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I. Introduction

Two bounded linear operators $A$ and $B$ in a Hilbert space $\prime H$ are said
to anticommute if $AB+BA=0$ . However, if $A$ and $B$ are unbounded,
then this definition of anticommutativity does not work, because $AB+$

$BA$ may not make sense on any vector in $\prime H$ .

A proper notion of anticommutativity of [unbounded) self-adjoint
operators was given by Vasilescu [23]. Samoilenko [21] and Pedersen
[20] gave several equivalent characterizations of the anticommutativity
and discussed some aspects of anticommuting self-adjoint operators.

Following [20], we say that two self-adjoint operators $A$ and $B$ in $a$

Hilbert space anticommute if

$e^{itA}B\subset Be^{-itA}$

for all $t\in \mathbb{R}$ . We remark that this definition is symmetric in $A$ and $B[20]$

and gives an extension of the notion of anticommutativity of bounded
operators mentioned above.

Families of anticommuting self-adjoint operators are not only in-
teresting in its own right (in particular, from representation theoretical
points of view), but also may be important in applications (e.g., analysis
of operators of Dirac’s type [3, 5-8, 13, 16] and supersymmetric quantum
theory [1, 2, 4, 9, 15, 17, 18] $)$ .

In $[10, 11]$ the present author has developed analysis on anticom-
muting self-adjoint operators; The paper [10] is concerned with alge-
braic properties of the partial isometries assoicated with anticommuting
self-adjoint operators and analysis of the sum of two anticommuting
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self-adjoint operators, while the paper [11] gives a characterization of
the anticommutativity of self-adjoint operators in connection with Clif-
ford algebra and discusses some consequences of it, one of which can
be applied to the self-adjointness problem of some classes of operators
of Dirac’s type in both finite and infinite dimensions. In this paper we
summarize the main results obtained in $[10, 11]$ .

II. Product of two anticommuting self-adjoint operators

In this section we describe some results on a product of two anti-
commuting self-adjoint operators. We denote by $D(A)$ the domain of
the operator $A$ .

For the reader’s convenience, we first summarize as a lemma some
known facts on anticommuting self-adjoint operators.

Let $A$ be a self-adjoint operator in a Hilbert space with the spectral
family $\{E_{A}(\lambda)|\lambda\in \mathbb{R}\}$ . Then the polar decomposition of $A$ is given by

$A=U_{A}|A|$

with

$U_{A}=1-E_{A}(0)-E_{A}(-0)$ ,

see, e.g., [19, p.358]. We call $U_{A}$ the partial isometry associated with
the self-adjoint operator $A$ .

Lemma 2.1 $[20, 23]$ . Let $A$ and $B$ be anticommuting self-adjoint
operators in a Hibert space. Then the following $(i)-(vii)$ hold:

(i) $U_{B}A\subset-AU_{B}$ and $U_{A}B\subset-BU_{A}$ .

(ii) $U_{B}|A|\subset|A|U_{B}$ and $U_{A}|B|\subset|B|U_{A}$ .
(iii) $|A|$ and $|B|$ commute.
(iv) $U_{A}U_{B}=-U_{B}U_{A}$ .
(v) $A$ and $|B|$ commute and $B$ and $|A|$ commute.
(vi) $D(A)\cap D(B)\cap D(AB)=D(A)\cap D(B)\cap D(BA)$ and

$(AB+BA)f=0$ , $f\in D(A)\cap D(B)\cap D(AB)$ .

(vii) $A+B$ is self-adjoint.

For two anticommuting self-adjoint operators $A$ and $B$ in a Hilbert
space, we consider the product

$C_{0}(A, B)=iAB$
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with $D(C_{0}(A, B))=D(A)\cap D(B)\cap D(AB)$ . It follows from Lemma
2. 1 (vi) that

$D(C_{0}(A, B))=D(C_{0}(B, A))$ ,

and

$[C_{0}(A, B)+C_{0}(B, A)]f=0$ , $f\in D(C_{0}(A, B))$ .

In particular, $C_{0}(A, B)$ is symmetric.

Theorem 2.2 [10]. Let $A$ and $B$ be anticommuting self-adjoint
operators in a Hilbert space. Then

(i) $C_{0}(A, B)$ is essentially self-adjoint.
(ii) Let $C(A, B)$ be the closure of $C_{0}(A, B)$ . Then

$C(A, B)=-C(B, A)$ .

(iii) The operator $C(A, B)$ is essentially self-adjoint on every core

for $A^{2}+B^{2}$ .

Remark. We can find a dense domain $V$ on which $C_{0}(A, B)^{k}$ is
essentially self-adjoint for all $k\in \mathbb{N}$ [ $10$ , Theorem 2.3].

By Lemma 2.1 (vi) we have

$AC_{0}(A, B)+C_{0}(A, B)A=0$ , $BC_{0}(A, B)+C_{0}(A, B)B=0$ ,

on a suitable domain, respectively. Hence $C(A, B)$ may have a chance
to anticommute with $A$ and $B$ . In fact, the following theorem holds.

Theorem 2.3 [10]. The operator $C(A, B)$ anticommutes with $A$ , $B$ ,
and $A+B$ .

III. Algebraic properties of the partial isometries associated
with anticommuting self-adjoint operators

Theorem 2.3 shows that, given two anticommuting self-adjoint op-
erators $A$ and $B$ in a Hilbert space, we have a triple $\{A, B, C(A, B)\}$

of mutually anticommuting self-adjoint operators. It is interesting to
investigate structures of this triple. We do it by analyzing the algebraic
structure of the partial isometries of $U_{A}$ , $U_{B}$ , and $U_{C(A,B)}$ . Thus our first
task is to compute products of these partial isometries. A key tool for
this purpose is the following formula for the partial isometry associated
with a self-adjoint operator.
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Lemma 3.1. Let $A$ be a self-adjoint operator. Then

$U_{A}=s-\lim_{\epsilon\rightarrow+0}A(A^{2}+\epsilon)^{-1/2}$ .

Proof. This can be proven by the functional calculus for self-adjoint
operators. For the details, see [10]. Q.E.D.

Remark. Let $A$ be a self-adjoint operator and $P_{A}$ be the orthogonal
projection onto $(KerA)^{\perp}$ . Then:

$U_{A}=sgn(A)P_{A}$ ,

where $sgn(\lambda)=\lambda/|\lambda|$ , $\lambda\in \mathbb{R}\backslash \{0\}$ .

We also note the following fact.

Lemma 3.2 [10]. Let $A$ and $B$ be anticommuting self-adjoint op-
erators in a Hibert space. Then:

(i) $P_{A}$ and $P_{B}$ commute.
(ii) $P_{A}$ and $U_{B}$ commute, and $P_{B}$ and $U_{A}$ commute.

Using Lemmas 3.1, 3.2 and some technical facts, we can obtain the
following results.

Theorem 3.3 [10]. Let $A$ and $B$ be anticommuting self-adjoint
operators in a Hilbert space. Then:

$U_{A}U_{B}=-iU_{C(A,B)}$ ,

$U_{C(A,B)}U_{A}=-iP_{A}U_{B}=-iU_{B}P_{A}$ ,

$U_{C(A,B)}U_{B}=iP_{B}U_{A}=iU_{A}P_{B}$ .

In the rest of this section, we assume that $A$ and $B$ are anticommut-
ing self-adjoint operators in a Hilbert space $\prime H$ . To rewrite the formulas
given in Theorem 3.3 as commutation relations, we introduce

$X_{1}=i\frac{U_{A}}{2}$ , $X_{2}=i\frac{U_{B}}{2}$ , $X_{3}=i\frac{U_{C(A,B)}}{2}$ ,

$Y_{1}=1$ , $Y_{2}=P_{B}$ , $Y_{3}=P_{A}$ , $Y_{4}=P_{A}P_{B}$ .

For bounded linear operators $X$ , $Y$ on $\prime \mathcal{H}$ , we define

$[X, Y]=XY-YX$ .
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Theorem 3.4 [10]. The following commutation relations hold:

$[X_{j}, X_{k}]=\sum_{\ell=1}^{3}\epsilon_{jk\ell}X_{\ell}Y_{j}$ , $j$ , $k=1,2,3$ ,

$[X_{j}, Y_{m}]=[Y_{m}, Y_{\tau\tau}]=0$ , $j=1,2,3$ , $m$ , $n=1,2,3,4$ ,

where $\epsilon_{jk\ell}$ is the Levi-Civita symbol with $\epsilon_{123}=1$ .

Proof (Outline). This follows from Theorem 3.3, Lemma 3.2,
Lemma 2.1 (iv), and the fact that $P_{A}^{2}=P_{A}$ . Q.E.D.

The vector space of all bounded linear operators on $H$ is a Lie algebra
with the Lie bracket $[ \cdot, \cdot ]$ . We denote it by $L(H)$ . Theorem 3.4 implies
the following result.

Theorem 3.5 [10]. Let $\mathfrak{M}\subset L(H)$ be the subspace spanned by
$X_{k}Y_{m}$ , $k=1,2,3$ , $m=1,2,3,4$ . Then $\mathfrak{M}$ is a Lie subalgebra of $L(H)$ .

As is well-known, the Lie algebra $\epsilon u$ $(2, \mathbb{C})$ of the special unitary
group $SU(2)$ is the set of $2\times 2$ complex skew-Hermitian matrices of $trace$

zero and has a basis $\{e_{j}\}_{j=1}^{3}$ which satisfy the commutation relations

$[e_{j}, e_{k}]=\sum_{\ell=1}^{3}\epsilon_{jk\ell}e_{\ell}$ , $j$ , $k=1,2,3$ .

We define a linear map $\rho$ : $\epsilon u$ $(2, \mathbb{C})\rightarrow L(H)$ by

$\rho(\sum_{j=1}^{3}\alpha_{j}e_{j})=\sum_{j=1}^{3}\alpha_{j}X_{j}$ , $\alpha_{j}\in \mathbb{C},j=1,2,3$ .

Theorem 3.6 [10]. Suppose that $A$ and $B$ are injective. Then $\rho$

is an isomorphism between $\epsilon u$ $(2, \mathbb{C})$ and $\mathfrak{M}$ .

Proof. We need only to note that, in the present case, $P_{A}=P_{B}=$

$1$ . Q.E.D.

In the case where $A$ and $B$ are not necessarily injective, we can
proceed as follows. Let

$H_{0}=(Ker A+KerB)^{\perp}$
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and define the operators $A_{0}$ and $B_{0}$ acting in $H_{0}$ by

$A_{0}f=Af$ , $f\in D(A_{0})$ ,

$B_{0}f=Bf$ , $f\in D(B_{0})$

with
$D(A_{0})=D(A)\cap H_{0}$ , $D(B_{0})=D(B)\cap H_{0}$ .

It has been proven in [20] that $A_{0}$ and $B_{0}$ are injective, self-adjoint, and
anticommute. We define the operators

$X_{1}^{(0)}=i\frac{U_{A_{0}}}{2}$ , $X_{2}^{(0)}=i\frac{U_{B_{0}}}{2}$ , $X_{3}^{(0)}=i\frac{U_{C(A_{0},B_{0})}}{2}$ .

and the map $\rho_{0}$ : $\epsilon u$ $(2, \mathbb{C})\rightarrow L(H_{0})$ by

$\rho_{0}(\sum_{j=1}^{3}\alpha_{j}e_{j})=\sum_{j=1}^{3}\alpha_{j}X_{j}^{(0)}$ , $\alpha_{j}\in \mathbb{C},j=1,2,3$ .

Applying Theorem 3.6 with $A$ and $B$ replaced by $A_{0}$ and $B_{0}$ , respec-
tively, we have the following result.

Theorem 3.7 [10]. The map $\rho_{0}$ is an isomorphism between

$\epsilon u$ $(2, \mathbb{C})$ and the Lie algebra $\mathfrak{M}_{0}$ generated by $X_{j}^{(0)},j=1,2,3$ .

Theorem 3.7 implies that $\rho_{0}$ is a faithful representation of $\epsilon u$ $(2, \mathbb{C})$

on the Hilbert space $H_{0}$ . If $H_{0}$ is infinite dimensional, then $\rho_{0}$ gives
an infinite dimensional representation of $\epsilon u$ $(2, \mathbb{C})$ . The structure of the
representation $\rho_{0}$ may be interesting. We have the following theorem.

Theorem 3.8 [10]. Let $\prime\mu$ be separable and $H_{0}$ be infinite dimen-
sional. Then there exists a sequence $\{\mathcal{M}_{n}\}_{n=1}^{\infty}$ of subspaces in $H_{0}$ with
the following properties:

(i) For each $m$ and $n$ with $m\neq n$ , $\mathcal{M}_{m}$ and $\lambda\Lambda_{n}$ are orthogonal.
(ii) $H_{0}=\oplus_{n=1}^{\infty}\mathcal{M}_{n}$ .

(iii) For all $n\in \mathbb{N}$ , $dimA4_{n}=2$ and $\mathcal{M}_{n}$ is left invariant by
$\{X_{j}^{(0)}\}_{j=1}^{3}$ .

In particular, the representation $\rho_{0}$ is completely reducible with the heigh-
est weight of each irreducible component being 1/2.

In concluding this section, we give a remark on a relevance of anti-
commuting self-adjoint operators to Clifford algebra theory. The Clifford
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algebra $\mathfrak{U}_{n}$ associated with the $n$-dimensional Euclidean space $\mathbb{R}^{n}$ is the
algebra generated by elements $\gamma_{j},j=1$ , $\cdots$ , $n$ , and identity 1 satisfying

(3.1) $\gamma_{j}\gamma_{k}+\gamma_{k}\gamma_{j}=2\delta_{jk}$ , $j$ , $k=1$ , $\cdots$ , $n$ .

Let $A$ and $B$ be anticommuting self-adjoint operators in the Hilbert
space $H$ and define

$\Gamma_{1}=U_{A_{0}}$ , $\Gamma_{2}=U_{B_{0}}$ , $\Gamma_{3}=U_{C(A_{0},B_{0})}$ .

Then the operators $\Gamma_{j},j=1,2,3$ , are self-adjoint on $H_{0}$ . Moreover we
have

$\Gamma_{j}\Gamma_{k}+\Gamma_{k}\Gamma_{j}=2\delta_{jk}$ , $j$ , $k=1,2,3$ ,

and $\Gamma_{j}$ leaves $\mathcal{M}_{n}$ invariant. Let $\Gamma_{j}^{(n)}$ be the restriction of $\Gamma_{j}$ to $\mathcal{M}_{n}$ ,

so that we have

$\Gamma_{j}=n=1\oplus\Gamma_{j}^{(n)}$
.

Let $C_{n}$ be the algebra generated by $\Gamma_{j}^{(n)},j=1,2,3$ . Then we have the

following result.

Theorem 3.9 [10]. For each $n=1,2$ , $\cdots f$ the algebra $C_{n}$ is the
spin representation of $\mathfrak{U}_{3}$ .

IV. The sum of two anticommuting self-adjoint operators

Let $A$ and $B$ be anticommuting self-adjoint operators in the Hilbert
space $H$ . As we have seen in Lemma 2.1 (vii), $A+B$ is self-adjoint. This
section concerns more detailed properties of the operator $A+B$ .

4.1. The case where $B$ is injective

In this case, the partial isometry $U_{B}$ is unitary with the spectrum
$\sigma(U_{B})=\{\pm 1\}$ , so that we have the orthogonal decomposition

(4.1) $H$ $=H_{+}\oplus\gamma\{_{-}=\{$ $\left(\begin{array}{l}f\\g\end{array}\right)$ $|f\in 7\{_{+}, g\in H_{-}\}$

with

$\mathcal{H}\pm=Ker(U_{B}\mp 1)$ .
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Theorem 4.1 [10]. Let $A$ and $B$ be anticommuting self-adjoint
operators in $H$ and $B$ be injective. Then $A$ , $B$ , and $P_{A}$ have the following
matrix representations with respect to $(w.r.t.)$ the decomposition (4.1):

(4.2) $A=\left(\begin{array}{ll}0 & a^{*}M_{-}\\aM_{+} & 0\end{array}\right)$ , $B=\left(\begin{array}{ll}B_{+} & 0\\0 & -B_{-}\end{array}\right)$ ,

$P_{A}=\left(\begin{array}{ll}a^{*}a & 0\\0 & aa^{*}\end{array}\right)$ ,

where $a$ is a partial isometry from $\mu_{+}$ to $H_{-}$ , $B_{+}$ (resp. $B_{-}$ ) and $M_{+}$

(resp. $M_{-}$ ) are commuting nonnegative self-adjoint operators in $H_{+}$

(resp. $H_{-}$ ), and $aB_{+}\subset B_{-}a$ .

This theorem is a generalization of [20, Corollary 3.3] which gives
matrix representations of $A$ and $B$ similar to (4.2) in the case where
both of $A$ and $B$ are injective.

We consider the diagonalization of $A+B$ w.r.t. the decomposition
(4.1). By the commutativity of $|A|$ and $|B|$ [ Lemma 2.1(iii) ], we can
define, via the functional calculus,

$\Lambda=Arc\tan(|A||B|^{-1})$ ,

which is bounded and self-adjoint. Since $-iX_{3}$ and $\Lambda$ are commut-
ing bounded self-adjoint operators, $-iX_{3}\Lambda$ is bounded and self-adjoint.
Hence the operator

$V=e^{X_{3}\Lambda}$

is unitary. It turns out that $V$ implements the diagonalization of $A+B$
w.r.t. the decomposition (4.1):

Theorem 4.2 [10]. Let $A$ and $B$ be anticommuting self-adjoint
operators and $B$ be injective. Then

$V(A+B)V^{-1}=U_{B}(A^{2}+B^{2})^{1/2}$

(4.3)
$=\left(\begin{array}{ll}(L_{A}^{*}L_{A}+B_{+}^{2})^{1/2} & 0\\0 & -(L_{A}L_{A}^{*}+B_{-}^{2})^{1/2}\end{array}\right)$ ,

where
$L_{A}=aM_{+}$ .

Remark. Formula (4.3) can be regarded as an abstract and non-
perturbative version of the so-called Tani-Foldy-Wouthuysen transfor-
mation of the usual Dirac operator in three space dimensions (e.g., [14]).

Theorem 4.2 can be proven by using the following lemma.
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Lemma 4.3 [10].

$VX_{1}V^{-1}=(1-P_{A})X_{1}+P_{A}(X_{1}\cos\Lambda+X_{2}\sin\Lambda)$ ,

$VX_{2}V^{-1}=(1-P_{A})X_{2}+P_{A}(-X_{1}\sin\Lambda+X_{2}\cos\Lambda)$ .

4.2. The case where $B$ is not injective

In this case, we note the following fact.

Lemma 4.4 [10]. The operator $P_{B}$ commutes with $A$ , $V$, $U_{B}$ , and
$(A^{2}+B^{2})^{1/2}$ .

Lemma 4.4 implies that $A$ , $B$ , $V$, $U_{B}$ , and $(A^{2}+B^{2})^{1/2}$ can be reduced
to $(KerB)^{\perp}$ in which $B$ is injective. Thus we can apply the preceeding
result in Section 4.1 to obtain the following theorem.

Theorem 4.5 [10]. Let $A$ and $B$ be anticommuting self-adjoint

operators. Then (4.3) holds on $(KerB)^{\perp}$ .

Remark. In the case of abstract Dirac operators, results similar to
Theorems 4.2 and 4.5 have been obtained in [22].

V. Characterization of anticommutativity of self-adjoint
operators in connection with Clifford algebra

In Section $m$ we have seen that two anticommuting self-adjoint op-
erators are related to the Clifford algebra $\mathfrak{U}_{3}$ . This fact suggests that it
may be more natural to characterize anticommutativity of self-adjoint
operators in connection with Clifford algebra. In fact, such a character-
ization is possible as we shall present below.

Let $\mathcal{H}$ be a Hilbert space. We say that $\{\gamma_{j}\}_{j=1}^{n}$ is a self-adjoint

representation of the Clifford algebra $\mathfrak{U}_{n}$ on $H$ if each $\gamma_{j}$ is a bounded
self-adjoint operator on $\prime\mu$ satisfying (3.1).

The first of the main results in this section is the following.

Theorem 5.1 [11]. Let $A$ and $B$ be self-adjoint operators in $a$

Hilbert space H. Suppose that there exists a self-adjoint representation
$\{\gamma_{1}, \gamma_{2}\}$ of $\mathfrak{U}_{2}$ on $\mathcal{H}$ $suh$ that each $\gamma_{j}$ commutes with $A$ and B. Then
$A$ and $B$ anticommute if and only if

$e^{is\gamma_{1}A}e^{it\gamma_{2}B}=e^{it\gamma_{2}B}e^{is\gamma_{1}A}$
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for all $s$ , $t\in \mathbb{R}$ .

Remark. If $\gamma_{1}$ commutes with $A$ , then $\gamma_{1}A$ is self-adjoint with
$\gamma_{1}A=A\gamma_{1}$ . The same holds for the pair $\{\gamma_{2}, B\}$ . Hence $\exp(is\gamma_{1}A)$

and $\exp(it\gamma_{2}B)$ can be defined via the functional calculus.

Theorem 5.1 has some interesting consequences. We fix a self-adjoint
representation $\{\gamma_{1}, \gamma_{2}\}$ of $\mathfrak{U}_{2}$ on a Hilbert space $\mathcal{K}$ . We denote by $\mathcal{K}\otimes H$

the tensor product of $\mathcal{K}$ and $H$ .

Theorem 5.2 [11]. Let $A$ and $B$ be self-adjoint operators in $a$

Hilbert space H. Then $A$ and $B$ anticommute if and only if $\gamma_{1}\otimes A$ and
$\gamma_{2}\otimes B$ commute in the Hilbert space $\mathcal{K}\otimes H$ .

Remark. A simple example of $\mathcal{K}$ and $\{\gamma_{1}, \gamma_{2}\}$ is given by

$\mathcal{K}=\mathbb{C}^{2}$ ,

$\gamma_{1}=\sigma_{1}:=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ , $\gamma_{2}=\sigma_{2}:=\left(\begin{array}{ll}0 & -i\\i & 0\end{array}\right)$ .

The matrices $\sigma_{1}$ and $\sigma_{2}$ are the first two of the so-called Pauli matrices.

We have a “dual” version of Theorem 5.2:

Theorem 5.3 [11]. Let $A$ and $B$ be self-adjoint operators in $a$

Hilbert space H. Then $A$ and $B$ commute if and only if $\gamma_{1}\otimes A$ and
$\gamma_{2}\otimes B$ anticommute in the Hilbert space $\mathcal{K}\otimes H$ .

Remark. In the case where $\mathcal{K}=\mathbb{C}^{2}$ and $\gamma_{j}=\sigma_{j},j=1,2$ , the
necessary condition in Theorem 5.3 has been proven in [13] by a method
different from that in [11].

Theorem 5.3 can be applied to the self-adjoint problem of op-
erators of Dirac’s type. We first recall a basic result due to Vasilescu
[23]:

Lemma 5.4 [23]. Let $\{A_{j}\}_{j=1}^{n}$ be a family of mutually anticom-

muting self-adjoint operators in a Hilbert space $(n<\infty)$ . Then $\sum_{j=1}^{n}A_{j}$

is self-adjoint and

$(\sum_{j=1}^{n}A_{j})2=\sum_{j=1}^{n}A_{j}^{2}$ .

Using this lemma and Theorem 5.3, we can prove the following fact:
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Theorem 5.5 [11]. Let $\{A_{j}\}_{j=1}^{n}$ be a family of mutually commut-

ing self-adjoint operators in a Hilbert space $H$ $(n<\infty)$ . Let $\{\gamma_{j}\}_{j=1}^{n}$

be a self-adjoint representation of $\mathfrak{U}_{n}$ on a Hilbert space $\mathcal{K}$ . Then the
operator

$p$ $:=\sum_{j=1}^{n}\gamma_{j}\otimes A_{j}$

is self-adjoint in $\mathcal{K}\otimes H$ and

$p^{2}=\sum_{j=1}^{n}I\otimes A_{j}^{2}$ .

We next consider a countable family $\{A_{n}\}_{n=1}^{\infty}$ of self-adjoint opera-
tors. We can define the operator

$A:=\sum_{n=1}^{\infty}A_{n}$

by the relation

$D(A)=\{f\in n=1\cap D(A_{n})\infty|w-\lim_{N\rightarrow\infty}\sum_{n=1}^{N}A_{n}fexists\}$ ,

$Af=w-\lim_{N\rightarrow\infty}\sum_{n=1}^{N}A_{n}f$ , $f\in D(A)$ .

The following lemma is an extension of Lemma 5.4.

Lemma 5.6 [23]. Let $\{A_{n}\}_{n=1}^{\infty}$ be a family of mutually anticom-
muting self-adjoint operators in a Hilbert space $H$ such that $D(\sum_{n=1}^{\infty}A_{n})$

is dense in H. Then $\sum_{n=1}^{\infty}A_{n}$ is self-adjoint and

$(\sum_{n=1}^{\infty}A_{n})^{2}=\sum_{n=1}^{\infty}A_{n}^{2}$ .

Using Lemma 5.6, we can obtain an extension of Theorem 5.5:

Theorem 5.7 [11]. Let $\{A_{n}\}_{n=1}^{\infty}$ be a family of mutually com-
muting self-adjoint operators in a Hilbert space $\mathcal{H}$ . Let $\{\gamma_{n}\}_{n=1}^{\infty}$ be $a$
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self-adjoint representation of $\mathfrak{U}_{\infty}$ on a Hilbert space $\mathcal{K}$ . Suppose that
$D(\sum_{n=1}^{\infty}\gamma_{n}\otimes A_{n})$ is dense in $\mathcal{K}\otimes H$ . Then the operator

$p_{\infty}:=\sum_{n=1}^{\infty}\gamma_{n}\otimes A_{n}$

is self-adjoint in $\mathcal{K}\otimes H$ and

$p_{\infty}^{2}=\sum_{r\iota=1}^{\infty}I\otimes A_{n}^{2}$ .

The operator $p$ (resp. $p_{\infty}$ ) in Theorem 5.5 (resp. Theorem 5.7)
gives a class of operators of Dirac’s type in an abstract form. Hence
Theorems 5.5 and 5.7 solve the self-adjointness problem for such Dirac
operators. Examples to which Theorems 5.5 and 5.7 are applicable in-
clude: (i) the Dirac-Weyl operator with a strongly singular gauge po-
tential [13] (cf. also [12]); (ii) classes of operators of Dirac’s type in an
abstract Boson-Fermion Fock space (infinite dimensional Dirac opera-
tors) [3, 4, 7, 9, 11].

VI. Anticommuting self-adjoint operators and super-
symmetric quantum theory

As a final topic in this paper, we discuss a connection of the theory
of anticommuting self-adjoint operators with supersymmetric quantum
theory (SSQT).

We first give an abstract definition of SSQT $(e.g., [1, 2, 4, 17, 25])$ .

Let $N\geq 1$ be an integer. A SSQT with $N$-supersymmetry is defined to
be a quadruple $\{H, \{Q_{n}\}_{n=1}^{N}, H, N_{F}\}$ consisting of a Hilbert space $H$ , a

set of self-adjoint operators $\{Q_{n}\}_{n=1}^{N}(‘‘ supercharges’’ )$ , self-adjoint op-
erators $H$ (”supersymmetric Hamiltonian”) and $N_{F}(‘‘$Fermion number
operator”) acting in $H$ , which satisfies the following conditions:

(5.1) $N_{F}^{2}=I$ (identity on $H$ ) and $N_{F}\neq\pm I$ .

(5.2) $H=Q_{n}^{2}$ , $n=1$ , $\cdots$ , $N$ .
(5.3) For each $n=1$ , $\cdots$ , $N$ , $N_{F}$ leaves $D(Q_{n})$ invariant and

$N_{F}Q_{n}+Q_{n}N_{F}=0$ on $D(Q_{n})$ , $n=1$ , $\cdots$ , $N$ .

(S.4) For all $n$ , $m=1$ , $\cdots$ , $N$ , with $n\neq m$ ,

$(Q_{n}\psi, Q_{m}\phi)+(Q_{m}\psi, Q_{n}\phi)=0$ , $\psi$ , $\phi\in D(Q_{n})\cap D(Q_{m})$ ,

where $(\cdot, \cdot)$ is the inner product of $H$ .
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Note that (S.3) means that $N_{F}$ and $Q_{n}$ anticommute in a “naive”
sense, while (S.4) shows that $Q_{n}$ and $Q_{m}(n\neq m)$ anticommute in the
sense of quadratic form on $D(Q_{n})\cap D(Q_{m})$ . It is natural to ask if they
anticommute in the proper sense given in the Introduction.

The following fact is known.

Lemma 6.1 [23]. Let $T$ be a bounded self-adjoint operator and $Q$

be a self-adjoint operator in a Hilbert space. Suppose that $T$ leaves $D(Q)$

invariant and

$TQ+QT=0$ on $D(Q)$ .

Then $T$ and $Q$ anticommute.

Applying Lemma 6.1 to $T$ $=N_{F}$ and $Q=Q_{n}$ , we have the following
result.

Proposition 6.2. In any SSQT $\{H, \{Q_{n}\}_{n=1}^{N}, H, N_{F}\}$ , each $Q_{n}$

and $N_{F}$ anticommute.

As for (S.4), we can apply the following theorem.

Theorem 6.3. Let $Q_{1}$ and $Q_{2}$ be self-adjoint operators in a Hilbert
space $H$ such that

$Q_{1}^{2}=Q_{2}^{2}$

and

(6.1) $(Q_{1}\psi, Q_{2}\phi)+(Q_{2}\psi, Q_{1}\phi)=0$ , $\psi$ , $\phi\in D(Q_{1})\cap D(Q_{2})$ .

Then $Q_{1}$ and $Q_{2}$ anticommute.

Proof. We have $L\equiv|Q_{1}|=|Q_{2}|$ . Hence $D(Q_{1})=D(Q_{2})=D(L)$

and the polar decompositions of $Q_{1}$ and $Q_{2}$ are given by

$Q_{1}=U_{1}L$ , $Q_{2}=U_{2}L$ ,

where $U_{j}=U_{Q_{j}}$ . Putting these formulas into (6.1), we have

(6.2) $(U_{1}\overline{\psi}, U_{2}\overline{\phi})+(U_{2}\tilde{\psi}, U_{1}\tilde{\phi})=0$

with $\overline{\psi}=L\psi,\overline{\phi}=L\phi$ , $\psi$ , $\phi\in D(L)$ .

We first consider the case where $L$ is injective and hence so is $Q_{j}$

$(j=1,2)$ . Then $U_{1}$ and $U_{2}$ are unitary, self-adjoint and Ran $L$ is dense
in $\prime\mu$ . Hence (6.2) implies that

$U_{j}U_{k}+U_{k}U_{j}=2\delta_{jk}$ , $j$ , $k=1,2$ .



14 A. Arai

Let $D=\bigcup_{n=1}^{\infty}RanE_{L}([0, n])$ . Then $D$ is dense in 7{. Since $U_{j}$ commutes
with $L$ , $U_{1}$ and $U_{2}$ leave $D$ invariant and hence so do $Q_{1}$ and $Q_{2}$ . It
is easy to see that $D$ is a set of entire analytic vectors for each $Q_{j}$ and
$Q_{1}Q_{2}+Q_{2}Q_{1}=0$ on $D$ . Hence we can apply [20, Proposition 5.2] to
conclude that $Q_{1}$ and $Q_{2}$ anticommute.

In the case where $L$ is not injective, $Q_{1}$ and $Q_{2}$ are reduced to $\mathcal{H}_{0}\equiv$

$(KerL)^{\perp}=(KerQ_{1})^{\perp}=(KerQ_{2})^{\perp}$ . We can apply the preceeding

result to $\overline{Q}_{j}\equiv Q_{j}[H_{0}$ to conclude that $\overline{Q}_{1}$ and $\overline{Q}_{2}$ anticommute. This
implies the anticommutativity of $Q_{1}$ and $Q_{2}$ in $\mathcal{H}$ . Q.E.D.

Theorem 6.3 gives the following result.

Proposition 6.4. In any SSQT { 7$\{, \{Q_{n}\}_{n=1}^{N}, H, N_{F}\}$ , $Q_{n}$ and
$Q_{m}(n, m=1, \cdots, N, n\neq m)$ anticommute.

Remark. The SSQT considered above is a non-relativistic one. In
relativistic cases, condition (S.2) have to be replaced by a more compli-
cated one (e.g., [9, 24]).
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Asymptotics for the Painlev\’e II Equation:
Announcement of Result

P. A. Deift and X. Zhou

Submitted in honor of Professor S. T. Kuroda,

from whom we have learned so much

1. Introduction

In this paper we study the asymptotics of a class of solutions of the
(homogeneous) Painlev\’e $II$ (PII) equation

(1.1) $u_{xx}=2u^{2}+xu$ , $x\in \mathbb{R}$ ,

as $ x\rightarrow\pm\infty$ . Following the work of Flaschka and Newell [FN] and
Jimbo, Miwa and Ueno [JMU] the PII equation can be solved by means
of a Riemann-Hilbert (RH) factorization problem as follows ([FA]; see

also [IN] $)$ . Let $\Sigma^{(1)}$ denote the oriented contour consisting of six rays,

$\Sigma^{(1)}=\bigcup_{k=1}^{6}\{\Sigma_{j}^{(k)}=e^{i(k-1)\pi/3}\mathbb{R}_{+}\}$ ,

$\left(\begin{array}{ll}1 & r\\0 & 1\end{array}\right)$

$\left(\begin{array}{ll}1 & 0\\q & 1\end{array}\right)$

$\Sigma^{(1)}$

$\left(\begin{array}{ll}1 & 0\\p & 1\end{array}\right)$

$\left(\begin{array}{ll}1 & p\\0 & 1\end{array}\right)$

$\Omega_{0}$

$\left(\begin{array}{ll}1 & q\\0 & 1\end{array}\right)$
$\left(\begin{array}{ll}1 & 0\\\Gamma & 1\end{array}\right)$

Fig. 1.2

Received February 8, 1993.



18 P.A. Deift and X. Zhou

with associated jump matrix $v^{(1)}$ : $\Sigma^{(1)}\rightarrow M_{2}(\mathbb{C})$ , $v^{(1)}r\Sigma_{1}^{(1)}=\left(\begin{array}{ll}1 & p\\01 & \end{array}\right)$ ,
etc., where $p$ , $q$ and $r$ are complex numbers satisfying the relation

(1.3) $p+q+r+pqr=0$ .

For $x\in \mathbb{R}$ and $z\in\Sigma^{(1)}$ , set

(1.4) $v_{x}^{(1)}(z)=e^{-i(\frac{4z^{3}}{3}+xz)\sigma_{3}}v^{(1)}(z)e^{i(\frac{4}{3}z^{3}+xz)\sigma_{3}}\}$

$\equiv e^{-i(\frac{4z^{3}}{3}+xz)ad\sigma_{3}}v^{(1)}(z)$

where $\sigma_{3}$ is the Pauli matrix $\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ .

Now let $m^{(1)}(z)=m^{(1)}(x, z)$ be a ( $2\times 2$ matrix valued) holomorphic

function defined on $\mathbb{C}\backslash \Sigma^{(1)}$ solving the $RH$ problem

(1.5)
$m_{+}^{(1)}(z)=m_{-}^{(1)}(z)v_{x}^{(1)}(z)$ ,

$0\neq z\in\Sigma^{(1)},\}$

$m^{(1)}(z)\rightarrow I$ as $ z\rightarrow\infty$ ,

where $m_{+}^{(1)}(z)$ (resp. $m_{-}^{(1)}(z)$ ) denotes as usual the boundary value of
$m^{(1)}(z)$ from the left (resp. right) side of the oriented contour $\Sigma^{(1)}$ .

(Thus for $z\in \mathbb{R}_{+}$ in particular, we have $m_{\pm}^{(1)}(z)=\lim_{\epsilon\downarrow 0}m^{(1)}(z\pm i\epsilon)$ ,

etc.). Then

(1.6) $u(x)\equiv 2i(m_{1}^{(1)}(x))_{12}=-2i(m_{1}^{(1)}(x))_{21}$ ,

solves PII, where

(1.7) $m^{(1)}(z)=m^{(1)}(z;x)=I+\frac{m_{1}^{(1)}(x)}{z}+O(\frac{1}{z^{2}})$

as $ z\rightarrow\infty$ .

For general $p$ , $q$ , $r$ and $x$ , $p+q+r+pqr=0$ , $x\in \mathbb{R}$ , the $RH$ problem
(1.5) may fail to have a solution. However, every (local) solution of the
Cauchy problem for (1.1) can be obtained ffom the $RH$ problem for
suitable $p$ , $q$ and $r$ by the above prescription. Indeed (see e.g. [FA],
[IN] $)$ there is an inejctive map (the Direct Transform)

(1.8) $(u(0), u’(0))\mapsto$

$(p_{0}=p(u(0), u’(0))$ , $q_{0}=q(u(0), u’(0))$ , $r_{0}=r(u(0), u’(0)))$

$\in\{(p, q, r):p+q+r+pqr=0\}$

with the property that the $RH$ problem (1.5) with $p=p_{0}$ , $q=q_{0}$ and $r=$

$r_{0}$ has a solution for all $x$ in a neighborhood of zero, and if $u(x;p_{0}, q_{0}, r_{0})$
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is the solution of PII obtained from (1.6), then $u(x;p_{0}, q_{0}, r_{0})$ is the
unique (local) solution of PII with the given initial data $(u(0), u’(0))$ .
Moreover, allowing complex values for $x$ in (1.4), $u(x;p_{0}, q_{0}, r_{0})$ gives a
meromorphic continuation of the solution to the entire complex plane.

We are interested in particular in solutions of (1.1) that exist for all
$x$ in $\mathbb{R}$ . A sufficient condition (see [FZ]) for the $RH$ problem (1.5) to
have a solution for all $x\in \mathbb{R}$ , is that

(1.8) $|q-\overline{p}|<2$ and $r\in \mathbb{R}$ .

Real solutions of PII correspond to $RH$ data with the symmetry

(1.9) $p=-\overline{q}$ , $r\in i\mathbb{R}$ ,

and pure imaginary solutions correspond to data with

(1.10) $p=\overline{q}$ , $r\in \mathbb{R}$

(cf. [FA], [IN]). From (1.3), (1.8), (1.9) and (1.10), we see that for any
real $q$ ,

(1.11) $-1<q<1$ , $p=-q$ , $r=0$

formula (1.6) leads to a global, real solution of $PII$ , while for any $q\in \mathbb{C}$

$(1.12)$ $q$ , $p=\overline{q}$ , $r=-[(q+\overline{q})/(1+|q|^{2})]\in \mathbb{R}$

formula (1.6) leads to a global, purely imaginary solution of PII. Fur-
thermore (see below) a special argument shows that for

(1.13) $q=\pm 1$ , $p=\mp 1$ , $r=0$

(1.6) also leads to a global, real solution of (1.1).
We will study the asymptotic behavior of the solutions of PII in

these three cases (1.1), (1.2) and (1.3). The results are as follows.

Theorem 1.14 (global real solutions). For

$-1<q<1$ , $p=-q$ and $r=0$ ,

(1.15)

$u(x)=\frac{\sqrt{2\iota/}}{(-x)^{1/4}}\cos(\frac{2}{3}(-x)^{3/2}-\frac{3}{2}\nu\log(-x)+\phi)+O(\frac{1og(-x)}{(-x)^{5/4}})$

as $ x\rightarrow-\infty$ ,
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where

(1.16) $\nu=\nu(q)=\frac{-1}{2\pi}\log(1-q^{2})$

(1.17) $\phi=-3\nu\log 2+\log\Gamma(i\nu)+\frac{\pi}{2}sgnq-\frac{\pi}{4}$

(here $\Gamma$ denotes the Gamma function) and

(1.18) $u(x)=\frac{q}{2\sqrt{\pi}x^{1/4}}e^{-(2/3)x^{3/2}}(1+O(1))$ as $ x\rightarrow+\infty$ .

Theorem 1.19 (global purely imaginary solutions). For

$q\in \mathbb{C}$ , $p=\overline{q}$ and $r=-[(q+\overline{q})/(1+|q|^{2})]$

(1.20)

$u(x)=\frac{i(-2\nu)^{1/2}}{(-x)^{1/4}}\sin(\frac{2}{3}(-x)^{3/2}-\frac{3}{2}\nu\log(-x)+\phi)+O(\frac{1og(-x)}{(-x)^{5/4}})$

as $ x\rightarrow-\infty$ ,

where

(1.21) $\nu=\frac{-1}{2\pi}\log(1+|q|^{2})$

and

(1.22) $\phi=-3\nu\log 2+\frac{\pi}{4}+\arg\Gamma(i\nu)-\arg q$ .

For $Req\neq 0$ (equivalently $r\neq 0$ )
(1.23)

$u(x)=\sigma i\sqrt{\frac{x}{2}}-\frac{\sigma i\sqrt{\nu}}{(2x)^{1/2}}\cos(\frac{2\sqrt{2}}{3}x^{3/2}-\frac{3}{2}\nu\log x+\phi)+O(\frac{1}{x^{(1/2)-\epsilon}})$

as $ x\rightarrow+\infty$

where $\epsilon$ is any positive number and

(1.24) $\nu=\frac{1}{\pi}\log\frac{1+|q|^{2}}{2|Req|}$

(1.25) $\phi=\frac{\pi}{4}-\frac{7}{2}\nu\log 2+\arg\Gamma(i\nu)+\arg(1-q^{2})$ ,
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(1.26) $\sigma=sgn(Req)$ ,

and for $Req=0$ (equivalently $r=0$ )

(1.27) $u(x)=\frac{1}{2\sqrt{\pi}x^{1/4}}e^{-(2/3)x^{3/2}}(1+o(1))$ as $ x\rightarrow+\infty$ .

Theorem 1.28 (global real solutions: singular case). For

$q=\pm 1$ , $p=\mp 1$ and $r=0$ ,

$u(x)=\pm[(-\frac{x}{2})^{1/2}-\frac{1}{2^{7/2}}(-x)^{-5/2}+O((-x)^{-11/2})]$

$(1.29)$

as $ x\rightarrow-\infty$

and

(1.30) $u(x)=\pm\frac{1}{2\sqrt{\pi}x^{1/4}}e^{-(2/3)x^{3/2}}(1+o(1))$ as $ x\rightarrow+\infty$ .

Theorem 1.14 is due to Ablowitz and Segur (see [SA1], [SA2]). A rig-
orous justification of the beautiful heuristic calculations in [SA1], [SA2]
is given in [HM] and [CM], at least up to the phase shift (1.17), using
a Gelfand-Levitan type equation derived earlier by Ablowitz and Segur
in [AS] Theorem 1.28, at least to leading order in $x$ , is due to Hastings
and Mcleod and appears in [HM]. A Gelfand-Levitan approach is only
possible in the special case of Theorems 1.14 and 1.28 when $r=0$ and
the contour $\Sigma^{(1)}$ for the $RH$ problem can be reduced to a single line.
Theorem 1.19 is due to Its and Kapaev [IK]. In the case $r\neq 0$ , the
contour does not reduce to a line and the $RH$ problem must be solved
directly as a $RH$ problem on a nontrivial contour with self-interactions.
The authors in [IK] use the so called “isomonodromy method” which
they have developed, together with Novokshenov and others, in a won-
derful series of papers over the last eight or nine years. An exposition
of the method, together with a discussion of the many results that have
been obtained, can be found in [IN]. The method is a descendent of the
original method of Zakharov and Manikov [ZM] which they derived in
analyzing the long-time behavior of the nonlinear Schr\"odinger equation.
Another derivation of Theorem 1.14, using the isomonodromy method,
was given by Suleimanov [S]. We note, however, that certain technical
difficulties in [IK] and [S] remain, and a completely rigorous justifica-
tion of the isomonodromy method poses a deep and very interesting
challenge.
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The above results solve the so-called “connection problem” for global
solutions of PII. For example, if we observe the asymptotics of a purely
imaginary solution of $PII$ as $ x\rightarrow-\infty$ , then $\nu$ and $\phi$ in (1.20) are known
and hence $q$ can be computed from (1.21) and (1.22), and so $\nu(q)$ , $\phi(q)$

and $\sigma(q)$ can be determined from (1.24), (1.25) and (1.26), which yields
the asymptotics as $ x\rightarrow+\infty$ through (1.23). Conversely if we observe
the asymptotics of a purely imaginary solution as $ x\rightarrow+\infty$ , then $\nu$ , $\phi$

and $\sigma$ in (1.23) are known. But then $r=\frac{-2Req}{1+|q|^{2}}$ is known from (1.24)

and (1.26). This relation can be rewritten as $|r^{-1}+q|^{2}=r^{-2}-1$ . On
the other hand $\arg(1+rq)=\arg((1-q^{2})/1+|q|^{2})=\arg(1-q^{2})$ , and

hence $\arg(r^{-1}+q)$ can be determined from (1.25). Thus $r^{-1}+q$ and,
hence $q$ , is known. Substitution in (1.21) and (1.22) then yields the
asymptotics as $ x\rightarrow-\infty$ through (1.20). Thus if we know the behavior
of the solution as $ x\rightarrow+\infty$ (resp. $ x\rightarrow-\infty$ ), we can “connect” the
solution to its asymptotics as $ x\rightarrow-\infty$ (resp. $ x\rightarrow+\infty$ ).

The six Painlev\’e equations PI-PVI were introduced by Painlev\’e

and Gambier at the beginning of this century on purely mathemati-
cal grounds, but recently they have appeared in a wide range of physi-
cal applications, including self-similar solutions of the Korteweg deVries
equation, correlation functions for the transverse Ising chain in the in-
finite temperature limit, nonperturbative $2D$ quantum gravity, amongst
many others. A comprehensive survey of recent results and applications
of Painlev\’e equations can be found in [FI]. It is increasingly recognized
that the Painlev\’e equations play a role in modern mathematical physics
analogous to the role played by the classical special functions of the last
century. Many of the applications of classical special function theory rest
on the fact that the asymptotics and the associated connection problem
for the special functions can be solved explicitly. Theorems 1.14, 1.19
and 1.28 should be viewed as providing the analogous information for
$PII$ .

We now make some additional remarks about the asymptotic formu-
lae in the above theorems. Note that if $q=\pm 1$ , $p=\pm 1$ and $r=\mp 1$ in
(1.24)-(1.26) then $\nu=0$ and the lower order oscillatory term in (1.23) is
absent. This case plays a special role in our analysis of PII and provides
a model problem by means of which the general case of Theorem 1.19
can be analyzed. Moreover, in this case, the solution has full fractional
expansion as $ x\rightarrow+\infty$ identical in form to (1.29).

It is interesting to consider Theorems 1.14 and 1.28 from the follow-
ing point of view. Observe that for large positive $x$ , PII reduces to the
Airy equation. Question (see [HM]): for real $q$ does there exist a real
global solution of $PII$ that is asymptotic to $qA_{i}(x)$ as $ x\rightarrow+\infty$ ? (Here
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$A_{i}(x)$ is the standard Airy function.) Theorems 1.14 and 1.28 show that
this is so for $|q|\leq 1$ (the asymptotics for $A_{i}(x)$ can be found, for ex-
ample, in [AbSt] $)$ . However, if $|q|>1$ and the solution $u(x)\sim qA_{i}(x)$

as $ x\rightarrow+\infty$ , then $u(x)$ must blow up for some $x$ . This result is due
to Hastings and McLeod (see [HM]). In fact, as shown by Kapaev and
Novokshenov, $u(x)$ blows up at an infinite number of points $ x_{n}\rightarrow-\infty$

(see [KN], [IN]).

An analysis of the asymptotics of solutions $u(x)$ of $PII$ as $ x\rightarrow\infty$

along a ray in the complex plane has been given by Boutroux [B]. Further
interesting developments can be found in Novokshenov [N] and Kapaev
[K], who use the isomonodromy method.

Recently the authors have introduced a new and general nonlinear
steepest descent-type method for analyzing the asymptotics of oscilla-
tory $RH$ problems [DZ1]. The method has been used to derive rigorously
the long-time asymptotics for the modified Korteweg de Vries (MKdV)
equation [DZ1], for the nonlinear Schr\"odinger (NLS) equation [DIZ], and
for the doubly infinite, compactly perturbed Toda lattice [Kam]. The
method has also been used to announce the derivation of the collision-
less shock region of Ablowitz-Segur for the Korteweg de Vries $(KdV)$

equation [DZ3], and to obtain the long-time asymptotics for the auto-
correlation function of the transverse Ising chain at the critical magnetic
field [DZ2].

As indicated above, many of the results in Theorems 1.14, 1.19 and
1.28 have not yet been justified rigorously. Moreover, the methods of the
authors, and in particular the isomonodromy method, require an a priori
ansatz for the form of the solution. The purpose of this paper is to derive
Theorems 1.14, 1.19 and 1.28 rigorously and directly with error bounds
using the steepest descent method of [DZ1]. Our approach is algorithmic
and requires no ansatz for the asymptotic form of the solution. The
method proceeds by deforming contours, and in the simplest cases, we
are left with the localized $RH$ problem near the points of stationary
phase. These localized $RH$ problems can then be solved explicitly in
terms of classical special functions. This is the case for MKdV in the
similarity region and also for the asymptotics on (1.15) and (1.20). This
is not the case, however, for the asymptotics in (1.23) and (1.29): here
the $RH$ problem localizes on a line segment rather than at the stationary
phase points. A similar situation arises in the analysis of the collisionless
shock region in $KdV$ (see [DZ3]). This is a new and essentially nonlinear
feature of the steepest descent method, and its resolution occupies the
main part of the work.
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Eigenvalue Properties of Schr\"odinger Operators

W. D. Evans, Roger T. Lewis and Yoshimi Sait

Abstract.

In Evans-Lewis [5] and Evans-Lewis-Sait [6], [7], [8], [9] we have
been discussing conditions for the finiteness and for the infiniteness
of bound states of Schr\"odinger-type operators using geometric meth-
ods. Here the ideas and results obtained so far are summarized and
presented in an expository manner. These bound states correspond
to eigenvalues below the essential spectrum of the operator. After
basic results are presented, Schr\"odinger operators of atomic type will
be discussed to show how these basic results can be applied to various
types of $N$-body Schr\"odinger operators.

Introduction

In [5], [6], [7], [8] and [9] we have been considering criteria for the
bound states of Schr\"odinger-type operators

(0.1) $P=-\sum_{j,k=1}^{n}\partial_{j}a^{jk}(x)\partial_{k}+q(x)$
$x\in R^{n}$ , $\partial_{j}=\frac{\partial}{\partial x_{j}}$

to be finite or infinite (see Assumption 1.1 for the properties satisfied

by the coefficients $a^{jk}(x)$ and $q(x))$ . These bound states correspond to
eigenvalues below the essential spectrum of the operator. The goal of
this paper is twofold:

(1) In \S 1 the basic results for the operator (0.1) will be presented in
a more self-contained and unifified way, which we hope makes these basic
results easier to be understood. Our arguments are based on the geomet-
ric method using the Agmon spectral function which was introduced in
Agmon [1]. We are going to show that our arguments become smoother
and more streamlined by restricting the operator $P$ using only smooth

cut-off functions. This was introduced in [9]. Here we have an opportu-
nity to modify our way of deriving the basic results obtained in [5] and

Received December 8, 1992.
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[6]. Other important ingredients are the results of Glazman [10, Chapter
1] on counting the eigenvalues of an abstract selfadjoint operator in $a$

given interval. Since the proofs of some of his theorems in [10] are too
succinct, we are proving these theorems in a more self-contained way so
that our main theorems will be understood more easily.

(2) In \S 2 we shall discuss the Schr\"odinger operator of atomic type

(0.2) $P=P_{N}=\sum_{i=1}^{N}(-\frac{1}{2m_{i}}\triangle_{i}+v_{0i}(x^{i}))+\sum_{1\leq i<j\leq N}v_{ij}(x^{i}-x^{j})$ ,

where

(0.3) $x^{i}=(x_{1}^{i}, x_{2}^{i}, \cdots, x_{\iota/}^{i})\in R^{\iota/}$ ,

(see Assumption 2.1). We chose the operator (0.2) as an example to
give an idea how the general results obtained in \S 1 can be applied to
various types of $N$ -body Schr\"odinger operators since it is easier to be
treated without being bothered by technical troubles. We are going to
compare our results to the celebrated results by Zhislin ([22], [23], [24],
[25] $)$ , Yafaev ([20], [21]) and others for the atomic Hamiltonian given by

(0.4) $P=P(N, Z)=\sum_{i=1}^{N}(-\frac{1}{2m}\triangle_{i}-\frac{Z}{|x^{i}|})+\sum_{1\leq i<j\leq N}\frac{1}{|x^{i}-x^{j}|}$ .

We are also giving an another proof for the fifiniteness of the bound states

of the operator (0.2) with “short-range” potentials $v_{jk}$ , $0\leq j<k\leq N$ ,
$i.e.$ ,

(0.5) $v_{jk}\in L_{2}^{\iota//2}(R^{\iota/})$ $(0\leq j<k\leq N)$ .

The results given in \S 1 can be applied to other types of $N$-body
Schr\"odinger operators. In [8] we discussed $N$-body Schr\"odinger oper-
ators with their center of mass removed. Then the operator becomes
unitarily equivalent to the operator in \S 1, and hence we can develop
essentially the same theory as in \S 1 and \S 2. Thus we are able to treat
molecular Hamiltonians. We also discussed molecular Hamiltonians with
symmetry restrictions in [9]. The $N$-body Schr\"odinger operator with its
center of mass removed is considered in the $L_{2}$ space whose elements are
square integrable functions over

(0.6) $X=\{x\in R^{l/N} : m_{1}x^{1}+m_{2}x^{2}+\cdots+m_{N}x^{N}=0\}$
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satisfying specified symmetry conditions. Again we found that we can
construct a parallel theory to those in \S 1 and \S 2. For these details see
[8] and [9].

While we try to make this work self-contained, we refer to our works
[5], [6], [7] and [8] when we use the exactly same propositions given in
the above papers. Some technical lemmas and theorems are proved in
the Appendices.

\S 1. The bound states of Schr\"odinger-type operators

Consider the Schr\"odinger-type operator

(1.1) $P=-\sum_{j,k=1}^{n}\partial_{j}a^{jk}(x)\partial_{k}+q(x)$ $x\in R^{n}$ , $\partial_{j}=\frac{\partial}{\partial x_{j}}$ .

Assumption 1.1. The coefficients $a^{jk}$ and $q$ of the operator $P$ is
assumed to satisfy the following $(i)\sim(iii)$ :

(i) Each $a^{jk}$ is a bounded, continuous, real-valued function on $R^{n}$ .
(ii) The matrix $A(x)=(a^{jk}(x))$ is uniformly positive definite on

$R^{n}$ , i.e., there exists a constant $c_{0}>0$ such that

(1.2) $\sum_{j,k=1}^{n}a^{jk}(x)\xi_{j}\overline{\xi_{k}}\geq c_{0}\sum_{j=1}^{n}|\xi|^{2}$

for all $x\in R^{n}$ and $(\xi_{1}, \xi_{2}, \cdots, \xi_{n})\in C^{n}$ .

(iii) $q\in L_{1}(R^{n})_{1oc}$ .

We start with the following definition.

Definition 1.2. (i) Let $\eta$ be a nonnegative, bounded $C^{\infty}$ function
on $R^{n}$ . Let the sesquilinear form on $C_{0}^{\infty}(R^{n})\times C_{0}^{\infty}(R^{n})$ be defined by

(1.3) $\rho_{\eta}[\phi, \varphi]=\int_{R^{n}}\{<\nabla(\eta\phi), \nabla(\eta\varphi)>_{A}+q\eta^{2}\phi\overline{\varphi}\}dx$ ,

where

(1.4)
$<\xi$ , $\zeta>_{A}=\sum_{j,k=1}^{n}a^{jk}\xi_{j}\overline{\zeta_{k}}$

$(\xi=(\xi_{1}, \xi_{2}, \cdots, \xi_{n}), \zeta=(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n})\in C^{n})$ .

We set $\rho_{\eta}[\phi]:=\rho_{\eta}[\phi, \phi]$ . For $\eta\equiv 1$ we denote $\rho_{1}[, ]$ simply by $\rho[, ]$ .
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(ii) Define the Hilbert space $L_{2,\eta}(R^{n})$ by

(1.8) $L_{2,\eta}(R^{n})=L_{2}(R^{n2}, \eta dx)$ .

The inner product and norm of $L_{2,\eta}(R^{n})$ are denoted by $(, )_{\eta}$ and
$||$ , $||_{\eta}$ , respectively. For $\eta\equiv 1$ we simply write $L_{2}(R^{n})$ , $(, )$ , and $||||$ .

The following assumption guarantees that $\rho_{\eta}$ is closable on $L_{2,\eta}(R^{7b})$ .

Assumption 1.3. For every $\epsilon\in(0,$ 1) there is a $C(\epsilon)>0$ such
that

(1.6)

$\int_{R^{n}}q-|\phi|^{2}dx\leq\epsilon\int_{R^{n}}|\nabla\phi|^{2}dx+C(\epsilon)\int_{R^{n}}|\phi|^{2}dx$ , $\phi\in C_{0}^{\infty}(R^{n})$ ,

where $q-(x)=\max(-q(x), 0)$ .

It is known (Schechter [16, Theorem 7.3, p.138]) that (1.6) holds if
$q_{-}$ belongs to the Kato class, i.e.,

(1.7) $\lim_{r\rightarrow 0}\int_{|x-y|<r}g(x, y)|q(y)|dy=0$ ,

where

(1.8) $g(x, y)=\{$

$|x-y|^{2-n}$ if $n$ $\geq 3$ ,

$|\ln|x-y||$ if $n$ $=2$ , and

1 if $n=1$ .

Remark 1.4. Assumptions 1.1 and 1.3 are slightly more strict than
those given in [6], [7], [8], [9] although usual $N$-body Schr\"odinger oper-
ators satisfy our assumptions. Since we assume that the matrix $A(x)$ is
uniformly positive, the condition on $q-$ seems to be easier to check (cf.
the condition $H(1)$ in [6, p.383] $)$ .

Proposition 1.5. Let Assumptions 1.1 and 1.3 be satisfified. Let $\rho_{\eta}$

be as in Defifinition 1.2. Then $\rho_{\eta}$ is densely defifined, symmetric, bounded
below, and closable in $L_{2,\eta}(R^{n})$ .

Proof. (1) Since it is easy to see that $\rho_{\eta}$ is densely defined, sym-
metric, and bounded below, we are going to give the proof that $\rho_{\eta}$ is
closable. Let $\{\phi_{j}\}$ be a sequence in $C_{0}^{\infty}(R^{n})$ such that

(1.9) $\{$

$||\phi_{j}||_{\eta}\rightarrow 0$

$\rho_{\eta}[\phi_{j}-\phi_{k}]\rightarrow 0$

$(j\rightarrow\infty)$ ,

$(j, k\rightarrow\infty)$ .
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We have only to prove that $\rho_{\eta}[\phi_{j}]\rightarrow 0$ as $ j\rightarrow\infty$ .
(2) It follows fiiom Assumption 1.1, (ii) and Assumption 1.3 that

there exists a positive constant $C_{1}$ such that

(1.10) $||\phi||_{\rho_{\eta}}^{2}\equiv\rho_{\eta}[\phi]+C_{1}||\phi||_{\eta}^{2}\geq\int_{R^{n}}\{\frac{c_{0}}{2}|\nabla(\eta\phi)|^{2}+(q_{+}+1)\eta^{2}|\phi|^{2}\}dx$

for $\phi\in C_{0}^{\infty}(R^{n})$ , where $q_{+}(x)=\max\{q(x), 0\}$ , and hence $\{\eta\phi_{j}\}$ is a
Cauchy sequence in both $H^{1}(R^{n})$ and $L_{2}(R^{n}, q_{+}dx)$ . Further, since
$\eta\phi_{j}\rightarrow 0$ in $L_{2}(R^{n})$ as $ j\rightarrow\infty$ , it follows that

(1.11) $s-\lim_{j\rightarrow\infty}\eta\phi_{j}=0$
$(j\rightarrow\infty)$

in both $H^{1}(R^{n})$ and $L_{2}(R^{n}, q_{+}dx)$ which implies that $\rho_{\eta}[\phi_{j}]\rightarrow 0$ .

Q.E.D.

Definition 1.6. Let $\rho_{\eta}$ be as above. Denote the closure of $\rho_{\eta}$ by
$\tilde{\rho}_{\eta}$ . Let $H_{\eta}$ be the selfadjoint operator in $L_{2,\eta}(R^{n})$ associated with $\tilde{\rho}_{\eta}$

(see, e.g., Kato [13, Chapter $VI]$ ). For $\eta\equiv 1H_{1}$ will be denoted simply
by $H$ . Define $\Sigma(H_{\eta})$ by

(1.12) $\Sigma(H_{\eta})=\inf\sigma_{e}(H_{\eta})$ ,

where $\sigma_{e}(H_{\eta})$ is the essential spectrum of $H_{\eta}$ .

Now we are in a position to introduce the Agmon spectral function.

Definition 1.7. Let $S^{n-1}$ be the unit sphere. For any set $ U\subset$

$S^{n-1}$ and for positive numbers $R$ and $\delta$ define

$U_{\delta}:=$ { $\omega\in S^{n-1}$ : dist(o; : $ U)<\delta$ };
$\Gamma(U_{\delta}, R):=$ { $x\in R^{n}$ : $ x=t\omega$ for $\omega\in U_{\delta}$ and $t>R$}

$K(U_{\delta}, R;P):=\inf\{\rho[\varphi] : \varphi\in C_{0}^{\infty}(\Gamma(U_{\delta}, R)), ||\varphi||=1\}$ ;

(1.13)
$K(U ^{:} ^{P}):=\lim_{\delta\downarrow 0}\lim_{R\rightarrow\infty}K(U_{\delta}, R;P)$ ;

and

A $\{$

$:=\{\omega\in S^{n-1} : ^{K(\omega} : ^{P})=\inf_{\omega\in S^{n-1}}K(\omega : ^{P})\}$ ,

where we write $K(\omega : P)$ instead of $K(\{\omega\} : P)$ , and the set $\mathcal{M}\subset S^{n-1}$

is called the minimizing set.

The following properties of the Agmon spectral function are impor-
tant.
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Proposition 1.8. Suppose that Assumptions 1.1 and 1.3 hold. Let
$H$ be as in Defifinition 1.6.

(i) Then $K(\omega : P)$ is a lower semicontinuous function on $S^{n-1}$ and
we have

(1.14) $\Sigma(H):=\min_{\omega\in S^{n-1}}K(\omega : P)$ ,

and the minimizing set $\mathcal{M}$ is a compact set in $S^{n-1}$ with

(1.15) $\mathcal{M}=\{\omega\in S^{n-1} : ^{K(\omega} : ^{P})=\min_{\omega\in S^{n-1}}K(\omega : ^{P})\}$ .

(ii) For any $U\subset S^{n-1}$ ,

(1.16) $K(U:P)=K(\overline{U}:P)=\omega\in in_{\frac{f}{U}}K(\omega : P)$

The first part of the above proposition is due to Agmon [1, Lemma
2.7, p.38]. For the proof of (ii) see [6, Lemma 5, p.380].

Let us give a necessary condition for the bound states to be finite.

Theorem 1.9 ([6, Theorem 8]). Let Assumptions 1.1 and 1.3 hold.
Let $H$ be the selfadjoint operator associated with the closure $\tilde{\rho}$ of $\rho$ in
$L^{2}(R^{7l})$ . A necessary condition for the fifiniteness of the number of eigen-
values of $H$ below $\Sigma(H)$ is that for some $\delta_{0}>0$ and some $R_{0}>0$

(1.17)
$K(\mathcal{M}_{\delta}, R;P)=K(M:P)=\Sigma(H)$ for all $\delta\geq\delta_{0}$ and $R\geq R_{0}$ .

Before proving the theorem we mention a simple fact on a linear
space.

Lemma 1.10. Let $Y$ be a vector space over C. Let $Y_{1}$ and $Y_{2}$

be linear subspaces of $Y$ such that $dimY_{2}<\infty$ and $Y$ is the direct
sum of $Y_{1}$ and $Y_{2}$ ( $i.e.$ , $Y_{1}\cap Y_{2}=\{0\}$ , and $Y=Y_{1}+Y_{2}$ ). Let $Y_{0}$ be
another linear subspace of $Y$ such that $dim$ $Y_{0}>dimY_{2}$ . Then we have
$dim(Y_{0}\cap Y_{1})\geq 1$ .

Proof. Let $dimY_{2}=m$ and let $\phi_{1}$ , $\phi_{2}$ , $\cdots$ , $\phi_{m}$ be a base of $Y_{2}$ .
Let $\{f_{j}\}$ , $j=1,2$ , $\cdots$ , $m+1$ , be a set of $m+1$ independent vectors
in $Y_{0}$ . Since $Y$ is the direct sum of $Y_{1}$ and $Y_{2}$ , there exist $u_{j}\in Y_{1}$ ,
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$j=1,2$ , $\cdots$ , $m+1$ and $a_{jk}\in C$ , $j=1,2$ , $\cdots$ , $m+1$ , $k=1,2$ , $\cdots$ , $m$ such
that

(1.18) $f_{j}=u_{j}+\sum_{k=1}^{m}a_{jk}\phi_{k}$ $(j=1,2, \cdots, m+1)$ .

Note that the system of linear equations

(1.19) $\sum_{j=1}^{m+1}c_{j}a_{jk}=0$ $k=1,2$ , $\cdots$ , $m$

has a nontrivial solution $(c_{1}, c_{2}, \cdots, c_{m+1})$ . Then we have

(1.20) $f_{0}:=\sum_{j=1}^{m+1}c_{j}f_{j}=\sum_{j=1}^{m+1}c_{j}u_{j}$

is nontrivial and belongs to $Y_{0}\cap Y_{1}$ , which completes the proof. Q.E.D.

Proof of Theorem 1.9. We are going to prove that the number of
eigenvalues of $H$ below $\Sigma(H)$ is infinite if

(1.21) $K(\mathcal{M}_{\delta}, R;P)<K(M : P)=\Sigma(H)$ ( $\delta>0$ and $R>0$ ).

The proof is divided into several steps.
(1) It follows from (1.21) that for each $j=1,2$ , $\cdots$ there exist a

positive number $R_{j}$ and $\phi_{j}\in C_{0}^{\infty}(\Gamma(\mathcal{M}_{(1/j)}, R_{j}))$ such that

(1.22) $\{$

(a) $ R_{1}<R_{2}<\cdots<R_{j}<\cdots\rightarrow\infty$ ,

(b) $||\phi_{j}||^{2}=1$ $(j=1,2, \cdots)$ ,

(c) $supp(\phi_{j})\cap supp(\phi_{k})=\emptyset$ $(j\neq k)$ ,

(d) $\rho[\phi_{j}]<\Sigma(H)$ $(j=1,2, \cdots)$ .

Let $X_{0}$ be the linear subspace spanned by $\{\phi_{j}\}_{j=1}^{\infty}$ . Note that it follows

ffom (b) and (c) of (1.22) that

(1.23) $\rho[f]<\Sigma(H)||f||^{2}$

for any $f\in X_{0}$ .
(2) Let $s$ be a positive number such that

(1.24) $\rho[\phi]+s||\phi||^{2}\geq 0$ $(\phi\in C_{0}^{\infty}(R^{n}))$ .
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Define the sesquilinear form $\rho^{(s)}$ on $C_{0}^{\infty}(R^{n})\times C_{0}^{\infty}(R^{n})$ by

(1.25) $\rho^{(s)}[\phi, \varphi]=\rho[\phi, \varphi]+s(\phi, \varphi)$ $(\phi, \varphi\in C_{0}^{\infty}(R^{n}))$ .

Since the potential $q^{(s)}=q(x)+s$ satisfies Assumptions 1.1 and 1.3, $\rho^{(s)}$

is closable with its closure $\tilde{\rho}^{(s)}$ . Let $H^{(s)}$ be the nonnegative selfadjoint
operator determined through $\tilde{\rho}^{(s)}$ . Obviously we have $D(\tilde{\rho}^{(s)})=D(\tilde{\rho})$ .
It follows from the uniqueness of the selfadjoint operator determined
by a symmetric closed sesquilinear form (Kato [13, Chapter $VI$ , Theo-

rem 2.1 and Corollary 2.4, pp.322-323]) that $H^{(s)}=H+sI$ , where $I$

is the identity operator on $L_{2}(R^{n})$ . Let $E^{(s)}(\cdot)$ be the spectral mea-

sure associated with $H^{(s)}$ . Applying the second representation theorem
(Kato [13, Chapter $VI$ , Theorem 2.23, p.331]) to the nonnegative closed

sesquilinear form $\tilde{\rho}^{(s)}$ , we see that

(1.26) $\tilde{\rho}^{(s)}[f]=\int_{R}\lambda d||E^{(s)}(\lambda)f||^{2}$ $(f\in D(\tilde{\rho}^{(s)})=D(\tilde{\rho}))$ .

Therefore we have

(1.27) $\{$

$E^{(s)}((-\infty, \lambda))=E((-\infty, \lambda-s))$ $(\lambda\in R)$

$\tilde{\rho}[f]=\int_{R}\lambda d||E(\lambda)f||^{2}$ $(f\in D(\tilde{\rho}))$ ,

where $E(\cdot)$ is the spectral measure associated with $H$ .

(3) Suppose that $dimE(-\infty, \Sigma(H))=m<\infty$ . Then, setting

(1.28) $\{$

$Y_{1}=E([\Sigma(H), \infty))L_{2}(R^{n})$ ,

$Y_{2}=E((-\infty, \Sigma(H))L_{2}(R^{n})$ ,

$Y_{0}=X_{0}$

in Lemma 1.10, we see that there exists a nonzero $f_{0}\in L_{2}(R^{n})$ which
belongs to both $X_{0}$ and $E([\Sigma(H), \infty))L_{2}(R^{n})$ . Therefore, $f_{0}$ satisfies
(1.23) with $f$ replaced by $f_{0}$ , and it follows ffom the second relation of
(1.27) that

$\rho[f_{0}]=\int_{R}\lambda d||E(\lambda)f_{0}||^{2}$

(1.29)
$=\int_{\Sigma(H)}^{\infty}\lambda d||E(\lambda)f_{0}||^{2}$

$\geq\Sigma(H)||f_{0}||^{2}$ .

These two inequalities contradict each other, which completes the proof.
Q.E.D.
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In order to give a sufficient condition for the bound states of $H$ to
be finite we are going to start with

Proposition 1.11 (cf. [5, Theorem 15], [6, Theorem 10]). Sup-
pose that Assumptions 1.1 and 1.3 hold. Let $\eta$ be a nonnegative, bounded
$C^{\infty}$ function on $R^{n}$ . Let $H_{\eta}$ be the selfadjoint operator given by Defifini-
tion 1.6. For any $R>0$ defifine

(1.31) $\{$

$K_{R}=K_{R}(H_{\eta})=\inf\{\rho_{\eta}[\phi] : \emptyset\in C_{0}^{\infty}(E_{R}), ||\phi||_{\eta}=1\}$ ,

$K_{\infty}=K_{\infty}(H_{\eta})=\lim_{R\rightarrow\infty}K_{R}$ ,

where

(1.31) $E_{R}=\{x\in R^{n} : |x|>R\}$ .

Then, setting $K_{\infty}=\lim_{R\rightarrow\infty}K_{R}$ , we have

(1.32) $K_{\infty}=\Sigma(H_{\eta})$ .

Since the idea of the proof is essentially the same as the proof of
[5], Theorem 10 or [6], Theorem 15, we are going to give the proof in
Appendix.

The following corollary will be used later.

Corollary 1.12. Let $\eta$ be a nonnegative, bounded $C^{\infty}$ function
on $R^{n}$ such that all the fifirst derivatives $\partial_{j}\eta$ , $j=1,2$ , $\cdots$ , $n$ are also
bounded on $R^{n}$ . Let $\rho_{\eta}$ and $\rho=\rho_{1}$ be as in Defifinition 1.2.

(i) Then we have $D(\tilde{\rho})\subset D(\tilde{\rho}_{\eta})$ , $i.e.$ , for $u\in D(\tilde{\rho})$ and for any
sequence $\{\phi_{j}\}\subset C_{0}^{\infty}(R^{n})$ such that $\phi_{j}\rightarrow u$ in $D(\tilde{\rho})$ , we have

(1.31) $\{$

$s-\lim_{j\rightarrow\infty}\phi_{j}=u$ in $D(\tilde{\rho}_{\eta})$ ,

$\lim\rho_{\eta}[\phi_{j}]=\tilde{\rho}_{\eta}[u]$ .
$ j\rightarrow\infty$

(ii) On the other hand, for $u\in\tilde{\rho}_{\eta}$ we have $\eta u\in D(\tilde{\rho})$

Proof. Since it follows from (1.10) that $\{\phi_{j}\}$ is a Cauchy sequence

both in $H^{1}(R^{n})$ and $L_{2}(R^{n}, q_{+}dx)$ . Then it is easy to see that $\{\phi_{j}\}$

is also a Cauchy sequence in the norm $||||_{\rho_{\eta}}$ . The second part of the

corollary follows directly from the fact that $\rho_{\eta}[\phi]=\rho[\eta\phi]$ for any $\phi\in$

$C_{0}^{\infty}(R^{n})$ . Q.E.D.
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Assumption 1.13. Let $\mathcal{M}$ be the minimizing set associated with
the operator $P$ give in Definition 1.7. We assumed that $\mathcal{M}$ is a proper
subset of the unit sphere $S^{n-1}$ .

Assumption 1.13 is introduced to exclude a phenomenon known as
the Efimov effect in the case of $N$-body Schr\"odinger operators. For more
detailed discussion and the references, see [6, p.381-382].

Lemma 1.14. Let Assumption 1.13 be satisfified. Let $\delta$ be a suf-
fificiently small positive number, and let $R$ be a positive number. Then
there exist $\alpha=\alpha_{\delta,R}$ , $\beta=\beta_{\delta,R}\in C_{0}^{\infty}(R^{n})$ satisfying

(i) $\alpha(x)$ , $\beta(x)\in[0,1]$ and $\alpha(x)^{2}+\beta(x)^{2}\equiv 1$ for all $x\in R^{n}\dot{},$

(ii) $supp(\alpha)\subset\Gamma(\mathcal{M}_{\delta;}R/2)$ , with $\alpha\equiv 1$ in $\Gamma(\mathcal{M}_{\frac{\delta}{2}} ; ^{R})$ ;

(ii) $supp(\beta)\subset X\backslash \Gamma(\mathcal{M}_{\frac{\delta}{2}} ; ^{R})$ ;

(iv) $\alpha$ and $\beta$ are homogeneous of degree 0 in $R^{n}\backslash B(R)$ ; and
(v) given $\epsilon>0$ there exists $C(\epsilon)>0$ such that

$|\nabla\alpha(x)|^{2}+|\nabla\beta(x)|^{2}\leq(\epsilon\alpha(x)^{2}+C_{\epsilon}\beta(x)^{2})\chi\triangle/|x|^{2}$ $(x\in R^{n})$ ,

where $\chi\triangle$ is the characteristic function of the set $\triangle:=\Gamma(\mathcal{M}_{\delta;}R/2)\backslash $

$\Gamma(\mathcal{M}_{\frac{\delta}{2}} ; ^{R})$ , and $\mathcal{M}$ is the minimizing set.

For the proof see [6, Lemmas 9, 10, and Definition 11]. See also [9,
Lemma 3.1]. We can take $\beta$ as $w$ in (i) of Definition 11 of [6].

Proposition 1.15. Let Assumptions 1.1, 1.3 and 1.13 be satisfified.
Let $\beta=\beta_{\delta,R}$ , $\delta$ , $R>0$ , be as in Lemma 1.14. Let $\rho_{\beta}$ and $H_{\beta}$ be as in

Defifinitions 1.2 and 1.6 with $\eta$ replaced by $\beta$ , respectively. Then we have

(1.34) $\Sigma(H_{\beta})>\Sigma(H)$ .

Proof. Set $N(\delta)=S^{n-1}\backslash \mathcal{M}_{\delta}$ , and let $\gamma$ be a (sufficiently small)
positive number. Set

(1.35) $N(\delta)_{\gamma}=$ { $\omega\in S^{n-1}$ : dist(a; : $ N(\delta))<\gamma$ }.

Let $T>R$ . Then it follows that

(1.34) $K_{T}(H_{\beta})\geq K(N(\delta)_{\gamma}, T:P)$ ,

where $K_{T}(H_{\beta})$ is as in Proposition 1.11, $K(N(\delta)_{\gamma}, T : P)$ is as in (1.13),
and we should note that $\rho_{\beta}[\phi]=\rho[\beta\phi]$ , $||\phi||_{\beta}=||\beta\phi||$ , and the cone
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$\Gamma(N(\delta)_{\gamma}, T)$ contains $\Gamma(N(\delta), T)$ . Letting $ T\rightarrow\infty$ first and letting $\gamma\rightarrow$

$0$ next, we obtain

(1.37) $K_{\infty}(H_{\beta})\geq K(N(\delta) : P)$ ,

which implies by Proposition 1.11 that

(1.38) $\Sigma(H_{\beta})\geq K(N(\delta) : P)$ .

Since dist $(N(\delta), \mathcal{M})$ $>0$ , Proposition 1.8 can be applied to get

(1.39) $\Sigma(H_{\beta})\geq K(N(\delta) : P)>K(\mathcal{M} : P)=\Sigma(H)$ ,

which completes the proof Q.E.D.

Theorem 1.17, which is one of our main results in this section, is
the application of an abstract result by Glazman [10] to the operator $H$ .
Here we are going to give his result as follows:

Proposition 1.16 (Glazman, [10, p.13-15]). Let $A$ be a selfad-
joint operator defifined in a Hilbert space H. Let $\lambda_{0}$ be $a$ fifixed real number.
Let $E(\cdot)$ be the spectral measure associated with A. Then the dimension

of $E((-\infty, \lambda_{0}))\mathcal{H}$ is fifinite if and only if there exists a linear subspaces
$F$ and $G$ of $H$ such that $dimG<\infty$ , $H$ is the direct sum of $F$ and $G$ ,

and

(1.40) $(Af-\lambda_{0}f, f)\geq 0$ $(f\in F\cap D(A))$ ,

where $(, )$ denotes the inner product $of?${, and $D(A)$ denotes the domain

of A. Then the number of eigenvalues $\lambda$ of $A$ such that $\lambda<\lambda_{0}$ does not
exceed the dimension of $G$ .

Since the proof is given rather implicitly in Glazman [10], we shall
give a proof in Appendix.

Let $\epsilon>0$ . In order to give a sufficient condition for the finiteness of
the bound states of $H$ , we are going to introduce an operator $P_{\epsilon}$ defined
by

(1.40) $\{$

$P_{\epsilon}=-\sum_{j,k=1}^{n}\partial_{j}a^{jk}(x)\partial_{k}+q_{\epsilon}(x)$ ,

$ q_{\epsilon}(x)=q(x)-\frac{\epsilon}{|x|^{2}}\chi\triangle$ ,
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where $\chi\triangle$ is as in Lemma 1.14. Since the behavior of $q_{\epsilon}$ at infinity is the
same as $q$ , we have

(1.42) $\Sigma(H_{\epsilon})=K(M:P_{\epsilon})=K(M : P)=\Sigma(H)$ .

Theorem 1.17 ([7, Theorem 13]). Let Assumptions 1.1, 1.3, and
1.13 hold. Suppose that there exist $\delta_{0}>0$ , $\epsilon>0$ , and $R_{0}>0$ such that

(1.43) $K(M_{\delta}, R;P_{\epsilon})=\Sigma(H)$ for all $\delta\leq\delta_{0}$ , and $R\geq R_{0}$ .

Then $H$ has no more than $a$ fifinite number of eigenvalues in $(-\infty, \Sigma(H))$ .

Proof. (1) Let $\alpha=\alpha_{\delta_{0},R_{0}}$ , $\beta=\beta_{\delta_{O},R_{O}}$ be as in Lemma 1.14. Let
$\phi\in C_{0}^{\infty}(R^{n})$ . Then, using the IMS localization formula (Ismagilov [12],
Morgan [14], Morgan and Simon [15] $)$ , and (v) of Lemma 1.14, we have

(1.44)

$\rho[\phi]=\int_{R^{n}}\{|\nabla(\alpha\phi)|_{A}^{2}+q|\alpha\phi|^{2}-(|\alpha|_{A}^{2}+|\beta|_{A}^{2})|\phi|^{2}\}dx+\rho_{\beta}[\phi]$

$\geq\int_{R^{n}}\{|\nabla(\alpha\phi)|_{A}^{2}+q_{\epsilon}|\alpha\phi|^{2}\}dx+\rho_{\beta}[\phi]-\int_{R^{n}}\frac{C_{\epsilon}}{|x|^{2}}\chi_{\triangle}|\beta\phi|^{2}dx$ ,

where $C_{\epsilon}$ is a positive constant depending only on $\epsilon$ and $\chi\triangle$ is as in
Lemma 1.14 with $R$ and $\delta$ replaced by $R_{0}$ and $\delta_{0}$ . Then (1.44) is com-
bined with (1.43) to give

(1.45)

$\rho[\phi]\geq\Sigma(H)||\alpha\phi||^{2}+\rho_{\beta}[\phi]-\int_{R^{n}}\frac{C_{\epsilon}}{|x|^{2}}\chi_{\triangle}|\beta\phi|^{2}dx$ $(\phi\in C_{0}^{\infty}(R^{n}))$ .

(2) Define the linear form $\rho_{\beta}’$ on $C_{0}^{\infty}(R^{n})\times C_{0}^{\infty}(R^{n})$ by

(1.46) $\rho_{\beta}’[\phi, \varphi]=\rho_{\beta}[\phi, \varphi]-\int_{R^{n}}\frac{C_{\epsilon}}{|x|^{2}}\chi_{\triangle}\beta\phi\beta\overline{\varphi}dx$ .

Then, since the potential

(1.47) $q’(x)=q(x)-\frac{C_{\epsilon}}{|x|^{2}}\chi\triangle(x)$

satisfies Assumptions 1.1 and 1.3, the linear form $\rho_{\beta}’$ is closable with its

closure $\tilde{\rho}_{\beta}’$ . Let $H_{\beta}’$ be the selfadjoint operator in $L_{2,\beta}(R^{n})$ determined

through $\tilde{\rho}_{\beta}’$ . Thus, using the denseness of $C_{0}^{\infty}(R^{n})$ in $D(\tilde{\rho})$ and Corollary

1.12, we obtain from (1.45)

(1.48) $\tilde{\rho}[u]\geq\Sigma(H)||\alpha u||^{2}+\tilde{\rho}_{\beta}’[u]$ $(u\in D(\tilde{\rho}))$ .
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(3) By noting that $q’(x)-q(x)\rightarrow 0$ uniformly as $|x|\rightarrow\infty$ , it follows
from Propositions 1.11 and 1.15 that

(1.49) $\Sigma(H_{\beta}’)=\Sigma(H_{\beta})>\Sigma(H)$ .

Therefore, the spectrum of $H_{\beta}’$ in $(-\infty, \Sigma(H))$ is only a finite number

of eigenvalues with finite multiplicity. Let $\varphi_{1}$ , $\varphi_{2}$ , $\cdots$ , $\varphi_{m}$ be the eigen-
functions corresponding to these eigenvalues. Set

(1.50) $F=\{u\in L_{2}(R^{n}) : (u, \beta^{2}\varphi_{j})=0, j=1,2, \cdots, m\}$ .

Then $F^{\perp}$ is the linear $m$-dimensional subspace spanned by $\varphi_{j}$ , $j=$

$1$ , 2, $\cdots$ , $m$ . Let $u\in D(\tilde{\rho})\cap F$ . Then it follows from the second repre-
sentation theorem of the closed symmetric linear form (e.g., Kato [13,
Chapter $IV$ , Theorem 2.23]) that

$\tilde{\rho}_{\beta}’[u]=\int_{R}\lambda d||E_{\beta}’(\lambda)u||_{\beta}^{2}$

(1.51)
$=\int_{\Sigma(H)}^{\infty}\lambda d||E_{\beta}’(\lambda)u||_{\beta}^{2}$

$\geq\Sigma(H)||\beta u||^{2}$ ,

where $E_{\beta}’(\cdot)$ is the spectral measure associated with $H_{\beta}’$ . This, together

with (1.48), gives

(1.52) $\tilde{\rho}[u]\geq\Sigma(H)\{||\alpha u||^{2}+||\beta u||^{2}\}=\Sigma(H)||u||^{2}$

for any $u\in D(\tilde{\rho})\cap F$ , and hence we have

(1.53) $(Hu-\Sigma(H)u, u)\geq 0$ $(u\in D(H)\cap F)$ .

Thus, the condition (1.40) in Proposition 1.16 was verified, which com-
pletes the proof. Q.E.D.

Corollary 1.18. The number of eigenvalues of $H$ below $\Sigma(H)$ is
less than the number of eigenvalues of $H_{\beta}’$ below $\Sigma(H)$ for $H_{\beta}’$ given

above.

Remark 1.19. Notice the gap between the conditions (1.17) in The-
orem 1.9 and (1.43) in Theorem 1.17. We are led to the following ques-
tion:

Under Assumptions 1.1, 1.3 and 1.13, are there conditions which
can be imposed upon $M$ that will insure that (1.17) is a necessary and

sufficient condition for the jiniteness of $\sigma(H)\cap(-\infty, \Sigma(H))$ ?
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When stronger conditions are imposed on $g$ , then (1.17) (with $S^{n-1}$

substituted for $M_{\delta}$ and the location of $M$ left unspecified) is known to
be a sufficient condition for the finiteness of $\sigma(H)\cap(-\infty, \Sigma(H))$ , see
Simon [18, pp.517-518], and the related “open question” on p.518 of
that article. However, these stronger conditions do not include $N$-body
systems for $N\geq 3$ .

Recently Donig [3] answered the open question in the affirmative.
While the conditions imposed on his potential is slightly more strict than
ours, Coulomb potentials satisfy his condition.

\S 2. Schr\"odinger operators of atomic type

In this section we consider the $(N+1)$-body Schr\"odinger operator
of atomic-type

(2.1) $P=P_{N}=\sum_{i=1}^{N}(-\frac{1}{2m_{i}}\triangle_{i}+v_{0i}(x^{i}))+\sum_{1\leq i<j\leq N}v_{ij}(x^{i}-x^{j})$ ,

in $R^{\iota/N}$ , where $N\geq 3$ ,
. .

(2.2) $\{$

$x^{\iota}=(x_{1}^{l}, x_{2}^{l}, \cdots, x_{\iota/}^{l})\in R^{\nu}$ $(i=1,2, \cdots, N)$ ,

$m_{i}>0$ $(i=1,2, \cdots, N)$ ,

$x=(x^{1}, x^{2}, \cdots, x^{N})\in R^{l/N}$ ,

and $\triangle_{i}$ is the Laplacian in $R^{\iota/}$ with respect to the variables $x^{i}=$

$(x_{1}^{i}, x_{2}^{i}, \cdots, x_{\iota/}^{i})$ with $lJ$ $\geq 3$ . The atomic Hamiltonian is given by

(2.3) $P=P(N, Z)=\sum_{i=1}^{N}(-\frac{1}{2m}\triangle_{i}-\frac{Z}{|x^{i}|})+\sum_{1\leq i<j\leq N}\frac{1}{|x^{i}-x^{j}|}$ ,

where $N$ , $iJ$ are as above, and $m$ and $Z$ are positive numbers correspond-
ing to the mass and charge of the nucleus, respectively.

The sesquilinear form $\rho$ associated with the operator (2.1) is given
by

$\rho[\phi, \varphi]=\sum_{i=1}^{N}\frac{1}{2m_{i}}\int_{R^{\nu N}}\nabla^{i}\phi(x)\cdot\overline{\nabla^{i}\varphi}dx$

(2.4) $+\sum_{i=1}^{N}\int_{R^{\nu N}}v_{0i}(x^{i})\phi(x)\overline{\varphi(x)}dx$

$+\sum_{1\leq i<j\leq N}\int_{R^{\nu N}}v_{ij}(x^{i}-x^{j})\phi(x)\overline{\varphi(x)}dx$
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for $\phi$ , $\varphi\in C_{0}^{\infty}(R^{I/N})$ , where

(2.5) $\nabla^{i}=(\frac{\partial}{\partial x_{1}^{i}}, \frac{\partial}{\partial x_{2}^{i}}, \cdots, \frac{\partial}{\partial x_{\iota/}^{i}})$

for $i=1,2$ , $\cdots$ , $N$ . For the potentials $v_{ij}$ , we assume the following

Assumption 2.1. For $0\leq i<j\leq N$ , $v_{ij}$ is a real-valued function
satisfying

(i) $v_{ij}\in L_{1oc}^{1}(R^{\nu})$ ,
(ii) $\lim_{|y|\rightarrow\infty}v_{ij}(y)=0$ , and
(iii) $(v_{ij})_{-}\in M(R^{\iota/})$ .

Then, setting

(2.6) $V_{ij}(x)=\{$

$v_{0j}(x^{j})$ $(i=0,j=1,2, \cdots, N)$ ,

$v_{ij}(x^{i}-x^{j})$ $(1\leq i<j\leq N)$ ,

where $x=(x^{1}, x^{2}, \cdots, x^{N})\in R^{\iota/N}$ as in (2.2), and

(2.7) $q(x)=\sum_{j=1}^{N}V_{0j}(x)+\sum_{1\leq i<j\leq N}V_{ij}(x)$ ,

we easily see that $q(x)$ satisfies Assumptions 1.1 and 1.3 (see Agmon [1,

Lemma 4.7] for the proof that $q-\in M(R^{\iota/N})$ . Thus, the corresponding
sesquilinear form $\rho$ (or, more exactly, the closure $\tilde{\rho}$ of $\rho$) determines a
selfadjoint operator in $L_{2}(R^{\iota/N})$ . Henceforth, the selfadjoint realization
will be denoted by $P$ again.

We are now introducing the subsystems of the operator $P$ .

Definition 2.2 (Subsystems of $P$).

Let $S^{\iota/N-1}$ be the unit sphere of $R^{\iota/N}$ . For $\omega\in S^{\iota/N-1}$ define the
subsystem $P_{\omega}$ of $P$ by

(2.8) $P_{\omega}=-\sum_{j=1}^{N}\frac{1}{2m_{j}}\triangle_{j}+\sum_{\omega^{i}=0}v_{0i}(x^{i})+\sum_{\omega^{i}=\omega^{j}}v_{ij}(x^{i}-x^{j})$ ,

where $\omega=(\omega^{1}, \omega^{2}, \cdots, \omega^{N})$ and $\sum_{\omega^{i}=0}$ [or $\sum_{\omega^{i}=\omega^{j}}$ ] means summation

over those indices $i$ for which $\omega^{i}=0$ [or those pair of indices $(i,j)$ ,
$1\leq i<j\leq N$ , for which $\omega^{i}=\omega^{j}$ ]. The selfadjoint realization of $P_{\omega}$ in
$L^{2}(R^{l/N})$ will continue to be denoted by $P_{\omega}$ .

The following fact given by Agmon [1, Lemma 4.8, p.66] will play an
important role:
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Proposition 2.3 ( $K(\omega)$ and subsystems (Agmon [1, Lemma 4.8])).
Let $P$ be as in (2.2) and satisfy Assumption 2.1. Let $P_{\omega}$ be the sub-

system of $P$ defifined above. Then, for any $\omega\in S^{\nu N-1}$

(2.9) $K(\omega;P)=K(\omega;P_{\omega})=\Sigma(P_{\omega})=\Lambda(P_{\omega})$ ,

where $\Lambda(A)$ and $\Sigma(A)$ denote the infifimum of the spectrum and essential
spectrum of $A$ , respectively.

Let $\mathcal{M}$ be the minimizing set for the Schr\"odinger operator $P$ of
atomic type (see Definition 1.7).

