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Combinatorial Cell Complexes

Michael Aschbacher

We define and discuss a category of combinatorial objects we call
combinatorial cell complexes and a functor $T$ from this category to the
category of topological spaces with cell structure, whose image is closely
related to the category of $CW$-complexes. This formalism was developed
to study finite group actions on topological spaces. In order to make
effective use of our detailed knowledge of the finite simple groups, it
seems necessary to make such a translation from a purely topological
setting to the language of geometric combinatorics.

Our functor $T$ assigns to each combinatorial cell complex $X$ its geo-
metric realization $T(X)$ . We show the functor $T$ defines an equivalence

of categories between the category of combinatorial cell complexes whose
cell boundaries are spheres, and a certain subcategory of $CW$-complexes
we call normal $CW$-complexes.

We often concentrate on a subcategory of combinatorial cell com-
plexes we call restricted combinatorial cell complexes; the restricted
$CW$-complexes are the $CW$-complexes corresponding to the restricted
combinatorial cell complexes under our equivalence of categories. Re-
stricted $CW$-complexes include regular $CW$-complexes but also many
other classical examples like the torus, the Klein bottle, and the Poincar\’e

dodecahedron, which are discussed here as illustrations.
We associate to each restricted combinatorial cell complex $X$ , a sim-

plicial complex $K(X)$ and a canonical triangulation of $T(X)$ by $K(X)$ .

The geometric realization of a general combinatorial cell complex can
also be canonically triangulated, but by a more complicated simplicial
complex than $K(X)$ . However we do not supply a proof of this last fact
here.

We define cellular homology combinatorially, and show that if $X$ is
restricted and the boundary of each cell is homologically spherical, then
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the homology of $T(X)$ is the cellular homology of $X$ . We define a duality
operator on restricted complexes which will be used in a later paper to
establish a version of Poincar\’e duality for homology manifolds with cell
structure which is more concrete than the usual version.

Now some specifics. Let 72 be the category whose objects are the
posets $P$ such that each $a\in P$ is of finite height, and whose mor-
phisms are the maps preserving order and height. Let $p*consist$ of
those members of $\prime \mathcal{P}$ with a greatest element. A combinatorial cell
complex consists of a poset $X\in P$ , a function $f$ : $X\rightarrow p*$ , a map
$\zeta$ : $V=\square _{x\in X}f(x)\rightarrow X$ , and maps $f_{v}$ : $f(x)(\leq v)\rightarrow f(\zeta(v))$ for each
$v\in V$ , such that

(i) For each $x\in X$ , $\zeta$ : $f(x)\rightarrow X(\leq x)$ is a map of posets preserving
height.

(ii) For each $x\in X$ and $v\in f(x)$ , $f_{v}$ : $f(x)(\leq v)\rightarrow f(\zeta(v))$ is an
isomorphism of posets.

(iii) If $u$ , $v\in f(x)$ with $u\leq v$ then $f_{u}=f_{fv}(u)\circ fv$ .

(iv) For $v\in f(x)$ , $\zeta=\zeta\circ f_{v}$ on $f(x)(\leq v)$ .

(v) For each $x\in X$ , $f_{\infty_{x}}$ : $f(x)\rightarrow f(x)$ is the identity map and
$\zeta(\infty_{x})=x$ , where $\infty_{x}$ is the greatest element of $f(x)$ .

The posets $f(x)$ , $x\in X$ , are the cells of $X$ and the boundary of the

cell $f(x)$ is $\dot{f}(x)=f(x)-\{\infty_{x}\}$ . The faces of the cell are its subposets
$f(x)(\leq v)$ , $v\in f(x)$ . A combinatorial cell complex is restricted if $\zeta$ is
injective on $f(x)(\geq v)$ for each $v\in f(x)$ . Equivalently, for each $x\in X$

and $y\leq x$ , the faces $f(x)(\leq v)$ with $v\in\zeta^{-1}(y)\cap f(x)$ are pairwise
disj oint.

Intuitively a combinatorial cell complex consists of a collection $f(x)$ ,
$x\in X$ , of cells, with the poset structure on $X$ corresponding to inclusions
among the cells. The maps $\zeta$ and $f_{v}$ , $v$ $\in V$ , keep track of identifica-
tions of cells with faces of larger cells, and glue cells together at their
boundaries. Extra structure in some category $C$ can be adjoined to each
combinatorial cell to obtain $C$ cells and a $C$-cell complex.

The triangulating complex $K(X)$ of a combinatorial cell complex is

defined in Section 5 and the geometric realization $T(X)$ of $X$ is defined
in Section 10. Our major results are Theorem 10.6, which provides the
canonical triangulation of $T(X)$ by $K(X)$ when $X$ is restricted, Theorem
12.16, which shows the cellular homology of $X$ is isomorphic to the
homology of $T(X)$ when $X$ is restricted with homologically spherical
cell boundaries, and Theorem 15.15, which establishes the equivalence
of categories between combinatorial cell complexes whose cell boundaries
are spheres and normal CW- complexes. The definitions of normal and
restricted $CW$-complexes appear in Section 15. The reader may wish to
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refer to Sections 13 and 16 for various examples such as the torus, the
Klein bottle, and the Poincar\’e dodecahedron.

\S 1. Posets and typed simplicial complexes

Let $X$ be a poset. For $x\in X$ let $h(x)$ be the height of $x$ in $X$ . That
is $h(x)$ is the maximum length of a chain in $X$ with greatest element $x$ ,

if the length of such chains is bounded, and $\infty$ otherwise. Write $X(\leq x)$

for the set of elements $y\in X$ such that $y\leq x$ and define $X(<x)$ ,
$X(\geq x)$ , etc. similarly.

Denote by $7^{\supset}$ the category of posets $X$ such that each $x\in X$ is of
finite height. The morphisms in $\prime \mathcal{P}$ are the maps of posets which preserve
height. Let $p*be$ the subcategory of those $X\in P$ such that $X$ has a
unique maximal member $\infty x$ .

We regard $X$ as a category whose objects are the members of $X$ and
with Mor(x, $y$ ) $=\{(x, y)\}$ if $x\leq y$ and Mor(x, $y$ ) $=\emptyset$ otherwise.

Recall the order complex of a poset $X$ is the simplicial complex $O(X)$

whose vertices are the members of $X$ and whose simplices are the finite
chains. Often we write $X$ for the order complex $O(X)$ of $X$ .

Example (1). If $K$ is a simplicial complex its simplices form a
poset under the inclusion relation and the barycentric subdivision $sd(K)$

of $K$ is the order complex of this poset. Thus the vertices of $sd(K)$ are
the finite simplices of $K$ and the simplices of $sd(K)$ are the chains of
simplices of $K$ .

A typed simplicial complex over an index set I is a simplicial complex
$K=(V, \Sigma)$ together with a type function $h$ : $V\rightarrow I$ such that $h$ is
injective on simplices. The morphisms of typed complexes over I are
the simplicial maps which preserve type.

Example (2). The order complex of a poset is a typed complex
where $h(x)$ is the height of x.

We will use the following notational conventions in discussing the
homology of a typed simplicial complex. Let $K$ be a typed simplicial
complex with type function $h$ : $V\rightarrow I$ and pick a total ordering of $I$ .

Given a $k$-simplex $s$ in $K$ , write

$s=\prod_{v\in s}v=v_{0}\wedge\cdots\wedge v_{k}\in\wedge^{k}(V)$
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for the generator of $C_{k}(K)\leq\wedge^{k}(V)$ corresponding to $s$ , where $s=$

$\{v_{0}, \ldots, v_{k}\}$ with $h(v_{0})<\cdots<h(v_{k})$ . Then our boundary map becomes

$\partial(s)=\sum_{i=0}^{k}(-1)^{i}s^{i}$

where $s^{i}=v_{0}\wedge\cdots\wedge v_{i-1}\wedge v_{i+1}\wedge\cdots\wedge v_{k}$ .

If $s=s_{1}\cup\cdots\cup s_{r}$ is a partition of $s$ we write $s=\prod_{i=1}^{r}s_{i}$ . More
generally if $J$ is some subset of I we can consider

$\Sigma(J)=\{s\in\Sigma : h(s)=J\}$ .

Then if $J\subseteq L\subseteq I$ and $c=\sum_{s\in\Sigma(L)}a_{s}s\in C_{*}(K)$ with $a_{s}\in Z$ , then

$s=s_{J}s_{L-J}$ , where $s_{U}=\{v\in s : h(v)\in U\}$ for $U=J$ or $L-J$ , and
$c=\sum_{t\in\Sigma(J)}tc_{t}$ , where $c_{t}=\sum_{t\subseteq s}a_{s}s_{L-J}$ . Indeed

(1.1) Let $K$ be a typed simplicial complex with type function $h$ :
$V\rightarrow I$ , $J\subseteq L\subseteq I$ , and

$c=\sum_{s\in\Sigma(L)}a_{s}s=\sum_{t\in\Sigma(J)}tc_{t}\in C_{*}(K)$

with $a_{s}\in Z$ . Then
(1) $\partial(c)=\sum_{t}(-1)^{N}\partial(t)c_{t}+(-1)^{M}t\partial(c_{t})$

(2) If $\partial(c)=0$ then $\partial(c_{t})=0$ for each $t\in\Sigma(J)$ and $\sum_{t\in\Sigma(J)}\partial(t)c_{t}$

$=0$ .

(3) If $L-J=\{l\}$ is of order 1 then

$c_{t}=\sum_{u\in V_{l}(t)}a_{t,u}u$

where $V_{l}(t)=\{v\in Link_{K}(t) : h(v)=l\}$ , $a_{t,u}=a_{t\cup\{u\}}$ , and $\partial(c_{t})=$

$\sum_{u\in V_{l}(t)}a_{t,u}$ .

(4) $If|L|=k+1$ and $J=\{j\}$ with $j$ the maximal member of $L$ then
$\partial(c)=\sum_{t}t\partial(c_{t})+(-1)^{k}c_{t}$ , so $\partial(c)=0$ if and only if $\partial(c_{t})=0$ for each
$t\in\Sigma(J)$ and $\sum_{t}c_{t}=0$ .

Proof Take $L=\{0, \ldots, k\}$ . We first prove (1). Since

$v_{0}\wedge\cdots\wedge v_{k}=sgn(\pi)(v_{\pi(0)}\wedge\cdots\wedge v_{\pi(k)})$

for $\pi\in Sym(L)$ , changing our ordering of I by a suitable permutation
$\pi$ , we may assume $J=\{0, \ldots,j\}$ and the ordering of $J$ and $L-J$ are
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induced from $L$ . Subject to this choice of ordering, we prove

$(^{*})$

$\partial(c)=\sum_{t}(\partial(t)c_{t}+(-1)^{j+1}t\partial(c_{t}))$ .

As $\partial$ is linear, it suffices to take $c=s$ . Let $t=s_{J}$ ; then $c_{t}=s_{L-J}$ . Now

for $i\leq j$ , $s^{i}=t^{i}c_{t}$ , while for $i>j$ , $s^{i}=tc_{t}^{i-j-1}$ . Therefore

$\partial(c)=\partial(s)=\sum_{i=0}^{k}(-1)^{i}s^{i}=\sum_{i=0}^{j}(-1)^{i}t^{i}c_{t}+\sum_{i=0}^{k-j-1}(-1)^{i+j+1}tc_{t}^{i}$

$=\partial(t)c_{t}+(-1)^{j+1}t\partial(c_{t})$ .

So (1) is established. Further under the hypotheses of (4), the sign
of a permutation $\pi$ mapping $k$ to the first member of $L$ and preserving
the order on $L-J$ , is $(-1)^{k}$ and of course $\partial(t)=1$ , so by $(^{*})$ , $\partial(c)=$

$\sum_{t}(-1)^{k}c_{t}+t\partial(c_{t})$ , establishing the first statement in (4).

Suppose $\partial(c)=0$ . Then by (1), $\partial(c)=A+(-1)^{M}\sum_{t}t\partial(c_{t})$ with
$A=\sum_{r\in S_{A}}b_{r}r$ and $(-1)^{M}t\partial(c_{t})=\sum_{r\in S_{t}}b_{r}r$ , where $S_{A}$ and $S_{t}$ , $ t\in\sim$

$\Sigma(J)$ are suitable subsets of $\Sigma^{k-1}(K)$ and $S_{t}$ is the set of simplices
$s\in S_{A}\cup\bigcup_{t}S_{t}$ with $t\subseteq s$ . In particular the sets $S_{A}$ , $S_{t}$ , $t\in\Sigma(J)$ , are
pairwise disjoint. As $\partial(c)=0$ , $b_{r}=0$ for all $r$ , so as our index sets are
pairwise disjoint, $(-1)^{M}t\partial(c_{t})=\sum_{r\in S_{t}}b_{r}r=0$ and hence $\partial(c_{t})=0$ .

As this holds for all $t$ , also $0=\sum_{t}\partial(t)c_{t}$ .

Thus (2) is established. Finally (2) completes the proof of (4), since
under the hypotheses of (4), $\partial(t)c_{t}=c_{t}$ . The proof of (3) is straightfor-
ward.

\S 2. Cells

Let $C$ be a category. Define Cell(C) to be the category of covariant
functors $F$ : $X\rightarrow C$ , where $X\in p*is$ regarded as a category as in
Section 1. In addition we almost always impose extra conditions on the
cells.

Regard $(X, F)\in Cell(C)$ as a category whose objects are the pairs
$(x, F(x))$ , $x\in X$ , with

Mor((z, $F(x)$ ), $(y,$ $F(y))$ ) $=\{(x, y), F(x, y)\}$ if $x\leq y$

where $F(x, y)$ : $F(x)\rightarrow F(y)$ is the $C$-morphism associated to $(x, y)$ by
$F$ and

Mor((z, $F(x)$ ), $(y,$ $F(y))$ ) $=\emptyset$ otherwise.



6 M. Aschbacher

Notice that as $F$ is a functor, $F(x, z)=F(y, z)\circ F(x, y)$ whenever
$x\leq y\leq z$ .

The morphisms in Cell(C) are the covariant functors $\phi$ : $(X, F)\rightarrow$

$(Y, G)$ together with isomorphisms $\phi_{x}$ : $F(x)\rightarrow G(\phi(x))$ such that for
all $x\leq z$ in $X$ , the following diagram commutes:

$F(z)\rightarrow\phi_{z}G(\phi(z))$

$ F(x,z)\uparrow$ $\uparrow G(\phi(x),\phi(z))$

$F(x)\rightarrow\phi_{x}G(\phi(x))$

Here for $x\in X$ , $(x, F(x))$ is an object of $(X, F)$ , so $\phi(x, F(x))$ is an
object of $(Y, G)$ which must then be of the form $(\phi(x), G(\phi(x)))$ for some
$\phi(x)\in Y$ . Further as $\phi$ is a functor, if $x_{1}\leq x_{2}$ then $Mor((x_{1}, F(x_{1})),$ $($

$x_{2}$ , $ F(x_{2})))\neq\emptyset$ , so $Mor((\phi(x_{1}), G(\phi(x_{1}))),$ $(\phi(x_{2}), G(\phi(x_{2}))))\neq\emptyset$ and
hence $\phi(x_{1})\leq\phi(x_{2})$ , so $\phi$ : $X\rightarrow Y$ is a map of posets.

The category Cell(C) is the category of $C$-cells. Intuitively a $C$-cell
is an object $F(\infty x)$ in $C$ together with a distinguished family ( $F(x)$ :
$x\in X)$ of subobjects, called the faces of $F(\infty x)$ , indexed by the poset
$X$ , with the inclusion relation on these subobjects corresponding to the

partial order on $X$ . In the case of combinatorial and topological cells

this intuition is made precise in the following two examples:

Example. (1) Let $C$ $=p*$ . Then Cell(C) is the category of
combinatorial cells. We also require that a combinatorial cell $(X, F)$

satisfy $F(x)=X(\leq x)$ and $F(x, y)$ : $F(x)\rightarrow F(y)$ be inclusion for all
$x$ , $y\in X$ with $x\leq y$ . So a combinatorial cell is nothing more than a
poset $X$ in $p*together$ with its faces $X(\leq x)$ , $x\in X$ .

(2) Let $C$ $=$ Top be the category of topological spaces with mor-
phisms closed injections. In this case cells Top) is the category of topo-

logical cells. We also demand that a topological cell $(X, F)$ satisfy the
requirements that if $x$ , $y\in X$ then

(i) $F(x, \infty)(F(x))\cap F(y, \infty)(F(y))=\bigcup_{z\leq x,y}F(z, \infty)(F(z))$ .

(ii) If $x\neq y$ then $F(x, \infty)(F(x))\neq F(y, \infty)(F(y))$ .

(ii) For each $Y\subseteq X$ , $\bigcup_{y\in Y}F(y, \infty)(F(y))$ is closed in T.

Since for $x\in X$ , $F(x, \infty)$ : $F(x)\rightarrow F(\infty)$ is a closed injection,
we can identify $F(x)$ with its image in $F(\infty)$ . Condition (i) says that if
$x\leq y$ then $F(x)\subseteq F(y)$ , and then condition (ii) says the map $x\mapsto F(x)$

is an isomorphism of the poset $X$ with the poset $\{F(x) : x\in X\}$ of
distinguished closed subspaces of $F(\infty)$ .
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\S 3. Cell complexes

Again let $C$ be a category. Let Complex(C) be the category whose
objects consist of

(1) Some $X\in P$ .

(2) A function $f$ : $ X\rightarrow$ Cell(C).

(3) A map $\zeta$ : $V=\square _{x\in X}f(x)\rightarrow X$ such that for each $x\in X$ ,
$\zeta$ : $f(x)\rightarrow X(\leq x)$ is a morphism in 72.

(4) For each $x\in X$ and $v\in f(x)$ , an isomorphism $f_{v}$ : $ f(x)(\leq v)\rightarrow$

$f(\zeta(v))$ of $C$-cells satisfying:
(5) If $u$ , $v\in f(x)$ with $u\leq v$ then $f_{u}=f_{f_{v}(u)}\circ f_{v}$ .

(6) For $v\in f(x)$ , $\zeta=\zeta of_{v}$ on $f(x)(\leq v)$ .

(7) For each $x\in X$ , $f_{\infty_{x}}$ : $f(x)\rightarrow f(x)$ is the identity map and
$\zeta(\infty_{x})=x$ , where $\infty_{x}$ is the greatest element of $f(x)$ .

Formally $f(x)$ is a pair $(X_{x}, F_{x})$ where $X_{x}$ is a poset and $F_{x}$ : $ X_{x}\rightarrow$

$C$ is a functor, but we usually write $f(x)$ for the poset $X_{x}$ and $F$ for $F_{x}$ .

In particular this is the convention in axioms (3) and (7). However the
isomorphism $f_{v}$ of axiom (4) is an isomorphism of cells, so it consists of
a covariant functor $f_{v}$ : $f(x)(\leq v)\rightarrow f(\zeta(v))$ and isomorphisms $f_{v,u}$ :
$F_{x}(u)\rightarrow F_{\zeta(v)}(f_{v}(u))$ for each pair $u$ , $v\in f(x)$ with $u\leq v$ , and these

isomorphisms satisfy $F_{\zeta(v)}(f_{v}(u), f_{v}(w))\circ f_{v,w}=f_{v,w}\circ F_{x}(w, u)$ for each
$w\leq u\leq v$ .

The morphisms $\psi$ : $(X, f)\rightarrow(Y, g)$ are morphisms $\psi$ : $X\rightarrow Y$ in $P$

together with morphisms $\psi_{x}$ : $f(x)\rightarrow g(\psi(x))$ in Cell(C) for each $x\in X$

such that
(a) For each $x\in X$ and $v\in f(x)$ , the following diagram commutes:

$f(x)(\leq v)\rightarrow\psi_{x}g(\psi(x))(\leq\psi_{x}(v))$

$ f_{v}\downarrow$ $\downarrow g_{\psi_{x}(v)}$

$\rightarrow\psi_{\zeta(v)}$

$f(\zeta(v))$ $g(\psi(\zeta(v)))$

(b) For each $x\in X$ the following diagram commutes:

$f(x)$
$\rightarrow\zeta$

$X(\leq x)$

$\psi_{x}\downarrow$ $\downarrow\psi$

$g(\psi(x))\rightarrow\zeta Y(\leq\psi(x))$

Further we define composition in our category so that if $\phi$ : $(Y, g)\rightarrow$

$(Z, h)$ is a morphism then $(\phi\circ\psi)_{x}=\phi_{\psi(x)}o\psi_{x}$ for each $x\in X$ .
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The members $X=(X, f)$ of Complex(C) are called $C$-cell complexes.
$X$ is a combinatorial cell complex if the cells are combinatorial cells. $X$

is a topological cell complex if the cells of $X$ are topological.
Intuitively a cell complex consists of cells indexed by the poset $X$

together with identifications of the faces of cells accomplished by the
maps $\zeta$ and $f_{v}$ , $v\in V$ .

Example (1). Let $X\in P$ and for $x\in X$ and $v\in X(\leq x)$ let
$f(x)=X(\leq x)$ and let $\zeta$ and $f_{v}$ be the appropriate identity maps.
Then $X$ is a combinatorial cell complex. We call this cell complex the
simplicial cell complex of the poset $X$ .

Remarks. (1) Given any $C$ cell complex $(X, f, F)$ we can suppress
the $C$-structure supplied by the functor $F$ and obtain the combinatorial
cell complex $(X, f)$ of $(X, f, F)$ . This gives us a forgetful functor from
$C$-cell complexes to combinatorial cell complexes.

(2) The combinatorial cell complexes are the simplest cell complexes,
and we can give a somewhat simpler definition of this category equiv-
alent to the specialization of the general definition above to the case
of combinatorial cells: A combinatorial cell complex consists of a poset
$X\in P$ , a function $f$ : $X\rightarrow p*$ , a map $\zeta$ : $V=\square _{x\in X}f(x)\rightarrow X$ , and
maps $f_{v}$ : $f(x)(\leq v)\rightarrow f(\zeta(v))$ for each $v\in V$ , such that

(i) For each $x\in X$ , $\zeta$ : $f(x)\rightarrow X(\leq x)$ is a map of posets preserving
height.

- (ii) For each $x\in X$ and $v\in f(x)$ , $f_{v}$ : $f(x)(\leq v)\rightarrow f(\zeta(v))$ is an
isomorphism of posets.

(iii) If $u$ , $v\in f(x)$ with $u\leq v$ then $f_{u}=f_{f_{v}(u)}\circ f_{v}$ .

(iv) For $v\in f(x)$ , $\zeta=\zeta\circ f_{v}$ on $f(x)(\leq v)$ .

(v) For each $x\in X$ , $f_{\infty_{x}}$ : $f(x)\rightarrow f(x)$ is the identity map and
$\zeta(\infty_{x})=x$ .

Moreover a morphism $\psi$ : $(X, f)\rightarrow(Y, g)$ of combinatorial cell com-
plexes consists of a height preserving map $\psi$ : $X\rightarrow Y$ of posets together
with height preserving maps $\psi_{x}$ : $f(x)\rightarrow g(\psi(x))$ of posets for each
$x\in X$ such that $\psi$ and $\psi_{x}$ satisfy the commutative diagrams (a) and
(b) for morphisms of cell complexes given earlier in this section.

Define a cell complex $(X, f)$ to be regular if $\zeta$ : $f(x)\rightarrow X(\leq x)$ is
an isomorphism for each $x\in X$ . For example the simplicial cell complex
of a poset (defined in Example (1)) is a regular cell complex. We will
see in a moment that, up to isomorphism, all regular combinatorial cell
complexes are simplicial cell complexes. Define $(X, f)$ to be restricted
if $\zeta$ is injective on $f(x)(\geq v)$ for each $v\in f(x)$ . For example regular
cell complexes are restricted, but the converse is certainly not true. The
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combinatorial cell complexes of the torus and Klein bottle, discussed
in Section 13, are examples of restricted cell complexes which are not
regular, as is the complex of the Poincar\’e dodecahedron, discussed in
Section 16.

The cells of the cell complex $(X, f, F)$ are the $C$ cells $f(x)=(X_{x}$ ,

$F_{x})$ . The boundary of the combinatorial cell $f(x)$ is $\dot{f}(x)=f(x)-\{x\}$

and if $f(x)$ is a $C$-cell with extra structure supplied by $F(x)$ then $\dot{f}(x)$

is the $C$-cell complex with extra structure $\dot{F}(x)=F(x)_{|f(x)}$ . We say

$(X, f, F)$ is of height $n$ if $X$ is of height $n$ .

Example (2). Let $0\leq n\in Z$ and let $X(n)$ be the poset {0, 1, $\ldots$ ,
$n\}$ under the usual order. For $k\in X(n)$ define $f(k)=\{(k, i)$ : $ 0\leq$

$i\leq k\}$ and order $f(k)$ so that the map $\zeta$ : $f(k)\rightarrow X(n)$ defined by
$\zeta(k, i)=i$ preserves order. Define $f_{(k,i)}$ : $f(k)(\leq(k, i))\rightarrow X(n)(\leq i)$

by $f_{(k,i)}(k, j)=(i,j)$ . Then $(X(n), f)$ is a combinatorial cell complex

isomorphic to the simplicial cell complex of the poset $X(n)$ . As $X(n)$ is
an $n$-simplex, we call $X(n)$ the simplicial cell complex of the $n$ -simplex.

(3.1)Let $X=(X, f)$ be a regular combinatorial cell complex. Then
$(X, f)$ is isomorphic to the simplicial cell complex of the poset $X$ .

Proof. Let $\overline{X}=(\overline{X},\overline{f})$ be the simplicial cell complex of $X$ . Thus
$\overline{X}=X,\overline{f}(x)=X(\leq x)$ for each $x\in X$ , and $\overline{\zeta}$ and $\overline{f}_{v}$ are the appropriate
identity maps. Define

$\psi$ : $(X, f)\rightarrow(\overline{X},\overline{f})$

and
$\overline{\psi}$ : $(\overline{X},\overline{f})\rightarrow(X, f)$

to be the morphisms with $\psi$ : $X\rightarrow\overline{X}$ and $\overline{\psi}$ : $\overline{X}\rightarrow X$ the identity
maps, $\psi_{x}$ : $f(x)\rightarrow\overline{f}(x)$ the restriction of $\zeta$ to $f(x)$ , and $\overline{\psi}_{x}=\psi_{x}^{-1}$ .

It is essentially immediate from the definition of $\psi$ and $\overline{\psi}$ and from
axiom 6 for cell complexes that each of these maps is a morphism of cell
complexes. Of course $\overline{\psi}=\psi^{-1}$ , so $\psi$ is an isomorphism.

(3.2) Let $(X, f)$ be a combinatorial cell complex and $x\in X$ . Then
the poset $f(x)$ is of height $h(x)$ and $\infty_{x}$ is the unique member of $f(x)$

of height $h(x)$ .

Proof. As $f(x)\in p*$ , $\infty_{x}$ is the unique element of $f(x)$ of max-
imal height. Then as $\zeta$ : $f(x)\rightarrow X(\leq x)$ preserves height, $h(f(x))=$

$h(\infty_{x})=h(\zeta(\infty_{x}))=h(x)$ by axiom 7 for cell complexes.
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\S 4. Topological cell complexes

Let $X$ , $f$ , $F$ be a topological cell complex. That is $X\in P$ , for $x\in X$ ,
$f(x)$ is a topological cell with $F(v)$ the topological space associated to
$v\in f(x)\in p*$ , etc.

Write $x$ for $\infty_{x}$ . As in Example (2) in Section 2, we regard each
cell $f(x)$ as a topological space $F(x)$ together with a distinguished class
$\{F(v) : v\in f(x)\}$ of closed subspaces. Namely, for $v\in f(x)$ , we have
a closed injection $F(v, x)$ : $F(v)\rightarrow F(x)$ , and we identify $F(v)$ with its
image under this injection and regard it as a closed subspace of $F(x)$ .

Because $F$ is a functor, these identifications are compatible with the

ordering on $f(x)$ ; that is if $u<v<x$ then $F(u)\subseteq F(v)\subseteq F(x)$

and the identification of $F(u)$ with a subspace of $F(x)$ factors through
the identification of $F(u)$ with a subspace of $F(v)$ . Subject to these
conventions, $F(x)$ is a topological space with a poset of distinguished
closed subspaces, and that poset is isomorphic to $f(x)$ .

Recall from Section 2 that topological cells are required to satisfy
the property that if $u$ , $v\in f(x)$ then $F(u, x)(F(u))\cap F(v, x)(F(v))=$

$\bigcup_{w\leq u,v}F(w, x)(F(w))$ , which under our new notational conventions

translates into the statement that $F(u)\cap F(v)=\bigcup_{w\leq u,v}F(w)$ . Also if
$u\neq v$ then $F(u, x)(F(u))\neq F(v, x)(F(v))$ , which in our new language
reads if $u\neq v$ then $F(u)\neq F(v)$ . In particular it follows that

(4.1) For each $x\in X$ and $a\in F(x)$ there exists a unique $v\in f(x)$

of minimal height such that $a\in F(v)$ .

Next let $v\in f(x)$ . Then we have an isomorphism $f_{v}$ : $ f(x)(\leq v)\rightarrow$

$f(\zeta(v))$ of topological cells. The identifications above identify $f(x)(\leq v)$

with $F(v)$ and the subspaces determined by the poset $f(x)(\leq v)$ , and
identify $f(\zeta(v))$ with the space $F(\zeta(v))$ and its family of subspaces. As
$f_{v}$ is an isomorphism of topological cells, it induces an isomorphism
$F_{v}$ : $F(v)\rightarrow F(\zeta(v))$ such that if $u\leq v$ then $F_{v}(F(u))=F(f_{v}(u))$ .

Further as $F$ is a functor, $F_{u}=F_{f_{v}(u)}\circ F_{v}$ .

Let $F_{n}=\square _{dim(x)=n}F(x)$ be the disjoint union of the spaces asso-

ciated to the $n$-cells of $X$ , and $\hat{A}_{n}=\square _{m\leq n}F_{n}$ . Thus for each $a\in\hat{A}_{r\iota}$

there is a unique $x(a)\in X$ with $a\in F(x(a))$ and by 4.1 there is, a unique
$v(a)\in f(x)$ of minimal height such that $a\in F(v(a))$ . Let $y(a)\lambda=/\zeta(v(a))$

and observe that $F_{v(a)}(a)\in F(y(a))$ with $x(F_{v(a)}(a))=y(a)$ .

For $x\in X$ of dimension $n$ , $a\in F(x)$ , and $b\in\hat{A}_{n-1}$ , define $a\searrow b$ if
$F_{v}(a)=b$ for some $v\in f(x)$ with $a\in F(v)$ and $b\in F(\zeta(v))$ .

We construct a topological space $A_{n}$ by factoring out a suitable

equivalence $re1ation\sim_{n}$ from $\hat{A}_{n}$ . The definition is recursive. Namely the
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equivalence $re1ation\sim_{n}$ on $\hat{A}_{n}$ is defined to be the equivalence relation

on $\hat{A}_{n}$ generated $by\searrow$ , regarded as a relation on $F_{n}\cup\hat{A}_{n-1}$ , $and\sim_{n-1}$ .

We first observe that:

(4.2) For $a\in\hat{A}_{n-1}$ , $[a]_{n}\cap\hat{A}_{n-1}=[a]_{n-1}$ , where $[a]_{k}$ is the equiva-
lence class of $a$ with respect $to\sim_{k}$ .

Proof. It suffices to show that if $a\in F_{n}$ and $b$ , $c\in\hat{A}_{n}$ with $a\searrow b$

and $a\searrow c$ then $[b]_{n-1}=[c]_{n-1}$ . Let $x=x(a)$ , $r=x(b)$ , and $s=x(c)$ .

Then $a\in F(u)\cap F(w)$ where $u\in\zeta^{-1}(r)$ and $w\in\zeta^{-1}(s)$ . By an earlier
remark, $F(u)\cap F(w)=\bigcup_{v\leq u,w}F(v)$ , so $a\in F(v)$ for some $v\leq u$ , $w$ .

Now $F_{f_{u}(v)}(b)=(F_{fu}(v)\circ F_{u})(a)=F_{v}(a)=F_{f_{w}(v)}(c)$ , so by induction

on $n$ , $[b]_{n-1}=[c]_{n-1}$ .

Let $\hat{A}=\bigcup_{n}\hat{A}_{n}and\sim=\bigcup_{n}\sim_{n}$ . By $4.2,$ $\sim is$ an equivalence relation

on $\hat{A}$ . Write $\tilde{a}$ for the equivalence class of $a\in\hat{A}$ and let $A=A(X)=$
$\hat{A}/\sim$ . We conclude from 4.2 that

(4.3) For each $a\in\hat{A}$ and nonnegative integer $n,\tilde{a}\cap\hat{A}_{n}=[a]_{n}$ .

For $x\in X$ , $u\in f(x)$ , define $I(u)=F(u)-\bigcup_{u>v\in f(x)}F(v)$ . Further

define

$\lambda_{x}$ : $F(x)\rightarrow A$

$a\mapsto\tilde{a}$

and let $\tilde{F}(x),\tilde{I}(x)$ be the image of $F(x)$ , $I(x)$ in $A$ under the map $\lambda_{x}$ .

(4.4) (1) The map $\lambda_{x}$ : $I(x)\rightarrow A$ is an injection.
(2) For $\tilde{a}\in A$ there existsa $uni$que $y(\tilde{a})\in X$ such that $\tilde{a}\cap I(y(\tilde{a}))\neq$

$\emptyset$ .

(3) There exists a unique element $\xi(\tilde{a})\in F(y(\tilde{a}))$ with $\xi(\tilde{a})\in\tilde{a}$ .

(4) If $x\in X$ and $b\in\tilde{a}\cap F(x)$ , then there exists $v\in f(x)\cap\zeta^{-1}(y(\tilde{a}))$

with $b\in F(v)$ and $F_{v}(b)=\xi(\tilde{a})$ . Further $\tilde{F}(y(\tilde{a}))=F(v)\subseteq\tilde{F}(x)$ .

Proof. Let $n=h(x)$ and $a$ , $b\in I(x)$ . If $\tilde{a}=\tilde{b}$ then by 4.3, $[a]_{n}=$

$[b]_{n}$ . But by definition $of\sim_{n}$ , $[a]_{n}=\{a\}$ for $a\in I(x)$ as $h(x)=n$ . This
establishes (1) and (3).

Let $x\in X$ and suppose $x$ is minimal subject to $\tilde{a}\cap F(x)\neq\emptyset$ .

Let $b\in F(x)\cap\tilde{a}$ ; claim $b\in I(x)$ . For if not then $b\in F(v)$ for some
$x\neq v\in f(x)$ and then $b\sim F_{v}(b)\in F(y)$ with $y=\zeta(v)$ . Now $\tilde{F}(y)=$

$F(v)\subseteq\tilde{F}(x)$ , and the minimality of $x$ is contradicted. In particular
there exists some $y\in X$ with $\tilde{a}\cap I(y)\neq\emptyset$ .
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On the other hand suppose $a_{i}\in\tilde{a}$ with $a_{i}\in I(y_{i})$ , for $i=1,2$ , and

let $n=\max\{h(y_{1}), h(y_{2})\}$ . Then, as we saw in paragraph one, $|\tilde{a}\cap\hat{A}_{n}|=$

$1$ , so $a_{1}=a_{2}$ and hence as $a_{1}$ is in $F(y)$ for a unique $y\in X$ , $y_{1}=y_{2}$ .

This establishes (2).
We saw in paragraph two that if $x\in X$ and $b\in\tilde{a}\cap F(x)$ , then

either $b\in I(x)$ or there is $y<x$ and $v\in\zeta^{-1}(y)$ with $b\in F(v)$ and
$\tilde{F}(y)=\tilde{F}(v)\subseteq\tilde{F}(x)$ . In the former $x=y(a)$ by (2), so that (4) holds,
and in the latter (4) holds by induction on $h(x)$ .

(4.5) (1) The sets $\tilde{I}(x)$ , $x\in X$ , partition $A$ .

(2) $F\sim(x)\cap\tilde{F}(y)=\bigcup_{z\leq x,y}\tilde{F}(z)$ .

Proof. Part (1) follows from 4.4.2. Let $\tilde{a}\in\tilde{F}(x)\cap\tilde{F}(y)$ . Then by

4.4.4, $\tilde{a}\in\tilde{F}(y(\tilde{a}))\subseteq\tilde{F}(x)\cap\tilde{F}(y)$ and $y(a)\leq x$ , $y$ . Thus (2) holds.

We topologize $\tilde{F}(x)$ by defining a subset $C$ of $\tilde{F}(x)$ to be closed if

and only if $\lambda_{x}^{-1}(C)$ is closed in $F(x)$ . Then we topologize $A$ by decreeing

that $C\subseteq A$ is closed in $A$ if and only if $C\cap\tilde{F}(x)$ is closed in $\tilde{F}(x)$ for
each $x\in X$ .

(4.6) (1) $\tilde{F}(x)$ is closed in $A$ so a subset $C$ of $\tilde{F}(x)$ is closed in $\tilde{F}(x)$

if and only if $C$ is closed in $A$ .

(2) $\lambda_{x}$ : $F(x)\rightarrow A$ is continuous.

(3) If $\zeta$ : $f(x)\rightarrow X(\leq x)$ is injective then $\lambda_{x}$ : $F(x)\rightarrow\tilde{F}(x)$ is $a$

homeomorphism.

(4) For each $Y\subseteq X$ , $\bigcup_{y\in Y}\tilde{F}(y)$ is closed in $A$ .

Proof. Let $C$ be closed in $A$ . Then by definition of the topology

on $A$ , $C$ is closed in $\tilde{F}(x)$ . Conversely if $\tilde{F}(x)$ is closed in $A$ and $C$ is

closed in $\tilde{F}(x)$ then $C$ is closed in $A$ , so to prove (1) it remains to show
$\tilde{F}(x)$ is closed in $A$ . We must show $\tilde{F}(x)\cap\tilde{F}(y)$ is closed in $\tilde{F}(y)$ for all
$y\in X$ . By 4.5.2,

$\tilde{F}(x)\cap\tilde{F}(y)=z\leq x,y\cup\tilde{F}(z)$

Further
$\lambda_{y}^{-1}(\tilde{F}(z))=$ $\cup$ $F(v)$

$v\in\zeta^{-1}(z)\cap f(y)$

so
$\lambda_{y}^{-1}(\tilde{F}(x)\cap\tilde{F}(y))=$ $\cup$ $F(v)$

$v\in\zeta^{-1}(z)\cap f(y)z\leq x,y$
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is closed in $F(y)$ by axiom (iii) for topological cells in Example (2) of

Section 2. Now by definition of the topology on $A,\tilde{F}(x)\cap\tilde{F}(y)$ is closed

in $\tilde{F}(y)$ , completing the proof of (1). A similar argument establishes (4).

By definition of the topology on $\tilde{F}(x)$ , $\lambda_{x}$ : $F(x)\rightarrow\tilde{F}(x)$ is contin-
uous, so (2) follows from (1). Assume $\zeta$ : $f(x)\rightarrow X(\leq x)$ is injective.

Claim $\lambda_{x}$ : $F(x)\rightarrow\tilde{F}(x)$ is bijective. For if $a$ , $b\in F(x)$ with $\tilde{a}=\tilde{b}$ then

by 4.4.4, there is $u$ , $v\in f(x)\cap\zeta^{-1}(y(\tilde{a}))$ with $a\in F(u)$ , $b\in F(v)$ , and
$F_{u}(a)=F_{v}(b)=\xi(\tilde{a})$ . As $\zeta$ is injective, $u=v$ . Then as $F_{u}$ is injective,
$a=b$ . So $\lambda_{x}$ is bijective. Now for $D\subseteq F(x)$ closed, $D=\lambda_{x}^{-1}(\lambda_{x}(D))$ is

closed, so $\lambda_{x}(D)$ is closed in $\tilde{F}(x)$ by definition of the topology on $\tilde{F}(x)$ .

This proves (3).

(4.7) Let $\varphi$ : $(X, f, F)\rightarrow(Y, g, G)$ be a morphism of topological cell
complexes. Then

(1) $\varphi$ induces a continuous map $A(\varphi)$ : $A(X)\rightarrow A(Y)$ via $A(\varphi)(\tilde{a})=$

$\varphi(a)$ .

(2) $A$ is a covariant functor from the category of topological cell
complexes to the category of topological spaces.

Proof. Let $\tilde{\varphi}=A(\varphi)$ . Observe first that $\tilde{\varphi}$ is well defined, since

if $a_{i}\in\tilde{a}$ , $i=1,2$ , then $a_{i}\in F(v_{i})\subseteq F(x_{i})$ with $v_{i}\in\zeta^{-1}(y)$ , where
$y=y(\tilde{a})$ and $F_{v_{i}}(a_{i})=\xi(\tilde{a})\in F(y)$ . Then $G_{\varphi(v_{i})}(\varphi(a_{i}))=\varphi(\xi(\tilde{a}))$ , so
$\varphi(a_{1})\sim\varphi(\xi(\tilde{a}))\sim\varphi(a_{2})$ .

Next claim $\tilde{\varphi}$ : $\tilde{F}(x)\rightarrow\tilde{G}(\varphi(x))$ is continuous for each $x\in X$ . For

if $C$ is a closed subset of $\tilde{G}(\varphi(x))$ then $\lambda_{\varphi(x)}^{-1}(C)$ is closed in $G(\varphi(x))$

and then as $\varphi$ : $F(x)\rightarrow G(\varphi(x))$ is continuous, $\varphi^{-1}(\lambda_{\varphi(x)}^{-1}(C))$ is closed

in $F(x)$ . So as $\lambda_{\varphi(x)}o\varphi=\tilde{\varphi}o\lambda_{x}$ . $\lambda_{x}^{-1}(\tilde{\varphi}^{-1}(C))$ is closed in $F(x)$ .

Therefore $\tilde{\varphi}^{-1}(C)$ is closed in $\tilde{F}(x)$ , so indeed $\tilde{\varphi}$ : $\tilde{F}(x)\rightarrow\tilde{G}(\varphi(x))$ is
continuous. Therefore by 4.6 and the definition of the topology on $A(X)$

and $A(Y),\tilde{\varphi}$ : $A(X)\rightarrow A(Y)$ is continuous. Hence part (1) of the lemma
is established. Part (2) is straightforward.

\S 5. The triangulating complex of a combinatorial cell complex

Let $(X, f)$ be a combinatorial cell complex. Let $V=V(X)=$
$\square _{x\in X}f(x)$ be the disjoint union of the posets $f(x)$ , $x\in X$ . So for

each $v\in V$ there exists a unique $\hat{\zeta}(v)\in X$ with $v\in f(\hat{\zeta}(v))$ .

For $v\in V$ define

$L(v)=$ {$u\in V$ : $f_{w}(v)\geq u$ for some $w\in f(\hat{\zeta}(v))(\geq v)$ }.
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(5.1) Let $x\in X$ , $v\in f(x)$ , $u\in L(v)$ , and $w\in f(x)(\geq v)$ with
$f_{w}(v)\geq u$ . Then

(1) $\hat{\zeta}(u)=\zeta(w)$ .

(2) If $(X, f)$ is restricted then $w$ is the unique $z\in f(x)(\geq v)$ with
$\zeta(z)=\hat{\zeta}(u)$ and we denote $w$ by $\hat{f}_{u}(v)$ .

Proof. As $f_{w}(v)\geq u$ , $u\in f(\zeta(w))$ , so $\hat{\zeta}(u)=\zeta(w)$ . If $X$ is re-
stricted then for each $y\in X$ there is at most one $z\in f(x)(\geq v)$ with
$\zeta(z)=y$ , so (2) holds.

Define the graph $\triangle=\triangle(X)$ of the cell complex $X$ to be the graph
with vertex set $V$ and $u$ adjacent to $v$ if $u\in L(v)$ or $v\in L(u)$ . The
clique complex of a graph $\Gamma$ is the simplicial complex with vertex set $\Gamma$

and simplices the cliques of $\Gamma$ . Denote by $K(X)$ the clique complex of
$\triangle(X)$ . We call $K(X)$ the triangulating complex of $X$ .

(5.2) If $u\in L(v)$ then $\zeta(u)\leq\zeta(v)\leq\hat{\zeta}(u)\leq\hat{\zeta}(v)$ .

Proof. As $u\in L(v)$ , there is $w\in f(x)(\geq v)$ with $f_{w}(v)\geq u$ . Then
$\hat{\zeta}(u)=\zeta(w)\leq\hat{\zeta}(v)$ , $\zeta(v)=\zeta(f_{w}(v))\geq\zeta(u)$ , and $\zeta(v)\leq\zeta(w)=\hat{\zeta}(u)$ .

(5.3) If $u$ , $v\in V$ are adjacent with $\hat{\zeta}(u)=\hat{\zeta}(v)$ and $\zeta(u)=\zeta(v)$

then $u=v$ .

Proof. We may take $u\in L(v)$ . Let $x=\hat{\zeta}(v)$ and $w\in f(x)(\geq v)$

with $f_{w}(v)\geq u$ . Then $\zeta(w)=\hat{\zeta}(u)=\hat{\zeta}(v)=x$ , so by 3.2, $w=\infty_{x}=x$ .

Then $v=f_{x}(v)\geq u$ , so as $\zeta(v)=\zeta(u)$ and $\zeta$ preserves height, $v=u$ .

For $ s\subseteq\triangle$ define $X(s)=\{\hat{\zeta}(v) : v\in s\}$ and $\zeta(s)=\{\zeta(v) : v\in s\}$ .

(5.4) Let $s$ be a simplex in $K(X)$ . Then
(1) There is a unique ordering $v_{0}$ , $\ldots$ , $v_{k}$ of the vertices of $s$ such

that $v_{i}\in L(v_{j})$ for $0\leq i\leq j\leq k$ .

(2) $\zeta(v_{0})\leq\cdots\leq\zeta(v_{k})\leq\hat{\zeta}(v_{0})\leq\cdots\leq\hat{\zeta}(v_{k})$ .

(3) Assume $(X, f)$ is restricted and let $w_{i}=\hat{f}_{v_{i}}(v_{k})$ . Then $w_{i}$ is the

unique $w\in f(\hat{\zeta}(v_{k}))(\geq v_{k})$ with $\zeta(w)=\hat{\zeta}(v_{i})$ . Moreover $ w_{0}\leq\cdots\leq$

$w_{k}=\hat{\zeta}(v_{k})$ and $f_{w_{j}}(w_{i})\geq v_{j}$ for $j\geq i$ .

Proof. Induct on the dimension $k$ of $s$ . The case $k=0$ is trivial,
so take $k>0$ . By 5.2, $X(s)$ and $\zeta(s)$ are chains, so pick $v_{k}\in s$ with
$\hat{\zeta}(v_{k})$ maximal, and subject to this constraint, with $\zeta(v_{k})$ maximal. Let
$t=s-\{v_{k}\}$ . By induction on $k$ , there is a unique ordering $v_{0}$ , $\ldots$ , $v_{k-1}$

of $t$ satisfying the conditions of the lemma. Let $i<k$ . By 5.3 and
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the choice of $v_{k}$ , either $\hat{\zeta}(v_{i})<\hat{\zeta}(v_{k})$ or $\zeta(v_{i})<\zeta(v_{k})$ . Then by 5.2,

$v_{i}\in L(v_{k})$ , and $\zeta(v_{i})\leq\zeta(v_{k})\leq\hat{\zeta}(v_{i})\leq\hat{\zeta}(v_{k})$ , establishing (1) and (2).

Thus it remains to prove (3), so we may assume $X$ is restricted.

By 5.1.2, $w_{i}$ is the unique $w\in f(\hat{\zeta}(v_{k}))(\geq v_{k})$ with $\zeta(w)=\hat{\zeta}(v_{i})$ . By

induction, $z_{i}=\hat{f}_{v_{i}}(v_{k-1})$ is the unique $z\in f(\hat{\zeta}(v_{k-1}))(\geq v_{k-1})$ with
$\zeta(z)=\hat{\zeta}(v_{i})$ for $i<k$ . Further $ z_{0}\leq\cdots$ $\leq z_{k-1}$ and $f_{z_{i}}(z_{j})\geq v_{i}$ .

Now $f_{w_{k-1}}^{-1}(z_{i})\geq f_{w_{k-1}}^{-1}(v_{k-1})$ and $w_{i}\geq v_{k}\geq f_{w_{k-1}}^{-1}(v_{k-1})$ , so as $X$ is

restricted, $w_{i}=f_{w_{k-1}}^{-1}(z_{i})$ . So as $z_{j}\geq z_{i}$ for $j\geq i$ , $w_{j}\geq w_{i}$ . Then

$f_{w_{j}}(w_{i})\geq f_{w_{j}}(v_{k})\geq v_{j}$ , completing the proof of (3).

For $s$ a simplex of $K(X)$ , Lemma 5.4 says that $X(s)$ has a greatest

element $\hat{\zeta}(s)$ .

(5.5) If $s$ is a simplex of $K(X)$ the $dim(s)\leq h(\hat{\zeta}(s))$ and $dim(s)\leq$

$|X(s)|+|\zeta(s)|-2$ .

Proof. Let $s=\{v_{0}, \ldots, v_{k}\}$ be ordered as in 5.4. By 5.3, for each
$1\leq i\leq k,\hat{\zeta}(v_{i-1})<\hat{\zeta}(v_{i})$ or $\zeta(v_{i-1})<\zeta(v_{i})$ . Let $\phi(i)=\hat{\zeta}(v_{i-1})$ or
$\zeta(v_{i-1})$ in the respective case. Then the map $\phi$ : $\{i : 1\leq i\leq k\}\rightarrow$

$X(s)-\{\hat{\zeta}(s)\}\cup\zeta(s)-\{y\}$ is an injection, where $y=\zeta(v_{k})$ . Therefore
the second remark in the lemma holds. Also by 5.4, $\{\phi(i) : i\}$ is a chain

of length $k-1$ in $X(<\hat{\zeta}(s))$ , so the first remark holds.

(5.6) Let $(X, f)$ be of height $n$ and $V(n)=\{(m, k)$ : $ 0\leq k\leq m\leq$

$n\}$ . Define $\tau$ : $V\rightarrow V(n)$ by $\tau(v)=(h(\hat{\zeta}(v)), h(\zeta(v)))$ . Then $K(X)$ is $a$

typed simplicial complex over $V(n)$ with type function $\tau$ .

Proof. This follows from 5.3 and 5.4.

Remark 5.7. Observe we have a covariant functor $K$ from the cat-
egory of combinatorial cell complexes to the category of typed simpli-

cial complexes. We have already associated a typed simplicial complex
$K(X)$ to $X$ . Suppose $\alpha$ : $X\rightarrow\overline{X}$ is a morphism of combinatorial cell

complexes. Then for $x\in X$ , we have a map $\alpha_{x}$ : $f(x)\rightarrow\overline{f}(\alpha(x))$

of posets which induces a map $K(\alpha)$ : $V(X)\rightarrow V(\overline{X})$ defined by
$K(\alpha)(v)=\alpha_{\hat{\zeta}(v)}(v)$ . If $u\in L(v)$ there is $w\in f(x)(\geq v)$ with $f_{w}(v)\geq u$ .

Then as
$f(x)(\leq w)\rightarrow\alpha_{x}\overline{f}(\alpha(x))(\leq\alpha_{x}(w))$

$ fw\downarrow$ $\downarrow\overline{f}_{\alpha_{x}(w)}$

$f(\zeta(w))$
$\rightarrow\alpha_{\zeta(w)}$

$\overline{f}(\alpha(\zeta(w)))$
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commutes,

$K(\alpha)(u)=\alpha_{\hat{\zeta}(u)}(u)\leq\alpha_{\hat{\zeta}(u)}(f_{w}(v))$

$=\overline{f}_{\alpha_{x}(w)}(\alpha_{x}(v))=\overline{f}_{K(\alpha)(w)}(K(\alpha)(v))$ ,

with $K(\alpha)(v)=\alpha_{x}(v)\leq\alpha_{x}(w)=K(\alpha)(w)$ , so $K(\alpha)(u)\in L(K(\alpha)(v))$ .

Thus $K(\alpha)$ : $\triangle(X)\rightarrow\triangle(\overline{X})$ is a map of graphs, and thus induces a
simplicial map from $K(X)$ to $K(\overline{X})$ . As $\alpha$ preserves height, $K(\alpha)$ also
preserves the type function $\tau$ of Lemma 5.6. It is easy to check that
$K(\alpha\circ\beta)=K(\alpha)\circ K(\beta)$ , so $K$ is indeed a functor.

Example 5.8. Consider the simplicial cell complex $(X(n), f)$ of the
$n$-simplex defined in Example (2) in Section 3. The set $V(n)=\{(k, i)$ :
$0\leq i\leq k\leq n\}$ is $V(X(n))$ . Denote by $K(n)$ the triangulating complex
$K(X(n))$ of $X(n)$ . Then for $(a, b)$ , $(\alpha, \beta)\in V(n)$ , $(a, b)\in L(\alpha, \beta)$ if
and only if $ b\leq\beta\leq a\leq\alpha$ . The complex $X(n)$ is regular and hence

restricted. Observe that if $(a, b)\in L(\alpha, \beta)$ then $\hat{f}_{(a,b)}((\alpha, \beta))=(\alpha, a)$ .

In the remainder of this section we discuss the triangulating complex
$K(n)$ of the simplicial cell complex $X(n)$ of the $n$-simplex. Observe
first that we may regard $V(n)$ as the lower diagonal elements in an
$n+1$ by $n+1$ square array. From this point of view, for $(\alpha, \beta)\in$

$V(n)$ , $L(\alpha, \beta)$ is the set of entries in $V(n)$ living in the rectangle with
corners $(\beta, 0)$ , $(\beta, \beta)$ , $(\alpha, 0)$ , $(\alpha, \beta)$ sitting directly above and to the left
of $(\alpha, \beta)$ . Similarly those $(a, b)$ with $(\alpha, \beta)\in L(a, b)$ form the rectangle
with corners $(\alpha, \beta)$ , $(\alpha, \alpha)$ , $(n, \beta)$ , $(n, \alpha)$ , sitting directly below and to
the right of $(\alpha, \beta)$ .

Next 5.4 translates into the statement:

(5.9) A subset $s$ of $V(n)$ is in the set $\Sigma(n)$ of simplices of $K(n)$

if and only if we can order $s$ so that $s=\{(\alpha_{i}, \beta_{i}) : 0\leq i\leq k\}$ with
$\beta_{0}\leq\cdots\leq\beta_{k}\leq\alpha_{0}\leq\cdots\leq\alpha_{k}$ .

For $(\alpha, \beta)\in V(n)$ define

$l(\alpha, \beta)=$ { $(a,$ $b)$ : $\alpha=a$ and $b=\beta-1$ or $\beta=b$ and $a=\alpha-1$ }

and a directed graph structure on $V(n)$ by $e\rightarrow f$ if $e\in l(f)$ . Notice if
$e\rightarrow f$ then $e$ is adjacent to $f$ in the graph $\triangle(n)$ of $X(n)$ . Also $e\rightarrow f$ if
$e$ and $f$ are adjacent lattice points in the array $V(n)$ .

For $s\in\Sigma(n)$ , let $\alpha^{*}(s)=\max\{\alpha : (\alpha, \beta)\in s\}$ and $\alpha_{*}(s)=\min\{\alpha$ :
$(\alpha, \beta)\in s\}$ . Define $\beta^{*}(s)$ and $\beta_{*}(s)$ similarly.
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(5.10) The maximal simplices $\Sigma^{*}(n)$ of $K(n)$ are precisely the di-
rected paths $p=p_{0}\cdots p_{n}$ of length $n$ in the directed graph $(V(n), \rightarrow)$ such
that $p_{i}\rightarrow p_{i-1}$ , $p_{0}=(\alpha_{*}(p), 0)$ , $p_{n}=(n, \beta^{*}(p))$ , and $\alpha_{*}(p)=\beta^{*}(p)$ . In
particular $\alpha^{*}(p)=n$ and $\beta_{*}(p)=0$ .

Proof Let $p$ be a maximal path and order $p$ as in 5.9. Notice
$\beta_{0}=\beta_{*}(p)$ , $\alpha_{0}=\alpha_{*}(p)$ , $\beta_{k}=\beta^{*}(p)$ , and $\alpha_{k}=\alpha^{*}(p)$ . Now $ p\cup$

$\{(n, \beta_{k}), (\alpha_{0}, O)\}\in\Sigma(n)$ , so by maximality of $p$ , $n=\alpha_{k}=\alpha^{*}(p)$ and
$0=\beta_{0}=\beta_{*}(p)$ . If $p_{i}\not\in l(p_{i+1})$ the $\alpha_{i+1}-\alpha_{i}>1$ or $\beta_{i+1}-\beta_{i}>1$ , or
$\alpha_{i+1}-\alpha_{i}=\beta_{i+1}-\beta_{i}=1$ , and we adjoint $(\alpha_{i}+1, \beta_{i})$ , $(\alpha_{i}, \beta_{i}+1)$ , or
$(\alpha_{i}+1, \beta_{i})$ to $p$ in the respective case to contradict the maximality of $p$ .

Thus $p$ is a directed path in $(V(n), \rightarrow)$ . Notice the length of the path $p$

is the number $N$ of changes down and to the right as the path proceeds
from $p_{0}$ to $p_{k}$ , since at each step there is exactly one such change. Fi-
nally $p\cup\{(n, \alpha_{0})\}\in\Sigma(n)$ , so $(n, \alpha_{0})=p_{k}$ by maximality of $p$ . Thus
$\beta^{*}(p)=\alpha_{0}=\alpha_{*}(p)$ . This implies that $n=N$ , so $p$ is of length $n$ ,

completing the proof.

Remark 5.11. Lemma 5.10 says the maximal simplices $p$ of $\Sigma(n)$

are all of dimension $n$ and are the paths in the directed graph $(V(n), \rightarrow)$

within rectangles $R(k)$ with corners $(k, 0)$ , $(k, k)$ , $(n, 0)$ , $(n, k)$ running
from the upper left hand corner $(k, 0)$ to the lower right hand corner
$(n, k)$ , where $k=\beta^{*}(p)=\alpha_{*}(p)$ .

\S 6. Affine space, convex sets, and triangulations

Let $R^{n}$ be $n$-dimensional Eulidean space. An affine subspace of $R^{n}$

is a coset $U+x$ of a linear subspace $U$ of $R^{n}$ . The dimension of the
affine subspace $U+x$ is $dim(C/)$ , with the empty set of dimension -1.

A subset $C$ of $R^{n}$ is convex if for each $x$ , $y\in C$ and each real number
$t$ with $0\leq t\leq 1$ , $tx+(1-t)y\in C$ . The intersection of any family of
convex sets is convex, so for each subset $S$ if $R^{n}$ there is a smallest
convex subset $[S]$ of $R^{n}$ containing $S$ . We call $[S]$ the convex closure of
$S$ .

Define the affine dimension of a subset $S$ of $R^{n}$ to be the smallest
dimension of an affine subspace containing $S$ . Thus the affine dimension
of $S$ is $dim(U(S))$ , where $ U(S)=\langle x-y : x, y\in S\rangle$ , since $U(S)+s$ is
the smallest affine subspace containing $S$ for any $s\in S$ . In particular
$dim(S)\leq|S|-1$ and we say $S$ is affine independent if $dim(S)=|S|-1$
achieves this bound.

The next lemma is well known and easy to prove:
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(6.1) (1) For $S\subseteq R^{n}$ ,

$[S]=$ { $\sum_{x\in X}a_{x}x:0\leq a_{x}\in R$
,

$\sum_{x}a_{x}=1$
, and

$X$ is a finite subset of $S$ }.

(2) Let $S=\{x_{0}, \ldots, x_{k}\}$ be an affine independent subset of $R^{n}$ .

Then each $x\in[S]$ can be written uniquely as $x=\sum_{i}a_{i}x_{i}$ with $0\leq a_{i}$

and $\sum_{i}a_{i}=1$ .

(6.2) Let X, Y $\subseteq R^{n}$ be convex, X $=[x, X\cap Y]$ , Y $=[y, X\cap Y]$ ,
and [x,$ y]\subseteq X\cup Y$ . Then $X\cup Y$ is convex.

Proof. $X\cup Y\subseteq Z=[X, Y]=[X\cap Y, x, y]$ . Let $z\in Z-[x, y]$ .

Then $z=ax+by+(1-a-b)v$ for some $v\in X\cap Y$ and $0\leq a$ , $b\in R$

with $a+b<1$ . Then $w=(ax+by)/(a+b)\in[x, y]\subseteq X\cup Y$ , so we may
take $w\in X$ . Hence $z=(1-a-b)v+(a+b)w\in X$ , so that $Z\subseteq X\cup Y$

as desired.

(6.3) Let $x$ , $y$ , $z$ , $w\in R^{n},$ $0<\in<1$ , $p=\epsilon z+(1-\in)y$ , $q=$

$\in iX+(1-\in)w$ , $X=[p, e, f]$ , and $Y=[q, e, f]$ , where either
(1) $e=\in x+(1-\in)y$ and $f=\epsilon iZ+(1-\in)w$ , or
(2) $e=\in z+(1-\in)x$ and $f=\in y+(1-\in)w$ .

Then $[p, q]\subseteq X\cup Y$ and $X\cup Y$ is convex.

Proof. We assume (1) holds; the proof of when (2) holds is essen-
tially the same. Notice if $[p, q]\subseteq X\cup Y$ then $X\cup Y$ is convex by 6.4, so
it remains to show $[p, q]\subseteq X\cup Y$ .

Let $0\leq t\leq 1$ and $v=tp+(1-t)q$ . Suppose first $t\geq 1/2$ and let
$a=b=1-t$ . Then l-a-b $=2t-1$ and $0\leq 2t-1\leq 1$ as $1/2\leq t\leq 1$ .

Then by 6.1, $v=ae+bf+(1-a-b)p\in X$ . So let $t\leq 1/2$ and this time
take $a=b=t$ , so that $1-a-b$ $=1-2t$ and $0\leq 1-2t\leq 1$ because
$0\leq t\leq 1/2$ . Now $v=ae+bf+(1-a-b)q\in Y$ .

In (2) take $a=(1-t)\in/(1-\in)$ and $b=1-t$ if $t\geq\xi j$ , while if $ t\leq\in$

take $a=t$ and $ b=t(1-\in)/\in$ .

Let $K=(V, \Sigma)$ be a finite dimensional simplicial complex with
vertex set $V$ and simplices $\Sigma$ . A triangulation of a topological space $T$

by $K$ is a map $\varphi$ of $\Sigma$ into the set of closed subspaces of $T$ together with
homeomorphisms

$\varphi_{s}$ : $\varphi(s)\rightarrow\hat{\varphi}(s)=[u(s, v) : v\in s]\subset R^{k}$

for each $k$-simplex $s$ of $K$ such that
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(T1) For $s$ , $ t\in\Sigma$ , $\varphi(s)\cap\varphi(t)=\varphi(s\cap t)$ , where $\varphi(\emptyset)=\emptyset$ .

(T2) $T$ $=\bigcup_{s\in\Sigma}\varphi(s)$ and $C\subseteq T$ is closed in $T$ if and only if $C\cap\varphi(s)$

is closed in $\varphi(s)$ for all $ s\in\Sigma$ .

(T3) For each $k$ simplex $s$ of $K$ and $t\subseteq s,\hat{\varphi}(s)=[u(s, v) : v\in s]$ is

of affine dimension $k$ and $\varphi_{t,s}=\varphi_{s}\circ\varphi_{t}^{-1}$ acts on $\hat{\varphi}(t)=[u(t, v) : v\in t]$

via $\varphi_{t,s}$ : $\sum_{v\in t}a_{v}u(t, v)\mapsto\sum_{v\in t}a_{v}u(s, v)$ .

A morphism of topological spaces $\varphi^{i}$ : $K^{i}\rightarrow T^{i}$ , $i=1,2$ , with
triangulation is a pair $(\alpha, \beta)$ where $\alpha$ : $K^{1}\rightarrow K^{2}$ is a simplicial map,
$\beta$ : $T^{1}\rightarrow T^{2}$ is continuous, and for each $s\in\Sigma^{1}$ ,

$(T_{1})\beta(\varphi^{1}(s))\subseteq\varphi^{2}(\alpha(s))$ , and
$(T_{2})\alpha_{s}o\varphi_{s}^{1}=\varphi_{\alpha(s)}^{2}o\beta$ , where $\alpha_{s}$ : $\hat{\varphi}^{1}(s)\rightarrow\hat{\varphi}^{2}(\alpha(s))$ is defined by

$\alpha_{s}$ :
$\sum_{v\in s}a_{v}u(s, v)\mapsto\sum_{v\in s}a_{v}u(\alpha(s), \alpha(v))$

.

Example 6.4. Let I be an index set and for $J\subseteq I$ let $T_{J}=[u_{j}$ :
$j\in J]$ be a convex subset of $R^{k}$ of affine dimension $k=|J|-1$ . Let
$K=(X_{0}, \Sigma)$ be a typed simplicial complex with type function $h$ : $ X_{0}\rightarrow$

$I$ (cf. Section 1) and let $X=sd(K)$ be the barycentric subdivision of
$K$ .

We now construct a topological cell complex $\chi(K)$ . We begin by
defining $X$ to be the poset of $\chi(K)$ . (Notice $X\in P.$ ) Then for $x\in X$ we
form a topological cell $f(x)=(f(x), F(x))$ by letting $f(x)=X(\leq x)$ and
for $u\leq v\leq x$ , defining $F(v)=T_{h(v)}$ , (where $h(v)=\{h(z) : z\in v\}\subseteq I$ ,

keeping in mind that $v$ is a simplex of X) and defining $F(u, v)$ : $ F(u)\rightarrow$

$F(v)$ to be the inclusion map. The map $\zeta$ is defined to be the identity
map on each $f(x)$ , and for $v\in f(x)$ , $f_{v}$ : $f(x)(\leq v)\rightarrow f(\zeta(v))$ is
also the identity map. It is straightforward to check that $\chi(K)$ is a
topological cell complex. Notice that the combinatorial cell complex of
the topological cell complex $\chi(K)$ is the simplicial cell complex of $sd(K)$ .

In particular $\chi(K)$ is a regular complex.
We next extend $\chi$ to a covariant functor from the category of typed

simplicial complexes over I to the category of topological cell complexes.
Namely if $\alpha$ : $K\rightarrow\overline{K}$ is a morphism of typed complexes over $I$ , then
$\alpha$ extends to a map $\chi(\alpha)$ : $sd(K)\rightarrow sd(\overline{K})$ of posets via $\chi(\alpha)(x)=$

$\{\alpha(v) : v\in x\}$ . Next for $x\in X$ , define $\chi(\alpha)_{x}$ : $F(x)\rightarrow F(\chi(\alpha)(x))$ to
be the identity map. This makes sense, since as $\alpha$ preserves the type

function $h$ , $h(x)=h(\chi(\alpha)(x))$ , so $F(x)=F(\chi(\alpha)(x))$ . It is easy to
check that $\chi(\alpha)$ is a morphism of topological cell complexes and that
$\chi(\alpha\circ\beta)=\chi(\alpha)\circ\chi(\beta)$ , so that $\chi$ is indeed a covariant functor.
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Form the topological space $A=A(\chi(K))$ as in Section 4. We next
construct a triangulation $\varphi$ : $K\rightarrow A$ . Namely for $x\in X$ define $\varphi(x)=$

$\tilde{F}(x)\subseteq A$ . Then for $v\in x$ , define $u(x, v)=u_{h(v)}\in T_{h(x)}$ and define
$\varphi_{x}$ : $\varphi(x)\rightarrow T_{h(x)}$ by $\varphi_{x}$ : $\tilde{a}\mapsto a$ . The map $\varphi_{x}$ is just the inverse of
$\lambda_{x}$ : $F(x)\rightarrow\tilde{F}(x)$ defined in Section 4 by $\lambda_{x}(a)=\tilde{a}$ . As $\zeta$ is injective,
4.6.3 says the map $\lambda_{x}$ is a homeomorphism, so $\varphi_{x}$ is a well defined
homeomorphism.

By definition of the space $A$ , $\varphi(x)=\tilde{F}(x)$ is a closed subspace of
$A$ for each $x\in X$ and axiom (T2) for triangulation holds. By 4.5, for
$x$ , $y\in X$ , $\varphi(x)\cap\varphi(y)=\tilde{F}(x)\cap\tilde{F}(y)=\bigcup_{z\leq x,y}\tilde{F}(z)=\tilde{F}(x\cap y)=\varphi(x\cap y)$ ,

so axiom (T1) holds. Finally if $y\leq x$ then

$\varphi_{y,x}=\varphi_{x}o\varphi_{y}^{-1}=\lambda_{x}^{-1}o\lambda_{y}$ :
$\sum_{i}a_{i}u_{i}\rightarrow\lambda_{x}^{-1}(\sum_{i}a_{i}u_{i})=\sum_{i}a_{i}u_{i}$

,

so axiom (T3) is satisfied.
Let $T(K)=A(\chi(K))$ and $\varphi^{K}$ : $K\rightarrow T(K)$ the triangulation just

constructed. The space $T(K)$ is the geometric realization of the simpli-
cial complex $K$ .

To complete our discussion in this example, we extend $T$ to a co-
variant functor from the category of typed simplicial complexes over $I$

to the category of topological spaces with triangulation by essentially
viewing $T$ as the composition $ T_{0}=A\circ\chi$ . We have just seen that $\chi$ is a
functor and by 4.7, $A$ is a functor, so $ T_{0}=A\circ\chi$ is a functor from typed
complexes to topological spaces. Suppose $\alpha$ : $K^{1}\rightarrow K^{2}$ is a morphism

of typed simplicial complexes over $I$ . Define $T(\alpha)=(\alpha, T_{0}(\alpha))$ . As $T_{0}$ is
a covariant functor, $T(\alpha\circ\beta)=T(\alpha)\circ T(\beta)$ , so it remains to check that
$T(\alpha)$ is a morphism of triangulated spaces. We leave that as an exercise
for the reader.

\S 7. Polyhedral cell complexes

A polyhedral cell complex is a $C$-cell complex $(X, f)$ where $C$ is the
category of triangulated topological spaces. Thus for $x\in X$ and $ v\in$

$f(x)$ , $F(v)$ is a topological space together with a triangulation $B^{v}$ :
$f(x)(\leq v)\rightarrow F(v)$ , where $f(x)(\leq v)$ is regarded as an order complex.

Moreover for each simplex $s$ of $f(x)(\leq v),\hat{B}^{v}(s)=\hat{B}^{\zeta(v)}(f_{v}(s))$ and if

$u\leq v$ and $s\subseteq f(x)(\leq u)$ then $\hat{B}^{u}(s)=\hat{B}^{v}(s)$ and $F(u, v)$ : $ F(u)\rightarrow$

$F(v)$ satisfies $F(u, v)(B^{u}(s))=B^{v}(s)$ and $B_{s}^{v}\circ F(u, v)=B_{s}^{u}$ on $B^{u}(s)$ .

Finally $f_{v}$ : $f(x)(\leq v)\rightarrow f(\zeta(v))$ as an isomorphism of polyhedral cells

satisfies $F_{v}(B^{v}(s))=B^{\zeta(v)}(f_{v}(s))$ and $B_{f_{v}(s)}^{\zeta(v)}\circ F_{v}=B_{s}^{v}$ on $B^{v}(s)$ .
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A morphism of polyhedral cell complexes $\alpha$ : $(X, f, F, B)\rightarrow(\overline{X},\overline{f},\overline{F}$ ,
$\overline{B})$ is a morphism $\alpha$ : $(X, f, F)\rightarrow(\overline{X},\overline{f},\overline{F})$ of topological cell complexes
such that for each $x\in X$ and each simplex $s$ of $f(x)$ , $\alpha_{x}(B^{x}(s))\subseteq$

$B^{\alpha(x)}(\alpha(s))$ and $\alpha_{s}\circ B_{s}^{x}=B_{\alpha(s)}^{\alpha(x)}\circ\alpha_{x}$ on $B^{x}(s)$ .

Example 7.1. We proceed as in Example 6.4. In particular let
$I$ $=\{0,1, 2, \ldots\}$ and for $J\subseteq I$ let $T_{J}=[u_{j} : j\in J]$ be a convex subset

of $R^{k}$ of affine dimension $k=|J|-1$ .

Let $X=(X, f)$ be a combinatorial cell complex. We associate a
polyhedral cell complex $P(X)=(X, f, F, B)$ to $X$ . For $x\in X$ the
polyhedral cell associated to $x$ is obtained using the construction of
Example 6.4. Namely if $h(x)=n$ then $f(x)$ is a typed complex over
I with respect to the height function $h$ : $f(x)\rightarrow I$ , so we can apply
the geometric realization functor $T$ of Example 6.4 to $f(x)$ and obtain
a topological space $F(x)=T(f(x))$ (the geometric realization of the
order complex of $f(x))$ and a triangulation $B^{x}$ : $f(x)\rightarrow F(x)$ . Then
for $v\in f(x)$ , $F(v)$ is the subspace $\bigcup_{u\leq v}B^{x}(u)\cong T(f(x)(\leq v))$ and
$B^{v}$ : $f(x)(\leq v)\rightarrow F(v)$ is the restriction of $B^{x}$ to $f(x)(\leq v)$ . For $u\leq v$ ,
$F(u, v)$ : $F(u)\rightarrow F(v)$ is the inclusion map. Notice as $B^{v}$ and $B^{u}$ are
restrictions of $B^{x}$ , $B_{s}^{v}=B_{s}^{u}$ on $B^{u}(s)$ for each simplex $s$ of $f(x)(\leq v)$ .

Axioms (i) and (iii) for topological cells (given in Example (2) of
Section 2) are satisfied by 4.5.2 and 4.6.4.

Next as $T$ is a functor, the isomorphism $f_{v}$ of posets induces an
isomorphism $T(f_{v})=(f_{v}, F_{v})$ of spaces with triangulation from $B^{v}$ :
$f(x)(\leq v)\rightarrow F(v)$ to $B^{\zeta(v)}$ : $f(\zeta(v))\rightarrow F(\zeta(v))$ . In particular $F_{v}(B^{v}(s))$

$=B^{\zeta(v)}(f_{v}(s))$ for each simplex $s$ of $f(x)(\leq v)$ and $B_{fv}^{\zeta(v)}(s)\circ F_{v}=B_{s}^{v}$ on

$B^{v}(s)$ .

We next extend $P$ to a functor from combinatorial cell complexes to
polyhedral cell complexes. Let $\alpha$ : $X\rightarrow\overline{X}$ be a morphism of com-
binatorial cell complexes. Our morphism $P(\alpha)$ : $P(X)\rightarrow P(\overline{X})$ is
defined so that its image under the forgetful functor is $\alpha$ . Further
for $x\in X$ , $\alpha_{x}$ : $f(x)\rightarrow\overline{f}(\alpha(x))$ as a map of posets is a morphism
of typed complexes, so applying our functor $T$ we get a morphism
$T(\alpha_{x})=(\alpha_{x}, T_{x})$ of spaces with triangulation from $T(f(x))=F(x)$ to
$T(f(\alpha(x)))=F(\alpha(x))$ , where $T_{x}=A(\chi(\alpha_{x}))$ . We let $P(\alpha)_{x}=T(\alpha_{x})$ .

Check that $P(\alpha)$ is a morphism of polyhedral cell complexes. More-
over as $T(\alpha\circ\beta)=T(\alpha)\circ T(\beta)$ we have $P(\alpha o\beta)=P(\alpha)\circ P(\beta)$ .

In the remainder of this section assume $(X, f, F, B)$ is a polyhedral
cell complex. We adopt the notational conventions of Section 4. In
particular for $x\in X$ and $v\in f(x)$ we regard $F(v)$ as a subspace of
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$F(x)$ , so that $F(u, v)$ becomes inclusion for each $u\leq v$ . Similarly for
$s$ a simplex of $f(x)(\leq v)$ we can regard $B^{v}(s)=B^{x}(s)$ and write both
as $B(s)$ . Already by the definition of polyhedral cell complex we have
$\hat{B}^{x}(s)=\hat{B}^{v}(s)$ , and as $F(v, x)$ is inclusion, $B_{s}^{v}=B_{s}^{x}$ oF(v, $x$ ) $=B_{s}^{x}$ , and
we denote both by $B_{s}$ . That is $B$ : $f(x)\rightarrow F(x)$ is a triangulation and
for each $v\in f(x)$ , $B$ restricts to a triangulation $B$ : $f(x)(\leq v)\rightarrow F(v)$ .

Let $S$ be a simplex in $f(x)$ . We have a homeomorphism $B_{S}$ : $ B(S)\rightarrow$

$\hat{B}(S)=[u_{j} : j\in J]$ , where $J$ is the set of heights of vertices in $S$

and by axiom (T3), $B_{S}(v)=u_{h(v)}$ . Now if $U\subseteq S$ and $a_{v}\geq 0$ with

$\sum_{v\in U}a_{v}=1$ , $\sum_{v}a_{v}u_{h(v)}$ is a well defined element of $\hat{B}(S)$ and we

define $\sum_{v\in U}a_{v}B(v)=B_{S}^{1}(\sum_{v}a_{v}u_{h(v)})$ . Notice by axiom (T3) that

this definition is independent of the choice of $S$ containing $U$ . Further

(7.2) If $w\in f(x)$ and $U$ is a simplex in $f(x)(\leq w)$ then $Z=f_{w}(U)$

is a simplex in $f(\zeta(w))$ , $F_{w}(B(U))=B(Z)$ , $\sum_{v\in U}a_{v}B(v)\in B(U)\subseteq$

$F(w)$ , and

$F_{w}(\sum_{v\in U}a_{v}B(v))=\sum_{z\in Z}a_{z}B(z)$
.

Proof. Let $q=\sum_{v\in U}a_{v}B(v)$ . As $U\subseteq f(x)(\leq w)$ , $S=U\cup\{w\}$

is a simplex in $f(x)$ and by the discussion above $\sum_{v}a_{v}u_{h(v)}\in\hat{B}(w)$ so
$q\in B(w)\subseteq F(w)$ . As $f_{w}$ is a map of posets, $Z=f_{w}(U)$ is a simplex in
$f(\zeta(w))$ . Finally by definition of polyhedral cell complex, $B_{Z}oF_{w}=B_{U}$ ,

so $F_{w}(q)=F_{w}(B_{U}^{-1}(\sum_{v}a_{v}u_{h(v)}))=B_{Z}^{-1}(\sum_{v}a_{v}u_{h(v)})=\sum_{z}a_{z}u_{h(z)}$ .

Next we associate to each $x\in X$ a graph $\Gamma=\Gamma(x)$ called the residual
graph of $X$ at $x$ . Let

$V(x)=$ { $(w,$ $v)$ : $w\in f(x)$ and $v\in f(\zeta(w))$ }.

For $(w, v)\in V(x)$ define

$L(w, v)=$ { $(w’,$ $v’)\in V(x)$ : $w’\leq w$ , $f_{w}(w’)\geq v$ , and $f_{f_{w}(w’)}(v)\geq v’$ }

Finally let $\Gamma(x)$ be the graph with vertex set $V(x)$ and $(w, v)$ adjacent
to $(w’, v’)$ if $(w’, v’)\in L(w, v)$ or $(w, v)\in L(w’, v’)$ .

Let $K(x)$ be the clique complex of $\Gamma(x)$ . We call $K(x)$ the residual
complex of $X$ at $x$ . Observe

(7.3) Let $x\in X$ , $(f(x), g)$ the simplicial cell complex of the poset
$f(x)$ , and for $w\in f(x)$ and $u\leq w$ , write $(w, u)$ for $u$ regarded as an
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element of $f(x)(\leq w)$ in $V(f(x), g)$ . Then the map $(w, v)\mapsto(w, f_{w}^{-1}(v))$

is an isomorphism of $K(x)$ with $K(f(x), g)$ .

Next pick a real number $0<\in<1$ . For $v\in f(x)$ define

$P(v)=\in B(x)+(1-\in)B(v)\in F(x)$ .

As $x$ is the greatest element of $f(x)$ , $\{x, v\}$ is a simplex of $f(x)$ and so
the notation is well defined.

Next for $(w, v)\in V(x)$ define $P(w, v)\in F(x)$ by

$P(w, v)=F_{w}^{-1}(P(v))=\in B(w)+(1-\in)B(f_{w}^{-1}(v))$ .

Thus $P(w, v)\in F(w)$ . Indeed

(7.4) For $w\in f(x)$ , $P(w)\in I(x)$ and for $(w, v)\in V(x)$ , $ P(w, v)\in$

$I(w)$ .

Proof. Recall from Section 4 that $I(w)=F(w)-\bigcup_{u\in f(x)(<w)}F(u)$ .

Now $B$ is a triangulation of $F(x)$ with $F(w)$ the union of the topological
simplices $B(S)$ , $S\subseteq f(x)(\leq w)$ , so

$\dot{F}(x)=F(x)-I(x)=x\neq w\in f(x)\cup F(w)=x\not\in S\cup B(S)$
.

So as $P(w)=\in B(x)+(1-\in)B(w)$ with $0<\in<1$ , $P(w)$ is contained only

in $B(S)$ for simplices $S$ containing $x$ , and hence $P(w)\in I(x)$ . Similarly
$P(v)\in I(\zeta(w))$ , so $P(w, v)=F_{w}^{-1}(P(v))\in F_{w}^{-1}(I(\zeta(w)))=I(w)$ .

(7.5) If $s=\{(w_{0}, v_{0}), \ldots, (w_{k}, v_{k})\}$ is a simplex in $K(x)=K(\Gamma(x))$

Then
(1) We can order $s$ so that $\overline{v}_{0}\leq\overline{v}_{1}\leq\cdots\leq\overline{v}_{k}\leq w_{0}\leq\cdots\leq w_{k}$ ,

where $\overline{v}_{i}=f_{w_{i}}^{-1}(v_{i})$ .

(2) $(w_{j}, v_{j})\in L(w_{i}, v_{i})$ for $j\leq i$ .

(3) $S(s)=\{\overline{v}_{i}, w_{i} : 0\leq i\leq k\}$ is a simplex of $f(x)$ with $ P(w_{i}, v_{i})\in$

$B(S(s))$ for each $i$ .

(4) $P(w, v)\in B(S)$ for some simplex $S$ of $f(x)$ if and only if $w$ and
$f_{w}^{-1}(v)\in S$ .

Proof. Parts (1) and (2) follow from 7.3 and 5.4. Notice (1) implies
$S(s)$ is a simplex of $f(x)$ . Then (4) completes the proof of (3), so it re-
mains to prove (4). But (4) holds as $P(w, v)=\in B(w)+(1-\in)B(f_{w}^{-1}(v))$

and $B$ : $f(x)\rightarrow F(x)$ is a triangulation.

Let $s$ be a simplex in $K(x)$ . By 7.5, there is a smallest simplex $S(s)$

of $F(x)$ such that $P(e)\in B(S(s))$ for each vertex $e\in s$ . For $S$ a simplex
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of $f(x)$ containing $S(s)$ , identifying $B(S)$ with $\hat{B}(S)$ we can consider the
convex closure $\varphi(s)=[P(e) : e\in s]$ of the points $P(e)$ in $B(S)$ . Because
$B$ is a triangulation, these identifications are independent of $S$ . We let
$u(s, e)=P(e),\hat{\varphi}(s)=\varphi(s)$ , and $\varphi_{s}$ : $\varphi(s)\rightarrow\hat{\varphi}(s)$ be the identity map.
The remainder of this section and all of the next section are devoted to
showing:

Theorem 7.6. $\varphi$ : $K(x)\rightarrow F(x)$ is a triangulation of $F(x)$ .

As $\varphi(s)$ is a convex subset of $B(S(s))$ , $\varphi(s)$ is closed in $B(S(s))$ , and
then as $B(S(s))$ is closed in $F(x)$ , we conclude $\varphi(s)$ is closed in $F(x)$ .

If $t\subseteq s$ then by 7.5, $S(t)\subseteq S(s)$ , so $\varphi(t)\subseteq\varphi(s)$ and then as $\varphi_{s}$ and $\varphi_{t}$

are identity maps, $\varphi_{t,s}=\varphi_{s}\circ\varphi_{t}^{-1}$ : $\varphi(t)\rightarrow\varphi(s)$ is the inclusion map.
Therefore axiom (T3) in the definition of triangulation is satisfied by $\varphi$

if $\{P(e) : e\in s\}$ is affine independent for each $s$ . Hence

(7.7) To establish Theorem 7.6 is suffices to verify:

(1) For $s$ , $t\in\Sigma(x)$ the set of simplices of $K(x)$ , $\varphi(s)\cap\varphi(t)=\varphi(s\cap t)$ .

(2) $F(x)=\bigcup_{s\in\Sigma(x)}\varphi(s)$ .

(3) $\{P(e) : e\in s\}$ is affine independent of order $dim(s)+1$ for each
$s\in\Sigma(s)$ .

(4) $C\subseteq F(x)$ is closed in $F(x)$ if and only if $C\cap\varphi(s)$ is closed in
$\varphi(s)$ for each $s\in\Sigma(x)$ .

For 7.7.1 is axiom (T1), while 7.7.2 and 7.7.4 are axiom (T2). Finally
we have seen that 7.7.3 implies axiom (T3).

So it remains to verify 7.7.1 through 7.7.4.

(7.8) (1) We may assume $X=\{x_{0}<\cdots<x_{n}=x\}$ is a chain and
$\zeta$ : $f(x_{i})\rightarrow X(\leq x_{i})$ is an isomorphism for each $i$ .

(2) Under this assumption on $X$ , 7.7.2 implies 7.7.4.

Proof. Consider the polyhedral cell complex $\overline{X}=(\overline{X},\overline{f},\overline{F},\overline{B})$ ,

there $\overline{X}=f(x),\overline{f}(v)=f(v),\overline{F}(v)=F(v)$ , $\zeta$ : $f(v)\rightarrow f(x)$ is inclu-

sion, $\overline{f}_{v}$ is the identity map, and $\overline{B}(v)=B(v)$ for each $v\in f(x)$ . Notice
that the combinatorial cell complex $(\overline{X},\overline{f})$ of this polyhedral complex
is just the simplicial cell complex of $O(f(x))$ ; in particular by 7.3, there
is a natural isomorphism of $K(x)$ with $K(\overline{X},\overline{f})$ . Then if Theorem 7.6
holds for $\overline{X}$ it also holds for $X$ , so replacing $X$ by $\overline{X}$ , it suffices to take
$X=f(x)$ and $\zeta$ : $f(x)\rightarrow X$ an isomorphism.

Let $S$ be a simplex of $X$ , $\Sigma_{S}=\{s\in\Sigma(x) : B(s)\subseteq S\}$ , $s\in\Sigma(x)$ ,

and $ss=\{(w, v)\in s : w, f_{w}^{-1}(v)\in S\}$ . Then $\varphi(s)\cap B(S)\subseteq B(S(s))\cap$
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$B(S)=B(S(s)\cap S)$ as $B$ is a triangulation. Also $\varphi(s)\cap B(S(s)\cap S)=$

$\varphi(s_{S})$ as the elements of $\varphi(s)$ are of the form

$\sum_{i}a_{i}(\in B(w_{i})+(1-\in)B(f_{w_{i}}^{-1}(v_{i})))$

while the elements $B(w_{i})$ , $B(f_{w_{i}}^{-1}(v_{i}))$ , are affine independent in $B(S(s))$ .

Therefore $\varphi(s)\cap B(S)=\varphi(s_{S})$ . In particular for $s$ , $t\in\Sigma(x)$ , $\varphi(s)\cap\varphi(t)$

$=\varphi(s)\cap B(S(t))\cap\varphi(t)\cap B(S(s))=\varphi(s_{S(t)})\cap\varphi(t_{S(s)})=\varphi(s_{T})\cap\varphi(t_{T})$ ,

where $T$ $=S(s)\cap S(t)$ , since $s\subseteq S(s)$ so $S_{s(t)}=s_{T}$ and similarly

$t_{S(s)}=t_{T}$ . Therefore if for each simplex $T$ and each $e$ , $f\in\Sigma_{T}$ , we have
$\varphi(e)\cap\varphi(f)=\varphi(e\cap f)$ , then 7.7.1 holds. Similarly if $B(T)=\bigcup_{e\in\Sigma_{T}}\varphi(e)$ ,

for each $T$ , then 7.7.2 holds as does 7.7.4. The latter holds because $B$

is a triangulation so $C$ is closed in $F(x)$ if and only if $C\cap B(T)$ is
closed in $B(T)$ for each $T$ , and because 7.7.4 holds when $T$ $=X$ and
$B(T)=\bigcup_{e\in\Sigma_{T}}\varphi(e)$ , since in that case $\Sigma(x)$ is finite. So it suffices to

show for each simplex $S$ of $X$ that $\varphi$ : $\Sigma_{S}\rightarrow B(S)$ satisfies 7.7.1 through
7.7.3. Hence replacing $X$ by $S$ , we may assume $X$ is a chain. That is
(1) holds, and we have already observed that (2) holds.

In the remainder of the proof we assume $X$ is as described in Lemma
7.8. Therefore $X$ is an $n$-simplex with greatest element $x$ and $\zeta$ is
injective, so by 3.1, $(X, f)$ is the simplicial cell complex of the $n$-simplex.
That is $(X, f)$ is isomorphic to the complex $(X(n), f)$ of Example (2) in

Section 3, so $K=K(X)$ is isomorphic to the complex $K(n)=K(X(n))$
discussed in Example 5.8 and subsequent lemmas in Section 5. Further
by 7.3, the residual complex $K(x)$ is isomorphic to $K$ . Thus without
loss we may take $X=X(n)$ , $V(x)=V(X)=V(n)$ , etc. We adopt the
notational conventions of Section 5 used to discuss $X(n)$ .

Next $F(x)=[B_{i} : 0\leq i\leq n]$ is the convex affine subspace of $R^{n}$

generated by the affine independent set of vectors $B_{i}=B(x_{i})$ , $0\leq i\leq n$ .
Further for $(\alpha, \beta)\in V(n)$ , $P(\alpha, \beta)=\in B_{\alpha}+(1-\in)B_{\beta}$ .

(7.9) For each $s\in\Sigma(x)$ , $\{P(e) : e\in s\}$ is affine independentn of
order $dim(s)+1$ .

Proof. Without loss $s$ is a maximal simplex, so $s=\{s_{0}, \ldots, s_{n}\}$

is described in 5.10. Translating, we may take $B_{0}=0$ , so it remains
to show $Y=\{P(s_{i}) : 0\leq i\leq n\}$ contains a basis for $R^{n}$ as a linear
space. As $\{B_{0}, \ldots, B_{n}\}$ is affine independent and generates $F(x)$ of
affine dimension $n$ , $\{B_{1}, \ldots, B_{n}\}$ contains a basis for $R^{n}$ so it suffices to
show $B_{i}\in\langle Y\rangle=U$ . Assume not; then as $ i=\alpha$ or $\beta$ for some $(\alpha, \beta)\in s$ ,
we can pick $k$ minimal subject to $B_{\alpha_{k}}$ or $B_{\beta_{k}}\not\in U$ , where $s_{k}=(\alpha_{k}, \beta_{k})$ .
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As $s$ is a path in $(V(n), \rightarrow)$ , $s_{k}\in l(s_{k-1})$ so without loss $\alpha_{k}=\alpha_{k-1}$ and
$\beta_{k}=\beta_{k-1}+1$ . Now $P(s_{k})=\in B_{\alpha_{k}}+(1-\in)B_{\beta_{k}}\in U$ . By minimality of
$k$ , $B_{\alpha_{k-1}}\in U$ , so as $\alpha_{k}=\alpha_{k-1}$ , $B_{\beta_{k}}\in U$ , contrary to the choice of $k$ .

Remark 7.10. Observe that if $(\alpha, \beta)$ and $(\gamma, \delta)\in V(n)$ with $\alpha\geq\gamma$

then one of the following holds:
(0) $\gamma\geq\beta\geq\delta$ and $y\in x^{\perp}$ .
(I) $\beta>\gamma$ and $y\not\in x^{\perp}$ .

(II) $\beta<\delta$ and $y\not\in x^{\perp}$ .

Define a subset $\theta$ of $V(n)$ to be convex if whenever $u=(\alpha, \beta)$ and
$v=(\gamma, \delta)$ are in $\theta$ with $\alpha\geq\gamma$ and $u\not\in v^{\perp}$ then

(i) $(\alpha, \gamma)$ and $(\beta, \delta)$ are in $\theta$ if $\beta>\gamma$ , and
(ii) $(\gamma, \beta)$ and $(\alpha, \delta)$ are in $\theta$ if $\beta<\delta$ .

Theorem 7.11. If $\theta\subseteq V(n)$ is convex then $D(\theta)=C(\theta)$ is con-
vex, where $ D(\theta)=\bigcup_{s\subseteq\theta,s\in\Sigma}\varphi$ and $C(\theta)=[P(x) $:$ $x $\in\theta]$ .

Proof. First if $\theta$ is a clique then $D(\theta)=\varphi(\theta)=C(\theta)$ by definition
of $\varphi(\theta)$ . So we may assume $\theta$ is not a clique. In particular as we prove
Theorem 7.11 by induction on $|\theta|$ , the induction is anchored.

Let $N=\min\{\alpha : (\alpha, \beta)\in\theta\}$ and $M=\max\{\beta : (\alpha, \beta)\in\theta\}$ . Assume
first that $N\geq M$ . Then whenever $(\alpha, \beta)$ , $(\gamma, \delta)\in\theta$ with $\alpha\geq\gamma$ , we have
$\beta\leq M\leq N\leq\gamma$ , so by Remark 7.10, either $(\gamma, \delta)\in(\alpha, \beta)^{\perp}$ or $\beta<\delta$ ,
$\gamma<\alpha$ , and as $\theta$ is convex, $(\gamma, \beta)$ and $(\alpha, \delta)$ are in $\theta$ .

Let $\theta^{*}=\{(\alpha, \beta)\in\theta : \theta\not\leqq(\alpha, \beta)^{\perp}\}$ . As $\theta$ is not a clique, $\theta^{*}\neq\emptyset$ .

Define
$\beta_{0}=\min\{\beta : (\alpha, \beta)\in\theta^{*}\}$ ,

$\alpha_{0}=\max\{\alpha : (\alpha, \beta_{0})\in\theta^{*}\}$ ,

$\alpha_{1}=\min\{\alpha : (\alpha, \beta)\in\theta^{*}\}$ ,

$\beta_{1}=\max\{\beta : (\alpha_{1}, \beta)\theta^{*}\}$ ,

$v_{i}=(\alpha_{i}, \beta_{i})$ , and $\theta_{i}=\theta-\{v_{i}\}$ .

By definition of $v_{0}$ , there exists $(\gamma, \delta)\in\theta-v_{0}^{\perp}$ , so by definition of
$\beta_{0}$ , we have $\delta\geq\beta_{0}$ . Thus by an earlier remark, $\beta_{0}<\delta$ and $\gamma<\alpha_{0}$ .

Then by definition of $v_{1}$ , $\alpha_{1}\leq\gamma<\alpha_{0}$ . By symmetry, $\beta_{0}<\beta_{1}$ .
Claim $\theta_{0}$ is convex. For if $(\alpha, \beta)$ , $(\gamma, \delta)\in\theta$ with $\alpha\geq\gamma$ and $(\gamma, \delta)\not\in$

$(\alpha, \beta)^{\perp}$ , then by an earlier remark, $\beta<\delta$ , $\gamma<\alpha$ , and $(\gamma, \beta)$ , $(\alpha, \delta)\in\theta$ .

As $\beta_{0}\leq\beta<\delta$ , $(\alpha, \delta)\neq v_{0}$ , while if $\beta=\beta_{0}$ then $\alpha_{0}\geq\alpha>\gamma$ , so
$(\gamma, \beta)\neq v_{0}$ . Hence $(\gamma, \beta)$ , $(\alpha, \delta)\in\theta_{0}$ and $\theta_{0}$ is indeed convex. Similarly

$\theta_{1}$ is convex.
Next let $X=C(\theta_{0})$ , $Y=C(\theta_{1})$ , $q=P(v_{0})$ , and $p=P(v_{1})$ . Then

$X=|p$ , $C(\theta_{0}\cap\theta_{1})]$ and $C(\theta_{0}\cap\theta_{1})\subseteq X\cap Y$ , so $X=[p, X\cap Y]$ and



Combinatorial Cell Complexes 27

similarly $Y=[q, X\cap Y]$ . By induction on the order of $\theta$ , $X=D(\theta_{0})$

and $Y=D(\theta_{1})$ .

Also $p=P(v_{1})=\in B_{\alpha_{1}}+(1-\epsilon)B_{\beta_{1}}$ and $q=P(v_{0})=\in B_{\alpha_{O}}+(1-$

$\in)B_{\beta_{o}}$ . Further $\alpha_{0}>\alpha_{1}$ and $\beta_{1}>\beta_{0}$ , so $v_{0}\not\in v_{1}^{\perp}$ and hence by an earlier
remark, $(\alpha_{0}, \beta_{1})$ , $(\alpha_{1}, \beta_{0})\in\theta$ , and indeed as neither is $v_{0}$ nor $v_{1}$ , each is

even in $\theta_{0}\cap\theta_{1}$ . Therefore

$e=P(\alpha_{0}, \beta_{1})=\in B_{\alpha_{0}}+(1-\in)B_{\beta_{1}}\in X\cap Y$

and
$f=\in B_{\alpha_{1}}+(1-\in)B_{\beta_{0}}\in X\cap Y$.

Thus $X\cup Y$ is convex by 6.3.1 and 6.2. Finally observe that $X\cup Y=$

$D(\theta)$ , so that Theorem 7.11 holds in this case. For as $v_{0}\not\in v_{1}^{\perp}$ , each
$ s\in\Sigma$ with $ s\subseteq\theta$ is contained in $\theta_{0}$ or $\theta_{1}$ .

This leaves the case $N<M$ . This time let $\alpha_{0}=N$ , $\beta_{0}=\max\{\beta$ :
$(\alpha_{0}, \beta)\in\theta\}$ , $\beta_{1}=M$ , $\alpha_{1}=\min\{\alpha : (\alpha, \beta_{1})\in\theta\}$ , $v_{i}=(\alpha_{i}, \beta_{i})$ , and $\theta_{i}=$

$\theta-\{v_{i}\}$ . This time $\beta_{0}\leq\alpha_{0}=N<M=\beta_{1}\leq\alpha_{1}$ , so $v_{0}\not\in v_{1}^{\perp}$ . Again $\theta_{i}$

is convex. For if $(\alpha, \beta)$ , $(\gamma, \delta)\in\theta$ with $\alpha\geq\gamma$ and $(\gamma, \delta)\not\in(\alpha, \beta)^{\perp}$ then
by Remark 7.10, either (i) $\beta>\gamma$ and $(\alpha, \gamma)$ , $(\beta, \delta)\in\theta$ , or (ii) $\beta<\delta$ and
$(\gamma, \beta)$ , $(\alpha, \delta)\in\theta$ . In case (i), $\alpha\geq\beta>\gamma\geq N=\alpha_{0}$ , so $v_{0}\neq(\alpha, \gamma)$ or
$(\beta, \delta)$ . Similarly $\beta_{1}=M\geq\beta>\gamma\geq\delta$ , so $v_{1}\neq(\alpha, \gamma)$ or $(\beta, \delta)$ . Thus
$(\alpha, \gamma)$ , $(\beta, \delta)\in\theta_{0}\cap\theta_{1}$ in case (i). On the other hand in case (ii), $\beta<\delta$ ,

so $\alpha>\gamma\geq\alpha_{0}$ and if $\gamma=\alpha_{0}$ then $\beta_{0}\geq\delta>\beta$ , so $v_{0}\neq(\gamma, \beta)$ or $(\alpha, \delta)$ .

Also $\beta_{1}\geq\delta>\beta$ and if $\beta_{1}=\delta$ then $\alpha_{1}\leq\gamma<\alpha$ , so $v_{1}\neq(\gamma, \beta)$ or $(\alpha, \delta)$ .

So again $(\alpha, \gamma)$ , $(\beta, \delta)\in\theta_{0}\cap\theta_{1}$ .

So $\theta_{0}$ and $\theta_{1}$ are convex. Again let $X=C(\theta_{0})$ , $Y=C(\theta_{1})$ , $q=$

$P(v_{0})$ , and $p=P(v_{1})$ . As before, $X=|p$ , $X\cap Y$ ] and $Y=[q, X\cap Y]$ ,

and by induction, $X=D(\theta_{0})$ and $Y=D(\theta_{1})$ . As $v_{0}\not\in v_{1}^{\perp}$ , as $\alpha_{1}>\alpha_{0}$ ,

and as $\beta_{1}=M<N=\alpha_{0}$ , it follows from Remark 7.10 and the convexity
of $\theta$ that $(\alpha_{1}, \alpha_{0})$ , $(\beta_{1}, \beta_{0})\in\theta$ , and then even are in $\theta_{0}\cap\theta_{1}$ . So

$e=P(\alpha_{1}, \alpha_{0})=\in B_{\alpha_{1}}+(1-\in)B_{\alpha o}$

and
$f=P(\beta_{1}, \beta_{0})=\in B_{\beta_{1}}+(1-\in)B_{\beta_{o}}$

are in $D(\theta_{0}\cap\theta_{1})\subseteq X\cap Y$ . Hence by 6.3.2 and 6.2, $X\cup Y$ is convex.
Finally as above, $X\cup Y=D(\theta)$ , completing the proof.

Corollary 7.12. A $=\bigcup_{s\in\Sigma}\varphi(s)$ .

Proof. Notice $V(n)$ is convex with $\Sigma=\{s\in\Sigma : s\subseteq V(n)\}$ , so
$D(V(n))=\bigcup_{s\in\Sigma}\theta(s)$ is convex by Thoerem 7.11. But $ B_{\alpha}=P(\alpha, \alpha)\in$

$C(V(n))=D(V(n))$ for each $\alpha$ , $0\leq\alpha\leq n$ . Therefore $A=[B_{\alpha}$ : $ 0\leq$

$\alpha\leq n]\subseteq D(V(n))$ , completing the proof.
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\S 8. The proof of Theorem 7.6 is completed

In this section we complete the proof of Theorem 7.6. By 7.8 and

the discussion following the proof of that lemma, we have reduced to

the case where $X=X(n)$ is an $n$-simplex with maximal member $x=n$ ,

$A=F(x)$ , $\Sigma=\Sigma(x)$ , and $K=K(X)=K(x)=K(n)$ . By 7.7, 7.8, 7.9,
and 7.12, it suffices to prove;

(8.1) For $s$ , $ t\in\Sigma$ , $\varphi(s)\cap\varphi(t)=\varphi(s\cap t)$ .

Recall we have

$V(n)=\{(\alpha, \beta) : 0\leq\beta\leq\alpha\leq n\}$

with $(\alpha’, \beta’)\in L(\alpha, \beta)$ if and only if $\beta’\leq\beta\leq\alpha’\leq\alpha$ .
Let $y\in A$ . Recall from Section 7 that $A=[B_{i} : 0\leq i\leq n]$ is

the polytope in $R^{n}$ generated by the affine independent set of vectors
$B_{i}$ and for $(\alpha, \beta)\in V(n)$ , $P(\alpha, \beta)=\in B_{\alpha}+(1-\in)B_{\beta}$ . In particular
$y=\sum_{i=0}^{r\iota}a_{i}B_{i}$ with $a_{i}\geq 0$ and $\sum_{i}a_{i}=1$ , and that this expression is
unique as the $B_{i}$ are affine independent. Define

$\sup(y)=\{i\in X : a_{i}\neq 0\}$

and for $ s\in\Sigma$ let
$\sup(s)=\{\alpha, \beta : (\alpha, \beta)\in s\}$

(8.2) If $s$ , $ t\in\Sigma$ with $\sup(s)\cup\sup(t)\neq X$ then $\varphi(s)\cap\varphi(t)=\varphi(s\cap t)$ .

Proof. Let $m\not\in\sup(s)\cup\sup(t)$ . Replace $X$ by $\overline{X}=X-\{m\}\cong$

$X(n-1)$ , $V(n)$ by

$\overline{V}(n)=\{(\alpha, \beta)\in V(n) : \alpha, \beta\in\overline{X}\}\cong V(n-1)$ ,

and $A$ by $\overline{A}=[B_{i} : i\in\overline{X}]$ . Then by induction on $n,\overline{\varphi}$ : $ K(\overline{V}(n))\rightarrow$

$\overline{A}$ is a triangulation, where $\overline{\varphi}$ is the restriction of $\varphi$ to $K(\overline{V}(n))$ . As
$\sup(s)\cup\sup(t)\subseteq\overline{X}$ , $s$ and $t$ are simplices of $K(\overline{V}(n))$ , so $\varphi(s)\cap\varphi(t)=$

$\overline{\varphi}(s)\cap\overline{\varphi}(t)=\overline{\varphi}(s\cap t)=\varphi(s\cap t)$ .

From now on pick $s$ , $ t\in\Sigma$ such that $\varphi(s)\cap\varphi(t)\neq\varphi(s\cap t)$ . If $r\subseteq s$

then $\varphi(r)=[P(v) : v\in r]\subseteq[P(v) : v\in s]=\varphi(s)$ , so $\varphi(s\cap t)\subseteq$

$\varphi(s)\cap\varphi(t)$ . Thus we can pick $y\in\varphi(s)\cap\varphi(t)-\varphi(s\cap t)$ . By a remark
above there is a unique expression, $y=\sum_{i}a_{i}B_{i}$ with $0\leq a_{i}\in R$ and
$\sum_{i}a_{i}=1$ . Also by 7.9, $\{P(v) : v\in s\}$ is affine independent, so there is
a unique expression $y=\sum_{v\in s}b_{v}P(v)$ and similarly a unique expression
$y=\sum_{v\in t}c_{v}P(v)$ . For $ r\in\Sigma$ and $\gamma\in X$ , let

$I_{r}(\gamma)=\{\alpha : (\alpha, \gamma)\in r\}$ and $J_{r}(\gamma)=\{\beta : (\gamma, \beta)\in r\}$
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(8.3) $\sup(y)=\sup(s)=\sup(t)=X$ .

Proof. If $\sup(y)=X$ then as $\sup(y)\subseteq\sup(s)\cap\sup(t)$ , the lemma
holds. So it remains to prove $\sup(y)=X$ . So assume not. Let $X_{s}=$

$\{\alpha, \beta : b_{(\alpha,\beta)}\neq 0\}$ and $s_{0}=\{v\in s:b_{v}\neq 0\}$ . Define $X_{t}$ and $t_{0}$ similarly.

Then $X\neq\sup(y)=X_{s}=X_{t}$ , $X_{s}=\sup(s_{0})$ , and $X_{t}=\sup(t_{0})$ . By 8.2,
$y\in\varphi(s_{0})\cap\varphi(t_{0})=\varphi(s_{0}\cap t_{0})\subseteq\varphi(s\cap t)$ , a contradiction.

(8.4) (1) For $\alpha>\beta^{*}(s)$ , $a_{\alpha}/\in=\sum_{\beta\in J_{s}(\alpha)}b_{\alpha,\beta}$ .

(2) For $\beta<\alpha_{*}(s)$ , $a_{\beta}/(1-\in)=\sum_{\alpha\in I_{s}(\beta)}b_{\alpha,\beta}$ .

(3) If $\kappa=\alpha_{*}(s)=\beta^{*}(s)$ then

$a_{\kappa}=\in(\sum_{\beta\in J_{s}(\kappa)}b_{\kappa,\beta})+(1-\in)\sum_{\alpha\in I_{s}(\kappa)}b_{\alpha,\kappa}$
.

Proof. This follows as $P(\alpha, \beta)=\in B_{\alpha}+(1-\in)B_{\beta}$ and $\beta^{*}(s)\leq$

$\alpha_{*}(s)$ .

Recall from Section 5 that we can think of the members of $V(n)$ as
the lower diagonal elements in an $n+1$ by $n+1$ square array. Notice
we have a duality on statements concerning $V(n)$ and $K$ corresponding
to the involution on $X$ interchanging $i$ and $n-i$ for each $i\in X$ , and
this corresponds to reflecting $V(n)$ about the “diagonal” $\{(n, 0)$ , $(n-$
$1$ , 1), $\ldots$ , $(0, n)\}$ . In applying this duality, one must also interchange the
roles of $\in and$ $ 1-\in$ . We use this duality frequently from now on. In
particular for $k\in X$ define

$R^{*}(k)=\{z=\sum_{i}z_{i}B_{i}\in A:\sum_{i\geq k}z_{i}\geq\in\}$

and define $R_{*}(k)$ dually. That is

$R_{*}(k)=\{z=\sum_{i}z_{i}B_{i} ^{:} _{i\leq k}\sum z_{i}\geq 1-\in\}$

Define $\alpha_{*}(s, y)$ to be the minimum $\alpha$ such that $b_{\alpha,\beta}\neq 0$ for some $(\alpha, \beta)\in$

$s$ and define $\beta^{*}(s, y)$ dually.

(8.5) Let $k\in X$ . Then
(1) $y\in R^{*}(k)$ if and only if $k\leq\alpha_{*}(s, y)$ ,

(2) $y\in R_{*}(k)$ if and only if $k\geq\beta^{*}(s, y)$ .

Proof. We prove (1); then (2) follows by duality. Suppose first that
$k\leq\alpha_{*}(s, y)$ . Then by 8.3, $\sum_{j\geq k}a_{j}=\in(\sum_{v\in s}b_{v})+(1-\in)\sum_{\alpha\in I_{s}(k)}b_{\alpha,k}$
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$=\in+(1-\in)b$ , where $b\geq 0$ , since $\sum_{v\in s}b_{v}=1$ and $b_{v}\geq 0$ . Thus if
$k\leq\alpha_{*}(s, y)$ , $y\in R^{*}(k)$ .

On the other hand if $k>\beta^{*}(s, y)$ then by 8.4, $\sum_{j\geq k}a_{j}=\in(\sum_{\alpha(v)\geq k}$

$b_{v})\leq\in with$ equality if and only if $k\leq\alpha_{*}(s, y)$ , where $v=(\alpha(v), \beta(v))$ .

So as $\alpha_{*}(s, y)\geq\beta^{*}(s, y)$ , we conclude that if $y\in R^{*}(k)$ then $ k\geq$

$\alpha_{*}(s, y)$ .

(8.6) (1) $\varphi(s)\cap R^{*}(k)=\{z\in\varphi(s) : \alpha_{*}(s, z)\geq k\}=\varphi(s^{*}(k))$ ,

where $s^{*}(k)=\{(\alpha, \beta)\in s:\alpha\geq k\}$ .

(2) $\varphi(s)\cap R_{*}(k)=\{z\in\varphi(s) : \beta^{*}(s, z)\leq k\}=\varphi(s_{*}(k))$ , where
$s_{*}(k)=\{(\alpha, \beta)\in s:\beta\leq k\}$ .

Proof. As usual (2) is the dual of (1) so it suffices to prove (1).
But (1) follows from 8.5.1.

(8.7) $\alpha_{*}(s)\leq\beta^{*}(t)+1$ .

Proof. Let $\alpha_{*}(s)=k$ . By 8.6, $\varphi(s)\subseteq R^{*}(k)$ and $\varphi(t)\cap R^{*}(k)=$

$\varphi(t^{*}(k))$ . Similarly setting $j=\beta^{*}(t)$ , we have $\varphi(t)\subseteq R_{*}(j)$ and $\varphi(s)\cap$

$R_{*}(j)=\varphi(s_{*}(j))$ . Therefore

$\varphi(s)\cap\varphi(t)=\varphi(s)\cap R_{*}(j)\cap\varphi(t)\cap R^{*}(k)=\varphi(s_{*}(j))\cap\varphi(t^{*}(k))$

Assume $j<k-1$ . Then $k-1\not\in\sup(t^{*}(k))$ as $\alpha_{*}(t^{*}(k))\geq k>k-1$

and $\beta^{*}(t^{*}(k))\leq j<k-1$ . Therefore by 8.3, $\varphi(s)\cap\varphi(t)=\varphi(s_{*}(j))\cap$

$\varphi(t^{*}(k))=\varphi(s_{*}(j)\cap t^{*}(k))\subseteq\varphi(s\cap t)$ , a contradiction.

(8.8) Suppose $v\in s\cap t$ . Then
(1) If $\sup(s-\{v\})\neq X$ then $b_{v}\neq c_{v}$ .

(2) If $J_{s}(\alpha)=\{\beta\}$ then $J_{t}(\alpha)\neq\{\beta\}$ .

(3) If $I_{s}(\beta)=\{\alpha\}$ then $I_{t}(\beta)\neq\{\alpha\}$ .

Proof. Assume $\sup(s-\{v\})\neq X$ but $b_{v}=c_{v}=b$ and let $y’=$

$(y-bP(v))/(1-b)$ . As $P(v)\in\varphi(s\cap t)$ , $y’\in\varphi(s)\cap\varphi(t)-\varphi(s\cap t)$ . Then
as $\sup(y’)\subseteq\sup(s-\{v\})\neq X$ , 8.3 supplies a contradiction.

Thus (1) is established. Notice (3) is the dual of (2) so it remains
to prove (2). Assume $J_{s}(\alpha)=\{\beta\}$ . Then by 8.4, $a_{\alpha}/\in=b_{v}$ and $\alpha\not\in$

$\sup(s-\{v\})$ . Thus by (1), $b_{v}\neq c_{v}$ , so by symmetry, $J_{t}(\alpha)\neq\{\beta\}$ .

We next observe that we can choose $s$ , $t$ to be maximal simplices
of dimension $n$ . For $s\subseteq s_{0}$ and $t\subseteq t_{0}$ where $s_{0}$ and $t_{0}$ are maximal
simplices and hence of dimension $n$ by Remark 5.11. Notice if $r\subseteq s_{0}$

then by definition of $\varphi$ , $\varphi(r)\cap\varphi(s)=\varphi(r\cap s)$ . Hence if $\varphi(s_{0})\cap\varphi(t_{0})=$

$\varphi(s_{0}\cap t_{0})$ then $\varphi(s)\cap\varphi(t)=\varphi(s)\cap\varphi(t)\cap\varphi(s_{0}\cap t_{0})=\varphi(s)\cap\varphi(s_{0}\cap t)=$

$\varphi(s\cap t)$ . Therefore replacing $s$ , $t$ by $s_{0}$ , $t_{0}$ if necessary, we may assume $s$
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and $t$ are of dimension $n$ . Hence $s$ and $t$ are described in 5.10 and 5.11.
In particular $\alpha_{*}(s)=\beta^{*}(s)$ and $\alpha_{*}(t)=\beta^{*}(t)$ . Let $\kappa=\alpha_{*}(s)$ .

(8.9) $\alpha_{*}(t)=\alpha_{*}(s)=\kappa$ .

$Proo/$. Without loss $\kappa>\alpha_{*}(t)$ . Then as $\alpha_{*}(t)=\beta^{*}(t)$ , $\beta^{*}(t)=$

$\kappa-1$ by 8.7.
Now $\alpha_{*}(s, y)\geq\alpha_{*}(s)=\kappa$ , so by 8.5, $y\in R^{*}(\kappa)$ and then by another

application of 8.5, $\alpha_{*}(t, y)\geq\kappa$ . Then as $X=\sup(y)$ , $v=(0, \kappa)$ and
$u=(n, \kappa-1)$ are in $t$ . By duality, $\beta^{*}(s, y)\leq\kappa-1$ and $u$ , $v\in s$ .

Next by 8.4, either $I_{s}(0)=\{\kappa\}$ and $b_{v}=a_{0}/(1-\in)$ or $J_{s}(\kappa)=\{0\}$

and $ b_{v}=a_{\kappa}/\in$ . Similarly either $I_{t}(0)=\{\kappa-1, \kappa\}$ and $c_{v}=a_{0}/(1-\in)$ or
$J_{t}(\kappa)=\{0\}$ and $ c_{v}=a_{\kappa}/\in$ . Then by 8.6, we may asssume $I_{s}(0)=\{\kappa\}$ ,

$b_{v}=a_{0}/(1-\in)$ , $J_{t}(\kappa)=\{0\}$ and $ c_{v}=a_{\kappa}/\in$ . Now by 8.4, $a_{0}/(1-$

$\in)=c_{v}+C$ and $a_{\kappa}/\in=b_{v}+B$ , where $C=\sum_{\alpha\in I_{t}(0)}c_{\alpha,0}-c_{v}$ and

$B=\sum_{\beta\in J_{s}(\kappa)}b_{\kappa,\beta}-b_{v}$ . But then

$b_{v}=a_{0}/(1-\in)=c_{v}+C=a_{\kappa}/\in+C=b_{v}+B+C$ .

We conclude $B=C=0$ and hence $b_{v}=c_{v}$ . Now 8.6 supplies a
contradiction.

Let $S$ be the set of maximal simplices $m$ of $K$ with $\alpha_{*}(m)=\kappa$ .

Thus $s$ , $t\in S$ . We partition $S$ into four classes $S_{i}$ , $1\leq i\leq 4$ , where

$S_{1}=$ { $m\in S:J_{m}(\kappa)=\{0\}$ and $I_{m}(\kappa)=\{n\}$ },

$S_{2}=$ { $m\in S:J_{m}(\kappa)=\{0\}$ and $J_{m}(n)=\{\kappa\}$ },

$S_{3}=$ { $m\in S:I_{m}(0)=\{\kappa\}$ and $I_{m}(\kappa)=\{n\}$ },

$S_{4}=$ { $m\in S:I_{m}(0)=\{\kappa\}$ and $J_{m}(n)=\{\kappa\}$ }.

Notice that the duality map interchanges $S_{2}$ and $S_{3}$ and fixes $S_{1}$ and
$S_{4}$ . So anything we prove about $S_{2}$ establishes the dual statement for
$S_{3}$ at the same time.

(8.10) If $s\in S_{3}\cup S_{4}$ then $t\in S_{1}\cup S_{2}$ .

$Proo/$. This follows from 8.8.3.

(8.11) Let $s\in S_{3}\cup S_{4}$ and deffine

$b=$ $\sum$ $b_{\alpha,\kappa}$ ,
$\alpha\in I_{s}(\kappa)$

$c=$ $\sum$
$c_{\alpha,\kappa}$

$\alpha\in I_{t}(\kappa)$

$\overline{b}=$

$\sum$ $b_{\kappa,\beta}$ ,
$0<\beta\in J_{s}(\kappa)$

$c^{*}=$ $\sum$
$c_{\alpha,0}$

$\kappa<\alpha\in I_{t}(0)$
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Then
(1) $b<c$ and $\overline{b}+c^{*}\neq 0$ ,

(2) $s\in S_{3}$ .

Proof By 8.10, $t\in S_{1}\cup S_{2}$ . Thus $J_{t}(\kappa)=\{0\}$ , so $c_{\kappa,0}=a_{\kappa}/\in-$

$(1 -\in)c/\in$ by 8.4.3. Similarly as $s\in S_{3}\cup S_{4}$ , $I_{s}(0)=\{\kappa\}$ , so $b^{*}=$

$\sum_{\kappa<\alpha\in I_{s}(0)}b_{\alpha,0}=0$ . Now by 8.4.2,

$(^{*})$ $a_{0}/(1-\epsilon)=b_{\kappa,0}+b^{*}=c_{\kappa,0}+c^{*}$

so $b_{\kappa,0}=c_{\kappa,0}+c^{*}=a_{\kappa}/\in-(1-\in)c/\in+c^{*}$ . Next by 8.4.3, $a_{\kappa}/\in=$

$ b_{\kappa,0}+\overline{b}+(1-\in)b/\in$ , so

$b_{\kappa,0}=a_{\kappa}/\in-(1-\in)c/\in+c^{*}=b_{\kappa,0}+\overline{b}+(1-\in)(b-c)/\epsilon+c^{*}$

so that

$(^{**})$ $ 0=\overline{b}+c^{*}+(1-\in)(b-c)/\in$ .

Therefore to prove (1) it suffices to show $b<c$ . Assume otherwise.
Then $\overline{b}$ , $c^{*}$ , $(b-c)\geq 0$ , so by $(^{**})$ , $\overline{b}=c^{*}=b-c=0$ . But then
$b^{*}=c^{*}=0$ , so by $(^{*})$ , $b_{\kappa,0}=c_{\kappa,0}$ and applying 8.8.1 to $v=(\kappa, 0)$ , we
have a contradiction.

Therefore (1) is established and it remains to prove (2), so we may
take $s\in S_{4}$ . Therefore $J_{s}(n)=\{\kappa\}$ , so by 8.4.1, $a_{n}/\in=b_{n,\kappa}$ . Hence
$b=b_{n,\kappa}+\tilde{b}=a_{n}/\in+\tilde{b}$ , where $\tilde{b}=\sum_{n>\alpha\in I_{s}(\kappa)}b_{\alpha,\kappa}$ . Again by 8.4.1,

$\hat{c}+c_{n,\kappa}=a_{n}/\in$ , where $\hat{c}=\sum_{n>\beta\in J_{t}(n)}c_{n,\beta}$ . Therefore

$b=a_{n}/\in+\tilde{b}=c_{n,\kappa}+\tilde{b}+\hat{c}$ .

Finally as $s\in S_{4}$ , $t\not\in S_{2}$ by the dual of 8.10, so $t\in S_{1}$ . Thus $I_{t}(\kappa)=\{n\}$ ,

so $c=c_{n,\kappa}$ . Therefore $b=c_{n,\kappa}+\tilde{b}+\hat{c}=c+\tilde{b}+\hat{c}\geq c$ , as $\tilde{b},\hat{c}\geq 0$ . This
contradicts (1).

(8.12) Up to a permutation of $\{s, t\}$ and duality, $(s, t)\in S_{1}\times S_{1}$ ,
$S_{3}\times S_{1}$ , or $S_{3}\times S_{2}$ .

Proof This follows from 8.10 and 8.11.

Define $v=(\alpha, \beta)\in s$ to be an inflection point of $s$ if $v=(\kappa, 0)$ or
$(n, \kappa)$ , or $|J_{s}(\alpha)|>1<|I_{s}(\beta)|$ . By 5.10, $s=\{v_{0}, \ldots, v_{n}\}$ is a directed
path in $(V(n), \rightarrow)$ with $v_{0}=(\kappa, 0)$ and $v_{n}=(n, \kappa)$ . Let $v_{i_{0}}$ , $\ldots$ , $v_{i_{l}}$

be the inflection points with $i_{j}<i_{j+1}$ . Then $v_{i_{0}}=(\alpha_{0}, \beta_{0})=(\kappa, 0)$

and $v_{i_{l}}=(n, \kappa)$ . If $s\in S_{1}\cup S_{2}$ then $J_{s}(\kappa)=\{0\}$ , so $v_{i_{1}}=(\alpha_{1}, \beta_{0})$
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with $\kappa=\alpha_{0}<\alpha_{1}$ . Then proceeding recursively, $v_{i_{2r}}=(\alpha_{r}, \beta_{r})$ and
$v_{i_{2r+1}}=(\alpha_{r+1}, \beta_{r})$ with $\alpha_{i}<\alpha_{i+1}$ and $\beta_{i}<\beta_{i+1}$ . Further if $s\in S_{1}$

then $I_{s}(\kappa)=\{n\}$ , so $l$ $=2N$ is even and $(n, \kappa)=(\alpha_{N}, \beta_{N})$ , while if
$s\in S_{2}$ then $J_{s}(n)=\{\kappa\}$ so $l$ $=2N+1$ is odd and $(n, \kappa)=(\alpha_{N+1}, \beta_{N})$ .

Then dualizing the case $s\in S_{2}$ to get the answer when $s\in S_{3}$ , we
conclude:

(8.13) The inflection points for $s$ are:
(1) $(\alpha_{i}, \beta_{i})$ , $(\alpha_{i+1}, \beta_{i})$ , $0\leq i<N$ , and $(\alpha_{N}, \beta_{N})=(n, \kappa)$ , if $s\in S_{1}$ .

(2) $(\alpha_{i}, \beta_{i})$ , $(\alpha_{i+1}, \beta_{i})$ , $0\leq i\leq N$ , if $s\in S_{2}$ .

(3) $(\alpha_{i}, \beta_{i})$ , $(\alpha_{i}, \beta_{i+1})$ , $0\leq i\leq N$ , if $s\in S_{3}$ .

(8.14) For $s\in S_{1}\cup S_{2}$ we have:

(1) $b_{\alpha,\beta_{i}}=a_{\alpha}/\in for$ $\alpha_{i}<\alpha<\alpha_{i+1}$ .

(2) $b_{\alpha_{i},\beta}=a_{\beta}/(1-\in)$ , for $\beta_{\dot{\iota}-1}<\beta<\beta_{i}$ .

(3) $b_{\alpha_{i},\beta_{i}}=b_{\kappa,0}+1/\in\sum_{\kappa<\alpha\leq\alpha_{i}}a_{\alpha}-1/(1-\in)\sum_{0\leq\beta<\beta_{i}}a_{\beta}$

$=1-1/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}-1/(1-\in)\sum_{0\leq\beta<\beta_{i}}a_{\beta}$

(4) $b_{\alpha_{i},\beta_{i-1}}=1/(1-\in)\sum_{0\leq\beta\leq\beta_{i-1}}a_{\beta}-1/\in\sum_{\kappa<\alpha<\alpha_{i}}a_{\alpha}-b_{\kappa,0}$

$=1/(1-\in)\sum_{0\leq\beta\leq\beta_{i-1}}a_{\beta}+1/\in\sum_{\alpha_{i}\leq\alpha\leq n}a_{\alpha}-1$

unless $s\in S_{2}$ and $i=N+1$ .

(5) $b_{\kappa,0}=1-1/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}$ .

(6) If $s\in S_{2}$ then $ b_{n,\kappa}=a_{n}/\in$ .

Proof. If $\alpha_{j}<\alpha<\alpha_{j+1}$ then $J_{s}(\alpha)=\{\beta_{j}\}$ because $(\alpha, \beta_{j})$ is not
an inflection point since $v_{i_{2j+1}}=(\alpha_{j+1}, \beta_{j})$ is the next inflection point

after $v_{i_{2j}}=(\alpha_{j}, \beta_{j})$ . Therefore (1) holds by 8.4.1. Similarly (2) holds.
We prove the first equality in (3) and (4) by induction on $i$ . To anchor
the induction, recall $(\alpha_{0}, \beta_{0})=(\kappa, 0)$ , so (3) holds when $i=0$ . Then for
$i>0,8.4.1$ says

$b_{\alpha_{i},\beta_{i}}=a_{\alpha_{i}}/\in-\sum_{\beta_{i}\neq\beta\in J_{s}(\alpha_{i})}b_{\alpha_{i},\beta}=a_{\alpha_{i}}/\in-\sum_{\beta_{i-1}\leq\beta<\beta_{i}}b_{\alpha_{i},\beta}$

which by (2) and induction on $i$ is equal to

$a_{\alpha_{i}}/\in-\sum_{\beta_{i-1}<\beta<\beta_{i}}a_{\beta}/(1-\in)-1/(1-\in)\sum_{0\leq\beta\leq\beta_{i-1}}a_{\beta}+1/\in\sum_{\kappa<\alpha<\alpha_{i}}a_{\alpha}+b_{\kappa,0}$

$=b_{\kappa,0}+1/\in\sum_{\kappa<\alpha\leq\alpha_{i}}a_{\alpha}-1/(1-\in)\sum_{0\leq\beta<\beta_{i}}a_{\beta}$
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as claimed. A similar argument establishes (4), except when $s\in S_{2}$ and
$i=N+1$ , when $\beta_{i-1}=\kappa$ so that 8.4.3 must be used rather than 8.4.2,
which is appropriate for smaller. In this case as $s\in S_{2}$ , $J_{s}(n)=\{\kappa\}$ so
$b_{n,\kappa}=a_{n}/\in by8.4.1$ . But also by 8.4.3, $a_{\kappa}$ is equal to

$\in b_{\kappa,0}+(1-\in)\sum_{\alpha_{N-1}\leq\alpha\leq n}b_{\alpha,\kappa}=\in b_{\kappa,0}+(1-\in)/\in\sum_{\alpha_{N-1}<\alpha<n}a_{\alpha}$

$+(1-\in)(b_{\alpha_{N-1},\kappa}+b_{n,\kappa})$

by (1), and then by induction on $i$ , $b_{n,\kappa}$ is equal to

$a_{\kappa}/(1-\in)-\in b_{\kappa,0}/(1-\in)-1/\in\sum_{\alpha_{N-1}<\alpha<n}a_{\alpha}-b_{\kappa,0}/(1-\in)$

$-1/\in\sum_{K<\alpha\leq\alpha_{N-1}}a_{\alpha}+1/(1-\in)\sum_{0\leq\beta<\kappa}a_{\beta}$

$=1/(1-\in)\sum_{0\leq\beta\leq\kappa}a_{\beta}-1/\in\sum_{\kappa<\alpha<n}a_{\alpha}-b_{\kappa,0}/(1-\in)$
.

Then as $ b_{n,\kappa}=a_{n}/\in$ , we have

$b_{\kappa,0}=\sum_{0\leq\beta\leq\kappa}a_{\beta}-(1-\in)/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}=1-1/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}$

as $\sum_{i=0}^{n}a_{i}=1$ . This gives (5) and (6) when $s\in S_{2}$ .

Similarly when $s\in S_{1}$ we conclude from the first equality in (3) that

$b_{n,\kappa}=b_{\kappa,0}+1/\epsilon\sum_{\kappa<\alpha\leq n}a_{\alpha}-1/(1-\in)\sum_{0\leq\beta<\kappa}a_{\beta}$

But also by 8.4.3,

$a_{\kappa}=\in b_{\kappa,0}+(1-\in)b_{n,\kappa}$

$=\in b_{\kappa,0}+(1-\in)b_{\kappa,0}+(1-\in)/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}-\sum_{0\leq\beta<\kappa}a_{\beta}$

$=b_{\kappa,0}+1/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}-\sum_{i\neq\kappa}a_{i}=b_{\kappa,0}+1/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}-(1-a_{\kappa})$

as $\sum_{i}a_{i}=1$ . Therefore $b_{\kappa,0}=1-1/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}$ , so that (5) holds in

this case too. Finally substituting (5) into the first inequality in (3) and
(4) gives the second inequality.

The dual of 8.14 in the case $s\in S_{2}$ is:
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(8.15) For $s\in S_{3}$ we have:
(1) $b_{\alpha,\beta_{i}}=a_{\alpha}/\in for\alpha_{i-1}<\alpha<\alpha_{i}$ .

(2) $b_{\alpha_{i},\beta}=a_{\beta}/(1-\in)$ , for $\beta_{i}<\beta<\beta_{i+1}$ .

(3) $b_{\alpha_{i},\beta_{i+1}}=1-1/(1-\in)\sum_{0<\beta<\beta_{i+1}}a_{\beta}-1/\in\sum_{\alpha_{i}<\alpha\leq n}a_{\alpha}$ .

(4) $b_{\alpha_{i},\beta_{i}}=1/\in\sum_{\alpha_{i}\leq\alpha\leq n}a_{\alpha}+1/(1-\in)\sum_{0\leq\beta\leq\beta_{i}}a_{\beta}-1$ unless $i=0$ .

(5) $b_{n,\kappa}=1-1/(1-\in)\sum_{0\leq\beta<\kappa}a_{\beta}$ .

(6) $b_{\kappa,0}=a_{0}/(1-\in)$ .

(8.16) $(s, t)\not\in S_{1}\times S_{1}$ .

Proof. Assume $s$ , $t\in S_{1}$ . Let $v=(\kappa, 0)$ and $u=(n, \kappa)$ . Then by
8.14.5, $b_{v}=c_{v}$ , while by 8.14.3, $b_{u}=c_{u}=1-1/(1-\in)\sum_{0\leq\beta<\kappa}a_{\beta}$ . Let

$y’=(y-b_{v}P(v)-b_{u}P(u))/(1-b_{v}-b_{u})$ .

Then $y’\in\varphi(s)\cap\varphi(t)-\varphi(s\cap t)$ , while $\kappa\not\in\sup(y’)$ , contradicting 8.3.

(8.17) $(s, t)\not\in S_{3}\times S_{j}$ for $j=1$ or 2.

Proof. Assume otherwise. Recall the definition of $\overline{b}$ and $c^{*}$ from
8.11. Then as $s\in S_{3},8.15$ says

$c^{*}=\sum_{\kappa<\alpha\in I_{t}(0)}c_{\alpha,0}=\sum_{\kappa<\alpha\leq\alpha_{1}}c_{\alpha,0}$

$=1/\in\sum_{\kappa<\alpha<\alpha_{1}}a_{\alpha}+a_{0}/(1-\xi i)+1/\in\sum_{\alpha_{1}\leq\alpha\leq n}a_{\alpha}-1$

$=1/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}-1+a_{0}/(1-\in)$
.

Similarly as $t\in S_{1}\cup S_{2},8.14$ says

$\overline{b}=\sum_{0<\beta\in J_{s}(\kappa)}b_{\kappa,\beta}=\sum_{0<\beta\leq\beta_{1}}b_{\kappa,\beta}$

$=1/(1-\in)\sum_{0<\beta<\beta_{1}}a_{\beta}+1-1/(1-\in)\sum_{0\leq\beta<\beta_{1}}a_{\beta}-1/\in\sum_{\kappa<\alpha\leq n}a_{\alpha}$

$=1-a_{0}/(1-\in)-1/\epsilon\sum_{\kappa<\alpha\leq n}a_{\alpha}$
.

That is $\overline{b}=-c^{*}$ , contradicting 8.11.1.

Notice 8.12, 8.16, and 8.17 constitute a contradiction. Therefore the
proof of Theorem 8.1, and hence also of Theorem 7.6, is at last complete.



36 M. Aschbacher

\S 9. Triangulating the space of a restricted polyhedral cell
complex

In this section we continue to assume $(X, f, F, B)$ is a polyhedral
cell complex and also continue the notational conventions of Section 7.
Let $K=K(X)$ be the triangulating complex of $X$ and let $\Sigma$ be the set
of simplices of $K$ .

Recall for $x\in X$ we have the residual complex $K(x)$ of $X$ at $x$ with
vertex set

$V(x)=$ { $(w,$ $v)$ : $w\in f(x)$ and $v\in f(\zeta(w))$ }

with simplex set $\Sigma(x)$ . Define $\eta$ : $V(x)\rightarrow V$ by $\eta(w, v)=v$ .

(9.1) (1) $\eta(L(w, v))\subseteq L(v)$ for each $(w, v)\in V(x)$ .

(2) $\eta$ : $V(x)\rightarrow V$ induces a morphism $\eta$ : $\Gamma(x)\rightarrow\triangle$ of graphs and
a morphism $\eta$ : $K(x)\rightarrow K$ of simplicial complexes.

(3) If $(X, f)$ is resticted then each $ S\in\Sigma$ with $\hat{\zeta}(S)=x$ is the image
under $\eta$ of a unique $s\in\Sigma(x)$ . Indeed if $S=\{v_{0}, \ldots, v_{k}\}$ with $v_{i}\in L(v_{j})$

for $i\leq j$ , and $w_{i}=\hat{f}_{v_{i}}(v_{k})$ then $s=s(S)=\{(w_{i}, v_{i}) : o\leq i\leq k\}$ .

Proof Let $(y, u)\in L(w, v)$ . Then $y\leq w$ , $z=f_{w}(y)\geq v$ , and
$f_{z}(v)\geq u$ . As $f_{z}(v)\geq u$ , $\eta(y, u)=u\in L(v)$ . Thus (1) holds. As
$v=\eta(w, v)$ , (1) implies (2).

Under the hypotheses and notation of (3), 5.4 says $w_{0}\leq\cdots\leq w_{k}$

with $f_{w_{j}}(w_{i})\geq v_{j}$ for $j\geq i$ . Also as $v_{?}$
. $\in L(v_{j}),\hat{f}_{v_{i}}(v_{j})$ is the unique

$w\in f(x_{j})$ with $\zeta(w)=x_{i}$ and $w\geq v_{j}$ . Thus $\hat{f}_{v_{i}}(v_{j})=f_{w_{j}}(w_{i})$ , so

$f_{fw_{j}}(w_{i})(v_{j})=v_{i}$ . Therefore $(w_{i}, v_{i})\in L(w_{j}, v_{j})$ , so $s\in\Sigma(x)$ . By

construction, $\eta(s)=S$ . Finally if $s’=\{(w_{i}’, v_{i}’) : 0\leq i\leq k\}\in\Sigma(x)$

with $\eta(s’)=S$ then $v_{i}’=\eta(w_{i}’, v_{i}’)=v_{i}$ . Next $x=\hat{\zeta}(S)=\hat{\zeta}(v_{k})$ , so
$v_{k}\in f(x)$ , while as $(w_{k}’, v_{k})\in V(x)$ , $v_{k}\in f(\zeta(w_{k}’))$ , so $w_{k}’=x=w_{k}$ .

As $(w_{i}’, v_{i})\in L(x, v_{k})$ , $w_{i}’=f_{x}(w_{i})\geq v_{k}$ and $f_{w_{i}’}(v_{k})\geq v_{i}$ , so $w_{i}’=$

$\hat{f}_{v_{i}}(v_{k})=w_{i}$ . That is $s=s’$ is unique, completing the proof of (3).

Recall from Theorem 7.6, we have a triangulation $\varphi_{x}$ : $ K(x)\rightarrow$

$F(x)$ . Recall by construction that if $s\in\Sigma(x)$ then $\varphi_{x}(s)=\hat{\varphi}_{x}(s)=$

$[P(e) : e\in s]$ , where $P(w_{i}, v_{i})=\xi iB_{h(w_{z})}+(1-\in)B_{h(\overline{v}_{i})}$ , and $\varphi_{s}$ is the

identity map.

In the remainder of this section we assume $(X, f)$ is restricted and
use the triangulations $\varphi_{x}$ , $x\in X$ , to construct a triangulation $\varphi$ : $ K\rightarrow$

$A$ , where $A=A(X)$ is the topological space of $X$ constructed in Sec-
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tion 4. Recall from Section 4 that we have a map

$\lambda$ :
$\prod_{x\in X}F(x)\rightarrow A$

$a\mapsto\tilde{a}$

For $ S\in\Sigma$ define
$\varphi(S)=\lambda(\varphi_{\hat{\zeta}(S)}(s(S)))$

define
$\hat{\varphi}(S)=\varphi_{\hat{\zeta}(S)}(s(S))$

with $u(S, v_{?}.)=u(S(s), (w_{i}, v_{i}))=P(w_{i}, v_{i})$ and define $\varphi_{S}$ : $\varphi(S)\rightarrow$

$\hat{\varphi}(S)$ by $\varphi_{S}=\lambda_{S}^{1}$ , where $\lambda_{S}$ : $\varphi_{\hat{\zeta}(S)}(s(S))\rightarrow\varphi(S)$ is the restriction of
$\lambda$ to $\varphi_{\hat{\zeta}(S)}(s(S))$ .

(9.2) For $ S\in\Sigma$ , $x=\hat{\zeta}(S)$ , and $s=s(S)$ , $\lambda_{S}$ : $\varphi_{x}(s)\rightarrow\varphi(S)$ is $a$

homeomorphism and $\varphi(S)$ is closed in $A$ .

Proof. Let $s=\{(w_{i}, v_{i}) : 0\leq i\leq k\}$ , $W=\{w_{i} : i\}$ , $D=\varphi_{x}(s)$ ,
and $D_{w}=I(w)\cap D$ for $w\in W$ . Then $D=[P(w_{i}, v_{i}) : i]$ , so by 6.3
each $d\in D$ can be written uniquely in the form $d=\sum_{i}d_{i}P(w_{i}, v_{i})$ with
$0\leq d_{?}$. and $\sum_{i}d_{i}=1$ . By 7.4, $P(w_{i}, v_{i})\in I(w_{i})\cap F(w_{j})$ for $j\geq i$ , so

$D_{w}=$ { $d\in D:d_{j}=0$ for $j>i(w)$ and $d_{i}\neq 0$ for some $i\in I(w)$ }

where $I(w)=\{i : w_{i}=w\}$ and $i(w)=\max\{i : i\in I(w)\}$ . In particular
the $D_{w}$ partition $D$ . Next $F_{w}$ : $D_{w}\rightarrow F(\zeta(w))$ is a homeomorphism
and by 4.4, $\lambda$ : $I(\zeta(w))\rightarrow A$ is an injection, so as $\lambda oF_{w}=\lambda$ on $F(w)$ ,
$\lambda$ : $D_{w}\rightarrow A$ is an injection. Further by 4.5, the sets $\tilde{I}(y)$ , $y\in X$ ,

partition $A$ , so as $w\mapsto\zeta(w)$ is an injection on $ W,\tilde{I}(w)\cap\tilde{I}(u)=\emptyset$

for distinct $u$ , $w\in W$ , and hence $\lambda$ : $D\rightarrow A$ is an injection. Thus
$\lambda_{S}$ : $D\rightarrow\varphi(S)$ is bijective and continuous.

Finally $D$ is closed in $F(x)$ and $C\subseteq\tilde{F}(x)$ is closed in $A$ if and only
if $\lambda^{-1}(C)$ is closed in $F(x)$ . Now as $\lambda$ : $D\rightarrow\varphi(S)$ is a bijection, if
$E\subseteq D$ is closed then $E=\lambda^{-1}(\lambda(E))$ is closed in $F(x)$ , so $\lambda(E)$ is closed
in $A$ . Thus $\lambda_{S}$ is a homeomorphism and $\varphi(S)=\lambda(S)$ is closed in $A$ .

(9.3)Let $T$ $\in\Sigma$ and $ S\subseteq$ T. Then $\varphi(S)\subseteq\varphi(T)$ and $\varphi_{S,T}$ :
$\sum_{v}a_{v}u(S, v)\rightarrow\sum_{v}a_{v}u(T, v)$ .

Proof. Let $x=\hat{\zeta}(T)$ , $t=s(T)=\{v_{0}, \ldots, v_{k}\}$ , $s=s(S)$ , $r=$

$\eta^{-1}(S)\subseteq t$ , $l$ $=\max\{i : v_{i}\in r\}$ , $w_{i}=\hat{f}_{v_{i}}(v_{k})$ , $w=w_{l}$ , and $y=\zeta(w)$ .



38 M. Aschbacher

Then $u(T, v_{i})=P(w_{i}, v_{?}.)=\in B(w_{i})+(1-\in)B(f_{w_{i}}^{-1}(v_{i}))$ , so for $i\leq l$ ,

$F_{w}(P(w_{i}, v_{i}))=\in B(f_{w}(w_{i}))+(1-\in)B(v_{i})=P(f_{w}(w_{?}.), v_{i})$

by 7.2. Then

$F_{w}(\sum_{i}a_{i}u(T, v_{i}))=F_{w}(\sum_{i}a_{i}P(w_{i}, v_{i}))=\sum_{i}a_{i}P(f_{w}(w_{i}), v_{i})$

$=\sum_{i}a_{i}u(S, v_{i})$

by another application of 7.2. In particular $F_{w}(\varphi_{x}(r))=\varphi_{y}(s)$ . Also
$\lambda_{S}\circ F_{w}=\lambda_{T}$ on $\varphi_{x}(r)$ as $F_{w}(a)\sim a$ for each $a\in F(w)$ . So $\varphi(S)=$

$\lambda_{S}(\varphi_{y}(s))=\lambda_{S}(F_{w}(\varphi_{x}(r)))=\lambda_{T}(\varphi_{x}(r))\subseteq\varphi(T)$ . Also

$\varphi s,\tau(\sum_{i}a_{i}u(S, v_{i}))=(\varphi_{T}o\varphi_{S}^{1})(\sum_{i}a_{i}u(S, v_{i}))$

$=\varphi_{T}(\lambda_{S}(F_{w}(\sum_{i}a_{i}u(T, v_{?}.))))$

$=\varphi_{T}(\lambda_{T}(\sum_{i}a_{i}u(T, v_{i})))=\sum_{i}a_{i}u(T, v_{i})$
,

completing the proof.

(9.4) $\varphi(S)\cap\varphi(T)=\varphi(S\cap T)$ for all $S$ , $ T\in\Sigma$ .

Proof. By 9.3, $\varphi(S\cap T)\subseteq\varphi(S)\cap\varphi(T)$ , so it remains to show that
if $e\in\varphi(S)\cap\varphi(T)$ then $e\in\varphi(S\cap T)$ . Then $e=\tilde{e}_{S}=\tilde{e}_{T}$ for some $ e_{R}\in$

$\varphi_{\hat{\zeta}(R)}(s(R))$ . Then $x=y(e_{T})=y(\tilde{e}_{T})=y(e)=y(e_{S})$ in the notation

of Section 4; that is $e\in\tilde{I}(x)$ and $e_{R}\in I(w_{R})$ with $w_{R}\in f(\hat{\zeta}(R))$ and

$\zeta(w_{R})=x$ . For $R=S$ , $T$ , let $\overline{R}=\{v\in R : \hat{\zeta}(v)\leq x\}$ . Then as we

saw during the proof of the previous lemma, $F_{w_{R}}(e_{R})\in\varphi_{x}(s(\overline{R}))$ , so

replacing $S$ , $T$ by $\overline{S},\overline{T}$ , we may assume $x=\hat{\zeta}(S)=\hat{\zeta}(T)$ .

Now $\varphi_{x}(s(R))\subseteq F(x)$ and $e_{R}\in I(x)$ . Then as $\lambda$ : $I(x)\rightarrow A$ is
injective, $e_{S}=e_{T}\in\varphi_{x}(s(T))\cap\varphi_{x}(s(S))=\varphi_{x}(s(S)\cap s(T))$ by Theorem

7.6. Also $e_{T}\in I(x)$ , so $s(S)\cap s(T)=s(S\cap T)$ with $\hat{\zeta}(S\cap T)=x$ , so
$e=\lambda(e_{S})\in\lambda(\varphi_{x}(s(S\cap T)))=\varphi(S\cap T)$ , completing the proof.

Theorem 9.5. If (X,$ $f,$ $F,$ $B) is a restricted polyhedral cell com-
plex then $\varphi$ : K $\rightarrow A$ is a triangulation.

Proof. By 9.2, for each $ S\in\Sigma$ , $\varphi(S)$ is a closed subspace of $A$ and

$\lambda_{S}$ : $\varphi_{\hat{\zeta}(S)}(s(S))\rightarrow\varphi(S)$
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is a homeomorphism. Thus

$\varphi_{S}=\lambda_{S}^{1}$ : $\varphi(S)\rightarrow\hat{\varphi}(S)=\varphi_{\hat{\zeta}(S)}(s(S))$

is a homeomorphism. Axiom (T3) for triangulations holds by 9.3 and
axiom (T1) holds by 9.4.

As $\varphi_{x}$ : $K(x)\rightarrow F(x)$ is a triangulation, $F(x)=\bigcup_{s\in\Sigma(x)}\varphi_{x}(s)$

and $C\subseteq F(x)$ is closed if and only $C\cap\varphi_{x}(s)$ is closed in $\varphi_{x}(s)$ for

all $s\in\Sigma(x)$ . Also by 4.5, $A=\bigcup_{x}\tilde{F}(x)$ , so as $\varphi(S)=\tilde{\varphi}_{\hat{\zeta}(S)}(s(S))$ ,

$A=\bigcup_{S\in\Sigma}\varphi(S)$ . Further by definition of the topology on $A$ , $D\subseteq A$ is

closed in $A$ if and only if $D_{x}=A\cap\tilde{F}(x)$ is closed in $\tilde{F}(x)$ for all $x\in X$ .

Then as $\tilde{F}(x)=\bigcup_{s\in\Sigma(s)}\varphi(\eta(s))$ , if $D_{x}\cap\varphi(\eta(s))$ is closed in $\varphi(\eta(s))$ for

all $s\in\Sigma(x)$ then $\lambda_{x}^{-1}(D_{x}\cap\varphi(\eta(s)))$ is closed in $\varphi_{x}(s)$ , so as $\varphi_{x}$ is a
triangulation, $\lambda_{x}^{-1}(D_{x})=\bigcup_{s}\lambda_{x}^{-1}(D_{x}\cap\varphi(\eta(s)))$ is closed in $F(x)$ , so $D_{x}$

is closed in $\tilde{F}(x)$ . Thus $D$ is closed in $A$ if and only if $D\cap\varphi(S)$ is closed
in $\varphi(S)$ for all $ S\in\Sigma$ . That is axiom (T2) is satisfied.

Corollary 9.6. The homology and fundamental group of the space
$A(X)$ of a restricted polyhedral cell complex $X$ are isomorphic to the
simplicial homology and fundamental group of $K(X)$ .

Remark 9.7. We can also triangulate the space $A$ of a polyhedral
cell complex $(X, f, F, B)$ which is not restricted, but not by the triangu-

lating complex $K(X)$ . Instead consider the set $\hat{V}(X)$ of all pairs $(S, \omega)$ ,
where $S=\{v_{0}, \ldots, v_{k}\}$ is a simplex of $K(X)$ with the standard ordering,

and $\omega$ : $S\rightarrow f(\hat{\zeta}(v_{k}))$ with $\omega(S)$ a simplex in $f(\hat{\zeta}(v_{k}))$ and $w_{i}=\omega(v_{i})$

satisfying $\zeta(w_{i})=\hat{\zeta}(v_{i})$ , $f_{w_{j}}(w_{i})\geq v_{j}$ , and $f_{fw_{i(w_{i})}}(v_{j})\geq v_{i}$ for $j\geq i$ .

Partially order $\hat{V}(X)$ by $(S, \omega)\geq(T, \theta)$ if $T$ $\subseteq S$ and $\theta(v)=f_{w}(\omega(v))$

for each $v\in T$ and $w=\max(\omega(T))$ . Finally let $\hat{K}(X)$ be the order

complex of the poset $\hat{V}(X)$ .

Observe we have a map of posets from $\hat{V}(X)$ into $sd(K(X))$ defined

by $(S, \omega)\mapsto S$ , and this map is an isomorphism of $\hat{K}(X)$ with $sd(K(X))$

when $X$ is restricted.

For $x\in X$ , Theorem 7.6 supplies a triangulation $\varphi_{x}$ : $K(x)\rightarrow F(x)$ .

For $s$ a simplex of $K(x)$ , let $P(s)$ be the barycenter of $\varphi(s)$ . A simplex
$\sigma$ of $sd(K(x))$ is a chain $\{s_{0}\subset\cdots\subset s_{k}\}$ of simplices of $K(x)$ and
we have the barycentric subdivision $\psi_{x}$ : $\Sigma(sd(K(x)))\rightarrow F(x)$ of the
triangulation $\varphi_{x}$ , which is also a triangulation of $F(x)$ , and is defined
by $\psi_{x}(\sigma)=[P(s_{i}) : 0\leq i\leq k]$ .

We can use the triangulation $\psi_{x}$ in place of $\varphi_{x}$ and argue as in this

section to construct a triangulation $\psi$ : $\hat{K}\rightarrow A$ . Namely suppose $\sigma=$
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$\{s_{0}\subset\cdots\subset s_{r}\}$ is a simplex in $sd(K(x))$ with $s_{i}=\{(w_{0}^{x}, v_{0}^{i})$ , $\ldots$ , $(w_{k_{i}}^{i}$ ,

$v_{k_{i}}^{i})\}\in\Sigma(x)$ ordered as in 7.5 and with $w_{k_{r}}^{r}=x$ . Define $\eta(\sigma)=$

$\{(S_{i}, \omega_{i}) : o\leq i\leq r\}$ a simplex of $\hat{K}(X)$ by

$S_{i}=\{f_{w_{j}^{i}}(v_{j}^{i}) ^{:} ^{0}\leq j\leq k_{i}\}$ ,

$\omega_{i}(f_{w_{j}^{i}}(v_{j}^{i}))=f_{w_{k_{i}}^{i}}(w_{j}^{i})$ , $0\leq j\leq k_{i}$ .

The map $\eta$ plays the role that the map $\eta$ defined at the start of this
section played for restricted complexes.

Conversely given $\sigma=\{(S_{i}, \omega_{i}) : o\leq i\leq r\}$ a simplex in $\hat{K}(X)$

with $S_{i}=\{v_{0}^{i}, \ldots, v_{k_{i}}^{i}\}$ in the standard ordering and $x=\hat{\zeta}(v_{k_{r}}^{r})=\hat{\zeta}(\sigma)$ ,

define $\iota/(\sigma)=\{s_{0}, \ldots, s_{r}\}$ by $s_{i}=\{(w_{0}^{i},\hat{v}_{0}^{x}), \ldots, (w_{k_{i}}^{i},\hat{v}_{k_{i}}^{i})\}$ , where $w_{j}^{i}=$

$\omega_{k}(v_{j}^{i})$ and $\hat{v}_{j}^{i}=f_{w_{j}^{i}}^{-1}(v_{j}^{i})$ . The simplex $l/(\sigma)$ plays the role of the simplex

$s(S)$ . Thus we define

$\psi(\sigma)=\lambda(\psi_{\hat{\zeta}(\sigma)}(\iota/(\sigma)))$ ,

$\hat{\psi}(\sigma)=\psi_{\hat{\zeta}(\sigma)}(\iota/(\sigma))$ ,

for $\sigma$ a simplex of $\hat{K}(X)$ . We can now repeat the proofs of Lemmas 9.1
through 9.5 with some small variation, to establish the analogous state-
ments for general combinatorial cell complexes and the triangulation
$\psi$ : $\hat{K}(X)\rightarrow A$ .

