,-1703V
2738815,-1997 V
2738-1923,741 P
2744811,755 P
27448111938 V
2744-1933,755 V
2744-1933,-1989V
2738 1237,813 V
2756-1519,-1943V
2738587,421 P
2758-2161,-1937V
2758625,1605 P
2758-2133,-1153V
2772 1031,733
2778 767,827
2782 1179,589
2784769,607
27846012828
2786 1215,817
2794993,751
2800821,1221
2828613,837 P
2828-2215,-1991V
2332 791 ,617
2842797,-2003 V
2842-2045,839 V
2842643,615 PA
2842-2199,-2227PA
2352 1841,1988 C
2856835,1243 V
2856835 ,-1613 V
2856-2021,1243 V
2356-2021,-1613P
2856619,787 P
2856619,-2069 V
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2856-2237,787 V
2856-2237,-2069V
2886 1301,623
2886653,797
2892 853,799
2914 1315,1879 C
2916865,1081 P
2916-2051,-1835V
2924 1273,865 V
29241651,-2059P
2924 1285,619
2926 1283,2263 V
2926-1643 ,-663 P
2940869,671
2940641,1319
2946877, 1737
2994677, 1319
2996809,683
3014895,807 V
3014-2119 ,-2207P
3038 1275,2395 V
3038-1763 ,-643 P
3038883,-2141 V
3038-2155,897 V
3038 1761,-1699 C
3040853,-2347 V
3040-2187,693 V
3042 1327,-1793 V
3042-1715,1249 P
3048899, 1333
3052 853,895
3054691,1345
3054697, 3388
3058663, 1975 V
30582886 ,-1283V
3074 1105,909
3078833,-2407 V
3078-2245,671 V
3080901,859
3094863,-2257 V
3094-2231,837 V
3094863,-2189 V
3094-2231,905 V
3094837,905 V
3094-2257 ,-2189P
3102 707, 1961
3102 1145,923
3122 845,873 V
3122-2277,-2249V
3122859,-1817 P
3122-2263,1305 V
3162 715,883
3172 841,-2487 V
3172-23312886V
3198677,859
3200879
3216733,955
32201347,2523V
3220-1873,-697 P
3222865,901
3230737,-2323 V
3230-2493,907 V

3232 1407
3234 1357,2533 V
3234-1877,-701 P
3248 1425,-703 V
3248 1425,2545 V
3248-1823,-703 P
3248-1823,2545 V
3268917,-2523 V
3268-2351,745 V
3270973,913
3298 1009,-2323 V
3298-2289,975 V
3332 755,923 P
3332-2577,-2409V
33461467,-2357V
3346-1879,989P
3352 1243
3360991
3362901 , 1729 V
3362-2461,-2133P
3362 1311,1475 P
3362-2051,-1887V
3362 985 ,-1967 P
3362-2377, 1397 V
3364927,-2089 P
3364-2437, 1243 V
33741423,941
33881475,991
34401049
34441411,1459
34561519
3458971,-2669 V
3458-2487,789V
34681421,1433
35761309
35861065,2297V
3586-2521,-1289P
3592 1333
3600 1319
36501609,1509F
3650-2041,-2141PF
36741357,2533P
3674-2323,-109IV
3696 1609
36981547,1031P
3698-2151,-2667V
3700 1329,-1631 F
3700-2371,2069 PF
3710 1027,803 P
3710-2683 ,-2907V
3712 1617
3728 1623
38001669,-1371F
38001669,2429F
3800-2131,-137IF
3800-2131,2429 PF
3816 1397
3824 1401
3832 1421
38441487,-2233P
3844-2357,1611V
38481427

3850-2257,-2189PF
38701039,1489
3872 1495,1143 V
3872 1495,-2729 PA
3872-2377, 1243 PA
3872-2377,-2729V
39061049,1525
39361729
3952 1737
3984 1751
4064 1489
4088 1617
40881517,1549 A
40881549
4088 1503
4104 1507
41041507,1523 A
41041523
4120 1219
4192 1825
4208 1333
4232 1563,1747 V
4232 1563,-2485 PA
4232-2669,1747 PA
4232-2669,-2485V
4240 1847
42461261,1173V
4246-2985,-3073P
4328 1605
4336 1591
43441595
4360 1651
44181693,-3195P
4418-2725,1223V
4464 1961
4480 1969
4496 1975
45541223,1259
46001749,1701 Ab
46001707
4616 1749
4624 1769
47362063
48021863,-3037V
4802-2939,1765P
4888 1851
50002101,1901PFA
50002101,-3099F
5000-2899,1401F
5000-2899,-3099PFA
50242207

20 crossing

484 67, 155 V
484 -417,-329 V
572 179,107
580 141 , 109
610 159,89
642 125 , 89
654 103,91
744 115,131

836153,265
858155,131 A
884415,129
890 131 ,409
918 157 ,-659 V
918 -7613268 V
946 259,171
956 183,175
990 1813268
1020247,263 A
1024 159,415 V
1024-865,-609 V
1028249,225 A
1064339,899 V
1064-725,-165 V
10784814208
1084343,207
1092337,209
1100509,191
1102345,925 V
1102-757,-177 V
1110 169,229
1110 169,511
1110229,511
1118 165,295
1120453 ,-627 F
1120-667,493 F
1130407,-497 F
1130-723,633 F
1158365,239
1184217,281 V
1184-967,-903 V
1200419,-1021 V
1200-781 , 179 V
1206331 ,-821 V
1206-875,385 V
1216249,313
1216385,993 V
1216-831 ,-223 V
1240567,193
1242431,-397 V
1242-811 , 845 V
1248 199,329
1256509,195
1258327,191 Va
1258-931,-191 Va
1276219,241
1280401,241 V
1280-879,-1039 V
1292593,-223 V
1292-699,1069 V
1304205,531
1308607,269
1340323,347
1344415,1087 V
1344-929 ,-257 V
1348309,325
1350431 ,-469 V
1350-919,881 V
1368253,307
1372293 ,-883 V
1372-1079,489 V
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1376 263,327 V
1376-1113,-1049V
1386443,-997 V
1386-943,389 V
1390 211,361
1406 221,297
1422 293 ,-1003 V
1422-1129,419 V
1428 335,449
1434451,301
1444341,645 V
1444-1103,-799 V
1444265,417 V
1444-1179 ,-1027V
1482 677,235
1482677,311
1482 235,311
1488349,643
1488313,233
1508267,-661 V
1508-1241 ,847 V
1532 367,399 A
1540369,361 A
1548 713,-319 V
1548-835,1229 V
1548341,287
1554289,275
1562271,723
1564245,279
1566 341,-1243 V
1386-1225,323 V
1568275,851 V
1568-1293,-717 V
1576247,327
1584301,707
1586713,-899 V
1586-873,687 V
1586419,379
1598 733 ,-287 V
1598-865,1311 V
1600281,681 V
1600-1319 ,-919 V
1652 341 ,-1171 V
1652-1311 ,481 V
1692383,-913 V
1692-1309,779 V
1710353,-787 V
1710-1357,923 V
1712 299,771
1728 791,359 V
1728791,-1369 V
1728-937,359 V
1728-937,-1369 V
1734373,-1259 V
1734-13612076 V
1748515,1435 V
1748-1233 ,-313 V
1750361,-759 V
1750-1389,991 V
1752407,761
1764 799,463 V
1764-965,-1301 V

1778753,-367 V
1778-1025,1411 V
1802 335,505
1804823,1479 V
1804-981,-325 V
1812 571,421
1816 317,285
1826827,1482 V
1826-999,-335 V
1832 841 , 287
1836 793 ,-431 V
1836-1043, 1406 V
1836 379 ,-1421 V
1836-1457,415 V
1854565 ,-1271 V
1854-1289,583 V
1854853 ,-383 V
1854-1001,1471 V
1862 333,1313 V
1862-1529,-549 V
1876 527,-1489 V
1876-1349,387 V
1886 335,499 V
1886-1551,-1387V
1888331,395 V
1888-1557,-1493V
1890337,407
1890863,-397 V
1390-1027, 1482 V
1904333,299
1924865,-695 V
1924-1059,1229 V
1926 677,-607 V
1926-1249,1319 V
1836 331 ,419 V
1936-1605,-1517V
1946429,359
1946361,767
1946347,697
1950 581,529
1952 3411406 V
1952-1611,-1547V
1952425,457 V
1952425,-1495 V
1952-1527,457 V
1952-1527,-1495V
1862691,-617 V
1962-1271,1345 V
1968 365,461 V
1968-1603,-1507V
1972 557,-1619 V
1972-1415,353 V
1974367,773
1974613,703
1974613,353
1974703,353
1978 537,365
1980409,-1391 V
1980-1571,589 V
1998467,-1081 V
1998-1531,917 V
1998595,-1529 V

1888-1403,469 V
2000 373,437 V
2000-1627,-1563V
2000 371 , 1376 V
2000-1629,-629 V
2002 523,607 P
2002-1479,-1395V
2002 613,865 V
2002-1389,9911376
2016 535 ,-473 V
2016 535,1543 V
2016-1481 ,-473 V
2016-1481,1543 V
2016 535,-905 V
2016 535,1111 V
2016-1481,-905 V
2016-1481,1111 V
2016473,905 V
2016473,-1111 V
2016-1543,905 V
2016-1543,-1111V
2030433,363
2032 637,1653 V
2032-1395,-379 V
2034929,-427 V
2034-1105,1607 V
2034623 ,-1393 V
2034-1411,641 V
2050443,607 V
2050-1607,-1443V
2052431 ,-1441 V
2052-1621,611 V
2054929,449
2058631,547 V
2058-1427,-1511V
2064643,1675 V
2064-1421,-389 V
2068555,731 V
2068-1513,-1337V
2076 569,647
2030 553,-487 V
2030553,1593 V
2080-1527,-487 V
2030-1527, 1598 V
2082 955,433
2080359,579 V
2080-1731,-151]V

2096459,395 V
2096-1637,-1701V
2096651,1699 V
2096-1445,-397 V
2100607,943 V
2100-1493,-11576
2112 595,485
2114647,1386 V
2114-1467,-863 V
2128635,373
2128499,403 V
2128-1629,-1725V
2130443,593
2142 445,-1643 V
2142-1697,499 V

21424611566 V
2142-1681,587 V
2144503,471 V
2144503,-1673 V
2144-1641,471 V
2144-16412178V
2156457,915
2166493,-1508 V
2166-1673,607 V
2178455 ,-1888 V
2178-1723,509 V
2178511,457
21785111886 V
2178-1667,493 V
2178511 ,475
2178457,493
2178457,-1508 V
2178-1721,475 V
2178493,475
21904811978
2190457,607
2196497,479
2196497,-1735 V
2196-1699,461 V
2196497,515
2196479 ,461
2196479 ,-1681 V
2196-1717,515 V
2196461,515
2200779,581
2200933,467
2204657,387
2204933,1009
2222599,-1645 V
2222-1623,577 V
2238 1025,467
2238629,695
2240513 ,417 V
2240-1727,-1823V
2254 1021,685 V
2254-1233,-1569V
2266609,389 V
2266-1657,-1877V
2268883 ,-1637 V
2268-1385,631 V
2272397,1229 V
2272-1875,-1043V
2272423,1559 V
2272-1849,-713 V
2278399,801
2282827,421
2288525 ,931
2288809 ,-647 V
2288809,1641 V
2288-1479,-647 V
2288-1479,1641 V
2292 515,629
2298505,631
2304529,625 V
2304-1775,-1679V
2304535,679 V
23045351826 V
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2304-17692678 V
2304-1769 ,-1625V
2322 685,-1835 V
2322-1637,487 V
2322 541,-1259 V
2322-1781,1063 V
2336 441,1609 V
2336-1895,-727 V
2340 529,-1271 V
2340-1811 , 3088 V
2352 491 ,-1021 V
2352-1861 , 1331 V
2352 733,835
2352 421,-1427 V
2352-1931 ,925 V
2356 1039,-1393 V
2356-1317,963 V
2358 553,-1019 V
2358-1805,1339 V
2366439,425
2368447,543 V
2368-1921,-1825V
2376 701,557 V
2376 701,-1819 V
2376-1675,557 V
2376-1675 ,-1819V
2380673,503
2398 677,853
2398 1095,431
2400 1061,539
2406 871,733
2412 1057,-551 V
2412-1355,1861 V
2420 549,989 V
2420-1871,-143IV
2422447,853
2430523,-1097 V
2430-1907,1333 V
2442 1105,449
2448 1103,-529 V
2448 1103,1919 V
2448-1345 ,-529 V
2448-1345,1919 V
2448 965,-1339 V
2448-1483,1109 V
2450 1107, 743 V
2450-1343,-1707V
2454689,539
2460 511,1129
2484 541,-1907 V
2484-1943,577 V
2484 1135,-521 V
2484-1349,1963 V
2486 571,659
2502 1087,-581 V
2502-1415,1921 V
2508 767,521
2508 767,653
2508 521,653
2514691,781
2516441,543
2530887,-1873 V

2530-1643,657 V
2530669,449 V
2530-1861,-2081V
2534711,-2005 V
2534-1823,529 V
2538 1097,-595 V
2538-1441,1943 V
2546677,543
2550 703,533
2552 895,-1889 V
2552-1657,663 V
2552453,717 V
2552453,-1835 V
2552-2099,717 V
2552-2099,-1835V
2352 575,1049
2562 785,755
2562 745 ,-2027 V
2562-1817,535 V
2562 563,1145
2568 577,1135
2616 725,611
2616 815,929
2616 779,797
2620 1083,-1557 F
2620-1537, 3088 F
2622 1177,571
2626 783,1187
2628 1159,1087
2630 1037,-1067 F
2630-1593,2568 F
2640 553,1097
2652 575,745
2664 1195,619 V
2664 1195,-2045 V
2664-1469,619 V
2664-1469,-2045V
2676601,751
2676 1159,625
2676 817,559
2678 799,1203
2682 623 ,-1165 V
2682-2059,1517 V
2686 579,477
2698 565,707
2700629 ,-1531 V
2700 -2071, 1169 V
2702 821,709 P
2702-1881,-1993V
2704571 ,987 V
2704-2133,-1717V
2718 745,-2099 V
2718-1973,619 V
2724 1181,635
2724 1247,569
2728615,769
2736 625,769 V
2736625 ,-1967 V
2736-2111,769 V
2736-2111,-1967V
2744573,-1163 V
2744573,1581 V

2744-2171,-1163V
2744-2171,1581 V
2744601 ,-1191 V
2744-2143,1553 V
2744839,727 V
2744-1905,-2017V
2754 1243,-593 V
2754-1511,2161 V
2758 579,509
2760859,509
2772 599,-2257 V
2772-2173,515 V
2772 599,-1993 V
2772-2173,779 V
2772491,601
2772 515,779 V
2772-2257,-1993V
2778 863,989
2778 605,851
2782 1257,829
2784853,1003
2784775,649
2784 519,739 V
2784-2275,-2055V
2784641,1137
2826 613,649
2832 641,863
2834837,-2215 V
2834-1997,619 V
2838 865,619
2844895,-2057 V
2844-1949,787 V
2844661,-1235 V
2844-2183,1609 V
2352 1009,1561 V
2852-1843,-1291P
2860787,-2117 V
2860-2073,743 V
2862665,-2215 V
2862-2197,647 V
2380 1013,-907 V
2880-1867, 1973 V
2882 1073,765
2882 901,811
2912 1045,-2371 V
2912-1867,541 V
2914 1037, 1601 V
2914-1877,-1313P
2924 1035,519
2826 851,-2285 V
2826-2075,641 V
2844899,853
2852 929,-1039 V
2852-2023, 1913 V
2954647,-2125 V
2954-2307,829 V
2968 551 ,-1913 V
2968-2417, 1055 V
2838 941,-2155 V
2988-2047,833V
2880907,927PFA
2880-2083,-2063PFA

2882565,829 V
2882-2427,-2163V
2882653,685 V
2882-2339,-2307V
2882653,1741 V
2882-2339,-125IV
2882685,1741 V
2882-2307,-1251V
2994653,1343
3000679,1321
3010873,2077 PFA
3010-2137,-933 PFA
3014 1117,2213 V
3014-1897,-801 V
3014 1239,679
3038687,-2393 V
3038-2351,645 V
3042655 ,-2189 V
3042-2387,853 V
3042 707 ,-2137 V
3042-2335,905 V
3048689,1343
3054931,901
3056701 ,2229 V
3056-2355,-827 V
3038667,1779 V
3058-2391,-1279V
3060661,-2219 V
3060-2399,841 V
3064 1197,-1963 A
3072673,865 V
3072673 ,-2207 V
3072-2399,865 V
3072-2399,-2207V
3078 1351 ,-701 V
3078-1727,2377 V
3080 1147,-1973 A
3038707,2251 V
3088-2381,-837 V
3088851 ,707 V
30888512838 V
3088-2245,707 V
3088-2245,-2389V
3102 725,947
3104 1297, 2398
3104919,951
3108577 ,-2447 V
3108-2531,661 V
3122663 ,-2193 V
3122-2459,929 V
3130 1277,-1227 F
3130-1853,1227 Fa
3136953,1289 V
3136-2183,-1847V
3136 1329,-687 V
3136 1329,2449 V
3136-1807,-687 V
3136-1807,2449 V
3146593,681 V
3146-2553,-2465V
3152691,723 V
3152-2461 ,-2429V
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31621369,739
31681127,841
31781397,921V
3178-1781,-2257V
3182 845,-2251 V
3182-2337,931 V
3186 973,-2303 V
3186-2213,883 V
3182 1381 ,-899 V
3182 1381,2293 V
3182-1811 ,-899 V
3182-1811,2293 V
3210 1157,983
3212 597,685
3216 985,727
3222985,-1163 V
3222-2237,2059 V
3230847,677
3256 689,711
3258 1177,-995 V
3258-2081,2263 V
3264995,1181
3268691,863
3278 871,3178 V
3278-2407,-2099V
3294 1007,-2377 V
3294-2287,917 V
3300623,887 V
3300-2677,-2413V
3306 1295,-2533 V
3306-2011,773 V
3318 1439,773
3322 881,749
3328981,3498 V
3328-2347 ,-1835V
3330 1193, 3378
3358 623,715
3378 1033,787
3380 911,1431 V
3330-2469,-1949V
3384731 ,-1525 V
3384731,1859 V
3384-2653,-1525V
3384-2653,1859 V
3402 775,-1493 V
3402-2627,1909 V
3404987, 1033
3406 735,1423
3420 781,-1499 V
3420-2639,1921 V
3430 1511,-729 V
3430-1919,2701 V
3432 1051,1021
3444 1003,-2693 V
3444-2441,751 V
3458927, 1031
3468 749,-2515 V
3468-2719,953 V
3468 1531,-2549 V
3468-1937,919 V
3484 1029,-2723 V
3484-2455,761 V

3484 759,2007 V
3484-2725,-1477V
3498 1261,-2555 V
3498-2237,943 V
3498 799,755 A
3514795 ,-1249 V
3514-2719,2265 V
3520 763,653
3520 931,-2269 V
3520-2589,1251 V
3542 801 ,-1271 V
3542-2741,2271 V
3562 961,753
3600 781,1381 V
3600-2819,-2219V
3612 767,-1585 V
3612-2845,2027 V
3626 1597,-783 V
3626-2029,2843 V
3640773,-1523 V
3640 773,2117 V
3640-2867,-1523V
3640-2867,2117 V
3668 1587, 1083 V
3668-2081,-2585V
3682 1563,2615 V
3682-2119,-1067V
3710809,-1571 V
3710-2901,2139 V
3738 1621,-815 V
3738-2117,2923 V
3762 1055,-2905 V
3762-2707,857 V
3782 2197, 4708 C
3800 1003,803
3838 815,1017
3844 1673,1425 PA
3844-2171,-2419PA
3850871,1579 A
3838 1189,-2483 V
3888-2699,1405 V
3894889,1589 A
3906 2267, 1763 C
3918 1453,1159
3934849,-2763 V
3934-3085,1171 V
3952 1061,1165 V
3952-2891,-2787V
3952 1733,-1459 V
3952-2219,2493 V
3962 1719,3168 V
3962-2243,-2803V
3972 1477, 1171
3976 1115,-1725 V
3976 1115,2251 V
3976-2861,-1725V
3976-2861,2251 V
3978 1681,841
3982 1119,1053
3982 1119,1075
3982 1119,-2885 V
3982-2863,1097 V
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4712-2979,2645 V 4978-3641,1075 V
4722 1751,1397 5018 1399,1347 V
4756 1315,12575018-3619,-3671V
4782 1333,14235050 1969,-2071 F
4784 1411,2147 V 5050-3081,2979 F
4784-3373,-2637V 5074 1981,1803
4796 1337,-3503 V 5112 1933,-3211 A
4796-3459,1293 V 5128 1907,-3245 A
4802 2015,-1037 V 5150 2161,-3039 F
4802-2787,3765 V 5150-2989,2111 F
4836 1435,13575166 1441,1387
48502039,-2861 F 51722119,2191
4850-2811,1989 F 5196 2129,2153
48982149,3097 P 5278 1139,-3817 V
4898-2749,-1801V 5278-4139,1461 V
48502029,-1931 F 5302 1425,1469
4850-2921,3019 F 5336 1969,1411
4850 1073,1337 V 5382 1445,2225 V
4850-3877,-3613V 5382-3937,-3157V
4978 1337,-3903 V 54342247, 1467 V

5434-3187,-3967V5828 2131,3259 C
54342247,-3473 V 5850 1571,2281
5434-3187, 1961 V 59662467,-3461 V
5434 1467,-3473 V 5966-3499,2505 V
5434-3967, 1961 V 6094 1677,-4395 V
5456 1521,2017 V 6094-4417, 4898 V
5456 1521,-3439 V 61362325,-3859 A
5456-3935,2017 V 61522275,-3869 A
5456-3935,-3439V 63482345,-3727 V
5456 1181,14676348-4003,2621 V
5546 2339,-3113 V 6498 1799,1745
5546-3207,2433 V 65782569,-4035 F
57043189,2085 C 6578-4009,2543 F
5776 1595,2203 V 66042501,-2579 F
5776-4181,-3573V 6604-4103,4025 F
5798 1565,1617 V 69002899,2851 A
5798-4233,-4181V 75003151,-4649 F
5808 2243,-4093 V 7500-4349,2851 F
5808-3565,1715V
58141561,2255

References

[1] G.Burde and H. Zieschang, “Knots”, de Gruyter, Berlin and New York,
1986.

[2] J. H. Conway, An enumeration of knots and links, in “Computational

Problems in Abstract Algebra” , (ed. J. Leech) Pergamon Press, New
York, 1969, pp. 329-358.

[3] C. Ernst and D. W. Sumners, The growth of the number of prime knots,
Math. Proc. Cambridge Philos. Soc., 102 (1987), 303-315.

[4] R. Hartley, The Conway potential function for links, Comment. Math.
Helv., 58 (1983), 365-378.

[5] T. Kanenobu, Examples on polynomial invariants of knots and links,
Math. Ann., 275 (1986), 555-572.

[6] T. Kanenobu, Examples on polynomial invariants of knots and links II,
Osaka J. Math., 26 (1989), 465-482.

[7] T. Kanenobu, Jones and $Q$ polynomials for $2$-bridge knots and links,
Proc. Amer. Math. Soc., 110 (1990), 835-841.

[8] T. Kanenobu, Kauffman polynomials for $2$-bridge knots and links, Yoko-

hama Math. J, 38 (1991), 145-154.
[9] T. Kanenobu and T. Sumi, Polynomial invariants of $2$-bridge knots

through 22 crossings, preprint.
[10] H. Schubert, Knoten mit zwei Br\"ucken, Math. Z., 65 (1956), 133-170.
[11] L. Siebenmann, Exercices sur les nceuds rationels, preprint.

Taizo Kanenobu and Toshio Sumi
Department of Mathematics
Kyushu University 33
Fukuoka 812, Japan



Polynomial Invariants of 2-Bridge Links

Current address of Taizo Kanenobu
Department of Mathematics
Osaka City University
Osaka 558, Japan



 



Advanced Studies in Pure Mathematics 20, 1992
Aspects of Low Dimensional Manifolds
pp. 147-166

Invariants of Spatial Graphs

Jun Murakami

\S 1. Introduction

The purpose of this paper is to construct invariants of spatial graphs
from regular isotopy invariants of non-oriented link diagrams of knit trace
type. Kauffman’s bracket polynomial [4], which is a version of the Jones
polynomial, is of knit $trace$ type. The Dubrovnik polynomial [5], which
is used in the definition of the Kauffman polynomial, is also of knit
$trace$ type [6]. Hence these two invariants are generalized to invariants
of spatial graphs by our method. The Yamada polynomial introduced in
[10] is the non-trivial simplest one of our invariants. A similar invariants
are introduced in [9] for ribbon graphs. They use quasi-triangular Hopf
algebras. But we use representations of knit semigroups or braid groups
instead of Hopf algebras.

To introduce regular isotopy invariants of link diagrams of knit trace
type, we need notion of a Markov knit sequence. Let $\mathbb{C}$ be the field of
complex numbers. Knit semigroups $K_{n}$ , $(n=J, 2, \cdots)$ are introduced in
[6] defined by the following generators and relations.

$K_{n}=\langle\tau_{1}$ , $\cdots$ , $\tau_{n-1}$ , $\tau_{1}^{-1}$ , $\cdots$ , $\tau_{n-1}^{-1},$
$\in_{1}$ , $\cdots,$ $\in_{n-1}$

$|$

$\tau_{i}\tau_{i}^{-1}=\tau_{i}^{-1}\tau_{i}=1$ , $\tau_{i}\tau_{j}=\tau_{j}\tau_{i}(|i-j|\geq 2)$ ,

$\tau_{i}\tau_{i+1}\tau_{i}=\tau_{i+1}\tau_{i}\tau_{i+1}$ , $\tau_{i}\in_{j}=\in_{j}\tau_{i}(|i-j|\geq 2)$ ,

$\epsilon_{i}\in_{i\pm 1}\in_{i}==8_{i}$ , $\mathcal{E}_{i}\Xi_{j}=\in_{j}\in_{i}(|i-j|\geq 2)$ ,

$\epsilon_{i}\tau_{i\pm 1}=\epsilon_{i}\epsilon_{i\pm 1}\tau_{i}^{-1}$ , $\epsilon_{i}\tau_{i\overline{\pm}^{1}1}=\epsilon_{i}\epsilon_{i\pm 1^{\mathcal{T}}i}$ ,

$\tau_{i\pm 1}\in_{i}=\tau_{i}^{-1}\in_{i\pm 1}\in_{i}$ , $\tau_{i\pm 1}^{-1}\in_{i}=\tau_{i}\in_{i\pm 1}\in_{i}\rangle$

The generators of $K_{n}$ are presented graphically as in Figure 1. In the
graphical presentation, the product of two elements of $K_{n}$ corresponds
to the composite of two diagrams as in the case of braid groups. Let

Received July 6, 1991.
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$\tau_{i}$

$\tau_{i}- 1$
$\epsilon$

$i$

Fig. 1. Generators of $K_{n}$ .

$\mathbb{C}K_{n}$ be the semigroup algebra of $K_{n}$ over $\mathbb{C}$ . We regard the braid group
$B_{n}$ as a subsemigroup of $K_{n}$ generated by $\tau_{1}$ , $\tau_{2}$ , $\cdots$ , $\tau_{n-1}$ .

Let $\gamma$ be a non-zero complex number. Knit semigroup algebra with
writhe factor $\gamma$ , denoted by $K_{n}(\gamma)$ , is a quotient algebra of $\mathbb{C}K_{n}$ defined
by the following.

$K_{n}(\gamma)=\mathbb{C}K_{n}/(\tau_{i}^{\pm 1}\in_{i}-\gamma^{\pm 1}\in_{i}, \in_{i}\tau_{i}^{\pm 1}-\gamma^{\pm 1}\in_{i} (1\leq i\leq n-1))$ .

Let $A$ be a semisimple $\mathbb{C}$-algebra. Let $\hat{A}$ be the set of equivalence
classes of irreducible representations of $A$ . A $\mathbb{C}$-linear map $T$ from $A$ to
$\mathbb{C}$ is called a $trace$ if $T$ is a linear combination of irreducible characters
of $A$ , i.e.

(1.1)
$T(x)=\sum_{\rho\in\hat{A}}a_{\rho}$

Hace(\rho (x)) $(a_{\rho}\in \mathbb{C})$

The $traceT$ is called faithful if all the coefficients $a_{\rho}$ are not equal to
0. A sequence $A_{1}$ , $A_{2}$ , $\cdots$ , $A_{n}$ , $\cdots$ of semisimple $\mathbb{C}$-algebras are called $a$

knit type sequence if they satisfy the following.

(1) There is an algebra epimorphism $p_{n}$ from $K_{n}(\gamma)$ to $A_{n}$ and
monomorphism $j_{n}$ from $A_{n}$ to $A_{n+1}$ such that $j_{n}\circ p_{n}=p_{n+1}\circ i_{n}$

for $n=1,2$ , $\cdots$ , where $i_{n}$ is an inclusion from $K_{n}(\gamma)$ to $K_{n+1}(\gamma)$

which sends $\tau_{i}^{\pm 1}\in K_{n}(\gamma)$ to $\tau_{i}^{\pm 1}\in K_{n+1}(\gamma)and\in_{i}\in K_{n}(\gamma)$ to
$\mathcal{E}_{i}\in K_{n+1}(\gamma)$ for $1\leq i\leq n-1$ .

(2) There are a complex number $\mu$ and a faithful $trace$ $T_{n}$ from $A_{n}$ to
$\mathbb{C}$ which satisfy the following. For any $x\in A_{n}$ , $T_{n+1}(j_{n}(x))=$

$\mu T_{n}(x)$ , $T_{n}(x)=\gamma^{\pm 1}T_{n+1}(j_{n}(x)p_{n+1}(\tau_{n}^{\pm 1}))$ and $T_{n}(x)=$

$T_{n+1}(xp_{n+1}(\in_{n}))$ .
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For $x\in K_{n}$ , let $\hat{x}$ denote the link diagram obtained from the closure of
$x$ (Figure 2). A regular isotopy invariant $X$ of link diagrams is called of
knit trace type if there is a Markov knit sequence and $X$ is obtained by
the traces of it, i.e. $X(\hat{x})=T_{n}(p_{n}(x))$ for $x\in K_{n}$ . Kauffman’s bracket
polynomial [4] is of knit $trace$ type (see Section 3 of [7]). The Dubrovnik
polynomial is also of knit $trace$ type [6].

Fig. 2. Closure of $x\in K_{n}$ .

Remark. Let $X$ be a regular isotopy invariant of knit $trace$ type
with writhe factor $\gamma$ . For an oriented link diagram $x$ , there are a positive
integer $n$ and $y\in K_{n}$ such that $\hat{y}$ is equal to $x$ without orientation.
Let $w(x)$ be the sum of signatures of the crossings of $x$ . Let $X’(x)=$

$\gamma^{w(x)}X(\hat{y})$ . The $X’$ is an invariant of links.

Now we define spatial graphs in $S^{3}$ . Let $\mathcal{V}$ is a set of 2-disks and
$\mathcal{E}$ be a set of edges homeomorphic to $[0, 1]$ in $S^{3}$ . Each edge has an
orientation induced by the orientation of $[0, 1]$ . The terminal points of
an edge corresponding to 0 and 1 are called the initial point and the final
point of the edge respectively. The pair $\Gamma=(\mathcal{V}, \mathcal{E})$ is called an oriented
spatial graph if it satisfies the following. The disks in $\mathcal{V}$ are mutually
disjoint and the edges in $\mathcal{E}$ are mutually disjoint. Also assume that the
interiors of the disks in $\mathcal{V}$ and edges in $\mathcal{E}$ are mutually disjoint. Terminal
points of edges in $\mathcal{E}$ are contained in the boundaries of disks in $\mathcal{V}$ . Two
spatial graphs $\Gamma$ and $\Gamma’$ are called equivalent if there is an isotopy of
$S^{3}$ which sends $\Gamma$ to $\Gamma’$ . A spatial graph $\Gamma$ is called an embedding of a
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Fig. 3. Reidemeister moves.

$tri$-valent graph if the degree of all the vertices of $\Gamma$ are equal to 3. A
diagram of a spatial graph is defined as in the case of a link.

Proposition 1. Two spatial graphs $\Gamma$ and $\Gamma’$ are equivalent if and
only if there is a sequence of Reidemeister moves of types $(SRI)-(SRV)$

sending a diagram of $\Gamma$ to a diagram of $\Gamma’$ .

For a spatial graph $\Gamma$ , we define a diagram of $\Gamma$ as in the case of
links. Let $A_{1}$ , $A_{2}$ , $\cdots$ be a Markov knit sequence. For each edge $E$ of $\Gamma$ ,

we associate a non-negative integer $N(E)$ , an irreducible representation

$R(E)\in\hat{A}_{n(E)}$ and a signature $S(E)$ . The triple $(N, R, S)$ is called a
coloring of $\Gamma$ if it satisfies the following. For a vertex $v$ of $\Gamma$ , let $\mathcal{E}_{v}$ be a
set of edges with terminal point $v$ Then

(1.2)
$\sum_{E\in \mathcal{E}_{v}}N(E)=even$

and
$2N(E)\leq,\sum_{E\in \mathcal{E}_{v}}N(E’)$

for all $E\in \mathcal{E}_{v}$ .
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We construct an invariant of spatial graphs colored as above. First,
we generalize link invariants of braid trace type to invariants of colored
oriented tri-valent graph embeddings in $S^{3}$ in \S 2. And then we generalize
invariants of knit trace type to invariants of colored spatial graphs in \S 3.
By attaching the same color to all the edges of graphs, we get invariants
of spatial graphs. In \S 4, we give some examples.

\S 2. Invariants of colored oriented tri-valent graphs

In this section, we generalize link invariants of braid $trace$ type to
invariants of embeddings of colored oriented $tri$-valent graphs in $S^{3}$ . To
introduce link invariants of braid $trace$ type, we need notion of a Markov
braid sequence.

Definition. Asequence $(A_{1}, T_{1})$ , $(A_{2}, T_{2})$ , $\cdots$ , $(A_{n}, T_{n})$ , $\cdots$ of
pairs of a semisimple $\mathbb{C}$-algebra and its $trace$ are calleda Markov braid
sequence if they satisfy the following.

(1) There is an algebra homomorphism $p_{n}$ from $\mathbb{C}B_{n}$ to $A_{n}$ and $j_{n}$

from $A_{n}$ to $A_{n+1}$ such that $j_{n}\circ p_{n}=p_{n+1}\circ i_{n}$ for $n=1,2$ , $\cdots$ ,

where $i_{n}$ is an inclusion from $\mathbb{C}B_{n}$ to $\mathbb{C}B_{n+1}$ which sends $\sigma_{i}\in$

$\mathbb{C}B_{n}$ to $\sigma_{i}\in \mathbb{C}B_{n+1}$ for $1\leq i\leq n-1$ .

(2) There is a faithful $traceT_{n}$ from $A_{n}$ to $\mathbb{C}$ and $\mu$ , $c\in k\backslash \{0\}$ which
satisfy $\mu T_{n}(x)=T_{n+1}(j_{n}(x))$ , $T_{n}(x)=cT_{n+1}(xp_{n+1}(\sigma_{n}))$ and
$T_{n}(x)=c^{-1}T_{n+1}(xp_{n+1}(\sigma_{n}^{-1}))$ for any $x\in A_{n}$ .

From a Markov braid sequence, we get a $\mathbb{C}$-valued link invariant.

For a braid $b=\sigma_{i(1)^{\epsilon(1)}}\sigma_{i(2)^{\in(2)}}\cdots\sigma_{i(r)^{\in(r)}}\in B_{n}$ , let $w(b)=\sum_{i=1}^{r}\in(i)$ .

Then $w(b)$ is a sum of signatures of all the crossings of $b$ . Fora braid $b$ ,

let $ b\wedge$ denote the link obtained from the closure of $b$ . Let

$X(\hat{b})=c^{-w(b)}T_{n}(p_{n}(b))$ .

Then Alexander’s theorem and Markov’s theorem ([1], Theorem 2.1 and
2.2) implies that $X$ is an invariant of links. Link invariant obtained
from a Markov braid sequence as above is called of braid trace type.
Jones polynomial, HOMFLY polynomial and Kauffman polynomial are
all of braid $trace$ type and the associated braid type sequences are Jones
algebras, Iwahori’s Hecke algebras and a $q$-analogue of Brauer’s algebras
respectively ([2], [3], [6], [8]).

From now on, fix an invariant $X$ of braid $trace$ type and let $(A_{1}, T_{1})$ ,
$(A_{2}, T_{2})$ , $\cdots$ be the Markov braid sequence of $X$ . Since $A_{n}$ is a semisim-
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pie algebra, we have

$A_{n}=\bigoplus_{\rho\in\hat{A}_{n}}M_{d(\rho)}(\mathbb{C})$

where $d(\rho)$ is the degree of $\rho$ . Let $q_{\rho}$ be an element of $A_{n}$ such that

$\iota/(q_{\rho})=\delta_{\iota/\rho}id\in M_{d(\nu)}(\mathbb{C})$ for $iJ$
$\in\hat{A}_{n}$ .

Let $\tilde{q}_{\rho}$ be an element of $\mathbb{C}B_{n}$ such that $p_{n}(\tilde{q}_{\rho})=q_{\rho}$ . Note that $\tilde{q}_{\rho}$ is not

unique. Let $h_{n}=\sigma_{1}\sigma_{2}\cdots\sigma_{n-1}\sigma_{1}\cdots\sigma_{n-2}\cdots\sigma_{1}\sigma_{2}\sigma_{1}$ . We call $h_{n}$ the

half twist of $B_{n}$ . Let $f_{n}=h_{n}^{2}$ and we call $f_{n}$ the full twist of $B_{n}$ . It is
known that $f_{n}$ commute with every element of $B_{n}$ and so $\rho(p_{n}(f_{n}))$ is
a scalar matrix, i.e. $\rho(p_{n}(f_{n}))=\alpha_{\rho}id$ .

A formal $\mathbb{C}$-linear combination of link diagrams are called a virtual
link diagram. We generalize the link invariant $X$ to a function from
virtual link diagrams to $\mathbb{C}$ formally as follows. For a virtual link diagram
$L=\sum_{i=1}^{r}a_{i}L_{i}$ ( $a_{i}\in k$ , $L_{i}$ is alink diagram), let $X(L)=\sum_{i=1}^{r}a_{\dot{\iota}}X(L_{i})$ .

As in the case of links, we define a diagram of an oriented $tri$-valent
graph embedded in $S^{3}$ . Let $G$ be an oriented $tri$-valent graph. We define
a coloring of $G$ . For each edge $E$ of $G$ , associate a non-negative inte-

ger $N(E)$ , an irreducible representation $R(E)\in\hat{A}_{n(E)}$ and a signature
$S(E)=\pm 1$ . The triple $(N, R, S)$ is called a coloring of $G$ if it satisfies
the following. For a vertex $v$ of $G$ , let $E_{v}^{-}$ be a set of edges with end
point $v$ and $E_{v}^{+}$ a set of edges with start point $v$ . Then

$\sum_{E\in E_{v}^{-}}N(E)=\sum_{E\in E_{v}^{+}}N(E)$
.

Let $\Gamma$ be a diagram of an embedding of an oriented $tri$-valent graph
$G$ colored by $(N, R, S)$ . We identify the edge sets of $\Gamma$ and $G$ . For an

edge $E$ of $\Gamma$ , let $\beta(E)=\frac{1}{2}\tilde{q}_{R(E)}(1+S(E)\alpha_{R(E)}^{-1/2}h_{n})\in \mathbb{C}B_{N(E)}$ . Replace

every vertices and edges as in Figure 4, we get a virtual link diagram
$\Gamma^{(N,R,S)}$ . For a edge $E$ of $\Gamma$ , let $c(E)=S(E)\alpha_{R(E)}^{1/2}$ .

Theorem 2. Let $\Gamma$ and $\Gamma’$ be equivalent embeddings of an $ori$ented
$tri$-valent graph $G$ colored by $(N, R, S)$ . Then, for every edge $E$ of $G$ ,

there is an integer $d(E)$ such that

(2.1) $X(\Gamma^{(N,R,S)})=\prod_{E\in \mathcal{E}}c(E)^{d(E)}X(\Gamma^{\prime(N,R,S)})$
.

Proof We check (2.1) for Reidemeister moves $(SRI)-(SRV)$ . Let $\Gamma$

and $\Gamma’$ be diagrams of embeddings of $G$ . We identify the sets of edges
of $\Gamma$ and $\Gamma’$ with that of $G$ .



Invariants of Spatial Graphs 153

$N_{1}$ $N_{1}$

$N$

$(N,RE\downarrow’ S)\rightarrow$

$N$

$N_{3}$
$N_{3}$

Fig. 4. Replace vertices and edges.

Case 1. Assume that $\Gamma$ and $\Gamma’$ are regular isotopic, $i$ . $e$ . there is a
sequence of Reidemeister moves of types (SRII), (SRIII), (SRIV) sending
$\Gamma$ to $\Gamma’$ . Then the associated virtual link diagrams $\Gamma^{(N,R,S)}$ and $\Gamma^{\prime(N,R,S)}$

are equivalent. Hence we have

(2.2) $X(\Gamma^{(N,R,S)})=X(\Gamma^{J(N,R,S)})$ .

Case 2. In this and the next cases, we check (2.1) for (SRI) moves.
Assume that $\Gamma$ and $\Gamma’$ are identical except within a ball where they are
as shown in Figure 5. Let $E$ be the edge of $G$ embedded differently by $\Gamma$

and $\Gamma’$ . Let $n=N(E)$ , $\rho=R(E)$ , $s=S(E)$ and $\beta=\beta(E)$ . Then there
are positive integer $N$ and a braid $b\in \mathbb{C}B_{N}$ such that the associated

link diagrams $\Gamma^{(N,R,S)}$ and $\Gamma^{J(N,R,S)}$ are equivalent to the closures of
$b_{1}=b\eta(\beta)$ and $b_{2}=b\eta(\beta)f_{n}$ where $\eta$ is an algebra homomorphism
from $\mathbb{C}B_{n}$ to $\mathbb{C}B_{N}$ defined by $\eta(\sigma_{i})=\sigma_{i}$ for $1\leq i\leq n-1$ . Since $X$

is an invariant of $trace$ type, there is an algebra homomorphism $J$ from
$A_{n}$ to $A_{N}$ such that $p_{N}\circ\eta=J\circ p_{n}$ . From the definition of $trace$ type
invariants, we have

$X(\hat{b}_{2})=T_{N}(p_{N}(b_{2}))=T_{N}(p_{N}(b\eta(\beta)f_{n}))$ .

The definitions of $q_{\rho}$ and $\beta$ imply that $p_{n}(\beta h_{n}^{\pm 1})=(s\alpha_{\rho}^{1/2})^{\pm 1}p_{n}(\beta)$ .

Hence we have

$T_{N}(p_{N}(b\eta(\beta)f_{n}))=T_{N}(p_{N}(b)J(p_{n}(\beta h_{n}^{2})))$
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$=T_{N}(p_{N}(b)J(\alpha_{\rho}p_{n}(\beta)))=\alpha_{\rho}T_{N}(p_{N}(b)J(p_{n}(\beta))))$

and so we get

$X(\hat{b}_{2})=\alpha_{\rho}X(\hat{b}_{1})$ .

In other words,

(2.3) $X(\Gamma^{(N,R,S)})=\alpha_{\rho}X(\Gamma^{\prime(N,R,S)})$ .

$\Gamma$
$\Gamma^{t}$

Fig. 5.

Case 3. Let $\Gamma$ and $\Gamma’$ be diagrams of colored $tri$-valent graphs iden-
tical except within a ball where they are as shown in Figure 6. Then, as
in Case 2, we have

(2.4) $X(\Gamma^{(N,R,S)})=\alpha_{R(E)}^{-1}X(\Gamma^{1(N,R,S)})$ .

$\Gamma$
$\Gamma^{\dagger}$

Fig. 6.
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Case 4. To check (SRV), it is suffice to verify the theorem for moves
illustrated in Figures 7-10. Assume that $\Gamma$ and $\Gamma’$ are identical except
within a ball where they are as shown in Figure 7. Let $n(i)=N(E_{i})$ ,
$\rho(i)=R(E_{i})$ , $s(i)=S(E_{i}),\tilde{q}_{i}=\tilde{q}_{\rho(i)}$ , $q_{i}=q_{\rho(i)}$ , $p_{i}=p_{n(i)}$ , $h_{i}=h_{n(i)}$

and $\beta_{i}=\beta(E_{i})$ for $i=1,2,3$ . Then there are positive integer $N$ and

$b\in \mathbb{C}B_{N}$ such that the associated link diagrams $\Gamma^{(N,R,S)}$ and $\Gamma^{\prime(N,R,S)}$

are equivalent to the closures of

$b_{1}=b\eta_{1}(\beta_{1})\eta_{2}(\beta_{2})\eta_{3}(\beta_{3})$ ,

$b_{2}=b\eta_{1}(\beta_{1})\eta_{2}(f_{n(2)}\beta_{2})\sigma_{n(1),n(2)}\eta_{3}(\beta_{3})$ ,

where $\sigma_{n(1),n(2)}=\sigma_{n(1)}\sigma_{n(1)+1}\cdots\sigma_{n(1)+n(2)-1}\sigma_{n(1)-1}\cdots\sigma_{n(1)+n(2)-2}$

$\ldots\sigma_{1}\sigma_{2n(2)}\ldots\sigma$ and $\eta_{1}$ , $\eta_{2}\eta_{3}$ are algebra homomorphisms from $\mathbb{C}B_{n(1)}$ ,

$\mathbb{C}B_{n(2)}\mathbb{C}B_{n(3)}$ to $\mathbb{C}B_{N}$ defined by the following. $\eta_{1}(\sigma_{i})=\sigma_{i}$ for $ 1\leq$

$i\leq n(1)-1$ , $\eta_{2}(\sigma_{i})=\sigma_{n(1)+i}$ for $1\leq i\leq n(2)-1$ and $\eta_{3}(\sigma_{i})=\sigma_{i}$ for

$1\leq i\leq n(3)-1$ . We know that $\eta_{1}(h_{n(1)})\eta_{2}(h_{n(2)}\sigma_{n(1),n(2)})=\eta_{3}(h_{n(3)})$ .

Hence we have

$b_{2}=b\eta_{1}(\beta_{1}h_{1}^{-1})\eta_{2}(\beta_{2}h_{2})\eta_{3}(h_{3}\beta_{3})$ .

Since $X$ is an invariant of $trace$ type, there are algebra homomorphisms
$J_{1}$ , $J_{2}$ and $J_{3}$ from $A_{n(1)}$ , $A_{n(2)}$ and $A_{n(3)}$ to $A_{N}$ such that $p_{N}o\eta_{s}=$

$J_{s}\circ p_{n(s)}$ for $s=1,2,3$ . From the definition of the $trace$ type, we have

$X(\hat{b}_{2})=T_{N}(p_{N}(b_{2}))$

$=T_{N}(p_{N}(b\eta_{1}(\beta_{1}h_{1}^{-1})\eta_{2}(\beta_{2}h_{2})\eta_{3}(h_{3}\beta_{3}))$

$=T_{N}(p_{N}(b)J_{1}(p_{1}(\beta_{1}h_{1}^{-1}))J_{2}(p_{2}(\beta_{2}h_{2}))J_{3}(p_{3}(h_{3}\beta_{3})))$ .

The definition of $q_{R}$ and $\beta(E)$ implies that

$p_{t}(\beta(t)h_{t}^{\pm 1})=S(t)\alpha_{\rho(t)}^{\pm 1/2}p_{t}(\beta_{t})$ $(t=1,2,3)$ .

Hence we have

$T_{N}(p_{N}(b)J_{1}(p_{1}(\beta_{1}h_{1}^{-1}))J_{2}(p_{2}(\beta_{2}h_{2}))J_{3}(p_{3}(h_{3}\beta_{3})))$

$=(\prod_{t=1}^{3}s(t))\alpha_{\rho(1)}^{-1/2}\alpha_{\rho(2)}^{1/2}\alpha_{\rho(3)}^{1/2}T_{N}(p_{N}(b)J_{1}(p_{1}(\beta_{1}))J_{2}(p_{2}(\beta_{2}))J_{3}(p_{3}(\beta_{3})))$ ,

and so we get

$X(\hat{b}_{2})=s(1)\alpha_{\rho(1)}^{-1/2}s(2)\alpha_{\rho(2)}^{1/2}s(3)\alpha_{\rho(3)}^{1/2}X(\hat{b}_{1})$ .
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In other words,

(2.5) $X(\Gamma^{(N,R,S)})=s(1)\alpha_{\rho(1)}^{-1/2}s(2)\alpha_{\rho(2)}^{1/2}s(3)\alpha_{\rho(3)}^{1/2}X(\Gamma^{\prime(N,R,S)})$ .

$E_{1}$ $E_{1}$

$E_{2}$
$\Gamma_{1}$

$E_{3}$
$E_{2}$

$\Gamma_{2}$

$E_{3}$

Fig. 7.

Case 5. Assume that $\Gamma$ and $\Gamma’$ are identical except within a ball
where they are as shown in Figure 8. Then, as in Case 4, we have

(2.5) $X(\Gamma^{(N,R,S)})=s(1)\alpha_{\rho(1)}^{1/2}s(2)\alpha_{\rho(2)}^{-1/2}s(3)\alpha_{\rho(3)}^{-1/2}X.(\Gamma^{J(N,R,S)})$ .

$E_{1}$ $E_{1}$

$E_{2}$
$\Gamma_{1}$

$E_{3}$
$E_{2}$

$\Gamma_{2}$

$E_{3}$

Fig. 8.

Case 6. Assume that $\Gamma$ and $\Gamma’$ are identical except within a ball
where they are as shown in Figure 9. Then, as in Case 4, we have

(2.7) $X(\Gamma^{(N,R,S)})=s(1)\alpha_{\rho(1)}^{1/2}s(2)\alpha_{\rho(2)}^{1/2}s(3)\alpha_{\rho(3)}^{-1/2}X(\Gamma^{\prime(N,R,S)})$ .
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$E_{1}$ $E_{2}$ $E_{1}$ $E_{2}$

$r_{1}$ $r_{2}$

Fig. 9.

Case 7. Let $\Gamma$ and $\Gamma’$ be diagrams of colored $tri$-valent graphs iden-
tical except within a ball where they are as shown in Figure 10. Then,
as in Case 4, we have

(2.8) $X(\Gamma^{(N,R,S)})=s(1)\alpha_{\rho(1)}^{-1/2}s(2)\alpha_{\rho(2)}^{-1/2}s(3)\alpha_{\rho(3)}^{1/2}X(\Gamma^{\prime(N,R,S)})$ .

$E_{1}$ $E_{2}E_{1}$ $E_{2}$

$\Gamma_{1}$ $r_{2}$

Fig. 10.

The above formulas (2.2)-(2.8) implies Theorem 2. Q.E.D.

\S 3. Invariants of non-oriented spatial graphs

Let $X$ be a regular isotopy invariant of link diagrams of knit $trace$

type with writhe factor $\gamma$ . Let $G$ be an abstract graph. For each edge
$E$ of $G$ , we attach a non-negative integer $N(E)$ , an irreducible represen-

tation $R(E)\in\check{A}_{N(E)}$ and a signature $S(E)=\pm 1$ . If these data satisfy
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(1.2) in \S 1, they are called a coloring of $G$ and denoted by $(N, R, S)$ .

Let $\mathcal{E}_{v}$ be the subset of edges of $G$ with a terminal point $v$ .

From now on, fix an invariant $X$ of knit $trace$ type and let $(A_{1}, T_{1})$ ,
$(A_{2}, T_{2})$ , $\cdots$ be the Markov knit sequence of $X$ . Since $A_{n}$ is a semisimple
algebra, we have

$A_{n}=\bigoplus_{\rho\in\overline{A}_{n}}M_{d(\rho)}(\mathbb{C})$

where $d(\rho)$ is the degree of $\rho$ . Let $q_{\rho}$ be an element of $A_{n}$ such that

$\nu(q_{\rho})=\delta_{\nu\rho}id\in M_{d(\nu)}(\mathbb{C})$ for $iJ$
$\in\check{A}_{n}$ .

Let $\tilde{q}_{\rho}$ be an element of $\mathbb{C}K_{n}$ such that $p_{n}(\tilde{q}_{\rho})=q_{\rho}$ . Note that $\tilde{q}_{\rho}$ is

not unique. Let $h_{n}=\tau_{1}\tau_{2}\cdots\tau_{n-1}\tau_{1}\cdots\tau_{n-2}\cdots\tau_{1}\tau_{2}\tau_{1}$ . We call $h_{n}$ the

half twist of $K_{n}$ . Let $f_{n}=h_{n}^{2}$ and we call $f_{n}$ the full twist of $K_{n}$ . It is
known that $f_{n}$ commute with every element of $K_{n}$ and so $\rho(p_{n}(f_{n}))$ is
a scalar matrix, i.e. $\rho(p_{n}(f_{n}))=\alpha_{\rho}id$ .

Let $G$ be an abstract graph colored by $(N, R, S)$ . Let $\Gamma$ be a colored
non-oriented spatial graph equal to $G$ as an abstract graph. We identify
the sets of edges of $\Gamma$ and $G$ . Let $v$ be a vertex of $\Gamma$ . Let $E_{1}$ , $E_{2}$ , $\cdots$ , $E_{r}$

be the edges with a terminal point $v$ . Let $\xi_{1}$ , $\xi_{2}$ , $\cdots$ , $\xi_{r}$ be the terminal
points of $E_{1}$ , $E_{2}$ , $\cdots$ , $E_{r}$ on the boundary of $v$ and $N(i)=N(E_{i})$ for

$i=1,2$ , $\cdots$ , $r$ . Replace these points by $\zeta_{1}^{(1)}$ , $\zeta_{1}^{(2)}$ , $\cdots$ , $\zeta_{1}^{(N(1))}$ , $\zeta_{2}^{(1)}$ , $\cdots$ ,
$\zeta_{2}^{(N(2))}$ , $\cdots$ , $\zeta_{r}^{(1)}$ , $\cdots$ , $\zeta_{r}^{(N(r))}$ as in Figure 11. Let $n_{v}=(\sum_{i=1}^{r}N(i))/2$ .

A diagram $D$ on $v$ is a set of mutually disjoint $n_{v}$ curves connecting $\gamma_{i(1)}^{j(1)}$

to $\gamma_{i(2)}^{j(2)}$ . Two diagrams $D$ and $D’$ on $v$ are called equivalent if there is an

isotopy of $v$ sending $D$ to $D’$ which fixes the boundary of $v$ . A diagram
$D$ on $v$ is called essential if $D$ satisfies the following.

$(^{*})$ Let $\gamma_{i(1)}^{j(1)}$ and $\gamma_{i(2)}^{j(2)}$ be distinct boundary points of a curve of $D$ .

then $i(1)\neq i(2)$ .

We denote by $D_{v}$ the set of equivalence classes of essential diagrams on
$v$ . If the valency of $v$ is equal to 3, then $D_{v}$ has only one element. If
the valency of $v$ is equal to 4 and $N(E_{i})=2$ for $i=1$ , $\cdots$ , 4, then $D_{v}$

consists of 3 elements as in Figure 12.

Let $\beta(E)=\frac{1}{2}\tilde{q}_{R(E)}(1+S(E)\alpha_{R(E)}^{-1/2}h_{n})\in \mathbb{C}B_{N(E)}$ . Let $\Gamma^{(N,R,S)}$

be the virtual link diagram obtained by replacing each vertex $v$ by a
sum of the all elements of $D_{v}$ and each edge $E$ by $\beta(E)$ as in the case
of embeddings of oriented $tri$-valent graphs. For a edge $E$ of $\Gamma$ , let

$c(E)=S(E)\alpha_{R(E)}^{1/2}$ .
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$2(1)$

Fig. 11. Replace $\xi_{1}$ , $\cdots$ , $\xi_{r}$ by $\zeta_{1}^{(1)},$
$\cdots$ , $\zeta_{1}^{(N(1))}$ , $\zeta_{2}^{(1)}$ , $\cdots$ ,

$\zeta_{2}^{(N(2))}$ , $\cdots$ , $\zeta_{r}^{(1)}$ , $\cdots$ , $\zeta_{r}^{(N(r))}$ .

Fig. 12. Elements of $D_{v}$ .

$N$

$N_{i}$

$N_{1}$ $N_{2}$ $N_{1}$ $N_{2}$

$N$

Qi, $R$ , S)

$E|$
$\rightarrow$

Fig. 13. Replace edges and vertices.

Theorem 3. Let $\Gamma$ and $\Gamma’$ be colored spatial graphs isomorphic to
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a graph $G$ colored by $(N, R, S)$ as abstruct graphs. Identify the sets of
edges of $\Gamma$ and $\Gamma’$ with that of G. If $\Gamma$ and $\Gamma’$ are equivalent as spatial

graphs, then there are integers $d$ and $d(E)$ for every edge $E$ of $G$ such
that

(3.1) $X(\Gamma^{(N,R,S)})=\gamma^{d}\prod_{E\in \mathcal{E}}c(E)^{d(E)}X(\Gamma^{J(N,R,S)})$
.

Proof We check (3.1) for Reidemeister moves $(SRI)-(SRV)$ . Let
$\Gamma$ and $\Gamma’$ be diagrams of colored spatial graphs isomorphic to $G$ . We
identify the sets of edges of $\Gamma$ and $\Gamma’$ with that of $G$ .

Case 1. Assume that $\Gamma$ and $\Gamma’are^{-}$ regular isotopic, $i$ . $e$ . there is a
sequence of reidemeister moves of types (SRII), (SRIII), (SRIV) sending
$\Gamma$ to $\Gamma’$ . Then the associated virtual link diagrams $\Gamma^{(N,R,S)}$ and $\Gamma^{;(N,R,S)}$

are equivalent and we have

(3.2) $X(\Gamma^{(N,R,S)})=X(\Gamma^{\prime(N,R,S)})$ .

Case 2. In this and the next cases, we check (2.1) for (SRI) moves.
Assume that $\Gamma$ and $\Gamma’$ are identical except within a ball where they are as
shown in Figure 5. Let $n=N(E)$ , $\rho=R(E)$ , $s=S(E)$ and $\beta=\beta(E)$ .

Then there are positive integer $N$ and $b\in \mathbb{C}K_{N}$ such that the associated

link diagrams $\Gamma^{(N,R,S)}$ and $\Gamma^{\prime(N,R,S)}$ are equivalent to the closures of
$b_{1}=b\eta(\beta)$ and $b_{2}=b\eta(\beta)h_{n}^{2}$ where $\eta$ is an algebra homomorphism
from $\mathbb{C}K_{n}$ to $\mathbb{C}K_{N}$ defined by $\eta(\sigma_{i})=\sigma_{i}$ for $1\leq i\leq n-1$ . Since
$X$ is a regular isotopy invariant of knit $trace$ type, there is an algebra
homomorphism $J$ from $A_{n}$ to $A_{N}$ such that $p_{N}\circ\eta=J\circ p_{n}$ . From the
definition of $trace$ type invariants, we have

$X(\hat{b}_{2})=T_{N}(p_{N}(b_{2}))=T_{N}(p_{N}(b\eta(\beta)h_{n}^{2}))$ .

The definition of $\beta$ implies that

$p_{n}(\beta h_{n}^{\pm 1})=s\alpha_{\rho}^{\pm 1/2}p_{n}(\beta)$ .

Hence we have

$T_{N}(p_{N}(b\eta(\beta)h_{n}^{2}))=T_{N}(p_{N}(b)J(p_{n}(\beta h_{n}^{2})))$

$=T_{N}(p_{N}(b)J(\alpha_{\rho}p_{n}(\beta)))$

$=\alpha_{\rho}T_{N}(p_{N}(b)J(p_{n}(\beta)))$ ,

and so we get
$X(\hat{b}_{2})=\alpha_{\rho}X(\hat{b}_{1})$ .
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In other words,

$X(\Gamma^{(N,R,S)})=\alpha_{\rho}X(\Gamma^{J(N,R,S)})$ .

Case 3. Assume that $\Gamma$ and $\Gamma’$ are identical except within a ball
where they are as shown in Figure 6. Then, as in Case 2, we have

(3.3) $X(\Gamma^{(N,R,S)})=\alpha_{\rho}^{-1}X(\Gamma^{\prime(N,R,S)})$ .

Case 4. Assume that $\Gamma$ and $\Gamma’$ are identical except within a ball
where they are as shown in Figure 14. Let $E_{1}$ , $E_{2}$ , $\cdots$ , $E_{r}$ be edges
around the verjbex $v$ . Let $n(i)=N(E_{i})$ for $i=1,2$ , $\cdots$ , $r$ and $n=$

$\sum_{i=1}^{r}n(i)$ . $Let\in_{1,n}=\in_{1}\in_{3}\cdots\in_{2n-1}\in K_{n}$ .

around vertex $v$ around vertex $v^{1}$

$E_{1}E_{2}\ldots E_{r}$

$\Gamma$

$\Gamma^{1}$

Fig. 14.

Let $h_{v}$ , $e_{v}$ and $e_{v}’$ be the element of $K_{n}$ corresponding to the diagram
in Figure 15. Let $\eta_{i,j,k}(i, j>0, k\geq 0, i+k\leq j)$ be a semigroup

homomorphism from $K_{i}$ to $K_{j}$ which sends $\tau_{i}^{\pm 1},$
$\in_{i}\in K_{i}$ to $\tau_{i+k}^{\pm 1},$

$\in_{i+k}\in$

$K_{j}$ and $\phi_{i,j}=\eta_{n(i),j,n(1)+n(2)+}.+n(i-1)$ . Note that

$h_{n}e_{v}=\gamma^{n}e_{v}$ ,

$h_{n}e_{v}=e_{v}’\phi_{1,n}(h_{n(1)})\phi_{2,n}(h_{n(2)})\cdots\phi_{r,n}(h_{n(r)})$ ,

and so we have

(3.4) $e_{v}’=\gamma^{n}e_{v}\phi_{1,n}(h_{n(1)}^{-1})\phi_{2,n}(h_{n(2)}^{-1})\cdots\phi_{r,n}(h_{n(r)}^{-1})$ .

Let $\rho(i)=R(E_{i})$ , $s(i)=S(E_{i})$ and $\beta(i)=\beta(E_{i})$ for $i=1,2$ , $\cdots$ ,
$r$ . Then there are an integer $N$ and an element $b\in \mathbb{C}K_{n}$ such that the
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$n$ strlngs

$h_{V}=$

$n$ sffings

$n(1)$ $n(rt-1)n(r)$

$\cup\cup$
$\cdots$

$\cup$

$e$

Fig. 15. Diagrams of $h_{v}$ , $e_{v}$ and $e_{v}’$ .

associated link diagrams $\Gamma^{(N,R,S)}$ and $\Gamma^{J(N,R,S)}$ are equivalent to the
closures of

$b_{1}=b\eta_{n,N,0}(e_{v})\phi_{1,N}(\beta(1)\tilde{q}_{\rho(1)})\phi_{2,N}(\beta(2)\tilde{q}_{\rho(2)})\cdots\phi_{r,N}(\beta(r)\tilde{q}_{\rho(r)})$ .

$b_{2}=b\eta_{n,N,0}(e_{v}’h_{v})\phi_{1,N}(\beta(1)\tilde{q}_{\rho(1)})\phi_{2,N}(\beta(2)\tilde{q}_{\rho(2)})\cdots\phi_{r,N}(\beta(r)\tilde{q}_{\rho(r)})$ .

From (3.4), we have

(3.5) $b_{2}=\gamma^{n}b\eta_{n,N,0}(e_{v})\phi_{1,N}(h_{n(1)}^{-1}\beta(1)\tilde{q}_{\rho(1)})\cdots\phi_{r,N}(h_{n(r)}^{-1}\beta(r)\tilde{q}_{\rho(r)})$ .

Recall that the definition of $q_{R(E)}$ and $\beta(E)$ implies that

$q_{\rho(t)}p_{n(t)}(\beta(t)h_{n(t)}^{\pm 1})=s(t)\alpha_{\rho(t)}^{\pm 1/2}q_{\rho(t)}p_{n(t)}(\beta(t))$

for $t=1,2$ , $\cdots$ , $r$ . Hence formula (3.5) implies

(3.6) $X(\hat{b}_{2})=\prod_{i=1}^{r}S(t)\alpha_{\rho(t)}^{-1/2}X(\hat{b}_{1})$ ,

because $X$ is of knit $trace$ type.
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Case 5. Assume that $\Gamma$ and $\Gamma’$ are identical except within a ball
where they are as shown in Figure 16. Then, as in Case 4, we have

(3.7) $X(\hat{b}_{2})=\prod_{i=1}^{r}s(t)\alpha_{\rho(t)}^{1/2}X(\hat{b}_{1})$ .

$E_{1}E_{2}\ldots E_{r}$

$\Gamma^{\dagger}$

$\Gamma$

Fig. 16.

Formulas (3.2), (3.3), (3.6), (3.7) show Theorem 3. Q.E.D.

Let $N$ be a positive even number. Let $R$ be an irreducible repre-
sentation of the algebra $A_{N}$ associated with the link invariant $X$ . Let $S$

be 1 or -1. For a spatial graph $\Gamma$ , let $(N’, R’, S’)$ be the coloring of $\Gamma$

defined by $N’(E)=E$ , $R’(E)=R$ and $S’(E)=S$ for every edge $E$ of $\Gamma$ .

Let $X^{(N,R,S)}(\Gamma)=X(\Gamma^{(N’,RS)}’,’)$ . Then $X^{(N,R,S)}$ is a regular isotopy
invariant of diagrams of spatial graphs.

Corollary 4. Let $\Gamma$ and $\Gamma’$ be diagrams of the same spatial graph
G. Then, there are integers $d$ and $d’$ such that

$X^{(N,R,S)}(\Gamma)=\gamma^{d}\alpha_{R^{d’}}X^{(N,R,S)}(\Gamma’)$ .

The proof is similar to that of Theorem 2.

\S 4. Examples

KauffmanUs bracket polynomial $\langle. \rangle$ is a regular isotopy invariant
of knit $trace$ type and the Jones polynomial is obtained from $\langle. \rangle$ as
in Remark in \S 1. To fix the notation, we give the definition of the
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bracket polynomial $\langle. \rangle[4]$ . Let $A\in \mathbb{C}\backslash \{0\}$ which is not equal to any
roots of unity. The bracket polynomial with parameter $A$ is a regular
isotopy invariant of non-oriented link diagrams defined by the following
relations.

$\langle L_{O}\rangle=1$ ,

$\langle L_{x}\rangle=A\langle L_{||}\rangle+A^{-1}\langle L_{\infty}\rangle$ ,

where $L_{O}$ is a trivial knot and $L_{x}$ , $L_{||}$ , $L_{\infty}$ are link diagrams identical
except within a ball where they are as shown in Figure 17.

$L_{0}$ $L_{||}$
$L_{\infty}$

Fig. 17. Diagrams of $L_{x}$ , $L_{||}$ , $L_{\infty}$ .

Let $A$ be a non-zero complex number which is not equal to any roots
of unity. Let $J_{n}(A)$ be the Jones algebra defined over $\mathbb{C}$ by the following.

$J_{n}(A)=\langle e_{1}$ , $e_{2}$ , $\cdots$ , $e_{n-1}|e_{i}e_{i\pm 1}e_{i}=e_{i}$ , $e_{i}e_{j}=e_{j}e_{i}(|i-j|\geq 2)$ ,

$ e_{i}^{2}=-(A^{2}+A^{-2})e_{i}\rangle$ .

The Markov knit sequence of KauffmanUs bracket polynomial $\langle. \rangle$ is
$J_{1}(A)$ , $J_{2}(A)$ , $\cdots$ . The algebra homomorphism $p_{n}$ from $\mathbb{C}K_{n}$ to $J_{n}(A)$

is defined by $p_{n}(\in_{i})=e_{i}$ , $p_{n}(\tau_{i})=A+A^{-1}e_{i}$ and $p_{n}(\tau_{i}^{-1})=A^{-1}+Ae_{i}$ .

Let $\rho_{n}$ be the linear representation of $J_{n}(A)$ sending $e_{1}$ , $e_{2}$ , $\cdots$ , $e_{n-1}$ to
0. Since $\rho_{n}(p_{n}(\tau_{i}))=A$ , we have

(4.1) $\rho_{n}(h_{n})=A^{n(n-1)/2}$ .

Let $\alpha_{n}=A^{n(n-1)}$ and $\sqrt{\alpha_{n}}=A^{n(n-1)/2}$ . The Yamada polynomial in

[10] is coming from $\langle. \rangle$ as in Corollary 4 with $N=2$ , $R=\rho_{2}$ and $S=1$ .

Let $\Gamma_{1}$ and $\Gamma_{2}$ be two diagrams of spatial graphs as in Figure 18.
The diagrams $\Gamma_{1}$ and $\Gamma_{2}$ are colored as in the figure. Let $C_{1}$ , $C_{2}$

denote the above coloring for $\Gamma_{1}$ and $\Gamma_{2}$ respectively. Since $p_{2}(1+(A^{2}+$
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$(2, p_{2},1)$ $(2, p_{2},1)$

$\Gamma_{1}$

$(1, p_{1},1)$ $(1, p_{1},1)$ $(1, p_{1},1)$

Fig. 18. Diagrams of spatial graphs $\Gamma_{1}$ and $\Gamma_{2}$ .

Fig. 19. Virtual link diagrams $\Gamma_{1}^{C_{1}}$ and $\Gamma_{2}^{C_{2}}$ .

$A^{-2})^{-1}\in_{1})=q_{R_{2}}$ , the virtual diagrams $\Gamma_{1}^{C_{1}}$ and $\Gamma_{2}^{C_{2}}$ associated to the

colorings are given in Figure 19.
Hence we have

$\langle\Gamma_{1}\rangle^{C_{1}}=-\frac{A^{8}+A^{4}+1}{A^{2}(A^{4}+1)}$

and

$\langle\Gamma_{2}\rangle^{C_{2}}=-\frac{-A^{32}+A^{28}+A^{20}+A^{8}+1}{A^{13}(A^{4}+1)}$ .
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By (4.1) and Theorem 3, we know that $\Gamma_{1}$ and $\Gamma_{2}$ are not equivalent as
spatial graphs.

To investigate the invariants associated with the Jones polynomial
more closely, Section 4 of [7] may be helpful.

The HOMFLY polynomial $P$ is an oriented link invariant of $trace$

type. Hence we get invariants of colored oriented $tri$-valent graph em-
beddings from the HOMFLY polynomial.

The Kauffman polynomial $F$ is an oriented link invariant obtained
from the Dubrovnik polynomial [5], which is a regular isotopy invariant
of unoriented link diagrams. It is shown in [2], [7], [8] that the Dubrovnik
polynomial is of knit $trace$ type. Hence we get invariants of spatial

graphs from the Dubrovnik polynomial. To investigate properties of
these invariants, Section 5 of [7] may be helpful.
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Introduction

A flat conformal structure on an $n$-dimensional manifold $N$ is a
maximal system of local charts taking values on $S^{n}$ , with transition
functions Moebius transformations. In short it is a geometric structure
modelled on (A4 $(S^{n})$ , $S^{n}$ ), where A4 $(S^{r\iota})$ denotes the group of Moebius
transformations on $S^{n}$ . Equivalently, it is a conformal equivalence
class of conformally flat Riemannian metrics on $N$ if $n$ $\geq 3$ . See

\S 1 for Liouville’s theorem. By certain abuse we denote a flat conformal
structure by the same letter as the underlying manifold.

In dimension 2, flat conformal structures are usually called projec-
tive structures and have been extensively studied by various authors in
the field of function theory. Analytic methods such as the theory of
quasiconformal maps often play crucial roles there. In dimension $\geq 3$ ,
however, the situation is quite different. Topology, instead of analysis,
provides major tools of study.

The concept of flat conformal structures was first introduced by
Kuiper ([35],[36],[37]) around 1950. Thereafter it had been forgotten
for some time, until it was revived by Kulkarni ([40], [41], [42], [43]), re-
lated with his study of discrete group actions in general. Then came
an important turning point when Fkied ([13]) established a remarkable
theorem concerning closed similarity manifolds. It solved a fundamental
and annoying problem which one encounters in the primary stage of the
theory, thereby making it possible to have a good grip on elementary
flat conformal structures, with Goldman ([15]) and Kamishima ([25])
contributing significantly to this direction.

Received July 9, 1990.
Revised June 13, 1991.



168 S. Matsumoto

At the same time various interesting examples have been piled up by
many authors including Thurston [56], Bestvina-Cooper [4], Freedman-

Skora [10], Gromov-Lawson-Thurston [19], Kuiper [38] and, quite re-
cently,
Kapovich-Potyagailo [32], making the field even more active.

This article has two objectives. One is to provide the basic knowl-
edge of flat conformal structures and to serve as an introductory guide
of the field. The other is to show some new pieces of knowledge. \S 1\sim \S 3
are devoted to the former purpose, where the reader can find exposition

of fundamental properties of Moebius transformations and flat confor-
mal structures. No original results are included in these early sections.
However for the full understanding of later sections, they are helpful, or
even indispensable.

\S 4 and \S 5 are also mainly expository, though they include some
slightly improved (new) results. Hereafter let $N$ be a connected closed
flat conformal manifold of dimension $\geq 3$ . In \S 4, we prove the following
version of Fried’s theorem.

Theorem (4.4). If the holonomy group of $N$ has $a$ fifixed point

in $S^{n}$ , then $N$ is either $S^{n}$ , an Euclidean space form or a Hopf

manifold.

Unlike the original theorem ([13]), we no longer postulate that the
developing map misses the fixed point. This yields clearer understand-
ing of the limit set (5) and a wider range of applications. Using Theo-
rem (4.4), various results (mostly known) can be proved by elementary
and straightforward arguments. Although the proof of Theorem (4.4)
is nothing but a small modification of the argument in [13], it might be
worth while to record it. The same result was obtained independently
by R. Miner [58], who mainly worked in the context of spherical $CR$

structures.
In \S 5, we define the limit set $L(N)$ of a flat conformal manifold $N$ .

Five different ways are possible and in Theorem (5.18), they are shown
to coincide eventually. Especially we get that the limit set defined by
means of the holonomy group is identical to the one obtaind by looking
at the behaviour of the developing map. (Most of these facts are already
known to Kulkarni-Pinkall [43].) As immediate corollaries we have the
followings.

Corollary (5.23). If the developing $rr_{v}ap$ of $N$ is not onto $S^{n}$ ,

then it is a covering map onto its image.

Corollary (5.24). Suppose the following (1) and (2).
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(1) $S^{n}\backslash L(N)$ is connected and the fundamental group $\pi_{1}(S^{n}\backslash $

$L(N))$ is fifinitely generated.

(2) For any point $x\in L(N)$ , there exists an arbitrarily small
neighbourhood $U$ of $x$ such that $U\backslash L(N)$ is connected.

Then the developing map is a covering map onto $S^{n}\backslash L(N)$ .

In dimension 2, Corollary (5.23) is well known and easy to show
using hyperbolic metric. For higher dimension, it was first proved by
Kamishima. Again our method is short and straightforward. Corol-
lary (5.24) can be found in Kulkarni-Pinkall [45], where condition (2)
is mistakingly dropped. In \S 5, we also characterize those flat conformal
manifolds whose developing maps are covering maps (onto the images)
and whose holonomy groups are indiscrete. (Theorem (5.26).) In dimen-
sion 3, this was first obtained by Kamishima ([24]) and independently

by $Gusevski\dot{i}$-Kapovich ([20]) in dimension 3.
$N$ is called elementary if the limit set is finite. $N$ is called a

$C$-structure if it is a connected sum of elementary structures and is not
itself elementary. In dimension 3, we have the following result.

Theorem (6.12). Suppose $dim(N)=3$ . Then $N$ is a $C$-structure

if and only if the limit set $L(N)$ is a tame Cantor set.

Recall that a Cantor set $\wedge r$ in $S^{n}$ is called tame if there exists a
self homeomorphism of $S^{n}$ which carries $\prime r$ into $S^{1}$ . Otherwise it is
called wild.

The above theorem is proved along the argument of Kulkarni ([43]),
in which Stalling’s theorem ([54], [55]) concerning ends of groups plays
a central part. The theory of ends are summarized in the appendix for
the convenience of the reader.

After preparing Poincar\’e’s polyhedral theorem in \S 7 (in the frame-
work of flat conformal manifolds), we shall show the following theorem
in \S 8.

Theorem (8.1). There exists $a$ flflat conformal manifold $N$ of
dimension 3 whose limit set $L(N)$ $\dot{\iota}s$ a wild Cantor set.

This theorem is an improvement of the work of Bestvina-Cooper
([4]) who constructed such examples for open 3-manifolds. Our example

in Theorem (8.1) is compact.

Literature concerning flat conformal structures is extensively col-
lected in the reference, though not complete, of course.
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\S 1. Conformal map and Liouville’s theorem

In this section, we give definitions of a conformal map and a Moebius
transformation of the $n$-sphere. After providing fundamental properties,
we show that a locally defined conformal map is the restriction of a
Moebius transformation if $n\geq 3$ . (Liouville’s theorem.)

Definition (1.1). A real $n\times n$ matrix $A$ is called a conformal
matrix if $A=\lambda P$ for $\lambda>0$ and an orthogonal matrix $P$ .

Thus $A$ is conformal precisely when $A$ preserves the angle of given
two vectors. Notice that the products and the inverses of conformal
matrices are again conformal.

Let $\hat{R}^{n}=R^{n}\cup\{\infty\}$ be the one point compactification of $R^{n}$ .

Points in $\hat{R}^{n}$ is indicated by letters $a$ , $x$ and so forth. For $x=$

$(x_{1}, \ldots, x_{n})\in R^{n}$ ,

$|x|=(\sum_{\dot{\iota}=1}^{n}x_{i}^{2})^{1/2}$
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denotes the Euclidean norm of $x$ . To endow $\hat{R}^{n}$ the structure of an
oriented manifold, the following local charts $(U_{\dot{x}}, q_{i})$ are commonly used
$(i=1,2)$ .

$\{$

$U_{1}=R^{n}$ , $q_{1}=id:U_{1}\rightarrow R^{n}$ ,

$U_{2}=\hat{R}^{n}\backslash \{0\}$ , $q_{2}$ : $U_{2}\rightarrow R^{n}$ ,

where $q_{2}$ is defined by

$q_{2}(x_{1}, \ldots, x_{n})=\frac{1}{|x|^{2}}(x_{1}, \ldots, x_{n-1}, -x_{n})$ .

In the above definition and in all that follows, if the image of $\infty$ by a
map is clear by the continuity, we do not explicitly state it. An important
property of $q_{2}$ is that the differential matrix $D_{a}q_{2}$ at any point
$a\in R^{n}\backslash \{0\}$ is a conformal matrix. Verification is left to the reader.

Let $U$ be a domain (i.e. a connected open subet) of $\hat{R}^{n}$

Definition (1.2). A $C^{1}$ map $f$ : $U\rightarrow\hat{R}^{n}$ is called a conformal
map if the following condition is satisfied. For any $a\in U$ , if $a\in U_{i}$

and $f(a)\in U_{j}$ , then the differential $D_{q_{i}(a)}(q_{j}\circ f\circ q_{i}^{-1})$ is a conformal
matrix.

