
Advanced Studies in Pure Mathematics 25, 1997
CR-Geometry and Overdetermined Systems
pp. 1-40

Deformation Theory of $CR$-Structures
and Its Application to

Deformations of Isolated Singularities I

Takao Akahori

Introduction

Let $(V, o)$ be a normal isolated singularity in $C^{N}$ of complex di-
mension $n$ . We would like to study a deformation theory of complex
structures of $(V, o)$ . This problem is studied in several ways. For exam-
$ple$ , (1) Grauert’s method (cf. [Grl]), (2) Douady’s method (cf. [Dou]),
(3) Kuranishi’s approach (cf. [Kul], [Ku2]), etc. In this paper, we recall
Kuranishi’s approach and give a review of some contribution, done by
T. Akahori and K. Miyajima (cf. [Kul], [Ku2], $[Akl]-[Ak5]$ , [Ak-Myl],
[Myl] $)$ .

Now we set the intersection of $V$ with the real hypersphere centered
at $o$ of radius $\epsilon$ , namely

$M$ $=V\cap S_{\epsilon}^{2N-1}$ .

This $M$ is a non-singular real $2n-1$ dimensional $C^{\infty}$ manifold, and over
this $M$ , a $CR$ structure is induced from $V$ . Namely, $ 0T’’=C\otimes TM\cap$

$T^{JJ}N|_{M}$ , where $N=V-o$ . Conversely, this $CR$ structure $(M,0T’’)$

determines the normal Stein space $V$ , uniquely. Noting this result, in
order to give a versal family of deformations of singularities, Kuranishi
initiated his deformation theory of $CR$ strucutres for a normal isolated
singularity. To see Kuranishi’s approach and to see our contribution,
we recall Kodaira-Spencer’s theory for deformation theory of complex
structures of compact complex manifolds.

Let $X$ be a complex manifold, and let $(X, T’’X)$ denote the complex

structure. Then, the deformation theory of complex structures proceeds
as follows.

1) Formulation. Any deformation of the given complex structure
$T’’X$ , can be parametrized by an element $\phi$ of $\Gamma(X, T’X\otimes(T’’X)^{*})$ ,
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which satisfies the deformation equation

$\overline{\partial}_{TX}^{(1)},\phi+R_{2}(\phi)=0$ .

Here $\overline{\partial}_{T’X}$ means the Cauchy-Riemann operator associated with the
holomorphic vector bundle $T’X$ . And we have the deformation complex

0– $\Gamma(X, T’X)\overline{\partial}_{T’X}\rightarrow\Gamma(X, T’X\otimes(T’’X)^{*})\overline{\partial}_{T’X}\rightarrow\cdots$

$\overline{\partial}_{T’X}\rightarrow\Gamma(X, T’X\otimes\wedge^{p}(T’’X)^{*})\overline{\partial}_{T’X}\rightarrow\Gamma(X, T’X\otimes\wedge^{p+1}(T’’X)^{*})\overline{\partial}_{T’X}\rightarrow\cdots$

on $X$ (note that this is an elliptic complex).
Therefore our geometrical problem becomes a problem of a non-

linear partial differential equations. To solve this, that is to say, to
construct our solutions for this non-linear partial differential equation,
there are two methods, namely, Kuranishi’s method (see [Ku4]) and
Kodaira-Spencer’s method (see [Kod]). Kuranishi’s method is to give a
particular solution space by adding a new equation (Kuranishi’s inge-

nious method; it is $\overline{\partial}^{*}\phi=0$ in the compact complex manifold case). This
method is applicable in many fields (for example, recent work of Don-
aldson’s (see [Don]) $)$ . For deformation theory of $CR$ structures, by his
method (adding some new equations), Kuranishi gave a special solution
space, which is parametrized by $H^{1}(X, T’X)$ in [Kul], [Ku2]. Actually,
in order to make this special solution space clear, I started my research.
On the other hand, Kodaira-Spencer’s method is “so-called” power se-
ries method and obviously quite elementary. This method is divided
into two parts.

2) Formal Construction. We construct the formal power series $\phi(t)=$

$\sum\phi_{\mu}(t)t^{\mu}$ satisfying;

$\phi_{1}(t)=\sum_{\lambda}^{q}\beta_{\lambda}t_{\lambda}$ ,

where $\beta_{\lambda}$ is a base of $H^{1}(X, T’X)$ and $q=dim_{C}H^{1}(X, T’X)$ , and

$\overline{\partial}_{TX}^{(1)},\phi_{\mu+1}+(\overline{\partial}_{TX}^{(1)},\phi^{\mu}(t)+R_{2}(\phi^{\mu}))\equiv 0mod t^{\mu+2}$ .

by using the Kodaira-Hodge decomposition theorem for the standard
$\overline{\partial}_{T’X}$ (this is elliptic).

3) Convergence. By using the ellipticity of the standard $\overline{\partial}_{T’X}$ , we
prove that our $\phi(t)$ converges on $\{t : t\in C^{q}, |t|<\epsilon\}$ where $\epsilon$ is chosen
to be a sufficiently small positive number.
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There are several similarities between our case (the case of $CR$ struc-

tures over the link $M$ $=V\cap S_{\epsilon}^{2N-1}$ ) and the above case (the complex

structure case). For example, over the link, we have $\overline{\partial}_{b}$-operator and
$T’$ bundle (correspond to the standard $\overline{\partial}$-operator and the holomorphic
tangent bundle). Therefore it is quite natural to try to construct de-
formation theory of $CR$ structures over the link just like the compact
complex manifold case. If we adopt Kodaira-Spencer’s method in the
$CR$ case, the deformation complex should be

$ 0\rightarrow\Gamma(M, T’)\overline{\partial}_{T’}\rightarrow\Gamma(M, T’\otimes(^{0}T’’)^{*})\overline{\partial}_{T’}\rightarrow\cdots$

$\overline{\partial}_{T’}\rightarrow\Gamma(M, T’\otimes\wedge^{p}(^{0}T’’)^{*})\overline{\partial}_{T’}\rightarrow\Gamma(M, T’\otimes\wedge^{p+1}(^{0}T’’)^{*})\overline{\partial}_{T’}\rightarrow\cdots$

(note that this complex is subellptic), where we denote

$ T’=\overline{0T’’}+C\zeta$ ,

and $\zeta$ is a supplementary vector field of $\overline{0T’’}+^{0}T’’$ (note that its choice

is not canonical), and $\overline{\partial}_{T’}$ is the tangential Cauchy-Riemann opera-

tor associated with the holomorphic vector bundle $T’$ . For this $\overline{\partial}_{T’}$ ,
if $dim_{R}M=2n-1\geq 5$ , we have the Neumann operator $N$ satisfying
for $\mu\in\Gamma(M, T’\otimes(^{0}T’’)^{*})$

$\mu=\square _{T’}N_{T’}\mu+H_{T’}\mu$ ,

just like the Green operator for a compact complex manifold. How-
ever, there is one major difference between them. Even in the strongly

pseudo-convex case, only 1/2 estimate holds for the $\overline{\partial}_{b}$ Neumann prob-
lem. Hence the Neumann operator gains only 1 derivative in the strongly
pseudo-convex $CR$ manifolds case, in contrast to the compact complex
manifolds case where the Green operator gains 2 derivatives. Therefore
in proving the convergence of the formal solution, we encounter severe
difficulty.

To avoid this difficulty, Kuranishi [Ku4] proceeded as follows: He

added a new equation (it resembled $\overline{\partial}^{*}\phi=0$ , but a complicated one) to
the defomation equation, and fortunately this system of partial differen-
tial equations can be solved by using the Nash method (it is impossible to

be solved by the Banach-inverse mapping theorem) (see [Kul], [Ku2]) $)$ .

By this method, he obtained a versal family of $CR$ structures. However,
because of using Nash-Moser’s inverse mapping theorem, he could not
put a complex structure over the parameter space of this versal family.
In order to improve this point, we proposed a new technique.
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Our approach is to follow Kodaira-Spencer’s method. Of course, we
have to overcome the above analytical difficulty. Here is our approach.
Even though the Neumann operator gains only 1 derivative, it still gains

2 derivatives in the direction $0T’’+\overline{0T’’}$ . So noting this fact, we follow
the following line.

(Step 1) We establish the deformation theory of $CR$ structures

which vary in the direction $0T’’+^{\overline{0}}T’’$ .

(Step 2) We obtain a new Neumann type operator which corre-
sponds to Step 1 (obviously, we have to show a new a priori estimate).

This project was succesfully done in the case of $dim_{R}M\geq 7$ . Our
result is that we find a suitable solution for the $\overline{\partial}_{T’}$ -equation and fortu-
nately it works well in the deformation theory of $CR$ structures.

This work leads us to a study of the relation between Hodge theory of
isolated singularities and deformations of $CR$ structures (cf. [Ak-My2]).
This will be discussed in Part $II$ in this book. And there, Miyajima
will give an idea about the application of the deformation theory of $CR$

structures to deformations of normal isolated singularities, in the case
of $dim_{R}M\geq 5$ .

\S 1. Kuranishi’s original approach

We start with recalling Kuranishi’s original approach to deformation
theory of isolated singularities, and discuss several problems, which arose
from his work. In the Introduction, we wrote that we improved his result,
but from the beginning of our work, it seems that the point of view of
Kuranishi is different from ours. Even though in his paper he wrote
that he initiated his work in order to construct the versal family of $CR$

structures, his main interest seems to be a geometry of real hypersurfaces
(it reminds readers of Cartan’s work). With this in mind, we briefly
sketch his approach.

1.1.Deformation equation

Let $N$ be a complex $n$-dimensional manifold. Let $M$ be a real hy-
persurface of $N$ . Then, a $CR$ structure $0T’’$ on $M$ is induced from the
complex structure of $N$ . That is to say,

$0T’’=C\otimes TM\cap T’’N|_{M}$ .

By using a local coordinate of $N$ , this is explicitly written as follows. We
assume that, for a reference point $p$ of $M$ , we take a coordinate neigh-
borhood $U$ of $p$ in $N$ , and a system of complex coordinates $(z^{1}, \ldots, z^{n})$ .
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Let $r=0$ be a $C^{\infty}$ defining equation of $M$ (we assume $dr\neq 0$ on $M$ ).
We use the notation

$r_{j}=\partial r/\partial z^{j}$ ,
(1.1.1)

$r_{\overline{j}}=\partial r/\partial\overline{z}^{j}$ .

Then our $0T’’$ is written as follows.

(1.1.2) $0T^{JJ}=$
$\{ \sum_{j=1}^{n}a^{\overline{j}}\partial/\partial\overline{z}^{j}|\sum_{j=1}^{n}a^{\overline{j}}r_{\overline{j}}=0\}$ .

We put a hermitian metric on $N$ . With respect to this metric, we con-

sider the dual vector field $P’$ of $\partial r$ (resp. the dual vector field $P’’$ of $\overline{\partial}r$ ).

We set a real supplementary vector field $P$ to $0T’’+^{\overline{0}}T’’$ by

(1.1.3) $\sqrt{-1}P=P’-P’’$ .

Now we set for $j=1$ , $\ldots$ , $n$ ,

(1.1.4) $Z_{\overline{j}}=\partial/\partial\overline{z}^{j}-r_{\overline{j}}P’’$ .

Then our $0T_{|U\cap M}’’$ is generated by $Z_{\overline{j}}$ , $j=1$ , $\ldots$ , $n$ . If we set

$P’=\sum_{j=1}^{n}p^{\mathcal{J}}\frac{\partial}{\partial z^{j}}$ , $P’’=\sum_{j=1}^{n}p^{?}\frac{\partial}{\partial\overline{z}^{j}}-$ ,

then we have

$\sum_{j}p^{?}h_{j}=\sum_{j}p^{J}h_{\overline{j}}-=1$
, $p^{?}-=\overline{p^{j}}$ ,

and there is one relation among the $Z_{\overline{j}}$ ’s:

$\sum_{j=1}^{n}r_{\overline{j}}Z_{\overline{j}}=0$ .

Next let
$Z^{\overline{k}}=i^{*}d\overline{z}^{k}-p^{\overline{k}}i^{*}d’’h$

where $i$ : $ U\cap MC_{-}\rangle$ $U$ is the injection and $d’’h=\sum_{j}\frac{\partial}{\partial\overline{z}^{j}}\mathcal{F}z^{k}$ . Then
$Z^{\overline{1}}$ , $\ldots$ , $Z^{\overline{n}}$ generate $(^{0}T’’)_{|U\cap M}^{*}$ and satisfy

$\sum_{j=1}^{n}r_{\overline{k}}Z_{\overline{k}}=0$ .
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We set
$T’=\overline{0T’’}+P$,

and consider the natural isomorphism from $T’$ to $T’N|_{M}$ , induced from

the inclusion map $T^{J}\epsilon_{-\rangle}CTM$ and the projection map $ CTN|_{M}\rightarrow$

$T’N|_{M}$ . We use the notation $\tau$ for the inverse map of this isomorphism:

$\tau$ : $T’N|_{M}\rightarrow T’$ .

Then an element $\phi\in\Gamma(M, Hom(^{0}T’’, (T’N)_{|M}))$ defines a subbundle
$\emptyset T’’$ of $CTM$ by

$\emptyset T’’=\{X-\tau\circ\phi(X)|X\in^{0}T’’\}$ .

$\emptyset T’’$ is an almost $CR$ structure on $M$ (cf. 2.1). The condition that $\emptyset T’’$

is a $CR$ structure was described by Kuranishi as follows:

Theorem 1.1.1. (see Theorem 3.1 in $[Kul]$) Let $\phi\in\Gamma(M$ ,
$(T’N)|_{M}\otimes(^{0}T’’)^{*})$ be sufficiently small so that $\emptyset T’’$ is defifined. Let
$z=(z_{1}, \ldots, z_{n})$ be a chart of N. Write

$\phi=\sum_{k=1}^{k=n}\phi^{k}\partial/\partial z^{k}$ , $\phi^{k}=\sum_{l=1}^{l=n}\phi\frac{k}{l}Z^{\overline{l}}$ ,

where $\sum_{l=1}^{k=n}p^{\overline{l}}\phi\frac{k}{l}=0$ . Then

$P(\phi)=\overline{\partial}_{b}\phi-\sum_{j,k,l}(\partial^{\tau}\beta\succ_{l}^{k}/\partial z^{j})\phi^{j}\wedge Z^{\overline{l}}(\partial/\partial z^{k})$

$+\sum_{i}h_{i}\phi^{i}\wedge\sum_{k,l}(\overline{\partial}_{b}p^{\overline{l}}-\sum_{j}(\partial^{\tau}p^{\overline{l}}/\partial z^{j})\phi^{j})\phi\frac{k}{l}(\partial/\partial z^{k})$

is independent of the choice of the chart $z$ . $\emptyset T’’$ is integrable if and only

if
$P(\phi)=0$

(cf. \S 2.1 for $\overline{\partial}_{b}$ ).

1.2. Kuranishi’s construction of the versal family of $CR$

structures

As mentioned in the Introduction, our contribution is that we can
apply Kodaira-Spencer’s method to the deformation theory of $CR$ struc-
tures. For the local structure of the “moduli space of $CR$ structures,
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our contribution would be enough. However, in order to study a global
“moduli”, we surely have to adopt Kuranishi’s line. But (1.2.1) below is
not suitable. “A modified new construction” will be necessary, and this
would lead to a kind of invariants as in Seiberg-Witten invariants ([Don])
for non-singular compact manifolds. If this is introduced, surely, this in-
variant must be an invariant of the isolated singularity $(V, x)$ . So in order
to understand an isolated singularity, our $CR$ geometrical method would
give a very important device for isolated singularities. In any case, we
recall the family which Kuranishi constructed. Note that an almost $CR$

structure $\emptyset T’’$ induces the operator $\overline{\partial}_{\phi T’’}$ : $\Gamma(M, C)\rightarrow\Gamma(M, (^{\phi}T’’)^{*})$ .

Kuranshi considered the operator $\overline{\partial}_{b}^{\phi}$ : $\Gamma(M, C)\rightarrow\Gamma(M, (^{0}T’’)^{*})$ cor-

responding to $\overline{\partial}_{\emptyset T^{JJ}}$ under the natural isomorphism $\lambda^{\phi}:^{0}T’’\rightarrow\emptyset T^{JJ}$ .

Then we consider the set of $\psi\in\Gamma(M, T’\otimes(^{0}T’’)^{*})$ satisfying

$\rho^{\psi}\psi=\rho^{\psi}t$

(1.2.1)
$N^{\psi}(\overline{\partial}_{b}^{*\psi}P(\psi)+\overline{\partial}_{b}^{\psi}\overline{\partial}_{b}^{\#\psi}\psi)=0$ .

Here $\rho^{\psi}$ means the harmonic projection operator with respect to the
$\overline{\partial}_{b}^{\psi}$-harmonic theory. We do not explain the notation in detail. See
[Kul] for the precise definitions. If $\psi$ is so small, this set coincides with
the set of $\psi$ satisfying

$P(\psi)=0$

$\overline{\partial}_{b}^{\phi\psi}\psi=0$ ,

where $\overline{\partial}^{\oint_{b}\phi}$ means the “modified ” adjoint operator of
$\overline{\partial}^{\phi}$

with respect to
the Levi metric.

Therefore the family constructed by Kuranishi seems to be a natural
extension of Kuranishi’s family in the compact complex manifolds case.
We note that, in the compact complex manifold case, Kuranishi gave a

complex analytic structure on the set of small $\phi\in A_{M}^{0,1}(T^{J}M)$ satisfying

$P(\phi)=0$

$\overline{\partial}_{b}^{*}\phi=0$ .

And as mentioned in the Introduction, this method (adding the new

equation $\overline{\partial}_{b}^{*}\phi=0$ ) is not available in the $CR$ case (because Kohn’s Neu-
mann operator gains only 1 derivative, not like the Green operator). For
this reason, even by the Nash-technique, we cannot solve the equation

without modifying $\overline{\partial}_{b}^{*\psi}$ Here, “to solve” means that there is a finite
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dimensional Euclidean space $\prime \mathcal{H}$ such that a small neighborhood of the
origin parametrizes a neighborhood of the solution space of (1.2.1).

1.3. $C^{\infty}$ parametrization of real hypersurfaces

We have to explain that the above family of solutions of (1.2.1) has
a special geometrical meaning. For this, we must describe the “mod-
uli space” of real hypersurfaces in a complex manifold, which are “very
close” to the original real hypersurface $M$ . If $M$ and $M’$ are both real
hypersurfaces of the same complex manifold $N$ and close in the $C^{\infty}$

sense, then $M’$ is called “very close” to $M$ . Kuranishi showed that if a
real hypersurface in $N$ is close enough to $M$ , then this real hypersurface
corresponds to an element $\zeta\in\Gamma(M, T’)$ , a $T’$-valued global vector field.
We can obtain this real hypersurface by wiggling the original real hy-
persurface $M$ in $N$ under a diffeomorphism generated by $\zeta\in\Gamma(M, T’)$ .

In this way, we have a map from a small neighborhood of the origin of
$\Gamma(M, T^{J})$ into $\Gamma(M, T’\otimes(^{0}T’’)^{*})$ such that its linearization is $\overline{\partial}_{T’}$ .

1.4. Versality (Equivalence problem)

Now we see the geometrical aspect of (1.2.1). Kuranishi proved
the following property ([Kul]): For any given family of deformations of
complex manifold $N$ , denoted $N_{\omega}$ , there is an embedding $f$ of $M$ into $N_{\omega}$

and an element $t$ of $H$ such that $\psi(t)T’’$ is “very close” to the structure
induced by $f$ . Namely, there is a complex manifold $N$ with boundary
such that there is a smooth map $\rho$ from $N$ to the interval $[0,1]$ and the
boundary= $\rho^{-1}(0)\cup\rho^{-1}(1)$ , and

$\rho^{-1}(0)=(M^{\psi(t)},T’’)$

$\rho^{-1}(1)=(M$ , the $CR$ structure induced from

the complex structure $N_{\omega}$ by $f$ ).

There are several problems which should be considered in the spirit of
the Kuranishi deformation theory of $CR$ structures.

Problem 1. To determine holomorphic convex hulls.

For a subset $M$ of $N$ , in general, it is difficult to determine the

holomorphic convex hull $\overline{M}$ of $M$ in $N$ . In fact, $\overline{M}$ is defined by

$\overline{M}=\{p$ : $p\in N$ , $|f(p)|\leq\sup_{q\in M}|f(q)|$ ,

for any holomorphic function on $N$ }.
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Similarly, the local holomorphic convex hull is defined as follows. For a
reference point $p$ of $M$ , and for a neighborhood $U$ of $p$ in $N$ ,

$M\cap U=\{p$ : $p\in U$, $|f(p)|\leq\sup_{q\in U\cap M}|f(q)|$ ,

for any holomorphic function on $U$ }.

So $M$ , $M\cap U$ are defined by highly transcendental method. The problem

is to construct holomorphic convex hulls $M$ , $M\cap U$ by using deformation
theory of $M$ or $M\cap U$ (rather, it is better to say a replacement of
$M$ , $M\cap U$ in $N$ respectively) and a geometry of $0T’’$ on $M$ . Obviously,
this problem is closely related to Kuranishi’s problem “to prove Rossi’s
filling holes theorem by a geometrical method”.

Problem 2. Equivalence problem.

The standard equivalence problem of real hypersurfaces were solved
by Cartan, Tanaka, Chern-Moser. However, this equivalence is very
strong. Namely, let $M$ be a real hypersurface in a complex manifold $N$ ,

and let $M’$ be a real hypersurface in a complex manifold $N’$ . In Chern-
Moser’s sense, in the real analytic category, the $CR$ structure on $M$ ,
induced from $N$ is equivalent to the $CR$ structure on $M’$ , induced from
$N’$ if and only if there is a biholomorphic map from a neighborhood of
$M$ in $N$ to a neighborhood of $M’$ in $N’$ . Our equivalence differs from
this. We assume that $M$ , $M’$ are both strongly pseudo-convex. Then,
by Rossi’s theorem with Stein factorization theorem, we have two Stein
spaces, $V$, $V’$ . The problem is that if $V$ and $V’$ are isomorphic to each
other as germs of isolated singularities, is it possible to express this sit-
uation in the $CR$ geometrical way? Furthermore, the Stein factorization
procedure is highly transcendental. Is it possible to construct a Stein
space $V$ from $CR$ geometry on $M$ ? So, Problem 2 is somewhat related
to Problem 1.

Problem 3. Seiberg-Witten type invariants for isolated singulari-
ties.

The reason we posed this problem is that our approach is the so-
called coordinate-free approach, so in this sense, our approach seems to
be accessible to the introduction of a kind of “Seiberg-Witten invariants”
for $CR$-structures just as in the differential geometric and topological
way (though the Levi metric works in the construction). However, what
we really need is an invariant for isolated singularities, which character-
izes the “global moduli space of isolated singularities”. At present, we
cannot overcome this difficulty.
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From the next section on, we recall our improvement. We hope that
our setup could be of any help for the solution of the above mathematical
problems.

\S 2. $CR$ structures and $\overline{\partial}_{b}$

We begin with recalling the definition of $\overline{\partial}_{b}$ . Sometimes, we use
notation different ffom Kuranishi’s one.

2.1. $\overline{\partial}_{b}$-operator

Let $N$ be a complex manifold of complex dimension $n$ . Let $M$ be
a smooth real hypersurface in $N$ . This means that for every point $p$

of $M$ , there is a local defining function $\rho$ of $M$ over a neighborhood of
$p$ , satisfying $(d\rho)(p)\neq 0$ . Then as is well known, over this $M$ , we can
introduce the tangential Cauchy-Riemann structure $0T’’$ . Namely let

(2.1.1) $0T’’=C\otimes TM\cap T’’N|_{M}$ .

Then, this $0T’’$ satisfies

(2.1.2) $0T’’\cap^{\overline{0}}T’’=0$ , $dim_{C^{\frac{C\otimes TM}{0T’’+\overline{0T’’}}}}=1$

(2.1.3) $[\Gamma(M,0T’’), \Gamma(M^{0},T’’)]\subset\Gamma(M,0T’’)$ .

And we can define the tangential Cauchy-Riemann operator $\overline{\partial}_{b}$ . Namely,
for any $C^{\infty}$ function $f$ in $M$ , we set an element of $\Gamma(M, (^{0}T’’)^{*})$ by

$\overline{\partial}_{b}f(X)=Xf$ , $X\in 0T’’$ .

And we have a differential complex

$O\rightarrow\Gamma(M, C)\rightarrow\Gamma(M, (^{0}T’’)^{*})\rightarrow\Gamma(M, \wedge^{2}(^{0}T’’)^{*})\rightarrow\cdots$

$\rightarrow\Gamma(M, \wedge^{p}(^{0}T’’)^{*})\rightarrow\Gamma(M, \wedge^{p+1}(^{0}T’’)^{*})\rightarrow\cdots$ .

The explicit form of $\overline{\partial}_{b}$ is given by

$\overline{\partial}_{b}f=\sum_{k}\frac{\partial f}{\partial\overline{z}_{k}}Z^{\overline{k}}$

in terms of the notation in Sect. 1.1.
This notion of $0T’’$ is generalized to an intrinsic structure on $M$ as

follows. Let $M$ be a $C^{\infty}$ manifold with real dimension $2n-1$ . We
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assume that $M$ is orientable. Let $E$ be a subbundle of the complexified
tangent bundle $C\otimes TM$ satisfying

(2.1.4) $E\cap\overline{E}=0$ , $dim_{C^{\frac{C\otimes TM}{E+\overline{E}}}}=1$ ,

(2.1.5) $[\Gamma(M, E), \Gamma(M, E)]\subset\Gamma(M, E)$ ,

where $\Gamma(M, E)$ denotes the space consisting of $E$-valued $C^{\infty}$ sections.
$E$ is called a $CR$ structure on $M$ and the pair $(M, E)$ a $CR$ manifold.

For a $CR$ manifold $(M, E)$ , we can introduce a natural $\overline{\partial}_{b}$-operator in
the same manner as above:

$\overline{\partial}_{b}^{(p)}$ : $\Gamma(M, \wedge^{p}E^{*})\rightarrow\Gamma(M, \wedge^{p+1}E^{*})$ .

If there is no confusion, we abbreviate $\overline{\partial}_{b}$ for $\overline{\partial}_{b}^{(p)}$ And we have a
differential complex

$O\rightarrow\Gamma(M, C)\rightarrow\Gamma(M, E^{*})\rightarrow\Gamma(M, \wedge^{2}E^{*})\rightarrow\cdots$

$\rightarrow\Gamma(M, \wedge^{p}E^{*})\rightarrow\Gamma(M, \wedge^{p+1}E^{*})\rightarrow\cdots$ .

For an orientable $CR$ manifold $(M^{ 0},T’’)$ , we set a $C^{\infty}$ vector bundle
decomposition

(2.1.6) $C\otimes TM=0T’’+0T’+C\otimes F$,

where $0T’=\overline{0T’’}$ and $F$ is a non-vanishing real $C^{\infty}$ vector field on $M$

satisfying for every point $p$ of $M$ ,

$F_{p}\not\in 0T_{p}’+0T_{p}’’$ ,

and $C\otimes F$ means the line bundle generated by $F$ . For each point $p$ of
$M$ , we define a hermitian form $L_{p}$ on $0T_{p}’’$ by

(2.1.7) $L_{p}(X, Y)F_{p}=-\sqrt{-1}[X^{J},\overline{Y’}]_{C\otimes F}(p)$ for $X$ , $Y\in 0T_{p}’’$

where $X^{l}$ , $Y^{l}$ are in $\Gamma(M^{ 0},T’’)$ such that $X_{p}^{l}=X$ and $Y_{p}^{l}=Y$ hold,

and $[X^{J},Y’]_{C\otimes F}-$ denotes the projection of $[X^{l},\overline{Y’}]$ to $C\otimes F$ according
to the splitting (2.1.6). $L_{p}$ is called the Levi-form at $p$ and a $CR$ manifold
$(M^{ 0},T’’)$ is called strongly pseudo-convex if $L_{p}$ has definite sign at every
point $p$ of $M$ .

In the case that $(M^{ 0},T^{JJ})$ is a $CR$ manifold as in Sect.l.l, we can
choose a local coordinate $(z_{1}, \ldots, z_{n})$ of $N$ such that

$r=2Im$ $z_{n}-h(z_{1}, \ldots, z_{n-1}, \overline{z}_{1}, \ldots, \overline{z}_{n-1}, Rez_{n})$
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where $h$ is a real valued $C^{\infty}$ function satisfying $gradh(p)=0$ . Then
$(M^{ 0},T’’)$ is strongly psudoconvex if and only if the complex Hessian
$(\partial^{2}h/\partial z_{i}\partial\overline{z}_{j}(p))_{1\leq\dot{0},j\leq n-1}$ is positive or negative definite.

2.2. $T’$-bundle and $\overline{\partial}_{T’}$-operator

Let $(M^{ 0},T’’)$ be an orientable $CR$ manifold and fix the splitting
(2.1.6). We set

$T’=0T’+C\otimes F$.

Then, this $T’$-bundle admits a $CR$ structure in the following sense. For
$u$ in $\Gamma(M, T’)$ , we set a first order differential operator

$\overline{\partial}_{T’}$ : $\Gamma(M, T’)\rightarrow\Gamma(M, T’\otimes(^{0}T’’)^{*})$

by $\overline{\partial}_{T’}u(X)=[X, u]_{T’}$ for $X\in 0T’’$ . We have to explain this definition
more precisely. For each point $p$ of $M$ , for $X\in 0T_{p}’’$ , we take $ X’\in$

$\Gamma(M^{0},T^{JJ})$ satisfying
$X_{p}’=X$ .

$\overline{\partial}_{T’}u(X)$ is determined by

$\overline{\partial}_{T’}u(X)=[X’, u]_{T’}$ ,

where $[X’, u]_{T’}$ means the $T’$-part of $[X’, u]$ according to the splitting
(2.1.6). Obviously, this definition makes sense. Because for any $C^{\infty}$

function, for any $Z\in\Gamma(M^{0},T’’)$ , and for any $u\in\Gamma(M, T’)$ ,

$[fZ, u]_{T’}=(-u(f)Z+f[Z, u])_{T’}$

$=f[Z, u]_{T’}$ .

This means that our definition does not depend on the $C^{\infty}$ extension of

$X$ . As for scalar valued differential forms, we can define $\overline{\partial}_{T}^{(p)}$,-operator.

For example, for $\phi\in\Gamma(M, T’\otimes(^{0}T’’)^{*})$ ,

$\overline{\partial}_{T}^{(1)},\phi(X, Y)=[X, \phi(Y)]_{T’}-[Y, \phi(X)]_{T’}-\phi([X, Y])$ for $X$ , $Y\in^{0}T’’$

Then it satisfies $\overline{\partial}_{T}^{(1)},\overline{\partial}_{T’}=0$ (hence $T^{J}$ is a holomorphic vector bun-
dle over a $CR$ manifold in N. Tanaka’s sense ([Ta]) $)$ . And we have a
differential complex

$ 0\rightarrow\Gamma(M, T’)\rightarrow\Gamma(M, T’\otimes(^{0}T’’)^{*})\rightarrow\Gamma(M, T’\otimes\wedge^{2}(^{0}T’’)^{*})\rightarrow\cdots$

$\rightarrow\Gamma(M, T’\otimes\wedge^{p}(^{0}T’’)^{*})\rightarrow\Gamma(M, T’\otimes\wedge^{p+1}(^{0}T’’)^{*})\rightarrow\cdots$ .
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We note that the $T’$-bundle is a generalization of the holomorphic tan-
gent bundle. In fact, if $M$ is a real hypersurface in a complex manifold
$N$ , we consider

$T’N|_{M}$ ,

the restriction of the holomorphic tangent bundle $T’N$ to the real hyper-
surface $M$ . Then the composite of the inclusion map of $T’$ to $C\otimes TM$ $\subset$

$C\otimes TN$ and the projection of $C\otimes TN$ to $T’’$ , induces an isomorphism
$i$ from $T’$ to $T’N|_{M}$ and preserves

$\overline{\partial}_{T’N}i(u(X))=i((\overline{\partial}_{T’}u)(X))$ , for $X\in 0T^{JJ}$ ,

if $u$ satisfies some conditions (this will be discussed in 4.1), where $\overline{\partial}_{T’N}$

means the standard $\overline{\partial}-$ operator on $N$ , and for $X\in 0T’’$ , the left hand
side makes sense.

\S 3. Geometry on deformations of $CR$ manifolds

In this section, we briefly recall the deformation theory of strongly
pseudo-convex $CR$-structures. Throughout this section, $(M,0T’’)$ is a
strongly pseudo-convex compact $CR$ manifold and we fix the splitting
(2.1.6). For the detailed discussion, see [Akl], [Ak2], [Ak3].

3.1. Almost $CR$ manifolds

Let $E$ be an almost $CR$ structure on $M$ . Then, by using the $C^{\infty}$

vector bundle decomposition (2.1.6), we have a homomorphism from $E$

to $0T’’$ , the composite of the inclusion of $E$ to $C\otimes TM$ and the projection
of $C\otimes TM$ to $0T’’$ .

Definition 3.1.1. Let $(M,0T’’)$ be a $CR$ manifold. An almost $CR$

structure $E$ is of fifinite distance from $(M,0T’’)$ if the above homomor-
phism is an isomorphism.

Proposition 3.1.2. Let $(M^{ 0},T’’)$ be a $CR$ manifold and $E$ an
almost $CR$ structure of fifinite distance from $0T’’$ . Then there exists $a$

$\phi\in\Gamma(M, T’\otimes(^{0}T’’)^{*})$ satisfying

$E=^{\phi}T’’$

$=\{X’; X’=X+\phi(X), X\in^{0}T’’\}$ .

Namely, $\phi$ defines a bundle homomorphism $0T’’\rightarrow T’$ whose graph
coincides with $E$ . For the proof, see [Akl].

3.2. Deformation equation
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By Proposition 3.1,2, we see that for a given $CR$ manifold $(M,0T’’)$ ,

an almost $CR$ manifold of finite distance from $(M^{0},T’’)$ is parametrized

by $\Gamma(M, T’\otimes(^{0}T’’)^{*})$ . Now, in this section, we see under what condition

this $\emptyset T’’$ is actually a $CR$ structure. For this, we have to introduce nota-
tion. Let $\phi$ be an element of $\Gamma(M, T’\otimes(^{0}T’’)^{*})$ . We set $e1ements,R_{2}(\phi)$

and $R_{3}(\phi)$ of $\Gamma(M, T’\otimes\wedge^{2}(^{0}T’’)^{*})$ by

(3.2.1)
$R_{2}(\phi)(X, Y)=[\phi(X), \phi(Y)]_{T’}-\phi([X, \phi(Y)]_{0}\tau^{ll}+[\phi(X), Y]o_{T^{lJ}})$

(3.2.2)
$R_{3}(\phi)(X, Y)=\phi([\phi(X), \phi(Y)]o_{T^{Jl}})$

for $X,Y$ in $\Gamma(M^{0},T’’)$ .
We see that these $R_{2}(\phi),R_{3}(\phi)$ make sense as elements of $\Gamma(M,$ $ T’\otimes$

$\wedge^{2}(^{0}T’’)^{*})$ . In fact, for any $C^{\infty}$ functions $f$ and $g$ , and $X’$ , $Y’\in\Gamma(M$ ,
$0T’’)$ , by a simple direct computation of brackets, we have

(3.2.3)
$R_{2}(\phi)(fX’, gY’)$

$=[\phi(fX’), \phi(gY’)]_{T’}-\phi([fX’, \phi(gY’)]_{0}T’’+[\phi(fX’), gY’]o_{T^{Jl}}$

$=fg\{[\phi(X’), \phi(Y’)]_{T’}-\phi([X’, \phi(Y’)]_{0}T^{Jl})+[\phi(X’), Y’]_{0}T^{lJ})\}$ .

By (3.2.3), $R_{2}(\phi)(X_{p}’, Y_{p}’)$ depends only on $X_{p}$ and $Y_{p}$ . Hence $R_{2}(\phi)$ is an

element of $\Gamma(M, T’\otimes\wedge^{2}(^{0}T’’)^{*})$ . Obviously $R_{3}(\phi)\in\Gamma(M, T’\otimes\wedge^{2}(^{0}T’’)^{*})$

holds for the same reason.
In this notation, we have

Proposition 3.2.1. (see Theorem 2.1 in $[Akl]$) Let $\phi$ be an ele-

ment of $\Gamma(M, T’\otimes(^{0}T’’)^{*})$ . Then an almost $CR$ structure $(M,\emptyset T’’)$ is $a$

$CR$ structure if and only if $\phi$ satisfifies the following non-linear equation:

(3.2.4) $P(\phi)=\overline{\partial}_{T}^{(1)},\phi+R_{2}(\phi)+R_{3}(\phi)$

$=0$ .

3.3. $E_{j}$ -structures

Now we recall the subbundles $E_{j}$ , which played quite successful
roles in deformation theory of $CR$-structures. We set a subspace $\Gamma_{i}$

of $\Gamma(M, T’\otimes\wedge^{i}(^{0}T’’)^{*})$ by

$\Gamma_{i}=\{u _{;} u\in\Gamma(M^{ 0},T’\otimes\wedge^{i}(^{0}T’’)^{*}), (\overline{\partial}_{T}^{(i)},u)_{C\otimes F}=0\}$ ,
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where $(\overline{\partial}_{T}^{(i)},u)_{C\otimes F}$ denotes the projection of $\overline{\partial}_{T}^{(i)},u$ to $C\otimes F\otimes\wedge^{i+1}(^{0}T’’)$

according to (2.2.1). Then we have

Theorem 3.3.1. (see Proposition 2.1 in $[Ak3]$) There is a sub-

bundle $E_{i}$ of $T’\otimes\wedge^{i}(^{0}T’’)^{*}$ satisfying

$\Gamma_{i}=\Gamma(M, E_{i})$ .

And there is a differential subcomplex

0-$\rightarrow\Gamma(M, E)_{1})\rightarrow\Gamma\overline{\partial}_{1}(M, E_{2})\rightarrow\Gamma\overline{\partial}_{2}(M, E_{3})\rightarrow\overline{\partial}_{3}\ldots$

$\rightarrow\Gamma\overline{\partial}_{i-1}(M, E_{i})\rightarrow\Gamma\overline{\partial}_{i}(M, E_{i+1})\rightarrow\overline{\partial}_{i+1}\ldots$

where $\overline{\partial}_{i}$ means the restriction of
$\overline{\partial}_{T}^{(i)}$, to $\Gamma(M, E_{i})$ .

By Theorem 3.3.1 we have an injection $i$ : $Ker\overline{\partial}_{i}\simeq\rightarrow Ker\overline{\partial}_{T}^{(i)},$ .

Theorem 3.3.2. (see Theorems 2.3 and 2.4 in $[Ak3]$) The injec-
tion induces an isomorphism

$i:Ker\overline{\partial}_{i}/Im\overline{\partial}_{i-1}\rightarrow Ker\overline{\partial}_{T}^{(i)},/Im\overline{\partial}_{T}^{(i-1)},$ ,

where $2\leq i\leq n-1$ , and the surjective map

$i:Ker\overline{\partial}_{1}\rightarrow Ker\overline{\partial}_{T}^{(1)},/Im\overline{\partial}_{T}^{(0)},$ .

3.4. Local expression for $E_{j}$ .

The explicit expression for the differential complex $(\Gamma(M, E_{i}),\overline{\partial}_{i})$ is
as follows. We briefly recall only the results. For the proof see [Ak2],
[Ak3].

Let $\{U_{k}, h_{k}\}_{k\in K}$ be a local coordinate covering of $M$ such that $K$

is a finite set and $U_{k}$ is homeomorphic to $R^{2n-1}$ . And let $\{\rho_{k}\}_{k\in K}$

be a partition of unity subordinate to the coordinate covering of $M$ .
Since $(M^{ 0},T’’)$ is strongly pseudo-convex, there exists a moving frame
$\{e_{1}^{k}, ., ’ e_{n-1}^{k}\}$ of $0T’’|_{U_{k}}$ such that

$[e_{i}^{k},\overline{e}_{j}^{k}]_{C\otimes F}=\sqrt{-1}\delta_{i,j}F$.

By using these frames, we have the following lemmas. For the proof, see
Lemmas 3.1-3.4 in [Ak3] respectively.
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Lemma 3.4.1. Let $\phi$ be an element of $\Gamma(M^{ 0},T’\otimes(^{0}T’’)^{*})$ . Then
$\phi$ belongs to $\Gamma(M, E_{1})$ if and only if

$\phi_{i,j}^{k}-\phi_{j,i}^{k}=0$ for $1\leq i,j\leq n-1$ ,

where by $\phi_{i,j}^{k}$ we denote the $C^{\infty}$ -functions defifined by

$\phi(e_{j}^{k})=\sum_{i}\phi_{i,j}^{k}\overline{e}_{i}^{k}$
.

As for the vector bundle $E_{2}$ , we have the following lemma.

Lemma 3.4.2. Let $\phi$ be an element of $\Gamma(M^{ 0},T’\otimes\wedge^{2}(^{0}T’’)^{*})$ .

Then $\phi$ belongs to $\Gamma(M, E_{2})$ if and only if

$\phi_{i,(j,\alpha)}^{k}-\phi_{j,(i,\alpha)}^{k}+\phi_{\alpha,(i,j)}^{k}=0$

for all $i,j,a$ satisfying $1\leq i,j$ , $\alpha\leq n-1$ , where $\phi_{\alpha,(i,j)}^{k}$ denotes the
$C^{\infty}$ -function defifined by

$\phi(e_{i}^{k}, e_{j}^{k})=\sum_{\alpha}\phi_{\alpha,(i,j)}^{k}\overline{e}_{\alpha}^{k}$
.

Lemma 3.4.3. For $\phi\in\Gamma(M, E_{1})$ , we have

$(\overline{\partial}_{1}\phi)_{\alpha,(i,j)}^{k}=e_{i}^{k}\phi_{\alpha,j}^{k}-e_{j}^{k}\phi_{\alpha,i}^{k}+the$ terms of order zero of $\phi$

and for $\mu\in(M, E_{2})$ ,

$(\overline{\partial}_{2}\mu)_{\alpha,(i,j,l)}^{k}=e_{i}^{k}\mu_{\alpha,(j,l)}^{k}-e_{j}^{k}\mu_{\alpha,(i,l)}^{k}+e_{l}^{k}\mu_{\alpha,(i,j)}^{k}$

$+the$ terms of order zero of $\mu$ .

We put the inner product on $\Gamma(M, E_{1})$ , induced by the Levi metric.

Let $\overline{\partial}_{1}^{*}$ denotes the adjoint operator of $\overline{\partial}_{1}$ . Then the following lemma

follows from these lemmas. Here we remark that $\{e_{1}^{k}, e_{2}^{k}, ., e_{n-1}^{k}\}$ are
orthonormal with respect to this inner product.

Lemma 3.4.4. For all $\phi$ in $\Gamma(M, E_{1})$ , $\overline{\partial}_{1}^{*}$ can be expressed by

$(\overline{\partial}_{1}^{*}\phi)_{\alpha,i}^{k}=-\frac{1}{2}\sum_{j}\overline{e}_{j}^{k}\phi_{\alpha,(i,j)}^{k}-\frac{1}{2}\sum_{j}\overline{e}_{j}^{k}\phi_{i,(j,\alpha)}^{k}$

$+the$ terms of order 0 of $\phi$ .
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3.5. An a priori estimate.

First, we introduce new norms $||\phi||_{(m)}’$ and $||\phi||_{(m)}’’$ on $\Gamma(M, E_{p})$ . Let
$\{U_{k}, h_{k}\}_{k\in K}$ be a local coordinate covering of $M$ , $\{\rho_{k}\}_{k\in K}$ be a parti-

tion of unity subordinate to this coordinate covering, and $\{e_{1}^{k}, ., ’ e_{n-1}^{k}\}$

the moving frame of $0T’’|_{U_{k}}$ as in 3.4. For $\phi\in\Gamma(M, E_{p})$ and $I$ $=$

$(i_{1}, \ldots, i_{p})$ , a $C^{\infty}$ -funciton $\phi_{\alpha,I}^{k}$ on $U_{k}$ is defined by

$\phi(e_{i_{1}’ }^{k}\ldots, e_{i_{p}}^{k})=\sum_{\alpha}\phi_{\alpha,I}^{k}\overline{e}_{\alpha}^{k}$
.

Then we define the norms $||\phi||_{(m)}’$ and $||\phi||_{(m)}’’$ respectively by

$||\phi||_{(m)}^{J2}=\sum_{k\in K,i,\alpha,I},||(\rho_{k}e_{i}^{k}\phi_{\alpha,I}^{k})h_{k}^{-1}||_{(m)}^{2}$

$+\sum_{k\in K,i,\alpha,I},||(\rho_{k}\overline{e_{i}^{k}}\phi_{\alpha,I}^{k})h_{k}^{-1}||_{(m)}^{2}$

$+||\phi||_{(m)}^{2}$ ,

$||\phi||_{(m)}^{J;2}=,\sum_{k\in K,i,j,\alpha,I}||(\rho_{k}e_{i}^{k}e_{j}^{k}\phi_{\alpha,I}^{k})h_{k}^{-1}||_{(m)}^{2}$

$+,\sum_{k\in K,i,j,\alpha,I}||(\rho_{k}e_{i}^{k}\overline{e_{j}^{k}}\phi_{\alpha,I}^{k})h_{k}^{-1}||_{(m)}^{2}$

$+,\sum_{k\in K,i,j,\alpha,I}||(\rho_{k}\overline{e_{i}^{k}}e_{j}^{k}\phi_{\alpha,I}^{k})h_{k}^{-1}||_{(m)}^{2}$

$+,\sum_{k\in K,i,j,\alpha,I}||(\rho_{k}\overline{e_{i}^{k}e_{j}^{k}}\phi_{\alpha,I}^{k})h_{k}^{-1}||_{(m)}^{2}$

$+||\phi||_{(m+1)}^{2}$ .

By direct computation (using integration by parts ), we can prove
the following theorem. For the notation, for example, $||||_{(m)^{-}}’$norms and

$||||_{(m)^{-}}’’$norms, see [Ak3].

Theorem 3.5.1. (see Theorem 4.1 (new estimate) in $[Ak3]$). Sup-
pose that $(M^{ 0},T’’)$ is strongly pseudo convex and $dim_{R}M=2n-1\geq 7$ .
Then the following estimate holds.

$||\overline{\partial}_{1}^{*}\phi||_{(0)}^{2}+||\overline{\partial}_{2}\phi||_{(0)}^{2}+||\phi||_{(0)}^{2}\geq C||\phi||_{(0)}^{;2}$

for all $\phi\in\Gamma(M, E_{2})$ , where $C$ is a positive constant.



18 T. Akahori

Following the standard functional analysis method with Theorem
3.5.1, we have Theorem 3.5.2.

Theorem 3.5.2. (see Theorem 4.1 in $[Ak3]$). Under the assump-
tion of Theorem 3.5.1, we have a Neumann operator

$N:\Gamma_{2}(M, E_{2})\rightarrow\Gamma_{2}(M, E_{2})$

such that

$a)N$ is bounded,
$b)$ if $\phi\in\Gamma(M, E_{2})$ , $ N\phi$ is also in $\Gamma(M, E_{2})$ ,

$c)$ if $N\phi=0$ , $\phi\in\Gamma(M, E_{2})$ , then $\overline{\partial}\phi=0$ , and $\overline{\partial}^{*}\phi=0$ ,

and
$d)$ if $\phi\in\Gamma(M, E_{2})$ , then $\phi=\overline{\partial\partial}^{*}N\phi+\overline{\partial}^{*}\overline{\partial}N\phi+\alpha$ , $\alpha\in H$ where $H$ is

the null space of $N$ .

Here we use the notation $\Gamma_{2}(M, E_{2})$ for the Hilbert space obtained
as the completion of $\Gamma(M, E_{2})$ with respect to the $L_{2}$ -norm.

3.6. Some estimates.
In this section, we recall some a priori estimates for the Neumann

operator obtained in 3.5. By the standard argument, we have the fol-
lowing estimate from Theorem 3.5.1.

(3.6.1) $||\phi||_{(m-1/2)}’\leq C_{m}\{||\overline{\partial}_{2}\phi||_{(m)}+||\overline{\partial}_{1}^{*}\phi||_{(m)}+||\phi||_{(m)}\}$

for all $\phi\in\Gamma(M, E_{2})$ , and

(3.6.2) $||\phi||_{(m+1/2)}’\leq C_{m}’\{||\square \phi||_{(m-1/2)}+||\phi||_{(m-1/2)}\}$ ,

for all $\phi\in\Gamma(M, E_{2})$ , where $\square =\overline{\partial}_{1}\overline{\partial}_{1}^{*}+\overline{\partial}_{2}^{*}\overline{\partial}_{2}$ .

More precisely, we have the following theorem.

Theorem 3.6.1. (see Theorem 5.1 in $[Ak3]$). The following esti-
mate holds:

$||\phi||_{(m-1/2)}’’\leq C_{m}’’\{||\square \phi||_{(m-1/2)}+||\phi||_{(m-1/2)}\}$

for all $\phi\in\Gamma(M, E_{2})$ , where $m$ is a non-negative integer.

Thus we have
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Corollary 3.6.2. (see Corollary 5.2 in $[Ak3]$).

$||N\mu||_{(m-1/2)}^{JJ}\leq C_{m}’||\mu||_{(m-1/2)}$

for all $\mu\in\Gamma(M, E_{2})$ , where $m$ is a non-negative integer.

Lemma 3.6.3. (see Lemma 5.3 in $[Ak3]$). The following estimate
holds.

$||R_{2}(\phi)||_{(m-1/2)}\leq C_{m}||\phi||_{(m-1/2)}^{J2}$ ,

for all $\phi\in\Gamma(M, E_{2})$ , where we assume $m\geq n+1$ .

For the definition of $R_{2}(\phi)$ , see (3.2.1) in this paper.

Proposition 3.6.4. (see Proposition 5.4 in $[Ak3]$). Suppose that
$R_{2}(\phi)$ is in $\Gamma(M, E_{2})$ . Then,

$||\overline{\partial}_{1}^{*}NR_{2}(\phi)||_{(m-1/2)}’\leq C_{m}||\phi||_{(m-1/2)}^{J2}$ for all $\phi\in\Gamma(M, E_{2})$

holds.

3.7. An application to the deformation theory of $CR$

structures.

Let $(M,0T’’)$ be a compact strongly pseudo-convex $CR$ manifold. By
using the differential complex in Theorem 3.3.1, and a new Hogde type
decomposition theorem in Theorem 3.5.2, we can discuss the deformation
theory of $CR$ structures.

Then, we have

Theorem 3.7.1. (see Theorem 6.2 in $[Ak3]$). Under the assump-
tion $dim_{R}M=2n-1\geq 7$ and $H^{2}(M, T’)=0$ , there is an $E_{1}$ -valued
$C^{2}$ -class section $\phi(t)$ , parametrized complex analytically by a neighbor-
hood $U$ of the origin in the Euclidean space 7{, satisfying

(1) $\phi(o)=0$

(2) $P(\phi(t))=\overline{\partial}_{T}^{(1)},\phi(t)+R_{2}(\phi(t))=0$ , and
(3) the linear term of $\phi(t)$ is equal to $\sum_{\lambda=1}^{q}\beta_{\lambda}t_{\lambda}$ , where $\{\beta_{\lambda}\}_{1\leq\lambda\leq q}$

is a basic system of $\prime H$ , $q=dim_{C}\mathcal{H}$ and $\{t_{i}\}_{1\leq i\leq q}$ are local
coordinates of $U$ .

Here $\prime H$ is a subspace of $\Gamma(M, E_{1})$ such that $H$ $\simeq Ker\overline{\partial}_{T}^{(1)},/Im\overline{\partial}_{T}^{(0)}$,

holds (cf. Theorem 3.3.2) and $m$ is a sufficiently large integer such that
$m\geq n+2$ holds. (Note that $R_{3}(\phi)=0$ holds for $\phi\in\Gamma(M,$ $E_{1}).$ )

This theorem is proved by the standard Kodaira-Spencer deforma-
tion theory using Lemma 3.7.3 and Proposition 3.7.4 below. Since its
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argument is a prototype of the ones in Section 4 and in Part $II$ , we will
give a brief sketch of the proof.

A sketch of the proof. Let $\phi(t)$ be a $\Gamma(M, E_{1})$ -valued holomorphic

function and
$\phi(t)=\sum\phi_{k_{1}k_{2}k_{q}}\ldots t_{1}^{k_{1}}\ldots t_{q^{q}}^{k}$

be the power series expansion of $\phi(t)$ with $\phi(0)=0$ . For simplicity, we
abbreviate

$\phi(t)=\sum_{\lambda=1}^{\infty}\phi_{\lambda}(t)$ ,

where $\phi_{\lambda}(t)$ is a homogeneous polynomial of degree $\lambda$ in $(t_{1}, .., t_{q})$ . Let

$\phi^{\mu}(t)=\sum_{\lambda=1}^{\mu}\phi_{\lambda}(t)$ .

For any $\Gamma(M, E_{1})$ -valued holomorphic functions $\phi(t)$ and $\psi(t)$ , we indi-
cate by $\phi(t)\equiv_{\mu}\psi(t)$ that the power series expansion of $\phi(t)-\psi(t)$ in
$(t_{1}, .., t_{q})$ contains no term of degree $\lambda<\mu$ .

Clearly the conditions (1) and (2) are equivalent to the system of
congruence

$(3.7.1)_{\mu}$
$\overline{\partial}_{T}^{(1)},\phi(t)+R_{2}(\phi(t))\equiv_{\mu+1}0(\mu=1,2, \ldots)$ .

Since $R_{2}(\phi(t)$ is of second order with respect to $\phi(t)$ , we obtain

(3.7.2) $R_{2}(\phi(t))\equiv_{\mu+1}R_{2}(\phi^{\mu-1}(t))$ .

Hence we can rewrite $(3.7.1)_{\mu}$ as follows:

$(3.7.3)_{\mu}$
$\overline{\partial}_{T}^{(1)},\phi_{\mu}(t)+R_{2}(\phi^{\mu-1}(t))\equiv_{\mu+1}0(\mu=1,2, \ldots)$ .

Further, these are equivalent to the following:

$(3.7.4)_{\mu}$
$\overline{\partial}_{T}^{(1)},\phi_{\mu}(t)+P(\phi^{\mu-1}(t))\equiv_{\mu+1}0(\mu=1,2, \ldots)$

because of $\phi^{\mu}(t)=\phi_{\mu}(t)+\phi^{\mu-1}(t)$ and $P(\phi^{\mu-1}(t))=\overline{\partial}_{T}^{(1)},\phi^{\mu-1}(t)+$

$R_{2}(\phi^{\mu-1}(t))$ .

Now we shall construct $\phi(t)$ by induction on $\mu$ . We set $\phi_{0}=0$ and
$\phi_{1}(t)=\sum_{\lambda=1}^{q}\beta_{\lambda}t_{\lambda}$ . Then clearly $(3.7.5)_{1}$ holds.

Suppose that $\phi^{\mu-1}(t)$ is already determined and satisfies $(3.7.4)_{\mu-1}$ .

Then we will study the differential equation $(3.7.4)_{\mu}$ .

$(3.7.5)_{\mu}$
$\overline{\partial}_{T}^{(1)},\phi_{\mu}(t)+P(\phi^{\mu-1}(t))\equiv_{\mu+1}0$ .

We recall Theorem 4.10 in [Akl]. (We note that this lemma holds
for any twice continuously differentiate $\phi.$ )
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Lemma 3.7.2. (see Theorem 4.10 in $[Akl]$). For any element
$\phi\in\Gamma(M, T’)$ ,

$\overline{\partial}_{T}^{\phi},P(\phi)=0$ .

From the assumption $P(\phi^{\mu-1}(t))\equiv_{\mu}0$ and Lemma 3.7.2, we obtain

(3.7.5) $\overline{\partial}_{T}^{(2)},(P(\phi^{\mu-1}(t))\equiv_{\mu+1}\overline{\partial}_{T}^{\phi^{\mu-1}(t)},(P(\phi^{\mu-1}(t)))=0$ .

Hence, under the assumption $H^{2}(M, T’)=0$ , the partial differential
equation $(3.7.4)_{\mu}$ has a solution in $\Gamma(M, T’\otimes(^{0}T’’)^{*})$ . And the follow-
ing proposition enables us to choose the solution relying on the Hodge
decomposition in Theorem 3.5.2, that assures $\phi_{\mu}(t)\in\Gamma(M, E_{1})$ .

Proposition 3.7.3. Given a $\Gamma(M, E_{1})$ -valued polynomial $\phi^{\mu-1}(t)$

in $(t_{1}, .., t_{q})$ satisfying $P(\phi^{\mu-1}(t))\equiv_{\mu}0$ , the homogeneous part of degree
$\mu$ in $(t_{1}, \ldots, t_{q})$ of $P(\phi^{\mu-1}(t))$ takes its value in $\Gamma(M, E_{2})$ .

Hence, if we set

$\phi_{\mu}(t)=-\overline{\partial}^{*}N$ {the $\mu$-th homogeous polynomial term of $P(\phi^{\mu-1}(t))$ },

$\phi^{\mu-1}(t)+\phi_{\mu}(t)$ satisfies $(3.7.1)_{\mu}$ , where $N$ denotes the new Neumann
operator obtained in Theorem 3.5.2.