\S 10. The triangulation functor

By Theorem 9.5, if $X=(X, f, F, B)$ is a restricted polyhedral cell

complex then there exists a triangulation $\xi^{X}$ : $K(X)\rightarrow A(X)$ . We
seek to extend $\xi$ to a functor from the category of restricted polyhedral
cell complexes to the category of triangulated topological spaces. Our
triangulation $\xi^{X}$ depends on a choice of real $\in$ , $0<\in<1$ . Fix some
choice of $\in and$ use it to define $\xi^{X}$ for all choices of $X$ . Further given a
morphism $\alpha$ : $X\rightarrow Y$ of poyhedral cell complexes, define $\xi^{\alpha}$ : $\xi^{X}\rightarrow\xi^{Y}$

by $\xi^{\alpha}=(K(\alpha), A(\alpha))$ , where $A$ is the functor of 4.7 and $K$ is the functor
of 5.7. We prove the following two results at the same time:

(10.1) $\xi$ is a covariant functor from the category of restricted poly-
hedral cell complexes to the category of triangulated topological spaces.

(10.2) Let $\alpha$ : $X\rightarrow\overline{X}$ be a morphism of restricted polyhedral cell

complexes. Then
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(1) For $x\in X$ and $\sigma$ a simplex in $f(x)$ ,

$F(x)=$ { $\sum_{v\in\sigma}a_{v}B(v)$
: $0\leq a_{v}\in R$ and $\sum_{v}a_{v}=1$ }

and

$\alpha_{x}(\sum_{v\in\sigma}a_{v}B(v))=\sum_{v\in\sigma}a_{v}\overline{B}(\alpha_{x}(v))$

(2) For $S=\{v_{0}, \ldots, v_{k}\}$ a simplex in $K(X)$ ordered as in Lemma 9.1

and $x=\hat{\zeta}(S)$ ,

$\xi^{X}(S)=$ { $\sum_{i}a_{i}\tilde{P}(w_{i},$

$v_{i})$ : $0\leq a_{i}\in R$ and
$\sum_{i}a_{i}=1$ }

where $w_{i}=\hat{f}_{v_{i}}(v_{k})\in f(x)$ , and

$A(\alpha)(\sum_{?}a_{i}\tilde{P}(w_{i}, v_{i}))=\sum_{i}a_{i}\tilde{P}(\overline{w}_{i},\overline{v}_{i})$

with $K(\alpha)(S)=\{\overline{v}_{i} : 0\leq i\leq k\},\overline{v}_{i}=\alpha_{\hat{\zeta}(v_{i})}(v_{i})$ , and $\overline{w}_{i}=\alpha_{x}(w_{i})=$

$\hat{f}_{\overline{v}_{i}}(\overline{v}_{k})$ .

By Theorem 9.5, $\xi^{X}$ : $K(X)\rightarrow A(X)$ and $\xi^{\overline{X}}$ : $K(\overline{X})\rightarrow A(\overline{X})$ are

triangulations. By Remark 5.7, $K(\alpha)$ : $K(X)\rightarrow K(\overline{X})$ is a simplicial

map, while by 4.7, $A(\alpha)$ : $A(X)\rightarrow A(\overline{X})$ is a continuous map. So to

prove 10.1, we must show $\xi^{\alpha o\beta}=\xi^{\alpha}\circ\xi^{\beta}$ and for each simplex $S$ of $K(X)$
$(T_{1})A(\alpha)(\xi^{X}(S))\subseteq\xi^{\overline{X}}(K(\alpha)(S))$ , and
$(T_{2})\alpha_{S}\circ\xi_{S}^{X}=\xi_{K(\alpha)(S)}^{\overline{X}}\circ A(\alpha)$ , where

$\alpha_{S}$ :
$\sum_{v\in S}a_{v}u(S, v)\mapsto\sum_{v\in S}a_{v}u(K(\alpha)(S), K(\alpha)(v))$

The first remark follows from the fact that $A$ and $K$ are functors. The
first statements in (1) and (2) of 10.2 follow from the definition of $F(x)$

and $\xi^{X}(S)$ , respectively. Moreover if $S$ is as in 10.2, by definition of $\xi_{S}^{X}$ ,
$u(S, v_{i})=P(w_{i}, v_{i})$ and

$\xi_{S}^{X}$ :
$\sum_{i}a_{i}\tilde{P}(w_{i}, v_{i})\mapsto\sum_{i}a_{i}P(w_{i}, v_{i})$

Therefore 10.2.2 implies $(T_{1})$ and $(T_{2})$ , so it remains to prove 10.2.

As $\alpha$ is a morphism of polyhedral complexes, $\alpha_{x}(B^{x}(\sigma))\subseteq\overline{B}^{\alpha(x)}(\alpha($

$\sigma))$ and $\alpha_{\sigma}\circ B_{\sigma}^{x}=\overline{B}_{\alpha(\sigma)}^{\alpha(x)}o\alpha_{x}$ on $B^{x}(\sigma)$ for each $x\in X$ and each simplex $\sigma$
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of $f(x)$ . In particular in the notation of Section 7, $\alpha_{x}(B(v))=\overline{B}(\alpha_{x}(v))$

for each $v\in f(x)$ . Also for $\sigma=\{y_{0}, \ldots, y_{m}\}$ , by definition

$\sum_{i}a_{i}B(y_{?}.)=B_{\sigma}^{-1}(\sum_{i}a_{i}u_{h(y_{i})})$

so as $\alpha_{\sigma}oB_{\sigma}^{x}=\overline{B}_{\alpha(\sigma)}^{\alpha(x)}o\alpha_{x}$ on $B^{x}(\sigma)$ , we have

$\alpha_{x}(\sum_{i}a_{i}B(y_{i}))=\alpha_{x}(B_{\sigma}^{-1}(\sum_{i}a_{i}u_{h(y_{i})}))=\overline{B}_{\alpha(\sigma)}^{\alpha(x)}(\alpha_{\sigma}(\sum_{i}a_{i}u(\sigma, y_{i})))$

$=\overline{B}_{\alpha(\sigma)}^{\alpha(x)}(\sum_{i}a_{i}u(K(\alpha)(\sigma), K(\alpha)(y_{i})))=\sum_{i}a_{i}\overline{B}(\alpha_{x}(y_{i}))$

so that 10.2.1 is established.
Recall the definition of $V(x)$ and $P(w, v)$ from Section 7, and ob-

serve that as $\alpha$ is a morphism of cell complexes, for $(w, v)\in V(x)$ ,
$(\alpha_{x}(w), \alpha_{\zeta(w)}(v))\in V(\alpha(x))$ and $\alpha_{x}(B(f_{w}^{-1}(v)))=\overline{B}(\alpha_{x}(f_{w}^{-1}(v)))=$

$\overline{B}(\overline{f}_{\alpha_{x}(w)}^{-1}(\alpha_{x}(v)))$ . Therefore

$\alpha_{x}(P(w, v))=\alpha_{x}(\in B(w)+(1-\in)B(f_{w}^{-1}(v)))$

$=\epsilon\overline{B}(\alpha_{x}(w))+(1-\in)\overline{B}(\overline{f}_{\alpha_{x}(w)}^{-1}(\alpha_{x}(v)))=\overline{P}(\alpha_{x}(w), \alpha_{x(v)}(v))$

by an earlier remark. Therefore

$A(\alpha)(\tilde{P}(w, v))=\tilde{\alpha}_{x}(P(w, v))=\tilde{P}(\alpha_{x}(w), \alpha_{x(v)}(v))$ .

Let $S=\{v_{0}, \ldots, v_{k}\}$ be a simplex of $K(X)$ ordered as in 9.1, and
$x=\hat{\zeta}(S)$ . Then from the definition of $\xi^{X}$ in Section 9 and 9.1,

$\xi^{X}(S)=\lambda(\xi_{x}(s(S)))=[\tilde{P}(w_{i}, v_{i}) : o\leq i\leq k]$

where $s(S)=\{(w_{i}, v_{i}) : 0\leq i\leq k\}$ and $w_{i}=\hat{f}_{v_{i}}(v_{k})$ . Therefore

$\alpha_{x}(s(S))=\{(\overline{w}_{\dot{0}},\overline{v}_{i}) : 0\leq i\leq k\}=s(K(\alpha)(S))$

where $\overline{v}_{i}=\alpha_{x(v_{i})}(v_{i})$ and $\overline{w}_{i}=\alpha_{x}(w_{i})=\hat{f}_{\overline{v}_{i}}(\overline{v}_{k})$ . Finally

$A(\alpha)(\sum_{i}a_{i}\tilde{P}(w_{i}, v_{i}))=\tilde{\alpha}_{x}(\sum_{i}a_{i}P(w_{i}, v_{i}))=\sum_{i}a_{i}\tilde{\alpha}_{x}(P(w_{i}, v_{i}))$

by 10.2.1, and then by an earlier observation this is equal to $\sum_{i}a_{i}\tilde{P}(\overline{w}_{i}$ ,
$v_{i})$ , completing our proof.

We can now use the functor $\xi$ to construct the triangulation func-
tor from the category of restricted combinatorial cell complexes to the
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category of triangulated topological spaces. Namely we define the tri-
angulation functor to be the covariant functor $T$ $=\xi oP$ , where $7^{\supset}$ is
the functor from the category of combinatorial cell complexes to the
category of polyhedral cell complexes constructed in Example 7.1. As
the composition of covariant functors, $T$ is a covariant functor. Given
a combinatorial cell complex $X=(X, f)$ , we write $T(X)$ for the topo-

logical space $A(P(X))$ and when $X$ is restricted we write $\xi^{X}$ for the

triangulation $\xi^{P(X)}$ : $K(X)\rightarrow T(X)$ . If $\alpha$ : $X\rightarrow\overline{X}$ is a morphism of

combinatorial cell complexes, we write $T(\alpha)$ for the morphism $\xi^{7^{\supset}(\alpha)}=$

$(K(\alpha), A(P(\alpha)))$ .

We define $T(X)$ to be the geometric realization of the combinatorial
cell complex $X$ .

(10.3) Let $\gamma$ : $K^{1}\rightarrow K^{2}$ be a morphism of typed simplicial com-

plexes over I and $\varphi^{i}$ : $K^{i}\rightarrow T^{i}$ be triangulations. Then
(1) $\gamma$ extends to a morphism $(\gamma, \beta^{\gamma}(\varphi^{1}, \varphi^{2}))$ : $\varphi^{1}\rightarrow\varphi^{2}$ of triangu-

lated topological spaces.
(2) If $\delta$ : $K^{2}\rightarrow K^{3}$ is a morphism of typed simplicial complexes over

I and $\varphi^{3}$ : $K^{3}\rightarrow T^{3}$ is a triangulation then $\beta^{\delta o\gamma}(\varphi^{1}, \varphi^{3})=\beta^{\delta}(\varphi^{2}, \varphi^{3})o$

$\beta^{\gamma}(\varphi^{1}, \varphi^{2})$ .

(3) $\beta^{id_{K^{1}}}(\varphi^{1}, \varphi^{1})=id_{T^{1}}$ .

(4) If $\gamma$ is an isomorphism then so is $(\gamma, \beta^{\gamma}(\gamma^{1}, \varphi^{2}))$ .

$Proo/$. For $s\in\Sigma^{1}$ define

$\gamma_{s}$ : $\hat{\varphi}^{1}(s)\rightarrow\hat{\varphi}^{2}(\gamma(s))$

$\sum_{v\in s}a_{v}u^{1}(s, v)\mapsto\sum_{v\in s}a_{v}u^{2}(\gamma(s), \gamma(v))$
.

Observe that $\gamma_{s}$ is continuous. Now define $\beta_{s}$ : $\varphi^{1}(s)\rightarrow\varphi^{2}(\gamma(s))$ by

$\beta_{s}=(\varphi_{\gamma(s)}^{2})^{-1}\circ\gamma_{s}o\varphi_{s}^{1}$

and then define

$\beta=s\in\Sigma^{1}\cup\beta_{s}$
.

That is for $a\in\varphi^{1}(s)$ , $\beta(a)=\beta_{s}(a)$ .

axio
$Wefifirstcheckthat\beta iswe11defifinedm(T3)fortriangulations,\varphi_{t,s}^{i}=\hat{\varphi}_{t,s}^{i}$

.
$asmapsfrom\hat{\varphi}^{i}(t)to\hat{\varphi}^{i}(s)Tobegin,ift\subseteq sthenby$

,

where $\varphi_{t,s}^{i}=\varphi_{s}^{i}\circ(\varphi_{t}^{i})^{-1}$ and

$\hat{\varphi}_{t,s}^{i}$ :
$\sum_{v\in t}a_{v}u^{1}(t, v)\mapsto\sum_{v\in t}a_{v}u^{1}(s, v)$

.
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Also by definition of $\gamma_{t}$ and $\gamma_{s}$ ,

$\hat{\varphi}_{\gamma(t),\gamma(s)}^{2}\circ\gamma_{t}=\gamma_{s}\circ\hat{\varphi}_{t,s}^{1}$

as maps from $\hat{\varphi}^{1}(t)$ to $\hat{\varphi}^{2}(\gamma(s))$ . Therefore the diagram

$\varphi^{1}(t)\rightarrow\varphi_{t}^{1}\hat{\varphi}^{1}(t)\rightarrow\gamma_{t}\hat{\varphi}^{2}(\gamma(t))\underline{(\varphi_{\gamma(t)}^{2})^{-1}}\varphi^{2}(\gamma(t))$

$\iota^{1}\downarrow$ $\hat{\varphi}_{t,s}^{1}\downarrow$ $\hat{\varphi}_{\gamma(t),\gamma(s)}^{2}\downarrow$ $\downarrow\iota^{2}$

$\varphi^{1}(s)\rightarrow\varphi_{s}^{1}\hat{\varphi}^{1}(s)\rightarrow\gamma_{s}\hat{\varphi}^{2}(\gamma(s))\rightarrow(\varphi_{\gamma(s)}^{2})^{-1}\varphi^{2}(\gamma(s))$

commutes, so that $\beta_{s}=\beta_{t}$ on $\varphi^{1}(t)$ .

Further by axiom (T1), if $r$ , $s\in\Sigma^{1}$ then $\varphi^{1}(r)\cap\varphi^{1}(s)=\varphi^{1}(r\cap s)$ .

So setting $t=r\cap s$ , we have $\beta_{r}=\beta_{t}=\beta_{S}$ on $\varphi^{1}(r)\cap\varphi^{1}(s)$ , completing
the proof that $\beta$ is well defined.

As $\gamma_{s}$ , $\varphi_{s}^{1}$ , and $(\varphi_{\gamma(s)}^{2})^{-1}$ are continuous, so is $\beta_{s}$ . Then by axiom

(T2), $\beta$ is continuous. That is if $C$ is closed in $T^{2}$ then $C\cap\varphi^{2}(\gamma(s))$

is closed in $\varphi^{2}(\gamma(s))$ for each $s\in\Sigma^{1}$ . Therefore $\beta_{s}^{-1}(C\cap\varphi^{2}(\gamma(s)))=$

$\beta^{-1}(C)\cap\varphi^{1}(s)$ is closed in $\varphi^{1}(s)$ . Hence $\beta^{-1}(C)$ is closed in $T^{1}$ .

By definition of $\beta$ , $\beta(\varphi^{1}(s))=\beta_{s}(\varphi^{1}(s))\subseteq\varphi^{2}(\gamma(s))$ and $\varphi_{s}^{1}\circ\gamma_{s}=$

$\varphi_{\gamma(s)}^{2}o\beta_{s}=\varphi_{\gamma(s)}^{2}\circ\beta$ . Therefore $(\gamma, \beta)$ : $\varphi^{1}\rightarrow\varphi^{2}$ is a morphism of

triangulated topological spaces, establishing (1).
Assume the hypotheses of (2). Then

$\beta^{\gamma}=s\in\Sigma^{1}\cup\beta_{s}^{\gamma}$
,

$\beta^{\delta}=\bigcup_{t\in\Sigma^{2}}\beta_{t}^{\delta}$

,
$\beta^{\delta\circ\gamma}=s\in\Sigma^{1}\cup\beta_{s}^{\delta\circ\gamma}$

.

Further $(\delta\circ\gamma)_{s}=\delta_{\gamma(s)}\circ\gamma_{s}$ , so

$\beta_{s}^{\delta\circ\gamma}=(\varphi_{(\delta o\gamma)(s)}^{3})^{-1}\circ(\delta o\gamma)_{s}\circ\varphi_{s}^{1}$

$=((\varphi_{\delta(\gamma(s))}^{3})^{-12}o\delta_{\gamma(s)}o\varphi_{\gamma(s)})\circ((\varphi_{\gamma(s)}^{2})^{-1}\circ\gamma_{s}\circ\varphi_{s}^{1})=\beta_{\gamma(s)}^{\delta}o\beta_{s}^{\gamma}$

and therefore $\beta^{\delta\circ\gamma}=\beta^{\delta}o\beta^{\gamma}$ , establishing (2).

Part (3) follows as if $\varphi^{1}=\varphi^{2}$ and $\gamma=id_{K}$ then $\gamma_{s}=id_{\hat{\varphi}^{1}(s)}$ , so

$\beta_{s}=(\varphi_{s}^{1})^{-1}o\gamma_{s}\circ\varphi_{s}^{1}=id_{\varphi^{1}(s)}$ .

Finally (2) and (3) imply that

$\beta^{\gamma^{-1}}(\varphi^{2}, \varphi^{1})o\beta^{\gamma}(\varphi^{1}, \varphi^{2})=\beta^{id_{K}}(\varphi^{1}, \varphi^{1})=id_{T^{1}}$
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so $\beta^{\gamma^{-1}}(\varphi^{2}, \varphi^{1})=\beta^{\gamma}(\varphi^{1}, \varphi^{2})^{-1}$ , and hence $(\gamma, \beta^{\gamma}(\varphi^{1}, \varphi^{2}))$ is an isomor-
phism.

(10.4) Let $K$ be a typed simplicial complex. Then each triangulation

of $K$ is isomorphic in the category of triagulated topological spaces to the
geometric realization $\varphi^{K}$ : $K\rightarrow T(K)$ of $K$ .

Proof. Apply 10.3.4 to $K^{1}=K^{2}=K$ , $\gamma=id_{K}$ , $\varphi^{1}=\varphi^{K}$ , and
any triangulation $\varphi^{2}$ : $K\rightarrow T^{2}$ of $K$ .

Remark 10.5. It is well known that if $T$ is the geometric real-
ization of a simplicial complex $K$ , then the singular homology $H_{*}(T)$

is isomorphic to the simplicial homology $H_{*}(K)$ and the fundamental
group $\pi_{1}(T)$ is isomorphic to the fundamental group $\pi_{1}(K)$ of $K$ .

As recalled in Remark 10.5, the homology and fundamental group
of the geometric realization of a simplicial complex can be defined in a
purely combinatorially manner in terms of the simplicial complex. We
seek to do the same for combinatorial cell complexes. We know that if
$X$ is a restricted combinatorial cell complex, then $\xi^{X}$ : $K(X)\rightarrow T(X)$

is a triangulation of the geometric realization $T(X)$ of $X$ , so by Remark
10.5, $H_{*}(T(X))\cong H_{*}(K(X))$ and $\pi_{1}(T(X))\cong\pi_{1}(K(X))$ . Thus we
define $H_{*}(X)=H_{*}(K(X))$ and $\pi_{1}(X)=\pi_{1}(K(X))$ . Thus we have our
combinatorial definition of the homology and fundamental group of a
restricted combinatorial cell complex, and from the discussion above we
have:

Theorem 10.6. The triangulation functor $T$ is a covariant func-
tor from the category of restricted combinatorial cell complexes to the
category of triangulated topological spaces, which assigns to a restricted
combinatorial cell complex $(X, f)$ its geometric realization $T(X)$ and

the triangulation $\xi^{X}$ : $K(X)\rightarrow T(X)$ of the geometric realization by
the triangulating complex of X. Moreover $H_{*}(T(X))\cong H_{*}(X)$ and
$\pi_{1}(T(X))\cong\pi_{1}(X)$ .

(10.7) Let $(X, f)$ be the simplicial cell complex of the poset X. Then
the geometric realization of the cell complex $(X, f)$ is homeomorphic to
the geometric realization of the order complex $O(X)$ of the poset $X$ .

Proof. Let $P(X, f)=(X, f, F, B)$ and $A=T(X, f)$ the topolog-
ical space of this polyhedral cell complex. Thus $A$ is the geometric

realization of the simplicial cell complex $(X, f)$ . We show there exists a
triangulation $\varphi$ : $O(X)\rightarrow A$ . Then by 10.4, $A$ is homeomorphic to the
geometric realization of $O(X)$ .
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The triangulation is defined by $\varphi(s)=\tilde{B}^{z}(s),\hat{\varphi}(x)=\hat{B}^{z}(s)$ , and
$\varphi_{s}=B_{s}^{z}\circ\lambda_{z}^{-1}$ , where $z$ is the greatest element of $s$ . As $(X, f)$ is
the simplicial cell complex for the poset $X$ , $\zeta$ is injective, so by 4.6.3,
$\lambda_{x}$ : $F(x)\rightarrow\tilde{F}(x)$ is a homeomorphism and hence $\varphi_{s}$ makes sense.

Check that if $x\geq z$ then $\tilde{B}_{x}(s)=\tilde{B}_{z}(s),\hat{B}^{x}(s)=\hat{B}^{z}(s)$ , and $B_{s}^{x}\circ\lambda_{x}^{-1}=$

$B_{s}^{z}o\lambda_{z}^{-1}$ . Then use this fact to prove $\varphi$ is a triangulation. We leave the

details to the reader.

(10.8) Assume $X=(X, f)$ is a regular combinatorial cell complex.

Let $O(X)$ be the order complex of the poset X. Then $ H_{*}(O(X))\cong$

$H_{*}(X)$ and $\pi_{1}(O(X))\cong\pi_{1}(X)$ .

Proof. By 3.1, $X$ is isomorphic to the simpicial cell complex $Y$ of
the poset $X$ . Thus $H_{*}(X)\cong H_{*}(Y)$ and $\pi_{1}(X)\cong\pi_{1}(Y)$ . But by 10.7,
the geometric realizations $A$ of $Y$ and $T$ of $O(X)$ are homeomorhic, so
$H_{*}(Y)\cong H_{*}(A)\cong H_{*}(T)\cong H_{*}(O(X))$ . Similarly the fundamental
groups are isomorphic.

\S 11. Homology in $K(X)$

Let $(X, f)$ be a combinatorial cell complex, $\triangle=\triangle(X)$ the graph of
$X$ , and $K=K(X)$ the triangulating complex of $X$ . Define

$V^{n}=\{v\in V:h(\hat{\zeta}(v))\leq n\}$ , $V_{n}^{n}=\{v\in V:h(\hat{\zeta}(v))=h(\zeta(v))=n\}$

and $V_{n}=V^{n}-V_{n}^{n}$ . Denote by $\triangle^{n}$ and $\triangle_{n}$ the graphs on $V^{n}$ and $V_{n}$

induced by $\triangle$ , respectively. Let $K^{n}=K(\triangle^{n})$ and $K_{n}=K(\triangle_{n})$ be
the clique complexes of $\triangle^{n}$ and $\triangle_{n}$ , respectively. Define the $n$-skeleton
of $X$ to be the combinatorial cell complex $X^{n}=(X^{n}, f_{|X^{n}})$ , where
$X^{n}=\{x\in X : h(x)\leq n\}$ . Thus $K^{n}=K(X^{n})$ is the triangulating
complex of the $n$-skelton of $X$ .

By 5.6, $K$ is a typed simplicial complex over $I\times I$ , $I$ $=\{0,1, \ldots\}$ ,

with type function $\tau(v)=(h(\hat{\zeta}(v)), h(\zeta(v)))$ . Order $I\times I$ lexiographi-
cally; that is $(a, b)<(i,j)$ if $a<i$ or $a=i$ and $b<j$ . We use this
ordering to define our boundary operator on the simplicial chain com-
plex $C_{*}(K)$ of $K$ as in Section 1. We also adopt the notional conventions
established in that section.

By 5.4, if $s$ is a $k$-simplex of $K$ then there is a unique ordering
$v_{0}$ , $\ldots$ , $v_{k}$ of $s$ such that $v_{i}\in L(v_{i+1})$ for each $i$ . By 5.2, $\tau(v_{0})\leq\cdots\leq$

$\tau(v_{k})$ also, so this is the ordering of $s$ used to define the oriented simplex
$s=v_{0}\cdots v_{k}=v_{0}\wedge\cdots\wedge v_{k}$ via the conventions of Section 1.
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Example. Consider the simplicial cell complex $X(n)$ of the n-
simplex, defined in Example (2) in Section 3. Recall from Section 5
that

$V(X(n))=V(n)=\{(\alpha, \beta)\in X(n)\times X(n) : \alpha\geq\beta\}$ ,

and for $(\alpha, \beta)\in V(n)$ ,

$L(\alpha, \beta)=\{(a, b)\in V(n) : b\leq\beta\leq a\leq\alpha\}$

Recall we write $K(n)$ for the triangulating complex $K(X(n))$ of the
cell complex $X(n)$ . Then $K(n)$ is a typed complex over $V(n)$ with
type function the identity map. As $V(n)$ is ordered lexiographically, we
have $(a, b)<(\alpha, \beta)$ if $ a<\alpha$ or $ a=\alpha$ and $ b<\beta$ . Notice $K(n)^{m}=$

$\{(a, b)\in V(n) : a\leq m\}\cong K(m)$ , $V(n)_{m}^{m}=\{(m, m)\}$ , and $K(n)_{m}=$

$K(n)^{m}-\{(m, m)\}$ . By 5.9:

(11.1) Let $s=\{(\alpha_{?}., \beta_{i}) : 0\leq i\leq k\}$ be a subset of $V(n)$ with
$(\alpha_{i}, \beta_{i})\leq(\alpha_{i+1}, \beta_{i+1})$ for each $i$ . Then $s$ is in $\Sigma(n)=\Sigma(K(n))$ if and
only if $\beta_{0}\leq\cdots\leq\beta_{k}\leq\alpha_{0}\leq\cdots\leq\alpha_{k}$ .

Observe next that

(11.2) For $z\in V_{n}^{n}$ , $Link_{K^{n}}(z)\cong O(j(\hat{\zeta}(z)))$ .

Indeed $Link_{K^{n}}(z)=\{u\in V_{n} : \hat{\zeta}(u)=\hat{\zeta}(z)\}$ and the identity map
$Link_{K^{n}}(z)\rightarrow O(\dot{f}(\hat{\zeta}(z)))$ is an isomorphism. Observe also that under
the notational conventions of Section 1, and by 1.1:

(11.3) If $z\in V_{n}^{n}$ and

$\alpha=\sum_{s\in\Sigma^{k-1}(Link_{K^{n}}(z))}a_{s}s\in C_{k-1}(Link_{K^{n}}(z))$

then
$\alpha z=$ $\sum$ $a_{s}sz\in C_{k}(K^{n})$

$s\in\Sigma^{k-1}(Link_{K^{n}}(z))$

where if $s=v_{0}\cdots v_{k-1}$ then $sz=v_{0}\cdots v_{k-1}z$ . Further $\partial(\alpha z)=\partial(\alpha)z+$

$(-1)^{k}\alpha$ .

(11.4) Let $X$ be restricted of height at least $n+1$ and $\iota$ : $K^{n}\rightarrow K_{n+1}$

the inclusion map. Then
(1) $\iota$ is a homotopy equivalence.
(2) $\iota_{*}$ : $H_{*}(K^{n})\rightarrow H_{*}(K_{n+1})$ is an isomorphism.

Proof We show for all simplices $s$ of $K_{n+1}$ , $\iota^{-1}(st_{K_{n+1}}(s))$ is con-
tractible. Then by Theorem 1 in [3], $\iota$ is a homotopy equivalence.
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Let $s=\{v_{0}, \ldots, v_{k}\}$ be a simplex in $K_{n+1}$ ordered as in Lemma

5.4. If $v_{0}\in K^{n}$ then $v_{0}\in\iota^{-1}(st_{K_{n+1}}(s))\subseteq st_{K^{n}}(v_{0})$ and hence
$\iota^{-1}(st_{K_{n+1}}(s))$ is contractible.

So assume $x=\hat{\zeta}(v_{0})$ is of height $n+1$ . Let $W=\{w\in f(x)$ :
$v_{k}\leq w<x\}$ and for $w\in W$ let $S(w)=f(\zeta(w))(\leq f_{w}(v_{0}))$ , $T(w)=$

$\bigcup_{u\in W(\leq w)}S(u)$ , and for $U\subseteq W$ let $T(U)=\bigcup_{u\in U}T(u)$ .

Observe that $\iota^{-1}(st_{K_{n+1}}(s))=T(W)$ . For if $a\in\iota^{-1}(st_{K_{n+1}}(s))$

then $f_{w_{i}}(v_{i})\geq i$ , where $w_{i}=\hat{f}_{a}(v_{i})$ . Then $w_{i}\geq v_{i}\geq v_{0}$ and $\zeta(w_{i})=$

$\hat{\zeta}(a)$ , so as $X$ is restricted, $w=w_{i}$ is independent of $i$ . Thus $w=w_{k}\in W$

and $a\in S(w)\subseteq T(W)$ .

Claim for each nonempty subset $U$ of $W$ , $T(U)$ is contractible. Ob-
serve $f_{w}(v_{0})\in T(w)\subset L(f_{w}(v_{0}))$ , so $T(w)$ is contractible. Further if
$Z$ is the set of maximal members of $U$ then $C=\{T(z) : z\in Z\}$ is a
cover of $T(U)$ , so if $Z=\{z\}$ then $T(U)=T(z)$ is contractible. Next
if $I$ $\subseteq Z$ , $T_{I}=\bigcap_{i\in I}T(i)=T(J)$ , where $J=\bigcap_{i\in I}W(\leq i)$ . So if
$I$ $=\{i\}$ is of order 1 then $T_{I}=T(i)$ is contractible, while if $|I|>1$ then
$M(J)<M(U)=\max\{h(u) : u\in U\}$ , so by induction on $M(U)$ , $T_{I}$ is
contractible. Here we use the fact that $ J\neq\emptyset$ since $v_{k}$ is the unique
minimal element of $J$ . It follows that $T(U)$ has the homotopy type of the
nerve $N(C)$ of the cover $C$ , and $N(C)$ has the homotopy type of the set
of all nonempty subsets of $C$ , so $N(C)$ is contractible. Thus the Claim is

established. In particular $T(W)=\iota^{-1}(st_{K_{n+1}}(s))$ is contractible, com-
pleting the proof of (1). By (1), the inclusion $\iota$ : $K^{n}\rightarrow K_{n+1}$ is a
homotopy equivalence, so $\iota_{*}$ : $H_{*}(K^{n})\rightarrow H_{*}(K_{n+1})$ is an isomorphism.

Next some notation. If $C_{*}$ and $D_{*}$ are chain complexes, then write
$Hom(C_{*}, D_{*})$ for the group of all maps $f=\bigcup_{i}f_{i}$ , where $f_{i}\in Hom(C_{i}$ ,
$D_{i})$ is a group homomorphism. Further if $G$ is a group, denote by
$Hom(G, C_{*})$ the chain complex whose $ith$ term is $Hom(G, C_{i})$ and whose

boundary map $\partial$ is defined by $\partial(x)(g)=\partial(\hat{\zeta}(g))$ for $g\in G$ and $ x\in$

$Hom(G, C_{i})$ . Note that $\partial$ is a boundary map, since $\partial^{2}(x)(g)=(\partial(\partial(x)))$

$(g)=\partial(\partial(x)(v))=\partial(\partial(\hat{\zeta}(v))=\partial^{2}(\hat{\zeta}(v))=0$ , so $\partial^{2}=0$ . Finally define
$\hat{K}^{n}$ to be the full subcomplex of $K^{n}$ consisting of those $v\in V$ with
$h(\hat{\zeta}(v))=n$ .

Using these notions and the simplicial complex $K(n)$ discussed in
the example earlier in this section, we now define

$\phi\in Hom(C_{*}(K(n)), Hom(C_{n}(\hat{K}^{n}), C_{*}(K^{n})))$

For $c\in C_{k}(K(n))$ we write $\phi_{c}$ for the image of $c$ under $\phi$ . Thus

$\phi_{c}\in Hom(C_{n}(\hat{K}^{n}), C_{*}(K^{n}))_{k}=Hom(C_{n}(\hat{K}^{n}), C_{k}(K^{n}))$



Combinatorial Cell Complexes 49

and as $\phi$ is a group homomorphism, it suffices to define $\phi$ on the genera-

tors $\sigma\in\Sigma^{k}(n)$ of $C_{k}(K(n))$ . Similarly as $\phi_{\sigma}\in Hom(C_{n}(\hat{K}^{n}), C_{k}(K^{n}))$

is a group homomorphism, it suffices to define $\phi_{\sigma}$ on the generators
$s=\{v_{0}, \ldots, v_{n}\}\in\Sigma^{n}(\hat{K}^{n})$ , ordered so that $v_{0}<\cdots<v_{n}$ . We do so by
decreeing that

$\phi_{\sigma}(s)=\prod_{(i,j)\in\sigma}f_{v_{i}}(v_{j})$
.

Observe

(11.5) For $\sigma=\{(\alpha_{0}, \beta_{0}), \ldots, (\alpha_{k}, \beta_{k})\}\in\Sigma^{k}(n)$ and $s=\{v_{0}$ , $\ldots$ ,
$v_{n}\}\in\Sigma^{n}(\hat{K}^{n})$ , with $v_{0}<\cdots<v_{n}$ and $(\alpha_{0}, \beta_{0})<\cdots<(\alpha_{k}, \beta_{k})$ , we

have $\phi_{\sigma}(s)\in\Sigma^{k}(K^{n})$ with

$f_{v_{\alpha_{t}}}(v_{\beta_{i}})\in L(f_{v_{\alpha_{j}}}(v_{\beta_{j}}))$ for $i<j$ ,

and for $(a, b)\in\sigma,\hat{\zeta}(f_{v_{a}}(v_{b}))=\zeta(v_{a})$ , and $\zeta(f_{v_{a}}(v_{b}))=\zeta(v_{b})$ .

Proof. The last two remarks in the lemma follow from the definition

of $f_{w}(v)$ . As $s\in\Sigma^{n}(\hat{K}^{n})$ , $v_{n}=\infty_{\mathcal{Z}}$ , where $z=\hat{\zeta}(v_{n})$ , and $v_{r}\in f(z)$ for
each $r$ . As $\beta_{r}\leq\alpha_{r}$ , $v_{\beta_{r}}\leq v_{\alpha_{r}}$ , so $f_{v_{\alpha_{r}}}(v_{\beta_{r}})$ is defined.

Let $i<j$ . Then by 11.1, $\beta_{i}\leq\beta_{j}\leq\alpha_{i}\leq\alpha_{j}$ . For $r\leq\alpha_{j}$ let
$\overline{v}_{r}=f_{v_{\alpha_{j}}}(v_{r})$ . Then $\overline{v}_{\beta_{j}}\leq\overline{v}_{\alpha_{i}}$ with $f_{\overline{v}_{\alpha_{i}}}(\overline{v}_{\beta_{j}})\geq f_{\overline{v}_{\alpha_{i}}}(\overline{v}_{\beta_{i}})=f_{v_{\alpha_{i}}}(v_{\beta_{i}})$ ,

so $f_{v_{\alpha_{i}}}(v_{\beta_{\dot{x}}})\in L(f_{v_{\alpha_{j}}}(v_{\beta_{j}}))$ . In particular this shows $\phi_{\sigma}(s)\in\Sigma^{k}(K^{n})$ .

By 11.5, $\phi_{\sigma}(s)\in\Sigma^{k}(K^{n})$ , so $\phi$ is well defined. Thus we have proved:

(11.6) The map $\phi$ defined above is in $Hom(C_{*}(K(n)), Hom(C_{n}(\hat{K}^{n})$ ,
$C_{*}(K^{n})))$ .

Next we have boundary maps $\partial$ on $C_{*}(K(n))$ and on the chain

complex $\mathcal{H}(n, K)=Hom(C_{n}(\hat{K}^{n}), C_{*}(K^{n}))$ . We observe next that the
map $\phi$ preserves these boundary maps:

(11.7) $\partial(\phi_{c})=\phi_{\partial(c)}$ for each $c\in C_{*}(K(n))$ . Thus $\phi$ : $ C_{*}(K(n))\rightarrow$

$\gamma\{(n, K)$ preserves the boundary maps.

Proof. Let $\sigma=\{(a_{0}, b_{0}), \ldots, (a_{k}, b_{k})\}\in\Sigma^{k}(K(n))$ and

$s=\{v_{0}, \ldots, v_{n}\}\in\Sigma^{n}(\hat{K}^{n}))$

Then

$\phi_{\sigma^{i}}(s)=\prod_{j\neq i}f_{v_{a_{j}}}(v_{b_{j}})=\phi_{\sigma}(s)^{i}$
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Therefore if $c=\sum_{\sigma}a_{\sigma}\sigma\in C_{k}(K(n))$ then $\phi_{c^{i}}(s)=\sum_{\sigma}a_{\sigma}\phi_{\sigma^{i}}(s)=$

$\sum_{\sigma}\phi_{\sigma}(s)^{i}=(\sum_{\sigma}a_{\sigma}\phi_{\sigma})^{i}=\phi_{c}(s)^{i}$ . Then

$(\partial(\phi_{c}))(s)=\partial(\phi_{c}(s))=\sum_{i}(-1)^{i}\phi_{c}(s)^{i}=\sum_{i}(-1)^{i}\phi_{c^{i}}(s)=\phi_{\partial(c)}(s)$

Let $z\in V_{n}^{n}$ and $L=Link_{K^{n}}(z)$ . We can also regard

$\phi\in Hom(C_{*}(K(n)), Hom(C_{n-1}(L), C_{*}(K^{n})))$

by composing $\phi$ with the map

$C_{n-1}(L)\rightarrow C_{n}(K^{n})$

$c\mapsto cz$

using 11.3. That is $\phi_{c}=\phi_{cz}$ for $c\in C_{n-1}(L)$ .

\S 12. Cellular homology

We begin by recalling a few standard facts from homological algebra
and elementary algebraic topology.

(12.1) If
$0\rightarrow C\alpha\rightarrow D\rightarrow E\beta\rightarrow 0$

is a short exact sequence of chain complexes, then there exists a map

$\partial_{*}$ : $H_{*}(E)\rightarrow H_{*}(C)$

such that for $z\in H_{n}(E)$ , $\partial_{*}(z)=[(\alpha^{-1}\circ\partial\circ\beta^{-1})(z)]$ . That is if
$z=e+B_{n}(E)$ with $e\in Z_{n}(E)$ then $\partial_{*}(z)=\alpha^{-1}(\partial(d))+B_{n-1}(C)$ for
each choice of $d\in D_{n}$ with $\beta(d)=e$ .

Proof. See for example Lemma 4.5.3 in [5].

(12.2) If
$0\rightarrow C\alpha\rightarrow D\rightarrow E\beta\rightarrow 0$

is a short exact sequence of chain complexes, then

$\ldots$
$\rightarrow H_{n}\partial_{*}(C)\rightarrow H_{n}\alpha_{*}(D)\rightarrow H_{n}\beta_{*}(E)\rightarrow H_{n-1}\partial_{*}(C)\rightarrow\cdots$

is an exact sequence of groups.

Proof. See for example Theorem 4.5.4 in [5].
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Recall if $\iota$ : $L\rightarrow K$ is an inclusion of simplicial complexes then $\iota$

extends to a linear map $\iota$ : $C_{*}(L)\rightarrow C_{*}(K)$ of simplicial chain groups,
which induces a short exact sequence

$(^{*})$
$0\rightarrow C_{*}(L)\rightarrow C_{*}\iota(K)\rightarrow C_{*}j(K)/C_{*}(L)\rightarrow 0$

of chain complexes. Let $H(K, L)=H_{*}(C_{*}(K)/C_{*}(L))$ . Then by 12.1,
we get a map

$\partial_{*}$ : $H(K, L)\rightarrow H_{*}(L)$

$z\mapsto[(\iota^{-1}o\partial oj^{-1})(z)]$

Let $C_{n}(K, L)=C_{n}(K)/C_{n}(L)$ , $Z_{n}(K, L)=Z_{n}(C_{*}(K, L))$ , and define
$B_{n}(K, L)=B_{n}(C_{*}(K, L))$ . Then $Z_{n}(K, L)=\partial^{-1}(C_{n-1}(L))/C_{n}(L)$

and $B_{n}(K, L)=(B_{n}(K)+C_{n}(L))/C_{n}(L)$ . Now for $u\in Z_{n}(K, L)$ and
$d\in C_{n}(K)$ , $j(d)=u$ if and only if $u=d+C_{n}(L)$ , in which case as
$u\in Z_{n}(K, L)$ , $\partial(d)\in C_{n-1}(L)$ . Then by definition of $\partial_{*}$ , $\partial_{*}([d])=$

$\partial(d)+B_{n-1}(L)$ . Then composing $\partial_{*}$ with $\iota_{*}$ : $H_{*}(L)\rightarrow H_{*}(K)$ and
$j_{*}$ : $H_{*}(K)\rightarrow H_{*}(K, L)$ , we can regard

$\partial_{*}$ : $H_{n}(K, L)\rightarrow H_{n-1}(K, L)$

$[d]\mapsto[\partial(d)]$

Notice $\partial_{*}^{2}([d])=[\partial^{2}(d)]=0$ , so $\partial_{*}^{2}=0$ . Therefore

(12.3) If $L$ is a subcomplex of the simplicial complex $K$ then we have
a chain complex $H_{*}(K, L)$ with boundary map $\partial_{*}$ such that $Z_{n}(K, L)=$

$\partial^{-1}(C_{n-1}(L))/C_{n}(L)$ , $B_{n}(K, L)=(B_{n}(K)+C_{n}(L))/C_{n}(L)$ , and $\partial_{*}([d])$

$=[\partial(d)]$

(12.4) If $L$ is a subcomplex of the simplicial complex $K$ containing
no $(n-1)$ -simplices of $K$ then $Hn(K)\cong H_{n}(K, L)$ .

(12.5) If $L$ is a subcomplex of the simplicial complex $K$ then
(1) We have an exact sequence of groups:

$\ldots\rightarrow H_{n}\partial_{*}(L)\rightarrow H_{n}\iota_{*}(K)\rightarrow H_{n}j_{*}(K, L)\rightarrow H_{n-1}\partial_{*}(L)\rightarrow\cdots$

(2) If $\iota_{*}$ : $H_{*}(L)\rightarrow H_{*}(K)$ is an isomorphism then $H_{*}(K, L)=0$ .

(3) If $H_{n+1}(K, L)=H_{n}(K, L)=0$ then $j_{*}$ : $H_{n}(K)\rightarrow H_{n}(L)$ is an
isomorphism.

Proof Applying 12.2 to the short exact sequence $(^{*})$ above, we get
(1). Then (1) implies (2) and (3).

(12.6) Let J $\subseteq L\subseteq K$ be a chain of simplicial complexes. Then
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(1) We have a short exact sequence of groups:

$\ldots$
$\rightarrow H_{n}\partial_{*}(L, J)\rightarrow H_{n}\iota_{*}(K, J)\rightarrow H_{n}j_{*}(K, L)\rightarrow H_{n-1}\partial_{*}(L, J)\rightarrow\cdots$

(2) If $H_{n-1}(L, J)=H_{n}(L, J)=0$ then $j_{*}$ : $H_{n}(K, J)\rightarrow H_{n}(K, L)$

is an isomorphism.
(3) If $H_{n}(L, J)=H_{n}(K, L)=0$ then $H_{n}(K, J)=0$ .

(4) Let $\kappa$ : $J\rightarrow L$ be inclusion and assume $\kappa_{*}$ : $H_{*}(J)\rightarrow H_{*}(L)$ is
an isomorphism and $H_{n}(K, L)=0$ . Then $H_{n}(K, J)=0$ .

Proof. We have the exact sequence

$(^{**})$ $0\rightarrow C_{*}(L)/C_{*}(J)\rightarrow C_{*}\iota(K)/C_{*}(J)\rightarrow C_{*}j(K)/C_{*}(L)\rightarrow 0$

of chain complexes. Applying 12.2 to $(^{**})$ , we conclude that (1) holds.
Of course (1) implies (2) and (3). Assume the hypotheses of (4). As
$\kappa_{*}$ : $H_{*}(J)\rightarrow H_{*}(L)$ is an isomorphism, 12.5.2 says $H_{*}(L, J)=0$ , so as
$H_{n}(K, L)=0$ , (3) says $H_{n}(K, J)=0$ .

Now let $(X, f)$ be a restricted combinatorial cell complex, $\triangle=\triangle(X)$

the graph of $X$ , and $K=K(X)$ the triangulating complex of $X$ . Define
the subcomplexes $K^{n}$ and $K_{n}$ of $K$ as in Section 11, and adopt the nota-
tional conventions of that section. An $n$-dimensional simplicial complex
$L$ is homology spherical if $\tilde{H}_{\dot{\iota}}(L)=0$ for $i\neq n$ .

(12.7) Let $h(X)\geq n$ and $V_{n}^{n}=\{z_{1}, $
\ldots ,

$ z_{r}\}$ . Then

(1) $Z_{i}(K^{n}, K_{n})=\oplus_{j=1}^{r}Z_{ij}$ and $B_{i}(K^{n}, K_{n})=\oplus_{j=1}^{r}B_{ij}$ , where

$Z_{ij}=\{\alpha z_{j}+C_{i}(K_{n}) : \alpha\in\tilde{Z}_{?}.(Link_{K^{n}}(z_{j}))\}$ and

$B_{ij}=\{\beta z_{j}+C_{i}(K_{n}) : \beta\in B_{i}(Link_{K^{n}}(z_{j}))\}$ .

(2) $H_{i}(K^{n}, K_{n})\cong\oplus_{j=1}^{r}\tilde{H}_{i}(Link_{K^{n}}(z_{j}))$ .

(3) $\partial_{*}$ : $H_{i}(K^{n}, K_{n})\rightarrow H_{i-1}(K_{n})$ acts via

$\partial_{*}$ : $[\sum_{j=1}^{i}\alpha_{j}z_{j}]\mapsto(-1)^{i}\sum_{j=1}^{i}\alpha_{j}+B_{i-1}(K_{n})$ .

(4) If $O(j(x))$ is homology spherical for all $x\in X$ of height $n$ then
$H_{i}(K^{n}, K_{n})=0$ for $i\neq n$ .

Proof. Without loss, $X$ is of height $n$ , so $K=K^{n}$ . Let

$V_{ij}=\{\alpha z_{j}+C_{?}.(K_{n}) : \alpha\in C_{i}(Link_{K}(z_{j}))\}$ .
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Then $C_{i}(K, K_{n})=\oplus_{j}V_{ij}$ and by 11.3, $\partial(\alpha z_{j})=\partial(\alpha)z_{j}+(-1)^{i}\alpha\in$

$\partial(\alpha)z_{j}+C_{i-1}(K_{n})$ , so

$\partial(\alpha z_{j}+C_{i}(K_{n}))=\partial(\alpha)z_{j}+C_{i-1}(K_{n})$

Therefore $\sum_{j}\alpha_{j}z_{j}\in\partial^{-1}(C_{i-1}(K_{n}))$ if and only if $\alpha_{j}\in\tilde{Z}_{i}(Link_{K}(z_{j}))$

for all $j$ . That is

$Z_{i}(K, K_{n})=\partial^{-1}(C_{i-1}(K_{n}))/C_{i}(K_{n})=\oplus_{j}Z_{ij}$
.

Similarly the second statement of (1) holds. Of course (1) implies (2) and
(2) and 11.2 imply (4). Also a typical element of $H_{i}(K, K_{n})$ is of the form
$[\sum_{j}\alpha_{j}z_{j}]=u+B_{i}(K, K_{n})$ , where $u=\sum_{j}\alpha_{j}z_{j}+C_{i}(K_{n})\in Z_{i}(K, K_{n})$ .

Then $\partial(\alpha_{j})=0$ so $\partial(\sum_{j}\alpha_{j}z_{j})=(-1)^{i}\sum_{j}\alpha_{j}$ by 11.3, and hence

$\partial([\sum_{j}\alpha_{j}z_{j}])=\partial(\sum_{j}\alpha_{j}z_{j})+B_{i-1}(K_{n})=(-1)^{i}\sum_{j}\alpha_{j}+B_{i-1}(K_{n-1})$

establishing (3).

(12.8) Assume for all $x\in X$ of height $n$ that $O(\dot{f}(x))$ is homology
spherical. Then $Hi(Kn)\cong Hi(Kn)$ for $i\leq n-2$ .

Proof By 12.7.4, $H_{i}(K^{n}, K_{n})=0$ for $i\neq n$ . Then by 12.5.3,
$Hi(Kn)\cong Hi(Kn)$ for $i\neq n$ , $n-1$ .

(12.8) $H_{*}(K_{n+1}, K^{n})=0$ .

Proof By 11.4.2, $\iota_{*}$ : $H_{*}(K^{n})\rightarrow H_{*}(K_{n+1})$ is an isomorphism, so
the lemma follows from 12.5.2.

(12.10) Assume for all $m\geq n+2$ and for all $z\in X$ of height $m$ that
$O(j(x))$ is homology spheric al. Then $H_{i}(K)\cong H_{i}(K^{n+1})$ for $i\leq n$ .

$Proo/$. It suffices to show $H_{i}(K^{m})\cong H_{i}(K^{m-1})$ for each $m\geq n+2$

and $i\leq n$ . As $m\geq n+2$ , $O(\dot{f}(z))$ is homology sphericial for each $z\in X$

of height $m$ . So by 12.8, $H_{i}(K^{m})\cong H_{i}(K_{m})$ for $i\leq m-2$ , and hence
for $i\leq n$ . Therefore by 11.4.2, $H_{i}(K^{m})\cong H_{i}(K_{m})\cong H_{i}(K^{m-1})$ , as
desired.

Recall the simplicial cell complex $X(n)$ of the $n$-simplex and its
triangulating complex $K(n)$ discussed in earlier sections.
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(12.11) (1) $K(n)$ has the homotopy type of the $n$ -simplex so it is
contractible with trivial reduced homology and fundamental group.

(2) $K(n)^{m}\cong K(m)$ for $m\leq n$ .

(3) $\tilde{H}_{*}(K(n)_{m})=0$ for all $m$ , $n$ .

(4) $H_{*}(K(n)^{m}, K(n)_{m})=0$ for $m>0$ .

(5) $H_{*}(K(n)_{m}, K(n)_{m-1})=0$ for $m\neq 1$ .

Proof. By Theorem 7.6, the $n$-simplex is triangulated by $K(n)$ ,

so (1) holds. We observed in Section 11 that (2) holds. By 11.4.2,
$H_{*}(K(n)_{m})\cong H_{*}(K(n)^{m-1})\cong H_{*}(K(m-1))$ by (2), so (1) implies (3).

To prove (4), we apply 12.5.1 with $K=K(m)$ and $L=K(m)_{m}$ . By
(3), $H_{i}(L)=0$ for $i\neq 0$ and $\iota_{*}$ : $H_{0}(L)\rightarrow H_{0}(K)$ is an isomorphism.
As $H_{i}(L)=0$ for $i\neq 0$ , 12.5.1 says $H_{i}(K, L)=0$ for $i\neq 0,1$ . Also

$H_{0}(L)\rightarrow H_{0}\iota_{*}(K)\rightarrow H_{0}j_{*}(K, L)\rightarrow H_{-1}\partial_{*}(L)=0$

is exact with $\iota_{*}$ an isomorphism, so $H_{0}(K, L)=0$ . Similarly

$0=H_{1}(K)\rightarrow H_{1}j_{*}(K, L)\rightarrow H_{0}\partial_{*}(L)\rightarrow H_{0}\iota_{*}(K)$

is exact with $\iota_{*}$ and isomorphism, so $H_{1}(K, L)=0$ . Thus (4) holds.
Finally we prove (5) by applying 12.6.3 with $J=K(n)_{m-1}$ , $L=$

$K(n)^{m-1}$ , and $K=K(n)_{m}$ . $H_{*}(L, J)=0$ by (4) while $H_{*}(K, L)=0$

by 12.9, so $H_{*}(K, J)=0$ by 12.6.3.

(12.12) Let $n\geq 1$ , $B(n)=B_{n-1}(K(n)_{n})+C_{n-1}(K(n)_{n-1})$ , and
let $\eta$ and $\theta$ be the $(n-1)$ -simplices of $K(n)$ defined by

$\eta=\{(n, i) : 0\leq i<n\}$ ,

$\theta=\{(n-1, i) : 0\leq i<n\}$ .

Then $\eta\equiv\theta mod B(n)$ .

Proof. We prove the result by induction on $n$ . Let $K=K(n)$ .
When $n=1$ , $\eta=\{(1,0)\}$ , $\theta=\{(0,0)\}$ , and $\sigma=\{(0,0), (1, 0)\}$ is a
simplex in $K_{1}$ with $\partial(\sigma)=\eta-\theta$ . Then $\partial(\sigma)\in B_{0}(K_{1})\leq B(1)$ , so the
lemma holds when $n=1$ and our induction is anchored.

Let $0\leq i<n-1$ and

$L(i)=\{(a, b)\in K : a\neq i\neq b\}$

If we define $\pi$ : $X(n)-\{i\}\rightarrow X(n-1)$ by $\pi(a)=a-1$ for $a>i$ and
$\pi(a)=a$ for $a<i$ , then $\pi$ induces an isomorphism $\pi$ : $L(i)\rightarrow K(n-1)$

via $\pi(a, b)=(\pi(a), \pi(b))$ . Moreover under this isomorphism, $\pi(\eta^{i})=$
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$\eta(n-1)$ and $\pi(\theta^{i})=\theta(n-1)$ are the simplices playing the role of $\eta$ and
$\theta$ in $K(n-1)$ . Thus by induction on $n$ , $\eta(n-1)-\theta(n-1)=\partial(e)+f$

for some $e\in C_{n-1}(K(n-1)_{n-1})$ and $f\in C_{n-2}(K(n-1)_{n-2})$ . Then
$d_{i}=\pi^{-1}(e)\in C_{n}(K_{n})$ and $c_{i}=\pi^{-1}(f)\in C_{n-1}(K_{n-1})$ with $\eta^{i}-\theta^{i}=$

$\partial(d_{i})-c_{i}$ .

Next claim $\eta^{n-1}-\theta^{n-1}=\partial(d_{n-1})+c_{n-1}$ for some $d_{n-1}\in Cn(Kn)$

and $c_{n-1}\in C_{n-1}(K_{n-1})$ . When $n=2$ take $d_{n-1}=\{(0,1), (0, 2)\}$ . Then

observe that for $n>2$ and $i<n-1$ , $\pi(\eta^{n-1,i})$ and $\pi(\theta^{n-1,i})$ play the
role in $K(n-1)$ of $\eta^{n-1}$ and $\theta^{n-1}$ , so by induction on $n$ there is

$g\in C_{n-1}(K(n-1)_{n-1})$ and $h\in C_{n-2}(K(n-1)_{n-2})$

with $\pi(\eta^{n-1,i}-\theta^{n-1,i})=\partial(g)+h$ . Then $\delta_{i}=\pi^{-1}(g)\in C_{n}(K_{n})$

and $\gamma_{i}=\pi^{-1}(h)\in C_{n-1}(K_{n-1})$ with $\eta^{n-1,i}-\theta^{n-1,i}=\partial(\delta_{i})+\gamma_{i}$ .

Let $\delta=\sum_{?}.(-1)^{i}\delta_{i}$ and $\gamma=\sum_{i}(-1)^{i}\gamma_{i}$ . Then $\partial(\delta)+\gamma=\partial(\eta^{n-1}-$

$\theta^{n-1})$ , so $\eta^{n-1}-\theta^{n-1}-\delta\in Z_{n-1}(K_{n}, K_{n-1})$ . However by 12.11.5,
$H_{n-1}(K_{n}, K_{n-1})=0$ , so there is $d_{n-1}\in C_{n}(K_{n})$ and $c_{n-1}\in C_{n-1}$ $($

$K_{n-1})$ with $\partial(d_{n-1})=\eta^{n-1}-\theta^{n-1}-c_{n-1}$ , completing the proof of the
claim.

We now complete the proof of the lemma using the argument of

the previous paragraph. Namely let $d=\sum_{i=0}^{n-1}(-1)^{i}d_{i}$ and $c=\sum_{i=0}^{n-1}$

$(-1)^{i}c_{i}$ . Then $\partial(d)+c=\partial(\eta-\theta)$ , so as $H_{n-1}(K_{n}, K_{n-1})=0$ , there is
$\alpha\in C_{n}(K_{n})$ and $\beta\in C_{n-1}(K_{n-1})$ with $\partial(\alpha)=\eta-\theta-\beta$ .

In the next lemma we use the map

$\phi\in Hom(C_{*}(K(n)), Hom(C_{n-1}(Link_{K^{n}}(z)), C_{*}(K^{n})))$

defined in Section 11 for each $z\in V_{n}^{n}$ .

(12.13) Let $\theta$ be the $(n-1)$ -simplex of $K(n)$ defined by

$\theta=\{(n-1, i) : 0\leq i<n\}$

and let $B=B_{n-1}(K_{n})+C_{n-1}(K_{n-1})$ . Then for each $z\in V_{n}^{n}$ and each
$\xi\in C_{n-1}(Link_{K}(z))$ ,

$\xi\equiv\phi_{\theta}(\xi)$ $mod B$ .

Moreover for $s=\{v_{0}, \ldots, v_{n-1}\}\in\Sigma^{n}(Link_{K^{n}}(z))$ , $\phi_{\theta}(s)=f_{v_{n-1}}(s)$ .

Proof The last statement of the lemma is just the definition of $\phi_{\theta}$ .

By 11.7,

$\phi_{B_{n-1}(K(n)_{n})}=\phi_{\partial(C_{n}(K(n)_{n}))}=\partial(\phi_{C_{n}(K(n)_{n})})$ ,
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while $\phi_{C_{n}(K(n)_{n})}(C_{n-1}(L))\subseteq C_{n}(K_{n})$ . Therefore

$\phi_{B_{n-1}(K(n)_{n})}(C_{n-1}(L))\leq B_{n-1}(K_{n})$ .

Similarly $\phi_{C_{n-1}(K(n)_{n-1})}(C_{n-1}(L))\leq C_{n-1}(K_{n-1})$ . Therefore the

lemma follows from 12.12 and the fact that $\phi_{\eta}(\xi)=\xi$ for each $\xi\in C_{n-1}$

$(Link_{K^{n}}(z))$ , where $\eta$ is the simplex of $K(n)$ defined in 12.12.

We now define the cellular homology of $X$ . Let $Dn(X)=Hn(Kn$ ,

$K_{n})$ . Equivalently for $z\in V_{n}^{n}$ let

$D(z)=$ $\{ \sum. ^{d_{z,s}zs} : \sum_{s}d_{z,s}s\in\tilde{Z}_{n-1}(\dot{f}(z))\}\leq C_{n}(f(z))$

$s\in\Sigma^{n-1}(f(z))$

with $d_{z,s}\in Z$ , so that $D(z)\cong\tilde{H}_{n-1}(j(z))$ . Then by 12.7,

$D_{n}(X)=z\in V_{n}^{n}\oplus D(z)\cong\oplus\tilde{H}_{n-1}z\in V_{n}^{n}(\dot{f}(z))$

and this definition of $D_{n}(X)$ is usually easier to work with. Define the

boundary map on the chain complex $D_{*}(X)=(D_{n}(X) : 0\leq n\in Z)$ by

$\partial_{n}$ : $D_{n}(X)\rightarrow D_{n-1}(X)$

$\sum_{z\in V_{n}^{n}}zd_{z}\mapsto(-1)^{n}\sum_{z}\phi_{\theta}(d_{z})$

where $d_{z}\in\tilde{Z}_{n-1}(Link_{K^{n}}(z))$ and $\theta=\{(n-1, i) : 0\leq i<n\}\in\Sigma_{n-1}(n)$ .

Recall from 12.13 that if $d_{z}=\sum_{S\in\Sigma n-1}(Link_{K^{n}}(z))d_{z,s}s$ with $d_{z,s}\in Z$

then $\phi_{\theta}(d_{z})=\sum_{s}d_{z,s}f_{w(s)}(s)$ , where $w(s)$ is the greatest element of $s$ .

Therefore
$\partial_{n}$ :

$\sum_{z,s}d_{z,s}zs\mapsto(-1)^{n}\sum_{z,s}d_{z,s}f_{w(s)}(s)$

which is usually an easier definition to work with. We see in a moment
that $\partial_{n-1}\circ\partial_{n}=0$ , so $\partial$ is indeed a boundary map. We call $D_{*}(X)$

the cellular chain complex of $X$ and $\partial$ the cellular boundary map. The
cellular homology of $X$ is $H_{*}^{c}(X)=H_{*}(D_{*}(X))$ .

for
$eachz\in NowweverifythatV_{n}^{n}andd_{z}\partial_{n-1}o\partial_{n}=0byshowing\partial_{n-1}(\partial_{n}(zd_{z}))\in\tilde{Z}_{n-1}(Link_{K^{n}}(z)).Firstd_{z}=\sum_{u}ud_{z,u}=0and$

$d_{z,u}=\sum_{t}d_{z,u,t}t$ , where

$d_{z,u,t}\in Z$ , $d_{z,u}\in\tilde{Z}_{n-2}(Link_{K^{n}}(\{z, u\}))$ ,
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and the sums are over all $u\in Link_{K^{n}}(z)$ of height $n-2$ and all $(n-2)-$

simplices $t$ in $Link_{K^{n}}(z) u\})$ . As $\partial(d_{z})=0,1.1.4$ says $0=\sum_{u}d_{z,u}$ .

That is

$0=\sum_{u,t}d_{z,u,t}t=\sum_{t}(\sum_{t<u<z}d_{z,u,t})t$
, so

$t<\sum_{u<z}d_{z,u,t}=0$

for each $t$ . Now

$(\partial_{n-1}o\partial_{n})(zd_{z})=(-1)^{n}\partial_{n-1}(\sum_{u,t}d_{z,u,t}f_{u}(u)f_{u}(t))$

$=-\sum_{u,t}d_{z,u,t}f_{w(f_{u}(t))}(f_{u}(t))=-\sum_{t}(\sum_{t<u<z}d_{z,u,t})f_{w(t)}(t)=0$
.

So the cellular boundary map $\partial$ is indeed a boundary map on the cellular
chain complex.

(12.14) Let

$f_{m}$ : $H_{m}(K^{m}, K^{m-1})\rightarrow H_{m}(K^{m}, K_{m})$ and

$n+1\partial_{*}$ : $H_{n+1}(K^{n+1}, K^{n})\rightarrow H_{n}(K^{n}, K^{n-1})$

be the maps induced via 12.6 by the inclusions

$K^{m-1}\subseteq K_{m}\subseteq K^{m}$ and

$K^{n-1}\subseteq K^{n}\subseteq K^{n+1}$

respectively. Let

$\partial_{n+1}$ : $H_{n+1}(K^{n+1}, K_{n+1})\rightarrow H_{n}(K^{n}, K_{n})$

be the cellular boundary map. Then the diagram

$H_{n+1}(K^{n+1}, K^{n})$ $\rightarrow n+1\partial_{*}H_{n}(K^{n}, K^{n-1})$

$ f_{n+1}\downarrow$ $\downarrow fn$

$H_{n+1}(K^{n+1}, K_{n+1})\vec{\partial_{n+1}}$
$H_{n}(K^{n}, K_{n})$

commutes and $f_{n}$ is an isomorphism for all $n$ .

Proof. By 12.9, $H_{*}(K_{m}, K^{m-1})=0$ for all $m$ , so applying 12.6.2
to the chain $K^{m-1}\subseteq K_{m}\subseteq K^{m}$ , we conclude $f_{m}$ : $ H_{m}(K^{m}, K^{m-1})\rightarrow$

$H_{m}(K^{m}, K_{m})$ is an isomorphism for each $m$ .
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To complete the proof it remains to show the following diagram
commutes:

$H_{n+1}(K^{n+1}, K^{n})$
$\rightarrow\hat{\partial}_{*}$

$H_{n}(K^{n}, K^{n-2})$ $\rightarrow j_{*}H_{n}(K^{n}, K^{n-1})$

$ fn+1\downarrow$ $\iota_{*}\downarrow$ $\downarrow f_{n}$

$H_{n+1}(K^{n+1}, K_{n+1})\vec{\partial_{*}’}H_{n}(K_{n+1}, K^{n-2})\vec{\rho}$
$H_{n}(K^{n}, K_{n})$

that $n+1\partial_{*}=j_{*}o\hat{\partial}_{*}$ , and that $\rho o\partial_{*}’=\partial_{n+1}$ . Here $\partial_{*}’$ and $\iota_{*}$ are the
maps induced via 12.6 by the inclusions

$K^{n-2}\subseteq K_{n+1}\subseteq K^{n+1}$

$K^{n-2}\subseteq K^{n}\subseteq K_{n+1}$

respectively, $\rho=f_{n}\circ j_{*}\circ\iota_{*}^{-1}$ , and

$\hat{\partial}_{*}$ : $H_{n+1}(K^{n+1}, K^{n})\rightarrow H_{n}(K^{n}, K^{n-2})$ and

$j_{*}$ : $H_{n}(K^{n}, K^{n-2})\rightarrow H_{n}(K^{n}, K^{n-1})$

are the maps induced via 12.6 by the inclusions

$K^{n-2}\subseteq K^{n}\subseteq K^{n+1}$ and

$K^{n-2}\subseteq K^{n-1}\subseteq K^{n}$

respectively.
By 12.9, $H_{*}(K^{n}, K_{n+1})=0$ , so applying 12.6 to $ K^{n-2}\subseteq K^{n}\subseteq$

$K_{n+1}$ we conclude $\iota_{*}$ : $H_{n}(K^{n}, K^{n-2})\rightarrow H_{n}(K_{n+1}, K^{n-2})$ is an isomor-
phism, so $\rho$ is well defined. By definition of $\rho$ , the right hand square
in the diagram commutes, so to show the full diagram commutes, it
remains to show the left hand square commutes.

From the discussion at the beginning of this section,

$H_{m+1}(K^{m+1}, K^{m})=Z_{m+1}(K^{m+1}, K^{m})/B_{m+1}(K^{m+1}, K^{m})$

with
$Z_{m+1}(K^{m+1}, K^{m})=\partial^{-1}(C_{m}(K^{m}))/C_{m+1}(K^{m})$

and

$B_{m+1}(K^{m+1}, K^{m})=(B_{m+1}(K^{m+1})+C_{m+1}(K^{m}))/C_{m+1}(K^{m})$ .

So as $C_{m+1}(K^{m})=B_{m+1}(K^{m+1})=0$ , we have

$H_{m+1}(K^{m+1}, K^{m})=\partial^{-1}(C_{m}(K^{m}))$ .
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That is a typical element of $H_{m+1}(K^{m+1}, K^{m})$ is some $d\in C_{m+1}(K^{m+1})$

with $\partial(d)\in C_{m}(K^{m})$ . Similarly

$H_{m+1}(K^{m+1}, K^{m})=\partial^{-1}(C_{m}(K_{m+1})/C_{m+1}(K_{m+1})$

and $f_{m+1}$ : $d\mapsto d+C_{m+1}(K_{m+1})$ .

Also $H_{n}(K^{n}, K^{n-2})=\tilde{Z}_{n}(K^{n})$ ,

$H_{n}(K_{n+1}, K^{n-2})=H_{n}(K_{n+1})=\tilde{Z}_{n}(K_{n+1})/B_{n}(K_{n+1})$ ,

$\hat{\partial}_{*}$ : $d\mapsto\partial(d)$ , $\partial_{*}’$ : $d+C_{n+1}(K_{n+1})\mapsto\partial(d)+B_{n}(K_{n+1})$ , and $\iota_{*}$ : $ z\mapsto$

$z+B_{n}(K_{n+1})$ . Therefore

$(\iota_{*}o\hat{\partial}_{*})(d)=\partial(d)+B_{n}(K_{n+1})=(\partial_{*}’of_{n+1})(d)$

completing the proof that the diagram commutes.

Finally the proof that $\partial_{n+1}=\rho o\partial_{*}’$ and $n+1\partial_{*}=j_{*}\circ\hat{\partial}_{*}$ . As

$\iota_{*}$ : $H_{n}(K^{n}, K^{n-2})\rightarrow H_{n}(K_{n+1}, K^{n-2})$

is an isomorphism, $\tilde{Z}_{n}(K_{n+1})=\tilde{Z}_{n}(K^{n})\oplus B_{n}(K_{n+1})$ . Thus if $\pi$ :
$\tilde{Z}_{n}(K_{n+1})\rightarrow\tilde{Z}_{n}(K^{n})$ is the projection with respect to this direct sum
decomposition, we have $\rho=f_{n}\circ j_{*}\circ\iota_{*}^{-1}=f_{n}\circ j_{*}\circ\pi$ . Further we have seen
$H_{n}(K^{n}, K^{n-1})=\partial^{-1}(C_{n-1}(K^{n-1}))$ , $H_{n}(K^{n}, K_{n})=\partial^{-1}(C_{n-1}(K_{n})/$

$C_{n}(K_{n}))$ , and $f_{n}$ : $d’\mapsto d’+C_{n}(K_{n})$ . Finally $j_{*}$ is the identity map on
$H_{n}(K^{n}, K^{n-1})$ , so $\rho$ : $e\mapsto\pi(e)+C_{n}(K_{n})$ . Therefore

$\rho o\partial_{*}’$ : $d+C_{n+1}(K_{n+1})\mapsto\pi(\partial(d))+C_{n}(K_{n})$ .

Also $(j_{*}o\hat{\partial}_{*})(d)=\partial(d)=n+1\partial_{*}(d)$ , with the last equality following
from the discussion at the beginning of this section.

Recall from 12.7 that we can choose are coset representative $d$ so
that $d=\sum_{z\in V_{n+1}^{n+1}}zd_{z}$ , with $d_{z}\in\tilde{Z}_{n}(Link_{K^{n+1}}(z))$ , and that by 11.3,

$\partial(zd_{z})=(-1)^{n+1}d_{z}$ . Thus it remains to show that if $d=zd_{z}$ then
$\pi(d_{z})\equiv\phi_{\theta}(zd_{z})mod C_{n}(K_{n})$ . Let $e=\phi_{\theta}(zd_{z})$ . By 12.13, $d_{z}=e+b+c$

for some $b\in B_{n}(K_{n+1})$ and $c\in C_{n}(K_{n})$ . Then

$d_{z}-b$ $=e+c\in\tilde{Z}_{n}(K_{n+1})\cap C_{n}(K^{n})\leq\tilde{Z}_{n}(K^{n})$ ,

so $e+c=\pi(d_{z})$ and therefore $\pi(d_{z})=e+c\equiv emod C_{n}(K_{n})$ , com-
pleting the proof.

(12.15) Assume for each $x\in X$ of height $n$ that $O(j(x))$ is homol-
ogy sphericial. Then $H_{i}(K^{n}, K^{n-1})=0$ for all $i\neq n$ .
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Proof. By 12.9, $H_{*}(K_{n}, K^{n-1})=0$ , so applying 12.6.2 to the se-
quence $K^{n-1}\subseteq K_{n}\subseteq K^{n}$ , we conclude $H_{*}(K^{n}, K^{n-1})\cong H_{*}(K^{n}, K_{n})$ .

Then as $O(j(x))$ is homology spherical for each $x\in X$ of height $n$ , 12.7.4
completes the proof.

Theorem 12:16. Let $X$ be a restricted combinatorial cell com-
plex such that $O(f(x))$ is spherical for each $x\in X$ . Then the ordinary
homology $H_{*}(X)$ of $X$ is isomorphic to the cellular homology $H_{*}^{c}(X)$ .

Proof. In Lemma 12.14 we defined maps

$n+1j_{*}on+1\hat{\partial}_{*}=n+1\partial_{*}$ : $H_{n+1}(K^{n+1}, K^{n})\rightarrow H_{n}(K^{n}, K^{n-1})$

and proved these maps are isomorphic to the cellular maps

$\partial_{n+1}$ : $D_{n+1}(X)\rightarrow D_{n}(X)$ .

Thus the chain complex $(H_{n}(K^{n}, K^{n-1})$ , $n\partial_{*}$ : $0\leq n\in Z$ ) is isomorphic
to the cellular chain complex $D_{*}(X)$ . Therefore it suffices to show

$H_{n}(X)\cong ker(_{n}\partial_{*})/Im(_{n+1}\partial_{*})$

To do so we use the standard proof for CW- complexes.
First the inclusions

$K^{n-2}\subseteq K^{n-1}\subseteq K^{n}$

$K^{n-2}\subseteq K^{n}\subseteq K^{n+1}$

induce via 12.6 the maps

$ H_{n}(K^{n-1}, K^{n-2})\searrow$ $\nearrow H_{n}\iota_{*}(K^{n+1}, K^{n-1})\rightarrow H_{n}(K^{n+1}, K^{n})$

$H_{n}(K^{n}, K^{n-2})$

$\hat{\partial}_{*}\nearrow$ $\backslash j_{*}$

$H_{n+1}(K^{n+1}, K^{n})$ $H_{n}(K^{n}, K^{n-1})\rightarrow n\partial_{*}H_{n-1}(K^{n-1}, K^{n-2})$

By 12.15, $H_{n}(K^{n-1}, K^{n-2})=0$ , so as the sequences of 12.6 are exact,

$j_{*}=n+1j_{*}$ is injective with $Im(j_{*})=ker(_{n}\partial_{*})$ . As $O(\dot{f}(x))$ is homology

spherical for each $x\in X$ , $H_{n}(K^{n+1}, K^{n})=0$ by 12.15. Therefore $\iota_{*}$ is
a surjection, so

$\iota_{*}\circ j_{*}^{-1}$ : $ker(_{n}\partial_{*})\rightarrow H_{n}(K^{n+1}, K^{n-2})$

is a surjection with kernel

$j_{*}(ker(\iota_{*}))=j_{*}(Im(_{n+1}\partial_{*}))=Im(_{n+1}\partial_{*})$
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That is
$H_{n}(K^{n+1}, K^{n-2})\cong ker(_{n}\partial_{*})/Im(_{n+1}\partial_{*})$

Finally by 12.4, $H_{n}(K^{n+1})\cong H_{n}(K^{n+1}, K^{n-2})$ , while as $O(\dot{f}(x))$

is homology spherical for each $x\in X$ , $H_{n}(K^{n+1})\cong H_{n}(K)$ by 12.10.
Thus the Theorem is established.

(12.17) Assume $\dot{f}(x)$ is simply connected for each $x\in X$ with $h(x)$

$\geq 3$ . Then
(1) $\pi_{1}(K(X^{n+1}))\cong\pi_{1}(K(X^{n}))?.fn\geq 2$ ,

(2) $\pi_{1}(K(X))\cong\pi_{1}(K(X^{n}))$ for $n\geq 2$ .

Proof. Evidently (1) implies (2), so we prove (1). Recall the defini-
tions of $X^{n}$ , $K^{n}$ , and $K_{n}$ from Section 11. In particular $K^{n}=K(X^{n})$ ,

so it suffices to show $\pi_{1}(K^{n+1})\cong\pi_{1}(K^{n})$ .

Let $\iota$ : $K^{n}\rightarrow K_{n+1}$ be the inclusion map. By 11.4.2, $\iota$ is a ho-
motopy equivalence, so $\pi_{1}(K^{n})\cong\pi_{1}(K_{n+1})$ . Thus it remains to show
$\pi_{1}(K_{n+1})\cong\pi_{1}(K^{n+1})$ .

Let $\pi$ : $K_{n+1}\rightarrow K^{n+1}$ be the inclusion map and $s=\{v_{0}, \ldots, v_{k}\}$

be a simplex in $K^{n+1}$ ordered as in Lemma 5.4. If $v_{0}\in K_{n+1}$ then
$v_{0}\in P=\pi^{-1}(st_{K^{n+1}}(s))\subseteq st_{K_{n+1}}(v_{0})$ and hence $P$ is contractible.

Thus we may take $s=\{x\}$ with $h(x)=n+1$ . In this case $P=\dot{f}(x)$ is
simply connected by hypothesis. Thus by Theorem 1 in [3], $\pi_{1}(K_{n+1})\cong$

$\pi_{1}(K^{n+1})$ , as desired.

\S 13. The torus and the Klein bottle

In this section we consider the torus and the Klein bottle as exam-
ples.

Let $X$ be the poset of dimension 2 with a unique maximal element
$c$ , and unique minimal element $d$ , and two elements $a_{1}$ and $a_{2}$ of height
1.

We associate a combinatorial cell $f(x)$ to each $x\in X$ . Let $f(c)$ have
4 elements $b_{i}$ of height 1 and 4 elements $v_{i}$ of height 0, with $v_{i}$ , $v_{i-1}<b_{i}$ ,

where the indices are read modulo 4. Further we let $\zeta(b_{i})=a_{[i]}$ , where

$[i]=imod 2$ . This forces $f(a_{i})$ to have 2 elements $u_{ij}$ , $j=1,2$ , of
height 0.

It remains to describe $f_{?}$. $=f_{b_{i}}$ : $f(c)(\leq b_{i})\rightarrow f(a_{[i]})$ . We may

choose notation so that $f_{2}(v_{i})=u_{2,i}$ and $f_{3}(v_{i+1})=u_{1,i}$ . We say that
$b_{2}$ and $b_{4}$ have the same orientation if $f_{4}(v_{3})=f_{2}(v_{2})$ ; here the pair
$v_{2}$ , $v_{3}$ is distinguished by $b_{3}>v_{2}$ , $v_{3}$ , whereas no member of $f(c)$ of
height 1 is greater than $v_{2}$ and $v_{4}$ . Up to change of notation, we are left
with 3 cases:
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(i) $b_{2}$ and $b_{4}$ and $b_{1}$ and $b_{3}$ both have the same orientation.

(ii) Exactly one pair (say $b_{2}$ and $b_{4}$ ) has the same orientation.

(iii) Neither pair has the same orientation.

We will see that the geometric realization of $(X, f)$ in case (i) cor-
responds to the torus, in case (ii) to the Klein bottle, and in case (iii)
the realization is not a manifold.

We have defined our combinatorial cell $(X, f)$ . We next consider the
polyhedral cell complex $P(X)=(X, f, F, B)$ of $(X, f)$ and the geometric
realization $T(X)$ of $(X, f)$ . We can regard $F(c)$ as the unit square with
vertices $F(v_{i})$ arranged in order as in the diagram below. Then $F(b_{i})$ is
the edge $[v_{?-1}., v_{i}]$ . Thus we have the picture

$v_{4}-v_{3}$
$F(b_{4})$

$ F(b_{1})\downarrow$ $\uparrow F(b_{3})$

$F(b_{2})$

$v_{1}\rightarrow v_{2}$

Similarly $F(a_{i})$ is the unit interval $[F(u_{i1}), F(u_{i2})]$ with initial point
$F(u_{i1})$ and endpoint $F(u_{i2})$ . Finally we have

$F_{b_{i}}$ : $F(b_{i})\rightarrow F(a_{[i]})$

$tF(v_{i-1})+(1-t)F(v_{i})\mapsto tF(f_{i}(v_{i-1}))+(1-t)F(f_{i}(v_{i}))$

In cases (i) and (ii), $b_{2}$ and $b_{4}$ have the same orientation, so in the
geometric realization $T(X)$ the edges $F(b_{2})$ and $F(b_{4})$ are identified with
the same orientation, resulting in a tube with ends $F(b_{1})$ and $F(b_{3})$ . In
case (i), these ends are identified with the same orientation, resulting
in a torus, while in case (ii) they are identified with a twist, resulting
in a Klein bottle. Finally in case (iii), $F(b_{2})$ and $F(b_{4})$ are identified
with a twist, resulting in a M\"obius strip, and then $F(b_{1})$ and $F(b_{3})$ are
identified with a twist, yielding a space $T(X)$ which is not a manifold,

since at a neighborhood of $\tilde{F}(d)$ we get two copies of the 2-ball glued at
$\tilde{F}(d)$ .

We next discuss the the homology of our cell complexes. First $\dot{f}(c)$

has the homotopy type of the 1-sphere and $\dot{f}(a_{i})$ the type of the 0-sphere,

so by Theorem 12.15, $H^{c}(X)_{*}=H_{*}(X)$ . Further $H_{1}(j(c))=Z_{1}(j(c))$

has a unique generator

$\gamma=\sum_{i=1}^{4}v_{i}b_{i}-v_{i-1}b_{i}$



Combinatorial Cell Complexes 63

where the indices are read modulo 4, so by the definition of $D_{*}(X)$ ,
$D_{2}(X)=D(c)$ has a unique generator $ c\gamma$ . Similarly $ D_{1}(X)=D(a_{1})\oplus$

$D(a_{2})$ has two generators $a_{i}\alpha_{?}.$ , where

$\alpha_{i}=u_{i,2}-u_{i,1}$

and $D_{0}(X)=D(d)$ is 1-dimensional with generator $d$ .

Next by definition of the cellular boundary map $\partial$ ,

$\partial(a_{\dot{0}}\alpha_{i})=f_{u_{i,2}}(u_{i,2})-f_{u_{i,1}}(u_{i,1})=d-d=0$

so that $D_{1}(X)=Z_{1}(X)$ and $H_{0}(X)\cong D_{0}(X)\cong Z$ . Similarly

$\partial(c\gamma)=\sum_{i=1}^{4}f_{b_{i}}(b_{\dot{\iota}}(v_{i}-v_{i-1}))=\sum_{i=1}^{4}a_{[i]}f_{i}(v_{i}-v_{?-1}.)$

$=a_{1}(f_{1}(v_{1}-v_{4})+f_{3}(v_{3}-v_{1}))+a_{2}(f_{2}(v_{2}-v_{1})+f_{4}(v_{4}-v_{3}))=a_{1}A_{1}+a_{2}A_{2}$

Now if $b_{2}$ and $b_{4}$ have the same orientation then $f_{2}(v_{2})=f_{4}(v_{3})$ ,

and hence also $f_{4}(v_{4})=f_{2}(v_{1})$ , so that $A_{2}=0$ . On the other hand if the
orientation is opposite then $u_{2,2}=f_{2}(v_{2})=f_{4}(v_{4})$ , so $u_{2,1}=f_{2}(v_{1})=$

$f_{4}(v_{3})$ and hence $A_{2}=2\alpha_{2}$ . A similar remark holds for $A_{1}$ .

Now if $X$ is the torus then both pairs have the same orientation, so
$\partial(c\gamma)=0$ and $B_{1}(X)=0$ . Thus $H_{2}(X)=D_{2}(X)\cong Z$ and $ H_{1}(X)\cong$

$D_{1}(X)\cong Z\oplus Z$ . On the other hand if $X$ is the Klein bottle then
$A_{2}=0$ and $A_{1}=2\alpha_{1}$ , so $\partial(c\gamma)=2\alpha_{1}$ . Therefore for the Klein bottle,
$H_{2}(X)=0$ and $B_{1}(X)=2Z\alpha_{1}$ , so $H_{1}(X)\cong Z\oplus Z_{2}$ . Finally in case
(iii), $\partial(c\gamma)=2(\alpha_{1}+\alpha_{2})$ , so again $H_{2}(X)=0$ and $H_{1}(X)\cong Z\oplus Z_{2}$ .

\S 14. The dual cell complex of a restricted cell complex

In this section $(X, f)$ is a restricted combinatorial cell complex of
finite height whose map $\zeta$ is surjective; that is $\zeta$ : $f(x)\rightarrow X(\leq x)$ is

surjective for each $x\in X$ . The dual complex $(\hat{X},\hat{f})$ of $(X, f)$ is the
combinatorial cell complex defined below. But first an example.

Example. Let $(X, f)$ be a regular cell complex. Then $(X, f)$ is
isomorphic to the simplicial cell complex of the poset $X$ , so without
loss it is that complex. That is $f(x)=X(\leq x)$ and the maps $\zeta$ and
$f_{v}$ , $v\in f(x)$ , are the appropriate identity maps. It will turn out that
the dual complex for this complex is the simplicial cell complex of the

dual poset $\hat{X}$ whose ordering $\leq is$ obtained by reversing the ordering on
$X$ . So the duality operation on cell complexes is a generalization of the
duality on posets.
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In general the poset of the dual complex is the dual poset $\hat{X}$ . In
addition to defining the poset of the dual complex we must define the

cells $\hat{f}(x)$ for each $x\in\hat{X}$ , the zeta map for $\hat{X}$ , and the f-v maps for

each $v\in\hat{V}$ . In our example, $\hat{f}(x)=X(\geq x)$ . It will turn out in general

that the zeta map for the dual complex $\hat{X}$ is the hat-zeta map $\hat{\zeta}$ for the

complex $\hat{X}$ . So in our case $\hat{\zeta}(v)=v$ for $v\in V=\hat{V}$ . Similarly it will

turn out that the f-v map $\hat{f}_{v}$ : $\hat{f}(x)(_{\sim}<v)\rightarrow\hat{f}(\hat{\zeta}(v))$ for $\hat{X}$ is the hat-f-v

map for $X$ , so in our case that map is $\hat{f}_{v}(u)=u$ for $u\leq v\in f(x)$ .

Now the definition of the dual complex. First the poset $\hat{X}$ of the

complex is the dual poset of $X$ . That is $X$ and $\hat{X}$ are the same as sets

with the $ordering<\sim on\hat{X}$ defined by $x\leq y$ if and only if $y\leq x$ . As $X$

has finite height, $\hat{X}$ has the same finite height, so all elements of $\hat{X}$ are
of finite height.

Second for $x\in\hat{X}$ , define

$\hat{f}(x)=\{v\in V : \zeta(v)=x\}$

partially ordered by $u\leq v$ if and only if $v\in L(u)$ . We check that this is a
partial order: By definition the relation is reflexive and antisymmetric.

Suppose $u\sim<v\leq w$ in $\hat{f}(x)$ . Then $v\in L(u)$ so $f_{a}(u)\geq v$ where
$a=\hat{f}_{v}(u)$ . Indeed as $u$ , $v\in\hat{f}(x)$ , $\zeta(u)=x=\zeta(v)$ , so $\zeta(f_{a}(u))=$

$\zeta(u)=\zeta(v)$ and hence $f_{a}(u)=v$ . Similarly as $v\leq w$ , $f_{b}(v)=w$ , where
$b=\hat{f}_{w}(v)$ . But now $c=f_{a}^{-1}(b)=\hat{f}_{w}(u)$ so $u\leq w$ . For by axiom (ii) for
combinatorial cell complexes,

$f_{c}(u)=f_{f_{a}(c)}(f_{a}(u))=f_{b}(v)=w$ .

Observe that by definition $\hat{V}=V$ and $\hat{f}(x)$ is the set of elements
$v\in V$ such that $x_{\infty}\in L(v)$ .

Recall the hat-zeta-function $\hat{\zeta}$ for $X$ is defined by $\hat{\zeta}(v)$ is the unique

$x\in X$ with $v\in f(x)$ . Notice that the hat-zeta-function for $\hat{X}$ is the

zeta-function for $X$ . Conversely we define the zeta-function for $\hat{X}$ to

be the hat-zeta-function for $X$ . We verify $\hat{X}$ satisfies axiom (i) for

combinatorial cell complexes; that is we check that $\hat{\zeta}$ : $\hat{f}(x)\rightarrow\hat{X}$ is a

map of posets preserving height. Namely if $u$ , $v\in\hat{f}(x)$ with $ u<v\sim$ then

$f_{a}(u)=v$ where $a=\hat{f}_{v}(u)$ , and $\hat{\zeta}(u)\geq\zeta(a)=\hat{\zeta}(v)$ , so $\hat{\zeta}$ preserves the

order. Next as $X$ is of finite height, there is a chain $y_{0}>\cdots>y_{m}=\hat{\zeta}(u)$

of maximal length $m$ and as $\zeta$ : $f(y_{i})\rightarrow X(\leq y_{i})$ is surjective for each $i$ ,
we can lift this chain to a chain $w_{0}>\cdots>w_{m}$ in $f(yo)$ with $\zeta(w_{i})=y_{i}$ .

Let $a=f_{w_{m}}^{-1}(u)$ and $a_{i}=f_{w_{i}}(a)$ . Then $a_{0}\leq\cdots\leq a_{m}=u$ is a chain of



Combinatorial Cell Complexes 65

length $m$ in $\hat{f}(x)$ , so $\hat{\zeta}$ preserves height. This completes the verification
of axiom (i).

Next for $x\in X$ and $v\in\hat{f}(x)$ ,

$\hat{f}(x)(_{\sim}<v)=$ { $u\in V$ : $\zeta(u)=\zeta(v)$ and $v\in L(u)$ }
$=$ { $u\in V$ : $v\in L(u)$ and $f_{\hat{f}_{v}(u)}(u)=v$ }.

As $X$ is restricted, for each $v\in V$ we have the hat-f-v-function $\hat{f}_{v}$ defined

on the set of $u\in V$ with $v\in L(u)$ by $\hat{f}_{v}(u)$ the unique $w\in f(\hat{\zeta}(u))$ with

$w\geq u$ and $\zeta(w)=\hat{\zeta}(v)$ . We define the f-v-function for $\hat{X}$ to be the

restriction to $\hat{f}(x)(_{\sim}<v)$ of the hat-f-v-function $\hat{f}_{v}$ for $X$ . We next verify

that $\hat{X}$ satisfies axiom (ii) for combinatorial cell complexes. By definition
$\zeta(\hat{f}_{v}(u))=\hat{\zeta}(v)=x$ , so

$\hat{f}_{v}$ : $\hat{f}(x)(_{\sim}<v)\rightarrow\hat{f}(\hat{\zeta}(v))=\hat{f}(x)$ .

We check that $\hat{f}_{v}$ is an isomorphism of posets. First if $\hat{f}_{v}(u_{1})=\hat{f}_{v}(u_{2})=$

$w$ then $f_{w}(u_{1})=v=f_{w}(u_{2})$ , so as $f_{w}$ is injective, $u_{1}=u_{2}$ . That is
$\hat{f}_{v}$ is injective. Next if $w\in\hat{f}(x)$ then $f_{w}^{-1}(v)=u\in\hat{f}(x)(\sim<v)$ with
$\hat{f}_{v}(u)=w$ , so $\hat{f}_{v}$ is a bijection.

Suppose $a$ , $b\in\hat{f}(x)(\sim<v)$ with $a\leq b$ . Then $b\in L(a)$ so $f_{w}(a)=b$

for $w=\hat{f}_{b}(a)$ . Also $f_{w}(\hat{f}_{v}(a))=\hat{f}_{v}(b)$ so $\hat{f}_{v}(b)\in L(\hat{f}_{v}(a))$ and therefore
$\hat{f}_{v}(a)\sim<\hat{f}_{v}(b)$ . Similarly if $\hat{f}_{v}(a)\leq\hat{f}_{v}(b)$ then $a\leq b$ . This completes the
verification of axiom (ii).

We next verify axiom (iii); that is we prove that if $a$ , $b\in\hat{f}(x)$ with

$a\leq b$ then $\hat{f}_{a}=\hat{f}_{\hat{f}_{b}(a)}o\hat{f}_{b}$ . For let $c\in\hat{f}(x)(_{\sim}<a)$ . Then $\hat{f}_{b}(c)\sim<\hat{f}_{b}(a)$

as $\hat{f}_{b}$ preserves order, so $w=\hat{f}_{\hat{f}b(c\iota)}(\hat{f}_{b}(c))\geq\hat{f}_{b}(c)\geq c$ with $\zeta(w)=$

$\hat{\zeta}(\hat{f}_{b}(a))=\hat{\zeta}(a)$ . Hence as $X$ is restricted, $w=\hat{f}_{b}(c)$ . So axiom (iii) is
established.

Next axiom (iv). Let $v\in\hat{f}(x)$ and $a\in\hat{f}(x)(_{\sim}<v)$ . Then $v\in L(a)$

with $\hat{\zeta}(\hat{f}_{v}(a))=\hat{\zeta}(a)$ by definition of the hat-zeta map and the hat-f-a-

map, so indeed $\hat{\zeta}=\hat{\zeta}o\hat{f}_{v}$ , as required in axiom (iv).

Finally we check axiom (v). First $\infty_{x}\wedge=\infty_{x}$ and for $v\in\hat{f}(x)$ ,
$\hat{f}_{\infty_{x}}(a)=a$ as $\zeta(a)=x=\zeta(\infty_{x})$ . Thus $\hat{f}_{\infty_{x}}$ is the identity map. Also
$\hat{\zeta}(\infty_{x})=x$ again by definition of the hat-zeta-map.

We have shown

(14.1) Let (X,$ $f) be a combinatorial cell complex of finite height

with $\zeta$ surjective. Then the dual complex $(\hat{X},\hat{f})$ is a combinatorial cell
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complex.

(14.2) $(\hat{X},\hat{f})$ is restricted.

Proof. Let $u_{1}$ , $u_{2}$ , $v\in\hat{f}(x)$ with $ v<u_{1}\sim$
’

$u_{2}$ and $\hat{\zeta}(u_{1})=\hat{\zeta}(u_{2})=y$

say. Then $\zeta(u_{1})=\zeta(u_{2})=\zeta(v)=x$ and $u_{1}$ , $u_{2}\in L(v)$ , so there exists
$w_{i}\geq v$ with $f_{w_{i}}(v)=u_{i}$ . But $\zeta(w_{i})=\hat{\zeta}(u_{i})=y$ , so as $X$ is restricted,
$w_{1}=w_{2}$ and hence $u_{1}=f_{w_{1}}(v)=f_{w_{2}}(v)=u_{2}$ .

(14.3) $u\in\hat{L}(v)$ if and only if $v\in L(u)$ , in which case the image of
$v$ under the hat-f-u-map for $\hat{X}$ is

$f_{f_{\overline{f}_{v}(u)}(u)}(v)=f_{u}(f_{\hat{f}_{v}(u)}^{-1}(v))$ .

Proof. Let $v\in L(u)$ . Then $f_{w}(u)\geq v$ for $w=\hat{f}_{v}(u)$ and $u_{\sim}<f_{w}(u)$

in $\hat{f}(\zeta(u))$ . Let $z=f_{fw}(u)(v)$ . Then $z\in L(v)$ with $\hat{f}_{z}(v)=f_{w}(u)$ and

$\zeta(z)=\zeta(v)$ so $v\leq z$ in $\hat{f}(\zeta(v))$ . Then as $\hat{f}_{z}(v)=f_{w}(u)\sim>_{u}$ in $\hat{f}(\zeta(u))$ ,

we conclude $u\in\hat{L}(v)$ and $z$ is the image of $v$ under the hat-f-u-map for
$\hat{X}$ .

Conversely suppose $u\in\hat{L}(v)$ and let $z$ be the image of $v$ under the

hat-f-u-map for $\hat{X}$

. That is $u\sim<\hat{f}_{z}(v)=y$ say. Thus $y\geq v$ and as
$u\leq y$ in $\hat{f}(\zeta(u))$ , $f_{w}(u)=y$ for $w=\hat{f}_{y}(u)$ . Therefore $f_{w}(u)=y\geq v$ , so
$v\in L(u)$ .

(14.4) Let $(X, f)$ be a restricted combinatorial cell complex with $\zeta$

surjective. Then the dual complex $(\hat{X},\hat{f})$ also satisfies these properties

and $(X, f)$ is the dual of $(\hat{X},\hat{f})$ .

Proof. We have already observed that $\hat{X}$ is of finite height. Next
if $y\in X(\leq x)$ then $x\in X(\geq y)$ so as $\zeta$ : $f(y)\rightarrow X(\leq y)$ is surjective

there is $v\in f(y)$ with $\zeta(v)=x$ . Thus $v\in\hat{f}(x)$ and $\hat{\zeta}(v)=y$ , so
$\hat{\zeta}$ : $\hat{f}(x)\rightarrow\hat{X}(_{\sim}<x)$ is a surjection.

Let $(Y, g)$ be the dual of $(\hat{X},\hat{f})$ . Then $\hat{X}=X$ so $Y=\hat{X}=X$ and
$as\sim<is$ the dual of the ordering on $X$ , the order on $Y$ is the ordering
$\leq dual$ to $\leq$ . That is $Y=X$ as a partially ordered set. Similarly for
$x\in X$ ,

$g(x)=\{v\in V:\hat{\zeta}(v)=x\}=f(x)$

and as we observed during the proof of 14.1, the hat-zeta-function for
$\hat{X}$ is $\zeta$ . The ordering on $g(x)$ is given by $u\leqq v$ if and only if $v\in\hat{L}(u)$ if



Combinatorial Cell Complexes 67

and only if $u\in L(v)$ (by 14.3) if and only if $u\leq v$ as $u$ , $v\in f(x)$ . That
is $g(x)=f(x)$ as a partially ordered set.

Next the zeta-function for $Y$ is the hat-zeta function for $\hat{X}$ which is
the zeta-function for $X$ . That is $X$ and $Y$ have the same zeta-function.
Finally for $u\in V$ , the f-u-function $g_{u}$ for $Y$ is the hat-f-u-function for
$\hat{X}$ , so by 14.3, $g_{u}(v)=f_{fw}(u)(v)$ , where $w=\hat{f}_{v}(u)$ . But as $v\leq u$ in
$f(x)$ , $w=x$ and $f_{w}(u)=u$ , so $g_{u}=f_{u}$ , completing the proof.

(14.5) $K(X)=K(\hat{X})$ , so $X$ and $\hat{X}$ have the same homology and

fundamental group.

Proof. As observed during the construction of $\hat{X}$ , $V=\hat{V}$ , so $K(X)$

and $K(\hat{X})$ have the same vertex set. Further $K(X)$ is the clique complex
of the symmetric $relation*on$ $V$ define by $u*v$ if and only if $u\in L(v)$

or $v\in L(u)$ . Similarly $K(\hat{X})$ is the clique complex of the $relation*\wedge$ . But
by 14.3, these two relations are the same.

\S 15. $CW$-complexes

Denote by $B^{n}$ the unit $n$-ball

$B^{n}=\{x\in R^{n} : |x|\leq 1\}$

in $R^{n}$ and let
$S^{n-1}=\{x\in R^{n} : |x|=1\}$

be the $(n-1)$-sphere. We also write $\dot{B}^{n}$ for the boundary $S^{n-1}$ of $B^{n}$

and $I(B^{n})$ for the interior $B^{n}-\dot{B}^{n}$ of $B^{n}$ . In particular when $n=0$ ,

$I(B^{0})=B^{0}$ and $\dot{B}^{0}=\emptyset$ .

(15.1) Let X, Y be copies of $B^{n}$ and f : $I(X)\rightarrow I(Y)$ be a homeo-
morphism. Then f extends to at most one homeomorphism g : X $\rightarrow Y$ .

Proof. Suppose $g$ , $h$ : $X\rightarrow Y$ are homeomorphisms extending $f$ .

Then $h^{-1}\circ g$ is a homeomorphism of $X$ extending the identity map on
$I(X)$ , and it suffices to show $h^{-1}\circ g$ is the identity map on $X$ . Thus
it suffices to show that if $k$ : $X\rightarrow X$ is a homeomorphism which is

the identity on $I(X)$ then $k$ is the identity. Let $x\in\dot{X}$ , $y\in I(X)$ and
consider the line segment $[x, y]$ . Then $[x, y]$ is the closure of $(x, y]$ so
$k([x, y])$ is the closure of $k((x, y])=(x, y]$ . That is $k(x)=x$ , as desired.

Recall that a $CW$-complex is a triple $(T, \Lambda, \varphi)$ , where $T$ is a topo-
logical space, $\Lambda$ is a collection of subspaces of $T$ , and
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(CW1) $T$ is Hausdorff.

(CW2) For each $\lambda\in\Lambda$ , $\varphi_{\lambda}$ : $F(\lambda)\rightarrow\overline{\lambda}$ is a continuous surjection

such that $F(\lambda)=B^{n(\lambda)}$ and $\varphi_{\lambda}$ : $ I(F(\lambda))\rightarrow\lambda$ is a homeomorphism.

(CW3) $\dot{\lambda}=\varphi_{\lambda}(\dot{F}(\lambda))\subset\bigcup_{\alpha\in\Lambda(\lambda)}\alpha$ for some finite subset $\Lambda(\lambda)$ of $\Lambda$ .

(CW4) $T$ is the disjoint union of the subspaces $\lambda\in\Lambda$ .

(CW5) A subset $C$ of $T$ is closed in $T$ if and only if $C\cap\overline{\lambda}$ is closed in
$\overline{\lambda}$ for all $\lambda\in\Lambda$ , and if $C\subset\overline{\lambda}$ then $C$ is closed in $\overline{\lambda}$ if and only if $\varphi_{\alpha}^{-1}(C)$

is closed in $F(\alpha)$ for all $\alpha\in\Lambda(\lambda)\cup\{\lambda\}$ .

Define the $CW$-complex $(T, \Lambda, \varphi)$ to be normal if

(R1) $\dot{\lambda}=\bigcup_{\alpha\in\Lambda(\lambda)}\alpha$ for each $\lambda\in\Lambda$ .

(R2) For each $\lambda\in\Lambda$ and $\alpha\in\Lambda(\lambda)$ , the set $C_{\lambda}(\alpha)$ of connected
components of $\varphi_{\lambda}^{-1}(\alpha)$ is finite and for each $C\in C_{\lambda}(\alpha)$ , the restriction
$\varphi_{C}$ of $\varphi_{\lambda}$ to $C$ is a homeomorphism of $C$ with $\alpha$ such that $\varphi_{\alpha}^{-1}\circ\varphi_{C}$

extends to a homeomorphism of $\overline{C}$ with $F(\alpha)$ .

Define the $CW$-complex $(T, \Lambda, \varphi)$ to be restricted if $\overline{C}_{1}\cap\overline{C}_{2}=\emptyset$ for
distinct $C_{1}$ , $C_{2}\in C_{\lambda}(\alpha)$ and all $\lambda\in\Lambda$ and $\alpha\in\Lambda(\lambda)$ .

Example. Recall a $CW$-complex $(T, \Lambda, \varphi)$ is regular if Axiom (R1)

holds and $\varphi_{\lambda}$ : $F(\lambda)\rightarrow\overline{\lambda}$ is a homeomorphism for each $\lambda\in\Lambda$ . Notice
that if $\lambda\in\Lambda$ and $\alpha\in\Lambda(\lambda)$ then as $\varphi_{\lambda}$ and $\varphi_{\alpha}$ are homeomorphisms,

also $\varphi_{\alpha}^{-1}\circ\varphi_{\lambda}$ : $\varphi_{\lambda}^{-1}(\overline{\alpha})\rightarrow F(\alpha)$ is a homeomorphism, so Axiom (R2)

is satisfied and $(T, \Lambda, \varphi)$ is restricted. Therefore regular $CW$-complexes
are restricted.

In the next few lemmas, assume $(T, \Lambda, \varphi)$ is a normal $CW$-complex.

(15.2) For each $\lambda\in\Lambda$ and $\alpha\in\Lambda(\lambda)$ , $\Lambda(\alpha)\subseteq\Lambda(\lambda)$ .

Proof. As $\alpha\subseteq\dot{\lambda},\overline{\alpha}\subseteq\overline{\lambda}$ , so $\beta\subseteq\overline{\lambda}$ for each $\beta\in\Lambda(\alpha)$ . Now by

axiom (CW4), $\beta\cap\lambda=\emptyset$ , so $\beta\subseteq\dot{\lambda}$ . Then by Axioms (R1) and (CW4),
$\beta\in\Lambda(\lambda)$ .

(15.3) For $\alpha$ , $\beta\in\Lambda$ , the following are equivalent:

(1) $\beta\in\Lambda(\alpha)$ .

(2) $\overline{\beta}\subset\overline{\alpha}$ .

(3) $\beta\subseteq\dot{\alpha}$ .
(4) $\overline{\alpha}\cap\beta\neq\emptyset$ and $\beta\neq\alpha$ .

Proof. Clearly $(1)\Rightarrow(3)\Rightarrow(2)\Rightarrow(4)$ . Assume (4). By Axiom
(CW4), $\alpha\cap\beta=\emptyset$ , so $\dot{\alpha}\cap\beta\neq\emptyset$ . Hence by axiom (R1), $\gamma\cap\beta\neq\emptyset$ for
some $\gamma\in\Lambda(\alpha)$ . Then by axiom (CW4), $\beta=\gamma$ .
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Remark 15.4. Let $(T, \Lambda, \varphi)$ be a normal CW- complex. Partially

order $\Lambda$ by $\alpha\leq\beta$ if $\overline{\alpha}\subseteq\overline{\beta}$ . Then by 15.3, $\Lambda(<\lambda)=\Lambda(\lambda)$ for each
$\lambda\in\Lambda$ . In particular $\Lambda(\leq\lambda)$ is finite, so $\Lambda\in P$ .

Next for $\lambda\in\Lambda$ , define

$f(\lambda)=\alpha\leq\lambda\cup C_{\lambda}(\alpha)$

and partially order $f(\lambda)$ by $C\leq D$ if $\overline{C}\subseteq\overline{D}$ . As $\Lambda(\leq\lambda)$ is finite and
$C_{\lambda}(\alpha)$ is finite for each $\alpha\leq\lambda$ , $f(\lambda)$ is finite, so $f(\lambda)\in p*$ .

Next let $V$ be the disjoint union of the sets $f(\lambda)$ , $\lambda\in\Lambda$ , and define
$\zeta$ : $ V\rightarrow\Lambda$ by $\zeta(C)=\alpha$ for $C\in C_{\lambda}(\alpha)$ . Then $\zeta$ : $f(\lambda)\rightarrow\Lambda(\leq\lambda)$ is a
morphism in 72.

Let $\alpha\in\Lambda(\lambda)$ and $C\in C_{\lambda}(\alpha)$ . By axiom (R2), $\varphi_{C}$ : $ C\rightarrow\alpha$ is a
homeomorphism and $\varphi_{\alpha}^{-1}\circ\varphi c$ extends to a homeomorphism of $\overline{C}$ with
$F(\alpha)$ . By 15.1, this homeomorphism is unique; denote it by $F_{C}$ .

Finally $I(F(\lambda))$ is the unique member of $f(\lambda)$ mapping to $\lambda$ under
$\zeta$ ; we define $F_{F(\lambda)}$ : $f(\lambda)\rightarrow f(\lambda)$ to be the identity map.

(15.5) For $\lambda\in\Lambda$ , $\varphi_{\lambda}$ is the unique extension of $\varphi_{\lambda}$ : $ I(F(\lambda))\rightarrow\lambda$

to a continuous map of $F(\lambda)$ to $\overline{\lambda}$ .

Proof Let $\alpha\in\Lambda(\lambda)$ , $C\in C_{\lambda}(\alpha)$ , $x\in C$ , and $y\in I(F(\lambda))$ . Let
$A=\varphi_{\lambda}([x, y])$ and $U=\varphi_{\lambda}((x, y])$ . Then $\varphi_{\lambda}^{-1}(A)=(x, y]\cup\{x_{1}, \ldots, x_{r}\}$ ,

where $\{x_{i}\}=C_{i}\cap\varphi_{\lambda}^{-1}(A)$ and $C_{\lambda}(\alpha)=\{C_{1}, \ldots, C_{r}\}$ . Further $[x, y]$

and each of the points $x_{i}$ is closed in $F(\lambda)$ , so $\varphi_{\lambda}^{-1}(A)$ is closed in $F(\lambda)$ .

Further if $\beta\in\Lambda(\lambda)$ then either $\varphi_{\beta}^{-1}(A)=\emptyset$ or $\alpha\leq\beta$ and $\varphi_{\beta}^{-1}(A)=$

$\varphi_{\beta}^{-1}(\varphi_{\lambda}(x))$ is finite and hence closed in $F(\beta)$ . So by axiom (CW5), $A$

is closed in $T$ .

Thus $A$ is the closure in $T$ of $U$ . Therefore if $\psi$ : $ C^{*}=C\cup$

$I(F(\lambda)\rightarrow\overline{\lambda}$ is a continuous extension of $\varphi_{\lambda}$ then as $[x, y]$ is the clo-
sure of $(x, y]$ in $C^{*}$ , $\psi(x)$ is contained in the closure $A$ of $U$ . Hence
$\psi(x)\in\bigcap_{y\in I(F(\lambda))}\varphi_{\lambda}([x, y])=\{\varphi_{\lambda}(x)\}$ , so $\psi(x)=\varphi_{\lambda}(x)$ . As this holds

for each $C\in f(x)$ and $x\in C$ , the lemma follows.

(15.6) Let $\lambda\in\Lambda$ and $C$ , $D\in f(\Lambda)$ with $C\leq D$ . Then
(1) $\varphi_{\lambda}=\varphi_{\zeta(C)}\circ F_{C}$ on $\overline{C}$ .

(2) $F_{D}=F_{F_{C}(D)}oF_{C}$ .

(3) $\zeta=\zeta oF_{C}$ on $f(\lambda)(\leq C)$ .

(4) If $T$ is restricted then $\zeta$ is injective on $f(\lambda)(\geq C)$ .

Proof Let $C\in C_{\lambda}(\alpha)$ and $D\in C_{\lambda}(\beta)$ . By 15.5, $\varphi_{\alpha}$ is the unique
extension to $F(\alpha)$ of $\varphi_{\alpha}$ restricted to $I(F(\alpha))$ , so $\varphi_{\alpha}\circ F_{C}$ is the unique
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extension to $\overline{C}$ of $\varphi_{\alpha}\circ F_{C}$ restricted to $C$ . But by construction of $F_{C}$ ,

this restriction is equal to the restriction of $\varphi_{\lambda}$ , so (1) holds.

Now by (1), $\varphi_{\alpha}^{-1}(\beta)=F_{C}(\varphi_{\lambda}^{-1}(\beta)\cap\overline{C}$ , so if $D_{1}$ , $\ldots$ , $D_{r}$ are the

connected components of $\varphi_{\lambda}^{-1}(\beta)\cap\overline{C}$ then $F_{C}(D_{1})$ , $\ldots$ , $F_{C}(D_{r})$ are the

connected components of $\varphi_{\alpha}^{-1}(\beta)$ and hence the members of $\zeta^{-1}(\beta)$ .

This establishes (3).

Next $F_{F_{C}(D)}$ is the unique extension of $\varphi_{\beta}^{-1}o\varphi_{\alpha}$ from $F_{C}(D)$ to

$F_{C}(\overline{D})$ so $F_{F_{C}(D)}oF_{C}$ is the unique extension of $\psi=\varphi_{\beta}^{-1}\circ\varphi_{\alpha}oF_{C}$ from

$D$ to $\overline{D}$ . But by (1), $\psi=\varphi_{\beta}^{-1}\circ\varphi_{\lambda}$ and by definition $F_{D}$ is the extension

of the latter map, so (2) is established.
Finally if $G$ , $H\in C_{\lambda}(\gamma)$ are distinct for some $\gamma\in\Lambda(\lambda)$ then $\overline{G}\cap\overline{H}=$

$\emptyset$ if $T$ is restricted. This proves (4).

(15.7) Let $\lambda\in\Lambda$ . Then
(1) If $ S\subseteq\Lambda$ then $\bigcap_{\sigma\in S}\overline{\sigma}=\bigcup_{\alpha\leq S}\alpha$ .

(2) $F(\lambda)$ is partitioned by $\Lambda_{\lambda}=\{C : C\in f(\lambda)\}$ .

(3) For $S\subseteq f(\lambda)$ , $\bigcap_{C\in S}\overline{C}=\bigcup_{D\leq S}D$ .

(4) $(F(\lambda), \Lambda_{\lambda}, \psi)$ is a regular $CW$-complex, where $\psi=(\psi_{C}$ : $ C\in$

$f(\lambda))$ and $\psi_{C}=F_{C}^{1}$ : $F(\zeta(C))\rightarrow\overline{C}$ .

$Proo/$. Part (1) follows from axiom $CW4$ and 15.3. Next $F(\lambda)$ is

the disjoint union of $I(F(\lambda))$ and $\dot{F}(\lambda)$ , so to prove (2) we must show
$\dot{F}(\lambda)$ is partition by $\{C : C\in f(\lambda)-\{I(F(\lambda))\}\}$ . Let $x\in\dot{F}(\lambda)$ . Then
$\varphi_{\lambda}(x)\in\alpha$ for a unique $\alpha\in\Lambda(\lambda)$ , so $x\in C$ for some $C\in C_{\lambda}(\alpha)$ . Further
as the members of $C_{\lambda}(\alpha)$ are disjoint, $x\not\in C’$ for $C\neq C’\in C_{\lambda}(\alpha)$ , while
if $x\in D$ for $D\in f(x)$ then $\varphi_{\lambda}(x)\in\varphi_{\lambda}(D)\cap\alpha=\varphi_{D}(D)\cap\alpha=\zeta(D)\cap\alpha$ ,

so $\zeta(D)=\alpha$ . This establishes (2). Then (1) and (2) imply (3).

It remains to prove (4). As $F(\lambda)\cong B^{n(\lambda)}$ , $F(\lambda)$ is a Hausdorff

space. For $C\in f(\lambda)$ , by definition $\overline{C}\cong F(C)=F(\zeta(C))\cong B^{n(\zeta(C))}$

and $\psi_{C}$ : $F(C)\rightarrow C$ is a homeomorphism. By (2) and (3), $\dot{C}=\overline{C}-C=$

$\bigcup_{D\subset C}D$ , and $\Lambda_{\lambda}$ is a partition of $F(\lambda)$ . Visibly axiom $CW5$ is satisfied.

Thus (4) is established.

Remark 15.8. We can now associate a topological cell complex
$I(T)$ with the normal $CW$ complex $T$ $=(T, \Lambda, \varphi)$ . Namely let $\Lambda$ be
the poset of $I(T)$ ; by Remark 15.4, $\Lambda\in P$ . For $\lambda\in\Lambda$ the cell $f(\lambda)$ as-
sociated to $\lambda$ has as its poset the poset $f(\lambda)$ ; by Remark 15.4, $f(\lambda)\in p*$ .

The topological space associated to $\lambda$ is of course $F(\lambda)$ . For $C\in f(\lambda)$ ,
$F(C)=\overline{C}$ is a closed subspace of $F(\lambda)$ and as usual with topological
cells we take the maps $F(D, C)$ , $D$ , $C\in f(x)$ , $D\leq C$ , to be inclusions.
Lemma 15.7 then says $f(\lambda)$ is a topological cell.
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Our maps $\zeta$ and $f_{C}$ : $f(\lambda)(\leq C)\rightarrow f(\zeta(C))$ were defined in Remark

15.4. That is $f_{C}(D)=F_{C}(D)$ for $D\in F(\lambda)(\leq C)$ and $F_{C}$ : $\overline{C}\rightarrow$

$F(\zeta(C))$ is our topological isomorphism. By 15.6, axioms 5 and 6 for cell
complexes are satisfied. Axiom 7 for cell complexes holds by definition of
$F_{\infty_{\lambda}}=F_{F(\lambda)}$ as the identity map in Remark 15.4. Thus we have checked

that $I(T)$ is a topological cell complex. By 15.6.4, $I(T)$ is restricted if
$T$ is restricted.

We can extent the map I to a functor from the category of normal
CW- complexes to the category of topological cell complexes. A mor-
phism of $CW$-complexes from $(T_{1}, \Lambda_{1}, \varphi_{1})$ to $(T_{2}, \Lambda_{2}, \varphi_{2})$ is a continuous
map $\phi$ : $T_{1}\rightarrow T_{2}$ such that $\phi(\Lambda_{1})\subseteq\phi(\Lambda_{2})$ , together with homeomor-
phisms $\phi_{\lambda}$ : $F(\lambda)\rightarrow F(\phi(\lambda))$ , $\lambda\in\Lambda_{1}$ , such that $\varphi_{\phi(\lambda)}\circ\phi_{\lambda}=\phi_{1\overline{\lambda}}\circ\varphi_{\lambda}$ .

Given such a morphism $\phi$ , we define $I(\phi)$ : $I(T_{1})\rightarrow I(T_{2})$ by
$I(\phi)(\lambda)=\phi(\lambda)$ and $I(\phi)_{\lambda}=\phi_{\lambda}$ . Check that $I(\phi)$ is a morphism of
topological cell complexes.

(15.9) For $\lambda\in\Lambda$ and $X\subseteq\overline{\lambda}$ , $X$ is closed in $T$ if and only if $\varphi_{\lambda}^{-1}(X)$

is closed in $F(\lambda)$ .

Proof By axiom $CW5$ , $X$ is closed in $T$ if and only if $\varphi_{\alpha}^{-1}(X)$ is
closed in $F(\alpha)$ for all $\alpha\leq\lambda$ . Next

$\varphi_{\alpha}^{-1}(X)=$ $\square $ $\varphi_{\alpha}^{-1}(X)\cap\overline{C}$

$C\in C_{\lambda}(\alpha)$

and as $\varphi_{\lambda}=\varphi_{\alpha}oF_{C}$ on $\overline{C}$ , $\varphi_{\alpha}^{-1}(X)$ is closed in $F(\alpha)$ if and only if
$\varphi_{\lambda}^{-1}(X)\cap\overline{C}$ is closed in $\overline{C}$ for all $C\in C_{\lambda}(\alpha)$ . Therefore $X$ is closed in $T$

if and only if $\varphi_{\lambda}^{-1}(X)\cap\overline{C}$ is closed in $\overline{C}$ for all $C\in f(\lambda)$ if and only if
$\varphi_{\lambda}^{-1}(X)$ is closed in $F(\lambda)$ .

(15.10) Let $A=A(I(T))$ , where $I(T)$ is the topological cell com-
plex supplied by Remark 15.8. Then the map

$\phi$ : $A\rightarrow T$

$\tilde{x}\mapsto\varphi_{\alpha}(x)$

for $ x\in\alpha\in\Lambda$ , is a homeomorphism.

Proof By 4.5, the sets $\tilde{I}(\alpha)$ , $\alpha\in\Lambda$ , partition $A$ . Further by

4.4 and 4.6, $\lambda_{\alpha}$ : $F(\alpha)\rightarrow A$ is continuous with $\lambda_{\alpha}$ : $I(\alpha)\rightarrow\tilde{I}(\alpha)$ a
homeomorphism. Then as $\varphi_{\alpha}$ : $ I(\alpha)\rightarrow\alpha$ is a homeomorphism, so is
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$\varphi_{\alpha}\circ\lambda_{\alpha}^{-1}$ : $\tilde{I}(\alpha)\rightarrow\alpha$ . But

$\phi=\alpha\in\Lambda\cup\varphi_{\alpha}o\lambda_{\alpha}^{-1}$

so $\phi$ : $A\rightarrow T$ is a bijection and for each $\alpha\in\Lambda$ , $\phi\circ\lambda_{\alpha}=\varphi_{\alpha}$ .

Next by 15.9, $X\subseteq\overline{\alpha}$ is closed if and only if $\varphi_{\alpha}^{-1}(X)$ is closed in
$F(\alpha)$ . But $\varphi_{\alpha}^{-1}(X)=\lambda_{\alpha}^{-1}(\phi^{-1}(X))$ , so by definition of the topology on
$\tilde{F}(\alpha)$ , $\varphi_{\alpha}^{-1}(X)$ is closed in $F(\alpha)$ if and only if $\phi^{-1}(X)$ is closed in $\tilde{F}(\alpha)$ .

That is $X$ is closed in $T$ if and only if $\phi^{-1}(X)$ is closed in $\tilde{F}(\alpha)$ if and
only if $\phi^{-1}(X)$ is closed in $A$ by 4.6. That is $\phi$ is a homeomorphism.

(15.11) If $(T, \Lambda, \varphi)$ is a regular $CW$ complex then
(1) $I(T)$ is isomorphic to $P(\mathcal{X}(T))$ , where $\mathcal{X}(T)=(\Lambda, f)$ is the

combinatorial cell complex of $I(T)$ .

(2) $T$ is homeomorphic to the geometric realization of $O(\Lambda)$ .

Proof. Let $X=sd(\Lambda)$ and for $\lambda\in\Lambda$ pick $ P(\lambda)\in\lambda$ . Let $x=$

$\{\lambda_{0}, \ldots, \lambda_{k}\}\in X$ with $\lambda_{i}<\lambda_{i+1}$ for each $i$ . Given 0 $\leq a_{i}\in R$

with $\sum_{i}a_{i}=1$ , we define $\sum_{i}a_{i}P(\lambda_{i})$ recursively. Namely let $u=$

$\sum_{i<k}a_{?}.P(\lambda_{i})/(1-a_{k})$ , $v=P(\lambda_{k})$ , and define

$\sum_{I}a_{i}P(\lambda_{i})=\varphi_{\lambda_{k}}^{-1}(a_{k}\varphi_{\lambda_{k}}(v)+(1-a_{k})\varphi_{\lambda_{k}}(u))$

This makes sense as $F(\lambda_{k})\subseteq R^{n(\lambda_{k})}$ and $u\in\overline{\lambda}_{k-1}\subseteq\overline{\lambda}_{k}$ has been
defined already via our recursive procedure.

Now define

$G(x)=$ { $\sum_{i}a_{i}P(\lambda_{i})$
: $0\leq a_{i}\in R$ and

$\sum_{i}a_{i}=1$ }

Notice $G(x)\cap G(y)=G(x\cap y)$ . Thus if we take $(X, g)$ to be the simplicial
cell complex of $X$ , we can regard $G(x)$ as defining a topological cell on
$g(x)=X(\leq x)$ . Then we extend $(X, g)$ to a topological cell complex by
letting $G_{y}$ be the identity map for $y\subseteq x$ .

We next consider the topological cell complex $\chi=\chi(O(\Lambda))$ and
define an isomorphism $\phi$ : $\chi\rightarrow(X, g, G)$ . Recall from Example 6.4
that the combinatorial cell complex of $\chi$ is Just $(X, g)$ ; thus as a map
of combinatorial cell complexes we take $\phi$ to be the identity. Also the
topological cell associated to $x$ by $\chi$ is the standard simplex $T_{h(x)}=$

$[u_{h(v)} : v\in x]$ , so it remains to define $\phi_{x}$ : $T_{h(x)}\rightarrow G(x)$ by

$\phi_{x}$ :
$\sum_{i}a_{i}u_{h(\lambda_{i})}\mapsto\sum_{i}a_{i}P(\lambda_{i})$
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which is of course a homeomorphism. Check that $\phi$ is a morphism, and
then observe that as each $\phi_{x}$ is a homeomorphism, $\phi$ is an isomorphism.
Therefore by 4.7, $A(\chi)\cong A(X, g, G)$ . Recall also from Example 6.4
that $A(\chi)$ is the geometric realization of $O(\Lambda)$ . Further as $(X, g)$ is the
simplicial cell complex of $X$ and $G(x)\subseteq T$ with the maps $G_{y}$ identities,
$G(x)\rightarrow\tilde{G}(x)$ for each $x$ and $A(X, g, G)=\bigcup_{x}G(x)=T$ . Thus (2) is
established.

Next from Example 7.1, $P(\mathcal{X}(T))$ is a topological cell complex with
combinatorial cell complex $\mathcal{X}(T)=(\Lambda, f)$ and for $\lambda\in\Lambda$ , the topological
cell $H(\lambda)$ is just $T(f(\lambda))$ together with the subspaces $T(f(\alpha))$ for $\alpha\leq\lambda$ .

Applying our conclusions of the previous paragraph to $(\overline{\lambda}, \Lambda(\lambda)\cup\{\lambda\},$ $\varphi)$

in place of $(T, \Lambda, \varphi)$ , we see that $H(\lambda)\cong\overline{\lambda}\cong F(\lambda)$ via a homeomorphism
$\phi_{\lambda}$ preserving the cell structure. Then the identity morphism on the
combinatorial cell complex $(\Lambda, f)$ together with the homeomorphisms
$\phi_{\lambda}$ , $\lambda\in\Lambda$ , define an isomorphism of $I(T)$ with $P(\mathcal{X}(T))$ , establishing
(1).

(15.12) (1) $I(T)$ is isomorphic to $\prime \mathcal{P}(\mathcal{X}(T))$ , where $\mathcal{X}(T)=(\Lambda, f)$

is the combinatorial cell complex of $I(T)$ .

(2) $T$ is homeomorphic to the geometric realization $T(\mathcal{X}(T))$ of
$\mathcal{X}(T)$ .

Proof. As $T(\mathcal{X}(T))=A(P(\mathcal{X}(T)))$ , (1) and 15.10 imply (2), so it
remains to prove (1). The last paragraph of the proof of 15.11 can be
repeated virtually verbatim to prove (1).

Define a poset $P$ to be a $n$ -sphere if $P$ is of height $n$ and the geometric
realization of $O(P)$ is homeomorphic to the $n$-sphere $S^{n}$ .

(15.13) Let $\lambda\in\Lambda$ and n $=n(\lambda)$ . Then n $=h(\lambda)$ and $O(j(\lambda))$ is

an (n $-1)$ -sphere.

Proof. Let $m$ be the height of $f(\lambda)$ . By 15.7.4, $F(\lambda)=(F(\lambda),$ $\Lambda_{\lambda}$ ,
$\psi)$ is a regular $CW$-complex, so its $(n-1)$ -skeleton $\dot{F}(\lambda)=(\dot{F}(\lambda), \Lambda(\lambda)$ ,

$\psi)$ is also a regular $CW$-complex. Then by 15.11, $S^{n-1}\cong\dot{F}(\lambda)$ is
homeomorphic to the geometric realization of $O(\Lambda(\lambda))$ . But $\Lambda(\lambda)\cong$

$j(\lambda)$ , so the geometric realization of $O(\dot{f}(\lambda))$ is an $(n-1)$ -sphere. In

particular $H_{n-1}(O(\dot{f}(n)))\neq 0$ , so $h(j(\lambda))=dim(O(\dot{f}(\lambda)))\geq n-1$ .

Therefore $m=h(f(\lambda))=h(j(\lambda))+1\geq n$ .

So to complete the proof it remains to show $m\leq n$ . We proceed by

induction on $m$ . If $m=0$ the inequality is trivial. Now $m=h(j(\lambda))+1$

and $h(\dot{f}(\lambda))=\max\{h(\alpha) : \alpha\in\Lambda(\lambda)\}$ . By induction on $m$ , $h(\alpha)\leq n(\alpha)$ ,
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so if $n(\alpha)<n$ , we are done. On the other hand $B^{n(\alpha)}\cong F(C)$ is a

closed subspace of $\dot{F}(\lambda)\cong S^{n-1}$ , and therefore $n(\alpha)<n$ , (cf. Exercise
$H$ in Chapter 3 of [5] $)$ completing the proof.

Example 15.14. Let $Q$ be the category of combinatorial cell com-

plexes $(X, f)$ such that for each $x\in X$ of height $n,\dot{f}(x)$ is an $(n-1)-$

sphere. Notice that as $T(j(x))$ is compact, $j(x)$ is finite, a fact we use
below without comment several times. We associate to $X=(X, f)\in Q$

a normal $CW$-complex $Q(X)$ .

The topological space of $Q(X)$ is the geometric realization $A=$

$T(X)$ of $(X, f)$ . The set $\Lambda$ of open cells of $A$ is the set of subspaces
$\tilde{I}(x)$ , $x\in X$ , where we use the notation of Section 4. By definition of
$T(X)$ , $F(x)$ is the geometric realization of $f(x)$ , and as $(X, f)\in Q$ ,
$\dot{f}(x)$ is an $(n-1)$ -sphere, so $F(x)$ is homeomorphic to $B^{n}$ and $\dot{F}(x)$ is

homeomorphic to $S^{n-1}$ . Thus we define

$\varphi_{x}$ : $F(x)\rightarrow\tilde{F}(x)$

$a\mapsto\tilde{a}$

Our normal $CW$-complex is $Q(X)=(T(X), \lambda, \varphi)$ .

By definition of $A=T(X),\tilde{F}(x)$ is closed in $A$ and $\varphi_{x}$ is a contin-

uous surjection. By 4.6, $C\subseteq\tilde{F}(x)$ is closed in $A$ if and only if $\varphi_{x}^{-1}(C)$

is closed in $F(x)$ , so as $F(x)$ is the closure of $I(x),\tilde{F}(x)$ is the closure

of $\tilde{I}(x)$ . By 4.4, $\varphi_{x}$ : $I(x)\rightarrow\tilde{I}(x)$ is a homeomorphism.
By definition of the topology on $A$ and by remarks in the previous

paragraph, axiom $CW5$ is satisfied. We have also seen that $CW2$ is

satisfied. By 4.5, $CW4$ is satisfied. Also $\tilde{F}(x)-\tilde{I}(x)=\bigcup_{y<x}\tilde{I}(y)$ , so

axiom (R1) holds. For $y<x$ ,

$\varphi_{x}^{-1}(\tilde{I}(y))=v\in f(x)\cap\zeta-1(y)\cup I(v)$

Also for distinct $u$ , $v\in f(x)\cap\zeta^{-1}(y)$ , $ I(u)\cap I(v)=\emptyset$ , so { $I(v)$ :

$v\in f(x)\cap\zeta^{-1}(y)\}$ is the set of connected components of $\varphi_{x}^{-1}(\tilde{I}(y))$ . As
$F_{v}$ : $F(v)\rightarrow F(y)$ is a homeomorphism with $\varphi_{x}=\varphi_{y}\circ F_{v}$ on $F(v)$ , axiom
(R2) holds. Also $F(u)\cap F(v)=\bigcup_{w\leq u,v}F(w)$ and if $X$ is restricted, no

such $w$ exists, so $Q(X)$ is restricted. Therefore to complete our proof
that $Q(X)$ is a normal $CW$-complex, it remains to show that $A=T(X)$
is a Hausdorff space, which we leave as an exercise.

So $Q(X)$ is a normal $CW$-complex. Now we extend $Q$ to a covariant
functor from $Q$ into the category of normal $CW$-complexes. Namely
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if $\phi$ : $X_{1}\rightarrow X_{2}$ is a morphism of cell complexes in $Q$ , define $Q(\phi)$ :
$Q(X_{1})\rightarrow Q(X_{2})$ to be the morphism of $CW$-complexes whose map of
topological spaces is $T(\phi)$ : $T(X_{1})\rightarrow T(X_{2})$ and with $Q(\phi)_{x}$ : $ F(x)\rightarrow$

$F(\phi(x))$ define to be $\phi_{x}$ . Check that $Q(\phi)$ is indeed a morphism. Thus
we have our functor.

Theorem 15.15. Let $N$ be the category of normal $CW$ complexes.
Then we have a covariant functor $\mathcal{X}$ from $N$ into $Q$ , where $\mathcal{X}(T)$ is the

combinatorial cell complex of $I(T)$ . Further the functors $\mathcal{X}$ : $N$ $\rightarrow Q$

and $Q$ : $Q$ $\rightarrow N$ are equivalences of categories. Under these equivalences,
restricted cell complexes correspond to restri cted $CW$ complexes.

Proof. First by Remark 15.8, $\mathcal{X}(T)$ is a combinatorial cell complex,
and then by 15.13, $\mathcal{X}(T)\in Q$ . So $\mathcal{X}(T)$ is indeed a functor from $N$ to
$Q$ .

By definition of $Q(\mathcal{X}(T))$ , the topological space of the $CW$ complex
$Q(\mathcal{X}(T))$ is $T(\mathcal{X}(T))$ , the set of open cells is $\Lambda’=\{\tilde{I}(\lambda)$ : $\lambda\in \mathcal{X}(T)=$

$\Lambda\}$ , and the characteristic maps are $\varphi_{\lambda}’$ : $F(\lambda)\rightarrow\tilde{F}(\lambda)$ taking $a$ to $\tilde{a}$ .

By 15.12 and its proof, we have an isomorphism $\phi’$ : $P(\mathcal{X}(T))\rightarrow I(T)$

which is the identity map on the combinatorial cell complex $\mathcal{X}(T)$ and
with homeomorphisms $\phi_{\lambda}’$ : $F(x)’\rightarrow F(x)$ , $\lambda\in\Lambda$ . Then $\phi’$ induces the
homeomorphism

$A(\phi’)$ : $T(\mathcal{X}(T))=A(P(\mathcal{X}(T)))\rightarrow A(I(T))$ .

We compose $A(\phi’)$ with the homeomorphism $\phi$ : $A(I(T))\rightarrow T$ of 15.10
to obtain a homeomorphism $\iota_{T}=\phi oA(\phi’)$ : $T(\mathcal{X}(T))\rightarrow T$ . Then we
define $\iota_{T,\lambda}=\phi_{\lambda}’$ . Then $\iota_{T}$ : $Q(\mathcal{X}(T))\rightarrow T=(T, \Lambda, \varphi)$ is an isomorphism
of $CW$ complexes.

In the other direction, $\mathcal{X}(Q(X))$ is the combinatorial cell complex
of $I(Q(X))$ , which is by definition $(\Lambda’, f’)$ , where the poset $\Lambda’$ is the set

of open cells of $Q(X)$ and $f’(\lambda’)$ is the set of connected components of
$\varphi_{\lambda}^{-1},(\alpha’)$ , where $\alpha’\leq\lambda’$ are open cells in $Q(X)$ . Further by definition of

$Q(X)$ in Example 15.14, $\Lambda’=\{\tilde{I}(x) : x\in X\}$ and $f’(\tilde{I}(x))=\{I(v)$ :
$V\in f(x)\}$ . Thus we define our isomorphism $\iota_{X}$ : $X\rightarrow \mathcal{X}(Q(X))$ by

defining $\iota_{X}$ : $x\mapsto\tilde{I}(x)$ as a map of posets and defining

$\iota_{X,x}$ : $f(x)\rightarrow f’(\tilde{I}(x))=\{I(v) : v\in f(x)\}$

by $\iota_{X,x}$ : $v\mapsto I(v)$ . Check that $\iota_{X}$ is indeed an isomorphism of combi-
natorial cell complexes.

Finally check that if $\phi$ : $X_{1}\rightarrow X_{2}$ is a morphism in $Q$ then $\mathcal{X}(Q(\phi))\circ$

$\iota_{X_{1}}=\iota_{X_{2}}\circ\phi$ and similarly if $\psi$ : $T_{1}\rightarrow T_{2}$ is a morphism in $\mathcal{R}$ then
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$\psi\circ\iota_{T_{1}}=\iota_{T_{2}}\circ Q(\mathcal{X}(\psi))$ . Therefore the functors $\mathcal{X}$ and $Q$ are inverses
of each other on equivalence classes of objects and maps in the two
categories and hence equivalences of categories. To illustrate these last

checks, observe that as a map of posets, $(\mathcal{X}(Q(\phi))\circ\iota_{X_{1}})(x)=\tilde{I}(\phi(x))=$

$(\phi\circ\iota_{X_{2}})(x)$ while $(\mathcal{X}(Q(\phi))\circ\iota_{X_{1}})_{x}(v)=I(\phi_{x}(v))=(\phi\circ\iota_{X_{2}})_{x}(v)$ .

\S 16. Group actions on posets and cell complexes

Let $G$ be a group and $\mathcal{F}=(G_{i} : i\in I)$ a family of subgroups of $G$ .

Let

$X=\prod_{i\in I}G/G_{?}$
.

be the disjoint union of the coset spaces $G/G_{i}$ , $i\in I$ . We consider
relations defined on $X$ which are preserved by the action of $G$ via right
multiplication. Let

$\mathcal{E}=(i,j)\in I\times I\cup \mathcal{E}_{i,j}$

with $\mathcal{E}_{i,j}\subseteq G_{i}\backslash G/G_{j}$ , where $G_{i}\backslash G/G_{j}$ is the set of double cosets $G_{i}xG_{j}$ ,
$x\in G$ . Define $\Gamma(G, \mathcal{F}, \mathcal{E})$ to be the relational structure on the set $X$

with relation $G_{i}x$ related to $G_{j}y$ if and only if $G_{i}xy^{-1}G_{j}\in \mathcal{E}_{i,j}$ . Check
that this relation is well defined and preserved by the representation of
$G$ on $X$ via right multiplication. Observe that there is a type function
from $X$ to I defined by $G_{i}x\mapsto i$ for each $i\in I$ and $x\in G$ . Further this
type function is preserved by the action of $G$ ; that is if $h$ is our type
function then $h(xg)=h(x)$ for each $x\in X$ and $g\in G$ .

(16.1) Let $\Gamma(G, \mathcal{F}, \mathcal{E})$ be a relational structure with relation R. Then
(1) $R$ is reflexive if and only if $G_{i}\in \mathcal{E}_{i,i}$ for each $i\in I$ .

(2) $R$ is symmetric if and only if $G_{i}uG_{j}\in \mathcal{E}_{i,j}$ implies $ G_{j}u^{-1}G_{i}\in$

$\mathcal{E}_{j,i}$ for all $i$ , $j$ .

(3) $R$ is antisymmetric if and only if whenever $G_{i}uG_{j}\in \mathcal{E}_{?,j}$. and
$G_{j}u^{-1}G_{i}\in \mathcal{E}_{j,i}$ , then $i=j$ and $u\in G_{i}$ , for all $i$ , $j$ .

(4) $R$ is transitive if and only if whenever $i$ , $j$ , $k\in I$ , $G_{i}uG_{j}\in \mathcal{E}_{i,j}$ ,
and $G_{j}vG_{k}\in \mathcal{E}_{j,k}$ , then $GiugvGk\in \mathcal{E}_{i,k}$ for all $g\in G_{j}$ .

Proof First if $G_{i}xRG_{j}y$ and $G_{j}yRG_{k}z$ , then $G_{i}xy^{-1}G_{j}\in \mathcal{E}_{i,j}$ and
$G_{j}yz^{-1}G_{k}\in \mathcal{E}_{j,k}$ . Then if $\mathcal{E}$ satisfies the hypotheses of (4), then

$G_{i}xz^{-1}G_{j}=G_{i}(xy^{-1})(yz^{-1})G_{k}\in \mathcal{E}_{i,k}$ ,

so $G_{i}xRG_{k}z$ and the relation $R$ is transitive.
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Conversely suppose $R$ is transitive and let $G_{i}uG_{j}\in \mathcal{E}_{i,j}$ and $G_{j}vG_{k}$

$\in \mathcal{E}_{j,k}$ . Then $G_{i}ugRG_{j}$ for each $g\in G_{j}$ and $G_{j}RG_{k}v^{-1}$ , so $G_{i}ugRG_{k}$

$v^{-1}$ , and therefore $GiugvGk\in \mathcal{E}_{i,k}$ .

Remark. Lemma 16.1 says that the relation defined by a relational
structure $\Gamma(G, \mathcal{F}, \mathcal{E})$ is a partial order if and only if $\mathcal{E}$ satisfies the con-
ditions of 16.1.1, 16.1.3, and 16.1.4. Define a coset poset over the index
set I to be a relational structure $\Gamma(G, \mathcal{F}, \mathcal{E})$ over I such that

(CSPO) I comes equipped with a partial order $\leq$ .

(CSPI) $\mathcal{E}_{?,j}.=\emptyset$ unless $i\leq j$ .

(CSP2) $\mathcal{E}_{i,i}=\{G_{i}\}$ for each $i$ .

(CSP3) If $i\leq j\leq k$ in $I$ , $G_{i}uG_{j}\in \mathcal{E}_{i,j}$ , and $GjvGk\in \mathcal{E}_{j,k}$ , then
$GiugvGk\in \mathcal{E}_{i,k}$ for each $g\in G_{j}$ .

Thus by Lemma 16.1, the relation defined by a coset poset is a
partial order on $X$ . Write $\leq for$ this partial order. Observe that our
type function from $X$ to I is a map of posets by axiom CSPI. Moreover
the next lemma gives us a characterization of those posets which are
coset posets. Notice that condition $(^{*})$ of the lemma is always satisfied
if the poset $P$ is in 72, since morphisms in $\prime p$ preserve height.

(16.2) Let $G$ be represented as a group of automorphisms of the
poset $P$ and let $I$ $=P/G$ be the orbit poset of this representation. That
is $aG\leq bG$ if and only if $ag\leq b$ for some $g\in G$ . Assume
$(^{*})$ For each $a\in P$ , $ aG\cap P(<a)=\emptyset$ .

Let $(x_{i} : i\in I)$ be a set of representatives for the orbits of $G$ on $P$ with
$i=x_{i}G$ and let $G_{?}$. $=G_{x_{i}}$ , $\mathcal{F}=(G_{i} : i\in I)$ , and $\mathcal{E}_{i,j}=\{G_{i}uG_{j}$ : $ x_{i}u\leq$

$x_{j}\}$ . Then $\Gamma=\Gamma(G, \mathcal{F}, \mathcal{E})$ is a coset poset and the map $x_{i}g\mapsto G_{?}.g$ is $a$

$G$ -equivariant isomorphism of posets.

Proof By construction, $\Gamma$ satisfies axioms CSPO and CSPI. Axiom
CSP2 follows from hypothesis $(^{*})$ . Finally if $G_{i}uG_{j}\in \mathcal{E}_{i,j}$ and $ G_{j}vG_{k}\in$

$\mathcal{E}_{j,k}$ then $x_{i}ug\leq x_{j}$ for each $g\in G_{j}$ and $x_{j}\leq x_{k}v^{-1}$ , so as $P$ is a poset,
$x_{i}ug\leq x_{k}v^{-1}$ , and hence $x_{i}ugv\leq x_{k}$ . Therefore $GiugvGk\in \mathcal{E}_{i,k}$ , so
axiom CSP3 is satisfied and $\Gamma$ is a coset poset. As $G_{i}=G_{x_{i}}$ , our map is a
$G$-equivariant bijection. Finally $x_{i}g\leq x_{j}h$ if and only if $G_{i}gh^{-1}G_{j}\in \mathcal{E}_{i,j}$

if and only if $G_{i}g\leq G_{j}h$ , so the map and its inverse preserve order.

(16.3) Let $\Gamma=\Gamma(G, \mathcal{F}, \mathcal{E})$ and $\overline{\Gamma}=\Gamma(\overline{G},\overline{\mathcal{F}},\overline{\mathcal{E}})$ be coset posets over

I and $\overline{I}$ , respectively, let $\beta$ : $I$ $\rightarrow\overline{I}$ be a map of posets, and let $\alpha$ : $G\rightarrow\overline{G}$

a group homomorphism such that $\alpha(G_{i})\subseteq\overline{G}_{\beta(i)}$ and $\alpha(\mathcal{E}_{ij})\subseteq\overline{\mathcal{E}}_{\beta(i),\beta(j)}$

for each $i$ , $j\in I$ . Then the map $G_{i}x\mapsto\overline{G}_{\beta(i)}\alpha(x)$ is a map of posets
from $\Gamma$ into $\overline{\Gamma}$ .
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Proof. As $\alpha(G_{i})\subset\overline{G}_{\beta}(i)$ , the map is well defined. As $\alpha(\mathcal{E}_{i,j})\subseteq$

$\overline{\mathcal{E}}_{\beta(i),\beta(j)}$ , the map preserves order.

Let $\alpha$ : $\tilde{P}\rightarrow P$ be a map of posets. We say $\alpha$ is a lower covering if for

all $\tilde{a}\in\tilde{P}$ , the restriction $\tilde{\alpha}_{\overline{a}}$ : $\tilde{P}(\leq\tilde{a})\rightarrow P(\leq\alpha(\tilde{a}))$ is an isomorphism.

The lower covering is restricted if $\alpha$ is injective on $\tilde{P}(\geq\tilde{a})$ .

The cone of $P$ is the poset $CP=P\cup\{x_{*}\}$ obtained by adjoining
an element $x_{*}>a$ for all $a\in P$ .

(16.4) Assume $\alpha$ : $\tilde{P}\rightarrow P$ is a lower covering of posets with $P\in P$

of height $n$ , and let $(P, f)$ be the simplicial cell complex of P. Let $X=$

$P\cup\{x_{*}\}$ be the cone of P. Then $(X, f)$ is a combinatorial cell complex,

where $(X, f)$ has $n$ -skeleton $(P, f),\dot{f}(x_{*})=\tilde{P}$ , $\zeta_{|j(x_{*})}=\alpha$ , and $f_{\tilde{a}}=\alpha_{\overline{a}}$

for each $\tilde{a}\in j(x_{*})$ . If $\alpha$ is restricted, so is $(X, f)$ .

Proof. Straightforward.

(16.5) Assume $(X, f)$ is a restricted combinatorial cell complex of
height $n+1,\dot{f}(x)$ is homology spherical for each $x\in X$ , and $H_{n}(X^{n})=$

$0$ . Then $dim(H_{n+1}(X))=\sum_{x\in X}dim(\tilde{H}_{n}(\dot{f}(x)))$ , the $(n+1)st$ cellular

boundary map $\partial_{n+1}$ of $X$ is 0, and $H_{n}(X)=0$ .

Proof. As $\dot{f}(x)$ is homology spherical for each $x\in X$ , $H_{*}^{c}(X)=$

$H_{*}(X)$ by Theorem 12.16.
Suppose $\partial_{n+1}=0$ . Then $H_{n+1}^{c}(X)=Z_{n+1}^{c}(X)=D_{n+1}(X)$ has

rank

$\sum_{x\in X}dim(\tilde{H}_{n}(\dot{f}(x)))$

by 12.7. Also $H_{n}^{c}(X)=Z_{n}^{c}(X)/B_{n}^{c}(X)=Z_{n}^{c}(X)$ as $B_{n}^{c}(X)=\partial_{n+1}$

$(D_{n+1}(X))=0$ . Therefore $Hn(X)=Hn(X)=Z_{n}^{c}(X)=Z_{n}^{c}(X^{n})=$

$H_{n}^{c}(X^{n})=H_{n}(X^{n})=0$ .

So it remains to show $\partial_{n+1}=0$ . Assume not. Then $ 0\neq B_{n}^{c}(X)\leq$

$Z_{n}^{c}(X)=Z_{n}^{c}(X^{n})=H_{n}^{c}(X^{n})=Hn(Xn)=0$ , a contradiction.

Corollary 16.6. Assume $(X, f)$ is a restricted combinatorial cell

complex of height $n+1$ such that $j(x)$ is homology spherical for each $ x\in$

$X$ and $X^{n}$ is acyclic. Then $X$ is homology spherical with $dim(H_{n+1}(X))$

$=\sum_{x\in X}dim(\tilde{H}_{n}(j(x)))$ .

Example. We consider the classical example of the Poincar\’e do-
decahedron and the Poincar\’e dodecahedron disk. We regard the dodec-

ahedron as the poset $\tilde{X}$ of faces partially ordered by inclusion. Then $\tilde{X}$
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has one element $x_{*}$ of height 3, 122-dimensional faces of height 2, 30
1-dimensional faces of height 1, and 20 vertices of height 0.

The Coxeter group $W$ of type $H_{3}$ is isomorphic to $Z_{2}\times A_{5}$ , where
$A_{5}$ is the alternating group of degree 5, and we will see that the Coxeter

complex of $W$ is the order complex of the boundary $\tilde{X}(<x_{*})$ of the

dodecahedron. Namely $W$ is regular on 3-chains in $\tilde{X}$ and if $c=(x_{0}<$

$\ldots<x_{3})$ is a 3-chain and $c_{i}=c-\{x_{i}\}$ for $0\leq i\leq 2$ , then $ W_{c_{i}}=\langle r_{i}\rangle$

is of order 2 and $R=\{r_{0}, r_{1}, r_{2}\}$ is the set of fundamental reflections
making $(W, R)$ a Coxeter system of type $H_{3}$ . Further the stabilizer of
the chain $c_{J}=c-\{x_{j} : j\in J\}$ is the parabolic $ W_{J}=\langle R_{J}\rangle$ , where $R_{J}=$

$\{r_{J} : j\in J\}$ . Let $I$ $=\{0,1, 2\}$ ordered as usual and $M_{i}=W_{I-\{i\}}$ be the

stabilizer of $x_{i}$ . The Coxeter complex of $W$ is the order complex of the
coset poset $\Gamma(W, \mathcal{F}^{*}, \mathcal{E}^{*})$ , where $\mathcal{F}^{*}=(M_{i} : i\in I)$ and $\mathcal{E}_{i,j}^{*}=\{M_{i}M_{j}\}$ .

By 16.2, $\tilde{X}(<x_{*})$ is isomorphic to this coset poset and hence its order
complex is isomorphic to the Coxeter complex.

Next the commutator group of $W$ is the alternating group $G=A_{5}$

on {1, 2, 3, 4, 5} and as $W_{J}\not\leq G$ for $J\subset I$ , $W=W_{J}G$ for all such $J$ so
$G$ is transitive on pairs $(x, y)$ in $\tilde{X}$ with $y\leq x$ , $h(x)=i$ , and $h(y)=j$ ,

for all $0\leq j\leq i\leq 3$ . On the other hand $G$ has two orbits on 3-chains of
$\tilde{X}$

. Let $\tilde{G}_{i}=G\cap M_{i}=G_{x_{i}}$ , and $\tilde{\mathcal{F}}=(\tilde{G}_{i} : o\leq i\leq 3)$ . Then $\tilde{G}_{3}=G$ ,
$\tilde{G}_{2}\cong Z_{5},\tilde{G}_{1}\cong Z_{2}$ , and $\tilde{G}_{0}\cong Z_{3}$ . By 16.2, $\tilde{X}\cong\Gamma(G,\tilde{\mathcal{F}},\tilde{\mathcal{E}})$ , where
$\mathcal{E}_{j,i}^{\sim}=\{\tilde{G}_{j}\tilde{G}_{i}\}$ for $j\leq i$ .

Let $\tilde{G}_{i}=\langle g_{i}\rangle$ for $0\leq?$
.

$\leq 2$ . As the pair $\langle g_{0}\rangle$ , $\langle g_{2}\rangle$ is determined
up to conjugation in $Aut(G)=S_{5}$ , we may take $g_{2}=(1,2,3,4,5)$ and
$g_{0}=(2,3,5)$ . As $r_{1}$ inverts $g_{0}$ and $g_{2}$ , so does its projection $p_{1}$ on
$G$ , so $p_{1}=(1,4)(2,3)$ . Then we may take the projection $p_{2}$ of $r_{2}$ to
be $p_{2}=p_{1}g_{2}=(1,5)(2,4)$ . Next the projection $p_{0}$ centralizes $p_{2}$ and
inverts $g_{0}$ , so $p_{0}=(1,4)(2,5)$ . Finally $g_{1}=p_{0}p_{2}=(1,2)(4,5)$ .

Next let $G_{0}$ be the stabilizer on $G$ of the point 1, $G_{1}$ the global

stabilizer of {1, 2}, and $G_{2}=N_{G}(\tilde{G}_{2})$ . Let $\mathcal{F}$ $=(G_{i} : 0\leq i\leq 2)$ and
consider the coset poset $P=\Gamma(G, \mathcal{F}, \mathcal{E})$ , where $\mathcal{E}_{i,j}=\{G_{i}G_{j}\}$ . Now
$G_{1}=G_{0,1}G_{1,2}$ , so $G$ is transitive on 2-chains of the poset $P$ . The poset
$P$ is the Poincar\’e dodecahedron disk. It is well known that

(16.7) Let $P$ be the Poincar\’e dodecahedron disk. Then $P$ is aspher-
ical with $\pi_{1}(P)\cong SL_{2}(5)$ .

Proof. See for example [4].

Let $\overline{\mathcal{F}}=(\tilde{G}_{i} : 0\leq i\leq 2)$ and $\tilde{P}=\Gamma(G,\overline{F},\overline{\mathcal{E}})$ the coset poset with
$\overline{\mathcal{E}}=\{\mathcal{E}_{j,i} : o\leq j\leq i\leq 2\}$ . That is $\tilde{P}$ is the 2-skeleton or boundary of

the dodecahedron. Thus the geometric realization of $\tilde{P}$ is the 2-sphere.
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Define $\alpha$ : $\tilde{P}\rightarrow P$ to be the map induced via the identity homomor-
phism on $G$ and the identity map on {0, 1, 2} as in Lemma 16.3. Observe

that $\tilde{G}_{i}\leq G_{i}$ and $E\subseteq G_{j}G_{i}$ for all $j\leq i$ and all $E\in\overline{\mathcal{E}}_{i,j}$ , so $\alpha$ is a map
of posets by 16.2. Indeed $\alpha$ is a restricted lower covering. Therefore
if we form the cone $X=\{x_{*}\}\cup P$ of $P$ and make the construction of
Lemma 16.4, we obtain a restricted combinatorial cell complex $(X, f)$

whose 2-skeleton $X^{2}$ is the simplicial cell complex $(P, f)$ of the Poincar\’e

dodecahedron disc. We call $X$ the Poincar\’e dodecahedron, since the
geometric realization of $X$ is the Poincar\’e dodecahedron.

By Lemma 16.7, $X^{2}=P$ is acyclic. Also $\dot{f}(x_{*})=\tilde{P}$ has the ho-

motopy type of the 2-sphere, so $\dot{f}(x_{*})$ is spherical with $H_{2}(\dot{f}(x_{*}))\cong Z$ .

Finally $\dot{f}(x)$ is isomorphic to the 5-gon, and the 0-sphere for $x$ of height

2,1, respectively, so $\dot{f}(x)$ is homology spherical for all $x\in X$ . Therefore
by Corollary 16.6, $X$ is homology spherical with $H_{3}(X)\cong Z$ ; that is
$X$ is a homology 3-sphere. Also as $\dot{f}(x_{*})$ has the homotopy type of the
2-sphere, it is simply connected, so by 12.17, $\pi_{1}(X)\cong\pi_{1}(X^{2})\cong SL_{2}(5)$

by 16.7. We summarize this as:

(16.8)Let $X$ be the Poincar\’e dodecahedron. Then $X$ is a homology
3-sphere with $\pi_{1}(X)\cong SL_{2}(5)$ .

Notice that $G$ is a group of automorphisms of $P$ transitive on 2-
chains and hence also on 3-chains of $X$ .
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Generalized Generalized Spin Models Associated
with Exactly Solvable Models

Tetsuo Deguchi

Abstract.