Since for any $b\in R^{n}\backslash \{0\}$ , $D_{b}(q_{2}\circ q_{1}^{-1})$ is a conformal matrix,
Definition (1.2) is invariant under possible changes of local charts around
$a$ and $f(a)$ . A conformal map is a submersion and thus has a local
inverse, which is again a conformal map. Also the composite of two
conformal maps is conformal.

Lemma (1.3). Suppose $f$ : $U\rightarrow\hat{R}^{n}$ is a $C^{1}$ submersion, where

$U$ is a domain of
$\hat{R}^{n}$

If $D_{a}f$ is a conformal matrix for any $ a\in$

$U\cap R^{n}\cap f^{-1}(R^{n})$ , then $f$ is a conformal map.

Proof. This follows at once from the fact that the conformal ma-
trices form a closed subset in the general linear group. Q.E.D.

Let us give examples of conformal maps. Let $0<p<n$ . By

a dimension $p$ sphere in $\hat{R}^{n}$ , we mean either a dimension $p$ metric
sphere in $R^{n}$ or a dimension $p$ plane in $R^{n}$ plus $\{\infty\}$ . A dimension
$p$ sphere is sometimes called a codimension $n$ $-p$ sphere.

Definition (1.4). Let $\sigma$ be a codimension one sphere in $\hat{R}^{n}$

The inversion at $\sigma$

$J_{\sigma}$ : $\hat{R}^{n}\rightarrow\hat{R}^{n}$
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is defined as follows.

(1) If $\sigma$ is the sphere of radius $r$ centered at $a$ , then for any
$x\in R^{n}\backslash \{a\}$ ,

$J_{\sigma}(x)=\frac{r^{2}}{|x-a|}(x-a)+a$ .

(2) If $\sigma$ contains a codimension one plane, $J_{\sigma}$ is the reflexion at
that plane.

See Figure (1.1). The inversion is an orientation reversing involution
with the fixed point set $\sigma$ .

$)=r^{2}$

Figure (1. 1)

Definition (1.5). Composite of inversions is called a Moebius

transformation. The group of all the Moebius transformations of $\hat{R}^{n}$

is denoted by $\mathcal{M}(\hat{R}^{n})$ .

Proposition (1.6). Moebius transformation is a conformal map

and canies a sphere in $\hat{R}^{n}$ to a sphere of the same dimension.

Proof Computaion shows that an inversion is a conformal map.
Also it is well known, very easy to show by Euclidean geometry, that an
inversion maps a codimension one sphere to a codimension one sphere.
Therefore a sphere of arbitrary dimension, the intersection of several
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codimension one $sphereS_{)}$ is mapped to a sphere of the same dimension.
The proposition follows from this. Q.E.D.

Proposition (1.7). The following maps are Moebius transforma-
tions.

(a) Translation by $a$ , $x\mapsto x+a$ .

(b) Magnifification by $\lambda>0$ , $x\mapsto\lambda x$ .

(c) Orthogonal transformation by $P\in O(n)$ , $x\mapsto Px$ .

Proof. Translation is the composite of two inversions at parallel
planes. This shows (a). Likewise positive magnification is the composite
of two inversions at concentric spheres and orthogonal transformation is
the composite of several inversions at planes through 0, showing (b) and
(c). Q.E.D.

Lemma (1.8). Let $f$ : $\hat{R}^{n}\rightarrow\hat{R}^{n}$ be a Moebius transformation.
If $f(0)=0$ , $ f(\infty)=\infty$ , $D_{0}f=E$ , then $f=id$ .

Proof. Moebius transformations carry circles to circles. Since $f$

keeps 0 and $\infty$ fixed, $f$ preserves the (singular) dimension one
foliation $\mathcal{L}$ formed by the straight lines through 0. Since $f$ is a
conformal map, $f$ also preserves the codimension one foliation $\mathcal{L}^{\perp}$ of
spheres centered at 0. See Figure (1.2). Notice also that $f$ keeps the
leaf of $\mathcal{L}$ invariant, since $D_{0}f=E$ . Thus we obtain

$f(x)=\frac{R}{r}x$ .

on the sphere $|x|=r$ . The conformality of $f$ implies

$\frac{dR}{dr}=\frac{R}{r}$ .

Therefore we have $R=ar$ . But $a=1$ since $D_{0}f=E$ . This shows

$f=id$ . Q.E.D.

Proposition (1.9).

(1) $f$ is a Moebius transformation such that $ f(\infty)=\infty$ if and
only if

$f(x)=Ax+b$ .

(2) $f$ is a Moebius transformtion such that $ f(\infty)\neq\infty$ if and only

if
$f(x)=AJ(x-b)+c$ .
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Figure (1.2)

Here $A$ is a conformal matrix, $b$ and $c$ are points of $R^{n}$ and $J$

is the inversion at the unit sphere $\{|x|=1\}$ .

Proof. It is a direct consequence of Lemma (1.7) that the trans-
formations of the above expressions are Moebius transformations. Con-
versely suppose that $f$ is a Moebius transformation with $ f(\infty)=\infty$ .
Let $f(0)=b$ and $D_{0}f=A$ . Define $g(x)=Ax+b$ . Then $g^{-1}of$

satisfies the hypothesis of Lemma (1.8). Thus $g=f$ . This completes
the proof of (1). On the other hand, suppose that $f$ is a Moebius
transformation with $ f(\infty)\neq\infty$ . Let $ f(b)=\infty$ . Define $h$ by

$h(x)=J(x-b)$ . Then $f\circ h^{-1}$ is a Moebius transformation which
keeps $\infty$ fixed. By (1), we have

$f\circ h^{-1}(x)=Ax+c$ .

This completes the proof of (2). Q.E.D.

We shall finish this section with the following celebrated theorem of
Liouville.

Theorem (1.10). Let $n\geq 3$ . Suppose $f$ : $U\rightarrow\hat{R}^{n}$ is $a$

conformal map, where $U$ isa domain of
$\hat{R}^{n}$ Then $f$ is the

restriction of a Moebius transformation.
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As a matter of fact, this theorem does not hold for n $=2$ . In
fact the Riemann mapping theorem asserts the abundance of conformal
maps which are not restrictions of Moebius transformations.

Theorem (1.10) was first proved by J. Liouville in his 1850 paper

([46]), under the additional assumption that $f$ be of class $C^{3}$ . Since
then, it had been an open problem, astonishingly difficult, to weaken
the differentiability assumption, until at last in 1969, P. Hartman gave
a complete proof for $C^{1}$ maps ([21]).

Independently, $F.W$ . Gehring, among others, developed the the-
ory of quasiconformal maps in dimension $\geq 3$ . Specifically he defined
1-quasiconformal maps, which is a genaralization of conformal maps,
where no differentiability assumption is made. In [14], Gehring showed
that a locally defined 1-quasiconformal map is the restriction of a Moe-
bius transformation.

However these results need involvement in deep general treatment
and cannot be collected here. Instead, we give a simple elementary
proof essentially due to R. Nevanlinna ([49]) assuming that the given
conformal map $f$ is $C^{3}$ . (Nevanlinna postulated that $f$ is $C^{4}.$ )

Proof of Theorem (1.10). We use the following convention. $x_{i}$

denotes the $i$-th coordinate of $R^{n}$ and for $f$ : $U\rightarrow\hat{R}^{n}$ , $f_{x_{i}}$ , $f_{x_{i}x_{j}}$

and so forth denote the first and the second partial derivatives and so
forth. They are vectors of $R^{n}$ . In the first place, since $f$ is conformal,
we have

$(f_{x_{i}}, f_{x_{j}})=r^{2}\delta_{ij}$ ,

where $r(x)=||D_{x}f||$ is the mapping norm of the Jacobi matrix. Dif-
ferentiating by $x_{k}$ , we get for $i=j$ ,

$(f_{x_{i}x_{k}}, f_{x_{i}})=rr_{x_{k}}$

and for $i\neq j$ ,
$(f_{x_{i}x_{k}}, f_{x_{j}})+(f_{x_{i}}, f_{x_{j}x_{k}})=0$ .

For mutually distinct indices $i,j$ and $k$ , by permuting the indices, we
have

$(f_{x_{i}x_{k}}, f_{x_{j}})=0$ .

Since $j$ can be any index except $i$ and $k$ and $f_{x_{1}}$ , $\ldots$ , $f_{x_{n}}$ are mutually
orthogonal, we have

$f_{x_{i}x_{k}}=\mu f_{x_{i}}+l/f_{x_{k}}$ ,

where
$\mu=(f_{x_{i}x_{k}}, f_{x_{i}})/r^{2}=r_{x_{k}}/r$
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$lJ$ $=r_{x_{i}}/r$ .

Letting $\rho=1/r$ , we have

$\rho f_{x_{i}x_{k}}+\rho_{x_{i}}f_{x_{k}}+\rho_{x_{k}}f_{x_{i}}=0$ .

Differentiating by $x_{j}$ , we obtain

$\rho f_{x_{i}x_{j}x_{k}}+\rho_{x_{j}}f_{x_{i}x_{k}}+\rho_{x_{i}}f_{x_{j}x_{k}}+\rho_{x_{k}}f_{x_{i}x_{j}}$

$+\rho_{x_{i}x_{j}}f_{x_{k}}+\rho_{x_{j}x_{k}}f_{x_{i}}=0$ .

By permutation of the indices, we obtain for $j\neq k$ ,

$\rho_{x_{j}x_{k}}=0$ .

By rotating the coordinates by 45 degrees in the $(x_{j}, x_{k})$ -plane, we have

$\rho_{x_{j}x_{j}}=\rho_{x_{k}x_{k}}$ .

Now since $\rho_{x_{j}x_{k}}=0$ for any $k\neq j$
$\rho_{x_{j}}$ is constant on the hyperplane

$\{x_{j}=c\}$ . Thus it follows that $\rho_{x_{j}x_{j}}$ is constant on $\{x_{j}=c\}$ . That
is, $\rho_{x_{1}x_{1}}=\cdots$

. .
$=\rho_{x_{n}x_{n}}$ is constant in $U$ .

By composing $f$ with a suitable Moebius transformation if neces-
sary, we may assume that $O\in U$ and $ f(0)=\infty$ . Then the image by
$f$ of an arbitrarily small ball $|x|<\in$ contains $|x|>K$ for some large
$K>0$ . By the volume formula, this implies that $\rho(a_{m})\rightarrow 0$ for some
sequence $a_{m}\rightarrow 0$ . On the other hand, since $\rho_{x_{i}x_{j}}=2\alpha\delta_{ij}$ for some
$\alpha>0$ , $\rho$ is a quadratic function on $U\backslash \{0\}$ , with the leading term
$\alpha|x|^{2}$ . Since $\rho$ is positive valued on $U\backslash \{0\}$ and $\rho(a_{m})\rightarrow 0$ , we have

$\rho(x)=\alpha|x|^{2}$ .

Notice that the same value of $\rho$ is also attained by the inversion $g$

which is defined by

$g(x)=\frac{x}{\alpha|x|^{2}}$ .

Thus by the chain rule, the composite $h=gof^{-1}$ : $f(U)\rightarrow\hat{R}^{n}$ satisfies
$||D_{p}h||=1$ for any $p\in f(U)\backslash \{\infty\}$ . That is, $h$ is an isometry with
respect to the Euclidean metric on $R^{n}$ . This implies that $h(x)=Px+b$
for some orthogonal matrix $P$ and $b\in R^{n}$ . In fact, all that needs
proof is that $h$ is an affine transformation. But since

$(h_{x_{i}}, h_{x_{k}})=\delta_{ij}$ ,
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by differentiating we get

$(h_{x_{i}x_{j}}, h_{x_{k}})=0$ ,

showing that $h_{x_{i}x_{j}}=0$ . This implies that $h$ is an affine transformation.
Thus $h$ and hence $f$ are the restrictions of Moebius transformations,
as is required. Q.E.D.

\S 2. More on Moebius transformation

Denote by $\mathcal{M}(\hat{R}^{n})$ the group of Moebius transformations of $\hat{R}^{n}$

Lemma (2.1). Let $f\in \mathcal{M}(\hat{R}^{n})$ and let $\sigma\subset\hat{R}^{n}$ be a codimen-
sion one sphere. Then,

$foJ_{\sigma}of^{-1}=J_{f(\sigma)}$ .

Proof. Clearly $g=foJ_{\sigma}of^{-1}oJ_{f(\sigma)}$ is an orientation preserving

Moebius transformation which keeps points in $f(\sigma)$ fixed. Thus for an
arbitrary Moebius transformation $h$ such that $h(f(\sigma))=\{x_{n}=0\}$ , we
have that $k=h\circ g\circ h^{-1}$ keeps $\{x_{n}=0\}$ pointwise fixed. Especially
we obtain that $k(0)=0$ , $ k(\infty)=\infty$ and $D_{0}k=E$ since $k$ is
orientation preserving. Therefore by (1.8), we obtain $k=id$ . This
shows (2.1). Q.E.D.

Let $\iota$ :
$\hat{R}^{n}\rightarrow\hat{R}^{n+1}$

be the standard embedding, i.e.,

$\iota(x_{1}, \ldots, x_{n})=(x_{1}, \ldots, x_{n}, 0)$ .

As usual $R\wedge n$ is considered to beasubset of
$\hat{R}^{n+1}$ by $\iota$ . Let $\sigma$

be an $(n -1)$ -dimensional sphere in $\hat{R}^{n}$ Then the inversion $J_{\sigma}$ :
$\hat{R}^{n}\rightarrow\hat{R}^{n}$ can be extended to the inversion $J_{\tau}$ :

$\hat{R}^{n+1}\rightarrow\hat{R}^{n+1}$

at

the $n$-dimensional sphere $\tau$ orthogonal to $\hat{R}^{n}$ such that $\hat{R}^{n}\cap\tau=\sigma$ .

This yields an injection.

$ i:\mathcal{M}(\hat{R}^{n})\rightarrow$ A4 $(\hat{R}^{n+1})$ .

Again $\mathcal{M}(\hat{R}^{n})$ is considered to be a subgroup of $\mathcal{M}(\hat{R}^{n+1})$ by $i$ .
On the other hand let

$S^{n}=\{x\in R^{n+1}| |x|=1\}$ .
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Let $\tau$ be an $n$-dimensional sphere in
$\hat{R}^{n+1}$

which is perpendicular to
$S^{n}$ . Since inversions are conformal maps which send spheres to spheres,
$J_{\tau}$ is a transformation which keeps $S^{n}$ invariant. Composites of such
inversions constitute a Lie group $\mathcal{M}(S^{n})$ of Moebius transformations
of $S^{n}$ . Denote the inclusion by

$j$ : $\mathcal{M}(S^{n})\rightarrow \mathcal{M}(\hat{R}^{n+1})$ .

Define $v\in\lambda\Lambda(\hat{R}^{n+1})$ by $v=T\circ J_{2}\circ J_{1}$ . where $J_{1}$ is the reflexion
at the plane $x_{n+1}=-1/2$ , $J_{2}$ is the inversion at the sphere $|x|=2$

and $T$ is the translation by $(0, \ldots, 0, 1)$ . See Figure (2.1).

Figure (2.1)

Notice that $v(\hat{R}^{n})=S^{n}$ . Define

$c_{v}$ : $\mathcal{M}(\hat{R}^{n+1})\rightarrow \mathcal{M}(\hat{R}^{n+1})$

by

$c_{v}(f)=vofov^{-1}$ .
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Proposition (2.2). $c_{v}$ maps the subgroup $\mathcal{M}(\hat{R}^{n})$ isomorphi-
cally onto the subgroup $\mathcal{M}(S^{n})$ .

Proof. $v$ maps an $n$-sphere $\tau$ perpendicular to $\hat{R}^{n}$ to the n-
sphere $v(\tau)$ which is perpendicular to $S^{n}$ . On the other hand it
follows from (2.1) that $c_{v}(J_{\tau})=J_{v(\tau)}$ . This shows (2.2). Q.E.D.

Let
$D^{n+1}=\{x\in R^{n+1}||x|<1\}$ ,

$H^{n+1}=\{x\in R^{n+1}|x_{n+1}>0\}$ .

Proposition (2.3). We have

A4 $(\hat{R}^{n})=\{f\in \mathcal{M}(\hat{R}^{n+1})|f(H^{n+1})=H^{n+1}\}$ ,

$\mathcal{M}(S^{n})=\{f\in \mathcal{M}(\hat{R}^{n+1})|f(D^{n+1})=D^{n+1}\}$ .

Proof. By virtue of (2.2), it suffices to show the statement only

for $\hat{R}^{n}$ (Notice that $v(H^{n+1})=D^{n+1}.$ ) The inclusion $\subset$ is clear.

Conversely, suppose that $f\in \mathcal{M}(\hat{R}^{n+1})$ satisfies that $f(H^{n+1})=$

$H^{n+1}$ . First of all, consider the case where $ f(\infty)=\infty$ . Then by
(1.9), $f(x)=\lambda Px+b$ , where $\lambda>0$ , $P\in O(n+1)$ and $b\in R^{n+1}$ .

Since $f(R^{n})=Rn$ , we have that $b\in R^{n}$ . Further since $f$ preserves
$H^{n+1}$ , we also obtain that

$P=\left(\begin{array}{ll}Q & 0\\0 & 1\end{array}\right)$ ,

where $Q\in O(n)$ . Thus it follows from (1.7) that $f\in\lambda\Lambda(\hat{R}^{n})$ . The
remaining case can easily be reduced to this case. Details are left to the

reader. Q.E.D.

We need some standard terminologies in geometry.

Definition (2.4). Two Riemannian metrics $g_{1}$ and $g_{2}$ on a
manifold $M$ are said to be conformally equivalent, if there exists a
positive valued function $\mu$ on $M$ such that $g_{2}=\mu g_{1}$ .

Definition (2.5). A $C^{1}$ map $f$ : $(M_{1}, g_{1})\rightarrow(M_{2}, g_{2})$ of Rieman-
nian manifolds is called a Riemannian conformal map if the induced
metric $f^{*}g_{2}$ is conformally equivalent to $g_{1}$ .

Riemannian conformal maps are usually called conformal maps in
the literature. However in order to avoid confusion with Definition (1.2),
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we call them Riemannian conformal maps in this article. The following
three Riemannian metrics are important in what follows.

Definition (2.6). Denote by $g_{E}$ the Euclidean metric on $R^{n}$ ,

i.e. $g_{E}=\sum_{i=1}^{n}dx_{i}^{2}$ , by $gs$ the spherical metric on $S^{n}$ , that is, the

restriction of the Euclidean metric on $R^{n+1}$ to the submanifold $S^{n}$

and by $g_{H}$ the hyperbolic metric on $D^{n}$ , i.e.,

$\underline{4\sum_{i=1}^{n}dx_{i}^{2}}$

$g_{H}=(1-|x|^{2})^{2}$
.

It is well known that $g_{S}$ has constant sectional curvature 1 and that
$(D^{n}, g_{H})$ is a complete Riemannian manifold with constant sectional
curvature -1.

Proposition (2.7). Let $U$ be a domain in $\hat{R}^{n}$ A $C^{1}$ map

$f$ : $U\rightarrow\hat{R}^{n}$ is a conformal map in the sense of Definition (1.2) if and
only if $v\circ fov^{-1}$ : $v(U)\rightarrow S^{n}$ is a Riemannian conformal map w.r.t.
the spherical metric.

Proof. First notice that for a domain $U\subset R^{n}$ ,

$f$ : $(U, g_{E})\rightarrow(R^{n}, g_{E})$

is a Riemannian conformal map if and only if $D_{a}f$ is a conformal matrix
for any $a\in U$ . On the other hand, the following two maps

$v:R^{n}\rightarrow S^{n}$ ,

$v\circ q_{2}$ : $R^{n}\rightarrow S^{n}$

are Riemannian conformal maps from $(R^{n}, g_{E})$ to $(S^{n}, g_{S})$ , where

$q_{2}$ is the coordinate chart of $\hat{R}^{n}$ defined in \S 1. (2.7) follows from
this. Q.E.D.

Thus Liouville’s theorem can be rephrased as follows.

Let $U\subset S^{n}$ $(n\geq 3)$ be a domain. Then a Riemannian conformal
map $f$ : $U\rightarrow S^{n}$ $w.r.t$ . the spherical metric is the restriction of $a$

transformation in $\mathcal{M}(S^{n})$ .

Hereafter we focus our attention to the action of $\lambda\Lambda(S^{n})$ on $S^{n}$

and $D^{n+1}$ . Thus Moebius transformations are considered primarily as
acting on $S^{n}$ . However there are some occasions where the coordinates

of $\hat{R}^{n}$ is more convenient. In what follows, frequent use will be made
of the following lemma, which is a special case of (2.1). As before $ J\in$

$\mathcal{M}(\hat{R}^{n+1})$ denotes the inversion at $S^{n}$ .
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Lemma (2.8). For $f\in \mathcal{M}(S^{n})$ , we have $J\circ f=f\circ J$.

To study the action of $\mathcal{M}(S^{n})$ , the transformations are classified
according to whether they preserve $\infty$ or not. In the first place, we
have the following proposition.

Proposition (2.9). For $f\in \mathcal{M}(S^{n})$ , the following statements
are equivalent.

(1) $ f(\infty)=\infty$ .

(2) $f(0)=0$ .

(3) $f$ induces an isometry of $(S^{n}, g_{S})$ .

(4) $f(x)=Px$ for some $P\in O(n+1)$ .

Proof. By virtue of (2.8), We have $(1)\Leftrightarrow(2)$ . $(1)\Rightarrow(4)$ follows
from the expression of (1.9), $(4)\Rightarrow(1)$ and $(4)\Rightarrow(3)$ is clear

$and(3)Q.ED$

$\Rightarrow(4)$ follows from the next lemma.

Lemma (2.10). Suppose that a Lie group $G$ acts on a connected
$n$ -dimensional Riemannilnan manifold $N$ transitively and isometrically.
Suppose also that the fifirst derivative gives an isomorphism $G_{x}\cong O(n)$ ,

where $G_{x}$ is the isotropy subgoup at some $x\in N$ . Then $G$ is
precisely the group of all the isometries of $N$ .

Proof. For any isometry $f$ , there exists a unique element $g\in G$

such that $g^{-1}\circ f(x)=x$ and $D_{x}(g^{-1}\circ f)=E$ . Then $g^{-1}of$ keeps
any point on any geodesic ray at $x$ fixed. That is, $g^{-1}\circ f=id$ .

Q.E.D.

Next for $f$ with $ f(\infty)\neq\infty$ , we define the isometric sphere and
use it to describe a geometric decomposition of $f$ . For an $n\times n$ matrix
$A$ , $||A||$ denotes the mapping norm. In particular if $A$ is a conformal

matrix, then we have $||A||=(\det A)^{1/n}$ .

Definition (2.11). For a transformation $f\in \mathcal{M}(\hat{R}^{n+1})$ with
$ f(\infty)\neq\infty$ , the isometric sphere $I(f)$ of $f$ is defined by

$I(f)=\{x\in R^{n+1}|||D_{x}f||=1\}$ .

The isometric sphere cannot be defined for transformations which
keep $\infty$ fixed. Recall that by (1.9), $f$ can be expressed as

$f(x)=\lambda PJ(x-b)+c$ ,
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where $\lambda>0$ , $P\in O(n+1)$ and $b$ , $c\in R^{n+1}$ . Note that $ f(b)=\infty$

and $f(\infty)=c$ . For $x\in R^{n+1}$ , we have

$||D_{x}f||=\frac{\lambda}{|x-b|^{2}}$ .

Thus the isometric sphere $I(f)$ is the codimension one sphere of radius
$\lambda^{1/2}$ , centered at $f^{-1}(\infty)$ . We summarize fundamental properties of
isometric sphere in the following proposition. The proof is left to the
reader.

Proposition (2.12). For $f\in \mathcal{M}(\hat{R}^{n+1})$ such that $ f(\infty)\neq\infty$ ,
we have the following.

(1) The center of the isometric sphere $I(f)$ is the point $f^{-1}(\infty)$ .

(2) $f$ carries $I(f)$ to $I(f^{-1})$ and induces an isometry there. In
particular, $I(f)$ and $I(f^{-1})$ have the same radius.

(3) $f$ cames the interior of $I(f)$ to the exterior of $I(f^{-1})$ .

(4) The interior of the isometric sphere $I(f)$ consists precisely of
those points $x$ for which $||D_{x}f||>1$ holds.

Proposition (2.13). For $f\in \mathcal{M}(S^{n})$ such that $ f(\infty)\neq\infty$ , the

isometric sphere $I(f)$ is perpendicular to $S^{n}$ .

Proof. Since the action of $f$ on $S^{n}$ is not an isometry, there
are points in $S^{n}$ where the norms of the derivatives of $f$ are less
than or greater than 1. This implies that $I(f)$ intersects $S^{n}$ in an
$(n-1)$ sphere. $f$ induces an isometry from $I(f)$ to $I(f^{-1})$ which
sends the sphere $I(f)\cap S^{n}$ to the sphere $I(f^{-1})\cap S^{n}$ Thus for
$x\in I(f)$ , the spherical distance in $I(f)$ between $x$ and $I(f)\cap S^{n}$

coincides with the spherical distance in $I(f^{-1})$ between $f(x)$ and
$I(f^{-1})\cap S^{n}$ . That is, for $x\in I(f)$ , we have $|x|=|f(x)|$ and
consequently $||D_{x}J||=||D_{f(x)}J||$ . See Figure (2.2). Differentiating

the equation $J\circ f=f\circ J$ , we obtain that $||D_{x}f||=1$ implies
$||D_{J(x)}f||=1$ . That is, $J(I(f))=I(f)$ . This shows (2.13). Q.E.D.

Proposition (2.14). A transformation $f\in \mathcal{M}(S^{n})$ such that
$ f(\infty)\neq\infty$ can be decomposed as

$f=J_{\pi(f)}oJ_{I(f)}oP(f)$ ,

where $P(f)$ is a transformation in $O(n+1)$ which preserves $I(f)$ and
$\pi(f)$ is the bisector of the centers of $I(f)$ and $I(f^{-1})$ if $I(f)\neq I(f^{-1})$
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$x)$

$I(f^{-1})$

Figure (2.2)

and an arbitrary hyperplane which passes through the center of $I(f)$ and

0 if $I(f)=I(f^{-1})$ . See Figure (2.3).

Proof. The transformation $g=J_{\pi(f)}\circ J_{I(f)}$ clearly carries $I(f)$ to
$I(f^{-1})$ and there the norm of the differential is 1. That is, $I(g)=I(f)$

and $I(g^{-1})=I(f^{-1})$ . It follows that $g^{-1}of$ preserves the sphere
$I(f)$ and is an isometry there. Notice also that $g^{-1}\circ f$ preserves the
interior of $I(f)$ . Applying (2.9) to a transformation of $I(f)$ , it follows
that $g^{-1}of=P(f)$ keeps $\infty$ fixed. Since $P(f)$ preserves $S^{n}$ , $P(f)$

is a transformation in $O(n+1)$ . Q.E.D.

It is a well known fact that $\mathcal{M}(S^{n})$ is a Lie group of dimension
$\frac{1}{2}(n+1)(n+2)$ with two connected components.

Definition (2.15). Let $\{f_{k}\}_{k=1,2},\ldots$ be a sequence of elements of
$\mathcal{M}(S^{n})$ . We say $ f_{k}\rightarrow\infty$ if and only if for any compact subset $C$ of
$\mathcal{M}(S^{n})$ , there exists $k_{0}>0$ such that $f_{k}\not\in C$ for $k\geq k_{0}$ .

Thus $ f_{k}\rightarrow\infty$ if and only if $f_{k}$ has no subsequence which converges
to an element of $\mathcal{M}(S^{n})$ .

For $f\in \mathcal{M}(S^{n})$ , we define

$||Df||_{S^{n}}=\sup\{||D_{x}f|||x\in S^{n}\}$ .
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(f)

Figure (2.3)

Proposition (2.16). For a sequence $\{f_{k}\}$ in $\mathcal{M}(S^{n})$ , the fol-
lowing conditions are equivalent.

(1) $ f_{k}\rightarrow\infty$ .
(2) $||Df_{k}||_{S^{n}}\rightarrow\infty$ .

(3) Except for fifinite k, $ f_{k}(\infty)\neq\infty$ and radius $I(f_{k})\rightarrow 0$ .

Proof. First we shall show the equivalence of (2) and (3). Assume
for simplicity that $ f_{k}(\infty)\neq\infty$ for any $k$ . Let

$f_{k}(x)=r_{k}^{2}P_{k}J(x-b_{k})+c_{k}$ .

We have

$||D_{x}f_{k}||=\frac{r_{k}^{2}}{|x-b_{k}|^{2}}$ ,

where $r_{k}=$ radius $I(f_{k})$ . Since $I(f_{k})$ is perpendicular to $S^{n}$ , we
obtain

$||Df_{k}||_{S^{n}}=\frac{r_{k}^{2}}{(\sqrt{1+r_{k}^{2}}-1)^{2}}=\frac{(\sqrt{1+r_{k}^{2}}+1)^{2}}{r_{k}^{2}}$ .

See Figure (2.4). From this follows the equivalence of (2) and (3).
Next, $(2)\Rightarrow(1)$ is obvious. To show the converse, we assume that

(2), hence (3), does not hold and will show that (1) fails, that is, $f_{k}$ has
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Figure (2.4)

a subsequence which converges in $\lambda\Lambda(S^{n})$ . Thus in the course of the
proof, we are free to pass to a subsequence, if necessary. If $ f_{k}(\infty)=\infty$

for infinitely many $k$ , then such $f_{k}$ belongs to a compact subgroup
$O(n+1)$ of $\mathcal{M}(S^{n})$ , showing that (1) does not hold. Therefore we may
assume (passing to a subsequence) that $ f_{k}(\infty)\neq\infty$ for any $k\geq 1$

and $ r_{k}\rightarrow\rho$ for some $ 0<\rho\leq\infty$ .

Assume for a while that $ 0<\rho<\infty$ . Then in the decomposition
of (2.14), the sphere $I(f_{k})$ may be assumed to converge. That is, the
inversion $J_{I(f_{k})}$ converges in $\mathcal{M}(S^{n})$ . Likewise we may assume that
$J_{\pi(f)}k$ and $P(f_{k})$ also converge in A4 $(S^{n})$ . This shows that (1) does

not hold.

Next consider the case where $\rho=\infty$ . Notice that $\rho=\infty$ if and
only if $ f_{k}^{-1}(\infty)\rightarrow\infty$ , since the sphere $I(f_{k})$ centered at $f_{k}^{-1}(\infty)$

is always perpendicular to the fixed sphere $S^{n}$ . Take an arbitrary
transformation $g$ of $\mathcal{M}(S^{n})$ such that $ g(b)=\infty$ for some $ b\neq\infty$

and consider the sequence $f_{k}og$ . Then $g^{-1}of_{k}^{-1}(\infty)\rightarrow b$ . That is,

radius $I(f_{k}\circ g)\rightarrow r(0<r<\infty)$ . Therefore this case can be reduced
to the former case. Q.E.D.

Next we shall show that a Moebius transformation in $\mathcal{M}(S^{n})$ in-

duces an isometry of $(D^{n+1}, g_{H})$ . The key step is the following lemma.
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Lemma (2.17). Let $f\in \mathcal{M}(S^{n})$ and let $x\in R^{n+1}\backslash S^{n}$ . Then

$||D_{x}f||=\frac{1-|f(x)|^{2}}{1-|x|^{2}}$

Proof. Both hand sides decompose as products when $f$ decom-
poses as a composite. Thus it is sufficient to show (2.17) only for the
inversion $J_{\tau}$ at an $n$-dimensional sphere $\tau=\{|x-a|=r\}$ which is
perpendicular to $S^{n}$ . We have

$J_{\tau}(x)=r^{2}\frac{(x-a)}{|x-a|^{2}}+a$

and

$||D_{x}J_{\tau}||=\frac{r^{2}}{|x-a|^{2}}$ .

Since the sphere $\tau$ is perpendicular to $S^{n}$ , we have

$|a|^{2}=1+r^{2}$ .

Then it is easy to show by calculation that

$|J_{\tau}(x)|^{2}-1=\frac{r^{2}}{|x-a|^{2}}(|x|^{2}-1)$ .

This shows (2.17). Q.E.D.

Corollary (2.18). An element $f\in \mathcal{M}(S^{n})$ induces an isometry

of $(D^{n+1}, g_{H})$ .

The converse can also be shown using (2.10), once we establish the
following lemma.

Lemma (2.19). For any point $a\in D^{n+1}$ , there exists a trans-

formation $f\in \mathcal{M}(S^{n})$ such that $f(O)=a$ .

Proof. Let $l$ be the radius through $a$ . For any $x\in l$ , let $\sigma_{x}$

be the codimension one sphere perpendicular to $l$ at $x$ and orthogonal
to $S^{n}$ . Then $J_{\sigma_{x}}\in \mathcal{M}(S^{n})$ sends 0 to some point in $l$ . Clearly we
have

$\lim_{x\rightarrow 0}J_{\sigma_{x}}(0)=0$ , $\lim_{x\rightarrow b}J_{\sigma_{x}}(0)=b$ ,

where $b$ is the end point of $l$ . By the continuity of $J_{\sigma_{x}}(0)$ , we obtain
a point $x$ in $l$ such that $J_{\sigma_{x}}(O)=a$ . Q.E.D.



Flat Conformal Structure 187

Theorem (2.20). A4 $(S^{n})$ is precisely the group of isometrics of
$(D^{n+1}, g_{H})$ .

Theorem (2.21). In $(D^{n+1}, g_{H})$ , the geodesies are the circles

that are orthogonal to $S^{n}$ . Denoting the distance in $(D^{n+1}, g_{H})$ by
$d_{H}$ , we also have for $a\in D^{n+1}$

$d_{H}(0, a)=\log\frac{1+|a|}{1-|a|}$ .

Proof First let us find the shortest path combining 0 and $ a(a\neq$

$0)$ . Let $\gamma(t)$ be an arbitrary smooth arc such that $\gamma(0)=0$ and
$\gamma(1)=a$ . Schwartz’s inequality yields

$||\gamma(t)|’|\leq|\gamma’(t)|$ .

Thus we have

$1ength(\gamma)=\int_{0}^{1}\frac{2|\gamma’(t)|dt}{1-|\gamma(t)|^{2}}\geq\int_{0}^{1}\frac{2||\gamma(t)|’|dt}{1-|\gamma(t)|^{2}}$

$\geq\int_{0}^{|a|}\frac{2ds}{1-s^{2}}=\log\frac{1+|a|}{1-|a|}$ .

This shows the last part of (2.21) and that the geodesic through 0 and
$a$ are the radius.

Now consider the general case. Let $a$ , $b\in D^{n+1}$ . By (2.19), there

exists $f\in \mathcal{M}(S^{n})$ such that $f(O)=a$ . Since $f^{-1}$ is an isometry, $f^{-1}$

maps the geodesies to the geodesies. Further since $f^{-1}$ is a Moebius
transformation, $f^{-1}$ maps the diameter through $f(b)$ to the circle
through $a$ and $b$ which is orthogonal to $S^{n}$ . Q.E.D.

Finally we shall classify transformations in $\mathcal{M}(S^{n})$ according to
its dynamics on $C1(D^{n+1})$ . By (2.3), they keep $C1(D^{n+1})$ invariant,

where Cl denotes the closure.

Proposition (2.22). Let $f\in\sqrt{}\vee 1(S^{n})$ . For the induced transfor-
mation

$f$ : $C1(D^{n+1})\rightarrow C1(D^{n+1})$ ,

we have the followings.

(1) $f$ has at least one fifixed point in $C1(D^{n+1})$ .

(2) If $f$ has three or more fifixed points in $S^{n}$ , then $f$ has $a$ fifixed
point in $D^{n+1}$ .
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Proof. (1) follows from Brouwer’s fixed point theorem. To show

(2), coordinates of $\hat{R}^{n}$ and $H^{n+1}$ are more convenient. By conjugating

$g=c_{v}^{-1}(f)\in\Lambda 4(\hat{R}^{n})$

by a suitable element of $\mathcal{M}(\hat{R}^{n})$ , we may assume that $g$ keeps fixed 0,
$\infty$ and another point $a$ . By (1.9), we have for $x\in R^{n}$ , $g(x)=\lambda Px$ ,

where $\lambda>0$ and

$P=\left(\begin{array}{ll}Q & 0\\0 & 1\end{array}\right)$ ,

where $Q\in O(n)$ . Since $g$ also keeps $a$ fixed, it follows that $\lambda=1$ .

Thus for example, $(0, y)\in H^{n+1}(y>0)$ is fixed by $g$ . This completes
the proof of (2). Q.E.D.

Definition (2.23). $f\in \mathcal{M}(S^{n})$ (resp. $\mathcal{M}(\hat{R}^{n})$ ) is called elliptic

if $f$ has fixed points in $D^{n+1}$ (resp. $H^{n+1}$ ), loxodromic if $f$ is

not elliptic and has exactly two fixed points in $S^{n}$ (resp. $\hat{R}^{n}$ ) and
parabolic otherwise.

Notice that by (2.22), a parabolic transformation has precisely one

fixed point in $S^{n}$ (resp. $\hat{R}^{n}$ ).
Next we shall describe the standard forms of conjugacy classes of

these three types of transformations. For elliptic transformations, it is
convenient to work with the coordinates of $S^{n}$ and to conjugate so that

0 is the fixed point. However for the other types, the coordinates of $\hat{R}^{n}$

is preferable. Notice that parabolic (resp. loxodromic) transformations
can be conjugated so that they keep $\infty$ (resp. $\infty$ and 0) fixed.

Proposition (2.24).

(1) Let $f\in \mathcal{M}(S^{n})$ be an elliptic transformation such that $f(0)=$

$0$ . Then we have $f(x)=Px$ for some $P\in O(n+1)$ .

(2) Let $f\in \mathcal{M}(\hat{R}^{n})$ be a loxodromic transformation such that
$ f(\infty)=\infty$ and $f(0)=0$ . Then we have $f(x)=\lambda Px$ for
some $\lambda\neq 1,$ $>0$ and $P\in O(n)$ .

(3) Let $f\in \mathcal{M}(\hat{R}^{n})$ be a parabolic transformation such that $f(\infty)$

$=\infty$ . Then by conjugating with a translation of $R^{n}$ , we have

$f(x)=Px+b$ for some $P\in O(n)$ and $b\in R^{n}\backslash \{0\}$ such
that $Pb=b$ .

Proof. To show (2), notice that $\lambda\neq 1$ since otherwise $f$ would
fix points of the straight line perpendicular to $R^{n}$ which passes through
0, contrary to the hypothesis that $f$ is loxodromic.
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To prove (3), let $f(x)=\lambda Px+b’$ . Since $f$ cannot have a fixed point
in $R^{n}$ , we have $\lambda=1$ and $b’\not\in Image(P I)$ . But $b’=(P-I)a+b$ ,

for some $a\in R^{n}$ and $ b\perp$ Image(P -I). It is a standard exercise in
linear algebra to show $Pb=b$ . Conjugating $f$ by the translation by
$a$ , we obtain the transformation $x\mapsto Px+b$ , as is required. Q.E.D.

Definition (2.25). For a loxodromic transformation $f\in \mathcal{M}(S^{n})$ ,

the geodesic which combines the two fixed points of $f$ is called an axis
of $f$ .

Definition (2.26). A codimension one sphere in $C1(D^{n+1})$ which
is tangent to $S^{n}$ at $a\in S^{n}$ is called a horosphere at $a$ .

Proposition (2.27). A loxodromic transformation of $\mathcal{M}(S^{n})$

preserves its axis. A parabolic transformation preserves the horospheres
at the fifixed point.

Proof To prove the first part, notice that the standard form (2)

of (2.24) preserves the $x_{n+1}$ axis in $H^{n+1}$ . The transformation $ v\in$

$\mathcal{M}(\hat{R}^{n+1})$ (defined just before (2.2)) maps $x_{n+1}$ -axis to a diameter in
$D^{n+1}$ . Any transformation of A4 $(S^{n})$ maps a diameter to a geodesic of
$D^{n+1}$ . Therefore by conjugating the standard form, we get the desired
result. The latter part can be shown likewise. Notice that the standard
form (3) of (2.24) preserves the plane $\{x_{n+1}=c\}$ $(c>0)$ , which is
mapped by $v$ to a horosphere. Q.E.D.

\S 3. Flat conformal structure

In this section we define a flat conformal structure, its developing
map and holonomy homomorphism. We study their fundamental prop-
erties.

In the first place, we define a $(G, X)$ -structure in general circum-
stances. Let $X$ be a real analytic manifold and let $G$ be a Lie group
acting real analytically, transitively and effectively on $X$ . In this study,
all the group actions are to be on the left, unless otherwise specified. Let
$N$ be a connected topological manifold of the same dimension as $X$ .

Definition (3.1). A collection $\mathcal{U}=\{(U_{\alpha}, q_{\alpha})\}_{\alpha\in\Lambda}$ is called a
$(G, X)$ -atlas if

(1) $\{U_{\alpha}\}$ is an open covering of $N$ .

(2) $q_{\alpha}$ : $U_{\alpha}\rightarrow X$ is an embedding.
(3) For each component $V$ of $U_{\alpha}\cap U_{\beta}$ , there exists $g\in G$ such

that $q_{\beta}(x)=gq_{\alpha}(x)$ , $x\in V$ .
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An element $(U_{\alpha}, q_{\alpha})$ is called a $\mathcal{U}$-chart.

Definition (3.2). A maximal $(G, X)$ -atlas is called a $(G,X)-$

structure on $N$ or a geometric structure vaguely. A manifold equipped
with a $(G, X)$ -structure is called a $(G, X)$ manifold

Let $p$ : $M\rightarrow N$ be a covering map.

Definition (3.3). Let $\{(U_{\alpha}, q_{\alpha})\}_{\alpha\in\Lambda}$ be a $(G, X)$ -atlas on $N$

for a $(G, X)$ structure $\mathcal{U}$ such that $U_{\alpha}$ is homeomorphic to an $n$-ball.
Let $V_{\alpha}^{i}$ be a connected component of $p^{-1}(U_{\alpha})$ . Then $\{(V_{\alpha}^{i}, q_{\alpha}\circ p)\}$ is a
$(G, X)$ -atlas on $M$ . The $(G, X)$ -structure which contains $\{(V_{\alpha}^{i}, q_{\alpha}\circ p)\}$

is called the lift of $\mathcal{U}$ by $p$ and is denoted by $p^{*}\mathcal{U}$ . Especially when
$p$ is a homeomorphism, $p^{*}\mathcal{U}$ and $\mathcal{U}$ are called isomorphic.

Given a $(G, X)$ structure $\mathcal{U}$ on $N$ , the associated developing map
and holonomy homomorphism are defined as follows.

Let $p$ : $\overline{N}\rightarrow N$ be the universal covering space with the base

point $x_{0}\in\overline{N}$ . Let $\pi_{1}(N)$ be the fundamental group at the base point
$p(x_{0})$ . As usual, $\pi_{1}(N)$ is identified via $x_{0}$ , with the group of deck

transformations of $\overline{N}$ . Denote by $\overline{\mathcal{U}}$ the lift of $\mathcal{U}$ by $p$ . Fix once

and for all a $\overline{\mathcal{U}}$ chart $(U_{0}, q_{0})$ around $x_{0}$ .

Definition (3.4). A sequence $((U_{i}, q_{i}),$ $g_{i})$ , $(1 \leq i\leq r)$ is called
a chart chain from $(U_{0}, q_{0})$ if for $1\leq i\leq r$ , we have

(a) $(U_{i}, q_{i})\in\overline{\mathcal{U}}$ , $g_{i}\in G$ ,
(b) $U_{i-1}\cap U_{i}$ is nonempty and connected,
(c) $q_{i-1}(x)=g_{i}q_{i}(x)$ , $x\in U_{i-1}\cap U_{i}$ .

Given a chart chain as above, it is possible to extend the base map
$q_{0}$ to a continuous map $D$ : $U_{0}\cup U_{1}\rightarrow X$ by

$D(x)=g_{1}q_{1}(x)$ , $x\in U_{1}$ .

Successively $D$ can be extended to $U_{0}\cup U_{1}\cup U_{2}$ by

$D(x)=g_{1}g_{2}q_{2}(x)$ , $x\in U_{2}$ .

See Figure (3.1). This motivates the following definition.

Definition (3.5).

(1) The developing map $D$ : $\overline{N}\rightarrow Xw.r.t$ . the base chart $(U_{0}, q_{0})$

is defined by

$D(x)=g_{1}g_{2}\cdots g_{r}\cdot q_{r}(x)$ , $x\in\overline{N}$ ,
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Figure (3. 1)

where $((U_{i}, q_{i})$ , $g_{i})$ , $(1 \leq i\leq r)$ is a chart chain from $(U_{0}, q_{0})$

such that $x\in U_{r}$ .

(2) The holonomy homomorphism $\varphi$ : $\pi_{1}(N)\rightarrow Gw.r.t$ . the base
chart $(U_{0}, q_{0})$ is defined by

$\varphi(\xi)=h_{1}h_{2}\cdots h_{S}$ , $\xi\in\pi_{1}(N)$

where $((V_{j},p_{j})$ , $h_{j})$ , $1\leq j\leq s$ is a chart chain from $(U_{0}, qo)$

such that
$(V_{s},p_{s})=(\xi U_{0}, q_{0}\circ\xi^{-1})$ .

$D$ and $\phi$ are well defined since $\overline{N}$ is simply connected. The proof
is routine and is omitted. Also it is clear that $D$ is a submersion (or
immersion).

Definition (3.6). A pair $(D, \varphi)$ is called a $DH$ pair if the
following is satisfied.

(1) $D$ : $\overline{N}\rightarrow X$ is a submersion.
(2) $\varphi$ : $\pi_{1}(N)\rightarrow G$ is a homomorphism.

(3) $D(\xi x)=\varphi(\xi)D(x)$ , $\xi\in\pi_{1}(N)$ , $x\in\overline{N}$ .
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Proposition (3.7). Let $D$ and $\varphi$ be the developing map and
the holonomy homomorphism for a base chart $(U_{0}, qo)$ . Then $(D, \varphi)$

is a $DH$ pair.

Proof. To show

$D(\xi x)=\varphi(\xi)D(x)$ , $\xi\in\pi_{1}(N)$ , $x\in\overline{N}$ ,

let
$\sigma=\{((U_{i}, q_{i}), g_{i})\}_{1\leq i\leq r}$

be a chart chain from $(U_{0}, q_{0})$ such that $x\in U_{r}$ and let

$\tau=\{((V_{j},p_{j}), h_{j})\}_{1\leq j\leq s}$

be a chart chain from $(U_{0}, q_{0})$ such that

$(V_{s},p_{s})=(\xi U_{0}, q_{0}\circ\xi^{-1})$ .

Let
$\xi_{\phi}\sigma=\{((\xi U_{i}, q_{i}\circ\xi^{-1}), g_{i})\}$ .

$\xi_{\beta}\sigma$ is a chart chain from $(\xi U_{0}, q_{0}\circ\xi^{-1})=(V_{s},p_{s})$ . Thus $\tau$ followed
by $\xi_{\#}\sigma$ is a chart chain from $(U_{0}, qo)$ to the point $\xi x$ . That is, we
have

$D(\xi x)=h_{1}h_{2}\cdots h_{s}\cdot g_{1}g_{2}\cdots g_{r}\cdot q_{r}o\xi^{-1}(\xi x)=\varphi(\xi)D(x)$ .

Finally let us show that $\varphi$ is a homomorphism. We have

$\varphi(\xi_{1}\xi_{2})D(x)=D(\xi_{1}\xi_{2}x)=\varphi(\xi_{1})D(\xi_{2}x)=\varphi(\xi_{1})\varphi(\xi_{2})D(x)$ .

It follows that $\varphi(\xi_{1}\xi_{2})=\varphi(\xi_{1})\varphi(\xi_{2})$ , since the action of $G$ on $X$ is
effective and real analytic. (Note that Image(D) is a domain since $D$

is a submersion.) Likewise we have $\varphi(1)=1$ . Q.E.D.

Definition (3.8). Two $DH$ pair $(D, \varphi)$ and $(D’, \varphi\prime)$ are said to

be equivalent if there exists $g\in G$ such that $D’(x)=gD(x)$ and $\varphi’(\xi)$

$=g\varphi(\xi)g^{-1}$ for $x\in\overline{N}$ and $\xi\in\pi_{1}(N)$ .

Proposition (3.9). The correspondence of (3.7) gives a bijection
between the set of $(G, X)$ -structures on $N$ and the set of the equivalence
classes of $DH$ pairs.

Proof. Let $(D, \varphi)$ (resp. ( $D’$ , $\varphi’$ )) be the $DH$ pair associated to
the base chart $(U_{0}, qo)$ (resp. ( $U_{0}’$ , $q_{0}’$ ))of a given $(G, X)$ -structure.



Flat Conformal Structure 193

Consider a chart chain

$((U_{i}, q_{i})$ , $g_{i})$ , $1\leq i\leq r$

from $(U_{0}’, q_{0}\prime)$ such that $(U_{r}, q_{r})=(U_{0}, q_{o})$ . Let $g=g_{1}g_{2}\cdots g_{r}$ . Then
it is easy to show that

$D’(x)=gD(x)$ , $\varphi’(\xi)=g\varphi(\xi)g^{-1}$ .

Conversely given an equivalence class of $DH$ pairs, one can get a
$(G, X)$ -structure on $N$ by restricting the developing map to small

domains of $\overline{N}$ and projecting down $hy$ $p:\overline{N}\rightarrow N$ . Q.E.D.

By certain abuse, $(G, X)$ -structures are sometimes denoted by their
$DH$ pairs as $[D, \varphi]$ .

Definition (3.10). For a $(G, X)$ -structure $[D, \varphi]$ on $N$ ,

$H=$ Image(\varphi )\subset G

is called the holonomy group of $[D, \varphi]$ .

By (3.9), the holonomy group of a $(G, X)$ -structure is unique up to
conjugations in $G$ .

Let $\Gamma$ be a discrete group which acts on $N$ .

Definition (3.11). $\Gamma$ is said to act discontinuously on $N$ , if for
any $x\in N$ , there exists a neighbourhood $U$ of $x$ such that

Card $\{\gamma\in\Gamma |\gamma U\cap U\neq\phi\}<\infty$ .

The proof of the following proposition is left to the reader.

Proposition (3.12). $\Gamma$ acts freely and discontinuously on $N$ if
and only if for any $x\in N$ , there exists a neighbourhood $U$ such that

if $\gamma\neq 1$ , then $\gamma U\cap U=\phi$ .

Suppose $N\rightarrow P$ be a regular covering with the group of deck
trasformations F. Then the action of $\Gamma$ on $N$ is free and discontinuous.
Conversely, if $\Gamma$ acts freely and discontinuously on a manifold $N$ , then

the canonical projection $\pi$ : $ N\rightarrow N/\Gamma$ is a regular covering with the
group of deck transformations $\Gamma$ .
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Proposition (3.13). Suppose that $\Gamma$ acts on $N$ freely and dis-
continuously. Then

$\overline{\Gamma}=$ { $\overline{\gamma}$ : $\overline{N}\rightarrow\overline{N}|\overline{\gamma}$ is a lift of $\gamma$ , $\gamma\in\Gamma$ }

acts on $\overline{N}$ freely and discontinuously. $\overline{\Gamma}$ is the group of deck trans-

formations of the following universal covering.

$\pi op:\overline{N}\rightarrow N\rightarrow N/\Gamma$ .

We have the following exact sequence;

$1-\pi_{1}(N)\rightarrow\overline{\Gamma}\rightarrow\Gamma\rightarrow 1$ .

Proof. We only show that the action of $\overline{\Gamma}$ is free and discontinuous.

The rest is left to the reader. Let $x\in\overline{N}$ . Take a small neighbourhood
$\overline{U}$ of $x$ such that

(1) $U=p(\overline{U})$ is evenly covered by $p$ and
(2) $\gamma U\cap U=\phi$ if $\gamma\neq 1$ , $\gamma\in\Gamma$ .

Suppose $\overline{\gamma}(\overline{U})\cap\overline{U}\neq\phi$ for $\overline{\gamma}\in\overline{\Gamma}$ . Then we have $\gamma(U)\cap U\neq\phi$ , where
$\overline{\gamma}$ is a lift of $\gamma$ . This shows that $\gamma=1$ by (2). Thus $\overline{\gamma}$ is a deck
transformation of $p$ . But by (1), we have $\overline{\gamma}=1$ . Q.E.D.

Let $\mathcal{U}$ be a (G,$ X)$ -structure on N.

Definition (3.14). An action of $\Gamma$ on $N$ is called a $\mathcal{U}$ action
if and only if for any $\gamma\in\Gamma$ , we have $\gamma^{*}\mathcal{U}=\mathcal{U}$ .

Suppose that an action of $\Gamma$ on N is a free and discontinuous
$\mathcal{U}$-action. As before, $\pi$ : N $\rightarrow N/\Gamma$ is the canonical projection.

Definition (3.15). A $(G, X)$ -strucure $\pi_{*}\mathcal{U}$ , called the projection
of $\mathcal{U}$ , is defined as follows. Let $(D, \varphi)$ be the $DH$ pair associated to

a base chart $(U_{0}, q_{0})$ . Since the action of the lift $\overline{\Gamma}$ is a $\overline{\mathcal{U}}$ action

we have that $(\overline{\gamma}U_{0}, q_{0}\circ\overline{\gamma}^{-1})$ is a $\overline{\mathcal{U}}$-chart for any $\overline{\gamma}\in\overline{\Gamma}$ . Thus as in
Definition (3.5) (2), we can define a homomorphism

$\psi$ : $\overline{\Gamma}\rightarrow G$

by using a chart chain to $(\overline{\gamma}U_{0}, q_{0}\circ\overline{\gamma}^{-1})$ . Then $(D, \psi)$ is a $DH$ pair
for $ N/\Gamma$ . $\pi_{*}\mathcal{U}$ is defined to be the $(G, X)$ -structure corresponding to
this $DH$ pair.

Clearly $\psi$ : $\overline{\Gamma}\rightarrow G$ is an extension of the holonomy homomorphism
$\varphi$ : $\pi_{1}(N)\rightarrow G$ .
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As is shown later, there are many examples of pair $(G, X)$ such
that the isotropy subgroup

$G_{x}=\{g\in G|gx=x\}$

is compact for any $x\in X$ . Then the corresponding $(G, X)$ -structures
have the following striking feature.

Proposition (3.16). Let $N$ be a closed $(G, X)$ -manifold. Sup-
pose the isotropy subgroup $G_{x}$ is compact for $ x\in$ X. Then the

developing map $D$ : $N\rightarrow X$ is a covering map onto X. In particular,

if $X$ is simply connected, then $D$ is a homeomorphism.

Proof. Since $G_{x}$ is compact, there exists a $G_{x}$-invariant, positive
definite, symmetric, bilinear form on the tangent space $T_{x}X$ . Dis-
tributing it by the action of $G$ , we obtain a $G$-invariant Riemannian
metric $g$ of $X$ . Since $\overline{g}=D^{*}g$ is $\pi_{1}(N)$ -invariant, it projects down
to a Riemannian metric on $N$ . Therefore $\overline{g}$ is complete.

For small $\in>0$ , we have that $D$ maps any $ 2\in$-ball in $\overline{N}$

isometrically onto a $ 2\in$-ball in $X$ . Then clearly any $\in$-ball in $X$ is
evenly covered by $D$ . Q.E.D.

We shall raise some examples of $(G, X)$ -structures.

Example (3.17). Denote by $Isom(S^{n})$ , $Isom(R^{n})$ or $Isom(D^{n})$

the group of isometries of the Riemannian manifold $(S^{n}, gs)$ , $(R^{n}, g_{E})$

or $(D^{n}, g_{H})$ . The corresponding $(G, X)-$ structure (resp. manifold) is
called spherical, Euclidean or hyperbolic structure (resp. manifold).
Specifically, closed spherical or Euclidean manifold is called spherical
or Euclidean space form.

Notice that $Isom(S^{n})=O(n+1)$ and $Isom(D^{n})=\mathcal{M}(S^{n-1})$ .

Isom(Rn) consists of transformations, called Euclidean motions,

$x\mapsto Px+b$ , $(P\in O(n), b\in R^{n})$ .

All the three satisfy the hypothesis of (3.16). Therefore if the mani-
folds are compact, their universal covering spaces can be identified with
$S^{n}$ (if $n$ $>1$ ), $R^{n}$ or $D^{n+1}$ . A spherical space form is isomorphic to
$ S^{n}/\Gamma$ if $n$ $>1$ , where $\Gamma$ is a finite group of SO(n+l). The following
theorem is due to Bieberbach ([5]). A neat proof, quite short, is found
in P. Buser ([6]).

Theorem (3.18). An Euclidean space form has $n$ -torus as $a$ fifinite
covering.

The main object of our study is the following $(G, X)$ -structure.
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Definition (3.19). A $(\mathcal{M}(S^{n}), S^{n})$ -structure (resp. manifold) is
called a flflat comformal structure (resp. manifold). A group action

preserving a flat conformal structure is called a conformal action.

There is another way to get to the same concept.

Definition (3.20). A Riemannian manifold $(N, g)$ of dimension
$n$ is called conformally flflat if for any point $x\in N$ , there exist a
neighbourhood $U$ and an embedding $f$ : $U\rightarrow R^{n}$ such that $f^{*}g_{E}$ is
conformally equivalent to $g|_{U}$ .

Notice that the above definition does not change if we use as a model
space $(S^{n}, gs)$ instead of $(R^{n}, g_{E})$ . In fact, they are conformally
equivalent as we saw in \S 2.

Now let $\mathcal{U}$ be a flat conformal structure on $N$ . For each $\mathcal{U}-$

chart $(U_{\alpha}, q_{\alpha})$ , there is the induced Riemannian metric $q_{\alpha}^{*}g_{S}$ on $U_{\alpha}$ .

In a component $V$ of $U_{\alpha}\cap U_{\beta}$ , we have $q_{\beta}=g\circ q_{\alpha}$ for some
$g\in \mathcal{M}(S^{n})$ . Since $g$ is a conformal map w.r.t. $g_{S}$ , $q_{\alpha}^{*}g_{S}$ and $q_{\beta}^{*}g_{S}$

are conformally equivalent on $V$ . Take a locally finite partition of unity
$\{t_{\alpha}\}$ associated with the covering $\{U_{\alpha}\}$ of $\mathcal{U}$-charts. The Riemannian
metric

$g=\sum_{\alpha}t_{\alpha}q_{\alpha}^{*}g_{S}$

is a conformally flat metric.
Conversely suppose $n\geq 3$ . Let $g$ be a conformally flat metric

on an $n$-dimensional manifold $N$ . Then we have a family $\{(U_{\alpha}, f_{\alpha})\}$

such that $\{U_{\alpha}\}$ is an open covering of $N$ , that $f_{\alpha}$ is an embedding
of $U_{\alpha}$ into $S^{n}$ and that $f_{\alpha}^{*}g_{S}$ is conformally equivalent to $g$ . Thus
for any component $V$ of $U_{\alpha}\cap U_{\beta}$ ,

$f_{\beta}of_{\alpha}^{-1}|_{f\alpha}(V)$ : $f_{\alpha}(V)\rightarrow f_{\beta}(V)$

is a Riemannian conformal map in $(S^{n}, g_{S})$ . Thus by Liouville’s theo-
rem, we have that

$f_{\beta}of_{\alpha}^{-1}|_{f\alpha}(V)$ $\in \mathcal{M}(S^{n})$ .

We obtain a flat conformal structure. In summary, we have;

Proposition (3.21). Flat conformal structure on a manifold $N$

yields a conformally equivalence class of conformally flflat metrics. Fur-
ther if $n\geq 3$ , this correspondence is bijective.

For $n=2$ , the above two concepts are in fact different. In this
dimension, flat conformal structure is often called (complex) projective
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structure since

$(\mathcal{M}(S^{2}), S^{2})=(PGL(2:C), CP^{1})$ ,

while conformally flat Riemannian metric corresponds to complex struc-
tures.

If $(G’, X’)\subset(G, X)$ , that is, $G’\subset G$ , $X’\subset X$ and the $G’$-action
on $X’$ is the restriction of the $G$-action on $X$ , then, as a matter of fact,
a $(G’, X’)$ -structure is naturally considered as a $(G, X)$ -structure. Thus
spherical manifolds, Euclidean manifolds and hyperbolic manifolds are
considered to be flat conformal manifolds. In fact we have the following
inclusions of $(G, X)$ -pairs.

(Isom(5r1),$ S^{n}$ ) $\subset(\mathcal{M}(S^{n}), S^{n})$ .

$(Isom(R^{n}), R^{n})\subset(\mathcal{M}(\hat{R}^{n}),\hat{R}^{n})\rightarrow c_{v}\approx(\lambda\Lambda(S^{n}), S^{n})$ .

$(Isom(D^{n}), D^{n})\subset(\lambda\Lambda(S^{n-1}), D^{n})\subset(\lambda\Lambda(\hat{R}^{n}),\hat{R}^{n})\rightarrow c_{v}\approx(\mathcal{M}(S^{n}), S^{n})$ .

A significant feature of these examples is that the developing maps are
homeomorphisms onto their images (except the case of $(Isom(S^{1}), S^{1})$

$)$ . However for a point $a\in S^{n}$ , the isotropy group $\mathcal{M}(S^{n})_{a}$ is

not compact. (Compare that $\mathcal{M}(S^{n})_{a}$ is compact for $a\in D^{n+1}.$ )
Therefore flat conformal manifolds in general do not enjoy this kind of
good properties. In fact there are many such examples as we shall show
in what follows. We make the following definition.

Definition (3.22). Let $\mathcal{U}=[D, \varphi]$ be a flat conformal structure
and let $H=$ Image(\varphi ) be the holonomy group. $\mathcal{U}$ is said to be of
type 1 if $D$ is a covering map onto its image and $H$ is discrete, of
type 2 if $D$ is a covering map but $H$ is indiscrete, of type 3 if $H$ is
discrete but $D$ is not a covering map and type 4 otherwise.

Before starting the study of type 1 flat conformal structures, we
need some preparations. Let $\Gamma$ be a subgroup of At $(S^{n})$ .

Definition (3.23). A subset $A\subset S^{n}$ is called $\Gamma$-invariant if
$\gamma(A)=A$ for any $\gamma\in\Gamma$ .

Definition (3.24). Let $\Omega_{\Gamma}$ be the set of points $x\in S^{n}$ such
that there exists a neighbourhood $U$ of $x$ such that $\gamma U\cap U=\phi$ but
for finitely many $\gamma\in\Gamma$ . $\Omega_{\Gamma}$ is called the domain of discontinuity of
$\Gamma$ .

$\Omega_{\Gamma}$ is the maximal $\Gamma$-invariant open subset of $S^{n}$ on which $\Gamma$

acts discontinuously.
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Definition (3.25). $\Gamma$ is called a Kleinian group if $\Omega_{\Gamma}\neq\phi$ .

Clearly we have:

Proposition (3.26). A Kleinian group is discrete in $\Lambda 4(S^{n})$ .

It is known that the converse does not hold. However we have:

Proposition (3.27). If $\Gamma$ is $ discrete\rangle$ then $\Gamma$ acts on $D^{n+1}$

discontinuously

Proof. Assume $\Gamma$ is infinite and let $\Gamma=\{\gamma_{n}\}$ . Since $\Gamma$ is
discrete, $\gamma_{n}\rightarrow\infty$ , that is, $\gamma_{n}\not\in O(n+1)$ for but finitely many $n$

and radius $I(\gamma_{n})\rightarrow 0$ . It follows that any compact subset of $D^{n+1}$ is
outside $I(\gamma_{n})$ except finite $n$ . (Recall $I(\gamma_{n})\cap S^{n}\neq\phi.$ ) (3.27) follows
from (2.12)(3). Q.E.D.

The following fact is helpful in our study of flat conformal structures
of type 1. The proof is more or less the same as (3.27). The reader will
find it in \S 5, after the definition of limit set is made.

Corollary (5.16). Suppose a discrete group $\Gamma$ admits an invari-
ant open set $\Omega$ such that $ S^{n}\backslash \Omega$ is neither empty nor a singleton.
Then $\Gamma$ acts on $\Omega$ discontinuously

Flat conformal structure of type 1 is constructed as follows. Let $\Gamma$

be a Kleinian group in A4( $S^{n}\grave{)}$ which acts freely and discontinuously
on a $\Gamma$-invariant domain $\Omega$ . The action is of course a conformal action
on a flat conformal manifold $\Omega$ . Hence the quotient manifold $\Omega/\Gamma$

admits a flat conformal structure $\mathcal{U}$ . The developing map $D$ is the
universal covering followed by the inclusion;

$D:\overline{\Omega}\pi\rightarrow\Omega\subset S^{n}$

and the holonomy group is $\Gamma$ . Concrete examples of this construction
will be given in later sections.

Definition (3.28). The flat conformal structure (manifold) con-
structed as above is called a Kleinian structure (manifold).

Definition (3.29). Two flat conformal manifolds are called com-
mensurable if they have isomorphic finite coverings.

Proposition (3.30). Any type 1 flflat conformal compact manifold
$N$ is commensurable to a Kleinian manifold.

The proof needs the following theorem due to Selberg. See e.g.
([53]).
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Theorem (3.31). Any fifinitely generated subgroup of $GL(n, R)$

has a torsion free subgroup of fifinite index.

As is well known, At $(S^{n})$ is isomorphic to the projectivised Lorentz
group $PO(n+1,1)$ . Thus (3.31) is applicable to a subgroup of $\mathcal{M}(S^{n})$ .

Proof of (3.30). If the developing map $D$ is onto $S^{n}$ , then $D$

is a homeomorphism and $N$ is isomorphic to a spherical space form.
Likewise if $D$ misses only one point, then $N$ is isomorphic to an
Euclidean space form. Otherwise, by (5.16), the holonomy group $H$

acts on $\Omega=$ Image(D) discontinuously. Let $\Gamma$ be a torsion free finite
index subgroup of H. $\Gamma$ acts on $\Omega$ freely. We have the following two
covering maps.

$p:\overline{N}/\varphi^{-1}(\Gamma)\rightarrow N$ ,

$\overline{D}$ : $\overline{N}/\varphi^{-1}(\Gamma)\rightarrow\Omega/\Gamma$ .

$p$ is a finite covering since $\varphi^{-1}(\Gamma)$ is a finite index subgroup of $\pi_{1}(N)$ .

Therefore $\overline{N}/\varphi^{-1}(\Gamma)$ is compact and $\overline{D}$ is also a finite covering.
Q.E.D.

One can show by examples that Proposition (3.30) cannot be sharp-
ened in general.

Next an example of type 2 flat conformal structure is in order.

Example (3.32). Let $P(x)=\lambda R_{\theta}x$ be a conformal linear trans-
formation on $R^{2}$ ( $\lambda>0$ , $R_{\theta}$ ; the rotation by $\theta$ ). For $t\in R$ , let

$P^{t}(x)=\lambda^{t}R_{t\theta}(x)$ .

Let $Q$ be another conformal transformation which keeps 0 fixed such
that $Q\neq P^{t}$ for any $t\in R$ .

Let $R^{2}/Z^{2}=T^{2}$ . Define $\varphi$ : $Z^{2}\rightarrow \mathcal{M}(\hat{R}^{2})$ by $\varphi(l, m)=P^{l}Q^{m}$

and
$D:R^{2}\rightarrow\hat{R}^{2}$

by $D(x, y)=P^{x}Q^{y}a$ for some $a\in R\backslash \{0\}$ . Since
$PQ=QP$ , we have $(D, \varphi)$ is a $DH$ pair. $D$ is clearly a covering map
onto $R^{2}\backslash \{0\}$ . But often $H=$ Image(\varphi ) is not discrete, for example
when $\lambda=1$ and $\theta\not\in Q$ .

See Figure (3.2). This example cannot be generalized to higher
dimensions, since $R^{n}\backslash \{0\}$ is simply connected if $n$ $\geq 3$ . However,
in \S 5, we give examples of type 2 flat conformal compact manifolds of
dimension\geq 3 and give a characterization of such manifolds.

The following is an example of type 3 flat conformal structure.
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$a$

Figure (3.2)

Example (3.33). Let $\Sigma$ be a closed Riemann surface of genus
$\geq 2$ , that is, a hyperbolic manifold of dimension 2. The developing map
$D$ is a homeomorphism onto a disk in $S^{2}$ . We shall alter $D$ without
changing the holonomy homomorphism $\varphi$ . Let $\alpha$ be a simple closed
geodesic in $\Sigma$ and let $V$ be $the\in$-neighbouhood of $\alpha$ for small $\in>0$ .

Then a lift $\overline{V}$ of $V$ in the universal covering $\overline{\Sigma}\cong D^{2}$ is the mutually
disjoint $\in$-neighbourhood of a lift of $\alpha$ . See Figure (3.3). $D$ is altered

inside $\overline{V}$ to a new map $D’$ in such a way that it coincides with $D$

near the boundary of $\overline{V}$ and it goes extra once around $S^{2}$ . Clearly
$D’$ can be constructed so that $(D’, \varphi)$ is a $DH$ pair. See Figure (3.4).
It is easy to show that $D’$ is onto $S^{n}$ . Thus it is not a covering map.
For more detail, see Goldman ([16]). The same construction is possible
for higher dimension if we start with a compact hyperbolic manifold
which admits a totally geodesic closed submanifold of codimension 1.
See Kourouniotis ([33]).

Finally an example of type 4.

Example (3.34). Prepare two copies of type 2 flat conformal man-
ifolds $N_{1}$ and $N_{2}$ constructed in Example (3.34). Inside an atlas
$(U_{i}, q_{i})$ of $N_{i}$ , take a small disk $V_{i}$ which is mapped by $q_{i}$ to a
metric disk in $S^{2}$ . There exists an element $g\in\lambda\Lambda(S^{2})$ such that $g$

maps $V_{1}$ to the exterior of $V_{2}$ . Consider the connected sum

$ N_{1}\# N_{2}=(N_{1}\backslash IntV_{1})\cup(N_{2}\backslash IntV_{2})/\sim$ .
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$\tilde{\Sigma}$

Figure (3.3)

Figure (3.4)

If we chose the above identification appropriately, we obtain a continuous
map

$(g\circ q_{1})\cup q_{2}$ : $(U_{1}-IntV_{1})\cup(U_{2}-IntV_{2})/\sim\rightarrow S^{2}$ .

Using this we get in an obvious way a flat conformal structure on $N_{1}QN_{2}$ .

It is not difficult to show that the developing map of this structure is
onto $S^{2}$ and therefore is not a covering map. The holonomy group is
indiscrete since we started with type 2 examples.

The above operation, called connected sum of the structure, will
be described in more detail in \S 6.
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\S 4. Closed similarity manifolds

In this section we assume $n\geq 3$ and mainly work with $\hat{R}^{n}$ , instead

of $S^{n}$ . As before $\mathcal{M}(\hat{R}^{n})$ denotes the group of Moebius transforma-

tions of $\hat{R}^{n}$ As shown in \S 1, the isotropy subgroup $\mathcal{M}(\hat{R}^{n})_{\infty}$ at $\infty$

consists of transformations

$f(x)=\lambda Px+b$ , $\lambda>0$ , $P\in O(n)$ , $b\in R^{n}$ .

$\lambda$ (resp. $P$ ) is called the $no7m$ (resp. orthogonal part) of $f$ and is

denoted by $||f||$ (resp. $P(f)$ ). Clearly a transformation $f\in \mathcal{M}(\hat{R}^{n})_{\infty}$

induces a transformation of $R^{n}$ . When viewed as a transformation of
$R^{n}$ , $f$ is called an Euclidean similarity. The group of Euclidean
similarities is denoted by ES(Hn). We have an isomorphism

$ES(R^{n})\approx \mathcal{M}(\hat{R}^{n})$ .

Definition (4.1). An $(ES(R^{n}), R^{n})$ -structure (manifold) is called
a similarity structure (manifold).

Euclidean space forms are examples of similarity manifolds. Other
examples are Hopf manifolds to be defined below.

Definition (4.2). A closed similarity manifold $N$ is called a Hopf

manifold if the developing map $D$ is a homeomorphism onto $R^{n}\backslash \{0\}$ .

Then the holonomy group $H$ is discrete and is contained in the
isotropy subgroup $ES(R^{n})_{0}$ . By taking norm and orthogonal part, we
obtain the isomorphism

$ES(R^{n})_{0}\cong R_{+}\times O(n)$ .

$||H||=\{||f|||f\in H\}$ is nontrivial since $N$ is closed, and is discrete
since $O(n)$ is compact. Therefore it is infinite cyclic. Let $||h||(h\in H)$

be a generator. Since the kernel $\{||h||=1\}$ is finite, $\langle h^{2}\rangle$ is a finite
index subgroup of $H$ . Clearly $(R^{n}\backslash \{0\})/\langle h^{2}\rangle$ is homeomorphic to
$S^{n-1}\times S^{1}$ . Thus we have;

Proposition (4.3). Hopf manifold has $a$ fifinite covering which is

homeomorphic to $S^{n-1}\times S^{1}$ .

In [13], Fried has shown that these two examples of similarity mani-
folds are the only examples. That is, an arbitrary similarity manifold is
isomorphic to either an Euclidean space form or a Hopf manifold. See
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also Kuiper ([36]). The purpose of this section is to give an improved
version of Fried’s theorem. Instead of confining ourselves to similarity
manifolds, we consider flat conformal manifolds in general.

Theorem (4.4). Let $N$ be a closed flflat conformal manifold of
dimension $\geq 3$ such that the holonomy group $H$ is contained in the

$\dot{\iota}sotropy$ subgroup $\lambda\Lambda(\hat{R}^{n})_{\infty}$ . Then $N$ is isomorphic to either $\hat{R}^{n}$ ,

a Hopf manifold or an Euclidean space form.

One can state the original Fried’s theorem as a corollary.

Corollary (4.5). Closed similarity manifold of dimension $\geq 3$ is

isomorphic to a Hopf manifold or an Euclidean space form.

What is new in Theorem (4.4) is that the developing map is allowed
to cover the point $\infty$ , while in the original Fried’s theorem (Corollary
(4.5) $)$ it is postulated to miss $\infty$ . Although the difference is apparently
not significant and the proof is in fact almost the same, Theorem (4.4)
brings forth a far wider range of applications in practice (as far as flat
conformal structures are concerned). To the best knowledge of the au-
thor, (4.4) cannot be found in the literature. Therefore it is obviously
worth while to give a complete proof of (4.4).

The rest of this section is devoted to the proof of (4.4). In way of
contradiction, we assume that $N$ is isomorphic to neither of the three
structures in (4.4). Denote by $D$ the developing map, by $\varphi$ the
holonomy homomorphism and by $H$ the holonomy group. The proof
consists of three steps.

Step 1. Clearly $D^{-1}(\infty)$ is discrete and invariant by the deck

transformation. Thus $N(\infty)=\pi(D^{-1}(\infty))$ is a finite set. Then
$N^{*}=N\backslash N(\infty)$ is a similariry manifold.

Definition (4.6). A domain $U^{*}\subset\overline{N}^{*}=\pi^{-1}(N^{*})$ is called a
copy of $U\subset R^{n}$ if $D|_{U^{*}}$ : $U^{*}\rightarrow U$ is a homeomorphism.

Points in $\overline{N}^{*}$ are denoted by $a^{*}$ , $x^{*}$ and so forth and their images
by $D$ by $a$ , $x$ and so forth. Thus, $B^{*}(a^{*}, r)$ denotes a copy containing
$a^{*}\in\overline{N}^{*}$ of $B(a, r)$ , the open ball of radius $r$ centered at $a$ . We call
$a^{*}$ and $r$ the center and radius of $B^{*}(a^{*}, r)$ .

Definition (4.7). A closed subset $l^{*}\subset\overline{N}^{*}$ is called a complete

half line if for any copy of ball $B^{*}\subset\overline{N}^{*}$ , $B^{*}\cap l^{*}$ is mapped by $D$

to $B\cap k$ , where $k$ is a complete half line in $R^{n}$ .
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$R^{n}$

Figure (4.1)

See Figure (4.1).

By certain abuse, the parametrization of a complete half line $l^{*}$ is
denoted by the same letter, as

$l^{*}$ : $[0, \infty)\rightarrow l^{*}$ .

Notice that given any point $x^{*}\in\overline{N}^{*}$ and a tangent vector $v$ at $x^{*}$ ,
there exists a unique complete half line $l^{*}$ such that $l^{*}(0)=x^{*}$ and
tangent to $v$ . Clearly deck transformation carries a complete half line
to a complete half line.

Definition (4.8). A complete half line $l^{*}$ is called short if $D(l^{*})$

is not a complete half line in $R^{n}$ .

Claim (4.9). Given a short complete half line $l^{*}$ , there exists $a$

neighbourhood U of $N(\infty)$ such that $\pi(l^{*})\cap U=\phi$ .

Proof. For any point $c_{i}\in N(\infty)$ , choose a compact neighbour-

hood $U_{i}$ such that

(a) $\pi(l^{*}(0))\not\in U_{i}$ ,
(b) $U_{i}$ is evenly covered by $\pi$ ,
(c) For any component $E^{*}$ of $\pi^{-1}(U_{i})$ , there exist $a\in R^{n}$ and

$R>0$ such that the following map is a homeomorphism.

$D|_{E^{*}}$ : $E^{*}\rightarrow E=E(a, R)=\{|x-a|\geq R\}\cup\{\infty\}$
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Notice that in (c), if one component of $\pi^{-1}U_{i}$ is mapped to $E(a, R)$ ,

then all the other is also mapped to some $E(a’, R’)$ . Thus (c) is attained
if one chooses $U_{i}$ small and appropriate.

Let us show that $l^{*}\cap E^{*}$ is empty. If not, the image $l\cap E$ is a
half line starting at $\partial E$ . $( l =D(l^{*}).)$ Since $l^{*}$ is short, $l$ is not a
complete half line of $R^{n}$ . Then one can choose a ball $B\subset E\backslash \{\infty\}$

centered at the point $\lim_{t\rightarrow\infty}l(t)$ . Then $B$ has a copy $B^{*}$ in $E^{*}$ .

But $B\cap l$ is not the intersection of $B$ with a complete half line in $R^{n}$ .

See Figure (4.2). This contradicts the hypothesis that $l^{*}$ is complete.
Let $U=\bigcup_{i}U_{i}$ . We have $\pi(l^{*})\cap U=\phi$ . Q.E.D.

Figure (4.2)

For any $x^{*}\in\overline{N}^{*}$ , let $r(x^{*})$ be the maximal radius of a copy of
ball centered at $x^{*}$ . See Figure (4.3).

Claim (4.10). $ r(x^{*})<\infty$ .

Proof. If not, $x^{*}$ is contained in a copy of $R^{n}$ , say $P$ . If
$P=\overline{N}$ , then $N$ would be an Euclidean space form, contradicting

the hypothesis. Suppose $P\neq\overline{N}$ . Take a point $ y^{*}\in$ Fr(P) and a
sequence $\{y_{n}^{*}\}\subset P$ such that $y_{n}^{*}\rightarrow y^{*}$ . Clearly we have $ D(y_{n}^{*})\rightarrow\infty$ .