Definition 2.4 (Sets $\mathcal{M}_{i}$ and subsystems $P_{i}$ ). For $i=1,2$ , $\cdots$ , $N$ ,
define

(2.10)
$\mathcal{M}_{i}=$ { $\omega=(\omega^{1}$ , $\omega^{2}$ , $\cdots$ , $\omega^{N}$ ) : $\omega^{j}=\delta_{ij}\eta$ for $\eta\in S^{\nu-1},j=1,2$ , $\cdots$ , $N$ },

where $\delta_{ii}=1$ and $\delta_{ij}=0$ for $j\neq i$ . The set $\mathcal{M}_{i}$ is a closed subset of
$S^{\nu N-1}$ . Let $P_{\omega}$ be given by (2.8). Since for any $\omega\in \mathcal{M}_{i}$ the subsystem
$P_{\omega}$ has the same form, we set $P_{\omega}=P_{i}$ for $\omega\in \mathcal{M}_{i}$ , i.e.,

(2.10)
$P_{i}=-\sum_{j=1}^{N}\frac{1}{2m_{j}}\triangle_{j}+\sum_{j\neq i}v_{oj}(x^{j})+\sum_{1\leq j<k\leq Nj\neq iandk\neq i}v_{jk}(x^{j}-x^{k})$

.

The subsystem $P_{i}$ is the subsystem of $(N-1)$ electrons $x^{1}$ , $\cdots$ , $x^{i-1}$ , $x^{i+1}$ ,
$\ldots$ , $x^{N}$ .

In this section we assume that the lower bound $\Sigma(P)$ of the essential
spectrum of $P$ is determined only by subsystems of $N-1$ electrons.

Assumption 2.5. Let $P$ be the atomic-type Hamiltonian (2.1).
Let $\mathcal{M}$ be the minimizing set of $P$ . Assume that

$N$

(2.12)
$\mathcal{M}\subset i=1\cup \mathcal{M}_{i}$

.

Assumption 2.5 implies that the minimizing set $\mathcal{M}$ is not only a
closed set of $S^{\nu N-1}$ , but also a proper subset of $S^{\nu N-1}$ . Thus, this
assumption implies Assumption 1.12 for our operator $P$ .
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Definition 2.6 (Operators $P_{i}’$ and $L_{i}$ ). Let $P$ be as above and for
each $i=1,2$ , $\cdots$ , $N$ define

(2.14)
$P_{i}’=-\sum_{j\neq i}\frac{1}{2m_{j}}\triangle_{j}+\sum_{j\neq i}v_{0j}(x^{j})+\sum_{1\leq j<k\leq Nj\neq iandk\neq i}v_{jk}(x^{j}-x^{k})$

,

The selfadjoint realization of $P_{i}’$ in $L_{2}(R^{\nu(N-1)})$ is also denoted by $P_{i}’$ .
We also set

(2.14)
$L_{i}=P-P_{i}’=-\frac{1}{2m_{i}}\triangle_{i}+v_{0i}(x^{i})+\sum_{1\leq j<k\leq Nj=iork=i}v_{jk}(x^{j}-x^{k})$

.

Now we are in a position to give a criterion for the finiteness of the
bound states of the atomic-type Hamiltonian $P$ .

Theorem 2.7 (Finiteness of bound states ([7, Theorem 3.4)).
Let $P$ be given by (2.1) and let Assumptions 2.1 and 2.5 be satisfified.

Let $P_{i}’$ and $L_{i}$ be as above. Suppose there exist positive numbers $\delta_{0}$ , $R_{0}$ ,

and $\epsilon$ such that

(2.15) $(L_{i}\phi, \phi)_{L^{2}(R^{\nu N})}\geq\int_{R^{\nu N}}\frac{\epsilon}{|x|^{2}}|\phi|^{2}dx$

for each $i=1$ , 2, $\cdots$ , $N$ such that $\mathcal{M}_{i}\subset \mathcal{M}$ and for every $\phi\in$

$C_{0}^{\infty}(\Gamma((\mathcal{M}_{i})_{\delta_{O}} ; R_{0}))$ . Then $P$ has at most $a$ fifinite number of bound
states.

For the proof see the proof of Theorem 3.4 in [7],

Let us next discuss the infiniteness of the bound states. It follows
from Assumption 2.5 that there exist some $i\subset\{1, 2, \cdots, N\}$ such that
$\mathcal{M}_{i}\subset \mathcal{M}$ . In view of Theorem 1.9 we are looking for a condition which
guarantees the existence of a sequence of functions $\{F_{n}\}$ such that

(2.16) $F_{n}\in C_{0}^{\infty}(\Gamma(\mathcal{M}_{i})_{\delta_{n}} ; R_{n}))$

with $\delta_{n}\downarrow 0$ and $ R_{n}\uparrow\infty$ as $ n\rightarrow\infty$ , and

(2.17) $\rho[F_{n}]=(PF_{n}, F_{n})_{L^{2}(R^{\nu N})}<\Sigma(P)$ $(n=1,2, \cdots, N)$ ,

which gives the inequality (1.21) immediately. Write $x\in R^{\nu N}$ as

(2.18) $x=(x^{i}, x’)$ $(x’=(x^{1}, \cdots, x^{i-1}, x^{i+1}, \cdots, x^{N}))$ .
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We are going to find $F_{n}$ with the form

(2.19) $F_{n}(x^{i}, x’)=\theta_{n}(x^{i})\phi_{n}(x’)$ $(n =N_{0}, N_{0}+1, \cdots)$ ,

where $N_{0}$ is a positive integer determined later. As for $\theta_{n}$ , we have the
following

Proposition 2.8 [7, Proposition 4.4]. Let $q>1$ . Then there exists
a sequence $\{\theta_{n}\}=\{\theta_{n,q}\}$ of functions on $R^{\nu}$ such that, for $n$ $=1,2$ , $\cdots$ ,

1) $\theta_{n}\in C_{0}^{\infty}(R^{\nu})$ ,

2) $||\theta_{n}||_{L^{2}(R^{\nu})}=1$ ,

3) $supp\theta_{n}\subset\{x^{i}\in R^{\nu} : n^{q}\leq|x^{i}|\leq 5n^{q}\}$ ,
4) there exists a constant $C_{2}=C_{2}(q)$ , independent of $n=1,2$ , $\cdots$ ,

satisfying

$0\leq(-\frac{1}{2m_{i}}\triangle_{i}\theta_{n}, \theta_{n})_{L^{2}(R^{\nu})}\leq\frac{C_{2}}{n^{2q}}$ .

The construction of $\theta_{n}$ , $n$ $=1,2$ , $\cdots$ , is easy and direct. See the
proof of Proposition 4.4 of [7].

In order to discuss the construction of $\phi_{n}(x’)$ , we need the next

Assumption 2.9. The potentials $v_{ij}$ , $0\leq i<j\leq N$ , satisfy

(2.20) $v_{ij}\in M_{1oc}(R^{\nu})$ .

Let $i$ be as above. Then it follows from the HVZ theorem (see [11],
[19], [22] $)$ combined with Assumption 2.5 that $\Sigma(P)=\Lambda(P_{i}’)<0$ and
$\Sigma(P_{i}’)>\Lambda(P_{i}’)$ , and hence $\Lambda(P_{i}’)$ is the lowest eigenvalue (ground state)
of $P_{i}’$ with the eigenfunction $\Phi_{i}(x’)$ . In fact, suppose that $\Sigma(P_{i}’)=\Lambda(P_{i}’)$ .

Then we see from the HVZ theorem that there should exist a subsystem
$P_{i}’’$ of $P_{i}’$ such that

(2.21) $\Lambda(P_{i}’’)=\Sigma(P_{i}’)=\Lambda(P_{i}’)=\Sigma(P)$ .

This contradicts Assumption 2.5 since the lower bound $\Lambda(P_{i}’’)$ of the
subsystem $P_{i}’’$ , which is different from any $P_{j}’$ , $j=1,2$ , $\cdots$ , $N$ coincides

with $\Sigma(P)$ . It follows from [1, Theorem 5.9] that the eigenfunction $\Phi_{i}(x’)$

decays exponentially. Similarly, using Assumption 2.9, too, we can prove
that any first derivatives of $\Phi_{i}(x’)$ decay exponentially ([7, Proposition
4.2]). Now we shall prove that $\phi_{n}(x’)$ in (2.19) can be constructed by
truncating $\Phi_{i}$ using a smooth function, and then approximating with
functions in $C_{0}^{\infty}(R^{\nu(N-1)})$ .
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Proposition 2.10. Let Assumptions 2.1, 2.5, and 2.9 hold. Then,

for some positive integer $N_{0}$ and each integer $n\geq N_{0}$ , there exists $\phi_{n}\in$

$C_{0}^{\infty}(R^{\nu(N-1)})$ satisfying

(2.22) $\{$

$||\phi_{n}||_{L^{2}(R^{\nu(N-1)}})=1$ ,

$supp\phi_{n}\subset\{x’\in R^{\nu(N-1)} : |x’|\leq 2n\}$ ,

$(P_{i}’\phi_{n}, \phi_{n})_{L^{2}(R^{\nu(N-1)}})\leq\Sigma(P)+C_{1}\frac{e^{-nc_{O}}}{n}$

with positive constants $c_{0}$ and $C_{1}$ .

For an integer $1\leq i\leq N$ set

(2.23)
$I_{i}(x)=v_{0i}(x^{i})+\sum_{1\leq j<k\leq Nj=iork=i}v_{jk}(x^{j}-x^{k})$

.

We have $P=P_{i}+I_{i}$ .

Theorem 2.11 (Infiniteness of bound states, [7, Theorem 4.7]).

Let Assumptions 2.1, 2.5 and 2.9 $6e$ satisfified. Suppose that there
exists an integer $1\leq i\leq N$ , $\mathcal{M}_{i}\subset \mathcal{M}$ , positive numbers $\delta_{0}$ , $R_{0}$ , $c_{*}$ , and
$s\in(0,2)$ such that

(2.24) $I_{i}(x)\leq-c_{*}|x^{i}|^{-s}$ $(x\in\Gamma((\mathcal{M}_{i})_{\delta_{0}} ; R_{0}))$ .

Then $P$ has infifinitely many bound states.

For the proof see the proof of [7, Theorem 4.7] and [7, Proposition
4.5]. We have only to show that the sequence $\{F_{n}\}$ above satisfies (2.17).

The following theorem on the finiteness and infiniteness of the bound
states for the atomic Hamiltonian is well-known: Zhislin ([22], [23], [24],
[25] $)$ , Yafaev ([20], [21]), and others.

Theorem 2.12 (Zhislin ([22], [23], [24], [25]), Yafaev ([20], [21]),
and others). Let $N$ , $lJ$ $\geq 3$ be integers. Suppose that Assumption 3.2 is

satisfified for $P=P(N, Z)$ given by (2.2).

(i) Suppose that

(2.25) $Z\leq N-1$ .

Then $P=P(N, Z)$ has at most $a$ fifinite number of bound states.
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(ii) Suppose that

(2.26) $Z>N-1$ .

Then $P=P(N, Z)$ has infifinitely many bound states.

Using Theorems 2.7 and 2.11 we can give a proof of the above cele-
brated theorem except the case $Z=N-1$ . Let $Z<N-1$ . Since it is
easy to see that, for $x\in\Gamma((\mathcal{M}_{i})_{\delta}; R)$ with $0<2\delta<1$ , we have

(2.26) $\{$

$|x^{i}|>(1-\delta)|x|$ ,

$|x^{i}-x^{j}|<(1+2\delta)|x|$ ,

it follows that, for $\phi\in C_{0}^{\infty}(\Gamma((\mathcal{M}_{i})_{\delta}; R))$ ,

(2.28) $(L_{i}\phi, \phi)_{L^{2}(R^{\nu N})}\geq\int_{R^{\nu N}}[-\frac{Z}{|x^{i}|}+\sum_{j\neq i}|x^{i}-x^{j}|]|\phi|^{2}dx$

$\geq\int_{R^{\nu N}}[\frac{N-1}{(1+2\delta)|x|}-\frac{Z}{(1-\delta)|x|}]|\phi|^{2}dx$

$\geq\int_{R^{\nu N}}\frac{\epsilon}{|x|^{2}}|\phi|^{2}dx$

if $\delta>0$ is sufficiently small and $R>1$ , where

(2.29) $\epsilon=\frac{N-1}{1+2\delta}-\frac{Z}{1-\delta}>0$ .

Thus we see that the condition (2.15) in Theorem 2.7 is satisfied for
every $i=1,2$ , $\cdots$ , $N$ . In the case that $Z>N-1$ , see the proof of
Theorem 4.8 of [7].

Concerning Assumption 2.5, [7] gave a proof of the following theorem
(Theorem 5.2):

Theorem 2.13. Let $N$ , $\iota/\geq 3$ be integers and $P=P(N, Z)$ be as
in (2.2). Suppose that

(2.30) $Z>N-2$ .

Then the operator $P=P(N, Z)$ satisfifies Assumption 2.5, $i.e.$ , the lower
bound of $P$ is determined only by subsystems of $N-1$ electrons.

Finally consider the case where the potentials are “short-range”, i.e.,
$v_{ij}\in L_{\nu/2}(R^{\nu})$ . It is known that the bound states are finite in this case
(Sigal [17]). We are going to give another simple proof for the slightly
more general version.
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Theorem 2.14. Let Assumptions 2.1 and 2.5 hold. Suppose that

(2.31) $(v_{jk})_{-}(\cdot)\in L_{\nu/2}(R^{\nu})$ ($0\leq j<k\leq N$ , $j=i$ or $k=i$ )

for any $i$ such that $\mathcal{M}_{i}\subset \mathcal{M}$ , where $(v_{jk})_{-}$ is the negative part of $v_{jk}$ .
Then the operator $P$ given by (2.1) has at most fifinite bound states.

Proof. Let $\epsilon>0$ . Let $\delta_{0}$ be a positive number such that $1-2\delta_{0}>0$ .

Then there exists $R_{0}>0$ satisfying

(2.32)

$[\int_{|y|>cR_{0}}\{(v_{jk})_{-}(y)\}^{\nu/2}dy]^{2/\nu}<\epsilon$ $\leq j<k\leq N$ , $j=i$ or $k=i$ ),

where $c=1-2\delta_{0}$ . Let $\phi\in C_{0}^{\infty}(\Gamma((\mathcal{M}_{i})_{\delta_{O}} ; R_{0}))$ . Since we have

(2.33) $x\in\Gamma((\mathcal{M}_{i})_{\delta_{O}} ; R_{0})\Rightarrow\{$

$|x^{i}|>(1-\delta_{0})R_{0}$ ,

$|x^{i}-x^{j}|>(1-2\delta_{0})R_{0}$ ,

it follows from the H\"older inequality that

(2.34)

$\{$

$\int_{R^{\nu}}(v_{0i})_{-}(x^{i})|\phi|^{2}dx^{i}$

$\leq[\int_{|y|>cR_{0}}\{(v_{0i})_{-}\}^{\nu/2}dx^{i}]^{2/\nu}[\int_{R^{\nu}}|\phi|^{2\nu/(\nu-2)}dx^{i}]^{(\nu-2)/\nu}$ ,

$\int_{R^{\nu}}(v_{jk})_{-}(x^{j}-x^{k})|\phi|^{2}dx^{i}$

$\leq[\int_{|y|>cR_{0}}\{(v_{jk})_{-}\}^{\nu/2}dx^{i}]^{2/\nu}[\int_{R^{\nu}}|\phi|^{2\nu/(\nu-2)}dx^{i}]^{(\nu-2)/\nu}$ ,

where $1\leq j<k\leq N$ , $j=i$ or $k=i$ . It follows from a Sobolev-type
inequality (e.g., [4, Theorem III.3.6]) that

(2.35) $[\int_{R^{\nu}}|\phi|^{2\nu/(\nu-2)}dx^{i}]^{(\nu-2)/\nu}\leq\gamma\int_{R^{\nu}}|\nabla^{i}\phi|^{2}dx^{i}$ ,

$\gamma$ being a positive constant depending only on $iJ$ . Then we obtain from
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(2.34) and (2.35) that

(2.36)

$\int_{R^{\nu}}[(v_{0i})_{-}(x^{i})+\sum_{1\leq j<k\leq Nj=iork=i}(v_{jk})_{-}(x^{j}-x^{k})]|\nabla^{i}\phi|^{2}dx^{i}$

$\leq(2N-1)\epsilon\int_{R^{\nu}}|\nabla^{i}\phi|^{2}dx^{i}$

for any $\phi\in C_{0}^{\infty}(\Gamma((\mathcal{M}_{i})_{\delta_{0}} ; R_{0}))$ . The inequality (2.36) is combined with
the Hardy inequality

(2.37) $\int_{R^{\nu}}\frac{|\phi|^{2}}{|x|^{2}}dx^{i}\leq\int_{R^{\nu}}\frac{|\phi|^{2}}{|x^{i}|^{2}}dx^{i}\leq\frac{4}{(\nu-2)^{2}}\int_{R^{\nu}}|\nabla^{i}\phi|^{2}dx^{i}$ ,

where $\phi\in C_{0}^{\infty}(R^{\nu N})$ , to give

(2.38)

$(L_{i}\phi, \phi)_{L_{2}(R^{\nu N})}-\int_{R^{\nu N}}\frac{\epsilon|\phi|^{2}}{|x|^{2}}dx$

$\geq\int_{R^{\nu N}}[1-(2N-1)\gamma\epsilon-\frac{4\epsilon}{(\iota/-2)^{2}}]|\nabla^{i}\phi|^{2}dx$

for any $\phi\in C_{0}^{\infty}(\Gamma((\mathcal{M}_{i})_{\delta_{0}} ; R_{0}))$ . Therefore, choosing $\epsilon>0$ suffi-
ciently small, we see that the right-hand side of (2.37) is nonnegative for
$\phi\in C_{0}^{\infty}(\Gamma((\mathcal{M}_{i})_{\delta_{0}} ; R_{0}))$ . Thus the condition (2.15) is satisfied, which
complete the proof. Q.E.D.

Appendices

A.1 The infimum of the essential spectrum of $H_{\eta}$

Proof of Proposition 1.11.

(1) Let $\Lambda\in\sigma_{e}(H_{\eta})$ with a singular sequence $\{u_{j}\}$ , i.e.,

(A. 1.1) $\{$

(a) $u_{j}\in D(H_{\eta})$ $(j=1,2, \cdot)$ ,

(b) $||u_{j}||_{\eta}=1$ $(j=1,2, \cdot)$ ,

(c) $w-\lim_{j\rightarrow\infty}u_{j}=0$
$inL_{2,\eta}(R^{n})$ ,

(d) $s-\lim_{j\rightarrow\infty}(H_{\eta}-\lambda)u_{j}=0$
$inL_{2,\eta}(R^{n})$ .
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Introduce an inner product $(, )_{\rho_{\eta}}$ and norm $||||_{\rho_{\eta}}$ in $C_{0}^{\infty}(R^{n})$ by

(A.I.2) $\{$

$(\phi, \varphi)_{\rho_{\eta}}=\rho_{\eta}[\phi, \varphi]+C_{1}(\phi, \varphi)_{\eta}$ ,

$||\phi||_{\rho_{\eta}}=[(\phi, \phi)_{\rho_{\eta}}]^{1/2}$ ,

where the positive constant $C_{1}$ is as in (1.10). Note that we obtain from
(1.10)

(A.1.3) $\{$

$\int_{R^{n}}|\nabla(\eta\phi)|^{2}dx\leq\frac{2}{c_{0}}||\phi||_{\rho_{\eta}}^{2}$ ,

$||\phi||_{\eta}\leq||\phi||_{\rho_{\eta}}$

for $\phi\in C_{0}^{\infty}(R^{n})$ . Then $C_{0}^{\infty}(R^{n})$ becomes a pre-Hilbert space with the
inner product $(, )_{\rho_{\eta}}$ and norm $||||_{\rho_{\eta}}$ , and the domain $D(\tilde{\rho}_{\eta})$ of the

closed linear form $\tilde{\rho}_{\eta}$ is the completion of $C_{0}^{\infty}(R^{n})$ by $||||_{\rho_{\eta}}$ . The inner

product and norm of $D(\tilde{\rho}_{\eta})$ will be denoted again by $(, )_{\rho_{\eta}}$ and norm
$||||_{\rho_{\eta}}$ . We have

(A.1.4) $\{$

$(u, v)_{\rho_{\eta}}=\tilde{\rho}_{\eta}[u, v]+C_{1}(u, v)_{\eta}$ ,

$||u||_{\rho_{\eta}}\geq||\phi||_{\eta}^{2}$

for $u$ , $v\in D(\tilde{\rho}_{\eta})$ .

(2) Since $C_{0}^{\infty}(R^{n})$ is dense in the Hilbert space $D(\tilde{\rho}_{\eta})$ , there exists
a sequence $\{\phi_{j}\}\subset C_{0}^{\infty}(R^{n})$ such that

(A.1.5) $||u_{j}-\phi_{j}||_{\rho_{\eta}}\rightarrow 0$ $(j\rightarrow\infty)$ .

Then it follows that

(A. 1.6) $\{$

(a) $||\phi_{j}||_{\eta}\rightarrow 1$ $(j\rightarrow\infty)$ ,

(b) $w-\lim$ $\phi_{j}=0$ in $D(\tilde{\rho}_{\eta})$ ,
$ j\rightarrow\infty$

(c) $\rho_{\eta}[\phi_{j}]\rightarrow\lambda$ $(j\rightarrow\infty)$ .

In fact, (a) follows directly from (b) of (A.I.I) and (A.1.3). As for (b),
we have for any $v\in D(\tilde{\rho}_{\eta})$

(A.1.7)
$(\phi_{j}, v)_{\rho_{\eta}}=(\phi_{j}-u_{j}, v)_{\rho_{\eta}}+(u_{j}, v)_{\rho_{\eta}}$

$=(\phi_{j}-u_{j}, v)_{\rho_{\eta}}+((H_{\eta}-\lambda)u_{j}, v)_{\eta}+(\lambda+C_{1})(u_{j}, v)$

$\rightarrow 0$
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as $ j\rightarrow\infty$ , where we have used (c), (d) of (A.I.I), and we should note
that

(A.I.IO) $\tilde{\rho}_{\eta}[u_{j}, v]=(H_{\eta}u_{j}, v)_{\eta}$

(see, e.g., Kato [13, Theorem VI.2.1, p.322]). Finally, since we have

$\rho_{\eta}[\phi_{j}]=||\phi_{j}||_{\rho_{\eta}}^{2}-C_{1}||\phi_{j}||_{\eta}^{2}$

$=||u_{j}||_{\rho_{\eta}}^{2}-C_{1}||u_{j}||_{\eta}^{2}+\gamma_{j}$

(A.I.IO) $=\tilde{\rho}_{\eta}[u_{j}]+\gamma_{j}$

$=((H_{\eta}-\lambda)u_{j}, u_{j})_{\eta}+\lambda||u_{j}||_{\eta}^{2}+\gamma_{j}$

$=\lambda+((H_{\eta}-\lambda)u_{j}, u_{j})_{\eta}+\gamma_{j}$ ,

where $\gamma_{j}\rightarrow 0$ and $((H_{\eta}-\lambda)u_{j}, u_{j})_{\eta}$ converge to 0 as $ j\rightarrow\infty$ , we obtain
(d).

(3) Let $\alpha(x)$ be a $C^{\infty}$ function on $R^{n}$ such that

(A.I.IO) $\alpha(x)=\{$

0 $x\in B_{R}=\{x\in R^{n} : |x|\leq R\}$ ,

1 $x\in E_{R+1}$ ,

$0\leq\alpha\leq 1$ , and $|\nabla\alpha|$ is bounded on $R^{n}$ . Set $|\xi|_{A}=[<\xi, \xi>_{A}]^{1/2}$ for
$\xi\in C^{n}$ . Then it follows from the identity

(A.l.ll)
$|\nabla(\alpha\eta\phi)|_{A}^{2}=\alpha^{2}|\nabla(\eta\phi)|_{A}^{2}+|\nabla\alpha|_{A}^{2}|\eta\phi|^{2}+2\alpha\eta\Re\{\overline{\phi}<\nabla(\eta\phi), \nabla\alpha>_{A}\}$ ,

where $\phi\in C_{0}^{\infty}(R^{n})$ , that

(A.I.IO) $|\nabla(\alpha\eta\phi)|_{A}^{2}\leq(1+\delta)|\nabla(\eta\phi)|_{A}^{2}+C_{\delta}\chi_{R,R+1}|\eta\phi|^{2}$

for $\phi\in C_{0}^{\infty}(R^{n})$ , where $\delta$ is an arbitrary positive number, $\chi R,R+1$ is the
characteristic function of $\{x\in R^{n} : R<|x|\leq R+1\}$ , and

(A.1.13) $C_{\delta}=(1+\delta^{-1})\max_{x\in R^{n}}|\nabla\alpha|_{A}^{2}$ .

Krther we have

(A. 1.14) $q(x)\alpha^{2}|\eta\phi|^{2}=q_{+}\alpha^{2}|\eta\phi|^{2}-q_{-}\alpha^{2}|\eta\phi|^{2}$

$=\alpha^{2}q_{+}|\eta\phi|^{2}-q_{-}|\eta\phi|^{2}+(1-\alpha^{2})q-|\eta\phi|^{2}$

$\leq q|\eta\phi|^{2}+(1-\alpha^{2})q-|\eta\phi|^{2}$ .

Therefore, it follows that
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(A.I.15)

$\rho_{\eta}[\alpha\phi]\leq(1+\delta)\rho_{\eta}[\phi]+C_{\delta}\int_{B_{R+1}}|\eta\phi|^{2}dx+\int_{R^{n}}(1-\alpha^{2})q-|\eta\phi|^{2}dx$ .

Here it follows from Assumption 1.3 and (A.1.3) that

(A.I.16)

$\int_{R^{n}}(1-\alpha^{2})q-|\eta\phi|^{2}dx$

$\leq\{\int_{R^{n}}q-|\eta\phi|^{2}dx\}^{1/2}\{\int_{R^{n}}q-|(1-\alpha^{2})\eta\phi|^{2}dx\}^{1/2}$

$\leq\{\int_{R^{n}}|\nabla(\eta\phi)|^{2}dx+C(1)||\phi||_{\eta}^{2}\}^{1/2}$

$\{\delta^{2}\int_{R^{n}}|\nabla((1-\alpha^{2})\eta\phi)|^{2}dx+C(\delta^{2})||(1-\alpha^{2})\phi||_{\eta}^{2}\}^{1/2}$

$\leq C_{2}||\phi||_{\rho_{\eta}}\{\delta||\phi||_{\rho_{\eta}}+C’(\delta)[\int_{B_{R+1}}|\eta\phi|^{2}dx]^{1/2}\}$ ,

where $C(1)$ and $C(\delta^{2})$ are as in (1.6) with $\epsilon$ replaced by 1 and $\delta^{2}$ , re-
spectively, $C_{2}$ is a positive constant independent of $\delta$ , and $C’(\delta)$ is a
positive constant which may depend on $\delta$ . Thus, combining (A.1.14)
with (A.1.15), substituting $\phi=\phi_{j}$ , and taking note of the definition of
$K_{R}$ , we obtain with another constants $C_{2}’$ and $C’’(\delta)$

(A.1.17)
$K_{R}||\alpha\phi_{j}||_{\eta}^{2}$

$\leq\rho_{\eta}[\alpha\phi_{j}]$

$\leq(1+\delta)\rho_{\eta}[\phi_{j}]+C_{2}’||\phi_{j}||_{\rho_{\eta}}\{\delta||\phi_{j}||_{\rho_{\eta}}+C’’(\delta)[\int_{B_{R+1}}|\eta\phi_{j}|^{2}dx]^{1/2}\}$ .

(4) Using (A.1.6) and the Rellich theorem, we see that, for any
$ 0<R<\infty$ ,

(A.1.17) $\int_{B_{R}}|\eta\phi_{j}|^{2}dx\rightarrow 0$

as $ j\rightarrow\infty$ , where we should note that (c) of (A.I.I) and (A.1.5) imply
that

(A.1.17) $w-\lim_{j\rightarrow\infty}\phi_{j}=0$ in $L_{2,\eta}(R^{n})$ .
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$bom$ (A. 1.18) we see that

(A. 1.20) $\lim||\alpha\phi_{j}||_{\eta}^{2}$

$ j\rightarrow\infty$

$=\lim_{j\rightarrow\infty}\{\int_{R^{n}}|\phi_{j}\eta|^{2}dx+\int_{R^{n}}(1-\alpha^{2})|\phi_{j}\eta|^{2}dx\}$

$=\lim_{j\rightarrow\infty}||\phi_{j}||_{\eta}^{2}$

$=1$ .

Thus, by letting $ j\rightarrow\infty$ in (A.I.17) and using (c) of (A.1.6), (A.I.18),
and (A. 1.20), it follows that

(A.1.21) $K_{\infty}\leq(1+\delta)\lambda+\delta C_{2}’C_{3}$

with $C_{3}=\sup_{j}||\phi_{j}||_{\rho_{\eta}}$ . Since $\delta$ is arbitrary, we have proved that $ K_{\infty}\leq\lambda$

for any $\lambda\in\sigma_{\epsilon;}(H_{\eta})$ , i.e., $K_{\infty}\leq\Sigma(H_{\eta})$ .

(5) Let $\mu<\Sigma(H_{\eta})$ . Then in $(-\infty, \mu]$ the spectrum $\sigma(H_{\eta})$ of $H_{\eta}$

consists of a finite number ($M$ say) of eigenvalues $\lambda_{k}$ , $k=1,2$ , $\cdots$ , $M$ ,
repeated according to multiplicity, with corresponding eigenfunctions
$\varphi_{k}\in D(H_{\eta})\subset D(\tilde{\rho}_{\eta})$ . Let $E_{\eta}(\cdot)$ be the spectral measure associated
with $H_{\eta}$ . Then note that we have

(A. 1.22) $\tilde{\rho}_{\eta}[\phi]=(H_{\eta}\phi, \phi)_{\eta}$

$=\sum_{k=1}^{M}\lambda_{k}|(\phi, \varphi_{k})_{\eta}|^{2}+\int_{\mu}^{\infty}\lambda d(E_{\eta}(\lambda)\phi, \phi)_{\eta}$

$\geq\sum_{k=1}^{M}\lambda_{k}|(\phi, \varphi_{k})_{\eta}|^{2}+\mu||E_{\eta}((\mu, \infty))\phi||_{\eta}^{2}$

$=\sum_{k=1}^{M}(\lambda_{k}-\mu)|(\phi, \varphi_{k})_{\eta}|^{2}+\mu||\phi||_{\eta}^{2}$

for $\phi\in D(H_{\eta})$ . Further, since $D(H_{\eta})$ is dense in $D(\tilde{\rho}_{\eta})$ , the inequality
(A.1.22) holds for any $\phi\in D(\tilde{\rho}_{\eta})$ . Now choose $\{\phi_{j}\}\subset C_{0}^{\infty}(R^{n})$ such
that

(A. 1.18) $\{$

(a) $\lim_{j\rightarrow\infty}\rho_{\eta}[\phi_{j}]=R_{\infty}$ ,

(b) $||\phi_{j}||_{\eta}=1$ $(j=1,2, \cdots)$ ,

(c) $supp\phi_{j}\cap supp\phi_{\ell}=\emptyset$ $(j, \ell=1,2, \cdots, j\neq\ell)$ .

Let $\phi=\phi_{j}$ and make $ j\rightarrow\infty$ in (A.1.22). Then it follows that

(A.1.24) $ K_{\infty}\geq\mu$ ,
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where we should note that $\phi_{j}$ converges to 0 weakly in $L_{2,\eta}(R^{n})$ as
$ j\rightarrow\infty$ . Since $\mu<\Sigma(H_{\eta})$ is arbitrary, we obtain $K_{\infty}\geq\Sigma(H_{\eta})$ , which
completes the proof. Q.E.D.

A.2 Proof of Glazman’s theorem

Proof of Proposition 1.16.

(1) Suppose that the dimension of $E((-\infty, \lambda_{0}))H$ is finite. Then set

(A.2.3) $\{$

$F=E([\lambda_{0}, \infty))H$ ,

$G=E((-\infty, \lambda_{0}))H$ .

Then the dimension of $G$ is finite, and $H$ is the direct sum of $F$ and $G$ .
Fhrther, for $f\in D(A)\cap F$ we have

$(Af, f)=\int_{\lambda_{0}}^{\infty}\lambda d||E(\lambda)f||^{2}$

(A.2.3)
$\geq\lambda_{0}||E([\lambda_{0}, \infty))f||^{2}$

$=\lambda_{0}(f, f)$ ,

where $||$ $||$ denotes the norm of $H$ , and we have used the relation
$||E([\lambda_{0}, \infty))f||=||f||$ for $f\in F$ . This implies that (1.40) is satisfied.

(2) Suppose that there exists subspaces $F$ and $G$ of $\mathcal{M}$ satisfying
the conditions in Proposition 1.16. Set $m=dimG$ and suppose that

(A.2.3) $dimE((-\infty, \lambda_{0}))H\geq m+1$ .

Then it follows from Lemma A. 1.1 that

(A.2.4) $ E((-\infty, \lambda_{0}))H\cap F\neq\emptyset$ .

In fact we can assume that there exists a nonzero element $f_{0}$ such that

(A.2.5) $f_{0}\in E((-\infty, \lambda_{0}-\mu))H\cap F\cap D(A)$

with $\mu>0$ because we can choose the $m+1$ independent elements
$f_{1}$ , $f_{2}$ , $\cdots$ , $f_{m+1}$ in $E((-\infty, \lambda_{0})H$ so that all $f_{j}$ belong to $E((-\infty,$ $\lambda_{0}-$

$\mu)H\cap D(A)$ , which is possible in either case where the spectrum of $A$ in
$(-\infty, \lambda_{0})$ contains the essential spectrum or it consists onjy the discrete
spectrum. Thus it follows that

$(Af_{0}, f_{0})=\int_{-\infty}^{\lambda_{0}-\mu}\lambda d||E(\lambda)f_{0}||^{2}$

(A.2.3)
$<\lambda_{0}||E((-\infty, \lambda_{0}-\mu))f_{0}||^{2}$

$=\lambda_{0}(f_{0}, f_{0})$ .
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This contradicts (1.40). Therefore, we have shown that

(A.2.7) $dimE((-\infty, \lambda_{0}))H\leq m$ ,

which completes the proof. Q.E.D.
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Stationary Phase Method with Estimate
of Remainder Term over a Space

of Large Dimension

Daisuke Fujiwara

Abstract.

Let $r_{d}(\iota/)$ denote the remainder term of the stationary phase

method over $R^{d}$ . Then an estimate of $\iota/^{d/2+1}r_{d}(\iota/)$ , as $ d\rightarrow\infty$ , is
given under certain assumptions, which are tolerable for application
to Feynman path integrals.

\S 1. Stationary phase method

Stationary phase method is a method to evaluate asymptotically, as
$lJ$ $\rightarrow\infty$ , oscillatory integrals over $R^{d}$ of the following form:

$I(S, a, l/)=\int_{R^{d}}e^{-i\iota/S(x)}a(x)dx$ ,

where $S(x)$ is a real valued $C^{\infty}$ function called the phase function, $a(x)$ is
a $C^{\infty}$ function called the amplitude and $iJ$ is a large positive parameter.
In the simplest case that $a(x)\in C_{0}^{\infty}(R^{d})$ and that $S(x)$ has only one
critical point $x^{*}$ , where $HessS(x^{*})$ is non-degenerate, it gives

$I(S, a, l/)=(\frac{2\pi}{i\nu})^{d/2}[\det\{HessS(x^{*})\}]^{-1/2}(e^{-i\iota/S(x^{*})}a(x^{*})+r_{d}(\iota/))$

and an estimate of the remainder term

$r_{d}(\iota/)=O(\iota/-d/2-1)$ .

If support of $a(x)$ is not compact, we have to require some addi-
tional assumption that control the behaviour of $a(x)$ at the infinity. For
instance (cf. [1]), the same conclusion holds if we assume the following

Received December 28, 1992.
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Hypothesis (H.O). (i) $\sup_{x}|\partial_{x}^{\alpha}S(x)|<\infty$ for any multi-index $\alpha$

with $|\alpha|\geq 2$ . (ii) There exists a constant $\delta>0$ such that $|\det HessS(x)|$

$\geq\delta$ . (iii) For any multi-index $\alpha$ , $\sup_{x}|\partial_{x}^{\alpha}a(x)|<\infty$ .

Since the stationary phase method is closely related to the mathe-
matical theory of Feynman path integrals (cf. [3], [4], [5] and [6]), we
wish to investigate the following

Question. Can one control $\nu^{d/2+1}r_{d}(\nu)$ as d $\rightarrow\infty$ ?

We give a positive answer to this question. Detailed discussions can
be found in [2], Applications are discussed in [4], [5] and [6].

\S 2. Statement of results

We shall treat the following oscillatory integral over $L-1$ dimen-
sional space:

$I(\{t_{j}\},S, a, \nu)(x_{L}, x_{0})$

$=\prod_{j=1}^{L}(\frac{\nu i}{2\pi t_{j}})^{1/2}\int_{R^{L-1}}e^{-i\iota/S(x_{L},x_{0})}\ldots,a(x_{L}, \ldots, x_{0})\prod_{j=1}^{L-1}dx_{j}$ ,

with large positive parameter $\nu$ and small positive parameters $\{t_{j}\}$ . Our
hypothesis for the phase function is

Hypothesis (H. 1). $S(x_{L}, \ldots, x_{0})$ is of the form

$S(x_{L}, \ldots, x_{0})=\sum_{j=1}^{L}S_{j}(t_{j}, x_{j}, x_{j-1})$ ,

where

$S_{j}(t_{j}, x_{j}, x_{j-1})=\frac{|x_{j}-x_{j-1}|^{2}}{2t_{j}}+t_{j}\omega_{j}(t_{j}, x_{j}, x_{j-1})$ .

For any $m\geq 2$ there exists a positive constant $\kappa_{m}$ such that

$\sup_{x_{j},x_{j-1}}|\partial_{x_{j}}^{\alpha}\partial_{x_{j-1}}^{\beta}\omega_{j}(t_{j}, x_{j}, x_{j-1})|\leq\kappa_{m}$

if $2\leq\alpha+\beta\leq m$ .

We will give two examples of phase functions satisfying hypothesis
(H.1).
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Example 1. Let $L(\xi, x)=\frac{1}{2}\xi^{2}-V(x)$ , $(\xi, x)\in R^{2}$ , be a Lagrangian
with a potential $V(x)$ . Assume that the potential $V(x)$ is a real-valued
$C^{\infty}$ -function satisfying estimates:

$\sup_{x}|V^{(k)}(x)|<\infty$ for any $k\geq 2$ .

Then for a small $T>0$ , there exists a unique classical orbit $\gamma^{cl}(t)$ such

that $\gamma^{cl}(0)=y$ , $\gamma^{cl}(T)=x$ . Let

$S^{cl}(T, x, y)=\int_{0}^{T}L(\dot{\gamma}^{cl}(t), \gamma^{cl}(t))dt$

be the classical action. Then $S^{cl}(T, x, y)$ is of the form

$S^{cl}(T, x, y)=\frac{|x-y|^{2}}{2T}+T\phi^{cl}(T, x, y)$

and for any $m\geq 2$ there exists a constant $C_{m}$ such that

$\sup_{x}|\partial_{x}^{\alpha}\partial_{y}^{\beta}\phi^{cl}(T, x, y)|\leq C_{m}$

if 2 $\leq\alpha+\beta\leq m$ . Therefore, $S(x_{L}, \ldots, x_{0})=\sum_{j=1}^{L}S(t_{j}, x_{j}, x_{j-1})$

satisfies the hypothesis (H.I).

Example 2. Let $L(\xi, x)$ be the same lagrangian. Let $\gamma^{ln}(t)$ be
the straight line connecting $(0, y)$ and $(T, x)$ in the time-space, i.e.,

$\gamma^{ln}(t)=\frac{t}{T}x+\frac{T-t}{T}y$ .

Let

$S^{ln}(T, x, y)=\int_{0}^{T}L(\dot{\gamma}^{ln}(t), \gamma^{ln}(t))dt$ .

Then function $S^{ln}(T, x, y)$ is of the form

$S^{ln}(T, x, y)=\frac{|x-y|^{2}}{2T}+T\phi^{ln}(T, x, y)$

and for any $m\geq 2$ there exists a positive constant $C_{m}$ such that

$\sup_{x}|\partial_{x}^{\alpha}\partial_{y}^{\beta}\phi^{lr\iota}(T, x, y)|\leq C_{m}$
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if $2\leq\alpha+\beta\leq m$ . Therefore, $S^{ln}(x_{L}, \ldots, x_{0})=\sum_{j=1}^{L}S^{ln}(t_{j}, x_{j}, x_{j-1})$

satisfies the hypothesis (H.I).

Under hypothesis (H. 1) the critical point of the function $(x_{L-1},$
$\ldots$ ,

$x_{1})\rightarrow S(x_{L}, x_{L-1}, \ldots, x_{1}, x_{0})$ is unique if $T_{L}=\sum_{j=1}^{L}t_{j}$ is small. We

denote it by $(x_{L-1}^{*}, \ldots, x_{1}^{*})$ . We abbreviate $S(x_{L}, x_{L-1}^{*}, \ldots, x_{1}^{*}, x_{0})$ as
$S(\overline{x_{L},x_{0}})$ . We can write the Hessian of $S$ at the critical poit as $H+W$ ,
where

$H=(\frac{1}{t_{1}}+0..\cdot\frac{1}{t_{2}}-\frac{1}{t_{2}}$
$\frac{1}{t_{2}}+...\frac{1}{t_{3}}-\frac{1}{t_{2}}-\frac{1}{t_{3}}$

$\frac{1}{t_{3}}+.\cdot.\frac{1}{t_{4}}-\frac{1}{t_{3}}0$ $-..\cdot\frac{1}{t_{4}}00$

$.\cdot$

.
$\cdot..\cdot.\cdot...)$

and

$W=\left(\begin{array}{llll}t_{1}\partial_{x_{1}}^{2}\omega_{1}+t_{2}\partial_{x_{1}}^{2}\omega_{2} & t_{2}\partial_{x_{1}}\partial_{x_{2}}\omega_{2} & 0 & \cdots\\ t_{2}\partial_{x_{1}}\partial_{x_{2}}\omega_{2} & t_{2}\partial_{x_{2}}^{2}\omega_{2}+t_{3}\partial_{x_{2}}^{2}\omega_{3} & t_{3}\partial_{x_{2}}\partial_{x_{3}}\omega_{3} & \cdots\\ 0 & t_{3}\partial_{x_{2}}\partial_{x_{3}}\omega_{3} & t_{3}\partial_{x_{3}}^{2}\omega_{3}+t_{4}\partial_{x_{3}}^{2}\omega_{4} & \cdots\\\vdots & \vdots & \vdots & \end{array}\right)$ .

It is clear that

$\det H=\frac{T_{L}}{t_{1}t_{2}t_{L}}\ldots\neq 0$ .

We can state our first result.

Theorem 1. Under the hypothesis (H.I) there exists a positive
constant $\delta_{1}$ independent of $L$ such that if $T_{L}=t_{1}+\ldots+t_{L}\leq\delta_{1}$ then

$I(\{t_{j}\}, S, 1, \nu)(x_{L}, x_{0})$

$=(\frac{\nu i}{2\pi T_{L}})^{1/2}e^{-i\iota/S(\overline{x_{L},x0})}[\det(I+H^{-1}W)]^{-1/2}(1+r(\nu, x_{L}, x_{0}))$ ,

where the remainder term $r(\nu, x_{L}, x_{0})$ satisfies the estimate: For any
$K\geq 0$ there exists positive constants $C_{K}$ such that $if|\alpha_{0}|$ , $|\alpha_{L}|\leq K$

$|\partial_{x_{0}}^{\alpha_{0}}\partial_{x_{L}}^{\alpha_{L}}r(\nu, x_{L}, x_{0})|\leq C_{K}T_{L}^{3}\nu^{-1}$ .

Remark. $\delta_{1}$ and $C_{K}$ are independent of $L$ as far as $T_{L}$ is bounded.
Therefore, we can control $r(\nu, x_{L}, x_{0})$ even when $L$ tends to $\infty$ .

In order to state the result for general integral with amplitude $a(x)$ ,
we require a little more preparations. Let $1\leq k\leq l\leq L$ . Then the
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critical point of the function $(x_{l-1}, \ldots, x_{k+1})\rightarrow\sum_{j=k+1}^{l}S_{j}(t_{j}, x_{j}, x_{j-1})$

is unique if $t_{k+1}+\ldots+t_{l}$ is small. Let $(x_{l-1}^{*}, \ldots, x_{k+1}^{*})$ denote the critical

point, which is a function of $x_{l}$ and $x_{k}$ . We abbreviate $a(x_{L},$
$\ldots$ , $x_{l}$ , $x_{l-1}^{*}$ ,

$\ldots$ , $x_{k+1}^{*}$ , $x_{k}$ , $\ldots$ , $x_{0})$ to $a(x_{L}, \ldots, x_{l+1}, \overline{x_{l},x_{k}}, x_{k-1}, \ldots, x_{0})$ .

Our hypothesis concerning the amplitude function is the following:

Hypothesis (H.2). For any integer $K\geq 0$ there exists a positive
constant $A_{K}$ with the following properties: (i) If $|\alpha_{j}|\leq K$ for $j=$

$0,1$ , $\ldots$ , $L$ , then

$|\prod_{j=0}^{L}\partial_{x_{j}}^{\alpha_{j}}a(x_{L}, \ldots, x_{0})|\leq A_{K}$ .

(ii) For any sequence of positive integers $\{j_{1}, \ldots,j_{s}\}$ satisfying

$0=j_{0}<j_{1}-1<j_{1}<j_{2}-1<\ldots<j_{s}-1<j_{s}<L$

we have

$|\partial_{x0}^{\alpha o}\partial_{xL}^{\alpha_{L}}\square \partial_{x_{j_{k}-1}}^{\alpha_{j_{k}-1}}\partial_{x_{j_{k}}}^{\alpha_{j_{k}}}a(\overline{x_{L},x_{j_{s}}},\overline{x_{j_{s}-1},x_{j_{s-1}}}, k=1\ldots, s\overline{x_{j_{1}-1},x_{j_{0}}})|\leq A_{K}$ ,

as far as $|\alpha_{j}|\leq K$ for $j=0,j_{1}-1,j_{1}$ , $\ldots,j_{s}-1,j_{S}$ , $L$ .

Before stating our second theorem, we give an example of amplitude
functions satisfying hypothesis (H.2).

Example. Let $b_{j}(x_{j}, x_{j-1})$ , $j=1$ , $\ldots$ , $L$ , be functions bounded
together with their derivatives of all order, i.e., for any positive integer
$K$ there exists $C_{K}$ such that

$\sup_{x}|\partial_{x_{j}}^{\alpha_{j}}\partial_{x_{j-1}}^{\alpha_{j-1}}b_{j}(x_{j}, x_{j-1})|\leq C_{K}$
$0\leq\alpha_{j}$ , $\alpha_{j-1}\leq K$ .

Then $a(x_{L}, \ldots, x_{0})=e^{(\sum_{j=1}^{L}t_{j}b_{j}(x_{j},x_{j-1}))}$ satisfies hypothesis (H.2)
ab $ove$ .

Now we can state our main

Theorem 2. Under the hypotheses (H.I) and (H.2) there exists $a$

positive constant $\delta_{1}$ such that if $0<T_{L}\leq\delta_{1}$

$I(\{t_{j}\}, S, a, \nu)(x_{L}, x_{0})$

$=(\frac{\nu i}{2\pi T_{L}})^{1/2}e^{-i_{I/}S(\overline{x_{L},x_{0}})}[\det(I+H^{-1}W)]^{-1/2}$

$\times(a(\overline{x_{L},x_{0}})+r(\nu, x_{L}, x_{0}))$ ,
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where $r(\nu, x_{L}, x_{0})$ satisfies the estimate: For any $K\geq 0$ there exists
positive constants $C_{K}$ and $M(K)$ such that $if|\alpha_{0}|$ , $|\alpha_{L}|\leq K$ we have

$|\partial_{x_{0}}^{\alpha_{0}}\partial_{x_{L}}^{\alpha_{L}}r(\nu, x_{L}, x_{0})|\leq C_{K}T_{L}\nu^{-1}A_{M(K)}$ .

Remark. $\delta_{1}$ , $C_{K}$ and $M(K)$ are independent of $L$ as far as $T_{L}$ is
bounded. Therefore, we can control $r(\nu, x_{L}, x_{0})$ even when $L$ tends to
$\infty$ .

\S 3. Sketch of the proof

We begin with our key lemma, which is valid under hypothesis (H.3)
weaker than (H.2) and is interesting in its own sake.

Hypothesis (H.3). For any integer $K\geq 0$ there exists a positive
constant $A_{K}$ such that $if|\alpha_{j}|\leq K$ for $j=0,1$ , $\ldots$ , $L$ ,

$|\prod_{j=0}^{L}\partial_{x_{j}}^{\alpha_{j}}a(x_{L}, \ldots, x_{0})|\leq A_{K}$ .

We can state

Key Lemma. Under the hypotheses (H.I) and (H.3) there exists
a positive constant $\delta_{0}$ such that if $T_{L}\leq\delta_{0}$ we have

$I(\{t_{j}\}, S, a, \nu)(x_{L}, x_{0})$

$=(\frac{\nu i}{2\pi T_{L}})^{1/2}e^{-i\iota/S(\overline{x_{L},xo})}[\det(I+H^{-1}W)]^{-1/2}b(\nu, x_{L}, x_{0})$ ,

where $b(\nu, x_{L}, x_{0})$ satisfies the estimate: For any $K\geq 0$ there exists

positive constants $C_{1}(K)$ and $M(K)$ such that if $|\alpha_{0}|$ , $|\alpha_{L}|\leq K$ we
have

$|\partial_{x_{0}}^{\alpha_{0}}\partial_{x_{L}}^{\alpha_{L}}b(\nu, x_{L}, x_{0})|\leq C_{1}(K)^{L}A_{M(K)}$ .

Remark. $C(K)$ and $M(K)$ are independent of $\{t_{j}\}$ , $L$ , $(x_{L}, x_{0})$ and
$\nu$ as long as $T_{L}\leq\delta_{0}$ .

Above Lemma can be proved by modifying the proof of Theorem
6.8 in Chapt. 10 of Kumano-go [7].
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Omitting the proof of lemma we proceed to the proof of Theorem

2. To make notations simpler we denote $\frac{\nu i}{2\pi}$ by $E$ . With this notation

we can write

$I(\{t_{j}\}, S, a, \nu)(x_{L}, x_{0})$

$=\prod_{j=1}^{L}(\frac{E}{t_{j}})^{1/2}\int_{R^{L-1}}e^{-i\iota/S(x_{L},xo)}\ldots,a(x_{L}, \ldots, x_{0})\prod_{j=1}^{L-1}dx_{j}$ .

We perform integration over $x_{1}$ -space. Using stationary phase
method, we have

$\prod_{j=1}^{2}(\frac{E}{t_{j}})^{1/2}\int_{R}e^{-i\iota/\{S_{2}(t_{2},x_{2},x_{1})+S_{1}(t_{1},x_{1},xo)\}}a(x_{L}, \ldots, x_{2}, x_{1}, x_{0})dx_{1}$

$=(\frac{E}{T(2,1)})^{1/2}e^{-i\iota/S_{21}^{*}(x_{2},x_{O})}(P_{1}a(x_{L}, \ldots, x_{2}, x_{0})+R_{1}a(x_{L}, \ldots, x_{2}, x_{0}))$ .

Here $T(2,1)=t_{2}+t_{1},S_{21}^{*}(x_{2}, x_{0})$ denotes the critical value of $S_{2}(t_{2}, x_{2}, x_{1})$

$+S_{1}(t_{1}, x_{1}, x_{0})$ with respect to the variable $x_{1}$ , $P_{1}a$ is the main part and
$R_{1}a$ is the remainder term of the stationary phase method.

Remark. (A) Clearly, we have

$P_{1}(a)(x_{L}, \ldots, x_{2}, x_{0})=a(x_{L}, x_{L-1}, \ldots,\overline{x_{2},x_{0}})D(S_{1}+S_{2}; x_{2}, x_{0})^{-1/2}$

here

$D(S_{1}+S_{2}; x_{2}, x_{0})=1+\frac{t_{1}t_{2}}{t_{1}+t_{2}}(t_{2}\partial_{x_{1}}^{2}\omega_{2}(t_{2}, x_{2}, x_{1}^{*})+t_{1}\partial_{x_{1}}^{2}\omega_{1}(t_{1}, x_{1}^{*}, xo))$ .

(B) The remainder term $R_{1}a$ is a very complicated function with
respect to $x_{2}$ but is simple with respect to the variable $(x_{L}, \ldots, x_{3}, x_{0})$ .
In fact, we have $\partial_{x_{j}}(R_{1}a)=R_{1}\partial_{x_{j}}$ $a$ for $j=0$ and $3\leq j\leq L$ . And
$R_{1}a$ is small in the following sense: For any integer $K\geq 0$ there exists
a constant $C_{K}$ such that

$|\partial_{x_{0}}^{\alpha_{O}}\partial_{x_{2}}^{\alpha_{2}}\ldots\partial_{x_{L}}^{\alpha_{L}}R_{1}a(x_{L}, \ldots, x_{2}, x_{0})|$

$\leq C_{K}\nu^{-1}\frac{t_{1}t_{2}}{t_{1}+t_{2}}\max\sup_{x_{1}}|\partial_{x_{0}}^{\alpha_{0}}\partial_{x_{1}}^{\beta_{1}}\partial_{x_{2}^{2}}^{\beta}\partial_{x_{3}}^{\alpha_{3}}\ldots\partial_{x_{L}}^{\alpha_{L}}a(x_{L}, \ldots, x_{2}, x_{1}, x_{0})|$ .

Here $\max$ is taken with respect to $\beta_{1}$ , $\beta_{2}$ for $\beta_{1}\leq\alpha_{2}+4$ , $\beta_{2}\leq\alpha_{2}$ .
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Next we integrate the term $P_{1}a$ over $x_{2}$ -space and apply the sta-
tionary phase method. We obtain

$(\frac{E}{t_{3}})^{1/2}(\frac{E}{T(2,1)})^{1/2}$

$\int_{R}e^{-i\iota/\{S_{3}(t_{3},x_{3},x_{2})+S_{21}^{*}(x_{2},xo)\}}P_{1}a(x_{L}, \ldots, x_{2}, x_{0})dx_{2}$

$=(\frac{E}{T(3,1)})^{1/2}e^{-i_{lJ}S_{31}^{*}(x_{3},x_{0})}$

$(P_{2}P_{1}a(x_{L}, \ldots, x_{3}, x_{0})+R_{2}P_{1}a(x_{L}, \ldots, x_{3}, x_{0}))$ .

Here $S_{31}^{*}(x_{3}, x_{0})$ denotes the critical value of the function $x_{2}\rightarrow S_{3}(t_{3},$ $x_{3}$ ,
$x_{2})+S_{21}^{*}(x_{2}, x_{0})$ , $P_{2}P_{1}a$ is the main term and $R_{2}P_{1}a$ is the remainder.
Since $P_{2}P_{1}a$ is a simple function of $x_{3}$ , we integrate it over $x_{3}$ space and
apply the stationary phase method. The main term includes $P_{3}P_{2}P_{1}a$

and the remainder includes $R_{3}P_{2}P_{1}a$ .

Repeating this procedure $L-1$ times, we obtain

$A_{0}(x_{L}, x_{0})=(\frac{E}{T(L,1)})^{1/2}e^{-i\nu S_{L1}^{*}(x_{L},xo)}P_{L-1}\ldots P_{1}a(x_{L}, x_{0})$ ,

which is nothing but the main term of Theorem 2.
Now we must treat the remainder term. Since $R_{1}a$ is a complicated

function of $x_{2}$ , we skip integration over $x_{2}$ space and perform integration
over $x_{3}$-space. Then we obtain

$(\frac{E}{t_{4}})^{1/2}(\frac{E}{t_{3}})^{1/2}(\frac{E}{T(2,1)})^{1/2}$

$\int_{R}e^{-i\iota/\{S_{4}(t_{4},x_{4},x_{3})+S_{3}(t_{3},x_{3},x_{2})+S_{21}^{*}(x_{2},x_{0})\}}R_{1}a(x_{L}, \ldots, x_{4}, x_{3}, x_{2}, x_{0})dx_{3}$

$=(\frac{E}{T(4,3)})^{1/2}(\frac{E}{T(2,1)})^{1/2}e^{-i\iota/\{S_{43}^{*}(x_{4},x_{2})+S_{21}^{*}(x_{2},x_{0})\}}$

$(P_{3}R_{1}a(x_{L}, \ldots, x_{4}, x_{2}, x_{0})+R_{3}R_{1}a(x_{L}, \ldots, x_{4}, x_{2}, x_{0}))$ .

Here $S_{43}^{*}(x_{4}, x_{2})$ denotes the critical value of the function $x_{3}\rightarrow S_{4}(t_{4},$ $x_{4}$ ,
$x_{3})+S_{3}(t_{3}, x_{3}, x_{2})$ , $P_{3}R_{1}a$ denotes the main term and $R_{3}R_{1}a$ is the
remainder. $P_{3}R_{1}a$ is a simple function of the variable $x_{4}$ but $R_{3}R_{1}a$ is
not. We integrate $P_{3}R_{1}a$ over $x_{4}$-space but we skip integration of $R_{3}R_{1}a$

over $x_{4}$ space
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Similarly, we skip integration of $R_{2}P_{1}a$ over $x_{3}$-space and integrate
it over $x_{4}$-space. We obtain

$(\frac{E}{t_{5}})^{1/2}(\frac{E}{t_{4}})^{1/2}(\frac{E}{T(3,1)})^{1/2}$

$\int_{R}e^{-i\nu\{S_{5}(t_{5},x_{5},x_{4})+S_{4}(t_{4},x_{4},x_{3})+S_{31}^{*}(x_{3},x_{0})}R_{2}P_{1}a(x_{L}, \ldots, x_{4}, x_{3}, x_{0})dx_{4}$

$=(\frac{E}{T(5,4)})^{1/2}(\frac{E}{T(3,1)})^{1/2}e^{-i\nu\{S_{54}^{*}(x_{5},x_{3})+S_{31}^{*}(x_{3},x_{0})\}}$

$(P_{4}R_{2}P_{1}a(x_{L}, \ldots, x_{5}, x_{3}, x_{0})+R_{4}R_{2}P_{1}a(x_{L}, \ldots, x_{5}, x_{3}, x_{0}))$ .

We continue this process. The rule is that we apply the stationary
phase method when we integrate over $x_{k}$ -space and if $R_{k}$ appears then
we skip integration over $x_{k+1}$ -space. We finally obtain the following
expression:

$I(\{t_{j}\}, S, a, \nu)(x_{L}, x_{0})=A_{0}(x_{L}, x_{0})+\sum A_{j_{s}j_{s-1}j_{1}}*\ldots(x_{L}, x_{0})$ ,

where $\sum^{*}$ denotes summation with respect to indices $(j_{s}, \ldots,j_{1})$ satis-
fying

$1<j_{1}<j_{2}-1<j_{2}<j_{3}-1<\ldots<j_{s}-1<j_{s}$ ,

and each term is an oscillatory integral

$A_{j_{1}j_{2}j_{3}}\ldots(x_{L}, x_{0})$

$=\prod_{m=1}^{s}(\frac{E}{T(j_{m},j_{m}-1)})^{1/2}$

$\int_{R^{s}}e^{-i\nu S_{j_{8}}}j_{1(x_{L},x_{j_{S}},x_{j_{1}},xo)}\ldots,b_{j_{s}j_{1}}\ldots(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0})\prod_{m=1}^{s}dx_{j_{m}}$ ,

whose phase function is

$S_{j_{s}j_{1}}\ldots(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0})$

$=S_{Lj_{s}}^{*}(x_{L}, x_{j_{\epsilon}})+S_{j_{s}j_{s-1}}^{*}(x_{j_{s}}, x_{j_{s-1}})+\ldots+S_{j_{1}0}^{*}(x_{j_{1}}, x_{0})$

and the amplitude is

$b_{j_{s}j_{1}}\ldots(x_{L}, x_{j_{8}}, \ldots, x_{j_{1}}, x_{0})=Q_{L-1}Q_{L-2}\ldots Q_{1}a(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0})$ ,
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with

$Q_{j}=\{$

$Id$ , for $j=j_{s},j_{s-1}$ , $\ldots,j_{1}$ ,

$R_{j}$ , for $j=j_{s}-1,j_{s-1}-1$ , $\ldots,j_{1}-1$ ,

$P_{j}$ , otherwise.

Fhrthermore, we can prove that $b_{j_{s}j_{1}}\ldots(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0})$ satisfies
hypothesis (H.3).

Proposition. For any integer $K\geq 0$ there exist positive constants
$C_{2}(K)$ and integer $m(K)$ such that

$|\partial_{x_{L}}^{\alpha_{L}}\partial_{x_{j_{S}}}^{\alpha_{js}}\ldots\partial_{x_{j_{1}}}^{\alpha_{j_{1}}}\partial_{x_{0}}^{\alpha_{0}}b_{j_{s}j_{1}}\ldots(x_{L}, x_{j_{s}}, \ldots, x_{j_{1}}, x_{0})|$

$\leq C_{2}(K)^{s}A_{m(K)}\prod_{k=1}^{s}\nu^{-1}t_{j_{k}}$ .

Now we apply our key lemma to $A_{j_{s}j_{s-1}j_{1}}\ldots(x_{L}, x_{0})$ and use the
proposition above. Then we obtain

$A_{j_{s}j_{s-1}j_{1}}\ldots(x_{L}, x_{0})=(\frac{E}{T_{L,1)}})^{1/2}e^{-i\nu S(\overline{x_{L},x_{0}})}a_{j_{s}j_{s-1}j_{1}}\ldots(x_{L}, x_{0})$ ,

where the function $a_{j_{s}j_{s-1}j_{1}}\ldots(x_{L}, x_{0})$ satisfies the following estimates:
For any integer $K\geq 0$ we have

$|\partial_{x_{L}}^{\alpha_{L}}\partial_{x_{O}}^{\alpha_{0}}a_{j_{s}j_{s-1}j_{1}}\ldots(x_{L}, x_{0})|\leq C_{1}(K)^{s}C_{2}(M(K))^{s}A_{m(M(K))}\prod_{k=1}^{s}\nu^{-1}t_{j_{k}}$ .

This implies that the remainder term $r(\nu, x_{L}, x_{0})$ can be written as

$r(\nu, x_{L}, x_{0})=\sum a_{j_{s}j_{s-1}j_{1}}*\ldots(x_{L}, x_{0})$ .

If $\alpha_{0}$ , $\alpha_{L}\leq K$ we have

$|\partial_{x_{L}}^{\alpha_{L}}\partial_{x_{0}}^{\alpha_{0}}r(\nu, x_{L}, x_{0})|\leq\sum*|\partial_{x_{L}}^{\alpha_{L}}\partial_{x_{0}}^{\alpha_{0}}a_{j_{s}j_{s-1}j_{1}}\ldots(x_{L}, x_{0})|$

$\leq\sum C_{3}(K)^{s}A_{m(M(K))}\prod_{k=1}^{s}\nu^{-1}t_{j_{k}}*$

$\leq A_{m(M(K))}(\prod_{j=1}^{L}(1+C_{3}(K)\nu^{-1}t_{j})-1)$ ,
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where we abbreviated $C_{1}(K)C_{2}(M(K))$ as $C_{3}(K)$ . This proves Theorem
2.

Theorem 1 can be proved similarly.
More detailed dicussions are given by [2].
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Commutator Algebra and Resolvent Estimates

Christian G\’erard

Hiroshi Isozaki
Erik Skibsted

\S 1. Introduction

In studying the detailed properties of Schr\"odinger operators, the
method of micro-localization seems to be indispensable. For the many-
body problem, this point of view was introduced by Enss [3], Mourre [11]
and then by Sigal-Soffer [13] to investigate the propagation properties
of the unitary group. These sorts of estimates not only lead us to a
deep understanding of the space-time behavior of the solution to the
Schr\"odinger equation, but also give us many applications. The aim of
this paper is to prove a certain variation of these kinds of estimates for
the resolvent of the $N$-body Schr\"odinger operator.

We consider a system of $N$-particles moving in $R^{\nu}$ with mass $m_{i}$

and position $x^{i}\in R^{\nu}(1\leq i\leq N)$ . Let $\mathcal{X}$ be defined by

$\mathcal{X}=\{(x^{1}, \cdots, x^{N});\sum_{i=1}^{N}m_{i}x^{i}=0\}$ ,

and consider the Schr\"odinger operator

$H=H_{0}+\sum_{i<j}V_{ij}$
,

where $-H_{0}$ is the Laplace-Beltrami operator on $\mathcal{X}$ equipped with the

Riemannian metric induced from $ds^{2}=2\sum_{i=1}^{N}m_{i}(dx^{i})^{2}$ on $R^{N\iota/}$ . Each

pair potential $V_{ij}=V_{ij}(x^{i}-x^{j})$ is assumed to be a real-valued $C^{\infty}-$

function on $R^{\nu}$ and satisfies for some constant $\rho>0$

(i.i) $|\partial_{y}^{m}V_{ij}(y)|\leq C_{m}<y>-m-\rho$ ,

Received January 18, 1993.
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for any $m=0,1$ , 2, $\cdots$ , where $\partial_{y}^{m}$ denotes an arbitrary derivative of order

$m$ and $<y>=(1+|y|^{2})^{1/2}$ . Let $R(z)=(H-z)^{-1}$ . Let $\Lambda$ be the set of
thresholds of $H$ . For $\lambda\in\sigma_{ess}(H)\cap\sigma_{p}(H)^{c}\cap\Lambda^{c}$ , we define

(1.2) $a(\lambda)=\inf\{\lambda-\mu;\mu\in\Lambda, \mu<\lambda\}$ .

Note that $ a(\lambda)=\lambda$ if $\lambda>0$ , which follows from the absence of positive
eigenvalues of Schr\"odinger operators (see [5]). We consider a pseudo-
differential operator (Ps.D.Op.) $P$ with symbol $p(x, \xi)$ belonging to the
following class. For a positive integer $k$ and $a\in R$ , let $\mathcal{R}^{k}(a)$ be the set
of $C^{\infty}$ -functions $p(x, \xi)$ having the following estimates:

(1.3) $|\partial_{x}^{m}\partial_{\xi}^{n}p(x, \xi)|\leq C<x><\xi-m>-k$ , $0\leq m$ , $n\leq k$ ,

and also satisfying

(1.4) $\sup\underline{x\cdot\xi}<a$ on $suppp(x, \xi)$ .
$x,\xi<x>$

A typical example of the element of $\mathcal{R}^{k}(a)$ is given as follows. We take
$\rho(t)\in C^{\infty}(R)$ such that $\rho(t)=1$ if $ t<a-2\epsilon$ , $\rho(t)=0$ if $ t>a-\epsilon$ , $\epsilon$

being a small positive constant. Then

$\rho(\frac{x\cdot\xi}{<x>})<\xi>\in-2k\mathcal{R}^{k}(a)$ .

For a Ps.D.Op. $P$ , $P\in \mathcal{R}^{k}(a)$ means that the symbol of $P$ belongs
to $\mathcal{R}^{k}(a)$ . As is well-known, for a sufficiently large $k$ , $P\in \mathcal{R}^{k}(a)$ is
$L^{2}-$bounded. Let $B$ denote the totality of bounded operators on $L^{2}(\mathcal{X})$ .
The main result of this paper is the following

Theorem 1.1. For any $s>-1/2$ and $t>1$ , there exists $k=$

$k(s)>0$ such that

$<x>^{s}PR(\lambda+i0)<x>\in-s-tB$

for any $P\in \mathcal{R}^{k}(\sqrt{a(\lambda)})$ .

Although the above theorem is formulated by Ps.D.Op.’s, the main
part of the proof consists in the calculus of commutators in an algebra
consisting of functions of several operators, which is one of the interesting
features of the many-body problem. This commutator calculus has its
origin in the work of Mourre [11], was developed by Sigal-Soffer [13],
[14] with great success and is now considered as a basic tool for the
many-body problem.
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One of the authors proved a slightly weaker theorem in [15] and we
should note that the above Theorem 1.1 is implicitly suggested in [16],
where the commutator of $H$ and

$\tilde{A}=\frac{1}{2i}(x\cdot\nabla_{x}+\nabla_{x}\cdot x)-C<x>$

was used. In this paper, we shall explain a method which treats directly
the resolvent. Our idea is very close to those of Sigal-Soffer [13] and
Derezinski [2]. One of the applications of the above theorem is the
study of the detailed structure of the $S$-matrix ([9], [10], [16]). Other
applications will be given elsewhere.

Finally, we remark that throughout the paper we neglect the domain
question and treat freely the product of unbounded operators. This is
justified by defining them by quadratic forms on $S\times S$ , where $S$ is the
space of rapidly decreasing functions.

\S 2. Commutator Algebra

For two operators $P$ and $A$ , we introduce their multiple commutators
by

$ad_{0}(P, A)=P$,

$ad_{n}(P, A)=[ad_{n-1}(P, A), A]$ , $n\geq 1$ .

The fundamental formulas to calculate the commutators are as follows:

$(ad_{n}(P, A))^{*}=(-1)^{n}ad_{n}(P^{*}, A^{*})$ ,

$ad_{n}(PQ, A)=\sum_{k=0}^{n}$ $\left(\begin{array}{l}n\\k\end{array}\right)$ $ad_{n-k}(P, A)ad_{k}(Q, A)$ ,

$[P, A^{n}]=\sum_{k=1}^{n}c_{n,k}ad_{k}(P, A)A^{n-k}$ ,

$c_{n,k}$ being constants.
We choose the coordinates $x=(x_{1}, \cdots, x_{(N-1)\nu})$ on $\mathcal{X}$ such that

$H_{0}=-\sum_{i=1}^{(N-1)\nu}(\partial/\partial x_{i})^{2}$ .

As in [2] and [13], an important role is played by the self-adjoint operator
$B$ defined by

(2.1) $B=\frac{1}{2i}(\frac{x}{<x>}\cdot\nabla_{x}+\nabla_{x}\cdot\frac{x}{<x>})$ .
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We first consider the commutation relations between $H$ , $B$ and $X=$

$<x>$ . Let $L_{0}$ be the differential operator defined by

$L_{0}=\sum_{i=1}^{(N-1)\nu}x_{i}\frac{\partial}{\partial x_{i}}$ .

Let $\mathcal{V}$ be the set of $C^{\infty}$ -functions $v$ on $\mathcal{X}$ such that $L_{0}^{n}v$ is bounded on
$\mathcal{X}$ for any $n\geq 0$ . This set $\mathcal{V}$ forms an algebra and is independent of the
choice of the Jacobi coordinates.

Example. If $v\in C^{\infty}(R^{\nu})$ satisfies $|\partial_{y}^{m}v(y)|\leq C_{m}<y>^{-m}$ ,
$\forall m\geq 0$ , then $v(x^{i}-x^{j})\in \mathcal{V}$ . In particular, each two-body potential
$V_{ij}(x^{i}-x^{j})$ belongs to $\mathcal{V}$ .

Let $\mathcal{V}_{m}=X^{m}\mathcal{V}$ . Let $\prime p_{k,m}$ be the set of differential operators of
order $k$ with coefficients $\in \mathcal{V}_{m}$ . $\mathcal{V}_{m}$ is invariant by the action of $L_{0}$ ,
which implies that, if $L\in\prime p_{k,m}$ , $[L, B]\in\prime \mathcal{P}_{k,m-1}$ . We have, therefore,

Lemma 2.1. For $n\geq 1$ , we have
(1) $ad_{n}(X, B)\in P_{0,1-n}$ .
(2) $ad_{n}(H, B)\in P_{2,-n}$ .
(3) $ad_{n}(B, H)\in P_{n+1,-1}$ .

These commutation relations suggest us to introduce the following

Definition 2.2. $P\in \mathcal{O}p^{m}(X)$ $(m\in R)\Leftrightarrow$

$X^{\alpha}ad_{n}(P, B)X^{\beta}\in B$ , for any $\alpha$ , $\beta\in R$ and $n\geq 0$ such that $\alpha+\beta=$

$n-m$ .

The analogy of the class $\mathcal{O}p^{m}(X)$ to that of Ps.D.Op.’s is appar-
ent when one thinks of Beals’ characterization of the standard class of
Ps.D.Op.’s ([1]). The basic properties of $\mathcal{O}p^{m}(X)$ are summarized in
the following lemma whose proof follows easily ffom the definition.

Lemma 2.3. (1) $ P\in \mathcal{O}p^{m}(X)\Leftrightarrow$ There exists $P_{0}\in \mathcal{O}p^{0}(X)$

such that $P=X^{m}P_{0}$ .
(2) $P\in \mathcal{O}p^{m}(X)\Rightarrow[P, B]\in \mathcal{O}p^{m-1}(X)$ .

(3) $P\in \mathcal{O}p^{m}(X)\Rightarrow X^{k}PX^{l}\in \mathcal{O}p^{m+k+l}(X)$ , $\forall k$ , $l$ $\in R$ .
(4) $P\in \mathcal{O}p^{m}(X)\Rightarrow P^{*}\in \mathcal{O}p^{m}(X)$ .

(5) $P\in \mathcal{O}p^{m}(X)$ , $Q\in \mathcal{O}p^{n}(X)\Rightarrow PQ\in \mathcal{O}p^{m+n}(X)$ .

Therefore, $\bigcup_{m}\mathcal{O}p^{m}(X)$ forms an algebra which is our basic tool in
this paper.
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The basic subject of this section is to calculate the commutators of
functions of operators. For $m\in R$ , let $\mathcal{F}^{m}$ be the set of $C^{\infty}$ functions
on $R$ such that

$|f^{(k)}(x)|\leq C_{k}(1+|x|)^{m-k}$ , $\forall k\geq 0$ .

Then for $f\in \mathcal{F}^{m}(m\in R)$ , there exists $F(z)\in C^{\infty}(C)$ , called an almost
analytic extension of $f$ , having the following properties:

$F(x)=f(x)$ , $x\in R$ ,

$|\overline{\partial_{z}}F(z)|\leq C_{N}<z>^{m-1-N}|Imz|^{N}$ , $\forall N\geq 0$ ,

$suppF(z)\subset\{|Imz|\leq\epsilon(1+|Rez|)\}$ , $0<\epsilon<<1$ .

Furthermore, $\partial_{x}^{k}F(z)$ is an almost analytic extension of $f^{(k)}(x)$ (see [6]).
Let $f\in \mathcal{F}^{-\epsilon}(\epsilon>0)$ and $F$ be its almost analytic extension. Then for
any self-adjoint operator $A$ we have

(2.2) $f(A)=\frac{1}{2\pi i}\int_{C}\overline{\partial_{z}}F(z)(z-A)^{-1}dz\wedge d\overline{z}$

(see [8]). One can also prove the following formula of the asymptotic
expansion of the commutator: If $f\in \mathcal{F}^{m}(m\in R)$ and $A$ is self-adjoint,
we have

(2.3) $[P, f(A)]=\sum_{n=1}^{N-1}(-1)^{n-1}/n!ad_{n}(P, A)f^{(n)}(A)+R_{N}$ ,

(2.4) $R_{N}=\frac{1}{2\pi i}\int_{C}\overline{\partial_{z}}F(z)(A-z)^{-1}ad_{N}(P, A)(A-z)^{-N}dz\wedge d\overline{z}$ .

$R_{N}$ is bounded if there exists $k$ such that $m+k<N$ and $ad_{N}(P, A)(A+$

$i)^{-k}\in B$ . This commutator expansion formula turns out to be a pow-
erful tool of analysis (see also [6], [7]).

An important example of the element of $\mathcal{O}p^{m}(X)$ is given by

Lemma 2.4. $f(H)$ , $f(B)\in \mathcal{O}p^{0}(X)$ if $f\in \mathcal{F}^{-\epsilon}$ , $\epsilon>0$ .

Proof. By (2.2), we have

$ad_{n}(f(H), B)=\frac{1}{2\pi i}\int_{C}\overline{\partial_{z}}F(z)ad_{n}((z-H)^{-1}, B)dz\wedge d\overline{z}$ .
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For $\alpha$ , $\beta\in R$ such that $\alpha+\beta=n$ , one can show

$||X^{\alpha}ad_{n}((H-z)^{-1}, B)X^{\beta}||\leq C<z>^{\gamma}|Imz|^{-\gamma-1}$ ,

with $\gamma=\gamma(\alpha, \beta)>0$ . The above mentioned properties of the almost

analytic extensions then prove that $f(H)\in \mathcal{O}p^{0}(X)$ . To prove the
lemma for $f(B)$ , we have only to note that

$||X^{n}(B-z)^{-1}X^{-n}||\leq C_{n}|Imz|^{-n-1}$ , $\forall n\geq 0$ . $\square $

It is convenient to introduce the following notation : Let $ P_{n}\in$

$\mathcal{O}p^{k(n)}(X)$ , $ k(1)>k(2)>\cdots\rightarrow-\infty$ . Then an operator $P$ is said to
have the asymptotic expansion $\sum_{n\geq 1}P_{n}$ , written as $P\sim\sum_{n\geq 1}P_{n}$ , if

and only if

$P-\sum_{n=1}^{N-1}P_{n}\in \mathcal{O}p^{k(N)}(X)$ , $\forall N\geq 2$ .

Using (2.3), one can show the following

Lemma 2.5. Let $P\in \mathcal{O}p^{m}(X)$ , $f\in \mathcal{F}^{n}$ , $m$ , $n\in R$ . Then

$[P, f(B)]\sim\sum_{k\geq 1}P_{k}f^{(k)}(B)$
, $P_{k}\in \mathcal{O}p^{m-k}(X)$ .

By the same methods as above, we can also show

Lemma 2.6. Let $\varphi\in C_{0}^{\infty}(R)$ and $f\in \mathcal{F}^{m}$ , $m\in R$ . Then we
have:

(1) $ad_{n}(\varphi(H), X)\in \mathcal{O}p^{0}(X)$ , $n\geq 0$ .

(2)
$[\varphi(H), f(X)]\sim\sum_{n\geq 1}(-1)^{n-1}/n!ad_{n}(\varphi(H), X)f^{(n)}(X)$

.

Lemma 2.7. Let $f\in \mathcal{F}^{m}$ , $g\in \mathcal{F}^{n}$ , $m$ , $n\in R$ . Then we have:

(1) $ad_{k}(g(X), B)\in \mathcal{O}p^{n-k}(X)$ , $k\geq 0$ .

(2)
$[g(X), f(B)]\sim\sum_{k\geq 1}(-1)^{k-1}/k!ad_{k}(g(X), B)f^{(k)}(B)$

.
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\S 3. Resolvent Estimates (1)

We fix $\lambda\in\sigma_{ess}(H)\cap\sigma_{p}(H)^{c}\cap\Lambda^{c}$ and let $ C_{0}(\lambda)=a(\lambda)-\epsilon$ for small
$\epsilon>0$ . Let $\varphi\in C_{0}^{\infty}(R)$ be such that $\varphi(t)=1$ if $|t-\lambda|<\delta$ , $\varphi(t)=0$ if
$|t-\lambda|>2\delta$ . Our starting point is the following Mourre type estimate
which holds for small $\delta>0([4])$ :

(3.1) $\varphi(H)i[H, A]\varphi(H)\geq 2C_{0}(\lambda)\varphi(H)^{2}$ ,

where

$A=\frac{1}{2i}(x\cdot\nabla_{x}+\nabla_{x}\cdot x)$ .

We now introduce

Definition 3.1. f $\in \mathcal{F}_{-}^{m}(\lambda)$ , m $\in R\Leftrightarrow f\in \mathcal{F}^{m}$ , suppf $\subset$

$(-\infty, \sqrt{a(\lambda)})$ .

For a small $\epsilon_{0}>0$ , we take $F_{0}(t)\in \mathcal{F}^{0}(\lambda)$ such that

$\{$

$F_{0}(t)=0$ if $t>\sqrt{C_{0}(\lambda)-\epsilon_{0}}$ ,

$F_{0}(t)=1$ if $t<\sqrt{C_{0}(\lambda)-2\epsilon_{0}}$ ,

$F_{0}(t)\geq 0$ , $\sqrt{F_{0}(t)}\in \mathcal{F}_{-}^{0}(\lambda)$ ,

$F_{\acute{0}}(t)\leq 0$ , $\sqrt{-F_{\acute{0}}(t)}\in \mathcal{F}_{-}^{0}(\lambda)$ .

For $0<\epsilon_{1}<\epsilon_{0}$ , let $C_{1}(\lambda)=\sqrt{C_{0}(\lambda)-\epsilon_{1}}$ and define

$F_{m}(t)=(C_{1}(\lambda)-t)^{m}F_{0}(t)$ ,

$\overline{F_{2m+1}}(t)=(C_{1}(\lambda)-t)F_{m}(t)^{2}$ .

In the following arguments, $(*)$ denotes an operator having the asymp-
totic expansion:

$\sum_{n\geq 2}P_{n}f_{n}(B)$
, $P_{n}\in \mathcal{O}p^{2m+1-n}(X)$ ,

$f_{n}\in \mathcal{F}_{-}^{2m+1-n}(\lambda)$ , $suppf_{n}\subset suppF_{0}$ .

The crucial step is the following lemma.

Lemma 3.2. Let $m>-1/2$ . With $F_{m}(t)$ and $\varphi(t)$ introduced
above, we define $P_{m}=X^{m}F_{m}(B)\varphi(H)$ . The $t/iere$ exists a constant
$C_{0}>0$ such that

$-Re\varphi(H)i[H, X^{2m+1}\overline{F_{2m+1}}(B)]\varphi(H)\geq C_{0}P_{m}^{*}P_{m}+(*)$ .
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Proof. To calculate the commutator $i[H, X^{2m+1}\overline{F_{2m+1}}(B)]$ in the
category of the algebra explained in \S 2, we make the following device.
Let $\varphi_{1}(t)\in C_{0}^{\infty}(R)$ be such that $\varphi_{1}(t)=1$ on $supp\varphi$ , and put $\psi(t)=$

$t\varphi_{1}(t)$ . Then

$\varphi(H)i[H, X^{2m+1}\overline{F_{2m+1}}(B)]\varphi(H)$

$=\varphi(H)i[\psi(H), X^{2m+1}\overline{F_{2m+1}}(B)]\varphi(H)$

$=\varphi(H)i[\psi(H), X^{2m+1}]F_{2m+1}(B)\varphi(H)$

$+\varphi(H)X^{2m+1}i[\psi(H), F_{2m+1}(B)]\varphi(H)$ .

We first show that

(3.2) $-Re\varphi(H)X^{2m+1}i[\psi(H), F_{2m+1}(B)]\varphi(H)$

$\geq(2m+1)P_{m}^{*}(2C_{0}(\lambda)-2B^{2}-\epsilon_{2})P_{m}+(*)$ ,

$\epsilon_{2}$ being a sufficiently small positive constant. In fact, we have

$d-$
$\overline{dt}F_{2m+1}(t)=-(2m+1)F_{m}(t)^{2}-G(t)$ ,

where
$G(t)=-2(C_{1}(\lambda)-t)^{2m+1}F_{0}(t)F_{0}^{l}(t)$ .

Then using (2.3), we see that the left-hand side of (3.2) is written as

$(2m+1)Re\varphi(H)X^{2m+1}i[\psi(H), B]F_{m}(B)^{2}\varphi(H)$

$+Re\varphi(H)X^{2m+1}i[\psi(H), B]G(B)\varphi(H)+(*)$ .

Taking note of the relation,

$\varphi(H)X^{1/2}i[H, B]X^{1/2}\varphi(H)$

$=\varphi(H)(i[H, A]-2B^{2}+K)\varphi(H)$ ,

$K$ being a compact operator, we have

$Re\varphi(H)X^{2m+1}i[\psi(H), B]G(B)\varphi(H)$

$=X^{m}\sqrt{G(B)}\varphi(H)X^{1/2}i[H, B]X^{1/2}\varphi(H)\sqrt{G(B)}X^{m}+(*)$

$\geq X^{m}\sqrt{G(B)}\varphi(H)(2C_{0}(\lambda)-2B^{2}+K)\varphi(H)\sqrt{G(B)}X^{m}+(*)$

$\geq(*)$ ,

where we have used Lemmas 2.5, 2.6 and 2.7 in the first line, (3.1) in the

second line and the fact that $-2t^{2}\geq-2(C_{0}(\lambda)-\epsilon_{0})$ on $suppG(t)$ in the
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third line. We can then see that the left-hand side of (3.2) is estimated
from below by

$(2m+1)F_{m}(B)X^{m}\varphi(H)X^{1/2}i[H, B]X^{1/2}\varphi(H)X^{m}F_{m}(B)+(*)$

$\geq(2m+1)P_{m}^{*}(2C_{0}(\lambda)-2B^{2}-\epsilon_{2})P_{m}+(*)$ .

We next show that

(3.3) $-Re$ $\varphi(H)i[\psi(H), X^{2m+1}]\overline{F_{2m+1}}(B)\varphi(H)$

$\geq(2m+1)P_{m}^{*}(2B^{2}-2C_{1}(\lambda)^{2})P_{m}+(*)$ .

In fact, the left-hand side of (3.3) is written as

$-Re\varphi(H)i[H, X^{2m+1}]\overline{F_{2m+1}}(B)\varphi(H)+(*)$

$=-Re2(2m+1)\varphi(H)X^{2m}B(C_{1}(\lambda)-B)F_{m}(B)^{2}\varphi(H)+(*)$ .

Since $t\leq C_{1}(\lambda)$ on supp Fm(t), we have

$-B(C_{1}(\lambda)-B)F_{m}(B)^{2}\geq(B^{2}-C_{1}(\lambda)^{2})F_{m}(B)^{2}$ ,

which proves (3.3).
The lemma now follows from (3.2) and (3.3). $\square $

Let $F_{m}(t)$ be as above. We call $X^{m}F_{m}(B)$ the operator of canonical
type.

Lemma 3.3. Let $m\in R$ , $P\in \mathcal{O}p^{2m}(X)$ and $f\in \mathcal{F}_{-}^{2m}(\lambda)$ . Take

$n>m$ . Then for any $N\geq 1$ , there exist the operators of canonical type
$X^{n-k/2}F_{n-k/2}(B)(k=1, \cdots, N-1)$ , $P_{N}\in \mathcal{O}p^{2n-N}(X)$ and a constant
$C>0$ such that

$RePf(B)\leq C\sum_{k=0}^{N-1}F_{n-k/2}(B)X^{2n-k}F_{n-k/2}(B)+P_{N}$ .

Proof By enlarging the support of $F_{n}(t)$ suitably, we see that
$\psi(t)=f(t)F_{n}(t)^{-2}\in \mathcal{F}_{-}^{-\epsilon}(\lambda)$ , $\epsilon>0$ . Then we have

$Pf(B)=P\psi(B)F_{n}(B)^{2}$

$=F_{n}(B)P\psi(B)F_{n}(B)+[P\psi(B), F_{n}(B)]F_{n}(B)$ .

One can then see that

$Re$ $F_{n}(B)P\psi(B)F_{n}(B)=F_{n}(B)X^{n}P_{0}X^{n}F_{n}(B)$ ,
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where $P_{0}=P_{0}^{*}\in \mathcal{O}p^{0}(X)$ . Therefore, for a suitable constant $C>0$ ,

$ReF_{n}(B)P\psi(B)F_{n}(B)\leq CF_{n}(B)X^{2n}F_{n}(B)$ ,

$X^{n}F_{n}(B)$ being the operator of canonical type. Since $[P\psi(B), F_{n}(B)]$

has an asymptotic expansion:

$[P\psi(B), F_{n}(B)]\sim\sum_{k\geq 1}P_{k}F_{n}^{(k)}(B)$
, $P_{k}\in \mathcal{O}p^{2m-k}(X)$ ,

we repeat the above procedure to conclude the lemma. $\square $

The main purpose of this section is the following

Theorem 3.4. Let $m>-1/2$ , $t>1$ and $F\in \mathcal{F}_{-}^{m}(\lambda)$ . Then we
have

$X^{m}F(B)\varphi(H)R(\lambda+i0)X^{-m-t}\in B$ .

Proof. We take $\psi\in C_{0}^{\infty}(R)$ such that $\psi=1$ on $supp\varphi$ . Let
$u=\psi(H)R(\lambda+i\epsilon)f$ , $\epsilon>0$ . By Lemma 3.3, we have only to consider
the case where $X^{m}F(B)$ is the operator of canonical type $X^{m}F_{m}(B)$ .

We introduce a notation here: $Q\in \mathcal{O}p_{-}^{m}(\lambda;X)$ if and only if $Q=$

$Pf(B)$ for some $P\in \mathcal{O}p^{m}(X)$ and $f\in \mathcal{F}_{-}^{m}(\lambda)$ .

By Lemma 3.2, we have

$C_{0}||X^{m}F_{m}(B)\varphi(H)u||^{2}\leq-Re(i[H, Q]\varphi(H)u, \varphi(H)u)$

(3.4)
$+Re\sum_{n=2}^{N-1}(Q_{n}u, u)+(Q_{N}u, u)$ ,

where $Q=X^{2m+1}\overline{F_{2m+1}}(B)$ , $Q_{n}\in \mathcal{O}p_{-}^{2m+1-n}(\lambda;X)$ and $ Q_{N}\in$

$\mathcal{O}p^{2m+1-N}(X)$ . Note that

$-Re(i[H, Q]\varphi(H)u, \varphi(H)u)$

$=Im\{(Q\varphi(H)f, \varphi(H)u)-(Q\varphi(H)u, \varphi(H)f)\}$

$-2\epsilon Re(Q\varphi(H)u, \varphi(H)u)$ .

Let $\delta=t-1$ . Since $Q$ is written as

$Q=\sum_{i=0}^{N-1}\overline{P}_{i}P_{i}*+Q_{N}$ ,
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where $P_{i}\in \mathcal{O}p_{-}^{m-i-\delta}(\lambda;X),\overline{P}_{i}\in \mathcal{O}p_{-}^{m+t}(\lambda;X)$ and $ Q_{N}\in$

$\mathcal{O}p^{2m+1-N}(X)$ , we have

$|(Q\varphi(H)u, \varphi(H)f)|\leq\sum_{i=0}^{N-1}||P_{i}\varphi(H)u||^{2}+C||X^{m+t}f||^{2}$ .

Here and in the sequel $C$ denotes a constant independent of $\epsilon>0$ .
$|(Q\varphi(H)f, \varphi(H)u)|$ is estimated from above in the same way. Since $Q$

can be written as

$Q=\sqrt{\overline{F_{2m+1}}(B)}X^{2m+1}\sqrt{\overline{F_{2m+1}}(B)}$

$+[\sqrt{\overline{F_{2m+1}}(B)}, [\sqrt{\overline{F_{2m+1}}(B)}, X^{2m+1}]]$ ,

one can show that

$-Re\varphi(H)Q\varphi(H)\leq\sum_{i\geq 0}P_{i}^{*}P_{i}+Q_{N}$
,

with a finite number of $P_{\dot{0}}\in \mathcal{O}p_{-}^{m-1/2-i}(\lambda;X)$ , and $Q_{N}\in \mathcal{O}p^{-N}(X)$ .

Therefore

$-Re(Q\varphi(H)u, \varphi(H)u)\leq\sum_{i\geq 0}||P_{i}u||^{2}+C||X^{m+t}f||^{2}$
.

$Re(Q_{n}u, u)$ in (3.4) is estimated from above similarly. We then arrive
at

(3.5)
$||X^{m}F_{m}(B)\varphi(H)u||^{2}\leq\sum_{i\geq 0}||P_{i}u||^{2}+C||X^{m+t}f||^{2}$

,

with a finite number of $P_{i}\in \mathcal{O}p_{-}^{m-\delta}(\lambda;X)$ . In view of Lemma 3.3, one

can use (3.5) with $m$ replaced by $ m-\delta$ to estimate $||P_{i}u||^{2}$ . We repeat
this procedure and finally obtain

$||X^{m}F_{m}(B)\varphi(H)u||^{2}\leq C(||X^{-s}u||^{2}+||X^{m+t}f||^{2})$ ,

with $s$ $>1/2$ . The limiting absorption principle then implies the theorem
(see [12]). $\square $

\S 4. Resolvent Estimates (2)

In this section, we shall give the proof of Theorem 1.1 which consists
in translating Theorem 3.4 in terms of Ps.D.Op.’s. Let $\varphi(H)$ be as in
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the previous section. Then by Lemma 2.4,

$X^{m}(1-\varphi(H))R(\lambda+i0)X^{-m}\in B$ , $\forall m\in R$ .

Therefore to prove Theorem 1.1, we have only to consider $\varphi(H)R(\lambda+i0)$ .