We show a close connection between generalized generalized spin
models (four-weight spin models) and exactly solvable models. The
defining relations of four-weight spin models are discussed from the
viewpoint of the star-triangle relations. For an illustration we de-

rive symmetric spin models from the self-dual $Z_{N}$ model, and then
construct various four-weight spin models through gauge transforma-
tions. We also show that the gauge transformations do not change

the values of the link invariants derived from the four-weight spin
models.

\S 1. Introduction

In mathematical physics, there is a close connection between the
theories of integrable models and the topological invariants of links [1,
22]. The key is the Yang-Baxter relation, which plays a central role
in the l-dim. many body system [24] and in solvable lattice models in

statistical mechanics [5].
The formalism of spin model was introduced by Jones as a device

for construction of link invariants and representations of the braid group
[15]. We call topological invariant of knots and links link invariant.
Various spin models and link invariants have been discussed [4, 10, 12,
13, 18]. Recently, the formalism of spin model due to Jones has been
extended into that of generalized spin model [18] and further into that of
generalized generalized spin model (four-weight spin model) [4]. Many
four-weight spin models have been constructed explicitly $[4, 16]$ .

In this paper we discuss four-weight spin models from the viewpoint
of the star-triangle relations of exactly solvable models in statistical me-
chanics. We show that certain limits of the Boltzmann weights of the

Received January 17, 1995.
Revised September 2, 1995.
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self-dual $Z_{N}$ model give explicitly the symmetric spin models and the
generalized generalized spin models. We introduce two gauge trans-
formations on the Boltzmann weights of solvable models satisfying the
star-triangle relations. Various four-weight spin models are constructed
by applying the gauge transformations to the self-dual $Z_{N}$ model. It
is thus shown that these four-weight spin models can be generalized
into the exactly solvable models, i.e., they can be “Yang-Baxterized”.
Furthermore, we show that the derived link invariants do not depend
on the parameters related to the gauge transformations. We hope that
the results of the paper might shed some light on connection of gener-
alized generalized spin models to exactly solvable models in statistical
mechanics.

After submission of the manuscript the author was informed that
the gauge transformations for four-weight spin models have been inde-
pendently introduced by F. Jaeger, who also proved that the derived
link invariants are independent from the transformations [14].

\S 2. The star-triangle relations

2.1. The $Z_{N}$ model

In statistical physics, a lattice model is called solvable if it has an
infinite number of commuting transfer matrices [5]. If the Boltzmann
weights satisfy the Yang-Baxter relations, then we can show that the
transfer matrices commute, and that the system has an infinite number
of “symmetries” or “conserved quantities”. For Potts models and $Z_{N}$

models the Yang-Baxter relations are called the star-triangle relations.
Here $Z_{N}$ denotes $Z/7VZ$ .

a
$b$ a

$b$

(1) (2)

Fig. 1. Two types of Boltzmann weights (1) $X(a, b;u)$ and
(2) $Y(a, b;u)$ . Arrows are often abbreviated.
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Let us introduce a general $Z_{N}$ model with nearest-neighbor interac-
tion on an M-by-2L rectangular lattice [9]. A lattice point is described
by a vector $\overline{n}=(n_{1}, n_{2})$ , where $1\leq n_{1}\leq M$ and $1\leq n_{2}\leq 2L$ . We
assume the periodic boundary condition: $n_{1}=n_{1}+M(modM)$ and
$n_{2}=n_{2}+2L(mod2L).1$ To every lattice point $\overline{n}$ we associate a spin
variable $\alpha(\tilde{n})$ , which takes $Z_{N}$ values.

We introduce two types of Boltzmann weights $X(\alpha, \beta;u)$ and
$Y(\alpha, \beta;u)$ , where ($y$ and $\beta$ are spin variables on two nearest-neighboring
lattice points and $u$ is a complex parameter called spectral parameter.
Mathematically, the Boltzmann weights are functions on the spin vari-
ables and spectral parameter: $Z_{N}\otimes Z_{N}\otimes C\rightarrow$ C. The physical meaning
of the Boltzmann weight is that it denotes the probability of the two
nearest-neighboring spin variables taking a particular value in $Z_{N}\otimes Z_{N}$ ,
where the spectral parameter may play the role of the “temperature”.

We now consider the solvability condition of the $Z_{N}$ model. The
star-triangle relations are given by the following.

a
a

–

$c$

b $b$

Fig. 2. Star-triangle relations:
$\sum X(a, k;u)X(k, b;v)Y(c, k;w)$

$=C(u, v)X(a, b;w)Y(c, b;u)Y(c, a;v)$

(2.1)
$\sum_{k\in z_{N}}X(\alpha, k;u)X(k, \beta;v)Y(\gamma, k;w)$

$=C(u, v, w)X(\alpha, \beta;w)Y(\gamma, \beta;u)Y(\gamma, \alpha;v)$ ,

(2.2)
$\sum_{k\in z_{N}}X(k, \alpha;v)X(\beta, k;u)Y(k, \gamma;w)$

$=C(u, v, w)X(\beta, \alpha;w)Y(\beta, \gamma;v)Y(\alpha, \gamma;u)$ .

xUnder the periodic boundary condition we may assume $\tilde{n}\in z_{M}\otimes z_{2L}$ .
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Here the spectral parameter $w$ is to be determined from the parameters $u$

and $v$ under a certain rule, which may be different depending on models.
In order to show the merit of the star-triangle relations we consider

the transfer matrices of the $Z_{N}$ model. Let $\overline{\alpha}$ and $\overline{\beta}$ be the sequences
of the spin variables on the $k$-th and $(k+1)$ -th rows of the M-by-2L
lattice, respectively, i.e., $\alpha_{j}=\alpha(k,j)$ and $\beta_{j}=\alpha(k+1,j)$ . We define
the transfer matrices $V_{M}(u)$ and $W_{M}(u)$ as follows

$V_{M}(u)_{\tilde{\alpha},\tilde{\beta}}=\prod_{j=1}^{M}(X(\alpha_{j}, \beta_{j} ; u)Y(\alpha_{j+1}, \beta_{j} ; u))$ ,

(2.3)

$W_{M}(u)_{\overline{\alpha},\overline{\beta}}=\prod_{j=1}^{M}(X(\alpha_{j}, \beta_{j} ; u)Y(\beta_{j+1}, \alpha_{j} ; u))$ .

Here we recall the periodic boundary condition that $\alpha_{M+1}=\alpha_{1}$ and
$\beta_{M+1}=\beta_{1}$ .

The transfer matrices are important in calculation of the partition
function of the model. In terms of the transfer matrices the partition
function $Z$ of the lattice model is given by $Z=Tr((V_{M}(u)W_{M}(u))^{L})$ .

al a2 a3 aN al

(1)
- -

$b1$ $b2$ $bM$ $b1$

$a1$ a2 a3 aM $a1$

(2)

$b1$ $b2$ $bM$ $b1$

Fig. 3. (1) Transfer matrix
$V(u)=\prod X(\alpha_{j}, \beta_{j} ; u)Y(\alpha_{j+1}, \beta_{j} ; u)$

(2) Transfer matrix
$W(u)=\prod X(\alpha_{j}, \beta_{j} ; u)Y(\beta_{j+1}, \alpha_{j} ; u)$

Periodic boundary condition is assumed:
$\alpha_{M+1}=\alpha_{1}$ , $\beta_{M+1}=\beta_{1}$ .
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Proposition 2.1. If the star-triangle relations (2.1) and (2.2)
hold, then we can show for any $M$ that the transfer matrices commute:

$VM(U)WM(V)=WM(v)VM(u)$ ,

(2.4) $V_{M}(u)V_{M}(v)=V_{M}(v)V_{M}(u)$ ,

$WM(u)WM(v)=WM(u)WM(v)$

(For proof, see for instance, \S 7.2 of [5].)

2.2. Gauge transformations on solvable models

We consider two transformations on $the_{2}Bo1tzmann$ weights of the
models satisfying the star-triangle relations.

For an arbitrary function $f(\alpha)$ on $\alpha\in Z_{N}$ we introduce the following

transformation of weights from $X$ and $Y$ into $\tilde{X}$ and $\tilde{Y}$

(2.5) $\tilde{X}(\alpha, \beta;u)=X(\alpha, \beta;u)\times f(\alpha)/f(\beta)$ , $\tilde{Y}(\alpha, \beta;u)=Y(\alpha, \beta;u)$ ,

for any $\alpha$ , $\beta\in Z_{N}$ .

Proposition 2.2. Let us assume that the Boltzmann weights
$X(\alpha, \beta;u)$ and $Y(\alpha, \beta;u)$ satisfy the star-triangle relations (2.1) and

(2.2), and that $\tilde{X}$ and $\tilde{Y}$ are obtained from $X$ and $Y$ by the gauge trans-

formation 1. Then the weights $\tilde{X}$ and $\tilde{Y}$ also satisfy the star-triangle
relations (2.1) and (2.2).

We now introduce another transformation by the following.

(2.6) $\overline{Y}(\alpha, \beta;u)=Y(\alpha, \beta+\gamma;u)$ , $\tilde{X}(\alpha, \beta;u)=X(\alpha, \beta;u)$ ,

for any $\alpha$ and $\beta\in Z_{N}$ . We call the transformation gauge transformation
2.

Proposition 2.3. Let us assume that the Boltzmann weights
$X(\alpha, \beta;u)$ and $Y(\alpha, \beta;u)$ satisfy the star-triangle relations (2.1) and
(2.2), and that $\tilde{X}$ and $\tilde{Y}$ are obtained from $X$ and $Y$ by the gauge

transformation 2. If there is a function $g(m;u)$ on $Z_{N}\otimes C$ such that
$Y(\alpha, \beta;u)=g(\alpha-\beta;u)$ , then the transformed Boltzmann weight $ Y\sim$ and
the weight $X$ satisfy the star- triangle relations (2.1) and (2.2).

$2For$ four-weight spin models essentially the same transformations were
discussed independently by F. Jaeger [14].
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\S 3. The self-dual $Z_{N}$ model

3.1. The Boltzmann weights

We now introduce the Boltzmann weights of the self-dual $Z_{N}$ model.
Let $r$ denote an integer coprime to $N$ , $(N, r)=13$. For a positive integer
$m$ we introduce weight $x_{m}(u)$ by the following.

(3.1)

$x_{m}(u)=\prod_{k=0}^{m-1}\sin(\frac{r-N}{2N}u+\frac{\pi rk}{N})/\sin(\frac{r-N}{2N}u-\frac{\pi r(k+1)}{N})$ .

For $m=0$ we assume $x_{0}(u)=1$ . We may define $x_{-m}$ for $m>0$ by
$x_{-m}=x_{m}(u)$ , since from (3.1) we have $x_{N-m}=x_{m}(u)$ for $0<m<N$ .

We define $y_{\alpha-\beta}(u)$ by $y\alpha-\beta(u)=x_{\alpha-\beta}(\pi-u)$ . The Boltzmann
weights $\{x_{m}(u)\}$ satisfy the star-triangle relation [9]:

(3.2)

$\sum_{k=0}^{N-1}x_{\alpha-k}(u)x_{k-\beta}(v)y_{\gamma-k}(u+v)=C(u, v)x_{\alpha-\beta}(u+v)y_{\gamma-\beta}(u)y_{\gamma-\alpha}(v)$ ,

where $C(u, v)=F_{0}(u)F_{0}(v)/F_{0}(u+v)$ . $F_{j}(u)$ denotes the Fourier trans-
form of $x_{m}(u)$

(3.3) $F_{j}(u)=\sum_{k=0}^{N-1}x_{k}(u)\omega^{jk}$ ,

where $\omega$ is given by $\omega=\exp(2\pi\sqrt{-1}/N)$ . The star-triangle relations
(3.2) correspond to (2.1) and (2.2) by

(3.4) $X(\alpha, \beta;u)=x_{\alpha-\beta}(u)$ , $Y(\alpha, \beta;u)=y_{\alpha-\beta}(u)=x_{\alpha-\beta}(\pi-u)$ .

We make a remark on the proof of the star-triangle relations (3.2)
of the model. The self-dual $Z_{N}$ model corresponds to the cyclotomic
solution in[17], whose star-triangle relations are explicitly proved in Ref.
[17].

One of the most characteristic properties of the self-dual $Z_{N}$ model
is the following relation called self-duality [9]:

(3.5) $x_{m}(\pi-u)=\tilde{x}_{m}(u)=F_{m}(u)/F_{0}(u)$ .

The Boltzmann weights $x_{m}(u)$ also satisfy the following basic properties.

$3The$ parametrization in Ref. [9] corresponds to the case $r=N+1$ .
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1. The initial conditions:

(3.6) $x_{m}(0)=\delta_{m0}$ , $x_{m}(\pi)=1$ .

2. The inversion relations:

(3.7) $x_{m}(\pi+u)x_{m}(\pi-u)$ $=$ 1,

(3.8)
$\sum_{k}x_{\alpha-k}(u)x_{k-\beta}(-u)$

$=$ $C(u, \pi)\delta_{\alpha,\beta}$ .

It is straightforward to see the initial conditions (3.6) and the inversion
relation (3.7) from the parametrization (3.1). We can show (3.8) by
putting $ v=\pi$ in the star-triangle relation (3.2) and using (3.6) and
(3.7).

We give a comment on solvable models associated with the self-dual
$Z_{N}$ model. Two families of generalizations are known for the model. The
chiral Potts model [2] and the broken $Z_{N}$ symmetric model [17]. The lat-
ter model has been reconstructed from the representation of the Sklyanin
algebra [11], and has also been generalized into $Z_{N}^{\otimes n-1}$ symmetric model
[21]. We may say that the chiral Potts model and the broken $Z_{N}$ sym-
metric model are associated with the generalized generalized spin models
which will be discussed in \S 4. For the chiral Potts model a method for
constructing multicomponent models has been given [3].

3.2. Modification of the self-dual $Z_{N}$ model

We now apply the gauge transformations (2.5) and (2.6) to the
Boltzmann weight $x_{m}(u)(3.1)$ of the self-dual $Z_{N}$ model so that we
obtain a modified solvable model. Let us introduce two types of Boltz-
mann weights $y(\alpha, \beta;u)$ and $x(\alpha, \beta;u)$ by $y(\alpha, \beta;u)=y_{\alpha-\beta+s}(u)=$

$x_{\alpha-\beta+s}(\pi-u)$ and $x(\alpha, \beta;u)=x_{\alpha-\beta}(u)\times f(\alpha)/f(\beta)$ , respectively. Here
$\alpha$ , $\beta\in Z_{N}$ . Then the Boltzmann weights satisfy the star-triangle rela-
tions (2.1) and (2.2) in \S 2 and the following basic relations.

$x(\alpha, \beta;0)=\delta_{\alpha,\beta}$ , $x(\alpha, \beta;\pi)=1$ ,

(3.8) $x(\alpha, \beta;\pi+u)x(\beta, \alpha;\pi-u)=1$ ,

$\sum_{k}x(\alpha, k;u)x(k, \beta;-u)=C(u, \pi)\delta_{\alpha,\beta}$
,

$y(\alpha, \beta;0)=\delta_{\alpha,\beta}$ , $y(\alpha, \beta;\pi)=1$ ,

(3.10) $y(\alpha, \beta;\pi+u)y(\alpha, \beta;\pi-u)=1$ ,

$\sum_{k}y(\alpha, k;u)y(\beta, k;-u)=C(u, \pi)\delta_{\alpha,\beta}$
,

for any $\alpha$ , $\beta\in Z_{N}$ .
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\S 4. Spin models

4.1. Symmetric spin models

Let us introduce the symmetric spin models [15].

(1) (2)

Fig. 4. Double points (1) of $type+and(2)$ of type-. Spin
variables $a$ and $b$ are defined on the shaded regions.

Let $S$ denote a finite set $S=\{1, \ldots, n\}$ . We consider two types of
weights $w_{j}(j=\pm)$ , which are complex functions on $S\otimes S$ . For $\alpha$ and
$\beta\in S$ , the weight $w_{j}$ gives a complex number $w_{j}(\alpha, \beta)$ for $ j=\pm$ .

Definition 4.1 ([15]). A set of weights $\{w_{j} ; j=\pm\}$ is called a
symmetric spin model, if the weights satisfy the following relations.

(4.1) $w_{+}(\alpha, \beta)=w_{+}(\beta, \alpha)$ , $w_{-}(\alpha, \beta)=w_{-}(\beta, \alpha)$ ,

(4.2) $w_{+}(\alpha, \beta)w_{-}(\alpha, \beta)=1$ ,

(4.3)
$\sum_{k\in S}w_{+}(\alpha, k)w_{-}(k, \beta)=n\delta_{\alpha\beta}$

,

(4.4)
$\sum_{k\in S}w_{+}(\alpha, k)w_{+}(k, \beta)w_{-}(\gamma, k)=\sqrt{n}w_{+}(\alpha, \beta)w_{-}(\gamma, \alpha)w_{-}(\gamma, \beta)$

.

Let us derive symmetric spin models from the self-dual $Z_{N}$ model by
taking advantage of the star-triangle relation (3.2). The set $S$ is given by
$S=Z_{N}$ , i.e., $n$ is given by $N$ . Let $G(N, r)$ denote the Gaussian sum for

integers $N$ and $r$ with $(N, r)=1:G(N, r)=\sum_{k=0}^{N-1}\exp(\pi\sqrt{-1}rk^{2}/N)$ .

We now define weights $w_{\pm}(\alpha, \beta)$ by the limit of sending the spectral
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parameter to infinity: 4

(4.5) $w_{\pm}(\alpha, \beta)=\lim_{u\rightarrow\infty}x_{\alpha-\beta}(\pm u/\sqrt{-1})(\frac{\sqrt{N}}{G(N,r)})\pm 1/2$

Then we have

(4.6) $w\pm(\alpha, \beta)=\exp(\pm\pi\sqrt{-1}r(\alpha-\beta)^{2}/N)(\frac{\sqrt{N}}{G(N,r)})\pm 1/2$

Here we have used the fact that

$\lim_{u\rightarrow\infty}x_{m}(\pm u/\sqrt{-1})=\exp(\pm\pi\sqrt{-1}rn^{2}/N)$

for $r>N$ .

Let us show that the weights (4.6) defined by the limit (4.5) sat-
isfy the defining relations of symmetric spin models. We first note the
following

(4.7)
$\lim_{u\rightarrow\infty}F_{0}(u/\sqrt{-1})=\lim_{u\rightarrow\infty}\sum_{k}x_{k}(u/\sqrt{-1})=G(N, r)$

,

(4.8) $\lim_{u\rightarrow\infty}C(u/\sqrt{-1}, \pi)=\lim_{u\rightarrow\infty}\frac{F_{0}(u/\sqrt{-1})F_{0}(\pi)}{F_{0}(u/\sqrt{-1}+\pi)}=N$ .

Here $F_{0}(\pi)=N$ since $x_{k}(\pi)=1$ (see (3.6)). We next note that the
weights $w_{\pm}(\alpha, \beta)$ defined by (4.5) are symmetric, since $x_{m}(u)=x_{-m}(u)$ .

The inversion relation (3.7) leads to the relation (4.2). The relation
(4.3) is derived from the inversion relation (3.8). Finally, from the
star-triangle relation (3.2) we have the relation (4.4), since we have
$\lim_{u},{}_{v\rightarrow\infty}C(u, v)=G(N, r)$ from (4.7).

Thus we have shown that the weights defined by (4.5) give a sym-
metric spin model. From the derivation we see that the relations (4.3)
and (4.4) are consequences of the star-triangle relation (3.2).

A version of symmetric spin model has been constructed in terms of
the IRF model (the cyclotomic solution) and the link invariants derived
from it have been extensively investigated [19]. It is interesting to note
that the symmetric spin model is related to the invariants of 3 dimen-
sional manifolds [20]. A certain class of the spin models associated with
$sl(n)$ generalization of the Chiral Potts model [7] has been also shown
to be derived from the invariants of 3 dimensional manifolds [20].

$4Hereafter$ we assume that $r>N$ without loss of generality.
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Recently, from the Boltzmann weights of the chiral Potts model an
extended version of spin model has been constructed [23]. We can regard
it as a four-weight spin model.

4.2. Four-weight spin models

Let us introduce four-weight spin model (generalized generalized
spin model) [4]. Recall that $S$ denotes a finite set $S=\{1, \ldots, n\}$ . We
consider four types of weights $w_{j}(j=1, \ldots, 4)$ , which are complex
functions on $S\otimes S$ . For $\alpha$ and $\beta\in S$ , the weight $w_{j}$ gives a complex
number $w_{j}(\alpha, \beta)$ .

(1) (2) (3) (4)

Fig. 5. Double point with index $j$ is defined by figure (j)
for $j=1,2,3,4$ . Weight $w_{j}(a, b)$ is associated with

figure (j).

Definition 4.2 ([4]). A set of weights $\{w_{j} ; j=1, \ldots, 4\}$ is called
a four-weight spin model, if the weights satisfy the following relations.

(4.9) $w_{1}(\alpha, \beta)w_{3}(\beta, \alpha)=1$ , $w_{2}(\alpha, \beta)w_{4}(\beta, \alpha)=1$ ,

$\sum_{k}w_{1}(\alpha, k)w_{3}(k, \beta)=n\delta_{\alpha,\beta}$
,

(4.10)
$\sum_{k}w_{2}(\alpha, k)w_{4}(k, \beta)=n\delta_{\alpha,\beta}$

,

$\sum_{k}w_{1}(\alpha, k)w_{1}(k, \beta)w_{4}(\gamma, k)=\sqrt{n}w_{1}(\alpha, \beta)w_{4}(\gamma, \alpha)w_{4}(\gamma, \beta)$
,

(4.11)
$\sum_{k}w_{1}(k, \alpha)w_{1}(\beta, k)w_{4}(k, \gamma)=\sqrt{n}w_{1}(\beta, \alpha)w_{4}(\alpha, \gamma)w_{4}(\beta, \gamma)$

,

for any $\alpha$ , $\beta$ and $\gamma$ in $S$ .
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Let us introduce graph of an oriented link [6].

Definition 4.3 (graph of an oriented link). Let a regular link di-
agram be chess-board colored with colors black (or shade) and white.
Assign to every double point $A^{k}$ of the diagram an index 1, 2, 3, or 4
with respect to the colorings as defined by Fig. 5. Denote by $S_{j}$ the
black-colored (or shaded) regions of a link diagram. Define a graph $\Gamma$

whose vertices $P_{i}$ correspond to the $S_{i}$ , and whose edges $a_{ij}^{k}$ correspond

to the double points $A^{k}$ that is the intersection between regions $S_{?}$. and
$S_{j}$ , where $a_{ij}^{k}$ connects $P_{i}$ and $P_{j}$ and has the index of $A^{k}$ .

Pl

$\sim II$ ’ 1 ’ [[ ’ ’ III’$-$ $a$ $\rceil 2$

P2

Fig. 6. Double point $A$ with regions $S1$ and $S2$ corresponds
to edge $a12$ with vertices $P1$ and $P2$ . The index of
$A$ is 1.

We now define configuration of spin variables. To each region $S_{j}$ we
associate a spin variable which takes its values in $Z_{N}$ . A configuration
of the spin variables on the graph is given by assigning an element in
$Z_{N}$ to each spin variable on the graph. There are $N^{m}$ configurations if
the graph has $m$ vertices.

We shall define the partition function of a four-weight spin model.
Let us consider a link diagram, and then by chess-board coloring of the

diagram we make the graph of the link with spin variables assigned on
the shaded regions. We assign the weight $w_{j}$ to each edge in the graph
with index $j$ . We make the product of the weights $w_{j}$ for all the edges
in the graph under a given configuration of the spin variables. Then
we take the sum of the product over all the configurations of the spin
variables. By the sum we define the partition function of the four-weight
spin model for the graph of the link diagram.

Proposition 4.4 ([4]). The partition function of a four-weight
model leads to a link invariant.
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We now construct a generalized generalized spin model from the
modified solvable model given in 3.2. We define the weights $w_{j}(\alpha, \beta)$

for $j=1,2,3,4$ by the following limit:

$w_{1}(\alpha, \beta)=\lim_{u\rightarrow\infty}x(\alpha, \beta;u/\sqrt{-1})(\frac{\sqrt{N}}{G(N,r)})1/2$ ,

$w_{2}(\alpha, \beta)=\lim_{u\rightarrow\infty}y(\beta, \alpha;-u/\sqrt{-1})(\frac{\sqrt{N}}{G(N,r)})1/2$ ,

(4.12)

$w_{3}(\alpha, \beta)=\lim_{u\rightarrow\infty}x(\alpha, \beta;-u/\sqrt{-1})(\frac{\sqrt{N}}{G(N,r)})-1/2$ ,

$w_{4}(\alpha, \beta)=\lim_{u\rightarrow\infty}y(\alpha, \beta;u/\sqrt{-1})(\frac{\sqrt{N}}{G(N,r)})-1/2$ ,

where $\alpha$ , $\beta\in Z_{N}$ . Then we have

$w_{1}(\alpha, \beta)=\frac{f(\alpha)}{f(\beta)}$ $\exp(\frac{\pi\sqrt{-1}}{N}r(\alpha-\beta)^{2})(\frac{\sqrt{N}}{G(N,r)})1/2$ ,

$w_{2}(\alpha, \beta)=\exp(\frac{\pi\sqrt{-1}}{N}r(\alpha-\beta-s)^{2})(\frac{\sqrt{N}}{G(N,r)})1/2$ ,

(4.13)

$w_{3}(\alpha, \beta)=\frac{f(\alpha)}{f(\beta)}\exp(-\frac{\pi\sqrt{-1}}{N}r(\alpha-\beta)^{2})(\frac{\sqrt{N}}{G(N,r)})-1/2$ ,

$w_{4}(\alpha, \beta)=\exp(-\frac{\pi\sqrt{-1}}{N}r(\alpha-\beta+s)^{2})(\frac{\sqrt{N}}{G(N,r)})-1/2$ ,

for $\alpha$ , $\beta\in Z_{N}$ .

It is a consequence of the star-triangle relations that the weights
defined by (4.12) satisfy the relations (4.11). In the same way as the
symmetric spin model, we can derive the other defining relations from
the basic relations (3.9) and (3.10). Thus all the defining relations are
shown by using the star-triangle relations and the basic relations of the
solvable model.
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\S 5. Discussion

5.1. Gauge transformations on spin models

In terms of spin models we discuss the gauge transformations in \S 2
defined on the exactly solvable models.

We first consider the gauge transformation 1. For an arbitrary func-
tion $f(\alpha)$ we consider the following transformation of the weight $w_{j}$ into
$\tilde{w}_{j}$ :

$\tilde{w}_{1}(\alpha, \beta)=w_{1}(\alpha, \beta)\times f(\alpha)/f(\beta)$ , $\tilde{w}_{2}(\alpha, \beta)=w_{2}(\alpha, \beta)$ ,
(5.1)

$\tilde{w}_{3}(\alpha, \beta)=w_{3}(\alpha, \beta)\times f(\alpha)/f(\beta)$ , $\tilde{w}_{4}(\alpha, \beta)=w_{4}(\alpha, \beta)$ ,

for any $\alpha$ and $\beta\in S$ . Then we have the following.

Proposition 5.1. Assume that $\{w_{j} ; j=1, \ldots, 4\}$ is a four-weight
spin model, and also that $\tilde{w}_{j}$ is obtained from $w_{j}$ by the gauge transfor-
mation 1. Then $\{\tilde{w}_{j} ; j=1, \ldots, 4\}$ gives a four-weight spin model.

We now consider the gauge transformation 2 given by the following.

$\tilde{w}_{1}(\alpha, \beta)=w_{1}(\alpha, \beta)$ , $\tilde{w}_{2}(\alpha, \beta)=w_{2}(\alpha+s, \beta)$ ,
(5.2)

$\tilde{w}_{3}(\alpha, \beta)=w_{3}(\alpha, \beta)$ , $\tilde{w}_{4}(\alpha, \beta)=w_{4}(\alpha, \beta+s)$ ,

for any $\alpha$ and $\beta\in S$ . It is easy to see the following.

Proposition 5.2. Let us assume that $\{w_{j} ; j=1, \ldots, 4\}$ is a four-
weight spin model, and that $\tilde{w}_{j}$ is obtained from $w_{j}$ by the gauge transfor-
mation 2. If there are functions $z_{1}$ and $z_{2}$ such that $w_{2}(\alpha, \beta)=z_{1}(\alpha-\beta)$

and $w_{4}(\alpha, \beta)=z_{2}(\alpha-\beta)$ , then $\{\tilde{w}_{j} ; j=1, \ldots, 4\}$ gives a four-weight
spin model.

We recall that the transformations 1 and 2 were independently in-

troduced by F. Jaeger [14].

5.2. Link invariants being independent of the gauge trans-
formations

Let us discuss the link invariants derived from those four-weight spin
models that are obtained from the symmetric spin model by applying
the gauge transformations 1 or 2. We show that these link invariants
are independent of any parameter related to the gauge transformations.

In order to show the independence explicitly, we introduce Seifert
cycle and smoothing operation [6]. Let $p(L)$ be a regular projection of an
oriented link $L$ . By altering $p(L)$ in the neighborhood of double points
as shown in Fig. 7, $p(L)$ dissolves into a number of disjoint oriented
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–or

Fig. 7. Smoothing operation.

simple closed curves which are called Seifert cycles. We call this altering
procedure smoothing operation.

We first consider the gauge transformation 1. The weight $\tilde{w}_{j}$ may
depend on complex-valued parameters. For instance, we can set $f(\alpha)=$

$a^{\alpha}$ , where $a$ is a complex variable. However, we can show the following.

Proposition 5.3. Let us assume that weights $\{\tilde{w}_{j} ; j=1,2,3,4\}$

are obtained from a four-weight spin model $\{w_{j} ; j=1,2,3,4\}$ through the
gauge transformation 1 with the function $f(\alpha)$ . Then the link polynomial
derived from the weights $\{\tilde{w}_{j} ; j=1,2,3,4\}$ coincides with that of the spin
model $\{w_{j} ; j=1,2,3,4\}$ .

Proof To a given link diagram we apply the smoothing operation.
Suppose that the diagram (or the graph of the link diagram) has at least
one double point with index 1 or 3. Then the two black-colored regions
separated by the double point are connected by the smoothing operation.
Thus we see that all the edges with indices 1 or 3 make cycles in the
graph. If we take the product of the weights $\{\tilde{w}_{j} ; j=1,2,3,4\}$ for all the
edges, then the factors $f(\alpha)$ cancel each other out for each such cycles

Fig. 8. Smoothing operation connects regions separated by
the double points with index 1 or 3.
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under any given configuration of spin variables. Therefore the partition
function is independent of the function $f(\alpha)$ . If the link diagram does
not have any double point with index 1 or 3, then by definition the
partition function does not depend on the gauge transformation 1.

We next consider the gauge transformation 2. Let us introduce
special projection [6].

Definition 5.4. Let $P(L)$ be a regular projection of a link $L$ on
a plane. Choose a chess-board coloring on $P(L)$ such that the infinite
region is white-colored. $P(L)$ is called a special projection if the union
of black-colored regions is the image of a Seifert surface of $L$ under the
projection.

Using the same techniques in the proof of Prop. 13.15 of [6], we have the
following.

Proposition 5.5. Every link has a special projection.

If we apply the smoothing operation to a special projection, then
the image of the Seifert surface is divided into sub-regions encircled by
the Seifert cycles. These sub-regions are disjoint and do not overlap each
other, and they correspond to the black-colored regions by the definition
of special projection. Thus we see that for a special projection every
black-colored region is encircled by a Seifert cycle.

Fig. 9. A special projection of trefoil knot. Arrows denote

transverse directions at double points. Positive re-
gion $A$ and negative region $B$ .

Note that a Seifert cycle has either a clockwise or counterclockwise
orientation. Let us call a black-colored region positive (negative), if it
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is encircled by a clockwise (counterclockwise) Seifert cycle. We note the
following.

Lemma 5.6. If two Seifert cycles in a link diagram share a double
point, then they have different orientations; if one has counterclockwise
(clockwise) orientation then the other has clockwise (counterclockwise)
orientation.

We now consider the graph $\Gamma$ of an oriented link $L$ for its special
projection $P(L)$ . Any vertex of the graph $\Gamma$ corresponds to either a
positive or negative region of $P(L)$ . We call a vertex positive (negative)
if it corresponds to a positive (negative) region of $P(L)$ . From Lemma
5.6 and the discussion in the previous paragraphs we have the following.

Lemma 5.7. The graph of a special projection is a bipartite graph
such that any of the vertices is either positive or negative and that every
vertex connected to a positive (negative) vertex is negative (positive).

For a special projection all the double points are of index 2 or 4.
If there exists a double point of index 1 or 3, then the boundaries of
the black-regions around the double point are not Seifert cycles, which
is not consistent with the definition of special projection. Thus, every
edge of the graph of a special projection is of index 2 or 4.

Let us introduce two directions with respect to a double point as
shown in Fig. 10. For a double point we define smoothing direction by
the direction of the tangential vector of the Seifert cycle at the double
point. Transverse direction is defined by the direction obtained by ro-
tating the smoothing direction 90 degree counterclockwise around the
double point.

For a special projection the transverse direction at a double point is
consistent with the direction from the positive to negative regions around
the double point. Denote $S(\alpha_{i})(S(\beta_{j}))$ the positive (negative) regions
of a special projection. We also denote by $\alpha_{i}(\beta_{j})$ the spin variables

defined on the positive (negative) regions. If a double point $A^{k}$ is in
the intersection of the boundaries of positive region $S(\alpha_{i})$ and negative
region $S(\beta_{j})$ in a special projection, then the transverse direction at $A^{k}$

is consistent with the direction from $S(\alpha_{i})$ to $S(\beta_{j})$ . (See Fig. 9.)
Let us introduce weights $y_{2}$ and $y_{4}$ given by the following

(5.3)
$y_{2}(\gamma_{1}, \gamma_{2})=w_{2}(\gamma_{2}, \gamma_{1})$ , $y_{4}(\gamma_{1}, \gamma_{2})=w_{4}(\gamma_{1}, \gamma_{2})$ , $\gamma_{1}$ , $\gamma_{2}\in Z_{N}$ .

Then at the double point $A^{k}$ the weight $y_{k}(\alpha_{i}, \beta_{j})$ with $k=2$ or 4 is
assigned.
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(1)

$\bigwedge_{\dot{\ovalbox{\tt\small REJECT}}}$.

$(2)<$ $\ldots.$ .

$\dot{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}$

Fig. 10. (1) Smoothing direction. (2) Transverse direction.

Under the gauge transformation 2 the weights $y_{2}$ and $y_{4}$ are transformed
into $\tilde{y}_{2}$ and $\tilde{y}_{4}$ defined by the following

(5.4) $\tilde{y}_{k}(\alpha, \beta)=y_{k}(\alpha, \beta+s)$ , $\alpha$ , $\beta\in Z_{N}$ ,

for $k=2$ and 4.
For the gauge transformation 2 we can show the next proposition.

Proposition 5.8. Let $\{w_{j} ; j=1, \ldots, 4\}$ be $a$ such four-weight
spin model that has functions $z_{1}$ and $z_{2}$ such that $w_{2}(\alpha, \beta)=z_{1}(\alpha-\beta)$

and $w_{4}(\alpha, \beta)=z_{2}(\alpha-\beta)$ . Assume also that $\tilde{w}_{j}$ is obtained from $w_{j}$ by
the gauge transformation 2. Then the link polynomial derived from the

transformed weights $\{\tilde{w}_{j} ; j=1,2,3,4\}$ coincides with that of the spin
model $\{w_{j} ; j=1,2,3,4\}$ .

Proof. Let us consider calculation of the partition function of the
four-weight spin model $\{\tilde{w}_{j} ; j=1,2,3,4\}$ for a special projection $P(L)$

of a link $L$ . We first recall Lemma 5.7. We denote by $S(\alpha_{i})(S(\beta_{j}))$

the positive (negative) regions of $P(L)$ and by $\alpha_{i}(\beta_{j})$ the spin variables
assigned on $S(\alpha_{i})(S(\beta_{j}))$ . Note that all the weights in the partition

function are given in the form $\tilde{y}_{k}(\alpha_{i}, \beta_{j})$ for $k=2$ or 4. Then we see that
the partition function of the four-weight spin model $\{\tilde{w}_{j} ; j=1,2,3,4\}$ is
reduced to that of the spin model $\{w_{j} ; j=1,2,3,4\}$ by replacing all the
spin variables $\beta_{j}$ on $S(\beta_{j})$ with $\beta_{j}-s$ . Here we have used the eq. (5.4)
and the fact that the summation of the partition function is invariant
under such a replacement that $\gamma\rightarrow\gamma-s(mod N)$ for any spin variable
$\gamma$ . Thus we have the proposition.

Let us consider the four-weight spin models constructed by Kac and
Wakimoto in Ref. [16] from the viewpoint of the gauge transformations.
Let $L=Z^{m}$ and $<,$ $>denote$ a symmetric bilinear form on L. We
set< $e_{i}$ , $e_{j}>=a_{ij}$ , where $e_{i}$ is the standard basis of $L$ , $a_{ij}\in Q$ and
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$a_{ii}=p/q$ , $gcd(p, q)=1$ with $pq$ is even. Let $M=\{\alpha\in L;<\alpha$ , $\beta>\in Z$ ,

for all $\alpha\in M$ }. We define the set $S$ by $S=L/M$ . We have $n=|S|$ .

Let us define $t_{\alpha}$ and $D$ by

(5.5)
$D=\sum_{\beta\in S}t_{\beta}$

, $t_{\alpha}=\exp(\pi i<\alpha, \alpha>)$ , $\alpha\in S$ .

Then the weights are given by [16]

$w_{1}(a, b)=At_{\xi+a-b}$ , $w_{2}(a, b)=Bt_{\eta+a-b}$ ,
(5.6)

$w_{3}(a, b)=A^{-1}t_{\xi+a-b}^{-1}$ , $w_{4}(a, b)=B^{-1}t_{\eta+a-b}^{-1}$ ,

where $AB=\sqrt{n}/(Dt_{\xi})$ .

By applying the Propositions 5.3 and 5.8 we can show that the vari-
ables $\xi$ and $\eta$ correspond to the parameters of the gauge transformations
1 and 2, respectively, and that the link invariant derived from the four-
weight spin model (5.6) does not depend on $\xi$ or $\eta$ , essentially. The
invariant may depend on the normalization factors of the weights. How-
ever, such dependence can be determined by the writhe or the numbers
of the positive and negative crossing points of the link diagram. Thus as
far as evaluation of link invariants is concerned, we may only consider
the case $\xi=\eta=0$ .
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Vertex Operator Algebras and Moonshine: A Survey

Chongying Dong and Geoffrey Mason

\S 1. Introduction

This survey is, in many regards, a reprise of the paper [Mai]. That
paper reviewed what was known at the time about the connections be-
tween finite groups and elliptic modular forms. Shortly after, Borcherds
presented the notion of a vertex (operator) algebra (VOA), and the work
of Frenkel-Lepowsky-Meurman showed that the Monster was the auto-
morphism group of a particular VOA–the Moonshine module. Although
the Conway-Norton conjectures were not proved till later, it became
clear that in principle, one can associate modular functions to the ele-
ments of a finite group, following the dictates of Moonshine, whenever
the group operates as automorphisms of a VOA. Indeed, the bulk of the
Conway-Norton conjectures, together with Norton’s generalization, can
be understood in the framework of the representation theory of so-called
holomorphic orbifold models. One sees that the theory applies to any
finite group, and only the genus zero condition marks the Moonshine
module as special.

In this survey we present the main ideas which led to the framework
in which one can understand Moonshine as a general and natural phe-
nomenon as opposed to an apparent miracle. Thus it is about VOAs,
their representations, and their automorphisms. There are no proofs–
indeed there are no lemmas or theorems either! Rather, we try and
explain the main ideas, tell what is known, what remains to be done.
Thus the reader will find 26 “problems” in the course of the paper. These
may be considered guides to what still needs to be proved in order to
make the theory more complete. A few of them are rather specialized,
but most are of a general nature and (it seems to us) quite diffiffifficultl

There is no pretense at presenting a general survey of algebraic con-
formal field theory–that would be a vast undertaking. Rather, we have
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included only those topics in VOA theory which impinge directly on the
explication of (

$‘ Moonshine$ . ” On the other hand, our notion of Moonshine
is broader than that of others. Thus we have included some topics of
a more cohomological and topological nature with the expectation (and
hope) that equivariant elliptic cohomology–whatever this turns out to
really mean–will eventually become closely identified with Moonshine.

We thank the referee for helpful comments.
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\S 2. Axioms

We discuss the axioms for a vertex operator algebra (VOA). A fuller
account may be found in [FLM], [FHL], [DL].

Let us begin with the definition of a VOA. This entails a $\mathbb{Z}$-graded
vector space $V$ over the complex numbers $\mathbb{C}$ :

(2.1)
$V=\prod_{n\in \mathbb{Z}}V_{n}$

such that $V_{n}=0$ for $n<<0$ and $dimV_{n}$ is finite for all $n$ . If $v\in V_{n}$ we
say that $v$ is homogeneous of (conformal) weight $n$ and write $wt(v)=n$ .

Roughly speaking, $V$ is endowed with a countable infinity of bilinear
products $u*_{n}v(u, v\in V, n\in \mathbb{Z})$ which are required to satisfy infinitely
many identities.

For fixed $u\in V$ we assemble the endomorphisms $u_{r\iota}\in EndV$ , de-
fined by $u_{n}v=u*_{n}v$ , into a generating function (or vertex operator)

(2.2)
$Y(u, z)=\sum_{n\in \mathbb{Z}}u_{r\iota}z^{-n-1}\in EndV[[z, z^{-1}]]$

which provides a linear map $Y:V\rightarrow EndV[[z, z^{-1}]]$ , $u\mapsto Y(u, z)$ .
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The other VOA axioms are as follows:
(i) For $u$ , $v\in V$ , there is $n=n(u, v)\in \mathbb{Z}$ such that $u_{m}v=0$ for

$m>n$ ,

This tells us that the sum $Y(u, z)v:=\sum_{m}u_{m}vz^{-m-1}$ is a Laurent
series, i.e., only finitely many non-zero negative powers occur.

(ii) Existence of vacuum: There is a distinguished element $1\in V$

which satisfies
(a) $Y(1, z)=id$ ,

(b) $Y(u, z)1=u+\sum_{n=2}^{\infty}u_{-n}1z^{n-1}$ .

Part (b) tells us that $u_{n}1=0$ for $n\geq 0$ and $u_{-1}1=u$ . In particular,

the map $u\mapsto Y(u, z)$ is an injection. One shows that in fact $1\in V_{0}$ .

(iii) Existence of conformal vector: There is a distinguished element
$\omega\in V$ with generating function $Y(\omega, z)=\sum_{n}L_{n}z^{-n-2}$ such that the
component operators $L_{n}$ generate a copy of the Virasoro algebra Vir
represented on $V$ with central charge $c$ . This means that there are
relations

(2.3) $[L_{m}, L_{7\iota}]=(m-n)L_{m+n}+\frac{m^{3}-m}{12}\delta_{m,-n}c$

for some constant $c$ . It turns out that $c$ is an important invariant asso-
ciated to $V$ . And inasmuch as $V$ is a module for Vir, the representation
theory of the Lie algebra Vir (cf. [KR]) will be valuable for VOA theory.
One has $\omega\in V_{2}$ .

(iv) $V_{n}$ is the $L_{0}$ -eigenspace of $V$ with eigenvalue $n$ . That is, if
$v\in V_{n}$ then $L_{0}v=nv$ .

(v) $\frac{d}{dz}Y(v, z)=Y(L_{-1}v, z)$ .

Note from (2.3) that the span of $L_{0}$ , $L_{-1}$ , $L_{1}$ is a Lie subalgebra of
Vir isomorphic to $sl(2)$ . The last two axioms suggest that $L_{0}$ and $L_{-1}$

are particularly important operators on $V$ .

(vi) Jacobi Identity: we have

$z_{0}^{-1}\delta(\frac{z_{1}-z_{2}}{z_{0}})Y(u, z_{1})Y(v, z_{2})$

(2.4) $-z_{0}^{-1}\delta(\frac{z_{2}-z_{1}}{-z_{0}})Y(v, z_{2})Y(u, z_{1})$

$=z_{2}^{-1}\delta(\frac{z_{1}-z_{0}}{z_{2}})Y(Y(u, z_{0})v,$ $z_{2})$ .

This is the VOA embodiment of commutativity and associativity.
With a suitable interpretation of the delta function $\delta()$ (cf. [FLM],
[FHL] $)$ , when applied to $w\in V$ , both the l.h.s. and r.h.s. of (2.4)
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are expressions of the form $\sum P_{ijk}z_{0}^{i}z_{1}^{j}z_{2}^{k}$ where $P_{ijk}$ is a fifinite sum of

vectors in $V$ (recall axiom (i)). In this way, (2.4) represents a threefold
infinity of identities which must be satisfied.

We observe that if $v\in V_{m}$ then

(2.5) $v_{n}$ : $V_{p}\rightarrow V_{p+m-n-1}$ .

In particular, there is a linear map $V\rightarrow End(V_{p})$ such that $v\mapsto v_{wt(v)-1}$

if $v$ is homogeneous.
There are alternate ways to view the Jacobi identity–the so-called

duality axioms. Not only are they conceptually easier to swallow, but
they are important in a number of situations. To set the stage, let
$V=\square V_{n}$ be a VOA, let $V_{n}^{*}$ be the dual space $Hom(V_{n}, \mathbb{C})$ , and set
$V’=\square V_{n}^{*}$ . Thus there is a canonical pairing $\langle, \rangle:V’\times V\rightarrow \mathbb{C}$ so that
$\langle V_{m}^{*}, V_{n}\rangle=0$ for $m\neq n$ .

Next, let $R$ be the subring of $\mathbb{C}(z_{1},z_{2})$ obtained by localizing $\mathbb{C}[z_{1},z_{2}]$

at the monoid generated by homogeneous polynomials of degree 1. For
each of the two orderings $(i_{1}, i_{2})$ of {1, 2} there is an injective ring map

(2.6) $\iota_{i_{1},i_{2}}$ : $R\rightarrow \mathbb{C}[[z_{1}, z_{1}^{-1}, z_{2}, z_{2}^{-1}]]$

by which $(az_{1}+bz_{2})^{-1}$ is expanded as a power series in non-negative
powers of $z_{i_{2}}$ . Then we have

(vii) Duality: let $u$ , $v$ , $w\in V$ , $w’\in V’$ . There is $f\in R$ of the form
$f=h(z_{1}, z_{2})/z_{1}^{r}z_{2}^{s}(z_{1}-z_{2})^{t}$ with $h(z_{1}, z_{2})\in \mathbb{C}[z_{1}, z_{2}]$ , $r$ , $s$ , $t\in \mathbb{Z}$ such
that

(a) Rationality: $\langle w’, Y(u, z_{1})Y(v, z_{2})w\rangle=\iota_{12}f(z_{1}, z_{2})$

(b) Commutativity: $\langle w’, Y(v, z_{1})Y(u, z_{2})w\rangle=\iota_{21}f(z_{1}, z_{2})$

(c) Associativity: $\langle w’, Y(Y(u, z_{0})v, z_{2})w\rangle=\iota_{20}f(z_{0}+z_{2}, z_{2})$ .

It transpires ([FLM], [FHL]) that the duality axioms are equivalent
to the Jacobi identity. In fact, there is an even simpler variant:

(viii) If $u$ , $v\in V$ there is $n=n(v, v)\geq 0$ such that

(2.7) $(z_{1}-z_{2})^{n}[Y(u, z_{1}), Y(v, z_{2})]=0$

(cf. $[DL$ , chptr.7]). In conjunction with the equality $[L_{-1}, Y(v, z)]=$

$Y(L_{-1}v, z)$ , this is also equivalent to (vi). This formulation is closely
related to the approach via local systems, which is frequently used in the
physics literature (cf. [G], for example). We discuss this further below.
To illustrate (2.7) we observe that the Virasoro axioms (2.3) imply that

(2.8) $(z_{1}-z_{2})^{4}[Y(\omega, z_{1}), Y(\omega, z_{2})]=0$ .

This concludes our discussion of the VOA axioms, but there is much
more to be said. In particular there are a number of more or less obvious
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variations that are important. For example, it is clear that we can
define VOAs over any field, or even more general rings of coefficients.
Moreover, one often wants to weaken the above axioms in various ways.
For example one may allow the $\mathbb{Z}$-grading on $V$ to be unbounded below,
$and/or$ allow the homogeneous spaces to be of infinite dimension. One
may also dispense with the Virasoro algebra and keep just the degree
operator $L_{0}$ and derivation $L_{-1}$ . This is essentially the original approach
of Borcherds in [Bol], where he studies so-called vertex algebras.

One can also add additional axioms. In the physics literature, for
example, it is often an implicit axiom that $V$ carries the structure of a
Hilbert space. In the approach of [BPZ] (see also [MS]), even assump-
tions concerning modular-invariance of characters (see Section 10) are
contemplated. We will always stick with our axiom system $(i)-(vi)$ .

A morphism of VOAs $V_{1}$ , $V_{2}$ is a linear map $f:V_{1}\rightarrow V_{2}$ which pre-
serves the vacuum, the conformal vector and each of the binary products
$*_{n}$ . The latter condition is equivalent to

(2.9) $fY_{1}(u, z)=Y_{2}(fu, z)f$ .

(Here and below, we frequently refer to a VOA via its underlying space,
say $V_{1}$ , rather than through the pair $(V_{1}, Y_{1})$ consisting of $V_{1}$ and its
$Y$-map, or even to $(V_{1}, Y_{1},1_{1}, \omega_{1})$ etc.)

An automorphism of the VOA $V$ is an invertible endomorphism of
$V$ . The set of these form a group Aut(V). Since Aut(V) leaves $\omega$

invariant, (2.9) shows that Aut(V) commutes with each component $L_{n}$

of $Y(\omega, z)$ . Thus Aut(V) commutes with the Virasoro algebra Vir in

their joint action on $V$ . This can have useful consequences (see [DLM],
for example).

Note in particular that since Aut (V) commutes with $L_{0}$ then each $V_{n}$

affords a representation of Aut(V), thanks to axiom (iv). It is through
this mechanism that group representation theory enters into the study
of VOAs.

\S 3. Examples of $VOA$

One of the difficulties of the subject is that examples are not easy
to describe. In our exposition we will generally only discuss how to
construct the Fock space, that is the underlying graded space $V(2.1)$ ,

and eschew a description of the vertex operators themselves.
(i) Local systems: Let $M$ be a $\mathbb{C}$-vector space and let $F(M)$ be the

subspace of End $M[[z, z^{-1}]]$ consisting of power series $u(z)=\sum_{m}u_{m}$

$z^{-m-1}$ which satisfy (i) of Section 2. Define a relation on $F(M)$ as fol-
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lows: $u(z)$ and $v(z)$ are related if (2.7) holds, that is $(z_{1}-z_{2})^{n}[u(z_{1}),v(z_{2})]$

$=0$ for some $n\geq 0$ .

This relation is symmetric, but not necessarily reflexive. One usually
says that $u(z)$ and $v(z)$ are mutually local if they are related as above.
We may call $u(z)$ a local vertex operator if it is mutually local with
itself. From Section 2 we know that if $V$ is a VOA then $V$ consists of a
set of mutually local power series $u(z)=Y(u, z)$ in which $M$ is $V$ itself.
The idea is now that VOAs and local systems are essentially equivalent.
This is the point-of-view taken in Goddard’s work [G] and in his joint
work with Dolan and Montague ([DGMI], [DGM2], for example).

There is an axiomatic treatment due to Li ([Lil]). If we start with
a Virasoro module $M$ such that $L(z)=\sum_{n}L_{n}z^{-n-2}$ satisfies (i) of
Section 2 (we call $M$ restricted if this holds), then $L(z)$ is a local vertex
operator (2.8). We define a local system on $M$ to be a maximal set of
mutually local operators $u(z)$ on $M$ which contain $L(z)$ . These exist by
dint of Zorn’s Lemma. Li shows that a local system in this sense is a
VA (vertex algebra); that is, the axioms for a VOA are satisfied except
that the homogeneous spaces may have infinite dimension.

If $S$ is any set of mutually local operators which includes $L(z)$ we
may define $\langle S\rangle$ to be the smallest VOA containing $S$ .

This is a rather abstract way to define VOAs, but it has the advan-
tage that existence is not in doubt. We refer to the papers of Li and
Goddard et al. for application of these ideas.

(ii) Virasoro Modules: For reference here we suggest [KR]. It is
natural, given the requirement that a VOA admit an action of Vir, that
various Vir-modules carry the structure of a VOA. This is indeed the
case.

To describe the Fock space, recall $(loc. cit.)$ that for a pair of com-
plex numbers $(c, h)$ there is a Verma module $M(c, h)$ which is the uni-
versal highest weight module for the Lie algebra Vir of central charge
$c$ , and such that $L_{0}v=hv$ for maximal vector $0\neq v\in M(c, h)$ . More-
over $M(c, h)$ has a unique maximal submodule with quotient denoted by
$L(c, h)$ . Thus $L(c, h)$ is the unique simple Vir-module of highest weight
$(c, h)$ .

To construct a VOA from $M(c, h)$ in which $v$ is the vacuum we must
take $h=0$ (by axiom (iv) of Section 2) and we need $L_{-1}v\equiv 0$ (by axioms
(ii) (a) and (v) $)$ . Therefore, let $M_{c}$ be the quotient of $M(c, 0)$ by the Vir-
submodule generated by $L_{-1}v$ . Then indeed $M_{c}$ has the structure of a
VOA, as shown by Frenkel-Zhu [FZ]. There is also a proof due to Li
[Lil] using the technique of local systems.

$L(c, 0)$ also gets the structure of VOA, being a VOA quotient of $M_{c}$ .

These are the physicist’s minimal models [BPZ].
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(iii) $Kac$ -Moody modules: Let $\tilde{I}$ be a finite-dimensional, complex,

simple Lie algebra with $\hat{\tilde{I}}=\tilde{I}\otimes \mathbb{C}[t, t^{-1}]\oplus \mathbb{C}c$ the corresponding affine
Lie algebra [K]. There is a theory parallel to (ii) in which Vir is replaced

by $\hat{\tilde{I}}$ , and again there are mathematical descriptions due to Frenkel-Zhu
[FZ] and Li [Lil].

Briefly, let $L(\lambda)$ be the simple $\tilde{I}$-module with highest weight $\lambda$ and

let* $M(c, \lambda)=\mathcal{U}(\hat{\tilde{y}})\otimes_{B}L(\lambda)$ where $B=\tilde{I}\otimes \mathbb{C}[t]\oplus \mathbb{C}c$ , $c$ acts on $L(\lambda)$

as multiplication by $c$ (the level) and $g\otimes t^{n}$ acts as 0 if $n>0$ and as $g$

if $n=0(g\in\tilde{I})$ . Then $M(c, 0)$ has the structure of VOA if $c+g_{0}\neq 0$ ,

where $g_{0}$ is the dual Coxeter number–this condition is necessary for the
existence of a conformal vector. Again as in Example (ii), $M(c, \lambda)$ has

a unique maximal $\hat{\tilde{I}}$-submodule with quotient $L(c, \lambda)$ , and $L(c, 0)$ is a
quotient VOA of $M(c, 0)$ as long as $c+g_{0}\neq 0$ and $c\neq 0$ .

When $c$ is a positive integer, $L(c, 0)$ is a (highest weight) integrable
$\tilde{I}\wedge$-module and the theory in this case is essentially the physicist’s WZW-
model.

(iv) Lattice Theories: Let $L$ be a positive-defifinite even lattice; that

is, $L\cong \mathbb{Z}^{d}$ is a free abelian group equipped with an integral, positive-
definite, symmetric, bilinear form $(, )$ : $L\times L\rightarrow \mathbb{Z}$ such that $(x, x)\in 2\mathbb{Z}$

for $x\in L$ . Let $H=\mathbb{C}\otimes_{\mathbb{Z}}L$ and set

(3.1) $V_{L}=S(H_{1}\oplus H_{2}\oplus\cdots)\otimes \mathbb{C}[L]$ .

Here, each $H_{i}$ is linearly isomorphic to $H$ , $S()$ denotes symmetric alge-
bra, and $\mathbb{C}[L]$ is the group algebra of $L$ with basis $e^{\alpha}$ , $\alpha\in L$ . Then we
can give $V_{L}$ the structure of VOA in which the central charge $c$ is equal
to $d/24$ . This result was announced in [Bol], with a complete discussion
provided in [FLM].

If $L$ is the root lattice of a simple Lie algebra (of type ADE) then
we recover the level 1 WZW theory of (iii) above. The advantage of the

present approach is that it is quite explicit and computable, and because
of this the lattice theories are of the utmost importance.

(v) Spinor Constructions: The theory of (iv) is often called a bosonic
theory, being based on symmetric algebras. Spinor constructions, on the

other hand, are called fermionic theories and are based on exterior and
Clifford algebras. When available, spinor constructions are very useful
and often very amenable to calculation. We give just a sample of the
idea, based on [FFR] and [DM1].

Let $A\cong \mathbb{C}^{2\ell}$ be a complex linear space equipped with a non-
degenerate, symmetric, bilinear form $( , )$ and with a polarization

$*\mathcal{U}$ denotes universal enveloping algebra.
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$A=A^{+}\oplus A^{-}$ into maximal isotropic subspaces. Let $ A(\mathbb{Z})=A^{+}\oplus$

$ A_{1}\oplus A_{2}\oplus\cdots$ and $ A(\mathbb{Z}+1/2)=A_{1/2}\oplus A_{3/2}\oplus\cdots$ where each $A_{i}$ ,

$A_{i/2}$ is linearly isomorphic to A. (As in (3.1), the indexing will be

useful for later discussions.) Then one can endow both $\Lambda^{even}(A(\mathbb{Z}+^{1}/2))$

and $\Lambda^{even}(A(\mathbb{Z}+1/2))\oplus\Lambda^{even}(A(\mathbb{Z}))$ with the structure of VOA in a
quite canonical way which makes use of the fact that both $\Lambda(A(\mathbb{Z}))$ and
$\Lambda(A(\mathbb{Z}+^{1}/2))$ may be viewed as modules for certain infinite-dimensional
Clifford algebras. The boson-fermion correspondence ([F], [DM1]) says
that in fact $\Lambda^{even}(A(\mathbb{Z}+1/2))$ is VOA-isomorphic to the level 1 WZW
model of type $D_{\ell}$ (alternatively, to $V_{L}$ in which $L$ is the $D_{\ell}$-root lat-
tice). Similarly, $\Lambda^{even}(A(\mathbb{Z}+^{1}/2))\oplus\Lambda^{even}(A(\mathbb{Z}))$ is VOA-isomorphic to
$V_{L’}$ where $L’$ is the spin lattice of rank $\ell$ .

These constructions are also important with regard to the so-called
Witten-genus. See [Ta].

(vi) Moonshine Module: Perhaps the most famous VOA, its exis-
tence was announced by Borcherds [Bol] and established in [FLM]. It
is somewhat harder to construct than previous examples, and we will
return to this point later. It is usually denoted $V^{\mathfrak{h}}$ , and of course we
have Aut $(V^{\mathfrak{h}})$ equal to the Fischer-Griess Monster group M. $ V\#$ has
central charge 24.

(vii) Tensor Products: Given VOAs $V_{1}$ , $\ldots$ , $V_{n}$ , the tensor product
$V_{1}\otimes\cdots\otimes V_{n}$ can be given the structure of a VOA in a canonical way.
See [FHL] for details. We just observe here that the central charge of
the tensor product is the sum of the central charges of the $V_{i}$ .

(viii) For a different sort of example we go back to the Moonshine

module $V^{\mathfrak{h}}$ and note that its grading (2.1) is such that $V_{0}^{\mathfrak{h}}=0$ for $n<0$

or $n=1$ , while $V_{0}^{\mathfrak{h}}=\mathbb{C}1$ is 1-dimensional and $V_{2}^{\mathfrak{h}}$ is of dimension 196,884

(and contains the conformal vector $\omega$ ). $V_{2}^{\mathfrak{h}}$ is often denoted by $B$ , and
called the Griess algebra after its originator ([Gr]). $B$ is a commutative,
non-associative algebra with identity $ 1/2\omega$ , the product being given by
$u\circ v=u_{1}v$ for $u_{1}$ , $v\in B$ (cf. (2.5)).

There are idempotents $e$ in $B$ where the corresponding vertex op-
erator $Y(e, z)=\sum_{n}K_{n}z^{-n-2}$ is such that the components $K_{n}$ span
a Virasoro algebra of central charge 1/2, namely $L(^{1}/2,0)$ (see Example
(ii) $)$ . In fact, one can find 48 linearly independent $e$ ’s which span a 48-
dimensional associative subalgebra of $B$ and such that the correspond-
ing vertex operators have components which commute. They generate
a vertex operator subalgebra $L$ of $ V\#$ isomorphic to $L(^{1}/2,0)^{\otimes 48}$ (and of
central charge 24). See [DMZ], [MN], [Mi] for more information. Fre-

quently one can answer questions about $V^{\mathfrak{h}}$ by studying $L$ . For examples
of this technique see $[DLiM3]$ , [Hu].
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Note that the idempotent $e$ is associated with a certain involution
of type $2A$ in the Monster $MI$ ([C], [MN], [Mi]). Similarly, there are
idempotents $f$ in $B$ associated with elements of type $3A$ and such that
the components of $Y(f, z)$ span a copy of $L(^{4}/5,0)$ .

Problem 1. Is there a theory of $f$ ’s analogous to that for $e’ s^{p}$. In
particular, can one fifind 30 $f$ ’s spanninga 30-dimensional associative
subalgebra of $B$ , witha corresponding sub $VOA$ of $ V\#$ isomorphic to
$L(^{4}/5,0)^{\otimes 30p}$.

\S 4. Representations of $VOA$s

To a great extent, the study of VOAs is the study of their repre-
sentations. So in this regard, VOA theory is similar to more classical
algebraic systems such as groups, associative algebras and Lie algebras.

We let $V$ be a VOA, and adopt the notation of Section 2. Roughly
speaking, a module for $V$ is a $\mathbb{C}$-linear space $M$ such that the operators
$v_{n}(v\in V, n\in \mathbb{Z})$ operate on $M$ in such a way that the relations among
the $v_{n}$ implicit in the Jacobi identity are preserved. More precisely, in

contrast to (2.1) we require $M$ to possess a $\mathbb{C}$-grading

(4.1) $M$
$=\prod_{x\in \mathbb{C}}M_{x}$

such that for any $z\in \mathbb{C}$ we have $M_{z+n}=0$ for integral $n<<0$ , and
$dimM_{x}<\infty$ for each $x$ .

Note that this extends the definition of [FLM], say, who require that
the grading (4.1) be rational. Under suitable circumstance one expects
that in fact $V$-modules are rationally graded, but it seem better not to

assume this at the outset, but rather try to prove it (cf. Problem 5).

Furthermore, there is a linear map $Y_{M}$ : $ V\rightarrow$ End $M[[z, z^{-1}]]$ , $Y_{M}$ : $ v\mapsto$

$Y_{M}(v, z)=\sum_{n\in \mathbb{Z}}v_{n}z^{-n-1}$ . Once again, various axioms are imposed

analogous to axioms $(i)-(vi)$ of Section 2. The analogues of (i), (ii) are
still required, though there is no analogue of the vacuum vector. The
conformal vector $\omega$ is such that the components of $Y_{M}(\omega, z)$ generate a
representation of the Virasoro algebra (2.3) on $M$ with the same central
charge $c$ . Again, $M_{x}$ is required to be the $L_{0}$-eigenspace with eigenvalue
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$x$ , and (v) still holds. The analogue of Jacobi now reads

$z_{0}^{-1}\delta(\frac{z_{1}-z_{2}}{z_{0}})Y_{M}(u, z_{1})Y_{M}(v, z_{2})$

(4.2) $-z_{0}^{-1}\delta(\frac{z_{2}-z_{1}}{-z_{0}})Y_{M}(v, z_{2})Y_{M}(u, z_{1})$

$=z_{2}^{-1}\delta(\frac{z_{1}-z_{0}}{z_{2}})Y_{M}(Y(u, z_{0})v,$ $z_{2})$ .

Now suppose that $g\in Aut(V)$ has finite order $N$ . There is the notion of
a $g$-twisted $V$-module, or $g$-twisted sector, which, as the name suggests,
is some sort of “twisted” module for $V$ . But it would be incorrect to
compare it to the notion of twisted module in group representation the-

ory; the correct analogy is with representations of twisted Kac-Moody
algebras [K]. The details are as follows: $M$ is a $g$-twisted $V$ module if
$M$ $=\square _{n\in \mathbb{C}}M_{n}$ is a $\mathbb{C}$-grade $\mathbb{C}$-linear space with the usual conditions on

the grading. We also have a linear map $Y_{g}$ : $V\rightarrow EndM[[z^{1/N}, z^{-1/N}]]$ ,

$v\mapsto Y_{g}(v, z)$ satisfying the following: if $v\in V$ is such that $gv=e^{2\pi ij/N}v$

then

(4.3)
$Y_{g}(v, z)=\sum_{n\in j/N+\mathbb{Z}}v_{n}z^{-r\iota-1}$

,

and

$z_{0}^{-1}\delta(\frac{z_{1}-z_{2}}{z_{0}})Y_{g}(v, z_{1})Y_{g}(w, z_{2})$

(4.4) $-z_{0}^{-1}\delta(\frac{z_{2}-z_{1}}{-z_{0}})Y_{g}(w, z_{2})Y_{g}(v, z_{1})$

$=z_{2}^{-1}(\frac{z_{1}-z_{0}}{z_{2}})-j/N\delta(\frac{z_{1}-z_{0}}{z_{2}})Y_{g}(Y(v, z_{0})w,$ $z_{2})$ .

Note that if $g=1$ , a $g$-twisted $V$-module is precisely a $V$ module in the
earlier sense. One can define twisted sectors even for automorphisms of
infinite order, but we will not be concerned with them in this paper.

If $(M, Y_{g})$ , $(M’, Y_{g}’)$ are two $g$-twisted $V$-modules, a map $f:(M, Y_{g})$

$\rightarrow(M’, Y_{g}’)$ is a linear map $f:M$ $\rightarrow M’$ which intertwines the $Y$-maps,

i.e., $Y_{g}’(v, z)f=fY_{g}(v, z)$ , $v\in V$ . It is then apparent that there is a
category g-V-Mod of $g$-twisted $V$-modules with objects being $g$-twisted
$V$-modules and with morphisms as above.

A ( $g$-twisted) submodule of the $g$-twisted $V$-module $M$ is, rather
obviously, a linear subspace $N\subseteq M$ such that for each $v\in V$ and
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$Y_{g}(v, x)=\sum v_{n}z^{-n-1}$ , each $v_{n}$ leaves $N$ invariant. There are then the

usual notions of simple module, semi-simple ($=completely$ reducible)
module, indecomposable module, etc. As in Lie theory, it seems that the
issue of complete reducibility is quite crucial. But it is fair to say that
it has not been studied much in the present context. So we suggest

Problem 2. Investigate the notion of complete reducibility in the
category g-V-Mod.

It turns out that the notion of weak ( $g$-twisted) $V$-module is rel-
evant (mainly because of the theory of Zhu algebras–see Section 6).
We obtain a definition of a weak ( $g$-twisted) $V$-module if we allow the

homogeneous subspaces $M_{x}((4.1))$ to be infifinite-dimensional, but oth-
erwise retain the previous definition. There is a corresponding category
W-g-V-Mod of weak $g$-twisted $V$-modules.

We will be mainly concerned with certain classes of VOAs for which
the category $V$-Mod (plain $V$-modules: we habitually drop the “

$g$

” in
case $g=1$ ) satisfies certain finiteness conditions. We call $V$ rational in

case $V$ satisfies the following conditions:

(4.5)

(a) $V$ has only a finite number of inequivalent simple modules.

(b) Every $V$-module is completely reducible.

(c) Every weak simple $V$ module is an (ordinary) $V$-module.

Similarly, $V$ is called $g$-rational in case $V$ satisfies $(a)-(c)$ of (4.5) with
“

$g$-twisted modules” in place of “modules.”
It seems likely that $(a)-(c)$ are not independent conditions, and an

affirmative solution of the next problem would be very powerful.

Problem 3. Does (4.5)(a) imply the other two conditions $.p$ Same
problem for $g$ -twisted modules.

We call $V$ holomorphic in case it satisfies the following conditions:

(4.6)

(a) $V$ has a unique simple $V$-module, namely itself.

(b) Every $V$-module is complete reducible.

To clarify the meaning of (4.6)(a), it is clear that any VOA $V$ is itself
a $V$-module, which we will call the adjoint module for $V$ . To say that
the adjoint module is simple is to say that $V$ is a simple $VOA$ , that is,
it has no non-trivial ideals.
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The group Aut(V) induces equivalences among the various cate-
gories (W-)g-V-Mod, $g\in Aut(V)$ . Namely, suppose that $(M, Y_{M})$ is
an object in (W-)g-V-Mod and that $h\in Aut(V)$ . Then $h$ induces a
categorical equivalence $\epsilon(h)=\in_{g}(h)$ :

(4.7) g-V-Mod $\rightarrow\in(h)h^{-1}gh- V$-Mod

as follows: the image of $(M, Y_{M})$ is the pair $(M, Y_{M}\circ h)$ where by defi-
nition $Y_{M}\circ h(v, z)=Y_{M}(hv, z)$ , $v\in V$ ; and $\in(h)f=f$ for a morphism
$f$ . This assertion follows from the definitions: see [DM2] for more infor-
mation.

For a group $G$ and $g\in G$ we define the centralizer of $g$ in $G$ via
$C_{G}(g)=\{x\in G|gx=xg\}$ . If we set $C(g)=C_{Aut(V)}(g)$ for $ g\in$

Aut(V) then it is clear from (4.7) that $C(g)$ induces automorphisms of
the category g-F-Mod, and in particular Aut(V) acts on V-mod.

For $ g\in$ Aut $V$ of finite order, let $V- Mod^{g}$ denote the full sub-
category of $g$-invariants of $V$-Mod, so that objects of $V- Mod^{g}$ are V-
modules $(M, Y_{M})$ satisfying $\epsilon(g)(M, Y_{M})\cong(M, Y_{M})$ . We would like to
believe that the number of (isomorphism classes of) simple $g$-invariant
$V$-modules is equal to the number of (isomorphism classes of) simple
$g$-twisted $V$-modules–at least under some finiteness assumptions. We
state a sharp form of this conjecture:

Problem 4. Let $g\in Aut(V)$ have fifinite order, and assume that
$V$ has only $a$ fifinite number of isomorphism classes of simple modules.
Show that there is a $C(g)$ -equivariant categorical equivalence

(4.8) $ V- Mod^{g}\rightarrow\cong$ g-V-Mod.

This conjecture contains a lot of information (assuming it is true!),
and we regard it as one of the basic problems concerning twisted sectors.
In particular, if (4.8) holds then being $g$-equivariant, we may expect that
$\in_{g}(g)$ leaves invariant (up to isomorphism) each object of g-V-Mod. It
is useful to observe that this is indeed the case for simple $g$-twisted V-
modules $(M, Y_{M})$ . It follows readily from the definition that such $M$

have a grading of the form

(4.9)
$M=\prod_{n=0}M_{c+\frac{n}{N}}$

.

Here, $N$ is the order $o(g)$ of $g$ , $M_{c}\neq 0$ , and $c$ is some $constant.*Then$

$*Not$ to be confused with central charge.
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by defining $\phi(g):M$ $\rightarrow M$ via

$\phi(g)|M_{c+\frac{n}{N}}=e^{-2\pi in/N}$

we find that $\phi(g)$ induces an isomorphism $\phi(g):(M, Y_{M})\mapsto\cong(M, Y_{M}og)$

in g-V-Mod.

We note here that the constant $c$ of (4.9), which we call the top
weight (of $M$ ) is an important invariant. So too is the space $M_{c}$ itself–
the top level of M–and its dimension.

Problem 5. Suppose that $V$ has only fifinitely many simple mod-
ules. Prove that the top weights of all simple (twisted) $V$ -modules are
rational.

We refer to [AM] for further information on this subject.

To complete this section we introduce the notion of extended au-
tomorphisms of $g$-twisted $V$-modules. To keep the exposition simple
we assume that $(V, Y)$ is a simple VOA and that $(M, Y_{M})$ is a simple
$g$-twisted $V$-module.

Then an extended automorphism of $M$ is a pair $(x, \alpha(x))$ where $x$ ,
$\alpha(x)$ are invertible linear maps of $M$ , $V$ respectively, and which satisfy

(4.11) $Y_{M}(\alpha(x)v, k)=xY_{M}(v, z)x^{-1}$

for $v\in V$ . We also require that $\alpha(x)\omega=\omega$ and that $\alpha(x)$ commutes
with $g$ .

One can show that $x\mapsto\alpha(x)$ is a group homomorphism into the
group of $C(g)$ . The kernel is the group $\mathbb{C}^{*}$ of invertible scalar operators
on $M$ . Let $Au+^{e}(\lrcorner M)$ denote the group of extended automorphisms,
where $(x, \alpha(x))(y, \alpha(y))=(xy, \alpha(xy))$ . Generally there is no canonical
complement to $\mathbb{C}^{*}$ in Aute(M)–indeed there may be no complement at
all. This is why we refer to (‘extended automorphism.”

As an example, with $\phi(g)$ as in (4.10) the assertion that $\phi(g)$ induces
an isomorphism from $(M, Y_{M})$ to $(M, Y_{M}\circ g)$ can alternately be viewed
as saying that $(\phi(g), g)$ is an extended automorphism of $M$ .

Similarly, if we set $C(M)=\{h\in C(g)|\in(h)(M, Y_{M})\cong(M, Y_{M})\}$ (cf.
(4.7) $)$ , then $C(M)$ is a group (which contains $g$ ). And if $\phi(h):M$ $\rightarrow M$

is the morphism which realizes the equivalence of $(M, Y_{M})$ and its image
$under\in(h)$ , then $(\phi(h), h)\in Aute(M)$ .

Thus Aute(M) fits into a short exact sequence $1\rightarrow \mathbb{C}^{*}\rightarrow Aut^{e}(M)$

$\rightarrow C(M)\rightarrow 1$ and hence defines an element of $C^{2}(C(M), \mathbb{C}^{*})$ .
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\S 5. Examples of $V$-modules

We give examples of (twisted) $V$-modules which by-and-large track
the examples of VOAs given in Section 3. Before proceeding, however,

we want to emphasize that there are some serious gaps in our under-
standing of (twisted) modules insofar as existence is concerned. Here is
a sample problem:

Problem 6. Let $V$ be a $VOA$ with $g\in Aut(V)$ of fifinite order.
Prove that $V$ has $a$ (non-zero) weak $g$ -twisted $V$ -module. Better, prove
that $V$ has $a$ (non-zero) $g$ -twisted $V$ -module.

Now we turn to some examples.

(i) Let the notation be as in Example (i) of Section 3. Then the
vector space $M$ is a module for the VOA $\langle S\rangle$ generated by a set of
mutually local operators $S$ .

(ii) Let the notation be as in Example (ii) of Section 3. Then both
$M(c, h)$ and $L(c, h)$ are modules for the VOA $L(c, 0)$ . It is in fact known
when $L(c, 0)$ is rational in the sense of (4.5), [W], [DMZ]. Namely, $L(c, 0)$

is rational precisely when $c$ has the form $c=1-6(p-q)^{2}/pq$ for a pair
of coprime integers $p$ , $q$ each at least 2. In this case, the simple modules
for $L(c, 0)$ are the Fock spaces $L(c, h)$ for $h=(np-mq)^{2}-(p-q)^{2}/4pq$ ,

$0<m<p$ , $0<n<q$ .

Again this result is obtained by studying the Zhu algebra associated
to $L(c, 0)[W]$ . For more information on these remarkable families see,
for example, [KR], [GKO], [FQS].

(iii) Let the notation be as in Example (iii) of Section 3. We limit
our discussion to the $WZW$-models $L(c, 0)$ , so that $c$ here is a positive

integer. Then $L(c, 0)$ is indeed rational, and the simple modules are
those $L(c, \lambda)$ for which $\lambda$ is an integrable weight satisfying $\langle\lambda, \mu\rangle\leq c$ for
$\mu$ the root of maximal height. For a proof, see [FZ] or [Lil].

(iv) Let $V_{L}$ be the Fock space of the VOA associated to an even lat-

tice $L$ as in Example (iv) of Section 3. The rationality of $V_{L}$ is established
by Dong [Dol], where it is shown that the simple modules are precisely

the Fock spaces $V_{L+\lambda}$ for $\lambda$ in the dual lattice $L^{0}=Hom_{\mathbb{Z}}(L, \mathbb{Z})$ . Here
$V_{L+\lambda}$ is defined as in (3.1), except that the group algebra $\mathbb{C}[L]$ is now

replaced by the $‘(group$ algebra” of the coset: $\mathbb{C}[L+\lambda]=\square _{\alpha\in L}\mathbb{C}e^{\alpha+\lambda}$ .

In particular, $V_{L}$ is holomorphic (4.6) if, and only if, $L$ is a self-dual
lattice.

There is a canonical action of the torus $\mathbb{R}^{n}/L^{0}$ as automorphisms of
$V_{L}$ . (Here, $n$ is the rank of $L.$ ) Namely if, in the notation of (3.1), we
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take $u\in S(H_{1}\oplus H_{2}\oplus\cdots)$ and $\alpha\in L$ then set

(5.1) $g(\iota/):u\otimes e^{\alpha}\mapsto e^{2\pi i(l/,\alpha)}u\otimes e^{\alpha}$

for $iJ$ $\in \mathbb{R}^{n}=\mathbb{R}\otimes_{\mathbb{Z}}L$ . Now $g(I/)$ has finite order when $iJ$ lies in $Q^{n}=$

$Q\otimes_{\mathbb{Z}}L$ . Then it is shown in [DM1] that the simple $g(\nu)$ -twisted $V_{L^{-}}$

modules arise precisely from the Fock species $V_{L+\lambda-\iota/}$ , where $\lambda$ runs
over coset representatives $L^{0}/L$ . So for such automorphisms of $V_{L}$ , (4.8)
is indeed an equivalence of categories.

We give one more example along these lines: let $\theta:L\rightarrow L$ be the
automorphism which acts as -1. Then $\theta$ naturally induces an auto-
morphism of $V_{L}$ , which we also denote by $\theta$ . There is then a $\theta$-twisted
$V_{L}$ module $V_{L,\theta}$ with Fock space defined via

(5.2) $V_{L,\theta}=S(H_{1/2}\oplus H_{3/2}\oplus\cdots)\otimes T$ .

Here, each $H_{i/2}$ is linearly isomorphic to $H=\mathbb{C}\otimes_{\mathbb{Z}}L$ . The space $T$ is

finite of dimension $2^{n/2}$ ( $n$ is necessarily even since $L$ is an even lattice).
It is best regarded as an irreducible module for a so-called extra-special
2-group $Q$ (see [Gor, Chapter 5]) of order $2^{n+1}$ which is constructed

from $L$ as follows. The map $x\mapsto(-1)^{(x,x)/2}$ defines a quadratic form
$q:L\rightarrow\pm 1$ with associated bilinear form $\beta:L\times L\rightarrow\pm 1$ . We may
regard $\beta$ as a 2-cocycle in the group $C^{2}(L, \pm 1)$ and as such it defines a

2-fold central extension $\hat{L}$ of $L$ . Then $T$ is a simple module for $\hat{L}$ where

the kernel is isomorphic to $2L$ (which splits over the center of $\hat{L}$ ), and
$Q=\hat{L}/2L$ .

This example is discussed at length in [FLM]. Generalizations may
be found in various places, e.g., [Do3], [Le], [DGM2]. Historically, this
has been an important example, both for understanding the Moonshine
module and for coming to grips with the “philosophy” of twisted sectors.

(v) Parallel to the spinor construction of $V_{L}$ for $L$ the $D_{\ell}$ root lat-
tice, which was discussed in Example (v) of Section 3, existence and
uniqueness results for twisted sectors corresponding to certain kinds of
automorphisms are given in [DM1]. The Fock spaces can again be de-

scribed as Clifford modules for “twisted” Clifford algebras of a certain
kind. The only point we want to mention here is that, in some senses,

the only difference between the twisted and untwisted sectors (this latter
being the VOA itself) is in the grading of the Fock spaces.

(vi) We can now say something more about the Moonshine module
$V^{\mathfrak{h}}$ (Example (vi), Section 3). Let $\Lambda$ be the Leech lattice ([CS]) and let
$\theta$ be as in the previous example. Then $\theta$ is an automorphism of $V_{\Lambda}$ ,

whence the subspace $V_{\Lambda}^{\theta}$ of $\theta$-invariants is itself a VOA. (More on this
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sort of thing laterl

trivially on $T$ . If we let $V_{\Lambda,\theta}^{\pm}$ be the $\pm 1$ eigenspace of $\theta$ on this space,

then the Fock space of the Moonshine module is

(5.3) $V\#=V_{\Lambda}^{\theta}\oplus V_{\Lambda,\theta}^{-}$ .

Dong has established [Do2] the important fact that $V^{\mathfrak{h}}$ is a holomorphic

VOA. Moreover every simple weak $ V\#$ -module is itself isomorphic to
$V^{\mathfrak{h}}$ : This follows from the existence of the VOA subalgebra $L(^{1}/2,0)^{\otimes 48}$

discussed in Example (viii) of Section 3 together with Example (ii) of
the present section and the theory of tensor products.

Less is known about twisted modules for $ V\#$ . Of course Aut $(V^{\mathfrak{y}})\cong$

M[ (the Monster), and as a special case of Problem 4 one has

Problem 7. For each $g\in MI$ , prove that there is a unique simple
$g$ twisted $V^{\mathfrak{y}}-$module. Prove also that any simple weak $g$ twisted V#-
module necessarily has fifinite-dimensional homogeneous subspaces.

An affirmative answer to Problem 7 is provided in $[DLiM3]$ in case $g$

is one of the elements $2A$ , $2B$ , $4A$ (This is standard notation for certain
elements in $\beta M$ of orders, 2, 2, 4, respectively. See [ATLAS].) Again the

theory of $L(^{1}/2,0)^{\otimes 48}$ -modules is the crucial ingredient. Huang also solves
Problem 7 for $g$ of type $2B$ in [Hu], where he does much more, including
a fresh approach to the VOA structure on the Fock space (5.3). The
work of Tuite [Tul], [Tu2] on generalized Moonshine implicitly assumes
the uniqueness of twisted sectors for $ V\#$ .

The extended automorphism groups of the twisted sectors of $V\#(2A)$

and $V\#(2B)$ are known $[DLiM3]$ . We have $Aut^{e}(V\#(2A))\cong \mathbb{C}^{*}\times 2Baby$ .

Here $2Baby$ is the non-split extension of the Baby Monster ([ATLAS])
by $\mathbb{Z}_{2}$ , and is the centralizer of $2A$ in the Monster $\beta M$ . The group
$Aut^{e}(V^{\mathfrak{y}}(2B))$ is a central product $\mathbb{C}^{*}\cdot\hat{C}$ , where $\hat{C}$ is the non-split ex-
tension of the (non-simple) Conway group.O ($=Automorphism$ group
of the Leech lattice) by the extra-special group $2^{1+24}$ . The subgroup of
$\mathbb{C}^{*}$ of order 2 is identified in $\mathbb{C}^{*}\cdot\hat{C}$ with a certain central subgroup of $\hat{C}$ .

Note in this case that the centralizer of $2B$ in $\beta M$ is not isomorphic to a

subgroup of $\mathbb{C}^{*}\cdot\hat{C}$ , i.e., the map $\alpha$ which intervenes in the definition of
extended automorphism (4.11) is not an embedding in this case.

(vii) Given VOAs $V_{i}$ and $V_{i}$ modules $M_{i}$ , $1\leq i\leq n$ , the tensor
product $M_{1}\otimes\cdots\otimes M_{n}$ is a module for the VOA $V_{1}\otimes\cdots\otimes V_{n}$ in a
canonical way. See [FHL] for details.

(viii) Contragredient Module. Let $M=\square M_{n}$ be a $g$ twisted V-
module, with corresponding $Y$ map $Y_{M}$ . Let $M_{n}^{*}=Hom_{\mathbb{C}}(M_{n}, \mathbb{C})$

$\backslash $
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be the dual of $M_{n}$ and set $M’=\square M_{n}^{*}$ , the restricted dual of $M$ .

Then there is a $g^{-1}$ -twisted $V$-module $(M’, Y_{M’})$ where $Y_{M’}$ : $ V\rightarrow$

(End $M’$ ) $[[z^{1/N}, z^{-1/N}]]$ is defined by the condition

(5.4) $\langle Y_{M}’(v, z)m’, m\rangle=\langle m’, Y_{M}(e^{zL_{1}}(-z^{-2})^{L_{O}}v, z^{-1})m\rangle$ .

Here $\langle, \rangle:M’\times M\rightarrow \mathbb{C}$ is the canonical pairing and $m’$ , $m$ are arbitrary
elements in $M’$ , $M$ respectively. The case $g=1$ is discussed in [FHL],
following the original remark of Borcherds [Bol].

Note that the assignment $(M, Y_{M})\rightarrow(M’, Y_{M’})$ defines a con-
travariant equivalence

(5.5) g-V-Mod $\rightarrow g^{-1}- V\cong$-Mod.

\S 6. Zhu algebras

One approach to establishing equivalences such as (4.8) is this: de-
fine associative algebras whose module categories are equivalent to cate-
gories of $V$-modules (of various kinds). Then prove that the associative
algebras are themselves Morita equivalent. Zhu algebras are associative
algebras which arise from one attempt in this direction and we have
already referred to them on several occasions. The ideas leading to
their construction were first explained in [Z], and recently generalized in
$[DLiM2]$ , which we follow here.

Let $(V, Y)$ be a VOA and $g\in AutV$ be of finite order. If $u\in V$

is homogeneous and satisfies $gu=e^{2\pi ir}u$ , $0<r\leq 1$ , define a bilinear
product $*_{g}$ on $V$ to be the linear extension of the following:

(6.2) $u*_{g}v=\{$
${\rm Res}_{z}Y(u, z)\frac{(z+1)^{wt(u)}}{z}v$ , $r=1$ ,

0, $r<1$ .

Explicitly, we have if $r=1$ ,

(6.2)
$u*_{g}v=\sum_{\dot{?}\geq 0}$

$\left(\begin{array}{l}wt(u)\\i\end{array}\right)$ $u_{i-1}(v)$ .

Similarly, let

(6.3) $uo_{g}v=\{$

${\rm Res}_{z}Y(u, z)\frac{(z+1)^{wt(u)}}{z^{2}}v$ , $r=1$ ,

${\rm Res}_{z}Y(u, z)\frac{(z+1)^{wt(u)+r-1}}{z}v$ , $r<1$ .
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Let $O_{g}(V)$ be the linear span of all $u\circ_{g}v$ over all such $u$ , $v$ , $r$ . Note that

$uo_{g}1=u$ if $gu=e^{2\pi ir}u$ and $0<r<1$ . Thus we have $V=V^{\langle g\rangle}+O_{g}(v)$

where $V^{\langle g\rangle}$ is the space of $g$-invariants of $V$ . Define

(6.4) $A_{g}(V)=V/O_{g}(V)$ .

At first blush it appears as though $A_{g}(V)$ is merely a linear space, but in
fact the product $*_{g}$ defined by (6.1) descends to an associative product
on $A_{g}(V)$ . More precisely, formula (2.5) continues to hold for the action

of $Y_{M}(v, z)=\sum_{n}v_{n}z^{-n-1}$ on a weak $g$-twisted $V$-module $(M, Y_{M})$ . In

particular, if we set $o_{g}(v)=v_{wt(v)-1}$ then, as mentioned following (2.5),

there is a linear map $V\rightarrow End(M_{c})$ , $v\mapsto o_{g}(v)$ where $M_{c}$ is the top level
of $M$ (which may be of infinite dimension). It turns out that $O_{g}(V)$ lies
in the kernel of this map, and that the resulting map $A_{g}(V)\rightarrow End(M_{c})$

is a morphism of associative algebras.
What is crucial is the following result, due to Zhu [Z] if $g=1$ .

If $M$ is a simple weak $g$-twisted $V$-module then $M_{c}$ affords a simple

module for $A_{g}(V)$ . Moreover, the map $M\mapsto M_{c}$ induces a bijection
between equivalence classes of simple weak $g$-twisted $V$-modules and
simple $A_{g}(V)$ -modules. Finally if weak $g$-twisted $V$-modules are com-
pletely reducible then $A_{g}(V)$ is semi-simple. So in this latter case, there
is an equivalence of categories

(6.5) W-g-V-Mod
$\rightarrow\cong$

$A_{g}(V)$ -Mod.

It is these results that make weak twisted $V$-modules important,
even though we may be primarily interested in (ordinary) twisted V-
modules. It is hardly necessary to say that one tries to use the Zhu al-
gebras to reduce questions about twisted $V$-modules to questions about
representations of associative algebras, which are presumably more man-
ageable. Actually calculating $A_{g}(V)$ is difficult; we refer to [FZ], [DMZ],
[W] for examples.

To give a different example, we know from [Do2] that $V^{\mathfrak{h}}$ is both
rational and holomorphic (cf. Example (iv), Section 5). It follows that
$A(V^{\mathfrak{h}})$ is a matrix algebra, and since the top level of $V^{\mathfrak{h}}$ is spanned by

the vacuum vector then in fact $A(V\#)\cong \mathbb{C}$ . Similarly from $[DLiM3]$ we

find that if $g\in MI=Aut(V^{\mathfrak{h}})$ is of type $2A$ then $A_{2A}(V\#)\cong \mathbb{C}$ ; on the

other hand $A_{2B}(V^{\mathfrak{y}})\cong Mat_{24}(\mathbb{C})$ , the algebra of 24 $\times 24$ matrices over
$\mathbb{C}$ . None of these facts seems to be readily deducible from the definitions
$(6. 1)-(6.3)$ themselves.

One of the drawbacks (at present) with the algebras $A_{g}(V)$ is that
there are problems in trying to make the connection between $g$-twisted
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$V$-modules and $A_{g}(V)$ functorial. Note also that even though $A(V)$

has a unit (the image of the vacuum vector), it is not clear if $A_{g}(V)$ is
non-zero in general. We suggest some problems along these lines.

Problem 8. Prove that $A_{g}(V)$ is non-zero. That is, V possesses
non-zero weak $g$ -twisted $V$ -modules.

Problem 9. Suppose that $A_{g}(V)$ is semi-simple. Is it true that

W-g-V-Mod is semi-simple $.p$

\S 7. Group cohomology

We discuss the connections between group cohomology and VOAs.
In the following we fix a VOA $V$ and finite group of automorphisms

$G\leq Aut(V)$ . We assume given a family $\{(V(g), Y_{g})\}$ of simple twisted
modules, one for each $g\in G$ , such that $V(1)=V$ and the following
condition holds:

(7.1) $\in(h)(V(g))\cong V(h^{-1}gh)$

for $h\in G$ (cf. (4.7)). Thus the group $G$ permutes the twisted modules
$V(g)$ via the action (4.7). (7.1) is equivalent to choosing, for a fixed $g$ in
each conjugacy class, a $V(g)$ with the property $that\in(h)V(g)\cong V(g)$ for
$h\in C_{G}(g)$ . By way of example, if $G$ is a group of inner automorphisms
of $V$ in the sense that $G$ leaves invariant each (untwisted) $V$-module,
then the truth of conjecture (4.8) would tell us that every $V(g)$ has
the desired property. The case we are mainly interested in is when $V$

is holomorphic (cf. (4.10)). Then according to (4.8) there is a unique
simple $g$-twisted $V$-module, in which case we take the family $\{V(g)\}$ to
consist of the simple $g$-twisted $V$ modules, $g\in G$ .

By definition, there are linear maps $\phi_{g}(h):V(g)\rightarrow V(hgh^{-1})$ satis-

fying $\phi_{g}(h)Y_{g}(v, z)\phi_{g}(h)^{-1}=Y_{hgh^{-1}}(hv, z)$ . (Compare with (4.11) and

the accompanying discussion.) Then there are $\alpha_{g}(h, k)\in \mathbb{C}^{*}$ (or $S^{1}$ )

satisfying $\phi_{g}(h, k)=\alpha_{g}(h, k)^{-1}\phi_{kgk^{-1}}(h)\phi_{g}(k)$ .

Set

(7.2)
$V^{*}=g\in G\oplus V(g)$

and introduce the group algebra $\mathbb{C}[G]$ of $G$ and its dual $\mathbb{C}[G]^{*}$ . The latter
algebra is spanned by $e(g)$ , $g\in G$ with relations $e(g)e(h)=e(g)\delta_{g,h}$ . As
in [Bal], [Ba2], one may think of $e(g)$ in this context as projection of $V^{*}$

onto $V(g)$ . The group of units $U$ of $\mathbb{C}[G]^{*}$ arises in this context because
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of the following: if $\alpha:G\times G\rightarrow U$ is given by $\alpha(h, k)=\sum_{g}\alpha_{g}(h, k)e(g)$

then we have $\alpha\in C^{2}(\mathbb{Z}G, U)$ . That is, $\alpha$ is a 2-cocycle on $G$ with
coefficients in $U$ , where $U$ is a multiplicative $\mathbb{Z}G$ module with right G-
action $e(g)$ . $h=e(h^{-1}gh)$ .

Let $HH^{*}(\mathbb{Z}G)$ denote the Hochschild cohomology of $\mathbb{Z}G$ (coeffi-

cients in $\mathbb{Z}G^{*}$ by assumption). We have $H^{*}(\mathbb{Z}G, U)\cong HH^{*+1}(\mathbb{Z}G)$ ,

so that the compatible family $\{V(g)\}$ provides us with an element $[\alpha]\in$

$HH^{3}(\mathbb{Z}G)$ . Now we have ([Lo], [Be]) $ HH^{3}(\mathbb{Z}G)\cong\oplus_{*}H^{3}(C_{G}(g), \mathbb{Z})\cong$

$\oplus_{*}H^{2}(C_{G}(g), \mathbb{C}^{*})$ where here and below, $*denotes$ a sum over one
element from each conjugacy class of $G$ . From (4.10) and the accom-

panying discussion we see that the restriction of $[\alpha]$ to $H^{3}(C_{G}(g), \mathbb{Z})=$

$H^{2}(C_{G}(g), \mathbb{C}^{*})$ defines a central extension $\overline{C_{G}(g)}$ of $C_{G}(g)$ on $V(g)$ which

has the following property: a pre-image of $g$ in $\overline{C_{G}(g)}$ lies in the center

of $\overline{C_{G}(g)}$ .

Let $HH_{0}^{3}(\mathbb{Z}G)$ be the group of Hochschild 3-cohomology classes sat-

isfying this condition. Thus $\{V(g)\}$ defines an element $[\alpha]\in HH_{0}^{3}(\mathbb{Z}G)$ .

Let $HC(\mathbb{Z}G)$ denote cyclic cohomology ([Lo], [Be], [Bu]). We have
$HC^{3}(\mathbb{Z}G)\cong\oplus_{*}H^{2}(XC_{G}(g), \mathbb{C}^{*})$ . Here, $XC_{G}(g)$ is the so-called ex-
tended centralizer defined as the push-out

$\mathbb{Z}\rightarrow 1\mapsto g$

$C_{G}(g)$

$\downarrow$ $\downarrow$

$\mathbb{R}\rightarrow XC_{G}(g)$

If $H_{0}^{2}(XC_{G}(g),\mathbb{C}^{*})$ is the subgroup of cohomology classes in $H^{2}(XC_{G}(g)$ ,
$\mathbb{C}^{*})$ whose restriction to $\mathbb{R}$ (or rather its image in $XCc(g)$ ) is trivial, and

if $HC_{0}^{3}(\mathbb{Z}G)=\oplus_{*}H_{0}^{2}(XC_{G}(g), \mathbb{C}^{*})$ , then there is a natural isomorphism

$HC_{0}^{3}(\mathbb{Z}G)\rightarrow H\cong H_{0}^{3}(\mathbb{Z}G)$ given by restriction to $C_{G}(g)$ . Conclusion: our
family $\{V(g)\}$ determines an element $[\alpha]\in HC_{0}^{3}(\mathbb{Z}G)$ . Note that the
discussion in Example (vi), Section 5, shows that in the case of the

Moonshine module $V^{\mathfrak{h}}$ , the class $[\alpha]$ will be non-zero.
Given an element of $HC^{3}(\mathbb{Z}G)$ , one can follow the recipe of Kontse-

vich [Ko] (see also [PS]) to derive certain topological invariants of moduli
spaces. This is an example of how one can expect to derive topological
invariants from VOAs.

Elliptic cohomology is a newer subject (see [La], [Hi]). In the work
of Baker and Thomas ([Bak], [Thl], [Th2]) and others one can see how it
may well be reasonable to expect that families $\{V(g)\}$ of the type we are
considering will lead to elements in EII*(BG), the elliptic cohomology of
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the classifying space $BG$ of $G$ . The true geometric meaning of this theory
remains a closed book, so we will simply recast our preceding discussion
in bundle-theoretic language which might be part of the prescription for
EII*(BG).

First, if $V=V(1)$ is graded as in (2.1), we may form the Borel
space $EG\times_{G}V_{n}$ for each $n$ (here, $EG\rightarrow BG$ is the universal $G$-bundle),
so that we may consider $EG\times cV\rightarrow BG$ as a $\mathbb{Z}$-graded vector bun-
dle over $BG$ with fiber $V$ . Next, if $LBG$ is the free loop space of $BG$

then $LBG$ is (homotopic to) a space with components $BCo(g)$ , one
for each conjugacy class. Thus $H^{*}(LBG, \mathbb{Z})\cong\oplus_{*}H^{*}(BC_{G}(g), \mathbb{Z})=$

$\oplus_{*}H^{*}(C_{G}(g), \mathbb{Z})=HH^{*}(\mathbb{Z}G)$ . Moreover we may form the Borel con-
struction $EC_{G}(g)\times_{C_{G}(g)}\mathbb{P}V(g)$ where $\mathbb{P}V(g)$ is the projective space of
$V(g)$ (recall that $C(g)$ only acts projectively on $V(g)$ ). We could also
form $EC_{G}(g)\times_{\overline{C_{G}(g})}V(g)$ in the obvious way. In this way we get a

vector bundle $\xi_{V}$ : $E\rightarrow LBG$ which is naturally associated with $\{V(g)\}$ .

In this picture, $HC^{*}(\mathbb{Z}G)$ arises as the integral cohomology of the
Borel construction $ES^{1}X_{S^{1}}LBG$ , where $S^{1}$ acts on $LBG$ by rotation
of loops. If $V(g)=V=\square _{n=0}^{\infty}V(g)_{c+\frac{n}{N}}$ is graded as in (4.9) then the

action (4.10), essentially that of $g$ on $V(g)$ , is part of an action of $\mathbb{R}$

given by $t|V(g)_{c+\frac{n}{N}}=e^{-2\pi int/N}$ , $t\in \mathbb{R}$ . So $1\in \mathbb{R}$ acts as $g$ does, in

other words we have an action of $XC_{G}(g)$ on $V(g)$ , at least projectively.
Since $ES^{1}\times s^{1}LBG$ is homotopic to $\bigcup_{*}BXC_{G}(g)$ we can repeat the

above construction to get a bundle $\pi_{V}$ : $M$ $\rightarrow ES^{1}\times_{S^{1}}LBG$ whose fiber
over a point in $BXC_{G}(g)$ is $\mathbb{P}V(g)$ . Note that in this situation, the
grading on $V(g)$ is now indexed by a character of $S^{1}$ . This is related
to modular-invariance properties, which we discuss further in Section
10. This aspect of the theory is crucial to the very existence of elliptic
cohomology, though our own manipulations have been purely formal.
The reader might compare our discussion with Segal’s notion of “elliptic
object” [Seg2].

Problem 10. Clarify the relationship between elliptic cohomology
and VOA theory.

To complete this section we consider another aspect of group co-
homology in VOA theory, which we call the Dijkgraaf-Witten cocycle.
To be on safe(r) ground, let us assume that $V$ is holomorphic and that
$\{V(g)\}$ constitutes all the simple twisted $V$-modules.

In [DW] it is argued on topological grounds that there is a coho-

mology class $[\delta]\in H^{4}(G, \mathbb{Z})$ which determines $[\alpha]$ , and thereby puts
conditions on the nature of $[\alpha]$ which go beyond the containment $[\alpha]\in$

$HC_{0}^{3}(\mathbb{Z}G)$ which we have already established. We call $\delta$ the Dijkgraaf-
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Witten cocycle. To be precise, if we think of $\delta$ as an element of $C^{3}(G, \mathbb{C}^{*})$

then one expects that the following holds (up to coboundaries):

(7.3) $\alpha_{g}(h, k)=\frac{\delta(hkgk^{-1}h^{-1},h,k)\delta(h,k,g)}{\delta(h,kgk^{-1},k)}$ .

See*[DPR] for more information on this point. We note here only
that $\delta$ is related to the issue of tensor products of $V$-modules, which we
address in Section 9. Note that one see easily that the r.h.s. of (7.3)

indeed defines an element of $HC_{0}^{3}(\mathbb{Z}G)$ , so that it defines a map

(7.4) $DW:H^{4}(G, \mathbb{Z})\rightarrow HC_{0}^{3}(\mathbb{Z}G)$ .

In this notation we have

Problem 11. Prove that $[\alpha]$ lies in the image of the map DW.
Can one describe $[\delta]$ in terms of G and its action on $V.$?

An affirmative answer to the second part of Problem 11 would thus
provide a canonical element of $H^{4}(G, \mathbb{Z})$ associated with the pair $(V, G)$ .

A further topological significance of this is that one knows from the work
of a number of authors ([DW], [FQ], [F], [Y] for example) that there is
a canonical topological quantum field theory (TQFT) associated with a
finite group $G$ and an element of $H^{4}(G, \mathbb{Z})$ . So one would get a map

(7.5) VOA–TQFT.

This is in accord with G. Segal’s definition of conformal field theory
(CFT) in [Segl], which is categorical in nature. From this point-of-view
(7.5) is a forgetful functor from CFT to TQFT in which the conformal
structure is forgotten, leaving only a topological theory.

Finally, we mention

Problem 12. Let $[\alpha]$ lie in the image of DW. Is there a holomor-
phic VOAV with G $\leq Aut$ V such that $[\alpha]$ arises as described above $.p$

\S 8. Fixed-point theory

We return to the theme of Section 6. It is a basic philosophy of
the subject that the category of $V$-modules should be equivalent to the

module category of some quasi-quantum group. In the case that $V$ is

$*some$ of our formulae differ in appearance from those of [DPR]. See the
footnote on page 123 in this regard.
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a holomorphic VOA and $G$ is a finite subgroup of Aut(V) one may

consider the space $V^{G}$ of $G$-invariants, which is evidently itself a VOA.
In this case there is a precise conjecture, essentially described in [DPR],
for what the quasi-quantum group is. We describe what is known about
this situation, following [DM2]. But first we mention

Problem 13. Let V be a holomorphic VOA with a fifinite group
G $\leq Aut(V)$ . Prove that $V^{G}$ is rational.

We will always assume that $V$ is holomorphic and that there is a
unique simple $g$-twisted module $V(g)$ for each $g\in G$ . Thus the results

of Section 7 show that there is an element $[\alpha]\in HC_{0}^{3}(\mathbb{Z}G)$ canonically
associated to this situation.

Let $D_{\alpha}(G)$ denote the smash product of $\mathbb{C}[G]$ with $\mathbb{C}[G]^{*}$ modified
by $\alpha$ , where $G$ acts on $\mathbb{C}[G]^{*}$ by right conjugation. Thus $D_{\alpha}(G)=$

$\mathbb{C}[G]\otimes \mathbb{C}[G]^{*}$ as vector space with product*

(8.1) $a\otimes e(x)$ . $b\otimes e(y)=\alpha_{y}(a, b)ab\otimes e(b^{-1}xb)e(y)$ .

So $D_{\alpha}(G)$ is essentially a twisted version of the quantum double of $G$

(cf. [Dr]).
The space $V^{*}((7.2))$ becomes a left $D_{\alpha}(G)$ -module via the action

$a\otimes e(x)$ . $m=\delta_{x,g}\phi_{x}(a)m$ for $m\in V(g)$ and $\phi_{x}(a):V(x)\rightarrow V(axa^{-1})$

as in Section 7. Now from definition (4.3) we see that the restriction

of the action of $V$ on each $V(g)$ to $V^{G}$ yields an ordinary $V^{G}$ module

so that $V^{*}$ is in fact a $V^{G}$ -module. Moreover the actions of $V^{G}$ and
$D_{\alpha}(G)$ commute, so that what obtains is an action of $D_{\alpha}(G)\otimes V^{G}$ (in
the obvious sense) on $V^{*}$ .

The simple modules for $D_{\alpha}(G)$ are easily classified ([DPR], [Ma2]),
and it is known ([DM2],[DM3]) that every such module occurs in $V^{*}$ .

Thus we may write

(8.2) $V^{*}=\oplus M_{\chi}\otimes V_{\chi}$

where $\chi$ ranges over the simple characters of $D_{\alpha}(G)$ and $M_{\chi}$ is a $D_{\alpha}(G)-$

module affording $\chi$ . We may take $V_{\chi}$ to be a $V^{G}$ -module, and if it has a
grading of the form $V_{\chi}=\square _{n\in \mathbb{C}}V_{\chi,n}$ then we may think of $\sum_{n}(dimV_{\chi,n})$

$q^{n}$ as the graded multiplicity of $M_{\chi}$ in $V^{*}$ . (For now, $q$ is merely an
indeterminate.)

The two main problems are the following:

$*The$ map $a\otimes e(x)\mapsto a\otimes e(axa^{-1})$ will transform (8.1) into the definition
used in [DPR].
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Problem 14. Prove that each $V_{\chi}$ in (8.2) is a simple $V^{G}$ -module.

Problem 15. Prove that every simple $V^{G}$ -module is contained in
$V^{*}$ .

Problem 14 is proved in [DM2] for the case that $G$ is a nilpotent
group, and a similar proof will almost certainly deal with $G$ solvable.
But the general case is more difficult.

Now $D_{\alpha}(G)$ is semi-simple. So if we know also that $V^{G}$ -modules are
completely reducible, then affirmative solutions of Problems 14 and 15
provide us with a categorical equivalence

(8.3) $D_{\alpha}(G)- Mod\cong\rightarrow V^{G}-$Mod

$M_{\chi}\mapsto V_{\chi}$ .

Suppose that $\alpha$ is trivial. Then as explained in [DPR] or [Ma2], the
simple $D_{\alpha}(G)=D(G)$ -modules are naturally indexed by pairs $(g, \chi_{g})$

where $g$ ranges over one element in each conjugacy class of $G$ and $\chi_{g}$

ranges over the simple characters of $C_{G}(g)$ . Hence, granted the equiva-
lence (8.3), there are bijections between the following sets:

{simple $D(G)$ -modules},

{simple $V^{G}$ -modules},

(8.4) $Hom(\mathbb{Z}^{2}, G)/conjugation$ by $G$ ,

{principle $G$-bundles over $S^{1}\times S^{1}$ } $/G$ ,

{homotopy classes of maps $S^{1}\times S^{1}\rightarrow BG$ } $/G$ .

Thus again we observe the convergence of ideas from topology and
VOA theory.

\S 9. Tensor products

We discuss the quasi-quantum structure of $D_{\alpha}(G)$ and its conjec-
tured meaning for $V$ . We retain the notation of the preceding section.

Suppose to begin with that the cocycle $\alpha$ of the last section is trivial.
Then $D_{\alpha}(G)=D(G)$ becomes a Hopf algebra with comultiplication
$\triangle:D(G)\rightarrow D(G)\otimes D(G)$ defined by

(9.1)
$\triangle:a\otimes e(x)\mapsto h,k\in G\sum_{hk=x}a\otimes e(h)\otimes a\otimes e(k)$

.
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(There is also a counit and antipode which, however, will not concern
us here. See [DPR].) With this structure we may define a (strictly as-
sociative) tensor product of $D(G)$ -modules, so that $D(G)$-Mod becomes
a strict monoidal category. (For this and other categorical ideas in this
section, we refer the reader to [SJ] or [SS].)

Problem 16. Assume that $\alpha$ is trivial. Show that there is a notion

of tensor product of $V^{G}$ -modules such that the equivalence (8.3) is one

of strict monoidal categories.

In fact, the problem of defining tensor products of (twisted) modules
for general VOAs is fundamental, and impinges on a number of the
problems that we discuss in this paper. Given two modules $X$ , $Y$ for
a VOA $V$ , the tensor product $X\ovalbox{\tt\small REJECT}$ $Y$ should again be a $V$-module, but
$X\ovalbox{\tt\small REJECT}$ $Y$ will not resemble the ordinary tensor product. For example, if $V$

is holomorphic, then one expects that $V\ovalbox{\tt\small REJECT}$ $V\cong V$ .

Huang and Lepowsky ([HL1], [HL2]) have considered this problem
at great length. The paper [Li2] should also be consulted, along with
the work [KL] which announces a significant advance concerning tensor
products of Kac-Moody modules.

There are complications if the cocycle $\alpha$ is non-trivial, and we con-
sider this case next. The main point is that $D_{\alpha}(G)$ should now be a
quasi-Hopf algebra ([Dr], [SS]). This entails a modification of the co-
product (9.1) of the form

(9.2)
$\triangle:a\otimes e(x)\mapsto h,k\in G\sum_{hk=x}\gamma_{a}(h, k)a\otimes e(h)\otimes a\otimes e(k)$

where $\gamma_{a}(h, k)\in \mathbb{C}^{*}$ can be expressed in terms of the Dijkgraaf-Witten
cocycle $\delta$ in a way that is entirely analogous to (7.3). One still requires
$\triangle$ to be an algebra morphism from $D_{\alpha}(G)$ to $D_{\alpha}(G)\otimes D_{\alpha}(G)$ but it
will no longer be associative. Instead one requires only that there is
$\varphi\in D_{\alpha}(G)^{\otimes 3}$ , $\varphi$ invertible, such that for $d\in D_{\alpha}(G)$ we have

(8.3) $(\triangle\otimes id)\circ\triangle(d)=\varphi((id\otimes\triangle)\circ\triangle(d))\varphi^{-1}$ .

When this holds, the tensor product of $D_{\alpha}(G)$ -modules is quasi-

associative in the sense that $(X\otimes Y)\otimes Z$ and $X\otimes(Y\otimes Z)$ are isomorphic
by an isomorphism which depends on $X$ , $Y$ , $Z$ . One takes $\varphi$ to be a
linear combination of element of the form $1\otimes e(g)\otimes 1\otimes e(h)\otimes 1\otimes e(k)$ as
$(g, h, k)$ range over $G^{3}$ , with coefficients given by the Dijkgraaf-Witten

cocycle (thought of as an element of $C^{3}$ ( $G$ , $\mathbb{C}^{*}$ )).
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There is even more structure available: $D_{\alpha}(G)$ has a so-called R-
matrix, which in this case is the element

(9.4)
$R=\sum_{g,h\in G}1\otimes e(g)\otimes 1\otimes e(h)$

in $D_{\alpha}(G)\otimes D_{\alpha}(G)$ . The first property of $R$ is that it satisfies for $ d\in$

$D_{\alpha}(G)$ :

(9.5) $\tau\circ\triangle(d)=R\triangle(d)R^{-1}$

where $\tau$ is the twist operator on $D_{\alpha}(G)\otimes D_{\alpha}(G)$ . Equation (9.5) ensures
that $X\otimes Y\cong Y\otimes X$ for $D_{\alpha}(G)$ -modules via an isomorphism that
depends once again on $X$ and $Y$ . Two further properties of $R$ allow
us to deduce the so-called quasi-Yang-Baxter equations, and together
these axioms give $D_{\alpha}(G)$ the structure of a quasi-triangular quasi-Hopf
algebra.

Needless to say, all of this structure on $D_{\alpha}(G)$ and its module cate-

gory is expected to reflect analogous properties of the category $V^{G}-$Mod.
We will merely state the main problem, the extension of Problem 17 to
the general case.

Problem 17. Show that there is a notion of tensor product of
$V^{G}$ -modules such that the equivalence (8.3) is one of braided monoidal
categories.

\S 10. Modular-invariance

We discuss the conjectured modular-invariance properties of the
characters of modules of rational VOAs, concentrating on the case of
holomorphic orbifolds, i.e., VOAs of the form $V^{G}$ where $V$ is holomor-

phic and $G\leq AutV$ is finite (cf. Section 8). We assume some familiarity
with elliptic modular functions.

Assume to begin with that $V$ is a VOA and $M$ a simple $V$-module.
Then according to (4.5), $M$ is graded with shape $M=\square _{n=0}^{\infty}M_{c+n}$ with
$M_{c}\neq 0$ . The (graded) character of $M$ is defined to be

(10.1) $chM=q^{c}\sum_{n=0}^{\infty}(dimM_{c+n})q^{n}$ .

According to convenience, we take $q$ to be either an indeterminate or of
the form $q=e^{2\pi i\tau}$ with $\tau\in \mathbb{C}$ satisfying $im\tau>0$ . Thus $\tau$ lies in the
upper-half plane $\mathfrak{H}$ .
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Problem 18. Is it true that chM is a holomorphic function on
$\ovalbox{\tt\small REJECT}^{p}$.

Let us now take $V$ to be a rational VOA (cf. (4.5)) with simple
$V$-modules $M_{1}$ , $\ldots$ , $M_{k}$ . Let $c’$ denote the central charge of $V$ , and set

(10.2) $ch’M_{i}=q^{-c’/24}chM_{i}$ .

Inclusion of the factor $q^{-c’/24}$ may seem rather strange, but it consider-
ably enhances the invariance properties of the character. If $\Gamma=SL(2, \mathbb{Z})$

is the modular group then $\Gamma$ acts on $\mathcal{F}$) via M\"obius transformations in
the usual way, and thence on holomorphic functions on $\mathfrak{H}$ .

Problem 19. LetE be the $\mathbb{C}$ -space spanned by the functions $ch’M_{\dot{x}}$ ,
$1\leq i\leq k$ . Prove that $E$ is invariant under the action of $\Gamma$ . Prove,
moreover, that the kernel of the action isa congruence subgroup of $\Gamma$ .

The work of Kac-Peterson [KP], [K] on the analogue of Problem
19 for Kac-Moody Lie algebras is very important. And the paper of
Zhu [Z] establishes the truth of Problem 19 for VOAs satisfying certain
additional finiteness conditions which are, so far as we know, satisfied
in all of the known rational VOAs.

As illustration, suppose that $V$ is holomorphic so that $k=1$ and
$M_{1}=V$ . Problem 19 suggests that $ch’V$ is then a (semi-)invariant

of $\Gamma$ , i.e., if we set $Z(\tau)=ch’(V)$ then $Z(\gamma\tau)=\in(\gamma)Z(\tau)$ for some
character $\epsilon$ of $\Gamma$ . This expectation is borne out in practice: for example,
if $L$ is a self-dual lattice and $V_{L}$ the corresponding VOA (Section 3,
Example (iv) $)$ then $V_{L}$ is holomorphic (Section 5, Example (iv)) and
$ch’V_{L}=\theta_{L}(\tau)/\eta(\tau)^{dimL}$ . Here $\theta_{L}(\tau)$ is the theta-function of $L$ and
$\eta(\tau)$ the Dedekind $eta$-function. It is well-known [Se] that $\theta_{L}(\tau)$ is a

form level one and that $\eta(\tau)^{dimL}$ transforms under $\Gamma$ with a character

of order 1 or 3 (since 8 divides $dimL$ ). If $V^{\mathfrak{h}}$ is the Moonshine module

(Sections 3 and 5, Example (vi)) then $ch’V\#=J(q)$ is the modular

function $ q^{-1}+0+196884q+\cdots$ of level one.

Now let $V$ again be holomorphic of central charge $c’$ with finite
$G\leq AutV$ . In this case there is a beautiful and sharp reformulation of
Problem 19 for the VOA $V^{G}$ which goes to the heart of “Moonshine.”
To describe this we need to assume that the simple $V^{G}$ -modules are as
described in Problems 13-15. Thus after choosing a $g$ in each conjugacy
class of $G$ , we assume existence and uniqueness of a simple $g$-twisted
$V$-module, say $V(g)$ . It is convenient to assume that the cocycle $\alpha$ is
trivial–the general case involves only cosmetic changes.
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Now $V(g)$ will be graded as in (4.9), that is $V(g)=\square _{n=0}^{\infty}V(g)_{c(g)+\frac{n}{N}}$

with $N=o(g)$ and $c(g)$ a scalar (presumably rational). As $V(g)$ admits
$C(g)$ we may define for $h\in C(g)$ ,

(10.3) $Z(g, h, \tau)=q^{c(g)}\sum_{n=0}^{\infty}(trh|V(g)_{c(g)+\frac{n}{N}})q^{\frac{n}{N}}$ .

According to (8.2) the simple $V^{G}$ modules $M$ contained in $V(g)$

are parameterized bijectively by the simple modules (or characters) of
$C(g)$ , and the character $chM$ of $M$ is the graded multiplicity of the
corresponding character of $C(g)$ . By the orthogonality relations for the
characters of $C(g)$ , the space spanned by $chM$ as $M$ ranges over the

simple $V^{G}$ -modules in $V(g)$ is that spanned by the functions $Z(g, h, \tau)$

as $h$ ranges over one element in each conjugacy class in $C(g)$ . Thus one

sees that the space $E$ of characters of $V^{G}$ (Problem 19) is also spanned
by the functions

(10.4) $Z’(g, h, \tau)=q^{-c’/24}Z(g, h, \tau)$

as $(g, h)$ ranges over the set $P=P(G)$ . Here $P$ is a set of representatives
of $\{(x, y)\in G\times G|xy =yx\}$ modulo simultaneous conjugation by $G$ .

(Hence we have $|P(G)|=\#simpleV^{G}$-modules–cf. (8.4).)

Now $\Gamma$ acts on the right of $P$ via $(x, y)$ . $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)=(x^{a}y^{c}, x^{b}y^{d})$ . An

element of $P$ may be thought of as an element of $Hom(\pi_{1}(S^{1}\times S^{1}), G)$ ,
where the prescribed action of $\Gamma$ is essentially that on a homology basis
of the torus. Now we have

Problem 20. Let $E$ be the space spanned by the functions $chf$ $M$

as $M$ ranges over the simple $V^{G}$ -modules. Then $E$ is also spanned by
the trace functions $Z’(g, h, \tau)$ , $(g, h)\in P$ . Moreover $E$ is a $\Gamma$ -module
and the action of $\gamma\in\Gamma$ satisfifies

(10.5) $Z’(g, h, \gamma\tau)=\in(g, h, \gamma)Z’((g, h)\gamma,$ $\tau)$

for some root of $unity\in(g, h, \gamma)$ .

The condition (10.5) was introduced by Norton in an appendix to
the paper [Mai] on an empirical basis, and was subsequently extended
to more general contexts in [Ma3], [Ma4]. Its origins in CFT can be
traced through [DHW], [DGH]. In [DM1], (10.5) is actually established
for certain fermionic orbifolds (Section 3, Example (v)). Little else is
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known to be true save for some calculations in $[DLiM3]$ concerning the

Moonshine module $V^{\mathfrak{h}}$ and its involutorial automorphisms.

Included in Problem 20 is the conjecture that (taking $g=1$ ), the
graded characters of $h\in G$ on $V$ , more precisely the functions $Z’(1, h, \tau)$ ,

are modular functions. Moreover one expects them to be semi-invariants
of $\Gamma_{0}(M)$ where $M$ $=o(h)$ . Of course this is precisely how Monstrous
Moonshine got started: the paper of Conway and Norton [CN] made very

precise conjectures about the functions $Z’(1, h, \tau)$ in the case $V=V^{\mathfrak{h}}$

and $G=\beta ffi$ (Monster). These conjectures were subsequently estab-
lished by Borcherds [Bo2], although his methods went outside the the-
ory of VOAs as described here and utilized his theory of generalized
Kac-Moody Algebras. Perhaps this is to be expected; after all, the
Conway-Norton conjectures specify that in the case of $V^{\mathfrak{y}}$ the $trace$ func-
tions $Z’(1, h, \tau)$ , are so-called hauptmoduls. These are very special kinds
of modular functions, and certainly for other VOAs the corresponding
$trace$ functions are not hauptmoduls.

Problem 21. Can Borcherds ’ theorem (Conway-Norton conjec-
tures) be established via the representation theory of VOAs $.p$

Michael Tuite has studied this problem from the viewpoint of confor-
mal field theory [Tul], [Tu2]. His very interesting ideas suggest a specific
path towards a solution to Problem 21 based on so-called orbifolding.

Problem 22. Let V $=V^{\mathfrak{h}}$ be the Moonshine Module. Prove that
each $Z’(g, $h,$ \tau)$ is either a hauptmodul or is constant.

This is Norton’s Generalized Moonshine Conjecture. Actually, we
have already pointed out in a previous section that for $ V\#$ the cocycle
$\alpha$ is not trivial. Thus one has to suitably interpret $Z’(g, h, \tau)$ in order
to make the problem meaningful. Borcherds’ methods do not appear to
extend to this situation, whereas in principle those of Tuite do.

Problem 23. What is the signifificance of the hauptmodul property

of the trace functions on the Moonshine Module $.p$

One can say that the hauptmodul property is a deep-seated conse-
quence of properties of the Leech lattice, but this doesn’t seem to help
much. We also note that in [DM4] it is shown that a certain fermionic
orbifold, with group $G$ being the large Mathieu group $M_{24}$ , enjoys the
hauptmodul property. In fact it satisfies the conclusions of Problem 22.
The Leech lattice plays no r\^ole in this latter work though $M_{24}$ is of
course intimately related to it.
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\S 11. Quantum Galois theory

It is well-known that VOAs behave in some ways like commutative,
associative algebras. So a simple VOA $V$ (i.e., one with no proper V-
submodule) may be likened to a commutative field. Quantum Galois
Theory (QGT) is a manifestation of this analogy.

We fix a simple VOA $(V, Y)$ with finite group $G\leq AutV$ . A sub
VOA of $V$ is a subspace $W\subseteq V$ preserved by all component operators $w_{n}$

of $Y(w, z)$ for $w\in W$ , and with the same vacuum vector and conformal
vector as $V$ .

Problem 24. Prove that there is a Galois correspondence $(i.e.,$ $a$

containment-reversing bijection) between subgroups of $G$ and sub VOAs

of $V$ containing $V^{G}$ given by

(11.1) $H\mapsto V^{H}$ .

This was conjectured in [DM3], and the case in which $G$ is nilpotent
or dihedral is settled affirmatively in [DM2], [DM3]. It is also known
$(loc. cit.)$ that (11.1) is an injection, and that if $G$ is solvable then (11.1)
gives a bijection between normal subgroups of $G$ and $G$-invariant sub
VOAs of $V$ which contain $V^{G}$ . An interesting point is that we know $(loc$ .

$cit.)$ that if $V$ is a simple VOA and $G\leq AutV$ is finite then $V^{G}$ is also
simple. This enables one to proceed inductively and, if $G$ is solvable at
least, to reduce certain questions to the case in which $G$ is abelian. But
if $G$ is not solvable we have no clue at present; what is lacking is any
perspective which would at least explain why there should be a Galois
correspondence.

Another point is this: if in (8.2) we restrict our attention to $V(1)=$

$V$ , then we obtain

(11.2) $V=\oplus M_{\chi}\otimes V_{\chi}$

where $\chi$ ranges over the simple characters of $G$ , $M_{\chi}$ a simple $G$-module

affording $\chi$ , and $V_{\chi}$ a certain $V^{G}$ -module. Now (8.2) was a decomposi-

tion for holomorphic $V$ , but (11.2) holds for a simple VOA $V$ .

Problem 25. Prove that in (11.2) with V simple, each $V_{\chi}$ is $a$

non-zero simple $V^{G}$ -module.

This is known for solvable groups $(loc. cit.)$ . We may regard (11.2)
as the QGT analogue of the normal basis theorem, which says that if
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$E/K$ is a normal extension of fields with (finite) Galois group $G$ , then
$E$ is a regular $KG$-module.

Armed with a character $\psi$ of $G$ and normal extension $E/K$ with
Galois group $G$ , one may construct the Artin $L$-series $L_{E/K}(\psi, s)$ and
ask after its analytic properties. The QGT analogue might then be
the analytic properties of the characters of the $V_{\chi}$ in (11.2): of course
this is an additive theory, whereas $L_{E/K}(\psi, s)$ is, by definition, an Euler
product.

Let us take $V$ holomorphic to be on safe ground (a churlish phase at

this stage of the proceedings!). Then the character $ch’V$ (cf. Section 10)

is the analogue of the zeta-function $\zeta_{E/K}(s)$ , and one expects $ch’V$ to be

a modular function of level 1 (possibly with character). The characters
$ch’$ Vx are the analogues of the $L$-series $L_{E/K}(\chi, s)$ . The decomposition

of $\zeta_{E/K}(s)$ into factors $\zeta_{E/K}(s)=\prod_{\chi}L_{E/K}(\chi, s)^{deg\chi}$ is just a formal

consequence of the basis theorem, and its QGT analogue comes from
(11.2), namely $ch’V=\sum_{\chi}(deg\chi)ch’V_{\chi}$ .

Problem 26. Is there a $QGT$-analogue of the Euler products which

defifine the $L$ -series $.p$

Put another way, one might ask if there is a local theory of VOAs.
Recent remarkable work of Borcherds and Ryba [R], [BR], [Bo3] suggests
that the answer is “yes” $|$. Not only that, but there seem to be connections
between local VOAs (whatever they are) and twisted sectors.

Added in Proof (November 3rd. 1995): Since this paper was
written there has been some progress towards solving several of the 26
problems. We briefly discuss these newer results here.

Following Problem 2 we introduced the notion of a weak $g$ twisted
$V$-module. There is a useful variant of this which is intermediate be-
tween weak module and ordinary module, namely ’admissible’ module.
An admissible ( $g$ twisted $V$-module is a weak module such that the
component operators of $Y(v, z)$ for homogeneous $v$ preserve the homo-
geneous spaces of the module in the usual way. This idea is important
in Zhu’s work [Z]. It is now established in $[DLiM2]$ that if all admis-
sible $g$ twisted $V$-modules are completely reducible (a strengthening of
(4.5) (b) $)$ , then (4.5) (a) holds and also (4.5) (c) holds for admissible mod-
ules. Compare these results with Problem 3. Further results in this di-
rection are contained in another preprint (Regularity of rational vertex
operator algebras) of the authors and H. Li. Let us now call a VOA g-
rational if indeed all of its admissible $g$-twisted modules are completely
reducible.
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We referred to certain finiteness conditions in [Z] following Problem
19. Essentially, these are (g-)rationality in the sense of the last para-
graph together with a certain (

$‘ C_{2}$ Condition” (loc.cit.). In forthcoming
work of the authors and Li (Elliptic functions and orbifold theory) the
following are established: affirmative solution of Problem 4 in case $V$ is
both rational, $g$-rational, and satisfies $C_{2}$ ; affirmative solution of Prob-
lem 5 under the same conditions; affirmative solution of Problems 6 and
8 if $V$ is rational and satisfies $C_{2}$ ; affirmative solution of Problem 7.
Problem 20 is also solved under similar conditions on $V$ , though with

the proviso that there is no information available with regard to the
intervening constant–which should be a root of unity.
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Covers of Complete Graphs

Chris D. Godsil

Abstract.

We study antipodal distance-regular covers of complete graphs.
The first part of the paper gives an introduction to the basic theory

and the main constructions. In the second part, we turn to linear
covers, which can be described geometrically.

\S 1. Covers

If we view a graph as a 1-dimensional simplicial complex then a
cover of a graph is a cover in the topologist’s sense. Fortunately there
is a simple combinatorial approach.

Let $X$ be a graph with vertex set $V(X)$ . An arc of $X$ is an ordered
pair of adjacent vertices, and an arc function of index $r$ is any function
$f$ from the arc set of $X$ into Sym(r), the symmetric group of degree $r$ ,

such that

(1.1) $f(a, b)f(b, a)=1$

for any arc $(a, b)$ of $X$ . Given an arc function $f$ of index $r$ on $X$ we
construct a covering graph $X^{f}$ as follows. The vertex set of $X^{f}$ is the
Cartesian product $V(X)\times\{1, \ldots, r\}$ and the vertices $(a, i)$ and $(b, j)$

are adjacent if

if(a, $b$ ) $=j$ .

Our condition on arc functions guarantees that $X^{f}$ is an undirected
graph.

If $f$ is the identity on each arc of $X$ then $X^{f}$ isjust $r$ disjoint copies of
$X$ . If $r=2$ and $f$ is equal to the non-identity element of Sym(2) on each
arc then $X^{f}$ can be seen to be the direct product $X\times K_{2}$ . The mapping $p$

from $V(X^{f})$ to $V(X)$ such that $p(a, i)=a$ for all $i$ in $\{1, \ldots, r\}$ is called
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a covering map. It can be shown to be a local isomorphism from $X^{f}$ to
$X$ , although this will play no role in our work here. The set of vertices
$\{(a, i) : i=1, \ldots, r\}$ is called a fibre of the cover. The subgraph of $X^{f}$

induced by a fibre is an independent set, and the subgraph induced by
two fibres is either an $r$-matching or an independent set, according as $p$

maps the two fibres to adjacent or non-adjacent vertices in $X$ .

If $f$ and $g$ are arc functions with index $r$ and $s$ respectively, we can
define their product as follows. The ordered pair $(f, g)$ can be viewed
as an arc function taking values in Sym(r) $\times$ Sym(s), viewed as a per-
mutation group on $rs$ points. Hence Sym(r) $\times$ Sym(s) is a subgroup of
Sym(rs), in its natural action, and therefore $(f, g)$ is an arc function of
index $rs$ . (The corresponding cover might not be connected, even if $X^{f}$

and $X^{g}$ are.)
The subgroup of Aut $(X^{f})$ consisting of the automorphisms that fix

each fibre is called the covering group. It is an easy exercise to show
that, if $X^{f}$ is connected, this group acts semi-regularly. We call a cover
regular if the covering group acts regularly on the vertices in a fibre. It
is another easy exercise to show that a 2-fold cover is always regular; its
covering group is cyclic with index two. The size of a fibre is equal to
the index of $f$ , and is called the index of the cover. A cover of index $r$

is also called an $r$-fold cover.
If $X$ is connected and $T$ is a spanning tree in $X$ then it can be

shown that any cover of $X$ is isomorphic to a cover $X^{f}$ , where $f$ is
the identity map on each arc of $T$ . Arc functions of this form will
be said to be normalised with respect to $T$ . If $f$ is normalised with
respect to some spanning tree of $X$ we define $C(f)$ to be the subgroup
of Sym(r) generated by the elements in the image of $f$ . We call it the
connection group of $f$ . The important properties of the connection group
are summarised in the following combination of results from Section 7
of [18].

Lemma 1.1. Let $f$ be a normalised arc function with index $r$ on
a connected graph $X$ and let $C$ be the connection group of $f$ . Then $X^{f}$

is connected if and only if $C$ is transitive. The covering group of $X^{f}$ is

isomorphic to the centraliser of $C$ in Sym(r).

A graph with diameter $d$ is antipodal if the relation “is equal or at

distance $d$ from” is an equivalence relation on its vertices. An antipodal
cover is a cover such that the fibres are the antipodal classes; a covering

graph may be antipodal without being an antipodal cover. Two vertices
in distinct fibres of an antipodal cover of diameter $d$ must be at distance
at most $d-1$ . By way of example, if $f$ is an arc function of index two on
$K_{4}$ and $f$ is not equal to the identity on any arc, then $X^{f}$ is the cube,
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which is an antipodal cover of $K_{4}$ . The line graph of the Petersen graph
can also be seen to be an antipodal cover of $K_{5}$ with index three.

Antipodal covers arise naturally in the study of distance regular
graphs. If $X$ is a graph with vertex set $V$ , let $X_{i}$ denote the graph
with vertex set $V$ , where two vertices are adjacent in $X_{i}$ if and only
if they are at distance $i$ in $X$ . Suppose that $X$ is distance regular
with diameter $d$ . Then $X$ is primitive if the graphs $X_{1}$ , $\ldots$ , $X_{d}$ are all
connected, and imprimitive otherwise. If $X$ is imprimitive then either
$X_{2}$ is not connected, and $X$ is bipartite, or $X_{d}$ is not connected and $X$

is antipodal. Further, it can be shown that there is a distance regular
graph $Y$ such that $X$ is a covering graph of $Y$ . If $Y$ has diameter $d$

then the diameter of $X$ is $2d$ or $2d+1$ . The fibres of the cover are
the antipodal classes of $X$ , that is, the vertex sets of the components
of $X_{d}$ . The cube and the line graph of the Petersen graph provide two
examples.

\S 2. Parameters of covers

We now come to the main topic of this paper–antipodal distance
regular covers of complete graphs. We will usually refer to these simply
as covers. In this section we describe some of their properties. Any
un-attributed results are taken from [18].

An antipodal graph with diameter two is complete multipartite, and
consequently cannot be a covering graph unless each antipodal class is a
single vertex. Thus it cannot be a non-trivial covering graph. Therefore
an antipodal distance regular cover of $K_{n}$ must have diameter three. In
addition to its index, such a cover has two further important parameters.
If $X$ is distance regular then there are constants $a_{1}$ and $c_{2}$ such that any
two adjacent vertices in $X$ have exactly $a_{1}$ common neighbours, and
two vertices at distance two have $c_{2}$ common neighbours. Any covering
graph has the same valency as the graph it covers, hence a cover of $K_{n}$

has valency $n$ $-1$ .

For antipodal distance regular covers of $K_{n}$ and index $r$ we have

(2.1) $n$ $-2-a_{1}=(r-1)c_{2}$ .

To prove this, let $u$ be a fixed vertex in a cover of $K_{n}$ and let $v$ be
adjacent to $u$ . Then there are $a_{1}$ edges from $v$ to a neighbour of $u$ and
hence there are $n-1-(a_{1}+1)$ edges joining $v$ to a vertex at distance two
from $u$ . On the other hand there are exactly $r-1$ vertices at distance
three from $u$ , each of these is at distance two from $v$ and so has $c_{2}$

neighbours in common with $v$ . This yields the identity. We will refer to
the triple $(n, r, c_{2})$ as the parameter set of the cover.
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If $A$ is the adjacency matrix of a $(n, r, c_{2})$ cover then the eigenvalues
of $A$ are $n-1$ , -1 and the two zeros $\theta$ and $\tau$ of the quadratic

(2.2) $x^{2}-(a_{1}-c_{2})x-(n-1)=0$ .

Because $\theta\tau=1-n$ it follows that, when $n\geq 2$ , one of these zeros is
positive and the other negative. When discussing covers of $K_{n}$ , we will
assume always that $n\geq 3$ , and let $\theta$ be the positive zero of (2.2). The
eigenvalues $n-1$ and -1 have multiplicities 1 and $n-1$ respectively.
If $m_{\theta}$ and $m_{\tau}$ denote the multiplicities of $\theta$ and $\tau$ respectively then we
have

$m_{\theta}=\frac{n(r-1)\tau}{\tau-\theta}$ , $m_{\tau}=\frac{n(r-1)\theta}{\theta-\tau}$ .

The fact that these multiplicities are integers is a strong constraint on the
possible parameter sets $(n, r, c_{2})$ . The eigenvalues $\theta$ and $\tau$ are integers
if $m_{\theta}\neq m_{\tau}$ ; if $m_{\theta}=m_{\tau}$ then we must have $\theta=-\tau=\sqrt{n-1}$ .

There are three basic conditions on the parameters of a cover with
parameter set $(n, r, c_{2})$ :

(F1) $1\leq(r-1)c_{2}\leq n-2$ ,
(F2) if $n$ is even, $c_{2}$ is even,
(F3) $m_{\theta}$ and $m_{\tau}$ are integers.

Here (F1) is an easy consequence of (2.1). For (F2), see Section 3 in
[18]. The theory of association schemes provides the Krein conditions,
which in this setting reduce to the inequality

(2.3) $((r-1)^{2}-1)((n-1)^{2}+\tau^{3})\geq 0$ .

If $r>2$ , this reduces to
$\theta^{3}\geq n-1$ .

There are a number of other conditions that a parameter set must satisfy.
Most of these are given in [18], see also [16], [17].

It is natural to partition the parameter sets of covers by the value
of $a_{1}-c_{2}$ , which we denote by $\delta$ . Evidence for this is provided by the
following, which combines Theorem 3.6 and Lemma 3.7 from [18].

Theorem 2.1. Let $(n, r, c_{2})$ be a parameter set satisfying condi-
tions (F1) and (F2). If $\delta=0$ then (F3) is satisfied, if $\delta=\pm 2$ then
(F3) is satisfied if and only if $n$ is square. For fixed $r$ and $\delta$ , there are
only finitely many parameter sets satisfying (F1), (F2) and (F3), unless
$\delta=-2,0$ or 2.
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\S 3. Examples

In this section we provide a number of examples of antipodal dis-
tance-regular covers of complete graphs.

Let $H$ be the Hoffman-Singleton graph. This a 7-regular graph on

50 vertices with girth five and diameter two, and this implies each path
of length three in $H$ is contained in a unique 5-cycle. Let $u$ be a fixed
vertex in $H$ and let $v_{1}$ , $\ldots$ , $v_{7}$ be the seven neighbours of $u$ . Let $Y$ be the
graph formed by the 42 vertices at distance two from $u$ . Because $X$ has
diameter two and contains no 4-cycles, each vertex in $Y$ is adjacent to
exactly one of the neighbours of $u$ . Therefore $Y$ is regular with valency
six. If two vertices in $Y$ are adjacent to the same neighbour of $u$ then
they must lie at distance at least three in $Y$ , or we would have a triangle
or a 4-cycle in $X$ .

Let $F_{i}$ denote the set of six vertices in $Y$ adjacent to $v_{i}$ . If $x$ in $H$ is
adjacent to $v_{i}$ and $j\neq i$ then $(x, v_{i}, u, v_{j})$ is a path of length three; the
fifth vertex $y$ in the unique 5-cycle that contains it must lie in $F_{j}$ . This
shows that a vertex in $F_{i}$ has exactly one neighbour in $F_{j}$ . Accordingly
$Y$ is a covering graph of a 6-regular graph on seven vertices, necessarily
$K_{7}$ , with the sets $F_{i}$ as fibres. With more effort, it can be shown that
this is an antipodal distance-regular cover. Conversely, any antipodal
distance-regular 6-fold cover of $K_{7}$ is the set of vertices at distance from
a fixed vertex in a copy of the Hoffman-Singleton graph.

A Moore graph is a graph with diameter $d$ and girth $2d+1$ . From
(FI) we know that if an $(n, r, c_{2})$ -cover exists then $r-1\leq n-2$ . If
equality holds, $c_{2}=1$ and so, using (2.1), we also have $a_{1}=0$ . Gardiner
[12] noted that an antipodal distance-regular $(n-1)$ -fold cover of $K_{n}$

is equivalent to the existence of a Moore graph with diameter two and

valency $n$ . (So we would very much like to have a (57, 56, $1)- cover^{I}.$ )
Next we consider regular two-graphs. These have a fairly extensive

literature. A good access point is provided by Seidel’s selected works
[25], which contains a number of papers on them, including two surveys.

A regular two-graph is essentially just an antipodal distance-regular
cover of $K_{n}$ with index two. To introduce them, we first consider arbi-
trary 2-fold covers of $K_{n}$ . Let $f$ be an arc-function of index two on $K_{n}$ .

Then, for any arc $(i,j)$ we have $f(i, j)=f(j, i)$ and so $f$ is determined
by specifying the edges of $K_{n}$ on which it takes the value -1. This set

of edges is just a graph, which we will denote by $G(f)$ . As noted in

the introduction, we may always assume that an arc-function is equal to
the identity on some spanning forest. In $K_{n}$ choose $T$ to be a copy of
$K_{1,n-1}$ and only use arc-functions that are equal to the identity on $T$ ;

this means that $G(f)$ will have an isolated vertex. More thought reveals
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that the subgraph obtained from $G(f)$ by deleting this isolated vertex
is isomorphic to the neighbourhood of a vertex in $K_{n}^{f}$ .

Thus covers of $K_{n}$ with index two can be specified by giving the
neighbourhood of some vertex in the cover. It is not hard to see that
a 2-fold cover of $K_{n}$ is distance-regular if each vertex neighbourhood is
a regular graph and, if distance-regular, it is antipodal. Although any
graph on $n-1$ vertices can occur as the neighbourhood of a vertex in
2-fold cover of $K_{n}$ , not all regular graphs can occur as vertex neighbour-
hoods in distance-regular 2-fold covers.

Lemma 3.1. A graph $X$ can be the neighbourhood of a vertex in $a$

distance regular double cover of a complete graph if and only it is empty,
or is strongly regular with $k=2c_{2}$ .

If we take $X$ to be complete on $r$ vertices, the corresponding 2-fold
cover is two disjoint copies of $K_{n}$ . This is not distance-regular, because
it is not connected. If $X$ is empty then the cover is the graph obtained
by deleting a perfect matching from a complete bipartite graph $K_{n,n}$ .

We call this a trivial distance regular cover of $K_{n}$ .

The cycle on five vertices has $k=2$ and $c_{2}=1$ ; the corresponding
double cover is the icosahedron. If $X$ is the line graph of $K_{3,3}$ then $k=4$

and $c_{2}=2$ , this provides a non-trivial double cover of $K_{10}$ . It can be
shown that if a non-trivial distance-regular double cover of $K_{n}$ exists
then $n$ must be even.

If $X$ is strongly regular and $k=2c_{2}$ then the same relation holds for
the complement $\overline{X}$ of $X$ . This gives a second distance-regular double
cover of $K_{n}$ . The sum of the values of $\delta$ for these two covers is zero, and
if the first has non-trivial eigenvalues $\theta$ and $\tau,the$ second has $-\theta$ and
$-\tau$ . We refer to these two graphs as a complementary pair. There does
not appear to be anything analogous to this when $r>2$ .

A set $\mathcal{L}$ of $m$ lines in $R^{n}$ is equiangular if the angle between any two
distinct lines is the same. Lemmens and Seidel [20] (or [25]) show that,
if the cosine of this angle is $\alpha$ and $n\alpha^{2}<1$ , then

$m\leq\frac{n(1-\alpha^{2})}{1-n\alpha^{2}}$ .

Equality holds if and only if there is a distance-regular 2-fold cover of
$K_{n}$ .

If $u$ is a vertex in the graph $X$ , let $X(u)$ denote the neighbourhood
of $u$ in $X$ . Let $X$ be an $(n, r, c_{2})$ cover with $\delta=0$ . Then any two vertices
in different fibres have the same number of common neighbours, $a_{1}=c_{2}$ .

Define an incidence structure $V$ with the vertices of $X$ as its points and



Covers of Complete Graphs 143

the sets $X(u)$ , for $u$ in $V(X)$ , as its blocks. Then $D$ is a square divisible
design and the map $\sigma$ such that $u^{\sigma}=X(u)$ is a polarity. The classes are
the fibres of $X$ , so two points in the same class do not lie in any block.
Two vertices in different classes lie in exactly $a_{1}$ blocks.

If $X$ is a $(n, n -2, c_{2})$ cover then (F1) implies that $c_{2}=1$ and then
(2.1) yields that $a_{1}=1$ . Hence $\delta=0$ , and we can construct a divisible
design $D$ . Extend $D$ to a new incidence structure $D^{/}$ , as follows. Adjoin
$n+1$ points $p_{1}$ , $\ldots,p_{n}$ together with a point $\infty$ . Let $F_{1}$ , $\ldots$ , $F_{n}$ be the
fibres of $X$ . Define $\ell_{\infty}=\{p_{1}, \ldots,p_{n}\}$ to be one new block, along with
the blocks

$\ell_{i}=\infty\cup p_{i}\cup F_{i}$ , $i=1$ , $\ldots$ , $n$ .

Then $D^{J}$ has $n^{2}-n+1$ points, $n^{2}-n+1$ lines and every pair of distinct
points lies on exactly one line, and we have constructed a projective
plane of order $n$ $-1$ . The polarity $\sigma$ extends to a polarity of $D’$ if we
define $\sigma(\infty)=\ell_{\infty}$ and $\sigma(\ell_{i})=p_{i}$ . Thus our plane has a polarity with
$n$ collinear absolute points; this implies that $n-1$ is even. Conversely,
every projective plane of even order $n$ that has a polarity with exactly
$n$ absolute points, all collinear, determines an $(n, n-2,1)$ -cover. This
construction is ascribed by Biggs [1] to Bondy, who remembered none
of it when I spoke to him about it. (Which is not to say that I doubt
the $attribution^{1}.$ )

The line graph of the Petersen graph is a (5, 3, 1)-cover; if we carry
out the construction just described we get the projective plane of order
four.

Covers with $\delta=-2$ also lead to divisible designs. We still take the
vertices of $X$ to be the points of the design, this time the blocks are
the sets $u\cup X(u)$ . If $u^{\sigma}:=u\cup X(u)$ then $\sigma$ is, once more, a polarity.
The divisible designs here are transversal designs, each block contains
exactly one point from each class.

If $A$ is the adjacency matrix of an $r$-fold cover of $K_{n}$ and $\delta=-2$

then

$\left(\begin{array}{ll}0 & A+I\\A+I & 0\end{array}\right)$

can be shown to be the adjacency matrix of an antipodal distance-regular
$r$ cover of $K_{n,n}$ . Distance-regular covers of complete bipartite graphs are
another interesting class of objects; for more information about them,
see [13].

If $X$ is an $(n, r, c_{2})$ cover with $\delta=2$ we can, once again, construct a
divisible design from it. Let $X_{i}$ denote the graph with the same vertex
set as $X$ , where two vertices are adjacent if and only if they are at
distance $i$ in $X$ . Since $X$ is antipodal, $X_{3}$ consists of $n$ vertex disjoint
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copies of $K_{r}$ . Let $A_{i}$ be the adjacency matrix of $X_{i}$ . Then $A_{1}=A$ (in
our usual notation) and, as

$A_{1}^{2}=(n-1)I+a_{1}A_{1}+c_{2}A_{2}$ .

If we substitute $J-I$ $-A_{1}-A_{3}$ for $A_{2}$ and observe that $A_{2}=A_{1}A_{3}$ ,
this implies that

$(A_{1}+A_{3})^{2}=(n-c_{2}+r-4)I+(c_{2}+2)(J-A_{3})+(r-2)A_{3}$ .

Therefore $A_{1}+A_{3}$ is the incidence matrix of a square divisible design
(with a polarity). When $r=c_{2}+4$ we actually get a symmetric design,
but in this case we have stumbled onto a known construction of symmet-
ric designs from a generalised quadrangle with parameters $(q+1, q-1)$ .

(We will see in the next section that covers such that $\delta=2$ and $r=c_{2}+4$

can be built from a $GQ(q+1, q-1)$ with a spread.) For more information
on these designs, see [23, Ch. 3.6].

The possible parameter sets of a square group divisible design are
constrained by the Bose-Connor conditions [2]. These imply that covers
with parameter sets (11, 3, 3) and (7, 5, 1) do not exist. The latter would,
of course, give rise to a projective plane of order six. The Bose-Connor
conditions only provide extra information when $\delta=0$ ; if $\delta=\pm 2$ then
we already have that $n$ must be a perfect square.

\S 4. Constructions

We will describe some of the main techniques for constructing fam-
ilies of distance-regular covers of $K_{n}$ . The relations between the various
known classes of covers are discussed in [5], which might even appear
one day.

Standard Covers: We call a cover standard if $\delta=0$ . We present a
construction of a class of standard covers due to Neumaier, as described
in [4, 12.5.3]. The graphs produced were first found by Mathon, using a
different technique. Let $q$ be a prime power, let $K$ be the subgroup of
$r$-th powers in the multiplicative group of $F$ and suppose that $-1\in K$ .

Let $V$ be a vector space of dimension two over $F$ , provided with a non-
degenerate symplectic form $B$ . Let $X$ be the graph with vertices the
sets $Kv$ , where $v$ ranges over the non-zero vectors in $V$ , and where $Ku$

and $Kv$ are adjacent if and only if $B(u, v)\in K$ . Then $X$ is a cover with
$\delta=0$ and parameters $(q+1, r, (q-1)/r)$ ; the largest possible value of $r$

is $q-1$ when $q$ is even and $(q-1)/2$ if $q$ is odd.
It is shown in [18] that an antipodal cover of $K_{n}$ with diameter

three is distance-regular if and only if there is a constant, $\mu$ say, such
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that any two non-adjacent vertices in different fibres have exactly $\mu$

common neighbours. (If $\mu$ is well-defined then it is equal to $c_{2}.$ ) This is
a trick that makes it easier to verify that the graphs we have just defined
are distance-regular, and it can be also applied to the constructions that
follow.

In [9], Peter Cameron provides a number of constructions of covers
with $\delta=0$ . It appears that most of these are isomorphic to quotients
of the covers just described. (We will discuss the operation of taking
quotients of covers towards the end of this section.) However the two
classes of graphs he constructs from unitary forms cannot be obtained
in this way, although in one case $\delta=0$ .

Symplectic Covers: Next, let $p$ be a prime, and let $V$ and $U$ be
vector spaces over $GF(p)$ , with dimensions $m$ and $s$ respectively. Let $B$

be a $GF(p)$ -linear alternating form from $V\times V$ to $U$ . Thus, if $v$ and $w$

belong to $V$ then $B(v, w)\in U$ and

$B(v)v)=0$ , $B(v, w)=-B(v, w)$ .

Assume further that, for each element $a$ in $V$ , the linear mapping $B_{a}$

for $V$ to $U$ given by
$B_{a}(v)=B(a, v)$

is onto. Clearly this implies that $dimU\leq dimV$ and, since $B(a, a)=0$ ,
it follows that $dimU<dimV$ . Let $X(B)$ be the graph with vertex set
$V\times U$ , where $(v, a)$ and $(w, b)$ are adjacent in $X$ if and only if they are
distinct and

$B(v, w)=a-b$ .

A straightforward computation shows that this yields a $(p^{m},p^{s},p^{m-s})$

cover. As $\delta=-2$ for this cover, $m$ must be even. If $U$ is 1-dimensional,
this construction reduces to one due to Somma, that in turn generalises
a construction of Thas. For more on these, see Section 12.5 of [4].

We describe a class of examples. Let $\Sigma$ be a set of invertible $m\times m$

skew-symmetric matrices over $GF(p)$ that forms a subspace over $GF(p)$ .

Let $A_{1}$ , $\ldots$ , $A_{s}$ be a basis for this subspace and define $B(v, w)$ to be the
vector with entries $v^{T}A_{1}w$ , $\ldots$ , $v^{T}A_{s}w$ . We must verify that $B_{a}$ is onto.
Let $M(a)$ be the matrix with $a^{T}A_{i}(i=1, \ldots, s)$ as its rows. Then
$M(a)w$ $=B(a, w)$ and, if $x=(x_{1}, \ldots, x_{s}))$ then

$x^{T}M(a)=a^{T}\sum_{i=1}^{s}x_{i}A_{i}$ .

If $x\neq 0$ then $x_{i}A_{i}$ is invertible; this implies that the rows of $M(a)$ are
linearly independent. Consequently $M(a)$ has rank $s$ and $B_{a}$ is onto.
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It is not to difficult to see that changing the basis of $\Sigma$ is equivalent
to replacing $B$ by a form $B^{/}$ , where $B^{/}=gB$ for some invertible $s\times s$

matrix $g$ over $GF(p)$ . Further $X(B)$ and $X(B’)$ are isomorphic.
A spread set $\Sigma$ is a set of $q^{n}$ matrices of order $n\times n$ over $GF(q)$ , such

that the difference of any two matrices in it is invertible. Subtracting a
fixed matrix from each element gives rise to a spread set that contains the
zero matrix, in this case all non-zero matrices in the set are invertible.
Spread sets are equivalent to translation planes; if $\Sigma$ is closed under
addition then the translation plane is a semifield plane. (If $q$ is a power
of the prime $p$ then $\Sigma$ is closed under addition if and only if it is a
subspace over $GF(p).)$ For some more information on this subject, see
[21]. Suppose then that $\Sigma$ is spread set such that is a vector space over
$GF(p)$ . If $ S_{i}\in\Sigma$ let $\hat{S}_{i}$ be the skew symmetric matrix

$\left(\begin{array}{ll}0 & S_{i}\\S_{i}^{T} & 0\end{array}\right)$ .

Then the matrices $\hat{S}_{i}$ , form a subspace of invertible skew symmetric
matrices.

De Caen (private communication) and Cameron [19, Thm. 3.8] have
observed that a subspace of invertible $2m\times 2m$ matrices over a finite
field has dimension at most $m$ . This bound is realised by the semifield
examples we have just described.

The graph $X(B)$ is the Cayley graph for a $p$-group. Let $P$ be the
group with vertex set $V\times U$ and multiplication given by

$(v, a)\oplus(w, b)=(v+w, a+b+B(v, w))$ .

Then $P$ is elementary abelian if $p=2$ , otherwise it is special and has
exponent $p$ . In all cases it acts as a regular group of automorphisms of
$X$ and, if $p$ is odd, the fibres of $X(B)$ are the cosets of the centre of $P$ .