It follows from the continuity of $D$ that $ D(y^{*})=\infty$ . Therefore there is
a neighbourhood $Q$ of $y^{*}$ which is mapped by $D$ homeomorphically

onto $E(0, R)$ for some large $R>0$ . Then $D$ : $P\cup Q\rightarrow\hat{R}^{n}$ is a
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$\overline{N}^{*}$

$R^{n}$

Figure (4.3)

homeomorphism. We have

$N\cong\overline{N}=P\cup Q\cong\hat{R}^{n}$

Again a contradiction. Q.E.D.

Definition (4.11). The Fried metric is a continuous Riemannian

metric on $\overline{N}^{*}$ defined by

$g_{F}=\frac{D^{*}g_{E}}{r(x^{*})^{2}}$ on $T_{x^{*}}\overline{N}^{*}$ .

Let $\xi$ be a deck transformation of $\overline{N}$ and $x^{*}\in\overline{N}^{*}$ . We have

$\xi(B^{*}(x^{*}, r))=B^{*}(\xi x^{*}, ||\varphi(\xi)||r)$ .

This shows $r(\xi x^{*})=||\varphi(\xi)||r(x^{*})$ . That is, the deck transformation $\xi$ is
an isometry for the Fried metric $g_{F}$ . Thus $g_{F}$ induces a Riemannian
metric of $N^{*}$ , which is also called the Fried metric. The distance

functions of Fried metrics both on $\overline{N}^{*}$ and on $N^{*}$ are denoted by
$d_{F}$ .

The following is the aim of Step 1.

Claim (4.12). Let $B^{*}=B^{*}(a^{*}, r(a^{*}))$ be the maximal copy of
ball centered at $a^{*}\in\overline{N}^{*}$ . Then there exists a copy of half space $H^{*}$

such that $B^{*}(a^{*}, r(a^{*}))\subset H^{*}$ .

Proof. For simplicity let us assume $r(a^{*})=1$ and $D(a^{*})=e_{n}=$

$(0, \cdots, 0, 1)$ . By $D$ , we identify $B^{*}$ with $B=\{|x-e_{n}|<1\}$ . By this
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identifidation, we consider the function $r$ or the Fried metric $g_{F}$ to
be defined on $B$ . By the maximality of $B^{*}$ , there exists a radius $l^{*}$

which is a complete half line. Assume

$l$ $=D(l^{*})=\{x_{1}=0, \cdots, x_{n-1}=0,0<x_{n}\leq 1\}$ .

See Figure (4.4).

$n=0$

Figure (4.4)

Let us study for a while the Fried metric on $B$ . First of all for any
$x_{0}\in B$ , we have $r(x_{0})\leq|x_{0}|$ . In fact if not, the origin 0 is contained
in

$A=B\cup\{|x-x_{0}|<r(x_{0})\}$ .

$A$ has a copy containing $a^{*}$ . This contradicts the completeness of $l^{*}$ .

Thus we have $g_{F}\geq g_{G}$ on $B$ , where

$g_{G}=\frac{g_{E}}{|x|^{2}}$ .

For any $x\in B$ , let $\theta=\theta(x)$ be the angle of the vector $\vec{0x}$ and $l$ .

We have

Subclaim (4.12.1). $ d_{F}(x, l)\geq d_{G}(x, l)=\theta$ .

Proof. Let $\gamma(t)$ be a smooth path in $B$ combining $x$ and a
point in $l$ . Denote by lengthy(7) the length of $\gamma$ w.r.t. $d_{G}$ . Let

$\gamma(t)=|\gamma(t)|p(t)$ .
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We have
$|\gamma’(t)|\geq|\gamma(t)||p’(t)|$ .

In fact, since $|p(t)|=1$ , we have $(p(t),p’(t))=0$ and

$\gamma’(t)=|\gamma(t)|’p(t)+|\gamma(t)|p’(t)$ .

Therefore we obtain the following equality.

$ 1ength_{G}(\gamma)=\int_{0}^{1}\frac{|\gamma’(t)|}{|\gamma(t)|}dt\geq\int_{0}^{1}|p’(t)|dt\geq\theta$ .

On the other hand it is easy to show that for a suitable choice of $\gamma$ , one
has lengthy= $\theta$ . Q.E.D.

Now by Claim (4.9), There exist a compact submanifold $N_{C}=$

$N-IntU$ which contains $\pi(l^{*})$ and a sequence $ t_{i}\uparrow\infty$ such that for
some $c\in N_{C}$ ,

$d_{F}(\pi(l^{*}(t_{i})), c)\downarrow 0$ .

Also assume that $d_{F}(\pi(l^{*}(t_{1})), c)$ is sufficiently small. Then by (4.12.1),
there exists a point $b^{*}\in B^{*}$ such that $c=\pi(b^{*})$ and

$d_{F}(l^{*}(t_{1}), b^{*})=d_{F}(\pi(l^{*}(t_{1})), c)$ .

Now there exists a sequence $\{\xi_{i}\}$ of deck transformations such that

$d_{F}(l^{*}(t_{i}), \xi_{i}b^{*})\downarrow 0$ .

See Figure (4.5).
Thus passing to the model $B\subset R^{n}$ , we may assume the following.

Let $f_{i}=\varphi(\xi_{i})\in ES(R^{n})$ and $b=D(b^{*})\in B$ .

(1) $f_{i}(b)\in B$ .

(2) $\theta(f_{i}(b))\rightarrow 0$ .

(3) $f_{i}(b)\rightarrow 0$ .

(4) $P(f_{i})\rightarrow P_{0}\in O(n)$ .

(5) $||f_{i}||\rightarrow 0$ .

Notice that (5) follows from (3) since

$||f_{i}||=\frac{r(f\cdot(b))}{r(b)}.\leq\frac{|f_{i}(b)|}{r(b)}\rightarrow 0$ .

See Figure (4.6).
Now for $i>>1$ , taking $j>>i$ , we may assume

(6) $P(f_{i}f_{j}^{-1})$ is very near $E$ ,

(7) $||f_{i}f_{j}^{-1}||$ is very large.
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Figure (4.5)

$e_{n}$

$x_{n}=0$

$0$

Figure (4.6)

Next by (2), $\vec{0f_{j}(b)}$ is almost parallel to $\vec{e_{n}}$ and is almost perpen-

dicular to $\partial B$ . Applying $f_{i}f_{j}^{-1}$ , we still have that

$(8)(9)$
$\frac{f_{i}f_{j}^{-1}(0)f_{i}(b)\vec{}}{f_{i}f_{j}^{-1}(0)f_{i}(b)}isalmostpara11e1to\vec{e_{n}}isalmostperpendicu1ar’ tof_{i}f_{j}^{-1}(\partial B)$

.

In fact (8) follows from (6) and (9) from the fact that $f_{i}f_{j}^{-1}$ is an
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$f_{i}(b)$

Figure (4.7)

$f_{i}(b)$

Figure (4.8)

Euclidean similarity. See Figure (4.7).

On the other hand, notice that $\xi_{i}\xi_{j}^{-1}B^{*}\cap B^{*}$ is nonempty and

$\xi_{i}\xi_{j}^{-1}B^{*}\cup B^{*}$ is a copy of $f_{i}f_{j}^{-1}B\cup B$ . Therefore by the completeness

of $l^{*}$ , we have that

(10) $f_{i}f_{j}^{-1}(0)\not\in B$ ,

(11) $0\not\in f_{i}f_{j}^{-1}(B)$ .

Let
$f_{i}f_{j}^{-1}(0)=(\alpha_{1}, \cdots, \alpha_{n})$

and for $M>>1$ and $0<\in<<1$ , let

$D=\{|x_{i}-\alpha_{i}|\leq M(1\leq i\leq n-1), |x_{n}-\alpha_{n}|\leq\in\}$ .

Then by (5), (8) and (9), (taking $j>>i>>1$ even greater) we have

$\partial(f_{i}f_{j}^{-1}B)\cap\partial D=\partial(f_{i}f_{j}^{-1}B)\cap\partial_{v}D$ ,

where $\partial_{v}$ denotes the vertical boundary. See Figure (4.8).
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We have by (11) that $\alpha_{n}>-\in and$ by (10) that $\alpha_{n}<\in$ . It also

follows that $f_{i}f_{j}^{-1}(0)$ is very near 0.

This shows that any $x$ in the half space $\{x_{n}>0\}$ is in $f_{i}f_{j}^{-1}B$

for some $j>>i>>1$ . Since $f_{i}f_{j}^{-1}B\cup B$ has a copy containing $a^{*}$ , the

proof of (4.12) is now complete. Q.E.D.

Step 2. In Step 1, for any point $a^{*}\in\overline{N}^{*}$ , we have found a
copy of half space containing $B^{*}(a^{*}, r(a^{*}))$ . We have;

Claim (4.13). A copy of half space $H^{*}$ containing $B^{*}(a^{*}, r(a^{*}))$

is unique.

Proof Clearly $H$ is tangent to $B(a, r(a^{*}))$ and the radius to the
point of tangency is the developing image of a short complete line. In

other words, there exists a unique short complete line in $N^{*}$ which is
contained in $B^{*}(a^{*}, r(a^{*}))$ . This shows the uniqueness of $H^{*}$ . Q.E.D.

Definition (4.14). $H^{*}$ of (4.13) is denoted by $H^{*}(a^{*})$ and its im-
age by $D$ by $H(a^{*})$ . The point of tangency of $H(a^{*})$ and $B(a, r(a^{*}))$

is denoted by $p(a^{*})$ .

Notice that maximal copy of half space containing $a^{*}$ may not be
unique. Since $D$ is a submersion,

$D|C1H^{*}(a^{*})$ : $C1H^{*}(a^{*})\rightarrow R^{n}$

is injective and $D(FrH^{*}(a^{*}))$ is an open subset of $\partial H(a^{*})$ .

Definition (4.15). For $a^{*}\in\overline{N}^{*}$ , denote

$L(a^{*})=\partial H(a^{*})\backslash D(FrH^{*}(a^{*}))\subset R^{n}$ .

In other words, $x\in L(a^{*})$ if and only if $x=\lim_{t\rightarrow\infty}l(t)$ for some
short complete line $l^{*}$ such that $l^{*}(0)=a^{*}$ . See Figure (4.9).

For $b\in C1H(a^{*})\backslash L(a^{*})\subset R^{n}$ , we denote by $b^{*}$ the unique point

in $C1H^{*}(a^{*})\subset N^{*}$ such that $D(b^{*})=b$ .

Claim (4.16). For $ b\in$ $ClH(a^{*})\backslash L(a^{*})$ , $\partial H(b^{*})$ passes through
$p(a^{*})$ .

Proof Suppose not. We have $a\not\in H(b^{*})$ since $H(a^{*})\cup H(b^{*})$

has a copy in $N^{*}$ . Consider the transformation

$f_{j}f_{i}^{-1}=(f_{i}f_{j}^{-1})^{-1}\in ES(R^{n})$
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$a$

$\partial H(a^{*})$

Figure (4.9)

of Step 1. Recall that $||f_{j}f_{i}^{-1}||$ is very small, $P(f_{j}f_{i}^{-1})$ is very near
$E$ and $f_{j}f_{i}^{-1}$ has a fixed point near $p(a^{*})$ . Thus $f_{j}f_{i}^{-1}(\partial H(b^{*}))$ is
almost parallel to $\partial H(b^{*})$ and much near $p(a^{*})$ . Clearly

$H(a^{*})\cup H(b^{*})\cup f_{j}f_{i}^{-1}(H(b^{*}))$

has a copy in $\overline{N}^{*}$ . This contradicts that $p(b^{*})\in L(b^{*})$ . See Figure
(4.10). Q.E.D.

Figure (4.10)
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Claim (4.17). $L(a^{*})$ is an affine subspace of $R^{n}$ .

Proof. Let $x$ , $y\in L(a^{*})$ . Clearly $x=p(c^{*})$ for some $c^{*}\in H(a^{*})$ .
Likewise for $y$ . If a point $b$ on the line passing $x$ and $y$ does not
belong to $L(a^{*})$ , apply (4.16) to $b$ . Then $\partial H(b^{*})$ passes through $x$

and $y$ , that is, through $b$ . A contradiction. Q.E.D.

Claim (4.18). The correspondence $a^{*}\mapsto L(a^{*})$ is locally con-
stant.

Proof. Take $b^{*}\in H^{*}(a^{*})$ . Then $\partial H(b^{*})$ passes through $p(a^{*})$

by (4.16) and $p(a^{*})\in L(b^{*})$ . Since $ L(b^{*})\cap H(a^{*})=\phi$ , we have
$L(b^{*})\subset\partial H(a^{*})\cap\partial H(b^{*})$ . Likewise, $L(a^{*})\subset\partial H(a^{*})\cap\partial H(b^{*})$ . It
follows easily that $L(a^{*})=L(b^{*})$ . Q.E.D.

Since $\overline{N}^{*}$ is connected, $L(a^{*})$ is independent of the choice of
$a^{*}\in\overline{N}^{*}$ . Denote $L=L(a^{*})$ .

Claim (4.19). The developing map $D$ is a covering map onto $a$

component of $R^{n}\backslash L$ .

Proof. Clearly no points of $\overline{N}^{*}$ are mapped by $D$ into $L$ . Also
we have that points in $R^{n}\backslash L$ are evenly covered by $D$ . Let us consider
the point $\infty$ . For $dimL\geq 1$ , $\infty\in C1L$ cannot be in Image(D). For

$dim(L)=0$ (say $L=\{0\}$ ), if $\infty\in$ Image(D), then one can show
that

$D:\overline{N}\rightarrow\hat{R}^{n}\backslash \{0\}$

is a homeomorphism. But $H\subset ES(Hn)$ has $\infty$ as a fixed point. A
contradiction. Q.E.D.

Step 3.

Lemma (4.20). Let $\Gamma=\langle f, g\rangle\subset ES(R^{n})\rangle$ where

(1) $||f||\neq 1$ , $f(a)=a(a\in R^{n})$ ,

(2) $g(a)\neq a$ .

Then $\Gamma$ is indiscrete.

Proof. Assume $||f||<1$ . Let $h=g\circ f\circ g^{-1}$ . Then $||h||=||f||$

and $h(g(a))=g(a)$ . Let $h_{n}=f^{n}\circ hof^{-n}$ . We have $||h_{n}||=||h||=$

$||f||$ , the fixed point of $h_{n}$ is $f^{n}(g(a))$ and $f^{n}(g(a))\rightarrow a(n\rightarrow\infty)$ .
That is, $h_{n}\rightarrow f$ . This shows (4.20). Q.E.D.
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Now we shall complete the proof of Theorem (4.4). First of all if

$L=\{0\}$ , then by Step 2, $D$ : $N\rightarrow R^{n}\backslash \{0\}$ is a homeomorphism.
That is, $N$ is a Hopf manifold. This contradicts our hypothesis.

Consider the case $dimL\neq n-2$ . Suppose for simplicity that
$L=R^{q}$ . By (4.19), $D$ is a homeomorphism onto a component $V$ of
$R^{n}\backslash R^{q}$ . Thus the holonomy group $H$ must be discrete. By Step 1,
there exists $f\in H$ such that $||f||\neq 1$ . Clearly $f(L)=L$ . Assume
$f(0)=0$ . By (4.20), we have $g(0)=0$ for any $g\in H$ . Therefore
$g(R^{n-q})=R^{n-q}$ , where $R^{n-q}$ is the orthogonal complement of $R^{q}$ .

When identified by $D$ , Fried metric is given by

$g_{F}=\frac{g_{E}}{|x_{2}|^{2}}$ ,

where $x=(x_{1}, x_{2})(x_{1}\in R^{q}, x_{2}\in R^{n-q})$ . Since $N=N^{*}$ is compact,
$d_{F}$ is totally bounded. That is, there exists $K>0$ such that for any
$x$ , $y\in V$ , $d_{F}(x, gy)<K$ for some $g\in H$ . But this is impossible if we
choose $y\in R^{n-q}\cap V$ and $x_{1}$ as large as desired.

Finally suppose $L=R^{n-2}$ This case needs extra care. Since
$R^{n}\backslash R^{n-2}$ is not simply connected, $D$ is not a homeomorphism and
$H$ may not be discrete. Denote by $R_{\theta}\in ES(R^{n})$ the rotation by
angle $\theta$ around $R^{n-2}$ . Let

$Stab(R^{n-2})=\{f\in ES(R^{n})|f(R^{n-2})=R^{n-2}\}$ .

Notice that $R_{\theta}$ commutes with an element of Stab $(R^{n-2})$ . Let

$H^{n-1}=\{x_{n-1}>0, x_{n}=0\}$ .

Define a homeomorphism

$h:H^{n-1}\times S^{1}\rightarrow R^{n}\backslash R^{n-2}$

by $h(x, t)=R_{2\pi t}x$ . The universal covering of $R^{n}\backslash R^{n-2}$ is identified
with $H^{n-1}\times R$ . Then as is easily shown, the lift of $Stab(R^{n-2})$

is identified with $ ES(R^{n-2})\times$ R. That is, we have the following
equivariant mapping of $(G, X)$ -pairs

$(ES(R^{n-2})\times R, H^{n-1}\times R)\rightarrow(Stab(R^{n-2}), R^{n}\backslash R^{n-2})$ .

The $DH$-pair

$(D, \varphi)$ : $(\overline{N}, \pi_{1}(N))\rightarrow(R^{n}\backslash R^{n-2}, Stab(R^{n-2}))$
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clearly lifts to a $DH$-pair

$(D’’, \varphi)$ : $(\overline{N}, \pi_{1}(N))\rightarrow(H^{n-1}\times R, ES(R^{n-2})\times R)$ .

Since $D’$ is a homeomorphism, the image $\overline{H}=\varphi’(\pi_{1}(N))$ is discrete.

As before, $\overline{H}$ contains

$(f, t)\in ES(R^{n-2})\times R$

such that $||f||\neq 1$ . Let $f(0)=0$ . Since $ES(R^{n-2})$ and $R$

commute, the argument of (4.20) is also valid and we have $g(0)=0$ for

any $(g, s)\in\overline{H}$ . The rest of the proof is similar.

\S 5. Limit set

The purpose of this section is to define limit set for flat conformal
manifolds of an arbitrary type. In this section flat conformal manifolds
are to be connected and compact, unless otherwise specified.

First of all consider an arbitrary subgroup $\Gamma$ of $\Lambda 4(S^{n})$ . ( $\Gamma$ may

not be discrete. It may not be even finitely generated.) Let us begin by
defining the limit set for the group $\Gamma$ by looking at its action on $S^{n}$ .

There are four different ways and all of them are natural and useful.

Definition (5.1). Let $L_{F}=L_{F}(\Gamma)$ be the closure of the set of
the fixed points of loxodromic or parabolic elements of $\Gamma$ .

Definition (5.2). Let $L_{J}=L_{J}(\Gamma)$ be the set of points $x\in S^{n}$

such that for any neighbourhood $U$ of $x$ , the family $\{f|_{U}\}_{f\in\Gamma}$ is not
equicontinuous.

Definition (5.3). Let $L_{P}=L_{P}(\Gamma)$ be the set of points $x\in S^{n}$

such that for any neighbourhood $U$ of $x$ , the set $\{f\in\Gamma|fU\cap U\neq\phi\}$

is not precompact in $\mathcal{M}(S^{n})$ .

By definition $L_{F}$ , $L_{J}$ and $L_{P}$ are closed $\Gamma$-invariant subsets of
$S^{n}$ . Of course $L_{J}$ is an analogy of Julia set in one dimensional complex
dynamical system. Notice that if $\Gamma$ is discrete, then $S^{n}\backslash L_{P}$ coincides
with the domain of discontinuity $\Omega_{\Gamma}$ defined in (3.24).

Definition (5.4). Let $L_{\omega}=L_{\omega}(\Gamma)$ be the set of accumulation

points in $S^{n}$ of the orbit $\Gamma a$ of a certain point $a\in D^{n+1}$ .

This definition is independent of the choice of a $\in D^{n+1}$ . In fact, for
another point b $\in D^{n+1}$ and for $\gamma_{k}\in\Gamma$ , we have $d_{H}(\gamma_{k}(a), \gamma_{k}(b))=$
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$d_{H}(a, b)$ , where $d_{H}$ denotes the hyperbolic distance. By the difference
between the hyperbolic distance and the Euclidean distance, we have

$\lim_{k\rightarrow\infty}\gamma_{k}(a)=x$
$\Leftrightarrow$

$\lim_{k\rightarrow\infty}\gamma_{k}(b)=x$ .

Also note that $L_{\omega}$ is closed and $\Gamma$-invariant. In fact if $\lim_{k\rightarrow\infty}\gamma_{k}(a)$

$=x$ , then we have $\lim_{k\rightarrow\infty}\gamma\gamma_{k}(a)=\gamma(x)$ for $\gamma\in\Gamma$ . Below we shall
prove the minimality of $L_{\omega}$ .

Definition (5.5). Let $A$ be a $\Gamma$-invariant closed subset of $S^{n}$

such that Card(A) $\geq 2$ . The convex hull of $A$ , denoted by $C(A)$ ,

is defined to be the convex hull in $(D^{n+1}, g_{H})$ of all the geodesies
combining two points of $A$ .

Clearly $C(A)$ is a closed $\Gamma$-invariant subset of $D^{n+1}$ . See Figure
(5.1).

$A$

$A$

$A$

$A$

Figure (5.1)

Lemma (5.6). Let $A$ be an arbitrary $\Gamma$ -invariant closed set
such that Card(A) $\geq 2$ . Then we have $L_{\omega}(\Gamma)\subset A$ .

Proof. Take the point a $\in D^{n+1}$ of (5.4) inside $C(A)$ . Then the
orbit of a cannot evade $C(A)$ . This shows (5.6). Q.E.D.
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Corollary (5.7). If $\Gamma$ has no fifixed point in $S^{n}$ , then $L_{\omega}(\Gamma)$

is the unique minimal $ set\rangle$ $i.e.$ , it is contained in any nonempty closed
$\Gamma$ -invariant subset of $S^{n}$ .

For $\gamma\in \mathcal{M}(S^{n})$ , denote by CI(\gamma ) the convex hull in $R^{n+1}$ of
the isometric sphere $I(\gamma)$ .

Lemma (5.8). For $\{\gamma_{k}\}\subset\Gamma\subset \mathcal{M}(S^{n})$ such that $\gamma_{k}\rightarrow\infty$ , we
have $d(CI(\gamma_{k}), L_{\omega}(\Gamma))\rightarrow 0$ .

Proof. For the properties of isometric spheres, see (2.11)\sim (2.16).

We shall prove (5.8) by establishing $d(CI(\gamma_{k}^{-1}), L_{\omega})\rightarrow 0$ . Recall that

$\gamma_{k}\rightarrow\infty$ if and only if radius $I(\gamma_{k}^{-1})=radiusI(\gamma_{k})\rightarrow 0$ and that
$I(\gamma_{k})$ is always orthogonal to $S^{n}$ . Therefore given a point $a\in D^{n+1}$ ,

we have $a\not\in CI(\gamma_{k})$ for large $k$ . That is, $\gamma_{k}a\in CI(\gamma_{k}^{-1})$ . See Figure

(5.2). Since $d(\gamma_{k}a, L_{\omega})\rightarrow 0$ , it follows that $d(CI(\gamma_{k}^{-1}), L_{\omega})\rightarrow 0$ .

Q.E.D.

(a)

$)$

Figure (5.2)

Definition (5.9). Two points $x$ , $y\in L_{\omega}$ are called dual in case

there exists $\gamma_{k}\in\Gamma$ such that $\gamma_{k}(a)\rightarrow x$ and $\gamma_{k}^{-1}(a)\rightarrow y(a\in D^{n+1})$ .

This is also independent of the choice of $a$ . For $x\in L_{\omega}$ , let $D_{x}$

be the set of points in $L_{\omega}$ which are dual to $x$ . Diagonal argument

shows that $D_{x}$ is a closed subset. Also if $\gamma_{k}a\rightarrow x$ and $\gamma_{k}^{-1}a\rightarrow y$ ,
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then for $\gamma\in\Gamma$ , $\gamma_{k}\gamma^{-1}a\rightarrow x$ and $\gamma\gamma_{k}^{-1}a\rightarrow\gamma y$ . That is, $D_{x}$ is
$\Gamma$-invariant.

Lemma (5.10). If $\Gamma$ has no fifixed point in $S^{n}$ , then any two
points of $L_{\omega}$ are dual.

Proof. For $ L_{\omega}\neq\phi$ , the condition assures that Card(D:c)\geq 2.

Since $D_{x}$ is closed and $\Gamma$-invariant, we have by (5.6) that $D_{x}\supset L_{\omega}$ .

Q.E.D.

Proposition (5.11). If $\Gamma$ has no fifixed point in $ S^{n}\rangle$ then for
any pair of distinct points $x$ , $ y\in L_{\omega}(\Gamma)\rangle$ there exists a loxodromic

transformation whose two fifixed points are arbitrarily near $x$ and $y$ .

Proof. By (5.10), we have that $x$ and $y$ are dual. Let $\gamma_{k}(a)\rightarrow x$

and $\gamma_{k}^{-1}(a)\rightarrow y(\gamma_{k}\in\Gamma, a\in D^{n+1})$ . We have clearly $\gamma_{k}\rightarrow\infty$ . By

applying the argument of (5.8), we obtain that $CI(\gamma_{k}^{-1})$ is sufficiently
near $x$ and $CI(\gamma_{k})$ is sufficiently near $y$ . Since $x\neq y$ , we may

assume that $ CI(\gamma_{k}^{-1})\cap CI(\gamma_{k})=\phi$ . It is easy to show that $\gamma_{k}$ is

a loxodromic transformation with one fixed point in $CI(\gamma_{k}^{-1})$ and the

other in $CI(\gamma_{k})$ . This shows (5.11). Q.E.D.

Lemma (5.12). $ L_{\omega}(\Gamma)=\phi$ if and only if $\Gamma$ is precompact.

Proof. This follows at once from the fact that for any $a\in D^{n+1}$ ,

the isotropy subgroup of $\lambda\Lambda(S^{n})$ at $a$ is isomorphic to a compact
group $O(n+1)$ . Q.E.D.

Proposition (5.13). A subgroup $\Gamma$ of $\mathcal{M}(S^{n})$ is precompact if
and only if it has a common fifixed point in $D^{n+1}$ . In particular, maximal
compact subgroups of A4 $(S^{n})$ are conjugate to $O(n+1)$ .

Proof. The if part is trivial. Let us show that a compact subgroup
$\Gamma$ has a fixed point in $D^{n+1}$ . (Pass to $C1F$ if $\Gamma$ is noncompact.)

Choose an arbitrary point $a\in D^{n+1}$ . Let $d=diam_{H}(\Gamma a)$ and let
$d_{H}(a, ga)=d$ $(g\in\Gamma)$ . Let $a_{1}$ be the middle point of $a$ and $ga$ .

For any $ h\in\Gamma$ , consider the hyperbolic tetrahedron with vertices $a$ ,

$ga$ , $ha$ and $hga$ . All the edges have length $\leq d$ . Easy hyperbolic
trigonometry shows $d(a_{1}, ha_{1})\leq cd$ for some (computable) $c\in(0,1)$ .

That is, $diam_{H}(\Gamma a_{1})\leq cd$ . Likewise construct $a_{2}$ , $a_{3}$ etc. Let
$a_{\infty}=\lim_{k\rightarrow\infty}a_{k}$ . We have $diam_{H}(\Gamma a_{\infty})=0$ . That is, $a_{\infty}$ is a fixed
point of $\Gamma$ . Q.E.D.
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Corollary (5.14). Unless $\Gamma$ has $a$ fifixed point in $D^{n+1}\cup S^{n}$ , $\Gamma$

contains a loxodromic transformation.

Proof The condition implies that $CardL_{\omega}\geq 2$ . Therefore (5.14)
follows from (5.11). Q.E.D.

Theorem (5.15). For an arbitrary subgroup $\Gamma\subset \mathcal{M}(S^{n})$ , we
have

$L_{F}(\Gamma)\subset L_{J}(\Gamma)=L_{P}(\Gamma)=L_{\omega}(\Gamma)$ .

Moreover unless $ L_{F}(\Gamma)=\phi$ and $L_{\omega}(\Gamma)$ is a singleton, we have
$L_{F}(\Gamma)=L_{\omega}(\Gamma)$ .

Proof $L_{F}\subset L_{J}\cap L_{P}$ : This follows at once from the local models
of loxodromic and parabolic transformations.

$L_{J}\cup L_{P}\subset L_{\omega}$ : Suppose $x\not\in L_{\omega}$ . Then by (5.8), for small $\in>0$

and for a small neighbourhood $U$ of $x$ , we have that CI(\gamma )\cap U $=\phi$ if
radius7(7)< $\in and$ $\gamma\in\Gamma$ . But the set of $\gamma$ such that radius\geq $\in$

is precompact by (2.16). It follows from (2.12) that $x\not\in L_{J}\cup L_{P}$ .

We shall divide the proof of the remaining part into four cases.

Case 1. $\Gamma$ has no fixed point in $D^{n+1}\cup S^{n}$ .

By (5.14) we have $ L_{F}\neq\phi$ . Therefore it follows from (5.7) that
$L_{\omega}\subset L_{F}$ . Together with the inclusion we have already established, we
obtain that $L_{F}=L_{J}=L_{P}=L_{\omega}$ .

Case 2. $\Gamma$ has a fixed point in $D^{n+1}$ .

By (5.12) and (5.13), this is equivalent to $ L_{\omega}=\phi$ . We have
$ L_{F}=L_{J}=L_{P}=L_{\omega}=\phi$ .

Case 3. $\Gamma$ has a fixed point $y\in S^{n}$ and that $ L_{\omega}\backslash \{y\}\neq\phi$ .

Let $x\in L_{\omega}\backslash \{y\}$ . Notice that parabolic and elliptic transformations
of the isotropy group $\Gamma_{y}$ keep horospheres at $y$ invariant. Therefore
there must exist loxodromic transformations $\gamma_{n}\in\Gamma$ such that $\gamma_{n}a\rightarrow$

$x(a\in D^{n+1})$ . Then $\gamma_{n}^{-1}a\rightarrow y$ . That is, we have $y\in L_{\omega}$ and
$L_{\omega}\subset L_{F}$ , showing that $L_{F}=L_{J}=L_{P}=L_{\omega}$ .

Case 4. $L_{\omega}=\{y\}$ .

This is the only case where we cannot prove $L_{\omega}\subset L_{F}$ . In order to
complete the proof of (5.15), it suffices to show that $y\in L_{F}\cap L_{P}$ . Since
$ L_{\omega}\neq\phi$ , there exists a sequence $\{\gamma_{k}\}\subset\Gamma$ such that $\gamma_{k}\rightarrow\infty$ . Since

$\gamma_{k}y=y$ and $\gamma_{k}$ are not loxodromic, we have $y\in CI(\gamma_{k})\cup CI(\gamma_{k}^{-1})$
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and $ CI(\gamma_{k})\cap CI(\gamma_{k}^{-1})\neq\phi$ . Hence for any neighbourhood $U$ of $y$ ,
$CI(\gamma_{k})\subset U$ for sufficiently large $k>0$ . But by (2.12) and (2.16), we
have that $\{\gamma_{k}|_{U}\}$ is not equicontinuous. That is, $y\in L_{J}$ . Clearly we
have $\gamma_{k}(U)\cap U\neq\phi$ . Therefore $y\in L_{P}$ . Q.E.D.

The following corollary was already used in \S 3.

Corollary (5.16). Suppose a discrete group $\Gamma$ admits an invari-
ant open set $\Omega$ such that $ S^{n}\backslash \Omega$ is neither empty nor a singleton.
Then $\Gamma$ acts on $\Omega$ discontinuously.

Proof. Since $\Gamma$ is discrete, $S^{n}\backslash L_{P}$ coincides with the domain of
discontinuity. By (5.6), we have $S^{n}\backslash \Omega\supset L_{\omega}=L_{P}$ . Therefore $\Omega$ is
contained in the domain of discontinuity. Q.E.D.

We will give an example of $\Gamma$ for which $ L_{F}(\Gamma)=\phi$ and $L_{\omega}(\Gamma)$

is a singleton. The same example can be found in Kulkarni ([44]).

Example (5.17). Let us work with A4 $(\hat{R}^{4})$ . We shall construct
a subgroup $\Gamma$ such that $ L_{F}(\Gamma)=\phi$ and that $L_{\omega}(\Gamma)=\{\infty\}$ . Equiva-
lently, the group $\Gamma$ consists purely of elliptic elements, keeps $\infty$ fixed
and does not have a fixed point in $H^{5}$ . By (1.9) and (2.24), any element
$ f\in\Gamma$ has the form

$(*)$ $f(x)=Px+b$ $(P\in O(4), b\in R^{4})$ .

Notice that $f$ is elliptic if and only if $f$ has a fixed point $a\in R^{4}$ . In
fact, then, the point $(a, x)\in H^{5}(x>0)$ is kept fixed by the extended
action of $f$ . Likewise the group $\Gamma$ has a fixed point in $H^{5}$ if and
only if it has a fixed point in $R^{4}$ . Therefore our purpose is to construct
a group $\Gamma$ consisting of transformations $f$ of $(*)$ such that

$ f\in\Gamma$ has a fixed point in $R^{4}$ .

$\Gamma$ does not have a fixed point in $R^{4}$ .

First of all let us show that there exist $P$, $Q\in SO(4)$ such that
for any nontrivial reduced word $w(P, Q)$ , we have $|w(P, Q)-E|\neq 0$ .

Notice that for a (possibly real) algebraic group $G$ , if $G$ contains
a free group of two generators, then for any nontrivial reduced word
$w(x, y)$ , the equation $w(x, y)=id$ defines a proper subvariety (that is,
a subvariety of positive codimension) of $G\times G$ . The converse also holds
since the complements of subvarieties of positive codimension are open
dense subsets and their countable intersection is nonempty. Therefore
a real algebraic group contains a free subgroup of two generators if and
only if its complexification does. Now it is well known that SO $(2, 1)$



Flat Conformal Structure 221

has a free subgroup of two generators. Clearly SO $(2, 1)c=SO(3)c$ .

Therefore by the above consideration, SO(3), hence its universal cov-
ering $SU(2)$ , has a free group of two generators also. Considering the
inclusion of $SU(2)$ into (4), we obtain the desired $P$ and $Q$ .

Let
$f$ : $x\mapsto Px$ and $g:x\mapsto Qx+b(b\neq 0)$ .

Now $\Gamma=\langle f, g\rangle$ consists purely of elliptic transformations, since any
element of $\Gamma$ has the linear part without eigenvalue 1 and hence has a
fixed point in $R^{4}$ . However $f$ and $g$ have no common fixed points
in $R^{4}$ .

As a matter of fact, (5.17) implies that $L_{F}=L_{\omega}$ does not hold in
higher dimension. However in low dimension, we have;

Theorem (5.18). For $\Gamma\subset \mathcal{M}(\hat{R}^{n})$ $(n\leq 3)$ , we have

$L_{F}(\Gamma)=L_{J}(\Gamma)=L_{P}(\Gamma)=L_{\omega}(\Gamma)$ .

Proof. All that need proof is that if $L_{\omega}=\{\infty\}$ , then $L_{F}=\{\infty\}$ .

Equivalently, if $\Gamma$ keeps $\infty$ fixed and if $\Gamma$ does not have a fixed point
in $R^{n}$ , then $\Gamma$ contains nonelliptic transformations.

First of all for $n=1$ , there exist no elliptic transformations that
keep $\infty$ fixed and there is nothing to prove.

For $n=2$ , assume that $f$ , $g\in \mathcal{M}(\hat{R}^{2})_{\infty}$ have no common fixed

points in $R^{3}$ . Computation shows that $[f, g]=fgf^{-1}g^{-1}$ is parabolic,
since the linear parts commute.

Finally let $n$ $=3$ . It clearly suffices to verify for a group $\Gamma$ con-
sisting of orientation preserving transformations. Orientation preserving

elliptic transformations in $\mathcal{M}(\hat{R}^{3})_{\infty}$ are rotations around their axes.
Let us show first that if two rotations $f$ , $g$ have disjoint axes, then the
group $\langle f, g\rangle$ they generate contains a parabolic transformations. In

fact, if the axes are parallel, then $[f, g]$ is parabolic. Suppose they are
not parallel and assume for contradiction that $fg^{-1}$ has a fixed point
$x\in R^{n}$ . Then we have $f(x)=g(x)=y$ . By Euclidean geometry, we
have that the bisector of $x$ and $y$ contains the axes of $f$ and $g$ . (See
Figure (5.3).) A contradiction.

Therefore if $\Gamma\subset \mathcal{M}(\hat{R}^{3})_{\infty}$ is purely elliptic and have no common
fixed points, then all the axes of transformarions of $\Gamma$ must lie in a
plane and all their rotation angles must be $\pi$ . Therefore there exists

an index two subgroup of $\Gamma$ consisting of parabolic transformations.
This contradiction shows (5.18). Q.E.D.
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Figure (5.3)

Now let $N$ be a connected closed flat conformal manifold modeled
on $(\mathcal{M}(S^{n}), S^{n})$ . As before denote by $D$ the developing map, by $\varphi$ the
holonomy homomorphism and by $H$ the holonomy group. Hereafter by
certain abuse, we consider a flat conformal manifold $N$ to be equipped
with a particular choice of developing map, holonomy homomorphism
and holonomy groups. Our purpose is to define the limit set of $N$ . So
far, we already had four kinds of limit set in terms of the holonomy group
$H$ . For a flat conformal manifold, they are denoted by $L_{F}(N)=L_{F}(H)$

and so forth. We need one more definition, which is obtained by looking
at the developing map.

Definition (5.19). Let $L_{O}=L_{O}(N)$ be the set of points $x$

such that for any compact neighbourhood $\overline{U}$ of $x$ , the inverse image
$D^{-1}(\overline{U})$ has a nonempty and noncompact component.

As is shown easily, $L_{O}$ is precisely the set of points which are not
evenly covered by D.

For general closed $(G, X)$ manifold, Kulkarni-Pinka11([45]) defined
$L_{J}$ and $L_{P}$ and showed $L_{J}\supset L_{P}$ and $L_{J}\supset L_{O}$ . They also showed
that $L_{J}=L_{P}$ for closed flat conformal manifolds. The following is an
elaboration of their rerult.
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Theorem (5.20). For a connected compact flflat conformal mani-

fold $N$ , we have

$L_{F}(N)=L_{\omega}(N)=L_{J}(N)=L_{P}(N)=L_{O}(N)$ .

Proof $L_{F}=L_{\omega}$ : If not, we have $ L_{F}=\phi$ , $L_{\omega}=\{a\}$ and $H$ has
a fixed point $a\in S^{n}$ . But then by (4.4), $N$ is isomorphic to either
$S^{n}$ , a Hopf manifold or a Euclidean space form. In any case we have
$L_{F}=L_{\omega}$ .

$L_{\omega}\subset L_{O}$ : If $CardL_{O}\geq 2$ , then this follows at once from (5.6). If
$L_{O}=\{a\}$ , then $a$ is a fixed point of $H$ and again by (4.4), we have
$L_{\omega}=L_{O}$ . If $ L_{O}=\phi$ , then $D$ is a covering map onto $S^{n}$ That is,
$N$ is a spherical space form and we have $ L_{\omega}=\phi$ .

$L_{O}\subset L_{J}$ : Denote by $\overline{B}(x, r)$ the closed disk centered at $x\in S^{n}$ of
radius $r>0$ w.r.t. the spherical metric. The proof is by contradiction.
Suppose $b\in L_{O}\backslash L_{J}$ . That is, we assume

(1) For some $r_{k}\downarrow 0$ , $D^{-1}\overline{B}(b, r_{k})$ has a noncompact component
$E_{k}$ .

(2) $\{f|_{\overline{B}(b,r_{1})}\}_{f\in H}$ is equicontinuous.

Choose $a_{k}\in E_{k}$ . (Note that $D(a_{k})\rightarrow b.$ ) Then since $N$ is
compact, there exists $\xi_{k}\in\pi_{1}(N)$ such that $\xi_{k}a_{k}$ is in some compact

region of $\overline{N}$ . Assume $\xi_{k}a_{k}\rightarrow c$ . Choose a compact neighbourhood
$\overline{V}$ of $c$ such that

$D|_{\overline{V}}$ : $\overline{V}\rightarrow\overline{B}(D(c), 2\in)$

is a homeomorphism for some $\in$ $>0$ . Assume also $ D(\xi_{k}a_{k})\in$

$\overline{B}(D(c), \in)$ for any $k>0$ . Choose $\delta>0$ so

$x$ , $y\in\overline{B}(b, r_{1})$ , $ d(x, y)<2\delta\Rightarrow d(f(x), f(y))<\in$ for any $f\in H$ .

For $ r_{k}<\delta$ , we have

$\overline{B}(b, r_{k})\subset\overline{B}(D(a_{k}), 2\delta)$ ,

$\varphi(\xi_{k})(\overline{B}(D(a_{k}), 2\delta))\subset\overline{B}(D(\xi_{k}a_{k}), \in)$ ,

$\overline{B}(D(\xi_{k}a_{k}), \in)\subset\overline{B}(D(c), 2\in)$ .

Therefore
$\varphi(\xi_{k})(\overline{B}(b, r_{k}))\subset\overline{B}(D(c), 2\in)$ ,

Now $\xi_{k}E_{k}$ is the component containing $\xi_{k}a_{k}$ of $D^{-1}(\varphi(\xi_{k})(\overline{B}(b, r_{k}))$

and is contained in $\overline{V}$ . Therefore $\xi_{k}E_{k}$ , hence $E_{k}$ , is compact. A
contradiction. Q.E.D.
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Definition (5.21). The set in (5.20) is called the limit set of $N$

and is denoted by $L=L(N)$ .

We summarize fundamental properties of $L$ in the following propo-
sition.

Proposition (5.22). $L(N)$ is a closed $H$ -invariant subset of $S^{n}$ .

Further if $N$ is not isomorphic to a Hopf manifold, then $L(N)$ is

the unique minimal set. In particular, if $L(N)\neq S^{n}$ , then we have
IntL(N)=\phi .

Below we shall give applications of (5.20). The first one (5.23) is

originally due to Kamishima([25]). See also $Gusevski\dot{i}$-Kapovich([20]).

Corollary (5.23). If the developing map $D$ of a connected com-
pact flflat conformal manifold is not onto $S^{n}$ , then $D$ is a covering
map onto its image.

Proof. We need only consider the case where $N$ is not a Hopf
manifold. Then by (5.22), we have $L=L_{O}$ is contained in the com-
plement of Image(D). That is, Image(D) is evenly covered by $D$ .

Q.E.D.

The next application is found in Kulkarni-Pinkall ([45]), in which
condition(2) below is mistakingly dropped.

Corollary (5.24). Let $N$ be a connected compact flflat conformal
manifold and let $\Omega=S^{n}\backslash L(N)$ . Suppose

(1) $\Omega$ is connected and its fundamental group $\pi_{1}(\Omega)$ is fifinitely
generated.

(2) For any point $x\in S^{n}$ , there exists an arbitrarily small neigh-
bourhood $U$ such that $U\backslash L$ is connected.

Then the developing map $D$ isa covering map onto its image.

Proof. First of all let us prove that $D^{-1}(\Omega)$ is connected. In fact

given any two points $a$ , $b\in D^{-1}(\Omega)$ , choose a path $p$ in $\overline{N}$ joining
$a$ and $b$ . The path $p$ is covered by a finite union of small open
set $V_{i}$ . We may assume by (2) that $V_{i}\backslash D^{-1}(L)\approx D(V_{i})\backslash L$ is
connected. Then we can make a small change of $p$ within $\bigcup_{i}V_{i}$ fixing

the boundary points so that $p$ is contained in $D^{-1}(\Omega)$ . Therefore
$D^{-1}(\Omega)$ is connected.

Now by (4.4), we need only consider the case where $H$ has no

fixed points in $S^{n}$ . We need only show that $ D(\overline{N})\cap L=\phi$ . Suppose
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the contrary. Choose a small compact ball $\overline{V}$ such that $D$ is a
homeomorphism on $\overline{V}$ , that $IntD(\overline{V})\cap L\neq\phi$ and that $ExtD(\overline{V})\cap L\neq$

$\phi$ . Since $\pi_{1}(\Omega)$ is finitely generated, it is supported on some compact
subset $K$ of $\Omega$ . By (5.11), there exists a loxodromic transformation
$f\in H$ with an attracting fixed point in $IntD(\overline{V})$ and with a repelling

fixed point outside $D(\overline{V})$ . We have $f^{n}(K)\subset D(\overline{V})$ for some $n$ $>$

$0$ . Therefore $\pi_{1}(\Omega)$ is supported on $ D(\overline{V})\cap\Omega$ . Now $D$ gives

ahomeomorphism from $\overline{V}\cap D^{-1}(\Omega)$ onto $ D(\overline{V})\cap\Omega$ . This shows
$D_{*}$ : $\pi_{1}(D^{-1}(\Omega))\rightarrow\pi_{1}(\Omega)$ is an epimorphism. Since points in $\Omega$ are
evenly covered by $D$ , $D$ gives a homeomorphism from $D^{-1}(\Omega)$ onto
$\Omega$ . However $D^{-1}(D(\overline{V}))$ has a noncompact component, which is of

course disjoint from $\overline{V}$ . A contradiction. Q.E.D.

The condition (2) of (5.24) is in fact necessary. For, let $\Sigma$ be a
closed flat conformal 2-manifold corresponding to a $B$-group $\Gamma([3])$ .

That is, $\Omega=S^{n}\backslash L$ is connected and simply connected and $\Sigma$ is
isomorphic to $\Omega/\Gamma$ . Apply the construction of (3.37) to $\Sigma$ . We obtain
a flat conformal structure with the same holonomy group and surjective
developing map. All this is of course well known. For more general
treatment, see e.g. Goldman ([16]).

We shall finish this section by studying type 2 flat conformal struc-
tures, i.e., with the developing maps covering maps and with indis-
crete holonomy groups. First we give examples in dimension $\geq 3$ . (2-
dimensional examples were already given in (3.32).) For our purpose the

coordinates of $\hat{R}^{n}$ is convenient.

Consider $\hat{R}^{n-2}\subset\hat{R}^{n}$ As before, denote by $R_{\theta}\in \mathcal{M}(\hat{R}^{n})$ the

rotation by angle $\theta$ around
$\hat{R}^{n-2}$ Let

$H^{n-1}=\{x_{n-1}>0, x_{n}=0\}$ .

Define
$h:H^{n-1}\times R\rightarrow\hat{R}^{n}\backslash \hat{R}^{n-2}$

by $h(x, t)=R_{2\pi t}x$ . $h$ is a universal covering. By (2.3), we have

A4 $(\hat{R}^{n-2})=\{g\in \mathcal{M}(\hat{R}^{n})|g(H^{n-1})=H^{n-1}\}$ .

Let us define

$S(\hat{R}^{n-2})=\{f\in \mathcal{M}(\hat{R}^{n})|f(\hat{R}^{n-2})=\hat{R}^{n-2}\}$ .
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An element $f\in S(\hat{R}^{n-2})$ carries $H^{n-1}$ to a half plane bounded by
$\hat{R}^{n-2}$ Clearly $f$ is determined by $f(H^{n-1})$ and $f|_{\hat{R}^{n-2}}$ . This shows

that $f$ commutes with $R_{\theta}$ . Therefore we have the epimorphism

$\psi$ : A4 $(\hat{R}^{n-2})\times R\rightarrow S(\hat{R}^{n-2})$

defined by $\psi(g, t)=R_{2\pi t}g$ .

Consider the diagonal action of $\mathcal{M}(\hat{R}^{n-2})\times R$ on $H^{n-1}\times R$ .
Then

$(\psi, h)$ : $(\mathcal{M}(\hat{R}^{n-2})\times R, H^{n-1}\times R)\rightarrow(S(\hat{R}^{n-2}),\hat{R}^{n}\backslash \hat{R}^{n-2})$

is an equivariant mapping of $(G, X)$-pairs.

Example (5.25). Let $\Gamma\subset \mathcal{M}(\hat{R}^{n-2})$ be a discrete subgroup
which acts freely on $H^{n-1}$ . Suppose $ M=H^{n-1}/\Gamma$ is compact. For
any $\theta\in R\backslash \{0\}$ and any homomorphism $\mu$ : $\Gamma\rightarrow R$ , define

$\overline{\varphi}$ : $\Gamma\times Z\rightarrow \mathcal{M}(\hat{R}^{n-2})\times R$

by $\overline{\varphi}(\gamma, m)=(\gamma, \mu(\gamma)+m\theta)$ . Using a triangulation of $ H^{n-1}/\Gamma$ , one
can construct a continuous map $u$ : $H^{n-1}\rightarrow R$ such that $u(\gamma x)=$

$\mu(\gamma)+u(x)$ for $\gamma\in\Gamma$ and $x\in H^{n-1}$ . Define a homeomorphism

$\overline{D}:\overline{M}\times R\rightarrow H^{n-1}\times R$

by $\overline{D}(x, t)=(x, u(x)+\theta t)$ , where we identify the universal covering

$M$ with $H^{n-1}$ Let $\varphi=\psi\circ\overline{\varphi}$ and $D=h\circ\overline{D}$ . Then $(D, \varphi)$ is
clearly a $DH$ pair for $M$ $\times S^{1}$ . Therefore it defines a flat conformal
structure on $M\times S^{1}$ . Since $\overline{D}$ is a homeomorphism, $D$ is a covering

map onto $\hat{R}^{n}\backslash \hat{R}^{n-2}$ and the holonomy group $H$ is indiscrete e.g.,
if we choose $\theta\in R\backslash Q$ . (Moreover for a suitable choice of $\mu$ , the
“rotation part” of $H$ is not even infinite cyclic.) Thus this is a type 2
flat conformal structure.

Conversely we have the following theorem which was first obtained
by $Gusevski\dot{i}$-Kapovich ([20]) in dimension 3.

Theorem (5.26). Suppose $N$ is a type 2 connected closed flflat
conformal manifold modeled on $(\mathcal{M}(\hat{R}^{n}),\hat{R}^{n})$ , where $n$ $\geq 3$ . Then
by changing the $DH$ pair within the equivalence class, we have $L(N)=$
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$\hat{R}^{n-2}$

Moreover N is a hyperbolic manifold bundle over the circle
whose holonomy map is an isometry.

Proof Step 1. $L(N)=\hat{R}^{n-2}$

Let $C1H_{0}$ be the identity component of the closure CIH of $H$ .

Since $H$ is indiscrete, we have $C1H_{0}\neq\{1\}$ .

Case 1. $C1H_{0}$ is noncompact. In this case $L\equiv L_{\omega}(C1H_{0})$ is
nonempty. Notice that $C1H_{0}$ is a normal subgroup of CIH. This
implies that $L$ is invariant by the action of CIH and hence by $H$ .

Therefore by (5.22), we have $L(N)\subset L$ . On the other hand, it is easy
to show that

$L=L_{\omega}(C1H_{0})\subset L_{\omega}(C1H)=L_{\omega}(H)=L(N)$ .

Therefore we have $L=L(N)$ .

Also by (4.4), we obtain that CardL $\geq 3$ . In fact, if for example
CardL $=2$ , then (4.4) implies that $N$ or its double covering is a Hopf
manifold, contrary to our hypothesis.

Let us show next that there is no fixed point of $C1H_{0}$ in $L$ . Suppose
on the contrary that there exists one, say $x$ . Then for any $h\in H$ ,
$hx$ is also a fixed point of $C1H_{0}$ , since $C1H_{0}$ is a normal subgroup of
CIH. On the other hand, the orbit $Hx$ is dense in $L$ and therefore
has cardinality $\geq 3$ . That is, there exist at least three fixed points of
$C1H_{0}$ in $L$ . This implies by the argument of (2.22) that $C1H_{0}$ has

a fixed point in $D^{n+1}$ , contradicting the assumption that $C1H_{0}$ is
noncompact.

By (5.6) this implies that any $C1H_{0}$ orbit $K$ in $L$ is dense in

$L$ . Notice that $K$ is an injectively immersed submanifold in $\hat{R}^{n}$

By (5.11), there exists a loxodromic transformation $f\in H$ . We may
assume for simplicity that $f(x)=\lambda Px$ , $(\lambda>1, P\in O(n))$ and that
$0\in K$ . Clearly $K$ is kept invariant by $f$ . Now the smoothness of $K$

at 0 implies that $K=\hat{R}^{k}$ for some $1\leq k\leq n$ . ($K=R^{k}$ implies that
$\infty$ is a fixed point of $C1H_{0}$ , contradicting the above observation.) This

shows $L=\hat{R}^{k}$ Since the developing map $D$ is a covering map onto

its image, we have $ D(\overline{N})\cap L(N)=\phi$ . In particular we obtain $k\neq n$ .

Finally we have $k=n-2$ , since otherwise $D$ is a homeomorphism

onto a connected component of $\hat{R}^{n}\backslash \hat{R}^{k}$ and $H$ must be discrete.

Case 2. $C1H_{0}$ is compact. Here the coordinates of $S^{n}$ is conve-
nient. First of all by (5.13), we may assume $C1H_{0}\subset O(n+1)$ . If 0
is the unique fixed point of $C1H_{0}$ , then 0 is also a fixed point of $H$ .
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That is, $H\subset O(n+1)$ . A contradiction. Therefore the fixed point set

of $C1H_{0}$ in $S^{n}$ is $S^{k}$ $(0\leq k\leq n)$ . Since $C1H_{0}$ is nontrivial, we
have $k\neq n$ . Likewise we obtain $k\neq n-1$ . In fact since $C1H_{0}$ is
connected, we have $C1H_{0}\subset SO(n+1)$ . Therefore if $k=n-1$ , then
$C1H_{0}$ is trivial.

Notice that $S^{k}$ is $H$-invariant and therefore $L(N)\subset S^{k}$ . Let us

show $L(N)=S^{k}$ . Since $k\leq n-2$ , we obtain as in the proof of (5.24)

that $\overline{N}\backslash D^{-1}(S^{k})$ is connected. In way of contradiction take a point
$x\in S^{k}\backslash L(N)$ . Consider an $\in$-neighbourhood $V$ of $x$ in $S^{n}$ such
that $ V\cap L(N)=\phi$ .

Then we have as well that $D^{-1}(V\backslash S^{k})$ is connected. That is,
$D^{-1}(V)$ is connected. This shows that $D$ is a homeomorphism, con-

trary to our hypothesis. Therefore we have $L(N)=S^{k}$ . As before we
obtain $k=n-2$ .

$Sep$ $2$ . We shall show the last part of (5.26). Since $L(N)=\hat{R}^{n-2}$ ,

the $DH$ pair $(D, \varphi)$ lifts to $(\overline{D}, \overline{\varphi})$ , where

$\overline{D}:\overline{N}\rightarrow H^{n-1}\times R$ ,

$\overline{\varphi}$ : $\pi_{1}(N)\rightarrow$ A4 $(\hat{R}^{n-2})\times R$ .

Denote by $p_{i}$ the canonical projection to the $i$-th factor. Consider
a small perturbation $\overline{\varphi}’$ of $\overline{\varphi}$ such that $p_{1}o\overline{\varphi}’=p_{1}o\overline{\varphi}$ and
$p_{2}o\overline{\varphi}’(\pi_{1}(N))\subset Q$ . Let $\varphi’=\psi\circ\overline{\varphi}’$ . Then there exists a submersion
$D’$ : $\overline{N}\rightarrow\hat{R}^{n}$ such that $(D’, \varphi\prime)$ is a $DH$ pair. (See Thurston [56]
Chapt. 5 or Canary-Epstein-Green [9] Chapt. 1.) The limit set of the

new $DH$ pair $(D’, \varphi\prime)$ is also
$\hat{R}^{n-2}$

, since we have altered $\overline{\varphi}$ only
in the $R$-direction. Therefore by (5.24), $D’$ is a covering map onto
$\hat{R}^{n}\backslash \hat{R}^{n-2}$ That is, $D’$ lifts to a homeomorphism

$\overline{D}’$ : $\overline{N}\rightarrow H^{n-1}\times$ R.

Since $p_{2}\circ\overline{\varphi}’(\pi_{1}(N))\subset Q$ , we have that $p_{2}\circ\overline{\varphi}’(\pi_{1}(N))$ is infinite
cyclic with a generator $\theta$ . Let $\Gamma=Ker(p_{2}o\overline{\varphi}’)$ . We have an exact
sequence

$1\rightarrow\Gamma\rightarrow\pi_{1}(N)\rightarrow\theta Z\rightarrow 1$ .

Correspondingly we have a bundle structure of $N$ with fiber
$H^{n-1}/p_{1}\overline{\varphi}’(\Gamma)$ over $R/\theta Z\cong S^{1}$ . Clearly the monodromy map is
an isometry of a hyperbolic manifold. Q.E.D.
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\S 6. Elementary structure and $C$-structure

Also in this section flat conformal manifolds are to be connected and
compact unless otherwise specified. The dimension is always $\geq 3$ .

Definition (6.1). A flat conformal manifold $N$ is called elemen-
tary if and only if CardL(N)\leq 2.

As applications of (5.20), we have the following characterizations of
elementary flat conformal manifolds.

Proposition (6.2). The following conditions are equivalent.

(1) $ L(N)=\phi$ .

(2) The holonomy group $H$ consists purely of elliptic transforma-
tions.

(3) $N$ is a spherical space form.

Proposition (6.3). The following conditions are equivalent.

(1) $L(N)$ is a singleton.
(2) $H$ contains parabolic transformations and no loxodromic trans-

formations.
(3) $N$ is an Euclidean space form.

Proof. All that need proof is $(2)\Rightarrow(1)$ . (2) implies $ L(N)\neq\phi$ .
By (5.14), we have $H\subset \mathcal{M}(S^{n})_{a}$ , $a\in S^{n}$ . This shows (1). Q.E.D.

Proposition (6.4). CardL(N)=2 if and only if $N$ or its double
covering is a Hopf manifold.

Proposition (6.5). If CardL(N)\geq 3, then $L(N)$ is a perfect
set.

Proof. The assumption implies by (5.14) the existence of a loxo-
dromic elememt $f\in H$ . Then at least one point of $L=L(N)$ is not
fixed by $f$ . Since $L$ is invariant by $f$ , we obtain that $L$ is an infinite
set. Therefore the derived set $L’$ is nonempty. By the minimality of
$L((5.22))$ , we have $L’=L$ . That is, $L$ is perfect. Q.E.D.

Theorem (6.6). If the holonomy group $H$ of a connected com-
pact flflat conformal manifold $N$ does not contain a free group of two
generators, then $N$ is elementary.

Proof. Suppose on the contrary that $N$ is nonelementary.
Then CardL(N)=\infty and therefore by (5.11), there exist two loxo-
dromic transformations $f$ , $g\in H$ with disjoint fixed points. Now it
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is a well known fact that $f^{n}$ and $g^{n}$ generate a free group for large
$n$ . Q.E.D.

(6.6) was first proved under the hypothesis that $H$ is virtually
nilpotent by Goldman([15]) and then by Kamishima ([25]) when $H$

is virtually solvable. It is well known that for matrix group virtual
solvability is equivalent to the condition of (6.6). See Tits ([57]).

Corollary (6.7). If $\pi_{1}(M)$ does not contain a free group of two
generators and if a compact connected manifold $M$ does not have as $a$

fifinite covering $S^{n}$ , $S^{n-1}\times S^{1}$ or $T^{n}$ , then $M$ does not admit $a$ flflat
conformal structure.

(6.7) forbids many manifolds to admit flat conformal structures, e.g.,
3-manifolds with Nil or Solv geometry.

Given two flat conformal manifolds $N_{1}$ and $N_{2}$ , a new flat con-
formal manifold, called connected sum, is obtained in the following way.
This operation was first introduced by Kulkarni ([42]).

Inside a conformal atlas $(U_{i}, q_{i})$ of $N_{i}$ , choose a closed ball $B_{i}$ .

Assume that there exists $f\in \mathcal{M}(S^{n})$ such that $f(Intq_{1}(B_{1}))=S^{1}\backslash $

$q_{2}(B_{2})$ . See Figure (6.1). (This is always possible e.g., if we choose $B_{i}$

so that $q_{i}(B_{\dot{\iota}})$ is a metric ball.) Define a homeomorphism $h$ : $\partial B_{1}\rightarrow$

$\partial B_{2}$ so that $q_{2}\circ h=f\circ q_{1}$ . Then

$(f\circ q_{1})\cup q_{2}$ : $(U_{1}\backslash IntB_{1})\cup(U_{2}\backslash IntB_{2})/h\rightarrow S^{n}$

is a well defined embedding. Using $(foq_{1})\cup q_{2}$ and other small charts
in $N_{i}$ , we can define a flat conformal structure on the connected sum

$(N_{1}\backslash IntB_{1})\cup(N_{2}\backslash IntB_{2})/h$ .

Definition (6.8). The flat conformal structure constructed in this
way is called a connected sum of $N_{1}$ and $N_{2}$ and is denoted by $N_{1}QN_{2}$ .

Notice that $N_{1}\# N_{2}$ is not uniquely determined. For example if we
fix $B_{2}\subset N_{2}$ and make $B_{1}\subset N_{1}$ much smaller, then the resultant
connected sum would be different as a flat conformal structure.

One can also define the operation of connected sum of more than
two structures.

Definition (6.9). A flat conformal structure (manifold) is called
a $C$ structure ( $C$-manifold) if it is a connected sum of finitely many
elementary structures and is not itself elementary.
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Figure (6.1)

It is easy to show that as a flat conformal manifold, $N\# S^{n}$ is
isomorphic to $N$ . This is called a trivial connected sum. There is only
one case where a nontrivial connected sum of elementary flat conformal
manifolds becomes again elementary, that is, when $N_{1}=N_{2}=RP^{n}$ ,

the real projective space. In this case $\pi_{1}(N_{1}QN_{2})$ is isomorphic to the
infinite dihedral group $Z_{2}*Z_{2}$ . One can show directly that $N_{1}\# N_{2}$

has a Hopf manifold $S^{n-1}\times S^{1}$ as a double covering. In all the other
cases the fundamental group of a connected sum contains a free group
of two generators and therefore it cannot be elementary.

Definition (6.10). A Cantor set $\wedge r$ $\subset S^{n}$ is called tame if
and only if there exists a homeomorphism $h$ : $S^{n}\rightarrow S^{n}$ such that
$h(1)\subset S^{1}$ . Otherwise $\prime r$ is called wild.

Proposition (6.11). A $C$-structure $N$ is of type 1. The limit set
$L(N)$ is a tame Cantor set.

Proof. For the first part of (6.11), it suffices to show the following;
If the developing maps of the flat conformal structure $N_{1}$ and $N_{2}$

are injective, then the developing map of their connected sum is also
injective. Let $S\subset N_{1}\# N_{2}$ be the (n-l)-sphere on which the connected
sum is made. $S$ splits $N_{1}\# N_{2}$ into two parts $M_{i}$ such that $M_{i}\subset N_{i}$ .

Take a base point in IntMi. We have

$\pi_{1}(N_{1}\# N_{2})\cong\pi_{1}(N_{1})*\pi_{1}(N_{2})$ .

The element of $\pi_{1}(N_{1}\# N_{2})$ is represented uniquely as a reduced word
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of elements of $\pi_{1}(N_{1})$ and $\pi_{1}(N_{2})$ . Consider the universal covering

$\pi$ : $N_{1}\# N_{2}\rightarrow N_{1}\# N_{2}$ .

Choose one component of $\pi^{-1}(M_{1})$ and denote it by $\overline{M}_{1}$ . Choose one

boundary component of $\overline{M}_{1}$ and denote it by $\overline{S}$

. The component of
$\pi^{-1}(M_{2})$ which has $\overline{S}$ as a boundary component is denoted by $\overline{M}_{2}$ .

The boundary of $\overline{M}_{1}$ consists precisely of those components of $\pi^{-1}(S)$

which are of the form $\xi\overline{S}(\xi\in\pi_{1}(M_{1}))$ . $\xi\overline{M}_{2}$ is adjacent to $\overline{M}_{1}$ if
and only if $\xi\in\pi_{1}(M_{1})$ . Now by the assumption the developing map
$D$ is injective on $\overline{M}_{1}$ and on $\xi\overline{M}_{2}$ . $D(\overline{M}_{1})$ and $D(\xi\overline{M}_{2})$ are in the

opposit sides of the sphere $D(\overline{S})$ . This shows that $D$ is injective on

$\overline{M}_{1}\cup(\bigcup_{\xi\in\pi_{1}(M_{1})}\xi\overline{M}_{2})$ .

Boundary component of $\xi\overline{M}_{2}$ except $\xi\overline{S}$ are of the form $\xi\eta\overline{S}(\eta\in$

$\pi_{1}(M_{2})\backslash \{1\})$ . Again $D(\xi\overline{M}_{2})$ and $D(\xi\eta\overline{M}_{1})$ are in the opposite

sides of the sphere $D(\xi\eta\overline{S})$ . Therefore $D$ is injective on the union of
$\overline{M}_{1}$ , $\xi\overline{M}_{2}$ and $\xi\eta\overline{M}^{1}$ $( \xi\in\pi_{1}(M_{1}), \eta\in\pi_{1}(M_{2})\backslash \{1\})$ . An induction
on the length of the word of $\pi_{1}(N_{1}\beta N_{2})$ yields that the developing
map $D$ of a $C$-structure $N$ is injective. We also have that Image(D)
is contained in the complement of the limit set $L=L(N)$ and the
holonomy homomorphism is an isomorphism onto a discrete group $H$ .

Next we shall show that $L$ is totally disconnected. Once this is
established, we have by (6.5) that $L$ is a Cantor set. For simplicity, we
prove this only for the connected sum $N$ of two elementary structures
$N_{1}$ and $N_{2}$ . We use the same notations as before. Choose a base point
$x_{0}\in D(Int\overline{M}_{1})$ and consider the family of disjoint topological spheres

$S$ $=\{\varphi(\zeta)D(\overline{S})|\zeta\in\pi_{1}(N)\}$ .

A point $x\in S^{n}\backslash Image(D)$ is called accessible if there exists a path
$p$ in $S^{n}$ combining $x_{0}$ and $x$ such that $p$ intersects finitely many
spheres in $S$ . Accessible points consists precisely of the $H$-orbits of the
points in $L(N_{1})\cup L(N_{2})$ . See Figure (6.2). (We made the convension
that $D|_{\overline{M}_{i}}$ coincides with the restriction of the developing map of $N_{\dot{0}}$ .

This is always possible if we change the $DH$ pairs of $N_{2}$ within the
equivalence classes.)

Therefore accessible points are at most countable in number. Let
$x\in S^{n}\backslash Image(D)$ be a nonaccessible point. Then there are infinitely

many nested spheres $\varphi(\zeta_{i})D(\overline{S})(i\geq 1)$ which separates $x$ from $x_{0}$ .
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Figure (6.2)

Since $\zeta_{i}$ is distinct and $H$ is discrete, we have $\varphi(\zeta_{i})\rightarrow\infty$ . Therefore
by (5.8), we have

$diam\varphi(\zeta_{i})D(\overline{S})\rightarrow 0$

since $ D(\overline{S})\cap L=\phi$ . This shows that the component of $S^{n}\backslash Image(D)$

at a nonaccessible point $x$ is a singleton. Since accessible points are at
most countable, this shows that $S^{n}\backslash Image(D)$ , hence $L$ , is totally
disconnected.

At this point we have obtained that $L=S^{n}\backslash Image(D)$ , since
$S^{n}\backslash Image(D)$ , having no interior, is not evenly covered by $D$ .

Finally to show the tameness of $L$ , we have to define a homeomor-
phism $h$ : $S^{n}\rightarrow S^{n}$ such that $h(L)\subset S^{1}$ . First of all, define $h$ on
$C1D(\overline{M}_{1})$ so that $h$ carries all the boundary components to spheres in-

tersecting $S^{1}$ and that $h$ carries all the accessible points in $C1D(\overline{M}_{1})$

into $S^{1}$ . Next extend $h$ to the adjacent components. Proceeding like
this we can define the homomorphism $h$ on the whole of $S^{n}$ . Details
are left to the reader. Q.E.D.

In dimension 3, we have the converse of (6.11).

Theorem (6.12). Let $N$ be a connected compact flflat conformal
manifold of dimension 3 such that the limit set $L(N)$ is a tame Cantor
set. Then $N$ is a $C$-manifold.

Proof. We employ a method of Kulkarni ([43]) based upon the
study of ends of a group. The necessary parts of the theory of ends are
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summarized in Appendix.
First of all notice that a tame Cantor set $L(N)$ satisfies the con-

ditions of (5.24). Especially $\Omega=S^{n}\backslash L(N)$ is simply connected.

Therefore the developing map $D$ : $\overline{N}\rightarrow\Omega$ is a homeomorphism and
the holonomy group $H$ acts on $\Omega$ freely and discontinuously. That
is, we have an isomorphism $N\cong\Omega/H$ of flat conformal structures. By
Selberg’s theorem (3.31), $H$ has a torsion free subgroup $H’$ of finite
index. $N’=\Omega/H’$ is a finitely sheeted covering of $N$ and therefore
a compact manifold. Clearly we have $L(N’)=L(N)$ . By (A.4) of
Appendix, we have

$Card\mathcal{E}(H’)=Card\mathcal{E}(\Omega)=\infty$ .

Therefore by Stalling’s theorem (A.9), we obtain that $H’$ is a non-
trivial free product. Consequently $N’$ decomposes as a nontrivial con-
nected sum (as a manifold). See e.g. Hempel ([22]). Thus we have that
$\pi_{2}(N)=\pi_{2}(N’)\not\cong 1$ . By sphere theorem, this implies that $N$ is re-

ducible. It follows from (6.6) that $N$ is not homeomorphic to $S^{2}\times S^{1}$ ,

since $N$ is not an elementary structure. Therefore $N$ is nonprime,
that is, decomposes as a nontrivial connected sum $N=N_{1}QN_{2}$ as a
manifold.

Let $S\subset N$ be the two sphere on which the connected sum is made.
Let $N=M_{1}\bigcup_{S}M_{2}$ and $N_{i}=M_{i}\bigcup_{S}B_{i}$ , where $B_{i}$ is homeomorphic

to the closed 3-ball. Let $\pi$ : $\overline{N}\rightarrow N$ be the universal covering and let
$\overline{S}$ be a lift of $S$ to $\overline{N}$ . Denote by $\overline{M}_{i}$ the connected component of
$\pi^{-1}(M_{i})$ which has $\overline{S}$ as a boundary component. All the boundary

components of $\overline{M}_{i}$ is of the form $\xi\overline{S}(\xi\in\pi_{1}(N_{i}))$ . Since $D|_{\overline{M}_{i}}$ is a

homeomorphism, it extends in an equivariant way to $\overline{N}_{?}$. $=\overline{M_{i}}\bigcup_{\xi\overline{S}}\xi\overline{B}_{1}$ .

From this we obtain a flat conformal structure on $N_{i}$ , showing that
the given structure on $N$ is a connected sum of these two structures.
Clearly we have $L(N_{i})\subset L(N)$ . Therefore either $CardL(N_{i})\leq 2$ or
$L(N_{\dot{t}})$ is again a tame Cantor set. In the latter case, apply the whole
argument once again to $N_{i}$ . It is well known in 3-manifold theory that
this process terminates. We obtain that $N$ is a $C$-structure. Q.E.D.

It is unknown whether (6.12) holds in dimensin $\geq 4$ . In \S 8, we shall
give an example of flat conformal 3-manifold whose limit set is a wild
Cantor set. By (6.11), this is not a $C$ manifold.

\S 7. Poincar\’e polyhedron theorem

This section is devoted to the exposition of a fundamental theorem
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of Poincar\’e. It will be given in its simplest form, which is sufficient for
our purpose of the next section. More general treatment is found e.g. in
Maskit [47] in the framework of hyperbolic geometry.

Let $T_{i}$ , $T_{i}’(1\leq i\leq m)$ be metric $(n -1)$ -spheres in $S^{n}$ . Assume
that any pair of them either intersect in an $(n-2)$ -sphere or are disjoint
and that any triple do not intersect at all. Let $\mathcal{E}=\{e_{j}\}$ be the family
of $(n-2)$ -spheres of the intersections. Let $P$ be a component of the
complement of the union of all $T_{i}$ and $T_{i}’$ . Assume that any element
of $\mathcal{E}$ is contained in $\partial P$ . See Figure (7.1).

$s_{4}$

$s_{3}$

Figure (7.1)

Let $S_{i}=T_{i}\cap\partial P$ and $S_{i}’=T_{i}’\cap\partial P$ . They are puctured $(n -1)-$

spheres. Let $S$ $=\{S_{i}, S_{i}’\}$ . An element of $S$ or $\mathcal{E}$ is called respectively
a side or an edge of $P$ . Our first hypothesis is this.

(7.1). For each i, there exists $f_{i}\in \mathcal{M}(S^{n})$ such that $f_{i}(S_{i})=$

$S_{i}’$ and $ f_{i}(P)\cap P=\phi$ .

Fix $f_{i}$ once and for all and let $\mathcal{F}=\{f_{i}, f_{i}^{-1}\}$ . An element of $\mathcal{F}$

is called a side $pair?.ng$ transformation. A side pairing transformation,
say $f_{i}$ , sends an edge $e$ in $\partial S_{i}$ to an edge $e’$ in $\partial S_{i}’$ . We call $e$

and $e’$ are related. This relation generates an equivalence relation in
$\mathcal{E}$ . $\mathcal{E}$ is partitioned into equivalence classes, called cycles. Each cycle
$C$ can be cyclically ordered as

$C$ $=\{e_{1}, \ldots, e_{p-1}, e_{p}=e_{0}\}$
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in such a way that for each $1\leq l/\leq p$ , there exists $f_{l/}\in \mathcal{F}$ such that
$f_{l/}(e_{\nu-1})=e_{l/}$ . Let

$f_{C}=f_{p}o\cdots\cdot\cdot of_{1}$ .

Clearly $f_{C}(e_{0})=e_{0}$ . For each cycle $C$ , $f_{C}$ is well defined up to inverse
and conjugation. See Figure (7.2).

$e_{1}$

$e_{2}$

$f_{C}$

$e_{3}=e_{0}$

Figure (7.2)

For each edge $e\in \mathcal{E}$ , the angle of $P$ at $e$ is denoted by $\theta(e)$ .

For a cycle $C$ as above, define

$\theta_{C}=\sum_{1\leq\nu\leq p}\theta(e_{\nu})$
.

Our second hypothesis is;

(H.2). For each cycle $C$ , we have $\theta_{C}=2\pi/q$ and $f_{C}^{q}=id$ for
some $q\geq 1$ .

The relation $f_{C}^{q}=id$ is called a cycle relation. Denote by $\Gamma$ the
subgroup of A4 $(S^{n})$ generated by $\mathcal{F}$ and let $\Gamma^{*}$ be the abstract group
with generators the side pairing transformations and with relations the
cycle relations. Clearly we have an epimorphism $\psi$ : $\Gamma^{*}\rightarrow\Gamma$ .
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Definition (7.1). For a subgroup $G\subset \mathcal{M}(S^{n})$ , an open subset
$R\subset S^{n}$ is called a fundamental domain of $G$ if and only if the
following two conditions are satisfied. ( $\Omega_{G}$ denotes the domain of
discontinuity of G. )

(FD.1)
$\Omega_{G}=g\in G\cup g(C1R)$

.

(FD.1) $ g(R)\cap R=\phi$ for any $g\in G\backslash \{1\}$ .

Theorem (7.2). Assume (H.I) and (H.2). Then $\psi$ : $\Gamma^{*}\rightarrow\Gamma$ is

an isomorphism, $\Gamma$ is a discrete subgroup of $\mathcal{M}(S^{n})$ and $P$ is $a$

fundamental domain of $\Gamma$ .

Proof. Think of the family $\{\gamma P\}_{\gamma\in\Gamma}$ of domains. By a side pairing
transformation $f$ , $fP$ is attached to $P$ along a side of $P$ . Next
$fgP(g\in \mathcal{F}, g\neq f^{-1})$ is attached to $fP$ . If this process is continued,
then around an edge $e_{0}\in \mathcal{E}$ which belongs to a cycle

$C$ $=\{e_{1}, \ldots, e_{p-1}, e_{p}=e_{0}\}$

such that $f_{\nu}(e_{\nu-1})=e_{l/}$ , there is a sequence of domains

$P$, $f_{p}P$, $f_{p}f_{p-1}P$, $\ldots\ldots$ , $f_{p}\cdots f_{1}P$,

$\ldots$ , $(f_{p}\cdots f_{1})f_{p}P$, $\ldots\ldots$ , $(f_{p}\cdots f_{1})^{q-1}f_{p}\cdots f_{2}P$.

They surround the edge $e_{0}$ . By virture of (H.2), the sum of their angles
at $e_{0}$ is just $ 2\pi$ and the last domain

$(f_{p}\cdots f_{1})^{q-1}f_{p}\cdots f_{2}P$

is attached to $P$ by $f_{1}$ . The essential part of the proof is to show that
in this way the family $\{\gamma P\}$ forms a “tesselation” of $S^{n}$ . However
in order to be precise, we must argue in a formal way as follows. Start
with abstract copies of $P$ and attach them one by one by side pairing
transformations, thus constructing a replica of the domain of disconti-
nuity of $\Gamma$ . Next we show the existence of an embedding of the replica
into $S^{n}$ . The abstract group $\Gamma^{*}$ is convenient for this development.
Let us embark upon the proof.

Define an equivalence relation $\sim$ in $\Gamma^{*}\times C1P$ generated by the
following.

$(\gamma, x)\sim(\gamma’, x’)$ if $\gamma’=\gamma f$ , x $=f(x’)$ for some f $\in \mathcal{F}$ .
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Let
$\Omega^{*}=\Gamma^{*}\times C1P/\sim$ .

The action of $\Gamma^{*}$ on $\Omega^{*}$ is defined by

$\gamma’(\gamma, x)=(\gamma’\gamma, x)$ .

Claim 1. $\Omega^{*}$ is $a$ flflat conformal manifold on which $\Gamma^{*}$ acts
conformally.

Choose $(\gamma, x)\in\Gamma^{*}\times C1P$ . Suppose first of all that $x\in P$ . Then
by (H.I), there is no point $x’\in C1P$ such that $x=f(x’)$ $(f\in \mathcal{F})$ .

That is, $(\gamma, x)$ is equivalent to no other point and therefore it certainly
has a neighbourhood homeomorphic to an $n$-ball. Suppose next that
$x\in IntS$ , where $S$ is a side of $P$ , with a side pairing map $f$ : $S\rightarrow S’$ .

Then as is shown easily, the only point in $\Gamma^{*}\times C1P$ which is equivalent
to $(\lambda, x)$ is $(\lambda f^{-1}, f(x))$ . Clearly one can construct a neighbourhood
of the identified point $[(\lambda, x)]$ , homeomorphic to an $n$-ball, in

$\{\lambda\}\times C1P\cup\{\lambda f^{-1}\}\times C1P/\sim$ .

Finally consider the case where $x\in e_{0}$ $(e_{0}\in \mathcal{E})$ . Let

$C=\{e_{1}, \ldots, e_{p-1}, e_{p}=e_{0}\}$

be a cycle such that $f_{\nu}(e_{\nu-1})=e_{\nu}$ . Then we have

$(\lambda, x)\sim(\lambda f_{p}^{-1}, f_{p}x)\sim\cdots\cdot$ .

$\sim(\lambda f_{2}^{-1}\cdots f_{p}^{-1}(f_{1}^{-1}\cdots f_{p}^{-1})^{q-1}, (f_{p}\cdots f_{1})^{q-1}f_{p}\cdots f_{2}x)$ .