For a small $\epsilon_{0}>0$ , we define $C(\lambda)=\sqrt{a(\lambda)-\epsilon}+3\epsilon_{0}$ so that $C(\lambda)<$

$\sqrt{a(\lambda)}$ . We take $F_{-}(t)\in \mathcal{F}^{0}$ such that $F_{-}(t)=1$ if $t<C(\lambda)-\epsilon_{0}$ ,
$F_{-}(t)=0$ if $t>C(\lambda)$ . Let $F_{+}(t)=1-F_{-}(t)$ . Throughout this section,
we shall use the Weyl calculus of Ps.D.Op.’s.

Let $P\in \mathcal{R}^{k}(\sqrt{a(\lambda)})$ . Then for $s$ $>-1/2$ one can take $k$ large

enough so that $X^{s}P<B>^{-s}X^{-s}\in B$ . Therefore by Theorem 3.4,

$X^{s}PF_{-}(B)\varphi(H)R(\lambda+i0)X^{-s-t}$

$=X^{s}P<B>X^{-s}-S$ . $X^{s}<B>^{s}F_{-}(B)\varphi(H)R(\lambda+i0)X^{-s-t}\in B$

for $s$ $>-1/2$ and $t>1$ .

The proof of Theorem 1.1 is thus completed if we show the following
assertion : For any $s>0$ , there exists $k=k(s)>0$ such that

(4.1) $X^{s}PF_{+}(B)X\in B$ , $\forall P\in \mathcal{R}^{k}(\sqrt{a(\lambda)})$ .

Applying Lemma 2.7 to $[X, F_{+}(B)]$ , we see that (4.1) follows ffom the
following assertion: For any $s$ $>0$ , there exists $k=k(s)>0$ such that

(4.2) $X^{s}PF_{+}(B)\in B$ , $\forall P\in \mathcal{R}^{k}(\sqrt{a(\lambda)})$ .

Suppose (4.2) is proved for some $s\geq 0$ . Let $C_{1}(\lambda)=\sqrt{a(\lambda)-\epsilon}+\epsilon_{0}$ .

Then by taking $\epsilon$ and $\epsilon_{0}$ small enough we have

$\frac{x\cdot\xi}{<x>}\leq C_{1}(\lambda)-\epsilon_{0}$

on $suppp(x, \xi)$ and $t\geq C_{1}(\lambda)+\epsilon_{0}$ on $supp$ $F_{+}(t)$ . Let $B_{1}=B-C_{1}(\lambda)$

and consider

$P(t)=e^{-tB_{1}}F_{+}(B)P^{*}X^{2s+1}PF_{+}(B)e^{-tB_{1}}$ , $t\geq 0$ .

Let $b_{1}(x, \xi)$ be the symbol of $B_{1}$ . Namely,

$b_{1}(x, \xi)=\frac{x\cdot\xi}{<x>}-C_{1}(\lambda)$ .

Then on $suppp(x, \xi)$ , $b_{1}(x, \xi)<-\epsilon_{0}$ . Let $P_{0}$ be the Ps.D.Op. with
symbol

$p_{0}(x, \xi)=(-b_{1}(x, \xi))^{1/2}p(x, \xi)$ .
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As is easily seen $P_{0}\in \mathcal{R}^{k-1}(\sqrt{a(\lambda)})$ . We now take $k$ large enough and
apply the standard symbolic calculus to obtain

$2P_{0}^{*}X^{2s+1}P_{0}=-B_{1}P^{*}X^{2s+1}P-P^{*}X^{2s+1}PB_{1}$

$+Re\sum_{i}^{finite}\tilde{P}_{i}^{*}X^{2s}P_{i}+Q$ ,

where $P_{i},\tilde{P}_{i}\in \mathcal{R}^{l}(\sqrt{a(\lambda)})$ , $l$ $=l(k, s)$ satisfies $ l(k, s)\rightarrow\infty$ as $ k\rightarrow\infty$ ,
and the symbol of $Q$ is rapidly decreasing in $x$ . We have, therefore,

$B_{1}P^{*}X^{2s+1}P+P^{*}X^{2s+1}PB_{1}$

$\leq Re\sum_{i}\tilde{P}_{i}^{*}X^{2s}P_{i}+Q$
.

Hence by the induction hypothesis

$-\frac{d}{dt}P(t)\leq e^{-tB_{1}}F_{+}(B)(Re\sum_{i}\tilde{P}_{i}^{*}X^{2s}P_{i}+Q)F_{+}(B)e^{-tB_{1}}$

$\leq Ce^{-t\epsilon_{0}}$ ,

with some constant $C>0$ , if $k$ is chosen large enough. Since

$F_{+}(B)P^{*}X^{2s+1}PF_{+}(B)=P(0)=-\int_{0}^{\infty}\frac{d}{dt}P(t)dt$ ,

one can see that $X^{s+1/2}PF_{+}(B)\in B$ , which completes the proof of
Theorem 1. 1.

References

[1] R. Beals, Characterization of pseudodifferential operators and applica-
tions, Duke Math. J., 44 (1977), 45-57.

[2] J. Derezinski, A new proof of the propagation theorem for $N$-body quan-
tum systems, Commun. Math. Phys., 122 (1989), 203-231.

[3] V. Enss, Quantum scattering theory of two and three body systems with
potentials of short and long range, in “Lecture Notes in Mathematics.
1159”, Springer, Berlin-Heidelberg-New York, 1985.

[4] R. Froese and I. Herbst, A new proof of the Mourre estimate, Duke Math.
J., 49 (1982), 1075-1085.

[5] R. Froese and I. Herbst, Exponential bounds and absence of positive
eigenvalues of $N$-body Schr\"odinger operators, Commun. Math. Phys. ,
87 (1982), 429-447.



82 C. G\’erard, H. Isozaki and E. Skibsted

[6] C. G\’erard, Sharp propagation estimates for $N$-particle systems, Duke
Math. J., 67 (1992), 483-515.

[7] C. G\’erard, Asymptotic completeness for 3-particle long-range systems,
preprint, Ecole Polytechnique (1992).

[8] B. Helffer and J. Sj\"ostrand, \’Equation de Schr\"odinger avec champ
magn\’etique et \’equation de Harper, in “Lecture Notes in Physics. 345”,
Springer, Berlin-Heidelberg-New York, 1989, pp. 118-197.

[9] H. Isozaki, Structures of $S$-matrices for three body Schr\"odinger opera-
tors, Commun. Math. Phys., 146 (1992), 241-258.

[10] H. Isozaki, Asymptotic properties of generalized eigenfunctions for three
body Schr\"odinger operators, Commun. Math. Phys., 153 (1993), 1-21.

[11] E. Mourre, Op\’erateurs conjug\’es et propri\’et\’es de propagations, Commun.
Math. Phys., 91 (1983), 279-300.

[12] P. Perry, I.M. Sigal and B. Simon, Spectral analysis of $N$-body Schr\"odin-

ger operators, Ann. Math., 114 (1981), 519-567.
[13] I.M. Sigal and A. Soffer, $N$-particle scattering problem: Asymptotic

completeness for short range systems, Ann. Math., 125 (1987), 35-108.
[14] I.M. Sigal and A. Soffer, Local decay and propagation estimates for time

dependent and time independent Hamiltonians, preprint, Princeton
University (1988).

[15] E. Skibsted, Propagation estimates for $N$-body Schr\"odinger operators,
Commun. Math. Phys., 142 (1991), 67-98.

[16] E. Skibsted, Smoothness of $N$-body scattering amplitudes, Reviews in
Math. Phys., 4 (1992), 619-658.

Christian G\’erard

Centre de Math\’ematiques

Ecole Polytechnique
91128, Palaiseau, Cedex
France

Hiroshi Isozaki
Department of Mathematics
Osaka University
Toyonaka 560
Japan

Erik Skibsted
Matematisk Institut
Aarhus Universitet
8000 Aarhus C
Denmark



Advanced Studies in Pure Mathematics 23, 1994
Spectral and Scattering Theory and Applications
pp. 83-103

Scattering Theory in the Energy Space

for a Class of Nonlinear Wave Equations

J. Ginibre

Dedicated to Professor ShigeToshi Kuroda
on his sixtieth birthday

\S 1. Introduction

The purpose of this talk is to present a survey of the theory of
scattering for a class of nonlinear wave equations of the form

(1.1) $\square \varphi\equiv\partial_{t}^{2}\varphi-\triangle\varphi=-f(\varphi)$

in a space of initial data and asymptotic states as large as the energy
space associated with that equation. The exposition will follow the treat-
ment given in [12]. Here $\varphi$ is a complex valued function defined in space
time $\mathbb{R}^{n+1}$ , $\triangle$ is the Laplace operator in $\mathbb{R}^{n}$ , and $f$ is a nonlinear suit-
ably regular complex valued function satisfying polynomial bounds at
zero and at infinity. A large amount of work has been devoted to the
theory of scattering for the equation (1.1) and for several other equa-
tions, and we shall devote most of this introduction to a partial review
of nonlinear scattering in order to put the subsequent treatment of (1.1)
into perspective.

The general setting is the following. One considers a semilinear
equation

(1.2) $\partial_{t}u=Lu+F(u)$

where $L$ is a linear antiselfadjoint operator in some Hilbert space $\prime\mu$ , and
generates a one parameter unitary group $U(t)=\exp(tL)$ in $H$ . One is
interested in situations where the global Cauchy problem for (1.2) is well
understood in some space $X$ (which may or may not coincide with $H$ ).
In particular any initial data $u_{0}\in X$ should generate a unique global
$X$ valued solution of (1.2) with $u(0)=u_{0}$ and with suitable regularity

Received February 2, 1993.
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in time. One is then interested in studying the asymptotic behaviour
in time of the solutions of (1.2) by comparison with the solutions of the
linear equation

(1.3) $\partial_{t}u=Lu$

hereafter referred to as the free equation. That study gives rise to the
following two questions.
(1) Given $u\pm\in X$ , does there exist a (unique) solution $u$ of the equation
(1.2) that behaves at $t$ $\rightarrow\pm\infty$ as the solution $U(\cdot)u_{\pm}$ of the free equation
(1.3) generated by $ u\pm$ , for instance in the sense that

(1.4) $||u(t)-U(t)u_{\pm};$ $X||\rightarrow 0$ as $t$ $\rightarrow\pm\infty$

or

$(1.4^{/})$ $||U(-t)u(t)-u\pm;X||\rightarrow 0$ as $t$ $\rightarrow\pm\infty$ .

If that is the case, one defines the wave operators $\Omega_{\pm}$ as the maps $ u_{\pm}\rightarrow$

$u(0)$ thereby obtained. This first question is referred to as that of the
existence of the wave operators. Actually, one may be interested in
comparing solutions of (1.2) and (1.3) in a sense different from and in
fact stronger than (1.4) $(1.4^{/})$ . For instance one may require that

(1.5) $||u-U(\cdot)u_{\pm};$ $\mathcal{X}([T, \pm\infty))||\rightarrow 0$ as $ T\rightarrow\pm\infty$

where $\mathcal{X}(I)$ is a space of $X$ valued functions defined in a time interval $I$

with prescribed behaviour in time. Such a convergence is in fact needed
in order to develop a consistent theory of scattering.

The second question is somehow the converse of the first one.
(2) Given a generic $X$ valued solution of (1.2) generated by initial data
$u(0)=u_{0}\in X$ , does there exist $u_{\pm}\in X$ such that $u$ behaves asymp-
totically as $U(\cdot)u\pm ast$ $\rightarrow\pm\infty$ in the same sense as above. If that is
the case for all $u_{0}\in X$ , one says that asymptotic completeness (AC)
holds in $X$ . Note that this notion of asymptotic completeness is very
restrictive, since the only asymptotic evolution which is used is the free
evolution. In the linear quantum mechanical many body problem, this
would correspond to the case where asymptotic completeness is achieved
by the completely free channel, a situation typical of purely repulsive in-
teractions.

A general method to prove the existence of the wave operators, and
the one to be used in all the examples to follow, consists in solving the
Cauchy problem for (1.2) with infinite initial time. In fact the Cauchy
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problem for (1.2) with initial data $u_{0}$ at time $t_{0}$ is equivalent to the
integral equation

(1.6) $u(t)=U(t-t_{0})u_{0}+\int_{t_{0}}^{t}d\tau U(t-\tau)F(u(\tau))$ .

The solution $u$ expected to behave as $U(\cdot)u\pm att$ $\rightarrow\pm\infty$ should
then be obtained by taking $u_{0}=U(t_{0})u\pm and$ letting $ t_{0}\rightarrow\pm\infty$ . Re-
stricting one’s attention to positive times for definiteness, one obtains
the equation

(1.7) $u(t)=U(t)u_{+}-\int_{t}^{\infty}d\tau U(t-\tau)F(u(\tau))$

to be solved for $u$ for given $u_{+}$ . One can then try to solve (1.7) by a
contraction method in a time interval $[T, \infty)$ for $T$ sufficiently large, and
then continue the solution $u$ thereby obtained to all times by using the
known results on the Cauchy problem at finite times. The contraction
step requires the use of a space $\mathcal{X}([T, \infty))$ of $X$ valued functions of time
with a suitable time decay, in order to control the integral in (1.7). That
time decay has to be satisfied by the solutions $U(\cdot)u_{+}$ of the free equa-
tion. As a standard by product of the previous method, one obtains a
proof of the existence of global solutions and of asymptotic completeness
for small data. The method also requires that $F(u)$ exhibit a suitable
decay in time for $u$ in the relevant space $\mathcal{X}([T, \infty))$ . This in turns re-
quires that the function $F$ tend to zero sufficiently fast when $u$ tends to
zero. In the case where $F$ satisfies power bounds in $u$ as $u\rightarrow 0$ , that
condition reduces to lower bounds on the associated exponents.

Asymptotic completeness for general data, once the previous results
are available, reduces to proving that generic solutions of (1.2) with
initial data in $X$ exhibit the time decay that is used in the definition
of the space $\mathcal{X}(\cdot)$ used to solve the Cauchy problem at infinity. The
question of $AC$ therefore reduces to the derivation of a priori estimates
and depends in a specific way on the invariances and conservation laws
of the equation at hand. As should be clear from a previous remark, it
always requires a repulsivity condition on the interaction term $F$ .

We now review briefly some of the available results for the most
studied equations, namely the nonlinear Schr\"odinger (NLS) equation

(1.8) $i\partial_{t}\varphi=-(1/2)\triangle\varphi+f(\varphi)$ ,

the nonlinear wave (NLW) equation (1.1), and the nonlinear Klein Gor-
don (NLKG) equation

(1.9) $\square \varphi+m^{2}\varphi+f(\varphi)=0$
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which differs from (1.1) by the presence of a mass term $ m^{2}\varphi$ . For clarity
we restrict our attention $ot$ the case where the nonlinear interaction term
is a single power

(1.10) $ f(\varphi)=\lambda|\varphi|^{p-1}\varphi$ .

For those three equations, the global Cauchy problem is well understood
in the energy space $X_{0}$ , to be defined below, for $\lambda\geq 0$ and $ 1\leq p<p_{*}\equiv$

$1+4/(n-2)$ in space dimension $n\geq 2$ .
For the NLS equation, one takes $ u=\varphi$ and $F(u)=-if(\varphi)$ , the ffee

evolution group is $U(t)=\exp(i(t/2)\triangle)$ , the conserved energy is

(1.11) $E(\varphi)=(1/2)||\nabla\varphi||_{2}^{2}+\int dxV(\varphi)$

where $||$ . $||_{r}$ denotes the norm in $L^{r}\equiv L^{r}(\mathbb{R}^{n})$ and

(1.12) $V(\varphi)=2\lambda(p+1)^{-1}|\varphi|^{p+1}$

in the special case (1.10). Furthermore the $L^{2}$ norm of $\varphi$ is also con-
served, and the energy space is the standard Sobolev space $X_{0}=H^{1}$ .

For the NLW and NLKG equations, one takes $u=(\varphi, \partial_{t}\varphi)$ and
$F(u)=(0, -f(\varphi))$ . The solution of the ffee equation generated by the
initial data $u_{0}=(\varphi_{0}, \psi_{0})$ at time $t=0$ is

(1.13) $\varphi^{(0)}(t)=\dot{K}(t)\varphi_{0}+K(t)\psi_{0}$

where $K(t)=\omega^{-1}\sin\omega t,\dot{K}(t)=\cos\omega t$ , $\omega=\sqrt{-\triangle}$ for NLW $(\omega=$

$\sqrt{-\triangle+m^{2}}$ for NLKG), so that the free evolution group is

(1.1 ) $U(t)=\left(\begin{array}{ll}\dot{K}(t) & K(t)\\-\omega^{2}K(t) & \dot{K}(t)\end{array}\right)$ .

The energy is

(1.15) $E(\varphi, \psi)=||\psi||_{2}^{2}+||\nabla\varphi||_{2}^{2}(+m^{2}||\varphi||_{2}^{2})+\int dxV(\varphi)$

for NLW(NLKG), and is conserved in the sense that $E(\varphi, \partial_{t}\varphi)=Const$ ,

for solutions of the equation. The energy space is $X_{0}=(\dot{H}^{1}\cap L^{p+1})\oplus L^{2}$

for NLW and $X_{0}=H^{1}\oplus L^{2}$ for NLKG, where $\dot{H}^{1}$ is the homogeneous
Sobolev space associated with $H^{1}$ .

We now summarize the main results available on the existence of
the wave operators for the NLS, NLW and NLKG equations with power
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nonlinearity (1.10). For the NLS equation [5, 6, 7, 9, 17, 25, 42, 45, 46],

the wave operators are known to exist in the energy space $X_{0}=H^{1}$ for
$4/n<p-1<4/(n-2)[7]$ . In the smaller space $ X=\Sigma$ defined by

(1.16) $\Sigma=H^{1}\cap F(H^{1})\equiv$ { $\varphi:\varphi\in H^{1}$ and $x\varphi\in L^{2}$ }

the wave operators are known to exist for 4/(n+2)<p-l $<4/(n-2)$
$[5]$ . Finally for $0<p-1\leq 2/n$ , the wave operators do no exist even in

the $L^{2}$ -sense, namely (1.4) with $X=L^{2}$ implies $u\pm=0$ and $u=0[41]$ .

There is a huge literature on the theory of scattering and related
problems (including global existence for small data) for the NLW equa-
tion [10-12, 14-16, 18, 19, 22-24, 28, 29, 33-36, 38-42]. For that equa-
tion, the wave operators are known to exist in the space

(1.17) $X=X_{0}\cap\{(\varphi, \psi):(x\otimes\nabla)\varphi\in L^{2}, x\psi\in L^{2}\}$

for $p_{1}(n)<p<p_{*}$ , where $p_{1}(n)$ is the larger root of the equation [28,
29]

(1.18) $n(n-1)p^{2}-(n^{2}+3n-2)p+2=0$ .

That lower bound on $p$ is not expected to be optimal however. One
expects the same result to hold (possibly in a smaller space) for $p_{0}(n)<$

$p<p_{*}$ , where $p_{0}(n)$ is the larger root of the equation

(1.19) $(n-1)p(p-1)=2(p+1)$ .

That result is proved only in dimensions $n=2$ and 3 and on special
sets of regular asymptotic states [15, 18, 36]. For $p\leq p_{0}(n)$ , the wave
operators are expected not to exist, in view of the existing finite time
blow up results for small solutions [14, 18, 19, 39]. In the energy space
$X_{0}$ , the wave operators exist under assumptions on $f$ which barely fail
to include (1.10) with $p=p_{*}$ , the reason being that the lower limit on $p$

required for the existence of the wave operators turns out to be $p>p_{*}$

in that case and conflicts with the condition $p<p_{*}$ required to solve the
global Cauchy problem at finite times [12]. It is one of the purposes of
this talk to present that theory.

For the NLKG equation [3, 4, 9, 31], the wave operators are expected
to exist for $4/n<p-1<4/(n-2)$ in the energy space and for $p_{0}(n+1)<$

$p<p_{*}$ in a suitably smaller space, but the available treatments of the
problem in the literature do not seem to be optimal.

We next summarize the main results available on the question of
asymptotic completeness (AC) for the same equations. As mentioned
above, the proof of $AC$ requires a repulsivity condition, namely $\lambda\geq 0$ in
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the case (1.10), and reduces basically to the proof of a priori estimates
for generic solutions of the equations. There are essentially two methods
available. The first method applies to the NLS and NEW equations (but
not to the NLKG equation) and exploits the approximate pseudocon-
formal invariance of the NLS equation and conformal invariance of the
NLW equation. For the NLS equation, it yields $AC$ in the space $ X=\Sigma$

defined by (1.16) for $p_{0}(n+1)\leq p<p_{*}[5,17,45,46]$ . For the NLW
equation [10, 33, 40] it yields $AC$ in the space $X$ defined by (1.17) in a
rather simple way for 4/(n–l)<p--l<4/(n--2). There are some
results for lower values of $p$ and not too high dimension $(2\leq n\leq 4)$ , but
they are much harder to derive and probably not optimal $[10, 11]$ . The
second method of proof of $AC$ is based on the Morawetz inequality [30],
itself a variant of the approximate dilation invariance of the equation at
hand. That method has been applied first to the NLKG equation [3,
4, 9, 31] and to the NLS equation [7, 9, 25]. It is especially well suited
to the proof of $AC$ in the energy space $X_{0}$ and allows for such a proof
both for the NLS and NLKG equation for $4/n<p-1<4/(n-2)$ .

Remarkably enough, that method also applies to the NLW equation in
the energy space, in spite of the weakness of the time decay available in
that case [12], and yields $AC$ under conditions on $f$ that again barely
fail to include the power interaction (1.10) with $p=p_{*}$ . It is the second
purpose of this talk to present the basic steps of that method and its
application to the NLW equation.

The treatment of the theory of scattering for the NLW equation to
be given below is interesting for several reasons. First, it allows for a
test of the power of the methods in a case where on the one hand only
weak time decay is available, but where on the other hand the space
time homogeneity of the free equation somewhat alleviates the algebraic
complications. This situation is to be contrasted with the better behaved
but more complicated case of the NLKG equation. Second, it requires
the study of the NLW equation in the critical case $p=p_{*}$ , thereby
leading to a number of results of direct relevance to the Cauchy problem
in that case, for which there has been a strong interest recently.

The problem of existence of the wave operators will be treated in
Section 2 below, and that of asymptotic completeness in Section 3. The
exposition follows closely [12] to which we refer for a more detailed treat-
ment and in particular for all the proofs.

\S 2. Existence of the wave operators

In this section we shall prove the existence of the wave operators
for the NLW equation (1.1) by following closely the method sketched in
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the introduction, namely we shall solve the associated equation (1.7) by
a contraction method for large times and continue the solution thereby
obtained to all times by using the known results on the Cauchy problem
at finite times. An essential role in proof will be played by the space time
integrability properties (STIP) associated with the free wave equation
$\square \varphi=0$ , by which we mean properties of the following type. Consider a
linear evolution equation

(2.1) $\equiv(1.3)$ $\partial_{t}u=Lu$

where $L$ is a linear antiselfadjoint operator in some Hilbert space, typ-
icaly $\mathcal{H}=L^{2}$ , and let again $U(t)=\exp(tL)$ . Then any initial data
$u_{0}\in L^{2}$ generates a solution of (2.1)

(2.2) $U(\cdot)u_{0}\in(C\cap L^{\infty})(\mathbb{R}, L^{2})$

where by $C(I, X)$ (resp. $L^{q}$ ( $I$ , $X$ )) we mean the space of continuous
(resp. $L^{q}$ ) functions of time from some interval I to a Banach space
$X$ . Now if one is willing to give up some regularity in time, it may
happen that one gains some regularity in space, namely that

(2.3) $U(\cdot)u_{0}\in L^{q}(\mathbb{R}, X)$

for some $q$ , $ 2\leq q<\infty$ , where $X$ may be $L^{r}$ for some $r>2$ , or a Sobolev
space $W_{r}^{\rho}$ for some $r\geq 2$ and some $\rho\in \mathbb{R}$ , preferably $\rho\geq 0$ , or some
more general space. Such properties exist for a large class of dispersive
equations and have a long history [7, 13, 20, 21, 26, 27, 35, 37, 43,
44, 47]. A recent and hopefully didactic account appears in [13]. Since
the wave equation is somewhat complicated in that respect, we shall
first explain the basic facts on the simplest example of the Schr\"odinger
equation $ i\partial_{t}\varphi=-(1/2)\triangle\varphi$ . In that case the unitary group $U(t)$ can be
represented by the operator of convolution in space

(2.4) $U(t)=\exp[i(t/2)\triangle]=(2\pi it)^{-n/2}\exp[ix^{2}/(2t)]*_{x}$

so that by the Young inequality, for any $f\in L^{1}$ ,

(2.5) $||U(t)f||_{\infty}\leq(2\pi|t|)^{-n/2}||f||_{1}$

and by interpolation with unitarity in $L^{2}$ ,

(2.1) $||U(t)f||_{r}\leq(2\pi|t|)^{-\delta(r)}||f||_{\overline{r}}$

for all $f\in L^{\overline{r}}$ , where 2 $\leq r\leq\infty$ , $r$ and $\overline{r}$ denote pairs of H\"older

conjugate exponents, namely $1/r+1/\overline{r}=1$ , and here and in what follows
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$\delta(r)=n(1/2-1/r)$ . Let now $f$ be a function of space time and introduce
the operator

(2.7) $U*_{t}f\equiv\int d\tau U(t-\tau)f(\tau)$ .

From (2.6) and from the Hardy-Littlewood-Sobolev inequality in time,
it follows that for $0\leq\delta(r)=2/q<1$

(2.8) $||U*_{t}f;L_{t}^{q}(\mathbb{R}, L_{x}^{r})||\leq C||f;L_{t}^{\overline{q}}(\mathbb{R}, L_{x}^{\overline{r}})||$

where the subscripts $t$ and $x$ serve as reminders of the variable of in-
terest. At this point, an elementary and by now well known duality
argument (see Lemma 2.1 in [13]) yields the following two results. First,
the following inequalities also hold

(2.9) $||U*_{t}f;L_{t}^{q_{1}}(\mathbb{R}, L_{x}^{r_{1}})||\leq C||f;L_{t}^{\overline{q}2}(\mathbb{R}, L_{x^{2}}^{\overline{r}})||$

where $0\leq\delta(r_{i})=2/q_{i}<1$ , $i=1,2$ , the main point and difference with
(2.8) being that now the pairs of exponents $(q, r)$ in the left hand side
and in the right hand side are completely decoupled. Second, for any
$u_{0}\in L^{2}$ and $0\leq\delta(r)=2/q<1$ , the following estimate also holds

(2.10) $||U(\cdot)u_{0}$ ; $L_{t}^{q}(\mathbb{R}, L_{x}^{r})||\leq C||u_{0}||_{2}$ .

Estimates of the type (2.9), (2.10) are especially convenient to study the
Cauchy problem for semilinear equations of the type (1.2) in the form
of the integral equation (1.6). In fact, one can use the estimates of the
type (2.10) to control the free solution and the estimates of the type
(2.9) to control the integral in the right hand side of (1.6).

We now turn to the case of the wave equation $\square \varphi=0$ . We recall
that the solution with initial data $u_{0}=(\varphi_{0}, \psi_{0})$ at time zero is given by

(2.11) $\equiv(1.13)$ $\varphi^{(0)}(t)=\dot{K}(t)\varphi_{0}+K(t)\psi_{0}$

where $K(t)=\omega^{-1}\sin\omega t,\dot{K}(t)=\cos\omega t$ and $\omega=\sqrt{-\triangle}$ . The STIP of the
wave equation are best expressed in terms of homogeneous Besov spaces
$\dot{B}_{r}^{\rho}\equiv\dot{B}_{r,2}^{\rho}(\mathbb{R}^{n})$ . Those spaces are to be thought of as technically more

adequate substitutes for the homogeneous Sobolev spaces $\dot{W}_{r}^{\rho}$ (spaces
of distributions with derivatives of order exactly $\rho$ in $L^{r}$ ). In order to
avoid technicalities, we refrain from giving an explicit definition. We
refer for that and for a summary of basic properties to the appendix of
[8] or [12], and for a more extensive treatment to [1], Chap. 6.

The basic estimate which replaces (2.6) in the case of the wave
equation is the following $[2, 32]$ .
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Lemma 2.1. The following estimates hold for all $r$ , $ 2\leq r\leq\infty$

$(2.12)$ $||\exp(i\omega t)f;\dot{B}_{r}^{-\beta(r)}||\leq C|t|^{-\gamma(r)}||f;\dot{B}\frac{\beta}{r}(r)||$

where the loss of derivatives and the time decay exponents are given by
$\beta(r)=\frac{n+1}{2}(1/2-1/r)$ and $\gamma(r)=(n-1)(1/2-1/r)$ .

By exactly the same arguments as in the Schr\"odinger case, one ob-
tains the following analogue of (2.9).

Lemma 2.2. The following estimates hold

(2.12) $||K*_{t}f;L^{q_{1}}(\mathbb{R},\dot{B}_{r_{1}}^{1-\beta(r_{1})})||\leq C||f;L^{\overline{q}2}(\mathbb{R},\dot{B}_{\overline{r}_{2}}^{\beta(r_{2})})||$

for $0\leq\gamma(r_{i})=2/q_{i}<1$ , $i=1,2$ .

We define the energy space for the wave equation as the space

(2.14) $X_{0}=(\dot{H}^{1}\cap L^{2^{*}})\oplus L^{2}$

where $2^{*}=2n/(n-2)$ and we restrict our attention from now on
to space dimension $n\geq 3$ . Finite energy initial data, namely initial
data $(\varphi_{0}, \psi_{0})\in X_{0}$ generate solutions of the free wave equation through
(2.11). In the same way as for the Schr\"odinger equation, one obtains the
following STIP for those solutions, in the form of inequalities similar to
(2.10).

Lemma 2.3. Let $(\varphi_{0}, \psi_{0})\in X_{0}$ and define $\varphi^{(0)}$ by (2.11). Then

(2.15) $||\varphi^{(0)}$ ; $L^{q}(\mathbb{R},\dot{B}_{r}^{\rho})||\leq C||(\varphi_{0}, \psi_{0});X_{0}||$

for all triples $(\rho, r, q)$ which are admissible in the sense that

(2.16) $0\leq\delta(r)\leq n/2$ (equivalently: $ 2\leq r\leq\infty$ )

(2.17) $0\leq 1/q=\rho+\delta(r)-1\equiv\sigma<1/2$

(2.18) $\rho+\beta(r)\leq 1$ (equivalently: $2\sigma\leq\gamma(r)$ ).

The STIP of Lemma 2.3 are best visualized in the $(\sigma-\rho)$ plane,
where $\sigma$ is the variable defined by the second equality in (2.17). The
variable $\sigma$ characterizes the homogeneity of the relevant norms in the
space variable. In particular Sobolev inequalities allow to control a given
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Fig. 1. STIP of $\square \varphi=0$

$\dot{B}_{r}^{\rho}$ norm in terms of other such norms with the same $\sigma$ and higher values
of $\rho$ . The admissible region (2.16)-(2.18) is represented in Figure 1. For

instance the point $(\sigma=0, \rho=0)$ corresponds to $L^{\infty}(\mathbb{R}, L^{2^{*}})$ , the point
$\sigma=0$ , $\rho=1$ to $L^{\infty}(\mathbb{R},\dot{H}^{1})$ , etc. Following Lemma 2.3, it is natural
to introduce the following spaces of pairs of functions. For any interval
$I$ $\subset \mathbb{R}$ , we define

(2.19) $\mathcal{Y}_{0}(I)=\{(\varphi, \psi):\varphi\in L^{\infty}(I, L^{2^{*}})\cap L^{q}(I,\dot{B}_{r}^{\rho})$

and $\psi\in L^{q}(I,\dot{B}_{r}^{\rho-1})$ for all admissible $(\rho, r, q)\}$ .

Lemma 2.3 says in particular that initial data $(\varphi_{0}, \psi_{0})\in X_{0}$ generate
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solutions $\varphi^{(0)}$ such that $(\varphi^{(0)}, \partial_{t}\varphi^{(0)})\in \mathcal{Y}o(\mathbb{R})$ .

Although we shall never need to assume faster space decay on $\varphi$ than

is contained in the condition $\varphi\in L^{2^{*}}$ , it is worthwhile to remark that
such a decay is preserved in time for functions in $\mathcal{Y}o(\cdot)$ in the following
sense (see Proposition 2.1 in [12]).

Lemma 2.4. Let $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}o(I)$ for some interval I and let
$\varphi(s)\in L^{k}$ for some $s\in I$ and for some $k$ , $2\leq k\leq 2^{*}$ . Then $\varphi(t)\in L^{k}$

for all $t$ $\in I$ , $\varphi\in C(I, L^{k})$ and $\varphi$ satisfies the estimate

(2.20) $||\varphi(t)||_{k}\leq C(1+|t|)^{1-\delta(k)}$

for all $t\in I$ , where $C$ depends on the norms of $\varphi(s)$ in $L^{k}$ and of $(\varphi, \partial_{t}\varphi)$

in $\mathcal{Y}_{0}(I)$ but not otherwise on $I$ .

We now turn to the study of finite energy solutions of the equation
(1.1). We assume from now on that $f$ satisfies the following assumption:

(HI) $f\in C^{1}(\mathbb{C}, \mathbb{C})$ and for some $p$ , $ 1<p<\infty$ ,

(2.20) $|f^{/}(z_{1})-f^{/}(z_{2})|\leq C\{$

$|z_{1}-z_{2}|\max|z_{i}|^{p-2}$ if $p\geq 2$

$|z_{1}-z_{2}|^{p-1}$ if $p\leq 2$

for all $z_{1}$ , $z_{2}\in \mathbb{C}$ , where $f^{J}$ stands for any of $\partial f/\partial z$ , $\partial f/\partial\overline{z}$ .

Of special interest will be the case where $p=p_{*}$ .
We recall that the NLW equation (1.1) can be recast in the form

(1.2) with $u=(\varphi, \partial_{t}\varphi)$ and $U(\cdot)$ given by (1.14), so that the integral
equation (1.6) reduces in that case to

(2.22) $\varphi(t)=\dot{K}(t-t_{0})\varphi_{0}+K(t-t_{0})\psi_{0}-\int_{t_{0}}^{t}d\tau K(t-\tau)f(\varphi(\tau))$

and to a second equation for $\partial_{t}\varphi$ which is nothing but the time derivative
of (2.22) and which we shall therefore omit. Similarly the equation (1.7)
which leads to the definition of the wave operators reduces to

(2.23) $\varphi(t)=\dot{K}(t)\varphi_{+}+K(t)\psi_{+}+\int_{t}^{\infty}d\tau K(t-\tau)f(\varphi(\tau))$

and to the time derivative thereof, which we again omit. All subsequent
results in this section are derived from the equations (2.22), (2.23) by
estimating the free solution and the integral in the right hand sides by
Lemmas 2.3 and 2.2 respectively. That requires in addition estimates
for the nonlinear interaction $f(\varphi)$ in the integrand. Besov spaces are
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especially convenient for that purpose since they allow for Leibniz type
estimates of the following form (see Lemma 2.3 in [12] for more general
results).

Lemma 2.5. Let $f$ satisfy (HI) for some $p\geq 2$ . Let $1\leq r$ , $s$ , $ k\leq$

$\infty$ , $1/s=1/r+1/k$ , and $0<\rho<\min(1, n/r)$ . Then

(2.24) $||f(\varphi);\dot{B}_{s}^{\rho}||\leq C||\varphi;\dot{B}_{r}^{\rho}|||||\varphi|^{p-2}||_{k}$ .

We first give some preliminary results on finite energy solutions of
the equation (1.1). As a preliminary to the proof of asymptotic com-
pleteness in the next section, one can easily show that solutions of (1.1)
in $\mathcal{Y}o$ have asymptotic states (see Proposition 2.3 in [12]).

Lemma 2.6. Let $f$ satisfy (HI) with $p=p_{*}$ . Let $\varphi$ be a solution

of (1.1) such that $u=(\varphi, \partial_{t}\varphi)\in \mathcal{Y}o(I)$ for some interval $I$ $\subset \mathbb{R}$ . Then
$u\in C(I, X_{0})$ . Furthermore if I is infinite, say $I$ $=[T, \infty)$ them

(2.25) $\exists s-\lim_{t\rightarrow\infty}U(-t)u(t)=u_{+}$ in $X_{0}$

The next result says basically that “some” of the STIP of solutions
of (1.1) included in the definition of $\mathcal{Y}o$ imply all such STIP.

Lemma 2.7. Let $f$ satisfy (HI) with $p=p_{*}$ , let I be an interval of
$\mathbb{R}$ , and let $\varphi$ be a solution of (1.1) with $\varphi\in L^{q}(I,\dot{B}_{r}^{\rho})$ for one admissible
triple $(\rho, r, q)$ such that

(2.26) $\rho(n-1)/(n+1)+\sigma(n+2)/(n-2)\geq 1$ .

Then $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}o(I)$ .

The region defined by (2.26) in the $(\sigma-\rho)$ plane is the upper right
corner of the admissible region indicated on Figure 1.

We are now in a position to attack the local resolution of the equa-
tion (1.1) in the form of the integral equations (2.22) or (2.23). As
mentioned earlier, we first solve that problem locally in time by a con-
traction method, actually by a partial contraction method whereby all
the norms defining the relevant space are reproduced by the right hand
side of (2.22), (2.23), but only part of them are contracted on bounded
sets of that space. One could use for that purpose the space $\mathcal{Y}o$ de-
fined by (2.19), but it is technically more convenient to use intermediate
spaces of functions $\varphi$ satisfying only part of the STIP and to rely on
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Lemma 2.7 to prove that the solutions thereby obtained belong to $\mathcal{Y}o$ .
A convenient choice of intermediate spaces is

(2.27)
$\mathcal{X}_{0}(I)=i=1,2\cap L^{q_{i}}(I,\dot{B}_{r_{s}}^{\rho_{i}})$

where $r_{s}=2(n+1)/(n-1)$ and $(\rho_{i}, r_{s}, q_{i})$ are two admissible triples
satisping
(2.28)

$ 0<\sigma_{1}\leq\min$ ( $\frac{n-2}{2(n+1)}$ , $\frac{n+2}{(n+1)(n-2)})<\sigma_{2}=\frac{1}{2}\gamma(r_{s})=\frac{n-1}{2(n+1)}$ .

The value $r=r_{s}$ corresponds to $\beta=1/2$ , namely to the case where there
is neither gain nor loss of derivatives in (2.13). The point $(\rho_{2}, r_{s}, q_{2})$ lies
on the upper boundary of the admissible region and satisfies (2.26), so
that Lemma 2.7 will be applicable to solutions in $\mathcal{X}_{0}(I)$ (see Figure 1).

We can now state the basic local existence result (see Proposition
3.1 in [12] $)$ .

Proposition 2.1. Let $f$ satisfy (HI) with $p=p_{*}$ .

(1) Let $(\varphi_{0}, \psi_{0})\in X_{0}$ . Then there exists $T>0$ such that the equation
(2.22) has a unique solution $\varphi\in \mathcal{X}_{0}(I)$ , where $I$ $=[t_{0}-T, t_{0}+T]$ .
Furthermore $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}o(I)$ .

(2) Let $(\varphi_{+}, \psi_{+})\in X_{0}$ . Then there exists $T>0$ such that the equation
(2.23) has a unique solution $\varphi\in \mathcal{X}_{0}(I)$ , where $I$ $=[T, \infty)$ . Furthermore
$(\varphi, \partial_{t}\varphi)\in \mathcal{Y}_{0}(I)$ . In particular $\varphi$ satisfies (2.25).
(3) Let $(\varphi_{0}, \psi_{0})\in X_{0}$ (resp. ( $\varphi_{+}$ , $\psi_{+}$ ) $\in X_{0}$ ) be small in $X_{0}$ norm.
Then there exists a unique solution $\varphi\in \mathcal{X}_{0}(\mathbb{R})$ of the equation (2.22)
(resp. (2.23)). Furthermore $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}o(\mathbb{R})$ , $\varphi$ satisfies (2.25) and its

analogue as $t$ $\rightarrow-\infty$ .

As remarked before the contraction method yields as a by product
the existence of global solutions for small data (part (3) of Proposition
2.1.) and asymptotic completeness for small data.

Corollary 2.1. Let $f$ satisfy (HI) with $p=p_{*}$ . Then the wave
operators $\Omega_{\pm}$ exist as bijections of $X_{0}$ locally in a neighborhood of zero.

The second step in the construction of the wave operators consists
in extending the solutions obtained in Proposition 2.1 part (2) to all
times. For that purpose we need to solve the global Cauchy problem
at finite times. According to standard methods, this requires a priori
estimates of solutions of (1.1) in the energy space, which in turn follow
from energy conservation. We assume
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(H2) (gauge invariance) There exists a function $V\in C^{1}(\mathbb{C}, \mathbb{R})$ with

$z\in \mathbb{C}V(0).=0$
such that $f(z)=\partial V/\partial\overline{z}$ and $V(z)=V(|z|)\geq-a^{2}|z|^{2}$ for all

The energy is then defined by (1.15) (with $m=0$ ) and one can prove
energy conservation in the following sense (see Proposition 3.6 in [12]).

Lemma 2.8. Let $f$ satisfy (HI) with $p=p_{*}$ and (H2). Let I be
an interval of $\mathbb{R}$ , let $t_{0}\in I$ and $(\varphi_{0}, \psi_{0})\in X_{0}$ and let $\varphi$ be a solution of
(2.22) such that $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}_{0}(I)$ . Then for all $s$ and $t$ in $I$

(2.29) $E(\varphi(t), \partial_{t}\varphi(t))=E(\varphi(s), \partial_{t}\varphi(s))$ .

The question arises at this point whether one can solve the Cauchy
problem globally in time for the NLW equation in the energy space for
the critical value $p=p_{*}$ of the exponent in $f$ . There has been recently
a strong interest for that problem, for which Proposition 3.1, especially
part (1), and Lemma 2.8 are directly relevant. The answer is most
probably yes but the existing proofs are restricted either to finite energy
radial solutions, or to smooth solutions in space dimension $n\leq 7$ . In
order to proceed safely, we therefore assume in addition that $f$ satisfies
the assumption (HI) both for $p=p_{*}$ and for some $p<p_{*}$ . It is at
this point that single power nonlinearities (1.10) barely escape from the
present theory. One can then derive the final result on the existence of
the wave operators.

Proposition 2.2. Let $f$ satisfy (HI) both for $p=p_{*}$ and for
$p=p_{2}<p_{*}$ , and (H2).
(1) Let $(\varphi+, \psi_{+})\in X_{0}$ . Then the equation (2.23) has a unique solution
$\varphi$ such that $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}_{0}([T, \infty))$ for all $T\in \mathbb{R}$ . That solution satisfies
(2.29) for all $s$ and $t$ in $\mathbb{R}$ and satisfies (2.25). In particular the wave
operator $\Omega_{+}:$ $(\varphi_{+}, \varphi_{+})\rightarrow(\varphi(0), \partial_{t}\varphi(0))$ is well defined from $X_{0}$ to $X_{0}$ .
Similar results hold for negative times.

(2) Let in addition $V\geq 0(i.e. a=0)$ . Then $\Omega_{\pm}$ and $\Omega_{\pm}^{-1}$ are bounded
operators in $X_{0}$ norm.

Part (2) of Proposition 2.2 follows from the simple remark that for
all $t\in \mathbb{R}$

(2.30) $||u(t);X_{0}||^{2}\leq E\leq||u(t);X_{0}||^{2}+C||u(t);X_{0}||^{2^{*}}$

where $E$ is the energy, the first inequality follows from the positivity
of $V$ and the second one from a Sobolev inequality. The same double
inequality holds for $U(-t)u(t)$ instead of $u(t)$ because $U(\cdot)$ is isometric
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in $X_{0}$ , and for $u_{+}$ by Lemma 2.6, so that $||u(0);X_{0}||\leq m(||u_{+}; X_{0}||)$ and
$||u_{+};$ $X_{0}||\leq m(||u(0);X_{0}||)$ with $m(s)=(s^{2}+Cs^{2^{*}})^{1/2}$ .

\S 3. Asymptotic completeness

In this section, we sketch the proof of asymptotic completeness for
the NLW equation (1.1) in the energy space by using the method origi-
nally devised in [31] for the NLKG equation, in the version given in [7,
9, 12]. It follows from Propositions 3.1 and 3.2 that the proof of $AC$

reduces to proving that generic finite energy solutions, namely solutions
of (2.22) with initial data in $X_{0}$ , belong to $\mathcal{Y}o(\mathbb{R})$ . By Lemma 2.7, it

suffices to prove that such solutions belong to $L^{q}(\mathbb{R},\dot{B}_{r}^{\rho})$ for one admis-
sible triple $(\rho, r, q)$ satisfying (2.26). The proof then reduces to a priori
estimates on those solutions. We continue to restrict our attention to
space dimension $n\geq 3$ to begin with. However the proof will require
at some point the existence of one norm of the solutions with integrable
decay in time, namely $\gamma(r)>1$ , and will therefore only apply in space
dimension $n\geq 4$ , since $\gamma(\infty)=1$ for $n=3$ .

The essence of the proof consists in squeezing the given solution
between two conflicting estimates which force it to decay. The first of
those estimates is the Morawetz inequality [30]. For $f$ satisfying (H2),
we introduce the auxiliary potential

(3.1) $W_{1}(z)=\overline{z}f(z)-V(z)$ .

For $f$ a single power (1.10), $W_{1}$ reduces to $W_{1}(z)=(\lambda/2)(p-1)|z|^{p+1}$ .

We introduce also the functions $g(x)=(x^{2}+a^{2})^{-1/2}$ and $g_{1}(x)=\nabla\cdot(xg)$ .
One checks easily that $(n-1)g\leq g_{1}\leq ng$ and that $\triangle g_{1}\leq 0$ for $n\geq 3$ .
We can now state the Morawetz inequality (see Lemma 4.3 in [12]).

Lemma 3.1. Let $f$ satisfy (HI) with $p=p_{*}$ and (H2), let I be
an interval, $t_{0}\in I$ , $(\varphi_{0}, \psi_{0})\in X_{0}$ and $\varphi$ a solution of (2.22) with
$(\varphi, \partial_{t}\varphi)\in \mathcal{Y}_{0}(I)$ . Then for all $s$ and $t$ in $I$ , $s\leq t$ ,

(3.2) $\int_{s}^{t}d\tau\int dxg_{1}(x)W_{1}(\varphi(\tau, x))\leq-Re\langle\partial_{t}\varphi, (xg\cdot \nabla+\nabla\cdot xg)\varphi\rangle|_{t}^{s}$

The Morawetz inequality is a modified version of dilation invariance.
In fact the operator $x$ . $\nabla+\nabla$ . $x$ is the generator of space dilations. It
fails to be defined in the energy space because of the factor $x$ , and the
function $g$ serves to compensate for that defect. Let $A=xg\cdot\nabla+\nabla\cdot xg$ .
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The formal proof of (3.2) consists in computing the time derivative

$-\partial_{t}Re\langle\partial_{t}\varphi, A\varphi\rangle=-Re\langle\partial_{t}^{2}\varphi, A\varphi\rangle$

$=-Re\langle\triangle\varphi, A\varphi\rangle+Re\langle f(\varphi), A\varphi\rangle$

by using the antisymmetry of $A$ and the equation (1.1). By elementary
computations, the term with $\triangle$ is easily seen to be non negative, while

$Re\langle f(\varphi), A\varphi\rangle=\int g_{1}W_{1}(\varphi)dx$ .

The regularity of $\varphi$ provided by $\mathcal{Y}o$ is sufficient to convert the formal
proof into an actual proof. For positive $V$ the right hand side of (3.2)
is bounded by $2E$ uniformly in $s$ , $t$ and $a$ . For $J$ $=\mathbb{R}$ and $W_{1}\geq 0$ , and
after taking the harmless limit $a\downarrow 0$ , one obtains ffom (3.2)

(3.3) $\int dtdx|x|^{-1}W_{1}(\varphi(t, x))\leq 2E/(n-1)$ .

The meaning of (3.3) is best understood by seing what it forbids: it
forbids in particular that $\varphi$ be a localized solution travelling at finite
speed. In fact, if $\varphi(t, x)=h(x-vt)$ and if $f$ is a single power (1.10),
then the left hand side of (3.3) becomes approximately for large $t$

$ C\int^{\infty}t^{-1}dt||h||_{p+1}^{p+1}=\infty$ .

This fact suggests that $\varphi$ must either spread out in space, or recede
to infinity with unbounded velocity. The second possibility is however
forbidden by the second basic estimate, namely the finiteness of the
propagation speed coming from the hyperbolicity of the equation. That
estimate is best expressed for the present purposes in terms of the prop-
agation of local energy. For any $\Lambda\subset \mathbb{R}^{n}$ , we denote the complement of
$\Lambda$ by $\Lambda’=\mathbb{R}^{n}\backslash \Lambda$ and we define the energy in $\Lambda$ by

(3.4) $E(\varphi, \psi;\Lambda)=\int_{\Lambda}dx(|\psi|^{2}+|\nabla\varphi|^{2}+V(\varphi))$ .

We shall also need the balls in $\mathbb{R}^{n}$

$B(x_{0}, R)=\{x\in \mathbb{R}^{n} : |x-x_{0}|<R\}$ .

We can now state the local energy propagation as follows (see Lemma
4.2 in [12] $)$ .
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Lemma 3.2. Let $f$ satisfy (HI) with $p=p_{*}$ and (H2) with $V\geq 0$ .
Let $I$ $\subset \mathbb{R}$ with $O\in I$ , let $(\varphi_{0}, \psi_{0})\in X_{0}$ and let $\varphi$ be a solution of (2.22)
with $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}o(I)$ . Then for all $x_{0}\in \mathbb{R}^{n}$ , $R>0$ and $t\in I$

(3.5)
$E(\varphi(t), \partial_{t}\varphi(t);B(x_{0}, R-|t|))\leq E(\varphi(0), \partial_{t}\varphi(0);B(x_{0}, R))$

(3.6)
$E(\varphi(t), \partial_{t}\varphi(t);B’(x_{0}, R+|t|))\leq E(\varphi(0), \partial_{t}\varphi(0);B’(x_{0}, R))$ .

The formal proof of Lemma 3.2 consists in noting that the energy
momentum vector

$\theta_{0}=|\partial_{t}\varphi|^{2}+|\nabla\varphi|^{2}+V(\varphi)$

$\theta=-2Re\partial_{t}\overline{\varphi}\nabla\varphi$

is time like and applying the Green formula to the truncated cones $ 0\leq$

$|\tau|\leq|t|$ , $|x|\leq R\pm|\tau|$ . Again the regularity provided by $\mathcal{Y}o$ is sufficient
to convert the formal proof into an actual proof. Lemma 3.2 will be used
in the form of the following easily derived corollary (see Lemma 4.6 in
[12] $)$ .

Corollary 3.1. Under the same assumptions as in Lemma 3.2
with $I$ $=\mathbb{R}$ , for any $\eta>0$

(3.7) $||\varphi(t);L^{2^{*}}(B^{/}(0, (1+\eta)|t|)||\rightarrow 0$ when $|t|\rightarrow\infty$ .

There remains the hard task of combining the estimates (3.3) and

(3.7) to derive a priori estimates for the norm of $\varphi$ in $L^{q}(\mathbb{R},\dot{B}_{r}^{\rho})$ for a
suitable admissible triple $(\rho, r, q)$ . We choose such a triple with $\gamma(r)=$

$ 1+\epsilon$ and $\sigma=1/2-\epsilon$ for some small $\epsilon>0$ (such a triple satisfies
(2.26) for $\epsilon$ small enough). It is as this point that we have to restrict
our attention to space dimension $n\geq 4$ . For $\varphi$ a solution of (2.22) with
$t_{0}=0$ , $(\varphi_{0}, \psi_{0})\in X_{0}$ and $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}_{0,1oc}(\mathbb{R})$ we define

(3.8) $k_{0}(t)=||\dot{K}(t)\varphi_{0}+K(t)\psi_{0}$ ; $\dot{B}_{r}^{\rho}||$

(3.9) $k(t)=||\varphi(t);\dot{B}_{r}^{\rho}||$ .

One of the main technical steps of the proof consists in deriving a set of
integral inequalities for $k$ by applying the estimates (2.12), (2.13), (2.15)
to the integral equation (2.22). Some of these inequalities will require
that $f$ satisfy (HI) both for some $p_{2}<p_{*}$ and for some $p_{1}>p_{*}$ . One
can then prove:
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Lemma 3.3. Let $n\geq 4$ and let $f$ satisfy (HI) both for $p=p_{2}<p_{*}$

and for $p=p_{1}>p_{*}$ . Let $(\rho, r, q)$ $6e$ an admissible triple with $\gamma(r)=1+\epsilon$

and $\sigma=1/2-\epsilon$ for some small $\epsilon>0$ and let $\varphi$ be a solution of (2.22)
with $t_{0}=0$ , $(\varphi_{0}, \psi_{0})\in X_{0}$ and $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}_{0,1oc}(\mathbb{R})$ . Then for some
$\eta>0$ depending only on $\epsilon,p_{1},p_{2}$ and some $M(E)$ depending only on the
energy $E$ , $\varphi$ satisfies the inequalities

(3.10) $k(t)\leq k_{0}(t)+M(E)\int_{0}^{t}d\tau\min|t-\tau|^{-(1\pm\eta)}\min k(\tau)^{1\pm\eta}$ .

It is easy to see by homogeneity that $\epsilon=0$ and $p=p_{*}$ would yield
(3.10) with $\eta=0$ . The combination of signs (–) in (3.10) yields an
information on the local regularity of $k$ and requires only the assump-
tion (HI) with $p_{2}<p_{*}$ while the combination $(++)$ yields the (most
important) information at infinity in time and requires $p_{1}>p_{*}$ . The
crossed terms with $(+-)$ and $(-+)$ would hold with only $p=p_{*}$ .

The next step in the proof consists in combining the estimates (3.3),
(3.7) with the inequalities (3.10) in the case $(\pm, -)$ to show that $k(t)$ is
small in suitable large intervals. That step requires the assumption (HI)
only with $p=p_{*}$ and $p=p_{2}<p_{*}$ . In addition it requires the following
additional repulsivity condition in order to exploit (3.3).

(H3) For some $c>0$ , for $p_{2}<p_{*}<p_{1}$ and for all $z\in \mathbb{C}$

(3.11) $W_{1}(z)\geq c\min(|z|^{p_{1}+1}, |z|^{p_{2}+1})$ .

We introduce the auxiliary norms

$||\varphi;\ell^{\infty}(L^{q}(I,\dot{B}_{r}^{\rho}))||\equiv||k(t);\ell^{\infty}(L^{q}(I))||=t:\sup_{[t,t+1]\subset I}||k;L^{q}([t, t+1])||$ .

One can then prove (see Lemma 4.5 in [12]):

Lemma 3.4. Let $n\geq 4$ , let $f$ satisfy (HI) both for $p=p_{*}$ and for
$p=p_{2}<p_{*}$ , (H2) with $V\geq 0$ and (H3). Let $\varphi$ and $k$ be as in Lemma
3.3. Then for any $\epsilon_{1}>0$ and for any $\ell>0$ , there exists $a>0$ such that

(3.12) $||k;\ell^{\infty}(L^{q}([a, a+\ell]))||\leq\epsilon_{1}$ .

The proof of Lemma 3.4 consists in estimating the integral in (2.22)
with $t_{0}=0$ by splitting the integration region for large $t$ in four subre-
gions, for some small $\theta_{1}$ and some large $\theta_{2}<t$ :
(1) In the region $t$ $-\theta_{1}\leq\tau\leq t$ , one uses the estimate (3.10) with signs
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(–),
(2) In the region $0\leq\tau\leq t-\theta_{2}$ , one uses the estimate (3.10) with signs
$(+-)$ , thereby obtaining two estimates sublinear in $k$ with small coeffi-
cients. In the intermediate region $t-\theta_{2}\leq\tau\leq t-\theta_{1}$ , one essentially
splits the $x$ integration in two subregions:
(3) For $t-\theta_{2}\leq\tau\leq t-\theta_{1}$ and $|x|\leq 2\tau$ , one uses a modified version of
the estimate (3.10) with signs $(\pm-)$ and a consequence of the estimate
(3.3).
(4) For $t$ $-\theta_{2}\leq\tau\leq t-\theta_{1}$ and $|x|\geq 2\tau$ , one uses a modified version of
the estimate (3.10) with signs $(\pm-)$ and the estimate (3.7).
Lemma 3.4 means essentially that $k$ tends to be small in suitably lo-
cated, but arbitrarily large intervals. Using that information, which is a
weak form of the fact that $k$ tends to zero at infinity, and the superlinear
part of Lemma 3.3, namely the inequalities (3.10) with signs $(\pm+)$ , one
then proves that $k(t)$ exhibits the same time decay at infinity as $k^{(0)}$ ,
namely belongs to $L^{q}(\mathbb{R})$ . That last step is an elementary abstract ar-
gument based on (3.10) and (3.12) and is otherwise independent of any
additional property of the equation.

Combining all previous steps yields the final result (see Proposition
4.2 in [12] $)$ .

Proposition 3.1. Let $n\geq 4$ , let $f$ satisfy (HI) both for $p=p_{2}<$

$p_{*}$ and for $p=p_{1}>p_{*}$ , (H2) with $V\geq 0$ and (H3) (namely (3.11)). Let
$(\varphi_{0}, \psi_{0})\in X_{0}$ and let $\varphi$ be a solution of (2.22) with $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}_{0,1oc}(\mathbb{R})$ .

Then $(\varphi, \partial_{t}\varphi)\in \mathcal{Y}o(\mathbb{R})$ . In particular asymptotic completeness holds in
$X_{0}$ .

We finally comment on a problem left open by the preceding proof.
Although any finite energy initial data $(\varphi_{0}, \psi_{0})\in X_{0}$ generates a solution
in $\mathcal{Y}_{0}(\mathbb{R})$ , no estimate is obtained for the norm of $(\varphi, \partial_{t}\varphi)$ in $\mathcal{Y}o(\mathbb{R})$ in
terms of the energy of the solution. This is due to the fact that the proof
starts ffom some time translation invariant information and ends up with
information of the same type, in the form of time integrals, by going at
some intermediate stages through estimates which are pointwise in time.

It would be interesting to know whether the map $(\varphi_{0}, \psi_{0})\rightarrow(\varphi, \partial_{t}\varphi)$ is
bounded ffom $X_{0}$ to $\mathcal{Y}o(\mathbb{R})$ . This would probably require a simplified
time translation invariant version of the preceding proof.

Another challenging question would be to extend the present results
–if true–to the purely critical case where $f$ is assumed to satisfy
(HI) for $p=p_{*}$ only.
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The Relativistic Boltzmann Equation
Near Equilibrium

Robert T. Glassey and Walter A. Strauss

\S 1. A remark on spectral theory

The Boltzmann equation, linearized around the equilibrium, has the
form

$\frac{\partial f}{\partial t}+Af+Kf=0$ .

We want to deduce the exponential decay of $f(t)$ as $ t\rightarrow\infty$ . The operator
$A+K$ is neither symmetric nor skew-symmetric. Nor is $K$ compact.
However, it enjoys the following properties:

(i) $Spec(A+K)\subset\{Re\lambda\geq 0\}$

(ii) $A+K$ has no point spectrum on $Re\lambda=0$ .

(iii) $Spec(A)\subset\{Re\lambda\geq\alpha_{0}\}$ for some $\alpha_{0}>0$ .

(iv) $K$ is $A$ -smoothing.

Property (iv) means, roughly, that the operator

$e^{-t_{1}A}Ke^{-t_{2}A}K\ldots e^{-t_{\ell}A}K$

is compact for all $t_{1}>0$ , $\ldots$ , $t_{t}>0$ .

Theorem [Vidav, Shizuta]. The spectrum of $A+K$ in the strip
$\{0\leq Re\lambda<\alpha_{0}\}$ is discrete, and

$||e^{-t(A+K)}||\leq e^{-\alpha_{1}t}$

for some $\alpha_{1}>0$ .

This is a generalization of Weyl’s classical theorem on the perturba-
tion of spectra. We will see at the end of the lecture how this theorem
proves the stability of the equilibrium of the relativistic Boltzmann equa-
tion.
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\S 2. The relativistic Boltzmann equation

Consider a gas with particle density $F(t, x, v)$ where $t=time$ , $x=$

position, and $v=momentum$ . The particles interact only through col-
lision. Thus

$v_{0}\partial_{t}F+v\cdot\nabla_{x}F=scattering$ term.

If the particles are treated relativistically, then the momentum $v$ is any
vector in $R^{3}$ and the velocity $\hat{v}$ satisfies $|\hat{v}|<c$ . They are related by

$v_{0}^{2}-|v|^{2}=m^{2}c^{2}$ , $\hat{v}=c\frac{v}{v_{0}}$ .

The mass of a particle is $m$ and the energy is $cv_{0}$ . Henceforth we set
$c=m=1$ and rewrite the equation as
(RB) $\partial_{t}F+\hat{v}\cdot\nabla_{x}F=Q(F)$

with the scattering term

$ Q(F)(v)=\int_{R^{3}}\int_{S^{2}}V_{M}\sigma[F(u’)F(v’)-F(u)F(v)]d\Omega$ du.

Here $u$ and $v$ are interpreted as the momenta of a pair of incoming
particles, and $u’$ and $v’$ as the scattered ones. Thus the term $F(u’)F(v’)$

represents the gain and $F(u)F(v)$ the loss. Conservation of momentum
and energy is expressed by

$u+v=u’+v’$ , $u_{0}+v_{0}=u_{0}’+v_{0}’$ ,

where $v_{0}=\sqrt{1+|v|^{2}}$ , $u_{0}’=\sqrt{1+|u_{0}’|^{2}}$ , etc. (This is in contrast to

the classical non-relativistic case where $v_{0}=const$ . $|v|^{2}$ ). The scattering
kernel is the product of two quantities. The MOller velocity $V_{M}$ is given
by

$V_{M}^{2}=|\hat{v}-\hat{u}|^{2}-|\hat{v}x\hat{u}|^{2}$ .

The scattering cross-section $\sigma=\sigma(g, O-)$ is a function of the generalized
momentum difference $g$ and the generalized scattering angle $\Theta$ . Notice
that, for a given incoming momentum $v$ , the three vectors $u$ , $u’$ and $v’$

are constrained by the four scalar conservation laws given above. The
integration in the scattering term runs over the five remaining variables.

A solution of (RB) has the conserved quantities

$\int\int Fdv$ $dx$ , $\int\int vFdvdx$ , $\int\int v_{0}Fdvdx$ ,

the mass, momentum and energy, respectively. Furthermore, the entropy
increases:

$\frac{d}{dt}\int\int F\log Fdvdx\leq 0$ .
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(The last integral is the negative entropy.) The equilibrium of greatest
entropy comes from minimizing the negative entropy subject to fixed
mass, momentum and energy. It is

$\mu(v)=e^{a+b\cdot v-c\sqrt{1+|v|^{2}}}$ ,

the maxwellian distribution. Our goal is to prove the asymptotic stabil-
ity of $\mu(v)$ .

In the classical case, $\mu(v)$ is a gaussian. After the introduction of
the equation by Boltzmann in 1872, it was not until Carleman in 1933
that the stability was proved for the case of space-independent solutions.
$Grad$ in a series of papers around 1963 proved the stability for a finite
time for general solutions. Finally in 1974 Ukai proved the asymptotic
stability, and hence the global existence of solutions near equilibrium,
in the case of spatial periodicity. Then Nishida and Imai and Ukai in
1976 solved the problem without a periodicity assumption. Many others
have made substantial contributions to the classical theory in the last
15 years. Here we announce the resolution of the relativistic problem
with spatial periodicity.

Main Theorem. Assume that the scattering cross-section $\sigma$ sat-

isfies $k_{1}g(1+g)^{-1}\leq\sigma(g, \Theta)\leq k_{2}$ for some constants $k_{1}$ , $k_{2}>0$ . Let
the initial distribution $F^{0}$ satisfy

(i) $F^{0}(x, v)\geq 0$

(ii) $F^{0}$ is continuous

(iii) $F^{0}$ is periodic in $x$

(iv) $\int\int(a+b\cdot v-c\sqrt{1+|v|^{2}})[F^{0}(x, v)-\mu(v)]dvdx=0$

for all $a$ , $b$ , $c$ .

(v) $|F^{0}(x, v)-\mu(v)|\leq\in\sqrt{\mu(v)}(1+|v|)^{-\gamma-3/2}$

for some $\gamma>0$ and for sufficiently small $\in$ . Then there exists a global,
continuous, $x$ -periodic solution of (RB) with $F(0, x, v)=F^{0}(x, v)$ , and
there exist $\delta>0$ and $c_{1}>0$ such that

$|F(t, x, v)-\mu(v)|\leq c_{1}\in e^{-\delta t}\sqrt{\mu(v)}$

for $ 0\leq t<\infty$ .

This theorem is also true with $C^{k}$ and $H^{k}$ norms for arbitrarily large
$k$ . Hence there exist arbitrarily smooth solutions. It is also true under
more general conditions on $\sigma$ .
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\S 3. Sketch of the proof of stability

We may normalize $\mu(v)=\exp(-\sqrt{1+|v|^{2}})$ . Next we write the
perturbation as $F-\mu=\sqrt{\mu}f$ , so that $f$ satisfies

$\partial_{t}f+Af+Kf=\tilde{Q}(f)$ ,

where

$A=\hat{v}\cdot\nabla_{x}+\alpha(v)$ ,

$K=a$ linear integral operator in $v$ ,

$\tilde{Q}=a$ quadratic term.

We wish to solve this equation globally with small initial data. To do

this, we choose a space $Y$ on which $\tilde{Q}$ is bounded:

$||\tilde{Q}f||_{Y}\leq c||F||_{Y}^{2}$

and a similar Lipschitz property for $\tilde{Q}f-\tilde{Q}g$ , together with decay of
the linearized problem:

$\int_{0}^{\infty}||e^{-t(A+K)}||_{\mathcal{L}(Y,Y)}dt<\infty$ .

It is a standard fact that these two properties imply the asymptotic
stability.

To prove the Main Theorem, we choose the space $Y$ of continuous
functions $f(x, v)$ , periodic in $x$ , which satisfy

$\int\int(a+b. v+c\sqrt{1+|v|^{2}})\sqrt{\mu}fdvdx=0$

for all $a$ , $b$ , $c$ , such that the norm

$||f||_{Y}=\sup_{x,v}(1+|v|)^{\gamma+3/2}|f(x, v)|$

is finite. We omit the proof of boundedness of $\tilde{Q}$ on this space in order
to concentrate on the linearized problem.

The linearized entropy identity is

$\langle Af+Kf, f\rangle$

$=\int\int\int\int V_{M}\sigma\mu(u)\mu(v)[\frac{f(v’)}{\sqrt{\mu(v)}},+\frac{f(u’)}{\sqrt{\mu(u)}},-\frac{f(\mu)}{\sqrt{\mu(u)}}-\frac{f(v)}{\sqrt{\mu(v)}}]2$

$\times du$ $d\Omega dvdx$ .
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This expression is manifestly non-negative, and in fact is positive for all
$f\neq 0$ in $Y$ because of the orthogonality conditions. Thus properties (i)
and (ii) ffom the beginning of this lecture are satisfied. Fhrthermore,
$A=\hat{v}\cdot\nabla_{x}+\alpha(v)$ where

$\alpha(v)=\frac{1}{2}\int\int V_{M}\sigma(g, \Theta)\mu(u)dud\Omega$

is bounded above and below: $ 0<\alpha_{0}\leq\alpha(v)\leq\alpha_{2}<\infty$ . Hence $\langle$A $f$ , $ f\rangle$ $\geq$

$\alpha_{0}||f||_{L^{2}}^{2}$ .
In the classical case $\alpha(v)$ is like a constant times $|v|$ , which means

that the dissipation is large for large $|v|$ . In the mid-1970’s Shizuta
showed how the concept of an $A$-smoothing operator can be applied to
the classical Boltzmann equation. In fact, $Grad$ showed in the 1960’s
that

$Kf(t, x, v)=\int k(u, v)f(t, x, u)du$

where $k(u, v)\leq c_{1}|u-v|^{-1}$ $\exp(-c_{2}|u-v|^{2})$ , in the case of the hard
sphere.

In the relativistic case the exponent is much weaker. Nevertheless
we can improve the denominator to obtain

$|k(u, v)|\leq c_{1}\frac{e^{-c_{2}|u-v|}}{|u-v|+|u\times v|}$ .

This estimate implies that

$\sup_{v}\int(|k|+|k|^{2})$ $ du<\infty$

and, for all $\beta\geq 0$ ,

$\int(1+|u|)^{\beta}|k|du\leq c(1+|v|)^{-\beta-1}$

Following Shizuta, we approximate the kernel as a sum

$k(u, v)\sim\sum p_{j}(u)q_{j}(v)$

with nice functions $p_{j}$ and $q_{j}$ . Therefore the $A$-smoothing property of
$K$ would follow ffom the compactness of the operator

$e^{-t_{1}A}QPe^{-t_{2}A}QPe^{-t_{3}A}QP\cdots e^{-t_{\ell}A}QP$
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where $Q$ is multiplication by $q_{j}(v)$ and $P$ is integration with $p_{j}(u)$ . In
this string of operators it suffices to prove the boundedness of the various
factors and the compactness of one of the factors. In fact, one string of
three factors is

$Pe^{-tA}Qf(x)=\int e^{-tA}[q(v)f(x)]p(v)dv$

$=\int e^{-t\alpha(v)}q(v)f(x-t\hat{v})p(v)dv$ .

We apply $\partial_{x}$ to both sides of this identity. Inside the integral, $\partial_{x}$ is
converted to $t^{-1}\partial_{\hat{v}}$ . A change of variables from $v$ to $\hat{v}$ thus leads to the
identity

$\partial_{x}[Pe^{-tA}Qf]=\frac{1}{t}\int\frac{\partial}{\partial\hat{v}}$ (akernel) . $f\cdot dv$ .

Thus we gain regularity in $x$ and therefore $Pe^{-tA}Q$ is compact. For
details, see [3].
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On Spectral Theory for Schr\"odinger

Operators with Magnetic Potentials

Bernard Helffer

Abstract.

In this survey, we want to analyze the effect of the presence of a
magnetic potential on the spectrum of the Schr\"odinger operator with
magnetic field. We consider three connected problems:
–study of the bottom of the spectrum
–study of the bottom of the essential spectrum
–study of the decay of the eigenfunctions.
We think this survey is complementary to other presentations of the
subject in [12], [20] and [49].

\S 1. Qualitative Theory

Let $V\in C^{\infty}(\mathbb{R}^{n})$ be an electrical potential $s.t$ .

(1.1) $V\geq C$ for some constant $C$ ,

and let $A=(A_{1}, \ldots, A_{n})$ be a magnetic potential in $C^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{n})$ . We
denote by

(1.2)
$\omega_{A}=\sum_{j}A_{j}dx_{j}$

the corresponding 1-form and by

(1.3)
$\sigma_{B}=d\sigma_{A}=\sum_{j<k}b_{jk}dx_{j}\wedge dx_{k}$

the corresponding magnetic 2-form.
The Schr\"odinger operator with magnetic field is usually defined by

(1.4)
$P_{A,V}(h)=\sum_{1\leq j\leq n}(hD_{x_{j}}-A_{j})^{2}+V$

Received December 8, 1992.
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and we shall denote by $P_{A,V}^{\Omega}$ the Dirichlet realization in a connected

open set $\Omega$ with bounded regular boundary (cf. [57]). If the operator is
with compact resolvent, for example (see also the results in Section 2) if

(1.5) $V$ tends to $\infty$ , as $|x|\rightarrow\infty$

we know by the Kato’s inequality that (cf. [12])

(1.6) $\lambda_{0,A,V}^{\Omega}(h)\geq\lambda_{0,0,V}^{\Omega}(h)$

where $\lambda_{0,A,V}^{\Omega}(h)$ is the first eigenvalue of $P_{A,V}^{\Omega}$ .

In the case when $P_{A,V}^{\Omega}$ is $nt$ with compact resolvent, one easily get

(1.7) $\inf$ Sp $ P_{A,V}^{\Omega}\geq\inf$ Sp $P_{0,V}^{\Omega}$

observing that it is true (cf. (1.6)) when $V$ is replaced by $V_{\Xi}=V+\epsilon|x|^{2}$

and that

(1.8) $\inf$ Sp $ P_{A,V_{\epsilon}}^{\Omega}\rightarrow\inf$ Sp $P_{A,V}^{\Omega}$ as $\epsilon\rightarrow 0(\epsilon>0)$ .

Finally let us observe that due to the characterization of the essential
spectrum by Persson [54] (see also Agmon [1]) we have also for the
essential spectrum

(1.8) $\inf$ EssSp $ P_{A,V}^{\Omega}\geq\inf$ EssSp $P_{0,V}^{\Omega}$ .

We are now interested to the cases where we have equality. Let us
first recall the following result due essentially to Lavine-O’Caroll [41],
(see also [21]).

Proposition 1.1. Let $h>0$ be fixed and $\Omega$ as above; let us assume
that we have the assumptions (1.1)-(1.5); then the following properties
are equivalent:

(i) $\lambda_{0,A,V}^{\Omega}(h)=\lambda_{0,0,V}^{\Omega}(h)$

(ii) $P_{A,V}^{\Omega}$ and $P_{0,V}^{\Omega}$ are unitary equivalent.

(iii) (a) $\sigma_{B}=0$ in $\Omega$ and
(b) for all closed path in $\Omega$ , $(2\pi h)^{-1}\int_{\gamma}\omega_{A}\in_{\sim}\mathbb{Z}$ .

Sketch of the proof. If $u_{0}$ is the first eigenfunction of $P_{0,V}^{\Omega}(h)$ at-

tached to the eigenvalue $\lambda_{0}^{\Omega}(h)$ , (we know that $u_{0}$ does not vanish in $\Omega$

and we can then assume that $u_{0}>0$ in $\Omega$ and $||u_{0}||=1$ ) we have the
following identity

(1.10) $||(h\nabla-iA-h(\nabla u_{0}/u_{0}))\phi||^{2}$

$=\langle(P_{A}^{\Omega}(h)-\lambda_{0}^{\Omega})\phi|\phi\rangle$ $\forall\phi\in C_{0}^{\infty}(\Omega)$
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The first consequence is of course that we get another proof of (1.6).
Let us briefly sketch the proof of $(i)\Rightarrow(iii)$ (which is the non trivial
part of the statements). From (1.10) we deduce, using a minimizing
sequence tending in $L^{2}$ to a normalized eigenfunction of $P_{A,V}^{\Omega}(h)u_{A}$

corresponding to $\lambda_{A}=\lambda_{0}$

(1.11) $(h\nabla-iA-h(\nabla u_{0}/u_{0}))u_{A}=0$ in $D’(\Omega)$ .

We rewrite (1.11) on the form

(1.12) $(h\nabla-iA)\varphi_{A}=0$ in $D’(\Omega)$ , with $\varphi_{A}=u_{A}/u_{0}$ .

It is easy to prove that

(1.13) $\varphi_{A}\neq 0$ in $\Omega$ .

By differentiation we get $\varphi_{A}d\omega_{A}=0$ and finally $d\omega_{A}=0$ . In the case
when $\Omega$ is simply connected we get the existence of $\theta$ such that $\omega_{A}=d\theta$

and we have immediately

$\int_{\gamma}\omega_{A}=\int_{\gamma}d\theta=0$ .

In the general case, we use (1.12) which can be written locally

(1.14) $hd(Log\varphi_{A})=i\omega_{A}$ .

Hence $|\varphi_{A}|$ is locally constant (and then constant by connectedness) and
because $\varphi_{A}$ is univalued, we get $(iii)_{b}$ . $(iii)\Rightarrow(ii)$ and $(ii)\Rightarrow(i)$ are much
easier.

Remark 1.2. The same result can be obtained under the weaker
assumption (replacing (1.5)).

(1.15)

The bottom of the spectrum of $P_{0,V}^{\Omega}$ is an isolated eigenvalue $\lambda_{0,0,V}^{\Omega}$ ,

with (i) replaced by the apparently different

$(i)’$ $\inf$ Sp $P_{A,V}^{\Omega}=\lambda_{0,0,V}^{\Omega}$ .

We observe indeed that (1.15) implies

(1.16) $\inf EssSpP_{0,V}^{\Omega}>\lambda_{0,0,V}^{\Omega}$ .

Using (1.16) and (1.9), we get that if (i)’ is satisfied then there is at least
one eigenvalue $\lambda_{0,A,V}^{\Omega}$ and the proof goes after in the same way.
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\S 2. More on the essential spectrum

In this section, we present essentially the results of Helffer-Mohamed
([22], [23]) with more recent improvements due to Iwatsuka [34],
Mohamed-Nourrigat [47], Meftah [44]. . . . We consider an electric po-
tential of the form

(2.1) $V(x)=\sum_{j=1}^{p}V_{j}(x)^{2}+V_{0}(x)$ where $V_{j}\in C^{\infty}(\mathbb{R}^{n})$ , $V_{0}(x)\geq 0$

and a $C^{\infty}$ magnetic potential $\omega_{A}=\sum_{j}A_{j}dx_{j}$ . Because $V$ is semi-

bounded we know that $P_{A,V}$ admits a unique selfadjoint realization on
$L^{2}(\mathbb{R}^{n})$ (cf. Schechter [58], Avron-Herbst-Simon [3] or Reed-Simon [57]).
Moreover $C_{0}^{\infty}(\mathbb{R}^{n})$ is dense in $D(P_{A,V})$ . In Avron-Herbst-Simon [3],
Dufresnoy [13], Helffer-Mohamed [22], sufficient conditions were given
which imply compact resolvent. These sufficient conditions are not far
to be necessary (cf. Dufresnoy [13] and Iwatsuka [34], and also Remark 5
in Mohamed [45] $)$ . We shall give here two extensions of the basic result
given in [22]. It is probably possible to establish a unique statement
containing the two results. For the sufficient conditions we recall that it
is sufficient to prove (cf. Avron-Herbst-Simon [3] or Iwatsuka [34]) the
following inequality

(2.2) $\forall u\in C_{0}^{\infty}(\mathbb{R}^{n})$ , $||\phi u||^{2}\leq C(\langle P_{A,V}u, u\rangle+||u||^{2})$

where $\phi$ is a continuous function tending $to+\infty$ as $|x|$ tends to $\infty$ . For
all $r\in \mathbb{Z}$ , we introduce

(2.3) $m_{r}(x)=1+|V_{0}(x)|+\sum_{j=1}^{p}\sum_{|\alpha|=0}^{r}|\partial_{x}^{\alpha}V_{j}(x)|+\sum_{i,j=1}^{n}\sum_{|\alpha|=0}^{r-1}|\partial_{x}^{\alpha}b_{ij}|$ .

The following theorem is due to Meftah [44] and is an improvement
of [22] (see also Mohamed-Raikov [49] or Simon [61]):

Theorem 2.1. Let us assume that (2.1) is satisfied and that there
exists $r\in \mathbb{N}$ , $0\leq\delta<1$ and $c_{1}>0$ such that

(2.4) $|gradV_{0}|+\sum_{j=1}^{p}\sum_{|\alpha|=r+1}|\partial_{x}^{\alpha}V_{j}(x)|+\sum_{i,j=1}^{n}\sum_{|\alpha|=r}|\partial_{x}^{\alpha}b_{ij}|\leq c_{1}m_{r}(x)^{1+\delta}$ ,

then there exists a constant $c_{2}s.t$ .

(2.5) $||(m_{r}(x))^{k}u||^{2}\leq c_{2}(\langle P_{A,V}u|u\rangle+||u||^{2})$ $\forall u\in C_{0}^{\infty}(\mathbb{R}^{n})$
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where $k=(1-\delta(2^{r+1}-3))/2^{r}$ .

Corollary 2.2. If we assume in addition that

(2.6) $ m_{r}(x)\rightarrow+\infty$ as $|x|\rightarrow\infty$

and

(2.7) $\delta<1/(2^{r+1}-3)$

then $P_{A,V}$ is with compact resolvent.

Remark 2.3. The case $\delta=0$ corresponds to the result given in [22].
As $r=1$ , $V_{j}=0$ , $n=2$ , Corollary 2.2 says that, if $|b_{12}(x)|\rightarrow\infty$ as
$|x|\rightarrow\infty$ and if there exists $C>0$ and $\delta<1s.t$ . $|\nabla b_{12}|\leq C(|b_{12}|^{1+\delta}+1)$ ,

then $P_{A,V}$ is with compact resolvent. The counterexamples given by
Iwatsuka [34] and Dufresnoy [13] correspond to the case where $|\nabla b_{12}|$ is

of the order of $|b_{12}|^{2}$ .

The proof is an adaptation of the proof given in [22] (cf. also Helffer
[20] or Mohamed-Raikov [49] for a presentation) and is based on ideas
coming from a proof given by $J.J$ . Kohn [37] for the hypoellipticity of
H\"ormander’s operators.

Remark 2.4. As observed in Mohamed-Nourrigat [47], the choice
of $V$ of the form (2.1) is not necessary. We refer also to Guibourg [16]
for other proofs in this direction or to the surveys of Mohamed-Raikov
[49] and Nourrigat [51]. Other generalizations are given in Iftimie [32].

Remark 2.5. Necessity. Under the assumption (2.4), Corollary 2.2
gives in fact a necessary and sufficient condition for compactness of the
resolvent. Indeed if there exists a sequence of points in $\mathbb{R}^{n}y_{k}$ such that
$|y_{k}|$ tends to $\infty$ and $s.t$ . $m_{r}(y_{k})$ is bounded, then (taking possibly a sub-
sequence) $m_{r}(x)$ remains bounded in a union of disjoints balls $B(y_{k}, C)$

and using the proof (see p.102-103 in Helffer-Mohamed [22]) charac-
terizing the essential spectrum we get the existence of some essential
spectrum. Let us also observe that an assumption like (2.4) permits the
control of the variation of $m_{r}(x)$ in suitable balls and the comparison of
the above statements with the statements of Iwatsuka [34].

In order to characterize the essential spectrum of $P_{A,V}$ in the case
when $m_{r}(x)$ does not tend to $\infty$ we introduce stronger assumptions in
place of (2.4). Let us first consider a slowly varying function $\phi$ on $\mathbb{R}^{n}$

that satisfies for some $\tau$ , $c>0$ the conditions

(2.8a) $\forall x\in \mathbb{R}^{n}$ , $\phi(x)\geq 1$
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(2.8) $|x-y|<\tau\phi(x)\Rightarrow c^{-1}\phi(y)\leq\phi(x)\leq c\phi(y)$

and

(2.8) $\phi(x)\rightarrow+\infty$ as $|x|\rightarrow\infty$

and let us assume now that our potentials have a polynomial behavior
in the following sense

(2.10) $|gradV_{0}|+\sum_{j=1}^{p}\sum_{|\alpha|=r+1}|\partial_{x}^{\alpha}V_{j}(x)|$

$+\sum n$

$\sum_{i,j=1r\leq|\alpha|\leq(r+2)}\phi^{(|\alpha|-r)}|\partial_{x}^{\alpha}b_{ij}|\leq C\phi(x)^{-1}$
.

We then introduce the following “limit set” at $\infty$ .

Definition 2.6. $B_{\infty}$ is described as the set of the

$z=(v_{0}, (v_{j}^{\alpha})_{|\alpha|\leq r,j=1,p}\ldots,,$ $(B_{ij}^{\alpha})_{|\alpha|\leq(r-1),1\leq i\leq j\leq n})$

$s.t$ . there exists a sequence $y_{\iota/}(l/\in \mathbb{N})$ with the following properties:

(2.11a) (a) $|y_{\iota/}|\rightarrow\infty$ as $|\iota/|\rightarrow\infty$

(2.11b) (b) $\partial_{x}^{\alpha}V_{j}(y_{\iota/})\rightarrow(v_{j}^{\alpha})$ as $|\iota/|\rightarrow\infty$

(2.11c) (c) $\partial_{x}^{\alpha}b_{ij}(y_{\iota/})\rightarrow(B_{ij}^{\alpha})$ as $|\iota/|\rightarrow\infty$

We now associate to each $z\in B_{\infty}$

–an electric potential:

(2.12a)
$V_{z}(x)=v_{0}+\sum_{1\leq j\leq p}(\sum_{|\alpha|\leq r}x^{\alpha}v_{j}^{\alpha}/\alpha!)^{2}$

,

–a magnetic potential:

(2.12b)
$(A_{z}(x))_{i}=\sum_{1\leq j\leq n}(\sum_{|\alpha|\leq(r-1)}x^{\alpha}B_{ij}^{\alpha}x_{j}/(\alpha!\cdot(2+|\alpha|))$

,

and the corresponding Schr\"odinger operator $P_{A_{z},V_{z}}$ .
We then introduce the following subset of $\mathbb{R}$

(2.10)
$S_{\infty}=z\in B_{\infty}\cup Sp(P_{A_{z},V_{z}})$

.
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The theorem of [22] gives the link between the union of the spectra
of these “limit Schr\"odinger operators” and the essential spectrum of
$P_{A,V}$ . This is quite natural if you remember the statement of Persson’s
Theorem (see [54] or Agmon [1])

(2.14) $\inf EssSp(P_{A,V})=\sup_{K\in \mathcal{K}}\inf Sp(P_{A,V}^{\mathbb{R}^{n}\backslash K})$

where $\mathcal{K}$ is the family of the compacts in $\mathbb{R}^{n}$ or the second version
$\inf EssSp(P_{A,V})=\lim_{R\rightarrow+\infty}\inf Sp(P_{A,V}^{\mathbb{R}^{n}\backslash B(0,R)})$

Theorem 2.7 (cf. Helffer-Mohamed [22]). Under assumption
(2.10), we have

(2.15) $EssSp(P_{A,V})=\overline{S_{\infty}}$ .

Actually we shall give in Section 6 a sketch of the unpublished result
of Helffer-Mohamed [23] saying that

Theorem 2.8.

(2.16) $S_{\infty}$ is closed in $\mathbb{R}$ .

With this theorem we can effectively give a reasonable answer to the
question of the equality

$\inf EssSp(P_{A,V})=\inf EssSp(P_{0,V})$ .

But first we can understand from a new point of view the inequality
(1.9). For this, we compare $B_{\infty}(A, V)$ and $B_{\infty}(0, V)$ . We observe first
of all that

(2.17) $B_{\infty}(A, V)\subset B_{\infty}(0, V)$ .

If we use what we know for the spectrum (cf. (1.7)), we get from (2.16)
the existence of $z\in B_{\infty}(A, V)s.t$ .

$\inf S_{\infty}(A, V)=\inf$ Sp $ P_{A_{z},V_{z}}\geq\inf$ Sp $P_{0,V_{z}}$

Then (2.17) implies

(2.18) $\inf S_{\infty}(0, V)\leq\inf$ Sp $P_{0,V_{z}}\leq\inf S_{\infty}(A, V)$ .

because $z\in B_{\infty}(A, V)\subset B_{\infty}(0, V)$ . In order to simplify we just discuss
the case where $V=0$ and we get
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Proposition 2.9. Under assumptions (2.1), (2.10) with $V=0$ .
Then $\inf$ EssSp $ P_{A,0}=\inf$ EssSp $P_{0,0}$ if and $on/y$ if there exists a se-
quence $y_{l/}$

$s.t$ . $|y_{1/}|$ tends to $\infty$ and $|\partial_{x}^{\alpha}b_{ij}(y_{\iota/})|\rightarrow 0$ as $|\iota/|\rightarrow\infty$ for
$|\alpha|\leq(r-1)$ and $1\leq i<j\leq n$ .

\S 3. Semi-classical results

3.1. The Schr\"odinger case

In [21], we gave an estimate as $h$ tends to 0 of $\lambda_{0,A,V}^{\Omega}(h)-\lambda_{0,0,V}^{\Omega}(h)$

when condition (iii) is not satisfied. Under suitable assumptions on $V$

( $V$ has a unique non degenerate minimum in $\Omega^{1}$ at a point $x_{0}$ , $V(x_{0})=0$

and $V$ creates a sufficiently strong barrier around $\partial\Omega$ ), we prove that a
magnetic potential (with 0 corresponding $\sigma_{B}$ in $\Omega$ ) creates a splitting of
the type

(3.1) $\lambda_{0,A,V}^{\Omega}(h)-\lambda_{0,0,V}^{\Omega}(h)$

$=h^{1/2}$
$\exp(-S_{1}/h)(a(h)(1-\cos(\int_{\gamma}\omega_{A}/h))+O(\exp(-\epsilon)/h)))$

where

$a(h)$ is a symbol (independent of $A$ ) which is (under suitable
generic assumptions) elliptic,
$\epsilon$ is strictly positive,
$S_{1}$ is the minimal length of a closed path starting of $x_{0}$ and not
homotop to the trivial path in $\Omega$ .

Here the length is measured according to the Agmon metric $V\cdot dx^{2}$ . The
sentence “ creates a sufficiently strong barrier” means mathematically
that

$S_{1}<2S_{0}$

where $S_{0}$ is the Agmon distance of $x_{0}$ to $\mathbb{R}^{2}\backslash \Omega$ .

The proof is based on a comparison of $\lambda_{A}(h)$ with a problem (in-
dependent of $A$) on the covering of $\Omega$ . Another important fact in the
proof is the decay of the eigenfunctions which is controlled by Agmon
estimates (cf. Agmon [1], Helffer-Sj\"ostrand [28] and Section 5). As a
consequence of these estimates we get also by perturbation

(3.2) $\lambda_{0,A,V}(h)-\lambda_{0,0,V}(h)$

$=h^{1/2}$
$\exp(-S_{1}/h)a(h)((1-\cos(\int_{\gamma}\omega_{A}/h))+O(\exp(-\epsilon)/h)))$

$x$ We have assumed to simplify that $\Omega$ was the complementary of a disc in $\mathbb{R}^{2}$
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where $\lambda_{0,A,V}$ is now attached to the problem in $\mathbb{R}^{n}$ .

3.2. The direct effect

When $2S_{0}<S_{1}$ , it is explained in Helffer [21] how to produce under
suitable assumptions a direct effect of the magnetic field whose order is
effectively $\exp(-2S_{0}/h)$ .

3.3. The paramagnetic inequality

As a first application we obtain (following [21]) a new version of
the counterexample (given by Avron-Simon [7]) to a conjecture on the
existence of a paramagnetic inequality due to Hogreve-Schrader-Seiler
[30] and we think that this gives also some interesting information in
the discussion around the existence of the Bohm-Aharonov effect (cf. [2],
[54], [8], and the references in this paper). We treat the case of dimension
2 but the arguments are more general in nature. Let us consider the
Dirac operator in $\mathbb{R}^{2}$ with a magnetic field

(3.3) $D(A)(h)=\sum_{j=1}^{2}\sigma_{j}(hD_{x_{j}}-A_{j})$ ,

where the $\sigma_{j}$ are the Pauli matrices

$\sigma_{1}=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$

$\sigma_{2}=\left(\begin{array}{ll}0 & i\\-\dot{o} & 0\end{array}\right)$

which is a selfadjoint operator on $L^{2}(\mathbb{R}^{2})\otimes \mathbb{C}^{2}$ .
Then the Pauli operator is classically defined as the square of the

Dirac operator

(3.4) $P(A)(h)=(D(A)(h))^{2}=\sum_{j=1}^{2}(hD_{x_{j}}-A_{j})^{2}\cdot Id+h$ $\left(\begin{array}{ll}B & 0\\0 & -B\end{array}\right)$

with $B(x)=(\partial_{x_{2}}A_{1}-\partial_{x_{1}}A_{2})$ . If $V$ satisfies (1.1), we are interested in
the validity of the paramagnetic inequality

(3.5) $\inf Sp((D(A)(h))^{2}+V\cdot I)\leq\inf Sp(-h^{2}\triangle+V)$ .

If $\lambda_{0,0,V}(h)$ denotes the first eigenvalue of $(-h^{2}\triangle+V)$ and if we denote

by $\lambda_{A,V}^{\pm}$ the first eigenvalues of $((D(A)(h))^{2}+V\cdot I)$ , the question is to
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know if the following inequality is true:

(3.6) $\inf_{\pm}\lambda_{A,V}^{\pm}(h)\leq\lambda_{0,0,V}(h)$

Let us recall that in Section 1 we have mentioned the opposite inequality:

(3.7) $\lambda_{0,A,V}(h)\geq\lambda_{0,0,V}(h)$

It is then an easy corollary of (3.2) that, under the same assumptions,
(3.6) is false for a convenient choice of $A$ and $h$ small enough. We ob-
serve indeed that according to the decay properties of the corresponding
eigenfunctions, we have

$\lambda_{A,V}^{\pm}(h)-\lambda_{A,V}^{0}(h)=O(\exp(-2(S_{0}-\epsilon)/h))$ , $\forall\epsilon>0$

which is a smaller effect that the effect due to the flux (this was the
argument we use to go ffom (3.1) to (3.2) $)$ .