Spreads in Generalised Quadrangles: Our third construction uses
generalised quadrangles and is due to Brouwer [4, Prop. 12.5.2]. A spread
in a generalised quadrangle is a set of lines that partitions its points. Let
$Q$ be a $GQ(s, t)$ with a spread $\Sigma$ . Let $X$ be the graph with the points
of $Q$ as its vertices, with two points adjacent in $X$ if and only if there
are collinear in $Q$ , but the line joining them is not in $\Sigma$ . This yields an
$(st+1_{)}s+1, t-1)$ cover.

More generally, it is possible to construct covers from strongly reg-
ular graphs that have the same parameters as the point graph of a gen-
eralised quadrangle, and have a spread. For details, see [4, Prop. 12.5.2]
or [18]. Note also that a generalised quadrangle may have more than
one spread, and hence may give rise to more than one cover.
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For information about generalised quadrangles and their spreads,
see [23]. The parameter sets of the generalised quadrangles that are
known to have spreads, and the parameters of the related covers, are
listed in the following table.

Here $q$ is a prime power in the first three cases, and a power of two in
the fourth.

Preparata Covers: Recently de Caen, Mathon and Moorhouse [7]
found a new infinite family of covers which are related to the Preparata
codes and have parameter sets $(2^{2t}, 2^{2t-1})2)$ . These can be described
quite succinctly. Assume $q=2^{2t-1}$ and $s=2^{e}$ , where $e$ and $2t-1$ are
coprime. Let $X(q, s)$ be the graph with vertex set

$GF(q)\times GF(2)\times GF(q)$ ,

where $(a, i, \alpha)$ and $(b, j, \beta)$ are adjacent if and only if

$\alpha+\beta=a^{s}b+ab^{s}+(i+j)(a^{s+1}+b^{s+1})$ .

Then $X(q, s)$ is a $(2^{2t}, 2^{2t-1},2)$ -cover. The fibres are the sets of the form

$\{(a, i, u) : u\in GF(q)\}$ .

The maps
$(a, ?., \alpha)\mapsto(a, i, \alpha+u)$ , $u\in GF(q)$

generate the covering group of $X(q, s)$ , which is therefore regular and
isomorphic to the additive group of $GF(q)$ . The graphs $X(q, 2^{e})$ and
$X(q, 2^{f})$ are isomorphic if and only if $e+f$ is zero, modulo $2t+1$ . These
covers are all triangle-free; prior to their construction the only examples
of triangle-free cover known were the (7, 6, 1)-cover coming from the
Hoffman-Singleton graph and the cycle on six vertices.

Another feature of these covers is that corresponding association
schemes are formally dual to the schemes formed by linked systems of
symmetric designs. For information about the connection, see [7]; for
information about these systems see, e.g., [10, p. 148].

Schur Groups: Let f be an arc function of index r on $K_{n}$ , normalised
with respect to some spanning tree and suppose that the covering group
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of $X^{f}$ is abelian. Then the connection group $C$ is abelian and has $r$ dis-

tinct irreducible characters $\chi_{1}$ , $\ldots$ , $\chi_{r)}$ where $\chi_{1}$ is the trivial character.
Let $H_{s}$ be the $n\times n$ matrix with diagonal entries equal to 0 and

$(H_{s})_{i,j}=\chi_{s}(f(i, j))$ .

The set of matrices $\prime H$ $=\{H_{1}, \ldots, H_{r}\}$ has the following properties:

(a) $H_{1}\circ H_{i}=H_{i}$ for all $i$ .

(b) $H_{i}^{*}=H_{i}$ .

(c) $H_{i}\circ H_{j}\in H$ , for all $i$ and $j$ .

(d) The adjacency matrix $A$ of $X^{f}$ is similar to a block-diagonal matrix,
with $H_{1}$ , $\ldots$ , $H_{r}$ as its diagonal blocks.

Here $A\circ B$ denotes the Schur or pointwise product of matrices $A$ and
$B$ . A set of $r$ matrices satisfying (a) and (c) is called a Schur group,
because it is closed under Schur multiplication. Note the entries of the
matrices in a Schur group of order $r$ must be $r$-th roots of unity. As
the irreducible characters of an abelian group $C$ form a multiplicative
group isomorphic to $C$ , the Schur group of a cover with regular abelian
covering group is isomorphic to the covering group.

Now suppose that $X$ is an $(n, r, c_{2})$ -cover with abelian connection
group, and Schur group $\prime H$ $=\{H_{1}, \ldots, H_{r}\}$ . Then $H_{1}=J$ and, when
$2\leq i\leq r_{)}$

(4.1) $H_{i}^{2}-\delta H_{?}$. $-(n-1)I=0$ .

Assume further that the covering group of $X$ has exponent two and
$i\geq 2$ . If $\delta=0$ , then (4.1) implies that $H_{i}$ is a conference matrix for
$i=2$ , $\ldots$ , $r$ . If $\delta=-2$ then $H_{i}+I$ is a Hadamard matrix, and the
matrices $H_{i}+I$ form a Schur group with identity element $J$ . Finally, if
$\delta=2$ then $H_{i}-I$ is a Hadamard matrix. (If we drop the assumption that
the covering group has exponent two, “generalised” Hadamard matrices
result.)

The converse is also true, and is proved in Section 9 of [18].

Theorem 4.1. Let $H$ be a Schur group of $n\times n$ Hermitian ma-
trices with order $r$ , such that

$H_{i}^{2}-\delta H_{i}-(n-1)I=0$

when $2\leq i\leq r$ . Then $\prime H$ determines an $(n, r, c_{2})$ cover of $K_{n}$ with cover
group isomorphic to $H$ .

By way of example, let $q$ be a power of the prime $p$ , let $V$ be a
vector space of dimension $2m$ over $GF(q)$ , let $A$ be a non-degenerate
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alternating bilinear form on $V$ and let $\xi$ be a primitive $q$-th root of
unity. Let $H(A)$ be the matrix with rows and columns indexed by the
entries of $V$ , such that

$H(A)_{u,v}:=\xi^{u^{T}Av}$ .

Then $H_{A}^{2}=q^{2m}I$ and, if $B$ is a second alternating form, then

$H(A)\circ H(B)=H(A+B)$ .

It follows that, if $S$ is subspace of invertible skew-symmetric matrices

over $GF(p)$ , then the matrices $H(S)$ form a Schur group.
The Preparata covers have a regular covering group that is an ele-

mentary abelian 2-group. Hence they give rise to a Schur group of $2^{2n-1}$

symmetric $2^{2n}\times 2^{2n}$ Hadamard matrices with constant diagonal.
If $\prime \mathcal{H}=\{H_{1}, \ldots, H_{r}\}$ is the Schur group of an $(n, r, c_{2})$ cover $X$ and

$i\neq 1$ then $H_{i}$ determines a distance-regular cover, $X_{i}$ say, of $K_{n}$ , with
index equal to the order of $H_{i}$ . It follows that $X$ can be expressed as the
product of distance-regular covers of $K_{n}$ , each with regular cyclic cov-
ering group. The condition that the matrices $H_{i}$ form a Schur group is
equivalent to the condition that the product of the covers $X_{i}$ be distance-
regular. Note that any cover with regular abelian covering group can
always be expressed as a product of covers with cyclic covering groups.

Quotients: There is a useful technique which often enables us to
construct covers of lower index from a given cover of index $r$ . We describe
a special case. Let $X$ be an $r$-fold cover of $K_{n}$ and let $H$ be a group of
automorphisms of $X$ that fixes each fibre as a set. As noted before, $H$

must act semi-regularly and so $|H|$ must divide $r$ . Construct a graph

with the orbits of $H$ as its vertices, with two orbits adjacent if and
only if some vertex in one is adjacent to a vertex in the second. It is
easy to show that this new graph is a cover of $K_{n}$ with index $r/|H|$ ; it

can also be shown that is antipodal and distance regular. For details,

see Section 6 of [18]. The quotienting procedure just described can be
generalised. The only role $H$ plays in the construction is to provide a
nice partition of the vertex set of $X$ . Any equitable partition of $X$ with

each cell contained in a fibre of $X$ is “nice” enough. For details, see
Section 6 of [18]. In all our applications, we will use the group version.

If $X$ is an $(n, r, c_{2})$ cover and $h=|H|$ then the quotient of $X$ over
the orbits of $H$ is a $(n, r/h, hc_{2})$ -cover. This means that the value of $\delta$

is not changed when we form quotients.
But which of our examples admit quotients? Most! The covering

groups of the standard covers obtained from Neumaier’s construction are
regular and cyclic, being quotient groups of the multiplicative group of
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the underlying field. This set of covers is closed under taking quotients.

The covering groups of the symplectic covers are regular and elemen-
tary abelian and, once again, this class is closed under taking quotients.
The covering groups of the Preparata covers of are regular elementary
abelian 2-groups. In this we obtain new covers by taking quotients. (To
be more precise, any quotient with $r^{2}>n$ has not been constructed
in any other way.) The unitary generalised quadrangles, with parame-
ters $(q, q^{2})$ , give rise to covers with regular cyclic covering group. The
corresponding quotients were first found by Cameron [9]. (For more on
these, see also [16].) We cannot realise any new parameter sets by tak-
ing quotients of the covers coming from generalised quadrangles with
parameters $(q, q)$ and $(q-1, q+1)$ . I do not if the covers coming from
generalised quadrangles with parameters $(q+1, q-1)$ have any quo-
tients; it will follow from our next theorem that these covers cannot be
abelian.

Suppose $S$ is the Schur group determined by an $(n, r, c_{2})$ cover with
abelian regular covering group $C$ . Then any non-identity subgroup of
$S$ determines a cover with index equal to its order. The Schur group is
isomorphic to the dual group of $C$ , hence its subgroups correspond to
homomorphic images of $C$ . This implies that taking the cover formed
from a Schur subgroup is equivalent to forming a quotient of the cover.

In combination with taking quotients, the following result is often
useful.

Theorem 4.2 ([18, Thm. 9.2]). Let $X$ be an antipodal distance-
regular cover of $K_{n}$ with index $r$ , and suppose that the covering group of
$X$ is regular and cyclic. If $X$ is not a trivial 2-fold cover of $K_{n}$ , then $r$

divides $n$ .

For example, this can be used to show that the covering group of
a 6-fold cover of $K_{7}$ is trivial. Suppose that $C$ is the covering group of
such a cover $X$ . Then $X$ has parameters (7, 6, 1); hence $\delta=-1$ . If $C$

has a subgroup of order two then, quotient over this yields a $(7, 3, 2)-$

cover while, if $C$ has a subgroup of order three, quotient yields a
(7, 2, 3)-cover. In both cases we find that the eigenvalue multiplicities
are not integers, hence these quotients do not exist. Because $C$ has to
act semi-regularly on a fibre, $|C|$ must divide six. Hence we have shown
that $C$ must be trivial. (Or, to put it another way, the stabiliser of a
vertex in the Hoffman-Singleton graph acts faithfully on the neighbours
of that vertex.)

There is a 4-fold cover of $K_{10}$ with regular abelian covering group;
this shows that Theorem 4.2 does not hold if we replace “cyclic” by
abelian.
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\S 5. Linear association schemes

A graph $X$ is called a translation graph if there is an abelian group
of automorphisms acting regularly on its vertices. For our purposes the
most useful abelian groups are the additive groups of a vector space
$V=V(n, q)$ over a field $F$ of order $q$ . We can construct graphs relative
to $V$ as follows. Let $C$ be a subset of non-zero vectors in $V$ that is closed
under multiplication by-l. Then $X(C)$ is the graph with vertex set $V$ ,

and vectors $u$ and $v$ are adjacent in $x$ if and only if $u-v$ $\in C$ . Thus $X$ is
a Cayley graph for the additive group of $V$ . We say that $X(C)$ is linear
over $F$ is $C$ is closed under multiplication by the non-zero elements of
$F$ .

There is an attractive geometric construction for linear graphs. Let
$\prime p$ be a hyperplane in $n$-dimensional projective space $PG(n, q)$ , and view
72 as the hyperplane at infinity for the affine space $AG(n, q)$ formed by
the points not on $\prime p$ . Choose a subset $\Omega$ in $\prime \mathcal{P}$ and define $X(\Omega)$ to be
the graph with $AG(n, q)$ as its vertex set, where two points $u$ and $v$ are
adjacent if the line $u\vee v$ meets 72 at a point in $\Omega$ . The correspondence
with the previous description is trivial: the subset $\Omega$ determines a set
of lines through the origin in $AG(n)q)$ , and the non-zero points in these
lines form the set C. The valency of $X(\Omega)$ is $(q-1)|\Omega|$ , and this one of
its eigenvalues. The remaining eigenvalues of $X(\Omega)$ are also determined
geometrically by the following result from [15, Lemma 12.9.3].

Lemma 5.1. Let $X(\Omega)$ be a linear graph, where $\Omega$ isa subset of
the projective space $\prime p$ over $GF(q)$ , and let $n_{x}$ denote the number of
hyperplanes of $\prime \mathcal{P}$ that meet $\Omega$ in exactly $x$ points. Then $qx-|\Omega|$ is an

eigenvalue of $X$ with multiplicity $(q-1)n_{x}$ .

We need yet a third version of our construction. Let $C$ be a linear
code in $V(n, q)$ . The coset graph of $C$ has the cosets of $C$ as its vertices,
where two cosets are adjacent if there is a vector in one at Hamming
distance one from a vector in the second. We may prevent multiple
edges occurring by assuming that the minimum distance of $C$ is at least
three. It is an easy exercise to show that the coset graph of a linear code
with minimum distance three is linear. The following result is essentially
Theorem 11.1.10 from Brouwer, Cohen and Neumaier [4].

Theorem 5.2. Let $X$ be a distance-regular graph that is not $a$

self-complementary conference graph. If $X$ is a translation graph with
respect to an elementary abelian $p$ -group then it is the coset graph of $a$

completely regular linear code with minimum distance at least three.
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Because we will only apply this result to graphs with diameter three,

all we need to say about conference graphs is that they have diameter
two. And it will suffice to define a linear code to be completely reg-
ular if its coset graph is distance-regular. (For more information, see
Chapter 11 in either [4] or [15].) Our application of Theorem 5.2 is as
follows. Suppose $X$ is an antipodal distance-regular graph that is lin-
ear over $GF(ps)$ , and let $G$ be a proper, non-identity, subgroup of the
covering group of $X$ . As $X$ is linear, there is an elementary abelian
$p$-group, $T$ say, acting regularly on $X$ . The fibres of $X$ are a system of

imprimitivity for $T$ and, as $T$ is abelian, the subgroup of $T$ fixing each
fibre is non-trivial and acts regularly on the vertices in a fibre. Thus this

subgroup is the covering group of $X$ . Accordingly, if $G$ is a subgroup
of the covering group of $X$ then the quotient of $X$ over the partition
formed by the orbits of $G$ is antipodal and distance-regular. It is also
clearly a translation graph for the elementary abelian quotient group
$T/G$ , whence we deduce, using Theorem 5.2, that it is linear over some
finite field of characteristic $p$ . (Although possibly not over the field we
started with.)

We turn to linear association schemes. We may view an association
scheme with $d$ classes on the vertex set $V$ as a set of graphs $X_{1}$ , $\ldots$ , $X_{d}$

on $V$ whose edges partition the edge set of the complete graph on $V$ . We
call an association scheme linear if each graph in it is linear, relative to

the same vector space of course, Therefore a linear association scheme
is determined by giving a partition of the points of a projective space.
But then we are faced with the question: which partitions give rise to
association schemes? There is a nice answer to this.

Now suppose that $\omega=(\Omega_{1}, \ldots, \Omega_{d})$ is a partition of the points of $\prime \mathcal{P}$

with $d$ cells. Define two hyperplanes $H$ and $K$ of $\prime p$ to be $\omega$ equivalent
if

$|H\cap\Omega_{?}.|=|K\cap\Omega_{i}|$ , $i=1$ , $\ldots)d$ .

This gives rise to a partition of the hyperplanes of 72 into $\omega$-equivalence
classes, that we will call the partition induced by $\omega$ .

For a proof of the next result, due to Bridges and Mena, see [3] or
[15, Thm. 12.10.1].

Theorem 5.3. Let $\prime p$ be the projective space formed by the points
at infinity of an affine space of dimension $n$ over $GF(q)$ . Let $\omega$ $=$

$(\Omega_{1}, \ldots, \Omega_{d})$ be a partition of the points of $\prime p$ and let $\omega^{*}$ be the induced
partition on the hyperplanes of $\prime \mathcal{P}$ . Then $\omega^{*}$ has at least as many cells as
$\omega$ and, equality holds if and only if the graphs $X(\Omega_{1})$ , $\ldots$ , $X(\Omega_{d})$ form
an association scheme with $d$ classes.
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Call a partition $\omega$ of the points of $7^{\supset}$ equitable if the dual partition
$\omega^{*}$ has the same number of cells as $\omega$ . If $\omega$ is equitable then it follows
(see, e.g., [15, p. 250]) that $\omega$ is the partition induced by $\omega^{*}$ on the
hyperplanes of the space dual to $\prime p$ . Hence $\omega^{*}$ determines a second
association scheme that is dual, in the sense of Delsarte [11, \S 2.6], to
the scheme determined by $\omega$ . (We discuss duality in a little more detail
in Section 7.) The hyperplanes in a given cell $\Omega_{i}^{*}$ of $\omega^{*}$ determine an
eigenspace with dimension $(q-1)|\Omega_{i}^{*}|$ for the association scheme given
by $\omega$ .

As one example, we may take $\omega$ to be the orbits of a group $\Gamma$ of
collineations of 72; this is always equitable. The cells of $\omega^{*}$ are the orbits
of $\Gamma$ on hyperplanes.

Let $\Omega_{1}$ , $\ldots$ , $\Omega_{d}$ be a partition of the points of $7^{\supset}$ and let $X_{i}$ denote
$X(\Omega_{i})$ . If $a$ and $b$ are affine points, let $p_{i,j}(a, b)$ denote the number of
affine points $x$ such that $a$ is adjacent to $x$ in $X_{i}$ and $b$ is adjacent $x$ in
$X_{j}$ . Then the line $a\vee x$ must meet 72 in a point $p$ of $\Omega_{i}$ , while $b\vee x$

meets it in a point $q$ of $\Omega_{j}$ . As $a$ , $b$ and $x$ are coplanar, $p$ , $q$ and the
point $z=(a\vee b)\cap P$ must be collinear. It follows that, if $i\neq j$ and $z$

does not lie in $\Omega_{i}$ or $\Omega_{j}$ , then

(5.1)
$p_{i,j}(a, b)=\sum_{p}|\ell\cap\Omega_{i}||\ell\cap\Omega_{j}|$

,

where the sum is over all lines in $\prime p$ on $z$ . If $\omega$ is equitable then
$X_{1}$ , $\ldots$ , $X_{d}$ form an association scheme, and the value $p_{i,j}(a, b)$ is deter-
mined by the index $k$ such that $\{a, b\}$ is an edge of $X_{k}$ . In this case the

sum in (5.1) is independent of the choice of $z$ in $\Omega_{k}$ , and therefore it is
equal to

(5.2)
$|\Omega_{k}|^{-1}\sum_{\ell\in P}|\ell\cap\Omega_{i}||\ell\cap\Omega_{j}||\ell\cap\Omega_{k}|$

.

If $\omega$ is equitable and $\{a, b\}$ is an edge of $X_{k}$ then we write $p_{i,j}(k)$ in
place of $p_{i,j}(a, b)$ . These are the intersection numbers of the association
scheme.

Theorem 5.4. Let $\prime p$ be a hyperplane in a projective space over
$GF(q)$ , let $\omega$ be an equitable partition of $\prime p$ with cells $\Omega_{1},$

$\ldots$ , $\Omega_{d}$ . Assume
$i$ , $j$ and $k$ are distinct and non-zero. Then the intersection numbers
$p_{i,j}(k)$ are given as follows.
(a) $p_{i,j}(0)=\delta_{ij}(q-1)|\Omega_{i}|$ .

(b) $p_{i,j}(k)=|\Omega_{k}|^{-1}\sum_{l\in 7^{\supset}}|\ell\cap\Omega_{i}||\ell\cap\Omega_{j}||\ell\cap\Omega_{k}|$ .

(c) $p_{i,i}(k)=|\Omega_{k}|^{-1}\sum_{\ell\in P}(|\ell\cap\Omega_{i}|-1)|\ell\cap\Omega_{i}||\ell\cap\Omega_{k}|$ .

(d) $p_{k,k}(k)=q-2+|\Omega_{k}|^{-1}\sum_{\ell\in P}|\ell\cap\Omega_{k}|(|\ell\cap\Omega_{k}|-1)(|\ell\cap\Omega_{k}|-2)$ .
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An association scheme $X_{1}$ , $\ldots$ , $X_{d}$ is primitive if each graph $X_{i}$ is

connected. If this scheme is given by an equitable partition $\omega$ of 72, it
is easy to show that it is primitive if and only if each cell of $\omega$ spans $\prime \mathcal{P}$ .

In particular, $X(\Omega)$ is a disjoint union of cliques if and only if $\Omega$ is a
subspace of $\prime p$ .

Linear association schemes are discussed at some length in Chap-
ter 12 of [15].

\S 6. Linear covers

We are going to study linear antipodal distance-regular covers of
$K_{n}$ . To begin, we present a class of examples due to Thas. (For further
information) see [4, 12.5].) Let $\prime \mathcal{P}$ be a hyperplane in $PG(3)q)$ , where
$q$ is even. Let $\Omega_{1}$ be an oval in $\prime p$ , that is, a set of $q+1$ points with
no three collinear. Let $\Omega_{3}$ be the nucleus of the oval, and let $\Omega_{2}$ be
the remaining points. We claim that $X(\Omega_{1})$ is a $(q^{2}, q, q)$ -cover. This
will follow readily from Theorem 5.4 if we show that our partition is
equitable. But this is easy. All lines on the nucleus meet the oval in

exactly one point. Any line not on the nucleus is not a tangent, hence
it is either a secant, meeting the oval in exactly two points, or a passant

with no point in common with the oval. Thus the induced partition on
lines has exactly three classes, and therefore $(\Omega_{1}, \Omega_{2}, \Omega_{3})$ is equitable.

The fibres of the cover we get are the sets of points on affine lines
that meet the nucleus of the oval. The transvections in $PG(3, q)$ with
axis $\prime \mathcal{P}$ and $\Omega_{3}$ as centre form the covering group, which is thus regular
and isomorphic to the additive group of $GF(q)$ . Hence we may take
quotients and obtain covers with parameters $(q^{2}, q/t, qt)$ , for any divisor
$t$ of $q$ .

Our next task is to characterise the equitable partitions of projective
space that give rise to such graphs.

Theorem 6.1. Let $\prime p$ be a hyperplane in $PG(n, q)$ and let $\omega=$

$(\Omega_{1}, \Omega_{2}, \Omega_{3})$ be an equitable partition of $\prime\rho$ . Then $X(\Omega_{1})$ is an antipodal

distance-regular cover of a complete graph if and only $?.f$:

(a) $\Omega_{1}$ is not a subspace,
(b) any line of $\prime\rho$ that meets $\Omega_{1}$ in two or more points is disjoint from
$\Omega_{3}$ and
(c) $\Omega_{3}$ is a subspace.

Proof. Because $\omega$ is equitable, the graphs $X(\Omega_{i})$ do form an as-
sociation scheme A. As $\Omega_{1}$ is not a subspace) there is line $\ell$ such that
$|\ell\cap\Omega_{1}|\geq 2$ but $\ell$ is not contained in $\Omega_{1}$ . From condition (b) it follows
that $\ell\cap\Omega_{2}\neq\emptyset$ , and now Theorem 5.4 yields that $p_{1,1}(2)>0$ . Now
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choose $\ell$ to be a line meeting both $\Omega_{1}$ and $\Omega_{3}$ . Then (b) implies that $\ell$

intersects $\Omega_{1}$ in exactly one point, and (c) implies that it intersects $\Omega_{3}$ in
exactly one point. Therefore $\ell$ must contain at least one point from $\Omega_{2}$ ,

whence Theorem 5.4 yields that $p_{1,2}(3)>0$ . This implies that $X(\Omega_{1})$

has diameter three, and consequently $\vee 4$ is metric relative to $X(\Omega_{3})$ , that
is, $X(\Omega_{3})$ is distance regular.

Because $\Omega_{3}$ is a subspace, being “equal or at distance three” in
$X(\Omega_{1})$ is an equivalence relation on its vertices. Therefore $X$ is antipodal
with diameter three, and must be an antipodal cover of a complete
graph. Q.E.D.

Suppose $\Omega_{3}$ has dimension $t$ . Then condition (b) in the theorem is
equivalent to the condition that each $(t+1)$ -dimensional subspace of 72
on $\Omega_{3}$ must intersect $\Omega_{1}$ in exactly one point. A subspace $U$ of $\prime P$ is a
complement to a subspace $V$ if it is disjoint from it and

$dimU+dimV=dimP$ .

If $U$ is a complement to $V$ then the partition $\dot{o}fP$ with cells $U$ , $V$ and
$\prime p\backslash (U\cup V)$ is equitable. Further any line that meets $U$ in at least two
points is contained in $U,and$ consequently is disjoint from $V$ . If $V$ is a
subspace of $P$ , define a subset $\Omega$ of $7^{\supset}$ to be a pseudo-complement for $V$

if:

(1) The partition $(\Omega, V, \prime P -(\Omega\cup V))$ is equitable.
(2) Any line that meets $\Omega$ in at least two points is disjoint from $V$ .

Then Theorem 6.1 implies that if $\Omega_{3}$ is a subspace of $\prime p$ and $\Omega_{1}$ is a
pseudo-complement to it then it is a subspace of $X(\Omega_{1})$ is an antipodal

distance-regular graph with diameter three.
Suppose that $\prime p$ is a hyperplane in $PG(d+1, q)$ , $(\Omega_{1}, \Omega_{2}, \Omega_{3})$ is an

equitable partition of $\prime \mathcal{P}$ such that $\Omega_{3}$ is a subspace of dimension $t$ and
$\Omega_{1}$ is a pseudo-complement to $\Omega_{3}$ that is not a subspace. Then

$|\Omega_{1}|=\frac{q^{d-t}-1}{q-1}$ ,

$|\Omega_{2}|=(q-1)\frac{q^{d-t}-1}{q-1}\frac{q^{t+1}-1}{q-1}$ ,

$|\Omega_{3}|=\frac{q^{t+1}-1}{q-1}$ .

Further $X(\Omega_{1})$ is a cover of a complete graph, having parameters

$n$ $=q^{d-t}$ , $r=q^{t+1}$ .
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As $r\leq n-1$ , we see that
$d\geq 2t+2$ .

In the next section we will find more restrictions on the parameters
of a linear cover.

\S 7. Parameters of linear covers

Assume $X_{1}$ , $\ldots$ , $X_{d}$ form an association scheme $A$ on $n$ vertices.
The valency of $X_{i}$ is denoted by $v_{i}$ . Set $v_{0}$ equal to 1. The Bose-Mesner
algebra of the scheme has $d+1$ distinct eigenspaces, with dimensions
$m_{0}$ , $\ldots$ , $m_{d}$ , where $m_{0}=1$ . These are the multiplicities of the scheme.
The Frame quotient of the scheme is defined to be

$n^{d-1}\prod_{i=1}^{d}\frac{v_{i}}{m_{i}}$ .

It is always an integer. (For details, see [4, p. 46].) Our scheme has a
$(d+1)\times(d+1)$ matrix of eigenvalues $P_{)}$ and a matrix of dual eigenvalues
$Q$ , of the same order, and $PQ=nI$ . A second association scheme is
formally dual to $\vee 4$ if its matrix of eigenvalues is $Q$ ; this scheme has
valencies $m_{0}$ , $\ldots$ , $m_{d}$ and multiplicities $v_{0}$ , $\ldots$ , $v_{d}$ .

If $\vee 4$ is a translation scheme then we may identify its vertices with
the elements of an abelian group $G$ . In this case there is a well-defined
construction of a dual scheme, with the irreducible characters of $G$ as
its vertices. A dual scheme is formally dual in the sense just defined. If
$\omega$ is an equitable partition of a projective space with induced partition
$\omega^{*}$ then the schemes determined by $\omega$ and $\omega^{*}$ are dual, so all linear
schemes have duals. (For more background on duality, see [4, 2.10(B)],
[15, Ch. 12] and $[11_{)} \S 2.6]$ .)

Now we are in a position to prove the main result of this section.

Theorem 7.1. Let $X$ be an $(n, r, c_{2})$ -cover with $p^{a}$ vertices, where
$p$ is a prime, and suppose there is an association scheme that is formally
dual to the scheme determined by X. Then $p=2$ , $n$ is a perfect square
and either $\delta=-2$ or $r=2$ and $\delta=2$ .

Proof Let $\theta$ and $\tau$ be the non-trivial eigenvalues of $X$ . We first
prove that $\theta-\tau$ divides $n$ , which implies that it is power of $p$ .

We compute the Frame quotient $F^{*}$ of the formally dual scheme.

We have

(7.1) $m_{\theta}m_{\tau}=-\frac{n^{2}(r-1)^{2}\theta\tau}{(\theta-\tau)^{2}}=\frac{n^{2}(r-1)^{2}(n-1)}{(\theta-\tau)^{2}}$ .
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and so

$F^{*}$ $=$ $(nr)^{2}\frac{(n-1)m_{\theta}m_{\tau}}{(n-1)\cdot(r-1)(n-1)\cdot(r-1)}$

$=$ $(nr)^{2}\frac{n^{2}(r-1)^{2}(n-1)}{(r-1)^{2}(n-1)(\theta-\tau)^{2}}$

$n^{4}r^{2}$

$=$

$\overline{(\theta-\tau)^{2}}$

.

By hypothesis, both $n$ and $r$ are powers of $q$ and so we deduce that $\theta-\tau$

is a power of the prime $p$ . As $m_{\theta}m_{\tau}$ is an integer it now follows from
(7.1) that $(\theta-\tau)^{2}$ divides $n^{2}$ .

As $n$ and $r$ are both powers of $p$ , it follows from the identity

$n-2-\delta=rc_{2}$

that $p$ divides $\delta+2$ . Because $\theta$ and $\tau$ are zeros of the quadratic $x^{2}-$

$\delta x-(n-1)$ , we find that $\delta=\theta+\tau$ and

(7.2) $(\theta-\tau)^{2}=\delta^{2}-4+4n$ ,

consequently $\theta-\tau$ divides $\delta^{2}-4$ . If $\delta=-2$ , then (7.2) yields that $4n$

is a perfect square, $\theta-\tau$ is even and $p=2$ .

Hence we assume that $\delta\neq-2$ . Suppose that $p$ is odd. Then, as
$\theta-\tau$ is a power of $p$ and as $\theta-\tau$ divides $\delta^{2}-4$ , it follows that $\theta-\tau$

divides $\delta-2$ or $\delta+2$ . Accordingly

$\theta-\tau\leq\delta+2=\theta+\tau+2$ .

This implies that $\tau$ , the least eigenvalue of $X$ , is at least-l and therefore
$X$ is disjoint union of cliques.

So $p=2$ if $\delta\neq-2$ . Assume $n$ $=2^{a}$ and $\theta-\tau=2^{s}$ , where $s\leq a$ .
As $\theta\tau=1-n$ , we find that

(7.3) $(\theta+\tau)^{2}=(\theta-\tau)^{2}+4\theta\tau=4(2^{2s-2}-2^{a}+1)$ ,

whence $2^{2s-2}-2^{a}+1$ is a perfect square. Therefore there is an integer
$\lambda$ such that

(7.4) $2^{2s-2}-2^{a}+1=(2^{s-1}-\lambda)^{2}=2^{2s-2}-2^{s}\lambda+\lambda^{2}$ .

Consequently
$\lambda 2^{s}-2^{a}=\lambda^{2}-1$ ,
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implying that $2^{s}$ divides $(\lambda-1)(\lambda+1)$ . Hence $2^{s-1}\leq\lambda+1$ , so $ 2^{s-1}-\lambda\leq$

$1$ and (7.4) now yields that

$2^{2s-2}-2^{a}+1=1$ .

Now (7.3) implies that $(\theta+\tau)^{2}=4$ . As we have assumed $\delta\neq-2$ , we
must have that $\delta=2$ .

The identity $n$ $-2-\delta=rc_{2}$ now yields that $r$ divides 4. If $r=4$

then

$c_{2}=\frac{n}{4}-1$

and so $c_{2}$ is odd, or $n=4$ . As $r\leq n-1$ , we cannot have $n=4$ and, by
our feasibility Condition (F2) in Section 2, we know that $c_{2}$ is even if $n$

is even.
We have shown that, if $\delta\neq-2$ then $\delta=2$ and $r=2$ . A two-fold

cover of $K_{n}$ such that $\delta=2$ is one of a complementary pair with a cover
with $\delta=-2$ . Therefore $n$ is a perfect square in this case too. Q.E.D.

One consequence of this result is that, in odd characteristic, any
pseudo-complement to a subspace is a subspace.

We derive another consequence of our work. Let us say that the
association scheme determined by an equitable partition of $PG(d, q)$ has
dimension $d$ over $GF(q)$ . Any partition of a projective line is equitable,
so there is little to say in that case.

Lemma 7.2. Let $X$ be antipodal distance-regular cover of a com-
plete graph that is linear over $GF(q)$ with dimension two and has $\delta=-2$ .

Then $X=X(\Omega)$ , where $\Omega$ is an oval.

Proof. Suppose $X$ is constructed from the equitable partition

$(\Omega_{1}, \Omega_{2}, \Omega_{3})$ .

Because $d=2$ , we have $t=0$ , so $\Omega_{3}$ is a point and $|\Omega_{1}|=q+1$ . Further

$r=q$ and $|X|=q^{3}$ . As $\delta=-2$ , we have $c_{2}=q$ and $a_{1}=q-2$ . Now
Theorem 5.4(d) yields that no line meets $\Omega_{1}$ in more than two points,
and therefore $\Omega$ is an oval. Q.E.D.

The Hermitian forms graph Her $(2, 3)$ has an antipodal distance-
regular cover with diameter four and index three. (See [4, $11.3H].$ ) In
analogy to our last result, Tilla Schade [24] has shown that there is a
unique linear cover of this graph, and also given a new construction of it.
Both these tasks are much more difficult than what we have just done.



Covers of Complete Graphs 159

\S 8. Codes

Let $7^{\supset}$ be a hyperplane in $PG(d+1, q)$ , let $\omega$ be an equitable partition
of it, with cells $\Omega_{1}$ , $\ldots$ , $\Omega_{s}$ and let $\omega^{*}$ be the induced partition on the
hyperplanes of $7^{\supset}$ , with $\Omega_{1}^{*}$ , $\ldots$ , $\Omega_{s}^{*}$ as its cells. Let $\Omega$ denote $\Omega_{i}$ and
let $M$ be a matrix whose columns are homogeneous coordinate vectors
for the points in $\Omega$ . We call the row space of $\Omega$ its code, and denote it by
$C(\Omega)$ . Each code word can be written in the form $x^{T}M$ . As $x^{T}$ can be

viewed as the homogeneous coordinate vector of a hyperplane, $H$ say, in
72, it follows that the weight of $x^{T}M$ is equal to

$|\Omega|-|H\cap\Omega|$ .

All hyperplanes in the same cell of $\Omega^{*}$ give rise to words of the same
weight, $w_{i}$ say. Hence the weight enumerator of $C(\Omega)$ is

$1+(q-1)\sum_{i=1}^{s}|\Omega_{i}^{*}|x^{w_{i}}$ .

The code words in $C(\Omega)$ form an $s$-class association scheme, where
a pair of words $(u, v)$ is in the $i$-th class if $u-v$ has weight $w_{i}$ . By a
result of Delsarte [4, Thm. 2.10.13], its dual code is completely regular.
The coset graph of the dual code is $X(\Omega)$ .

We now consider the codes obtained from subsets $\Omega$ such that $X(\Omega)$

is an antipodal distance-regular cover of complete graph. Assume that
$X(\Omega)$ has dimension $d$ cover $GF(2)$ , that its index $r$ is $2^{t+1}$ and that
$d-t$ $=2e$ . Then $X$ has parameters

$n=2^{2e})r=2^{t+1}$ ; $\theta=2^{e}-1$ , $\tau=-2^{e}-1$

and the multiplicities of the eigenvalues of $X(\Omega)$ are 1, $2^{2e}-1$ and

$2^{e-1}(2^{t+1}-1)(2^{e}-1)$ , $2^{e-1}(2^{t+1}-1)(2^{e}+1)$ .

Hence the weights and frequencies of the non-zero words in $C(\Omega)$ are as
follows:

Our code $C(\Omega)$ has odd length, if we add the binary complement of
each code word and then add a parity check to each word, the weights
and frequencies of the non-zero words in the resulting code are as follows:
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Denote this code by $K(\Omega)$ . As $r<n$ we must have $t\leq 2e-2$ . If
$t=2e-2$ then $K(\Omega)$ has the same weight distribution as the Kerdock
code of the same length. (See, e.g., [22, p. 456].) Since it follows from
Brouwer and Tolhuizen [6] that there is no linear code with the same
weight distribution as a Kerdock code, we deduce that a cover with
$t=2e-2$ cannot be linear.

The Preparata covers have parameter sets of the form $(2^{2e}, 2^{2e-1},2)$ ;
the above argument shows that that these covers cannot be linear. But
more is true: if $e>2$ then from [7] we know that the automorphism
group of a Preparata cover is not vertex transitive.

\S 9. Questions

A. As $\delta=\pm 2$ for a linear $(n, r, c_{2})$ -cover, it follows that $r$ divides $n$

and, as $n$ must be a power of two, $r\leq n/2$ . Our work in Section 8 shows
that we cannot have $r$ equal to $n/2$ . Therefore $r\leq n/4$ . We ask:

(1) Is there a linear $(n, r, c_{2})$ cover with $r^{2}>n$ ?

The smallest open case is when $n=64$ . Here there are quotients of
a Preparata cover with $r=16$ , but we do not know if any are linear.
The linear covers we do have are obtained as quotients of graphs $X(\Omega)$ ,
where $\Omega$ is an oval in $PG(2, q)$ and $q$ is even; for these $r^{2}\leq n$ .

B. A number of covers arise as the set of vertices at distance two from a
vertex in a strongly regular graph. Examples are the 6-fold cover of $K_{7}$ ,
and the covers obtained from generalised quadrangles with parameters
$(q-1, q+1)$ , which arise as second neighbourhoods in the point graphs
of the symplectic generalised quadrangles. The strongly regular graphs
such that each second neighbourhood is an antipodal distance-regular
graph are determined in [14]. However there are examples of strongly
regular graphs where just one second neighbourhood is a cover. This
prompts the following:

(2) Are there covers which arise as second neighbourhoods of strongly
regular graphs, with parameter sets different from those given in [14]?

The smallest open cases arise from covers with parameter sets

(9.1)(33, 3, 9), (36, 4, 8), (36, 6, 6).
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If $X$ is a $(n, r, c_{2})$ -cover and occurs as the second neighbourhood of a
strongly regular graph $Y$ , then the parameters of $Y$ are determined as
follows. Set $\gamma$ equal to $c_{2}(c_{2}-1)/(n-c_{2})$ . Then $Y$ has $(r+1)n+c_{2}+\gamma$

vertices, valency $ n-1+c_{2}+\gamma$ , two adjacent vertices have exactly $ a_{1}+\gamma$

common neighbours and two vertices at distance two have exactly $ c_{2}+\gamma$

common neighbours. It is clearly necessary that $\gamma$ be an integer; it is also
necessary to check that the output of the formulas for the multiplicities
of the eigenvalues of $Y$ are integers. In the three cases in (9.1), I do not
even know that strongly regular graphs with the required parameters
exist, let alone have the required second neighbourhoods.

Remark. Don de Caen (private communication) has shown that a
(33) 3, 9)-cover cannot occur as the second neighbourhood of a strongly
regular graph.

C. We have seen that covers with $\delta$ in {-2, 0, 2} are special, and we
have large classes of examples with $\delta$ equal to 0 or-2. The supply with
$\delta=2$ is much more limited, the only examples arise from generalised
quadrangles with parameters $(q+1, q-1)$ and then $n$ is a power of two.
Thus we ask:

(3) Is there a cover with $\delta=2$ where $n$ is divisible by an odd prime?

All the covers we know with $\delta=-2$ have a prime power number of
vertices; hence we also ask:

(4) Is there a cover of $K_{n}$ such that $\delta=-2$ and $n$ is not a prime power?

There are a number of parameter sets such that $\delta=\pm 2$ and $n$ $=36$ for
which no covers have been found, but all known feasibility conditions
are satisfied. In particular, the second and third parameter sets in (9.1)
have $\delta=2$ and -2 respectively.

Finally we list the parameter sets with $n\leq 25$ where we do not
know if a cover exists.
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Of course, the existence of covers 1. or 3. would imply the existence
of a projective plane of order 12 or 18 respectively. These entries are
included only for completeness. The cover of $K_{22}$ is interesting in that
it would be triangle-free.
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The Character Table of ${}^{2}E_{6}(2)$

Acting on the Cosets of $Fi_{22}$

A. A. Ivanov1 and Jan Saxl

Abstract.

We consider the permutation action of $E\cong 2E_{6}(2)$ on the cosets
of its maximal subgroup $F\cong Fi_{22}$ . We calculate the intersection
matrices and character table of the centralizer algebra corresponding
to this action. There are three reasons for the interest in this partic-
ular representation. Firstly, it is a sporadic multiplicity-free action
of a simple group of exceptional Lie type. Secondly, $E$ and $F$ are
$Y$ groups $Y_{333}$ and $Y_{332}$ , respectively, factorized over their centers.
We believe that the intersection matrices we have calculated might
be useful for a computer-free identification of $Y_{333}$ with $2^{3}$ . $2E_{6}(2)$ .

Thirdly, the permutation group considered is the one induced by the
involution centralizer on the set of points fixed by an involution in
the action of the Baby Monster $F_{2}$ on the cosets of the Fischer group
$Fi_{23}$ . The latter action has the largest rank (namely 23) among the
primitive multiplicity-free actions of the sporadic simple groups and
the calculation of its character table is an open problem.

\S 1. Introduction

Let us recall some basic facts concerning permutation groups and
their centralizer algebras from [BI] and [BCN]. Let $X$ be the set of
(right) cosets of a subgroup $H$ in a finite group $G$ . Then $G$ induces a
transitive action on $X$ by translations and $H$ coincides with the stabilizer
$G(x_{0})$ of the coset $x_{0}\in X$ containing the identity (that is, of $H$ itself).
We assume that the action is faithful, that is $H$ does not contain a
non-trivial normal subgroup of $G$ . Let $\chi$ be the permutation character
of $G$ acting on $X$ , that is, $\chi(g)=\#\{x|x\in X, x^{g}=x\}$ for $g$

$\in G$ .
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Let $V$ be the space of complex valued functions defined on $X$ and let
$v(x)$ denote the characteristic function of $x\in X$ . Then $G$ acts naturally
on $V$ , preserving on it the inner product $\langle. |.\rangle$ with respect to which
$B$ $=\{v(x)|x\in X\}$ is an orthonormal basis. In this basis the linear
transformation of $V$ induced by $g\in G$ is given by the matrix $M(g)$ whose
$(x, y)$-entry is 1 if $y^{g}=x$ and 0 otherwise. Clearly $\chi(g)=tr(M(g))$ .

Let $\Gamma_{0}$ , $\Gamma_{1}$ , $\ldots$ , $\Gamma_{r-1}$ be the orbits of $G$ on the set of ordered pairs
of elements of $X$ . Then the $\Gamma_{i}$ are called the orbitals or 2-orbits and $r$

is known as the rank of the permutation group $(G, X)$ . It is standard
to assume that $\Gamma_{0}=\{(x, x) |x\in X\}$ is the diagonal orbital. In what

follows we assume that all $\Gamma_{i}$ are symmetrical, that is, for $x$ , $y$ $\in X$ ,
$(x, y)\in\Gamma_{i}$ if and only if $(y, x)\in\Gamma_{i}$ . Let $\chi=\psi_{0}+\psi_{1}+\cdots+\psi_{s-1}$

be the decomposition of $\chi$ into a sum of $G$-irreducibles. The condition
assumed is equivalent to the following: $r=s$ , the irreducibles $\psi_{i}$ are
pairwise different (that is, $\chi$ is multiplicity-free) and the Frobenius -

Schur indicator of every $\psi_{i}$ is 1. It is also standard to take $\psi_{0}$ to be the
principal character of $G$ .

Let $\Gamma_{i}(x)=\{y |(x, y)\in\Gamma_{i}\}$ , $0\leq i\leq r-1$ and let $k_{i}=|\Gamma_{i}(x)|$ .

One can consider $\Gamma_{i}$ as the set of edges of an undirected graph on $X$

and we will identify $\Gamma_{i}$ with this graph. Then $\Gamma_{i}(x)$ is the set of vertices
adjacent to $x$ in $\Gamma_{i}$ and $k_{i}$ is the valency of $\Gamma_{i}$ . Let $A_{i}$ be the adjacency
matrix of $\Gamma_{i}$ , that is, a matrix, whose rows and columns are indexed by
the elements of $X$ and the $(x, y)$ -entry is 1 if $(x, y)\in\Gamma_{i}$ and 0 otherwise.
We can consider $A_{i}$ as a linear transformation of $V$ written in the basis
$B$ . The matrices $A_{i}$ for $1\leq i\leq r-1$ form a linear basis of the algebra $C$

(the centralizer algebra) consisting of the matrices which commute with
$M(g)$ for every $g$

$\in G$ . In particular

$A_{i}\cdot A_{j}=\sum_{k=0}^{r-1}p_{ij}^{k}A_{k}$ .

The structure constant $p_{ij}^{k}$ is equal to the number of vertices in $\Gamma_{j}(x)$

adjacent to a fixed vertex from $\Gamma_{k}(x)$ in the graph (determined by)
$\Gamma_{i}$ . Let $B_{i}$ denote the $r\times r$ matrix whose $(j, k)$ -entry is equal to
$p_{ij}^{k}$ , $0\leq i$ , $j$ , $k\leq r-1$ . Then $B_{i}$ is called the intersection matrix of
the graph $\Gamma_{i}$ . We will always append such a matrix by the column
$(k_{0}, k_{1}, \ldots, k_{r-1})^{t}$ . The mapping $A_{i}\mapsto B_{i}(0\leq i\leq r-1)$ induces a
faithful linear representation of $C$ ; in particular $A_{i}$ and $B_{i}$ have the same
minimal polynomial.

Let us consider the centralizer algebra from a different point of view.
The $G$-module $V$ possesses a decomposition $V=V_{0}\oplus V_{1}\oplus\cdots\oplus V_{r-1}$

into the direct sum of minimal $G$-invariant subspaces. These subspaces
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are pairwise orthogonal with respect to the inner product $\langle. |.\rangle$ and they
support pairwise non-isomorphic irreducible representations of $G$ . We
can assume that the irreducible constituent $\psi_{j}$ of $\chi$ is the character of
$G$ acting on $V_{j}$ , $0\leq j\leq r-1$ . Let $E_{j}$ be the linear transformation of $V$

which acts as the identity on $V_{j}$ and maps every $w\in V_{k}$ for $k\neq j$ to the
zero vector. Then $E_{j}$ belongs to $C$ , moreover $E_{0}$ , $E_{1}$ , $\ldots$ , $E_{r-1}$ is a linear
basis of $C$ consisting of primitive idempotents (that is, $E_{i}\cdot E_{j}=\delta_{ij}E_{i}$ ).

Since $A_{i}$ commutes with the action of $G$ on $V$ , by Schur’s lemma
it preserves every $V_{j}$ as a whole and multiplies every vector of $V_{j}$ by
a scalar, which we denote by $p_{i}(j)$ . This number is an entry of the
transformation matrix between the two bases of $C$ :

$A_{i}=\sum_{j=0}^{r-1}p_{i}(j)E_{j}$ .

So $p_{i}(0)$ , $\ldots$ , $p_{i}(r-1)$ are the eigenvalues (non-necessarily distinct) of
$A_{i}$ and hence of the intersection matrix $B_{i}$ as well. It is standard to
write the inverse transformation as follows:

$E_{j}=(1/n)\sum_{i=0}^{r-1}q_{j}(i)A_{i}$ ,

where $n$ $=|X|$ . It is known that $q_{j}(i)=p_{i}(j)\cdot m_{j}/k_{i}$ . As above, $k_{i}$ is
the valency of $\Gamma_{i}$ and $m_{j}$ is the dimension of $V_{j}$ that is the rank of $E_{j}$

and can be computed by the formulae:

$m_{j}=n$ . $(\sum_{i=0}^{r-1}p_{i}(j)^{2}/k_{i})^{-1}$ .

If $(x, y)\in\Gamma_{i}$ then $(1/n)q_{j}(i)$ is the $(x, y)$ entry of $E_{j}$ written in the basis
$B$ . This implies an important geometrical interpretation of the $q_{j}(i)$ . As
above, let $v(x)\in B$ be the characteristic function of $x\in X$ and let $v_{j}(x)$

be the projection of $v(x)$ into $V_{j}$ , that is $v_{j}(x)=E_{j}v(x)$ . If $(x, y)\in\Gamma_{i}$

then the inner product $\langle v_{j}(x)|v_{j}(y)\rangle$ equals to $(1/n)q_{j}(i)$ . So after
rescaling we obtain a realization of the elements of $X$ as unit vectors
$w_{j}(x)=(n/m_{j})v_{j}(x)$ in $V_{j}$ such that for $(x, y)\in\Gamma_{i}$ the inner product
$\langle w_{j}(x)|w_{j}(y)\rangle$ equals to $q_{j}(i)/m_{j}=p_{i}(j)/k_{i}$ for $0\leq i$ , $j\leq r-1$ .

The vector $w_{j}(x)$ is fixed by $G(x)$ . Since $\psi_{j}$ appears in $\chi$ with mul-
tiplicity 1, the Frobenius reciprocity rule implies that the subspace of
$V_{j}$ fixed by $G(x)$ is 1-dimensional. This determines $w_{j}(x)$ up to multi-
plication by a scalar. Since the action of $G$ on every $V_{i}$ can be realized
by real matrices, the scalar is plus or minus one.
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The matrix, whose $(i, j)$ -entry is $p_{i}(j)$ is known as the character
table of the centralizer algebra C. We will append such a matrix by the
column $(m_{0}, \ldots, m_{r-1})^{t}$ .

In the present paper we compute the intersection matrices and char-
acter table of the centralizer algebra corresponding to the action of
$2E_{6}(2)$ on the cosets of $Fi_{22}$ . We use a considerable amount of unpub-
lished information on this action and on smaller configurations. The per-
mutation character and 2-point stabilizers were determined by S. P. Nor-
ton using the fact that $2E_{6}(2)$ is a section in the Monster. Later the char-
acter was independently computed by T. Breuer and K. Lux. In our work
we rely on the information on the permutation character. At the same
time we present a self-contained identification of the 2-point stabilizers.
To meet the needs of the present project we asked L. H. Soicher to com-
pute the intersection matrices of the primitive action of $O_{8}^{+}(2)$ : $S_{3}$ of
degree 11200. Also, at our request S. A. Linton has computed the sizes
of double cosets in $Fi_{22}$ of a particular 2-point stabilizer, isomorphic to
$2^{10}$ : $M_{22}$ , and all other such stabilizers. This is a very delicate infor-
mation which has played a crucial role in our arguments. We have also
used a computer program by D. V. Pasechnik which calculates the com-
plete set of intersection matrices and the character table of a centralizer
algebra from a single intersection matrix (having pairwise distinct eigen-
values). Finally, S. V. Shpectorov has suggested many improvements of
the exposition of the paper. We are very grateful to all these people for
their helpful cooperation.

Throughout the paper, given a group $G$ we write $\overline{G}$ to denote
$G/O_{2}(G)$ .

\S 2. Preliminaries

The group $E\cong 2E_{6}(2)$ is a flag-transitive automorphism group of a
Tits building $\mathcal{E}$ with the diagram

$\mapsto\mapsto\mapsto 02244$ .

The elements of $\mathcal{E}$ will be called points, lines, planes and symplecta,
respectively (nodes from the left to the right in the diagram). There

is a natural bijection between the point set $\triangle$ of $\mathcal{E}$ and the conjugacy
class of central involutions in $E$ . We will not distinguish between these
two sets. The following lemma describes the action of $E$ on $\triangle$ (see for
instance [Ivn] $)$ .

Lemma 2.1. The group $E$ acts transitively on $\triangle$ . Let $ u\in\triangle$ and
let $E(u)$ be the stabilizer of $u$ in E. Then $E(u)\cong 2_{+}^{1+20}$ : $U_{6}(2)$ is the
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centralizer of $u$ as a central involution in E. $E(u)$ has five orbits $\Sigma_{1}(u)=$

$\{u\}$ , $\Sigma_{2}(u)$ , $\Sigma_{2}’(u)$ , $\Sigma_{4}(u)$ and $\Sigma_{3}(u)$ on $\triangle$ with lengths 1, 1782, 44352,

1824768 and 2097152, respectively. If $v\in\Sigma_{i}^{(’)}(u)$ the the product of
$u$ and $v$ (as involutions in $E$ ) has order $i$ . The permutation character
$1_{E(u)}^{E}$ of $E$ acting on $\triangle$ is $1a+1938a+48620a+1828332a+2089164a$ .

The subdegree 1782 of $E$ acting on $\triangle$ corresponds to the $co$ lhnearity
graph of $\mathcal{E}$ i.e., to the graph where two points are adjacent if they are
incident to a common line. The intersection matrix of this graph is the
following:

0 1 0 0 0 1
1782 85 27 0 1782

0 672 27 42 0 44352
0 1024 1728 715 891 1824768
0 0 0 1024 891 2097152

In the above notation let $L=O_{2}(E(u))$ , $U=E(u)/L\cong U_{6}(2)$ and
$\Pi$ be the residue of $u$ in $\mathcal{E}$ on which $U$ acts flag-transitively. Then $\Pi$

is a rank 3 dual polar space of unitary type. The orbits of $L$ on $\Sigma_{2}(u)$

are of length 2 and they correspond to 891 lines of $\mathcal{E}$ incident to $u$ . The
orbits of $L$ on $\Sigma_{2}’(u)$ have length 64 and they correspond to the 693
symplecta incident to $u$ . Every symplecton incident to $u$ is also incident
to 54 points from $\Sigma_{2}(u)$ and to 64 points from $\Sigma_{2}’(u)$ . The subgraph in
the $co$ lhnearity graph induced by the points incident to a symplecton is
strongly regular with parameters $v=119$ , $k=54$ , $\lambda=21$ , $\mu=27$ .

\S 3. The permutation character

The fact that $Fi_{22}$ is a subgroup of $2E_{6}(2)$ was first established
by B. Fischer and his arguments were published in [Coo], Section 6.
In terms of $Y$-groups the $Fi_{22}$ subgroups in $2E_{6}(2)$ where classified by
S. P. Norton in [Nor]. The permutation character of $E$ acting on the
cosets of $F$ was computed by S. P. Norton and independently by
T. Breuer and K. Lux at Aachen.

Lemma 3.1. The group $E\cong 2E_{6}(2)$ contains three classes of $\max-$

imal subgroups $F\cong Fi_{22}$ which are permuted transitively by outer auto-
morphisms of E. The permutation character $1_{F}^{E}$ is the following: $1a+$

$1938a+48620a+1828332a+2909907x+29099070a+278555200a+$
$872972$ lOOx7 where $x=a$ , $b$ or $c$ depending on the choice of the E-
conjugacy class containing $F$ .
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In the above lemma the permutation character is given in its decom-
position into irreducibles and each irreducible is presented by its degree.
In case there are several characters with the same degree we use letters
$a$ , $b$ , etc. according to the ordering of the characters in [Atlas].

In order to simplify the references we present below the values of $1_{F}^{E}$

on elements of certain classes. We use the upper case letters to name
$E$-conjugacy classes and the lower case letters to name $F$ classes.

$E$ classes $E$-normalizers $F$ classes $F$-normalizers the values of $1_{F}^{E}$

1A $2E_{6}(2)$ la $Fi_{22}$ 1185415168
$2A$ $2^{1+20}$ : $U_{6}(2)$ $2a$ 2 $\cdot U_{6}(2)$ 1048576
$3B$ $(3\times O_{8}^{+}(2) : 3)2$ $3c$ $3.3^{4}$ : $2^{3}.S_{4}.S_{3}$ 11200
$3C$ $3^{1+6}.2^{3+6}.(S_{3}\times 3)$ $3b$ , $3d$ 4+576
$5A$ $(D_{10}xA_{8}).2$ $5a$ $F_{20}\times S_{5}$ 168
$7B$ $(F_{21}\times L_{2}(7)).2$ $7a$ $F_{42}\times S_{3}$ 28
$9A$ $9a$

11A $11a$

It is straightforward to reconstruct the fusion of $F$-classes into E-
classes (at least for elements of small order) directly from the permuta-
tion character $1_{F}^{E}$ . The structure of E- and $F$-normalizers in the above
table is taken from [Atlas] for elements of order 1, 2 and 3. For the
elements of order 5 and 7 the relevant information is obtained below, in
Lemmas 6.4 and 6.3, respectively.

\S 4. Some properties of $Fi_{22}$

We will make use of the description of maximal subgroups in the
Fischer group $Fi_{22}$ obtained in [KW] (see also [Atlas]).

Lemma 4.1. The Fischer group $F\cong Fi_{22}$ contains (up to conju-
gacy in its automorphism group) 12 classes of maximal subgroups with
representatives $H_{i}$ , $1\leq i\leq 12$ as given on the next page. The $Aut(F)-$

conjugacy classes containing $H_{2}$ and $H_{11}$ split into two $F$ classes each.

Let $\cup--$ be the transposition graph of $F$ . The vertices $of-\cup-$ are the
Fischer transpositions of $F$ ( $2a$-involutions); two of them are adjacent
if they commute. $H_{1}$ is the stabilizer of a transposition $\alpha\in---$ . The
action induced by $H_{1}$ on the $set---(\alpha)$ of transpositions adjacent to $\alpha$ is
similar to the action of $\overline{H}_{1}\cong U_{6}(2)$ on the set of planes of the dual polar
space $\Pi$ . Two transpositions $from---(\alpha)$ are adjacent if and only if the
corresponding planes in $\Pi$ are incident to a common line. This implies
that every maximal clique $of---$ has size 22. $H_{4}$ is the stabilizer of such
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$i$ $[F : H_{i}]$ $H_{i}$ Remarks

1 3510 2 $\cdot U_{6}(2)$ $N(2a)$

2 14080 $O_{7}(3)$

3 61776 $O_{8}^{+}(2)$ : $S_{3}$

4 142155 $2^{10}$ : $M_{22}$ $N(2a_{22}2b_{231}2c_{770})$

$5$ 694980 $2^{6}$ : $Sp_{6}(2)$ $N(2b^{6})$

$67$

1216215 (
$2\times 2_{+ }^{1+8}$

: 2
$N(3a)N(2b)$

1647360 $S_{3}\times U_{4}(3)$ : $2_{2}$

8 3592512 $2F_{4}(2)’$

9 3648645 $2^{5+8}$ : $(S_{3}\times A_{6})$ $N(2b^{4})$

10 12812800 $3_{+}^{1+6}$ : $2^{3+4}$ : $3^{2}$ : 2 $N(3b)$

11 17791488 $S_{10}$

12 679311360 $M_{12}$

a clique and it is known to contain exactly 22 transpositions (the ones
in the clique). In what follows we will denote this subgroup simply by
$H$ .

Let $\Omega$ denote the set of maximal cliques in the transposition graph
$\cup--$ naturally identified with the cosets of $H\cong 2^{10}$ : $M_{22}$ in $F\cong Fi_{22}$ .

The following result was proved in [RW].

Lemma 4.2. The subgroup $H\cong 2^{10}$ : $M_{22}$ acting on $\Omega$ has 8
orbits $\Omega_{0}$ , $\ldots$ , $\Omega_{7}$ with lengths 1, 154, 1024, 3696, 4928; 11264, 42240
and 78848 and stabilizers $2^{10}$ : $(M_{22})$ , $2^{9}.(2^{4} : A_{6})$ , $1.(M_{22})$ , $2^{6}.(2^{4} : S_{5})$ ,
$2^{4}.(2^{4} : A_{6})$ , $2.(L_{3}(4))$ , $2^{3}.(2^{3} : L_{3}(2))$ and $1.(2^{4} : A_{6})$ , respectively. Here
when a stabilizer $Z$ is written as $X.(Y)$ , we mean that $X=Z\cap O_{2}(H)$

and $Y$ is the image of $Z$ in $\overline{H}\cong M_{22}$ . The permutation character $1_{H}^{F}$ is

the following: $1a+78a+429a+1430a+3080a+30030a+32032a+$
$75075a$ .

Let $z_{i}\in\Omega_{i}$ , $0\leq i\leq 7$ , so that $y=z_{0}$ is the clique stabilized by
$H$ . The intersection $y\cap z_{i}$ has size 22, 6, 2 and 1 for $i=0,1$ , 4 and 5,

respectively and is empty in the remaining cases. As above, let $\alpha$ be the
transposition centralized by $H_{1}$ . Then $\alpha$ stabilizes $ z\in\Omega$ if and only if
$\alpha\in z$ . This implies the following.

Lemma 4.3. The set $\Omega(\alpha)$ of elements in $\Omega$ fixed by $\alpha$ has size
891,$\cdot$

$H_{1}$ induces on $\Omega(\alpha)$ the action of $\overline{H}_{1}$ as on the points of $\Pi$ . Assume
that $\omega_{0}\in\Omega(\alpha)$ . Then $\Omega(\alpha)$ intersects $\Omega_{i}$ in 1, 42, 336 and 512 elements

for $i=0,1$ , 4 and 5, respectively.
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Let $S$ be the Steiner system $S(3,6,22)$ defined on $z_{0}$ and acted on
naturally by $\overline{H}\cong M_{22}$ . We see from Lemma 4.2 that the orbits of
$O_{2}(H)$ on $\Omega_{i}$ have lengths 1, 2, $2^{10},2^{4},2^{6},2^{9},2^{7}$ and $2^{10}$ for $i=0$ to
7, respectively. Moreover, the action of $\overline{H}\cong M_{22}$ on the set of $O_{2}(H)-$

orbits on $\Omega_{i}$ is trivial for $i=0$ and 2; as on the points of $S$ for $i=5$ ; as
on the blocks of $S$ for $i=1,4$ and 7; as on the duads for $i=3$ and as on
the special octets for $i=6$ . The intersection matrix of $F$ acting on the
cosets of $H$ which correspond to the subdegree 154 and the character
table of the centralizer algebra are given below (cf. [ILLSS]).

0 1 0 0 0 0 0 0 1
154 5 0 0 0 0 154

0 120 5 0 21 7 0 0 3696
0 32 0 1 0 14 77 1 4928
0 0 64 0 21 0 0 16 11264
0 0 80 120 0 21 0 60 42240
0 0 0 16 0 0 0 1024
0 0 0 16 112 112 77 76 78848

1 154 3696 4928 11264 42240 1024 78848 1
1 -77 924 1232 -1408 -5280 -320 4928 78

49 546 -532 1184 -960 -176 -112 429
-35 294 -364 -400 120 160 224 1430

1 37 186 248 32 120 88 -712 3080
13 6 -28 -112 120 -32 32 30030

1 -17 24 32 32 120 -20 -172 32032
1 1 -30 -4 32 -96 16 80 75075

We will make use of the following two lemmas. The former comes
from [ILLSS] and direct calculations with the permutation character,
while the latter follows from calculations performed by S. A. Lint (cf.
remark before Lemma 10.1).

Lemma 4.4. The group $F\cong Fi_{22}$ acting on the cosets of $ H_{5}\cong$

$2^{6}$ : $Sp_{6}(2)$ has rank 10 with subdegrees 1, 135, 1260, 2304, 8640, 10080,
45360, 143360 and 241920 (twice). An element of type $5a$ from $F$ fixes
exactly five cosets of $H_{5}$ in $F$ .

Lemma 4.5. The subgroup $H_{5}\cong 2^{6}$ : $Sp_{6}(2)$ acting on $\Omega$ has 6
orbits with lengths135,756,8640,15120,48384 and 69120.
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\S 5. The action of $F$ on the central involutions of $E$

Lemma 5.1. Let $\triangle$ be the set of central involutions in E. Then
$F$ acting on $\triangle$ has 4 orbits $\triangle_{i}$ , $1\leq i\leq 4$ with lengths 3510, 142155,
3127410 and 694980. The stabilizer in $F$ of an involution from $\triangle_{i}$ is
isomorphic to 2 $\cdot U_{6}(2)$ , 2 : $M_{22},2^{10}.L_{3}(4)$ and $2^{6}$ : $Sp_{6}(2)$ , for $i=1$ ,

2, 3 and 4, respectively.

Proof. It follows from the table, given in Section 3, that $\triangle_{1}$ defined
as $\triangle\cap F$ is the class of $2a$-involutions in $F$ and hence it forms an $F$-orbit
with stabilizer $H_{1}\cong 2\cdot U_{6}(2)$ . We will use notation introduced in and af-
ter Lemma 2.1 and assume that $u\in\triangle_{1}$ . Then $F(u)\cong 2\cdot U_{6}(2)$ intersects
$L$ in a subgroup of order 2 and $F(u)L/L$ $=U\cong U_{6}(2)$ . The subgroup
$F(u)$ has two orbits, say $\triangle_{1}^{2}(u)$ and $\triangle_{1}^{3}(u)$ on $\triangle_{1}-\{u\}$ consisting of
transpositions whose products with $u$ have order 2 and 3, respectively.
By Lemma 2.1 we see that $\triangle_{1}^{3}(u)\subseteq\Sigma_{3}(u)$ and either $\triangle_{1}^{2}(u)\subseteq\Sigma_{2}(u)$ or
$\triangle_{1}^{2}(u)\subseteq\Sigma_{2}’(u)$ . The intersection matrix given after Lemma 2.1 shows
that in the collinearity graph of $\mathcal{E}$ (which corresponds to $\Sigma_{2}(u)$ ) every
vertex $v\in\Sigma_{3}(u)$ is at distance 3 from $u$ and hence $\triangle_{1}^{2}(u)\subseteq\Sigma_{2}’(u)$ . Since
$F(u)/\langle u\rangle\cong U_{6}(2)$ acts on $\triangle_{1}^{2}(u)$ as it acts on the symplecta incident to
$u$ and for every $u’\in\Sigma_{2}(u)$ there is a unique symplecton incident to both
$u$ and $u’$ , we conclude that for every symplecton of $\mathcal{E}$ incident to $u$ there
is exactly one point in $\triangle_{1}^{2}(u)$ which is also incident to this symplecton.
Consider the action of $F(u)$ on $\Sigma_{2}(u)$ . Clearly $\langle u\rangle$ is the kernel of the
action and since the stabilizer in $U_{6}(2)$ of a point from $\Pi$ (isomorphic to
$2^{9}.L_{3}(4))$ does not contain subgroups of index 2, $F(u)$ has two orbits,
say $\Sigma_{2}^{1}(u)$ and $\Sigma_{2}^{2}(u)$ on $\Sigma_{2}(u)$ . Every line of $\mathcal{E}$ incident to $u$ is also
incident to one point from $\Sigma_{2}^{1}(u)$ and to one point from $\Sigma_{2}^{2}(u)$ .

Let $w\in\triangle_{1}^{2}(u)$ and let $\{u, x_{1}, x_{2}\}$ be a line incident to the symplec-
ton containing the pair $\{u, w\}$ , where $x_{i}\in\Sigma_{2}^{i}(u)$ , $i=1,2$ . Then, in
the collinearity graph of $\mathcal{E}$ , the point $w$ is incident to exactly one of $x_{1}$

and $x_{2}$ , say to $x_{1}$ . Now $(F(u)\cap F(x_{1}))L/L$ is the stabilizer in $U$ of a
point in $\Pi$ and hence it acts (doubly) transitively on the 21 planes of $\Pi$

incident to this point. Hence in the collinearity graph of $\mathcal{E}$ , the vertex
$x_{1}$ is adjacent to exactly 22 vertices from $\triangle_{1}$ while $x_{2}$ is adjacent to
only one such vertex, namely to $u$ . Let $\triangle_{2}$ and $\triangle s$ be the orbits of $F$ on
$\triangle$ which contain $\Sigma_{2}^{1}(u)$ and $\Sigma_{2}^{2}(u)$ , respectively. Then the above argu-
ments show that $F(x_{2})\cong 2.2^{9}.L_{3}(4)$ is contained in $F(u)$ while $F(x_{1})$

contains $F(x_{2})$ as a subgroup of index 22 and it is straightforward to
see that $F(x_{1})\cong 2^{10}.M_{22}$ (a conjugate of $H$ ). Finally, comparison of
the characters $1_{E(u)}^{E}$ and $1_{F}^{E}$ shows that $F$ has four orbits on $\triangle$ . Hence
$\triangle_{4}$ defined as $\triangle-\triangle_{1}-\triangle_{2}-\triangle_{3}$ is an $F$-orbit of length 694980 and if



174 A. A. Ivanov and J. Saxl

follows from Lemma 4.1 that for $v\in\triangle_{4}$ we have $F(v)\cong 2^{6}$ : $Sp_{6}(2)$ (a
conjugate of $H_{5}$ ). Q.E.D.

Let $X$ be the set of cosets of $F$ in $E$ and let $x$ be the coset fixed by $F$

(that is $F$ itself). For a subset $Y$ of $X$ let $E(Y)$ denote the elementwise
stabilizer of $Y$ in $E$ (we write $E$ ( $a$ , $b$ , $\ldots$ ) instead of $E(\{a,$ $b$ , $\ldots\})$ ). By
Lemma 3.10 the character $1_{F}^{E}$ has 8 irreducible components, so $F$ has 7
orbits on $X-\{x\}$ . We will use Lemma 5.1 to identify some of them.

Lemma 5.2. Let $M$ be a maximal subgroups in $F=E(x)$ con-
jugate to $H$ or $H_{5}$ . Then there is an element $z\in X-\{x\}$ such that
$E(x, z)=M$ . Moreover, the setwise stabilizer of $\{x, z\}$ in $E$ is $ M\times\langle\tau\rangle$

where $\tau$ is a central involution in $E$ .

Proof. By Lemma 5.1 there is a unique involution $\tau\in\triangle-F$ which
commutes with $M$ . This implies that $E(x, z)\geq M$ for $z=x^{\tau}$ . Since $M$

is maximal in $F$ and $F$ does not fix cosets in $X$ other than $x$ , we obtain
$E(x, z)=H$ . Q.E.D.

Notice that the orbit $\triangle_{3}$ of $F$ on $\triangle$ can not be used in similar way to
produce a new $F$-orbit on $X$ . In fact, an involution from $\triangle_{3}$ (say $x_{2}$ as
in Lemma 5.1) conjugates the coset $x$ into the orbit with the stabilizer
$2^{10}$ : $M_{22}$ . Indeed, $x_{2}=ux_{1}$ and since $u$ is contained in $F$ , it stabilizes
$x$ .

The above lemma shows that $H$ and $H_{5}$ are 2-point stabilizers in
the action of $E$ on $X$ . From the properties of $E$ as a Lie type group we
can deduce another 2-point stabilizer.

Lemma 5.3. Let $H_{8}\cong 2F_{4}(2)’$ be a maximal subgroup in $ F\cong$

$E(x)$ , isomorphic to the Tits group. Then $H_{8}$ stabilizes a vertex from
$X-\{x\}$ .

Proof. Let $V$ be the natural 27-dimensional $GF(4)$ -module for $E$ .

It follows from [JLPW] or Proposition 5.4.12 in [KL], that $V$ , restricted
to $H_{8}$ , has two composition factors $V_{1}$ and $V_{2}$ with dimensions 1 and 26,
respectively. Substituting $V$ by its dual, if necessary, we assume that $H_{8}$

fixes a 1-dimensional subspace $V_{1}$ in $V$ . Comparing the ordinary and
modular character tables of $H_{8}$ , we conclude that $V_{2}$ is the reduction
modulo 2 of a real, irreducible 26-dimensional representations of $H_{8}$ . Let
$N\cong 13.3$ be the normalizer of a Sylow 13-subgroup in $H_{8}$ . Computing
the inner product of the principal character of $N$ and its character on
$V_{2}$ (or, rather, on the real version of $V_{2}$ ) we obtain 0. Hence $N$ fixes in
$V$ no 1-dimensional subspaces besides $V_{1}$ . On the other hand a maximal
subgroup $F_{4}(2)$ in $E$ fixes a 1-dimensional subspace in $V$ and contains
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$N$ . Hence $H_{8}$ is contained in the full stabilizer of $V_{1}$ in $E$ , isomorphic to
$F_{4}(2)$ . The list of maximal subgroups in $F_{4}(2)$ obtained in [NW] shows
that the normalizer in $F_{4}(2)$ of every subgroup $2F_{4}(2)’$ is isomorphic to
$2F_{4}(2)$ . This means that $N_{E}(H_{8})$ contains $H_{8}$ properly and the result
follows. Q.E.D.

\S 6. Fixed points subgraphs

Let $\tau$ be the unique involution from $\triangle$ which commutes with $H$

(compare Lemma 5.2) and let $y=x^{\tau}$ . Let $\Gamma$ be the graph on $X$ with
the edge set $\{(x, y)^{g}|g\in E\}$ . For $z\in X$ let $\Gamma(z)$ denote the set of
vertices of $\Gamma$ adjacent to $z$ . Then $F=E(x)$ acts on $\Gamma(x)$ as on the
cosets of $H=E(x, y)$ . For an ordered pair $(a, b)$ of adjacent vertices in
$\Gamma$ let $\Gamma(a, b;n)$ denote the orbit of length $n$ of $E(a, b)\cong 2^{10}$ : $M_{22}$ on
$\Gamma(a)$ . The possible values of $n$ are listed in Lemma 4.2.

Let $\Gamma_{2}(x)$ be the orbit of $F$ on $X-\{x\}$ which contains the image of $x$

under the unique involution from $\triangle$ which commutes with $H_{5}$ (compare
Lemma 5.2). Then the action of $F$ on $\Gamma_{2}(x)$ is similar to its action on
the cosets of $H_{5}$ .

We are going to determine the structure of subgraphs in $\Gamma$ induced
by vertices fixed by certain (prime order) elements $d\in E$ . Since we
are interested in non-trivial subgraphs, we only take $d$ from $E(x, y)$ .

This leaves us with a number of possibilities, among which we find the
classes 11A, $7B$ , $5A$ , $3B$ and $2A$ of $E$ . Let $d$ be the conjugacy class
of $E$ containing $d$ ; let $ D=\langle d\rangle$ be the cyclic subgroup generated by $d$ ;

$M(d)=N_{E}(D)$ and $\Phi(cl)$ be the set of elements from $X$ fixed by $d$ .

Finally, let $\Gamma(d)$ be the subgraph of $\Gamma$ induced by $\Phi(cl)$ . Notice that the
size of $\Phi(d)$ (i.e., the number of cosets from $X$ fixed by $d$ ) is equal to
the value of $1_{F}^{E}$ on $d$ ; so we can use the values from the table in Section
3. This table shows that in each of the five cases we consider, $M(cl)$ acts
transitively on $\Phi(d)$ since only one conjugacy class of $F$ fuses to $cl$ . In
addition, if $d=11A$ , $7B$ or $5A$ , then $D$ is a Sylow subgroup in $F$ and
Hence $N_{F}(D)$ acts transitively on $\Phi(cl)\cap\Theta$ for every orbit $\Theta$ of $F$ on $X$ .

Lemma 6.1. $\Gamma(11A)$ is the complete graph on 3 vertices and
$M(11A)$ induces on it the group $S_{3}$ .

Proof. The value of $1_{F}^{E}$ on elements of type 11A is 3, hence $|\Phi(11A)|$

$=3$ . Since $|\Gamma(x)|=2mod 11$ , we have $\Phi(11A)\subseteq\{x\}\cup\Gamma(x)$ . By the
paragraph before the lemma $M(11A)$ is transitive on $\Phi(11A)$ and $N_{F}(D)$

is transitive on $\Phi(11A)\cap\Gamma(x)$ , so the result follows. Q.E.D.
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By our choice of $d$ we have $x$ , $y\in\Gamma(11A)$ . Since $\Gamma(x, y; 1024)$ is an
orbit of $E(x, y)$ on $\Gamma(x)-\{y\}$ whose length is not divisible by 11, the
third vertex of $\Gamma(11A)$ must be in this orbit and we have the following.

Corollary 6.2. $\Gamma(x, $y; $1024)\subseteq\Gamma(y)$ .

Lemma 6.3. $M(7B)$ induces on $\Phi(7B)$ a primitive action of de-
gree 28 which is similar to the action of $PGL_{2}(7)$ on the cosets of $2\times S_{3}$ ;
the action has rank 5 with subdegrees 1, 3, 6 (twice) and 12. The inter-
section matrix of $\Gamma(7B)$ is the following.

0 1 0 0 0 1
6 2 2 1 0 6
0 0 0 3
0 2 4 2 4 12
0 0 0 2 2 6

Proof. The value of $1_{F}^{E}$ on elements of type $7B$ is 28. By the para-
graph before Lem ma 6.1 $M(7B)$ induces on $\Phi(7B)$ a transitive action
(of degree 28) and $N_{F}(D)$ acts transitively on $\Phi(7B)\cap\Theta$ for every orbit
$\Theta$ of $F$ on $X$ . From the order we observe that $N_{F}(D)$ is contained in
a maximal subgroup $H_{11}\cong S_{10}$ of $F$ and hence $N_{F}(D)\cong F_{42}\times S_{3}$

and $C_{F}(D)\cong 7\times S_{3}$ . From the permutation character $1_{H}^{F}$ given in
Lemma 4.2, we get $|\Phi(7B)\cap\Gamma(x)|=6$ . Since $\overline{H}\cong M_{22}$ acting on the
non-trivial elements of $O_{2}(H)$ has three orbits with lengths 22, 231 and
770, one can see (compare [Atlas]) that $N_{H}(D)\cong F_{21}\times 2$ . Comparing
the structures of $N_{F}(D)$ , $C_{F}(D)$ and $N_{H}(D)$ , we conclude: (a) if $K$

is the elementwise stabilizer in $M(7B)$ of the connected component of
$\Gamma(7B)$ containing $x$ , then $K\cong F_{21}$ ; (b) $NF(D)/K$ $\cong 2\times S_{3}$ ; (c) $C_{F}(D)$

acting on $\Phi(7B)\cap\Gamma(x)$ has two orbits of length 3 each; (d) there is a
subgroup $T$ of order 3 in $NF(D)-K$ which commutes with $K$ . Let $S$ be
the setwise stabilizer in $M(7B)$ of the connected component of $\Gamma(7B)$

which contains $x$ and let $\hat{S}=S/K$ . The connected component has 7,

14 or 28 vertices and hence $|\hat{S}|=2^{a}\cdot 3\cdot 7$ for $a=2,3$ or 4, respec-

tively. By Sylow theorem $\hat{S}$ contains a subgroup of order 21. Suppose
this subgroup is cyclic. Then by (d) $F$ contains a subgroup $T$ of order
3 such that $N_{E}(T)$ has order divisible by 49. Since there are no such

subgroups, $\hat{S}$ contains $F_{21}$ . Since $\hat{S}$ also contains $N_{F}(D)/K$ $\cong 2\times S_{3}$ ,

it is easy to show that $\hat{S}$ is non-solvable. The non-abelian composition

factor of $\hat{S}$ must be $PSL_{2}(7)$ and since $NF(D)/K$ $\cong 2\times S_{3}$ contains

no normal subgroups of $\hat{S}$ , we obtain $\hat{S}\cong PGL_{2}(7)$ . This means that
$M(7B)$ acts on $\Phi(7B)$ as $PGL_{2}(7)$ acts on the antifiags of the projective
plane of order 2. There are two orbitals of valency 6 with respect to this
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action and $\Gamma(7B)$ is characterized by the property that it splits under
the restriction to $PSL_{2}(7)$ . Q.E.D.

Lemma 6.4. $M(5A)$ induces on $\Phi(5A)$ an action of degree 168
which is similar to the action of $S_{8}$ on the cosets of $S_{5}\times 2$ (having two
orbits with lengths 2 and 6 in the natural action of $S_{8}$ ); the action has
rank 6 with subdegrees 1, 5, 12, 30 and 60 (twice). The intersection
matrix corresponding to $\Gamma(5A)?.S$ as given below. The 2-point stabilizers

of the action (ordered in accordance with the rows of the intersection
matrix) are $S_{5}\times 2$ , $D_{8}\times 2$ , $Z_{4}$ , $S_{4}\times 2,2^{2}$ and $F_{20}$ .

0 1 0 0 0 0 1
30 8 8 6 2 0 30
0 16 9 0 12 5 60
0 1 0 0 2 0 5
0 4 12 24 10 20 60
0 0 1 0 4 5 12

Proof We know from [Atlas] the orders of the normalizers of $D$

in $F$ and $E$ . This tells us that $N_{F}(D)<S_{10}<F$ and $N_{E}(D)<$

$(A_{5}\times A_{8}).2<O_{10}^{-}(2)<2E_{6}(2)$ . In particular $N_{F}(D)\cong F_{20}\times S_{5}$ . On
the other hand we can check that $N_{F}(D)$ induces on $\Phi(5A)\cap\Gamma(x)$ an
action of $S_{5}\times 2$ of degree 30. Hence the kernel of $N_{E}(D)$ acting on
$\Phi(5A)$ is $D_{10}$ and the action must be isomorphic to $S_{8}$ . There are two
conjugacy classes of subgroups in $S_{8}$ isomorphic to $S_{5}\times 2$ . Let $R_{1}$ and
$R_{2}$ be their representatives such that $R_{1}$ has two orbits with lengths 2
and 6 on the 8-element set $Y$ naturally permuted by $S_{8}$ and $R_{2}$ has three
orbits on $Y$ with lengths 1, 2 and 5. Then the action of $S_{8}$ on the cosets
of $R_{1}$ preserves an imprimitivity system with blocks of size 6 and the
action on the blocks is similar to the action on 2-element subsets of $Y$

with subdegrees 1, 12 and 15. The action on the cosets of $R_{2}$ preserves
an imprimitivity system with blocks of size three and the action on the
blocks is similar to the action on 3-element subsets of $Y$ with subdegrees
1, 10, 15 and 30. Let $z\in X-\{x\}$ be a point stabilized by the subgroup
$H_{8}\cong 2F_{4}(2)’$ in $F=E(x)$ (cf. Lemma 5.3). Then $F$ acts on the suborbit
$\{z^{f}|f\in F\}$ as it acts on the cosets of $H_{8}$ . The permutation character
of this action is given in [ILLSS] and it has value 12 on $5A$-elements.
This means that 12 is a subdegree of $M(5A)$ acting on $\Phi(5A)$ and from
above we conclude that the action is of $S_{8}$ on the cosets of $R_{1}$ . Using

the information about the action on the imprimitivity blocks it is easy
to calculate the intersection matrix and 2-point stabilizers. Q.E.D.
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0 0 0 0 0 0 0
243 26 18 14 3 2 0 0 243

0 24 9 6 9 6 0 0 324
0 112 36 43 42 46 162 0 1944
0 48 108 84 81 84 0 108 3888
0 32 72 92 84 80 81 108 3888
0 0 0 4 0 1 0 0 48
0 0 0 0 24 24 0 27 864

Lemma 6.5. $M(3B)$ induces on $\Phi(3B)$ a primitive action of
$O_{8}^{+}(2).S_{3}$ of degree 11200; the action has rank 8 with subdegrees 1, 48,
243, 324, 864, 1944 and 3888 (twice). The intersection matrix of $\Gamma(3B)$

is as given above.

Proof All elements of order 3 in $E(x, y)$ are conjugate and the
character $1_{H}^{F}$ (cf. Lemma 4.2) shows that such an element $d$ belongs
to the class $3c$ in $F$ and hence to the class $3B$ in $E$ . It is easy to
calculate that $d$ fixes 243 points in $\Gamma(x)$ and $N_{F}(D)$ acts transitively on
these points. The intersection matrices of $O_{8}^{+}(2)$ : $S_{3}\cong N_{E}(D)/D$ in its
primitive action of degree 11200 were computed by L. H. Soicher. There
is only one orbital of valency 243 and we identify it with $\Gamma(3B)$ . Q.E.D.

Lemma 6.6. $M(2A)$ induces on $\Phi(2A)$ a primitive action of de-
gree 1048576, similar to the action of $2^{20}$ : $U_{6}(2)$ on the cosets of $U_{6}(2)$ ;

the action has rank 6 with subdegrees 1, 891, 24948, 228096, 295680 and
498960. The intersection matrix of $\Gamma(2A)$ and the character table of the
corresponding centralizer algebra are as given below.

0 1 0 0 0 0 1
891 42 12 2

0 336 15 42
0 0 891

24 0 24948
0 512 384 147 192 216 228096
0 0 480 420
0 0 0 280

419 432 498960
256 243 295680

891 24948 228096
1 -133 3444 -9472

498960 295680 1
-2800 8960 891

123 628 768
1 -37 84 512

-240 -1280 24948
-560 0 228096

1 27 -108 0
-5 -12 -256

-432 512 295680
528 -256 498960
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Proof. A transposition from $F$ is a central involution in $E$ . By
Lemma 4.3 $\Gamma(2A)$ has valency 891, so the corresponding orbital is
uniquely determined. Q.E.D.

The set $\Phi(2A)\cap\Gamma(x)$ coincides with the set $\Omega(\alpha)$ from Lemma 4.3.
The entry 42 in the second row and second column of the intersection
matrix of $\Gamma(2A)$ shows that $y$ is adjacent to 42 vertices from $\Phi(2A)\cap\Gamma(x)$ .

By Lemma 4.3 these 42 vertices are contained in $\Omega_{1}$ which is the same
as $\Gamma(x, y,\cdot 154)$ and we have the following.

Corollary 6.7. $\Gamma(x, $y; $154)\subseteq\Gamma(y)$ .

Let us look more closely at the subgraph $\Gamma(5A)$ .

Lemma 6.8. Let $d$ be an element of type $5A$ from $E(x, y)$ . Then
the number of vertices fixed by $d$ in $\Gamma(x, y;n)$ is1 for $n=1$ and 3696; 4

for $n=154,1$ $024$ and 11264; 8 for $n=4928$ and 78848.

Proof. By Lemma 6.4 and its proof, $N_{E(x,y)}(D)$ induces on $\Phi(5A)\cap$

$\Gamma(x)$ an action of degree 30 and order 8. By the Frattini argument
$N_{E(x,y)}(D)$ is transitive on $\Phi(5A)\cap\Gamma(x, y; n)$ for every $n$ and the result
follows from elementary congruences. Q.E.D.

As above let $d$ be an element of type $5A$ in $E(x, y)$ and $ D=\langle d\rangle$ .

Because of the obvious symmetry between $x$ and $y$ , Lemma 6.8 describes
the orbits of $N_{E(x,y)}(D)$ on $\Phi(5A)\cap\Gamma(y)$ and we can locate them in
$\Gamma(y, x;n)$ for suitable values of $n$ . The intersection matrix of $\Gamma(5A)$ ,

given in Lemma 6.4 shows that $y$ is adjacent to 8 vertices from $\Phi(5A)\cap$

$\Gamma(x)$ ; we have 4 of them in $\Gamma(y, x;154)=\Gamma(x, y;154)$ (compare Corollary
6.7) and 4 in $\Gamma(y, x;1024)=\Gamma(x, y; 1024)$ (compare Corollary 6.2). From
the intersection matrix of $\Gamma(5A)$ we see that $y$ is adjacent to a single
vertex in the orbit of length 5 of $N_{F}(D)$ on $\Phi(5A)$ . By Lemma 6.8
this vertex is in $\Gamma(y, x; 3696)$ (since it can not be $\{x\}$ ). We observed in

Lemma 4.4 that $\Phi(5A)\cap\Gamma_{2}(x)$ has size 5 and clearly $N_{F}(D)$ acts on it
transitively. This gives the following.

Corollary 6.9. $\Gamma(y, $x; $3696)\subseteq\Gamma_{2}(x)$ .

Let $60_{1}$ and $60_{2}$ be the orbits of length 60 of $N_{F}(D)$ on $\Phi(5A)$ . We
assume that $y$ is adjacent to 4 vertices from $60_{1}$ . Then these 4 vertices
form an orbit of $N_{E(x,y)}(D)$ and are contained in $\Gamma(y, x; 11264)$ . There
are 16 vertices in $60_{2}$ adjacent to $y$ . By what we already know, Lemma

6.8 imply that these 16 vertices split under the action of $N_{E(x,y)}(D)$

into two orbits of length 8 each and these two orbits are contained in
$\Gamma(y, x; 4928)$ and in $\Gamma(y, x; 78848)$ . This gives us the following important
conclusion.
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Lemma 6.10. $\Gamma(y, x; 4928)$ and $\Gamma(y, x; 78848)$ are in the same or-
bit of $F=E(x)$ on $X$ .

Notice that if $z\in 60_{2}$ then the stabilizer of $z$ in $N_{F}(D)$ acting on
$\Gamma(x)\cap\Gamma(z)\cap\Gamma(5A)$ has two orbits of length 4 each.

\S 7. The eigenspace $V_{1}$

The information on the local structure of $\Gamma$ established in the previ-
ous section turns out to be sufficient to calculate a non-trivial eigenvalue
of the intersection matrix of $\Gamma$ (without knowing the matrix itself).

Let $\Gamma_{0}$ , $\Gamma_{1}$ , $\ldots$ , $\Gamma_{7}$ be the orbitals of $E$ acting on $X$ , so that $\Gamma_{0}$ is
the diagonal orbital and $\Gamma_{1}=\Gamma$ . The valency of $\Gamma_{i}$ will be denoted by
$k_{i}$ and we will write $k$ instead of $k_{1}$ . Let $V$ be the space of complex
valued functions defined on $X$ and let $V=V_{0}\oplus V_{1}\oplus\cdots\oplus V_{7}$ be the
decomposition of $V$ into minimal $E$-invariant subspaces. We denote by
$m_{i}$ the dimension of $V_{i}$ and assume that $m_{i}>m_{j}$ for $i>j$ . The
values of $m_{j}$ can be read from Lemma 3.1. The subspace $V_{0}$ supports
the trivial representation of $E$ and $V_{1}$ is 1938-dimensional. For $ a\in$

$X$ let $v(a)$ be the characteristic function of $a$ , $v_{1}(a)$ be the projection
of $v(a)$ into $V_{1}$ and $w_{1}(a)=(n/m_{1})v_{1}(a)$ where $n$ $=|X|$ . Then for
$(a, b)\in\Gamma_{i}$ the inner product $\langle w_{1}(a)|w_{1}(b)\rangle$ equals to $p_{i}(1)/k_{i}$ and
$(p_{0}(1)/k_{0},p_{1}(1)/k_{1}$ , $\ldots,p_{7}(1)/k_{7})$ is a left eigenvector of the intersection
matrix of $\Gamma$ . We emphasize that the $w_{1}(a)$ are unit vectors.

We are going to write down certain expressions for the inner prod-
ucts $\langle w_{1}(y)|w_{1}(z)\rangle$ for various vertices $y$ , $z\in\Gamma(x)$ but before doing so
we introduce some notation concerning the action of $F=E(x)$ on $\Gamma(x)$ .

Let $\Omega$ be the set of cosets of $H\cong 2^{10}$ : $M_{22}$ in $F$ , which can be
identified with $\Gamma(x)$ . Let $\Omega_{0}$ , $\ldots$ , $\Omega_{7}$ be the orbits of $F$ on $\Omega$ as in
Lemma 4.2, in particular $\Omega_{0}=\{y\}$ . Let $U$ denote the space of complex
valued functions on $\Omega$ and $U=U_{0}\oplus U_{1}\oplus\cdots\oplus U_{7}$ be its decomposition
into minimal $F$-invariant subspaces. The dimension of $U_{i}$ will be denoted
by $d_{i}$ and we assume that $d_{i}>d_{j}$ for $i>j$ . The values of $d_{i}$ one can get
from Lemma 4.2. For $ z\in\Omega$ let $u(z)$ be the characteristic function of $z$ ,
$u_{j}(z)$ be its projection into $U_{j}$ and $t_{j}(z)=(k/d_{j})u_{j}(z)$ (where $k=|\Omega|$ ).
For $z\in\Omega_{i}$ put $\pi_{i}(j)=\langle t_{j}(y)|t_{j}(z)\rangle$ . These numbers can be calculated
from the character table corresponding to the action of $F$ on the cosets
of $H$ and given after Lemma 4.3.

The following result can be checked by straightforward calculations
using [Atlas].
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Lemma 7.1. The 1938-dimensional $E$ -irreducible module $V_{1}$ when
restricted to $F$ decomposes as $U_{0}\oplus U_{1}\oplus U_{2}\oplus U_{3}$ where the irreducibles
$U_{j}$ , $j=0,1$ , 2 and 3 are those involved in the permutation character $1_{H}^{F}$ .

Let us consider $V_{1}$ as a module for $F=E(x)$ , possessing the decom-
position into $F$-irreducibles from Lemma 7.1. Notice that the $U_{j}$ are
pairwise orthogonal with respect to an inner product on $V_{1}$ preserved by
$E$ and that the restriction of this inner product to $U_{j}$ is the unique one
(up to a scalar) preserved by $F$ .

It is clear that $w_{1}(x)\in U_{0}$ . Let us locate the vectors $w_{1}(z)$ for
$z\in\Gamma(x)$ in the above decomposition of $V_{1}$ . Since $U_{j}$ appears in the
permutation character of $F$ acting on the cosets of $F(z)$ with multiplicity
1, we conclude that the vectors in $U_{j}$ fixed by $F(z)$ form a 1-dimensional
subspace. Since both $t_{j}(z)$ and the projection of $w_{1}(z)$ to $U_{j}$ are fixed
by $F(z)$ , they must differ by a scalar multiple and hence

$w_{1}(z)=\sum_{j=0}^{3}t_{j}(z)\cdot\alpha_{j}$ ,

for some scalars $\alpha_{j}$ , which are independent of the choice of $z\in\Gamma(x)$ .

Since the decomposition of $V_{1}$ we are dealing with is orthogonal, for
$z\in\Omega_{i}$ we have

$\langle w_{1}(y)|w_{1}(z)\rangle=\sum_{j=0}^{3}\langle t_{j}(y)|t_{j}(z)\rangle\cdot\alpha_{j}^{2}=\sum_{j=0}^{3}\pi_{j}(i)\cdot\alpha_{j}^{2}$ .

In addition the vector $t_{0}(z)$ is a unit vector in $U_{0}$ independent of the
choice of $z\in\Gamma(x)$ , so we can assume that they all coincide with $w_{1}(x)$ .

In this case $\langle w_{1}(x)|w_{1}(z)\rangle=\alpha_{0}$ for every $z\in\Gamma(x)$ .

Thus we have four unknowns $\alpha_{j}$ , $0\leq j\leq 3$ which determine the
inner products $\langle w_{1}(y)|w_{1}(z)\rangle$ (depending on $i$ such that $z\in\Omega_{i}$ ). Now
we are going to turn the structural results on $\Gamma$ proved in the previous
section into equations on the $\alpha_{j}$ .

Let $z_{0}$ , $\ldots$ , $z_{7}\in\Gamma(x)$ be such that $z_{i}\in\Omega_{i}$ . In these terms Lem-
mas 6.2 and 6.7 mean that $z_{1}$ , $z_{2}\in\Gamma(y)$ . Hence $\langle w_{1}(y)\backslash |w_{1}(z_{1})\rangle=$

$\langle w_{1}(y)|w_{1}(z_{2})\rangle=\langle w_{1}(y)|w_{1}(x)\rangle=\alpha_{0}$ and we come to the following
two equations:

(7.1) $\sum_{j=0}^{3}\pi_{j}(1)\cdot\alpha_{j}^{2}=\alpha_{0}$ ,
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(7.2) $\sum_{j=0}^{3}\pi_{j}(2)\cdot\alpha_{j}^{2}=\alpha_{0}$ .

Lemma 6.10 means that $(y, z_{4})$ and $(y, z_{7})$ are in the same $E$-orbit.
Hence $\langle w_{1}(y)|w_{1}(z_{4})\rangle=\langle w_{1}(y)|w_{1}(z_{7})\rangle$ and we have

(7.3) $\sum_{j=0}^{3}(\pi_{j}(4)-\pi_{j}(7))\cdot\alpha_{j}^{2}=0$ .

Finally $w_{1}(y)$ is a unit vector and hence

(7.4) $\sum_{j=0}^{3}\alpha_{j}^{2}=1$ .

Thus we have obtained a system of four equations in four unknowns
which turns out to have a unique meaningful solution. Let us substitute
in the equations the values of $\pi_{j}(i)$ computed from the character table
given after Lemma 4.3.

(7.5) $\alpha_{0}^{2}-(1/2)\alpha_{1}^{2}+(7/22)\alpha_{2}^{2}-(5/22)\alpha_{3}^{2}=\alpha_{0}$ ,

(7.6) $\alpha_{0}^{2}-(5/16)\alpha_{1}^{2}-(11/64)\alpha_{2}^{2}+(5/32)\alpha_{3}^{2}=\alpha_{0}$ ,

(7.7) $(3/16)\alpha_{1}^{2}-(75/704)\alpha_{2}^{2}-(27/352)\alpha_{3}^{2}=0$ ,

(7.8) $\alpha_{0}^{2}+\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}=1$ .

Comparing the left sides of (7.5) and (7.6), and using (7.7) and
(7.8), we obtain a system of three linear equations in four unknowns $\alpha_{j}^{2}$ ,
$0\leq j\leq 3$ , from which we deduce the following expressions:

(7.8) $\alpha_{1}^{2}=(1-\alpha_{0}^{2})(60/181)$ ,

(7.10) $\alpha_{2}^{2}=(1-\alpha_{0}^{2})$ (66/181),

(7.11) $\alpha_{3}^{2}=(1-\alpha_{0}^{2})(55/181)$ .

Substituting these expressions in (7.5) we obtain a quadratic equation
on $\alpha_{0}$ . There is an obvious and meaningless solution of this equation,
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namely $\alpha_{0}=1$ (which imply $w_{1}(z)=w_{1}(x)$ for all $z\in\Gamma(x)$ , definitely
not the case). The second solution is $\alpha_{0}=-$43/405.

As soon as we know $\alpha_{0}$ , the expressions (7.9)-(7.11) give us $\alpha_{1}^{2}$ , $\alpha_{2}^{2}$

and $\alpha_{3}^{2}$ and using the values $\pi_{j}(i)$ computed from the character table of
$F$ acting on $\Gamma(x)$ , we determine the inner products $\langle w_{1}(y)|w_{1}(z_{i})\rangle$ for
all $0\leq i\leq 7$ .

Lemma 7.2. Let $z_{i}\in\Omega_{i}$ , 0 $\leq i\leq 7$ . Then the inner prod-
uct $\langle w_{1}(y)|w_{1}(z_{i})\rangle$ equals to 1, -43/405, -43/405, 69/405, 13/405,
-1/405, -15/405 and 13/405, respectively.

\S 8. The subdegrees

In this section we determine the subdegrees and 2-point stabilizers
of $E$ acting on $X$ . We follow the notation introduced above.

By Lemma 4.2 there are 7 orbits of $E$ on the paths of length 2 in $\Gamma$

with representatives $(y, x, z_{i})$ for $1\leq i\leq 7$ . By Corollaries 6.2 and 6.7
$z_{1}$ and $z_{2}$ are adjacent to $y$ . By Lemma 6.10 $z_{4}$ and $z_{7}$ are in the same
$E(y)$ -orbit. On the other hand by Lemma 7.2 for $i=3,4,5$ and 6 the
inner products $\langle w_{1}(y)|w_{1}(z_{i})\rangle$ are pairwise different and none of then
is equal to the inner product -43/405 of vectors representing adjacent
vertices. So we have the following.

Lemma 8.1. The subgroup $F=E(x)$ has four orbits on vertices

at distance 2 from $x$ in $\Gamma$ .

Let $\Gamma_{0}(x)=\{x\}$ , $\Gamma_{1}(x)=\Gamma(x)$ and let $\Gamma_{2}(x)$ , $\Gamma_{3}(x)$ , $\Gamma_{4}(x)$ and
$\Gamma_{5}(x)$ be the orbits of $F$ on vertices at distance 2 from $x$ in $\Gamma$ . We will
assume that $\Gamma(y, x;3696)\subseteq\Gamma_{2}(x);\Gamma(y, x;4928)\cup\Gamma(y, x;78848)\subseteq\Gamma_{3}(x)$ ;
$\Gamma(y, x;42240)\subseteq\Gamma_{4}(x)$ and $\Gamma(y, x;11264)\subseteq\Gamma_{5}(x)$ . Then by Corollary

6.9 $\Gamma_{2}(x)$ is as defined in Section 6, in particular $|\Gamma_{2}(x)|=694980$ . Since
the rank of $E$ on $X$ is 8, there are 2 orbits of $F$ on the set of vertices at
distance more than 2 from $x$ in $\Gamma$ . We denote these orbits by $\Gamma_{6}(x)$ and
$\Gamma_{7}(x)$ .

Let us choose a family of representatives $y_{i}\in\Gamma_{i}(x)$ , $0\leq i\leq 7$ . We
are going to introduce for every $i$ from 0 to 7 a subgroup $K_{i}$ in $E(x, y_{i})$ .

In some cases it will be clear from the very beginning that $K_{i}=E(x, y_{i})$ .

For the remaining cases this equality will come at the end because of
the equality

(8.1) $[E:E(x)]=\sum_{i=0}^{7}[E(x) : K_{i}]$ .
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Clearly, we take $K_{0}=E(x)\cong Fi_{22}$ . Because of Lemma 5.2 we can take
$K_{1}=E(x, y_{1})\cong 2^{10}$ : $M_{22}$ and $K_{2}=E(x, y_{2})\cong 2^{6}$ : $Sp_{6}(2)$ .

Consider $E(x, y_{3})$ . We assume that $y_{3}\in\Gamma(y, x; 4928)$ and hence
$E(x, y, y_{3})\cong 2^{4}.2^{4}.A_{6}$ (compare Lemma 4.2). Let $d$ be an element of
type $5A$ from $E(x, y, y_{3})$ and $ D=\langle d\rangle$ . This means that $x$ , $y$ , $y_{3}\in\Gamma(5A)$ .

Let $\Theta$ be the orbit of $y$ under $E(x, y_{3})$ . Clearly $|E(x, y_{3})|=|\Theta|\times$

$|E(x, y, y_{3})|$ . By the remark after Lemma 6.10, the intersection $\ominus’$ of
$\ominus and\Gamma(5A)$ is of size 4 and $N_{E(x,y_{3})}(D)$ acts transitively on $\Theta’$ . We
define $K_{3}$ to be the setwise stabilizer of $\Theta’$ in $E(x, y_{3})$ . We can write
that $K_{3}\cong 2^{4}.2^{4}.A_{6}.2.2$ . The precise structure of $K_{3}$ will be established
later.

Let us turn to $E(x, y_{4})$ and start by calculating the normalizer in $E$

of $Q=O_{2}(E(x, y_{2}))\cong 2^{6}$ .

Lemma 8.2. Let $P=N_{E}(Q)$ . Then $P/Q\cong[2^{9}].Sp_{6}(2)$ .

Proof. We claim that there is a unique central involution $\tau$ in $E$

such that $Q\leq O_{2}(C_{E}(\tau))$ (the uniqueness will immediately imply that
$P\leq C_{E}(\tau))$ . Consider the action of $F$ on the set of central involutions
in $E$ . We will follow the notation of Lemma 5.1. Let $F_{i}$ denote the
centralizer in $F$ of $\tau_{i}\in\triangle_{i}$ for $1\leq i\leq 4$ . Suppose that $Q\leq O_{2}(F_{i})$ .

Certainly $i\neq 1$ . Since $O_{2}(F_{2})$ and $O_{2}(F_{3})$ are abelian and $Q$ is self-
centralized in $F$ , $i\neq 2,3$ . Of course we can make $Q=O_{2}(F_{4})$ , but then
$\tau_{4}$ becomes uniquely determined since $F_{4}=N_{F}(Q)$ . Thus $Q\leq C_{E}(\tau_{4})$ .

Since $U_{6}(2)\cong C_{E}(\tau_{4})/O_{2}(C_{E}(\tau_{4}))$ does not contain a 2-local subgroup
with a section $Sp_{6}(2)$ , we conclude that $Q\leq O_{2}(C_{E}(\tau_{4}))$ and the claim
follows.

Let $S$ be the image of $P$ in Out $Q\cong L_{6}(2)$ . Then $S$ contains the
image of $N_{F}(Q)$ isomorphic to $Sp_{6}(2)$ . Since $Sp_{6}(2)$ is maximal in $L_{6}(2)$

and the latter is not involved in $C_{E}(\tau)$ , $S\cong Sp_{6}(2)$ . So we only have to
consider $D=C_{E}(Q)$ . Since every subgroup of $U_{6}(2)$ having $Sp_{6}(2)$ as
a factor group is $Sp_{6}(2)$ itself, $D\leq O_{2}(C_{E}(\tau))$ and lemma follows from
the basic properties of extraspecial groups. Q.E.D.

Corollary 8.3. Let $\Sigma$ be the orbit of $x$ under $N_{E}(Q)$ . Then $|\Sigma|=$

$512$ .

Clearly $Q$ fixes $\Sigma$ elementwise. Let us locate some elements of $\Sigma$ .

The setwise stabilizer of $\{x, y_{2}\}$ clearly normalizes $Q$ and hence $ y_{2}\in\Sigma$ .

By Lemma 4.5 $E(x, y_{2})=H_{5}$ has an orbit $\Psi$ of length 135 on $\Gamma(x)$ . Since
$Q=O_{2}(E(x, y_{2}))$ , $Q$ fixes $\Psi$ elementwise. Without loss of generality we
assume that $y$

$\in\Psi$ , which means that $Q\leq E(x, y)$ . Let $\tau$ be the central
involution in $E$ , such that $\langle\tau\rangle\times E(x, y)$ is the setwise stabilizer of $\{x, y\}$ .
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Then $\tau$ normalizes (even commutes with) $Q$ which means that $\Psi\subseteq\Sigma$ .

The group $E(x, y_{2})$ acts on $\Psi$ as $Sp_{6}(2)\cong E(x, y_{2})/Q$ acts on the set
of points of the symplectic dual polar space. In particular $E(x)y$ , $ y_{2})\cong$

$2^{6}.2^{6}.L_{3}(2)$ acting on $\Psi$ has 4 orbits $\Psi_{0}$ , $\Psi_{1}$ , $\Psi_{2}$ and $\Psi_{3}$ with lengths 1,
14, 56 and 64, respectively. Now one can see (compare Lemma 4.2) that
$\Psi_{1}\subseteq\Gamma(x, y; 154)$ , $\Psi_{2}\subseteq\Gamma(x, y; 3696)$ and $\Psi_{3}\subseteq\Gamma(x, y; 42240)$ . This
means that for $i=2$ and 4 the set $\Sigma\cap\Gamma_{i}(x)$ contains more than one
vertex. By Lemma 4.4 and Corollary 8.3 we have $|\Sigma\cap\Gamma_{2}(x)|\geq 136$ and
hence $|\Sigma\cap\Gamma_{4}(x)|\leq 240$ . Assuming that $y_{4}$ is in $\Sigma\cap\Gamma_{4}(x)$ , we define $K_{4}$

to be the normalizer of $Q$ in $E(x, y_{4})$ . By the above $K_{4}$ is a subgroup in
$K_{2}=N_{E(x)}(Q)\cong 2^{6}$ : $Sp_{6}(2)$ , which contains $Q$ and the index $[K_{2} : K_{4}]$

is at most 240.
By Lemmas 4.2 and 6.6 one can see that the subgroup $ E(x, y, y_{5})\cong$

$2.L_{3}(4)$ contains a unique transposition $\tau$ from $E(x)$ , and this transpo-
sition is in the center of $E(x, y, y_{5})$ . We define $K_{5}$ to be $C_{E(x,y_{5})}(\tau)$ . It
follows from Lemmas 4.2, 6.6 and the intersection matrix of $\Gamma(2A)$ that
$K_{5}\cong 2.L_{3}(4).2$ .

Now we are going to deduce some information on stabilizers in $E(x)$

of vertices at distance more than 2 from $x$ in $\Gamma$ . By Lemma 5.3 there is
a point $z\in X-\{x\}$ whose stabilizer in $F=E(x)$ is $H_{8}\cong 2F_{4}(2)’$ . By
Lemma 4.2 every pair of vertices from $\Gamma(x)$ is stabilized by an element of
type $3c$ from $F=E(x)$ . On the other hand the permutation character
of $F$ on the cosets of $H_{8}$ given in [ILLSS] is zero on elements of type
$3c$ . Hence $z$ is at distance more than 2 from $x$ in $\Gamma$ . Without loss of
generality we assume that $z=y_{6}$ and put $K_{6}=E(x, y_{6})\cong 2F_{4}(2)’$ .

Let $d$ be an element of type $3b$ in $F$ , $ D=\langle d\rangle$ , so that $N_{F}(D)=H_{10}$ .

The character $1_{F}^{E}$ shows that $d$ is of type $3C$ in $E$ and $M(3C)$ has
two orbits on $\Phi(3C)$ , say $\Phi_{1}(3C)$ and $\Phi_{2}(3C)$ with lengths 4 and 576,
respectively. We assume that $x\in\Phi_{1}(3C)$ . Let $S$ be a Sylow 3-subgroup
of $F$ contained in $N_{F}(D)$ . Since $|\Phi(9A)|=1$ , $S$ acts non-trivially on
$\Phi_{1}(3C)$ and hence the action of $M(3C)$ on this set is doubly transitive.
Let $u\in\Phi_{1}(3C)-\{x\}$ . Then $K=N_{F}(D)\cap E(x, u)$ is an index 3
subgroup in $H_{10}$ . The list of maximal subgroups of $F$ shows that every
subgroup $L$ , such that $K<L\leq F$ contains a Sylow 3-subgroup of $F$ and
since $|\Phi(9A)|=1$ , $L$ can not be a 2-point stabilizer. Hence $E(x, u)=K$

and it is a {2, 3}-group having index 3 in $H_{10}$ . Notice that for $i\leq 6$

the order of $E(x, y_{i})$ is divisible by a prime greater than 3. So we can
assume that $u=y_{7}$ and put $K_{7}=K$ .

Now by direct calculations we see that $\sum_{i=0}^{7}[E(x) : K_{i}]$ is less than
$[E : F]$ unless $K_{4}$ has index exactly 240 in $K_{2}$ . In the latter case the
equality (8.1) holds and we conclude the following.
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Lemma 8.4. $K_{4}$ has index 240 in $K_{2}$ and $E(x, y_{i})=K_{i}$ for every
$0\leq i\leq 7$ .

So we have calculated the subdegrees of the action of $E$ on $X$ and

proceed to determination of the precise structure of the 2-point stabiliz-
ers $E(x, y_{i})$ . For $i=0,1$ , 2, 5 and 6 everything is clear.

The group $Sp_{6}(2)$ contains a unique conjugacy class of subgroups of
index 240 (cf. [Atlas]) and we obtain the following.

Lemma 8.5. $E(x, y_{4})\cong 2^{6}$ : $U_{3}(3)$ .

Let us turn to $E(x, y_{3})$ . Let $\Theta=\Theta(x, ys)=\{z|z\in\Gamma(x)$ , $ y_{3}\in$

$\Gamma(z, x; 4928)\}$ . Clearly $\Theta$ is the same as defined before Lemma 8.2. By
now we have the following information on $\Theta$ (cf. Lemmas 4.2 and 6.4).

Lemma 8.6. The set $\Theta$ is of size 4, the normalizer in $E(x, y_{3})$ of
a Sylow 5-subgroup induces $on\ominus the$ regular action of $Z_{4}$ and for $ z\in\Theta$

we have $E(x, y_{3}, z)\cong 2^{4}.2^{4}.A_{6}$ .

Clearly $E(x, y_{3})$ is a subgroup in the setwise stabilizer of $\Theta$ in $E(x)$ .

Let us specify $\Theta$ and its stabilizer in $E(x)$ .

Let $\Omega$ be the graph of valency 154 on $\Gamma(x)$ in which $z\in\Gamma(x)$ is
adjacent to the vertices from $\Gamma(x, z;154)$ . The intersection matrix of
$\Omega$ is given after Lemma 4.3. Let $z\in\Gamma(x, y; 4928)$ . Then $z\in\Gamma_{3}(y)$

and $x\in\Theta(y, z)$ . The intersection matrix of $\Omega$ shows that there is a
unique vertex $w$ , adjacent to both $y$ and $z$ in $\Omega$ . Since $E(y, x, z)=$

$E(y, x, z, w)\leq E(y, z, w)$ , it is clear that $w\in\Theta(y, z)$ and we obtain the
following.

Lemma 8.7. The subgraph of $\Omega$ induced by $\Theta$ is of valency 1.

Let $\ominus=\{z_{1}, z_{2}, z_{3}, z_{4}\}$ and assume that $\{z_{1}, z_{2}\}$ and $\{z_{3}, z_{4}\}$ are
edges of $\Omega$ . Let $z_{0}$ be the unique vertex adjacent in $\Omega$ to both $z_{1}$ and $z_{2}$ .

Put $L=E(x, z_{1}, z_{2})=E(x, z_{0}, z_{1}, z_{2})$ and let $\Lambda(z_{i})$ be the orbit of $z_{i}$

under $L$ , $i=3$ or 4. Since $L\cong 2^{9}.2^{4}.A_{6}$ and $E(x, y_{3}, z_{1})\cong 2^{4}.2^{4}.A_{6}$ is
contained in the elementwise stabilizer of $\Theta$ , we conclude that the length
of $\Lambda(z_{i})$ divides $2^{5}$ .

Let $S$ be the Steiner system $S(3,6,22)$ naturally associated with
$E(x, z_{1})\cong 2^{10}$ : $M_{22}$ . Then $\{z_{0}, z_{2}\}$ is an orbit of $O_{2}(E(x, z_{1}))$ which
corresponds to a block $B$ of $S$ . Let $\Lambda_{1}$ be the union of all orbits of
$O_{2}(E(x, z_{1}))$ on $\Gamma(x, z_{1} ; 154)$ which correspond to $S$-blocks disjoint from
$B$ . Then $\Lambda_{1}$ is an orbit of $L$ of length $2^{5}$ . For $i=0$ and 2 let $\Lambda_{i}$ denote
the similar orbit of $L$ in $\Gamma(x, z_{i}; 154)$ . Now from Lemma 4.2 and basic
properties of the Steiner system $S$ it is not difficult to show the following.
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Lemma 8.8. Every orbit of $L$ on $\Gamma(x)-\{z_{0}, z_{1}, z_{2}\}$ whose length
divides $2^{5}$ coincides with $\Lambda_{i}$ for $i=0,1$ or 2.

The intersection matrix of $\Omega$ shows that $\Lambda_{i}$ and $\Lambda_{j}$ are disjoint for
$i\neq j$ . Hence $\Lambda(z_{3})=\Lambda(z_{4})=\Lambda_{i}$ for some $0\leq i\leq 2$ . Since $\Theta$ contains
only two $\Omega$-edges (cf. Lemma 8.7), $i$ must be equal to 0. Remembering
that the setwise stabilizer in $M_{22}$ of a pair of disjoint blocks of $S$ is

isomorphic to $M_{10}$ , we obtain the following.

Lemma 8.9. There is a unique vertex $z_{0}\in\Gamma(x)$ such that $\Theta\subseteq$

$\Gamma(x, z_{0}; 154)$ . The pairs $\{z_{1}, z_{2}\}$ and $\{z_{3}, z_{4}\}$ are orbits of $O_{2}(E(x, z_{0}))$

and correspond to disjoint blocks of the Steiner system associated with
$E(x, z_{0})$ . The setwise stabilizer of $O-$ in $E(x)$ is the full preimage in
$E(x, z_{0})$ of an $M_{10}$ subgroup from $\overline{E}$

$(x, z_{0})\cong M_{22}$ .

Thus the setwise stabilizer $R$ of $\Theta$ in $E(x)$ contains $E(x, y_{3})$ as a
subgroup of index 2. Since $R$ induces $D_{8}$ on $\Theta$ while $E(x, y_{3})$ induces
$Z_{4}$ , $E(x, y_{3})$ is uniquely specified.

Lemma 8.10. $E(x, y_{3})\cong 2^{4}.2^{4}.A_{6}.Z_{4}\cong 2^{9}.M_{10}$ is a subgroup in
a conjugate of $E(x, y_{1})$ .

In order to identify $E(x, y_{7})$ we need the size of the intersection of
$\Gamma(3B)$ and $\Gamma_{7}(x)$ . We prove a more general proposition which will be
used later.

Lemma 8.11. Let $d$ be an element of type $cl$ from $E$ contained in

$E(x)=F$ , $ D=\langle d\rangle$ and let $\Gamma(cl)$ be the subgraph of $\Gamma$ induced by the
vertices fixed by $d$ . Then the orbits of $N_{E(x)}(D)$ on $\Gamma(d)$ (ordered as the

rows of the intersection matrix of $\Gamma(d)$ given in Section 6) are contained
in

(i) $\Gamma_{0}(x)$ , $\Gamma_{1}(x)$ , $\Gamma_{5}(x)$ , $\Gamma_{4}(x)$ and $\Gamma_{2}(x)$ for $d=7B$ ;
(ii) $\Gamma_{0}(x)$ , $\Gamma_{1}(x)$ , $\Gamma_{3}(x)$ , $\Gamma_{5}(x)$ and $\Gamma_{6}(x)$ for $cl$ $=5A$ ;

(iii) $\Gamma_{0}(x)$ , $\Gamma_{1}(x)$ , $\Gamma_{3}(x)$ , $\Gamma_{4}(x)$ , $\Gamma_{5}(x)$ , $\Gamma_{7}(x)$ and $\Gamma_{7}(x)$ for $cl$ $=3B$ ;

(iv) $\Gamma_{0}(x)$ , $\Gamma_{1}(x)$ , $\Gamma_{2}(x)$ , $\Gamma_{5}(x)$ , $\Gamma_{7}(x)$ and $\Gamma_{3}(x)$ for $cl$ $=2A$ .

Proof Using the permutation characters of $E(x)=F$ on the cosets
of $H=E(x, y_{1})$ , $H_{5}=H(x, y_{2})$ , $H_{8}=H(x, y_{6})$ (cf. [ILLSS]) and the
embeddings $E(x, y_{3})<E(x, y_{1})$ , $E(x, y_{4})<E(x, y_{2})$ , we calculate the
number of points in $\Gamma_{i}(x)$ fixed by an element of type $cl$ contained in $F$

for $i\leq 6$ . In the case (iii) there are two orbits of length 3888. Since
there are two paths of length 2 joining $x$ and $y_{5}$ , we have a unique way
to locate these orbits and the result follows. Q.E.D.
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Lemma 8.12. $E(x, y_{7})$ is an index 3 subgroup in the maximal
subgroup $H_{10}$ of $F=E(x)$ . In the permutation action of $F$ on the
cosets of $E(x, y_{7})$ an element of type $3C$ fixes 912 points. These two
properties characterize $E(x, y_{7})$ up to conjugacy in $F$ .

Proof. The first sentence follows from the definition of $E(x, y_{7})$ .

The second one comes from Lemma 8.11 (iii), so all we have to prove
is the last sentence. The GAP system [GAP] contains the character
table of $H_{10}$ along with the fusion pattern of the $H_{10}$ -classes into F-
classes. There is one non-principal $H_{10}$ -character of degree 1 and four
characters of degree 2 (with pairwise different kernels). So we have
five candidates for the permutation character of $H_{10}$ of degree 3 (on
the cosets of $E(x, y_{7}))$ . Inducing these five characters to $F$ we observe
that the one involving irreducibles of degree 1 only, does not lead to
a permutation character at all (the induced character involves negative
values). Among the other four, only one (denote it by $\phi$ ) when induced
gives the character value 912 on $3C$-elements. It was checked that the
kernel of $\phi$ is a normal subgroup of index 6 in $H_{10}$ and the result follows.

Q.E.D.

We can summarize this section by the following.

Proposition 8.13. The 2-point stabilizers of $E\cong 2E_{6}(2)$ acting
on the cosets of $F\cong Fi_{22}$ are $Fi_{22},2^{10}$ : $M_{22},2^{6}$ : $Sp_{6}(2)$ , $2^{9}.M_{10}$ ,
$2^{6}$ : $U_{3}(3)$ , $2.L_{3}(4).2,2F_{4}(2)’$ and $3_{+}^{1+6}$ : $2^{3+4}$ : 3: 2.

\S 9. The eigenvector

Lemma 7.2 gives six entries $p_{i}(1)/k_{i}$ , $0\leq i\leq 5$ in the left eigenvector
of the intersection matrix of $\Gamma$ corresponding to the idempotent of rank
1938. In this section we calculate the missing two entries. We will use for
this purpose the character table of the centralizer algebra corresponding
to the action of $M(2A)$ on $\Phi(2A)$ given after Lemma 6.6.

For the rest of the section we assume that $\Gamma(2A)$ contains $y_{i}$ for
$i=0,1$ , 2, 3, 5 and 7 (cf. Lemma 8.11 (iv)). Let $C=C_{E}(d)=M(2A)$ .

Lemma 9.1. The 1938-dimensional $E$ -module $V_{1}$ decomposes into
$C$ irreducibles as $W_{0}\oplus W_{1}\oplus W_{2}\oplus W_{3}$ where the $W_{j}$ have dimensions 1,
22, 891 and 1024, respectively.

Proof. Since $Q=O_{2}(C)$ is extraspecial of order $2^{21}$ , $V_{1}$ restricted
to $Q$ must involve the faithful component of dimension 1024 and only one
such component fits. Since the central involution $d$ of $C$ is conjugate in
$E$ to an involution from $ Q-\langle d\rangle$ , there must be an irreducible component
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whose kernel is exactly $\langle d\rangle$ . Such a component has dimension equal to
the length of an orbit of $C$ on the non-zero vectors of the module (dual
to) $ Q/\langle d\rangle$ . Only one such component of dimension 891 fits. For the
remaining components $Q$ is in the kernel and the conclusion comes from
the character table of $U_{6}(2)\cong C/Q$ in [Atlas]. Q.E.D.

As above for $ z\in\Gamma$ let $w_{1}(z)$ be the unit vector in $V_{1}$ realizing
$z$ . Suppose that $z\in\Gamma(2A)$ . The projection of $w_{1}(z)$ into $W_{j}$ can be
non-zero only if $C\cap E(z)\cong 2\cdot U_{6}(2)$ fixes a vector in $W_{j}$ . Such a
vector is fixed if and only if $W_{j}$ is involved in the permutation character
of $C=M(2A)$ acting on the vertices of $\Gamma(2A)$ . The degrees of the
irreducible constituents in the permutation character can be read from
the character table of the corresponding centralizer algebra given after
Lemma 6.6 and we observe that only $W_{0}$ and $W_{2}$ can be involved. On
the other hand $W_{0}$ supports the principal character and supports $W_{2}$ the
unique faithful character of degree 891, so both $W_{0}$ and $W_{2}$ are involved.

For $j=0$ or 2 and $z\in\Gamma(2A)$ let $s_{j}(z)$ be the unit vector in $W_{j}$

realizing $z$ with respect to the centralizer algebra of $C$ acting on $\Gamma(2A)$ ,

clearly $s_{j}(z)$ is fixed by $E(z)\cap C$ . Then

(9.1) $w_{1}(z)=s_{0}(z)\cdot\beta_{0}+s_{2}(z)\cdot\beta_{2}$

for some $\beta_{0}$ and $\beta_{2}$ independent of $z$ and satisfying

(9.2) $\beta_{0}^{2}+\beta_{2}^{2}=1$ .

Then Lemmas 7.2, 8.11 (iv) and the character table given after
Lemma 6.6 give us the following (we assume that $x$ , $y_{1}\in\Gamma(2A)$ ):

(9.3) $-43/405=\langle w_{1}(x)|w_{1}(y_{1})\rangle=\beta_{0}^{2}+(-133/891)\beta_{2}^{2}$ .

Now (9.2) and (9.3) imply $\beta_{0}^{2}=3/80$ , $\beta_{2}^{2}=77/80$ and using the char-
acter table of $C$ acting on $\Gamma(2A)$ we can compute the inner product
$\langle w_{1}(u)|w_{1}(v)\rangle$ for every pair $u$ , $v\in\Gamma(2A)$ . In particular

$p_{7}(1)/k_{7}=\langle w_{1}(x)|w_{1}(y_{7})\rangle=1/15$ .

In order to compute the last unknown entry in the eigenvector, namely
$p_{6}(1)/k_{6}$ we use the first orthogonality relation [BI]. This relation ap-
plied to the vector we are studying and the one corresponding to the

trivial idempotent of rank 1 gives

$\sum_{i=0}^{7}p_{\dot{x}}(1)=0$ .
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This immediately implies $p_{6}(1)/k_{6}=-1/27$ . Thus we have proved the
following.

Proposition 9.2. The eigenvector of the intersection matrix of $\Gamma$

corresponding to the idempotent of rank 1938 is the following:
$(1, - 43/405, 69/405, 13/405, -15/405, -1/405, - 15/405, 27/405)$ .

\S 10. The intersection matrix

In this section we calculate the intersection matrix $B_{1}$ of the graph
$\Gamma$ . By the definition the $(j, i)$ -entry $p_{1j}^{i}$ of $B_{1}$ is the number of vertices

in $\Gamma_{j}(x)$ adjacent to $y_{i}$ in $\Gamma$ . Since all orbitals of $E$ acting on $\Gamma$ are
symmetrical, $p_{1j}^{i}$ is also the number of vertices in $\Gamma(x)$ contained in
$\Gamma_{j}(y_{i})$ . So the entries of the intersection matrix are the sizes of parts in
the partitions

7

(10.1)
$\Gamma(x)=j=0\cup(\Gamma(x)\cap\Gamma_{j}(y_{i}))$

, $0\leq i\leq 7$ .

It is clear that for every $i$ and $j$ the set $\Gamma(x)\cup\Gamma_{j}(y_{i})$ is a union of orbits
of $E(x, y_{i})$ on $\Gamma(x)$ . So the partitions of $\Gamma(x)$ into $E(x, y_{i})$ -orbits are re-
finements of the partitions (10.1). In this context it is quite helpful (and
crucial for our approach) to know the lengths of $E(x, y_{i})$ orbits on $\Gamma(x)$ .

For $i=1$ the information is contained in Lemma 4.2. For $i=6$ the orbit
lengths follow from the inner product of the permutation characters and
elementary congruences. For the remainder $i$ the information is much
more non-trivial and was obtained by S. A. Linton using explicit calcu-
lations in the Fischer group $Fi_{22}$ . The result is contained in Lemma 4.5
for $i=2$ and in the following lemma for $3\leq i\leq 7$ .

Lemma 10.1. The orbits lengths of $E(x, y_{\dot{0}})$ , $3\leq i\leq 7$ on $\Gamma(x)$

are the following.

(i) The subgroup $E(x, y_{3})\cong 2^{9}.M_{10}$ acting on $\Gamma(x)$ has 26 orbits with
lengths 1, 4, 60, $64^{2},90,480,576,720,1024^{3},1920^{4},2560^{2}$ ,
2880, 3840, 6144, 11720, 15 $360^{2},23040$ , and 46080.

(ii) The subgroup $E(x, y_{4})\cong 2^{6}$ : $U_{3}(3)$ acting on $\Gamma(x)$ has 25 or-
bits with lengths $36^{2},63,126^{2},288^{2},504,2016^{4},2304^{2},3024$ ,
$4032^{3},8064^{2},16128^{4}$ and 32256.

(iii) The subgroup $E(x, y_{5})\cong 2.L_{3}(4).2$ acting on $\Gamma(x)$ has 35 orbits
with lengths 2, $42^{2},105,112,224^{2},280,420,480,504,840^{3}$ ,

1720, 1 $344^{2},2520^{2},3360^{6}$ , 4032, 5 $040^{2},6720,10080^{2},13440^{2}$

and 20 $160^{2}$ .
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(iv) The subgroup $E(x, y_{6})\cong 2F_{4}(2)’$ acting on $\Gamma(x)$ has 3 orbits with
lengths 1755, 28080 and 112320.

(v) The subgroup $E(x, y_{7})\cong 3_{+}^{1+6}.2^{3+4}$ : 3 : 2 acting on $\Gamma(x)$ has 6
orbits with lengths 2187, 5832, 11664, 17496, 34992 and 69984.

The following lemma is obvious.

Lemma 10.2. Suppose that $E(x, y_{i})$ acting on $\Gamma(x)\cap\Gamma_{j}(y_{i})$ has

an orbit of length 1. Then $E(x, y_{j})$ acting on $\Gamma(x)\cap\Gamma_{i}(y_{j})$ has an orbit

of length $l$
$\cdot k_{i}/k_{j}$ .

In order to simplify our terminology we present a matrix (denoted
by $D$ ) and will prove below that it is equal to the intersection matrix
$B_{1}$ of $\Gamma$ . First of all, it is straightforward to check that the vector in

Proposition 9.2 is a left eigenvector of $D$ .

0 1 0 0 0 0 0 01
142155 1178 756 68 36 2 0 0 142155

0 3696 135 60 324 42 0 0 694980
0 83776 15120 17899 27720 20692 28080 11664 175134960

$D=$ 0 42240 77760 26400 19035 18120 0 34992 166795200
0 11264 48384 94592 86976 98315 112320 93312 800616960
0 0 0 576 0 504 1755 0 3592512
0 0 0 2560 8064 4480 0 2187 38438400

Clearly the first row and column in $D$ are as in $B_{1}$ .

Lemmas 8.1, 8.4 and straightforward calculations imply the follow-
ing.

Lemma 10.3. The second row and column in $D$ are as in $B_{1}$ .

Lemma 10.4. The third row and column of $D$ are as in $B_{1}$ .

Proof. The lengths of orbits of $E(x, y_{2})$ on $\Gamma(y_{2})$ are given in
Lemma 4.5. By Lemma 10.3 the orbit of length 756 is contained in $\Gamma(x)$ .

The intersection matrix of $\Gamma(7B)$ and Lemma 8.11 (i) show that $p_{12}^{2}\neq 0$ .

Clearly the length of an orbit of $E(x, y_{2})$ on $\Gamma(y_{2})\cap\Gamma_{2}(x)$ must be equal
to a subdegree of $E(x)=F$ acting on the cosets of $E(x, y_{2})=H_{5}$ . By

Lemmas 4.4 and 4.5 this implies that $p_{12}^{2}=135$ . Now the intersection
matrix of $\Gamma(7B)$ and Lemma 8.11 (i) imply that each of the remaining
orbits of $E(x, y_{2})$ on $\Gamma(y_{2})$ whose length is not divisible by 7 must be
in $\Gamma_{4}(x)$ . There are two such orbits with lengths 8640 and 69320. By

now there are two orbits left and from the intersection matrix of $\Gamma(2A)$

and Lemma 8.11 (iv) it follows that both $p_{13}^{2}$ and $p_{15}^{2}$ are non-zero. The
divisibility condition forces the orbit of length 15120 to be in $\Gamma_{3}(x)$ and
so the one of length 48384 is in $\Gamma_{5}(x)$ . Q.E.D.
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Lemma 10.5. The seventh row and column of $D$ are as in $B_{1}$ .

Proof. By Lemma 10.1 (iv) there are at most three indices $i$ for
which $p_{1i}^{6}\neq 0$ . On the other hand the intersection matrix of $\Gamma(5A)$

and Lemma 8.11 (ii) show that for $i\in\{3,5,6\}$ these parameters must
be non-zero. Now the result follows from straightforward calculations
using Lemmas 10.2 and 10.1 (i), (iii), (iv). Q.E.D.

Before proceeding to the next case we prove the following easy
lemma.

Lemma 10.6. Let $E(x, y_{5})\cong 2.L_{3}(4).2$ act transitively on a set
$\Theta$ of size 280, 480, 840, 3360 or 6720. Let $\sigma$ be a subgroup of order 3
in $E(x, y_{5})$ . Then the number of elements fixed by $\sigma in\ominus is1$ , 12, $2^{a}3$

for $a\leq 2,2^{b}3$ for $b\leq 2$ or $2^{c}3$ for $c\leq 3$ , respectively.

Proof. The list of maximal subgroups of $L_{3}(4)$ [Atlas] shows that
the action of degree 280 is unfaithful primitive with character value 1
on 3-elements while the one of degree 480 is on the cosets of $L_{3}(2)$ with
the character value 12 on 3-elements. The normalizer $N$ of $\sigma$ in $E(x, y_{5})$

has order 72. Let $ a\in\Theta$ be an element fixed by $\sigma$ . Then $\sigma$ is a Sylow
3-subgroup of $E(x, y_{5}, a)$ and by Frattini argument $N$ acts transitively
on the set of all elements from $\Theta$ fixed by $\sigma$ . Now the conclusion comes
from an easy observation that in a group of order 96 or 24 the normalizer
of a 3-subgroup has order at least 6. Q.E.D.

Lemma 10.7. The eighth row and column in $D$ are as in $B_{1}$ .

Proof. The intersection matrix of $\Gamma(3B)$ and Lemma 8.11 (iii) show
that for $i\in\{3,4,5,7\}$ the number $p_{1i}^{7}$ is non-zero. The lengths of orbits
of $E(x, y_{7})$ on $\Gamma(y_{7})$ are given in Lemma 10.1 (v). Lemmas 10.2, 10.1 (iii)
show that only three orbits with lengths 5832, 17496 and 69984 might
be contained in $\Gamma_{5}(x)$ . These orbits then would correspond to orbits
of $E(x, y_{5})$ on $\Gamma_{7}(x)$ with lengths 280, 480 and 3360, respectively. By
Lemma 10.6 an element of order 3 from $E(x, y_{5})$ fixes in the union of the
latter three orbits at most $1+12+12=25$ elements. On the other hand it
follows from the intersection matrix of $\Gamma(3B)$ and Lemma 8.11 (iii) that
such an element fixes exactly $1+24=25$ vertices in $\Gamma(y_{5})\cap\Gamma_{7}(x)$ so all
the above three orbits of $E(x, y_{7})$ are in $\Gamma_{5}(x)$ . Applying Lemmas 10.1
and 10.2 to the remaining orbits we see that $p_{13}^{7}=11664$ , $p_{14}^{7}=34992$

and finally $p_{17}^{7}=2187$ . Q.E.D.

It only remains to evaluate the submatrix in $B_{1}$ consisting of the
elements $p_{1j}^{i}$ with $3\leq i$ , $j\leq 5$ . We show first that with the information
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available it is sufficient to determine just one entry in this submatrix,

say $p_{14}^{5}$ .

Lemma 10.8. Suppose that $p_{14}^{5}$ is equal to the corresponding entry
in D. Then $D$ coincides with $B_{1}$ .

Proof. Let $C=B_{1}-D$ and let the $(i, j)$ -entry of $C$ be denoted by
$c_{ij}$ . By Lemmas 10.3, 10.4, 10.5 and 10.7 $c_{ij}=0$ unless $3\leq i\leq 5$ and
$3\leq j\leq 5$ . Since both $B_{1}$ and $D$ have constant column sum (equal to

$k=142155)$ ,

(10.2) $c_{3j}+c_{4j}+c_{5j}=0$ , $3\leq j\leq 5$ .

The vector given in Proposition 9.2 is a left eigenvector for both $B_{1}$ and
$D$ . Hence $C$ applied to this vector gives zero and we have the following:

(10.3) $13c_{3j}-15c_{4j}-c_{5j}=0$ , $3\leq j\leq 5$ .

Now (10.2) and (10.3) imply that $c_{3j}=c_{4j}$ , $c_{5j}=-2c_{4j}$ . Finally,
$k_{iP_{1j}}^{i}=k_{jp_{1i}}^{j}$ and similar relations hold for the entries of $D$ , Hence
$k_{?}.c_{ji}=k_{j}c_{ij}$ for $0\leq i,j\leq 7$ and the result follows. Q.E.D.

Let us proceed with determination of $p_{14}^{5}$ . The center of $E(x, y_{5})$ is
of order 2 and it is generated by a $2A$-involution. Hence we conclude
(assuming that $y_{5}\in\Gamma(2A)$ ) that $\Gamma(y_{5})\cap\Gamma_{j}(x)\cap\Gamma(2A)$ is a union of
orbits of $E(x, y_{5})$ on $\Gamma(y_{5})$ for every $0\leq j\leq 7$ . This observation along
with the intersection matrix of $\Gamma(2A)$ and Lemmas 10.1 (iii) and 8.11
(iv) enable us to locate some further orbits of $E(x, y_{5})$ on $\Gamma(y_{5})$ .

Lemma 10.9. The orbits of $E(x, y_{5})$ on $\Gamma(y_{5})$ with lengths 2, 42;

42, 105, 280 and 420 are contained in $\Gamma_{1}(x)$ , $\Gamma_{2}(x)$ , $\Gamma_{5}(x)$ , $\Gamma_{5}(x)$ , $\Gamma_{7}(x)$

and $\Gamma_{3}(x)$ , respectively.

The intersection matrix of $\Gamma(7B)$ , Lemmas 8.11 (i) and 10.1 (iii)

give us.

Lemma 10.10. The orbit of length 480 of $E(x, y_{5})$ on $\Gamma(y_{5})?.g$

contained in $\Gamma_{4}(x)$ .

It follows from the proof of Lemma 10.7 that one orbit of length
840 of $E(x, y_{5})$ on $\Gamma(y_{5})$ is contained in $\Gamma_{7}(x)$ . This together with Lem-
mas 10.9, 10.10, 10.1 (ii), (iii) and 10.2 give us the following.

Lemma 10.11. $E(x, y_{5})$ acting on $\Gamma(y_{5})\cap\Gamma_{4}(x)$ has one orbit of
length 480, at most two orbits of length 840; at most four orbits of length
3360 and at most one orbit of length 6720.
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Let $\sigma$ be a subgroup of order 3 in $E(x, y_{5})$ . The intersection matrix of
$\Gamma(3B)$ and Lemma 8.11 (iii) show that $\sigma$ fixes 84 vertices in $\Gamma(y_{5})\cap\Gamma_{4}(x)$ .

On the other hand Lemma 10.6 says that $\sigma$ fixes 12 vertices in the orbit
of length 480 and gives upper bounds on the numbers of vertices fixed
by $\sigma$ in orbits of lengths 840, 3360 and 6720. These bounds imply the
following.

Lemma 10.12. $ p_{14}^{5}=480+840\cdot\gamma$ where $\gamma=18,21,22$ , 24, 25
or 26.

The entry in $D$ corresponds to $\gamma=21$ . We have checked using the
computer program of D. V. Pasechnik, mentioned in the introduction
that each of the other five possibilities for $\gamma$ allowed by Lemma 10.12
leads to a matrix with non-integral spectrum. Since the multiplicities
of the centralizer algebra are pairwise distinct, such a matrix can not
possibly be the intersection matrix of $\Gamma$ and we have.

Proposition 10.13. $D$ is the intersection matrix of $\Gamma$ .

We conclude the paper by presenting the intersection matrix $B_{2}$

corresponding to the second smallest non-trivial valency 694980 and
the character table of the centralizer algebra, both computed using the
program of D. V. Pasechnik. Directly from the shapes of $B_{1}=D$ and
$B_{2}$ (given below) we see that the action is not distance-transitive (as
was earlier proved in [CLS] $)$ .
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Towards a Classification of Spin Models in terms of
Association Schemes

Fran\caois Jaeger

\S 1. Introduction

The spin models considered here have been introduced by V. Jones
[Jo] (in the symmetric case) and by Kawagoe, Munemasa, Watatani
[KMW] (in the general case) as basic data for a certain construction
of invariants of links in 3-space. Such a spin model consists in a pair
of square matrices satisfying some constraints which we call invariance
equations. Links are represented by plane diagrams and the matrices of
the spin model are used to assign to every such diagram a number (this
number is the value of the partition function). The invariance equations
represent sufficient conditions on the matrices of the spin model which
insure that the partition function (multiplied by a suitable normalization
factor) is invariant under simple deformations of diagrams called Reide-
meister moves. These moves describe in terms of diagrams the natural
topological equivalence of links, and hence the partition function of every
spin model defines a link invariant.

The pioneering work of Jones gave two examples of symmetric spin
models and raised the question of finding new ones. It turned out that
this question is intimately related with the theory of association schemes.
Indeed many subsequent works (in particular [Jal], [B3], [BB1], [BB2],
[BBIK], [BBJ], [BJS], [II], [II], [13], [Ja3], [N1], [N2], [N3] $)$ confirmed
the importance of the following situation: the matrices of a spin model
belong to the Bose-Mesner algebra of some self-dual association scheme,
and can be obtained by solving a certain modular invariance equation
associated with the (suitably indexed) first eigenmatrix of the scheme
(more details can be found in the surveys [B2], [Ja2], [Ja4]). The main
purpose of the present paper is to show in the symmetric case that
actually this situation is completely general.

Received May 15,1995.
Revised July 3, 1995.
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The idea of the proof is to associate with every symmetric spin model
a matrix-valued partition function $Z$ defined on plane tangle diagrams
with four ends. The required Bose-Mesner algebra will be the linear
span of the image of $Z$ (which we call the tangle closure of the spin
model). The fact that this is indeed a self-dual Bose-Mesner algebra
is a consequence of the following properties: $Z$ converts the “vertical”
and “horizontal” products of tangles into the ordinary and Hadamard
products of matrices, and converts the rotation through angle $\frac{\pi}{2}$ into
a duality map. The modular invariance equation is also an algebraic
translation via $Z$ of a simple topological equivalence of tangles.

Shortly after we obtained this “topological” proof, K. Nomura found
a simpler and purely algebraic proof [N4]. This proof was then extended
in [JMN] to non symmetric spin models. We believe that our topological
proof is still of interest, because it gives some topological insight on the
relationship between spin models and association schemes. Actually
we indicate in Section 5.3 how Nomura’s proof could be interpreted
topologically. The same thing would be possible for most of the results
in [JMN]. However for the sake of simplicity we have chosen to restrict
the present study to the case of symmetric spin models.

The paper is organized as follows. Section 2 gives the necessary
preliminaries on association schemes and spin models. Section 3 intro-
duces tangles and their relevant properties. Section 4 presents our main
results, Theorem A (on the tangle closure of a symmetric spin model),

Theorem $B$ (on a Bose-Mesner subalgebra of the tangle closure which
has an explicit algebraic description and which we call the algebraic clo-
sure of the spin model), and Theorem $C$ which deals with the modular
invariance equation. Section 5 gives some additional results: the Bose-
Mesner algebras of Theorems A and $B$ satisfy the planar $d$uality property
introduced in [Ja3]; the link invariants associated with spin models are
invariant under mutation of links; the algebras of Theorems A and $B$ are
contained in Nomura’s algebra. Finally we conclude in Section 6 with
some remarks and open questions.

This work was done while the author had a visiting research position
at RIMS at the invitation of the project “Algebraic Combinatorics 94”.
I would like to express my warmest gratitude to the organizers of this
project and to all the people who made my stay at RIMS enjoyable and
fruitful, and in particular to Eiichi Bannai, Kyoji Saito, Bill Kantor,

Viakhalatur Sunder, Makoto Matsumoto, Akihiro Munemasa. I would
also like to thank R. Bacher, P. de la Harpe and V. Jones for very
helpful conversations; their use of diagrams and partition functions to
describe some algebraic properties of spin models (see [BHJ]) had a
strong influence on the present work.
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\S 2. Association schemes and spin models for link invariants

2.1. Symmetric spin models on link diagrams

A (tame) link consists of a finite collection of disjoint simple closed
smooth curves (the components of the link) embedded in 3-space. If each
component has received an orientation, the link is said to be oriented.
(Oriented) links can be represented by (oriented) diagrams. A diagram
of a link is a generic plane projection (there is only a finite number
of multiple points, each of which is a simple crossing), together with a
“marking” at each crossing to indicate which part of the link goes over
the other. For oriented links, the edges of the diagrams are oriented
according to the orientations of the corresponding link components.

Two links are ambient isotopic if there exists a (smooth) isotopy of
the ambient 3-space which carries one onto the other (for oriented links,
this isotopy must preserve the orientations). This natural equivalence of
links is described in terms of diagrams by Reidemeister’s Theorem, which
asserts that two diagrams represent ambient isotopic links if and only if
one can be obtained from the other by a finite sequence of elementary
local transformations, the Reidemeister moves. These moves belong to
three basic types described for the unoriented case in Figure 1.

A move is performed by replacing a part of diagram which is one
of the configurations of Figure 1 by an equivalent configuration without

$-\sim$ $-\sim$

Type I

$-\sim$

Type II

$-\sim$

Type III

Fig. 1
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modifying the remaining part of the diagram. For the oriented case,
all local orientations of these pairs of equivalent configurations must be
considered. More details can be found for instance in [BZ] or [K].

Reidemeister’s Theorem allows the combinatorial definition of a link
invariant as an assignment of values to diagrams such that the value
of any diagram is preserved by Reidemeister moves performed on this
diagram. It is shown in [Jo] that the concept of spin model, which plays
an important role in statistical mechanics, can be used to obtain such
invariants. This idea can be briefly described as follows.

Let $X$ be a finite set of “spins”. Given a connected diagram $L$ , we
color the faces of the diagram (i.e., the connected components of the
complement of $L$ in the plane) with two colors, black and white, in such
a way that adjacent faces receive different colors (we then obtain a face-
color $d$ diagram). Let $B(L)$ be the set of black faces. The mappings
from $B(L)$ to $X$ are called states. Every state $\sigma$ determines at every
crossing $v$ a local weight $<\sigma$ , $v>$ . The local weight $<\sigma$ , $v>$ is of
the form $W_{\pm}[x, y]$ , where $x$ , $y$ are the values of $\sigma$ on the two black faces
incident to $v$ , and $W_{+}$ , $W_{-}$ are complex matrices with rows and columns
indexed by $X$ . The choice between these two matrices is made as shown
on Figure 2. To insure that $<\sigma$ , $v>$ is well defined we assume that
$W_{+}$ , $W_{-}$ are symmetric (in the general case we should take into account
some orientation of the diagram as in [KMW], but this case will not

be considered here). The weight of the state $\sigma$ is the product over all
crossings $v$ of the local weights $<\sigma$ , $v>$ , and the partition function is
the sum of weights of all states.

x $x$

$y$ $y$

$<\sigma$ , $v>=W_{+}[x, y]$ $<\sigma$ , $v>=W_{-}[x, y]$

Fig. 2

Our aim is to obtain an invariant of links from the partition func-
tion. For this it is actually necessary to introduce an orientation of $L$

and multiply the partition function by some normalization factor which
depends in part on this orientation. The Tait number (or writhe) $T(L)$
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$+1$ -1

Fig. 3

of an oriented diagram $L$ is the sum of signs of its crossings, where the

sign of a crossing is defined on Figure 3. Let $q$ be a square root of $|X|$

and let $a$ be some non-zero complex number. The normalized partition

function is $Z(L)=a^{-T(L)}q^{-|B(L)|}Z’(L)$ , where $Z’(L)$ denotes the parti-
tion function. Then it is not difficult to derive (from a simple analysis of
the effect of Reidemeister moves on the states and their weights) some
conditions on $W_{+}$ , $W_{-}$ which guarantee that the normalized partition
function defines an invariant of oriented links (see [Jo]). We shall call
these conditions invariance equations.

Before writing down these equations we need the following notations.
We denote by I the identity matrix and by $J$ the all-one matrix of
appropriate sizes. A4(X) is the set of complex matrices with rows and
columns indexed by $X$ . The Hadamard product of two matrices $A$ , $B$

in $f\Lambda(X)$ is denoted by $AoB$ and given by $(A\circ B)[x, y]=A[x, y]B[x, y]$ .

The invariance equations are

(1) $I\circ W_{+}=aI$ , $I\circ W_{-}=a^{-1}I$ ;

(2) $JW_{+}=W_{+}J=qa^{-1}J$, $JW_{-}=W_{-}J=qaJ$ ;

(3) $W_{+}W_{-}=|X|I$ ;

(4) $W_{+}\circ W_{-}=J$ ;

(5)(Star-triangle equation) for every $\alpha$ , $\beta$ , $\gamma$ in $X$ ,

$\sum_{x\in X}W_{+}[\alpha, x]W_{+}[\beta, x]W_{-}[\gamma, x]=qW_{+}[\alpha, \beta]W_{-}[\beta, \gamma]W_{-}[\gamma, \alpha]$
.

We shall call a symmetric spin model a 5-tuple $(X, W_{+}, W_{-}, a, q)$ ,

where $a\neq 0$ , $q^{2}=|X|$ , and $W_{+}$ , $W_{-}$ are symmetric matrices in A4(X)
which satisfy properties (1) to (5).

We shall need in the sequel a variation of the normalization factor
which does not require the link diagram $L$ to be connected. By adding a
point at infinity in the unbounded face we now view $L$ as drawn on the
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sphere. We denote by $\chi_{b}(L)$ the Euler characteristic of the union of the
black faces of $L$ . In general, if a surface is decomposed into $v$ vertices,
$e$ edges (each of which is homeomorphic to an open segment) which
connect these vertices, and $r$ regions (each of which is homeomorphic to
an open disk), its Euler characteristic is equal to $v-e+r$ . Note that if $L$

is connected, each black face is an open disk and hence $\chi_{b}(L)=|B(L)|$ .

Otherwise some “holes” may appear in the black faces, and each such
hole contributes -1 to $\chi_{b}(L)$ . It is easy to see that, if the invariance
equations hold, the expression $Z(L)=a^{-T(L)}q^{-\chi_{b}(L)}Z’(L)$ defines the

same link invariant as before.

2.2. Symmetric association schemes

We shall need the following basic facts concerning symmetric asso-
ciation schemes (see [BI], [D], [BCN] for more details).

A $d$-class symmetric association scheme on the finite non-empty set
$X$ is a partition of $X\times X$ into $d+1$ non-empty symmetric relations $R_{i}$ ,
$i=0$ , $\ldots$ , $d$ , where $R_{0}=\{(x, x)|x\in X\}$ , which satisfies the following
property:

(6) For $x$ , $y$ in $X$ , the number of elements $z$ which satisfy given scheme
relations with $x$ and $y$ only depends on which scheme relation is satisfied
by the pair $(x, y)$ . That is, for every $i$ , $j$ , $k$ in 0, . . . ’

$d$ there exists an
integer $p_{ij}^{k}$ such that

$|\{z\in X|(z, x)\in R_{i}, (z, y)\in R_{j}\}|=p_{ij}^{k}$

for every $x$ , $y$ in $X$ with $(x, y)$ in $R_{k}$ .

Define matrices $A_{i}$ , $i=0$ , $\ldots$ , $d$ , in $\mathcal{M}(X)$ by

(7) $A_{i}[x, y]$ equals 1 if $(x, y)\in R_{i}$ , and equals 0 otherwise.

The above properties can then be reformulated as follows:

(8) $A_{i}^{t}=A_{i}$ (where $A_{i}^{t}$ denotes the transpose of $A_{i}$ );

(9) $A_{i}\neq 0$ , $A_{i}oA_{j}=\delta(i,j)A_{i}$ ;

(10) $A_{0}=I$ ;

(11)
$i=\sum_{0,,,,d}\ldots A_{i}=J$

;

(12)
$A_{i}A_{j}=A_{j}A_{i}=\sum_{k=0,,,.,d}p_{ij}^{k}A_{k}$

.

Let $A$ be the subspace of the complex vector space A4(X) spanned
by the matrices $A_{i}$ , $i=0$ , $\ldots$ , $d$ . By (9) these matrices are linearly
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independent and hence form a basis of $A$ . Then (9) and (11) imply that,

under Hadamard product, $A$ is an associative commutative algebra with
unit $J$ , and $\{A_{i}, i=0, \ldots, d\}$ is a basis of orthogonal idempotents of
this algebra. Moreover by (8) $A$ consists of symmetric matrices. Finally
it follows from (10) and (12) that under ordinary matrix product $A$ is

also an associative commutative algebra with unit $I$ . The subspace $A$ of
$\lambda\Lambda(X)$ is called the Bose-Mesner algebra [BM] of the association scheme.
Conversely, a $(d+1)-$dimensional subspace of $\lambda 4(X)$ which contains
$I$ , $J$ , consists of symmetric matrices, and is closed under Hadamard
product and ordinary matrix product, is the Bose-Mesner algebra of
some symmetric $d$-class association scheme (see [BCN], Th. 2.6.1). Such
a subspace will be called here a symmetric Bose-Mesner algebra on $X$ .

A duality of a symmetric Bose-Mesner algebra $A$ on $X$ is a linear
map I from $A$ to itself which satisfies the following properties:

(13) For every matrix $M$ in $A$ , $\Psi(\Psi(M))=|X|M$ ;

(14) For any two matrices $M$ , $N$ in $A$ , $\Psi(MN)=$ I $(M)\circ\Psi(N)$ .

It easily follows that $\Psi(I)=J$ and $\Psi(J)=|X|I$ .

A symmetric Bose-Mesner algebra will be called self-dual if it admits
a duality.

\S 3. Tangles

Tangles and tangle diagrams are classical objects in knot theory
(see for instance [C]) which also play an important role in the study of
quantum invariants (see for instance [Tur]). Most of the content of this
section is well known, but some of our definitions and notations are not

standard.

3.1. Tangles and tangle diagrams

In what follows the Euclidean 3-dimensional space $\mathbb{R}^{3}$ is defined by
Cartesian coordinates $x$ , $y$ , $z$ .