By the definition of the cycle, these are shown to be all the points that
are equivalent to $(\lambda, x)$ . By (H.2), we can construct a desired neigh-
bourhood of $[(\lambda, x)]$ . This shows that $\Omega^{*}$ is a manifold. Since the side
pairing transformations are Moebius transformations, it is easy to endow
$\Omega^{*}$ a flat conformal structure. Also one can show without difficulty that
the action of $\Gamma^{*}$ is conformal.

Next consider the conformal mapping

$E:\Omega^{*}\rightarrow S^{n}$

defined by $E(\lambda, x)=\psi(\lambda)x$ where $\psi$ : $\Gamma^{*}\rightarrow\Gamma$ is the canonical
projection. $E$ is well defined and $\psi$-equivariant, that is,

$E(\lambda’(\lambda, x))=\psi(\lambda’)E(\lambda, x)$ .
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Claim 2. E is an embedding onto a connected open subet $\Omega\subset$

$S^{n}$ .

For the proof we need hyperbolic geometry of $D^{n+1}$ . Let us extend
first of all $(n -1)$ spheres $T_{i}$ and $T_{i}’$ used to define $P$ to half n-

spheres $\overline{T}_{i}$ , $\overline{T}_{i}’\subset D^{n+1}$ orthogonal to $S^{n}$ . These are totally geodesic

hyperplanes in $(D^{n+1}, g_{H})$ . Using $\overline{T}_{i}$ and $\overline{T}_{i}’$ we can extend the

domain $P$ to a domain $\overline{P}\subset D^{n+1}$ . Define as before

$\overline{\Omega}^{*}=\Gamma^{*}\times\overline{P}/\sim$ ,

$\overline{E}:\overline{\Omega}^{*}\rightarrow D^{n+1}$ .

The argument of Claim 1 shows that $\overline{\Omega}^{*}$ is a hyperbolic manifold and

that $\overline{E}$ is an isometric immersion. Furthermore one can show that
there exists $\in>0$ such that any point in $\overline{\Omega}^{*}$ has a neighbourhood

isometric to hyperbolic $\in$-ball. Therefore $\overline{\Omega}^{*}$ is complete and thus $\overline{E}$

is a covering map. That is, $\overline{E}$ is a bijective isometry. Since

$E\cup\overline{E}:\Omega^{*}\cup\overline{\Omega}^{*}\rightarrow S^{n}\cup D^{n+1}$

is continuous, we obtain Claim 2.

Claim 2 implies that $\psi$ : $\Gamma^{*}\rightarrow\Gamma$ is an isomorphism and that
$\Gamma$ is a discrete subgroup of $\mathcal{M}(S^{n})$ which acts discontinuously on
$\Omega=E(\Omega^{*})$ . What is left is to show that $P$ is a fundamental domain.
This is equivalent to the following.

Claim 3. $\Omega$ is precisely the domain of discontinuity $\Omega_{\Gamma}$ of $\Gamma$ .

We already had $\Omega\subset\Omega_{\Gamma}$ . To show the converse, it suffices by (5.15)
to show that $S^{n}\backslash \Omega\subset L_{\omega}(\Gamma)$ . Take a point $ x\in S^{n}\backslash \Omega$ . Then for any

small neighbourhood $U$ of $x$ in $S^{n}\cup D^{n+1}$ , we have $\gamma_{k}\overline{P}\cap U\neq\phi$

for infinitely many $\gamma_{k}\in\Gamma$ . By (5.8), we have $ CI(\gamma_{k})\cap\overline{P}=\phi$ for large
$k$ , since $C1P\cap L_{\omega}(\Gamma)=\phi$ . This implies

$diam\gamma_{k}\overline{P}\leq diamCI(\gamma_{k}^{-1})\rightarrow 0$ .

That is, $U$ contains infinitely many $\gamma_{k}\overline{P}$ , showing that $x\in L_{\omega}(\Gamma)$ .
Q.E.D.

\S 8. Wild Cantor set as limit set

In this section we shall construct an example of type 1 compact
flat conformal 3-manifold whose limit set is a wild Cantor set. Such
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an example was first obtained by Bestvina-Cooper [4] for an open 3-
manifold. Our example is a variant of what they constructed. We shall

follow [4] rather closely.

For a while we adopt the coordinates of
$\hat{R}^{3}$

instead of $S^{3}$ . First
of all let $K$ be a graph embedded in $R^{3}$ , depicted in Figure (8.1).

$z$

Figure (8. 1)

The segment ab, $cd$ , $ef$ , $gh$ and $ij$ are straight lines and the
other parts are circular arcs of the same radius. Choose a family of
2-spheres

$A_{1}$ , $\ldots$ , $A_{n}$ , $A_{1}’$ , $\ldots$ , $A_{n}’B_{1}$ , $\ldots$ , $B_{n}$

$B_{1}’$ , $\ldots$ , $B_{n}’C$ , $C’D$ , $D’$ , $E$ , $E’$ ,

as in Figure (8.2).
We assume the followings.

(P.I) All the spheres have the same radius and have centers in $K$ .

(P.2) The union of balls they bound covers $K$ .

(P.3) The centers of $C$ , $E’$ , $D’$ , $C’$ , $E$ , $D$ are in the $x$-axis.
$A_{n}$ , $C$ , $A_{n}’$ and $A_{1}$ , $E$ , $A_{1}’$ have centeres in straight lines
parallel to $z$-axis. $B_{1}$ , $E’$ , $B_{1}’$ and $B_{n}$ , $D$ , $B_{n}’$ have centers
in straight lines parallel to $y$-axis.
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$n$

Figure (8.2)

(P.4) Adjacent two spheres intersect at angle $2\pi/28$ .

Let $P$ be the complement in
$\hat{R}^{3}$

of the union of all the balls.
Next we shall define side pairing transformations for $P$ .

(8.2) $\alpha_{j}=I_{xy}\circ I_{A_{j}}$ , where $I_{xy}$ is the reflexion at the $xy$-plane and
$I_{A_{j}}$ is the inversion at the sphere $A_{j}$ .

(8.2) $\beta_{j}=I_{xz}\circ I_{B_{j}}$ .

(5.3) $\gamma=R_{y}^{C’}\circ I_{\pi(C,C’)}\circ I_{C}$ , where $R_{y}^{C’}$ is the rotation by $+90$ de-

grees around the oriented line through the center of $C’$ parallel
to the positive direction of $y$-axis and $\pi(C, C’)$ is the bisector
of the centers of $C$ and $C’$ .

(S.4) $\delta=R_{z}^{D’}\circ I_{\pi(D,D’)}\circ I_{D}$ .

(@.5) $\epsilon=R_{x}^{E’}\circ I_{\pi(E,E’)}\circ I_{E}$ .

Denote the side of $P$ by $A_{j}^{*}=A_{j}\cap C1P$ , $B_{j}^{*}=B_{j}\cap C1P$ and so

forth. They satisfy the condition (H.I) of \S 7. That is,

(H. 1) $\alpha_{j}(A_{j}^{*})=A_{\acute{j}}^{*}$ , $\beta_{j}(B_{j}^{*})=B_{\acute{j}}^{*}$ , $\gamma(C^{*})=C^{J}*$ , $\delta(D^{*})=D^{l}*$ ,

$\epsilon(E^{*})=E^{J}*$ and $f(P)\cap P=\phi(f=\alpha_{1}, \ldots, \epsilon)$ .

Next we shall verify the condition (H.2) of \S 7 by listing up the cycles.
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First of all for any $1\leq j\leq n-1$ , we have the following cycle.

(C.i) $A_{j}\cap A_{j+1}\rightarrow A_{j}’\alpha_{j}\cap A_{j+1}’\alpha_{j+1}^{-1}\rightarrow A_{j}\cap A_{j+1}$

$\alpha_{j+1}^{-1}\alpha_{j}$ keeps points in $A_{j}\cap A_{j+1}$ fixed. By (P.4), it is a rotation

by $2\pi/14$ around $A_{j}\cap A_{j+1}$ . Therefore (H.2) is satisfied for $q=14$ .

Likewise the following cycle satisfies (H.2).

(C.i) $B_{j}\cap B_{j+1}\rightarrow B_{j}’\beta_{j}\cap B_{j+1}’\beta_{j+1}^{-1}\rightarrow B_{j}\cap B_{j+1}$

There are two more cycles. The first one is;

(C.i) $A_{1}\cap E\alpha_{1}\rightarrow A_{1}’\cap E\epsilon\rightarrow B_{1}’\cap E’\beta_{1}^{-1}\rightarrow B_{1}\cap E’\rightarrow A_{1}\epsilon^{-1}\cap E$

Computation shows that $\epsilon^{-1}\beta_{1}^{-1}\epsilon\alpha_{1}$ keeps $A_{1}\cap E$ pointwise fixed. It
is a rotation by $2\pi/7$ around $A_{1}\cap E$ and thus (H.2) is satisfied for
$q=7$ . Now the last cycle.

(C.i) $E\cap C’\rightarrow E’\epsilon\cap D’\delta^{-1}\rightarrow B_{n}’\cap D\beta_{n}^{-1}\rightarrow B_{n}\cap D\delta\rightarrow C’\cap D’$

$\rightarrow A_{n}’\gamma^{-1}\cap C\alpha_{n}^{-1}\rightarrow A_{n}\cap C\gamma\rightarrow E\cap C’$

By studying Figure (8.2), we obtain that $\gamma\alpha_{n}^{-1}\gamma^{-1}\delta\beta_{n}^{-1}\delta^{-1}\epsilon$ yields the
translation by $\pi/2$ on the circle $E\cap C’$ . We also obtain (H.2) for
$q=4$ .

Thus by (7.2), the group $\Gamma$ generated by the side pairing transfor-
mations is discrete, with the domain of discontinuity $\Omega$ and $P$ is the
fundamental domain for $\Gamma$ . That is, we have the followings.

(FD.1)
$\Omega=\gamma\in\Gamma\cup\gamma(C1P)$

.

(FD.2) $\gamma(P)\cap P=\phi$ for any $\gamma’\in\Gamma\backslash \{1\}$ .

Let $\Gamma_{0}$ be a torsion free subgroup of $\Gamma$ of finite index. Then the
quotient space $N=\Omega/\Gamma_{0}$ is a compact flat conformal manifold and we
have

$ L=L(N)=L_{P}(\Gamma_{0})=L_{P}(\Gamma)=\hat{R}^{3}\backslash \Omega$ .

The rest of this section is devoted to the proof of the following theorem.
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Theorem (8.1). The limit set $L$ is a wild Cantor set.

The proof consists of a series of lemmas. The main part is to show
that $L$ is a Cantor set. First of all notice the following feature of our
construction. See Figure (8.3). For any side $T^{*}$ of $P$ , let $T$ be the
2-sphere which contains $T^{*}$ and let $e\subset\partial T^{*}$ be an edge. Since all the
translates of $P$ which gather at $e$ have angle $2\pi/28$ there, the part
of $T$ which is opposite to $T^{*}$ w.r.t. $e$ and near $e$ is also a side of a
translate of $P$ . That is, the side “prolongs” in the tesselation.

So far in the construction of $\Gamma$ , we have used the coordinates of
$\hat{R}^{3}$

. However in the rest, we change the coordinates from
$\hat{R}^{3}$

to $S^{3}$ .

Thus, distance, radius, etc. are measured in the Euclidean metric of $R^{4}$

which contains $S^{3}$ as a unit sphere $\{|x|=1\}$ .

Let $\{\gamma_{k}\}\subset\Gamma$ be an infinite sequence. Since $\Gamma$ is discrete, we have
$\gamma_{k}\rightarrow\infty$ .

Figure (8.3)

Lemma (8.2). For any edge e of $P_{\rangle}$ we have radius $\gamma_{k}(e)\rightarrow 0$ .

Proof This follows at once from (5.8), since we have $ e\cap L=\phi$ .

Q.E.D.

Let

$\Sigma=\{\gamma(T)|\gamma\in\Gamma, T=A_{1}, \ldots, E’\}$ ,

$\Lambda=$ { $\gamma(e)|\gamma\in\Gamma$ , $e$ ; an edge of $P$ }.
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Notice that $\Lambda$ consists of disjoint circles, while spheres in $\Sigma$ may in-
tersect. Furthermore at this point we do not know, for example, whether
or not it so happens that two spheres in $\Sigma$ are tangent. We have a
control of $\Lambda$ since any of its circle is contained in $\Omega$ . However this is
not the case with $\Sigma$ . We only have a rather weak grip on $\Sigma$ .

For $ S\in\Sigma$ , let

$\Lambda_{S}=\{l \in\Lambda|l \subset S\}$ .

Take a base point $x_{0}\in S$ such that $x_{0}$ lies in a translate of the interior
of a side of $P$ .

Lemma (8.3). For $x\in S$ , $x$ lies in $\Omega$ if and only if there exists
only fifinitely many circles in $\Lambda_{S}$ which separate $x$ from $x_{0}$ .

Proof. Notice first of all that circles in $\Lambda_{S}$ are mutually disjoint.
To show the if part, let $p$ be a path in $S$ from $x_{0}$ to $x$ which meets
circles in $\Lambda_{S}$ at finitely many points. An induction on the number of
points shows that $p$ is contained in the union of translates of sides of
$P$ . In particular, we have $ x\in\Omega$ .

For the converse, suppose that for a fixed edge $e$ of $P$ , $\gamma_{k}(e)$

$(1\leq k<\infty)$ separates $x$ from $x_{0}$ . By (8.2), we have that

radius $\gamma_{k}(e)\rightarrow 0$ .

Notice that (FD.1) and (FD.2) implies that $\gamma_{k}(e)$ is disjoint from
a small neighbourhood of $x_{0}$ . Since $\gamma_{k}(e)$ are mutually disjoint,

we obtain that $\gamma_{k}(e)\rightarrow x$ . Therefore the family $\{\gamma_{k}^{-1}\}$ cannot be
equicontinuous on any neighbourhood of $x$ . That is, $x\in L_{J}(\Gamma)=L$ .

(See (5.15).) Q.E.D.

Corollary (8.4). A connected component of $L\cap S$ is a singleton.
In particular $\Omega\cap S$ is open and dense in $S$ .

Proof. This follows from the fact that $\gamma_{k}(e)\subset\Omega$ . Q.E.D.

A word of caution. In the above corollary, we do not assert that the
component of $L$ at a point of $S$ is a singleton.

In spirit we are going to show the total disconnectedness of $L$ in
a way similar to (8.4) using spheres in $\Sigma$ instead of circles in $\Lambda_{S}$ .

However as we remarked earlier, we do not have yet a good grip on how
$\Sigma$ looks like. The main difficulty comes from the fact that $ S\cap L\neq\phi$

for $ S\in\Sigma$ . In what follows we shall carry out study of $\Sigma$ step by step.
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Corollary (8.5). We have $ S\cap\gamma(P)=\phi$ for any $\gamma\in\Gamma$ and
$ S\in\Sigma$ . (Recall that $P$ is an open set.)

Proof. For contradiction, take a point $x\in S\cap\gamma(P)$ . By (FD.1),
we have $ x\in\Omega$ . Therefore by (8.3), there exist finitely many circles in
$\Lambda_{S}$ separating $x$ from $x_{0}$ . Now the argument of the first part of
(8.3) can be applied to show that $x$ is contained in the union of sides
of translates of $P$ . That is, $x\not\in\gamma(P)$ . A contradiction. Q.E.D.

Lemma (8.6). Let $S$ , $ S’\in\Sigma$ . If $l$ $=S\cap S’$ is a circle, then
$l$ $\in\Lambda$ . In particular, we have $l$ $\subset\Omega$ .

Proof. By (8.4), there exists a point $x\in l\backslash L$ . By (8.5), we have
that $x\not\in\gamma(P)$ for any $\gamma\in\Gamma$ . Likewise we obtain that $x$ does not
lie in a translate of the interior of a side of $P$ , since otherwise either
$S$ or $S’$ would intersect some $\gamma(P)$ . Therefore we have $x\in l’$ for
some $ l’\in\Lambda$ . Should $l’$ not coincide with $l$ , there would be another
sphere $ S’’\in\Sigma$ such that $S$ , $S’$ and $S’’$ meet in general position at
$x\in\gamma(P)$ . Again one of the three spheres would intersect some

$Q.E.D\gamma(P).\cdot$

A contradiction.

Lemma (8.7). Let $ S\in\Sigma$ . Suppose that for some $\gamma_{k}\in\Gamma$ , $\gamma_{k}(S)$

are distinct spheres. Then we have radius $\gamma_{k}(S)\rightarrow 0$ .

Proof. Suppose the contrary. We may assume further that $\gamma_{k}(S)$

converges to a 2-sphere $S_{0}$ . Let us show first that $ S_{0}\cap L\neq\phi$ . Take a
point $a\in S$ and assume that $\gamma_{k}(a)\rightarrow b\in S_{0}$ . For any neighbourhood
$U$ of $b$ , we have $\gamma_{j}\gamma_{i}^{-1}(U)\cap U\neq\phi$ for arbitrary $j>>i>>1$ . That
is, $b\in L_{P}(\Gamma)=L$ . (See (5.15).) On the other hand, we have $S_{0}\not\subset L$ .

In fact, $S_{0}\subset L$ would imply that $\Omega$ is not connected. However this is
impossible since the fundamental domain $P$ is connected. (Notice that
by the minimality (5.6) of $L$ , we have IntL $=\phi$ . Compare (5.22).)

Consider a path in $S_{0}$ which combines a point of $\Omega\cap S_{0}$ to a
point of $L\cap S_{0}$ . As in the proof of (8.3), one finds a sphere $ S’\in\Sigma$

which separates these two points. Clearly $S’\cap S_{0}=l$ is a circle.
Since $\gamma_{k}(S)\rightarrow S_{0}$ , we have that $\gamma_{k}(S)\cap S’\rightarrow l$ . By (8.6), we
have $\gamma_{k}(S)\cap S’\in\Lambda$ . Since $\gamma_{k}(S)$ are all distinct, we may assume
(passing to a subsequence if necessary) that $\gamma_{k}\cap S’$ are all distinct.
This contradicts (8.2). Q.E.D.

Lemma (8.8). Fix once and for all $x_{0}\in P$ . A point $x\in S^{3}$

belongs to $\Omega$ if and only if there exist only fifinitely many spheres in $\Sigma$

which separate $x$ from $x_{0}$ .
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Proof. Suppose there exist infinitely many $ S_{k}\in\Sigma$ . Then by (8.7),
$diamS_{k}\rightarrow 0$ . As in the proof of (8.3), we have $x\in L$ . (In fact this
part will not be used in the sequel.)

Let us embark upon the proof of the converse. Define a closed subset
$Y_{j}\subset S^{3}$ inductively as follows.

$Y_{0}=C1P$.

$ Y_{j}=\cup\gamma C1P\gamma$’
where $\gamma C1P\cap Y_{j-1}\neq\phi$ , for $j>0$ .

Define an open subset $X_{j}$ by

$X_{j}=S^{3}\backslash Y_{j}$ .

The set theoretic frontier $\partial X_{j}$ is an angular surface (possibly with
singularities) composed of the translates of sides of $P$ , which we call
sides of $X_{j}$ . We have a filtration

$(*)$ $C1X_{0}\supset X_{0}\supset C1X_{1}\supset X_{1}\supset C1X_{2}\supset X_{2}\cdots$ .

See Figure (8.4).

Figure (8.4)
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Since $P$ is the fundamental domain for $\Gamma$ , we have

$L=j\geq 0\cap X_{j}$
.

For $ S\in\Sigma$ , the connected component of $S^{3}\backslash S$ opposite to the base
point $x_{0}$ is called the inside of $S$ and is denoted by Inside(S). It
is an open subset by definition. Let

$\Sigma_{j}=$ { $S\in\Sigma|S$ contains a side of $X_{j}$ }.

Once we establish the following sublemma, a point $x\in L$ can be
shown to be inside infinitely many spheres in $\Sigma$ , completing the proof
of (8.8). Q.E.D.

Sublemma (8.8.1).

(1) For any $S\in\Sigma_{j}$ , we have $S\subset C1X_{j}$ .

(2) We have

$ X_{j}=S\in\Sigma_{j}\cup$
Inside(S).

Proof. The following properties of $P$ , very easy to check, play a
crucial part in th proof. Denote by $T_{\alpha}^{*}$ a side of $P$ , by $T_{\alpha}$ the sphere
containing $T_{\alpha}^{*}$ and by $e_{\nu}$ an edge of $P$ .

(a) If $ T_{\alpha}^{*}\cap T_{\beta}^{*}=\phi$ , then we have $ T_{\alpha}\cap T_{\beta}=\phi$ .

(b) Suppose $ T_{\alpha}^{*}\cap e_{\nu}=\phi$ and let $ S\in\Sigma$ be an arbitrary sphere

which passes through $e_{\nu}$ . If $ S\cap T_{\alpha}\neq\phi$ , then $S$ contains a
side $S^{*}$ of $P$ such that $ S^{*}\cap T_{\alpha}^{*}\neq\phi$ and $e_{\nu}\subset\partial S^{*}$ .

(c) If $ T_{\alpha}\cap T_{\beta}\neq\phi$ , $ T_{\beta}\cap T_{\gamma}\neq\phi$ and $ T_{\gamma}\cap T_{\alpha}\neq\phi$ , then two of
the three spheres $T_{\alpha}$ , $T_{\beta}$ and $T_{\gamma}$ must coincide.

The proof of (8.8.1) is by induction on $j$ . For $j=0$ , this is clear
by the construction of $P$ . Let $j>0$ . Assume (8.8.1) for $j-1$ .

Proof of (1). For a given $S\in\Sigma_{j}$ , let $S^{*}\subset S$ be a side of $X_{j}$ .

Choose a point $x$ in the interior of $S^{*}$ . By the filtration $(*)$ , we have
$x\in X_{j-1}$ . The induction hypothesis implies that $x\in Inside(T)$ for
some $T\in\Sigma_{j-1}$ . Since $S^{*}\subset\partial X_{j}$ , there exists a translate $\gamma C1P$ having
$S^{*}$ as a side such that $\gamma C1P\cap X_{j}=\phi$ . That is, $\gamma C1P$ $\subset Y_{j}$ . By the
definition of $Y_{j}$ , we have $\gamma C1P\cap\partial X_{j-1}\neq\phi$ . Since $x\in Inside(T)$ ,

$7CIP$ must lie in $T\cup Inside(T)$ . Therefore we have

$\gamma C1P\cap T\cap\partial X_{j-1}\neq\phi$ .
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Clearly $\gamma C1P\cap T\cap\partial X_{j-1}$ is either a side or an edge of $\gamma C1P$ . Since
$S^{*}\subset X_{j-1}$ , we have $ S^{*}\cap(\gamma C1P\cap T\cap\partial X_{j-1})=\phi$ .

If $\gamma C1P\cap T\cap\partial X_{j-1}$ is a side, then it follows from (a) that $ S\cap T\neq\phi$ .

That is,

$S\subset Inside(T)\subset X_{j-1}$ .

Clearly this implies that $S\subset C1X_{j}$ .

Suppose on the contrary that $\gamma C1P\cap T\cap\partial X_{j-1}$ is an edge, that
is a circle $l$ $\in\Lambda$ . By (b), we obtain the same conclusion except in the
case where $T$ contains a side $T^{*}$ of $7CIP$ such that $ T^{*}\cap S^{*}\neq\phi$

and $T^{*}\supset l$ . See Figure (8.5). In this case choose a point $y\in S^{*}\cap T^{*}$ .

As before we obtain that $y\in Inside(T’)$ for some $T’\in\Sigma_{j-1}$ and that
$l$ $\subset T’$ . If $ S\cap T’\neq\phi$ , then $T’$ contains a side $T^{l}*$ of $7CIP$ such

that $ T^{J}*\cap S^{*}\neq\phi$ and $T^{l}*\supset l$ . This contradicts (c). Therefore we
have $ S\cap T’=\phi$ . As before we obtain $S\subset C1X_{j}$ .

Figure (8.5)

Proof of (2). By the construction $Y_{j}$ is connected. Therefore for
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$S\in\Sigma_{j}$ , $S\subset C1X_{j}$ implies that Inside(S)\subset Xj. This shows

$s\in\Sigma_{j}\cup Inside(S)\subset X_{j}$
.

For the converse, consider a path $p$ combining the base point $x_{0}$

to a given point $x\in X_{j}$ . Any such $p$ must intersect $\partial X_{j}$ and hence
$\bigcap_{S\in\Sigma_{j}}S$ . Choose $p$ so that

(i) $p$ does not pass through the intersection of two distinct spheres

of $\Sigma_{j}$ ,
(ii) the sum

$\sum_{S\in\Sigma_{j}}$

Card(p\cap S)

is the minimal.

Then for each $S\in\Sigma_{j}$ , we have Card(p\cap S) $\leq 1$ . In fact, if not,
one can find a subarc $q$ of $p$ such that $\partial q\subset S$ and $q\backslash \partial q\subset Inside(S)$

One can push $q$ out of Inside(S) in such a way that the numbers of
intersections of $p$ with the other spheres do not change. This contradicts
the minimality (ii).

We obtain that Card(p\cap S) $=1$ for some $S\in\Sigma_{j}$ . That is,
$x\in Inside(5)$ , as is required.

Q.E.D.

At this point we need a concrete picture how $C1X_{1}$ and $C1X_{2}$ look
like. The picture of $C1X_{1}$ near $A_{j}\cap A_{j+1}$ , $A_{1}\cap E$ and $A_{n}\cap C$ are

shown in Figures (8.6)\sim (8.8).

The point is that Figure (8.8) shows that there occurs a separation of
components of $C1X_{1}$ near $A_{n}\cap C$ . As a matter of fact, the same thing
happens near any edge in the cycle of $A_{n}\cap C$ . Furthermore we find
a lot of separation of components of $C1X_{2}$ . In particular in $\epsilon^{-1}(C1P)$

which is inside $E$ , we observe that a component of $C1X_{2}\cap\epsilon^{-1}(C1P)$

which intersets $\epsilon^{-1}B_{1}$ do not intersect $\epsilon^{-1}B_{1}’$ . See Figure (8.9).

The same thing happens inside $E’$ . In summary we have the fol-
lowing.

Let $T$ , $T’$ be any adjacent pair of 2-spheres chosen from $A_{1}$ , $\ldots$ , $E’$ .

Then a component of $ClX_{2}\backslash (Inside(T)\cup Inside(T’))$ which inter-

sects $T$ does not intersect $T’$ .

As a matter of fact, much more can be said concerning the smallness
of components of $C1X_{2}$ . However this is all that we need.
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$A_{j+1}$
$P$ $A_{j}$

Figure (8.6)

$A_{1}$ $E$
$P$

Figure (8.7)

Lemma (8.9). For arbitrary spheres $S$ , $ S’\in\Sigma$ such that $l$ $=$

$S\cap S’$ is a circle, let $D$ (resp. $D’$ ) be one of the disks in $S$ (resp.
$S’)$ which is bounded by 1. Suppose that the angle of $D$ and $D’$ at
$l$ is $2\pi/28$ . Let $Q$ be the closure of the component of $S^{3}\backslash (S\cup S’)$

bounded by $D$ and $D’$ . Then a component of $L\cap Q$ which intersects
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$A_{n}$

Figure (8. $S$

Figure (8.9)
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$D$ does not intersect $D’$ .

Proof. Since we have $l$ $\in\Lambda$ by (8.6), the proof reduces to the case
where $l$ is an edge of $P$ and $D$ and $D’$ contains adjacent sides
of $P$ . Since $L\subset C1X_{2}$ , (8.9) follows from the above observation. See
Figure (8.10). Q.E.D.

Figure (8.10)

Another way to put (8.9) is the following.

Corollary (8.10). For arbitrary spheres $S$ , $ S’\in\Sigma$ such that
$l$ $=S\cap S’$ is a $ circle\rangle$ the component of $L$ at a point $x\in S’\backslash S$ does
not intersect $S$ .

Proof. Let $\triangle$ be the component of $S’\backslash S$ at $x$ and let — be

the closure of either of the components of $S^{3}\backslash (S\cup S’)$ which contains
$\triangle$ in its boundary. Then by (8.9), we obtain that for any $y\in\triangle\cap L$ ,

the component of $\cup--\cap L$ at $y$ does not intersect $S$ . See Figure (8.11).
It is easy to show that (8.10) follows from this. Q.E.D.

Lemma (8.11). Let $S$ be an arbitrary sphere in $\Sigma$ . For any
$x\in S\cap L$ , the component of $L$ at $x$ is $\{x\}$ itself.
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Figure (8.11)

Proof. By (8.8), there exists an infinite sequence $\{S_{k}\}\subset\Sigma$ such
that $S_{k}$ separates $x$ from the base point $ x_{0}\in\Omega$ . Note that $S_{k}\rightarrow x$ .

For large $k$ , $S_{k}$ intersects $S$ at a circle. Therefore by (8.10), the
component of $L$ at $x$ does not intersect $S_{k}$ . This completes the
proof. Q.E.D.

Corollary (8.12). For any $S\in\Sigma_{\rangle}$ the component of $L$ at $a$

point $x\in L\backslash S$ does not intersect $S$ .

Corollary (8.13). $L$ is totally disconnected.

Proof. Let $x\in L$ . If $x\in S$ for some $ S\in\Sigma$ , then we have
already shown (See (8.11).) that the conponent of $L$ at $x$ is a singleton.
So consider the other case. By (8.8), there exist infinitely many spheres
$ S_{k}\in\Sigma$ which separate $x$ from a base point $x_{0}\in P$ . By (8.7), we
have $S_{k}\rightarrow x$ . Therefore (8.12) implies (8.13). Q.E.D.

By (6.5), this implies that $L$ is a Cantor set. Thus we have finished
the proof of the first part of Theorem (8.1). Let us show in the remainder
that $L$ is wild. First of all we have the following well known fact, which
is easy to show.

Proposition (8.14). If $\wedge r$ $\subset S^{n}$ is a tame Cantor set, then $S^{3}\backslash 1$

is simply connected.
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Thus once we establish that the inclusion $i$ : $ P\rightarrow\Omega$ induces an
injection on the fundamental groups, then the proof of Theorem (8.1)
will be complete.

Some readers may have a feeling that this can be solved by looking
at the homomorphism

$\pi_{1}(P)\rightarrow\pi_{1}(i_{*}\Omega)\rightarrow\pi_{1}(p_{*}\Omega/\Gamma)$ .

The computation of $\pi_{1}(\Omega/\Gamma)$ , the fundamental group of an orbifold, is
in fact easy. However in order to show the nontriviality of the homomor-
phism $p_{*}oi_{*}$ , one is lead to the word problem of $\pi_{1}(\Omega/\Gamma)$ , in which an
approach geometric in nature is obviously indispensable. Instead of go-
ing to this direction, we employ the following argument which is totally

geometric and is applicable also to the word problem of $\pi_{1}(\Omega/\Gamma)$ .

The key fact is the following lemma.

Lemma (8.15). Let $T^{*}$ be a side of $C1P\rangle$ then the inclusion
$T^{*}\rightarrow C1P$ induces an injection on $\pi_{1}$ .

Proof. By sliding handles of $S^{3}\backslash P$ , one obtains that $C1P$ is
a handlebody of genus 2. Therefore $\pi_{1}(C1P)$ is a free group freely

generated by $\alpha$ and $\beta$ . If $T^{*}\neq E^{*}$ or $E’*$ , then the lemma follows
easily. For $T^{*}=E^{*}$ , the image of $\pi_{1}(E^{*})$ is generated by $\alpha$ and
$\alpha\beta\alpha^{-1}\beta^{-1}$ . It is well known, easy to show using the once puctured
torus model, that they generate free subgroups. Q.E.D.

Now let us embark upon the proof. Let $\alpha$ : $S^{1}\rightarrow P$ be a loop such
that $\alpha\not\simeq 1$ in $P$ . Suppose on the contrary that $\alpha\simeq 1$ in $\Omega$ . Let
$\beta$ : $ D^{2}\rightarrow\Omega$ be the extension of $\alpha$ . By a small perturbation, one may
assume that $\beta$ is smooth and transverse to any circle in $\Lambda$ and to any
sphere in $\Sigma$ . Their inverse images form a graph $G$ in $D^{2}$ . ( $G$ may
contain smooth circles as connected components.) As a matter of fact,
we have $ G\neq\phi$ and $ G\cap S^{1}=\phi$ . See Figure (8.12).

Let us choose $\beta$ so

(M.I) the number of vertices of $G$ is the minimal,
(M.2) the number of edges of $G$ is the minimal among those which

satisfy (M. 1).

Let $\triangle$ be a connected component of $D^{2}\backslash G$ which is homeomorphic
to an open disk. Then $\beta(\triangle)\subset\gamma P$ for some $\gamma\in\Gamma$ . Since $\beta$ is
transverse to $\gamma\partial P$ , we have that $\partial\triangle$ is a simple closed curve.

Claim (8.16). The number of vertices of $\partial\triangle$ $is\geq 3$ .
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Figure (8.12)

Proof. If not, $\beta(\partial\triangle)$ is contained in the union $\mathcal{T}$ of adjacent two
sides of $\gamma\partial P$ for some $\gamma\in\Gamma$ . Clearly $T$ is homotopic in $7CIP$ to a
single side. See Figure (8.2). Since $\beta(\partial\triangle)$ is null homotopic in $\gamma C1P$ ,

we obtain by (8.15) that $\beta(\partial\triangle)$ is null homotopic in $\mathcal{T}$ . But then we
can alter the map $\beta$ so that $\beta(\triangle)\subset \mathcal{T}$ and eventually push $\beta$ out of
$7CIP$ . This contradicts the minimality assumption (M.I) if $\partial\triangle$ has a
vertex and (M.2) otherwise. Q.E.D.

Now consider the family of smooth circle components of $G$ . Let $l$

be the innermost one and let $V$ be the open ball bounded by $l$ . In
case there is no smooth circles, let $V=IntD^{2}$ . By (8.16), there must

exist components of $G$ in $V$ . Consider $G’=G\cap V$ . $G’$ has no
longer a smooth circle component. Let $G_{1}’$ , $\ldots$ , $G_{r}’$ be the connected
component of $G’$ . Let $E_{i}’$ be the component of $V\backslash G_{i}’$ which contains
$\partial V$ and let

$H(G_{i}’)=V\backslash E_{?}’.$ .

Notice that $\partial H(G_{i}’)$ is a simple closed curve since it is the inverse image
by $\beta$ of a surface $\gamma\partial P$ for some $\gamma\in\Gamma$ . Therefore $H(G_{i}’)$ is a closed
disk. Define a partial order $\prec$ in the set $\{G_{1}’, \ldots, G_{r}’\}$ by

$G_{j}’\prec G_{i}’\Leftrightarrow H(G_{j}’)\subset H(G_{i}’)$ .
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Let $G_{j}’$ be the minimal element. Then any component of $H(G_{j}’)\backslash G_{j}’$ is

an open disk. That is, $G_{j}’$ gives a polyhedral decomposition of $H(G_{j}’)$ .

Let $f$ , $e$ and $v$ be the number of faces, edges and vertices of the
decomposition. By virtue of (8.16), we have

$3f\leq 2e$ .

Notice that by (P.4), exactly 28 edges gather at each vertex of $G_{j}’$ .

Therefore we have
$14v$ $=e$ .

The computation of Euler number yields;

$1=f-e+v\leq\frac{2}{3}e-e+\frac{e}{14}<0$ .

This contradiction shows that $i_{*}$ : $\pi_{1}(P)\rightarrow\pi_{1}(\Omega)$ is an injection, as is
requied.

Appendix End

The concept of end of a topological space and of a discrete group was
first introduced in 1931 by Freudenthal ([11]) and was studied, among
others, by Hopf ([23]). See also Freudenthal [12] and Epstein [8]. After
almost 40 years, Stalling ([54], [55]) established a celebrated theorem
concerning finitely generated groups with infinite ends. See Dunwoody
[7] for related topics and a geometric proof of Stalling’s theorem for
finitely presented groups. All this has a wide range of applications. For
the convenience of the reader, we collect here some parts of the theory,
mostly without proof.

First of all we define the ends of a connected locally finite simplicial
complex $U$ .

Definition (A. $I$ ). A sequence $\{M_{k}\}$ of subsets of $U$ is called
discrete if for any compact subset $C$ of $U$ , we have $ M_{k}\cap C=\phi$ for
but finitely many $k$ .

Definition (A.2). A point sequence $\{x_{k}\}\subset U$ is called admis-
sible if for any $k>0$ , there exists a path $P_{k}\subset U$ combining $x_{k}$ and
$x_{k+1}$ such that the family $\{P_{k}\}$ is discrete.

Definition (A.3). Two admissible sequence $\{x_{k}\}$ and $\{x_{k}’\}$ are
said to be equivalent, (denoted by $\{x_{k}\}\sim\{x_{k}’\}$ ) if and only if there
exists a path $P_{k}$ $(k>0)$ combining $x_{k}$ and $x_{k}’$ such that the family
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$\{P_{k}\}$ is discrete. An equivalence class of admissible sequences are called
an end of U. The set of the ends of U is denoted by $\mathcal{E}(U)$ .

It is easy to show that the relation in (A.3) is in fact an equivalence
relation. Notice that a subsequence of an admissible sequence is again
admissible and in the same equivalence class.

For applications to flat conformal structures, we need the following.

Proposition (A.4). For an open domain $U$ of $S^{n}$ $(n\geq 2)$ ,
the set of ends $\mathcal{E}(U)$ is in one to one correspondence with the set of
connected components of $Y=S^{n}\backslash U$ .

Proof. First of all let us define a correspondence of an end to a
connected component. Let $\{x_{k}\}$ be an admissible sequence of $U$ .

Then we have $d(x_{k}, Y)\rightarrow 0$ . Let us show furthermore that there exists

a unique connected component $Y_{\nu}$ of $Y$ such that $ d(x_{k}, Y_{\nu})\rightarrow$

$0$ . Suppose the contrary. Then there exist subsequences $\{y_{k}\}$ and
$\{z_{k}\}$ of $\{x_{k}\}$ such that $d(y_{k}, Y_{\nu})\rightarrow 0$ and $d(z_{k}, Y_{\mu})\rightarrow 0$ for
disjoint components $Y_{\nu}$ and $Y_{\mu}$ of $Y$ . Then there exists a compact
neighbourhood $B$ of $Y_{\nu}$ in $S^{n}$ such that $ B\cap Y_{\mu}=\phi$ and $\partial B\subset U$ .

Then any path $P_{k}$ in $U$ combining $y_{k}$ and $z_{k}$ must intersect the
compact set $\partial B$ . This contradicts the fact that $\{y_{k}\}\sim\{z_{k}\}$ . The
same argument shows that the component thus chosen is independent of
the particular choice of an admissible sequence in the equivalence class.
Thus an end corresponds to a connected component.

The converse correspondence is defined as follows. For any con-
nected component $Y_{\nu}$ of $Y$ , we can find a sequence $\{B_{k}\}$ of compact
connected neighbourhoods of $Y_{\nu}$ in $S^{n}$ such that $\partial B_{k}\subset U$ and that
$\bigcap_{k}B_{k}=Y_{\nu}$ . Furthermore one may assume that $\partial B_{k}$ is a finite union of
codimension one connected submanifold. Notice that any codimension
one connected submanifold splits $S^{n}$ $(n \geq 2)$ into two parts. Since $U$

is connected, this shows that $IntB_{k}\backslash Y$ is arcwise connected. Choose
an arbitrary point $x_{k}\in intBk-$ Combine $x_{k}$ and $x_{k+1}$ by a path $P_{k}$

in $IntB_{k}\backslash Y$ . This shows that $\{x_{k}\}$ is an admissible sequence. Q.E.D.

The ends of a group is defined by virtue of the following theorem.

Theorem (A.5). Let $\Gamma$ be $a$ fifinitely generated group which acts
on a connected locally fifinite simplicial complex $U$ freely and discontin-
uously such that the quotient $ U/\Gamma$ is compact. Then the set of ends
$\mathcal{E}(U)$ is determined (up to a bijection) only by the group $\Gamma$ . It does
not depends upon the particular choice of the space $U$ .

Definition (A.6). The set of ends in (A.5) is called the end set

of the group $\Gamma$ and is denoted by $\mathcal{E}(\Gamma)$ .
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Theorem (A.7). The end set $\mathcal{E}(\Gamma)$ of $a$ fifinitely generated group
$\Gamma$ is infifinite [in fact uncountably infifinite) if $Card\mathcal{E}(\Gamma)\geq 3$ .

We have the following characterization of the group according to its
end set.

Theorem (A.8). Let $\Gamma$ be $a$ fifinitely generated group.

(1) $\mathcal{E}(\Gamma)=\phi$ if and only if $\Gamma$ is $a$ fifinite group.
(2) $\mathcal{E}(\Gamma)$ consists of two points if and only if $\Gamma$ has the infifinite

cyclic group $Z$ as $a$ fifinite index subgroup.

For a group with infinitely many ends, Stalling obtained a complete
characterization. However for the sake of simplicity we only state the
following partial result.

Theorem (A.9). $A$ fifinitely generated torsion free group $\Gamma$ has

infifinite ends if and only if $\Gamma$ has a nontrivial decomposition as a free
product $\Gamma=\Gamma_{1}*\Gamma_{2}$ .

As an application, if a torsion free group $\Gamma$ in (A.9) acts on a
domain $U\subset S^{n}$ freely and discontinuously and if the complement
$S^{n}\backslash U$ has more than two components, then $\Gamma$ is a nontrivial free
product.
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0. Introduction

In this note we shall study geometric structures on smooth manifolds
and deformation spaces. In 1981 Thurston gave a lecture on projective
structures on surfaces in which he has established the following structure
theorems (unpublished):

I. There is a canonical decomposition by convex hulls on a hy-
perbolic surface $S$ which admits a (one dimensional complex)
projective structure.

$II$ . There is an isomorphism between the deformation space
$CP^{1}(S_{g})$ and the product $\mathcal{T}(S_{g})\times A4\mathcal{L}(S_{g})$ .

Here $\mathcal{T}(S_{g})$ is the Teichm\"uller space of a closed orientable surface $S_{g}$ of
genus $g\geqq 2$ and $\Lambda 4\mathcal{L}(S_{g})$ is the space of measured laminations.
Since there was considerable interest in the argument of proof and the
key idea seems to be generalized in higher dimension, we have decided
to write down an exposition of the above structure theorems (I), (II).

(Complex) projective structure on surfaces is equivalent to con-
formally flat structure on surfaces when we identify $CP^{1}=S^{2}$ and
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$PSL_{2}(C)=PO(3,1)^{0}$ . We shall generalize I to conformally flat struc-
ture on manifolds in arbitrary dimensions.
In Chapter 1, we show that there is a canonical decomposition of a
conformally flat manifold. The above Thurston correspondence will be
proved in Chapter 2. There is no originality concerning the argument
of Chapter 2 except for a certain generalization. It is nothing but our
interpretation of Thurston’s lecture. In Chapter 3 we shall describe
various projective structures by using Kleinian groups. In Chapter 4
we review $(G, X)$ -structures and examine the properties of limit sets of
$(G, X)$ -manifolds. The deformation space for $(G, X)$ -structures will be
defined more generally. As an application, we study the deformation
spaces of $S^{1}$ invariant geometric structures in Chapter 5. Particularly
we treat spherical $CR$ structures and conformally flat structures as such
geometric structures.

The authors have been informed from Professor William Goldman,
and Professor Sadayoshi Kojima that Kulkarni-Pinkall also showed the
existence of canonical stratification of conformally flat manifolds (cf.
[34] $)$ .

We would like to thank Professor William Goldman for showing us
his note of the Thurston’s lecture. And we also thank the referee to
pointing out our mistakes in earlier draft.

1. Canonical decomposition of conformally flat manifolds

A conformally flat structure on a smooth $n$-manifold is a maxi-
mal collection of charts modelled on the standard $n$-sphere $S^{n}$ whose
coordinate changes lie in the group Conf(5n) of conformal transfor-
mations of $S^{n}$ . The group Conf(5n) is isomorphic to the Lorentz
group $PO(n +1,1)$ . If a smooth $n$-manifold $M$ admits a confor-
mally flat structure, then by the monodromy argument there exists

a developing pair $(\rho, dev)$ , where $dev$ : $\tilde{M}\rightarrow S^{n}$ is a conformal im-

mersion and $\rho$ : $\pi_{1}(M)$ $\rightarrow$ Conf(S’n) is a homomorphism such that
$dev\cdot\gamma=\rho(\gamma)$ . $dev(\gamma\in\pi_{1}(M))$ . Here $\tilde{M}$ is the universal covering space
of $M$ and $\pi_{1}(M)$ is the fundamental group. The map $dev$ is called a de-
veloping map and $\rho$ is called a holonomy homomorphism, both unique
up to an element of $Conf(S^{n})$ . Remark that the term “conformal” means
“in the category $(Conf(S^{n}), S^{n})’’$ , which is different from the usual ter-
minology when $dim=2$ .
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1.1. Maximal balls

Definition 1.1.1. Let $H^{n+1}$ be a (real) hyperbolic space with

boundary $\partial H^{n+1}=S^{n}$ . The $n$ dimensional sphere $S^{n}$ is a conformally
flat manifold by stereographic projection. A geometric $k$-sphere $S^{k}$ is
the boundary of a $(k+1)$ dimensional totally geodesic subspace of $H^{n+1}$ .

A geometric ball is a domain of $S^{n}$ bounded by a codimension one geo-
metric sphere.

Definition 1.1.2. Let $N$ be a conformally flat manifold. Given
a conformal immersion $f$ : $N\rightarrow S^{n}$ , a geometric ball of $N$ is an open
subset $U$ such that $f$ : $U\rightarrow f(U)$ is a diffeomorphism onto a geometric
ball of $S^{n}$ . Then the set of geometric balls of $N$ is partially ordered by
inclusions. We call a maximal geometric ball a maximal ball.

The following is a generalization of the proposition due to Thurston.

Proposition 1.1.3. Let $f$ : $N\rightarrow S^{n}$ be a conformal immersion.
Then either one of the following is true.

(i) $N$ is conformally equivalent to the standard sphere $S^{n}$ , $a$ eu-
clidean space $R^{n}$ , or a hyperbolic space $H^{n}$ .

(ii) Every point of $N$ lies in a proper maximal ball.

Proof. Suppose that (ii) is false. A point of $N$ lies in some geo-
metric ball but not in a maximal ball. And so there exists a sequence
$ U_{1}\subset U_{2}\subset\cdots\subset U_{i}\subset\cdots$ of geometric balls containing $x$ . The union

$W=\bigcup_{i=1}^{\infty}U_{i}$ is not a geometric ball. As $f$ is injective on each $U_{i}$ , $f$ must

map $W$ isomorphically onto a euclidean space $R^{n}(\approx S^{n}-\{\infty\})$ . If
$N\neq W$ then $f$ maps the closure $\overline{W}$ isomorphically onto $S^{n}$ . And thus
it follows that $N=\overline{W}$ . This proves (i). If some maximal ball $U$ is not
proper, then $N=U$ . Since the image $f(U)$ is a geometric ball of $S^{n}$ , it
is conformally equivalent to a hyperbolic space $H^{n}$ . Q.E.D.

Let $f$ : $N\rightarrow S^{n}$ be a conformal immersion. The spherical metric
on $S^{n}$ defines a Riemannian metric on $N$ so that $f$ is a local isometry.
Let $\overline{N}$ be the metric completion of $N$ . It is easy to see that $f$ extends
to a map $\overline{f}:\overline{N}\rightarrow S^{n}$ . Recall that for a maximal ball $U$ , $f$ : $U\rightarrow B$ is a
diffeomorphism onto an $n$ dimensional ball $B$ . Note that the closure of
$U$ in $N$ is not compact by maximality. However we have

(1.1.4) $\overline{f}:\overline{U}\rightarrow\overline{B}$
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is a homeomorphism onto a closed ball of $S^{n}$ . Denote by $\partial U$ the bound-
ary of $\overline{U}$ in $\overline{N}$ . Let $M^{n}$ be a closed conformally flat manifold and
$(\phi, dev)$ : $(\pi_{1}(M),\tilde{M})\rightarrow(Conf(S^{n}), S^{n})$ be the developing pair as in
1.1 of Chapter 1. Recall that $dev$ is a conformal immersion. We have
the following application.

Lemma 1.1.5. Let $M^{n}$ be a closed conformally flat manifold and
$\mathcal{F}$ be the set of all maximal balls of the universal covering space $\tilde{M}$ . If
the boundaries of all the elements of $\mathcal{F}$ meet at a common point, then
the developing map is a covering map.

Proof. We put $\tilde{M}=N$ , $\pi_{1}(M)=\Gamma$ , $dev=f$ . Let $\overline{N}$ be the

metric completion of $N$ and $\overline{f}$ : $\overline{N}\rightarrow S^{n}$ be the map extending $f$ . Let
$x$ be a common point of $\partial U$ for all $U\in \mathcal{F}$ . Note that $x\not\in N$ , otherwise
$x$ would be an interior point of some maximal ball. Put $\overline{f}(x)=\infty$ .

We prove that $f$ misses the point $\{\infty\}$ . Suppose that there is $y\in N$

such that $ f(y)=\infty$ . The point $y$ lies in some maximal ball $U$ . Since
$\overline{f}:\overline{U}\rightarrow\overline{B}$ is a homeomorphism and $x\in\partial U$ , it is impossible. Therefore,
as the developing map misses a point, it is a covering map onto its image
(cf. [25] , [34]). Q.E.D.

Proposition 1.1.6. Let $M^{n}$ be a closed conformally flat mani-

fold. Suppose that $\mathcal{F}$ consists of fifinite elements (possibly empty) or the
boundaries of all the elements of $\mathcal{F}$ meet at $a$ fifinite number of common
points. Then $M$ is conformally equivalent to a spherical space form, $a$

Hopf manifold, $a$ euclidean space form, or a hyperbolic space form.

Proof. Suppose the latter case. By the above lemma we have that
$dev$ : $\tilde{M}\rightarrow dev(\tilde{M})\subset S^{n}-\{\infty\}$ is a covering map. Since the com-
mon points are finite, the fundamental group $\pi_{1}(M)$ has a subgroup $\pi’$

of finite index those elements of which leave these points fixed. And
so the holonomy subgroup $\phi(\pi’)$ belongs to the similarity subgroup of
$Conf(S^{n})$ which is the stabilizer at $\{\infty\}$ in $S^{n}$ . Therefore $dev$ is a home-
omorphism of either $R^{n}$ or $S^{n}-\{0, \infty\}$ (cf. [14]). In our case $dev$ is a
homeomorphism onto $S^{n}-\{0, \infty\}$ or $M$ is a Hopf manifold.
For the remaining case, if $\mathcal{F}$ is empty then $M$ is either a spherical space
form or a euclidean space form. Suppose that $\mathcal{F}$ consists of finite ele-

ments. Then $\tilde{M}$ is covered by the union of those finite maximal balls
$U$ . It follows that the number of $dev^{-1}(x)$ is finite for each $x\in S^{n}$ . It

is easy to see that $dev$ : $\tilde{M}\rightarrow dev(\tilde{M})$ is a finite covering map. Passing
to a subgroup of finite index in $\pi$ if necessary we can assume that $\pi$

leaves each element $U$ of $\mathcal{F}$ invariant. Let $\Gamma$ be the holonomy group to
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$\pi$ . Since the image of $dev$ misses more than one point, we know that
$dev(\tilde{M})\subset S^{n}-L(\Gamma)$ . On the other hand, note that $\Gamma$ is discrete be-

cause $dev$ : $U\rightarrow B$ is a homeomorphism. This implies that $L(\Gamma)\subset S^{n-1}$

where we view $\partial B=S^{n-1}$ . Moreover $\Gamma$ acts properly discontinuously on
$S^{n}-L(\Gamma)$ by (1.1.5). In particular it follows that either $dev(\tilde{M})=H^{n}$

or $dev(\tilde{M})=S^{n}-L(\Gamma)$ . The former case implies that $M$ is a hyperbolic
space form. In the latter case the set of all maximal balls in $S^{n}-L(\Gamma)$

must be finite. However if we note that $ S^{n-1}-L(\Gamma)\neq\emptyset$ , it is easy to see
that for any point $x\in S^{n-1}-L(\Gamma)$ there are infinitely many maximal
balls containing $x$ . This is impossible in this case. Q.E.D.

Note. If $M$ is a Hopf manifold, every maximal ball of $\tilde{M}$ meets
at exactly two points.

1.2. Decomposition of conformally flat manifolds

Let $f$ : $N\rightarrow S^{n}$ be a conformal immersion and $\mathcal{F}$ the set of all
maximal balls of $N$ . Let $U$ be an element of $\mathcal{F}$ . Put

$U_{\infty}=\overline{U}-N$ .

Then $\partial U$ decomposes into a disjoint union of $\partial U\cap N$ and $U_{\infty}$ .

Definition 1.2.1. The set $U_{\infty}$ is called an ideal set of $U$ . The
ideal set is a closed subset of $\overline{N}$ . (For example, if $\overline{U}$ is a closed disk,
then $U_{\infty}$ may look like a Cantor set and $\partial U\cap N$ is a disjoint union of
intervals. Since $U$ has the natural Poincar\’e metric, $U_{\infty}$ corresponds to
a closed subset of points at infinity.)

Recall from (1.1.4) that $\overline{U}$ is conformally equivalent to a closed ball
$\overline{B}$ . We may form the convex hull $C(U_{\infty})$ for $U_{\infty}$ inside U. (Note that this

can be defined when $U_{\infty}$ contains more than one point.) Let $D^{m+1}=$

$H^{m+1}\cup S^{m}$ be the compactification of a hyperbolic space $H^{m+1}$ . If $K$

is a closed subset of $S^{m}$ then we denote by $H(K)$ the convex hull in
$H^{m+1}$ . it is easy to check the following.

Lemma 1.2.2. Let $P\subset H^{m+1}$ be a totally geodesic hyperplane
such that either one of the components of $S^{m}-\partial P$ does not meet $K$ .

Then $H(K\cap\partial P)=H(K)\cap P$ .

Using this lemma we define pleats on the boundary $\partial C(U_{\infty})$ of
$C(U_{\infty})$ . Given a closed convex set $C$ of $D^{n+1}$ there is a canonical re-

traction $\Phi_{C}$ : $D^{n+1}\rightarrow C$ called a closest point mapping. Recall that
if $x\in S^{n}-C$ there is a horoball centered at $x$ disjoint from C. Then
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$\Phi_{C}(x)$ is the point of the first contact when we increase the radius of
this horoball continuously until it touches C. See [8] for details. Denote

by $fU^{c}$ the complement of $fU$ in $S^{n}$ . If $C=\overline{H}(fU^{c})$ is the closure of

the convex hull $H(fUc)$ in $H^{n+1}$ , then we have a map $\Phi_{C}$ : $D^{n+1}\rightarrow C$ .

Note that $7\{(\partial(fU^{c}))$ is a totally geodesic subspace of $H^{n+1}$ , so we set
$\prime\mu(\partial(fU^{c}))=H^{n}$ . Since $\overline{H}(\partial(fU^{c}))\subset C$ , the above map restricts to a
map

$\Phi_{U}$ : $fU(=B)\rightarrow H^{n}$ .

Note that it is a conformal diffeomorphism.

Definition 1.2.3. For a totally geodesic hyperplane $P\subset H^{n}$

we call also $f^{-1}\Phi_{U}^{-1}(P)$ a totally geodesic hyperplane in $U$ . Put
$f^{-1}\Phi_{U}^{-1}(P)=Q$ . If $P^{1}<P^{2}<\cdots<P^{n-2}<P^{n-1}=P$ is a chain
of totally geodesic subspaces, then there exists a $k$ dimensional totally
geodesic subspace $Q^{k}$ of $U$ and similarly a chain $Q^{1}<Q^{2}<\cdots<$

$Q^{n-2}<Q^{n-1}=Q$ and so on.

Since $\Phi_{U}(C(\overline{f}U_{\infty}\cap\partial P))=H(\overline{f}U_{\infty}\cap\partial P)$ and $\prime H(\overline{f}U_{\infty}\cap\partial P)=$

$\mathcal{H}(\overline{f}U_{\infty}\cap P)$ by the above lemma, we have that $C(\overline{f}U_{\infty}\cap\partial P)=$

$fC(U_{\infty})\cap\Phi_{U}^{-1}(P)$ . Noting that $fC(U_{\infty}\cap\partial Q)=C(\overline{f}U_{\infty}\cap\partial P)$ , it
is easy to check that $C(U_{\infty}\cap\partial Q)=C(U_{\infty})\cap Q$ . An iteration of this
argument yields that

(1.2.4) $C(U_{\infty}\cap\partial Q^{k})=C(U_{\infty})\cap Q^{k}(k=1, \cdots, n-1)$ .

Definition 1.2.5. Let $Q^{1}<Q^{2}<\cdots<Q^{n-2}<Q^{n-1}=Q$ be a
chain of totally geodesic subspaces in a maximal ball $U$ . Suppose that
either one of $\partial U-\partial Q$ does not meet $U_{\infty}$ . If Int $ C(U_{\infty})\neq\emptyset$ , (equivalently

Int $C(U_{\infty})\cap U$ is open in $U$ ) and $C(U_{\infty})\cap Q^{k}$ contains an open subset

in $Q^{k}$ then by (1.2.4) that $C(U_{\infty}\cap\partial Q^{k})$ is said to be a $k$ dimensional
pleat of the boundary $\partial C(U_{\infty})(k=1,2, \cdots, n-1)$ .

Put $\Lambda_{U}=\partial C(U_{\infty})$ . Choosing all possible geodesic hyperplanes $Q$ in
$U$ and passing to all chains of geodesic subspaces $\{Q^{k}\}$ , we obtain all
pleats in $\Lambda_{U}$ . The set $\Lambda_{U}$ is composed of all possible pleats in dimension

less than or equal to $n-1$ . In the case that Int $ C(U_{\infty})=\emptyset$ , there exists
a totally geodesic subspace $Q’$ such that $C(U_{\infty})=C(U_{\infty})\cap Q’$ is open
in $Q’$ . We say that $C(U_{\infty})$ is an $m$ dimensional pleat if $dim$ $Q’=m$ .

Inductively we can define pleats of $\partial C(U_{\infty})$ unless $m=1$ . Note that
$C(U_{\infty})$ is a one dimensional pleat if and only if $U_{\infty}$ consists of a pair of
points.

Let $f$ : $N\rightarrow S^{n}$ be a conformal immersion as before. Using the
spherical metric of $S^{n}$ , $N$ admits a Riemannian metric such that $f$ is a
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local isometry. Recall that $\overline{N}$ is a metric completion and $\overline{f}:\overline{N}\rightarrow S^{n}$ is
a map extending $f$ . Choose a point $x$ in $N$ . Let $W(x)$ be the union of
all maximal balls containing $x$ .

Lemma 1.2.6. If $\overline{W(x)}$ is the closure of $W(x)$ in $\overline{N}$ then $\overline{W(x)}$

is compact.

Proof. Let $\rho$ (resp. $\rho_{0}$ ) be the distance function of $\overline{N}$ (resp. $S^{n}$ ).
Since $f$ maps $W(x)$ injectively, $f$ is a homeomorphism of $W(x)$ onto its

image $\Omega$ . Let $\{p_{i}\}$ be an arbitrary sequence of $\overline{W(x)}$ . Choose a sequence
$\{q_{i}\}$ in $W(x)$ such that $\rho(p_{i}, q_{i})<1/i$ . Since $\overline{\Omega}$ is compact, the sequence
$\{f(q_{i})\}$ has an accumulation point and so $\{f(q_{i})\}$ is Cauchy. Given
$\in>0$ , choose $\delta$ such that $ 0<\delta<\in$ . Suppose that $\rho_{0}(f(q_{i}), f(q_{j}))<\delta$ .

If $\delta$ is sufficiently small, then there exists a maximal ball in $\Omega$ containing
the points $f(q_{i}),f(q_{j})$ . And so $\Omega$ contains a minimizing geodesic between
$f(q_{i})$ and $f(q_{j})$ . It implies that $\rho_{0}(f(q_{i}), f(q_{j}))=\rho(q_{i}, q_{j})$ . In particular

the sequence $\{q_{i}\}$ is Cauchy. Since $\overline{N}$ is complete, the sequence $\{q_{i}\}$ has

a limit point $q$ . And thus we have $\lim p_{i}=q$ . Hence $\overline{W(x)}$ is compact.
Q.E.D.

Theorem 1.2.7. Let $f$ : $N\rightarrow S^{n}$ be a conformal immersion and
$\mathcal{F}$ the nonempty set of all maximal balls. Then every point of $N$ lies in
the convex hull $C(U_{\infty})$ for a unique element $U\in \mathcal{F}$ .

Proof. Choose a point $x$ in $N$ and let $W(x)$ be as above. Put
$W(x)_{\infty}=\overline{W(x)}-N$ . Note that it contains more than one point for
otherwise there are no maximal balls containing $x$ . Since $W(x)_{\infty}$ is a

closed subset of $\overline{W(x)}$ , $W(x)_{\infty}$ is compact by the above lemma. And so
$\overline{f}(W(x)_{\infty})$ is a closed subset of $S^{n}$ . If $\prime H$ $=\mathcal{H}(\overline{f}(W(x)_{\infty}))$ is the convex

hull in $H^{n+1}$ , then we have a closest point mapping $\Phi_{H}$ : $D^{n+1}\rightarrow H$ .

Now there is a unique totally geodesic hyperplane $P$ through $\Phi_{\mathcal{H}}(f(x))$

perpendicular to the geodesic from $f(x)$ to $\Phi_{H}(f(x))$ . Then we have
from (1.2.2) that

$\Phi_{H}(f(x))\in H(\overline{f}(W(x)_{\infty}))\cap P=H(\overline{f}(W(x)_{\infty})\cap\partial P)$ .

Let $B$ be a geometric ball containing $f(x)$ such that $\partial B=\partial P.The$ set
$U=f^{-1}(B)$ is a maximal ball containing $x$ because $B\subset f(W(x))$ . As
$\overline{f}\partial U=\partial fU=\partial P$ , it follows that

$H(\overline{f}(W(x)_{\infty})\cap\partial P)=\mathcal{H}(\overline{f}(W(x)_{\infty}\cap\partial U))$

$=\mathcal{H}(\overline{f}(U_{\infty}))$ .
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Since $\Phi_{U}(fC(U_{\infty}))=\Phi_{U}(C(\overline{f}U_{\infty}))=H(\overline{f}U_{\infty})$ and $\Phi_{?t}|fU=\Phi_{U}$ ,
it follows that $\Phi_{U}(f(x))=\Phi_{H}(f(x))\in\Phi_{U}(f(C(U_{\infty})))$ and hence
$x\in C(U_{\infty})$ . The proof of the uniqueness is the converse of the above
argument. Q.E.D.

Corollary 1.2.8.

(1) The family $\{C(U_{\infty});U\in \mathcal{F}\}$ consists of disjoint subsets.
(2) The $set\cup\Lambda_{U}$ is closed in $N$ .

Proof There exists a unique element of $\mathcal{F}$ such that each point
of $N$ lies in its convex hull by the above theorem. This implies that
$\{C(U_{\infty});U\in \mathcal{F}\}$ are disjoint. For (2), it suffices to show that if a
sequence $\{x_{i}\}\in\Lambda_{U_{i}}(U_{i}\in \mathcal{F})$ converges to $x\in N$ , then there exists an
element $U\in \mathcal{F}$ such that $x\in\Lambda_{U}$ . Recall that $\Lambda_{U}=C(U_{\infty})-$ int $C(U_{\infty})$ .
There exists $U\in \mathcal{F}$ such that $x\in C(U_{\infty})$ . If $x$ is not contained in $\Lambda_{U}$ ,
then $x\in intC(U_{\infty})$ . It follows that for sufficiently large $i$ , $\Lambda_{U_{i}}$ meets
with $C(U_{\infty})$ . This contradicts that $\{C(U_{\infty});U\in \mathcal{F}\}$ are disjoint.

Q.E.D.

Let $M^{n}$ be a closed conformally flat manifold and $\tilde{\mathcal{F}}$ the set of all

maximal balls of the universal covering space $\tilde{M}$ . It is obvious that $\mathcal{F}$ ,

the family $\{C(U_{\infty})\}$ and the $set\cup\Lambda_{U}$ are invariant under the fundamen-
tal group $\pi$ .

Corollary 1.2.9. Let $M^{n}$ be a closed conformally flat manifold.
Suppose that $\mathcal{F}$ is not empty. Then the universal covering space $\tilde{M}$

supports a $\pi$ invariant canonical decomposition $\{C(U_{\infty});U\in \mathcal{F}\}$ .

2. Thurston parametrization of projective structure on sur-
faces

In this chapter we shall prove the Thurston isomorphism $II$ stated
in Introduction. Recall that (complex) projective structure on sur-
faces is equivalent to conformally flat structure on surfaces when

we identify $(S^{2}, Conf(S^{2})^{0})$ with $(CP^{1}, PSL_{2}(C))$ . As before, given
a projective structure on a surface $S$ we have a developing pair
$(\phi, dev)$ : $(\pi_{1}(S),\tilde{S})\rightarrow(PSL_{2}(C), CP^{1})$ up to conjugation by elements
of $PSL_{2}(C)$ .

2.1. Deformation spaces on surfaces

Suppose that $S_{g}$ is a closed orientable surface of genus $g\geqq 1$ . For
the brevity we set $S=S_{g}$ and $\Gamma=\pi_{1}(S_{g})$ . A surface $\Sigma$ is a hyperbolic
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surface if the universal covering space is conformally equivalent to a
hyperbolic plane $H^{2}$ . Consider the subspace $\Omega^{+}(S)$ (cf. 4.3.4);

$\Omega^{+}(S)=\{(\phi, dev) : (\Gamma,\tilde{S})\rightarrow(PSL_{2}(C), CP^{1})\}/Diffff^{0}(S)$ ,

where $dev$ are orientation-preserving immersions.

The topology on $\Omega^{+}(S)$ is given by the following subbasis:

(1) $N(U)=U/\sim where$ $U$ is an open subset in $Map(\tilde{S}, CP^{1})$ with
the compact-open topology.

(2) $N(K)=\{dev\in Map(\tilde{S}, CP^{1})|dev|K$ is an embedding for a

compact subset $K\subset\tilde{S}$ } $/\sim$ .

Put
$CP^{1}(S)^{+}=PSL_{2}(C)\backslash \Omega^{+}(S)$ .

Definition 2.1.1. Let $S_{g}$ be a hyperbolic surface. The space
$CP^{1}(S_{g})^{+}$ is called the deformation space of projective structures or
$CP^{1}$ structures on $S_{g}$ . $I(S_{g})$ is the usual Teichm\"uller space.

Thurston has introduced the notion of geodesic laminations on sur-
faces. (Cf. $[9],[40],[8].$ ) Namely, a geodesic lamination on a hyper-
bolic surface $\Sigma$ is a closed subset consisting of a disjoint union of simple
geodesies. Let $\Lambda$ be a geodesic lamination on $\Sigma$ . By a transversal we
mean an embedding $\ell$ : $[0, 1]\rightarrow\Sigma$ such that at each $t$ where $\ell(t)\in\Lambda$ the
map $\ell$ is transverse to the leaf through $\ell(t)$ .

A transverse measure on $\Lambda$ is a function $\mu$ which assigns to each transver-
sal $\ell$ a Radon measure $\mu(\ell)$ on $[0, 1]$ supported by $\{t\in[0,1] |\ell(t)\in\Lambda\}$

which is compatible under the canonical homeomorphisms between
nearby transversals. We call the pair $(\Lambda, \mu)$ a measured geodesic lami-
nation of $\Sigma$ .

Definition 2.1.2. $\lambda\Lambda \mathcal{L}(\Sigma)$ is the space of measured geodesic lam-
inations on $\Sigma$ , equipped with the $weak*topology$ .

If $f$ is a homeomorphism of a closed hyperbolic surface $\Sigma$ onto $\Sigma’$

then $f$ induces a homeomorphism $f$ : $\mathcal{M}\mathcal{L}(\Sigma)\rightarrow \mathcal{M}\mathcal{L}(\Sigma’)$ . (See [8], [5].)

Let $S_{g}$ be a hyperbolic surface. Note that $\mathcal{T}(S_{g})$ is homeomorphic to
$R^{6g-6}$ . In this case the space of measured laminations $\lambda\Lambda \mathcal{L}(S_{g})$ is also
homeomorphic to the real vector space of dimension $6g-6$ . Moreover,
$CP^{1}(S_{g})^{+}$ can be identified with the cotangent bundle of $I(S_{g})$ . (Com-
pare [5].) In contrast to this identification we have a new parametrization

on $CP^{1}(S_{g})^{+}$ .
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Theorem (Thurston). Let $S_{g}$ be a hyperbolic surface. Then there
exists a homeomorphism

$\Theta$ : $CP^{1}(S_{g})^{+}\rightarrow I(S_{g})\times \mathcal{M}\mathcal{L}(S_{g})$ .

See [16],[17],[15],[13] for the related topics. The rest of this section is
devoted to the proof of this theorem.

2.2. Locally convex pleated maps

Let $f$ : $N\rightarrow CP^{1}$ be a conformal immersion. We have shown in
Theorem 1.2.7 that every point $x$ of $N$ lies in the convex hull $C(U_{\infty})$ of
a unique maximal ball $U$ . Let $\mathcal{F}$ be the set of maximal balls. For each $U$

there is a closest point mapping $\Phi_{U}$ : $f(U)\rightarrow H^{2}(\subset H^{3})$ . (See Section
1.) Set $\Psi(x)=\Phi_{U}(f(x))$ if $x\in C(U_{\infty})$ . By uniqueness it defines a well
defined map

(2.2.1) $\Psi$ : $N\rightarrow H^{3}$ .

It is obvious that $\Psi$ is a continuous map. Note that in our case
each $C(U_{\infty})$ is either a region or a (one dimensional) pleat, the im-
age $\Psi(C(U_{\infty}))$ lies on a geodesic or in a totally geodesic hyperplane of
$H^{3}$ .

Definition 2.2.2. Given an arbitrary conformal immersion $f$ :
$N\rightarrow CP^{1}$ , we have passed from it to a map $\Psi$ : $N\rightarrow H^{3}$ . The map $\Psi$

is called a pleated map.

2.3. Assignment of $CP^{1}(S_{g})^{+}$ to $\mathcal{T}(S_{g})$

In general a pleated map $\Psi$ is not locally injective. By definition
(2.2.2), $\Psi$ is injective on each $C(U_{\infty})$ for $U\in \mathcal{F}$ . On the other hand, we
consider a point $x\in N$ such that there is a sequence $\{x_{i}\}$ converging to
$x$ such that $\Psi(x_{i})=\Psi(x)$ . Since each $x_{i}$ lies in a distinct $C(U_{\infty}^{i})$ and $\Psi$

is injective on $C(U_{\infty}^{i})$ for sufficiently large $i$ , all $C(U_{\infty}^{i})$ have the same
dimension equal to 1. The map $\Psi$ fails to be injective on the union of
those $C(U_{\infty}^{i})$ . Each ideal set $U_{\infty}^{i}$ is a locally constant pair of points in
$\overline{N}$ .

Definition 2.3.1. Denote by $B$ the set of those $C(U_{\infty}^{i})$ on which
$\Psi$ fails to be injective.

$\Psi$ is locally injective on $N-B$ . Let $N’$ be the space obtained from
$N-B$ by identifying the boundaries of each component of $N-B$ which
have the same $\Psi$ image. Let $\eta$ : $N\rightarrow N’$ be the resulting collapse
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map which is clearly a homotopy equivalence. Since each component of
$N-B$ is isometric to a hyperbolic region with boundary composed of
complete geodesies, the image $N’$ supports a complete hyperbolic metric.
Moreover if $g$ is an conformal automorphism of $N$ then it leaves $N-B$

invariant. When $g$ stabilizes a component, it acts as isometries with
respect to a hyperbolic metric of that component. Otherwise $g$ translates
one component to another component preserving boundary geodesies.
Therefore the map $g$ induces a hyperbolic isometry $\theta(g)\in PSL_{2}(R)$ on
$H^{2}$ where we put $N’=H^{2}$ . The map $\eta$ satisfies that $\eta\circ g=\theta(g)\circ\eta$ . Now

given a projective structure $(\phi, dev)$ in $CP^{1}(S_{g})^{+}$ , we apply the above

argument to $(\phi, dev)$ : $(\Gamma,\tilde{S})\rightarrow(PSL_{2}(C), CP^{1})$ . Then it induces an

equivariant homotopy equivalence $(\theta, \eta)$ : $(\Gamma,\tilde{S})\rightarrow(PSL_{2}(R), H^{2})$ . The

map $\eta$ induces a homotopy equivalence of $S$ onto $H^{2}/\theta(\Gamma)$ . Within the

homotopy class of $\eta$ , there is a diffeomorphism $h$ : $S\rightarrow H^{2}/\theta(\Gamma)$ up to

an element of Diff(S). Hence a projective structure $(\phi, dev)$ defines a
well defined element $[S, h]$ of $I(S_{g})$ .

2.4. Canonical measure on circular lamination

Let $f$ : $N\rightarrow CP^{1}$ be as before. Recall from (1.3.2) that the subset
$\tilde{\Lambda}_{1}=\cup\{\Lambda_{U}|U\in \mathcal{F}\}$ is closed and consists of a disjoint union of (one
dimensional) pleats. In order to define the canonical measure $\tilde{\mu}_{1}(\ell)$ on

a transversal $\ell$ for $\tilde{\Lambda}_{1}$ , it suffices to specify the nondecreasing function
$\varphi(t)=\int_{[0,t]}\tilde{\mu}_{1}(\ell)dt$ whose derivative is equal to $\tilde{\mu}_{1}(\ell)$ . For each $t$ $\in[0,1]$ ,

let $U^{t}\in \mathcal{F}$ be a unique maximal ball such that $\ell(t)\in C(U_{\infty}^{t})$ . If
$s$ , $t\in[0,1]$ are sufficiently close, the balls $U^{s}$ and $U^{t}$ must intersect. Let
$\Theta(s, t)$ denote the dihedral angle of intersection of the circles $\partial U^{s}$ , $\partial U^{t}$ ,

measured inside one ball and outside the other. The function $\varphi(t)$ is
then defined as the infimum of all $\Theta$-sum

$\ominus(0, t_{1})+O-(t_{1}, t_{2})+\cdots+\ominus(t_{n}, t)$

over all subdivisions $0<t_{1}<t_{2}<\cdots<t_{n}<t$ of $[0, t]$ . The following is
the elementary calculation of the trigonometry.

Lemma 2.4.1. If $r<s<t$ are sufficiently close, then $\ominus(r, s)$ ,
$\Theta(s, t)$ and $\Theta(r, t)$ are defifined and $\Theta(r, s)+\Theta(s, t)\leqq O-(r, t)$ .

With this lemma a nondecreasing function can be defined as

$\varphi(t)=\lim\sum\Theta(0, t_{1})+\Theta(t_{1}, t_{2})+\cdots+\Theta(t_{n}, t)$

where $\sum$ runs over all subdivisions of $[0, t]$ and $\lim$ is taken as the mesh
of subdivisions goes to zero. Therefore the derivative $\varphi/=\tilde{\mu}_{1}(\ell)$ is
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a measure on a transversal $\ell$ for $\tilde{\Lambda}_{1}$ . Finally the compatiblity of the
measure on the various transversals is deduced from the following re-
mark. The leaf through $\ell(t)$ determines the ball $U^{t}$ and the measure
on $\ell$ is determined by the angles made by the $\partial U^{t}$ . Thus corresponding
transversals determine the same measure.

Let $\Psi$ : $N\rightarrow H^{3}$ be a pleated map for an immersion $f$ : $N\rightarrow CP^{1}$ .

Let $B$ be the set as in (2.3.1). It follows that $\eta(B)=\eta(\tilde{\Lambda}_{1})$ . If we

put $\eta(\tilde{\Lambda}_{1})=\tilde{\Lambda}_{2}$ , then $\tilde{\Lambda}_{2}$ is a geodesic lamination on $N’(=H^{2})$ . More-

over let $\ell$ be a transversal to $\tilde{\Lambda}_{2}$ , then $\eta^{-1}(\ell)$ is also a transversal to
$\tilde{\Lambda}_{1}$ . Set $\tilde{\mu}_{2}(\ell)=\tilde{\mu}_{1}(\eta^{-1}(\ell))$ . We have a measure $\tilde{\mu}_{2}$ on $\tilde{\Lambda}_{2}$ . And thus
$(\tilde{\Lambda}_{2},\tilde{\mu}_{2})$ is a measured geodesic lamination on $N’$ . As before suppose

that $(\phi, dev)$ : $(\Gamma,\tilde{S})\rightarrow(PSL_{2}(C), CP^{1})$ is a developing pair. The
above argument implies that there is a measured geodesic lamination
$(\tilde{\Lambda}_{2},\tilde{\mu}_{2})$ over $(\theta(\Gamma), H^{2})$ . It is easy to see that $(\tilde{\Lambda}_{2},\tilde{\mu}_{2})$ is invariant un-

der the group $\theta(\Gamma)$ . That is, $\theta(\gamma)(\tilde{\Lambda}_{2})=(\tilde{\Lambda}_{2})$ and $\tilde{\mu}_{2}(\theta(\gamma)(\ell))=\tilde{\mu}_{2}(\ell)$ .

It induces a measured geodesic lamination $(\Lambda_{2}, \mu_{2})$ on $H^{2}/\theta(\Gamma)$ . There
is a diffeomorphism $h$ : $S\rightarrow H^{2}/\theta(\Gamma)$ as above. Then we have a
geodesic measured lamination $(\Lambda, \mu)$ on $S$ such that $h(\Lambda)=\Lambda_{2}$ and
$\mu(\ell)=\mu_{2}(h(\ell))$ . Hence it defines an element $(\Lambda, \mu)\in\lambda 4\mathcal{L}(S)$ .

2.5. Thurston correspondence

We have a well defined map $\Theta$ : $CP^{1}(S_{g})\rightarrow \mathcal{T}(S_{g})\times \mathcal{M}\mathcal{L}(S_{g})$ ,

$\Theta((\phi, dev))=([S, h], (\Lambda, \mu))$ .

It is easy to see that $\Theta$ is injective, because given two projective struc-
tures which have the same image in $I(S_{g})\times\Lambda 4\mathcal{L}(S_{g})$ . The coincidence
on the first summand implies that each developing map coincides out-
side each $B$ . But the second summand measures the difference on $B$ and
so two developing maps coincide on the whole $\tilde{S}$ .

Let $\lambda 4\mathcal{L}(S_{g}, S)$ be the subspace of $\mathcal{M}\mathcal{L}(S_{g})$ such that every lamination

consists of compact leaves. If $\overline{\lambda\Lambda \mathcal{L}_{h}(M,S^{n-1})}$ is the closure in $\lambda\Lambda \mathcal{L}(S_{g})$ ,

then it is known that $\overline{\lambda\Lambda \mathcal{L}_{h}(S_{g},S)}=\lambda\Lambda \mathcal{L}(S_{g})$ . We show that there is a
map

(2.5.1) $\mathfrak{S}$ : $\mathcal{T}(S_{g})\times\Lambda 4\mathcal{L}(S_{g})\rightarrow CP^{1}(S_{g})$

such that $\Theta$ . $\mathfrak{S}=id$ .

To prove this we need some preliminaries.