3.4. The Dirac operator in dimension 3

We consider the Dirac operator with magnetic potential $A$

(3.8) $(\sum_{j=1}^{3}\alpha_{j}(hD_{x_{j}}-A_{j})+\beta+V)$

in $L^{2}(\mathbb{R}^{3}; \mathbb{C}^{4})$ , where $(\alpha_{j})_{j=1,2,3}$ and $\beta=\alpha_{4}$ are the Dirac matrices,
$(A_{j})_{j=1,2,3}$ is a magnetic vector potential and $V$ a scalar potential. Let
us assume that:

$\lim\sup V(x)<1$
$|x|\rightarrow\infty$

which implies that the spectrum is discrete in the neighborhood of 0.
We assume also that $\Omega$ is the complementary of an infinite cylinder $C$

in the $x_{3}$ direction and that $B=0$ in $\Omega$ . We assume that $V$ creates
a sufficiently strong barrier around $C$ and that $V$ has a unique non-
degenerate extremum in $\Omega$ at some point say $x_{0}=(0, 1, 0)$ and that
$V(x_{0})=1$ . Finally we assume generical assumptions on $V$ (unique “non
degenerate” minimal path around $C$ starting from $x_{0}$ ). In the case where
$A$ is zero we know from $X.P$ . Wang [64] that due to the Kramers theorem
all the eigenspaces appear with even dimension (see also [53]). Near 0 the
“first” eigenvalue $\lambda_{0}(h)$ is determined modulo $O(h^{2})$ by some quadratic
approximation and separated from the rest of the spectrum by $(h/C)$

(cf. [64]). Moreover the multiplicity is exactly 2. The argument fails as
the magnetic field is introduced and the purpose of the work of B. Parisse
[53] was to study the effect of the magnetic field on the splitting which
by perturbation arguments will in this context be “exponentially small”.
B. Parisse proves the following theorem:
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Theorem 3.1. If $\lambda_{0}(h)$ is the double eigenvalue of $D_{0}(h)$ , then

for $h$ small enough, the operator $D_{A}(h)$ admits two eigenvalues $\lambda_{A}^{\pm}(h)$

satisfying to

(3.9) $\lambda_{A}^{\pm}(h)=\lambda_{0}(h)+h^{1/2}$ $\exp(-S_{1}/h)(\Re(c(h)\cdot[\exp(\pm i\phi/h)-1])$

$+O(\exp(-\epsilon)/h)))$

where $\epsilon>0$ , $c(h)=a(h)+ib(h)$ is a complex elliptic symbol, $\phi=\int_{\gamma}\omega_{A}$ ,
$\epsilon>0$ and $S_{1}$ is the minimal length of a closed path starting of $x_{0}$ and not
homotop to the trivial path in $\Omega$ . Here the length is measured according
to the Agmon metric $(1-V^{2})_{+}dx^{2}$ .

Modulo some technicalities due to the fact that we now deal with
systems, the scheme of the proof is the same as for Schr\"odinger. It is
more delicate to prove that $c(h)\neq 0$ and this a consequence of the WKB
constructions.

Let us remark that as a consequence of (3.9) we get the following
formula for the splitting

(3.10) $\lambda_{A}^{+}(h)-\lambda_{A}^{-}(h)$

$=-2h^{1/2}$ $\exp(-S_{1}/h)\cdot(b(h)\sin(\phi/h)+O(\exp(-\epsilon)/h)))$

It would be very interesting to prove that generically $b(h)$ is elliptic
or that under additional symmetries $b(h)$ is exponentially small. As
suggested by B. Parisse it would also be interesting to look to the non
relativistic limit where we will find a problem similar to the case treated
in Subsection 3.3.

\S 4. The case of systems

(after Hebbar, Kuwabara, Manabe, Shigekawa. . .)

4.1. Introduction

The idea to look at systems is very natural and physically motivated
(see for example T.T. Wu and C.N. Yang [65]). But O. Hebbar found
more recently that R. Kuwabara treats the case with $V=0$ in 1982 [40].
As we shall see, the case $V\neq 0$ is not essentially more difficult. Anyway
the result of Hebbar [18] is a little more general that the result of [40]
also in the case $V=0$ .

4.2. The results of Kuwabara revisited

Let $(M, g)$ be a compact $n$-dimensional $C^{\infty}$ manifold without bound-
ary and $E$ a be a complex vector bundle over $M$ with rank $r$ . We
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assume that $E$ has a $C^{\infty}$ Hermitian structure $\langle\cdot\rangle$ . Let us denote by
$A^{0}(M, E)=C^{\infty}(E)$ the set of the $C^{\infty}$ sections of $E$ . More generally we
denote by $A^{p}(M)$ the set of the $C^{\infty}$

$p$-forms on $M$ and by $A^{p}(M, E)$ the

set of $E$-valued $C^{\infty}$
$p$-forms on $M$ . Let $\tilde{d}:A^{0}(M, E)\rightarrow A^{1}(M, E)$ be a

linear connection on $E$ compatible with the Hermitian structure. There

is also a natural extension of $\tilde{d}=\tilde{d}_{0}$ on the $p$-forms given by

(4.1) $\tilde{d}_{p}(s\otimes t)=(\tilde{d}_{0}s)\otimes t+s\otimes dt$

for all $s\in A^{0}(M, E)$ and $t\in A^{p}(M)$ . There is a natural inner product on
$A^{p}(M, E)$ and we can then define the $L^{2}$

$p$-forms with a natural Hilber-
tian structure. The Laplace operator on the $p$-forms is then defined
by:

(4.2) $L^{(p)}=\tilde{d}_{p}^{*}\tilde{d}_{p}+\tilde{d}_{p-1}.\tilde{d}_{p-1}^{*}$

We shall concentrate on: $L=L^{0}$ and will write sometimes $L(E,\tilde{d})$

to mention the dependence with respect to the fiber bundle and the
connection. Of course $L$ is an elliptic operator (of order 2) with compact
resolvent and admits as spectrum an increasing sequence of eigenvalues
$\lambda_{j}(E,\tilde{d})$ tending $to+\infty$ and because the Laplacian is positive, we have of

course $\lambda_{0}(E,\tilde{d})\geq 0$ . If $E=M\times \mathbb{C}$ , and if we take the trivial connection
$d$ , we get the usual spectrum of the Laplace-Beltrami operator $\lambda_{j}(M)$

with $\lambda_{0}(M)=0$ . The problem we want to address is now: Under which

conditions on $E$ and $\tilde{d}$ do we have $\lambda_{0}(M)=\lambda_{0}(E,\tilde{d})$ , or more generally
$\lambda_{0}(M)=\lambda_{j}(E,\tilde{d})$ for $j=0$ , $\ldots$ , $k-1$ for some $k$ . Let us remark that
if a section $s$ satisfies $Ls=0$ (we shall say that $s$ is harmonic) then it

satisfies $\tilde{d}s=0$ (that is $s$ is a parallel section). Kuwabara proves the
following proposition (Proposition 3.1 in [40]):

Proposition 4.1. (i) If $L$ has a zero eigenvalue with multiplicity
$k(k\leq r)$ then

(4.3) $E=E’\oplus T_{k}$ (Whitney sum),

where $T_{k}$ is a trivial bundle of rank $k$ .

(ii) If $L$ has zero eigenvalue with multiplicity $r$ , then $E$ is a trivial bundle
and the curvature $\Omega$ of the connection vanishes.

The proof is a direct consequence of the fact that an orthonormal
system of $k$ independent eigenfunctions $u_{k}$ gives actually a system of
$k$ independent sections giving a natural orthogonal basis for a trivial
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subbundle of $E$ . The second point is as in the study of the scalar Bohm-
Aharonov effect.

The second result given in [40] is the following:

Proposition 4.2. If $L$ has zero eigenvalue, then Sp(M, $g$ ) $\subset$

Sp(M, $g$ , $E,\tilde{d}$). Moreover, if $L$ has zero eigenvalue with multiplicity $r$ ,

then Sp(M, $g$ , $E,\tilde{d}$) $=r$ . Sp(M, $g$ ) where $r$ . Sp(M, $g$ ) $=Sp(M, g)\cup\cdots\cup$

Sp(M, $g$ ) ( $r$ times).

Proof. Since $O\in Sp(M, g, E,\tilde{d})$ , there is a non zero $f$ in $C^{\infty}(E)$

$s.t$ .

(4.4) $\tilde{d}f=0$ .

We have already seen that it does not vanish anywhere. Suppose $\lambda\in$

Sp(M, $g$ ) and let $\phi$ be a non zero eigenvector

(4.5) $-\triangle\phi=\lambda\phi$ .

Then, using elementary computations, (4.4) and (4.5), we get that $s=$

$\phi f$ is an eigenvector for $L$ . The other part is also easy.

Actually, O. Hebbar will deduce these results ffom the following:

Lemma 4.3 (see [18]). If $L$ has a zero eigenvalue with multiplicity
$k(k\leq r)$ then the connection split according to the decomposition:

$E=T_{k}^{\perp}\oplus T_{k}$ (orthogonal decomposition)

$\tilde{d}=\tilde{d}_{1}\oplus\tilde{d}_{2}$

As a consequence we have a direct decomposition of the Laplacian

$L(M, g, E,\tilde{d})=L(M, g, T_{k}^{\perp},\tilde{d}_{1})\oplus L(M, g, T_{k},\tilde{d}_{2})$

with
Sp(M, $g$ , $E,\tilde{d}$) $=Sp(M, g, E,\tilde{d}_{1})\cup Sp(M, g, E,\tilde{d}_{2})$

and moreover $L(M, g, T_{k},\tilde{d}_{2})$ has zero eigenvalue with multiplicity $k$ .

Then we get the following improvement of Proposition:

Proposition 4.4. If $L$ has a zero eigenvalue with multiplicity $k$

$(k\leq r)$ then

(i) $E=T_{k}^{\perp}\oplus T_{k}$ (Whitney sum), $\tilde{d}=\tilde{d}_{1}\oplus\tilde{d}_{2}$

(ii) $L(M, g, T_{k},\tilde{d}_{2})$ has zero eigenvalue with multiplicity $k$

(iii) $T_{k}$ is a trivial bundle and the curvature of $\tilde{d}_{2}$ vanishes

(iv) $Sp(L(M, g, E,\tilde{d})$ $\supset SpL(M, g, T_{k},\tilde{d}_{2})=k$ Sp(M, $g$ ).
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To go further, we have to analyze more precisely and introduce the
notion of gauge transformations. Recall that a gauge transformation
on a vector bundle $E$ with the Hermitian structure is a diffeomorphism
$\Phi:E\rightarrow E$ which maps each fiber $E_{x}$ isometrically and linearly onto

itself. For a linear connection $\tilde{d}$ on $E$ , we get a new connection $\Phi^{*}\tilde{d}=$

$\Phi^{-1}\tilde{d}\Phi$ . Two connections $\tilde{d}$ and $d^{\tilde{\prime}}$ on $E$ are called gauge equivalent to

each other (and we write $\tilde{d}\sim\tilde{d}’$ ) if there exists a gauge transformation

such that: $\tilde{d}’=\Phi^{*}\tilde{d}$. Of course, we have in this case

$Sp(L(M, g, E,\tilde{d})$ $=Sp(L(M, g, E,\tilde{d}’)$ .

The problem we are looking at is to give now a good characterization
of two gauge equivalent connections. Kuwabara [40] gives the following
criterion:

Proposition 4.5. Let $E$ be a line-bundle on $M$ then $\tilde{d}\sim d^{\tilde{\prime}}$ if
and only if the corresponding connection 1-forms $\omega$ and $\omega’$ satisfy $(\omega-$

$\omega’)/2\pi 2$ is an integral 1-form.

This was already observed in Section 1. For a general fiber bundle,
there is a similar criterion using the notion of matrix of holonomy at-
tached to a connection and a closed path $\gamma$ . Using the theorem that a
connection with 0 curvature is locally gauge-equivalent to 0, it is natural
to attach to each curve $\gamma$ a class of equivalence of unitary matrices in
$U(\mathbb{C}^{r}):U_{\gamma}=I$ . We have then the following criterion (cf. for example
[18] but it is probably well known in Topology):

Proposition 4.6. Let $E$ be a trivial hermitian fiber bundle on $M$

and let $d_{0}$ be the connection associated to the 1-form 0; then $\tilde{d}\sim d_{0}$ if
and only if the corresponding connection 1-form $\omega$

(a) $\omega$ has 0-curvature

and

(b) $U_{\gamma}=I$ for any closed path $\gamma$ .

As a conclusion of this subsection, we get following Hebbar [18] the
following extension of the results in [40]:

which is a global 1-form on $M$
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Theorem 4.7. Let $E$ be a Hermitian bundle over $(M, g)$ , and $\tilde{d}a$

linear connection on $E$ which is compatible with the Hermitian structure.
Then the following properties are equivalent:

(i) $L$ has a zero eigenvalue with at least multiplicity $k(k\leq r)$

(ii) $E=T_{k}^{\perp}\oplus T_{k}$ (Whitney sum), $\tilde{d}=\tilde{d}_{1}\oplus\tilde{d}_{2}with^{3}\tilde{d}_{2}\sim\tilde{d}_{0}$ where $d_{0}$

denotes the canonical connection on the trivial bundle $T_{k}$ whose

1-form is 0.
(iii) $Sp(L(M, g, E,\tilde{d})\supset k$ Sp(M, $g$ )

4.3. Extension to the Bochner-Laplace-Schr\"odinger
equation

Here we explain the results of [18]. More precisely we shall explain
how to deduce the results with non zero $V$ from the corresponding results
with $V=0$ . But note that it is possible because we are on a compact
manifold. For other cases (boundary problems) we must of course take
the problem directly (as Hebbar did). The theorem obtained by Hebbar
[18], generalizing results of ([21], [40], [59], [43]), is the following (we
limit ourselves to the case when $M$ is compact):

Theorem 4.8. Let $E$ be a Hermitian bundle over $(M, g)$ , and $\tilde{d}a$

linear connection on $E$ which is compatible with the Hermitian structure.
Let $V$ be a $C^{\infty}$ potential on M. Let $\lambda_{0}(M, g, V)$ be the first eigenvalue

of the Laplace-Beltrami-Schr\"odinger operator on $M:-\triangle+V$ . Then
the following properties are equivalent:

(i) $L+V$ has $\lambda_{0}(M, g, V)$ with at least multiplicity $k(k\leq r)$ .

(ii) $E=T_{k}^{\perp}\oplus T_{k}$ (Whitney sum), $\tilde{d}=\tilde{d}_{1}\oplus\tilde{d}_{2}$ with (cf. preceding

Footnote) $\tilde{d}_{2}\sim d_{0}$ where $d_{0}$ denotes the canonical connection on
the trivial bundle $T_{k}$ whose 1-form is 0.

(iii) $Sp(L(M, g, V, E,\tilde{d}))\supset k$ Sp(M, $V$, $g$ )

Remark 4.9. In particular, if $k=r$ , we get the equivalent of the
theorem given in Section 1.

Corollary 4.10. Let $E$ be a Hermitian bundle over $(M, g)$ with
rank $r$ ; then the following properties are equivalent:

(i) $L+V$ has $\lambda_{0}(M, g, V)$ as an eigenvalue with multiplicity $r$ .

(ii) $E$ is a trivial bundle and $\tilde{d}\sim d_{0}$ where $d_{0}$ denotes the canonical
connection on $E$ whose 1-form is 0.

$3and$ Proposition 4.6 gives a good criterion to verify the property
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(iii) $L(M, g, V, E,\tilde{d})$ is gauge equivalent to $(-\triangle+V)$ . $Id$ defined on
the trivial fiber bundle $M\times \mathbb{C}^{r}$ .

The equivalence of (i) and (iii) was proved in [43].

Sketch of the proof (following partially [18]). We extend the Lavine-
O’Caroll formula to this case. For $s\in C^{\infty}(E)$ , we have the identity

(4.6) $||\tilde{d}s-(du_{0}/u_{0})\otimes s||^{2}=\langle L(M, g, V, E,\tilde{d})s|s\rangle-\lambda_{0}(M, g, V)||s||^{2}$

where we take the $L^{2}$-canonical scalar products. Rom this, we get that

an eigenfunction $s_{j}$ of $L(M, g, V, E,\tilde{d})$ with eigenvalue $\lambda_{0}(M, g, V)$ has

the property that $(s_{j}/u_{0})$ is parallel for $\tilde{d}$. This was the essential point
to get all the statements in Subsection 4.2.

Remark 4.11. It is possible to quantify this result by semi-classical
methods in the spirit of the results of Section 3. The problem is studied
by Hebbar in [18].

\S 5. Some decay results for the eigenfunctions

5.1. Decay at $\infty$

We want to present in this subsection some results on the decay at
$\infty$ (or locally as the Planck constant tends to 0) of the eigenfunctions
of $P_{A,V}$ . For the first result, we consider the simpler case where $A$ and
$V$ are polynomials with

(5.1) $V\geq 0$ .

As in Helffer-Nourrigat [24] and also Feffermann [12] we introduce

(5.2)
$M(x)=\sum_{\alpha}|\partial^{\alpha}V(x)|^{1/(|\alpha|+2)}+\sum_{\alpha,j,k}|\partial^{\alpha}b_{j,k}(x)|^{1/(|\alpha|+2)}$

.

In this simpler case, the compactness criterion given in Corollary 2.2
was obtained in [24], where it is also proved that, if $M(x)$ tends to $\infty$ ,
every solution in $S’(\mathbb{R}^{n})$ of $ H\psi=\lambda\psi$ , $\lambda>0$ is actually in $S(\mathbb{R}^{n})$ . In
the case when $V(x)$ itself tends to $\infty$ , the decay of the eigenfunction
$\psi$ is associated with the Agmon metric $(V-\lambda)_{+}dx^{2}$ . Of course it is
not necessary to assume that we have compact resolvent and it is for
example sufficient to assume that $\lambda$ satisfies

(5.3) $\lambda<\inf EssSpP_{A,V}$
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in order to get some decay like $\exp$ ( ( $\lambda-\inf$ EssSp $P_{A,V}$ ) $|x|$ ). We refer to
[1] and references therein for a discussion. But let us come back to the
case when $M(x)$ tends to $\infty$ . The heuristic idea is that the role played
by $V$ is replaced by $M(x)^{2}$ . We shall loose a little in precision because
one has to remember that $M(x)$ is only defined up to some multiplicative
constant. For all $\lambda$ we introduce the “well”

(5.4) $U(\lambda)=\{x\in \mathbb{R}^{n}, M(x)^{2}\leq\lambda\}$

and denote by $d_{\lambda}(x)=d(x, U(\lambda))$ the distance of $x$ to $U(\lambda)$ for the mod-
ified Agmon’s metric $ds^{2}=M(x)^{2}dx^{2}$ . The principal result obtained in
[25] is the following:

Theorem 5.1. There exist constants $C>0$ and $\epsilon>0$ , depending
only on the dimension $n$ of the space and on the largest degree $r$ of the
polynoms $A_{j}$ and $V\geq 0$ , $s.t$ . for any solution $\psi\in S(\mathbb{R}^{n})$ of $P_{A,V}\psi=$

$\lambda\psi$ , $\lambda>0$ , the following inequality is satisfied

(5.5) $|\psi(x)|\leq C\lambda^{n/4}$ $\exp(-\epsilon d_{C\lambda}(x))||\psi||_{L^{2}}$ , for all $x\in \mathbb{R}^{n}$ .

Remark 5.2. As we have implicitly seen in Section 3 (and as it
appears clearly in [26] or in [60], [62] $)$ , the Agmon’s type estimates have
a natural transcription in the semi-classsical context and play a basic
role in the estimate of the tunneling effect. The estimates are then
local but asymptotic for $h$ tending to 0. A semi-classical version of this
theorem was obtained by Brummelhuis [10] (see also [25] Section 6).

Example 5.3. $n=2;A_{1}(x_{1}, x_{2})=x_{1}^{2}x_{2}$ , $A_{2}(x_{1}, x_{2})=-x_{2}^{2}x_{1}$ ;
$V=0$ . We have in this case: $b_{1,2}(x_{1}, x_{2})=x_{1}^{2}+x_{2}^{2}$ and $ M(x_{1}, x_{2})^{2}\approx$

$(1+x_{1}^{2}+x_{2}^{2})$ .

Remark 5.4. The polynomial character is only assumed for simpli-
fication. One can certainly extend the results under assumptions of the
type given in (2.11) (see Guibourg [16] for results in this direction).

Some words on the proof. The $L^{2}$ estimates in (5.4) follows closely
the Agmon’s proof replacing $V$ by $M^{2}$ . In order to get the $L^{\infty}$ estimates,
a global Sobolev’s theorem is used in [25] whose proof is based on the
proof of maximal estimates in adapted Sobolev spaces appearing in [24].
The proof is then a consequence of the nilpotent Lie groups techniques
which will be presented very shortly in Section 6 (See the book [24] or
the surveys of Helffer [19] or Nourrigat [51] $)$ .
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5.2. Semiclassical aspects for the decay

As it was already mentioned in the context of the study of the decay
of the eigenfunctions at $\infty$ , we can also study the decay in the semi-
classical context and the first result proved in Helffer-Sj\"ostrand [28] is
that if

(5.5) $P_{A,V}(h)u_{h}=\lambda(h)u_{h}$

with $\lambda(h)\rightarrow E$ and $||u_{h}||_{L^{2}}=1$ then we have on every compact $K$ and
for every $\epsilon>0$

(5.6) $|u_{h}(x)|\leq C_{\Xi,K}\exp(\epsilon/h)\exp(-d_{(V-E)_{+}}(x, U_{E})/h)$

where $U_{E}$ is the well: $V\leq E$ and $d_{(V-E)_{+}}(x, y)$ is the Agmon distance
attached to the potential $(V-E)_{+}$ . As we observed in Subsection 5.1
and as one can easily compute for examples of the type

$-\sum_{j}(h\partial_{x_{j}}-i\sum_{k}b_{jk}x_{k})^{2}+|x|^{2}$
,

this estimate is not at all optimal. It can be useful (at least to understand
heuristically the problem) to look for WKB constructions in the case
where $V$ has a unique non-degenerate minimum at 0 and is analytic in
a neighborhood of 0. We assume here that

$\inf V=0$ .

It is proved in [28] that for $t$ small enough it is possible to construct a
WKB solution for $P_{tA,V}(h)$ of the form

(5.7) $h^{-n/4}a(t, x, h)$ $\exp(-\phi(t, x, h)/h)$

where $\phi(t, x, h)$ is a solution in a neighborhood of 0 of the eikonal equa-
tion

(5.8) $(\nabla_{x}\phi-itA)^{2}=V$

Admitting that this WKB approximation gives effectively an approx-
imation of one eigenfunction (and this is proved for $t$ small enough in
[28] $)$ , then $\Re\phi$ gives the control of the decay with respect to $t$ . We admit
the existence of $\phi(t, x)$ (also proved in [28]) and taking the real part and
the imaginary part of (5.8) we get

(5.9) $|\nabla(\Re\phi_{t})|^{2}=V+|\nabla(\propto s\phi_{t})-tA|^{2}$
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and

(5.10) $\nabla(\Re\phi_{t})\cdot(\nabla(\propto s\phi_{t})-tA)=0$

and we can take

(5.11) $\Re\phi_{t}\geq 0$ .

Equations (5.9) and (5.11) permit to say that in a neighborhood of 0,
$\Re\phi_{t}$ is the Agmon distance to 0 for the potential: $(V+|\nabla^{G}s\phi_{t}-tA|^{2})$ .
This gives the general inequality

(5.12) $\Re\phi_{t}\geq\Re\phi_{0}$ in a neighborhood of 0.

Then we observe that

(5.13) $\nabla(\Re\phi_{t}+\phi_{0})\nabla(\Re\phi_{t}-\phi_{0})=|\nabla\propto s\phi_{t}-tA|^{2}$

and

(5.14) $(\Re\phi_{t}-\phi_{0})(0)=0$ .

Then we get in a suitable (but independent of $t$ with $|t|\leq t_{0}$ ) neighbor-
hood of 0 that $(\Re\phi_{t}-\phi_{0})(x)=0$ implies that: $\nabla(\propto s\phi_{t})-tA=0$ along
the integral curve of the vector field $\nabla(\Re\phi_{t}+\phi_{0})$ joining $x$ and 0. In
particular if $(\Re\phi_{t}-\phi_{0})(x_{j})=0$ in an open set on some sphere around
0 then we get by analyticity that $\nabla(\propto s\phi_{t})-tA=0$ in a neighborhood
of 0 which gives that $A$ is locally exact.

\S 6. Nilpotent Lie group techniques

In this section we shall give the proof of Theorem 2.8. We assume
that the reader is somewhat familiar with the theory of nilpotent Lie
groups (see [15]) and we emphasize that all these techniques were de-
velopped first for the study of hypoellipticity. For $n,p$ , $s\in \mathbb{N}$ , let us
introduce the “maximal” universal Lie Algebra $\mathcal{G}^{(n,p,s)}$ with the follow-
ing properties

(6.1) $\mathcal{G}^{(n,p,s)}$ is graded of rank of nilpotency $s$ ,

i.e.

$\mathcal{G}^{(n,p,s)}=\mathcal{G}_{1}\oplus \mathcal{G}_{2}\oplus\cdots\oplus \mathcal{G}_{s}$
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and

$[\mathcal{G}_{i}, \mathcal{G}_{j}]\subset \mathcal{G}_{i+j}$ , if $(i+j)\leq s$ ,

$[\mathcal{G}_{i}, \mathcal{G}_{j}]=0$ , if $(i+j)\geq(s+1)$

(6.2) $\mathcal{G}_{1}=\mathcal{G}_{1}’\oplus \mathcal{G}_{1}’’$ , with $dim\mathcal{G}_{1}’=n$ , $dim\mathcal{G}_{1}’’=p$

$(6.3)$ $\mathcal{G}_{1}$ generates $\mathcal{G}$ .

(6.4) $[\mathcal{G}_{1}^{JJ}\oplus \mathcal{G}^{2}, \mathcal{G}_{1}’’\oplus \mathcal{G}^{2}]=0$

where

(6.5) $\mathcal{G}^{2}=\mathcal{G}_{2}\oplus\cdots\oplus \mathcal{G}_{s}$

and

$\mathcal{G}^{(n,p,s)}$ is of maximai dimension with the above properties.

The algebra $\mathcal{G}^{(n,p,s)}$ has the following universal property: Let $(Y_{j}’)_{j}$ be

a basis of $\mathcal{G}_{1}’$ , $(Y_{k}’’)_{k}$ a basis of $\mathcal{G}_{1}’’$ ; then there exists a partial homomor-
phism of rank $s$ , $\lambda$ , $s.t$ . :

(6.6) $\lambda(Y_{j}’)=X_{j}’$ $\lambda(Y_{k}’’)=X_{k}’’$ ,

where

$X_{j}’=\partial_{x_{j}}-iA_{j}(x)$ for $j=1$ , $\ldots$ , $n;X_{k}’’=iV_{k}(x)$

for $k=1$ , $\ldots,p$ (with $s=r+1$ ). We refer to R. Goodman [15] for this
property or to [24] where this type of Lie Algebras is studied in Chapter
$XI$ . We observe (cf. Chapter $XI$ of [24])

(6.7) $P_{A_{z},V_{z}}=\square \ell_{z},H(-\triangle)$ ,

where

(6.8) $\prime H$ $=\mathcal{G}_{1}’’\oplus \mathcal{G}^{2}$ ,

$\ell_{z}$ is the element of $\mathcal{G}^{*}$ (dual of $\mathcal{G}=\mathcal{G}^{(n,p,s)}$ ) associated to $z\in B_{\infty}$ by



Schr\"odinger Operators with Magnetic Potentials 133

the relations

(6.9) $\ell_{z}/\mathcal{G}_{1}’=0$ ,

(6.10) $\ell_{z}((adY’)^{\alpha}Y_{k}’’)=v_{k}^{\alpha}$ , for $|\alpha|\leq s-1$ ,

(6.11) $\ell_{z}((adY’)^{\alpha}[Y_{i}’, Y_{j}’])=B_{ij}^{\alpha}$ , for $|\alpha|\leq(s-2)$ ,

(6.12)
$\triangle:=\sum_{j}Y_{j}^{\prime 2}+\sum_{k}Y_{k}^{\prime\prime 2}$

and $\Pi_{\ell},\prime\kappa$ is the induced representation associated to $\ell$ and to a subal-
gebra $\prime H$ satisfying

$\ell([?\{, H])=0$ .

Let us introduce

$\Lambda(\ell, H)=G$ . $(\ell+?\{^{\perp})$ in $\mathcal{G}^{*}$ .

In a first step we use the techniques of [24] in order to prove:

Proposition 6.1.

(6.13)
$\sigma(P_{A_{z},V_{z}})=\rho\in\overline{\Lambda}\cup\sigma(\square _{\rho}(-\triangle))$

The map $\rho\rightarrow\Pi_{\rho}$ is the classical Kirillov’s map from $\mathcal{G}^{*}$ onto $\hat{G}$ (the
set of equivalence classes of irreducible representations of the simply
connected Lie group associated to $\mathcal{G}$ , $G:=\exp \mathcal{G}$ ) and $G$ acts on $\mathcal{G}^{*}$ by
the coadjoint map.

Proof of Proposition 6.1. Let us first observe that the different
operators appearing in formula (6.13) $P_{A_{z},V_{z}}$ and $\Pi_{\rho}(-\triangle)$ are essentially
selfadjoint starting from respectively $S(\mathbb{R}^{n})$ and $S_{\Pi_{\rho}}$ , the space of $C^{\infty}-$

vectors of the representation. Proposition 2.21 of Chapter $II$ in [24] gives
immediately the following equivalences for $\lambda\in \mathbb{R}$ and $C>0$

(6.14) $||(P_{A_{z},V_{z}}-\lambda)u||\geq C^{-1}||u||$ , $\forall u\in C_{0}^{\infty}(\mathbb{R}^{n})$

(6.15) $||(\square _{\rho}(-\triangle-\lambda)f||_{H_{\mathring{\Pi}}}\rho\geq C^{-1}||f||_{H_{\mathring{\Pi}}}\rho$ ,

$\forall f\in S_{(\Pi_{\rho})}$ and $\forall\rho\in\overline{\Lambda(\ell_{z},H)}$

where $H_{\Pi_{\rho}}^{0}$ is the space of the representation $\Pi_{\rho}$ .

We shall write $(6.14)_{\lambda,C}$ (resp. $(6.15)_{\lambda,C}$ ) in order to say that the
inequality (6.14) (resp. (6.15)) is satisfied for specific constants $(\lambda, C)$ .
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This equivalence between (6.14) and (6.15) implies immediately the
property

(6.16) $\sigma(P_{A_{z},V_{z}})=\overline{C}$

with

$C=(_{\rho\in(^{\frac{\cup}{\Lambda(\ell_{z},H}})}\sigma(\square _{\rho}(-\triangle)))$ ,

and the way to go from (6.16) to the stronger (6.13) is of the same type
as the object of Theorem 2.8.

Proof of (6.13). Let us assume that for some $\lambda\in \mathbb{R}$ , we have the
following property

$\forall\rho\in\Gamma_{z}=\overline{\Lambda(\ell_{z},7\{)}$ , $\exists C_{\rho}>0$

$s.t$ . $(6.15)_{\lambda,c}$ is satisfied with $C=C_{\rho}$ .

We wish to show $(6.15)_{\lambda,c}$ with $C$ independent of $\rho\in\Gamma_{z}$ . This
problem is quite analogous to the problems solved in [24]. The only new
point is that $\Gamma_{z}$ is closed and invariant by $G$ but not stable by dilation.
We refer to [19] which is more adapted to our problem. A first important
remark coming from the hypoellipticity of $\triangle$ in $G$ is the existence of a
constant $D>0s.t$ .

(6.17) $||u||_{H_{\pi p_{z}\mu}^{2}}^{2},\leq D(||P_{A_{z},V_{z}}u||^{2}+||u||^{2})$ , $\forall u\in S(\mathbb{R}^{n})$ ,

and (cf. Proposition 2.2.1, Chapter $II$ in [24]),

(6.18) $||f||_{H_{\pi_{\rho}}^{2}}^{2}\leq D(||\square _{\rho}(-\triangle)f||_{H_{\pi_{\rho}}^{0}}^{2}+||f||_{H_{\pi_{\rho}}^{0}}^{2})$ , $\forall f\in S_{\Pi_{\rho}}$ .

where $H_{\pi}^{m}$ (for $m\in \mathbb{N}$ and $\pi$ a representation) is the space of the $u\in H_{\pi}^{0}$

$s.t$ . $\pi(Y)^{\alpha}u\in H_{\pi}^{0}$ , for $|\alpha|\leq m$ , with the natural Hilbertian norm. (6.18)
shows that the problem to prove $(6.15)_{\lambda,C}$ with $C$ independent of $\rho$ is
equivalent to the apparently stronger result (but more stable):

Property $P_{1}$ . Let us assume that, for all $\rho\in\Gamma_{z}$ , there exists
$C_{\rho}>0$ s.t.

(6.19)

$(||(\square _{\rho})(-\triangle)-\lambda)f||_{H_{\mathring{\pi}_{\rho}}}^{2}\leq C^{-1}||f||_{H_{\mathring{\pi}_{\rho}}}^{2}$ , $\forall f\in S_{\Pi_{\rho}}$ with $C=C_{\rho}$ ,
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then there exists $C>0s.t$ . (6.19)c is satisfied for all $\rho\in\Gamma_{z}$ .

On the same way, Proposition 6.1 results of the following stronger
property:

Property $P_{2}$ . Let us assume that, for all $z\in B_{\infty}$ and for all
$\rho\in\Gamma_{z}$ there exists $C_{\rho,z}>0s.t$ . $(6.19)_{C}$ is satisfied with $C=C_{\rho,z}$ , then

there exists $C>0s.t$ . (6.19)c is satisfied for all $z\in B_{\infty}$ and $\rho\in\Gamma_{z}$ .

Here we introduce as a new subset of $\mathcal{G}^{*}$

(6.20)
$\Gamma=z\in B_{\infty}\cup\Gamma_{z}$

whose properties are given in the following:

Proposition 6.2. $\ell\in\Gamma$ if and only if there exists $z\in B_{\infty}s.t$ .:
$\ell/(\mathcal{G}^{2}\oplus \mathcal{G}_{1}’’)=\ell_{z}/(\mathcal{G}^{2}\oplus \mathcal{G}_{1}’’)$ where $\ell_{z}$ is defined in (6.9-6.11). Moreover
$\Gamma$ is closed in $\mathcal{G}^{*}$ and stable by the action of $G$ .

Proof of Proposition 6.2. We can define $\Gamma$ on the following way
which is quite similar to Definition 2.4 in chapter I of [24]

$\ell\in\Gamma=\exists((x_{q}, \xi_{q})_{q\in \mathbb{N}}$

$s.t$ . $|x_{q}|+|\xi_{q}|\rightarrow\infty$ as $ q\rightarrow\infty$ and $\ell=\lim_{q\rightarrow\infty}\lambda_{x_{q}}^{*}\xi_{q}$

where $\lambda$ is the partial homomorphism of rank $s$ introduced in (6.6):
$(\lambda_{x,\xi}^{*})(Z):=i^{-1}\sigma(\lambda(Z))(x, \xi)$ ,

$\forall Z\in \mathcal{G}$

(If $X$ is a vector field, $\sigma(X)$ is by definition the symbol of the corre-
sponding differential operator). The proof that $\Gamma$ is closed is the same
as in [24] (Corollary 2.4, Section 2, Chapter $IV$). We observe that if

$\ell=\lim_{q\rightarrow\infty}\lambda_{x_{q}}^{*}\xi_{q}$

then, for $(y, \eta)\in \mathbb{R}^{2n}$ ,

$\ell_{y,\eta}=\lim_{q\rightarrow\infty}\lambda_{x_{q}}^{*}(\xi_{q}+\eta)$

is well defined in $\Gamma$ and that we have

$\ell_{(y,\eta)}/(\mathcal{G}_{1}’’\oplus \mathcal{G}^{2})=(\exp(y\cdot Y’))\cdot\ell/(\mathcal{G}_{1}’’\oplus \mathcal{G}^{2})$ .
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As $(y, \eta)$ varies in $\mathbb{R}^{2n}$ , we verify that $\ell_{(y,\eta)}$ describes the orbit of $\ell$ ,
which proves the stability of $\Gamma$ by the action of $G$ .

Proof of $P_{2}$ (the proof of $P_{1}$ is similar). Let us assume that for
each $\rho\in\Gamma$ , we have $(6.19)_{C_{\rho}}$ with $C_{\rho}>0$ . In order to come back to a

more homogeneous situation, we introduce a new Lie algebra $\hat{\mathcal{G}}$

(6.21) $\hat{\mathcal{G}}=\mathcal{G}\oplus \mathbb{R}\cdot Z$ ,

where the law (and the graduation) for $\hat{\mathcal{G}}$ is deduced from $\mathcal{G}$ ’s law by
imposing

(6.22) $\hat{\mathcal{G}}_{1}=\mathcal{G}_{1}\oplus \mathbb{R}\cdot Z$

and

(6.23) $[\mathcal{G}, Z]=\{0\}$ .

Let us now introduce $\mathcal{P}_{\lambda}\in \mathcal{U}_{2}(\hat{\mathcal{G}})(\mathcal{U}(\hat{\mathcal{G}})$ is the enveloping algebra of $\hat{\mathcal{G}}$

and $\mathcal{U}_{2}(\hat{\mathcal{G}})$ is the subspace of the 2-homogeneous elements for the natural
dilation)

(6.24) $P_{\lambda}=-\triangle+\lambda\cdot Z^{2}$ .

We associate to $\Gamma$ the set $\hat{\Gamma}$ defined by

(6.25) $\hat{\Gamma}=$ { $\rho\wedge\in\hat{\mathcal{G}}^{*};$
$\hat{\rho}=(\rho,$ $\zeta)$ , $\rho\in\Gamma$ and $\zeta=1$ }.

It is clear that $\hat{\Gamma}$ is closed in $\hat{\mathcal{G}}^{*},\hat{G}$-stable and that there is a natural
identification

(6.26) $\square _{\rho}(-\triangle)-\lambda=\square _{\hat{\rho}}(P_{\lambda})$ .

Consequently, we have

$\forall\hat{\rho}\in\hat{\Gamma}$ , $\exists C_{\hat{\rho}}=C_{\rho}>0$

$s.t$ .

(6.27) $||\square _{\hat{\rho}}(P_{\lambda})f||_{H_{\mathring{\pi}_{\hat{\rho}}}}^{2}\geq C^{-1}||f||_{H_{\mathring{\pi}_{\hat{\rho}}}}^{2}$ , $\forall f\in S_{\Pi_{\hat{\rho}}}$

with
$C=C_{\hat{\rho}}$ .

Unfortunately, we can not directly apply the statements of [24] but
the proof of Theorem 4.7 as sketched in [19] can be adapted in our
context by modifying the assumptions on the following way:
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Theorem 6.3. Let $\mathcal{G}$ be a graded Lie algebra of rank $s$ and $\Gamma a$

closed $G$ -stable subset in $\mathcal{G}^{*}$ . Let us assume moreover that: $[\mathcal{G}^{2}, \mathcal{G}^{2}]=0$

and that $\mathcal{G}_{1}$ generates $\mathcal{G}$ . Let $P$ $\in \mathcal{U}_{m}(\mathcal{G})$ and let us assume that

(H1) $\forall\rho\in\Gamma$ , $\exists C_{\rho}>0s.t$ . $||f||_{H_{\pi_{\rho}}^{m}}^{2}\leq C_{\rho}||\Pi_{\rho}(P)f||_{H_{\mathring{\pi}_{\rho}}}^{2}$ , $\forall f\in S_{\Pi_{\rho}}$

(H2)
$\exists\hat{C}>0s.t\forall\rho\in\Gamma$ , $||f||_{H_{\pi_{\rho}}^{m}}^{2}\leq\hat{C}[||\Pi_{\rho}(P)f||_{H_{\mathring{\pi}_{\rho}}}^{2}+||f||_{H_{\pi_{\rho}}^{0}}^{2}]$ , $\forall f\in S_{\Pi_{\rho}}$

(H3) $\inf_{(g,\rho)\in G\times\Gamma}|g\cdot\rho|\geq(1/2)$ .

Then there exists $C>0s.t$ . $/or$ all $\rho\in\Gamma$ we have:

(6.28) $||f||_{H_{\pi_{\rho}}^{m}}^{2}\leq C||\square _{\rho}(P)f||_{H_{\mathring{\pi}_{\rho}}}^{2}$ $\forall f\in S_{\Pi_{\rho}}$

It is easy to see, using (6.18) and (6.19), Proposition 6.2 and the
property $|g\cdot\hat{\rho}|\geq|\zeta|=1$ , that all the assumptions of Theorem 6.3 are

satisfied with $\mathcal{G}=\hat{\mathcal{G}}$ , $\Gamma=\hat{\Gamma}$ and $P$ $=P_{\lambda}\in \mathcal{U}_{2}(\hat{\mathcal{G}})$ . (6.28) will give
Property $(P_{2})$ .

Indications on the proof of Theorem 6.3. We follow closely the
sketch given in [19] p.228 (proof of Theorem 4.7). Let us mention that
J. Nourrigat [50] has improved this theorem, but it is sufficient to use
the above theorem in our context. If we compare with Theorem 4.7 in
[19], we do not make a proof by induction nor a restriction to $|\ell_{s}|=1$ .
Assumption (H2) replaces (4.21) and (H3) replaces (4.22) in [19]. Mod-
ulo these modifications the proof is the same (in this article $s=r$ ). We
introduce for $j=1$ , $\ldots$ , $s$ and $(\ell_{1}, \ldots,\ell_{s})$ the set

$\Gamma^{j}(\ell_{1}, \ldots, \ell_{s})=$ { $\ell\wedge\in\Gamma$ , $\exists g\in G$ with $g\cdot\hat{\ell}/\mathcal{G}^{j}=(\ell_{j},$
$\ldots$ , $\ell_{s})$ }

where $\mathcal{G}^{j}=\mathcal{G}_{j}\oplus\cdots\oplus \mathcal{G}_{s}$ . Note that $(\Gamma^{s+1}=\Gamma)$ and that $\Gamma^{j}(\ell_{j}, \ldots, \ell_{s})$

is just the orbit of $\ell\in\Gamma$ if $\ell\in\Gamma$ and $\emptyset$ if $\ell\not\in\Gamma$ .

Lemma 6.4. Let us assume (H2), (H3) and the following prop-

erty: For all $(\ell_{j}, \ldots, \ell_{s})\in \mathcal{G}_{j}^{*}\times\cdots\times \mathcal{G}_{s}^{*}$ , $\exists C(\ell_{j}, \ldots, \ell_{s})s.t$ . $\forall\tilde{\ell}\in$

$\Gamma^{j}(\ell_{j}, \ldots, \ell_{s})$ ,

$(Q_{j})$
$||f||_{H_{\pi}^{m_{\overline{\ell}}}}^{2}\leq C(\ell_{j, }\ldots, \ell_{s})||\Pi_{\overline{\ell}}(P)f||_{H_{\mathring{\pi}_{\overline{\ell}}}}^{2}$

$\forall f\in S_{\Pi_{\overline{\ell}}}$ ,
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then we have Property $(Q_{(j+1)})$ .

Note now that $(Q_{1})=(H1)$ and that $(Q_{(s+1)})$ is the conclusion of
the theorem. According to the remarks before the lemma, the proof
of Lemma 6.4 is almost identical to the proof of Lemma 4.10 in [19]
by observing that the assumptions of Theorem 4.9 in [19] are satisfied
( $|\ell_{s}|=1$ is no more true but (H3) replaces this assumption). This ends
the proof of Theorem 6.3.
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$H^{1}$-Blow up Solutions for
Peker-Choquard Type Schr\"odinger Equations

Hitoshi Hirata

\S 1. Introduction and the main results

In this paper, we study the $H^{1}$ -solution for the following nonlinear
Schr\"odinger equation

(1-1) $\{$

$i\partial_{t}u=-\Delta_{x}u-(r^{-\gamma}*|u|^{2})u$

$u(0, x)=u_{0}(x)\in H^{1}(R^{N})$

where $r=|x|$ and $2\leq\gamma<4$ , $\gamma\leq N-1$ , and show a sufficient condi-
tion of ‘ $H^{1}$ -blowing up’. Here we say that $u$ is an $H^{1}-$ local solution of
(1-1) when for some $T>0$ , $u\in C([0, T);H^{1})$ and satisfies next integral
equation

(1-2) $u(t)=U(t)u_{0}-i\int_{0}^{t}U(t-s)\{(r^{-\gamma}*|u^{2}|)u\}(s)ds$ ,

where $U(t)=\exp(it\Delta_{x})$ is the evolution operator for the free Schr\"odinger
equation. Above type nonlinear Schr\"odinger equation is appeared in
some approximations of many body problems, so-called Hartree approx-
imation. As for detailed arguments of this approximation, see e.g. [5],
[6] and [7].

Before stating the main results, we define several notations. For
$p\in[1, \infty]$ and $k\in\overline{N}$ , we define Sobolev space

$W^{k,p}\equiv\{f\in S^{\prime }||f||_{W^{k,p}}\equiv\sum_{|\alpha|\leq k}||\partial_{x}^{\alpha}f||_{p}<\infty\}$
,

where $||$ . $||_{p}$ is usual $L^{p_{-}}$norm. $H^{k}\equiv W^{k,2}$ and $H^{-k}\equiv(H^{k})^{*}$ . For an

interval I and a Banach space $X$ , $C^{k}(I;X)$ is the space of $X$-valued $C^{k}-$

functions on $I$ , $ k=0,1,2\ldots$ and $L^{p}(I;X)$ is the space of $L^{p}$ functions
We say $u\in L_{1oc}^{p}(I;X)$ if $u\in L^{p}(J;X)$ for any compact $J\subset I$ .

Received January 5, 1993.
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For the existence of $H^{1}-$local solution of (1-1) and (1-2), we have
obtained following theorem, (e.g. [2] , [3])

Theorem 0. Let $2\leq\gamma\leq 4$ , $\gamma<N$ and $u_{0}\in H^{1}$ . Then, there
exist $T^{*}>0$ and $u\in C([0, T^{*});H^{1})$ , which satisfies (1-2), and has
following properties $(1)\sim(4)$ .

(1) $u$ is unique solution of (1-2) in $L_{1oc}^{\theta}(0, T^{*} ; W^{1,p})$ , where $1/p=$

$1/2-(\gamma-2)/4N$ and $\theta=8/(\gamma-2)$ .

(2) $u$ satisfies following conservation laws.

(1-3) $||u(t)||_{2}=||u_{0}||_{2}$ ,

(1-4) $E(u(t))\equiv||\nabla_{x}u(t)||_{2}^{2}-1/2(|u(t)|^{2}, r^{-\gamma}*|u(t)|^{2})=E(u_{0})$ ,

for $t$ $\in[0, T^{*})$ . Here $(\cdot, \cdot)$ is $L^{2}-$dual coupling.
(3) If $2\leq\gamma<4$ and $ T^{*}<\infty$ , then $||\nabla_{x}u(t)||_{2}\rightarrow\infty$ as $t$ $\rightarrow T^{*}$ .
(4) $u$ satisfies (1-1) in $H^{-1}$ sense.

Remark. (1) If $u$ satisfies $||u(t)||_{2}\rightarrow\infty$ as $t$ $\rightarrow T^{*}$ for some $T^{*}<$

$\infty$ , we say $u$ blows up at blow up time $T^{*}$ .

(2) The assumption $ 2\leq\gamma$ is not essential. Since the space in which
$u$ is unique becomes simple, we state this assumption. On the other
hand, the assumption $ 4\geq\gamma$ is essential for the existence of $H^{1}-$ local
solution.

On the blow up of $H^{1}$ -solutions, $ 2\leq\gamma$ is a necessary condition,
i.e. when $0\leq\gamma<2$ , the $H^{1}$ -solution with any initial data $u_{0}\in H^{1}$

is global. On the other hand, it is well-known that when $ 2\leq\gamma$ , $ u_{0}\in$

$H^{1}\cap L^{2}(R^{N}; |x|^{2}dx)$ and $E(u_{0})<0$ , the $H^{1}$ -solution of (1-1) blows up
in finite time (e.g. [1]). K. Kurata and T. Ogawa ([4]) dealt with more
complicated potential $-(r^{-\gamma 1}*|u|^{2})u-(r^{-\gamma 2}*|u|^{2})u$ , and showed there
exists a blow up solution under the assumption $\gamma_{1}<2<\gamma_{2}<4$ and
$\gamma_{2}<N-1$ . Recently, in the local nonlinear case, i.e. $-|u|^{p-1}u$ instead
$of-(r^{-\gamma}*|u|^{2})u$ , T. Ogawa and Y. Tsutsumi ([8]) showed that for any
radially symmetric $H^{1}$ initial data $u_{0}$ , the $H^{1}$ -solution of corresponding
equation blows up in finite time. We shall prove that we can use their
methods in the non-local nonlinear case in this paper. Our main result
is following.

Theorem 1. Let $2\leq\gamma<4$ and $\gamma+1\leq N$ . Suppose that $u_{0}$ be
radially symmetric in $H^{1}(R^{N})$ and $E(u_{0})<0$ . Then the $H^{1}$ -solution $u$

blows up in finite time.

Remark. (1) Since $u_{0}$ is unique in $L_{1oc}^{\theta}(0, T^{*} ; W^{1,p})$ and the equa-
tion is symmetric by spatial rotation, $u$ is also radially symmetric.
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(2) Since $E(K\phi)=K^{2}||\nabla_{x}\phi||_{2}^{2}-K^{4}/2\cdot(|\phi|^{2}, r^{-\gamma}*|\phi|^{2})$ for any
$\phi\in H^{1}$ and $K>0$ , $E(u_{0})<0$ is attained by some $u_{0}\in H^{1}$ . This
observation shows the assumption $E(u_{0})<0$ means $‘ u_{0}$ is not small’.

\S 2. General lemmas

In this chapter, we state two well-known lemmas which hold in $H^{1}$ .

The first one is so-called Gagliardo-Nirenberg’s inequality.

Lemma 2-1. Let $u\in H^{1}(R^{N})$ and $N\geq 3$ . Then, there exists $a$

constant $C$ such that

(2-1) $||u||_{p}\leq C||\nabla_{x}u||_{2}^{a}||u||_{2}^{1-a}$ ,

where $1/p=1/2-a/N$ .

The second one holds on radially symmetric functions.

Lemma 2-2 (Strauss[9]). Let $u$ be a radially symmetric function
in $H^{1}(R^{N})$ . Then, there exists a constant $C$ such that for any $R>0$

and $p\in[2, \infty]$ ,

(2-2) $||u||_{L^{p}(R<|x|)}\leq CR^{-(1/2-1/p)(N-1)}||u||_{L^{2}(R<|x|)}^{1/2+1/p}||\nabla_{x}u||_{L^{2}(R<|x|)}^{1/2-1/p}$ .

\S 3. Proof of Theorem 1

Choose $\phi\in W^{3,\infty}([0, \infty))$ such that

(3-1) $\phi(r)=\{$

$r$ for $0\leq r\leq 1$ ,

$r-(r-1)^{3}$ for $1\leq r\leq 1+\sqrt{3}/3$ ,

smooth and $\phi’\leq 0$ for $1+\sqrt{3}/3\leq r\leq 2$ ,

0 for $2\leq r$ ,

and put

$\phi_{m}(r)=m\cdot\phi(r/m)$ ,

$\psi_{m}(x)=x/|x|\cdot\phi_{m}(|x|)$ .

Remark that if we put $\Phi(r)=\int_{0}^{r}\phi_{m}(s)ds$ , $\Phi\in L^{\infty}(R^{N})$ and $\nabla_{x}\Phi=$

$\psi_{m}$ . We also obtain next lemma.
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Lemma 3-1. Let $u$ be the $H^{1}$ -solution of (1-1). Then,
(3-2)

$s^{\propto}\int u_{0}\psi_{m}\cdot\nabla_{x}\overline{u_{0}}dx-\propto s\int u(t)\psi_{m}\cdot\nabla_{x}\overline{u(t)}dx$

$=\int_{0}^{t}[2\Re\sum_{j,k}\int\partial_{j}(\psi_{m})_{k}\partial_{j}u(\tau)\partial_{k}\overline{u(\tau)}dx$

-1/2 $\int\Delta_{x}(\nabla_{x}\cdot\psi_{m})\cdot|u(\tau)|^{2}$ , $dx+\gamma E(u_{0})-\gamma||\nabla_{x}u(\tau)||_{2}^{2}$

$+\gamma/2\int\int_{|x|\vee|y|\geq m}a(x, y)|x-y|^{-\gamma-2}|u(\tau, x)|^{2}|u(\tau, y)|^{2}dxdy]d\tau$

for all $t$ $\in[0, T^{*})$ ,

where $s^{\propto}and$ $\Re$ mean imaginary and real parts respectively, $(\psi_{m})_{k}$ is $k^{th}$

component of $\psi_{m}$ and

(3-3) $a(x, y)=|x-y|^{2}-(\psi_{m}(x)-\psi_{m}(y))\cdot(x-y)$ .

Now, remarking that $u$ is radially symmetric, we have

(3-4)

$2\Re\sum_{j,k}\int\partial_{j}(\psi_{m})_{k}\partial_{j}u\partial_{k}\overline{u}dx$

$=2\int_{|x|\leq m}|\nabla_{x}u|^{2}dx+2\int_{m\leq|x|\leq 2m}\phi_{m}’|\nabla_{x}u|^{2}dx$ .

And, simple calculation shows that there exists a constant $C$ such that

(3-5) $|\Delta_{x}(\nabla_{x}\cdot\psi_{m}(x))|$ $\{$

$\leq Cm^{-2}$ for $m\leq|x|\leq 2m$ ,

$=0$ for otherwise.

The next lemma is the key estimate to obtain our result.

Lemma 3-2. Let $0<\alpha<1$ and $m>>1$ . For $|x|\vee|y|\geq m$ and
$|x-y|\leq m^{\alpha}$ , there exists a constant $C$ , which is independent of $x$ , $y$ and
$m$ , such that

(3-6) $a(x, y)\leq C(b(|x|)+b(|y|))|x-y|^{2}$ .

Here

(3-7) $b(r)=\{$

0

$1-\phi_{m}’(r)$

1

for $r\leq m$ ,

for $m\leq r\leq 2m$ ,

for $2m\leq r$ .
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Using this lemma, we obtain

(3-8)

$\int\int_{|x|\vee|y|\geq m,|x-y|\leq m^{\alpha}}a(x, y)|x-y|^{-\gamma-2}|u(x)|^{2}|u(y)|^{2}dxdy$

$\leq C\int\int_{|x|\vee|y|\geq m,|x-y|\leq m^{\alpha}}(b(|x|)+b(|y|))|x-y|^{-\gamma}|u(x)|^{2}|u(y)|^{2}dxdy$

$\leq 2C\int_{|x|\geq m}b(r)|u(x)|^{2}(\{\chi(\{r\leq m^{\alpha}\})\cdot r^{-\gamma}\}*|u|^{2})(x)dx$

$\leq 2C||b^{1/2}(r)u(x)||_{L^{\infty}(|x|\geq m)}^{2}||\chi(\{r\leq m^{\alpha}\})\cdot r^{-\gamma}||_{1}\cdot||u_{0}||_{2}^{2}$

(by H\"older’s and Young’s inequalities)

$\leq Cm^{-(N-1)}||\nabla_{x}\{b^{1/2}(r)u(x)\}||_{L^{2}(|x|\geq m)}^{2}\cdot m^{\alpha(N-\gamma)}||u_{0}||_{2}^{2}$

(by Lemma 2-2)

$\leq Cm^{\alpha(N-\gamma)-(N-1)}||u_{0}||_{2}^{2}\int b(r)|\nabla_{x}u(x)|^{2}dx+Cm^{\alpha(N-\gamma)-(N-1)}||u_{0}||_{2}^{4}$ .

Here we used $L^{2}$ -conservation law (1-3) and defined

$\chi(A)(x)=\{$
1 $x\in A$ ,

0 $x\not\in A$ .

On the other hand, since $|(\psi_{m}(x)-\psi_{m}(y))\cdot(x-y)|\leq||\psi_{m}’||_{\infty}|x-y|^{2}$ ,
we get

$\int\int_{|x|\vee|y|\geq m,|x-y|\geq m^{\alpha}}a(x, y)|x-y|^{-\gamma-2}|u(x)|^{2}|u(y)|^{2}dxdy$

$(3- 9)$

$\leq C\int\int_{|x|\vee|y|\geq m,|x-y|\geq m^{\alpha}}|x-y|^{-\gamma}|u(x)|^{2}|u(y)|^{2}dxdy$

$\leq Cm^{-\gamma\alpha}||u_{0}||_{2}^{4}$ .
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After all, by (3-2),(3-4),(3-8) and (3-9), we have

$s^{\propto}\int u_{0}\psi_{m}$ . $\nabla_{x}\overline{u_{0}}dx-\propto s\int u(t)\psi_{m}\cdot\nabla_{x}\overline{u(t)}dx$

$\leq\int_{0}^{t}[\gamma E(u_{0})-(\gamma-2)||\nabla_{x}u(\tau)||_{2}^{2}$

(3-11)
-2 $\int b(r)|\nabla_{x}u(\tau)|^{2}dx-Cm^{-2}||u_{0}||_{2}^{2}$

$+C(m^{-\gamma\alpha}+m^{\alpha(N-\gamma)-(N-1)})||u_{0}||_{2}^{4}$

$+Cm^{\alpha(N-\gamma)-(N-1)}||u_{0}||_{2}^{2}\int b(r)|\nabla_{x}u(\tau)|^{2}dx]d\tau$ .

Thus, if we take sufficiently large $m$ such that

$\gamma E(u_{0})+C(m^{-\gamma\alpha}+m^{\alpha(N-\gamma)-(N-1)})||u_{0}||_{2}^{4}\equiv-\eta<0$ ,

and
$Cm^{\alpha(N-\gamma)-(N-1)}||u_{0}||_{2}^{2}-2\leq 0$ ,

we obtain

(3-11) $s^{\propto}\int u_{0}\psi_{m}$ . $\nabla_{x}\overline{u_{0}}dx-\propto s\int u(t)\psi_{m}\cdot\nabla_{x}\overline{u(t)}dx\geq\eta t$ .

Since

$d/dt(\int\Psi|u(t)|^{2}dx)=-2\propto s\int u(t)\psi_{m}\cdot\nabla_{x}\overline{u(t)}dx$ ,

integrating the both hands of (3-12), we deduce that

$\int\Psi|u(t)|^{2}dx\leq-\eta t^{2}-2t\propto s\int u_{0}\psi_{m}\cdot\nabla_{x}\overline{u_{0}}dx$

(3-12)

$+\int\Psi|u_{0}|^{2}dx$ for all $t\in[0, T^{*})$ .

Now, we assume $u$ is a global solution. Then, (3-12) is satisfied for
any $t$ $<\infty$ and the r.h.s. of (3-12) is negative for sufficiently large $t$ .

This is contradiction since the l.h.s. of (3-12) is non-negative. Thus,
$u$ is not global solution and $ T<\infty$ . Using Theorem 0.(3), we obtain
$||\nabla_{x}u(t)||_{2}\rightarrow\infty$ as $t$ $\rightarrow T^{*}$ . This means our desired result.

\S 4. The proofs of lemmas

Proof of Lemma 3-1. We first assume $u_{0}\in H^{2}$ . Under this as-
sumption, the solution $u$ belongs to $C([0, T^{*});H^{2})\cap C^{1}([0, T^{*});L^{2})$ and
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satisfies (1-1) in $L^{2}$ -sense (see e.g. [2]). Note that the maximum ex-
istence time $T^{*}$ is the same as that of the $H^{1}$ -solution. We take the
real part of $L^{2}-$inner product between (1-1) and $\psi_{m}\cdot\nabla_{x}u$ . Here, using
equality (1-1) and integrating by parts, we have

$2\Re(i\partial_{t}u, \psi_{m}\cdot\nabla_{x}u)$

$=i\int\partial_{t}u\psi_{m}\cdot\nabla_{x}\overline{u}$dx-i $\int\psi_{m}\cdot\nabla_{x}u\partial_{t}\overline{u}dx$

(4-1)
$=id/dt\int u\psi_{m}\cdot\nabla_{x}\overline{u}dx+\int\nabla_{x}\cdot\psi_{m}|u|^{2}(r^{-\gamma}*|u|^{2})dx$

$-\int\nabla_{x}\cdot\psi_{m}|\nabla_{x}u|^{2}dx+1/2\int\Delta_{x}(\nabla_{x}\cdot\psi_{m})|u|^{2}dx$ ,

$2\Re(-\Delta_{x}u, \psi_{m}\cdot\nabla_{x}u)$

(4-2)
$=2\Re\sum_{j,k}\int\partial_{j}(\psi_{m})_{k}\partial_{j}u\partial_{k}\overline{u}dx-\int\nabla_{x}\cdot\psi_{m}|\nabla_{x}u|^{2}dx$ ,

and

$2\Re(u(r^{-\gamma}*|u|^{2}), \psi_{m}\cdot\nabla_{x}\overline{u})$

(4-3)

$=\int(\nabla_{x}\cdot\psi_{m})|u|^{2}(r^{-\gamma}*|u|^{2})dx+\int|u|^{2}\psi_{m}\cdot\nabla_{x}(r^{-\gamma}*|u|^{2})dx$ .

Here, since

1/2 $\int|u(x)|^{2}\psi_{m}(x)\cdot\nabla_{x}(\int|x-y|^{-\gamma}|u(y)|^{2}dy)dx$

$=1/2\int|u(x)|^{2}\{\nabla_{x}(\int\psi_{m}(x)|x-y|^{-\gamma}|u(y)|^{2}dy)$

$-(\nabla_{x}\psi_{m})(x)\cdot\int|x-y|^{-\gamma}|u(y)|^{2}dy\}dx$

$=1/2\int|u(x)|^{2}\nabla_{x}\cdot[\int\{(\psi_{m}(x)-\psi_{m}(y))|x-y|^{-\gamma}|u(y)|^{2}$

$+|x-y|^{-\gamma}\psi_{m}(y)|u(y)|^{2}\}dy]dx$

-1/2 $\int(\nabla_{x}\cdot\psi_{m})(x)|u(x)|^{2}(\int|x-y|^{-\gamma}|u(y)|^{2}dy)dx$

$=-1/2\int\nabla_{x}|u(x)|^{2}\cdot(\int\psi_{m}(y)|x-y|^{-\gamma}|u(y)|^{2}dy)dx$
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+1/2 $\int|u(x)|^{2}[\int\nabla_{x}\cdot\{(\psi_{m}(x)-\psi_{m}(y))|x-y|^{-\gamma}\}|u(y)|^{2}dy]dx$

-1/2 $\int(\nabla_{x}\cdot\psi_{m})(x)|u(x)|^{2}(\int|x-y|^{-\gamma}|u(y)|^{2}dy)dx$

$=-1/2\int|u(y)|^{2}\psi_{m}(y)\cdot(\int\nabla_{x}|u(x)|^{2}|x-y|^{-\gamma}dx)dy$

+1/2 $\int|u(x)|^{2}\{\int(\psi_{m}(x)-\psi_{m}(y))\cdot(\nabla r^{-\gamma})(x-y)|u(y)|^{2}dy\}dx$

$=-1/2\int|u(x)|^{2}\psi_{m}(x)\cdot\nabla_{x}(r^{-\gamma}*|u|^{2})(x)dx$

$-\gamma/2\int|u(x)|^{2}\{\int(\psi_{m}(x)-\psi_{m}(y))\cdot(x-y)|x-y|^{-\gamma-2}|u(y)^{2}dy\}dx$ ,

the second term of r.h.s. of (4-3) is equal to

$-\gamma/2\int\int|u(x)|^{2}(a(x, y)|x-y|^{-\gamma-2}-|x-y|^{-\gamma})|u(y)|^{2}dydx$ .

Thus, by (4-1)\sim (4-3), we get

$id/dt$ $\int u\psi_{m}\cdot\nabla_{x}\overline{u}dx+1/2\int\Delta_{x}(\nabla_{x}\cdot\psi_{m})|u|^{2}dx$

$=2\Re\sum_{j,k}\int\partial_{j}(\psi_{m})_{k}\partial_{j}u\partial_{k}\overline{u}dx$

$+\gamma/2\int\int|u(x)|^{2}a(x, y)|x-y|^{-\gamma-2}|u(y)|^{2}dydx$

$-\gamma/2\int|u|^{2}(r^{-\gamma}*|u|^{2})dx$ .

Taking real part of b.h.s. and using the definition of energy (1-4), we
obtain

$-d/dts\propto\int u\psi_{m}\cdot\nabla_{x}\overline{u}dx$

(4-4)
$=2\Re\sum_{j,k}\int\partial_{j}(\psi_{m})_{k}\partial_{j}u\partial_{k}\overline{u}dx-1/2\int\Delta_{x}(\nabla_{x}\cdot\psi_{m})|u|^{2}dx$

$+\gamma E(u_{0})-\gamma||\nabla_{x}u||_{2}^{2}$

$+\gamma/2\int\int|u(x)|^{2}a(x, y)|x-y|^{-\gamma-2}|u(y)|^{2}dydx$ .

Thus, integrating (4-4) over $[0, T^{*})$ by $t$ , we obtain (3-3).
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For the case of $u_{0}\in H^{1}$ , we take $\{u0,\iota\}\subset H^{2}$ such that $u_{0,l}\rightarrow u_{0}$

in $H^{1}$ as $l$
$\rightarrow\infty$ . For each $u_{0,l}$ , we can construct strong solutions $u_{l}(t)$

of (1-1) in a certain common time interval $[0, T]$ , and $\{u_{l}(t)\}$ converges
to the $H^{1}$ -solution $u(t)$ in $H^{1}$ uniformly. (See [2].) Thus, we obtain
(3-2) on $[0, T]$ . Since $T$ is depend only on $||u_{0}||_{H^{1}}$ , we can repeat this
procedure, and we obtain (3-2) as long as $u(t)$ exists. Q.E.D.

Proof of Lemma 3-2. It suffices to consider on $x$ , $y2$-dimensional
plain, then let $x=(r\cos\theta, r\sin\theta)$ and $y=(\rho, 0)$ . By taking $m$ suf-
ficiently large and using renormalization, we can assume $m=1$ and
$\theta<<1$ . For the case of $1\leq r$ , $\rho\leq 1+\sqrt{3}/3$ , we calculate

$|x-y|^{2}-(\phi(x)-\phi(y))\cdot(x-y)$

$=(r-\rho)\{(r-\phi(r))-(\rho-\phi(\rho))\}$

$+(1-\cos\theta)\{r(\rho-\phi(\rho))+\rho(r-\phi(r))\}$

$=(r-\rho)\{(r-1)^{3}-(\rho-1)^{3}\}+(1-\cos\theta)\{r(\rho-1)^{3}+\rho(r-1)^{3}\}$

$=(r-\rho)^{2}\{(r-1)^{2}+(r-1)(\rho-1)+(\rho-1)^{2}\}$

$+(1-\cos\theta)\{r(\rho-1)^{3}+\rho(r-1)^{3}\}$ .

Since $b(r)=3(r-1)^{2}$ on $1\leq r\leq 1+\sqrt{3}/3$ , it suffices to show that there
exists a constant $C$ , independent of $r$ and $\rho$ , such that

$(r-\rho)^{2}\{(r-1)^{2}+(r-1)(\rho-1)+(\rho-1)^{2}\}$

$+(1-\cos\theta)\{r(\rho-1)^{2}+\rho(r-1)^{2}\}$

$\leq C[(r-\rho)^{2}\{(r-1)^{2}+(\rho-1)^{2}\}$

$+2(1-\cos\theta)r\rho\{(r-1)^{2}+(\rho-1)^{2}\}]$ .

This is possible obviously since $1\leq r$ , $\rho$ . For the case of $r\wedge\rho<1$ , the
similar calculation shows the statement, and we omit the details.

Q.E.D.
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On Scattering by Two Degenerate Convex Bodies

Mitsuru Ikawa

\S 1. Introduction

Let $n$ be an odd integer $\geq 3$ , and let $\mathcal{O}$ be a bounded open set in
$\mathbb{R}^{n}$ such that

(1.1) $\Omega=\mathbb{R}^{n}-\overline{\mathcal{O}}$ is connected.

We assume that
$\Gamma=\partial \mathcal{O}$ is smooth.

Denote by $S(z)$ the scattering matrix for $\mathcal{O}$ . The scattering matrix
$S(z)$ is an $\mathcal{L}(L^{2}(S^{n-1}))$-valued holomorphic function defined in $\{z\in$

$\mathbb{C};Rez<0\}$ , where we denote by $\mathcal{L}(E)$ the space of all the bounded
operators from $E$ into itself. As a fundamental property of the scattering
matrix, it is shown in Lax-Phillips [7]:

Theorem 5.1 of Chapter V. The scattering matrix $S(z)$ is holo-
morphic on the real axis and meromorphic in the whole plane, having $a$

pole at exactly those points $z$ for which there is a nontrivial $z$ -outgoing
local solution of

$\{$

$(\triangle+z^{2})u=0$ in $\Omega$

$u=0$ on $\Gamma$ .

In the study of scattering by obstacles, the problem to know re-
lationships between the geometry of obstacles and the distribution of
poles of scattering matrices is one of the most interesting and important
problems. It is conjectured that the more rays of geometric optics are
trapped by $\mathcal{O}$ the more solutions of the wave equation are trapped by
$\mathcal{O}$ , and that the more solutions of the wave equation are trapped, the
nearer to the real axis it appears the poles of the scattering matrix.

Received April 1, 1993.
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Concerning this problem, Melrose [9] proved that, if $\mathcal{O}$ is nontrap-
ping in the sense of geometric optics, for any $a>0$ the logarithmic
domain

$\{z;Imz\leq a\log(|z|+1)\}$ has at most a finite number of poles of $S(z)$ .

For trapping obstacles, Bardos-Guillot-Ralston [1] considered the
following example:

$\mathcal{O}=\mathcal{O}_{1}\cup \mathcal{O}_{2}$

where

$\mathcal{O}_{l}$ , $l$ $=1,2$ are strictly convex and $\overline{\mathcal{O}_{1}}\cap\overline{\mathcal{O}_{1}}=\phi$ .

They showed that, for any $\epsilon>0$ , the logarithmic domain

$\{z;Imz\leq\epsilon\log(|z|+1)\}$ has an infinite number of poles of $S(z)$ .

Next Ikawa [3] considered the same example and showed the follow-
ing result: Set $d=distance(\mathcal{O}_{1}, \mathcal{O}_{2})$ , and let $A_{l}$ , $l$ $=1,2$ , be the point
on $\Gamma_{l}=\partial \mathcal{O}_{l}$ such that

$distance(\mathcal{O}_{1}, \mathcal{O}_{2})=|A_{1}-A_{2}|$ .

Then, there is a positive constant $c_{0}$ determined by $d$ and the geometry
of $\Gamma_{l}$ near $A_{l}$ $(l =1,2)$ such that, in the strip $\{z;0<Imz<\frac{2}{3}c_{0}\}$ the

poles of $S(z)$ distribute asymptotically at the points $\frac{\pi}{d}j+\sqrt{-1}c_{0}$ , $j=$

$0,$ $\pm 1,$ $\pm 2$ , $\cdots$ .

After that, G\’erard [2] proved that, for any $a>0$ , the poles of $S(z)$

in the strip $\{z;0<Imz<a\}$ distribute asymptotically on the points

$\frac{\pi}{d}j+\sqrt{-1}c_{m}$ , $j=0,$ $\pm 1,$ $\pm 2$ , $\cdots$ , $m=0,2$ , $\cdots$ , $m_{0}$

where
$0<c_{0}\leq c_{1}\leq c_{2}\leq\cdots\leq c_{m_{0}}<a$ .

The constants $c_{m}$ , $m\geq 1$ are also determined by $d$ and the geometry of
$\Gamma_{l}$ near $A_{l}$ , $l$ $=1,2$ .

The formula which gives $c_{m}$ indicates that, when all the principal
curvatures of $\Gamma_{l}$ at $A_{l}$ , $l$ $=1,2$ , become small, the constants $c_{m}$ become
also small, and when all the principal curvatures vanish at $A_{l}$ $(l =1,2)$ ,
all the $c_{m}$ determined by the formula are equal to 0.

This fact indicates us that, if all the principal curvatures vanish at
$A_{l}$ , $S(z)$ may have a sequence of of poles converging to the real axis.
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But the methods used in [3] and [2] are no more valid in the case where
all the principal curvatures vanish. We considered in [4] an example of
$\mathcal{O}=\mathcal{O}_{1}\cup \mathcal{O}_{2}$ in $\mathbb{R}^{3}$ such that the principal curvatures of $\Gamma_{l}$ vanish only
at $A_{l}$ of finite order, and showed that there exist an infinite number of
poles in a domain $\{z;Imz\leq|Rez|^{-\gamma}\}$ for some positive constant $\gamma$ .

The proof of this result is based on the $trace$ formula due to Bardos-
Guillot-Ralston [1]. On the other hand, as to the position of poles near
to the real axis, by taking account of the results of [3] and [2], it seems
very likely that the poles of $S(z)$ in the domain $\{z;Imz\leq|Rez|^{-\gamma}\}$

exist only near the points $\frac{\pi}{d}j$ , $j=\pm 1,$ $\pm 2$ , $\cdots$ . But it seems very difficult

to get more information on the distribution of poles by the means of the
$trace$ formula.

In this paper we shall consider an example of obstacle in $\mathbb{R}^{2}$ consist-
ing of two convex bodies, whose curvature vanishes of finite order at $A_{l}$ .
Precisely, let $\mathcal{O}_{1}$ be a bounded open set in $\mathbb{R}^{2}$ with smooth boundary $\Gamma_{1}$

such that

(1) $\mathcal{O}_{1}\subset\{x=(x_{1}, x_{2})\in \mathbb{R}^{2}; x_{2}<0\}$ ,
(2) $A_{1}=(0,0)\in\Gamma_{1}$ ,
(3) $\Gamma_{1}$ is represented near $A_{1}$ as

$x_{2}=-x_{1}^{2m}$

where $m$ is a positive integer $\geq 2$ ,
(4) the curvature of $\Gamma_{1}$ does not vanish on $\Gamma_{1}-\{A_{1}\}$ .

Let $\mathcal{O}_{2}$ be a bounded open set in $\mathbb{R}^{2}$ with smooth boundary $\Gamma_{2}$ such
that

(1) $\mathcal{O}_{2}\subset\{x=(x_{1}, x_{2})\in \mathbb{R}^{2}; x_{2}>d\}$ where $d$ is a positive constant,
(2) $A_{2}=(0, d)\in\Gamma_{2}$ ,
(3) $\Gamma_{2}$ is represented near $A_{2}$ as

$x_{2}=d+x_{1^{2m}}$ ,

(4) the curvature of $\Gamma_{2}$ does not vanish on $\Gamma_{2}-\{A_{2}\}$ .

We set

$\mathcal{O}=\mathcal{O}_{1}\cup \mathcal{O}_{2}$ , $\Gamma=\Gamma_{1}\cup\Gamma_{2}$

and
$\Omega=\mathbb{R}^{2}-\overline{\mathcal{O}}$ .
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Consider the following boundary value problem with parameter $\mu\in$

$\mathbb{C}$

(1.2) $\{$

$(\triangle+\mu^{2})u(x)=0$ in $\Omega$

$u(x)=g(x)$ in $\Gamma$

for $g(x)\in C^{\infty}(\Gamma)$ . For $Im\mu<0$ , (1.1) has a unique solution in $L^{2}(\Omega)$ .
Denote the solution $u(x)$ as

$u(x)=(U(\mu)g)(x)$ .

Then by using the regularity theorem for elliptic operators, $U(\mu)$ can be

regarded as a continuous operator from $C^{\infty}(\Gamma)$ into $C^{\infty}(\overline{\Omega})$ for each $\mu$

such that $Im\mu<0$ . Thus, $U(\mu)$ becomes an $\mathcal{L}(C^{\infty}(\Gamma), C^{\infty}(\overline{\Omega}))$ value
holomorphic function in $\{\mu;Im\mu<0\}$ , where $\mathcal{L}(E, F)$ denotes the set
of all the continuous operators from $E$ into $F$ .

We would like to consider the analytic continuation of $U(\mu)$ into
$\{\mu;Im\mu\geq 0\}$ . The result that I will show is the following theorem:

Theorem 1. Assume that

(1.3) $m\geq 4$ ,

and set

$\alpha=\frac{1}{m-1}$ .

Then, for any $\epsilon_{1}$ , $\epsilon_{2}>0$ , there exists a positive constant $C_{\in_{1}.\in_{2}}$ such
that $U(\mu)$ can be continued analytically into

(1.4)
$\{\mu;Im\mu\leq|Re\mu|^{-(1+2\alpha)^{-1}-\epsilon_{1}}, |Re\mu|\geq C_{\in_{1}\in_{2}},\}$

$-\bigcup_{r=-\infty}^{\infty}$ { $\mu;Im\mu\geq 0$ and $|\frac{\pi}{d}$ r-Re $\mu|<\epsilon_{2}$ }.

Recall that the poles of $S(z)$ coincide with those of $U(\mu)$ . Therefore,
even though Theorem 1 is of the analytic continuation of $U(\mu)$ for an
obstacle in $\mathbb{R}^{2}$ , it gives us a partial answer to the above question.

\S 2. Geometric optics near the periodic ray $a_{1}a_{2}$

In order to consider the solution of the reduced wave equation (1.2)
for high frequency, that is, for $|Re\mu|$ large, the geometric optics in $\Omega$

plays an important role. Especially, it is essential to know the asymptotic
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behavior of rays trapped by $\mathcal{O}$ , which are the ones approaching to the
periodic rays when $ t\rightarrow\infty$ . In our case, the periodic ray in $\Omega$ is only
the one going and returning between $A_{1}$ and $A_{2}$ . Thus we consider the
behavior of rays in the domain $\Omega(\delta)(\delta>0)$ surrounded by the following
four curves

$ x_{1}=\delta$ , $ x_{1}=-\delta$ , $x_{2}=-x_{1^{2m}}$ , $x_{2}=d+x_{1^{2m}}$

and set
$S_{l}(\delta)=\overline{\Omega(\delta)}\cap\Gamma_{l}$ , $l$ $=1,2$ .

From now on, in this section we shall denote the point in $\mathbb{R}^{2}$ as
$Q=(x, y)$ , $x$ , $y\in \mathbb{R}$ .

Let

$Q=(x, -x^{2m})\in S_{1}(\delta)$ and $---=(\xi, \sqrt{1-\xi^{2}})\in S^{1}$ ,

and denote by $X(Q, ---)$ the ray starting from $Q$ in the direction $\Xi$ , that
is,

$X(Q_{ },---)=\{Q+s_{-;}^{-}-s\geq 0\}$ .

Denote by $Q’and---$
,
the first fitting point of $X(Q, \Xi)$ at $\Gamma_{2}$ and the

direction of the reflected ray respectively. Setting $Q’=(x’, d+x^{;2m})$ ,
we have

$---J=----2(_{-}^{-}-, N(Q’))N(Q’)$

where $N(Q’)$ denotes the unit outer (with respect to $\mathcal{O}_{2}$ ) normal of $\Gamma_{2}$ ,
that is,

$N(Q’)=(1+(2mx^{;2m-1})^{2})^{-1/2}(2mx^{\prime 2m-1}, -1)$ .

Set $---’=(\xi’, -\sqrt{1-\xi^{\prime 2}})$ . Then we have a mapping

$T:(x, \xi)\rightarrow(x’, \xi’)$ .

It is obvious that, when the both $x$ and $\xi$ tend to zero, $x’$ and $\xi’$ also
tend to zero. As an approximation of the mapping $T$ we shall consider
the following mapping $\tilde{T}$ , which maps $(x, \xi)$ to $\tilde{T}(x, \xi)=(x’, \xi’)$ given
by

(2.1) $\{$

$ x’=x+\xi$

$\xi’=\xi+4mx^{;2m-1}=\xi+4m(x+\xi)^{2m-1}$ .
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Let $f(s)$ be a smooth function defined for $s$ near to 0, and let
$\{m_{j}\}_{j=0}^{\infty}$ be an increasing sequence such that $ m_{j}\rightarrow\infty$ as $ j\rightarrow\infty$ .

We say that $f(s)$ has an asymptotic expansion for $s\rightarrow 0$

$ f(s)\sim a_{0}s^{m_{0}}+a_{1}s^{m_{1}}+\cdots+a_{j}s^{m_{j}}+\cdots$

when, for any $M$ $>0$ , there are $j_{0}$ and $C_{M}$ such that

$|f(s)-\mathring{\sum_{j=0}^{j}}a_{j}s^{m_{j}}|\leq C_{M}|s|^{M}$ .

Lemma 2.1. Suppose that $m\geq 2$ . Then, there is $a$ one parameter
family of a pair of functions $g(s)$ and $h(s)$ defined for small $s$ having
asymptitic expansions

(2.2) $\{$

$ g(s)\sim a_{0}s^{\alpha}+a_{1}s^{\alpha+1}+\cdots+a_{j}s^{\alpha+j}+\cdots$

$ h(s)\sim b_{0}s^{\alpha+1}+b_{1}s^{\alpha+2}+\cdots+b_{j}s^{\alpha+j+1}+\cdots$

and satisfying

(2.2) $\tilde{T}(g(s), h(s))-(g(\frac{s}{s+1}), h(\frac{s}{s+1}))\sim 0$ .

In the asymptotic expansion (2.2), $a_{1}$ is a free parameter, $a_{0}=\pm(\alpha/2)^{\alpha}$

and $b_{0}=\mp\alpha a_{0}$ are independent of $a_{1}$ , and $b_{1}$ is given by

$b_{1}=a_{0}\frac{\alpha(\alpha+1)}{2}-(\alpha+1)a_{1}$ ,

and $a_{j}$ and $b_{j}(j\geq 2)$ depend on $a_{1}$ .

Proof. We look for formal series

(2.4) $\{$

$ g(s)\sim a_{0}s^{\gamma}+a_{1}s^{\gamma+1}+\cdots$

$ h(s)\sim b_{0}s^{\beta}+b_{1}s^{\beta+1}+\cdots$

as they satisfy (2.3), which can be written as

(2.5) $g(\frac{s}{1+s})-g(s)\sim h(s)$ ,

(2.6) $h(\frac{s}{1+s})-h(s)\sim 4m(g(s)+h(s))^{2m-1}$ .

We choose $a_{j}$ , $b_{j}(j=0,1, \cdots)$ so that (2.5) and (2.6) hold. Note that
for $p\in \mathbb{R}$ we have

$(\frac{s}{s+1})^{p}\sim s^{p}-ps^{p+1}+\frac{1}{2}p(p+1)s^{p+2}-\cdots$ .
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Substitute (2.4) and the above expansion into (2.5) and (2.6). Equating
the leading terms of the both sides of (2.5) we have

$-a_{0}\gamma s^{\gamma+1}=b_{0}s^{\beta}$ ,

which implies that $\beta=\gamma+1$ and $b_{0}=-\gamma a_{0}$ . Substituting the just
obtained relations into (2.6) and equating the leading terms of the both
sides of (2.6) we have

$-\beta b_{0}s^{\beta+1}=4m(a_{0}s^{\gamma})^{2m-1}$

Therefore it follows that

$\gamma(2m-1)=\beta+1=\gamma+2$ ,

$4ma_{0^{2m-1}}=-b_{0}\beta=a_{0}\gamma\beta=a_{0}\gamma(\gamma+1)$ .

Thus we have

$\gamma=(m-1)^{-1}=\alpha$ ,

$4ma_{0^{2m-2}}=\frac{1}{m-1}\frac{m}{m-1}=m\alpha^{2}$ .

Now, substitute these $\gamma$ , $\beta$ , $a_{0}$ and $b_{0}$ and equate the second terms
of the both sides of (2.5). The we have

$\{a_{0}\frac{\alpha(\alpha+1)}{2}-a_{1}(\alpha+1)\}s^{\alpha+2}=b_{1}s^{\alpha+2}$ .

Choose arbitrary $a_{1}$ and take $b_{1}$ as

$b_{1}=a_{0}\frac{\alpha(\alpha+1)}{2}-a_{1}(\alpha+1)$ .

Then the second term of the left hand side of (2.6) is

$\{b_{0}\frac{\beta(\beta+1)}{2}-b_{1}(\beta+1)\}s^{\beta+2}$ .

On the other hand, the second term of the right hand side of (2.6) is

$4m(2m-1)a_{0^{2m-1}}(a_{1}+b_{0})s^{(2m-2)\alpha+\alpha+1}$ .

Evidently it holds that $(2m-2)\alpha+\alpha+1=\beta+2$ , and we can check
easily by a direct calculus that

$b_{0}\frac{\beta(\beta+1)}{2}-b_{1}(\beta+1)=4m(2m-1)a_{0^{2m-1}}(a_{1}+b_{0})$ .
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For $j\geq 2$ , the $(j+1)$-th term of the left hand side of (2.5) is

{ $-(\alpha+j)a_{j}+linear$ combination of $a_{0}$ , $a_{1}$ , $\cdots$ , $a_{j-1}$ } $s^{\alpha+j+1}$ .

Thus, $b_{j}$ should satisfy

$-(\alpha+j)a_{j}+linear$ combination of $a_{0}$ , $a_{1}$ , $\cdots$ , $a_{j-1}=b_{j}$ .

Similarly, $(j+1)$ -th term of the left hand side of (2.6) is

{ $-(\beta+j)b_{j}+linear$ combination of $b_{0}$ , $b_{1}$ , $\cdots$ , $b_{j-1}$ } $s^{\beta+j+1}$ .

The $(j+1)$-th term of the right hand side of (2.6) is

$4m\{(2m-1)a_{0^{2m-2}}a_{j}+terms$ determined by $b_{0}$ , $b_{1}$ , $\cdots$ , $b_{j-1}$ and

$a_{0}$ , $a_{1}$ , $\cdots$ , $a_{j-1}$ , $a_{j}\}s^{\beta+j+1}$ .

Now consider a linear equation in unknown $(a_{j}, b_{j})$ :

$\{$

$(\alpha+j)a_{j}+b_{j}=F_{j}$

$(\alpha+1)(\alpha+2)a_{j}+(\beta+j)b_{j}=G_{j}$ .

Since $(\alpha+j)(\beta+j)-(\alpha+1)(\alpha+2)\neq 0$ for all $j\geq 2$ , the above
equation has a unique solution for any given $(F_{j}, G_{j})$ . Thus for $j\geq 2$ ,
we can choose the coefficients $a_{j}$ , $b_{j}$ successively in such a way that the
asymptotic expansions of the both sides of (2.3) are equal. Q.E.D.

Lemma 2.1 gives us an asymptotic behavior of broken rays in $\Omega$ .
Choose $j_{0}$ and set

$g^{(j_{0})}=a_{0}s^{\alpha}+a_{1}s^{\alpha+1}+\cdots+a_{j_{0}}s^{\alpha+j_{0}}$ ,

$h^{(j_{0})}=b_{0}s^{\alpha+1}+b_{1}s^{\alpha+2}+\cdots+b_{j_{0}}s^{\alpha+1+j_{0}}$

and
$x_{n}^{0}=g^{(j_{0})}(n^{-1})$ , $\xi_{n}^{0}=h^{(j_{0})}(n^{-1})$ .

Since $\frac{s}{1+s}=(n+1)^{-1}$ for $s=n^{-1}$ , we have

$x_{n+1}^{0}=g^{(j_{0})}(\frac{n^{-1}}{1+n^{-1}})$ , $\xi_{n+1}^{0}=h^{(j_{0})}(\frac{n^{-1}}{1+n^{-1}})$ .

Then, for any $M$ fixed, if we choose $j_{0}$ sufficiently large, we have the
following estimate

$|\tilde{T}(x_{n}^{0}, \xi_{n}^{0})-(x_{n+1}^{0}, \xi_{n+1}^{0})|\leq C_{M}n^{-M}$ for all $n$ .
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This gives us an approximate behavior of broken ray in $\Omega$ which con-
verges to the periodic ray $a_{1}a_{2}$ .

Let us denote as

$\tilde{T}(x_{n}^{0}+s, \xi_{n}^{0}+t)=(\tilde{x}_{n+1}^{0}+s’,\tilde{\xi}_{n+1}^{0}+t’)$ ,

where we set $(\tilde{x}_{n+1}^{0},\tilde{\xi}_{n+1}^{0})=\tilde{T}(x_{n}^{0}, \xi_{n}^{0})$ . Define mapping $\tilde{T}_{n}$ by

$\tilde{T}_{n}$ : $(s, t)\rightarrow(s’, t’)$ ,

which maps a neighborhood of $(0, 0)$ $\in \mathbb{R}^{2}$ in to a neighborhood of
$(0, 0)\in \mathbb{R}^{2}$ . Then we have

$A_{n}=\frac{\partial(s’,t’)}{\partial(s,t)}|_{s=t=0}$

$=\left(\begin{array}{llll} & 1 & & 1\\2m(2m & -1)(x_{n+1}^{0})^{2m-2} & 1+2m(2m & -1)(x_{n+1}^{0})^{2m-2}\end{array}\right)$ .

Substituting the expansion of $x_{n}^{0}$ , we have

$A_{n}\sim\left(\begin{array}{llll}1 & & 1 & \\d_{0}n^{-2}+d_{1}n^{-3}+ & \cdots & 1+d_{0}n^{-2}+d_{1}n^{-3}+ & \cdots\end{array}\right)$ ,

where $d_{0}=(\alpha+1)(\alpha+2)$ . Set

$S_{j}^{n}(s, t)=\tilde{T}_{n}\circ\tilde{T}_{n-1}o\cdots o\tilde{T}_{j}(s, t)=(X_{j}^{n}(s, t),---j(ns, t))$ ,

and

$D_{j}^{n}(s, t)=\frac{\partial S_{j}^{n}(s,t)}{\partial(s,t)}=\left(\begin{array}{ll}g_{j,11}^{n}(s,t) & g_{j,12}^{n}(s,t)\\g_{j,21}^{n}(s,t) & g_{j,22}^{n}(s,t)\end{array}\right)$ .

Evidently we have

$D_{1}^{n}(0,0)=A_{n}\circ A_{n-1}\circ\cdots\circ A_{1}$ .

Lemma 2.2. Suppose that $m\geq 4$ . Then we have an asymptotic
expansion of $D_{j}^{n}(0,0)$ in $n^{-\alpha}$ of the form

$ D_{j}^{n}(0,0)D_{j}\sim$

$\left(\begin{array}{llll}n^{\alpha+2}+a_{11,1}n^{\alpha+1}+ & \cdots & n^{-\alpha-1}+a_{12,1}n^{-\alpha-2}+ & \cdots\\(\alpha+2)n^{\alpha+1}+a_{21,1}n^{\alpha}+ & \cdots & -(\alpha+1)n^{-\alpha-2}+a_{22,1}n^{-\alpha-3}+ & \cdots\end{array}\right)$ ,
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where $D_{j}$ is a nonsingular $2\times 2$ -matrix.

Proof. In this proof, we write $D_{j}^{n}(0,0)$ as $D^{n}$ for the simplicity.
Suppose that $D^{n}$ has an asymptotic expansion of the form

$D^{n}\sim(g_{ij}(n^{-1}))_{i,j=1,2}=G(n^{-1})$

where $g_{ij}(s)$ are functions with asymptotic expansion for $s\rightarrow 0$

$ g_{ij}(s)\sim a_{ij,0}s^{\gamma ij}+a_{ij,1}s^{\gamma_{ij}+\alpha}+a_{ij,2}s^{\gamma_{ij}+2\alpha}+\cdots$ .