Let $S$ be the square $[- 1, 1]\times[-1, 1]$ in the $(x, y)-$plane and let $B=$

$S\times \mathbb{R}$ . We shall call an $S$ -tangle any subset $T$ of $B$ which is the disjoint
union of a finite collection of simple smooth curves (the components of
$T)$ and which satisfies the following condition:

(13) $\partial T=T\cap\partial B=\{NE,NW,SW,SE\}$ ,

where NE $=(1, 1, 0)$ , $NW=(-1,1, 0)$ , $SW=(-1, -1,0)$ , $SE=(1, -1,0)$ .

Thus exactly two components of $T$ are homeomorphic to a closed
interval, while every other component is homeomorphic to a circle.
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An 5-tangle is oriente $d$ if each of its components has received an

orientation.
The notions and properties which we now introduce for 5-tangles

are immediate extensions of classical notions and properties for knots
and links (see for instance [BZ], [K]).

Two 5-tangles $T_{0}$ , $T_{1}$ are isotopic if there exists a (smooth) ambient
isotopy $H$ : $B\times[0,1]\rightarrow B\times[0,1]$ , $H(b, t)=(h_{t}(b), t)$ , such that each $h_{t}$

fixes $\partial B$ pointwise, $h_{0}$ is the identity map, and $h_{1}(T_{0})=T_{1}$ . For oriented
5-tangles it is also required that $H$ preserves the orientation of each

component.
We denote by $\mathcal{T}$ (respectively: $O\mathcal{T}$ ) the set of isotopy classes of

$S$-tangles (respectively: oriented $S$-tangles).
Isotopy classes of 5-tangles can be represented by diagrams, which

we shall call $S$ -diagrams, as follows.
Given an element $T$ of $\mathcal{T}$ or $O\mathcal{T}$ , we may choose an 5-tangle in the

isotopy class $T$ which lies in general position with respect to the $(x, y)-$

plane, so that its projection onto that plane is generic. This means that
there is only a finite number of multiple points, each of which is a sim-
ple crossing. Thus we may consider this projection as a finite graph
$D$ embedded in the square $S$ (identified with $S\times 0$ ). The graph $D$ lies
in the interior of $S$ except for four vertices of degree 1 situated at the
points NE, $NW$ , $SW$ , and SE. The other vertices have degree 4 and will
be provided with a marking indicating in the usual fashion the spatial
structure of the corresponding crossings. The resulting marked graph
embedded in $S$ will be called an $S$-diagram of $T$ . If $T$ belongs to $O\mathcal{T}$ ,
each edge of the 5-diagram will receive the orientation inherited from
the corresponding $S$-tangle component, and the 5-diagram will be said
to be oriented. 5-diagrams will be considered up to isomorphisms of
plane graphs which preserve markings, the above mentioned properties
of the embeddings in $S$ , and, in the case of oriented $S$-diagrams, orienta-
tions. Let $D$ (respectively: $OT$ ) be the set of $S$-diagrams (respectively:
oriented 5-diagrams). Clearly any 5-diagram of $T$ uniquely determines
$T$ . Hence we may define a map $\theta$ from $D$ onto $T$ and a map also de-
noted by $\theta$ from $OD$ onto $O\mathcal{T}$ such that, for every (possibly oriented)
$S$-diagram $D$ , $\theta(D)$ is the isotopy class of $S$-tangles represented by $D$ .

Figure 4 displays the basic 5-diagrams $X_{0}$ , $X_{\infty}$ , $X_{+}$ , $X_{-}$ . Here and
in other pictures of $S$-diagrams, the $x$-axis is horizontal and the $y$-axis
is vertical.

Reidemeister moves for 5-diagrams are defined exactly as for link
diagrams: it is enough to require that all configurations appearing in
Figure 1 (or in its oriented versions) lie in the interior of $S$ . Let us say
that two $S$-diagrams (respectively: oriented $S$-diagrams) $D_{1}$ , $D_{2}$ are
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$X_{1J}$ $X_{\infty}$ $X_{+}$ $X_{-}$

Fig. 4

Reidemeister equivalent (this will be written $D_{1}=_{R}D_{2}$ ) if it is possible
to transform one into the other by a finite sequence of Reidemeister
moves (respectively: oriented Reidemeister moves). Then Reidemeister’s
Theorem for angles (see for instance Section 3.5 of [Tur]) states that
two 5-diagrams $D_{1}$ , $D_{2}$ represent the same element of I (or the same
element of $O\mathcal{T}$ ) if and only if they are Reidemeister equivalent. We
record this as:

(16) $D_{1}=_{R}D_{2}$ if and only if $\theta(D_{1})=\theta(D_{2})$

whenever $D_{1}$ and $D_{2}$ are two elements of $D$ , or two elements of $OD$ .

In the sequel we shall mainly work with 5-diagrams. However the
interpretation (16) of Reidemeister equivalence in terms of 5-tangles via
the map $\theta$ will be crucial for the proof of the Main Lemma of Section 3.3.

3.2. Products

Let $T_{1}$ , $T_{2}$ be elements of $\mathcal{T}$ . Intuitively speaking, their vertical
product $T_{1}\div T_{2}$ will be obtained by placing $T_{1}$ above $T_{2}$ and gluing them
together. More precisely, we translate an $S$-tangle of type $T_{1}$ by the vec-
tor (0, 1, 0), we translate an $S$ angle of type $T_{2}$ by the vector $(0, -1, 0)$ ,

and we apply to the union the transformation $(x, y, z)\rightarrow(x, y/2, z)$ . We
may then use an ambient isotopy of $B$ to deform the resulting object into

an 5-tangle (we only need to move the two points of intersection with the
$x$-axis towards the interior of $B$ and realize smoothness at these points).
Clearly the resulting $S$-tangle only depends on the isotopy classes $T_{1}$ ,
$T_{2}$ and we denote by $T_{1}\div T_{2}$ its isotopy class.

We define similarly the horizontal product $T_{1}\# T_{2}$ which is obtained
by placing $T_{1}$ to the left of $T_{2}$ and gluing them together.

We also define in an analogous way the vertical product $D_{1}\div D_{2}$

and the horizontal product $D_{1}\# D_{2}$ of two 5-diagrams $D_{1}$ , $D_{2}$ in $D$ (see
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$D_{1}\div D_{2}$ $D_{1}\# D_{2}$

Fig. 5

Figure 5). Then

$\theta(D_{1}\div D_{2})=\theta(D_{1})\div\theta(D_{2})$ and
(17)

$\theta(D_{1}\# D_{2})=\theta(D_{1})\#\theta(D_{2})$ for all $D_{1}$ , $D_{2}$ in $D$ .

Remark. It is clear that both products $\div$ and $\#$ on $D$ are asso-
ciative. The vertical product has unity element $X_{0}$ and the horizontal
product has unity element $X_{\infty}$ (see Figure 4). Similar properties hold
for $\mathcal{T}$ .

3.3. Transformations and identities

We shall need the following notations for some transformations of
$\mathbb{R}^{3}$ : $\rho$ is the rotation about the $z$-axis through angle $\pi/2$ such that
$\rho((1,0,0))=(0,1, 0)$ , $\alpha$ is the rotation about the $x$-axis through angle
$\pi$ , and $\beta$ is the rotation about the $y$-axis through angle $\pi$ .

These smooth transformations preserve $B$ , $\partial B$ and {NE, $NW$ , $SW$ ,

SE}. Hence the image of an $S$-tangle under one of these transformations
is also an $S$-tangle. Since the images of two isotopic $S$-tangles are also
isotopic, this defines actions of $\rho$ , $\alpha$ , $\beta$ on $\mathcal{T}$ and on $O\mathcal{T}$ .

Similarly, since the transformations $\rho$ , $\alpha$ , $\beta$ preserve $S$ , they act
naturally on 5-diagrams. Their action on the underlying (possibly ori-
ented) graphs is clear. Their action on markings will be determined by
the following requirements:

(18) for every $S$-diagram $D$ , $\theta(\rho(D))=\rho(\theta(D))$ and similarly when $\rho$ is
replaced by $\alpha$ or $\beta$ .

Examples of the action of $\rho$ , $\alpha$ , $\beta$ on $D$ are displayed on Figure 6.
The following identities are immediate from Figure 4:

(19) $\rho(X_{0})=X_{\infty}$ , $\rho(X_{\infty})=X_{0}$ , $\rho(X_{+})=X_{-}$ , $\rho(X_{-})=X_{+}$ .
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The following identities are immediate from Figure 7:

(20) $\rho(D_{1}\div D_{2})=\rho(D_{1})\#\rho(D_{2})$ for all $D_{1}$ , $D_{2}$ in $D$ ,

(21) $\rho(D_{1}\# D_{2})=\rho(D_{2})\div\rho(D_{1})$ for all $D_{1}$ , $D_{2}$ in $D$ .

Finally the following result will be essential in the sequel.

Main Lemma.

(i) $(X_{+}\div(X_{-}\# D))\# X_{-}=_{R}\rho(D)$ for every $D$ in V.
(ii) $(X_{-}\div(X_{+}\# D))\# X_{+}=_{R}\rho(D)$ for every $D$ in V.

Proof, (i) By (16), (17), (18), this is equivalent to the equality

$(\theta(X_{+})\div(\theta(X_{-})\# T))\#\theta(X_{-})=\rho(T)$ for every $T$ in I.

This equality is proved on Figure 8.

–

—-

Fig. 8

The proof for (ii) is obtained from the proof for (i) by reflection in
the $(x, y)$ -plane (this is the mirror image operation). Q.E.D.
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\S 4. Bose-Mesner algebras associated withsymmetricspinmod-
els

4.1. The matrix-valued partition function $Z$

We call faces of an $S$-diagram $D$ the connected components of $(S-$

$\partial S)-D$ . The North face $N(D)$ is the one whose boundary contains
$[- 1, 1]\times\{1\}$ and the South face $S(D)$ is the one whose boundary contains
$[- 1, 1]\times\{-1\}$ (these faces can be identical: for instance this is the case
for $X_{0}$ ). The faces of $D$ can be (uniquely) colored with two colors, black
and white, in such a way that any two faces adjacent along an edge of $D$

receive different colors, and $N(D)$ , $S(D)$ are colored black. From now
on the faces of every $S$-diagram $D$ are colored in this way, and we denote
by $B(D)$ the set of black faces of $D$ . We call black set of $D$ the union of
the black faces of $D$ and we denote by $\chi(D)$ the Euler characteristic of
this set. Finally, if $D$ is oriented, we denote by $T(D)$ the Tait number
(or writhe) of $D$ , that is, the sum of signs of its crossings, where the sign
of a crossing is defined on Figure 3.

Let $(X, W_{+}, W_{-}, a, q)$ be a symmetric spin model. We define a map-
ping $Z$ from $D$ to $\mathcal{M}(X)$ as follows.

Let $D$ be an $S$-diagram. For $i$ , $j$ in $X$ we call state of $D$ of type $(i, j)$

any mapping $\sigma$ from $B(D)$ to $X$ such that $\sigma(N(D))=i$ , $\sigma(S(D))=j$ .

Then for any such mapping $\sigma$ and for any vertex $v$ of degree 4 of $D$ ,
we define a local weight $<\sigma$ , $v>$ as in the case of link diagrams (see
Figure 2). Now the $w$eight $<\sigma$ , $D>$ of the state $\sigma$ is the product of
the $<\sigma$ , $v>$ over all vertices $v$ of degree 4 of $D$ (this product being 1 if
there are no such vertices). We define $Z’(D)$ to be the matrix in $\lambda\Lambda(X)$

with $(i, j)$ entry given by

(22) $ Z’(D)[i,j]=\sum<\sigma$ , $D>$ ,

where the summation runs over all states $\sigma$ of $D$ of type $(i, j)$ (the sum
being 0 if there are no such states).

Finally, we define the mapping $Z$ from $D$ to $\mathcal{M}(X)$ by

(23) $Z(D)=q^{2-\chi(D)}Z’(D)$ .

Proposition 1. If $D_{1}’$ , $D_{2}’$ are Reidemeister equivalent oriented
$S$ -diagrams, and if $D_{i}$ is the $S$ -diagram obtained from $D_{i}’$ by forgetting

its orientation $(i=1,2)\rangle a^{-T(D_{1}’)}Z(D_{1})=a^{-T(D_{2}’)}Z(D_{2})$ .

Proof. We may proceed in essentially the same way as for link
diagrams. There is only one minor difference. We need to show the
invariance under Reidemeister moves of $Z(D)[i, j]$ (up to a writhe factor)
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for each given pair $(i, j)$ . But the fact that we restrict the summation
in (22) to states of type $(i,j)$ is not significant since, in the analysis of a
given Reidemeister move, we consider (as in the case of link diagrams)
the state values as fixed for all black faces except possibly one “central
face” of the move. Q.E.D.

The proof of the following result is easy (see Figures 2, 4) and is left
to the reader.

Proposition 2.

(i) $Z(X_{0})=qI_{\rangle}$

(ii) $Z(X_{\infty})=J$ ,

(iii) $Z(X_{+})=W_{+}$ , $Z(X_{-})=W_{-}$ .

We shall need the following important properties of the mapping $Z$ .

Proposition 3.

(i) $Z(D_{1}\div D_{2})=q^{-1}Z(D_{1})Z(D_{2})$ for all $D_{1}$ , $D_{2}$ in $D$ ,
(ii) $Z(D_{1}\# D_{2})=Z(D_{1})\circ Z(D_{2})$ for all $D_{1}$ , $D_{2}$ in $D$ ,

(iii) $Z(\rho^{2}(D))=(Z(D))^{t}$ for all $D$ in V.

Proof, (i) Figure 9(i) shows that there is a bijective correspondence
between the set of states of type $(i,j)$ of $D_{1}\div D_{2}$ and the set of triples
$(k, \sigma_{1}, \sigma_{2})$ , where $k$ is an element of $X$ , $\sigma_{1}$ is a state of type $(i, k)$ of
$D_{1}$ , and $\sigma_{2}$ is a state of type $(k, j)$ of $D_{2}$ , such that $<\sigma$ , $D_{1}\div D_{2}>=$

$<\sigma_{1}$ , $D_{1}><\sigma_{2}$ , $D_{2}>$ whenever $\sigma$ corresponds to $(k, \sigma_{1}, \sigma_{2})$ , for some
$k$ in $X$ . Hence

$Z’(D_{1}\div D_{2})[i, j]=\sum_{k\in X}Z’(D_{1})[i, k]Z’(D_{2})[k, j]$
.

Moreover the black set of $D_{1}\div D_{2}$ can be obtained from the disjoint
union of the black sets of $D_{1}$ and $D_{2}$ by the attachment of a single
band. Hence

$\chi(D_{1}\div D_{2})=\chi(D_{1})+\chi(D_{2})-1$ .

The two above equalities together yield (i).
(ii) The proof is quite similar to that of (i). Figure 9 (ii) shows that

$Z’(D_{1}\# D_{2})[i,j]=Z’(D_{1})[i,j]Z’(D_{2})[i, j]$ .

Now the black set of $D_{1}\# D_{2}$ is obtained from the disjoint union of the
black sets of $D_{1}$ and $D_{2}$ by the attachment of two bands, and hence

$\chi(D_{1}\# D_{2})=\chi(D_{1})+\chi(D_{2})-2$ .
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(i)(ii)

Fig. 9

The result follows immediately.
(iii) Clearly $\rho^{2}$ defines a bijective correspondence between $B(D)$ and

$B(\rho^{2}(D))$ which shows that $\chi(\rho^{2} (D))=\chi(D)$ , and also yields a weight-
preserving bijective correspondence between states of type $(i, j)$ of $D$

and states of type $(j, i)$ of $\rho^{2}(D)$ . Q.E.D.

4.2. The tangle closure of a symmetric spin model

Let us consider a symmetric spin model $(X, W_{+}, W_{-}, a, q)$ and the
associated map $ Z:D\rightarrow$ Al(X) defined in the previous section. Let us
denote by $<Z(D)>$ the linear span of $Z(D)$ , which we shall call the
tangle closure of the spin model.

Theorem A. $<Z(D)>$ is a symmetric Bose-Mesner algebra
which contains the spin model matrices $W_{+}$ , $W_{-}$ . Moreover the map
$\Psi:\Lambda\Lambda$ $(X)\rightarrow \mathcal{M}$ $(X)$ defined by I(M) $=aW_{-}\circ(W_{+}(W_{-}oM))ind$uces $a$

$d$uality $on<Z(D)>$ .

Proof. By Proposition 2, $<Z(D)>$ contains $W_{+},W_{-}$ , I and $J$ .

By definition $<Z(D)>$ is a linear subspace of $\mathcal{M}(X)$ , and it follows

immediately from Proposition 3 (i), (ii) that $<Z(D)>$ is closed under
ordinary matrix product and under Hadamard product. Hence I defines
a linear map from $<Z(D)>$ to $<Z(D)>$ . By properties (3) and (4) of
spin models, I is invertible and $\Psi^{-1}(M)=a^{-1}|X|^{-1}W_{+}\circ(W_{-}(W_{+}\circ M))$

for every $M$ in $<Z(D)>$ .
Let $D$ be any element of $D$ . By (i) of the Main Lemma and Propo-

sition 1, $Z((X_{+}\div (X_{-}\# D))\# X_{-})=a^{k}Z(\rho(D))$ , where $k$ is the Tait
number of some orientation of $(X_{+}\div(X_{-}\# D))\# X_{-}$ minus the Tait
number of the corresponding orientation of $\rho(D)$ . One easily obtains
from Figure 8 that $k=-1$ for each of its six oriented versions. Hence

$Z(\rho(D))=aZ((X_{+}\div(X_{-}\# D))\# X_{-})$ .
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Applying Proposition 2 (iii) and Proposition 3 (i), (ii), and using the
commutativity of the Hadamard product, we obtain

$\acute{\Delta}^{7}(\rho(D))=aq^{-1}W_{-}\circ(W_{+}(W_{-}\circ Z(D)))$

or equivalently

(24)I $(Z(D))=qZ(\rho(D))$ .

Similarly, using (ii) of the Main Lemma, and considering the mirror
images of the six oriented versions of Figure 8 we obtain

$Z(\rho(D))=a^{-1}Z((X_{-}\div(X_{+}\# D))\# X_{+})$

and hence
$Z(\rho(D))=a^{-1}q^{-1}W_{+}\circ(W_{-}(W_{+}\circ Z(D)))$ .

This is equivalent to

(25) $I^{-1}$ $(Z(D))=q^{-1}Z(\rho(D))$ .

It follows from (24), (25) that $I^{-1}$ $(Z(D))=q^{-2}\Psi(Z(D))$ and hence

(26) $\Psi^{2}$ $(A)=|X|A$ for every $A$ in $<Z(D)>$ .

Moreover, for any two elements $D_{1}$ , $D_{2}$ of $D$ we have:

$\Psi(Z(D_{1})Z(D_{2}))=q$ I $(Z(D_{1}\div D_{2}))$ (by Proposition 3 (i))

$=q^{2}Z(\rho(D_{1}\div D_{2}))$ (by (24))

$=q^{2}Z(\rho(D_{1})\#\rho(D_{2}))$ (by (20))

$=q^{2}Z(\rho(D_{1}))\circ Z(\rho(D_{2}))$ (by Proposition 3 (ii))

$=\Psi(Z(D_{1}))\circ\Psi(Z(D_{2}))$ (by (24))

Hence $\Psi(AB)=$ $\Psi(A)\circ\Psi(B)$ for every $A$ , $B$ in $<Z(D)>$ . This together
with (26) shows that 1 induces a duality on $<Z(D)>$ .

Finally, by applying (24) twice to the equality $(Z(D))^{t}=Z(\rho^{2}(D))$

of Proposition $3(iii)$ , and using (26), we obtain $(Z(D))^{t}=Z(D)$ . Hence
all matrices in $<Z(D)>$ are symmetric. Q.E.D.

Remark. It follows from (24) and Proposition 2 (iii), or from prop-
erties (2), (4) of spin models and the expression of $\Psi$ given in Theorem $A$ ,

that I $(W_{+})=qW_{-}$ .



Spin Models 213

4.3. The algebraic closure of a symmetric spin model

So far the symmetric Bose-Mesner algebra $<Z(D)>$ is related
to the corresponding spin model in an abstract way via $S$-tangles or
$S$-diagrams, and we are not able to describe this Bose-Mesner algebra
explicitly. We now propose a way to overcome this difficulty.

Let us say that a subset of $\mathcal{M}(X)$ is weakly Bose-Mesner (WBM for
short) if it is closed under complex linear combinations, ordinary matrix
product, Hadamard product, and contains $I$ , $J$ . Thus symmetric Bose-
Mesner algebras on $X$ are exactly the WBM subsets of $\Lambda 4(X)$ consisting
only of symmetric matrices.

Clearly $\mathcal{M}(X)$ is WBM, and the intersection of a family of WBM
subsets is again WBM. Thus every subset $F$ of $\mathcal{M}(X)$ has a unique
$WBM$-closure $C(F)$ which is the smallest WBM subset of $\mathcal{M}(X)$ con-
taining it. More precisely we may define $C(F)$ in the following two
equivalent ways:

(i) abstract definition: $C(F)$ is the intersection of all WBM subsets
of $\lambda\Lambda(X)$ containing $F$ .

(ii) algorithmic definition: $C(F)$ is obtained by iterating the fol-
lowing process involving a finite current set $F’$ , and taking as the initial
instance of $F’$ a maximal linearly independent subset of $F\cup\{I, J\}$ . Com-
pute ordinary or Hadamard products of two elements of $F’$ , checking for
each resulting matrix if it belongs to the linear span of $F’$ . If not, the
matrix is incorporated into $F’$ . If no such incorporation is possible, the
linear span of $F’$ is $C(F)$ .

Theorem B. Let $(X, W_{+}, W_{-}, a, q)$ be a symmetric spin mod $el$ .
( $(\{W_{+}\})=$ ( $(\{W_{-}\})$ is a symmetric Bose-Mesner algebra. Moreover
the map $\Psi$ : $\mathcal{M}(X)\rightarrow \mathcal{M}$ $(X)$ defined by $\Psi(M)=aW_{-}\circ(W_{+}(W_{-}\circ M))$

induces a duality on this Bose-Mesner algebra.

Proof. By Theorem $A$ , $W_{+}$ belongs to the symmetric Bose-Mesner
algebra $<Z(D)>$ . Since $<Z(D)>$ is WBM, it contains $C(\{W_{+}\})$ and
hence all matrices in $C(\{W_{+}\})$ are symmetric. The equality $((\{W_{+}\})$

$=$ ( $(\{W_{-}\})$ easily follows from property (3) of spin models. Indeed the
inverse of $W_{+}$ is a linear combination of powers of $W_{+}$ and hence $W_{-}$

belongs to $C(\{W_{+}\})$ . This shows that $C(\{W_{+}\})\supset C(\{W_{-}\})$ and the
reverse inclusion is proved similarly. Finally the definition of $\Psi$ shows
immediately that $\Psi(C(\{W_{+}\}))=$ ( $(\{W_{+}\})$ and the result follows from
Theorem A. Q.E.D.

The Bose-Mesner algebra ( $(\{W_{+}\})$ will be called the algebraic clo-
sure of the spin model $(X, W_{+}, W_{-}, a, q)$ . This Bose-Mesner algebra can
also be understood in terms of 5-diagrams as follows. Call an 5-diagram
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algebraic if it can be generated using only vertical and horizontal prod-
ucts from the basic $S$-diagrams $X_{0}$ , $X_{\infty}$ , $X_{+}$ , $X_{-}$ (the corresponding
$S$-tangles are called algebraic in [C] $)$ . Let $AD$ be the set of algebraic
5-diagrams. It is clear from Propositions 2 and 3 (i), (ii) that $Z(AD)$ is
contained in ( $(\{W_{+}, W_{-}\})=$ ( $(\{W_{+}\})$ . Conversely, it is easy to see that
$C(\{W_{+}\})$ is linearly spanned by elements in $Z(AD)$ . Thus $C(\{W_{+}\})$ is
the linear span of $Z(AD)$ , which we denote by $<Z(AD)>$ , and clearly
we could give a “topological” proof of Theorem $B$ exactly similar to that
of Theorem A.

Theorem $B$ generalizes previous results of [Jal]. In that paper
two algebras $\Lambda 4$ and 7# are associated with any symmetric spin model
$(X, W_{+}, W_{-}, a, q):\mathcal{M}$ is the algebra under matrix product generated
by $J$ , $W_{+}$ , and $\prime H$ is the algebra under Hadamard product generated
by $I$ , $W_{-}$ . Clearly $\Lambda 4$ and $H$ are contained in ( $(\{W_{+}\})$ , and, since

I $(W_{+})=qW_{-}$ and $\Psi(J)=|X|I$ , $\Psi(\lambda\Lambda)=H$ . This equality is the
content of Proposition 3 of [Jal], with however different expressions for
$\Psi$ (which are easily obtained from the expression of Theorem $B$ using
the star-triangle equation (5) $)$ . Assume now that $\mathcal{M}$ is closed under
Hadamard product. Then $\lambda\Lambda$ is WBM (because it contains I by (3))
and hence equals $C(\{W_{+}\})$ . This implies Proposition 4 of [Jal].

We do not know any example of a symmetric spin model for which
the tangle closure $<Z(D)>$ and the algebraic closure $<Z(AD)>$ are
different, but we believe that such an example should exist.

4.4. Modular invariance

Let $(X, W_{+}^{J}, W_{-}, a, q)$ be a symmetric spin model. We have intro-
duced two symmetric Bose-Mesner algebras $<Z(D)>$ and $<Z(AD)>$ ,

each of which contains $W_{+}$ , $W_{-}$ and is provided with a duality $\Psi$ given
by the expression I $(M)=aW_{-}\circ(W_{+}(W_{-}\circ M))$ . Now, given a sym-
metric Bose-Mesner algebra with duality $\Psi$ , we would like to know if it
is associated in this way with some symmetric spin model, and classify
such spin models. A key concept here is that of modular invariance,
formulated by Eiichi Bannai and his coworkers in their study of rela-
tions between fusion algebras of conformal field theories and association
schemes (see [B1]), and used by them to construct new spin models
([BB2], [BBIK])

We have seen that the Bose-Mesner algebra $A$ of a $d$-class symmetric

association scheme on a set $X$ has a basis $\{A_{i}, i=0, \ldots, d\}$ of orthogonal
idempotents for the Hadamard product. It is well known that it has also

a basis $\{E_{i}, i=0, \ldots, d\}$ of orthogonal idempotents for the ordinary
matrix product, where $E_{0}=|X|^{-1}J$ (see [BI], Section II.3). The first
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eigenmatrix $P$ is defined by

(27)
$A_{j}=\sum_{i=0,,,.,d}P[i,j]E_{i}$

.

Thus $P$ is the transition matrix from the basis $\{A_{i}, i=0, \ldots, d\}$ to
the basis $\{E_{i}, i=0, \ldots, d\}$ , and only depends on the indexing of the $A_{i}$

and the $E_{i}$ . If $\Psi$ is a duality, the matrices $\Psi(E_{i})$ are the $A_{i}$ in some order.
In particular, by (10), $\Psi(E_{0})=|X|^{-1}\Psi(J)=I=A_{0}$ . Thus we may
choose the indices in such a way that $\Psi(E_{i})=A_{i}$ for $i=0$ , $\ldots$ , $d$ . Then
by (27) $P$ is the matrix of $\Psi$ with respect to the basis $\{E_{i}, i=0, \ldots, d\}$ ,

and $P^{2}=|X|I$ by (13).
The modular invariance property asserts that there exists a diagonal

matrix $\triangle$ such that $(P\triangle)^{3}$ is a non-zero multiple of the identity. The
following relationship between this property and spin models is presented
in [BBJ].

Let us write $W_{-}=\sum_{i=0}$
, ,

$dt_{i}A_{i}$ and define $W_{+}$ by I $(W_{+})=qW_{-}$ .

Thus $W_{+}=q^{-1}\Psi(W_{-})=q^{-1}\sum_{i=0}$
, ,

$dt_{i}\Psi(A_{i})=q\sum_{i=0}$
, ,

$dt_{i}E_{i}$ .

Assume that I $(M)=aW_{-}\circ(W_{+}(W_{-}\circ M))$ for every $M$ in the Bose-
Mesner algebra $A$ . We write the corresponding equality in terms of
matrices with respect to the basis $\{A_{i}, i=0, \ldots, d\}$ .

The matrix of the linear map $M\rightarrow W_{-}oM$ is the diagonal matrix
$\triangle$ with $\triangle(i, i)=t_{i}$ for $i=0$ , $\ldots$ , $d$ .

The matrix of the linear map $M\rightarrow W_{+}M$ is $P^{-1}(q\triangle)P=q^{-1}P\triangle P$ .

The matrix of $\Psi$ is $P^{-1}(P)P=P$ . We obtain the equality $P=$
$ q^{-1}a\triangle P\triangle P\triangle$ , or equivalently $(P\triangle)^{3}=q^{3}a^{-1}I$ .

We have proved the following result.

Theorem C. Every symmetric spin mod $el$ $(X, W_{+}, W_{-}, a, q)$ is
characterized by some solution $\triangle$ to the modular invariance equation
$(P\triangle)^{3}=q^{3}a^{-1}I_{f}$ where $P$ is the first eigenmatrix of some self-dual
symmetric Bose-Mesner algebra (with indices chosen such that $P^{2}=$

$|X|I)$ .

In general, a solution to the above modular invariance equation
needs not correspond to some spin model (see [BBJ]). However, The-
orem $C$ should be a very useful tool for the classification of spin models
(see for instance [B3], [CS]).

\S 5. Complements

5.1. Planar duality

We have just seen that the modular invariance property gives a
necessary condition for a symmetric Bose-Mesner algebra to correspond
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to a symmetric spin model as in Theorems A or B. Another necessary
condition is given by the planar duality property introduced in [Ja3].
This property is defined in terms of spin models on plane graphs, and
some special cases are well known in physics (see also [Bil], [Bi2]).

Let $G$ be a finite undirected graph (loops and multiple edges are
allowed). Its vertex-set and edge-set will be denoted by $V(G)$ and $E(G)$

respectively. Let $X$ be a non-empty finite set and let $w$ be a mapping
from $E(G)$ to $\mathcal{M}(X)$ whose values are symmetric matrices. This map-
ping defines a spin mod $el$ on the graph $G$ . Let us call state of $G$ any
mapping $\sigma$ from $V(G)$ to $X$ . If the edge $e$ has ends $v_{1}$ , $v_{2}$ , let $w(e|\sigma)$

be the $(\sigma(v_{1}), \sigma(v_{2}))-$entry of the matrix $w(e)$ . The weight $w(\sigma)$ of the
state $\sigma$ is then the product of the $w(e|\sigma)$ over all edges $e$ (this will be
set to 1 if $G$ has no edge). Finally, the partition function $Z(G, w)$ is the
sum of weights of all states.

Let $A$ be a symmetric Bose-Mesner algebra on $X$ and let $\Psi$ be
a duality of $A$ . The pair $(A, \Psi)$ is said to satisfy the planar duality
property if for every connected plane graph $G$ and mapping $w$ from
$E(G)$ to $A$

(28) $Z(G, w)=|X|^{1-|V(G^{*})|}Z(G^{*}, \Psi w\phi)$ ,

where $G^{*}$ is the dual plane graph of $G$ and $\phi$ : $E(G^{*})\rightarrow E(G)$ associates
to every edge of $G^{*}$ its dual edge.

Proposition 4. Let $(X, W_{+}, W_{-}, a, q)$ be a symmetric spin model.
Each of the pairs $(<Z(D)>, \Psi)$ , $d$efined in Theorem $A$ , and $(C(\{W_{+}\})$ ,
$\Psi)$ , defined in Theorem $B$ , satisfies the planar $d$uality property.

Proof. The following argument is essentially a symmetric version of
the one used for Proposition 12 of [Ja3] (see also the associated remark).

We consider a connected plane graph $G$ and we want to check (28)
for every mapping $w$ from $E(G)$ to $A$ , where $A$ is either $<Z(D)>$ or

$<Z(AD)>=$ ( $(\{W_{+}\})$ . The set of these mappings can be identified
with a product of $m$ copies of the vector space $A$ , where $m=|E(G)|$ .

Then each side of (28), considered as a function of $w$ , is clearly a multi-
linear form on this product of vector spaces. It follows that it is enough
to check (28) for mappings $w$ which take their values in some fixed basis
of $A$ . Since $A$ is either $<Z(D)>$ or $<Z(AD)>$ , we may choose a basis
contained in $Z’(D)$ (see (22), (23)). Hence it is enough to check (28)
when, for every edge $e$ of $G$ , $w(e)=Z’(D_{e})$ for some 5-diagram $D_{e}$ .

We shall need the following classical description of the pair $(G, G^{*})$ .

Let $H$ be a connected 4-regular plane graph. We color its faces in black
and white in such a way that adjacent faces receive different colors. The
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graph of black faces of $H$ is a connected plane graph defined as follows.
It has one vertex $f^{o}$ for each black face $f$ of $H$ , placed in the interior of
that face, and one edge $v^{O}$ for each vertex $v$ of $H$ . If the vertex $v$ of $H$

is incident to the black faces $f$ , $g$ , the edge $v^{o}$ is embedded as a simple
curve joining the vertices $f^{o}$ , $g^{O}$ across $v$ . The graph of white faces of $H$

is defined similarly, and it is easily seen that it is the dual of the graph of
black faces. Moreover, every pair of dual connected plane graphs arises
in this way (see [O] p.47).

Thus we may assume that $G$ is the graph of black faces and $G^{*}$ is the
graph of white faces of some face-colored connected 4-regular plane graph
$H$ . We now associate with $w$ (satisfying $w(e)=Z’(D_{e})$ for every edge $e$

of $G$ ) a face-colored connected link diagram $L$ . To construct $L$ , for every
edge $e$ of $G$ we locally replace as shown on Figure 10 the corresponding
vertex of $H$ by the $S$-diagram $D_{e}$ . There is some ambiguity in this
construction since we do not specify which black face of $H$ incident to
this vertex corresponds to the North face of $D_{e}$ , but we shall see that
this will not matter, due to the fact that $Z’(D_{e})$ is a symmetric matrix.

e | $\rightarrow$ $\rightarrow$

Fig. 10

It is clear from the definitions of the partition functions $Z’(L)$ (see
Section 2.1), $Z’(D_{e})$ (Section 4.1), and $Z(G, w)$ , that

(29) $Z’(L)=Z(G, w)$ .

Let us now exchange black and white in the face-coloring of $L$ . The
same argument (and examination of Figure 10) shows that the partition
function $Z^{JJ}$ $(L)$ computed with respect to the new face-coloring satisfies

(30) $Z’’(L)=Z(G^{*}, w^{*})$ ,
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where $w^{*}:$ $E(G^{*})\rightarrow A$ is defined by $w^{*}(e^{*})=Z’(\rho(D_{e}))$ for all $e^{*}$ in
$E(G^{*})$ with dual edge $e$ in $E(G)$ . Using (23), (24) we see that

$w^{*}(e^{*})=q^{\chi(\rho(D_{e}))-2}Z(\rho(D_{e}))$

$=q^{\chi(\rho(D_{e}))-3}$ I $(Z(D_{e}))$

$=q^{\chi(\rho(D_{e}))-3}\Psi(q^{2-\chi(D_{e})}Z’(D_{e}))$

$=q^{\chi(\rho(D_{e}))-\chi(D_{e})-1}\Psi(w(e))$

$=q^{\chi(\rho(D_{e}))-\chi(D_{e})-1}(\Psi w\phi)(e^{*})$ .

Hence (28) is equivalent to

(31) $Z’(L)=|X|^{1-|V(G^{*})|}q^{\mu}Z’’(L)$ ,

where $\mu=\sum_{e\in E(G)}$ $(-\chi(\rho(D_{e}))+\chi(D_{e})+1)$ .

Recall from Section 2.1 that $Z(L)=a^{-T(L)}q^{-\chi_{b}(L)}Z’(L)$ defines a
link invariant. It is easy to show that the exchange of black and white
in the face-coloring of $L$ does not modify the value of this invariant (see

[Jo], Proposition 2.14). Hence $q^{-xb(L)}Z’(L)=q^{-\chi_{w}(L)}Z’’(L)$ , where
$\chi_{w}(L)$ is the Euler characteristic of the union of the white faces of $L$ . It
follows that (31) reduces to the equality

$\chi_{b}(L)-\chi_{w}(L)=2(1-|V(G^{*})|)+\mu$ .

Clearly $\chi_{b}(L)=|V(G)|+\sum_{e\in E(G)}$ $(\chi(D_{e})-2)$ , and similarly

$\chi_{w}(L)=|V(G^{*})|+\sum_{e\in E(G)}(\chi(\rho(D_{e}))-2)$
.

Hence $\chi_{b}(L)-\chi_{w}(L)=|V(G)|-|V(G^{*})|+\mu-|E(G)|$ and the result
follows from Euler’s formula applied to the connected plane graph $G$ .

Q.E.D.

The efficiency of Proposition 4 for the classification of spin models
is still unclear, mainly because it is computationally difficult to verify
the planar duality property (or even its restriction to the case where the
plane graph $G$ is the 4-clique, which is of special significance as shown
in [Ja3] $)$ .

5.2. Mutation and link invariants described by spin models

Let $D$ be an 5-diagram. We denote by $K(D)$ the link diagram
obtained from $D$ by joining together the ends of $D$ as shown on Figure 11
(with a face-coloring extending the face-coloring of $D$ ). Clearly, every
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Fig. 11. $K(D)$

link diagram is of the form $K(D)$ for some $S$-diagram $D$ . Moreover,

given any symmetric spin model,

(32) $Z’(K(D))=Eace(Z’(D))$ .

A link diagram $L’$ is obtained by mutation of the link diagram $L$ if
$L$ is of the form $K(D_{1}\div D_{2})$ and $L’$ is of the form $K(D_{1}’\div D_{2})$ , where
$D_{1}’$ is obtained from $D_{1}$ by a rotation about one of the three coordinate
axes through angle $\pi$ , that is, by one of the transformations $\rho^{2}$ , $\alpha$ , $\beta$ (see
Section 3.3 and Figure 6). For oriented link diagrams, the orientation on
$D_{1}’$ is fully reversed if necessary to match the orientation of $D_{2}$ . A link
is said to be obtained from another by mutation if the same statement
holds for some diagrams of these links, and this property can also be
defined in a 3-dimensional setting (see for instance [LM]).

If $D_{1}’=\rho^{2}(D_{1})$ , $Z(D_{1}’)=Z(D_{1})$ by Proposition $3(iii)$ and Theo-
rem A.

If $D_{1}’=\beta(D_{1})$ , there is an easy weight-preserving bijection between
the sets of states of a given type $(i, j)$ of $D_{1}’$ and $D_{1}$ . Hence $Z’(D_{1}’)=$

$Z’(D_{1})$ , and also $Z(D_{1}’)=Z(D_{1})$ since $D_{1}’$ and $D_{1}$ have homeomorphic

black sets.
Since $\alpha=\beta\rho^{2}$ , we have also $Z(D_{1}’)=Z(D_{1})$ if $D_{1}’=\alpha(D_{1})$ . Then

$Z(D_{1}’\div D_{2})=Z(D_{1}\div D_{2})$ by Proposition $3(i)$ , and consequently $ Z’(D_{1}’\div$

$D_{2})=Z’(D_{1}\div D_{2})$ . It now follows from (32) that $Z’(L’)=Z’(L)$ .

Noting that the normalization factors for these two link diagrams are
the same (if some orientation of $D_{1}’$ is fully reversed the corresponding
sum of signs of crossings is not modified) we obtain the following result.

Proposition 5. If an invariant of oriented links is defined by $a$

symmetric spin mod $el$ it is invariant under $m$utation.

5.3. Nomura’s algebra

Immediately after the announcement of Theorem A above, K. No-
mura found a simpler and purely algebraic proof of the fact that the
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matrices of a symmetric spin model belong to some symmetric Bose-
Mesner algebra [N4].

Let $W_{+}$ , $W_{-}$ be two symmetric matrices in $\Lambda 4(X)$ which satisfy (3),
(4). For every $b$ , $c$ in $X$ , let $u_{b,,,c}$ be the column vector indexed by $X$ with
$x$-entry $u_{b,,,c}(x)=i/V_{+}[b, x]W_{-}[c, x]$ . Let A $(W_{+})$ be the set of symmetric
matrices $A$ in $\mathcal{M}(X)$ such that $u_{b,,,c}$ is an eigenvector of $A$ for every $b$ ,
$c$ in $X$ . It is shown in [N4] that $N(W_{+})$ is a symmetric Bose-Mesner
algebra. Moreover if (5) holds for some square root $q$ of $|X|$ , $W_{+}$ and
$W_{-}$ belong to A $(W_{+})$ . This Bose-Mesner algebra is related as follows
with the Bose-Mesner algebra of Theorem A.

Proposition 6. Let $(X, W_{+}, W_{-}, a, q)$ be a symmetric spin mod $el$ .

The corresponding algebra $<Z(D)>is$ contained in the Nomura algebra
$N(W_{+})$ .

Proof, (sketch): We introduce “hexagonal” tangles with six ends,
which we call $H$-tangles, and corresponding $iJ$-diagrams such as the
one depicted on Figure 12. It is easy to formalize these notions as
we did for 5-tangles and 5-diagrams. We introduce a standard face-
coloring (with the “North”, “Southwest” and “Southeast” faces black)
and define a partition function $Z’$ and normalized partition function $Z$

for $iJ$-diagrams as we did for 5-diagrams (but now $Z’$ takes its values
in a space of tensors with 3 indices).

Fig. 12

Evaluation of $Z$ on the two Reidemeister equivalent i7-diagrams of
Figure 13, where $D$ is any $S$-diagram, shows that, for every $i$ , $b$ , $c$ in $X$ :

$\sum_{x\in X}Z(D)[i, x]W_{+}[b, x]W_{-}[c, x]=qZ(\rho(D))[c, b]W_{+}[b, i]W_{-}[c, i]$

or equivalently, for every $b$ , $c$ in $X$ :

(33) $Z(D)u_{b,,,c}=qZ(\rho(D))[c, b]u_{b,,,c}$ .

Since 2(D) is symmetric by Theorem $A$ , it belongs to A $(W_{+})$ . Q.E.D.
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Fig. 13

Using (24), (33) becomes $Z(D)u_{b,,,c}=\Psi(Z(D))[c, b]u_{b,,,c}$ , and hence
$Au_{b,,,c}=\Psi(A)[c, b]u_{b,,,c}$ for every $b$ , $c$ in $X$ and $A$ in $<Z(D)>$ .

We may use this formula for every $A$ in $N(W_{+})$ to define a linear
map $\Psi:N(W_{+})\rightarrow$ $\mathcal{M}(X)$ . It is shown in [JMN] that $\Psi$ is a duality of
$N(W_{+})$ which is given by the expression I $(M)=aW_{-}o(W_{+}(W_{-}oM))$

(i.e., the modular invariance property holds). Thus Nomura’s algebra
$N(W_{+})$ can play the same role for symmetric spin models as the algebras

$<Z(D)>$ of Theorem A or $<Z(AD)>$ of Theorem B.
It would not be difficult to develop a “topological” approach to the

results on the algebra A $(W_{+})$ given in [N4] and [JMN]. This could be
a way to obtain some geometric intuition on these algebraic results (the
starting point would be a “picture” of the definition of $N(W_{+})$ similar
to Figure 13), or even more, a way to actually prove the results (this
would require of course an extension of the notion of $S$-diagram). As an
example, we give in Figure 14 a diagrammatic proof (which the reader
is invited to convert into an algebraic proof) of the fact that $N(W_{+})$ is
closed under Hadamard product.

It is natural to ask whether or not $<Z(D)>$ and $N(W_{+})$ can be
different. Consider a symmetric spin model which satisfies $W_{+}=W_{-}$

(hence $W_{+}$ is a Hadamard matrix). Then, for any 5-diagram $D$ , $Z(D)$

will be invariant under modification of the spatial structure of crossings.
This, together with Proposition 1, shows that for every $S$-diagram $D$ ,
$Z(D)$ is a scalar multiple of $Z(X_{0})$ , $Z(X_{\infty})$ , or $Z(X_{+})=Z(X_{-})$ . Hence
$<Z(D)>$ has dimension at most 3 (actually, this dimension is 3 except
when $|X|=4$ and $W_{+}=2I-J$). On the other hand, it is shown
in [JMN] that there exist symmetric spin models with $W_{+}=W_{-}$ and
$dimN(W_{+})=|X|$ whenever $|X|$ is an even power of 2. Thus the gap
between the dimensions of $<Z(D)>$ and $N(W_{+})$ can be arbitrarily
large.
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Fig. 14

\S 6. Conclusion

We believe that our results represent a significant step towards the
classification of symmetric spin models: we can restrict our attention to
the solutions of the modular invariance equations for self-dual symmet-
ric Bose-Mesner algebras, and then check these solutions to retain those
which actually yield spin models. We have proposed the planar duality
property as an additional criterion, but it would be very interesting to
find other criteria. Ideally we would like to have an intrinsic charac-
terization of symmetric Bose-Mesner algebras which contain some spin



Spin Models 223

model matrices. This question is solved for the 3-dimensional case in
[Jal]. This leads us to concentrate our study on the next and simplest
open case of 4-dimensional symmetric Bose-Mesner algebras.

Theorem $C$ is generalized in [JMN] to the non-symmetric spin mod-
els of [KMW] using the algebraic approach initiated in [N4]. Here the
topological approach does not work well, because to define products for
oriented 5-tangles one must introduce compatibility conditions on the
orientations. However, using the topological approach, we have obtained
some preliminary results on the 4-weight spin models of [BB3], which
generalize some results in [BB1], but the overall picture is still very
unclear.
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Orthogonal Spreads and Translation Planes

William M. Kantor

Abstract.

There have been a number of striking new results concerning
translation planes of characteristic 2, obtained using orthogonal and
symplectic spreads. The impetus for this came from coding theory.
This paper surveys the geometric advances, while providing a hint of
their coding-theoretic connections.

\S 1. Introduction

Spreads are familiar in finite geometry since they produce transla-
tion planes (cf. Section 3.1 below). Orthogonal and symplectic spreads
are less familiar. They have an underlying additional structure, pro-
duced by a quadratic form or an alternating bilinear form on the vector
space. When the field is $\mathbb{Z}_{2}$ they also produce Kerdock codes over $\mathbb{Z}_{2}$

and $\mathbb{Z}_{4}$ . This note summarizes results that are more than 10 years old,
while setting the stage for a discussion of new advances.

\S 2. Orthogonal spreads

Let $V=GF(q)^{2n}=X\oplus Y$ for subspaces $X$ and $Y$ both of which
are identified with $GF(q)n$ . Equip $V$ with the quadratic form $Q$ defined
by $Q(x, y)=x\cdot y$ (using the usual dot product on $GF(q)^{n}$ ); this form is
nonsingular, with isometry group $O^{+}(2n, q)$ and associated symmetric
bilinear form $( , )$ . Then $V$ has $(q^{n}-1)(q^{n-1}+1)$ nonzero singular vectors
and each totally singular $n$-space (such as $X$ and $Y$ ) contains $q^{n}-1$

nonzero singular vectors. This suggests that there might be families of
$q^{n-1}+1$ totally singular $n$-spaces that partition the set of all nonzero
singular vectors; such a family is called an orthogonal spread. We will
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assume that $q$ is even and see that such a family cannot exist unless $n$

is even, in which case there is always at least one orthogonal spread.

2.1. Matrices

Fix a basis $x_{1}$ , $\ldots$ , $x_{n}$ of $X$ and let $y_{1}$ , $\ldots$ , $y_{n}$ be the dual ba-
sis of $Y$ : $(x_{i}, y_{j})=\delta_{ij}$ . Write matrices with respect to the basis
$x_{1}$ , $\ldots$ , $x_{n}$ , $y_{1}$ , $\ldots$ , $y_{n}$ . It is easy to check that the group $O^{+}(2n, q)_{(Y)}$

of isometries of $V$ that fix every vector of $Y$ consists of those linear
transformations whose matrices are $\left(\begin{array}{l}IM\\0I\end{array}\right)$ for some skew-symmetric
$n\times n$ matrix $M$ over $GF(q)$ (in characteristic 2, “skew-symmetric” means
“symmetric with 0 diagonal”); $O^{+}(2n, q)_{(Y)}$ is isomorphic to the vector
space of all skew-symmetric $n\times n$ matrices over $GF(q)$ , and is regular
on the set of totally singular $n$-spaces $Z$ such that $Y\cap Z=0$ .

Note that $dimX$ $\left(\begin{array}{l}IM\\0I\end{array}\right)\cap X$ $\left(\begin{array}{ll}I & N\\0 & I\end{array}\right)=n-$ rank(M $-N$ ). In particular,
if two such totally singular $n-$spaces meet only at 0, then $n$ must be even
(since $M$ $-N$ is skew-symmetric). There is another view of this parity
remark: the totally singular $n-$spaces fall into two families such that
two such subspaces are in the same family if and only if the dimension
of their intersection has the same parity as $n$ , so that there can be three
such subspaces pairwise having only 0 in common only if $n$ is even.

It is now straightforward to prove

Proposition 2.1. (i) If $\Sigma$ is an orthogonal spread of $V$ that
contains both $X$ and $Y$, then

$\Sigma:=\{Y\}\cup\{X$ $\left(\begin{array}{ll}I & M\\O & I\end{array}\right)$ $|M$ $\in \mathcal{K}\}$

for a set $\mathcal{K}$ of $n\times n$ skew-symmetric matrices, containing $O$ , and
such that the difference of any two is nonsingular (a Kerdock
set of matrices).

(ii) Conversely, if $\mathcal{K}$ is a Kerdock set of $n\times n$ skew-symmetric ma-
trices, then the set $\Sigma$ defifined in (i) is an orthogonal spread of $V$

that contains both $X$ and $Y$ .

Of course, since $O^{+}(2n, q)$ is transitive on the ordered pairs of to-
tally singular $n$-spaces having intersection 0, the restriction in (i) is
insignificant.

Definition 2.2. Kerdock sets $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ are equivalent if $A^{t}\mathcal{K}_{1}^{\tau}A$

$+M=\mathcal{K}_{2}$ for some $A\in GL(n, q)$ , some skew-symmetric matrix $M$ ,
and some field automorphism $\tau$ . Orthogonal spreads $\Sigma_{1}$ and $\Sigma_{2}$ are
equivalent if there is an element of $\Gamma O(V)$ sending $\Sigma_{1}$ to $\Sigma_{2}$ . (Here,
$\Gamma O(V)$ is the set of semilinear maps $g$ on $V$ that preserve $Q$ projectively:



Orthogonal Spreads and Translation Planes 229

$Q(vg)=aQ(v)^{\tau}$ for some nonzero scalar $a$ , some field automorphism $\tau$

and all $v\in V.$ )

Evidently, in Proposition 2.1 (ii), $\Sigma$ depends on $\mathcal{K}$ . It turns out that
it is straightforward to determine more about the interdependence of $\Sigma$

and $\mathcal{K}$ :

Proposition 2.3. Let $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ be Kerdock sets of $n\times n$ matrices
over $GF(q)$ . Then the following are equivalent:

(i) $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ are equivalent;
(ii) The orthogonal spreads $\Sigma_{1}$ and $\Sigma_{2}$ of $V$ , determined by $\mathcal{K}_{1}$ and

$\mathcal{K}_{2}$ via Proposition 2.1, are equivalent by an element of $\Gamma O(V)$

sending $Y$ to itself.

It is easy to deduce that there are many choices of inequivalent
Kerdock sets that produce equivalent orthogonal spreads.

2.2. To symplectic spreads

Let $z$ denote any nonsingular point (1-space) of $V:Q(z)\neq 0$ . If $\Sigma$

is any orthogonal spread of $V$ , then $n$ is even and

$\{Z\cap z^{\perp}|Z\in\Sigma\}$

is a family of totally singular $n-1-$space of $z^{\perp}$ that partitions the set
of nonzero singular vectors.

Since the characteristic is 2, $z$ is contained in the hyperplane $z^{\perp}$ . The
$2n-2$-space $z^{\perp}/z$ is turned into a symplectic space using the inherited
alternating bilinear form $(u+z, v+z):=(u, v)$ (for $u$ , $v\in z^{\perp}$ ). Then

$\Sigma_{z}:=\{\langle Z\cap z^{\perp}, z\rangle/z|Z\in\Sigma\}$

is a family $of|\Sigma|=q^{n-1}+1$ totally isotropic $n-1-$space of $z^{\perp}/z$ that
partitions the set of nonzero singular vectors. Such a family is called
a symplectic spread of the symplectic space $z^{\perp}/z$ . (N.B.–There is no
quadratic form inherited by $z^{\perp}/z.$ )

2.3. From symplectic spreads

The preceding construction can be reversed, proceeding from sym-
plectic spreads to orthogonal ones.

Namely, let $m$ be odd, and start with a symplectic space $V’$ of
dimension $2m$ over $GF(q)$ together with a symplectic spread $\Sigma’$ in it.
If $m=n-1$ then we can identify $V’$ with the symplectic space $z^{\perp}/z$

arising, as above, from the orthogonal space $V$ and one of its nonsingular
points $z$ . Each totally isotropic subspace of $V’$ is the projection, $mod$
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$z$ , of a unique totally singular subspace of $z^{\perp}/z$ . In particular, $\Sigma’$ arises
from a family

$\Sigma^{\prime\uparrow}:=\{U|\langle U, z\rangle/z\in\Sigma’\}$

of totally singular $n-1$-spaces of $z^{\perp}$ such that each nonzero vector of
$z^{\perp}/z$ lies in just one of its members.

Finally, each totally singular $n-1-$space of $z^{\perp}$ lies in exactly two
totally singular $n$-spaces of $V$ , one from each family. Pick a family $\Lambda 4$

of such $n$-spaces, and let

$\Sigma:=$ { $Z|Z\in \mathcal{M}$ and $Z$ contains a member of $\Sigma^{\prime\uparrow}$ }.

Then $\Sigma$ is an orthogonal spread of $V$ , and $\Sigma_{z}=\Sigma’$ . Note that this
passage from symplectic to orthogonal spreads is essentially unique: it
only depends on the choice of the family $\Lambda 4$ . (Moreover, the nontrivial
orthogonal transvection with center $z$ interchanges $\Lambda 4$ with the other
family while leaving $\Sigma’$ unchanged.)

2.4. Back and forth

Starting with a symplectic spread $\Sigma’$ in a $2m$-dimensional symplec-
tic space over $GF(q)$ with $m$ odd, Section 2.3 produces an orthogonal
spread in a $2m+2$-dimensional orthogonal space, in such a way that
there is a nonsingular point $z$ for which $\Sigma_{z}$ is $\Sigma’$ . Once we have $\Sigma$ ,
Section 2.2 can be used to form a different symplectic spread $\Sigma_{z^{*}}$ using
a different nonsingular point $z^{*}$ .

2.5. Changing fields: up and down

Iterating the procedure in Section 2.4 never produces a “new” or-
thogonal spread. There is a simple way to modify that procedure in
order to get large numbers of new orthogonal and symplectic spreads.

Start with a symplectic spread $\Sigma’$ in a $2m$-dimensional vector space
$V’$ over $K=GF(q)$ . Let $L$ be any proper subfield of $K$ over which $K$

has odd degree, and let $T$ : $K\rightarrow L$ be the $trace$ map. Then $T(u, v)$

defines a nonsingular alternating $L$-bilinear form on the $L$-space $V’$ .

We can view $\Sigma’$ as a family of subspaces of this $L$-space. It is still a
spread, and each of its members is still totally isotropic with respect to
the new form. Thus, $\Sigma’$ is a symplectic spread of the $L-$space $V’$ . Here,
$dim_{L}$ $V’=m[K:L]$ .

Now Section 2.3 can be applied, producing an orthogonal spread of
a $(2m[K : L]+2)$ -dimensional orthogonal $L$-space. In fact, Section 2.4
now gives us $‘‘ new^{)}$ ’ symplectic spreads. It is a difficult problem to
decide, in general, whether these spreads are actually new: conceivably
some are equivalent to ones already obtained.
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Up and down process. This process of repeatedly going from a sym-
plectic spread over some field, changing fields, going up to an orthogonal
spread and then back down to a symplectic spread, is called the up and
down process. It is difficult to keep control over properties of these
spreads. However, in important special cases control can be maintained,
a surprising discovery of Williams [Wi] that will be discussed shortly
(Sections 3.5-3.9).

\S 3. Projective planes

An entirely different type of geometric view of symplectic spreads
is provided by projective planes, and provides one of the principal mo-
tivations for their study. For this purpose we begin by ignoring the
symplectic structure.

3.1. From spreads to projective planes

Let $V’$ be a $2ra$-dimensional vector space over $GF(q)$ (no restriction
is placed even on the parity of $q$ and $m$ ).

Spreads A spread of $V’$ is a family $\Sigma’$ of $q^{m}+1$ subspaces of dimension
$m$ whose union is all of $V’$ . This means that every nonzero vector is in a
unique member of $\Sigma’$ . Any family of $q^{m}+1m-$space in a $2m-space$

) any
two of which have only 0 in common, is a spread. (N.B.–An orthogonal
spread is not a spread in this sense, but a symplectic spread is.)

Example 3.1. If $V’$ is a 2-dimensional vector space over a finite
field $E$ , its set $\Sigma’$ of 1-spaces is a desarguesian (or “regular”) spread.
Note that this spread is symplectic with respect to any alternating bi-

linear form on $V’$ . It is also symplectic when $V’$ is viewed as a vector
space over any field of $E$ (cf. Section 2.5).

Translation planes Any spread of $V’$ determines a translation plane
$A(\Sigma’)$ , an affine plane of order $q^{m}$ whose points are vectors and whose
lines are the cosets $W+v$ with $W\in\Sigma’$ , $v\in V’$ . The plane A $(\Sigma’)$

corresponding to a desarguesian spread $\Sigma’$ is a desarguesian plane.
Any isomorphism between two translation planes is induced by a

semilinear transformation of the underlying vector spaces. See [De] for
more background concerning translation planes. The transition to pro-
jective planes is standard: introduce a line at infinity whose points are
all parallel classes of lines, in order to obtain a projective plane of order
$q^{m}$ .
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3.2. Symplectic translation planes

Example 3.2. (Example 3.1 continued.) Starting with a desar-
guesian spread $\Sigma’$ in $G\Gamma\dashv(q)^{2m})$ where $m$ is odd, by Section 2.3 we obtain
an orthogonal spread $\Sigma$ in $GF(q)^{2m+2})$ and hence a Kerdock set. This
latter Kerdock set is the one first discovered by Kerdock [Ke] when $q=2$

(cf. [Di] and $[MS$ , Ch. 15 \S 5], among many other references).

Each orthogonal spread appears to produce large numbers of sym-
plectic spreads $\Sigma_{z}$ . This leads us to the isomorphism question: when
are two planes $A(\Sigma_{z})$ obtained in this manner isomorphic? If there is a
symplectic transformation sending one spread to the other, the planes
are certainly isomorphic. It seems surprising that the converse is (essen-
tially) true:

Theorem 3.3. For $i=1,2$ , let $\Sigma_{i}$ be a symplectic spread in a $2m-$

dimensional symplectic space $V_{i}$ over $GF(q)$ . Let $g:A(\Sigma_{1})\rightarrow A(\Sigma_{2})$ be
an isomorphism that sends the point 0 to the point 0. Then there is an
invertible semilinear transformation $h:V_{1}\rightarrow V_{2}$ such that the following
hold:

(i) $(\Sigma_{1})h=\Sigma_{2}$ ,

(ii) There is $a$ fifield automorphism $\tau$ , and a nonzero scalar $a$ , such
that $(uh, vh)=a(u, v)^{\tau}\forall u$ , $v\in V_{1}$ , and

(iii) $g^{-1}h$ fifixes every member of $\Sigma_{2}$ .

The elementary proof is in [Kal, I (3.5)]. The set of all nonsingular
linear transformations fixing every member of $\Sigma_{2}$ (as in (iii)), together
with 0, is a field, the kernel of the translation plane. It is the largest
field over which the spread consists of subspaces.

The preceding theorem implies that isomorphic planes can only arise
from equivalent orthogonal spreads (Definition 2.2). Moreover:

Corollary 3.4. Two translation planes $A(\Sigma_{z_{1}})$ and $A(\Sigma_{z_{2}})$ aris-
ing from the same orthogonal spread $\Sigma$ are isomorphic if and only if $z_{1}$

and $z_{2}$ are in the same orbit of the group $G(\Sigma)$ of all elements of $\Gamma O(V)$

that preserve $\Sigma$ .

Theorem 3.3 also permits the determination of the full automor-
phism groups of many of these planes. The construction techniques for
planes, using Kerdock sets and orthogonal and symplectic spreads, are
very flexible. They have produced planes with relatively large collinea-
tion groups (Sections 3.5-3.7) as well as planes with unexpectedly small
collineation groups (Section 3.8).
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3.3. Prequasifields

A translation plane is $usua\square y$ coordinatized by an algebraic system
called a quasififield [De]. Here it will be convenient to consider a weaker,
but geometrically equivalent system, called a prequasififield.

Definition 3.5. Consider a binary operation $*onF=GF(q^{m})$

related to field addition by the following conditions (for all $x$ , $y$ , $z\in F$ ):

$(x+y)*z=x*z+y*z$ .

$x*y=x*z\Rightarrow x=0$ or $y=z$ .

$x*y=0\Leftrightarrow x=0$ or $y=0$ .

Then $(F, +, *)$ will be called a prequasififield. It is a quasififield if it has
an identity element; in order to be able to state (3.6), it is preferable to
delete this condition even though an identity element is readily intro-
duced. $(F_{)}+, *)$ is a presemififield if both distributive laws hold, and a

semififield if, in addition, there is an identity element.
A translation plane is obtained by using $F\oplus F$ as point-set and

letting the lines have the familiar appearance

$‘‘ x$ $=c$
” and $‘‘ y$ $=x*s+b$ ”

$\forall b$ , $c$ , $s\in F$ .

If we view $F$ and $F\oplus F$ as vector spaces over $K=GF(q)$ , then the
spread $\Sigma(*)$ of $F\oplus F$ associated with $(F, +, *)$ consists of the lines “

$y=$

$x*s$
” through 0. We will always assume that our quasifield associates

with $K$ in the following manner:

$(kx)*s=k(x*s)\forall k\in K;x$ , $s\in F$,

so that $x\mapsto x*s$ is a if-linear map for each $s\in F$ . Thus, $K$ is
contained in the kernel of the plane, since $(x, y)\mapsto(kx, ky)$ fixes each
member “$y=x*s^{)}$’ of $\Sigma(*)$ whenever $k\in K^{*}$ .

In order to consider symplectic translation planes, we use a substi-
tute for the dot product. The $trace$ map $T:F\rightarrow K$ determines an inner
product $T(xy)$ on $F$ having an orthonormal basis that lets us identify
$F$ , equipped with this inner product, and $K^{m}$ , equipped with its usual
dot product.

Finally, we assume in addition that $m$ is odd and $that*satisfifies$ the
following condition:

(3.6) $T(x(x*y))=T(xy)^{2}\forall x$ , $y\in F$.

One example of such a binary operation is $x*y=xy^{2}$ ; the corresponding
plane is desarguesian. Soon we will present many more examples. Note
that, if we had required that our prequasifield have an identity element,
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then we would have had to use a more complicated version of the inner
product. Thus, for example, it is more convenient in the present context
to use the preceding inconvenient-looking modification $xy^{2}$ of ordinary
multiplication in $F$ .

Replacing $x$ in turn by $x$ , $z$ , $x+z$ in (3.6) and subtracting, we find
that

(3.7) $T(x(z*y))=T(z(x*y))\forall x$ , $y$ , $z\in F$ .

By a simple calculation:

Proposition 3.8. Equip $F\oplus F$ with the alternating bilinear form

(3.9) $((x_{1)}y_{1}), (x_{2}, y_{2})):=T(x_{1}y_{2}-x_{2}y_{1})$ .

Then the spread $\Sigma(*)$ of $F\oplus F$ associated with a prequasififield $(F, +, *)$

is symplectic if and only if $(F, +, *)$ satisfifies (3.7).

In view of this result) it may seem as if condition (3.6) is unneces-
sarily restrictive. When searching for examples, this may be so, but in
fact it is no serious restriction at all:

Proposition 3.10. If $(F_{)}+, *)$ is a symplectic prequasififield, then
there is a permutation $\mu$ of $F$ such that $x\circ y:=x*y^{\mu}$ defifines a pre-
quasififield $(F, +, \circ)$ that is symplectic with respect to the same form (3.9),

defifines the same plane, and behaves as in (3.6).

Namely, by (3.7) for each $y\in F$ the map $x\mapsto T(x(x*y))^{1/2}$ is $K-$

linear, so $T(x(x*y))=T(xy^{\pi})^{2}$ for some map $\pi:F\rightarrow F$ with $0^{\pi}=0$ . If
$\pi$ is bijective, let $\mu$ denote its inverse and note that $T(x(x*y^{\mu}))=T(xy)^{2}$

for all $x$ , $y$ , in which case $x\circ y:=x*y^{\mu}$ behaves as required.
Suppose that $\pi$ is not bijective, and let $y$ , $z\in F$ , $y\neq z$ , with $y^{\pi}=z^{\pi}$ .

If $g$ denotes the if-linear map $x\mapsto x*y-x*z$ , then $T\{xx9)=T(x(x*$

$y))-T(x(x*z))=0\forall x\in F$ . Then the $K$ bilinear map $(u, v):=T(uv^{g})$

on $F$ satisfies $(u, u)=0\forall u\in F$ , and hence is an alternating bilinear
form. It is nonsingular since $g$ is (i.e., $T(Fy^{g})=0\Rightarrow y^{g}=0\Rightarrow y=$

$0)$ . Since $[F : K]=m$ is odd, this is impossible.

3.4. Up to Kerdock sets and orthogonal spreads, and down
again

Now equip $F\oplus K$ with the inner product

$((x, a)$ , $(y, b)):=T(xy)+ab$ .
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Proposition 3.11. The linear maps

$M_{s}$ : $(x, a)\mapsto(x*s+sT(sx)+as, T(sx))$ , $s\in F$ ,

form a Kerdock set of $(m+1)\times(m+1)$ skew-symmetric matrices over $K$ .

If the above inner product is used, then every Kerdock set is equivalent
to one arising in this manner.

The proof is straightforward. Corresponding to this Kerdock set is
the orthogonal spread $\Sigma[*]$ in $F\oplus K\oplus F\oplus K$ consisting of $O\oplus 0\oplus F\oplus K$

together with the subspaces

(3.12) $\{(x,$ $k$ , $x*s+T(xs)s+ks$ , $T(xs)$ $|x\in F$, $k\in K\}$ for $s\in F$ ;

here, the quadratic form is $Q(x, a, y, b)=T(xy)+ab$ .

For some choices of a nonsingular point $z$ it is easy to write down the
symplectic spread $\Sigma[*]_{z}$ . Namely, if $ z=\langle(0, a, \zeta, 1)\rangle$ with $a\in K^{*}$ , $\zeta\in F$ ,

then a straightforward calculation shows that the following symplectic
prequasifield multiplication $\circ$ gives rise to an equivalent copy of $\Sigma[*]_{z}$

lying inside $F\oplus F$ , where the alternating form is (3.9):

(3.13) $x\circ s=[x*s+(1+a)T(xs)s+T(xs)\zeta+T(x\zeta)s]/a$ .

(Division by $a$ in (3.13) is only included so that (3.6) will hold for $\circ$ .

Namely, $T(x[x*s+(1+a)T(xs)s+T(xs)\zeta+T(x\zeta)s])=T(xs)^{2}+(1+$
$a)T(xs)T(xs)+T(xs)T(x\zeta)+T(x\zeta)T(xs)=aT(xs)^{2}.)$

3.5. Semifield planes

Let $F$ and $K$ be as before, with $K\supset GF(2)$ , and let $T_{1}$ denote the
$trace$ map $F\rightarrow K$ . The presemifield

$x*y:=xy^{2}+T_{1}(x)y+T_{1}(xy)$

was introduced and studied in [Kal, $II$]. The corresponding spread arises
by starting with the desarguesian spread, going up and down once (cf.
Section 2.5) while preserving the group of $|F|$ elations with axis $O\oplus F$ .

This produces a nondesarguesian semifield plane.
This approach was greatly generalized in [Wi]. The presemifields

studied there arise by the up and down process (Section 3.4), carefully
retaining elations having a finite axis. In fact, by iterating (3.13) but
always using $a=1$ , these presemifields can be described explicitly as
follows. Let $F=F_{0}\supset F_{1}\supset\cdots\supset F_{n}=K$ be a sequence of fields with
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$n\geq 3$ , let $T_{i}$ : $F\rightarrow F_{i}$ be the $trace$ map, and choose $\zeta_{i}\in F$ for each
$i\geq 1$ . Then

(3.14) $x*y=xy^{2}+\sum_{1}^{n}(T_{i}(\zeta_{i}x)y+\zeta_{i}T_{i}(xy))$

defifines a 2-sided distributive binary operation on $F$ that produces a sym-
plectic semififield plane.

Theorem 3.15 ([Wi]). Assume that a sequence $ F=F_{0}\supset F_{1}\supset$

$\ldots$ $\supset F_{n}=K$ is given as above with $[F_{0} : F_{1}]\geq 7$ and $[F:K]$ odd. If
$(\zeta_{i})$ and $(\zeta_{i}’)$ are sequences as above, then they defifine isomorphic planes

if and only if $\zeta_{i}’=a\zeta_{i}^{\tau}$ for some $a\in F^{*}$ , some $\tau\in AutF$ , and all $i$ .

When all $\zeta_{i}$ are 0, the plane is desarguesian. The theorem implies,
for example, that there are at least $|F|^{n-2}/(|F|-1)\log_{2}|F|$ pairwise
nonisomorphic symplectic semififield planes defifined by (3.14)–provided
that $m=[F : K]$ has at least $n\geq 3$ (not necessarily distinct) prime
factors, at least one of which is $\geq 7$ . Stronger versions of this result
appear in [Wi].

3.6. Nearly flag-transitive planes

If $F$ and $K$ are as before, and if $a\in K-GF(2)$ , then the prequasifield

$x*y:=xy^{2}+aT(xy)y$

was introduced and studied in [Kal, $II$]. As in Section 3.5, this spread
(and those in Section 3.7 below) arises by starting with the desarguesian
spread, going up to the orthogonal spread in Example 3.2, and then
coming down in a different manner (cf. Section 2.2). This time the
group preserved is isomorphic to $F^{*}:$ it has the form $(x, y)\mapsto(x\alpha, y/\alpha)$

with $\alpha\in F^{*}$ , fixes two members of the symplectic spread, and cyclically
permutes the remaining ones.

This approach was again generalized in [Wi] by iterating (3.13) but
this time always using $\zeta=0$ . Let $ F=F_{0}\supset F_{1}\supset\cdots\supset F_{n}=K\supset$

$GF(2)$ be a sequence of fields, where $[F : K]$ is odd. For each $i$ , let
$T_{i}$ : $F\rightarrow F_{i}$ be the $trace$ map, where $T_{n}=T$ in our earlier notation; and
choose $c_{i}\in F^{*}$ such that $c_{0}=1$ and $c_{i}/c_{i-1}\in F_{i}$ for each $i$ . Then

$x*y:=xy^{2}+\sum_{1}^{n}(c_{i-1}yT_{i}(c_{i-1}xy)+c_{i}yT_{i}(c_{i}xy))$

defifines a prequasififield, the corresponding plane is nondesarguesian, and
the maps $(x, y)\mapsto(x\alpha, y/\alpha)$ , where $\alpha\in F^{*}$ , form a cyclic collineation
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group of order $|F|-1$ . Isomorphisms among these planes are determined
in [Wi].

This construction suggests the following general approach) for any
characteristic and unrelated to symplectic spreads. Suppose that $F$ is
a finite field and $g:F\rightarrow F?.g$ an additive map such that $x\mapsto xg(x)$ is
bijective. Then $(F, +)*)$ isa prequasififield, where

$x*y:=g(xy)y$ .

(Namely, left distributivity is clear, and $x*y=x*z\Rightarrow xg(xy)y=$

$xg(xz)z\Rightarrow xy=xz$ , as required.) Once again the maps $(x, y)\mapsto$

$(\alpha x, y/\alpha)$ with $\alpha\in F^{*}form$ a cyclic collineation group fifixing the $x$ -and
$y$ -axes and transitively permuting the remaining lines through the origin.
(Namely, $(x,$ $x*s)$ is sent to $(\alpha x,$ $g(\alpha xs/\alpha)s/\alpha)=(\alpha x$ , $(\alpha x)*(s/\alpha)).$ )

Soon after I mentioned to Y. Hiramine this condition on a map $g$ ,

he produced the following example: if $\omega\in GF(2^{6})$ and $\omega^{6}=\omega+1_{)}$

let $g(x)=x+\omega x^{4}+\omega^{47}x^{16}$ . However, the proof that this satisfies the
required condition, and hence produces a plane of order 64, involves a
long and ingenious case argument.

In the examples given earlier, $g(x)=x+\sum_{1}^{n}(c_{i-1}T_{i}(c_{i-1}x)+$

$c_{i}T_{i}(c_{i}x))$ (or, somewhat more precisely, $g(x/c_{n})$ is the preceding right

hand side in order to make (3.6) hold). That the resulting spread is
symplectic comes from fact that $g$ has following additional property:

$T(xg(z))=T(zg(x))\forall x$ , $z\in F$

(cf. (3.7)).

3.7. Flag-transitive planes

There is one further way to obtain planes from a desarguesian spread,
while retaining a large collineation group [KW]. In the previous sections

we preserved a group of order $|F|$ or $|F|-1$ , this time the group will
have order $|F|+1$ . Once again, the planes are obtained by starting
with the desarguesian spread and using the up and down process (Sec-
tion 3.4). This time, in order to describe these planes we need to use the
field $E=GF(q^{2m})$ (where $m$ is odd), and its multiplicative subgroup
of order $q^{m}+1$ .

Let $E=E_{0}\supset\cdots\supset E_{n}$ be a sequence of fields, where $[E : E_{n}]$

is odd and $|E|$ is a square; let “overbar” denote the involutory field
automorphism of $E$ . For each $i$ let $F_{\dot{\iota}}$ be the subfield of $E_{i}$ over which
$E_{i}$ has degree 2, let $T_{i}$ : $F_{0}\rightarrow F_{i}$ be the $trace$ map, and write $W_{i}:=$

$kerT_{i+1}|_{F_{i}}$ . Pick any $\zeta_{i}\in E_{i}$ , where $\zeta_{i}\overline{\zeta}_{i}=1$ and $\zeta_{0}=1_{)}$ and write
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$\gamma_{i}:=\square _{0}^{i}\zeta_{l}$ . Then

(3.16) $\{\theta(\sum_{0}^{n-1}W_{i}\gamma_{i}+F_{n}\gamma_{n})|\theta\overline{\theta}=1\}$

is a symplectic spread in $E$ , and $\{z\mapsto\theta z+w|\theta, w\in F, \theta\overline{\theta}=1\}$ is $a$

sharply flag-transitive collineation group.
This produces exponential numbers of flag-transitive affine planes

of order $q^{m}$ . In [KW] there is a complete determination of when two
of them are isomorphic, as well as a discussion of the iteration involved
in the construction. Once again, the simplest of these planes were first
studied in [Kal, $II$].

3.8. Orthogonal spreads and boring planes

The group $G(\Sigma)$ has been determined for various orthogonal spreads
$\Sigma$ [Kal; Ka2; Ka4; $KW$ ; Wi]. For many of the ones in Sections 3.5-3.7,
$G(\Sigma)$ is generated by the group preserved in the specific section (of order
$|F|$ or $|F|\pm 1$ ) together with scalar transformations and some elements of
Aut $F$ . It is then possible to find nonsingular points $z$ such that $G(\Sigma)_{z}$

consists only of scalars. In view of Theorem 3.3, this means that the
collineation group of $A(\Sigma_{z})$ consists entirely of perspectivities. Showing
that the stabilizer of 0 is (isomorphic to) $K^{*}$ can be messy (as in [Ka4])
or partly pleasant (as in [Wi]), depending on the specific circumstances.

The most interesting case is that arising in Section 3.5. There, the
orthogonal spread $\Sigma$ occurs at the end of an iterative process. The last
step of the iteration starts with an orthogonal spread $\hat{\Sigma}$ in a smaller-
dimensional space over a field properly between $F$ and $K$ , forms a sym-
plectic semifield spread $\hat{\Sigma}_{\hat{z}}$ , and identifies this with a symplectic semifield
spread $\Sigma_{z}$ arising from our orthogonal spread $\Sigma$ over the smaller field $K$

(so $\hat{\Sigma}_{\hat{z}}=\Sigma_{z}$ . In [Wi], Williams proceeds as follows: he identifies all of
the nonsingular points $z’$ such that $\Sigma_{z’}$ is a semifield spread, and then
shows that $z$ is the only such $z’$ for which the kernel of A $(\Sigma_{z’})$ is larger
than $K$ . It follows that $G(\Sigma)$ must fix $z$ , and hence is determined by

Aut $A(\Sigma_{z})=AutA(\hat{\Sigma}_{\hat{z}})$ . Then $G(\Sigma)$ is determined by $G(\hat{\Sigma})$ (cf. The-
orem 3.3), and induction can be used. This outline is the pleasant part
of the argument. The difficult part is in the implementation: calculating
the kernels of planes defined using the formula (3.14).

Boring planes. A boring plane is a translation plane A of order
$q^{m}$ with kernel $GF(q)$ such that $|$ Aut $A|=q^{2m}(q-1)$ is as small as
possible. The reason for this name “boring” is that such planes are
contrary to those usually studied in finite geometry, in which collineation
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groups are assumed to be in some sense “big”. The only examples known
in odd characteristic are two planes of order $17^{2}$ [Ch]. By contrast,
there are too many boring planes when the characteristic is 2 [Ka4; Wi].
These planes arise as follows: as already indicated, $G(\Sigma)$ is known for
many orthogonal spreads $\Sigma$ . For most of these there are nonsingular
points $z$ such that $G(\Sigma)_{z}=1$ . In view of Theorem 3.3, this means that
Aut A $(\Sigma_{z})$ consists of perspectivities. All that then remains is to show
that the kernel of this plane is just $K$ . This step involves calculations
that are very different in the proofs for $q=2$ [Ka4] or $q>2$ [Wi].
(Neither proof extends to the situation in the other part of the theorem.)
Clearly this theorem still leaves open the case of other values of $m$ , as
well as the entirely different case in which $m$ is even–and of course, the
case $q$ odd also needs to be investigated. It is very likely that there large
numbers of boring planes in all of these cases as well.

Similarly, a boring semififield plane is a semifield plane of order $q^{m}$

with kernel $GF(q)$ such that $|$ Aut $A|=q^{3m}(q-1)$ , which again is as
small as possible. Once again large numbers of these are obtained in
[Wi] using (3.14) and $G(\Sigma)$ for the corresponding orthogonal spread $\Sigma$ .

3.9. The number of Kerdock sets and orthogonal spreads

In view of Proposition 2.3 and Theorem 3.3, the planes we have been
discussing produce exponential numbers of inequivalent Kerdock sets
and orthogonal spreads. We refer to [Wi] for estimates of the numbers
of these) which significantly improve previous estimates in [Kal; Ka2].

\S 4. Additional uses of Kerdock sets

Symplectic and orthogonal spreads are also important for reasons
quite different tfian the construction of planes. The basic constructions
of the objects discussed presently depend on planes, which are involved
in all present descriptions–with the exception of the original approach
used in the construction of Kerdock codes [Ke] (and we have seen that
this can be viewed as dealing with desarguesian spreads, albeit in a
somewhat indirect manner).

The recent resurgence of interest in Kerdock codes (and hence of or-
thogonal spreads) stems from their versions over $\mathbb{Z}_{4}$ (Section 4.2) [CCKS;
Wi].

4.1. Kerdock codes

Assume that the underlying fifield is $\mathbb{Z}_{2}$ . Fix an ordering of the vectors
in $\mathbb{Z}_{2}^{n}$ , where $n$ is even.
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Each Kerdock set $\mathcal{K}$ determines a Kerdock code

(4.1) $C(\mathcal{K}):=\{(Q_{B}(v)+sv^{t}+\epsilon)_{v\in \mathbb{Z}_{2}^{n}}|B\in \mathcal{K}, s\in \mathbb{Z}_{2}^{n}, \in\in \mathbb{Z}_{2}\}$ ,

where $Q_{B}$ denotes any quadratic form whose associated bilinear form
is $uBv^{t}$ . The code $C(\mathcal{K})$ has length $2^{n}$ , consists of $2^{n-1}2^{n}2=2^{2n}$

codewords (i.e., vectors), and has minimum distance $2^{n-1}-2^{(n-2)/2}$ .

The resulting codes have interesting combinatorial properties, and
were investigated starting in [Ke] and continuing in [Di,$\cdot$ Kal; Ka2; Wi].
See [$MS$ , Ch. 15 \S 5; Li; $CL$ ] for further background concerning these
codes.

Quasi-equivalence of codes Two binary codes of the same length
will be called quasi-equivalent if there is an isometry of the underlying
Hamming space sending one to the other. This means: permute the
coordinates of the first code and then add a constant vector to all code-
words in order to get the second code. The codes are called equivalent if
only a permutation of coordinates is used. The latter is the more stan-
dard notion. However, we need the broader notion of quasi-equivalence
in view of the following elementary fact: Two Kerdock codes are quasi-
equivalent if and only if they arise from equivalent Kerdock sets.

Since we already know that there are large numbers of inequivalent
Kerdock sets, it follows that the same is true for Kerdock codes.

4.2. $\mathbb{Z}_{4}$-codes

Each code $C(\mathcal{K})$ is nonlinear. In [CHKSS], unexpected relationships
were discovered between codes over $\mathbb{Z}_{4}$ and binary codes, allowing the
original Kerdock codes [Ke] to be viewed as codes over $\mathbb{Z}_{4}$ that are $\mathbb{Z}_{4}-$

linear. This was generalized in [CCKS]: with each (binary) Kerdock
code $C(\mathcal{K})$ of length $2^{m+1}$ is associated a $Z4$-code $C_{4}(\mathcal{K})$ of length $2^{m}$

that is isometric to $C(\mathcal{K})$ , where a suitable natural metric is used on
$\mathbb{Z}_{4}^{2^{m}}$ : the Lee metric $d_{L}$ . (This is defined by $d_{L}((a_{i}), (b_{i}))=\sum|a_{i}-b_{i}|$ ,
where $|a_{i}-b_{i}|$ is reduced $mod 4$ so as to be in {0, 1, 2} and the sum is
taken in $\mathbb{Z}.$ )

We will define $C_{4}(\mathcal{K})$ using a binary operation as in Sections 3.3-
3.4. By (3.7), for each $r\in F$ the map $P_{r}$ : $x\mapsto x*r$ is self-adjoint with
respect to the inner product $T(xy)$ on $F$ . We fix an orthonormal basis

for $F$ , and view $P_{r}$ as a matrix $\hat{P}_{r}$ with entries 0 and 1 in $\mathbb{Z}_{4}$ rather
than $\mathbb{Z}_{2}$ . Similarly, we view each $x\in F$ as a row vector $\hat{x}$ with entries
0, $1\in \mathbb{Z}_{4}$ . If $\mathcal{K}$ denotes the Kerdock set given in Proposition 3.11, then

$C_{4}(\mathcal{K}):=\{\hat{x}\hat{P}_{r}\hat{x}^{t}+2\hat{s}\cdot\hat{x}+\epsilon)_{x\in F}|r\in F, s\in F, \in\in \mathbb{Z}_{4}\}$

is a $\mathbb{Z}_{4}-$Kerdock code. The similarity of this definition to (4.1) is evident.
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Moreover, $C_{4}(\mathcal{K})$ is $\mathbb{Z}_{4}-$linear if and only $if*is2-$sided distributive.
Part of this is easy to see: suppose that $*is2$-sided distributive. Then,

for any $s$ , $s’\in F,\hat{P}_{s+s’}-\hat{P}_{s}-\hat{P}_{s’}$ is twice a symmetric matrix, and

hence $x\mapsto\hat{x}[\hat{P}_{s+s’}-\hat{P}_{s}-\hat{P}_{s’}]\hat{x}^{t}$ is additive from $F$ to $2\mathbb{Z}_{4}$ : it looks
like $x\mapsto 2\hat{r}\cdot\hat{x}$ for some $r\in F$ . Thus, semifields enter coding theory.
These results, and a thorough discussion of equivalences among these
$\mathbb{Z}_{4}-$codes, can be found in [CCKS; Wi].

If $P$ is a symmetric binary $m\times m$ matrix then the map $x\mapsto\hat{x}\hat{P}\hat{x}^{t}$ is
called a $\mathbb{Z}_{4}-$valued quadratic form [Br]. In view of the above connection,
it appears that the $\mathbb{Z}_{4}-$module of all of these needs to be investigated
from a combinatorial point of view (cf. [Wo]).

4.3. Further topics

[CCKS] and [Wi] discuss relationships between Kerdock sets, ex-
traspecial 2-groups, and extremal line-sets in real and complex vector
spaces.

Symplectic and orthogonal spreads produce other types of combi-
natorial objects: partial geometries [DDT] or strongly regular graphs
[Ka3].

Relationships of symplectic and orthogonal spreads with Lie alge-
bras are surveyed in [Ka5].

Finally, Kerdock codes over $\mathbb{Z}_{2}$ and $\mathbb{Z}_{4}$ have suggested natural vari-
ations: codes over the quaternion group of order 8 [Ka6].
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Level-Rank Duality of
Witten’s 3-Manifold Invariants

Toshitake Kohno and Toshie Takata

\S 1. Introduction

The main object of this paper is to establish a duality satisfied
by Witten’s 3-manifold invariants for $sl(n, C)$ at level $k$ and those for
$sl(n, C)$ at level $n$ . This type of duality, which is called the level-rank du-
ality, has been encountered in several contexts in solvable lattice models
and conformal field theory–the Boltzmann weights of solvable lattice
models [JMO], quantum groups at roots of unity [SA], link invariants
related to Chern-Simons gauge theory [NRS], fusion algebras [KN], and
the space of conformal blocks in Wess-Zumino-Witten conformal field
theory [NT]. This subject has been also treated by many other authors
from different viewpoints. More recently, Witten [W2] described the re-
lationship between the fusion algebra and the quantum cohomology of
the Grassmann manifold and explained the level-rank duality from this
point of view. However, a precise formulation for the level-rank duality
of Witten’s 3-manifold invariants has not appeared in the literature, as
far as the authors know.

Let $M$ be a closed oriented 3-manifold and we denote by $Z_{k}(M$ ,
$SU(n))$ Witten’s 3-manifold invariant for $sl(n, C)$ at level $k$ discovered
in the seminal article [W1]. Subsequently these invariants were stud-
ied in detail in [RT] and [KM]. Our notation corresponds to $\tau_{r}(M)$ in
[KM] with $r=k+2$ in the case $n$ $=2$ . To describe the duality between
$Z_{k}(M, SU(n))$ and $Z_{n}(M, SU(k))$ we first factorize the invariants by the
Dynkin diagram automorphism. This is the $sl(n, C)$ counterpart of the
symmetry principle discovered in [KM] for $sl(2, C)$ . In this paper we
assume that the integers $n$ and $k$ are relatively prime. Let us suppose
that $M$ is obtained by the Dehn surgery on a framed link $L$ in $S^{3}$ . We
recall that the invariant $Z_{k}(M, SU(n))$ is written as a weighted sum of
link invariants obtained by associating with each component of the link

Received September 25, 1995.
Revised December 22, 1995.
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a dominant integral weight for $s/(n, C)$ at level $k$ (see 4.1.1). By means
of the $Z_{n}$ action on the above set of weights, we show that the invari-
ant $Z_{k}(M, SU(n))$ can be written in the form $\xi_{n,k}(M)Z_{k}(M, PSU(n))$ ,

where $\xi_{n,k}(M)$ is an invariant of $M$ defined by the linking matrix.

The level-rank duality holds for the above $PSU(n)$ invariant. In

Theorem 4.2.7, we prove the duality relation

$Z_{k}(M, PSU(n))=\overline{Z_{n}(M,PSU(k))}$ .

The argument of our proof also permits us to describe the level-rank
duality of representations of the mapping class groups on the space of
conformal blocks. We show that the two representations of the mapping
class groups, one for $s/(n, C)$ at level $k$ and one for $sl(k, C)$ at level $n$

are contragredient to each other.

The paper is organized in the following way. In Section 2, we start
from recalling basic properties of the fusion algebra of type $A$ . We
introduce the fusion algebra as a truncated representation ring of the
Lie algebra $sZ(n, C)$ . Then, we define the cyclic group action on the

set of dominant integral weights at level $k$ , which is induced from the
Dynkin diagram automorphism of the corresponding affine Lie algebra.
By considering the orbit of this action we describe the level-rank duality
for the fusion algebra. Although it is not directly used in the article, for
the reader’s convenience, we explain briefly the appearance of the fusion
algebra in conformal field theory at the end of Section 2. In Section
3, we explain the level-rank duality of link invariants. Given a framed
link in $S^{3}$ we associate a dominant integral weight at level $k$ for each
component. We define an invariant of the above colored framed link,

which is a generalization of the Jones polynomial at roots of unity. We
describe the level-rank duality for the invariants of colored framed links.
Section 4 is devoted to the proof of the level-rank duality of $PSU(n)$

invariants of 3-manifolds. In the case $n$ and $k$ are relatively prime we

can factorize the $SU(n)$ invariant at level $k$ by the action of the Dynkin
diagram automorphism to get the $PSU(n)$ invariant. We prove the
duality for the $PSU(n)$ invariant at level $k$ and the $PSU(k)$ invariant
at level $n$ .

Acknowledgement. The authors would like to thank Hitoshi
Murakami for a stimulating correspondence. This work was partially
supported by Grant-in-Aid for Scientific Research on Priority Areas 231
“Infinite Analysis”.
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\S 2. Duality of fusion algebras

2.1. Definition of the fusion algebra of type A

In this section we summarize basic facts about the fusion algebra
of type $A$ . First, let us fix some notation. Let $h$ denote the Cart
subalgebra of $sl(n, C)$ fixed as the set of diagonal matrices in $sl(n, C)$ .

The linear $form\in_{i}$ : $h\rightarrow C$ , $1\leq i\leq n$ , is defined by associating to
$X\in h$ its $(i, i)$ component $X_{ii}$ . The set of roots of $sl(n, C)$ is given by

$\triangle=\{\in_{i}-\in_{j} ; 1\leq i\neq j\leq n\}$ .

We fix the set of fundamental roots as

$\alpha_{i}=5_{i}-6_{i+1}$ , $1\leq i\neq j\leq n-1$ .

The Cartan-Killing form induces an inner product on $h^{*}$ defined by

$\langle\epsilon_{i}, \epsilon_{j}\rangle=\delta_{ij}$ .

The fundamental system of weights is

$\Lambda_{i}=(\in_{1}+\cdots+\in_{i})-\frac{\dot{?}}{n}\sum_{j=1}^{n}\Xi_{j}$ , $1\leq i\leq n$ ,

which is characterized by

$\langle\Lambda_{i}, \alpha_{j}\rangle=\delta_{ij}$ .

We denote by $\rho$ the half sum of the positive roots $\frac{1}{2}\sum_{i<j}(\in_{i}-\in_{j})$ , which

is equal to $\sum_{i=1}^{n-1}\Lambda_{i}$ .

By definition the set of dominant integral weights of $sl(n, C)$ is given
by

$P_{+}(n)=\{\sum_{i=1}^{n-1}a_{i}\Lambda_{i} _{;} a_{i}\in Z, a_{i}\geq 0\}$ .

For $\lambda=\sum_{i=1}^{n-1}a_{i}\Lambda_{i}\in P_{+}(n)$ we put $|\lambda|=\sum_{i=1}^{n-1}ia_{i}$ , which is the number
of nodes in the corresponding Young diagram. Here $|\lambda|$ is considered
modulo $n$ . We set

$P=Z\Lambda_{1}\oplus\cdots\oplus Z\Lambda_{n-1}$ ,

which is called the weight lattice. The Weyl group $W$ acts on $P$ by
means of the reflections $s_{\alpha_{i}}$ , $1\leq i\leq n-1$ , defined by

$s_{\alpha_{i}}(v)=v-\langle v, \alpha_{i}\rangle\alpha_{i}$ .
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A dominant integral weight $\lambda$ is characterized by the property

$\langle\lambda, \alpha_{i}\rangle\in Z$ , $\langle\lambda, \alpha_{i}\rangle\geq 0$ , $1\leq i\leq n-1$

and the set $P_{+}(n)$ is in one-to-one correspondence with the set of finite
dimensional irreducible representations of $sl(n, C)$ .

We denote by $V_{\lambda}$ the irreducible representation of $sl(n, C)$ with high-
est weight $\lambda\in P_{+}(n)$ . As a representation space of $sl(n, C)$ the tensor
product $V_{\lambda}\otimes V_{\mu}$ admits a decomposition

$V_{\lambda}\otimes V_{\mu}=\sum_{\nu}M_{\lambda\mu}^{\nu}\otimes V_{\nu}$
,

where the multiplicity $n_{\lambda\mu}^{\iota/}=dimM_{\lambda\mu}^{\nu}$ is called the Littlewood-Richard-

son coefficient. Let us recall that the representation ring $R_{n}$ is a free
$Z$ module with basis $\lambda\in P_{+}(n)$ equipped with the product structure
defined by

$\lambda$ . $\mu=\sum n_{\lambda\mu}^{\nu}\iota/$ in $R_{n}$ .

It is well known that $R_{n}$ is isomorphic to the polynomial ring

$Z[\Lambda_{1}, \ldots, \Lambda_{n-1}]$ .

Let us now introduce the fusion algebra of type $A_{n-1}$ in a combi-
natorial manner. The set of dominant integral weights at level $k$ is by
definition

$P_{+}(n, k)=\{\sum_{i=1}^{n-1}a_{i}\Lambda_{\dot{\iota}} ; a_{i}\in Z, a_{i}\geq 0,\sum_{i=1}^{n-1}a_{i}\leq k\}$ .

Let us consider the natural inclusion $j$ : $P_{+}(n, k)\rightarrow P_{+}(n, k+1)$ and
we put $\partial P(n, k)=P_{+}(n, k+1)\backslash P_{+}(n, k)$ . Let $I_{n,k}$ be the ideal of $R_{n}$

generated by the elements of $\partial P(n, k)$ . We define the fusion algebra
$R_{n,k}$ as the truncated representation ring $R_{n}/I_{n,k}$ . It is known by [GW]
that the fusion algebra $R_{n,k}$ is a free $Z$ module whose basis is in one-
to-one correspondence with the set $P_{+}(n, k)$ . Let us denote the basis by
the same letter $\lambda\in P_{+}(n, k)$ . We define the fusion rule $N_{\lambda\mu}^{\nu}$ to be the

structure constant defined by

$\lambda$ . $\mu=\sum N_{\lambda\mu}^{\nu}\iota/$ in $R_{n,k}$ .
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Example. In the case of $sl(2, C)$ , the representation ring is the
polynomial ring $Z[\Lambda_{1}]$ . The representation with highest weight $m\Lambda_{1}$ can
be written as the polynomial

$P_{m}(\Lambda_{1})=\sum_{i=0}^{[m/2]}(-1)^{i}$ $\left(\begin{array}{ll}m & -1\\ & i\end{array}\right)$ $\Lambda_{1}^{m-2i}$ .

The fusion algebra $R_{2,k}$ is by definition $Z[\Lambda_{1}]/(P_{k+1}(\Lambda_{1}))$ . Let us de-
note by $v_{j}$ the element corresponding to the representation with highest

weight $2j\Lambda_{1}$ . Then the structure constant $N_{j_{1}j_{2}}^{j_{3}}$ is 1 if the condition

$|j_{1}-j_{2}|\leq j_{3}\leq j_{1}+j_{2}$ , $j_{1}+j_{2}+j_{3}\in Z$ , $j_{1}+j_{2}+j_{3}\leq k$

is satisfied and is 0 otherwise.

We have an involution on $P_{+}(n, k)$ defined by $\lambda^{*}=-w(\lambda)$ where $w$

denotes the longest element in the Weyl group. We put $N_{\lambda\mu\nu}=N_{\lambda\mu}^{\nu^{*}}$ .

We have the following basic properties of the structure constant $N_{\lambda\mu}^{\nu}$ .

(1) $0\leq N_{\lambda\mu}^{\nu}\leq n_{\lambda\mu}^{\nu}$

(2) $N_{\lambda\mu}^{\nu}$ is symmetric with respect to $\lambda$ , $\mu$ and $IJ$ .

(3) $N_{0\mu}^{\nu}=\delta_{\mu\nu}$

2.2. Dynkin diagram automorphism

Let $\hat{\Lambda}_{i}$ , $0\leq i\leq n-1$ , denote the fundamental weights of the affine

Lie algebra $s\overline{l(n,C}$ ). We define the set of dominant integral weights at
level $k$ by

$\hat{P}_{+}(n, k)=\{\sum_{i=0}^{n-1}a_{?}.\hat{\Lambda}_{i} ; a_{i}\in Z, a_{i}\geq 0,\sum_{i=0}^{n-1}a_{i}=k\}$ .

We have a natural injection $j$ : $\hat{P}_{+}(n, k)\rightarrow P_{+}(n)$ defined by $j(\lambda)=$

$\sum_{?=1}^{n-1}.a_{i}\Lambda_{i}$ for $\lambda=\sum_{i=0}^{n-1}a_{i}\hat{\Lambda}_{i}$ and its image is equal to $P_{+}(n, k)$ . It
is known that $P_{+}(n, k)$ is in one to one correspondence with the set
of integrable highest weight representations of the affine Lie algebra
$s\overline{l(n,C})$ (see [K]).

The cyclic group $Z_{n}$ acts on the set $\hat{P}_{+}(n, k)$ by the Dynkin diagram
automorphism

$\sigma(\hat{\Lambda}_{i})=\hat{\Lambda}_{i+1}$ ,
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where the suffix is taken modulo $n$ . By means of the identification using
$j$ , the Dynkin diagram automorphism induces a $Z_{n}$ action on $P_{+}(n, k)$ .

More explicitly, this action is defined by

$\sigma(\sum_{i=1}^{n-1}a_{i}\Lambda_{i})=(k-\sum_{i=1}^{n-1}a_{i})\Lambda_{1}+\sum_{j=2}^{n-1}a_{j-1}\Lambda_{j}$ .

Lemma 2.2.1. We have a bijection

$P_{+}(n, k)/Z_{n}\rightarrow P_{+}(k, n)/Z_{k}$ .

Proof. To see this correspondence it is convenient to consider for
$\hat{\lambda}\in\hat{P}_{+}(n, k)$ the sum $\hat{\lambda}+\sum_{i=0}^{n-1}\hat{\Lambda}_{i}$ , which is expressed as $\alpha_{0}\hat{\Lambda}_{0}+\cdots+$

$\alpha_{n-1}\hat{\Lambda}_{n-1}$ with $\sum_{i=0}^{n-1}\alpha_{i}=k+n$ . Let us consider a circle of the cir-
cumference $n+k$ and divide the circle with $n+k$ points in such a way
that the length of each divided arc is equal to 1. We take $n$ of the above
$n+k$ points so that the lengths of the arcs are $\alpha_{0}$ , $\ldots$ , $\alpha_{n-1}$ . Considering
up to rotation, the set of ways of dividing circles in the above manner
are in one to one correspondence with $P_{+}(n, k)/Z_{n}$ . Now let us take
the complementary $k$ points on the circle, which defines an element of
$P_{+}(k, n)/Z_{k}$ . It is clear that this gives a bijection between $P_{+}(n, k)/Z_{n}$

and $P_{+}(k, n)/Z_{k}$ .

Let us suppose that $n$ and $k$ are relatively prime. Since we have
$|\sigma(\lambda)|\equiv|\lambda|mod n$ , each orbit of the $Z_{n}$ action on $P_{+}(n, k)$ contains a
unique dominant integral weight $\lambda$ of level $k$ with $|\lambda|\equiv 0mod n$ . The
orbit space $P_{+}(n, k)/Z_{n}$ is identified with the set

$\Omega_{n,k}=\{\lambda\in P_{+}(n, k) ; |\lambda|\equiv 0mod n\}$ .

For $\lambda=\sum_{i=1}^{n-1}a_{\dot{x}}\Lambda_{i}\in P_{+}(n, k)$ we associate the Young diagram of type
$(a_{1}+\cdots+a_{n-1}, a_{2}+\cdots+a_{n-1}, \ldots, a_{n-1})$ . We express $\lambda$ as

$\lambda=a_{i_{1}}\Lambda_{i_{1}}+\cdots+a_{i_{s}}\Lambda_{i_{s}}$ , $a_{i_{1}}$ , $\ldots$ , $a_{i_{s}}\neq 0$ .

Let us consider the transposed Young diagram and the associated weight
${}^{t}\lambda\in P_{+}(k, n)$ given by

${}^{t}\lambda=(i_{s}-i_{s-1})\Lambda_{\alpha_{i_{S}}}+(i_{s-1}-i_{s-2})\Lambda_{\alpha_{i_{S}}+\alpha_{i_{s-1}}}+\cdots+i_{1}\Lambda_{\alpha_{i_{1}}+\cdot\cdot+\alpha_{i_{S}}}$ .

We can easily check the following lemma.
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Lemma 2.2.2. In the case $n$ and $k$ are relatively prime, we have
a bijection

$\tau$ : $\Omega_{n,k}\rightarrow\Omega_{k,n}$

given by
$\tau(\lambda)=\sigma^{k-|\lambda|/n}(^{t}\lambda)$ .

2.3. Verlinde formula

In this paragraph, we recall the Verlinde formula which relates the
fusion rule and the modular transformation $S$ matrix. For $\lambda$ , $\mu\in$

$P_{+}(n, k)$ , we set

$S_{\lambda\mu}=\frac{(\sqrt{-1})^{n(n-1)/2}}{\sqrt{n(k+n)^{n-1}}}\sum_{w\in W}\det w\exp(-\frac{2\pi\sqrt{-1}}{k+n}\langle w(\lambda+\rho), \mu+\rho\rangle)$ ,

$T_{\lambda\mu}=\delta_{\lambda\mu}\exp 2\pi\sqrt{-1}(\triangle_{\lambda}-\frac{c_{n,k}}{24})$ ,

where $c_{n,k}$ is the so-called central charge

$c_{n,k}=\frac{kdimsl(n,C)}{k+n}$ .

For $\lambda\in P_{+}(n, k)$ we denote by $\mathcal{H}_{\lambda}$ the integrable highest weight

module of the affine Lie algebra $s\overline{l(n,C}$ ) at level $k$ . The character $\chi_{\lambda}$ is
by definition

$\chi_{\lambda}(\tau)=Tr_{\mathcal{H}_{\lambda}}q^{L_{0}-\frac{c_{n,k}}{24}}$

where $L_{0}$ is the 0-th Sugawara operator and $q=e^{2\pi\sqrt{-1}\tau}$ with $Imq>0$ .

Let us recall the following fundamental result due to Kac and Peterson.

Theorem 2.3.1 [KP]. The set of characters $\chi_{\lambda}$ , $\lambda\in P_{+}(n, k)$ ,

are invariant under the modular transformation and they satisfy

$\chi_{\lambda}(-1/\tau)=\sum_{\mu\in P_{\dagger}(n,k)}S_{\lambda\mu}\chi_{\mu}(\tau)$
,

$\chi_{\lambda}(\tau+1)=\exp 2\pi\sqrt{-1}(\triangle_{\lambda}-\frac{c_{n,k}}{24})\chi_{\lambda}(\tau)$ .

The matrices $S=(S_{\lambda\mu})$ and $T=(T_{\lambda\mu})$ are unitary and symmetric
and satisfy the relation

$(ST)^{3}=S^{2}=(\delta_{\lambda\mu^{*}})$ ,
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where $\lambda^{*}=-w(\lambda)$ with the longest element $w\in W$ and is the highest
weight for the dual representation $V_{\lambda}^{*}$ .

Let us observe that $S_{0\lambda}$ is a real number and is written as

$S_{0\lambda}=\frac{1}{\sqrt{n(k+n)^{n-1}}}\prod_{+\alpha\in\triangle}2\sin\frac{\pi\langle\lambda+\rho,\alpha\rangle}{k+n}$ .

For our purpose the following expression for the modular transformation
$S$ matrix is also useful. We put

$\lambda+\rho=\sum_{i=1}^{n}x_{i}\in_{i}$ , $\mu+\rho=\sum_{i=1}^{n}y_{i}\in_{i}$ .

Then we have

$S_{\lambda\mu}=\frac{(\sqrt{-1})^{n(n-1)/2}}{\sqrt{n(k+n)^{n-1}}}\sum_{\sigma\in S_{n}}\det\sigma\zeta^{x_{\sigma(1)}y1}\cdots\zeta^{x_{\sigma(n)}y_{n}}$

with $\zeta=\exp\frac{2\pi\sqrt{-1}}{k+n}$ , which is a minor of the Vandermonde determinant.

The Verlinde formula relates the fusion rule and the modular trans-
formation $S$ matrix as

(2.3.2) $N_{\lambda\mu}^{\nu}=\sum_{\alpha\in P_{+}(n,k)}\frac{S_{\lambda\alpha}S_{\mu\alpha}\overline{S_{\nu\alpha}}}{S_{0\alpha}}$

(see [K] for details).

2.4. Behaviour of $S$ , $N$ and $\triangle$ under $\sigma$ and $\tau$

We put

$\triangle_{\lambda}=\frac{\langle\lambda,\lambda+2\rho\rangle}{2(k+n)}$ ,

which is the value of the operator $L_{0}$ on the highest weight representation
$V_{\lambda}$ .

Lemma 2.4.1 [KT]. With respect to the action $\sigma$ , the conformal
weight $\triangle$ and the modular transformation matrix $S$ satisfy

(1) $\triangle_{\sigma(\lambda)}-\triangle_{\lambda}=\frac{1}{n}(\frac{(n-1)k}{2}-|\lambda|)$ ,

(2) $S_{\sigma(\lambda)\mu}=\exp(\frac{2\pi\sqrt{-1}|\mu|}{n})S_{\lambda\mu}$ .
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Now we describe the action of $\tau$ on the modular transformation
matrix $S_{\lambda\mu}$ , the structure constant of the fusion algebra $N_{\lambda\mu}^{\nu}$ and the

conformal weight $\triangle_{\lambda}$ . To specify the rank and the level, we denote them
by $S_{\lambda\mu}[n, k]$ , $N_{\lambda\mu}^{\nu}[n, k]$ and $\triangle_{\lambda}[n, k]$ for the highest weights $\lambda$ , $\mu$ , $ I/\in$

$P_{+}(n, k)$ .

Lemma 2.4.2. For $\tau$ : $\Omega_{n,k}\rightarrow\Omega_{k,n}$ , we have the following prop-
erties.

(1) $S_{\lambda\mu}[n, k]=\sqrt{\frac{k}{n}}\overline{S_{\tau(\lambda)\tau(\mu)}[k,n]}$

(2) $N_{\lambda\mu}^{\nu}[n, k]=N_{\tau(\lambda)\tau(\mu)}^{\tau(\nu)}[k, n]$

(3) $\triangle_{\lambda}[n, k]+\triangle_{\tau(\lambda)}[k, n]=0mod Z$

Proof. (1) By Lemma 4 in [KN], we have

$S_{\lambda\mu}[n, k]=\sqrt{\frac{k}{n}}\exp\frac{2\pi\sqrt{-1}}{nk}|\lambda||\mu|\overline{S_{t}\lambda^{t}\mu[k,n]}$

for $\lambda$ , $\mu\in P_{+}(n, k)$ . On the other hand, it follows from the property of
$S_{\lambda\mu}$ in Lemma 2.4.1 that

$S_{\tau(\lambda)\tau(\mu)}[k, n]=\exp 2\pi\sqrt{-1}(k-\frac{|\mu|}{n})\frac{|\lambda|}{k}S_{t}\lambda^{t}\mu[k, n]$

$=\exp 2\pi\sqrt{-1}(-\frac{|\lambda||\mu|}{nk})S_{t}\lambda^{t}\mu[k, n]$ .

Thus we obtain the assertion (1).
(2) Using the assertion (1), we obtain

$n\frac{S_{\lambda\in}[n,k]S_{\mu\in}[n,k]\overline{S_{\mathcal{U}\Xi}[n,k]}}{S_{0\in}[n,k]}$

$=k\frac{\overline{S_{\tau(\lambda)\tau(\in)}[k,n]}\overline{S_{\tau(\mu)\tau(\in)}[k,n]}S_{\tau(\nu)\tau(\in)}[k,n]}{S_{\tau(0)\tau(\in)}[k,n]}$

for $\lambda$ , $\mu$ , $l/,$ $\in\in\Omega_{n,k}$ . By the Verlinde formula we have

$N_{\lambda\mu}^{\nu}[n, k]=\sum_{+\alpha\in P(n,k)}\frac{S_{\lambda\alpha}[n,k]S_{\mu\alpha}[n,k]\overline{S_{\nu\alpha}[n,k]}}{S_{0\alpha}[n,k]}$

$=\sum_{\in\in\Omega_{n,k}}\sum_{0\leq x\leq n-1}\frac{S_{\lambda\sigma^{x}(\in)}[n,k]S_{\mu\sigma^{x}(\in)}[n,k]\overline{S_{\nu\sigma^{x}(\in)}[n,k]}}{S_{0\sigma^{x}(\in)}[n,k]}$ .
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Since $|\lambda|$ , $|\mu|$ , $|\iota/|\equiv 0mod n$ , we have

$S_{\lambda\sigma^{x}(\epsilon)}=S_{\lambda\epsilon}$ , $S_{\mu\sigma^{x}(\in)}=S_{\mu\in}$ , $S_{\nu\sigma^{x}(\in)}=S_{\mathcal{U}\Xi}$ .

This implies

$N_{\lambda\mu}^{\nu}[n, k]=\sum_{\in\in\Omega_{n,k}}n\frac{S_{\lambda\in}[n,k]S_{\mu\in}[n,k]\overline{S_{U\Xi}[n,k]}}{S_{0\in}[n,k]}$ .

Combining with a similar formula for $N_{\tau(\lambda)\tau(\mu)}^{\tau(\nu)}[k, n]$ we obtain the as-

sertion.
(3) For $\lambda=\sum_{i=1}^{n-1}a_{i}\Lambda_{i}\in P_{+}(n, k)$ , we associate the Young dia-

gram of type $(x_{1}, \ldots, x_{n})$ with $x_{i}$ $=\sum_{j=}^{n}$ $a_{j}$ , $1\leq i\leq n-1$ , and $x_{n}=0$ .

We put $|\lambda|=\sum_{i=1}^{n}x_{i}$ . In a similar way, we denote by $(y_{1}, \ldots, y_{k})$ the

Young diagram for ${}^{t}\lambda$ . We have

$\langle\lambda, \lambda+2\rho\rangle=\langle\lambda+\rho, \lambda+\rho\rangle-\langle\rho, \rho\rangle$

$=\sum_{i=1}^{n}(x_{i}-i-\frac{|\lambda|}{n}+\frac{n+1}{2})^{2}-\frac{n(n^{2}-1)}{12}$

$=\sum_{i=1}^{n}x_{i}^{2}-2\sum_{i=1}^{n}ix_{i}-\frac{|\lambda|^{2}}{n}+(n+1)|\lambda|$ .

This implies

$\langle\lambda, \lambda+2\rho\rangle+\langle^{t}\lambda,{}^{t}\lambda+2\rho\rangle=\sum_{i=1}^{n}x_{i}^{2}-2\sum_{i=1}^{n}ix_{i}+\sum_{j=1}^{k}y_{j}^{2}-2\sum_{j=1}^{k}jy_{j}$

$-\frac{|\lambda|^{2}}{nk}(n+k)+(n+k)|\lambda|+2|\lambda|$ .

According to Lemma 2 in [KN], the $n+k$ numbers $x_{\dot{x}}+n-i$ $(1\leq i\leq n)$ ,
and $n$ $-1+j-y_{j}(1\leq j\leq k)$ are both obtained as a permutation of
$\{0, 1, \ldots, n+k-1\}$ . Since

$\sum_{i=1}^{n}x_{i}^{2}-2\sum_{i=1}^{n}ix_{i}+\sum_{j=1}^{k}y_{j}^{2}-2\sum_{j=1}^{k}jy_{j}=-2|\lambda|$ ,

we obtain the equation

$\triangle_{\lambda}+\triangle t\wedge=\frac{|\lambda|}{2}(1-\frac{|\lambda|}{nk})$ .
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Applying Lemma 2.4.1, one has

$\triangle_{\tau(\lambda)}-\triangle_{{}^{t}\lambda}=\frac{|\lambda|}{2}(\frac{|\lambda|}{nk}-1)$ $mod$ Z.

Thus we obtain the assertion $\triangle_{\lambda}+\triangle_{\tau(\lambda)}=0mod$ Z.

2.5. Fusion algebras in conformal field theory

The fusion algebra was originally defined in the context of conformal
field theory (see [V], [TUY] and [B]). Let us describe briefly the fusion
algebra associated with the $SU(n)$ Wess-Zumino-Witten model at level $k$

on the Riemann sphere. We fix a coordinate function $t$ on the Riemann
sphere $CP^{1}$ . Let $P_{1}$ , $\ldots$ , $P_{m}$ be distinct points of $CP^{1}$ with $t(P_{j})=$

$\xi_{j}$ , $\xi_{j}\neq 0,1$ $\leq j\leq m$ and to each point we associate $\lambda_{1}$ , $\ldots$ , $\lambda_{m}\in$

$P_{+}(n, k)$ .

Let $T$ denote the endomorphism on $V_{\lambda_{1}}\otimes\cdots\otimes V_{\lambda_{m}}$ defined by

$T(v_{1}\otimes\cdots\otimes v_{m})=\sum_{i=1}^{m}\xi_{i}v_{1}\otimes\cdots\otimes X_{\theta}v_{?}$
. $\otimes\cdots\otimes v_{m}$

where $X_{\theta}$ is associated with the longest root $\theta$ . More explicitly $ X_{\theta}\in$

$sl(n, C)$ is written as $E_{1n}$ where $E_{ij}$ is the matrix unit such that $ij$

component is 1 and the other components are 0. We define

$V_{CP^{1}}^{\uparrow}(P_{1}, \ldots, P_{m}; \lambda_{1}, \ldots, \lambda_{m})$

to be the space of $sl(n, C)$ invariant $m$-linear form

$\varphi$ : $V_{\lambda_{1}}\otimes\cdots\otimes V_{\lambda_{m}}\rightarrow C$

satisfying $\varphi oT^{k+1}=0$ . It turns out that the above vector space is
isomorphic to the dual of the space of conformal blocks (see [TUY] and

[B] $)$ . We put

$N(\lambda_{1}, \ldots, \lambda_{m})=dimV_{CP^{1}}^{\dagger}(P_{1}, \ldots, P_{m};\lambda_{1}, \ldots, \lambda_{m})$ ,

which is related to the structure constant of the fusion algebra by

$N_{\lambda\mu}^{\nu}=N(\lambda, \mu, \nu^{*})$ .

\S 3. Level-rank duality of link invariants

3.1. Link invariants via face Boltzmann weights

Let us recall some basic properties of the link invariants for oriented
framed links associated with $sl(n, C)$ . For a more detailed description
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we refer the readers to [TW] and [KT]. Let $L$ be an oriented framed link

in $S^{3}$ with $m$ components. To each component $L_{i}$ , $1\leq i\leq m$ , we assign
a highest weight $\lambda_{i}\in P_{+}(n, k)$ , and we denote by $J(L, \lambda_{1}, \ldots, \lambda_{m})$ the
associated invariant. We put

$q=\exp(\frac{2\pi\sqrt{-1}}{k+n})$ , $t=\exp(\frac{\pi\sqrt{-1}}{n(k+n)})$ .

In the case $\lambda_{i}=\Lambda_{1},1\leq i\leq m$ , the invariant $J_{L}=J(L, \Lambda_{1}, \ldots, \Lambda_{1})$ is
characterized by the skein relation

$tJ_{L_{+}}-t^{-1}J_{L_{-}}=(q^{1/2}-q^{-1/2})J_{L_{0}}$

and the condition

$JO$ $=\frac{q^{n/2}-q^{-n/2}}{q^{1/2}-q^{-1/2}}$ .

With respect to the following local modifications of the framed link we
have

$J\supset o$
$\lambda=\frac{S_{0\lambda}}{S_{00}}J_{p}$

$J\propto_{\backslash }\lambda=\exp 2\pi\sqrt{-1}\triangle_{\lambda}J_{C^{\lambda}}$ ,

$J^{\lambda}L^{1P^{\mu}}=\frac{S_{\lambda\mu}}{S_{0\lambda}}J$

{
$\lambda$ .

The invariant $J(L, \lambda_{1}, \ldots\downarrow, \lambda_{m})$ is related to the fusion algebra $R_{n,k}$

in the following way. We have a multi-linear map

$J(L, \cdot)$ : $R_{n,k}^{\otimes m}\rightarrow C$

by associating to $\lambda_{1}\otimes\cdots\otimes\lambda_{m}$ the invariant $J(L, \lambda_{1}, \ldots, \lambda_{m})$ . This
map is compatible with the product structure of the fusion algebra (see
[Ko2] $)$ .

In view of the above multi-linear map, we first deal with the case
when $\lambda_{i}$ , $1\leq i\leq m$ , is one of the fundamental weights $\Lambda_{1}$ , $\ldots$ , $\Lambda_{n-1}$ .

For the purpose of describing the symmetry, it is useful to introduce an
expression of the link invariants using the Boltzmann weights for face
models.

Let us denote by $\Phi_{n}$ the set of fundamental weights $\{\Lambda_{1}, \ldots, \Lambda_{n-1}\}$ .

We consider a projection diagram of the oriented framed link $L$ with
the blackboard framing. We fix $\lambda_{1}$ , $\ldots$ , $\lambda_{m}\in\Phi_{n}$ and to each compo-
nent $L_{i}$ we associate $\lambda_{i}$ . A state is a map $s$ from the set of regions of



Level-Rank Duality of Witten’s 3-Manifold Invariants 255

the projection diagram to $P_{+}(n, k)$ such that the following admissibility
conditions (1) and (2) are satisfied.

(1) If $D_{i}$ and $D_{j}$ are adjacent regions as shown in Figure 1, then
for $\mu=s(D_{i})$ and $\nu=s(D_{j})$ we have $N_{\lambda_{i}\mu}^{\nu}\neq 0$ where $\lambda_{i}$ is the highest

weight associated to the edge incident to both $D_{i}$ and $D_{j}$ .

(2) For the non-compact region $D_{0}$ one has $s(D_{0})=0$ .

$\wedge$

$1_{i}$

$\downarrow t$

$t$
$v$

Fig. 1.

We observe that in the above situation the structure constant $N_{\lambda_{i}\mu}^{\nu}$

is equal to 1. This follows from the Littlewood-Richardson rule and
the inequality (1) in 2.1. We have 4 kinds of vertices corresponding to
overcrossing, undercrossing, creation and annihilation. For each vertex
$v$ and a state $s$ we have a way to associate the face Boltzmann weight
$W_{v}(s)$ such that the link invariant $J(V, \lambda_{1}, \ldots, \lambda_{m})$ is expressed as

$J(L, \lambda_{1}, \ldots, \lambda_{m})=\sum_{s.state}\prod_{v:vertex}W_{v}(s)$ .

An explicit form of such Boltzmann weights might be found in [JMO]
up to some normalization.

3.2. $Z_{n}$ symmetry for link invariants

Let us review the behaviour of the invariant $J(L, \lambda_{1}, \ldots, \lambda_{m})$ under
the action of the Dynkin diagram automorphism. A detailed account
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of the subject is given in [KT]. For $\lambda=(\lambda_{1}, \ldots, \lambda_{m})$ we define a map
$\phi_{\lambda}$ : $(Z_{n})^{\oplus m}\rightarrow Z_{2n}$ by

$\phi_{\lambda}(x_{1 },\ldots, x_{m})=nk\sum_{i=1}^{m}l_{ii}x_{?}$
.

$-k\sum_{i,j}l_{ij}x_{i}x_{j}-2\sum_{i,j}|\lambda(j)|l_{ij}x_{i}$
.

Proposition 3.2.1 [KT]. Using the above notation, we have

$\frac{J(L,\sigma^{x_{1}}(\lambda_{1}),,\sigma^{x_{m}}(\lambda_{m}))}{J(L,\lambda_{1},,\lambda_{m})}\ldots\ldots=\exp(_{\frac{\pi\sqrt{-1}}{n}\phi_{\lambda}(x_{1}}, \ldots, x_{m}))$ .

If $\lambda_{1}$ , $\ldots$ , $\lambda_{m}\in\Omega_{n,k}$ , then the above formula is simplified as
(3.2.2)

$\frac{J(L,\sigma^{x_{1}}(\lambda_{1}),,\sigma^{x_{m}}(\lambda_{m}))}{J(L,\lambda_{1},,\lambda_{m})}\ldots\ldots=\exp(\frac{\pi\sqrt{-1}}{n}((n-1)k\sum_{\dot{x},j}l_{ij}x_{i}x_{j}))$ .

3.3. Level-rank duality of link invariants

As in the previous section we denote by $\Phi_{n}$ the set of fundamental
weights for $sl(n, C)$ . We define $\Phi_{n,k}$ to be the set of weights $\lambda\in P_{+}(n, k)$

such that there exists $g\in Z_{n}$ with $g(\lambda)\in\Phi_{n}$ . Namely, $\Phi_{n,k}$ consists
of the elements which are $Z_{n}$ equivalent to fundamental weights with
respect to the Dynkin diagram automorphism.

For an oriented framed link $L$ with $m$ components, we consider a
similar construction as in 3.1 with $\lambda_{1}$ , $\ldots$ , $\lambda_{m}\in\Omega_{n,k}$ . Let us denote
by $S_{n,k}$ the set of admissible states satisfying (1) and (2) in 3.1. Since

$N_{\lambda\mu}^{\nu}=N_{\sigma^{p}(\lambda)\sigma^{q}(\mu)}^{\sigma^{p+q}(\nu)}$ the multiplicity appearing in this construction is also

at most 1. The local Boltzmann weight behaves as follows with respect
to the map $\tau$ : $\Omega_{n,k}\rightarrow\Omega_{k,n}$ .

We have a one-to-one correspondence $T$ : $S_{n,k}\rightarrow S_{k,n}$ defined by
$(T(s))(D)=\tau(s(D))$ . The following lemma is essentially due to [JMO]
(see also [SA]), where the corresponding statement is shown for the fun-
damental representation up to some phase factor. Computing the phase
factor by means of Lemma 2.4.1 and Lemma 2.4.2, we obtain the fol-
lowing lemma.

Lemma 3.3.1. For any type of vertex $v$ in the graph associated
with the link diagram we have we have

$W_{v}^{\tau(\lambda)}(s)=\overline{W_{v}^{\lambda}(T(s))}$
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for any admissible state $s\in S_{n,k}$ .

Proposition 3.3.2. Let $L$ be an oriented framed link with $m$ com-
ponents. For $\lambda_{1}$ , $\ldots$ , $\lambda_{m}\in\Omega_{n,k}$ we $ha,ve$

$J(L, \tau(\lambda_{1})$ , $\ldots$ , $\tau(\lambda_{m}))=\overline{J(L,\lambda_{1},\ldots,\lambda_{m})}$ .

Proof. By the behaviour of the face Boltzmann weights with re-
spect to $\tau$ it can be shown that the assertion holds if $\lambda_{1}$ , $\ldots$ , $\lambda_{m}\in\Phi_{7l,k}$ .

For $\lambda$ , $\mu\in\Omega_{n,k}$ , we observe by means of the Littlewood-Richardson rule
and the inequality (1) in 2.1 that $N_{\lambda\mu}^{\nu}\neq 0$ only if $\nu\in\Omega_{n,k}$ . Moreover,

it is clear that $\Omega_{n,k}$ is generated by $\Phi_{n,k}$ in the fusion algebra. Let us
suppose that $\lambda_{j}\in\Omega_{n,k}$ is written as a polynomial

$\lambda_{j}=P_{j}(\mu_{1}, \mu_{2}, \ldots)$ , $\mu_{1}$ , $\mu_{2}$ , $\ldots\in\Phi_{n,k}$ .

We have
$\tau(\lambda_{j})=P_{j}(\tau(\mu_{1}), \tau(\mu_{2}),$ $\ldots)$

and it follows from the expression of the link invariant by the face
Boltzmann weights and Lemma 3.3.1 together with the compatibility

of $R_{n}^{\otimes m},k\rightarrow C$ with the product structure of the fusion algebra explained

in 3.1 that the assertion holds for any $\lambda_{1}$ , $\ldots$ , $\lambda_{m}\in\Omega_{n,k}$ . This completes
the proof.

\S 4. $PSU(n)$ invariants of 3-manifolds

4.1. Review of the definition of $SU(n)$ invariants

Let $M$ be a closed oriented 3-manifold. We suppose that $M$ is
obtained by the Dehn surgery on a framed link $L$ with $m$ components

in $S^{3}$ . As in [KT] we put $C_{n,k}=\exp(-\frac{2\pi\sqrt{-1}}{8}c_{n,k})$ with the ccntral

charge $c_{n,k}=\frac{kdimsl(n,C)}{k+n}$ . Let $m$ be the number of components of the

link $L$ . We consider the sum

$Z_{k}(M, SU(n))$

(4.1.1)

$=C_{n,k}^{sign(L)}$ $\sum$ $S_{0\lambda_{1}}\cdots S_{0\lambda_{m}}J(L, \lambda_{1}, \ldots, \lambda_{m})$

$\lambda_{1},..,\lambda_{m}\in P+(n,k)$

where sign(L) denotes the signature of the linking matrix of $L$ . It was
shown in [KT] that $Z_{k}(M, SU(n))$ is a topological invariant of $M$ (see
also [TW] $)$ .
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4.2. $PSU(n)$ invariants and level-rank duality

As is shown in 2.2, the set of weights $P_{+}(n, k)$ admits a $Z_{n}$ action
derived from the Dynkin diagram automorphism. Let us suppose that
$n$ and $k$ are relatively prime. In this case the $Z_{n}$ action is fixed point
free and moreover, the invariant $Z_{k}(M, SU(n))$ admits the following
factorization.

We consider the Gauss sum

$G_{n,k}=\sum_{j=0}^{n-1}e((n-1)kj^{2})$

where $e(x)$ denotes $\exp(\pi\sqrt{-1}x/n)$ . For $\lambda\in\Omega_{n,k}$ we have

$\sum_{j=0}^{n-1}\exp 2\pi\sqrt{-1}\triangle_{\sigma^{j}(\lambda)}=G_{n,k}\exp 2\pi\sqrt{-1}\triangle_{\lambda}$ .

As in the previous paragraph, we suppose that $M$ is a closed oriented
3-manifold obtained as the Dehn surgery on a framed link $L$ in $S^{3}$ . Let
$(l_{ij})_{1\leq i,j\leq m}$ be the linking matrix of $L$ . It is known by [MOO] (see also
[Kol] $)$ that

(4.2.1)

$\xi_{n,k}(M)=(\frac{\sqrt{n}}{G_{n,k}})^{sign(L)}(\frac{1}{\sqrt{n}})^{m}\ldots\sum_{x_{1},,x_{m}\in Z_{m}}e((n-1)k\sum_{i,j}l_{ij}x_{i}x_{j})$

is a topological invariant of $M$ . We put

(4.2.2)

$Z_{k}(M, PSU(n))=(\frac{C_{n,k}G_{n,k}}{\sqrt{n}})^{sign(L)}(\sqrt{n})^{m}$

$\times\lambda_{1}$

,

$.\sum_{\lambda_{m}\in\Omega_{n,k}}S_{0\lambda_{1}}\ldots S_{0\lambda_{m}}J(L, \lambda_{1}, \ldots, \lambda_{m})$
.

Proposition 4.2.3. Let us suppose that $n$ and $k$ are relatively
prime. Then we have

$Z_{k}(M, SU(n))=\xi_{n,k}(M)Z_{k}(M, PSU(n))$ .
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Proof. By using 3.2.2, we have

$\sum_{\lambda_{1},..,\lambda_{m}\in P_{\dagger}(n,k)}S_{0\lambda_{1}}\cdots S_{0\lambda_{m}}J(L, \lambda_{1}, \ldots, \lambda_{m})$

$=\sum_{\lambda_{1},..,\lambda_{m}\in\Omega_{n,k}}\ldots\sum_{x_{1},,x_{m}\in Z_{n}}S_{0\lambda_{1}}\cdots S_{0\lambda_{m}}J(L, \sigma^{x_{1}}(\lambda_{1}),$
$\ldots$ , $\sigma^{x_{m}}(\lambda_{m}))$

$=e((n-1)kx_{1},.,\sum_{x_{m}\in Z_{n}}l_{ij}x_{i}x_{j})$

$\times\lambda_{1}$

, ,

$\sum_{\lambda_{m}\in\Omega_{n,k}}S_{0\lambda_{1}}\cdots S_{0\lambda_{m}}J(L, \lambda_{1}, \ldots, \lambda_{m})$

,

which shows the assertion.

We are going to show that $Z_{k}(M, PSU(n))$ is actually a topological
invariant of $M$ . This is not obvious from the above factorization, since
the invariant $\xi_{n,k}(M)$ defined by the linking matrix might be equal to
zero.

Lemma 4.2.4. For $\lambda$ , $\mu$ , $\nu\in\Omega_{n,k}$ we have

$C_{n,k}G_{n,k}\sum_{\mu\in\Omega_{n,k}}S_{\lambda\mu}S_{\mu\nu}\exp 2\pi\sqrt{-1}(\triangle_{\lambda}+\triangle_{\mu}+\triangle_{\nu})=S_{\lambda\nu}$
.

Proof. Let us start with the equality

(4.2.5)
$C_{n,k}\sum_{\mu\in P_{+}(n,k)}S_{\lambda\mu}S_{\mu\nu}\exp 2\pi\sqrt{-1}(\triangle_{\lambda}+\triangle_{\mu}+\triangle_{\nu})=S_{\lambda\nu}$

which follows from the explicit form of the matrix $S$ given in 2.3. We
see that the equality (4.2.5) reveals the fact that the modular group
acts on the space of characters $\chi_{\lambda}$ , $\lambda\in P_{+}(n, k)$ as stated in Theorem
2.3.1. Since $\lambda$ , $\nu\in\Omega_{n,k}$ we have $S_{\lambda\sigma(\mu)}=S_{\lambda\mu}$ by Lemma 2.4.1 (2). We
decompose the left hand side of the equality 4.2.5 with respect to the $Z_{n}$

action on $\mu$ . Combining with Lemma 2.4.1 (1), we obtain the desired
equality.

The above lemma shows that the matrices

$\tilde{S}=(\sqrt{n}S_{\lambda\mu})_{\lambda,\mu\in\Omega_{n,k}}$

and

$\tilde{T}=diag(\exp 2\pi\sqrt{-1}(\triangle_{\lambda}-\frac{c_{n,k}}{24})G_{n,k}^{-1/3})_{\lambda\in\Omega_{n,k}}$
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satisfy
$(\tilde{S}\tilde{T})^{3}=(\tilde{S})^{2}$

and define a linear representation of $SL(2, Z)$ .

We are in a position to show the following proposition.

Proposition 4.2.6. $Z_{k}(M, PSU(n))$ is a topological invariant of
a closed oriented 3-manifold $M$ .

Proof. As is explained in [RT], we show the invariance under the
Kirby moves in the sense of Fenn and Rourke [FR]. It is enough to check
the equality

$C_{n,k}G_{n,k}\sum_{\mu\in\Omega_{nk}}S_{0\mu}J(L’, \lambda_{1}, \ldots, \lambda_{m}, \mu)=J(L, \lambda_{1}, \ldots, \lambda_{m})$

for the link diagram $L’$ obtained by adding one component with framing
1 as shown in Figure 2. Here $\mu$ stands for the representation associated
to the new component. Let $l$ denote the number of strands passing
through the new component in Figure 2.

–
$\sum_{v}$

$m$

Fig. 2.

We show the assertion by induction with respect to $l$ . As a special
case of Lemma 4.2.4, we have

$C_{n,k}G_{n,k}\sum_{\mu\in\Omega_{n,k}}S_{0\mu}S_{\lambda\mu}\exp 2\pi\sqrt{-1}(\triangle_{\lambda}+\triangle_{\mu})=S_{0\lambda}$
.

This settles the case $l$ $=1$ and in particular, putting $\lambda=0$ , we obtain the
case $l$ $=0$ . Let us recall that $\Omega_{n,k}$ is closed under the product structure
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of the fusion algebra. Now we apply the fusion rule as shown in Figure
2, which implies that the linear map associated with the two tangles in
Figure 2 are identical. This procedure permits us to reduce to the case
of $l-1$ strands and we are done by induction.

Now we are in a position to show the following level-rank duality of
$PSU(n)$ invariants.

Theorem 4.2.7. Let us suppose that $n$ and $k$ are relatively prime.

Then we have

$Z_{k}(M, PSU(n))=\overline{Z_{n}(M,PSU(k))}$ .

Proof. First, we see

$C_{n,k}=\exp(-\frac{nk-1}{4}\pi\sqrt{-1})\overline{C_{k,n}}$

and

$G_{n,k}=\exp(\frac{nk-1}{4}\pi\sqrt{-1})\sqrt{\frac{n}{k}}\overline{G_{k,n}}$ .

By Lemma 2.4.2 we have

$\sqrt{n}S_{0\lambda}[n, k]=\sqrt{k}g_{0\tau(\lambda)}[k, n]$ .

Here we recall that they are real numbers. Using Proposition 3.3.2, we
obtain the equality

$(\sqrt{n})^{m}\lambda_{1}$

, ,

$\sum_{\lambda_{m}\in\Omega_{n,k}}S_{0\lambda_{1}}\cdots S_{0\lambda_{m}}J(L, \lambda_{1}, \ldots, \lambda_{m})$

$=(\sqrt{k})^{m}\tau(\lambda_{1})$

, ,

$\sum_{\tau(\lambda_{m})\in\Omega_{k,n}}S_{0\tau(\lambda_{1})}\cdots S_{0\tau(\lambda_{m})}\overline{J(L,\tau(\lambda_{1}),\ldots,\tau(\lambda_{m}))}$
.

This completes the proof.

Let us describe briefly the duality relation of the representations of
the mapping class groups associated with $SU(n)$ Wess-Zumino-Witten
model at level $k$ and $SU(k)$ model at level $n$ . Let $\Sigma$ denote a closed
oriented surface of genus $g$ and $\mathcal{M}_{g}$ its mapping class group. Using the
notation of 2.5, we put

$H_{\Sigma}[n, k]=\oplus_{\lambda_{1},\lambda_{g}\in P(n,k)}\ldots,+V_{CP^{1}}^{\dagger}(\lambda_{1}, \lambda_{1}^{*}, \ldots, \lambda_{g}, \lambda_{g}^{*})$

which is isomorphic to the space of conformal blocks of $SU(n)$ Wess-
Zumino-Witten model at level $k$ in the sense of [TUY]. As in [RT] and
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[Ko2], we have a projectively linear unitary representation of the map-
ping class group

$\mathcal{M}_{g}\rightarrow GL(H\Sigma[n, k])$ .

Let us recall that this representation is expressed in terms of the Boltz-
mann weight of the face model by considering a $(2g, 2g)$ tangle associated
with an element of the mapping class group.

Let us now suppose that $n$ and $k$ are relatively prime. We put

$H_{\Sigma}[n, k]/Z_{n}=\oplus_{\lambda_{1},..,\lambda_{g}\in\Omega_{n,k}}V_{CP^{1}}^{\dagger}(\lambda_{1}, \lambda_{1}^{*}, \ldots, \lambda_{g}, \lambda_{g}^{*})$ .

Our previous construction permits us to construct a projectively linear
unitary representation

$\rho_{g}[n, k]$ : $\mathcal{M}_{g}\rightarrow GL(\mathcal{H}\Sigma[n, k]/Z_{n})$ .

In particular, in the case $g=1$ this representation is identical to the
representation considered in the remark after Lemma 4.2.4. By the
Verlinde formula, we see that

$dimH_{\Sigma}[n, k]/Z_{n}=\sum_{\lambda\in\Omega_{nk}}(\frac{1}{\sqrt{n}S_{0\lambda}[n,k]})^{2g-2}$

Combining with our previous discussion, we have the following pro-
position.

Proposition 4.2.8. We have a non degenerate bilinear pairing of
the vector spaces $H_{\Sigma}[n, k]/Z_{n}\times H\Sigma[k, n]/Z_{k}\rightarrow C$ and the representation

of the mapping class group $\rho_{g}[n, k]$ is the contragredient representation

of $\rho_{g}[k, n]$ .
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Incidence Matrix Diagonal Forms

and Integral Hecke Algebras

Robert A. Liebler

\S 1. Introduction

Let $P_{k}$ denote the set of flats in the projective geometry $PG_{n-1}(q)$

arising from the $k$-dimensional subspaces of an $n$-dimensional vector
space over the Galois field $GF(q)$ , $q$ a power of the prime $p$ . Let $\mathcal{M}_{k}(q)$

be incidence matrix of points $P_{1}$ versus $k$ flats $\prime p_{k}$ .

The study of $\mathbb{Z}$-span of the columns of $\mathcal{M}_{k}(q)$ as a submodule of $\mathbb{Z}P_{1}$

is of interest in its own right, as a source of easily implemented codes and
because it may provide a means for representing, and ultimately charac-
terizing, associated combinatorial structures like the $q$-analog Johnson
schemes. I also find this study particularly attractive because it provides
an explicit setting to further develop the application of integral repre-
sentation theory and number theory to combinatorics along the lines
that have been so successful with non-abelian difference sets.

It is easy to see that the Smith normal form of $\mathcal{M}_{k}(q)$ has all but one
of its diagonal entries a divisor of the difference : $\left\{\begin{array}{l}n-1\\k-1\end{array}\right\}$

$q-$
$\left\{\begin{array}{l}n-2\\k-2\end{array}\right\}$

$q$

of the

$q$-binomial coefficients. Even for $n$ $=3$ , every conceivable $p$-elementary
divisor arises. Indeed, the set of lines of an affine net of degree $p^{k}$ is in

the kernel of the incidence map $mod p^{k}$ but not $mod p^{k+1}$ .

The first formulas for the $p$-rank of $\mathcal{M}_{k}(q)$ are due to Hamada [6]
and to Smith [12] for $k=n-1$ . More recently Black and List [1] gave a
generating function for the entries in a diagonal form of $\mathcal{M}_{n-1}(p)$ over
$\mathbb{Z}$ . Also, Lander $[10, p77]$ has apparently given information equivalent
to a diagonal form of $\mathcal{M}_{n-1}(q)$ over $\mathbb{Z}$ in his (unpublished) Ph.D. thesis.

We show how diagonal forms for these incidence matrices arise nat-
urally in the study of integral Hecke algebras and their geometrically
significant eigenpotents. Within the $\mathbb{Z}$-module based on the chambers
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of the associated building we construct a certain lattice $\mathcal{L}$ that is invari-
ant under the integral Hecke algebra $\prime H$ . Theorem 3.7 asserts that $\mathcal{L}$ has
a $H$-completely reducible sublattice $N$ of finite volume. It follows from
Proposition 3.8 that the essential part of these incidence maps can be si-
multaneously diagonalized within $N$ and that their Smith normal forms
are computable from the multiplicites of the constituent irreducible H-
modules appearing in $N$ .

Unfortunately, I have no effective way of directly computing the
constituent multiplicites of the $\mathbb{Z}$-forms appearing in $N$ . But, it turns
out there is only one $\mathbb{Z}[1/p]$ -form arising in $\mathcal{L}\otimes \mathbb{Z}[1/p]$ . This allows
the easy computation of the elementary divisors of $\mathcal{M}_{k}(q)$ that are not
powers of $p$ in Theorem 3.10.

We also give an independently obtained formula for a diagonal form
for $\mathcal{M}_{k}(q)$ whenever $k$ and $n$ are relatively prime, Corollary 4.5. The
proof of this formula involves and adaptation of an argument of Brouwer
[2] to finite local rings. Some data from a Maple implementation of the
formula is also given.

\S 2. Pure preliminaries

Let $K$ be the quotient field of a Dedekind domain $R$ . An $R$ lattice is
a finitely generated $R$-torsionfree $R$-module. Each $R$-lattice $M$ is natu-
rally embedded in a finite dimensional $K$-vector space $KM$ $:=K\otimes_{R}M$ .

An $R$ sublattice $L\leq M$ is pure if $M/L$ is $R$-torsionfree, or equivalently
if $L$ is a direct summand of $M$ . Any submodule $L$ of $M$ has as its pure
closure the inverse image of the torsion part of $M/L$ . The importance
of purity arises from:

Theorem 2.1 ([4, 4.12]). Let $M$ be an $R$ -lattice. There is a bijec-
tive inclusion preserving correspondence between the $R$ -pure sublattice of
$M$ and the $K$ -subspaces of $KM$ given by $L\rightarrow KL$ and $W\rightarrow W\cap M$ .

The theory of pure submodules is more subtle than that of vector
spaces in part because a sum of two pure submodules that intersect
trivially need not be pure. For example, $\mathcal{L}_{\Xi}=\{(a, \in a)|a\in \mathbb{Z}\}$ is a pure
submodule of $\mathbb{Z}^{2}$ for any $\epsilon\in \mathbb{Z}$ . But $(2, 0)\in \mathcal{L}_{1}+\mathcal{L}_{-1}$ and $(1, 0)$ $\not\in$

$\mathcal{L}_{1}+\mathcal{L}_{-1}$ , so $\mathcal{L}_{1}+\mathcal{L}_{-1}$ is not pure.
An $R$ -order is a ring $\Lambda$ whose center contains $R$ , is finitely generated

as an $R$-module and such that $ A:=K\Lambda$ is a $K$ algebra Two $\Lambda$ modules
$M_{1}$ , $M_{2}$ that are $R$-lattices and with the property that $KM_{1}$ is equivalent
(over $K$ ) to $KM_{2}$ are said to be $R$ -forms for the associated $A$-module.

It is tempting to look for a Krull-Schmidt-Azumaya Theorem [4,
Theorem 6.12] or even a Jordan-H\"older Theorem [4, Theorem 3.11] for
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$R$-forms, but in Section 3.2 we see that the central object of our study $\mathcal{L}$

has a more subtle structure, not being completely reducible and failing
the conclusion of the Jordan-H\"older Theorem. Indeed, (in the language
of that Section) $\mathcal{L}$ contains two proper submodules $N$ and $N’$ each of
which is a direct sum of irreducible $\mathbb{Z}$-forms for the natural representa-
tion but $\mathcal{L}/N$ affords a finite version of the index representation while
$\mathcal{L}/N’$ affords a finite version of the Steinberg representation. Fortu-
nately, Proposition 3.8 observes that this anomaly does not impact our
incidence map study.

\S 3. Integral Hecke Algebras

Because this section is written in somewhat greater generality than
the rest of this paper, examples are included to provide more explicit
information about the most important case namely $PG_{n-1}(q)$ .

Let $Ch$ be the set of chambers of a finite building $B$ of type I and
Weyl group $ W=W(I)=\langle r_{i}|i\in I\rangle$ . The Standard module $\mathbb{Z}Ch$ of $B$ is
the free $\mathbb{Z}$-module with $Ch$ as an orthonormal basis. The integral Hecke
algebra $H$ is the $\mathbb{Z}$-algebra generated by $\{\sigma_{i}|i\in I\}\subseteq End_{\mathbb{Z}}(\mathbb{Z}Ch)$ where
$\sigma_{i}$ is (the adjacency matrix of) the relation “differ only in type $i$

” on
$Ch$ . Because each such relation determines an equivalence relation with
equipotent classes, each $\sigma_{i}$ satisfies

(1) $(\sigma_{i}+1)(\sigma_{i}-q_{i})=0$ ,

for some integer $q_{i}$ called the index parameter of $\sigma_{i}$ .

Afundamental result of Iwahori [9], [4, Section 67] implies that the
rational Hecke algebra $H\otimes \mathbb{Q}$ has a $\mathbb{Q}$-basis

$w\in W$ can be expressed
$\mathcal{F}.--$ { $\sigma_{w}:=\sigma_{i_{1}}\sigma_{i_{2}}\cdots\sigma_{i_{n}}|$

in reduced form $r_{i_{1}}r_{i_{2}}\ldots r_{i_{n}}$

}.

Notice that, elements of $F$ are well defined and depend only the the

associated element $w\in W$ , not on the reduced form used to present $w$ ,

because any two reduced forms for $w$ can be transformed into each other
using only rules of the form $ r_{i}r_{j}r_{i}\ldots=r_{j}r_{i}r_{j}\ldots$ , without any use of the
relation $r_{i}^{2}=1$ .

Because $\mathcal{F}$ is contained in $\mathcal{H}$ , $H$ is a $\mathbb{Z}$-order in the rational Hecke
algebra. More than this, the result of Iwahori asserts that the rational
Hecke algebra has a presentation (as an algebra) with generators $\{\sigma_{i}\}$

and relations: Equation (1) together with a relation equivalent to:

If $\sigma_{w}\in \mathcal{F}$ but $\sigma_{w}\sigma_{j}\not\in F$ , then $\sigma_{w}$

(2) can be written in the form $\sigma_{w}=\cdots\sigma_{j}$ .
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Theorem 2.1 [4, 23.7] implies that any pure $\prime H$-submodule $L$ of $\mathbb{Z}Ch$ is a
$\mathbb{Z}$-form for a $\mathbb{Q}H$-module.

3.1. Geometrically significant eigenpotents

For each $J\subseteq I$ and $c\in Ch$ , define $C_{J}\in S$ to be the sum of all
chambers having the same $J$ residue as $c$ . Explicitly the map $c$ $\rightarrow c_{J}$ is
realized by the eigenpotent $P_{J}\in H$ where

$P_{J}=\sum_{w\in W_{J}}\sigma_{w}$

and $W_{J}$ is the set of reduced words in the Weyl group $W$ that involve
only elements of $I\backslash J$ . The elements $P_{J}$ appear in [8] and [11]. The
Poincar\’e polynomial $[4, \sec 67]$ , $p_{J}$ , of type $J$ is obtained from $P_{J}$ by
replacing each $\sigma_{i}$ with its index parameter.

In practice, one never really computes a geometrically significant
eigenpotent as such a large sum. Instead, there are factored forms ob-
tainable from chains of subgroups of the Weyl group.

Example 3.1. The building of type $A_{n-1}$ with index parameters
$q_{i}=q$ arises from the projective geometry $PG_{n-1}(q)$ . It has as chambers
the set of maximal chains (ordered by inclusion) of subspaces of the
underlying vector space $GF(q)n$ . The relation giving rise to $\sigma_{i}$ associates
such a chain $0<V_{1}<\cdots<GF(q)^{n}$ to all other chains $0<W_{1}<\cdots<$

$GF(q)n$ , where $W_{j}=V_{j}$ if and only if $i\neq j$ . The associated Weyl group
$W(A_{n-1})$ is the symmetric group $S_{n}$ with the distinguished generators
the transpositions $r_{i}=(i, i+1)$ . The Iwahori relations for this Hecke
algebra are Equation (1) and

$\sigma_{i}\sigma_{i-1}\sigma_{i}=\sigma_{i-1}\sigma_{i}\sigma_{i-1}$ and $\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ whenever $|i-j|>1$ .

Because $S_{n}$ is doubly transitive and $r_{n-1}$ commutes with $S_{n-2}$ , $S_{n}/S_{n-1}$

can be written $S_{n}=S_{n-1}\cup(S_{n-1}/S_{n-2})r_{n-1}S_{n-1}$ . It follows that

$\sum_{w\in W(A_{n-1})}w=\lambda_{n-1}\cdots\lambda_{2}\lambda_{1}$
, where $\lambda_{k}=(1+\lambda_{k-1}r_{k})$ , $\lambda_{0}=1$ .

Notice that the left most factor on the right hand side is the sum of left-
coset representatives of $S_{n}/S_{n-1}$ and, when multiplied out, each of the
expressions is already in reduced $form^{1}$. It follows that the eigenpotent
element associated with the empty set for a building of type $A_{n-1}$ is
$P_{\phi}(A_{n-1})=L_{n-1}P_{\phi}(A_{n-2})$ , where

$L_{n-1}:=1+L_{n-2}\sigma_{n-1}$ and $L_{0}=1$ .
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If instead we worked with right-cosets, we would obtain:

$\sum_{w\in W(A_{n-1})}w=\rho_{1}\cdots\rho_{n-1}$
, where $\rho_{k}=(1+r_{k}\rho_{k-1})$ , $\rho_{0}=1$

and a different factorization: $P_{\phi}(A_{n-1})=P_{\phi}(A_{n-2})R_{n-1}$ , where

$R_{n-1}:=1+\sigma_{n-1}R_{n-2}$ and $R_{0}=1$ .

The Weyl group $ W(B_{3})=\langle r_{1}, r_{2}, r_{3}|(r_{i}r_{j})^{m_{ij}}=1\rangle$ ; where $m_{ij}=$

$m_{ji}$ and $m_{ii}=1$ , $m_{12}=3$ , $m_{13}=2$ , $m_{23}=4$ . The (formal) sum $T=$

$[(1+r_{1}+r_{2}r_{1})+(1+r_{2}+r_{1}r_{2})r_{3}r_{2}r_{1}]\in \mathbb{Z}W$ of left-coset representatives
for $ W/\langle r_{2}, r_{3}\rangle$ satisfies

$\sum_{w\in W}w=T\sum_{h\in\langle r_{2},r_{3}\rangle}h=T(1+r_{3})(1+r_{2}r_{3})(1+r_{2})$
.

Again, each factor is the sum of left-coset representatives and, when
multiplied out, each expression is already in reduced form. For this
reason the eigenpotent $P_{\phi}$ associated with the empty set in a building
of type $B_{3}$ can be factored:

$P_{\phi}=[(1+\sigma_{1}+\sigma_{2}\sigma_{1})+(1+\sigma_{2}+\sigma_{1}\sigma_{2})\sigma_{3}\sigma_{2}\sigma_{1}](1+\sigma_{3})(1+\sigma_{2}\sigma_{3})(1+\sigma_{2})$ .

The reader may check that a different sequence of subgroups leads to
the more pleasant factorization:

$P_{\phi}=(1+\sigma_{3})(1+\sigma_{2}\sigma_{3})(1+\sigma_{1}\sigma_{2}\sigma_{3})(1+\sigma_{2}+\sigma_{1}\sigma_{2})(1+\sigma_{1})$ .

The name given $P_{J}$ is perhaps motivated by the fact that $P_{J}$ is

almost idempotent.

Lemma 3.2. $P_{J}^{2}=p_{J}P_{J}$

Proof. It is sufficient to show that $P_{J}\sigma_{i}=P_{J}q_{i}$ for each $i\in I\backslash J$ .

This follows from the Iwahori relations Equations (1) and (2). This last
computation can be vastly simplified by using a factored form for $P_{J}=$

$\ldots(1+\sigma_{i})$ developed from a sequence of subgroups of the associated
Weyl group starting from $\langle r_{i}\rangle$ as described in Example 3.1. Q.E.D.

Let $\mathbb{Z}typ^{-1}(J)$ denote the image of $P_{J}\in End(\mathbb{Z}Ch)$ . Since no cham-
ber is incident with two different elements of type $J$ , $\mathbb{Z}typ^{-1}(J)$ is a pure
$\mathbb{Z}$-submodule of $\mathbb{Z}Ch$ having a distinguished basis $\{P_{J}(x) : typ(x)=J\}$ .

It is therefore natural to identify an element $x_{J}$ of type $J$ in $B$ with its
image in $\mathbb{Z}typ^{-1}(J)$ .

The importance of the geometrically significant eigenpotent ele-
ments for our purposes is made clear by the following:
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Lemma 3.3 ([11]). Identify an element $x_{J}$ of type $J$ in $B$ with its

image in $\mathbb{Z}typ^{-1}(J)$ as above. Then the natural incidence map from
$typ^{-1}(J)$ to $typ^{-1}(K)$ is afforded by:

$P_{K}/p_{J\cap K}$ : $\mathbb{Z}typ^{-1}(J)\rightarrow \mathbb{Z}typ^{-1}(K)$ ,

where $p_{J\cap K}$ is the Poincar\’e polynomial defined above.

Proof. The $(a, c)$ entry of $P_{K}P_{J}$ counts the number of $b\in Ch$ where
$a$ and $b$ share a face of type $J$ and where $b$ and $c$ share a face of type $K$ .

There is no such $b$ unless $a$ and $c$ share a face of type $J\cap K$ and then
the number of choices for $b$ is $p_{JnK}$ . Q.E.D.

In the notation of the introduction, it is well known that the com-
position of the incidence maps $P_{i-1}\rightarrow P_{i}\rightarrow P_{i+1}$ is $(q+1)$ times the
incidence map $P_{i-1}\rightarrow P_{i+1}$ . We illustrate the present language by
recording this familiar fact. There follows a related factorization of the
point hyperplane (non)-incidence map: $P_{1}\rightarrow P_{n-1}$ that plays a key role
in the proof of Theorem 3.7.