Definition 2.5.2 (cf. [16]). Let $\alpha>0$ be any mumber and $W_{\alpha}=$

$\{z\in C|0\leqq Imz\leqq\alpha\pi\}$ .
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Let $s$ be the stereographic projection which maps $C^{*}$ onto $S^{2}-\{\infty\}$ .

Then we define a map $\xi$ : $C\rightarrow S^{2}$ to be the exponential map $\exp$ : $C\rightarrow$

$C^{*}$ followed by $s$ .

Put $\xi(W_{\alpha})=C_{\alpha}$ . Both $W_{\alpha}$ and $C_{\alpha}$ are conformally flat manifolds with
boundary. We call $W_{\alpha}$ an $\alpha$-pile and $C_{\alpha}$ an $\alpha$-crescent.

Proof of (2.5.1). Let $([S, h], (\Lambda, \mu))$ be a representative element of
$\mathcal{T}(S_{g})\times \mathcal{M}\mathcal{L}(S_{g})$ . We suppose first that $(\Lambda, \mu)\in\lambda\Lambda \mathcal{L}(S_{g}, S)$ . The map
$(\theta,\tilde{h})$ maps a $\Gamma$ invariant measured geodesic lamination $(\tilde{\Lambda},\tilde{\mu})$ onto a
$\theta(\Gamma)$ invariant measured geodesic lamination $(\tilde{\Lambda}’,\tilde{\mu}\prime)$ . The map $\tilde{h}$ is a

homeomorphism of $\tilde{S}$ onto $H^{2}$ where $H^{2}$ is viewed as the upper hemi-

sphere of $S^{2}$ . Cut $H^{2}$ along $\tilde{\Lambda}’$ and then insert the crescents $C_{\alpha}$ and glue
them along the boundary components. Here these angles $\alpha$ come from

those of the measure $\tilde{\mu}’$ . Similarly cut $\tilde{S}$ along $\tilde{\Lambda}$ and insert the piles $W_{\alpha}$

and then glue along the corresponding boundary components by the map
$\tilde{h}^{-1}o\xi$ . The resulting manifold $\tilde{S}’$ is invariant under an action of $\Gamma$ and

thus the orbit space is still homeomorphic to $S$ . Since both $\tilde{h}$ and $\xi$ are
projective immersions, combined with these maps, we have a well defined

projective immersion $dev$ : $\tilde{S}\rightarrow S^{2}=CP^{1}$ and since the group $\Gamma$ acts as
projective transformations with respect to this structure on $S’$ , there is a
holonomy homomorphism $\phi$ . If we set $\mathfrak{S}([S, h], (\Lambda, \mu))=(\phi, dev)$ , then
the map is well defined on $\mathcal{T}(S_{g})\times \mathcal{M}\mathcal{L}(S_{g}, S)$ such that $\Theta\cdot \mathfrak{S}=id$ on
$I(S_{g})\times\Lambda 4\mathcal{L}(S_{g}, S)$ . For an element $(\Lambda, \mu)\in \mathcal{M}\mathcal{L}(S_{g})$ there is a sequence
$\{(\Lambda_{i}, \mu_{i})\}\in\Lambda 4\mathcal{L}(S_{g}, S)$ that converges to $(\Lambda, \mu)$ . Let $[S, h]$ be an arbi-
trary element of $I(S_{g})$ and fix it once. The map $\mathfrak{S}$ maps $([S, h], (\Lambda_{i}, \mu_{i}))$

to a sequence of projective structures $\{(\phi_{i}, dev_{i})\}$ . Recalling the topol-

ogy of $CP^{1}(S_{g})$ from (2.1) and by the fact that each $dev_{i}$ coincides with

the map $\tilde{h}$ outside $\tilde{\Lambda}_{i}$ , the sequence of developing maps $\{dev_{i}\}$ converges

to a map on each compact set of $\tilde{S}$ . And so it is easy to see that it con-

verges to a map $dev$ : $\tilde{S}\rightarrow S^{2}=CP^{1}$ which is obviously a projective
immersion. The projective immersion $dev$ determines a holonomy ho-
momorphism $\phi$ up to conjugation. Setting $\mathfrak{S}([S, h], (\Lambda, \mu))=(\phi, dev)$ ,

we obtain a continuous map $\mathfrak{S}$ : $I(S_{g})\times\Lambda 4\mathcal{L}(S_{g})\rightarrow CP^{1}(S_{g})$ such
$that\ominus\cdot$ $\mathfrak{S}=id$ . Q.E.D.

2.6. Modular space of projective structures

Recall that $CP^{1}(S)^{+}=PSL_{2}C\backslash \Omega(S)^{+}/Diffff^{0}(S)$ . Then the space
$\lambda\Lambda CP^{1}(S)^{+}=PSL_{2}C\backslash \Omega(S)^{+}/Diffff^{+}(S)$ is called the modular space of

projective structures. On the other hand, the Teichm\"uller space $I(S)$ is
defined alternately to be $R(\Gamma, PSL_{2} R)/PGL_{2}$ R. And so $I(S)$ is identi-
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fied with the quotient space of sense-preserving discrete faithful represen-
tations, $\mathcal{T}(\Gamma)=R^{+}(\Gamma, PSL_{2} R)/PSL_{2}$ R. There is also a similar iden-

tification $\Lambda 4\mathcal{L}(S)=\mathcal{M}\mathcal{L}(\Gamma)$ . Since each element of $Diffff^{+}(S)/Diffff^{0}(S)$

maps $\Lambda 4\mathcal{L}(S)$ onto itself, there is an action of $Out^{+}(\Gamma)$ on $\lambda\Lambda \mathcal{L}(\Gamma)$ .

Corollary 2.6.1. There is a commutative diagram on which
$Out^{+}(\Gamma)$ acts diagonally.

$Diffff^{+}(S)/Diffff^{0}(S)\downarrow$

$\rightarrow$

$Out^{+}\downarrow(\Gamma)$

$CP^{1}(S)^{+}\downarrow$

$\rightarrow 0-$

$I(\Gamma)\times \mathcal{M}\mathcal{L}(\Gamma)\downarrow$

$\mathcal{M}CP^{1}(S)^{+}$
$\rightarrow\ominus\wedge$

$\mathcal{T}(\Gamma)\times\lambda\Lambda \mathcal{L}(\Gamma)/Out^{+}(\Gamma)$ .

If we recall that $Out^{+}(\Gamma)$ acts properly discontinuously on $I(\Gamma)\times$

$\mathcal{M}\mathcal{L}(\Gamma)$ , it follows that

Corollary 2.6.2. $Diffff^{+}(S)/Diffff^{0}(S)$ acts properly discontinu-

ously on $CP^{1}(S)^{+}$ .

3. Projective structures on surfaces and holonomy function
groups

3.1 Subspaces of $CP^{1}(S_{g})^{+}$

As before $S$ is a closed orient surface $S_{g}$ of genus $g\geqq 2$ and
$\Gamma=\pi_{1}(S_{g})$ . Recall that

$CP^{1}(S)^{+}=PSL_{2}(C)\backslash \Omega^{+}(S)$ ,

where $\Omega^{+}(S)$ is the deformation space of orientation-preserving devel-
oping maps. (See Chapter 3.)

Definition 3.1.1. Let $P$ : $\Omega^{+}(S)\rightarrow CP^{1}(S)^{+}$ be the canonical

projection. Let $CP^{1}(S)_{0}^{+}$ be the subspace of $CP^{1}(S)^{+}$ consisting of in-

jective developing maps. And $CP^{1}(S)_{1}^{+}$ is the subspace of $CP^{1}(S)^{+}$ con-

sisting of nonsurjective developing maps. Let $\Omega^{+}(S)_{i}=P^{-1}(CP^{1}(S)_{i}^{+})$

$(i=0,1)$ .

Proposition 3.1.2.

(i) $CP^{1}(S)_{0}^{+}$ is a closed subspace of $CP^{1}(S)^{+}$ .
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(ii) $CP^{1}(S)_{1}^{+}$ is a closed subspace of $CP^{1}(S)^{+}$

Proof. Suppose that a sequence $\{dev_{i}\}$ in $CP^{1}(S)_{0}^{+}$ converges to

a developing map $\{dev\}$ .

Suppose that $dev$ is not injective and $dev(x)=dev(y)$ for $x\neq y$ in $\tilde{S}$ .

There exists a compact neighborhood $K$ of $x$ which does not contain
$y$ and is mapped homeomorphically onto a closed ball $dev(K)$ . By the

above topology on $CP^{1}(S)^{+}$ , $dev_{i}$ is also an embedding on $K$ for suffi-

ciently large $i$ . Let $\rho$ be the spherical metric of $CP^{1}$ and let $\ell_{i}$ be the

shortest circular arc from $dev_{i}(x)$ to devi(y). Since $dev|K$ is an embed-

ding for sufficiently large $i$ , there is a sequence of points $\{p_{i}\}\in CP^{1}$ each
of which is the first contact of $\ell_{i}$ to $\partial dev_{i}(K)=dev_{i}(\partial K)$ . There exists
a sequence of points $\{z_{i}\}\in\partial K$ such that devi(zi)= $p_{i}$ . Since $\ell_{i}$ gives
the distance $\rho$ ($dev_{i}(x)$ ,$ $devi(y)), it follows that $\rho(dev_{i}(x), dev_{i}(z_{i}))\leqq$

$\rho(dev_{i}(x), dev_{i}(y))$ . The sequence $\{z_{?}.\}\in\partial K$ converges to some point
$z\in\partial K$ . Then the above inequality yields that

$\rho(dev(x), dev(z))\leqq\rho(dev(x), dev(y))=0$ ,

while $x$ is an interior point of $K$ , which is a contradiction. This proves
(i).

Consider (ii). Suppose that a sequence $\{(\phi_{i}, d_{i})\}$ converges to an

element $\{(\phi, d)\}$ in $CP^{1}(S)^{+}$ . We can assume that the closure $\overline{\phi(\Gamma)}$ is

neither a finite group nor a subgroup of the group of similarity trans-
formations $Sim(R^{2})$ , for otherwise $S$ would be covered by a sphere or
a torus respectively. In particular $\phi(\Gamma)$ contains a loxodromic element.
If $\phi(\gamma)$ is a loxodromic element for some $\gamma\in\Gamma$ , there is a point $x$ in
$CP^{1}$ such that $\phi(\gamma)x=x$ . (Note that there exist exactly two points.)
Let $L(\phi(\Gamma))$ be the limit set for $\phi(\Gamma)$ . (See 4.1 or [11] for the defini-
tion.) It follows that $x\in L(\phi(\Gamma))$ . The $trace$ formula (cf. [4]) implies

that $g$ is either elliptic or parabolic if and only if $|tr^{2}g|\in[0,4]$ for
$g\in PSL_{2}(C)$ . Since $\phi_{i}(\gamma)\rightarrow\phi(\gamma)$ and $\phi(\gamma)$ is loxodromic, it follows
that $\phi_{i}(\gamma)$ is also loxodromic for sufficiently large $i$ . And so there exists
a point $x_{i}$ such that $\phi_{i}(\gamma)x_{i}=x_{i}$ for each $i$ . Note that $\{x_{i}\}\in L(\phi_{i}(\Gamma))$

and $ d_{i}(\tilde{S})\cap L(\phi_{i}(\Gamma))=\emptyset$ . (See for example [25].)
The sequence $\{x_{i}\}$ has an accumulation point. Since $\phi_{i}(\gamma)\rightarrow\phi(\gamma)$ and
$\phi_{i}(\gamma)x_{i}=x_{i}$ , $\phi(\gamma)$ fixes that accumulation point. We can assume that
$\lim x_{i}=x$ .

We claim that $d$ misses the point $x$ . Suppose not. Let $d(p)=x$ for

some $p\in\tilde{S}$ . Choose a compact neighborhood $C$ of $p$ in $\tilde{S}$ and a closed

ball $\overline{B}$ centered at $x$ in $CP^{1}$ so that $d$ : $C\rightarrow\overline{B}$ is a diffeomorphism. We
note that for sufficiently large $i$ , $x_{i}\in\overline{B}$ and $d_{i}|C$ is an embedding.
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Case 1. $x$ lies inside $d_{i}(C)$ . Since $x_{i}\not\in d_{i}(C)$ , it implies that $\rho(x_{i}, x)\geqq$

dist $(x_{i}, d_{i}(C))$ and let $\{a_{i}\}\in\partial C$ be the sequence of points which attains
the distance dist $(x_{i}, d_{\dot{0}}(C))$ , i.e., $\rho(x_{i}, d_{i}(a_{i}))=dist(x_{i}, d_{i}(C))$ . The se-
quence $\{a_{?}.\}$ has a limit point $a\in\partial C$ . Since it follows that $d(a)\in\partial B$ ,

we obtain that $\rho(x, d(a))>0$ . On the other hand, the above inequality
yields that $0\geqq\rho(x, d(a))$ , which is a contradiction.
Case 2. $x$ lies outside $d_{i}(C)$ . Since $p\in C$ , it follows dist $(x, d_{i}(C))\leqq$

$\rho(x, d_{i}(p))$ . Note that $\lim$ dist $(x, d_{i}(C))=0$ because $\lim d_{i}(p)=d(p)=$

$x$ . Similarly as above we have a sequence of the points $\{b_{i}\}\in\partial C$

such that $\rho(x, d_{i}(b_{i}))=dist(x, d_{i}(C))$ . As $\lim b_{i}=b$ for some point
$b\in\partial C$ , it follows that $\lim d_{i}(b_{i})=d(b)\in\partial B$ . And so $0<\rho(x, d(b))=$

$\lim$ dist $(x, d_{i}(C))$ , being a contradiction. Therefore $d$ misses the point
$x$ .

By virtue of the theorem of [25] we have that $d$ is a covering map.
This shows (ii). Q.E.D.

3.2. Description of Kleinian groups by projective
structures

Let $G$ be a Kleinian group, i.e., a finitely generated discrete subgroup
of $PSL_{2}$ C. Put $\Omega=\Omega(G)=S^{2}-L(G)$ . Recall that
$G$ is a function group if there is a component $\Omega_{0}$ of $\Omega$ invariant under
$G$ .
$G$ is a quasi-Fuchsian group if $\Omega=\Omega_{0}\cup\Omega_{1}$ (i.e., consists of two compo-
nents). As the special case if $\partial\Omega_{0}(=\partial\Omega_{1})$ is a round circle then $G$ is a
Fuchsian group.
$G$ is a group if $\Omega$ has only one invariant simply connected component.
Let $ S=H^{2}/\Gamma$ be a closed orientable surface.

Definition 3.2.1.
$\mathcal{F}(\Gamma)=$ { $\theta\in Hom(\Gamma, PSL_{2}C)|\theta(\Gamma)$ is a function group
$ B(\Gamma)=\{\theta\in Hom(\Gamma, PSL_{2}C)|\theta$ : $\Gamma\rightarrow\theta(\Gamma)$ is an isomorphism, $\theta(\Gamma)$ is
a Kleinian group and an invariant component is simply connected.}
$\mathcal{R}_{2}(\Gamma)=\{\theta\in Hom(\Gamma, PSL_{2}C)|\theta(\Gamma)$ is quasi-conformally equivalent to
$\Gamma.\}$ (i.e., the set of quasi-Fuchsian groups).
Let

$P:Hom(\Gamma, PSL_{2}C)\rightarrow Hom(\Gamma, PSL_{2} C)/PSL_{2}$ $C$

be the canonical projection and put

$F(\Gamma)=P(\mathcal{F}(\Gamma))$ , $B(\Gamma)=P(B(\Gamma))$ , and $T_{2}\Gamma=P(\mathcal{R}_{2}(\Gamma))$ .

Note that $Hom(\Gamma, PSL_{2} C)/PSL_{2}C$ is connected but not a Hausdorff
space.
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Recall that $H$ : $\Omega^{+}(S)\rightarrow Hom(\Gamma, PSL_{2}C)$ is the map which
assigns to an oriented projective structure its holonomy representa-

tion. The map $H$ induces a holonomy map $hoi$ : $CP^{1}(S)^{+}$ $\rightarrow$

$Hom(\Gamma, PSL_{2} C)/PSL_{2}$ C.

Corollary 3.2.2. The holonomy map $hoi$ maps $CP^{1}(S)_{1}^{+}\rightarrow$

$F(\Gamma)$ . In particular the holonomy groups are discrete.

Proposition 3.2.3. The holonomy map $hoi$ defifines a homeomor-

phism of $CP^{1}(S)_{0}^{+}$ onto $B(\Gamma)$ .

Proof. Let $\theta\in B(\Gamma)$ be a representative element of $B(\Gamma)$ with an
invariant simply connected component $\Omega_{0}$ . Since $\theta\in Hom(\Gamma, PSL_{2} C)$ ,
there is an orientation-preserving conformal homeomorphism $f$ : $\Omega_{0}\rightarrow$

$H^{2}$ such that $f\theta(\Gamma)f^{-1}$ is Fuchsian. Let $\psi$ : $\Gamma\rightarrow f\theta(\Gamma)f^{-1}$ be an

isomorhism defined by $\psi(\gamma)=f\theta(\gamma)f^{-1}$ . Then it is well known that
there is a quasi-conformal homeomorphism $h$ : $H^{2}\rightarrow H^{2}$ which induces
$\psi$ . Put $dev=f^{-1}\circ h$ . It is easy to see that $[\theta, dev]$ is an element of
$CP^{1}(S)_{0}^{+}$ .

Let $P$ : $\Omega_{0}^{+}(S)\rightarrow CP^{1}(S)_{0}^{+}$ be the canonical projection of the defor-

mation spaces (cf. (3.1.1)). We will show that $H$ maps $\Omega_{0}^{+}(S)$ onto $B(\Gamma)$ .

If $(\phi, dev)$ is an element of $\Omega_{0}^{+}(S)$ , then it follows that $\phi\in \mathcal{F}$ . If suf-
fices to check that $\phi(\Gamma)$ has an invariant simply connected component of
$\Omega=S^{2}-L(\phi(\Gamma))$ . Since $dev$ is injective, $\phi(\Gamma)$ has a simply connected do-

main $dev(\tilde{S})$ which sits in $\Omega$ . Let $\Omega_{0}$ be an invariant maximal component

in $\Omega$ containing $dev(\tilde{S})$ . Since $\phi(\Gamma)$ acts properly discontinuously and
freely on $\Omega_{0}$ , we can choose a $\phi(\Gamma)$ invariant Riemannian metric on $\Omega_{0}$ .

The map $dev$ is a covering map because $S$ is compact. Since $\phi$ : $\Gamma\rightarrow\phi(\Gamma)$

is an isomorphism, $dev$ must be an isometry. And thus $dev(\tilde{S})=\Omega_{0}$ .

We prove that $H$ is injective. For $(\phi_{i}, dev_{i})(i=1,2)$ , suppose that

$H(\phi_{1}, dev_{1})=H(\phi_{2}, dev_{2})$ , i.e., $\phi_{1}=\phi_{2}$ . Then, $dev_{1}(\tilde{S})=dev_{2}(\tilde{S})$ .

$Forantcomponentsthisifnot$

,
$theni.e.$

,
$\phi(\Gamma)=\phi_{1}(\Gamma)=dev_{1}(\tilde{S}),dev_{2}(\tilde{S})\phi_{2}(\Gamma)hasatleasttwoinvari(cf.[5]).Hence\phi(\Gamma)isquasi-$

Fuchsian. However since both $dev_{1}$ and $dev_{2}$ are orientation-preserving,

it is impossible. Put $\tilde{f}=dev_{2}^{-1}\circ dev_{1}$ . Then it follows that $\tilde{f}\circ\gamma=\gamma\circ\tilde{f}$

for $\gamma\in\Gamma$ . Therefore $f\in Diffff^{0}(S)$ and $[\phi_{2}, dev_{2}]\circ f=[\phi_{1}, dev_{1}]$ .

And hence $H$ is a one-to-one continuous map. Since $H$ is a local home-
omorphism by the Holonomy theorem 4.3.9 (cf. Chapter 4), it follows
that $H$ is a homeomorphism of $\Omega_{0}(S)$ onto $B(\Gamma)$ . Since the action of
$PSL_{2}C$ on both $\Omega_{0}(S)$ and $B(\Gamma)$ is free, it implies that $hoi$ is a homeo-
morphism. Q.E.D.



280 Y. Kamishima and S. Tan

Let $\mathcal{R}_{2}(\Gamma)$ be the space of quasi-Fuchsian groups in $Hom(\Gamma, PSL_{2}C)$

as in (3.2.1). If $\overline{\mathcal{R}_{2}(\Gamma)}$ is the closure of $\mathcal{R}_{2}(\Gamma)$ in $Hom(\Gamma, PSL_{2} C)$ , then

we put $\partial \mathcal{R}_{2}(\Gamma)=\overline{\mathcal{R}_{2}(\Gamma)}-\mathcal{R}_{2}(\Gamma)$ .

Definition 3.2.4. Define the following subspaces

$\Omega^{+}(S, qf)=\{(\phi, dev)\in\Omega^{+}(S)|\phi\in \mathcal{R}_{2}(\Gamma)\}$ ,

$CP^{1}(S, qf)^{+}=P(\Omega^{+}(S, qf))$ ,

and

$\Omega^{+}(S, \partial)=\{(\phi, dev)\in\Omega^{+}(S)|\phi\in\partial \mathcal{R}_{2}(\Gamma)\}$ ,

$CP^{1}(S, \partial)^{+}=P(\Omega^{+}(S, \partial))$ .

$CP^{1}(S, qf)^{+}$ (resp. $CP^{1}$ ( $S$ , $\partial$) ) is called the deformation space of
(oriented) projective structures with quasi-Fuchsian (resp. boundary)
holonomy.

We have the following subspaces of $CP^{1}(S, qf)^{+}$ (resp. $CP^{1}$ ( $S$ , $\partial$ ) )

whose developing maps are injective;

$CP^{1}(S, qf)_{0}^{+}=CP^{1}(S, qf)^{+}\cap CP^{1}(S)_{0}^{+}$ ,
(3.2.5)

$CP^{1}(S, \partial)_{0}^{+}=CP^{1}(S, \partial)^{+}\cap CP^{1}(S)_{0}^{+}$ .

The simultaneous uniformization of Bers ([5]) is stated as follows.

Corollary 3.2.6 (Bers). $CP^{1}(S, qf)_{0}^{+}\approx I(\Gamma)\times\triangle$ .

Here $\triangle$ is an open cell contained in $\Lambda 4\mathcal{L}(S)$ .

3.3. Insertion of annuli and operation on projective
structures with boundary holonomy

An insertion of annuli (more generally, a graft $ing$ ) produces a new
structure from a given projective structure. (See Goldman [16].) Es-

pecially, let $\Omega_{0}^{+}(S, qf)$ be the space of projective structures with quasi-
Fuchsian holonomy groups and with injective developing maps. Let $C$ the
set of all isotopy classes of a disjoint collection of homotopically nontriv-
ial simple closed curves on $S$ . Let $\Lambda 4\mathcal{L}(2Z)$ denote the set of measured
geodesic laminations $\mu$ supported on a disjoint union of closed geodesies
lying in $C$ and together with $ 2\pi$ times positive integer weights. Then,

each $\sigma\in \mathcal{M}\mathcal{L}(2Z)$ defines an operation $\#$ which assigns to a structure of
$\Omega_{0}(S, qf)$ a structure with surjective developing map.
Goldman ([16]) has shown that
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Theorem 3.3.1. $CP^{1}(S, qf)^{+}\approx CP^{1}(S, qf)_{0}^{+}\times \mathcal{M}\mathcal{L}(2Z)$ .

It follows also that

(3.3.2) $\Omega^{+}(S, qf)\approx\Omega_{0}^{+}(S, qf)\times\lambda\Lambda \mathcal{L}(2Z)$ .

If $x\in\Omega_{0}^{+}(S, qf)$ and $\sigma\in \mathcal{M}\mathcal{L}(2Z)$ , then $ x\#\sigma$ is a new structure with
surjective developing map and with the same holonomy as that of $x$ . It
lies in one component of $\Omega^{+}(S, qf)$ different from $\Omega_{0}(S, qf)$ . And so it

follows that $\Omega^{+}(S, qf)=\bigcup_{\sigma\in \mathcal{M}\mathcal{L}(2Z)}(\Omega_{0}^{+}(S, qf)\#\sigma)$ for which $\Omega_{0}^{+}(S, qf)\#\sigma$

is one component homomorphic to $\Omega_{0}^{+}(S, qf)$ .

Let $\Omega_{0}^{+}(S, \partial)$ be the space of oriented projective structures with
boundary holonomy and with injective developing maps (cf. (3.2.5)).

The operation $\#$ can be defined on $\Omega_{0}^{+}(S, \partial)$ . We shall prove the similar

result for $\Omega^{+}(S, \partial)$ .

Proposition 3.3.3.

$\Omega_{0}^{+}(S, \partial)\times\lambda\Lambda \mathcal{L}(2Z)\approx\Omega^{+}(S, \partial)$ .

In order to prove this proposition, we need the following lemmata.

Lemma 3.3.4. The holonomy map

$H$ : $\overline{\Omega^{+}(S,qf)}\rightarrow\overline{\mathcal{R}_{2}(\Gamma)}$ is locally injective.

Proof. If we note that $\lambda\Lambda \mathcal{L}(2Z)$ is discrete in $\mathcal{M}\mathcal{L}(S)$ , then
$\overline{\Omega\dagger(S,qf)}\approx\overline{\Omega_{0}^{+}(S,qf)}\times \mathcal{M}\mathcal{L}(2Z)$ . We prove that $H$ : $\overline{\Omega_{0}^{+}(S,qf)}\rightarrow$

$\overline{\mathcal{R}_{2}(\Gamma)}$ is injective. Let $x$ , $y\in\partial\Omega_{0}^{+}(S, qf)(=\Omega_{0}^{+}(S, qf)(S)-\Omega_{0}^{+}(S, qf))$

and suppose $H(x)$ $=H(y)$ . First note that $H(x)$ $\in\partial \mathcal{R}_{2}(\Gamma)$ $=$

$\overline{\mathcal{R}_{2}(\Gamma)}-\mathcal{R}_{2}(\Gamma)$ since $H$ is a local homeomorphism and by the defini-
tion (3.2.4). There are neighborhoods $U,V$ of $x,y$ respectively such that
$H$ : $U\rightarrow W$ , $H$ : $V\rightarrow W$ are homeomorphisms where $W$ is a neighbor-
hood of $H(x)$ . Since $ W\cap \mathcal{R}_{2}(\Gamma)\neq\emptyset$ is open, there are $a\in U$ , $b\in V$ so

that $H(a)=H(b)$ in $W\cap \mathcal{R}_{2}(\Gamma)$ . Since $H|\Omega_{0}^{+}(S, qf)$ is a homeomorphim,
it follows that $a=b$ , $i.e.$ , $ U\cap V\neq\emptyset$ . It implies that $x=y$ .

We note that nearby structures outside $\overline{\Omega_{0}(S,qf)}$ do not have quasi-

Fuchsian holonomy groups. Namely, for $x\in\partial\Omega_{0}^{+}(S, qf)$ , there is a

neighborfood $U$ of $x$ such that for any $z\in U-\overline{\Omega_{0}^{+}(S,qf)}$ , $H(z)\not\in \mathcal{R}_{2}(\Gamma)$ .

Q.E.D.
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Lemma 3.3.5. $\partial\Omega^{+}(S, qf)=\Omega^{+}(S, \partial)$ .

Proof. Using the above lemma, we have for $x\in\partial(\Omega^{+}(S, qf))$ that
$H(x)\in\partial \mathcal{R}_{2}(\Gamma)$ . By the definition 3.2.4 it follows that $\partial(\Omega^{+}(S, qf))\subset$

$\Omega^{+}(S, \partial)$ . Let $x\in\Omega^{+}(S, \partial)$ so that $H(x)\in\partial \mathcal{R}_{2}(\Gamma)$ . Let $U$ be any

neighborhood of $x$ in $\Omega^{+}(S)$ . Since $H$ is a local homeomorphism, there

exists a neighborhood $W$ of $x$ contained in $U$ such that $H$ : $W\rightarrow H(W)$

is a homeomorphism. As $H(x)\in\partial \mathcal{R}_{2}(\Gamma)$ , we have $ H(U)\cap \mathcal{R}_{2}(\Gamma)\neq\emptyset$ .

Choose $y\in U$ with $H(y)\in \mathcal{R}_{2}(\Gamma)$ . Again by the definition 3.2.4, it

follows that $y\in\Omega^{+}(S, qf)$ , or $ U\cap\Omega^{+}(S, qf)\neq\emptyset$ . And hence $ x\in$

$\Omega^{+}(S, qf)$ . Since $H(x)$ is not a quasi-Fuchsian group, $x\in\partial(\Omega^{+}(S, qf))$ .

Q.E.D.

Proof of (3.3.3). Since $\overline{\Omega+(S,qf)}\approx\overline{\Omega_{0}^{+}(S,qf)}\times \mathcal{M}\mathcal{L}(2Z)$ , it implies
that

(3.3.6) $\partial\Omega^{+}(S, qf)\approx\partial\Omega_{0}^{+}(S, qf)\times \mathcal{M}\mathcal{L}(2Z)$ .

On the other hand, $\Omega_{0}^{+}(S)$ is a closed subspace of $\Omega^{+}(S)$ by Proposi-

tion 3.1.2. It is noted that $\overline{\Omega_{0}^{+}(S,qf)}\subset\Omega_{0}^{+}(S)$ . And so we have that
$\partial\Omega_{0}^{+}(S, qf))\subset\Omega_{0}^{+}(S)$ . In view of (3.3.6), the subspace of $\partial\Omega^{+}(S, qf)$

consisting of injective developing maps, $(\partial\Omega^{+}(S, qf))_{0}=\partial\Omega_{0}^{+}(S, qf)$ .

By Lemma 3.3.5 it follows that $\Omega_{0}^{+}(S, \partial)=(\partial\Omega^{+}(S, qf))_{0}$ and by (3.3.6)

that $\Omega^{+}(S, \partial)\approx\Omega_{0}^{+}(S, \partial)\times\Lambda 4\mathcal{L}(2Z)$ . Q.E.D.

4. $(G,X)$-structures

4.1. Limit sets in $(G, X)$

Recall that a geometric structure on a smooth $n$-manifold is a max-
imal collection of charts modelled on a simply connected $n$ dimensional
homogeneous space $X$ of a Lie group $G$ whose coordinate changes are re-
strictions of transformations from $G$ . We call such a structure a $(G, X)-$

structure. A manifold with this structure is called a $(G, X)$ -manifold.
Suppose that a smooth connected $n$-manifold $M$ admits a $(G, X)-$

structure. Then there exists a developing pair $(\rho, dev)$ , where $dev$ :
$\tilde{M}\rightarrow X$ is a “structure-preserving” immersion and $\rho$ : $\pi_{1}(M)\rightarrow G$

is a homomorphism (both unique up to elements of $G$ ). The group
$\Gamma=\rho(\pi_{1}(M))$ is called the holonomy group for $M$ .

In particular the developing pair $(\rho, dev)$ is an invariant of the
$(G, X)$ -structure. In fact this developing map and holonomy give us
a powerful tool in understanding the topology of $(G, X)$-manifolds. The
first question arises when the developing map is a covering map onto its
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image. In order to study this problem we introduce the notion of limit
sets in $(G, X)$ due to Kulkarni [33].
We consider the following sets. Let $\Gamma$ be a subgroup of $G$ .

(4.1.1)

$\Lambda_{0}=the$ closure of the set { $x\in X|$ the stabilizer $\Gamma_{x}$ is an infinite

subgroup}.
$\Lambda_{1}=the$ set of cluster points of $\{\gamma y|\gamma\in\Gamma\}$ where $y\in X-\Lambda_{0}$ .
$\Lambda_{2}=the$ set of cluster points of $\{\gamma K|\gamma\in\Gamma\}$ where $K$ is a compact

subset of $X-\{\Lambda_{0}, \Lambda_{1}\}$ .

Then the set $\Lambda=\Lambda(\Gamma)=\Lambda_{0}\cup\Lambda_{1}\cup\Lambda_{2}$ is said to be the limit set of
$\Gamma$ . And the set $\Omega=X-\Lambda$ is called the domain of discontinuity for $\Gamma$ .

(Compare also [39] for further results of limit sets.) It is the fundamental
result that

Proposition 4.1.2. If $\Omega\neq\emptyset$ , then $\Gamma$ acts properly discontinuously
on $\Omega$ . In particular $\Gamma$ is discrete in $G$ .

(4.1.3) We examine another limit sets to our use. Let $Y$ be a complete
simply connected Riemannian manifold of nonpositive sectional curva-
ture. Then there is a compactification $\overline{Y}=\partial Y\cup Y$ of $Y$ . The space $\overline{Y}$ ,

equipped with the cone topology, is homeomorphic to the closed ball and
the boundary $\partial Y$ is the set of points at infinity consisting of the equiv-
alence classes of asymptotic geodesies. The group of isometries Iso(F)
extends to a topological action on its boundary. For example, recall
that the $n$-sphere $S^{n}$ is viewed as the ideal boundary of the real hyper-
bolic space $H^{n+1}$ . Similarly $S^{2n+1}$ is the ideal boundary of the complex

hyperbolic space $H_{C}^{n+1}$ . Moreover, when $Y$ is a hyperbolic space $H^{n}$

or $H_{C}^{n+1}$ , Iso(Y) acts as conformal (resp. $CR$ ) automorphisms of the

sphere. We write Iso(F) $=Conf(S^{n})$ or $Aut_{CR}(S^{2n+1})$ respectively.

Definition 4.1.4. For a subgroup $\Gamma$ of Iso(Y) the limit set $ L(\Gamma)\subset$

$\partial Y$ is defined to be the set of cluster points of the orbit $\Gamma$ . $x$ for $x\in Y$ .

As to the relation between the above limit set $\Lambda$ , we have (cf. [25])

Proposition 4.1.5. Let $\Gamma$ be a discrete subgroup of either
$Conf(S^{n})$ or $Aut_{CR}(S^{2n+1})$ . Then it follows that

$\Lambda(\Gamma)=L(\Gamma)$ .

4.2. Application to developing maps

Suppose that $M$ is a closed connected $(G, X)$ -manifold. Let us be
given a $\Gamma$ invariant closed subset $F$ in $X$ . Suppose that there exist a



284 Y. Kamishima and S. Tan

component $Y$ of the complement $X-F$ and a component $N$ of $dev^{-1}(Y)$ .
We then have the restriction of the developing map $dev$ : $N\rightarrow Y$ . We
have proved the following result in [18] (cf. also in [16], [18]).

Lemma 4.2.1. Under the above hypothesis, suppose that $Y$ admits
a $\Gamma$ invariant complete Riemannian metric. Then the developing map
$dev$ : $N\rightarrow Y$ is a covering map.

As an application, we shall prove that;

Proposition 4.2.2. Let $Y$ be a $\Gamma$ invariant closed subset of $X$ with

HausdorJJ dimension $k<n-1$ . Suppose that the complement $X-Y$
admits a $\Gamma$ invariant complete Riemannian metric.

(i) if $k<n-2$ , then $dev$ : $\tilde{M}\rightarrow X-\Lambda$ is a homeomorphism.

(ii) for $n-2\leqq k<n-1$ , assume that either $dev^{-1}(Y)=\emptyset$ or
$dev_{*}$ : $\pi_{1}(\tilde{M}-dev^{-1}(Y))\rightarrow\pi_{1}(X-Y)$ is surjective. Then
$dev:\tilde{M}\rightarrow X-Y$ is a covering map, or $dev:\tilde{M}\rightarrow X-\Lambda$ is $a$

homeomorphism.

Proof. Note first that $\tilde{M}-dev^{-1}(Y)$ is connected since the Haus-

$X-Yislconnecteddorffffdimensionkisless$ $Wehavethann-fromLemma4.2.lthatl(cf.[l8]).Moreoverif$ $devk<:\tilde{M}-n-2$
,

$dev^{-1}(Y)\rightarrow X-Y$ is a covering map. As above if $k<n-2$ ,

$dev$ : $\tilde{M}-dev^{-1}(Y)\rightarrow X-Y$ is a homeomorphism. If $n-2\leqq k<n-1$

then according to that $dev^{-1}(Y)=\emptyset$ or $dev^{-1}(Y)\neq\emptyset$ under the sur-

jectivity assumption it follows that $dev$ : $\tilde{M}\rightarrow X-Y$ is a covering

map or $dev$ : $\tilde{M}-dev^{-1}(Y)\rightarrow X-Y$ is a homeomorphism. Since
$dev$ is an immersion and $k<n-1$ , for any point $x$ in $\tilde{M}$ there exists

a neighborhood $U$ of $x$ in $\tilde{M}$ such that $dev(U)\cap(X-Y)\neq\emptyset$ . This

implies that $dev$ : $\tilde{M}\rightarrow dev(\tilde{M})$ is injective. Hence $\Gamma$ acts properly

discontinuously on $dev(\tilde{M})$ which shows that $dev(\tilde{M})\cap\Lambda=\emptyset$ . Since $\Gamma$

acts properly discontinuously on $ X-\Lambda$ by Proposition 4.1.2, it follows

that $dev(\tilde{M})=X-\Lambda$ . Q.E.D.

4.3. Deformation space of $(G, X)$-structures and the
Holonomy theorem

In this section we shall examine the structure of the deformation
space of $(G, X)$-structures invariant under Lie groups. Let $H$ be a con-
nected Lie group acting on a smooth closed $(2n+1)$-manifold $M$ .

4.3.1. The deformation space $I(H, M)$ is a space of $H$ invariant
marked $(G, X)$ -structures on manifolds homeomorphic to M. $\mathcal{T}(H, M)$
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consists of equivalence classes of equivariant diffeomorphisms $f$ : $ M\rightarrow$

$M’$ from the action $(H, M)$ to $H$ invariant $(G, X)$ -manifolds $M’$ . Two
such diffeomorphisms $f_{\dot{0}}$ : $ M\rightarrow$ $M_{i}$ $(i = 1, 2)$ are equivalent if
there is an equivariant isomorphism ( $i.e.$ , $a(G, X)$ -structure preserv-
ing diffeomorphism) $h:M_{1}\rightarrow M_{2}$ such that $h\circ f_{1}$ is isotopic to $f_{2}$ .

$f_{2}^{\searrow}M$

$\rightarrow f1\simeq$

$ M_{1}\downarrow$

$h$

$M_{2}$

Note that it is not necessarily assumed to be equivariantly isotopic. On
the other hand if $M$ is a $(G, X)$ -manifold then there is a developing

pair $(\rho, dev)$ : $(Aut(\tilde{M}),\tilde{M})\rightarrow(G, X)$ such that $\pi\subset Aut(\tilde{M})$ , where

$\pi=\pi_{1}(M)$ and Aut $(\tilde{M})$ is a group of $(G, X)$ isomorphism of $\tilde{M}$ .

4.3.2. $\hat{\Omega}(H, M)$ is the space consisting of all possible develop-
ing pairs $(\rho, dev)$ which satisfy that $(\rho, dev)$ represents an $H$ invariant
$(G, X)$ -structure on $M$ and such that if one forgets the structure then
the action $(H, M)$ is smoothly equivalent to the original action $(H, M)$ .

That is, the action of each element of $\hat{\Omega}(H, M)$ is topologically unique
but geometrically distinct.

The topology on $\hat{\Omega}(H, M)$ is given by the following subbasis (cf. [8]).

(1) $N(U)=\{U\}$ where $U$ is an open subset of $Maps(\tilde{M}, X)$ in the

compact open topology of $Maps(\tilde{M}, X)$ .

(2) $N(K)=\{dev\in\hat{\Omega}(H, M)$ $|$ $dev|K$ is an embedding for $a$

compact subset $K\subset\tilde{M}$ }.

4.3.3. We introduce a subgroup Diff $(H, M)$ of $Diffff(\tilde{M})$ . Let
Diff(H, $M$ ) be the group of equivariant diffeomorphisms of $M$ onto itselft.
Denote by $Diffff\ovalbox{\tt\small REJECT}$

isotopic to the identity map. Consider the following exact sequences of
the diffeomorphism groups, where $N_{Difff(\overline{M})}(\pi)$ (resp. $C_{Difff(\overline{M})}(\pi)$ ) is the

normalizer (resp. centralizer) of $\pi$ in $Diffff(\tilde{M})j$

1 $\rightarrow\pi\rightarrow N_{Difff(\overline{M})}(\pi)\rightarrow\eta$ Diff(M) $\rightarrow 1$

$\uparrow$ $\uparrow$

$C_{Difff(\overline{M})}(\pi)\rightarrow Diffff^{0}(M)$
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Put Diff $(H, _{M})=\eta^{-1}$ (Diff(H, $M$ )) and let $\overline{Diffff}^{0}(H, M)$ be the identity
–0

component. It follows easily that 77(Diff $(H, M)$ ) $=Diffff^{0}(H, M)$ and
–0
Diff $(H, M)\subset C_{Difff(\overline{M})}(\pi)$ .

4.3.4. The actions on $\hat{\Omega}$ (H,$ $M). The natural right action of
Diff $(H, M)$ and the left action of $G$ on $\hat{\Omega}(H, M)$ are defifined by setting

$(\rho, dev)\circ\tilde{f}=(\rho\circ\mu(\tilde{f}), dev\circ\tilde{f})$ ,

go $(\rho, dev)=$ ($go\rho og^{-1}$ ,$ $godev),

where $\mu(\tilde{f})$ : $\pi\rightarrow\pi$ is an isomorphism defined by $\mu(\tilde{f})(\gamma)=\tilde{f}\circ\gamma\circ\tilde{f}^{-1}$ .

Obviously both actions commute.
It is noted that two developing pairs $(\rho_{i}, dev_{i})(i=1,2)$ represent

the same structure on $M$ if and only if there exists an element $g\in G$

such that $g\circ dev$ ) $=dev_{2}$ . Put

$\Omega(H, M)=\hat{\Omega}(H, M)/\overline{Diffff}^{0}(H, M)$ .

The action of $G$ induces an action of $\Omega(H, M)$ . Then it is easy to show
that

Lemma 4.3.5. The elements of $I(H, M)$ are in one-to-one cor-
respondence with the orbits of $G\backslash \Omega(H, M)$ .

Definition 4.3.6. The space $G\backslash \Omega(H, M)$ equipped with the quo-
tient topology is called the deformation space $I(H, M)$ of $H$ invariant
$(G, X)$ structure on $M$ .

Note that if one choose the trivial group as $H$ then $\mathcal{T}(M)=$

$\mathcal{T}(\{1\}, M)$ is the usual deformation space. If $f$ : $M\rightarrow M’$ is a
representative element of $\mathcal{T}(H, M)$ then there is a developing pair

$(\rho, dev)$ : $(\pi_{1}(M’),\tilde{M}’)\rightarrow(G, X)$ . We have the holonomy representation
–0

$\rho\circ f\mathfrak{g}$ : $\pi\rightarrow G$ up to conjugate by an element of $G$ . Let $\hat{H}\subset Diffff(H, M)$

be a closed connected subgroup such that $\eta(\hat{H})=H$ . Note that the

group $\hat{H}$ centralizes $\pi$ and $f$ is equivariant (cf. (4.3.1)). The group
$\rho(\hat{H})$ centralizes $\rho\circ f_{\beta}(\pi)$ . Here we assume that

$(4.3.7 *)$ . there exist a group $K\subset G$ and an isomorphism $\phi$ :
$\hat{H}\rightarrow K$ for which every representation $\rho$ satisfifies that $ g\circ\rho\circ g^{-1}=\phi$

for some $g\in G$ .
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It is noted that $\rho\circ f\mathfrak{g}(\pi)$ lies in the centralizer $C_{G}(K)$ up to conjugation.

Let $\hat{\Omega}_{0}(H, M)$ be the subset of $\hat{\Omega}(H, M)$ whose holonomy representations
–0

$\rho$ lie in $C_{G}(K)$ and $\rho|\hat{H}=\phi$ . Put $\Omega_{0}(H, M)=\hat{\Omega}_{0}(H, M)/Diffff$ $(H, M)$ .

The projection $\Omega_{0}(H, M)\rightarrow I(H, M)$ is surjective by $(4.3.7*)$ . More-
over we assume that

$(4.3.7 **)$ . If two such representations of $\pi$ are conjugate in $G$

then they are conjugate by an element of $C_{G}(K)$ .

We then obtain a map $hoi$ : $\mathcal{T}(H, M)\rightarrow Hom(\pi, C_{G}(K))/C_{G}(K)$ which
assigns to a marked structure its holonomy representation. By the defi-

nition $hoi$ lifts to a map $\overline{ho}1:\Omega_{0}(H, M)\rightarrow Hom(\pi, C_{G}(K))$ which makes
the following diagram commute.

$\overline{ho1}$

$\Omega_{0}(H, M)\rightarrow$ $Hom(\pi, C_{G}(K))$

(4.3.8)
$\downarrow$ $\downarrow$

$I(H, M)$ $\rightarrow ho1Hom(\pi, C_{G}(K))/C_{G}(K)$ .

If $H=\{1\}$ then it implies that $K=\{1\}$ and so $C_{G}(K)=G$ . We
have the usual holonomy map $hoi$ : $I(M)\rightarrow Hom(\pi, G)/G$ . It has been

proved by Lok ([37]) (see also [24],[48]) that $\overline{ho}1$ : $\Omega(M)\rightarrow Hom(\pi, G)$

is a local homeomorphism. We prove also that

Holonomy Theorem 4.3.9. $\overline{ho}1$ : $\Omega_{0}(H, M)\rightarrow Hom(\pi, C_{G}(K))$

is a local homeomorphism.

Proof. If we prove that the canonical map $\Omega_{0}(H, M)$ $=$

$\hat{\Omega}_{0}(H, M)/\overline{Diffff}^{0}(H, M)\rightarrow\Omega(M)=\hat{\Omega}(M)/\overline{Diffff}^{0}(M)$ is injective, then

the holonomy map $\overline{ho}1$ : $\Omega(M)\rightarrow Hom(\pi, G)$ restricts to a holonomy

map $\overline{ho}1$ : $\Omega_{0}(H, M)\rightarrow Hom(\pi, C_{G}(K))$ . And so it is a local homeo-

morphism. Now suppose that two elements $(\rho, dev)$ and $(\rho’, dev^{J})$ rep-
–0

resent the same element in $\hat{\Omega}(M)/Diffff(M)$ . There exists an element
–0

$\tilde{f}\in Diffff(M)$ such that $dev^{J}=dev\circ\tilde{f}$ . Since $\rho|\hat{H}=\rho’|\hat{H}$ by $(4.3.7*)$ , it

follows that $dev=dev\circ(h\tilde{f}h^{-1}\tilde{f}^{-1})$ for each $h\in\hat{H}$ . As $\hat{H}$ is connected
and the map $dev$ is a local homeomorphism, this equality implies that

–0
$\tilde{f}\circ h=h\circ\tilde{f}$ for every $h\in\hat{H}$ . It follows that $\tilde{f}\in Diffff(H, M)$ by the
definition 4.3.3. Hence the canonical map is injective. Q.E.D.
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Remark 4.3.10. Two assumptions of (4.3.7) will be satisfied when
we consider semifree circle actions of $H$ over $H$ invariant spherical $CR$

structures and $H$ invariant conformally flat structures. We shall see this
in the next chapter.

5. $S^{1}$ invariant geometric structures

5.1. Description of deformation spaces $\mathcal{T}(S^{1}, M)$

In this section we examine deformation spaces of $S^{1}$ invariant spher-
ical $CR$ structures and $S^{1}$ invariant conformally flat structures. Namely,

5.1.1. Let $H=S^{1}$ .

(1) $(G, X)$ $=$ (PU( $n$ $+1,1$ ), $S^{2n+1}$ ). The corresponding space
$I(H, M)=C\mathcal{R}(S^{1}, M)$ is the deformation space of $S^{1}$ invariant
spherical $CR$ structures on $M$ by the defifinition 4.3.1.

(2) $(G, X)=(PO(n+1,1),$ $S^{n})$ . As before, the corresponding space
$I(H, M)=C\mathcal{O}(S^{1}, M)$ is the deformation space of $S^{1}$ invariant
conformally flat structures on $M$ .

5.1.2. Let $M$ be a closed $(2n+1)$-manifold. We suppose that the

action $(S^{1}, M)$ has the following properties for the $CR$ case.

(i) $M$ has a fixed point.

(ii) The orbit space $M^{*}$ is a complex Kleinian orbifold $D^{2n}-$

$L(\pi^{*})/\pi^{*}$ .

Recall that the complex hyperbolic group PU $(n, 1)$ acts on $D^{2n}$

by biholomorphic transformations of $H_{C}^{n}$ and $CR$ transformations of
$S^{2n-1}$ . The group $\pi^{*}\subset PU(n, 1)$ and recall that $L(\pi^{*})$ is the limit set
of $\pi^{*}$ in $S^{2n-1}$ . By (i) the fixed point set $F$ is homeomorphic to the ideal
boundary $S^{2n-1}-L(\pi^{*})/\pi^{*}$ . For the conformal case, the action $(S^{1}, M)$

on a closed $n$-manifold $M$ has the same property as (i), but instead of
(ii) we suppose

(ii)’ the orbit space $M^{*}$ is a Kleinian orbifold $D^{n-1}-L(\pi^{*})/\pi^{*}$ .

Recall from (4.3.2) that every element of $\Omega(S^{1}, M)$ represents an
$H$ invariant (PU($n+1$ , 1), $S^{2n+1}$ )-structure on $M$ and the $CR$ action
$(H, M)$ is topologically equivalent to the action $(S^{1}, M)$ of (5.1.2). Since
$M$ has a fixed point, it is noted that a lift $\hat{H}$ of $H$ to $\tilde{M}$ is isomorphic

to $\hat{H}=H$ (cf. (4.3.6)).

We have shown the topological rigidity of developing maps (cf. [18] [27]).
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Proposition 5.1.3. Let $M$ be a closed spherical $CR$ (resp. confor-
mally flat) manifold with $CR$ (resp. conformat) circle actions. Suppose

that the action $(S^{1}, M)$ has the property of (5.1.2). Put $\pi=\pi_{1}(M)$ . If
$(\rho, dev)$ is the developing pair of an $S^{1}$ invariant $(G, X)$ structure on $M$

where $(G, X)=(PU(n+1,1),$ $S^{2n+1})$ , $(PO(n+1,1),$ $S^{n})$ respectively,
then the developing map $dev$ maps homeomorphically onto the following
subset of $X$ up to an element of $G\mathfrak{j}$

(1) $(\rho, dev)$ : $(S^{1}, \pi,\tilde{M})\rightarrow(U(1), U(n, 1), S^{2n+1}-L(\rho(\pi)))$ .

(2) $(\rho, dev)$ : $(S^{1}, \pi,\tilde{M})\rightarrow(SO(2),$ SO $(n-1, 1)^{0}\times SO(2)$ , $S^{n}-$

$L(\rho(\pi)))$ .

Fere $\rho$ : $\pi\rightarrow\rho(\pi)\subset U(n, 1)$ (resp. $PO$ ( $n$ $-1,1$ ) $\times SO(2)$ ) is an
isomorphism and $L(\rho(\pi))$ is the limit set of $\rho(\pi)$ lying in $S^{2n-1}$ (resp.
$S^{n-2})$ .

Proof. Since $M$ has a fixed point by the condition (i) of (5.1.2),

we have a lift of action $(S^{1},\tilde{M})$ such that $\tilde{M}$ has a fixed point (cf. [6]).
Then it follows from Proposition 3 and Note 2 of [27] that

$dev$ : $\tilde{M}\rightarrow S^{2n+1}-L(\rho(\pi))$ is homeomorphic

and

$\rho$ : $(S^{1}, \pi)\rightarrow(\rho(S^{1}), \rho(\pi))\subset(U(n-m), P(U(m+1,1) \times U(n-m)))$ .

is an isomorphism for some $m\leqq n-1$ . Moreover the limit set
$L(\rho(\pi))$ $\subset$ $S^{2m+1}$ and $S^{2m+1}-L(\rho(\pi))$ is the fixed point set of
$\rho(S^{1})$ . In particular we have that $M\approx S^{2n+1}-L(\rho(\pi))/\rho(\pi)$ and
$Fix(S^{1}, M)=S^{2m+1}-L(\rho(\pi))/\rho(\pi)$ . On the other hand the $CR$ action
$(S^{1}, M)$ is topologically equivalent to the action of (5.1.2) which implies

that $Fix(S^{1}, M)\approx S^{2n-1}-L(\rho(\pi^{*}))/\pi^{*}$ . Hence $m=n-1$ . It follows

that $\rho(S^{1})=U(1)$ and $P(U(n, 1)$ $\times U(1))=U(n, 1)$ . The fixed point

set of $U(1)$ is $S^{2n-1}-L(\rho(\pi))$ in this case. The similar result holds for
the conformal case when we note the results of [19], [26]. Q.E.D.

We shall check that the conditions of (4.3.7) are satisfied for
$C\mathcal{R}(S^{1}, M)$ and $CO(S^{1}, M)$ .

Remark 5.1.4.
(1) Let $(\rho, dev)$ be a spherical $CR$ structure on $M$ . Each $(g\circ\rho\circ$

$g^{-1}$ , godev) for $g\in G(=PU(n, 1))$ represents the same structure as
$(\rho, dev)$ by the definition. The structure on $M$ does not depend on the

choice of geometric $(2n-1)$ -sphere $S^{2n-1}$ such that $L(\rho(\pi))\subset S^{2n-1}$ by
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Proposition 5.1.3. When we choose $K=U(1)$ as $K$ of $(4.3.7*)$ , for every
representation $\rho$ there exists $g\in G$ such that $g\circ\rho\circ g^{-1}$ : $S^{1}\rightarrow U(1)$ is an
isomorphism. And so the condition $(4.3.7*)$ is satisfied for $C\mathcal{R}$ ( $S^{1}$ , M-),

similarly for $C\mathcal{O}(S^{1}, M)$ if we choose $K=SO(2)$ . Then it is easy to see
that the centralizer

$C_{G}(K)=\{$
$U(n, 1)$ for $G=PU(n+1,1)$

SO $(n-1, 1)^{0}\times SO(2)$ for $G=PO(n+1,1)$ .

Recall that $\Omega_{0}^{CR}(S^{1}, M)$ is the subspace of $\Omega^{CR}(S^{1}, M)$ whose holon-
omy represntations belong to $U(n, 1)$ (cf. (4.3.7)). It is easy to see that

two such pairs $(\rho, dev)$ , $(\rho’, dev’)$ represent the same structure if and

only if there is an element $h\in U(n, 1)$ such that $dev’=h\circ dev$ and
$ho\rho oh^{-1}=\rho’$ . The condition $(4.3.7**)$ is satisfied by this fact. As in

(4.3.7), $\Omega_{0}(S^{1}, M)\rightarrow C\mathcal{R}(S^{1}, M)$ is surjective. We have the commuta-
tive diagram from (4.3.9)

$\Omega_{0}^{CR}(S^{1}, M)\rightarrow\overline{ho1}$

$Hom(\pi, U(n, 1))$

(5.1.5)
$\downarrow$ $\downarrow$

$ho1$

$C\mathcal{R}(S^{1}, M)$ $\rightarrow R(\pi, U(n, 1))/U(n, 1)$ ,

similarly for $CO(S^{1}, M)$ .

(2) If $\tilde{M}^{*}$ is the orbit space of $S^{1}$ then the action $(\pi,\tilde{M})$ induces an

action of $\pi$ on $\tilde{M}^{*}$ . Let $(\pi^{*},\tilde{M}^{*})$ be its action. The induced map $\pi\rightarrow$

$\pi^{*}$ is an isomorphism. Let $U(1)\rightarrow U(n, 1)\rightarrow PU(n, 1)$ be the exact
sequence for the $CR$ case. The projection $P$ maps $\rho(\pi)$ isomorphically
onto its image $\rho(\pi)^{*}$ . The homomorphism $\rho$ induces an isomorphism
$\rho^{*}$ : $\pi^{*}\rightarrow\rho(\pi)^{*}$ such that the diagram is commutative:

$\rightarrow\rho\rho(\pi)$

$\downarrow$ $\downarrow$

$\rho^{*}$

$\pi^{*}\rightarrow\rho(\pi)^{*}$

Definition 5.1.6. $R_{CR}(\pi^{*})$ is the subspace of Hom( $\pi^{*}$ , PU( $n$ , 1))

such that for each element $\rho^{*}$ there exists a homeomorphism $f^{*}$ : $D^{2n}\rightarrow$

$D^{2n}$ such that $\rho^{*}(\alpha)=f^{*}\circ\alpha\circ f^{*-1}(\alpha\in\pi^{*})$ and in addition the
restriction $f^{*}|H_{C}^{n}$ is a smooth map. Note that $\rho^{*}$ : $\pi^{*}\rightarrow\rho^{*}(\pi^{*})$ is
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an isomorphism and $\rho^{*}(\pi^{*})$ is discrete in PU(n, 1). $R_{CO}(\pi^{*})$ is defined
similarly to be the subspace of $Hom(\pi^{*}, PO(n-1,1)^{0})$ .

Remark 5.1.7. Given an isomorphism $\rho^{*}$ : $\pi^{*}$
$\rightarrow$ $\rho^{*}(\pi^{*})$

$\subset$ Hom( $\pi^{*}$ , PU( $n$ , 1)), it does not always exist such a homeomor-

phism $f^{*}$ : $D^{2n}\rightarrow D^{2n}$ . However, for example $n=1$ (PU $(1, 1)$ $\approx$

$PO(2,1)\approx PSL_{2}(R))$ , and $\rho^{*}$ is type-preserving (cf. [p.302, 23]), then
it is well known that there exists a quasiconformal homeomorphism
$f^{*}$ : $D^{2}\rightarrow D^{2}$ which induces $\rho^{*}$ . In this case the space $R_{CR}(\pi^{*})$ is
alternatively defined to be the set of those elements consisting of type-
preserving discrete faithful representations of $\pi^{*}$ into PU $(1, 1)$ . Note
that $R_{CR}(\pi^{*})\approx R_{CO}(\pi^{*})$ in this case (cf. [26].)

Definition 5.1.8. Let $R_{CR}(\pi)$ be the subspace of $Hom(\pi, U(n, 1))$

whose elements project down to $R_{CR}(\pi^{*})$ . If we note the exact sequence,
$Hom(\pi, U(1))\rightarrow Hom(\pi, U(n, 1))\rightarrow Hom$ ( $\pi^{*}$ , PU(n, 1)), then it follows
that

(5.1.9) $R_{CR}(\pi)=R_{CR}(\pi^{*})\times Hom(\pi, U(1))$ .

Similarly,

(5.1.10) $R_{CO}(\pi)=R_{C0}(\pi^{*})\times Hom$ ( $\pi$ , SO(2)).

Lemma 5.1.11. $\overline{ho}1$ maps $\Omega_{0}^{CR}(S^{1}, M)\dot{\iota}ntoR_{CR}(\pi)$ , similarly

for $\Omega_{0}^{CO}(S^{1}, M)$ .

Proof. Let $(\rho, dev)$ be a representative element of $\Omega_{0}^{CR}(S^{1}, M)$ . We

know that $(\rho, dev)$ : $(S^{1}, \pi,\tilde{M})\rightarrow(U(1), U(n, 1), S^{2n+1}-L(\rho(\pi)))$ is
homeomorphic. Then $(\rho, dev)$ induces a homeomorphism

$(\rho^{*}$ , $dev*$

Note from (ii) of (5.1.2) that $\tilde{M}^{*}=D^{2n}-L(\rho^{*}(\pi^{*}))$ . In particular

dev* : $H_{C}^{n}(=Int\tilde{M}^{*})\rightarrow H_{C}^{n}$ is homeomorphic. Since dev* is still an
immersion, the complete metric of $H_{C}^{n}$ with $ISO(HQ)=PU(n, 1)$ induces
a Riemannian metric such that dev* is a local isometry. And hence

dev* : $H_{C}^{n}\rightarrow H_{C}^{n}$ is an isometry. The space $\tilde{M}^{*}$ has a compactification
$D^{2n}=\tilde{M}^{*}\cup L(\pi^{*})$ . The isometry dev* extends to a homeomorphism
$f^{*}$ : $D^{2n}\rightarrow D^{2n}$ for which $f^{*}(L(\pi^{*}))=L(\rho^{*}(\pi^{*}))$ and $\rho^{*}(\alpha)=f^{*}\circ\alpha\circ$

$f^{*-1}(\alpha\in\pi^{*})$ . It follows by the definition 5.1.7 that $\rho^{*}\in R_{CR}(\pi^{*})$ and
thus $\rho\in R_{CR}(\pi)$ . Q.E.D.
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The diagram (5.1.5) reduces to the following commutative one.

$\overline{ho1}$

$\Omega_{0}^{CR}(S^{1}, M)\rightarrow$ $R_{CR}(\pi)$

(5.1.13)
$\downarrow$ $\downarrow$

$C\mathcal{R}(S^{1}, M)$
$\rightarrow ho1R_{CR}(\pi)/U(n, 1)$ .

Since $Hom(\pi, U(1))$ is a $k$ dimensional torus for some $k$ , it follows from
(5.1.9) that

(5.1.13) $R_{CR}(\pi)/U(n, 1)=R_{CR}(\pi^{*})/PU(n, 1)$ $\times T^{k}$ .

(5.1.14) $R_{CO}(\pi)/SO(n-1, 1)^{0}\times SO(2)=R_{CO}(\pi^{*})/SO(n-1,1)^{0}\times T^{k}$ .

5.2. Structure of deformation spaces $\mathcal{T}(S^{1}, M)$

There is the natural homomorphism $\varphi$ : Diff $(S^{1}, M)\rightarrow$ Out $(\Gamma)$ .

Note that $Ker\varphi$ contains the subgroup $Diffff\ovalbox{\tt\small REJECT}$

exists a right action of $Diffff(S^{1}, M)/Diffff^{0}(S^{1}, M)$ on $\mathcal{T}(S^{1}, M)$ . We
examine the structure of $\mathcal{T}(S^{1}, M)$ in terms of representation spaces,

where $\mathcal{T}(S^{1}, M)=C\mathcal{R}(S^{1}, M)$ or $CO(S^{1}, M)$ .

Proposition 5.2.1. Let

$ho1$ : $C\mathcal{R}(S^{1}, M)\rightarrow R_{CR}(\pi^{*})/PU(n, 1)$ $\times T^{k}$

and

$ho1$ : $CO(S^{1}, M)\rightarrow R_{CO}(\pi^{*})/SO(n-1,1)^{0})/SO(n-1,1)^{0}\times T^{k}$

be the holonomy map respectively. Put $G=Ker\varphi/Diffff^{0}(S^{1}, M)$ . If the
fundamental group $\pi$ is torsionfree, then

(1) $hoi$ is surjective.
(2) Each fifiber of $hoi$ consists of the $G$ -orbit.

(3) There exists a neighborhood $U$ for each point of $\mathcal{T}(S^{1}, M)$ such
that $ho1(U)$ is open.

Proof. We prove for the $CR$ case. (1) Given $\rho\in R_{CR}(\pi)$ , $\rho(\pi)$

is discrete in $U(n, 1)$ and $L(\rho(\pi))\subset S^{2n-1}$ . Then the group $\rho(\pi)$ acts

properly discontinuously on $S^{2n-1}-L(\rho(\pi))$ . Since $\rho(\pi)$ is torsionfree,

it acts freely. We obtain a spherical $CR$ manifold $M(\rho)=S^{2n-1}-$

$L(\rho(\pi))/\rho(\pi)$ . It is noted that $U(1)$ acts on $M(\rho)$ by $CR$ automorphisms.

We then show that $M$ is diffeomorphic to $M(\rho)$ . For this, let $\rho^{*}$ be
an element of $R_{CR}(\pi^{*})$ induced from $\rho$ . There is a homeomorphism
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$f^{*}$ : $D^{2n}\rightarrow D^{2n}$ such that $\rho^{*}(\pi^{*})=f^{*}\pi f^{*-1}$ . If we note that $M(\rho)^{*}=$

$D^{2n}-L(\rho^{*}(\pi^{*}))/\rho(\pi^{*})$ then the map $f^{*}$ induces a homeomorphism $h^{*}$ :
$M^{*}\rightarrow M(\rho)^{*}$ . Consider the following diagram (cf. (5.1.1));

$\rightarrow\approx$
$\pi^{*}$

$\downarrow$ $\downarrow$

$S^{1}\rightarrow\tilde{M}-\tilde{F}\rightarrow Int$
$M^{*}(=H_{C}^{n})$

$||$ $\downarrow$ $\downarrow$

$ S^{1}\rightarrow M-F\rightarrow$ $H_{C}^{n}/\pi^{*}$ ,

where $\tilde{F}\approx F$ is the fixed point set of $S^{1}$ . It follows that $M-F=$
$H_{C}^{n}/\pi^{*}\times S^{1}$ . The same is true for $M(\rho)$ . Then we can find an equivariant
homeomorphism $h_{1}$ : $M-F$ $\rightarrow M(\rho)-F(\rho)$ which induces $h^{*}|$ Int $M^{*}$ .

Here $F(\rho)$ is the fixed point set of $U(1)$ in $M(\rho)$ . Since $F\approx\partial M^{*}\rightarrow h^{*}$

$\partial M(\rho)^{*}\approx F(\rho)$ , we can choose a homeomorphism $h_{2}$ : $F\rightarrow F(\rho)$ which
covers $h^{*}$ . Combining $h_{1}$ and $h_{2}$ , it is easy to construct an equivariant
homeomorphism $h$ : $M\rightarrow M(\rho)$ . Therefore $M$ admits an $S^{1}$ invariant
spherical $CR$ structure which is mapped by $hoi$ to $\rho$ . This proves (1).

(2) Suppose that $hoi$ $([\rho, dev])=hol$ $([\rho’, dev’])$ . Then it follows that
$\rho’=g\circ\rho og^{-1}$ for some $g\in U(n, 1)$ . Since $dev:\tilde{M}\rightarrow S^{2n+1}-L(\rho(\pi))$ ,

and $dev$ : $\tilde{M}\rightarrow S^{2n+1}-L(\rho’(\pi))$ are homeomorphisms, we can put
$\tilde{f}=(dev^{r})^{-1}o$ godev. It is easy to see that $\tilde{f}$ induces an element
$f\in Diffff(S^{1}, M)$ such that $\varphi(f)=1$ . Hence $(f)\in G$ . By definition we

have that $[\rho’, dev’]\circ(f)=[\rho, dev$ .

(3) It follows from the Holonomy theorem 4.3.9 that there ex-

ists a neighborhood $\tilde{U}$ in $\Omega_{0}^{CR}(S^{1}, M)$ for which $\overline{ho}1(\tilde{U})$ is open in

$R(\pi, U(n, 1))$ . Let $U$ be the image of $\tilde{U}$ in $C\mathcal{R}(S^{1}, M)$ . Since verti-
cal arrows are open maps in the diagram (5.1.6), we obtain that $ho1(U)$

is open. It can be shown similarly for $C\mathcal{O}(S^{1}, M)$ . Q.E.D.

Corollary 5.2.2. Suppose that $\hat{\varphi}$ : $Diffff(S^{1}, M)/Diffff^{0}(S^{1}, M)\rightarrow$

Out(\pi ) is infective. Then $C\mathcal{R}(S^{1}, M)$ is homeomorphic to
$R_{CR}(\pi^{*})/PU(n, 1)$ $\times T^{k}$ (Similarly, $C\mathcal{O}(S^{1}, M)$ is homeomorphic to
$R_{CO}(\pi^{*})/SO(n-1,1)^{0}\times T^{k})$ .

See [26] for examples of this Corollary. (Indeed, $Ker$
$\varphi$ $=$

$Diffff\ovalbox{\tt\small REJECT}$

of $Diffff(S^{1}, M)/Diffff^{0}(S^{1}, M)$ on $\Omega(S^{1}, M)$ (cf. (4.3.4)). Let $G=$



294 Y. Kamishima and S. Tan

$Ker\varphi/Diffff^{0}(S^{1}, M)$ be as before. In order to study the action of $G$

on $\Omega(S^{1}, M)$ , we need the following lemma.

Lemma 5.2.3. Suppose that $\pi$ is not virtually solvable.

(1) $U(n, 1)$ acts properly on $R_{CR}(\pi)$ .

(2) SO $(n-1, 1)^{0}\times SO(2)$ acts properly on $R_{CO}(\pi)$ .

Proof. We prove (1). Recall that $ R_{CR}(\pi)=R(\pi, U(n, 1))\approx$

$R$ ( $\pi^{*}$ , PU( $n$ , $1)$ ) $\times T^{k}$ . Let $P:R$ ( $\pi^{*}$ , PU(n, $1)$ ) $\times T^{k}\rightarrow R$ ( $\pi^{*},$ PU(n, 1))

be the projection. Given a compact subset $K$ of $R$ ( $\pi^{*}$ , PU( $n$ , 1)) $\times T^{k}$ ,

put $K^{*}=P(K)$ . Let $\zeta_{U(n,1)}(K)=\{g\in U(n, 1)|g. K\cap K\neq\emptyset\}$

where those elements of $U(n, 1)$ act by conjugation on $R(\pi, U(n, 1))$ .

Recall that $P$ : $U(n, 1)\rightarrow PU(n, 1)$ is the projection with kernel isomor-

phic to $U(1)$ . Then it follows that $\zeta_{U(n,1)}(K)\subset P^{-1}(\zeta_{PU(n,1)}(K^{*}))\approx$

$\zeta_{PU(n,1)}(K^{*})\times U(1)$ . Since $\zeta_{U(n,1)}(K)$ is a closed subset in $U(n, 1)$ , it

suffices to show that $\zeta_{PU(n,1)}(K^{*})$ is compact. By the hypothesis, $\pi\approx\pi^{*}$

is not virtually solvable. Then the set $R$ ( $\pi^{*}$ , PU( $n$ , 1)) consists of stable
representations in the sense of Johnson-Millson ([p.53, 24]). And so it
follows from Proposition 1.1 ([24]) that PU(n, 1) acts properly on the
subset $R$ ( $\pi^{*}$ , PU( $n$ , 1)). Hence $\zeta_{PU(n,1)}(K^{*})$ is compact.

(2) follows similarly when we note from Proposition 1.1 ([24]) that the
set $R$ ( $\pi^{*}$ , SO($n-1$ , $1$ ) ) consists of stable representations. Q.E.D.

Proposition 5.2.4. Suppose that $\pi$ is not virtually solvable. Let
$G=Ker\varphi/Diffff^{0}(S^{1}, M)$ be as before. Then $G$ acts properly discontin-
uously on $\mathcal{T}(S^{1}, M)$ where $\mathcal{T}(S^{1}, M)=C\mathcal{R}(S^{1}, M)$ or $CO(S^{1}, M)$ .

Proof. When $K$ is a compact subset of $\mathcal{T}(S^{1}, M)$ , it has only
to be shown that $\zeta_{G}(K)=\{(f)\in G|K\circ(f)\cap K\neq\emptyset\}$ is com-
pact. Suppose we have sequences $\{f_{i}\}\in G$ and $[\rho_{i}, dev_{i}]$ , $[\rho_{i}’, dev_{i}’]\in K$

such that $[\rho_{i}, dev_{i}]\circ(f_{i})=[\rho_{i}’,$ $dev_{i}^{J}|$ where $\{[\rho_{i}, dev_{i}]\}$ and $\{[\rho_{i}’, dev_{i}^{J}]\}$

converge to some $[\rho, dev]$ and $[\rho’, dev^{J}]$ in $K$ respectively. Then by
the remark (1) of (5.1.5) there exists a sequence $\{g_{i}\}$ $\in$ $U(n, 1)$

(resp. SO($n-1$ , $1$ ) $\times SO(2)$ ) such that (i) $g_{i}\circ dev_{i}’=dev_{i}\circ\tilde{f}_{i}$ , (ii)
$g_{i}\circ\rho_{i}’\circ g_{i}^{-1}=\rho_{i}\circ\mu(\tilde{f_{i}})$ . Since each $f_{i}$ lies in $Ker\varphi$ , it follows that

(ii)’ $g_{i}\circ\rho_{i}’\circ g_{i}^{-1}=\rho_{i}$ . We note that $\{\rho_{i}\}$ , $\{\rho_{i}’\}\in R_{CR}(\pi)$ (resp.
$R_{CO}(\pi))$ , and $\{\rho_{i}\}$ (resp. $\{\rho_{i}’\}$ ) $\rightarrow\rho$ (resp. $\rho’$ ). By Lemma 5.2.3, (ii)’
implies that the sequence $\{g_{i}\}$ converges to some $g\in U(n, 1)$ (resp.

SO $(n-1, 1)^{0}\times SO(2))$ .

On the other hand, the maps $dev_{i}$ , $dev_{i}^{J}$ induce homeomorphisms
$d\hat{e}v_{i}$ : $M\rightarrow S^{m}-L(\rho_{i}(\Gamma))/\rho_{i}(\Gamma)$ , $d\hat{e}v_{i}$

’

: $M\rightarrow S^{m}-L(\rho_{i}’(\Gamma))/\rho_{i}’(\Gamma)$ ,
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where $m=2n+1$ or $n$ . Each $g_{i}$ defines a homeomorphism $\hat{g}_{i}$ : $S^{m}-$

$L(\rho_{i}’(\Gamma))/\rho_{i}’(\Gamma)\rightarrow S^{m}-L(\rho_{i}(\Gamma))/\rho_{i}(\Gamma)$ . Therefore we obtain from (i)

that $f_{i}=(d\hat{e}v_{i})^{-1}(\hat{g}_{i}od’\hat{e}v_{i})$ . Since $M$ is compact, $(d\text{\^{e}} v)^{-1}(\hat{g}\circ d\hat{e}v^{J})$ is

also defined so that $\{f_{i}\}\rightarrow$
$(d\text{\^{e}} v)^{-1}(\hat{g}od’\hat{e}v)$ . Put $f=$ $(d\text{\^{e}} v)^{-1}(\hat{g}\circ d’\hat{e}v)$ :

$M\rightarrow M$ . Since each $ f_{i}\in Ker\varphi$ , it follows that $f$ represents an element
of $G$ . Hence $\zeta_{G}(K)$ is compact. Q.E.D.

For example, $G=Ker\varphi/Diffff^{0}(S^{1}, M)$ is trivial if $dimM=3$ (cf.
[26] $)$ . However in general there are examples in higher dimentions for
which $G$ is nontrivial. For them we have the following.

Proposition 5.2.5. Suppose that $\pi$ is not virtually solvable.
Then $G$ acts freely on $I(S^{1}, M)$ , where $\mathcal{T}(S^{1}, M)=C\mathcal{R}(S^{1}, M)$ or
$C\mathcal{O}(S^{1}, M)$ .

Proof. We prove the case that $\mathcal{T}(S^{1}, M)=C\mathcal{R}(S^{1}, M)$ . Suppose
that $[\rho, dev]o(f)=[\rho, dev]$ . Then there exists an element $g\in U(n, 1)$

such that (1) godev $=dev\circ\tilde{f}$ , (2) $ g\circ\rho\circ g^{-1}=\rho\circ\mu(\tilde{f})=\rho$ . If $\rho^{*}$ is
the corresponding element in $R$ ( $\Gamma^{*}$ , PU( $n$ , 1)) then (2) implies that (3)
$g^{*}o\rho^{*}og^{*-1}=\rho^{*}$ for $g^{*}\in PU(n, 1)$ . The group $\rho^{*}(\Gamma^{*})$ acts invariantly
in $H_{C}^{n}$ . Suppose that $\rho^{*}(\Gamma^{*})$ leaves invariant a totally geodesic subspace
$H_{C}^{k}$ of $H_{C}^{n}$ for 1 $\leqq k\leqq n$ . Then $\rho^{*}(\Gamma^{*})$ leaves $S^{2k-1}$ invariant so

that it belongs to the subgroup $Aut_{CR}(S^{2n-1}, S^{2k-1})=P(U(k, 1)$ $\times$

$U(n-k))$ . Let $Q$ : $P(U(k, 1)\times U(n-k))\rightarrow PU(k, 1)$ be the projection
whose kernel is isomorphic to $U(n-k)$ . We can assume that $k$ is the
smallest dimension. And so $Q(\rho^{*}(\Gamma^{*}))$ is Zariski-dense in PU(k, 1). The

condition (3) implies that $g^{*}$ leaves also $S^{2k-1}$ . It implies that $ g^{*}\in$

$P(U(k, 1)$ $\times U(n-k))$ . Then the element $Q(g^{*})$ centralizes the group
$Q(\rho^{*}(\Gamma^{*}))$ and so does its algebraic closure. Since the algebraic closure
is PU $(k, 1)$ by the above remark, $Q(g^{*})$ must be the identity map.

In particular we obtain that $g^{*}\in U(n-k)$ . As $U(n, 1)=P(U(n, 1)$ $\times$

$U(1))$ , it follows that $g\in U(n-k)\times U(1)(=P(Z(k, 1)$ $\times U(n-k)\times$

$U(1)))$ where $Z(k, 1)$ is the center of $U(k, 1)$ . On the other hand,
$dev$ : $\tilde{M}\rightarrow S^{2n+1}-L(\rho(\pi))$ is homeomorphic and by (1) it follows that
$\tilde{f}=(dev)^{-1}$ ogodev. It is noted that $L(\rho(\pi))=L(\rho^{*}(\pi^{*}))\subset S^{2k-1}$

and $S^{2k-1}$ is the fixed point set of $U(n-k)$ . We can choose a path $c$ in
$U(n-k)$ between $g^{*}$ and the identity map. By the above remark there
is a lift $\tilde{c}$ of the path $c$ starting at $g$ with its endpoint $\tilde{c}(1)\in U(1)$ . Since
$dev$ is equivariant with respect to $S^{1}$ and $U(1)$ actions, we conclude that
$\tilde{f}$ is isotopic to $\tilde{c}(1)$ . It is easy to check that $\tilde{f}$ is isotopic to the identity

map of $\tilde{M}$ . Hence $f$ belongs to $Diffff\ovalbox{\tt\small REJECT}$
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We can prove similary for the case that $\mathcal{T}(S^{1}, M)=CO(SO(2), M)$ .

Q.E.D.

Corollary 5.2.6. Let $M$ be a closed $S^{1}$ invariant spherical $CR$

manifold of dimension $2n+1$ (resp. a closed $S^{1}$ invariant confor-
mally flat $n$ manifold. Suppose that the orbit space $M^{*}$ is a complex

Kleinian orbifold $D^{2n}-L(\pi^{*})/\pi^{*}$ with nonempty boundary (resp. $a$

Kleinian orbifold $D^{n-1}-L(\pi^{*})/\pi^{*}$ with nonempty boundary) and $\pi^{*}$ is

torsionfree.
If $\pi_{1}(M)$ is not virtually solvable, then

(1) $ho1$ : $C\mathcal{R}(S^{1}, M)\rightarrow R_{CR}(\pi^{*})/PU(n, 1)$ $\times T^{k}$ is a covering map
whose fifiber is isomorphic to $G$ .

(2) $ho1$ : $CO(S^{1}, M)\rightarrow R_{CO}(\pi^{*})/SO(n-1,1)^{0}\times T^{k}$ is a covering
map whose fifiber is isomorphic to $G$ .

Proof The group $G$ acts properly discontinuously and freely on
$\mathcal{T}(U(1), M)$ by Lemma 5.2.3 and Proposition 5.2.4. Thus there exists a
neighborhood $U$ in $I(U(1), M)$ such that $ Uog\cap U=\emptyset$ if and only if
$g\neq 1$ for $g\in G$ . Then the result follows from Proposition 5.2.1.