The convergence of

$\phi(t)=\phi_{1}(t)+\phi_{2}(t)+\ldots$

is proved by the standard Kodaira-Spencer argument: For two pow-
erseries

$A(t)=\iota/=(\iota_{1q}’\sum_{I/)},\ldots,a_{\iota/}t_{1}^{I/_{1}}\ldots t_{q^{q}}^{lJ}$

and

$B(t)=1/=(\iota/\ldots,l/)\sum_{1,q}b_{I/}t_{1}^{l/_{1}}\ldots t_{q^{q}}^{lJ}$
,

we denote

$A(t)<<B(t)$

if $|a_{\iota/}|\leq|b_{l/}|$ holds for all $iJ$ . Let

$A(t):=\frac{b}{16c}\sum_{\mu\geq 1}\frac{c^{\mu}}{\mu^{2}}(t_{1}+\cdots+t_{q})^{\mu}$
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be a convergent power series where $b$ and $c$ are positive constants. Then
we have

$||\phi_{\mu}(t)||_{(m-\frac{1}{2})}’<<||\overline{\partial}^{*}NR_{2}(\phi^{(\mu-1)}(t))||_{(m-\frac{1}{2})}’<<C||\phi^{(\mu-1)}(t)||_{(m-\frac{1}{2})}^{2}$

’

by Proposition 3.6.4. Hence

$||\phi_{\mu}(t)||_{(m-\frac{1}{2})}\prime<<A(t)$ follows from $||\phi^{(\mu-1)}(t)||_{(m-\frac{1}{2})}^{;}<<A(t)$

if we choose $b$ and $c$ sufficiently large at the beginning, because

$||\phi_{\mu}(t)||_{(m-\frac{1}{2})}’<<C||\phi^{(\mu-1)}(t)||_{(m-\frac{1}{2})}’2<<CA(t)^{2}<<\frac{b}{c}CA(t)$

holds (remark that $A(t)^{2}<<\frac{b}{c}A(t)$ holds (cf. (5.116) in [Ko])).

We note that the assumption $H^{2}(M, T’)=0$ is not essential. We
will discuss in Part $II$ the case of $H^{2}(M, T’)\neq 0$ and the completeness
of $\phi(t)$ (which is called the Kuranishi versality). In any case, we have

Corollary 3.7.4. The deformation $\phi(t)$ constructed in Theorem
3.7.1 is versal.

\S 4. Geometry of the deformations of strongly pseudo-convex
domains

4.1. $T’N$-valued complex.

Let $N$ be a complex manifold and $\Omega$ be a relatively compact strongly
pseudo-convex subdomain of $N$ . We assume dimeN $\geq 4$ . Let $T’N$

be the holomorphic tangent bundle on $N$ . Then, there is a first order

differential operator $\overline{\partial}_{T’N}$ from $\Gamma(\overline{\Omega}, T’N)$ to $\Gamma(\overline{\Omega}, T’N\otimes(T’’N)^{*})$ , where
$\Gamma(\overline{\Omega}, T’N)$ denotes the space of $T’N$-valued sections smooth up to the

boundary $b1$ . Namely, for $u$ in $\Gamma(\overline{\Omega}, T’N)$ ,

$\overline{\partial}_{T’N}u(X)=[X, u]_{T’N}$ ,

where $X\in\Gamma(\overline{\Omega}, T’’N)$ , and $[X, u]_{T’N}$ denotes the projection to $T’N$

according to the decomposition of the vector bundle $C\otimes TN=T’N+$

$T’’N$ . Then, as is well known, we can define a first order differential

operator $\overline{\partial}_{TN}^{(p)}$, from $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ to $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p+1}(T’’N)^{*})$



Deformation Theory of $CR$ -Structures $I$ 23

in the same way as for scalar valued forms, and we have a differential
complex.

$ 0\rightarrow\Gamma(\overline{\Omega}, T’N)\rightarrow\Gamma(\overline{\Omega}, T’N\otimes(T’’N)^{*})\rightarrow\Gamma(\overline{\Omega}, T’N\otimes\wedge^{2}(T’’N)^{*})\rightarrow$

$\rightarrow\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})\rightarrow\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p+1}(T’’N)^{*})\rightarrow$ ,

while we have the restriction map $\tau_{p}$

$\tau_{p}$ : $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})\rightarrow\Gamma(b\Omega, T’\otimes\wedge^{p}(^{0}T’’)^{*})$ ,

given by

$\tau_{p}\phi(X_{1}, .., X_{p})=(i)^{-1}(\phi(X_{1}, .., X_{p}))$ for $X_{j}\in^{0}T’’$ ,

where $i$ : $T’\rightarrow T’N_{|M}$ denotes the isomorphism in 3.2. Henceforth, we
abbreviate $\tau$ for $\tau_{p}$ . Then, we have

Lemma 4.1.1. (see Lemma 1.1 in $[Ak4]$) Let $\phi$ be an element of
$\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ satisfying

$\tau\phi\in\Gamma(b\Omega,0T’\otimes\wedge^{p}(^{0}T’’)^{*})$ and $\overline{\partial}_{T}^{(p)},\tau\phi\in\Gamma(b\Omega,0T’\otimes\wedge^{p+1}(^{0}T’’)^{*})$ .

Then,
$\tau(\overline{\partial}_{T}^{(p)},\phi)=\overline{\partial}_{T}^{(p)},(\tau\phi)$ .

Similarly, we have the following lemma.

Lemma 4.1.2. (see Lemma 1.2 in $[Ak4]$) Let $\phi$ be an element of
$\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ satisfying $\tau\phi\in\Gamma(b\Omega,0T’\otimes\wedge^{p}(^{0}T’’)^{*})$ and

$\tau(\overline{\partial}_{TN}^{(p)},\phi)\in\Gamma(b\Omega,0T’\otimes\wedge^{p+1}(^{0}T’’)^{*})$ . Then,

$\tau(\overline{\partial}_{TN}^{(p)},\phi)=\overline{\partial}_{T}^{(p)},(\tau\phi)$ .

4.2. Almost complex manifolds and deformation equation

In this section, we recall the deformation theory of complex struc-
tures and the deformation equation.

Let $N$ be a $C^{\infty}$ differentiate manifold of real dimension $2n$ . Let $E$

be a $C^{\infty}$ subvector bundle of the complexified tangent bundle $C\otimes TN$

satisfying
$C\otimes TN=E\oplus\overline{E}$ .
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$E$ is called an almost complex structure and the pair $(N,E)$ an almost
complex manifold. Now let $(N, T’’N)$ be a complex manifold. Then, by
using the canonical decomposition

$C\otimes TN=T’N+T’’N$ ,

we have a homomorphism from $E$ to $T’’N$ , the composite of the inclusion
of $E$ to $C\otimes TN$ and the projection of $C\otimes TN$ to $T’’N$ .

Definition 4.2.1.. Le $(N, T’’N)$ be a complex manifold and $E$ an
almost complex structure. $E$ is of fifinite distance from $T’’N$ if the above
homomorhism is an isomorphism.

Then, we have

Proposition 4.2.2. If $E$ is an almost complex manifold of fifinite
distance from $T’’N$ , then there is a $\phi\in\Gamma(N, T’N\otimes(T’’N)^{*})$ satisfying

$E=^{\phi}T’’N$

$=\{X’;X’=X+\phi(X), X\in T’’N\}$ .

By Proposition 4.2.2, we see that for a given $CR$ manifold $(M,0T’’)$ ,

almost $CR$ manifolds of finite distance from $(M,0T’’)$ are parametrized

by $\Gamma(N, T’N\otimes(^{0}T’’N)^{*})$ . Now, in this section, we see when this $\emptyset T’’N$

is actually a complex manifold. For this, we must introduce notation.
Let $\phi$ be an element of $\Gamma(N, T’N\otimes(T’’N)^{*})$ . For this $\phi$ , we set an
element $R_{2}(\phi)$ of $\Gamma(N, TN’\otimes\wedge^{2}(T’’N)^{*})$ by

(4.2.1) $R_{2}(\phi)(X, Y)=$

$[\phi(X), \phi(Y)]_{T’N}-\phi([X, \phi(Y)]_{T^{JJ}N}+[\phi(X), Y]_{T’’N})$

for $X$ , $Y$ in $\Gamma(N, T’’N)$ .

We remark that $R_{2}(\phi)$ makes sense as an element of $\Gamma(N,$ $ T’N\otimes$

$\wedge^{2}(T’’N)^{*})$ for the same reason as in 3.2. In this notation, we have

Proposition 4.2.3. Let $\phi$ be an element of $\Gamma(N, T’N\otimes(T’’N)^{*})$ .

Then an almost complex structure $(N,\emptyset T’’N)$ is a complex structure if
and only if $\phi$ satisfifies the following non-linear equation.

(4.2.2) $P(\phi)=\overline{\partial}_{T}^{(1)},\phi+R_{2}(\phi)$

$=0$ .
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4.3. $\mathcal{E}_{j}$ -structures

As in the $CR$ structure case, we introduce a subcomplex which sat-
isfies a certain boundary condition.

We introduce a subspace $\mathcal{E}_{p}$ of $(\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ by

$\mathcal{E}_{p}=\{\emptyset : \emptyset\in\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*}), \tau\phi\in\Gamma(b\Omega, E_{p})\}$ .

For $\mathcal{E}_{p}$ , we show the following theorems.

Theorem 4.3.1. (see Theorem 3.3 in $[Ak4]$). There is a differen-
tial subcomplex of $(\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ , $\overline{\partial}_{TN}^{(p)},)$ .

$ 0\rightarrow \mathcal{E}_{0}\rightarrow \mathcal{E}_{1}\overline{\partial}\rightarrow \mathcal{E}_{2}\overline{\partial}_{1}\rightarrow\overline{\partial}_{2}\ldots$

$\rightarrow \mathcal{E}_{p}\overline{\partial}_{p-1}\overline{\partial}_{p}\rightarrow \mathcal{E}_{p+1}\rightarrow\overline{\partial}_{p+1}\ldots$

where $\overline{\partial}_{p}$ means the restriction of $\overline{\partial}_{TN}^{(p)}$, to $\mathcal{E}_{p}$ .

For the proof, it is enough to show

$\overline{\partial}_{TN}^{(p)},\mathcal{E}_{p}\subset \mathcal{E}_{p+1}$ .

For $\phi$ in $\mathcal{E}_{p}$ ,

$\tau\overline{\partial}_{TN}^{(p)},\phi=\overline{\partial}_{T}^{(p)},(\tau\phi)$ (by Lemma 4.1.1).

By Theorem 3.3.1, we have

$\overline{\partial}_{T}^{(p)},(\tau\phi)\in\Gamma(b\Omega, E_{p+1})$ ( $\tau\phi$ being in $\Gamma$ ( $ b\Omega$ , $E_{p}$ )).

So this completes the proof of Theorem 4.3.1.

Henceforth we write this complex by

$(\mathcal{E}_{p},\overline{\partial}_{p})$ .

For this complex, we have the following theorem.

Theorem 4.3.2. (see Theorem 3.4 in $[Ak4]$). The injection

$Ker\overline{\partial}_{(p)}\epsilon_{-rKer\overline{\partial}_{TN}^{(p)}}$, induces an isomorphism

$i:Ker\overline{\partial}_{p}/Im\overline{\partial}_{p-1}\rightarrow Ker\overline{\partial}_{TN}^{(p)},/Im\overline{\partial}_{TN}^{(p-1)}$, if $p\geq 2$

and in the case of $p=1$ , the injection induces a surjective map

$Ker\overline{\partial}_{1}\rightarrow Ker\overline{\partial}_{TN}^{(1)},/Im\overline{\partial}_{T’N}\rightarrow 0$ .
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4.4. Estimates

In this section, we recall the new a priori estimate in [Ak4], [Ak5]

for the subcomplex $(\mathcal{E}_{p}, \overline{\partial}_{p})$ . For this purpose, we make preparations.

Let $\{U_{k}, h_{k}\}_{k\in K}$ be a coordinate covering of $N$ such that

$k\in K\cup U_{k}\supset\overline{\Omega}$
and $K$ is finite.

Let $K’$ be a subset of $K$ satisfying, for $k\in K’$ ,

$U_{k}\cap b\Omega\neq 0$ .

Let $\{\rho_{k}\}_{k\in K}$ be a partition of unity subordinate to the above covering.
In this paper, we use the Levi metric defined by Greiner and Stein (cf.
Chapter 4 in [Gr-St] $)$ . Then, for a point $p\in M$ , there are a coordi-

nate open set $U_{k}$ and an orthonormal basis $(e_{1}^{k}, .., e_{n-1}^{k}, e_{n}^{k})$ of $T’’N|_{U_{k}}$

satisfying
$(e_{j}^{k})_{q}\in^{0}T_{q}’’$ ,

where $q\in b\Omega\cap U_{k}$ and $j=1$ , $\ldots$ , $n-1$ ,

$[e_{i}^{k}, \overline{e}_{j}^{k}]=\sqrt{-1}(\delta_{i,j}+O(\rho))(e_{n}^{k}-\overline{e}_{n}^{k})$

$+\sum_{r=1}^{n-1}a_{i,j}^{k,r}e_{r}^{k}+\sum_{r=1}^{n-1}b_{i,j}^{k,r}\overline{e}_{r}^{k}$ ,

on $U_{k}$ , and $e_{n}^{k}$ is globally defined in a neighborhood of the $ b\Omega$ , where
$a_{i,j}^{k,r}$ and $b_{i,j}^{k,r}$ are $C^{\infty}$ -functions on $U_{k}$ , $\rho$ is the defining function of $ b\Omega$

and $O(\rho)$ stands for a $C^{\infty}$ -function which vanishes on $ b\Omega$ (therefore by
using integration by parts, we can neglect the $O(\rho)$ -term).

Now we put an $L^{2}$ -norm and the $||||’$-norm on $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’)^{*})$ .
$I^{p}$ denotes the family of all ordered set $(i_{1}, .., i_{p})$ of integers with $ 1\leq$

$i_{1}<i_{2}<\ldots<i_{p}\leq n$ . For any $\phi$ in $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’)^{*})$ , $I$ $\in I^{p}$ and
$l(1\leq l\leq n)$ , we define $C^{\infty}$ -functions $\phi_{l,I}^{k}$ on $U_{k}$ by

$\phi(e_{i_{1}}^{k}, .., e_{i_{p}}^{k})=\sum_{l}\phi_{l,I}^{k}\overline{e}_{l}^{k}$
,

where $I$ $=(i_{1}, .., i_{p})$ . Using these functions $(\rho_{k}\phi_{l,I}^{k})h_{k}^{-1}$ in $C_{o}^{\infty}(R^{2n})$ , we

define the $L^{2}-$norm on $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ by

$||\phi||^{2}=\sum_{l,I,k}||(\rho_{k}\phi_{l,I}^{k})h_{k}^{-1}||^{2}$
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where $||||^{2}$ means the $L^{2}$ -norm on $C_{o}^{\infty}(R^{2n})$ and $C_{o}^{\infty}(R^{2n})$ means the
space of $C^{\infty}$ -functions on $R^{2n}$ with compact support. Next we introduce

a $||||’$-norm on $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ by

$||\phi||^{\prime 2}=\sum k\in K’,i\neq n,l,I||(\rho_{k}e_{i}^{k}\phi_{l,I}^{k})h_{k}^{-1}||^{2}$

$+,\sum_{k\in K,i\neq n,l,I}||(\rho_{k}\overline{e}_{i}^{k}\phi_{l,I}^{k})h_{k}^{-1}||^{2}$

$+,\sum_{k\in K,n\in I,l}||(\rho_{k}\overline{e}_{n}^{k}\phi_{l,I}^{k})h_{k}^{-1}||^{2}$

$+,\sum_{k\in K,n\not\in I,l}||(\rho_{k}e_{n}^{k}\phi_{l,I}^{k})h_{k}^{-1}||^{2}$

$+\sum_{k\neq K’,I,l}||(\rho_{k}\phi_{l,I}^{k})h_{k}^{-1}||_{(1)}^{2}$

where $||||_{(1)}$ means the Sobolev 1-norm on $C_{o}^{\infty}(R^{2n})$ .

Henceforth we omit $h_{k}^{-1},\rho_{k}$ and the index $k$ for brevity.

We set a vector field $\xi$ on $ b\Omega$ by

$\tau(-\sqrt{-1}\overline{e}_{n})$

and fix the decomposition of the vector bundle $C\otimes T(b\Omega)=0T’’+^{0}T’+$

$C\otimes F$ , where $ F=\xi$ .

With these preparations, we consider the following space $B^{2}$ of $\mathcal{E}_{2}$ .

$B^{2}=\{\phi;\phi\in\Gamma(\overline{\Omega}, T’N\otimes\wedge^{2}(T’’N)^{*})$ , $\langle\sigma(\theta, d\rho)\phi, y\rangle=0$

on $ b\Omega$ for any $y$ in $E_{1}$ and $\tau\phi\in\Gamma(b\Omega, E_{2})\}$ ,

where $\langle, \rangle$ denotes the inner product defined by the Levi-metric, and $\theta$

denotes the formal adjoint operator of $\overline{\partial}_{T}^{(1)},$ .

On $B^{2}$ , we have the following a priori estimate (the key estimate).

Theorem 4.4.1. (see Theorem 4.3 in $[Ak4]$ and Corollary 6.2 in
$[Ak5])$ . Assume that $\Omega$ is strongly pseudo-convex and $dim_{C}\Omega\geq 4$ . Then
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the following estimate holds.

$||\theta\phi||^{2}+||\overline{\partial}\phi||^{2}+||\phi||^{2}$

$\geq c\{\sum_{i<j}\sum_{\alpha=1}^{n-1}\{\sum_{l=1}^{n-1}||e_{l}\phi_{\alpha,(i,j)}||^{2}+\sum_{l=1}^{n-1}||\overline{e}_{l}\phi_{\alpha,(i,j)}||^{2}\}\}\}$

$+\sum_{i<j}\{(\sum_{l\neq i,j}||e_{l}\phi_{n,(i,j)}||^{2})+||\overline{e}_{i}\phi_{n,(i,j)}||^{2}+||\overline{e}_{j}\phi_{n,(i,j)}||\}$

$=c||\phi||^{J2}$

for all $\phi$ in $B^{2}$ , where $c$ is a positive constant independent of $\phi$ and for
brevity, we write $\overline{\partial}$ for $\overline{\partial}_{TN}^{(1)},$ .

This was first proved by direct computation (see [Ak4]). Later,

it was proved in a fairly wide framework in [Ak5]. The proof of this
theorem in [Ak5] relied on estimates established in Theorem 3.5.1 and
the following Proposition 4.4.2. In order to see Proposition 4.4.2, we
have to recall some notation. We recall $T’$-bundle on $M$ , and $\overline{\partial}_{T’}-$

operator. Let $\theta_{T’}$ be the formal adjoint operator of $\overline{\partial}_{T’}$ with respect
to the Levi-metric. And we set a $C^{\infty}$ vector bundle decomposition of
$T’\otimes\wedge^{p}(^{0}T’’)^{*}$ ,

(4.4.1) $T’\otimes\wedge^{p}(^{0}T’’)^{*}=E_{p}+E_{p}^{\perp}$ .

Here $E_{p}^{\perp}$ is the complement of $E_{p}$ with respect to the Levi metric. Then,

our proposition is stated as follows.

Proposition 4.4.2. (see Theorem 6.1 in $[Ak5]$). Suppose that
$dim_{R}M=2n-1\geq 7$ . Then we have

$||\theta_{T’}\psi||+||(\overline{\partial}_{T’}\psi)_{E_{2}}\perp||+||\psi||\geq c||\psi||’$

for $\psi\in\Gamma(M, E_{1}^{\perp})$ , where $c$ is a positive constant, and $(\overline{\partial}_{T’}\psi)_{E_{2}}\perp means$

the projection of $\overline{\partial}_{T’}\psi$ to $E_{2}^{\perp}$ according to $(4\cdot 4. 1)$ .

4.5. The new Hodge decomposition theorem

Based on our estimate (Theorem 4.4.1), we discuss a new Hodge de-
composition theorem, which differs from the standard one (see [Kohn]),
and apply it in solving the Cauchy-Riemann equation in the subcomplex
$(\mathcal{E}_{p}, \overline{\partial}_{p})$ . We note that our new Neumann operator preserves the bound-
ary condition. Let $G$ be a holomorphic vector bundle on $N$ . Let $D^{p}$ be
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the Cauchy-Riemann operator for $G$-valued $p$ forms and $D_{b}^{p}$ the induced

operator over the boundary $ b\Omega$ . Let $F_{p}$ be a subbundle of $G\otimes\wedge^{p}(^{0}T’’)^{*}$

over the boundary $ b\Omega$ . We set

$\mathcal{F}^{p}=\{\phi;\phi\in\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’N)^{*}), \tau\phi\in\Gamma(b\Omega, F_{p})\}$ ,

where $\tau$ means the restriction map $\phi$ to the element of $\Gamma(b\Omega,$ $ G\otimes$

$\wedge^{p}(^{0}T’’)^{*})$ . In the same way as in 4.4, we put the $L^{2}$ -norm, the in-

ner product and also $||||’$-norm on $\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’N)^{*})$ . We set

$B^{p}=\{\phi;\phi\in\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’N)^{*})$ , $\tau\phi\in\Gamma(b\Omega, F_{p})$

and $\langle\sigma(D^{*p-1}, d\rho)\phi, y\rangle=0$ for any $y\in F_{p-1}$ on $ b\Omega$ },

where $D^{*p-1}$ denotes the formal adjoint operator of $D^{p-1}$ , $\sigma(D^{*p-1}, d\rho)$

means the symbol at $dp$ , and $\rho$ is the defining function for $ b\Omega$ in $N$ . For
brevity, we write $D^{*}$ for $D^{*p}$ and $D$ for $D^{p}$ .

In this notation, our theorem is stated as follows.

Theorem 4.5.1. (see Theorem 5.1 in $[Ak4]$) Suppose that

(A.i) $D_{b}^{p-1}\Gamma(b\Omega, F_{p-1})\subset\Gamma(b\Omega, F_{p})$

and

(A.2) $||D^{*}\phi||^{2}+||D\phi||^{2}+||\phi||^{2}\geq c||\phi||^{\prime 2}$

for all $\phi$ in $B^{p}$ , where $c$ is a positive constant independent of $\phi$ . Then,
there are the new Neumann operator $N;\mathcal{L}_{2}^{p}\rightarrow \mathcal{L}_{2}^{p}$ and the new harmonic

operator $H;\mathcal{L}_{2}^{p}\rightarrow H$ satisfying

(1) $H$ and $N$ are bounded,

(2) if $\phi$ is in $\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’)^{*})$ , then $H\phi$ and $ N\phi$ are in $\Gamma(\overline{\Omega},$ $ G\otimes$

$\wedge^{p}(T’’)^{*})$ ,

(3) if $\phi$ is in $\Gamma(\overline{\Omega}\otimes\wedge^{p}(T’’)^{*})$ , then $\phi=(DD^{*}+D^{*}D)N\phi+H\phi$

(4) $HN=NH$
(5) if $\phi$ is in $\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’)^{*})$ , then $ D^{*}N\phi$ is in $F^{p-1}$ , and in

addition, if $\phi$ is in $F^{p}$ , $D\phi=0$ and $H\phi=0$ , then $ DD^{*}N\phi=\phi$

where $L_{2}^{p}$ denotes the $L^{2}$ -completion of $\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’)^{*})$ and
$H=$ { $\phi;\phi\in B^{p}$ , $D,phi=0$ and $D^{*}\phi=0$ }.

[Brief sketch of the proof]. We note that Kohn’s standard Neu-
mann operator relies on Morrey’s estimate (in Kohn’s case, the (A.I)
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part is trivial). We briefly recall the proof, which is carried out in the
standard functional analysis. First, we set a map $T$ from $B^{p}$ to

$\Gamma(\overline{\Omega}, G\otimes\wedge^{p-1}(T’’)^{*}\times\Gamma(\overline{\Omega}, G\otimes\wedge^{p+1}(T’’)^{*})$

by $T\phi=(D^{*}\phi, D\phi)$ . We complete $T$ and use the same notation $T$ for
this. $D(T)$ denotes the domain on which this operator is defined. For
$D(T)$ , just by the standard argument, we have

Lemma 4.5.2. $D(T)$ is dense in $\mathcal{L}_{2}^{p}$ and

$D(T)\cap\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’)^{*})=B^{p}$ .

And also we have the following lemma and proposition.

Lemma 4.5.3. Let $\mu$ be in $\Gamma(\overline{\Omega}, G\otimes\wedge^{P+1}(T’’)^{*})$ , and suppose
that

$\langle\phi, \sigma(D^{*}, d\rho)\mu\rangle=0$ for all $\phi$ in $B^{p}$ on $ b\Omega$ .

Then $\tau\psi$ in $\Gamma(b\Omega, F_{p-1})$ .

Proposition. 4.5.4.

$D(T^{*})\cap\{\Gamma(\overline{\Omega}, G\otimes\wedge^{p-1}(’’N)^{*})\times\Gamma(\overline{\Omega}, G\otimes\wedge^{p+1}(T’’N)^{*})\}$

$=\{(\psi, \mu)$ : $\psi\in\Gamma(\overline{\Omega}, G\otimes\wedge^{p-1}(T’’N)^{*})$ , $\tau\psi\in\Gamma(b\Omega, F_{p-1})$ ,

$\mu\in\Gamma(\overline{\Omega}, G\otimes\wedge^{p+1}(T’’N)^{*})$ and $\langle\sigma(D^{*}, d\rho)\mu, y\rangle=0$

for any $y$ in $F_{p}$ on $ b\Omega$ },

where $D(T^{*})$ means the domain of $T^{*}$ .

So, we obtain that for $\phi$ in $B^{p}$ satisfying $ T\phi$ in $D(T^{*})$ ,

(4.5.1) $ T^{*}T\phi=\square \phi$ .

With these preparations, we prove Theorem 4.5.1. We follow Kohn-
Nirenberg’s approach in [K-N]. Namely, we first set

$H=\{\phi : \phi\in D(T), T\phi=0\}$ .

Obviously, $H$ is finite dimensional and so closed in $\mathcal{L}_{2}^{p}$ . Next we study
$B^{p}\cap H’$ , where $H’$ is the complement of $H$ in $\mathcal{L}_{2}^{p}$ . We consider the
problem of finding a solution $\psi\in B^{p}\cap H’$

$(T\psi, T\phi)=(\alpha, \phi)$ for $\phi\in B^{p}\cap H’$ ,
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where $\alpha$ is in $\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’N)^{*})$ .

By the assumption (A.2), there is a unique element $\psi$ in $B^{p}\cap H’$

(Theorem 4.1 in [Ak4]), And $\psi$ satisfies the boundary condition

(4.5.2) $T\psi\in D(T^{*})$ .

That is to say, for any $\alpha$ in $\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’N)^{*})$ , there is a $\psi$ in $B^{p}$

satisfying
$ T^{*}T\psi=\alpha-H\alpha$ ,

where $H$ is the projection of $\mathcal{L}_{2}^{p}$ to H.
We set

$ N\alpha=\psi$

and call $N$ the new Neumann operator. We see that our new Neumann
operator $N$ satisfies the relation (5). We recall (4.5.2). Namely, for $\alpha$ in
$\Gamma(\overline{\Omega}, G\otimes\wedge^{p}(T’’N)^{*})$ ,

$TN\alpha\in D(T^{*})$ .

By the definition of $T$ , $TN\alpha=(D^{*}N\alpha, DN\alpha)$ . And by Proposition
4.5.4, we get

$D^{*}N\alpha\in \mathcal{F}^{p-1}$

and
$\langle\sigma(D^{*}, d\rho)DN\alpha, y\rangle=0$ for all $y\in F_{p}$ on $ b\Omega$ .

It remains to prove that under the assumptions $h\phi=0$ , $D\phi=0$ and $\phi$

$\in F^{p}$ , we obtain
$DD^{*}N\phi=0$ .

For this, we set
$\mu=DD^{*}N\phi-\phi$ .

Then, form $D\phi=0$ , $D\mu=0$ follows. In addition, we have

$ D^{*}=D^{*}DD^{*}N\phi-D^{*}\phi$

$=D^{*}(\phi-H\phi-D^{*}DN\phi)-D^{*}\phi$

$=D^{*}\phi-D^{*}\phi$

$=0$ .

Next we see that $\mu$ is in $B^{p}$ , i.e., in $D(T)$ . For this, we compute the
following by integration by parts. For $\psi$ in $F^{p-1}$ ,

$(\mu, D\psi)=(DD^{*}N\phi-\phi, D\psi)$

$=(DD^{*}N\phi, D\psi)-(\phi, D\psi)$

$=(\phi-H\phi-D^{*}DN\phi, D\psi)-(\phi, D\psi)$

$=-(H\phi, D\psi)-(D^{*}DN\phi, D\psi)$ .
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We note that the boundary term vanishes, so we have

$(H\phi, D\psi)=(D^{*}H\phi, \psi)=0$ .

Similarly,
$(D^{*}DN\phi, D\psi)=0$ .

Because
$\tau D\psi=D_{b}\psi$ is in $\Gamma(b\Omega, F_{p})$ ,

we have
$\langle\sigma(D^{*}, d\rho)DN\phi, D\psi\rangle=0$ on $ b\Omega$ .

Thus,
$(\mu, D\psi)=-(DN\phi, DD\psi)=0$ .

On the other hand,

$(\mu, D\psi)=(D^{*}\mu, \psi)-\int_{b\Omega}\langle\sigma(D^{*}, d\rho)\mu, \psi\rangle d(b\Omega)$

$=-\int_{b\Omega}\langle\sigma(D^{*}, d\rho)\mu, \psi\rangle d(b\Omega)$ .

Hence
$\langle\sigma(D^{*}, d\rho)\mu, \psi\rangle=0$ on $ b\Omega$ for $\psi\in F^{p-1}$ .

By the definition of $B^{p}$ and Lemma 4.5.2, we obtain

$\mu\in D(T)$ .

Combined with $D\mu=0$ and $D^{*}\mu=0$ , we have

$T\mu=0$ .

Therefore
$\mu\in$ H.

Furthermore, for any $\alpha\in H$ ,

$(\mu, \alpha)=(DD^{*}N\phi-\phi, \alpha)=(DD^{*}N\phi, \alpha)$ (by $H\phi=0$ ).

The boundary term vanishes, so we have

$(DD^{*}N\phi, \alpha)=(D^{*}N\phi, D^{*}\alpha)=0$ (by $\alpha\in H$ ).

So $\mu=0$ . This is the outline of the proof.

From this theorem with Theorem 4.4.1, we immediately obtain
Corollary 4. 5. 5.
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Corollary 4.5.5. In the case of $G=T’N$ , $F_{p}=E_{p}$ , and $p=2$ ,
the new Neumann operator exists.

4.6. Some estimates

In order to try to construct a versal family, we will review some
estimates for the Neumann operator $N$ obtained in 4.5.

First, we put the tangential Sobolev $(0, m)$ -norm and $||||’$-norm

on $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ . $I^{p}$ denotes the family of all ordered sets
$(i_{1}, .., i_{p})$ of integers with $1\leq i_{1}<i_{2}<\ldots<i_{p}\leq n$ . For $\phi$ in $\Gamma(\overline{\Omega},$ $ T’N\otimes$

$\wedge^{p}(T’’N)^{*})$ , $I$ $\in I^{p}$ and $l(1\leq l\leq n)$ , we define $C^{\infty}$ functions $\phi_{l,I}^{k}$ on $U_{k}$

by

$\phi(e_{i_{1}’ }^{k}.., e_{i_{p}}^{k})=\sum_{l}\phi_{l,I}^{k}\overline{e}_{l}^{k}$
, where $I$

$=(i_{1}, .., i_{p})$
.

Using these functions, we define the tangential Sobolev $(0, m)$ -norm on
$\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ by

$||\phi||_{(0,m)}^{2}=\sum_{l,I,k}||(\rho_{k}\phi_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

where for $k\in K’$ , $||||_{(0,m)}^{2}$ means the tangential Sobolev $(0, m)$-norm on

$C_{0}^{\infty}(R_{+}^{2n})$ (here $C_{0}^{\infty}(R_{+}^{2n})$ means the space of $C^{\infty}$ -functions on the upper

half plane $R_{+}^{2n}$ with compact support), and for $k\not\in K’$ , $||||_{(0,m)}^{2}$ means

the tangential Sobolev $(0, m)$-norm on $C_{0}^{\infty}(R^{2n})$ with compact support
(for the definition of the tangential Sobolev norm, see Definition 2.5.1 in

[H\"o] $)$ . Next we introduce $||||_{(0,m)}’$ -norm on $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T’’N)^{*})$ by

$||\phi||_{(0,m)}^{J2}=,\sum_{k\in K,i\neq,l,I}||(\rho_{k}e_{i}^{k}\phi_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+,\sum_{k\in K,i\neq,l,I}||(\rho_{k}\overline{e}_{i}^{k}\phi_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+,\sum_{k\in K,n\in I,l}||(\rho_{k}\overline{e}_{n}^{k}\phi_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+,\sum_{k\in K,n\not\in I,l}||(\rho_{k}e_{n}^{k}\phi_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\not\in K’,l,I}||(\rho_{k}\phi_{l,I}^{k})h_{k}^{-1}||_{(1,m)}^{2}$
.



34 T. Akahori

From now on, we assume $m>2n$ unless we note otherwise. With these
preparations, we show the following more precise estimate (cf. Theorem
4.4.1 in this paper).

Proposition 4.6.1. (see Theorem 6.1 in $[Ak4]$) Assume that $\Omega$

is strongly pseudo-convex and $dim_{C}\Omega\geq 4$ . Then the following estimate
holds.

$||\theta\phi||_{(0,m)}^{2}+||\overline{\partial}\phi||_{(0,m)}^{2}+||\phi||_{(0,m)}^{2}\geq c||\phi||_{(0,m)}^{\prime 2}$

for all $\phi$ in $B_{f}^{2}$ where $c$ is a positive constant independent of $\phi$ and $m$

is a non-negative integer.

For $\square =\overline{\partial}\theta+\theta\overline{\partial}$ , we show some estimates by using this proposi-

tion. To do so, we must introduce a new norm. For $\mu$ in $\Gamma(\overline{\Omega},$ $ T’N\otimes$

$\wedge^{p}(T^{JJ}N)^{*})$ , we set

$||\mu||_{(0,m)}^{\prime\prime 2}=\sum_{k\in K’,i<j<n,l,I}||(\rho_{k}e_{i}^{k}e_{j}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,i<j<n,l,I}||(\rho_{k}e_{i}^{k}\overline{e}_{j}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,i<j<n,l,I}||(\rho_{k}\overline{e}_{i}^{k}e_{j}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,i<j<n,l,I}||(\rho_{k}\overline{e}_{i}^{k}\overline{e}_{j}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,i<n,l,n\in I}||(\rho_{k}\overline{e}_{n}^{k}\overline{e}_{i}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,i<n,l,n\in I}||(\rho_{k}\overline{e}_{n}^{k}e_{i}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,i<n,l,n\not\in I}||(\rho_{k}e_{n}^{k}\overline{e}_{i}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,i<n,l,n\not\in I}||(\rho_{k}e_{n}^{k}e_{i}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,l,I}||(\rho_{k}e_{n}^{k}\overline{e}_{n}^{k}\mu_{l,I}^{k})h_{k}^{-1}||_{(0,m)}^{2}$

$+\sum_{k\in K’,l,I}||(\rho_{k}\overline{e}_{n}^{k}e_{n}^{k}\mu_{l,I}^{k}h_{k}^{-1}||_{(0,m)}^{2}+||\mu||_{(1,m)}^{2}$
.

After this, we omit the suffix $k$ and the functions $\rho_{k}$ , $h_{k}$ . In this notation,
our theorem is stated as follows.
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Theorem 4.6.2. (see Theorem 6.2 in $[Ak4]$) For $\mu$ in $B^{2}$ ,

$||\mu||_{(0,m)}^{\prime\prime 2}\leq c_{m}\{||\square \mu||_{(0,m)}^{2}+||\mu||_{(0,m)}^{2}\}$ .

From this proposition, we immediately have

Proposition 4.6.3. (see Theorem 6.3 in $[Ak4]$) For $\mu$ in $\Gamma(\overline{\Omega}$ ,
$T’N\otimes\wedge^{2}(T’’N)^{*})$ , we have

$||\theta N\mu||_{(0,m)}’\leq c_{m}||\mu||_{(0,m)}$ ,

where $c_{m}$ is a positive constant.

Using this proposition, we can discuss an a priori estimate for $R_{2}(\phi)$ .

Combining this with the standard argument of functional analysis,
we obtain the following main theorem.

Theorem 4.6.4. (see Theorem 6.6 in $[Ak4]$) For $\phi$ in $\mathcal{E}_{1}$ satisfying
$\phi_{n,n}=0$ on $ b\Omega$ ,

$||\theta NR_{2}(\phi)||_{(0,m)}’\leq c_{m}||\phi||_{(0,m)}^{J2}$ .

4.7.Construction

We construct a versal family of deformations of $\Omega$ , consisting of
$T’N\otimes(T’’N)^{*}$ -valued $A^{m}$ -class elements. For this purpose, we must
introduce a new subspace $\mathcal{E}_{1}’$ of $\mathcal{E}_{1}$ .

First we set a linear map $t$ from $\Gamma(\overline{\Omega}, T’N\otimes\wedge^{p}(T^{JJ}N^{*})$ to
$\Gamma(b\Omega, T’\otimes\wedge^{p-1}(^{0}T^{P\prime\prime})^{*})$ by

$t\phi(X_{1}, .., X_{p-1})=\tau(\phi(e_{n}, X_{1}, .., X_{p-1}))$ ,

where $X_{j}$ is an element of $0T’’$ and $e_{n}$ is as introduced in 3.4. By using
this $t$ , we introduce

$\mathcal{E}_{p}’=\{\emptyset : \emptyset\in \mathcal{E}_{p}, t\phi=0\}$ .

Then for $\mathcal{E}_{p}’$ , the following theorem holds.

Theorem 4.7.1. (see Theorem 7.1 in $[Ak4]$). The injection $\mathcal{E}_{p}’\cap$

$Ker\overline{\partial}_{p}c-tKer\overline{\partial}_{p}$ induces an isomorphism

$\{\mathcal{E}_{p}’\cap Ker\overline{\partial}_{p}\}/\{\mathcal{E}_{p}’\cap Im\overline{\partial}_{p-1}\}=Ker\overline{\partial}_{p}/Im\overline{\partial}_{p-1}$ if $p\geq 2$ ,
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and a surjective map

$\mathcal{E}_{1}’\cap Ker\overline{\partial}_{1}\rightarrow Ker\overline{\partial}_{TN}^{(1)},/Im\overline{\partial}_{T’N}\rightarrow 0$ .

Then from Theorem 4.7.1, we immediately have the following corol-
lary.

Corollary 4.7.2. (see Corollary 7.2 in $[Ak4]$). There is $a$ fifinite
dimensional sub-vector space $H$ of $\mathcal{E}_{1}’$ such that the map in Theorem
$4\cdot 3.2$ induces an isomorphism

$\prime \mathcal{H}\simeq Ker\overline{\partial}_{TN}^{(1)},/Im\overline{\partial}_{T’N}$ .

With this corollary in mind, we will construct a versal family of $A^{m}$

class. Our main theorem in this section is as follows.

Theorem 4.7.3. (see Theorem 7.4 in $[Ak4]$). Under the assump-

tions $dim_{C}\Omega=n\geq 4$ and $H^{2}(\Omega, T’N)=0$ , there is an $\mathcal{E}_{1}’$ valued $A^{m}$

class element $\phi(t)$ , parametrized complex analytically by a neighborhood
$U$ of the origin in the Euclidean space $H$ satisfying

(1) $\phi(0)=0$ ,

(2) $\overline{\partial}_{TN}^{(1)},\phi(t)+R_{2}(\phi(t))=0$ , and
(3) the linear term of $\phi(t)$ is equal to $\sum_{\lambda}^{q}\beta_{\lambda}t_{\lambda}$ , where $\{\beta_{\lambda}\}_{1\leq\lambda\leq q}$ is

a system of bases of $\prime H$ and $\{t_{i}\}_{1\leq i\leq q}$ are local coordinates of $U$ .
Here $m$ is a sufficiently large integer satisfying $m\geq n+2$ .

The construciton of $\phi(t)$ is the same as in the $CR$ case (cf.Sect.3.7).
However, in order to assumre the convergence, we need to construct
$\phi(t)$ so that it is $\mathcal{E}_{1}’$ -valued (cf. Theorem 4.6.4). Hence we introduce an
operator A : $\mathcal{E}_{p}\rightarrow \mathcal{E}_{p}’$ having the following properties:

$\overline{\partial}_{TN}^{(p)},A=\overline{\partial}_{TN}^{(p)},$ ,

$||A\phi||_{(0,m)}’\leq c_{m}||\phi||_{(0,m)}’$ .

See [Ak4] for the construction of A.

By an argument parallel to that in the proof of Theorem 3.7.1,
replacing $\Gamma(M, E_{1})$ and the Hodge decomposition in Theorem 3.5.2 by
$\mathcal{E}_{1}’$ and the Hodge decomposition in Theorem 4.5.1, we can $trace$ the
construciton in 3.7. The following lemma and proposition correspond
to Lemma 3.7.2 and Proposition 3.7.3 in \S 3.7 respectively.
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Lemma 4.7.4. For any element $\phi$ in $\Gamma(\overline{\Omega}, T’N\otimes(T’’N)^{*})$ ,

$\overline{\partial}_{T}^{\phi},{}_{N}P(\phi)=0$ .

Proposition 4.7.5. Given $\mathcal{E}_{1}’$ valued holomorhic function $\phi^{\mu-1}(t)$

in $(t_{1}, .., t_{q})$ satisfying $P(\phi^{\mu-1}(t))\equiv_{\mu}0$ , the homogeneous part of degree
$\mu$ in $(t_{1}, .., t_{q})$ of $P(\phi^{\mu-1}(t))$ takes its value in $\mathcal{E}_{2}$ .

Only difference is that $\phi_{\mu}(t)$ is given by

$\phi_{\mu}(t)=A\{-\theta N\{the\mu$ th homogeous polynomial term of

$P(\phi^{\mu-1}(t))\}\}$ ,

not by

$\phi_{\mu}(t)=-\theta N\{the\mu$ th homogeous polynomial term of

$P(\phi^{\mu-1}(t))\}$ .

This is required because $\theta N\{the\mu$ th homogeous polynomial term of
$P(\phi^{\mu-1}(t))\}$ is not necessarily $\mathcal{E}_{1}’$ -valued though it is certainly $\mathcal{E}_{1}$ -valued.
This adjustment is necessary for the convergence procedure. In order to
carry out the convergence process in 3.2, using Theorem 4.6.4 instead
of Proposition 3.6.4, we need the property that $\phi(t)$ is $\mathcal{E}_{1}’$ -valued. Thus
Theorem 4.7.4 is proved.

We note that the assumption $H^{2}(\Omega, T’N)=0$ is not essential either
in this case. The same modification as in the $CR$ case is possible. And
the proof of the Kuranishi versality is also the same as in the $CR$ case.
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Deformation Theory for the Hyperplane Line
Bundle on $P^{1}$

John Bland and Thomas Duchamp

Dedicated to Professor M. Kuranishi, on the occasion of his
seventieth birthday.

Abstract.

We develop a correspondence between deformations of the standard
$CR$ structure on $S^{3}$ and deformations of formal neighbourhoods of the
hyperplane bundle over $\mathbb{P}^{1}$ ; this correspondence leads to a geometric
description of obstructions to the embeddability of $CR$ structures.

\S 1. Introduction

In recent years, much work has been done on the imbeddability of
$CR$ structures on $S^{3}$ . See, for example, [B], [BlEp], [BuEp], [CaLe],
[Epl], [Ep2], [Lei], [Le2]. In [B] and [Lei], a geometric description of
sufficient conditions for embeddability was provided; moreover, it follows
from a stability result in [Lei] that these conditions are also necessary
for $CR$ structures that are sufficiently close to the standard spherical
$CR$ structure. However, a geometric interpretation of the obstructions
to embeddability was still lacking. In this paper, we look to providing
such an interpretation.

Since $S^{3}\subset \mathbb{C}^{2}\subset \mathbb{P}^{2}$ , we can view $S^{3}$ as bounding the complement of
the unit ball in $\mathbb{P}^{2}$ ; call this complement $U$ . We begin by surveying some
results that relate the $CR$ deformation theory of $S^{3}$ to the deformation
theory for the pseudoconcave manifold $U$ that it bounds, with partic-
ular emphasis on the embeddability question. We then show how the
analysis of any sufficiently small deformation of the standard $CR$ struc-
ture on $S^{3}$ can be localized to an analysis of the extended deformation
of the complex structure in formal neighbourhoods of the hyperplane
at infinity. Moreover, stable embeddability corresponds to the formal

Received January 17, 1996.
This research was partially supported by an NSERC grant.
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neighbourhoods of the deformed structure being equivalent to formal
neighbourhoods of the undeformed structure. One consequence is a new
description of the obstructions to the embeddability of $CR$ structures on
$S^{3}$ in a neighbourhood of the standard $CR$ structure.

Remark 1.1. We mention here a notational convention. We will
usually be working with expansions of various functions and tensors in

powers of $\zeta$ . We will let $[\phi]_{k}$ denote the expansion of $\phi$ truncated at the
$k^{th}$ term, and let $\phi_{k}$ denote the coefficient of the $k^{th}$ term itself; thus,

for example, $\phi_{k}\zeta^{k}=[\phi]_{k}-[\phi]_{k-1}$ .

\S 2. Embeddability

In this section we will extend deformations of the $CR$ structure on $S^{3}$

to deformations of the complex structure of a pseudoconcave manifold $U$ ,
and indicate how the embeddability question for $S^{3}$ is related to certain

properties of the deformed pseudoconcave manifold that it bounds.
We begin by introducing the notation and the framework. Let $z=$

$(z^{1}, z^{2})$ denote Euclidean coordinates on Ci 2 with the Euclidean norm
$||z||^{2}=|z^{1}|^{2}+|z^{2}|^{2}$ . Recall that $P^{2}$ can be obtained from $\mathbb{C}^{2}$ by

attaching a $P^{1}$ at infinity, and that points on the hyperplane at infinity
naturally correspond to lines through the origin in $\mathbb{C}^{2}$ . We choose local
coordinates in a neighbourhood of the hyperplane at infinity by setting
$w:=z^{2}/z^{1}$ , $\zeta:=1/z^{1}$ for the lines on which $z^{1}\neq 0$ , and $\hat{w}:=z^{1}/z^{2},\hat{\zeta}:=$

$1/z^{2}$ for the lines on which $z^{2}\neq 0$ . Let $V_{1}$ denote the open set on $\mathbb{P}^{1}$ on
which $z^{1}\neq 0$ , and let $V_{2}$ denote the open set on $\mathbb{P}^{1}$ on which $z^{2}\neq 0$ .

Let $\pi$ : $E\rightarrow \mathbb{P}^{1}$ denote the hyperplane bundle over $\mathbb{P}^{1}$ . Recall that
the total space $E$ is naturally biholomorphic to the complement of the
origin in $\mathbb{P}^{2}$ , with the zero section of $E$ corresponding to the hyperplane
at infinity, and the fibres of $E$ corresponding to the lines through the
origin in $\mathbb{C}^{2}\subset \mathbb{P}^{2}$ . More precisely, we may represent the hyperplane

line bundle using local coordinates $\{(w, \zeta) : w\in V_{1}\}$ , $\{(\hat{w},\hat{\zeta}) : \hat{w}\in V_{2}\}$

with transition functions

(2.1) $\hat{w}=\frac{1}{w}$ $\hat{\zeta}=\frac{\zeta}{w}$ on $V_{1}\cap V_{2}$ .

We can obtain a concrete embedding $\iota$ : $Ec-\succ P^{2}$ by setting

(2.2) $ z^{1}=1/\zeta$ $ z^{2}=w/\zeta$ on $\pi^{-1}(V_{1})\backslash P^{1}$

and

(2.3) $z^{2}=1/\hat{\zeta}$ $z^{1}=\hat{w}/\hat{\zeta}$ on $\pi^{-1}(V_{2})\backslash \mathbb{P}^{1}$
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The inverse of the Euclidean norm $||z||^{-2}$ restricted to the comple-
ment of the origin defines a hermitian metric $h=||z||^{-2}$ on $E$ . In the
local coordinates above, $h$ is given by the formula

(2.4)

$h(w, \zeta)=e^{-H(w)}|\zeta|^{2}$ on $\pi^{-1}(V_{1})$ and $h(\hat{w},\hat{\zeta})=e^{-H(\hat{w})}|\hat{\zeta}|^{2}$ on $\pi^{-1}(V_{2})$

where $e^{H(w)}=(1+|w|^{2})$ . Let $U$ denote the total space of the (open) unit
disk bundle of $(E, h)$ . Notice that $U$ is biholomorphic to the complement

of the closed unit ball in $\mathbb{P}^{2}$ , and $\partial U=S^{3}$ . The open pseudoconcave
manifold $U$ is covered by two coordinate charts, $ U_{1}=(\pi^{-1}V_{1})\cap U\cap$

$\{|w|<4\}$ , $U_{2}=(\pi^{-1}V_{2})\cap U\cap\{|\hat{w}|<4\}$ .

We next recall some basic facts of the $CR$ deformation theory for
$S^{3}=\partial U$ . Let $\eta$ denote the connection for the hermitian metric $h$ , and
let $H_{(1,0)}U$ denote the space of the horizontal lifts of tangent vectors of

type $(1, 0)$ on $P^{1}$ ; locally, $H_{(1,0)}U$ is spanned by the horizontal vector
field

$e=\frac{\partial}{\partial w}+\overline{w}e^{-H}\zeta\frac{\partial}{\partial\zeta}$ .

The holomorphic tangent bundle for $S^{3}$ , $ H_{(1,0)}S^{3}:=(T_{(1,0)}\mathbb{C}^{2})\cap(\mathbb{C}\otimes$

$TS^{3})$ , is simply $H_{(1,0)}U$ restricted to $\partial U$ .

Remark 2.5. The choice of a different hermitian $no7m$ on $Oi^{2}$ in-

duces a different hermitian metric $\tilde{h}$ on $E$ , with the corresponding her-
mitian connection $\tilde{\eta}$ and horizontal $(1, 0)$ vector field $\tilde{e}$ . This choice can
be interpreted as choosing a different circular domain in $\mathbb{C}^{2},\cdot$ note, how-
ever, that the circular domain still admits an $S^{1}$ action which preserves
the holomorphic tangent space.

A result of Kiremidjian [Kir] says that any small deformation of
the $CR$ structure on $S^{3}$ extends to define an integrable deformation of
the complex structure on $U$ . Moreover, in [B], an explicit extension
is obtained in which the holomorphic structure on the hyperplane at
infinity is left unchanged. For the convenience of the reader, we outline
the argument here, and recall the precise statement of the result.

It is well known (see e.g. [B], [CL]) that every small deformation
of the standard $CR$ structure on $S^{3}$ is equivalent to one whose defor-
mation tensor is of the form $\phi\in\Gamma(S^{3}, Hom(H_{(0,1)}, H_{(1,0)}))$ . Moreover,
by considering the action of the group of contact diffeomorphisms on
deformations, one can show (see [B]) that, up to equivalence, $\phi$ is of the
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form (locally)

$\phi=\sum_{k=1}^{\infty}\phi_{k}(w)\zeta^{k}d\overline{w}\otimes e$ ,

where $\phi_{k}(w)$ are smooth functions. We refer to this as exterior form.
In the statement of the next theorem, and throughout the paper, we

will use the anisotropic Folland Stein $\Gamma^{s}$ norms [FS] to measure smooth-
ness, and to introduce a topology on the various function spaces. These
anisotropic norms measure $L^{2}$ derivatives only in the $CR$ or conjugate
$CR$ directions; after fixing the connection form $\tilde{\eta}$ , the span of these di-
rections is precisely the span of the vector fields $\tilde{e},\overline{\tilde{e}}$ , or the distribution
which is dual to the connection form.

Remark 2.6. Throughout the paper, “smooth” objects will refer
to objects with an appropriate degree of smoothness in some $\Gamma^{s}$ norm.

Theorem 2.7. (Bland [B]) Let $\phi$ be a sufficiently small deforma-
tion of the standard $CR$ structure on $S^{3}=\partial U$ , measured in the $\Gamma^{s}$ norm
relative to the standard framing of $S^{3}$ , $s\geq 6$ . Then $\phi$ is equivalent to $a$

$CR$ structure of the form

$\phi=\sum_{k=0}^{\infty}\phi_{k}(w)\zeta^{k}d\overline{w}\otimes e$ ,

where $\phi_{k}(w)$ are smooth functions of $w$ ; moreover, there exists $a$ (possibly
different) connection form $\tilde{\eta}$ with its corresponding horizontal lift $\tilde{e}$ of
the basic vector field $\partial/\partial w$ such that $\phi$ is equivalent to a $CR$ structure

of the form

(2.8) $\phi=\sum\tilde{\phi}_{k}(w)\zeta^{k}d\overline{w}\infty\otimes\tilde{e}$

,
$k=1$

where $\tilde{\phi}_{k}(w)$ are smooth functions of $w$ .

Throughout the remainder of the paper, we will assume that the
deformation tensor is normalized according to equation (2.8). Moreover,
we will drop the decoration $‘‘\sim’’$ , and refer to the connection form as $\eta$

and the corresponding horizontal lift of $\partial/\partial w$ as $e$ . The Folland Stein
$\Gamma^{s}$ norms will be defined relative to the horizontal distribution in the
tangent space on $S^{3}$ which is defined by $\eta$ .

Using the ideas of [BD], one can show that $\phi$ extends in the obvious
way to define an integrable deformation of the complex manifold $U$ .
Notice that $\phi$ vanishes along the zero section of $E$ .
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The following theorem summarizes the discussion. The extension
result is a special case of the theorem of Kiremidjian [Kir], while the
normalization procedure was contained in [B] (see also [BD]).

Theorem 2.9. (Kiremidjian [Kir], Bland [B]) Let $\phi$ be a suffi-
ciently small deformation of the standard $CR$ structure on $S^{3}=\partial U$ ,
measured in the $\Gamma^{s}$ norm relative to the standard framing of $S^{3}$ , $s\geq 6$ .

Then $\phi$ extends to define an integrable deformation of the complex struc-
ture on $U$ .

Moreover, up to equivalence, $\phi$ can be taken to be of the form

(2.10) $\phi=\sum_{k=1}^{\infty}\phi_{k}(w)\zeta^{k}d\overline{w}\otimes e$ ,

where $\phi_{k}(w)$ are smooth functions of $w$ .

As a consequence of Kiremdjian’s result and well known results of
Harvey-Lawson [HL] and Folland and Kohn [FoKo], we have the follow-
ing theorem, first obtained by Lempert in [Lei].

Theorem 2.11. (Lempert [Lei]) Let $\phi$ denote a sufficiently small
$defo7mation$ of the standard $CR$ structure on $S^{3}$ , as measure in the $\Gamma^{s}$

norm, $s\geq 6$ . Then $(S^{3}, \phi)$ is $C^{1}$ embeddable if and only if there exists
a compact complex surface $X$ and an embedding $(S^{3}, \phi)\epsilon-\nu X$ for which
$(S^{3}, \phi)$ disconnects $X$ into two connected components.

Proof. Suppose first that $(S^{3}, \phi)$ is embeddable. Then by Harvey-

Lawson [HL], there is a normal Stein space $V$ for which $(S^{3}, \phi)$ is the
pseudoconvex boundary; resolve any singularities to obtain a smooth
complex manifold $\tilde{V}$ for which $(S^{3}, \phi)$ is the pseudoconvex boundary.
Kiremidjian’s result implies that there is a complex manifold $(U, \phi)$ for
which $(S^{3}, \phi)$ is the pseudoconcave boundary. Glue these two pieces
along $(S^{3}, \phi)$ ; thus, we obtain a $C^{1}$ compact manifold $X$ with an inte-
grable complex structure, and $(S^{3}, \phi)$ disconnects $X$ . By the Newlander-
Nirenberg theorem, $X$ is a smooth compact complex manifold.

Conversely, if there exists $X$ and an embedding $(S^{3}, \phi)c_{-\rangle}X$ which
disconnects $X$ , then $(S^{3}, \phi)$ is the pseudoconcave boundary of one com-
ponent, and the pseudoconvex boundary of the other component. Let
$V$ denote the pseudoconvex component. By the results of Folland and
Kohn on the solvability of $\overline{\partial}$ on compact complex manifolds with pseudo-
convex boundary [FoKo], one can construct sufficiently many functions
which are holomorphic on $V$ and $C^{1}$ to the boundary to embed $(S^{3}, \phi)$ .

I
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Using the analysis of Morrow and Rossi [MR], much more can be
said about the manifold $X$ ; in fact, we obtain the following stability
result of Lempert [Lei].

Theorem 2.12. For $s\geq 6$ , there is a neighbourhood of the stan-
dard $CR$ structure on $S^{3}$ such that $(S^{3}, \phi)$ is embeddable if and only if
$(S^{3}, \phi)$ is embeddable in $\mathbb{C}^{2}$ .