Since

$D^{n+1}=A_{n+1}D^{n}$

$=\{E+$ $\left(\begin{array}{llll}0 & & 1 & \\d_{0}n^{-2}+d_{1}n^{-3}+ & \cdots & d_{0}n^{-2}+d_{1}n^{-3}+ & \cdots\end{array}\right)$ $\}D^{n}$ ,

we have

$D^{n+1}-D^{n}=\left(\begin{array}{llll}0 & & 1 & \\d_{0}n^{-2}+d_{1}n^{-3}+ & \cdots & d_{0}n^{-2}+d_{1}n^{-3}+ & \cdots\end{array}\right)$ $D^{n}$ .

Thus, it suffices to look for $2\times 2$-valued function $G(s)$ satisfying

$G(\frac{s}{1+s})-G(s)=\left(\begin{array}{llll}0 & & 1 & \\d_{0}s^{2}+d_{1}s^{3}+ & \cdots & d_{0}s^{2}+d_{1}s^{3}+ & \cdots\end{array}\right)$ $G(s)$ .

By the same argument as of Lemma 2.1 we get an aymptotic expansion
of $G(s)$ for $s\rightarrow 0$ , and $D^{n}=G(n^{-1})$ satisfies the required properties.
Here we use essentially the assumption $m\geq 4$ for the purpose of the
possibility of successive determination of the coefficients of $G(s)$ .

Lemma 2.3. For any multi-index $\gamma$ we have

$|\partial_{s,t}^{\gamma}X_{1}^{n}(s, t)|_{s=t=0}|\leq C^{|\gamma|}n^{-\alpha}(n^{2+2\alpha})^{|\gamma|}$ ,

$|\partial_{S,t^{-}}^{\gamma-n}-1(s, t)|_{s=t=0}|\leq C^{|\gamma|}n^{-\alpha-1}(n^{2+2\alpha})^{|\gamma|}$ ,

where $C>0$ is a constant independent of $\gamma$ .

Take other functions

$\tilde{g}(s)\sim\tilde{a}_{0}s^{\alpha}+\tilde{a}_{1}s^{\alpha+1}+\cdots$ ,

$\tilde{h}(s)\sim\tilde{b}_{0}s^{\alpha}+\tilde{b}_{1}s^{\alpha+1}+\cdots$
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with the properties of Lemma 2.1 of the type (2.3), that is,

$\tilde{T}(\tilde{g}(s),\tilde{h}(s))-(\tilde{g}(\frac{s}{1+s}),\tilde{h}(\frac{s}{1+s}))\sim 0$ .

Set

$ y_{n}^{0}=\tilde{a}_{0}n^{-\alpha}+\tilde{a}_{1}n^{-(\alpha+1)}+\cdots$

$\eta_{n}^{0}=\tilde{b}_{0}n^{-(\alpha+1)}+\tilde{b}_{1}n^{-(\alpha+2)}+\cdots$

and define $\tilde{S}_{n}$ by
$\tilde{S}_{n}(s, t)=(s’, t’)$ ,

where $(s, t)$ and $(s’, t’)$ are combined by the relation $\tilde{T}(y_{n}^{0}+s, \eta_{n}^{0}+t)=$

$(\tilde{y}_{n+1}^{0}+s’,\tilde{\eta}_{n+1}^{0}+t’)$ . We set similarly

$\tilde{S}_{j}^{n}=\tilde{S}_{n}o\tilde{S}_{n-1}o\cdots o\tilde{S}_{j}$ .

Now by using Lemmas 2.2 and 2.3 we have

Proposition 2.4. Let $j_{0,l}$ $(l =1,2)$ be fixed. Then there are func-
tions $k_{l}(s)$ , $(l =1,2)$ with asymptotic expansion for $s\rightarrow 0$

$ k_{l}(s)\sim c_{l,0}s^{\alpha+2}+c_{l,1}s^{\alpha+3}+\cdots$

satisfying

$S_{j_{0,1}}^{n}(0, k_{1}(\frac{1}{n}))\sim\tilde{S}_{j_{0,2}}^{n}(0, k_{2}(\frac{1}{n}))$ for $ n\rightarrow\infty$ .

\S 3. Construction of asymptotic solutions

Prom now on we shall use again the notation $x=(x_{1}, x_{2})$ to denote
a point of $\mathbb{R}^{2}$ . Let us construct an asymptotic solution of (1.2) for
an oscillatory data. Since the curvature of the boundary $\Gamma_{l}$ is positive
except at $A_{l}$ , the behavior of asymptotic solutions going out from $\Omega(\delta)$

is same as in the case that the bodies are strictly convex. Therefore
it is essential to consider asymptotic solutions in $\Omega(\delta)$ for oscillatory
data given on $S_{1}(\delta)$ . Let $\omega\in S^{1}=\{\omega\in \mathbb{R}^{2}; |\omega|=1\}$ , and let $ f(x)\in$

$C_{0}^{\infty}(S_{1}(\delta))$ , and set

(3.1) $g(x, \mu)=e^{-i\mu x\cdot\omega}f(x)$ .

We shall use a standard method for construction, but as remarked in
Section 2 it is crucial to know the behavior of the phase functions when
the number of reflections increases to the infinity.

With aid of Proposition 2.4 we have the following
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Proposition 3.1. Let $\omega$ be an element of $S^{1}$ near $(0, 1)$ , and set

$\varphi_{1}(x)=x$ . $\omega$ .

For any positive integer $N$ , there is a sequence of real valued smooth

functions defined in a neighborhood of $\Omega(\delta)$ with the following expansions
in $n^{-\alpha}$ :

$\frac{\partial\varphi_{n}}{\partial x_{2}}(x)=b_{0}(x)n^{-1-\alpha}+b_{1}(x)n^{-1-2\alpha}$

$+\cdots+b_{M}(x)n^{-1-(M+1)\alpha}$ ,

$\varphi_{2n}(x)=c_{0}(x)+2nd+c_{1}(x)n^{-1-2\alpha}$

$+\cdots+c_{M}(x)n^{-1-(M+1)\alpha}$ ,

$\varphi_{2n+1}(x)=\tilde{c}_{0}(x)+(2n+1)d+\tilde{c}_{1}(x)n^{-1-2\alpha}+\tilde{c}_{2}(x)n^{-1-3\alpha}$

$+\cdots+\tilde{c}_{M}(x)n^{-1-(M+1)\alpha}$ ,

where $M$ is a positive integer and $b_{j}(x)$ , $c_{j}(x),\tilde{c}_{j}(x)$ , $j=1,2$ , $\cdots$ , $M$ ,
are smooth functions.

Moreover, $\varphi_{j}(x)$ , $j=1,2$ , $\cdots$ , satisfy the eikonal equation

$|\nabla\varphi_{j}(x)|=1$ in $\Omega(\delta)$

and the difference $\varphi_{j+1}-\varphi_{j}$ on the boundary satisfies

$(\varphi_{2n}-\varphi_{2n-1})(x)=e_{0}(x)+e_{N-1}(x)n^{-1-N\alpha}+e_{N}(x)n^{-1-(N+1)\alpha}$

$+\cdots+e_{M}(x)n^{-1-(M+1)\alpha}$ for all $x\in S_{1}(\delta)$ ,

$(\varphi_{2n+1}-\varphi_{2n})(x)=\tilde{e}_{0}(x)+\tilde{e}_{N-1}(x)n^{-1-N\alpha}+\tilde{e}_{N}(x)n^{-1-(N+1)\alpha}$

$+\cdots+\tilde{e}_{M}(x)n^{-1-(M+1)\alpha}$ for all $x\in S_{2}(\delta)$ ,

where $e_{0}(x)$ and $\tilde{e}_{0}(x)$ satisfy the following estimate

$|e_{0}(x)|$ , $|\tilde{e}_{0}(x)|\leq C_{N}|x_{1}|^{N}$ .

Now we construct a sequence of asymptotic solutions by using the
sequence $\{\varphi_{j}\}_{j=1}^{\infty}$ of phase functions in the above proposition. First let
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$\mu=k+i\sigma$ with $\sigma<0$ and set

$u_{j}(x, \mu)=\exp(-i\mu\varphi_{j}(x))v_{j}(x, \mu)$ ,

$v_{j}(x, \mu)=\sum_{p=0}^{P}v_{jp}(x)(i\mu)^{-p}$ ,

and we shall construct $v_{jp}$ successively by the following procedure:
Set

$T_{j}=2\nabla\varphi_{j}\cdot\nabla+\triangle\varphi_{j}$ .

Let $v_{00}(x)$ be solution of

$\{$

$T_{0}v_{00}=0$ in $\Omega(\delta)$ ,

$v_{00}(x)=f(x)$ on $S_{1}(\delta)$

and $v_{0p}(x)$ , $p=1,2$ , $\cdots$ , $P$ be the successive solutions of

$\{$

$T_{0}v_{0p}=-\triangle v_{0,p-1}$ in $\Omega(\delta)$ ,

$v_{0p}(x)=0$ on $S_{1}(\delta)$ .

Let $j\geq 1$ and suppose that $v_{j-1,p}(x)$ are defined. Define $v_{jp}$ as the
solutions of

$\{$

$T_{j}v_{jp}=\triangle v_{j,p-1}$ in $\Omega(\delta)$ ,

$v_{jp}(x)=v_{j-1,p}$ on $S_{\epsilon(j)}(\delta)$

where we take $v_{j,-1}\equiv 0$ and

$\epsilon(j)=\{$

1 for $j$ even,

2 for $j$ odd.

About the asymptotic behavior of $v_{np}$ for $ n\rightarrow\infty$ , we have the
following lemma which is a direct consequence of the properties of $\varphi_{n}(x)$

in Proposition 3.1.

Lemma 3.2. For each $p$ fixed, we get the following asymptotic
expansion of $v_{np}(x)$ in $n^{-\alpha}$ :

$v_{2n,p}(x)\sim w_{p0}(x)n^{p}+w_{p1}(x)n^{p-\alpha}+w_{p2}(x)n^{p-2\alpha}$

$+\cdots+w_{pK}(x)n^{p-K\alpha}$ ,

and

$v_{2n+1,p}(x)\sim\tilde{w}_{p0}(x)n^{p}+\tilde{w}_{p1}(x)n^{p-\alpha}+\tilde{w}_{p2}(x)n^{p-2\alpha}$

$+\cdots+\tilde{w}_{pK}(x)n^{p-K\alpha}$ ,
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where $w_{pj}(x)$ and $\tilde{w}_{pj}(x)$ are smooth.

Now define $u(x, \mu)$ for $Im\mu=\sigma<0$ by

(3.3) $u(x, \mu)=\sum_{n=0}^{\infty}(-1)^{n}u_{n}(x, \mu)$ .

It is evident that $u(x, \mu)$ converges absolutely, and we see ffom the con-
struction of $u_{j}$ that the following relations hold:

(3.3) $(\triangle+\mu^{2})u(x, \mu)=(i\mu)^{-P}\sum_{n=0}^{\infty}$ $\exp(-i\mu\varphi_{n}(x))\triangle v_{nP}(x)$ ,

$[u(x, \mu)- \exp(-i\mu\varphi_{0}(x))f(x)]_{S_{1}(\delta)}$

(3.4)
$=\sum_{n=1}^{\infty}$ {exp( $-i\mu\varphi_{2n}(x))-$ exp( $-i\mu\varphi_{2n-1}(x))$ } $v_{2n}(x, \mu)$

and

(3.5)

$u(x, \mu)|_{S_{2}(\delta)}=\sum_{n=0}^{\infty}$ {exp( $-i\mu\varphi_{2n+1}(x))-\exp(-i\mu\varphi_{2n}(x))$ } $v_{2n+1}(x, \mu)$ .

Let $\eta$ and $\epsilon_{0}$ be an arbtrary positive constant. With the aid of
Lemma 3.2 we have from (3.3)

(3.6) $|(\triangle+\mu^{2})u(x, \mu)|\leq C_{N,\eta,\in o}|\mu|^{-P}$

for all $Im\mu\leq-\epsilon_{0}$ , $x\in\Omega(\delta)$ .

Similarly we have from (3.4)

(3.7) $|u(x, \mu)-g(x, \mu)|\leq C_{N,\eta,\in o}|\mu|^{-\eta N}$

for all $x\in S_{1}(|\mu|^{-\eta})$ and $Im\mu\leq-\epsilon_{0}$

and from (3.5)

(3.3) $|u(x, \mu)|\leq C_{N,\eta,\in o}|\mu|^{-\eta N}$

for all $x\in S_{2}(|\mu|^{-\eta})$ and $Im\mu\leq-\epsilon_{0}$ .

Now, note that for any broken ray starting from a point in $\Omega(\delta)$ and
for any $a>0$ it holds the either of the following two cases:

(i) the broken ray fits $S_{1}(a)$ within $[a^{-2(m-1)}]$ -times reflections.



Scattering by Two Bodies 167

(ii) the broken ray goes out ffom $\Omega(\delta)$ within $[a^{-2(m-1)}]$ -times re-
flections.

Then, by using the techniques in Ikawa [4] and that of Vainberg [10]
jointly, we can easily construct $\tilde{u}(x, \mu)$ by an explicit procedure from
$u(x, \mu)$ satisfying the following estimates, which show that $u(x, \mu)$ an
good approximate solution to (1.2) for an oscillatry data $g(x, \mu)$ defined
(3.1):

For any $N>0$ and $\epsilon_{0}>0$ we have for all $Im\mu\leq-\epsilon_{0}$

(i) $\tilde{u}(\cdot, \mu)$ is $C^{\infty}(\overline{\Omega})$ -valued holomorphic function,

(ii) $(\triangle+\mu^{2})\tilde{u}(x, \mu)=0$ in $\Omega$ ,

(iii) $|\tilde{u}(x, \mu)-g|\leq C_{N,\in o}|\mu|^{-N}$ for all $x\in\Gamma_{1}$ ,

(iv) $|\tilde{u}(x, \mu)|\leq C_{N,\in o}|\mu|^{-N}$ for all $x\in\Gamma_{2}$ .

When we want to extend the above results beyond the real axis,

there is a difficulty that the convergence of $u_{n}(x, \mu)$ is not exponential
with respect to $ n\rightarrow\infty$ . But the summation (3.2) is of a similar form to
the zeta functions. Thus, we shall use the technique of analytic contin-
uation of the zeta functions. We shall consider in the next section the
analytic continuation and estimates of the zeta function so that we may
use it for the analytic extension of $u(x, \mu)$ beyond the real axis.

\S 4. Analytic continuation of the zeta function and its gener-
alization

In order to consider the analytic continuation of $u(x, \mu)$ defined by
(3.2), we express $u(x, \mu)$ as a sum of zeta functions.

Even though the analytic continuation of the zeta function is well
known (see for example Veech [11]), we shall give a proof because the one
used here is modified a little and we need estimates of the dependency
of the functions on parameters.

In this section, several notations will be used in different meanings
from the ones in the previous sections, except $\alpha$ .

Let $m$ be a positive integer and let $z$ and $s$ be complex numbers.
For $|z|<1$ we define the function $F(z, s : m)$ by

(4.1)
$F(z, s:m)=\sum_{n\geq m}z^{n}n^{-s}$

.

Obviously, the right hand side of (4.1) converges absolutely for $|z|<1$ ,
which implies that the function $F(z, s : m)$ is holomorphic in $\{z;|z|<1\}$

for any $s\in \mathbb{C}$ .
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We consider the analytic continuation of $F$ . First assume $Res>0$ ,
and set

$I(z, s:m)=\int_{0}^{\infty}\frac{z^{m}e^{-mx}x^{s-1}}{1-ze^{-x}}dx$ .

We see that, for each $Res>0$ , $I(z, s : m)$ is holomorphic in $z\in D=$

$\mathbb{C}-[1, \infty)$ . As it is well known, $F(z, s : m)$ has the following integral
representation:

(4.2) $F(z, s:m)=\frac{1}{\Gamma(s)}I(z, s:m)$ for $|z|<1$ .

On the other hand, the definition (4.1) gives us

$z\frac{\partial F}{\partial z}(z, s:m)=F(z, s-1: m)$ for all $|z|<1$ .

Let $a$ be a positive integer. Then we have for $Res>0$ and $|z|<1$ the
expression

(4.3) $F(z, s-a:m)=\frac{1}{\Gamma(s)}(z\frac{\partial}{\partial z})^{a}I(z, s:m)$ .

By means of the above integral representation we shall show the following
lemma:

Lemma 4.1. For any $s\in \mathbb{C}$ and $m$ positive integer, $F(z, s : m)$

as a function in $z$ variable can be continued holomorphically into the
domain $D=\mathbb{C}-[1, \infty)$ . Moreover, we have the following estimate:

(4.4) $|F(z, s:m)|\leq c_{K,a^{\frac{\Gamma(Res+a)}{|\Gamma(s+a)|}m}}-Res|z|^{m}(1+|z|)^{a}$

for all $Res>-a$ and $z\in K$ ,

where $K$ is an arbitrary compact subset of $D$ , $a$ is an arbitrary positive
integer and $C_{K,a}$ is a constant independent of $m$ .

Proof. By using the fact that $I(z, s : m)$ is holomorphic in $z\in D$

for any $Res>0$ , the expression (4.3) proves Lemma 4.1 except the
estimate (4.4). It is easy to show by the induction that

$(z\frac{\partial}{\partial z})^{a}\frac{z^{m}}{1-ze^{-x}}=\frac{m^{a}z^{m}}{(1-ze^{-x})^{a+1}}\{1+c_{a,1}(m)ze^{-x}+$

$+c_{a,2}(m)(ze^{-x})^{2}+\cdots+c_{a,a}(m)(ze^{-x})^{a}\}$ ,
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where the coefficients $c_{a,l}(m)$ , $l$ $=1,2$ , $\ldots$ , $a$ are polynomials of $m^{-1}$ of
order less than $a$ , and they satisfy

$|c_{a,l}(m)|\leq C_{a}$ for all $m$ .

Thus, if we set

$\max_{x\geq 0}z\in K|1-ze^{-x}|=c_{K}$
,

we have for all $Res>0$

$|(z\frac{\partial}{\partial z})^{a}I(z, s ^{:} m)|$

$\leq m^{a}|z|^{m}(c_{K})^{-(a+1)}C_{a}(1+|z|)^{a}\int_{0}^{\infty}e^{-mx}|x^{s-1}|dx$

$\leq m^{a}|z|^{m}(c_{K})^{-(a+1)}C_{a}(1+|z|)^{a}m^{-Res}\Gamma(Res)$ .

Substituting this estimate into (4.3) we get immediately for all $Res>0$

$|F(z, s-a:m)|\leq(c_{K})^{-(a+1)}C_{a}\frac{\Gamma(Res)}{|\Gamma(s)|}m^{a-Res}|z|^{m}(1+|z|)^{a}$ .

Denoting $s-a$ in the above inequality by $s$ anew, we get (4.4). Q.E.D.

In order to consider the analytic continuation of $u(x, \mu)$ beyond the
real axis, we have to consider the analytic continuation of the following
function originally defined for $Im\mu<0$ :

(4.5)
$R_{\beta}(\mu ^{:} q)=\sum_{n\geq|k|^{\beta}}\exp(-i\mu(n+c_{0}n^{-1-2\alpha}$

$+c_{1}n^{-1-3\alpha}+\cdots+c_{M}n^{-1-(M+2)\alpha}))n^{q}$ .

Let us set

$D_{r,\beta,\in}=\{\mu=ik+\sigma;2r\pi+\epsilon\leq|k|\leq 2(r+1)\pi-\epsilon, \sigma\leq r^{-\beta}\}$ .

For $\sigma<0$ , as remarked in the above, the right hand side converges
absolutely. Now consider the holomorphic extension of $R_{\beta}(\mu : q)$ into
$\sigma>0$ .

Lemma 4.2. Let $\beta>(1+2\alpha)^{-1}$ and let $\epsilon>0$ . For any positive
integer $r$ , $R_{\beta}(\mu : q)$ can be prolonged analytically into $D_{r,\beta,\in}$ . Moreover,

we have the following estimates:

(4.6) $|R_{\beta}(\mu : q)|\leq C_{\beta,\in}r^{q\beta}$ for all $\mu\in D_{r,\beta,\in}$
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and

$|R_{\beta}(\mu : q)-F(e^{-i\mu}, -q: [r^{\beta}])|\leq C_{\beta},{}_{\in}C_{1}r^{q\beta-\gamma}$

for all $\mu\in D_{r,\beta,\in}$ ,

where $\gamma=(1+\alpha)\beta-1>0$ .

Proof. First suppose that $c_{j}=0$ for all $j\geq 1$ . For each $n\geq 0$ we
have

(4.8) $\exp(-i\mu(n+c_{0}n^{-1-2\alpha}))n^{q}$

$=z^{n}\sum_{l=0}^{\infty}\frac{(-i\mu)^{l}}{l!}c_{0}^{l}n^{-(1+2\alpha)l}n^{q}$ ,

where we set $z=\exp(-i\mu)$ . Suppose that $\mu\in D_{r,\beta,\in}(r>0)$ and set
$m=[r^{\beta}]$ . Note that

$\sum_{n\geq m}z^{n}n^{-(1+2\alpha)l}n^{q}=F(z, (1+2\alpha)l-q:m)$
.

Let $|z|<1$ and take the summation in $n\geq m$ of the both sides of (4.8).
Since the both summations converges absolutely we have a relation

$R_{\beta}(\mu ^{:} q)=\sum_{l=0}^{\infty}\frac{(-i\mu)^{l}}{l!}c_{0^{l}}F(z, (1+2\alpha)l-q:m)$ ,

which implies

(4.9) $R_{\beta}(\mu : q)-F(e^{-i\mu}, -q:m)$

$=\sum_{l=1}^{\infty}\frac{(-i\mu)^{l}}{l!}c_{0^{l}}F(e^{-i\mu}, (1+2\alpha)l-q:m)$ .

We see easily that $\{z=\exp(-i\mu);\mu\in D_{r,\beta,\in}\}$ is contained in a compact
subset $K$ of $D=\mathbb{C}-[1, \infty)$ for all $r$ . Then by Lemma 4.1, each term of
the right hand side of (4.9) can be extended holomorphically into $D_{r,\beta,\in}$ .

Therefore, if we show that the right hand side of (4.9) converges abso-
lutely in $D_{r,\beta,\in}$ , it follows that $R_{\beta}(\mu : q)$ can be extended analytically
into $D_{r,\beta,\in}$ .

Thus, by applying the previous lemma we have for all $\mu\in D_{r,\beta,\in}$

$|\frac{(-i\mu)^{l}}{l!}c_{0^{l}}F(z, (1+2\alpha)l-q$ , $m)|$

$\leq C_{K,q}|z|^{m}(1+|z|)^{q}\frac{|k|^{l}}{l!}|c_{0}|^{l}m^{-(1+2\alpha)l+q}$ .
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Here we applied Lemma 4.1 by taking $s=(1+2\alpha)l-q$ , and used the
fact that $\Gamma(Res+a)=|\Gamma(s+a)|$ . Note that

$|z^{m}|=|e^{-ikm+m\sigma}|=e^{m\sigma}\leq Ce^{r^{-\beta}\cdot r^{\beta}}=C$ ,

$m^{-(1+2\alpha)l}|k|^{l}\leq(|k|^{-(1+2\alpha)\beta+1})^{l}=C|k|^{-\gamma l}$

where we set $\gamma=(1+2\alpha)\beta-1>0$ , and

$|z|\leq\exp(r^{-\beta})\leq C$ for all $z=e^{-i\mu}$ , $\mu\in D_{r,\beta,\in}$ .

Then we have

$|R_{\beta}(\mu)-F(e^{-i\mu}, -q:m)|$

$\leq C_{K,q}|k|^{q\beta}\sum_{l=1}^{\infty}\frac{1}{l!}(c_{0}k^{-\gamma})^{l}\leq C_{K,q}c_{0}|k|^{q\beta-\gamma}$ .

Thus the desired properties of $R_{\beta}(\mu : q)$ are proved for the special case.

Next consider the general case, that is, the case that $c_{j}$ , $(j\geq 1)$ are
not necessarily zero. We introduce some notations. Set

$l$ $=(l_{0}, l_{1}, \cdots, l_{M})\in\{0,1, \cdots\}^{M+1}$ ,

$c=(c_{0}, c_{1}, \cdots, c_{M})$ and $A=(0,1, \cdots, M)$ ,

and denote as

$|l|=l_{0}+l_{1}+\cdots+l_{M}$ , $A\cdot l$ $=l_{1}+2l_{2}+\cdots+Ml_{M}$ ,

$c^{l}=\prod_{j=0}^{M}c_{j}^{l_{j}}$ , $l!=\prod_{j=0}^{M}l_{j}!$ .

Now we have the following expansion

$\exp(-\mu(n+c_{0}n^{-1-2\alpha}+\cdots+c_{M}n^{-1-(2+M)\alpha}))n^{q}$

$=z^{n}\sum\frac{(-i\mu)^{|l|}}{l!}c^{l}n^{-1-(2|l|+A\cdot l)\alpha}n^{q}$

Thus, by replacing the expansion (4.8) by the above one, we can achieve
the same argument as the special case, and get Lemma 4.2. Q.E.D.
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\S 5. Proof of Theorem 1

First we shall show that the function $u(x, \mu)$ defined by (3.2) can be
extended analytically into the domain

$D_{\beta,\in}=\bigcup_{|r|\geq c_{\beta,\epsilon}}D_{r,\beta,\in}$

where $C_{\beta,\in}$ is a positive integer depending on $\beta$ and $\epsilon$ . Secondly, we
shall show that $u(x, \mu)$ is a good approximation of the solution of (1.2)
for all $\mu\in D_{\beta,\in}$

Let $\mu\in D_{r,\beta,\in}$ and set $m_{r}=|r|^{\beta}$ . We express the function $u(x, \mu)$

defined by (3.2) as follows:

(5.1) $u(x, \mu)=\sum_{n=0}^{m_{r}}u_{2n}(x, \mu)+\sum_{n>m_{r}}u_{2n}(x, \mu)$

- $\sum_{n=0}^{m_{r}}u_{2n+1}(x, \mu)-\sum_{n>m_{r}}u_{2n+1}(x, \mu)$

$=u_{e}^{(1)}(x, \mu)+u_{e}^{(2)}(x, \mu)-u_{o}^{(1)}(x, \mu)-u_{o}^{(2)}(x, \mu)$ .

Recall Proposition 3.1 and Lemma 3.2. Then we have

$u_{e}^{(2)}(x, \mu)=\sum_{p=0}^{P}(-i\mu)^{-p}\sum_{n\geq m_{r}}$ $\exp(-i\mu(c_{0}(x)+2nd+c_{1}(x)n^{-1-2\alpha}$

$+\cdots+c_{M}(x)n^{-1-(M+1)\alpha}))\{w_{p0}(x)n^{p}+\cdots+w_{pK}n^{p-K\alpha}\}$ .

Thus, for each $x\in\Omega(\delta)$ fixed, $u_{e}^{(2)}(x, \mu)$ can be expressed by a summa-
tion of following terms:

$(-i\mu)^{-p}R_{\beta}(\mu : p-j\alpha)$ , $p=0$ , $\cdots$ , $P$, $j=0$ , $\cdots$ , $K$ ,

from which we see that $u_{e}^{(2)}(x, \mu)$ can be extended analytically into $D_{r,\beta,\in}$

beyond the real axis. Moreover, applying the estimate in Lemma 4.2 we
have

(5.2) $|u_{e}^{(2)}(x, \mu)|\leq C_{N,\beta,\in}\sum_{p=0}^{P}|\mu|^{-p}|r|^{\beta p}\leq C_{N,\beta,\in}’$

for all $\mu\in D_{r,\beta,\in}$
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(Recall that the constants $P$, $K$ , $M$ are determined by $N$ through Propo-

sition 3.1). Similarly we see that $u_{o}^{(2)}(x, \mu)$ also can be extended analyt-
ically into $D_{r,\beta,\in}$ and

(5.3) $|u_{o}^{(2)}(x, \mu)|\leq C_{N,\beta,\in}\sum_{p=0}^{P}|\mu|^{-p}|r|^{\beta p}\leq C_{N,\beta,\in}’$

for all $\mu\in D_{r,\beta,\in}$

holds.

Consider $u_{e}^{(1)}(x, \mu)$ . Since it is a finite sum of entire functions, it
is also an entire function. But it is important to get an estimate for
$\mu\in D_{r,\beta,\in}$ . For all $n\leq m_{r}$ we have

$Re\varphi_{2n}\leq 2n\sigma\leq m_{r}\sigma\leq s_{0}$ ,

where $s_{0}$ is independent of $r$ . Therefore we have for all $\mu\in D_{r,\beta,\in}$

$|u_{2n}(x, \mu)|\leq e^{s_{0}}\sum_{p=0}^{P}m_{r}^{p}|\mu|^{-p}\leq C_{\beta}$ ,

from which it follows that

(5.4) $|u_{e}^{(1)}(x, \mu)|\leq C_{\beta}m_{r}$ .

Evidently the same estimate holds for $u_{o}^{(1)}(x, \mu)$ . Thus we have the
following

Lemma 5.1. The function $u(x, \mu)$ defined by (3.1) can be extended
analytically into $D_{\beta,\in}and$ the following estimate holds:

(5.5) $|u(x, \mu)|\leq C_{N,\beta,\in}|\mu|^{\beta}$ for all $x\in\Omega(\delta)$ , $\mu\in D_{\beta,\in}$ .

Next consider $(\triangle+\mu^{2})u(x, \mu)$ . By applying the above argument to
the expression (3.3), we get easily

(5.6) $|(\triangle+\mu^{2})u(x, \mu)|\leq C_{N,\beta,\in}|\mu|^{-P}|r|^{\beta P}$

for all $x\in\Omega(\delta)$ , $\mu\in D_{r,\beta,\in}$ .

For the estimate of boundary value, we can use the same argument as
above.

An in Section 3, by using the techniques in [4] and that of [10] jointly,
we can easily construct by an explicit procedure ffom $u(x, \mu)$ a function
$\tilde{u}(x, \mu)$ with the following properties:
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Proposition 5.2. Let $N>0$ , $\epsilon_{0}>0$ and $\beta>(1+2\alpha)^{-1}$ be fixed.
For the oscillatory data $g(x, \mu)$ of the form (3.1) we can construct $a$

function $\tilde{u}(x, \mu)$ , which is $C^{\infty}(\overline{\Omega})$ -valued holomorphic function in $D_{\beta,\in}$ ,
satisfying for all $\mu\in D_{\beta,\in}$

(i) $(\triangle+\mu^{2})\tilde{u}(x, \mu)=0$ in $\Omega$ ,

(ii) $|\tilde{u}(x, \mu)-g|\leq C_{N,\beta,\epsilon_{0}}|\mu|^{-N}$ for all $x\in\Gamma_{1}$ ,

(iii) $|\tilde{u}(x, \mu)|\leq C_{N,\beta,\in o}|\mu|^{-N}$ for all $x\in\Gamma_{2}$ .

Theorem 1 in Introduction can be derived ffom the above proposi-
tion by a standard arugument.
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Abstract.

We consider the following nonlinear elliptic equations with real
parameter $\lambda$ :

$(P_{\lambda})$ $\triangle u+f(u, \lambda)=0$ , $u$ $>0$ in $\Omega$ ; $u=0$ on $\partial\Omega$ ,

where $\Omega$ is a smooth bounded domain in $R^{n}$ $(n \geq 2)$ and $f\geq 0$

satisfies an inequality:

$f(u, \lambda)\leq c_{1}+c_{2}u^{p}$

( $c_{1}$ , $c_{2}>0$ , $p>1$ constants).

We suppose the existence of a family of solutions $\{(u_{s}, \lambda_{s})\}_{0<s\leq 1}$

of $(P_{\lambda})$ with the following properties: $(u_{s}, \lambda_{s})\in C(\overline{\Omega})\times R$ is contin-
uous in $s$ , $\lambda_{s}$ is bounded, and $\max u_{s}\rightarrow\infty(s\downarrow 0)$ .
We investigate the asymptotic behavior of solutions near blowing-up
points.

\S 1. Introduction

In this paper we consider the following nonlinear elliptic equations
with real parameter $\lambda$ :

$(P_{\lambda})$ $\{$

$\triangle u+f(u, \lambda)=0$ , $u>0$ in $\Omega$ ,

$u=0$ on $\partial\Omega$ .

Here $\Omega$ is a smooth bounded domain in $R^{n}$ $(n \geq 2)$ and a smooth
function $f$ satisfies the following inequality:

$0\leq f(u, \lambda)\leq c_{1}+c_{2}u^{p}$ $(u\geq 0)$

Received February 8, 1993.
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where $c_{1}$ , $c_{2}>0$ , and $p>1$ are constants. Recently many works have
been done in the case that $(P_{\lambda})$ is Yamabe type problem, i.e., when
$n$ $\geq 3$ and $f$ has (nearly) critical Sobolev exponents such as

(i) $f=u^{\frac{n+2}{n-2}}+\lambda u$ ,

(ii) $f=u^{\frac{n+2}{n-2}-\lambda}$
$(\lambda>0)$ .

See, e.g., [1, 3, 4, 6, 8, 10, and references therein]. We recall the results on
the asymptotic behavior of solutions of $(P_{\lambda})$ when $f$ is (i) or (ii). There
are two types of results. The first one is on the behavior of solutions when
$\Omega$ is a ball with center 0. In this case it is known that a family of solutions
$\{(u_{s}, \lambda_{s})\}_{s\in(0,1]}(\subset C^{2}(\Omega)\times R)$ exists with the following properties:

(A1) $(u_{s}, \lambda_{s})(\subset C(\overline{\Omega})xR)$ is continuous in $s$ ;

(A2) $\lambda_{s}$ is bounded;

(A3) $\max u_{s}\rightarrow\infty$ ;

(A4) $ u_{s}(0)\rightarrow\infty$ , $u_{s}(x)\rightarrow 0$ $(x\in\Omega, x\neq 0)$ as $s\downarrow 0$ .
(We call such a point as $x=0$ a blowing-up point.) For more detailed
behavior see [1, 3, 4, 10.

The second one is on the behavior of solutions of $(P_{\lambda})$ which satisfy
a minimizing sequence property for the (Sobolev) inequality:

$\frac{\int_{\Omega}|\nabla u_{s}|^{2}dx}{||u_{s}||_{p+1}^{2}}\rightarrow S_{n}$ as $s\downarrow 0$ ,

where $p=\frac{n+2}{n-2}$ or $ p=\frac{n+2}{n-2}-\lambda$ respectively, and $S_{n}$ is the best Sobolev
constant in $R^{n}$ . Under appropriate assumptions it is proved that a
blowing-up point is unique and that (A3) and similar behavior to (A4)
hold $(u8, 4, 6, 8, 10])$ .

We would like to investigate the asymptotic behavior in a neigh-
borhood of a blowing-up point for more general domains and for more
general functions.

Throughout the paper we assume that there exists a family of solu-
tions $\{(u_{s}, \lambda_{s})\}_{0<s\leq 1}$ of $(P_{\lambda})$ with the properties $(A1)-(A3)$ .

Before proceeding to state our result, we give the definition of blow-
ing up points. Rom our assumption it follows that there exist a family
of points $\{x_{j}\}(\subset\Omega)$ , a point $x_{0}\in\overline{\Omega}$ , $s_{j}\in(0,1]$ , and $\lambda_{0}$ such that
$x_{j}\rightarrow x_{0}$ , $\lambda_{s_{j}}\rightarrow\lambda_{0}$ , $ u_{s_{j}}(x_{j})\rightarrow\infty$ as $ j\uparrow\infty$ . We call $(x_{0}, \lambda_{0})$ or simply
$x_{0}$ a blowing-up point with respect to $\{(u_{s_{j}}, \lambda_{s_{j}})\}_{j=1}^{\infty}$ .

Our result is
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Theorem. Under above hypotheses the following statement holds.
For each blowing-up point $ x_{0}\in\Omega$ there exists $r_{0}>0$ such that for each

fixed $r(0<r\leq r_{0})$ there exists $s(0<s<1)$ such that

$k_{1}r^{-2/(p-1)}\leq u_{s}(x)\leq k_{2}r^{-2/(p-1)}$

$(|x-x_{0}|\leq r)$ .
Here $k_{1}$ , $k_{2}>0$ are constants depending only on $\Omega,c_{1},c_{2}$ , and $p$ .

As a direct consequence of Theorem we have

Corollary. Let $n$ $\geq 3$ and let $p=\frac{n+2}{n-2}$ . Then for each blowing-up

point $ x_{0}\in\Omega$ there exists $r_{0}>0$ such that for each fixed $r(0<r\leq r_{0})$

there exists $s(0<s<1)$ such that

$\int_{|x-x_{0}|\leq r}u_{s}(x)^{\frac{2n}{n-2}}dx\geq k_{3}$ .

Here $k_{3}>0$ is a constant depending only on $\Omega,c_{1},c_{2}$ , and $p$ .

In Section 2 we give the proof of Theorem in the case $n$ $=2$ . In
Section 4 we sketch the proof of it in the case $n$ $\geq 3$ .

\S 2. Proof of Theorem ($n =2$ )

In this section we prove Theorem in the case $n$ $=2$ . For the proof
of it we need the following two lemmas.

Lemma 1. Let $n$ $=2$ . Suppose that a family of functions
$\{v_{s}\}_{0<s\leq 1}\subset C^{2}(\Omega)\cap C(\overline{\Omega})$ satisfies the following hypotheses :

(i) $v_{s}$ satisfies the following differential inequality

$\triangle v_{s}+ke^{v_{s}}\geq 0$ in $\Omega$

where $k>0$ is a constant.
(ii) $v_{s}\in(C(\overline{\Omega}))$ is continuous in $s$ .

Let $r>0$ be such that $ B(x_{0}, r)\equiv\{x:|x-x_{0}|\leq r\}\subset\Omega$ , and

$\int_{B(x_{0},r)}e^{v_{1}(x)}dx<\frac{4\pi}{k}$ .

Assume that for some $0<s_{1}<1$ the following inequality holds for all
$s_{1}\leq s\leq 1$ ,
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$[e^{v_{s}}]_{r}\equiv\{\frac{1}{2\pi}\int_{0}^{2\pi}e^{v_{s}(xo+x(\theta))/2}d\theta\}^{2}$

$<\frac{2}{kr^{2}}$ , $x(\theta)\equiv r(\cos\theta, \sin\theta)$ .

Then for all $s_{1}\leq s\leq 1$

(i) $e^{v_{s}(x_{0})}<4[e^{v_{s}}]_{r}$ ,

(ii) $\int_{B(x_{0},r)}e^{v_{s}(x)}dx<\frac{4\pi}{k}$ .

Lemma 2. Let $n$ $=2$ . Let $ x_{0}\in\Omega$ $6e$ a blowing-up point. Let $r$ be
such that $ B(x_{0}, r)\subset\Omega$ . Suppose that for some $0<s_{1}<1$ a solution $u_{s}$

of $(P_{\lambda})$ with $\lambda=\lambda_{s}$ satisfies

$u_{s}(x)<(\frac{2}{k})^{1/(p-1)}|x-x_{0}|^{-2/(p-1)}$ $(x\in B(x_{0}, r))$

for all $s\in[s_{1},1]$ . Then $v_{s}\equiv(p-1)\ln u_{s}$ satisfies a differential inequal-
ity:

$\triangle v_{s}+ke^{v_{s}}\geq 0$ $(x\in B(x_{0}, r))$

for all $s\in[s_{1},1]$ , where $k$ is a constant independent of $x_{0},r,s_{1}$ .

For the proof of Lemma 1 see [7; Proposition] or [2]. In Section 3
we prove Lemma 2.

Proof of Theorem. We set $v_{s}\equiv(p-1)\ln u_{s}$ . Let $k>0$ be a
constant as in Lemma 2. Let $r_{0}$ be so small that $ B(x_{0}, r_{0})\subset\Omega$ ,

(1) $\int_{B(x_{0},ro)}e^{v_{1}(x)}dx<\frac{4\pi}{k}$ ,

$e^{v_{1}(x)}<\frac{2}{k}|x-x_{0}|^{-2}$ $(x\in B(x_{0}, r_{0}))$ .

Let $0<r\leq r_{0}$ be fixed. Suppose that for some $s_{1}>0$ , $v_{s}$ satisfies

(2) $e^{v_{s}(x)}\equiv u_{s}^{p-1}(x)<\frac{2}{k}|x-x_{0}|^{-2}$ $(x\in B(x_{0}, r))$

for all $s\in[s_{1},1]$ . Then by lemma 2, $v_{s}$ satisfies

(3) $\triangle v_{s}+ke^{v_{s}}\geq 0$ $(x\in B(x_{0}, r))$ .
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Let $x_{s}\in B(x_{0}, r)$ be a maximal point of $u_{s}$ in $B(x_{0}, r)$ :

$u_{s}(x_{s})=\max u_{s}(x)$ .
$B(x_{0},r)$

Then by (2)

$e^{v_{s}(x_{s})}<\frac{2}{k}|x_{s}-x_{0}|^{-2}$

We consider $u_{s}$ a solution of the following linear elliptic equation

$\triangle u_{s}+c_{s}(x)u_{s}=0$ ; $c_{s}(x)\equiv\frac{f(u_{s}(x),\lambda_{s})}{u_{s}(x)}$ .

Since $x_{0}$ is a blowing-up point, we may assume that $u_{s}(x)\geq 1$ for
$x\in B(x_{0}, r)$ . Then $c_{s}(x)$ satisfies

$c_{s}(x)\leq c_{1}+c_{2}u_{s}^{p-1}(x)\leq c_{1}+\frac{2c_{2}}{k}|x_{s}-x_{0}|^{-2}$

Hence by Harnack’s theorem there is a constant $c’$ such that

(4) $u_{s}(x_{s})\leq c’\min u_{s}(x)$

for all $x$ with $|x-x_{0}|\leq|x_{s}-x_{0}|$ . Here $c’$ depends only on $p,c_{1},c_{2}$ .
On the other hand, since $(1),(2)$ , and (3) hold, we have by Lemma 1

$u_{s}^{p-1}(x_{0})\equiv e^{v_{s}(x_{0})}<4[e^{v_{s}(x)}]_{r}$ $s\in[s_{1},1]$ .

Hence, by (2), (4)

$u_{s}(x_{s})\leq c’u_{s}(x_{0})$

$\leq 2^{3/(p-1)}c’k^{-1/(p-1)}r^{-2/(p-1)}$ .

Applying Harnack’s theorem again we get an inequality:

(5) $u_{s}(x_{s})\leq c\min_{B(x_{0},r)}u_{s}(x)$ .

Here $c$ is a constant depending only on $p,c_{1},c_{2}$ . Since $x_{0}$ is a blowing-up
point, this implies that (2) does not hold for all $s\in(0,1]$ .
Set

$ s_{2}\equiv\inf$ { $s’$ : (2) holds for alls $\in[s’,$ $1]$ }.

Then $s_{2}>0$ , and (2) does not hold for $s=s_{2}$ , i.e., there exists $ x’\in$

$B(x_{0}, r)$ such that

$u_{s_{2}}^{p-1}(x’)\equiv e^{v_{s_{2}}(x’)}=\frac{2}{k}|x’-x_{0}|^{-2}$
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On the other hand, by Harnack’s inequality (5) we have

$c^{-1}u_{s_{2}}(x)\leq u_{s_{2}}(x’)\leq cu_{s_{2}}(x)$ $(x\in B(x_{0}, r))$ .

Hence we have

$\frac{2}{k}r^{-2}\leq u_{s_{2}}^{p-1}(x’)\leq\max_{B(x_{0},r)}u_{s_{2}}^{p-1}(x)$

$\leq c^{p-1}\min_{B(x_{0},r)}u_{s_{2}}^{p-1}(x)\leq\frac{2c^{p-1}}{k}r^{-2}$ .

Thus we obtain

$k_{1}r^{-2/(p-1)}\leq u_{s_{2}}(x)\leq k_{2}r^{-2/(p-1)}$ ,

$k_{1}\equiv c^{-1}(\frac{2}{k})\frac{1}{p-1}$ , $k_{2}\equiv c(\frac{2}{k})\frac{1}{p-1}$

Q. $E.D$ .

\S 3. Proof of Lemma 2

Proof of Lemma 2. Since $u_{s}$ is a solution of $(P_{\lambda})$ with $\lambda=\lambda_{s}$ , $v_{s}(x)$

satisfies

$\triangle v_{s}+\frac{1}{p-1}|\nabla v_{s}|^{2}+(p-1)\frac{f(u_{s},\lambda_{s})}{u_{s}}=0$ .

On the other hand, by our assumption on $f$

$\frac{f(u,\lambda)}{u}\leq c_{1}+c_{2}u^{p-1}$ $(u\geq 1)$ .

Hence we get a differential inequality

$\triangle v_{s}+\frac{1}{p-1}|\nabla v_{s}|^{2}+(p-1)c_{3}e^{v_{s}}\geq 0$

$(c_{3}=c_{1}+c_{2})$ .

Therefore if we can estimate the term $|\nabla v_{s}|^{2}$ by $e^{v_{s}}$ , i.e.,

$|\nabla v_{s}|^{2}\leq c_{4}’e^{v_{3}}$ or $|\nabla u_{s}|^{2}\leq c_{4}u_{s}^{(p+1)}$ ,

then we get a differential inequality

$\triangle v_{s}+k’e_{s}^{v}\geq 0$

$(k’=(p-1)(c_{3}+c_{4}))$ .
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In the following we estimate the term $|\nabla u_{s}|^{2}$ by $u_{s}^{p+1}$ .

Set

$M_{s}\equiv\max_{B(x_{0},r)}u_{s}(x)$ , $m_{s}\equiv\min_{B(x_{0},r)}u_{s}(x)$ ,

and choose $K_{1}>\frac{M_{1}}{m_{1}}$ . Then by the continuity of $u_{s}(\subset C(\overline{\Omega}))$ in $s$ , we

have for some $s_{2}>0$

(6) $M_{s}\leq K_{1}u_{s}(x)$ $(x\in B(x_{0}, r))$

for $s_{2}\leq s\leq 1$ . On the other hand, by Sperb’s lemma [9; Lemma 5.1]

$P_{s}(x)\equiv\frac{|\nabla u_{s}(x)|^{2}}{2}+\int_{0}^{u_{s}(x)}f(t, \lambda_{s})dt$ $(x\in B(x_{0}, r))$

attains its maximum at the point where $\nabla u_{s}=0$ or on $\partial B(x_{0}, r)$ . Since
$x_{0}$ is a blowing-up point, we may assume that $P_{s}$ attains its maximum
where $\nabla u_{s}(x)=0$ . Hence we have

(7) $|\nabla u_{s}|^{2}\leq 2(c_{1}+\frac{c_{2}}{p+1})M_{s}^{p+1}$ $(x\in B(x_{0}, r))$

for $s_{2}\leq s\leq 1$ . By (6) and (7)

$\frac{|\nabla u_{s}|^{2}}{u_{s}^{2}}\leq 2K_{1}^{p+1}(c_{1}+\frac{c_{2}}{p+1})u_{s}^{p-1}$ .

Therefore we get a differential inequality

$\triangle v_{s}+K_{2}e^{v_{s}}\geq 0$ ; $K_{2}\equiv(2K_{1}^{p+1}(c_{1}+\frac{c_{2}}{p+1})+c_{3})(p-1)$ .

We may assume that

$K_{2}\geq 1$ , $K_{2}>k$ ,

where $k$ is the constant determined by (11) which is independent of
$x_{0},r,s_{2}$ . Note that $K_{2}$ depends on $x_{0},r,s_{2}$ . In the following we improve
the above differential inequality and obtain:

$\triangle v_{s}+ke^{v_{s}}\geq 0$ $(x\in B(x_{0}, r))$ .

If necessary, by choosing $r>0$ sufficiently small we may assume that

(8) $e^{v_{1}(x)}<\frac{2}{K_{2}}r^{-2}$ $(|x-x_{0}|\leq r)$ ,
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$ K_{2}\int_{B(x_{0},r)}e^{v_{1}(x)}dx<4\pi$ .

By the continuity of $v_{s}$ in $s$ , it follows that for some $s’>0$ , (8) holds for
all $s’\leq s\leq 1$ . Hence by Lemma 1 we have

(9) $e^{v_{s}(x_{O})}\leq 4[e^{v_{s}(x)}]_{r}<8r^{-2}$

for all $s’\leq s\leq 1$ . On the other hand, by Harnack’s theorem there exists
a constant $c’$ such that

$\max$ $u_{s}(x)\leq c’u_{s}(x_{0})$ .
$|x-x_{0}|\leq r$

Hence by (9) we have

$u_{s}(x_{s})\leq 2^{3/(p-1)}c’r^{-2/(p-1)}$ .

Applying Harnack’s theorem again we get

$u_{s}(x_{s})\leq cu_{s}(x)$ $(x\in B(x_{0}, r))$

for all $s’\leq s\leq 1$ . Here $c$ is a constant depending only on $p,c_{1},c_{2}$ . Then
repeating the above arguments we get a differential inequality

(10) $\triangle v_{s}+ke^{v_{s}}>0$ $(x\in B(x_{0}, r))$ ,

(11) $k\equiv(2c^{p+1}(c_{1}+\frac{c_{2}}{p+1})+c_{3})(p-1)$ .

Since $k<K_{2}$ , from the continuity of $u_{s}(x)$ in $s$ it follows that there
exists $s’’$ such that for all $s’’\leq S\leq 1$

(12) $u_{s}(x)^{p-1}\equiv e^{v_{s}(x)}<\frac{2}{k}r^{-2}$ $x\in B(x_{0}, r)$ ,

(13) $\int_{B(x_{O},r)}e^{v_{s}(x)}dx<\frac{4\pi}{k}$ .

Set
$ s^{*}\equiv\inf$ { $s’’$ : (10),(12) hold $fors’’\leq s\leq 1$ }

Suppose that $s_{1}<s^{*}$ . Then repeating the above argument we conclude
that a differential inequality (10) holds for all $s\in[s^{*}, 1]$ . This contradicts
the definition of $s^{*}$ . Thus we have $s^{*}=s_{1}$ . Q.E.D.



Blowing-up for Nonlinear Elliptic Equations 185

\S 4. Proof of Theorem $n \geq 3$

In this section we sketch the proof of Theorem when $n\geq 3$ . We may
assume that $ 0\not\in\Omega$ and introduce spherical coordinates:

$ x=r\omega$ $(r=|x|, \omega\in S^{n-1})$ .

Let $ x_{0}\in\Omega$ be a blowing-up point. Let $r_{0}>0$ be such that $ B(x_{0}, r_{0})\subset$

$\Omega$ .

Suppose that

$u_{s}(x)\leq|x-x_{0}|^{-2/(p-1)}$ $(x\in B(x_{0}, r_{0}))$ .

Then we have

$|u_{s}|_{C^{2}(B(x_{0},ro))}\leq c’(c_{1}+c_{2}M_{s}^{p})$ , $ M_{s}\equiv$ $\max u_{s}(x)$ .
$B(x_{0},r_{0})$

On the other hand, by Sperb’s lemma [9; Lemma 5.2] we get

$|\nabla u_{s}|^{2}\leq 2(c_{1}M_{s}+\frac{c_{2}}{p+1}M_{s}^{p+1})$ .

Hence $v_{s}\equiv(p-1)\ln u_{s}$ satisfies a differential inequality

$(v_{s})_{rr}+\frac{(v_{s})_{r}}{r}+c\frac{M_{s}^{p+1}}{u_{s}^{2}}\geq 0$ ,

where $c$ is a constant depending only on $\Omega,c_{1},c_{2}$ , and $p$ . We consider
$v_{s}(r\omega)$ a function $w_{s,\omega}(y)$ defined in $R^{2}$ near $|y|=|x_{0}|$ :

$w_{s,\omega}(y)\equiv v_{s}(r\omega)$ , $|y|=r$ , $y\in R^{2}$ .

Now we have a two-parameter family of functions $\{w_{s.\omega}\}_{s,\omega}$ . Repeating
similar arguments as in Sections 2 and 3 we can conclude the assertion
in Theorem. Q.E.D.



186 T. Itoh

References

[1] Atkinson, F. V., and Peletier, L. A., Elliptic equations with nearly crit-
ical growth, J. Diff. Eq., 70 (1987), 349-365.

[2] Bandle, C, Mean value theorems for functions satisfying the inequality
$\triangle u+Ke^{u}\geq 0$ , Arch. Rat. Mech. Anal., 51 (1973), 70-84.

[3] Brezis, H., and Nirenberg, L., Positive solutions of nonlinear elliptic
equations involving critical exponents, Comm. Pure Appl. Math., 36
(1983), 437-477.

[4] Brezis, H., and Peletier, L. A., Asymptotics for elliptic equations involv-
ing critical exponents, Eds. Colombini, F., Marino, A., Modica, L.,
and Spagnolo, S., in “Partial Differential Equations and the Calculus
of Variations”, Birkhauser, Basel, 1989, pp. 149-192.

[5] Gilbarg, D. and Trudinger, N. S., “Elliptic Partial Differential Equa-
tions of Second Order”, Second Edition, Springer-Verlag, Berlin, Hei-
delberg, New York, Tokyo, 1983.

[6] Han, Z. -C, Asymptotic approach to singular solutions for nonlinear
elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri
Poincar\’e, 6 (1991), 159-174.

[7] Itoh, T., Blow-up of solutions for semilinear parabolic equations, R.I.M. S.
K\^oky\^uroku, 679 (1989), 127-139.

[8] Rey, O., The role of Green’s function in a non-linear elliptic equation in-
volving the critical Sobolev exponent, J. Functional Anal., 89 (1990),
1-52.

[9] Sperb R., “!Maximum principles and their Applications”, Academic
Press, New York, London, Tronto, Sydney, San Francisco, 1981.

[10] Struwe, M., “Variational Methods–Applications to Nonlinear Partial
Differential Equations and Hamiltonian Systems”, Springer-Verlag,
Berlin, Heidelberg, 1990.

Department of Mathematics
Tokai University
Kitakaname Hiratsuka 259-12
Japan



Advanced Studies in Pure Mathematics 23, 1994
Spectral and Scattering Theory and Applications

pp. 187-209

Mapping Properties of Functions
of Schr\"odinger Operators

between $L^{p}$-Spaces and Besov Spaces

Arne Jensen and Shu Nakamura

Abstract.

Sufficient conditions are given for the boundedness of $f(H)$ , $H=$
$-\triangle+V$ , in $L^{p}(R^{d})$ , $ 1\leq p\leq\infty$ . Optimal results with respect to

the decay of $f$ are obtained for $L^{p}$ boundedness of $e^{-itH}f(H)$ and

the nearly-optimal norm-estimate $||e^{-itH}f(H)||_{\mathcal{B}(L^{p})}\leq C(1+|t|)^{\gamma}$ ,

$t$ $\in R$ , $\gamma>d|1/2-1/p|$ is proved. Results are also obtained on the

mapping properties of $e^{-itH}$ between certain Besov spaces.

\S 1. Introduction

In this paper we consider mapping properties of functions $f(H)$ of
a Schr\"odinger operator $H=-\triangle+V$ between $L^{p}$ spaces. Let $f$ be a
bounded Borel function on R. Then $f(H)$ is defined using the functional
calculus and is a bounded operator on $L^{2}(R^{d})$ . For $ 1\leq p<\infty$ the

operator $f(H)$ is densely defined on $L^{p}(R^{d})$ and one may ask whether it

can be extended to a bounded operator on $L^{p}(R^{d})$ . Results for $ p=\infty$

are obtained from those for $p=1$ via duality. If $ H=H_{0}=-\triangle$ , then
$f(H_{0})$ is a Fourier multiplier, and conditions for $L^{p}$ boundedness are
well-known. One of the goals of this paper is to extend to $f(H)$ results
ffom the theory of Fourier multipliers.

The results in this paper extend and complement the results ob-
tained in [JN]. The main new ingredient here is a scaling result. We also
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obtain several results on mapping properties between Besov spaces. To
state the results, we need some definitions. Our main assumption on the
potential $V$ is the following:

Assumption A. $V$ is real-valued function on $R^{d}$ , and it is de-
composed as $V(x)=V_{+}(x)-V_{-}(x)$ such that $V_{\pm}\geq 0$ , $V_{+}\in K_{d}^{1oc}$ and
$V_{-}\in K_{d}$ , where $K_{d}$ is the Kato class of potentials.

For the sake of completeness, we recall the definitions of $K_{d}$ and
$K_{d}^{1oc}$ (cf. $[S$ , Section A2] for details, discussion and examples):

Definition 1.1. $V\in K_{d}$ , if:

For $d\geq 3$ , $\lim_{r\rightarrow 0}\sup_{x\in R^{d}}\int_{|x-y|\leq r}\frac{|V(y)|}{|x-y|^{d-2}}dy=0$ ;

For $d=2$ , $\lim_{r\rightarrow 0}\sup_{x\in R^{d}}\int_{|x-y|\leq r}\log\{|x-y|^{-1}\}|V(y)|dy=0$ ;

For $d=1$ , $\sup_{x\in R^{d}}\int_{|x-y|\leq 1}|V(y)|dy<\infty$ .

$V\in K_{d}^{1oc}$ if $\chi_{\{|x|<R\}}(x)V(x)\in K_{d}$ for any $R>0$ , where $\chi_{\Omega}$ denotes the
characteristic function of $\Omega$ .

Let $V$ satisfy Assumption A. Then $H=-\triangle+V$ is defined on
$L^{2}(R^{d})$ using the quadratic form technique, see [S] for the details.

We consider functions in the following symbol class, which may be

denoted by $S^{\alpha}=S(\langle\lambda\rangle^{\alpha}, d\lambda^{2}/\langle\lambda\rangle^{2})$ in the notation of H\"ormander’s

$S(m, g)$-class of pseudodifferential operators. Here $\langle\lambda\rangle=(1+\lambda^{2})^{1/2}$ as
usual.

Definition 1.2. Let $\alpha\in R$ . $f\in S^{\alpha}$ if and only if $f\in C^{\infty}(R)$

and for any $k\geq 0$ ,

$|\partial_{\lambda}^{k}f(\lambda)|\leq C_{k}\langle\lambda\rangle^{\alpha-k}$ , $\lambda\in R$ .

We now describe our main results and the contents of the paper. In

\S 2 we prove three main theorems. The following result is a variant of
one of the results in [JN].

Theorem 1.3. $Let\in>0$ . If $f\in S^{-\in}$ , then $f(H)$ is extended to $a$

bounded operator in $L^{p}(R^{d})$ , $ 1\leq p\leq\infty$ .

The results in [JN] on the $t$-dependence of the norm of $e^{-itH}f(H)$

are extended in the following result:
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Theorem 1.4. Let 1 $\leq p\leq\infty$ and let $\beta>d|\frac{1}{2}-\frac{1}{p}|$ , $\gamma>$

$d|\frac{1}{2}-\frac{1}{p}|$ . If $f\in S^{-\beta}$ , then $e^{-itH}f(H)$ is bounded in $L^{p}(R^{d})$ and

$||e^{-itH}f(H)||\leq C\langle t\rangle^{\gamma}$ , $t\in R$ .

This result is optimal with respect to the decay of $f$ in the sense
that for $ H=H_{0}=-\triangle$ the $L^{p}$-boundedness of $e^{-itH_{0}}(H_{0}+1)^{-\gamma}$ implies
$\gamma\geq d|\frac{1}{2}-\frac{1}{p}|$ , see [Sj], For results with optimal $t$-estimates, see [JN] and

the comments in \S 2.
We prove the following resolvent estimate:

Theorem 1.5. Let $ 1\leq p\leq\infty$ and let $\beta=d|\frac{1}{2}-\frac{1}{p}|$ . Then there

exists $C>0$ such that

$||(H-z)^{-1}||_{B(L^{p})}\leq C\frac{\langle z\rangle^{\beta}}{|Imz|^{\beta+1}}$ , $z\not\in R$ .

This estimate was proved by Pang [P] with $\beta=d$ . Computing the
$L^{1}$ -norm of the explicit integral kernel of the ffee resolvent one finds that
this estimate holds with $\beta=(d-1)/2(p=1)$ . Thus we have no reason
to believe that our estimate is optimal.

An alternate method for obtaining $L^{p}$-boundedness of $f(H)$ can
be based on resolvent estimates as Theorem 1.5 and the representation
formula (cf. [HS])

$f(H)=\frac{1}{2\pi i}\int_{C}(\partial_{\overline{z}}\tilde{f}(z))(H-z)^{-1}dzd\overline{z}$ ,

where $\tilde{f}$ is an almost analytic continuation of $f$ . We discuss this ap-
proach and give some results in \S 3 and in the Appendix.

In \S \S 4-5 we obtain results on mapping properties of $e^{-itH}$ between
Besov spaces. We first introduce a class of generalized Besov spaces
and then show that under certain regularity assumptions on $V$ these
spaces can be identified with ordinary Besov spaces. Generalized Besov
spaces have previously been considered in [Pe] in a different context.
For one particular case this approach was also used in [JP]. The ad-

vantage of using the Besov spaces is that one obtains results for $e^{-itH}$

directly, avoiding the localization $f(H)$ . The main result is stated as
Theorem 5.2.
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\S 2. Scaling and $L^{p}$-estimates

In this section we show that estimates in [JN] are uniform with
respect to the scaling: $H\rightarrow\theta H$ , $0<\theta\leq 1$ , and apply it to improve
$L^{p}$-estimates for $f(H)$ and $e^{-itH}f(H)$ . Throughout this section, we
suppose $V$ satisfies Assumption A and assume $\sigma(H)\subseteq[0, \infty)$ without
loss of generality.

Theorem 2.1. Let 1 $\leq p\leq\infty$ , $\beta>d|\frac{1}{2}-\frac{1}{p}|$ , and let $ g\in$

$C_{0}^{\infty}(R)$ . Then there exists $C>0$ such that

(2.1) $||g(\theta H)e^{-it\theta H}||_{B(L^{p})}\leq C\langle t\rangle^{\beta}$ , $t$ $\in R$ ,

uniformly in $0<\theta\leq 1$ . In addition, the estimate is uniform with respect
to $g$ , if $g$ runs in a bounded set $G$ in $C_{0}^{\infty}$ , $i.e.$ , if there is $R>0$ such
that $suppg\subset[-R, R]$ and $|\partial_{\lambda}^{\alpha}g|\leq C_{\alpha}$ for any $\alpha$ and any $g\in G$ .

Proof. The scaling operator $U_{p}(\theta)$ on $L^{p}(R^{d})$ is given by

$U_{p}(\theta)\varphi(x)=\theta^{d/p}\varphi(\theta x)$ , $0<\theta\leq 1$ , $x\in R^{d}$ ,

and $U_{p}(\theta)$ is an isometry in $L^{p}(R^{d})$ . Then we have

$\theta H=U_{p}(\sqrt{\theta})^{-1}(H_{\theta})U_{p}(\sqrt{\theta})$

where $H_{\theta}=H_{0}+V_{\theta}$ and $V_{\theta}(x)=\theta V(\sqrt{\theta}x)$ . In particular, this holds for
$p=2$ , and by the functional calculus we learn

$f(\theta H)=U_{p}(\sqrt{\theta})^{-1}f(H_{\theta})U_{p}(\sqrt{\theta})$ ,

in $L^{2}(R^{d})$ , which in turn holds in any $L^{p}(R^{d})$ by a density argument.
Thus it suffices to show

(2.2) $||g(H_{\theta})e^{-itH_{\theta}}||_{B(L^{p})}\leq C\langle t\rangle^{\beta}$ , $t$ $\in R$

uniformly in $0<\theta\leq 1$ .
The idea of the proof is now to check all the computations in [JN]

in order to conclude that the proof of (2.2) with $\theta=1$ can be carried
out with constants uniform in $0<\theta\leq 1$ . It seems that two points in
the argument require some comments. We discuss only these two points
and omit other details.

At first, the proof of [$JN$ , Theorem 2.1] uses the Gaussian kernel

estimate for $e^{-tH}$ . We note that if $T$ on $L^{p}(R^{d})$ has an integral kernel
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$T(x, y)$ , then the scaled operator $T(\theta)=U_{p}(\sqrt{\theta})TU_{p}(\sqrt{\theta})^{-1}$ has the

integral kernel given by $\theta^{d/2}T(\sqrt{\theta}x, \sqrt{\theta}y)$ . Thus

$e^{-tH_{\theta}}=U_{p}(\sqrt{\theta})e^{-t\theta H}U_{p}(\sqrt{\theta})^{-1}$

has the integral kernel

(2.3) $e^{-tH_{\theta}}(x, y)=\theta^{d/2}(e^{-t\theta H})(\sqrt{\theta}x, \sqrt{\theta}y)$ .

On the other hand, under Assumption $A$ , the integral kernel of $e^{-tH}$

satisfies the bound

$|e^{-tH}(x, y)|\leq C_{\in}t^{-d/2}e^{Lt}\exp(-\frac{|x-y|^{2}}{4(1+\in)t})$ , $t>0$ , $x$ , $y\in R^{d}$ ,

for. some $L>0$ and any $\epsilon>0$ (see, e.g., $[S$ , Theorem B.6.7] or [D]).

Hence $e^{-t\theta H}$ satisfies

(2.3) $|e^{-t\theta H}(x, y)|\leq C_{\Xi}\theta^{-d/2}t^{-d/2}e^{L\theta t}\exp(-\frac{|x-y|^{2}}{4(1+\epsilon)\theta t})$ .

Combining (2.3) and (2.4), we derive

$|e^{-tH_{\theta}}(x, y)|\leq C_{\Xi}t^{-d/2}e^{L\theta t}\exp(-\frac{|x-y|^{2}}{4(1+\epsilon)t})$

$\leq C_{\in}t^{-d/2}e^{Lt}\exp(-\frac{|x-y|^{2}}{4(1+\in)t})$ ,

which is uniform in $0<\theta\leq 1$ .
The second part is concerned with the commutator estimates in $[JN$ ,

\S 3], where we need to have estimates for the operator norms on $L^{2}(R^{d})$

for $||(H_{\theta}+M)^{-1/2}||$ and $||\partial_{x}(H_{\theta}+M)^{-1/2}||$ on $L^{2}(R^{d})(M>0$ is a
sufficiently large constant). The former one is clear because it is bounded

by $M^{-1/2}$ . The latter follows once more from the scaling argument:

$||\partial_{x}(H_{\theta}+M)^{-1/2}||=||\partial_{x}U_{2}(\sqrt{\theta})(\theta H+M)^{-1/2}U_{2}(\sqrt{\theta})^{-1}||$

$=||(U_{2}(\sqrt{\theta})^{-1}\partial_{x}U_{2}(\sqrt{\theta}))(\theta H+M)^{-1/2}||$

$=||\partial_{x}(H+\theta^{-1}M)^{-1/2}||\leq||\partial_{x}(H+M)^{-1/2}||$ .

Remark 2.2. Under additional assumptions, e.g., if $d\leq 3$ , we know
that (2.1) holds with $\theta=1$ , $\beta=d|1/2-1/p|$ (see [$JN$ , Theorems 1.4,
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5.2]). In these cases, the estimate also holds with $\beta=d|1/2-1/p|$

uniformly in $0<\theta\leq 1$ . The modifications needed are essentially the
same as above, so we omit the details.

Proof of Theorem 1.3. Without loss of generality, we may suppose
$suppf\subset[-1, \infty)$ . We choose $\varphi\in C_{0}^{\infty}(1/2,2)$ so that

$\sum\infty\varphi(2^{n}\lambda)=1$ , $\lambda>0$ .
$ n=-\infty$

We let
$\varphi_{k}(\lambda)=\varphi(2^{-k}\lambda)$ , $\lambda\in R$ , $k=1,2$ , $\ldots$ ,

and let $\varphi 0(\lambda)\in C_{0}^{\infty}(R)$ such that

$\varphi 0(\lambda)+\sum_{k=1}^{\infty}\varphi_{k}(\lambda)=1$ , $\lambda\geq-1$ .

We decompose $f$ using $\{\varphi_{k}(\lambda)\}$ as follows:

$f(\lambda)=\sum_{k=0}^{\infty}f(\lambda)\varphi_{k}(\lambda)=\sum_{k=0}^{\infty}f_{k}(2^{-k}\lambda)$ ,

where $f_{k}(\mu)=\varphi(\mu)f(2^{k}\mu)$ for $k\geq 1$ . Then it is easy to see that
$suppf_{k}\subset(1/2,2)$ for $k\geq 1$ , and

$|\partial_{\mu}^{\alpha}f_{k}(\mu)|\leq C_{\alpha}2^{k\alpha}\langle 2^{k}\mu\rangle^{-\in-\alpha}\leq C_{\alpha}2^{-\in k}$ , $\mu\in R$ , $k\geq 0$ .

Hence $\{2^{\in k}f_{k}(\mu)\}_{k=0}^{\infty}$ is a bounded set in $C_{0}^{\infty}(R)$ . By Theorem 2.1, we
learn

(2.5) $||f_{k}(2^{-k}H)||_{B(L^{p})}\leq C2^{-\in k}$ , $k\geq 0$ .

Thus we conclude

$||f(H)||_{B(L^{p})}\leq\sum_{k=0}^{\infty}||f_{k}(2^{-k}H)||_{B(L^{p})}\leq C\sum_{k=0}^{\infty}2^{-\in k}<\infty$ .
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Proof of Theorem 1.4. Let $f\in S^{-\beta}$ with $\beta>d|1/2-1/p|$ and fix
$\gamma$ so that $ d|1/2-1/p|<\gamma<\beta$ . Let $\varphi_{k}$ and $f_{k}$ be chosen as in the
proof of Theorem 1.3. Then by the above argument and Theorem 2.1,
we learn

$||e^{-it\theta H}f_{k}(\theta H)||_{B(L^{p})}\leq C2^{-\beta k}\langle t\rangle^{\gamma}$ , $t$ $\in R$ , $k\geq 0,0<\theta\leq 1$ .

Setting $\theta=2^{-k}$ , $t=2^{k}s$ , we have

$||e^{-isH}f_{k}(2^{-k}H)||_{B(L^{p})}\leq C2^{-\beta k}\langle 2^{k}s\rangle^{\gamma}\leq C2^{-(\beta-\gamma)k}\langle s\rangle^{\gamma}$

Summing over $k$ we obtain

$||e^{-isH}f(H)||_{B(L^{p})}\leq\sum_{k=0}^{\infty}||e^{-isH}f_{k}(2^{-k}H)||_{B(L^{p})}$

$\leq C\langle s\rangle^{\gamma}\sum_{k=0}^{\infty}2^{-(\beta-\gamma)k}\leq C\langle s\rangle^{\gamma}$

Lemma 2.3. Let $m>d/2$ be an integer. Then there exists $C>0$

such that for $z\in\{z\in C\backslash R||z|\leq 2\}$ ,

(2.6) $||(H-z)^{-1}(H+1)^{-m}||_{B(L^{1})}\leq C|Imz|^{-1-d/2}$ .

Moreover, the estimate holds uniformly in $\theta\in(0,1]$ , if we replace $H$ by
$\theta H$ .

Proof. The idea is to mimic the proof of [$JN$ , Theorems 1.1, 1.3],
so we give only a sketch. For the notation and the details, we refer to
[JN].

By commutator computations as in the proof of [$JN$ , Lemma 3.2],
we have

$\sup_{n\in Z^{d}}||\langle\cdot-n\rangle^{l}(H-z)^{-1}\langle\cdot-n\rangle^{-l}||\leq C_{l}|Imz|^{-l-1}$

for $z\in\{z\in R\backslash R||z|\leq 2\}$ with any $l$ $\in N$ . This implies

$|||(H-z)^{-1}|||_{l}\equiv||(H-z)^{-1}||+\sup_{n\in Z^{d}}||\langle\cdot-n\rangle^{l}(H-z)^{-1}\chi_{C(n)}||$

$\leq C|Imz|^{-l-1}$ .
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We let $l$ $>d/2$ and apply [$JN$ , Theorem 2.4] to obtain

$||(H-z)^{-1}||_{B(l^{1}(L^{2}))}\leq C|||(H-z)^{-1}||\left|\begin{array}{l}d/2l\\l\end{array}\right||(H-z)^{-1}||_{B(L^{2})}^{1-d/2l}$

$\leq C|Imz|^{-(l+1)d/2l}|Imz|^{-(1-d/2l)}$

$=C|Imz|^{-1-d/2}$

On the other hand, $(H+1)^{-m}$ is bounded from $L^{1}(R^{d})$ to $l^{1}(L^{2})([JN$ ,
Theorem 2. 1]), hence

$||(H-z)^{-1}(H+1)^{-m}||_{B(L^{1})}$

$\leq||(H-z)^{-1}||_{B(l^{1}(L^{2}),L^{1})}||(H+1)^{-m}||_{B(L^{1},l^{1}(L^{2}))}$

$\leq C||(H-z)^{-1}||_{B(l^{1}(L^{2}))}\leq C|Imz|^{-1-d/2}$

The proof of the last statement is analogous to the proof of Theorem 2.1,
so we omit the details.

Proof of Theorem 1.5. It suffices to consider the case $p=1$ . Other
cases follow by complex interpolation. We let $\beta=d/2$ and let $m>d/2$
be an integer. We first consider the case $|z|\leq 2$ . We write $z=x+i,y$ ,
and suppose $0<y<2$ . By iterations of the first resolvent equation
(recall that we assume $\sigma(H)\subseteq[0,$ $\infty$ ) $)$ , we have

(2.7) $(H-z)^{-1}=\sum_{k=1}^{m}(z+1)^{k-1}(H+1)^{-k}+(z+1)^{m}(H-z)^{-1}(H+1)^{-m}$ .

The first term is uniformly bounded, and we estimate the second term
by Lemma 2.3 to obtain

(2.8) $||(H-z)^{-1}||_{B(L^{1})}\leq C|Imz|^{-\beta-1}$ , $|z|\leq 2$ .

Now we use the scaling argument again. By the last statement in
Lemma 2.3 we may replace $H$ by $\theta H$ in (2.8) :

$||(\theta H-z)^{-1}||_{B(L^{1})}\leq C|Imz|^{-\beta-1}$ , $|z|\leq 2,0<\theta\leq 1$ .

For $|z|>1$ , we let $z=|z|\cdot\hat{z}$ , $|\hat{z}|=1$ , and let $\theta=|z|^{-1}$ . Then we obtain

$||(H-z)^{-1}||_{B(L^{1})}=||(|z|(|z|^{-1}H-\hat{z}))^{-1}||_{B(L^{1})}$

$=|z|^{-1}||(\theta H-\hat{z})^{-1}||_{B(L^{1})}$

$\leq C|z|^{-1}|Im\hat{z}|^{-\beta-1}=C|z|^{\beta}|Imz|^{-\beta-1}$ .
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This completes the proof.

Remark 2.4. We could have used Theorem 1.4 instead of Lemma 2.3
to estimate the second term in the right hand side of (2.7). This gives,
however, a slightly weaker result, namely, the estimate with $\beta>d|1/2-$

$1/p|$ .

\S 3. The almost analytic continuation and $L^{p}$-boundedness

In this section we discuss an alternative approach to the proof of
the $L^{p}$-boundedness of functions of Schr\"odinger operators. The idea
is to combine the almost analytic continuation method with resolvent
estimates.

We introduce the following definition concerning the almost analytic
continuation. A construction is discussed in the Appendix, and it is used
in the proof of Theorem 3.3.

Definition 3.1. Let $f\in S^{\alpha}$ for some $\alpha\in R$ . A function $\tilde{f}$ on $C$

is called an almost analytic continuation of $f$ , if it satisfies

(1) $\tilde{f}$ is a smooth function on $C$ and $\tilde{f}(x)=f(x)$ for $x\in R$ .
(2) For any $N\geq 0$ ,

(3.1) $|\partial_{\overline{z}}\tilde{f}(z)|\leq C_{N}\langle z\rangle^{\alpha-1-N}|Imz|^{N}$ , $z\in C$ ,

where $\partial_{\overline{z}}\tilde{f}(x+iy)=(\partial_{x}+i\partial_{y})\tilde{f}(x+iy)$ .

If $f\in S^{-\in}$ , $\epsilon>0$ , and if $A$ is a selfadjoint operator in a Hilbert
space, then it is known that $f(A)$ can be represented by the almost
analytic continuation of $f$ and the resolvent of $A$ :

(3.2) $f(A)=\frac{1}{2\pi i}\int_{C}(\partial_{\overline{z}}\tilde{f}(z))(A-z)^{-1}dzd\overline{z}$

(see [HS] and $[G$ , Appendix]).

In order to apply this formula to Schr\"odinger operators on $L^{p}(R^{d})$ ,
we need a priori estimates for the resolvent. Since the discussion of
this section is methodological in its nature, we start from the following
hypothesis, which includes the result of Theorem 1.5 as a special case.

Hypothesis $(RE(\beta))$ . Let $H$ be a Schr\"odinger operator on an
$L^{p}(R^{d})$ -space. We say that $H$ satisfies $RE(\beta)$ , if

$||(H-z)^{-1}||_{\mathcal{B}(L^{p})}\leq C\frac{\langle z\rangle^{\beta}}{|Imz|^{\beta+1}}$ , $z\in C\backslash R$ .
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Theorem 3.2. Suppose $H$ satisfies Hypothesis $RE(\beta)$ on $IP(R^{d})$

with $\beta\geq 0$ , and suppose $f\in S^{-\in}with$ $\epsilon>0$ . Then $f(H)$ is extended to

a bounded operator in $L^{p}(R^{d})$ .

Proof. We take $ N>\beta$ , construct the almost analytic continuation,
and then apply (3.1) and (3.2) to obtain

$||f(H)||_{B(L^{p})}\leq\frac{1}{2\pi}\int_{C}C\frac{\langle z\rangle^{\beta}}{|Imz|^{\beta+1}}\langle z\rangle^{-\in-1-N}|Imz|^{N}dzd\overline{z}$

$\leq C\int_{C}\frac{\langle z\rangle^{-1-\in-(N-\beta)}}{|Imz|^{1-(N-\beta)}}dzd\overline{z}<\infty$ .

Theorem 1.3 follows easily from Theorem 3.2 and Theorem 1.5 (the
proof of which is independent of Theorem 1.3) or a result by Pang [P],
We can also prove an analogue of Theorem 1.4 using the same idea. To
simplify the argument, we consider only the case $f\in C_{0}^{\infty}(R)$ .

Theorem 3.3. Suppose $H$ satisfies $RE(\beta)$ on $L^{p}(R^{d})$ with $\beta\geq 0$

and let $f\in C_{0}^{\infty}(R)$ . Then for any $\gamma>\beta+1$ ,

(3.1) $||e^{-itH}f(H)||_{\mathcal{B}(L^{p})}\leq C\langle t\rangle^{\gamma}$ , $t\in R$ .

Proof. Let $f_{t}(x)=e^{-itx}f(x)$ . Then it is easy to see that for any
$s>0$ , $||f_{t}||_{H^{s}}\leq C_{s}\langle t\rangle^{s}$ , $t\in R$ . Hence, by Lemma A.2 we learn

$\int_{C}|Im$ $z|^{-\gamma+\in}|\partial_{\overline{z}}\tilde{f}_{t}(z)|dzd\overline{z}\leq C_{\in}\langle t\rangle^{\gamma}$ , $\epsilon>0$ , $t$ $\in R$ ,

where $\tilde{f_{t}}(z)$ is the almost analytic continuation of $f_{t}$ as constructed in
the Appendix. Now letting $\in=\gamma-\beta-1>0$ , we obtain ffom $RE(\beta)$

$||e^{-itH}f(H)||_{B(L^{p})}\leq\frac{1}{2\pi}\int|\partial_{\overline{z}}\tilde{f}_{t}(z)|||(H-z)^{-1}||_{\mathcal{B}(L^{p})}dzd\overline{z}$

$\leq C\int\frac{\langle z\rangle^{\beta}}{|Imz|^{\beta+1}}|\partial_{\overline{z}}\tilde{f}_{t}(z)|dzd\overline{z}$

$\leq C\int|Imz|^{-\gamma+\in}|\partial_{\overline{z}}\tilde{f}_{t}(z)|dzd\overline{z}$

$\leq C\langle t\rangle^{\gamma}$ ,
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since $\tilde{f}_{t}$ is compactly supported.

Combining this result with Theorem 1.5, we obtain (3.3) with $\gamma>$

$1+d/2$ for $p=1$ . Thus this direct approach does not give the optimal
result. Even if we had $RE((d-1)/2)$ (ffee case), we would only get

(3.3) with $\gamma>(d+1)/2$ . We have lost at least order $o(\langle t\rangle^{1/2})$ in
this procedure. There is another possibility, however. In the proof of
Theorem 2.1 (or Theorem 1 in [JN]), the representation

$f(H)=\int_{-\infty}^{\infty}e^{-isR}g(s)ds$ , $R=(H+M)^{-1}$ ,

is used to obtain estimates for $|||f(H)|||_{\beta}$ and $|||e^{-itH}f(H)|||_{\beta}$ (see the

proof of Lemma 2.3 for the definition of $\Downarrow|\cdot|||_{\beta}$ ). An alternative is to use

the representation (3.2) instead, and then we obtain optimal estimates
for the $t$-dependence.

Remark 3.4. The almost analytic continuation technique was in-

troduced by L. H\"ormander in a series of lectures on Fourier integral
operators held in 1969, see also [HI] and [H2, Chapter 3]. It was used
extensively by A. Melin and J. Sj\"ostrand in their work on Fourier in-
tegral operators with complex phase functions. The representation for-
mula (3.2) first appeared in [HS], and has recently been used extensively
in the study of many-body Schr\"odinger operators.

Remark 3.5. An axiomatic approach to the functional calculus
based on (3.2) and $RE(\beta)$ has been given by Davies [D2].

\S 4. Generalized Besov spaces

Throughout this section we consider a fixed selfadjoint operator $H$

on the Hilbert space $L^{2}(R^{d})$ . Our goal is to associate with $H$ a family
of spaces in such a manner that this family becomes the usual Besov
spaces for $ H=-\triangle$ . We define the spaces for an arbitrary selfadjoint
operator on $L^{2}(R^{d})$ , under certain assumptions on this operator, which
are verified for $H=-\triangle+V$ by Theorem 2.1.

Assumption 4.1. For any $\varphi\in C_{0}^{\infty}(R)$ let $\varphi(H)$ denote the
bounded operator on $L^{2}(R^{d})$ obtained via the functional calculus. As-

sume that $\varphi(H)$ extends to a bounded operator on $L^{p}(R^{d})$ , $ 1\leq p\leq\infty$ .

REMARK. As mentioned in \S 1 the operator $\varphi(H)$ on $L^{\infty}(R^{d})$ is ob-

tained as the adjoint of the corresponding operator on $L^{1}(R^{d})$ , hence is
uniquely determined.
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Assumption 4.2. Let $H$ satisfy Assumption 4.1. Let $\varphi\in C_{0}^{\infty}(R)$ .
Assume that for any $p$ , $ 1\leq p\leq\infty$ , $||\varphi(\theta H)||_{B(L^{p})}\leq c$ for all $\theta\in[0,1]$ ,

with $c$ independent of $\theta$ .

If $V$ satisfies Assumption $A$ , then $H=-\triangle+V$ satisfies Assump-
tion 4.2 by Theorem 2.1 (with $t=0$ ). Fix $\varphi\in C_{0}^{\infty}(R)$ with $supp(\varphi)\subseteq$

$\{\lambda|1/4\leq|\lambda|\leq 4\}$ and

$\sum\infty\varphi(4^{-j}\lambda)=1$ , $\lambda\neq 0$ .
$ j=-\infty$

Define

$\psi_{0}(\lambda)=1-\sum_{j=1}^{\infty}\varphi(4^{-j}\lambda)$ , $\lambda\in R$ ,

and
$\psi_{j}(\lambda)=\varphi(4^{-j}\lambda)$ , $j=1,2$ , $\ldots$ , $\lambda\in R$ .

Definition 4.3. Let $H$ satisfy Assumption 4.2. Let $p$ , $q$ , $s$ satisfy
$ 1\leq p\leq\infty$ , $ 1\leq q<\infty$ , and $s\geq 0$ . For $v\in L^{p}(R^{d})$ define

(4.1) $||v||_{B_{p}^{s,q}(H)}=(\sum_{j=0}^{\infty}(2^{sj}||\psi_{j}(H)v||_{p})^{q})1/q$

For $ q=\infty$ the definition is modified in the obvious way. The generalized
Besov space is defined by

$B_{p}^{s,q}(H)=\{v\in L^{p}(R^{d})|||v||_{B_{p}^{s,q}(H)}<\infty\}$ .

Lemma 4.4. Let $H$ satisfy Assumption 4.1. Let $u\in L^{p}(R^{d})$ .

Then

$||u||_{p}\leq\sum_{j=0}^{\infty}||\psi_{j}(H)u||_{p}$ ,

where the sum may $ equal+\infty$ .

Proof. Let $ 1\leq p<\infty$ . If $u\in L^{p}(R^{d})\cap L^{2}(R^{d})$ , then we have
$u=\sum_{j=0}^{\infty}\psi_{j}(H)u$ , and the assertion is clear. It follows for general
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$u\in L^{p}(R^{d})$ by the density argument. The case $ p=\infty$ follows by the
duality argument.

Proposition 4.5. For $s>0,1\leq p$ , $ q\leq\infty$ and $s=0$ , $q=1$ ,
$ 1\leq p\leq\infty$ , the space $B_{p}^{s,q}(H)$ is a Banach space with the norm given

by (4.1). It is a subspace of $L^{p}(R^{d})$ .

Proof. It is easy to see that (4.1) defines a norm on $B_{p}^{s,q}(H)$ . Let
$(v^{k})_{k\in N}$ be a Cauchy sequence in $B_{p}^{s,q}(H)$ . Consider first the case $q=1$ .

Then by Lemma 4.4 and $s\geq 0$

$||u||_{p}\leq\sum_{j=0}^{\infty}||\psi_{j}(H)u||_{p}\leq\sum_{j=0}^{\infty}2^{sj}||\psi_{j}(H)u||_{p}=||u||_{B_{p}^{s,1}(H)}$

Let $q>1$ . Let $q^{J}$ denote the exponent conjugate to $q$ . Then $ q’<\infty$ and
for $s>0$ we have

$||u||_{p}\leq\sum_{j=0}^{\infty}||\psi_{j}(H)u||_{p}\leq(\sum_{j=\circ}^{\infty}2^{-sjq’)}1/q^{J}||u||_{B_{p}^{s,q}(H)}$ .

In either case we conclude that $B_{p}^{s,q}(H)$ is a subspace of $L^{p}(R^{d})$ and

that the given sequence $(v^{k})_{k\in N}$ is a Cauchy sequence in $L^{p}(R^{d})$ , hence

convergent in $L^{p}$ to a limit $v\in L^{p}(R^{d})$ . Define

$\xi_{j}^{k}=2^{sj}||\psi_{j}(H)v^{k}||_{p}$

$\xi_{j}=2^{sj}||\psi_{j}(H)v||_{p}$ .

Then $\xi_{j}^{k}\rightarrow\xi_{j}$ as $ k\rightarrow\infty$ for each $j=0,1$ , 2, $\ldots$ . Furthermore, since

$||v^{k}||_{B_{p}^{s,q}(H)}\leq c$ for all $k$ , we conclude that $(\xi_{j})_{j\in N}\in\ell^{q}(N)$ .

We have now proved $v\in B_{p}^{s,q}(H)$ . It remains to prove convergence

of the sequence $\xi^{k}=(\xi_{j}^{k})_{j\in N}$ to $\xi=(\xi_{j})_{j\in N}$ in $\ell^{q}(N)$ . Since $(\xi^{k})_{k\in N}$ is

a Cauchy sequence in $\ell^{q}(N)$ and the components converge, this result is
straightforward to prove. Details are omitted.

Now we prove a mapping property of $e^{-itH}$ between abstract Besov
spaces associated with $H$ .

Theorem 4.6. Let $V$ satisfy Assumption A and let $H=-\triangle+V$ .

Assume $s\geq 0,1\leq p$ , $ q\leq\infty$ , and $\beta>d|\frac{1}{2}-\frac{1}{p}|$ . Then

(4.2) $e^{-itH}\in B(B_{p}^{s+2\beta,q}(H), B_{p}^{s,q}(H))$
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with norm bounded by $c\langle t\rangle^{\beta}$ .

Remark 4.7. Note that the above result holds with $\beta=d|\frac{1}{2}-\frac{1}{p}|$

under restrictions on $d$ (e.g. $d\leq 3$ ) or under additional assumptions on
$V$ , see $[JN, \S 5]$ .

Proof. Fix $\chi\in C_{0}^{\infty}(R)$ such that $\varphi(\lambda)=\chi(\lambda)\varphi(\lambda)$ for all $\lambda\in R$ .
For $j\geq 1$ and $u\in L^{p}(R^{d})$ we have ffom Theorem 2.1

$2^{sj}||\varphi(4^{-j}H)e^{-itH}u||_{p}=2^{sj}||\chi(4^{-j}H)e^{-i(4^{j}t)4^{-j}H}\varphi(4^{-j}H)u||_{p}$

$\leq c2^{j(s+2\beta)}\langle t\rangle^{\beta}||\varphi(4^{-j}H)u||_{p}$ .

The estimate for $j=0$ follows ffom Theorem 2.1. The result now follows
ffom the definition of the norm (4.1) and the covering argument.

We note the following results, which are useful in the next section.

Proposition 4.8. Let $V$ satisfy Assumption A. Assume $1\leq p$ , $q$ , $q_{1}$

$\leq\infty$ and $s\geq s_{1}>0$ . If either $s>s_{1}$ or $s=s_{1}$ and $q\leq q_{1}$ , the $B_{p}^{s,q}(H)$

is continuously embedded in $B_{p}^{s_{1},q_{1}}(H)$ .

Proof. The argument in the proof of [BTW, Theorem 2.2.1] carries
over unchanged to our generalized Besov spaces.

Lemma 4.9. Let $V$ satisfy Assumption A and let $ s\geq 0,1\leq$

$p$ , $ q\leq\infty$ . Let $M\in R$ . The $B_{p}^{s}$
’$q(H+M)=B_{p}^{s,q}(H)$ with equivalent

norms.

Proof. A simple covering argument, which is omitted.

\S 5. Identification with ordinary Besov spaces

We have chosen the definition of $B_{p}^{s,q}(H)$ in such a manner that for
$ H=-\triangle$ this space is identical with the usual Besov space, which we
here denote $B_{p}^{s,q}$ . In applications it is of interest to know conditions on
$V$ which imply $B_{p}^{s,q}(H)=B_{p}^{s,q}$ (with equivalent norms).

Our result on this question is based on the real interpolation method
and interpolation spaces defined via semigroups. We refer to [BL] for
the results needed. We recall a few results ffom [$BL$ , Section 6.7]. Let
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$G(t)$ , $t>0$ , be a strongly continuous bounded semigroup on a Banach
space $\mathcal{X}$ with infinitesimal generator $\Lambda$ . For $u\in \mathcal{X}$ define

$\omega(t, u)=\sup_{s<t}||G(s)u-u||_{\mathcal{X}}$ .

The real interpolation method constructs a family of Banach spaces
between the domain $D(\Lambda)$ of $\Lambda$ (with the graph norm) and $\mathcal{X}$ , denoted
$(\mathcal{X}, D(\Lambda))_{\theta,q}$ , $ 0<\theta<1,1\leq q\leq\infty$ . In [$BL$ , Theorem 6.7.3] it is shown
that the norm $||u||_{(\mathcal{X},D(\Lambda))_{\theta,q}}$ is equivalent to the norm given by

(5.1) $||u||_{\mathcal{X}}+(\int_{0}^{\infty}t^{-\theta q-1}\omega(t, u)^{q}dt)^{1/q}$

The usual IF-type Sobolev space of order $m\in N$ is denoted $W_{p}^{m}(R^{d})$ .

Assumption $B(p, m)$ . Let $ 1\leq p\leq\infty$ and let $m\in N$ . Let $V$

satisfy Assumption $A$ , and let $H=-\triangle+V$ . Assume there exists $M$ $\geq 0$

such that $(H+M)^{-m}$ is a bounded map from $L^{p}(R^{d})$ to $W_{p}^{m}(R^{d})$ with

a bounded inverse.

Theorem 5.1. Let $V$ satisfy Assumption $B(p, m)$ for some $ m\in$

$N$ and $ 1\leq p\leq\infty$ . Then for $ 1\leq q\leq\infty$ , $0<s<2m$ , $B_{p}^{s,q}(H)=B_{p}^{s,q}$

(with equivalent norms).