Q.E.D.
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\S 1. Introduction

Let $V$ be a compact topological 4-manifold homotopy equivalent
to the 2-sphere $S^{2}$ . We say such a 4-manifold is a homotopy $S^{2}$ . The
boundary $\partial V$ of $V$ is always a closed connected 3-manifold with the same
integral homology and the same linking pairing as those of the lens space
$L(p, 1)$ for some $p(\geq 0)$ . We say such a 3-manifold is a homology $L(p, 1)$ .

For a fixed homology $L(p, 1)$ , $M$ , the homotopy $S^{2}$ ’s bounded by $M$ are
classified up to homeomorphism by certain equivalence classes of some
elements of $H_{1}$ ( $M$ ; Z) ([3]).

In this paper, concerning homotopy $S^{2}$ ’s, we consider the following
problems.

(A) For a fixed homology $L(p, 1)$ , $M$ , how many homotopy $S^{2}$ ’s does $M$

bound? Furthermore, how many of them admit smooth structures?.
(B) Give a lower bound for the genera of topologically locally flatly

embedded surfaces in $V$ representing the generator $\gamma$ of $H_{2}(V;Z)$ . If
$V$ is smooth, what is the necessary condition for $\gamma$ to be represented
by a smoothly embedded 2-sphere?

(C) Let $K$ be a tame knot in the boundary of $V$ . Under what condition
does $K$ bound a topologically embedded flat 2-disk in $V$ ? If $V$ and
$K$ are smooth and $K$ bounds such a topologically embedded 2-disk,
does $K$ also bound a smoothly embedded 2-disk in $V$?

(D) Does there exist a homotopy $S^{2}$ admitting more than one smooth
structures?.
In [28], we considered problem (A) and showed that if $V$ is a smooth

homotopy $S^{2}$ satisfying a certain condition on the order of $H_{1}(\partial V;Z)$

Received June 27, 1989.
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such that the generator of $H_{2}(V;Z)$ is represented by a smoothly embed-
ded 2-sphere, then every smooth homotopy $S^{2}$ with the same boundary
as $V$ is homeomorphic to $V$ . Furthermore we gave the exact number of
homotopy $S^{2}$ ’s bounded by the 3-manifold $\partial V$ . In this paper we con-
sider smoothly immersed 2-spheres instead of embedded ones and give a
similar result. More precisely, we show that if $V$ is a smooth homotopy
$S^{2}$ satisfying a certain condition on the order of $H_{1}(\partial V;Z)$ such that the
generator of $H_{2}(V;Z)$ is represented by a smoothly immersed 2-sphere

with relatively few double points, then the same results as above hold
(2). We note that, in some cases, this result can be applied to give
a lower bound for the number of double points of smoothly immersed
2-spheres representing the generator of $H_{2}(V;Z)$ .

In \S 3 we define some topological invariants for homotopy $S^{2}$ ’s and
use them to attack problem (B). First, we define a “Casson invariant”
for a homotopy $S^{2}$ using the extension of the usual Casson invariant for
homology 3-spheres ([6]) to marked homology lens spaces ([4, 15]). We
show that if the generator of the second homology group of a smooth
homotopy $S^{2}$ is represented by a smoothly embedded 2-sphere, then
its Casson invariant modulo 2 must vanish. In fact, this is proved only
using the well-known theorem of Rohlin. We do not know what essential
properties of a homotopy $S^{2}$ this Casson invariant reflects. Next we
define Casson-Gordon invariants for a homotopy $S^{2}$ (cf. [7]) and use
them to give a lower bound for the genera of topologically locally flatly
embedded surfaces representing the generator of the second homology
group of a homotopy $S^{2}$ . In our case these invariants are the $p$-signatures
of a certain knot in a homology 3-sphere. If a smooth homotopy $S^{2}$

consists of one 0-handle and one 2-handle, then it has already been
known that a lower bound for the genera of such smoothly embedded
surfaces is given by the $p$-signatures of the knot along which the 2-handle
is attached to the 0-handle ([31]). In this paper, we extend this to general
homotopy $S^{2}$ ’s employing a method similar to that in [19].

In \S 4, we give a sufficient condition for certain tame knots in the
boundary of a homotopy $S^{2}$ to bound topologically embedded flat 2-
disks. We see that almost all knots satisfying a certain homological
condition bound such 2-disks in the homotopy $S^{2}$ . Furthermore, we give
an example of smooth knots in the boundary of a smooth homotopy $S^{2}$

which bound topologically embedded flat 2-disks in the homotopy $S^{2}$

but never bound smooth ones. In the case of knots in the boundary of
the 4-ball, the same examples have been found first by Casson and, after
that, by several authors [8, 9, 18]. Our technique is similar to theirs in
that we use the celebrated theorem of Donaldson [10].

As to problem (D), Akbulut [1] has recently found a compact homo-
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topy $S^{2}$ with more than one smooth structures. In this paper we give
an example of infinitely many open 4-manifolds homotopy equivalent to
$S^{2}$ each of which admits at least 3 smooth structures (5).

Throughout the paper, all homology groups are with integral coef-
ficients unless otherwise indicated.

\S 2. Smooth homotopy $S^{2}$ and immersed $2$-spheres

Definition. We say that a non-zero integer $p$ satisfies property
$(\neq)$ if-l is not a quadratic residue modulo $p$ ; i.e., if $n^{2}\not\equiv-1(mod p)$

for every integer $n$ .

Lemma 2.1. Let $|p|=2^{e}p_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{r}^{e_{r}}(e\geq 0, e_{i}\geq 1)$ be the prime

decomposition $of|p|$ . Then $p$ satisfifies property $(\neq)$ if and only if $e\geq 2$

or $p_{i}\equiv 3(mod 4)$ for some $p_{i}$ .

For the proof of Lemma 2.1, see, for example, the proof of Corollary
3.11 in [28]. Note that, by Lemma 2.1, if $|p|\equiv 0,3(mod 4)$ then $p$

satisfies property $(\#)$ .

Let $V$ be a smooth oriented homotopy $S^{2}$ . Define $k_{+}(V)$ (resp.
$k_{-}(V))$ to be the minimum number of positive (resp. negative) double
points of smoothly immersed self-transverse 2-spheres representing the
generator of $H_{2}(V)$ . We call $k_{+}(V)$ (resp. $k_{-}(V)$ ) the positive (resp.
negative) kinkiness of $V$ . Then our main theorem of this section is the
following.

Theorem 2.2. Let $V$ be a smooth oriented homotopy $S^{2}$ bounded
by a homology $L(p, 1)$ , $M$ , and let $\gamma\in H_{2}(V)$ be a generator. We assume
$p=|\gamma^{2}|$ satisfifies property $(\neq)$ . $Let\in be$ the sign of $\gamma^{2}$ . If

$k_{\Xi}(V)\leq\{$

$(p-6)/4$ ($p$ : even)

$(p-1)/4$ $(p: odd,$ $\neq 15,21)$

2 $(p=15)$

4 $(p=21)$ ,

then the following holds.

(1) Every smooth homotopy $S^{2}$ bounded by $M$ is homeomorphic to $V$ .

(2) Every homeomorphism $h:M$ $\rightarrow M$ acts on $H_{1}(M)$ by the multipli-

cation $of\pm 1$ .

(3) If $p=2^{e}p_{1}^{e_{l}}p_{2}^{e_{2}}\cdots p_{r}^{e_{r}}$ $(e\geq 0, e_{i}\geq 1)$ is the prime decomposition

of $p$ , then the number of homeomorphism types of homotopy $S^{2}$ ’s
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bounded by $M$ is equal to

$\{$

$2^{r-1}$ $(e=1)$

$2^{r}$ $(e=0,2)$

$2^{r+1}$ $(e\geq 3)$ .

Remark. Even when $p$ does not satisfy property $(\#)$ , part (2) of
Theorem 2.2 does hold if the homeomorphism $h$ is orientation preserving.

Before we prove Theorem 2.2, we describe some of its consequences.
The proof will be given at the end of this section.

Let $K$ be a smooth knot in the oriented 3-sphere $S^{3}$ . For an integer
$p$ , we denote by $V(K;p)$ the smooth oriented homotopy $S^{2}$ obtained

by attaching a 2-handle to the 4-ball $D^{4}$ along the knot $K$ with the p-
framing. Furthermore we denote by $M(K;p/1)$ the boundary 3-manifold
of $V(K;p)$ . Note that $M(K;p/1)$ is diffeomorphic to the 3-manifold
obtained by performing the $p/1$-Dehn surgery on the knot $K([26])$ .

We denote by $u(K)$ the unknotting number of a knot $K$ in $S^{3}$ (for
example, see [16] $)$ . Note that $K$ bounds in the 4-ball a smoothly im-
mersed self-transverse 2-disk with $u(K)$ double points ([9]). Taking the
union of this immersed 2-disk and the core disk of the 2-handle, we
can represent the generator of $H_{2}(V(K;p))$ , for any $p$ , by a smoothly
immersed 2-sphere with $u(K)$ double points; i.e., we always have

$k_{\pm}(V(K;p))\leq k_{+}(V(K;p))+k_{-}(V(K;p))\leq u(K)$ .

Then we obtain the following immediately.

Corollary 2.3. Let $K$ be a smooth knot in $S^{3}$ and let $p$ be an
integer satisfying property $(\neq)$ . If $|p|\geq 4u(K)+6$ , then the following
holds.
(1) Every smooth homotopy $S^{2}$ bounded by $M(K;p/1)$ is homeomorphic

to $V(K;p)$ .

(2) Every homeomorphism $h$ : $M(K;p/1)$ $\rightarrow$ $M(K;p/1)$ acts on
$H_{1}(M/(K;p/1))$ by the multiplication $of\pm 1$ .

(3) If $|p|=2^{e}p_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{r}^{e_{r}}(e\geq 0, e_{i}\geq 1)$ is the prime decomposition
$of|p|$ , then the number of homeomorphism types of homotopy $S^{2}$ ’s
bounded by $M(K;p/1)$ is equal to

$\{$

$2^{r-1}$

2 $r$

$2^{r+1}$

$(e=1)$

$(e=0,2)$

$(e\geq 3)$ .
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This corollary shows that, for any knot $K$ , if $|p|$ is sufficiently large
and satisfies property $(\#)$ , then $M(K;p/1)$ satisfies the above properties.
This is the major difference between Theorem 2.2 and the result obtained
in [28]; the latter is applicable only to slice knots.

Let $a$ and $b$ be relatively prime integers. Then we denote by $T(a, b)$

the left-hand $(ab>0)$ or the right-hand $(ab<0)$ torus knot of type
$(a, b)$ . As a corollary of Theorem 2.2 we have the following.

Corollary 2.4. Every smooth homotopy $S^{2}$ bounded by the lens
space $L(4n+3,4)$ $(n \geq 0)$ is homeomorphic to the handlebody

$V(T(2,2n+1);-(4n+3))$ .

Proof. By Moser [25], $\partial V(T(2,2n+1);-(4n+3))=M(T(2,2n+$

$1);-(4n+3)/1)$ is homeomorphic to the lens space $L(4n+3,4)$ . Note
that the integer $p=4n+3$ always satisfies property $(\#)$ . On the other
hand, it is well-known that $u(T(2,2n+1))\leq n$ . Thus by the previous
remark, $k_{-}(V(T(2,2n+1);-p))\leq n=(p-3)/4$ . Since $p$ is odd, the

result follows from Theorem 2.2 unless $p=15$ . If $p=15$ , it can be
shown that the number of homotopy $S^{2}$ ’s bounded by $L(15,4)$ is 1 (see
Example 2.8 of [28] $)$ . This completes the proof.

In [28], we remarked that there are exactly 1401 homotopy $S^{2}$ ’s
bounded by the lens spaces $L(p, q)$ with $2\leq p\leq 100$ and that among
them there exist at least 701 homotopy $S^{2}$ ’s which cannot admit any
smooth structures and at least 274 homotopy $S^{2}$ ’s admitting smooth
structures. Using the above Corollary 2.4 and the technique used in

the proof of Theorem 2.2, we can find, among the 1401 homotopy $S^{2}$ ’s,
additional 16 non-smoothable homotopy $S^{2}$ ’s. We also note that, using

the result of Maruyama [23], we can find additional 14 homotopy $S^{2}$ ’
$s$

admitting smooth structures.
Next we indicate how Theorem 2.2 can be applied to give lower

bounds for the kinkinesses of a homotopy $S^{2}$ .

Definition. Let $V$ be a homotopy $S^{2}$ and let $\delta\in H_{2}(V, \partial V)$

be a generator. Then we define $\beta(V)=\partial\delta\in H_{1}(\partial V)$ , where $\partial$ :
$H_{2}(V, \partial V)\rightarrow H_{1}(\partial V)$ is the boundary homomorphism. Note that $\beta(V)$

generates $H_{1}(\partial V)$ and is determined up to the multiplication $of\pm 1$ .

Remark. If $H_{1}(\partial V)$ is finite cyclic of order $p$ , we always have
$1k(\beta(V), \beta(V))=\pm 1/p$ , where $1k:H_{1}(\partial V)\times H_{1}(\partial V)\rightarrow Q/Z$ is the
linking pairing of $\partial V$ .

Theorem 2.5. Let $V$ be a smooth homotopy $S^{2}$ with $H_{1}(\partial V)$ fifinite
cyclic of order $p$ . Suppose there exists a homeomorphism $h$ : $\partial V\rightarrow\partial V$
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such that $h_{*}(\beta(V))=r\beta(V)$ with $r\not\equiv\pm 1(mod p)$ and $r^{2}\equiv 1(mod p)$ .

Then we have

$k_{\Xi}(V)\geq\{$

$(p-4)/4$ ($p$ : even)

$(p+1)/4$ $(p: odd,$ $\neq 15,21)$

3 $(p=15)$

5 $(p=21)$ ,

$where\in(=\pm 1)$ is the signature of $V$ .

If $p$ satisfies property $(\#)$ , the above Theorem is a direct consequence
of Theorem 2.2. The general case can be proved by the same method as
in the proof of Theorem 2.2 below.

As a typical example, we can obtain a lower bound for the kink-
inesses of the homotopy $S^{2}$ ’s obtained by attaching a 2-handle to the
4-ball along some torus knots.

Corollary 2.6. Let $s$ and $r$ be relatively prime integers greater
than 1. Suppose that $s^{2}\not\equiv\pm 1(mod rs+\in)$ and that $ rs+\in$ divides
$s^{4}-1$ , $where\in=\pm 1$ . Then we have

$k_{-}(V(T(r, s);-(rs+\in)))\geq\{$

$(rs+\in-4)/4$ ( $ rs+\in$ : even)

$(rs+\in+1)/4$ $(rs+\epsilon : odd\neq 15,21)$

3 $(rs+\in=15)$

5 $(rs+\in=21)$ .

Proof. By Moser [25], $\partial V(T(r, s);-(rs+\in))$ is diffeomorphic to

the lens space $L(rs+\in, s^{2})$ . Since $s^{4}\equiv 1(mod rs+\in)$ , there exists a
homeomorphism $h$ : $L(rs+\in, s^{2})\rightarrow L(rs+\in, s^{2})$ which acts on the first
homology group by the multiplication of $s^{2}$ . Now the result follows from
Theorem 2.5.

Example 2.7. There do exist $r$ , $s$ and $\in satisfying$ the condition
in Corollary 2.6. For example, we have

$k_{-}(T(2,7);-15)\geq 3$ ,

$k_{-}(T(3,5);-16)\geq 3$ ,

$k_{-}(T(3,13);-40)\geq 9$ ,

$k_{-}(T(4,13);-51)\geq 13$ .

We also note that $k_{-}(T(a, b);p)\leq(|a|-1)(|b|-1)/2$ for any $p$ .
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Using Corollary 2.6, we can obtain a lower bound for the unknotting
numbers of certain torus knots. However, this lower bound is worse
than the one obtained in [16]. There is a conjecture that the unknotting
number of the torus knot $T(a, b)$ is equal to $(|a|-1)(|b|-1)/2$ . We
do not know whether there is a smoothly immersed 2-sphere in some
$V(T(a, b);p)$ representing the generator of $H_{2}(V(T(a, b);p))$ with the
number of double points strictly fewer than $(|a|-1)(|b|-1)/2$ . Note
that if $p=\pm 1$ , then there always exists a topologically locally flatly
embedded 2-sphere or torus representing the generator of the second
homology group (see Proposition 3.6).

Now we proceed to the proof of Theorem 2.2. Our method is similar
to that in [28].

Let $X$ be a smooth closed 1-connected oriented 4-manifold. Given
a homology class $\zeta\in H_{2}(X)$ , one can represent $\zeta$ by an immersed 2-

sphere whose self-intersections are transverse. Define $d_{\zeta}^{+}$ (resp. $d_{\zeta}^{-}$ ) to

be the minimum number of positive (resp. negative) double points of
such immersed 2-spheres representing $\zeta$ . The following is a theorem of
Kuga and Suciu which plays a key role in the proof of Theorem 2.2. See
also the remark after Theorem 4 in [16].

Theorem 2.8 (Kuga [22], Suciu [30]).
(1) Let $X$ be a smooth closed oriented 4-manifold homotopy equivalent to

$S^{2}\times S^{2}$ and let $\xi$ and $\eta$ be generators of $H_{2}(X)$ such that $\xi^{2}=\eta^{2}=0$

and $\xi$ . $\eta=1$ . If $\zeta=a\xi+b\eta\in H_{2}(X)$ satisfifies $\zeta^{2}\neq 0$ , then we have

$d_{\zeta}^{\Xi}\geq\min\{(|a|-1)(|b|-1)$ , $[\frac{|ab|+1}{2}]\}$ ,

where $\in is$ the sign of $\zeta^{2}$ and, for $x\in Q$ , $[x]$ denotes the largest
integer not exceeding $x$ .

(2) Let $X$ be a smooth closed oriented 4-manifold homotopy equivalent

to $CP^{2}\#\overline{CP^{2}}$ and let $\xi$ and $\eta$ be generators of $H_{2}(X)$ such that
$\xi^{2}=1$ , $\eta^{2}=-1$ and $\xi$ . $\eta=0$ . If $\zeta=a\xi+b\eta\in H_{2}(X)$ satisfifies
$\zeta^{2}\neq 0$ , then we have

$d_{\zeta}^{\epsilon}\geq\min\{\frac{(|a|+|b|-2)(||a|-|b||-1)}{2}$ , $[\frac{|a^{2}-b^{2}|+3}{4}]\}$ ,

$where\in is$ the sign of $\zeta^{2}$ .

Proof of Theorem 2.2. Changing the orientation of $V$ if necessary,
we may assume $V$ is positive definite $(i.e., \in=1)$ . Let $V’$ be a smooth
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homotopy $S^{2}$ with $\partial V’$ diffeomorphic to $M$ $=\partial V$ and let $h$ : $\partial V’\rightarrow\partial V$

be a homeomorphism. Changing $h$ by an isotopy, we assume $h$ is a
diffeomorphism. Furthermore, we orient $V’$ so that $h$ is an orientation
preserving map. Thus $V’$ is not necessarily positive definite. We have,

for some $r\in Z$ , $h_{*}(\beta(V’))=r\beta(V)$ . We will show $r\equiv\pm 1(mod p)$ .

Then the part (1) of Theorem 2.2 follows from a result of Boyer [3].
Furthermore the part (2) is also proved if we set $V’=V$ . Then the part
(3) follows by the same argument as in [28].

Set $X=V\bigcup_{h}(-V’)$ , which is a smooth closed 1-connected 4-
manifold with $H_{2}(X)\cong Z\oplus Z$ . $X$ has the orientation induced from
those of $V$ and $-V’$ . By [28], there are generators $\theta$ and $\tau$ of $H_{2}(X)$

with the following properties.

(i) $\theta$ is represented by a smoothly immersed 2-sphere with $k_{+}(V)$ pos-
itive double points.

(ii) $\theta$ . $\theta=p$ and $\theta$ . $\tau=r$ .

Remember that $\theta$ comes from the generator of $H_{2}(V)$ and $\tau$ is de-
fined to be the “union” of the generator of $H_{2}(V’, \partial V’)$ and $r$ times the
generator of $H_{2}(V, \partial V)$ .

Set $ t=\tau$ . $\tau$ . Then the intersection matrix of $X$ with respect to $\theta$

and $\tau$ is

$Q=\left(\begin{array}{ll}p & r\\r & t\end{array}\right)$ .

Since $Q$ is unimodular, $\det Q=pt-r^{2}=\pm 1$ . Hence $r^{2}\equiv\mp 1(mod p)$ .

Since $p$ satisfies property $(\#)$ , $r^{2}\equiv 1(mod p)$ . Thus $\det Q=-1$ and
the intersection form of $X$ is indefinite. Hence, there are generators $\xi$

and $\eta$ of $H_{2}(X)$ with respect to which the intersection matrix of $X$ is
one of the following forms;

(A) $\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ or

(B) $\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ .

Case (A). Since $Q$ must be of even type, $p$ is even. Suppose
$\theta=a\xi+b\eta(a, b\in Z)$ . Since $ p=\theta$ . $\theta=2ab$ is positive, we may assume
$a>0$ and $b>0$ , changing the orientations of $\xi$ and $\eta$ if necessary. By
Theorem 2.8, we have

(2.1) $d_{\theta}^{+}\geq\min\{(a-1)(b-1)$ , $[\frac{ab+1}{2}]\}$ .
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On the other hand, by the hypothesis, we have

(2.2) $d_{\theta}^{+}\leq k_{+}(V)\leq\frac{p-6}{4}$ .

Combining (2.2) with (2.1), we have

(2.3) $\frac{ab-3}{2}\geq\min\{(a-1)(b-1)$ , $[\frac{ab+1}{2}]\}$ .

Since $(ab-3)/2<[(ab+1)/2]$ , we have $(ab-3)/2\geq(a-1)(b-1)$ . This
shows that $a\leq 1$ or $b\leq 1$ . Then the same argument as in [28] shows
$r\equiv\pm 1(mod p)$ .

Case (B). Suppose $\theta=a\xi+b\eta(a, b\in Z)$ . We may assume $a\geq 0$

and $b\geq 0$ , changing the orientations of $\xi and/or$ $\eta$ if necessary. Note
that $ p=\theta$ . $\theta=a^{2}-b^{2}>0$ . By Theorem 2.8, we have

(2.4) $d_{\theta}^{+}\geq\min\{\frac{(a+b-2)(a-b-1)}{2}$ , $[\frac{a^{2}-b^{2}+3}{4}]\}$ .

If $p$ is even, we have

(2.5) $d_{\theta}^{+}\leq k_{+}(V)\leq\frac{p-6}{4}$ .

Combining this with (2.4), we obtain $a+b\leq 3$ or $a-b\leq 1$ . Since
$a\geq 0$ , $b\geq 0$ and $a$ is prime to $b$ , we have $a-b=1$ . This contradicts the
fact that $p=a^{2}-b^{2}$ is even.

If $p=(a+b)(a-b)$ is odd not equal to 15 or 21, we have, by the
hypothesis,

(2.6) $d_{\theta}^{+}\leq k_{+}(V)\leq\frac{p-1}{4}$ .

Combining this with (2.4), we obtain

(2.7) $(a+b-4)(a-b-2)\leq 3$ .

Note that $a+b$ and $a-b$ are odd and that $a$ and $b$ are relatively prime.
Then we have $a-b=1$ or $(a, b)=(4,1)$ or $(5, 2)$ . Since $ p=a^{2}-b^{2}\neq$

$15,21$ , we have $a-b=1$ . When $p=15$ , we obtain

(2.2) $2\geq\min\{\frac{(a+b-2)(a-b-1)}{2}$ , $4\}$
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and when $p=21$ ,

(2.9) $4\geq\min\{\frac{(a+b-2)(a-b-1)}{2}$ , $6\}$ .

Both inequalities imply $a-b=1$ . Thus when $p$ is odd we always have
$a-b=1$ . Then the same argument as in [28] shows $r\equiv\pm 1(mod p)$ .

This completes the proof.

Remark. When $p$ is equal to 15 or 21, we cannot omit the special
condition that $k_{\in}(V)\leq 2$ and $k_{\in}(V)\leq 4$ respectively. For example, con-
sider $V=V(T(2,7);-15)$ . Then $k_{-}(V)\leq 3$ (cf. Example 2.7). However
$\partial V=L(15,4)$ admits a self-homeomorphism acting on $H_{1}(L(15,4))$ by
the multiplication $of\pm 4$ . When $p=21$ , consider $V=V(T(2,11);-21)$ .

Then $k_{-}(V)\leq 5$ . However $\partial V=L(21,4)$ bounds the smooth homotopy
$S^{2}$ , $V(T(4,5);-21)$ , which is not homeomorphic to $V$ .

\S 3. Topological invariants for homotopy $S^{2}$ and embedded
surfaces

Let $M$ be a homology $L(p, 1)$ $(p>0)$ ; i.e., $M$ is a closed oriented
3-manifold such that $H_{*}(M)\cong H_{*}(L(p, 1))$ and $1k(\alpha, \alpha)\equiv-\in/p(mod$

$Z)$ for some generator $\alpha$ of $H_{1}(M)(\in=\pm 1)$ . We call such a pair $(M, \alpha)$

a marked homology $L(p, 1)$ . It is well-known that $M$ is obtained by $(\in p)-$

surgery on a knot $K$ in some homology 3-sphere $\Sigma$ so that the core of
the surgery torus in $M$ represents $\alpha$ . Define

(3.1) $\lambda_{0}(M, \alpha)=p\lambda(\Sigma)+(\in/2)\Delta_{K}’’(1)$ ,

where $\lambda(\Sigma)$ is the Casson invariant of the homology 3-sphere $\Sigma([6])$ and
$\Delta_{K}(t)$ is the normalized Alexander polynomial of $K$ . For a fixed marked
homology $L(p, 1)$ , $\Sigma$ and $K$ as above are not uniquely determined. How-
ever, by results of Boyer-Lines [4] and Fukuhara [15], $\lambda_{0}(M, \alpha)$ is an
invariant of the marked homology $L(p, 1)$ , $(M, \alpha)$ . We warn the reader
that $\lambda_{0}$ here is $p$ times the invariant defined in [4] or [15] and that $\lambda_{0}$

here is integer valued. Note also that if $p=1$ , i.e. if $M$ is a homology 3-
sphere, (3.1) with $\lambda_{0}(M, \alpha)$ replaced by $\lambda(M)$ is nothing but the surgery
formula for the usual Casson invariant. Therefore, $\lambda_{0}$ agrees with $\lambda$ for
homology 3-spheres.

Definition. Let $V$ be an oriented homotopy $S^{2}$ with $H_{1}(\partial V)$ fi-
nite cyclic of order $p$ . Note that $(\partial V, \beta(V))$ is a marked homology $L(p, 1)$ .
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Then we define $\overline{\lambda}(V)=\lambda_{0}(\partial V, \beta(V))$ , which we call the Casson invari-

ant of V. $\overline{\lambda}(V)$ is a topological invariant of $V$ .

Remark. If $\partial V$ is a homology 3-sphere, then $\overline{\lambda}(V)=\lambda(\partial V)$ .

In general, however, $\overline{\lambda}(V)$ is not an invariant of $\partial V$ . For example, denot-

ing by $U$ the trivial knot in $S^{3}$ , we have $\overline{\lambda}(V(U;5))=0$ and $\overline{\lambda}(V(T(2,3)$ ;

-5))=-1, though $\partial V(U;5)\cong\partial V(T(2,3);-5)\cong L(5,1)$ $([25])$ .

The first result of this section is the following.

Theorem 3.1. Let $V$ be a smooth homotopy $S^{2}$ with $H_{1}(\partial V)$ fifi-
nite. If the generator of $H_{2}(V)$ can be represented by a smoothly embed-

ded 2-sphere, then $\overline{\lambda}(V)\equiv 0(mod 2)$ .

Remark. If $V$ is diffeomorphic to a handlebody $V(K;p)$ for some

knot $K$ in $S^{3}$ , then $\overline{\lambda}(V)mod 2$ agrees with the Arf invariant of $K$ . In

this case, the above result has already been known ([2]).

Proof of Theorem 3.1. Suppose $S$ is a smoothly embedded 2-sphere
in IntV which represents the generator of $H_{2}(V)$ . We denote by $N(S)$

the tubular neighborhood of $S$ . Then it is easily seen that the 4-manifold

$Y=V-IntN(S)$ is a homology cobordism between $\partial V$ and $L(p, 1)$

$(\cong\partial N(S))$ . Furthermore, if $\alpha\in H_{1}(L(p, 1))$ is the homology class
corresponding to $\beta(V)\in H_{1}(\partial V)$ through the homology cobordism $Y$ ,

then $\alpha$ is represented by the core of the surgery torus of $ M(U;p/1)(\cong$

$L(p, 1))$ , where $U$ is the trivial knot in $S^{3}$ ; hence, $\lambda_{0}(L(p, 1),$ $\alpha)=0$ .

Then Theorem 3.1 follows from the following Proposition 3.2.

Proposition 3.2. The Casson invariant $\lambda_{0}$ modulo 2 for marked
homology $L(p, 1)$ is a homology cobordism invariant; $i.e.$ , if $Y$ is $a$

smooth homology cobordism between the homology $L(p, 1)$ ’s $M_{0}$ and $M_{1}$

and if $\alpha_{0}\in H_{1}(M_{0})$ and $\alpha_{1}\in H_{1}(M_{1})$ correspond through this homology
cobordism $Y$ , then $\lambda_{0}(M_{0}, \alpha_{0})\equiv\lambda_{0}(M_{1}, \alpha_{1})(mod 2)$ .

Remember that, for homology 3-spheres, the Casson invariant mod-
ulo 2 is the Rohlin invariant, which is a homology cobordism invariant.

Proof of Proposition 3.2. We may assume $p\geq 2$ . Let $K_{i}(i=0,1)$

be a smooth knot in $M_{i}$ representing $\alpha_{i}\in H_{1}(M_{i})$ . Let $W$ be the 4-
manifold obtained by attaching two 2-handles $h_{0}$ and $h_{1}$ to $Y$ along $K_{0}$

and $K_{1}$ in such a way that $\partial W$ consists of two disjoint homology 3-
spheres $\Sigma_{0}$ and $\Sigma_{1}$ . Denote by $K_{i}’\subset\Sigma_{i}$ the knot which is the boundary
of the cocore of the 2-handle $h_{i}$ (Figure 1). Then $M_{i}$ is obtained by
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Figure 1

the $(\pm p)$-surgery on the knot $K_{i}’$ . Furthermore the core of this surgery
torus in $M_{i}$ corresponds to $K_{i}$ which represents $\alpha_{i}\in H_{1}(M_{i})$ . Hence
$\lambda_{0}(M_{i}, \alpha_{i})=p\lambda(\Sigma_{i})\pm(1/2)\Delta_{K_{i}’}’’(1)$ . Let $f_{i}\in H_{2}(W, \partial W)(\cong H_{2}(W))$ be

the homology class represented by the cocore of the 2-handle $h_{i}$ . Since
$Y$ is a homology cobordism, there is a 2-chain $c$ in $Y$ with boundary $K_{0}$

and $K_{1}$ . Denote by $e\in H_{2}(W)$ the homology class represented by the
2-cycle which consists of the cores of $h_{i}$ and the 2-chain $c$ . Then $(f_{i}, e)$

are generators of $H_{2}(W, \partial W)\cong H_{2}(W)\cong Z\oplus Z$ . Furthermore we have
$f_{i}\cdot f_{i}=\pm p$ , $f_{0}\cdot f_{1}=0$ , $f_{i}$ . $e=\pm 1and\pm pe=\pm f_{0}\pm f_{1}$ . Hence,

$e$ . $e=\frac{1}{p^{2}}(\pm f_{0}\pm f_{1})\cdot(\pm f_{0}\pm f_{1})$

$=\frac{1}{p^{2}}(\pm p\pm p)$ .

Since this must be an integer, we have

$\{$

(A) $e$ . $e=0$ or

(B) $e$ . $e=\pm 1$ and $p=2$ .

Case (A). The homology class $f_{0}+f_{1}\in H_{2}(W, \partial W)\cong H_{2}(W)$ is
characteristic and we can represent it by a smoothly embedded annulus
$A$ by tubing the cocores of $h_{0}$ and $h_{1}$ .

When $p$ is even, $W$ is spin and its signature is zero; hence, $\lambda(\Sigma_{0})\equiv$

$\lambda(\Sigma_{1})(mod 2)$ . Thus, for the proof of Proposition 3.2, it suffices to
prove

(3.2) $\lambda(\Sigma_{0})+\frac{1}{2}\Delta_{K_{\acute{O}}}’’(1)\equiv\lambda(\Sigma_{1})+\frac{1}{2}\Delta_{K_{1}’}’’(1)$ $(mod 2)$ .
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Note that $\lambda(\Sigma_{i})+(1/2)\Delta_{K_{i}’}’’(1)$ is equal to the Casson invariant of the

homology 3-sphere $\Sigma_{i}’$ obtained by $(+1)$-surgery on $K_{i}’$ in $\Sigma_{i}$ . Let $X$

be the 4-manifold obtained by attaching two 2-handles $h_{0}’$ and $h_{1}’$ to $W$

along $K_{i}’$ with the $(+1)$ -framing. Note that $\partial X$ consists of the homology
3-spheres $\Sigma_{0}’$ and $\Sigma_{1}’$ . Denote by $S’$ the smoothly embedded 2-sphere in
$X$ which consists of the annulus $A$ and the cores of $h_{0}’$ and $h_{1}’$ . Note that
$[S’]\in H_{2}(X)$ is characteristic and that $[S’]^{2}$ is equal to the signature of
$X$ . Then using the same method as in [21], one can deduce $\lambda(\Sigma_{0}’)\equiv$

$\lambda(\Sigma_{1}’)(mod 2)$ . This shows the equality (3.2) holds.

Case (B). The homology classes $f_{0}$ , $f_{1}\in H_{2}(W, \partial W)\cong H_{2}(W)$ are
both characteristic. Let $X_{i}$ be the 4-manifold obtained by attaching a
2-handle $h_{i}’$ to $W$ along $K_{i}’$ with the $(+1)$ -framing. Denote by $S_{i}$ the
smoothly embedded 2-sphere in $X_{i}$ consisting of the cocore of the 2-
handle $h_{i}$ and the core of the 2-handle $h_{i}’$ . Note that $[S_{i}]\in H_{2}(X_{i})$ is

characteristic and that $[S_{i}]^{2}$ is equal to the signature of $X_{i}$ . Thus, by
the same argument as in Case (A), we have

$\lambda(\Sigma_{0}’)\equiv\lambda(\Sigma_{1})$ $(mod 2)$ and

$\lambda(\Sigma_{0})\equiv\lambda(\Sigma_{1}’)$ $(mod 2)$ .

Hence,

(3.3) $\lambda(\Sigma_{0})+\frac{1}{2}\Delta_{K_{\acute{O}}}’’(1)\equiv\lambda(\Sigma_{1})$ $(mod 2)$ and

(3.4) $\lambda(\Sigma_{0})\equiv\lambda(\Sigma_{1})+\frac{1}{2}\Delta_{K_{1}’}^{JJ}(1)$ $(mod 2)$ .

Adding (3.3) and (3.4) shows

$2\lambda(\Sigma_{0})+\frac{1}{2}\Delta_{K_{\acute{O}}}’’(1)\equiv 2\lambda(\Sigma_{1})+\frac{1}{2}\Delta_{K_{1}’}^{JJ}(1)$ $(mod 2)$ .

This completes the proof of Proposition 3.2 and hence Theorem 3.1.

Remark. There is a smooth homotopy $S^{2}$ , $V$ , such that $\overline{\lambda}(V)\equiv 0$

$(mod 2)$ and yet the generator of $H_{2}(V)$ cannot be represented by a
smoothly embedded 2-sphere. For example, consider $V=V(T(3, -11)$ ;

34). A computation shows $\overline{\lambda}(V)=40$ . However the generator of $H_{2}(V)$

cannot be represented by a smoothly embedded 2-sphere (see [28] or
Example 3.5 below).

Remark. Let $(M, \alpha)$ be an oriented marked homology $L(p, 1)$ . If
$p$ is odd, the Rohlin invariant $\mu(M)(\in Z/16Z)$ of $M$ is defined and it
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is a homology cobordism invariant. It can be shown, using the method
similar to that in the proof of Proposition 3.2, that

$8\lambda_{0}(M, \alpha)\equiv\mu(M)-(p-1)p$ . $1k(\alpha, \alpha)$ $(mod 16)$ ,

where $1k(\alpha, \alpha)=\pm 1/p$ .

Next we define the Casson-Gordon invariants for a homotopy $S^{2}$ .

In our case, they are essentially the $p$-signatures of a certain knot in a
homology 3-sphere.

Let $K$ be a smooth knot in an oriented homology 3-sphere $\Sigma$ and
let $L$ be a Seifert matrix of $K$ . For a positive integer $p$ , set $\omega_{p}=$

$\exp(2\pi\sqrt{-1}/p)$ . Then we define $\sigma_{K}(\omega_{p}^{r})(r=1,2, \cdots, p-1)$ to be the

signature of the Hermitian matrix $(1-\omega_{p}^{-r})L+(1-\omega_{p}^{r})L^{T}$ , where $L^{T}$

is the transpose of $L$ . It is well-known that $\sigma_{K}(\omega_{p}^{r})$ are invariants of $K$

and they are called $p$-signatures of $K$ . Note that they are independent
of the orientation of $K$ , while they depend on the orientation of $\Sigma$ in
general. If we change the orientation of $K$ , its Seifert matrix becomes
$L^{T}$ and the signature of the corresponding Hermitian matrix does not

change.

Lemma 3.3. Let $\Delta_{i}(i=0,1)$ be a compact oriented contractible
topological $A$ -manifold and let $K_{i}$ be a tame knot in the homology 3-sphere
$\partial\Delta_{i}$ . Let $V_{i}$ be the oriented $A$ -manifold obtained by attaching a 2-handle
to $\Delta_{i}$ along $K_{i}$ with the $(\pm p)$ -framing $(p\geq 0)$ . If $V_{0}$ is orientation

preservingly homeomorphic to $V_{1}$ , then when $p>0$ ,

$\sigma_{K_{0}}(\omega_{p}^{r})=\sigma_{K_{1}}(\omega_{p}^{r})$ for $1\leq r\leq p-1$

and when $p=0$ ,

$\sigma_{K_{O}}(\omega_{q}^{s})=\sigma_{K_{1}}(\omega_{q}^{s})$ for every $q>0$ and $1\leq s\leq q-1$ .

Proof We prove the case of $p>0$ . When $p=0$ , the proof is

similar. We may assume $V_{i}$ are positive definite. Orient $K_{i}$ arbitrarily
and let $\alpha_{i}\in H_{1}(\partial V_{i})$ be the homology class represented by a meridian
loop of $K_{i}$ . Let $h$ : $V_{0}\rightarrow V_{1}$ be a homeomorphism. By the restriction
$h|\partial V_{0}$ , we identify $\partial V_{0}$ and $\partial V_{1}$ and denote it by $M$ . We may assume
that, by this identification, $\alpha_{0}=\alpha_{1}$ in $H_{1}(M)$ , changing orientations
of $K_{i}$ if necessary. Define the homomorphism $\varphi$ : $H_{1}(M)\rightarrow Z/pZ$ by
$\varphi(\alpha_{i})=1$ ( $1\in Z/pZ$ is the generator). Let $L_{i}$ be a Seifert matrix for
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$K_{i}$ . Then by [7, Lemma 3.1],

(3.5) $\sigma_{r}(M, \varphi)=signV_{i}-$ sign((l $-\omega_{p}^{-r}$ ) $L_{i}+(1-\omega_{p}^{r})L_{i}^{T}$ )

$-\frac{2r(p-r)}{p}$ $(i=0,1)$ ,

where $\sigma_{r}(M, \varphi)$ is the Casson-Gordon invariant of $M$ associated with $\varphi$

and $r$ . Note that in [7] everything is assumed to be smooth. However,
their method is easily extended to the topological category, since the
$G$-signature theorem holds also in the topological case (see [32]). Since
signVb $=signVb$ , we have $\sigma_{K_{0}}(\omega_{p}^{r})=\sigma_{K_{1}}(\omega_{p}^{r})$ by (3.5)

Definition. Let $V$ be an oriented homotopy $S^{2}$ with $H_{1}(\partial V)$ iso-
morphic to $Z/pZ$ $(p\geq 0)$ . Then by [3], $V$ is obtained by attaching a
2-handle to a compact contractible 4-manifold $\Delta$ along some tame knot
$K$ in the homology 3-sphere $\partial\Delta$ with the $(\pm p)$ -framing. If $p>0$ , we
define

$\sigma_{V}(\omega_{p}^{r})=\sigma_{K}(\omega_{p}^{r})$ $(1\leq r\leq p-1)$ ,

which we call the $p$-signatures of $V$ . Similarly if $p=0$ , we define, for
every $q>1$ ,

$\sigma_{V}(\omega_{q}^{s})=\sigma_{K}(\omega_{q}^{s})$ $(1\leq s\leq q-1)$ .

By Lemma 3.3, this is well-defined.

As the equation (3.5) in the proof of Lemma 3.3 shows, the p-

signatures of a homotopy $S^{2}$ are essentially the Casson-Gordon invari-
ants of the boundary 3-manifold.

Next we use these invariants to attack problem (B) in \S 1.

Definition. Let $V$ be a homotopy $S^{2}$ . We define $g(V)$ to be the
minimal genus of topologically locally flatly embedded surfaces repre-
senting the generator of $H_{2}(V)$ .

Remark. Even if $V$ itself is not smooth, IntF admits a smooth
structure (see [14, 8.2]). Thus the generator of $H_{2}(V)$ ( $\cong H_{2}$ (IntV)) is
always represented by a locally flatly embedded surface.

Theorem 3.4. Let $V$ be a homotopy $S^{2}$ with $H_{1}(\partial V)$ fifinite cyclic

of order $p(p>0)$ . Then for every prime power $d$ dividing $p$ , we have

$2g(V)\geq|\sigma_{V}(\omega_{d}^{s})|$ $(s=1,2, \cdots, d-1)$ .

Remark. This lower bound has already been known for the case
that $V$ consists of one 0-handle and one 2-handle and the embedded
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surfaces considered are smooth ([31]). In this case, when $H_{1}(\partial V)$ is
infinite cyclic, the above inequality holds for all prime power $d$ . We do
not know whether Theorem 3.4 also holds for $V$ with $H_{1}(\partial V)$ infinite
cyclic.

Proof of Theorem 3.4. We may assume $V$ is positive definite. Let
$F$ be a topologically locally flatly embedded surface in IntV of genus
$g=g(V)$ representing the generator of $H_{2}(V)$ . There exists a $d$-fold

cyclic branched covering $\pi$ : $\overline{V}\rightarrow V$ branched along $F$ such that the
$d$-fold covering $\pi|\partial\overline{V}$ : $\partial\overline{V}\rightarrow\partial V$ corresponds to the homomorphism

$\varphi$ : $H_{1}(\partial V)\rightarrow Z/dZ$ defined by $\varphi(\beta(V))=1$ . Let $\tau$ : $\overline{V}\rightarrow\overline{V}$ be

the canonical covering translation. Define $E_{s}\subset H_{2}(\overline{V})\otimes C$ to be the

$\omega_{d}^{s}$-eigenspace of $\tau_{*}$ : $H_{2}(\overline{V})\otimes C\rightarrow H_{2}(\overline{V})\otimes C$ (note that $\tau_{*}^{d}=id$ ).

Furthermore define $\in_{s}(\overline{V})$ to be the signature of the restriction to $E_{s}$ of

the intersection pairing on $H_{2}(\overline{V})\otimes C$ . Then by the definition of the
Casson-Gordon invariants [7],

$\sigma_{s}(\partial V, \varphi)=signV-\in_{s}(\overline{V})-\frac{2ps(d-s)}{d^{2}}$ .

Combining this with [7, Lemma 3.1] and the definition of $p$-signatures,
we have

$\in_{s}(\overline{V})=\sigma_{V}(\omega_{d}^{s})$ .

Since $|\in_{s}(\overline{V})|\leq dim_{C}E_{s}$ , it suffices to show that $dim_{C}E_{S}=2g$ .

It is easily verified, using a method similar to that in [19, \S 4], that

$dim_{C}H_{2}(\overline{V})\otimes C=2g(d-1)+1$

(note that $d$ is a prime power by the assumption). It is well-known that
$E_{0}=\pi^{*}(H_{2}(V)\otimes C)$ . Hence,

$\sum_{s=1}^{d-1}dim_{C}E_{s}=2g(d-1)$ .

Using this equation and the linear algebra together with the assumption
that $d$ is a prime power, we easily deduce $dim_{C}E_{s}=2g(s=1,2,$ $\cdots$ , $d-$

$1)$ . This completes the proof.

Example 3.5. Consider $V=V(T(a, b);p)$ , where $|a|$ , $|b|\geq 2$ and
$p\neq 0,$ $\pm 1$ . Then the generator of $H_{2}(V)$ cannot be represented by a
topologically locally flatly embedded 2-sphere since the $p$-signatures of
the torus knot $T(a, b)$ do not vanish. Remember that if $p$ is even, the
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$p$-signature $\sigma_{T(a,b)}(-1)$ is the usual signature of the torus knot $T(a, b)$ .

Thus the lower bound for the 4-ball genera of torus knots given in [29]
is also valid for $g(V(T(a, b);p))$ if $p$ is even.

Definition. For a homotopy $S^{2}$ , $V$ , we denote by $ KS(V)(\in$

$Z/2Z)$ the Kirby-Siebenmann obstruction to extending the product
smooth structure on $\partial V\times R$ across $V\times R$ .

If $\partial V$ is a homology 3-sphere, Theorem 3.4 gives no restrictions on
$g(V)$ . In that case, we have the following.

Proposition 3.6. Let $V$ be a homotopy $S^{2}$ with $\partial V$ a homology
3-sphere. Then $g(V)=0$ if $\mu(\partial V)=KS(V)$ and $g(V)=1$ if $\mu(\partial V)\neq$

$KS(V)$ , where $\mu(\partial V)$ is the Rohlin invariant of $\partial V$ .

Proof. Let $P=CP^{2}-IntD^{4}$ and $Q=Ch-IntD^{4}$ , where $Ch$

is the Chern manifold ([12]). Furthermore let $\Delta$ be the contractible 4-
manifold bounded by $\partial V([12])$ . Then by [3] $V$ is homeomorphic to $ P\#\Delta$

if $\mu(\partial V)=KS(V)$ and $ Q\#\Delta$ if $\mu(\partial V)\neq KS(V)$ , where $\#$ denotes the

boundary connected sum. Since $P$ is homeomorphic to a $D^{2}-$bundle over
$S^{2}$ , the generator of $H_{2}(P\#\Delta)$ is represented by a locally flatly embedded
2-sphere. Furthermore, $Ch$ is homeomorphic to $V(T(2,3);1)\cup\Delta’$ , where
$\Delta’$ is the contractible 4-manifold bounded by $M(T(2,3);1/1)$ . Thus the
generator of $H_{2}(Q\#\Delta)$ is represented by a locally flatly embedded torus.
Hence, $g(V)=0$ if $\mu(\partial V)=KS(V)$ and $g(V)\leq 1$ if $\mu(\partial V)\neq KS(V)$ .

Next we show that $g(V)\neq 0$ if $\mu(\partial V)\neq KS(V)$ . Suppose $g(V)=0$

and let $S$ be a locally flatly embedded 2-sphere in IntV representing
the generator of $H_{2}(V)$ . By [13], $S$ has a neighborhood $N(\subset IntV)$

which is a 2-disk bundle over $S$ . Note that $\partial N$ is homeomorphic to
$S^{3}$ . Set $\Delta’’=(V-IntN)\bigcup_{\partial N}D^{4}$ . Then $\mu(\partial V)$ is equal to the Kirby-

Siebenmann obstruction of $\Delta’’$ , which in turn is equal to $KS(V)$ . This
contradicts the assumption that $\mu(\partial V)\neq KS(V)$ . This completes the
proof.

In Theorem 3.4, only the $p$-signatures of the form $\sigma_{V}(\omega_{d}^{s})$ with $d$

a prime power are handled. For the general $p$-signatures, we have the
following.

Proposition 3.7. Let $V$ be a smooth homotopy $S^{2}$ with $H_{1}(\partial V)$

fifinite cyclic of order $p$ . For an integer $d(>0)$ dividing $p$ , suppose
$H_{1}(\overline{\partial V};Q)=0$ , where $\overline{\partial V}\rightarrow\partial V$ is the $d$ -fold cyclic covering associated
with the homomorphism $\varphi$ : $H_{1}(\partial V)\rightarrow Z/dZ$ defifined by $\varphi(\beta(V))=1$ . If
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the generator of $H_{2}(V)$ is represented by a smoothly embedded 2-sphere,
then

$\sigma_{V}(\omega_{d}^{s})=0$ for $1\leq s\leq d-1$ .

Remark. Suppose $V$ is obtained (topologically) by attaching a 2-
handle to a contractible 4-manifold $\Delta$ along a knot $K$ in the homology

3-sphere $\partial\Delta$ . Then $H_{1}(\overline{\partial V};Q)=0$ if and only if $\Delta_{K}(\omega_{d}^{s})\neq 0$ for
$1\leq s\leq d-1$ , where $\Delta_{K}(t)$ is the Alexander polynomial of $K$ . In

particular, if $d$ is a prime power, we always have $H_{1}(\overline{\partial V};Q)=0$ .

Proof of Proposition 3.7. Let $S$ be a smoothly embedded 2-sphere
in Inty representing the generator of $H_{2}(V)$ and let $Y=V-IntN(S)$ ,

where $N(S)$ is the tubular neighborhood of $S$ . Then $Y$ is a smooth
homology cobordism between $\partial V$ and $L(p, 1)$ . Let $\varphi’$ : $ H_{1}(L(p, 1))\rightarrow$

$Z/dZ$ be the homomorphism defined by composing the isomorphism
$H_{1}(L(p, 1))$ $\rightarrow$ $H_{1}(\partial V)$ induced by $Y$ and the homomorphism
$\varphi$ : $H_{1}(\partial V)\rightarrow Z/dZ$ . Then by Matic [24] and Ruberman[27],

$\sigma_{1}(\partial V, \varphi s)=\sigma_{1}(L(p, 1),$ $\varphi’ s)$ $(1\leq s\leq d-1)$ .

Since $\sigma_{s}(\partial V, \varphi)=\sigma_{1}(\partial V, \varphi s)$ and $\sigma_{s}(L(p, 1),$ $\varphi’)=\sigma_{1}(L(p, 1)$ , $\varphi^{s})\prime$ , we
have $\sigma_{s}(\partial V, \varphi)=\sigma_{s}(L(p, 1),$ $\varphi’)$ . Combining this with [7, Lemma 3.1],
we obtain

$\sigma_{V}(\omega_{d}^{s})=0$ $(1\leq s\leq d-1)$

(see also the proof of Theorem 3.1 in this section). This completes the
proof.

In [4], Boyer-Lines extended the Casson invariant for homology 3-
spheres to homology lens spaces. Furthermore, they gave a relation
of this invariant to the Casson-Gordon invariants. Using this result,
Theorem 3.1, and Proposition 3.7, we have the following.

Proposition 3.8. Let $V$ be $an\in- defifinite$ $(\in=\pm 1)$ smooth homo-

topy $S^{2}$ satisfying the condition on $H_{1}(\partial V;Q)$ as in Proposition 3.7 for
$d=p$ . If the generator of $H_{2}(V)$ is represented by a smoothly embedded
2-sphere, then

$12p\lambda(\partial V)\equiv-\in\frac{(p-1)(p-2)}{2}$ $(mod 24)$ ,

where $\lambda(\partial V)$ is the Boyer-Lines ’ Casson invariant for the homology lens
space $\partial V$ .
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Remark. $12p\lambda(\partial V)$ is always an integer ([4, Theorem 2.8]).

Proof of Proposition 3.8. Suppose $V$ is obtained (topologically) by
attaching a 2-handle to a contractible 4-manifold $\Delta$ along a knot $K$ in $\partial\Delta$

with $(\in p)$ -framing. Let $\alpha\in H_{1}(\partial V)$ be the homology class represented
by a meridian of $K$ . Then by [4, Proposition 2.23],

$p\lambda(\partial V)=\lambda_{0}(\partial V, \alpha)+\frac{1}{8}\sigma(K,p)+\frac{1}{8}\tau(\partial V)$ ,

where

$\sigma(K, p)=\sum_{r=1}^{p-1}\sigma_{K}(\omega_{p}^{r})$

and

$\tau(\partial V)=\sum_{r=1}^{p-1}\sigma_{r}(\partial V, \varphi)$ .

(Here, $\varphi$ : $H_{1}(\partial V)\rightarrow Z/pZ$ is the homomorphism defined by $\varphi(\beta(V))=$

$1.)$ By Theorem 3.1, we have $\lambda_{0}(\partial V, \alpha)\equiv 0(mod 2)$ and by Proposition
3.7, $\sigma(K,p)=0$ . Furthermore, by the proof of Proposition 3.7, we have
$\sigma_{r}(\partial V, \varphi)=\sigma_{r}(L(p, \in),$ $\varphi’)$ ; hence,

$\tau(\partial V)=\tau(L(p, \in))=-\in\frac{(p-1)(p-2)}{3}$ .

Thus,

$8p\lambda(\partial V)\equiv-\in\frac{(p-1)(p-2)}{3}$ $(mod 16)$ .

Multiplying 3/2 gives the result.

\S 4. Knots in the boundary of a homotopy $S^{2}$

Definition. Let $V$ be a homotopy $S^{2}$ and let $K$ be a tame knot
in $\partial V$ representing $\beta(V)\in H_{1}(\partial V)$ . We say $K$ is a boundary knot if
there is a topologically embedded proper flat 2-disk $D$ in $V$ such that
$\partial D=K$ and $D$ represents the generator of $H_{2}(V, \partial V)$ . Here, a properly
embedded 2-disk $D$ is flat if it is the core of an embedded open 2-handle
$D\times R^{2}$ in $V$ with $(D\times R^{2})\cap\partial V=\partial D\times R^{2}$ .

Definition. Let $K$ be a tame knot in a homology $L(p, 1)$ , $M$ , with
$1k([K], [K])=\pm 1/p(p>0,p\neq 2)$ . Let $\Sigma$ be the homology 3-sphere
obtained by a surgery on $K$ such that the coefficient of the corresponding
surgery by which $M$ is obtained from $\Sigma$ is an integer. Note that $\Sigma$
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depends only on $M$ and $K$ if $p\geq 3$ . Then we denote by $\mu(K)(\in Z/2Z)$

the Rohlin invariant $\mu(\Sigma)$ of $\Sigma$ . Note that, when $p=1$ , $\mu(K)$ is still
well-defined, though $\Sigma$ is not. When $p=2$ , $\mu(K)$ cannot be defined.

Our first result of this section is the following.

Proposition 4.1. Let $V$ be a homotopy $S^{2}$ with $H_{1}(\partial V)$ fifinite
cyclic of order $p$ . Suppose $K$ is a tame knot in $\partial V$ representing $\beta(V)\in$

$H_{1}(\partial V)$ . Then we have the following.
(1) When $p$ is even, $K$ is always a boundary knot.
(2) When $p$ is odd, $K$ is a boundary knot if and only if $\mu(K)=KS(V)$ .

Proof. First, we construct an embedded flat 2-disk bounded by $K$ .

Set $M=\partial V$ and let $X$ be the 4-manifold obtained by attaching a 2-
handle $h_{0}$ to $M\times[0,1]$ along $K\times\{1\}$ in such a way that $\partial X$ consists
of $M$ and a homology 3-sphere $\Sigma$ . By [12], there exists a contractible
4-manifold $\Delta$ with $\partial\Delta=\Sigma$ . Denote by $V’$ the 4-manifold $ X\cup\Sigma\Delta$ . Note
that $V’$ is a homotopy $S^{2}$ with $\partial V’=M$ . By [3] and the hypothesis on
$\mu(K)=\mu(\Sigma)$ , we see that there is a homeomorphism $h$ : $V\rightarrow V’$ such

that $h|\partial V=id_{M}$ . Since $h(K)$ bounds in $V’$ an embedded flat 2-disk

(the core of the 2-handle $h_{0}$ ), $K$ also bounds one in $V$ .

Conversely, suppose $p$ is odd and $K$ bounds in $V$ a topologically
embedded proper flat 2-disk $D$ in $V$ which represents the generator
of $H_{2}(V, \partial V)$ . Then there exists a closed neighborhood $N$ of $D$ in $V$

homeomorphic to $D^{2}\times D^{2}$ . Denote by $B$ the closure of $V-N$ . Note
that $\partial B$ is a homology 3-sphere and that $\mu(K)=\mu(\partial B)$ . Then it
is easily shown that $B$ is a homology 4-ball. Thus $V$ is obtained by
attaching a 2-handle $N$ to $B$ . By [3], $KS(V)$ is equal to $\mu(\partial B)=\mu(K)$ .

This completes the proof.

Remark. There exists a knot in the boundary of a homotopy $S^{2}$ ,
$V$ , which is not a boundary knot but bounds in $V$ an embedded flat
2-disk. For example, consider the knot $K$ in $\partial V(U;p)$ as in Figure 2,
where $U$ is the trivial knot and $p$ is odd. Then it is easily seen $\mu(K)=1$ .

(To see this, observe that $\mu(K)$ is equal to the Rohlin invariant of the
homology 3-sphere obtained by the surgery along the framed link in $S^{3}$ as
in Figure 3. Then we can apply a formula of Kaplan [20, Theorem 4.2].)
Since the Kirby-Siebenmann obstruction of $V(U;p)(=V)$ vanishes, $K$

is not a boundary knot by Proposition 4.1. However, $K$ bounds in $V$ a
smoothly embedded 2-disk. This can be constructed as follows. There
is a smoothly immersed 2-disk $D’$ in $D^{4}$ with one self-intersection such
that $\partial D’=K$ . $D’$ intersects in $V$ the smoothly embedded 2-sphere
$S$ (the union of the core of the 2-handle and the cone over $U$ in $D^{4}$ )
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$U$

$KC3V(U_{i}p)$

Figure 2

$p$

Figure 3

transversely in one point. Piping $S$ and $D’$ along an arc on $D’$ which
connects the self-intersection point of $D’$ with the intersection point of
$D’$ and $S$ as in Figure 4, we obtain the desired embedded 2-disk $D$ . Of
course, $D$ does not represent the generator of $H_{2}(V, \partial V)$ .

Next we give an example of knots in the boundary of a smooth homo-
topy $S^{2}$ which are boundary knots but never bound smoothly embedded
2-disks.

Definition. Let $K$ be a smooth knot in the boundary of a smooth
homotopy $S^{2}$ , $V$ . Then we denote by $k(K)$ the minimal number of
double points of smooth properly immersed self-transverse 2-disks in $V$

bounded by $K$ . Following [17], we call $k(K)$ the kinkiness of $K$ .
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$v$

$\downarrow$

$v$

Figure 4

Let $n$ and $l$ be odd integers with $n$ , $l$ $\geq 3$ and set $p=l(nl+2)$

and $q=nl$ $+1$ . Note that $p$ and $q$ are relatively prime integers.
Set $V=V(T(p, q);-pq)$ . Note that by [25], $\partial V$ is diffeomorphic to
$L(p, q)\# L(q,p)$ . Set $r=q^{2}-q-1$ and let $m_{1}$ , $m_{2}$ , $\cdots$ , $m_{r}$ be the
$r$ oriented knots in $\partial V$ represented by the meridians of $T(p, q)$ (see
Figure 5). Here we make the orientation convention $[m_{i}]=-\beta(V)$

in $H_{1}(\partial V)$ . Let $K’$ be any knot in $\partial V$ obtained by performing the
oriented band connected sum operations to $m_{1}\cup m_{2}\cup\cdots\cup m_{r}$ be-
tween distinct components $(r-1)$ times. Note that $[K’]=-r\beta(V)$

in $H_{1}(\partial V)$ . Since $q^{2}\equiv 1$ $(mod p)$ , there is a diffeomorphism $h’$ :
$L(p, q)\rightarrow L(p, q)$ which acts on $H_{1}(L(p, q))$ by the multiplication of
$q$ . Set $h=h’\#id$ : $L(p, q)\# L(q,p)\rightarrow L(p, q)\# L(q,p)$ . It is easily
seen that $h$ acts on $H_{1}(\partial V)$ by the multiplication of $-r$ (note that
$H_{1}(\partial V)\cong H_{1}(L(p, q)\# L(q,p))\cong Z/pZ\oplus Z/qZ\cong Z/pqZ)$ . Note that
$r^{2}\equiv 1(mod pq)$ . Then we denote by $K$ the smooth knot $h(K’)$ in $\partial V$ .
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Note that $K$ represents $\beta(V)\in H_{1}(\partial V)$ .

$-pq$

$m_{1}$

$m_{2}$

$.\cdot$.
$mr$

Figure 5

Proposition 4.2. The knot $K$ bounds in $V$ a topologically embed-
ded proper flat 2-disk. However,

$k(K)\geq[\frac{n(nl-1)+2}{4}]$ .

In particular, $K$ cannot bound in $V$ any smoothly embedded 2-disks.

Proof. Since $pq$ is even, $K$ is a boundary knot by Proposition 4.1.
Now set $X=V_{0}\bigcup_{h}(-V_{1})(V_{0}=V_{1}=V, h : \partial V_{1}\rightarrow\partial V_{0})$ , which is

a smooth closed 1-connected 4-manifold with $H_{2}(X)\cong Z\oplus Z$ . Let $D$

be a smoothly immersed self-transverse 2-disk in $V_{0}(\cong V)$ bounded by
$K$ with $k(K)$ double points. Let $S_{i}$ be the topologically embedded (not
locally flat) 2-sphere in $V_{i}$ which consists of the core of the 2-handle of
$V_{i}=V(T(p, q);-pq)$ and the cone over $T(p, q)$ in $D^{4}$ . Furthermore let $S_{2}$

be the smoothly immersed 2-sphere in $X$ which consists of the $r$ cocores
of the 2-handle in $V_{1}$ corresponding to $m_{1}\cup m_{2}\cup\cdots\cup m_{r}$ , the $(r-1)$

bands used to make $K’$ , and the immersed 2-disk $D$ . Note that $S_{2}$ is a
smoothly immersed 2-sphere with $k(K)$ double points. Furthermore let
$\tau\in H_{2}(X)$ be the homology class represented by the union of the cocore
of the 2-handle of $V_{0}$ , the $r$ cocores of the 2-handle of $V_{1}$ and a 2-chain
in $\partial V_{0}=h(\partial V_{1})$ connecting their boundaries (note that $h_{*}(r\beta(V_{1}))=$

$-\beta(V_{0}))$ . Then by [28], $\theta=[S_{1}]$ and $\tau$ generate $H_{2}(X)$ . Furthermore
$[S_{2}]=\tau+j[S_{0}]$ for some integer $j$ .
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It is easily seen that the intersection matrix of $X$ with respect to
the basis $\theta$ and $\tau$ is

$Q=\left(\begin{array}{lllll}-l(nl+ & 1)(nl+ & 2) & n^{2}l^{2}+nl- & 1\\n^{2}l^{2}+nl- & 1 & & -n(nl-1) & \end{array}\right)$ .

( $\tau$ . $\tau=-n(nl-1)$ is the consequence of the fact that $\det Q=\pm 1$ and
that $|l(nl+1)(nl+2)|>2.)$ Furthermore $Q$ is isomorphic to the form

$\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ .

Thus there are generators $\xi$ and $\eta$ of $H_{2}(X)$ with $\xi$ . $\xi=\eta\cdot\eta=0$ and
$\xi$ . $\eta=1$ . Furthermore, we may assume

$\theta=\frac{l(nl+1)}{2}\xi-(nl+2)\eta$ and

$\tau=\frac{1-nl}{2}\xi+n\eta$ .

Then we have

$[S_{0}]=\frac{l(nl+1)}{2}\xi+(nl+2)\eta$ .

Thus

$[S_{2}]=\tau+j[S_{0}]$

$=\{\frac{1-nl}{2}+\frac{l(nl+1)}{2}j\}\xi+\{n+(nl+2)j\}\eta$ .

Set

$\alpha=\frac{1-nl}{2}+\frac{l(nl+1)}{2}j$ and

$\beta=n+(nl+2)j$ .

By Theorem 2.8, the number of double points of $S_{2}(=k(K))$ is greater
than or equal to

$\min\{(|\alpha|-1)(|\beta|-1)$ , $[\frac{|\alpha\beta|+1}{2}]\}$ .

Since both $|\alpha|$ and $|\beta|$ attains its minimum when $j=0$ , we have

$k(K)\geq\min\{(\frac{nl-1}{2}-1)(n-1)$ , $[\frac{n(nl-1)+2}{4}]\}$

$=[\frac{n(nl-1)+2}{4}]$ .
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This completes the proof.

Remark. The smooth knot $K’=h^{-1}(K)$ does bound in $V$ a
smoothly embedded 2-disk. Thus $h$ : $\partial V\rightarrow\partial V$ does not extend to
a self-diffeomorphism of $V$ . In fact, it is easily seen that $h$ does not
extend even to a self-homeomorphism of $V$ .

We end this section by posing a problem.

Problem. Is there a smooth homotopy $S^{2}$ , $V$ , such that some
$l$ $\in\pi_{1}(\partial V)$ cannot be represented by any knot which is the boundary of
a smoothly embedded 2-disk in $V$?

If $V$ admits a handlebody decomposition without 3-handles, every
$l$ $\in\pi_{1}(\partial V)$ is so represented ([11]). Thus if the problem above is af-

firmative, the homotopy $S^{2}$ needs a 3-handle in any of its handlebody
decomposition. Note also that if $l$ represents $\pm\beta(V)$ in $H_{1}(\partial V)$ , then,
by Proposition 4.1, $l$ can be represented by a knot which bounds a topo-
logically embedded flat 2-disk in $V$ .

\S 5. Exotic open homotopy $S^{2}$

For an integer $p$ , let $D(p)$ denote the $D^{2}$ bundle over $S^{2}$ with euler

number $p$ . $D(p)$ is a (compact) homotopy $S^{2}$ . Our result of this section
is the following.

Proposition 5.1. Let $l$ and $m$ be relatively prime odd integers
greater than 2. Then the open $A$ -manifold IntD $(41m)$ admits at least 2
smooth structures other than the canonical one.

To prove Proposition 5.1, we need the following.

Lemma 5.2. Let $a$ and $b$ be relatively prime integers and set $\zeta=$

$a\xi+b\eta\in H_{2}(S^{2}\times S^{2})$ , where $\xi=\{*\}\times[S^{2}]$ and $\eta=[S^{2}]\times\{*\}$

are the standard generators. Then $\zeta$ can be represented by a smoothly
immersed 2-sphere in $S^{2}\times S^{2}$ with simply connected complement and
with $(|a|-1)(|b|-1)$ double points.

Proof. We may assume $a\geq 0$ and $b\geq 0$ . If $(a, b)=(1,0)$ or $(0, 1)$ ,

the assertion is trivial. Hence, we may assume $a\geq 1$ and $b\geq 1$ . We
construct a desired immersed 2-sphere by the “standard” method. Take

distinct $(a+1)$ points $x_{0}$ , $x_{1}$ , $\cdots$ , $x_{a}\in S^{2}$ and distinct $(b+1)$ points
$y_{0}$ , $y_{1}$ , $\cdots$ , $y_{b}\in S^{2}$ . Set $R=(\bigcup_{i=1}^{a}\{x_{i}\}\times S^{2})\cup(\bigcup_{j=1}^{b}S^{2}\times\{y_{j}\})$ and
$X=S^{2}\times S^{2}-R$ . Here, we orient $\{x_{i}\}\times S^{2}$ and $S^{2}\times\{y_{j}\}$ so that $R$
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represents $\zeta$ . Note that $X=(S^{2}-\{x_{1}, \cdots, x_{a}\})\times(S^{2}-\{y_{1}, \cdots, y_{b}\})$ .

Set $z=(x_{0}, y_{0})\in X$ and define $\alpha_{1}$ , $\alpha_{2}$ , $\cdots$ , $\alpha_{a}$ , $\beta_{1}$ , $\beta_{2}$ , $\cdots$ , $\beta_{b}\in\pi_{1}(X, z)$

as follows. Connect $x_{0}$ and a point near to $x_{i}(i=1,2, \cdots, a)$ by an

arc in $(S^{2}-\{x_{1}, \cdots, x_{a}\})\times\{y_{0}\}$ as in Figure 6. Then $\alpha_{i}$ is represented
by a loop in $(S^{2}-\{x_{1}, \cdots x_{a}\})\times\{y_{0}\}(\subset X)$ which starts at $x_{0}$ , goes
along the arc toward $x_{i}$ , goes around $x_{i}$ once counterclockwise, and
goes back to $x_{0}$ along the same arc. $\beta_{i}$ can be defined using an arc in
$\{x_{0}\}\times(S^{2}-\{y_{1}, \cdots, y_{b}\})$ in a similar way. Note that $\alpha_{1}\alpha_{2}\cdots\alpha_{a}=$

$\beta_{1}\beta_{2}\cdots\beta_{b}=1$ and that $\pi_{1}(X, z)\cong<\alpha_{1}$ , $\cdots$ , $\alpha_{a}|\alpha_{1}\cdots\alpha_{a}=1>\times<$

$\beta_{1}$ , $\cdots$ , $\beta_{b}|\beta_{1}\cdots\beta_{b}=1>$ .

$S^{2}x\{y_{0}\}$

Figure 6

Next we do the “smoothing operations” to $R$ at $(x_{1}, y_{1})$ , $(x_{1}, y_{2})$ , $\cdots$ ,
$(x_{1}, y_{b})$ , $(x_{2}, y_{1})$ , $(x_{3}, y_{1})$ , $\cdots$ , $(x_{a}, y_{1})$ as follows. Set $(D^{4}, B)=(D^{2}\times$

$D^{2}$ , $D^{2}\times\{0\}\cup\{0\}\times D^{2})$ $(\partial(D^{4}, B)=$ ( $S^{3}$ , Hopf link) $)$ . Furthermore

let $A’$ be the annulus embedded in $S^{3}$ as in Figure 7 and denote by $A$ the
properly embedded annulus in $D^{4}$ which is obtained by pushing $IntA’$

into $IntD^{4}$ . Note that $\partial(D^{4}, A)\cong\partial(D^{4}, B)$ and that $\pi_{1}(D^{4}-A)\cong$

Z. The smoothing operation at a double point $q$ of $R$ means that we
replace $(D^{4}(q), D^{4}(q)\cap R)\cong(D^{4}, B)$ by $(D^{4}, A)$ or $-(D^{4}, A)$ , where
$D^{4}(q)$ is a sufficiently small 4-ball in $S^{2}\times S^{2}$ centered at $q$ . Here we
choose $(D^{4}, A)$ or $-(D^{4}, A)$ so that the orientation is consistent with
that of $R$ . Denote by $S$ the immersed oriented surface which results
from the $(a+b-1)$ smoothing operations. It is easily seen that $S$ is
an immersed 2-sphere representing $\zeta$ with $(a-1)(b-1)$ double points.



On 4-Manifolds Homotopy Equivalent to the 2-Sphere 327

Furthermore, by van Kampen’s Theorem we see that $\pi_{1}(S^{2}\times S^{2}-S, z)$

is isomorphic to $\pi_{1}(X, z)$ with additional relations $\alpha_{i}=\beta_{j}^{-1}$ $((i,j)=$

$(1, 1)$ , $(1, 2)$ , $\cdots$ , $(1, b)$ , $(2, 1)$ , $(3, 1)$ , $\cdots$ , $(a, 1))$ . Thus $\pi_{1}(S^{2}\times S^{2}-S, z)$

is generated by $\alpha_{1}$ and we have the relations $\alpha_{1}^{a}=\alpha_{1}^{b}=1$ . Since $a$

and $b$ are relatively prime, we see that the complement of $S$ is simply
connected. This completes the proof.

A
$\iota$

Figure 7

Proof of Proposition 5.1. Set

$\zeta_{1}=\xi+2lm\eta$

$\zeta_{2}=2\xi+lm\eta$

$\zeta_{3}=2l\xi+m\eta$ .

By Lemma 5.2, $\zeta_{i}$ is represented by a smoothly immersed 2-sphere $S_{i}$ in
$S^{2}\times S^{2}$ with simply connected complement with the number of double
points equal to

$\{$

0 $(i=1)$

$lm$ $-l$ $(i=2)$

$(2l -1)(m-1)$ $(i=3)$ .

Let $B_{?}^{4}$. be a 4-ball in $S^{2}\times S^{2}$ which avoids double points of $S_{i}$ such that
$(B_{i}^{4}, B_{i}^{4}\cap S_{i})$ is the standard disk pair. Then by [5], $\zeta_{i}$ is represented

by a Casson handle which has $S_{i}-IntB_{i}^{4}$ as its first stage core; i.e., $\zeta_{i}$

is represented by $V_{i}=B_{i}^{4}\cup CH_{i}$ , where $CH_{i}$ is a Casson handle which

is attached to $B_{i}^{4}$ along the trivial knot. Since $CH_{i}$ is homeomorphic to
$D^{2}\times R^{2}$ by [12], $V_{\dot{x}}’=IntV_{i}$ is homeomorphic to IntD $(4Zra)$ (note that
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$\zeta_{i}^{2}=4lm)$ . Note that $V_{i}’$ has the smooth structure as an open set of
$S^{2}\times S^{2}$ and that $V_{1}’$ is diffeomorphic to lntD $(41m)$ .

Next we show $V_{i}’$ are mutually non-diffeomorphic. Let $k(V_{i}’)$ be

the minimum number of double points of smoothly immersed 2-spheres

representing the generator of $H_{2}(V_{i}’)$ . Note that $k(V_{i}’)$ is an invariant of
the smooth manifold $V_{i}’$ . By the construction of $V_{i}’$ , we have

$k(V_{1}’)=0$ and

$k(V_{2}’)\leq lm-1$ .

On the other hand by Theorem 2.8,

$k(V_{2}’)\geq lm-1$ and

$k(V_{3}’)\geq\min\{(2l-1)(m-1)$ , $[\frac{2lm+1}{2}]\}$

$=lm$ ,

since $V_{i}’$ are submanifolds of $S^{2}\times S^{2}$ representing $\zeta_{i}$ . Hence, $k(V_{1}’)$ , $k(V_{2}’)$

and $k(V_{3}’)$ are all distinct. Thus $V_{i}’$ are not diffeomorphic to each other.
This completes the proof.

In [22], Kuga showed that $D^{2}\times R^{2}$ has infinitely many smooth
structures. Our method above is similar to Kuga’s.

We conjecture that for a given positive integer $N$ , there exists an
open homotopy $S^{2}$ admitting at least $N$ smooth structures. This con-
jecture is true if, in Theorem 2.8 in \S 2, $d_{\zeta}^{\in}=(|a|-1)(|b|-1)$ .

Remark. Akbulut [1] has recently found a compact homotopy $S^{2}$

with at least two smooth structures. The generator of the second ho-
mology group of this homotopy $S^{2}$ can be represented by an embedded
2-sphere which is smooth with respect to one of the smooth structures,
while it can never be smooth with respect to the other smooth struc-
ture. Thus the interior of this homotopy $S^{2}$ also has at least two smooth
structures. We note that this open homotopy $S^{2}$ is not homeomorphic
to the interior of a $D^{2}$ bundle over $S^{2}$ .
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On the Deformations of the Geometric Structures
on the Seifert $4$-Manifolds

Masaaki Ue

We call a closed orientable 4-manifold $S$ a Seifert 4-manifold if $S$

has a structure of a fibered orbifold $\pi:S\rightarrow B$ over some 2-orbifold $B$

with general fiber a 2-torus $T^{2}$ where the total space $S$ is a nonsin-
gular manifold. In [10], [11] we discussed the relations between them
and certain eight geometries in dimension 4 in the sense of Thurston
and also gave their topological classification. Here by a geometric struc-
ture of $S$ we mean the structure of the form $\Gamma\backslash X$ diffeomorphic to $S$

where $X$ is a 1-connected complete Riemannian 4-manifold and $\Gamma$ is

a discrete subgroup of the group $Isom^{+}X$ of all orientation-preserving
isomorphisms of $X$ acting freely on $X$ . The purpose of this paper is to
determine the Teichm\"uller spaces for their geometric structures in the
cases when the base orbifolds are either hyperbolic or euclidean ( $1$ and

\S 2). Our results are parallel to [5], [6] in which the Teichm\"uller spaces
for the geometric structures on the Seifert 3-manifolds were discussed.
But a little more arguments are needed for our cases since we should
take account of the nontrivial monodromies. In the meanwhile some
of the Seifert 4-manifolds have complex structures compatible to their
geometric structures ([12]). In these cases we will also give the relations
between the Teichm\"uller spaces and the deformations of the associated
complex structures via the Kodaira Spencer maps. In all cases we treat
here these maps are surjective but not injective in general (and hence
the Teichm\"uller spaces are not effectively parametrized as families of
complex structures \S 3). Finally in \S 4 we also give a remark on the
moduli spaces for the geometric structures when the base orbifolds are
hyperbolic and show that they are defined as Hausdorff spaces whereas,
as is well known, the moduli spaces for the complex structures can not
be defined as Hausdorff spaces in general. For simplicity in this paper
we only consider the Seifert 4-manifolds over the closed orientable base
orbifolds. All the subjects will be considered in the smooth category.

Received July 2, 1990.
Revised June 22, 1991.
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We will use the same notations for the geometries as in [12], [13], [10]
and [11]. The 2-dimensional hyperbolic space will be denoted by $H^{2}$

and also by $H$ (as the complex space). Furthermore $C^{*}$ and $R^{+}$ will
be the set of nonzero complex numbers and the set of positive numbers
respectively.

\S 1. Definitions of Teichm\"uller spaces and the cases when the
bases are hyperbolic

Let $S$ be a closed orientable Seifert 4-manifold over a 2-orbifold $B$

and $\pi:S\rightarrow B$ be its fiber map with general fiber $T^{2}$ . In [10] and [11]
we proved that $S$ has a geometric structure if $B$ is either euclidean,

spherical or bad and if $B$ is hyperbolic $S$ is geometric if and only if $S$

has a complex structure (and is an elliptic surface). Let $G=Isom^{0}X$

be the identity component of $Isom^{+}X$ . For simplicity we only consider
the geometric Seifert 4-manifolds over either hyperbolic or euclidean
orientable base orbifolds of the form $\Gamma\backslash X$ with $\Gamma\subset G$ and the $(G, X)$

structures on them. We note that any geometric Seifert 4-manifold over
the hyperbolic 2-orbifold (we have assumed that the base orbifold is

orientable) is of the form $\Gamma\backslash X$ where $X$ is either $H^{2}\times E^{2}$ or $\overline{SL}_{2}\times E$

and $\Gamma\subset G=Isom^{0}X([11])$ . Here $\overline{SL}_{2}$ is the universal covering of
$SL_{2}R$ .

Definition 1. Let $\mathcal{R}(\Gamma, G)$ be the set of all faithful discrete co-
compact representations from $\Gamma$ to $G$ with compact open topology.