Proof. (Lempert [Lei]) In the previous theorem, we showed that
if $(S^{3}, \phi)$ embedded, then it embedded into a complex surface $X$ as
a disconnecting hypersurface. In light of the normal form analysis of
Theorem 2.9, we know that we can choose the pseudoconcave component
of $X$ to contain a rational curve $P^{1}$ with the hyperplane bundle as its
normal bundle. In this situation, a rigidity result of Morrow and Rossi
[MR] states that $X$ must be birational to $\mathbb{P}^{2}$ , and the rational curve is

a standard linear hyperplane; that is, we may choose $X$ to be $\mathbb{P}^{2}$ , and
the pseudoconcave component is a neighbourhood of the hyperplane at
infinity. $I$

The following corollary is immediate from the construction of the
manifold $X$ .

Corollary 2.13. There is a neighbourhood of the standard $CR$

structure on $S^{3}$ such that $(S^{3}, \phi)$ is embeddable if and only if $(U, \phi)$

is biholomorphic to a neighbourhood of the zero section of $E$ .

This relates the embeddability of $(S^{3}, \phi)$ to the deformation the-
ory for the pseudoconcave complex manifold $(U, \phi)$ which it bounds.
Moreover, we can infinitesimalize this result to arbitrarily small neigh-
bourhoods of the rational curve $\mathbb{P}^{1}$ . However, the analysis leads us to
questions of convergence, and we will delay this result until the end of
the next section.

\S 3. Formal Embeddability

In this section, we will relate the $CR$ deformation theory for $S^{3}$ to
the Morrow-Rossi deformation theory for formal neighbourhoods of the
hyperplane at infinity.

Throughout this section, $(S^{3}, \phi)$ will denote a sufficiently small de-
formation of the standard $CR$ structure in the $\Gamma^{s}$ norm, $s\geq 6$ , and $(U, \phi)$

will denote the extension of the deformation to the pseudoconcave side.
We will assume that the deformation tensor has been placed in exterior
form; that is, it can be expressed as $\phi=\sum_{k=1}^{\infty}\phi_{k}(w)\zeta^{k}d\overline{w}\otimes e$ , where
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$\phi_{k}$ are $\Gamma^{s}$ functions which are constant on the fibres. Each graded piece
$\phi_{k}(w)\zeta^{k}d\overline{w}\otimes e$ has a natural interpretation as a deformation tensor on
$P^{1}$ twisted by a positive power of the dual of the hyperplane line bun-
dle, i.e. as a section of $Hom(T_{(0},{}_{1)}P^{1}, T_{(1},{}_{0)}P^{1})\otimes\otimes^{k}E^{*};$ moreover, since

there are no zeroth order terms, the complex structure on $P^{1}$ is left
unchanged. We will henceforth refer to this rational curve as the $P^{1}$ .

Throughout this paper, we will be concerned only with objects which
are holomorphic in the $\zeta$ variable; thus, we may identify them with the
sum of sections of powers of the dual of the hyperplane bundle.

We now describe how to pass from the Dolbeault approach to defor-
mation theory to the Cech approach in this situation. In brief, although
the coordinate cover $U_{i}$ is not a Stein cover, it is still sufficiently nice
that we can pass from the deformation tensor to new coordinate func-
tions $(\xi, \rho)$ which are holomorphic in the deformed structure.

We can write down explicit formal expressions for local functions
$(\xi, \rho)$ and $(\hat{\xi},\hat{\rho})$ which are holomorphic in the deformed structure and
which converge on the chart $|w|^{2}<4$ , (respectively, $|\hat{w}|^{2}<4$ ) (see, for in-
stance, [B] $)$ . Then we look at the transition functions as expressed using

the new coordinate systems $(\xi, \rho)$ and $(\hat{\xi},\hat{\rho})$ . The next two propositions
analyze these transition functions in a manner which is reminiscent of
the formal neighbourhoods of $P^{1}$ as studied by Morrow and Rossi [MR];
we will refer to this observation again after the statement and proofs of
the propositions.

Proposition 3.1. Let $(S^{3}, \phi)$ be a deformation of the standard
$CR$ structure of $S^{3}$ which is in exterior form and sufficiently small in

the $\Gamma^{s}$ norm, $s\geq 6$ ; let $(U, \phi)$ be its extension to U. Let $U_{1}$ , $U_{2}$ be the
standard coordinate cover of the neighbourhood $U$ with coordinates $(w, \zeta)$

and their hatted counterparts.
Then there exist local coordinates $(\xi, \rho)$ on $U_{1}$ and their hatted coun-

terparts on $U_{2}$ which are holomorphic to order $k$ for the deformed com-
plex structure.

Moreover, the new coordinates can be taken to be of the form

$\rho=\zeta(1+\sum_{j=1}^{k}\rho_{j}\zeta^{j})+O(\zeta^{k+1})$ and $\xi=w+\sum_{j=1}^{k}\xi_{j}\zeta^{j}+O(\zeta^{k+1})$

where $\xi_{j}$ , $\rho_{j}$ are smooth functions of $w$ .

Proof. We illustrate the approach in this case, introducing the for-
malism which we use in solving the $\overline{\partial}$ equation for the deformed structure
(that is, $\overline{\partial}_{\phi}$ ), and the recursive algorithm.



48 J. Bland and T. Duchamp

As explained in [B], the $\overline{\partial}$ operator for the deformed structure is
expressed as $\overline{\partial}_{\phi}=\overline{\partial}-\phi\circ\partial$ . Let $u$ be a function on $U_{1}$ that is holomorphic
in the fibre directions; that is, $u$ is a function of the form $u=\sum_{j}u_{j}\zeta^{j}$ ,

where $u_{j}$ is a function of $w$ . Then

$\phi o\partial(u):=(\sum_{l=1}^{\infty}\phi_{l}\zeta^{l})\sum_{j}(e^{jH}\frac{\partial(e^{-jH}u_{j})}{\partial w})\zeta^{j}d\overline{w}$ .

If we ask for a function which agrees with $w$ when $\zeta=0$ , and is holo-
morphic to order $k$ about $\mathbb{P}^{1}$ , then we consider a function of the form
$u=w+\sum_{j=1}^{k}u_{j}\zeta^{j}$ , and solve inductively:

(3.2) $\overline{\partial}(u)$ $=$ $\phi\circ\partial(u)$ ;

(3.2) $\sum_{j=1}^{k}\overline{\partial}u_{j}\zeta^{j}$ $=$ $(\sum_{l=1}^{\infty}\phi_{l}\zeta^{l})\sum_{j=1}^{k}(e^{jH}\frac{\partial(e^{-jH}u_{j})}{\partial w})\zeta^{j}d\overline{w}$ .

Since for each power of $\zeta$ we are solving a one variable $\overline{\partial}$ equation for $u_{k}$

in terms of data which has been previously determined, we can obtain $k^{th}$

order formal solutions for all $k$ . Finally, it is a simple matter to observe
that for any order $k$ , we may obtain local functions of the form given
in the proposition which are holomorphic to order $k$ in the deformed
structure.

I
This proposition is a form of the statement that deformations of

complex structures are locally trivial; moreover, the cover $U_{i}$ is a “good”
cover of $U$ . The Cech data for the deformed complex manifold is given
by the transition functions for the cover. We compute these in the next
proposition.

Proposition 3.4. Let $(U, \phi)$ and $U_{i}$ be as above, and let

$\rho=\zeta(1+\sum_{j=1}^{k}\rho_{j}\zeta^{j})$ and $\xi=w+\sum_{j=1}^{k}\xi_{j}\zeta^{j}$

be new coordinates which are holomorphic in the deformed complex struc-
ture as constructed in the last proposition. Then after possibly choosing
new representative holomorphic functions for the deformed structure,
which we still denote by $(\xi, \rho)$ , holomorphic transition functions for the

deformed manifold $(U, \phi)$ can be taken to be of the form

(3.5) $\xi\hat{\xi}=1+\sum_{\dot{\iota}=4}^{k}(\sum_{j=2}^{i-2}\frac{a_{ij}}{w^{j}})\zeta^{i}+O(\zeta^{k+1})$
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and

(3.6) $\hat{\rho}\xi/\rho=1+\sum_{i=2}^{k}(\sum_{j=1}^{i-1}\frac{b_{ij}}{w^{j}})\zeta^{i}+O(\zeta^{k+1})$ ;

that is, we $can/ind$ holomorphic functions $(\xi, \rho)$ on $U_{1}$ and $(\hat{\xi},\hat{\rho})$ on $U_{2}$

for the deformed complex structure $\partial_{\phi}^{-}$ such that they satisfy the relations
given above on $U_{1}\cap U_{2}$ .

Remark 3.7. Equations (3.5), $(3.\theta)$ take on the more standard

form of transition functions if we solve explicitly for $\hat{\xi},\hat{\rho}$ respectively.

Proof. Let $\xi$ , $\rho$ be of the form given in the previous proposition.
Consider the first order expansion. The transition functions are given
by

$\xi\hat{\xi}$

$=$ $(w+\xi_{1}\zeta)(\hat{w}+\hat{\xi}_{1}\hat{\zeta})+O(\zeta^{2})$

$=$ $1+\zeta(\hat{w}\xi_{1})+\hat{\zeta}(w\hat{\xi}_{1})+O(\zeta^{2})$

(3.8) $=$ $1+\zeta(\frac{1}{w}\xi_{1}+\hat{\xi}_{1})+O(\zeta^{2})$ .

Since the product $\xi\hat{\xi}$ is holomorphic on the intersection and the zeroth
order term is constant, a simple calculation shows that the first order
term $(\frac{1}{w}\xi_{1}+\hat{\xi}_{1})$ is holomorphic in the standard structure. Since $\xi,\hat{\xi}$ are
only determined up to the addition of functions that are holomorphic in
$w,\hat{w}$ respectively, we easily observe that we can choose these functions
in such a way as to normalize the first order term to be zero.

Similarly, we consider the transition function for the fibre variable.
In this case, we have

$\frac{\hat{\rho}\xi}{\rho}$ $=$ $\frac{\hat{\zeta}(1+\hat{\rho}_{1}\hat{\zeta})(w+\xi_{1}\zeta)}{\zeta(1+\rho_{1}\zeta)}+O(\zeta^{2})$

$=$ $1+\hat{\zeta}(\hat{\rho}_{1}\hat{\zeta}w+\xi_{1}\zeta)/\zeta-\hat{\zeta}w\rho_{1}\zeta/\zeta+O(\zeta^{2})$

(3.9) $=$ $1+\zeta(\hat{\rho}_{1}/w+\xi_{1}/w-\rho_{1})+O(\zeta^{2})$

where as before, $(\hat{\rho}_{1}/w+\xi_{1}/w-\rho_{1})$ is holomorphic on $U_{1}\cap U_{2}$ , $\xi_{1}$

is a smooth function determined by the previous step, and $\rho_{1},\hat{\rho}_{1}$ are
determined up to the addition of functions that are analytic in $w,\hat{w}=$

$1/w$ respectively. It is clear that we can normalize the expression in the
brackets to be zero. This completes the first order normalization.

We now proceed to the inductive step. Assume that $\xi,\hat{\xi}$ , $\rho,\hat{\rho}$ have
been chosen to order $k-1$ in such a way as to place the transition
functions in normal form to order $k-1$ . Then



50 J. Bland and T. Duchamp

$\xi\hat{\xi}$

$=$ $(w+\sum_{i=1}^{k}\xi_{i}\zeta^{i})(\hat{w}+\sum_{i=1}^{k}\hat{\xi}_{i}\hat{\zeta}^{i})+O(\zeta^{k+1})$

$=$ $(w+\sum_{i=1}^{k-1}\xi_{i}\zeta^{i}+\xi_{k}\zeta^{k})(\hat{w}+\sum_{i=1}^{k-1}\hat{\xi}_{i}\hat{\zeta}^{i}+\hat{\xi}_{k}\hat{\zeta}^{k})+O(\zeta^{k+1})$

(3.10) $=$ $(w+\sum_{i=1}^{k-1}\xi_{i}\zeta^{i})(\hat{w}+\sum_{i=1}^{k-1}\hat{\xi}_{i}\hat{\zeta}^{i})+w\hat{\xi}_{k}\hat{\zeta}^{k}+\hat{w}\xi_{k}\zeta^{k}+O(\zeta^{k+1})$

$=$ $(w+\sum_{i=1}^{k-1}\xi_{i}\zeta^{i})(\hat{w}+\sum_{i=1}^{k-1}\hat{\xi}_{i}\hat{\zeta}^{i})+\hat{\xi}_{k}\zeta^{k}/w^{k-1}+\xi_{k}\zeta^{k}/w$

$+$ $O(\zeta^{k+1})$ .

Using the fact that $\xi_{k},\hat{\xi}_{k}$ are determined only up to the addition of a
holomorphic function in $w,\hat{w}$ respectively, it is easy to observe that the
normal form for the transition function is

(3.11) $\xi\hat{\xi}=1+\sum_{i=4}^{k}(\sum_{j=2}^{i-2}\frac{a_{ij}}{w^{j}})\zeta^{i}+O(\zeta^{k+1})$ .

A similar argument for the fibre variable shows that

$\hat{\rho}\xi/\rho$ $=$ $\hat{\zeta}(1+\sum_{i=1}^{k}\hat{\rho}_{i}\hat{\zeta}^{i})(w+\sum_{i=1}^{k}\xi_{i}\zeta^{i})/\zeta(1+\sum_{i=1}^{k}\rho_{i}\zeta^{i})+O(\zeta^{k+1})$

$=$ $\hat{\zeta}(1+\sum_{i=1}^{k-1}\hat{\rho}_{i}\hat{\zeta}^{i})(w+\sum_{i=1}^{k-1}\xi_{i}\zeta^{i})/\zeta(1+\sum_{i=1}^{k-1}\rho_{i}\zeta^{i})+\hat{\zeta}w\hat{\rho}_{k}\hat{\zeta}^{k}/\zeta$

(3.12) $+\hat{\zeta}\xi_{k}\zeta^{k}/\zeta-\hat{\zeta}w\rho_{k}\zeta^{k}/\zeta+O(\zeta^{k+1}$

$=$ $\hat{\zeta}(1+\sum_{i=1}^{k-1}\hat{\xi}_{i}\hat{\zeta}^{i})(w+\sum_{i=1}^{k-1}\xi_{i}\zeta^{i})/\zeta(1+\sum_{i=1}^{k-1}\xi_{i}\zeta^{i})$

$+\frac{\hat{\rho}_{k}}{w^{k}}\zeta^{k}+\xi_{k}\zeta^{k}/\omega-\rho_{k}\zeta^{k}+O(\zeta^{k+1})$ .

Using the fact that $\rho_{k},\hat{\rho}_{k}$ are determined only up to the addition of a
holomorphic function in $w,\hat{w}$ respectively, and that $\xi_{k}$ has been deter-
mined above, it is easy to observe that the normal form for the transition
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functions is

(3.13) $\hat{\rho}\xi/\rho=1+\sum_{\dot{\iota}=2}^{k}(\sum_{j=1}^{i-1}\frac{b_{ij}}{w^{j}})\zeta^{i}$

I
We now recall the Morrow-Rossi invariants. In [NirSp] (see also

[MR] $)$ , Nirenberg and Spencer considered the deformation theory for
embedded complex submanifolds. Their results in the current context
are easy to describe. Two deformations $(U, \phi_{1})$ , $(U, \phi_{2})$ are said to be

formally $k^{th}$ order equivalent along $\mathbb{P}^{1}$ if there is a diffeomorphism
$(U, \phi_{1})\rightarrow(U, \phi_{2})$ which fixes $P^{1}$ and is holomorphic to order $(k+1)$

along $P^{1}$ . We will call a deformation $(U, \phi)k^{th}$ order standard if $(U, \phi)$

is $k^{th}$ order equivalent to the undeformed $U$ along $P^{1}$ . Nirenberg and
Spencer showed that the obstruction to extending a $k^{th}$ order formal
equivalence to a $(k+1)^{st}$ order equivalence lies in the first cohomology

of $P^{1}$ with values in the tangent bundle of $P^{2}$ restricted to $\mathbb{P}^{1}$ , twisted
by the $(k+1)$ power of the dual to the hyperplane line bundle. Since

the tangent bundle to $\mathbb{P}^{2}$ restricted to $P^{1}$ is $E^{2}\oplus E$ , their results in the
current context can be stated as follows.

Theorem 3.14. (Nirenberg-Spencer [NirSp]) Let $(U, \phi)$ be a de-

formation of $U$ that is $(k-1)^{st}$ order standard along $P^{1}$ The obstruction
to $(U, \phi)$ being $k^{th}$ order standard lies in $H^{1}(P^{1}, (E^{2}\oplus E)\otimes E^{-k})$ .

We may now cast the results of Proposition 3.4 in terms of the
Morrow-Rossi invariants.

Corollary 3.15. The deformed manifold $(U, \phi)$ is $k^{th}$ order stan-

dard along $P^{1}$ if and only if the coefficients $a_{ij}$ , $b_{ij}$ vanish for all $j\leq k$ .

Proof. As in Morrow and Rossi [MR], one can compute the invari-

ants by considering a coordinate cover of $P^{1}$ and computing normalized
transition functions. A straightforward comparison shows that these are
the same invariants as have been calculated in the previous proposition.

I
The next proposition relates the invariants introduced above to the

stable embeddability of the new structure. That such a relationship
exists is clear, but it will be convenient to indicate an explicit algorithm
for the procedure.

Our approach will be to obtain a deformation of the identity em-
bedding $(z^{1}, z^{2})$ : $ UC_{-}\rangle$

$\mathbb{P}^{2}$ . Notice that while the functions $(z^{1}, z^{2})$
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are well defined on the complement of $P^{1}$ , they extend as meromorphic
functions only to $\mathbb{P}^{2}$ minus a point on the hyperplane at infinity. (As
a map, $(z^{1}, z^{2})$ : $Uc_{-\rangle}\mathbb{P}^{2}$ is well defined, but the components are not

defined at the points $\zeta=w=0$ in $U_{1}$ and $\hat{\zeta}=\hat{w}=0$ in $U_{2}.$ ) We can,
however, treat these functions as being defined on $S^{3}$ . We will look for
deformed functions $(\sigma^{1}, \sigma^{2})$ that “agree with $(z^{1}, z^{2})$ on $\mathbb{P}^{1}‘‘$ .

To explain the meaning of this statement, notice that the circular
action on $S^{3}$ induces a natural Fourier decomposition on the space of
functions on $S^{3}$ ; any function with only negative Fourier components can
be extended to $U$ as a function that is holomorphic in the fibre variable $\zeta$ ;
conversely, functions that are holomorphic in the fibre variable restrict
to $S^{3}$ as functions with only negative Fourier components. Thus, all
functions are well defined on $S^{3}$ , and the vanishing of the first $k$ negative
Fourier coefficients on $S^{3}$ corresponds to the vanishing to $k^{th}$ order along
$P^{1}$ of the extended function. Moreover, $k^{th}$ order formal neighbourhoods
correspond to functions on $S^{3}$ with negative Fourier components up to
order $k$ . Thus, whenever the extension to $P^{1}$ comes into question, we
can view the analysis as taking place on $S^{3}$ .

Proposition 3.16. Let $(S^{3}, \phi)$ , $(U, \phi)$ be as above.
Suppose that there exist deformations $(\sigma^{1}, \sigma^{2})$ of $(z^{1}, z^{2})$ that are

meromorphic to order $(k-1)$ along $P^{1}$ in the deformed structure defined
by $\phi$ and agree with $(z^{1}, z^{2})$ along $P^{1}$ ; then the Morrow Rossi invariants
vanish for all $j\leq k$ .

Conversely, suppose that the Morrow Rossi invariants vanish for
all $j\leq k$ ; then there exist deformations $(\sigma^{1}, \sigma^{2})$ of $(z^{1}, z^{2})$ that are
meromorphic to order $(k-1)$ along $P^{1}$ in the deformed structure defined
by $\phi$ and agree with $(z^{1}, z^{2})$ along $P^{1}$ .

Proof. Let $\sigma^{1}$ , $\sigma^{2}$ be the deformations of $z^{1}$ , $z^{2}$ respectively that are
holomorphic to order $(k-1)$ along $\mathbb{P}^{1}$ relative to the deformed complex
structure. That is,

$\sigma^{1}=z^{1}+O(\zeta^{0})$ $\sigma^{2}=z^{2}+O(\zeta^{0})$

and
$\partial_{\phi}^{-}\sigma^{1}=O(\zeta^{k})$ $\overline{\partial}_{\phi}\sigma^{2}=O(\zeta^{k})$

where the orders refer to the order of vanishing along $P^{1}$ . We can define
local holomorphic coordinates by (notice that, while the functions may
be defined to all orders, they are only holomorphic to the indicated order
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along $P^{1}$ ):

$\rho$
$=1/\sigma^{1}+O(\zeta^{k+2})$ $\xi$ $=\sigma^{2}/\sigma^{1}+O(\zeta^{k+1})$ on $U_{1}$

$\hat{\rho}$ $=1/\sigma^{2}+O(\zeta^{k+2})$ $\hat{\xi}$ $=\sigma^{1}/\sigma^{2}+O(\zeta^{k+1})$ on $U_{2}$

and it follows automatically that

$\xi\hat{\xi}=1+O(\zeta^{k+1})$ $\hat{\rho}\xi/\rho=1+O(\zeta^{k+1})$ on $U_{1}\cap U_{2}$ .

In particular, the Morrow Rossi invariants vanish to order $k$ .

Conversely, suppose that

$\rho=\zeta(1+\sum_{i=1}^{k}\rho_{i}\zeta^{i})+O(\zeta^{k+1})$ $\xi=w+\sum_{\dot{x}=1}^{k}\xi_{i}\zeta^{i}+O(\zeta^{k+1})$ .

Then we can define sections $\sigma^{1}$ , $\sigma^{2}$ by

(3.17) $\sigma^{1}$

$=1/\rho$
$\sigma^{2}$

$=\xi/\rho$ on $U_{1}$

(3.18) $\sigma^{2}$

$=1/\hat{\rho}$
$\sigma^{1}$ $=\hat{\xi}/\hat{\rho}$ on $U_{2}$ ,

where $\sigma^{1}$ is well defined to order $n$ , $n\leq(k-1)$ if and only if

$1/\rho-\hat{\xi}/\hat{\rho}=O(\zeta^{n+1})$ on $U_{1}\cap U_{2}$

(3.19) $=$ $\rho\hat{\xi}/\hat{\rho}=1+O(\zeta^{n+2})$ on $U_{1}\cap U_{2}$ .

Similarly, $\sigma^{2}$ is well defined to order $n$ if and only if

$\hat{\rho}\xi/\rho$ $=1+O(\zeta^{7\iota+2})$ on $U_{1}\cap U_{2}$ ,

$=$ $\rho/(\hat{\rho}\xi)$ $=1+O(\zeta^{r\iota+2})$ on $U_{1}\cap U_{2}$

(3.20) $\Leftrightarrow(\rho\hat{\xi}/\hat{\rho})\cdot(1/\xi\hat{\xi})$ $=1+O(\zeta^{n+2})$ on $U_{1}\cap U_{2}$ .

Therefore, the pair of sections $\sigma^{1}$ , $\sigma^{2}$ are well defined to order $n$ if

(3.21) $\hat{\rho}\xi/\rho=1+O(\zeta^{n+2})$ $\xi\hat{\xi}=1+O(\zeta^{n+2})$ on $U_{1}\cap U_{2}$ ;

that is, if $n\leq(k-1)$ , and if the Morrow Rossi invariants vanish to order
$(n+1)$ . I

Remark 3.22. We can expand $\sigma_{1}$ , $\sigma_{2}$ in powers of $\zeta$ , and obtain

(3.18) $\sigma^{1}=1/\rho=\frac{1}{\zeta}\frac{1}{(1+\sum_{i=1}^{k}\rho_{i}\zeta^{i})}=\frac{1}{\zeta}(1+\sum_{i=1}^{k}\sigma_{i}\zeta^{i})+O(\zeta^{k})$
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and

(3.24) $\sigma^{2}=\xi/\rho=(w+\sum_{i=1}^{k}\xi_{i}\zeta^{i})(1+\sum_{i=1}^{k}\sigma_{i}\zeta^{i})/\zeta+O(\zeta^{k})$ .

Before stating the next theorem, we introduce the canonical solution
operator for the $\overline{\partial}_{b}$ equation on $(S^{3}, \eta)$ . We denote it by $ G\partial$ , where
$ G\partial$ is defined by the properties (1) $G\partial\overline{\partial}u=u$ for all $u$ orthogonal
to the space of $CR$ functions; (2) $G\partial\alpha=0$ for all $\alpha$ orthogonal to
the range of $\overline{\partial}$ . Notice that $G\partial\overline{\partial}$ preserves the grading induced by the
Fourier decomposition, and that the operator $ G\partial$ gains one anisotropic
derivative; that is, the operator $ G\partial$ satisfies the regularity estimate in

the $\Gamma^{s}$ norms, $||G\partial u||_{k+1}\leq c||u||_{k}$ for some constant $c$ .

In the paragraph above, a formal replacement of the operators $\overline{\partial}$ , $\partial$

by $\overline{\partial}_{b}$ , $\partial_{b}$ respectively expresses everything in terms of the boundary
$\overline{\partial}$ operators; however, we choose this notation to emphasize the fact
that formally, we may think in terms of the extended operators on the
manifold $U$ . Notice that while there is a formal means of passing between
the two approaches, we have chosen a ’mixed’ notation; that is, we
compute $L^{2}$ inner products using the spherical volume form and the
restriction of the functions to $S^{3}=\partial U$ , while we use the notation that
is naturally associated with solving the $\overline{\partial}$ equation on $U$ .

Theorem 3.25. Let $(S^{3}, \phi)$ , $(U, \phi)$ be as above. Then the de-

formed manifold $(U, \phi)$ is $k^{th}$ order standard if and only if the functions
$[\phi\partial(\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{i})]_{n}$ , defined on $S^{3}$ , are in the range of $\overline{\partial}_{b}$ for all
$0\leq n\leq k$ and $i=1,2$ .

Corollary 3.26. Let $(S^{3}, \phi)$ , $(U, \phi)$ be as above. Then the de-

formed manifold $(U, \phi)$ is $k^{th}$ order standard if and only if the functions
$[\phi\partial(\sum_{j=0}^{k}(G\partial\phi\partial)^{j}z^{i})]_{k}$ , defined on $S^{3}$ , are in the range of $\overline{\partial}_{b}$ for $i=1,2$ .

We will establish two preliminary lemmas before proving the theo-
rem.

Lemma 3.27. Suppose that $u=\sum_{j=-1}^{k}u_{j}\zeta^{j}$ and $v=\sum_{j=-1}^{k}v_{j}\zeta^{j}$

satisfy $\partial_{\phi}^{-}u=O(\zeta^{k+1})$ , $\partial_{\phi}^{-}v=O(\zeta^{k+1})$ , and $u_{-1}=v_{-1}$ , $u_{0}=v_{0}$ ; then

(3.28) 1) $\overline{\partial}u_{n}\zeta^{n}=-[\partial_{\phi}^{-}[u]_{(n-1)}]_{n}$ for $0\leq n\leq k$

(3.29)2) $u=v+O(\zeta^{k+1})$ .

Proof. The first observation follows directly from expanding the
equation $[\overline{\partial}_{\phi}(u)]_{k}=0$ in powers of $\zeta$ . Notice that the solution to equation
1, if it exists, is unique for $n\geq 1$ , and unique up to a constant for $n=0$ .
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The second statement follows by induction. It is true for $n=0$ .

Assume it is true for $n-1$ , $1\leq n\leq k$ ; then for $n$ , we have $\overline{\partial}(u_{n}\zeta^{n})=$

$-[\partial_{\phi}^{-}[u]_{n-1}]_{n}=-[\overline{\partial}_{\phi}[v]_{n-1}]_{n}=\overline{\partial}(v_{n}\zeta^{n})$ . Thus, $\overline{\partial}(u_{n}\zeta^{n})=\overline{\partial}(v_{n}\zeta^{n})$

with $n\geq 1$ and uniqueness implies that $u_{n}=v_{n}$ . $I$

Lemma 3.30. Suppose that $u=\sum_{j=-1}^{k}u_{j}\zeta^{j}$ , $\partial_{\phi}^{-}u=O(\zeta^{k+1})$ ,
$u_{-1}\zeta^{-1}=z^{1}$ and $u_{0}=[G\partial\phi\partial(z^{1})]o$ ; then

(3.31) $u_{n}\zeta^{n}$ $=$ $[\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{1}]_{n}-[\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{1}]_{n-1}$

(3.32) $[u]_{n}$ $=$ $[\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{1}]_{n}$

for $1\leq n\leq k$ .

Proof. This also follows by induction. Suppose that the result is
true for $n-1$ , where $0<n\leq k$ . Then

$\overline{\partial}u_{n}\zeta^{n}$ $=$ $-[\overline{\partial}_{\phi}(\sum_{j=-1}^{n-1}u_{j}\zeta^{j})]n$

$=$ $-[(\overline{\partial}-\phi\partial)(\sum_{j=-1}^{n-1}u_{j}\zeta^{j})]n+[(\overline{\partial}-\phi\partial)(\sum_{j=-1}^{n-1}u_{j}\zeta^{j})](n-1)$

$=$ $[\phi\partial(\sum_{j=-1}^{n-1}u_{j}\zeta^{j})]n-[\phi\partial(\sum_{j=-1}^{n-1}u_{j}\zeta^{j})](n-1)$

$=$ $[\phi\partial(\sum_{j=0}^{n}(G\partial\phi\partial)^{j}z^{1})]n-[\phi\partial(\sum_{j=0}^{n}(G\partial\phi\partial)^{j}z^{1})]n-1$ ,

where we have taken advantage of the fact that $[\partial_{\phi}^{-}(\sum_{j=-1}^{n-1}u_{j}\zeta^{j})]_{n-1}=$

$0$ by adding it onto the second line.
Therefore,

$u_{n}\zeta^{n}$ $=$ $[(\sum_{j=0}^{n}(G\partial\phi\partial)^{j+1}z^{1})]n-[(\sum_{j=0}^{n}(G\partial\phi\partial)^{j+1}z^{1})]n-1$

$=$ $[(\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{1})]n-[(\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{1})]n-1$

I
We now prove the theorem.
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Proof. Suppose that $(\sigma^{1}, \sigma^{2})$ defines a formal $k^{th}$ order equiva-
lence. Then $(\lambda\sigma^{1}+a, \lambda\sigma^{2}+b)$ also defines a $k^{th}$ order equivalence for
any constants $\lambda$ , $a$ , $b$ . Choose a constant $a$ such that

$\sigma^{1}+a=z^{1}+G\partial\phi\partial(z^{1})+O(\zeta^{1})$ ;

then $\sigma^{1}+a$ satisfies the conditions in the last lemma, and

$[\sigma^{1}+a]_{k}=[\sum_{j=0}^{k+1}(G\partial\phi\partial)^{j}z^{1}]_{k}$ .

Moreover, since $\sigma^{1}+a$ is meromorphic to order $k$ , it follows that for all
$0\leq n\leq k$ , $[\overline{\partial}_{\phi}([\sigma^{1}+a]_{k})]_{n}=[\overline{\partial}_{\phi}([\sigma^{1}+a]_{n})]_{n}=0$ , whence

$\overline{\partial}([\sigma^{1}+a]_{n})$ $=$ $[\phi\partial([\sigma^{1}+a]_{n})]_{n}$

$=$ $[\phi\partial([\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{1}]_{n})]_{n}$ ;

in particular, $[\phi\partial([\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{1}]_{n})]_{n}$ is in the range of $\overline{\partial}_{b}$ for all
$0\leq n\leq k$ .

Conversely, suppose that $[\phi\partial([\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{1}]_{n})]_{n}$ is in the range

of $\overline{\partial}_{b}$ for all $0\leq n\leq k$ ; then define $\sigma^{1}=([\sum_{j=0}^{k+1}(G\partial\phi\partial)^{j}z^{1}]_{k})$ . We
calculate

(3.33) $\partial_{\phi}^{-}(\sigma^{1})$

$=$ $\overline{\partial}([\sum_{j=0}^{k+1}(G\partial\phi\partial)^{j}z^{1}]_{k})-\phi\partial([\sum_{j=0}^{k+1}(G\partial\phi\partial)^{j}z^{1}]_{k})$

$=$ $\overline{\partial}G\partial[\phi\partial\sum_{j=0}^{k}(G\partial\phi\partial)^{j}z^{1}]_{k}-[\phi\partial([\sum_{j=0}^{k+1}(G\partial\phi\partial)^{j}z^{1}]_{k})]k+O(\zeta^{k+1})$

$=$ $[\phi\partial\sum_{j=0}^{k}(G\partial\phi\partial)^{j}z^{1}]_{k}-[\phi\partial\sum_{j=0}^{k+1}(G\partial\phi\partial)^{j}z^{1}]_{k}+O(\zeta^{k+1})$

$=$ $O(\zeta^{k+1})$ .

I
Finally, we are able to state the main theorem.

Theorem 3.34. Let $(S^{3}, \phi)$ , and $(U, \phi)$ be as above. Then $(S^{3}, \phi)$

is embeddable if and only $(U, \phi)$ is formally standard; that is, if and only

if all Morrow Rossi invariants vanish.
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Proof. First notice that if $(S^{3}, \phi)$ is embeddable, then (U,$ \phi)$ is
formally standard, and hence it is formally standard for all orders $k$ .

Conversely, suppose that $(U, \phi)$ is formally standard for all $k$ . Then

by the last theorem, the functions $[\phi\partial(\sum_{j=0}^{n+1}(G\partial\phi\partial)^{j}z^{i})]_{n}$ , defined on
$S^{3}$ , are in the range of $\overline{\partial}_{b}$ for all $ 0\leq n\leq k<\infty$ and $i=1,2$ . The for-
mal series $\sum_{j=0}^{\infty}(G\partial\phi\partial)^{j}z^{i}$ converges by standard operator estimates.
Thus, these formal series define an actual smooth equivalence that is
holomorphic to all orders along $P^{1}$ ; by its construction, it is a holomor-
phic equivalence, and it restricts to $S^{3}$ as an embedding of the deformed
structure. $I$

As an immediate consequence of the last theorem, we obtain ex-
plicit obstructions to embeddability. Recall that in [B], we showed that
any sufficiently small deformation tensor can be put in interior normal
form–that is, it is equivalent of one of the form $\phi=\mu\overline{\omega}\otimes Z$ , where
$Z=\overline{z}^{2}\partial/\partial z^{1}-\overline{z}^{1}\partial/\partial z^{2},\overline{\omega}=\overline{z}^{2}d\overline{z}^{1}-\overline{z}^{1}d\overline{z}^{2}$ , and $\mu=\mu_{-}+\mu_{+}$ where
$\mu_{+}$ corresponds to the part of $\mu$ with positive Fourier components, and
$\mu_{-}$ is of the form $\mu_{-}=z^{1}\overline{h}_{1}+z^{2}\overline{h}_{2}$ for $CR$ functions $h_{1}$ , $h_{2}$ . Moreover,

we showed that $\phi$ is embeddable if and only if $\mu_{-}=0$ , with a rather
direct construction of the embeddability in this case. The results in
this paper allow us to give a direct interpretation of the obstructions to
embeddability as well.

Corollary 3.35. If in the notation above, $\phi=\mu_{-}\overline{\omega}\otimes Z$ , then $\phi$

is embeddable if and only if $\mu_{-}=0$ .

Proof. In the statement, the deformation tensor $\phi$ is in exterior
form. Consequently, Theorem 3.25 applies. Suppose $\phi$ is embeddable.
If $[\phi\partial z^{i}]_{n}=0$ for $i=1,2$ , then $[\phi\partial z^{i}]_{n+1}=[(\mu_{-}Z(z^{i})\overline{\omega})]_{n+1}$ is in the
range of $\overline{\partial}_{b}$ for $i=1,2$ . In particular, for any holomorphic function $H$

$\int_{S^{3}}[(\mu_{-}Z(z^{i}))]{}_{n+1}Hdvol=0$

for $i=1,2$ . Choosing the specific holomorphic functions $h_{1}$ , $h_{2}$ for two
separate choices for $H$ , we find that a necessary condition for embed-
dability is

$\int_{S^{3}}[(\mu_{-}Z(z^{1}))]_{n+1}h_{2}-[(\mu_{-}Z(z^{2}))]_{n+1}h_{1}dvol=0$

or $\int_{S^{3}}[\mu_{-}]_{n}(\overline{z}^{2}h_{2}+\overline{z}^{1}h_{1})dvol=0$ .

Since $\mu_{-}=z^{1}\overline{h}_{1}+z^{2}\overline{h}_{2}$ , this implies that $[\mu-]_{n}=0$ , and hence
$[\phi\partial z^{i}]_{n+1}=[(\mu_{-}Z(z^{i})\overline{\omega})]_{n+1}=0$ for $i=1,2$ . Thus, we are done by
induction.
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Conversely, if $\mu_{-}=0$ , then the structure is spherical, and hence
embeddable. $I$

In fact, tracing through the arguments in this paper, one can identify
the various terms in $\mu-$ with nonvanishing Morrow-Rossi invariants; the
non-embeddability of $(S^{3}, \phi)$ corresponds to a nontrivial twisting of the
complex structure near the hyperplane at infinity.

In conclusion, we state the following infinitesimal version of the em-
bedding result from the last section.

Theorem 3.36. For $s\geq 6$ , there is a $Vs$ -neighbourhood of the
standard $CR$ structure on $S^{3}$ such that $(S^{3}, \phi)$ is embeddable if and only

if some neighbourhood of $P^{1}\subset(U, \phi)$ is biholomorphic to a neighbour-
hood of the zero section of $E$ .
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Dedicated to Professor M. Kuranishi on his 70th birthday

\S 1. Introduction

This article concerns two problems involving the Ricci curvature of
a Riemannian metric. In each of these problems, one seeks a metric
whose Ricci curvature is prescribed in advance in some manner.

Let $X$ be a manifold of dimension $n$ $\geq 3$ , whose tangent and cotan-

gent bundles we denote by $T$ and $T^{*}$ , respectively. $By\otimes^{m}E$ , $\wedge^{k}E$ and
$S^{l}E$ , we shall mean the $m$-th tensor power, $k$-th exterior product and
the $l$-th symmetric product of a vector bundle $E$ over $X$ , respectively.
Under the natural identification of $Hom(T, T^{*})$ with $T^{*}\otimes T^{*}$ , we can
view a symmetric 2-form $R$ on $X$ , that is, a section of $S^{2}T^{*}$ , as a mor-
phism $R^{b}$ : $T$ $\rightarrow T^{*};$ we shall consider the section $\det R$ of the line bundle
$Hom(\wedge^{n}T, \wedge^{n}T^{*})$ which is induced by $R^{b}$ .

The first problem consists in finding a Riemannian metric with pre-
scribed Ricci tensor. We are given a section $R$ of $S^{2}T^{*}$ over $X$ and
we seek a Riemannian metric $g$ in some neighborhood of a given point
$x_{0}\in X$ whose Ricci tensor $Ric(g)$ is equal to $R$ throughout this neigh-
borhood. The first definitive results concerning the problem of prescrib-
ing the Ricci tensor were obtained in [4]. There it was shown that, if
$R(x_{0})$ is a non-degenerate symmetric quadratic form on $T_{x_{0}}$ , then a so-
lution of this problem always exists. Examples were also given showing
that, when $R(x_{0})$ is degenerate, a solution may or may not exist. In
the present paper, our attention focuses on the problem of solving the
equation $Ric(g)=R$ when $R$ is degenerate at every point of $X$ , but has
constant rank.

The second problem we consider here is the prescription of the prin-
cipal Ricci curvatures of a Riemannian metric (without any prescription
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of the directions in which these principal curvatures are attained). If
$\{\lambda_{1}, \ldots, \lambda_{n}\}$ are given real-valued functions on $X$ , we seek a metric $g$ in
a neighborhood of $x_{0}\in X$ satisfying

$\det(Ric(g)-\lambda_{i}g)=0$ , $i=1$ , $\ldots$ , $n$ ,

on this neighborhood. If these equations hold, then these functions
$\{\lambda_{1}, \ldots, \lambda_{n}\}$ are principal Ricci curvatures of $g$ , $i$ . $e$ . if $x$ is an arbitrary
point of this neighborhood, the scalars $\lambda_{1}(x)$ , $\ldots$ , $\lambda_{n}(x)$ are eigenvalues
of $Ric(g)$ with respect to $g$ at $x$ . This study of the principal Ricci cur-
vatures in this sense has been proposed by many authors (in particular
[3, p. 315] and [1, p. 180] $)$ . The reason for their interest in this question
arises from the fact that, for generic Riemannian metrics, the principal
Ricci curvatures provide canonical coordinates in which to express the
metric. Such coordinates enable one to determine whether two Rieman-
nian manifolds are locally (or even globally) isometric. In other words,
the principal Ricci curvatures provide the key to obtaining a complete
system of scalar invariants for a Riemannian manifold. Thus, it becomes
desirable to know whether these important scalar invariants can be pre-
scribed in advance. We will consider this problem in the generic case
where the values $\{\lambda_{1}(x_{0}), \ldots, \lambda_{n}(x_{0})\}$ are all distinct.

Both of our problems manifest themselves as systems of second-order
partial differential equations for the metric $g$ . The system correspond-
ing to the second problem is underdetermined; in fact, it consists of $n$

equations for the $n(n+1)/2$ unknown components of $g$ . Thus we are
able to solve the second problem using relatively “soft” techniques. Our
main result is the following:

Theorem 1. Let $\{\lambda_{1}, \ldots, \lambda_{n}\}$ be real-analytic real-valued func-
tions on a real-analytic manifold $X$ of dimension $n\geq 3$ . Suppose that
the values $\{\lambda_{1}(x_{0}), \ldots, \lambda_{n}(x_{0})\}$ of these functions at a point $x_{0}\in X$ are
distinct. Then there exists a real-analytic Riemannian metric $g$ on $a$

neighborhood of $x_{0}$ whose principal Ricci curvatures are $\{\lambda_{1}, \ldots, \lambda_{n}\}$ .

In fact, under a slightly stronger hypothesis, the above theorem
admits an elementary proof, which is given in \S 3; our precise result can
be formulated as follows:

Theorem 2. Let $\{\lambda_{1}, \ldots, \lambda_{n}\}$ be a set of $C^{\infty}$ real-valued func-
tions on $X$ whose values $\{\lambda_{1}(x_{0}), \ldots, \lambda_{n}(x_{0})\}$ at a point $x_{0}\in X$ are
distinct. If the differentials $\{d\lambda_{1}, \ldots, d\lambda_{n}\}$ of these functions are lin-
early independent at the point $x_{0}$ , then there exists a $C^{\infty}$ Riemannian
metric $g$ defined in a neighborhood of $x_{0}$ whose principal Ricci curvatures
are $\{\lambda_{1}, \ldots, \lambda_{n}\}$ .
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The proof of Theorem 1 (in the analytic case) relies on our finding a
non-characteristic direction for the system of equations at each generic
2-jet of a Riemannian metric. This is in some ways similar to what
happened for the non-degenerate case of our first problem in [4].

Our other problem, in which we wish to prescribe a degenerate
Ricci tensor $R$ , involves some fairly delicate analysis. We will work
in the real-analytic category and attempt to construct a power series
solution centered at $x_{0}\in X$ . As is well-known, the second-order equa-
tion $Ric(g)=R$ always implies an additional system of first-order (in
both $g$ and $R$ ) equations. This is the so-called Bianchi identity for the
Ricci curvature. In [4], it was shown that, in the non-degenerate case,

the Bianchi identity is the only obstruction to the construction of the
construction of the power series solution. When one wishes to extend a
2-jet of a solution $g$ to the equation $Ric(g)=R$ to a 3-jet of a solution,
the Bianchi identity imposes a condition on the 1-jet of $g$ . More gener-
ally, the $k$-jet of the Bianchi identity must be taken into account when
specifying the $(k+1)$-jet of a solution to the equation $Ric(g)=R$ in

order to be able to extend this solution to one of order $k+2$ . In \S 4, we
explain how it is possible to overcome these obstructions.

However, when $R$ is degenerate and but still has constant rank, ad-
ditional constraints must be placed upon the unknown metric $g$ , beyond
those usually implied by the Bianchi identity. In particular, conditions
must be imposed on the 0-jet of $g$ . These make it more difficult (and
in some cases, impossible) to satisfy the higher-order prolongations of
the equation $Ric(g)=R$ . We denote by $K$ the kernel of the morphism
$R^{b}$ : $T\rightarrow T^{*}$ . In this paper, as in [6], we analyze the case where the
distribution determined by the sub-bundle $K$ of $T$ is integrable and give
a sufficient condition for local solvability of our equation. We are now in
the midst of studying the case when this distribution is not integrable.

Our analysis of this degenerate case leads us to associate to each

vector $\xi$ of the kernel $K_{x}$ of $R^{b}(x)$ , with $x\in X$ , a quadratic form $Q_{\xi}$ on
the tangent space $T_{x}$ , which depends only on $R$ and $\xi$ . The obstruction to
the local solvability of the equation $Ric(g)=R$ can then be formulated
as follows: At every point of $X$ , the $trace$ of each of these forms $Q_{\xi}$ ,

with respect to a solution $g$ of the equation $Ric(g)=R$ , must vanish.
The first positive result we obtained (see [6, Theorem 6.1]) states that, if
all these quadratic forms vanish at every point of $X$ , then the equation
$Ric(g)=R$ admits local solutions in the real-analytic category; this
includes the case when $R$ is non-degenerate. More generally, we will
also assume the space of quadratic forms $Q_{x}=\{Q_{\xi}\}$ , with $\xi\in K_{x}$ ,

associated to a point $x\in X$ has constant dimension $m$ , independent of
the point $x$ . For $x\in X$ , the null-space of the pencil $Q_{x}$ of quadratic
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forms contains $K_{x}$ , and so its dimension $l/(x)$ is $\geq m$ .

Let $(x^{1}, \ldots, x^{n})$ be a local coordinate system on a neighborhood $U$

of $x\in X$ such that $\{\partial/\partial x^{1}, \ldots, \partial/\partial x^{r}\}$ is a frame for the integrable sub-
bundle $K$ of $T$ . In terms of this coordinate system, we have $R_{ij}=0$ , for
$1\leq i\leq n$ and $1\leq j\leq r$ ; the quadratic form $Q^{k}$ corresponding to the
section $\partial/\partial x^{k}$ of $K$ over $U$ , with $1\leq k\leq r$ , is given by

$Q_{ij}^{k}=-\frac{1}{2}\frac{\partial R_{ij}}{\partial x^{k}}$ ,

for $1\leq i$ , $j\leq n$ . According to our assumption, at every point $x$ of $U$ , the
vector space of quadratic forms on $T_{x}$ generated by $\{Q^{1}(x), \ldots, Q^{r}(x)\}$

is $m$-dimensional.
If $m=0$ , then on the open set $U$ the tensor $R$ depends only on

the variables $x^{r+1}$ , $\ldots$ , $x^{n}$ . Thus, $R$ respects the local product structure
induced on $X$ by the leaves of $K$ . In this case, if $n-r\geq 3$ , or if $n-r=2$
and $R$ is semi-definite, then the results of [4] can be used to prove the
local existence of a product metric which satisfies $Ric(g)=R$ . However,
as indicated by corank-one examples on certain unimodular Lie groups
(see [6] and [11]), there may be other solutions which do not respect the
local product structure induced by $R$ on $X$ .

Our most general result for this problem can be stated as follows:

Theorem 3. Let $R$ be a real-analytic symmetric 2-form on a real-
analytic manifold $X$ of dimension $n$ $\geq 3$ . Suppose that the kernel $K$

of $R^{b}$ is an integrable sub-bundle of $T$ and that, for all $x\in M$ , the space
$Q_{x}$ of quadratic forms $\{Q_{\xi}\}$ , with $\xi\in K_{x}$ , has constant dimension $m$ .
Let $x_{0}\in X$ and suppose that there exists a Riemannian metric $g_{0}$ on $X$

such that the trace (with respect to $g_{0}$ ) of the form $Q_{\xi}$ vanishes, for all
$\xi\in K_{x_{O}}$ . Suppose that the following conditions do not hold:

(i) we have $m=2$ and $n$ $=4$ ;
(ii) we have $m=2$ , $n$ $=5$ and $I/(x_{0})=3_{\rangle}$.

(iii) we have $m=3$ and $n$ $=6$ .
Then there exists a real-analytic Riemannian metric $g$ solution of the
equation $Ric(g)=R$ on a neighborhood of $x_{0}$ .

This theorem tells us that, when the dimension of $X$ is $\geq 7$ and $K$

is an integrable sub-bundle of $T$ , our condition for local solvability is
always sufficient. When the dimension of the spaces $Q_{x}$ is either zero
or one, then our proof is somewhat less complicated than in the case
$m\geq 2$ ; the cases $m=2$ or 3 require special attention.

In the special case when the kernel $K$ of $R^{b}$ is a line bundle, the
obstruction to local solvability described above and Theorem 3 lead to
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a condition, which is essentially necessary and sufficient, given by the
following result:

Theorem 4. Let $R$ be a real-analytic symmetric 2-form on a real-
analytic manifold $X$ of dimension $n$ $\geq 3$ . Suppose that the kernel $K$

of $R^{b}$ is a sub-bundle of $T$ of rank 1. Let $x\in M$ and $\xi\in K_{x}$ . If $Q_{\xi}$

is non-zero, there exists a Riemannian metric $g$ solution of the equation
$Ric(g)=R$ on a neighborhood of $x$ if and only if $Q_{\xi}$ is not semi-definite.

The necessity of the condition is obvious, since $Q_{\xi}$ must ultimately
be traceless with respect to the metric $g$ . We present an outline of the
proof of these last two theorems in \S 4. For all the details, we refer the
reader to [6].

In this paper, we shall use the theory of overdetermined partial
differential equations of [9] or [2, Chapter $IX$ ] and the the notation and
terminology introduced there.

We wish to thank R. Bryant and S. S. Chern for organizing a con-
ference in March 1994 at the Mathematical Sciences Research Institute
in Berkeley, where a preliminary version of Theorems 3 and 4 were pre-
sented. We thank M. Berger for suggesting the problem that led us to
Theorem 1. Finally, we wish to thank M. Namba, K. Yamaguchi and the
other organizers of the conference in honor of M. Kuranishi, for which
this paper was written.

\S 2. The Ricci and Bianchi operators

If $E$ is a fibered manifold over $X$ , we denote by $J_{k}(E)$ the fibered
manifold of $k$-jets of sections of $E$ , and by $\pi_{k}$ : $J_{k+l}(E)\rightarrow J_{k}(E)$ the
natural projection. If $s$ is a section of $E$ over a neighborhood of $x\in X$ ,
then $j_{k}(s)(x)$ is the $k$-jet of $s$ at $x$ ; the projection $\pi$ : $J_{k}(E)\rightarrow X$ sends
$j_{k}(s)(x)$ into $x$ . We identify Jo(E) with $E$ . If $E$ is a vector bundle
over $X$ , we denote by $\mathcal{E}$ the sheaf of sections of $E$ over $X$ and we recall
that there is a monomorphism of vector bundles

$\in:S^{k}T^{*}\otimes E\rightarrow J_{k}(E)$ ;

if $s$ is a section of $E$ over a neighborhood of $x\in X$ whose $(k-1)$-jet
vanishes at $x$ , then $j_{k}(s)(x)$ is equal to the image $under\in of$ a unique
element $\in 1j_{k}-(s)(x)$ of $S^{k}T^{*}\otimes E$ . If $F$ is another vector bundle over $X$

and
$\varphi$ : $S^{2}T^{*}\otimes E\rightarrow F$

is a morphism of vector bundles, we denote by

$\varphi^{(l)}$ : $S^{k+l}T^{*}\otimes E\rightarrow S^{l}T^{*}\otimes F$
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the $l$-th prolongation of $\varphi$ . If $R$ is a non-degenerate section of $S^{2}T^{*}$ , we
consider the morphism $R^{\mathfrak{y}}$ : $T^{*}\rightarrow T$ which is the inverse of $R^{b}$ : $T\rightarrow T^{*}$ .

Let $g$ be a Riemannian metric on $X$ whose Levi-Civita connection
and Ricci curvature we denote by $\nabla^{g}$ and $Ric(\#)$ , respectively. We con-

sider the inner product $\langle, \rangle_{g}on\otimes^{k}T^{*}$ determined by $g$ ; then the $trace$ ,

with respect to $g$ , of an element $h$ of $S^{2}T^{*}$ is equal to $Tr_{g}h=\langle h, g\rangle_{g}$ .

Let $(x^{1}, \ldots, x^{n})$ be a coordinate system on an open subset $U$ of $X$ . In
expressions written in terms of such a local coordinate system, we shall
use the summation convention. On $U$ , the Levi-Civita connection $\nabla^{g}$ of
$g$ is determined by its Christoffel symbols

$\Gamma_{jk}^{i}=\frac{1}{2}g^{is}(\frac{\partial g_{sj}}{\partial x^{k}}+\frac{\partial g_{sk}}{\partial x^{j}}-\frac{\partial gjk}{\partial x^{8}})$ ,

while the components of the Ricci tensor $Ric(g)$ are given by

$Ric(g)_{ij}=\partial x^{s}$
$\underline{\partial\Gamma_{ij}^{s}}-\frac{\partial\Gamma_{is}^{s}}{\partial x^{j}}+\Gamma_{ij}^{s}\Gamma_{st}^{t}-\Gamma_{it}^{s}\Gamma_{sj}^{t}$ .

The Bianchi operator
$B_{g}$ : $S^{2}\mathcal{T}^{*}\rightarrow \mathcal{T}^{*}$

is the first-order linear differential operator defined by

$(B_{g}h)(\xi)=\sum_{i=1}^{n}((\nabla^{g}h)(t_{i}, \xi, t_{i})-\frac{1}{2}(\nabla^{g}h)(\xi, t_{i}, t_{i}))$ ,

for a section $h$ of $S^{2}T^{*}$ over $X$ and $\xi\in T_{x}$ , with $x\in X$ , where $\{t_{1}, \ldots, t_{n}\}$

is an orthonormal basis of $T_{x}$ . We also write $B_{g}h=Bian(g, h)$ ; in fact,
on $U$ we have

(1) $B_{g}h=g^{ik}(\frac{\partial h_{ij}}{\partial x^{k}}-\frac{1}{2}\frac{\partial h_{ik}}{\partial x^{j}}-\Gamma_{ik}^{l}h_{lj})dx^{j}$ .

The symbol
$\sigma(B_{g})$ : $T^{*}\otimes S^{2}T^{*}\rightarrow T^{*}$

of the differential operator $B_{g}$ is given by

$(\sigma(B_{g})u)(\xi)=\sum_{i=1}^{n}(u(t_{i}, t_{i}, \xi)-\frac{1}{2}u(\xi, t_{i}, t_{i}))$ ,

for $\xi\in T_{x}$ , where $\{t_{1}, \ldots, t_{n}\}$ is an orthonormal basis of $T_{x}$ ; we denote
by $\sigma_{l}(B_{g})$ : $S^{l+1}T^{*}\otimes S^{2}T^{*}\rightarrow S^{l}T^{*}\otimes T^{*}$ the $l$-th prolongation of $\sigma(B_{g})$ .
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The Ricci curvature of $g$ satisfies the Bianchi identity

(2) $B_{g}Ric(g)=0$ .

Let $S_{+}^{2}T^{*}$ be the open fibered submanifold of $S^{2}T^{*}$ consisting of
the positive-definite symmetric 2-forms on $X$ . Let $E$ and $F$ be vector
bundles over $X$ and let $\psi$ : $E\rightarrow F$ be a morphism of vector bundles over
$J_{k}(S_{+}^{2}T^{*})$ . If $g$ is a Riemannian metric on $X$ , we consider the morphism

of vector bundles $\psi_{g}$ : $E\rightarrow F$ over $X$ sending $u\in E_{x}$ into $\psi(j_{k}(g)(x), u)$ ,

where $x\in X$ .