Proof. Let $V$ satisfy Assumption $B(p, m)$ . We first show that
$-(H+M)^{m}-L$ generates a strongly continuous bounded semigroup

with $M$ , $L>0$ and the domain of the generator is $W_{p}^{m}(R^{d})$ . Without

loss of generality we may assume $M=0$ and $H>1$ . Then by Theo-
rem 1.3, $U(t)=e^{-tH^{m}}$ is bounded in $L^{p}(R^{d})$ . Moreover, by Theorem 2.1
$U(t)=e^{-(t^{1/m}H)^{m}}$ is uniformly bounded with respect to $t\in(0,1]$ .

Hence there is $L\in R$ such that $||U(t)||_{B(L^{p})}\leq Ce^{Lt}$ for any $t>0$ . Thus

$-(H^{m}+L)$ generates a bounded $C_{0}$ semigroup. The strong continu-

ity follows from the fact that it is strongly continuous in $L^{2}(R^{d})$ . The
expression of the resolvent by the semigroup:

$(\Lambda+K)^{-1}=-\int_{0}^{\infty}e^{-Kt}U(t)dt$ , $K>L$ ,

where $\Lambda$ is the generator of $U(t)$ , implies $(H^{m}+K)^{-1}=(\Lambda+K)^{-1}$ ,

and hence the domain of $\Lambda$ is $W_{p}^{m}(R^{d})$ . We assume $L=0$ in the sequel

in order to simplify the notation.
Now we let $\Lambda=-H^{m}$ and let $G(t)$ , $t>0$ , denote the semigroup

generated by $\Lambda$ . Let $D$ $=D(\Lambda)=W_{p}^{m}(R^{d})$ . Note that the usual Sobolev
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norm and the graph norm of $\Lambda$ are equivalent norms on $D$ , as can be
seen using the closed graph theorem.

Fix $q$ , $ 1\leq q<\infty$ (the case $ q=\infty$ requires obvious modifications

in the arguments below) and $s$ , $0<s<2m$ . Define $\theta=\frac{s}{2m}$ . It follows

from the real interpolation method (see [BL]) that

$B_{p}^{s,q}=(L^{p}, D)_{\theta,q}$ .

Thus to prove the theorem it suffices to prove

$B_{p}^{s,q}(H)=(L^{p}, D)_{\theta,q}$

with equivalent norms. We follow essentially the arguments in $[BL,$ $p$ .
160-1]. Let $\varphi$ , $\psi_{j}$ denote the functions from \S 4 used in our definition of
the generalized Besov spaces.

Assume first $u\in(L^{p}, D)_{\theta,q}$ . Let $\Phi(\lambda)=\varphi(\lambda)(\exp(-\lambda^{m})-1)^{-1}$ , $\lambda\in$

R. Note $\Phi\in C_{0}^{\infty}(R)$ . Using Theorem 2.1 we find $||\Phi(4^{-j}H)||_{B(L^{p})}\leq c$

for $j=0,1$ , 2, $\ldots$ . Therefore

$||\psi_{j}(H)u||_{p}=||\Phi(4^{-j}H)(G(4^{-mj})-1)u||_{p}\leq c\omega(4^{-mj}, u)$ .

Using (4.1) we conclude

$||u||_{B_{p}^{s,q}(H)}\leq c(||u||_{p}+(\sum_{j=0}^{\infty}(2^{sj}\omega(2^{-2mj}, u))^{q})1/q)$ .

Since $\omega(t, u)$ is an increasing function of $t$ and we have

$\int_{2^{-2mj}}^{2^{-2m(j-1)}}t^{-\theta q-1}dt=c2^{2m\theta jq}=c2^{sjq}$ ,

we get

$\sum_{j=0}^{\infty}2^{sjq}\omega(2^{-2mj}, u)^{q}=c\sum_{j=0}^{\infty}\int_{2^{-2mj}}^{2^{-2m(j-1)}}t^{-\theta q-1}\omega(2^{-2mj}, u)^{q}dt$

$\leq c\sum_{j=0}^{\infty}\int_{2^{-2mj}}^{2^{-2m(j-1)}}t^{-\theta q-1}\omega(t, u)^{q}dt$

$\leq c\int_{0}^{\infty}t^{-\theta q-1}\omega(t, u)^{q}dt$ .
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Using (5.1) we conclude

(5.2) $||u||_{B_{p}^{s,q}(H)}\leq c||u||_{(L^{p},D)_{\theta,q}}$

which proves the first half of the theorem. To prove the second half,
assume $u\in B_{p}^{s,q}(H)$ . Theorem 2.1 implies

$||\Lambda\psi_{j}(H)u||_{p}\leq c4^{mj}||\psi_{j}(H)u||_{p}$ , $j=0,1$ , 2, $\ldots$ .

Using

$||G(s)u-u||_{p}\leq\int_{0}^{s}||G(\tau)\Lambda u||_{p}d\tau$

and
$||G(s)u-u||_{p}\leq 2||u||_{p}$

we get (see also Lemma 4.4)

$\omega(t, u)\leq c\sum_{j=0}^{\infty}\min\{1, t4^{mj}\}||\psi_{j}(H)u||_{p}$ .

We estimate the integral term in (5.1). The integral is split as

(5.3) $\int_{0}^{\infty}\cdots dt$ $=\int_{1}^{\infty}\cdots dt+\sum_{k=0}^{\infty}\int_{4^{-m(k+1)}}^{4^{-mk}}\cdots dt$ .

We introduce the notation $\alpha_{j}=||\psi_{j}(H)u||_{p}$ . For $t\in(4^{-m(k+1)}, 4^{-mk})$

we have $\min\{1, t4^{mj}\}=1$ , if $j\geq k+1$ , and $\min\{1, t4^{mj}\}=t4^{mj}$ , if
$j\leq k$ . This result is inserted in the sum in (5.3) to get

$\sum_{k=0}^{\infty}\int_{4^{-m(k+1)}}^{4^{-mk}}t^{-\theta q-1}(\sum_{j=0}^{k}t4^{mj}\alpha_{j}+\sum_{j=k+1}^{\infty}\alpha_{j})qdt$

$\leq c\sum_{k=0}^{\infty}[\sum_{j=0}^{k}4^{mj-(1-\theta)mk}\alpha_{j}]q+c\sum_{k=0}^{\infty}[\sum_{j=k+1}^{\infty}4^{\theta mk}\alpha_{j}]q$

$=c\sum_{k=0}^{\infty}[\sum_{j=0}^{k}4^{m(1-\theta)(j-k)}(4^{\theta jm}\alpha_{j})]q+c\sum_{k=0}^{\infty}[\sum_{j=k+1}^{\infty}4^{\theta m(k-j)}(4^{\theta jm}\alpha_{j})]q$

Since $u\in B_{p}^{s,q}(H)$ , $(4^{\theta jm}\alpha_{j})_{j\in N}\in\ell^{q}(N)$ , and in both cases above we

have convolution by a sequence in $\ell^{1}$ , so we use Young’s inequality to
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conclude

$(\int_{0}^{1}t^{-\theta q-1}\omega(t, u)^{q}dt)^{1/q}\leq c(\sum_{j=0}^{\infty}(4^{\theta mj}||\psi_{j}(H)u||_{p})^{q})1/q$

The other term in (5.3) is estimated using H\"older’s inequality:

$(\int_{1}^{\infty}t^{-\theta q-1}\omega(t, u)^{q}dt)^{1/q}\leq(\int_{1}^{\infty}t^{-\theta q-1}(\sum_{j=0}^{\infty}\alpha_{j})qdt)1/q$

$=c\sum_{j=0}^{\infty}\alpha_{j}\leq c(\sum_{j=0}^{\infty}(4^{\theta mj}\alpha_{j})^{q})1/q$

Combining these estimates we get

(5.4) $||u||_{(L^{p},D)_{\theta,q}}\leq c||u||_{B_{p}^{\epsilon,q}(H)}$

which proves the second half of the theorem.

Theorem 5.1 combined with Theorem 4.6 implies the following map-
ping property of $e^{-itH}$ between (usual) Besov spaces.

Theorem 5.2. Let $V$ satisfy Assumptions A and $B(p, m)$ , and let
$H=-\triangle+V$ . Assume $1\leq p$ , $ q\leq\infty$ , $\beta>d|\frac{1}{2}-\frac{1}{p}|$ , $\gamma>d|\frac{1}{2}-\frac{1}{p}|$ , and

$0\leq s<2(m-\beta)$ . Then

(5.5) $e^{-itH}\in B(B_{p}^{s+2\beta,q}, B_{p}^{s,q})$

with norm bounded by $c\langle t\rangle^{\gamma}$ .

Concerning the Assumption $B(p, m)$ we note that for $m=1$ we can
use standard perturbation results to show that if $V$ is bounded relative
to the Laplacian on $IF(R^{d})$ with relative bound less than one, then the
condition is satisfied. Several sufficient conditions for this to hold can be
found in [Sc]. For $m>1$ some regularity is needed. If $V\in C^{\infty}(R^{d})$ with
all derivatives bounded, then Assumption $B(p, m)$ holds for all $m\geq 1$

and all $p$ , $ 1\leq p\leq\infty$ .

Remark 5.3. Note that the proof of Theorem 5.2 also yields

(5.6) $e^{-itH}\in B(B_{p}^{2\beta,q}, L^{p}(R^{d}))$
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under the same assumptions. In this form the result is a direct general-
ization of the results on the free Schr\"odinger equation in [BTW].

Remark 5.4. In the proof of Theorem 5.1 we have shown that
$-(H+M)^{m}-L$ generates a bounded $C_{0}$ semigroup. This result has also
been obtained by Davies [D2] in an abstract framework, cf. Remark 3.5.

Appendix. A construction of an almost analytic continuation

In this appendix we propose a construction of an almost analytic
continuation, and discuss its properties. We start by constructing an
almost analytic continuation of $f\in C_{0}^{\infty}(-2,2)$ .

We fix $\chi\in C_{0}^{\infty}(R)$ such that $0\leq\chi(x)\leq 1$ ,

$\chi(x)=\{$

1, if $|x|\leq 1$ ,

0, if $|x|\geq 2$ ,

and let $\rho(x)=\int_{0}^{x}\chi(y)dy$ . For $f\in C_{0}^{\infty}(-2,2)$ , we define $\tilde{f}(z)$ , $z\in C$ by

(A.I) $\tilde{f}(x+iy)=(2\pi)^{-1/2}\chi(x/2)\chi(y)\int_{-\infty}^{\infty}e^{-\rho(y\xi)}e^{ix\xi}\hat{f}(\xi)d\xi$ ,

where $\hat{f}(\xi)$ denotes the Fourier transform of $f(x)$ .

Lemma A.I. $\tilde{f}(z)$ is an almost analytic continuation of $f(x)$ .

Proof. It is easy to see that $\tilde{f}(z)\in C_{0}^{\infty}(C)$ because $\hat{f}\in S$ , and
$e^{-\rho(y\xi)}$ is a smooth bounded function. It is also easy to see that $\tilde{f}(x)=$

$f(x)$ for $x\in R$ since $\rho(0)=0$ . It remains to show (3.1). By direct
computation we have

$(\partial_{\overline{z}}\tilde{f})(x+iy)=(\partial_{x}+i\partial_{y})\tilde{f}(x+iy)$

$=(2\pi)^{-1/2}\chi(x/2)\chi(y)\int i\xi(1-\rho^{J}(y\xi))e^{-\rho(y\xi)}e^{ix\xi}\hat{f}(\xi)d\xi$

$+(2\pi)^{-1/2}2^{-1}\chi’(x/2)\chi(y)\int e^{-\rho(y\xi)}e^{ix\xi}\hat{f}(\xi)d\xi$

$+i(2\pi)^{-1/2}\chi(x/2)\chi^{/}(y)\int e^{-\rho(y\xi)}e^{ix\xi}\hat{f}(\xi)d\xi$

(A.2) $=I+I+\Pi$ .

To estimate the first term, we note that $\rho^{/}(y\xi)=\chi(y\xi)=1$ if $|y\xi|\leq 1$ ,
hence

$|1-\rho^{J}(y\xi)|=|1-\chi(y\xi)|\leq\chi_{\{|y\xi|\geq 1\}}(y, \xi)$
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where $\chi_{\Omega}$ denotes the characteristic function of $\Omega$ . Then we have

$|$ I $|\leq C\int|\xi|\chi_{\{|y||\xi|\geq 1\}}(y, \xi)|\hat{f}(\xi)|d\xi$

(A.3) $\leq C\int|\xi|^{N+1}|y|^{N}|\hat{f}(\xi)|d\xi\leq C|y|^{N}$

since $\hat{f}\in S$ . To estimate the second term, we note that $f(x)\equiv 0$ on
$supp\chi^{/}(x/2)$ . Hence

$ 0=\chi^{J}(\frac{x}{2})\sum_{k=0}^{N}\frac{(iy)^{k}f^{(k)}(x)}{k!}=(2\pi)^{-1/2}\chi^{/}(\frac{x}{2})\int\sum_{k=0}^{N}\frac{(-y\xi)^{k}}{k!}e^{ix\xi}\hat{f}(\xi)d\xi$ .

We subtract this from (I) to obtain

$|$ I $|\leq C\int|(e^{-\rho(y\xi)}-\sum_{k=0}^{N}\frac{(-y\xi)^{k}}{k!})||\hat{f}(\xi)|d\xi$

$\leq C\int|y|^{N+1}|\xi|^{N+1}|\hat{f}(\xi)|d\xi$

(A.4) $\leq C|y|^{N+1}$ .

The estimate for $(\Pi I)$ is easy since it is supported away from the real
axis.

Once an almost analytic extension is constructed for a $C_{0}^{\infty}$ function
it is then standard procedure to extend it to $f\in S^{\alpha}$ . We include the
construction for the sake of completeness. Let $\varphi\in C_{0}^{\infty}(1/2,2)$ as in the
proof of Theorem 1.3, and let $\varphi_{j}(x)\in C_{0}^{\infty}(R)$ defined by

$\varphi\pm k(x)=\varphi(\pm 2^{-k}x)$ , $k=1,2$ , $\ldots$ , $x\in R$ ,

$\varphi 0(x)=1-\sum_{k\neq 0}\varphi_{k}(x)$
, $x\in R$ .

We decompose $f\in S^{\alpha}$ as

$f(x)=\sum\infty f(x)\varphi_{j}(x)=\sum\infty f_{j}(2^{-|j|}x)$ ,
$ j=-\infty$ $ j=-\infty$

where $f_{k}(y)=\varphi(sign(k)y)f(2^{|k|}y)$ for $k\neq 0$ and $f_{0}(y)=f(y)\varphi_{0}(y)$ .

Now we can apply the above construction to each $f_{j}(x)$ to obtain $\tilde{f}_{j}(z)$ .

Note that we can modify the construction such that $\tilde{f}_{j}(z)$ is supported
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in $\{z|Rez\in[1/4,4], |Im z|\leq 2\}$ for $j>0$ and in $\{z|Rez\in[-4, -1/4]$ ,

$|Imz|\leq 2\}$ for $j<0$ . Then $\tilde{f}(z)=\sum_{j=-\infty}^{\infty}\tilde{f}_{j}(2^{-j}z)$ defines an almost

analytic continuation of $f$ . Further details are omitted.
Compared with the other known constructions of an almost analytic

continuation, our method seems to have the advantage of being straight-
forward, namely, we do not use asymptotic sums. On the other hand, we

need no differentiability of $f$ to define $\tilde{f}(z)$ , and the proof of Lemma A. 1
shows that (3.1) with $N=a\in R_{+}$ follows from $f\in H_{0}^{s}$ , $s>a+3/2$ .

In fact, it is known that $f\in C_{0}^{1+a}(R)$ is sufficient to construct $\tilde{f}(z)$

satisfying (3.1) with $N=a$ (E. B. Davies, private communication, see
also [D2] $)$ . Our construction may be not as precise as Davies’, but the
next lemma is sufficient for our application in \S 3.

Lemma A.2. Let $R>0$ be fixed, and let $f\in H_{0}^{s}([-R, R])$ with
$s\geq 1$ . Then for any $\epsilon>0$ there is $C=C(R, \epsilon)$ such that

(A.5) $\int_{C}|Im$ $z|^{-s+\in}|\partial_{\overline{z}}\tilde{f}(z)|dzd\overline{z}\leq C||f||_{H_{0}^{s}}$ .

Proof. It suffices to consider the case $R=1$ , and we may assume
$\tilde{f}(z)$ is defined by (A.I). As in the proof of Lemma A. $I$ , we decom-

pose $\partial_{\overline{z}}\tilde{f}$ as $\partial_{\overline{z}}\tilde{f}=I+I+\mathbb{E}$ . We start by estimating (I). As in the
computation to derive (A.3), for each $y$ we have

$(\int|\xi(1-\rho’(y\xi))\hat{f}(\xi)|^{2}d\xi)^{1/2}\leq|y|^{s-1}(\int|\xi|^{2s}|\hat{f}(\xi)|^{2})^{1/2}$

$\leq C|y|^{s-1}||f||_{H_{0}^{s}}$ .

Hence by Plancherel’s theorem, we have

$\int_{C}|Im$ $z|^{-s+\in}|I(z)|dzd\overline{z}=\int_{|x|,|y|\leq 2}|y|^{-s+\in}|I(x+iy)|dxdy$

$\leq C\int_{|y|\leq 2}(\int|I(x+iy)|^{2}dx)^{1/2}|y|^{-s+\in}dy$

$\leq C\int_{|y|\leq 2}(|y|^{s-1}||f||_{H_{0}^{s}})|y|^{-s+\in}dy$

$=C(\int_{|y|\leq 2}|y|^{-1+\in}dy)||f||_{H_{0}^{3}}=C||f||_{H_{O}^{s}}$ .
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On the other hand, (A.4) implies

$|I(x+iy)|\leq C|y|^{s-1}||f||_{H_{0}^{s}}$ ,

and the estimate for (I) follows from this. The estimate for $(\mathbb{E})$ is easy
and we omit it.
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Absolute Continuity of the Essential Spectrum
for some Linearized MHD Operator

Takashi Kako

\S 1. Introduction

The magnetohydrodynamic (MHD) motion of plasma is described by
the system of equations which consist of the compressible Euler equation
and the reduced Maxwell equation with the mutual interaction terms
given by the Lorenz force and Ohm’s low. Related to the plasma con-
finement experiment, the study of the behavior of plasma motion around
the equilibrium is very important. The MHD motion in the vicinity of
the equilibrium is described by the following linearized MHD equation:

(1.1) $\rho_{0}\frac{\partial^{2}\xi}{\partial t^{2}}=-K\xi\equiv grad\{\gamma P_{0}(div\xi)+(gradP_{0})\cdot\xi\}$

$+B_{0}\times rot(rot(B_{0}\times\xi))-$ (rot $B_{0}$ ) $\times rot(B_{0}\times\xi)$ ,

for the Lagrangian displacement vector field $\xi$ : $\Omega\subset R^{3}\rightarrow R^{3}$ . Here,
the equilibrium quantities $\rho_{0}(=density)$ , $P_{0}(=pressure)$ , $B_{0}(=magnetic$

field), are given bounded smooth functions which satisfy the equilibrium
condition:

$gradP_{0}=j_{0}\times B_{0}$ , $divB_{0}=0$ ,

(1.2) with $j_{0}=rotB_{0}$ ( $=electric$ current density),

$P_{0}\geq c_{P}>0$ , $\rho_{0}\geq c_{\rho}>0$ : arbitrary.

We assume in (1.1) that the specific heat ratio $\gamma$ is a positive constant.
We impose a slip condition: $\xi\cdot n$ $=0$ on the boundary $\partial\Omega$ where $n$ is
the unit normal on the boundary.

In this paper, we shall study some spectral properties of the operator
$\rho_{0}^{-1}K$ in a Hilbert space $L^{2}(\Omega;\rho_{0}dr)^{3}$ . In particular, we shall prove the
absolute continuity of the essential spectrum and the discreteness of the
embedded eigenvalues in the continuum under some assumptions on the

Received December 10, 1992.
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shape of the region $\Omega$ and the symmetry of the equilibrium. We assume
hereafter that $\Omega$ is a flat torus in $R^{3}$ :

$\Omega=\{(x, y, z) : x, y, z\in S\equiv R/2\pi Z\}=S^{3}$ .

We consider the equilibrium where the quantities $B_{0}$ and $P_{0}$ depend only
on one variable $x$ . Then, these one-dimensional equilibrium quantities
are given as:

$B_{0}=(0, b(x)\sin\phi(x),$ $b(x)\cos\phi(x))$

$P_{0}=c-\frac{1}{2}b(x)^{2}$ ,

where $b(x)$ and $\phi(x)$ are arbitrary smooth functions with the property:

$b(0)=b(2\pi)$ , $\phi(0)=\phi(2\pi)mod 2\pi$ ,

and $c$ is a sufficiently large positive constant. Due to the symmetry of
the coefficients, we can decompose $\xi$ into $(m,n)$ Fourier modes:

$e^{imy+inz}\xi(x)$ , $m$ , $n$ : integers

and the force operator $\rho 0^{-1}K$ is realized in the decomposed space as a
selfadjoint operator with a form (see Kako [1]):

(1.3) $K=\left(\begin{array}{ll}A & B\\B^{*} & C\end{array}\right)$

where $A$ , $B$ , $B^{*}$ and $C$ are $differential/multiplication$ operators given as

$A=-\frac{d}{dx}(b^{2}+\gamma P_{0})\frac{d}{dx}+b^{2}n_{\phi^{2}}$

$B=(-i\frac{d}{dx}(b^{2}+\gamma P_{0})m_{\phi},$ $-i\frac{d}{dx}\gamma P_{0}n_{\phi})$

(1.4)
$B^{*}=\left(\begin{array}{l}-i(b^{2}+\gamma P_{0})m_{\phi^{\frac{d}{dx}}}\\-i\gamma P_{0}n_{\phi^{\frac{d}{dx}}}\end{array}\right)$

$C=\left(\begin{array}{ll}m_{\phi}^{2}(b^{2}+\gamma P_{0})+b^{2}n_{\phi}^{2} & m_{\phi}n_{\phi}\gamma P_{0}\\m_{\phi}n_{\phi}\gamma P_{0} & n_{\phi}^{2}\gamma P_{0}\end{array}\right)$

with

(1.5) $n_{\phi}=n(\cos\phi)+m(\sin\phi)$ , $m_{\phi}=m(\cos\phi)-n(\sin\phi)$ .
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We can constructa selfadjoint operator $\rho_{0}^{-1}K$ in $L^{2}(S;\rho_{0}dx)^{3}$ with the
resolvent expression:

(1.6) $(\rho_{0}^{-1}K+\lambda)^{-1}=\{$ $-C_{\lambda}^{-1}B^{*}E_{\lambda}^{-1}E_{\lambda}^{-1}$ $C_{\lambda}^{-1}+C_{\lambda}^{-1}B^{*}E_{\lambda}^{-1}BC_{\lambda}^{-1}-E_{\lambda}^{-1}BC_{\lambda}^{-1})\rho_{0}$ ,

where $E_{\lambda}=A_{\lambda}-BC_{\lambda}^{-1}B^{*}$ with $A_{\lambda}=A+\lambda\rho_{0}$ and $C_{\lambda}=C+\lambda\rho_{0}$ (see
Kako [1] $)$ .

\S 2. The essential spectrum of $\rho_{0}^{-1}K$

Rom the resolvent expression (1.6), we can extract some spectral

properties of the operator $\rho_{0}^{-1}K$ such as the range of the essential spec-
trum.

Theorem 2.1 (Kako [1]). The operator $\rho_{0}^{-1}K$ has a natural self-
adjoint realization in the Hilbert space $L^{2}(S;\rho_{0}dx)^{3}$ , and the essential

spectrum of $\rho_{0}^{-1}K$ consists of $\sigma_{A}$ and $\sigma_{S}$ with

$\sigma_{A}=\{\lambda : \lambda=\omega_{A}(x), 0\leq x\leq 2\pi\}$

and

(2.1) $\sigma_{S}=\{\lambda : \lambda=\omega_{S}(x), 0\leq x\leq 2\pi\}$ ,

where
$\omega_{A}\equiv b^{2}n_{\phi^{2}}/\rho_{0}$ ( $Al$ fv\’en frequency)

and

(2.2) $\omega_{S}\equiv\omega_{A}\gamma P_{0}/(b^{2}+\gamma P_{0})$ (slow magnetosonic frequency).

The proof of this theorem is based on the following expression of the
resolvent:

(2.3) $(\rho_{0}^{-1}K+\lambda_{0})^{-1}=\left(\begin{array}{ll}0 & -GF_{\lambda_{0}}^{-1}\\-F_{\lambda_{0}}^{-1}G^{*} & F_{\lambda_{0}}^{-1}\end{array}\right)$ $\rho_{0}+R_{1}$ .

with $G=A_{\lambda_{0}}^{-1}B$ and $G^{*}=B^{*}A_{\lambda_{O}}^{-1}$ . Where the remainder $R_{1}$ is a $trace$

class operator in $L^{2}(S;\rho_{0}dx)^{3}$ and $G$ is a Hilbert-Schmidt class operator
from $L^{2}(S;\rho_{0}dx)^{2}$ to $L^{2}(S;\rho_{0}dx)$ , and $F_{\lambda_{O}}$ is a multiplication operator:

(2.4) $F_{\lambda_{O}}=\rho_{0}$ $\left(\begin{array}{ll}\omega_{A}(x)+\lambda_{0} & 0\\0 & \omega_{S}(x)+\lambda_{0}\end{array}\right)$ .
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Introducing unitary operators $U$ and $U^{*}$ in $L^{2}(S;\rho 0dx)^{3}$ as

(2.5) $ U=\rho_{0}^{-1}\exp$ $\left(\begin{array}{ll}0 & G\\-G^{*} & 0\end{array}\right)$ and $ U^{*}=\rho_{0}^{-1}\exp$ $\left(\begin{array}{ll}0 & -G\\G^{*} & 0\end{array}\right)$ ,

we have

(2.6) $U(\rho_{0}^{-1}K+\lambda_{0})^{-1}U^{*}=\left(\begin{array}{ll}0 & 0\\0 & F_{\lambda_{0}}^{-1}\end{array}\right)$ $\rho_{0}+R_{2}$ ,

where $R_{2}$ is a $trace$ class operator which maps $L^{2}(S;\rho_{0}dx)^{3}$ to the
Sobolev space of order two: $H^{2}(S;\rho_{0}dx)^{3}$ . Applying the $trace$ class
perturbation theory (see Kato [2]), we can prove that there exists an ab-
solutely continuous spectrum which consists of the union of the ranges
of functions $\omega_{A}(x)$ and $\omega_{S}(x)$ (see Kako [1]).

\S 3. Application of Mourre’s estimate

We shall apply Mourre’s commutator estimate to the present prob-
lem and prove the discreteness of embedded eigenvalues in the contin-
uum as well as the absolute continuity of the continuous spectrum in
the complement of eigenvalues under the following assumption.

Assumption. The functions $\omega_{A}$ and $\omega_{S}$ are smooth and a number
of critical points $x_{A}^{c}(k)$ , $k=1,2$ , $\ldots$ , $M$ and $x_{S}^{c}(l)$ , $l$ $=1,2$ , $\ldots$ , $N$ :

$\omega_{A}’(x_{A}^{c}(k))=\omega_{S}’(x_{S}^{c}(l))=0$

are finite.

We define functions $H_{A}(x)$ and $H_{S}(x)$ as

$H_{A}(x)=(\omega_{A}(x)+\lambda_{0})^{-1}$ and $H_{S}(x)=(\omega_{S}(x)+\lambda_{0})^{-1}$ .

Let $T$ be an unitary operator from $L^{2}(S;\rho 0dx)^{3}$ to $L^{2}(S)^{3}$ :

(3.1) $T:L^{2}(S;\rho_{0}dx)^{3}\ni f\mapsto\rho_{0}^{1/2}f\in L^{2}(S)^{3}$ .

Then the operator $T\rho_{0}1K-T^{-1}=\rho_{0}/2K1\rho_{0}1/2$ is unitarily equivalent

to $\rho_{0}^{-1}K$ . We denote this selfadjoint operator in $L^{2}(S)^{3}$ by $K’$ . We
introduce a conjugate operator $H$ to $K’$ as

(3.1) $H\equiv\{$ $000$ $H_{A}’(x)\frac{d}{dx}+00\frac{d}{dx}H_{A}’(x)$ $H_{S}’(x)\frac{d}{dx}+\frac{d}{dx}H_{S}’(x)00)$ .
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Proposition 1. Under the assumption of the smoothness of $\omega_{A}$

and $\omega_{S}$ , the operator $iH$ with domain:

$D(iH)=\{f$ : $f=(f_{1}, f_{2}, f_{3})^{t}$ , $f_{k}\in L^{2}(S)$ , $k=1,2,3$ ,

$H_{A}’(x)\frac{d}{dx}f_{2}$ , $H_{S}’(x)\frac{d}{dx}f_{3}\in L^{2}(S)\}$

is skew selfadjoint in $L^{2}(S)^{3}$

Proof. Let $a(x)$ be a real valued continuously differentiable func-
tion. We claim that an operator $A$ defined as

$D(A)=\{f : f\in L^{2}(S), a(x)\frac{d}{dx}f\in L^{2}(S)\}$

$Af=i(a(x)\frac{d}{dx}f+\frac{d}{dx}a(x)f)$

is selfadjoint. In fact, for $f$ , $g\in L^{2}(S)$ with the property that $a(x)\frac{d}{dx}g$ ,

$a(x)\frac{d}{dx}f\in L^{2}(S)$ , we have

(3.4) $\int_{S}\frac{d}{dx}(a(x)g(x)\overline{f(x)})dx=0$ .

Using this identity, we can prove that $A$ is closed and symmetric. The
denseness of the range of $A\pm i$ can be shown in the standard way.

Q.E.D.

Let $E(\cdot)$ and $E_{0}(\cdot)$ be spectral resolutions of $D\equiv(K’+\lambda_{0})^{-1}$ and

$D_{0}\equiv\left(\begin{array}{ll}0 & 0\\0 & F_{\lambda_{0}}^{-1}\end{array}\right)$ $\rho_{0}=\left(\begin{array}{lll}0 & 0 & 0\\0 & H_{A}(x) & 0\\0 & 0 & H_{S}(x)\end{array}\right)$

Then the commutator $[H, D_{0}]\equiv HD_{0}-D_{0}H$ between $H$ and $D_{0}$ can
be calculated as

(3.4) $HD_{0}-D_{0}H=\left(\begin{array}{lll}0 & 0 & 0\\0 & 2H_{A}’(x)^{2} & 0\\0 & 0 & 2H_{S}’(x)^{2}\end{array}\right)$ .

This operator is nonnegative. Using Proposition 1 and this expression
of the commutator $[H, D_{0}]$ , we can prove the following lemma.
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Lemma 2. Let $\triangle\subset R$ be such that

$(H_{A}^{-1}(\triangle)\cup H_{S}1(\triangle))\cap\{x_{A}^{c}(k)\}_{k=1}^{N}\cap\{x_{S}^{c}(l)\}_{l=1}^{M}=\emptyset$

and also let the intersection between $\triangle$ and the point spectrum of $(K’+$
$\lambda_{0})^{-1}$ be empty. Then we have the following Mourre type estimate:

(3.5) $E(\triangle)[H, D]E(\triangle)\geq\alpha E(\triangle)+Q$ , $\alpha>0$ ,

where $Q$ is a compact operator.

Proof. Since $D-D_{0}$ is compact, $E(\triangle)-E_{0}(\triangle)$ is also compact.
Furthermore, $(D-D_{0})H$ is a compact operator in $L^{2}(S)^{3}$ , since the
difference $D-D_{0}$ is bounded from $L^{2}(S)^{3}$ to $H^{2}(S)^{3}$ . Hence we have
that the operator $E(\triangle)[H, D]E(\triangle)-E_{0}(\triangle)[H, D_{0}]E_{0}(\triangle)$ is compact.
Using the non-negativity of the commutator $[H, D_{0}]$ and the assumption
for the interval $\triangle$ , we have the estimate (3.5). Q.E.D.

From this lemma, applying the results of Mourre (see [4, Theorem
4.7 and Theorem 4.9] and [3] $)$ , we have the follwing theorem.

Theorem 3. Let $\triangle$ be as in Lemma 2. Then the operator $(K’+$

$\lambda_{0})^{-1}$ restricted to the subspace $E(\triangle)L^{2}(S)^{3}$ is absolutely continuous
except for some discrete set. The absolutely continuous part is unitarily
equivalent to a part of the multiplication operator $F_{\lambda_{0}}^{-1}\rho_{0}$ .

Rom this theorem, we can have the corresponding results for the
absolute continuity of the continuous spectrum of $\rho_{0}^{-1}K$ and the unitary

equivalence between the absolutely continuous part of the operator $\rho_{0}^{-1}K$

and the multiplication opetator $\rho_{0}^{-1}F_{0}$ .
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of Wave Equations with Different Speed
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\S 1. Introduction and results

We consider the following system of wave equations

(1.1) $\{$

$\square _{c_{1}}u=f(u, v)$

$\square _{c_{2}}v=g(u, v)$

where $\Pi_{C}=(1/c^{2})\partial^{2}/\partial t^{2}-\sum_{j=1}^{n}\partial^{2}/\partial x_{j}^{2}$ and $c_{1}$ and $c_{2}$ are positive con-

stants. We assume that $f(\cdot, \cdot)$ and $g(\cdot, \cdot)$ are in $C^{\infty}$ . In what follows, we
shall study the singularities of the solutions to (1.1) when the solutions
are ’conormal distributions’ to some hyperplanes. Before the statement
of main theorems, we define conormal distributions.

Definition (Conormal distributions). Let $\Omega\subset \mathbb{R}^{n}$ be a domain.
Let $L$ be a $C^{\infty}$ -manifold in $\Omega$ . We call that $u$ is in $H^{s}(L, \infty)$ in $\Omega$ if

$M_{1}\circ M_{2}\circ\cdots\circ M_{l}u\in H_{loc}^{s}(\Omega)$ for $l$ $=0,1$ , 2, $\ldots$ ,

where each $M_{j}$ is a $C^{\infty}$ vector field which is tangent to $L$ .

We can define the space of conormal distributions not only for a
$C^{\infty}$ -manifold but also for a union of two hypersurfaces which intersect
each other transversally.

Now we shall state the main results. Let $\omega\in S^{n-1}$ and $L_{ij}=$

$\{(t, x)\in \mathbb{R}^{7b}; c_{i}t+(-1)^{j}\omega\cdot x=0\}$ for $i$ , $j=1,2$ .

Received December 25, 1992.
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Theorem 1. Let $\Omega$ be a neighborhood of the origin of $\mathbb{R}^{n+1}$ , $i=1$

or 2 and $j=1$ or 2. Suppose that $u$ , $v$ are in $H_{1oc}^{s}(\Omega)$ for $s>(n+1)/2$ ,
$u$ and $v$ are solutions to (1.1) and

$u$ , $v\in H^{s}(L_{ij}, \infty)$ in $\Omega\cap\{t<0\}$ ,

the

$u$ , $v\in H^{s}(L_{ij}, \infty)$ in $K$

where $K$ is the domain of dependence with respect to $\Omega\cap\{t<0\}$ .

Theorem 2. Le $\Omega$ be a neighborhood of the origin of $\mathbb{R}^{n+1}$ and
$i$ , $i^{J}$ , $j$ , $j^{/}\in \mathbb{N}$ with $i+i^{/}=3$ , $j+j^{/}=3$ . Suppose that $0<c_{1}<c_{2z}u$ , $v$

are in $H_{1oc}^{s}(\Omega)$ for $s>(n+1)/2$ , $u$ and $v$ are solutions to (1.1) and

$u$ , $v\in H^{s}(L_{ij}\cup L_{i’j}, \infty)$ in $\Omega\cap\{t<0\}$ ,

the

$u$ , $v\in H^{s}(L_{ij}\cup L_{i’j}\cup L_{ij’}\cup L_{i’j’}, \infty)$ in $K$

where $K$ is the domain of dependence with respect to $\Omega\cap\{t<0\}$ .

Theorem 3. Let $\Omega$ be a neighborhood of the origin of $\mathbb{R}^{n+1}$ and
$i$ , $i’$ , $j$ , $j’\in \mathbb{N}$ with $i+i’=3$ , $j+j’=3$ . Suppose that $0<c_{1}<c_{2}$ , $u$ , $v$

are in $H_{1oc}^{s}(\Omega)$ for $s>(n+1)/2$ , $u$ and $v$ are solutions to (1.1) and

$u$ , $v\in H^{s}(L_{ij}\cup L_{ij’}, \infty)$ in $\Omega\cap\{t<0\}$ ,

the

$u$ , $v\in H^{s}(L_{ij}\cup L_{i’j}\cup L_{ij’}\cup L_{i’j’}, \infty)$ in $K$

where $K$ is the domain of dependence with respect to $\Omega\cap\{t<0\}$ .

$J.M$ . Bony has obtained the same result for scalar strictly hyperbolic
equations in [3]. So our results are not full of originalities. But the author
believes that our proofs are new and simple.

\S 2. Proof of Theorem 1

We set $M$ $=t\partial_{t}+x\cdot\partial_{x}$ and $M_{k}=\omega_{k}\partial_{t}+c_{i}\partial_{x_{k}}$ for $k=1$ , $\ldots$ , $n$ . It
is easy to prove the following proposition.
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Proposition 1. $M_{1}$ , $\ldots$ , $M_{n}$ are linearly independent on $\mathbb{R}^{n+1}$

and $M$ , $M_{1}$ , $\ldots$ , $M_{n}$ are linearly independent on $\mathbb{R}^{n+1}\backslash L_{ij}$ .

Proof of Theorem 1.

$\square (Mu)=[\square , M]u+Mf(u, v)$

(2.1) $=2\square u+Mf(u, v)$

$=2f(u, v)+Mf(u, v)$ .

Similarly we have

(2.2) $\square (Mu)=2g(u, v)+Mf(u, v)$ .

Since $u$ and $v$ are in $H_{1oc}^{s}(\Omega)$ , we have that 2$f(u, v)+Mf(u, v)$ and
$2g(u, v)+Mf(u, v)$ are in $H_{1oc}^{s-1}(\Omega)$ and $Mu$ , $Mv$ are in $H_{1oc}^{s}(\Omega\cap\{t<0\})$ .
Using the energy estimate for $\Pi_{c_{1}}$ and $\Pi_{c_{2}}$ , we consequently have that
$Mu$ , $Mv\in H_{1oc}^{s}(K)$ . Repeating this argument, we have

(2.3) $M^{l}u$ , $M^{l}v\in H_{1oc}^{s}(K)$ .

It is easy to see that

(2.4) $M_{k}^{l}u$ , $M_{k}^{l}v\in H_{1oc}^{s}(K)$ for $\forall k$ , $\forall l\in \mathbb{N}$ .

(2.3) and (2.4) yield Theorem 1.

\S 3. Proof of Theorem 2 and Theorem 3

Proof of Theorem 2. We put $M_{a}=t\partial_{t}+(x-a)\cdot\partial_{x}$ for $a\in \mathbb{R}^{n}$ .
Using the same argument as in the proof of Theorem 1, we have

(3.1) $M_{a}^{l}u$ , $M_{a}^{l}v\in H_{1oc}^{s}(K)$ for $\forall a$ with $a$ . $\omega=0$ and $\forall l\in \mathbb{N}$ .

We divide $K\backslash \bigcup_{i,j=1}^{2}L_{ij}$ into the following three parts,

$K_{1}=\{(t, x)\in K;c_{1}t-\omega\cdot x>0, c_{1}t+\omega. x>0\}$

$ K_{2}=\{(t, x)\in K;c_{1}t-\omega\cdot x<0, c_{2}t-\omega. x>0\}\cup$

$\{(t, x)\in K;c_{2}t+\omega\cdot x>0, c_{1}t+\omega. x<0\}$

$K_{3}=$ { ( $t$ , $x)\in K;c_{2}t-\omega\cdot x<0$ or $ c_{2}t+\omega$ . $x<0$}.

We prove first that $u$ , $v\in C^{\infty}$ in $K_{1}$ . Let $(t_{0}, x_{0})$ be any point in $K_{1}$ .
Let $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ be any point in $T_{(t_{0},x_{O})}^{*}\backslash 0$ . We use the same argument
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as in the proof of the main theorem of M. Beals [1]. If $M_{a}$ is elliptic at
$(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ for some $a\in \mathbb{R}^{n}$ , then from (3.1) we have

(3.2) $u$ , $v\in H^{s+1}$ at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ .

When $M_{a}$ is not elliptic at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ for all $a\in \mathbb{R}^{n}$ , $\Pi_{c_{1}}$ and $\Pi_{c_{2}}$ are
elliptic at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ . In fact, we can choose $a_{0}\in \mathbb{R}^{n}$ with $a_{0}$

. $\omega=0$

such that $c_{1}^{2}t_{0}^{2}-|x_{0}-a_{0}|^{2}>0$ . Then we have

$c_{1}t_{0}(\frac{1}{c_{1}}|\tau_{0}|-|\xi_{0}|)<t_{0}|\tau_{0}|-|\xi_{0}||x_{0}-a_{0}|$

$=|\xi_{0}\cdot(x_{0}-a_{0})|-|\xi_{0}||x_{0}-a_{0}|$

$\leq 0$ .

The same argument works for $\Pi_{c_{2}}$ . Hence

(3.3) $u$ , $v\in H^{s+1}$ at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ .

From (3.2) and (3.3), we have

$u$ , $v\in H^{s+1}$ at $(t_{0}, x_{0})$ .

Repeating this argument, we have

(3.5) $u$ , $v\in C^{\infty}$ at $(t_{0}, x_{0})$ .

Next we prove that $u$ , $v$ is in $C^{\infty}$ on $K_{2}$ . Let $(t_{0}, x_{0})$ be any point
in $K_{2}$ . Let $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ be any point in $T_{(t_{0},xo)}^{*}\backslash 0$ . When $M_{a}$ is elliptic

at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ for some $a\in \mathbb{R}^{n}$ , then from (3.1) we have

(3.5) $u$ , $v\in H^{s+1}$ at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ .

When $M_{a}$ is not elliptic at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ for all $a\in \mathbb{R}^{n}$ , the same method
as in the first step proves that $\Pi_{c_{2}}$ is elliptic at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ . So it
suffices to show that $\Pi_{c_{1}}$ is elliptic at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ . Since $\tau_{0}t_{0}+(x_{0}-$

$a)\cdot\xi_{0}=0$ for all $a\in \mathbb{R}^{n}$ with $a$ . $\omega=0$ , $\tau_{0}t_{0}+x_{0}\cdot\xi_{0}=a\cdot\xi_{0}=0$ . Then
$a\cdot\xi_{0}=0$ for all $a\in \mathbb{R}^{n}$ with $a$ . $\omega=0$ . Hence $\xi$ is parallel to $\omega$ . We

decompose $x_{0}=x_{0}^{(1)}+x_{0}^{(2)}$ such that $x_{0}^{(1)}$ is parallel to $\omega$ and $x_{0}^{(2)}$ is

perpendicular to $\omega$ . We put $a_{0}=x_{0}^{(2)}$ . Hence $x_{0}-a_{0}=x_{0}^{(1)}$ is parallel

to $\omega$ . Since $c_{1}^{2}|t_{0}|^{2}<|x_{0}-a|^{2}$ for all $a\in \mathbb{R}^{n}$ , we have

$c_{1}t_{0}(\frac{1}{c_{1}}|\tau_{0}|-|\xi_{0}|)>t_{0}|\tau_{0}|-|\xi_{0}||x_{0}-a_{0}|$

$=t_{0}|\tau_{0}|-|\xi_{0}\cdot(x_{0}-a_{0})|$

$=0$ (since $t_{0}\tau_{0}-\xi_{0}\cdot(x_{0}-a_{0})=0$ ).
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Consequently we have

(3.6) $u$ , $v\in H^{s+2}$ at $(t_{0}, x_{0}, \tau_{0}, \xi_{0})$ .

From (3.5) and (3.6), we have

$u$ , $v\in H^{s+1}$ at $(t_{0}, x_{0})$ .

Repeating this argument, we have

(3.7) $u$ , $v\in C^{\infty}$ at $(t_{0}, x_{0})$ .

The same argument for $u$ in the second step yields that

(3.8) $u$ , $v\in C^{\infty}$ in $K_{3}$ .

(3.1), (3.4), (3.7) and $(3,8)$ imply Theorem 2.

We can prove Theorem 3 by the same argument as in the proof of
Theorem 2.
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An $L^{q,r}$-Theory

for Nonlinear Schr\"odinger Equations

Tosio Kato

\S 1. Introduction

Consider the nonlinear Schr\"odinger equation:

(NLS) $\partial_{t}u=i(\triangle u-F(u))$ , t $\in \mathbb{R}$ , x $\in \mathbb{R}^{m}$ ,

where $F(u)=F\circ u$ is, for example, a Nemyckii operator defined by a
function $F$ : $\mathbb{C}\rightarrow \mathbb{C}$ . There is an extensive literature on this problem,
but it seems that all existing work assumes that either the initial value
$\phi=u(0)=u(0, \cdot)$ or the limit $\emptyset\pm=\lim_{t\rightarrow\pm\infty}e^{-it\triangle}u(t)$ is in $L^{2}$ . The
present paper is an attempt to solve (NLS) with the data in a larger
class of functions.

As in most of the work on (NLS), we convert (NLS) into integral
equations such as

(INT) $u=\Phi u\equiv u_{0}-iGF(u)$ , or $u=\Phi_{\pm}u\equiv u_{\pm}-iG_{\pm}F(u)$ .

Here $u_{0}$ or $u_{\pm}$ is a free wave (solution of the free Schr\"odinger equation
$\partial_{t}u=i\triangle u)$ , and $G$ or $G_{\pm}$ is an integral operator defined by

$Gf(t)=\int_{0}^{t}U(t-s)f(s)ds$ ,

(1.2)

$G_{\pm}f(t)=\int_{\pm\infty}^{t}U(t-s)f(s)ds$ , $U(t)=e^{it\triangle}$ .

The ffee term $u_{0}$ in (INT) is usually related to the initial value
$ u(0)=\phi$ by

(1.2) $ u_{0}=\Gamma\phi$ , $\Gamma\phi(t)=U(t)\phi$ ,
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but it is often convenient to take any free wave without regard to the
initial value. The dual operator to $\Gamma$ is formally given by

$(1.3\grave{)}$ $\Gamma^{*}f=\int_{-\infty}^{\infty}U(-s)f(s)ds$ .

We note that

(1.4) $G_{1}\equiv G_{-}-G_{+}=\Gamma\Gamma^{*}$ .

To deal with the different operators $G$ , $G_{\pm}$ and $G_{1}$ simultaneously, it is
convenient to consider operators of the general form

(1.5) $G_{a}f(t)=\int_{-\infty}^{\infty}a(t, s)U(t -s)f(s)ds$ ,

where $a$ is a measurable function such that $|a(t, s)|\leq 1$ (cf. Yajima [14]).
Our first task is to study the continuity properties of the operators

$\Gamma$ and $G_{a}$ between wider classes of spaces than hitherto considered. Set
$L^{p}=L^{p}(\mathbb{R}^{m})$ , $L^{q,r}=L^{r}(L^{q})=L^{r}(\mathbb{R};L^{q})$ . The following results are
well known (see e.g. [7]). $\Gamma$ is bounded on $L^{2}$ to $L^{q,r}$ if

(1.6) $1/q+2/mr=1/2$ , $1/2-1/m<1/q\leq 1/2$ .

$G_{a}$ is bounded on $L^{s,t}$ to $L^{q,r}$ if either

(1.7) $1/q+2/mr=1/2$ and $1/s+2/mt=1/2+2/m$ ,

or

(1.8) $1/q+1/s=1$ and $1/t-1/r=1-(m/2)(1/s-1/q)$ ,

with the parameters restricted by

(1.9) $1/2-1/m<1/q\leq 1/2\leq 1/s<1/2+1/m$

in either case. (Note that these results do not depend on $a$ . This is
obvious since they were deduced ffom the Sobolev inequalities using
only absolute value estimates for the Green function of $U(t).)$

We shall extend these results to wider ranges of the parameters.

Geometric notation. In order to describe various estimates in con-
cise form, we find it convenient to use the geometric notation intro-
duced in [7]. Slightly deviating from [7], we denote by $\square $ the closed unit
square in $\mathbb{R}^{2}$ , defined by $0\leq x$ , $y$ $\leq 1$ . Then we set $L(P)=L^{q,r}$ if
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$P=(1/q, 1/r)\in\square $ , and write $1/q=x(P)$ , $1/r=y(P);y(P)$ is some-
times called the height of $P$ . The norm in $L(P)$ is denoted by $|||$ : $L(P)|||$

or, more briefly, by $|||$ : $P|||$ . (If $y(P)=0$ , it is often convenient to
replace $L(P)=L^{q,\infty}$ by $BC(Lq)$ , where $BC$ is the class of bounded and
continuous functions. For simplicity, we do not use this modification in
the present paper.)

The segment connecting $P$, $Q\in\square $ is denoted by $[PQ]$ , $[PQ[, ]PQ]$ ,
or ] $PQ$ [, according as it is closed, open, etc. Sometimes we regard each
$P\in\square $ also as a 2-vector (with origin $O=(0,0)$ ), so that $P+Q$ and $kP$

$(k>0)$ make sense as long as they are in $\square $ .

The convenience of such notations will be seen from the following
rules (see [7]).

(l.lOa) $L(P)^{*}=L(P’)$ if $P+P’=(1,1)$ , $y(P)>0$ ,

(l.lOb)

$|||fg:P+Q|||\leq|||f$ : $P||||||g:Q|||$ , $|||f^{k}$ : $kP|||=|||f$ : $P|||^{k}$ , $k>0$ ,

(l.lOc) $L(P)\cap L(Q)\subset L(R)\subset L(P)+L(Q)$ for $R\in[PQ]$ .

We introduce some special points in $\square $ :

$B=(1/2,0)$ , $C=(1/2-1/m, 1/2)$ $(C=(0,1/4)$ if $m=1$ ),

$E=(1/2-1/m, 1)$ , $F=(1/2-1/m, 0)$

$(E=(0,1/2)$ , $F=(0,0)$ if $m=1$ ),

$B’=(1/2,1)$ , $C’=(1/2+1/m, 1/2)$ $(C’=(1,3/4)$ if $m=1$ ),

$E’=(1/2+1/m, 0)$ , $F’=(1/2+1/m, 1)$

$(E’=(1,1/2)$ , $F’=(1,1)$ if $m=1$ ).

We further introduce the triangles $T$ $=\triangle(BEF)$ and $T’=\triangle(B’E’F’)$ ;
these are assumed to be open except that $B$ and $B’$ are included. Note
that $[BC[\in T,$ $[B’C’[\in T’$ .

With these notations, the known results (1.6)-(1.9) can be stated
as follows.

(i) $\Gamma$ is bounded on $L^{2}$ to $L(P)$ for any $P\in[BC[$ .

(ii) $G_{a}$ is bounded on $L(\overline{P})$ to $L(P)$ if either

(iia) $P\in[BC$ [ and $\overline{P}\in[B’C’$ [, or

(iib) $P\in T$ and $\overline{P}\in T’$ with

$x(P)+x(\overline{P})=1$ , $x(\overline{P})+2y(\overline{P})/m-x(P)-2y(P)/m=2/m$ .
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\S 2. The operator $G_{a}$

In this section we generalize the estimates (ii) for $G_{a}$ given in Section
1, using the geometric notation throughout. It is convenient to introduce
the linear functional

(2.1) $\pi(P)=x+2y/m$ for $P=(x, y)\in\square $ .

Theorem 2.1. $G_{a}$ is bounded on $L(\overline{P})$ to $L(P)$ if $P\in T,\overline{P}\in T’$

with $\pi(\overline{P})-\pi(P)=2/m$ .

Remark. Theorem 2.1 can be improved by admitting certain points
$P$ on [$BF$ [ and $\overline{P}$ on [$B’F’$ [. The improvement requires deeper results,
and will be given in next section.

Theorem 2.1 may be expressed in still another way. The set of
$P\in \mathbb{R}^{2}$ with $\pi(P)=const$ is a straight line with slope $-m/2$ ; such a
line [or a segment on it] will be called a $\pi$ line [or $\pi$-segment]. $[BC[$

and [$B’C’$ [ are $\pi$-segments. $T$ is composed of a one-parameter family of
$\pi$ segments $l$ (such as $[BC[$), and likewise $T’$ by a family of segments $\overline{l}$ of
$\pi$-segments (such as $[B’C’[$). The constant value of $\pi(P)$ for $P\in l$ will

be denoted by $\pi(l)$ , and similarly for $\overline{l}$. The possible values of $\pi(l)$ range
over $(1/2-1/m, 1/2+1/m)((0,1)$ if $m=1$ ), and those of $\pi(\overline{l})$ over
$(1/2+1/m, 1/2+3/m)((2,3)$ if $m=1$ ); these intervals do not overlap.
$l$ will be said to be conjugate to $\overline{l}$, and vice versa, if $\pi(\overline{l})-\pi(l)=2/m$ .

For each $l$ , there is a conjugate $\overline{l}$, and vice versa. In particular, $[BC[$

and [$B’C’$ [are conjugate. It is easy to see that a conjugate pair $l,\overline{l}$ have
equal lengh, while the upper end of $l$ and the lower end of $\overline{l}$ have equal
height.

Theorem 2.1 is equivalent to saying that given any conjugate pair $l$ ,
$\overline{l}$, $G_{a}$ is bounded on $L(\overline{P})$ to $L(P)$ for any $P\in l$ and any $\overline{P}\in\overline{l}$.

It is obvious how Theorem 2.1 generalizes the known results (iia) and
(iib) (see Section 1). In (iia), $P$ and $\overline{P}$ were restricted on a particular

conjugate pair [$BC$ [, [$B’C’$ [. In (iib), $P$ may be on any $l$ and $\overline{P}$ on any
$\overline{l}$ if $l,\overline{l}$ are conjugate, but they had to correspond to each other one to
one due to the condition $x(P)+x(\overline{P})=1$ . Theorem 2.1 unites these
two cases by eliminating the restrictions.

Theorem 2.1 will be proved by interpolating between these special
cases using the following lemma.

Interpolation Lemma. Assume that none of $P,\overline{P}$ , $Q,\overline{Q}$ has
height zero. If a linear operator maps $L(\overline{P})$ into $L(P)$ and $L(\overline{Q})$ into
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$L(Q)$ (continuously), then it maps $L((1-\theta)\overline{P}+\theta\overline{Q})$ into $L((1-\theta)P+\theta Q)$ ,
where $0<\theta<1$ .

This lemma follows directly from Bergh-L\"ofstr\"om [1;Theorem 5.1.2],
which shows that $(L(P), L(Q))_{[\theta]}=L((1-\theta)P+\theta Q)$ with equal norm.

To prove Theorem 2.1, we may assume that $y(P)$ , $y(\overline{P})>0$ , since
the only case to the contrary is $P=B,\overline{P}\in[B’C’$ [, for which the result is

known by (iia). We begin the proof by invoking the map $\overline{P}\rightarrow P$ involved
in (iib); it is defined by $x(P)+x(\overline{P})=1$ and $\pi(\overline{P})-\pi(P)=2/m$ , and
can be extended to an affine map $\Lambda$ of $c1(T’)$ onto $c1(T)(c1$ denotes
the closure). $\Lambda$ sends $B’$ into $B$ , $E’$ into $F$ , and $F’$ into $E$ . The known
special case (iib) shows that $G_{a}$ is bounded on $L(\overline{P})$ to $L(P)$ if $P=\Lambda(\overline{P})$ ,

provided that $P\in T,\overline{P}\in T’$ .

Now take any pair $P\in T,\overline{P}\in T’$ with $\pi(\overline{P})-\pi(P)=2/m$ . We

have to show that $G_{a}$ maps $L(\overline{P})$ to $L(P)$ . First take the case that $\overline{P}$ is

above [$B’C’$ [, which implies that $P$ is above [$BC$ [. Take a point $\overline{Q}\in T’$

sufficiently close to $F’$ that the prolongation of $[\overline{Q}\overline{P}]$ meets [$B’C’$ [, say
at $\overline{R}$ . Let $Q$ be the image of $\overline{Q}$ under $\Lambda$ , so that $Q$ is close to $E$ . Prolong
$[QP]$ until it meets [$BC$ [, say at $R$ (this is possible if $Q$ is sufficiently

close to $E$ , which is guaranteed if $\overline{Q}$ is close enough to $F’$ ).
$G_{a}$ maps $L(\overline{Q})$ to $L(Q)$ by (iib), because $Q=\Lambda(\overline{Q})$ . $G_{a}$ maps $L(\overline{R})$

into $L(R)$ by (iia), because $R\in[BC$ [ and $\overline{R}\in[B’C’$ [. According to
Interpolation Lemma, therefore, the theorem will follow if we show that
$P$ divides $[QR]$ at the same ratio as $\overline{P}$ does $[\overline{Q}\overline{R}]$ .

This is a simple geometric problem. Indeed, let $\theta$ be such that
$\overline{P}=(1-\theta)\overline{Q}+\theta\overline{R}$ . Since $\pi$ is linear, we have $\pi(\overline{P})=(1-\theta)\pi(\overline{Q})+\theta\pi(\overline{R})$ .

On the other hand, $\pi(\overline{R})=\pi(R)+2/m$ , $\pi(\overline{Q})=\pi(Q)+2/m$ , and
$\pi(\overline{P})=\pi(P)+2/m$ , by conjugacy. Hence $\pi(P)=\pi((1-\theta)Q+\theta R)$ .
But $\pi$ is injective on $[QR]$ , which has slope different from $-m/2$ . It
follows that $P=(1-\theta)Q+\theta R$ , as required.

The case that $\overline{P}$ is below [$B’C’$ [follows ffom this by duality, or one
may repeat the above arguments with $\overline{Q}$ close to $E’$ . This completes the
proof of Theorem 2.1.

\S 3. The operators $\Gamma$ and $\Gamma^{\star}$

According to the known result (i) (see Section 1), $\Gamma$ is bounded
on $L^{2}$ to $L(P)$ if $P\in[BC$ [. In this section, we generalize this result
to some other domain spaces, and deduce corresponding results for the
dual operator $\Gamma^{*}$ . We begin by noting that certain $L(P)$ ’s are never
realized by $\Gamma$ .
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Lemma 3.1. If $P\in\square $ , $P\neq B$ , is on or to the right of [BE]
$(i.e. x(P)+y(P)/m\geq 1/2)$ , there is no nontrivial $\phi\in S’$ such that
$\Gamma\phi\in L(P)$ . (Note that [BE] has slope $-m$ , twice the slope of $\pi$ -lines.)

This is an immediate consequence of the following lemma (due to
Strauss [10] for $q\geq 2$ ), which limits the decay rate of a free wave.

Decay Lemma. For any nontrivial $\phi\in S’$ and $ 1\leq q\leq\infty$ , one
has

$||U(t)\phi||_{q}\geq K\langle t\rangle^{m(1/q-1/2)}$ , $t$ $\in \mathbb{R}$ , $\langle t\rangle=(1+t^{2})^{1/2}$ ,

where $K>0$ is a constant depending on $\phi$ . (Set $||\psi||_{q}=+\infty$ if $\psi\not\in L^{q}.$ )

Proof. Let $ u=\Gamma\phi$ , $ v=\Gamma\psi$ , with $0\neq\phi\in S’$ , $\psi\in S$ . Then
$\langle u(t), v(t)\rangle=\langle\phi, \psi\rangle\equiv K$ , hence $|K|\leq||u(t)||_{q}||v(t)||_{q’}$ . If we choose a

special function $\psi(x)=\exp[-(x-a)^{2}/4s]$ , $s>0$ , a direct computation

gives $||v(t)||_{q’}=c\langle t\rangle^{m(1/q^{J}-1/2)}$ . Hence $||u(t)||_{q}\geq c|K|\langle t\rangle^{m(1/q-1/2)}$ .
This proves the required result if we can show that $K\neq 0$ for some choice
of $a$ and $s$ . But $K=0$ for all $a$ and $s$ would imply that $e^{-s\triangle}\phi=0$ for
$s>0$ , as is seen fiiom Green’s formula. On passing to the limit $s\rightarrow 0$ ,
this gives $\phi=0$ , a contradiction.

We now prove that $\Gamma$ maps certain $L^{p}$ ’s into certain $L(P)$ ’s. To this
end we introduce further special points

$D=((m-2)/2(m-1), m/2(m-1))\in[BE[$ ,

$(D=E=(0,1/2)$ if $m=1$ ),

$D’=(m/2(m-1), (m-2)/2(m-1))\in[B’E’[$ ,

$(D’=E’=(1,1/2)$ if $m=1$ ).

(Note that $O$ , $C$ , $D$ are colinear.) We set $\hat{T}=\triangle(BCD)\subset T$ , which
is supposed to include the side ] $CD$ [ (except for $m=2$ ) but no other

boundary points. Similarly we define $\hat{T}’=\triangle(B’C’D’)\subset T’$ .

Theorem 3.2. Let $1/2<1/p<m/2(m-1)(1/2<1/p\leq 1$

if $m=1$ ). Then $\Gamma$ is bounded on $L^{p}$ to $L(P)$ for any $P\in\hat{T}$ with

$\pi(P)=1/p$ . $\Gamma^{*}$ is bounded on $L(\overline{P})$ to $L^{p^{J}}$ for any $\overline{P}\in\hat{T}’$ with $\pi(\overline{P})=$

$1/p’+2/m$ .

Corollary 3.3. If $(2m+2)/(m+2)<p\leq 2$ , $\Gamma$ is bounded on $L^{p}$

to $L^{q}(\mathbb{R}\times \mathbb{R}^{m})$ for $q=(m+2)p/m$ .

Remark. Corollary 3.3 generalizes the well known result of
Strichartz [12]. The restriction on $p$ comes from the fact that the line



Nonlinear Schr\"odinger Equations 229

$\pi(x, y)=1/p$ must meet the diagonal $x=y$ inside $\hat{T}$ . The lower limit
of the possible values of $q$ is $2+2/m$ , and corresponds to the maximal
decay.

Proof of Theorem 3.2. The following is an adaptation of a method
used by Giga [4] for the heat operator $e^{-t\triangle}$ . First fix $q$ such that

(3.1) $1/2-1/m<1/q<1/2$ ($0\leq 1/q<1/2$ if $m=1$ ).

Let $Q\in[BC$ [ with $x(Q)=1/q$ , so that $\pi(Q)=1/2$ . The special case
(i) (Section 1) shows that $\Gamma$ maps $L^{2}$ (continuously) into $L(Q)$ . On the

other hand, $\phi\in L^{q^{J}}$ implies that $||U(t)\phi||_{q}\leq c|t|^{-m(1/2-1/q)}||\phi||_{q’}$ . Thus
$\Gamma$ maps $L^{q^{J}}$ into $L_{*}(R)$ , where $R=(1/q, m(1/2-1/q))\in[BE$ [, hence
$\pi(R)=1/q’$ , and where $L_{*}$ denotes the weak $L$-space with respect to
the time variable. Since $Q$ and $R$ are on the same vertical line $x=1/q$ ,
it follows from Marcinkiewitz’s interpolation theorem that if

(3.2) $1/2<1/p<1/q’$ ,

then $\Gamma$ maps $L^{p}$ into $L(P)$ with

(3.3) $x(P)=1/q$ and $\pi(P)=1/p$ ,

provided that

(3.4) $y(P)\leq 1/p$ .

We now change the viewpoint and vary $q$ , with $p<2$ fixed. Then
(3.3) shows that $P$ moves on a $\pi$-segment with $x(P)=1/q$ , restricted
by $1/2-1/m<x(P)<1/p’$ , due to (3.1) and (3.2). This proves the
theorem for $m\leq 2$ , since (3.4) is automatically satisfied. If $m\geq 3$ ,
(3.4) introduces a new restriction; combined with (3.3), it requires that
$y(P)\leq\pi(P)=x(P)+2y(P)/m$ , hence $x(P)/y(P)\geq(m-2)/m$ . This
means that $P$ must be below the ray extending [$OD$ [. Thus $P$ must

belong to $\hat{T}$ . Summing up, we have proved Theorem 3.2.

If $p>2$ , Theorem 3.2 is not true. However, there is an analogous
result with $L^{p}$ replaced by a certain subspace. As is well known, the

Fourier transform $F$ on $\mathbb{R}^{m}$ maps $L^{p’}$ into $L^{p}$ . We shall denote its

image by $\tilde{L}^{p}$ , and make it into a normed space with the norm $||\phi||_{p}^{\sim}=$

$||\mathcal{F}^{-1}\phi||_{p’}$ . Obviously $\tilde{L}^{p}$ is a Banach space, isometrically isomorphic

with $L^{p^{l}}$ .
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Theorem 3.4. Let $ 2\leq p\leq\infty$ . The map $\Gamma$ is bounded on $\tilde{L}^{p}$ to
$L(P)$ if $P$ is in the triangle $\triangle(OBC)$ with $\pi(P)=1/p$ . The triangle is
assumed to exclude ] $OC$ [ but otherwise closed.

Corollary 3.5. If $ 2\leq p\leq\infty$ , $\Gamma$ is bounded on $\tilde{L}^{p}$ to $L^{q}(\mathbb{R}\times \mathbb{R}^{m})$

for $q=(m+2)p/m$ .

Proof of Theorem 3.4. In view of the definition of $\tilde{L}^{p}$ , Theorem

3.4 is equivalent to saying that $\Gamma oF$ maps $L^{p’}$ into $L(P)$ if $P$ is as
stated in the theorem. This is true for $p’=2=p$ by (i). Moreover,
$\Gamma\circ F$ maps $L^{1}$ into $BC(L^{\infty})$ . Indeed, $\psi\in L^{1}$ implies $U(t)\mathcal{F}\psi=\mathcal{F}\omega(t)$ ,
where $\omega(t)(\xi)=\exp(-it\xi^{2})\psi(\xi)$ , so that $\omega\in BC(L^{1})$ , hence $\Gamma \mathcal{F}\psi=$

$F\omega\in BC(L^{\infty})$ . The assertion then follows by another application of
the interpolation theorem $[1;Theorem5.1.2]$ to the pair $BC(L^{\infty})\subset L(O)$

and $L(P)$ , with $P$ varying on $[BC[$ .

Unfortunately, the range of the $P$ ’s in Theorems 3.2, 3.4 does not
cover the basic triangle $T$ . But this does not mean that the region left
out cannot be realized. In fact it is easy to see that $\Gamma\phi\in L(P)$ for all
$P\in\square $ to the left of [$BE$ [, if $\phi$ is a sufficiently nice function. Actually we
are not so much interested in $P$ outside the triangle $T=\triangle(BEF)$ . Thus
the following theorem gives a convenient criterion; here $\Sigma$ denotes the
Ginibre-Velo class $H^{1}\cap L_{1}^{2}$ , where $L_{1}^{2}$ is the weighted $L^{2}$ -space $\langle x\rangle^{-1}L^{2}$ ,
$\langle x\rangle=(1+|x|^{2})^{1/2}$ .

Theorem 3.6. For any $P\in T\cup[BF[,$ $\Gamma$ is bounded on $\Sigma$ to $L(P)$ .
For any $\overline{P}\in T’\cup[B’F’[,$ $\Gamma^{*}$ is bounded on $L(\overline{P})$ to $\Sigma^{*}$ .

Proof $\phi\in\Sigma$ implies that $\phi\in L^{q’}$ for $1/2\leq 1/q’<1/2+1/m$

and that $\phi\in H^{1}$ . Hence $||U(t)\phi||_{q}\leq K\langle t\rangle^{-m(1/2-1/q)}$ (maximal decay)
for $1/2-1/m<q\leq 1/2$ , which implies that $\Gamma\phi\in L^{q,r}$ for $0\leq 1/r<$

$m(1/2-1/q)$ . Thus $\Gamma\phi\in L(P)$ for any $P\in T\cup[BF$ [. The second part
of the theorem follows by duality.

Finally we prove the promised improvement of Theorem 2.1. For
this we need another set of special points. Let

$H=((m-2)/2(m-1), 0)$ , $H’=(m/2(m-1), 1)$

$(H=(0,0)$ , $H’=(1,1)$ if $m=1$ ).

Theorem 2.1 (improved). Let $P\in T\cup[BH$ [ and $\overline{P}\in T’\cup[B’H’[$

with $\pi(\overline{P})-\pi(P)=2/m$ . Then $G_{a}$ is bounded on $L(\overline{P})$ to $L(P)$ . $(H$

and $H’$ are introduced to avoid empty statement.)
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Proof It suffices to consider the case $P\in[BH$ [ or $\overline{P}\in[B’H’$ [. In

the first case, let $P=(1/q, O)\in[BH[and$ set $g=G_{a}f$ , $f\in L(\overline{P})$ . Then

$g(t)=\int a(t, s)U(t -s)f(s)ds$

(3.5)

$=\int a(t, s+t)U(-s)f(s+t)ds=\Gamma^{*}(a_{t}f_{t})$ ,

where

(3.6) $a_{t}(s)=a(t, s+t)$ , $f_{t}(s)=f(s+t)$ .

But $\Gamma^{*}$ is bounded on $L(\overline{P})$ to $L^{q}$ by Theorem 3.2, since $\pi(\overline{P})-1/q=$

$2/m$ . Hence $||g(t)||_{q}\leq c|||a_{t}f_{t}$ : $\overline{P}|||\leq c|||f_{t}$ : $\overline{P}|||=c|||f$ : $\overline{P}|||$ . This shows

that $G_{a}$ is bounded on $L(\overline{P})$ to $L^{q,\infty}=L(P)$ . The case $\overline{P}\in[B’H’$ [then
follows by duality.

\S 4. Ehrther estimates

1. Free waves. By a free wave in general we mean a solution $ u\in$

$S’(\mathbb{R}\times \mathbb{R}^{m})$ of the ffee Schr\"odinger equation $\partial_{t}u-i\triangle u=0$ . Such $u$ may
be identified with a function $u\in C^{\infty}(\mathbb{R};S’)$ , where $S’=S’(\mathbb{R}^{m})$ (see
Schwartz [8] $)$ . Equivalently, we may write $ u=\Gamma\phi$ , where $\phi=u(0)\in S’$ .
In fact $\{U(t)\}$ forms a $C^{\infty}$ -group on $S’$ . Thus $\Gamma\phi$ is a general form of the
free wave if we allow all $\phi\in S’$ . It is also well known that $U(t)$ forms a
strongly continuous group on $\Sigma$ (for $\Sigma$ see Section 3). Since $\Sigma$ is a Hilbert
space, it follows by duality that $U(t)$ also forms a strongly continuous
group on $\Sigma^{*}$ . However, these groups are not uniformly bounded.

2. Free waves in $L(P)$ . We denote by $\underline{L}(P)$ the set of free waves
belonging to $L(P)$ . It is easy to see that $\underline{L}(P)$ is a closed linear manifold
in $L(P)$ . Lemma 3.1 shows that $\underline{L}(P)=\{0\}$ if $P$ is on or to the right of
[BE]; otherwise $\underline{L}(P)$ is a rather large space, as is seen from Theorem
3.6.

Lemma 4.1. Let $P\in T$ . If $u\in\underline{L}(P)$ , then $u\in\dot{C}(\mathbb{R};\Sigma^{*})$ . $(\dot{C}$

denotes the class of continuous functions that tend to zero as $t$ $\rightarrow\pm\infty.$ )

Proof $u\in\underline{L}(P)$ implies that $u(s)\in L^{q}$ for almost all $s$ , where

$1/q=x(P)$ . But $L^{q}\subset\Sigma^{*}$ , since $\Sigma\subset L^{q^{J}}$ by $1/2-1/m<1/q\leq 1/2$ .

Since $u(t)=U(t-s)u(s)$ , it follows that $u\in C(\mathbb{R};\Sigma^{*})$ .
To analyze the behavior of $u(t)$ for large $t$ , let $\psi\in\Sigma$ and $v(t)=$

$ U(t)\psi\in\Sigma$ . We shall estimate $\langle u(t), \psi\rangle$ .

$|\langle u(t), \psi\rangle|=|\langle u(t+s), v(s)\rangle|\leq||u(t+s)||_{q}||v(s)||_{q’}$ .
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But $||\omega||_{q’}\leq||\langle x\rangle\omega||_{2}||\langle x\rangle^{-1}||_{\sigma}$ for any $\omega\in L^{q’}$ , where $1/\sigma=1/q’-1/2=$

$1/2-1/q<1/m$ (see above) so that $||\langle x\rangle^{-1}||_{\sigma}=c<\infty$ . Thus

$||v(s)||_{q’}\leq c||\langle x\rangle v(s)||_{2}=c||\langle x\rangle U(s)\psi||_{2}=c||U(s)\langle x+2is\partial\rangle\psi||_{2}$

$=c||\langle x+2is\partial\rangle\psi||_{2}\leq c\langle s\rangle||\psi||\Sigma$ .

(Here we have used the operator calculus involving $x$ . and $U(s)$ (see e.g.
Ginibre-Velo [5] $).)$ Thus we obtain

$|\langle u(t), \psi\rangle|\leq c\langle s\rangle||u(t+s)||_{q}||\psi||_{\Sigma}$ .

We integrate this inequality in $s$ , after multiplying with a weight function
$\kappa(s)\geq 0$ with $L^{1}$ -norm one, with a bounded support including $s=0$ .

Since $||u(\cdot)||_{q}$ has finite $L^{r}$-norm $|||u$ : $P|||$ , where $1/r=y(P)$ , it follows
that $|\langle u(t), \psi\rangle|\leq c|||\kappa u_{t}$ : $ P|||||\psi||\Sigma$ , where $u_{t}(s)=u(t+s)$ . Since this is
true for any $\psi\in\Sigma$ , we conclude that

$u(t)\in\Sigma^{*}$ with $||u(t)||_{\Sigma^{*}}\leq c|||\kappa u_{t}$ : $P|||$ .

Since $|||u$ : $P|||$ is finite, the right member tends to zero as $ t\rightarrow\pm\infty$ if
$y(P)>0$ .

This argument does not work if $y(P)=0$ . But $y(P)=0$ occurs only
if $P=B$ , in which case $u(t)\in L^{2}$ for almost all $t$ , hence $u\in L(Q)$ for
every $Q\in[BC[by(i)$ (Section 1). Choosing any such $Q$ with $y(Q)>0$ ,
we see that the required result holds also for $P=B$ .

Remark. Given $u\in\underline{L}(P)$ with $P\in T$ , how can one characterize
$\phi=u(0)$ , or $u(t)$ in general? Unfortunately we have no answer to this
question, beyond the fact that $u(t)\in\Sigma^{*}$ .

3. The range of $G_{a}$ . In Section 2 we proved that $G_{a}$ is bounded on
$L(\overline{P})$ to $L(P)$ for certain $P$ and $\overline{P}$ . Since $G_{a}$ is an integral operator, it
is expected that the functions produced by $G_{a}$ are continuous in some
sense or other, unless the function $a$ is ill-behaved.

Lemma 4.2. Suppose that $a$ has the property that for each $t$ $\in \mathbb{R}$ ,
$t_{n}\rightarrow t$ implies $a(t_{n}, s+t_{n})\rightarrow a(t, s+t)$ for almost every $s\in \mathbb{R}$ . (This

condition is satisfied for $G_{a}=G$ , $G_{\pm}.$ ) If $f\in L(\overline{P})$ with $\overline{P}\in T’$ , then
$G_{a}f\in\dot{C}(\mathbb{R};\Sigma^{*})$ .

$Proo/$. Let $g=G_{a}f$ where $f\in L(\overline{P}),\overline{P}\in T’$ . Then we have
the relations (3.5-6). Since $\Gamma^{*}$ maps $L(\overline{P})$ continuously into $\Sigma^{*}$ (see

Theorem 3.6), we have $g(t)\in\Sigma^{*}$ , with $||g(t)||\Sigma^{*}\leq c|||f$ : $\overline{P}|||$ .
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Next we prove that $g(t)\in\Sigma^{*}$ is continuous in $t$ . To this end we
compute

$g(\tau)-g(t)=\Gamma^{*}(a_{\tau^{-}}f_{\mathcal{T}}-a_{t}f_{t})=\Gamma^{*}[a_{\tau}(f_{\mathcal{T}}-f_{t})+(a_{\tau}-a_{t})f_{t}]$ .

It suffices to show that the expression in $[ ]$ tends to zero in $L(\overline{P})$ as
$\tau\rightarrow t$ along any sequence $t_{n}$ . This is true of $a_{\tau}(f_{\tau}-f_{t})$ , since translation

is continuous on $L(\overline{P})$ . The same is true of $(a_{\tau}-a_{t})f_{t}$ by dominated
convergence, since by hypothesis $a(t_{n}, s+t_{n})\rightarrow a(t, s+t)$ as $t_{n}\rightarrow t$ , for
almost all $s$ . This proves the continuity of $g(t)$ .

It remains to show that $g(t)\rightarrow 0$ in $\Sigma^{*}$ as $t$ $\rightarrow\pm\infty$ . To this end we
take any $\epsilon>0$ and write $f=f’+f’’$ , where $f’$ is supported on $(-\infty, \tau)$

and $f’’$ on $(\tau, \infty)$ , with $\tau$ sufficiently large that $|||f’’$ : $\overline{P}|||<\epsilon$ . Set
$g’=G_{a}f’$ , $g’’=G_{a}f’’$ . It follows from the preceding results that both
$g’(t)$ and $g’’(t)$ are continuous and bounded in $\Sigma^{*}$ , with $||g’’(t)||_{\Sigma^{*}}\leq c\epsilon$ .

On the other hand $g’(t)$ coincides with a free wave for $t$ $>\tau$ . Thus
Lemma 4.1 shows that $g’(t)$ tends in $\Sigma^{*}$ to zero as $ t\rightarrow\infty$ . Since $\epsilon$ may
be arbitrarily small, we have shown that $g(t)\rightarrow 0$ as $t$ $\rightarrow\infty$ . Similarly
we can prove the same result for $t$ $\rightarrow-\infty$ .

Lemma 4.3. Suppose that for each $t$ $\in \mathbb{R}$ , $t_{n}\rightarrow t$ implies $a(t_{n}, s)$

$\rightarrow a(t, s)$ for almost all $s$ . (This condition is met for $G_{a}=G$ , $G_{\pm}.$ )

Let $h(t)=U(-t)(G_{a}f)(t)$ , where $f\in L(\overline{P})$ with $\overline{P}\in T’$ . Then $ h\in$

$BC(\mathbb{R};\Sigma^{*})$ . If in particular, $G_{a}=G_{+}[G_{-}]$ , then $h(t)\rightarrow 0$ in $\Sigma^{*}$ as
$t$ $\rightarrow\infty[-\infty]$ .

Proof. We have

$h(t)=\int_{-\infty}^{\infty}a(t, s)U(-s)f(s)ds=\Gamma^{*}q_{t}$ , $q_{t}(s)=a(t, s)f(s)$ .

Since $|||q_{t}$ : $\overline{P}|||\leq|||f$ : $\overline{P}|||$ , the result follows as in the proof of Lemma
4.2, except that $h$ need not tend to zero as $t$ $\rightarrow\pm\infty$ . (In fact $h$ is
constant if $a\equiv 1.$ )

If $G_{a}=G_{+}$ , then $a(t, s)=0$ for $s<t$ , so that $q_{t}\rightarrow 0$ in $L(\overline{P})$ as
$ t\rightarrow\infty$ . Hence $h(t)\rightarrow 0$ in $\Sigma^{*}$ as $ t\rightarrow\infty$ . $G_{-}$ can be handled in the
same way.

\S 5. A miniature scattering theory for $NLS$

In this section we shall construct a scattering theory for small solu-
tions of (NLS), assuming, for simplicity, that

(5.1) $|F’(\zeta)|\leq M’|\zeta|^{k-1}$ , $F(0)=0$ , where $k>1$ is a constant.
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This implies that $|F(\zeta)|\leq M|\zeta|^{k}$ with some $M$ ; we may set $M’=M$ .

Our solution $u$ will belong to $L(P)$ , where $P\in T$ is a $k$-point, by
which we mean that $P$ and $kP$ form a conjugate pair (see Section 2).
Obviously $y(P)>0$ for a $k$-point $P$ .

If $P$ is a $k$-point, then $kP\in T’$ and $(k-1)\pi(P)=\pi(kP)-\pi(P)=$

$2/m$ , hence

(5.2) $\pi(P)=2/(k-1)m$ .

Thus $\pi(P)$ is determined by $k$ only and decreases with increasing $k$ .

Moreover, since $P\in T$ implies $1/2-1/m<\pi(P)<1/2+1/m$ , it
follows from (5.2) that $1+4/(m+2)<k<1+4/(m-2)$ . But this is
not sufficient; we have

Lemma 5.1. In order that there exist a $k$ -point, it is necessary
and sufficient that

(5.3) $[m+2+(m^{2}+12m+4)^{1/2}]/2m<k<1+4/(m-2)$ .

The right member should read $\infty$ if $m\leq 2$ .

Remark. Lemma 5.1 $wil$ be proved below. (5.3) is a familiar con-
dition that recurs in various situations for NLS, see e.g. [2, 3, 11, 13]. It
is of some interest that it occurs here as a simple geometric condition.
Under condition (5.3), a typical $k$-point is given by

(5.4) $P=(1/(k+1), 1/(k-1)-m/2(k+1))$ .

Of course any points sufficiently close to $P$ on the $\pi$-line through $P$ are
$k$ points

In what follows we have to do with free waves that are asymptotic
to solutions $u$ of (NLS). In general we say that two functions $u$ , $ v\in$

$C(\mathbb{R};S’)$ are asymptotic to each other at $\infty$ , and write “
$u\sim v$ at $\infty’’$ , if

$U(-t)(u(t)-v(t))\rightarrow 0$ as $t$ $\rightarrow\infty$ . Similarly we define “
$u\sim v$ at $-\infty‘‘$ .

Obviously the relation $u\sim v$ is invariant under simultaneous translation
of $u$ , $v$ in $t$ . We also note that given $u$ , there is at most one free wave $v$

such that $u\sim v$ at $\infty$ , and similarly at $-\infty$ . This follows from the fact
that $U(-t)v(t)=v(0)$ for a free wave $v$ .

Theorem 5.2. Let $P$ be a $k$ -point, and $u\in L(P)$ a solution of
(NLS). Then there are unique free waves $u_{\pm}\in\underline{L}(P)$ that are asymptotic
to $ uat\pm\infty$ . The maps $u\mapsto u\pm are$ continuous and injective from $L(P)$

to $\underline{L}(P)$ , and in fact uniformly continuous on bounded sets in $L(P)$ .

Proof. Uniqueness of $u\pm is$ obvious from the remark above. We
shall construct $u_{+}$ ( $u_{-}$ can be similarly handled). Set $ w=-iG_{+}F(u)\in$
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$L(P)$ , which exists because $F(u)\in L(kP)$ (by (l.lOb)) and $P$ , $kP$ are
conjugate. Then $(\partial_{t}-i\triangle)w=-iF(u)$ . Since $(\partial_{t}-i\triangle)u=-iF(u)$ , we
have $(\partial_{t}-i\triangle)(u-w)=0$ , so that $u_{+}\equiv u-w$ $\in\underline{L}(P)$ , and we can write
$u=u_{+}-iG_{+}F(u)$ . That $u\sim u_{+}$ at $\infty$ follows from Lemma 4.3. The
map $u\mapsto u_{+}$ is uniformly continuous on bounded sets since $u\mapsto F(u)$

from $L(P)$ to $L(kP)$ and $F(u)\mapsto w=G_{+}F(u)$ from $L(kP)$ to $L(P)$

have the same property (see Theorem 2.1).
The proof that $u\mapsto u_{+}$ is injective is more complicated. Suppose

that there is another solution $v\in L(P)$ of (NLS). Then we have as
above $v=v_{+}-iG_{+}F(v)$ , where $v_{+}\in\underline{L}(P)$ and $v\sim v_{+}$ at $\infty$ . we claim
that if $v_{+}=u_{+}$ then $v=u$ . Indeed $v_{+}=u_{+}$ implies

(5.5) $u-v=-iG_{+}(F(u)-F(v))$

on subtraction. We divide $(-\infty, \infty)$ into a finite number of subintervals
$I_{0}=(-\infty, T_{1})$ , $I_{1}=(T_{1}, T_{2})$ , $\ldots$ , $I_{n}=(T_{n}, \infty)$ , and set $u_{j}=\chi_{j}u$ ,
$v_{j}=\chi_{j}v$ , where $\chi_{j}$ is the characteristic function of $I_{j}$ . Since $|||u$ : $P|||$

and $|||v$ : $P|||$ are finite, for any $\epsilon>0$ we can choose $n$ and the $I_{j}$ so that
$|||u_{j}$ : $P|||^{k-1}+|||v_{j}$ : $ P|||^{k-1}\leq\epsilon$ .

Let us compute $u_{j}-v_{j}$ by multiplying (5.5) with $\chi_{j}$ . Since $G_{+}$ is of
Volterra type, with integration on $(t, \infty)$ , there is no contribution from
the parts $u_{i}$ , $v_{i}$ with $i\leq j$ . Since $G_{+}$ is bounded on $L(kP)$ to $L(P)$ and
since

$|F(u_{i})-F(v_{i})|\leq cM|u_{i}-v_{i}|(|u_{i}|^{k-1}+|v_{i}|^{k-1})$ ,

we obtain (cf. [7] for this computation)

$|||u_{j}-v_{j}$ : $P|||\leq c\sum_{i=j}^{n}|||F(u_{i})-F(v_{i})$ : $kP|||$

(5.6) $\leq cM\sum_{i=j}^{n}|||u_{i}-v_{i}$ : $P|||(|||u_{i }P|||^{k-1}+|||v_{i }P|||^{k-1})$

$\leq cM\epsilon\sum_{i=j}^{n}|||u_{j}-v_{j}$ : $P|||$ .

Now assume that $\epsilon$ is chosen so small that $cM\epsilon<1$ . If we set
$j=n$ in (5.6), we obtain $|||u_{n}-v_{n}$ : $P|||\leq cM\epsilon|||u_{n}-v_{n}$ : $P|||$ , hence
$u_{n}=v_{n}$ . On setting $j=n-1$ , then, we have $|||u_{n-1}-v_{n-1}$ : $ P|||\leq$

$cM\epsilon|||u_{n-1}-v_{n-1}$ : $P|||$ , hence $u_{n-1}=v_{n-1}$ . Proceding in the same way,
we obtain $u_{j}=v_{j}$ for $j=0,1$ , $\ldots$ , $n$ , hence $u=v$ .

We now construct a scattering theory for small solutions in $L(P)$ .
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Theorem 5.3. Let $P$ be a $k$ -point. Then there exist balls $B\pm in$

$\underline{L}(P)$ and a ball $B$ in $L(P)$ , with center $O$ and positive radii, with the
following properties.

(a) If $u_{-}\in B_{-}$ , (NLS) has a unique global solution $u\in B$ such that
$u\sim u_{-}$ $ at-\infty$ .

(b) There is a unique free wave $u_{+}\in\underline{L}(P)$ such that $u\sim u_{+}$ at $\infty$ .
(c) The scattering operator $S$ : $u_{+}=Su_{-}$ is well defined and is

continuous and injective on $B_{-}$ to $\underline{L}(P)$ .

(d) The range of $S$ covers $B_{+}$ .

(e) All $u$ and $u_{\pm}$ belong to $\dot{C}(\mathbb{R};\Sigma^{*})$ .

Remark. Our scattering operator $S$ acts on space-time functions,
and differs from the conventional ones, which act on space functions.
Our viewpoint is in conformity with the idea of Segal (see e.g. [9]).

Proof. To construct the solution $u$ , we solve the integral equation
$u=\Phi_{-}(u)\equiv u_{-}-iG_{-}F(u)$ by a routine method (such as was used in
$[6,7]$ ; see Section 1 for $G_{\pm}$ ). Indeed, given $v\in L(P)$ , we have $ F(v)\in$

$L(kP)$ , with $|||F(v)$ : $kP|||\leq M|||v$ : $P|||^{k}$ . Since $P$ and $kP$ are conjugate,
we obtain $|||\Phi_{-}(v)$ : $P|||\leq|||u_{-}$ : $P|||+cM|||v$ : $P|||^{k}$ by Theorem 2.1. It
follows that $\Phi_{-}$ sends a certain ball $B$ of $L(P)$ into itself if $|||u_{-}$ : $P|||$ is
sufficiently small. An analogous estimate using the Lipschitz continuity
of $F$ shows that $\Phi_{-}$ is a contraction on $B$ . Thus $\Phi_{-}$ has a unique fixed
point $u$ in $B$ , which is a (weak) solution of (NLS). Lemma 4.3 then
shows that $u\sim u_{-}$ at $-\infty$ .

Since we are using the contraction theorem, the uniqueness of $u$ in $B$

is obvious. Moreover, the continuity of the map $u_{-}\mapsto u$ follows easily.
The existence of $u_{+}$ , hence of $S$ too, follows from Theorem 5.2. Since

the map $u\mapsto u_{+}$ is injective and uniformly continuous on bounded sets,
the same is true of $S$ . Property (e) follows from Lemmas 4.1-2.

Finally we note that the role of $u_{-}$ and $u_{+}$ may be reversed to
construct the inverse operator $S^{-1}$ : $u_{-}=S^{-1}u_{+}$ for sufficiently small
$u_{+}\in\underline{L}(P)$ . Since $|||u_{-}$ : $P|||\leq const|||u_{+}$ : $P|||$ for sufficiently small $|||u_{+}$ :
$P|||$ (due to the uniform continuity proved above), we have $S^{-1}B_{+}\subset B_{-}$

if $B_{+}$ is sufficiently small. This shows that the range of $S$ covers $B_{+}$ .

Proof of Lemma 5.1. We recall some properties of the generic con-
jugate pair $l,\overline{l}$. $l$ and $\overline{l}$ are parallel and have the same length; the upper
end $Q$ of $l$ is on the vertical side ] $EF$ [ of $T$ , the lower end $\overline{Q}$ of $\overline{l}$ is on
the vertical side ] $E’F’$ [ of $T’$ , and $Q,\overline{Q}$ have the same height, which we
denote by $h$ . Let $R$ denote the lower end of $l$ , and $\overline{R}$ the upper end of $\overline{l}$.

Obviously a $k$ point $P\in l$ exists with some $k>1$ if and only if
there is a ray $OX$ from the origin $O$ that meets both $l$ and $\overline{l},\cdot$ in this case
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$k=\pi(\overline{l})/\pi(l)$ , since $l$ and $\overline{l}$ are parallel, so that $k$ does not depend on
the exact position of the ray.

If $h\leq 1/2$ so that $l$ is on or below [$BC[,$ $R$ is on the bottom side
[$BF$ [ of $T$ . Thus the ray $O\overline{P}$ meets $l$ if $\overline{P}\in\overline{l}$ is sufficiently low, hence
$k$-points exist on $l$ for some $k$ . If we let $h\rightarrow 0$ , so that $l$ shrinks to
the point $F=(1/2-1/m, 0)$ , and $\overline{l}$ to $E’=(1/2+1/m, 0)$ , the ratio
$k=\pi(\overline{l})/\pi(l)$ approaches $(1/2+1/m)/(1/2-1/m)=(m+2)/(m-2)$ .
If $h=1/2$ , then $l$ $=[BC[,\overline{l}=[B’C’$ [, and $k=1+4/m$ .

The case that $l$ is above [$BC$ [ is more complicated. In this case $R$

is on the hypotenuse BE of $T$ and $\overline{R}$ is on the upper side [$B’F’$ [ of $T’$ .
If $h$ is not too large, the ray OR is still below the ray $O\overline{R}$ , so that there
is a ray $OX$ that meets both $l$ and $\overline{l}$. If $h$ is increased, this ceases to
be the case eventually. The critical value of $h$ can be determined by
the condition that the two rays OR and $O\overline{R}$ coincide. An elementary
algebra gives the value of $h$ , then of $k$ , which turns out to be the value
on the left side of (5.3). Since $k$ decreases with increasing $h$ , we have
proved the lamma.
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Helmholtz-Type Equation
on Non-compact Two-Dimensional

Riemannian Manifolds

Reiji Konno

\S 1. Introduction

We shall consider the existence, or rather non-existence of square
integrable solutions of the equation $-\triangle f=\lambda f$ on a non-compact Rie-
mannian manifold which is homeomorphic to $R^{n}$ minus a ball, where $\triangle$

is the Laplace-Beltrami operator and $\lambda$ is an arbitrary positive constant.
The source of this problem is the study of the non-existence of positive
eigenvalues of the Schr\"odinger operator $-\triangle+q$ in a region of $R^{n}$ , and
the method used there was found to be applicable to problems of the
above type.