The group Inn $G$ of the inner automorphisms of $G$ and the group
Aut $\Gamma$ of the automorphisms of $\Gamma$ act on $\mathcal{R}(\Gamma, G)$ by $g$

. $\rho(\gamma)\cdot g^{-1}$ and
by $\rho$

. $\phi(\gamma)=\rho(\phi(\gamma))$ respectively where $g$ $\in G$ , $\gamma\in\Gamma$ , $\phi\in Aut$ $\Gamma$

and $\rho\in \mathcal{R}(\Gamma, G)$ . The second action commutes with the first one and
induces the action of the group Out $\Gamma$ of the outer automorphisms on
the quotient Inn $G\backslash \mathcal{R}(\Gamma, G)$ .

Definition 2. We call the quotient space

$\mathcal{T}(\Gamma, G)=Inn$ $G\backslash \mathcal{R}(\Gamma, G)$

a Teichm\"uller space of $S=\Gamma\backslash X$ , and the quotient

$\Lambda 4(\Gamma, G)=Inn$ $ G\backslash \mathcal{R}(\Gamma, G)/O_{11}t\Gamma$

a moduli space of $S=\Gamma\backslash X$ .
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The fundamental group $\pi_{1}^{orb}B$ of the base orbifold $B$ has the repre-
sentation of the form

$\{\overline{\alpha}_{1}$ , $\ldots$ , $\overline{\alpha}_{2g}$ , $\overline{q}_{1}$ , $\ldots$ , $\overline{q}_{r}|$

$\overline{q}_{1}^{m_{1}}=\cdots=\overline{q}_{r}^{m_{r}}=\prod_{i=1}^{g}[\overline{\alpha}_{2i-1 },\overline{\alpha}_{2i}]\prod_{j=1}^{r}\overline{q}_{j}=1\}$

where $\overline{q}_{\dot{\iota}}$ corresponds to a meridian circle around the $i$-th cone point
of cone angle $2\pi/m_{i}$ , and $\overline{\alpha}_{1}$ , $\ldots$ , $\overline{\alpha}_{2g}$ form a symplectic base of the
fundamental group of the underlying space $|B|$ of $B$ of genus $g$ . Here we

define $[\alpha, \beta]=\alpha\beta\alpha^{-1}\beta^{-1}$ . Note that $\pi^{orb}B$ is isomorphic to a discrete

subgroup $\overline{\Gamma}$ in $Isom\overline{X}$ and $B=\overline{\Gamma}\backslash \overline{X}$ where $\overline{X}=H$ if $B$ is hyperbolic and
$\overline{X}=E^{2}$ if $B$ is euclidean. Then $\pi_{1}S$ has the following representation:

$\{\alpha_{1}$ , $\ldots$ , $\alpha_{2g}$ , $q_{1}$ , $\ldots$ , $q_{r}$ , $\ell$ , $h|$

$[\ell, h]=1$ , $[q_{j}, \ell]=[q_{j}, h]=1$ for $j=1$ , $\ldots$ , $r$ ,

$(\alpha_{i}\ell\alpha_{i}^{-1}, \alpha_{i}h\alpha_{i}^{-1})=(\ell, h)A_{i}$ for $i=1$ , $\ldots$ , $2g$ ,

$q_{s}^{m_{s}}\ell^{a_{s}}h^{b_{s}}=1$ for $s=1$ , $\ldots$ , $r$ ,

$\prod_{\dot{x}=1}^{g}[\alpha_{2i-1}, \alpha_{2i}]\prod_{s=1}^{r}q_{s}=\ell^{a}h^{b}\}$ .

Here $\alpha_{i}$ , $q_{j}$ are the lifts of $\overline{\alpha}_{i}$ and $\overline{q_{j}}$ respectively, $\ell$ and $h$ form a base

of the fundamental group $Z^{2}$ of the general fiber $T^{2}$ , $A_{i}\in SL_{2}Z$ is
the monodromy matrix corresponding to $\overline{\alpha}_{i}$ with respect to $(\ell, h)$ , and
$(m_{s}, a_{s}, b_{s})$ is the Seifert invariant of the $s$-th multiple fiber of multiplic-
ity $m_{s}$ over the $s$-th cone point. The Seifert invariants for such $S$ are
denoted by

$\{A_{1}, \ldots, A_{2g}, (a, b), (m_{1}, a_{1}, b_{1}), \ldots, (m_{r}, a_{r}, b_{r})\}$ .

First consider $S=\Gamma\backslash X$ when $B=\overline{\Gamma}\backslash \overline{X}$ is hyperbolic. Then by
the results in [15] the fibration of $S$ is unique up to fiber-preserving

diffeomorphisms and $\pi_{1}^{orb}B=\overline{\Gamma}$ is uniquely determined by $\Gamma$ up to group
automorphisms. Moreover all the monodromy matrices are the powers of
some common periodic matrix $Q$ ([11], Theorem $B$ ). If every monodromy

is trivial then the pair $e=(a+\sum a_{j}/m_{j}, b+\sum b_{j}/m_{j})\in Q^{2}mod GL_{2}Z$

is well defined and is called the rational euler class of $S$ . The type of $X$

is $\overline{SL_{2}}\times E$ if every monodromy is trivial and $e\neq(0,0)$ and $X=H^{2}\times E^{2}$

otherwise. Furthermore we can assume that $a+\sum a_{j}/m_{j}=0$ in the
first case by some coordinate change of the fiber ([11]).
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Proposition 1. Let $S$ be a geometric Seifert 4-manifold over $a$

hyperbolic orbifold B. Then for appropriate choices of the lattices of
the general fifiber and the symplectic basis of the curves on $B$ generat-
ing $H_{1}(|B|, Z)$ we can assume that $A_{i}=I$ for $i\geq 2$ and $A_{1}$ is either

$\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$ , $\left(\begin{array}{ll}0 & 1\\-1 & -1\end{array}\right)$ , $\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , $\pm I$ , where I is the identity matrix.

Proof. We can assume that all monodromy matrices $A_{i}$ of $S$ are
powers of a periodic matrix $Q$ . Then by choosing the lattice $\ell$ , $h$ ap-
propriately we can suppose that $Q$ is either one of the five matrices
given above since $Q$ is periodic. In particular all $A_{i}$ are mutually com-
mutative. If we consider the pullback of $S$ by a self-automorphism $\phi$

of the base $B$ fixing all cone points and the base point of $B$ then $\phi$

induces the symplectic isomorphism $\phi_{*}$ on $H_{1}(|B|, Z)$ and the mon-
odromy matrices $A_{1}$ , $\ldots$ , $A_{2g}$ are transformed to $\phi_{*}A_{1}$ , $\ldots$ , $\phi_{*}A_{2g}$ where
if $\phi_{*}\overline{\alpha}_{i}=\delta_{1}\overline{\alpha}_{1}+\delta_{2}\overline{\alpha}_{2}+\cdots\delta_{2g}\overline{\alpha}_{2g}$ for the symplectic bases $\overline{\alpha}_{1}$ , $\ldots$ , $\overline{\alpha}_{2g}$

of $H_{1}(|B|, Z)$ then $\phi_{*}A_{i}=A_{1}^{\delta_{1}}A_{2}^{\delta_{2}}\cdots A_{2g}^{\delta_{2g}}$ . Since all $A_{i}$ ’s are powers of
$Q$ Euclid algorithm shows that this process simplifies the monodromy
matrices (which are still powers of $Q$ after this process) of the Seifert
fibration of $S$ induced from the original one by $\phi$ if $\phi$ is chosen appro-
priately. In fact we can see that some automorphism $\phi$ of $B$ fixing all
the cone points induces the isomorphism $\phi_{*}$ such that $\phi_{*}A_{i}=I$ for
$i\geq 2$ as follows. First for any $P_{i}\in SL_{2}Z$ , $(i=1, \ldots, g)$ there is an
automorphism $\psi$ of $B$ such that

$(\psi_{*}\overline{\alpha}_{2i-1}, \psi_{*}\overline{\alpha}_{2i})=(\overline{\alpha}_{2i-1}, \overline{\alpha}_{2i})P_{i}$

since every symplectic isomorphism can be realized by some orinetation
preserving self-diffeomorphism of $B$ fixing all the cone points. Using
such $\psi$ the monodromy matrices can be transformed so that $A_{2i}=I$ for
$i=1$ , $\ldots$ , $g$ . Next consider the symplectic isomorphism $\rho$ satisfying

$\rho(\overline{\alpha}_{2})=\overline{\alpha}_{2}-\overline{\alpha}_{2i}$

$\rho(\overline{\alpha}_{2i-1})=\overline{\alpha}_{1}+\overline{\alpha}_{2i-1}-\overline{\alpha}_{2i}$

$\rho(\overline{\alpha}_{j})=\overline{\alpha}_{j}$ otherwise

which maps $A_{2i-1}$ to $A_{2i-1}A_{1}$ , leaves the other monodromies unchanged
and can be realized by the Dehn twists along the curves representing
$\overline{\alpha}_{1}\overline{\alpha}_{2i}^{-1}$ and $\alpha_{1}^{-1}$ . Then applying the isomorphisms of this type or their
inverses (or those obtained by exchanging the roles of $\alpha_{1}$ and $\alpha_{2i-1}$ ) and
the isomorphism mapping $(\alpha_{1}, \alpha_{2})$ to $(\alpha_{2i-1}, \alpha_{2i})$ we can see (by Euclid
algorithm) that $A_{2i-1}(i\geq 2)$ is reduced to I with all others except
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for $A_{1}$ left unchanged. The desired automorphism $\phi$ is obtained by the
composition of the above automorphisms. Finally consider if necessary
the symplectic isomorphism $\sigma$ satisfying

$\sigma(\overline{\alpha}_{1})=-\overline{\alpha}_{1}$

$\sigma(\overline{\alpha}_{2})=-\overline{\alpha}_{2}$

$\sigma(\overline{\alpha}_{j})=\overline{\alpha}_{j}$ for $i\geq 3$

(which maps $A_{1}$ to $A_{1}^{-1}$ , leaves $A_{i}=I(i\geq 2)$ unchanged and is also
realized by an automorphism of $B$ ) and some further change of the
lattice of the general fiber we obtain the desired representations of the
monodromy matrices since $A_{1}$ is still a power of some periodic matrix.

Q.E.D.

In the case of a geometric Seifert 4-manifold $S=\Gamma\backslash X$ over a hyper-

bolic base orbifold $B=\overline{\Gamma}\backslash \overline{X}$ , $X$ is complex analytically equivalent to
$H\times C$ ([11], [12] and see the proof of Theorem A below) such that the
lattice $\Gamma_{0}$ of the general fiber of $S$ acts on the $C$-factor as translations.

Furthermore the lift $s$ of the elements of $\overline{\Gamma}$ to $\Gamma$ induce the orientation-
preserving automorphisms of the $C$-factor (up to translations) which
do not depend on the choices of the lifts and which preserve the lat-

tice in $C$ defined by $\Gamma_{0}$ . Then we have a homomorphism from $\overline{\Gamma}$ to
$GL^{+}(1, C)=C^{*}$ which we call the monodromy representation of $\Gamma\backslash X$

and denote by $\phi$ . The relation between $\phi$ and the monodromy matri-
ces of $S=\Gamma\backslash X$ is explained in Theorem A and its proof below. To
describe the Teichm\"uller space of $\Gamma\backslash X$ we introduce the following extra
notations.

$I(\overline{\Gamma}, Isom^{+}\overline{X})$ the Teichm\"uller space of $B=\overline{\Gamma}\backslash \overline{X}$

$H^{1}(\overline{\Gamma}, C^{\phi})$ the 1st cohomology group of $\overline{\Gamma}$ with coefficients $C^{\phi}$ .

Here $C^{\phi}$ is $C$ twisted by $\phi$ , $\mathcal{T}(\overline{\Gamma}, Isom^{+}\overline{X})=R^{2(3g-3+r)}\times Z_{2}$ where $g$

is the genus of $B$ and $r$ is the number of the cone points of $B$ . Let $\mathcal{T}_{g,r}$

be the identity component of $I(\overline{\Gamma}, Isom^{+}\overline{X})$ . (It is well known that $\mathcal{T}_{g,r}$

which is also the Teichm\"uller space of the orbifold $B$ depends only on $g$

and $r.$ )

Theorem A. $\mathcal{T}(\Gamma, G)$ for a Seifert 4-manifold $S=\Gamma\backslash X$ over $a$

hyperbolic 2-orbifold $B=\overline{\Gamma}\backslash \overline{X}$ has a structure of a trivial fifiber bundle

of the following form.

$\mathcal{F}$ $\rightarrow I(\Gamma, G)\rightarrow \mathcal{T}(\overline{\Gamma}, Isom^{+}\overline{X})$ .
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Here the fifiber $\mathcal{F}$ is isomorphic to $H^{1}(\overline{\Gamma}, C^{\phi})\times T_{1}$ where

$T_{1}=\{$

$R^{+}\times H\times Z_{2}$ , if $X=H^{2}\times E^{2}$ and $\phi\equiv\pm id$

$R^{+}\times Z_{2}$ , if $X=H^{2}\times E^{2}$ and $\phi\not\equiv\pm id$

$H\times Z_{2}$ , if $X=\overline{SL}_{2}\times E$

and $T_{1}$ corresponds to the deformations of the lattice of the general fifiber
generated by $c$ and $c\lambda^{-1}$ with $c\in R^{+}$ , $\lambda\in C$ and $s\propto\lambda\neq 0$ . $T_{1}$ has two
components according to the sign of $ s^{\propto}\lambda$ . The monodromy representation
$\phi$ satisfifies $\phi(\overline{\alpha}_{i})=\pm 1$ if the monodromy matrix $A_{i}$ corresponding to $\overline{\alpha}_{i}$

is $\pm I$ . If $A_{i}\neq\pm I$ for some $i$ , the lattice $\Gamma_{0}$ in $C$ of the general fifiber
is uniquely determined up to scalar multiplication and $\phi$ is also uniquely

determined once the sign $ of\propto s\lambda$ is fifixed. $H^{1}(\overline{\Gamma}, C^{\phi})$ satisfifies

$H^{1}(\overline{\Gamma}, C^{\phi})=\{$

$C^{2g}$ if $\phi\equiv id$

$C^{2g-2}$ otherwise.

The identity component $\mathcal{T}_{0}$ of $\mathcal{T}(\Gamma, G)$ is $I_{g,r}\times H^{1}(\overline{\Gamma}, C^{\phi})\times T_{0}$ where $T_{0}$

is the connected component of $T_{1}$ and is homeomorphic to $a$ euclidean
space.

Proof. We may assume that $S$ satisfies the conditions in Proposi-
tion 1. First suppose that the type $X$ of the geometry of $S=\Gamma\backslash X$ is
$H^{2}\times E^{2}$ which is identified with $H\times C$ . In this case $ G=Isom^{0}H^{2}\times$

$Isom^{0}E^{2}$ . Let $\rho\in \mathcal{R}(\Gamma, G)$ be any element for $S=\Gamma\backslash X$ . Then $\rho$ induces

the representation $\overline{\rho}\in \mathcal{R}(\overline{\Gamma}, \overline{G})$ with $\overline{G}=Isom^{0}H^{2}=PSL_{2}R$ . $\overline{\rho}$ gives

the representation of the base $B$ as the hyperbolic orbifold $B=\overline{\Gamma}\backslash H$ .

Then for the coordinates $(z, w)\in H\times C$ , we have

(0) $\rho(\ell)(z, w)=(z, w+c)$

(1) $\rho(h)(z, w)=(z, w+d)$

(2) $\rho(\alpha_{i})(z, w)=(\overline{\rho}(\overline{\alpha}_{i})z, \lambda_{i}w+w_{i})$ $(i=1, \ldots, 2g)$

(3) $\rho(q_{j})(z, w)=(\overline{\rho}(\overline{q}_{i})z, w-(a_{j}c+b_{j}d)/m_{j})$

where $c$ , $d\in C$ are linearly independent over $R$ , $\lambda_{i}\in S^{1}\subset C$ , $w_{i}\in C$

which satisfy the following relations. We note that (3) comes from the

relations $q_{j^{m_{j}}}\ell^{a_{j}}h^{b_{j}}=1$ , $[q_{j}, \ell]=[q_{j}, h]=1$ . Put $c=u+iv$ , $d=u’+iv’$

and $P=$ $\left(\begin{array}{ll}u & v\\u, & v,\end{array}\right)$ $\in GL2R$ . Then we deduce from $\alpha_{i}(\ell, h)\alpha_{i}^{-1}=$

$(\ell, h)A_{i}$ that

$PA_{i}P^{-1}=\left(\begin{array}{ll}cos\theta_{i} & -sin\theta_{i}\\sin\theta_{i} & cos\theta_{i}\end{array}\right)$
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where $\lambda_{i}=\exp(\sqrt{-1}\theta_{i})$ . Thus we have $\lambda_{i}=1$ for $i\geq 2$ since $A_{i}=I$ . If
$A_{1}=\pm I$ , then $\lambda_{1}=\pm 1$ and there is no further restriction on $(c, d)$ . For

the remaining cases we have $(c, d)=(c, \lambda^{-1}c)$ with

(4) $\lambda_{1}=\lambda=\exp(\pm 2\pi i/6)$ if $A_{1}=\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$

(5) $\lambda=\exp(\pm 2\pi i/6)$ , $\lambda_{1}=\lambda^{2}$ if $A_{1}=\left(\begin{array}{ll}0 & 1\\-1 & -1\end{array}\right)$

(6) $\lambda_{1}=\lambda=\pm i$ if $A_{1}=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ .

The monodromy representation $\phi:\overline{\Gamma}\rightarrow C^{*}$ is defined by $\phi(\overline{\alpha}_{i})=\lambda_{i}$ ,
$\phi(\overline{q}_{i})=1$ . We note that $\phi$ is uniquely determined if $A_{i}=\pm I$ . If $A_{1}\neq\pm I$

we have two choices of $\lambda$ above according $as\propto s\lambda>0$ or $s^{\propto}\lambda<0$ . Hence
the parameter space for the lattice of the general fiber (represented by
$c$ and $\lambda$ ) has two components and is homeomorphic to $C^{*}\times Z_{2}$ . The
monodromy representation $\phi$ depends only on the choice of $\lambda$ . If $A_{1}=$

$\pm I$ , (and if we write ( $c$ , $d)=(c,$ $c\lambda^{-1})$ ) then $(c, \lambda)$ ranges over $C^{*}\times H\times$

$Z_{2}$ . In this case we have two components according to the sign $of\propto s\lambda$ .

Finally from the relation $\prod_{j=1}^{g}[\alpha_{2j-1}, \alpha_{2j}]\prod_{j=1}^{r}q_{j}=\ell^{a}h^{b}$ we deduce

$\sum(\phi(\overline{\alpha}_{2j-1})g-1)w_{2j}-\sum_{j=1}^{g}(\phi(\overline{\alpha}_{2j})-1)w_{2j-1}$

(7)
$j=1$

$=(a+\sum_{j=1}^{r}a_{j}/m_{j})c+(b+\sum_{j=1}^{r}b_{j}/m_{j})d$ .

Clearly we can find $w_{j}$ satisfying (7) for any $\overline{\rho}$ since the right hand
side on (7) is 0 if $\phi\equiv id$ . Hence $\rho$ defined by $(0)-(3)$ satisfying $(4)-$

$(7)$ defines a discrete faithful representation from $\Gamma$ to $G$ . Conversely

every $\overline{\rho}\in \mathcal{R}(\overline{\Gamma}, \overline{G})$ has a lift $\rho\in \mathcal{R}(\Gamma, G)$ . Hence the natural projection
$p:\mathcal{R}(\Gamma, G)\rightarrow \mathcal{R}(\overline{\Gamma}, \overline{G})$ is surjective. Next we describe the fiber $\mathcal{F}$ of $p$ .

Pick up $\overline{\rho}_{0}\in \mathcal{R}(\overline{\Gamma}, \overline{G})$ and fix a lift $\rho_{0}\in \mathcal{R}(\Gamma, G)$ of $\overline{\rho}$ satisfying $(0)-$

$(7)$ as a base point of the fiber over $\overline{\rho}_{0}$ . Hereafter the parameters in
$(0)-(7)$ for $\rho_{0}$ are denoted by the same symbols with suffix 0. We can
choose $w_{j}^{0}$ in (2) for $\rho_{0}$ so that $w_{j}^{0}=0$ if $\phi\equiv id$ or $w_{j}^{0}=0$ for $j\neq 2$

and $w_{2}^{0}=((a+\sum a_{j}/m_{j})c+(b+\sum b_{j}/m_{j})d)/(\phi(\overline{\alpha_{1}})-1)$ if $\phi\not\equiv id$

under the assumption in Proposition 1. Take $\rho\in \mathcal{R}(\Gamma, G)$ such that
$\overline{\rho}=\overline{\rho}_{0}$ , $(c, d)=(c_{0}, d_{0})$ and the monodromy representations for $\rho$ and
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$\rho_{0}$ are the same. Put $m(\overline{\alpha}_{j})=w_{j}-w_{j}^{0}$ , $m(\overline{q}_{j})=0$ . Then $m(\overline{\alpha}_{j})$ satisfy

(8) $\sum_{j=1}^{g}(\phi(\overline{\alpha}_{2j-1})-1)m(\overline{\alpha}_{2j})-\sum_{j=1}^{g}(\phi(\overline{\alpha}_{2j})-1)m(\overline{\alpha}_{2j-1})=0$

and $m$ can be extended to a crossed homomorphism $m:\overline{\Gamma}\rightarrow C$ satisfy-

ing $m(\overline{\alpha}\overline{\beta})=m(\overline{\alpha})+\phi(\overline{\alpha})m(\overline{\beta})$ for $\overline{\alpha}$ , $\overline{\beta}\in\overline{\Gamma}$ . Let $C^{i}(\overline{\Gamma}, C^{\phi})$ be the $i$-th

cochain of $\overline{\Gamma}$ with coefficients $C$ twisted by $\phi$ . Then $m$ is contained in the

kernel of the coboundary map $\delta:C^{1}(\overline{\Gamma}, C^{\phi})\rightarrow C^{2}(\overline{\Gamma}, C^{\phi})$ . Conversely if
$ m\in ker\delta$ then $m(\overline{q}_{j})=0$ since $\overline{q}_{j}^{m_{j}}=1$ and $\phi(\overline{q}_{j})=1$ . Furthermore for

any such $m$ , we can define a faithful discrete representation $\rho$ satisfying
$\overline{\rho}=\overline{\rho}_{0}$ , $(c, d)=(c_{0}, d_{0})$ , $w_{j}=w_{j}^{0}+m(\overline{\alpha}_{j})$ . The choice of $m$ does not

depend on the choice of $(c_{0}, d_{0})$ if $\phi$ is fixed. Thus the fiber $\overline{\mathcal{F}}$ is homeo-

morphic to $(ker\delta)\times\tilde{T}_{1}$ where $\tilde{T}_{1}=C^{*}\times Z_{2}$ if $\phi\not\equiv\pm id$ or $C^{*}\times H\times Z_{2}$

if $\phi\equiv\pm id$ . We note that the choices of the parameters of $\tilde{T}_{1}$ (and the

choices of $w_{j}^{0}$ in (2) satisfying (7) for the fixed lift $\rho_{0}$ of $\overline{\rho}_{0}$ ) do not

depend on $\overline{\rho}$ . So the projection $p:\mathcal{R}(\Gamma, G)\rightarrow \mathcal{R}(\overline{\Gamma}, \overline{G})$ gives a product

fibration and $\mathcal{R}(\Gamma, G)=\mathcal{R}(\overline{\Gamma}, \overline{G})\times ker\delta\times\tilde{T}_{1}$ . Next we check the action
of Inn $G$ on $\mathcal{R}(\Gamma, G)$ . The action of Inn $PSL_{2}R$ is nonrivial only on the

first factor $\mathcal{R}(\overline{\Gamma}, \overline{G})$ of $\mathcal{R}(\Gamma, G)$ and yields a Teichm\"uller space $\mathcal{T}(\overline{\Gamma}, \overline{G})$ of

the base orbifold B. $\mathcal{T}(\overline{\Gamma}, \overline{G})$ has just two components which correspond
to the Teichm\"uller spaces of the hyperbolic structures on $B$ and $B$ with
opposite orientation. Each one is identified with the Teichm\"uller space
$\mathcal{T}_{g,r}=R^{2(3g-3+r)}$ of $r$-pointed Riemann surface of genus $g$ . Next we pick

up $\mu\in Isom^{+}E^{2}$ defined by $\mu(z, w)=(z, \sigma w+w’)$ with $\sigma\in S^{1}$ , $w’\in C$

(acting trivially on the first coordinate). If $\rho\in \mathcal{R}(\Gamma, G)$ satisfying $(0)-$

$(3)$ , then we have

$\mu\rho(\ell)\mu^{-1}(z, w)=(z, w+\sigma c)$ ,

$\mu\rho(h)\mu^{-1}(z, w)=(w, w+\sigma d)$ ,

$\mu\rho(\alpha_{j})\mu^{-1}(z, w)=(\overline{\rho}(\overline{\alpha}_{j})z, \lambda_{j}w+\sigma w_{j}+(1-\lambda_{j})w’)$ ,

$\mu\rho(q_{j})\mu^{-1}(z, w)=(\overline{\rho}(\overline{q_{j}})z, w-(a_{i}\sigma c+b_{i}\sigma d)/m_{i})$ .

where $\lambda_{j}=\phi(\overline{\alpha}_{j})$ , $d=c\lambda^{-1}$ as in $(4)-(6)$ . Then $(c, \lambda)$ are transformed
to $(\sigma c, \lambda)$ and $w_{j}$ is transformed to $\sigma w_{j}+(1-\phi(\overline{\alpha}_{j}))w’$ . Thus if the

representative of $c$ in Inn $Isom^{+}E^{2}\backslash \mathcal{F}$ is fixed so that $c\in R^{+}$ , then
$m(\overline{\alpha}_{j})$ ’s are defined modulo the image of $\delta^{0}$ : $C^{0}(\overline{\Gamma}, C^{\phi})\rightarrow C^{1}(\overline{\Gamma}, C^{\phi})$ in

Inn $Isom^{+}E^{2}\backslash \overline{\mathcal{F}}$ . Therefore we obtain

$\mathcal{T}(\Gamma, G)=I(\overline{\Gamma}, \overline{G})\times(T_{1}\times H^{1}(\overline{\Gamma}, C^{\phi}))$
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where $I(\Gamma, G)$ is parametrized by $\overline{\rho}$ ($mod$ Inn $\overline{G}$) $\in \mathcal{T}(\overline{\Gamma}, \overline{G})$ , $(c, \lambda)\in$

$T_{1}=R^{+}\times H\times Z_{2}$ or $R^{+}\times Z_{2}$ , and $m(\overline{\alpha}_{j})(mod Im\delta^{0})\in H^{1}(\overline{\Gamma}, C^{\phi})$ as

desired. $H^{1}(\overline{\Gamma}, C^{\phi})$ is a vector space over $C$ whose dimension is easily
computed by (8) under the assumption of Proposition 1 as indicated in

Theorem A. We note that $H^{1}(\overline{\Gamma}, C^{\phi})$ is the same as $H^{1}(\pi_{1}|B|, C^{\phi})$ since
the coefficient of the cohomology is torsion free and the monodromies

along the torsion elements $\overline{q}_{j}$ in $\overline{\Gamma}$ are trivial.

Next we consider the case when $S=\Gamma\backslash X$ with $X=\overline{SL_{2}}\times E$

and $ G=\overline{SL_{2}}\times zR\times$ R. In this case $X$ is identified with $H\times C$ with

coordinates $(z, w)$ , $z\in H$ , $w\in C$ so that $w$ corresponds to $\log dz([13])$ .

Here the imaginary part of $\log dz$ corresponds to the lift of the unit

tangent vector at $z\in H^{2}$ to the fiber of the natural projection $\pi:\overline{SL}_{2}\rightarrow$

$H^{2}$ . This projection is defined via the identification of $PSL_{2}R$ with
the unit tangent bundle $T_{1}H^{2}$ of $H^{2}$ . The real part of $\log dz$ belongs to

the $E$-factor of $X$ . Then $\rho$ in $\mathcal{R}(\Gamma, G)$ induces the element $\overline{\rho}$ in $\mathcal{R}(\overline{\Gamma}, \overline{G})$

where $\overline{\Gamma}=\pi_{1}^{orb}B$ and $\overline{G}=PSX2R$ . Moreover $\rho$ must be of the following
form:

$\rho(\ell)(z, w)=(z, w+c)$

$\rho(h)(z, w)=(z, w+d)$

$\rho(\alpha_{j})(z, w)=\tilde{\alpha}_{j}(z, w)+(0, w_{j})$

$\rho(q_{j})(z, w)=\tilde{q}_{j}(z, w)+(0, y_{j})$

where $\tilde{\alpha}_{j}(z, w)$ is a lift of $\overline{\rho}(\overline{\alpha}_{j}):z\rightarrow(a_{j}z+b_{j})/(c_{j}z+d_{j})$ defined by

$\tilde{\alpha}_{j}(z, w)=(\overline{\rho}(\overline{\alpha}_{j})z, w-2\log(c_{j}z+d_{j}))$ .

Here the imaginary part of the second factor is chosen so that it is con-
tinuous and it coincides with the image of $s^{\propto}w$ by the parallel translation
from $z$ to $\overline{\rho}(\overline{\alpha_{j}})z$ along the axis of the hyperbolic element $\overline{\rho}(\overline{\alpha}_{j})$ (which is

defined as the lift of that on $T_{1}H^{2}$ via the projection $\overline{SL}_{2}\rightarrow T_{1}H^{2}$ ) if $z$

lies in this axis. These conditions determine the choice of the branch of
$\log$ in the image of $\tilde{\alpha}_{j}$ . A lift $\tilde{q}_{j}$ of $\overline{\rho}(\overline{q}_{j})$ is taken so that $\tilde{q}_{j}^{m_{j}}=1$ in $G$ (cf.

[11], [13] $)$ . Note that $\tilde{q}_{j}$ is uniquely determined since the $R\times R$-factor
of $G$ lies in the center of $G$ . Then

$y_{j}=-(a_{j}c+b_{j}d)/m_{j}$

from $q_{j}^{m_{j}}\ell^{a_{j}}h^{b_{j}}=1$ . We have chosen $\ell$ , $h$ so that $a+\sum a_{j}/m_{j}=0$ ,

$b+\sum b_{j}/m_{j}\neq 0$ and hence we also deduce from $\prod[\alpha_{2j-1}, \alpha_{2j}]\prod q_{j}=$
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$\ell^{a}h^{b}$ that

$d=(2\pi i\chi^{orb}B)/(b+\sum b_{j}/m_{j})\neq 0$

where $\chi^{orb}$ denotes the orbifold euler characteristic. Therefore the pa-
rameters $y_{j}$ , $d$ are fixed, $c=u+iv$ is an arbitrary complex num-
ber with $u\neq 0$ (since $c$ and $d$ must be linearly independent over $R$),
and $w_{j}$ are arbitrary complex numbers. Then the natural projection
$p:\mathcal{R}(\Gamma, G)\rightarrow \mathcal{R}(\overline{\Gamma}, \overline{G})$ defined by $p(\rho)=\overline{\rho}$ is surjective and the fiber
$\mathcal{F}$ of $p$ is $C^{1}(\overline{\Gamma}, C)\times T_{1}$ where $T_{1}=H\times Z_{2}$ which corresponds to $c$

(or equivalently $ic$). $T_{1}$ has two components according to the sign of
$\Re c$ . Since every translation $(z, w)\rightarrow(z, w+s+ti)$ commutes with
any element $g$

$\in G$ , the action of Inn $G$ on $\mathcal{R}(\Gamma, G)$ yields the following
isomorphism;

$I(\Gamma, G)=\mathcal{T}(\overline{\Gamma}, \overline{G})\times H^{1}(\overline{\Gamma}, C)\times T_{1}$

which proves Theorem A.

\S 2. The cases with euclidean base orbifolds

Suppose that $S$ is a Seifert 4-manifold over a closed orientable eu-
clidean 2-orbifold $B$ . In this case $S$ has always a geometric structure of

type $X$ where $X=E^{4}$ , Nil3
paper we restrict our attention to the cases when $\pi_{1}S=\Gamma$ is a subgroup
of $G=Isom^{0}X$ . Then by the results in [10] we have only to consider
the cases when $S$ is diffeomorphic to one of the followings (note that the
fibration of $S$ is not unique when $B$ is not hyperbolic).

(I) $B=T^{2}$ .

(1) $S=T^{4}$ , $X=E^{4}$ ;

(2) $S=\{I, I, (a, b)\}$ with $(a, b)\neq(0,0)$ , $X=Ni1^{3}\times E$ ;

(3) $S=$ $\{\left(\begin{array}{l}1\lambda\\ 01\end{array}\right), I; (a, b)\}$ , $\lambda\neq 0$ , $b\neq 0$ , $X=Ni1^{4}$ ;

(4) $S=\{A, I; (a, b)\}$ with $trA\geq 3$ , $X=So1^{3}\times E$ .

(II) $B$ has genus 0.

(1) The rational euler class $e$ of $S$ equals $(0, 0)$ , $X=E^{4}$ ;

(2) $e\neq(0,0)$ , $X=Ni1^{3}\times E$ .

Here $S$ is diffeomorphic to a hyperelliptic surface in case (II-1), a
primary Kodaira surface in case (1-2), and a secondary Kodaira surface
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in case (II-2). We note that

$G=\{$

$Isom\ovalbox{\tt\small REJECT}$

Nil3 $>\triangleleft SO_{2}\times R$ if $X=Ni1^{3}\times E$ ,

Sol3 $\times R$ if $X=So1^{3}\times E$ ,

Nil4 if $X=Ni1^{4}$ .

Theorem B. For the Seifert 4-manifold $S=\Gamma\backslash X$ in the above
list we have the list of $I(\Gamma, G)$ as follows.

(1) The cases when $B=T^{2}$ .

$\mathcal{T}(\Gamma, G)=\{$

$SO_{4}\backslash GL_{4}R$ , in case (I-1),

$I_{1,0}\times F$ , in case (I-2),

$(R^{*})^{2}\times R^{2}$ , in case (I-3),

$(R^{*})^{2}\times(Z_{2})^{2}\times R$ , in case (1-4).

Here in case (1-2) $\mathcal{T}_{1,0}=SO_{2}\backslash GL_{2}R=R^{+}\times H\times Z_{2}$ , $\mathcal{F}=R^{2}\times H\times Z_{2}$ .

(2) The cases with the base orbifolds of genus 0. Let $r$ be the number

of the cone points of $B$ ($r=3$ or 4). Then we have

$\mathcal{T}(\Gamma, G)=I_{0,r}\times T_{1}$

where

$I_{0,r}=\{$

$R^{2(r-3)}\times R^{+}\times Z_{2}$ if $X=Ni1^{3}\times E$

$R^{2(r-3)}\times R^{+}$ if $X=E^{4}$

and

$T_{1}=\{$

$H\times Z_{2}$ if $X=Ni1^{3}\times E$

$R^{+}\times H\times Z_{2}$ if $X=E^{4}$ .

Proof. In case (1-1) we have $\Gamma=Z^{4}$ whose generators $\alpha_{i}$ are given

by translations $\alpha_{i}x=x+\ell_{i}$ for $x$ , $\ell_{i}\in E^{4}$ . Here $\ell_{i}$ are mutually linearly
independent and hence $\Gamma$ is parametrized by $GL4R$ . The action of Inn $G$

is given by $(\ell_{1}, \ldots, \ell_{4})=(\sigma\ell_{1}, \ldots, \sigma\ell_{4})$ for $\sigma\in SO_{4}$ . Hence $\mathcal{T}(\Gamma, G)=$

$SO_{4}\backslash GL_{4}R$ which has two components and each one is homeomorphic

to $R^{10}$ .

Next consider case (1-2). In this case $X=Ni1^{3}\times E$ . Here we recall

the structure of Nil3 $\times E$ . The point of $X$ is represented by $(w, z)\in C^{2}$

such that the action of $G=(Ni1^{3}\times R)\lambda S^{1}$ is defined by $(w’, z’)(w, z)=$

$(w’+w-i\overline{z’}z, z’+z)$ for $(w’, z’)\in X$ , and $t(w, z)=(w, tz)$ for $t$ $\in S^{1}\subset$

C. We can assume that $S=\{I, I; (a, 0)\}$ for $a\neq 0$ and $\Gamma=\{\alpha$ , $\beta$ , $\ell$ , $h|$
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$[\ell, h]=[\alpha, \ell]=[\alpha, h]=[\beta, \ell]=[\beta, h]=1$ , $[\alpha, \beta]=\ell^{a}\}$ . The subgroup $\Gamma_{0}$

generated by $\ell$ , $h$ is the center of $\Gamma$ and the projection Nil3 $\times E\rightarrow R^{2}$

defined by $(w, z)\rightarrow z$ induces the structure of a $T^{2}-$bundle over $T^{2}$ of the

form $\Gamma_{0}\backslash R\times E\rightarrow\Gamma\backslash Ni1^{3}\times E\rightarrow Z^{2}\backslash R^{2}$ which gives the above fibration
([12]). Thus $\rho\in \mathcal{R}(\Gamma, G)$ must have the following form:

$\rho(\ell)(w, z)=(w+\ell_{0}, z)$

$\rho(h)(w, z)=(w+h_{0}, z)$

$\rho(\alpha)(w, z)=(a_{0}+w-i\overline{b_{0}}z, b_{0}+z)$

$\rho(\beta)(w, z)=(a_{1}+w-i\overline{b_{1}}z, b_{1}+z)$

where $\ell_{0}$ and $h_{0}$ , $b_{0}$ and $b_{1}$ are linearly independent over R. Since
$\rho([\alpha, \beta])(w, z)=(w+i(b_{0}\overline{b_{1}}-\overline{b_{0}}b_{1}), z)$ must be equal to $\rho(\ell^{a})(w, z)$ ,

we have $\ell_{0}=i(b_{0}\overline{b_{1}}-\overline{b_{0}}b_{1})/a$ and since this is a nonzero real number $h_{0}$

is an arbitrary number with $s^{\propto}h_{0}\neq 0$ . Thus we have

$\mathcal{R}(\Gamma, G)=\overline{\mathcal{F}}\times \mathcal{R}(Z^{2}, \overline{G})$

where $\overline{\mathcal{F}}=H\times Z_{2}\times C^{2}$ which is represented by $h_{0}$ , $a_{0}$ , $a_{1}$ , $\overline{G}=Isom^{0}E^{2}$ ,
and $\mathcal{R}(Z^{2}, G)=GL_{2}R$ represented by $b_{0}$ and $b_{1}$ . Next taking the con-
jugation of $\rho$ by $\gamma=(w_{0}, z_{0})$ and $t\in S^{1}$ we can see that the parameters
are transformed as follows:

$a_{0}\rightarrow a_{0}+i(\overline{b_{0}}z_{0}-\overline{z_{0}}b_{0})$

$a_{1}\rightarrow a_{1}+i(\overline{b_{1}}z_{0}-\overline{z_{0}}b_{1})$

$b_{0}\rightarrow tb_{0}$

$b_{1}\rightarrow tb_{1}$ .

Thus to get the representation in $I(\Gamma, G)$ we can assume that $b_{0}\in R^{+}$

(choose $t\in S^{1}$ appropriately). Then $i(\overline{b_{0}}z_{0}-\overline{z_{0}}b_{0})=-2b_{0}\propto sz_{0}$ and

hence choosing $z_{0}$ so that $s^{\propto}z_{0}=\Re a_{0}/2b_{0}$ then $a_{0}+i(\overline{b}_{0}z_{0}-\overline{z}_{0}b_{0})$ is

pure imaginary. On the other hand $i(\overline{b_{1}}z_{0}-\overline{z_{0}}b_{1})=2((\propto sb_{1})(\Re z_{0})-$

$(\Re b_{1})(\Re a_{0}/2b_{0}))$ . $Since\propto sb_{1}\neq 0$ by the assumption we can choose $z_{0}$

so that both $a_{0}$ and $a_{1}$ are transformed to pure imaginary numbers.
Consequently we have $\mathcal{T}(\Gamma, G)=\mathcal{F}\times \mathcal{T}(\overline{\Gamma}, \overline{G})$ where $\mathcal{F}=R^{2}\times H\times Z_{2}$

represented by $ia_{0}$ , $ia_{1}$ , $h_{0}$ and $I(\overline{\Gamma}, \overline{G})=SO_{2}\backslash GL_{2}R=R^{+}\times H\times Z_{2}$

represented by $b_{0}$ and $b_{1}$ .

In case (II) we can assume that

$S=\{(0,0), (m_{1}, a_{1}, b_{1}), \ldots, (m_{r}, a_{r}, b_{r})\}$
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with $r=3$ or 4 and

$\Gamma=\{q_{1}$ , $\ldots$ , $q_{r}$ , $\ell$ , $h|[\ell, h]=[q_{i}, \ell]=[q_{i}, h]=1$ ,

$q_{i}^{m_{i}}\ell^{a_{i}}h^{b_{i}}=1$ , $\prod q_{i}=1\}$ .

Here if $r=3$ , then $(m_{1}, m_{2}, m_{3})=(2,4,4)$ , (2, 3, 6), or (3, 3, 3) and
if $r=4$ then $(m_{1}, m_{2}, m_{3}, m_{4})=(2,2,2,2)$ . Furthermore in this case
$X=E^{4}$ or Nil3 $\times E$ . In either case the subgroup $\Gamma_{0}$ generated by $\ell$ and
$h$ are the center of $\Gamma$ and the exact sequence $1\rightarrow\Gamma_{0}\rightarrow\Gamma\rightarrow\overline{\Gamma}\rightarrow 1$

(where $\overline{\Gamma}=\pi_{1}^{orb}B$ ) yields the original Seifert fibration. First suppose

that $X=E^{4}$ , $G=R^{4}>\triangleleft SO_{4}$ . Pick up $\rho\in \mathcal{R}(\Gamma, G)$ . Then the holonomy

group of $\rho(\Gamma)$ which is the image $\overline{\rho(\Gamma)}$ of $\rho(\Gamma)$ under the natural map
$G\rightarrow SO_{4}$ is cyclic (since $S$ is diffeomorphic to a hyperelliptic surface).
Since $\rho(\Gamma_{0})$ must be contained in the translation parts of $G$ we can

assume that there is a decomposition $C\times C$ of $E^{4}$ such that $\rho(\Gamma_{0})$ acts
trivially on the first factor. Since $\rho(\Gamma_{0})$ commutes with any element in
$\rho(\Gamma)$ we can see that any element of $\overline{\rho(\Gamma)}$ is contained in $ SO_{2}\times 1\subset$

$SO_{2}\times SO_{2}\subset SO_{4}$ . If we take another $\rho’\in \mathcal{R}(\Gamma, G)$ , then there exists
$\sigma\in SO_{4}$ such that $\sigma\rho’(\Gamma_{0})\sigma^{-1}$ satisfies the above condition for the same
decomposition of $E^{4}$ and hence the image of $\sigma\rho’(\Gamma)\sigma^{-1}$ under the above
map is also contained in the same subgroup $SO_{2}\times 1\subset SO_{4}$ . Therefore it
suffices to consider the representation $\rho$ satisfying the above conditions

for the fixed decomposition of $E^{4}$ . Thus $\rho$ projects to $\overline{\rho}\in \mathcal{R}(\overline{\Gamma}, \overline{G})$ where
$\overline{G}=Isom^{0}E^{2}$ and we must have

$\rho(\ell)(z, w)=(z, w+\ell_{0})$

$\rho(h)(z, w)=(z, w+h_{0})$

$\rho(q_{i})(z, w)=(\overline{\rho}(\overline{q_{i}})z, w+s_{i})$ , $(1\leq i\leq r)$

where $\ell_{0}$ and $h_{0}$ are linearly independent over $R$ , $\overline{q_{b}i}\in\overline{\Gamma}$ is the image

of $q_{i}$ under the projection $\Gamma\rightarrow\overline{\Gamma}$ , $ s_{i}\in$ C. Then from the relation
$q_{i}^{m_{i}}\ell^{a_{i}}h^{b_{i}}=1$ we deduce $s_{i}=-(a_{i}\ell_{0}+b_{i}h_{0})/m_{i}$ . Next we must see
exactly when the two representations $\rho$ and $\rho’$ of the above forms are
in the same orbit under the action of Inn $G$ . Suppose that there exists
$\sigma\in G$ such that $\sigma\rho\sigma^{-1}=\rho’$ with $\sigma x=\overline{\sigma}x+s_{0}$ , $\overline{\sigma}\in SO_{4}$ , $s_{0}\in R^{4}$

and $x\in R^{4}$ . Then we can see that $\overline{\sigma}x=(\sigma_{1}z, \sigma_{2}w)$ where $\sigma_{1}$ , $\sigma_{2}\in SO_{2}$

or $\sigma_{1}$ , $\sigma_{2}\in O_{2}-SO_{2}$ and $x=(z, w)$ with $z$ , $ w\in$ C. Suppose that
$\sigma(z, w)=(\sigma_{1}z+a_{0}, \sigma_{2}w+b_{0})$ with $\sigma_{1}$ , $\sigma_{2}\in SO_{2}$ , $a_{0}$ , $b_{0}\in C$ . Then $\rho’$
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satisfies

$\rho’(\ell)(z, w)=(z, w+\sigma_{2}\ell_{0})$

$\rho’(h)(z, w)=(z, w+\sigma_{2}h_{0})$

$\rho’(q_{i})(z, w)=(\sigma_{1}\overline{\rho}(\overline{q_{?}.})(\sigma_{1}^{-1}(z-a_{0}))+a_{0}, w+\sigma_{2}s_{i})$ .

Next suppose that $\sigma(z, w)=(\sigma_{1}\overline{z}+a_{0}, \sigma_{2}\overline{w}+b_{0})$ with $\sigma_{1}$ , $\sigma_{2}\in SO_{2}$ ,
$a_{0}$ , $b_{0}\in C$ . Then

$\rho’(\ell)(z, w)=(z, w+\sigma_{2}\overline{\ell_{0}})$

$\rho’(h)(z, w)=(z, w+\sigma_{2}\overline{h_{0}})$

$\rho’(q_{i})(z, w)=(\overline{\rho’(q_{i})}(z), w+\sigma_{2}\overline{s_{i}})$

where $\overline{\rho’(q_{i})}$ is in the component of $\mathcal{R}(\overline{\Gamma}, \overline{G})$ different from that contain-

ing $\overline{\rho}$ . On the other hand the identity component $\mathcal{R}^{0}(\overline{\Gamma}, \overline{G})$ of $\mathcal{R}(\overline{\Gamma}, \overline{G})$

is homeomorphic to $R^{2(r-3)}\times R^{+}$ where the first factor coincides with
the Teichm\"uller space for the flat structures of area 1 of the base orb-
ifold $B$ and the second factor corresponds to the area of $B$ . Thus we have
$\mathcal{T}(\Gamma, G)=R^{2(r-3)}\times R^{+}\times R^{+}\times H\times Z_{2}$ where $R^{+}\times H\times Z_{2}=SO_{2}\backslash GL_{2}R$

corresponds to the deformations of the lattice of the general fiber.

On the other hand in case (II) with $X=Ni1^{3}\times E$ the natural projec-
tion $X\rightarrow C$ represented by $(w, z)\rightarrow z$ for the coordinates defined above
yields a given fibration for $S=\{(a, b), (m_{1}, a_{1}, b_{1}), \ldots, (m_{r}, a_{r}, b_{r})\}$ .

(In fact we can assume that $a=b=0.$ ) Here we can assume that
$a+\sum a_{i}/m_{i}=0$ , $b+\sum b_{i}/m_{i}\neq 0$ . Take an arbitrary representation
$\rho\in \mathcal{R}(\Gamma, G)$ . Then $\rho$ induces a representation $\overline{\rho}\in \mathcal{R}(\overline{\Gamma}, \overline{G})$ where $\overline{\Gamma}=$

$\{\overline{q_{1}}, \ldots, \overline{q_{r}}|\overline{q}_{1}^{m_{1}}=\cdots=\overline{q}_{r}^{m_{r}}=\overline{q}_{1}\cdots\overline{q}_{r}=1\}$ and $\rho(\overline{\Gamma})\subset\overline{G}=Isom^{0}E^{2}$ .

Here $r$ and $(m_{1}, \ldots, m_{r})$ satisfy the same conditions as in the case with
$X=E^{4}$ . Each $\overline{\rho}(\overline{q_{i}})$ has the following representation:

$\overline{\rho}(\overline{q_{j}})z=\rho_{j}(z-z_{j})+z_{j}$

for $\rho_{j}\in S^{1}$ , $z_{j}\in C$ such that the order of $\rho_{j}$ is $m_{j}$ and $\prod\rho_{j}=1$ . Thus
$\rho$ must be of the following form:

$\rho(\ell)(w, z)=(w+\ell_{0}, z)$

$\rho(h)(w, z)=(w+h_{0}, z)$

$\rho(q_{j})(w, z)=(w+w_{j}+i\overline{z_{j}}(z-\rho_{j}(z-z_{j})), \overline{\rho}(\overline{q_{j}})z)$

where $\ell_{0}$ and $h_{0}$ are linearly independent over $R$ , $w_{j}\in C$ . Then we have

$\rho(q_{j}^{m_{j}})(w, z)=(w+m_{j}(w_{j}+i|z_{j}|^{2}), z)$ .
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Thus form $q_{j}^{m_{j}}\ell^{a_{j}}h^{b_{j}}=1$ we deduce

(1) $w_{j}=-i|z_{j}|^{2}-a_{j}\ell_{0}/m_{j}-b_{j}h_{0}/m_{j}$

Suppose that $r=3$ . Then from $\prod\overline{q_{j}}=1$ we have

(2) $(1-\rho_{1})z_{1}+(\rho_{1}-\rho_{1}\rho_{2})z_{2}+(\rho_{1}\rho_{2}-\rho_{1}\rho_{2}\rho_{3})z_{3}=0$ .

Thus we can see that

$\rho(q_{1}q_{2}q_{3})(w, z)=(w+\sum_{j=1}^{3}w_{j}+iU, z)$

where

$U=\sum\rho_{j}|z_{j}|^{2}+\overline{z_{2}}z_{3}(1-\rho_{2}-\rho_{3}+\rho_{2}\rho_{3})+\overline{z_{1}}z_{2}(1-\rho_{1}-\rho_{2}+\rho_{1}\rho_{2})+$

$\overline{z_{1}}z_{3}(1-\overline{\rho}_{1}-\overline{\rho}_{3}+\overline{\rho}_{1}\overline{\rho}_{3})$ .

Thus from (1) $\rho$ is well defined if and only if

(3) $iV=(a+\sum a_{j}/m_{j})\ell_{0}+(b+\sum b_{j}/m_{j})h_{0}$

where $V=U-\sum|z_{j}|^{2}$ .

Claim. iV is a nonzero real number.

Easy computation (using (2)) shows that $iV$ is invariant under trans-
lations along the real line $(z_{1}, z_{2}, z_{3})\rightarrow(z_{1}+\lambda, z_{2}+\lambda, z_{3}+\lambda)$ for $\lambda\in R$

and the rotations in the origin. Therefore to prove Claim we can as-
sume that $z_{1}=0$ and $z_{2}$ is a nonzero real number $r$ . Then again by
easy computation we can see that $V=r^{2}(\rho_{1}-1)(\rho_{2}-1)/(\rho_{1}\rho_{2}-1)$

and $V$ is a nonzero pure imaginary number. Thus we deduce that
$h_{0}=iV/(b+\sum b_{j}/m_{j})\neq 0$ from the normalization $a+\sum a_{j}/m_{j}=0$ .

Then $\ell_{0}$ is an arbitrary number $with\propto s\ell_{0}\neq 0$ . The case with $r=4$

($m_{i}=2$ , $\rho_{j}=-1$ for all $j$ ) can be treated by a similar computation
and we can see that $h_{0}$ is some fixed real number and $\ell_{0}$ is also an ar-
bitrary number with $s^{\propto}\ell_{0}\neq 0$ . In any case $\overline{\rho}\in \mathcal{R}(\overline{\Gamma}, \overline{G})$ can be lifted to

some $\rho\in \mathcal{R}(\Gamma, G)$ and we have $\mathcal{R}(\Gamma, G)=\mathcal{R}(\overline{\Gamma}, \overline{G})\times H\times Z_{2}$ where the
factor $H\times Z_{2}$ corresponds to $\ell_{0}$ . The action of Inn $G$ on $\mathcal{R}(\Gamma, G)$ can
be determined as in case (1-2). For any element $\gamma\in G$ the conjugation

by $\gamma$ acts on the factor $\overline{\rho}(\overline{q_{i}})$ as the inner automorphism of $\overline{G}$ and acts
trivially on $\rho(\ell)$ , $\rho(h)$ . Since these parameters determine the remaining

ones uniquely and the natural map Inn $G\rightarrow Inn$ $\overline{G}$ is surjective we have

$\mathcal{T}(\Gamma, G)=\mathcal{T}(\overline{\Gamma}, \overline{G})\times H\times Z_{2}$ .
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The proofs for the other cases are done by similar methods and hence
are omitted.

\S 3. The Teichm\"uller spaces and the complex structures

In this section we consider the Seifert 4-manifolds over closed ori-
entable hyperbolic or euclidean 2-orbifolds which admit complex struc-
tures. The arguments in [12, \S 7] show that any elliptic surface $S$ with
$c_{2}=0$ and with $\kappa=0$ or 1 is biholomorphic to $\Gamma\backslash X$ where a geometry
$X$ has a complex structure such that any element of $G=Isom^{0}X$ acts
on $X$ as a biholomorphism and $\Gamma\subset G$ . (We need to restrict $G$ to $U(2)$

when $X=E^{4}.$ ) Here we start with such a Seifert 4-manifold $S=\Gamma\backslash X$

with a given compatible complex structure. Let $g$ be the genus of $B$ and
$r$ be the number of the cone points (with the prescribed cone angles) of
$B=\overline{\Gamma}\backslash \overline{X}$ . In this section let $\mathcal{R}=\mathcal{R}^{0}(\Gamma, G)$ and $\mathcal{T}=\mathcal{T}^{0}(\Gamma, G)$ be the
connected components of $\mathcal{R}(\Gamma, G)$ and of $\mathcal{T}(\Gamma, G)$ containing $S=\Gamma\backslash X$

with given geometric structure $\rho_{0}\in \mathcal{R}$ and its equivalence class $[\rho_{0}]\in \mathcal{T}$

respectively.
First suppose that $B$ is hyperbolic. In this case $X=H^{2}\times E^{2}$

or $\overline{SL_{2}}\times E$ each of which is identified with $H\times C$ as in \S 1. Here-

after we adopt the same notations for $\Gamma$ , $\overline{\Gamma}$ and $S$ as in \S 1 and we
assume that the monodromies of $S$ satisfy the conditions in Proposi-
tion 1. Now we will describe $\mathcal{T}^{0}(\Gamma, G)$ as a differentiable family of the
complex structures on $S$ . Let $S_{\rho}$ be the Seifert 4-manifold $S$ with the
geometric structure corresponding to $\rho\in \mathcal{R}$ and $[\rho]$ be its equivalence
class in $\mathcal{T}$ respectively. For simplicity put $S_{0}=S_{\rho o}$ and let $\Theta_{0}$ be the
sheaf of germs of holomorphic tangent vector fields on $S_{0}$ . First recall

that $\mathcal{T}=\overline{I}\times T_{0}\times H^{1}(\overline{\Gamma}, C^{\phi})$ . Here $\overline{\mathcal{T}}$ is (the connected component

of) the Teichm\"uller space of $B=\overline{\Gamma}\backslash H$ or equivalently of the Fuchsian

group $\overline{\Gamma}$ , $\phi$ is the monodromy representation for $S$ , and $T_{0}$ is the identity
component of $T_{1}$ in \S 1. Put

$\overline{T}_{0}=\{$

$H$ if $\phi\equiv\pm id$

1 otherwise

and let $\overline{I}=\overline{I}\times\overline{T}_{0}\times H^{1}(\overline{\Gamma}, C^{\phi})$ . Then $\overline{\mathcal{T}}$ denotes the Teichm\"uller space
of the geometric structures which fix the area of the general fiber (if $X=$
$H^{2}\times E^{2})$ . On the other hand the Teichm\"uller space $T$ for the Fuchsian

group $\overline{\Gamma}$ is realized as a bounded domain in $C^{3g-3+r}$ . Moreover there is

a fiber space $\overline{C}=\{(z, \tau)\in C\times\overline{\mathcal{T}}|z\in D(\tau)\}$ over $\overline{\mathcal{T}}$ where $D(\tau)$ is a

domain in $C$ on which a quasi-Fuchsian group $\overline{\Gamma}^{\tau}$ corresponding to $\tau$ acts
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([1]). $\overline{C}$ has a complex structure such that the map $(z, \tau)\rightarrow(\tau(\alpha)z, \tau)$

for any $\alpha\in\overline{\Gamma}$ is holomorphic. Here $\tau(\alpha)$ acts on $z\in D(\tau)$ via $\overline{\Gamma}^{\tau}$

. It

follows that for any $\tau\in\overline{I}$ we have a biholomorphism $h_{\tau}$ : $H\rightarrow D(\tau)$ and

a representation $\overline{\rho}\in\overline{\mathcal{R}}$ with $[\overline{\rho}]=\tau$ such that $\tau(\alpha)\cdot h_{\tau}(z)=h_{\tau}(\overline{\rho}(\alpha)z)$

for any $z\in H$ , $\alpha\in\overline{\Gamma}$ .

If $X=H^{2}\times E^{2}$ then $h_{\tau}$ is lifted to $h_{\tau}\times id:H\times C\rightarrow D(\tau)\times C$ such
that it commutes with the translations in the $C$-factor. On the other
hand we can choose the elements $m_{1}$ , $\ldots$ , $m_{d}$ of $C^{1}(\overline{\Gamma}, C^{\phi})$ which maps

to the basis of $H^{1}(\overline{\Gamma}, C^{\phi})$ where $d=dim_{C}H^{1}(\overline{\Gamma}, C^{\phi})$ . Thus we have the

family of representations of $\Gamma$ on $\overline{C}\times C\times C^{d}\times T_{0}$ as follows. Let $\tau_{0}\in\overline{I}$

be the equivalence class of the element $\overline{\rho_{0}}\in\overline{\mathcal{R}}$ determined by $\rho_{0}$ . Then
$S_{0}$ is biholomorphic to $\overline{\Gamma}^{\tau_{0}}\backslash (D(\tau_{0})\times C)$ where $\rho_{0}$ is represented (via $\overline{\Gamma}^{\tau_{0}}$ )
as follows;

$\rho_{0}(\ell)(z, w)=(z, w+r_{0})$ ,

$\rho_{0}(h)(z, w)=(z, w+r_{0}h_{0})$ ,

$\rho_{0}(\alpha_{i})(z, w)=(\tau_{0}(\overline{\alpha_{i}})z, \phi(\overline{\alpha_{i}})w+w_{j}^{0})$ ,

$\rho_{0}(q_{i})(z, w)=(\tau_{0}(\overline{q_{\dot{\iota}}})z, w-a_{i}r_{0}/m_{i}-b_{i}r_{0}h_{0}/m_{i})$

where $(z, w)\in D(\tau_{0})\times C$ , $r_{0}\in R^{+}$ , $h_{0}\in H$ and $w_{j}^{0}\in C$ is defined as

in the proof of Theorem A. Then we have the following representations
$\rho=\rho(\tau, r, h, s)$ from $\overline{\Gamma}$ to the group of the biholomorphisms of $D(\tau)\times C$

where $s=(s_{1}, \ldots, s_{d})\in C^{d}$ , $\tau\in\overline{I}$ , $(r, h)\in T_{0}$ ( $h=h_{0}$ if $\phi\not\equiv\pm id$ ).

$\rho(\ell)(z, w)=(z, w+r)$ ,

$\rho(h)(z, w)=(z, w+rh)$ ,

$\rho(\alpha_{i})(z, w)=(\tau(\overline{\alpha_{i}})z, \phi(\overline{\alpha_{i}})w+w_{j}^{0}+\sum_{j=1}^{d}s_{j}m_{j}(\overline{\alpha_{i}}))$ ,

$\rho(q_{i})(z, w)=(\tau(\overline{q_{i}})z, w-a_{i}r/m_{i}-b_{i}rh/m_{i})$ .

Here $H^{1}(\overline{\Gamma}, C^{\phi})$ is identified with $C^{d}$ . Thus we get the fiber space $C$ over
$T$ obtained from $\overline{C}\times C\times T_{0}\times H^{1}(\overline{\Gamma}, C^{\phi})$ by the actions of $\rho$ defined above
such that the fiber of $C$ over $\tilde{\tau}\in I$ is an elliptic surface corresponding

to $\tilde{\tau}$ . Also we have the fiber space $\overline{C}$ over $\overline{\mathcal{T}}$ by restricting the above
representations to the cases with $r=r_{0}$ (the constant). The above
representation depends holomorphically on all the parameters except for
$r\in R^{+}$ (if $T_{0}$ has the $R^{+}$ -factor). Therefore we have the differentiate

family $C$ $\rightarrow \mathcal{T}$ and the complex analytic family $\overline{C}\rightarrow\overline{I}$ of the complex
structures on $S$ respectively.
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If $X=\overline{SL_{2}}\times E$ then $X$ is identified with $H\times C$ with coordinates
$(z, w)$ so that $w$ corresponds to $\log dz$ . Hence in this case $h_{\tau}$ : $H\rightarrow D(\tau)$

is lifted to the biholomorphism $h_{\tau}$ : $H\times C\rightarrow D(\tau)\times C$ defined by
$\overline{h_{\tau}}(z, w)=(h_{\tau}(z), w+\log(\partial h_{\tau}/\partial z)(z))$ where the branch of the $\log$ is

chosen so that $\overline{h_{\tau}}$ depends holomorphically on $\tau\in\overline{I}$ . Again $\overline{h_{\tau}}$ com-
mutes with the translation $(z, w)\rightarrow(z, w+c)$ with $c=a$ constant.
On the other hand we can define $\tilde{\rho}(\alpha):H\times C\rightarrow H\times C$ for $\alpha\in\Gamma$

such that $\overline{\alpha}_{i}=\tilde{\rho}(\alpha_{i})$ (where $\overline{\alpha}_{i}\in\overline{\Gamma}$ is hyperbolic), $\overline{q_{i}}=\tilde{\rho}(q_{i})$ (where
$\overline{q}_{i}\in\overline{\Gamma}$ is elliptic) satisfy the same conditions as $\overline{\alpha}_{i},\overline{q_{i}}$ stated in the

proof of Theorem A. Thus for $\overline{\rho}\in\overline{\mathcal{R}}$ with $[\overline{\rho}]=\tau\in\overline{\mathcal{T}}$ , we can define
$\tilde{\tau}(\alpha):D(\tau)\times C\rightarrow D(\tau)\times C$ for $\alpha=\alpha_{i}$ or $q_{i}$ which covers $\tau(\overline{\alpha})$ such

that $\overline{h_{\tau}}\tilde{\tau}(\alpha)=\tilde{\rho}(\alpha)\overline{h_{\tau}}$ where $\overline{\alpha}$ is the image of $\alpha$ in $\overline{\Gamma}$ . Using this lift we
can define the family of representations parametrized by $\mathcal{T}$ (in this case
$\overline{\mathcal{T}}=I$ since there is no $R$-factor in T) as in the case with $X=H^{2}\times E^{2}$ .

Thus we also get the analogous family of complex structures on $S$ .

Next we will describe the Kodaira-Spencer’s infinitesimal deforma-
tion map

$\Phi:T_{0}I\rightarrow H^{1}(S_{0}, \Theta_{0})$

where $T_{0}I$ is the tangent space of $\mathcal{T}$ at $S_{0}$ (or equivalently at $[\rho_{0}]$ ).
Since the base orbifold $B$ of $S$ is hyperbolic in our case here $T$ is homeo-
morphic to a euclidean space and is homeomorphic to $T_{0}I$ . To describe
$H^{1}(S_{0}, \Theta_{0})$ we recall some results in [8]. Let $T^{1}$ be the complex torus
of dimension 1. For a holomorphic Seifert fibering $S=\Gamma_{\rho}\backslash X$ with
$\Gamma_{\rho}=\rho(\Gamma)\subset G$ , the base orbifold $B$ is naturally a nonsingular curve $B_{\rho}$

of the form $\overline{\Gamma}_{\rho}\backslash \overline{X}$ where $\overline{X}=H$ or $C$ , $\overline{\Gamma}_{\rho}=\pi_{1}^{orb}B$ . (In [8], $S$ , $\overline{X}$ , $B$ , $\overline{\Gamma}$

are denoted by $M$ , $W$, $V$, $N$ respectively.) Then $\overline{S}\rightarrow\overline{X}$ induced by the

covering projection $\overline{X}\rightarrow B$ is a principal $T^{1}-$bundle and $\overline{S}=\overline{X}\times T^{1}([8$ ,

1, 7] in which $\overline{S}$ is denoted by $B$ ). Let $Z^{2}$ , $\mathcal{O}$ , $\mathcal{T}^{1}$ be the sheaves over $\overline{X}$

of germs of local holomorphic maps from $\overline{X}$ into $Z^{2}$ , $C$ , $T^{1}$ respectively.

Then the action of $\overline{\Gamma}$ on $\overline{S}$ is defined by the element $m\in H^{1}(\overline{\Gamma}, I^{1})$ .

Here $H^{1}(\overline{\Gamma}, \mathcal{T}^{1})=H^{1}(\overline{\Gamma}, H^{0}(\overline{X}, I^{1})^{\phi})$ where the coefficients $H^{0}(\overline{X}, \mathcal{T}^{1})$

on the right hand side is the space of global holomorphic maps on $\overline{X}$

and is twisted by the monodromy representation $\phi:\overline{\Gamma}\rightarrow GL_{1}$ C. The el-

ement $m$ is represented by a crossed homomorphism $m:\overline{\Gamma}\rightarrow H^{0}(\overline{X}, I^{1})$

such that $m(x, \alpha)$ for a fixed $\alpha\in\overline{\Gamma}$ is a holomorphic map from $\overline{X}$ to $T^{1}$

$(x\in\overline{X})$ satisfying

$m(x, \alpha\beta)=\phi(\alpha)m(\alpha^{-1}x, \beta)+m(x, \alpha)$ for $\alpha$ , $\beta\in\overline{\Gamma}$

where $\overline{\Gamma}$ acts on $\overline{X}$ via $\overline{\rho}$ and $\phi(\alpha)$ gives the automorphism of $T^{1}$ since
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it preserves the lattice of the fiber. The action of $\overline{\Gamma}$ on $\overline{S}=\overline{X}\times T^{1}$ is
given by

$\alpha(x, t)=(\alpha x, \phi(\alpha)t+m(\alpha x, \alpha))$ for $\alpha\in\overline{\Gamma}$ , $x\in\overline{X}$ , $t\in T^{1}$

(see [8, 7.2]). From the exact sequence

$0-Z^{2}\rightarrow \mathcal{O}\rightarrow I^{1}\rightarrow 0$

we have the exact sequence

$H^{1}(\overline{\Gamma}, H^{0}(\overline{X}, \mathcal{O})^{\phi})\rightarrow H^{1}\eta(\overline{\Gamma}, H^{0}(\overline{X}, \mathcal{T}^{1})^{\phi})\rightarrow H^{2}(\overline{\Gamma}, Z^{2^{\phi}})c$

where $c(m)$ represents the extension $1\rightarrow Z^{2}\rightarrow\Gamma\rightarrow\overline{\Gamma}\rightarrow 1$ . On the

other hand $H^{1}(S_{0}, \Theta_{0})$ is described by the following exact sequences ([8,

\S 2]).

(1) 0– $D\rightarrow H^{1}(S_{0}, \ominus_{0})\rightarrow G\rightarrow 0$

(2) $O\rightarrow F\rightarrow G\rightarrow H\rightarrow 0$

(3) 0– $C\rightarrow D\rightarrow E\rightarrow 0$

where the exact sequence (3) splits ([8, 4]). Here

(4) $E=$ { $a\in C;a\overline{\phi(\alpha)}=\phi(\alpha)a$ for all $\alpha\in\overline{\Gamma}$ }

corresponds to fiber deformations ([8, Theorem 7.10, 4]). Note that in

our cases $\phi(\alpha)$ is a root of unity for any $\alpha$ when the base is hyperbolic
(1) and it suffices to consider the cases with trivial monodromies when
the base is not hyperbolic (in the case of euclidean base orbifolds, we

have only to consider the cases (1-1), (1-2), (II-1) and (II-2) in \S 2). Thus

the kernel of $\phi$ has finite index in $\overline{\Gamma}$ and then the assumption in [8, \S 7]
is automatically satisfied. Hence we have

$E=\{$
$C$ , if $\phi(\alpha)=\pm 1$ for any $\alpha\in\Gamma$

0, otherwise.

The subspace $C$ in (3) corresponds to the twist deformations com-
ing from the the complex analytic family of the form $ m+\eta(s\ell)\in$

$H^{1}(\overline{\Gamma}, H^{0}(\overline{X}, \mathcal{T}^{1})^{\phi})$ for $\ell\in H^{1}(\overline{\Gamma}, H^{0}(\overline{X}, \mathcal{O})^{\phi})$ , $s\in C([8, \S 3])$ . In our
case by [8, \S 7] we have

(5) $C=H^{1}(\overline{\Gamma}, H^{0}(\overline{X}, \mathcal{O})^{\phi})$
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unless $g=1$ , $r=0$ . The subspace $F$ in (2) corresponds to the base
deformations and by [8, \S 7], we have

(6) $F=H^{1}(\overline{\Gamma}, \Theta_{\overline{X}})=H^{1}(B, \Theta_{B|d})$

where $B=B_{\rho o}$ is considered as a nonsingular curve, $d=\sum_{i=1}^{r}p_{i}$ is the
divisor corresponding to the cone point $p_{i}$ and $\Theta_{B|d}$ is the sheaf of germs
of holomorphic tangent vector fields on $B$ which vanish on $d$ . Finally the
element of the space $H$ represents (if it is not obstructed) a deformation
of $S$ which destroys the fiber structure. By [8, Theorem 7.13] we have

(7) $H=0$ unless $g=1$ , $r=0$ or $g=0$ , $r<3$ .

Now we consider the Kodaira Spencer map $\Phi:T_{0}\mathcal{T}\rightarrow H^{1}(S_{0}, \Theta_{0})$ for

the case with $X=H^{2}\times E^{2}$ . The tangent space $T_{0}\mathcal{T}$ is homeomorphic

to $T_{0}\overline{\mathcal{T}}\times \mathcal{F}_{0}$ where $\mathcal{F}_{0}=T_{0}\times H^{1}(\overline{\Gamma}, C^{\phi})$ and $T_{0}=R^{+}\times H$ if $\phi\equiv\pm id$ ,
$T_{0}=R^{+}$ if $\phi\neq\pm id$ . The derivatives of the family of representations
defined above span $T_{0}\mathcal{T}$ and the discussions in \S 3-\S 5 in [8] show that
the Kodaira Spencer map preserves the fiber structure as is indicated
by the following commutative diagram.

$T_{0}\mathcal{T}\rightarrow\Phi H^{1}(S_{0}, \Theta_{0})$

(8)
$\downarrow$ $\downarrow$

$T_{0}\overline{\mathcal{T}}\rightarrow\overline{\Phi}$

$F$

Here the vertical maps are the projections of the fibrations and $\overline{\Phi}$ gives
the infinitesimal deformation map for the Teichm\"uller space of the r-

pointed Riemann surface of genus $g$ at $B=B_{\rho o}$ . We have $T_{0}\overline{\mathcal{T}}=$

$R^{2(3g-3+r)}([6])$ , $dim_{C}F=3g-3+r$ ( $[8$ , Lemma 7.3]) and $\overline{\Phi}$ is a
homeomorphism. Here we note that if two geometric Seifert 4-manifolds
$S=\Gamma\backslash X$ , $S’=\Gamma’\backslash X$ (with $X=H\times C$ ) over the hyperbolic 2-orbifolds
$B$ , $B’$ are biholomorphic then $B$ and $B’$ are isometric. For, any biholo-
morphism $\varphi:S\rightarrow S’$ is lifted to a biholomorphism $\tilde{\varphi}$ from $H\times C$ to itself
such that there is an automorphism $\psi:\Gamma\rightarrow\Gamma’$ satisfying $\tilde{\varphi}(\gamma(z, w))=$

$\psi(\gamma)(\tilde{\varphi}(z, w))$ for $(z, w)\in H\times C$ , $\gamma\in\Gamma$ . Here $\Gamma$ and $\Gamma’$ have the exact

sequences $1\rightarrow\Gamma_{0}\rightarrow\Gamma\rightarrow\overline{\Gamma}\rightarrow 1$ and $1\rightarrow\Gamma_{0}’\rightarrow\Gamma’\rightarrow\overline{\Gamma}^{J}\rightarrow 1$ such

that $\overline{\Gamma}=\pi_{1}^{orb}B$ , $\overline{\Gamma}’=\pi_{1}^{orb}B’$ and $\Gamma_{0}$ , $\Gamma_{0}’$ correspond to the fundamental
groups of the general fibers respectively. Moreover $\psi$ induces the isomor-

phism between $\Gamma_{0}$ and $\Gamma_{0}’$ and also induces the isomorphism $\overline{\psi}:\overline{\Gamma}\rightarrow\overline{\Gamma}’$ .

On the other hand $\Gamma_{0}$ and $\Gamma_{0}’$ act on $H\times C$ by the translations in the
$C$-factor since $S$ and $S’$ are geometric (of type $H^{2}\times E^{2}$ or $\overline{SL}_{2}\times E$ ).
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Hence if we write $\tilde{\varphi}(z, w)=(h(z, w),$ $k(z, w))\in H\times C$ , then $h(z, w)$ is
invariant under the action of $\Gamma_{0}$ in the $w$-coordinate. Since $\Gamma_{0}$ has rank
2, $h(z, w)$ depends only on $z$ , i.e., $h(z, w)=h(z)$ which gives a biholo-
morphism from $H$ to itself and $\tilde{\varphi}$ descends to an isometry $h:H\rightarrow H$ .

Since we have $h(\overline{\gamma}(z))=\overline{\psi}(\overline{\gamma})h(z)$ for $z\in H$ , $\overline{\gamma}\in\overline{\Gamma}$ we can see that $B$

and $B’$ are isometric. Thus by the fact that the action of Aut $\overline{\Gamma}$ on the
Teichm\"uller space of $B$ is properly discontinuous we can see directly that
the kernel of $\overline{\Phi}$ induced from $\Phi$ above is zero. Thus $\overline{\Phi}$ is an isomorphism
(compare the dimensions of the spaces in (8)). Moreover $\Phi$ induces the
map between the fibers of the projections in (8) of the form

(9) $H^{1}(\overline{\Gamma}, C^{\phi})\times T_{0}\rightarrow C\Phi_{1}\times\Phi_{2}\times E$ .

If $\phi\equiv\pm id$ then $E=C$ such that small $s\in C$ determines the complex
structure of the general fiber whose period matrix is given by $\Omega(s)=$

$(1 +s, h_{0}+s\overline{h_{0}})$ where $\Omega(0)$ corresponds to that for the original $S_{0}$

([8, Lemma 4.5] ). We have the representations $\rho$ parametrized by $s$

in the above family whose $T_{0}$-component $h(s)$ satisfies $h(s)=(h_{0}+$

$s\overline{h_{0}})/(1+s)$ and $\Phi(\partial/\partial s)$ corresponds to 1 ([8, 4]). Thus $\Phi_{2}$ maps
$T_{0}$ onto $E$ whose kernel is the $R^{+}$ -component of $T_{0}$ represented by the
parameter detecting the deformation of the area of the general fiber. On
the other hand $C=H^{1}(\overline{\Gamma}, H^{0}(\overline{X}, \mathcal{O})^{\phi})$ and $\Phi_{1}$ is the map $ H^{1}(\overline{\Gamma}, C^{\phi})\rightarrow$

$H^{1}(\overline{\Gamma}, H^{0}(\overline{X}, \mathcal{O})^{\phi})$ induced by the natural inclusion $C\subset H^{0}(\overline{X}, \mathcal{O})$ .

Moreover by the naturality of the spectral sequences (used in [8]) we
have the following commutative diagram.

$H^{1}(\overline{\Gamma}, C^{\phi})$
$\rightarrow\Phi_{1}H^{1}(\overline{\Gamma}, H^{0}(\overline{X}, \mathcal{O})^{\phi})$

$\uparrow\varphi_{1}$ $\uparrow\varphi_{2}$

$\Phi’$

$ H^{1}(B, C(Q))\rightarrow$ $H^{1}(B, \mathcal{O}(Q))$

Here $Q$ is the flat $C$-bundle over $B=B_{\rho_{0}}$ determined by the mon-
odromy representation $\phi$ which can be considered as the representation
of $\pi_{1}(B_{\rho o})$ (see \S 1). The coefficient $C(Q)$ (resp. $\mathcal{O}(Q)$ ) is the sheaf of
the germs of locally constant (resp. holomorphic) sections of $Q$ and $\varphi_{1}$

and $\varphi_{2}$ are the isomorphisms ([8, 7]). The map $\Phi’$ is the part of the
following exact sequence (in which the base $B$ is omitted)

$0\rightarrow H^{0}(C(Q))\rightarrow H^{0}(\mathcal{O}(Q))\rightarrow H^{0}(\Omega^{1}(Q))$

$\Phi’$

$\rightarrow H^{1}(C(Q))\rightarrow H^{1}(\mathcal{O}(Q))\rightarrow H^{1}(\Omega^{1}(Q))$
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which comes from the exact sequence

$\partial$

0– $C(Q)\rightarrow \mathcal{O}(Q)\rightarrow\Omega^{1}(Q)\rightarrow 0$ .

Here $\Omega^{1}$ is the sheaf of the germs of holomorphic 1 forms on the non-
singular curve $B$ . By the Riemann-Roch theorem (and since $c_{1}(Q)=0$ )
dime $H^{0}(\Omega^{1}(Q))=$ dime $H^{1}(\mathcal{O}(Q))$ equals $g$ if $\phi=id$ and equals
$g$ $-1$ otherwise (cf. [8, \S 7] ). Comparing this with $dim_{C}H^{1}(C(Q))=$

$dim_{C}H^{1}(\overline{\Gamma}, C^{\phi})$ which equals $2g$ if $\phi\equiv id$ and $2g$ $-2$ otherwise we
deduce the exact sequence

$\Phi’$

$O\rightarrow H^{0}(\Omega^{1}(Q))\rightarrow H^{1}(C(Q))\rightarrow H^{1}(\mathcal{O}(Q))\rightarrow 0$ .

Hence the kernel of $\Phi_{1}$ is isomorphic to $H^{0}(B, \Omega^{1}(Q))$ . The same argu-

ment holds for the case with $X=\overline{SL_{2}}\times E$ except for the fact that the
kernel of $\Phi_{2}$ is trivial since there is no $R^{+}$ -component in $T_{0}$ . Thus we
have

Theorem C-l. The Kodaira Spencer map $\Phi$ for the Teichm\"uller

space $\mathcal{T}$ for the Seifert 4-manifold $S$ over the closed orientable hyper-
bolic 2-orbifold $B$ with any given representation $\rho\in$ $T$ is surjective
and the kernel of $\Phi:T_{0}\mathcal{T}\rightarrow H^{1}(S, \Theta)$ at $S=S_{\rho}$ is homeomorphic to

$H^{0}(B, \Omega^{1}(Q))\times R^{+}(ifX=H^{2}\times E^{2})$ or $H^{0}(B, \Omega^{1}(Q))(ifX=\overline{SL_{2}}\times E)$

for the base curve $B$ determined by $\rho$ . The subspace $\mathcal{T}$ of $\mathcal{T}$ defifined above
gives a locally complete complex analytic family of the complex structures
on $S$ .