The morphism of fibered manifolds

$\varphi$ : $J_{2}(S_{+}^{2}T^{*})\rightarrow S^{2}T^{*}$ ,

sending the 2-jet $j_{2}(g)(x)$ at $x\in X$ of a Riemannian metric $g$ on $X$ into
$Ric(g)(x)$ , is quasi-linear in the sense of [2, Chapter $IX$]. The symbol

$\sigma(\varphi)$ : $S^{2}T^{*}\otimes S^{2}T^{*}\rightarrow S^{2}T^{*}$

of $\varphi$ is the morphism of vector bundles over $J_{1}(S_{+}^{2}T^{*})$ satisfying

$\varphi(p+\in u)=\varphi(p)+\sigma(\varphi)_{\pi_{1}p}u$ ,

for all $p\in J_{2}(S_{+}^{2}T^{*})$ , $u\in S^{2}T^{*}\otimes S^{2}T^{*}$ . If $g$ is a Riemannian metric
on $X$ , the morphism of vector bundles

$\sigma(\varphi)_{g}$ : $S^{2}T^{*}\otimes S^{2}T^{*}\rightarrow S^{2}T^{*}$

over $X$ is given by

$(\sigma(\varphi)_{g}u)(\xi, \eta)=\frac{1}{2}\sum_{i=1}^{n}\{u(t_{i}, \xi, t_{i}, \eta)+u(t_{i}, \eta, t_{i}, \xi)$

$-u(t_{i}, t_{i}, \xi, \eta)-u(\xi, \eta, t_{i}, t_{i})\}$ ,

for $u\in(S^{2}T^{*}\otimes S^{2}T^{*})_{x}$ and $\xi$ , $\eta\in T_{x}$ , where $x\in X$ and $\{t_{1}, \ldots, t_{n}\}$ is
an orthonormal basis of $T_{x}$ . The $l$-th prolongation

$p\iota(\varphi)$ : $J_{l+2}(S_{+}^{2}T^{*})\rightarrow J_{l}(S^{2}T^{*})$

of $\varphi$ is quasi-linear; if $\sigma_{l}(\varphi)_{g}$ is the $l$-th prolongation of $\sigma(\varphi)_{g}$ , then we
have

$p_{l}(\varphi)(q+\in u)=\varphi(p)+\sigma_{l}(\varphi)_{g}u$ ,

for all $q\in J_{l+2}(S_{+}^{2}T^{*})$ and $u\in S^{l+2}T^{*}\otimes S^{2}T^{*}$ , with $\pi_{1}q=j_{1}(g)(x)$ .
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We set $S^{l}T^{*}=0$ for $l$ $<0$ . Let $g$ be a Riemannian metric on $X$ and
let

$\mu_{g}$ : $(S^{l}T^{*}\otimes S^{2}T^{*})\oplus(S^{l+1}T^{*}\otimes T^{*})\rightarrow S^{l-1}T^{*}\otimes T^{*}$

be the morphism of vector bundles sending $u\oplus v$ , with $u\in S^{l}T^{*}\otimes S^{2}T^{*}$

and $v\in S^{l+1}T^{*}\otimes T^{*}$ , into $\sigma_{l-1}(B_{g})u$ .

From Lemma 3.1 of [6] (with $K=\{0\}$ ) (see also [4] and [2], Chap-
ter $IX$), we obtain the following:

Lemma 1. Let $g$ be a Riemannian metric on X. The morphism

of vector bundles $\sigma(\varphi)_{g}$ : $S^{2}T^{*}\otimes S^{2}T^{*}\rightarrow S^{2}T^{*}$ is surjective and the
sequences

$S^{l+2}T^{*}\otimes S^{2}T^{*}\underline{\sigma\iota(\varphi)_{g}\oplus\sigma_{l+1}(B_{g})}$

(3)
$(S^{l}T^{*}\otimes S^{2}T^{*})\oplus(S^{l+1}T^{*}\otimes T^{*})\rightarrow S^{l-1}T^{*}\mu_{g}\otimes T^{*}\rightarrow 0$

are exact for all $l$ $\geq 0$ .

From Lemma 1, we obtain the exact sequences

(4)
$S^{l+2}T^{*}\otimes S^{2}T^{*}\rightarrow S^{l}T^{*}\sigma_{l}(\varphi)_{g}\otimes S^{2}T^{*}\sigma_{l-1}(B_{g})\rightarrow S^{l-1}T^{*}\otimes T^{*}\rightarrow 0$

,

for all $l$ $\geq 0$ . If $\beta\in T_{x}^{*}$ , with $x\in X$ , we consider the morphisms

$\sigma_{\beta}(\varphi)_{g}$ : $S^{2}T_{x}^{*}\rightarrow S^{2}T_{x}^{*}$ , $\sigma_{\beta}(B_{g})$ : $S^{2}T_{x}^{*}\rightarrow T_{x}^{*}$

defined by

$\sigma_{\beta}(\varphi)_{g}h=\sigma(\varphi)_{g}(\beta\otimes\beta\otimes h)$ , $\sigma_{\beta}(B_{g})(\beta\otimes h)$ ,

for $h\in S^{2}T_{x}^{*}$ . According to [8, \S 6], if $\beta$ is a non-zero vector of $T_{x}^{*}$ , with
$x\in X$ , the exactness of the sequences (4) gives us the exact sequence

(5)
$S^{2}T_{x}^{*}\sigma_{\beta}(\varphi)_{g}\rightarrow S^{2}T_{x}^{*}\sigma_{\beta}(B_{g})\rightarrow T_{x}^{*}\rightarrow 0$

.

Now let $x_{0}$ be an arbitrary point of $X$ and $\rho$ be an element of $S^{2}T_{x_{0}}^{*}$ .

From the surjectivity of the morphism $\sigma(\varphi)_{g}$ , we infer that the equation
$Ric(g)(x_{0})=\rho$ can always be solved. In fact, we may assume without
loss of generality that $X=\mathbb{R}^{n}$ and that $x_{0}$ is the origin of $\mathbb{R}^{n}$ . The
surjectivity of the morphism $\sigma(\varphi)_{go}$ tells us that there is an element
$u\in(S^{2}T^{*}\otimes S^{2}T^{*})_{x_{O}}$ satisfying $\sigma(\varphi)_{go}u=\rho$ . Then the symmetric
tensor $g$ given by

$g_{ij}=\delta_{ij}+\frac{1}{2}u_{ij,kl}x^{k}x^{l}$



68 D. DeTurck and H. Goldschmidt

is a Riemannian metric on a neighborhood of $x_{0}$ satisfying the desired
condition.

It is obvious how to use this fact for the prescribed Ricci tensor
problem; for our eigenvalue problem, in Lemma 2 below we shall choose
$\rho$ to be diagonal with respect to the coordinate system so that our metric
will have the desired principal Ricci curvatures at one point.

We now turn to the relation of the Bianchi identity to our problems.
Let $R$ be a given section of $S^{2}T^{*}$ . The morphism of fibered manifolds

$\psi_{R}$ : $J_{1}(S_{+}^{2}T^{*})\rightarrow T^{*}$ ,

sending the 2-jet $j_{2}(g)(x)$ at $x\in X$ of a Riemannian metric $g$ on $X$ into
Bian(g, $R$) $(x)$ , is quasi-linear. The symbol

$\sigma(\psi_{R})$ : $T^{*}\otimes S^{2}T^{*}\rightarrow T^{*}$

of $\psi_{R}$ is a morphism of vector bundles over $S_{+}^{2}T^{*}$ which satisfies

$\psi_{R}(p+\in u)=\psi_{R}(p)+\sigma(\psi_{R})_{\pi_{0}p}u$ ,

for all $p\in J_{1}(S_{+}^{2}T^{*})$ , $u\in T^{*}\otimes S^{2}T^{*};$ in fact, this morphism is determined
by

(6) $\sigma(\psi_{R})_{g}=-R^{bQ}\circ g\circ\sigma(B_{g})$ ,

where $g$ is a Riemannian metric on $X$ .
The most direct evidence that the Bianchi identity Bian(g, $R$ ) $=0$

provides us with an obstruction to finding solutions of the equation
$Ric(g)=R$ or solutions of the principal Ricci curvature problem arises
from the exactness of the sequence (4), with $l$ $=1$ , when one attempts
to solve the equation $Ric(g)=R$ to first-order at a point of $X$ . For
the principal Ricci curvature problem, in Lemma 2 below we are able
to satisfy this obstruction easily, because we may choose $R$ and $g$ simul-
taneously. The implications of the Bianchi identity for the prescribed
Ricci curvature problem are more subtle and shall be examined in \S 4.

\S 3. Prescribing the principal curvatures

This section is devoted to the proofs of Theorems 1 and 2 of the
introduction. If $g$ is a Riemannian metric on $X$ and $R$ is a section
of $S^{2}T^{*}$ , we denote by $\det_{g}R$ the real-valued function on $X$ which is

equal to the determinant of the endomorphism $g^{\mathfrak{y}}oR^{b}$ of $T$ . Then we
easily see that the section $\det R$ of the line bundle $Hom(\wedge^{n}T, \wedge^{n}T^{*})$

vanishes at $x\in X$ if and only if the function $\det_{g}R$ vanishes at $x$ . In
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particular, we know that $\lambda\in \mathbb{R}$ is an eigenvalue of $Ric(g)$ with respect
to $g$ at $x$ if and only if the function $\det_{g}(Ric(g)-\lambda g)$ vanishes at $x\in X$ ,

or equivalently if $\det(Ric(g)-\lambda g)(x)=0$ .
We shall require the following lemma in our proof of Theorem 2.

Lemma 2. Let $g_{0}$ be a Riemannian metric on X. Let $\lambda_{1}$ , $\ldots$ , $\lambda_{n}$

be given distinct real numbers. Then there exists a Riemannian met-
ric $g$ on a neighborhood $U$ of $x_{0}\in X_{\rangle}$ with $g(x_{0})=g0(x_{0})$ , such that
the eigenvalues $\mu_{1}$ , $\ldots$ , $\mu_{n}$ of $Ric(g)$ with respect to $g$ are $C^{\infty}$ -functions
on $U$ whose differentials are linearly independent at $x_{0}$ and which satisfy
$\mu_{j}(x_{0})=\lambda_{j_{\rangle}}$ for $1\leq j\leq n$ .

Proof. We may assume without loss of generality that $X=\mathbb{R}^{n}$ ,
that $x_{0}$ is the origin of $\mathbb{R}^{n}$ and that

$g_{0,ij}(x_{0})=\delta_{ij}$ .

Consider the section $\rho$ of $S^{2}T^{*}$ determined by

$\rho_{ij}=\lambda_{j}\delta_{ij}+(n\delta_{ij}-1)(x_{i}+x_{j})$ .

As we have seen in \S 2, there is an element $u\in(S^{2}T^{*}\otimes S^{2}T^{*})_{x_{O}}$ satisfying
$\sigma(\varphi)_{go}u=\rho(x_{0})$ and the symmetric tensor $g$ given by

$g_{ij}=\delta_{ij}+\frac{1}{2}u_{ij,kl}x^{k}x^{l}$

is a Riemannian metric on a neighborhood $U$ of $x_{0}$ which satisfies

$Ric(g)(x_{0})=\rho(x_{0})$ .

Clearly $\lambda_{1}$ , $\ldots$ , $\lambda_{n}$ are the eigenvalues of $\rho(x_{0})$ with respect to the metric
$g(x_{0})=g0(x_{0})$ . Since these scalars are distinct, there are $C^{\infty}$ -functions
$\tilde{\lambda}_{1}$ , $\ldots,\tilde{\lambda}_{n}$ and an orthonormal frame $\{\xi_{1}, \ldots, \xi_{n}\}$ for $T$ , with respect to

the metric $g$ , over an neighborhood $U’\subset U$ of $x_{0}$ such that $\tilde{\lambda}_{j}(x_{0})=\lambda_{j}$

and

(7) $\rho(\xi_{j}, \eta)=\tilde{\lambda}_{j}g(\xi_{j}, \eta)$ ,

for all vector fields $\eta$ on $U’$ and $1\leq j\leq n$ . Let $\zeta$ be a vector field on $U’$ .
From relation (7), with $\eta=\xi_{j}$ and $1\leq j\leq n$ , we obtain

(8) $(\nabla_{\zeta}^{g}\rho)(\xi_{j}, \xi_{j})+2\rho(\xi_{j}, \nabla_{\zeta}^{g}\xi_{j})=\langle\zeta, d\tilde{\lambda}_{j}\rangle+\tilde{\lambda}_{j}g(\xi_{j}, \nabla_{\zeta}^{g}\xi_{j})$ .

Since $\xi_{j}$ is a unitary vector field, we see that $g(\xi_{j}, \nabla_{\zeta}^{g}\xi_{j})=0$ and so

by (7) we also have

$\rho(\xi_{j}, \nabla_{\zeta}^{g}\xi_{j})=\tilde{\lambda}_{j}g(\xi_{j}, \nabla_{\zeta}^{g}\xi_{j})=0$ .
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Hence the equality (8) gives us

$(\nabla_{\zeta}^{g}\rho)(\xi_{j}, \xi_{j})=\langle\zeta, d\tilde{\lambda}_{j}\rangle$ .

Since $\xi_{k}=\partial/\partial x^{k}$ at $x_{0}$ and $\Gamma_{ij}^{k}(x_{0})=0$ for the metric $g$ , from the

definition of $\rho$ we see that

$(\nabla_{\xi_{k}}^{g}\rho)(\xi_{i}, \xi_{j})(x_{0})=\frac{\partial\rho_{ij}}{\partial x^{k}}(x_{0})=(n-\delta_{ij})(\delta_{ik}+\delta_{jk})$ ,

for $1\leq i,j$ , $k\leq n$ . Thus we have $d\tilde{\lambda}_{j}=2(n-1)dx^{j}$ at $x_{0}$ , and so the

differentials of the eigenvalues $\tilde{\lambda}_{j}$ are linearly independent at $x_{0}$ . Using
(1) and (2), it is easily verified that the section $ h=Ric(g)-\rho$ , which
vanishes at $x_{0}$ , satisfies the Bianchi identity $B_{g}h=0$ at $x_{0}$ . Thus we
know that

$\sigma(B_{g})\in 1j_{1}-(h)(x_{0})=0$ ,

and so by the exactness of the sequence (4), with $l$ $=1$ , there is an
element $v$ of $(S^{3}T^{*}\otimes S^{2}T^{*})_{x_{0}}$ satisfying

$\sigma_{1}(\varphi)_{g}v=-\in 1j_{1}-(h)(x_{0})$ .

Then a Riemannian metric $\tilde{g}$ on a neighborhood of $x_{0}$ , whose 3-jet at $x_{0}$

is equal to $j_{3}(g)(x_{0})+\in v$ , satisfies the relations

(9) $j_{2}(\tilde{g})(x_{0})=j_{2}(g)(x_{0})$ , $j_{1}(Ric(\tilde{g})-\rho)(x_{0})=0$ .

Clearly there are $C^{\infty}$ -functions $\{\mu_{1}, \ldots, \mu_{n}\}$ , which are eigenvalues of
$Ric(\tilde{g})$ with respect the metric $\tilde{g}$ , such that $\mu_{j}(x_{0})=\lambda_{j}$ , for $1\leq j\leq n$ .

From the equalities (9), we infer that $j_{1}(\mu_{j})(x_{0})=j_{1}(\tilde{\lambda}_{j})(x_{0})$ ; hence the
differentials of the functions $\{\mu_{1}, \ldots, \mu_{n}\}$ are linearly independent at $x_{0}$ .

Proof of Theorem 2. Let $g_{0}$ be a given Riemannian metric on $X$

and let $g$ be a Riemannian metric on a neighborhood of $x_{0}$ satisfying
the assertions of Lemma 2 with respect to the distinct real numbers
$\{\lambda_{1}(x_{0}), \ldots, \lambda_{n}(x_{0})\}$ and $g_{0}$ . Since their differentials are linearly inde-
pendent at $x_{0}$ , the eigenvalues $\mu_{1}$ , $\ldots$ , $\mu_{n}$ of $Ric(g)$ with respect to $g$

define a diffeomorphism $\mu=(\mu_{1}, \ldots, \mu_{n})$ of an open neighborhood of $x_{0}$

onto an open neighborhood of $y_{0}=(\lambda_{1}(x_{0}), \ldots, \lambda_{n}(x_{0}))$ in $\mathbb{R}^{n}$ . Simi-
larly by hypothesis, the mapping $\lambda=(\lambda_{1}, \ldots, \lambda_{n})$ is a diffeomorphism
of an open neighborhood of $x_{0}$ onto an open neighborhood of $y_{0}$ in $\mathbb{R}^{n}$ .
Thus $\mu^{-1}\circ\lambda$ is a local diffeomorphism $\Psi$ of $X$ defined on a neighborhood
of $x_{0}$ such that $\mu\circ\Psi=\lambda$ on a neighborhood of $x_{0}$ . Because

$\det(\Psi^{*}(Ric(g)-\mu_{j}g))=0$
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and $\lambda_{j}=\Psi^{*}\mu_{j}$ , we see that $\Psi^{*}g$ is a metric on a neighborhood of $x_{0}$

satisfying
$\det(Ric(\Psi^{*}g)-\lambda_{j}\Psi^{*}g)=0$ ,

for alll $\leq j\leq n$ .

The remainder of this section is devoted to the proof of Theorem 1.
Let $A_{n}$ be the affine space of all real monic polynomials in the variable $\lambda$

of degree $n$ , which is modeled on the vector space $V_{n-1}$ of all real poly-
nomials in the variable $\lambda$ of degree $\leq n-1$ . Let $E$ and $F$ be the trivial
bundles over $X$ whose fibers are equal to $A_{n}$ and $V_{n-1}$ , respectively.
Then $F$ is an affine bundle over $X$ modeled on the vector bundle $E$ . We
consider the morphism of fibered manifolds

$\Phi$ : $J_{2}(S_{+}^{2}T^{*})\rightarrow F$,

sending the 2-jet $j_{2}(g)(x)$ at $x\in X$ of a Riemannian metric $g$ on $X$ into
the monic polynomial $(-1)^{n}\det_{g}(Ric(g)-\lambda g)(x)$ in the variable $\lambda$ . The
symbol of $\Phi$ is the morphism

$\sigma(\Phi)$ : $S^{2}T^{*}\otimes S^{2}T^{*}\rightarrow E$

of vector bundles over $J_{2}(S_{+}^{2}T^{*})$ defined as follows. If $g$ is a Riemannian

metric on $X$ and $h$ is a section of $S^{2}T^{*}$ over a neighborhood of $x\in X$

satisfying $j_{1}(h)(x)=0$ , then $g+th$ is a Riemannian metric on neighbor-
hood of $x$ for $|t|<\epsilon$ , with $\epsilon>0$ ; the morphism $\sigma(\Phi)_{g}$ sends the element
$\in 1j_{2}-(h)(x)$ of $(S^{2}T^{*}\otimes S^{2}T^{*})_{x}$ into the vector $\frac{d}{dt}\Phi(g+th)_{|t=0}$ of $E_{x}$ .

Let $g$ be a Riemannian metric on $X$ and $x\in X$ . Let $\{\lambda_{1}, \ldots, \lambda_{n}\}$

be the eigenvalues of $Ric(g)$ with respect to $g$ at $x$ ; then there is an
orthonormal basis $\{\xi_{1}, \ldots, \xi_{n}\}$ of $T_{x}$ , with respect to the metric $g$ , con-
sisting of eigenvectors for $Ric(g)$ satisfying

(10) $g^{\Downarrow}\cdot Ric(g)^{b}\xi_{j}=\lambda_{j}\xi_{j}$ ,

for 1 $\leq j\leq n$ . Let $Ric_{g}’$ : $S^{2}I^{*}\rightarrow S^{2}I^{*}$ be the linear differential

operator of order 2 which is the linearization along $g$ of the non-linear
operator $h\mapsto Ric(h)$ , where $h$ is a Riemannian metric on $X$ . Let $h$ be
a section of $S^{2}T^{*}$ over $X$ . For $|t|<\epsilon$ , we know that $g_{t}=g+th$ is a
Riemannian metric on a neighborhood of $x$ ; by definition, we have

$Ric_{g}’(h)=\frac{d}{dt}Ric_{g}(g+th)_{|t=0}$ .

For $|t|<\epsilon$ and $\lambda\in \mathbb{R}$ , we consider the endomorphism

$B_{t}^{\lambda}=g_{t}^{Q}\circ Ric(g_{t})^{b}-\lambda id$
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of $T_{x}$ ; then it is easily seen that

$B=\frac{d}{dt}B_{t|t=0}^{\lambda}=(g^{A}oRic_{g}’(h)^{b}-g^{\mathfrak{p}b\beta}ohogoRic(g)^{b})(x)$ .

Clearly the vector

$p(\lambda)=\frac{d}{dt}\det_{g_{t}}(Ric(g_{t})-\lambda g_{t})(x)_{|t=0}$

of $V_{n-1}$ is determined by the relation

$\sum_{\dot{x}=1}^{n}B_{0}^{\lambda}\xi_{1}\wedge\ldots\wedge B_{0}^{\lambda}\xi_{i-1}\wedge B\xi_{i}\wedge B_{0}^{\lambda}\xi_{i+1}\wedge\ldots\wedge B_{0}^{\lambda}\xi_{n}=p(\lambda)\xi_{1}\wedge\ldots\wedge\xi_{n}$ ,

for $\lambda\in \mathbb{R}$ . According to (10), for $1\leq i\leq n$ , we have $B_{0}^{\lambda}\xi_{i}=(\lambda_{\dot{0}}-\lambda)\xi_{i}$

and we see that

$ g(B\xi_{i}, \xi_{i})=Ric_{g}’(h)(\xi_{i}, \xi_{i})-\langle\xi_{i}, h^{b}. g^{\Downarrow}\cdot Ric(g)^{b}\xi_{i}\rangle$

$=Ric_{g}’(h)(\xi_{i}, \xi_{i})-\lambda_{i}h(\xi_{i}, \xi_{i})$ .

For $1\leq i\leq n$ , we consider the polynomial

$P_{i}(\lambda)=j_{-}^{-}1\prod_{j\neq i}^{n}(\lambda_{j}-\lambda)$

of $V_{n-1}$ . From the previous relations, we obtain the equality

(11) $p(\lambda)=\sum_{i=1}^{n}(Ric_{g}’(h)-\lambda_{i}h)(\xi_{i}, \xi_{i})\cdot P_{i}(\lambda)$ .

Since the symbol of the differential operator $Ric_{g}’$ is equal to $\sigma(\varphi)_{g}$ ,

from (11) we deduce that the morphism $\sigma(\Phi)_{g}$ at $x$ is given by

(12) $\sigma(\Phi)_{g}u=(-1)^{n}\sum_{i=1}^{n}(\sigma(\varphi)_{g}u)(\xi_{i}, \xi_{i})\cdot P_{i}(\lambda)$ ,

for $u\in(S^{2}T^{*}\otimes S^{2}T^{*})_{x}$ . If $\beta\in T_{x}^{*}$ , let

(13) $\sigma_{\beta}(\Phi)_{j_{2}(g)(x)}$ : $S^{2}T_{x}^{*}\rightarrow E_{x}$
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be the mapping sending the element $v$ of $S^{2}T_{x}^{*}$ into $\sigma(\Phi)_{g}(\beta\otimes\beta\otimes v)$ ;
thus we have

(14) $\sigma_{\beta}(\Phi)_{j_{2}(g)(x)}v=(-1)^{n}\sum_{i=1}^{n}(\sigma_{\beta}(\varphi)_{g}v)(\xi_{?}., \xi_{i})\cdot P_{i}(\lambda)$ ,

for $v\in S^{2}T_{x}^{*}$ .

Now assume that the eigenvalues $\{\lambda_{1}, \ldots, \lambda_{n}\}$ are distinct. Then
the $n$ polynomials $\{P_{1}, \ldots, P_{n}\}$ of degree $n$ $-1$ form a basis for $V_{n-1}$ ;

this fact follows from the relations $P_{i}(\lambda_{i})\neq 0$ and $P_{i}(\lambda_{j})=0$ when $j\neq i$ .

Let $\beta$ be a non-zero vector of $T_{x}^{*};$ we write $\beta_{i}=\beta(\xi_{i})$ , for $1\leq i\leq n$ .

According to formula (14), the mapping (13) is surjective if and only if

the mapping $S^{2}T_{x}^{*}\rightarrow \mathbb{R}^{n}$ , which sends an element $v$ of $S^{2}T_{x}^{*}$ into the
$n$ tuple

$((\sigma_{\beta}(\Phi)_{g}v)(\xi_{i}, \xi_{i}))_{1\leq i\leq n}$ ,

is surjective. From the exactness of the sequence (5), we infer that the
mapping (13) is surjective if and only if, given an arbitrary element
$y=(y_{1}, \ldots, y_{n})\in \mathbb{R}^{n}$ , there exists $v\in S^{2}T_{x}^{*}$ satisfying $v(\xi_{i}, \xi_{i})=y_{i}$ for
all $1\leq i\leq n$ and $\sigma_{\beta}(B_{g})v=0$ . Hence the mapping (13) is surjective if
and only if the following assertion holds: for all $y=(y_{1}, \ldots, y_{n})\in \mathbb{R}^{n}$ ,

there exists an $n\times n$ symmetric matrix $A=(a_{ij})_{1\leq i,j\leq n}$ satisfying $a_{ii}=0$

and

(15) $\sum_{j=1}^{n}\beta_{j}a_{ij}=\beta_{i}z_{i}$ ,

where

$z_{i}=-y_{i}+\frac{1}{2}\sum_{j=1}^{n}y_{j}$ ,

for all $1\leq i\leq n$ . If we set $m=n(n-1)/2$ , we may view the equa-
tions (15) as a system of linear equations

(16) $(CA)_{i}=\beta_{i}z_{i}$ , $i=1$ , $\ldots$ , $n$ ,

where the matrix $A$ is viewed as a vector in $\mathbb{R}^{m}$ and $C$ is a given $n\times m-$

matrix each of whose entries is equal either to 0 or to one of the $\beta_{j}$ ’s.
We then see that our condition for the surjectivity of the mapping (13)
can be reformulated as follows: for all $z=(z_{1}, \ldots, z_{n})\in \mathbb{R}^{n}$ , we can
solve the system (16) for $A\in \mathbb{R}^{m}$ . If $1\leq i,j$ , $k\leq n$ are distinct integers,
it is easily verified that the matrix $C$ possesses an $n\times n$-minor whose
determinant is equal to $\pm 2\beta_{i}^{n-2}\beta_{j}\beta_{k}$ . On the other hand, if there are
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at most two non-vanishing coefficients $\beta_{j}$ of $\beta$ , it is easily seen that this
last condition for the surjectivity of (13) does not hold. Thus we have
proved the following lemma:

Lemma 3. Let $g$ be a Riemannian metric on X. Assume that
the eigenvalues $\{\lambda_{1}, \ldots, \lambda_{n}\}$ of $Ric(g)$ with respect to $g$ at $x\in X$ are
distinct. Let $\{\xi_{1}, \ldots, \xi_{n}\}$ be an orthonormal basis of $T_{x\rangle}$ with respect to $g_{\rangle}$

consisting of eigenvectors for $Ric(g)$ and satisfying the relations (10), for
$1\leq j\leq n$ . If $\beta$ is a vector of $T_{x}^{*}$ , then the mapping (13) is surjective

if and only if there exist three distinct integers $1\leq i,j$ , $k\leq n$ such that
$\beta(\xi_{i})\cdot\beta(\xi_{j})\cdot\beta(\xi_{k})\neq 0$ .

Let $N_{2}’$ be the subset of $J_{2}(S_{+}^{2}T^{*})$ consisting of all 2-jets $j_{2}(g)(x)$ ,

where $x\in X$ and $g$ is a Riemannian metric on $X$ for which the eigen-
values of $Ric(g)(x)$ with respect to $g(x)$ are distinct. According to
Lemma 2, we see that $N_{2}’$ is an open fibered submanifold of $J_{2}(S_{+}^{2}T^{*})$ ,

with $\pi_{0}N_{2}’=S_{+}^{2}T^{*}$ .

Let $\{\lambda_{1}, \ldots, \lambda_{n}\}$ be given real-valued functions on $X$ ; assume that,
for all $x\in X$ , we have $\lambda_{i}(x)\neq\lambda_{j}(x)$ , for $i\neq j$ . We consider the
$A_{n}$-valued function

$P(\lambda)=\prod_{j=1}^{n}(\lambda-\lambda_{j})$

on $X$ and the subset

$N_{2}=$ { $p\in N_{2}’|\Phi(p)=P(\lambda)(x)$ , where $x=\pi(p)$ }

of $J_{2}(S_{+}^{2}T^{*})$ . Clearly, if a Riemannian metric $g$ satisfies $\Phi(j_{2}(g))=$

$P(\lambda)$ at $x\in X$ , then the eigenvalues of its Ricci tensor with respect
to $g$ at $x$ are equal to $\{\lambda_{1}(x), \ldots, \lambda_{n}(x)\}$ . By Lemma 2, we know that
$P(X)\subset\Phi(N_{2}’)$ . If $p\in N_{2}’$ and $x=\pi(p)$ , according to Lemma 3 there
exists an element $\beta$ of $T_{x}^{*}$ such that the mapping $\sigma_{\beta}(\Phi)_{p}$ : $S^{2}T_{x}^{*}\rightarrow E_{x}$

is surjective. From Lemma 1 of [7], we obtain:

Proposition 1. Let $\{\lambda_{1}, \ldots, \lambda_{n}\}$ be given real-valued functions
on $X_{\dot{z}}$ assume that, for all $x\in X$ , we have $\lambda_{i}(x)\neq\lambda_{j}(x)$ , for $i\neq j$ .

Then the subset $N_{2}$ of $J_{2}(S_{+}^{2}T^{*})$ is a formally integrable differential
equation.

Thus $N_{2}$ is an underdetermined differential equation. If the mani-
fold $X$ is real-analytic and if the functions $\{\lambda_{1}, \ldots, \lambda_{n}\}$ are real-analytic,
Theorem 2.2, Chapter $IX$ of [9] provides us with the existence of local
solutions of the equation $N_{2}$ ; in fact, if $x\in X$ , it gives us a real-analytic
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Riemannian metric $g$ satisfying $\Phi(j_{2}(g))=P(\lambda)$ on a neighborhood
of $x\in X$ . This completes the proof of Theorem 1.

\S 4. Prescribing the Ricci tensor

Let $R$ be a given section of $S^{2}T^{*}$ over $X$ of constant rank. The
expression Bian(g, $R$ ) is first-order in the metric $g$ (as well as in $R$); in
right-hand side of (1), the highest (first) derivatives of $g$ are all multiplied
by coefficients of $R$ . This is reflected in formula (6) and, when $R$ is
degenerate, is the source of the problems which need to be overcome.
We now indicate how to solve the prescribed Ricci curvature problem
and why the Bianchi identity is the only obstruction to local solvability
in the non-degenerate case.

We suppose that $R$ is non-degenerate and we consider the quasi-

linear morphism of fibered manifolds

$\psi_{R}’$ : $J_{2}(S_{+}^{2}T^{*})\rightarrow T^{*}$

determined by
$\psi_{R}’(j_{1}(g))=g^{b}\cdot R^{\beta}\cdot\psi_{R}(j_{1}(g))$ ,

where $g$ is a Riemannian metric. According to (6) and Lemma 1, the
symbol

$\sigma(\psi_{R}’)$ : $T^{*}\otimes S^{2}T^{*}\rightarrow T^{*}$

of $\psi_{R}’$ is the surjective morphism of vector bundles over $S_{+}^{2}T^{*}$ determined
by the equality

$\sigma(\psi_{R}’)_{g}=-\sigma(B_{g})u$ ,

where $g$ is a Riemannian metric on $X$ . Because of (2), a solution $g$

to our original problem is also a solution of the system of second-order
equations

(17) $Ric(g)=R$ , $j_{1}(\psi_{R}’(g))=0$ .

The exactness of the sequences (3) is the main ingredient in the local
solvability of this system of equations. In fact, since the morphism
$\sigma(\psi_{R}’)$ is surjective, we obtain a Riemannian metric $g$ on a neighborhood
of $x_{0}\in X$ satisfying $\psi_{R}’(g)(x_{0})=0$ . Next, let $l$ $\geq 0$ and let $g$ be
a Riemannian metric on a neighborhood of $x_{0}$ whose $(l+1)$ -jet at $x_{0}$

satisfies

(18) $j_{l-1}(Ric(g)-R)(x_{0})=0$ , $j_{l}(\psi_{R}’(g))(x_{0})=0$ .
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Then we have $j_{l}$ (Bian(g, $R$)) $(x_{0})=0$ . Thus if $u\in(S^{l}T^{*}\otimes S^{2}T^{*})_{x_{0}}$ and
$v\in(S^{l+1}T^{*}\otimes T^{*})_{x_{O}}$ are the elements defined by

$u=\in 1j-\iota(Ric(g)-R)(x_{0})$ , $v=\in 1j_{l+1}-(\psi_{R}’(g))(x_{0})$ ,

by (2) we easily see that $\mu_{g}(u, v)=0$ . Hence by the exactness of the

sequence (3), there exists an element $w\in(S^{l+2}T^{*}\otimes S^{2}T^{*})_{x_{0}}$ such that

$\sigma\iota(\varphi)_{g}w=u$ , $\sigma_{l+1}(B_{g})w=v$ .

Since the morphisms $\varphi$ and $\psi_{R}’$ are quasi-linear, we see that a Rieman-
nian metric on a neighborhood of $x_{0}$ , whose $(l+2)$ jet at $x_{0}$ is equal
to $j_{l+2}(g)(x_{0})-\in w$ , satisfies equations (18), with $l$ replaced by $l+1$ .
Thus we obtain a formal solution at $x_{0}$ of our system (17), which has
the special property that its jet of order 2 at $x_{0}$ is strongly prolongable.
If $R$ is a real-analytic section, a result of Malgrange [10] asserts that
the equations (17) admit a convergent series solution at $x_{0}$ , and yields
a solution of our original equation.

We now turn to the case where $R$ is degenerate. A solution $g$ to
the equation $Ric(g)=R$ must satisfy some further equations which we

now proceed to derive. The kernel $K$ of the morphism $R^{b}$ : $T\rightarrow T^{*}$ is a
sub-bundle of $T^{*}$ . We say that this bundle $K$ is integrable if the sheaf
$\mathcal{K}$ is stable under the Lie bracket.

Let $\nabla$ be an arbitrary torsionless connection in $T$ . We consider the
section $\nabla R$ of $T^{*}\otimes S^{2}T^{*}$ and the Lie derivative $\mathcal{L}_{\xi}R$ of $R$ along a vector
field $\xi$ on $X$ .

The following lemma associates a section $Q$ of $S^{2}T^{*}\otimes K^{*}$ to the
section $R$ of $S^{2}T^{*}$ .

Lemma 4. The section

$Q=(\lambda(\nabla R))_{|T\otimes T\otimes K}$

of $S^{2}T^{*}\otimes K^{*}$ is independent of the torsionless connection $\nabla$ and has
the following properties:

(i) If $\xi$ is a section of $K$ over $X$ , we have

(19) $Q(\eta, \zeta, \xi)=-\frac{1}{2}(\mathcal{L}_{\xi}R)(\eta, \zeta)$ ,

for all $\eta$ , $\zeta\in T$ .

(ii) If $\eta\in T_{\rangle}\xi_{1}$ , $\xi_{2}$ , $\zeta\in K$ , we have

(20) $Q(\eta, \xi_{1}, \xi_{2})+Q(\eta, \xi_{2}, \xi_{1})=0$ , $Q(\zeta, \xi_{1}, \xi_{2})=0$ .
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(iii) The sub-bundle $K$ of $T$ is integrable if and only if

$Q(\eta, \xi_{1}, \xi_{2})=0$ ,

for all $\xi_{1}$ , $\xi_{2}\in K$ , $\eta\in T$ .

Proof. If $\nabla$ , $\nabla’$ are torsionless connections in $T$ , then there is a
section $L$ of $S^{2}T^{*}\otimes T$ such that

$\nabla_{\xi}’\eta-\nabla_{\xi}\eta=L(\xi, \eta)$ ,

for $\xi$ , $\eta\in \mathcal{T}$ . It is easily verified that

$(\lambda(\nabla’R-\nabla R))(\zeta_{1}, \zeta_{2}, \xi)=-R(L(\zeta_{1}, \zeta_{2})$ , $\xi)$ ,

for $\xi$ , $\zeta_{1}$ , $\zeta_{2}\in T$ . If $\xi$ belongs to $K$ , the right-hand side of the above
equation vanishes, and so we see that $Q$ is independent of $\nabla$ . Since $\nabla$

is torsionless, according to the definition of $Q$ we have

$Q(\eta, \zeta, \xi)=\frac{1}{2}(R([\xi, \eta], \zeta)+R(\eta, [\xi, \zeta])-\xi\cdot R(\eta, \zeta))=-\frac{1}{2}(\mathcal{L}_{\xi}R)(\eta, \zeta)$ ,

for all $\xi\in \mathcal{K}$ , $\eta$ , $\zeta\in \mathcal{T}$ . We thus obtain (19) and see that

$Q(\eta, \xi_{1}, \xi_{2})=-\frac{1}{2}R(\eta, [\xi_{1}, \xi_{2}])$ ,

for all $\xi_{1}$ , $\xi_{2}\in \mathcal{K}$ , $\eta\in \mathcal{T}$ . Assertions (ii) and (iii) follow directly from
this equality.

If $\xi\in K$ , we denote by $Q_{\xi}$ the element of $S^{2}T^{*}$ defined by

$Q_{\xi}(\eta, \zeta)=Q(\eta, \zeta, \xi)$ ,

for $\eta$ , $\zeta\in T$ ; from (20), we deduce that

(21) $Q_{\xi}(\xi, \eta)=0$ ,

for all $\eta\in T$ . If $\xi$ is a section of $K$ over $X$ , by (19) we have

$Q_{\xi}=-\frac{1}{2}\mathcal{L}_{\xi}R$ .

If $Q$ vanishes identically, then by Lemma 4,(iii) we see that $K$ is
integrable. Let $K’’$ be the sub-bundle of $T$ , with possibly varying fiber,
consisting of all elements $\xi\in T$ satisfying

$Q(\eta, \xi, \zeta)=0$ ,

for all $\eta\in T$ , $\zeta\in K$ . If $K$ is integrable, then according to Lemma 4, (iii)
we see that $K\subset K’’$ , and so the dimension $\iota/(x)$ of $K_{x}’’$ is greater the rank
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of $K$ . We shall consider the morphism of vector bundles $\iota$ : $K\rightarrow S^{2}T^{*}$ ,

which sends $\xi\in K$ into $Q_{\xi}$ .

If $g$ is a Riemannian metric on $X$ , using $\nabla^{g}$ to define $Q$ , we see that

(22) $(B_{g}R)(\xi)=Tr_{g}Q_{\xi}$ ,

for all $\xi\in K$ . This provides us with a new obstruction to solvability;
indeed, by (2) any solution $g$ to the equation $Ric(g)=R$ must also
satisfy

(23) $Tr_{g}Q_{\xi}=0$ ,

for all $\xi\in K$ . If $g$ is a Riemannian metric on $X$ and $\xi$ is a vector of $K$

satisfying the relation (23), then we easily see that either $Q_{\xi}$ vanishes
or is not semi-definite. These remarks imply the following:

Theorem 5. Let $x\in X$ and $\xi\in K_{x}$ . If $Q_{\xi}$ does not vanish and is

semi-definite $\rangle$

then there does not exist a Riemannian metric $g$ on any
neighborhood of $x$ such that $Ric(g)=R$ .

In [6, Lemma 2.3], using (21) we prove the more precise version of
the previous observation:

Lemma 5. Let $x\in X$ and $\xi\in K_{x}$ ; assume that $Q_{\xi}$ does not
vanish. Then there exists a Riemannian metric $g$ on $X$ such that

$Tr_{g}Q_{\xi}=0$

if and only if $Q_{\xi}$ is not semi-definite.

By the preceding lemma, we see that Theorem 4 is a direct conse-
quence of Theorem 3.

In terms of a local coordinate system $(x^{1}, \ldots, x^{n})$ on an open sub-

set $U$ of $X$ , using the flat connection $\nabla$ on $U$ satisfying $\nabla\partial/\partial x^{j}=0$ ,
for $1\leq j\leq n$ , to compute the section $Q$ , we see that the section $Q_{\xi}$ of
$S^{2}T^{*}$ over $U$ corresponding to the section $\xi=\xi^{j}\partial/\partial x^{j}$ of $K$ is given by

(24) $(Q_{\xi})_{ij}=\frac{1}{2}(\frac{\partial R_{jk}}{\partial x^{i}}+\frac{\partial R_{ik}}{\partial x^{j}}-\frac{\partial R_{ij}}{\partial x^{k}})\xi^{k}$ ,

for $1\leq i,j\leq n$ . If the bundle $K$ is integrable and if $\{\partial/\partial x^{1}, \ldots, \partial/\partial x^{r}\}$

is a frame for this bundle $K$ over $U$ , then we have $R_{ij}=0$ , for $1\leq i\leq n$

and $1\leq j\leq r$ , and the section $Q^{k}=Q_{\xi_{k}}$ of $S^{2}T^{*}$ over $U$ corresponding

to the section $\xi_{k}=\partial/\partial x^{k}$ of $K$ , with $1\leq k\leq r$ , is given by

(25) $Q_{ij}^{k}=-\frac{1}{2}\frac{\partial R_{ij}}{\partial x^{k}}$ ,
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for $1\leq i$ , $j\leq n$ . If the morphism of vector bundles $\iota$ : $K\rightarrow S^{2}T^{*}$ has
constant rank equal to $m$ , then, at every point $x$ of $U$ , the vector space
of elements of $S^{2}T_{x}^{*}$ generated by $\{Q^{1}(x), \ldots, Q^{r}(x)\}$ is $m$-dimensional.

We now consider some simple examples of degenerate Ricci candi-
dates.

Example 1. A simple example of non-existence arising from Theo-
rem 5 is given by the following. We consider the symmetric 2-form

$R=dx^{2}\otimes dx^{2}+\cdots+dx^{n-1}\otimes dx^{n-1}+(1+x^{1})dx^{n}\otimes dx^{n}$

on $\mathbb{R}^{n}$ . Note that the rank of $R$ is equal to $n$ $-1$ in a neighborhood $U$ of
the origin and that the vector field $\xi=\partial/\partial x^{1}$ generates the sub-bundle
$K$ over $U$ . According to (25), for $x\in U$ , the element $Q^{1}(x)$ of $S^{2}T_{x}^{*}$

is determined by $Q_{ij}^{1}(x)=\lambda_{i}\delta_{ij}$ , where $\lambda_{i}=0$ for $1\leq i\leq n-1$ and
$\lambda_{n}=1$ ; thus $Q^{1}(x)$ is non-zero and semi-definite. Hence we know that
there does not exist a Riemannian metric $g$ satisfying $Ric(g)=R$ on
any neighborhood of a point of $U$ .

Example 2. The tensor $R=\pm dx^{3}\otimes dx^{3}$ on $\mathbb{R}^{3}$ clearly has rank one
everywhere. The vector fields $\{\partial/\partial x^{1}, \partial/\partial x^{2}\}$ generate the integrable
sub-bundle $K$ over $\mathbb{R}^{3}$ , and by (25) the sections $Q^{1}$ and $Q^{2}$ of $S^{2}T^{*}$

both vanish. As noted in the introduction, if $x$ is an arbitrary point
of $\mathbb{R}^{3}$ , we can apply Theorem 3 to obtain the existence of a metric $g$

satisfying $Ric(g)=R$ on a neighborhood of $x$ . However, it is worth
noting that although $R$ splits as a product, the same cannot be true
for $g$ , since then the one-dimensional factor of $g$ would have to exhibit
non-zero curvature, which is impossible. It is therefore interesting to
exhibit an explicit solution $g$ of the equation $Ric(g)=R$ . We first

consider the case when $R=dx^{3}\otimes dx^{3}$ and seek a solution $g$ of the form

(26) $g=f(x^{3})^{2}(dx^{1}\otimes dx^{1}+dx^{2}\otimes dx^{2})+h(x^{3})^{2}dx^{3}\otimes dx^{3}$ ,

where $f$ and $h$ are non-vanishing functions of $t=x^{3}$ . We shall use
a prime to denote the derivative with respect to $t$ , and will no longer
indicate the dependence of $f$ and $h$ on $t$ . This metric $g$ is a warped prod-
uct and is necessarily conformally flat. Its only possibly non-vanishing
Christoffel symbols are determined by

$\Gamma_{13}^{1}=\Gamma_{23}^{2}=f’/f$ , $\Gamma_{11}^{3}=\Gamma_{22}^{3}=-ff’/h^{2}$ , $\Gamma_{33}^{3}=h’/h$ .

An elementary calculation yields the components of its Ricci tensor:

$Ric(g)_{11}=Ric(g)_{22}=-(\frac{f’}{h})^{2}-\frac{f}{h}(\frac{f’}{h})’$ , $Ric(g)ss=-2\frac{h}{f}(\frac{f’}{h})’$
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and $Ric(g)_{ij}=0$ for $i\neq j$ . If we set $f(t)=e^{at}$ and $h(t)=Ce^{2at}$ , where
$a$ , $C\in \mathbb{R}$ and $C>0$ , we find that the Ricci tensor of the metric $g$ is
equal to $2a^{2}dx^{3}\otimes dx^{3}$ . With this choice of positive functions $f$ and $h$ ,

where $a=1/\sqrt{2}$ and $C>0$ , the metric $g$ given by (26) is a solution
of the equation $Ric(g)=dx^{3}\otimes dx^{3}$ on $\mathbb{R}^{3}$ . Finally, the only possibly
non-vanishing Christoffel symbols of the metric

$g’=e^{-2ax^{3}}dx^{1}\otimes dx^{1}+e^{2ax^{3}}dx^{2}\otimes dx^{2}+dx^{3}\otimes dx^{3}$

on $\mathbb{R}^{3}$ , with $a\in \mathbb{R}$ , are determined by:

$\Gamma_{13}^{1}=-a$ , $\Gamma_{23}^{2}=a$ , $\Gamma_{11}^{3}=ae^{-2ax^{3}}$ , $\Gamma_{22}^{3}=-ae^{2ax^{3}}$

Then one easily verifies that the Ricci tensor of the metric $g’$ is equal

to-2 $a^{2}dx^{3}\otimes dx^{3}$ . Thus this metric $g’$ , with $a=1/\sqrt{2}$ , is a solution of
the equation $Ric(g’)=-dx^{3}\otimes dx^{3}$ on $\mathbb{R}^{3}$ . It is interesting to examine
the geometry of the metric $g’$ on $\mathbb{R}^{3}$ . For $c\in \mathbb{R}$ , the hypersurface of $\mathbb{R}^{3}$

defined by $x^{3}=c$ is a flat submanifold (but not complete), while the
hypersurfaces of $\mathbb{R}^{3}$ defined by $x^{1}=c$ and $x^{2}=c$ have constant negative
curvature (equal to $-a^{2}$ ) and are also not complete.

Example 3. The tensor

$R=(dx^{2}+x^{3}dx^{1})\otimes(dx^{2}+x^{3}dx^{1})+dx^{3}\otimes dx^{3}$

on $\mathbb{R}^{3}$ has rank two and the kernel $K$ is generated by the vector field
$\xi=\partial/\partial x^{1}-x^{3}\partial/\partial x^{2}$ . By (24), the section $Q=Q_{\xi}$ is non-zero at all
points of $\mathbb{R}^{3}$ ; in fact, its non-zero coefficients are given by

$Q_{13}=\frac{x^{3}}{2}$ , $Q_{23}=\frac{1}{2}$ .

The Euclidean metric

$g_{0}=dx^{1}\otimes dx^{1}+dx^{2}\otimes dx^{2}+dx^{3}\otimes dx^{3}$

clearly satisfies $R_{g0}Q_{\xi}=0$ on $\mathbb{R}^{3}$ . Hence, if $x$ is an arbitrary point of $\mathbb{R}^{3}$ ,

Theorem 4 gives us a metric $gsatis5^{r}ingRic(g)=R$ on a neighborhood
of $x$ .

Example 4. The tensor

$R=(dx^{2}+x^{3}dx^{1})\otimes(dx^{2}+x^{3}dx^{1})$

on $\mathbb{R}^{3}$ has rank one and the kernel $K$ is generated by the vector fields
$\xi_{1}=\partial/\partial x^{1}-x^{3}\partial/\partial x^{2}$ and $\xi_{2}=\partial/\partial x^{3}$ . Since $[\xi_{1}, \xi_{2}]=\partial/\partial x^{2}$ , the
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distribution determined by $K$ is not integrable. If $g$ is a Riemannian
metric on $\mathbb{R}^{3}$ , then by (1) we see that

$(B_{g}R)(\xi_{1})=x^{3}g^{13}+g^{23}$ , $(B_{g}R)(\xi_{2})=-(x^{3}g^{11}+g^{12})$ .

It is easily seen that the integrability condition $B_{g}R=0$ places two
conditions of order zero on the metric $g$ ; namely, a solution $g$ of the
equation $Ric(g)=R$ must satisfy the relations

$g_{23}=0$ , $g_{12}=x^{3}g_{22}$ .

This example shows that the singularity of the tensor $R$ places substan-
tial restrictions on the 0-jet of the solution metric $g$ .

We now present an outline of the proof of Theorem 3. For simplicity,
we assume that the morphism $\iota$ : $K\rightarrow S^{2}T^{*}$ is injective and that its
rank is equal to $m\geq 1$ . We choose a fixed complement $T’$ of $K$ in $T$

which allows us to split the equation Bian(g, $R$) $=0$ , for the Riemannian
metric $g$ , into two pieces. The first one is a first-order equation similar to
the equation $\psi_{R}’(j_{1}(g))=0$ considered above when $R$ is non-degenerate.

If $\rho$ : $T^{*}\rightarrow T^{\prime*}$ is the natural restriction mapping, we denote by $R^{\psi}$ the
inverse of the isomorphism

$\rho R^{b}$ : $T’\rightarrow T^{\prime*}$ .

If $i$ : $T’\rightarrow T$ is the inclusion mapping, we set

$ S=iR^{\Downarrow}\rho$ : $T^{*}\rightarrow T$ .

Then the endomorphism $SR^{b}$ of $T$ is equal to the projection $\pi’$ of $T$

onto $T’$ corresponding to the decomposition $T=T’\oplus K$ . We consider
the quasi-linear morphism of fibered manifolds

$\psi’’$ : $J_{2}(S_{+}^{2}T^{*})\rightarrow T^{*}$ ,

determined by
$\psi’’(j_{1}(g))=g^{b}\cdot S\cdot\psi_{R}(j_{1}(g))$ ,

where $g$ is a Riemannian metric on $X$ . According to (6), the symbol

$\sigma(\psi’’)$ : $T^{*}\otimes S^{2}T^{*}\rightarrow T^{*}$

of $\psi’’$ is the morphism of vector bundles over $S_{+}^{2}T^{*}$ determined by

$\sigma(\psi’’)_{g}=-g^{b}\pi’g^{\phi}\sigma(B_{g})$ ,
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where $g$ is a Riemannian metric on $X$ ; the $l$-th prolongation of the
morphism $\sigma(\psi’’)_{g}$ will be denoted by $\sigma_{l}(\psi’’)_{g}$ . The first part of the
Bianchi identity is the first-order equation

$\psi’’(j_{1}(g))=0$ .

To a Riemannian metric $g$ on $X$ , we associate the section $\chi(g)$ of $K^{*}$

determined by
$\langle\xi, \chi(g)\rangle=Tr_{g}Q_{\xi}$ ,

for $\xi\in K$ . The second equation $\chi(g)=0$ arises from the relation (19)
and imposes a condition of order zero on the metric $g$ . We then attempt
to apply the Cartan-K\"ahler theorem to the system

(27) $Ric(g)=R$ , $j_{1}(\psi’’(j_{1}(g)))=0$ , $j_{2}(\chi(g))=0$

of partial differential equations of order 2 for the metric $g$ . This approach
fails; indeed, by prolonging the system (27), we find that a set of $m$

additional identities must be taken into consideration. We now derive
these scalar-valued identities and then study the new system consisting
of (27) and these new identities.

Let $g$ be a Riemannian metric on $X$ . The morphism of vector bun-
dles

$\sigma(\chi)_{g}$ : $S^{2}T^{*}\rightarrow K^{*}$

over $X$ obtained from the symbol $\sigma(\chi)$ of $\chi$ is given by

$\langle\xi, \sigma(\chi)_{g}h\rangle=-\langle\xi, \sigma(\chi)_{g}h\rangle_{g}$ ,

for $h\in S^{2}T^{*};$ its $l$-th prolongation will be denoted by $\sigma_{l}(\chi)_{g}$ . We
consider the sequence of vector bundles

(28) $S^{2}T^{*}\otimes S^{2}T^{*}\rightarrow S^{2}T^{*}\sigma_{g}\oplus(T^{*}\otimes g^{b}(T’))\oplus(S^{2}T^{*}\otimes K^{*})\rightarrow K^{*}\iota/_{g}\rightarrow 0$ ,

where the morphism

$\sigma_{g}=\sigma(\varphi)_{g}\oplus\sigma_{1}(\psi’’)_{g}\oplus\sigma_{2}(\chi)_{g}$

is the symbol of the system (27) associated to $g$ , and where $lJ_{g}$ is the
morphism of vector bundles determined by

$\langle\xi, \iota/_{g}(u\oplus v\oplus w)\rangle=\langle u+v, Q_{\xi}\rangle_{g}-\frac{1}{2}Tr_{g}\langle\xi, w\rangle$ ,

for $u\in S^{2}T^{*}$ , $v\in T^{*}\otimes g^{b}(T’)$ , $w\in S^{2}T^{*}\otimes K^{*}$ and $\xi\in K$ .

In [6, \S 4] $)$ , we first observe that the sequence (28) is a complex,
because $K$ is integrable, and then prove:
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Lemma 6. Let $g$ be a Riemannian metric on X. If $\chi(g)$ van-
ishes at $x\in X$ and if $T_{x}’$ is the orthogonal complement of $K_{x}$ , then the
sequence (28) is exact at $x$ .

Given the complexity of the morphism $\sigma_{g}$ , it is remarkable that the
cokernel morphism $\iota/_{g}$ can be expressed in such a simple and natural
manner. The non-surjectivity of the morphism $\sigma_{g}$ leads us to our addi-
tional identities.

Let $x_{0}$ be a point of $X$ and $g_{0}$ be a given Riemannian metric on $X$

satisfying $Tr_{g}Q_{\xi}=0$ , for all $\xi\in K_{x_{0}}$ . Since we are interested in the
local solvability, we may suppose that $X=\mathbb{R}^{n}$ with a system of linear
coordinates $(x^{1}, \ldots, x^{n})$ such that $\{\partial/\partial x^{1}, \ldots, \partial/\partial x^{m}\}$ is a frame for $K$

over $X$ . We set $\xi_{j}=\partial/\partial x^{j}$ , for $1\leq j\leq n$ . Since $K_{x_{0}}’’$ contains $K_{x_{O}}$ ,

without loss of generality, we may also suppose that $g_{0,ij}(x_{0})=\delta_{ij}$ and
that $\{\xi_{1}(x_{0}), \ldots, \xi_{q}(x_{0})\}$ is a basis for $K_{x_{0}}’’$ , where $q=\iota/(x_{0})\geq m$ . We

choose $T’$ to be the integrable complement of $K$ in $T$ generated by the
vector fields $\{\xi_{m+1}, \ldots, \xi_{n}\}$ on $X$ ; thus $T_{x_{O}}’$ is the orthogonal complement

of $K_{x_{O}}$ in $T_{x_{O}}$ (with respect to $g_{0}$ ). We consider the flat connection $\nabla$

in $T$ for which all the vector fields $\xi_{j}$ are horizontal. This connection
preserves $K$ and so, if $g$ is a Riemannian metric on $X$ , we may consider
the section

$P(g)=lJ_{g}((Ric(g)-R)\oplus(\nabla\psi’’(g))\oplus\nabla^{2}\chi(g))$

of $K^{*}$ . A Riemannian metric $g$ , solution of $Ric(g)=R$ , must also satisfy
the equation $P(g)=0$ , which, in light of the complex (28), is in fact of
first order. However, as $P(g)$ arises from the lower order terms of $Ric(g)$ ,

it is an expression which is quadratic in the first derivatives of $g$ .

We then consider the new system $M_{2}$ of order 2 consisting of the
equations (27) together with the second-order equation $j_{1}(P(g))=0$

for a Riemannian metric $g$ . We construct a strongly prolongable 2-jet
$j_{2}(g)(x_{0})$ of a solution $g$ of the equation $M_{2}$ at $x_{0}$ . The main difficulty in
proving the existence of such a formal solution at $x_{0}$ consists in finding
a 1-jet $j_{1}(g)(x_{0})$ of a Riemannian metric $g$ at $x_{0}$ , which is a solution of
the first-order system

$\psi’’(g)=0$ , $j_{1}(\chi(g))=0$ , $P(g)=0$

determined by our system $M_{2}$ , such that the symbol of the system $M_{2}$

is involutive at $j_{1}(g)(x_{0})$ . Then, if $R$ is a real-analytic section, a result
of Malgrange [10] asserts that the system $M_{2}$ admits a convergent series
solution at $x_{0}$ , and thus yields a solution of our original equation. This
completes our outline of the proof of Theorem 3, when $m$ is equal to the
rank of $K$ and is $\geq 1$ .
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Deformations of Singularities,

Complex Manifolds and $CR$-Structures

Charles L. Epstein

Dedicated to Prof. M. Kuranishi
on the occasion of his seventieth birthday

Abstract.

This note is an expanded version of the author’s lecture at the
conference on Several Complex Variables held in Osaka, Dec. 1994.
We consider deformations of complex spaces and their relationship
to deformations of $CR$-structures. An invariant is introduced which
measures the change in the algebra of $CR$-functions under a defor-
mation. These issues are then considered in the context of the de-
formations of the total space of the tangent bundle of a Riemann
surface. The last section contains problems in deformation theory.