There may be several ways of physical interpretation of the equation
$-\triangle f=\lambda f$ on manifolds. But probably the most essential one is as
follows: Let a Riemannian manifold $\mathcal{M}$ represent a non-Euclidean space
which is filled up with a medium whose displacement on some quantity,
e.g. pressure, electric field etc., obeys Hooke’s law isotropically and
homogeneously in each small portion of the medium. We suppose further
that the displacement is transferred entirely to the neighboring portions

without influence of the curvature. (This situation occurs, for example,
if A4 is a surface and the medium is distributed on and moving along
$\mathcal{M}$ without friction or obstruction.) Then, the displacement $D$ should
enjoy the “wave equation” $D_{tt}=\triangle D$ (by taking an appropriate scale),

therefore $-\triangle f=\lambda f$ describes the standing wave $D=e^{i\sqrt{\lambda}t}f(x)$ .

We notice that the total energy $\int_{\lambda\Lambda}(|D_{t}|^{2}+|\nabla D|^{2})d\mathcal{M}$ is finite if

and only if $\int_{A4}|f|^{2}d\mathcal{M}$ is finite. Therefore, what we are asking is the

conditions for $\mathcal{M}$ not to admit a standing wave of finite energy.
Before describing the general statement, let us see examples of $\mathcal{M}$

which have $L^{2}$ solutions

Received December 7, 1992.
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Examples, (a) $\mathcal{M}$ is the semi-infinite cylinder whose metric $ds^{2}=$

$dr^{2}+\rho_{0}^{2}d\theta^{2}$ , $r\in(r_{0}, \infty)$ , $\theta\in S^{1}$ , where $\rho_{0}$ is a positive constant. Since
$\triangle=\partial^{2}/\partial r^{2}+\rho_{0}^{-2}\partial^{2}/\partial\theta^{2}$ , the function $f=e^{-ar+2\pi ni\theta}$ is an $L^{2}$ solution
for $\lambda=-a^{2}+4\pi^{2}n^{2}/\rho_{0}^{2}$ if the constant $a$ and the integer $n$ satisfy

$0<a<2\pi n/\rho_{0}$ . (b) Let $ds^{2}=dr^{2}+e^{2ar}d\theta^{2}$ , $r\in(r_{0}, \infty)$ , $\theta\in S^{1}$ .
If $a$ and $b$ are constants such that $0<b<a<2b$ , then $f=e^{-br}$ is a
solution for $\lambda=b(a-b)$ which is square integrable since $ d\mathcal{M}=e^{ar}drd\theta$ .

The above examples suggest that, in so far as 2-dimensional rota-
tionally symmetric manifolds are concerned, the following theorem is in
some sense a satisfactory one.

Theorem 1 $([2],[4])$ . If $\mathcal{M}$ is a two-dimensional manifold whose
metric has the form

$ds^{2}=dr^{2}+\rho(r)^{2}d\theta^{2}$ , $r\in(r_{0}, \infty)$ , $\theta\in S^{1}$

where $\rho(r)$ is a positive absolutely continuous nondecreasing function of
$r$ which enjoys (i) $\rho(r)\rightarrow\infty(r\rightarrow\infty)$ and $(ii)\int_{r_{0}}^{\infty}\frac{dr}{\rho(r)}=\infty$ , then for

any constant $\lambda>0$ and any nontrivial locally square integrable solution
$of-\triangle f=\lambda f$ , there exist constants $C>0$ and $r_{1}\geq r_{0}$ such that

$\int_{r_{0}<r<R}|f|^{2}d\mathcal{M}\geq C\int_{r_{O}}^{R}\frac{dr}{\rho(r)}$ $(R\geq r_{1})$

holds where $ d\mathcal{M}=\rho(r)drd\theta$ . (Therefore $f\not\in L^{2}(\mathcal{M})$ unless $f\equiv 0.$ )

The previous example (a) does not $satis\mathfrak{h}^{\gamma}(i)$ , while (b) breaks (ii).

Corollary. Let $\mathcal{M}$ be a surface of revolution in $R^{3}$ obtained by
rotating the graph of an arbitrary absolutely continuous function $z=$

$z(\rho)$ , $\rho_{0}<\rho<\infty$ , around the $z$ -axis. Then $\mathcal{M}$ has the same property
with respect to the natural metric. In particular, any non-vanishing
solution $of-\triangle f=\lambda f$ , $\lambda>0$ can not be square integrable.

As to the higher dimensional cases, we have the following theorem.

Theorem 2 $([3],[4])$ . Let $\mathcal{M}$ $=\{(r, \omega)|r_{0}<r<\infty$ , $\omega$ $\in$

$S^{n-1}\}$ $(n\geq 2)$ with the metric $ds^{2}=dr^{2}+\rho(r)^{2}d\tilde{s}^{2}$ where $\rho$ is $a$

positive function and $d\tilde{s}$ is the line element of the $(n-1)$ -sphere $S^{n-1}$ .
Suppose that

(i) $\rho\in C^{2}(r_{0}, \infty)$ , $\rho’(r)>0$ and $\rho(r)\rightarrow\infty$ $(r\rightarrow\infty)$ .
(ii) $\rho’(r)/\rho(r)\rightarrow 0(r\rightarrow\infty)$ .
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(iii) $\rho’’(r)/\rho’(r)\rightarrow 0(r\rightarrow\infty)$ .

(iv) There exists a number $\alpha>0$ such that

$\int_{r_{0}}^{\infty}\frac{dr}{\rho(r)^{\alpha}}=\infty$ .

Then for any $\lambda>0$ and any non-zero solution $of-\triangle f=\lambda f$ and for
an $arbitrary\in>0$ , we can take $C>0$ and $r_{1}\geq r_{0}$ so that

$\int_{ro<r<R}|f|^{2}d\lambda 4\geq C\int_{r_{0}}^{R}\frac{dr}{\rho(r)^{s}}$ $(R\geq r_{1})$ .

We see that Theorem 2 assumes weaker growth of $\rho(r)$ than Theorem
1. Moreover, the obtained estimate is better. But it requires higher
smoothness of $\rho$ and restricts the magnitude of $\rho’’$ in return.

\S 2. Not symmetric manifolds

T. Tayoshi’s work [6] treated the case in which the metric itself is
not rotationally symmetric but approaches such one asymptotically. His
theorem is a generalization of Theorem 2 above, though not completely.
Here we want to have an extension of Theorem 1.

Let $\lambda 4$ be a two-dimensional manifold whose metric has the form

$ds^{2}=a(r, \theta)dr^{2}+2b(r, \theta)\rho(r)drd\theta+c(r, \theta)\rho(r)^{2}d\theta^{2}$ ,

where $a$ , $b$ , $c$ and $\rho$ are real-valued functions. To describe the conditions
altogether, let us begin with definitions.

Definition 1. (i) $t(r)=\exp(-\int_{r_{0}}^{r}\frac{ds}{\rho(s)})$ .

(ii) For each number $m>0$ , the quantity $h(r;m)$ is the one that
satisfies

$\int_{r}^{r+h(r;m)}\frac{ds}{\rho(s)}=mt(r)$ .

(iii) $\varphi(r;m)=$ essinf $\rho(s)^{2}\rho’(s)$ .
$r\leq s\leq r+h(r;m)$

Assumption on $\rho$ .
(i) $\rho(r)$ is positive, nondecreasing and absolutely continuous with

$\rho’(r)>0a.e$ .
(ii) $\rho(r)\rightarrow\infty(n\rightarrow\infty)$ .
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$(iii)\int_{r_{0}}^{\infty}\frac{dr}{\rho(r)}=\infty$ .

(iv) $t(r)/\rho’(r)\rightarrow 0(r\rightarrow\infty)$ .

(v) $\int_{r_{0}}^{\infty}\frac{\varphi(r,m)}{\rho(r+h(r\ovalbox{\tt\small REJECT} m))}.dr=\infty$ .

Remark. If $\rho(r)t(r)$ is bounded and $\rho’(r)\leq 1$ , and moreover
$\rho(r)^{2}\rho’(r)$ is nondecreasing or nonincreasing, then the condition (v) is
fulfilled.

Definition 2. g $=\sqrt{ac-b^{2}}$ , A $=a/g$ , B $=b/g$ , C $=c/g$ .

Definition 3. A function $f(t, \theta)$ is said to satisfy the condition of
Definition 3 if it enjoys the inequality

$|f$ (point $1$ ) $-f$ (point 2) $1\leq\psi(distance)$

where $\psi(x)$ is a positive continuous nondecreasing function of $x>0$

which fulfills $\int_{\rightarrow+0}\{\psi(x)/x\}dx<\infty$ . By the way, if the two points are

$(t_{1}, \theta_{1})$ and $(t_{2}, \theta_{2})$ then the distance is $\sqrt{t_{1}^{2}+t_{2}^{2}-2t_{1}t_{2}\cos(\theta_{1}-\theta_{2})}$ .

Remark. This condition is a generalization of the uniform H\"older

continuity, the latter corresponding to $\psi(x)=Kx^{\alpha}$ .

Assumptions on $a$ , $b$ , $c$ .
(i) $a$ , $b$ , $c\in C^{1}((r_{0}, \infty)\times S^{1})$ , $a>0$ , $a/c\rightarrow 1$ , and $b\rightarrow 0$ as

$ r\rightarrow\infty$ and there exist numbers $k$ , $l$ and $r_{1}(k>0,0<l<2, r_{1}\geq r_{0})$

such that

$g\geq k$ , $ g_{r}/g\geq-l\rho\prime/\rho$ $(r\geq r_{1}, \theta\in S^{1})$ .

(ii) $g_{\theta}b/(g^{2}\rho’)\rightarrow 0$ $(r\rightarrow\infty)$ ,

$g_{\theta}t/(g^{2}\rho’)\rightarrow 0$ $(r\rightarrow\infty)$ .

(iii) As functions of $t$ and $\theta$ ,

$\rho t^{-1}A_{r}$ , $\rho t^{-1}B_{r}$ , $\rho t^{-2}C_{r}$ , $t^{-1}A_{\theta}$ , $t^{-2}B_{\theta}$ , $t^{-1}C_{\theta}$

have the limits at $t=0$ (i.e., $ r=\infty$ ), and satisfy the condition of
Definition 3 near $t=0$ .

Our main theorem is as follows:
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Theorem 3. Under the above assumptions, the equation $-\triangle f=$

$\lambda f$ on A4 has no non-trivial solution of integrable square, provided
$\lambda>0$ .

It should be noted that the conditions do not make reference to the
second order derivatives of the metric.

This theorem is proved by combining the following two lemmas.

Lemma 1 (Estimate by isothermal coordinates).
Let the two-dimensional Riemannian manifold A4 admit a global

system of coordinates $u$ , $v$ , $ u_{0}<u<\infty$ , $v\in S^{1}$ so that they are
isothermal, that is, the metric has the form

$ds^{2}=\tau(u, v)(du^{2}+dv^{2})$

by a positive function $\tau(u, v)$ . We suppose that $\tau$ is absolutely continuous

with respect to $u$ for $a.e$ . $v\in S^{1}$ and of class $C^{1}$ with respect to $v$ for
$a.e.u$ . Moreover let

$\varphi(u)=ess\inf\underline{\partial}\tau(u, v)$

$v\in S^{1}\partial u$

satisfy

$\int_{\tau\iota_{0}}^{\infty}\varphi(u)du=\infty$ .

Then for every non-trivial solution $of-\triangle f=\lambda f$ on $\mathcal{M}$ $(\lambda>0)$ , we
can find numbers $C>0$ and $u_{1}\geq u_{0}$ such that

$\int_{u_{0}<u<U}|f|^{2}du\geq CU$ $(U\geq u_{1})$

holds $(dA4=\tau dudv)$ .

Lemma 2 (Existence of suitable isothermal coordinates).

If a two-dimensional Riemannian manifold satisfies the assumptions

of Theorem 3, there exist a number $r_{1}$ and $C^{1}$ -functions $u(r, \theta)$ and
$v(r, \theta)$ defined for $r\geq r_{1}$ , $\theta\in S^{1}$ , which satisfy

$v_{r}=Bu_{r}-A\rho u_{\theta}-1$ ,

$v_{\theta}=C\rho u_{r}-Bu_{\theta}$ .

Here (i) for each $\theta$ , $u(r, \theta)$ is strictly increasing with $r$ , $u_{r}(r, \theta)$ is abso-
lutely continuous and $ u(r, \theta)\rightarrow\infty$ as $ r\rightarrow\infty$ . On the other hand $v_{\theta}>0$

and the value of $v(r, \theta)$ is determined up to the difference of $2k\pi(k\in Z)$ .
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(ii) In terms of $u$ and $v$ , the metric is expressed as

$ds^{2}=\tau(u, v)(du^{2}+dv^{2})$ ,

$\tau=\frac{g}{Cu_{r}^{2}-2B\rho 1u_{r}u_{\theta}+-A\rho u_{\theta}-22}$ .

(iii)
$\varphi(u)=ess\inf_{v\in S^{1}}\partial\tau/\partial u$

enjoys

$\int_{u_{O}}^{\infty}\varphi(u)du=\infty$ .

Lemma 1 together with Lemma 2 claims that if the solution $f$ is
square integrable over $\mathcal{M}$ then $f(r, \theta)\equiv 0$ for sufficiently large $r$ , say, $ r\geq$

$r_{1}$ . But, in our situation, we can easily verify the unique continuation
property so that $f\equiv 0$ holds throughout $\vee\wedge\Lambda$ . (So far as the unique
continuation applies, A4 itself need not be of the shape described before.
If only a part of A4 has that shape, we must have the same conclusion
again.)

\S 3. Sketch of the proof of Lemma 2

The proof of Lemma 1 can be got by a standard argument. Therefore
we will leave it to the full paper [5].

The main point of the proof of Lemma 2 is to obtain the solution
of $\triangle u=0$ which has the asymptotic form $ u\sim\int dr/\rho$ . To this end we
change the variables from $r$ , $\theta$ to $t$ , $\theta$ and look for the solution of $\triangle u=0$

having the form $u=-\log t+\xi(t, \theta)$ , $\xi\in C^{2}$ in the neighborhood of
$t=0$ . In fact, $\xi$ enjoys the equation

$(\tilde{C}\xi_{x}+\tilde{B}\xi_{y})_{x}+(\tilde{B}\xi_{x}+\tilde{A}\xi_{y})_{y}=t^{-1}C_{t}+t^{-2}B_{\theta}$

where $ x=t\cos\theta$ , $ y=t\sin\theta$ and $\tilde{A},\tilde{B}$ , and $\tilde{C}$ are quadratic forms of
$\cos\theta$ and $\sin\theta$ whose coefficients are linear combinations of $A$ , $B$ and $C$ .

Thus we can apply the classical theory of Korn and Lichtenstein or its
extended version by Hartman and Wintner. We cite here a part of their
theorem.

Theorem (Hartman&Wintner [1]). Suppose $A_{1}(x, y)$ , $B_{1}(x, y)$ ,
$B_{2}(x, y)$ and $C_{1}(x, y)$ are $C^{1}$ -functions whose first order derivatives sat-
isfy the condition of Definition 3. We assume $A_{1}C_{1}-(B_{1}+B_{2})^{2}/4>0$ .
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Moreover, let $D(x, y)$ and $E(x, y)$ are functions which satisfy the condi-
tion of Definition 3. Then the equation

$(C_{1}\xi_{x}+B_{1}\xi_{y})_{x}+(B_{2}\xi_{x}+A_{1}\xi_{y})_{y}+D\xi=E$

has a $C^{2}$ -solution in some neighborhood of $x=y=0$ .

From the assumed regularity of $A$ , $B$ and $C$ , it is easy to see that
the conditions of this theorem are fulfilled by putting $A_{1}=\tilde{A}$ , $B_{1}=$

$B_{2}=\tilde{B}$ , $C_{1}=\tilde{C}$ . Thus we obtain the desired $\xi$ . Set

$v(t, \theta)=\int_{fixed}^{(t,\theta)}$

point
$(Bu_{t}+At^{-1}u_{\theta})dt-(Ctu_{t}+Bu_{\theta})d\theta$ .

Then a straightforward calculation shows that the pair of $ u=-\log t+\xi$

and $v$ form a set of isothermal coordinates. The estimates for their
derivatives up to second order are derived from the $C^{2}$ property of $\xi$

with respect to $t$ and $\theta$ .
What is left is to show $\int^{\infty}\varphi(u)du=\infty$ , $\varphi(u)$ being $ess\inf_{v}\partial\tau/\partial u$ .

This calculation is somewhat involved, but eventually we are led to the
conclusion that there exist constants $K>0$ and $r_{1}\geq r_{0}$ for which

$\tau_{u}\geq K\rho 2\rho$
;

$(r\geq r_{1})$

holds and that the contour $\{u=const.\}$ lies between the circles of radii
$r$ and $r+h(r;m)$ , $m$ being some constant not depending on $r$ . We
know that $\varphi(u)$ is the infimum of $\tau_{u}$ on the contour $\{u=const.\}$ while
$\varphi(r;m)$ is the infimum of $\tau_{u}$ in the region between those circles. This
fact establishes the lemma.

Example. Consider $\rho(r)$ which has the form $\rho(r)=\rho_{0}(r)-\rho_{0}’(r)(1-$

$k(r))\sin r$ where $\rho_{0}(r)$ is a positive function having absolutely continu-

ous derivative and $k(r)$ is an absolutely continuous function. We assume
(i) $\rho_{0}(r)\rightarrow\infty(ii)0\leq\rho’(r)\leq 1(iii)0<k(r)\leq 1(iv)k(r)^{-1}k’(r)\rightarrow 0$

$(v)\rho_{0}’(r)k(r)$ is nonincreasing (vi) $\rho_{0}’(r)k(r)\exp(\int_{r_{0}}^{r}[\rho_{0}(s)+1]^{-1}ds)\rightarrow$

$\infty(vii)\int_{r_{0}}^{\infty}\rho_{0}(r)\rho_{0}’(r)k(r)dr=\infty$ (viii) $\rho’(r)^{-1}\rho_{0}’’(r)k(r)^{-1}\rightarrow 0$ . Then

we can show that $\rho(r)$ satisfies all the conditions. If we choose $\rho_{0}(r)=$

$r^{\alpha}(0<\alpha\leq 1)$ or $\rho_{0}(r)=\log r$ then it fulfills $(i)(ii)(iii)$ . It also satis-
fies (vi) (vii) and (viii) if we choose a nondecreasing $k(r)$ . In particular,
by setting $k(r)=1$ , $\rho(r)=r^{\alpha}$ and $\rho(r)=\log r$ themselves meet the
conditions.

Example. The following example shows how fast A, B, C should
tend to their limits. Let $\rho(r)=r$ and put a $=1-r^{-\alpha}\cos\theta$ , b $=r^{-\alpha}\sin\theta$
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and $ c=1+r^{-\alpha}\cos\theta$ where $\alpha>2$ . Then $t=r^{-1}$ and $g=\sqrt{1-r^{-2\alpha}}$ . The
crucial terms are $t^{-3}C_{r}$ and $t^{-2}B_{\theta}$ . But they are close to $-\alpha t^{\alpha-2}\cos\theta$

and $-t^{\alpha-2}\cos\theta$ respectively. Therefore they fit the conditions.
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On a Backward Estimate for Solutions
of Parabolic Differential Equations

and its Application to Unique Continuation

Kazuhiro Kurata

Abstract.

We prove a new backward estimate and a new strong unique

continuation property for solutions $u$ $\in C=C^{o}((0, T);H^{2}(R^{n}$ ;

$e^{-\alpha|x|^{2}}dx))\cap C^{1}((0, T);L^{2}(R^{n} ; e^{-\alpha|x|^{2}}dx))$ of parabolic differential

equations $\frac{\partial u}{\partial t}=\triangle u+V(x, t)u$ under certain conditions on $V$ , where
$\alpha>0$ is a fixed number.

\S 1. Main results

We consider the following parabolic differential equation:

(1.1) $\frac{\partial u}{\partial t}=\triangle u+V(x, t)u$ in $R^{n}\times(0, T)$ ,

where $V$ is real-valued, $T>0$ , and $n\geq 3$ . Let $\alpha>0$ be a fixed num-

ber and let $w(x)=e^{-\alpha|x|^{2}}$ We denote by $L^{2}(R^{n}; w(x)dx)$ the closure

of $C_{o}^{\infty}(R^{n})$ under the norm $||u||_{L^{2}(w)}=(\int_{R^{n}}|u(x)|^{2}w(x)dx)^{1/2}$ . We

also denote by $H^{2}(R^{n}; w(x)dx)$ the closure of $C_{o}^{\infty}(R^{n})$ under the norm

$||u||_{H^{2}(w)}=(\sum_{0\leq|\beta|\leq 2}||D^{\beta}u||_{L^{2}(w)}^{2})^{1/2}$ , where $D^{\beta}=\partial_{1}^{\beta_{1}}\cdots\partial_{n}^{\beta_{n}}$ , $\partial_{j}=$

$\frac{\partial}{\partial x_{j}}$ , $|\beta|=\sum_{j=1}^{n}\beta_{j}$ for $\beta=(\beta_{1}, \cdots, \beta_{n})$ . Put $C=C^{o}((0, T);H^{2}(R^{n}$ ;

$w(x)dx))\cap C^{1}((0, T);L^{2}(R^{7L}; w(x)dx))$ . We say $u\in C$ is a solution of
(1.1) if $u$ satisfies (1.1) in $L^{2}(R^{n}; w(x)dx)$ for each $t$ $\in(0, T)$ .

For a point $z_{o}=(x_{o}, t_{o})\in R^{n}\times(0, T)$ and $0<R<\sqrt{t_{o}}$ , we set
$S_{R}(t_{o})=\{z=(x, t)\in R^{n}\times(0, T)|t =t_{o}-R^{2}\}$ . By using the backward

heat kernel $G_{z_{o}}(z)=\frac{1}{(4\pi(t_{o}-t))^{n/2}}\exp(-\mathring{\frac{|x-x|^{2}}{4(t_{o}-t)}})$ which is defined
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Scientists (No. 04740096), The Ministry of Education, Science and Culture.
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for $t$ $<t_{o}$ , we define the weighted $L^{2}$ norm $H_{z_{o}}(R;u)$ and the weighted
energy $I_{z_{o}}(R;u)$ over $S_{R}(t_{o})$ as follows:

$H_{z_{o}}(R;u)=\frac{1}{2}\int_{S_{R}(t_{o})}u^{2}G_{z_{o}}dx$ ,

$I_{z_{o}}(R;u)=\frac{1}{2}R^{2}\int_{S_{R}(t_{o})}(|\nabla u|^{2}-Vu^{2})G_{z_{o}}dx$ .

Under certain assumptions on $V$ we shall study the behaviour of
$H_{z_{o}}(R;u)$ and $I_{z_{o}}(R;u)$ as $R\rightarrow 0$ and prove a ’monotonicity formula’
for the weighted energy $I_{z_{o}}(R;u)$ (Lemma 3.1) and a doubling property
for $H_{z_{o}}(R;u)$ . (Theorem 1.3).

To state our assumptions on $V$ , we first recall the definitions of the
Fefferman-Phong class $F_{t}$ and the Kato class $K_{n}$ . $V\in L_{1oc}^{1}(R^{n})$ is said
to be of the Kato class $K_{n}$ if

$\lim_{r\rightarrow 0}\eta^{K}(r;V)=0$ , $\eta^{K}(r;V)=\sup_{x\in R^{n}}\int_{B_{r}(x)}\frac{|V(y)|}{|x-y|^{n-2}}dy$ ,

where $B_{r}(x)=\{y\in R^{n}||x-y|<r\}$ for $r>0$ . For $1\leq t\leq n/2$ ,
$V\in L_{1oc}^{t}(R^{n})$ is said to be of the Fefferman and Phong class $F_{t}$ if

$||V||_{F_{t}}=\sup_{x\in R^{n},r>0}r^{2}(\frac{1}{|B_{r}(x)|}\int_{B_{r}(x)}|V|^{t}dy)^{1/t}<+\infty$ .

We note that $F_{n/2}=L^{n/2}(R^{n})\subset F_{t}\subset F_{s}$ for $1\leq s\leq t\leq n/2$ and
$weak- L^{n/2}(R^{n})\subset F_{t}$ for every $t\in[1, n/2);V\in K_{n}$ implies $V\in F_{1}$ ; but
$L^{n/2}(R^{n})$ and $K_{n}$ are incomparable for $n\geq 3$ .

For $1<t\leq n/2$ , we define the function space $Q_{t}$ by $Q_{t}=\{V=$

$V_{1}+V_{2}$ ; $V_{1}\in K_{n}$ , $V_{2}\in F_{t}$ } and for $V\in Q_{t}$ set

(1.2) $||V||_{Q_{t}}=||V||_{Q_{t}}^{R_{o}}=\inf_{V=V_{1}+V_{2}\in Q_{t}}\{\eta^{K}(R_{o};V_{1})+||V_{2}||_{F_{t}}\}$

for $R_{o}>0$ . Throughout this paper we fix $R_{o}>0$ .

Definition 1.1. For $1\leq t\leq n/2,p\geq 1$ , we say $V$ belongs to the
class $Q_{t,p}(0, T)$ , if $V$ satisfies
(1) for each $t_{o}\in(0, T)$ , there exist positive functions $W$, $U\geq 0$ and a
compact set $K\subset R^{n}$ such that

(1.3) $|V(x, t_{o}-s)|\leq W(x, s)+U(s)$ , $supp_{x}W(\cdot, s)\subset K$

for every $s$ $\in(0, t_{o})$ ,
(2) $|W(\cdot, s)|^{p}\in Q_{t}$ for every $s$ $\in(0, t_{o})$ .

Now we state our assumptions for $V$ .
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Assumption (A). $V$ satisfies the following conditions for $ 1<t\leq$

$n/2,p>2$ .

(i) $V\in Q_{t,p}(0, T)$ and $\tilde{V}=2V+(x-x_{o})\cdot\nabla_{x}V+2(t-t_{o})\partial_{t}V\in Q_{t,p}(0, T)$ ;

(ii) for the expression $|V|\leq W_{1}+U_{1}$ and $|\tilde{V}|\leq W_{2}+U_{2}$ , put $f_{j}^{(t_{o})}(s)$

$=s^{2-4/p}|||W_{j}(s^{2})|^{p}||_{Q_{t}}^{1/p}+s^{2}U_{j}(s^{2}),j=1,2$ . Then there exists $s_{1}>0$

such that

(1.4) $f_{1}^{(t_{o})}(s)\rightarrow 0(s \rightarrow 0)$ , $\int_{0}^{s_{1}}\frac{f_{2}^{(t_{o})}(s)}{s}ds<+\infty$

for every $t_{o}\in(0, T)$ .

Example 1.2. (1) If $V\in C^{1}(R^{n}\times(0, T))$ and $V$, $(1+|x|)|\nabla V|$ ,
$|\partial_{t}V|\in L^{\infty}(R^{n}\times(0, T))$ and have compact support for each $t\in(0, T)$ ,

then $V$ satisfies Assumption (A).
(2) Let $V(x, t)=V(x)$ be independent of time variable. If $|V|^{p}$ and
$|\tilde{V}|^{p},\tilde{V}=2V+(x-x_{o})\cdot\nabla_{x}V$ , belong to the class $Q_{t}$ for some $1<t\leq n/2$

and $p>2$ and have compact support, then $V$ satisfies Assumption (A).

We state our main results.

Theorem 1.3 (Backward Estimate). Suppose Assumption(A).
Let $u\in C$ be a solution of (1.1). Then for $z_{o}=(x_{o}, t_{o})\in R^{n}\times(0, T)$ ,

there exist constants $R^{*}$ and $C_{o}>0$ such that

(1.5) $\int_{S_{2R}(t_{o})}u^{2}G_{z_{o}}dx\leq C_{o}\int_{S_{R}(t_{o})}u^{2}G_{z_{o}}dx$

for every $0<R<R^{*}(<\sqrt{t_{o}})$ . Here $C_{o}$ is a constant independent of $R$ .

Theorem 1.3 implies

Theorem 1.4 (Unique Continuation). Suppose Assumption (A).
Let $u\in C$ be a solution of (1.1) and let $0\leq\gamma<1$ . If $u$ satisfies, for
some $z_{o}=(x_{o}, t_{o})\in R^{n}\times(0, T)$ and for arbitraly $N>0$ ,

(1.6) $\int_{S_{R}(t_{o})\cap\{|x-x_{o}|<R^{\gamma}\}}u^{2}G_{z_{o}}dx=O(R^{N})$ as $R\rightarrow 0$ ,

then $u(x, t)\equiv 0$ on $R^{n}\times(t_{o}-(R^{*})^{2}, t_{o})$ , there $R^{*}>0$ is the number
given in Theorem 1.3.

As a corollary of the proof of Theorem 1.3, we obtain backward
uniqueness, if we assume
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Assumption $(A’)$ . In addition to Assumption (A), $V$ satisfies
that the compact set $K$ (associated with the definition $V\in Q_{t,p}(0,$ $T)$ )

can be taken uniformly in $t_{o}\in(0, T)$ and $ F_{1}(s)\equiv\sup_{t_{o}\in(0,T)}f_{1}^{(t_{o})}(s)\rightarrow$

$0$ as $s\rightarrow 0$ , where $f_{1}^{(t_{o})}(s)$ is the function defined in Assumption (A)
(ii).

Corollary 1.5 (Backward Uniqueness). Suppose Assumption $(A’)$ .

If the solution $u\in C$ of (1.1) satisfies $u(\cdot, t_{o})\equiv 0$ for some $t_{o}\in(0, T)$ ,
then $u(\cdot, t)\equiv 0$ for even $t$ $\in(0, t_{o})$ .

We note that if the assumption $(A’)$ is satisfied, then we can take
$R^{*}=\min(1/\sqrt{8\alpha}, \sqrt{t_{o}}, R_{*})$ , $R_{*}$ is independent of $t_{o}$ . By this observation
Corollary 1.5 follows easily (cf. [GL], [Ku]). As a direct consequence of
Theorem 1.4 we have

Corollary 1.6 (Weak UCP). Suppose the Assumption (A). If the
solution $u\in c$ of (1.1) vanishes in some open set $\omega\subset R^{n}\times$ (O.T), then
$u$ vanishes in the horizontal component of $\omega$ in $R^{n}\times(0.T)$ .

There are several results on backward uniqueness and unique con-
tinuation theorems (see e.g., [L], [M], [So], [SS], [LP]), but Theorem 1.3
is new even in the case $V\equiv 0$ , and Theorem 1.4 yields the different type
of strong unique continuation property for solutions of (1.1). Moreover,
the method of this paper is different from the previous works. This work
is a parabolic version of [Ku].

If $\Omega\subset R^{n}$ is bounded, smooth, and convex, we can show the same
results for solutions $u$ of

(1.7) $\frac{\partial u}{\partial t}=\triangle u+V(x, t)u$ in $\Omega\times(0, T)$ , $u=0$ on $\partial\Omega\times(0, T)$ .

Recently we also proved similar results for weak solutions. However, we
do not know whether the backward estimate of type (1.5) also holds or
not for $usatis\mathfrak{h}^{\gamma}ing(1.7)$ locally (that is, without boundary condition).

\S 2. Preliminaries

In this section we show an inequality which controls singularities of
$V$ in the proof of Theorems. Let $z_{o}=(x_{o}, t_{o})\in R^{n}\times(0, T)$ and put

$\Phi_{z_{o}}(R;u)=\frac{1}{2}R^{2}\int_{S_{R}(t_{o})}|\nabla u|^{2}G_{z_{o}}dx$ , $ N_{z_{o}}(R;u)=\mathring{\frac{I_{z}(R\cdot u)}{H_{z_{o}}(R\cdot u)}},,\cdot$

Then we have
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Lemma 2.1. Suppose $V\in Q_{t,p}(0, T)$ with $1<t\leq n/2,p\geq 1$ .

Then there exists a constant $C>0$ such that

(2.1) $\int_{S_{R}(t_{o})}|V|u^{2}G_{z_{o}}dx\leq U(R^{2})H_{z_{o}}(R;u)$

$+CR^{-4/p}|||W(R^{2})|^{p}||_{Q_{t}}^{1/p}(\Phi_{z_{o}}(R;u)+H_{z_{o}}(R;u))$

for every $\sqrt{t_{o}}>R>0$ and $u\in C^{o}((0, T);C_{o}^{\infty}(R^{n}))$ , where $U$ and $W$

are functions associated with $V$ by Definition 1.1.

As an easy consequence of Lemma 2.1 we have

Lemma 2.2. Suppose that $V\in Q_{t,p}(0, T)$ with $1<t\leq n/2,p>2$

and that $f^{(t_{\circ})}(s)\equiv s^{2}U(s^{2})+s^{2-4/p}|||W(s^{2})|^{p}||_{Q_{t}}^{1/p}\rightarrow 0$ as $s$
$\rightarrow 0$ . Then

there exist $C>0$ and sufficiently small $R_{*}$ such that

(2.2) $C^{-1}\Phi_{z_{o}}(R:u)\leq I_{z_{o}}(R:u)\leq C\Phi_{z_{o}}(R;u)$

for every $0<R<R_{*}$ satisfying $N_{z_{o}}(R;u)>1$ .

To prove Lemma 2.1, first we note that if $V\in K_{n}$ ,

$\int_{R^{n}}|V|u^{2}\leq C(n)\eta^{K}(r;V)(\int_{R^{n}}|\nabla u|^{2}dx+\frac{1}{r^{2}}\int_{R^{n}}u^{2}dx)$

for every $r>0$ and $u\in C_{o}^{\infty}(R^{n})$ , and that if $V\in F_{t}$ with $1<t\leq n/2$ ,

$\int_{R^{n}}|V|u^{2}\leq C(n, t)||V||_{F_{t}}\int_{R^{n}}|\nabla u|^{2}dx$

for every $u\in C_{o}^{\infty}(R^{n})$ (see e.g. [F], [Si]). Hence if $V\in Q_{t}$ with $ 1<t\leq$

$n/2$ , we have

(2.3) $\int_{R^{n}}|V|u^{2}\leq C(n, t, R_{o})||V||_{Q_{t}}(\int_{R^{n}}|\nabla u|^{2}dx+\int_{R^{n}}u^{2}dx)$

for every $u$ $\in C_{o}^{\infty}(R^{n})$ , where $R_{o}>0$ is a fixed constant.

Proof of Lemma 2.1. Let $t_{o}\in(0, T)$ . We use the notaion $S_{R}=$

$S_{R}(t_{o})$ and $G=G_{z_{o}}$ for the sake of simplicity. Since $V\in Q_{t,p}(0, T)$ , by
the definition there exist $W$, $U\geq 0$ and a compact set $K\subset R^{7\iota}$ such that
$|V(x, t_{o}-R^{2})|\leq W(x, R^{2})+U(R^{2})$ with $supp_{x}W(\cdot, R^{2})\subset K$ for every
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$0<R^{2}<t_{o}$ . Let $\eta\in C_{o}^{\infty}(R^{n})$ satisfy $\eta(x)\equiv 1$ on $K$ , $0\leq\eta(x)\leq 1$ , and
$|\nabla\eta(x)|\leq C$ . By H\"older’s inequality, we have

$\int_{S_{R}}|W(x,R^{2})|u^{2}Gdx$

$\leq(\int_{3_{R}}|W(x, R^{2})|^{p}u^{2}Gdx)^{1/p}(\int_{S_{R}}u^{2}Gdx)^{1/q}$

$=(2H(R;u))^{1/q}(\int_{S_{R}}|W(x, R^{2})|^{p}u^{2}Gdx)^{1/p}$ ,

where $1/p+1/q=1$ . The inequality (2.3) yields

$\int_{S_{R}}|W|^{p}u^{2}Gdx$

(2.4) $\leq\int_{S_{R}}|W|^{p}(\eta u)^{2}Gdx$

$\leq C(n, t)|||W|^{p}||_{Q_{t}}(\int_{S_{R}}|\nabla(\eta uG^{1/2})|^{2}dx+\int_{S_{R}}u^{2}Gdx)$ .

Since $|\nabla(\eta uG^{1/2})|^{2}\leq C(n)(u^{2}+|\nabla u|^{2})G+C(n, K)\frac{u^{2}}{R^{4}}G$ , we obtain

$\int_{S_{R}}|W|^{p}u^{2}Gdx$

(2.5)

$\leq C(n, t, K)|||W|^{p}||_{Q_{t}}((1+\frac{1}{R^{4}})H(R;u)+\int_{S_{R}}|\nabla u|^{2}Gdx)$ .

Hence it follows that
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(2.6)

$\int_{S_{R}}|V|u^{2}Gdx$

$\leq\int_{S_{R}}|W|u^{2}Gdx+U(R^{2})\int_{S_{R}}u^{2}Gdx$

$\leq 2U(R^{2})H(R;u)$

$+C(n, t,p)|||W|^{p}||_{Q_{t}}^{1/p}H(R;u)^{1/q}(\frac{H(R,u)}{R^{4}}.+\frac{\Phi(R\cdot u)}{R^{2}},)^{1/p}$

$\leq 2U(R^{2})H(R;u)$

$+C(n, t,p)R^{-4/p}|||W|^{p}||_{Q_{t}}^{1/p}(H(R;u)+\Phi(R;u))$ .

Q.E.D.

Proof of Lemma 2.2. Note that $I(R;u)=\Phi(R;u)-\Psi(R;u)$ and
that $N(R;u)>1$ implies $H(R;u)<I(R;u)$ by definition. By Lemma 2.1
we have, for $R>0$ satisfying $N(R;u)>1$ ,

(2.7) $|\Psi(R;u)|\leq Cf^{(t_{o})}(R)\Phi(R;u)$ .

Hence, by the assumption $f^{(t_{\circ})}(s)\rightarrow 0$ as $s\rightarrow 0$ , there exists $R_{*}>0$

such that $Cf^{(t_{\circ})}(R)<1/2$ for every $0<R<R_{*}$ . Hence we obtain the
desired estimate. Q.E.D.

\S 3. Proof of theorems

In this section we prove theorems. Suppose that $V$ satisfies As-
sumption (A) and $u$ $\in C$ is a solution of (1.1) throughout this section.
Without loss of generality, we may assume $z_{o}=(O, 0)$ and consider
(1.1) for $t<0$ . We write $S_{R}=S_{R}(0)=\{(x, t)|t=-R^{2}\}$ , $G_{o}=G_{(O,0)}$ ,

$H(R)=H_{(O,0)}(R;u)$ , $I(R)=I_{(O,0)}(R;u)$ and $N(R)=N_{(O,0)}(R;u)$ ,

and use the notation $P(u)=x$ . $\nabla u+2t\partial_{t}u$ . Let $R^{*}=\min(1/\sqrt{8\alpha}, R_{*})$ ,
where $R_{*}$ is the number determined by Lemma 2.2 with respect to $t_{o}=0$ .

Then we have

Lemma 3.1. For $0<R<R^{*}$ , $I(R)$ is differentiable and satisfies

$I’(R)=\frac{1}{2R}\int_{S_{R}}P(u)^{2}G_{o}dx$

(1.1)

$-\frac{R}{2}\int_{S_{R}}(2V+x\cdot\nabla V+2t\partial_{t}V)u^{2}G_{o}dx$ .
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If $u(x, t)\not\equiv 0$ on $R^{n}\times(-(R^{*})^{2},0)$ , then it follows that $H(R)>0$ for
every $0<R<R^{*}$ . We note that this fact can be proved by the similar
argument as in $[GL;p264]$ ( see also the proof of Theorem 1.5 in [Ku]).
Therefore we may assume that $H(R)>0$ for every $0<R<R^{*}$ , and

hence $N(R)$ is also differentiable on $(0, R^{*})$ . Let $\tilde{V}=2V+x\cdot\nabla V+2t\partial_{t}V$

have the expression $|\tilde{V}|\leq W_{2}+U_{2}$ by the assumption $\tilde{V}\in Q_{t,p}(0, T)$ .
Then by Lemma 3.1 we obtain the following differential inequality for
$N(R)$ .

Lemma 3.2. There exists $C>0$ such that

(3.2)

$\frac{N’(R)}{N(R)}\geq-C(\frac{R^{2}U_{2}(R^{2})+R^{2-4/p}|||W_{2}(R^{2})|^{p}||_{Q_{t}}^{1/p}}{R})\equiv-C\frac{f_{2}^{(0)}(R)}{R}$

for $0<R<R^{*}$ satisfying $N(R)>1$ .

Proof of Lemma 3.1. We follow the computation of Struwe [St].
Let $u_{R}(x, t)=u(Rx, R^{2}t)$ . Then we have $\Phi(R;u)=\Phi(1, u_{R})$ . If $u$

is a solution of $\frac{\partial u}{\partial t}=\triangle u+V(x, t)u$ , then $u_{R}$ is a solution of $\frac{\partial u_{R}}{\partial t}=$

$\triangle u_{R}+V_{R}(x, t)u_{R}$ , where $V_{R}(x, t)=R^{2}V(Rx, R^{2}t)$ . By noting $\nabla G_{o}=$

$-(x/2R^{2})G_{o}$ on $S_{R}$ , we obtain

$\Phi’(R;u)=\frac{d\Phi(1,u_{R})}{dR}$

.

$=\int_{S_{1}}\nabla u_{R}\cdot\nabla(\frac{du_{R}}{dR})G_{o}dx$

(3.3) $=-\int_{S_{1}}(\triangle u_{R}G_{\circ}+\nabla u_{R}\cdot\nabla G_{\circ})\frac{du_{R}}{dR}dx$

$=\int_{S_{R}}\frac{P(u)}{R}(\frac{P(u)}{2}+R^{2}Vu)G_{o}dx$

$=\frac{1}{2R}\int_{S_{R}}P(u)^{2}G_{o}dx+R\int_{S_{R}}P(u)VuG_{o}dx$ .

On the other hand, since $\Psi(R;u)=\frac{1}{2}\int_{S_{R}}Vu^{2}G_{o}dx=\frac{1}{2}\int_{S_{1}}V_{R}u_{R}^{2}G_{o}dx$ ,
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we have

$\Psi’(R;u)=\frac{1}{2}\int_{S_{1}}\frac{dV_{R}}{dR}u_{R}^{2}G_{o}dx+\int_{S_{1}}V_{R}\frac{du_{R}}{dR}u_{R}G_{o}dx$

(3.4) $=\frac{R}{2}\int_{S_{R}}(2V+x\cdot\nabla V+2t\partial_{t}V)u^{2}G_{o}dx$

$+R\int_{S_{R}}P(u)VuG_{o}dx$ .

Combining (3.3) with (3.4) we complete the proof. Q.E.D.

Proof of Lemma 3.2. Since $H(R;u)=H(1;u_{R})$ , we have

(3.5) $H’(R)=H’(R;u)=\int_{S_{1}}u_{R}\frac{du_{R}}{dR}G_{o}dx=\frac{1}{R}\int_{S_{R}}uP(u)G_{o}dx$ .

On the other hand, multiplying $uG_{o}$ to (1.1) and integrating over $S_{R}$ ,
we obtain

$\int_{S_{R}}u\partial_{t}uG_{o}dx=-\int_{S_{R}}|\nabla u|^{2}G_{o}dx-\int_{S_{R}}u\nabla u\cdot\nabla G_{o}dx+\int_{S_{R}}Vu^{2}G_{o}dx$ .

Since $\nabla G_{o}=\frac{x}{2t}G_{o}$ on $S_{R}$ , this implies

(3.6) $I(R)=\frac{1}{4}\int_{S_{R}}P(u)uG_{o}dx$ .

Hence we obtain $H’(R)=\frac{4}{R}I(R)$ . Therefore, for $0<R<R^{*}$ , (3.1) and
(3.7) yield

$\frac{N’(R)}{N(R)}=\frac{I’(R)}{I(R)}-\frac{H’(R)}{H(R)}$

(3.7) $=\frac{\int_{S_{R}}P(u)^{2}G_{o}dx}{2RI(R)}-\frac{4I(R)}{RH(R)}$

$-\frac{R}{2I(R)}\int_{S_{R}}(2V+x\cdot\nabla V+2t\partial_{t}V)u^{2}G_{o}dx$ .

By Schwarz’s inequality,

$\frac{\int_{S_{R}}P(u)^{2}G_{o}dx}{2RI(R)}-\frac{4I(R)}{RH(R)}$

(3.4)

$=\frac{\int_{S_{R}}P(u)^{2}G_{o}dx}{\frac{R}{2}{}_{S_{R}}P(u))uG_{o}dx}-\frac{\int_{S_{R}}P(u)uG_{o}dx}{\frac{R}{2}\int_{S_{R}}u^{2}G_{o}dx}\geq 0$ .
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Thus we arrive at

(3.9) $\frac{N’(R)}{N(R)}\geq-\frac{R}{2I(R)}\int_{S_{R}}(2V+x\cdot\nabla V+2t\partial_{t}V)u^{2}G_{o}dx$

for $0<R<R^{*}$ . By Lemmas 2.1 and 2.2 we can conclude the desired
esimate. Q.E.D.

Proof of Theorem 1.3. Note that the set $\{0<R<R^{*} : N(R)>1\}$

is open, because $N(R)$ is continuous. Hence there exist countable open
disjoint intervals $(R_{j}, R_{j+1})$ such that $\{0<R<R^{*} : N(R)>1\}=$
$\bigcup_{j=1}^{\infty}(R_{j}, R_{j+1})$ . By Assumption (A) and Lemma 3.2, we have

$\log(\frac{N(R_{j+1})}{N(R_{j})})\geq-C\int_{0}^{R^{*}}\frac{f_{2}(s)}{s}ds$

for each $j=1,2$ , $\cdots$ . This implies

(3.10) $N(R)\leq\max(1, N(R^{*}))\exp(-C\int_{0}^{R^{*}}\frac{f_{2}(s)}{s}ds)(\equiv N_{o})$

for $0<R<R^{*}$ . Since $H’(R)=(4/R)I(R)$ , we obtain

(3.11) $H(2R)\leq H(R)\exp(4N_{o}\log 2)$ , $0<R<R^{*}$ .

This complete the proof of Theorem 1.3. Q.E.D.

Proof of Theorem 1.4. It is well-known that when the doubling
estimate (1.5) in Theorem 1.3 holds, the condition that $H(R)=O(R^{N})$

for every $N>0$ as $R\rightarrow 0$ implies $H(R)\equiv 0$ for every $R\in(0, R^{*})$ (see

e.g.,[GL] $)$ . Hence it suffices to show $H(R)=O(R^{N})$ for every $N>0$ .
Let $0\leq\gamma<1$ and put

$g(R)=\int_{S_{R}(t_{o})\cap\{x;|x-x_{o}|\geq R^{\gamma}\}}u^{2}G_{z_{o}}dx$ .

Then it is easy to see that there exists a constant $M$ such that

$g(R)\leq\frac{M}{R^{n}}\exp(-\frac{1}{8R^{2(1-\gamma)}})$ .

Actually we can take

$M$ $=\sup_{t\in[t_{o}-(R^{*})^{2},t_{o}]}\int_{R^{n}}u^{2}(x, t)e^{-\mathring{\frac{|x-x|^{2}}{8(R^{*})^{2}}}}dx<+\infty$ ,
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since $R^{*}\leq 1/\sqrt{8\alpha}$ . Hence $g(R)=O(R^{N})$ for every $N>0$ . By the

assumption $f(R)=\int_{S_{R}(t_{o})\cap\{x;|x-x_{o}|<R^{\gamma}\}}u^{2}G_{z_{o}}dx=O(R^{N})$ , we can

conclude that $H(R)=O(R^{N})$ for every $N>0$ . Thus we complete the
proof. Q.E.D.
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Large Atoms in the Magnetic Field
of a Neutron Star

Elliott H. Lieb

Abstract.

The asymptotics of the ground state energy of large atoms as
$ Z\rightarrow\infty$ is given exactly by Thomas-Fermi theory. The introduction
of a large magnetic field, $B$ , changes the situation. If we set $B=cZ^{p}$

then, as $ Z\rightarrow\infty$ , there are 5 regions: $p<4/3$ , $p=4/3,4/3<p<3$ ,
$p=3$ , $p>3$ . The first three are described exactly by a modified $TF$

theory. The fifth is describable exactly by a one-dimensional Hartree
like theory. The fourth is describable exactly by a novel density

matrix theory. A surprising conclusion is that although the magnetic

field has a profound effect on the atomic energy in regions 2,3,4 and
5, the atom remains spherical (to leading order) in regions 2 and 3.

\S 1. Introduction

In this talk I shall discuss the effect on matter, specifically the
ground state of atoms, of a very strong magnetic field. Results ob-
tained in collaboration with $J.P$ . Solovej and J. Yngvason will be summa-
rized and details will appear elsewhere [LSY]. The physical motivation

for studying extremely strong magnetic fields of the order of $10^{12}-10^{13}$

Gauss is that they are supposed to exist on the surface of neutron stars.
This study was essentially begun in the early $70’ s$ with the work of
Kadomtsev [K], Ruderman [R] and Mueller, Rau and Spruch [MRS]; see
[FGP] and [FGPY] for further references. The argument given to explain
these strong fields is that in the collapse, resulting in the neutron star,
the magnetic field lines are trapped and thus become very dense. The
structure of matter in strong magnetic fields is, therefore, a question of
considerable interest in astrophysics. Mathematically, the problem turns
out to involve an interesting exercise in semiclassical analysis.
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We use units in which $e=\hslash=2m_{e}=1$ and $ c=c\hslash e^{-2}=\alpha^{-1}\approx$

$137$ . The natural unit of length is $\hslash^{2}/2m_{e}e^{2}$ , i.e., half the Bohr ra-
dius. The natural unit of magnetic field strength that we shall use is
$(2m_{e})^{2}e^{3}c/\hslash^{3}=9.4x10^{9}$ Gauss. This is the field for which the mag-

netic length $\sqrt{c\hslash/eB}$ equals half the Bohr radius. Thus, in our units,
$B\approx 10^{2}-10^{3}$ for some neutron stars.

The atomic nucleus of principal interest on the surface of a neutron
star is presumably iron with $Z=26$ . This number is large and hence it is
sensible to ask (rigorously) about the limit of the ground state energy of
an atom as $ Z\rightarrow\infty$ . We shall calculate this limit exactly; its application
to $Z=26$ instead of $ Z=\infty$ will entail some errors–for which we can
give bounds.

\S 2. Main results

To give the quantum mechanical energy of a charged $spin-\frac{1}{2}$ particle
in a magnetic field $B$ , we have to make a choice of vector potential
$A(x)$ , satisfying $B=\nabla\times$ A. The energy is then given by the Pauli
Hamiltonian

(2.1) $H_{A}=((p-A(x))\cdot\sigma)^{2}$

Here $p=-i\nabla$ and $\sigma=(\sigma_{1}, \sigma_{2}, \sigma_{3})$ , are the Pauli matrices. We can
also write $ H_{A}=(p-A)^{2}-B\cdot\sigma$ . We shall here concentrate on the
case where $B$ is constant, say $B=(0,0, B)$ , with $B\geq 0$ . We choose
$A=\frac{1}{2}B\times x$ .

The Hamiltonian describing an atom with $N$ electrons and nuclear
charge $Z$ (with fixed nucleus) in a constant magnetic field $B$ is

(2.2) $H_{N}=\sum_{i=1}^{N}(H_{A}^{(i)}-Z|x_{i}|^{-1})+\sum_{1\leq i<j\leq N}|x_{i}-x_{j}|^{-1}$

$H_{N}$ acts on the Hilbert space $\prime H_{N}=\wedge L^{2}(R^{3}; NC^{2})$ of antisymmetric (i.e.,

fermionic) spinor-valued functions. We are interested in $E(N, B, Z)=$

$\inf spec_{H_{N}}H_{N}$ , the ground state energy of $H_{N}$ .

We want to let $B$ and $Z$ go to infinity. It is surprising, but true, that
there are fifive different regimes in $B$ and $Z$ , depending on the relative
magnitudes of $B$ and $Z$ . In the following $\rho(x)$ is the electron density in
the ground state $\psi$ :

(2.3) $\rho(x)=N\int||\psi(x, x_{2}, \ldots, x_{N})||^{2}d^{3}x_{2}\ldots d^{3}x_{N}$ .



Large Atoms in the Magnetic Field 261

The five regions are the following.

1) $B<<Z^{4/3}$ , $Z$ large:

The effect of the magnetic field is negligible. Standard Thomas-Fermi
(TF) theory is exact as $ Z\rightarrow\infty$ , and therefore the electron density is
spherical to leading order.

2) $B\sim Z^{4/3}$ , $Z$ large:

The magnetic field becomes important but the density is still almost
spherical and stable atoms are almost neutral (see [Y]). A modified $TF$

theory (depending on the constant $B/Z^{4/3}$ ), in which the energy, as in
standard $TF$ theory, is approximated by a functional of the density $\rho$

alone, is exact as $ Z\rightarrow\infty$ . We call this functional the Magnetic Thomas-
Fermi (MTF) functional (see Sect. $IV$ below).

3) $Z^{4/3}<<B<<Z^{3}$ , $Z$ large:

The magnetic field is increasingly important. To leading order all elec-
trons will be confined to the lowest Landau band. The modified $TF$

theory is still exact as $ Z\rightarrow\infty$ . In fact, the modified $TF$ theory simpli-
fies somewhat in this region compared to the MTF functional from the
previous region, we call the new functional the Strong Thomas-Fermi
(STF) functional. The only difference between STF and standard $TF$

theory is that the usual $\rho^{5/3}$ is replaced by $\rho^{3}/B^{2}$ , while in the MTF

theory from the previous region the function that replaces $\rho^{5/3}$ is more
complicated (see (4.1) below). The density is almost spherical and sta-
ble atoms are almost neutral. Furthermore, the atom is getting smaller.
The atomic radius behaves like $Z^{1/5}B^{-2/5}=Z^{-1/3}(B/z^{4/3})^{-2/5}$ . The

energy behaves like $Z^{9/5}B^{2/5}=Z^{7/3}(B/Z^{4/3})^{2/5}$ .

4) $B\sim Z^{3}$ , $Z$ large:

The modified $TF$ theories are no longer applicable. Indeed, we shall
in general not approximate the energy by functionals of the density $\rho$

alone. The energy is approximated by a more complicated functional
to be described below in Sect. $IV$ depending on a one particle density
matrix. We call this functional the Density Matrix (DM) functional.
When $B/Z^{3}$ is large enough this functional again reduces to a density
functional. For the first time the atom is no longer spherical to leading
order. The length scale of the atom behaves like $Z^{-1}$ and the energy
like $Z^{3}$ .
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5) $B>>Z^{3}$ , $Z$ large:

In this hyper-strong case the atom is essentially one-dimensional. We
can find a new functional, the Hyper-Strong (HS) functional depend-
ing only on the one-dimensional density $\overline{\rho}$ obtained from $\rho$ by integrat-
ing $\rho$ over the directions perpendicular to the field $B$ , i.e., $\overline{\rho}(x_{3})=$

$\int\int\rho(x_{1}, x_{2}, x_{3})dx_{1}dx_{2}$ . The energy behaves like $Z^{3}[\ln(B/Z^{3})]^{2}$ and the

length scale along the magnetic field is $Z^{-1}[\ln(B/Z^{3})]^{-1}$ , while the ra-

dius perpendicular to the field is $Z^{-1}(B/Z^{3})^{-1/2}$ .

The mathematically more precise statements of these results involve
two energy functions $E_{MTF}(N, B, Z)$ and $E_{DM}(N, B, Z)$ . The energy
$E_{MTF}(N, B, Z)$ is obtained as the minimum of the magnetic Thomas-
Fermi functional mentioned under 2) above, and $E_{DM}(N, B, Z)$ is the
minimum of the density matrix functional mentioned under 4). The
exact definitions of these functionals are given in Sect. $IV$ below.

The energies $E_{MTF}$ and $E_{DM}$ correspond to unique minimizers for
the respective functionals. We denote the densities for these minimizers
by $\rho_{MTF}$ and $\rho_{DM}$ respectively.

In the case when $B=0$ the energy $E_{MTF}(N, 0, Z)$ is the energy of
standard $TF$ theory. It is known [LS] (see also [L]) that $TF$ theory is
asymptotically exact as $ Z\rightarrow\infty$ with $N/Z$ fixed, i.e. ,

$E_{MTF}(N, 0, Z)/E(N, 0, Z)\rightarrow 1$ as $ Z\rightarrow\infty$ .

Is the same true when $B\neq 0$? The answer, surprisingly, depends on
the relative magnitudes of $B$ and $Z$ , according to the 5 regions outlined
ab $ove$ .

Theorem 1. Let $N/Z$ be fifixed and suppose $B/Z^{3}\rightarrow 0$ as $ Z\rightarrow\infty$ .
Then

$E_{MTF}(N, B, Z)/E(N, B, Z)\rightarrow 1$ as $ Z\rightarrow\infty$ .

This theorem covers the regions 1-3 above. For the regions 4 and 5
we have

Theorem 2. Let $N/Z$ be fifixed and suppose $ B/Z^{4/3}\rightarrow\infty$ as $ Z\rightarrow$

$\infty$ . Then

$E_{DM}(N, B, Z)/E(N, B, Z)\rightarrow 1$ as $ Z\rightarrow\infty$ .

Notice that there is an overlap of the regions of validity of the two
theorems. In fact, both theorems cover region 3 above.
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The energy functions satisfy the scalings

$E_{MTF}(N, B, Z)=Z^{7/3}E_{MTF}(N/Z, B/Z^{4/3},1)$

and

$E_{DM}(N, B, Z)=Z^{3}E_{DM}(N/Z, B/Z^{3},1)$ .

In region 2 there is a non-trivial parameter $B/Z^{4/3}$ . Likewise in

region 4 there is $B/Z^{3}$ . In the other three regions these parameters
enter in trivial way since they are tending either to 0 or $\infty$ .

Region 1 corresponds to $B/Z^{4/3}\rightarrow 0$ and $B/Z^{3}\rightarrow 0$ in which case

EMTF $(N/Z, B/Z^{4/3},1)\rightarrow E_{MTF}(N/Z, 0,1)$ ,

which is the energy of standard $TF$ theory.

Region 3 corresponds to $ B/Z^{4/3}\rightarrow\infty$ , in which case we have the
asymptotic expansion

EMTF $(N/Z, B/Z^{4/3},1)\approx(B/Z^{4/3})^{2/5}E_{STF}(N/Z)$ as $ B/Z^{4/3}\rightarrow\infty$ ,

where $E_{STF}$ is an energy function obtained from the simplified $TF$ theory
described under 3) above.

The overlap of the regions of validity of Theorems 1 and 2 implies
that

$E_{DM}(N/Z, B/Z^{3},1)\approx(B/Z^{3})^{2/5}E_{STF}(N/Z)$ as $B/Z^{3}\rightarrow 0$ .

Finally, region 5 corresponds to $ B/Z^{3}\rightarrow\infty$ , where the following asymp-
totic formula holds

$E_{DM}(N/Z, B/Z^{3},1)\approx[\ln(B/Z^{3})]^{2}E_{HS}(N/Z)$ as $ B/Z^{3}\rightarrow\infty$ ,

where $E_{HS}$ is an energy function obtained from the one-dimensional
functional mentioned in 5) above.

The energies $E_{MTF}$ , $E_{DM}$ , $E_{STF}$ and $E_{HS}$ correspond to unique min-
imizers for the respective functionals. We denote the densities for these
minimizers by $\rho MTF$ , $\rho DM$ , $\rho STF$ and $\overline{\rho}_{HS}$ respectively. We can prove
that these densities approximate the quantum density $\rho$ . However, to
state these approximations we have to introduce different scalings in the
different regions. In fact, the above approximating densities satisfy the
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following scaling relations

$\rho MTF(x;N, B, Z)=Z^{2}\rho_{MTF}(Z^{1/3}x;\frac{N}{Z},$ $\frac{B}{Z^{4/3}},1)$

$\rho_{STF}(x;N, B, Z)=Z^{2}(\frac{B}{Z^{4/3}})^{6/5}\rho_{STF}((\frac{B}{Z^{4/3}})^{2/5}Z^{1/3}x;\frac{N}{Z},$ $1,1)$

$\rho_{DM}(x;N, B, Z)=Z^{4}\rho_{DM}(Zx;\frac{N}{Z},$ $\frac{B}{Z^{3}},1)$

$\overline{\rho}_{HS}(x_{3}$ ;$ ^{N}=Z^{2}\ln(\frac{B}{Z^{3}})\overline{\rho}_{HS}(Z\ln(\frac{B}{Z^{3}})x_{3}$ ; $\frac{N}{Z}$ , 1, $1)$ .

Theorem 3 (Convergence of the density), In the fifive different
regions the following relations hold as $ Z\rightarrow\infty$ . These limits are all in
weak $L_{1oc}^{1}$ :

(1-2) If $ B/Z^{4/3}\rightarrow\beta$ , where $ 0\leq\beta<\infty$ and if $ N/Z=\lambda$ is fifixed then

$Z^{-2}\rho(Z^{-1/3}x)-\beta MTF(x;\lambda, \beta, 1)$ .

(3) If $ B/Z^{4/3}\rightarrow\infty$ and $ N/Z=\lambda$ is fifixed then

$Z^{-2}(\frac{B}{Z^{4/3}})-6/5\rho(Z^{-1/3}(\frac{B}{Z^{4/3}})^{-2/5}x)-\rho_{STF}(x;\lambda, 1, 1)$ .

(4) If $ B/Z^{3}\rightarrow\eta$ , where $ 0<\eta<\infty$ and $ N/Z=\lambda$ is fifixed then

$Z^{-4}\rho_{DM}(Z^{-1}x)-\rho_{DM}(x;\lambda, \eta, 1)$ .

(5) If $ B/Z^{3}\rightarrow\infty$ and $ N/Z=\lambda$ is fifixed then

$\frac{1}{Z^{2}\ln(B/Z^{3})}\overline{\rho}(\frac{x_{3}}{Z\ln(B/Z^{3})})-\overline{\rho}_{HS}(x_{3}; \lambda, 1, 1)$ .

\S 3. The one-body Hamiltonian

The spectrum of the one-body Hamiltonian $H_{A}$ is described by the
Landau bands $\epsilon_{p\iota/}=2B\iota/+p^{2}$ , where $p$ is the momentum along the
field and $iJ$ $=0,1$ , 2, $\ldots$ is the index of the band. Owing to the spin
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degeneracy, the higher bands, $iJ$ $\geq 1$ , are twice as degenerate as the
lowest band $iJ$ $=0$ .

To calculate the energy of a large, complex atom one must first study
the one-body Hamiltonian $H=H_{A}+V(x)$ , where $V$ is an external
potential. As usual, to calculate the ground state energy of a fermionic
system we need to know the sum of the negative eigenvalues of the
operator $H$ (with $V\leq 0$ for simplicity).

In order to estimate accurately the sum of the negative eigenvalues
of $H_{A}+V(x)$ we need two things: (i) a lower bound for this quantity
and (ii) an asymptotic (or semiclassical) limit formula for the quantity.
These are provided by Theorems 4 and 5 below. The bound (i) is needed
to control errors between the true answer and the semiclassical approxi-
mation. The semiclassical limit turns out to be relevant here (after some
suitable scaling) because it is equivalent to the limit $ Z\rightarrow\infty$ .

There is an important difference between $H_{A}$ and the operator $(p-$

$A)^{2}$ which has no spin dependence. While the spectrum of $(p-A)^{2}$ is
$(B, \infty)$ the spectrum of $H_{A}$ is $(0, \infty)$ . Indeed, one can bound the sum

of the negative eigenvalues of $(p-A)^{2}-V(x)$ by $-L\int|V(x)|^{5/2}dx$ ,

(where $L$ is some fixed constant) according to the standard Lieb-Thirring
inequality (even with a magnetic field the proof of this inequality given
in [LT] is still correct if one appeals to the diamagnetic inequality).
However, in the case of $H_{A}+V$ the question is somewhat more subtle.

In fact, if $\int|V|^{3/2}<\infty$ , the operator $(p-A)^{2}+V$ has a finite number
of negative eigenvalues, while the operator $H_{A}+V$ can have infinitely
many negative eigenvalues (compare [I]). We can, however, prove [LSY]
the following bound which is important in our proofs.

Theorem 1. There exist universal constants $L_{1}$ , $L_{2}>0$ such that

if we let $e_{j}(B, V)$ , $j=1,2$ , $\ldots$ denote the negative eigenvalues of $H_{A}+V$
with $V\leq 0$ then

(3.1) $\sum_{j}|e_{j}(B, V)|\leq L_{1}B\int|V(x)|^{3/2}d^{3}x+L_{2}\int|V(x)|^{5/2}d^{3}x$ .

We can choose $L_{1}$ as close to $ 2/3\pi$ as we please, compensating with $L_{2}$

large.

The first term on the right side is a contribution from the lowest
band, $iJ$ $=0$ . For large $B$ this is the leading term.

We now ask the question of a semiclassical analog of (3.1). Thus,

consider the operator

(3.2) $[(hp-ba(x))\cdot \sigma]^{2}+v(x)$ ,
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where $a(x)=\frac{1}{2}\hat{z}\times x,\hat{z}=(0,0,1)$ and $v\leq 0$ .

If one computes the leading term in $h^{-1}$ of the sum of the negative
eigenvalues of (3.2) for fixed $b$ one finds as in [HR] that there is no $b$

dependence. In our case, however, we shall not assume $b$ fixed, or more
precisely not assume that $b$ is small compared with $h^{-1}$ . The reason for
this is that in the application to neutron stars it is not true, as we shall
discuss below, that $b<<h^{-1}$ .

The interesting fact is, however, that we can prove ([LSY]) a semi-
classical formula for the sum of the negative eigenvalues of the operator
(3.2), which holds uniformly in $b$ (even for large $b$).

Theorem 5. Let $e_{j}(h, b, v)$ , $j=1,2$ , $\ldots$ , denote the negative eigen-
values of the operator (3.2), with $v\leq 0$ . Then

$\lim_{h\rightarrow 0}(\sum_{j}e_{j}(h, b, v)/E_{sc1}(h, b, v))=1$
,

uniformly in $b$ , where $E_{sc1}$ is the semiclassical approximation defifined by

$E_{sc1}(h, b, v)$

(3.3)
$=-\frac{1}{3\pi^{2}}h^{-2}b\int(|v(x)|^{3/2}+2,\sum_{\iota=1}^{\infty}[|v(x)|-2\nu bh]_{+}^{3/2})d^{3}x$ .

Here $[t]_{+}=t$ if $t>0$ , zero otherwise.

The formula (3.3) was already implicitly noted in [Y]. The integrand
in (3.3) looks peculiar, but it has the following simple physical interpre-

tation. Take a cubic box of volume $L^{3}$ in $R^{3}$ and let the number $\mu>0$

be some fixed Fermi level (or chemical potential). Then add together all
the negative eigenvalues of $ H_{A}-\mu$ . In the thermodynamic limit (large
$L)$ we can do this addition simply by using the known Landau levels,
and the total energy per unit volume is the integrand in (3.3) in which
$|v(x)|$ is set equal to $\mu$ .

For $bh<<1$ , the right side of (3.3) reduces to the standard semiclas-
sical formula from [HR],

(3.4) $-\frac{2}{15\pi^{2}}h^{-3}\int|v(x)|^{5/2}d^{3}x$ .

(Recall that we are counting the spin which accounts for the 2 in front
of the sum in (3.3).) For $bh>>1$ , the sum in (3.3) is negligible, and we
are left with the first term.



Large Atoms in the Magnetic Field 267

Formula (3.3) (with $h$ replaced by 1) can be compared with the
Lieb-Thirring inequality (3.1), which holds even outside the semiclassical
regime. The two terms in (3.1) correspond to respectively the $ b\rightarrow\infty$

(first term) and $b\rightarrow 0$ (last term) asymptotics of (3.3).
As we know from elementary thermodynamics, the energy per unit

volume as a function of the particle density ( $\rho(x)$ in our case) is the
Legendre transform of the pressure as a function of the chemical poten-

tial $(|v(x)|)$ . Thus, corresponding to $-(2/15\pi^{2})|v(x)|^{5/2}$ in (3.4), there

is the energy (3/5) $(3\pi^{2})^{2/3}\rho(x)^{5/3}$ , which is the usual kinetic energy ex-
pression in $TF$ theory. Likewise, corresponding to (3.3) there is a kinetic

energy which we call $w_{B}(\rho(x))$ . It is no longer proportional to $\rho(x)^{5/3}$

but it is still a convex function of $\rho(x)$ . It is proportional to $\rho(x)^{3}/B^{2}$

for small $\rho$ , while it is asymptotically equal to $(3/5)(3\pi^{2})^{2/3}\rho(x)^{5/3}$ as
$\rho(x)\rightarrow\infty$ .

\S 4. The many-electron atom

The essential ingredient in the study of the many-electron Hamil-
tonian $H_{N}$ is to reduce it to a one-electron problem $H_{A}+V_{effff}(x)$ with
an effective mean field potential $V_{effff}(x)=-Z/|x|+\int|x-y|^{-1}\rho(y)d^{3}y$ .
This reduction involves approximating the repulsive energy

$\int||\psi(x_{1}, \ldots, x_{N})||^{2}\sum_{1\leq i<j\leq N}|x_{i}-x_{j}|^{-1}d^{3}x_{1}\ldots d^{3}x_{N}$ ,

in the ground state $\psi$ by

$\int\int\rho(x)\rho(y)|x-y|^{-1}d^{3}xd^{3}y$ .

In standard $TF$ theory the justification of this approximation is
done by using the correlation inequality of Lieb and Oxford (see [L] and
[LO] $)$ . This very same argument (and inequality) work in the presence of
a magnetic field. If $B$ is not too large compared with $Z$ it continues to be
effective. However, in the hyper-strong case $B>>Z^{3}$ the argument is no
longer effective, the reason being that the correlation estimate is three
dimensional in nature, while the atom is now effectively one-dimensional.
The proof of a correlation estimate applicable in the hyper-strong case
is difficult and will appear elsewhere ([LSY]).

The density $\rho$ appearing in the mean field potential $V_{effff}$ will not
be taken to be the exact (unknown) density of the ground state, but
rather an approximation to the exact density obtained from the density
functionals that we shall now define.
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Armed with the foregoing, we introduce a (magnetic field dependent)
$TF$ theory by means of the following functional of the unknown electron
density $\rho(x)$ :

$\mathcal{E}_{MTF}(\rho)=\int w_{B}(\rho(x))d^{3}x-\int Z|x|^{-1}\rho(x)d^{3}x$

(4.1)

$+\frac{1}{2}\int\int\rho(x)|x-y|^{-1}\rho(y)d^{3}xd^{3}y$ .

It differs from the usual $TF$ functional only in the replacement of
$(const.)\rho(x)^{5/3}$ by $w_{B}(\rho(x))$ . We call this functional the Magnetic
Thomas-Fermi Functional. It is studied in detail in [LSY]. The pa-
per [TY] seems to be the earliest reference that uses a Thomas-Fermi
theory that takes all Landau levels into account. This theory was also
studied in [FGPY] and put on a rigorous basis in [Y] for the regime
$B\sim Z^{4/3}$ .

We now choose our density $\rho$ to be the unique minimizer for $\mathcal{E}_{MTF}$

constrained to the set $\int\rho\leq N$ . We define the energy function that
appears in Theorem 1 to be the infimum

$E_{MTF}(N, B, Z)=\inf_{\int\rho\leq N}\mathcal{E}_{MTF}(\rho)$
.

Theorems 4 and 5 play an essential role in the proof of Theorem
1. What makes the proof work when $B<<Z^{3}$ is the fact that in the
analysis of the mean-field, one-particle Hamiltonian, $H_{A}+Veff(x)$ , with
$V_{effff}(x)=-Z/|x|+\int|x-y|^{-1}\rho(y)d^{3}y$ , and with $\rho$ being the density
that minimizes the $TF$ energy, we are in the semiclassical regime. The
potential $V_{effff}(x)$ has the following behavior in $Z$ and $B$

$V_{effff}(x)=Z^{4/3}v(Z^{1/3}x)$ if $B\leq Z^{4/3}$

(4.2)
$V_{effff}(x)=Z^{4/5}B^{2/5}v(Z^{-1/5}B^{2/5}x)$ if $B\approx Z^{4/3}$ ,

where $v$ is a function that does not depend significantly on $B$ and $Z$ .

Concentrating on the case $B\approx Z^{4/3}$ we see, by a simple rescaling,
that the Hamiltonian $H_{A}+V_{effff}(x)$ is unitarily equivalent to the operator

(4.3) $Z^{4/5}B^{2/5}[((hp-ba(x))\cdot\sigma)^{2}+v(x)]$ ,

where

(4.4) $h=(B/Z^{3})^{1/5}$ and $b=(B^{2}/Z)^{1/5}$ .
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In the opposite case, when $B\leq Z^{4/3}$ , we get $Z^{4/3}$ in place of $Z^{4/5}B^{2/5}$

in (4.3) and

(4.5) $h=Z^{-1/3}$ and $b=B/Z$ .

When $h$ is small we can study (4.3) by semiclassical methods.

If $B\gg Z^{4/3}$ we can replace $w_{B}(\rho)$ by its asymptotic form and we
define the Strong Thomas-Fermi functional

$\mathcal{E}_{STF}(\rho)=\frac{4}{3}\pi^{4}B^{-2}\int\rho(x)^{3}d^{3}x-\int Z|x|^{-1}\rho(x)d^{3}x$

$+\frac{1}{2}\int\int\rho(x)|x-y|^{-1}\rho(y)d^{3}xd^{3}y$ .

The analysis of $E_{MTF}$ and $E_{STF}$ , which is a separate story in itself, leads
to the conclusions stated in 1), 2) and 3) of Section $II$ . Conclusions 1)
and 2) were proved by Yngvason [Y]; 3) is new. Since the $TF$ energy
functional has a unique minimizing $\rho(x)$ (because $\mathcal{E}_{MTF}$ is strictly convex
in $\rho$ ) this $\rho$ must be spherically symmetric. Thus we are led to the
following remarkable conclusion:

If $B/Z^{3}\rightarrow 0$ as $ Z\rightarrow\infty$ , the atom is always spherical (to leading
order) despite the fact that $B$ has a leading order effect on the ground
state energy.

In case 2, $B\approx Z^{4/3}$ , we cannot say that all the electrons are in

the lowest Landau band, but if $B>>Z^{4/3}$ , they are–as the following
theorem states precisely.

Theorem 6. If $\Pi_{0}^{N}$ is the projection in the physical Hilbert space
onto the subspace where all electrons are in the lowest Landau band, we
can defifine the confined energy

(4.6) $ E_{conf}(N, B, Z)\equiv$ ground state energy of $\Pi_{0}^{N}H_{N}\Pi_{0}^{N}$ .

Then, if $N<\lambda Z$ for some fifixed $\lambda>0$ , we have that

$E_{conf}(N, B, Z)/E(N, B, Z)\rightarrow 1$

(4.7)
if $ B\rightarrow\infty$ and if $Z^{4/3}/B\rightarrow 0$ .

What happens if $B\approx Z^{3}$ ? Semiclassical analysis breaks down (in
the sense of being no longer asymptotically exact as $ Z\rightarrow\infty$ ). The atom
is no longer spherical. However, the atom is so non-semiclassical (one
person called it post-modern) that another analysis becomes possible.
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This analysis, which we discuss next, is reminiscent of Hartree theory
for bosons–even though it is relevant for fermionic electrons!

It is only the motion parallel to the magnetic field which can no
longer be described semiclassically. The motion perpendicular to the
field is still well approximated classically. To be more precise, the atom
consists of a bundle of one dimensional quantum systems indexed by
the position $x_{\perp}=(x_{1}, x_{2})$ perpendicular to the field B. The state of
one of these one-dimensional systems is described by a finite family of

orthogonal functions $ e_{x}^{(j)}\perp’ j=1,2\ldots$ in $L^{2}(R)$ which are not normal-

ized but satisfy $||e_{x}^{(j)}\perp||\leq B/2\pi$ . This condition follows from the Pauli
principle and the fact that the two-dimensional density of states in the
lowest Landau band is exactly $ B/2\pi$ .

We can combine the functions $e_{x}^{(j)}\perp’ j=1,2$ , $\ldots$ into a density matrix

$\gamma$ : $x_{\perp}\mapsto\gamma_{x}\perp(x_{3}, y_{3})=\sum_{j}e_{x}^{(j)}\perp(x_{3})\overline{e_{x}^{(j)}\perp(y_{3})}$ .

Then $\gamma$ satisfies

(a) $0\leq\gamma_{x}\perp\leq(B/2\pi)I$ as an operator on $L^{2}(R)$

$(b)\int_{R^{2}}R_{L^{2}(R)}[\gamma_{x}\perp]d^{2}x_{\perp}=N=the$ total number of electrons.

We can now approximate the energy by the functional

$\mathcal{E}_{DM}(\gamma)=\int_{R^{2}}rb_{L^{2}(R)}[(-\partial_{3}^{2}-Z|x|^{-1})\gamma_{x}\perp]d^{2}x_{\perp}$

$+\frac{1}{2}\int\int\rho_{\gamma}(x)\rho_{\gamma}(y)|x-y|^{-1}d^{3}xd^{3}y$ ,

where $\rho_{\gamma}(x)=\gamma_{x}\perp(x_{3}, x_{3})$ .

We denote

$ E_{DM}(N, B, Z)=\inf$ { $\mathcal{E}(\gamma)$ : $\gamma$ satisfies (a) and (b) above}.

This is the function appearing in Theorem 2. The Pauli principle comes
into play in this theory only in condition (a). The proof of Theorem 2
is straightforward as soon as one has made the reduction to a one body
problem and realized that condition (a) follows from the confinement to
the lowest Landau band.

The Euler-Lagrange equation for the $\mathcal{E}_{DM}$ minimization problem

implies that the functions $ e_{x}^{(j)}\perp$ are eigenfunctions of the one-dimensional

Schr\"odinger operator $h_{x}\perp=-\frac{d^{2}}{dx_{3}^{2}}-V_{effff}(x)$ where, as before, the effective

potential is $V_{effff}(x)=-Z/|x|+\int|x-y|^{-1}\rho_{\gamma}(y)d^{3}y$ with $\rho_{\gamma}$ being the
density corresponding to the minimizer $\gamma$ for $\mathcal{E}_{DM}$
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\S 5. The super strong case $B\gg Z^{3}$

We shall present here the correct energy functional of the density
when $B>>Z^{3}$ , and very briefly indicate what is involved in proving the
correctness of the approximation.

The first step is to show that when $B/Z^{3}$ is larger than some critical
value then the minimizing $\gamma$ for $\mathcal{E}_{DM}$ is rank one for every $ X\perp$ . Since the
eigenfunction of $\gamma_{x\perp}$ must be the ground state of $h_{x}\perp we$ can conclude
that it is a positive function. In this case we can write $\gamma_{x}\perp(x_{3}, y_{3})=$

$\sqrt{\rho(X\perp,X_{3})}\sqrt{\rho(X\perp,y_{3})}$ where $\rho(x)=\rho_{\gamma}(x)$ .

The functional $\mathcal{E}_{DM}$ thus becomes a density functional when $B/Z^{3}$

is large enough.

$\mathcal{E}_{DM}(\gamma)=\mathcal{E}_{SS}(\rho)=\int(\frac{\partial}{\partial x_{3}}\sqrt{\rho(x)})^{2}d^{3}x-\int\frac{Z}{|x|}\rho(x)d^{3}x$

(5.1)

$+\frac{1}{2}\int\rho(x)|x-y|^{-1}\rho(y)d^{3}xd^{3}y$ ,

with the condition that

(5.2) $\int\rho(x_{1}, x_{2}, x_{3})dx_{3}\leq\frac{B}{2\pi}$ for all $(x_{1}, x_{2})$ .

Then

$E_{DM}(N, B, Z)=E_{SS}(N, B, Z))$

(5.3)
$=\inf\{\mathcal{E}_{SS}(\rho)$ : $\int\rho\leq N$ , $\rho$ satisfies $(5.2)\}$

We can now ask for the limit of $\mathcal{E}_{SS}$ if $ B/Z^{3}\rightarrow\infty$ , $ Z\rightarrow\infty$ and
$N/Z$ is fixed. With some effort one can prove that $\mathcal{E}_{SS}$ then simplifies
to another functional, which we call the hyper-strong functional of a
one-dimensional density $\rho_{1}(x)$ , $x\in R$ . That is, the atom is now so thin
compared to its length that only the average density and its variation
along the direction parallel to $B$ matter.

It is convenient, in defining this average density, to rescale the vari-
ables. Thus, setting $\eta\equiv B/(2\pi Z^{3})$ , and taking $(Z\ln\eta)^{-1}$ as the unit of
length, we define

$\rho_{1}(x)\equiv\frac{1}{Z^{2}\ln\eta}\overline{\rho}(\frac{l}{Z1n\eta}x)$

(5.4)

$\equiv\frac{1}{Z^{2}\ln\eta}\int\rho$ ( $x_{1}$ , $x_{2}$ , $\frac{l}{Z1n\eta}x$) $dx_{1}dx_{2}$ ,
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which has the normalization $\int\rho_{1}(x)dx=N/Z$ . The hyper-strong func-
tional is

(5.5) $\mathcal{E}_{HS}(\rho_{1})=\int_{-\infty}^{\infty}(\frac{d}{dx}\sqrt{\rho_{1}(x)})^{2}dx-\rho_{1}(0)+\frac{1}{2}\int_{-\infty}^{\infty}\rho_{1}(x)^{2}dx$ .

In other words, apart ffom some scalings, the Coulomb potential is re-
placed by a Dirac delta function.’ Using (5.5) we define a rescaled energy

(5.6)
$E_{HS}(N/Z)\equiv\inf_{\int\rho_{1}=N/Z}\mathcal{E}_{HS}(\rho_{1})$

.

We assert that under the conditions stated above, $Z^{3}(\ln\eta)^{2}E_{HS}(N/Z)$

$/E(N, B, Z)\rightarrow 1$ as $ Z\rightarrow\infty$ , $ B/Z^{3}\rightarrow\infty$ and $N/Z$ is fixed.
A remarkable fact is that the minimizing $\rho_{1}$ can be evaluated exactly.

The Euler-Lagrange equation is (with $\psi^{2}\equiv\rho_{1}$ and Lagrange multiplier
$\mu)$

(5.7) $-\dot{\psi}(x)-\psi(0)\delta(x)+\psi^{3}(x)=-\mu\psi(x)$ .

With $\lambda\equiv N/Z$ , there are solutions only for $\lambda\leq 2$ (not $\lambda\leq 1$ as in $TF$

theory):

$\psi(x)=\frac{\sqrt{2}(2-\lambda)}{2\sinh[\frac{1}{4}(2-\lambda)|x|+c]}$ for $\lambda<2$

(5.8)

$\psi(x)=\sqrt{2}(2+|x|)^{-1}$ for $\lambda=2$ ,

with $\tanh c=(2-\lambda)/2$ . The energy is

(5.9) $E_{HS}(\lambda)=\mathcal{E}_{HS}(\psi^{2})=-\frac{1}{4}\lambda+\frac{1}{8}\lambda^{2}-\frac{1}{48}\lambda^{3}$ .
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\S 1. Introduction

The purpose of this paper is to give a sufficient condition for non-
uniqueness of non-negative solutions of the Cauchy problem

(1) $(\partial_{t}-\triangle+V(x))u(x, t)=0$ in $R^{n}\times(0, \infty)$ ,

(2) $u(x, 0)=0$ on $R^{n}$ ,

where $V$ is a real-valued function in $L_{p,1oc}(R^{n})$ , $p>n/2$ for $n$ $\geq 2$ and
$p=1$ for $n$ $=1$ . We mean by a solution of $(1)-(2)$ a function which
belongs to

$C^{0}(R^{n}\times[0, \infty))\cap L_{2,1oc}([0, \infty);H_{1oc}^{1}(R_{x}^{n}))$

and satisfies (1) and (2) in the weak sense and continuously, respectively
(cf. [A]). We assume that

(3) $|V(x)-W(|x|)|\leq C$ on $R^{n}$

for some constant $C\geq 0$ and a measurable function $W$ on $[0, \infty)$ with
$\inf_{r\geq 0}W(r)>0$ . Our main result is the following

Theorem. Suppose that

(4) $\int_{1}^{\infty}W(r)^{-1/2}dr<\infty$ .

Received December 28, 1992.
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Then there exists a solution $u$ of $(1)-(2)$ such that

(5) $u(x, t)>0$ in $R^{n}\times(0, \infty)$ .

The proof of this theorem is given in Section 2.
In [M1], among other things, we have shown that:

Under some additional conditions on $W$ , nonnegative solutions of
$(1)-(2)$ are not unique if and only if (4) holds.

The aim of this paper is to establish a half of this result without the
additional conditions on $W$ .

\S 2. Proof

In this section we prove the Theorem. A main idea of the proof
is to exploit a relative version (see Lemmas 3\sim 6 below) of methods
developed in connection with non-conservation of probability (cf. [D]
and [Kh] $)$ . The proof is divided into several lemmas.

First, without loss of generality, we may and will assume that $W\geq 1$ .
Consider the initial value problem

(6) $-g’’-[(n-1)/r]g’+W(r)g=0$ in $(0, \infty)$ ,

(7) $g(r)=1+o(r^{\alpha})$ as $r\rightarrow 0$ ,

where $\alpha=1$ for $n=1$ and $\alpha=0$ for $n>1$ . A solution of $(6)-(7)$ means
a function $g$ in $C^{0}([0, \infty))\cap C^{1}((0, \infty))$ such that its derivative $g’$

is absolutely continuous on any compact subinterval of $(0, \infty)$ , and $g$

satisfies (6) and (7). Let us see that $(6)-(7)$ has a unique solution when
$n>2$ . (When $n=2$ , it can be shown similarly; and it is clear if $n$ $=1.$ )
Since $W\in L_{p,1oc}(R^{n})$ , $p>n/2$ , we have by H\"older’s inequality

(8) $ r^{2-n}\int_{0}^{r}s^{n-1}W(s)ds\leq Cr^{2-n/p}(\int_{0}^{r1/p}W(s)^{p}s^{n-1}ds)<\infty$

for any $r>0$ , where $C$ is a positive constant independent of $r$ . Thus a
solution $g$ of $(6)-(7)$ satisfies

(9) $\lim_{r\rightarrow 0}rg’(r)=0$ ,

(10) $g’(r)=\int_{0}^{r}(s/r)^{n-1}W(s)g(s)ds$ , $r>0$ .
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Putting

(11) $K(r, s)=[(s^{2-n}-r^{2-n})/(n-2)]W(s)s^{n-1}$ ,

we have

$\int_{0}^{r}dt\int_{0}^{t}(s/t)^{n-1}W(s)ds=\int_{0}^{r}K(r, s)ds$

(12)

$\leq Cr^{2-n/p}(\int_{0}^{r1/p}W(s)^{p}s^{n-1}ds)<\infty$

for any $r>0$ , where $C$ is a positive constant independent of $r$ . Thus $g$

satisfies the integral equation

(13) $g(r)=1+\int_{0}^{r}K(r, s)g(s)ds$

on $[0, \infty)$ . Conversely, a solution of (13) in $C^{0}([0, \infty))$ is also a solution
of the initial value problem $(6)-(7)$ . Now, in view of (12), the iteration
method shows that (13) has a unique solution on $[0, \delta]$ for a sufficiently
small positive number $\delta$ . The obtained solution is also a unique solution
of $(6)-(7)$ with $(0, \infty)$ replaced by $(0, \delta)$ . By extending it, we get a
unique solution $g$ of $(6)-(7)$ . Furthermore, we see that $g>0$ and $g’>0$

in $(0, \infty)$ .

With $f(r)=r^{(n-1)/2}g(r)$ and $w(r)=W(r)+(n-1)(n-3)/4r^{2}$ ,
we have

(14) $f^{JJ}=w(r)f$ in $(0, \infty)$ ,

(15) $f(r)=r^{(n-1)/2}[1+o(r^{\alpha})]$ as $r\rightarrow 0$ .

The following Lemmas 1 and 2 play a technically main part in removing
the additional conditions on $W$ mentioned in the Introduction.

Lemma 1. $f$ , $f’>0$ in $(0, \infty)$ , $\inf_{r>1}f’(r)/f(r)>0$ , and

(16) $\int_{1}^{\infty}(f/f’)dr<\infty$ .

Proof. We have only to show the second and third assertions. With
$F=f’/f$ , we have from (14)

(17) $F’+F^{2}=w$
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Let $a(r)$ be the solution of the initial value problem

$a’’=(1/4)a$ in $(1, \infty)$ , $a(1)=f(1)$ , $a’(1)=f’(1)$ .

With $A=a’/a$ ,

$(F-A)’+(F+A)(F-A)=w-1/4\geq 0$ in $(1, \infty)$ ,

$(F-A)(1)=0$ .

Thus $F\geq A$ , and so $\inf_{r>1}F(r)>0$ . We next show (16) simplifying
an argument in [$KN$ , 4.2 and 4.3]. We claim that

(18) $1/F+(1/2)(1/F^{2})’\leq 2/w^{1/2}$

in $(1, \infty)$ . By (17),

$(1/w)(F’/F^{2})+1/w=1/F^{2}$ .

If $F’\geq 0$ , then $F\leq w^{1/2}$ ; and so

$1/F=F[1/w+(1/w)(F’/F^{2})]\leq 1/w^{1/2}+F’/F^{3}$ .

If $F’<0$ , then $1/F\leq 1/w^{1/2}$ and

$(1/2)(1/F^{2})’=-F’/F^{3}=1/F-w/F^{3}<1/w^{1/2}$ .

Thus we get (18). Hence

$\int_{1}^{R}F^{-1}dr+\frac{1}{2}[F(R)^{-2}-F(1)^{-2}]\leq\int_{1}^{R}2w^{-1/2}dr\leq\int_{1}^{\infty}4W^{-1/2}dr$ .

This together with (4) implies (16). Q.E.D.

Let $f_{1}$ be the solution of (14)-(15) with $w$ replaced by $w+1$ . Then
we have

Lemma 2. The function $f_{1}/f$ is increasing and $0<\lim_{r\rightarrow\infty}(f_{1}/f)(r)$

$<\infty$ .

Proof. With $v=f_{1}/f$ , we have

(19) $f^{-2}(f^{2}v’)’=v$ in $(0, \infty)$ ,

(20) $v(r)=1+o(r^{\alpha})$ as $r\rightarrow 0$ .



Positive Cauchy Problem for Parabolic Equations 279

From (19)-(20) we get along the line in deriving (13) the equation

(21) $v(r)=1+\int_{0}^{r}[\int_{s}^{r}(f(s)/f(t))^{2}dt]v(s)ds$ .

This implies that $v$ is strictly increasing. Next, let us show the second
assertion along the line given in $[KN, 2.5]$ . With $u=\log(f_{1}/f)$ and

$F=f’/f$ , we have

(22) $u’’+(2F)u’+(u’)^{2}=1$ .

This implies that $2u’\leq 1/F-u’’/F$ . Thus, for any $R>1$ ,

2 $\int_{1}^{R}u’dr\leq\int_{1}^{R}(1/F)dr$

$-u’(R)/F(R)+u’(1)/F(1)+\int_{1}^{R}(-F’/F^{2})u’dr$ .

Since $-F’/F^{2}=1-w/F^{2}<1$ and $u’>0$ , we then have

2 $\int_{1}^{R}u’dr\leq\int_{1}^{R}(1/F)dr+u’(1)/F(1)+\int_{1}^{R}u’$dr.

Hence

$u(R)\leq\int_{1}^{R}(1/F)dr+u’(1)/F(1)+u(1)$ .

This together with (16) implies that $\lim_{r\rightarrow\infty}f_{1}(r)/f(r)<\infty$ .

Q.E.D.

Now put

(23) $H(x)=h(|x|)=(f_{1}/f)(|x|)[\lim_{s\rightarrow\infty}(f_{1}/f)(s)]^{-1}$ ,

(24) $L=-g(|x|)^{-2}\sum_{j=1}^{n}(\partial/\partial x_{j})(g(|x|)^{2}\partial/\partial x_{j})$ ,

where $g$ is the solution of $(6)-(7)$ . Then we can easily obtain the following
lemma.

Lemma 3. $H$ is a solution of the equation

(25) $(L+1)H=0$ in $R^{n}$
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such that $0<H<1$ and $\lim_{|x|\rightarrow\infty}H(x)=1$ .