The last statement comes from [4]. We can see directly that any
deformation in the subspace $H^{0}(B, \Omega^{1}(Q))$ of $T_{0}\mathcal{T}$ (which depends on
the choice of $\rho\in \mathcal{T}$ ) does not change the complex structure as fol-
lows. Take any $w\in H^{0}(B, \Omega^{1}(Q))$ . Lift $w$ to the 1-form on $H$ which
is represented as $ d\psi$ for some holomorphic function $\psi$ on $H$ satisfying
$d\psi(\alpha z)=\phi(\alpha)d\psi(z)$ for any $\alpha\in\overline{\Gamma}$ , $z\in H$ . Taking the integral we de-
duce that $b(\alpha)=\psi(\alpha z)-\phi(\alpha)\psi(z)$ is a constant. Furthermore we have
$b(\alpha\beta)=b(\alpha)+\phi(\alpha)b(\beta)$ . If $\alpha$ is a torsion then we can choose the fixed

point of $\alpha$ as $z$ and hence $b(\alpha)=0$ . The image of $b(\alpha)$ in $H^{1}(\overline{\Gamma}, C^{\phi})$

maps to 0 in $H^{1}(\overline{\Gamma}, H^{0}(H, \mathcal{O})^{\phi})$ since $b(\alpha)=\psi(z)-\phi(\alpha)\psi(\alpha^{-1}z)$ and
conversely any element in the kernel of $\Phi_{1}$ can be represented by the
above way. Then the biholomorphic automorphism of $H\times C$ defined
by $(z, w)\rightarrow(z, w+s\psi(z))$ for $s\in C$ descends to the biholomorphism
between $S_{\rho}$ and $S_{\rho’}$ such that the difference $m_{\rho’}-m_{\rho}$ of the parameters

in $H^{1}(\overline{\Gamma}, C^{\phi})$ is $sb$ and all the other parameters are the same.
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Next consider the case when $B$ is euclidean and $S$ has a complex
structure. If $g=1$ , $r=0$ ( $B$ is a torus) then we can assume that $S$

is either $T^{4}$ (a complex torus) or a primary Kodaira surface. In the

first case $X=E^{4}$ , $G=Isom^{0}E^{4}$ . However since the complex structure
of $X$ is not preserved by $G$ but is preserved by $G’=E^{4}\lambda U(2)$ we
consider $\mathcal{T}’=the$ identity component of $I(\Gamma, G’)$ in this case. Then
$\mathcal{T}’=U(2)\backslash GL_{4}^{+}R$ and this is realized by the family of translations $\rho$

defined by
$\rho(\alpha_{i})(z, w)=(z+w_{i1}, w+w_{i2})$

for the generators $\alpha_{i}$ , $(i=1, \ldots, 4)$ in $\Gamma=Z^{4}$ such that

$w_{12}=0$ , $w_{11}$ , $w_{22}\in R^{+}$ , $\det(\Re w_{ij}, \propto sw_{ij})>0$

where $(\Re w_{ij}, \propto sw_{ij})$ is the matrix of rank 4 defined by $\Re w_{ij},$ $\propto sw_{ij}$ for
$i,j=1$ , $\ldots$ , 4. Thus we have a differentiate family $C$ over $\mathcal{T}’$ of the
complex structures on S. $\mathcal{T}’$ contains the subfamily (which is complex
analytic) consisting of the representations with

$w_{11}=w_{22}=1$ , $w_{12}=w_{21}=0$ , $\det(\propto s(w_{ij})_{i,j=3,4})>0$

which is complete and effectively parametrized ([3]). It follows that the
Kodaira Spencer map for $\mathcal{T}’$ at any point is surjective. In the second case
$X=Ni1^{3}\times E$ and $\mathcal{T}$ is homeomorphic to $R^{+}\times H\times R^{2}\times H$ . Here the $R^{+}-$

factor, the first $H$-factor, the last $H$-factor and the $R^{2}$ -factor correspond
to the area of the base, the period of the base, the period of the fiber
(the image of one of the lattices of the fiber is uniquely determined and
not deformed) and the twisting parameters for the fibrations respectively
(see \S 2). Hence we have a differentiate family $C$ $\rightarrow \mathcal{T}$ of the complex

structures. On the other hand in the decomposition of $H^{1}(S, \ominus)$ we have

$E=F=C([8])$ . Since the canonical divisor $K$ of $S$ is trivial there is

an isomorphism $\Theta\cong\Omega^{1}$ and hence $dim_{C}H^{1}(S, \Theta)=h^{1,1}=2$ since the

Hodge numbers satisfy $h^{0,2}=h^{2,0}=1$ and $b_{2}=h^{2,0}+h^{0,2}+h^{1,1}=4$ .

It follows that $C=H=0$ and as in the cases when $B$ is hyperbolic the
Kodaira Spencer map is surjective with kernel $=R^{+}\times R^{2}$ .

Finally consider the case when $B$ is euclidean of genus 0. In this case
$\mathcal{T}=I_{0,r}\times H\times R^{+}$ if $X=E^{4}$ and $\mathcal{T}=I_{0,r}\times H$ if $X=Ni1^{3}\times E$ . Here
$\mathcal{T}_{0,r}=R^{2(r-3)}\times R^{+}$ (with $r=3,4$ ) denotes the Teichm\"uller space of
the base orbifold $B$ where the first factor corresponds to the Teichm\"uller

space of an $r$-pointed Riemann surface of genus 0 (with fixed area) and
the $R^{+}$ -factor corresponds to the area of the base $B$ . The other factor
in $T$ corresponds to the deformations of the lattices of the fiber (in the

case with $X=Ni1^{3}\times E$ one of the lattices of the fiber has the fixed
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image and hence there is no $R^{+}$ -factor). If $r=3$ then the base $B$ is

parametrized by the area only and if $r=4$ then the $R^{2(r-3)}$ -factor is
identified with the Teichm\"uller space of the double covering torus of $B$

which is isomorphic to H. In either case we have the differentiable family
$C$ $\rightarrow \mathcal{T}$ of the complex structures of $S$ as in the arguments in \S 2. (In the
case with $X=E^{4}$ , $g$ $=0$ we can choose the representatives $\rho$ for $\mathcal{T}$ such
that the image of $\rho$ lies in $E^{4}>\triangleleft U(1)$ and hence we do not need to restrict
$G$ to the subgroup $ E^{4}\lambda$

$U(2).)$ On the other hand in the decomposition
of $H^{1}(S_{0}, \Theta_{0})$ we have $C=H=0$ , $E=C$ , $F=C^{r-3}$ and we can argue
as in the case when $B$ is hyperbolic. Thus we obtain

Theorem C-2. Let $S$ be a Seifert 4-manifold over some orientable
hyperbolic or euclidean 2-orbifold $B$ which admits a complex structure.
Then $S$ has a geometric structure of type $(X, G)$ with $X=H^{2}\times E^{2}$ ,
$\overline{SL_{2}}\times E$ , $E^{4}$ or Nil3 $\times E$ and $G=Isom^{0}$ X. Let I be the identity compo-
nent of the Teichm\"uller space $I(\Gamma, G)$ where $\Gamma=\pi_{1}$X. (In the case when
$S=T^{4}$ restrict $G$ to $ E^{4}\lambda$ $U(2).)$ Then $\mathcal{T}$ gives a differentiable family

of complex structures on $S$ such that the infifinitesimal deformation map
at any point in I is surjective.

Remark. The statements in Theorem C-2 do not hold in general for
a Seifert 4-manifold $S$ over a closed orientable spherical or bad 2-orbifold
$B$ . In this case $S$ is either a ruled surface of genus 1 (with $X=S^{2}\times E^{2}$ )

or a Hopf surface (with $X=S^{3}\times E$ ). In either case not every complex
structure on $S$ comes from the geometric one nor every differentiable
family of the complex structures containing the geometric one comes
from the Teichm\"uller space of the geometric structures. In general the
dimension of $H^{1}(S, \Theta)$ (which is not constant) can be greater than that
of the Teichm\"uller space (cf. [9], [14], [2], [12]).

\S 4. A remark on the moduli spaces

In this section we give a remark on the moduli space $\lambda\Lambda(\Gamma, G)$ for
a geometric Seifert 4-manifold $S=\Gamma\backslash X$ over a closed orientable hyper-

bolic base orbifold $B=\overline{\Gamma}\backslash \overline{X}$ with $\Gamma\subset G=Isom^{0}X$ . We adopt the
representations of $\Gamma$ given in \S 1 and also assume that the monodromy
matrices $A_{1}$ , $\ldots$ , $A_{2g}$ satisfy the conditions in Proposition 1. In this case
the fibration of $S$ is unique and then every element $\varphi$ of Aut $\Gamma$ induces

the automorphism $\overline{\varphi}$ of $\overline{\Gamma}$ and also induces the automorphism of $Z^{2}$

generated by $\ell$ , $h$ . Put $\pi_{*}=\prod[\alpha_{2j-1}, \alpha_{2j}]\prod q_{j}$ .

Proposition 2. Any element $\varphi\in Aut\Gamma$ must be of the following
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form.

$\varphi(\alpha_{i})=\tilde{\varphi}(\alpha_{i})\ell^{s_{i}}h^{t_{i}}$

$\varphi(q_{j})=\tilde{\varphi}(q_{j})\ell^{u_{j}}h^{v_{j}}$

$(\varphi(\ell), \varphi(h))=(\ell, h)P$.

Here $P\in GL_{2}Z$ and $\tilde{\varphi}(\alpha_{i}),\tilde{\varphi}(q_{j})$ are the words of $\alpha_{1}$ , $\ldots$ , $\alpha_{2g}$ , $q_{1}$ , $\ldots$ , $q_{r}$

satisfying

$\tilde{\varphi}(q_{j})=\mu_{j}q_{\nu(j)}^{\sigma}\mu_{j}^{-1}$

$\tilde{\varphi}(\pi_{*})=\mu\pi_{*}^{\sigma}\mu^{-1}$

where $\sigma=\pm 1$ , $\mu$ , $\mu_{j}$ are some words of $\alpha_{1}$ , $\ldots$ , $\alpha_{2g}$ , $q_{1}$ , $\ldots$ , $q_{r}$ and
$lJ:(1, \ldots, r)\rightarrow(l/(1), \ldots, \nu(r))$ is a permutation. We have further con-
ditions on the above parameters and the words as follows. Let $\epsilon_{i}$ , $\eta_{j}$ , $\eta$

be the exponent sums of $\alpha_{1}$ in $\tilde{\varphi}(\alpha_{i})$ , $\mu_{j}$ , $\mu$ respectively.

(0) $m_{\iota/(i)}=m_{i}$

(1) $P^{-1}A_{1}^{\epsilon_{i}}P=A_{i}$

(2) $\left(\begin{array}{l}u_{j}\\v_{j}\end{array}\right)=\sigma A^{\eta_{j}}$ $\left(\begin{array}{l}a_{I/(j)}/m_{\nu(j)}\\b_{\iota,(j)}/m_{\nu(j)}\end{array}\right)$ $-P$ $\left(\begin{array}{l}a_{j}/m_{j}\\b_{j}/m_{j}\end{array}\right)$

(3) $\sigma A_{1}^{\eta}$ $\left(\begin{array}{l}a\\b\end{array}\right)$ $+\sigma\sum A_{1}^{\eta_{j}}$ $\left(\begin{array}{l}a_{\iota/(j)}/m_{\iota/(j)}\\b_{\iota,(j)}/m_{\nu(j)}\end{array}\right)$ $+(A_{1}-I)$ $\left(\begin{array}{l}s_{2}\\t_{2}\end{array}\right)=$

$P$ $\left(\begin{array}{l}a+\Sigma a_{i}/m_{i}\\b+\Sigma b_{i}/m_{i}\end{array}\right)$

Sketch of Proof. The proof is similar to that of [7, \S 5, Lemma 4,

Theorem 5] (1) and (2) are derived from the relations $\alpha_{i}(\ell, h)\alpha_{i}^{-1}=$

$(\ell, h)A_{i}$ , $q_{j}^{m_{j}}\ell^{a_{j}}h^{b_{j}}=1$ . (3) comes from (1), (2) and the remaining relsL-

tion $\prod[\alpha_{2j-1}, \alpha_{2j}]\prod q_{j}=\ell^{a}h^{b}$ .

The map $\varphi\rightarrow\overline{\varphi}$ induces the homomorphism $q$ : Aut $\Gamma\rightarrow Aut\overline{\Gamma}$

which descends to a homomorphism $\overline{q}$ : Out $\Gamma\rightarrow$ Out $\overline{\Gamma}$ . Let Aut $(\overline{\Gamma}, q)$

and Out $(\overline{\Gamma}, \overline{q})$ be the images of $q$ and $\overline{q}$ respectively. Also put $K=$
$q^{-1}$ (Inn $\overline{\Gamma}$). Then since $q$ maps Inn $\Gamma$ onto Inn $\overline{\Gamma}$ the natural projection
$\pi$ : Aut $\Gamma\rightarrow Out\Gamma$ maps $K$ onto $\overline{K}=ker\overline{q}$ and we have the following
commutative diagram with exact rows and columns.
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1 1

$\downarrow$ $\downarrow$

1 $\rightarrow Inn\Gamma\rightarrow$ $K$ $\rightarrow$
$\overline{K}$ $\rightarrow 1$

$||$ $\downarrow$ $\downarrow$

1 $\rightarrow Inn$ $\Gamma\rightarrow$ Aut $\Gamma$ $\rightarrow$ Out $\Gamma$ $\rightarrow 1$

$\downarrow$ $\downarrow\overline{q}$

Out $(\overline{\Gamma}, \overline{q})=Out$ $(\overline{\Gamma}, \overline{q})$

$\downarrow$ $\downarrow$

1 1

It is easy to see that the action of Aut $\Gamma$ (resp. Out $\Gamma$ ) preserves

the product fibration $\overline{\mathcal{F}}\rightarrow \mathcal{R}\rightarrow\overline{\mathcal{R}}$ for $\mathcal{R}=\mathcal{R}(\Gamma, G)$ , $\overline{\mathcal{R}}=\overline{\mathcal{R}}(\overline{\Gamma}, \overline{G})$

(resp. $\mathcal{F}\rightarrow I\rightarrow\overline{\mathcal{T}}$ for I $=I$ ( $\Gamma$ , $G$ ), $\overline{\mathcal{T}}=\overline{I}(\overline{\Gamma},$ $\overline{G})$ ) (given in \S 1) and

induces the natural action of Aut $(\overline{\Gamma}, q)$ (resp. Out ( $\overline{\Gamma}$ , $q$)) on $\overline{\mathcal{R}}$ (resp. $\overline{I}$).

Now we will check the action of $\overline{K}$ on $\mathcal{F}$ (note that $\overline{K}$ acts trivially

on $\overline{T}$). First suppose that $X=H^{2}\times E^{2}$ . Define $\rho_{0}=\rho 0(\ell_{0}, \lambda)\in \mathcal{R}$ by

$\rho 0(\ell)(z, w)=(z, w+\ell_{0})$

$\rho_{0}(h)(z, w)=(z, w+\ell_{0}\lambda^{-1})$

$\rho_{0}(\alpha_{1})(z, w)=(\overline{\rho}_{0}(\overline{\alpha}_{1})z, \phi(\overline{\alpha}_{1})w+w_{1}^{0})$

$\rho_{0}(\alpha_{i})(z, w)=(\overline{\rho}_{0}(\overline{\alpha}_{i})z, w+w_{i}^{0})$ $(i\geq 2)$

$\rho 0(q_{j})(z, w)=(\overline{\rho}_{0}(\overline{q}_{j})z, w-(a_{j}\ell_{0}+b_{i}\ell_{0}\lambda^{-1})/m_{j})$

where

$\ell_{0}\in R^{+\alpha},s\lambda\neq 0$ ,

$w_{j}^{0}=0$ for any $j$ if $A_{1}=I$

and if $A_{1}\neq I$

$w_{j}^{0}=\{$

$\ell_{0}((a+\sum a_{i}/m_{i})+(b+\sum b_{i}/m_{i})\lambda^{-1})/(\phi(\overline{\alpha}_{1})-1)$ if $j=2$

0 if $j\neq 2$ .
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(We can choose such $w_{j}^{0}$ . See the proof of Theorem A in \S 1.) Further-

more by the assumption in Proposition 1 we have

$\lambda=\phi(\overline{\alpha}_{1})=\exp(\pm 2\pi i/6)$ if $A_{1}=\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$

$\lambda=\phi(\overline{\alpha}_{1})=\exp(\pm 2\pi i/4)$ if $A_{1}=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$

$\lambda=\exp(\pm 2\pi i/6)$ , $\phi(\overline{\alpha}_{1})=\lambda^{2}$ if $A_{1}=\left(\begin{array}{ll}0 & 1\\-1 & -1\end{array}\right)$ .

There is no further restriction on $\lambda$ if $A_{1}=\pm I$ . Then the image $[\rho_{0}]\in I$

of $\rho_{0}$ belongs to the fiber $(\cong \mathcal{F}=T_{1}\times H^{1}(\overline{\Gamma}, C^{\phi}))$ of $\mathcal{T}$ over the image
$[\overline{\rho}_{0}]\in\overline{I}$ of $\overline{\rho}_{0}$ . Its $T_{1}$ -coordinates are detected by $(\ell_{0}, \lambda)$ and it corre-

sponds to 0 in the $H^{1}(\overline{\Gamma}, C^{\phi})$ -component. Now we take the subfamily
$\mathcal{R}_{0}$ of $\mathcal{R}$ with a fixed image $\overline{\rho}_{0}$ in $\overline{\mathcal{R}}$ whose elements $\rho=\rho(\ell_{0}, \lambda, m)$ are
defined by

$\rho(\ell)(z, w)=(z, w+\ell_{0})$

$\rho(h)(z, w)=(z, w+\ell_{0}\lambda^{-1})$

$\rho(\alpha_{1})(z, w)=(\overline{\rho}_{0}(\overline{\alpha}_{1})z, \phi(\overline{\alpha}_{1})w+w_{1})$

$\rho(\alpha_{i})(z, w)=(\overline{\rho}_{0}(\overline{\alpha}_{i})z, w+w_{z})$ $(i\geq 2)$

$\rho(q_{j})(z, w)=(\overline{\rho}_{0}(\overline{q}_{j})z, w-(a_{j}\ell_{0}+b_{j}\ell_{0}\lambda^{-1})/m_{j})$ .

Here $(\ell_{0}, \lambda)$ satisfies the same conditions as before and

$w_{i}=w_{i}^{0}+m(\overline{\alpha}_{i})$

where $m$ is a crossed homomorphism from $\overline{\Gamma}$ to $C^{\phi}$ (with $m(\overline{q}_{j})=0$ )

satisfying
$m(\overline{\alpha}_{1})=m(\overline{\alpha}_{2})=0$ if $A_{1}\neq I$ .

(There are no restrictions on $m(\overline{\alpha}_{j})$ if $A_{1}=I.$ ) Hence we have

$w_{1}=0$ , $w_{2}=w_{2}^{0}$ , $w_{j}=m(\overline{\alpha}_{j})(j\geq 3)$ if $\phi\not\equiv id$

$w_{j}=m(\overline{\alpha}_{j})$ for any $j$ if $\phi\equiv id$ .

We note that if $A_{1}\neq I$ then $w_{2}=w_{2}^{0}$ is fixed once $(\ell_{0}, \lambda)$ is fixed by

the relations (7), (8) in the proof of Theorem A (1) and any crossed

homomorphism $n:\overline{\Gamma}\rightarrow C^{\phi}$ with $n(\overline{\alpha}_{j})=0$ for $j\geq 2$ is contained in the

image of $\delta:C^{0}(\overline{\Gamma}, C^{\phi})\rightarrow C^{1}(\overline{\Gamma}, C^{\phi})$ . Therefore the $m$ ’s satisfying the

above conditions descend isomorphically onto $H^{1}(\overline{\Gamma}, C^{\phi})$ . Taking these
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facts into account we can see that the family $\mathcal{R}_{0}$ generated by $\rho(\ell_{0}, \lambda, m)$

whose parameters satisfy the above conditions is the subfamily of the

fiber over $\overline{\rho}_{0}\in \mathcal{R}$ whose $\mathcal{F}$-components give the representatives of $\mathcal{F}$ . To

check the action of $\overline{K}$ on $\overline{\mathcal{F}}$ , it suffices to find the element $\mu\in Inn$ $G$ for
given $\rho\in \mathcal{R}_{0}$ , $\varphi\in K$ ( $\mu$ may depend on $\rho$ and $\varphi$ ) such that $\mu\cdot\rho$

. $\varphi\in \mathcal{R}_{0}$

and examine the action of $\mu$
.

$\rho$
.

$\varphi$ (which is independent of $\overline{\rho}_{0}$ in the
$w$-coordinate). Since the action of $K$ commutes with that of Inn $G$ , it
suffices to consider the element $\varphi\in K$ of the following form.

$\varphi(\alpha_{\dot{0}})=\alpha_{i}\ell^{s_{i}}h^{t_{i}}$

(4) $\varphi(q_{j})=q_{j}\ell^{u_{j}}h^{v_{j}}$

$(\varphi(\ell), \varphi(h))=(\ell, h)P$

where $s_{i}$ , $t_{i}$ , $u_{i}$ , $v_{i}\in Z$ , $P\in GL_{2}Z$ satisfy

(5) $PA_{1}P^{-1}=A_{1}$

(6) $\left(\begin{array}{l}u_{j}\\v_{j}\end{array}\right)=(I-P)$ $\left(\begin{array}{l}a_{j}/m_{j}\\b_{j}/m_{j}\end{array}\right)$

(7) $(A_{1}-I)$ $\left(\begin{array}{l}s_{2}\\t_{2}\end{array}\right)=(P-I)$ $\left(\begin{array}{l}a+\Sigma a_{i}/m_{i}\\b+\Sigma b_{i}/m_{i}\end{array}\right)$ .

For such $\varphi\in K$ and $\rho\in \mathcal{R}_{0}$ denote the first and the second factors of
$\rho$

. $\varphi(\alpha)(z, w)$ by $\rho$
. $\varphi(\alpha)(z, w)_{i}(i=1,2)$ respectively for $\alpha\in\Gamma$ . Then

we have

(8) $\rho$
. $\varphi(\alpha)(z, w)_{1}=\{$

$\overline{\rho}_{0}(\overline{\alpha})z$ if $\alpha=\alpha_{i}$ or $q_{j}$

$z$ if $\alpha=\ell$ or $h$

and

$\rho\cdot\varphi(\alpha_{1})(z, w)_{2}=\phi(\overline{\alpha}_{1})(w+\ell_{0}(s_{1}+t_{1}\lambda^{-1}))+w_{1}$

$\rho$
. $\varphi(\alpha_{i})(z, w)_{2}=w+w_{i}+\ell_{0}(s_{i}+t_{i}\lambda^{-1})(i\geq 2)$

(9) $\rho\cdot\varphi(q_{j})(z, w)_{2}=w-\ell_{0}(a_{j}+b_{j}\lambda^{-1})/m_{j}+\ell_{0}(u_{j}+v_{j}\lambda^{-1})$

$\rho\cdot\varphi(\ell)(z, w)_{2}=w+\ell_{0}’$

$\rho\cdot\varphi(h)(z, w)_{2}=w+h_{0}’$

where $(\ell_{0}’, h_{0}’)=(\ell_{0}, \ell_{0}\lambda^{-1})P$. Let $K_{1}$ be the subgroup of $K$ consisting

of the elements satisfying $(4)-(7)$ with $P=I$ and let $\overline{K}_{1}$ be its image in
$\overline{K}$ . For any $\varphi\in K_{1}$ we deduce $u_{j}=v_{j}=0$ and if $A_{1}\neq I$ , $s_{2}=t_{2}=0$ .

Also let $K_{0}$ be the subgroup of $K_{1}$ generated by the elements of the
above forms with $s_{j}=t_{j}=0$ for $j\geq 2$ and $\overline{K}_{0}$ be its image in $\overline{K}$ . Note
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that $\overline{K}_{1}\cong K_{1}/(K_{1}\cap Inn\Gamma)$ , $\overline{K}_{0}\cong K_{0}/(K_{0}\cap Inn\Gamma)$ and $K_{1}\cap Inn$ $\Gamma=$

$K_{0}\cap Inn$ $\Gamma=InnZ^{2}$ where $Z^{2}$ is the subgroup of $\Gamma$ generated by $\ell$ and
$h$ . (This comes from the fact that $\overline{\Gamma}$ is centerless.) The element $\varphi\in K_{0}$

comes from Inn $Z^{2}$ if $\left(\begin{array}{l}s_{1}\\t_{1}\end{array}\right)=(A_{1}^{-1}-I)$ $\left(\begin{array}{l}s\\t\end{array}\right)$ and hence

$\overline{K}_{0}$ is finite if $A_{1}\neq I$ and moreover $\overline{K}_{0}=1$ if $A_{1}=\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$ .

Given $\rho\in \mathcal{R}_{0}$ and $\varphi\in K_{1}$ we take an inner automorphism $\mu$ by the

element $(z, w)\rightarrow(z, w+\phi(\overline{\alpha}_{1})(s_{1}\ell_{0}+t_{1}\ell_{0}\lambda^{-1})/(\phi(\overline{\alpha}_{1})-1))$ if $A_{1}\neq I$ .

Then we can see by the conditions on $w_{i}$ above for (8), (9) that the
correspondence $\rho\rightarrow\rho$

.
$\varphi$ (if $A_{1}=I$ ) or $\rho\rightarrow\mu\cdot\rho$

.
$\varphi$ (if $A_{1}\neq I$ ) gives a

map from $\mathcal{R}_{0}$ to itself such that the parameters are changed as follows.

$(\ell_{0}, \lambda)\rightarrow(\ell_{0}, \lambda)$

$m(\overline{\alpha_{i}})\rightarrow m(\overline{\alpha_{i}})+s_{i}\ell_{0}+t_{i}\ell_{0}\lambda^{-1}$

for $i\geq 1$ if $A_{1}=I$ and for $?$

.
$\geq 3$ if $A_{1}\neq I$ . (We can see from (7) that

the $w_{2}$ -parameter of $\mu\cdot\rho\cdot\varphi$ is the same as that for $\rho$ if $A_{1}\neq I.$ ) Since
$s_{?}.$ , $t_{i}$ ( $i\geq 1$ if $A_{1}=I$ and $i\geq 3$ if $A_{1}\neq I$ ) are arbitrary integers this

gives the action of $\overline{K}_{1}$ on $\mathcal{F}$ . Hence

$\mathcal{F}/\overline{K}_{1}\cong T_{1}\times H^{1}(\overline{\Gamma}, C^{\phi})/H^{1}(\overline{\Gamma}, Z^{2^{\phi}})$

with

$H^{1}(\overline{\Gamma}, C^{\phi})/H^{1}(\overline{\Gamma}, Z^{2^{\phi}})\cong\{$

$(T^{1})^{2g}$ if $A_{1}=I$

$(T^{1})^{2g-2}$ if $A_{1}\neq I$

where $T^{1}\cong C/Z^{2}$ is the complex torus of dimension 1 whose lattice is

generated by $\ell_{0}$ and $\ell_{0}\lambda^{-1}$ . Here we note that if $A_{1}\neq I$ then $\overline{K}_{0}$ is

the subgroup of $\overline{K}_{1}$ which acts trivially on $\mathcal{F}$ . Hence $\overline{K}_{1}$ (or $\overline{K}_{1}/\overline{K}_{0}$

if $A_{1}\neq I$ ) acts effectively and properly discontinuously on $\mathcal{F}$ . Next

consider the action of $\varphi\in K$ not decending to $\overline{K}_{1}$ .

Case (1). $A_{1}=\pm I$ . Put $P=\left(\begin{array}{ll}p & q\\r & s\end{array}\right)$ $\in GL_{2}Z$ for $\varphi\in K$ defined

in (4). Here $u_{j}$ , $v_{j}$ , $s_{2}$ , $t_{2}$ for $\varphi$ must be defined as elements in $Z$

according to (6) and (7) (if $A_{1}=I$ then (7) becomes obvious since the

right hand side of (7) is 0 in case $X=H^{2}\times E^{2}$ ). Then considering (8),

(9) for $\rho\in \mathcal{R}_{0}$ and $\varphi$ we can take an inner automorphism $\mu$ of the form
$(z, w)\rightarrow(z, \sigma w+c)$ for some $c\in C$ with $\sigma=|p+r\lambda^{-1}|/(p+r\lambda^{-1})$ such
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that the the correspondence $\rho\rightarrow\mu$
.

$\rho$
.

$\varphi$ gives a map from $\mathcal{R}_{0}$ to itself
of the form

$\lambda\rightarrow(p\lambda+r)/(q\lambda+s)$

$\ell_{0}\rightarrow|p+r\lambda^{-1}|\ell_{0}$

$m(\overline{\alpha}_{i})\rightarrow\sigma(m(\overline{\alpha}_{i})+s_{i}\ell_{0}+t_{i}\ell_{0}\lambda^{-1})$

for $i\geq 1$ if $A_{1}=I$ and for $i\geq 3$ if $A_{1}=-I$ .

Case (2). $A_{1}\neq\pm I$ . In this case we deduce from the conditions on
$\lambda$ above that

$(\ell_{0}, \ell_{0}\lambda^{-1})A_{1}’=(\lambda\ell_{0}, \ell_{0})$ for $A_{1}’=\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$

if $A_{1}=\left(\begin{array}{ll}0 & 1\\-1 & -1\end{array}\right)$ and

$(\ell_{0}, \ell_{0}\lambda^{-1})A_{1}=(\lambda\ell_{0}, \ell_{0})$

otherwise. Furthermore for the presentation of $\varphi$ in (4) we must have

$P=A_{1}^{k}$
’

(in case $A_{1}=$ $\left(\begin{array}{ll}0 & 1\\-1 & -1\end{array}\right)$ ) or $P=A_{1}^{k}$ (otherwise) for some

$k\in Z$ by the condition (5) and

$u_{j}$ , $v_{j}$ , $s_{2}$ , $t_{2}\in Z$

where these numbers are defined by (6) and (7) for the above $P$ (we
have assumed that $P\neq I$ since $\varphi\not\in K_{1}.$ ) Then in the presentation (9)
for $\rho\in \mathcal{R}_{0}$ , $\varphi\in K$ we have

$(\ell’, h’)=(\ell_{0}, \ell_{0}\lambda^{-1})P=(\lambda^{k}\ell_{0}, \lambda^{k-1}\ell_{0})$

for $P=A_{1}^{k}$ or $P=A_{1}^{k}$
’

as above. Hence taking an inner automorphism
$\mu$ by the element $(z, w)\rightarrow(z, \lambda^{-k}w+c)$ where

$c=\lambda^{-k}\phi(\overline{\alpha}_{1})(s_{1}\ell_{0}+t_{1}\ell_{0}\lambda^{-1})/(\phi(\overline{\alpha}_{1})-1)$

we can see that the correspondence $\rho\rightarrow\mu\cdot\rho\cdot\varphi$ gives a map from $\mathcal{R}_{0}$

to itself of the form

$(\ell_{0}, \lambda)\rightarrow(\ell_{0}, \lambda)$

$m(\overline{\alpha}_{i})\rightarrow\lambda^{-k}(m(\overline{\alpha}_{i})+s_{i}\ell_{0}+t_{i}\ell_{0}\lambda^{-1})$ $(i\geq 3)$ .
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In the cases when $A_{1}=\pm I$ the above correspondence shows that the
action of $\overline{K}$ on $\mathcal{F}$ preserves the product fibration of the form $ H^{1}(\overline{\Gamma}, C^{\phi})\times$

$R^{+}\rightarrow \mathcal{F}\rightarrow H\times Z_{2}$ (where $T_{1}=R^{+}\times H\times Z_{2}$ ) which induces the
properly discontinuous action on $H\times Z_{2}$ (which is identified with $\{\lambda\in$

$C|s^{\propto}\lambda\neq 0\})$ of the form $\lambda\rightarrow(p\lambda+r)/(q\lambda+s)$ for some matrix

$\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ $\in GL_{2}$Z. In the cases when $A_{1}\neq\pm I$ we have at most finite

number of possible choices for $P$ in the presentation of $\varphi$ above since $A_{1}$

(or $A_{1}’$ ) is periodic. Hence by the above correspondences and the action

of $\overline{K}_{1}$ (and taking the fact that $\overline{K}_{0}$ is finite if $A_{1}\neq I$ into account) we can

easily see that $\overline{K}$ (or $\overline{K}/\overline{K}_{0}$ if $\phi\not\equiv id$ ) acts properly discontinuously on
$\mathcal{F}$ in either case. Finally consider the action of Out $\Gamma$ on $\mathcal{T}$ . The group
Out $\Gamma$ acts on $\mathcal{T}$ so that it preserves the product fibration $\mathcal{F}$

$\rightarrow \mathcal{T}\rightarrow\overline{\mathcal{T}}$

and induces the action of Out $(\overline{\Gamma}, \overline{q})$ on $\overline{\mathcal{T}}$ which is properly discontinuous

since the action of Out $(\overline{\Gamma})$ on $\overline{\mathcal{T}}$ has, as is well known, the same property.
Since $\overline{K}$ (which is the subgoup of Out $\Gamma$ which induces the identity on

T) acts properly discontinuously on the fiber of $\mathcal{T}$ as above we can see
that Out $\Gamma$ acts also properly discontinuously on $\mathcal{T}$ . The cases with
$X=\overline{SL}_{2}\times E$ (in this case $A_{1}=I$ ) can be treated similarly and we omit
the details. Thus we have

Proposition 3. Let $S=\Gamma\backslash X$ be a geometric Seifert 4-manifold
over a closed orientable hyperbolic orbifold $B$ with $\Gamma\subset G=Isom^{0}X$ .

Then Out $\Gamma$ (or Out $\Gamma/\overline{K}_{0}$ in case the monodromy representation $\phi$ of
$S$ is not trivial where $\overline{K}_{0}$ is $a$ fifinite subgroup of $\overline{K}$ defifined above) acts
on $\mathcal{T}(\Gamma, G)$ properly discontinuously and the muduli space $\mathcal{M}(\Gamma, G)$ is

Hausdorff.

On the other hand if $\overline{K}_{1}\neq\overline{K}$ then we must have $\varphi\in K$ of the form
(4) satisfying $(5)-(7)$ with $P\neq I$ . In particular $s_{2}$ , $t_{2}$ , $u_{j}$ , $v_{j}$ defined by
(5) and (6) for some appropriate $P\neq I$ satisfying (4) must be integers.
From these conditions we can deduce some extra conditions on the Seifert
invariants of $S$ and derive the following proposition. Here we omit the
details of the computations.

Proposition 4. Let $S=\Gamma\backslash X$ be a geometric Seifert 4-manifold
as in Proposition 3. Then if the monodromies of $S$ satisfy the con-
ditions in Proposition 1 and if the Seifert invariants of $S$ do not sat-

isfy the conditions below then $\overline{K}=\overline{K}_{1}$ and $\Lambda 4(\Gamma, G)$ is a Seifert fifibra-
tion over $\overline{\mathcal{T}}(\overline{\Gamma}, \overline{G})/Out(\overline{\Gamma}, \overline{q})$ (which is defifined above) with general fifiber
$T_{1}\times H^{1}(\overline{\Gamma}, C^{\phi})/H^{1}(\overline{\Gamma}, Z^{2^{\phi}})$ .
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(I) $A_{1}=\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$ .

(1) There are no multiple fifibers;
(2) $(m_{i}, a_{i}, b_{i})=(3, \epsilon_{i}, \epsilon_{i})$ , $\epsilon_{i}=\pm 1$ for any $i$ ;
(3) $m_{i}=2$ for any $i$ .

(II) $A_{1}=\left(\begin{array}{ll}0 & 1\\-1 & -1\end{array}\right)$ .

(1) There are no multiple fifibers and $a\equiv bmod 3$ ;
(2) $(m_{i}, a_{i}, b_{i})=(3, \epsilon_{i}, \epsilon_{i})$ with $\epsilon_{i}=\pm 1$ for any $i$ and $\sum\epsilon_{i}\equiv 0$

$mod 3$ ;

(3) $m_{i}=2$ for any $i$ and $\sum a_{i}-2a\equiv\sum b_{i}-2b$ mod$ $3.

(III) $A_{1}=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ .

(1) There are no multiple fifibers;
(2) $m_{i}=2$ for every $i$ and $\sum a_{i}\equiv\sum b_{\dot{0}}mod 2$ .

(IV) $A_{1}=\pm I$ .
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Homologically Trivial Smooth Involutions
on $K3$ Surfaces

Takao Matumoto

Dedicated to Professor Sh\^or\^o Araki on his 60th birthday

Abstract.

We will show that any smooth involution on a K3 surface induces

a non-trivial action on its homology. In fact, a closed spin 4-manifold
$M$ with $H_{1}(M;Z_{2})=0$ and sign $M$ $\neq 0$ will be shown to admit no

homologically trivial locally linear involutions. The proof uses only
the $G$-signature theorem and the sublattices and branched coverings
arguments.

\S 1. Introduction

Some complex surfaces including K3 surfaces admit no homologi-
cally trivial holomorphic involutions. There posed a question in [12;11.8]
whether the same is true for the smooth involutions or not. This paper
answers the question affirmatively at least for the smooth involutions on
K3 surfaces. Note that a smooth involution is locally linear.

Theorem 1. Let $M$ be a closed connected oriented spin 4-manifold
with $H_{1}(M\cdot, Z_{2})=0$ . Suppose that there is an orientation preserving
locally linear involution $\sigma$ on $M$ which operates as identity on $H_{2}$ $(M; Q)$ .

Then, sign $M$ $=0$ .

Since a K3 surface is a simply-connected spin 4-manifold with sig-
nature-16, it admits no homologically trivial locally linear involutions.
According to Edmonds [5] Theorem 1 in the case that $M$ is simply-
connected is already proved by D. Ruberman.

The author thanks Dr. M. Masuda for informing of Edmonds’ paper
and Dr. M. Sekine for the discussions about Lemma 2.4. Some results on
the homologically antipodal locally linear involutions are also obtained
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with the collaboration of Y. Matsumoto and A. Kawauchi, which will
be published elsewhere.

\S 2. Preliminary lemmas

We prepare some lemmas which will be used later and may be useful
for the other purposes. We begin with a lemma to construct a double
covering from two 2-sheet branched coverings.

Lemma 2.1. Let $\sigma$ be a locally linear involution on a connected

manifold $M$ with fixed point set F. Suppose there is a subunion of con-
nected components $F’\subseteq F$ with a non-trivial element $e_{\tau}$ of $H^{1}(M/\sigma-$

$F’$ ; $Z_{2}$ ) which takes non-zero value on the image of $H_{1}(\partial N(x)/\sigma;Z)$ for
any $x$ of $F’$ , where $-/\sigma$ stands for the orbit space and $N(x)$ is a fiber at
$x$ of an equivariant normal disk bundle $N(U_{x})$ for a neighborhood $U_{x}$ of
$x$ in F. Then, there is a locally linear $Z_{2}\times Z_{2}$ -action with generators $\tilde{\sigma}$

and $\tilde{\tau}$ on a double ($=connected2$ -sheet unbranched) covering manifold
$\overline{M}$ of $M$ such that the orbit space $\overline{M}/\tilde{\tau}$ is canonically homeomorphic to
$M$ and $\tilde{\sigma}$ induces $\sigma$ with this identification.

– unbranched
$M$ $\rightarrow$ $\overline{M}/\tilde{\tau}=M$

covering

$\downarrow$ $\downarrow$

$\overline{M}/\tilde{\sigma}=M’$ $\rightarrow$ $ M/\sigma$

Proof The projection $\pi$ : $M-F\rightarrow M/\sigma-F$ is a covering

map induced from a non-trivial element $e_{\sigma}$ of $H^{1}(M/\sigma-F;Z_{2})=$

$Hom(H_{1}(M/\sigma-F;Z), Z_{2})=Hom(\pi_{1}(M/\sigma-F), Z_{2})$ which takes non-
zero value on $H_{1}(\partial N(x)/\sigma;Z)$ for any $x$ of $F$ . Let $j$ : $M/\sigma-F\rightarrow M/\sigma-$

$F’$ be the inclusion. Then, we have $j^{*}e_{\tau}\neq e_{\sigma}$ , since $e_{\tau}$ takes zero value
on $H_{1}(\partial N(x)/\sigma;Z)$ for any $x$ of $F-F’$ . So, we get a $Z_{2}\times Z_{2}$ covering
of $M/\sigma-F$ associated to $(j^{*}e_{\tau}, e_{\sigma})$ : $H_{1}(M/\sigma-F;Z)\rightarrow Z_{2}\times Z_{2}$ .

Consider the base change $(j^{*}e_{\tau}, j^{*}e_{\tau}+e_{\sigma})$ : $ H_{1}(M/\sigma-F;Z)\rightarrow$

$Z_{2}\times Z_{2}$ . The completed 2-sheet branched coverings $\pi’$ : $ M’\rightarrow M/\sigma$

and $\pi’’$ : $ M^{JJ}\rightarrow M/\sigma$ (resp.) induced by $j^{*}e_{\tau}$ and $j^{*}e_{\tau}+e_{\sigma}$ (resp.) have
the disjoint branch loci $F’$ and $F-F’$ (resp.). So, the completed $2\times 2-$

sheet branched covering $\overline{\pi}$ : $\overline{M}\rightarrow M/\sigma$ , induced by $(j^{*}e_{\tau}, j^{*}e_{\tau}+e_{\sigma})$ :
$H_{1}(M/\sigma-F;Z)\rightarrow Z_{2}\times Z_{2}$ , has the locally linear involutions $\overline{\sigma}$ and $\overline{\sigma}’$

so that $\overline{\pi}’$ : $\overline{M}\rightarrow\overline{M}/\overline{\sigma}=M’$ and $\overline{\pi}’’$ : $\overline{M}\rightarrow\overline{M}/\overline{\sigma}’=M’’$ are the 2-

sheet branched coverings with branch loci $(\pi’)^{-1}(F-F’)$ and $(\pi’’)^{-1}(F’)$
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respectively. By the definition $\overline{\sigma}$ and $\overline{\sigma}’$ commute outside $\overline{\pi}^{-1}(F)$ . Since
$\overline{M}-\overline{\pi}^{-1}(F)$ is dense in $\overline{M}$ , $\overline{\sigma}$ and $\overline{\sigma}’$ commute also on whole $\overline{M}$ .

Put $\overline{\tau}=\overline{\sigma}o\overline{\sigma}’$ . Then, $\overline{\tau}$ has no fixed point either in $\overline{M}-\overline{\pi}^{-1}(F)$

or in $\overline{\pi}^{-1}(F)=(\overline{\pi}’)^{-1}(\pi’)^{-1}(F-F’)\cup(\overline{\pi}’’)^{-1}(\pi’’)^{-1}(F’)$ and hence in

whole $\overline{M}$

. Moreover, $\overline{M}/\overline{\tau}\rightarrow M/\sigma$ is the branched covering induced by
$j^{*}e_{\tau}+j^{*}e_{\tau}+e_{\sigma}=e_{\sigma}$ , that is, equivalent to $M$ $\rightarrow M/\sigma$ .

Since $M$ is connected, $ M/\sigma$ is connected. If $ F’=\emptyset$ , the cover-
ing associated to the non-trivial element of $H^{1}(M/\sigma;Z_{2})$ is connected.
Otherwise the branch locus of $ M’\rightarrow M/\sigma$ is non-empty and $M’$ is con-

nected. Then, since the branch locus of $\overline{M}\rightarrow M’$ is non-empty, $\overline{M}$ is
connected. Q.E.D.

We recall and define some notions about lattices now. A $Z$-free mod-
ule $L$ of finite rank with non-degenerate symmetric bilinear form $\langle, \rangle$ :
$L\times L\rightarrow Z$ is called a lattice. Let $L^{*}$ denote the dual module Homz $(L, Z)$

and we have a canonical embedding $L\subset L^{*}$ defined by $ x\mapsto\langle, x\rangle$ . The
factor group $L^{*}/L$ is finite abelian and its order divides $|$ discr $L|$ where
discr $ L=\det\langle e_{i}, e_{j}\rangle$ for some basis $\{e_{i}\}$ . Let $p$ be a prime. For a finite
abelian group $A$ we denote the minimal number of generators of $A$ and
$A\otimes Z_{p}$ by $\ell(A)$ and $\ell_{p}(A)$ respectively. A lattice is called unimodular or
$p$-unimodular if $L^{*}/L=0$ or $\ell_{p}(L^{*}/L)=0$ respectively. A submodule
$S$ of $L$ is called primitive or $p$-primitive if $L/S$ is $Z$-free or contains no
$p$-torsion respectively. Define the orthogonal complement $S^{\perp}=\{y\in L$ ;
$\langle y, x\rangle=0$ for any $x\in S$ }. If $L$ is unimodular and $S$ is a primitive sub-
lattice, i.e., primitive and the pairing $\langle, \rangle$ is non-degenerate not only on
$L$ but also on $S$ , we have a natural isomorphism $S^{*}/S\cong S^{\perp}*/S^{\perp}$ . (See
[3;1.2.5] and [10] for example.) Moreover, we can prove

Lemma 2.2. Let $p$ be a prime. Let $L$ be a $p$ -unimodular lattice
and $S$ a $p$-primitive sublattice. Then, the orthogonal complement
$K=S^{\perp}is$ also a sublattice and the $p$ -torsion part $(S^{*}/S)_{(p)}$ of $S^{*}/S$ is

isomorphic to the $p$-torsion part of $(K^{*}/K)_{(p)}$ of $K^{*}/K$ .

Proof. Take an element $\ell$ of $L$ . Then, $\ell*=\langle, \ell\rangle$ can be considered
as an element of $S^{*};$ $\ell_{1}^{*}=\ell_{2}^{*}$ in $S^{*}$ if and only if $\ell_{1}-\ell_{2}\in K$ . If we consider
$\ell^{*}$ also as an element in $K^{*}$ , we get a homomorphism $Im(L\rightarrow S^{*})/S\rightarrow$

$K^{*}/K$ . That $S$ is $p$-primitive implies $(S^{*}/Im(L^{*}\rightarrow S^{*}))_{(p)}=0$ . Since

$(L^{*}/L)_{(p)}=0$ by the assumption, we have $(S^{*}/S)_{(p)}=(Im(L^{*}\rightarrow$

$S^{*})/S)_{(p)}=(Im(L\rightarrow S^{*})/S)_{(p)}$ and we get a correlation homomor-

phism $(S^{*}/S)_{(p)}\rightarrow(K^{*}/K)_{(p)}$ . By the definition it is easy to see that
$K$ is a primitive sublattice of $L$ and $K^{\perp}$ is a minimal primitive sublattice
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of $L$ containing $S$ . So, $(K^{\perp}/S)_{(p)}=0$ by the assumption. Then, we get

also a homomorphism $(K^{*}/K)_{(p)}\rightarrow(K^{\perp}*/K^{\perp})_{(p)}=(S^{*}/S)_{(p)}$ which
is an inverse of the homomorphism above. Q.E.D.

Next we give a sufficient and nearly necessary condition to get a
branched covering in some cases.

Lemma 2.3. Let $p$ be a prime. Let $S_{1}^{2}$ , $\ldots$ , $S_{\ell}^{2}$ be disjointly em-
bedded 2-spheres in a closed orientable $A$ -manifold $M$ with normal disk
bundles $N(S_{1}^{2})$ , $\ldots$ , $N(S_{\ell}^{2})$ .

(1) Suppose that the homology classes $[S_{1}^{2}]$ , $\ldots$ , $[S_{\ell}^{2}]$ are linearly de-

pendent in $H_{2}(M;Z_{p})$ . Then, there is a non-trivial element of $H^{1}(M$ $-$

$\bigcup_{i=1}^{\ell}S_{i}^{2}$ ; $Z_{p}$ ) which takes non-zero value on $H_{1}(\partial N(S_{i}^{2});Z)$ for some $i$ .

(2) Suppose that $[S_{1}^{2}]$ , $\ldots$ , $[S_{\ell}^{2}]$ are linearly independent in $H_{2}(M;Z)$

and generate a submodule $S$ of $L=H_{2}(M;Z)/tor$ . Let $\overline{S}$ be the minimal

primitive submodule of $L$ containing $S$ , that is, $L/\overline{S}$ is $Z$ -free. Then,
$\overline{S}/S$ is a finite (possibly zero) abelian group and we have an isomorphism

$\overline{S}/S\cong Ker(H_{1}(M-\bigcup_{\dot{x}=1}^{\ell}S_{i}^{2}; Z)\rightarrow H_{1}(M;Z))$ .

Note that the torsion part of $L/S$ is $\overline{S}/S$ . So, if $L/S$ contains a non-
trivial $p$ -torsion, there is a non-trivial element of $H^{1}(M-\bigcup_{i=1}^{\ell}S_{i}^{2}; Z_{p})$

which takes non-zero value on $H_{1}(\partial N(S_{i}^{2});Z)$ for some $i$ . Moreover,
when $H_{1}(M;Z)\otimes Z_{p}=0$ , the converse is also true, that is, if there is $a$

non-trivial element of $H^{1}(M-\bigcup_{i=1}^{\ell}S_{i}^{2}; Z_{p})$ which takes non-zero value

on $H_{1}(\partial N(S_{i}^{2});Z)$ for some $i$ , $L/S$ contains a non-trivial $p$-torsion.

(3) Suppose $[S_{i}^{2}]^{2}\equiv 0mod p$ for every $i$ and $2\ell>b_{2}(M)$ . Then,

either $[S_{1}^{2}]$ , $\ldots$ , $[S_{\ell}^{2}]$ are linearly dependent in $H_{2}(M;Z_{p})$ or linearly in-

dependent in $H_{2}(M;Z_{p})$ and $L/S$ contains a non-trivial $p$ -torsion, where

$L=H_{2}(M;Z)/tor$ and $S$ is a submodule generated by $[S_{1}^{2}]$ , $\ldots$ , $[S_{\ell}^{2}]$ in

L. Note that $b2(M)=dim$ H2 $(M;Q)=rank$ L.

Proof. (1) Put $F=S_{1}^{2}\cup\cdots\cup S_{\ell}^{2}$ and $N=M$ – Int $N(F)$ . Un-

der the hypothesis we have a non-zero element $a_{1}[S_{1}^{2}]+\cdots+a_{\ell}[S_{\ell}^{2}]$ of
$H_{2}(F;Z_{p})=H_{2}(N(F);Z_{p})$ which sends to zero in $H_{2}(M;Z_{p})$ in the
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following commutative diagram:

$\partial$

$ H_{3}(M, N(F);Z_{p})\rightarrow$ $H_{2}(N(F);Z_{p})$ $\rightarrow H_{2}(M;Z_{p})$

$ PD\uparrow\cong$ $ PD\uparrow\cong$

$H^{1}(N;Z_{p})$ $\rightarrow$ $H^{2}(M, N;Z_{p})$

$\downarrow$ $\downarrow\cong$

$\delta$

$H^{1}(\partial N(F);Z_{p})$ $\rightarrow H^{2}(N(F), \partial N(F);Z_{p})$

Here the horizontal sequences are natural and exact. So, there is an ele-
ment $\alpha’$ of $H_{3}(M, N(F);Z_{p})$ such that $\partial\alpha’\neq 0$ . By the Poincar\’e duality

we get an element $\alpha\in H^{1}(N;Z_{p})=H^{1}(M-F;Z_{p})$ such that $\delta\alpha\neq 0$ .

Since $\partial N(F)=\bigcup_{i=1}^{\ell}\partial N(S_{i}^{2})$ , $\alpha$ takes non-zero value on $H_{1}(\partial N(S_{i}^{2});Z)$

for some $i$ .

(2) Note first that there is an isomorphism $\overline{S}/S\cong S^{*}/\overline{S}^{*}$ , where $A^{*}$

stands for the dual $Hom_{Z}(A, Z)$ . Consider the following commutative
diagram whose horizontal sequences are exact and the coefficient is $Z$ :

$ H_{2}(M, N)\rightarrow\partial$
$H_{1}(N)$

$\rightarrow j_{*}H_{1}(M)$

$ PD\uparrow\cong$ $ PD\uparrow\cong$ $ PD\uparrow\cong$

$H^{2}(M)$
$\rightarrow i^{*}H^{2}(N(F))\rightarrow\delta H^{3}(M, N(F))\rightarrow j^{*}H^{3}(M)$

$||$ $||$

$ L^{*}\oplus tor\rightarrow$ $S^{*}$

Since $S^{*}$ is torsion free, $Im$ $i^{*}=Im$ $L^{*}$ . Moreover since $L$ is unimod-

ular, $ImL^{*}$ is $\overline{S}^{*}$ by the definition of $\overline{S}$ . So,

$\overline{S}/S\cong S^{*}/\overline{S}^{*}=Cokeri^{*}\cong Im\delta=Kerj^{*}$

By the Poincar\’e duality we get $Kerj^{*}\cong Ker(j_{*}$ : $H_{1}(N;Z)=H_{1}(M-$
$F;Z)\rightarrow H_{1}(M;Z))$ .

(3) We may assume that the homology classes $[S_{1}^{2}]$ , $\ldots$ , $[S_{\ell}^{2}]$ are lin-
early independent in $H_{2}(M;Z_{p})$ and in particular linearly independent

in $H_{2}(M;Z)$ . We divide into two cases : (i) the case that $[S_{i}^{2}]^{2}\neq 0$ for
every $i$ , and (ii) otherwise.

In case (i) the pairing $\langle, \rangle$ on $S$ is non-degenerate and $\ell_{p}(S^{*}/S)=\ell$ .

On the other hand rank $ S^{\perp}=b_{2}(M)-\ell$ implies $\ell_{p}(S^{\perp}*/S^{\perp})\leq b_{2}(M)-\ell$ .
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So, if $S$ is $p$-primitive i.e., $\ell_{p}(\overline{S}/S)=0$ , then by Lemma 2.2 we have
$\ell\leq b_{2}(M)-\ell$ , which contradicts our hypothesis.

In case (ii) we may assume $[S_{i}^{2}]^{2}=0(1\leq i\leq k)$ and $\neq 0(k+1\leq$

$i\leq\ell)$ . Put $\xi_{i}=[S_{?}^{2}. ]\in H_{2}(M;Z)(1\leq i\leq\ell)$ . Assume that $S$ is
$p$-primitive. Then, we have a homology class $\eta_{1}\in H_{2}(M;Z)p$-dual to
$\xi_{1}$ , that is, $\langle\xi_{1}, \eta_{1}\rangle=mp+1$ . Now, we put $\xi_{i}’=(mp+1)\xi_{i}-\langle\xi_{i}, \eta_{1}\rangle\xi_{1}$

for $ 2\leq i\leq\ell$ so that $\langle\xi_{\dot{x}}’, \eta_{1}\rangle=\langle\xi_{i}’, \xi_{1}\rangle=0$ , $\xi_{i}^{\prime 2}=0(2\leq i\leq k)$ and
$\neq 0(k+1\leq i\leq\ell)$ and $\xi_{1}$ , $\xi_{2}’$ , $\ldots$ , $\xi_{\ell}’$ are also linearly independent.
Let $U_{1}$ be a sublattice generated by $\xi_{1}$ and $\eta_{1}$ . Since $\ell_{p}(U_{1}^{*}/U_{1})=0$ ,
$L_{1}=\{x\in L : \langle x, \xi_{1}\rangle=\langle x, \eta_{1}\rangle=0\}$ is a $p$-unimodular lattice by

Lemma 2.2. Let $S_{1}$ be the submodule of $L_{1}$ generated by $\xi_{2}’$ , $\ldots$ , $\xi_{\ell}’$ .

Recall we assume that $L/S$ contains no $p$-torsion. Then, it is equivalent
to say that $L_{1}/S_{1}$ contains no $p$-torsion, because $(U_{1}\oplus L_{1})/S\cong Z\oplus$

$L_{1}/S_{1}$ and $L/(U_{1}\oplus L_{1})\subset U_{1}^{*}/U_{1}\oplus L_{1}^{*}/L_{1}$ in the exact sequence $ 0\rightarrow$

$(U_{1}\oplus L_{1})/S\rightarrow L/S\rightarrow L/(U_{1}\oplus L_{1})\rightarrow 0$ .

By an induction argument we get a $p$-unimodular lattice $L_{k}$ of
rank=rank $L-2k$ containing modified linearly independent homology
classes $\xi_{k+1}$ , $\ldots$ , $\xi_{\ell}$ . If we define $S_{k}$ by the submodule of $L_{k}$ generated
by these modified $\xi_{k+1}$ , $\ldots$ , $\xi_{\ell}$ , then $\langle, \rangle$ on $S_{k}$ is non-degenerate and
$L_{k}/S_{k}$ contains no $p$-torsion, that is, $S_{k}$ is a $p$-primitive sublattice of the
$p$-unimodular lattice $L_{k}$ . Then, by Lemma 2.2 $\ell_{p}(S_{k}^{*}/S_{k})=\ell_{p}(K_{k}^{*}/K_{k})$ ,

where $K_{k}$ denotes the orthogonal complement of $S_{k}$ in $L_{k}$ . So, by an
argument as in the case (i) $\ell-k\leq(b_{2}(M)-2k)-(\ell-k)$ or equiva-
lently $2\ell\leq b_{2}(M)$ , which contradicts our hypothesis. This means that, if
$[S_{1}^{2}]$ , $\ldots$ , $[S_{\ell}^{2}]$ are linearly independent in $H_{2}(M;Z_{p})$ , then $L/S$ contains
a non-trivial $p$-torsion. Q.E.D.

We want to estimate the first Betti number $b_{1}(\overline{M})=dimH_{1}(\overline{M};Q)$

of the 2-sheet branched covering $\overline{M}$ of $M$ .

Lemma 2.4. Let $\sigma$ be a locally linear involution acting on a com-

pact connected manifold
$\overline{M}$ with fixed point set $F$ and orbit space $M$ .

Suppose that $H_{1}$ $(M; Q)=0$ , $F$ admits an equivariant normal disk bun-

dle $\overline{N}(F)$ in $\overline{M}$ and one of the following three conditions is satisfied:
(1) $ F=\emptyset$ , (2) $F$ contains neither codimension one nor codimension
two component, or (3) $F$ contains no codimension one component and
any connected component of codimension two part is simply-connected.
Then,

$b_{1}(\overline{M})\leq\ell_{2}(H_{1}(M-F;Z))-1$ .

Here $\ell_{2}(A)$ stands for the number of minimal generators of $A\otimes Z_{2}$ .
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Proof. Sekine [13; 1] gives a proof in case $M=S^{4}$ and $F$ has

codimension two. Put $\overline{N}=\overline{M}-$ Int $\overline{N}(F)$ . The natural projection

$\pi$ : $\overline{M}\rightarrow M$ induces a double covering $\pi$ : $\overline{N}\rightarrow N$ of compact manifolds.

We define a chain complex $\hat{C}_{*}$ by the exact sequence:

$0-\hat{C}_{*}\rightarrow C_{*}(\overline{N};Z)\rightarrow C_{*}(N;Z)\pi_{*}\rightarrow 0$ .

Let $t$ be a generator of $Z_{2}$ . Then, $\hat{C}_{*}=(1-t)C_{*}(\overline{N};Z)$ . So, $\hat{C}_{*}\otimes Z_{2}$ is

isomorphic to $(1+t)C_{*}(\overline{N};Z_{2})\cong C_{*}(N;Z_{2})$ as chain complex.

Since $0\rightarrow\hat{C}_{*}\otimes Q\rightarrow C_{*}(\overline{N};Q)\rightarrow C_{*}(N;Q)\rightarrow 0$ is also exact, we
consider the exact sequence:

$H_{1}(\hat{C}_{*}\otimes Q)\rightarrow H_{1}(\overline{N};Q)\rightarrow H_{1}(N;Q)\rightarrow H_{0}(\hat{C}_{*}\otimes Q)\rightarrow 0$ .

Put $d=dimH_{1}(\overline{N};Q)-dimH_{1}(N;Q)$ . Then, $d\leq dimH_{1}(\hat{C}_{*}\otimes Q)-$

$dimH_{0}(\hat{C}_{*}\otimes Q)$ .

Because $H_{0}(\hat{C}_{*}\otimes Z_{2})=Z_{2}$ and $H_{0}(\hat{C}_{*})$ is finitely generated, we have

two cases: (i) $H_{0}(\hat{C}_{*})$ is finite and $\ell_{2}(H_{0}(\hat{C}_{*}))=1$ and (ii) $ H_{0}(\hat{C}_{*})\cong$

$Z\oplus$ (odd torsion). In case (i) we have $H_{0}(\hat{C}_{*})*Z_{2}=Z_{2}$ and $ H_{1}(\hat{C}_{*}\otimes$

$Z_{2})=(H_{1}(\hat{C}_{*})\otimes Z_{2})\oplus Z_{2}$ by the universal coefficient theorem. So,

$d\leq dimH_{1}(\hat{C}_{*}\otimes Q)\leq dim_{Z_{2}}H_{1}(\hat{C}_{*})\otimes Z_{2}=dim_{Z_{2}}H_{1}(\hat{C}_{*}\otimes Z_{2})-1$ .

In case (ii) we have $H_{0}(\hat{C}_{*})*Z_{2}=0$ . So,

$d\leq dimH_{1}(\hat{C}_{*}\otimes Q)-1\leq dim_{Z_{2}}H_{1}(\hat{C}_{*})\otimes Z_{2}-1=dim_{Z_{2}}H_{1}(\hat{C}_{*}\otimes Z_{2})-1$ .

Note that $H_{1}(\hat{C}_{*}\otimes Z_{2})\cong H_{1}(N;Z_{2})=H_{1}(M-F;Z_{2})=H_{1}(M-$

$F;Z)\otimes Z_{2}$ . If $ F=\emptyset$ , then $H_{1}(N;Q)=H_{1}(M;Q)=0$ . Hence, the
result follows from the condition (1).

Under the condition (2) or (3) the natural maps $ H_{0}(\partial\overline{N}(F))\rightarrow$

$H_{0}(\overline{N})\oplus H_{0}(\overline{N}(F))$ and $H_{0}(\partial N(F))\rightarrow H_{0}(N)\oplus H_{0}(N(F))$ are injective
with coefficient in $Q$ due to the condition that $F$ has no codimension
one component. Hence, we have the following commutative diagram of
Mayer-Vietoris exact sequences with coefficient in $Q$ :

$(_{\overline{J}*},\overline{\iota}_{*})$

$H_{1}(\partial\overline{N}(F))\rightarrow H_{1}(\overline{N})\oplus H_{1}(\overline{N}(F))\rightarrow H_{1}(\overline{M})\rightarrow 0$

$\pi_{*}\downarrow$ $\pi_{*}\oplus\downarrow\pi_{*}$ $\pi_{*}\downarrow$

$(j_{*},i_{*})$

$H_{1}(\partial N(F))\rightarrow H_{1}(N)\oplus H_{1}(N(F))\rightarrow H_{1}(M)\rightarrow 0$ .
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Note that $\pi_{*}$ : $H_{1}(\overline{N}(F))\rightarrow H_{1}(N(F))$ is an isomorphism in any coef-
ficient because they are canonically equal to $H_{1}(F)$ . If $F$ has no codi-

mension two component, we have an exact sequence of groups $Z_{2}\rightarrow$

$i_{*}$

$\pi_{1}(\partial N(F))$ – $\pi_{1}(N(F))\rightarrow 0$ . So, $i_{*}$ : $H_{1}(\partial N(F);Q)\rightarrow H_{1}(N(F);Q)$

is onto. Since $\tilde{\iota}_{*}$ : $\pi_{1}(\partial\overline{N}(F))\cong\pi_{1}(\overline{N}(F))$ , $i_{*}$ : $H_{1}(\partial N(F);Q)=$

$H_{1}(\partial\overline{N}(F);Q)^{\sigma_{*}}c_{->}H_{1}(\partial\overline{N}(F);Q)\cong H_{1}(\overline{N}(F);Q)=H_{1}(N(F);Q)$ is

injective. Hence, $i_{*}$ : $H_{1}(\partial N(F);Q)\rightarrow H_{1}(N(F);Q)$ is also an isomor-

phism. So, the condition (2) implies $dimH_{1}(M;Q)-dimH_{1}(M;Q)=$

$dimH_{1}(\overline{N};Q)-dimH_{1}(N;Q)=d$ , which implies the result as before.

Let $F_{2}$ be a connected component of codimension two. Assume the
condition (3). Then, there is an exact sequence $Z\rightarrow\pi_{1}(\partial N(F_{2}))\rightarrow 0$ .

If $\pi_{1}(\partial N(F_{2}))$ is finite, then $H_{1}(\partial\overline{N}(F_{2});Q)=H_{1}(\partial N(F_{2});Q)=0$ .

Otherwise $\tilde{J}*:H_{1}(\partial\overline{N}(F_{2});Q)\rightarrow H_{1}(\overline{N};Q)$ is injective or zero if and
only if $j_{*}$ : $H_{1}(\partial N(F_{2});Q)\rightarrow H_{1}(N;Q)$ is injective or zero respectively.

So, the condition (3) also implies $dimH_{1}(\overline{M};Q)-dimH_{1}(M;Q)=$

$dimH_{1}(\overline{N};Q)-dimH_{1}(N;Q)=d$ , which completes a proof. Q.E.D.

Remark. Probably we need not to assume the existence of equiv-
ariant normal disk bundle; it suffices that $F\times CP^{2}$ has a compact

invariant manifold neighborhood $\overline{N}’(F\times CP^{2})$ in $\overline{M}\times CP^{2}$ so that
$F\times CP^{2}c_{-\succ}\overline{N}’(F\times CP^{2})$ is a homotopy equivalence and $\partial\overline{N}’(F\times$

$CP^{2})\rightarrow\overline{N}’(F\times CP^{2})$ is a spherical homotopy fibration.

The following lemmas are not new but we list them up to quote in

the proof of Theorem.

Lemma 2.5. Let $\sigma$ be an orientation preserving locally linear in-
volution on an oriented closed 4-manifold $M$ with fixed point set F. Let
$F^{2}$ denote the 2-dimensional part of $F$ .

(1) Any isolated point $x$ of $F$ can be blow up, that is, there is $a$

locally linear involution $\sigma’$ on $M^{*}=M\#\overline{CP}^{2}=(M-x)\cup CP^{1}$ such

that $\sigma’|M^{*}-CP^{1}=\sigma|M-x$ and $\sigma’|CP^{1}=id$ . In particular, $\sigma’$ op-
erates as identity on the newly introduced homology class represented by
$CP^{1}$ and $\pi_{1}(M^{*}/\sigma’)=\pi_{1}(M/\sigma)$ . We may take also M#CP2 instead

of $M\#\overline{CP}^{2}$ ; this comes from that we have an orientation reversing dif-
feomorphism of $RP^{3}$ .

(2) (Freedman-Quinn) $F^{2}$ admits an equivariant normal disk bundle
$N(F^{2})$ in $M$ .
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(3) ( $G$-signature theorem)

sign $(-1, M)=e(F^{2})$ ,

where $e(F^{2})$ denotes the total Euler number of the normal bundle of $F^{2}$

and-l stands for the involution concerned.

Proof (1) Since $\sigma$ is locally linear, we have a local complex co-
ordinate $(z_{1}, z_{2})$ in a disk neighborhood $U$ of $x$ so that $x=(0,0)$ and
$\sigma(z_{1}, z_{2})=(-z_{1}, -z_{2})$ . Take a homogeneous coordinate $[\zeta_{1}, \zeta_{2}]$ of $CP^{1}$

and consider on the product space $U\times CP^{1}$ the subset $U^{*}$ defined
by $z_{1}\zeta_{2}-z_{2}\zeta_{1}=0$ . It is easy to see that $U^{*}$ is a complex surface
in $U\times CP^{1}$ , the projection $\pi$ : $U^{*}\rightarrow U$ gives an identification of
$U^{*}-\pi^{-1}(0,0)$ with $U-(0,0)$ , the preimage $(0, 0)$ $\times CP^{1}$ of $(0, 0)$ is

isomorphic to $CP^{1}$ . Consider a holomorphic involution $(\sigma|U)\times id$ on
$U\times CP^{1}$ . Then, we get a holomorphic involution $\sigma’|U^{*}$ on $U^{*}$ such
that $\sigma’|U^{*}-\pi^{-1}(0,0)=\sigma|U-(0,0)$ and $\sigma’|(0,0)\times CP^{1}=id$ . Define
$M^{*}=(M-U)\cup U^{*}$ and $\sigma’|M^{*}-U=\sigma|M-U$ . Then, $M^{*}-CP^{1}=M-x$

and $M^{*}$ is diffeomorphic to $M\#\overline{CP}^{2}$ because $[CP^{1}]^{2}=-1$ . Since
$\partial U^{*}/\sigma’=\partial U/\sigma=RP^{3}$ and $\pi_{1}(U^{*}/\sigma’)=\pi_{1}(U/\sigma)=0$ , we have
$\pi_{1}(M^{*}/\sigma’)=\pi_{1}(M/\sigma)$ by the van Kampen theorem.

(2) Since $ M/\sigma$ is a manifold near $F^{2}$ and $F^{2}$ is a locally flat subman-

ifold, $F^{2}$ admits a normal disk bundle due to Freedman-Quinn [6;9.3].
So, a lifting gives an equivariant normal disk bundle.

(3) In the smooth case $G$-signature theorem is due to Atiyah-Singer
[2] but has many elementary proofs at least in our case of dimension 4
and semi-free, for example, in Gordon [8]. These elementary proofs can
apply also to a locally linear involution, because it admits an equivariant
tubular neighborhood of $F^{2}$ by (2). See also the comments in Edmonds
[5;\S 4]. Q.E.D.

Lemma 2.6 (Edmonds $[5;Prop$ . 3.1&3.2]). Let $M$ be a connected
oriented spin 4-manifold and $\sigma$ a locally linear involution that preserves
orientation and some spin structure. Then, the fixed point set $F$ , if
non-empty, consists either of isolated points or of orientable surfaces.

In the smooth case the codimension homogeneity modulo 4 is proved
by Atiyah-Bott [1] and the orientability of surfaces has many proofs
including Edmonds [4]. The proof in the locally linear case is given in
Edmonds [5].

\S 3. Proof of Theorem 1

Since $H_{1}(M;Z_{2})=0$ , the spin structure on $M$ is unique and we may
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assume that $\sigma$ preserves the spin structure. Lemma 2.6 implies that the
fixed point set $F$ consists either of isolated points or of orientable sur-
faces. If $F$ consists of isolated points, then by the $G$-signature theorem
described as Lemma 2.5 (3) sign$(-1, M)=0$ . Hence, sign $M$ $=0$ be-
cause $\sigma$ operates as identity on $H_{2}(M;Q)$ . So, we may assume that
$F$ consists of orientable surfaces. In particular, $ M/\sigma$ is also a mani-
fold. Note that $F$ has an equivariant normal disk bundle $N(F)$ in $M$ by
Lemma 2.5 (2).

Since $H_{*}(M/\sigma;Q)=H_{*}(M;Q)^{\sigma_{*}}$ , $H_{1}(M;Q)=0$ and $\sigma_{*}|H_{2}(M;Q)$

$=id$ , we have the equality $\chi(M/\sigma)=\chi(M)$ of Euler numbers. Put
$\chi=\chi(M)$ . Then, from the formula $\chi(M)=2\chi(M/\sigma)-\chi(F)$ we
get also $\chi(F)=\chi$ . So, $F$ contains at least $\chi/2$ numbers of components

of $S^{2}$ . Note that $M$ has an even intersection form $q_{M}$ : $ H_{2}(M;Z)/tor\times$

$H_{2}(M;Z)/tor$ $\rightarrow Z$ and hence $\chi=\chi(M)$ is even. Let $F’=S_{1}^{2}$ , $\ldots$ , $S_{\chi/2}^{2}$

be the subset of $F$ consisting of $\chi/2$ numbers of $S^{2}$ . Since $H_{1}(M/\sigma;Q)=$

$H_{1}(M;Q)^{\sigma_{*}}=0$ , we have $\chi=2+b_{2}(M/\sigma)>b_{2}(M/\sigma)$ . Taking account

of $[S_{i}^{2}]_{M/\sigma}^{2}=2[S_{i}^{2}]_{M}^{2}$ and Lemma 2.5 (2), we can apply Lemma 2.3 (3)

for $p=2$ and $ F’\subset M/\sigma$ . So, by Lemma 2.3 (1) and (2) there is a sub-
union $F’’$ of connected components of $F’$ such that we have a branched
covering of $ M/\sigma$ with branch locus $F’’$ , that is, $(M, \sigma, F’’\subset F)$ sat-
isfies the condition of Lemma 2.1 except $F’’\neq F$ . Note here that
$H_{1}(\partial N(x);Z)\rightarrow H_{1}(\partial N(S_{i}^{2});Z)$ is a surjection for any $x$ of $S_{i}^{2}$ . If
$F’’\neq F$ , then Lemma 2.1 implies that there is a connected 2-sheet
unbranched covering of $M$ . But this contradicts the condition that
$H^{1}(M;Z_{2})=Hom(H_{1}(M;Z), Z_{2})=Hom(\pi_{1}(M), Z_{2})=0$ . This means
$F’’=F$ . Hence, $F’=F$ , that is, $F$ consists of $\chi/2$ numbers of $S^{2}$ .

Since the intersection form $q_{M}$ of $M$ is even, we can also apply
Lemma 2.3 (3) for $p=2$ and $F\subset M$ . By Lemma 2.3 (1) and (2) there is
a non-trivial element of $H^{1}(M-F;Z_{2})$ which takes non-zero value on
$H_{1}(\partial N(S_{i}^{2});Z)$ for some $i$ . This means that there is a branched covering
$\tilde{\pi}$ : $M$ $\rightarrow M$ with branch locus $F_{1}\subset F$ ; a locally linear involution $\tau$ on
$\overline{M}$ with fixed point set $F_{1}$ . So, there is a non-trivial element of $H^{1}(M$ $-$

$F_{1}$ ; $Z_{2}$ ) which takes non-zero value on $H_{1}(\partial N(S_{i}^{2});Z)$ for every $S_{i}^{2}\subset F_{1}$ .
Because $H^{1}(M;Z_{2})=0$ , this implies that (i) the homology classes of the
connected components of $F_{1}$ are linearly dependent in $H_{2}(M;Z_{2})$ or (ii)
they are independent and generate a submodule $S$ of $L=H_{2}(M;Z)/tor$

so that $\overline{S}/S$ contains a non-trivial 2-torsion according to the last part
of Lemma 2.3 (2). Assume that $F_{1}\neq F$ . In case (i) the homology
classes of the connected components of $F_{1}$ are also linearly dependent
in $H_{2}(M/\sigma;Z_{2})$ and this leads to a contradiction with $H^{1}(M;Z_{2})=0$
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through Lemma 2.3 (1) and Lemma 2.1 as before. In case (ii) notice that
$\pi_{*}S$ is the submodule generated by the homology classes of the connected
components of $F_{1}$ in $H_{2}(M/\sigma;Z)/tor$ for the projection $\pi$ : $M$ $\rightarrow M/\sigma$ .

Since $\pi_{*}|S$ is an isomorphism, $\pi_{*}\overline{S}/\pi_{*}S$ is isomorphic to $\overline{S}/S$ . Note

also that $\pi_{*}\overline{S}/\pi_{*}S\subset\overline{\pi_{*}S}/\pi_{*}S$ . Then, $\overline{\pi_{*}S}/\pi_{*}S$ contains a non-trivial
2-torsion. We can apply Lemma 2.3 (2) for $p=2$ and $ F_{1}\subset M/\sigma$ and we

get the same contradiction with $H^{1}(M;Z_{2})=0$ by applying Lemma 2.1
for $(M, \sigma, F_{1}\subset F)$ since we have assumed $F_{1}\neq F$ . Hence, $F_{1}=F$ , that

is, the branch locus for $\tilde{\pi}$ : $\overline{M}\rightarrow M$ is also $F$ and $\chi(\overline{M})=\chi(M)$ .

We will show that $\ell_{2}(H_{1}(M-F;Z))=1$ . Since $H^{1}(M;Z_{2})=0$ ,

it is equivalent to say $\ell_{2}(Ker(H_{1}(M-F;Z)\rightarrow H_{1}(M;Z)))=1$ . Put

$N=M-$ Int $N(F)$ and consider the following commutative diagram:

$H_{1}(\partial N(F);Z)\rightarrow H_{1}(N;Z)\rightarrow H_{1}(N, \partial N(F);Z)$

$\downarrow$ $\downarrow\cong$

$H_{1}$ ($M$ ; Z) $\rightarrow H_{1}(M, N(F);Z)$

Since the horizontal sequence is exact, any element of $Ker(H_{1}(N;Z)=$
$H_{1}$ $(M -F;Z)\rightarrow H_{1}(M;Z))$ comes from $H_{1}(\partial N(F);Z)$ . We know
that there is an element $\alpha$ of $Hom(H_{1}(M-F;Z), Z_{2})$ which takes non-
zero value on $H_{1}(\partial N(S_{i}^{2});Z)$ for every $S_{i}^{2}$ in $F$ . Now we assume that
$\ell_{2}(Ker(H_{1}(M-F;Z)\rightarrow H_{1}(M;Z)))\geq 2$ . Then, we have some element
$\beta$ of $Hom(H_{1}(M-F;Z), Z_{2})$ which is different from $\alpha$ , that is, takes zero
value on $H_{1}(\partial N(S_{i}^{2});Z)$ for at least one $i$ . Note that we used here the

special property of $Z_{2}$ . Let $F’$ be the subset of $F$ removed such $S_{i}^{2}$ off.
Since $F’\neq F$ , the same argument as the above paragraph can be applied
again and get a contradiction with the condition $H^{1}(M;Z_{2})=0$ .

Now since $H_{1}(M;Q)=0$ and $F$ consists of $\chi/2$ numbers of $S^{2}$ ,

$\ell_{2}(H_{1}(M-F;Z))=1$ implies $b_{1}(\overline{M})=0$ by Lemma 2.4. So, $\chi(\overline{M})=$

$\chi(M)$ implies $b_{2}(\overline{M})=b_{2}(M)$ . Hence, $H_{2}(M;Q)=H_{2}(\overline{M};Q)^{\tau_{*}}$ implies
$H_{2}(\overline{M};Q)^{\tau_{*}}=H_{2}(\overline{M};Q)$ , that is, $\tau_{*}=id$ on $H_{2}(\overline{M};Q)$ . Therefore,

sign $(-1, \overline{M})=sign\overline{M}$ . Recall that sign$(-1, M)=sign$ $M$ and the G-
signature theorem says that

sign $(-1, M)=\sum_{i=1}^{x/2}[S_{i}^{2}]_{M}^{2}=\sum_{i=1}^{x/2}2[S_{i}^{2}]_{\overline{M}}^{2}=2$ sign $(-1, \overline{M})$ .

On the other hand sign $M$ $=sign\overline{M}$ because $H_{2}(M;Q)=H_{2}(\overline{M};Q)^{\overline{\tau}_{*}}$

$=H_{2}(\overline{M};Q)$ . Hence, sign $M=0$ . This completes a proof of Theorem 1.
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