\S 1. Introduction

In the $1960s$ and $1970s$ a great deal of progress was made in the
study of the deformations of complex analytic spaces. A complex struc-
ture on a manifold has two fundamentally different descriptions as: 1.
A holomorphic coordinate atlas, 2. A formally integrable subbundle of
the complexified tangent bundle. We refer to 1. as the “holomorphic
description” and 2. as the “real description.” The equivalence of these
descriptions is the content of the Newlander-Nirenberg theorem. The
holomorphic description is more general as it can also be used for (pos-
sibly non-reduced) analytic spaces. These two representations lead to

different descriptions for the deformations of the given structure. In
the holomorphic description one fixes a coordinate cover, the deforma-
tions then appear as families of holomorphic gluing maps. In the second
case one represents the deformed subbundle of the complexified tangent
bundle as a graph over the reference structure. This is conveniently
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Research supported in part by NSF grant DMS93-01088
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parametrized by a vector valued $(0, 1)$ -form which satisfies a non-linear
partial differential equation. In actual practice these descriptions are
very difficult to directly compare. Instead one defines a universal object,
the versal deformation, to which the various descriptions are compared.

The real description seems to be somewhat limited as it appears to
require a smooth underlying space in order for the integrability condi-
tions to be expressible in terms of a PDE. Kuranishi showed that this
technique could be applied to study the deformations of an isolated sin-
gular point by considering the $CR$-structure induced on a (smooth) link

of the singularity, see [Ku]. If the complex dimension of the singular
space is at least 3 then there is a “real” description of the integrable
deformations of this structure as the solution space of a non-linear PDE
on the link. Once this space is obtained two problems remain in order
to return to the original question of deforming a singularity: 1. One
needs to show that the deformed $CR-$structures arise as the boundaries
of complex spaces which are, in an appropriate sense, deformations of
the initial singularity and 2. One needs to show that the solution space
of the PDE has the structure of a complex space. Theorems of Boutet de
Monvel and Harvey and Lawson assure that strictly pseudoconvex CR-
structures on compact manifolds of dimension at least 5 do in fact arise
as the boundaries of complex spaces, see [$BdM$ , HaLa, Ro]. Additional
geometric hypotheses on the initial singularity are needed in order to
conclude that these spaces are deformations of the reference space. This
problem has been treated in dimension greater than 3 by Buchwietz and
Millson and Akahori and Miyajima, see [AkMi, BuMi, Mi].

If the dimension of initial variety is 2 then the situation is entirely
different: there is no integrability condition and it is no longer the case
that every $CR$-structure arises as the boundary of a complex space. This
is equivalent to existence of an embedding of the manifold in $\mathbb{C}^{7l}$ whose
coordinate functions belong to the algebra of $CR-$functions. Such a CR-
structure is called embeddable. The $C$ -generic structure is not embed-
dable, see [Ni, $JT$ , Ep3]. Thus the central problem in obtaining a “real”
description of the deformations of an isolated surface singularity is the
problem of embeddability for $CR$-structures on compact 3-dimensional
manifolds: give a criterion in terms of the deformation tensor of the
$CR$-structure which characterizes the embeddable $CR$-structures. For
the purposes of analysis one would like the criterion to be expressed in
terms of a pseudodifferential equation. Of course a differential condition
would be preferable but it is known from examples that the property
of embeddability is non-local in nature. In general there may not be a
simple condition which characterizes embeddability. Instead we seek a
description of the general features of the set of embeddable structures
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intrinsically and as a subset of the space of all structures. For example
are there situations when the embeddable structures form a submanifold
or subvariety of the set of all structures? Does it make sense to say that
the set of embeddable structures has infinite codimension? Indeed, with
the current state of knowledge, it is not known in general if the set of
embeddable structures is a closed subset in a reasonable topology.

In this lecture we give a description of the set of deformations of an
embeddable $CR$-structure on a three dimensional manifold. We then
define a stratification of the set of embeddable structures. This strati-
fication has closed strata and is defined by formally analytic equations.

We next consider the deformations of the total space of the tangent
bundle of a Riemann surface and show how the real and holomorphic
descriptions can be compared in this case. Finally we close with a col-
lection of problems which bear on the problem of describing the space
of embeddable $CR$-structures on a compact manifold.
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I would also like to thank Ron Donagi for explaining the affine bundles
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\S 2. Deformations of $CR$-structures

Let $M$ denote a compact three manifold. A $CR$-structure on $M$

is given by selecting a smoothly varying complex line $ T_{p}^{0,1}M\subset T_{p}M\otimes$

$\mathbb{C}$ , $p\in M$ . We require a non-degeneracy condition:

$T_{p}^{0,1}M\cap\overline{T_{p}^{0,1}M}=\{0\}$ for every $p\in M$ . (2.1)

As the fiber dimension in this case is one, the integrability condition
is vacuous. The canonical example of a $CR$-structure arises on a real
hypersurface in a complex manifold. If $M$ $\epsilon-$, $X$ is a real hypersurface
then the $CR$-structure induced by the embedding is given by:

$T_{p}^{0,1}M=T_{p}^{0,1}X\cap T_{p}M\otimes \mathbb{C}$ , for $p\in M$ .

The non-degeneracy condition implies that there is a smooth plane
field $H\subset TM$ such that for every $p\in M$ :

$T_{p}^{1,0}M\oplus T_{p}^{0,1}M=H_{p}\otimes \mathbb{C}$ .
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The plane field, $H$ defines a contact structure on $M$ if and only if the
$CR$-structure is strictly pseudoconvex. We assume that this condition
holds throughout the paper.

The $CR$-structure defines a pair of operators analogous to $\partial,\overline{\partial}$ by
the formulae :

$\partial_{b}f=dfr_{T^{1,0}M}$ , $\overline{\partial}_{b}f=dfr_{T^{0,1}M}$ .

The operator $\overline{\partial}_{b}$ takes values in $ c\infty$ $(M;(T^{0,1}M)^{*})$ . This is a quotient of
$(TM\otimes \mathbb{C})^{*};$ to represent $\overline{\partial}_{b}$ as a differential operator a non-canonical
choice needs to be made. For example, selecting a one form defining $H$

determines a representation of $\overline{\partial}_{b}$ . We often use the notation $(M,\overline{\partial}_{b})$ to
denote the manifold $M$ with the $CR$-structure which induces $\overline{\partial}_{b}$ . The
kernel of $\overline{\partial}_{b}$ is called the algebra of $CR$-functions. An embedding of the
$CR$-manifold $(M,\overline{\partial}_{b})$ is given by an embedding $F$ : $M\rightarrow \mathbb{C}^{N}$ where the
coordinate functions of $F$ belong to $ker\overline{\partial}_{b}$ . The geometric description of
a $CR$-embedding is that

$F_{*}T^{0,1}M=T^{0,1}F(M)$ ,

where the $CR$-structure on the right hand side is that induced from the
embedding.

The deformations of the $CR$-structure are given by sections of the
endomorphism bundle:

$\phi\in C^{\infty}(M;End(T^{0,1}M, T^{1,0}M))$ ,

with
$\phi T_{p}0,1M=\{\overline{Z}+\phi_{p}(\overline{Z}) : \overline{Z}\in T_{p}^{0,1}M\}$ .

In order for (2.1) to hold we require:

$||\phi||_{L^{\infty}}<1$ . (2.2)

We denote the set of endomorphisms satisfying (2.2) by Def(M, $\overline{\partial}_{b}$ ).
Using the natural isomorphism:

$End(T^{0,1}M, T^{1,0}M)\simeq T^{1,0}M\otimes(T^{0,1}M)^{*}$

the $\overline{\partial}_{b}-$operator defined by the deformation, $\phi$ can be represented as:

$\overline{\partial}_{b}^{\phi}f=(\overline{\partial}_{b}+\phi o\partial_{b})f$ . (2.3)

Note that all such $CR$-structures have the same underlying plane
field, a priori one might have expected that this should also be allowed



Deformations of Singularities, Complex Manifolds and $CR$ -Structures 89

to vary. However according to a theorem of A. Gray, contact fields
are rigid and hence any small deformation of $H$ is diffeomorphically
equivalent to $H$ by a diffeomorphism isotopic to the identity, see [Gy].
Thus no generality is lost in supposing that the underlying plane field is
fixed.

The group $Cont_{H}$ consists of diffeomorphisms which preserve the
contact field, i.e.

$\psi\in Cont_{H}\Leftrightarrow\psi_{*}H_{p}=H_{\psi(p)}$ , $\forall p\in M$ .

This group has the topology of a smooth tame lie group as explained in

[ChLe]. It acts on Def(M, $\overline{\partial}_{b}$ ) as follows: if $\phi\in Def(M,\overline{\partial}_{b})$ , $\psi\in Cont_{H}$

then we define $\psi$ $\cdot\phi$ by

$\psi\cdot\phi T_{\psi(p)}0,1M=\psi_{*}^{\phi}T_{p}^{0,1}$ M. (2.4)

As $ker\overline{\partial}_{b}^{\phi}=\psi^{*}(ker\overline{\partial}_{b}^{\psi\cdot\phi})$ the structures in a $Cont_{H}$-orbit should be
considered geometrically equivalent. We define a moduli space for CR-
structures as the quotient

$\lambda 4(M, [\overline{\partial}_{b}])=Def(M,\overline{\partial}_{b})/Cont_{H}$ .

In analogy with the case of Riemann surfaces we define a “Teichm\"uller’’

space by
$\mathcal{T}(M, [\overline{\partial}_{b}])=Def(M,\overline{\partial}_{b})/Cont_{H}^{0}$ ,

where $Cont_{H}^{0}$ denotes the identity component of $Cont_{H}$ .
In a recent paper, Cheng and Lee have shown that one can construct

a slice for the contact action on Def(M, $\overline{\partial}_{b}$ ) for any three manifold, see
[ChLe]. Taking advantage of the $S^{1}-$action, Bland constructed a differ-
ent slice for structures on $S^{3}$ near to the structure induced on the unit
sphere, see [B1]. The former slice is a real manifold whereas the latter
has the structure of a smooth bundle with complex fibers over a real
manifold. As Def(M, $\overline{\partial}_{b}$ ) is an open set in a complex Frechet manifold
whereas $Cont_{H}$ is a real group, it seems unlikely that either $\mathcal{T}(M, [\overline{\partial}_{b}])$

or A4 $(M, [\overline{\partial}_{b}])$ has a natural structure as a complex space. In these pro-
ceedings Lempert has shown that the Teichm\"uller space of structures
near to the structure induced on a strictly pseudoconvex hypersurface
in $\mathbb{C}^{2}$ has a natural Frechet manifold structure. It should be empha-
sized that in the work of Cheng and Lee and Bland only the action of
a neighborhood of the identity in $Cont_{H}$ is considered whereas Lempert
takes the quotient by the full identity component.
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\S 3. The relative index and the stratification of the moduli
space

The issue of embeddability is intimately connected with the sta-

bility properties of the $ker\overline{\partial}_{b}^{\phi}$ under deformations. In order to better
understand this question we recall a theorem of Kohn, see [Ko]:

Theorem [Kohn]. A compact pseudoconvex $CR-$manifold $(M,\overline{\partial}_{b})$

is embeddable if and only if the range $\overline{\partial}_{b}$ is closed in $L^{2}(M)$ .

In order to understand the content of this theorem it is useful to
introduce a second order, self adjoint operator with the same kernel as
$\overline{\partial}_{b}$ . Once a contact form is fixed we can represent $\overline{\partial}_{b}$ as closed operator
on $L^{2}$ and define its formal adjoint, $\overline{\partial}_{b}^{*}$ . The operator

$\square _{b}f=\overline{\partial}_{b}^{*}\overline{\partial}_{b}f$

has a self adjoint extension to $L^{2}(M)$ . The range of $\overline{\partial}_{b}$ is closed if and
only the range of $\Pi_{b}$ is closed. Since $\Pi_{b}$ is self adjoint its range is closed
if and only if 0 is an isolated point in the $spec(Db)$ .

If $\overline{\partial}_{b}$ defines an embeddable $CR$-structure then

$spec(\square _{b})=\{0<\lambda_{1}\leq\lambda_{2}\leq\ldots \}$

Zero is an eigenvalue of infinite multiplicity as this eigenspace is simply
the $L^{2}-$closure of $ker\overline{\partial}_{b}$ ; the sequence $\{\lambda_{i}\}$ is discrete and tends to in-

finity. If $\overline{\partial}_{b}$ is non-embeddable then in addition to the sequence, $\{\lambda_{i}\}$

tending to infinity $spec(\Pi_{b})\supset\{\mu_{i}\}$ where

$\mu_{i}>0$ and $\mu_{i}=O(i^{-N})$ , $\forall N>0$ .

If $\overline{\partial}_{b}’$ is a small embeddable deformation of an embeddable structure, $\overline{\partial}_{b}$

it is possible that $\Pi_{b}’$ has a finite number of eigenvalues $\{\mu_{1}, \ldots, \mu_{m}\}$

which satisfy: $0<\mu_{i}<<\lambda_{1}$ . The eigenfunctions of $\Pi_{b}’$ corresponding to
the $\{\mu_{i}\}$ are small perturbations of functions in $ker\Pi_{b}$ . The presence or
absence of “small eigenvalues” is therefore a measure of the size of $ker\overline{\partial}_{b}’$

relative to $ker\overline{\partial}_{b}$ .

Unfortunately this reasoning can only be carried out in a small
neighborhood of the reference structure and appears to depend very
strongly on the non-canonical choices made in the definition of $\overline{\partial}_{b}$ . In
order to obtain something more robust we need to modify our point of
view. The starting point is the following theorem:



Deformations of Singularities, Complex Manifolds and CR-Structures 91

Theorem 3.1. Let $(M,\overline{\partial}_{b})$ denote a compact, strictly pseudocon-

vex, embeddable, 3-dimensional $CR-$manifold. Let $\phi\in Def(M,\overline{\partial}_{b})$ and

let $S$ denote the orthogonal projection onto $ker\overline{\partial}_{b}$ relative to some choice

of smooth volume form on M. The $CR$ -manifold $(M,\overline{\partial}_{b}^{\phi})$ is embeddable

if and only if
$S$ : $ker\overline{\partial}_{b}^{\phi}\rightarrow ker\overline{\partial}_{b}$

is a Fredholm operator.

Remark. The results in this section are proved in [Ep1-2]. Observe

that this characterization of embeddability holds globally in Def(M, $\overline{\partial}_{b}$ ).

Note also that if $S’$ denotes the projection onto $ker\overline{\partial}_{b}’S-S’$ is a compact

operator if and only if $\overline{\partial}_{b}=\overline{\partial}_{b}’$ .

The proof of Theorem 3.1 uses a fortuitous representation for $S\mathfrak{f}_{ker\overline{\partial}_{b}’}$ ,

some functional analysis and the theorem of Kohn stated above. This re-
sult suggests that we define a relative invariant for a pair of embeddable
structures:

Definition. If $\overline{\partial}_{b}$ and $\overline{\partial}_{b}’$ are two embeddable structures with the
same underlying plane field and orientation then define the relative index

$Ind(\overline{\partial}_{b},\overline{\partial}_{b}’)=ind(S:ker\overline{\partial}_{b}’\rightarrow ker\overline{\partial}_{b})$ .

Unfortunately many non-canonical choices were made in the defini-
tion of the relative index. In order for $Ind(\overline{\partial}_{b},\overline{\partial}_{b}’)$ to be an interesting
invariant we need to show that its value is independent of these choices.
Obviously a volume form was chosen to define the orthogonal projector.
A little subtler is the fact that we would like the invariant to be geometric
in nature and hence constant along orbits of $Cont\#\times Cont\#$ . Indepen-

dence of the choice of volume form is easily established, constancy along
orbits of the contact group requires considerably more effort. Nonethe-
less we can prove the following result:

Theorem 3.2. The relative index $Ind(\overline{\partial}_{b},\overline{\partial}_{b}’)$ is independent of the
choice of volume form and is constant along the orbits of $Cont_{H}^{0}\times Cont_{H}^{0}$

There are two results which are of interest in their own right used
in the proof of Theorem 3.2

Proposition 3.1. If $F$ $\subset Def(M,\overline{\partial}_{b})$ and there is a constant $C>$

$0$ such that for $\phi\in F$

$\lambda_{1}(\Pi_{b}^{\phi})>C$
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then the map $\phi\rightarrow S^{\phi}$ is continuous from the $C^{\infty}-$topology on $\mathcal{F}$ to the
norm topology on bounded operators on $L^{2}(M)$ .

Remark. Here $\lambda_{1}(\Pi_{b}^{\phi})=\inf\{spec\Pi_{b}^{\phi}\backslash \{0\}\}$ .

The second result shows that the relative index defines, in a sense,
a 1-cocycle on the space of embeddable structures:

Proposition 3.2. If $\overline{\partial}_{b}^{1},\overline{\partial}_{b}^{2},\overline{\partial}_{b}^{3}$ are embeddable structures in

Def(M, $\overline{\partial}_{b}$ ) such that there exists a continuous family of embeddable

structures $\overline{\partial}_{b}^{t}$ joining $\overline{\partial}_{b}^{2}$ to $\overline{\partial}_{b}^{3}$ then:

$Ind(\overline{\partial}_{b}^{1},\overline{\partial}_{b}^{3})=Ind(\overline{\partial}_{b}^{1},\overline{\partial}_{b}^{2})+Ind(\overline{\partial}_{b}^{2},\overline{\partial}_{b}^{3})$ .

Remark. We believe that the cocycle relation should hold in com-
plete generality for any triple of embeddable structures in Def(M, $\overline{\partial}_{b}$ ).

Using the relative index we can define a stratification of the space
of embeddable structures:

$\mathfrak{S}_{n}=\{\phi\in Def(M,\overline{\partial}_{b}) : Ind(\overline{\partial}_{b},\overline{\partial}_{b}^{\phi})\geq-n\}$ .

From the invariance under the action of $Cont_{H}^{0}$ it follows that the strat-
ification descends to the Teichm\"uller space, $\mathcal{T}(M,\overline{\partial}_{b})$ . Large subsets of
the strata are closed in the $C$ -topology:

Theorem 3.3. For any $\epsilon>0$ the set

$\mathfrak{S}_{n}\cap\{\phi _{:} ||\phi||_{L^{\infty}}\leq\frac{1}{2}-\epsilon\}$

is closed in the $C^{\infty}-$topology

Remark. It follows from Theorem 3.3 that a strategy for showing
that the set of embeddable $CR$-structures is closed is to show that there
is a $k$ , $N$ and $\epsilon>0$ so that, for $n\geq N$

$\mathfrak{S}_{n}\cap\{||\phi||_{C^{k}}<\epsilon\}=\mathfrak{S}_{N}\cap\{||\phi||_{C^{k}}<\epsilon\}$

In case the reference structure is that induced on a strictly pseudoconvex
hypersurface in $\mathbb{C}^{2}$ , the results in [Le2] and [Ep1-2] imply that this
conjecture holds, with $N=0$ . Using a recent result of Eliashberg this
has been improved for the case of $S^{3}$ . In [Epl] it is shown that the set

of embeddable structures on $S^{3}$ coincides with $\mathfrak{S}_{0}$ .
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If $V$ is an affine variety and $M_{1}$ and $M_{2}$ are nearby strictly pseudo-
convex hypersurfaces bounding compact domains in $V$ then it is reason-
able that $Ind(\overline{\partial}_{b}^{1},\overline{\partial}_{b}^{2})=0$ . Here $\{\overline{\partial}_{b}^{i}\}$ are the $CR$-structures induced by
the embeddings $M_{i}\epsilon-*V$.

Theorem 3.4. If $V$ is a variety and $M_{t}$ , $t\in[0,1]$ is a continuous
family of smooth strictly pseudoconvex hypersurfaces in $V\backslash sing(V)$ which
bound compact domains then

$Ind(\overline{\partial}_{b}^{t},\overline{\partial}_{b}^{\epsilon})=0$ , $\forall s$ , $t\in[0,1]$ .

Here $\overline{\partial}_{b}^{t}$ is the $CR$-structure induced from the embedding $M_{t}\epsilon-t$ V.

Remark. We call the family $\{M_{t} $:$ $t $\in[0,1]\}$ a strictly pseudo-
convex isotopy of $M_{0}$ to $M_{1}$ .

Recall the construction of the Kuranishi space for an isolated sin-
gular point, $(V,p)$ : Intersect $V$ with a sphere of small radius centered
on the singular point to obtain a smooth, strictly pseudoconvex hyper-
surface $Mc_{->}V$ This embedding induces a $CR$-structure, $\overline{\partial}_{b}$ on $M$ .
One then considers (in higher dimensions) the integrable deformations
of $(M,\overline{\partial}_{b})$ modulo an equivalence relation. The equivalence relation is,
roughly speaking that

$(M,\overline{\partial}_{b}^{1})\sim(M,\overline{\partial}_{b}^{2})$ , (3.1)

if they are in the same strictly pseudoconvex isotopy class.

In the actual construction of the Kuranishi space one requires that this
condition hold only to first order. From Theorem 3.4 it follows that if
we define a space $\mathfrak{D}([M,\overline{\partial}_{b}])$ to be the set of embeddable deformations
of $(M, [\overline{\partial}_{b}])$ modulo (3.1) then the stratification of Def(M, $\overline{\partial}_{b}$ ) actually
descends to this space.

In [La] an interesting situation is considered. Let $X$ be a compact
strictly pseudoconvex domain in a smooth modification of a Stein space.
Assume moreover that the maximal compact analytic set $A\subset X$ , is
a union of smooth curves with only normal crossings. Of course the
deformation space for the complex manifold $X$ is infinite dimensional,

however if one considers the deformation space modulo the relation (3.1)
it becomes finite dimensional. In fact Laufer showed that the base space
for the versal deformation is a manifold parametrized by $H^{1}(X;\Theta)$ . Here
$\Theta$ is the sheaf of germs of holomorphic vector fields. In the next sec-
tion we consider the example of $X$ a domain in the $ T^{1,0}\Sigma$ , where $\Sigma$ is
a Riemann surface of genus at least 2. We compare the “holomorphic”
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description of the deformation space as $H^{1}(X, \Theta)$ with a real descrip-
tion derived from considering deformations of the $CR$-structure on $\partial X$ .

In particular we consider the stratification of $H^{1}(X, \Theta)$ defined by the
relative index.

\S 4. The $CR$-geometry of the tangent bundle

Let $\Sigma$ denote a Riemann surface of genus at least 2. The com-
plex structure is defined by specifying a coordinate cover $\{(V_{\alpha}, z_{\alpha})\}$ and
holomorphic transition functions $\{f_{\alpha\beta}\}$ where

$z_{\alpha}=f_{\alpha\beta}(z_{\beta})$ on $z_{\beta}(V_{\alpha}\cap V_{\beta})$ . (4.1)

Let $\pi$ : $ T^{1,0}\Sigma\rightarrow\Sigma$ denote the holomorphic tangent space of $\Sigma$ . Using
the coordinate vector fields, $\{\partial_{z_{\alpha}}\}$ to locally trivialize $ T^{1,0}\Sigma$ we obtain
coordinates, $\{U_{\alpha}, (z_{\alpha}, w_{\alpha})\}$ for the tangent space where $U_{\alpha}=\pi^{-1}(V_{\alpha})$

and
$w_{\alpha}=f_{\alpha\beta}’(z_{\beta})w_{\beta}$

on the overlaps. The total space is compactified by adding the curve “at

infinity.” Denote this space by $\hat{T}\Sigma$ . A Riemannian metric on $\Sigma$ defines
a function, homogeneous of degree 2, on the fibers of $ T^{1,0}\Sigma$ . In a local

coordinate system this function is represented by $h(z_{\alpha}, w_{\alpha})=e^{2u^{\alpha}}|w_{\alpha}|^{2}$ .

Define a hypersurface $ M\subseteq-\rangle$ $ T^{1,0}\Sigma$ by

$M=\{p\in T^{1,0}\Sigma : h(p)=1\}$ .

Let $D$ denote the unit disk bundle in $ T^{1,0}\Sigma$ bounded by $M$ . It is clear
from the form of $h$ that $M$ is invariant under the natural action of $S^{1}$

on $ T^{1,0}\Sigma$ :
$U_{\phi}(z_{\alpha}, w_{\alpha})=(z_{\alpha}, e^{i\phi}w_{\alpha})$ , $\phi\in[0,2\pi)$ .

For $k\in \mathbb{Z}$ set
$F_{k}=\{f\in C^{\infty}(M) : U_{\phi}^{*}f=e^{ik\phi}\}$ ,

and

$F_{k}=j=k\oplus F_{j}$
.

A contact form is defined on $M$ by setting

$\theta=-i\overline{\partial}\log h\lceil_{M}$ .
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For the remainder of this section we suppose that $h$ is defined by the
constant curvature, -1 metric on $\Sigma$ . A simple calculation shows that
the one forms,

$\theta^{1}=\frac{\sqrt{2}dz_{\alpha}}{w_{\alpha}}$ on $M\cap U_{\alpha}$ ,

piece together to give a globally defined one form, $\theta^{1}$ on $M$ which satisfies

$d\theta=i\theta^{1}\wedge\theta^{\overline{1}}$ and $U_{\phi}^{*}\theta^{1}=e^{i\phi}\theta^{1}$ .

The section of $T^{0,1}M$ dual to $\theta^{\overline{1}}$ is of course globally defined and given
in local coordinates by

$\overline{Z}r_{U_{\alpha}}=\frac{\overline{w}_{\alpha}}{\sqrt{2}}(\partial_{\overline{z}_{\alpha}}-2u_{\overline{z}_{\alpha}}^{\alpha}\overline{w}_{\alpha}\partial_{\overline{w}_{\alpha}})$ .

The local coordinate representation of the $\overline{\partial}_{b}-$operator is:

$\overline{\partial}_{b}f=\overline{Z}_{\alpha}f\theta_{\alpha}^{\overline{1}}$ .

A consequence of using the constant curvature metric to define $h$ is that

$\mathcal{L}_{\overline{Z}}\theta\wedge d\theta=0$ ,

thus the adjoint of $\overline{\partial}_{b}$ , with these normalizations is

$\overline{\partial}_{b}^{*}(g\theta^{\overline{1}})=-Zg$ . (4.2)

For details of these arguments see [Ep3]. The commutator $T=[\overline{Z}, Z]$ is
a purely imaginary vector field that satisfies

$Tr_{F_{k}}=-k$ . (4.3)

Since $T^{0,1}M$ has a global non-vanishing section we identify Def(M, $\overline{\partial}_{b}$ )
with $\{\phi\in C^{\infty}(M) : ||\phi||_{L^{\infty}}<1\}$ by setting

$\phi T_{p}0,1M=\{\lambda(\overline{Z}_{p}+\emptyset(p)Z_{p}) : _{\lambda}\in \mathbb{C}\}$ .

are $S^{1}-$invariant and so we say that deformations in $F_{-2}(\mathcal{F}_{-1})$ have
non-negative (positive) Fourier coefficients. In [Ep3] it is shown that all
deformations in $\mathcal{F}_{-2}$ are embeddable.

Using a formalism introduced by Bland and Duchamp in [BIDu]
we can actually extend deformations lying in $\mathcal{F}_{-2}$ to integrable almost
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complex structures defined on the disk bundle in $ T^{1,0}\Sigma$ bounded by $M$ .

In local coordinates $\phi\in F_{-2}$ has a Fourier expansion

$\phi(z_{\alpha}, w_{\alpha})=\sum_{j=-2}^{\infty}a_{j}(z_{\alpha},\overline{z}_{\alpha})w_{\alpha}^{j}$ . (4.4)

Define a vector field on $D\cap U_{\alpha}$ by:

$\overline{Z}_{\alpha}^{\phi}=(\partial_{\overline{z}_{\alpha}}-2u_{\overline{z}_{\alpha}}^{\alpha}\overline{w}_{\alpha}\partial_{\overline{w}_{\alpha}})+e^{2u^{\alpha}}\sum_{j=-2}^{\infty}a_{j}w_{\alpha}^{j+2}(\partial_{z_{\alpha}}-2u_{z_{\alpha}}^{\alpha}w_{\alpha}\partial_{w_{\alpha}})$ . (4.5)

Simple calculations show that

$e^{2u^{\alpha}}w_{\alpha}(\overline{Z}_{\alpha}+\phi Z_{\alpha})=\overline{Z}_{\alpha}^{\phi}r_{M}$ and

$\overline{Z}_{\beta}^{\phi}=\overline{f}_{\alpha\beta}’\overline{Z}_{\alpha}$ ,

on the overlaps. As a consequence of the second relation it follows that
$\{\overline{Z}_{\alpha}d\overline{z}_{\alpha}\}$ is a globally defined vector valued $(0, 1)-$form. In the next
section we show that the $(1, 0)$-part can be identified as the Dolbeault
representative of a class in $H^{1}(D;\Theta)$ . If we take $\overline{\mathcal{W}}_{\alpha}=\partial_{\overline{w}_{\alpha}}$ then

$(\overline{Z}_{\alpha}^{\phi},\overline{\mathcal{W}}_{\alpha})$

is a globally defined, integrable, almost complex structure on the unit
disk bundle which induces the $CR$-structure $\emptyset T^{0,1}M$ on $\partial D$ . This is a
“real” representation of deformations of the complex structure on the
disk bundle.

In [BlEp] a formalism is presented for studying the deformations
of a surface singularity in terms of $CR$-structures on a link. Part of
this program is to recognize when a deformation is, to first order, a
wiggle of a hypersurface within a variety. A second order operator $P$

is defined such that a deformation, $\phi$ is a wiggle, to first order if and
only if $\phi=P\varphi$ . Results in [ChLe] show that $\prime p$ has a closed range and
therefore it is reasonable to expect that the “versal deformation” of the
isolated singular point will be found in $kerP^{*}$ . Here the adjoint is defined
relative to some choice of volume form. Note that the operator $p*is$

defined intrinsically on $M$ . The analysis in [BlEp] applies to embedded
$CR$-manifolds and the category of embedded deformations. So if we
consider all embeddable families of deformations which lie in $kerP^{*}$ then
we may be considering deformations of several families of singularities
which share the reference $CR$-manifold as a link. A second caveat is that
in the cited work it is assumed that the singularities are normal. In the
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next section some of the singularities to be considered are non-normal,
so the results in [BlEp] cannot be applied directly but serve rather as
motivation. In the case at hand one easily computes that $P^{*}=Z^{2}$ .

To complete our discussion of the geometry of $M$ we relate the $\overline{\partial}_{b^{-}}$

operator to the $\overline{\partial}$ operator on $\Sigma$ . Let $\kappa$ denote the canonical bundle
of $\Sigma$ . A form of weight $k$ is a section of $\kappa^{\otimes k}$ , in local coordinates it is
represented by $u=u^{\alpha}(z_{\alpha},\overline{z}_{\alpha})dz_{\alpha}^{k}$ . A form of weight $k$ defines a function
$U\in F_{k}$ , with local coordinate representation:

$U(z_{\alpha}, w_{\alpha})=u_{a}w_{\alpha}^{k}$ .

Moreover $\overline{\partial}_{b}U=0$ if and only if $\overline{\partial}u=0$ . In this way we see that the
$ker\overline{\partial}_{b}\subset F_{0}$ and the Fourier transform defines an isomorphism:

$ker\overline{\partial}_{b}=\oplus H^{0}(\Sigma;\kappa^{k})k=0$
. (4.6)

It is also useful to consider sections of $\overline{\kappa}k$ ; locally we have $v=$

$v_{\alpha}d\overline{z}_{\alpha}^{k}$ . In this case set $V[_{U_{\alpha}\cap M}=v_{\alpha}e^{2ku^{\alpha}}w_{\alpha}^{k}$ to obtain a globally defined
function on $M$ . As before the equation $\partial_{b}V=0$ is equivalent to $\partial v=0$ .

Finally we compute the $\overline{\partial}-$operator on $(1, 0)$-vector fields defined in
$D$ . Let

$p_{1,0}$ : $TX\otimes \mathbb{C}\rightarrow T^{1,0}X$

denote the canonical projection defined by the complex structure. If $V_{\alpha}$

is a $(1, 0)$ -vector field defined in a subset of $U_{\alpha}$ then

$\overline{\partial}V_{\alpha}=p_{1},0[V_{\alpha}, \partial_{\overline{z}_{\alpha}}]d\overline{z}_{\alpha}+p_{1,0}[V_{\alpha}, \partial_{\overline{w}_{\alpha}}]d\overline{w}_{\alpha}$ . (4.7)

\S 5. Deformations of the tangent bundle

In [La] the following theorem is proved:

Theorem [Laufer], Let $X$ be a strictly pseudoconvex manifold
with $a$ one dimensional exceptional set A. Then there is a strictly pseu-
doconvex neighborhood of $A$ in $X$ and a deformation, $\omega$ : $\mathcal{X}\rightarrow Q$ of
$X=\omega^{-1}(0)$ , with $Q$ a manifold such that the Kodaira-Spencer map
$\rho_{0}$ : $QT0\rightarrow H^{1}(X, \Theta)$ is an isomorphism.

We apply this theorem to study the deformations of the disk bundle
$ D\subset T^{1,0}\Sigma$ , modulo the equivalence relation (3.1). Using the Fourier

transform we reduce the computation of $H^{1}(D;\Theta)$ to computations on
$\Sigma$ . This introduces a grading on $H^{1}(D;\Theta)$ . Using the Bland-Duchamp
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extension and the Dolbeault isomorphism, we identify elements of
$H^{1}(D;\Theta)$ with elements of Def(M, $\overline{\partial}_{b}$ ) Dker $p*$ . Using the CR-represen-
tation we then give a description of the geometry of the different types
of deformations.

Choose coordinates, $\{(z_{\alpha}, V_{\alpha})\}$ for $\Sigma$ so that $\mathfrak{B}=\{V_{\alpha}\}$ is a Leray
cover then $\{\pi^{-1}(V_{\alpha})\}$ is a Leray cover of $ T^{1,0}\Sigma$ . Their intersections with
$D$ define a Leray cover of the disk bundle, which we denote by $U$ $=\{U_{\alpha}\}$

and therefore
$H^{1}(D;\Theta)\simeq H^{1}(\mathfrak{U};\Theta)$ . (5.1)

On the sets $U_{\alpha}$ the coordinate vector fields $\{\partial_{z_{\alpha}}, \partial_{w_{\alpha}}\}$ trivialize the holo-
morphic tangent bundle. Locally, holomorphic sections take the form:
$a_{\alpha}(z_{\alpha}, w_{\alpha})\partial_{z_{\alpha}}+b_{\alpha}(z_{\alpha}, w_{\alpha})\partial_{w_{\alpha}}$ where $a_{\alpha}$ and $b_{\alpha}$ have Taylor expansions

$a_{\alpha}=\sum_{j=0}^{\infty}a_{\alpha j}(z_{\alpha})w_{\alpha}^{j}$ , $b_{\alpha}=\sum_{j=0}^{\infty}b_{\alpha j}(z_{\alpha})w_{\alpha}^{j}$ . (5.2)

An elementary computation shows that on the overlaps:

$b_{\alpha 0}=f_{\alpha\beta}’b_{\beta 0}$ , $\left(\begin{array}{l}a_{\alpha j}\\b_{\alpha(j+1)}\end{array}\right)=[f_{\alpha\beta}’]^{-j}$ $\left(\begin{array}{ll}f_{\alpha\beta}’ & 0\\\frac{f_{\alpha}’}{f_{\alpha}},\beta\beta & 1\end{array}\right)\left(\begin{array}{l}a_{\beta j}\\b_{\beta(j+1)}\end{array}\right)$ , $j\geq 0$ .

(5.3)
Let $\mathcal{V}$ denote the vector bundle defined on $\Sigma$ by the $2\times 2$-matrix in

(5.3). From (5.2) and (5.3) it follows that

$H^{1}(D;\Theta)\simeq H^{1}(\Sigma;\kappa^{-1})\oplus H^{1}j=0(\Sigma;\mathcal{V}\otimes\kappa^{j})$
. (5.4)

The groups appearing on the right hand side can easily be computed.
By Serre duality

$H^{1}(\Sigma;\mathcal{V}\otimes\kappa^{j})\simeq(H^{0}(\Sigma;\mathcal{V}’\otimes\kappa^{1-j}))’$ . (5.5)

Here $\mathcal{V}’$ is the vector bundle dual to $\mathcal{V}$ ; it fits into a short exact sequence:

$0\rightarrow\kappa\rightarrow \mathcal{V}’\rightarrow O\rightarrow 0$ . (5.6)

Since $\kappa^{1-j}$ is locally free we can tensor in (5.6) to obtain the exact
sequences of vector bundles

$0\rightarrow\kappa^{2-j}\rightarrow \mathcal{V}’\otimes\kappa^{1-j}\rightarrow\kappa^{1-j}\rightarrow 0$ . (5.7)

Using (5.5), (5.7) and the long exact sequence in cohomology one easily
shows that

$H^{1}(\Sigma;\mathcal{V}\otimes\kappa^{j})=0$ for $j\geq 3$ . (5.8)
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The computations for $j\in\{0,1, 2\}$ follow from the exact sequences

$j=0$ $0\rightarrow H^{0}(\Sigma;\kappa^{2})\rightarrow H^{0}(\Sigma;\mathcal{V}’\otimes\kappa)\rightarrow H^{0}(\Sigma;\kappa)\rightarrow 0$ ,

$j=1$ $ 0\rightarrow H^{0}(\Sigma;\kappa)\rightarrow H^{0}(\Sigma;\mathcal{V}’)\rightarrow H^{0}(\Sigma;\mathcal{O})\rightarrow H^{1}(\Sigma;\kappa)\ldots$ ,

$j=2$ $0\rightarrow H^{0}(\Sigma;O)\rightarrow H^{0}(\Sigma;\mathcal{V}’\otimes\kappa^{-1})\rightarrow 0$ . (5.9)

Only the case $j=1$ requires further comment: a simple calculation
shows that the generator of $H^{0}(\Sigma;\mathcal{O})$ is mapped by $l$ to the 1-cocycle

$\{\frac{f_{\alpha\beta}’}{f_{\alpha\beta}},\}$ which is non-trivial in the one dimensional group $H^{1}(\Sigma;\kappa)$ . Hence

the sequence in this case can be replaced with

$j=1$ $0\rightarrow H^{0}(\Sigma;\kappa)\rightarrow H^{0}(\Sigma;\mathcal{V}’)\rightarrow 0$ . (5.10)

Dualizing the sequences in (5.9) and (5.10) we obtain:

Proposition 5.1. The $S^{1}-$action deffines a grading of the coho-
mology group $H^{1}(D;\Theta)$ over $\{-1, 0, 1, \ldots\}$ . Denote the summands by
$H_{j}^{1}$ . We have $H_{j}^{1}=0$ for $j\geq 3$ and

$0\rightarrow H^{1}(\Sigma;\kappa^{-1})\rightarrow H_{-1}^{1}\rightarrow 0$ ,

$0\rightarrow H^{1}(\Sigma;\mathcal{O})\rightarrow H_{0}^{1}\rightarrow H^{1}(\Sigma;\kappa^{-1})\rightarrow 0$ ,

$0\rightarrow H_{1}^{1}\rightarrow H^{1}(\Sigma;O)\rightarrow 0$

$0\rightarrow H_{2}^{1}\rightarrow H^{1}(\Sigma;\kappa)\rightarrow 0$ . (5.11)

Remark. A cohomology group occurring to the left of $H_{j}^{1}$ in (5.11)

corresponds to vector fields in the subbundle $of\ominus spanned$ by $\{\partial_{w_{\alpha}}\}$

whereas a group to the right corresponds to a section of the quotient of
$\Theta$ by this subbundle. In what follows it is useful to observe that the quo-
tient bundle has a non-holomorphic representation as the subbundle of
$T^{1,0}(T^{1,0}\Sigma)$ spanned by $\{Z_{\alpha}’=\partial_{z_{\alpha}}-2u_{z_{\alpha}}^{\alpha}w_{\alpha}\partial_{w_{\alpha}}\}$ . This facilitates find-

ing the Dolbeault representatives for the cohomology group $H^{1}(D;\ominus)$ .
We now show how these correspond to first order deformations in $ker$ $p*$ .

Laufer’s theorem states that all the first order deformations in
$H^{1}(D;\Theta)$ are unobstructed and therefore correspond to genuine defor-
mations of the complex structure on D. The Bland-Duchamp extension
shows that $CR$-structures lying in $F_{-2}$ are extensible as integrable com-
plex structures on $D$ . Thus for deformations in $H^{1}(D;\Theta)$ , corresponding
to $CR$-structures in $kerP^{*}\cap F_{-2}$ , the connection between the first order
data and the actual complex structures is quite clear. As we shall see,
there are first order deformations which correspond to $CR$-deformations
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in $F_{-3}$ . In these cases the representation of the deformed $CR$-structure
requires higher order data.

If $\phi\in Def(M,\overline{\partial}_{b})$ then, as observed in \S 4, we can extend $\phi$ to $D$

as a mermorphic function in $w_{\alpha}$ . If $\phi\in \mathcal{F}_{-2}$ the extended function is
actually holomorphic and the vector valued $(0, 1)$-forms

$\omega_{\alpha}^{\phi}=e^{2u^{\alpha}}\sum_{j=-2}^{\infty}a_{j}w_{\alpha}^{j+2}(\partial_{z_{\alpha}}-2u_{z_{\alpha}}^{\alpha}w_{\alpha}\partial_{w_{\alpha}})d\overline{z}_{\alpha}$ (5.12)

patch together to give a globally defined $T^{1,0}-$valued $(0, 1)-$form We

denote this form by $\omega^{\phi}$ .

With the normalizations given in \S 4 the operator $p*=Z^{2}$ and
therefore

$kerP^{*}\subset$
$\oplus^{0}F_{j}$

. (5.13)
$ j=-\infty$

The $kerP^{*}$ has the following simple description:

Proposition 5.2. The $kerP^{*}\cap C^{\infty}(M)$ is equal to $kerZ\oplus\overline{Z}kerZ$

and the $kerZ=\overline{ker\overline{Z}}$ .

Proof. Using the $L^{2}-$inner product we can decompose

$kerZ^{2}=(kerZ^{2}\ominus kerZ)\oplus ker$ Z. (5.14)

From (4.2) we conclude that range $\overline{Z}$ is the orthogonal complement to
$kerZ$ ; to establish the first claim in the proposition it is only necessary
to verify that

$Z^{2}\overline{Z}u=0$ for $u\in ker$ Z. (5.15)

We decompose $u\in kerZ$ into its Fourier components:

$u=$
$\sum 0u_{j}$

.
$ j=-\infty$

Since $u_{j}\in kerZ$ it follows from (4.3) that

$Z\overline{Z}u_{j}=[Z,\overline{Z}]u_{j}=ju_{j}$ .

This implies that (5.15) holds for each of the Fourier components of $u$

and consequently for $u$ itself. The second statement in the proposition
is obvious.

Now we can give the correspondence between the “non-negative”
classes in $H^{1}(D;\Theta)$ and first order deformations of the $CR$-structure on
$M$ .
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Theorem 5.1. The equivalence classes of “non-negative” first or-
der deformations of the complex structure on $D$ are represented by first
order deformations of the $CR-$structure on $M$ via the following corre-
spondences:

$H_{0}^{1}\leftarrow\rightarrow kerZ^{2}\cap F_{-2}$ ,

$H_{1}^{1}\prec-\rangle kerZ^{2}\cap F_{-1}=kerZ\cap F_{-1}$ ,

$H_{2}^{1}\leftrightarrow kerZ^{2}\cap F_{0}=kerZ\cap F_{0}$ . (5.16)

The $T^{1,0}-$valued $(0, 1)$ -forms defined in (5.12) are Dolbeault represen-
tatives of the corresponding classes in $H^{1}(D;\Theta)$ .

Remark. The remaining case of $H_{-1}^{1}\leftarrow\rightarrow\overline{Z}(kerZ\cap F_{-2})$ is discussed
below.

Proof Using Proposition 5.2 and (4.6) it is a simple matter to
show that indicated pairs of vector spaces in (5.16) have the same di-

mensions and are therefore abstractly isomorphic. Because they de-
pend holomorphically on $w_{\alpha}$ , the vector valued $(0, 1)$ -forms defined in

(5.12) are $\overline{\partial}-$closed and hence define Dolbeault cohomology classes in
$H^{0,1}(D;T^{1,0}D)\simeq H^{1}(D;\Theta)$ . The isomorphism goes as follows: begin
with a $\phi\in Def(M,\overline{\partial}_{b})$ and find local solutions to

$\overline{\partial}V_{\alpha}=\omega_{\alpha}^{\phi}$ .

The 1-cocycle $\{V_{\alpha}-V_{\beta}\}$ represents the corresponding class in $H^{1}(D;\Theta)$ .

It is a simple matter to check that the vector fields $\{V_{\alpha}\}$ can be selected
to respect the grading and hence define the maps in (5.16). The only

point that remains is to show that the map from $\phi\rightarrow[\omega^{\phi}]$ is injective.
We give the details of this argument for some representative cases,

beginning with the easiest case, $H_{2}^{1}\simeq H^{1}(\Sigma;\kappa)\simeq \mathbb{C}$ . The $kerZ\cap F_{0}$ is
easily seen to consist of exactly the constant functions. The class defined
by $\lambda\in \mathbb{C}$ is trivial if and only if we can find $V\in C^{\infty}(D;T^{1,0}D)$ such
that

$\overline{\partial}V=\omega^{\lambda}$ . (5.17)

We let $Vr_{U_{\alpha}}=a_{\alpha}Z_{\alpha}’+b_{\alpha}\partial_{w_{\alpha}}$ .

Using formula (4.7) we see that (5.17) is equivalent to:

$\partial_{\overline{w}_{\alpha}}a_{\alpha}=\partial_{\overline{w}_{\alpha}}b_{\alpha}=0$ ,

$\partial_{\overline{z}_{\alpha}}a_{\alpha}=-\lambda e^{2u^{\alpha}}w_{\alpha}^{2}$ ,

$\partial_{\overline{z}_{\alpha}}b_{\alpha}=2w_{\alpha}a_{\alpha}u_{z_{\alpha}\overline{z}_{\alpha}}^{\alpha}$ . (5.18)
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The $w_{\alpha}$ dependence follows immediately from (5.18):

$a_{\alpha}=w_{\alpha}^{2}A_{\alpha}(z_{\alpha})$ , $b_{\alpha}=w_{\alpha}^{3}B_{\alpha}(z_{\alpha})$ .

This leaves the equations on $\Sigma$ :

$\partial_{\overline{z}_{\alpha}}A_{\alpha}=-\lambda e^{2u^{\alpha}}$ ,

$\partial_{\overline{z}_{\alpha}}B_{\alpha}=2A_{\alpha}u_{z_{\alpha}\overline{z}_{\alpha}}^{\alpha}$ . (5.19)

In order for $V$ to be globally defined it is necessary that $\{A_{\alpha}dz_{\alpha}\}$ piece
together to define a global smooth section of $\kappa$ . We rewrite the equation
for $A$ as

$\overline{\partial}(A_{\alpha}dz_{\alpha})=-\lambda e^{2u^{\alpha}}dz_{\alpha}\otimes d\overline{z}_{\alpha}$ . (5.20)

$d(A_{\alpha}dz_{\alpha})=-\lambda e^{2u^{\alpha}}dz_{\alpha}\wedge d\overline{z}_{\alpha}$ . (5.21)

It follows from Stokes theorem that this equation is solvable if and only
if

$\int_{\Sigma}\lambda e^{2u^{\alpha}}dz_{\alpha}\wedge d\overline{z}_{\alpha}=0$
,

i.e. if and only if $\lambda=0$ . This completes the case $j=2$ . The case $j=1$

is quite similar and is left to the reader.
We give the argument for one further case: $\phi\in\overline{Z}\psi$ where $\psi\in$

$kerZ\cap F_{-1}$ . In local coordinates $\phi=w_{\alpha}^{-2}c_{\alpha}$ , $\psi=w_{\alpha}^{-1}d_{\alpha}$ , the equa-
tions satisfied by $\phi$ and $\psi$ are

$\partial_{\overline{z}_{\alpha}}d_{\alpha}=e^{2u^{\alpha}}c_{\alpha}$ ,

$\partial_{z_{\alpha}}(e^{2u^{\alpha}}d_{\alpha})=0$ . (5.22)

We need to show that there exists no vector field $V$ such that

$\overline{\partial}V=\omega^{\phi}$ . (5.23)

If $V=a_{\alpha}Z_{\alpha}’+b_{\alpha}\partial_{w_{\alpha}}$ , in local coordinates then (5.23) is equivalent to

$\partial_{\overline{w}_{\alpha}}a_{\alpha}=\partial_{\overline{w}_{\alpha}}b_{\alpha}=0$ ,

$\partial_{\overline{z}_{\alpha}}a_{\alpha}=-e^{2u^{\alpha}}c_{\alpha}$ ,

$\partial_{\overline{z}_{\alpha}}b_{\alpha}=\frac{1}{2}w_{\alpha}a_{\alpha}e^{2u^{\alpha}}$ (5.24)

The collection $\{a_{\alpha}(z_{\alpha})\partial_{z_{\alpha}}\}$ patch together to define a global vector field
on $\Sigma$ . From (5.22) it is clear that $a_{\alpha}=-d_{\alpha}$ is a global solution to



Deformations of Singularities, Complex Manifolds and CR-Structures 103

the second equation in (5.24). The solution is unique as $ker\overline{\partial}=0$

on $C^{\infty}(\Sigma;T^{1,0}\Sigma)$ . Setting $b_{\alpha}(z_{\alpha}, w_{\alpha})=B_{\alpha}(z_{\alpha})w_{\alpha}$ , the last equation in
(5.24) becomes:

$\partial_{\overline{z}_{\alpha}}B_{\alpha}=-\frac{1}{2}d_{\alpha}e^{2u^{\alpha}}$ (5.25)

A simple calculation show that the $\{B_{\alpha}\}$ must patch together to define
a function, $B$ on $\Sigma$ which satisfies

$\overline{\partial}B=d_{\alpha}e^{2u^{\alpha}}d\overline{z}_{\alpha}$ .

This equation is not solvable as (5.22) implies that $\{d_{\alpha}e^{2u^{\alpha}}d\overline{z}_{\alpha}\}$ patch

together to define a global section in $ker\overline{\partial}^{*}$

The remaining cases are left to the interested reader.

Before considering $H_{-1}^{1}$ we give a brief geometric description of each
of the types of deformations with non-negative Fourier coefficients. In
[Ep3] it was shown that $\overline{Z}+\phi Z$ defines an embeddable deformation
of $(M,\overline{\partial}_{b})$ provided $\phi\in F_{-2}$ . However the possibility remains that
$Ind(\overline{\partial}_{b},\overline{\partial}_{b}^{\phi})\neq 0$ . From the Bland-Duchamp extension it is evident that

the zero section of $ T^{1,0}\Sigma$ persists under these deformations as a nega-
tively embedded curve diffeomorphic to $\Sigma$ . Let $D^{\phi}$ denote the unit disk
bundle with the complex structure defined by the Bland-Duchamp ex-
tension.

We begin with $\phi\in kerP^{*}\cap F_{-2}$ . These structures are $S^{1}-$invariant
and so can be embedded in the total space of a line bundle, $L_{\phi}$ of degree
$2g-2$ over a Riemann surface, $\Sigma_{\phi}$ of genus $g$ . If $\phi\in kerZ\cap F_{-2}\simeq$

$H^{0}(\Sigma;\kappa^{2})$ then the $CR$-structure defined by $\phi$ can be realized as a hy-
surface in the holomorphic tangent bundle of a Riemann surface. An

easy calculation shows that for such $\phi$ ,

$Ind(\overline{\partial}_{b},\overline{\partial}_{b}^{\phi})=0$ .

For small enough deformations this implies that $dimH^{0}(\Sigma_{\phi};L_{\phi}^{-1})=$

$dimH^{0}(\Sigma;\kappa)=g$ . The only line bundles of the given degree which have
a $g$-dimensional space of holomorphic sections are the canonical bun-

dles. Thus $L_{\phi}^{-1}$ is the canonical bundle of $\Sigma_{\phi}$ . Of course the holomor-

phic quadratic differentials are isomorphic to the tangent space of the
Teichm\"uller space of the Riemann surface $\Sigma$ . Thus $kerZ\cap F_{-2}$ provides
a $CR$-representation for the local moduli of the deformations of $\Sigma$ .

The other deformations in $H_{0}^{1}$ lie in $\overline{Z}(kerZ\cap F_{-1})\simeq H^{0}(\Sigma;\kappa)$ .

This group is classically identified with the holomorphic moduli for line
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bundles of a fixed degree over a Riemann surface. It is easy to show that
for such $\phi\neq 0$ the relative index satisfies

$Ind(\overline{\partial}_{b},\overline{\partial}_{b}^{\phi})=-1$ .

Thus the line bundles obtained are not the tangent bundle as the $dim(\Sigma_{\phi}$

; $L_{\phi}^{-1}$ ) $=g-1$ . It follows from Theorem 5.1 that all small deformations

of the tangent bundle are found in this family. The complex structure
on $\Sigma_{\phi}$ may also vary within this family though it varies $O(\phi^{2})$ for small
$\phi$ .

For the structures in $kerZ\cap F_{-1}$ the complex structure on $\Sigma$ as well
as its normal bundle $[\Sigma](_{\Sigma}$ are unchanged. However $D^{\phi}$ is not a domain
in the total space of a line bundle. This is proved as follows: one finds
that the “first order” invariant defined in \S 2 of [MoRo] is non-zero. This
is the obstruction to splitting the normal bundle sequence along $\Sigma$ :

$0\rightarrow\Theta_{\Sigma}\rightarrow\Theta_{D^{\phi}}\rightarrow N_{\Sigma}^{\phi}\rightarrow 0$ .

Thus $\Sigma\epsilon_{-\rangle}D^{\phi}$ is a holomorphic curve which is not the zero section
of a line bundle. However if $D_{\phi}$ were a domain in a holomorphic line
bundle then $\Sigma$ would be homologous to the zero section. But this is
impossible because $\Sigma$ is negatively embedded and is therefore the unique
holomorphic curve in its homology class. The structures in $kerZ\cap F_{0}$

again cannot be embedded in the total space of a line bundle. In this
case one computes that the “second order” obstruction defined in \S 3 of
[MoRo] is non-vanishing and therefore the embedding of $\Sigma c-\rangle$ $D^{\phi}$ is not

equivalent to the embedding of $\Sigma$ as the zero section in $N_{\Sigma}^{\phi}$ . The relative
index in these cases satisfies:

$Ind(\overline{\partial}_{b},\overline{\partial}_{b}^{\phi})=0$ .

We close with a discussion of $\phi\in F_{1}$ . Of course $\mathcal{F}_{1}\subset ranged$ so
these are, to first order, wiggles of $M$ within $ T^{1,0}\Sigma$ . Indeed it follows from
the theorem of Grauert on lifting formal equivalences, [Gr] that there is

a neighborhood of $\Sigma$ in $D^{\phi}$ which is biholomorphic to a neighborhood
of the zero section in $ T^{1,0}\Sigma$ . We conjecture that, for a reasonable notion
of smallness, the small deformations in $\mathcal{F}_{1}$ can be realized by wiggling
the hypersurface $M$ within $ T^{1,0}\Sigma$ .

Finally we consider deformations in $H_{-1}^{1}$ . Apparently the first order
part should correspond to a $CR$-deformation in $kerP^{*}\cap F_{-3}$ . The com-
plex structures on $D$ corresponding to deformations in $H_{-1}^{1}$ are affine
bundles which have no compact subvarieties. If the coefficients in the
Bland-Duchamp extension were smooth on $D$ then the zero section
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would persist as a holomorphic curve. This extension for structures in
$F_{-3}$ has a first order pole along the zero section of $ T^{1,0}\Sigma$ . In the present
case, the singularity appears to be more in the nature of a “coordinate
singularity” as opposed to an unfillable complex manifold.

Let $\phi\in\overline{Z}(kerZ\cap F_{-2})$ and let $\omega^{\phi}$ denote the vector valued $(0, 1)-$

form defined on $ D\backslash \Sigma$ by (5.12). Clearly we can think of $\omega^{\phi}$ as a
first order deformation of the complex structure on the deleted space,
$ D\backslash \Sigma$ . We show below that there is a $\check{C}ech$ representative $\{\xi_{\alpha\beta}\}\in$

$H^{1}(D\backslash \Sigma;\Theta)$ which extends to define a class in $H^{1}(D;O-)$ . This provides

an identification of the first order deformations of $D$ in $H_{-1}^{1}$ with these
deformations of the $CR$-structure on $M$ . The relationship in this case is
not as transparent as in the previous cases, in part because the first order
deformation of the $CR$-structure is not itself embeddable but requires
higher order correction terms.

Let $\psi\in kerZ\cap F_{-2}$ and set $\phi=\overline{Z}\psi$ . In local coordinates $\phi=$

$w_{\alpha}^{-3}c_{\alpha}$ , $\psi=w_{\alpha}^{-2}d_{\alpha}$ . To find the class in $H^{1}(D;\Theta)$ corresponding to $\phi$

we need to solve a system of equations,

$\partial_{\overline{w}_{\alpha}}a_{\alpha}=\partial_{\overline{w}_{\alpha}}b_{\alpha}=0$ ,

$\partial_{\overline{z}_{\alpha}}a_{\alpha}=-w_{\alpha}^{-1}e^{2u^{\alpha}}c_{\alpha}$ ,

$\partial_{\overline{z}_{\alpha}}b_{\alpha}=\frac{1}{2}w_{\alpha}a_{\alpha}e^{2u^{\alpha}}$ (5.26)

Let $a_{\alpha}=w_{\alpha}^{-1}A_{\alpha}$ . As before the fact that $\phi=\overline{Z}\psi$ implies that $A_{\alpha}=-d_{\alpha}$

piece together to give a global solution to the second equation in (5.26).
This leaves only the equation:

$\partial_{\overline{z}_{\alpha}}b_{\alpha}=-\frac{1}{2}d_{\alpha}e^{2u^{\alpha}}$ (5.27)

This can again be interpreted as a $\overline{\partial}-$equation on $\Sigma$ which cannot be

solved because the right hand side belongs to $ker\overline{\partial}^{*}$ . The vector fields
$\{w_{\alpha}^{-1}A_{\alpha}Z_{\alpha}’\}$ piece together to define a global vector field on $ D\backslash \Sigma$ . The
$\check{C}ech$ representative of $\omega^{\phi}$ is therefore

$\{b_{\alpha}\partial_{w_{\alpha}}-b_{\beta}\partial_{w_{\beta}}\}$ .