Let $G(x, y)$ be the minimal Green function for $(L+1, R^{n})$ (cf. [M3]).
Then we have

Lemma 4. $0<\int_{R^{n}}G(x, y)dy\leq 1-H(x)$ on $R^{n}$ .

Proof. Recall that $G=\lim_{R\rightarrow\infty}G_{R}$ , where $G_{R}$ is the Green func-
tion for $(L+1, B_{R})$ with $B_{R}=\{x\in R^{n}$ ; $|x|<R$). Put $U_{R}(x)=$

$\int_{|y|<R}G_{R}(x, y)dy$ Then

$(L+1)U_{R}=1$ in $B_{R}$ , $U_{R}=0$ on $\partial B_{R}$ .

On the other hand,

$(L+1)(1-H)=1$ in $B_{R}$ , $1-H>0$ on $\partial B_{R}$ .

Thus the maximum principle shows that $U_{R}<1-H$ in $B_{R}$ . But

$\lim_{R\rightarrow\infty}U_{R}(x)=\int_{R^{n}}G(x, y)dy$ .

This proves the lemma. Q.E.D.

Since Lemma 4 implies that $[(L+1)^{-1}1](x)<1$ , we can now apply
a criterion for non-conservation of probability (cf. $[D$ , Lemma 2.1]),
which goes back to Khas’minskii [Kh]. Let $K(x, y, t)$ be the smallest
fundamental solution for $(\partial_{t}+L, R^{n}\times(0, \infty))$ (cf. [Ml, M2]), and put

(26) $v(x, t)=\int_{R^{n}}K(x, y, t)dy$ .

Then we have

Lemma 5. $v(x, 0)=1$ , and

(27) $(\partial_{t}+L)v=0$ and $0<v<1$ in $R^{n}\times(0, \infty)$ .

Proof. For self-containedness, we briefly show that $0<v<1$ . The
maximum principle for a parabolic equation on a cylinder together with
the semigroup property of the smallest fundamental solution implies that
either $v=1$ or $0<v<1$ in $R^{n}\times(0, \infty)$ . On the other hand, by Lemma
4,

$\int_{0}^{\infty}e^{-t}v(x, t)dt=\int_{R^{n}}G(x, y)dy<1$ on $R^{n}$ .

Hence $0<v<1$ . Q.E.D.
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The final step of the proof is the following

Lemma 6. There exists a solution $u$ having the desired properties

of the Theorem.

Proof. With $v$ being the function given by (26), put

(28) $w(x, t)=g(x)(1-v(x, t))$ .

Then we see that $w(x, 0)=0$ , and

(28) $(\partial_{t}-\triangle+W)w=0$ and $0<w(x, t)<g(x)$

in $R^{n}\times(0, \infty)$ .

For $R>0$ , let $u_{R}$ be the solution of the mixed problem

$(\partial_{t}-\triangle+V)u_{R}=0$ in $B_{R}\times(0, \infty)$ , $u_{R}=w$ on $\partial(B_{R}\times(0, \infty))$

(cf. [A]). Since $W-C\leq V\leq W+C$ by (3), the comparison theorem
shows that

$e^{-Ct}\leq u_{R}(x, t)/w(x, t)\leq e^{Ct}$ in $B_{R}\times(0, \infty)$ .

We see that for some sequence $ R_{j}\rightarrow\infty$ , $u_{R_{j}}$ converges uniformly on
each compact subset of $R^{n}\times[0, \infty)$ to a solution $u$ of (1) satisfying

(30) $e^{-Ct}\leq u(x, t)/w(x, t)\leq e^{Ct}$ in $R^{n}\times(0, \infty)$ .

This proves the lemma. Q.E.D.

Remark. We can also prove the Theorem by using Theorem 5.5 of
[M1] after establishing Lemma 2; because Lemma 2 and (21) imply that

$\int_{1}^{\infty}ds\int_{s}^{\infty}(s/t)^{n-1}(g(s)/g(t))^{2}dt<\infty$ .

But the proof given in this paper is more direct than the one based on
Theorem 5.5 of [M1].
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Trudinger’s Inequality and Related Nonlinear
Elliptic Equations in Two-Dimension

Takayoshi Ogawa and Takashi Suzuki

\S 1. Introduction and results

We are concerned with the following nonlinear elliptic equations:

(1) $\{$

$-\triangle u=\lambda ue^{u^{2}}$ , $x\in B$ ,

$u=0$ , $ x\in\partial\Omega$ ,

where $B=B_{1}(0)\subset \mathbb{R}^{2}$ is a unit disk in $\mathbb{R}^{2}$ and $\lambda$ is a positive parameter.
We consider a family of solutions of (1) satisfying

(2) $||u||_{L^{\infty}}\rightarrow\infty$ as $\lambda\rightarrow 0$ .

The nonlinearity of the equation (1) is the Sobolev critical exponent
in two-dimension. For any domain $\Omega\in \mathbb{R}^{2}$ , It is well known that the
Sobolev space $H_{0}^{1}(\Omega)$ is continuously imbedded in $L^{p}(\Omega)$ for any $ p<\infty$

but is false in the case $ p=\infty$ . Trudinger [18] showed that for any
$u\in H_{0}^{1}(\Omega)$ with $||\nabla u||_{2}=1$ , there are two constants $\alpha>0$ and $C>0$

such that

(3) $\int_{\Omega}\exp\{\alpha u^{2}\}dx\leq C|\Omega|$ .

Later, Moser [7] simplified the proof and improved that (3) is also valid
for $\alpha\leq 4\pi$ . Here $ 4\pi$ is the constant of the isoperimetric inequality. The
inequality (3) is also valid for any unbounded domain (Ogawa [9]). That
is when $\Omega$ is any domain in $\mathbb{R}^{2}$ , we have for all $u$ $\in H_{0}^{1}(\Omega)$ ,

(4) $\int_{\Omega}\{\exp(u^{2})-1\}dx\leq C||u||_{2}^{2}$ , $||\nabla u||_{2}=1$ .

(See also Ogawa-Ozawa [10] and Ozawa [12] for further extensions).

Received December 28, 1992.
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These inequalities $(3)-(4)$ indicates that the order of local singular-
ities of $H^{1}$ functions are allowed as far as $\exp(u^{2})$ is integrable. In other

words $e^{u^{2}}$ is the critical order of integrability for $H^{1}-$ functions
Concerning our problem (1), there are two different approaches. One

is the variational method. When we consider the maximizing problem
of the functional

(5) $\int_{\Omega}\exp\{\alpha u^{2}\}dx$ for $u\in H_{0}^{1}(\Omega)$ , $||\nabla u||_{2}=1$

on a bounded domain. Then the extremal function (if it is achieved)
becomes a solution of (1). Shaw [14] showed the existence of a positive
solution of (1) for each parameter $\lambda>0$ (see also Adimurti [1]). When
the domain is a ball in $\mathbb{R}^{n}$ , the maximum can be attained by some
function even when $n=2$ and $\alpha=4\pi$ (Carleson-Chang [4]).

When the domain is a unit disk, all the positive smooth solution
must be radially symmetric by Gidas-Ni-Nirenberg’s result [5]. There-
fore the Dirichlet problem may be written as the nonlinear ordinary
differential equation:

(6) $\{$

$-u_{rr}-\frac{1}{r}u_{r}=\lambda ue^{u^{2}}$ , $x\in[0,1)$ ,

$u(1)=0$ , $u’(0)=0$ .

By solving (6), we can obtain the details of the properties of the positive
solution of (1), which is the second method. Atkinson-Peletier [2], [3]
applied the shooting method to (6) and proved that the existence of
radially symmetric solution of (1) satisfying

$||u||_{L^{\infty}}\rightarrow\infty$ as $\lambda\rightarrow 0$ .

Our aim of this paper is to specify more precise behavior of the
family of solutions $\{(u, \lambda)\}$ as $\lambda\rightarrow 0$ . We have two results. First one
states a global behavior of the solutions.

Theorem A. Let $u$ be a positive solution of (1) with the blow up
condition (2). That is

$||u||_{L^{\infty}(B)}=u(0)\rightarrow\infty$ as $\lambda\rightarrow 0$ .

Then we have

$u(x)\rightarrow 0$ as $\lambda\rightarrow 0$



Trudinger’s Inequality and Nonlinear Elliptic Equations 285

for all $x\in B\backslash \{0\}$ . Moreover we have

(7) $\lim_{\lambda\rightarrow 0}\lambda\int_{B}ue^{u^{2}}dx=0$ ,

(8) $\lim_{\lambda\rightarrow 0}\lambda\int_{B}(e^{u^{2}}-1)dx=0$ ,

(9) $\varliminf_{\lambda\rightarrow 0}\int_{B}|\nabla u|^{2}dx\geq 4\pi$ .

This theorem says that the solution satisfying(2) must blow-up only
at the origin. The inequality (9) shows the solution concentrates to the
origin with its energy density $|\nabla u|^{2}$ . The lower bound in (9) arise from
the sharp exponent of the Ikudinger inequality (3).

The second result is a microscopic behavior near the origin. When
we rescale the solution by some sequence, then the solution has a limit
function.

Theorem B. There is a subsequence $\{(u_{m}, \lambda_{m})\}$ of a family of
solutions of (1) with (2) and a scaling sequance $\{\gamma_{m}\}$ such that $\gamma_{m}\rightarrow 0$

as $\lambda_{m}\rightarrow 0$ which satisfy

(10) $u^{2}(\gamma_{m}x)-u^{2}(\gamma_{m})\rightarrow 2\log(\frac{2}{1+|x|^{2}})$ as $\lambda_{m}\rightarrow 0$

locally uniformly on $B\backslash \{0\}$ .

The limit function of (10) is an exact solution of $-\Delta v=2e^{v}$ . Re-
mark that since the nonlinearity of our problem is nonhomogeneous, the
usual scaling $u\rightarrow\gamma^{\mu}u(\gamma x)$ does not work well. (For other nonlinearity
or the higher dimensional case, see Nagasaki-Suzuki [8] and Itoh [6].)

The property (10) was firstly observed by Carleson-Chang in an
implicit way. Later Struwe [15] obtained the similar result for the non-
compact maximizing sequence for the variational problem (5) for the
case $\alpha=4\pi$ . Our result Theorem $B$ is, however, different ffom theirs,
because in our case, the each factor of the sequence $\{u_{m}, \lambda_{m})\}$ satisfies
the equation (1). Moreover even the energy integral might blow up as
$\lambda\rightarrow 0$ and therefore we can not obtain a priori estimate of $\{u_{m}\}$ from
the Dirichlet integral. This is the crucial difference from the variational
setting.

\S 2. Proof of Theorem A

We begin with the following lemma.
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Lemma 1. Let $u$ be a positive, radially symmetric smooth solution

of (1). We put $r=|x|$ . Then we have

(11) $r^{2}u_{r}(r)^{2}+2\lambda r^{2}(e^{u^{2}(r)}-1)=\frac{\lambda}{2\pi}\int_{B_{r}}(e^{u^{2}}-1)dx$ ,

(12) $ru_{r}(r)=-\frac{\lambda}{2\pi}\int_{B_{r}}ue^{u^{2}}dx$ ,

where $B_{r}=\{y\in \mathbb{R}^{2}, |y|<r\}$ .

The first relation (11) is nothing else but the Pohozaev identity ([13])
associated to the equation (1).

Proof. Let $u$ be a radially symmetric smooth solution of (1). Then
$u$ satisfies (6). Mutiplying (6) by $ru_{r}(r)$ and integrating on $B_{r_{0}}$ , we have

$-\int_{0}^{r_{0}}r^{2}u_{r}u_{rr}dr-\int_{0}^{r_{0}}ru_{r}^{2}dr=\lambda\int_{0}^{r_{0}}ue^{u^{2}}r^{2}u_{r}dr$ .

Integrating by parts, we obtain

$-\frac{1}{2}r_{0}^{2}u_{r}(r_{0})^{2}=\frac{\lambda}{2}r_{0}^{2}e^{u^{2}(ro)}-\frac{\lambda}{2\pi}\int_{B_{r_{O}}}e^{u^{2}}dx$ ,

which implies (11). The second relation (12) is a direct consequence of
integration of the equation (6) on $B_{r}$ . Q.E.D.

Proof of Theorem A. Combining (11) and (12) in Lemma 1 with
choosing $r=1$ , we get

(13) $\frac{1}{4\pi}(\lambda\int_{B}ue^{u^{2}}dx)^{2}=\lambda\int_{B}(e^{u^{2}}-1)dx$ .

For any $k>0$ , we put

$C_{k}=\max_{u\geq k}\frac{1-e^{-u^{2}}}{u}$ .

Then we see $C_{k}\leq 1/k\rightarrow 0$ as $ k\rightarrow\infty$ . From (13)

$\frac{1}{4\pi}(\lambda\int_{B}ue^{u^{2}}dx)^{2}=\lambda\int_{u\geq k}(e^{u^{2}}-1)dx+\lambda\int_{u<k}(e^{u^{2}}-1)dx$

$\leq\lambda C_{k}\int_{B}ue^{u^{2}}dx+\lambda|B|\{e^{k^{2}}-1\}$ .
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Accordingly we have

$\varlimsup_{\lambda\rightarrow 0}(\lambda\int_{B}ue^{u^{2}}dx)\leq 4\pi C_{k}$ .

Since $k$ is arbitrary, we can take $k$ so large to obtain

(14) $\lim_{\lambda\rightarrow 0}(\lambda\int_{B}ue^{u^{2}}dx)=0$ ,

which shows (7) and therefore (8) by (13). Using (12) again, we have

(15) $ru_{r}\rightarrow 0$ as $\lambda\rightarrow 0$ uniformly on $B$ .

This proves that $u$ vanishes except the origin, since

$u(x)=-\int_{|x|}^{1}u_{r}dr$

$\leq\frac{1}{\epsilon}\int_{\epsilon}^{1}ru_{r}(r)dr\rightarrow 0$ .

Finally, if

$\varliminf_{\lambda\rightarrow 0}\int_{B}|\nabla u|^{2}dx<4\pi$ ,

then there is a subsequence $\{(u_{m}, \lambda_{m})\}$ such that $\lim_{m\rightarrow\infty}||\nabla u_{m}||_{2}^{2}=$

$ 4\pi-\delta$ for some $\delta>0$ . By virtue of the sharp version of Trudinger’s
inequality (3), we see

$\int_{\Omega}\exp\{\alpha u_{m}^{2}\}dx\leq C|\Omega|$ .

with $\alpha=1+\epsilon$ . Since $u\in L^{p}(B)$ for any $ 2\leq p<\infty$ , we have $\lambda_{m}u_{m}e^{u_{m}^{2}}\in$

$L^{1+\in/2}$ . By the standard elliptic regularity theorem, $||\triangle u_{m}||_{L^{1+\Xi}/2}\leq C$

and

$||u_{m}||_{L^{\infty}(B)}\leq C$ (independent of $m$ ),

which contradicts our assumption (2). Therefore we obtain (9). Q.E.D.
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\S 3. Proof of Theorem B

By the transform $r=e^{-t/2}$ and $u(r)=w(t)$ , we rewrite the equation
(6) into the following:

(16) $\{$

$-w’’(t)=\frac{\lambda}{4}w(t)e^{w(t)^{2}-t}$ on $[0, \infty)$ ,

$w(0)=0$ ,

$w’(t)e^{t/2}-\rightarrow 0$ $(t\rightarrow 0)$ .

For some scaling parameter $\tau$ such that $\tau\rightarrow\infty$ , we define the rescaling
function $v(t)$ as

$v(t)\equiv w^{2}(t+\tau)-w^{2}(\tau)$ .

Putting $w_{\tau}(t)\equiv w(t+\tau)$ , we see that $v$ satisfies

(17.a) $-v’’(t)=k(w_{\tau}(t))e^{v(t)-t}-\rho(w_{\tau})$ ,

(17.b) $v(0)=0$ ,

(17.c) $\lim_{t\rightarrow\infty}(\frac{v’(t)e^{(t+\tau)/2}}{w_{\tau}(t)})=0$ ,

where we have put

$k(w_{\tau})=\frac{\lambda}{2}w_{\tau}(t)^{2}e^{w(\tau)^{2}-\tau}$ ,

$\rho(w_{\tau}(t))=2w_{\tau}’(t)^{2}$ .

We first show that;

Lemma 2. Let $\tau>0$ satisfies $w(t+\tau)\geq 1$ as $\lambda\rightarrow 0$ for all
$t\in[-\delta, \infty)$ where $ 0<\delta<\tau$ . Then we have

(18) $\rho(w_{\tau}(t))\rightarrow 0$ uniformly on $[-\tau, \infty)$ ,

(18) $\frac{w_{\tau}(t)^{2}}{w(\tau)^{2}}\rightarrow 1$ locally uniformly on $[-\delta, \infty)$

as $\lambda\rightarrow 0$ .

Proof Since ffom (15), we have for $\gamma=e^{-\tau/2}$ ,

(20) $\rho(w_{\tau}(t))=2w_{7^{-}}’(t)^{2}=\frac{1}{2}(\gamma r)^{2}u_{r}(\gamma r)^{2}\rightarrow 0$

uniformly for $r\in[0,1/\gamma]$ and therefore $t\in[-\tau, \infty)$ . This shows (18).
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To show (19), we use

$w_{\tau}(t)^{2}=w(\tau)^{2}+2\int_{0}^{t}w_{\tau}(s)w_{\tau}’(s)ds$ .

We only show the case when $t\geq 0$ . The other case is similar. Since
$w_{\tau}(t)$ is increasing in $t$ ,

$1\leq\frac{w_{\tau}(t)^{2}}{w(\tau)^{2}}=1+\frac{2}{w(\tau)^{2}}\int_{0}^{t}w_{\tau}(s)w_{\tau}’(s)ds$

$\leq 1+2\int_{0}^{t}\frac{w_{\tau}(s)^{2}}{w(\tau)^{2}}\frac{w_{\tau}’(s)}{w_{\tau}(s)}ds$ .

By (20), we can choose $\lambda$ small so that $|w_{\tau}’(s)|<\epsilon$ . Then since $w_{\tau}(s)>$

$1$ ,

$1\leq X(t)\equiv\frac{w_{\tau}(t)^{2}}{w(\tau)^{2}}\leq 1+2\epsilon\int_{0}^{t}X(s)ds$ .

This yields
$1\leq X(t)\leq e^{2\in t}$ for $t\in[0, \infty)$ .

In particular,

$X(t)\rightarrow 1$ uniformly for $t\in[0, T]$ as $\lambda\rightarrow 0$

for some fixed $T$ . Q.E.D.

Proof of Theorem B. In the following, we shall omit the subscrip-
tions for each subsequences.

We split the proof into two cases.

Case 1.
$\max_{t>0}\lambda w(t)^{2}e^{w(t)^{2}-t}\rightarrow\infty$ $(\lambda\rightarrow 0)$ .

Since $w(0)=0$ , we can choose the scaling sequence $\{\tau\}$ as

(21) $\lambda w(\tau)^{2}e^{w(\tau)^{2}-\tau}=1$

for the family of solutions $\{(u, \lambda)\}$ . It is easy to see

$\tau\rightarrow\infty$ ,

$ w(t)\rightarrow\infty$ as $\lambda\rightarrow 0$ .
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Therefore we may assume $w_{\tau}(t)\geq w(\tau)>1$ for $ t>-\delta$ and ffom Lemma
2,

(22) $w_{\tau}(t)^{2}\rightarrow 0$ uniformly on $[-\tau, \infty)$ ,

(23) $\frac{w_{\tau}(t)^{2}}{w(\tau)^{2}}\rightarrow 1$ locally uniformly on $[-\delta, \infty)$ .

Next we claim that for any fixed $T>0$ ,

$||v||_{L^{\infty}(0,T)}\leq C$

and there is a limit function $v_{0}(t)$ such that

$v(t)\rightarrow v_{0}(t)$ locally uniformly on $[0, \infty)$ .

For that purpose, we set $q(r)=v(t)$ with $r=e^{-t/2}$ . Then the equation
(17) can be written as follows:

(24) $\{$

$-\Delta q=4\tilde{k}(u(\gamma r))e^{q(r)}-\tilde{\rho}(u(\gamma r))r^{-2}$ on $B_{\gamma^{-1}}$ ,

$q=0$ on $\partial B$ ,

where $B_{a}=\{y\in \mathbb{R}^{2}, |y|<a\}$ and

$\tilde{k}(u(\gamma r))=\frac{\lambda}{2}\gamma^{2}u(\gamma r)^{2}e^{u(\gamma)^{2}}$ ,

$\tilde{\rho}(u(\gamma r))=2\gamma^{2}r^{2}u(\gamma r)^{2}$ .

Since from (21), (22) and (23), we have for $r\in[\epsilon, 1+\delta]$ ,

(25) $|\tilde{\rho}(u)r^{-2}|\leq C\frac{\eta^{2}}{\epsilon^{2}}\rightarrow 0$

and

(28) $\tilde{k}(u(\gamma r)=\frac{\lambda}{2}w_{\tau}(t)^{2}e^{w(\tau)^{2}-\tau}=\frac{w_{\tau}(t)^{2}}{2w(\tau)^{2}}\rightarrow\frac{1}{2}$

as $\lambda\rightarrow 0$ . Therefore by the standard elliptic estimate, we have for fixed
$\epsilon>0$ ,

(27) $|q_{r}(1)|\leq C$ ,

(28) $||q||_{L^{\infty}(B_{1+\delta}\backslash B)}\leq C$ .
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According to (24), (25) and (27),

(29)

$||\tilde{k}(u)e^{q}||_{L^{1}(B\backslash B_{\epsilon})}=\int_{B\backslash B_{\in}}\tilde{k}(u)e^{q}dx$

$=\int_{B\backslash B_{\epsilon}}-\triangle qdx+\int_{B\backslash B_{\epsilon}}\rho(u)r^{-2}dx$

$=2\pi\int_{\Xi}^{1}-(rq_{rr}+q_{r})dr+4\pi\int_{\Xi}^{1}(\gamma r)^{2}u_{r}^{2}(\gamma r)r^{-1}dr$

$\leq-2\pi q_{r}(1)+C\eta 2\int_{\Xi}^{1}r^{-1}dr$

$\leq C-C\eta 2\log\epsilon\leq C$ .

Hence by (24), (25), (26) with (29), $q$ satisfies

$-\Delta q$ $=4\tilde{k}(u)e^{q-2}-\tilde{\rho}r\leq 3e^{q}$

with
$||3e^{q}||_{L^{1}(B\backslash B_{\Xi})}\leq C$ independent of $\lambda$ .

Then the nonlinear Harnack principle (Suzuki [16], [17]) implies the
blow-up points of $q$ in $B\backslash B_{\epsilon}$ is finite. However $q$ is radially symmetric,
the blow-up points of $q$ must be empty set. That is

$\varlimsup_{\lambda\rightarrow 0}||q||_{L^{\infty}(B\backslash B_{\epsilon})}<\infty$ .

This proves
$||v||_{L^{\infty}(0,T)}\leq C$ for small $\lambda$ .

By this a priori estimate with the equation (17) and Lemma 2, we obtain
by Ascori-Arzela theorem, that there is a smooth function $v_{0}$ such that

$v(t)\rightarrow v_{0}(t)$ locally uniformly on $[0, \infty)$

with

(30) $-v_{0}’’(t)=\frac{1}{2}e^{vo(t)-t}$ .

We may solve (30) and conclude that

$v(t)=u(\gamma x)^{2}-u(\gamma)^{2}\rightarrow v_{0}(t)=2\log(\frac{2}{1+e^{-t}})=2\log(\frac{2}{1+|x|^{2}})$ .

This proves the theorem in the case 1.
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Case 2.

(31) $\max_{t>0}\lambda w(t)^{2}e^{w(t)^{2}-t}<\infty$ $(\lambda\rightarrow 0)$ .

This case is rather simple. We choose $\{\tau\}$ as

(32) $\lim_{t\rightarrow\infty}w(t)^{2}-w(\tau)^{2}=2\log 2$ .

This choice of $\tau$ assures us that

$\tau\rightarrow\infty$ ,

$ w(\tau)^{2}\rightarrow\infty$

and a priori estimate

(33) $0\leq v(t)\leq 2\log 2$ .

By the assumption (31), we can choose a subsequence such that

(34) $\lambda w(\tau)^{2}e^{w(\tau)^{2}-\tau}\rightarrow 2\mu$ as $\lambda\rightarrow 0$

for some constant $\mu>0$ . Lemma 2 with (33) and (34) implies that

$v(t)\rightarrow v_{0}(t)$ locally uniformly on $[0, \infty)$

with

$\{$

$-v_{0}’’(t)=\frac{\mu}{2}e^{v_{0}(t)-t}$ ,

$v_{0}(0)=0$ .

In fact, by the boundary condition at $ t\rightarrow\infty$ , we find that $\mu=1$ and

$v_{0}(t)=2\log(\frac{2}{1+e^{-t}})$ .

This proves our conclusion of Theorem B. Q.E.D.
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\S 1. Introduction and theorem

In the present paper we consider the asymptotic behavior in time of
solutions for the coupled Klein-Gordon-Schr\"odinger equations:

(1.1) $ i\frac{\partial}{\partial t}\psi+\frac{1}{2}\triangle\psi=\phi\psi$ , $t\in R$ , $x\in R^{N}$ ,

(1.2) $\frac{\partial^{2}}{\partial t^{2}}\phi-\triangle\phi+\phi=-|\psi|^{2}$ , $t$ $\in R$ , $x\in R^{N}$ ,

(1.3) $\psi(0, x)=\psi_{0}(x)$ , $\phi(0, x)=\phi_{0}(x)$ , $\frac{\partial}{\partial t}\phi(0, x)=\phi_{1}(x)$ .

Equations (1.1)-(1.2) describe a classical model of Yukawa’s interaction
of conserved complex nucleon field with neutral real meson field and
the associated mass has been normalized as unity. Here $\psi$ is a complex
scalar nucleon field, and $\phi$ is a real scalar meson field. (1.1)-(1.2) are
a seini-relativistic version of the coupled Klein-Gordon-Dirac equations
(see, e.g., [2]).

Since the interaction above is only quadratic, the problems concern-
ing asymptotic behavior of solutions are harder than the cases of higher
interactions, especially in lower space dimensions. In order to examine
the basic structure of nonlinearities of (1.1)-(1.2), it would be instructive
to look at the decoupled case with self-interact

There are a large amount of papers concerning the asymptotic be-
havior in time of solutions for the nonlinear Schr\"odinger equation

(1.4) $i\frac{\partial}{\partial t}u+\frac{1}{2}\triangle u=|u|^{p-1}u$ , , $t$ $\in R$ , $x\in R^{N}$ ,

Received December 8, 1992.
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and the nonlinear Klein-Gordon equation

(1.5) $\frac{\partial^{2}}{\partial t^{2}}u-\triangle u+u=-|u|^{p-1}u$ , $t\in R$ , $x\in R^{N}$

(for the nonlinear Schr\"odinger equation, see [3], [6], [11]-[13], [16], [17],
[19], [21], [23], [27]-[31] and for the nonlinear Klein-Gordon equation,
see [4], [5], [14], [18], [20], [22], [24], [26]-[29] $)$ . When we consider the
asymptotic behavior of solutions for (1.4) or (1.5), it is natural and
important to investigate whether the wave operators $W\pm exist$ or not.
For (1.4), we define the wave operator $W_{+}$ as follows. Let $u_{+}(t)$ be the
solution of the free Schr\"odinger equation

(1.6) $i\frac{\partial}{\partial t}u+\frac{1}{2}\triangle u=0$ , , $t\in R$ , $x\in R^{N}$ ,

with $u_{+}(0)=\psi_{+}$ . If one can look for the solution $u(t)$ of (1.4) with
$u(0)=\psi_{0}$ such that $u(t)$ exists globally in time and

(1.7) $||u_{+}(t)-u(t)||_{L^{2}}\rightarrow 0$ $(t\rightarrow+\infty)$ ,

then the wave operator $W_{+}$ can be defined by a mapping from $u_{+}(0)=$

$\psi_{+}$ to $u(0)=\psi_{0}$ . Here $\psi_{+}$ and $\psi_{0}$ are called a scattered state and
an interacting state, respectively. For the case of $ t\rightarrow-\infty$ , the wave
operator $W_{-}$ is defined in the same way. We can also consider the wave
operators $W_{\pm}$ for (1.5). In [6], [26] and [31] it is proved that when
$N=3$ and the nonlinear term is quadratic, that is, $p=2$ , both in the
cases (1.4) and (1.5) the wave operators $W_{\pm}$ can be defined for some
data. On the other hand, in [3], [10], [14], [17] and [20] it is proved that
when $N=1,2$ and $p=2$ , there exist no nontrivial asymptotically free
solutions for (1.4) and (1.5), that is, the wave operators $W_{\pm}$ can not
be defined for any nonzero data. This is because the time decay rate
of solutions of (1.4) and (1.5) for $N=2$ is worse than that for $N=3$ .

Therefore, we have to consider the modified wave operators for (1.4) and
(1.5) with $N=2$ and $p=2$ (see, e.g., [23]).

The unique global existence of solutions for (1.1)-(1.3) are already
established (see [1], [2], [8] and [15]). Fhkuda and M. Tsutsumi [9] and
Strauss [29] studied the asymptotic behavior as $ t\rightarrow\pm\infty$ of solutions
for the coupled Klein-Gordon-Schr\"odinger equations with interactions
higher than the quadratic order of (1.1)-(1.2). The results in [9] and
[29] are similar to the results obtained for the decoupled nonlinear Klein-
Gordon and Schr\"odinger equations.

If there is a complete analogy between the full system (1.1)-(1.2)
and the decoupled system (1.4) and (1.5), it is natural to conjecture that
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when $N=2$ , the wave operators $ W\pm$ could not be defined for (1.1)-(1.2).
But this conjecture is not true. The purpose in the present paper is to
show that when $N=2$ , the wave operators $W\pm for(1.1)-(1.2)$ can be
defined for certain scattered data.

This is a sharp contrast to the decoupled case and gives a reason
that the coupled Klein-Gordon-Schr\"odinger equations are not a simple
superposition of the nonlinear Klein-Gordon and Schr\"odinger equations.

Before we state the theorem, we define several notations. Let $\omega=$

$\sqrt{-\triangle+1}$ and let $U(t)=e^{\frac{i}{2}t\triangle}$ be the evolution operator of the ffee

Schr\"odinger equation. We denote by $\hat{f}$ the Fourier transform of $f$ . For
nonnegative integers $m$ and $s$ , we define $H^{m}$ and $H^{m,s}$ as follows:

$H^{m}=\{v\in S^{/}(R^{N});||(1-\triangle)^{\frac{m}{2}}v||_{L^{2}}<+\infty\}$ ,

$H^{m,s}=\{v\in S^{/}(R^{N});||(1+|x|^{2})^{\frac{s}{2}}(1-\triangle)^{\frac{m}{2}}v||_{L^{2}}<+\infty\}$

with the norms

$||v||_{H^{m}}=||(1-\triangle)^{\frac{m}{2}}v||_{L^{2}}$ ,

$||v||_{H^{m,s}}=||(1+|x|^{2})^{\frac{s}{2}}(1-\triangle)^{\frac{m}{2}}v||_{L^{2}}$ ,

respectively. For a multi-index $\alpha=(\alpha_{1}, \cdots\alpha_{N})$ with nonnegative integers
$\alpha_{j}$ , we put

$|\alpha|=\alpha_{1}+\cdots+\alpha_{N}$ ,

$(\frac{\partial}{\partial x})^{\alpha}=(\frac{\partial}{\partial x_{1}})^{\alpha_{1}}\cdots(\frac{\partial}{\partial x_{N}})^{\alpha_{N}}$ .

For $p\geq 1$ and a nonnegative integer $k$ , we let

$W^{k,p}=\{u\in L^{p}(R^{N});(\frac{\partial}{\partial x})^{\alpha}u\in L^{p}(R^{N}), |\alpha|\leq k\}$

with the norm

$||u||_{W^{k,p}}=\sum_{|\alpha|\leq k}||(\frac{\partial}{\partial x})^{\alpha}u||_{L^{p}}$ .

We now state the theorem.

Theorem 1.1. Let $N=2and\in>0$ .
(i) Assume that $\psi_{+}\in H^{2,4}$ , $(1+|x|^{2})^{j}(\frac{\partial}{\partial x})^{\alpha}\psi_{+}\in L^{1}(R^{2})$ for $j+$

$|\alpha|\leq 2$ and $supp\hat{\psi}_{+}\subset\{\xi;|\xi|\geq 1+\in\}$ . We put $u_{+}(t)=e^{\frac{i}{2}t\triangle}\psi_{+}$ .

Assume that $\phi_{+0}\in H^{4,2}$ , $\emptyset+1\in H^{3,2}$ , for $|\alpha|\leq 4(\frac{\partial}{\partial x})^{\alpha}\emptyset+0\in L^{1}(R^{2})$ ,
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and for $|\alpha|\leq 3(\frac{\partial}{\partial x})^{\alpha}\phi_{+1}\in L^{1}(R^{2})$ . We put $v_{+}(t)=(\cos\omega t)\phi_{+0}+$

$(\omega^{-1}\sin\omega t)\phi_{+1}$ . Then, there exists $\eta>0$ such that if

(1.8) $||\psi_{+}||_{H^{2,4}}+$ $\sum$ $||(1+|x|)^{j}(\frac{\partial}{\partial x})^{\alpha}\psi_{+}||_{L^{1}}$

$j+|\alpha|\leq 2$

$+||\phi_{+0}||_{H^{4,2}}+||\phi_{+0}||_{W^{4,1}}+||\phi_{+1}||_{H^{3,2}}+||\phi_{+1}||_{W^{3,1}}\leq\eta$ ,

(1.1)-(1.2) have the unique solutions $(\psi, \phi)$ satisfying

1

(1.9)
$\psi\in j=0\cap C^{j}([0, \infty);H^{2-2j})$

,

2

(1.10)
$\phi\in j=0\cap C^{j}([0, \infty);H^{2-j})$

,

(1.11) $||\psi(t)-u_{+}(t)||_{H^{2}}+||\phi(t)-v_{+}(t)||_{H^{2}}+||\frac{\partial}{\partial t}\phi(t)-\frac{\partial}{\partial t}v_{+}(t)||_{H^{1}}$

$=O(t^{-1})$ $(t\rightarrow+\infty)$ ,

(1.10) $(\int_{t}^{+\infty}||\psi(s)-u_{+}(s)||_{W^{2,4}}^{4}ds)^{1/4}=O(t^{-1})$ $(t\rightarrow+\infty)$ ,

where $\eta$ depends only $ on\in$ .

(ii) Assume that $\psi_{-}\in H^{2,4}f(1+|x|^{2})^{j}(\frac{\partial}{\partial x})^{\alpha}\psi_{-}\in L^{1}(R^{2})$ for $j+$

$|\alpha|\leq 2$ and $supp\hat{\psi}_{-}\subset\{\xi;|\xi|\geq 1+\in\}$ . We put $u_{-}(t)=e^{\frac{i}{2}t\triangle}\psi_{-}$ .

Assume that $\phi_{-0}\in H^{4,2}$ , $\phi_{-1}\in H^{3,2}$ , for $|\alpha|\leq 4(\frac{\partial}{\partial x})^{\alpha}\phi_{-0}\in L^{1}(R^{2})$ ,

and for $|\alpha|\leq 3(\frac{\partial}{\partial x})^{\alpha}\phi_{-1}\in L^{1}(R^{2})$ . We put $v_{-}(t)=(\cos\omega t)\phi_{-0}+$

$(\omega^{-1}\sin\omega t)\phi_{-1}$ . Then, there exists $\eta>0$ such that if

(1.13) $||\psi_{-}||_{H^{2,4}}+$ $\sum$ $||(1+|x|)^{j}(\frac{\partial}{\partial x})^{\alpha}\psi_{-}||_{L^{1}}$

$j+|\alpha|\leq 2$

$+||\phi_{-0}||_{H^{4,2}}+||\phi_{-0}||_{W^{4,1}}+||\phi_{-1}||_{H^{3,2}}+||\phi_{-1}||_{W^{3,1}}\leq\eta$ ,

(1.1)-(1.2) have the unique solutions $(\psi, \phi)$ satisfying

1

(1.14)
$\psi\in j=0\cap C^{j}([0, \infty);H^{2-2j})$

,

2

(1.15)
$\phi\in j=0\cap C^{j}([0, \infty);H^{2-j})$

,
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(1. 8) $||\psi(t)-u_{-}(t)||_{H^{2}}+||\phi(t)-v_{-}(t)||_{H^{2}}+||\frac{\partial}{\partial t}\phi(t)-\frac{\partial}{\partial t}v_{-}(t)||_{H^{1}}$

$=O(t^{-1})$ $(t\rightarrow-\infty)$ ,

(1.13) $(\int_{t}^{+\infty}||\psi(s)-u_{-}(s)||_{W^{2,4}}^{4}ds)^{1/4}=O(t^{-1})$ $(t\rightarrow-\infty)$ ,

where $\eta$ depends only $ on\in$ .

Remark. The unique global existence theorem for the Cauchy
problem of (1.1)-(1.3) is already established (see [1], [2], [8] and [15]).
In [1], [2], [8] and [15] only the case of $N=3$ is treated, but the proof
of the unique global solutions for $N=2$ is easier than that for $N=3$ .

Therefore, the solutions of $(1)-(2)$ given by (i) and (ii) of Theorem 1.1
can be extended to the whole time interval $(-\infty, +\infty)$ .

The following corollary is an immediate consequence of Theorem
1.1.

Corollary 1.2. Assume $N=2$ . $Let\in>0$ .
(i) By $D_{+}$ we denote the set of all scattered states $(\psi_{+}, \phi_{+0}, \phi_{+1})$

such that $supp\hat{\psi}_{+}\subset\{\xi;|\xi|\geq 1+\in\}$ and (1.8) holds. Then, for (1.1)-

(1.2) the wave operator $W_{+}$ : $(\psi_{+}, \phi_{+0}, \phi_{+1})\mapsto(\psi(0), \phi(0),$ $\frac{\partial}{\partial t}\phi(0))$ is
well defined on $D_{+}$ .

(ii) By $D_{-}$ we denote the set of all scattered states $(\psi_{-}, \phi_{-0}, \phi_{-1})$

such that $supp\hat{\psi}_{-}\subset\{\xi;|\xi|\geq 1+\in\}$ and (1.13) holds. Then, for (1.1)-

(1.2) the wave operator $W_{-}$ : $(\psi_{-}, \phi_{-0}, \phi_{-1})\mapsto(\psi(0), \phi(0),$ $\frac{\partial}{\partial t}\phi(0))$ is
well defined on $D_{-}$ .

The proofs in the previous papers [9] and [29] are the same as those
used for (1.4) and (1.5) and do not have anything to do with the specific
feature of quadratic nonlinearities. Our proof of Theorem 1.1 is based
on the special property of the Yukawa interaction and on the improved
decay estimates of the interaction term which take account of the dif-
ference between the propagation properties of the Schr\"odinger wave and
the Klein-Gordon wave.

\S 2. Sketch of Proof of Theorem 1.1

We first summarize several lemmas needed for the proof of Theorem
1.1 without proofs.

Lemma 2.1. Let $N\geq 1$ .
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(i) Let $p$ and $q$ be two positive constants such that $1/p+1/q=1$ and
$ 2\leq p\leq+\infty$ . Then,

(2.1) $||U(t)v||_{p}\leq(2\pi|t|)^{-N/2+N/p}||v||_{q}$ , $v\in L^{q}$ , $t\neq 0$ .

(ii) Let $k$ be a nonnegative integer. Suppose that for $j+|\alpha|\leq k$

$(1+|x|)^{j+2}(\frac{\partial}{\partial x})^{\alpha}\psi\in L^{2}$ and $(1+|x|)^{j+2}(\frac{\partial}{\partial x})^{\alpha}\psi\in L^{1}$ . We put $u_{0}(t, x)=$

$e^{i|x|^{2}/(2t)}$
$(it)^{-N/2}\hat{\psi}(\frac{x}{t})$ . Then, for some $K>0$ ,

(2.2) $\sum_{2j+|\alpha|\leq k}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})\{U(t)\psi-u_{0}(t)\}||_{2}$

$\leq K|t|^{-1}$ $\sum$ $||(1+|x|)^{j+2}(\frac{\partial}{\partial x})^{\alpha}\psi||_{2}$ , $|t|\geq 1$ ,
$j+|\alpha|\leq k$

(2.1) $\sum_{2j+|\alpha|\leq k}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})\{U(t)\psi-u_{0}(t)\}||_{\infty}$

$\leq K|t|^{-N/2-1}\sum_{j+|\alpha|\leq k}||(1+|x|)^{j+2}(\frac{\partial}{\partial x})^{\alpha}\psi||_{2}$ , $|t|\geq 1$ ,

where $K$ depends only on $k$ and $N$ .

For the proof of Lemma 2.1, see, e.g., [33, Lemmma 2.1].

Lemma 2.2. Assume $N=2$ . Let $k$ be a nonnegative integer.
Then, for some $K>0$ ,

(2.4) $\sum_{j+|\alpha|\leq k}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})^{j}(\cos\omega t)v||_{\infty}$

$\leq K(1+|t|)^{-1}(||v||_{W^{2+k,1}}+||v||_{H^{2+k}})$ , $t\in R$ ,

(2.5) $\sum_{j+|\alpha|\leq k}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})^{j}(\omega^{-1}\sin\omega t)v||_{\infty}$

$\leq K(1+|t|)^{-1}(||v||_{W^{1+k,1}}+||v||_{H^{1+k}})$ , $t\in R$ ,

where $K$ depends only on $k$ .

For the proof of Lemma 2.2, see, e.g., [5], [13] and [22].
We next state the decay estimate of solution for the Klein-Gordon

equation outside of the light cone.
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Lemma 2.3. Assume $N\geq 1$ . $Let\in>0$ and let $k$ be a nonnegative
integer. Then, for some $L>0$ ,

(2.8) $\sum_{j+|\alpha|\leq k}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})^{j}(\cos\omega t)v||_{L^{\infty}(|x|>(1+\in)|t|)}$

$\leq L(1+|t|)^{-2}||v||_{H^{k+[N/2]+1,2}}$ , $t\in R$ ,

(2.7) $\sum_{j+|\alpha|\leq k}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})^{j}(\omega^{-1}\sin\omega t)v||_{L^{\infty}(|x|>(1+\in)|t|)}$

$\leq L(1+|t|)^{-2}||v||_{H^{k+[N/2],2}}$ , $t\in R$ ,

where $[N/2]$ is the largest integer that does not exceed $N/2$ , and $L$ de-
pends only $ on\in$ , $k$ and $N$ .

The proof of Lemma 2.3 is based on the finite speed propagation of
the Klein-Gordon wave. For the details, see, e.g., [25, Theorem $XI$ . 17]
and [33, Lemma 2.3].

We next consider the following problem: Given $h(t)$ , find $u(t)$ such
that

(2.8) $\frac{\partial^{2}}{\partial t^{2}}u-\triangle u+u=h(t)$ , $t\geq 0$ , $x\in R^{N}$ ,

(2.9) $||\frac{\partial}{\partial t}u(t)||_{2}^{2}+||\nabla u(t)||_{2}^{2}+||u(t)||_{2}^{2}\rightarrow 0$ $(t\rightarrow+\infty)$ ,

or

(2.10) $\frac{\partial^{2}}{\partial t^{2}}u-\triangle u+u=h(t)$ , $t\leq 0$ , $x\in R^{N}$ ,

(2.11) $||\frac{\partial}{\partial t}u(t)||_{2}^{2}+||\nabla u(t)||_{2}^{2}+||u(t)||_{2}^{2}\rightarrow 0$ $(t\rightarrow-\infty)$ .

We assume that for some $M$ $>0$ ,

(2.12)

$\sup_{t\in[0,\infty)}[(1+t)||h(t)||_{2}+(1+t)^{2}\sum_{1\leq j+|\alpha|\leq 3}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})h(t)||_{2}]\leq M$ ,

(2.13)

$\sup_{t\in(-\infty,0]}[(1-t)||h(t)||_{2}+(1-t)^{2}\sum_{1\leq j+|\alpha|\leq 3}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})h(t)||_{2}]\leq M$ .
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We have the following lemma concerning the existence of solution
for (2.8)-(2.9) and (2.10)-(2.11).

Lemma 2.4. Let $N\geq 1$ .

(i) Assume that $h\in\bigcap_{j=0}^{3}C^{j}([0, \infty);H^{3-j})$ and that $h(t)$ satisfies
(2.12). Then, there exists a unique solution $u(t)$ of (2.8)-(2.9) such that

4

(2.14)
$u\in j=0\cap C^{j}([0, \infty);H^{4-j})$

,

(2.16) $\sup_{t\in[0,\infty)}(1+t)\sum_{j+|\alpha|\leq 4}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})^{j}u(t)||_{2}\leq C_{0}M$ ,

where $M$ is defined (2.12) and $C_{0}$ is independent of $h$ and $u$ .

(ii) Assume that $h\in\bigcap_{j=0}^{3}C^{j}((-\infty, 0];H^{3-j})$ and that $h(t)$ satisfies
(2.13). Then, there exists a unique solution $u(t)$ of (2.10)-(2.11) such
that

(2.16) $u\in j=0\cap C^{j}((-\infty, 0];H^{4-j})4$ ,

(2.17) $\sup_{t\in(-\infty,0]}(1-t)\sum_{j+|\alpha|\leq 4}||(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial t})^{j}u(t)||_{2}\leq C_{0}M$ ,

where $M$ is defined (2.13) and $C_{0}$ is independent of $h$ and $u$ .

For the proof of Lemma 2.4, see [33, Lemma 2.4].
Now we describe a sketch of proof of Theorem 1.1. We consider only

the case of $t-,$ $+\infty$ , because the proof for the case of $ t\rightarrow-\infty$ is quite
similar to that for the case of $ t\rightarrow+\infty$ .

We seek the solutions to the final value problem for (1.1)-(1.2)
around almost free solutions. We choose a function $z\in C^{\infty}([0, \infty))$

such that $z(t)=1$ for $t\geq 2$ and $z(t)=0$ for $0\leq t\leq 1$ . We put

(2.18) $u_{1}(t)=z(t)u_{0}(t)=z(t)e^{i|x|^{2}/(2t)}$ $(it)^{-1}\hat{\psi}_{+}(\frac{x}{t})$ ,

where $u_{0}(t, x)$ is defined in Lemma 2.1 (ii). Let $v_{0}(t, x)$ be a solution
of (2.8)-(2.9) given by Lemma 2.4 (i) with $h=|u_{1}|^{2}$ . We introduce the
following almost free solutions.

(2.19) $u(t)=U(t)\psi_{+}$ , $v(t)=(\cos\omega t)\phi_{+0}+(\omega^{-1}\sin\omega t)\phi_{+1}+v_{0}(t)$ .
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We note that $u(t)=u_{+}(t)$ . Furthermore, we put

(2.20) $\psi(t)=F(t)+u(t)$ ,

(2.21) $\phi(t)=N(t)+v(t)$ .

We rewrite (1.1)-(1.2) as the following system of $F$ and $N$ :

(2.22) $i\frac{\partial}{\partial t}F+\frac{1}{2}\triangle F=NF+N(u-u_{1})+Nu_{1}$

$+vF+f(t)$ , $t\geq 0$ , $x\in R^{2}$ ,

(2.20) $\frac{\partial^{2}}{\partial t^{2}}N-\triangle N+N=|F|^{2}+2\Re(F(\overline{u}-\overline{u}_{1}))$

$+2\Re(F\overline{u}_{1})+g(t)$ , $t\geq 0$ , $x\in R^{2}$ ,

(2.24) $||F(t)||_{2}\rightarrow 0$ $(t\rightarrow\infty)$ ,

(2.25) $||\frac{\partial}{\partial t}N(t)||_{2}^{2}+||\nabla N(t)||_{2}^{2}+||N(t)||_{2}^{2}\rightarrow 0$ $(t\rightarrow\infty)$ ,

where

(2.26) $f(t)=v(u-u_{1})+vu_{1}$ ,

(2.27) $g(t)=|u-u_{1}|^{2}+2\Re((u-u_{1})\overline{u}_{1})$ .

If we have the solutions $(F, N)$ of (2.22)-(2.25), then we obtain Theo-
rem 1.1 (i) by (2.20)-(2.21). Lemmas 2.1-2.4 and the support condition
of the Fourier image of $\psi_{+}$ show that $f(t)$ and $g(t)$ decay in $L^{2}$ fast
enough as $ t\rightarrow\infty$ . Therefore, we can obtain the desired solutions $(F, N)$

for (2.22)-(2.25). The details of the proof will be published elsewhere
(see [33]).
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Inverse Iteration Method
with a Complex Parameter II

Toshio Suzuki

\S 1. Introduction

Let A be a symmetric $(n, n)$ matrix and let $\lambda_{k}$ , $\phi_{k}$ , $k=1$ , $\ldots$ , $n$ be
pairs of eigenvalues and the corresponding eigenvectors of $A$ . The inverse
iterarion process for the eigenvector $\phi_{j}$ is to solve the following linear

equations with initial data $z^{(0)}$ under the conditions $|\lambda_{j}-\lambda|<<c<$

$|\lambda_{k}-\lambda|$ , $(k\neq j)$ :

(1.1) $(A-\lambda I)z^{(m+1)}=z^{(m)}$ , $m=0,1$ , 2, $\ldots$

In the paper [1] we proposed the inverse iteration method with a complex
parameter and showed some numerical results of our method. There we
replaced $\lambda$ in (1.1) by a complex parameter $\lambda+\sqrt{-1}\tau$ and managed
to derive the utilities of the complex parameter with $|\tau|<\epsilon$ under the
following Assumption H.

Assumption H. Eigenvalues $\lambda_{k}$ , $k=1,2$ , $\ldots$ , $n$ of A are known
with the following accuracy: There are three numerical constants $c,e$

and $\lambda$ such that $\inf_{k\neq j}|\lambda_{j}-\lambda_{k}|>2c$ and $|\lambda_{j}-\lambda|<\epsilon$ and $0<2\epsilon<c$ .

In the spectral theory, it is well known that the projection operator
$P_{j}$ to the eigenspace correspondong to the eigenvalue $\lambda_{j}$ is represented
as follows

(1.2) $ P_{j}v=\frac{1}{2\pi\sqrt{-1}}\oint(A-\zeta I)^{-1}vd\zeta$ .

It can be considered that to solve the linear equation (1.1) is to execute
the numerical integral of (1.2) with one point value. Since the result of
our method is understood to be that with two point values, it will be
taken for granted that our method is more effective than the standard
traditional one.

Received December 16, 1992.
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In this paper we show supplementary propositions to [1] and propose
the more powerful version of our method in practical computations.

\S 2. Propositions and the iteration process

In the paper [1], we did not give the proofs of the propositions.
The most important one of them can be improved as the following two
propositions.

Consider the following equation with $||z||=1$ :

(2.1) $(A-\lambda I-\sqrt{-1}\tau I)w=z$ .

Let $z=\sum_{k=1}^{n}a_{k}\phi_{k}$ , then we have

$w=\sum_{k=1}^{n}\frac{1}{\lambda_{k}-\lambda-\sqrt{-1}\tau}a_{k}\phi_{k}$

(2.2)

$=\sum_{k=1}^{n}\frac{\lambda_{k}-\lambda}{(\lambda_{k}-\lambda)^{2}+\tau^{2}}a_{k}\phi_{k}+\sqrt{-1}\sum_{k=1}^{n}\frac{\tau}{(\lambda_{k}-\lambda)^{2}+\tau^{2}}a_{k}\phi_{k}$ .

Put $x_{k}=\frac{\lambda_{k}-\lambda}{(\lambda_{k}-\lambda)^{2}+\tau^{2}}a_{k}\phi_{k}$ and $y_{k}=\frac{\tau}{(\lambda_{k}-\lambda)^{2}+\tau^{2}}a_{k}\phi_{k}$ . Let $x=$

$\sum_{k=1}^{n}x_{k}$ and $y=\sum_{k=1}^{n}y_{k}$ .

Proposition 2.1. Let $x,y$ be the real and imaginary part of the so-
lution of the equation (2.1) with $|\lambda_{j}-\lambda|<|\tau|\leq\epsilon$ under the Assumption
$H$ in which the $inequality|\lambda_{j}-\lambda|<|\epsilon|$ is assumed. Put $\tilde{\lambda}=(Ay, y)/||y||^{2}$ .

If $3||y||>2||x||$ , them $|\lambda_{j}-\tilde{\lambda}|<|\tau|$ .

Proof. Put $\alpha_{k}=[(\lambda_{k}-\lambda)^{2}+\tau^{2}]^{-1}$ and $T$ $=\sum_{k=1}^{n}\alpha_{k}^{2}a_{k}^{2}$ . Since
$4\epsilon<2c<\inf_{k\neq j}|\lambda_{j}-\lambda_{k}|$ by the assumption H. We have the following
inequalities:

$\sum_{k\neq j}|\lambda_{k}-\lambda|^{2}\alpha_{k}^{2}a_{k}^{2}\geq 3\epsilon\sum_{k\neq j}|\lambda_{k}-\lambda|\alpha_{k}^{2}a_{k}^{2}$

and

$\sum_{k\neq j}|\lambda_{k}-\lambda|^{2}\alpha_{k}^{2}a_{k}^{2}\geq 9\epsilon^{2}\sum_{k\neq j}\alpha_{k}^{2}a_{k}^{2}$
.

Then from the assumption $3||y||\geq 2||x||$ , we have

$9\tau^{2}T\geq 4\sum_{k=1}^{n}|\lambda_{k}-\lambda|^{2}\alpha_{k}^{2}a_{k}^{2}\geq 4\cdot 3\epsilon\sum_{k\neq j}|\lambda_{k}-\lambda|\alpha_{k}^{2}a_{k}^{2}$ ,



Inverse Iteration Method with a Complex Parameter 309

that is,

(2.3) $\frac{3}{4}\frac{\tau^{2}}{\epsilon}T\geq\sum_{k\neq j}|\lambda_{k}-\lambda|\alpha_{k}^{2}a_{k}^{2}$ .

Similarly we also have the following inequality:

(2.4) $\frac{1}{4}\frac{\tau^{2}}{\epsilon^{2}}T\geq\sum_{k\neq j}\alpha_{k}^{2}a_{k}^{2}$ .

On the other hand, we have following estimates:

$|\lambda_{j}-\tilde{\lambda}|=|\lambda_{j}-(Ay, y)/||y||^{2}|$

$=|\lambda_{j}-(\sum_{k=1}^{n}\lambda_{k}\tau^{2}\alpha_{k}^{2}a_{k}^{2}/\sum_{k=1}^{n}\tau^{2}\alpha_{k}^{2}a_{k}^{2})|$

$\leq\sum_{k\neq j}|\lambda_{j}-\lambda_{k}|\alpha_{k}^{2}a_{k}^{2}/T$

$\leq\sum_{k\neq j}|\lambda_{j}-\lambda|\alpha_{k}^{2}a_{k}^{2}/T+\sum_{k\neq j}|\lambda-\lambda_{k}|\alpha_{k}^{2}a_{k}^{2}/T$
.

So we have the following results from (2.3) and (2.4):

$|\lambda-\tilde{\lambda}|\leq|\tau|\frac{1}{4}\frac{\tau^{2}}{\epsilon^{2}}+\frac{3}{4}\frac{\tau^{2}}{\epsilon}\leq|\tau|$ .

Q.E.D.

The following proposition is easily derived by a similar argument
used in the proof of the Proposition 2.1.

Proposition 2.2. Under the same assumption of Proposition 2.1,

$if||y||\geq||x||$ the $|\lambda_{j}-\tilde{\lambda}|<\frac{\tau^{2}}{c}$ .

These propositions bring the following more powerful version of the
iteration process of our method in [1], where the step (2.7) and (2.8) are
varied.

Let $\xi$ be an initial vector and let $\tau^{(0)}$ be a real number whose absolute
value is smaller than $\epsilon$ . Our iteration process consists of the following

four steps (2.5)-(2.8), where $u^{(m)}$ and $v^{(m)}$ are real vectors.

(2.5) $(A-\lambda^{(m)}I-\sqrt{-1}\tau^{(m)}I)w^{(m)}=z^{(m)}$ where $ z^{(0)}=\xi$ , $\lambda^{(0)}=\lambda$
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(2.6) $z^{(m+1)}=\frac{v^{(m)}}{||v^{(m)}||}$ where $w^{(m)}=u^{(m)}+\sqrt{-1}v^{(m)}$

(2.7) $\lambda^{(m+1)}=\{$

$(Az^{(m+1)}, z^{(m+1)})$ if $3||v^{(m)}||>2||u^{(m)}||$

$\lambda^{(m)}$ otherwise.

(2.8) $\tau^{(m+1)}=\frac{(\tau^{(m)})^{2}}{c}$ if $||v^{(m)}||>||u^{(m)}||$ .

Remark 2.3. The process (2.8) may be passed if $|\tau^{(m)}|$ is small
enough.

\S 3. Applications

Propositions 2.1 and 2.2 show that even if we do not have a so ac-
curate value of $\epsilon$ or even if the initial vector is not so well, $\lambda^{(m)}$ in the
iteration process converges to the aimed eigenvalue efficiently by using
better parameters in each iteration. So we can have an application of
our method to get a rapid tool for computing eigen-pairs combining the
bisection method. Its idea is such that: get rough estimates of eigenval-
ues by the bisection method, first, then, apply our iteration process. The
computing time to improve the accuracy of an eigenvalue by 5 decimal
digits with the aid of the bisection method is comparable to that of two
times iterations of our method. So, for example, if, starting ffom the
initial approximating value with the accuracy about $10^{-4}$ , we could have
the eigenvalue with the accuracy $10^{-15}$ after two times iterations, this
method is an improvement of the procedure done by only the bisection
method. The test computations of this example and of the others of
this kinds have shown satisfactory results. We do not have the optimal
result as yet but the above example is at least one of the application of
our method to get eigen-pairs more rapidly.
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Asymptotics for the Number of Negative Eigenvalues
of Three-Body Schr\"odinger Operators

with Efimov Effect

Hideo Tamura

Introduction

The Efimov effect is one of the most interesting results in the spec-
tral analysis for three-body Schr\"odinger operators. Roughly speaking,
it can be explained as follows: If all three two-body subsystems have
no negative eigenvalues and if at least two of these subsystems have a
resonance state at zero energy, then the three-body system under con-
sideration has an infinite number of negative eigenvalues accumulating at
zero. This remarkable spectral property was first discovered by Efimov
[1] and the mathematically rigorous proof has been given by the works
[4, 8, 10]. In the present note, we study the asymptotic distribution of
these negative eigenvalues below the bottom zero of essential spectrum
which is a three-cluster threshold energy. Let $N(E)$ , $E>0$ , be the
number of negative eigenvalues less than $-E$ with repetition accord-
ing to their multiplicities. Then the result obtained here is, somewhat
loosely stating, that $N(E)$ behaves like $|\log E|$ as $E\rightarrow 0$ .

We first formulate precisely the main theorem and then make a
brief comment on the recent related result obtained by Sobolev [7]. We
consider a system of three particles with masses $m_{j}>0,1\leq j\leq 3$ ,

which move in the three-dimensional space $R^{3}$ and interact with each

other through a pair potential $V_{jk}(r_{j}-r_{k})$ , $1\leq j<k\leq 3$ , where
$r_{j}\in R^{3}$ denotes the position vector of the $j$-th particle. For such a
system, the energy Hamiltonian $H$ (three-body Schr\"odinger operator)
takes the form

(0.1) $H=H_{0}+V$,
$V=\sum_{1\leq j<k\leq 3}V_{jk}(r_{j}-r_{k})$

,

in the center-of-mass frame, where $H_{0}$ denotes the free Hamiltonian.
Both the operators $H_{0}$ and $H$ act on the space $L^{2}(R^{6})$ and are repre-

Received January 7, 1993.
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sented in various forms according to the choice of the Jacobi coordinates.
The pair potential $V_{jk}$ is assumed to satisfy the following condition:

$(V)_{\rho}$ $V_{jk}(x)$ , $x\in R^{3}$ , is real-valued and has the decay property

$|V_{jk}(x)|\leq C(1+|x|)^{-\rho}$ for some $\rho>2$ .

By this assumption, the Hamiltonian $H$ formally defined above admits
a unique self-adjoint realization in $L^{2}(R^{6})$ . We denote by the same
notation $H$ this self-adjoint realization.

We use the letters $\alpha$ , $\beta$ and $\gamma$ to denote one of three pairs $(j, k)$ with
$1\leq j<k\leq 3$ . For a pair $\alpha=(j, k)$ , we define the reduced mass $m_{\alpha}$

through the relation $1/m_{\alpha}=1/m_{j}+1/m_{k}$ and the two-body subsystem
Hamiltonian $H^{\alpha}$ as

$H^{\alpha}=-\triangle/2m_{\alpha}+V_{\alpha}$ , $V_{\alpha}(x)=V_{jk}(x)$ , on $L^{2}(R_{x}^{3})$ .

We further assume that these subsystem Hamiltonians $H^{\alpha}$ have the fol-
lowing spectral properties:

(H.I) $H^{\alpha}$ has no negative bound state energies for all pairs $\alpha$ .

(H.2) $H^{\alpha}$ has a resonance state at zero energy for all pairs $\alpha$ .

Roughly speaking, the second assumption (H.2) means that the equa-
tion $H^{\alpha}\varphi=0$ has a solution $\varphi(x)$ , $x\in R^{3}$ , behaving like $\varphi(x)\sim|x|^{-1}$

at infinity. Such a solution is called a resonance state at zero energy. It
should be noted that $\varphi$ is not an eigenstate of $H^{\alpha}$ at zero energy. By
the $HVZ$ theorem ([5]), it follows from (H. 1) that $H$ has essential spec-
trum beginning at zero and negative discrete spectrum. If, in addition,
(H.2) is satisfied, then $H$ has an infinite number of negative eigenvalues
accumulating at zero. In assumption (H. $I$ ), we have assumed that any
pair of two particles does not have bound states at negative energies.
Nevertheless the three-body system has an infinite number of bound
states at negative energies. As stated above, this spectral property is
called the Efimov effect.

With the above notations and assumptions, we are now in a position
to formulate the first theorem.

Theorem 1. Assume that $(V)_{\rho}$ , (H.I) and (H.2) are fulfilled. Let
$N(E)$ , $E>0$ , be the number of negative eigenvalues less than-E of $H$

with repetition according to their multiplicities. Then $N(E)$ obeys the
following asymptotic formula:

$N(E)=C_{0}|\log E|(1+o(1))$ , $E\rightarrow 0$ ,
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for some $C_{0}>0$ .

Remark 1. We should make some comments on the leading coeffi-
cient $C_{0}$ in the asymptotic formula. This constant $C_{0}$ does not depend
on the pair potentials $V_{jk}$ and is given as a positive function of only the
ratios $m_{j}/m_{k}$ between the masses. The constant is determined from an
eigenvalue asymptotics for a certain compact integral operator and is in
general difficult to write down in an explicit form. In the special case
with identical masses, $C_{0}$ is determined as $ C_{0}=s/2\pi$ with the unique
positive root $s>0$ of the equation

$s=2^{3}\cdot 3^{-1/2}$ $(\sinh s \pi/6)/(\cosh s\pi/2)$ .

Remark 2. (1) The following result can be also obtained in the
course of proof: If at most one of two-body subsystem Hamiltonians
$H^{\alpha}$ has a resonance state at zero energy, then $H$ has only a finite num-
ber of negative eigenvalues; $N(E)=O(1)$ , $E\rightarrow 0$ . This result asserts
the finiteness of discrete spectrum below the bottom of essential spec-
trum, even if the bottom coincides with a three-cluster threshold energy.
(2) As previously stated, $H$ has in general an infinite number of nega-
tive eigenvalues accumulating at zero except for a certain special case, if
only two subsystem Hamiltonians have a resonance state at zero energy.
Even in such a case, a similar asymptotic formula with another leading
coefficient $C_{0}>0$ can be obtained.

The asymptotic formula for $N(E)$ has been first established by
Sobolev [7] under the main assumption that pair potentials are non-
positive $V_{jk}\leq 0$ and have the decay property $(V)_{\rho}$ with $\rho>3$ . The
above properties of the leading coefficient $C_{0}$ has been also investigated
in detail there. Theorem 1 is only a supplement of the interesting result
obtained by Sobolev [7] and the proof is also based on the idea developed
there. But the arguments undergo slight changes in many aspects, if the
non-positivity assumption of pair potentials is not necessarily assumed.

The method here applies also to the problem on the eigenvalue
asymptotics in the coupling limit. We consider the three-body Hamil-
tonian

(0.2) $H(\lambda)=H-\lambda V=H_{0}+(1-\lambda)V$ on $L^{2}(R^{6})$

with a coupling constant $\lambda$ , $0<\lambda<<1$ , small enough, where $H$ is defined
by (0.1) and is assumed to satisfy all the assumptions in Theorem 1. Let
$N_{0}(\lambda)$ be the number of negative eigenvalues of $H(\lambda)$ . For $\lambda>0$ , $H(\lambda)$
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has only a finite number of negative eigenvalues but $ N_{0}(\lambda)\rightarrow\infty$ as $\lambda$

tends to the critical value 0. The theorem below gives the asymptotic
formula as $\lambda\rightarrow 0$ for $N_{0}(\lambda)$ .

Theorem 2. Let the notations be as above. Suppose that the
three-body Hamiltonian $H=H(0)$ fulfills the assumptions $(V)_{\rho}$ , (H.I)
and (H.2). Then $N_{0}(\lambda)$ behaves like

$N_{0}(\lambda)=2C_{0}|\log\lambda|(1+o(1))$ , $\lambda\rightarrow 0$ ,

with the same positive constant $C_{0}$ as in Theorem 1.

\S 1. Low energy analysis for two-body resolvents

The proof of the theorems above is based on the behavior at low
energies of two-body resolvents with resonance at zero energy. We here
make a brief review on this result. For details, see $[2, 3]$ .

Throughout the section, we work in the space $L^{2}=L^{2}(R_{x}^{3})$ and
denote by $\langle, \rangle$ the $L^{2}$ scalar product. We begin by defining precisely
the resonance state at zero energy. Let $T=-\triangle+V_{0}$ be the two-body
Schr\"odinger operator acting on $L^{2}$ . We assume that the potential $V_{0}(x)$

has the decay property $(V)_{\rho}$ and that the operator $T$ has the spectral
properties (H.I) and (H.2). We now consider the equation $T\varphi=0$ .
This equation can be put into the integral equation

(1.1) $\varphi(x)=-(1/4\pi)\int|x-y|^{-1}V_{0}(y)\varphi(y)dy$ ,

where the integration with no domain attached is taken over the whole
space. Equation (1.1) is considered in the weighted $L^{2}$ space $L_{-s}^{2}=$

$L^{2}(R_{x}^{3}; \langle x\rangle^{-2s}dx)$ with weight $\langle x\rangle^{-s}=(1+|x|^{2})^{-s/2}$ , $s>1/2$ being
taken close enough to 1/2. If $\varphi\in L_{-s}^{2}$ solves the equation (1.1), then it
is easily seen that $\varphi$ behaves like

$\varphi(x)=-(1/4\pi)\langle V_{0}, \varphi\rangle|x|^{-1}+O(|x|^{-\rho+1})$ ,

$(\partial/\partial|x|)\varphi(x)=(1/4\pi)\langle V_{0}, \varphi\rangle|x|^{-2}+O(|x|^{-\rho})$

as $|x|\rightarrow\infty$ . We say that $\varphi$ is a resonance state of $T$ at zero energy,
if $\langle V_{0}, \varphi\rangle\neq 0$ is satisfied. Thus the resonance state $\varphi$ behaves like
$\varphi(x)\sim|x|^{-1}$ as $|x|\rightarrow\infty$ and hence $\varphi\not\in L^{2}$ is not a bound state at zero
energy. On the other hand, if $\langle V_{0}, \varphi\rangle=0$ is satisfied, then we obtain
from (1.1) that $\varphi(x)=O(|x|^{-2})$ , so that $\varphi$ belongs to $L^{2}$ and becomes a
bound state of $T$ at zero energy. Conversely, if $\varphi$ is a bound state at zero
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energy, then we can easily see that $\varphi$ satisfies the relation $\langle V_{0}, \varphi\rangle=0$ .
This implies that a resonance state at zero energy is non-degenerate.
Under assumptions $(V)_{\rho}$ , (H.I) and (H.2), it also follows ffom Theorem
A.3.1 of [6] that $T$ cannot have a bound state at zero energy (bottom of
its spectrum) and hence $T$ has only a resonance state.

Assumption $(V)_{\rho}$ enables us to choose a non-negative potential
$U_{0}\geq 0$ satisfying $(V)_{\rho}$ so that

(1.2) $W_{0}(x)=U_{0}(x)-V_{0}(x)\geq U_{0}(x)/2\geq 0$ .

We define the Schr\"odinger operator $S$ with potential $U_{0}$ by

(1.3) $S=-\triangle+U_{0}$ on $L^{2}(R_{x}^{3})$

and denote the resolvent of $S$ as $R(d^{2}; S)=(S+d^{2})^{-1}$ for $d>0$ . Since
$U_{0}$ is non-negative, $R(0;S)$ can be also defined as a bounded operator

from $L_{s}^{2}$ into $L_{-s}^{2}$ for any $s>1$ and the generalized eigenfunction $\theta_{0}(x)$

of $S$ at zero energy is obtained as a unique solution to the Lippmann-
Schwinger equation. Let $A(d)$ : $L^{2}\rightarrow L^{2}$ be the operator defined by

(1.4) $A(d)=Id$ $-W_{0}^{1/2}R(d^{2}; S)W_{0}^{1/2}$ , $d\geq 0$ ,

$Id$ being the identity operator. It should be noted that this operator can
be defined even for $d=0$ . Let $\Sigma_{1}$ be the kernel of $A(0)$ . The kernel $\Sigma_{1}$

can be shown to be a one-dimensional space. Denote by $\psi_{1}\in L^{2}$ the
normalized function spanning $\Sigma_{1}$ . Then we can show that $\psi_{1}(x)$ falls off

with order $o(|x|^{-1-\rho/2})$ and satisfies $\langle\theta_{0}, W_{0}^{1/2}\psi_{1}\rangle\neq 0$ . We decompose

the space $L^{2}=L^{2}(R_{x}^{3})$ into the orthogonal sum $L^{2}=\Sigma_{1}\oplus\Sigma_{2}$ and we
denote by $P_{j}$ , $1\leq j\leq 2$ , the orthogonal projections onto $\Sigma_{j}$ .

We study the behavior as $d\rightarrow 0$ of $A(d)$ defined above. To do this,
we here introduce new notations. A bounded operator $T(d)$ , $0<d<<1$ ,
acting on $L^{2}$ is said to be of class $Op(d^{\iota/})$ , if its operator norm obeys the
bound $||T(d)||=O(d^{\iota J})$ as $d\rightarrow 0$ . When the difference $T_{1}(d)-T_{2}(d)$ is
of class $Op(d^{\iota/})$ , we denote this relation as $T_{1}(d)=T_{2}(d)+Op(d^{\iota/})$ .

Lemma 1.1. Let the notations be as above. Suppose that $T$ ful-
ffills $(V)_{\rho}$ , (H.I) and (H.2). Then the operator $A(d)$ has the following
properties.

(i) Let $\epsilon$ , $0<\epsilon<<1$ , be fixed arbitrarily. Then there exist positive
constants $c_{\epsilon}$ and $c_{\epsilon}^{J}$ such that

$c_{\epsilon}Id\leq A(d)\leq c_{\epsilon}’Id$ , $ d\geq\epsilon$ ,
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in the form sense.

(ii) Define $A_{jk}(d)$ , $1\leq j$ , $k\leq 2$ , as $A_{jk}(d)=P_{j}A(d)P_{k}$ . Then:

(1) $A_{22}(d)\in Op(d^{0})$ and $A_{22}(d)\geq c_{2}P_{2}$ for some $c_{2}>0$ .
(2) $A_{12}(d)\in Op(d^{l/})$ for some $iJ$ $>1/2$ .

(3) $A_{11}(d)=\sigma_{1}dP_{1}+Op(d^{lJ})$ for some $iJ$ $>1$ , where

$\sigma_{1}=|\langle\theta_{0}, W_{0}^{1/2}\psi_{1}\rangle|^{2}/4\pi>0$ .

Remark 1.2. A similar argument applies to the Schr\"odinger oper-
ator $T=-\triangle/2m+V_{0}$ with reduced mass $m$ . For such an operator, the
constant $\sigma_{1}$ in the lemma is given as

$\sigma_{1}=2^{-1/2}\pi^{-1}m^{3/2}|\langle\theta_{0}, W_{0}^{1/2}\psi_{1}\rangle|^{2}$ ,

where $\theta_{0}$ is the generalized eigenfunction at zero energy of $S=-\triangle/2m+$

$U_{0}$ , $U_{0}$ being chosen to $satis5^{r}(1.2)$ , and $\psi_{1}\in L^{2}$ is the normalized
function constructed for the operator $S$ .

\S 2. Sketch of proof of Theorem 1

We here give a sketch for the proof of Theorem 1 only. See [9] for
the detailed proof, including the proof of Theorem 2.

(0) We begin by introducing several basic notations used in the
spectral analysis for three-body Schr\"odinger operators.

Let $\alpha=(j, k)$ be given pair and let $l$ , $l$ $\neq j$ , $k$ , be the index by which
the third particle is labelled. Then the Jacobi coordinates associated
with $\alpha$ are defined as

(2.1) $x_{\alpha}=r_{j}-r_{k}$ , $y_{\alpha}=r_{l}-(m_{j}r_{j}+m_{k}r_{k})/(m_{j}+m_{k})$ .

We denote by $(p_{\alpha}, q_{\alpha})\in R^{3\times 2}$ the coordinates dual to $(x_{\alpha}, y_{\alpha})$ . In
this coordinate system, the symbol $H_{0}(p_{\alpha}, q_{\alpha})$ of the three-body ffee
Hamiltonian $H_{0}$ is described as

$H_{0}(p_{\alpha}, q_{\alpha})=|p_{\alpha}|^{2}/2m_{\alpha}+|q_{\alpha}|^{2}/2n_{\alpha}$ ,

where $m_{\alpha}$ again denotes the reduced mass associated with $\alpha$ and $n_{\alpha}$ is
defined through the relation $1/n_{\alpha}=1/m_{l}+1/(m_{j}+m_{k})$ . Let $\beta\neq\alpha$ be
another pair. Then a simple calculation yields

(2.2) $p_{\alpha}=\kappa^{\alpha\alpha}q_{\alpha}+\kappa^{\alpha\beta}q_{\beta}$ , $p_{\beta}=\kappa^{\beta\alpha}q_{\alpha}+\kappa^{\beta\beta}q_{\beta}$ ,
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where the coefficients $\kappa^{\alpha\alpha}$ , $\kappa^{\beta\alpha}$ , $\kappa^{\alpha\beta}$ and $\kappa^{\beta\beta}$ are explicitly expresssed
in terms of the masses $m_{j}$ , $1\leq j\leq 3$ , and, in particular, $\kappa^{\beta\alpha}$ and $\kappa^{\alpha\beta}$

satisfy $|\kappa^{\beta\alpha}|=|\kappa^{\alpha\beta}|=1$ . We also denote by $H_{0}(q_{\alpha}, q_{\beta})$ the symbol
representation for $H_{0}$ in the coordinate system $(q_{\alpha}, q_{\beta})$ . We further
define the cluster Hamiltonian $H_{\alpha}$ as

$H_{\alpha}=H_{0}+V_{\alpha}$ , $V_{\alpha}=V_{jk}$ , on $L^{2}(R^{6})$ .

The base space $L^{2}(R^{6})$ is decomposed as the tensor product

$L^{2}(R^{6})=L^{2}(R^{3}; dx_{\alpha})\otimes L^{2}(R^{3}; dy_{\alpha})$

and hence the Hamiltonian $H_{\alpha}$ is represented as

$H_{\alpha}=H^{\alpha}\otimes Id+Id\otimes T_{\alpha}$ on $L^{2}(R^{3}; dx_{\alpha})\otimes L^{2}(R^{3}; dy_{\alpha})$ ,

where $H^{\alpha}$ again denotes the two-body subsystem Hamiltonian associ-
ated with $\alpha$ and $T_{\alpha}$ is given as

(2.3) $T_{\alpha}=-\triangle/2n_{\alpha}$ on $L^{2}(R^{3}; dy_{\alpha})$ .

We now choose a non-negative potential $U_{\alpha}=U_{\alpha}(x_{\alpha})\geq 0$ to satisfy
the property (1.2)

$W_{\alpha}(x_{\alpha})=U_{\alpha}(x_{\alpha})-V_{\alpha}(x_{\alpha})\geq U_{\alpha}(x_{\alpha})/2\geq 0$

and define the Hamiltonians $K^{\alpha}$ and $K_{\alpha}$ as

$K^{\alpha}=-\triangle/2m_{\alpha}+U_{\alpha}$ on $L^{2}(R^{3}; dx_{\alpha})$ ,
(2.4)

$K_{\alpha}=K^{\alpha}\otimes Id+Id\otimes T_{\alpha}$ on $L^{2}(R^{3}; dx_{\alpha})\otimes L^{2}(R^{3}; dy_{\alpha})$ .

We also define $A(d;K^{\alpha})$ : $L^{2}(R^{3}; dx_{\alpha})\rightarrow L^{2}(R^{3}; dx_{\alpha})$ as

(2.5) $A(d;K^{\alpha})=Id-W_{\alpha}^{1/2}(K^{\alpha}+d^{2})^{-1}W_{\alpha}^{1/2}$ , $d\geq 0$ ,

in a way similar to (1.4) and denote by $P_{j}^{\alpha}$ , $1\leq j\leq 2$ , the orthogonal

projections associated with $A(0;K^{\alpha})$ , which are constructed in the same
way as $P_{j}$ in section 1. We further denote by $\theta_{0}^{\alpha}=\theta_{0}^{\alpha}(x_{\alpha})$ the general-

ized eigenfunction of $K^{\alpha}$ at zero energy and by $\psi_{1}^{\alpha}\in L^{2}(R^{3}; dx_{\alpha})$ the
normalized function spanning the range of $P_{1}^{\alpha}$ , the range being a one-
dimensional space. The operator $A(d;K^{\alpha})$ defined above preserves the
same properties as in Lemma 1.1 (see also Remark 1.2) and, in particu-
lar, we have

$P_{1}^{\alpha}A(d;K^{\alpha})P_{1}^{\alpha}=\sigma_{\alpha}dP_{1}^{\alpha}+Op(d^{l/})$ , $d\rightarrow 0$ ,
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for some $\iota/>1$ , where $\sigma_{\alpha}>0$ is given as

(2.6) $\sigma_{\alpha}=2^{-1/2}\pi^{-1}m_{\alpha}^{3/2}|\langle\theta_{0}^{\alpha}, W_{\alpha}^{1/2}\psi_{1}^{\alpha}\rangle|^{2}$ .

(1) We consider only $E$ , $0<E<<1$ , small enough. For given
self-adjoint operator $A$ , we denote by $n(\mu;A)$ the number of eigenvalues
greater than $\mu$ of $A$ . Let $U=\sum_{\alpha}U_{\alpha}$ and $W=\sum_{\alpha}W_{\alpha}$ , where the
summation $\sum_{\alpha}$ is taken over all three pairs $\alpha$ . Define the Hamiltonian
$K$ by $K=H_{0}+U=H+W$ and the bounded operator $M(E)$ : $ L^{2}(R^{6})\rightarrow$

$L^{2}(R^{6})$ by

$M(E)=(K+E)^{-1/2}W(K+E)^{-1/2}=\sum M_{\alpha}(E)^{*}M_{\alpha}(E)$

with $M_{\alpha}(E)=W_{\alpha}^{1/2}(K+E)^{-1/2}$ . Then the quantity $N(E)$ in question
coincides with $n(1;M(E))$ by the Birman-Schwinger principle. The next
lemma is due to Sobolev [7].

Lemma 2.1. Le $\mathcal{L}^{2}=\sum\oplus L^{2}(R^{6})$ , three summands. Define the
operator $\mathcal{M}(E)$ : $\mathcal{L}^{2}\rightarrow \mathcal{L}^{2}$ as

$\mathcal{M}(E)=(_{M_{\gamma}(E)M_{\alpha}(E)^{*}}^{M_{\alpha}(E)M_{\alpha}(E)^{*}}M_{\beta}(E)M_{\alpha}(E)^{*}$ $M_{\alpha}(E)M_{\beta}(E)^{*}M_{\beta}(E)M_{\beta}(E)^{*}M_{\gamma}(E)M_{\beta}(E)^{*}$ $M_{\alpha}(E)M_{\gamma}(E)^{*}M_{\beta}(E)M_{\gamma}(E)^{*}M_{\gamma}(E)M_{\gamma}(E)^{*})$ ,

where $\alpha$ , $\beta$ and $\gamma$ denote different three pairs. Then one has

$N(E)=n(1;\mathcal{M}(E))$ .

(2) We denote by Dia $\{a, B_{\beta}, B_{\gamma}\}$ the $3\times 3$ diagonal matrix with
operators $B_{\alpha}$ , $B_{\beta}$ and $B_{\gamma}$ as diagonal entries. Let $\mathcal{M}(E)$ be as in Lemma
2.1. The off-diagonal entries of $\mathcal{M}(E)$ are all compact operators on
$L^{2}(R^{6})$ but the diagonal ones are not necessarily compact operators.
Thus we look more carefully at the operator

$M_{\alpha}(E)M_{\alpha}(E)^{*}=W_{\alpha}^{1/2}(K+E)^{-1}W_{\alpha}^{1/2}$

in the diagonal entries of A4 (E).
Let $K_{\alpha}$ be defined by (2.4). We decompose the above operator

into the sum $M_{\alpha}(E)M_{\alpha}(E)^{*}=M_{0\alpha}(E)+L_{\alpha}(E)$ , where $M_{0\alpha}(E)=$

$W_{\alpha}^{1/2}(K_{\alpha}+E)^{-1}W_{\alpha}^{1/2}$ and

$L_{\alpha}(E)=W_{\alpha}^{1/2}((K+E)^{-1}-(K_{\alpha}+E)^{-1})W_{\alpha}^{1/2}$ ,
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so that $\mathcal{M}(E)$ is represented as A4 $(E)=\mathcal{M}_{0}(E)+\mathcal{M}_{1}(E)$ with

$\mathcal{M}_{0}(E)=Dia\{M_{0\alpha}(E), M_{0\beta}(E), M_{0\gamma}(E)\}$ .

We note that $\mathcal{M}_{1}(E)$ : $\mathcal{L}^{2}\rightarrow \mathcal{L}^{2}$ is a compact operator.
We now introduce a positive smooth function $\omega(s)$ , $s>0$ , such that

$\omega(s)=s$ for $0<s<1$ , $\omega(s)=2$ for $s>2$ .

Let $T_{\alpha}$ be defined by (2.3) as an operator on $L^{2}(R^{3};dy_{\alpha})$ . We define

$\omega_{\alpha}(E)=\omega((T_{\alpha}+E)^{1/2})$ ,

which is considered as an operator acting on $L^{2}(R^{6})$ as well as on
$L^{2}(R^{3}; dy_{\alpha})$ . We further define $A_{\alpha}(E)$ : $L^{2}(R^{6})\rightarrow L^{2}(R^{6})$ as

$A_{\alpha}(E)=Id-M_{0\alpha}(E)=Id-W_{\alpha}^{1/2}(K_{\alpha}+E)^{-1}W_{\alpha}^{1/2}$ .

By Lemma 1.1 (see also Remark 1.2), we can find strictly positive smooth
bounded functions $f^{\pm}(s)$ , $0<c\leq f^{+}(s)\leq f^{-}(s)$ , behaving like

$f^{\pm}(s)=1+o(s^{\iota/})$ , $s\rightarrow 0$ ,

for some $i/$ $>0$ such that

(2.7) $A_{\alpha}(E)\geq f_{\alpha}^{+}(E)\omega_{\alpha}(E)P_{1}^{\alpha}+c_{+}P_{2}^{\alpha}$ ,

(2.3) $A_{\alpha}(E)\leq f_{\alpha}^{-}(E)\omega_{\alpha}(E)P_{1}^{\alpha}+c_{-}P_{2}^{\alpha}$

for some positive constants $ c\pm$ , $0<c_{+}<c_{-}$ , where

$f_{\alpha}^{\pm}(E)=\sigma_{\alpha}f^{\pm}((T_{\alpha}+E)^{1/2})$

with $\sigma_{\alpha}>0$ given by (2.6), and the inequality relations are understood
in the form sense. Denote by $F_{\alpha}^{+}(E)$ and $F_{\alpha}^{-}(E)$ the operators on the
right side of (2.7) and (2.8), respectively, and define

$F_{0}^{\pm}(E)=Dia\{F_{\alpha}^{\pm}(E), F_{\beta}^{\pm}(E), F_{\gamma}^{\pm}(E)\}$ .

Then it follows from (2.7) and (2.8) that

$\mathcal{F}_{0}^{+}(E)\leq Id-\mathcal{M}_{0}(E)\leq \mathcal{F}_{0}^{-}(E)$

and hence we obtain ffom Lemma 2.1 that

(2.9) $n(1;Q^{-}(E))\leq N(E)\leq n(1;Q^{+}(E))$ ,
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where
$Q^{\pm}(E)=\mathcal{F}_{0}^{\pm}(E)^{-1/2}\mathcal{M}_{1}(E)F_{0}^{\pm}(E)^{-1/2}$ .

(3) We study the behavior as $E\rightarrow 0$ of Hilbert-Schmidt norm of
the entry operators $Q_{\alpha\beta}^{\pm}(E)$ in $Q^{\pm}(E)$ . To do this, we here introduce

new notations. Let $B(E)$ , $0<E<<1$ , be a compact operator on $L^{2}(R^{6})$ .
We say that $B(E)$ is of class $(HS)_{\epsilon}$ , if for any $\epsilon>0$ small enough, $B(E)$

has a decomposition $B(E)=B_{1}(E;\epsilon)+B_{2}(E;\epsilon)$ such that: (i) the
Hilbert-Schmidt norm of $B_{1}(E;\epsilon)$ obeys the bound $||B_{1}(E;\epsilon)||_{HS}\leq C_{\epsilon}$

for some $C_{\epsilon}$ independent of $E;(ii)$ the operator norm of $B_{2}(E;\epsilon)$ obeys
the bound $||B_{2}(E;\epsilon)||\leq\epsilon$ . If the difference between two operators $B_{1}(E)$

and $B_{2}(E)$ is of class $(HS)_{\epsilon}$ , we denote this relation as $B_{1}(E)\sim B_{2}(E)$ .

Lemma 2.2. $Q_{\alpha\alpha}^{\pm}(E)\sim 0$ .

We analyse the operators $Q_{\alpha\beta}^{\pm}(E)$ , $\alpha\neq\beta$ , in the off-diagonal entries

of $Q^{\pm}(E)$ . Recall that $\psi_{1}^{\alpha}\in L^{2}(R^{3}; dx_{\alpha})$ is the normalized function
spanning the range of $P_{1}^{\alpha}$ (one-dimensional space). Let $\chi(x)$ , $x\in R^{3}$ ,
be the characteristic function of the unit ball $B_{1}$ in $R^{3}$ . We set

$\zeta_{\alpha}(q_{\alpha}; E)=\chi(q_{\alpha})(|q_{\alpha}|^{2}/2n_{\alpha}+E)^{-1/4}$

and denote by $\Pi_{\alpha\beta}(E)$ : $L^{2}(R^{6}; dx_{\beta}dq_{\beta})\rightarrow L^{2}(R^{6}; dx_{\alpha}dq_{\alpha})$ , $\alpha\neq\beta$ , the

integral operator with the kernel $\psi_{1}^{\alpha}(x_{\alpha})J_{\alpha\beta}(q_{\alpha}, q_{\beta};E)\psi_{1}^{\beta}(x_{\beta})$ , where
$J_{\alpha\beta}(q_{\alpha}, q_{\beta}; E)$ is defined by

(2.10) $J_{\alpha\beta}(q_{\alpha}, q_{\beta}; E)=\tau_{\alpha\beta}\zeta_{\alpha}(q_{\alpha} ; E)(H_{0}(q_{\alpha}, q_{\beta})+E)^{-1}\zeta_{\beta}(q_{\beta};E)$

with
$\tau_{\alpha\beta}=2^{-5/2}\pi^{-2}(m_{\alpha}m_{\beta})^{-3/4}$ .

Let $\Psi_{\alpha}$ : $L^{2}(R^{3}; dy_{\alpha})\rightarrow L^{2}(R^{3}; dq_{\alpha})$ be the Fourier transformation
in $y_{\alpha}$ . We further define $S_{\alpha\beta}(E)$ : $L^{2}(R^{6})\rightarrow L^{2}(R^{6})$ by $S_{\alpha\beta}(E)=$

$\Psi_{\alpha}^{*}\Pi_{\alpha\beta}(E)\Psi_{\beta}$ , $\alpha\neq\beta$ .

Lemma 2.3. $Q_{\alpha\beta}^{\pm}(E)\sim S_{\alpha\beta}(E)$ , $\alpha\neq\beta$ .

Let $S(E)$ : $\mathcal{L}^{2}\rightarrow \mathcal{L}^{2}$ , $\mathcal{L}^{2}$ being as in Lemma 2.1, be the self-adjoint
compact operator defined by

$S(E)=(_{S_{\gamma\alpha}(E)}^{0}S_{\beta\alpha}(E)$ $S_{\alpha\beta}(E)S_{\gamma\beta}(E)0$ $S_{\alpha\gamma}(E)S_{\beta\gamma}(E)0)$ , $S_{\beta\alpha}(E)=S_{\alpha\beta}(E)^{*}$ .
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Then Lemmas 2.2 and 2.3, together with (2.9), yield that

$n((1+\epsilon);S(E))-C_{\epsilon}\leq N(E)\leq n((1-\epsilon);S(E))+C_{\epsilon}$

for any $\epsilon>0$ small enough, where $C_{\epsilon}>0$ is independent of $E$ . This
relation can be easily obtained by use of the Weyl inequality

$n(\lambda_{1}+\lambda_{2}; A_{1}+A_{2})\leq n(\lambda_{1} ; A_{1})+n(\lambda_{2}; A_{2})$

for the sum of compact operators $A_{1}$ and $A_{2}$ .

(4) The proof of the theorem is completed in this step. Let

$\mathcal{L}^{2}(B_{1})=\sum\oplus L^{2}(B_{1} ; dq_{\alpha})$ , three summands.

We denote by $J_{\alpha\beta}(E)$ : $L^{2}(B_{1} ; dq_{\beta})\rightarrow L^{2}(B_{1;}dq_{\alpha})$ the integral operator
with the kernel $J_{\alpha\beta}(q_{\alpha}, q_{\beta};E)$ defined by (2.10), and define the operator
$J_{0}(E)$ : $\mathcal{L}^{2}(B_{1})\rightarrow \mathcal{L}^{2}(B_{1})$ as

$J_{0}(E)=(_{J_{\gamma\alpha}(E)}^{0}J_{\beta\alpha}(E)$ $J_{\alpha\beta}(E)J_{\gamma\beta}(E)0$ $J_{\alpha\gamma}(E)J_{\beta\gamma}(E)0)$ .

Then it is easily seen that $n(\mu;S(E))=n(\mu;J_{0}(E))$ for $S(E)$ defined
above and hence we have

(2.11) $n((1+\epsilon);J_{0}(E))-C_{\epsilon}\leq N(E)\leq n((1-\epsilon);J_{0}(E))+C_{\epsilon}$ .

The eigenvalue asymptotics for the integral operator $J_{0}(E)$ has been
in detail studied in Sobolev [7] by employing an argument used in the
calculation of the canonical distribution of Toeplitz operators. We here
summarize the results obtained there.

Lemma 2.4. Let $n(\mu;J_{0}(E))$ be as above. Then:

(1) There exists a limit

$\Theta_{0}(\mu)=\lim_{E\rightarrow 0}n(\mu;J_{0}(E))/|\log E|$

as a continuous function of $\mu>0$ .
(2) The constant $C_{0}=\Theta_{0}(1)$ depends only on the ratios between the

masses of three particles under consideration and obeys the lower bound

$C_{0}>\log 2/2\pi^{2}>0$ .

This lemma, together with relation (2.11), completes the proof of
the theorem.
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