Corollary 3.4. Suppose $B$ is of type $A_{n-1}$ with index parameter
$q$ . Then $typ^{-1}(\{i\})=P_{i}$ –the set of $i-1$ -flats in $PG_{n-1}(q)$ (the set of
$i$ -dimensional subspaces of the underlying vector space). Abuse notation
by writing $i$ for $\{i\}$ .

1. The Poincar\’e polynomial of incident i–l- and $i$ -flats is

$p_{ii+1}=\prod_{j=1}^{i-1}\frac{(q^{j}-1)}{(q-1)}\prod_{j=1}^{n-i-2}\frac{(q^{j}-1)}{(q-1)}$ .

2. For any chamber $c\in Ch$ , $P_{i-1}(c)$ is [under the above identifica-
tion) the $i-2$ -flat of $c$ and $P_{i+1}P_{i}(P_{i-1}(c)))=p_{i}P_{i+1}(P_{i-1}(c))$ .

3. For $c\in Ch$ , $P_{n-1}\sigma_{n-1}\cdots\sigma_{1}(c)$ is the sum of all hyperplanes off
the point of $c$ .

4. For $c\in Ch$ ,

$(\sigma_{n-1}-q)\cdots(\sigma_{1}-q)(P_{1}(c))=-(\sigma_{n-1}-q)P_{n-1}\sigma_{n-1}\cdots\sigma_{1}(c)$ .

Proof. The first two parts follow from Lemma 3.3. The chambers
$d$ in (the support of) $\sigma_{n-1}\cdots\sigma_{1}(c)$ are obtained from $c$ by first changing
the point (to another one on the line of $c$), then changing the line, etc.
The result is chambers $d$ having no $i$-flat in common with $c$ but for whom
each $i$-flat meets the $i$-flat of $c$ in the $i-1$ -flat of $d$ . If two such chambers
shared a $k$-flat, then the $k-1$ -flat of each must be the intersection of
their common $k$-flat with the $k$-flat of $c$ . Consequently, no two distinct
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such chambers share a hyperplane. For any such chamber $d$ , $P_{n-1}(d)$ is
just the hyperplane of $d$ , by Part 1, so the indicated expresssion counts
each hyperplane off the point of $c$ exactly once. This proves Part 3.

In order to prove Part 4, we embellish the notation introduced in
Example 3.1 and begin with a sublemma. Suppose $a_{1}$ , $a_{2}$ , $\ldots$ , $a_{k}$ is a
monotonic sequence of consective integers between 1 and $n-1$ . Define
$R_{i}(a_{1}\ldots ak)$ recursively by $R_{i}(a_{1}\ldots a_{k})=1+\sigma_{a_{i}}R_{i-1}(a_{1}\ldots a_{k})$ and
$R_{0}(a_{1}\ldots a_{k})=1$ . Note that $R_{i}(a_{1}\ldots a_{k})$ depends only on $a_{1}$ , $\ldots$ , $a_{i}$

and so $R_{k-1}(a_{1}\ldots a_{k})=R_{k-1}(a_{1}\ldots a_{k-1})$ . Argue inductively that:

(3) $\sigma_{a_{1}}\ldots\sigma_{a_{k}}R_{k-1}(a_{1}\ldots a_{k-1})=R_{k-1}(a_{2}\ldots a_{k})\sigma_{a_{1}}\ldots\sigma_{a_{k}}$ .

By the recursive nature of $R$ ’s and the Iwahori relations, we have:

$\sigma_{a_{1}}\ldots\sigma_{a_{k}}(R_{k-1}(a_{1}\ldots a_{k-1})-1)$

$=\sigma_{a_{1}}\ldots\sigma_{a_{k-2}}(\sigma_{a_{k-1}}\sigma_{a_{k}}\sigma_{a_{k-1}})R_{k-2}(a_{1}\ldots a_{k})$

$=\sigma_{a_{1}}\ldots\sigma_{a_{k-2}}(\sigma_{a_{k}}\sigma_{a_{k-1}}\sigma_{a_{k}})R_{k-2}(a_{1}\ldots a_{k-1})$

$=\sigma_{a_{k}}[\sigma_{a_{1}}\ldots\sigma_{a_{k-2}}\sigma_{a_{k-1}}R_{k-2}(a_{1}\ldots a_{k-1})]\sigma_{a_{k}}$

$=\sigma_{a_{k}}[R_{k-2}(a_{2}\ldots a_{k})\sigma_{a_{1}}\ldots\sigma_{a_{k-2}}\sigma_{a_{k-1}}]\sigma_{a_{k}}$ ,

by the induction hypothesis. Therefore,

$\sigma_{a_{1}}\ldots\sigma_{a_{k}}R_{k-1}(a_{1}\ldots a_{k-1})=(1+\sigma_{a_{k}}R_{k-2}(a_{2}\ldots a_{k}))\sigma_{a_{1}}\ldots\sigma_{a_{k-1}}\sigma_{a_{k}}$

as desired.
Now argue Part 4 by induction on $n$ . In case $n$ $=2$ :

$(\sigma_{2}-q)(\sigma_{1}-q)(\sigma_{2}+1)$ $=(\sigma_{2}-q)\sigma_{1}(\sigma_{2}+1)-q(\sigma_{2}-q)(\sigma_{2}+1)$

$=(\sigma_{2}-q)(-\sigma_{2})\sigma_{1}(\sigma_{2}+1)-0=-(\sigma_{2}-q)(\sigma_{2}\sigma_{1}\sigma_{2}+\sigma_{2}\sigma_{1})$

$=-(\sigma_{2}-q)(\sigma_{1}\sigma_{2}\sigma_{1}+\sigma_{2}\sigma_{1})$ $=-(\sigma_{2}-q)(\sigma_{1}+1)\sigma_{2}\sigma_{1}$

by the distributive law and two applications of Equation (1) for $\sigma_{2}$ fol-
lowed by the relation $\sigma_{2}\sigma_{1}\sigma_{2}=\sigma_{1}\sigma_{2}\sigma_{1}$ .

For the general case, begin with $P_{1}$ in the factored form with reverse
lexicographical order and right cosets: $P_{1}=R_{1}(n-1\ldots 2)\cdots R_{n-2}(n-$

$ 1\ldots$ 2), and note that $\sigma_{2}$ appears in only the last factor. Since $\sigma_{1}$ com-
mutes with each $\sigma_{i}$ , $i\neq 2$ , we have by induction:

$(\sigma_{n-1}-q)\cdots(\sigma_{1}-q)P_{1}$

$=[(\sigma_{n-1}-q)\cdots(\sigma_{2}-q)R_{1}(n-1\ldots 2)\cdots R_{n-3}(n-1\ldots 2)]$

$\times(\sigma_{1}-q)R_{n-2}(n-1\ldots 2)$

$=-[(\sigma_{n-1}-q)R_{1}(n-2\ldots 2)\cdots R_{n-3}(n-2\ldots 2)\sigma_{n-1}\cdots\sigma_{2}]$

$\times(\sigma_{1}-q)R_{n-2}(n-1\ldots 2)$ .
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Next distribute with respect to the $(\sigma_{1}-q)$ term and apply Equation (3)
repeatedly to the expression:

$q(\sigma_{n-1}-q)[R_{1}(n-2\ldots 2)\cdots R_{n-3}(n-2\ldots 2)\sigma_{n-1}\cdots\sigma_{2}]$

$\times R_{n-2}(n-1\ldots 2)$

$=q(\sigma_{n-1}-q)[\cdots R_{n-4}(n-2\ldots 2)\sigma_{n-1}\cdots\sigma_{2}]$

$\times R_{n-3}(n-1\ldots 2)R_{n-2}(n-1\ldots 2)$

$\ldots$ $=q(\sigma_{n-1}-q)\sigma_{n-1}\cdots\sigma_{2}[R_{1}(n-1\ldots 2)\cdots R_{n-2}(n-1\ldots 2)]$ .

But the last expression $P$ within brackets $[ ]$ is a factored form of the
trivial eigenpotent on $\{2 \ldots n-1\}$ and so can be rewritten in a factored
form begining with $(\sigma_{i}+1)$ for any $i=2$ , $\ldots$ , $n-1$ . It follows that
this term equals $q^{n-1}(\sigma_{n-1}-q)P=0$ . This shows that only the other
expression survives and by one more application of Equation (3) it can
be rewritten:

$-(\sigma_{n-1}-q)R_{1}(n-2\ldots 2)\cdots R_{n-3}(n-2\ldots 2)$

$\times[\sigma_{n-1}\cdots\sigma_{2}\sigma_{1}R_{n-2}(n-1\ldots 2)]$

$=-(\sigma_{n-1}-q)R_{1}(n-2\ldots 1)\cdots R_{n-2}(n-2\ldots 1)\sigma_{n-1}\cdots\sigma_{2}\sigma_{1}$

$=-(\sigma_{n-1}-q)P_{n-1}\sigma_{n-1}\cdots\sigma_{2}\sigma_{1}$ .

Q.E.D.

There is also a representation theoretic proof of Corollary 3.4.4 that
amounts to verification of the indicated equation in all relevant $\prime H\otimes_{\mathbb{Z}}\mathbb{Q}$

representations. Because $P_{1}$ and $P_{n-1}$ are trivial in all $H\otimes_{\mathbb{Z}}\mathbb{Q}$ represen-
tations other than the index and natural representations, one need only
verify Corollary 3.4.4 for the index representation, where it is immediate,
and for the matrices appearing in Section 3.2.

In fact Corollary 3.4.4 is a combinatorial identity that was first ob-
tained by a representation theoretic method. I leave it to the reader’s
taste which argument is more elementary.

3.2. The natural $\mathcal{H}$ representation and its irreducible $\mathbb{Z}$

-

forms

The representations of $\prime\mu\otimes \mathbb{C}$ are deformations of the irreducible
representations of the associated Weyl group by a celebrated theorem
of Tits. Hoefsmit [7] gives explicit formulas in case the building arises
from a classical group. Because we are concerned with incidence maps
involving the points $P_{1}$ of $PG_{n-1}(q)$ , we must deal explicitly with the
$H(A_{n-1})$ -representations arising from $\mathbb{Z}typ^{-1}(\{1\})$ . These correspond
to the $S_{n}$ representations labelled by partitions $\{n\}$ and $\{n-1,1\}[3$ ,
Theorem 2. 1].
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The index representation $Ind$ corresponds to the trivial represen-
tation $\{n\}$ of $S_{n}$ . $Ind$ is the homomorphism $H$ $\rightarrow \mathbb{Z}$ that maps each
generator $\sigma_{i}$ to its index paramater $q_{i}$ . Thus the Poincar\’e polynomial
is just $Ind(P_{\phi})$ . The Steinberg representation $St$ is the homomorphism
$7\{\rightarrow \mathbb{Z}$ that maps each generator $\sigma_{i}$ to-1.

The natural representation corresponds to the natural representa-
tion $\{n-1,1\}$ of $S_{n}$ and is a homomorphism $\prime H$ $\rightarrow Mat_{n-1}(\mathbb{C})$ . Hoefs-
mit’s version of this representation is a natural generalization of Young’s
“semi-normal” form for the symmetric group representation and is:

$(\sigma_{1})=(\frac{qI_{n-2}|}{1-1})$ ; $(\sigma_{i})=$

for $i=2$ , $\ldots$ , $n-1$ . We record a few easy consequences of this explicit
representation.

Lemma 3.5. Under the natural representation of $\prime\mu$ we have:

1. $(\sigma_{k}-q)(\sigma_{i}-q)=0$ whenever $|i-k|>1$ ,

2. For all $j\not\in J\subseteq I$ , $Im(P_{J})\cap ker(\sigma_{j}+1)=0$ .

Proof. In each case this follows from a simple matrix computation.
The result is a little more transparent if a general $\mathbb{Z}$-form presented
below is used. Q.E.D.

The restriction of the centralizer in $H$ of $P_{J}$ to the image of $P_{J}$

is called the $J$-th parabolic subalgebra of $H$ . The adjacency algebras
of many distance transitive graphs arise as parabolic subalgebras for
$|J|=1$ . One can in principle compute the eigenvalues of these graphs
[11] from the explicit $\mathbb{C}$-representations of $H$ .

Say a $\mathbb{Z}$-form for an irreducible representation of $H\otimes \mathbb{C}$ is of type $N$

(respectively of type $N’$ ) if the associated $\mathcal{H}$-module is generated by the
1-eigenspaces (respectively $q_{i}$ -eigenspaces) of $\{\sigma_{\dot{\iota}}\}$ .

Of particular interest to us are the irreducible $\mathbb{Z}$-forms for the natu-
ral representation of $H(A_{n})$ . One can show that the irreducible $\mathbb{Z}$-forms
of the natural representation of type $N$ are parameterized by integers
$a_{1}$ , $\ldots$ , $a_{n-1}$ , all divisors of $q$ and the block diagonal matrices:

$(\sigma_{1})=\{$
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$(\sigma_{i})=$ ; for $i=2$ , $\ldots$ , $n-1$ .

In particular, distinct $a_{1}$ , $\ldots$ , $a_{n-1}$ give $\mathbb{Z}$-inequivalent forms. Denote
the $\mathbb{Z}$-form with parameters $a_{1}$ , $\ldots$ , $a_{n-1}$ by $N(a_{1}, \ldots, a_{n-1})$ . The same
computation shows that there is but one $\mathbb{Z}[1/p]$ -form of type $N$ for the
natural representation when $q$ is a power of the prime $p$ .

Example 3.6. The reader must be warned that there do exist
indecomposable $\mathbb{Z}$-forms having all natural $H$-composition factors that
are reducible. Indeed, the matrices

$\sigma_{1}=(-1000q/a00q-1000q/bq00)$ , $\sigma_{2}=$ $\left(\begin{array}{lllll}q & 0 & bq & -(q & +1)q\\a & -1 & ab(q+1) & -aq & \\0 & 0 & q & 0 & \\0 & 0 & b & -1 & \end{array}\right)$

satisfy the relations defining $H(A_{2})$ . Moreover any transition matrix
$P\in SL(4, \mathbb{Z})$ , taking these matrices to a sum of the above forms, must
leave invariant the -1-eigenspace of $\sigma_{1}$ and take the -1-eigenspace of
$\sigma_{2}$ to $\langle e_{2}, e_{4}\rangle$ . Computation of $P^{-1}\sigma_{i}P$ shows that $P$ is forced to have
the form

$P=\{$ $g(vb-ua_{0}b(quag0+1))$
$u_{0}q$

$h(fb-wahwab(q00+1))$ $w_{0}qwx)$ ,

for integers $g$ , $h$ , $u$ , $v$ , $w$ , $x$ . But $\det(P)=abgh(xu-vw)^{2}$ , so this repre-
sentation does not split over $\mathbb{Z}$ whenever $|ab|\neq 1$ .

The reader must also be warned that not every irreducible natu-
ral $/\mathcal{H}$-module is of type $N$ . For example, the transposes of the above
displayed $\mathbb{Z}$-form of $H(A_{n})$ is again a $\mathbb{Z}$-form of $\mathcal{H}(A_{n})$ , but of type $N’$ .

When one attempts to transform such a represenation to one of type
$N$ , exploitation of eigenspaces as above leads to an essentially unique
transition matrix and to the form $N(q/a_{1}, \ldots, q/a_{n-1})$ . When $n=4$

the transition matrix is

$\{$

$(1+q)(1+q^{2})$ $(1+q+q^{2})a_{1}$ $a_{1}a_{2}(1+q)$

$(1+q+q^{2})q/a_{1}(1+q)(1+q+q^{2})$ $(1+q)^{2}a_{2}$

$(1+q)q^{2}/(a_{1}a_{2})q^{3}/(a_{1}a_{2}a_{3})(1+(1+q)^{2}q/a_{2}q)q^{2}/(a_{2}a_{3})(1+q)(1+q+q^{2})(1+q+q^{2})a_{3})(1+q+q^{2})q/a_{3}(1+q)(1+q^{2})(1+q)a_{2}a_{3}a_{1}a_{2}a_{3}$
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and has determinant $(1+q+q^{2}+q^{3}+q^{4})^{3}$ . Therefore these forms are
not $\mathbb{Z}$-equivalent. Thanks to L. Solomon for sharing this observation.

Let $\mathcal{L}$ be the pure closure in $\mathbb{Z}Ch$ of $H(\sigma_{1}-q)P_{\{1\}}Ch$ . The module
$\mathcal{L}$ is fundamental to our study of the incidence maps $\mathcal{M}_{k}(q)$ . It will turn
out that $\mathcal{L}$ is the largest $H$-submodule of the standard module affording
only the natural representation of $H$ . It seems unlikely, however, that
$\mathcal{L}\otimes_{\mathbb{Z}}R$ is a summand of $RCh$ unless the Poincar\’e polynomial $p_{\{1\}}$ is a
unit in the domain $R$ .

Theorem 3.7. The sum of the components of $\mathbb{Q}Ch$ affording the
natural representations of $H\otimes \mathbb{Q}$ is $\mathcal{L}\otimes \mathbb{Q}$ .

Let $\mathcal{L}_{i}\leq \mathcal{L}$ be the -1-eigenspace of $\sigma_{i}$ . Then

1. $\sum \mathcal{L}_{i}$ is a direct sum of irreducible $H$ -modules of type $N$ ,
2. $\mathcal{L}/\sum \mathcal{L}_{i}$ is torsion of exponent dividing $1+q+\cdots+q^{n}$ and affords

(a modular version of) the index representation of $H$ .

Proof As already mentioned, $HP_{\{1\}}\mathbb{Z}Ch\otimes \mathbb{Q}$ is the sum of the
components of $\mathbb{Q}Ch$ associated with the index and the natural represen-
tations of $\prime H\otimes \mathbb{Q}$ . By Equation (1) $\sigma_{1}v=-v$ , for all $v\in(\sigma_{1}-q)\mathbb{Z}Ch$

so $\mathcal{L}\otimes \mathbb{Q}$ affords only the natural representation of $H\otimes \mathbb{Q}$ and to full
multiplicity.

Define $m_{i}$ : $\mathcal{L}_{1}\rightarrow \mathcal{L}_{i}$ by $m_{i}(v)=(\sigma_{i}-q)m_{i-1}(v)$ . When $m_{n-1}$ is
regarded as an homomorphism of rational vector spaces, it is invertible.
Therefore $m_{n-1}$ is of maximal rank. Pick bases $\{\ell_{11}, \ldots, \ell_{1m}\}$ , of $\mathcal{L}_{1}$ and
$\{\ell_{n-11}, \ldots, \ell_{n-1m}\}$ of $\mathcal{L}_{n-1}$ so that $m_{n-1}$ is in Smith normal form. Let
$\ell_{ij}$ span the pure $\mathbb{Z}$-submodule generated by $m_{i}(\ell_{1j})$ and define $a_{ij}\in \mathbb{Z}$

by $(\sigma_{i}-q)(\ell_{i-1j})=a_{ij}\ell_{ij}$ . Finally set $N_{j}:=\mathbb{Z}\{\ell_{ij}|i=1, \ldots, n-1\}$ .

Notice that $m_{n-1}$ appears in Corollary 3.4.4. This result implies
that the pure closure of $Im(\sigma_{n-1}-q)$ within $\mathcal{H}Im(P_{\{n\}})$ is exactly
$\mathcal{L}_{n-1}$ , the pure closure of $Im(m_{n-1})$ . Thus, we could as well have
started with hyperplanes rather than points, the same module $\mathcal{L}$ would
arise. Moreover, $m_{n-1}$ is in Smith normal form with respect to the
bases $\{\ell_{11}, \ldots, \ell_{1m}\}$ , of $\mathcal{L}_{1}$ and $\{\ell_{n-11}, \ldots, \ell_{n-1m}\}$ of $\mathcal{L}_{n-1}$ if and
only if its transpose is in Smith normal form with respect to the bases
$\{\ell_{n-1}1, \ldots, \ell_{n-1}m\}$ of $\mathcal{L}_{n-1}$ and $\{\ell_{11}, \ldots, \ell_{1m}\}$ , of $\mathcal{L}_{1}$ . Therefore, this
point - hyperplane symmetry leaves invariant the set $\{\ell_{ij}\}$ as well.

In order to show that $N_{j}$ is $\prime\mu$-invariant it is sufficient to show $(\sigma_{k}-$

$q)\ell_{ij}\in N_{j}$ for $|k-i|=1$ , by Lemma 3.5.1. But this follows from the
above noted symmetry and the definition $\ell_{kj}=(\sigma_{k}-q)(\ell_{k-1j})$ . This
completes the proof that $N_{j}$ is $H$-invariant.

To see that $N_{j}$ affords the $\mathbb{Z}$-form with parameters $a_{ij}$ relative to
$\{\ell_{ij}\}$ , note that $(\sigma_{i}-q)(\sigma_{k}-q)=0$ in $\mathcal{L}\otimes \mathbb{Q}$ , whenever $|i-k|>1$ ,
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by Lemma 3.5.1. Since $\ell_{jk}\in Im(\sigma_{k}-q)$ , this and the definition of $a_{ij}$

forces each of the columns of the matrix of $\sigma_{i}$ to be as specified except
perhaps the $i+1- st$ column. This column is forced by the others and
the Iwahori relations. Since $N:=\sum N_{j}=\sum \mathcal{L}_{i}$ , this establishes Part 1.

Suppose $\ell\in \mathcal{L}\backslash N$ and set $n_{i}=(\sigma_{i}(\ell)-q)(\ell)$ . Then $\sigma_{i}(n_{i})=$

$\sigma_{i}(\sigma_{i}-q)(\ell)=-(\sigma_{i}-q)(\ell)=-n_{i}$ , so $n_{i}\in N$ . Now $\mathcal{L}/N$ affords the
index representation because $\sigma_{i}(\ell)\equiv q\ell(mod N)$ .

Clearly $\mathcal{L}\leq N\otimes \mathbb{Q}$ and it suffices to show that $\mathcal{L}/(\sum_{j\neq k}N_{j})$ has
the indicated exponent. But this finite abelian group has order dividing
the volume of $N_{k}\leq N_{k}\otimes \mathbb{Q}$ , which in turn equals the absolute value of
the determinant, say $k_{n}$ , of

$/-q-1$ $q/a_{1k}$

$a_{1k}$ $-q-1$

$\sum(\sigma_{i}-q)=$ $a_{2k}$

$\backslash $

$ q/.\cdot a_{2k}...\cdot$

$-\dot{q}.-\cdot 1a_{n-1k}$

$q/a_{n-1k}-q-1$

$)$ .

The result follows from the recurrence $k_{n}=-(1+q)k_{n-1}-qk_{n-2}$ .

Q.E.D.

If we use the common $q$-eigenspaces of all but one of the $\sigma_{i}$ ’s (as in
the last part of Example 3.6) instead of-l-eigenspaces, the ideas of this
proof lead to $\mathbb{Z}$-forms of the natural $H$-representation of type $N’$ and
a submodule $N’$ of $\mathcal{L}$ of finite volume such that $\mathcal{L}/N’$ affords a finite
version of the Steinberg representation.

Proposition 3.8. The Smith normal form of an integral inci-
dence map $\pi$ coincides with that computed using any submodule of finite
volume $v$ in domain(\pi ).

Proof. Because any free $\mathbb{Z}$-module $M$ is $\mathbb{Z}$-isomorphic to its sub-
module $vM$ , the incidence map has the same algebraic invariants as their
restriction to $v$ . domain(\pi ). Q.E.D.

Example 3.9. For $\prime H$-modules of type $N’$ , $Im(P_{\{i\}})$ is contained
in the span of the $i$-th natural basis vector. In case $n=4$ , the $i$ , $j$

entry of the matrix $(P_{1}+P_{2}+P_{3}+P_{4})$ gives the diagonal entry of the
$i$-space versus $j$-space incidence matrix of $PG(4, q)$ arising from the $\mathbb{Z}-$

form of transposes of $N(a_{1}, a_{2}, a_{3})$ and is, amazingly enough, the matrix
appearing in Example 3.6 left multiplied by $diag\{(q^{2}+q+1)(q+1)$ , $q+$
$1$ , $q+1$ , $(q^{2}+q+1)(q+1)\}$ .
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In case $q=p$ is prime one can use the known $p$-rank formulae for
incidence maps to compute the multiplicites of each of the $\mathbb{Z}$-forms. All
multiplicities are zero except: $m_{1,,,1,1}=m_{p,p,p}=(p+3)(p+2)(p+1)p/24$ ;
$m_{1,,,1,p}=m_{1,,,p,p}=p(p+1)(11p^{2}-5p+6)/24$ .

The fact that Propositon 3.8 can be applied to either $N$ $\leq \mathcal{L}$ or to
$N’\leq \mathcal{L}$ seems to imply a well known symmetry in the multiplicities of
the $p$-power elementary divisors of $\lambda\Lambda_{n-1}(q)$ , $p|q$ .

Also, as noted just before Example 3.6, any two irreducible $\mathbb{Z}$-forms
for the natural $H$-module are equivalent if coefficients are extended to
$\mathbb{Z}[1/p]$ so that $p$ is a unit. Some results of Frumkin and Yakir [5] about
certain incidence maps’ modular rank therefore extend to statements
about elementary divisors.

Theorem 3.10. Let $\mathcal{V}$ be the sublattice of $\mathbb{Z}P_{1}$ whose elements
have coordinate sum equal to zero. Then the $p’$ -part of the finite abelian
group $\mathcal{V}/(\mathcal{V}\cap column spaceA4k(q))$ is homocyclic of exponent $e$ where $e$

is the $(1, k)$ entry of the $\prime H(A_{n-1})$ form $N(q, \ldots, q_{n-1})$ .

It is natural to extend the above arguments to more general inci-
dence maps from, say from $i$-flats to $j$-flats, or to other buildings. For
example, one may consider the algebra generated by $\{P_{\{i\}}|i\in I\}$ acting
on the $\mathbb{Z}$-span $\mathcal{T}$ of $\{ImP_{\{i\}}|i\in I\}$ . This is almost the incidence algebra
of the associated uniform poset in the sense of Terwilliger [13], so the
spectral nature of these incidence algebras may also be studied using
the $\mathbb{C}$-representations of $H$ . If the coefficient ring is only localized at
a prime dividing an index parameter, then $\mathcal{T}$ a summand of standard
module. In general, $\mathcal{T}$ is a pure submodule of $\mathbb{Z}Ch$ and therefore its
direct sum decomposition as $\mathbb{Z}$-forms exhibits each of the geometrically
significant eigenpotents $P_{\{i\}}$ in a block diagonal form over $\mathbb{Z}$ . Because
$P_{\{i\}}$ is rank one in each relevant representation, each of the level schemes
is what Terwilliger calls

$\zeta$

“thin” and no blocks are bigger than 1 by 1.
This means that all incidence maps are simultaneously in a diagonal
form over $\mathbb{Z}$ and all important information conveyed by their Smith nor-
mal form is visible from the direct sum decomposition of $\mathbb{Z}\mathcal{T}$ as $\mathbb{Z}$-forms.
One serious difficulty in this enterprise seems to be finding the relevant
$\mathbb{Z}$-forms.

From the nature of the $\mathbb{Z}$-forms on other pure submodules of $\mathbb{Z}Ch$

and their multiplicities (whatever that means), one can compute a vari-
ety of additional arithmetic invariants of the building beyond incidence
map invariant factors. Moreover much of the above machinery also ap-
plies to finite Tits geometries of “type $M’’$ . So there is some hope that
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these additional arithmetic invariants might help resolve the celebrated
question of existence of non-building Tits geometries of type $B_{3}$ .

\S 4. Incidence matrices and finite local rings

This section is concerned with the multiplicities of powers of $p$ as
elementary divisors of the incidence matrices $\mathcal{M}_{n-k}(p^{d})$ . The main tools
are finite local rings and the discrete Fourier transform.

Here is one (not particularly standard) way of constructing the finite
field $GF(prn)$ . Let $\zeta$ be primitive a complex $p^{m}-1$-th root of unity.
The integral domain $\mathbb{Z}[\zeta]\leq \mathbb{C}$ of $\mathbb{Z}$-linear combinations of powers of $\zeta$ is
called a ring of Cyclotomic Integers and is a basic construct of algebraic
number theory. Although $\mathbb{Z}[\zeta]$ is not a principal ideal domain, its ideal
structure is well understood. Any prime ideal $\pi$ of $\mathbb{Z}[\zeta]$ that contains
(p) has the form $(p, f(\zeta))$ , where $f(x)\in \mathbb{Z}[x]$ is congruent modulo $p$ to
an irreducible polynomial of degree $m$ in $GF(p)[x]$ . Since the quotient
ring $\mathbb{Z}[\zeta]/\pi$ is an integral domain of order $p^{m}$ , it must be $GF(prn)$ .

The finite local rings are most naturally constructed by considering
$\mathbb{Z}[\zeta]/(\pi)^{s}$ instead. We record the basic facts about these rings.

Theorem 4.1. Let $p\in \mathbb{N}$ be a prime, $\zeta$ a primitive complex $(p^{m}-$

$1)$ -th root of unity. Let $f(x)\in \mathbb{Z}[x]$ be an integral polynomial whose
reduction modulo (p) is irreducible of degree $m$ . {For $m=0$ , set $\zeta=1$

and $f=0.$ )

1. Then $\pi:=(p, f(\zeta))$ is a prime ideal of $\mathbb{Z}[\zeta]$ over (p).
2. Then the ring $R_{s}:=\mathbb{Z}[\zeta]/\pi^{s}$ has order $p^{ms}$ and characteristic $p^{s}$ .

3. The multiplicative group $R_{s}^{\star}$ of $R_{s}$ contains $\langle\zeta\rangle$ and $ 1+r\pi$ for all
$r\in R$ .

4. $R_{s}^{\star}$ consists of all elements of $R_{s}$ not in $\pi$ and is of exponent
$p^{s}(p^{m}-1)$ .

5. The ring $R_{s}$ is a local ring.

The basic idea of the method of Brouwer is to present the incidence
matrix to be studied as the table of values of a function in two variables.
Then one uses a finite Fourier transform to substitute the coefficient
matrix for the incidence matrix.

Lemma 4.2 (cf. [2]). Let $U$ be a cyclic multiplicative group of
order $u$ in the commutative ring $\mathcal{R}$ . For $X\subseteq U$ , let $V_{X}$ denote $a$

Vandermonde matrix with rows indexed by $x\in X$ with $x$ -th row con-
sists of the successive powers 1, $x$ , $x^{2}$ , $\ldots$ , $x^{u-1}$ of $x$ . Suppose $p(x, y)=$

$\sum\sum c_{ij}x^{i}y^{j}$ , is a polynomial function with coefficients in $\mathcal{R}$ of $x$ degree
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and $y$ -degree less than $u$ and $C$ the $u$ by $u$ matrix of coefficients of $p(x, y)$ .

Then for $A$ , $B\subset U$ , the matrix of values of

$M:=(p(a, b))_{a\in A}b\in B$ is given by $M$ $=V_{A}CV_{B}^{t}$ .

In particular $M$ and $C$ are equivalent whenever $V_{A}$ and $V_{B}$ possess right-
inverses having coefficients in $\mathcal{R}$ ,

Proof Just multiply out the right hand side. Q.E.D.

Adopt the notation of Theorem 4.1, so $\zeta$ is a primitive complex
$(p^{m}-1)$ -th root of unity, $\pi$ is a prime ideal of $\mathbb{Z}[\zeta]$ over (p) and $R_{s}:=$

$\mathbb{Z}[\zeta]/\pi^{s}$ is a finite local ring of order $p^{ms}$ and characteristic $p^{s}$ .

We intend to apply Lemma 4.2 with $\mathcal{R}=R_{s}$ , and $M$ one of the
incidence matrices $\Lambda 4_{k}(p^{e})$ . In view of Theorem 4.1, the most natural
choice for $U$ is perhaps a maximal cyclic subgroup of $R_{s}^{\star}$ , but then $V_{U}$

does not have a right inverse defined over $R_{s}$ . If one chooses $U\leq R_{s}^{\star}$

small enough for $V_{A}$ and $V_{B}$ to have right inverses over $R_{s}$ , then one is
forced to deal with polynomial function $p(x, y)$ of uncomfortably small
degree. Either way, one is led to the same results. We choose to present
the later line of argument because it avoids explicit computation of the
Smith normal form of the character table of a cyclic $p$-group as appears
in [1].

Suppose $m=ef$ , and $r=p^{e}$ , define the function:

$tr_{r}(z):=z+z^{r}+\cdots+z^{r^{f-1}}$ ; $ z\in U:=\langle\zeta\rangle$ .

Observe $tr_{r}(z)\in\pi$ if and only if $z$ is in the kernel of the $trace$ map from

the field $ R_{s}/\pi$ to $E:=GF(r)$ . This $trace$ map gives rise to the nonde-
generate symmetric bilinear form on the $E$-vector space $ R_{s}/\pi$ given by
$(x, y)=tr_{r}(xy)$ .

Organize the elements of $U$ into cosets of the subgroup $E^{\star}$ of order
$(r-1)$ and consider the matrix $M$ whose rows and columns are labelled
by the elements of $U$ in this order and whose $x$ , $y$ entry is $tvr(xy)$ . Then
the blocks of this matrix can be labelled with the points and hyperplanes
of $PG_{f-1}(r)$ in such a way that the point labelled by $\overline{x}$ is incident with
the hyperplane $\overline{y}$ if and only if some entry of the $(\overline{x},\overline{y})$ block of $M$ is in
$\pi$ . This occurs if and only if all entries of the $(\overline{x},\overline{y})$ block of $M$ are in
$\pi$ . Since $Im(tr_{r})/\pi\leq E$ , $M^{o(r-1)}(mod \pi)$ is a zero one matrix (here $\circ$

denotes the Schur, or termwise, product). And, in fact,

$M^{o(r-1)}\equiv J_{p^{m}-1}-\mathcal{M}_{f-1}(r)\otimes J_{r-1}(mod \pi)$ ,
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where $J$ denotes the appropriate matrix of all ones, $\otimes denotes$ Kronecker
product of matrices, and $\mathcal{M}_{f-1}(r)$ a point-hyperplane incidence matrix
of $PG_{f-1}(r)$ as above.

By Theorem 4.1.5 $R_{s}$ is a local ring and all of its elements not in $\pi$

are units, so this also implies:

$M^{o(r-1)p^{s}}\equiv J_{p^{n}-1}-\mathcal{M}_{f-1}(r)\otimes J_{r-1}(mod \pi^{s})$ .

This equation is sufficient to study the point-hyperplane matrix A4 $f-1$
$(r)$

because left hand side is the table of values of the polynomial function
$(tr_{r}(xy))^{(r-1)p^{s}}$

But in order to deal with the matrices $\Lambda 4_{k-1}(q)$ , we need to take
$ R_{s}/\pi$ to be much larger than the underlying vector space and replace
the field $E$ with two fields.

Let $d=gcd(e, f)$ , and let $e$ $=dk$ , $f=nd$ define $k$ and $n$ . Set $q=p^{d}$ ,
so $r=p^{e}=q^{k}$ . Let $F^{\star}\leq L^{\star}$ be the subgroups of $U$ having order $q^{n}-1$ ,
$r^{n}-1$ , respectively. Then, modulo $\pi$ , the groups $L^{\star}$ , $F^{\star}$ , $E^{\star}$ and $F^{\star}\cap E^{\star}$

are the multiplicative groups of fields having like names (without the
$\star$

)
and isomorphic to $GF(r^{n})\geq GF(q^{n})$ , $GF(r)\geq GF(q)$ , respectively.
We collect some required geometric facts in a lemma.

Lemma 4.3.

1. Any $E\cap F$ -subspace $W\leq F$ generates an $E$ -subspace $EW$ and
$EW\cap F=W$ . Moreover $dim_{E\cap F}W=dim_{E}$ $EW$ .

2. Suppose $V$ is an $E$ -hyperplane in $ R_{s}/\pi$ . Then $L\cap V$ is an $E\cap F-$

subspace containing $E$ and of codimension less than or equal to
$k$ in $F$ .

3. Conversely, if $W\leq F$ , has $E\cap F$ codimension less than or equal
to $k$ then $W=F\cap V$ for some $E$ -hyperplane $V$ in $ R_{s}/\pi$ .

Proof. Part 1 follows from the fact that $k$ and $n$ are relatively
prime. Of course an $E$-hyperplane has $E\cap F$ codimension $k=[E$ :
$E\cap F]$ in $ R_{s}/\pi$ , so Part 2 is also clear. Finally, Part 1 implies that
$EW$ is and $E$-subspace of $L$ having like codimension, from which Part
3 follows. Q.E.D.

Recall that the matrix $M$ has blocks of size $r-1$ and the blocks of
this matrix can be labelled with the points and hyperplanes of $PG_{f-1}(r)$

in such a way that the point labelled by $\overline{x}$ is incident with the hyperplane
$\overline{y}$ if and only if all entries of the $(\overline{x},\overline{y})$ block of $M$ are in $\pi$ . Let $M_{F}$ be
the submatrix of $M$ with rows labelled by elements of $F^{\star}$ . Then

$M_{F}^{o(r-1)}\equiv J-A_{F}\otimes J_{r}(mod \pi)$ ,
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where $A_{F}$ is a zero-one matrix whose columns are the characteristic
functions of $F\cap V$ where $V$ is an $E$-hyperplane in $ R_{s}/\pi$ . By Lemma 4.3,
the column space of $A_{F}$ is the $R_{s}$ -span of (the characteristic vectors of)
the $E\ulcorner|F$-subspaces of codimension less than or equal to $k$ in $F$ . By
Lemma 3.4.2, the $R_{s}$-incidence map from $P_{1}$ to $P_{n-j}$ factors through
the incidence map from $P_{1}$ to $P_{n-k}$ , whenever $k\geq j$ . Therefore the
$R_{s}$ column space of $A_{F}$ is the $R_{s}$ -module spanned by the columns of
$\mathcal{M}_{n-k}(q)\otimes J_{r}$ .

Again, since $R_{s}$ is a local ring, this also implies:

(4) $M_{F}^{o(r-1)p^{s}}\equiv J-A_{L}\otimes J_{r}(mod \pi^{s})$ .

Now $M_{F}$ is just the table of values of the function $(tr_{q^{k}}(xy))^{(q^{k}-1)p^{s}}$ for
$x\in F^{\star}$ , $y\in U$ . Unfortunately the degree of this polynomial is too high
to apply Lemma 4.2 directly.

Proposition 4.4. Suppose $n$ and $k$ are relatively prime and $q=$

$p^{d}$ . Let $C$ be the coefficient matrix of $1-f(x, y)$ where

$f(x, y)\equiv(tr_{q^{k}}(xy))^{(q^{k}-1)p^{s}}$ $mod (x^{q^{n}-1}-1, yq^{nkd}-1-1)$

has $x$ -degree $\leq q^{n}-2$ and $y$ degree $\leq q^{nkd}-2$ . Then $\lambda\Lambda_{n-k}(q)$ has the
same non-zero $R_{s}$ -elementary divisors as $C$ .

Proof. By definition of $F^{\star}$ and $U$ , the two polynomials take exactly
the same values for $x\in F^{\star}$ , $y\in U$ . Lemma 4.2, Equation 4 and the fact
that the Vandermonde matrix $V_{U}$ is the character table of the group $U$

having order not divisible by $p$ , imply that $\mathcal{M}_{n-k}(q)\otimes J_{q^{k}-1}$ and $C$ are
$R_{s}$ -equivalent. The result follows from the fact that $J_{q^{k}-1}$ has rank 1

and that $q^{k}-1$ is a unit in $R_{s}$ . Q.E.D.

Corollary 4.5. Suppose $n$ and $k$ are relatively prime and $q=$
$p^{d}$ . Set $p_{0}=1$ and for $0\leq i\leq q^{n}-2$ , define $d_{i}=gcd\{p_{j}|j\equiv i$

$(mod q^{n}-1)\}$ , where $p_{j}$ is the multinomial coefficient sum:

$p_{j}:=\Sigma r_{\alpha}q^{k\alpha}\equiv\sum_{j(mod q^{nkd}-1)}$

$\left(\begin{array}{ll}(q^{k} & -1)p^{s}\\r_{0},r_{1}, & \cdots\end{array}\right)$ .

Then $\mathcal{M}_{n-k}(q)$ has an $R_{s}$ diagonal form $D:=diag\{1, d_{i}\}$ . In particu-
lar, $p^{d}$ , $d<s$ occurs as an elementary divisor over $\mathbb{Z}$ to like multiplicity
in $\mathcal{M}_{n-k}(q)$ and in $D$ .

Proof. The coefficient matrix $C$ of $(tr_{q^{k}}(xy))^{(q^{k}-1)p^{s}}$ is diagonal
since each term in the expansion of this expression has like degree in $x$
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and $y$ . Moreover $c_{jj}\equiv p_{j}(mod (xy)^{q^{nkd}-1}-1)$ . Since $q^{n}-1$ divides
$q^{nkd}-1$ , the coefficient matrix of $f(x, y)-1$ appearing in Proposition 4.4
is

$\{$

-1 $p_{q^{n}-1}$

$p_{1}$ ..
.– $\cdot$

$p_{q^{n}-2}$

$p_{q^{nkd}-q^{n}-1}$

$..$

.
$...p_{q^{nkd}-2})$ .

Since each column has only one nonzero entry, the result follows from
permuting the columns so those having nonzero in a given row are ad-
jacent. Q.E.D.

The actual multiplicities of $p^{k}$ as an elementary divisor of $\Lambda 4_{n-1}$

arising from this formula seem to be difficult to compute. Thanks to
Maple, here are some numerical results with new values in boldface:
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Spin Models and Almost Bipartite

2-Homogeneous Graphs

Kazumasa Nomura

Abstract.

A connected graph of diameter $d$ is said to be almost bipartite if

it contains no cycle of length 21+1 for all $\ell<d$ . An almost bipartite
distance-regular graph $\Gamma=(X, E)$ is 2-homogeneous if and only if

there are constants $\gamma_{1}$ , $\ldots$ , $\gamma_{d}$ such that $|\Gamma_{i-1}(u)\cap\Gamma_{1}(x)\cap\Gamma_{1}(y)|=$

$\gamma_{i}$ holds for all $u\in X$ and for all $x$ , $y$ $\in\Gamma_{i}(u)$ with $\partial(x, y)$ $=2$

$(i=1, \ldots, d)$ .

In this paper, almost bipartite 2-homogeneous distance-regular
graphs are classified. This determines triangle-free connected graphs
affording spin models (for link invariants) with certain weights.

\S 1. Introduction

A spin model is one of the statistical mechanical models which were
introduced by Vaughan Jones to construct invariants of knots and links
[12]. A spin model is defined as a complex-valued symmetric function $w$

on $X\times X$ , where $X$ is a finite set of “spins” , satisfying several axioms.
Each spin model $S$ gives a corresponding link invariant through its par-
tition function. Three examples of spin models are mentioned in Jones’
paper [12]; Potts models, cyclic models and square models. It must be
remarked that the Jones polynomial can be obtained from the partition
function of the Potts models.

A connection between spin models and distance-regular graphs was
found by Frangois Jaeger [9] by constructing a new spin model on the
Higman-Sims graph, a distance-regular graph of diameter $d=2$ with
$n$ $=100$ vertices, which was discovered by D. Higman and C. Sims [8],
where we say that a spin model $S$ $=(X, w)$ is constructed on a connected
graph $\Gamma=(X, E)$ if $w(x, y)$ depends only on the distance $\partial(x, y)$ in
the graph $\Gamma$ . Jaeger [9] proved that the corresponding link invariant

Received April 10, 1995.
Revised June 7, 1995.
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of the Higman-Sims model becomes a specialization of the Kauffman
polynomial [14]. After Jaeger’s discovery, a new infinite family of spin
models were constructed on Hadamard graphs by the author [14]. The
corresponding link invariants of the Hadamard models were determined
by Jaeger $[10,11]$ , and then Jones [13] gave a pair of two links which can
be detected by this invariant but not by Jones polynomial.

These examples of spin models can be constructed on almost bipar-
tite distance-regular graphs. Moreover these graphs have extra regu-
larity which we call 2-homogeneity; an almost bipartite distance-regular
graph $\Gamma=(X, E)$ is 2-homogeneous if and only if $|\Gamma_{i-1}(u)\cap\Gamma_{1}(x)\cap\Gamma_{1}(y)|$

is a constant for all $u$ , $x$ , $y$ $\in X$ with $\partial(u, x)=\partial(u, y)=i$ , $\partial(x, y)=2$

($i=1$ , $\ldots$ , $d$ , where $d$ denotes the diameter of $\Gamma$ ). In fact it was shown
[21] that if a triangle-free connected graph affords a spin model with
certain weights then the graph must be distance-regular and almost bi-
partite.

This paper contains two main results. At first we show that if a spin
model is constructed on an almost bipartite distance-regular graph then
the graph must be 2-homogeneous (under some conditions, see Theorem
4.3). Next we classify almost bipartite 2-homogeneous distance-regular
graphs (Theorem 5.1). The proofs of these results are given in Sec-
tion 4 and Section 5. In Section 2, some preliminaries on spin models
and distance-regular graphs are given. In Section 3, two necessary and
sufficient conditions (HI), (H2) for 2-homogeneity of almost bipartite
distance-regular graphs are given. Then we slightly generalize of Ya-
mazaki’s sufficient condition for 2-homogeneity [22],

There are two generalizations of Jones’ spin models by Kawagoe-
Munemasa-Watatani [15] and Bannai-Bannai [1] (see also [2, 3, 16]). In
this paper we restrict our interest to the original spin models defined in
[12].

\S 2. Spin models and distance-regular graphs

2.1. Definition and examples of spin models

A spin model is a pair $S=(X, w)$ of a finite set of size $|X|=n>0$
and a complex-valued function $w$ on $X\times X$ such that (for all $a$ , $b$ , $c$ in
$X)$
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(S1) $w(a, b)=w(b, a)\neq 0$ ,

(S2)
$\sum_{x\in X}w(a, x)w(b, x)^{-1}=n\delta_{a,b}$

,

(S3)
$\sum_{x\in X}w(a, x)w(b, x)w(c, x)^{-1}=\sqrt{n}w(a, b)w(a, c)^{-1}w(b, c)^{-1}$

.

The equation (S3) is called the “star-triangle” relation. The elements
of $X$ is called the spins, and the function $w$ is called the (Boltzmann)

weight. Putting $a=c$ in (S3), we have

$\sum_{x\in X}w(b, x)=\sqrt{n}w(a, a)^{-1}$
,

so that $ w(a, a)=\alpha$ is a constant, called the modulus of $S$ , which is

independent of the choice of $a$ in $X$ .

The weight matrix of a spin model $S=(X, w)$ , $|X|=n$ , is a $n\times n$

matrix $W$ , indexed by $X\times X$ , whose $(x, y)$ -entry is $W_{x,y}=w(x, y)$ . For
$b$ , $c$ in $X$ , we consider a vector $u_{bc}$ in the $n$-space $V=C^{n}$ , where the
entries of the vectors are indexed by $X$ , whose $x$-entry is given by

$(u_{bc})_{x}=\frac{w(b,x)}{w(c,x)}$ , $(x\in X)$ .

Then the condition (S3) can be written as

$Wu_{bc}=\sqrt{n}w(b, c)^{-1}u_{bc}$ .

This means the vector $u_{bc}$ is an eigenvector of $W$ for the eigenvalue
$\sqrt{n}w(b, c)^{-1}$ . It can be easily shown from (S2) that, for a fixed $b\in X$ ,

the vectors $u_{bc}$ , $c\in X$ are linearly independent and hence form a basis of
$V$ . Therefore the values $\sqrt{n}w(b, c)^{-1}$ , $c\in X$ give all the eigenvalues of
$W$ , where multiplicities are counted. This means that the multiplicity
of an eigenvalue $\sqrt{n}\lambda^{-1}$ agrees with the number of $x\in X$ such that
$ w(b, x)=\lambda$ (thus this number does not depend on the choice of $b$).
The vector $u_{bb}$ becomes the all one vector $j$ , and it is an eigenvector
of $W$ corresponding the eigenvalue $\sqrt{n}\alpha^{-1}$ ( $\alpha$ is the modulus). From
condition (S2), the other vectors $u_{bc}$ , $b\neq c$ are orthogonal to $j$ .

Now we give three basic examples of spin models.

Potts model. Let $X$ be a finite set with $n>1$ elements. Let $\beta$ be
a solution of $\beta^{2}+\beta^{-2}+\sqrt{n}=0$ and put $\alpha=-\beta^{-3}$ . Define a function
$w$ on $X\times X$ by
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$w(x, y)=\{$
$\alpha$ $x=y$ ,

$\beta$ otherwise.

Then $(X, w)$ is a spin model called the Potts model [12]. Potts model
with $n=2$ is also called the Ising model.

Cyclic model. Let $X=\{0,1, \ldots, n-1\}$ , and let $\theta$ be a primitive
$n$-root of unity when $n$ is odd, or a primitive $2n$-root of unity when $n$ is
even. Define a function $w$ on $X\times X$ by

$w(x, y)=\alpha\theta^{(x-y)^{2}}$ ,

where

$\alpha^{2}=\frac{\sqrt{n}}{\sum_{i=0}^{n-1}\theta^{i^{2}}}$ .

Then $(X, w)$ becomes a spin model, called the cyclic model [2,6,12].

Square model. Let $X=\{1, 2, 3, 4\}$ and let $\alpha$ be an arbitrary non-
zero complex number. Let us consider the following matrix:

$W=\left(\begin{array}{llll}\alpha & \alpha^{-1} & -\alpha & \alpha^{-1}\\\alpha^{-1} & \alpha & \alpha^{-1} & -\alpha\\-\alpha & \alpha^{-1} & \alpha & \alpha^{-1}\\\alpha^{-1} & -\alpha & \alpha^{-1} & \alpha\end{array}\right)$ ,

and define a function $w$ on $X\times X$ by $w(x, y)=W_{x,y}$ . Then $(X, w)$

becomes a spin model, called the square model $[7,12]$ .

2.2. Preliminaries for distance-regular graphs

Let $\Gamma=(X, E)$ be a connected (undirected simple) graph of diame-
ter $d$ with the vertex set $X$ and the edge set $E$ with the usual metric $\partial$

on $X$ . For vertices $u$ , $v$ and for integers $r$ , $s$ , define

$\Gamma_{r}(u)=\{x\in X|\partial(u, x)=r\}$ ,

$D_{s}^{r}(u, v)=\Gamma_{r}(u)\cap\Gamma_{s}(v)$ .

$\Gamma$ is said to be distance-regular if there are integers $b_{r}$ , $c_{r}$ such that
for any two vertices $u$ , $x$ at distance $r=\partial(u, x)$ , there are precisely
$c_{r}$ neighbours of $x$ in $\Gamma_{r-1}(u)$ and $b_{r}$ neighbours of $x$ in $\Gamma_{r+1}(u)$ . In
particular $\Gamma$ is regular of valency $k=b_{0}$ , and there are $a_{r}=k-c_{r}-b_{r}$

neighbours of $x$ in $\Gamma_{r}(u)$ . The parameters $c_{r}$ , $b_{r}$ , $a_{r}(r=0, \ldots, d)$ satisfy
(see [5], Proposition 4.1.6)

$1=c_{1}\leq c_{2}\leq\cdots\leq c_{d-1}\leq c_{d}$ ,
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$k=b_{0}\geq b_{1}\geq\cdots\geq b_{d-1}\geq b_{d}=0$ .

The array

$\left\{\begin{array}{llllll}0 & c_{1} & c_{2} & \cdots & c_{d-1} & c_{d}\\0 & a_{1} & a_{2} & \cdots & a_{d-1} & a_{d}\\k & b_{1} & b_{2} & \cdots & b_{d-1} & 0\end{array}\right\}$

is called the intersection array of $\Gamma$ .

It is known (see [5], Section 4.1) that the parameters

$p_{r,s}^{t}=|D_{s}^{r}(u, v)|$ , $(t=\partial(u, v))$

are well-defined, i.e., these parameters depends only on $r$ , $s$ and $t=$

$\partial(u, v)$ , rather than on the individual vertices $u$ , $v$ with $t=\partial(u, v)$ .

The parameters $p_{r,s}^{t}$ are called the intersection numbers of $\Gamma$ . Clearly

$c_{r}=p_{r-1,1}^{r}$ , $a_{r}=p_{r,1}^{r}$ and $b_{r}=p_{r+1,1}^{r}$ hold.

Let $A_{i}(i=0,1, \ldots, d)$ denote the $i$-th adjacency matrix of $\Gamma$ , i.e.,
$A_{i}$ is the $n\times n$ matrix, indexed by $X\times X$ , whose $(x, y)$ -entry is

$(A_{i})_{x,y}=\{$

1 $\partial(x, y)=i$ ,

0 otherwise.

In particular, $A_{0}=I$ the identity matrix of size $n$ and $A_{1}=A$ the usual
adjacency matrix of $\Gamma$ . The matrices $A_{0}$ , $A_{1}$ , $\ldots$ , $A_{d}$ satisfy

$A_{i}A_{j}=A_{j}A_{i}=\sum p_{ij}^{\ell}A_{\ell}d$

.

$\ell=0$

In particular,

$AA_{i}=b_{i-1}A_{i-1}+a_{i}A_{i}+c_{i+1}A_{i+1}$

holds. Using this relation recursively, $A_{i}$ can be written as a polynomial
in $A$ , i.e., there are polynomials $v_{i}(x)$ of degree $i$ such that $A_{i}=v_{i}(A)$

holds for $i=0,1$ , $\ldots$ , $d$ .

It is known that the adjacency matrix $A$ has distinct eigenvalues
$\theta_{0}=k$ , $\theta_{1}$ , $\ldots$ , $\theta_{d}$ , and the corresponding eigenspaces $V_{0}$ , $V_{1}$ , $\ldots$ , $V_{d}$ in

$V=C^{n}(n=|X|)$ are mutually orthogonal (see [5], Section 4.1):

$V=V_{0}\oplus V_{1}\oplus\cdots\oplus V_{d}$ (orthogonal sum).

Remark that $V_{0}$ is the 1-dimensional subspace spanned by $j$ .

More precise descriptions of distance-regular graphs can be found in
$[4,5]$ .
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2.3. Spin models on distance-regular graphs

Let $\Gamma=(X, E)$ be a connected graph of diameter $d$ with the usual
metric $\partial$ on $X$ . Let $R_{i}(i=0,1, \ldots, d)$ be the set of pairs $(x, y)$ in $X\times X$

such that $\partial(x, y)=i$ . Then $X\times X$ is partitioned into $d+1$ relations:

$X\times X=R_{0}\cup R_{1}\cup\cdots\cup R_{d}$ .

We consider spin models $S=(X, w)$ such that $w$ takes a constant value
$t_{i}$ on $R_{i}(i=0,1, \ldots, d)$ , i.e., $w(x, y)=t_{i}$ holds for all $x$ , $y$ in $X$ at
distance $\partial(x, y)=i$ . In this case we say that the spin model $S=(X, w)$

is constructed on the graph $\Gamma=(X, E)$ . We are particularly interested
in spin models which are constructed on distance-regular graphs.

For three vertices $x$ , $y$ , $z$ and for integers $i$ , $j$ , $\ell$ , define

$P_{\dot{x},j,\ell}(x, y, z)=|\Gamma_{i}(x)\cap\Gamma_{j}(y)\cap\Gamma_{\ell}(z)|$ .

Lemma 2.1. Let $\Gamma=(X, E)$ be a distance-regular graph of diam-

eter $d$ with the intersection numbers $p_{i,j}^{\ell}$ , and let $t_{0}$ , $\ldots$ , $t_{d}$ be non-zero

complex numbers. Define a function $w$ on $X\times X$ by $w(x, y)=t_{\partial(x,y)}$ .

Then $S=(X, w)$ is a spin model if and only if the following conditions
hold:

(S2’) For $\ell=1$ , $\ldots$ , $d$ ,

$\sum_{i=0}^{d}\sum_{j=0}^{d}p_{i,j}^{\ell}t_{i}t_{j}^{-1}=0$ ,

(S3’) For all $x$ , $y$ , $z$ in $X$ ,

$\sum_{i=0}^{d}\sum_{j=0}^{d}\sum_{\ell=0}^{d}P_{i,j,\ell}(x, y, z)t_{i}t_{j}t_{\ell}^{-1}=\sqrt{n}t_{\partial(x,y)}t_{\partial(x,z)}^{-1}t_{\partial(y,z)}^{-1}$ .

Proof It is not difficult to show that (S2), (S3) are equivalent
to (S2’), (S3’) respectively. Remark that (SI) holds for a spin model
constructed on a connected graph. Q.E.D.

Now we give two examples which are constructed on distance-regular
graphs.

Jaeger’s Higman-Sims model. The Higman-Sims graph, which was
discovered by D. Higman and C. Sims [8], is the unique distance-regular



2-Homogeneous Graphs 291

graph $\Gamma=(X, E)$ of diameter $d=2$ with the following intersection
array:

$\left\{\begin{array}{lll}0 & 1 & 6\\0 & 0 & 16\\22 & 21 & 0\end{array}\right\}$ .

$\Gamma$ has $|X|=100$ vertices.
A spin model was constructed on the Higman-Sims graph by F.

Jaeger [9] (see also [7]). Let $\tau=(1+\sqrt{5})/2$ and put

$t_{0}=(5\tau+3)\sqrt{-1}$ , $t_{1}=\tau\sqrt{-1}$ , $t_{2}=(-\tau+1)\sqrt{-1}$ .

Define a function $w$ on $X\times X$ by $w(x, y)=t_{\partial(x,y)}$ for $x$ , $y$ $\in X$ . Then

$S=(X, w)$ becomes a spin model. The corresponding link invariant
becomes a specialization of the Kauffman polynomial [7].

Hadamard model. Hadamard graphs are distance-regular graphs of
diameter $d=4$ with the following intersection array:

$\left\{\begin{array}{lllll}0 & 1 & 2m & 4m-1 & 4m\\0 & 0 & 0 & 0 & 0\\4m & 4m-1 & 2m & 1 & 0\end{array}\right\}$ ,

where $m$ is a positive integer. There is a natural correspondence between
Hadamard graphs of valency $4m$ and Hadamard matrices of size $4m$ (see
[5], Theorem 1.8.1). Let $s$ , $t_{0}$ , $t_{1}$ be complex numbers such that

$s^{2}+2(2m-1)s+1=0$ , $t_{0}^{2}=\frac{2\sqrt{m}}{(4m-1)s+1}$ , $t_{1}^{4}=1$ ,

and put
$t_{2}=st_{0}$ , $t_{3}=-t_{1}$ , $t_{4}=t_{1}$ .

Define a function $w$ on $X\times X$ by $w(x, y)=t_{\partial(x,y)}$ for $x$ , $y$
$\in X$ . Then

$S=(X, w)$ is a spin model [17]. The corresponding link invariants of
these models were determined by Jaeger $[10,11]$ .

\S 3. 2-Homogeneous distance-regular graphs

3.1. Definition of 2-homogeneity

Let $\Gamma=(X, E)$ be a distance-regular graph of diameter $d$ . For a
vertex $x$ in $X$ and for a subset $A$ of $X$ , let $e(x, A)$ denote the number of
edges from $x$ into $A;e(x, A)=|\Gamma_{1}(x)\cap A|$ . $\Gamma$ is said to be $t$ -homogeneous
(where $t$ is an non-negative integer) if the following condition holds for
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all integers $r$ , $s$ , $i$ , $j$ and for all vertices $u$ , $v$ , $u’$ , $v’$ with $\partial(u, v)=$

$\partial(u’, v’)=t$ :

$x\in D_{s}^{r}(u, v)$ , $x’\in D_{s}^{r}(u’, v’)\Rightarrow e(x, D_{j}^{i}(u, v))=e(x’, D_{j}^{i}(u’, v’))$ .

This means that, for two vertices $u$ , $v$ at distance $t$ and for $x$ in $D_{s}^{r}(u, v)$ ,

the number of edges from $x$ into $D_{j}^{i}(u, v)$ depends only on $r$ , $s$ , $i$ , $j$ rather

than on the individual vertices $u$ , $v$ , $x$ with $\partial(u, v)=t$ and $x\in D_{s}^{r}(u, v)$ .

It was shown [18] that, for a distance-regular graph $\Gamma$ of diameter
$d$ in which $D_{1}^{1}(u, v)$ is a (non-empty) clique for every edge $uv$ , $\Gamma$ is 1-
homogeneous if and only if $\Gamma$ is isomorphic to a regular near 2d-gon (see
[5], Section 6.4 for the definition).

Now we restrict our interest to the case $t=2$ . Let us consider the
following conditions for a distance-regular graph $\Gamma$ of diameter $d$ :

(HI) There are integers $\delta_{2}$ , $\ldots$ , $\delta_{d}$ such that, for every pair of vertices
$u$ , $v$ at distance $\partial(u, v)=2$ , and for every $x$ in $\Gamma_{r}(u)\cap\Gamma_{r}(v)$ , there
are precisely $\delta_{r}$ neighbours of $x$ in $\Gamma_{r-1}(u)\cap\Gamma_{r-1}(v)(r=2, \ldots, d)$ .

(H2) There are integers $\gamma_{1}$ , $\ldots$ , $\gamma_{d}$ such that, for every vertex $x$

and for every $u$ , $v$ in $\Gamma_{r}(x)$ with $\partial(u, v)=2$ , there are precisely $\gamma_{r}$

common neighbours of $u$ and $v$ in $\Gamma_{r-1}(x)(r=1, \ldots, d)$ .

Lemma 3.1. Let $\Gamma=(X, E)$ be a distance-regular graph of diam-
eter $d$ . Then (HI) is equivalent to (H2).

Proof. First assume $\Gamma$ satisfies (HI). We must show that the size

$|\Gamma_{r-1}(x)\cap\Gamma_{1}(u)\cap\Gamma_{1}(v)|$

does not depend on the choice of $x$ in $X$ and $u$ , $v$ in $\Gamma_{r}(x)$ with $\partial(u, v)=$

$2$ . Clearly this holds for $r=1$ . Assume $r>1$ . Fix a vertex $x$ and fix
two vertices $u$ , $v$ in $\Gamma_{r}(x)$ with $\partial(u, v)=2$ , and put

$D_{j}^{i}=D_{j}^{i}(u, v)=\Gamma_{i}(u)\cap\Gamma_{j}(v)$

for all integers $i$ , $j$ . We count the number $N$ of paths of length $r-1$

from $x$ to $D_{1}^{1}$ . Let $x=x_{r}$ , $x_{r-1}$ , $\ldots$ , $x_{2}$ , $x_{1}$ be a path of length $r-1$ such
that $x_{1}\in D_{1}^{1}$ . Then we have $x_{i}\in D_{i}^{i}$ for $i=1$ , $\ldots$ , $r$ . By (H1), there are

precisely $\delta_{i}$ edges from $x_{i}$ to $D_{i-1}^{i-1}(i=2, \ldots, r)$ . Hence we have

$N=\delta_{r}\delta_{r-1}\cdots\delta_{2}$ .

On the other hand, for a fixed vertex $y$ in $\Gamma_{r-1}(x)\cap D_{1}^{1}$ , there are precisely
$c_{r-1}c_{r-2}\cdots c_{2}c_{1}$ paths of length $r-1$ connecting $x$ and $y$ , since we have
$\partial(x, y)=r-1$ . Hence we have

$N=|\Gamma_{r-1}(x)\cap D_{1}^{1}|c_{r-1}c_{r-2}\cdots c_{2}c_{1}$ .
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So we obtain

$|\Gamma_{r-1}(x)\cap D_{1}^{1}|=\frac{\delta_{r}\delta_{r-1}\delta_{2}}{c_{r-1}c_{r-2}c_{2}c_{1}}\cdots\cdots$ .

This means the number of common neighbours of $u$ and $v$ in $\Gamma_{r-1}(x)$ does
not depend on the choice of $x$ in $X$ and $u$ , $v$ in $\Gamma_{r}(x)$ with $\partial(u, v)=2$ .

Thus $\Gamma$ satisfies (H2).

Next assume $\Gamma$ satisfies (H2). We show by induction on $r$ that the

number of edges $e(x, D_{r-1}^{r-1}(u, v))$ does not depend on the choice of $u$ ,
$v$ with $\partial(u, v)=2$ and $x$ in $D_{r}^{r}(u, v)(r=2, \ldots, d)$ . This holds when
$r=2$ , since for $x\in D_{2}^{2}(u, v)$ we have $u$ , $v\in\Gamma_{2}(x)$ and so

$e(x, D_{1}^{1}(u, v))=|\Gamma_{r-1}(x)\cap\Gamma_{1}(u)\cap\Gamma_{1}(v)|=\gamma_{2}$ .

Assume $r>2$ and assume that there are constants $\delta_{2}$ , $\ldots$ , $\delta_{r-1}$ such

that $e(x, D_{i-1}^{i-1}(u, v))=\delta_{r}$ holds for every $x\in D_{i}^{i}(u, v)(i=2, \ldots, r-1)$ .

Fix two vertices $u$ , $v\in X$ at distance $\partial(u, v)=2$ and put $D_{j}^{i}=D_{j}^{i}(u$ ,
$v)$ . Pick a vertex $x\in D_{r}^{r}$ and put

$\delta(x)=e(x, D_{r-1}^{r-1})$ .

We count the number $N$ of paths $x=x_{r}$ , $x_{r-1}$ , $\ldots$ , $x_{1}$ of length $r-1$ with
$x_{1}\in D_{1}^{1}$ . Since $x_{i}\in D_{i}^{i}(i=1, \ldots, r)$ holds for every path $x=x_{r}$ , $\ldots$ , $x_{1}$

with $x_{1}\in D_{1}^{1}$ ,

$N=\delta(x)\delta_{r-1}\delta_{r-2}\cdots\delta_{2}$ .

On the other hand, since there are precisely $\gamma_{r}$ common neighbours $y$ of
$u$ , $v$ in $\Gamma_{r-1}(x)$ by (H2),

$|D_{1}^{1}\cap\Gamma_{r-1}(x)|=\gamma_{r}$ .

Since for each vertex $y$ in $D_{1}^{1}\cap\Gamma_{r-1}(x)$ there are precisely $c_{r-1}c_{r-2}\cdots c_{1}$

paths of length $r-1$ connecting $y$ and $x$ , the number of paths is given
by

$N=|D_{1}^{1}\cap\Gamma_{r-1}(x)|c_{r-1}c_{r-2}\cdots c_{2}c_{1}=\gamma_{r}c_{r-1}c_{r-2}\cdots c_{2}c_{1}$ .

Therefore we obtain

$\delta(x)=\frac{\gamma_{r}c_{r-1}c_{r-2}c_{2}c_{1}}{\delta_{r-1}\delta_{r-2}\delta_{2}}\cdots\cdots$ .

Thus $\Gamma$ satisfies (H2). Q.E.D.
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A connected graph $\Gamma$ is said to be bipartite if there is no cycle of
odd length, and almost bipartite if there is no cycle of odd length $\ell$ with
$\ell<2d+1$ (where $d$ is the diameter of $\Gamma$ ). Let $\Gamma$ be a distance-regular
graph of diameter $d$ with intersection numbers $c_{r}$ , $a_{r}$ , $b_{r}(r=0, \ldots, d)$ .

Clearly $\Gamma$ is bipartite if and only if $a_{r}=0$ for $r=0$ , $\ldots$ , $d$ , and $\Gamma$ is
almost bipartite if and only if $a_{r}=0$ for $r=0$ , $\ldots$ , $d-1$ .

Lemma 3.2. Let $\Gamma$ be an almost bipartite distance-regular graph

of diameter $d$ . Then $\Gamma$ is 2-homogeneous if and only if $\Gamma$ satisfies (H1).

Proof. The condition (HI) says that $e(x, D_{r-1}^{r-1}(u, v))=\delta_{r}$ holds
for every $u$ , $v$ , $x$ with $\partial(u, v)=2$ and $x\in D_{r}^{r}(u, v)$ . Hence (HI) holds if
$\Gamma$ is 2-homogeneous.

Fix two vertices $u$ , $v$ at distance $\partial(u, v)=2$ and let us denote
$D_{j}^{i}=D_{j}^{i}(u, v)$ for all $i$ , $j$ . Remark that $D_{j}^{i}$ is empty for all $i$ , $j$ with

$|i-j|>2$ since $\partial(u, v)=2$ . Also remark that $D_{j}^{i}$ is empty for all $i$ , $j$

with $i+j\equiv 1(mod 2)$ and $i+j<2d-1$ since there is no cycle of odd
length $\ell<2d+1$ . Therefore the vertex set of $\Gamma$ is partitioned into the
following subsets:

$D_{2}^{0}$ $D_{3}^{1}$ $D_{4}^{2}$ $\cdots$ $D_{d-1}^{d-3}$ $D_{d}^{d-2}$

$D_{d}^{d-1}$

$D_{1}^{1}$ $D_{2}^{2}$ $D_{3}^{3}$ $\cdots$ $D_{d-2}^{d-2}$ $D_{d-1}^{d-1}$ $D_{d}^{d}$

$D_{d-1}^{d}$

$D_{0}^{2}$ $D_{1}^{3}$ $D_{2}^{4}$ $\cdots$ $D_{d-3}^{d-1}$ $D_{d-2}^{d}$

Remark that there is no edge connecting $D_{j}^{i}$ and $D_{j’}^{i’}$ if $|i-i’|>1$ or

$|j-j’|>1$ . Remark also that there is no edge inside $D_{j}^{i}$ for all $i$ , $j$ with
$i<d$ or $j<d$ since $a_{1}=\cdots=a_{d-1}=0$ .

First we show that the number of edges $e(x, D_{j}^{i})(x\in D_{s}^{r})$ is deter-

mined by the intersection numbers for all $r$ , $s$ with $r\neq s$ . For $x$ in $D_{r}^{r-2}$

we have
$e(x, D_{r-1}^{r-3})=e(x, \Gamma_{r-3}(u))=c_{r-2}$ ,

$e(x, D_{r-1}^{r-1})=e(x, \Gamma_{r-1}(v))-e(x, D_{r-1}^{r-3})=c_{r}-c_{r-2}$ .

Moreover when $r<d$ we have

$e(x, D_{r+1}^{r-1})=e(x, \Gamma_{r+1}(v))=b_{r}$ ,

and when $r=d$ we have

$e(x, D_{d}^{d-1})=e(x, \Gamma_{d-1}(u))-e(x, D_{d-1}^{d-1})=b_{d-2}-(c_{d}-c_{d-2})$ .
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For $x$ in $D_{d}^{d-1}$ we have

$e(x, D_{d}^{d-2})=e(x, \Gamma_{d-1}(u))=c_{d-1}$ ,

$e(x, D_{d-1}^{d-1})\leq e(x, \Gamma_{d-1}(u))=a_{d-1}=0$ ,

$e(x, D_{d-1}^{d})=e(x, \Gamma_{d-1}(v))-e(x, D_{d-1}^{d-1})=c_{d}$ ,

$e(x, D_{d}^{d})=e(x, \Gamma_{d}(u))-e(x, D_{d-1}^{d})=b_{d-1}-c_{d}$ .

Thus $e(x, D_{j}^{0})$ is determined by the intersection numbers for $x\in D_{s}^{r}$ with
$r\neq s$ . Moreover for $x$ in $D_{1}^{1}$ we have

$e(x, D_{2}^{0})=e(x, D_{0}^{2})=c_{1}$ , $e(x, D_{2}^{2})=b_{1}-c_{1}$ .

Now we assume $\Gamma$ satisfies (HI) and let $x\in D_{r}^{r}(2\leq r\leq d)$ . Then

by (H1) we have
$e(x, D_{r-1}^{r-1})=\delta_{r}$ .

When $r<d$ we have

$e(x, D_{r+1}^{r-1})=e(x, \Gamma_{r-1}(u))-e(x, D_{r-1}^{r-1})=c_{r}-\delta_{r}$ ,

$e(x, D_{r-1}^{r+1})=e(x, \Gamma_{r-1}(v))-e(x, D_{r-1}^{r-1})=c_{r}-\delta_{r}$ ,

$e(x, D_{r+1}^{r+1})=e(x, \Gamma_{r+1}(u))-e(x, D_{r-1}^{r+1})=b_{r}-(c_{r}-\delta_{r})$ ,

here remark that there is no edge between $D_{d-1}^{d-1}$ and $D_{d-1}^{d}$ . For $x\in D_{d}^{d}$

we have

$e(x, D_{d}^{d-1})=e(x, \Gamma_{d-1}(u))-e(x, D_{d-1}^{d-1})=c_{d}-\delta_{d}$ ,

$e(x, D_{d-1}^{d})=e(x, \Gamma_{d-1}(v))-e(x, D_{d-1}^{d-1})=c_{d}-\delta_{d}$ ,

$e(x, D_{d}^{d})=e(x, \Gamma_{d}(u))-e(x, D_{d-1}^{d})=a_{d}-(c_{d}-\delta_{d})$ .

Therefore $\Gamma$ is 2-homogeneous. Q.E.D.

3.2. A sufficient condition for 2-homogeneity

Yamazaki [22] proved that every bipartite distance-regular graph
with an eigenvalue of multiplicity $k$ ( $k$ is the valency) satisfies condition
(HI). Here we give a slight generalization.
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Proposition 3.3. Let $\Gamma$ be an almost bipartite distance-regular
graph of valency $k$ . If the adjacency matrix $A$ of $\Gamma$ has an eigenvalue $\theta$

of multiplicity $f$ with $1<f\leq k$ , then $\Gamma$ is 2-homogeneous.

In the following we prove the above proposition in a similar way as
Yamazaki’s proof [22].

Let $\Gamma=(X, E)$ be an almost bipartite distance-regular graph of
diameter $d$ and valency $k$ . We may assume $d>1$ and $k>2$ since
the graph is clearly 2-homogeneous if $d=1$ or $k\leq 2$ . Let $c_{i}$ , $b_{i}$ and
$a_{i}(i=0,1, \ldots, d)$ be the usual intersection numbers of $\Gamma$ . We have
$a_{1}=\cdots=a_{d-1}=0$ since $\Gamma$ is almost bipartite. In particular $\Gamma$ has no
triangle. Assume that the adjacency matrix $A$ of $\Gamma$ has an eigenvalue
$\theta$ of multiplicity $f$ with $1<f\leq k$ . By [5] Proposition 4.4.1, we have

a mapping
–

: $X\rightarrow R^{f}$ such that $\langle\overline{x}, \overline{y}\rangle=u_{i}$ holds for all $x$ , $y$ at
distance $\partial(x, y)=i$ , where $\langle\overline{x}, \overline{y}\rangle$ denote the ordinary inner product of

the Euclidean space $R^{f}$ , and $(u_{0}, u_{1}, \ldots, u_{d})$ is the standard sequence
corresponding to $\theta$ , i.e., it is the sequence defined by the recurrence:
$u_{0}=1$ , $u_{1}=\theta/k$ , $c_{i}u_{i-1}+b_{i}u_{i+1}=\theta u_{i}(i=1, \ldots, d-1)$ . It is known
that an eigenvalue $\eta$ of $A$ has multiplicity 1 if and only if $\eta=\pm k[5]$

Proposition 4.4.8. So $\theta\neq\pm k$ by our assumption $f>1$ . Then we obtain
$u_{2}\neq u_{0}=1$ from the above recurrence. Hence $\overline{x}\neq\overline{y}$ holds for all
vertices $x$ , $y$ with $\partial(x, y)=2$ .

Lemma 3.4. Let $\sigma$ : $Y\rightarrow X$ be a mapping from a subset $Y$

of $X$ which preserves distances. Then for real numbers $\lambda_{y}$ $(y \in Y)$ ,

$\sum_{y\in Y}\lambda_{y}\overline{y}=0$ if and only if $\sum_{y\in Y}\lambda_{y}\overline{\sigma(y)}=0$ .

Proof Use $\langle\overline{x}, \overline{y}\rangle=u_{\partial(x,y)}$ to show

$||\sum_{y\in Y}\lambda_{y}\overline{\sigma(y)}||=||\sum_{y\in Y}\lambda_{y}\overline{y}||=0$ .

Q.E.D.

For a subset $Y$ of $X$ , we denote $\overline{Y}=\{\overline{y}|y\in Y\},\overline{Y}=\sum_{y\in Y}\overline{y}$ .

Lemma 3.5. For every $x\in X$ , $\overline{\Gamma_{1}(x)\cup\{x\}}$ spans a $k$ -dimensional
subspace of $R^{f}$ . In particular $f=k$ .

Proof Assume that the subspace $U$ spanned by $\overline{\Gamma_{1}(x)\cup\{x\}}$ has
dimension $m+1<k$ . Choose $m$ vertices $y_{1}$ , $\ldots$ , $y_{m}$ in $\Gamma_{1}(x)$ such
that $\overline{x}$ , $\overline{y_{1}}$ , $\ldots$ , $\overline{y_{m}}$ form a basis of $U$ , and choose two distinct vertices
$y$ , $y’\in\Gamma_{1}(u)$ which are different from $y_{1}$ , $\ldots$ , $y_{m}$ (here remark that
$m\leq k-2)$ . Write $\overline{y}=\lambda\overline{x}+\sum_{i=1}^{m}\lambda_{i}\overline{y_{i}}(\lambda, \lambda_{i}\in R)$ . Applying Lemma
3.4 for $Y=\{x, y, y_{1}, \ldots, y_{m}\}$ and $\sigma$ : $Y\rightarrow X$ such that $\sigma(y)=y’$ ,
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$\sigma(x)=x$ , $\sigma(y_{i})=y_{i}(i=1, \ldots, m)$ , we obtain $\overline{y’}=\lambda\overline{x}+\sum_{i=1}^{m}\lambda_{i}\overline{y_{i}}$ .

Hence $\overline{y}=\overline{y’}$ , contradicting $\partial(y, y’)=2$ . Q.E.D.

Lemma 3.6. There are constants $\lambda_{i}$ , $\mu_{i}$ , $lJ_{i}(i=2, \ldots, d)$ such

that $\overline{v}=\lambda_{i}\overline{x}+lJ_{i}\overline{C}+\mu_{i}\overline{B}$ holds for all $v$ , $x$ with $i=\partial(v, x)$ , where
$C=\Gamma_{1}(x)\cap\Gamma_{i-1}(v)$ and $B=\Gamma_{1}(x)\backslash C$ .

Proof. Remark that $B=\Gamma_{1}(x)\cap\Gamma_{i+1}(v)$ when $i<d$ , and $B=$

$\Gamma_{1}(x)\cap\Gamma_{i}(v)$ when $i=d$ . From Lemma 3.5, $\overline{v}$ can be written as

$\overline{v}=\lambda\overline{x}+\sum_{y\in C}l/_{y}\overline{y}+\sum_{z\in B}\mu_{z}\overline{z}$

for some $\lambda$ , $lJ_{y}$ , $\mu_{z}\in R$ $(y \in C, z\in B)$ . We would like to show that
$\nu_{y_{1}}=\iota/_{y_{2}}$ holds for all $y_{1}$ , $y_{2}\in C$ . Let $y_{1}$ , $y_{2}\in C$ with $y_{1}\neq y_{2}$ . We
use Lemma 3.4 for $Y=\{v, x\}\cup B\cup C$ and $\sigma$ : $Y\rightarrow X$ which fixes
all vertices in $Y$ except $\sigma(y_{1})=y_{2}$ , $\sigma(y_{2})=y_{1}$ . Clearly $\sigma$ preserves
distances. Then the above equation implies

$\overline{v}=\lambda\overline{x}+\iota/_{y_{1}}\overline{y_{2}}+\iota/_{y_{2}}\overline{y_{1}}+\sum_{y\in C\backslash \{y_{1},y_{2}\}}\nu_{y}\overline{y}+\sum_{z\in B}\mu_{z}\overline{z}$

.

These two equations imply $1/_{y_{1}}\overline{y_{1}}+\nu_{y2}\overline{y_{2}}=I/_{y_{1}}\overline{y_{2}}+l/_{y2}\overline{y_{1}}$ , and this be-
comes $(\iota/_{y_{1}}-\iota/_{y_{2}})(\overline{y_{1}}-\overline{y_{2}})=0$ . Here we have $\overline{y_{1}}\neq\overline{y_{2}}$ by $\partial(y_{1}, y_{2})=2$ ,

so $u_{y_{1}}=\nu_{y_{2}}$ . This means $lJ_{y}=U$ is a constant for $y\in C$ . In the same

way, $\mu_{z}=\mu$ is a constant for $z\in B$ . Thus $\overline{v}=\lambda\overline{x}+l/\overline{C}+\mu\overline{B}$ . Use
Lemma 3.4 again to show that $\lambda$ , $\mu$ , $\iota/$ do not depend on $v$ and $x$ with
$\partial(v, x)=i$ . Q.E.D.

Fix two vertices $v$ , $w$ with $\partial(v, w)=2$ and put $D_{s}^{r}=D_{s}^{r}(v, w)$ . We
have

$||\overline{v}-\overline{w}||^{2}=\langle\overline{v}, \overline{v}\rangle+\langle\overline{w}, \overline{w}\rangle-2\langle\overline{v}, \overline{w}\rangle=u_{0}+u_{0}-2u_{2}=2(u_{0}-u_{2})$ .

First take $x\in D_{i}^{i}(1<i<d)$ and put $A=\Gamma_{1}(x)\cap D_{i-1}^{i-1}$ , $ B=\Gamma_{1}(x)\cap$

$D_{i+1}^{i-1}$ , $C=\Gamma_{1}(x)\cap D_{i-1}^{i+1}$ , $D=\Gamma_{1}(x)\cap D_{i+1}^{i+1}$ . Then we have a partition
$\Gamma_{1}(x)=A\cup B\cup C\cup D$ . Clearly we have $|A|+|B|=|A|+|C|=c_{i}$ , so
that $|B|=|C|$ . By Lemma 3.6, we have

$\overline{v}=\lambda_{i}\overline{x}+lJ_{i}(\overline{A}+\overline{B})+\mu_{i}(\overline{C}+\overline{D})$ ,

$\overline{w}=\lambda_{i}\overline{x}+lJ_{i}(\overline{A}+\overline{C})+\mu_{i}(\overline{B}+\overline{D})$ .
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Hence

$||\overline{v}-\overline{w}||^{2}=||(\nu_{i}-\mu_{i})(\overline{B}-\overline{C})||^{2}=(\nu_{i}-\mu_{i})^{2}(||\overline{B}||^{2}+||\overline{C}||^{2}-2\langle\overline{B},\overline{C}\rangle)$ .

Here we have $||\overline{B}||^{2}=||\overline{C}||^{2}=|B|u_{0}+|B|(|B|-1)u_{2}$ and $\langle\overline{B},\overline{C}\rangle=$

$|B|^{2}u_{2}$ . Hence $||\overline{v}-\overline{w}||^{2}=2(\nu_{i}-\mu_{i})^{2}|B|(u_{0}-u_{2})$ . Therefore we obtain
$(\nu_{i}-\mu_{i})^{2}|B|=1$ and hence $|A|=c_{i}-|B|=c_{i}-(\nu_{i}-\mu_{i})^{-2}$ . This means

the size of $\Gamma_{1}(x)\cap D_{i-1}^{i-1}$ depends only on $i$ .

Next take $x\in D_{d}^{d}$ and put $A=\Gamma_{1}(x)\cap D_{d-1}^{d-1}$ , $B=\Gamma_{1}(x)\cap D_{d}^{d-1}$ ,

$C=\Gamma_{1}(x)\cap D_{d-1}^{d}$ , $D=\Gamma_{1}(x)\cap D_{d}^{d}$ . Then we can show that $|A|=$

$c_{i}-(\nu_{i}-\mu_{i})^{-2}$ in the same way.
Thus $\Gamma$ satisfies (HI) and hence $\Gamma$ is 2-homogeneous by Lemma 3.2.

\S 4. Graphs with spin model structure

4.1. An observation

Here we observe that the examples of spin models given in Section
2 can be constructed on distance-regular graphs. Jaeger’s Higman-Sims
model and the Hadamard models are constructed on distance-regular
graphs with the intersection arrays:

$\left\{\begin{array}{lll}0 & 1 & 6\\0 & 0 & 16\\22 & 21 & 0\end{array}\right\}$ ,

and

$\left\{\begin{array}{lllll}0 & 1 & 2m & 4m-1 & 4m\\0 & 0 & 0 & 0 & 0\\4m & 4m-1 & 2m & 1 & 0\end{array}\right\}$ .

The Potts models with $n$ spins is constructed on a complete graph $K_{n}$ ,
which is a distance-regular graph of diameter $d=1$ with the intersection
array

$\{0k0$ $k-101\}$ , $k=n-1$ .

The weights are given by $ t_{0}=\alpha$ , $ t_{1}=\beta$ , where $\beta^{2}+\beta^{-2}+\sqrt{n}=0$ and
$\alpha=-\beta^{-3}$ .

The cyclic model with $n$ spins is constructed on the $n$-cycle $C_{n}$ which
is a distance-regular graph of diameter $d$ with the intersection array:

$\left\{\begin{array}{llllll}0 & 1 & 1 & \cdots & 1 & 1\\0 & 0 & 0 & \cdots & 0 & 1\\2 & 1 & 1 & \cdots & 1 & 0\end{array}\right\}$ when $n=2d+1$ ,
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or

$\left\{\begin{array}{llllll}0 & 1 & 1 & \cdots & 1 & 2\\0 & 0 & 0 & \cdots & 0 & 0\\2 & 1 & 1 & \cdots & 1 & 0\end{array}\right\}$ when $n=2d$ .

The weights are given by $t_{i}=\alpha\theta^{i^{2}}(i=0, \ldots, d)$ , where $\theta$ is a primitive
$n$-root of unity if $n=2d+1$ , a primitive $2n$-root of unity if $n=2d$ , and
$\alpha=\sqrt{n}/(\sum_{i=0}^{n-1}\theta^{i^{2}})$ .

The square model is constructed on the 4-cycle $C_{4}$ with $ t_{0}=\alpha$ ,
$t_{1}=\alpha^{-1}$ , $ t_{2}=-\alpha$ , where $\alpha$ is a non-zero complex number.

Observe that all the above distance-regular graphs are almost bi-
partite. Moreover, as easily observed, each successive three terms $t_{i-1}$ ,
$t_{i}$ , $t_{i+1}$ are distinct $(0<i<d)$ in each of the above spin models except

the square model with $\alpha=\pm 1$ .

Motivated by the above observation, the author obtained the fol-
lowing result [21].

Theorem 4.1. Let $\Gamma=(X, E)$ be a connected graph of diameter
$d$ which has no 3-cycle. Let $t_{0}$ , $\ldots$ , $t_{d}$ be non-zero complex numbers such
that $t_{1}\neq t_{i}$ and $t_{i-2}\neq t_{i}\neq t_{i-1}$ for $i=2$ , $\ldots$ , $d$ . Define a function $w$

on $X\times X$ by $w(x, y)=t_{\partial(x,y)}$ for $x$ , $y$ $\in X$ . If $S=(X, w)$ is a spin
model, then $\Gamma$ is an almost bipartite distance-regular graph.

This was obtained by “localizing” the star-triangle relation (S3).
This technique of localization was introduced in [19].

4.2. 2-homogeneity

Lemma 4.2. Let $\Gamma=(X, E)$ be a distance-regular graph of diam-
eter $d>1$ and valency $k$ , and let $t_{0}$ , $\ldots$ , $t_{d}$ be non-zero complex numbers
such that $t_{i}\neq t_{1}$ for $i=2$ , $\ldots$ , $d$ . Assume $S=(X, w)$ is a spin model,

where $w$ is a function on $X\times X$ defined by $w(x, y)=t_{\partial(x,y)}$ for $x$ , $y$ $\in X$ .

Then the adjacency matrix $A$ of $\Gamma$ has an eigenvalue $\theta$ of multiplicity $f$

with $1<f\leq k$ .

Proof Let $\theta_{0}=k$ , $\theta_{1}$ , $\ldots$ , $\theta_{d}$ be the eigenvalues of the adjacency
matrix $A$ of $\Gamma$ and let $V_{i}$ be the eigenspace corresponding to $\theta_{i}$ , $i=$
$0$ , $\ldots$ , $d$ , where $V_{0}$ is the 1-dimensional subspace of $V=C^{n}$ spanned by
the all 1 vector $j$ . $V$ splits into an orthogonal direct sum:

$V=V_{0}\oplus V_{1}\oplus\cdots\oplus V_{d}$ (orthogonal).

On the other hand, let $u_{bc}$ , $b$ , $c\in X$ be the vector defined in Section 2.1,
which is an eigenvector of the weight matrix $W$ of $S$ for the eigenvalue
$\sqrt{n}w(b, c)^{-1}$ .
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Now fix a vertex $b\in X$ . Then the vectors $u_{bc}$ , $c\in X$ , form a basis
of $V$ . Let $V_{i}’$ be the subspace of $V$ spanned by the vectors $u_{bc}$ , $c\in\Gamma_{i}(b)$

$(i=0, \ldots, d)$ . Remark that $V_{0}’=\langle j\rangle=V_{0}$ . So $V$ splits into a direct
sum:

$V=V_{0}\oplus V_{1}’\oplus\cdots\oplus V_{d}’$ ,

where we have $V_{i}’\subset V_{0}^{\perp}$ for $i=1$ , $\ldots$ , $d$ . Since $u_{bc}$ is an eigenvector of
$W$ for the eigenvalue $\sqrt{n}w(b, c)^{-1}$ , $V_{i}’$ is included in the eigenspace of
$W$ for the eigenvalue $\sqrt{n}t_{i}^{-1}$ , $i=0$ , $\ldots$ , $d$ . Since $t_{1}\neq t_{i}$ for $i=2$ , $\ldots$ , $d$ ,

the eigenspace of $W$ for the eigenvalue $\sqrt{n}t_{1}^{-1}$ is included in $V_{0}\oplus V_{1}’$ .

Now consider the action of $W$ on

$V_{0}^{\perp}=V_{1}’\oplus\cdots\oplus V_{d}’$ .

Then $V_{1}’$ is the eigenspace of $W$ in $V_{0}^{\perp}$ for the eigenvalue $\sqrt{n}t_{1}^{-1}$ .

On the other hand, $W$ is written as

$W=\sum_{i=0}^{d}t_{i}A_{i}$ ,

where $A_{i}$ denotes the $i$-th adjacency matrix of the distance-regular graph
$\Gamma(i=0, \ldots, d)$ . Since $A_{i}$ is a polynomial in $A$ , $A_{i}=v_{i}(A)$ , $W$ is written
as a polynomial in $A$ :

$W=\sum_{i=0}^{d}t_{i}v_{i}(A)$ .

Hence for each eigenvector $x$ of $A$ for the eigenvalue $\theta_{j}$ of $A$ , $j>0$ , we
have

$Wx=\sum_{i=0}^{d}t_{i}v_{i}(A)x=\sum_{i=0}^{d}t_{i}v_{i}(\theta_{j})x$ ,

so $x$ is an eigenvector of $W$ for the eigenvalue $\sum_{i=0}^{d}t_{i}v_{i}(\theta_{j})$ . Since
$x\in V_{0}^{\perp}$ , $x$ must belong to some eigenspace (in $V_{0}^{\perp}$ ) of $W$ .

Therefore we can conclude that $V_{1}’$ is a sum of some eigenspaces of
$A$ , say:

$V_{1}’=V_{1}\oplus\cdots\oplus V_{\ell}$ ,

so that
$k=dimV_{1}’=f_{1}+\cdots+f_{\ell}$ ,

where $f_{i}=dim$ $V_{i}$ . This implies $f_{i}\leq k(i=1, \ldots, \ell)$ . We must show
that $1<f_{i}\leq k$ holds for some $i(1\leq i\leq\ell)$ . If $\ell=1$ then we have
$f_{1}=k$ and $f_{1}>1$ since $k>1$ by our assumption $d>1$ . So we may
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assume $\ell>1$ . If $f_{i}>1$ holds for some $i$ , then we have the conclusion. So
we may assume $f_{1}=\cdots=f_{\ell}=1$ . Now it is known that an eigenvalue
$\theta$ of a distance-regular graph has multiplicity 1 if and only if $\theta=\pm k$

$[5]$ Proposition 4.4.8. Hence $f_{i}=1$ occurs at most one $i$ , that is when
$\theta_{i}=-k$ (remark that $\theta_{i}\neq k$ since $\theta_{0}=k$ ). This implies $\ell=1$ , a
contradiction. Q.E.D.

Theorem 4.3. Let $\Gamma=(X, E)$ be an almost bipartite distance-
regular graph of diameter $d$ , and let $t_{0}$ , $t_{1}$ , $\ldots$ , $t_{d}$ be non-zero complex
numbers such that $t_{1}\neq t_{i}$ for $i=2$ , $\ldots$ , $d$ . If $S=(X, w)$ is a spin
model with the weight $w$ defined by $w(x, y)=t_{\partial(x,y)}$ , $x$ , $y$ $\in X$ , then $\Gamma$

is 2-homogeneous.

Proof. It is obtained from Lemma 4.2 and Proposition 3.3.
Q.E.D.

Corollary 4.4. Let $\Gamma=(X, E)$ be a triangle-free connected graph

of diameter $d$ , and let $t_{0}$ , $\ldots$ , $t_{d}$ be non-zero complex numbers such that
$t_{1}\neq t_{i}$ and $t_{i-2}\neq t_{i}\neq t_{i-1}$ for $i=2$ , $\ldots$ , $d$ . If $S=(X, w)$ is a spin
model with the weight $w$ defined by $w(x, y)=t_{\partial(x,y)}$ , $x$ , $y$ $\in X$ , then $\Gamma$

is an almost bipartite 2-homogeneous distance-regular graph.

Proof. It is obtained from Theorem 4.1 and Theorem 4.3. Q.E.D.

Remark. The assumption ’triangle-free’ in Corollary 4.4 is essen-
tial. Actually there exists a distance-regular graph $\Gamma$ (with triangles)
such that $\Gamma$ affords a spin model structure with weights $t_{0}$ , $\ldots$ , $t_{d}$ sat-
isfying the same conditions but $\Gamma$ is not 2-homogeneous. Also remark
that every connected graph can have a spin model structure with the
weights $t_{1}=\cdots=t_{d}$ (Potts model), and so we need some conditions on
the weights $t_{0}$ , $\ldots$ , $t_{d}$ in Corollary 4.4.

\S 5. Classification of almost bipartite 2-homogeneous graphs

In this section we determine the intersection arrays of almost bipar-
tite 2-homogeneous distance-regular graphs.

Theorem 5.1. Let $\Gamma$ be an almost bipartite 2-homogeneous dis-
tance-regular graph of diameter $d>0$ and valency $k$ . Then $\Gamma$ has one

of the following intersection arrays:

(1) $\{00k$ $k-01$ $1\}$ , $k>0$ ,
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(2) $\left\{\begin{array}{llll}0 & & 1 & k\\0 & & 0 & 0\\k & k & -1 & 0\end{array}\right\}$ , $k>1$ ,

(3) $\left\{\begin{array}{lll}0 & 1 & c\\0 & 0 & k-c\\k & k-1 & 0\end{array}\right\}$ , $c=\gamma(\gamma+1),\gamma>0k=\gamma(\gamma^{2}+3\gamma+1),$

,

(4) $\left\{\begin{array}{llllll}0 & & 1 & k & -1 & k\\0 & & 0 & & 0 & 0\\k & k & -1 & & 1 & 0\end{array}\right\}$ , $k>1$ ,

(5) $\left\{\begin{array}{llllll}0 & & 1 & 2\gamma & 4\gamma-1 & 4\gamma\\ 0 & & 0 & 0 & 0 & 0\\4\gamma & 4\gamma & -1 & 2\gamma & 1 & 0\end{array}\right\}$ , $\gamma>0$ ,

(6) $\left\{\begin{array}{llllll}0 & 1 & c & k-c & k-1 & k\\0 & 0 & 0 & 0 & 0 & 0\\k & k-1 & k-c & c & 1 & 0\end{array}\right\}$ , $c=\gamma(\gamma+1),\gamma>0k=\gamma(\gamma^{2}+3\gamma+1),$

,

(7) $\left\{\begin{array}{lllll}0 & 1 & \cdots & 1 & 2\\0 & 0 & \cdots & 0 & 0\\2 & 1 & \cdots & 1 & 0\end{array}\right\}$ , $d>1$ ,

(8) $\left\{\begin{array}{lllll}0 & 1 & \cdots & 1 & 1\\0 & 0 & \cdots & 0 & 1\\2 & 1 & \cdots & 1 & 0\end{array}\right\}$ , $d>1$ ,

(9) $\left\{\begin{array}{llllllllll}0 & & 1 & 2 & & 3 & \cdots & k & -1 & k\\0 & & 0 & 0 & & 0 & \cdots & \cdots & 0 & 0\\k & k & -1 & k-2 & k & -3 & \cdots & \cdots & 1 & 0\end{array}\right\}$ , $k=d$ ,

(1 ) $\left\{\begin{array}{lllllll}0 & 1 & 2 & 3 & \cdots & d-1 & d\\0 & 0 & 0 & 0 & \cdots & 0 & d+1\\2d+1 & 2d & 2d-1 & 2d-2 & \cdots & d+2 & 0\end{array}\right\}$ $d>1$ .

Remark. The intersection arrays in the above list are realized by
the following graphs:

(1) complete graph $K_{k+1}$ ,

(2) complete bipartite graph $K_{k,k}$ ,

(3) antipodal quotient of 5-dimensional hypercube when $\gamma=1$ ,

Higman-Sims graph when $\gamma=2$ , the existence of graphs is unknown
when $\gamma>2$ ,

(4) complement of 2 $\times(k+1)$ -grid,
(5) Hadamard graph of valency $ k=4\gamma$ ,

(6) antipodal double cover of (3),
(7) cycle $C_{2d+1}$ of length $2d+1$ ,

(8) cycle $C_{2d}$ of length $2d$ ,

(9) $d$-dimensional hypercube,
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(10) antipodal quotient of $(2d+1)$ -dimensional hypercube.

Now we prove Theorem 5.1. Let $\Gamma=(X, E)$ be an almost bipartite
2-homogeneous distance-regular graph of diameter $d$ and valency $k$ with
the intersection array:

$\left\{\begin{array}{llllll}0 & c_{1} & c_{2} & \cdots & c_{d-1} & c_{d}\\0 & a_{1} & a_{2} & \cdots & a_{d-1} & a_{d}\\b_{0} & b_{1} & b_{2} & \cdots & b_{d-1} & 0\end{array}\right\}$ .

We have $a_{i}=0(i=1, \ldots, d-1)$ , $c_{1}=1$ , $b_{0}=k$ , $b_{1}=k-1$ and
$a_{d}=k-c_{d}$ . If $k\leq 2$ or $d\leq 1$ , then $\Gamma$ is isomorphic to a cycle or a
complete graph and the intersection array of $\Gamma$ becomes (1), (7) or (8).
So in the following we assume $k>2$ and $d>1$ . In particular we have
$a_{1}=0$ and hence $\Gamma$ has no 3-cycle.

By Lemma 3.1 and Lemma 3.2, $\Gamma$ satisfies condition (H2), so that
there are constants $\gamma_{1}$ , $\ldots$ , $\gamma_{d}$ such that

$\gamma_{i}=|\Gamma_{i-1}(u)\cap\Gamma_{1}(x)\cap\Gamma_{1}(y)|$

holds for all vertices $u$ , $x$ , $y$ $\in X$ with $\partial(u, x)=\partial(u, y)=i$ and $\partial(x, y)=$

$2(i=1, \ldots, d)$ .

Lemma 5.2. (i) $c_{2}>1$ ,

(ii) $(k-2)(\gamma_{2}-1)=(c_{2}-1)(c_{2}-2)$ ,

(iii) $\gamma_{i}(c_{i+1}-1)=c_{i}(c_{2}-1)$ , $(0<i<d)$ ,

(iv) $(c_{2}-1)(\gamma_{i}-1)=(c_{i}-1)(\gamma_{2}-1)$ , $(0<i<d)$ .

Proof. Fix a vertex $u$ in $X$ .

(i) We claim that $\gamma_{i}>0$ if $c_{i}=1$ . Pick a vertex $w$ in $\Gamma_{i-1}(u)$ .

Then $w$ has at least two neighbours $x$ , $y$ in $\Gamma_{i}(u)$ , since we have $b_{i-1}=$

$k-c_{i-1}\geq k-c_{i}=k-1>1$ . So we have $\partial(x, y)=2$ and $ w\in$

$\Gamma_{i-1}(u)\cap\Gamma_{1}(x)\cap\Gamma_{1}(y)$ , and hence $\gamma_{i}>0$ .

First assume $c_{d}=1$ . We have $\gamma_{d}>0$ as shown above. Each
vertex $v$ in $\Gamma_{d}(u)$ has at least two distinct neighbours $x$ , $y$ in $\Gamma_{d}(u)$ since
$a_{d}=k-c_{d}=k-1\geq 2$ . Then $\partial(x, y)=2$ since $\Gamma$ has no 3-cycle,
and hence $x$ and $y$ has at least one common neighbour $z$ in $\Gamma_{d-1}(u)$ by
$\gamma_{d}>0$ . We have $\partial(v, z)=2$ and $x$ , $y$ are common neighbours of $v$ and
$z$ , so that $c_{2}>1$ .

Next assume $c_{d}>1$ . Since $1=c_{1}\leq c_{2}\leq\cdots\leq c_{d}$ and $c_{d}>1$ , there

is an integer $r$ such that $1=c_{1}=c_{2}=\cdots=c_{r}<c_{r+1}$ . Pick a vertex
$z$ in $\Gamma_{r+1}(u)$ . Since $c_{r+1}>1$ , $z$ has at least two distinct neighbours $x’$ ,
$y’\in\Gamma_{r}(u)$ . Since $\partial(x’, y’)=2$ and $\gamma_{r}>0$ by the above claim, $x’$ and $y’$
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have a common neighbour $v$ in $\Gamma_{r-1}(u)$ . Then $z\in\Gamma_{2}(v)$ , and $z$ has two
distinct neighbours $x’$ , $y’$ in $\Gamma_{1}(v)$ . This implies $c_{2}\geq 2$ .

(ii) Fix an edge $vw$ with $v\in\Gamma_{1}(u)$ and $w\in\Gamma_{2}(u)$ . We count
the number $N$ of edges $xy$ with $x\in\Gamma_{1}(u)\cap\Gamma_{1}(w)\cap\Gamma_{2}(v)$ and $ y\in$

$\Gamma_{1}(v)\cap\Gamma_{2}(u)\cap\Gamma_{2}(w)$ in two different ways. Since $w\in\Gamma_{2}(u)$ , there are
precisely $c_{2}-1$ vertices $x\in\Gamma_{1}(u)\cap\Gamma_{1}(w)$ with $x\neq v$ . Fix sucha vertex
$x$ . Since $x\in\Gamma_{2}(v)$ , there are precisely $c_{2}-2$ vertices $y$ $\in\Gamma_{1}(v)\cap\Gamma_{1}(x)$

with $y$ $\neq u$ , $y$ $\neq w$ . So we have $N=(c_{2}-1)(c_{2}-2)$ . On the other
hand, there are precisely $k-2$ vertices $y$ $\in\Gamma_{2}(u)\cap\Gamma_{1}(v)$ with $y$ $\neq w$ .

Fix such a vertex $y$ . Since $w$ , $y$ $\in\Gamma_{2}(u)$ and $\partial(w, y)=2$ , $w$ and $y$ have
precisely $\gamma_{2}-1$ common neighbours $x$ in $\Gamma_{1}(u)$ with $x\neq v$ . So we obtain
$N=(k-2)(\gamma_{2}-1)$ .

(iii) Fix an edge $vw$ with $v\in\Gamma_{i}(u)$ and $w\in\Gamma_{i+1}(u)$ . We count
the number $N$ of edges $xy$ with $x\in\Gamma_{i-1}(u)\cap\Gamma_{1}(v)$ and $y$ $\in\Gamma_{i}(u)\cap$

$\Gamma_{1}(w)\cap\Gamma_{2}(v)$ in two different ways. Since $v$ $\in\Gamma_{i}(u)$ , $v$ has precisely
$c_{i}$ neighbours $x$ in $\Gamma_{i-1}(u)$ . Fix such a vertex $x$ . Since $w\in\Gamma_{2}(x)$ , $w$

has precisely $c_{2}-1$ neighbours $y$ in $\Gamma_{1}(x)$ with $y$ $\neq v$ . Hence we have
$N=c_{i}(c_{2}-1)$ . On the other hand, since $w\in\Gamma_{i+1}(u)$ , $w$ has precisely
$c_{i+1}-1$ neighbours $y$ in $\Gamma_{i}(u)$ with $y\neq v$ . Fix such a vertex $y$ . Since $v$ ,
$y$ $\in\Gamma_{i}(u)$ and $\partial(v, y)=2$ , $v$ and $y$ have precisely $\gamma_{i}$ common neighbours
$x$ in $\Gamma_{i-1}(u)$ . So we obtain $N=(c_{i+1}-1)\gamma_{i}$ .

(iv) Fix a path $zvw$ with $z\in\Gamma_{i-1}(u)$ , $v\in\Gamma_{i}(u)$ , $w\in\Gamma_{i+1}(u)$ ,

and count the number of edges $xy$ with $x\in\Gamma_{i-1}(u)\cap\Gamma_{1}(v)\cap\Gamma_{2}(z)$

and $y$ $\in\Gamma_{i}(u)\cap\Gamma_{1}(z)\cap\Gamma_{1}(w)\cap\Gamma_{2}(v)$ in two different ways. Since
$v$ $\in\Gamma_{i}(u)$ , $v$ has precisely $c_{i}-1$ neighbours $x$ in $\Gamma_{i-1}(u)$ with $x\neq z$ .

Fix such a vertex $x$ . Since $x$ , $z\in\Gamma_{2}(w)$ and $\partial(x, z)=2$ , $x$ and $z$ have
precisely $\gamma_{2}-1$ common neighbours $y$ in $\Gamma_{1}(w)$ with $y\neq v$ . So we have
$N=(c_{i}-1)(\gamma_{2}-2)$ . On the other hand, since $w\in\Gamma_{2}(z)$ , $w$ has precisely
$c_{2}-1$ neighbours $y$ in $\Gamma_{1}(z)$ with $y$ $\neq v$ . Fix such a vertex $y$ . Since
$v$ , $y$ $\in\Gamma_{i}(u)$ and $\partial(v, y)=2$ , $v$ and $y$ have precisely $\gamma_{i}-1$ common
neighbours $x$ in $\Gamma_{i-1}(u)$ with $x\neq z$ . So we obtain $N=(c_{2}-1)(\gamma_{i}-1)$ .

Q.E.D.

Lemma 5.3. If $a_{d}>0$ ,

(v) $c_{d}(c_{2}-1)=(k-c_{d}-1)\gamma_{d}$ ,

(vi) $k\geq 2c_{d}$ .

Proof, (v) Since $a_{d}>0$ , there is an edge $vw$ in $\Gamma_{d}(u)$ . We count
the number $N$ of edges $xy$ with $x\in\Gamma_{d-1}(u)\cap\Gamma_{1}(v)$ and $y$ $\in\Gamma_{d}(u)\cap$

$\Gamma_{1}(w)\cap\Gamma_{2}(v)$ in two different ways. Since $v\in\Gamma_{d}(u)$ , $v$ has precisely
$c_{d}$ neighbours $x$ in $\Gamma_{d-1}(u)$ . Fix such avertex $x$ . Since $x\in\Gamma_{2}(w)$ , $x$

has precisely $c_{2}-1$ neighbours $y$ in $\Gamma_{1}(w)$ with $y$ $\neq v$ , where we have
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$y$ $\in\Gamma_{d}(u)$ since there is no edge in $\Gamma_{d-1}(u)$ . So we have $N=c_{d}(c_{2}-1)$ .

On the other hand, since $w\in\Gamma_{d}(u)$ , $w$ has precisely $a_{d}-1$ neighbours
$y$ in $\Gamma_{d}(u)$ with $y$ $\neq v$ . Fix such a vertex $y$ . Since $v$ , $y$ $\in\Gamma_{d}(u)$ and
$\partial(v, y)=2$ , $v$ and $y$ have precisely $\gamma_{d}$ common neighbours $x$ in $\Gamma_{d-1}(u)$ .

So we obtain $N=(a_{d}-1)\gamma_{d}=(k-c_{d}-1)\gamma_{d}$ .

(vi) Let $vw$ be an edge in $\Gamma_{d}(u)$ . If there is a vertex $x$ in $\Gamma_{1}(u)\cap$

$\Gamma_{d-1}(v)\cap\Gamma_{d-1}(w)$ , then $uv$ is an edge in $\Gamma_{d-1}(x)$ , contradicting $a_{d-1}=$

$0$ . Hence $\Gamma_{1}(u)\cap\Gamma_{d-1}(v)$ and $\Gamma_{1}(u)\cap\Gamma_{d-1}(w)$ are mutually disjoint,
each of which has size $c_{d}$ since $u\in\Gamma_{d}(v)$ and $u\in\Gamma_{d}(w)$ . Hence $k=$

$|\Gamma_{1}(u)|\geq 2c_{d}$ . Q.E.D.

To simplify notations, we put

$c=c_{2}$ , $\gamma=\gamma_{2}$ .

When $\gamma=1$ , we have $c>1$ by Lemma 5.2 (i), and hence $c=2$

by Lemma 5.2 (ii). Then $\gamma_{i}=1(i=1, \ldots, d-1)$ by Lemma 5.2 (iv)
and this implies $c_{i}=i(i=1, \ldots, d)$ by Lemma 5.2 (iii). If $a_{d}=0$ then
we have $k=c_{d}=d$ , so that the intersection array becomes of type (9).
If $a_{d}>0$ then Lemma 5.3 (v) implies $d=(k-d-1)\gamma_{d}$ , here we have
$k\geq 2c_{d}=2d$ by Lemma 5.3 (vi). Hence we must have $\gamma_{d}=1$ and
$k=2d+1$ so that the intersection array becomes of type (10).

Now we assume $\gamma>1$ . By Lemma 5.2 (i), (ii), we have $c>1$ and

$k=\frac{(c-1)(c-2)}{\gamma-1}+2$ .

First we consider the case $a_{d}>0$ .

When $d=2$ , Lemma 5.3 (v) becomes

$k=\frac{c(c-1)}{\gamma}+c+1$ ,

and hence we have

$\frac{(c-1)(c-2)}{\gamma-1}+2=\frac{c(c-1)}{\gamma}+c+1$ .

This becomes

$c=\gamma(\gamma+1)$ ,

and hence

$k=\frac{(c-1)(c-2)}{\gamma-1}+2=\gamma(\gamma^{2}+3\gamma+1)$ ,

so that the intersection array becomes of type (3) in the case $d=2$ .
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Assume $d>2$ . We have $2c_{3}\leq k$ by Lemma 5.3 (vi) and by $c_{3}\leq c_{d}$ .

By Lemma 5.2 (iii), we have

$c_{3}=\frac{c(c-1)}{\gamma}+1$ .

So $2c_{3}\leq k$ implies

2 $(\frac{c(c-1)}{\gamma}+1)\leq\frac{(c-1)(c-2)}{\gamma-1}+2$ ,

and this becomes

$2(\gamma-1)c(c-1)\leq\gamma(c-1)(c-2)$ .

By Lemma 5.2 (i), we have $c-1>0$ , so the above inequality implies

$2(\gamma-1)c\leq\gamma(c-2)$

and hence

$(\gamma-2)c+2\gamma\leq 0$ .

This is impossible by our assumption $\gamma\geq 2$ . Thus the case $d>2$ does
not occur.

Next we consider the case $a_{d}=0$ . Since $b_{0}=k$ , $b_{1}=k-1$ and
$b_{2}=k-c$ , we have

$b_{0}=\frac{(c-1)(c-2)}{\gamma-1}+2$ , $b_{1}=\frac{(c-1)(c-2)}{\gamma-1}+1$ ,

$b_{2}=\frac{(c-1)(c-2)}{\gamma-1}+2-c=\frac{(c-\gamma)(c-2)}{\gamma-1}$ .

From Lemma 5.2 (iii) with $i=2$ , we obtain

$c_{3}=\frac{c(c-1)}{\gamma}+1=\frac{c^{2}-c+\gamma}{\gamma}$ ,

and $b_{3}=k-c_{3}$ implies

$b_{3}=\frac{(c-1)(c-2)}{\gamma-1}+2-\frac{c^{2}-c+\gamma}{\gamma}=\frac{(c-\gamma)(c-\gamma-1)}{\gamma(\gamma-1)}$ .

When $d>3$ , Lemma 5.2 (iii), (iv) and $ c_{3}=(c^{2}-c+\gamma)/\gamma$ imply

$c_{4}=\frac{c(c^{2}-2c+2\gamma)}{\gamma+\gamma c-c}$ ,

and $b_{4}=k-c_{4}$ implies
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$b_{4}=\frac{(c-\gamma)(c-2\gamma)}{(\gamma-1)(c\gamma+\gamma-c)}$ .

When $d>4$ , Lemma 5.2 (iii), (iv) imply

$c_{5}=\frac{c^{4}-3c^{3}+c^{2}+3\gamma c^{2}-2\gamma c+\gamma^{2}}{\gamma c^{2}+\gamma^{2}-c^{2}}$ ,

and $b_{5}=k-c_{5}$ implies

$b_{5}=\frac{(c-\gamma)(c-\gamma-\gamma^{2})}{(\gamma-1)(c^{2}\gamma+\gamma^{2}-c^{2})}$ .

If $d>5$ , we have $b_{5}\geq 1$ , so the above equation implies (noting that the
denominator is positive since $\gamma>1$ )

$(c-\gamma)(c-\gamma-\gamma^{2})\geq(\gamma-1)(c^{2}\gamma+\gamma^{2}-c^{2})$ ,

and this becomes
$\gamma(c-1)(2c-2\gamma-c\gamma)\geq 0$ .

This implies a contradiction since $c\geq 2$ and $\gamma\geq 2$ . Hence $rve$ have
$d\leq 5$ .

When $d=5$ , we have $b_{5}=0$ , and this implies $ c=\gamma$ or $ c=\gamma^{2}+\gamma$ .
But $ c=\gamma$ does not occur by Lemma 5.2 (ii) since $c_{2}=k-b_{2}<k$ . So
we have $ c=\gamma^{2}+\gamma$ . Substituting this value of $c$ in the above equations,
we obtain $k=\gamma(\gamma^{2}+3\gamma+1)$ , $c_{3}=k-c$ , $c_{4}=k-1$ . So the intersection
array becomes of type (6).

When $d=4$ , we have $b_{4}=0$ , and this implies $ c=2\gamma(c=\gamma$

is impossible as above). So we obtain $ k=4\gamma$ , $c_{3}=k-1$ , so the
intersection array becomes of type (5).

When $d=3$ , we have $b_{3}=0$ , and this implies $c=\gamma+1$ . So we
obtain $c=k-1$ , and the intersection array becomes of type (4).

This completes the proof of Theorem 5.1.
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Spherical Designs and Tensors

J.J. Seidel

\S 1. Introduction

The set $X$ of the 12 vertices of a regular icosahedron on the unit
sphere $\Omega$ in $R^{3}$ provides a first example of a spherical 5-design (of
strength 5). It satisfies

$\frac{1}{n}\sum_{x\in X}h(x)=\int_{\Omega}h(u)d\sigma(u)$ ,

short, Ave $ h=Aveh\Omega$ for all polynomials $h$ in 3 variables of degree $\leq 5$

and $n$ $=12$ . If the defining relation only refers to the homogeneous
polynomials of degree $q$ , then we use the term spherical design of index
$q$ . Thus strength $q$ means index 1, 2, . . . , and $q$ .

The second part of the title refers to symmetric tensors, and to the
desire to express symmetric polynomials as the inner products of tensors,
for instance

$\sum_{i,j,k=1}^{d}h_{ijk}a_{i}a_{j}a_{k}=\langle h, a\otimes a\otimes a\rangle$ ,

where $a$ $=(a_{1}, a_{2}, \ldots, a_{d})\in R^{d}=:V$ . The linear space $S^{q}(V)$ of the
symmetric $q$-tensors on $V$ is spanned by the $q$-fold tensor $powers\otimes^{q}a:=$

$a\otimes a\otimes\cdots\otimes a$ . This space is isomorphic to the space $Hom_{q}(V)$ of
homogeneous polynomials of degree $q$ in $d$ variables.

Section 2 deals with tensors in $R^{d}$ , in particular with the distribution
$q$-tensor $D$ , and the Sidelnikov inequality. In Section 3 this leads to
the tensor-definition of spherical designs of index $q$ and of strength $q$ .

This notion was introduced by Delsarte, Goethals and Seidel, and was
further developed by Bannai. We recall that the combinatorial t-(v, $k$ , $\lambda$ )
design can be phrased in analogous terms. Generalization to t-(v, $K,$ $\lambda$ )
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designs with unequal block sizes from a set $K$ suggests generalization
to multispherical designs as defined in joint papers with Neumaier and
with Delsarte. In the present Section 4 this is put into the natural
framework of isometric linear maps from real spaces with the 2-norm
into real Banach spaces with the $q$-norm, following Reznick and Lyubich-
Vaserstein. This leads to the main Theorem 4.4 on the existence of
cubature formulae, isometric embeddings, and (multi-)spherical designs
of index $q$ . These all are corollaries of Hilbert’s solution of the Waring
problem. Their equivalence provides a link between combinatorics and
local Banach theory [LV93]

In Section 5 the notions of Eutactic star and Euclidean $t$-design are
phrased in the present terminology. The final Section 6 comes back
to spherical designs of strength $t$ , and reviews the main results before
and after the omni-existence theorem by Seymour and Zaslavsky. The
paper ends with a new proof, by A. Blokhuis and the author, for the
construction by Hardin and Sloane of spherical 4-designs in 3-space, by
use of tensors.

\S 2. Symmetric $q$-tensors

We consider real $d$-dimensional Euclidean space $V=R^{d}$ with stan-
dard basis $B=\{e_{1}, \ldots, e_{d}\}$ . Vectors $a\in V$ are indicated by their
coordinates $(a_{1}, \ldots, a_{d})$ with respect to $B$ , their standard inner product
by $\langle a, b\rangle$ , and their $q$-norm by $||a||_{q}$ . The coordinates of the $q$-fold tensor
power $\otimes^{q}a=a\otimes\cdots\otimes a$ , are the monomials of degree $q$ in $a_{1}$ , $\ldots$ , $a_{d}$ .

The space $S^{q}(V)$ of the symmetric $q$ -tensors over $V$ is spanned by the

tensor powers $\otimes^{q}a$ , $a\in V$ , and has dimension $(_{d-1}^{d+q-1})$ . Each basis $B$

defines an isomorphism of the symmetric algebra $S(V)$ with the polyno-
mial algebra over $R$ in $d$ variables. [For these elementary facts of tensor
algebra see [Sha82], Chapter 10, in particular 10.5.2 and 10.5.1]. For the
inner products in $S^{q}(V)$ it follows that

$\langle\otimes^{q}a, \otimes^{q}b\rangle=\langle a, b\rangle^{q}$ , $\langle h, \otimes^{q}x\rangle=h(x)\in Hom_{q}(V)$ ,

for $a$ , $b\in V$ , $h\in S^{q}(V)$ , $h(x)$ the corresponding homogeneous polyno-
mial of degree $q$ in $d$ variables. From now on we fix the dimension $d$ and
the degree $g$ . As a special symmetric $q$-tensor we define the distribution
$q$ tensor $D$ as follows.

Definition 2.1.

$D:=\int_{\Omega}\otimes^{q}ud\sigma(u)$ .
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Here $\Omega$ is the unit sphere in $V$ , $ d\sigma$ is the normalized standard mea-
sure on $\Omega$ , and the integral is explained in terms of coordinates. Clearly,
$D=0$ if $q$ is odd.

Lemma 2.2.

$\langle D, D\rangle=\delta$ , $\langle D, \otimes^{q}a\rangle=\delta||a||_{2}^{q}$ ,

where $\delta=\frac{1\cdot 3(q-1)}{d(d+2)(d+q-2)}\cdots\cdots$ if $q$ is even, $\delta=0$ if $q$ is odd.

This follows from the properties of the inner product in $S^{q}(V)$ re-
ferred to above, and from the well-known formula

$\int_{\Omega}\langle u, v\rangle^{q}d\sigma(u)=\int_{\Omega}u_{1}^{q}d\sigma(u)=\delta$ .

Another useful formula is the inequality of Sidelnikov [Sid74] for a finite
set $U\subset\Omega\subset V$ , $|U|=n$ .

Lemma 2.3.

$0\leq||D-\frac{1}{n}\sum_{u\in U}\otimes^{q}u||_{2}^{2}=-\delta+\frac{1}{n^{2}}\sum_{u,v\in U}\langle u, v\rangle^{q}$ .

Proof. The square of the 2-norm of $D-\frac{1}{n}\sum_{u\in U}\otimes^{q}u$ is the inner
product of that tensor with itself. Now evaluate and use Lemma 2.2.

Q.E.D.

\S 3. Designs in Euclidean space

Definition 3.1. A spherical design of index $q$ is a finite subset $U$

of size $n$ of the unit sphere $\Omega$ in $V=R^{d}$ , such that

$D=\frac{1}{n}\sum_{u\in U}\otimes^{q}u$ .

Thus, a spherical design represents an extremal case of Sidelnikov’s
inequality, cf. [GS81], and by Lemma 2.3

$\frac{1}{n^{2}}\sum_{u,v\in U}\langle u, v\rangle^{q}=\delta$ ;

is an equivalent definition. Also equivalent is:

$\frac{1}{n}\sum_{u\in U}h(u)=\int_{\Omega}h(u)d\sigma(u)$ ,
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for any homogeneous polynomial $h$ of degree $q$ ; just take tensor inner
products of both sides of 3.1 with any $q$-tensor $h$ . Hence, the present
definition 3.1 is equivalent to the original definition of the notion in
[DGS77]. For the case of odd $q$ the same definition is accepted with
$D=0$ .

Remark. The name design is justified for the following reason. A
combinatorial t- $(v, k, \lambda)$ design consists of a $v$-set $V$ and a collection $X$ of
$k$-subsets (blocks) of $V$ such that any $t$-subset of $V$ is in exactly $\lambda$ blocks.
Describing the blocks by $v$-vectors having coordinates $x_{i}\in\{0,1\}$ with
$\sum_{i=1}^{v}x_{i}=k$ , we can prove [Sei90] that the definition above is equivalent
to requiring that

$\frac{1}{n}\sum_{x\in X}f(x)=\left(\begin{array}{l}v\\k\end{array}\right)$ $\sum f(x)$ ,

$x\in\left(\begin{array}{l}V\\k\end{array}\right)$

for all square-free monomials

$f(x)=x_{\sigma(1)}x_{\sigma(2)}\cdots x_{\sigma(t)}$ , $\sigma\in Sym(v)$ .

As a consequence, both spherical designs of strength $t$ and combinatorial
t- $(v, k, \lambda)$ designs can be defined by similar formulae of the type

Ave $ h=Aveh\Omega$

the average over the vectors of the finite set $X$ equals the average over all
vectors, for given sets of test functions $h$ . The analogy still goes further.
The combinatorial t- $(v, K, \lambda)$ designs with unequal block sizes from the
set $K$ serve as a model for the multispherical designs to be introduced
in the next section.

\S 4. Linear maps subject to condition (D)

Spherical designs are often produced by linear maps of Euclidean
spaces. Let

$F$ : $R^{d}\rightarrow R^{N}$ $x\mapsto y=Fx$

be a linear map with standard $N\times d$ matrix $F$ . We denote again by
$F$ the set of the vectors in $R^{d}$ which correspond to the rows of this
standard matrix. We take $q$ even and consider the following condition
(D).
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Definition 4.1. A linear map $F$ from $R^{d}$ into $R^{N}$ satisfies con-
dition (D) whenever

$D=\delta\sum_{f\in F}\otimes^{q}f$
,

where $D$ is the distribution $q$-tensor for $R^{d}$ .

If all row vectors $f$ of the standard matrix $F$ have equal length,
then condition (D) says that $F$ is proportional to a spherical design of
index $q$ in $R^{d}$ . However, if the row vectors of $F$ are not requested to
have equal length, then they are arranged in $R^{d}$ on various concentric
spheres; we then say that these vectors form a multispherical design of

index $q$ in $R^{d}$ , cf. [NS88, Sei90]. The tensor formula in Definition 4.1
can be phrased in different terms, yielding equivalent notions.

Theorem 4.2. The existence of a linear map $F$ satisfying condi-
tion (D) is equivalent to the existence of any of the following formulae:

Cubature: $\int_{\Omega}h(u)d\sigma(u)=\delta\sum_{f\in F}h(f)$ , $h\in Hom_{q}(R^{d})$ .

Waring:
$\langle x, x\rangle^{q/2}=||x||_{2}^{q}=\sum_{f\in F}\langle f, x\rangle^{q}$

, $x\in R^{d}$ .

Isometry: $||x||_{2}=||y||_{q}:=(,\sum_{\iota=1}^{N}y_{l}^{q},)^{1/q}$ , $x\in R^{d}$ .

Proof. Take tensor inner products of both sides of (4.1), first with
any symmetric $q$-tensor $h$ , and then with any tensor power $\otimes^{q}x$ . This
gives the cubature and the Waring formulas. The last formula is a
rewriting of its predecessor since the coordinates of $y=Fx$ are the
inner products of $x$ with the row vectors $f$ of the matrix $F$ .

Cubature formulae for homogeneous polynomials, as above, can also
be expressed by use of weights for a finite number of points on the unit
sphere $\Omega\subset R^{d}$ .

Waring ’s formulae refers to the classical problem of expressing in-

tegers as sums of $q$-th powers of integers. This problem was solved by
Hilbert, cf. [E1171, Rie53, Rez92].

Isometry refers to the linear map $F$ from $R^{d}$ with 2-norms, into $R^{N}$

with equal $q$-norms, so to isometric embedding of $R^{d}$ into $R^{N}$ . The
existence of such an isometry is $the\in=0$ case of Dvoretzky’s theorem
for finite dimensional Banach space, cf. [LV93, p.329], [Sei94]. Q.E.D.

The solution of Waring’s problem by Hilbert (1909) was later simpli-
fied by Stridsberg (1916) and others. In the formulation of G. J. Rieger
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the essential Lemma of Hilbert reads as follows; its proof in [Rie53] covers
less than 2 pagesc.

Lemma 4.3. Given $d\in N$ , $q\in 2N$ , there exist $N\in N$ and an
identity

$\langle x, x\rangle^{q/2}=,\sum_{\iota=1}^{N}r_{1/}\langle a_{\iota/}, x\rangle^{q}$ , for $x\in R^{d}$ ,

with positive rational $r_{\iota/}$ and nonzero integral $a_{l/,i}$ .

In addition, for $N=N(d, q)$ we have, [LV93],

$\left(\begin{array}{ll}d+\frac{1}{2}q & -1\\d-1 & \end{array}\right)\leq N(d, q)\leq\left(\begin{array}{ll}d+q & -1\\d-1 & \end{array}\right)$ .

As a consequence of Hilbert’s Lemma 4.3, and of Theorem 4.2, we now
have the following existence theorem.

Theorem 4.4. Given $d\in N$ and $q\in 2N$ , there exist $N\in N$

and a linear $F$ : $R^{d}\rightarrow R^{N}$ satisfying (D); hence satisfying Cubature,
Waring, Isometry, and forming a multispherical design of index $q$ .

\S 5. Eutactic stars

Let $G$ , of size $n$ , denote a symmetric idempotent matrix, that is,

$G^{t}=G=G^{2}$ .

Then $G$ has the eigenvalues 1 and 0, of multiplicities $d$ and $n-d$ , say.
We can write $G=HH^{t}$ with $H^{t}H=I$ of size $d$ . Hence $G$ is the Gram
matrix of $n$ vectors $y\in Y\subset R^{d}$ , called a Eutactic star $Y$ , since its
vectors are the projections into $R^{d}$ of an orthonormal frame of a space
$R^{n}$ which contains $R^{d}$ as a subspace, cf. [Sei76]. We show that the set
$Y$ is a multispherical design of index 2 (and of strength 2 if in addition
its vectors add up to zero). Indeed,

$\sum_{x,y\in Y}\langle x, y\rangle^{2}$

$=$
$trG^{2}=trG=\sum_{y\in Y}\langle y, y\rangle=d=$

$=$
$d^{2}\cdot\frac{1}{d}=(\sum_{y\in Y}||y||^{2})^{2}\int_{\Omega}\langle u, v\rangle^{2}d\sigma(u)$ ,

equivalently,

$\sum_{y\in Y}y\otimes y=(\sum_{y\in Y}||y||^{2})\int_{\Omega}u\otimes ud\sigma(u)$ .
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If $G$ has a constant diagonal, then $Y$ is a spherical design of index 2. If
the diagonal of $G$ is not constant, but consists of $p$ distinct numbers, say,
then $Y$ is a multispherical design of index 2, also called a Euclidean de-
sign of index 2. Then $Y$ has the same regularity condition as a spherical
design, but its vectors are distributed over $p$ concentric spheres. The ex-
istence of Eutactic stars is implied by the following theorem by Sofman
[Sof69].

Theorem 5.1. Symmetric idempotent matrices $G$ exist iff

$traceG=rankG$ , diag $G\geq 0$ .

In other words, stars consisting ofnvectors $inR^{d}$ at lengths $\xi_{1}$ , $\ldots$ , $\xi_{n}$

are eutactic iff
$\xi_{1}^{2}+\cdots+\xi_{n}^{2}=d$ , $0\leq\xi_{k}\leq 1$ .

Examples of spherical 2-designs are provided by strongly regular graphs,
since the defining equations for their adjacency matrix $A$ define a sym-
metric idempotent Gram matrix $G$ with zero row sums as follows:

$(A-rI)(A-sI)=\mu J$, $AJ=kJ$, $G:=\frac{1}{r-s}(A-sI-\frac{k-s}{n}J)$ .

Likewise, the minimal idempotents of any association scheme yield spher-
ical 2-designs, cf. [God93], Chapter 13. Some strongly regular graphs
yield spherical $t$-designs with $t$ $>2$ . For example, Smith graphs on 16,

112 and 162 vertices yield spherical 3-designs, and those on 27 and 275
vertices yield spherical 4-designs. In fact, any distance regular graph
is represented by a spherical 3-design $X$ in an eigenspace if and only if
$\sum_{a\in X}a\otimes a\otimes a=0$ , see [CGS78], [God93, p. 275].

A straightforward generalization of a balanced eutactic star is pro-
vided by the following notion [NS88].

Definition 5.2. A Euclidean $t$ -design of strength $t$ is a finite sub-
set $Y$ of $R^{d}$ subject to the conditions, for $k=1,2$ , $\ldots$ , $t$ ,

$\sum_{y\in Y}\otimes^{k}y=(\sum_{y\in Y}||y||^{k})\int_{\Omega}\otimes^{k}ud\sigma(u)$ .

Similar definitions can be given for finite weighted sets $(Y, w)$ in $R^{d}$

and, more general, for measures $\xi$ of strength $t$ in $R^{d}$ . This last notion
is defined by

$\int_{R\Omega}p(y)d\xi(y)=\sum_{k=0}^{t}\int_{R\Omega}||y||^{k}d\xi(y)\int_{\Omega}p_{k}(x)d\sigma(x)$ ,
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equivalently, see [NS88, Sei90], by

$\int_{R\Omega}pd\xi=\int_{R\Omega}pd\xi o\gamma$ ; $\gamma\in O(d)$ .

Here $O(d)$ is the orthogonal group in $R^{d}$ , and

$ R\Omega$ $:=\bigcup_{r\in R}rS$ , $rS=\{y\in R : \langle y, y\rangle=r^{2}\}$ , $r\in R\subset R^{+}$ ,

denotes any union of concentric spheres in $R^{d}$ , and the condition should
hold for all polynomials $p$ of degree $\leq t$ , restricted to $RQ$ :

$p=\sum_{k=0}^{t}p_{k}\in Po1_{t}(R\Omega)$ , $p_{k}\in Hom_{k}(R^{d})$ .

Thus, a Euclidean $t$-design is a measure of strength $t$ having finite sup-
port. A spherical $t$-design has finite support on the unit sphere, with
equal weights.

It is interesting to interpret the strength $t$ conditions

$\int_{r\Omega}f(y)g(y)d\xi(y)=\int_{R\Omega}f(x)g(x)d\mu(x)$ , $\mu=\mu(R\Omega)$ ,

as the equality of inner products:

$\langle f, g\rangle_{\xi}=\langle f, g\rangle_{R\Omega}$ ,

for all polynomials $f$ and $g$ of degree $\leq e\leq t/2$ . This is related to rotat-
able designs, and to Kiefer’s theorem on optimal experimental designs
[NS92]. This is also related to Fisher-type inequalities for Euclidean

$t$-designs $Y$ , [DS89]. Indeed, $\langle f, g\rangle_{Y}=\langle f, g\rangle_{R\Omega}$ implies the isometry

$Po1_{e}(Y)\cong Po1_{e}(R\Omega)$ ,

and for the dimensions of these linear spaces it follows that

$|Y|\geq dimPo1_{e}(R\Omega)$ $=$ $\sum_{i=0}^{2p-1}dimHom_{e-i}(R^{d})$

$=$ $\sum_{\dot{x}=0}^{2p-1}$ $\left(\begin{array}{ll}d+e & -i-1\\d-1 & \end{array}\right)$ .

For $2p\geq e+1$ , and for $p=1$ , this formula reads $|Y|\geq\left(\begin{array}{l}d+e\\e\end{array}\right)$ , and $|Y|\geq$

$\left(\begin{array}{l}d+e-1\\d-1\end{array}\right)$ $+$ $\left(\begin{array}{l}d+e-2\\d-1\end{array}\right)$ respectively. For the second case, a tight spherical
$t$ -design $Y$ in $R^{d}$ is defined by $|Y|=\left(\begin{array}{l}d+e-1\\d-1\end{array}\right)$ $+$ $\left(\begin{array}{l}d+e-2\\d-1\end{array}\right)$ , for $t$ $=2e$ , and

$|Y|=2$ $\left(\begin{array}{l}d+e-1\\d-1\end{array}\right)$ , for $t$ $=2e+1$ , antipodal case. We shall come back to
tight spherical $t$-designs in the next Section 6.
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\S 6. Spherical designs

The early constructions of spherical designs by Delsarte, Goethals,
Seidel [DGS77, GS79, GS81], by Conway and Sloane [CS77], and by
Bannai [$Ban84b$ , $Ban84a$ , Ban86] have their basis in combinatorics and
in finite group theory, and use the harmonic analysis of the unit sphere.
Highlights are the sphere version of Delsarte’s linear programming bound
(Theorem 5.10 of [DGS77]), and the proof, by analytic and number-
theoretic methods by Bannai and Damerell of

Theorem 6.1. There exist no tight spherical $2e$ designs in $R^{d}$ for
$d\geq 3$ , $e\geq 3$ . There exist no tight antipodal $(2e+1)$ -design in $R^{d}$ , except

for $d=24$ , $t$ $=11$ .

Tight spherical $t$-designs do exist for $t$ $=2,3,4,5,7,11$ . For details
we refer to [DGS77, BD80] and [God93, Chapter 16].

In the group case, originated by Sobolev [Sob62], and rediscovered
in the present context by Conway and Sloane [CS77], the designs are
the orbits of a finite subgroup of the orthogonal group $O(d)$ in $d$-space.
Bannai $[Ban84b]$ introduced the notion of a $t$ -homogeneous subgroup
$\Gamma$ of $O(d)$ by the property that for each point $x$ of the unit sphere
$\Omega$ the orbit $x^{\Gamma}$ is a spherical $t$-design. This works if the coefficients
$h_{1}$ , $ h_{2}\ldots$ , $h_{t}$ vanish in the Molien series of $\Gamma$ :

$\sum_{\gamma\in\Gamma}\frac{1-\lambda^{2}}{\det(I-\lambda\gamma)}=h_{0}+h_{1}\lambda+\cdots+h_{t}\lambda^{t}+h_{t+1}\lambda^{t+1}+\cdots$

Here $h_{k}$ is the dimension of the linear space of the $\Gamma$-invariant harmonic
polynomials of degree $k$ . This applies to finite reflection groups and be-
yond, [GS81].

Example. The icosahedral group $A_{5}$ has the Molien series

$ 1+\lambda^{6}+\lambda^{10}+\cdots$ ,

hence there is a spherical 5-design for every orbit of the icosahedral
group: the icosahedron itself, the dodecahedron, the icosidodecahedron,
the football, etc. It is interesting to observe that a spherical 9-design
is obtained as the orbit of any zero of the polynomial that spans the
$A_{5}$ -invariant harmonic polynomial of degree 6.

Bannai [Ban86] also introduced the notion of rigidity. A spherical
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$t$-design in $d$-space is rigid whenever all sufficiently close spherical
$t$-designs are equivalent under the orthogonal group $O(d)$ . Bannai con-
jectures that for given $d$ and $t$ there are finitely many rigid $t$-designs
$mod O(d)$ . For rigidity and reflection groups cf. [Sa194]

Finally we mention the relations between representations of a finite
group $\Gamma$ and the spherical designs generated by $\Gamma$ . A representation of
$\Gamma$ on a real vector space $V$ is a homomorphism $\rho$ : $\Gamma\rightarrow GL(V)$ . The
representation is irreducible if $V$ contains no proper $\Gamma$-invariant sub-
space. So irreducibility means real irreducibility. The following theorem

[GS79] deals with representations into the space $Harm_{k}$ of the harmonic
polynomials of degree $k$ in $d$ variables.

Theorem 6.2. If the representations $\rho_{k}$ of $\Gamma$ on $Harm_{k}$ are irre-
ducible for $k\leq s$ , then $\Gamma$ is $2s$ -homogeneous.

The converse of this theorem was also claimed and proved in The-
orem 6.7 of [GS79]. However, Bannai $[Ban84b, Ban84a]$ convincingly
demonstrated the falsity of both the statement and its proof, by coun-
terexamples involving the unitary subgroup $U(d)$ of $O(2d)$ .

In 1984 Seymour and Zaslavsky [SZ84] proved

Theorem 6.3. $\forall_{d}\forall_{t}\exists_{n_{0}}\forall_{n\geq n_{0}}$ there exists a spherical design in $R^{d}$

of strength $t$ and size $n$ .

The proof of this existence theorem is not constructive, and the
function $n_{0}(d, t)$ is important. It would be interesting to have a proof of
this theorem that relates to Hilbert’s lemma.

Meanwhile, several results have been obtained in this area about
new constructions, as well as about the value of $n_{0}$ , by Mimura, Wag-
ner, Bajnok, Rabau-Bajnok, Grabner-Tichy, Korevaar-Meyers, Hardin-
Sloane, and others. The first explicit construction of spherical $t$-designs
for arbitrary $t$ was given by Wagner [Wag91], cf. [GT91]. The explicit
construction by Bajnok [Baj92] uses

$n_{0}=C(d)t^{O(d^{3})}$ .

Korevaar and Meyers [KM93] show that in 3-space there exist spher-
ical $t$-designs consisting of $O(t^{3})$ points and conjecture $O(t^{2})$ points.
They think that for $R^{d}$ the number $O(t^{d-1})$ should be possible, cf. also
[Kor94], Remark 3.3.4.

Hardin and Sloane [HS92] used their computer program Gosset to
find many new spherical 4-designs. This was achieved by minimizing the
socalled average prediction variance $I(D)$ for designs $D$ fitting a qua-
dratic model in the unit ball $B$ in $d$-space. Here $I(D):=traceM_{B}M_{D}^{-1}$
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for the moment matrices

$M_{D}=\frac{1}{n}\sum_{x\in D}p_{\mu}(x)p_{\iota/}(x)$ , $M_{B}=\frac{1}{|B|}\int_{B}p_{\mu}(x)p_{U}(x)d\omega(x)$

of the $\frac{1}{2}(d+1)(d+2)$ basic polynomials $p_{\mu}$ of degree $\leq 2$ in $d$ vari-
ables. Restricting to designs $D$ with $b$ points on the unit sphere $\Omega$ and
$c$ coinciding points in the origin $(b+c=n)$ , they found that in ex-
tremal situations for $I(D)$ the $b$ points on $\Omega$ form a spherical 4-design.
They conjecture that, for $d\leq 8$ , the list of their findings is complete.
Thus, even in ordinary 3-space many new spherical $t$-designs have been
discovered, cf. also [Rez95] and [HS95].

Hardin and Sloane found infinitely many distinct spherical 4-designs
on 12 points in 3-space by rotating the northern hemisphere of a regu-
lar icosahedron about a diameter $NS$ over an arbitrary angle, cf. also
[Sa194]. A. Blokhuis and the author have the following independent proof
by tensors: Let $X=N\cup P\cup Q\cup S$ , with poles $N$ , $S$ and planar regular
pentagons $P$ and $Q$ , denote the vertex set of a regular icosahedron. Let
$P(\phi)$ denote the pentagon obtained from $P$ by a rotation $\phi$ about $NS$ .

Decompose its vectors in and orthogonal to the equator plane following
$x_{i}(\phi)=p_{i}(\phi)+u$ , and observe that

$\otimes^{s}(p_{i}(\phi)+u)=\sum_{a+b=s}$

$\left(\begin{array}{l}s\\a\end{array}\right)$ $(\otimes^{a}p_{i}(\phi))\otimes(\otimes^{b}u)$ .

Since $p_{i}(\phi)$ form a spherical 4-design we know that $\sum_{i=1}^{5}\otimes^{a}p_{i}(\phi)$ is
independent of $\phi\in O(2)$ , for $a=1,2,3,4$ . Therefore, the half-rotated
$N\cup P(\phi)\cup Q\cup S$ has sums of the $a$-th tensor products independent of
$\phi$ , hence equal to the $a$-th tensor products of the icosahedron. Since the
regular icosahedron is a spherical 5-design, the half-rotated icosahedron
is a spherical 4-design, for any $\phi\in O(2)$ .
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Quantum Matroids

Paul Terwilliger

Abstract.

We define a quantum matroid to be any finite nonempty poset
$P$ satisfying the conditions $R$ , $SL$ , $M$ , AU below.

$R$ : $P$ is ranked.
$SL$ : $P$ is a (meet) semilattice.
$M$ : For all $x\in P$ , the interval $[0, x]$ is a modular atomic lattice.

AU: For all $x$ , $y$ $\in P$ satisfying rank(x) <rank(y), there exists an
atom $a\in P$ such that $a\leq y$ , $a\not\leq x$ , and such that $x\vee a$

exists in $P$ .

Condition AU is the augmentation axiom.

We develop a theory of quantum matroids. Although we deal at
length with the general case, our emphasis is on quantum matroids
$P$ with the following extra structure: We say $P$ is nontnvial if
$P$ has rank $D\geq 2$ , and $P$ is not a modular atomic lattice. In

what follows suppose $P$ is nontrivial. We say $P$ is $q$-line regular

whenever each rank 2 element in $P$ covers exactly $q+1$ elements
of $P$ . We say $P$ is $\beta$-dual-line regular whenever each element in
$P$ with rank $D-1$ is covered by exactly $\beta+1$ elements of $P$ .

We say $P$ is $\alpha$-zig-zag regular whenever for all pairs $x$ , $y$
$\in P$ such

that rank(x) $=D-1$ , rank(y) $=D$ , and such that $x$ covers $x\wedge y$ ,

there exists exactly $\alpha+1$ pairs $x’$ , $y’\in P$ such that $y’$ covers
$x$ , $y’$ covers $x’$ , and such that $y$ covers $x’$ . We say $P$ is regular

whenever $P$ is line regular, dual-line regular, and zig-zag regular.
We prove the following theorem.

Theorem. Let $D$ denote an integer at least 4 $\cdot$ Then a poset
$P$ isa nontrivial regular quantum matroid of rank $D$ if and only if
$P$ is isomorphic to one of the following:

(i) A truncated Boolean algebra $B(D, N)$ , $(D<N)$ .
(ii)A Hamming matroid $H(D, N)$ , $(2\leq N)$ .
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(iii) A truncated projective geometry $L_{q}(D, N)$ , $(D<N)$ .

(iv) An attenuated space $A_{q}(D, N)$ , $(D<N)$ .

(v) A classical polar space of rank $D$ .

Contents
$\prime \mathcal{P}$-matroids in a modular atomic lattice $7^{\supset}$

1. The definition of a $\prime p$-matroid.
2. $\prime \mathcal{P}$-basis systems.
3. The dual of a $7^{\supset}$-matroid.

Prematroids

4. The definition of a quantum matroid.
5. Prematroids and their subposets.
6. Embeddable posets.

7. The distance function $\partial$ .

8. Geodesically closed subposets in a prematroid.
9. Submatroids and subspaces in a prematroid.

10. Singular subspaces.
11. More on the distance function.
12. The function $\delta$ and the sets $x\star y$ .

13. The functions $\rho$ , $\gamma$ .

14. The posets $[x\wedge y, x\star y]$ , $[x\star y, x]^{*}$ .

15. The posets $x_{y}^{+}$ , $x_{y}^{-}$ .

16. Projection into a submatroid.
17. The projection $x^{+}\rightarrow x_{y}^{+}$ .

Quantum matroids

18. The augmentation axiom.
19. $x\star y$ is a $[x\wedge y, x]$ -basis system.

20. The notion of relative closeness.
21. The staircase theorem.
22. The graph on top(P).
23. Quantum matroids and diagram geometries.
24. A characterization of quantum matroids.
25. Any Cartesian product of quantum matroids is a quantum ma-

troid.

Regularity conditions on a quantum matroid

26. The radical of a quantum matroid.
27. Line regularity and dual-line regularity.
28. Zig-zag regularity.
29. O-zig-zag-regular quantum matroids.
30. Tits polar spaces.
31. The $\alpha$-zig-zag regular quantum matroids with $\alpha>0$ .

The regular quantum matroids

32. The definition of a regular quantum matroid.
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33. Formulae for $|A_{P}|$ , $|top(P)|$ .

34. The zig-zag function, revisited.

35. The $\zeta$ uniform $7^{\supset}$-basis systems.
36. $x\star y$ is a uniform $[x\wedge y, x]$ -basis system.
37. The staircase theorem, revisited.
38. The graph on top(P) is distance regular.
39. The classification of the regular quantum matroids with rank at

least 4.

Appendix

40. Examples of regular quantum matroids.
41. Directions for further research.
42. References.

\S 1. The definition of a $\mathcal{P}$-matroid

In this paper, we only consider finite structures.
We begin by recalling the classical notion of a (finite) matroid.

Definition 1.1. Let A denote a finite set. By an $A$-matroid, we
mean a collection P of distinct subsets of A, that satisfies the following
axioms NT, LI, AU:

NT: P $\neq\emptyset$ .

LI: For all subsets x, y $\subseteq A$ , x $\in P$ and y $\subseteq x$ implies y $\in P$ .

AU: For all x, y $\in P$ such that $|x|<|y|$ , there exists an element
a $\in A$ such that a $\in y$ , a $\not\in x$ , and such that $x\cup a\in P$ .

AU is referred to as the augmentation axiom.

Here is the standard example of an $A$-matroid: let A denote a
finite set of vectors taken from a fixed vector space, and let P denote
the collection of all linearly independent subsets of A. Then P is an
A matroid.

Two more examples follow, which we refer to later in the paper.

Example 1.2. (i) The truncated Boolean algebra $B(D, $N) $(0\leq$

D $\leq N)$ : Let A denote a set of cardinality N, and set

P $:=$ {x $\subseteq A$ |$ |x|\leq D\}$ .

Then P is an A matroid.
(ii) $C(N_{1}, N_{2}, $

\ldots ,
$ N_{D})(0<D, N_{1}, N_{2}, $

\ldots ,
$ N_{D})$ : Set

$A:=A_{1}\cup A_{2}\cup\cdots\cup A_{D}$ (disjoint union),
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where

$|A_{i}|=N_{i}$ $(1\leq i\leq D)$ .

Set
$P:=$ { $x\subseteq A|$ $|x\cap A_{i}|\leq 1$ for all $i(1\leq i\leq D)$ }.

Then $P$ is an $A$-matroid.

Proof. Routine.

Note 1.3. In Example 1.2(ii), the case $N_{i}=N(1\leq i\leq D)$ will
turn out to have special significance. We refer to this matroid as the
Hamming matroid $H(D, N)$ .

We now generalize Definition 1.1, replacing subsets of a set $A$ with
subspaces of a vector space $V$ .

Definition 1.4. Let $V$ denote a finite vector space. By a V-
matroid, we mean a collection $P$ of distinct subspaces of $V$ , that
satisfies the following axioms $NT$ , $LI$ , AU:

$NT$ : $ P\neq\emptyset$ .
$LI$ : For all subspaces $x$ , $y\subseteq V$, $x\in P$ and $y\subseteq x$ implies $y\in P$ .

AU: For all $x$ , $y$
$\in P$ such that $dim(x)<dim(y)$ , there exists a

one dimensional subspace $a\subseteq V$ such that $a\subseteq y$ , $a\not\in x$ , and
such that $x+a\in P$ .

We now consider some examples of $V$-matroids.

Example 1.5. The truncated projective geometry $ L_{q}(D, N)(0\leq$

$D\leq N)$ : Let $V$ denote a vector space of dimension $N$ over the finite
field $GF(q)$ , and set

$P:=$ { $x|x$ is a subspace of $V$, $dim(x)\leq D$ }.

Then $P$ is a $V$-matroid.

Proof. Routine.

Example 1.6. The attenuated space $A_{q}(D, N)(0\leq D\leq N)$ : Let
$V$ denote an $N$-dimensional vector space over the finite field $GF(q)$ .

Fix a subspace $w\subseteq V$ such that $dim(w)=N-D$ , and set

$P:=$ { $x|x$ is a subspace of $V$, $x\cap w=0$ }.

Then $P$ is a $V$-matroid.
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Proof. We check $NT$ , $LI$ , AU in Definition 1.4. $NT$ holds since $ 0\in$

$P$ , and $LI$ holds trivially, so consider AU. Recall that for all subspaces
$u$ , $v\subseteq V$ ,

(1.1) $dim(u)+dim(v)=dim(u\cap v)+dim(u+v)$ .

Pick any $x$ , $y$
$\in P$ such that $dim(x)<dim(y)$ . We find a one

dimensional subspace $a\subseteq V$ such that $a\subseteq y$ , $a\not\subset x$ , and such that
$x+a\in P$ . Observe

$dim(x+w)=dim(x)+dim(w)$

$<dim(y)+dim(w)$

$=dim(y+w)$ ,

so $y+w\not\leqq x+w$ . In particular,

(1.2) $y\not\in x+w$ .

By (1.2), there exists a one dimensional subspace $a\subseteq y$ such that
$a\not\leqq x+w$ . Observe $a\not\in x$ , so it remains to show $x+a\in P$ . Observe
by (1.1) and the construction that

$dim((x+a)\cap w)=dim(x+a)+dim(w)-dim(x+a+w)$

$=dim(x)+1+dim(w)-dim(x+w)-1$
$=0$ ,

and we conclude $x+a\in P$ , as desired.

Example 1.7. Polar spaces over $GF(q)$ : Let $V$ denote a finite
dimensional vector space over the finite field $GF(q)$ . Endow $V$ with a
form $\langle, \rangle$ : $V\times V\rightarrow GF(q)$ such that

$\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$ $(\forall u, v, w\in V)$ ,

$\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$ $(\forall u, v, w\in V)$ ,

$\langle\alpha u, v\rangle=\alpha\langle u, v\rangle$ $(\forall u, v\in V, \forall\alpha\in GF(q))$ .

Further assume

$\langle u, v\rangle=\langle v, u\rangle$ $(\forall u, v\in V)$ (the symmetric bilinear case),

or

$\langle u, u\rangle=0$ $(\forall u\in V)$ (the alternating bilinear case),

or

$\langle u, v\rangle=\overline{\langle v,u\rangle}$ $(\forall u, v\in V)$ (the Hermitean case).
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(In the last case
–

denotes a field automorphism of $GF(q)$ of order
2.) A subspace $x\subseteq V$ is said to be totally isotropic (abbreviated $t.i.$ )
whenever $\langle u, v\rangle=0$ for all $u$ , $v\in x$ . The set

(1.3) $P:=$ { $x|x$ is a $t.i$ . subspace of $V$ }

is a $V$-matroid.

Proof. We verify $NT$ , $LI$ , AU in Definition 1.4. $NT$ holds since
$O\in P$ . $LI$ is trivial, so consider AU. For all subspaces $x\subseteq V$ , let $x^{\perp}$

denote the orthogonal complement

(1.4) $x^{\perp}:=$ { $u\in V|\langle u$ , $v\rangle=0$ for all $v\in x$ }.

Observe $x$ is $t.i$ . if and only if $x\subseteq x^{\perp}$ . By elementary linear algebra,

(1.5) $dim(x^{\perp})+dim(x)=dim(x\cap V^{\perp})+dim(V)$ .

Pick any $t.i$ . subspaces $x$ , $y\subseteq V$ such that $dim(x)<dim(y)$ . We find
a one dimensional subspace $a\subseteq V$ such that $a\subseteq y$ , $a\not\subset x$ , and such
that $x+a$ is $t.i$ . To obtain $a$ , we claim

(1.6) $x^{\perp}\cap y\not\leqq x$ .

Suppose (1.6) fails. Then by the construction,

(1.7) $x^{\perp}\cap y=x\cap y$ .

Observe $x^{\perp}$ , $y$ are both contained in $(x\cap y)^{\perp}$ , so

(1.8) $x^{\perp}+y\subseteq(x\cap y)^{\perp}$ .