These evidently extend to define a holomorphic 1-cocycle on $D$ which
represents a class in $H_{-1}^{1}$ . Among the first order deformations of $(M,\overline{\partial}_{b})$

in $kerP^{*}\cap\oplus_{\{k<-2\}}F_{k}$ only those in $\overline{Z}(kerZ\cap F_{-2})$ correspond to classes
which extend to $D$ .

The elements in $H_{-1}^{1}$ have a simple geometric description as the

affine bundles over $\Sigma$ with $ T^{1,0}\Sigma$ as their underlying vector bundle. If
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$\{\xi_{\alpha\beta}\}$ represents a class in $H^{1}(\Sigma;\kappa^{-1})$ then we can define coordinates
$\{U_{\alpha}, (z_{\alpha}, v_{\alpha})\}$ with transition functions:

$z_{\alpha}=f_{\alpha\beta}(z_{\beta})$ , $v_{\alpha}=f_{\alpha\beta}’(z_{\beta})v_{\beta}+\xi_{\alpha\beta}$ . (5.28)

The cocycle condition for $H^{1}(\Sigma;\kappa^{-1})$ implies that these relations are
consistent. We denote the total space of the affine bundle by $A_{\xi}$ . It is a
Stein manifold which can be compactified by adding a curve “at infinity,”

denote the compactified space by $\hat{A}_{\xi}$ . Let $N$ be a small neighborhood of
$O\in H^{1}(\Sigma;\kappa^{-1})$ and set:

$A$
$=\xi\in N\cup(\hat{A}_{\xi}, \xi)$

. (5.29)

It is easy to see that $A$ has a natural structure as a complex mani-
fold and for sufficiently small $N$ , $\pi$ : $A$ $\rightarrow N$ is a deformation space

of $\pi^{-1}(0)=\hat{T}\Sigma$ . Perhaps shrinking $N$ further, the real analytic hyper-

surface $M\epsilon_{-\rangle}\pi^{-1}(0)$ can be extended to a real analytic hypersurface
A{ $c_{-\rangle}A$ , intersecting the fibers of $\pi$ transversely.

Let $M_{\xi}=\pi^{-1}(\xi)\cap \mathcal{M}$ with the induced $CR$-structure denoted by
$\overline{\partial}_{b}^{\xi}$ . For $\xi\neq 0$ the hypersurface $M_{\xi}$ bounds a domain, $D_{\xi}\subset A_{\xi}$ . As $A_{\xi}$

is a Stein manifold it follows from Hamilton’s stability theorem that for
$\xi\neq 0$ there is an open neighborhood $U_{\xi}\subset N$ such that for $\xi’\in U_{\xi}$

the complex manifold $D_{\xi’}$ can be realized as a small perturbation of $D_{\xi}$

within $A_{\xi}$ , see [Ha]. We can therefore apply Theorem 3.4 to conclude
that

$Ind(\overline{\partial}_{b}^{\xi},\overline{\partial}_{b}^{\xi’})=0$ for $\xi’\in U_{\xi}$ . (5.30)

Since $N\backslash \{0\}$ is connected we can apply Proposition 3.2 to conclude that
(5.30) holds for any pair $\xi$ , $\xi’\in N\backslash \{0\}$ . In a forthcoming paper with
Donagi a detailed analysis of the structure of the algebra of holomorphic
functions on affine bundles will be given. A computation in that paper
shows that if the genus of $\Sigma$ is $g$ then

$Ind(\overline{\partial}_{b}^{0},\overline{\partial}_{b}^{\xi})=-(g+1)$ , for $\xi\in N\backslash \{0\}$ . (5.31)

This is a larger value than attained for any non-negative deformation.
In [BlEp] the analogous deformations are studied for line bundles

over $\mathbb{P}^{1}$ . In this case the linear part of the $CR$-representative is again of
the form $\overline{Z}g$ for a homogeneous function $g\in kerZ$ . The corresponding
embeddable deformation is simply $\overline{Z}g-g2$ . We conjecture that, in the
present case, the embeddable deformation with first order part $\overline{Z}\psi$ is
$\overline{Z}\psi+\frac{1}{2}\psi^{2}$ .
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\S 6. Problems in deformation theory

In this section we propose six problems in deformation theory which
are related to the problem of characterizing the space of embeddable
$CR$-structures.

Problem 1. Let $(M,\overline{\partial}_{b})$ be a compact 3-dimensional, strictly pseu-
doconvex embeddable $CR$-manifold. Is there a generalization of Bland’s
construction of a slice for the action of $Cont_{H}$ which has the structure
of a complex fiber bundle over a real manifold, see [Bl]?

Problem 2. Suppose $V$ is an affine variety and $M_{1}$ , $M_{2}\epsilon_{-\succ}V$ are
two strictly pseudoconvex hypersurfaces in $V\backslash sing(V)$ which bound
compact domains and are smoothly isotopic in $V\backslash sing(V)$ . Are $M_{1}$ and
$M_{2}$ in the same strictly pseudoconvex isotopy class, see Theorem 3.4 ?

Problem 3. If $(M,\overline{\partial}_{b})$ is an embeddable, 3-dimensional, CR-mani-
fold are there integers $k$ and $N$ and a positive $\epsilon$ so that

$\mathfrak{S}_{n}\cap\{\phi : ||\phi||_{C^{k}}<\epsilon\}=\mathfrak{S}_{N}\cap\{\phi : ||\phi||_{C^{k}}<\epsilon\}$ for $n\geq N$?

Problem 4 $\cdot$ Is there an effective way to translate between the real
and holomorphic descriptions of the deformations of complex (or $CR$)
structures?

Problem 5. Suppose $X$ is a smooth complex surface with a com-
pact, maximal, exceptional analytic subvariety, $A$ . Let I denote the ideal
of $A$ and $J$ $\subset I$ , a sub-ideal for which there exists a neighborhood $U_{J}$ of
$A$ and proper embedding $F_{J}$ : $U_{J}\backslash A\rightarrow \mathbb{C}^{n}\backslash \{0\}$ where the coordinate
functions of $F_{J}$ belong to $J$ . We can of course extend $F_{J}$ to $A$ by 0 and
this defines the germ of a singularity $(F_{J}(U_{J}), 0)\subset(\mathbb{C}^{n}, 0)$ . If $J_{2}\subset J_{1}$

are two such sub-ideals of I then a deformation of $(F_{J_{1}}(U_{1}), 0)$ induces
a deformation of $(F_{J_{2}}(U_{2}), 0)$ . Is there a “universal” sub-ideal $lJ$ $\subset I$

such that for every ideal, $J$ as above the versal deformation space of
$(F_{J}(U_{J}), 0)$ can be realized as a subspace of the versal deformation of
$(Fu(U_{\mathfrak{U}}), 0)$ ?

Problem 6. In [MoRo] the formal neighborhoods of a complex
curve, $\Sigma$ with fixed positive, normal bundle, $N$ are considered. It is
shown that there is an infinite dimensional space of inequivalent neigh-
borhoods. Is the subspace of formal neighborhoods which can be realized
by an embedding in a compact projective variety finite dimensional?
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Dedicated to Professor M. Kuranishi on his 70th birthday

\S 1. Introduction.

Vector-valued forms arise in the study of various higher codimen-
sional geometries. This note gives an overview of how the invariant the-
ory of the Levi form (a vector-valued form) can be used to understand
higher codimensional CR- structures.

Roughly speaking, the Levi form of a CR- structure of codimension
$c$ on a manifold $M$ of dimension $2n+c$ can be interpreted as a map from
$M$ to the vector space consisting of $c$-tuples of $n\times n$ hermitian matrices
(a vector space that we denote as Herm). However, this interpretation
depends on a prior choice of moving coframesthat is, local sections of
the cotangent bundle of $M$ . Fortunately, there is a natural action of the
group $G=GL(n, C)\times GL(c, R)$ on Herm that accounts for the effects
of these choices. More precisely, there is a natural map from $M$ to the
quotient space $Herm/G$ . Knowledge about the structure of this quotient
space can be used to define canonical objects in higher codimensional
CR- geometry. At present, the best developed example (discussed in

\S 5) is a canonical connection for suitably generic CR- structures. The
simplest examples, though, are functions defined on $Herm/G$ , or equiva-
lently, $G$-invariant functions defined on Herm : these lead one to explore
the invariant theory of vector-valued forms as a tool in the study of CR-
geometry. The history of invariant theory suggests two lines of approach.
The first, discussed in \S 3, is to use methods of classical invariant the-
ory to find explicit polynomial functions of vector-valued forms that are
(relatively) invariant under the group action. While these techniques are
quite old, the ensuing results for vector-valued forms are recent. The
second, discussed in \S 4, is to use modern geometric invariant theory
to study the quotient space directly. While the set $Herm/G$ has a stan-
dard quotient topology, it does not carry a globally defined differentiable
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structure: to obtain a differentiate structure one must first eliminate
certain non-generic points (the “unstable” ones). The conditions defin-
ing these points are essentially geometric in concept, but involve a fair
amount of technical intricacy in practice intricacies that are rooted in
the aforementioned classical techniques!

As we shall note in \S 4, the invariant theory of vector-valued forms
has three technically distinct cases: codimension 1, codimension 2, and
higher codimension. Essentially, the codimension 1 case can be under-
stood using nothing more than the standard notions of rank and signa-
ture of a hermitian matrix, and is therefore quite easy. The codimension
2 case is considerably more involved, but still fairly elementary: it rests
on the analysis of roots of polynomials in one unknown. However, the
higher codimensional case involves the zero-locus of polynomials in many
unknowns, and consequently shares much of the richness of classical al-
gebraic geometry. In $CR$-geometry to date, the codimension 1 case is
the only one to have received a great deal of attention (see [Bo] and [J]
for introductions and bibliographies), so the invariant theory of forms
has not been featured in the $CR$ literature. The approach we describe
here is carried out in detail in three papers: [M] treats both the invariant
theory and the differential geometry for codimension 2, [GM1] develops
the invariant theory for higher codimension, and [GM2] treats the corre-
sponding differential geometry. An introduction to higher-codimensional
$CR$-geometry, including the equivalence problem, is contained in [Tu].
Selected references to other approaches to $CR$-geometry of codimension
greater than 1 include [Be], [Tal] and [Ta2].

Both of the authors are honored to participate in this tribute to
Professor Kuranishi, and acknowledge with gratitude the fundamental
influence his ideas have had on their work. One of the authors (Mizner)
would also like to take this opportunity to express his appreciation for
the care and graciousness with which Professor Kuranishi supervised his
doctoral work: as time passes, he realizes ever more fully how fortunate
he was to have been a student of Kuranishi.

\S 2. Definitions.

$CR$-structures arise concretely in connection with real submanifolds
of a complex space. For example, let $M$ be the zero locus of $c$ real valued
functions $g^{\alpha}$ : $\mathbb{C}^{2n+c}\rightarrow \mathbb{R}$ . If the real differentials $ dg\alpha$ are linearly inde-
pendent, then $M$ is a real submanifold of codimension $c$ and dimension
$2n+c$ . If the holomorphic differentials $\partial g^{\alpha}$ are linearly independent as
well, then the complex structure of $\mathbb{C}^{2n+c}$ determines a complex rank $n$

subbundle $\prime H$ of the complexified tangent bundle $\mathbb{C}\otimes TM$ . This subbun-
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die is an instance of a CR- structure of codimension $c$ and dimension
$n$ . Each function $g^{\alpha}$ determines a $(2n+c)\times(2n+c)$ hermitian matrix

with entries $\frac{\partial^{2}g^{\alpha}}{\partial z^{j}\partial z^{\overline{k}}}$ ; together these matrices constitute a vector-valued

hermitian form (i.e., a $c$-tuple of scalar hermitian forms) on the com-
plexified tangent bundle $\mathbb{C}\otimes TM$ . Note that this $c$-tuple is defined only
up to a choice of the defining functions $g^{\alpha}$ and coordinates on $\mathbb{C}^{2n+c}$ .

The restriction of this form to the subbundle 7{ is called the Levi form
of the CR- structure.

The abstract notion of a CR- structure and its accompanying Levi
form generalize this example.

2.1. Definition. Let $M$ be a smooth (i.e. $C^{\infty}$ ) manifold. A CR-
structure of dimension $n$ and codimension $c$ is a rank $n$ complex sub-
bundle $\prime H$ $\subset \mathbb{C}\otimes TM$ with the following properties:

(1) $\prime\kappa\cap \mathcal{H}$ is the zero subbundle;
(2) $[?t, H]\subset H$ . (This condition, called the integrability condition,

is an important technicality that is automatically satisfied by
$CR$-structures arising on real submanifolds.)

2.2. Definition. The Levi form of $\prime\mu$ is the bundle map

$L:H\times\prime H\rightarrow \mathbb{C}\otimes TM/(H\oplus \mathcal{H})$ ,

defined by
$L(X, Y)=i\pi[\overline{X}, Y]$ ,

for all sections $X$ and $Y$ of $\prime H$ , where $\pi$ : $\mathbb{C}\otimes TM\rightarrow \mathbb{C}\otimes TM/(H\oplus \mathcal{H})$

is the natural projection. It is easy to verify that $L$ is well-defined, and
that $L$ is hermitian: i.e., $L(Y, X)$ and $L(X, Y)$ are conjugate.

As indicated in the introduction, by choosing suitably adapted mov-
ing coframes (local sections of the complex cotangent bundle $\mathbb{C}\otimes TM$ ),
one can express the Levi form as a locally defined map from $M$ to the
real vector space whose points are $c$-tuples of $n\times n$ hermitian matrices
(denoted Herm(n, $c$), or Herm for short). However, this expression of
$L$ as a vector-valued hermitian form depends on the choice of sections.
In order to escape this dependency, one defines a natural action of the
group $G=GL(n, \mathbb{C})\times GL(c, \mathbb{R})$ on Herm , and verifies that the result
of composing the locally defined Herm-valued map with the quotient
projection Herm $\rightarrow Herm/G$ is independent of choice of sections. Conse-
quently, the locally defined $Herm/G$-valued maps piece together to yield
a globally defined map $\mathcal{L}$ : $M\rightarrow Herm/G$ .

2.3. Definition. The map $\mathcal{L}$ : $M\rightarrow Herm/G$ is called the Levi map.
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Again as mentioned in the introduction, since every $CR$-manifold of
dimension $n$ and codimension $c$ is mapped into the same quotient space
$Herm/G$ , information about $Herm/G$ can be used to define canonical
objects in CR- geometry. In \S 5 we provide examples, but in order to do
this, we must first examine $Herm/G$ in some detail.

\S 3. Classical invariant theory of vector-valued forms.

An absolute invariant of a vector-valued hermitian form is a func-
tion $f$ : Herm $\rightarrow \mathbb{C}$ that is constant on each orbit of the action of the
group $G=GL(n, \mathbb{C})\times GL(c, \mathbb{R})$ , and hence equivalent to a function
on the quotient space $Herm/G$ : in symbols, $f(gB)=f(B)$ . A relative
invariant (of weight $\chi$ ) is a function that satisfies the weaker condition
$f(gB)=\chi(g)f(B)$ , where $\chi$ : $G\rightarrow \mathbb{C}^{*}$ is a homomorphism. (Of course,
if $\chi$ is the trivial homomorphism, the relative invariant is in fact ab-
solute.) From here on we use the word invariant to cover both cases.
Although a relative invariant is not constant on each orbit, it does have
the property that if it vanishes at any one point in an orbit then it
vanishes at all points in that orbit. Therefore, although a relative in-
variant does not determine a function on the quotient space, it does
nonetheless determine a zero-locus-a fact that has significant geometric
repercussions.

The basic procedure of classical invariant theory in situations such as
ours is to consider only homogeneous polynomial invariants, to note that
these invariants constitute a ring, and to list the generators of this ring
in a so-called First Fundamental Theorem. Next, the relations among
the generators is given in a Second Fundamental Theorem. Continuing,
one then seeks the relations among the relations, the relations among
these new relations, etc., which is called computing the syzygies of the
ring of invariants.

In [GM1], a first fundamental theorem for vector-valued hermi-
tian forms is obtained by specializing a first fundamental theorem for
sesquilinear forms, which in turn is obtained by adapting the proof of
a first fundamental theorem for bilinear forms. The basic ideas of the
proof stand out most clearly in the bilinear case, which we now describe.

A vector-valued bilinear form is a bilinear map $V\times V\rightarrow W$ . For
concreteness, we take $V$ and $W$ to be $\mathbb{C}^{n}$ and $\mathbb{C}^{c}$ respectively, and denote
the vector space of all such forms as $Bil(n, c)$ , or simply $Bil$ . We view
a point in $Bil$ either as a map or as a $c$-tuple of $nx$ $n$ matrices as
convenience dictates. The group $GL(n, \mathbb{C})\times GL(c, \mathbb{C})$ acts on $Bil$ , with
the group element $g=(A, P)$ transforming the form $B=(B^{1}, \cdots, B^{c})$

in stages: the matrix $A$ acts on each component matrix of $B$ , yielding
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an intermediate $c$-tuple

$(^{t}(A^{-1})B^{1}A^{-1}, \cdots,t(A^{-1})B^{c}A^{-1})$ ;

the components of the final $c$-tuple are linear combinations of these
intermediate components, with coefficients drawn from $P$ . In short, the
$\alpha$-th component of $(A, P)B$ is

$P_{1}^{\alpha}{}^{t}(A^{-1})B^{1}A^{-1}+\cdots+P_{c}^{\alpha}{}^{t}(A^{-1})B^{c}A^{-1}$ .

This action is natural in that the following diagram commutes:

$V\times V\rightarrow BW$

$ A\times A\downarrow$ $\downarrow P$

$V\times V\vec{gB}W$.

For technical purposes, it is more convenient to use a compact indi-
cial notation, in which each component matrix $B^{\alpha}$ is represented by its
entries $B_{jk}^{\alpha}$ , and the new form $(A, P)B$ is represented by matrices $D^{\alpha}$ ,

where
$D_{jk}^{\alpha}=P_{\beta}^{\alpha}(A^{-1})_{j}^{r}(A^{-1})_{k}^{s}B_{rs}^{\beta}$ .

Here the usual summation convention is in force: whenever an index
appears in both a subscript and a superscript a summation is implied.

We note in passing that for both the sesquilinear and hermitian
cases, all of these formulas are modified by conjugating each left-hand $A$ .

A precise statement of the first fundamental theorem for vector-valued
bilinear forms (as given in [GM1]) involves some technical notation that
while standard in invariant theory is not immediately transparent to
the uninitiated. However, the basic idea can be paraphrased in familiar
terms, at the price of succinctness.

3.1. Theorem (First Fundamental Theorem for vector-valued bilinear
forms).

Part 1. If r is divisible by c and 2r is divisible by n, then the following
construction will yield either an invariant homogeneous polynomial of
degree r and weight

$\chi(A, P)=(\det A)^{-4r/n}(\det P)^{r/c}$

or the zero polynomial.
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a) Consider a monomial of degree $r$ in the components of $B$ :

$B_{i_{1}i_{2}}^{j_{1}}B_{i_{3}i_{4}}^{j_{2}}\cdots B_{i_{2r-1}i_{2r}}^{j_{r}}$ .

b) Select $n$ of the subscript positions, and take an alternating sum,
as in the computation of a determinant. That is, consider the $n!$ mono-
mials obtained by successively replacing these $n$ subscripts by each of
the $n!$ permutations of the numbers $(1, 2, \cdots, n)$ , attach a coefficient of
$+1$ if the permutation is even or-1 if the permutation is odd, and sum
the terms.

c) Select an additional $n$ subscript positions, and compute a similar

alternating sum, thereby obtaining a polynomial with $(n!)^{2}$ terms.

d) Continue in this way until each literal subscript has been re-
placed by one of the numbers 1, $\cdots$ , $n$ . (This is possible because $2r$ is

divisible by $n.$ )

e) In an analogous sequence of steps, replace each literal super-
script by one of the numbers 1, $\cdots$ , $c$ . (This is possible because $r$ is
divisible by $c.$ )

Part 2. The preceding construction depends on a partition of the $2r$

subscript positions into $n$-fold blocks and the $r$ superscript positions
into $c$-fold blocks. Each such partition determines either an invariant
homogeneous polynomial of weight $\chi$ or the zero polynomial. Every
non-zero linear combination of these polynomials is also an invariant
homogeneous polynomial of weight $\chi$ .

Part 3. No other invariant homogeneous polynomials exist.

Note that by taking a ratio of two of these relatively invariant poly-
nomials of equal weight we obtain absolutely invariant rational functions.
Also note that the first fundamental theorem for sesquilinear and her-
mitian forms (given in [GM1]) is similar, except that $r$ must be divisible
by both $n$ and $c$ , only certain partitions of the subscripts are allowed,
and the weight $\chi$ is replaced by the weight

$\lambda(A, P)=(\det A)^{-r/n}(\det\overline{A})^{-r/n}(\det P)^{r/c}$ .

Appearances notwithstanding, this theorem has a straightforward
proof. It is based on a translation into the language of representation
theory, a trick, an invocation of a basic theorem about representations
of the general linear group, and translation back into the language of
bilinear forms.
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The first translation proceeds as follows. The space $Bil$ is isomor-
phic to the space $V^{*}\otimes V^{*}\otimes W$ ; a homogeneous polynomial of degree
$r$ defined on this space is equivalent to a linear function defined on the
space $(V^{*}\otimes V^{*}\otimes W)^{\otimes r}=(V^{*})^{\otimes 2r}\otimes(W)^{\otimes r}$ ; such a linear function

is an element of the dual space $V^{\otimes 2r}\otimes(W^{*})^{\otimes r}$ . The group $GL(n, \mathbb{C})$

acts on $V=\mathbb{C}^{n}$ by matrix multiplication; similarly, $GL(c, \mathbb{C})$ acts on
$W=\mathbb{C}^{c}$ . These actions determine a standard representation of the
group $GL(n, \mathbb{C})\times GL(c, \mathbb{C})$ on the space $V^{\otimes 2r}\otimes(W^{*})^{\otimes r}$ . Routine un-
winding of the definitions shows that the element of $V^{\otimes 2r}\otimes(W^{*})^{\otimes r}$

corresponding to an invariant homogeneous polynomial of degree $r$ is
the basis of a 1-dimensional invariant subspace. Therefore the prob-

lem shifts to the description of all 1-dimensional invariant subspaces of
$V^{\otimes 2r}\otimes(W^{*})^{\otimes r}$ .

The trick is to show that each such space is isomorphic to the tensor
product of a 1-dimensional $GL(n, \mathbb{C})$ -invariant subspace of $V^{\otimes 2r}$ with a
1-dimensional $GL(c, \mathbb{C})$ -invariant subspace of $(W^{*})^{\otimes r}$ . The fact that
these groups are reductive is essential.

The invocation refers to the classical description of the irreducible
representations of the general linear groupa staple of both invariant the-
ory and representation theory described repeatedly throughout the lit-
erature. It is at this point that all of the alternating sums described in
the theorem make their entrance.

The retranslation basically reverses the first step.

\S 4. Quotient spaces.

From an algebraic-geometric perspective, the space $Herm/G$ can be
understood in terms of the spectrum of the ring of invariant polynomials.
Unfortunately, current knowledge of this ring is exhausted by the first
fundamental theorem, which is by no means adequate to explicate the
structure of its spectrum.

From a differential-geometric perspective, one would like to have a
smooth structure on $Herm/G$ with respect to which the Levi map is
smooth. Unfortunately, as is typical with such quotient space or moduli
problems, certain“unstable” points in Herm get in the way. However,
we do have the following theorem (Theorem 2.4 of [GM2]).

4.1. theorem Let $G=GL(n, \mathbb{C})\times GL(c, \mathbb{R})$ , let $K\subset G$ be the
subgroup consisting of all pairs $(zI_{n}, |z|^{2}I_{c})$ for $z$ in the complex multi-

plicative group $\mathbb{C}^{*}$ , and suppose that $c>2$ and $n>c^{2}$ . There exists $a$

non-empty $G$ -invariant open subset $Z\subset Herm$ whose image $Z/G$ by the
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projection $\rho$ : Herm $-Herm/G$ can be given a smooth structure in such
a way that $Z\rightarrow Z/G$ is a principal bundle with structure group $G/K$ .

The proof of this theorem is much too long and technical to be
satisfactorily summarized, but it is not difficult to develop the definition
of the open set $Z$ . First we note that every element of $K$ fixes each
point in Herm ; in order to be in $Z$ , a form $B$ must be fixed by no
other elements of $G$ . Moreover, $B$ must have no non-zero null vectors
$x\in Cnthat$ is, in order to be in $Z$ , $B$ must have the property that

$(^{t}\overline{x}B^{1}x, \cdots,{}^{t}\overline{x}B^{c}x)=(0, \cdots, 0)$ implies $x=0$ .

The statement of the one remaining condition in the definition of $Z$ ,
which is the most interesting, requires a few preliminaries.

Each hermitian form $B$ determines a polynomial, namely

$\det(x_{1}B^{1}+\cdots+x_{c}B^{c})$ .

For some forms this polynomial vanishes identically, but for generic
forms it is homogeneous of degree $n$ and therefore has a zero-locus in the
projective space $\mathbb{P}^{c-1}$ , which we call the associated hypersurface. Thus,

there is a map

(4.1) Herm $--->$ (degree $n$ hypersurfaces in $\mathbb{P}^{c-1}$ ),

where the dotted arrow signifies that the map is densely, but not glob-
ally, defined. Let $Y$ denote the set of those hypersurfaces that satisfy
the natural geometric condition of having no non-trivial projective auto-
morphism and no points of multiplicity greater than cthat is, no points
at which the defining polynomial vanishes along with all of its partial

derivatives of order $c$ or less. The final condition defining $Z$ is that $B$ is
in $Z$ only if its associated hypersurface is in $Y$ .

Given an element $(A, P)$ of $G$ , one can use the matrix $P$ to change

coordinates $in\mathbb{P}^{c-1}$ ; that is, one can view $P$ as an element of the projec-
tive linear group $PGL$ and let it act on $\mathbb{P}^{c-1}$ accordingly. It is easy to
show that the hypersurface associated to the form $(A, P)B$ differs from
the hypersurface associated to $B$ only by the action of the change of
coordinates determined by $P$ . Therefore, the map (4.1) determines a
densely defined map of quotient spaces

$Herm/G$ $--->$ (degree $n$ hypersurfaces in $\mathbb{P}^{c-1}$ ) $/PGL$

which restricts to a globally defined map

$Z/G\rightarrow YjPGL$ .
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A major step in proving Theorem 4.1 is to show that $Y/PGL$ can be
given a smooth structure in such a way that $Y\rightarrow Y/PGL$ is a principal
bundle with structure group $PGL$ (see Theorem 5.1 of [GM2]). Basically,
in studying $Z/G$ by way of $Y/PGL$ we are studying the action of the
product group $GL(n, \mathbb{C})\times GL(c, \mathbb{R})$ one factor at a time, which, in light
of the two-step definition of the group action, is a natural approach.

Before going on to apply Theorem 4.1 to $CR$-geometry, we note
that the polynomial $\det(x_{1}B^{1}+\cdots+x_{c}B^{c})$ explains the trichotomy
mentioned in \S 2. If $c=1$ , it simply distinguishes the singular hermitian
matrices from the non-singular; if $c=2$ , it is a homogeneous polynomial
in two unknowns, which is essentially equivalent to an inhomogeneous
polynomial in one unknown; if $c>2$ , algebraic geometry is clearly in-
volved.

\S 5. $CR$ geometry.

Recall that a $CR$-structure $H$ of dimension $n$ and codimension $c$ on
the smooth $2n+c$ dimensional manifold $M$ determines the Levi map
$\mathcal{L}$ : $M\rightarrow Herm/G$ , where Herm is the vector space whose points are
$c$-tuples of $n\times n$ matrices, $G=GL(n, \mathbb{C})\times GL(c, \mathbb{R})$ , and the action of
$G$ on Herm is defined so that the $\alpha$-th component matrix of the $c$-tuple
$(A, P)B$ is

$P_{1}^{\alpha t}(\overline{A}^{-1})B^{1}A^{-1}+\cdots+P_{c}^{\alpha t}(\overline{A}^{-1})B^{c}A^{-1}$ .

As noted earlier, the Levi map furnishes a fundamental link between CR-
geometry and the invariant theory of vector-valued forms, since it can
be used to pull back any specified“structure” on $Herm/G$ to produce
a canonical CR- geometric object on $M$ . For instance, we have already
seen that each invariant function on Herm determines a zero-locus in

$Herm/G$ . The Levi map pulls this back to a subset of $M$ , canonical in
the sense that if $F$ : $M\rightarrow M^{/}$ is an isomorphism of $CR$ manifolds, then
$F$ maps the specified subset of $M$ bijectively to the specified subset of
$M’$ . In order to construct richer geometric objects, it seems necessary
to restrict attention to those $CR$-structures that enjoy some type of
homogeneity. As part of his general treatment of differential systems
Tanaka $[Tal,Ta2]$ develops a full theory of $CR$-structures whose Levi
maps are constant. Here we take a different approach and consider CR-
structures whose Levi maps are valued in a specified open subset $\mathcal{U}$ of
$Herm/G$ . If the Levi map is constant, only one orbit of forms in Herm
is connected with the $CR$-structure, and this orbit can be represented
by a chosen canonical form. We would like to proceed similarly and
choose a canonical form from each of the orbits corresponding to points
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in $\mathcal{U}$ . Of course, in order to be useful for differential-geometric purposes,
these choices must be smooth. Thus we need a smooth local section of
Herm $\rightarrow Herm/G$ defined on the open set $\mathcal{U}$ .

In particular, we need $\mathcal{U}$ to have a smooth structure, so the set
$Z/G$ described in \S 4 is an obvious candidate. Moreover, $Z$ has a sort of
homogeneity since each of its points is fixed by the elements of $K$ alone.
Regretably, we do not know if $Z\rightarrow Z/G$ admits a smooth section.
However, since $Z\rightarrow Z/G$ is a principal bundle, every point of $Z/G$ has
a neighborhood admitting a smooth section. Therefore, we take $\mathcal{U}$ to be
such a neighborhood, and fix some section $\sigma$ .

5.1. Definition. A $CR$-structure is tractable of type $\mathcal{U}$ if its Levi
map $\mathcal{L}$ : M $\rightarrow Herm/G$ is valued in $\mathcal{U}$ .

In standard differential-geometric fashion, every $CR$ structure, trac-
table or not, determines a subbundle of the coframe bundle of $M$ , con-
sisting of suitably“adapted” coframes. The structure group of this
subbundle is unwieldy, but in the tractable case the subbundle can be
reduced dramatically (Theorem 3.1 of [GM2]), yielding a subbundle of
“better adapted” coframes with structure group $K$ (which, we recall, is
isomorphic to $\mathbb{C}^{*}$ ). The proof of this theorem uses a detailed analysis
of the structure equations of moving coframes, but the core idea is sim-
ple. From the coefficients of these structure equations one can extract
a $c$-tuple of hermitian matrices that represents the Levi form; the as-
sumption of tractability allows one to single out those coframes whose
structure equations give rise to canonical $c$-tuplesthat is, $c$-tuples in the
image of the section $\sigma$ .

Analysis of the structure equations of the reduced principal bun-
dle associated to a tractable $CR$-structure leads to the construction of a
canonical connection on this bundle (Theorem 4.1 of [GM2]). One imme-
diate corollary (4.2 of [GM2]) is that the automorphisms of a tractable
$CR$-structure constitute a Lie group. Another (4.3 of [GM2]) is that this
connection can be canonically extended to an affine connection, thereby
introducing an operation of covariant differentiation into the study of
$CR$ geometry. A third corollary (4.4 of [GM2]) is a canonical decom-
position of the complexified tangent bundle of a tractable $CR$ manifold
as a direct sum of $2n+c$ complex line bundles, and a corresponding
decomposition of the real tangent bundle as the direct sum of $c$ real line
bundle and $n$ real plane bundles with complex structure.

\S 6. Conclusion.

The study of higher-codimensional $CR$-structures by way of the in-
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variant theory of vector-valued hermitian forms has barely begun, and
open questions abound.

As already noted in \S 3, the first fundamental theorem isjust the first
step in the classical approach to describing the ring of invariant polyno-
mials. A second stepthe development of a second fundamental theorem
and a description of the syzygiesis in progress ([G]). There remain nu-
merous commutative-algebraic questions, along with the ultimate goal
of a thorough understanding of the spectrum, and hence an algebraic-
geometric understanding of the quotient space $Herm/G$ . From a more
practical point of view, there is the problem of computing invariants.
The procedure described in Theorem 3.1 is constructive in principle,
but hardly efficient, and significant improvements should be possible.

The invariant theory of vector-valued forms can be applied to bran-
ches of differential geometry apart from $CR$ geometry. The second fun-
damental form of a Riemannian submanifold and the holomorphic second
fundamental form of a complex submanifold are geometrically impor-
tant vector-valued forms that are algebraically similar to the Levi form.
Additionally, the geometry of a manifold with distribution involves a
skew-symmetric bilinear form. Theorem 3.1 applies directly to the lat-
ter two cases. For Riemannian geometry, where one needs to consider
the action of a product of orthogonal groups rather than general linear
groups, the same methods apply, but the resulting formulas are more
complex.

In $CR$ geometry, there is the central issue of tractability. Is $Z/G$

itself tractable? Are there tractable subsets with sections that can be
explicitly described? Such a description would amount to a procedure for
converting a given $c$-tuple of hermitian matrices to a specified canonical
forma sort of” super Gram-Schmidt” process. The decomposition of the
tangent bundle of a tractable $CR$ manifold described in \S 5 shows that
there are global obstructions to tractability. Can the invariant theory of
forms elucidate any other aspects of global $CR$ geometry?

Finally, to conclude on a note of sheer wishful thinking, might it
be possible to use the approach described here, rooted in the teaching
of Professor Kuranishi, to illuminate (or indeed, since this is wishful
thinking, to solve) the embedding problem for higher codimensional $CR$

structures?
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The Infinitesimal Spectral Rigidity
of the Real Grassmannians of Rank Two

Jacques Gasqui and Hubert Goldschmidt

Dedicated to Professor M. Kuranishi on his 70th birthday

Introduction

Let $(X, g)$ be a Riemannian symmetric space of compact type. Con-
sider a family of Riemannian metrics $\{g_{t}\}$ on $X$ , for $|t|<\epsilon$ , with $g_{0}=g$ .

We say that $\{g_{t}\}$ is an isospectral deformation of $g$ if the spectrum of
the Laplacian of the metric $g_{t}$ is independent of $t$ . We say that the
space $(X, g)$ is infinitesimally spectrally rigid (i.e., spectrally rigid to
first order) if, for every such isospectral deformation $\{g_{t}\}$ of $g$ , there is a
one-parameter family of diffeomorphisms $\varphi_{t}$ of $X$ such that $g_{t}=\varphi_{t}^{*}g$ to
first order in $t$ at $t$ $=0$ , or equivalently if the infinitesimal deformation
$\frac{d}{dt}g_{t|t=0}$ of $\{g_{t}\}$ is a Lie derivative of the metric $g$ .

In [13], V. Guillemin proves that the infinitesimal deformation $h$ of
an isospectral deformation of $g$ satisfies the following integral condition:
for every maximal flat totally geodesic torus $Z$ contained in $X$ and for
all parallel vector fields $\zeta$ on $Z$ , the integral

$\int_{Z}h(\zeta, \zeta)dZ$

vanishes, where $dZ$ is the Riemannian measure of $Z$ . If all of these
integrals corresponding to a symmetric 2-form $h$ on $X$ vanish, we say
that $h$ satisfies the Guillemin condition. It is easily verified that a Lie
derivative of the metric always satisfies the Guillemin condition. We say
that the space $(X, g)$ is rigid in the sense of Guillemin if the following
Radon transform property holds on $X$ : the only symmetric 2-forms
on $X$ satisfying the Guillemin condition are the Lie derivatives of the
metric $g$ . Thus according to [13], if the space $(X, g)$ is rigid in the sense
of Guillemin, it is infinitesimally spectrally rigid.
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We are interested in determining which irreducible symmetric spaces
of compact type are infinitesimally spectrally rigid. Although much work
has been done on the problem of isospectrality, there are still very few
results for positively curved spaces.

In [9], we study the real Grassmannian $G_{2,n}$ of (unoriented) 2-planes

in $\mathbb{R}^{n+2}$ , with $n\geq 3$ . Here, we present an outline of the proof of the
following result of [9]:

Theorem 1. For $n\geq 3$ , the real Grassmannian $G_{2,n}$ is rigid in
the sense of Guillemin.

The real Grassmannian $G_{2,n}$ , which is a space of rank 2, is therefore
infinitesimally spectrally rigid. This provides us with the first examples

of symmetric spaces (with positive curvature) of rank $>1$ which are
infinitesimally spectrally rigid.

All the previously known spectral rigidity results for symmetric
spaces with positive curvature concern spaces of rank one. In fact,
the Guillemin rigidity of the spaces of rank one which are not spheres
was proved by Michel [14] for the real projective spaces $\mathbb{R}\mathbb{P}^{n}$ , and by
Michel [14] and Tsukamoto [18] for the other projective spaces (see also
[2], [5], [6] $)$ . On the other hand, for $2\leq n\leq 6$ , the spectral rigidity
of the $n$-sphere $S^{n}$ and the real projective space $\mathbb{R}\mathbb{P}^{n}$ is established by
Berger and Tanno (see [1] and [17]).

\S 1. The maximal flat Radon transform

Let $X$ be a manifold whose tangent and cotangent bundles we de-

note by $T$ and $T^{*}$ . By $S^{k}Eand\wedge^{j}E$ , we shall mean the $k$-th symmetric
product and the $j$-th exterior product of a vector bundle $E$ over $X$ ,

respectively. If $E$ is a vector bundle over $X$ , we denote by $E_{\mathbb{C}}$ its com-
plexification, by $\mathcal{E}$ the sheaf of sections of $E$ over $X$ and by $C^{\infty}(E)$ the
space of global sections of $E$ over $X$ .

Let $g$ be a Riemannian metric on $X$ and let $\nabla$ be the Levi-Civita
connection of $(X, g)$ . The Killing operator

$D_{0}$ : $\mathcal{T}\rightarrow S^{2}I^{*}$

of $(X, g)$ , sending a vector field $\xi$ on $X$ into the Lie derivative of $g$

along $\xi$ , and the symmetrized covariant derivative

$D^{1}$ : $I^{*}\rightarrow S^{2}I^{*}$

defined by
$(D^{1}\theta)(\xi, \eta)=\frac{1}{2}((\nabla\theta)(\xi, \eta)+(\nabla\theta)(\eta, \xi))$ ,



124 J. Gasqui and H. Goldschmidt

for $\theta\in I^{*}$ , $\xi$ , $\eta\in T$ , are related by the formula

(1) $\frac{1}{2}D_{0}\xi=D^{1b}g(\xi)$ ,

for $\xi\in I$ , where $g^{b}$ : $T$ $\rightarrow T^{*}$ is the isomorphism determined by the
metric $g$ .

Let $R$ be the Riemann curvature tensor, as defined in [5, \S 4], which

is a section of the bundle $\wedge^{2}T^{*}\otimes\wedge^{2}T^{*}$ , and let $\overline{R}$ be the section of
$\wedge^{2}T^{*}\otimes T^{*}\otimes T$ determined by

$g(\overline{R}(\xi_{1}, \xi_{2}, \xi_{3}), \xi_{4})=R(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4})$ ,

for $\xi_{1}$ , $\xi_{2}$ , $\xi_{3}$ , $\xi_{4}\in T$ . Let

$D_{g}$ : $S^{2}\mathcal{T}^{*}\rightarrow\wedge^{2}\mathcal{T}^{*}\otimes\wedge^{2}\mathcal{T}^{*}$

be the linear differential operator defined by

$(D_{g}h)(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4})$

$=\frac{1}{2}\{(\nabla^{2}h)(\xi_{1}, \xi_{3}, \xi_{2}, \xi_{4})+(\nabla^{2}h)(\xi_{2}, \xi_{4}, \xi_{1}, \xi_{3})$

(2)
$-(\nabla^{2}h)(\xi_{1}, \xi_{4}, \xi_{2}, \xi_{3})-(\nabla^{2}h)(\xi_{2}, \xi_{3}, \xi_{1}, \xi_{4})$

$-h(\overline{R}(\xi_{1}, \xi_{2}, \xi_{3}), \xi_{4})+h(\overline{R}(\xi_{1}, \xi_{2}, \xi_{4}), \xi_{3})\}$ ,

for $h\in S^{2}\mathcal{T}^{*}$ and $\xi_{1}$ , $\xi_{2}$ , $\xi_{3}$ , $\xi_{4}\in T$ .

We now suppose that $(X, g)$ is a Riemannian symmetric space of
compact type. We write $X$ as a homogeneous space $G/H$ , where $G$ is a
compact, connected semi-simple Lie group, which acts on $X$ by isome-
tries, and $H$ is a closed subgroup of $G$ such that $(G, H)$ is a symmetric
pair. Since all the maximally totally geodesic flat tori of $X$ are conjugate
under the action of $G$ on $X$ , the $space\cup--$ of all such tori of $X$ may be
regarded as a homogeneous space of $G$ . The maximal flat Radon trans-
form of $X$ is a $G$-equivariant linear mapping from the space of functions
on $X$ to the space of functions $on\cup--$ ; it assigns to a function $f$ on $X$ the

function $\hat{f}on\cup--$ , whose value at a torus $Zof---$ , is the integral

$\int_{Z}fdZ$

of $f$ over $Z$ , where $dZ$ is the Riemannian measure of $Z$ . Together with
Guillemin’s above-mentioned result, this leads us to define a maximal
flat Radon transform for symmetric 2-forms as follows. Let $L$ be the
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homogeneous $G$-vector bundle $over\cup--$ whose fiber $L_{Z}$ at a point $Z\in---$

is the space of all parallel vector fields on the flat torus $Z$ . We consider
the space $C^{\infty}(_{\cup}^{-}-, S^{2}L^{*})$ of all sections of the vector bundle $S^{2}L^{*}$ (of
quadratic forms on $L$ ) over $\cup--$ . The maximal flat Radon transform for
symmetric 2-forms on $X$ is the linear mapping

$I:C^{\infty}(S^{2}T^{*})\rightarrow C^{\infty}(_{\cup}^{-}-, S^{2}L^{*})$

from the space of symmetric 2-forms on $X$ to the space of quadratic
forms on $L$ , which assigns to a symmetric 2-form $h$ on $X$ the section
$I(h)$ of $S^{2}L^{*}$ whose value at the point $Z\in\cup--$ is determined by

$I(h)(\zeta_{1}, \zeta_{2})=\int_{Z}h(\zeta_{1}, \zeta_{2})dZ$ ,

where $\zeta_{1}$ , $\zeta_{2}$ are elements of the fiber $L_{Z}$ . The vector bundle $S^{2}T^{*}$ is a
homogeneous $G$-bundle over $X$ and it is easily verified that the mapping
I is $G$-equivariant. Clearly, a symmetric 2-form $h$ on $X$ satisfies the
Guillemin condition if and only if $I(h)$ vanishes.

The adjoint space of $X$ is the symmetric space which admits $X$ as a
Riemannian cover and which is itself not a Riemannian cover of another
symmetric space. For example, the adjoint space of the $n$-sphere $S^{n}$

is the real projective space $\mathbb{R}\mathbb{P}^{n}$ . The maximal flat tori of $S^{n}$ are the
closed geodesies (i.e. the great circles). A function on $\mathbb{R}\mathbb{P}^{n}$ lifts to an even
function on $S^{n}$ , and all the even functions on $S^{n}$ arise in this manner.
The kernel of the maximal flat Radon transform of $S^{n}$ is the space of
the odd functions on $S^{n}$ . In fact, the Radon transform is injective when
restricted to the even functions on $S^{n}$ ; this is equivalent to the classic
fact that the Radon transform for functions on $\mathbb{R}\mathbb{P}^{n}$ is injective. In [11]
and [12], Grinberg generalizes these results and proves that the maximal
flat Radon transform for functions on $X$ is injective if and only if the
space $X$ is equal to its adjoint space.

We say that a symmetric 2-form on $X$ satisfies the zero-energy con-
dition if all its integrals over the closed geodesies of $X$ vanish. Lie
derivatives of the metric always satisfy this condition. The space $(X, g)$

is said to be infinitesimally rigid if the only symmetric 2-forms on $X$ sat-
isfying the zero-energy condition are the Lie derivatives of the metric $g$ .
For spaces of rank one, this notion of infinitesimal rigidity coincides with
rigidity in the sense of Guillemin. Thus, as stated in the introduction,
the infinitesimal rigidity of the projective spaces which are not spheres
has been established.

In [9, \S 1], we show that:
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Lemma 1. A symmetric 2-form on $X$ satisfying the zero-energy
condition also satisfies the Guillemin condition.

\S 2. The complex quadrics and the real Grassmannians

Let $n$ be an integer $\geq 3$ . We henceforth suppose that $X$ is the
complex quadric $Q_{n}$ , which is the complex hypersurface of complex pro-
jective space $\mathbb{C}\mathbb{P}^{n+1}$ defined by the homogeneous equation

$\zeta_{0}^{2}+\zeta_{1}^{2}+\cdots+\zeta_{n+1}^{2}=0$ ,

where $\zeta=(\zeta_{0}, \zeta_{1}, \ldots, \zeta_{n+1})$ is the standard complex coordinate system

of $\mathbb{C}^{n+2}$ . Let $g$ be the K\"ahler metric on $Q_{n}$ induced by the Fubini-
Study metric on $\mathbb{C}\mathbb{P}^{n+1}$ of constant holomorphic curvature 4. The
group $SU(n+2)$ acts on $\mathbb{C}\mathbb{P}^{n+1}$ by holomorphic isometries. Its sub-
group SO(n) 2) leaves the submanifold $Q_{n}$ of $\mathbb{C}\mathbb{P}^{n+1}$ invariant and acts
transitively on $Q_{n}$ ; it is then easily verified that $Q_{n}$ is the homogeneous
space

SO(n+2)/5O(2) $\times SO(n)$

of the group SO(n+2), which is an irreducible Hermitian symmetric
space of compact type of rank 2.

We consider the functions

$f_{0,1}(\zeta)=(\zeta_{0}+i\zeta_{1})(\overline{\zeta}_{2}+i\overline{\zeta}_{3})-(\zeta_{2}+i\zeta_{3})(\overline{\zeta}_{0}+i\overline{\zeta}_{1})$ ,

$f_{1,0}(\zeta)=(\zeta_{0}+i\zeta_{1})(\overline{\zeta}_{0}+i\overline{\zeta}_{1})$

on $\mathbb{C}^{n+2}$ . If $r$ , $s$ are integers $\geq 0$ , the function $f_{r,s}=f_{1,0}^{r}\cdot f_{0,1}^{s}$ on
$\mathbb{C}^{n+2}$ is invariant under $U(1)$ ; its restriction to the unit sphere $S^{2n+3}$ of
$\mathbb{C}^{n+2}$ induces by passage to the quotient a function on $\mathbb{C}\mathbb{P}^{n+1}$ , whose

restriction to $Q_{n}$ we denote by $\tilde{f}_{r,s}$ .

The complex conjugation of $\mathbb{C}^{n+2}$ induces an involutive isometry of
$\mathbb{C}\mathbb{P}^{n+1}$ which preserves the quadric $Q_{n}$ . The induced isometry $\tau$ of $Q_{n}$

commutes with the action of the group SO(n+2). The group $\{id, \tau\}$ of
isometries of $Q_{n}$ acts freely on $Q_{n}$ and so we may consider the quotient

Riemannian manifold $Y$ of $X$ by this group, with the metric induced
by $g$ , which is also a homogeneous space of SO(n+2). The natural
projection $\varpi$ : $Q_{n}\rightarrow Y$ is a Riemannian submersion and a two-fold
covering.

Let $\overline{G}_{2,n}$ be the real Grassmannian of oriented 2-planes in $\mathbb{R}^{n+2}$ . It
is easily verified that the mapping

$\Psi$ : $\overline{G}_{2,n}\rightarrow \mathbb{C}\mathbb{P}^{n+1}$ ,
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sending the oriented 2-plane of $\mathbb{R}^{n+2}$ determined by $x\wedge y$ , where $\{x, y\}$

is an orthonormal system of vectors of $\mathbb{R}^{n+2}$ , into the point of $\mathbb{C}\mathbb{P}^{n+1}$

with homogeneous coordinates $\zeta=x+iy\in \mathbb{C}^{n+2}$ , and that its image is
contained in $Q_{n}$ . This mapping $\Psi$ allows us to identify the quadric $Q_{n}$

with $\overline{G}_{2,n}$ . If $\tau_{0}$ is the involution of $\overline{G}_{2,n}$ corresponding to the change of
orientation of a 2-plane, we see that

$\tau o\Psi=\Psi o\tau_{0}$ .

Thus we may identify $Y$ with the real Grassmannian $G_{2,n}$ and $\varpi$ with

the natural projection of $\overline{G}_{2,n}$ onto $G_{2,n}$ , and then view the quadric $Q_{n}$

as the double cover of the real Grassmannian $G_{2,n}$ . In fact, the adjoint
space of $Q_{n}$ is the Grassmannian $G_{2,n}$ .

This situation is entirely analogous to that of the sphere $S^{n}$ viewed
as the double cover of the real projective space $\mathbb{R}\mathbb{P}^{n}$ . If we consider the
sphere $S^{n}$ as the space of oriented lines in $\mathbb{R}^{n+1}$ and the real projective
space $\mathbb{R}\mathbb{P}^{n}$ as the set of lines in $\mathbb{R}^{n+1}$ , the antipodal mapping $\sigma$ of the
sphere corresponds to the change of orientation of a line and the pro-
jective space $\mathbb{R}\mathbb{P}^{n}$ is equal to the quotient of $S^{n}$ by the group $\{id, \sigma\}$ of
isometries of $S^{n}$ .

By analogy with the sphere, the involution $\tau$ of $Q_{n}$ determines no-
tions of even and odd tensors on $Q_{n}$ : a symmetric $p$-form $\theta$ on $Q_{n}$ is said

to be even (resp. odd) if $\tau^{*}\theta=\theta$ (resp. $\tau^{*}\theta=-\theta$ ). The function $\tilde{f}_{r,s}$ on
$Q_{n}$ is even (resp. odd) if and only if the integer $s$ is even (resp. odd). The

space $C^{\infty}(S^{p}T_{\mathbb{C}}^{*})^{ev}$ (resp. $C^{\infty}(S^{p}T_{\mathbb{C}}^{*})^{odd}$ ) of all even (resp. odd) complex
symmetric $p$-forms on $X$ is an SO(n+2)-submodule of $C^{\infty}(S^{p}T_{\mathbb{C}}^{*})$ , and
we have the decomposition

$C^{\infty}(S^{p}T_{\mathbb{C}}^{*})=C^{\infty}(S^{p}T_{\mathbb{C}}^{*})^{ev}\oplus C^{\infty}(S^{p}T_{\mathbb{C}}^{*})^{odd}$ .

We now construct an explicit maximal totally geodesic flat torus
of $Q_{n}$ . Let

$\pi$ : $\mathbb{C}^{n+2}-\{0\}\rightarrow \mathbb{C}\mathbb{P}^{n+1}$

be the natural projection. We consider the submanifold $Z_{0}$ of $X$ which
is the image of the mapping $\sigma$ : $\mathbb{R}^{2}\rightarrow X$ defined by $\sigma(\theta, \varphi)=\pi\tilde{\sigma}(\theta, \varphi)$ ,

where

$\tilde{\sigma}(\theta, \varphi)=(\cos\theta, \sin\theta, 0, \ldots, o, -i\sin\varphi, i\cos\varphi)\in \mathbb{C}^{n+2}$ ,

for $(\theta, \varphi)\in \mathbb{R}^{2}$ . This mapping $\sigma$ satisfies

$\sigma(\theta, \varphi)=\sigma(\theta+2k\pi, \varphi+2l\pi)=\sigma(\theta+k\pi, \varphi+k\pi)$ ,
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for all $k$ , $l$ $\in \mathbb{Z}$ and $(\theta, \varphi)\in \mathbb{R}^{2}$ . We consider the group of translations
$\Gamma$ of $\mathbb{R}^{2}$ generated by the vectors $(2\pi, 0)$ and $(\pi, \pi)$ and the flat torus
$\mathbb{R}^{2}/\Gamma$ , which is the quotient of $\mathbb{R}^{2}$ by the group $\Gamma$ . According to the
preceding relations, we see that $\sigma$ induces an imbedding

$\overline{\sigma}$ : $\mathbb{R}^{2}/\Gamma\rightarrow X$ .

Let $(\theta, \varphi)$ be the standard coordinate system on $\mathbb{R}^{2}$ . It is easily verified
that

$\sigma^{*}g=\frac{1}{2}(d\theta\otimes d\theta+d\varphi\otimes d\varphi)$ .

Therefore, if the quotient $\mathbb{R}^{2}/\Gamma$ is endowed with the flat metric induced

by the metric $\frac{1}{2}(d\theta\otimes d\theta+d\varphi\otimes d\varphi)$ on $\mathbb{R}^{2}$ , the mapping $\overline{\sigma}$ is a totally
geodesic isometric imbedding. Thus $Z_{0}$ is a maximal flat totally geodesic
torus of $X$ .

The vector fields $\partial/\partial\theta$ and $\partial/\partial\varphi$ on $\mathbb{R}^{2}$ are $\sigma$-projectable; thus, there
exist well-defined parallel vector fields $\xi_{0}$ and $\eta_{0}$ on $Z_{0}$ determined by
$\partial/\partial\theta$ and $\partial/\partial\varphi$ , respectively. In fact, $\{\xi_{0}, \eta_{0}\}$ is a basis for the space of
parallel vector fields on $Z_{0}$ .

Since the group SO(n+2) acts transitively on $\cup--$ , a symmetric 2-
form $h$ on $X$ satisfies the Guillemin condition if and only if, for all
$\phi\in SO(n+2)$ , the section $I(\phi^{*}h)$ of $S^{2}L^{*}$ vanishes at the torus $Z_{0}of_{\cup}^{-}-$ ,
or equivalently if

$\int_{Z_{O}}(\phi^{*}h)(\xi_{0}, \xi_{0})dZ_{0}=\int_{Z_{0}}(\phi^{*}h)(\eta_{0}, \eta_{0})dZ_{0}=\int_{Z_{0}}(\phi^{*}h)(\xi_{0}, \eta_{0})dZ_{0}=0$ ,

for all $\phi\in SO(n+2)$ .

In [9, \S 3], by means of this torus $Z_{0}$ we prove that:

Proposition 1. (i) The odd symmetric 2-forms on $X$ satisfy the
Guillemin condition.

$(ii)A$ symmetric 2-form $h$ on $Y$ satisfies the Guillemin condition if
and only if the even symmetric 2-form $\varpi^{*}h$ on $X$ satisfies the Guillemin
condition.

On the symmetric space $Q_{n}$ , according to [4, \S 7] the Lie derivatives
of the metric can be characterized as the symmetric 2-forms $h$ satisfying
the condition $Q_{g}h=0$ , where $Q_{g}$ is a non-trivial differential operator
of order 3. Let $x_{0}$ be a given point of $X$ ; choose an open subset $U$

of $X$ containing $x_{0}$ such that $ U\cap\tau(U)=\emptyset$ . We now choose a sym-
metric 2-form on $X$ whose support is contained in $U$ and which satisfies
$(Q_{g}h)(x_{0})\neq 0$ . We know that $h$ is not a Lie derivative of the metric on
any neighborhood of $x_{0}$ . The symmetric 2-form $h-\tau^{*}h$ on $X$ is odd and
its restriction to $U$ is equal to $h$ . Thus we have proved the following:
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Proposition 2. There exist odd symmetric 2-forms on $Q_{n}$ which
are not Lie derivatives of the metric.

From the preceding proposition, it follows that the quadric $Q_{n}$ is not
is rigid in the sense of Guillemin. This is analogous to the non-injectivity
of the maximal flat Radon transform (for functions) on this space.

In order to prove the Guillemin rigidity of the adjoint space $G_{2,n}$ of
the quadric $Q_{n}$ , according to Proposition l,(ii) it suffices to verify:

Theorem2. For $n\geq 3$ , an even symmetric 2-form on $Q_{n}$ satisfies
the Guillemin condition if and only if it is the Lie derivative of the
metric.

From the infinitesimal rigidity of the quadrics $Q_{n}$ , with $n\geq 4$ , which
we proved in [6], [7] and [8], we infer that it suffices to prove the preceding
theorem when $n=3$ . Indeed, let $h$ be an even symmetric 2-form on
$Q_{n}$ , with $n\geq 4$ , satisfying the Guillemin condition. Let $\gamma$ be a closed
geodesic of $Q_{n}$ . It is contained in a totally geodesic submanifold $X’$

of $Q_{n}$ isometric to the quadric $Q_{3}$ . The restriction of $h$ to $X’$ is even
and satisfies the Guillemin condition. (The demonstration of these last
two assertions is given in the course of the proof of Theorem 10.1 of [9].)
Then Theorem 2, with $n=3$ , tells us that the restriction of $h$ to $X’$ is a
Lie derivative of the metric; thus the integral of $h$ over $\gamma$ vanishes. Hence
the 2-form $h$ on $Q_{n}$ satisfies the zero-energy condition. The infinitesimal
rigidity of the quadric $Q_{n}$ now implies that $h$ is a Lie derivative of the
metric.

\S 3. Totally geodesic spheres

We now introduce decompositions of the bundle $S^{2}T^{*}$ of symmetric
2-forms on $X$ . The complex structure of $X$ induces a decomposition

$S^{2}T^{*}=(S^{2}T^{*})^{+}\oplus(S^{2}T^{*})^{-}$

of the bundle $S^{2}T^{*}$ of symmetric 2-forms on $X$ , where $(S^{2}T^{*})^{+}$ is the

sub-bundle of Hermitian forms and $(S^{2}T^{*})^{-}$ is the sub-bundle of skew-
Hermitian forms. We now use the differential geometry of $X$ consid-
ered as a complex hypersurface of $\mathbb{C}\mathbb{P}^{n+1}$ , which has been studied by
Smyth [15]. The components of the second fundamental form of $X$ in
$\mathbb{C}\mathbb{P}^{n+1}$ generate a sub-bundle $E$ of $(S^{2}T^{*})^{-}$ of rank 2 and determine an
involution of the bundle $(S^{2}T^{*})^{+}$ . If $(S^{2}T^{*})^{++}$ and $(S^{2}T^{*})^{+-}$ are the
eigenbundles corresponding to the $eigenvalues+1$ and-l, respectively,
of this involution, we therefore obtain a direct sum decomposition

$(S^{2}T^{*})^{+}=(S^{2}T^{*})^{++}\oplus(S^{2}T^{*})^{+-}$
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of $(S^{2}T^{*})^{+}$ .

We consider the totally geodesic spheres of the quadric $X$ of di-
mension 2 which are totally real. According to [3], these spheres have
constant curvature 2 and are all conjugate under the action of the group
SO(n+2). Moreover, such a sphere is the double cover of a closed to-
tally geodesic submanifold of the real Grassmannian $Y=G_{2,n}$ isometric

to the projective plane $\mathbb{R}\mathbb{P}^{2}$ with its metric of constant curvature 2.
Let $B$ be the sub-bundle of $S^{2}T^{*}$ consisting of the elements of $S^{2}T^{*}$ ,

which vanish when restricted to the closed totally geodesic submanifolds
of $X$ isometric to the sphere $S^{2}$ with its metric of constant curvature 2.
In [9, \S 5], we verify the following:

Lemma 2. We have

$B=(S^{2}T^{*})^{+-}$

From Lemma 2 and properties of the operator $D_{g}$ , in [9, Lemma 5.2]
we deduce that:

Lemma 3. Let $Z$ be a totally geodesic closed submanifold of $X$

isometric to the 2-sphere $S^{2}$ with its metric of constant curvature 2. Let
$x\in Z$ and let $\xi_{1}$ , $\xi_{2}$ , $\xi_{3}$ , $\xi_{4}\in T_{x}$ be tangent to Z. If $h$ is a section of
$(S^{2}T^{*})^{+-}$ over $X$ , then we have

$(D_{g}h)(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4})=0$ .

Using the injectivity of the Radon transform on the real projective
plane, in [9, Lemma 5.3] we obtain the following result, which provides
us with another relation between our two notions of rigidity:

Lemma 4. Let $h$ be a symmetric 2-form on the real Grassman-
nian $Y$ satisfying the Guillemin condition. Then the restriction of $h$ to $a$

closed totally geodesic submanifold of $Y$ isometric to the real projective
plane with its metric of constant curvature 2 satisfies the zero-energy
condition.

From Lemma 4 and the infinitesimal rigidity of the real projective
plane (see [14], [2] and [10, 2]), we immediately deduce:

Proposition 3. Let $h$ be a symmetric 2-form on $Y$ satisfying the
Guillemin condition and let $Y’$ be a closed totally geodesic submanifold
of $Y$ isometric to the real projective plane with its metric of constant
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curvature 2. Then the restriction of $h$ to $Y’$ is a Lie derivative of the
metric on $Y’$ .

This last proposition together with properties of the operator $D_{g}$

can be used to show the following (see Proposition 5.4 of [9]):

Proposition 4. Let $Z$ be a totally geodesic closed submanifold of
$X$ isometric to the 2-sphere $S^{2}$ with its metric of constant curvature 2.
Let $x\in Z$ and let $\xi_{1}$ , $\xi_{2}$ , $\xi_{3}$ , $\xi_{4}\in T_{x}$ be tangent to Z. An even symmetric

2-form $h$ on $X$ which satisfies the Guillemin condition also verifies the
equation

$(D_{g}h)(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4})=0$ .

\S 4. The Radon transform on the complex quadric

As we have seen, the mapping I is SO(n+2)-equivariant. Thus
the kernel of I is an SO(n+2)-submodule of $C^{\infty}(S^{2}T^{*})$ , and the space
$N_{\mathbb{C}}$ consisting of all sections of $S^{2}T_{\mathbb{C}}^{*}$ over $X$ satisfying the Guillemin

condition is a SO(n+2)-submodule of $C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ . The space of all even
complex symmetric 2-forms on $X$ satisfying the Guillemin condition is
the SO(n+2)-submodule

$N_{\mathbb{C}}^{ev}=N_{\mathbb{C}}\cap C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev}$

of $C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ .

Let $\Gamma$ be the set of equivalence classes of irreducible SO(n+2)-
modules over $\mathbb{C}$ . The vector bundle $F=S^{p}T_{\mathbb{C}}^{*}$ , endowed with the Her-
mitian scalar product induced by the metric $g$ , is homogeneous and
unitary. The space $C^{\infty}(F)$ endowed with the Hermitian scalar product

obtained from the Hermitian scalar product of $F$ and the SO(n+2)-
invariant Riemannian measure $dX$ of $X$ is a unitary SO(n+2)-module.
We denote by $C_{\gamma}^{\infty}(F)$ the isotypic component of this SO(n+2)-module
$C^{\infty}(F)$ corresponding to $\gamma\in\Gamma$ .

The differential operator $D^{1}$ : $I_{\mathbb{C}}^{*}\rightarrow S^{2}\mathcal{T}_{\mathbb{C}}^{*}$ is homogeneous, and so
we have

$D^{1}C_{\gamma}^{\infty}(T_{\mathbb{C}}^{*})\subset C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ ,

for all $\gamma\in\Gamma$ . Since $\tau$ is an isometry and as the Lie derivatives of the
metric satisfy the Guillemin condition, we see that

$D^{1}C^{\infty}(T_{\mathbb{C}}^{*})^{ev}\subset N_{\mathbb{C}}^{ev}$ .

For $\gamma\in\Gamma$ , we consider the SO(n+2)-submodule

$N_{\gamma}^{ev}=N_{\mathbb{C}}^{ev}\cap C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$
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of the isotypic component $C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ .

Using the SO(n+2)-equivariance of the mapping $I$ , the ellipticity

of the operator $D^{1}$ and the results of [20, \S 5], we are able to reduce the
assertion of Theorem 2 to a question involving the isotypic components
of the SO(n+2)-module $C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev}$ as follows:

Proposition 5. The even symmetric 2-forms on $Q_{n}$ satisfying the
Guillemin condition are Lie derivatives of the metric if and only if the
equality

$N_{\gamma}^{ev}=D^{1}C_{\gamma}^{\infty}(T_{\mathbb{C}}^{*})^{ev}$

holds for all $\gamma\in\Gamma$ .

In [9, \S 7], we consider an orthonormal basis $\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\}$ of
the tangent space $T_{a_{0}}$ at a specific point $a_{0}\in X$ which has the following
property: for all $1\leq i<j\leq 3$ , the vectors $\{v_{i}, v_{j}\}$ (resp. $\{w_{i}$ , $w_{j}\}$ ) are
tangent to a totally geodesic closed submanifold of $X$ isometric to the
2-sphere $S^{2}$ with its metric of constant curvature 2. We set

$A_{ij}h=(D_{g}h)(v_{\dot{0}}, v_{j}, v_{i}, v_{j})$ , $A_{ij}’h=(D_{g}h)(w_{i}, w_{j}, w_{i}, w_{j})$ ,

for $1\leq i<j\leq 3$ . Let

$D:C^{\infty}(S^{2}T_{\mathbb{C}}^{*})\rightarrow \mathbb{C}^{5}$

be the linear mapping defined by

$Dh=(A_{12}h, A_{23}h, A_{12}’h, A_{13}’h, A_{23}’h)$ ,

for $h\in C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ . According to Proposition 4, the subspace $N_{\mathbb{C}}^{ev}$ of
$C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ is contained in the kernel of $D$ .

\S 5. The complex quadric of dimension three

In this section, we suppose that $n=3$ and that $X$ is the quadric $Q_{3}$

of dimension three.
We denote by $\emptyset$ the Lie algebra of the group SO(5). We fix a specific

Cartan subalgebra $t_{\mathbb{C}}$ of the complexification $g_{\mathbb{C}}$ of the Lie algebra $g$ and
consider the linear forms $\lambda_{0}$ and $\lambda_{1}$ on $t_{\mathbb{C}}$ defined in [9, \S 9]. We choose
a Weyl chamber of $(g_{\mathbb{C}}, t_{\mathbb{C}})$ for which the system of positive roots $\triangle^{+}$

of $g_{\mathbb{C}}$ is equal to

$\lambda_{0}-\lambda_{1}$ , $\lambda_{0}+\lambda_{1}$ , $\lambda_{0}$ , $\lambda_{1}$ ;

then $\{\lambda_{0}-\lambda_{1}, \lambda_{1}\}$ is a system of simple roots of $\mathfrak{g}_{\mathbb{C}}$ . The highest weight
of an irreducible SO(5)-module is a linear form $\Lambda=c_{0}\lambda_{0}+c_{1}\lambda_{1}$ on $t_{\mathbb{C}}$ ,
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where $c_{0}$ , $c_{1}$ are integers satisfying $c_{0}\geq c_{1}\geq 0$ . The equivalence class
of such an SO(5)-module is determined by this weight. We identify $\Gamma$

with the set of all such linear forms on $t_{\mathbb{C}}$ . In particular, we consider the
elements

$\gamma_{r,s}=(2r+s)\lambda_{0}+s\lambda_{1}$ , $\gamma_{r,s}’=(2r+s+1)\lambda_{0}+s\lambda_{1}$

of $\Gamma$ , with $r$ , $s\geq 0$ . If $\gamma\in\Gamma$ , an $5O(5)$ -submodule $W$ of $C_{\gamma}^{\infty}(S^{p}T_{\mathbb{C}}^{*})$

is isomorphic to $k$ copies of an irreducible SO(5)-module with highest
weight $\gamma$ , where $k$ is an integer called the multiplicity of $W$ and denoted
by Mult $W$ . In fact, the multiplicity of $W$ is equal to the dimension of
the weight subspace $C(W)$ of $W$ corresponding to the weight $\gamma$ .

The decomposition of the bundle $S^{2}T_{\mathbb{C}}^{*}$ of complex symmetric 2-
forms on $Q_{3}$ into irreducible SO(5)-invariant sub-bundles described in [7]
and the branching law of [19] allow us to compute the multiplicities of
the isotypic components of $C^{\infty}(T_{\mathbb{C}}^{*})$ and $C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ , which are given by
Proposition 9.1 of [9]. In particular, we obtain:

Proposition 6. Let $\gamma$ be an element of $\Gamma$ . If the SO(5)-module
$C_{\gamma}^{\infty}(T_{\mathbb{C}}^{*})$ (resp. $C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ ) is non-zero, then we may write $\gamma$ in the form
$\gamma=\gamma_{r,s}$ or $\gamma=\gamma_{r,s}’$ , for some integers $r$ , $s\geq 0$ .

If we define integers $d_{r,s}$ and $d_{r,s}’$ by

$d_{r,s}=\{$

0 if $r=s=0$ ,

2 if $r$ , $s\geq 1$ , $d_{r,s}^{/}=\left\{\begin{array}{l}1 ifs\geq 1,\\0 otherwise,\end{array}\right.$

1 otherwise,

for $r$ , $s\geq 0$ , then Proposition 9.1 of [9] tells us that

(3) Mult $C_{\gamma_{r,s}}^{\infty}(T_{\mathbb{C}}^{*})=2d_{r,s}$ , Mult $C_{\gamma_{\acute{r},s}}^{\infty}(T_{\mathbb{C}}^{*})=2d_{r,s}’$ ,

(4) Mult $C_{\gamma_{r,s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})\leq 13$ , Mult $C_{\gamma_{\acute{r},s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})\leq 8$ ,

for all $r$ , $s\geq 0$ .

According to Strichartz [16], the function $\tilde{f}_{r,s}$ is the highest weight

vector of the irreducible SO(5)-module $C_{\gamma_{r,s}}^{\infty}(X)=C_{\gamma_{r,s}}^{\infty}(S^{0}T_{\mathbb{C}}^{*})$ and

an eigenfunction of the Laplacian of $X$ , for $r$ , $s\geq 0$ . In [9], we use this
result together with the equalities (3) to construct explicit highest weight
vectors of the SO(5)-modules $C_{\gamma_{r,s}}^{\infty}(T_{\mathbb{C}}^{*})$ and $C_{\gamma_{\acute{r},s}}^{\infty}(T_{\mathbb{C}}^{*})$ and to prove the

following two lemmas.
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Lemma 5. The multiplicity of the SO(5)-module $C_{\gamma_{r,s}}^{\infty}(T_{\mathbb{C}}^{*})^{ev}$ or

of the SO(5)-module $C_{\gamma_{r,s}}^{\infty}(T_{\mathbb{C}}^{*})^{odd}$ is equal to $d_{r,s}$ . Moreover, the kernel

of the operator $D^{1}$ : $C^{\infty}(T_{\mathbb{C}}^{*})\rightarrow C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ is equal to $C_{\gamma_{0,1}}^{\infty}(T_{\mathbb{C}}^{*})^{ev}$ .

Lemma 6. For $r\geq 0$ , $s\geq 1$ , the SO(5)-modules $C_{\gamma_{\acute{r},s}}^{\infty}(T_{\mathbb{C}}^{*})^{ev}$ and

$C_{\gamma_{\acute{r},s}}^{\infty}(T_{\mathbb{C}}^{*})^{odd}$ are irreducible.

Thus from Proposition 5 and the two preceding lemmas, we deduce:

Proposition 7. The even symmetric 2-forms on $Q_{3}$ satisfying the
Guillemin condition are Lie derivatives of the metric if and only if the
equalities

Mult $N_{\gamma_{r,s}}^{ev}\leq d_{r,s}$ , Mult $N_{\gamma_{\acute{r},s}}^{ev}\leq d_{r,s}’$

hold for all $r$ , $s\geq 0$ , and if

$N_{\gamma 0,1}^{ev}=\{0\}$ .

In [9], we introduce finite-dimensional subspaces $V_{r,s}$ and $W_{r,s}$ (resp.
$V_{r,s}’$ and $W_{r,s}’$ ) of $C_{\gamma_{r,s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ (resp. $C_{\gamma_{\acute{r},s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ ) all of whose elements

are vectors of weight $\gamma_{r,s}$ (resp. $\gamma_{r,s}’$ ). We define generators of these

subspaces in terms of the functions $\tilde{f}_{r,s}$ and explicit Hermitian symmetric

2-forms on $\mathbb{C}\mathbb{P}^{4}$ , and then verify that they are either odd or even and
that

$V_{r,2p}\subset C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev}$ , $V_{r,2p+1}\subset C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{odd}$ ,

$W_{r,2p+1}\subset C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev}$ , $W_{r,2p}\subset C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{odd}$ ,
(5)

$V_{r,2p}’\subset C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev}$ , $V_{r,2p+1}’\subset C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{odd}$ ,

$W_{r,2p+1}’\subset C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev}$ , $W_{r,2p}’\subset C^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{odd}$ ,

for all $r,p\geq 0$ .

In [9, \S 7 and \S 9], we simultaneously determine the dimension of the
spaces $V_{r,s}$ , $W_{r,s}$ , $V_{r,s}’$ and $W_{r,s}’$ and prove the following lemma:

Lemma 7. Let $r$ , $s\geq 0$ be given integers,
(i) If $s$ is even, we have

$dim(N_{\mathbb{C}}\cap V_{r,s})\leq d_{r,s}$ , $dim(N_{\mathbb{C}}\cap V_{r,s}’)\leq 1$ .

(ii) If $s$ is odd, we have

$dim(N_{\mathbb{C}}\cap W_{r,s})\leq d_{r,s}$ , $dim(N_{\mathbb{C}}\cap W_{r,s}’)\leq 1$
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(iii) We have
$N_{\mathbb{C}}\cap V_{r,0}’=\{0\}$ .

Then using Proposition 9.1 of [9], we verify that

Mult $C_{\gamma_{r,s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})=dimV_{r,s}+dimW_{r,s}$ ,
(6)

Mult $C_{\gamma_{\acute{r},s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})=dimV_{r,s}’+dimW_{r,s}’$ ,

for all $r$ , $s\geq 0$ . From the inclusions (5) and the equalities (6), we obtain
directly the following:

Lemma 8. For $r$ , $s\geq 0$ , we have

$C(C_{\gamma_{r,2s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev})=V_{r,2s}$ , $C(C_{\gamma_{r,2s+1}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{odd})=V_{r,2s+1}$ ,

$C(C_{\gamma_{r},2s}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{odd})=W_{r,2s}$ , $C(C_{\gamma_{r},2s+1}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev})=W_{r,2s+1}$ ,

$C(C_{\gamma_{r,2s}’}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev})=V_{r,2s}’$ , $C(C_{\gamma_{r,2s+1}’}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{odd})=V_{r,2s+1}’$ ,

$C(C_{\gamma_{r,2s}’}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{odd})=W_{r,2s}’$ , $C(C_{\gamma_{r},2s+1}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev})=W_{r,2s+1}’$ .

In fact, we have $W_{0,1}=0$ and $W_{0,r}’=0$ , for $r\geq 0$ . Thus by

Lemma 8, we see that

(7) $C_{\gamma_{O,1}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev}=\{0\}$ , $N_{\mathbb{C}}\cap W_{r,0}’=\{0\}$ ,

for $r\geq 0$ . Since

$Mu1tN_{\gamma}^{ev}=dim(N_{\mathbb{C}}\cap C(C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})^{ev}))$ ,

for $\gamma\in\Gamma$ , from the equalities (7), Proposition 7 and Lemmas 7 and 8,
we deduce Theorem 2 for the quadric $Q_{3}$ . We recall that this last result
implies both Theorems 1 and 2.

\S 6. Integration over flat tori of the quadric

This section is devoted to some aspects of the proof of Lemma 7.
It is obtained by integrating the symmetric 2-forms of the spaces $V_{r,s}$ ,
$W_{r,s}$ , $V_{r,s}’$ and $W_{r,s}’$ over flat totally geodesic tori of the quadric $Q_{3}$ ; for

the first equality of Lemma 7,(i) we shall also consider the restriction of
the operator $D$ to $V_{r,s}$ .
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We assume that $X$ is again the quadric $Q_{n}$ . The restriction of the

mapping $\sigma$ to the subset $Z_{0}=[0,2\pi]\times[0, \pi]$ of $\mathbb{R}^{2}$ is a diffeomorphism

from $\overline{Z}_{0}$ to $Z_{0}$ . Therefore if $f$ is a function on $Z_{0}$ , then we see that

(8) $\int_{Z_{0}}fdZ_{0}=\frac{1}{2}\int_{\overline{Z}_{0}}(\sigma^{*}f)(\theta, \varphi)d\theta d\varphi=\frac{1}{2}\int_{0}^{\pi}\int_{0}^{2\pi}(\sigma^{*}f)(\theta, \varphi)d\theta d\varphi$ .

The following formulas relate the decomposition of the bundle $S^{2}T^{*}$

and the parallel vector fields on flat totally geodesic tori and play a
fundamental role in our computations of integrals of symmetric 2-forms
over these tori. If $J$ is the complex structure of $X$ and $\zeta$ is a vector field
on $Z_{0}$ , we define complex vector fields on $X$ along $Z_{0}$ by

$\zeta’=\frac{1}{2}(\zeta-iJ\zeta)$ , $\zeta’’=\frac{1}{2}(\zeta+iJ\zeta)=\overline{\zeta’}$ ,

which are of type $(1, 0)$ and $(0, 1)$ , respectively. Let

$\pi_{+}$ : $S^{2}T^{*}\rightarrow(S^{2}T^{*})^{++}$ ,

$\pi_{++}$ : $S^{2}T^{*}\rightarrow(S^{2}T^{*})^{++}$ , $\pi_{+-}$ : $S^{2}T^{*}\rightarrow(S^{2}T^{*})^{+-}$

be the orthogonal projections. If $h$ is a section of $(S^{2}T^{*})^{+}$ over $X$ , we
have

$(\pi_{++}h)(\xi_{0}, \xi_{0})=h(\xi_{0}, \xi_{0})$ , $(\pi_{++}h)(\eta_{0}, \eta o)=h(\eta_{0}, \eta_{0})$ ,

(9) $(\pi_{++}h)(\xi_{0}, \eta_{0})=(\pi_{+-}h)(\xi_{0}, \xi_{0})=(\pi_{+-}h)(\eta_{0}, \eta_{0})=0$ ,

$(\pi_{+-}h)(\xi_{0}, \eta_{0})=h(\xi_{0}, \eta_{0})$ .

If $Hessf$ denotes the Hessian of a complex-valued function $f$ on $X$ ,

because $X$ is a K\"ahler manifold, from Lemma 1.1 of [7] and (9) we
obtain the relations

(10) $(\pi_{++}Hessf)(\eta_{0}, \eta_{0})=2(\pi_{+}Hessf)(\eta_{0}’, \eta_{0}’’)=2(\partial\overline{\partial}f)(\eta_{0}’, \eta_{0}’’)$

and

$(\pi_{+-}Hessf)(\xi_{0}, \eta_{0})=(\pi_{+}Hessf)(\xi_{0}’, \eta_{0}’’)+(\pi_{+}Hessf)(\eta_{0}’, \xi_{0}’’)$

(11)
$=(\partial\overline{\partial}f)(\xi_{0}’, \eta_{0}’’)+(\partial\overline{\partial}f)(\eta_{0}’, \xi_{0}’’)$ .

In [9, \S 3], we give explicit expressions for the vector fields $\xi_{0}’$ and $\eta_{0}’$

on the intersection of $Z_{0}$ and an open dense subset $V$ of $\mathbb{C}\mathbb{P}^{n+1}$ in terms
of a system of holomorphic coordinates on $V$ .
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We now again suppose that $X$ is the quadric $Q_{3}$ . For $r\geq 0$ and
$s\geq 1$ , we consider the section

$h_{r,s}=\tilde{f}_{r,s-1}\pi_{+-}Hess\tilde{f}_{0,1}$

of $(S^{2}T^{*})_{\mathbb{C}}^{+-};$ for $r\geq 0$ , we set $h_{r,0}=0$ . For $r$ , $s\geq 0$ , we define a

subspace $\overline{V}_{r,s}$ of $C_{\gamma_{r,s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ generated by explicit complex symmetric 2-

forms $h_{j}$ , with $1\leq j\leq 7$ , which are sections of $(S^{2}T^{*})_{\mathbb{C}}^{++}$ or of $(S^{2}T^{*})_{\mathbb{C}}^{-}$ .

The subspace $V_{r,s}$ of $C_{\gamma_{r,s}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ is generated by $V_{r,s}$ and the section

$h_{r,s}$ of $(S^{2}T^{*})_{\mathbb{C}}^{+-}$ . According to Lemma 3, we have

(12) $Dh_{r,s}=0$ .

At the end of this section, we shall indicate how to prove the follow-
ing:

Lemma 9. Let $s\geq 2$ be an even integer and let $r\geq 0$ be an
arbitrary integer. Then we have

$I(h_{r,s})\neq 0$ .

The restriction $D_{r,s}$ : $\overline{V}_{r,s}\rightarrow \mathbb{C}^{5}$ of the operator $D$ to the space $\overline{V}_{r,s}$

is determined by a 5 $\times 7$ matrix, which is given by formula (7.5) of [9].

In [9, \S 7], we use this result to compute the dimension of the space $V_{r,s}$

and show that the rank of $D_{r,s}$ is equal to $dim\overline{V}_{r,s}-d_{r,s}$ when $s\neq 1$ ; in
particular, when $r$ , $s\geq 2$ we prove that the 2-forms $\{h_{j}\}$ , with $1\leq j\leq 7$ ,
are linearly independent and that the mapping $D_{r,s}$ is surjective. Since
$N_{\mathbb{C}}^{ev}$ is contained in the kernel of $D$ , from these last results, Lemma 9
and the equality (12), we easily deduce the first equality of Lemma 7,(i).

For $\alpha\in \mathbb{R}$ , let $\psi_{\alpha}$ be the element of SO(5) defined by

$\psi_{\alpha}(\zeta)_{0}=\sin\alpha\cdot\zeta_{4}+\cos\alpha\cdot\zeta_{2}$ , $\psi_{\alpha}(\zeta)_{4}=\cos\alpha\cdot\zeta_{4}-\sin\alpha\cdot\zeta_{2}$ ,

$\psi_{\alpha}(\zeta)_{1}=\zeta_{1}$ , $\psi_{\alpha}(\zeta)_{2}=\zeta_{3}$ , $\psi_{\alpha}(\zeta)_{3}=\zeta_{0}$ ,

where $\zeta\in \mathbb{C}^{5}$ .

Let $r\geq 0$ and $s\geq 1$ be given integers. We set

$q_{r,s}(t, \theta, \varphi)=(t^{2}\cos^{2}\varphi-\sin^{2}\theta)^{r}\cdot(t\cos\theta\cos\varphi+\sin\theta\sin\varphi)^{s-1}$

and
$p_{r,s}(t, \theta, \varphi)=(\cos\theta\cos\varphi+t\sin\theta\sin\varphi)\cdot q_{r,s}(t, \theta, \varphi)$ ,



138 J. Gasqui and H. Goldschmidt

for $t$ , $\theta$ , $\varphi\in \mathbb{R}$ . We consider the polynomial

$ P_{r,s}(t)=\int_{\overline{Z}_{0}}p_{r,s}(t, \theta, \varphi)d\theta d\varphi$

in $t$ . Using the expressions for the functions $\psi_{\alpha}^{*}\tilde{f}_{r,s-1}$ and $\psi_{\alpha}^{*}\tilde{f}_{0,1}$ on $V$

and for the vector fields $\xi_{0}’$ and $\eta_{0}’$ on $Z_{0}\cap V$ , according to (12) we verify
the equality

(13) $(\psi_{\alpha}^{*}h_{r,s})(\xi_{0}, \eta_{0})(\sigma(\theta, \varphi))=\frac{(-1)^{s}}{2^{r}}p_{r,s}(\sin\alpha, \theta, \varphi)$ ,

holds for all $\theta$ , $\varphi\in \mathbb{R}$ .

Lemma 10. If $s\geq 2$ is an even integer, then there exists $\alpha_{0}\in \mathbb{R}$

such that the integral

$\int_{Z_{0}}(\psi_{\alpha_{0}}^{*}h_{r,s})(\xi_{0}, \eta_{0})dZ_{0}$

does not vanish.

Proof. The coefficient of $t^{2r+s-1}$ of the polynomial $P_{r,s}(t)$ is equal
to the integral

$\int_{\overline{Z}_{0}}\cos^{2r}\varphi(\cos\theta\cos\varphi)^{s-2}\cdot((s-1)\sin^{2}\theta\sin^{2}\varphi+\cos^{2}\theta\cos^{2}\varphi)d\theta d\varphi$ ,

which is clearly positive. Thus the polynomial $P_{r,s}$ is non-zero and
so there exists a real number $\alpha_{0}$ such that $P_{r,s}(\sin\alpha_{0})$ does not vanish.
From (8) and (13), we infer that the integral of the lemma corresponding
to this element $\alpha_{0}\in \mathbb{R}$ does not vanish.

Since $\psi_{\alpha_{0}}$ induces an isometry of $X$ , we see that Lemma 9 is a direct
consequence of Lemma 10. The constant term of the polynomial $P_{r,s}(t)$

is easily seen to vanish, and hence so does the integral

$\int_{Z_{0}}(\psi_{0}^{*}h_{r,s})(\xi_{0}, \eta_{0})dZ_{0}$ .

Therefore our proof really does require the variation of the family of
integrals

$\int_{Z_{0}}(\psi_{\alpha}^{*}h_{r,s})(\xi_{0}, \eta_{0})dZ_{0}$ ,

with $\alpha\in \mathbb{R}$ .
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The other assertions of Lemma 7 are proved by performing various
integrations over flat tori. They are either done directly or, as in the
case of Lemma 9, by computing the variation of the integrals over a one
or two parameter family of flat totally geodesic tori.
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On Deformations of Self-Dual Vector Bundles
over Quaternionic Manifolds

James F. Glazebrook and Duraiswamy Sundararaman 1

Abstract.

In this paper we survey a number of results concerned with the
deformations of quaternionic structures on classes of quaternionic
manifolds and the deformation theory of Hermitian bundles with self-
dual connections. The deformations in question are shown to corre-
spond to the deformation theory of complex structures and holomor-
phic vector bundles over an associated complex manifold referred to
as a twistor space. Results related to hypercomplex and hyperk\"ahler
manifolds are also discussed.

\S 0. Introduction.

In this paper we consider classes of quaternionic manifolds $M$ and
deformations of Hermitian vector bundles on $M$ that possess self-dual
connections in the sense of [18], and survey a number of results in this
area. We also describe how the Kuranishi deformation theory for gen-
eral $G$-structures is applied in this context. The deformation theory
is applied firstly in the quaternionic category and then secondly in the
holomorphic category of associated (almost) complex manifolds which
are often referred to as twistor spaces.

The original problems can be traced back to the classification of
$SU(2)$-bundles with self-dual connection on 4-manifolds (see e.g., [1]
[7] $)$ . A broad generalization of the latter case to that of quaternionic
K\"ahler manifolds was the subject of [18] (see also [10], [21]). The
classification problem becomes much more difficult and results are only

known at present for special quaternionic bundles which carry a self-dual
connection (see \S 2).
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Our references to progress on this problem, are [5], [6], [15], [10],
[18], [21], [22], [23]. In a different direction, the case of foliated quater-
nionic structures has been considered in [11], [12].

The first named author would like to thank the Department of Math-
ematics of George Washington University for providing computer ser-
vices during the preparation of this paper and to A. Swann for providing
several references.

\S 1. $G$-structures and their deformations.

Following [13], let $M$ be a smooth manifold, $dim_{\mathbb{R}}M=n$ , and
let $G\subset GL(n, \mathbb{R})$ be a connected Lie group. A $G-$structure on $M$ is
given by a reduction of the principal tangent frame bundle of $TM$ from
$GL(n, \mathbb{R})$ to G. If $GL(n, \mathbb{R})\rightarrow B\rightarrow M$ denotes the principal tangent
frame bundle, then let $G\rightarrow B_{G}\rightarrow M$ be the principal bundle resulting
from this reduction. Consider a local diffeomorphism $f$ : $M\rightarrow M$

lifting to a bundle automorphism $f_{*}$ : $B\rightarrow B$ . We say that $f$ is a
local $G-$automorphism if $f_{*}(B_{G})\subset B_{G}$ . For an open set $U$ in $M$ , let
$X\in C_{U}^{\infty}(TM)$ be a vector field which generates a local 1-parameter
group $f(t)=\exp(tX)$ of local diffeomorphisms. Let $U\subset \mathbb{R}^{\iota/}$ be an
open neighbourhood of $O$ in $\mathbb{R}^{l/}$ with parameter $t=(t_{1}, \ldots, t_{\iota/})$ and let
$\mathcal{W}\rightarrow\omega U$ be a smooth fibre bundle with fibre $M$ . The structure group
of $T\mathcal{W}$ may be defined as follows: consider the group of all matrices

$\left\{\begin{array}{ll}a & c\\0 & b\end{array}\right\}$ where $a\in GL(n, \mathbb{R})$ , $b\in GL(l/, \mathbb{R})$ and $c\in Hom(\mathbb{R}^{\iota/}, \mathbb{R}^{n})$ . Let

$G^{*}$ be the group of all matrices of this type where $a\in G$ (one can
take $G’\subset G^{*}$ to consist of the subgroups where $c=0$ ). For a given
$G^{*}-$structure on $\mathcal{W}$ there exists on the fibre $M_{t}=\omega^{-1}(t)$ an induced
$G$-structure

$G\rightarrow B_{G}(t)\rightarrow M_{t}$

For an open set $\mathcal{U}\subset M$ , there is a natural $G-$structure on $\mathcal{W}\times \mathcal{U}$ induced
from that on $\mathcal{W}$ . If $\mathcal{W}$ possesses a $G^{*}$ -structure, then $\omega$ : $\mathcal{W}\rightarrow \mathcal{U}$ is a
deformation of the $G$-structure on $M$ if:

i) there exists a $G$-diffeomorphism between $M$ and $M_{0}=\omega^{-1}(0)$ ,

and
$ii)$ the bundle $\mathcal{W}\omega\rightarrow \mathcal{U}$ is locally trivial.

\S 2. Quaternionic manifolds and their twistor spaces.

Let us now take $n=4m$ $(m>1)$ . We shall say that $M$ is almost
quaternionic if the principal tangent frame bundle $B_{G}$ of $M$ is equipped
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with a
$GL(m, \mathbb{H})GL(1, \mathbb{H}):=GL(m, \mathbb{H})\times_{\mathbb{R}}GL(1, \mathbb{H})$

connection (see [25], [26]). We shall denote this $G$-structure on $M$

by $G_{M}$ . Observe that $G_{M}$ is the same group as $GL(ra, \mathbb{H})Sp(1):=$

$GL(m, \mathbb{H})\times_{\mathbb{Z}_{2}}Sp(1)$ . Equivalently, there is a distinguished rank 3 sub-
bundle $\mathbb{G}\subset End(TM)$ having a local basis $\{/, J, K\}$ satisfying the usual
quaternion identities

$I^{2}=J^{2}=K^{2}=-1$ , $IJ$ $=K=-JI$ , etc.

Let $E$ and $H$ respectively denote the vector bundles associated to the
fundamental representations of $GL(m, \mathbb{H})$ and $Sp(1)$ respectively on $\mathbb{C}^{2m}$

and $\mathbb{C}^{2}$ . Then taking the following tensor product over $\mathbb{C}$ , we have

$T_{\mathbb{C}}^{*}M\cong E\otimes H$

and
$\Lambda^{2}T_{\mathbb{C}}^{*}M\cong S^{2}E+\wedge^{2}E\otimes S^{2}H$

If $gM(IX, IY)=g_{M}(X, Y)$ for any local section I of $\mathbb{G}$ satisfying $I^{2}=$

$-1$ , then $M$ is said to be quaternionic Hermitian whereby $G_{M}$ reduces
to the group $Sp(m)Sp(1)$ and the above decomposition of 2-forms is
refined to

$\Lambda^{2}T_{\mathbb{C}}^{*}M\cong S^{2}H+S^{2}E+\Lambda_{0}^{2}E\otimes S^{2}H$

where $\Lambda^{2}E\cong \mathbb{R}+\Lambda_{0}^{2}E$ is the decomposition into irreducible $Sp(m)-$

modules. The fundamental 4-form of $M$ is a global 4-form $\Omega$ defined
locally by

$\Omega=\omega_{I}\wedge\omega_{I}+\omega_{J}\wedge\omega_{J}+\omega_{K}\wedge\omega_{K}$

for $I$ , $J$, $K$ a local basis as before and $\omega_{I}(X, Y)=g_{M}(X, IY)$ is the local
2-form associated to $I$ , etc. A 2-form $F$ on $M$ is said to be self-dual if

$*F=c_{i}F\wedge\Omega^{m-1}$

where *denotes the Hodge star operator on $M$ and for $1\leq i\leq 3$ , the
$c_{i}$ are constants corresponding to the eigenspaces of $\Lambda^{2}T_{\mathbb{C}}^{*}M$ (see [9]).
We shall be interested in complex vector bundles $V\rightarrow M$ for which the
connection $\nabla$ on $V$ has a curvature 2-form $R_{\nabla}$ which is $c_{2}=c_{S^{2}E}$-self-
dual; specifically, $R_{\nabla}\in\Omega^{2}$ ($M$ , End $V\otimes S^{2}E$). It will be convenient for
us to call such a connection simply self-dual, generalizing the situation
in dimension 4 (see e.g., [1], [7]).

The twistor space $Z$ associated to $M$ is the 2-sphere bundle

$Z=S^{2}(\mathbb{G})=\{I\in \mathbb{G} : ||I||=1\}$
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giving rise to the twistor fibration $\pi$ : $Z\rightarrow M$ with fibre $S^{2}$ . Since $M$ is
almost quaternionic, it can be shown that $Z$ is an almost complex mani-
fold with almost complex structure I for each choice of a $G_{M}$ connection
$\nabla_{G}$ on $M([25])$ . This connection is determined by a choice of a hor-
izontal distribution on the principal frame bundle $B_{G}$ . Then $Z$ can be
regarded as the bundle associated to the structure $G_{M}$ via the adjoint
action of the $GL(1, \mathbb{H})$ factor on $S^{2}$ . Equivalently, $Z=\mathbb{P}_{\mathbb{C}}(H)$ . Note
that there is a canonical $GL(2m+1, \mathbb{C})$-structure $G_{Z}$ on $Z$ whereby the
horizontal distribution on $B_{G}$ determines that on $Z$ . The almost com-
plex structure I at $I$ $\in Z$ is taken to be I on horizontal tangent vectors
and multiplication by $\iota$ on vertical tangent vectors with respect to $\pi$ .
Now I depends on the torsion of $\nabla_{G_{l\backslash 4}}$ alone where the integrability of
I is equivalent to $\nabla_{G}$ being torsion-free. In the terminology of [25], $M$

is (integrable) quaternionic if $M$ admits a torsion-free $\nabla_{G}$ connection
Thus the ’integrability’ of $M$ as a quaternionic manifold is equivalent
to $Z$ being a complex manifold (with $X$ integrable). For a given pa-
rameter value $t$ as in \S 1, we shall denote by $V$ the space of torsion-free
Vc-connections on $M$ . Each $I$ $\in Z_{x}$ determines a decomposition into
complex types

$\Lambda^{r}(T_{x}^{*}M)_{\mathbb{C}}=A_{I}^{r,0}\oplus A_{I}^{r-1,1}\oplus\cdots\oplus A_{I}^{0,r}$

with $A_{-I}^{r,0}=A_{I}^{0,r}=\overline{A_{I}^{0,r}}$ . In particular for $r=2$ ,

$\Lambda^{2}T_{\mathbb{C}}^{*}M=A_{I}^{2,0}+A_{I}^{1,1}+A_{I}^{0,2}$

we have

$S^{2}E=I\in Z\cap A_{I}^{1,1}$

Recalling that at $I$ $\in Z$ , the complex structure I on $Z$ is equivalent to
I on horizontal vectors, it can be shown that if $V\rightarrow M$ is a complex
vector bundle with connection $\nabla$ whose curvature $R_{\nabla}$ is a self-dual 2-
form, then $\pi^{*}V$ is a holomorphic vector bundle on $Z[18]$ . Here, the

complex structure $\tilde{I}$ on $\pi^{*}V$ is obtained by taking $\pi^{*}\nabla$ to give the local
splitting

$T(\pi^{*}V)=TZ\oplus \mathbb{C}^{r}(r=rank V)$

and then take $\tilde{I}=(I, \iota)$ where $\iota$ denotes the usual almost complex
structure on $\mathbb{C}^{r}$ . Let

$A^{r}=\Lambda^{r}E\oplus S^{r}H\subset(\Lambda^{r}T^{*}M)_{\mathbb{C}}$

be associated to the irreducible $G_{M}$ $(=GL(m, \mathbb{H})$ Sp(l) $)$-submodule of
$\Lambda^{r}T^{*}M$ of highest weight in the $Sp(1)$ factor. It is sometimes convenient
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to write the decomposition of $A^{r}$ in the following way: let $B^{r}$ denote the
subbundle of $\Lambda^{r}T^{*}M$ formed by the sum of $G_{M}$-components distinct
from $A^{r}$ . For $2\leq r\leq 2m$ , we shall set

$\Lambda^{r}(T^{*}M)_{\mathbb{C}}=A^{r}\oplus B^{r}$

With regards to the above decomposition of 2-forms, we see that $B^{2}=$

$S^{2}E$ and thus if $V$ has a self-dual connection $\nabla$ , its curvature $R_{\nabla}$ is
$B^{2}$-valued. Likewise, if $V$ has a $c_{1}$ -self-dual connection implying that
$R_{\nabla}$ is valued in $S^{2}H$ , then we say that $\nabla$ is anti-self-dual. We shall
restrict our attention mainly to those connections which are self-dual.
For $z\in\pi^{-1}(x)$ , we have

$(A^{r})_{x}=\sum A_{x}^{0,q}$

where $A_{x}^{0}\cong \mathbb{C}$ , $A_{x}^{1}=(T_{x}^{*}M)_{\mathbb{C}}$ , $A_{x}^{2}=(S^{2}H+\Lambda_{0}^{2}E\otimes S^{2}H)_{x}$ , etc.
Let $\eta^{r}$ : $(\Lambda^{r}T^{*}M)_{\mathbb{C}}\rightarrow A^{r}$ be the projection and set $D=\eta\circ d$ .

Then if $M$ is quaternionic, the complex

$0\rightarrow A^{0}D\rightarrow A^{1}=d\rightarrow A^{2}D\rightarrow\cdots\rightarrow A^{2m}$

is an elliptic complex on $M$ (i.e. $D^{2}=0$ ). There is a direct relationship
with the Dolbeault complex

0–
$A^{0,0}\rightarrow A^{0,1}\overline{\partial}\rightarrow A^{0,2}\overline{\partial}\rightarrow\overline{\partial}\ldots\rightarrow A^{0,2m+1}\rightarrow 0$

on $Z$ . Specifically, we have a short exact sequence of vector bundles

0– $A_{hor}^{0,1}\rightarrow A^{0,1}\rightarrow A_{ver}^{0,1}\rightarrow 0$

involving $(0, 1)$-forms horizontal and vertical with respect to $\pi$ . Taking
exterior powers leads to

$0\rightarrow A_{hor}^{0,q}\rightarrow A^{0,q}\alpha\rightarrow A_{ver}^{0,1}\beta\otimes A_{hor}^{0,q-1}\rightarrow 0$

and the restriction of $A^{0,q}$ to each fibre $\pi^{-1}(x)$ has a holomorphic struc-
ture such that:

a) $\partial-ver=\beta o\overline{\partial}\circ\alpha$ restricted to $\pi^{-1}(x)$ is the usual $\overline{\partial}$-operator with

coefficients in $A_{hor}^{0,q}$

b) $\alpha$ induces an isomorphism

$\alpha^{\#}$ : $(A^{r})_{x}\rightarrow H^{0}\cong(\pi^{-1}(x), \mathcal{O}(A_{hor}^{0,r}))=ker(\overline{\partial}_{ver}|\pi^{-1}(x))$

c) if $\omega\in C^{\infty}(A^{r})$ , then $\alpha^{\neq}(\omega)=(\pi^{*}\omega)^{0,r}$ and $\alpha^{\neq}\circ D=\overline{\partial}\circ\alpha^{\neq}$
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Theorem 2.1. [18] Let $V\rightarrow M$ be a complex vector bundle with

self-dual connection. On extending $D$ to $Ar(V)=A^{r}\otimes V$ , the complex

$O\rightarrow A^{0}(V)\rightarrow A^{1}D(V)\rightarrow A^{2}D(V)\cdots\rightarrow A^{2m}(V)\rightarrow 0$

is elliptic and

$H^{r}(Z, \mathcal{O}(\pi^{*}V))=\{$

$\frac{ker(D|A^{r}(V))}{D(A^{r-1}(V))}$ for $0\leq r\leq 2m$

0 for $r=2m+1$ .

\S 3. Quaternionic deformations of vector bundles with self-dual
connections.

Let $M$ be a compact quaternionic manifold $(dim_{\mathbb{R}}M=4m)$ . Recall
from \S 2 that we have the rank 3 subbundle $G$ $\subset EndTM$ . Let $G$ be a
connected Lie subgroup of $GL(N, \mathbb{H})Sp(1)$ , for some $N$ . Of interest to us
are the cases for which $G$ is one of $GL(N, \mathbb{H})Sp(1)$ , $GL(N, \mathbb{H})$ , $Sp(N)$

or $Sp(N)$ $Sp(1)$ . Henceforth, we assume that $G$ is one of these listed
subgroups. Let us now consider a principal $G$-bundle $G\rightarrow P\rightarrow M$ . In
this case, the adjoint bundle of $P$ , denoted Ad $P=P\times_{Ad}g$ , contains
a rank 3 subbundle $\mathbb{G}_{P}$ corresponding to the adjoint representation of
$Sp(1)$ which descends to G.

We shall consider those $G$-bundles on $M$ whose associated vector
bundle $V\rightarrow M$ has a self-dual connection $\nabla_{V}$ (recall with curvature
$R_{\nabla}\in\Omega^{2}(M, S^{2}E\otimes AdP))$ . In the terminology of [25], $(V, \nabla_{V})\rightarrow M$

is said to be a quaternionic vector bundle.

Definition 3.1. Let $V\rightarrow M$ be a quaternionic vector bundle
associated to the principal $G-$bundle $G\rightarrow P\rightarrow M$ . A quaternionic

deformation of the bundle $G\rightarrow P\rightarrow G$ is specifified by a deformation of
the self-dual connection $\nabla_{V}$ within the space of $G-$connections together
with a deformation $M_{t}$ of the $G_{M}-$structure of $M$ through torsion-free
$G_{M}$ connections in V.

Note that since a self-dual connection on $V$ induces the same on
$\mathbb{G}_{P}$ , we obtain a family of complexes $(A^{*}(\mathbb{G}_{P}), D_{t})$ for each torsion-free
connection $D_{t}\in D$ .

Recalling that the pull-back of $V$ by $\pi^{*}$ to $Z$ gives a holomorphic

vector bundle $(\tilde{V},\tilde{J})\rightarrow(Z, J)$ associated to a holomorphic principal

bundle $\tilde{P}$ on $Z$ . We can implement the simultaneous deformations of
$(\tilde{V},\tilde{J})$ and $(Z, J)$ in the holomorphic category. This was studied in



Deformations of Self-Dual Vector Bundles over Quaternionic Manifolds 147

[27] [28] for complex principal bundles and we shall outline one of the
main results. We commence by considering the (complexified) Atiyah
sequence

$0\rightarrow Ad_{\mathbb{C}}\tilde{P}\rightarrow T_{\mathbb{C}}\tilde{P}/G_{\mathbb{C}}\rightarrow T_{\mathbb{C}}Z\rightarrow 0$

At the level of sheaves, let us agree to write the corresponding exact
sequence as

$ 0\rightarrow$ Ad $\tilde{P}\rightarrow\tilde{Q}\rightarrow TZ\rightarrow 0$

Tensoring this sequence with $A^{0,r}$ on $Z$ , we set

$T_{1}^{r}=Ad\tilde{P}\otimes A^{0,r}$ , $T_{2}^{r}=\tilde{Q}\otimes A^{0,r}$ , $T_{3}^{r}=TZ\otimes A^{0,r}$

and summing each term over $r\geq 0$ , we obtain the exact sequence

$0\rightarrow T_{1}\rightarrow T_{2}\rightarrow T_{3}h\rightarrow 0$

where the operators $\overline{\partial}$ and $[, ]$ are extended to each $T_{\dot{0}}$ in the usual way.

Definition 3.2. An almost complex principal bundle structure

on $G_{\mathbb{C}}\rightarrow\tilde{P}\rightarrow Z$ is a pair $(\tilde{J}, J)$ where $\tilde{J}$ (respectively $J$) is an almost

complex structure on $\tilde{P}$ (respectively $Z$), such that

i) $\tilde{J}$ is $G_{\mathbb{C}}-$invariant
$ii)$ the almost complex structure on $\tilde{P}/G_{\mathbb{C}}$ induced by $\tilde{J}$ is $J$ , and

$iii)$
$\tilde{J}$ restricted to each fifibre gives the integrable almost complex
structure on $G_{\mathbb{C}}$ .

Proposition 3.3. [27], [28] There isa bijective correspondence

between the almost complex structures $(\tilde{J}, J)$ on $G_{\mathbb{C}}\rightarrow\tilde{P}\rightarrow Z$ which

are sufficiently close to given fifixed almost complex structures $(\tilde{J}_{0}, J_{0})$

and elements $\psi\in T_{1}^{1}$ close to 0 and satisfying $ h(\psi)=\varphi$ where $\varphi$ is

taken relative to J. The integrability condition is

$\overline{\partial}\psi-\frac{1}{2}[\psi, \psi]=0$ .

To see how Proposition 3.3 can be applied to this situation, we
recall from [11], [12] that a vector field $X$ on $M$ is said to be a quater-
nionic vector fifield if via its infinitesimal automorphisms it preserves the
quaternionic structure $G_{M}$ of $M$ . For $m=1$ , $GL(1, \mathbb{H})GL(1, \mathbb{H})$ is the
conformal group $CO(4)$ on a 4-manifold. The twistor correspondence
yields the following (see e.g., [11], [24]):
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Proposition 3.4. If $X$ is a quaternionic vector fifield on $M$ then
$X$ induces a holomorphic vector fifield $Y$ on $Z$ such that $\pi_{*}(Y)=X$ .
Conversely, a projectable holomorphic vector fifield on $Z$ induces a quater-
nionic vector fifield on $M$ .

Lemma 3.5. An infifinitesimal $G_{M}-$automorphism of $M$ lifts
via $\pi$ to an infifinitesimal $G_{Z}-$holomorphic automorphism of $Z$ and con-
versely on $\pi$ -related vector fifields.

Following the discussion in \S 1, let $\mathcal{W}\rightarrow \mathcal{U}\omega$ be a $G_{M}$ -deformation

and $\tilde{\mathcal{W}}\overline{\omega}\rightarrow\tilde{\mathcal{U}}$ be a $G_{Z}$-deformation.

Proposition 3.6. A $G_{M}-$deformation induces a $G_{Z}-$deforma-
tion and conversely on $w$ -related vector fifields. In particular, the diagram
below is commutative:

$\tilde{\mathcal{W}}\rightarrow\overline{\omega}$ $\tilde{U}$

$ w\downarrow$ $ u\downarrow$

$\mathcal{W}\rightarrow\omega \mathcal{U}$

Denoting the $\tilde{V}-$valued forms on $Z$ by $A^{*}(\tilde{V})$ we let $\nabla’’(\tilde{V})$ denote
the set of $C$-linear maps

$\nabla^{ll}$ : $A^{0}(\tilde{V})\rightarrow A^{0,1}(\tilde{V})$

$satis\infty ing$

$\nabla^{lJ}(fs)=(d^{JJ}f)s+f\cdot\nabla^{JJ}s$

for $s$ $\in A^{0}(\tilde{V})$ , $f\in A^{0}$ . Each $\nabla^{JJ}$ extends uniquely to a $C$-linear map

$\nabla^{JJ}$ : $A^{p,q}(\tilde{V})\rightarrow A^{p,q+1}(\tilde{V})$ , $p$ , $q\geq 0$

satisfying
$\nabla^{JJ}(\psi\iota/)=d’’\psi\wedge\iota/+(-1)^{r+s}\psi\wedge\nabla^{Jl}\nu$

for $iJ$
$\in A^{p,q}(\tilde{V})$ , $\psi\in A^{r,s}$ . The set $\nabla^{JJ}(\tilde{V})$ is an affine space which can

be identified with the infinite dimensional vector space $A^{0,1}$ (End $\tilde{V}$ ) $\cong$

$A^{0,1}$ (Ad $\tilde{P}$). Let $H^{JJ}(\tilde{V})\subset\nabla’’(\tilde{V})$ be the set of those $\nabla^{JJ}$ satisfying the

integrability condition $\nabla^{lJ}\circ\nabla^{lJ}=0$ . The set $H^{JJ}(\tilde{V})$ can be regarded

as the set of holomorphic bundle structures on $\tilde{V}$ . The group $GL(\tilde{V})$ of
$C^{\infty}$ bundle automorphisms of $\tilde{V}$ (inducing the identity transformation

on $Z$ ) acts on $\nabla^{ll}(\tilde{V})$ and maps $\gamma\{^{Jl}(\tilde{V})$ to itself. Two holomorphic
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structures $\nabla_{1}^{JJ}$ and $\nabla_{2}^{ll}$ of $\tilde{V}$ are said to be equivalent if they lie on the

same $GL(\tilde{V})-$orbit. The moduli space of holomorphic structures on $\tilde{V}$

is the quotient space $\prime H’’(\tilde{V})/GL(\tilde{V})$ .

For a given parameter $s$ say, the family of such connections $\{\nabla_{V}\}_{s}$ ,

as a deformation space, is $H^{1}(\mathbb{G}_{P})[18]$ Thus for given parameter
values $s$ and $t$ , we may consider the space

$\{\{(\nabla_{V})_{s}\}, \{D_{t}\}\}:=\{Q_{s,t}\}\cong H^{1}(\mathbb{G}_{P})\times D$

Let $J$ denote the space of almost complex structures on $Z$ and let $\mathcal{R}=$

$H^{Jl}(\tilde{V})/GL(\tilde{V})\times J$ .

Proposition 3.7. For $\psi$ , $\varphi$ as in Proposition 3.3 and $J\in J$

integrable, the space $\{Q_{s,t}\}$ injects into

$T_{(\nabla^{lJ},J)}\mathcal{R}=\{\psi\in T_{1}^{1} _{:} h(\psi)=\varphi,\overline{\partial}\psi-\frac{1}{2}[\psi, \psi]=0\}$ .

\S 4. Complex vector bundles over quaternionic K\"ahler mani-
folds.

Henceforth, we assume that $M$ is compact and further, assume that
$M$ is quaternionic K\"ahler which by definition means that the linear
holonomy of $M$ is contained in the subgroup $Sp(m)Sp(1)\subset SO(4m)$ .

Note then that $E$ becomes the bundle associated to the fundamental
representation of $Sp(m)$ on $\mathbb{C}^{2m}$ . For a complex vector bundle $V\rightarrow M$

with connection $\nabla$ , one often considers the Yang-Mills functional

$YM(\nabla)=\frac{1}{2}\int_{M}||R_{\nabla}||^{2}d\nu_{M}$

along with the following topological invariant (or ’instanton number’)

$k=\frac{1}{8\pi^{2}}\int_{M}E(R_{\nabla}\wedge R_{\nabla})\wedge\Omega^{m-1}$

which is equal to $\langle p_{1}(V), [\Omega^{m-1}]\rangle$ . With regards to the decomposition
in \S 2, we can write the above as

$k=-\frac{1}{8\pi^{2}}\int_{M}\sum_{i=1}^{3}c_{i}||R_{i}||^{2}\Omega^{m}$ .

When $R_{\nabla}=R_{i}$ , we have $YM(\nabla)=4\pi^{2}|k/c_{i}|$ and the functional $YM$

is minimized when $\nabla$ is $c_{1}$ or $C2$ -self-dual (anti-self-dual or self-dual
respectively) (see [9], [18]). In proceeding, we consider two classes of
vector bundles relevant to the previous discussion:
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$V_{M}:=$ {Pairs $(V, \nabla_{V})$ where $V\rightarrow M$ is a complex vector bundle and
$\nabla_{V}$ is a self-dual Hermitian connection on $V.$ }

$V_{Z}:=$ {Pairs $(\tilde{V}, \nabla_{\overline{V}})$ where $\tilde{V}\rightarrow Z$ is a holomorphic vector bundle

with Hermitian $(1, 0)-$connection $\nabla_{\overline{V}}$ and Hermitian metric $h(, )$ .

The bundle $\tilde{V}$ is flat restricted to the fibres of $\pi$ and is assumed to be
endowed with a ’real’-structure $\tau$ : $Z\rightarrow Z$ (see e.g. [1]) which lifts

to a bundle automorphism $\tilde{\tau}$ : $\tilde{V}\rightarrow\tilde{V}$ . A bundle map $\sigma$ : $\tilde{V}\rightarrow\tilde{V}$

is then defined fibrewise by

$f\in\tilde{V}_{z}\rightarrow\sigma(f)\in\tilde{V}_{\tau(z)}^{*}$

where $\sigma(f)(s):=h(f,\tilde{\tau}(f))$ for each $s\in\tilde{V}_{\tau(z)}$ The map $\sigma$ is an

antiholomorphic bundle automorphism.}

A fundamental result is the following:

Theorem 4.1. The assignment

$V_{M}\ni(V, \nabla_{V})\rightarrow(\pi^{*}V, \pi^{*}\nabla_{V})\in V_{Z}$

defifines a bijective correspondence between $V_{M}$ and $V_{Z}$ .