Now by (1.5), (1.7), (1.8),

$dim(x\cap V^{\perp})+dim(V)=dim(x^{\perp})+dim(x)$

$<dim(x^{\perp})+dim(y)$

$=dim(x^{\perp}+y)+dim(x^{\perp}\cap y)$

$\leq dim((x\cap y)^{\perp})+dim(x\cap y)$

$=dim(x\cap y\cap V^{\perp})+dim(V)$ ,

an impossibility. Hence (1.6) holds. By (1.6), there exists a one dimen-

sional subspace $a\subseteq x^{\perp}\cap y$ such that $a\not\in x$ . Observe $a\subseteq y$ , and $y$

is $t.i.$ , so $a$ is $t.i$ . Also $x$ is $t.i$ . and $a\subseteq x^{\perp}$ , so $x+a$ is $t.i$ . Now $a$
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has the desired properties, so AU holds. Now $P$ is a $V$-matroid, and
we are done.

Example 1.8. More polar spaces over $GF(q)$ : Let $V$ denote a
finite dimensional vector space over the finite field $GF(q)$ . Endow $V$

with a quadratic form, i.e., a function $f$ : $V\rightarrow GF(q)$ satisfying

$f(\alpha v)=\alpha^{2}f(v)$ $(\forall\alpha\in GF(q), \forall v\in V)$ ,

$ f(u+v)=f(u)+f(v)+\langle u, v\rangle$ $(\forall u, v\in V)$ ,

where $\langle, \rangle=\langle, \rangle_{f}$ is a symmetric bilinear form from Example 1.7.
A subspace $x\subseteq V$ is said to be totally singular (abbreviated $t.s.$ )
whenever $f(v)=0$ for all $v\in x$ . The set

$P:=$ {$x|x$ is a $t.s$ . subspace of $V$ }

is a $V$-matroid.

Proof. We verify $NT$ , $LI$ , AU in Definition 1.4. $NT$ , $LI$ hold as
in Example 1.7, so consider AU. First observe that any $t.s$ . subspace
$z\subseteq V$ is $t.i$ . (with respect to $\langle$ , $\rangle$ , in the sense of Example 1.7). Now
pick any $t.s$ . subspaces $x$ , $y$

$\subseteq V$ such that $dim(x)<dim(y)$ . We find
a one dimensional subspace $a\subseteq V$ such that $a\subseteq y$ , $a\not\leqq x$ , and such
that $x+a$ is $t.s$ . By Example 1.7 and our preliminary comment, there
exists a one dimensional subspace $a\subseteq V$ such that $a\subseteq y$ , $a\ovalbox{\tt\small REJECT} x$ ,

and such that $x+a$ is $t.i$ . In fact $x+a$ is $t.s$ . To see this, we pick
any $v\in x+a$ and show $f(v)=0$ . Observe $v=v_{1}+v_{2}$ for some
$v_{1}\in x$ and some $v_{2}\in a$ . Observe $f(v_{1})=0$ , since $x$ is $t.s$ . Observe
$f(v_{2})=0$ , since $a\subseteq y$ , and since $y$ is $t.s$ . Observe $\langle v_{1}, v_{2}\rangle=0$ , since
$x+a$ is $t.i$ . Now

$f(v)=f(v_{1}+v_{2})$

$=f(v_{1})+f(v_{2})+\langle v_{1}, v_{2}\rangle$

$=0$ ,

as desired. Now $a$ has the desired properties, so AU holds. Now $P$ is
a $V$-matroid, and we are done.

Note 1.9. In the nondegenerate case (Definitions 26.6, 26.8), the
examples in 1.7, 1.8 are often referred to as classical polar spaces. This
distinguishes them from the closely related Tits polar spaces, which we
will encounter in Section 30. See [Ar], [Ca2], [Mu], [Ti] for information
on the classical polar spaces.
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We now seek a common generalization of Definitions 1.1, 1.4. We
will use the language of partially ordered sets, so first we review some
basic concepts from this area.

Let $P$ denote a finite set. By a partial order on $P$ , we mean a
binary relation $\leq$ on $P$ such that

(i) $x\leq x$ $(\forall x\in P)$ ,

(ii) $x\leq y$ and $y\leq z$ $\rightarrow$ $x\leq z$ $(\forall x, y, z\in P)$ ,
(iii) $x\leq y$ and $y$ $\leq x$ $\rightarrow$ $x=y$ $(\forall x, y\in P)$ .

By a partially ordered set (or poset, for short), we mean a pair $(P, \leq)$ ,

where $P$ is a finite set, and where $\leq$ is a partial order on $P$ . Abusing
notation, we will suppress reference to $\leq$ , and just write $P$ instead of
$(P, \leq)$ .

Let $P$, $Q$ denote any posets. A map $\phi$ : $P\rightarrow Q$ is said to be an
isomorphism of posets whenever $\phi$ is a bijection, and for all $x$ , $y$

$\in P$ ,

$x\leq y$ (in $P$ ) $\mapsto$ $\phi(x)\leq\phi(y)$ (in $Q$ ).

$P$ and $Q$ are said to be isomorphic whenever there exists an isomor-
phism of posets $\phi$ : $P\rightarrow Q$ . We do not distinguish between isomorphic
posets.

Let $P$ denote a poset, with partial order $\leq$ , and let $x$ and $y$

denote any elements in $P$ . As usual, we write $x<y$ whenever $x\leq y$

and $x\neq y$ . We say $y$ covers $x$ whenever $x<y$ , and there is no
$z\in P$ such that $x<z<y$ . An element $x\in P$ is said to be maximal
(resp. minimal) whenever there is no $y$

$\in P$ such that $x<y$ (resp.
$y$ $<x)$ . Let $\max(P)$ (resp. $\min(P)$ ) denote the set of all maximal
(resp. minimal) elements in $P$ . Whenever $\max(P)$ (resp. $\min(P)$ )
consists of a single element, we denote that element by 1 (resp. 0), and
we say $P$ has $a$ 1 (resp. $P$ has a 0).

Suppose $P$ has a 0. By an atom (or point) in $P$ , we mean an
element in $P$ that covers 0. We let $A_{P}$ denote the set of atoms in $P$ .

Suppose $P$ has a 0. By a rank function on $P$ , we mean a function
rank: $P\rightarrow \mathbb{Z}$ such that rank(0) $=0$ , and such that for all $x$ , $y\in P$ ,

(1.9) $y$ covers $x$ $\rightarrow$ rank(y)-rank(x) $=1$ .

Observe the rank function is unique if it exists. $P$ is said to be ranked
whenever $P$ has a rank function. In this case, we set

(1.10) rank(P) $:=\max\{rank(x)|x\in P\}$ ,

(1.11) $P_{i}:=$ { $x\in P|$ rank(x) $=i$ } $(i\in \mathbb{Z})$ ,
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and observe $P_{0}=\{0\}$ , $P_{1}=A_{P}$ . We refer to the elements of $P_{2}$ as
the lines of $P$ . For notational convenience set

(1.12) top(P) $:=P_{D}$ ,

where $D=rank(P)$ . Observe

(1.13) top(P)max(P),

but we might not have equality in (1.13).
Let $P$ denote any poset, and let $S$ denote any subset of $P$ . Then

there is a unique partial order on $S$ such that for all $x$ , $y$
$\in S$ ,

(1.14) $x\leq y$ (in $S$ ) $\mapsto$ $x\leq y$ (in $P$).

This partial order is said to be induced from $P$ . By a subposet of $P$ , we
mean a subset of $P$ , together with the partial order induced from $P$ .

Pick any $x$ , $y\in P$ such that $x\leq y$ . By the interval $[x, y]$ , we mean
the subposet

$[x, y]:=\{z\in P|x\leq z\leq y\}$

of $P$ .

Let $P$ denote any poset, and pick any $x$ , $y$
$\in P$ . By a lower bound

for $x$ , $y$ , we mean an element $z\in P$ such that $z\leq x$ and $z\leq y$ .

Suppose the subposet of lower bounds for $x$ , $y$ has a unique maximal
element. In this case we denote this maximal element by $x\wedge y$ , and
say $x\wedge y$ exists. The element $x\wedge y$ is known as the meet of $x$ and
$y$ . $P$ is said to be a (meet) semilattice whenever $P$ is nonempty, and
$x\wedge y$ exists for all $x$ , $y$

$\in P$ . A semilattice has a 0. Suppose $P$ is
a semilattice, and pick any $x$ , $y$

$\in P$ . By an upper bound for $x$ , $y$ , we
mean an element $z\in P$ such that $z\geq x$ and $z\geq y$ . Observe the
subposet of upper bounds for $x$ , $y$ is closed under $\wedge$ ; in particular, it
has a unique minimal element if and only if it is nonempty. In this case
we denote this minimal element by $x\vee y$ , and say $x\vee y$ exists. The
element $x\vee y$ is known as the $jo?.n$ of $x$ and $y$ . By a lattice, we mean
a semilattice $P$ such that $x\vee y$ exists for all $x$ , $y\in P$ . A lattice has
a 1.

Suppose $P$ is a semilattice. Then every interval in $P$ is a lattice.
Suppose $P$ is a semilattice. Then $P$ is said to be atomic whenever

each element of $P$ is a join of atoms. A semilattice $P$ is atomic if
and only if each element of $P$ that is not 0 and not an atom covers
at least 2 elements of $P$ .

Suppose $P$ is a lattice. Then $P$ is said to be modular whenever
for all $x$ , $y\in P$ ,

(1.15) $x$ , $y$ cover $x\wedge y$ $\mapsto$ $x\vee y$ covers $x$ , $y$ .
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$P$ is modular if and only if $P$ is ranked, and for all $x$ , $y\in P$ ,

(1.16) rank(x) $+rank(y)=$ rank(x\wedge y) $+rank(x\vee y)$

[St, p104]. Suppose $P$ is a modular atomic lattice. Then any interval
in $P$ is a modular atomic lattice.

We mention two examples of modular atomic lattices. (A full clas-
sification is given in Theorems 1.12, 1.13.)

Example 1.10. Let $A$ denote a finite set. The Boolean algebra
$B_{A}$ is the poset of all subsets of $A$ , ordered by inclusion. $B_{A}$ is a
modular atomic lattice. Moreover, for all $x$ , $y\in B_{A}$ ,

(1.17) $x\wedge y=x\cap y$ ,

(1.18) $x\vee y=x\cup y$ ,

(1.19) rank(x) $=|x|$ .

We often write $B(D)$ to denote $B_{A}$ , where $D=|A|$ .

Proof. Routine.

Example 1.11. Let $V$ denote a finite vector space. The projective
geometry $L_{V}$ is the poset of all subspaces of $V$ , ordered by inclusion.
$L_{V}$ is a modular atomic lattice. Moreover, for all $x$ , $y$ $\in L_{V}$ ,

(1.20) $x\wedge y=x\cap y$ ,

(1.21) $x\vee y=x+y$ ,

(1.22) rank(x) $=dim(x)$ .

We often write $L_{q}(D)$ to denote $L_{V}$ , where $V$ is over the field $GF(q)$

and where $D=dim(V)$ .

Proof. Routine.

There is a classification of all modular atomic lattices essentially due
to Veblen and Young, which we present below without proof.

Let $q$ denote an integer at least 2. By a projective plane of order $g$ ,

we mean a ranked lattice $P$ of rank 3 such that each line in $P$ covers
exactly $q+1$ points in $P$ , each point in $P$ is covered by exactly $q+1$

lines in $P$ , $a\vee b$ is a line for any distinct points $a$ , $b\in P$ , and $x\wedge y$

is a point for any distinct lines $x$ , $y\in P$ .

Let $P$ denote a ranked poset with 0. A line $x\in P$ is said to be
thick whenever $x$ covers at least three points in $P$ .

In the following theorem, we consider the modular atomic lattices
that have all lines thick. In Theorem 1.13, we consider the general case.
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Theorem 1.12 ([Ca2, Theorems 3.3.1, 3.4.1], [V-Y]). For each
nonnegative integer $D$ , let $\Omega_{D}$ denote the class of all modular atomic
lattices that have rank $D$ and have all lines thick. Then for any poset
$P$ ,

$P\in\Omega_{0}$ if and only if $P=\{0\}$ .

$P\in\Omega_{1}$ if and only if $P=\{0,1\}$ .
$P\in\Omega_{2}$ if and only if $P$ is a ranked lattice with rank 2 and
$P$ has at least 3 points.
$P\in\Omega_{3}$ if and only if $P$ is a projective plane of order $q$ for
some integer $q\geq 2$ .

For $D\geq 4$ , $P\in\Omega_{D}$ if and only if $P$ is isomorphic to $L_{q}(D)$

for some (prime power) integer $q\geq 2$ .

Let $P$, $Q$ denote any posets. By the Cartesian product $P\times Q$ , we
mean the poset on the set

(1.23) $P\times Q:=\{xy |x\in P, y \in Q\}$ ,

such that for all $x$ , $x’\in P$ and all $y$ , $y’\in Q$ ,

(1.24) $xy\leq x’y’$ (in $P\times Q$ ) $\mapsto x\leq x’$ (in $P$ ) and $y\leq y’$ (in $Q$ ).

Theorem 1.13 ([Ca2, Theorems 3.3.3, 3.4.1], [V-Y]). Let $\Omega$

denote the class of modular atomic lattices that have all lines thick. Then

for any poset $P$ , the following are equivalent.

(i) $P$ is a modular atomic lattice.
(ii) There exists an integer $r\geq 1$ and there exists $P_{1}$ , $P_{2}$ , $\ldots$ , $P_{r}$

$\in\Omega$ such that $P=P_{1}\times P_{2}\times\cdots\times P_{r}$ .

A modular atomic lattice is sometimes referred to as a generalized
projective geometry.

Let $P$ denote any lattice. Elements $x$ , $y\in P$ are said to be
complements whenever $x\wedge y=0$ and $x\vee y=1$ . $P$ is said to be
complemented whenever each element in $P$ has a complement. Let $P$

denote any semilattice. Then $P$ is said to be relatively complemented
whenever each interval in $P$ is complemented. A modular atomic
lattice is relatively complemented. Let $P$ denote any semilattice, and
let $I$ $=[x, y]$ denote any interval. Then elements $u$ , $v\in I$ are said to
be relative complements in I whenever

(1.25) $u\wedge v=x$ and $u\vee v=y$ .
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Let $P$ denote any poset. By a lower ideal in $P$ , we mean a subposet
$S\subseteq P$ such that for all $x$ , $y\in P$ ,

(1.26) $x\in S$ and $y\leq x$ $\rightarrow$

$y$
$\in S$ .

An upper ideal of $P$ is defined similarly.

Definition 1.14. Let $\prime p$ denote a modular atomic lattice. By a
$\prime p$-matroid, we mean any subposet $P\subseteq\prime p$ satisfying conditions $NT$ , $LI$ ,

AU below.

$NT$ : $ P\neq\emptyset$ .
$LI$ : $P$ is a lower ideal in $\prime p$ .

AU: For all $x$ , $y$
$\in P$ such that rank(x) <rank(y), there exists an

atom $a\in P$ such that $a\leq y$ , $a\not\leq x$ , and such that $x\vee a\in P$ .

In view of Example 1.10, for any finite set $A$ and any subset
$P\subseteq B_{A}$ , $P$ is an $A$-matroid if and only if $P$ (together with the
partial order induced from $B_{A}$ ) is a $B_{A}$ -matroid. Similarly, in view of
Example 1.11, for any finite vector space $V$ and any subset $P\subseteq L_{V}$ ,
$P$ is a $V$-matroid if and only if $P$ (together with the partial order
induced from $L_{V}$ ) is a $L_{V}$ -matroid.

We end this section with a fundamental fact about $\prime p$-matroids.

Lemma 1.15. Let $\prime p$ denote a modular atomic lattice, and let
$P$ denote $a\prime p$ -matroid. Then

$\max(P)=top(P)$ .

Proof. The inclusion $\supseteq$ is clear, so consider the inclusion $\subseteq$ .

Pick $x\in\max(P)$ , and suppose $x\not\in top(P)$ . Pick $y$ $\in top(P)$ . Then
rank(x)<rank(y), so by AU, there exists an atom $a\in P$ such that
$a\leq y$ , $a\not\leq x$ , and such that $x\vee a\in P$ . Now $x<x\vee a$ , so $x\not\in\max(P)$ ,
a contradiction.

\S 2. $\mathcal{P}$-basis systems

Let $P$ denote any poset. Elements $x$ , $y\in P$ are said to be
comparable whenever $x\leq y$ or $y\leq x$ , and incomparable otherwise. By
an antichain in $P$ , we mean a subset $S\subseteq P$ , where any two distinct
elements of $S$ are incomparable. There is a natural bijection from the
set of all antichains in $P$ to the set of all lower ideals in $P$ . Indeed,
for any subset $S\subseteq P$ , let $S^{-}$ denote the subposet

(2.1) $S^{-}:=$ { $x\in P|x\leq s$ for some $s\in S$ }.

It is clear $S^{-}$ is a lower ideal in $P$ .
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Lemma 2.1. For any poset $P$ , the map

(2.2) $A\rightarrow A^{-}$

induces a bijection from the set of all antichains of $P$ to the set of all
lower ideals of P. The inverse map is

(2.3) $L\rightarrow\max(L)$ .

Proof. Routine.

Let $\prime \mathcal{P}$ denote a modular atomic lattice. We have already considered
one set of lower ideals in $\prime \mathcal{P}$ , namely the $\prime p$-matroids. The $\prime p$-matroids
correspond to what set of antichains under (2.2), (2.3)? As we show in

Theorem 2.5, this set consists of the $\prime\rho$-basis systems, defined as follows.

Definition 2.2. Let $\prime p$ denote a modular atomic lattice. By a P-
basis system, we mean any subset $ B\subseteq\prime\rho$ that satisfies the conditions
$NT$ , $AC$ , $BA$ below.

$NT$ : $ B\neq\emptyset$ .
$AC$ : $B$ is an antichain.
$BA$ : For all $x$ , $y$ $\in P$ such that $x\leq y$ , if there exists $b_{1}$ , $b_{2}\in B$

such that $x\leq b_{1}$ and $b_{2}\leq y$ , then there exists $b_{3}\in B$ such
that $x\leq b_{3}\leq y$ .

The following lemma gives a second equivalent definition of a P-
basis system.

Lemma 2.3. Let $7^{\supset}$ denote a modular atomic lattice, and let $B$

denote a nonempty antichain in $7^{\supset}$ . Then the following are equivalent.

$BA$ : For all $x$ , $y\in P$ such that $x\leq y$ , if there exists $b_{1}$ , $b_{2}\in B$

such that $x\leq b_{1}$ and $b_{2}\leq y$ , then there exists $b_{3}\in B$ such
that $x\leq b_{3}\leq y$ .

$BA’$ : For all $b_{1}$ , $b_{2}\in B$ and all $x\in P$ such that $b_{1}$ covers $x$ ,

there exists $b_{3}\in B$ such that $b_{3}$ covers $x$ and such that
$b_{3}\wedge b_{2}>x\wedge b_{2}$ .

Proof. $BA$ $\rightarrow$ $BA’$ . We first claim that for all $b_{1}$ , $b_{2}\in B$ such
that $b_{1}$ covers $b_{1}\wedge b_{2}$ , then $b_{2}$ covers $b_{1}\wedge b_{2}$ . To see this, observe
$b_{2}>b_{1}\wedge b_{2}$ since $B$ is an antichain, so there exists $z\in[b_{1}\wedge b_{2}, b_{2}]$

such that $z$ covers $b_{1}\wedge b_{2}$ . To prove the claim, it suffices to show
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$b_{2}=z$ . Since $b_{1}$ , $z$ cover $b_{1}\wedge b_{2}=b_{1}\wedge z$ , we find by modularity that
$b_{1}\vee z$ covers $b_{1}$ , $z$ . In particular

$b_{1}\leq b_{1}\vee z\geq z\leq b_{2}$ ,

so by $BA$ there exists $b_{3}\in B$ such that

$z\leq b_{3}\leq b_{1}\vee z$ .

But $b_{3}\neq b_{1}\vee z$ since $B$ is an antichain, so $b_{3}=z$ . Now $b_{2}$ equals
$b_{3}=z$ , since $b_{3}\leq b_{2}$ and $B$ is an antichain. This proves the claim.

Now pick any $b_{1}$ , $b_{2}\in B$ , and pick any $x\in P$ such that $b_{1}$ covers
$x$ . We must find $b_{3}\in B$ such that $b_{3}$ covers $x$ and $b_{3}\wedge b_{2}>x\wedge b_{2}$ .

We may assume $x\wedge b_{2}=b_{1}\wedge b_{2}$ ; otherwise we are done with $b_{3}:=b_{1}$ .

Set $y:=x\vee b_{2}$ . Then

$b_{1}\geq x\leq y\geq b_{2}$ ,

so by $BA$ , there exists $b_{3}\in B$ such that $x\leq b_{3}\leq y$ . Observe $b_{1}\not\leq y$ ;
otherwise $x$ and $b_{1}$ are both relative complements of $b_{2}$ in $[x\wedge b_{2}, y]$ ,

contradicting (1.16). In particular $b_{1}\not\leq b_{3}$ . Now $x=b_{1}\wedge b_{3}$ , so $b_{3}$

covers $x$ by our preliminary claim. Also $b_{3}\wedge b_{2}>x\wedge b_{2}$ ; otherwise $x$

and $b_{3}$ are both relative complements of $b_{2}$ in $[x\wedge b_{2}, y]$ , contradicting
(1.16).

$BA’\rightarrow BA$ . Suppose we are given $x$ , $y$
$\in P$ and $b_{1}$ , $b_{2}\in B$ such

that
$b_{1}\geq x\leq y$ $\geq b_{2}$ .

Of all the elements $b_{3}\in B$ such that $b_{3}\geq x$ , pick one where $rank(b_{2}\wedge$

$b_{3})$ is maximal. $BA$ will follow if we can show $b_{3}\leq y$ . Suppose $b_{3}\not\leq y$ .

Then $b_{3}>b_{3}\wedge y$ , so there exists $z\in[b_{3}\wedge y, b_{3}]$ such that $b_{3}$ covers $z$ .

By $BA’$ , there exists $b_{3}’\in B$ such that $b_{3}’$ covers $z$ and $b_{3}’\wedge b_{2}>z\wedge b_{2}$ .

Now

$b_{3}’\wedge b_{2}>z\wedge b_{2}$

$\geq(b_{3}\wedge y)\wedge b_{2}$

$=b_{3}\wedge b_{2}$ ,

and

$b_{3}’\geq z$

$\geq b_{3}\wedge y$

$\geq x$ ,

contradicting the construction of $b_{3}$ . Hence $b_{3}\leq y$ , as desired. This
proves Lemma 2.3.
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Lemma 2.4. Let $P$ denote a modular atomic lattice, and let
$B$ denote a $P$ -basis system. Then for all $b\in B$ , $D=rank(b)$ is
independent of $b$ . We refer to $D$ as the rank of $B$ .

Proof. Suppose there exists $b_{1}$ , $b_{2}\in B$ such that rank(fri)\neq

rank(&2)- Of all such $b_{1}$ , $b_{2}$ , pick a pair such that $rank(b_{1}\wedge b_{2})$ is
maximal. Observe $b_{1}\wedge b_{2}<b_{1}$ , since $B$ is an antichain, so there exists
$x\in[b_{1}\wedge b_{2}, b_{1}]$ such that $b_{1}$ covers $x$ . By $BA’$ , there exists $b_{3}\in B$

such that $b_{3}$ covers $x$ and such that $b_{3}\wedge b_{2}>x\wedge b_{2}$ . Now

$b_{3}\wedge b_{2}>x\wedge b_{2}$

$=b_{1}\wedge b_{2}$ ,

so $rank(b_{2})=rank(b_{3})$ by the construction. Also rank(fei)=rank(&3),

since both $b_{1}$ , $b_{3}$ cover $x$ , so rank(6i)=rank(62), contradicting our
assumptions. This proves Lemma 2.4.

Theorem 2.5. Let $P$ denote a modular atomic lattice.

(i) Let $B$ denote a $P$ -basis system. Then $B^{-}$ is a $P$ -matroid.
(ii) Let $P$ denote a $P$ -matroid. Then $\max(P)$ is a $P$ -basis

system.

In particular, the map $B\rightarrow B^{-}$ isa bijection from the set of all
$P$ -basis systems to the set of all $P$ -matroids.

Proof. (i) Observe $B^{-}$ certainly satisfies $NT$ , $LI$ in Definition
1.14. To verify condition AU in that definition, pick any $x$ , $y$

$\in B^{-}$

such that

(2.4) rank(x) <rank(y).

By the construction, there exists $b_{1}$ , $b_{2}\in B$ such that $x\leq b_{1}$ , $y$
$\leq b_{2}$ .

Observe
$b_{1}\geq x\leq b_{2}\vee x\geq b_{2}$ ,

so by $BA$ , there exists $b_{3}\in B$ such that

$x\leq b_{3}\leq b_{2}\vee x$ .

It is immediate from the left inequality above that $x\wedge y\leq b_{3}\wedge y$ . We
claim that in fact

(2.5) $x\wedge y<b_{3}\wedge y$ .

To see (2.5), observe $b_{3}\vee y\leq b_{2}\vee x$ by the construction, so

(2.6) $rank(b_{3}\vee y)\leq rank(b_{2}\vee x)$ .
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Observe $x\wedge y\leq x\wedge b_{2}$ since $y$
$\leq b_{2}$ , so

(2.7) rank(x\wedge y) $\leq rank(b_{2}\wedge x)$ .

From (1.16) and Lemma 2.4, we also have

(2.8) rank(62)=rank(63),

(2.8) rank(62)+rank(y)= $rank(b_{3}\wedge y)+rank(b_{3}\vee y)$ ,

(2.10) $rank(b_{2}\wedge x)+rank(b_{2}\vee x)=rank(x)+rank(62)$ .

Summing (2.4), (2.6)-(2.10), we obtain

rank(x\wedge y)< $rank(b_{3}\wedge y)$ ,

and (2.5) follows. Now by (2.5), there exists an atom $a\in P$ such that
$a\leq b_{3}\wedge y$ but $a\not\leq x\wedge y$ . Now $a\leq y$ and $a\not\leq x$ by the construction.
Also $a\vee x\in B^{-}$ , since $a\vee x\leq b_{3}$ by the construction. We have now
verified AU in Definition 1.14, so $B^{-}$ is a $P$-matroid.

(ii) Certainly $B:=\max(P)$ satisfies conditions $NT$ , $AC$ in Defini-
tion 2.2. To show $B$ is $P$-basis system, it suffices to show $BA’$ . First,
we remark by Lemma 1.15 that rank(fr) is independent of $b\in B$ . Now
pick any $b_{1}$ , $b_{2}\in B$ , and any $x\in P$ such that $b_{1}$ covers $x$ . We must
find $b_{3}\in B$ such that $b_{3}$ covers $x$ , and such that $b_{3}\wedge b_{2}>x\wedge b_{2}$ .

Observe rank(x) $<rank(b_{2})$ by our remark, so by AU in Definition
1.14, there exists an atom $a\in P$ such that $a\leq b_{2}$ , $a\not\leq x$ , and such
that $x\vee a\in P$ . Observe $a$ covers $0=x\wedge a$ , so $x\vee a$ covers $x$ by
modularity. In particular rank(x\vee a) $=rank(b_{1})$ , forcing $x\vee a\in B$ by
our remark. Set $b_{3}:=x\vee a$ . Since $b_{3}\geq x$ we have

$b_{3}\wedge b_{2}\geq x\wedge b_{2}$ .

In fact
$b_{3}\wedge b_{2}>x\wedge b_{2}$ ,

since $a\leq b_{3}\wedge b_{2}$ but $a\not\leq x\wedge b_{2}$ . Now $BA$ ’ holds, so $B$ is a $P$-basis
system by Lemma 2.3. This proves Theorem 2.5.

We can use Theorem 2.5 to get examples of $P$-matroids.

Example 2.6. Let $D$ denote a nonnegative integer. Let $P$

denote a modular atomic lattice with rank $D+1$ , and let $B$ denote
any non empty subset of $P_{D}$ . Then $B$ is a $P$-basis system of rank $D$ .

Moreover, $B^{-}$ is a $P$-matroid of rank $D$ .
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Proof. Routine application of Definition 2.2, Theorem 2.5.

We mention one other fact about basis systems in a modular atomic
lattice.

Lemma 2.7. Let $P$ denote a modular atomic lattice, and let $B$

denote a $P$ -basis system. Pick any $x$ , $y\in P$ such that $x\leq y$ and
such that $ B\cap[x, y]\neq\emptyset$ . Then $B\cap[x, y]$ is $a[x, y]$ -basis system.

Proof. $B\cap[x, y]$ certainly satisfies conditions $NT$ , $AC$ in Definition
2.2. To verify $BA$ , pick $u$ , $v\in[x, y]$ and pick $b_{1}$ , $b_{2}\in B\cap[x, y]$ such
that

$b_{1}\geq u\leq v\geq b_{2}$ .

We must find $b_{3}\in B\cap[x, y]$ such that $u\leq b_{3}\leq v$ . Applying $BA$

to $B$ , we find there exists $b_{3}\in B$ such that $u\leq b_{3}\leq v$ . But now
$x\leq b_{3}\leq y$ by the construction, so in fact $b_{3}\in B\cap[x, y]$ , as desired.

\S 3. The dual of a $\mathcal{P}$-matroid

Let $P$ denote any poset. By the poset-dual of $P$ , we mean the
poset $P^{*}$ on the same set as $P$ , such that for all elements $x$ , $y$ ,

(3.1) $x\leq y$ (in $P^{*}$ ) $\mapsto$ $x\geq y$ (in $P$ ).

More generally, let $S$ denote any subset of $P$ . Then $S^{*}$ will denote
the subposet of $P^{*}$ induced on $S$ .

We mention that $P$ is a modular atomic lattice if and only if $P^{*}$

is a modular atomic lattice [St, Theorem 3.3.3].

Lemma 3.1. Let $P$ denote a modular atomic lattice. Then for
all subsets $B\subseteq P$ , the following are equivalent.

(i) $B$ isa $P$ -basis system.
(ii) $B$ is a $p*$ -basis system.

Proof. This is immediate from the symmetry in the axioms $NT$ ,
$AC$ , $BA$ from Definition 2.2.

Let $P$ denote any poset. For any subset $S\subseteq P$ , let $S^{+}$ denote
the subposet

(3.2) $S^{+}=$ { $x\in P|x\geq s$ for some $s\in S$ }.

Observe $S^{+}$ is an upper ideal in $P$ .

Definition 3.2. Let $P$ denote a modular atomic lattice, and let
$P$ denote a $P$-matroid. By the matroid-dual of $P$ (with respect to
$P)$ , we mean the $p*$ -matroid $(B^{+})^{*}$ , where $B=\max(P)$ .
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\S 4. The definition of a quantum matroid

In this section, we introduce the notion of a quantum matroid, and
consider the examples with rank at most 2.

Definition 4.1. By a quantum matroid, we mean any nonempty
poset $P$ satisfying the conditions $R$ , $SL$ , $M$ , AU below.

$R$ : $P$ is ranked.
$SL$ : $P$ is a (meet) semilattice.
$M$ : For all $x\in P$ , the interval $[0, x]$ is a modular atomic lattice.

AU: For all $x$ , $y\in P$ satisfying rank(x) <rank(y), there exists an
atom $a\in P$ such that $a\leq y$ , $a\not\leq x$ , and such that $x\vee a$

exists in $P$ .

Let $P$ denote a modular atomic lattice, and let $P$ denote a P-
matroid. Then the subposet $P$ is a quantum matroid. In particular,
any modular atomic lattice is a quantum matroid. We now consider the
quantum matroids of rank at most 2.

A poset $P$ is a quantum matroid of rank 0 if and only if $P$

consists of a single element. A poset $P$ is a quantum matroid of rank
1 if and only if $P$ has a 0 and at least one other element, and all
nonzero elements of $P$ cover 0. The example below characterizes the
quantum matroids of rank 2.

Example 4.2. A poset $P$ is a quantum matroid of rank 2 if and
only if $P$ has a 0, and satisfies the following four conditions:

$R$ : $P$ is ranked and rank(P) $=2$ .
$SL$ : For any distinct points $x$ , $y\in P$ , there exists at most one line

$z\in P$ such that $x\leq z$ , $y$ $\leq z$ .
$M$ : Each line in $P$ covers at least 2 points in $P$ .

AU: For each point $x\in P$ and each line $y$
$\in P$ such that $x\not\leq y$ ,

there exists a point $x’\in P$ and a line $y’\in P$ such that
$x\leq y’\geq x’\leq y$ .

We have already proved some facts about $P$-matroids. Are there cor-
responding results about the more general quantum matroids? Lemma
1.15 can certainly be extended to this level.

Lemma 4.3. Let $P$ denote a quantum matroid. Then

(4.1) $\max(P)=top(P)$ .

Proof. Similar to the proof of Lemma 1.15.
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Problem 4.4. Extend the notion of the dual of a $P$-matroid (Def.
3.2) to the level of quantum matroids.

\S 5. Prematroids and their subposets

Definition 5.1. By a pre-quantum matroid (or simply, a prema-
troid), we mean a nonempty poset $P$ that satisfies conditions $R$ , $SL$ ,
$M$ in Definition 4.1.

We will have occasion to consider subposets of prematroids that
possess the following properties.

Definition 5.2. Let $P$ denote any poset, and let $S$ denote any
subposet of $P$ .

(i) $S$ is said to be $\wedge$-closed in $P$ whenever for all $x$ , $y$
$\in S$ ,

(5.1) $x\bigwedge_{P}y$ exists $\rightarrow$ $x\bigwedge_{P}y\in S$ .

The notion of $\vee$-closure is defined similarly,
(ii) $S$ is said to be convex in $P$ whenever for all $x$ , $y$ , $z\in P$ ,

(5.2) $x$ , $y$
$\in S$ and $x\leq z\leq y$ $\rightarrow$ $z\in S$ .

Lemma 5.3. Let $P$ denote a poset with 0, and let $S$ denote
any nonempty subposet of P. Then the following are equivalent.

(i) $S$ is a lower ideal in $P$ .

(ii) $S$ is convex in $P$ , and $0_{P}\in S$ .

If $(i)-(ii)$ hold, then $S$ is $\wedge$ -closed in $P$ , and $0_{S}=0_{P}$ .

Proof, (i) $\rightarrow(ii)$ . Routine.
(ii) $\rightarrow(i)$ . Pick any $x\in S$ and any $y\in P$ such that $y$ $\leq x$ .

Then $0_{P}\leq y\leq x$ , so $y$
$\in S$ by convexity.

Now assume $(i)-(ii)$ . To see $S$ is $\wedge$-closed in $P$ , pick any $x$ , $y$
$\in S$

such that $x\bigwedge_{P}y$ exists. Certainly $x\bigwedge_{P}y\leq x$ , so $x\bigwedge_{P}y\in S$ by the
definition of a lower ideal. Hence $S$ is $\wedge$-closed in $P$ . It is clear that
$S$ , $P$ have the same 0. This proves Lemma 5.3.

Lemma 5.4. Let $P$ denote a semilattice, and let $S$ denote $a$

nonempty $\wedge$ -closed subposet of P. Then $S$ is a semilattice. Moreover,

for all $x$ , $y\in S$ ,

(5.3) $x\bigwedge_{S}y=x\bigwedge_{P}y$ .
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Proof. Pick any $x$ , $y\in S$ . Then it suffices to show

(5.4) $\max(L)=\{x\bigwedge_{P}y\}$ ,

where
$L:=\{z\in S|z\leq x, z\leq y\}$ .

Certainly $xApy\in L$ , since $x\bigwedge_{P}y\in S$ by $\wedge$-closure. Also $x\bigwedge_{P}y\geq z$

for all $z\in L$ , so $x\bigwedge_{P}y$ is the unique maximal element of L. this
proves Lemma 5.4.

Lemma 5.5. Let $P$ denote a semilattice, and let $S$ denote
a convex subposet of P. Then for all $x$ , $y$ $\in S$ , the following are
equivalent.

(i) $x\bigvee_{S}y$ exists.
(ii) $x\bigvee_{P}y$ exists, and $x\bigvee_{P}y\in S$ .

If $(i)-(ii)$ hold, then

(5.5) $x\bigvee_{S}y=x\bigvee_{P}y$ .

Proof. (i) $\rightarrow(ii)$ . $x\bigvee_{P}y$ exists, since $x\bigvee_{S}y$ is an upper bound
for $x$ , $y$ in $P$ . Also $x\bigvee_{P}y\in S$ by convexity, since $x\leq xVpy\leq x\bigvee_{S}y$ .

(ii) $\rightarrow(i)$ . Clear.
Now suppose (i), (ii). We have observed $x\bigvee_{P}y\leq xVsV-$ Also

$x\bigvee_{P}y$ is an upper bound for $x$ , $y$ in $S$ , so $x\bigvee_{P}y\geq x\bigvee_{S}y$ . Hence
$x\bigvee_{P}y$ and $x\bigvee_{S}y$ are identical. This proves Lemma 5.5.

Lemma 5.6. Let $P$ denote a ranked semilattice, and let $S$

denote a nonempty $\wedge$ -closed, convex subposet of P. Then $S$ is ranked.
Moreover, for all $x\in S$ ,

(5.6) rankp(x)=rankp(x)–rankp(Os).

Proof. $S$ is a semilattice by Lemma 5.4; in particular $S$ has a 0.
We show the function $R:S\rightarrow \mathbb{Z}$ defined by

(5.7) $R(x)=rankp(x)$ –rankp(Os) $(x\in S)$

is a rank function for $S$ . Certainly $R(0_{S})=0$ . Also, for any $x$ , $y\in S$

such that $y$ covers $x$ (in $S$ ), then $y$ covers $x$ (in $P$ ) by the
convexity of $S$ , forcing

rankp(y)–rankp(x)=1.
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Now

$R(y)-R(x)=1$

by (5.7), so $R$ is a rank function for $S$ by (1.9). This proves Lemma
5.6.

Corollary 5.7. Let $P$ denote a prematroid. Then any nonempty
$\wedge$ -closed, convex subposet of $P$ is a prematroid. In particular, any
nonempty lower ideal of $P$ is a prematroid.

Proof. Let $S$ denote a nonempty $\wedge$-closed, convex subposet of
$P$ . Then $S$ satisfies axiom $SL$ by Lemma 5.4, and axiom $R$ by Lemma
5.6. To see that $S$ satisfies axiom $M$ , pick any $x\in S$ . Then the interval
$[0_{S}, x]$ of $S$ may be viewed as an interval in the modular atomic lattice
$[0_{P}, x]$ , and is therefore a modular atomic lattice. We have now shown
$S$ is a prematroid. The last line of the present corollary follows from
Lemma5.3.

\S 6. Embeddable Posets

In this section, we define the notion of an embedding of a poset, and
consider posets that are embeddable into a modular atomic lattice.

Definition 6.1. Let $P$ and $P$ denote posets. By a $P$ embedding
of $P$ , we mean an injection $\sigma$ : $P\rightarrow P$ that satisfies (i), (ii) below.

(i) $x\leq y$ $\mapsto$ $\sigma(x)\leq\sigma(y)$ $(\forall x, y\in P)$ .

(ii) $\sigma(P)$ is a lower ideal in $P$ .

Lemma 6.2. Let $P$ denote a modular atomic lattice.

(i) Let $P$ denote a quantum matroid, and let $\sigma$ : $P\rightarrow P$ denote
a $P$ -embedding of P. Then $\sigma(P)$ is a $P$ -matroid.

(ii) Let $Q$ denote a $P$ matroid, and let $\sigma$ : $Q\rightarrow P$ denote the
identity map on Q. Then $\sigma$ is an embedding of $Q$ .

Proof. Immediate from Definitions 1.14, 4.1.

Definition 6.3. A poset $P$ is said to be embeddable whenever
$ P\neq\emptyset$ , and there exists a pair $P$ , $\sigma$ , where $P$ is a modular atomic
lattice, and $\sigma$ is a $P$ embedding of $P$ .

Lemma 6.4. Let $P$ denote an embeddable poset. Then $P$ is
isomorphic to a lower ideal in a modular atomic lattice. In particular,
$P$ is a prematroid.
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Proof. Immediate from Definition 6.1, Corollary 5.7, and the ob-
servation that any modular atomic lattice is a prematroid.

We end this section with a conjecture.

Conjecture 6.5. Let P denote a quantum matroid with rank at
least 4. Then P is embeddable.

We will see in Corollary 39.8 that the above conjecture is true for
the regular quantum matroids. See also [C-J-P], [Spl], [Ti, Theorem
8.21].

\S 7. The distance function $\partial$

For the next several sections, we will develop a theory of prema-
troids. We will use the following notation.

Let $P$ denote any poset, and pick any $x$ , $y$ $\in P$ . Let us say $x$ , $y$

are adjacent whenever $x$ covers $y$ or $y$ covers $x$ . Pick any non-
negative integer $d$ . By a path of length $d$ connecting $x$ , $y$ , we mean
any sequence $x=x_{0}$ , $x_{1}$ , $\ldots$ , $x_{d}=y(x_{0}, x_{1}, \ldots, x_{d}\in P)$ , such that
$x_{i}$ , $x_{i+1}$ are adjacent for all $i(0\leq i\leq d-1)$ . $P$ is said to be connected
whenever for all $x$ , $y$

$\in P$ , there exists a path in $P$ connecting $x$ and
$y$ . Suppose $P$ has a 0. Then $P$ is connected, since for all $x\in P$ ,
there exists a path in $P$ connecting $x$ , 0.

Let $P$ denote an arbitrary connected poset. For any $x$ , $y\in P$ ,

define the distance

$\partial(x, y)$ $:=\min$ { $d|$ there exists a path of length $d$ connecting $x$ , $y$ }.

Then for all $x$ , $y$ , $z\in P$ ,

(7.1) $\partial(x, y)+\partial(y, z)\geq\partial(x, z)$ .

If $P$ is ranked, we can say a bit more.

Lemma 7.1. Let $P$ denote a ranked poset with 0, and pick any
$x$ , $y\in P$ . Then

(i) We have

(7.2) $\partial(x, y)\geq rank(y)-$ rank(x).

(ii) Equality holds in (7.2) if and only if $y\geq x$ .

(iii) For all $z\in P$ such that $z$ is adjacent to $x$ ,

(7.3) $\partial(x, y)-\partial(z, y)\in\{1, -1\}$ .
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Proof. Lines (i), (ii) are immediate from (1.9). Line (iii) follows
from the observation that the graph structure on $P$ is bipartite.

Let $P$ denote an arbitrary connected poset. A path $x_{0}$ , $x_{1}$ , $\ldots$ , $x_{d}$

in $P$ is said to be geodesic whenever $\partial(x_{0}, x_{d})=d$ . More generally,
any sequence $x_{0}$ , $x_{1}$ , $\ldots$ , $x_{d}$ of elements from $P$ is said to be geodesic
whenever

(7.4) $\sum_{i=0}^{d-1}\partial(x_{i}, x_{i+1})$ $=$ $\partial(x_{0}, x_{d})$ .

Let $P$ denote a ranked poset with 0. Then for all $x_{0}$ , $x_{1}$ , $\ldots$ , $x_{d}\in P$ ,

(7.5) $x_{0}\leq x_{1}\leq\cdots\leq x_{d}$ $\rightarrow$

$x_{0}$ , $x_{1}$ , $\ldots$ , $x_{d}$ is geodesic.

Let $P$ denote a ranked poset with 0, and let $p:=(x_{0}, x_{1}, \ldots, x_{d})$

denote a path in $P$ . By the shape of $P$ , we mean the sequence

(7.6) shape(p) $:=$ $(rank(x_{0}), rank(x_{1}),$ $\ldots$ , $rank(x_{d}))$ .

By the weight of $p$ , we mean the scalar

(7.7) weight(p) $:=\sum_{i=0}^{d}rank(x_{i})$ .

Lemma 7.2. Let $P$ denote a prematroid. Pick any nonnegative
integer $d$ , and pick any path $p=(x_{0}, x_{1}, \ldots, x_{d})$ $(x_{0},$ $x_{1}$ , $\ldots$ , $ x_{d}\in$

$P)$ . Then the following are equivalent.

(i) There does not exist an integer $i(1\leq i\leq d-1)$ such that

(7.8) $x_{i-1}<x_{i}>x_{i+1}$ .

(ii) There exists an integer $e$ $(0\leq e\leq d)$ such that

$x_{0}>x_{1}>x_{2}>\cdots>x_{e}$ ,

$x_{e}<x_{e+1}<x_{e+2}<\cdots<x_{d}$ .

Suppose $(i)-(ii)$ hold. Then we say $p$ is down-up. We call $x_{e}$ the
base of $p$ .

Proof. Routine.

Lemma 7.3. Let $P$ denote a prematroid, and pick any $x$ , $y$
$\in P$ .

Then there existsa geodesic down-up path connecting $x$ , $y$ .
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Proof. Set $d:=\partial(x, y)$ , and pick a geodesic path

$p:=(x=x_{0}, x_{1}, \ldots, x_{d}=y)$ $(x_{0}, x_{1}, \ldots, x_{d}\in P)$

with minimal weight in the sense of (7.7). We claim $p$ is down-up.
Suppose not. Then by Lemma 7.2, there exists an integer $ i(1\leq i\leq$

$d-1)$ such that

(7.9) $x_{i-1}<x_{i}>x_{i+1}$ .

Observe $x_{i-1}\neq x_{i+1}$ since $p$ is geodesic, and of course $x_{i}$ covers
both $x_{i-1}$ and $x_{i+1}$ , so $x_{i}=x_{i-1}\vee x_{i+1}$ . It follows $x_{i-1}\vee x_{i+1}$ covers
$x_{i-1}$ , $x_{i+1}$ , so by modularity, $x_{i-1}$ , $x_{i+1}$ both cover $x_{i-1}\wedge x_{i+1}$ . Now
the sequence

$p’:=(x=x_{0}, x_{1}, \ldots, x_{i-1}, x_{i-1}\wedge x_{i+1}, x_{i+1}, \ldots, x_{d}=y)$

is a path. Observe $p’$ is geodesic, since $p$ , $p’$ have the same length,
and

weight $(p’)=weight(p)-2$ .

This contradicts our construction, and we conclude $p$ is down-up. This
proves Lemma 7.3.

Lemma 7.4. Let $P$ denote a prematroid, and pick any $x$ , $y$ , $ z\in$

P. Then the following are equivalent:

(i) The sequence $xzy$ is geodesic, and $z\leq x$ , $z\leq y$ .

(ii) $z=x\wedge y$ .

Proof. We set

$N:=$ { $u\in P|xuy$ is geodesic, $u\leq x$ , $u\leq y$ },

and show $N=\{x\wedge y\}$ . To do this, it suffices to show

(7.10) $N\subseteq\{x\wedge y\}$ ,

and

(7.11) $ N\neq\emptyset$ .

To obtain (7.10), pick any $u\in N$ . Observe $u$ is a lower bound for $x$

and $y$ , so $u\leq x\wedge y$ . Now $u\leq x\wedge y\leq x$ , so $u$ , $x\wedge y$ , $x$ is geodesic by
(7.5). Similarly $u\leq x\wedge y\leq y$ , so $u$ , $x\wedge y$ , $y$ is geodesic. Recall $xuy$ is
geodesic, so $x$ , $x\wedge y$ , $u$ , $x\wedge y$ , $y$ is geodesic. In particular $x\wedge y$ , $u$ , $x\wedge y$

is geodesic, so $u=x\wedge y$ . We now have (7.10). To obtain (7.11), recall
by Lemma 7.3, there exists a geodesic down-up path $p$ connecting $x$ , $y$ .
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Let $u$ denote the base of $p$ , in the sense of Lemma 7.2. Then $u\in N$

by construction, and (7.11) follows. This proves Lemma 7.4.

Replacing $\wedge$ by $\vee$ in Lemma 7.4, we get the following result.

Lemma 7.5. Let $P$ denote a prematroid, and pick any $x$ , $y$ , $ z\in$

P. Then the following are equivalent:

(i) The sequence $xzy$ is geodesic, and $z\geq x$ , $z\geq y$ .

(ii) The join $x\vee y$ exists, and $z=x\vee y$ .

Proof. Similar to Lemma 7.4.

Corollary 7.6. Let $P$ denote a prematroid, and pick any $x$ , $ y\in$

$P$ .

(i)

(7.12) $\partial(x, y)=rank(x)+rank(y)$ $-2$ rank(x\wedge y).

(ii) Suppose $x\vee y$ exists. Then

(7.13) $\partial(x, y)=2$ rank(x\vee y) –rank(x) –rank(y).

(iii) Suppose $x\vee y$ exists. Then

(7.14) rank(x) $+rank(y)=$ rank(x\wedge y) $+rank(x\vee y)$ .

Proof. To see (i), observe by Lemma 7.1 $(i),(ii)$ and Lemma 7.4 that

$\partial(x, y)=\partial(x, x\wedge y)+\partial(x\wedge y, y)$

$=rank(x)-$ rank(x\wedge y) $+rank(y)-$ rank(x\wedge y).

The proof of (ii) is similar. To get (iii), equate (7.12), (7.13).

Corollary 7.7. Let $P$ denote a prematroid, and let $S$ denote $a$

nonempty $\wedge$ -closed, convex subposet of P. Then for all $x$ , $y\in S$ ,

(7.15) $\partial_{S}(x, y)=\partial_{P}(x, y)$ .

Proof. By Corollary 7.6(i),

(7.16) $\partial_{P}(x, y)=rank_{P}(x)+rank_{P}(y)-2rank_{P}(x\bigwedge_{P}y)$ .

Observe $S$ is a prematroid by Corollary 5.7. Applying Corollary 7.6(i)
to $S$ , we obtain

(7.17) $\partial_{S}(x, y)=rank_{S}(x)+rank_{S}(y)-2rank_{S}(x\wedge sy)$ .
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Evaluating the right hand side of (7.17) using (5.3), (5.6), we find the
right hand sides of (7.16), (7.17) are equal. Line (7.15) follows, and
Corollary 7.7 is proved.

Lemma 7.8. Let $P$ denote a prematroid, and pick any $x$ , $y$ , $ z\in$

P. Then the following are equivalent:

(i) The sequence $xzy$ is geodesic.
(ii) $z\geq x\wedge y$ , and $x\wedge z$ , $y\wedge z$ are relative complements in the

interval $[x\wedge y, z]$ .

(iii) There exists $u\in[x\wedge y, x]$ and there exists $v\in[x\wedge y, y]$ such
that $z=u\vee v$ .

Moreover, if $(i)-(iii)$ hold, then

(7.18) $u=x\wedge z$ ,

(7.19) $v=y\wedge z$ .

Proof. (i) $\rightarrow(ii)$ . Set $u:=x\wedge z$ , $v:=y\wedge z$ . Then it suffices to
show $z=u\vee v$ and $x\wedge y=u\wedge v$ . Observe $xuz$ , $zvy$ are each geodesic
by Lemma 7.4, so xuzvy is geodesic. In particular $uzv$ is geodesic.
Since $z\geq u$ and $z\geq v$ by the construction, we find $z=u\vee v$

by Lemma 7.5. Observe by our remarks above that xuvy is geodesic.
Observe by Lemma 7.4 that $u$ , $u\wedge v$ , $v$ is geodesic, so $x$ , $u$ , $u\wedge v$ , $v$ , $y$

is geodesic. In particular $x$ , $u\wedge v$ , $y$ is geodesic. But $u\wedge v\leq u\leq x$

and $u\wedge v\leq v\leq y$ , so $u\wedge v=x\wedge y$ by Lemma 7.4.
(ii) $\rightarrow(iii)$ . Set $u:=x\wedge z$ , $v:=y\wedge z$ . Observe $u\geq x\wedge y$ since

$z\geq x\wedge y$ , and $u\leq x$ by construction, so $u\in[x\wedge y, x]$ . Similarly
$v\in[x\wedge y, y]$ . Also $z=u\vee v$ by (ii) and (1.25).

(iii) $\rightarrow(i)$ . Observe $x$ , $x\wedge y$ , $y$ is geodesic by Lemma 7.4. Observe
both $x$ , $u$ , $x\wedge y$ and $x\wedge y$ , $v$ , $y$ are geodesic by the construction, so
$x$ , $u$ , $x\wedge y$ , $v$ , $y$ is geodesic. In particular, xuvy is geodesic. Also
$u$ , $u\vee v$ , $v$ is geodesic by Lemma 7.5, so $x$ , $u$ , $u\vee v$ , $v$ , $y$ is geodesic. In
particular, $x$ , $u\vee v$ , $y$ is geodesic, so (i) holds.

Now suppose $(i)-(iii)$ hold. We have observed in the proof of (iii) $\rightarrow$

$(i)$ that xuzvy is geodesic. Now (7.18) holds by Lemma 7.4, since $xuz$

is geodesic, and since $u\leq x$ , $u\leq z$ . Line (7.19) is similar. This proves
Lemma 7.8.

Interchanging the roles of $\vee$ , $\wedge$ in the above lemma, we obtain the
following result.

Lemma 7.9. Let $P$ denote a prematroid, and pick any $x$ , $y$ , $ z\in$

$P$ such that $x\vee y$ exists. Then the following are equivalent:

(i) The sequence $xzy$ is geodesic.
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(ii) $z\leq x\vee y$ , and $x\vee z$ , $y\vee z$ are relative complements in the
interval $[z, x\vee y]$ .

(iii) There exists $u\in[x, x\vee y]$ and there exists $v\in[y, x\vee y]$ such
that $z=u\wedge v$ .

Moreover, if $(i)-(iii)$ hold, then

(7.20) $u=x\vee z$ ,

(7.21) $v=y\vee z$ .

Proof. Similar to Lemma 7.8.

Lemma 7.10. Let $P$ denote a prematroid, and pick any $x$ , $y$ ,
$z$ , $z’\in P$ such that both $xzy$ and xzry are geodesic, and such that
$z\vee z’$ exists. Then $x$ , $z\vee z’$ , $y$ is geodesic.

Proof. By Lemma 7.8, there exists $u$ , $u’\in[x\wedge y, x]$ and there
exists $v$ , $v’\in[x\wedge y, y]$ such that $z=u\vee v$ and $z’=u’\vee v’$ . Now

$z\vee z’=(u\vee u’)\vee(v\vee v’)$ ,

$u\vee u’\in[x\wedge y, x]$ ,

$v\vee v’\in[x\wedge y, y]$ ,

so $x$ , $z\vee z’$ , $y$ is geodesic by Lemma 7.8.

Lemma 7.11. Let $P$ denote a prematroid, and pick any $x$ , $y$ ,
$z$ , $z’\in P$ such that both $xzy$ and xzry are geodesic, and such that
$x\vee y$ exists. Then $x$ , $z\wedge z’$ , $y$ is geodesic.

Proof. Similar to Lemma 7.10.

Lemma 7.12. Let $P$ denote an embeddable poset, and pick any
$x$ , $y$ , $z$ , $z’\in P$ such that both $xzy$ and xzry are geodesic. Then
$x$ , $z\wedge z’$ , $y$ is geodesic.

Proof. By Lemma 6.4, we may identify $P$ with a lower ideal in
some modular atomic lattice $P$ . By Lemmas 5.3, 5.4, $z\wedge z’$ is the same
as computed in $P$ or $P$ . By Lemma 5.3 and Corollary 7.7, the distance
function for $P$ equals the restriction to $P$ of the distance function for
$P$ . In particular, both $xzy$ and $xz’ y$ are geodesic in $P$ . Applying
Lemma 7.11 to $\mathcal{P}$ , we find $x$ , $z\wedge z’$ , $y$ is geodesic in $P$ . By our above

remark, $x$ , $z\wedge z’$ , $y$ is geodesic in $P$ . This proves Lemma 7.12.

Conjecture 7.13. Let P denote a prematroid such that

(i) the rank of P is at least 3,
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(ii) for all $x$ , $y$ , $z$ , $z’\in P$ such that both $xzy$ and $xz’ y$ are
geodesic, then $x$ , $z\wedge z’$ , $y$ is geodesic.

Then $P$ is embeddable.

\S 8. Geodesically closed subposets in a prematroid

In this section, we introduce the notion of a geodesically closed sub-
poset in a prematroid, and characterize these subposets in terms of the
meet and join operation.

Definition 8.1. Let $P$ denote a prematroid. A subposet $G\subseteq P$

is said to be geodesically closed in $P$ , whenever $G$ is nonempty, and
for all $x$ , $y$ , $z\in P$ ,

$x$ , $y\in G$ and $xzy$ geodesic in $P$ $\rightarrow$ $z\in G$ .

Lemma 8.2. Let $P$ denote a prematroid. Then for any subposet
$G\underline{\subseteq}P$ , the following are equivalent.

(i) $G$ is geodesically closed in $P$ .

(ii) $G$ is nonempty, $\wedge$ -closed, $\vee$ -closed, and convex in $P$ .

Proof. (i) $\rightarrow$ $(ii)$ . $G$ is nonempty by Definition 8.1. Given
$x$ , $y$ $\in G$ , observe $x$ , $x\wedge y$ , $y$ is geodesic in $P$ by Lemma 7.4, so
$x\wedge y\in G$ . Suppose $x\vee y$ exists in $P$ . Then $x$ , $x\vee y$ , $y$ is geodesic in
$P$ by Lemma 7.5, so $x\vee y\in G$ . Suppose $x\leq y$ , and pick any $z\in[x, y]$ .

Then $xzy$ is geodesic in $P$ by (7.5), so $z\in G$ . We now have (ii).
(ii) $\rightarrow(i)$ . Suppose we are given $x$ , $y$ $\in G$ and $z\in P$ such that

$xzy$ is geodesic in $P$ . Then by Lemma 7.8(i),(iii), $z=u\vee v$ for some
$u\in[x\wedge y, x]$ and some $v\in[x\wedge y, y]$ . Observe $x\wedge y\in G$ by $\wedge$-closure,
so now $u$ , $v\in G$ by convexity, and now $z\in G$ by $\vee$-closure. This
proves Lemma 8.2.

Corollary 8.3. Let $P$ denote a prematroid, and let $G$ denote
a geodesically closed subposet of P. Then $G$ is a prematroid.

Proof. $G$ is $\wedge$-closed and convex by Lemma 8.2, and is therefore
a prematroid by Corollary 5.7.

Lemma 8.4. Let $P$ denote a prematroid, and pick any $x\in P$ .

(i) The subposet $x^{+}:=\{y\in P|y\geq x\}$ is geodesically closed in
$P$ .

(ii) For all $y$
$\in P$ such that $y\geq x$ , the interval $[x, y]$ is geodesi-

cally closed in $P$ .
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Proof. The subposets $x^{+}$ , $[x, y]$ satisfy the condition Lemma
8.2(ii), and are therefore geodesically closed in $P$ by that lemma.

Lemma 8.5. Let $P$ denote a prematroid, and let $G$ denote $a$

geodesically closed subposet of $P$ that is contained in an interval of $P$ .

Then $G$ is an interval. In particular, $G$ is a modular atomic lattice.

Proof. Observe by Lemma 8.2 that $G=[x, y]$ , where $x=$
$\bigwedge_{w\in G}w$ and $y$ $=\ovalbox{\tt\small REJECT}_{w\in G}w$ .

\S 9. Submatroids and subspaces in a prematroid

In this section we introduce the notions of a submatroid and a sub-
space in a prematroid, and show these objects are in 1-1 correspondence.

Lemma 9.1. Let $P$ denote a prematroid. Then for any subposet
$G\underline{\subseteq}P$ , the following are equivalent.

(i) $G$ is a nonempty $\vee$ -closed lower ideal in $P$ .

(ii) $G$ is geodesically closed in $P$ , and $0_{G}=0_{P}$ .

If $(i)-(ii)$ hold, we say $G$ is a subprematroid of $P$ , (or simply, $a$

submatroid).

Proof. (i) $\rightarrow(ii)$ . $G$ is convex and $\wedge$-closed in $P$ by Lemma
5.3, so $G$ is geodesically closed in $P$ by Lemma 8.2. $G$ , $P$ share the

same 0 by Lemma 5.3.
(ii) $\rightarrow(i)$ . $G$ is nonempty by Definition 8.1. $G$ is $\vee$ closed in

$P$ by Lemma 8.2. $G$ is convex in $P$ by the same lemma, so $G$ is a
lower ideal in $P$ by Lemma 5.3. This proves Lemma 9.1.

Lemma 9.2. Let $P$ denote a prematroid. Then for all subposets
$G\underline{\subseteq}P$ , and for all $x\in P$ , the following are equivalent.

(i) $G$ is geodesically closed in $P$ , and $0_{G}=x$ .

(ii) $G$ is a submatroid of $x^{+}$ .

Proof. (i) $\rightarrow(ii)$ . $G$ is geodesically closed in $P$ and contained
in $x^{+}$ , so $G$ is geodesically closed in $x^{+}$ . The result now follows from
Lemma 9.1.

(ii) $\rightarrow(i)$ . By Lemma 9.1, $0_{G}=x$ , and $G$ is geodesically closed
in $x^{+}$ . But $x^{+}$ is geodesically closed in $P$ by Lemma 8.4(i), so $G$ is
geodesically closed in $P$ . This proves Lemma 9.2.

Let $P$ denote a poset with 0, and recall $A_{P}$ denotes the set of all
atoms of $P$ . For all $x\in P$ , define

(9.1) Shadow(x) $:=\{a\in A_{P}|a\leq x\}$ .
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Observe by Definition 5.1 that any prematroid is atomic.

Lemma 9.3. Let $P$ denote an atomic semilattice. Then

(i) for all $x\in P$ ,

(9.2)
$x=a\in Shadow(x)\vee a$

.

(ii) for all $x$ , $y$
$\in P$ ,

(9.3) $x\leq y$ $\mapsto$ Shadow(x)_ Shadow(y).

(iii) for all $x$ , $y$
$\in P$ ,

(9.4) Shadow(x\wedge y)=Shadow(x)\cap Shadow(y).

Proof (i) Immediate from the definition of an atomic semilattice.
(ii), (iii) Immediate from (i).

Lemma 9.4. Let $P$ denote a prematroid, and let $x$ , $y$ denote
incomparable elements in $P$ such that $x\vee y$ exists. Then

(9.5) $Shadow(x\vee y)\backslash Shadow(x\wedge y)=\cup Shadow(a\vee b)$ ,

where the union is over all $a\in Shadow(x)\backslash Shadow(y)$ and all $ b\in$

Shadow $(y)\backslash Shadow(x)$ .

Proof $\supseteq$ : Pick any $a\in Shadow(x)\backslash Shadow(y)$ , any $b\in Shadow(y)\backslash $

Shadow(x), and any $c\in Shadow(a\vee b)$ . Observe $a\leq x\leq x\vee y$ and
$b\leq y\leq x\vee y$ , so $a\vee b\leq x\vee y$ . Now $c\leq a\vee b\leq x\vee y$ , so
$c\in Shadow(x\vee y)$ . Observe $c\not\in Shadow(x\wedge y)$ ; otherwise

$b\leq a\vee b=a\vee c\leq x$ ,

a contradiction.
$\underline{\subseteq}$ : Pick $c\in Shadow(x\vee y)\backslash Shadow(x\wedge y)$ . We find $a\in Shadow(x)\backslash $

Shadow(y) and $b\in Shadow(y)\backslash Shadow(x)$ such that $ c\in Shadow(a\vee$

$b)$ . We may assume $c\not\leq x$ ; otherwise we are done with $a:=c$ , and
with $b$ an arbitrary element in Shadow(y)\Shadow(x). Similarly, we
may assume $c\not\leq y$ .

Observe $x\vee y$ is an upper bound for $c$ , $y$ , so $c\vee y$ exists. Set
$y’:=c\vee y$ . Then $y’$ covers $y$ by modularity, and $y’\in[y, x\vee y]$ by the
construction. Observe $x\wedge y’\geq x\wedge y$ . In fact $x\wedge y’>x\wedge y$ ; otherwise
$y$ , $y’$ are both relative complements of $x$ in $[x\wedge y, x\vee y]$ , contradicting
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(7.14). Now $Shadow(x\wedge y’)$ properly contains Shadow(x\wedge y) by (9.3),
so there exists an element $a\in Shadow(x\wedge y’)\backslash Shadow(x\wedge y)$ . Observe
$a\in Shadow(x)\backslash Shadow(y)$ . Observe $y’$ is an upper bound for $a$ , $c$ , so
$a\vee c$ exists, set $z:=a\vee c$ . Observe $a\neq c$ since $a\leq x$ and $c\not\leq x$ ,

so $z$ is a line by modularity. We mentioned $y’$ is an upper bound for
$a$ , $c$ , so $z=a\vee c\leq y’$ . Now $y\vee z=y’$ covers $y$ , so $z$ covers $y\wedge z$

by modularity. In particular $y\wedge z$ is an atom. Set $b:=y\wedge z$ . Observe
$b\in Shadow(y)$ , so $a\neq b$ . Observe $z$ covers $a$ , $b$ , so $z=a\vee b$ . Observe

$c\in Shadow(z)$

$=Shadow(a\vee b)$ .

Observe $b\not\in Shadow(x)$ ; otherwise $c\leq a\vee b\leq x$ , a contradiction, this
proves Lemma 9.4.

Definition 9.5. Let $P$ denote a prematroid. By a subspace of $P$ ,

we mean a subset $S\underline{\subseteq}A_{P}$ such that for all lines $x\in P$ ,

(9.6) $|Shadow(x)\cap S|\geq 2$ $\rightarrow$ Shadow(x)$-S$ .

Let $P$ denote a prematroid. Our purpose for the rest of this
section is to establish a 1-1 correspondence between the set $\mathcal{G}$ of all
submatroids of $P$ , and the set $S$ of all subspaces of $P$ . We proceed
as follows. In Lemma 9.6, we find a map $G\rightarrow A_{G}$ from $\mathcal{G}$ to $S$ , and
a map $S\rightarrow G_{S}$ from $S$ to $\mathcal{G}$ . In Theorem 9.7, we show these maps
are inverses, establishing our 1-1 correspondence.

Lemma 9.6. Let $P$ denote a prematroid.

(i) Let $G$ denote a submatroid of P. Then the set of atoms
$A_{G}=A_{P}\cap G$ of $G$ isa subspace of $P$ .

(ii) Let $S$ denote a subspace of $P$ , and set

(9.7) $G_{S}:=$ { $x\in P|$ Shadow(x)$-S$ }.

Then $G_{S}$ is a submatroid of $P$ .

Proof, (i) Pick any line $x\in P$ , and suppose there exists distinct

points
$y$ , $z\in Shadow(x)\cap A_{G}$ .

We show

(9.8) Shadow(x) $A_{G}$ .
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To see (9.8), observe
$x=y\vee z\in G$

since $G$ is $\vee$-closed, so now

Shadow(x)_ $[0, x]$ $\underline{\subseteq}G$

since $G$ is convex, and now

Shadow(x)_ $A_{P}\cap G=A_{G}$ ,

as desired.
(ii) By Lemma 9.1, it suffices to show $G_{S}$ is a nonempty, $\vee$-closed

lower ideal in $P$ . Observe Shadow(0) $=\emptyset\underline{\subseteq}S$ , so $0\in G_{S}$ by (9.7).
In particular $ G_{S}\neq\emptyset$ . $G_{S}$ is a lower ideal in $P$ by the construction.
To see that $G_{S}$ is $\vee$-closed in $P$ , we pick any $x$ , $y\in G_{S}$ such
that $x\vee y$ exists in $P$ , and show $x\vee y\in G_{S}$ . This will occur if
Shadow(x\vee y)_ $S$ , so we pick any $c\in Shadow(x\vee y)$ and show $c\in S$ .

We may assume $x$ , $y$ are incomparable, and that $c\not\in Shadow(x\wedge y)$ ;
otherwise the result is trivial. Now by Lemma 9.4, there exists $ a\in$

Shadow(x)\Shadow(y) and there exists $b\in Shadow(y)\backslash Shadow(x)$

such that $c\in Shadow(a\vee b)$ . Observe $a\vee b$ is a line, and

$|Shadow(a\vee b)\cap S|\geq|\{a, b\}|=2$ ,

so
Shadow(a\vee b)_ $S$

by (9.6). Now
$c\in Shadow(a\vee b)\underline{\subseteq}S$ ,

as desired. Now $G_{S}$ is $\vee$-closed. We have now shown $G_{S}$ is a
nonempty, $\vee$-closed lower ideal in $P$ , so $G_{S}$ is a submatroid of $P$ by
Lemma 9.1.

Theorem 9.7. Let $P$ denote a prematroid. let $\mathcal{G}$ denote the
set of all submatroids of $P$ , and let $S$ denote the set of all subspaces
of P. Then the maps

$\mathcal{G}$ $\rightarrow$ $S$

$G$ $\rightarrow A_{G}$

and

$S$ $\rightarrow$ $\mathcal{G}$

$S$ $\rightarrow G_{S}$
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are inverses. In particular, They are both bijections.

Proof. First, let $S$ denote a subspace of $P$ , and write $G=G_{S}$ .

Then it is immediate from the construction that $A_{G}=S$ . Secondly, let
$G$ denote any submatroid in $P$ , and write $S=A_{G}$ . We show $G=G_{S}$ .

To see $G\underline{\subseteq}G_{S}$ , pick any $x\in G$ . Observe Shadow(x)$-S$ since $G$ is
a lower ideal in $P$ , so $x\in G_{S}$ . Hence $G\underline{\subseteq}G_{S}$ . To see $G\supseteq G_{S}$ , pick
any $x\in G_{S}$ . Then Shadow(x) $S$ . Now

$x=a\in Shadow(x)\vee a\in G$
,

since $G$ is $\vee$-closed by Lemma 9.1, and since $S\underline{\subseteq}G$ by the construc-
tion. Hence $G\supseteq G_{S}$ , so $G=G_{S}$ . We have now established the given
maps are inverses. This proves Theorem 9.7.

\S 10. Singular subspaces

Definition 10.1. Let $P$ denote a prematroid. A subspace $S$ of
$P$ is said to be singular whenever

(10.1) $x\bigvee_{P}y$ exists for all $x$ , $y\in S$ .

Lemma 10.2. Let $P$ denote a prematroid, and pick any $x\in P$ .

Then Shadow(x) is a singular subspace of $P$ .

Proof. To show Shadow(x) is a subspace of $P$ , consider the
interval $G=[0, x]$ . Observe $G$ is a submatroid of $P$ by Lemma 8.4(ii),
Lemma 9.1(ii), so $A_{G}$ is a subspace of $P$ by Lemma 9.6(i). Observe
Shadow(x)= $A_{G}$ by construction, so Shadow(x) is a subspace of $P$ .

It is clear that Shadow(x) is singular. This proves Lemma 10.2.

Let $P$ denote a prematroid, and let $S$ denote a singular subspace
of $P$ . Must there exist an element $x\in P$ such that Shadow(x) $=S$?
The answer is “no” in general, but “yes” in the following special case.

Theorem 10.3. Let $P$ denote a prematroid such that: for all
$a\in A_{P}$ , and all $u\in P$ ,

(10.2) if $a\bigvee_{P}b$ exists for all $b\in Shadow(u)$ , then $a\bigvee_{P}u$ exists.

Then for all singular subspaces $S$ of $P$ , there exists an element $x\in P$

such that

(10.3) Shadow(x) $=S$ .
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Proof. Let the singular subspace $S$ be fixed, and let $G=G_{S}$ be
the corresponding submatroid from (9.7). Pick any $x\in\max(G)$ , and
recall

(10.4) Shadow(x)$-S$

by (9.7). We show equality holds in (10.4). Suppose not. Then there
exists a point $a\in S\backslash Shadow(x)$ . Since $a$ , Shadow(x) are contained in
a common singular subspace, $a\bigvee_{P}b$ exists for all $b\in Shadow(x)$ . It
follows by (10.2) that $a\bigvee_{P}x$ exists. Observe $a\bigvee_{P}x\in G$ , (since $G$ is
$\vee$-closed by Lemma 9.1(i) $)$ , and $a\bigvee_{P}x>x$ (since $a\not\leq x$ ), and we have
contradicted the maximality of $x$ in $G$ . We conclude equality holds
in (10.4), and the theorem is proved.

\S 11. More on the distance function

Lemma 11.1. Let $P$ denote a prematroid, and pick any $x$ , $x’$ ,
$y$ , $y’\in P$ such that both $xx’ y$ and $xy’ y$ are geodesic. Then the following
$(i)-(iv)$ are equivalent.

(i) $xx’ y’ y$ is geodesic.
(ii) $x\wedge x’\geq x\wedge y’$ and $y\wedge y’\geq y\wedge x’$ .

(iii) $x’\wedge y’\geq(x\wedge y’)\vee(x’\wedge y)$ .

(iv) $x’\wedge y’=(x\wedge y’)\vee(x’\wedge y)$ .

Proof. (i) $\rightarrow(ii)$ . Applying Lemma 7.8(ii) to the geodesic se-
quence $xx’y’$ , we find $x’\geq x\wedge y’$ . Of course $x\geq x\wedge y’$ , so $x\wedge x’\geq x\wedge y’$ .

Interchanging the roles of $x$ , $y$ , we find $y\wedge y’\geq y\wedge x’$ .

(ii) $\rightarrow(iii)$ . Observe $x’\geq x\wedge x’\geq x\wedge y’$ by (ii), and certainly
$y’\geq x\wedge y’$ , so $x’\wedge y’\geq x\wedge y’$ . Interchanging the roles of $x$ , $y$ , we find
$x’\wedge y’\geq x’\wedge y$ , and line (iii) follows.

(iii) $\rightarrow(iv)$ . The sequence $x$ , $x\wedge y’$ , $y’$ is geodesic by Lemma 7.4,
and we assume $xy’ y$ is geodesic, so $x$ , $x\wedge y’$ , $y’$ , $y$ is geodesic. Since

$x\wedge y’\leq(x\wedge y’)\vee(x’\wedge y)\leq x’\wedge y’\leq y’$ ,

the four elements in the above line form a geodesic sequence. Now

$x$ , $x\wedge y’$ , $(x\wedge y’)\vee(x’\wedge y)$ , $x’\wedge y’$ , $y’$ , $y$ is geodesic,

so in particular,

(11.1) $x$ , $(x\wedge y’)\vee(x’\wedge y)$ , $x’\wedge y’$ , $y$ is geodesic.
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Interchanging the roles of $x$ , $y$ , we find

(11.2) $x$ , $x’\wedge y’$ , $(x\wedge y’)\vee(x’\wedge y)$ , $y$ is geodesic,

and (11.1), (11.2) imply (iv).
(iv) $\rightarrow(i)$ . By Lemma 7.4 and our assumptions, we observe $x$ , $ x\wedge$

$y’$ , $y’$ , $y$ is geodesic. Observe $x\wedge y’\leq x’\wedge y’\leq y’$ , so $x$ , $x\wedge y’$ , $x’\wedge y’$ , $y’$ ,
$y$ is geodesic. In particular $x$ , $x’\wedge y’$ , $y’$ , $y$ is geodesic. Interchanging
the roles of $x$ , $y$ , we find $x$ , $x’$ , $x’\wedge y’$ , $y$ is geodesic. Combining the
above information, we find

(11.3) $x$ , $x’$ , $x’\wedge y’$ , $y’$ , $y$ is geodesic.

In particular, $xx’ y’ y$ is geodesic, so (i) holds. We have now proved
Lemma 11.1.

Corollary 11.2. Let $P$ denote a prematroid, and pick $x$ , $x’$ , $y$ , $y’$

$\in P$ such that $x\leq x’$ and $y\leq y’$ . Then the following are equivalent.

(i) $xx’y’y$ is geodesic.
(ii) $xx’ y$ and $xy’ y$ are both geodesic.

Proof. (i) $\rightarrow(ii)$ . Clear.
(ii) $\rightarrow(i)$ . We assume $x\leq x’$ , so

$x\wedge x’=x$

(11.4) $\geq x\wedge y’$ .

Interchanging the roles of $x$ , $y$ , we obtain

(11.5) $y\wedge y’\geq y\wedge x’$ .

The condition in Lemma ll.l(ii) is now satisfied by (11.4), (11.5), so
$xx’ y’ y$ is geodesic by that lemma.

\S 12. The function $\delta$ and the sets $x\star y$

Definition 12.1. Let $P$ denote a prematroid. For all $x$ , $y$
$\in P$ ,

define

(12.1) $\delta(x, y)$ $:=\min${ $\partial(x,$ $z)|z\in P$, $z\vee y$ exists},

(12.2) $x\star y:=$ { $z\in P|\partial(x,$ $z)=\delta(x$ , $y)$ , $z\vee y$ exists}.

To get a feel for the above definition, we consider a very special case.
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Lemma 12.2. Let $P$ denote a prematroid, and pick any $x$ , $y$
$\in$

P. Then the following are equivalent.

(i) $x\vee y$ exists.

(ii) $\delta(x, y)=0$ .

(iii) $x\star y=\{x\}$ .

(iv) $\delta(y, x)=0$ .

(v) $y\star x=\{y\}$ .

Proof. Immediate from Definition 12.1.

Let $P$ denote a prematroid, and pick any $x$ , $y$
$\in P$ . In general

(12.3) $\delta(x, y)\neq\delta(y, x)$ .

It turns out (as we will show in Sections 18, 19) that $\delta$ is symmetric in
its arguments precisely when $P$ satisfies the augmentation axiom, and
in this case $x\star y$ is a $[x\wedge y, x]$ -basis system. For now, we will lay some
groundwork with a general fact about $x\star y$ , and an interpretation of $\delta$ .

Theorem 12.3. Let $P$ denote a prematroid, and pick any $x$ , $ y\in$

P. Then

(12.4) $x\star y\underline{\subseteq}[x\wedge y, x]$ .

Proof. Pick any $z\in x\star y$ . We first show $z\leq x$ . Suppose $z\not\leq x$ .

We will obtain a contradiction by showing

(12.5) $(x\wedge z)\vee y$ exists

and

(12.6) $\partial(x, x\wedge z)<\partial(x, z)$ .

To see (12.5), observe $x\wedge z\leq z\leq y\vee z$ and $y\leq y\vee z$ , so $x\wedge z$ ,
$y$ have an upper bound. To see (12.6), recall $x$ , $x\wedge z$ , $z$ is geodesic by
Lemma 7.4, and $x\wedge z\neq x$ by the construction. Line (12.6) follows.
Now (12.5), (12.6) contradict Definition 12.1, so $z\leq x$ . It remains to
show $x\wedge y\leq z$ . Suppose $x\wedge y\not\leq z$ . We will obtain a contradiction by
showing

(12.7) $((x\wedge y)\vee z)\vee y$ exists

and

(12.8) $\partial(x, (x\wedge y)\vee z)<\partial(x, z)$ .



Quantum Matroids 359

To see (12.7), observe $x\wedge y\leq y\leq y\vee z$ and $z\leq y\vee z$ , so $(x\wedge y)\vee z\leq$

$y\vee z$ . Of course $y$ $\leq y\vee z$ , so $y\vee z$ is an upper bound for $(x\wedge y)\vee z$ ,

$y$ . We now have (12.7). To see (12.8), observe $x$ is an upper bound for
$x\wedge y$ , $z$ , so $(x\wedge y)\vee z\leq x$ . Now $z\leq(x\wedge y)\vee z\leq x$ , so $z$ , $(x\wedge y)\vee z$ , $x$

is geodesic, $z\neq(x\wedge y)\vee z$ by construction, and (12.8) follows. Now
(12.7), (12.8) contradict Definition 12.1, so $x\wedge y\leq z$ . We conclude
$z\in[x\wedge y, x]$ , and the theorem is proved.

We now establish an interpretation of $\delta$ . We begin with a technical
lemma, and proceed to our main result Theorem 12.5.

Lemma 12.4. Let $P$ denote a prematroid, and pick any $x$ , $ y\in$

P. Then for all $x’\in x^{+}$ and all $y’\in y^{+}$ ,

(i) $\partial(x’, x’\wedge y’)\geq\delta(x, y)$ ,
(ii) $\partial(y’, x’\wedge y’)\geq\delta(y, x)$ ,
(iii) $\partial(x’, y’)\geq\delta(x, y)$ $+\delta(y, x)$ .

Proof, (i) Observe $y’$ is an upper bound for $x\wedge y’$ , $y$ , so $(x\wedge$

$y’)\vee y$ exists. Now

(12.8) $\partial(x, x\wedge y’)\geq\delta(x, y)$

by Definition 12.1. Observe $x’$ is an upper bound for $x$ , $x’\wedge y’$ , so
$x\vee(x’\wedge y’)$ exists. Clearly

$x’\wedge y’$ $\leq$ $x\vee(x’\wedge y’)$ $\leq$
$x’$ ,

so

$\partial(x’, x’\wedge y’)\geq\partial(x\vee(x’\wedge y’), x’\wedge y’)$

$=\partial(x, x\wedge(x’\wedge y’))$ (modularity)

$=\partial(x, x\wedge y’)$ (since $x\leq x’$ )

$\geq\delta(x, y)$

by (12.9).

(ii) Similar.
(iii) Recall $x’$ , $x’\wedge y’$ , $y’$ is geodesic by Lemma 7.4, so

$\partial(x’, y’)=\partial(x’, x’\wedge y’)+\partial(x’\wedge y’, y’)$

$\geq\delta(x, y)+\delta(y, x)$

by (i), (ii). This proves Lemma 12.4.
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Theorem 12.5. Let $P$ denote a prematroid. Then for all $x$ , $ y\in$

$P$ ,

(12.10) $\delta(x, y)+\delta(y, x)$ $=$ $\min\{\partial(x’, y’)|x’\in x^{+}, y’\in y^{+}\}$ .

Proof. In view of Lemma 12.4, it suffices to find some $x’\in x^{+}$

and some $y’\in y^{+}$ such that

(12.11) $\partial(x’, y’)=\delta(x, y)$ $+\delta(y, x)$ .

To this end, pick $u\in x\star y$ and $v\in y\star x$ , and set

$x’:=x\vee v$ ,

$y’:=y\vee u$ .

Clearly $x’\in x^{+}$ , $y’\in y^{+}$ , so it remains to check (12.11). To obtain
it, we decompose $\partial(x, y)$ in two ways. First, observe both $xx’ y$ and
$xy’ y$ are geodesic by Lemma 7.8(i), (iii). Now $xx’ y’ y$ is geodesic by
Corollary 11.2, so

(12.12) $\partial(x, y)=\partial(x, x’)+\partial(x’, y’)+\partial(y’, y)$ .

Second, observe $x$ , $u$ , $x\wedge y$ , $v$ , $y$ is geodesic by Lemma 7.4 and Theorem
12.3, so

(12.13) $\partial(x, y)=\partial(x, u)+\partial(u, x\wedge y)+\partial(x\wedge y, v)+\partial(v, y)$ .

We now evaluate the terms on the right in (12.13). By Definition 12.1,

(12.14) $\partial(x, u)=\delta(x, y)$ ,

(12.15) $\partial(v, y)=\delta(y, x)$ .

Observe $u$ , $y$ are relative complements in $[x\wedge y, y’]$ by Lemma
7.8 $(ii),(iii)$ , so by modularity

(12.16) $\partial(u, x\wedge y)=\partial(y’, y)$ .

Similarly,

(12.17) $\partial(x\wedge y, v)=\partial(x, x’)$ .

Subtracting (12.12) from the sum of (12.13) $-(12.17)$ , we obtain (12.11),
as desired. This proves the theorem.
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\S 13. The functions $\rho$ and $\gamma$

Definition 13.1. Let $P$ denote a prematroid. For all $x$ , $y\in P$ ,
define

(i) $\rho(x, y)$ $:=rank(x\wedge y)$ ,
(ii) $\gamma(x, y):=\partial(x\wedge y, z)$ ,

where $z$ is any element of $x\star y$ . (Observe $\gamma(x, y)$ is independent of
the choice of $z$ by Definition 12.1, Theorem 12.3.)

Let $P$ denote a prematroid, and pick any $x$ , $y$ $\in P$ . In this
section, we consider the triple $\rho(x, y)$ , $\gamma(x, y)$ , $\delta(x, y)$ . In our main result
Theorem 13.5, we determine how this triple changes as we replace $x$

by an element in $P$ adjacent $x$ .

Lemma 13.2. Let $P$ denote a prematroid. Then for all $x$ , $y$
$\in$

$P$ ,

(13.1) rank(x) $=\rho(x, y)$ $+\gamma(x, y)$ $+\delta(x, y)$ .

Proof. Pick any $z\in x\star y$ . Observe 0, $x\wedge y$ , $z$ , $x$ is geodesic by
Theorem 12.3, so

rank(x) $=\partial(0, x\wedge y)+\partial(x\wedge y, z)+\partial(z, x)$

$=\rho(x, y)+\gamma(x, y)$ $+\delta(x, y)$

by Lemma T.1(ii) and Definitions 12.1, 13.1.

Lemma 13.3. Let $P$ denote a prematroid of rank D. Then for
all $x$ , $y\in P$ ,

(i) $\rho(x, y)$ , $\gamma(x, y)$ , $\delta(x, y)$ are nonnegative integers,
(ii) $\rho(x, y)+\gamma(x, y)$ $+\gamma(y, x)+\delta(x, y)$ $\leq D$ .

Proof. (i) Immediate.
(ii) Pick any $v\in y\star x$ . Then $x\vee v$ exists by Definition 12.1.

Observe $x$ , $v$ are relative complements in the interval $[x\wedge y, x\vee v]$ by
Lemma 7.8 $(ii),(iii)$ (with $u:=x$ ), so

rank(x\vee v) –rank(x) $=rank(v)-$ rank(x\wedge y)

(13.2) $=\gamma(y, x)$

by Lemma T.l(ii). Now by (13.2), Lemma 13.2, and the construction,

$ D\geq$ rank(x\vee v)

$=rank(x)+\gamma(y, x)$

$=\rho(x, y)$ $+\gamma(x, y)+\delta(x, y)+\gamma(y, x)$ ,
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as desired. This proves Lemma 13.3.

Before proceeding to the main theorem of this section, we mention
a result about $\rho$ .

Lemma 13.4. Let $P$ denote a prematroid. Then for all $x$ , $y$ , $ z\in$

$P$ , the following are equivalent.

(i) $z\in[x\wedge y, x]$ .

(ii) $z\leq x$ , and $xzy$ is geodesic.
(iii) $z\leq x$ , and $z\wedge y=x\wedge y$ .

(iv) $z\leq x$ , and $\rho(z, y)=\rho(x, y)$ .

Proof, (i) $\rightarrow(ii)$ . Clearly $z\leq x$ . We may view $z=u\vee v$ , where
$u:=z$ , $v:=x\wedge y$ , so $xzy$ is geodesic by Lemma 7.8 $(i),(iii)$ .

(ii) $\rightarrow(iii)$ . By Lemma 7.8(i),(ii), $x\wedge z$ , $z\wedge y$ are relative comple-
ments in the interval $[x\wedge y, z]$ . But $x\wedge z=z$ , so $z\wedge y=x\wedge y$ .

(iii) $\rightarrow(i)$ . Observe $x\wedge y=z\wedge y\leq z$ .

(iii) $\rightarrow(iv)$ . Immediate from Definition 13.1 (i).
(iv) $\rightarrow(iii)$ . Observe $z\wedge y\leq z\leq x$ and $z\wedge y\leq y$ , so $z\wedge y\leq x\wedge y$ .

But $z\wedge y$ , $x\wedge y$ have the same rank, so they are equal. This proves
Lemma 13.4.

Theorem 13.5. Let $P$ denote a prematroid, and pick any $x$ , $y$ ,
$z\in P$ such that $x$ , $z$ are adjacent. Then

(i)

(13.3) rank(:r)-rank(:r) $=\triangle\rho+\triangle\gamma+\triangle\delta$ ,

(ii)

(13.4) $\partial(x, y)-\partial(z, y)=-\triangle\rho+\triangle\gamma+\triangle\delta$ ,

(iii)

(13.5) $|\triangle\rho|+|\triangle\gamma|+|\triangle\delta|=1$ ,

where

(13.6) $\triangle\rho=\rho(x, y)-\rho(z, y)$ ,

(13.7) $\triangle\gamma=\gamma(x, y)-\gamma(z, y)$ ,

(13.8) $\triangle\delta=\delta(x, y)-\delta(z, y)$ .

Proof, (i) Immediate from Lemma 13.2.
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(ii) By Corollary 7.6(i),

(13.9) $\partial(x, y)=rank(x)+rank(y)-2rank(x\wedge y)$ ,

(13.10) $\partial(z, y)=rank(z)+rank(y)-2rank(z\wedge y)$ .

Subtracting (13.10) from (13.9), and evaluating rank(x)-rank(z) using
(13.3), we obtain (13.4).

(iii) Since $\delta(x, y)$ , $\delta(z, y)$ measure the distance from $x$ , $z$ to the
same set, and since $x$ , $z$ are adjacent, we have

(13.11) $\triangle\delta\in\{-1,0,1\}$

by the triangle inequality. First assume $\triangle\delta\neq 0$ . Interchanging $x$ , $z$ if
necessary, we may assume that

(13.12) $\triangle\delta=1$ .

We show

(13.13) $\triangle\rho=0$ , $\triangle\gamma=0$ .

This will follow by Definition 13.1 if we can show

(13.14) $z\star y\underline{\subseteq}x\star y$ ,

(13.15) $z\wedge y=x\wedge y$ .

To see (13.14), pick any $w\in z\star y$ . Then $w\vee y$ exists, so

(13.16) $\partial(x, w)\geq\delta(x, y)$ .

Also $\partial(z, w)=\delta(z, y)$ , so

(13.17) $\partial(x, w)\leq\partial(x, z)+\partial(z, w)$

$=1+\delta(z, y)$

(13.18) $=\delta(x, y)$

by (13.12). We must now have equality in (13.16) $-(13.18)$ . In particular
$w\in x\star y$ by the construction. We now have (13.14). To see (13.15),
pick any $w\in z\star y$ . Then $w\in x\star y$ by (13.14), so $w\in[x\wedge y, x]$

by Theorem 12.3. Also $xzw$ is geodesic by (13.17), so $z\in[x\wedge y, x]$

by Lemma 8.4. Now $z\wedge x=x\wedge y$ by Lemma 13.4(i),(iii), so (13.15)
holds. Line (13.13) follows from (13.14), (13.15), and (13.5) follows from
(13.12), (13.13). Next assume $\triangle\delta=0$ . By (7.3), the pair

(rank(x)–rank(z), $\partial(x,$ $y)-\partial(z$ , $y)$ )
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is one of $(1, 1)$ , $(1,$ $-1)$ , (-1, 1), $(-1,$ $-1)$ . In each of these four cases,
one readily solves (13.3), (13.4) for $\triangle\rho$ , $\triangle\gamma$ , and finds (13.5) holds in
each case. We have now proved (iii), and the theorem.

Corollary 13.6. Let $P$ denote a prematroid, and pick $x$ , $y$ , $ z\in$

$P$ such that $z\geq x$ . Then

(i) $\rho(x, y)\leq\rho(z, y)$ ,

(ii) $\gamma(x, y)\leq\gamma(z, y)$ ,
(iii) $\delta(x, y)\leq\delta(z, y)$ ,

(iv) $\delta(y, x)\leq\delta(y, z)$ ,

(v) $\gamma(y, x)\geq\gamma(y, z)$ .

Proof, $(i)-(iii)$ It suffices to assume $z$ covers $x$ . By Theorem
13.5(i),(iii), exactly one of $\rho(x, y)-\rho(z, y)$ , $\gamma(x, y)-\gamma(z, y)$ , $\delta(x, y)-$

$\delta(z, y)$ equals -1, and the other two equal 0. The inequalities follow.
(iv) Pick any $w\in y\star z$ . Then by Definition 12.1,

(13.19) $\partial(y, w)=\delta(y, z)$

and $z\vee w$ exists. Observe $x\vee w$ exists, since $x\leq z\leq z\vee w$ and
$w\leq z\vee w$ , so

(13.20) $\partial(y, w)\geq\delta(y, x)$

by Definition 12.1. Our result follows from (13.19), (13.20).
(v) By Lemma 13.2, parts (i), (iv) above, and since $\rho$ is symmetric

in its arguments,

$\gamma(y, x)=rank(y)-\rho(y, x)-\delta(y, x)$

$\geq$ rank(y) $-\rho(y, z)-\delta(y, z)$

$=\gamma(y, z)$ ,

as desired. This proves Corollary 13.6.

Lemma 13.7. Let $P$ denote a prematroid, and let $G$ denote $a$

geodesically closed subposet of P. Then for all $x$ , $y\in G$ ,

(i) $x\star_{G}y=x\star_{P}y$ ,
(ii) $\delta_{G}(x, y)=\delta_{P}(x, y)$ ,

(iii) $\gamma_{G}(x, y)=\gamma_{P}(x, y)$ ,

(iv) $\rho_{G}(x, y)=\rho_{P}(x, y)-rank(0_{G})$ .

Proof, (i), (ii) Immediate from Lemma 8.2 and Definition 12.1.
(iii) Immediate from Lemma 5.4, Definition 13.1 (ii).
(iv) Immediate from Lemma 5.6, Definition 13.1(i).
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\S 14. The posets $[x\wedge y, x\star y]$ , $[x \star y, x]^{*}$

For notational convenience, we expand our notion of an interval in
a prematroid.

Definition 14.1. Let $P$ denote a prematroid. For any nonempty
subsets $H\underline{\subseteq}P$ , $K\underline{\subseteq}P$ , define the subposet

$[H, K]:=$ { $z\in P|\exists x\in H$ , $\exists y\in K$ such that $xzy$ is geodesic}.

Let $P$ denote a prematroid, and pick any $x$ , $y\in P$ . In this section,
we consider the posets $[x\wedge y, x\star y]$ , $[x\star y, x]^{*}$ . (Recall from (3.1), the
$*$ means we reverse the usual partial order. As we mentioned in Section
12, it will turn out that if $P$ satisfies the augmentation axiom, then
$x\star y$ is a $[x\wedge y, x]$ -basis system. In this case $[x\wedge y, x\star y]$ becomes a
$[x\wedge y, x]$ -matroid, $[x\star y, x]^{*}$ becomes a $[x\wedge y, x]^{*}$ -matroid, and these
matroids are duals in the sense of Definition 3.2. In this section, we
establish a few facts about these posets.

Lemma 14.2. Let $P$ denote a prematroid, and pick any $x$ , $y$
$\in$

$P$ .

(i) The zero of $[x\wedge y, x\star y]$ is $x\wedge y$ .

(ii) top $([x\wedge y, x\star y])=x\star y$ .

(iii) rank([x\wedge y, $x\star y]$ ) $=\gamma(x, y)$ .

(iv) The zero of $[x\star y, x]^{*}$ is $x$ .

(v) top $([x\star y, x]^{*})=x\star y$ .

(vi) rank([x $\star y$ , $x]^{*}$ ) $=\delta(x, y)$ .

Proof. Immediate from Definitions 12.1, 13.1, 14.1, and Theorem
12.3.

Lemma 14.3. Let $P$ denote a prematroid, and fifix any $x$ , $y\in P$ .

Then for all $z\in P$ , the following are equivalent.

(i) $z\in[x\star y, x]^{*}$ .

(ii) $z\leq x$ , and

(14.1) $\delta(x, y)-\delta(z, y)=rank(x)-$ rank(z).

(iii) $z\leq x$ , and $z\star y\underline{\subseteq}x\star y$ .

(iv) $z\leq x$ , and

(14.2) $\rho(x, y)=\rho(z, y)$ , $\gamma(x, y)=\gamma(z, y)$ .
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Proof. (i) $\rightarrow(ii)$ . Observe $z\leq x$ by Theorem 12.3. By assump-
tion, there exists $u\in x\star y$ such that $u\leq z\leq x$ . Now

rank(x)-rank(z) $=\partial(x, z)$

$=\partial(x, u)-\partial(z, u)$

$=\delta(x, y)-\delta(z, y)$

since $u\in z\star y$ .

(ii) $\rightarrow(iii)$ . Pick any $w\in z\star y$ . We show $w\in x\star y$ . Observe
$w\vee y$ exists by assumption, so it suffices to show $\partial(x, w)=\delta(x, y)$ .

Observe $w\leq z\leq x$ by Theorem 12.3 and the construction, so

$\partial(x, w)=\partial(x, z)+\partial(z, w)$

$=rank(x)-$ rank(z) $+\delta(z, y)$

$=\delta(x, y)$ ,

as desired.

(iii) $\rightarrow(i)$ . Pick any $w\in z\star y$ . Then $w\leq z\leq x$ by Theorem
12.3, and $w\in x\star y$ by assumption, so $z\in[x\star y, x]^{*}$ .

(ii) $\mapsto(iv)$ . The three scalars $\rho(x, y)-\rho(z, y)$ , $\gamma(x, y)-\gamma(z, y)$ ,
$\delta(x, y)-\delta(z, y)$ are non-negative by Corollary 13.6, and sum to rank(x)
-rank(z) by Theorem 13.5 (i). The result is now immediate. This proves
Lemma 14.3.

\S 15. The posets $x_{y}^{+},$
$x_{y}^{-}$

Let $P$ denote a prematroid. For all $x$ , $y\in P$ , define the subposets
$x_{y}^{+}$ , $x_{y}^{-}\underline{\subseteq}P$ by

(15.1) $x_{y}^{+}:=$ { $z\in P|x\leq z$ , $xzy$ is geodesic},

(15.2) $x_{y}^{-}:=$ { $z\in[x\wedge y,$ $x]|z\vee y$ exists in $P$ }.

Observe $x$ is the zero of $x_{y}^{+}$ , and $x\wedge y$ is the zero of $x_{y}^{-}$ . In particular
$x_{y}^{+}$ , $x_{y}^{-}$ are not empty.

Example 15.1. Let P denote a prematroid, and pick any x, y $\in$

P such that $x\vee y$ exists. Then

(i) $x_{y}^{+}=[x, x\vee y]$ ,

(ii) $x_{y}^{-}=[x\wedge y, x]$ .
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Proof, (i) First consider the inclusion $\underline{\subseteq}$ . Pick any $z\in x_{y}^{+}$ . Then

$xzy$ is geodesic, so $z\leq x\vee y$ by Lemma 7.9(i),(ii). Also $x\leq z$ , so
$z\in[x, x\vee y]$ . Now consider the inclusion $\supseteq$ . Pick any $z\in[x, x\vee y]$ .

Then $x$ , $z$ , $x\vee y$ is geodesic by (7.5). Also $x$ , $x\vee y$ , $y$ is geodesic by
Lemma 7.5, so $x$ , $z$ , $x\vee y$ , $y$ is geodesic. In particular, $xzy$ is geodesic,
so $z\in x_{y}^{+}$ .

(ii) Immediate from (15.2).

Lemma 15.2. Let $P$ denote a prematroid, and pick any $x$ , $ y\in$

$P$ .

(i) $x_{y}^{+}$ is a submatroid of $x^{+}$ .

(ii) $x_{y}^{+}$ is geodesically closed in $P$ .

Proof, (i) First, we claim $x_{y}^{+}$ is a lower ideal in $x^{+}$ . Pick any
$z\in x_{y}^{+}$ and any $w\in x^{+}$ such that $w\leq z$ . We show $w\in x_{y}^{+}$ . Of

course $x\leq w$ , so it remains to show $xwy$ is geodesic. to this end,

observe $xwz$ is geodesic, since $x\leq w\leq z$ , and $xzy$ is geodesic by
assumption, so xwzy is geodesic. In particular $xwy$ is geodesic, as
desired. Hence $x_{y}^{+}$ is a lower ideal in $x^{+}$ .

Next, we claim $x_{y}^{+}$ is $\vee$-closed in $P$ . To see this, pick any
$z$ , $z’\in x_{y}^{+}$ such that $z\vee z’$ exists in $P$ . Recall $xzy$ , $xz’ y$ are

both geodesic, so $x$ , $z\vee z’$ , $y$ is geodesic by Lemma 7.10. Recall $x\leq z$ ,
$x\leq z’$ , so $x\leq z\vee z’$ . Now $z\vee z’\in x_{y}^{+}$ , so $x_{y}^{+}$ is $\vee$-closed in $P$ . Now
$x_{y}^{+}$ is a nonempty $\vee$-closed lower ideal in $x^{+}$ , so $x_{y}^{+}$ is a submatroid

of $x^{+}$ by Lemma 9.1.
(ii) Immediate from (i) above and Lemma 9.2.

Lemma 15.3. Let $P$ denote a prematroid, and fifix any $x$ , $y$
$\in P$ .

Then for all $z\in P$ , the following are equivalent.

(i) $z\in x_{y}^{+}$ .

(ii) $x\leq z$ , and $x$ , $y\wedge z$ are relative complements in the interval
$[x\wedge y, z]$ .

(iii) There exists an element $v\in[x\wedge y, y]$ such that $z=x\vee v$ .

(iv) $x\leq z$ , and

(15.3) $\rho(z, y)-\rho(x, y)=rank(z)-$ rank(x).

(v) $x\leq z$ , and

(15.4) $\gamma(x, y)=\gamma(z, y)$ , $\delta(x, y)=\delta(z, y)$ .
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Moreover, if $(i)-(v)$ hold, then

(15.5) $v=y\wedge z$ .

Proof, (i) $\mapsto(ii)\mapsto(iii)$ . This is a special case of Lemma 7.8.
(ii) $\rightarrow(iv)$ . Immediate from (7.14) and Definition 13.1 (i).
(iv) $\rightarrow(i)$ . By (7.12) and the observation $x\wedge z=x$ , we find

$\partial(x, z)+\partial(z, y)-\partial(x, y)$ equals twice

rank(z) –rank(x) $+\rho(x, y)-\rho(z, y)$ ,

and is therefore 0 by (15.3). Now $xzy$ is geodesic by (7.4), and (i)
follows.

(iv)<$\mapsto(v)$ . The scalars $\rho(z, y)-\rho(x, y)$ , $\gamma(z, y)-\gamma(x, y)$ , $\delta(z, y)-$

$\delta(x, y)$ are nonnegative by Corollary 13.6, and sum to rank(z)-rank(x)
by Theorem 13.5(i). The result is now immediate.

Now suppose $(i)-(v)$ hold. Then (15.5) holds by (7.19). This proves
Lemma 15.3.

We now turn to $x_{y}^{-}$ .

Lemma 15.4. Let $P$ denote a prematroid, and pick any $x$ , $y$
$\in$

P. Then

(i) $x_{y}^{-}$ is a lower ideal in the interval $[x\wedge y, x]$ ,

(ii) $top\left(\begin{array}{l}-\\x_{y}\end{array}\right)$ $=x\star y$ ,

(iii) $[x\wedge y, x\star y]\underline{\subseteq}x_{y}^{-}$ .

Proof (i) Suppose we are given some $z\in x_{y}^{-}$ and some $ z’\in$

$[x\wedge y, x]$ such that $z’\leq z$ . We show $z’\in x_{y}^{-}$ . To do this, we must

show $y\vee z’$ exists in $P$ . But this is the case, since $y\vee z\geq y$ and
$y\vee z\geq z\geq z’$ .

(ii) $x_{y}^{-}$ is a lower ideal in $[x\wedge y, x]$ by (i), so we may regard

$top(x_{y}^{-})$ as the set of elements $z\in x_{y}^{-}$ with $\partial(x, z)$ minimal. Recall
$x\star y$ consists of the elements $z\in P$ such that $z\vee y$ exists, and such
that $\partial(x, z)$ is minimal subject to this existence. Observe $x\star y\underline{\subseteq}x_{y}^{-}$

by Theorem 12.3 and the construction, and $w\vee y$ exists for all $w\in x_{y}^{-}$ ,

so we may regard $x\star y$ as the set of elements $z\in x_{y}^{-}$ with $\partial(x, z)$

minimal. Our result follows.
(iii) Immediate from (i), (ii).

Our next goal is to show the posets $x_{y}^{+}$ , $y_{x}^{-}$ are isomorphic.
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Theorem 15.5. Let $P$ denote a prematroid, and pick any $x$ , $ y\in$

P. Then there exists poset isomorphisms $\sigma$ : $x_{y}^{+}\rightarrow y_{x}^{-}$ , 5 : $y_{x}^{-}\rightarrow x_{y}^{+}$

such that

(15.6) $\sigma(z)=y\wedge z$ $(\forall z\in x_{y}^{+})$ ,

(15.7) $\in(v)=x\vee v$ $(\forall v\in y_{x}^{-})$ .

Moreover, $\sigma$ , $\in$ are inverses.

Proof. Pick any $z\in x_{y}^{+}$ . By Lemma 15.3(i),(iii), and (15.5),

(15.8) $y\wedge z\in y_{x}^{-}$

and

(15.9) $x\vee(y\wedge z)=z$ .

Pick any $v\in y_{x}^{-}$ . Then by Lemma 15.3(i),(iii) and (15.5),

(15.10) $x\vee v\in x_{y}^{+}$

and

(15.11) $y\wedge(x\vee v)=v$ .

By (15.8), there exists a map $\sigma$ : $x_{y}^{+}\rightarrow y_{x}^{-}$ satisfying (15.6). By

(15.10), there exists a map $\epsilon$ : $y_{x}^{-}\rightarrow x_{y}^{+}$ satisfying (15.7). Observe $\sigma$ ,
$\xi j$ are inverses by (15.9), (15.11); in particular, these maps are bijections.
It remains to check $\sigma$ , $\in$ respect the partial order. But this follows,
since for all $z$ , $z’\in x_{y}^{+}$ ,

$z\leq z’$ $\rightarrow$ $y\wedge z\leq y\wedge z’$ ,

and for all $v$ , $v’\in y_{x}^{-}$ ,

$v\leq v’$ $\rightarrow$ $x\vee v\leq x\vee v’$ .

This proves Theorem 15.5.

Corollary 15.6. Let $P$ denote a prematroid. Then for all $x$ , $ y\in$

$P$ , the subposet $x_{y}^{+}$ is embeddable.

Proof. It is clear $y_{x}^{-}$ is embeddable. Indeed the identity map is
an embedding of $y_{x}^{-}$ into the modular atomic lattice $[x\wedge y, y]$ . Now
$x_{y}^{+}$ is embeddable, since $x_{y}^{+}$ , $y_{x}^{-}$ are isomorphic by Theorem 15.5.
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Corollary 15.7. Let $P$ denote a prematroid. Then for all $x$ , $ y\in$

$P$ ,

(i) $rank(x_{y}^{-})=\gamma(x, y)$ ,

(ii) $rank(x_{y}^{+})=\gamma(y, x)$ ,

(iii) $|top(x_{y}^{+})|=|y\star x|$ .

Proof, (i) Immediate from Lemma 14.2(iii) and Lemma 15.4(i),(ii).
(ii) Immediate from (i) above and the fact that $x_{y}^{+}$ , $y_{x}^{-}$ are iso-

morphic.
(iii) Immediate from Lemma 15.4(ii) and the fact that $x_{y}^{+}$ , $y_{x}^{-}$ are

isomorphic.

This proves Corollary 15.7.

We finish this section with two technical results.

Lemma 15.8. Let $P$ denote a prematroid. Pick any $x$ , $y\in P$

and pick any $z\in x_{y}^{+}$ . Then

(i) $z_{y}^{+}=z^{+}\cap x_{y}^{+}$ ,

(ii) $y_{z}^{-}=[y\wedge z, y]\cap y_{x}^{-}$ ,

(iii) $y_{z}^{+}=y_{x}^{+}$ .

Proof, (i) Recall $x\leq z$ and $xzy$ is geodesic. To see the inclusion
$\underline{\subseteq}$ , pick any $w\in z_{y}^{+}$ . Then $z\leq w$ , so $w\in z^{+}$ . We show $w\in x_{y}^{+}$ .

Certainly $x\leq z\leq w$ . Observe $xzy$ and $zwy$ are geodesic, so xzwy
is geodesic. In particular $xwy$ is geodesic, so $w\in x_{y}^{+}$ . To see the

inclusion $\supseteq$ , pick any $w\in z^{+}\cap x_{y}^{+}$ . Observe $x\leq z\leq w$ so $xzw$

is geodesic. Also $xwy$ is geodesic, so xzwy is geodesic. In particular
$zwy$ is geodesic, so $w\in z_{y}^{+}$ .

(ii) By Theorem 15.5, the map $\sigma$ : $w\rightarrow y\wedge w$ induces an iso-
morphism of posets $x_{y}^{+}\rightarrow y_{x}^{-}$ such that $\sigma(z_{y}^{+})=y_{z}^{-}$ . Now by (i)

ab $ove$ ,

$y_{z}^{-}=\sigma(z_{y}^{+})$

$=\sigma(z^{+}\cap x_{y}^{+})$

$=(y\wedge z)^{+}\cap y_{x}^{-}$

$=[y\wedge z, y]\cap y_{x}^{-}$ ,

as desired.
(iii) This is immediate from Corollary 11.2. This proves Lemma

15.8.
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Lemma 15.9. Let $P$ denote a prematroid, and pick any $x$ , $y$
$\in$

P. Then for all $u\in y^{+}$ ,

(15.12) $x_{y}^{+}$ is a submatroid of $x_{u}^{+}$ .

Proof. By Lemma 15.2(i), it suffices to show $x_{y}^{+}\underline{\subseteq}x_{u}^{+}$ , and with-

out loss, we may assume $u$ covers $y$ . By (7.3), there are two possibili-
ties;

(15.13) $\partial(x, u)=\partial(x, y)-1$

or

(15.14) $\partial(x, u)=\partial(x, y)+1$ .

First suppose (15.13). Then $xuy$ is geodesic, so $u\in y_{x}^{+}$ . Now $x_{y}^{+}=$

$x_{u}^{+}$ by Lemma 15.8(iii). Next assume (15.14). To see $x_{y}^{+}\underline{\subseteq}x_{u}^{+}$ in

this case, we pick any $w\in x_{y}^{+}$ and show $w\in x_{u}^{+}$ . Observe $xwy$ is

geodesic by assumption, and $xyu$ is geodesic by (15.14), so xwyu is
geodesic. In particular $xwu$ is geodesic, so $w\in x_{u}^{+}$ , as desired. This
proves Lemma 15.9.

\S 16. Projection into a submatroid

Lemma 16.1. Let $P$ denote a prematroid, and let $G$ , $H$ denote
submatroids of P. Then $G\cap H$ is a submatroid of $P$ .

Proof. $G\cap H$ is geodesically closed in $P$ , and contains $0_{P}$ , so we
are done by Lemma 9.1.

Lemma 16.2. Let $P$ denote a prematroid. Let $G$ denote $a$

submatroid of $P$ , and pick any $x\in P$ . Then there exists a unique
element $p=p(x, G)$ in $G$ such that

(16.1) $[0, x]\cap G=[0,p]$ .

We call $p$ the projection of $x$ into $G$ , and write

(16.2) $p=projGx$ .

Proof. $[0, x]$ is a submatroid of $P$ by Lemma 8.4(ii), Lemma 9.1,
so $[0, x]$ $\cap G$ is a submatroid of $P$ by Lemma 16.1. $[0, x]$ $\cap G$ is
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contained in the interval $[0, x]$ , and is therefore an interval by Lemma
8.5.

Lemma 16.3. Let $P$ denote a prematroid. Let $G$ denote any
submatroid of $P$ , and pick any $x$ , $y\in P$ .

(i) $proj_{G}x\leq x$ .

(ii) Equality holds in (i) if and only if $x\in G$ .

(iii) projG(x\wedge y)=x\wedge projGy.

(iv) projG $(x\wedge y)=projGx\wedge projGy$ .

Proof. (i), (ii) Immediate from Lemma 16.2.
(iii) By (16.1), (16.2),

$[0, proj_{G}(x\wedge y)]=[0, x\wedge y]\cap G$

$=[0, x]\cap[0, y]\cap G$

$=[0, x]\cap[0, proj_{G}y]$ ,

and our result follows.
(iv) Interchanging the roles of $x$ , $y$ in (iii),

$proj_{G}(x\wedge y)=y\wedge proj_{G}x$ .

By this and (iii), we may view

$proj_{G}(x\wedge y)=proj_{G}(x\wedge y)\wedge proj_{G}(x\wedge y)$

$=x\wedge proj_{G}x\wedge y\wedge proj_{G}y$

$=proj_{G}x\wedge proj_{G}y$ ,

since $proj_{G}x\leq x$ , projG $y\leq y$ . This proves Lemma 16.3.

Theorem 16.4. Let $P$ denote a prematroid, and let $G$ denote $a$

submatroid of P. Then for all $x\in P$ , and for all $y\in G$ , the sequence

(16.3) $x$ , $proj_{G}x$ , $y$ is geodesic.

Proof. $G$ is a lower ideal in $P$ that contains $y$ , and $x\wedge y\leq y$ ,

so $x\wedge y\in G$ . Certainly $x\wedge y\leq x$ , so

$x\wedge y\in[0, x]\cap G=[0, proj_{G}x]$ ,

forcing $x\wedge y\leq projGx$ . Now $x\wedge y\leq proj_{G}x\leq x$ by the construction,
so $x$ , $proj_{G}x$ , $y$ is geodesic by Lemma 13.4(i),(ii). This proves Theorem
16.4.
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\S 17. The projection $x^{+}\rightarrow x_{y}^{+}$

Let $P$ denote a prematroid. Pick any $x$ , $y\in P$ , and write $G=x_{y}^{+}$ .

Observe $x^{+}$ is a prematroid by Corollary 8.3, Lemma 8.4, and $G$ is a
submatroid of $x^{+}$ by Lemma 15.2(i), so there exists a projection map
$proj_{G}$ : $x^{+}\rightarrow G$ by Lemma 16.2.

Lemma 17.1. Let $P$ denote a prematroid. Pick any $x$ , $y$
$\in P$ ,

and write $G=x_{y}^{+}$ . Then for all $z\in x^{+}$ ,

(17.1) $proj_{G}z=x\vee(y\wedge z)$ .

Proof. We first show

(17.2) $proj_{G}z\geq x\vee(y\wedge z)$ .

Observe $x\leq z$ , so $x\wedge y\leq y\wedge z$ . Also $y\wedge z\leq y$ , so $y\wedge z\in[x\wedge y, y]$ .

Observe $z$ is an upper bound for $x$ , $y\wedge z$ , so $x\vee(y\wedge z)$ exists. Now
$y\wedge z\in y_{x}^{-}$ by (15.2), so

(17.3) $x\vee(y\wedge z)\in G$

by Theorem 15.5. Observe

(17.4) $x\vee(y\wedge z)\leq z$

by our remarks above, and (17.2) follows from (17.3), (17.4), and Lemma
16.2. Next, we show

(17.5) $proj_{G}z\leq x\vee(y\wedge z)$ .

Write $p:=proj_{G}z$ . Then $p\leq z$ by Lemma 16.3(i), so $y\wedge p\leq y\wedge z$ .

Also $p\in G=x_{y}^{+}$ by Lemma 16.2, so by Theorem 15.5,

$p=x\vee(y\wedge p)\leq x\vee(y\wedge z)$ .

Line (17.5) follows, and we are done by (17.2), (17.5).

Theorem 17.2. Let $P$ denote a prematroid. Pick any $x$ , $y\in P$ ,
and write $G=x_{y}^{+}$ . Then for all $z\in x^{+}$ , and for all $p\in P$ , the

following are equivalent.

(i) $p=proj_{G}z$ .

(ii) $p\in[x, z]$ , and $wpy$ is geodesic for all $w\in[x, z]$ .

(iii) $p\in[x, z]$ , and both $xpy$ and $zpy$ are geodesic.
(iv) $p\in[x, z]$ , and

(17.6) $\rho(p, y)=\rho(z, y)$ , $\gamma(p, y)=\gamma(x, y)$ , $\delta(p, y)=\delta(x, y)$ .
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Proof. (i) $\rightarrow(ii)$ . Observe $p\in[x, z]$ by Lemma 16.3(i). Pick
any $w\in[x, z]$ . We show $wpy$ is geodesic. By Lemma 7.8(i),(iii), it

suffices to find

(17.7) $u\in[y\wedge w, w]$ ,

(17.8) $v\in[y\wedge w, y]$ ,

such that

(17.9) $p=u\vee v$ .

Set
$u:=proj_{G}w$ .

Then (17.7) holds, since $u\leq w$ by Lemma 16.3(i), and since

(17.10) $u=x\vee(y\wedge w)$

$\geq y\wedge w$

by Lemma 17.1. Set

(17.11) $v:=y\wedge z$ .

Then $v\leq y$ by construction. Recall $w\leq z$ , so

(17.12) $y\wedge w\leq v$

by (17.11). Now (17.8) holds. Now

$p=x\vee(y\wedge z)$ (Lemma 17.1)

$=x\vee v$ (17.11)

$=x\vee(y\wedge w)\vee v$ (17.12)

$=u\vee v$ , (17.10)

so (17.9) holds. Now $wpy$ is geodesic by (17.7)-(17.9), and we are done.
(ii) $\rightarrow(iii)$ . Clear.
(iii) $\rightarrow(i)$ . We assume $x\leq p$ and $xpy$ is geodesic, so $p\in x_{y}^{+}$ by

(15.1). Now

(17. 8) $p=x\vee(y\wedge p)$

by Theorem 15.5. We assume $p\leq z$ and $zpy$ is geodesic, so

(17.14) $y\wedge p=y\wedge z$
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by Lemma 13.4(ii),(iii). Now

(17.15) $p=x\vee(y\wedge z)$

by (17.13), (17.14), so $p=proj_{G}z$ by Lemma 17.1.
$(iii)\mapsto(iv)$ . We assume $p\leq z$ , so by Lemma 13.4(ii),(iv), $zpy$ is

geodesic if and only if

$\rho(p, y)=\rho(z, y)$ .

We assume $x\leq p$ , so by Lemma 15.3(i),(v), $xpy$ is geodesic if $‘ and$

only if
$\gamma(p, y)=\gamma(x, y)$ , $\delta(p, y)=\delta(x, y)$ .

This proves Theorem 17.2.

Theorem 17.3. With the $notat\dot{\iota}$on of Theorem 17.2, suppose $(i)-$

$(iv)$ hold. Then for all $w\in[x, z]$ , the following are equivalent.

(i) $wxy$ and $wzy$ are both geodesic.
(ii) $wxp$ and $wzp$ are both geodesic.
(iii) $w,p$ are relative complements in the interval $[x, z]$ .

(iv) $\rho(w, y)=\rho(x, y)$ , $\gamma(w, y)=\gamma(z, y)$ , $\delta(w, y)=\delta(z, y)$ .

Proof. (i) $\rightarrow(ii)$ . Observe $xpy$ is geodesic by Theorem 17.2(iii),

and $wxy$ is geodesic, so wxpy is geodesic. In particular, $wxp$ is
geodesic. Similarly, $zpy$ is geodesic by Theorem 17.2(iii), and $wzy$ is
geodesic, so wzpy is geodesic. In particular, $wzp$ is geodesic.

(ii) $\rightarrow(i)$ . Recall $wpy$ is geodesic by Theorem 17.2(ii), and $wxp$ is
geodesic, so wxpy is geodesic. In particular $wxy$ is geodesic. Similarly

$wzp$ is geodesic, so wzpy is geodesic. In particular $wzy$ is geodesic.

(ii) $\mapsto(iii)$ . We assume $x\leq w$ , $x\leq p$ , so by Lemma 7.4, $x=w\wedge p$

if and only if $wxp$ is geodesic. We assume $w\leq z$ , $p\leq z$ , so by Lemma
7.5, $z=w\vee p$ if and only if $wzp$ is geodesic.

(i) $\mapsto(iv)$ . We assume $x\leq w$ , so by Lemma 13.4(ii),(iv), $wxy$ is
geodesic if and only if

$\rho(w, y)=\rho(x, y)$ .

We assume $w\leq z$ , so by Lemma 15.3(i),(v), $wzy$ is geodesic if
and only if both

$\gamma(w, y)=\gamma(z, y)$ , $\delta(w, y)=\delta(z, y)$ .

This proves Theorem 17.3.
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\S 18. The augmentation axiom

Let $P$ denote a prematroid, and recall by Definition 4.1 that $P$ is
a quantum matroid if and only if $P$ satisfies the augmentation axiom
AU from that definition. In this section, we show this occurs if and only
if the function $\delta$ from Definition 12.1 is symmetric in its arguments.

We begin with some notation.

Lemma 18.1. Let $P$ denote a prematroid. Pick any nonnegative
integer $d$ , and pick any path $p=(x_{0}, x_{1}, \ldots, x_{d})$ $(x_{0},$ $x_{1}$ , $\ldots$ , $ x_{d}\in$

$P)$ . Then the following (i), (ii) are equivalent.

(i) There does not exist an integer $i(0\leq i\leq d-3)$ such that

(18.1) $x_{i}>x_{i+1}<x_{i+2}<x_{i+3}$ ,

or such that

(18.2) $x_{i}>x_{i+1}>x_{i+2}<x_{i+3}$ .

(ii) There exists integers $e$ , $f$ ( $0\leq e\leq f\leq d$ , $f-e$ is even), such
that

$x_{0}<x_{1}<\cdots<x_{e-1}<x_{e}$ ,

$x_{e}>x_{e+1}<x_{e+2}>x_{e+3}<\cdots>x_{f-3}<x_{f-2}>x_{f-1}<x_{f}$ ,

$x_{f}>x_{f+1}>\cdots>x_{d-1}>x_{d}$ .

Suppose (i), (ii) hold. Then we say $p$ is up-flat-down. If $e=0$

and $f=d$ , we say $p$ is flat.

Proof. Routine.

Theorem 18.2. Let $P$ denote a prematroid of rank D. Then
the following $(i)-(vi)$ are equivalent.

(i) $P$ satisfifies the augmentation axiom A $U$ in Defifinition 4.1.
(ii) For all integers $i(2\leq i\leq D)$ , and for all $x$ , $y\in P$ such that

rank(x)= $i-1$ , rank(y) $=i$ , and $\partial(x, y)=3$ , there exists $a$

path in $P$ with endpoints $x$ , $y$ and shape $(i-1, i, i-1, i)$ .

(iii) For all integers $i(2\leq i\leq D)$ , and all geodesic paths $p$ in $P$

of shape $(i-1, i-2, i-1, i)$ , there exists a path $p’$ in $P$ that
has the same endpoints as $p$ , and has shape $(i-1, i, i-1, i)$ .

(iv) For all $x$ , $y\in P$ , there exists a geodesic up-flat-down path con-
necting $x$ , $y$ .

(v) For all $x$ , $y\in P$ , for all $x’\in top(x_{y}^{+})$ , and for all $y’\in top(y_{x}^{+})$ ,

there exists a geodesic flat path connecting $x’$ , $y’$ .
(vi) $\delta(x, y)=\delta(y, x)$ for all $x$ , $y\in P$ .
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Proof, (i) $\rightarrow(ii)$ . Observe rank(x) <rank(y), so by assumption,
there exists an atom $a\in P$ such that $a\leq y$ , $a\not\leq x$ , and such that $x\vee a$

exists in $P$ . Set $u.--x\vee a$ . Observe $a$ covers $0=x\wedge a$ , so $u$ covers
$x$ by modularity. In particular rank(u) $=i$ . We show $\partial(u, y)=2$ .

Suppose not. Then $\partial(u, y)=4$ by (7.3), so $uxy$ is geodesic. In this
case $u\wedge y=x\wedge y$ by Lemma 13.4(ii), (iii), contradicting the fact that
$a\leq u\wedge y$ , $a\not\leq x\wedge y$ . We have now shown $\partial(u, y)=2$ , so $u$ , $y$

cover $u\wedge y$ by Lemma 7.4. Now $x$ , $u$ , $u\wedge y$ , $y$ is a path with shape
$(i-1, i, i-1, i)$ , as desired.

(ii) $\rightarrow(iii)$ . Immediate.
(ii) $\rightarrow(iv)$ . Set $d:=\partial(x, y)$ , and pick a geodesic path

$p:=(x=x_{0}, x_{1}, \ldots, x_{d}=y)$ $(x_{0}, x_{1}, \ldots, x_{d}\in P)$

with maximal weight in the sense of (7.7). We claim $p$ is up-flat-down.
Suppose not. Then by Lemma 18.1, there exists an integer $ i(0\leq i\leq$

$d-3)$ such that either

(18.3) $x_{i}>x_{i+1}<x_{i+2}<x_{i+3}$

or

(18.4) $x_{i}>x_{i+1}>x_{i+2}<x_{i+3}$ .

Interchanging the roles of $x$ , $y$ if necessary, we may assume (18.3). The
path $x_{i}$ , $x_{i+1}$ , $x_{i+2}$ , $x_{i+3}$ is geodesic, with shape $(j-1, j-2, j-1, j)$

for an appropriate integer $j(2\leq j\leq D)$ , so by (iii), there exists a path
$x_{i}$ , $x_{i+1}’$ , $x_{i+2}’$ , $x_{i+3}$ of shape $(j-1, j, j-1, j)$ . Observe the sequence

$p’:=(x_{0}, x_{1}, \ldots, x_{i}, x_{i+1}’, x_{i+2}’, x_{i+3}, \ldots, x_{d-1}, x_{d}=y)$

is a path $p’$ is geodesic, since $p$ , $p’$ have the same length, and

weight $(p’)=weight(p)+2$ .

This contradicts our construction, and we conclude $p$ is up-flat-down.
(iv) $\rightarrow$ $(v)$ . Let $x$ , $y$ , $x’$ , $y’$ be given. By (iv), there exists a

geodesic up-flat-down path $p$ connecting $x’$ , $y’$ . We claim $p$ is flat.

Set $d:=\partial(x’, y’)$ , and write $p=(x’=x_{0}, x_{1}, \ldots, x_{d}=y’)$ . Suppose
$p$ is not flat. Then $d\geq 1$ , and either $x’<x_{1}$ or $x_{d-1}>y’$ .
Interchanging the roles of $x$ , $y$ if necessary, we may assume $x’<x_{1}$ .

Recall $xx’ y’ y$ is geodesic by Corollary 11.2. Now $xx’x_{1}y’y$ is geodesic
by the construction, and in particular $xx_{1}y$ is geodesic. Also $x\leq x’<$

$x_{1}$ , so $x_{1}\in x_{y}^{+}$ by (15.1). But this is inconsistent with $x’<x_{1}$ and

the assumption $x’\in top(x_{y}^{+})$ . We conclude $p$ is flat.
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(v) $\rightarrow$ $(vi)$ . Let $x$ , $y$ be given, and pick any $x’\in top(x_{y}^{+})$ ,
$y’\in top(y_{x}^{+})$ . By (v) there exists a flat path connecting $x’$ , $y’$ , so

(18.5) rank(x’) $=rank(y’)$ .

By Lemma 13.2, Lemma 15.2(i), and Corollary 15.7(ii),

rank(x’) $=rank(x)+rank(x_{y}^{+})$

(18.6) $=\rho(x, y)$ $+\gamma(x, y)$ $+\delta(x, y)+\gamma(y, x)$ ,

and similarly

(18.7) rank(y’) $=\rho(y, x)+\gamma(y, x)+\delta(y, x)+\gamma(x, y)$ .

The result now follows from (18.5)-(18.7), since $\rho$ is symmetric in
its arguments.

(vi) $\rightarrow(i)$ . Pick any $x$ , $y$ $\in P$ such that rank(x) $<rank(y)$ . We
find an atom $a\in P$ such that $a\leq y$ , $a\not\leq x$ , and such that $x\vee a$

exists in $P$ . To this end, observe by Lemma 13.2, Corollary 15.7(i), and
(vi) above that

$rank(y_{x}^{-})=\gamma(y, x)$

$=rank(y)-\rho(y, x)-\delta(y, x)$

$>rank(x)-\rho(x, y)-\delta(x, y)$

$=\gamma(x, y)$

$\geq 0$ ,

so there exists $v\in y_{x}^{-}$ such that $v>x\wedge y$ . By Lemma 9.3(ii), there
exists an atom $a\in P$ such that $a\leq v$ but $a\not\leq x\wedge y$ . Observe
$a\leq v\leq y$ . Observe $a\not\leq x$ ; otherwise $a\leq x\wedge y$ , a contradiction.
Observe $x\vee a$ exists in $P$ , since $x\vee v$ is an upper bound for $a$ , $x$ .

The element $a$ now has the desired properties, so we are done. This
proves Theorem 18. 2.

\S 19. $x\star y$ is a $[x\wedge y, x]$ -basis system

Let $P$ denote a quantum matroid, and pick any $x$ , $y\in P$ . Our
goal in this section is to establish the related facts that $x\star y$ is a
$[x\wedge y, x]$ -basis system, $[x\wedge y, x\star y]$ is a $[x\wedge y, x]$ -matroid, and that
$[x\star y, x]^{*}$ is a $[x\wedge y, x]^{*}$ matroid,
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Lemma 19.1. Let $P$ denote a quantum matroid, and let $G$

denote a geodesically closed subposet of P. Then $G$ is a quantum
matroid.

Proof. $G$ is a prematroid by Corollary 8.3, so it remains to show
$G$ satisfies the augmentation axiom. By Theorem 18.2, it suffices to
show the function $\delta_{G}$ is symmetric in its arguments. But this is the
case, since $\delta_{G}$ is a restriction of $\delta_{P}$ by Lemma 13.7(ii), and since $\delta_{P}$

is symmetric in its arguments by Theorem 18.2(vi). This proves Lemma
19.1.

Corollary 19.2. Let $P$ denote a quantum matroid, and pick any
$x$ , $y$

$\in P$ . Then $x_{y}^{+}$ , $x^{+}$ are both quantum matroids.

Proof. These subposets are geodesically closed in $P$ by Lemma
8.4, Lemma 15.2(ii), so they are quantum matroids by Lemma 19.1.
This proves Corollary 19.2.

Theorem 19.3. Let $P$ denote a quantum matroid, and pick any
$x$ , $y$

$\in P$ .

(i) $x_{y}^{-}=[x\wedge y, x\star y]$ .

(ii) $x\star y$ is $a[x\wedge y, x]$ -basis system.
(iii) $[x\wedge y, x\star y]$ is $a[x\wedge y, x]$ matroid.
(iv) $[x\star y, x]^{*}$ is $a[x\wedge y, x]^{*}$ matroid.

Proof. (i) Observe the posets $x_{y}^{-}$ , $y_{x}^{+}$ are isomorphic by Theorem

15.5, and $y_{x}^{+}$ is a quantum matroid by Lemma 19.2, so $x_{y}^{-}$ is a

quantum matroid. Now by Lemma 4.3 and Lemma 15.4(ii),

$\max(x_{y}^{-})=top(x_{y}^{-})=x\star y$ ,

and our result follows since $x_{y}^{-}$ is a lower ideal in $[x\wedge y, x]$ .

(ii) We have seen $x_{y}^{-}$ is both a quantum matroid and a lower ideal

in $[x\wedge y, x]$ , so $x_{y}^{-}$ is a $[x\wedge y, x]$ matroid. Now $x\star y$ $=\max(x_{y}^{-})$ is a
$[x\wedge y, x]$ -basis system by Theorem 2.5(ii).

(iii) Immediate from (ii) and Theorem 2.5(i).
(iv) Immediate from (ii), Theorem 2.5(i), and Lemma 3.1.

\S 20. The notion of relative closeness

Lemma 20.1. Let $P$ denote a quantum matroid. Then for all
$x$ , $y\in P$ ,

(20.1) $\rho(x, y)$ $+\delta(x, y)\leq$ rank(y).
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Proof. Observe by Definition 13.1(i), Lemma 13.2, and Theorem
18.2(vi) that

$\rho(x, y)+\delta(x, y)=\rho(y, x)+\delta(y, x)$

(20.2) $=rank(y)-\gamma(y, x)$

$\leq rank(y)$ .

We now consider the case of equality.

Lemma 20.2. Let $P$ denote a quantum matroid, and pick any
$x$ , $y$

$\in P$ . Then the following $(i)-(v)$ are equivalent.

(i) Equality holds in (20.1).
(ii) $\gamma(y, x)=0$ .

(iii) $x$ is the unique element in $x_{y}^{+}$ .

(iv) $x\wedge y$ is the unique element in $y_{x}^{-}$ .

(v) $y\star x=x\wedge y$ .

(vi) $zxy$ is geodesic for all $z\in x^{+}$ .

If $(i)-(vi)$ hold, we say $x$ is relatively close to $y$ .

Proof. $(i)\mapsto(ii)$ . Immediate from (20.2).

(ii) $\mapsto(iii)\mapsto(iv)$ . The posets $x_{y}^{+}$ , $y_{x}^{-}$ both have rank $\gamma(y, x)$

by Corollary 15.7.
$(iv)\mapsto(v)$ . Recall $y_{x}^{-}=[x\wedge y, y \star x]$ by Theorem 19.3(i).

(iii) $\rightarrow(vi)$ . Pick any $z\in x^{+}$ , and write $p:=x\vee(y\wedge z)$ . Then
$zpy$ is geodesic by Lemma 17.1, Theorem 17.2(iii). But $p\in x_{y}^{+}$ by

Lemma 17.1, so $p=x$ by (iii). We conclude $zxy$ is geodesic, as
desired.

(vi) $\rightarrow(iii)$ . Pick any $z\in x_{y}^{+}$ . Then certainly $z\in x^{+}$ , so $zxy$ is

geodesic by (vi). Also $xzy$ is geodesic by (15.1), so $z=x$ . This prov\’e$s$

Lemma 20.2.

Lemma 20.3. Let $P$ denote a quantum matroid, and pick any
$x$ , $y$ , $z\in P$ .

(i) If $x$ is relatively close to $y$ , and $x\leq z$ , then $z$ is relatively
close to $y$ .

(ii) Suppose $z\in top(x_{y}^{+})$ . Then $z$ is relatively close to $y$ .

Proof. (i) Observe $0\leq\gamma(y, z)\leq\gamma(y, x)$ by Lemma 13.3(i), Corol-
lary 13.6(v), and $\gamma(y, x)=0$ by Lemma 20.2(ii), so $\gamma(y, z)=0$ . Now
$z$ is relatively close to $y$ by Lemma 20.2.



Quantum Matroids 381

(ii) $z$ is the unique element in $z_{y}^{+}$ by Lemma 15.8(i), so is

relatively close to $y$ by Lemma 20.2(iii).

Theorem 20.4. Let $P$ denote a quantum matroid, and pick any
$x$ , $y$ $\in P$ such that $x$ is relatively close to $y$ . Then for all $z\in x^{+}$ , the
following $(i)-(iii)$ hold.

(i) $\rho(z, y)=\rho(x, y)$ ,

(ii) $\delta(z, y)=\delta(x, y)$ ,
(iii) $\gamma(z, y)-\gamma(x, y)=rank(z)-$ rank(x).

Proof (i) $x\leq z$ by assumption, and $zxy$ is geodesic by Lemma
20.2(vi), so $\rho(z, y)=\rho(x, y)$ by Lemma 13.4(ii),(iv).

(ii) $z$ is relatively close to $y$ by Lemma 20.3(i), so by Lemma
20.2(i) and (i) above,

$\delta(z, y)=rank(y)-\rho(z, y)$

$=rank(y)-\rho(x, y)$

$=\delta(x, y)$ .

(iii) By Lemma 13.2,

(20.3) rank(x) $=\rho(x, y)+\gamma(x, y)$ $+\delta(x, y)$ ,

(20.4) rank(z) $=\rho(z, y)+\gamma(z, y)+\delta(z, y)$ .

Our result is immediate upon subtracting (20.3) from (20.4), and eval-
uating the result using (i), (ii) above.

\S 21. The staircase theorem

In this section, we describe a quantum matroid in a way that may
help the reader visualize its structure. Theorem 21.3 is our main result.
First, we need a few definitions.

Recall a directed graph (or $di$-graph) is a pair $\prime D:=(VD, ED)$ , where
$VD$ is a nonempty finite set (of vertices) and $E’D\underline{\subseteq}V’D\times V’D$ (the
edges). For all $u$ , $v\in V’D$ , we write $u\rightarrow v$ whenever $uv\in E’D$ .

Observe possibly both $u\rightarrow v$ and $v\rightarrow u$ , possibly only one of these
occurs, or possibly neither. We may also have $u\rightarrow u$ .

Definition 21.1. Let $/D$ denote any $di$-graph, and let $P$ denote
any poset. By a $\prime D$-partition of $P$ , we mean a map $\sigma$ : $P\rightarrow VD$ , such
that (i), (ii) hold below:

(i) For all $x$ , $y$ $\in P$ , if $x$ , $y$ are adjacent then $\sigma(x)\rightarrow\sigma(y)$ or
$\sigma(y)\rightarrow\sigma(x)$ (or both).
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(ii) For all $u$ , $v\in VD$ such that $u\rightarrow v$ , and for all $x\in P$ such
that $\sigma(x)=u$ , then there exists $y\in P$ such that $x$ , $y$ are
adjacent and such that $\sigma(y)=v$ .

(Caution: We do not require $\sigma$ be onto $VD$ ).

The quantum matroids have $D$-partitions for certain $di$-graphs $D$ ,

described below.

Definition 21.2. For any nonnegative integers $a$ , $b$ , define the di-
graph $D=D(a, b)$ as follows: The vertex set $VD$ is the set of three
tuples

(21.2) $VD:=\{(\rho, \gamma, \delta)|\rho, \gamma, \delta\in \mathbb{Z}, 0\leq\rho, 0\leq\delta, \rho+\delta\leq a, 0\leq\gamma\leq b\}$ .

For all pairs of vertices $(\rho, \gamma, \delta)$ , $(\rho’, \gamma’, \delta’)\in VD$ , there is an edge
$(\rho, \gamma, \delta)\rightarrow(\rho’, \gamma’, \delta’)$ in $D$ whenever one of the following rows holds:

(21.2) $\rho’=\rho+1$ $\gamma’=\gamma$ $\delta’=\delta$

(21.3) $\rho’=\rho-1$ $\gamma’=\gamma$ $\delta’=\delta$

(21.4) $\rho’=\rho$ $\gamma’=\gamma+1$ $\delta’=\delta$

(21.5) $\rho’=\rho$ $\gamma’=\gamma-1$ $\delta’=\delta=0$

(21.6) $\rho’=\rho$ $\gamma’=\gamma$ $\delta’=\delta-1$

Observe the “shape” of $D(a, b)$ resembles that of a staircase of height
$a$ and width $b$ . For example, $D(2,3)$ looks as follows (we abbreviate
$u\mapsto v$

Fig. 1.
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Theorem 21.3. Let $P$ denote a quantum matroid with rank $D$ .

Pick any integer $a(0\leq a\leq D)$ , fifix any $y$
$\in P$ such that rank(y) $=a$ ,

and set

(21.7) $\sigma(x):=(\rho(x, y),$ $\gamma(x, y)$ , $\delta(x, y))$ $(\forall x\in P)$ .

Then $\sigma$ is a $D(a, D-a)$ -partition of $P$ .

Proof. Abbreviate $D:=D(a, D-a)$ . Pick any $x\in P$ , and
abbreviate

$\rho:=\rho(x, y)$ ,

$\gamma:=\gamma(x, y)$ ,

$\delta:=\delta(x, y)$ .

Let us first check $\sigma(x)\in VD$ . To do this, we verify $\rho$ , $\gamma$ , $\delta$ satisfy the
inequalities in (21.1) (with $b=D-a$). Observe $ 0\leq\rho$ , $ 0\leq\gamma$ , $ 0\leq\delta$

by Lemma 13.3(i), and $\rho+\delta\leq a$ by Lemma 20.1. To see $\gamma\leq D-a$ ,

observe

$\gamma(x, y)\leq D-\rho(x, y)-\gamma(y, x)-\delta(x, y)$

$=D-$ rank(y)

by Lemmas 13.2, 13.3 and Theorem 18.2(vi). We have now shown
$\sigma(x)\in VD$ .

Next, let us verify that $\sigma$ satisfies (i) of Definition 21.1. To this
end, pick any $z\in P$ such that $x$ , $z$ are adjacent, and set

$\rho’:=\rho(z, y)$ ,

$\gamma’:=\gamma(z, y)$ ,

$\delta’:=\delta(z, y)$ .

We must show $(\rho, \gamma, \delta)\rightarrow(\rho’, \gamma’, \delta’)$ or $(\rho’, \gamma’, \delta’)\rightarrow(\rho, \gamma, \delta)$ . Inter-
changing $x$ , $z$ if necessary, we may assume $x$ covers $z$ . But then by
Theorem 13.5(i),(iii), the three tuple $(\rho-\rho’, \gamma-\gamma’, \delta-\delta’)$ equals either

(1, 0, 0) (in which case ( $\rho$ , $\gamma$ , $\delta)\rightarrow(\rho’,$ $\gamma’$ , $\delta’)$ by (21.3)),

or
(0, 1, 0) (in which case ( $\rho’$ , $\gamma’$ , $\delta’)\rightarrow(\rho,$

$\gamma$ , $\delta)$ by (21.4)),

or
(0, 0, 1) (in which case ( $\rho$ , $\gamma$ , $\delta)\rightarrow(\rho’,$ $\gamma’$ , $\delta’)$ by (21.6)).

We have now shown $\sigma$ satisfies (i) of Definition 21.1.
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It remains to show $\sigma$ satisfies part (ii) of Definition 21.1. To this
end, let $x$ , $\rho$ , $\gamma$ , $\delta$ be as above, and pick any $(\rho’, \gamma’, \delta’)\in VD$ such that
$(\rho, \gamma, \delta)\rightarrow(\rho’, \gamma’, \delta’)$ . We must find $z\in P$ such that $x$ , $z$ are adjacent,
and such that $\sigma(z)=(\rho’, \gamma’, \delta’)$ . We consider the 5 cases (21.2)-(21.6)
in turn.

First assume $(\rho’, \gamma’, \delta’)=(\rho+1, \gamma, \delta)$ . Observe by Lemma 13.2 and
Corollary 15.7(ii) that

$rank(x_{y}^{+})=\gamma(y, x)$

$=a-\rho-\delta$

$=a-\rho’-\delta’+1$

$\geq 1$ ,

so there exists $z\in x_{y}^{+}$ such that $z$ covers $x$ . Observe $\sigma(z)=$

$(\rho+1, \gamma, \delta)$ by Lemma 15.3(iv),(v).

Next assume $(\rho’, \gamma’, \delta’)=(\rho-1, \gamma, \delta)$ . Then

$\rho=\rho’+1\geq 1$ ,

so $x\wedge y\neq 0$ . Let $z’$ denote a relative complement of $x\wedge y$ in the
interval $[0, x]$ . Then $z’<x$ by modularity, so there exists $z\in[z’, x]$

such that $x$ covers $z$ . Observe $x\in z_{y}^{\prime+}$ by Lemma 15.3(i),(ii), so
$z’xy$ is geodesic. Observe $z’ zx$ is geodesic by the construction, so
$z’ zxy$ is geodesic. In particular $zxy$ is geodesic, so $x\in z_{y}^{+}$ by (15.1).

Now $\sigma(z)=(\rho-1, \gamma, \delta)$ by Lemma 15.3(iv),(v).

Next assume $(\rho’, \gamma’, \delta’)=(\rho, \gamma+1, \delta)$ . Pick any $u\in top(x_{y}^{+})$ , and

observe

rank(w)= $rank(x)+rank(x_{y}^{+})$

$=\rho(x, y)+\gamma(x, y)+\delta(x, y)+\gamma(y, x)$

$=a+\gamma$

$=a+\gamma’-1$

$<D$ ,

so by Lemma 4.3, there exists $v\in P$ such that $v$ covers $u$ . Let $z$

denote a relative complement of $u$ is $[x, v]$ . Then $z$ covers $x$ by
modularity. We now compute $\sigma(z)$ . Observe by Lemma 15.3(iv),(v)
and our choice of $u$ that

(21.8) $\sigma(u)=(\rho_{1}, \gamma, \delta)$ ,
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where $\rho_{1}=\rho+rank(u)-$ rank(x). Observe $u$ is relatively close to $y$

by Lemma 20.3(ii), so

(21.9) $\sigma(v)=(\rho_{1}, \gamma+1, \delta)$

by (21.8) and Theorem 20.4. Observe $u=x\vee(y\wedge v)$ by (21.8), (21.9),
Lemma 17.1, and Theorem 17.2 $(i),(iv)$ , so

$\sigma(z)=(\rho, \gamma+1, \delta)$

by Theorem 17.3 (iii), (iv).
Next assume $\delta=0$ and $(\rho’, \gamma’, \delta’)=(\rho, \gamma-1,0)$ . Observe by

Lemma 13.2 that

rank(x) $-\rho=\gamma$

$=\gamma’+1$

$\geq 1$ ,

so $x>x\wedge y$ . Hence there exists $z\in[x\wedge y, x]$ such that $x$ covers $z$ .

Now $\sigma(z)=(\rho, \gamma-1,0)$ by Definition 13.1, since $z\wedge y=x\wedge y$ by
Lemma 13.4(i),(iii) and $z\star y=z$ by Lemma 12.2.

Finally assume $(\rho’, \gamma’, \delta’)=(\rho, \gamma, \delta-1)$ . Observe by Lemma 14.2 (i)
that

rank $([x\star y, x]^{*})=\delta$

$=\delta’+1$

$\geq 1$ ,

so there exists $z\in[x\star y, x]^{*}$ that is covered by $x$ (in the poset
$P)$ . Observe $\sigma(z)=(\rho, \gamma, \delta-1)$ by Lemma 14.3(ii),(iv). This proves
Theorem 21.3.

\S 22. The graph on top $(P)$

In this section we consider a graph defined on the top of a quantum
matroid.

Theorem 22.1. Let $P$ denote a quantum matroid with rank $D$ .

(i) For all $x$ , $y\in top(P)$ , there exists a geodesic flat path in $P$

connecting $x$ , $y$ .
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For $(ii)-(iv)$ below, we view top(P) as the vertex set of an undi-
rected graph, where vertices $x$ , $y\in top(P)$ are declared adjacent when-
ever $x$ , $y$ cover $x\wedge y$ .

(ii) The graph top(P) is connected.
(iii) For all $x$ , $y$ $\in top(P)$ ,

(22.1) $\partial_{top}(x, y)=\partial(x, y)/2$

(22.2) $=D-\rho(x, y)$

(22.3) $=\delta(x, y)$ ,

where $\partial_{top}$ denotes the path length distance function for the
graph top(P).

(iv)

(22.4) $diam_{top}(P)=\max\{\delta(x, y)|x, y\in P\}$

(22.5) $\leq D$ ,

where $diam_{top}(P)$ denotes the diameter of the graph top(P).

Proof (i) By Theorem 18.2(iv), there exists a geodesic up-flat-
down path $p$ connecting $x$ , $y$ . But $x$ , $y$ $\in top(P)$ , so $p$ is flat.

(ii) Immediate from (i).
(iii) Line (22.1) is immediate from (i) and the definition of a flat

path in Lemma 18.1. To see (22.2), observe by Corollary 7.6(i) that

$\partial(x, y)=rank(x)$ $+rank(y)-2rank(x\wedge y)$

$=2(D-\rho(x, y))$ .

To see (22.3), observe $x$ is the unique element in $x_{y}^{+}$ , so $x$ is relatively

close to $y$ by Lemma 20.2(iii). Now

$\rho(x, y)$ $+\delta(x, y)=rank(y)=D$

by Lemma 20.2(i).
(iv) To see (22.4), observe by (22.3) and Corollary 13.6(iii),(iv) that

$diam_{top}(P)=\max\{\partial_{top}(x, y)|x, y\in top(P)\}$

$=\max\{\delta(x, y) |x, y\in top(P)\}$

$=\max\{\delta(x, y) |x, y \in P\}$ .

We now have (22.4). Line (22.5) is immediate from (22.2). This proves
Theorem 22.1.

For the remainder of this section, we investigate the quantum ma-
troids $P$ such that $diam_{top}(P)\leq 1$ .
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Lemma 22.2. For any poset $P$ , the following are equivalent.

(i) $P$ is a quantum matroid, and

(22.6) $diam_{top}(P)=0$ .

(ii) $P$ is a quantum matroid, and

(22.7) $|top(P)|=1$ .

(iii) $P$ is a modular atomic lattice.

Proof. $(i)\mapsto(ii)$ . Clear
(ii) $\rightarrow(iii)$ . Observe $\max(P)=top(P)$ consists of a single element,

so $P$ has a 1. Now $P=[0,1]$ is a modular atomic lattice by condition
$M$ in Definition 4.1.

(iii) $\rightarrow(ii)$ . Clear.

Lemma 22.3. For any poset $P$ , the following are equivalent.

(i) $P$ is a quantum matroid, and

(22.8) $diam_{top}(P)\leq 1$ .

(ii) $P$ is a quantum matroid, and

(22.9) $x$ , $y$ cover $x\wedge y$ for all distinct $x$ , $y\in top(P)$ .

(iii) $P$ is a prematroid, and

(22.10) $x$ , $y$ cover $x\wedge y$ for all distinct $x$ , $y\in\max(P)$ .

(iv) $P$ is a prematroid, and

(22.11) $\delta(x, y)\leq 1$ for all $x$ , $y$
$\in P$.

If $(i)-(iv)$ hold, we call $P$ a design matroid.

Proof. (i) $\rightarrow(ii)$ . Let $x$ , $y$ denote distinct elements in top(P).
Then $\partial_{top}(x, y)=1$ by (22.8), so $\partial(x, y)=2$ by (22.1). Now $x$ , $y$

cover $x\wedge y$ by Lemma 7.4.
(ii) $\rightarrow(iii)$ . It is clear $P$ is a prematroid. Also $\max(P)=top(P)$

by Lemma 4.3, so (22.10) follows from (22.9).
(iii) $\rightarrow(iv)$ . Let $x$ , $y\in P$ be given. We show $\delta(x, y)\leq 1$ . There

exists $x’$ , $y’\in\max(P)$ such that $x\leq x’$ , $y\leq y’$ . Observe $\delta(x, y)\leq$

$\delta(x’, y’)$ by Corollary 13.6(iii),(iv), so it suffices to show $\delta(x’, y’)\leq 1$ .

Assume $\delta(x’, y’)\neq 0$ ; otherwise we are done. Then $x’$ , $y’$ are distinct,
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so $x’$ , $y’$ covers $x’\wedge y’$ by (22.10). Now $\delta(x’, y’)=1$ by Definition
12.1, and we are done.

(iv) $\rightarrow(i)$ . To show $P$ is a quantum matroid, we show $P$ satisfies
the augmentation axiom. Pick any $x$ , $y$

$\in P$ . By Theorem 18.2(vi), it
suffices to show

(22.12) $\delta(x, y)=\delta(y, x)$ .

First suppose $x\vee y$ exists. Then $\delta(x, y)=0$ , $\delta(y, x)=0$ by Lemma
12.2, so (22.12) holds. Now suppose $x\vee y$ does not exist. Then
$\delta(x, y)\neq 0$ , $\delta(y, x)\neq 0$ by Lemma 12.2, so $\delta(x, y)$ , $\delta(y, x)$ are both
1 by (22.11). Again (22.12) holds, so (22.12) holds in general. Now $P$

satisfies the augmentation axiom by Theorem 18.2, so $P$ is a quantum
matroid. To see (22.8), observe by (22.4), (22.11) that

$diam_{top}(P)=\max\{\delta(x, y) |x, y \in P\}$

$\leq 1$ .

This proves Lemma 22.3.

Lemma 22.4. Let $P$ denote a quantum matroid. Then $x_{y}^{+}$ , $x_{y}^{-}$

are design matroids for all $x$ , $y$ $\in P$ such that $\delta(x, y)=1$ .

Proof. We show $x_{y}^{-}$ is a design matroid by showing it satisfies

condition (ii) in Lemma 22.3. Observe $x_{y}^{-}$ is a quantum matroid by

Theorem 19.3 $(i),(iii)$ , so it remains to show $u$ , $v$ cover $u\wedge v$ for all
distinct $u$ , $v\in top(x_{y}^{-})$ . By Theorem 12.3, Lemma 15.4(ii), and our

assumption $\delta(x, y)=1$ , we find $x$ covers $u$ , $v$ . Now $u\vee v=x$ covers
$u$ , $v$ , so $u$ , $v$ covers $u\wedge v$ by modularity. We have now shown $x_{y}^{-}$

satisfies condition (ii) in Lemma 22.3, so $x_{y}^{-}$ is a design-matroid.

To see that $x_{y}^{+}$ is a design-matroid, recall $\delta(y, x)=1$ by Theorem

18.2(vi), so $y_{x}^{-}$ is a design-matroid by our above remarks. Recall $x_{y}^{+}$

is isomorphic to $y_{x}^{-}$ by Theorem 15.5, so $x_{y}^{+}$ is a design-matroid. We
have now proved Lemma 22.4.

\S 23. Quantum matroids and diagram geometries

In this section we obtain a characterization of a quantum matroid
that might be useful to people doing research on diagram geometries.
We do not explicitly introduce the language of diagram geometries in
order to avoid cumbersome terminology, but a reader familiar with these
geometries should have no trouble translating our result into that lan-
guage.
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Theorem 23.1. Let $D$ denote a nonnegative integer. Then $a$

poset $P$ is a quantum matroid of rank $D$ if and only if $(i)-(iv)$ hold
below.

(i) $P$ is a prematroid of rank $D$ .

(ii) For all $x\in P$ , there exists $x’\in top(P)$ such that $x\leq x’$ .

(iii) For all $x\in P$ with rank(x) $\leq D-2$ , the subposet of $P$

induced on $x^{+}\backslash \{x\}$ is connected.
(iv) For all $x\in P$ with rank(x) $=D-2$ , the poset $x^{+}$ is $a$

quantum matroid of rank 2.

(The quantum matroids of rank 2 are described in Example 4.2.)

Proof. We first assume $P$ is a quantum matroid, and verify $(i)-$

$(iv)$ . Line (i) is immediate from Definition 5.1, and (ii) is just Lemma
4.3. To see (iii), pick any $x\in P$ such that rank(x) $\leq D-2$ . We show
the subposet of $P$ induced on $x^{+}\backslash \{x\}$ is connected. By (ii) above,

any element in $x^{+}\backslash \{x\}$ is connected by a path in $x^{+}\backslash \{x\}$ to some
element in $top(x^{+})$ . Hence it suffices to pick any $u$ , $v\in top(x^{+})$ , and
show $u$ , $v$ are connected by a path in $x^{+}\backslash \{x\}$ . By Theorem 22.1(i),
there exists a geodesic flat path $p$ in $P$ that connects $u$ , $v$ . Recall
$x^{+}$ is geodesically closed in $P$ by Lemma 8.4(i), so $p$ is contained in
$x^{+}$ . The elements of $p$ all have rank $D-1$ or $D$ by Lemma 18.1, and
rank(x)\leq $D-2$ , so $x$ is not included in $p$ . It follows $p$ is contained
in $x^{+}\backslash \{x\}$ , as desired. We now have (iii). To see (iv), recall $x^{+}$ is
a quantum matroid by Corollary 19.2, and $rank(x^{+})=2$ by part (ii)
above. We have now proved the theorem in one direction, so we now
consider the converse.

Let $P$ denote a poset satisfying $(i)-(iv)$ in the present theorem.
We show $P$ is a quantum matroid of rank $D$ by induction on $D$ .

The case $D\leq 1$ is trivial, and the case $D=2$ is immediate from
assumption (iv), so from now on assume $D\geq 3$ .

$P$ is a prematroid of rank $D$ by assumption (i), so we need only
show $P$ satisfies the augmentation axiom. To do this, we show $P$

satisfies condition (iii) in Theorem 18.2. For the rest of this proof, we
use the following terminology: For any paths $p$ , $p’$ in $P$ , we say
$p’$ replaces $p$ whenever $p$ , $p’$ share the same endpoints. For each
integer $i(2\leq i\leq D)$ , let $E_{i}$ denote the proposition that any geodesic
path in $P$ of shape $(i-1, i-2, i-1, i)$ can be replaced by a path in
$P$ that has shape $(i-1, i, i-1, i)$ . The condition (iii) in Theorem 18.2
will follow if we can show $E_{2}$ , $E_{3}$ , $\ldots$ , $E_{D}$ . We do this in two steps.

Claim 1. $E_{3}$ , $E_{4}$ , $\ldots$ , $E_{D}$ hold.
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Proof of Claim 1. Pick an integer $i(3\leq i\leq D)$ , and pick a path
xyzw in $P$ of shape $(i-1, i-2, i-1, i)$ . We show xyzw can be
replaced by a path in $P$ that has shape $(i-1, i, i-1, i)$ . The poset
$y^{+}$ satisfies the conditions $(i)-(iv)$ of the present theorem (with $D$

replaced by $D-i+2$ ), and $D-i+2\leq D-1$ , so $y^{+}$ is a quantum
matroid by induction. Observe the path xyzw is contained in $y^{+}$ , and
has shape 1012 (in $y^{+}$ ). Applying Theorem 18.2(iii) to $y^{+}$ , we find
the path xyzw can be replaced by a path $xy’ z’ w$ in $y^{+}$ that has shape
1212 (in $y^{+}$ ). Observe the path $xyzw$ has shape $(i-1, i, i-1, i)$

(in $P$ ), so we are done. This proves Claim 1.

Claim 2. $E_{2}$ holds.

Proof of Claim 2. Pick any $x$ , $y$ $\in P$ such that rank(x) $=1$ ,

rank(y)=2, and $x\not\leq y$ . We show $x$ , $y$ are connected by a path in $P$

that has shape 1212. To do this, we show (i), (ii) below:

(i) There exists a path in $P$ with endpoints $x$ , $y$ and shape
1212. . . 12.

(ii) Any path in $P$ with shape 121212 can be replaced by a path
in $P$ with shape 1212.

To see (i), recall by (iii) of the present theorem that there exists a
path in $P\backslash \{0\}$ connecting $x$ , $y$ . Of all such paths, pick a path

$p=(x=x_{0}, x_{1}, \ldots, x_{d}=y)$ $(x_{0}, x_{1}, \ldots, x_{d}\in P)$

with minimal weight in the sense of (7.7). Set

$r:=\max\{rank(x_{i})|0\leq i\leq d\}$ ,

and observe $r\geq rank(x_{d})=2$ . $p$ will have the desired shape 1212 $\cdots$

12 if we can show $r=2$ . Suppose $r\geq 3$ , and pick any integer
$i$ $(0\leq i\leq d)$ such that $rank(x_{i})=r$ . Then 1 $\leq i\leq d-1$ ,

and $x_{i-1}<x_{i}>x_{i+1}$ . Observe $x_{0}$ , $x_{1}$ , $\ldots$ , $x_{d}$ are distinct by the
construction, so $x_{i-1}\vee x_{i+1}=x_{i}$ covers $x_{i-1}$ , $x_{i+1}$ . Now $x_{i-1}$ , $x_{i+1}$

cover $x_{i-1}\wedge x_{i+1}$ by modularity. Now $p$ can be replaced by a path

$p’=(x=x_{0}, x_{1}, \ldots, x_{i-1}, x_{i-1}\wedge x_{i+1}, x_{i+1}, \ldots, x_{d}=y)$

that is contained in $P\backslash \{0\}$ , and has

weight $(p’)=weight(p)-2$ .

This contradicts the construction, so $r=2$ . The path $p$ now has the
desired shape 1212 $\cdots 12$ , so (i) holds.
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To see part (ii) in the present claim, consider the following sequences:

(si) 121212
(s2) 12323212
(s3) 12323232
(s4) 12321232
(s5) 121232
(s6) 123232
(s7) 123212
(s8) 1232
(s9) 1212

To show part (ii) in the present claim, we show that any path $p$

in $P$ whose shape is one of (s1)-(s8), can be replaced by a path in $P$

whose shape is included below shape(p) in the above list. We write
$p=(x_{0}, x_{1}, x_{2}, \ldots)$ and consider each of the shapes (s1)-(s8) in turn.

Case si. By assumption (ii) of the present theorem, and since $ D\geq$

$3$ , there exists $y$
$\in P$ such that $y$ covers $x_{3}$ . first suppose $x_{1}\leq y$ .

Then $(x_{0}, x_{1}, y, x_{3}, x_{4}, x_{5})$ is a path of shape 123212 (s7). Next
suppose $x_{1}\not\leq y$ . Then $(x_{1}, x_{2}, x_{3}, y)$ is a geodesic path of shape
2123, so by $E_{3}$ , there exists a path $(x_{1}, z, w, y)$ in $P$ of shape 2323.
Now $(x_{0}, x_{1}, z, w, y, x_{3}, x_{4}, x_{5})$ is a path of shape 12323212 (s2).

Case s2. First suppose $x_{4}\geq x_{7}$ . Then $(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{7})$

is a path of shape 123232 (s6). Next suppose $x_{4}\not\geq x_{7}$ . Then
$(x_{7}, x_{6}, x_{5}, x_{4})$ is a geodesic path of shape 2123, so by $E_{3}$ , there exists
a path $(x_{7}, y, z, x_{4})$ in $P$ of shape 2323. Now $(x_{0},$ $x_{1}$ , $x_{2}$ , $x_{3}$ , $x_{4}$ , $z$ , $y$ ,
$x_{7})$ is a path of shape 12323232 (s3).

Case s3. First suppose $x_{3}=x_{5}$ . Then $(x_{0}, x_{1}, x_{2}, x_{3}, x_{6}, x_{7})$ is a
path of shape 123232 (s6). Next suppose $x_{3}\neq x_{5}$ . Then $x_{3}\vee x_{5}=x_{4}$

covers $x_{3}$ , $x_{5}$ , so $x_{3}$ , $x_{5}$ cover $x_{3}\wedge x_{5}$ by modularity. Now
$(x_{0}, x_{1}, x_{2}, x_{3}, x_{3}\wedge x_{5}, x_{5}, x_{6}, x_{7})$ is a path of shape 12321232 (s4).

Case $s4$ . First suppose $x_{0}=x_{4}$ . Then $(x_{0}, x_{5}, x_{6}, x_{7})$ is a path
of shape 1232 (s8). Next suppose $x_{0}\neq x_{4}$ . Observe $x_{2}$ is an upper
bound for $x_{0}$ , $x_{4}$ , so $x_{0}\vee x_{4}$ exists $x_{0}\vee x_{4}$ covers $x_{0}$ , $x_{4}$ by
modularity, so $(x_{0}, x_{0}\vee x_{4}, x_{4}, x_{5}, x_{6}, x_{7})$ is a path of shape 121232
(s5).

Case $s5$ . First suppose $x_{1}\leq x_{4}$ . Then $(x_{0}, x_{1}, x_{4}, x_{5})$ is a path of
shape 1232 (s8). Next suppose $x_{1}\not\leq x_{4}$ . Then $(x_{1}, x_{2}, x_{3}, x_{4})$

is a geodesic path of shape 2123, so by $E_{3}$ , there exists a path
$(x_{1}, y, z, x_{4})$ in $P$ of shape 2323. Now $(x_{0}, x_{1}, y, z, x_{4}, x_{5})$ is
a path of shape 123232 (s6).

Case $s6$ . First suppose $x_{3}=x_{5}$ . Then $(x_{0}, x_{1}, x_{2}, x_{5})$ is a
path of shape 1232 (s8). Next suppose $x_{3}\neq x_{5}$ . Then $x_{3}\vee x_{5}=$
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$x_{4}$ covers $x_{3}$ , $x_{5}$ , so $x_{3}$ , $x_{5}$ cover $x_{3}\wedge x_{5}$ by modularity. Now
$(x_{0}, x_{1}, x_{2}, x_{3}, x_{3}\wedge x_{5}, x_{5})$ is a path of shape 123212 (s7).

Case $s7$ . First suppose $x_{0}=x_{4}$ . Then $(x_{0}, x_{5}, x_{0}, x_{5})$ is a path
of shape 1212 (s9). Next suppose $x_{0}\neq x_{4}$ . Observe $x_{2}$ is an upper
bound for $x_{0}$ , $x_{4}$ , so $x_{0}\vee x_{4}$ exists. $x_{0}\vee x_{4}$ covers $x_{0}$ , $x_{4}$ by
modularity, so $(x_{0}, x_{0}\vee x_{4}, x_{4}, x_{5})$ is a path of shape 1212 (s9).

Case s8. First suppose $x_{1}=x_{3}$ . Then $(x_{0}, x_{3}, x_{0}, x_{3})$ is a path of
shape 1212 (s9). Next suppose $x_{1}\neq x_{3}$ . Then $x_{1}\vee x_{3}=x_{2}$ covers $x_{1}$ ,
$x_{3}$ , so $x_{1}$ , $x_{3}$ cover $x_{1}\wedge x_{3}$ by modularity. Now $(x_{0}, x_{1}, x_{1}\wedge x_{3}, x_{3})$

is a path of shape 1212 (s9).
We have now shown part (ii) in the present claim, so $E_{2}$ holds. Now

the propositions $E_{2}$ , $E_{3}$ , $\ldots$ , $E_{D}$ hold by Claims 1, 2, so $P$ satisfies
condition (iii) in Theorem 18.2. Now $P$ satisfies the augmentation
axiom by that theorem, and we conclude $P$ is a quantum matroid of
rank $D$ .

\S 24. A Characterization of quantum matroids

In this section we obtain a characterization of a quantum matroid
that is related to the material on Tits polar spaces in Sections 29, 30.

Definition 24.1. Let us say a prematroid $P$ is transversal when-
ever $\max(P)=top(P)$ .

Theorem 24.2. Let $P$ denote a prematroid of rank D. Then
the following are equivalent.

(i) $P$ satisfifies the augmentation axiom A $U$ in Defifinition 4.1.
(ii) For all atoms $x\in P$ , and for all $y\in top(P)$ such that $x\not\leq y$ ,

$x_{y}^{+}$ is transversal and has rank $D-1$ .

(iii) For all $u\in P$ , and for all $v\in top(P)$ such that $u$ covers
$u\wedge v$ , there exists $v’\in top(P)$ such that $u\leq v’$ , and such that
$v$ , $v’$ cover $v\wedge v’$ .

Proof (i) $\rightarrow(ii)$ . Let $x$ , $y$ be given. Observe $x_{y}^{+}$ is a quantum
matroid by Corollary 19.2, so it is transversal by Lemma 4.3. Observe
$top(x_{y}^{+})\underline{\subseteq}$ top(P) by Theorem 18.2(v), so $rank(x_{y}^{+})=D-1$ .

(ii) $\rightarrow(iii)$ . Pick any $u\in P$ and any $v\in top(P)$ such that $u$

covers $u\wedge v$ . Let $x$ denote a relative complement of $u\wedge v$ in $[0, u]$ .

Then $x$ is an atom by modularity. Observe $x\not\leq v$ ; otherwise

$u=x\vee(u\wedge v)$

$\leq v$ ,
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a contradiction. Now $x\wedge v=0$ . We may now view $x$ , $u\wedge v$ as
relative complements in $[x\wedge v, u]$ , so $u\in x_{v}^{+}$ by Lemma 15.3 $(i),(ii)$ .

Pick any $v’\in\max(x_{v}^{+})$ such that $u\leq v’$ . We check $v’$ has the
required properties. We mentioned $x$ is an atom such that $x\not\leq v$ , so
by assumption $x_{v}^{+}$ is transversal and has rank $D-1$ . It follows

$v’\in\max(x_{v}^{+})$

$=top(x_{v}^{+})$

$\underline{\subseteq}$ top(P).

Observe $x$ , $v\wedge v’$ are relative complements in $[0, v’]$ by Lemma
15.3(i),(ii), and $x$ covers 0, so $v’$ covers $v\wedge v’$ by modularity.
In particular rank(v\wedge v’) $=D-1$ , and it follows $v$ covers $v\wedge v’$ .

(iii) $\rightarrow(i)$ . To show $P$ satisfies the augmentation axiom, we first
show $\max(P)=top(P)$ . Suppose $\max(P)\neq top(P)$ . Then [0, top(P)]
is a proper subset of $P$ . Pick any element

(24.1) $u\in P\backslash $ [ $0$ , top(P)]

with rank(u) minimal. Certainly $u\neq 0$ , so there exists $x\in P$ such
that $u$ covers $x$ . Of course rank(x) <rank(u), so $ x\in$ [ $0$ , top(P)] by
construction. Pick any $v\in top(P)$ such that $x\leq v$ . Observe $u\not\leq v$

by (24.1), so $u\wedge v=x$ . Now $u$ covers $u\wedge v$ , so by (iii), there exists
$v’\in top(P)$ such that $u\leq v’$ (and such that $v$ , $v’$ cover $v\wedge v’$ ). Now
$ u\in$ [$0$ , top(P)], contradicting (24.1). We conclude $\max(P)=top(P)$ .

We are now ready to show $P$ satisfies the augmentation axiom. To
do this, we show $P$ satisfies condition (iii) in Theorem 18.2. Pick any
integer $i(2\leq i\leq D)$ , and pick any geodesic path xyzw in $P$ of shape
$(i-1, i-2, i-1, i)$ . We find $y’$ , $z’\in P$ such that xyfz’w is a path of
shape $(i-1, i, i-1, i)$ . We may assume $x\vee w$ does not exist; otherwise,
we are done with $y’:=x\vee z$ , $z’:=z$ . Since $\max(P)=top(P)$ , there
exists $v\in top(P)$ such that $w\leq v$ . Observe $x\not\leq v$ (otherwise
$v$ is an upper bound for $x$ , $w$ ), and it follows $x\wedge v=y$ . Now $x$

covers $x\wedge v=y$ , so by assumption, there exists $v’\in top(P)$ such
that $x\leq v’$ , and such that $v$ , $v’$ cover $v\wedge v’$ . Observe $w\not\leq v\wedge v’$ ;

otherwise $w\leq v\wedge v’\leq v’$ , making $v’$ an upper bound for $x$ , $w$ . Now
$v=(v\wedge v’)\vee w$ , so $v\wedge v’$ , $w$ are relative complements in $[w\wedge v’, v]$ .

Recall $v$ covers $v\wedge v’$ , so

(24.2) $w$ covers $w\wedge v’$

by modularity. Observe $v’$ is an upper bound for $x$ , $w\wedge v’$ , so $ x\vee$
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$(w\wedge v’)$ exists. Observe $x$ , $w\wedge v’$ cover $x\wedge(w\wedge v’)=y$ , so

(24.3) $x\vee(w\wedge v’)$ covers $x$ , $w\wedge v’$

by modularity. Set

$y’:=x\vee(w\wedge v’)$ ,

$z’:=w\wedge v’$ .

Then $xy’ z’ w$ is a path of shape $(i-1, i, i-1, i)$ by (24.2), (24.3),
and the construction. We have now shown $P$ satisfies condition (iii) in
Theorem 18.2, so $P$ satisfies the augmentation axiom by that theorem.
We have now proved Theorem 24.2.

\S 25. Any Cartesian product of quantum matroids is a quan-
tum matroid

In this section, we show the property of being a quantum matroid
is closed under the Cartesian product operation mentioned above line
(1.23). First, a word about notation. Let $P$ , $Q$ denote any posets,
and let $S$ , $T$ denote subposets of $P$, $Q$ , respectively. Then the poset
$S\times T$ is isomorphic to the subposet of $P\times Q$ induced on

$\{xy |x\in S, y \in T\}$ ;

consequently, we do not distinguish between these posets.
We mention a few elementary facts about the Cartesian product.

Let $P$, $Q$ denote any nonempty posets. Pick any $x$ , $y$ $\in P$ , and any
$x’$ , $y’\in Q$ . Then $xx’\bigwedge_{P\times Q}yy’$ exists if and only if both $x\bigwedge_{P}y$ ,
$x’\bigwedge_{Q}y’$ exist. In this case,

(25.1) $xx’\bigwedge_{P\times Q}yy’=x\bigwedge_{P}y$ , $x’\bigwedge_{Q}y’$ .

Similarly, $xx’\bigvee_{P\times Q}yy’$ exists if and only if both $x\bigvee_{P}y$ , $x’\bigvee_{Q}y’$

exist, and in this case,

(25.2) $xx’\bigvee_{P\times Q}yy’=x\bigvee_{P}y$ , $x’\bigvee_{Q}y’$ .

Let $P$, $Q$ denote semilattices. Then $P\times Q$ is a semilattice.
Let $P$, $Q$ denote posets with 0. Then $P\times Q$ has a 0. Moreover,

(25.3) $0_{P\times Q}=0_{P}0_{Q}$ .

Let $P$, $Q$ denote ranked posets with 0. Then $P\times Q$ is ranked.
Moreover, for all $x\in P$ and for all $x’\in Q$ ,

(25.4) $rank_{P\times Q}(xx’)=rank_{P}(x)+rank_{Q}(x’)$ .
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Let $P$, $Q$ denote modular atomic lattices. Then $P\times Q$ is a modular
atomic lattice.

Lemma 25.1. Let $P$, $Q$ denote prematroids. Then $P\times Q$ is $a$

prematroid.

Proof. It is immediate from our remarks above that $P\times Q$ satisfies
$R$ , $SL$ . To see that $P\times Q$ satisfies $M$ , pick any $x\in P$ and any $x’\in Q$ .

Then
$[0_{P\times Q}, xx’]=[0_{P}, x]\times[0_{Q}, x’]$

is a Cartesian product of modular atomic lattices, and is therefore a
modular atomic lattice.

Lemma 25.2. Let $P$, $Q$ denote prematroids. Then for all $x$ , $y$
$\in$

$P$ and for all $x’$ , $y’\in Q$ ,

(i) $\partial_{P\times Q}(xx’, yy’)=\partial_{P}(x, y)+\partial_{Q}(x’, y’)$ ,

(ii) $\delta_{P\times Q}(xx’, yy’)=\delta_{P}(x, y)$ $+\delta_{Q}(x’, y’)$ .

Proof. (i) Expand each side using (7.12), and evaluate the results
using (25.1), (25.4).

(ii) First, we show the inequality $\leq$ holds. By Definition 12.1,
there exists $z\in P$ such that $z\bigvee_{P}y$ exists, and such that

$\partial_{P}(x, z)=\delta_{P}(x, y)$ .

Similarly, there exists $z’\in Q$ such that $z’\bigvee_{Q}y’$ exists, and such that

$\partial_{Q}(x’, z’)=\delta_{Q}(x’, y’)$ .

Now $zz’\bigvee_{P\times Q}yy$
’ exists by our preliminary remarks, so in view of

Definition 12.1,

$\delta_{P\times Q}(xx’, yy’)\leq\partial_{P\times Q}(xx’, zz’)$

$=\partial_{P}(x, z)+\partial_{Q}(x’, z’)$

$=\delta_{P}(x, y)+\delta_{Q}(x’, y’)$ ,

as desired. Next, we show the inequality $\geq$ holds. By Definition 12.1,
there exists an element $zz’\in P\times Q$ such that $zz$ ’VPXQ $yy’$ exists,
and such that

$\partial_{P\times Q}(xx’, zz’)=\delta_{P\times Q}(xx’, yy’)$ .

Observe $z\bigvee_{P}y$ exists by our preliminary remarks, so

$\partial_{P}(x, z)\geq\delta_{P}(x, y)$
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by Definition 12.1. Similarly $z’\bigvee_{Q}y’$ exists, so

$\partial_{Q}(x’, z’)\geq\delta_{Q}(x’, y’)$ .

Now

$\delta_{P\times Q}(xx’, yy’)=\partial_{P\times Q}(xx’, zz’)$

$=\partial_{P}(x, z)+\partial_{Q}(x’, z’)$

$\geq\delta_{P}(x, y)+\delta_{Q}(x’, y’)$ ,

as desired. We conclude equality holds in (ii), and we are done.

Theorem 25.3. Let $P$, $Q$ denote quantum matroids. Then the
Cartesian product $P\times Q$ is a quantum matroid.

Proof. Observe $P\times Q$ is a prematroid by Lemma 25.1, so it
remains to show $P\times Q$ satisfies the augmentation axiom. To do this, it
suffices by Theorem 18.2(vi) to show the function $\delta_{P\times Q}$ is symmetric in
its arguments. But this is an immediate consequence of Lemma 25.2 (ii),
since $\delta_{P}$ , $\delta_{Q}$ are each symmetric in their arguments by Theorem
18.2(vi).

\S 26. The radical of a quantum matroid

Definition 26.1. Let $P$ denote a quantum matroid. By the
radical of $P$ , we mean the element

(26.1) Rad(P) $:=$ $\wedge$ $x$ .

$x\in top(P)$

We say $P$ is degenerate whenever Rad(P) $>0$ , and nondegenerate
whenever Rad(P) $=0$ .

Let $P$ denote a quantum matroid, and write $R=Rad(P)$ . Recall
by Corollary 19.2 that the subposet $R^{+}$ is a quantum matroid.

Lemma 26.2. Let $P$ denote a quantum matroid, and write $R=$

Rad(P). Then

(i) $R^{+}$ is nondegenerate,
(ii) $top(R^{+})=top(P)$ .

Proof. Routine.

Lemma 26.3. Let $P$ denote a quantum matroid, and pick any
$x\in P$ . Then the following are equivalent.

(i) $x\leq Rad(P)$ .
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(ii) $x\leq y$ for all $y$ $\in top(P)$ .

(iii) $x\vee y$ exists for all $y$
$\in P$ .

Proof (i) $\rightarrow(ii)$ . Observe $x\leq Rad(P)\leq y$ for all $y$ $\in top(P)$ .

(ii) $\rightarrow(iii)$ . Pick any $y\in P$ . By Lemma 4.3, there exists $ u\in$

top(P) such that $y\leq u$ . Observe $x\leq u$ by assumption, so $u$ is an
upper bound for $x$ , $y$ .

(iii) $\rightarrow$ $(i)$ . Pick any $y$ $\in top(P)$ . Observe $x\vee y$ exists by
assumption, so $x\leq y$ . Now $x\leq Rad(P)$ by Definition 26.1. We have
now proved Lemma 26.3.

Lemma 26.4. Let $P$ denote a quantum matroid, and suppose
the condition (10.2) holds. Then

(26.2) Shadow(Rad(P)) $=$ { $x\in A_{P}|x\vee a$ exists for all $a\in A_{P}$ }.

Proof $\underline{\subseteq}$ : Pick any $ x\in$ Shadow(Rad(P)). Then by Lemma
26.3(i), (iii), $x\vee a$ exists for all $a\in A_{P}$

$\supseteq$ : Pick any $x\in A_{P}$ , and assume $x\vee a$ exists for all $a$ $\in A_{P}$ .

We show $x$ satisfies condition (iii) of Lemma 26.3. Pick any $y$
$\in P$ .

Certainly $x\vee a$ exists for all $a\in Shadow(y)$ , so $x\vee y$ exists by (10.2).
Now $x$ satisfies condition (iii) of Lemma 26.3, so $x\in Shadow(Rad(P))$

by Lemma 26.3 (i), (iii).

Lemma 26.5. Let $P$ denote a quantum matroid with rank $D$ .

Suppose that for each $x\in P$ such that rank(x) $=D-1$ , $x$ is covered
by at least two elements in top(P). Then Rad(P) $=0$ .

Proof Suppose $R:=Rad(P)>0$ , and pick any $z\in top(P)$ .

Since $[0, z]$ is relatively complemented, there exists $x\in P$ such that
$z$ covers $x$ and $R\not\leq x$ . By assumption, there exists $z’\in top(P)$ such

that $z’$ covers $x$ and $z’\neq z$ . Observe $z’$ is an upper bound for $x$ , $R$ ,

forcing $z’\geq x\vee R=z$ , an impossibility. Hence Rad(P) $=0$ .

We finish this section with some results concerning the polar spaces
from Examples 1.7, 1.8.

Definition 26.6. Let $V$ , $\langle, \rangle$ be as in Example 1.7, but assume
$q$ is odd in the symmetric bilinear case.

(i) By the radical of $\langle, \rangle$ , we mean

Rad $(\langle, \rangle):=$ { $u\in V|\langle u$ , $v\rangle=0$ for all $v\in V$ }.

(ii) $\langle, \rangle$ is said to be degenerate if Rad $(\langle, \rangle)=0$ , and nondegenerate
otherwise.
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Lemma 26.7. Let $V$ , $\langle, \rangle$ , $P$ be as in Example 1.7, but assume
$q$ is odd in the symmetric bilinear case.

(i) Rad $(\langle, \rangle)=Rad(P)$ .

(ii) $\langle, \rangle$ is degenerate if and only if $P$ is degenerate.

Proof. Routine.

Definition 26.8. Let $V$ , $f$ , $\langle, \rangle_{f}$ be as in Example 1.8.

(i) By the radical of $f$ , we mean

Rad(/) $:=\{v\in Rad(\langle, \rangle_{f})|f(v)=0\}$ .

(ii) $f$ is said to be degenerate if Rad(/) $=0$ , and nondegenerate
otherwise.

Lemma 26.9. Let $V$ , $f$ , $P$ be as in Example 1.8.

(i) Rad(/)=Rad(/)
(ii) $f$ is degenerate if and only if $P$ is degenerate.

Proof. Routine.

\S 27. Line regularity and dual-line regularity

Definition 27.1. Let $P$ denote a quantum matroid of rank $D$ ,
and let $q$ denote an integer.

(i) Suppose $D\geq 2$ . Then $P$ is said to be $q$-line regular whenever
for all lines $x\in P$ ,

(27.1) $|Shadow(x)|=q+1$ .

(ii) Suppose $D\leq 1$ . Then $P$ is said to be $q$-line regular whenever
$q$ is positive.

Lemma 27.2. Let $P$ denote a $q$ -line regular quantum matroid.
Then

(27.2) $q$ $\geq 1$ .

Proof. If $P$ has rank at least 2, then (27.2) follows from condition
$M$ in Definition 4.1. If $P$ has rank 0 or 1, then (27.2) is immediate
from Definition 27.1 (ii)
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Definition 27.3. Let $q$ , $j$ denote integers. We define $\left\{\begin{array}{l}j\\1\end{array}\right\}=\left\{\begin{array}{l}j\\1\end{array}\right\}$

by

(27.3) $\left\{\begin{array}{l}j\\1\end{array}\right\}$ $:=\frac{q^{j}-1}{q-1}$ if $q\neq 1$ ,

and

(27.4) $\left\{\begin{array}{l}j\\1\end{array}\right\}$ $:=j$ if $q=1$ .

Lemma 27.4. Let $P$ denote a modular atomic lattice of rank
$D$ , and let $q$ denote an integer. Then the following are equivalent.

(i) $P$ is q-line-regular.
(ii) All intervals in $P$ are q-line-regular.
(iii) $P^{*}$ is $q$ -line-regular.

Suppose $(i)-(iii)$ hold. Then

(27.5) $|A_{P}|=\left\{\begin{array}{l}D\\1\end{array}\right\}$ ,

where $[ ]$ is from (27.3), (27.4).

Proof. Routine.

Lemma 27.5. Let $P$ denote a $q$ -line regular quantum matroid.
Then for all intervals $I$ $=[x, y]$ in $P$ ,

(27.6) $\left\{\begin{array}{l}i\\1\end{array}\right\}$ $=|$ { $z\in I|z$ covers $x$ } $|$ ,

(27.7) $=|$ { $z\in I|y$ covers $z$ } $|$ ,

where $i:=rank(y)-$ rank(a;), and where $[ ]$ is from (27.3), (27.4).

Proof. The interval $[0, y]$ is g-line-regular by construction, so $I$ ,
$I^{*}$ are both $q$-line regular by Lemma 27.4. $I$ , $I^{*}$ each have $\left\{\begin{array}{l}i\\1\end{array}\right\}$ atoms

by (27.5), and (27.6), (27.7) follow.

Lemma 27.6. Let $P$ denote a quantum matroid with rank $ D\geq$

$3$ , and suppose all the lines of $P$ are thick. Then $P$ is $q$ -line regular

for some integer $q\geq 2$ . If $D\geq 4$ then $q$ is a prime power.

Proof. Fix any $x\in top(P)$ . Then $[0, x]$ is a modular atomic
lattice, all of whose lines are thick. Applying Theorem 1.12, we find
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there exists an integer $q\geq 2$ such that $[0, x]$ is isomorphic to a
projective plane of order $q$ (if $D=3$ ) or $L_{q}(D)$ (if $D\geq 4$ ). In any
case $[o, x]$ is $q$-line regular. We show $P$ is $q$-line regular. To this
end, suppose there exists $y\in top(P)$ such that $\partial(x, y)=2$ , i.e. $x$ , $y$

are adjacent in the graph top(P). Then by our preliminary remarks,

$[o, y]$ is $q’$-line regular for some integer $q’\geq 2$ . But the intervals $[o, x]$ ,

$[0, y]$ share at least one line in common since rank(x\wedge y) $=D-1\geq 2$ ,

so $q=q’$ . Since the graph top(P) is connected by Theorem 22.1 (ii),
we conclude $[0, z]$ is $q$-line regular for all $z\in top(P)$ . Now pick any
line $u\in P$ . By Lemma 4.3, there exists $z\in top(P)$ such that $u\leq z$ .

$[o, z]$ is q-line-regular by our above remarks, so $u$ covers exactly $q+1$

points. We have now shown $P$ is $q$-line regular. Now suppose $D\geq 4$ .

Then $[0, x]$ is isomorphic to $L_{q}(D)$ , so $q$ is a prime power. We have
now proved Lemma 27.6.

Definition 27.7. Let $P$ denote a quantum matroid with rank $D$ .

(i) For all $x\in P$ , define

(27.8) $Shadow_{D}(x):=\{y|y\in top(P), y \geq x\}$ .

(ii) By a dual-line in $P$ , we mean any element $x\in P$ such that

(27.9) rank(x)=D–l.

Definition 27.8. Let $P$ denote a quantum matroid with rank $D$ ,
and let $\beta$ denote an integer.

(i) Suppose $D\geq 1$ . Then $P$ is said to be $\beta$-dual-line regular
whenever

(27.10) $|Shadow_{D}(x)|=\beta+1$

for all dual-lines $x\in P$ .

(ii) Suppose $D=0$ . Then $P$ is said to be $\beta$-dual-line regular
whenever $\beta$ is nonnegative.

Lemma 27.9. Let $P$ denote a $\beta$ -dual-line regular quantum
matroid. Then

(27.11) $\beta\geq 0$ .

Proof. Immediate from Definition 27.8(i),(ii).

In the next lemma, we consider the case of equality in (27.11).
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Lemma 27.10. Let $P$ denote a quantum matroid. Then the
following are equivalent.

(i) $P$ is $a$ O-dual-line regular.
(ii) $P$ is a modular atomic lattice.

Proof. (i) $\rightarrow(ii)$ . Suppose $P$ is not a modular atomic lattice.
Then by Lemma 22.2, there exists at least two elements in top(P).
The graph on top(P) is connected by Theorem 22.1 (ii), so there exists
$x$ , $y\in top(P)$ that are adjacent in the graph on top(P). Observe $x$ , $y$

cover $x\wedge y$ , so $x\wedge y$ is a dual-line. But $x$ and $y$ are both in
$Shadow_{D}(x\wedge y)$ , contradicting our assumption that $P$ is O-dual-line
regular. We conclude $P$ is a modular atomic lattice.

(ii) $\rightarrow(i)$ . Clear.

We close this section with a theorem concerning design matroids
that are both line regular and dual-line regular.

Theorem 27.11. Let $P$ denote a $q$ -line regular, $\beta$ -dual-line
regular design matroid of rank D. Then

(27.12) $|top(P)|=1+\beta$ $\left\{\begin{array}{l}D\\1\end{array}\right\}$ ,

where $[ ]$ is from (27.3), (27.4).

Proof. Fix any element $x\in top(P)$ . Set

$\Lambda:=$ { $y$ $\in P|x$ covers $y$ },

and observe by Lemma 27.5 that

(27.13) $|\Lambda|=\left\{\begin{array}{l}D\\1\end{array}\right\}$ .

We now count adjacencies between top $(P)\backslash \{x\}$ and $\Lambda$ . Observe
by Lemma 22.3(ii), and since $P$ is a semilattice, each element $ z\in$

top(P)\{x} covers exactly one element in $\Lambda$ ; namely $x\wedge z$ . By (27.10),

each element in $\Lambda$ is covered by exactly $\beta$ elements in top(P)\{x}.
It follows

$\beta|\Lambda|=|top(P)\backslash \{x\}|$

(27.14) $=|top(P)|-1$ ,

and the result follows from (27.13), (27.14).
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\S 28. Zig-zag regularity

Definition 28.1. Let $P$ denote a quantum matroid of rank $D\geq 2$ .

For each integer $i(2\leq i\leq D)$ , let $\triangle_{i}$ denote the set of ordered pairs

$\triangle_{i}:=\{xy|x$ , $y\in P$, rank(x) $=i-1$ , rank(y) $=i$ , $\partial(x, y)=3$ ,

$x\vee y$ does not exist}

$=\{xy|x, y \in P, \rho(x, y)=i-2, \gamma(x, y)=0, \delta(x, y)=1, \gamma(y, x)=1\}$ .

In Lemma 28.4, we define a function zig-zag : $\triangle_{i}\rightarrow \mathbb{Z}$ , but first, let
us consider when $\triangle_{i}\neq\emptyset$ .

Lemma 28.2. Let $P$ denote a quantum matroid with rank $ D\geq$

$2$ . For each integer $i$ $(1 \leq i\leq D)$ , let $\triangle_{i}\sim$ denote the set of ordered
pairs

$\triangle_{i}\sim$ $:=\{xy$ $|x$ , $y$ $\in P$, rank(x) $=i$ , rank(y) $=i$ , $\partial(x, y)=2$ ,

$x\vee y$ does not exist},

Then the following statements $(i)-(iii)$ hold.

(i) $\triangle_{i}\neq\emptyset$ $\mapsto$
$\triangle_{i}\sim\neq\emptyset$ $(2\leq i\leq D)$ .

(ii) $\triangle_{i-1}\sim\neq\emptyset$
$\rightarrow$ $\triangle_{i}\neq\emptyset$ $(2\leq i\leq D)$ .

(iii) Suppose there exists atoms $x$ , $y\in P$ such that $x\vee y$ does not
exist. Then

(28.1) $\triangle_{i}\neq\emptyset$ $(2\leq i\leq D)$ .

$Proo/$. (i) $\rightarrow$ : Pick any $xy$ $\in\triangle_{i}$ . By Theorem 18.2(ii) and Defi-
nition 28.1, there exists elements $z$ , $w\in P$ such that xzwy is a path
with shape $(i-1, i, i-1, i)$ . Recall $\partial(x, y)=3$ by Definition 28.1, so
$\partial(z, y)=2$ . Recall $x\vee y$ does not exist by Definition 28.1. It follows
$z\vee y$ does not exist; otherwise $z\vee y$ is an upper bound for $x$ , $y$ . Now
$ zy\in\triangle_{i}\sim$ .

-: Pick any $ uv\in\triangle_{i}\sim$ . Observe $u$ covers at least two elements of
$P$ since rank(it) $=i\geq 2$ ; in particular there exists an element $x\in P$

such that $u$ covers $x$ and $x\neq u\wedge v$ . Observe $\partial(x, v)\in\{1, 3\}$ by
(7.3). In fact $\partial(x, v)=3$ ; otherwise $v$ covers $x$ , making $x$ a lower
bound for $u$ , $v$ , and forcing $x=u\wedge v$ . We claim $x\vee v$ does not exist.
Suppose $x\vee v$ exists. Observe $xuv$ is geodesic by our above remarks;

it follows $u\leq x\vee v$ by Lemma 7.9(i),(ii). In this case $x\vee v$ is an



Quantum Matroids 403

upper bound for $u$ , $v$ , so $u\vee v$ exists, contradicting our assumptions.
We conclude $x\vee v$ does not exist. Now $xv\in\triangle_{i}$ by Definition 28.1.

(ii) Pick $ uv\in\triangle_{i-1}\sim$ . By Lemma 4.3, there exists $y\in P$ such that
$y$ covers $v$ . Observe $u\vee y$ does not exist; otherwise $u\vee y$ is an upper
bound for $u$ , $v$ . In particular $u\not\leq y$ . Now $\partial(u, y)=3$ by (7.3), and it
follows $uy\in\triangle_{i}$ by Definition 28.1.

(iii) Observe $ xy\in\triangle_{1}\sim$ , so $\triangle_{1}\sim\neq\emptyset$ . The result now follows from (i),
(ii).

Lemma 28.3. Let $P$ denote a quantum matroid with rank $ D\geq$

$2$ . Then the following are equivalent.

(i) $P$ is a modular atomic lattice.
(ii) $x\leq y$ for all $x\in A_{P}$ and all $y\in top(P)$ .

(iii) $\triangle_{D}\sim=\emptyset$ .

(iv) $\triangle_{D}=\emptyset$ .

Proof. (i) $\rightarrow(ii)$ . Clear since top(P) $=\{1\}$ .

(ii) $\rightarrow(iii)$ . Suppose there exists $uy$
$\in\triangle_{D}\sim$ , and let $x$ denote

a relative complement of $u\wedge y$ is $[0, u]$ . Observe $u$ covers $u\wedge y$

by the definition of $\triangle_{D}\sim$ , so $x$ is an atom by modularity. Observe
$x\not\leq y$ ; otherwise $x$ is a lower bound for $u$ , $y$ , forcing $x\leq u\wedge y$ , and
contradicting the construction.

(iii) $\rightarrow(i)$ . Suppose $P$ is not a modular atomic lattice. Then $P$

is not O-dual-line regular by Lemma 27.10, so there exists a dual-line
$w\in P$ , and distinct elements $u$ , $v\in top(P)$ such that $w\leq u$ , $w\leq v$ .

Observe $\partial(u, v)=2$ by the construction, so $ uv\in\triangle_{D}\sim$ .
$(iii)\mapsto(iv)$ . Immediate from Lemma 28.2(i).

Lemma 28.4. Let $P$ denote a quantum matroid with rank $ D\geq$

$2$ . For all integers $i(2\leq i\leq D)$ , and for all elements $xy\in\triangle_{i}$ , the
sets

(i) $top(x_{y}^{+})$

(ii) $y\star x$

(iii) {$p|p$ is a path in $P$ with endpoints $x$ , $y$ and shape $(i-1,$ $i$ ,
$i-1$ , $i)\}$

all have the same cardinality.

We denote this cardinality by zig-zag(x, $y$ ).

Proof. The sets (i), (ii) have the same cardinality by Corollary
15.7(iii). The sets (ii), (iii) also have the same cardinality, since the map
$u\rightarrow x$ , $x\vee u$ , $u$ , $y$ is a bijection from the set $y\star x$ to the set in (iii).
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Definition 28.5. Let $P$ denote a quantum matroid with rank $D$ ,

and let $\alpha$ denote an integer.

(i) Assume $D\geq 2$ , and that $P$ is not a modular atomic lattice.
Then $P$ is said to be $\alpha$-zig-zag regular whenever

(28.2) zig-zag(x, $y$ ) $=\alpha+1$

for all $xy\in\triangle_{D}$ .

(ii) Assume $D\leq 1$ , or that $P$ is a modular atomic lattice. Then
$P$ is said to be $\alpha$-zig-zag regular whenever $\alpha$ is nonnegative.

Lemma 28.6. Let $P$ denote an $\alpha$ -zig-zag regular quantum ma-
troid. Then

$\alpha\geq 0$ . (28.3)

Proof. Immediate from Definition 28.5.

In the next section, we consider the case of equality in (28.3). For
now, we mention a few other inequalities concerning $\alpha$ .

Lemma 28.7. Let $P$ denote an $\alpha$ -zig-zag regular quantum ma-
troid with rank $D\geq 2$ , and assume $P$ is not a modular atomic lattice.

(i) Suppose $P$ is $q$ -line regular. Then

(28.4) $\alpha\leq q$ .

(ii) Suppose $P$ is $\beta$ -dual-line regular. Then

(28.5) $\alpha\leq\beta$ .

Proof. By Lemma 28.3(i),(iv), there exists an element $xy$ $\in\triangle_{D}$ .

To see (i), observe the interval $[x\wedge y, y]$ has rank 2, so by Lemma
28.4(ii), Corollary 27.5,

$\alpha+1=zig- zag(x, y)$

$=|y\star x|$

$\leq|\{v|v\in P, x\wedge y<v<y\}|$

$=q+1$ .

To see (ii), observe by Lemma 28.4(i) that

$\alpha+1=zig- zag(x, y)$

$=|top(x_{y}^{+})|$

$\leq|Shadow_{D}(x)|$

$=\beta+1$ .



Quantum Matroids 405

\S 29. The O-zig-zag regular quantum matroids

The purpose of this section and the next is to establish that a non-
degenerate O-zig-zag regular quantum matroid is the same thing as a
Tits polar space.

Theorem 29.1. Let $P$ denote a quantum matroid. Then the
following are equivalent.

(i) $P$ is O-zig-zag regular.
(ii) $x_{y}^{+}$ is a modular atomic lattice for all $x$ , $y$

$\in P$ .

(iii) $|x\star y|=1$ for all $x$ , $y\in P$ .

Proof. Let $D$ denote the rank of $P$ .

(i) $\rightarrow(ii)$ . Suppose there exists a pair $x$ , $y\in P$ such that $x_{y}^{+}$ is

not a modular atomic lattice. We may assume

(29.1) rank(y) $-\partial(x, x\wedge y)$ is maximal

among all such pairs.
We first claim $y\in top(P)$ . Suppose not. Then by Lemma 4.3, there

exists an element $u\in P$ such that $y<u$ . Observe

$x\wedge y\leq x\wedge u\leq x$ ,

so
$\partial(x, x\wedge u)\leq\partial(x, x\wedge y)$ .

Now
rank(u) $-\partial(x, x\wedge u)>rank(y)-\partial(x, x\wedge y)$ ,

so $x_{u}^{+}$ is a modular atomic lattice by (29.1). Observe $x_{y}^{+}$ is a sub-

matroid of $x_{u}^{+}$ by Lemma 15.9, so $x_{y}^{+}$ is a modular atomic lat-
tice by Lemma 8.5, Lemma 9.1. This contradicts our assumptions, so
$y$ $\in top(P)$ .

Next, we claim $\partial(x, x\wedge y)\geq 2$ . Certainly $\partial(x, x\wedge y)\neq 0$ ; otherwise
$x\leq y$ , implying $x_{y}^{+}=[x, y]$ is a modular atomic lattice. Suppose
$\partial(x, x\wedge y)=1$ . We obtain a contradiction to Lemma 27.10 by showing
$x_{y}^{+}$ is O-dual-line regular. To do this, we pick any dual-line $w$ in $x_{y}^{+}$ ,

and show
$|top(x_{y}^{+})\cap w^{+}|=1$ .

Observe $top(x_{y}^{+})\underline{\subseteq}$ top(P) by Theorem 18.2(v), so

(29.2) rankp(w)=D–l.
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Observe $x$ , $w\wedge y$ are relative complements in $[x\wedge y, w]$ by Lemma
15.3(ii), and $x$ covers $x\wedge y$ , so

(29.3) $w$ covers $w\wedge y$

by modularity. Now $wy$ $\in\triangle_{D}$ by (29.2), (29.3), so by Lemma 15.8(i),

$|top(x_{y}^{+})\cap w^{+}|=|top(w_{y}^{+})|$

$=zig- zag(wy)$

$=1$ ,

as desired. We have now shown $x_{y}^{+}$ is O-dual-line regular, so $x_{y}^{+}$ is a
modular atomic lattice by Lemma 27.10. This contradicts the construc-
tion, so $\partial(x, x\wedge y)\neq 1$ . We conclude $\partial(x, x\wedge y)\geq 2$ .

Since $\partial(x, x\wedge y)\geq 2$ , there exists an element $s\in P$ such that
$x\wedge y<s<x$ . Observe $s\wedge y=x\wedge y$ by Lemma 13.4(i),(iii), so

rank(y) $-\partial(s, s\wedge y)=rank(y)$ $-\partial(s, x\wedge y)$

$>rank(y)-\partial(x, x\wedge y)$ ,

implying $s_{y}^{+}$ is a modular atomic lattice by (29.1). Let $z$ denote a

maximal element of $s_{y}^{+}$ . Observe $z\in top(P)$ by Theorem 18.2(v), and
$s=x\wedge z$ by Lemma 7.4, so

rank(z) $-\partial(x, x\wedge z)=rank(y)-\partial(x, s)$

$>rank(y)-\partial(x, x\wedge y)$ ,

implying $x_{z}^{+}$ is a modular atomic lattice by (29.1).
We claim $x_{y}^{+}\underline{\subseteq}x_{z}^{+}$ (in fact equality holds, but we will not need

this). To prove the claim, we pick $u\in x_{y}^{+}$ and show $u\in x_{z}^{+}$ . Set

$p:=s\vee(u\wedge y)$ .

Observe $p\in s_{y}^{+}$ by Lemma 17.1, so $spz$ is geodesic. Observe

$szy$ is geodesic since $z\in s_{y}^{+}$ , so spzy is geodesic. In particular

$pzy$ is geodesic. Observe $upy$ is geodesic by Lemma 17.1, Theorem
17.2 $(i),(iii)$ , so upzy is geodesic. In particular $uzy$ is geodesic. Ob-
serve $xuy$ is geodesic since $u\in x_{y}^{+}$ , so xuzy is geodesic. In particular

$xuz$ is geodesic, so $u\in x_{z}^{+}$ , as desired. We have now shown $x_{y}^{+}\underline{\subseteq}x_{z}^{+}$ .

Now $x_{y}^{+}$ is geodesically closed in $x_{z}^{+}$ by Lemma 15.2(ii), and we saw
$x_{z}^{+}$ is a modular atomic lattice, so $x_{y}^{+}$ is a modular atomic lattice by

Lemma 8.5. This contradicts our assumption, and we are done.
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(ii) $\rightarrow(i)$ . For all $xy\in\triangle_{D}$ ,

$zig- zag(xy)=|top(x_{y}^{+})|$

$=1$ .

(ii) $\mapsto(iii)$ . Recall by Lemma 22.2 $(ii),(iii)$ that for all $x$ , $y$
$\in P$ ,

$x_{y}^{+}$ is a modular atomic lattice if and only if $|top(x_{y}^{+})|=1$ . But
$|top(x_{y}^{+})|=|y\star x|$ by Lemma 15.7(iii), so the result follows. This

proves Theorem 29.1.

We now modify Theorem 24.2 using the above theorem, to obtain a
characterization of the O-zig-zag regular quantum matroids.

Theorem 29.2. Let $P$ denote a prematroid of rank D. Then
the following are equivalent.

(i) $P$ satisfifies the augmentation axiom A $U$ in Defifinition 4.1, and
$P$ is O-zig-zag regular.

(ii) For all atoms $x\in P$ and for all $y\in top(P)$ such that $x\not\leq y$ ,
$x_{y}^{+}$ is a modular atomic lattice with rank $D-1$ .

(iii) For all $u\in P$ and all $v\in top(P)$ such that $u$ covers $u\wedge v$ ,

there exists a unique $v’\in top(P)$ such that $u\leq v’$ and such
that $v$ , $v’$ cover $v\wedge v’$ .

Proof, (i) $\rightarrow(ii)$ . Let $x$ , $y$ be given. $P$ is a quantum matroid

by Definition 4.1, and O-zig-zag regular by assumption, so $x_{y}^{+}$ is a

modular atomic lattice by Theorem 29.1(ii). $x_{y}^{+}$ has rank $D-1$ by

Theorem 24.2.
(ii) $\rightarrow(iii)$ . Very similar to the proof of Theorem 24.2 (ii) $\rightarrow(iii)$ .

(iii) $\rightarrow(i)$ . Observe $P$ satisfies condition (iii) of Theorem 24.2, so
$P$ satisfies the augmentation axiom by that theorem. We show $P$ is

O-zig-zag regular. Pick $xy$ $\in\triangle_{D}$ . Then $x$ covers $x\wedge y$ by Definition
28.1, so by assumption, there exists a unique $y’\in top(P)$ such that
$x\leq y’$ , and such that $y$ , $y’$ cover $y\wedge y’$ . Put another way, there exists
a unique path with endpoints $x$ , $y$ and shape $(D-1, D, D-1, D)$ , so
zig-zag(x, $y$ ) $=1$ . We have now shown $P$ is O-zig-zag regular. This
proves Theorem 29.2.

Next, we consider when a O-zig-zag regular quantum matroid is
nondegenerate.

Theorem 29.3. Let $P$ denote $a$ O-zig-zag regular quantum ma-
troid with rank D. Then the following are equivalent.

(i) Rad(P) $=0$ .
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(ii) For all atoms $a\in P$ , there exists an atom $b\in P$ such that
$a\vee b$ does not exist.

(iii) For all $x\in P$ , there exists $y\in top(P)$ such that $x\wedge y=0$ .

(iv) For all dual-lines $x\in P$ , $x$ is covered by at least two elements
in top(P).

(v) There exists $x$ , $y\in top(P)$ such that $x\wedge y=0$ .

Proof, (i) $\rightarrow(ii)$ . Let the atom $a$ be given. Certainly $ a\not\leq$

Rad(P), so by Lemma 26.3(iii), there exists an element $y$ $\in P$ such
that $a\vee y$ does not exist. Observe $\delta(a, y)=1$ by construction, so
$\delta(y, a)=1$ by Theorem 18.2(vi). Now $y$ covers $ y\star$ $a$ by Definition
12.1 and Theorem 12.3. Let $b$ denote a relative complement of $y\star a$

in $[0, y]$ . Then $b$ is an atom by modularity. To show $a\vee b$ does not
exist, we show $b\not\in y_{a}^{-}$ . But this holds, since $y_{a}^{-}=[0, y\star a]$ by Theorem
19.3(i), and $b\not\in[0, y \star a]$ by construction.

(ii) $\rightarrow(iii)$ . Let $x$ be given, and pick an element $z\in top(P)$ with

(29.4) $\rho(x, z)$ minimal.

We assume $\rho(x, z)>0$ and get a contradiction. By construction, there
exists an atom $a\in P$ such that $a\leq x\wedge z$ . By (ii), there exists an
atom $b\in P$ such that $a\vee b$ does not exist. Observe $b\not\leq z$ ; otherwise
$z$ is an upper bound for $a$ , 6. Now $b$ covers $b\wedge z=0$ , so by Theorem
29.2(iii), there exists an element

(29.5) $y$ $\in top(P)$

such that $b\leq y$ , and such that $y$ , $z$ cover $y\wedge z$ . Set $h:=y\wedge z$ . By
Theorem 13.5, $\rho(x, z)-\rho(x, h)$ equals 0 or 1. Suppose for the moment
$\rho(x, z)=\rho(x, h)$ . Then $x\wedge z\leq h$ by Lemma 13.4 $(i),(iv)$ , implying $y$

is an upper bound for $a$ , $b$ , a contradiction. Hence

(29.6) $\rho(x, z)=\rho(x, h)+1$ ,

and this forces

(29.7) $z\in h_{x}^{+}$

by Theorem 15.3(i),(iv). Observe $y\vee z$ does not exist. Now by (29.7),
and since $h_{x}^{+}$ is a modular atomic lattice by Theorem 29.1,

(29.8) $y$
$\not\in h_{x}^{+}$ .

By Theorem 13.5 and since $y$ covers $h$ , $\rho(x, y)-\rho(x, h)$ equals 0 or
1. Suppose for the moment $\rho(x, y)=\rho(x, h)+1$ . Then $y$ $\in h_{x}^{+}$ by
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Lemma 15.3(iv), contradicting (29.8). Hence

(29.9) $\rho(x, y)=\rho(x, h)$ .

Now (29.5), (29.6), (29.9) contradict (29.4).
(iii) $\rightarrow(iv)$ . Pick any dual-line $x\in P$ . We show $x$ is covered

by at least two elements in top(P). By Lemma 4.3, there exists an
element $y\in top(P)$ that covers $x$ . By assumption, there exists an
element $z\in P$ such that $y\wedge z=0$ . By Theorem 29.1, $x_{z}^{+}$ is a modular
atomic lattice. Let $y’$ denote the unique maximal element in $x_{z}^{+}$ . Then
$y’\in top(P)$ by Theorem 18.2(v). It remains to check $y\neq y’$ . Observe
$x\geq y\wedge z=0$ , so $yxz$ is geodesic by Lemma 13.4(i),(ii). But xyfz is
geodesic by the construction and (15.1), so $y\neq y’$ , as desired.

(iv) $\rightarrow(i)$ . This is just Lemma 26.5.
(iii) $\rightarrow(v)$ . Clear.
(v) $\rightarrow(i)$ . Pick any $x$ , $y\in P$ such that $x\wedge y=0$ . Then by

Definition 26.1,

Rad(P)= $\wedge$ $u$

$u\in top(P)$

$\leq x\wedge y$

$=0$ ,

so Rad(P) $=0$ . We have now proved Theorem 29.3.

\S 30. Tits polar spaces

In this section, we show that a nondegenerate O-zig-zag regular quan-
tum matroid is the same thing as a Tits polar space.

Our first result concerns atomic semilattices. It will allow us to shift
our point of view a bit, bringing it into line with how Tits polar spaces
are traditionally viewed.

Lemma 30.1. Let $P$ denote an atomic semilattice, and defifine $a$

poset

(30.1) $\tilde{P}:=$ {Shadow(x) $|x\in P$ },

with partial order by inclusion. Then the map

$P$ $\rightarrow$

$\tilde{P}$

$\rightarrow$ Shadow(x)
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is an isomorphism of posets.

Proof. The map is clearly onto $\tilde{P}$ . The map is 1-1, and respects
the partial order, by Lemma 9.3(ii). This proves Lemma 30.1.

Passing from $P$ to $\tilde{P}$ , Lemma 30.1 allows us to view any atomic
semilattice as a collection of distinct subsets of $A_{P}$ , with partial order
defined by inclusion. We adopt this point of view for the remainder of
the section.

Definition 30.2 [Ti, p102]. A Tits polar space is a collection $P$

of distinct subsets of a set $A$ (of points), partially ordered by inclusion,
such that the following axioms hold.

$PS1$ : $P$ is closed under taking intersections, and has all the single
points of $A$ as its collection of minimal non-empty members.

$PS2$ : All unrefinable chains in $P$ have the same length $D$ .
$PS3$ : If $x$ is a maximal member of $P$ , then $x$ , together with all the

elements of $P$ which it contains, is a modular atomic lattice of
rank $D$ .

$PS4$ : Given a point $x\in P$ , and a maximal member $y$ of $P$ that
does not contain $x$ , there exists a unique maximal member $y’$

of $P$ such that $y$ , $y’$ cover $y\wedge y’$ . $y\wedge y’$ contains all the
elements of $y$ that lie together with $x$ in some element of $P$ .

$PS5$ : There exists two maximal elements in $P$ that have empty
intersection.

The scalar $D$ is the rank of $P$ .
We are now ready for the main theorem of this section.

Theorem 30.3. For any nonnegative integer $D$ , the following
are equivalent.

(i) $P$ is a nondegenerate, O-zig-zag regular quantum matroid of
rank $D$ .

(ii) $P$ is a Tits polar space of rank $D$ .

Proof. (i) $\rightarrow(ii)$ . Recall by Lemma 4.3 that

(30.2) $\max(P)=top(P)$ .

To show $P$ is a Tits polar space of rank $D$ , we check $P$ satisfies
PS1-PS5.

$PS1$ : $P$ is closed under taking intersections by Lemma 9.3(iii). $P$

has $A=A_{P}$ as its collection of minimal nonempty members by the
definition of $A_{P}$ .
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$PS2$ : Immediate since $P$ is ranked, rank(P) $=D$ , and since (30.2)
holds.

$PS3$ : Pick any $x\in\max(P)$ . Then rank(x) $=D$ by (30.2), so $[0, x]$

is a modular atomic lattice of rank $D$ by condition $M$ of Definition 4.1.
$PS4$ : Pick any point $x\in A$ , and any element $y\in\max(P)$ such

that $x\not\leq y$ . Then $x$ covers $x\wedge y=0$ , so by Theorem 29.2(iii) and
(30.2), there exists a unique element $y’\in\max(P)$ such that $x\leq y’$ ,

and such that $y$ , $y’$ cover $y\wedge y’$ . To see that $y\wedge y’$ contains all the
elements of $y$ that lie together with $x$ in some element of $P$ , observe
by Theorem 19.3(i), Theorem 29.1(iii) that

{ $a\in A|a\leq y$ , $a\vee x$ exists in $P$ } $=y_{x}^{-}\cap A$

$=[0, y\star x]\cap A$

$=[0, y\wedge y’]\cap A$ .

$PS5$ :Immediate from Theorem 29.3(i),(v), and (30.2).

We have now shown $P$ satisfies PSI-PS5, so $P$ is a Tits polar
space of rank $D$ .

(ii) $\rightarrow(i)$ . We first show $P$ is a prematroid, by showing $P$ satisfies
the conditions $SL$ , $R$ , $M$ in Definition 4.1.

$SL:P$ is a semilattice by $PS1$ .

$R:P$ is ranked by $PS2$ .
$M$ : Pick any $x\in P$ , and pick any $y$ $\in\max(P)$ such that $x\leq y$ .

Observe $[0, y]$ is a modular atomic lattice by $PS3$ , so the interval $[0, x]$

is a modular atomic lattice.

We have now shown $P$ is a prematroid. In fact $P$ is transversal
and has rank $D$ by $PS2$ .

We now show $P$ satisfies the augmentation axiom, and is O-zig-zag
regular. To do this, we show $P$ satisfies condition (ii) in Theorem 29.2.
Pick any atom $x\in P$ and any element $y$ $\in top(P)$ such that $x\not\leq y$ .

We show $x_{y}^{+}$ is a modular atomic lattice of rank $D-1$ . By $PS4$ , and

since $P$ is transversal, there exists a unique $y’\in top(P)$ such that
$x\leq y’$ , and such that $y$ , $y’$ cover $y\wedge y’$ . Moreover, $y\wedge y’$ contains all
the elements of $y$ that lie together with $x$ in some element of $P$ . It
follows

(30.3) $y\star x=y\wedge y’$

and

(30.4) $Shadow(y\wedge y’)=y_{x}^{-}\cap A$ .
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We show $y_{x}^{-}=[0, y\wedge y’]$ . To see the inclusion $\supseteq$ , observe by Lemma
15.4(iii) and (30.3) that

$y_{x}^{-}\supseteq[0, y\star x]$

$=[0, y\wedge y’]$ .

To see the inclusion $\underline{\subseteq}$ , pick any $z\in y_{x}^{-}$ . Then

$Shadow(z)\underline{\subseteq}y_{x}^{-}\cap A$

$=Shadow(y\wedge y’)$

by (30.4), so $z\in[0, y\wedge y’]$ by Lemma 9.3(ii). We have now shown
$y_{x}^{-}=[0, y\wedge y’]$ . By this, and since $y$ covers $y\wedge y’$ , it follows $y_{x}^{-}$ is a
modular atomic lattice of rank $D-1$ . Recall $x_{y}^{+}$ , $y_{x}^{-}$ are isomorphic

by Theorem 15.5; in particular $x_{y}^{+}$ is a modular atomic lattice of rank

$D-1$ , as desired. We have now shown $P$ satisfies condition (ii) in
Theorem 29.2; it follows $P$ satisfies the augmentation axiom, and is
O-zig-zag regular. Now $P$ is a O-zig-zag regular quantum matroid by
Definition 4.1. $P$ is nondegenerate by Theorem 29.3 $(i),(v)$ and $PS5$ .

This proves Theorem 30.3.

The Tits polar spaces (and hence the nondegenerate O-zig-zag regu-
lar quantum matroids) are essentially classified by J. Tits. In the follow-
ing two theorems we present the classification in the line regular case.

Theorem 30.4. Let $D$ denote an integer at least 2. Then the
following are equivalent.

(i) $P$ is $a$ 1-line regular Tits polar space of rank $D$ .

(ii) There exists integers $N_{1}$ , $N_{2}$ , $\ldots$ , $N_{D}$ , all at least 2, such that
$P$ is isomorphic to $C(N_{1}, N_{2}, \ldots, N_{D})$ .

Suppose (i), (ii) hold. Then $P$ is $\beta$ -dual-line regular if and only if

$N_{i}=\beta+1$ $(1\leq i\leq D)$ .

In this case $P$ is isomorphic to the Hamming matroid $H(D, \beta+1)$

listed in Example 40.1 (2).

Proof. Routine.

Theorem 30.5([Ti]). Let $D$ denote an integer at least 4, and let
$q$ denote an integer at least 2. Then the following are equivalent.

(i) $P$ is a $q$ -line regular Tits polar space of rank $D$ .

(ii) $q$ is a prime power, and $P$ is isomorphic to a classical polar
space of rank $D$ over the fifield $GF(q)$ .
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(See Example 40.1 (5).)
Suppose (i), (ii) hold. Then $P$ is $q^{1+\in}$ -dual-line regular, where $\in$

is given in Example 40.1 (5).

\S 31. The $\alpha$-zig-zag regular quantum matroids with $\alpha>0$

In the previous two sections, we considered the O-zig-zag regular
quantum matroids. In this section, we say a bit about the $\alpha$-zig-zag
regular quantum matroids with $\alpha>0$ .

Theorem 31.1. Let $P$ denote a quantum matroid with rank
$D\geq 2$ . Suppose $P$ is $\alpha$ -zig-zag regular for some integer $\alpha>0$ , but
assume $P$ is not a modular atomic lattice. Then

(i) $P$ is dual-line regular,
(ii) Rad(P) $=0$ .

Proof, (i) Pick any $x$ , $y$ $\in P$ such that rank(x) $=D-1$ ,
rank(y)= $D-1$ . To show $P$ is dual-line regular, it suffices to show

(31.1) $|Shadow_{D}(x)|=|Shadow_{D}(y)|$ .

First, consider the special case where $x\vee y$ exists. Here we may assume
$x\neq y$ ; otherwise (31.1) clearly holds. Observe by Lemma 28.4(i) and
Definition 28.5 that for each $u\in Shadow_{D}(x)\backslash \{x\vee y\}$ , there exists
exactly $\alpha$ elements $v\in Shadow_{D}(y)\backslash \{x\vee y\}$ such that $\partial(u, v)=2$ .

This remains true if we interchange the roles of $x$ and $y$ , so

$|Shadow_{D}(x)\backslash \{x\vee y\}|\alpha=|Shadow_{D}(y)\backslash \{x\vee y\}|\alpha$ .

Line (31.1) is immediate since $\alpha>0$ . We now have (31.1) in our special
case. To show (31.1) holds in general, we construct a path $p$ with
endpoints $x$ , $y$ and shape

(31.2) $(D-1, D, D-1, D, \ldots, D-1, D, D-1)$ .

To obtain $p$ , recall by Lemma 4.3 that there exists an element $ y’\in$

top(P) such that $y’$ covers $y$ . By Theorem 18.2(iv), there exists a
geodesic up-flat-down path $p’$ in $P$ with endpoints $x$ , $y’$ . By the
construction, $p’$ must have shape $(D-1, D, D-1, D, \ldots, D-1, D)$ .

Appending $y$ to the end of $p’$ , we obtain a path $p$ with endpoints $x$ , $y$

and shape (31.2), as desired. Write $p=(x=x_{0}, x_{1}, \ldots, x_{d-1}, x_{d}=y)$

$(x_{0}, x_{1}, \ldots, x_{d}\in P)$ , and observe by (31.2) that $d$ is even. Moreover

$x_{i}\vee x_{i+2}$ exists ( $0\leq i\leq d-2$ , $i$ even),
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so by the above special case,

$|Shadow_{D}(x_{i})|=|Shadow_{D}(x_{i+2})|$ ( $0\leq i\leq d$ , $i$ even).

Line (31.1) follows, so $P$ is dual-line regular, as desired.
(ii) By (i), $P$ is $\beta$-dual-line regular for some integer $\beta$ . Observe

$\beta\geq\alpha>0$ by Lemma 28.7(ii), so Rad(P) $=0$ by Lemma 26.5.

\S 32. The definition of a regular quantum matroid

Definition 32.1. A quantum matroid $P$ is said to be regular, with
parameters $(D, q, \alpha, \beta)$ , whenever the following four conditions hold.

(i) $P$ has rank $D$ .

(ii) $P$ is $q$-line regular.
(iii) $P$ is $\alpha$-zig-zag regular.
(iv) $P$ is $\beta$-dual-line regular.

Let us consider a few very special cases. Any quantum matroid with
rank $D\leq 1$ is regular. However, the parameters $q$ , $\alpha$ are not uniquely
defined in this case. Similarly, any $q$-line regular modular atomic lattice
is regular, but the parameter $\alpha$ is not uniquely defined in this case.
In contrast to the above two cases, consider a regular quantum matroid
$P$ with rank $D\geq 2$ , that is not a modular atomic lattice. Then the
parameters $q$ , $\alpha$ , $\beta$ are uniquely defined.

Some results concerning regular quantum matroids do not hold un-
less the parameters are uniquely defined, so we make the following defi-
nition.

Definition 32.2. A quantum matroid $P$ is said to be trivial
whenever $P$ has rank $D\leq 1$ , or $P$ is a modular atomic lattice.

In Example 4.2, we characterized the quantum matroids of rank
2. Below we present a similar result concerning the regular quantum
matroids of rank 2.

Example 32.3. Let $q$ , $\alpha$ , $\beta$ denote integers, and let $P$ de-
note a poset. Then $P$ is a regular quantum matroid with parameters
$(2, q, \alpha, \beta)$ if and only if $P$ has a 0, and the following conditions
$(i)-(vi)$ hold.

(i) $P$ is ranked and rank(P) $=2$ .

(ii) For any distinct points $x$ , $y\in P$ , there exists at most one line
$z\in P$ such that $x\leq z$ , $y$ $\leq z$ .

(iii) Each line in $P$ covers exactly $q+1$ points in $P$ .
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(iv) Each point in $P$ is covered by exactly $\beta+1$ lines in $P$ .

(v) For each point $x\in P$ and each line $y$
$\in P$ such that $x\not\leq y$ ,

there exists exactly $\alpha+1$ pairs $x’y’$ , such that $x’$ is a point
in $P$ , $y’$ is a line in $P$ , and $x\leq y’\geq x’\leq y$ .

(vi) $q\geq 1$ , $\alpha\geq 0$ , $\beta\geq 0$ .

Note. A regular quantum matroid with parameters $(2, q, \alpha, \beta)$

is essentially the same thing as an $(R, K, T)$ -partial geometry, where
$R:=\beta+1$ , $K:=q+1$ , and $T:=\alpha+1$ [Bo].

The following theorem gives a characterization of the regular quan-
tum matroids of arbitrary rank $D\geq 2$ . Compare this with Theorem
23.1.

Theorem 32.4. Let $D$ , $q$ , $\alpha$ , $\beta$ denote integers with $D\geq 2$ ,
and let $P$ denote a poset. Then $P$ is a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ if and only if $(i)-(iv)$ hold below.

(i) $P$ is a prematroid of rank $D$ .

(ii) For all $x\in P$ , there exists $x’\in top(P)$ such that $x\leq x’$ .

(iii) For all $x\in P$ such that rank(x) $\leq D-2$ , the poset induced
on $x^{+}\backslash \{x\}$ is connected.

(iv) For all $x\in P$ such that rank(x) $=D-2$ , the poset $x^{+}$ is $a$

regular quantum matroid with parameters $(2, q, \alpha, \beta)$ .

Proof. First suppose $P$ is a regular quantum matroid with param-
eters $(D, q, \alpha, \beta)$ . Then the above conditions $(i)-(iii)$ hold by Theorem
23.1. To see that the above condition (iv) holds, pick any $x\in P$ such
that rank(x) $=D-2$ . Then $x^{+}$ is a quantum matroid of rank 2 by

Theorem 23.1(iv). Observe $x^{+}$ is $q$-line regular by Lemma 27.4(i),(ii),
and since $P$ is $q$-line regular. Observe $x^{+}$ is $\alpha$-zig-zag regular
by Lemma 28.4, Definition 28.5, and since $P$ is $\alpha$-zig-zag regular.
Observe $x^{+}$ is $\beta$-dual-line regular by Definition 27.7, and since $P$

is $\beta$-dual-line regular. Now $x^{+}$ is a regular quantum matroid with
parameters $(2, q, \alpha, \beta)$ , as desired.

Conversely, suppose the above conditions $(i)-(iv)$ hold. Observe $P$

satisfies the conditions $(i)-(iv)$ in Theorem 23.1, so $P$ is a quantum

matroid by that theorem. We check $P$ is regular. To show $P$ is $q$ line
regular, it suffices to show $[0, y]$ is $q$-line regular for all $y\in top(P)$ .

Observe $[0, y]^{*}$ is $q$-line regular by condition (iv) above, so $[0, y]$ is
$q$-line regular by Lemma 27.4(i),(iii). We have now shown $P$ is $q$ line
regular. It is immediate from the construction that $P$ is $\alpha$-zig-zag
regular and $\beta$-dual-line regular, so $P$ is a regular quantum matroid
with parameters $(D, q, \alpha, \beta)$ , as desired.
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\S 33. Formulae for $|A_{P}|$ , $|top(P)|$

In this section, we assume $P$ is a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ , and compute $|A_{P}|$ , $|top(P)|$ in terms of
$D$ , $q$ , $\alpha$ , $\beta$ . First, we introduce some notation.

Definition 33.1. For all integers $j$ , $q$ , $\alpha$ , we define $t_{j}=t_{j}(q, \alpha)$

by

(33.1) $ t_{j}:=1+\alpha$ $\left\{\begin{array}{l}j\\1\end{array}\right\}$ ,

where $\left\{\begin{array}{l}j\\1\end{array}\right\}$ is from (27.3), (27.4).

Lemma 33.2. With the notation of Defifinition 33.1:

(i) $t_{j+1}-t_{j}=\alpha q^{j}$ $(j\in \mathbb{Z})$ .

(ii) Assume $\alpha\geq 0$ , $q\geq 1$ . Then

(33.2) $ 1=t_{0}\leq t_{1}\leq t_{2}\leq\ldots$ .

Proof. (i) Immediate from (27.3), (27.4), (33.1).
(ii) Immediate from (33.1) and (i) above.

Lemma 33.3. Let $\prime P$ denote a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ . Then for all $x\in P$ , and for all $y$ $\in top(P)$

such that $x$ covers $x\wedge y$ ,

(33.3) $|top(x_{y}^{+})|=t_{D-i}$ ,

where

(33.4) $i:=rank(x)$ .

Proof. By Definition 33.1 and Theorem 27.11, it suffices to show
$x_{y}^{+}$ is a $q$-line regular, $\alpha$-dual-line regular design-matroid, with rank
$D-i$ . Observe by Lemma 27.4(i),(ii) that $x_{y}^{+}$ is $q$-line regular. To see

that $x_{y}^{+}$ is $\alpha$-dual-line regular, we pick any $dua.1$-line $z$ of $x_{y}^{+}$ , and
show

(33.5) $|z^{+}\cap top(x_{y}^{+})|=\alpha+1$ .

Observe

(33.6) $top(x_{y}^{+})\subseteq top(P)$
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by Theorem 18.2(v), so $z$ is a dual-line of $P$ . Now $\partial(y, z)=3$ by the
construction, so $zy\in\triangle_{D}$ by Definition 28.1. Now by Lemma 28.4(i)
and Lemma 15.8(i),

$\alpha+1=zig- zag(zy)$

$=|top(z_{y}^{+})|$

$=|z^{+}\cap top(x_{y}^{+})|$ ,

as desired. We have now shown $x_{y}^{+}$ is $\alpha$-dual-line regular. Observe
$\delta(x, y)=1$ by (12.1) and the construction, so $x_{y}^{+}$ is a design-matroid

by Lemma 22.4. It is clear from (33.6) and the construction that $x_{y}^{+}$

has rank $D-i$ . We have now proved Lemma 33.3.

Theorem 33.4. Let $P$ denote a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ . Then for all integers $i(0\leq i<D)$ , and for
all $x\in Pw?.th$ rank(x) $=i$ ,

(33.7) $|$ { $z\in P|z$ covers $x$ } $|=\eta_{i}$ ,

where

(33.8) $\eta_{i}:=(1 +\beta\frac{q^{D-i-1}}{t_{D-i-1}})$ $\left\{D & 1-i\right\}$ ,

and where $t_{j}$ is from (33.1). In particular,

(33.9) $|A_{P}|=(1+\beta\frac{q^{D-1}}{t_{D-1}})$ $\left\{\begin{array}{l}D\\1\end{array}\right\}$

if $D\geq 1$ .

Proof Pick any $x\in P$ such that rank(x) $=i$ . By Lemma 4.3,
there exists $y$ $\in top(P)$ such that $x\leq y$ . To show (33.7), (33.8), it
suffices to show

(33.10) $|X|=\left\{D & 1-i\right\}$ ,

(33.11) $|Y|=\beta\frac{q^{D-\dot{x}-1}}{t_{D-i-1}}$ $\left\{D & 1-i\right\}$ ,

where

(33.12) $X:=$ { $z\in P|z$ covers $x$ , $z\leq y$ },

(33.13) $Y.--$ { $z\in P|z$ covers $x$ , $z\not\leq y$ }.
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Line (33.10) is immediate from Lemma 27.5, so consider (33.11). Set

$X’:=$ { $z\in[x,$ $y]|y$ covers $z$ },

and observe

(33.14) $|X’|=\left\{D & 1-i\right\}$

by Lemma 27.5. Set

$Y’:=\{z\in top(P)|x\leq z, \partial(y, z)=2\}$ .

Observe each element of $X’$ is covered by exactly $\beta$ elements of $Y’$ .

Also, observe each element of $Y’$ covers a unique element of $X’$ . It
follows

(33.15) $|Y’|=|X’|\beta$ .

Next, we claim each element of $Y$ is less than or equal to exactly
$t_{D-i-1}$ elements of $Y’$ . To see this, pick any $z\in Y$ . Observe $z$ covers
$z\wedge y=x$ ; in particular rank(z) $=i+1$ . Now by Lemma 33.3,

$t_{D-i-1}=|top(z_{y}^{+})|$

$=|Y’\cap z^{+}|$ ,

as desired.
Next, we claim each element in $Y’$ is greater than or equal to

exactly $q^{D-i-1}$ elements in $Y$ . To see this, pick any $z\in Y’$ . Then $z$

is greater than or equal to exactly $\left\{\begin{array}{l}D-i\\1\end{array}\right\}$ elements in $X\cup Y$ , but

$|\{v\in X|v\leq z\}|=|\{v\in X|v\leq z\wedge y\}|$

$=\left\{D & -i+11\right\}$

by Lemma 27.5. It follows $z$ is greater than or equal to exactly

$\left\{D & 1-i\right\}-$ $\left\{D & -i+11\right\}=q^{D-i-1}$

elements in $Y$ , as desired.
Combining our claims, we find

(33.16) $|Y’|q^{D-i-1}=|Y|t_{D-i-1}$ ,
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and (33.11) follows from (33.14), (33.15), (33.16). We have now estab-
lished (33.10), (33.11), and (33.7), (33.8) follow.

To obtain (33.9), set $i=0$ in (33.7), (33.8). This proves Theorem

33.4.

Corollary 33.5. Let $P$ denote a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ . Then

(33.17) $|top(P)|=\prod_{i=0}^{D-1}(1+\beta q^{i}t_{i}^{-1})$ ,

where $t_{i}$ is from (33.1).

Proof. We compute the number of paths

$x_{0}$ , $x_{1}$ , $\ldots$ , $x_{D}$ $(x_{i}\in P, rank(x_{i})=i,$ $(0\leq i\leq D))$

in two ways. Constructing these paths from left to right, we find by
Theorem 33.4 that the number is

(33.18) $\eta_{0}\eta_{1}\cdots\eta_{D-1}$ .

Constructing the above paths from right to left, we find by Lemma 27.5
that the number is

(33.19) $|top(P)|\prod_{i=1}^{D}$ $\left\{\begin{array}{l}i\\1\end{array}\right\}$ .

Now equate (33.18), (33.19), and evaluate the result using (33.8). This
proves Corollary 33.5.

\S 34. The zig-zag function, revisited

Let $P$ denote a regular quantum matroid, with parameters $(D,$ $q$ ,
$\alpha$ , $\beta)$ . In this section, we show the zig-zag function is constant over each
$\triangle_{i}(2\leq i\leq D)$ , and we compute these constants in terms of $D$ , $q$ , $\alpha$ , $\beta$ .

First, we prove an extension of Lemma 33.3.

Theorem 34.1. Let $P$ denote a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ , and pick any $x$ , $y$

$\in P$ . Assume

(34.1) $x$ covers $x\wedge y$ ,

and

(34.2) $x\vee y$ does not exist.
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Then

(34.3) $|top(x_{y}^{+})|=\frac{t_{D-i}}{t_{D-j}}$ ,

where

(34.4) $i:=rank(z)$

(34.5) $j:=rank(y)$ .

Proof. By Lemma 4.3, there exists an element $u\in top(P)$ such
that $y$ $\leq u$ . To get our result, it suffices to show

(34.6) $|top(x_{u}^{+})|=t_{D-i}$

and

(34.7) $|top(x_{y}^{+})|t_{D-j}=|top(x_{u}^{+})|$ .

Observe $x\not\leq u$ ; otherwise $u$ is an upper bound for $x$ , $y$ , contradicting
(34.2). Now $x$ covers $x\wedge y=x\wedge u$ by (34.1), so (34.6) follows from
Lemma 33.3.

Now consider (34.7). Recall by Lemma 15.9 that $x_{y}^{+}$ is a subma-

troid of $x_{u}^{+}$ . We claim each element in $top(x_{y}^{+})$ is less than or equal to

exactly $t_{D-j}$ elements in $top(x_{u}^{+})$ . To see this, pick any $z\in top(x_{y}^{+})$ .

Observe $z$ covers $z\wedge u$ by Lemma 15.3 $(i),(ii)$ , and rank(z) $=j$ by
Theorem 18.2(v), so by Lemma 33.3 and Lemma 15.8(i),

$t_{D-j}=|top(z_{u}^{+})|$

$=|z^{+}\cap top(x_{u}^{+})|$ ,

as desired.
Next, we claim each element in $top(x_{u}^{+})$ is greater than or equal to

a unique element in top $(x_{y}^{+})$ . To see this, pick any $z\in top(x_{u}^{+})$ . We

show
$p:=x\vee(y\wedge z)$

is the unique element in $top(x_{y}^{+})$ that is less than or equal to $z$ .

Observe $p\in x_{y}^{+}$ by Lemma 17.1. In fact $p\in top(x_{y}^{+})$ , since $y$ covers
$y\wedge z$ by the construction. Observe $p\leq z$ by Lemma 16.3(i), Lemma
17.1. Now suppose there exists an element $p’\in top(x_{y}^{+})\backslash \{p\}$ such that
$p’\leq z$ . Then $z$ is an upper bound for $p$ , $p’$ ; consequently $p\vee p’$ exists.
But this is impossible, since $x_{y}^{+}$ is $\vee$-closed by Lemma 8.2, Lemma
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15.2, and since $p$ , $p’$ are both in $top(x_{y}^{+})$ . Combining the above two

claims, we obtain (34.7). We have now established (34.6), (34.7), and
(34.3) follows. This proves Theorem 34.1.

Corollary 34.2. Let $P$ denote a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ . Then for all integers $j(2\leq j\leq D)$ and for
all $x$ , $y\in P$ such that $xy\in\triangle_{j}$ ,

(34.3) zig-zag(x, $y$ ) $=\frac{t_{D-j+1}}{t_{D-j}}$

(34.9) $=q+\frac{\alpha+1-q}{t_{D-j}}$ .

[Caution: $\triangle_{j}$ may be empty).

Proof Observe $x$ , $y$ satisfy (34.1), (34.2) by the definition of $\triangle_{j}$ ,

so by Lemma 28.4(i), Theorem 34.1,

zig-zag(x, $y$ ) $=|top(x_{y}^{+})|$

$=\frac{t_{D-j+1}}{t_{D-j}}$ .

Line (34.9) follows from (33.1).

\S 35. The $\zeta${?}uniform $\mathcal{P}$-basis systems

Let $P$ denote a modular atomic lattice, and let $B$ denote a P-
basis system from Definition 2.2. Recall by Theorem 2.5(i) that $B^{-}$

is a $P$-matroid, and by Lemma 3.1 that $B^{+}*$ is a $p*$ matroid In
this section we introduce a condition on $B$ that forces both of these
quantum matroids to be regular. This condition will play a role in our
subsequent work on regular quantum matroids.

Definition 35.1. Let $P$ denote a modular atomic lattice of rank
$N$ , let $B$ denote a $P$-basis system of rank $D$ , and let $\zeta$ denote an
integer.

(i) Suppose $1\leq D\leq N-1$ . Then $B$ is said to be $\zeta$-uniform
whenever

(35.1) $|B\cap[x, y]|=\zeta+1$
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for all $x\in B^{-}$ and for all $y\in B^{+}$ such that

(35.2) $x\leq y$ ,

(35.3) rank(x) $=D-1$ ,

(35.4) rank(y) $=D+1$ .

(ii) Suppose $D=0$ or $D=N$ . Then $B$ is said to be $\zeta$-uniform
whenever $\zeta$ is nonnegative.

Lemma 35.2. Let $P$ denote a modular atomic lattice, and let
$B$ denote a $\zeta$ -uniform $P$ -basis system. Then

(35.5) $\zeta\geq 0$ .

Proof With the notation of Definition 35.1, suppose $ 1\leq D\leq$

$N-1$ . Then (35.5) follows from condition $BA$ in Definition 2.2. Next
suppose $D=0$ or $D=N$ . Then (35.5) is immediate from Definition
35.1 (ii)

Theorem 35.3. Let $P$ denote a $q$ -line regular modular atomic
lattice of rank $N$ , and let $B$ denote a $\zeta$ -uniform $P$ -basis system of
rank D. Then

(i) The $P$ -matroid $B^{-}$ is regular, with parameters

$(D, q, \zeta, \zeta \left\{\begin{array}{l}N-D\\1\end{array}\right\})$ .

(ii) The $p*$ -matroid $B^{+}*$ is regular, with parameters

$(N-D, q, \zeta, \zeta \left\{\begin{array}{l}D\\1\end{array}\right\})$ .

Proof (i) By the construction, $B^{-}$ has rank $D$ , and is $q$-line
regular. To see that $B^{-}$ is $\zeta$-zig-zag regular, suppose there exists
$x$ , $y\in B^{-}$ such that rank(x) $=D-1$ , rank(y) $=D$ , and $\partial(x, y)=3$ .

We show

(35.6) zig-zag(x, $y$ ) $=\zeta+1$ .

Observe $x\bigvee_{P}y\geq y\in B$ , so

(35.7) $x\bigvee_{P}y\in B^{+}$ .



Quantum Matroids 423

Observe $x$ covers $x\wedge y$ by the construction, so $x\bigvee_{P}y$ covers $y$ by
the modularity of $P$ . In particular

(35.8) $rank_{\mathcal{P}}(x\vee py)=D+1$ .

Now by (35.7), (35.8), and Definition 35.1,

$\zeta+1=|B\cap[x, x\bigvee_{P}y]|$

$=zig- zag(x, y)$ ,

as desired. We have now shown $B^{-}$ is $\zeta$-zig-zag regular. It remains

so show $B^{-}$ is $\zeta$ ]-dual-line regular. To this end, suppose there

exists $x\in B^{-}$ such that rank(x) $=D-1$ . We show

(35.9) $|B\cap[x, 1_{P}]|=1+\zeta$ $\left\{\begin{array}{l}N-D\\1\end{array}\right\}$ .

To see (35.9), observe by Lemma 27.4(i),(ii), and Definition 35.1 that
$(B^{+}\cap[x, 1_{P}])^{*}$ is a $q$-line regular, $\zeta$-dual-line regular design-matroid
of rank $N-D$ . Applying Theorem 27.11 to this matroid, we get (35.9).

(ii) Observe $p*$ is $q$-line regular by Lemma 27.4. By Definition
35.1 and the construction, $B$ is a $\zeta$ uniform $p*$ -basis system of rank
$N-D$ . The result now follows from part (i) above.

\S 36. $x\star y$ is a uniform $[x\wedge y, x]$ {?}basis system

Let $P$ denote a quantum matroid, and pick any $x$ , $y\in P$ . Recall
by Theorem 19.3 that $x\star y$ is a $[x\wedge y, x]$ -basis system. In this section,
we assume $P$ is regular, and show $x\star y$ is $\zeta$-uniform, $fr$ some integer
$\zeta$ that depends on $\rho(x, y)$ , $\gamma(x, y)$ , $\delta(x, y)$ , $\gamma(y, x)$ , and the parameters
of $P$ . We combine this information with results from Sections 33, 35 to
compute the number of atoms in $[x\wedge y, x\star y]$ , $[x\star y, x]^{*}$ , and $x_{y}^{+}$ .

Theorem 36.1. Let $P$ denote a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ . Pick $x$ , $y$

$\in P$ , and set

(36.1) $\rho:=\rho(x, y)$ ,

(36.1) $\gamma:=\gamma(x, y)$ ,

(36.3) $\delta:=\delta(x, y)$ ,

(36.4) $\gamma^{t}:=\gamma(y, x)$ .

Then the $[x\wedge y, x]$ -basis system $x\star y$ is $\zeta$ -uniform, where

(36.5) $\zeta:=\alpha\frac{q^{D-\rho-\gamma-\delta-\gamma^{t}}}{t_{D-\rho-\gamma-\delta-\gamma^{t}}}$ ,
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and where $t_{j}$ is from (33.1).

Proof. Recall by Lemma 13.2 and Theorem 18.2(vi) that

(36.6) rank(x) $=\rho+\gamma+\delta$ ,

(36.7) rank(y) $=\rho+\gamma^{t}+\delta$ .

Pick $b\in x\star y$ . We may assume $x\wedge y<b<x$ ; otherwise there
is nothing to prove by Lemma 13.3(ii), Definition 35.1(ii). Now there
exists $u$ , $v\in[x\wedge y, x]$ such that $b$ covers $u$ and $v$ covers $b$ . We
must show

(36.8) $|x\star y\cap[u, v]|=\zeta+1$ .

Observe $u\in x_{y}^{-}$ by Theorem 19.3(i), so $u\vee y$ exists. Set $r:=u\vee y$ .

Observe by Lemma 15.3(ii),(iii) that $u$ , $y$ are relative complements in
the interval $[x\wedge y, r]$ ; if follows by Lemma 14.2(iii), (36.7), and the
construction that

rank(r)=rank(y)+rank(x) -rank(x\wedge y)

(36.9) $=\rho+\gamma+\delta+\gamma^{t}-1$ .

Observe by the construction that $\delta(v, y)=1$ . Observe $r\in y_{v}^{+}$ by
Lemma 15.3 (i), (iii), so

$\delta(v, r)=\delta(v, y)$

$=1$

by Lemma 15.3(v). Now there exists $w\in[u, r]$ such that $r$ covers
$w$ and such that $v\vee w$ exists. Set $s:=v\vee w$ . Observe by Lemma
15.3(i),(ii) that $v$ , $w$ are relative complements in the interval $[u, s]$ , so
by (36.9),

rank(s)=rank(x)+rank(x) -rank(x)

$=rank(w)+2$

$=rank(r)+1$

(36.10) $=\rho+\gamma+\delta+\gamma^{t}$ .

We compute $|top(r_{s}^{+})|$ in two ways. On one hand, observe $r$ covers
$r\wedge s=w$ and $r\vee s$ does not exist, so by (36.9), (36.10), and Theorem
34.1,

$|top(r_{s}^{+})|=\frac{t_{D-\rho-\gamma-\delta-\gamma^{t}+1}}{t_{D-\rho-\gamma-\delta-\gamma^{t}}}$

(36.11) $=\zeta+1$
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by (33.1), (36.5). On the other hand, one finds by Theorem 15.5, Lemma
15.8(ii),(iii), and the observations $s\in v_{r}^{+}$ , $r\in y_{v}^{+}$ , that

$|top(r_{s}^{+})|=|top(r_{v}^{+})|$

$=|top(v_{r}^{-})|$

$=|top(v_{y}^{-})\cap[u, v]|$

(36.12) $=|x\star y\cap[u, v]|$ .

Line (36.8) follows from (36.11 ), (36.12), so we are done.

Corollary 36.2. With the assumptions and notation of Theorem
36.1:

(i) The $[x\wedge y, x]$ matroid $[x\wedge y, x\star y]$ is regular, with parameters

(36.13) $(\gamma, q, \zeta, \zeta \left\{\begin{array}{l}\delta\\ 1\end{array}\right\})$ .

(ii) The $[x\wedge y, x]^{*}$ matroid $[x\star y, x]^{*}$ is regular, with parameters

(36.14) $(\delta, q, \zeta, \zeta \left\{\begin{array}{l}\gamma\\ 1\end{array}\right\})$ .

(iii) The quantum matroid $x_{y}^{+}$ is regular, with parameters

(36.15) $(\gamma^{t}, q, \zeta, \zeta \left\{\begin{array}{l}\delta\\ 1\end{array}\right\})$ .

Proof (i), (ii) Immediate from Lemma 14.2 $(iii),(vi)$ , Theorem 35.3,
and Theorem 36.1.

(iii) Interchanging the roles of $x$ , $y$ in (i) above, we find $[x\wedge y, y\star x]$

is regular, with parameters (36.15). The result now follows, since $x_{y}^{+}$ is

isomorphic to $y_{x}^{-}=[x\wedge y, y\star x]$ by Theorem 15.5 and Theorem 19.3(i).
We have now proved Corollary 36.2.

Theorem 36.3. With the assumptions and notation of Theorem
36.1:

(i) The number of atoms in the $[x\wedge y, x]$ matroid $[x\wedge y, x\star y]$ is

(36.16) $\frac{t_{D-\rho-\gamma-1}t}{t_{D-\rho-\delta-\gamma^{t}-1}}$
$\left\{\begin{array}{l}\gamma\\ 1\end{array}\right\}$

if $\gamma\geq 1$ , and 0 if $\gamma=0$ .
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(ii) The number of atoms in the $[x\wedge y, x]^{*}$ matroid $[x\star y, x]^{*}$ is

(36.17) $\frac{t_{D-\rho-\gamma-1}t}{t_{D-\rho-\gamma-\gamma-1}t}$
$\left\{\begin{array}{l}\delta\\ 1\end{array}\right\}$

if $\delta\geq 1$ , and 0 if $\delta=0$ .

(ii) The number of atoms in the quantum matroid $x_{y}^{+}$ is

(36.18) $\frac{t_{D-\rho-\gamma-1}}{t_{D-\rho-\gamma-\delta-1}}$
$\left\{\begin{array}{l}\gamma^{t}\\1\end{array}\right\}$

if $\gamma^{t}\geq 1$ , and 0 if $\gamma^{t}=0$ .

Proof. Apply the formula (33.9) in each of the three cases of Corol-
lary 36.2, and simplify the result using (33.1), (36.5).

\S 37. The staircase theorem, revisited

Theorem 37.1. Let $P$ denote a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ . Pick any integer $a(0\leq a\leq D)$ , and fifix
an element $y\in P$ such that rank(y) $=a$ . Let $D=D(a, D-a)$
and $\sigma$ : $P\rightarrow VD$ be as in Theorem 21.3. Then for all $(\rho, \gamma, \delta)$ ,
$(\rho’, \gamma’, \delta’)\in VD$ , and for all $x\in\sigma^{-1}(\rho, \gamma, \delta)$ , the number

(37.1) $|$ { $z\in\sigma^{-1}(\rho’,$ $\gamma’$ , $\delta’)|z$ is adjacent to $x$ } $|$

is given as follows.
Case $(\rho’, \gamma’, \delta’)=(\rho-1, \gamma, \delta)$ :

(37.2) $q^{\gamma+\delta}$
$\left\{\begin{array}{l}\rho\\ 1\end{array}\right\}$

Case $(\rho’, \gamma’, \delta’)=(\rho+1, \gamma, \delta)$ :

(37.3) $\frac{t_{D-\rho-\gamma-1}}{t_{D-\rho-\gamma-\delta-1}}$ $\left\{\begin{array}{l}a-\rho-\delta\\ 1\end{array}\right\}$

Case $(\rho’, \gamma’, \delta’)=(\rho, \gamma-1, \delta)$ :

(37.4) $q^{\delta}\frac{t_{D-a-\gamma-1}}{t_{D-a-\gamma+\delta-1}}$
$\left\{\begin{array}{l}\gamma\\ 1\end{array}\right\}$

if $\delta\geq 1$ , and

(37.5) $\left\{\begin{array}{l}\gamma\\ 1\end{array}\right\}$
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if $\delta=0$ .

Case $(\rho’, \gamma’, \delta’)=(\rho, \gamma+1, \delta)$ :

(37.6) $q^{a-\rho-\delta}\frac{t_{D-\rho-\gamma-1}}{t_{D-\rho-\gamma-\delta-1}}\frac{t_{D-a-\gamma-1}}{t_{D-a-\gamma+\delta-1}}\eta_{a+\gamma}$

Case $(\rho’, \gamma’, \delta’)=(\rho, \gamma, \delta-1)$ :

(37.7) $\frac{t_{D-a+\delta-1}}{t_{D-a-\gamma+\delta-1}}$
$\left\{\begin{array}{l}\delta\\ 1\end{array}\right\}$

Case $(\rho’, \gamma’, \delta’)=(\rho, \gamma, \delta+1)$ :

(37.8) $\frac{t_{\delta-1}}{q^{\delta-1}}\frac{q^{D-\rho-\gamma-\delta-1}}{t_{D-\rho-\gamma-\delta-1}}\frac{q^{D-a-\gamma+\delta-1}}{t_{D-a-\gamma+\delta-1}}(\beta-\alpha \left\{\begin{array}{l}\delta\\ 1\end{array}\right\})$ $\left\{\begin{array}{l}a-\rho-\delta\\ 1\end{array}\right\}$

if $a+\gamma<D$ , and

(37.9) $\frac{q^{D-\rho-\gamma-\delta-1}}{t_{D-\rho-\gamma-\delta-1}}(\beta-\alpha \left\{\begin{array}{l}\delta\\ 1\end{array}\right\})$ $\left\{\begin{array}{l}D-\rho-\gamma-\delta\\ 1\end{array}\right\}$

if $a+\gamma=D$ .

The number (37.1) equals 0 in all other cases.

Proof. We set

$\Lambda:=$ { $z\in\sigma^{-1}$ ( $\rho’$ , $\gamma’$ , $\delta’$ ) $|z$ is adjacent to $x$ },

and compute $|\Lambda|$ in each of the above cases.
Case $(\rho’, \gamma’, \delta’)=(\rho-1, \gamma, \delta)$ . By Lemma 13.4 and Lemma 27.5,

$|\Lambda|=|$ { $z\in P|x$ covers $z$ , $z\not\geq x\wedge y$ } $|$

$=|$ { $z\in P|x$ covers $z$ } $|$ – $|$ { $z\in P|x$ covers $z$ , $z\geq x\wedge y$ } $|$

$=$ $\left\{\begin{array}{l}\rho+\gamma+\delta\\ 1\end{array}\right\}$ – $\left\{\begin{array}{l}\gamma+\delta\\ 1\end{array}\right\}$

$=q^{\gamma+\delta}$
$\left\{\begin{array}{l}\rho\\ 1\end{array}\right\}$ ,

as desired.
Case $(\rho’, \gamma’, \delta’)=(\rho+1, \gamma, \delta)$ . By Lemma 15.3, $\Lambda$ consists of those

elements in $x_{y}^{+}$ that cover $x$ , i.e. the atoms of the poset $x_{y}^{+}$ . Now
$|\Lambda|$ is given in (36.18). Eliminating $\gamma^{t}$ in (36.18) using $\gamma^{t}=a-\rho-\delta$ ,
we obtain (37.3), as desired.
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Case $(\rho’, \gamma’, \delta’)=(\rho, \gamma, \delta-1)$ . By Lemma 14.3, $\Lambda$ consists of the
elements in $[x\star y, x]$ that are covered by $x$ (in $P$), i.e., the atoms of
the poset $[x\star y, x]^{*}$ . Now $|\Lambda|$ is given in (36.17). Eliminating $\gamma^{t}$ in
(36.17) as in the previous case, we obtain (37.7), as desired.

Case $(\rho’, \gamma’, \delta’)=(\rho, \gamma-1, \delta)$ . In this case $\Lambda$ consists of the
elements in $[x\wedge y, x]$ that are covered by $x$ but are not in $[x\star y, x]$ .

If $\delta\geq 1$ , then by the previous case,

$|\Lambda|=$ $\left\{\begin{array}{l}\gamma+\delta\\ 1\end{array}\right\}$ –

$\frac{t_{D-a+\delta-1}}{t_{D-a-\gamma+\delta-1}}$
$\left\{\begin{array}{l}\delta\\ 1\end{array}\right\}$

$=q^{\delta}\frac{t_{D-a-\gamma-1}}{t_{D-a-\gamma+\delta-1}}$
$\left\{\begin{array}{l}\gamma\\ 1\end{array}\right\}$ ,

as desired. If $\delta=0$ then $x\star y=x$ , so

$|\Lambda|=\left\{\begin{array}{l}\gamma\\ 1\end{array}\right\}$

by Lemma 14.2(iii) and Lemma 27.5.
Case $(\rho’, \gamma’, \delta’)=(\rho, \gamma+1, \delta)$ . We show $|\Lambda|$ equals the expression

in (37.6) by induction on

$\gamma^{t}$ $:=\gamma(y, x)$

$=a-\rho-\delta$ .

First consider the case $\gamma^{t}=0$ . Here $x$ is relatively close to $y$ in the
sense of Lemma 20.2, so by Theorem 20.4,

$\Lambda=$ { $z\in P|z$ covers $x$ }.

In particular by Theorem 33.4,

$|\Lambda|=\eta_{i}$ $(i=rank(x))$ ,

$=\eta_{\rho+\gamma+\delta}$ ,

which is what (37.6) reduces to in this case. Now assume $\gamma^{t}>0$ . Set

$\Omega:=$ { $u\in x_{y}^{+}|u$ covers $x$ }
$=\{u\in P|u\geq x, \sigma(u)=(\rho+1, \gamma, \delta)\}$ ,

and observe by (37.3) that

(37.10) $|\Omega|=\frac{t_{D-\rho-\gamma-1}}{t_{D-\rho-\gamma-\delta-1}}$ $\left\{\begin{array}{l}a-\rho-\delta\\ 1\end{array}\right\}$ .
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Set
$\Psi$ $:=\{v\in P|v\geq x, \sigma(v)=(\rho+1, \gamma+1, \delta)\}$ .

Observe by induction and (37.6) (with ( $a’$ , $\rho’$ , $\gamma’$ , $\delta’)=(a,$ $\rho+1$ , $\gamma$ , $\delta)$ )

that each element in $\Omega$ is covered by exactly

$q^{a-\rho-\delta-1}\frac{t_{D-\rho-\gamma-2}}{t_{D-\rho-\gamma-\delta-2}}\frac{t_{D-a-\gamma-1}}{t_{D-a-\gamma+\delta-1}}\eta_{a+\gamma}$

elements in $\Psi$ . Also observe by Theorem 17.2 $(i),(iv)$ that each element
$ v\in\Psi$ covers a unique element in $\Omega$ , i.e., $x\vee(v\wedge y)$ . From our above
observations

(37.11) $|\Psi|=|\Omega|q^{a-\rho-\delta-1}\frac{t_{D-\rho-\gamma-2}}{t_{D-\rho-\gamma-\delta-2}}\frac{t_{D-a-\gamma-1}}{t_{D-a-\gamma+\delta-1}}\eta_{a+\gamma}$ .

Observe by (37.3) (with ( $a’$ , $\rho’$ , $\gamma’$ , $\delta’)=(a,$ $\rho$ , $\gamma+1$ , $\delta)$ ) that each ele-
ment in $\Lambda$ is covered by exactly

$\frac{t_{D-\rho-\gamma-2}}{t_{D-\rho-\gamma-\delta-2}}$
$\left\{\begin{array}{l}a-\rho-\delta\\ 1\end{array}\right\}$

elements in $\Psi$ . Also observe by Theorem 17.3(iii),(iv) that each element
in $\Psi$ covers exactly $q$ elements in $\Lambda$ . From the above two observations

(37.12) $|\Lambda|\frac{t_{D-\rho-\gamma-2}}{t_{D-\rho-\gamma-\delta-2}}$
$\left\{\begin{array}{l}a-\rho-\delta\\ 1\end{array}\right\}$ $=|\Psi|q$ .

Combining (37.10) $-(37.12)$ , we find $|\Lambda|$ equals the expression (37.6), as
desired.

Case $(\rho’, \gamma’, \delta’)=(\rho, \gamma, \delta+1)$ . First assume $a+\gamma<D$ . In this case
$\Lambda$ consists of all the elements in $P$ that cover $x$ , but are not counted
in (37.3) or (37.6). By (37.3), (37.6), and Theorem 33.4, we find

$|\Lambda|=$
$\eta_{\rho+\gamma+\delta}$ $\frac{t_{D-\rho-\gamma-1}}{t_{D-\rho-\gamma-\delta-1}}$

$\left\{\begin{array}{l}a-\rho-\delta\\ 1\end{array}\right\}$

-
$q^{a-\rho-\delta}\frac{t_{D-\rho-\gamma-1}}{t_{D-\rho-\gamma-\delta-1}}\frac{t_{D-a-\gamma-1}}{t_{D-a-\gamma+\delta-1}}\eta_{a+\gamma}$ .

Evaluating this using (27.3), (27.4), (33.1), (33.8), we obtain (37.8).

Now assume $a+\gamma=D$ . In this case, $\Lambda$ consists of all the elements
in $P$ that cover $x$ , but are not counted in (37.3). Proceeding as above,
we find

$|\Lambda|=$
$\eta_{\rho+\gamma+\delta}$

$\frac{t_{D-\rho-\gamma-1}}{t_{D-\rho-\gamma-\delta-1}}$
$\left\{\begin{array}{l}D-\gamma-\rho-\delta\\ 1\end{array}\right\}$ .
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Evaluating this using (27.3), (27.4), (33.1), (33.8), we obtain (37.9), as
desired.

In any other case, the expression (37.1) equals 0 by the staircase
theorem. This proves Theorem 37.1.

Corollary 37.2. Let $P$ denote a regular quantum matroid with
parameters $(D, q, \alpha, \beta)$ . Pick any $x\in P$ , pick any $y\in top(P)$ , and set

$\rho$ $:=\rho(x, y)$ ,

$\delta$ $:=\delta(x, y)$

$=rank(x)-\rho$ .

Then

(i) $|$ { $z\in P|x$ covers $z$ , $\partial(z,$ $y)=\partial(x$ , $y)+1$ } $|$ $=$
$q^{\delta}$

$\left\{\begin{array}{l}\rho\\ 1\end{array}\right\}$ ,

(ii) $|$ { $z\in P|x$ covers $z$ , $\partial(z,$ $y)=\partial(x$ , $y)-1$ } $|$ $=$ $\left\{\begin{array}{l}\delta\\ 1\end{array}\right\}$ .

Suppose $x\not\in top(P)$ . Then

(ii)

$|$ { $z\in P|z$ covers $x$ , $\partial$ ( $z$ , $y)=\partial(x,$ $y)-1$ } $|=$

$\frac{t_{D-\rho-1}}{t_{D-\rho-\delta-1}}$
$\left\{\begin{array}{l}D-\rho-\delta\\ 1\end{array}\right\}$ ,

(iv)

$|$ { $z\in P|z$ covers $x$ , $\partial$ ( $z$ , $y)=\partial(x,$ $y)+1$ } $|=$

$\frac{q^{D-\rho-\delta-1}}{t_{D-\rho-\delta-1}}$ $(\beta-\alpha \left\{\begin{array}{l}\delta\\ 1\end{array}\right\})\left\{\begin{array}{l}D-\rho-\delta\\ 1\end{array}\right\}$ .

Proof. This is the case $a=D$ in Theorem 37.1. With the notation
of that theorem, observe $D=D(D, 0)$ , so by Definition 21.2, $\gamma=0$ for
all $(\rho, \gamma, \delta)\in VD$ . Setting $\triangle\gamma=0$ in Theorem 13.5, we find the sets
$(i)-(iv)$ above equal the sets of vertices adjacent to $x$ and contained in
$\sigma^{-1}(\rho-1,0, \delta)$ , $\sigma^{-1}(\rho, 0, \delta-1)$ , $\sigma^{-1}(\rho+1,0, \delta)$ , $\sigma^{-1}(\rho, 0, \delta+1)$ , resp.
The cardinality of these sets is given in (37.2), (37.7), (37.3), (37.9),
respectively, (where $\gamma=0$ , $a=D$ ). This proves Corollary 37.2.
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\S 38. The graph on top $(P)$ is distance-regular

Definition 38.1. A finite, connected, undirected graph $\Gamma=(V\Gamma$ ,
$E\Gamma)$ of diameter $d$ is said to be distance-regular, with intersection num-
bers $c_{i}$ , $b_{i}(0\leq i\leq d)$ , whenever for all integers $i(0\leq i\leq d)$ , and all
$x$ , $y$

$\in V\Gamma$ at distance $\partial_{\Gamma}(x, y)=i$ , the scalars

$c_{i}:=|\{z\in V\Gamma|xz\in E\Gamma, \partial_{\Gamma}(y, z)=i-1\}|$ ,

$b_{i}:=|\{z\in V\Gamma|xz\in E\Gamma, \partial_{\Gamma}(y, z)=i+1\}|$ ,

are independent of $x$ , $y$ .

Theorem 38.2. Let $P$ denote a nontrivial regular quantum ma-
troid with parameters $(D, q, \alpha, \beta)$ . Then $(i)-(iii)$ hold below.

(i) The graph on top(P) is distance-regular, with intersection
numbers

(38.1)

$c_{i}=\left\{\begin{array}{l}i\\1\end{array}\right\}$ $(1+\alpha \left\{\begin{array}{l}i-1\\1\end{array}\right\})$ $(0\leq i\leq d)$ ,

(38.2)

$b_{i}=(\left\{\begin{array}{l}D\\1\end{array}\right\}- \left\{\begin{array}{l}i\\1\end{array}\right\})$ $(\beta-\alpha \left\{\begin{array}{l}i\\1\end{array}\right\})$ $(0\leq i\leq d)$ ,

where $d:=diam_{top}(P)$ .

(ii) Suppose $d<D$ . Then

(38.3) $\beta=\alpha$ $\left\{\begin{array}{l}d\\1\end{array}\right\}$ .

(iii) Assume $d=D$ . Then the graph on top(P) has classical
parameters $(D, q, \alpha, \beta)$ in the sense of Brouwer, Cohen, Neu-
maier [B-C-N].

Proof, (i) Routine application of Corollary 37.2 using line (22.1).
(ii) Immediate from (i) and the observation $b_{d}=0$ .

(iii) Immediate from [B-C-N, p194].

\S 39. The classification of the regular quantum matroids with
rank at least 4

In this section, we classify the nontrivial regular quantum matroids
with rank at least 4. We do this as follows. Let $P$ denote a nontrivial
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regular quantum matroid with parameters $(D, q, \alpha, \beta)$ , and assume $ D\geq$

$4$ . First, we show $\alpha\in\{0, q-1, q\}$ . In each case, we invoke a result
from the literature to identify $P$ , giving us our classification. Our main
result is Theorem 39.6.

Lemma 39.1. Let $P$ denote a nontrivial regular quantum ma-
troid with parameters $(D, q, \alpha, \beta)$ , and assume $\alpha\neq q$ . Then $(i)-(iii)$

hold below.

(i) $(q-1-\alpha)t_{D-i}^{-1}\geq 0$ $(2\leq i\leq D)$ .

(ii) $\triangle_{i}\neq\emptyset$ $(2\leq i\leq D)$ .

(iii) $(q-1-\alpha)t_{D-i}^{-1}\in \mathbb{Z}$ $(2\leq i\leq D)$ .

Proof, (i) Recall $\alpha\leq q$ by (28.4), and we assume $\alpha\neq q$ , so
$\alpha\leq q-1$ . Also $t_{D-i}$ is positive by Lemma 33.2(ii).

(ii) By Lemma 28.2(iii), it suffices to find $x$ , $y$ $\in A_{P}$

assume $P$ is not a modular atomic lattice, there exists $x\in A_{P}$

and there exists $u\in top(P)$ such that $x\not\leq u$ . We show there exists
an atom $y\in Shadow(u)$ such that $x\vee y$ does not exist. To this
end, recall by (15.2) and Theorem 19.3(i) that for all $y\in Shadow(u)$ ,
$x\vee y$ exists if and only if $y$ $\in[0, u\star x]$ . Hence, it suffices to show
Shadow(u) $[0, u\star x]$ is not empty. Observe by (27.5),

(39.1) $|Shadow(u)|=\left\{\begin{array}{l}D\\1\end{array}\right\}$ .

To compute the number of atoms in $[0, u\star x]$ , observe by Definitions
12.1, 13.1 that $\rho(u, x)=0$ , $\gamma(u, x)=D-1$ , $\delta(u, x)=1$ , $\gamma(x, u)=0$ .

By Theorem 36.3(i) (with $\rho=0$ , $\gamma=D-1$ , $\delta=1$ , $\gamma^{t}=0$ ), the
number of atoms in $[0, u\star x]$ equals

(39.2) $\frac{t_{D-1}}{t_{D-2}}$ $\left\{D & 1-1\right\}$ .

Observe

$\left\{\begin{array}{l}D\\1\end{array}\right\}-$ $\frac{t_{D-1}}{t_{D-2}}$ $\left\{D & 1-1\right\}=1+\frac{q-1-\alpha}{t_{D-2}}$ $\left\{D & 1-1\right\}$

$\geq 1$

by (33.1) and (i) above, so Shadow(u)\ $[0, u\star x]$ is not empty, as desired,

(iii) Let the integer $i$ be given. There exists $xy$ $\in\triangle_{i}$ by part (ii)
above, so by Corollary 34.2,

$\frac{q-1-\alpha}{t_{D-i}}=q-zig- zag(x, y)$
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is an integer.

Theorem 39.2. Let $P$ denote a nontrivial $q$ -line regular, $\alpha-$

zig-zag regular quantum matroid with rank $D\geq 3$ .

(i) Suppose $D\geq 4$ . Then $\alpha\in\{0, q-1, q\}$ .

(ii) Suppose $D=3$ . Then $\alpha=q$ or $ 1+\alpha$ divides $q$ .

Proof, (i) We assume $\alpha\neq 0$ , $\alpha\neq q-1$ , $\alpha\neq q$ , and get a
contradiction. Observe $\alpha\geq 1$ by Lemma 28.6 and our assumptions,
so $P$ is dual-line regular by Theorem 31.1. It follows $P$ is regular
by Definition 32.1. Now on one hand, by Lemma 39.1 $(i),(iii)$ (with

$i=D-2)$ , we find $(q-1-\alpha)t_{2}^{-1}$ is a positive integer. On the other
hand, by (27.2), (33.1),

$\frac{q-1-\alpha}{t_{2}}=\frac{q-1-\alpha}{1+\alpha(q+1)}$

$\leq\frac{q-2}{q+2}$

$<1$ ,

a contradiction.
(ii) Assume $\alpha\neq 0$ , $\alpha\neq q$ ; otherwise the result is trivial. Then as

in (i) above, $P$ is regular. By Lemma 39.1(iii) (with $i=2$ , $D=3$ ),

we find $(q-1-\alpha)t_{1}^{-1}$ is an integer. By (33.1),

$\frac{q-1-\alpha}{t_{1}}=\frac{q-1-\alpha}{1+\alpha}$

$=\frac{q}{1+\alpha}-1$ ,

so $ 1+\alpha$ divides $g$ , as desired. This proves Theorem 39.2.

Suppose $P$ is a nontrivial regular quantum matroid with param-
eters $(D, q, \alpha, \beta)$ , and assume $D\geq 4$ . In each of the three cases in

Theorem 39.2(i), we can identify $P$ . If $\alpha=0$ , then $P$ is known by
Theorems 30.3, 30.4, 30.5. In each of the other cases $\alpha=q-1$ , $\alpha=q$ ,

there is a result in the literature of diagram geometries that identifies $P$ .

We quote these results below, translated into the language of quantum
matroids via Theorem 23.1. First, we eliminate the easy case $q=1$ .

Theorem 39.3. Let $D$ denote an integer at least 2, and let $P$

denote a poset. Then the following are equivalent.

(i) $P$ is a nontrivial 1-line regular, l-zig-zag regular quantum
matroid with rank $D$ .
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(ii) There exists an integer $N>D$ such that $P$ is isomorphic to
the truncated Boolean algebra $B(D, N)$ .

Suppose (i), (ii) hold. Then $P$ is $(N-D)$ -dual-line regular. (See
Example 40. 1 (1).)

Proof. Routine.

Theorem 39.4 ([Bui, Theorem 8]). Let $D$ denote an integer at
least 3, let $q$ denote an integer at least 2, and let $P$ denote a poset.
Then the following are equivalent.

(i) $P$ is a nontrivial $q$ -line regular, q-zig-zag regular quantum
matroid with rank $D$ .

(ii) $q$ is a prime power, and there exists an integer $N>D$
such that $P$ is isomorphic to the truncated projective geometry
$L_{q}(D, N)$ .

Suppose (i), (ii) hold. Then $P$ is $\beta$ -dual-line regular, where

$\beta=q\frac{q^{N-D}-1}{q-1}$ .

See Example 40. 1 (3).

Theorem 39.5 ([Spl, Theorem 3]). Let $D$ denote an integer at
least 3, let $q$ denote an integer at least 2, and let $P$ denote a poset.
Then the following are equivalent.

(i) $P$ is a nontrivial $q$ -line regular, q-zig-zag regular quantum
matroid with rank $D$ .

(ii) $q$ is a prime power, and there exists an integer $N>D$ such
that $P$ is isomorphic to the attenuated space $A_{q}(D, N)$ .

Suppose (i), (ii) hold. Then $P$ is $(q^{N-D}-1)$ -dual-line regular.

(See Example 40. 1 (4)).
We now arrive at the central theorem of this paper.

Theorem 39.6. Let $D$ denote an integer at least 4, and let $P$

denote a poset. Then the following are equivalent.

(i) $P$ is a nontrivial regular quantum matroid with rank $D$ .

(ii) $P$ is isomorphic to one of the following:
(iia) A truncated Boolean algebra $B(D, N)$ , $(D<N)$ .

(iib) A Hamming matroid $H(D, N)$ , $(2\leq N)$ .

(iic) A truncated projective geometry $L_{q}(D, N)$ , $(D<N)$ .

(iid) An attenuated space $A_{q}(D, N)$ , $(D<N)$ .

(iie) A classical polar space of rank $D$ .
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Proof. (i) $\rightarrow(ii)$ . Let $(D, q, \alpha, \beta)$ denote the parameters of $P$ .

Then

(39.3) $q\geq 1$

by Lemma 27.2,

(39.4) $\alpha\in\{0, q-1, q\}$

by Theorem 39.2, and

(39.5) $\beta\geq 1$

by Lemma 27.9, Lemma 27.10, and Definition 32.2.
First assume $\alpha=0$ . In this case Rad(P) $=0$ by Theorem

29.3(i),(iv) and (39.5), so $P$ is nondegenerate by Definition 26.1. Now
$P$ is a Tits polar space of rank $D$ by Theorem 30.3. If $q=1$

then by Theorem 30.4 and (39.5), $P$ is isomorphic to $H(D, N)$ , where
$N=\beta+1\geq 2$ . If $q\geq 2$ then by Theorem 30.5, $P$ is isomorphic to a
classical polar space of rank $D$ .

Next assume $\alpha=q-1$ . In this case we may assume $q\geq 2$ ;
otherwise $\alpha=0$ by (39.3), and our previous remarks apply. Now by
Theorem 39.5, $q$ is a prime power, and $P$ is isomorphic to $A_{q}(D, N)$

for some integer $N>D$ .

Finally assume $\alpha=q$ . If $q=1$ , then by Theorem 39.3, $P$ is
isomorphic to $B(D, N)$ for some integer $N>D$ . If $q\geq 2$ , then by
Theorem 39.4, $q$ is a prime power, and $P$ is isomorphic to $L_{q}(D, N)$

for some integer $N>D$ .

(ii) $\rightarrow(i)$ . Assume $P$ is isomorphic to $B(D, N)$ , for some integer
$N>D$ . Then $P$ is a nontrivial regular quantum matroid of rank $D$

by Theorem 39.3.
Assume $P$ is isomorphic to $H(D, N)$ , for some integer $N\geq 2$ .

Then $P$ is a Tits polar space by Theorem 30.4, so $P$ is a nondegenerate
quantum matroid of rank $D$ by Theorem 30.3. In particular $P$

is nontrivial. $P$ is 1-line regular and $(N-1)$ -dual-line regular by
Theorem 30.4, and O-zig-zag regular by Theorem 30.3.

Assume $P$ is isomorphic to $L_{q}(D, N)$ , for some integer $N>D$ .

Then $P$ is a nontrivial, regular quantum matroid of rank $D$ by
Theorem 39.4.

Assume $P$ is isomorphic to $A_{q}(D, N)$ , for some integer $N>D$ .

Then $P$ is a nontrivial, regular quantum matroid of rank $D$ by
Theorem 39.5.

Assume $P$ is a classical polar space of rank $D$ . Then $P$ is a
Tits polar space of rank $D$ by Theorem 30.5, so $P$ is a nondegenerate
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quantum matroid of rank $D$ by Theorem 30.3. In particular $P$

is nontrivial. $P$ is line-regular by Theorem 30.5, O-zig-zag regular
by Theorem 30.3, and dual-line regular by Theorem 30.5. This proves
Theorem 39.6.

Corollary 39.7. Let $D$ denote an integer at least 4. Then the
following are equivalent statements concerning $a$ fifinite, undirected graph
$\Gamma$ .

(i) $\Gamma$ is isomorphic to the graph on top(P), where $P$ is $a$

nontrivial regular quantum matroid with rank $D$ .

(ii) $\Gamma$ is isomorphic to one of the following:
(iia) The Johnson graph $J(D, N)$ , $(D<N)$ .

(iib) The Hamming graph $H(D, N)$ , $(2\leq N)$ .

(iic) The $q$ Johnson graph $J_{q}(D, N)$ , $(D<N)$ .

(iid) The bilinear forms graph $H_{q}(D, N)$ , $(D<N)$ .

(iie) A dual polar space graph of diameter $D$ .

(See [B-I, p300] for the definitions of these graphs).

Proof. Immediate from Theorem 39.6.

Corollary 39.8. Let $P$ denote a regular quantum matroid with
rank $D\geq 4$ . Then $P$ is embeddable (in the sense of Defifinition 6.3).

Proof. Concerning the examples in Theorem 39.6, observe $P$ is
an $A$-matroid in cases (iia), (iib), and a $V$-matroid in cases $(iic)-(iie)$ .

\S 40. The examples of regular quantum matroids

Example 40.1. Let $D$ denote an integer at least 2. In each of the
following cases 1-5, $P$ is a nontrivial regular quantum matroid of rank
$D$ . In each case, the parameters $q$ , $\alpha$ , $\beta$ are given. (See Definition
32.1). By Theorem 39.6, there are no other nontrivial regular quantum
matroids with rank $D\geq 4$ .

1. The truncated Boolean algebra $B(D, $N)(D $<N)$ [Bui],
[Te].

Let $A$ denote a set of cardinality $N$ .

$P=\{x\underline{\subseteq}A| |x|\leq D\}$ ,

$x\leq y$ whenever $x$ is a subset of $y$ $(x, y\in P)$ ,

rank(x)= $|x|(x\in P)$ ,

$q=1$ , $\alpha=1$ , $\beta=N-D$ .
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2. The Hamming matroid $H(D, N)(2\leq N)$ [De], [Te].

Set

$A=A_{1}\cup A_{2}\cup\cdots\cup A_{D}$ (disjoint union),

where $|A_{i}|=N(1\leq i\leq D)$ .

$P=$ { $x\underline{\subseteq}A|$ $|x\cap A_{i}|\leq 1$ for all $i$ $(1\leq i\leq D)$ },

$x\leq y$ whenever $x$ is a subset of $y$ $(x, y\in P)$ ,

rank(x)= $|x|(x\in P)$ ,

$q=1$ , $\alpha=0$ , $\beta=N-1$ .

3. The truncated projective geometry $L_{q}(D, N)$ $(D<N)$
[Bui], [Sta], [Te].

Let $V$ denote a vector space of dimension $N$ over the field $GF(q)$ .

$P=$ {$x|x$ is a subspace of $V$, $dim(x)\leq D$ },

$x\leq y$ whenever $x$ is a subspace of $y(x, y\in P)$ ,

rank(x)= $dim(x)(x\in P)$ ,

$\alpha=q$ , $\beta=q\frac{q^{N-D}-1}{q-1}$ .

4. The attenuated space $A_{q}(D, N)$ $(D<N)$ [De], [Hu],
[Spl], [Sta], [Te].

Let $V$ denote a vector space of dimension $N$ over the field $GF(q)$ ,
and fix a subspace $w\underline{\subseteq}V$ of dimension $N-D$ .

$P=$ { $x|x$ is a subspace of $V$, $x\cap w=0$ },

$x\leq y$ whenever $x$ is a subspace of $y$ $(x, y\in P)$ ,

rank(x) $=dim(x)$ , $(x\in P)$ ,

$\alpha=q-1$ , $\beta=q^{N-D}-1$ .

5. The classical polar spaces of rank $D$ over $GF(q)$ [C-J-
$P]$ , [Ca2], [Mu].
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Let $V$ denote a vector space over the field $GF(q)$ , and assume $V$

possesses one of the following nondegenerate forms:

name dimV form
$B_{D}(q)$ $2D+1$ quadratic 0
$C_{D}(q)$ $2D$ alternating 0

$D_{D}(q)$ $2D$ -1quadratic
(Witt index $D$ )

2 $D_{D+1}(q)$ $2D$ $+2$ 1quadratic
(Witt index $D$ )

$2A_{2D}(r)$ $2D$ $+1$
$(q=r^{2})$

$\frac{1}{2}$

Hermitean

$2A_{2D-1}(r)$ $2D$ $Hermitean(q=r^{2})$ $-\frac{1}{2}$ .

We call a subspace of $V$ totally isotropic whenever the form van-
ishes completely on that subspace. In each of the above cases, the di-
mension of any maximal isotropic subspace is $D$ .

$P=$ { $x|x$ is an isotropic subspace of $V$ },

$x\leq y$ whenever $x$ is a subspace of $y$ $(x, y\in P)$ ,

rank(x) $=dim(x)(x\in P)$ ,

$\alpha=0$ , $\beta=q^{1+\in}$ .

\S 41. Directions for further research

In this section we give some conjectures and open problems con-
cerning quantum matroids and related topics. See also Problem 4.4,
Conjecture 6.5, and Conjecture 7.13 in the text.

Conjecture 41.1. Let $P$ denote a quantum matroid with rank
$D\geq 2$ . Let us say $P$ is thick line connected whenever for all distinct
atoms $x$ , $y\in A_{P}$ , there exists an integer $d\geq 1$ and a sequence $x=$

$x_{0}$ , $x_{1}$ , $\ldots$ , $x_{d}=y(x_{0}, x_{1}, \ldots, x_{d}\in A_{P})$ such that $x_{i}\vee x_{i+1}$ exists and
is a thick line for all $i$ $(0\leq i<d)$ . We conjecture that if $P$ is thick
line connected and if $D$ is sufficiently large, then every line in $P$ is
thick.

Problem 41.2. Let us say a finite, undirected graph $\Gamma$ is a
quantum matroid graph whenever there exists a quantum matroid $P$

such that $\Gamma$ is isomorphic to the graph on top(P). Find a simple
combinatorial property that characterizes the quantum matroid graphs
among all the finite undirected graphs. See Corollary 39.7.
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Problem 41.3. Let $P$ denote a classical polar space (Example
40.1 (5) $)$ . What quantum matroid is dual to $P$ in the sense of Definition
3.2?

Problem 41.4. For a classical matroid (Definition 1.1), one has
the dependency axioms, the hyperplane axioms, the circuit axioms, the
bond axioms, etc. See for example [Wh, Chapter 2]. To what extent are
there analogous axioms for the $P$-matroids, where $P$ is any modular
atomic lattice ?

Conjecture 41.5. Let $P$ denote a quantum matroid. Pick any
$x$ , $y$

$\in P$ , and let $G$ denote the minimal geodesically closed subposet of
$P$ containing $x$ , $y$ . We conjecture

rank(G)= $\gamma(x, y)+\gamma(y, x)+\delta(x, y)$ .

(See Definitions 12.1, 13.1).

Problem 41.6. Which quantum matroids are Cohen-Macaulay?
(See[B-G-S]).

Problem 41.7. Let $P$ denote a quantum matroid of rank $D$ . Let
us call $P$ weakly zig-zag regular whenever for all integers $i$ $(1\leq i\leq$

$D-1)$ , and for all $x$ , $y\in P$ such that rank(x) $=i$ , rank(y) $=i$ , the
number of paths in $P$ with endpoints $x$ , $y$ and shape $(i, i-1, i, i+1, i)$

equals the number of paths in $P$ with endpoints $x$ , $y$ and shape
$(i, i+1, i, i-1, i)$ . If $P$ is regular then $P$ is weakly zig-zag regular.
Classify the weakly zig-zag regular quantum matroids.

Problem 41.8. Let $D$ denote an integer at least 3, and let $q$

denote an integer at least 2. Find a short, direct proof, not involving
Theorem 39.5, that any nontrivial $q$-line regular, $(q-1)- zig- zag$ regular
quantum matroid is embeddable. (See Definition 6.3.)

Problem 41.9. Let $N$ denote an integer at least 3, let $q$ denote
a prime power, and let $V$ denote an $N$ dimensional vector space over
the field $GF(q)$ . Pick an integer $D(2\leq D<N)$ , and let $P$ denote a
nontrivial $(q-1)- zig- zag$ regular $V$-matroid of rank $D$ that spans $V$ .

Find a short, direct proof, not involving Theorem 39.5, that there exists
a subspace $w\underline{\subseteq}V$ such that $dim(w)=N-D$ and such that

$P=$ { $x|x$ is a subspace of $V$, $x\cap w=0$ }.

(See Example 40. 1 (4).)
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Problem 41.10. Let $P$ denote a modular atomic lattice. Classify
the uniform $\prime p$-basis systems. Give a short, direct proof, that does not
refer to Theorems 35.3, 39.6. (See Definition 35.1.)

Problem 41.11. Let $P$ denote a quantum matroid, and pick any
$x$ , $y$

$\in P$ . What can be said about Rad $(x_{y}^{+})$ ? Under what conditions

is $u_{v}^{+}$ nondegenerate for all $u$ , $v\in P$ such that $u\vee v$ does not exist?
(See line (15.1) and Definition 26.1.)
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Geometry of Matrices

Zhe-xian Wan

In Memory of Professor L. K. Hua (1910-1985)

\S 1. Introduction

The study of the geometry of matrices was initiated by L. K. Hua
in the mid forties [5-10]. At first, relating to his study of the theory of
functions of several complex variables, he began studying four types of
geometry of matrices over the complex field, i.e., geometries of rectan-
gular matrices, symmetric matrices, skew-symmetric matrices, and her-
mitian matrices. In 1949, he [11] extended his result on the geometry of
symmetric matrices over the complex field to any field of characteristic
not 2, and in 1951 he [12] extended his result on the geometry of rect-
angular matrices to any division ring distinct from $F_{2}$ and applied it to
problems in algebra and geometry. Then the study of the geometry of
matrices was succeeded by many mathematicians. In recent years it has
also been applied to graph theory.

To explain the problems of the geometry of matrices we are inter-
ested in, it is better to start with the Erlangen Program which was
formulated by F. Klein in 1872. It says: “A geometry is the set of
properties of figures which are invariant under the nonsingular linear
transformations of some group”. There F. Klein pointed out the in-
timate relationship between geometry, group, and invariants. Then a
fundamental problem in a geometry in the sense of Erlangen Program
is to characterize the transformation group of the geometry by as few
geometric invariants as possible. The answer to this problem is often
called the fundamental theorem of the geometry.

In a geometry of matrices, the points of the associated space are a
certain kind of matrices of the same size, and there is a transformation
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group acting on this space. Take the geometry of rectangular matrices
as an example. Let $D$ be a division ring, and $m$ and $n$ be integers $\geq 2$ .

The space of the geometry of rectangular matrices over $D$ consists of
all $m\times n$ matrices over $D$ and is denoted by $\mathcal{M}_{m\times n}(D)$ . The elements
of $\mathcal{M}_{m\times n}(D)$ are called the points of the space. $\mathcal{M}_{m\times n}(D)$ admits
transformations of the following form

$\Lambda 4_{m\times n}(D)$ $\rightarrow$ $\mathcal{M}_{m\times n}(D)$

(1) $X$ $\mapsto$ $PXQ+R$ ,

where $P\in GL_{m}(D)$ , $Q\in GL_{7l}(D)$ , and $R\in\Lambda 4_{m\times n}(D)$ . All these
transformations form a transformation group of $\Lambda 4_{m\times n}(D)$ , which is
denoted by $G_{m\times n}(D)$ . Then the geometry of rectangular matrices aims
at the study of the invariants of its geometric figures (or subsets) under
$G_{m\times n}(D)$ . For instance, for the figure formed by two $m\times n$ matrices $X_{1}$

and $X_{2}$ over $D$ , rank $(X_{1}-X_{2})$ is an invariant under $G_{m\times n}(D)$ . If rank
$(X_{1}-X_{2})=1$ , $X_{1}$ and $X_{2}$ are called adjacent. L. K. Hua proved that
the invariant “adjacency” alone is “almost” sufficient to characterize the
transformation group $G_{m\times n}(D)$ of $\Lambda 4_{m\times n}(D)$ , which will be explained
in detail in the next section.

\S 2. Geometry of rectangular matrices

Ehndamental Theorem of the Geometry of Rectangular Ma-
trices. Let $D$ be a division ring, $m$ and $n$ integers $\geq 2$ , $A$ a bijective
map from $\mathcal{M}_{m\times n}(D)$ to itself. Assume that both $A$ and $A^{-1}$ preserve
the adjacency, i.e., for any two points $X_{1}$ and $X_{2}$ of $\mathcal{M}_{m\times n}(D)$ , $X_{1}$ and
$X_{2}$ are adjacent if and only if $A(X_{1})$ and $A(X_{2})$ are adjacent. Then,
when $m\neq n$ , $A$ is of the form

(2) $A(X)=PXaQ+R$ for all $X\in \mathcal{M}_{m\times n}(D)$ ,

where $P\in GL_{m}(D)$ , $Q\in GL_{n}(D)$ , $R\in \mathcal{M}_{m\times n}(D)$ , $\sigma$ is an automor-
phism of $D$ , and $X^{\sigma}$ is the matrix obtained from $X$ by applying $\sigma$ to all
its entries. When $m=n$ , besides (1) $A$ can also be of the form

(3) $A(X)=P{}^{t}(X^{\tau})Q+R$ for all $X\in \mathcal{M}_{m\times n}(D)$ ,

where $P$ , $Q$ , and $R$ have the same meaning as above, and $\tau$ is an anti-
automorphism of $D$ . Conversely, both maps (2) and (3) are bijections,
and they and their inverses preserve the adjacency. Q.E.D.

When $D\neq F_{2}$ , the theorem was proved by L. K. Hua [12] in 1951.
The proof for the case $D=F_{2}$ was supplemented by Z. Wan and Y.
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Wang [24] in 1962. The key tool to prove this theorem is the maximal
set introduced by L. K. Hua. A maximal set in $\mathcal{M}_{m\times n}(D)$ is a maximal
set of points such that any two of them are adjacent. Thus the concept
of a maximal set is actually the concept of a maximal clique appeared
in graph theory twenty years later. Clearly a bijective map $A$ for which
both $A$ and $A^{-1}$ preserve the adjacency carries maximal sets into max-
imal sets. The main steps Hua used to prove the above theorem is as
follows: First he determined the normal forms of maximal sets under
$G_{m\times n}(D)$ . They are

(4) $\{$ $\left(\begin{array}{llll}x_{11} & x_{12} & \cdots & x_{1n}\\0 & 0 & \cdots & 0\\\vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & 0\end{array}\right)$ $|x_{11}$ , $x_{12}$ , $\ldots$ , $x_{1n}\in D\}$

and

(5) $\{$ $\left(\begin{array}{llll}x_{11} & 0 & \cdots & 0\\x_{21} & 0 & \cdots & 0\\\vdots & \vdots & & \vdots\\ x_{m1} & 0 & \cdots & 0\end{array}\right)$ $|x_{11}$ , $x_{21}$ , $\ldots$ , $x_{m1}\in D\}$ .

Then by defining the intersection of two maximal sets which contain two
adjacent points in common to be a line in any one of them, he proved
that $A$ induces bijective maps on maximal sets, which carries lines into
lines and that a line in the maximal set (4) is of the form

(6) $\{$ $\left(\begin{array}{llll}ta_{11}+b_{11} & ta_{12}+b_{12} & \cdots & ta_{1n}+b_{1n}\\0 & 0 & \cdots & 0\\\vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & 0\end{array}\right)$

.

$t\in D\}$ ,

where $a_{11}$ , $a_{12}$ , $\ldots$ , $a_{1n}$ , $b_{11}$ , $b_{12}$ , $\ldots$ , $b_{1n}\in D$ . When $D\neq F_{2}$ , by the
fundamental theorem of affine geometry, after subjecting $A$ to a bijective
map of the form (2) or (3) (which will be needed only when $m=n$ ),
it can be assumed that $A$ leaves both the maximal sets (4) and (5)
pointwise fixed. Finally it can be proved that $A$ leaves every point of
$\mathcal{M}_{m\times n}(D)$ fixed.

In [12], from the above theorem L. K. Hua deduced the explicit
forms of automorphisms, semi-automorphisms, Jordan automorphisms,

and Lie automorphisms of the total matrix ring $\mathcal{M}_{n}(D)(n\geq 2)$ over $D$ .

For Jordan automorphisms it is assumed that the characteristic of $D$ is
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not 2, and for Lie automorphisms it is assumed that the characteristic
of $D$ is not 2 and 3. He also deduced the fundamental theorem of the
projective geometry of rectangular matrices over $D$ (for detailed proof,
cf. [17] $)$ . When $D$ is a field, the latter was proved by W. L. Chow [2] in
1949. In 1965, S. Deng and Q. Li [3] deduced the fundamental theorem
of the geometry of rectangular matrices over a field from Chow’s result.

Call the points of $\mathcal{M}_{m\times n}(D)$ the vertices and define two vertices
adjacent if they are adjacent points. Then a graph is obtained. Denote
this graph by $\Gamma(\mathcal{M}_{m\times n}(D))$ . Naturally, the fundamental theorem of the
geometry of rectangular matrices can be interpreted as a theorem on
graph automorphisms of $\Gamma(\mathcal{M}_{m\times n}(D))[1]$ .

\S 3. Geometry of alternate matrices

In this section we assume that $F$ is a field and $n$ is an integer $\geq 2$ .

Let $A$ be an $n\times n$ matrix over $F$ . If ${}^{t}A=-A$ and all entries along the
main diagonal of $A$ are 0’s, then $A$ is called an $n\times n$ alternate matrix
over $F$ . Denote by $\mathcal{K}_{n}(F)$ the set of all $n\times n$ alternate matrices over $F$ ,
and call it the space of the geometry of $n\times n$ alternate matrices and its
elements the points. Transformations of $\mathcal{K}_{n}(F)$ to itself of the following
form

$\mathcal{K}_{n}(F)$ $\rightarrow$ $\mathcal{K}_{n}(F)$

(7) $X$ $\mapsto$ ${}^{t}PXP+K$ ,

where $P\in GL_{n}(F)$ and $K\in \mathcal{K}_{n}(F)$ , form a transformation group of
$\mathcal{K}_{n}(F)$ , denoted by $GKn(F)$ . Let $X_{1}$ and $X_{2}\in \mathcal{K}_{n}(F)$ . If rank $(X_{1}-$

$X_{2})=2$ , then $X_{1}$ and $X_{2}$ are said to be adjacent. Clearly, the adjacency
is an invariant under $GKn(F)$ . Conversely, we have

Fundamental Theorem of the Geometry of Alternate Ma-
trices. Let $F$ be a field of any characteristic, $n$ an integer $\geq 4$ , and
$A$ a bijective map from $\mathcal{K}_{n}(F)$ to itself. Assume that both $A$ and $A^{-1}$

preserve the adjacency. Then, when $n>4$ , $A$ is of the form

(8) $A(X)=a{}^{t}PX^{\sigma}P+K$ for all $X\in \mathcal{K}_{n}(F)$ ,

where $a\in F^{*}$ , $P\in GL_{n}(F)$ , $K\in \mathcal{K}_{n}(F)$ , and $\sigma$ is an automorphism of
$F$ . When $n=4$ , $A$ is of the form

(9) $A(X)=a{}^{t}P(X^{*})^{\sigma}P+K$ for all $X\in \mathcal{K}_{4}(F)$ ,



Geometry of Matrices 447

where $a$ , $P$ , $K$ , and $\sigma$ have the same meaning as above, and $X\rightarrow X^{*}$ is
either the identity map of $\mathcal{K}_{4}(F)$ or the following map

(10) $\left(\begin{array}{llll}0 & x_{12} & x_{13} & x_{14}\\-x_{12} & 0 & x_{23} & x_{24}\\-x_{13} & -x_{23} & 0 & x_{34}\\-x_{14} & -x_{24} & -x_{34} & 0\end{array}\right)\mapsto\left(\begin{array}{llll}0 & x_{12} & x_{13} & x_{23}\\-x_{12} & 0 & x_{14} & x_{24}\\-x_{13} & -x_{14} & 0 & x_{34}\\-x_{23} & -x_{24} & -x_{34} & 0\end{array}\right)$ .

Conversely, both maps (8) and (9) are bijective, and they and their
inverses preserve the adjacency. Q.E.D.

The above theorem was proved by M. Liu [16] in 1966, the proof
relies also on the concept of maximal sets. When $F=\mathbb{C}$ and $A$ satisfies
further conditions, it was proved by L. K. Hua [5] in 1945. The map
(10) was also discovered by L. K. Hua [5] in 1945.

This theorem has also applications to algebra and geometry [16],
and can also be interpreted as a theorem on graph automorphisms [1].

\S 4. Geometry of symmetric matrices

In this section we assume again that $F$ is a field and $n$ is an integer
$\geq 2$ . An $n\times n$ matrix $S$ over $F$ is called symmetric if ${}^{t}S=S$ . Denote
by $S_{n}(F)$ the set of all $n\times n$ symmetric matrices over $F$ , and call it the
space of the geometry of $n\times n$ symmetric matrices and its elements the
points. The set of all transformations of $S_{n}(F)$ to itself of the form

$S_{n}(F)$ $\rightarrow$ $S_{n}(F)$

(11) $X$ $\mapsto$ ${}^{t}PXP+S$ ,

where $P\in GL_{n}(F)$ and $S\in S_{n}(F)$ , forms a transformation group of
$S_{n}(F)$ , denoted by $GSn(F)$ . Let $X_{1}$ , $X_{2}\in S_{n}(F)$ . When rank $(X_{1}-$

$X_{2})=1$ , then $X_{1}$ and $X_{2}$ are said to be adjacent. Clearly, the adjacency
of two points in $S_{n}(F)$ is an invariant under $GSn(F)$ . Conversely, we
have

Fundamental Theorem of the Geometry of Symmetric Ma-
trices. Let $F$ be a field of any characteristic and $n$ be an integer $\geq 2$ ;

when $F$ is of characteristic two and $F\neq F_{2}$ we assume further that
$n\geq 3$ . Let $A$ be a bijective map from $S_{n}(F)$ to itself and assume that
both $A$ and $A^{-1}$ preserve the adjacency. Then unless $n=3$ and $F=F_{2}$ ,
$A$ is of the form

(12) $A(X)=a{}^{t}PX^{\sigma}P+S$ for all $X\in S_{n}(F)$ ,
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where $a\in F^{*}$ , $P\in GL_{n}(F)$ , $S\in S_{n}(F)$ , and $\sigma$ is an automorphism of
$F$ . When $n=3$ and $F=F_{2}$ , the bijective map

(13) $\{$

$\left(\begin{array}{lll}x_{11} & x_{12} & x_{13}\\x_{12} & x_{22} & 0\\x_{13} & 0 & x_{33}\end{array}\right)\mapsto\left(\begin{array}{lll}x_{11} & x_{12} & x_{13}\\x_{12} & x_{22} & 0\\x_{13} & 0 & x_{33}\end{array}\right)$

$\left(\begin{array}{lll}x_{11} & x_{12} & x_{13}\\x_{12} & x_{22} & 1\\x_{13} & 1 & x_{33}\end{array}\right)\mapsto\left(\begin{array}{lll}x_{11}+1 & x_{12}+1 & x_{13}+1\\x_{12}+1 & x_{22} & 1\\x_{13}+1 & 1 & x_{33}\end{array}\right)$

from $S_{3}(F_{2})$ to itself preserves also the adjacency and $A$ is a product of
maps of the form (12) or (13). Q.E.D.

When $F=\mathbb{C}$ and $A$ satisfies further conditions, the above theorem
was first proved by L. K. Hua [5] in 1945. In 1949 he [11] proved the
theorem for any field of characteristic not two by the method of con-
structing involutions. But there are some gaps in his paper [11] which
the author could not fill in. Without any restriction on the characteristic
of $F$ the author $[18,19]$ proved the above theorem. In the proof, besides
the maximal sets which were defined in the same way as in the geometry
of rectangular matrices and were called the maximal sets of rank 1 by
the author, the maximal sets of rank 2 were also introduced. At first,
the distance $d(X, Y)$ between two points $X$ and $Y$ of $S_{n}(F)$ is defined
to be the least integer $d$ such that there is a sequence of $d+1$ points

$X_{0}=X$ , $X_{1}$ , $X_{2}$ , $\ldots$ , $X_{d}=Y$

of $S_{n}(F)$ for which any pair of consecutive points $X_{i}$ and $X_{i+1}$ $(i=$

$0,1$ , 2, $\ldots$ , $d-1$ ) are adjacent. Assume that $F$ is of characteristic not
two. Then a subset $\mathcal{L}$ of $S_{n}(F)$ is called a maximal set of rank 2 if (i) $\mathcal{L}$

contains a maximal set of rank 1, denoted by $\lambda\Lambda$ , (ii) for any $ S\in \mathcal{L}\backslash \lambda\Lambda$

and $M$ $\in \mathcal{M}$ , $d(S, M)=2$ , and (iii) for any $T$ $\in S_{n}(F)$ , $d(T, M)=2$

for all $M$ $\in \mathcal{M}$ implies $T$ $\in \mathcal{L}$ . When $F$ is characteristic two, the
definition of maximal sets of rank 2 should be modified [19]. Clearly, if
$A$ is a bijective map of $S_{n}(F)$ for which both $A$ and $A^{-1}$ preserve the
adjacency, then $A$ carries maximal sets of rank 1 into maximal sets of
rank 1 and maximal sets of rank 2 into maximal sets of rank 2. The
normal form of maximal sets of rank 1 under $GS_{n}(F)$ is

(14) $\{$ $\left(\begin{array}{llll}x & 0 & \cdots & 0\\0 & 0 & \cdots & 0\\\vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & 0\end{array}\right)$ $x\in F\}$ ,
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and the normal form of maximal sets of rank 2 under $GS_{n}(F)$ is

(15) $\{$ $\left(\begin{array}{llll}x_{11} & x_{12} & \cdots & x_{1n}\\x_{12} & 0 & \cdots & 0\\\vdots & \vdots & & \vdots\\ x_{1n} & 0 & \cdots & 0\end{array}\right)$

$x_{11}$ , $x_{12}$ , $\ldots$ , $x_{1n}\in F\}$ .

Then maximal sets of rank 2 are used in the proof of the above theorem
instead of the maximal sets used in the proof of the fundamental theorem
of the geometry of rectangular matrices. The case when $n=2$ , $F$ is of
characteristic two, and $F\neq F_{2}$ still remains open.

When $F$ is of characteristic not two, from the above theorem we
can deduce the explicit form of the automorphisms of the Jordan ring
of $n\times n$ symmetric matrices over $F[18]$ and the fundamental theorem
of the dual polar space of type $C_{n}$ due to W. L. Chow [2] (cf. [15], [18]).

Call the points of $S_{n}(F)$ vertices. Two vertices are said to be ad-

jacent if they are adjacent as points. Then we obtain a graph, denoted
by $\Gamma(S_{n}(F))$ . The fundamental theorem of the geometry of symmetric
matrices can naturally be interpreted as a theorem on graph automor-
phisms of the graph $\Gamma(S_{n}(F))[18,19]$ .

It is interesting that when $F$ is a finite field of characteristic not two
and $n\geq 2$ , and when $F$ is a finite field of characteristic two and $n\geq 3$ ,
besides $\Gamma(S_{3}(F_{2}))$ , all $\Gamma(S_{n}(F))$ are not distance-transitive. But the
author [20] proved that $\Gamma(S_{3}(F_{2}))$ is distance-transitive, hence, distance-
regular, and isomorphic to the graph of the folded 7-cube.

Now assume that $F$ is of characteristic not two. Let $X_{1}$ , $X_{2}\in S_{n}(F)$ .

When rank $(X_{1}-X_{2})=1$ or 2, we say that $X_{1}$ and $X_{2}$ are adjacent.
Then we obtain also a graph, denoted by $\Gamma^{*}(S_{n}(F))$ . From the fun-
damental theorem of the geometry of symmetric matrices we can de-
duce that the graph automorphisms of $\Gamma^{*}(S_{n}(F))$ are of the form (12)
(cf. [18]). When $F=F_{q}$ , the graph $\Gamma^{*}(S_{n}(F_{q}))$ was defined by Y. Egawa
[4], who proved that it is distance-regular and computed its parameters.

\S 5. Geometry of Hermitian matrices

Let $D$ be a division ring which possesses an involution. Denote the
involution of $D$ by-, i.e.,

-: $D$ $\rightarrow$ $D$

(16) $\mapsto$ $\overline{a}$ ,
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is a bijective map which has the following properties: for any $a$ , $b\in D$

we have

(17) $\overline{a+b}$ $=$
$\overline{a}+\overline{b}$ ,

(18) $\overline{ab}$

$=$
$\overline{b}\overline{a}$ ,

and

(19) $\overline{\overline{a}}$

$=$ $a$ .

Let

(20) $F=\{a\in D|\overline{a}=a\}$ .

Define the $trace$ map

$Tr$ : $D$ $\rightarrow$ $F$

(21) $\mapsto$ $a+\overline{a}$

and the norm map

$N$ : $D$ $\rightarrow$ $F$

(22) $\mapsto$ $a\overline{a}$ .

We make the following assumptions:
Assumption I $F$ is a proper subfield of $D$ and is contained in

the center of $D$ .

Assumption $II$ The map $Tr$ is surjective.
We remark that Assumption I excludes the case when $D$ is a field

and –is the identity map.
Let $n$ be an integer $\geq 2$ . An $n\times n$ matrix $H$ over $D$ is called

hermitian if ${}^{t}\overline{H}=H$ . The space of the geometry of hermitian matrices
over $D$ , denoted by $\prime\mu_{n}(D)$ , is the set of all $n\times n$ hermitian matrices
over $D$ , whose elements are called the points. The set of transformations
of $\prime H_{n}(D)$ to itself of the form

$H_{n}(D)$ $\rightarrow$ $\prime H_{n}(D)$

(23) $X$ $\mapsto$ ${}^{t}\overline{P}XP+H$ ,

where $P\in GLn(D)$ and $H\in\prime \mathcal{H}_{n}(D)$ , forms a transformation group of
the space $H_{n}(D)$ , which is denoted by $GHn(D)$ . Let $X_{1}$ , $X_{2}\in\prime H_{n}(D)$ .

When rank $(X_{1}-X_{2})=1$ then $X_{1}$ and $X_{2}$ are said to be adjacent
Clearly, the adjacency of two points is an invariant under $GHn(D)$ .

Conversely, we have
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Ehndamental Theorem of the Geometry of Hermitian Ma-
trices. Let $D$ be a division ring which possesses an involution and
assume that Assumptions I and $II$ hold. Let $n$ be an integer $\geq 2$ and
when $n=2$ we assume that $D$ is a field. Let $A$ be a bijective map
from $\prime\mu_{n}(D)$ to itself and assume that both $A$ and $A^{-1}$ preserve the
adjacency. Then $A$ is of the form

(25) $A(X)=\alpha^{t}\overline{P}X^{\sigma}P+H$ for all $X\in\prime H_{n}(D)$ ,

where $\alpha\in F^{*}$ , $P\in GL_{n}(D)$ , $H\in/\mathcal{H}_{n}(D)$ , and $\sigma$ is an automorphism of
$D$ which commutes with the involution–of $D$ . If we assume further that
the norm map $N$ is bijective, then we can assume that $\alpha=1$ . Q.E.D.

The above theorem was proved by the author $[21,22]$ recently. In
the proof, besides the maximal sets of rank 1 and rank 2, which were
defined in a similar way as those in the geometry of symmetric matrices,
the reduced maximal sets of rank 2 are also introduced. The normal
form of maximal sets of rank 1 under $GH_{n}(D)$ is

(25) $\{$ $\left(\begin{array}{llll}x_{11} & 0 & \cdots & 0\\0 & 0 & \cdots & 0\\\vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & 0\end{array}\right)$ $x_{11}\in F\}$ ,

and the normal form of maximal sets of rank 2 under $GHn(D)$ is

(26) $\{$ $\left(\begin{array}{llll} & x_{12} & \cdots & x_{1n}\\\frac{x_{11}}{x_{12}} & 0 & \cdots & 0\\\vdots & \vdots & & \vdots\\\overline{x_{1n}} & 0 & \cdots & 0\end{array}\right)$ $x_{11}\in F$, $x_{12}$ , $\ldots$ , $x_{1n}\in D\}$ .

If $\mathcal{M}$ is a maximal set of rank 1, then there is a unique maximal set
$\mathcal{L}$ of rank 2 containing $\mathcal{M}$ . For any $\mathcal{M}$ containing the zero matrix 0,
$\mathcal{L}$ has an additive group structure with respect to matrix addition, $\mathcal{M}$

is its subgroup, and the set of cosets of $\mathcal{L}$ relative to $\mathcal{M}$ is called a
reduced maximal set of rank 2. Clearly, the reduced maximal set of rank
2 from $\mathcal{L}$ are all the maximal sets of rank 1 contained in $\mathcal{L}$ . Hence,
if we assume that $A(0)=0$ , then $A$ carries reduced maximal sets of
rank 2 to reduced maximal sets of rank 2. The reduced maximal sets of

rank 2 are used in the proof of the above theorem when $n\geq 3$ as the
maximal sets in the proof of the fundamental theorem of the geometry of
rectangular matrices. When $n=2$ and $D$ is a field, the theorem can be
proved by studying three maximal sets of rank 1 which have a nonempty
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intersection [22]. The case when $n=2$ and $D$ is not a field still remains
open.

When $D=\mathbb{C}$ and $A$ satisfies some other conditions, the above
theorem was proved by L. K. Hua [5] in 1945. When $D=F_{q}$ , it was
proved by A. A. Ivanov and S. V. Shpectorov [14] in 1991.

The above theorem has also applications to algebra [22] and geom-
etry [23], and can also be interpreted as a theorem on graph automor-
phisms [22].
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