Following [26], if $M$ has positive scalar curvature, then $Z$ admits a
K\"ahler-Einstein metric of positive scalar curvature (the model example
is to take $M$ $=\mathbb{H}P^{m}$ , $m$-dimensional quaternionic projective space with
corresponding $Z=\mathbb{C}P^{2m+1}$ ). When $M$ has positive scalar curvature,
a pair $(\pi^{*}V, \pi^{*}\nabla_{V})$ arising from Theorem 4.1 on $Z$ , is a holomorphic
vector bundle with Ricci-flat Hermitian-Einstein connection [21]. Let
$V_{Z}^{h}$ denote elements of $V_{Z}$ endowed with these extra properties. Then
we have:

Corollary 4.2. Let $M$ be a compact quaternionic Kdhler mani-

fold with positive scalar curvature. Then the assignment

$V_{M}\ni(V, \nabla_{V})\rightarrow(\pi^{*}V, \pi^{*}\nabla_{V})\in V_{Z}^{h}$

defifines a bijective correspondence between $V_{M}$ and $V_{Z}^{h}$ .

\S 5. Hermitian-Einstein vector bundles and the Kuranishi space

Continuing from the end of the last section, let $M$ be a compact

quaternionic-K\"ahler manifold of positive scalar curvature and $\tilde{V}\rightarrow Z$

a holomorphic vector bundle. For a Hermitian (metric) structure $h$ on
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$\tilde{V}$ , let $D(\tilde{V}, h)$ denote the set of connections on $\tilde{V}$ preserving $h$ and let
$U(\tilde{V}, h)$ be the subgroup of $GL(\tilde{V})$ consisting of unitary automorphisms

of $(\tilde{V}, h)$ . We now consider the set

$H(\tilde{V}, h)=\{\nabla\in D(\tilde{V}, h) _{:} \nabla=\nabla^{l}+\nabla^{ll}, \nabla^{lJ}\in H’’(\tilde{V})\}$

If $\nabla\in H(\tilde{V}, h)$ , then $\nabla’’$ defines a unique holomorphic structure in $\tilde{V}$

such that $\nabla^{lJ}$ is the $\overline{\partial}-$operator on $\tilde{V}-$valued $(p, g)$ -forms. Accordingly,
$\nabla$ is the Hermitian connection of $(\tilde{V}, h)$ with respect to this holomorphic
structure.

Consider now the subset $\mathcal{E}(\tilde{V}, h)$ of Hermitian-Einstein connections

on $\tilde{V}$ :
$\mathcal{E}(\tilde{V}, h)=\{\nabla\in H(\tilde{V}, h) : \iota\Lambda R(\nabla)=cI_{\overline{V}}\}$

where $R(\nabla)$ denotes the curvature of $\nabla$ and $\Lambda$ : $A^{p,q}\rightarrow A^{p-1,q-1}$ is
$(1, _{1})contraction$ relative to the K\"ahler form. The space $\mathcal{E}(\tilde{V}, h)/U(\tilde{V}, h)$

is the moduli space of Hermitian-Einstein structures on $\tilde{V}$ and we have
an injective map

$\mathcal{E}(\tilde{V}, h)\rightarrow H^{lJ}(\tilde{V})/GL(\tilde{V})$

Let us now consider the tangent spaces to these moduli spaces at

given connections. Firstly, the tangent space to $H^{ll}(\tilde{V})/GL(\tilde{V})$ at $\nabla’’$ ,
is given by

$H^{0,1}$ ( $Z$ , End
$\tilde{V}^{\nabla’’}$

) $=.\frac{\{\alpha\in A^{0,1}(End\tilde{V}).\nabla^{lJ}\alpha--0\}}{\{\nabla’\prime f.f\in A^{0}(End\tilde{V})\}}\cdot$ .

The tangent space of $\mathcal{E}(\tilde{V}, h)/U(\tilde{V}, h)$ at $\nabla$ is given by

$H^{1}=\frac{\{\alpha\in A^{1}(End(\tilde{V},h)\cdot\nabla\alpha\in A^{1,1}(End(\tilde{V},h))and\Lambda\nabla\alpha=0\}}{\{\nabla f.f\in A^{0}(End(\tilde{V},h))\}}.$

.

$\cong$ { $\alpha\in A^{1}(End(\tilde{V},$ $h)$ : $\nabla\alpha\in A^{1,1}(End(\tilde{V},$ $h)$ , $\Lambda\nabla\alpha=0$ and $\nabla^{*}\alpha=0$ }

Let $\alpha=\alpha^{l}+\alpha^{JJ}\in A^{1}(End(\tilde{V}, h))$ The assignment $\alpha\rightarrow\alpha^{JJ}$ gives an
isomorphism of $H^{1}$ onto the space of harmonic $(0, 1)$ -forms with values

in $End(\tilde{V}, h)$ , leading to

$H^{1}\cong H^{0,1}(Z, End(\tilde{V}^{\nabla^{ll}}))$

$=$ { $\alpha\in A^{0,1}$ (End $\tilde{V}$ ) : $\nabla^{Jl}\alpha^{J!}=0$ and $\nabla^{*}\alpha^{lJ}\prime\prime=0$ }.
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To proceed, let us define:

$B^{p}=A_{\mathbb{R}}^{p}(End(\tilde{V}, h))$

$B^{p,q}=A^{p,q}(End(\tilde{V}, h))=A^{p,q}\otimes_{\mathbb{R}}B^{0}=A^{p,q}\otimes_{\mathbb{R}}A_{\mathbb{R}}^{0}(End(\tilde{V}, h))$

$B_{+}^{2}=B^{2}\cap(B^{2,0}+B^{0,2}+B^{0}\omega)=$ { $\alpha+\overline{\alpha}+\beta\omega$ : $\alpha\in B^{2,0}$ and $\beta\in B^{0}$ }

$C^{0,q}=A^{0,q}$ (End $\tilde{V}$ ) $=A^{0,q}\otimes_{\mathbb{C}}A^{0,0}$ (End $\tilde{V}$).

Consider now the complex

$0\rightarrow B^{0}\downarrow j_{o}$
$\rightarrow\nabla B^{1}\downarrow j_{1}\rightarrow\nabla+\beta_{+}^{2}\downarrow j_{2}\rightarrow\nabla_{2}B^{0,3}\downarrow j_{3}\rightarrow\nabla\ldots B^{0,n}\rightarrow 0\downarrow j_{n}$

$0-C^{0,0}\rightarrow\nabla^{Jl}C^{0,1}\rightarrow\nabla^{JJ}C^{0,2}\rightarrow\nabla^{Jl}C^{0,3}\rightarrow\nabla^{lJ}\ldots C^{0,n}\rightarrow 0$

where $(C^{*})$ is elliptic if $\nabla\in?\{(\tilde{V}, h)$ and $(B^{*})$ is elliptic if $\nabla\in \mathcal{E}(\tilde{V}, h)$ .

We can decompose $B^{2}$ as $B^{2}=B_{+}^{2}\oplus B_{-}^{2}$ where

$B_{-}^{2}=$ { $\alpha\in A^{1,1}$ (End( $\tilde{V}$ , $h$)) : $\alpha=\overline{\alpha}$ and $\Lambda\alpha=0$ }

and we have the projections

$p_{+}$ : $B^{2}\rightarrow B_{+}^{2}$
$p_{-}$ : $B^{2}\rightarrow B_{-}^{2}$

$p^{2,0}$ : $B^{2}\rightarrow B^{2,0}$ $p^{0,2}$ : $B^{2}\rightarrow B^{0,2}$

where we set $\nabla_{+}=p_{+}\circ\nabla$ and $\nabla_{2}=\nabla^{Jl}\circ p^{0,2}$ Then $\mathcal{E}(\tilde{V}, h)$ can be
expressed as

$\mathcal{E}(\tilde{V}, h)=$ { $\nabla+\alpha$ : $\alpha\in B^{1}$ and $\nabla_{+}\alpha+p+(\alpha\wedge\alpha)=0$ }

Consider a slice $\nabla+S_{\nabla}$ in $\mathcal{E}(\tilde{V}, h)$ in which

$S_{\nabla}=$ { $\alpha\in B^{1}$ : $\nabla_{+}\alpha+p+(\alpha\wedge\alpha)=0$ and $\nabla^{*}\alpha=0$ }

and the condition $\nabla^{*}\alpha=0$ states that the slice is orthogonal to the
$U(\tilde{V}, fo)$ -orbit of $\nabla$ . The Kuranishi map $k$ : $B^{1}\rightarrow B^{1}$ is defined by

$k(\alpha)=\alpha+\nabla_{+}^{*}\circ G\circ p_{+}(\alpha\wedge\alpha)$
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where $G$ denotes the Green’s operator. If $\nabla+\alpha\in \mathcal{E}(\tilde{V}, h)$ , then it can
be shown that $\nabla_{+}(k(\alpha))=0$ . On the other hand, we have $\nabla^{*}(k(\alpha))=$

$\nabla^{*}\alpha$ . Taking the harmonic forms in $B^{q}$ ,

$H^{q}=\{\beta\in B^{q} : \triangle\beta=0\}$

we have

$k(S_{\nabla})\subset H^{1}=$ { $\beta\in B^{1}$ : $\nabla_{+}\beta=0$ and $\nabla^{*}\beta=0$ }.

Letting $End\ovalbox{\tt\small REJECT}$

rive at

Theorem 5.1. [17] Let $\nabla\in \mathcal{E}(\tilde{V}, h)$ . If

$H^{0}(Z, End(\tilde{V}^{\nabla^{Jl}}))=0 $and$ H^{2}(Z, End(\tilde{V}^{\nabla^{JJ}}))=0$

then the Kuranishi map $k$ defifines a homeomorphism of a neighborhood

of 0 in the slice $S_{D}$ onto a neighborhood of 0 in $H^{1}\cong H^{1}(Z, End(\tilde{V}^{\nabla^{lJ}}))$ .

Remark 5.2. A holomorphic vector bundle $\tilde{V}\rightarrow Z$ is said to be
simple if every holomorphic endomorphism is a constant. The second
named author and independently Miyajima [28] [19] have shown for an
algebraic manifold $Z$ there is an isomorphism of (not necessarily reduced)
complex vector spaces

$\lambda 4_{an}\cong \mathcal{M}_{alg}$

between the moduli spaces of holomorphic simple vector bundles and al-
gebraic simple bundles on $Z$ .

\S 6. Remarks on Hyperk\"ahler structures and the moduli of
hyperholomorphic vector bundles.

A $4n$-dimensional Riemannain manifold is hyperk\"ahler if its holon-
omy group is contained in $Sp(n)\subset SO(4n)$ . Equivalently, $M$ is quater-
nionic Hermitian with $I$ , $J$ and $K$ globally defined and

$d\omega_{I}=d\omega_{J}=d\omega_{K}=0$ .

Since $Sp(n)\subset SU(2n)$ , a hyperk\"ahler manifold is Ricci-flat [3], [4].

Theorem 6.1. [2] Let $(M, I)$ be a compact Kdhler manifold with
(complex) symplectic form $\omega$ . Then for any Kdhler class $\alpha\in H^{2}(M, \mathbb{R})$ ,

there exists on $M$ a unique Riemannian metric $g_{M}$ such that

(1) $g_{M}$ is hyperk\"ahler
(2) I is a parallel almost-complex structure;
(3) the Kdhler class of $(g_{M}, I)$ is $\alpha$ .
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For a hyperk\"ahler manifold $M$ , there is an $S^{2}$ of almost complex
structures

$\{aI+bJ+cK : a^{2}+b^{2}+c^{2}=1\}$

and the twistor space

$ Z=M\times \mathbb{C}P^{1}\rightarrow M\pi$

fibres holomorphically over $M$ . Let $p$ : $Z\rightarrow \mathbb{C}P^{1}$ be the natural pro-
jection. The antipodal map of the fibres defines a real structure on $Z$

(see e.g. [1]). Using the three K\"ahler forms $\omega_{I}$ , $\omega_{J}$ , $\omega_{K}$ along with a
stereographic complex coordinate $\xi$ on $\mathbb{C}P^{1}$ , the form

$\omega=(\omega_{I}+\iota\omega_{K})+2\xi\omega_{I}+(\omega_{J}-\iota\omega_{K})$

is a complex symplectic form on the fibres of $p$ taking values in the line
bundle $\mathcal{O}(2)$ . The converse is true for a complex manifold $Z$ of complex
dimension $2n+1$ which fibres holomorphically $p$ : $Z\rightarrow \mathbb{C}P^{1}$ with the
above properties tenable: the parametrization of the (real) holomorphic
structures is a (real) $4n$-dimensional hyperk\"ahler manifold whose twistor
space is $Z$ (see [14]).

The Uhlenbeck-Yau theorem [29] says that an indecomposable holo-
morphic vector bundle $V$ over a compact K\"ahler manifold $M$ admits a
Yang-Mills metric connection if and only if $V$ is stable, and this met-
ric is unique. Applying this to such a bundle $V\rightarrow M$ with Hermitian
connection $\Theta$ over a hyperk\"ahler manifold $M$ yields:

Proposition 6.2. The metric connection $\Theta$ is hyperholomorphic
(that is, holomorphic with respect to each of $I$ , $J$ and $K$) if and only if
its curvature $R_{O-}$ is of type $(1, 1)$ with respect to any complex structure
induced by the hyperk\"ahler structure of $M$ .

It can be shown that such a hyperholomorphic connection $\Theta$ is Yang-
Mills. In fact, $\Lambda(R_{O-})=0$ where $\Lambda$ denotes contraction with each K\"ahler

$(1, 1)-$form. For instance, on a hyperk\"ahler surface a stable holomorphic

bundle $\tilde{V}$ with $deg\tilde{V}=0$ always admits a unique hyperholomorphic
connection [20][8].

Let $S$ $\rightarrow M$ a be locally-free sheaf on and consider the composition
of maps:

$[, ]\circ\varpi$ : $H^{1}$ (End S) $\times H^{1}(EndS)\rightarrow H^{2}$ (End S)

where

$\varpi$ : $H^{1}$ (End $\times H^{1}$ (End $S$ ) $\rightarrow H^{2}(EndS\otimes EndS)$
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and
$[, ]$ : $EndS\times EndS\rightarrow EndS$

denotes the commutator map. The above composition gives defines the
Yoneda pairing

$\lambda$ : $Ext1$

which is an obstruction to the existence of a deformation (see e.g. [16]).

Specifically, suppose that $\rho\in Ext^{1}(S, S)$ satisfies $\lambda(\rho, \rho)\neq 0$ then there
exists no deformation parametrized by a complex space $\Lambda 4$ such that
the image of the Kodaira-Spencer map

$T_{x}\mathcal{M}\rightarrow Ext^{1}$ (End $S$ )

is proportional to $\lambda$ . In this way the Yoneda pairing turns out to be the
only obstruction to the existence of a deformation of a hyperholomorphic
vector bundle over a hyperk\"ahler manifold.

For a stable bundle $\tilde{V}\rightarrow M$ , let $\Lambda 4_{st},$
$-$ be the coarse moduli space

of $\tilde{V}$ . This exists by virtue of [20] and is non-reduced and non-separated
in general. Then

$T\mathcal{M}_{st},\overline{V}|V’\cong Ext^{1}(V’, V’)$ .

Theorem 6.3. The Kuranishi space of a hyperholomorphic vector
bundle over a hyperk\"ahler manifold is isomorphic as a complex space

with the intersection of an open ball in $Ext1$

$\{\rho\in Ext^{1}(V, V) : \lambda(\rho, \rho)=0\}$ .

The complete details of this result will appear elsewhere.
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Introduction

This article is a brief report of recent developments in Fefferman’s
program, proposed and initiated in [F3], concerning invariant expression

of the singularity of the Bergman kernel $K^{B}$ on the diagonal of a strictly
pseudoconvex domain $\Omega\subset \mathbb{C}^{n}$ with smooth boundary. It was proved by
Fefferman in [F1] that

(0.1) $K^{B}=\frac{\varphi^{B}}{r^{n+1}}+\psi^{B}\log r$ with $\varphi^{B}$ , $\psi^{B}\in C^{\infty}(\overline{\Omega})$ ,

where $r\in C^{\infty}$ is a defining function of the boundary $\partial\Omega$ such that $r>0$

in $\Omega$ and $dr\neq 0$ on $\partial\Omega$ . The problem is to choose $r$ appropriately and
express $\varphi^{B}$ modulo $O^{n+1}(r)$ and $\psi^{B}$ modulo $O^{\infty}(r)$ invariantly in the
sense of local biholomorphic geometry. This can be compared with the
asymptotic expansion of the heat kernel associated with the diagonal of
a compact Riemannian manifold, where the time variable corresponds
to the function $r$ in (0.1). The boundary $\partial\Omega$ is approximated at every
point by a sphere (hyperquadric), and carries a differential-geometric
structure, called the $CR$ (or pseudo-conformal) structure.

Let us employ an extrinsic approach due to Chern and Moser in
[CM], [M], and put the boundary $\partial\Omega$ (formally) in Moser’s normal form

$N(A)$ with $A=(A^{\ell})\alpha\overline{\beta}$ given by

2 $Rez_{n}=|z’|^{2}+\sum_{|\alpha|,|\beta|\geq 2}\sum_{\ell=0}^{\infty}A_{\alpha\overline{\beta}}^{\ell}z_{\alpha}’\overline{z_{\beta}’}(Imz_{n})^{\ell}$ ,

where $z=(z’, z_{n})=(z_{1}, \ldots, z_{n-1}, z_{n})\in \mathbb{C}^{n}$ . (For the notation $z_{\alpha}’$

and $|\alpha|$ with ordered multi-indices $\alpha$ , see Subsection 1.1, (B) below.)

Received July 99, 1996
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Then $CR$ invariants of weight $w\in \mathbb{N}_{0}=\{0,1,2, \ldots\}$ are defined as
polynomials $P=P(A)$ satisfying the transformation law

(0.2) $P(A)=P(\overline{A})|\det\Phi’(0)|^{2w/(n+1)}$

for local (or formal) biholomorphic mappings $\Phi$ such that $\Phi(N(A))=$

$N(\overline{A})$ and $\Phi(0)=0$ . We wish to express the asymptotic expansions

$\varphi^{B}=\sum_{k=0}^{n}\varphi_{k}r^{k}mod O^{n+1}(r)$ , $\varphi_{k}\in C^{\infty}(\overline{\Omega})$ ,

(0.3)

$\psi^{B}=\sum_{k=0}^{\infty}\psi_{k}r^{k}mod O^{\infty}(r)$ , $\psi_{k}\in C^{\infty}(\overline{\Omega})$ ,

of $\varphi^{B}$ and $\psi^{B}$ in (0.1) in terms of $CR$ invariants. We thus consider local
(or localizable) domain functionals $K=K_{\Omega}$ near a reference point at
the boundary $\partial\Omega$ satisfying a transformation law of weight $w\in \mathbb{Z}$ :

(0.4) $K_{\Omega_{1}}=K_{\Omega_{2}}\circ\Phi|\det\Phi’|^{2w/(n+1)}$

for local biholomorphic mappings $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ preserving the reference
points, cf. (0.2).

The Bergman kernel $K^{B}$ satisfies (0.4) with $w=n+1$ . If one could
find a defining function $r$ satisfying (0.4) with $w=-1$ , then there would
be a hope to have expansions as in (0.3) such that $\varphi_{k}$ for $k\leq n$ and
$\psi_{k-n-1}$ for $k\geq n+1satis5^{r}(0.4)$ with $w=k$ . According to H\"ormander

[H\"o], the boundary value of $\varphi^{B}$ agrees with that of the Levi determinant

$ J[r]=(-1)^{n}\det$ $\left(\begin{array}{ll}r & \partial r/\partial\overline{z}_{k}\\\partial r/\partial z_{j} & \partial^{2}r/\partial z_{j}\partial\overline{z}_{k}\end{array}\right)$

multiplied by $n!/\pi^{n}$ . Thus we are led to the zero Dirichlet boundary
value problem for the complex Monge-Amp\‘ere equation

(0.5) $J[u]=1$ and $u>0$ in $\Omega$ ; $u=0$ on $\partial\Omega$ .

According to Fefferman [F2], any solution of $J[u]=1$ satisfies (0.4) with
$w$ $=-1$ . However, the solution of (0.5), of which the unique existence is
guaranteed by Cheng and Yau in [CY], has a finite differentiability up
to the boundary. This fact is seen from the asymptotic expansion below
due to Lee and Melrose in [LM] (cf. also Graham [G2]):

(0.6) $u=r\sum_{k=0}^{\infty}\eta_{k}\cdot(r^{n+1}\log r)^{k}$ , $\eta_{k}\in C^{\infty}(\overline{\Omega})$ ,
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with a $C^{\infty}$ defining function $r$ as before.
There are $C^{\infty}$ approximate solutions $r=r^{F}$ of (0.5) satisfying

$J[r^{F}]=1+O^{n+1}(r)$ near $\partial\Omega$ ($r=r^{F}>0$ in $\Omega$ ).

In [F2], Fefferman gave an explicit algorithm of constructing such a
function $r^{F}$ . Let us refer to these $r^{F}$ as Fefferman’s defining functions.
After reviewing quickly in Section 1 the background of the problem
which contains expositions of $CR$ invariants, the Bergman kernel and the
complex Monge-Amp\‘ere boundary value problem, we state in Section 2
Fefferman’s main results in [F3], which were supplemented recently by

Bailey, Eastwood and Graham in [BEG], on the expansion of $\varphi^{B}$ in (0.3)

by using Fefferman’s defining function $r=r^{F}$ . Local domain functional,
called Weyl invariants, of weight $\leq n$ are defined by using the curvature
of the Lorentz-K\"ahler metric with potential function $|z_{0}|^{2}r^{F}(z)$ on a

bundle $\mathbb{C}^{*}\times\overline{\Omega}$ (or a neighborhood of $\mathbb{C}^{*}\times\partial\Omega$ ) with an extra variable
$z_{0}\in \mathbb{C}^{*}=\mathbb{C}\backslash \{0\}$ . It is proved in [F3] and [BEG] that any $CR$ invariant
of weight $\leq n$ is realized as the boundary value of a Weyl invariant and
that the expansion of $\varphi^{B}$ in (0.3) with $r=r^{F}$ is valid, where each $\varphi_{k}^{B}$

is a Weyl invariant of weight $k$ . Proofs of these results are outlined in
Section 5.

The two dimensional case is exceptional and it is possible to obtain
a very precise result by using Fefferman’s defining function $r=r^{F}$ . We
overview in Section 3 the work of Graham in [G1] and [G2] supplemented
by the authors’ joint work with Nakazawa in [HKNI] and [HKN2]. There

are no nonzero $CR$ invariants of weight 1, 2, and the expansion of $\varphi^{B}$ in
(0.3) with $r=r^{F}$ is trivial, that is, $\varphi^{B}=2/\pi^{2}+O^{3}(r)$ . For $\psi^{B}$ in (0.1),
it is shown in [G1] and [HKN2] that

$\psi^{B}=\frac{2}{\pi^{2}}(-3\eta_{1}+W_{4}r+W_{5}r^{2})+O^{3}(r)$ with $r=r^{F}$ ,

where $W_{k}$ for $k=4,5$ are Weyl invariants of weight $k$ and $\eta_{1}$ is that
in (0.6) with $r=r^{F}$ . This result is best possible as far as Fefferman’s
defining function is used. Explicit determination of $W_{4}$ and $W_{5}$ is also
done in [HKN2] (partial results are found in [G1] and [HKNI]). In order
to identify universal constants appearing in $W_{4}$ and $W_{5}$ , it is necessary
to express the singularity of the Bergman kernel in terms of Moser’s
normal form coefficients. This is done in [HKNI] and [HKN2] by using
microlocal calculus due to Kashiwara in [Kas] and Boutet de Monvel in
$[B1]-[B3]$ . We explain this method in Section 4.

In order to get a complete expansion of $\psi^{B}$ as in (0.3), it is nec-
essary to take account of the ambiguity of $r=r^{F}$ . In [Hi], a special
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family of Fefferman’s defining functions parametrized by $C^{\infty}(\partial\Omega)$ (or
rather the space of formal power series) is so defined as to satisfy (0.4)
with $w=-1$ . This family leads to the definition of Weyl invariants with
ambiguity measured by $C^{\infty}(\partial\Omega)$ . It is proved in [Hi] that the space $CR$

invariants of arbitrary weight exactly corresponds to that of Weyl in-
variants without ambiguity and that the expansion of $\psi^{B}$ in (0.3) with a
Fefferman’s defining function $r$ parametrized by $C^{\infty}(\partial\Omega)$ is valid, where

each $\psi_{k}^{B}$ is a Weyl invariant, with ambiguity, of weight $k+n+1$ . This

expansion of $\psi^{B}$ is invariant in the sense that each Weyl invariant with
ambiguity measured by $C^{\infty}(\partial\Omega)$ is a universal polynomial of $A=(A^{\ell})\alpha\overline{\beta}$

and $C=(C^{\ell})\alpha\overline{\beta}$ , where $A_{\alpha\overline{\beta}}^{\ell}$ are Moser’s normal form coefficients and $C^{\ell}\alpha\overline{\beta}$

appear as the coefficients of the power series expansion of an element
$f\in C^{\infty}(\partial\Omega)$ , that is,

$f(z^{\prime },\overline{z’}, Imz_{n})=\sum_{|\alpha|,|\beta|\geq 0}\sum_{\ell=0}^{\infty}C_{\alpha\overline{\beta}}^{\ell}z_{\alpha}’\overline{z_{\beta}’}(Imz_{n})^{\ell}$ .

In Section 6, we state these results more precisely and outline the proofs.
In this article, we restrict ourselves to the local analysis of the

Bergman kernel associated with a general strictly pseudoconvex domain,
and do not refer to related topics. Here we only mention two of these.
The first one is an analogue of Fefferman’s program above for the Szeg\"o
kernel associated with an invariant surface element on the boundary of a
strictly pseudoconvex domain. This problem was also posed in [F3], and
the analysis of the Bergman kernel presented in this article applies to the
Szeg\"o kernel as well, after a slight modification (cf. [HKNI], [HKN2]).
Another topic is a conformal analogue of the construction of $CR$ invari-
ants in terms of Weyl invariants. This problem was posed by Fefferman
and Graham in [FG]. For recent progress of this topic, the reader should
see the papers by Bailey-Eastwood-Graham [BEG] and by Eastwood-
Graham [EG]; there are also comprehensive survey articles by Graham
[G3] and by Bailey [Ba].

\S 1 Backgrounds

1.1 $CR$ invariants

(A) Local boundary equivalence problem. A remarkable phe-
nomenon in Several Complex Variables is the existence of a domain $\Omega$

(in fact, many domains) such that all holomorphic functions in $\Omega$ extend
holomorphically across a part of the boundary $\partial\Omega$ to a larger domain
simultaneously. If such a phenomenon does never occur for $\Omega$ , then $\Omega$ is
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called a domain of holomorphy. Assume for simplicity that $\Omega$ is a domain
in $\mathbb{C}^{n}$ with $C^{\infty}$ boundary. That is, $\Omega=\{r>0\}$ , where $r\in C^{\infty}(\mathbb{C}^{n}, \mathbb{R})$

is a defifining function of the boundary $\partial\Omega$ and thus $|dr|>0$ on $\partial\Omega$ . A
well-known theorem of Oka states that $\Omega$ is a domain of holomorphy if
and only if it is pseudoconvex at every boundary point. The pseudocon-
vexity at $ z\in\partial\Omega$ is by definition the non-negativity of the eigenvalues
of the Levi form of $r$ at $z=(z_{1}, \ldots, z_{n})$ given by

$L_{r,z}(\xi, \overline{\xi})=-\sum_{j,k=1}^{n}\frac{\partial^{2}r(z)}{\partial z_{j}\partial\overline{z}_{k}}\xi_{j}\overline{\xi}_{k}$ for $\xi=(\xi_{1 },\ldots, \xi_{n})\in T_{z}^{1,0}(\partial\Omega)$ ,

where $T_{z}^{1,0}(\partial\Omega)=\{\xi\in \mathbb{C}^{n}; \sum_{j=1}^{n}\xi_{j}\partial r(z)/\partial z_{j}=0\}$ , and thus each

element $\xi\in T_{z}^{1,0}(\partial\Omega)$ is identified with a $(1, 0)$ -vector $\sum\xi_{j}\partial/\partial z_{j}$ which
is tangential to $\partial\Omega$ at $z$ . If the Levi form is positive-definite on $\partial\Omega$ , then
$\Omega$ is said to be stri ctly pseudoconvex. The notion of (strict) pseudocon-
vexity is defined independently of the choice of $r$ .

Let $\Omega_{1}$ and $\Omega_{2}$ be strictly pseudoconvex domains in $\mathbb{C}^{n}$ with $C^{\infty}$

boundaries. If there exists a biholomorphic mapping $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ , then
$\Omega_{1}$ and $\Omega_{2}$ are said to be holomorphically equivalent. When are $\Omega_{1}$ and
$\Omega_{2}$ holomorphically equivalent? A necessary condition is formulated via
a theorem of Fefferman [F1] which states that if $\Phi$ as above exists then $\Phi$

extends to a $C^{\infty}$ diffeomorphism from $\overline{\Omega}_{1}$ to $\overline{\Omega}_{2}$ . (If the boundaries are
real analytic, then $\Phi$ extends biholomorphically across the boundaries,
cf. Lewy [L2].) Thus one can compare the boundaries. The boundary
value of $\Phi$ is a diffeomorphism $\Phi_{0}$ : $\partial\Omega_{1}\rightarrow\partial\Omega_{2}$ such that the compo-
nents are $CR$ functions, those functions which are annihilated by differ-

entiation with respect to sections of the bundle $T^{0,1}(\partial\Omega)=\overline{T^{1,0}(\partial\Omega)}$ .
Suppose now we are given $\Phi_{0}$ , a $CR$ diffeomorphism. If the boundaries
are real analytic, then $\Phi_{0}$ has an analytic extension to a full neighbor-
hood of $\partial\Omega_{1}$ . In general, $\Phi_{0}$ extends holomorphically to $\Omega_{1}$ according
to a theorem of Lewy [LI]. These are in fact local results, and one is led
to a local boundary equivalence problem of comparing open portions $M_{j}$

of $\partial\Omega_{j}(j=1,2)$ , which are strictly pseudoconvex real hypersurfaces.
That is, one asks when there exists a $CR$ diffeomorphism $\Phi_{0}$ : $M_{1}\rightarrow M_{2}$

such that $\Phi_{0}(p_{1})=p_{2}$ , where the pairs $(M_{j},p_{j})$ with $p_{j}\in M_{j}$ are pre-
scribed. In what follows, we mainly consider the real analytic case, and
identify $\Phi_{0}$ with its holomorphic extension $\Phi$ . More precisely, we regard
$\Phi$ as a germ of mapping between germs of surface $(M_{j},p_{j})$ . In the $C^{\infty}$

case, we regard $\Phi$ as a formal mapping given by formal power series
between $C^{\infty}$ surfaces $(M_{j},p_{j})$ , and thus we are only concerned with the
Taylor expansions of defining functions of $M_{j}$ about the reference points
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$p_{j}\in M_{j}$ .

(B) Moser’s normal form. Let $M\subset \mathbb{C}^{n}$ be a strictly pseudocon-
vex real hypersurface containing the origin $0\in \mathbb{C}^{n}$ as a reference point,
and assume first that $M$ is real analytic. To study the biholomorphic
equivalence problem of $M$ in the previous subsection, Moser [M], [CM]
introduced the notion of normal form of $M$ defined as follows.

For the standard coordinate system $z=(z_{1}, \ldots, z_{n})$ in $\mathbb{C}^{n}$ , we write
$z=(z’, z_{n})$ and set $z_{\alpha}’=z_{\alpha_{1}}\cdots z_{\alpha_{a}}$ , where $\alpha=(\alpha_{1}, \ldots, \alpha_{a})$ is an
ordered multi-index of length $|\alpha|=a$ , that is, $\alpha_{j}\in\{1, \ldots, n -1\}$ for
$j=1$ , $\ldots$ , $a$ . After a holomorphic change of coordinates, $M$ is locally
written near the origin as

(1.1) $2u=|z’|^{2}+F_{A}(z’,\overline{z’}, v)$ , $z_{n}=u+iv$ ,

where $F_{A}$ is a real analytic function having the Taylor expansion

$F_{A}(z^{\prime },\overline{z’}, v)=\sum_{|\alpha|+|\beta|+2\ell\geq 3}A_{\alpha\overline{\beta}}^{\ell}z_{\alpha}’\overline{z_{\beta}’}v^{\ell}=\sum_{\alpha,\beta}A_{\alpha\overline{\beta}}(v)z_{\alpha}’\overline{z_{\beta}’}$

.

(The meaning of the subscript $A$ in $F_{A}$ will be made clear just after the
definition of Moser’s normal form.) We say that $M$ given by (1.1) is in

pre-normal form if $\overline{A_{\alpha\overline{\beta}}(v)}=A_{\beta\overline{\alpha}}(v)$ hold for all $\alpha$ , $\beta$ and each $A_{\alpha\overline{\beta}}(v)$ is

unchanged under permutation of $\alpha$ and that of $\beta$ . These normalizations
are always possible.

By another change of coordinates, $M$ in pre-normal form is made to
satisfy $A_{\alpha\overline{\beta}}(v)=0$ when $|\alpha|<2$ or $|\beta|<2$ , and thus

(1.2)
$F_{A}(z’,\overline{z’}, v)=\sum_{|\alpha|,|\beta|\geq 2}A_{\alpha\overline{\beta}}(v)z_{\alpha}’\overline{z_{\beta}’}$

, $A_{\alpha\overline{\beta}}(v)=\sum_{\ell=0}^{\infty}A_{\alpha\overline{\beta}}^{\ell}v^{\ell}$ .

DEFINITION. A surface $M$ in pre-normal form given by (1.1) is
said to be in Moser ’s normal form if (1.2) holds and the following $trace$

conditions are fulfilled:

(1.3) $trA_{2\overline{2}}(v)=0$ , $(tr)^{2}A_{2\overline{3}}(v)=0$ , $(tr)^{3}A_{3\overline{3}}(v)=0$ .

Here, $A_{a\overline{b}}(v)=(A_{\alpha\overline{\beta}}(v))_{|\alpha|=a,|\beta|=b}$ , and $(tr)^{m}A_{a\overline{b}}(v)$ for $m=1$ , 2, 3

means that the contractions with respect to Kronecker’s delta $\delta^{j\overline{k}}$ are
taken $m$ times for the indices $\alpha$ , $\beta$ in $A_{\alpha\overline{\beta}}(v)$ with $|\alpha|=a$ , $|\beta|=b$ .

If $M$ is a surface in Moser’s normal form, we write $M=N(A)$ and
$A\in N$ , where $A=(A^{\ell})\alpha\overline{\beta}$ is a collection of the coefficients in (1.2). Thus
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$N$ is the vector space of all collections $A$ giving Moser’s normal forms.
We may identify a surface $N(A)$ with $A\in N$ .

The existence of Moser’s normal form is guaranteed as follows.

Theorem 1.1 ([CM], [M]). For any $M$ in pre-normal form, there
exists a holomorphic change of coordinates $w=\Phi(z)$ such that $\Phi(M)$ is
in Moser’s normal form. The mapping $\Phi$ is unique under the conditions

$\Phi(0)=0$ , $\Phi’(0)=identity$ , $Im(\partial^{2}w_{n}(0)/\partial z_{n}^{2})=0$ ,

where $\Phi’$ denotes the holomorphic differential of $\Phi$ .

According to Theorem 1.1, there exists a holomorphic coordinate
system $z=(z’, z_{n})$ such that $M$ is in Moser’s normal form $N(A)$ . We
refer to $z’$ , $z_{n}$ as Moser’s normal coordinates. These give “real” coordi-

nates $z’$ , $\overline{z’}$ , $u$ , $v$ with $z_{n}=u+iv$ . We rather use coordinates $z’$ , $\overline{z’}$ , $\rho_{A}$ ,
$v$ , where

$\rho_{A}=2u-|z’|^{2}-F_{A}(z’,\overline{z’}, v)$ ,

so that $N(A)$ is given by the equation $\rho_{A}=0$ .
In general, Moser’s normal form of a surface $M$ is not unique; $M$ has

a unique normal form if and only if $M$ is locally equivalent to a sphere,
in which case the normal form is given by

$M_{0}=\partial\Omega_{0}=\{2u=|z’|^{2}\}$ , where $\Omega_{0}=\{2u>|z’|^{2}\}$ .

The model domain $\Omega_{0}$ is a Siegel domain which is biholomorphic to a
ball. Elements of Aut $(\Omega_{0})$ , the group of holomorphic automorphisms
of $\Omega_{0}$ , are linear fractional transformations. The non-uniqueness of the
normal form is measured by using the isotropy group $H$ of Aut $(\Omega_{0})$ at
the origin 0 defined by $H=\{h\in Aut(\Omega_{\cap}.);h(0)=0\}$ ; elements of $H$

are biholomorphic at 0. In fact, there is a group action

(1.4) $H\times N\ni(h, A)\mapsto h.A\in N$

such that equivalence classes of $N$ are realized by $H$-orbits of $N$ . The
action (1.4) is defined by $N(h.A)=M$ with $M=h(N(A))$ when $M$ is in
Moser’s normal form. In general, $M$ is merely in pre-normal form, but
Theorem 1.1 guarantees the unique existence of a local biholomorphic
mapping $\Phi$ such that $\Phi(M)$ is close to $M$ and in Moser’s normal form.
Then the action (1.4) is defined by $N(h.A)=\Phi(M)$ . That is,

(1.4)’ $N(h.A)=E_{h,A}(N(A))$ , where $E_{h,A}=\Phi\circ h$ .

Observe that $E_{h,A}’(0)=h’(0)$ .
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Let us finally give remarks on the case where the original real hy-
persurface $M$ $\subset \mathbb{C}^{n}$ , being strictly pseudoconvex, is not real analytic
but merely $C^{\infty}$ . In the category of formal power series, the notions of
pre-normal form and Moser’s normal form make sense. After a formal
change of variables, $M$ can be always put in pre-normal form, and The-
orem 1.1 has an obvious analogue. We continue to use the notations
$N(A)$ and $A\in N$ . (We have a larger class $N^{\infty}\neq\supset N$ but abuse nota-
tion by writing both $N$ and $N^{\infty}$ as $N.$ ) Then the action (1.4) remains
well-defined.

Remark 1.1. Let a surface $M$ with a reference point $p\in M$ be
real analytic or $C^{\infty}$ . Then by Theorem 1.1, there exists a (formal)
biholomorphic mapping $\Phi_{p}$ such that $\Phi_{p}(p)=0$ and $\Phi_{p}(M)=N(A)$ for

some $A=(A_{\alpha\overline{\beta}}^{\ell})\in N$ . We now regard each $A_{\alpha\overline{\beta}}^{\ell}$ as a function of $p\in M$ .

Then a family $\{\Phi_{p}\}_{p\in M}$ can be chosen in such a way that $A^{\ell}\alpha\overline{\beta}$ is real

analytic or $C^{\infty}$ . This fact is contained in the proof of Theorem 1.1.

(C) Local scalar invariants. Given a surface $M$ with a reference
point $p\in M$ , local scalar invariants of $M$ at $p$ are defined as follows. For
$A=(A^{\ell})\alpha\overline{\beta}\in N$ , we regard components $A^{\ell}\alpha\overline{\beta}$ as variables and consider

functions of $A$ .

DEFINITION. A polynomial $P(A)$ in $A\in N$ is called a $CR$ invari-
ant of weight $w\in \mathbb{N}_{0}$ if

(1.5) $P(A)=|\det h’(0)|^{2w/(n+1)}P(h.A)$ for any $h\in H$ .

We denote by $I_{w}^{CR}$ the totality of $CR$ invariants of weight $w$ , and

thus $I_{w}^{CR}$ is the complexification of a real vector space.

Each $P(A)\in I_{w}^{CR}$ determines a functional $M\mapsto P_{M}$ defined by

$P_{M}(p)=|\det\Phi_{p}’(p)|^{2w/(n+1)}P(A)$ with $\Phi_{p}(M)=N(A)$ ,

where $\Phi_{p}$ is a mapping in Remark 1.1. The function $P_{M}$ is real analytic
or $C^{\infty}$ according to the regularity assumption on $M$ , and the value
$P_{M}(p)$ is independent of the choice of $\Phi_{p}$ . We have a transformation
law under biholomorphic mappings $\Phi$ :

$P_{M}(p)=|\det\Phi’(p)|^{2w/(n+1)}P_{\Phi(M)}(\Phi(p))$ $(p\in M)$ .

Conversely, given a functional $P_{M}(p)$ of a pair $(M,p)$ satisfying the law
above, if $P_{N(A)}(0)$ is a polynomial in $A\in N$ then $P_{N(A)}(0)\in I_{w}^{CR}$ .
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Every $P(A)\in I_{w}^{CR}$ is a polynomial in $A\in N$ of homogeneous weight
$w$ , if we define the weight of $A^{\ell}\alpha\overline{\beta}$ by

$w(A_{\alpha\overline{\beta}}^{\ell})=w(\alpha\overline{\beta}\ell)=(|\alpha|+|\beta|)/2+\ell-1$ .

This fact is seen by using dilations $\phi_{r}\in H$ defined by $\phi_{r}(z’, z_{n})=$

$(rz’, r^{2}z_{n})$ for $r>0$ . We have $P(A)=r^{2w}P(\phi_{r}.A)$ , while the action
$\phi_{r}.A=\overline{A}$ is given by $\overline{A}_{\alpha\overline{\beta}}^{\ell}=r^{-|\alpha|-|\beta|-2\ell+2}A_{\alpha\overline{\beta}}^{\ell}$ .

1.2 The Bergman kernel

For a general domain $\Omega\subset \mathbb{C}^{n}$ , we denote by $H^{B}(\Omega)$ the Hilbert
space of $L^{2}$ holomorphic functions in $\Omega$ with the norm $||$ . $||_{B}$ . Then the
Bergman kernel associated with $\Omega$ is defined by

$K^{B}(z)=K^{B}(z, \overline{z})=\sum_{j}|h_{j}(z)|^{2}$
for $ z\in\Omega$ ,

where $\{h_{j}\}_{j}$ is an arbitrary complete orthonormal system of $H^{B}(\Omega)$ .

The series $\sum|h_{j}(z)|^{2}$ converges uniformly on every compact subset $\omega$ of
$\Omega$ , by virtue of the following inequality with a constant $C_{\omega}>0$ :

$|h(z)|\leq C_{\omega}||h||_{B}$ for $ z\in\omega$ , $h\in H^{B}(\Omega)$ .

(In fact, $\sum|h_{j}(z)|^{2}$ is the square of the norm of the evaluation functional
$h\mapsto h(z)$ on $H^{B}(\Omega).)$ Thus, a complex extension of $K^{B}(z)=K^{B}(z,\overline{z})$

is given by

$K^{B}(z, \overline{w})=\sum h_{j}(z)\overline{h_{j}(w)}$ for $z$ , $ w\in\Omega$ ,

which is holomorphic in $(z,\overline{w})$ . This function $K^{B}(z,\overline{w})$ , which is also
referred to as the Bergman kernel, is the reproducing kernel associated
with the Hilbert space $H^{B}(\Omega)$ in the sense that

$K^{B}(\cdot,\overline{w})\in H^{B}(\Omega)$ for $ w\in\Omega$ fixed,

$K^{B}(z,\overline{w})=K^{B}(w,\overline{z})$ for $z$ , $ w\in\Omega$ ,

$h(z)=\int_{\Omega}K^{B}(z,\overline{w})h(w)dV(w)$ for $h\in H^{B}(\Omega)$ , $ z\in\Omega$ ,

where $dV(w)$ denotes the standard volume element of $\mathbb{C}^{n}$ at $w$ .
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When we wish to emphasize the dependence on $\Omega$ , we write $K^{B}(z, \overline{w})$

as $K_{\Omega}^{B}(z,\overline{w})$ . Recall that each element $h\in H^{B}(\Omega)$ is identified with a
holomorphic $n$-form $\omega_{h}(z)=h(z)dz_{1}\wedge\cdots\wedge dz_{n}$ , and

$\frac{i^{n^{2}}}{2^{n}}\int_{\Omega}\omega_{h}\wedge\overline{\omega_{h}}=||h||_{B}^{2}<+\infty$ .

Thus the Bergman kernel $K_{\Omega}^{B}(z,\overline{w})$ is defined for a complex manifold $\Omega$ .

(This fact will not be used explicitly, since we shall mainly work locally
near a boundary point.) Also, the transformation law for the Bergman
kernel under a biholomorphic mapping $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ is given as follows:

(1.6) $K_{\Omega_{1}}^{B}(z, \overline{z})=K_{\Omega_{2}}^{B}(\Phi(z), \overline{\Phi(z)})|\det\Phi’(z)|^{2}$ for $z\in\Omega_{1}$ ,

a relation which can be complexified.

Example. If $\Omega\subset \mathbb{C}^{n}$ is the unit ball, then

$K^{B}(z,\overline{w})=\frac{n!/\pi^{n}}{(1-z\cdot\overline{w})^{n+1}}$ , where $z\cdot\overline{w}=\sum_{j=1}^{n}z_{j}\overline{w}_{j}$ .

For our model domain $\Omega_{0}=\{z=(z’, z_{n})\in \mathbb{C}^{n}; z_{n}+\overline{z}_{n}>|z’|^{2}\}$ ,

(1.7) $K_{\Omega_{0}}^{B}(z, \overline{w})=\frac{n!}{\pi^{n}}(z_{n}+\overline{w}_{n}-z’\cdot\overline{w’})^{-n-1}$

Remark 1.2. $(1^{o})$ If $\Omega$ is a domain in $\mathbb{C}$ , then

$K^{B}(z,\overline{w})=-\frac{\partial^{2}G(z,w)}{\partial z\partial\overline{w}}$ for $z$ , $ w\in\Omega$ ,

where $G(z, w)$ denotes the Green function normalized by multiplying a
constant (cf. Schiffer [Scr]). An operator version is given by using the
$\overline{\partial}$-operator and its $L^{2}$ adjoint $\overline{\partial}^{*}$ as $K^{B}=1-\overline{\partial}^{*}G\overline{\partial}$ , where $G$ denotes
the Green operator and $K^{B}$ , called the Bergman projector, stands for
the orthogonal projector of $L^{2}(\Omega)$ to the closed subspace $H^{B}(\Omega)$ .

$(2^{o})$ An analogous formula is available for a domain $\Omega$ in $\mathbb{C}^{n}$ as far as

the complex Laplacian $\square =\overline{\partial}\overline{\partial}^{*}+\overline{\partial}^{*}\overline{\partial}$ for $(0, 1)$ -forms on $\Omega$ has a closed

range in $L^{2}$ . The generalized inverse $N$ , called the $\overline{\partial}$-Neumann operator,

satisfies $K^{B}=1-\overline{\partial}^{*}N\overline{\partial}$ . If, for instance, $\Omega$ is a strictly pseudoconvex
domain with $C^{\infty}$ boundary, then $N$ is defined and $C^{\infty}$ pseudolocal at
every point of the closure $\overline{\Omega}$ (cf. Folland-Kohn [FK]). Then, the Bergman
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kernel $K^{B}(z,\overline{w})$ as a function of $(z, w)$ is $C^{\infty}$ on $\overline{\Omega}\times\overline{\Omega}$ off the diagonal
of $\partial\Omega\times\partial\Omega$ (cf. Kerzman [Ke]).

From now on, we assume that $\Omega=\{z;r(z)>0\}\subset \mathbb{C}^{n}$ is a strictly
pseudoconvex domain, where $r$ is a smooth ( $C^{\infty}$ or real analytic) defining
function of the boundary. It has been known that the Bergman kernel
$K^{B}(z)=K^{B}(z, \overline{z})$ tends to $+\infty$ as $z$ approaches to a boundary point.
The magnitude of divergence is measured by virtue of a theorem of
H\"ormander [H\"o] as follows:

(1.8) $\lim_{z\rightarrow p}r(z)^{n+1}K^{B}(z)=\frac{n!}{\pi^{n}}J[r](p)$ for $ p\in\partial\Omega$ ,

where $J[r]$ denotes the Levi determinant of $r$ given by

(1.9) $ J[r]=(-1)^{n}\det$ $\left(\begin{array}{ll}r & \partial r/\partial\overline{z}_{k}\\\partial r/\partial z_{j} & \partial^{2}r/\partial z_{j}\partial\overline{z}_{k}\end{array}\right)$ .

We shall rather refer to $J[\cdot]$ as the (complex) Monge-Amp\‘ere operator.
A far-reaching refinement of (1.8) is given as follows.

Theorem 1.2 ([F1]). Let $\Omega=\{z\in \mathbb{C}^{n}; r(z)>0\}$ be a strictly
pseudoconvex domain, where $r$ is a $C^{\infty}$ defifining function of $\partial\Omega$ . Then

there exist $\varphi^{B}$ , $\psi^{B}\in C^{\infty}(\overline{\Omega})$ such that

(1.10) $K^{B}(z,\overline{z})=K^{B}(z)=\frac{\varphi^{B}(z)}{r(z)^{n+1}}+\psi^{B}(z)$ logr(z).

In particular, $\varphi^{B}=(n!/\pi^{n})J[r]$ on $\partial\Omega$ .

Remark 1.3. If $\partial\Omega$ with $r$ is real analytic, then $\varphi^{B}$ and $\psi^{B}$ are real
analytic too, so that (1.10) is complexified (cf. Kashiwara [Kas]):

(1.10)’ $K^{B}(z,\overline{w})=\frac{\varphi^{B}(z,\overline{w})}{r(z,\overline{w})^{n+1}}+\psi^{B}(z,\overline{w})\log r(z,\overline{w})$ .

Even when $\partial\Omega$ is $C^{\infty}$ , the above equality (1.10)’ remains valid with
$C^{\infty}$ functions $r(z,\overline{w})$ , $\varphi^{B}(z,\overline{w})$ , $\psi^{B}(z, \overline{w})$ of $(z, w)\in\overline{\Omega}\times\overline{\Omega}$ which are
regarded as almost analytic extensions of $r(z)=r(z,\overline{z})$ , $\ldots$ in the sense
that $\partial r(z, \overline{w})/\partial\overline{z}$ , $\ldots$ and $\partial r(z, \overline{w})/\partial w$ , $\ldots$ vanish to infinite order at
$z=w$ (cf. Boutet de Monvel-Sj\"ostrand [BS]).

Remark 1.4. The singularities (1.10) and $(1.10)’$ are localizable to
a neighborhood of a boundary point as follows. If $\Omega_{1}$ and $\Omega_{2}$ are strictly
pseudoconvex domains with smooth ( $C^{\infty}$ or real analytic) boundaries
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such that $\overline{\Omega}_{1}\cap V=\overline{\Omega}_{2}\cap V$ for a neighborhood $V$ of a point $p\in\partial\Omega_{1}\cap\partial\Omega_{2}$ ,
then there exists a smaller neighborhood $V_{0}$ of $p$ such that the difference
$K_{\Omega_{1}}^{B}(z, \overline{w})-K_{\Omega_{2}}^{B}(z, \overline{w})$ are smooth for $z$ , $w\in\overline{\Omega}_{1}\cap V_{0}=\overline{\Omega}_{2}\cap V_{0}$ .

Remark 1.5. $(1^{o})$ An elementary property of the Bergman kernel
is the monotonicity with respect to the domain:

$K_{\Omega_{1}}^{B}(z)\geq K_{\Omega_{2}}^{B}(z)$ when $z\in\Omega_{1}\subset\Omega_{2}$ .

In the proof of (1.8), this fact and the model case formula (1.7) are used
together with a localization argument, after a scaling of the coordinates
(cf. H\"ormander [H\"o]).

$(2^{o})$ Fefferman’s original proof of Theorem 1.2 requires a more pre-
cise approximation of $\Omega$ from inside at a boundary point by a domain
$\Omega_{ba11}$ which is locally biholomorphic to a ball. Roughly speaking, starting

from an explicit approximation of the decomposition $1=K^{B}+\overline{\partial}^{*}N\overline{\partial}$ ,
the Bergman kernel is obtained as a Neumann series, where successive
integrations over a thin domain given locally by $\Omega\backslash \Omega_{ba11}$ are involved.
The estimates are extremely hard (cf. [F1]).

$(3^{o})$ An alternative proof of Theorem 1.2 is given by Boutet de
Monvel and Sj\"ostrand [BS], where the singularity of the Bergman kernel
is written as a Fourier integral distribution with complex phase:

$K^{B}(z,\overline{w})\sim\int_{0}^{\infty}e^{-tr(z,\overline{w})}p^{B}(z, \overline{w}, t)dt$ $mod C^{\infty}$ ,

where $p^{B}(z, \overline{w}, t)$ is a symbol admitting an asymptotic expansion

$p^{B}(z, \overline{w}, t)\sim\sum_{j=0}^{\infty}t^{n-j}p_{j}^{B}(z, \overline{w})$ , $p_{j}^{B}(\cdot, -. )\in C^{\infty}(\overline{\Omega}\times\overline{\Omega})$ .

This expression yields (1.10)’ via the following formulas for the Laplace
transforms, which are valid for $p\in \mathbb{C}$ with $Rep>0$ :

$\int_{0}^{\infty}t^{m}e^{-pt}dt=\frac{m!}{p^{m+1}}$ for $m\geq 0$ ,

$pf\int_{0}^{\infty}t^{-m}e^{-pt}dt=\frac{(-1)^{m}p^{m-1}}{(m-1)!}(\log p+C_{m})$ for $m\geq 1$ ,

where $C_{m}$ are constants and $pf$ stands for the Hadamard finite part.
$(4^{o})$ For Kashiwara’s proof [Kas] of (1.10) in the real analytic case

and its application, see Section 4 below.
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The equality (1.10) in Theorem 1.2 is referred to as an asymptotic
expansion. A reason is that if the boundary $\partial\Omega$ is locally flattened by a
real change of coordinates $z=\Psi(s, r)$ with $s\in \mathbb{R}^{2n-1}$ then

$K^{B}(\Psi(s, r))=\frac{\varphi^{B}(\Psi(s,r))}{r^{n+1}}+\psi^{B}(\Psi(s, r))\log r$ ,

and the Taylor expansions about $r=0$ of $\varphi^{B}(\Psi(s, r))$ modulo $O^{n+1}(r)$

and $\psi^{B}(\Psi(s, r))$ provide an asymptotic expansion of $K^{B}(\Psi(s, r))$ . This
is analogous to that of the heat kernel. However, the biholomorphic
invariance is lost, for the expansion depends on the choices of the real
coordinate system $(s, r)$ and the defining function $r$ . Instead, we make
the following tentative definition.

DEFINITION. A domain functional $K(z)=K_{\Omega}(z)$ is said to satisfy
a (biholomorphic) transformation law of weight $w\in \mathbb{Z}$ if

(1.11) $K_{\Omega_{1}}(z)=K_{\Omega_{2}}(\Phi(z))|\det\Phi’(z)|^{2w/(n+1)}$

for any biholomorphic mapping $\Phi:\Omega_{1}\rightarrow\Omega_{2}$ . This definition extends to
local domain functionals defined only near a boundary point.

The equality (1.6) means that the Bergman kernel satisfies a trans-
formation law of weight $n+1$ . If there would exist a defining function
$r$ satisfying a transformation law of weight -1, then we could speak of
an invariant expansion of the Bergman kernel given by the expansions

$\varphi^{B}=\sum_{j=0}^{n}\varphi_{j}r^{j}$ $mod O^{n+1}(r)$ ,

(1.12)

$\psi^{B}=\sum_{j=0}^{\infty}\varphi_{n+1+j}r^{j}$ $mod O^{\infty}(r)$ ,

with $\varphi_{j}\in C^{\infty}(\overline{\Omega})$ for $j\in \mathbb{N}_{0}$ satisfying transformation laws of weight $j$ .
Here, the first relation in (1.12) means that the difference between both

sides is smoothly divisible by $r^{n+1}$ , and the second relation means that

$\psi^{B}=\sum_{j=0}^{m}\varphi_{n+1+j}r^{j}$ $mod O^{m+1}(r)$ for any $m\in \mathbb{N}$ .

In fact, the situation is not so simple. Nevertheless, this is approximately
the case, as we shall see in the next subsection.
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1.3 The Monge-Amp\‘ere boundary value problem

Recall the (complex) Monge-Amp\‘ere operator $J[\cdot]$ defined in (1.9).
If $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ is a biholomorphic mapping, then

$ J[u_{1}]=J[u_{2}]\circ\Phi$ with $ u_{1}=|\det\Phi’|^{-2/(n+1)}u_{2}\circ\Phi$

for any function $u_{2}$ in $\Omega_{2}$ (cf. Fefferman [F2]). In particular, every
solution $u$ of the Monge-Amp\‘ere equation $J[u]=1$ satisfies a transfor-
mation law of weight -1 in the sense of (1.11). This fact motivates us
to consider the zero Dirichlet boundary value problem

(1.13) $J[u^{MA}]=1$ and $u^{MA}>0$ in $\Omega$ ; $u^{MA}=0$ on $\partial\Omega$ .

The problem (1.13) has a unique solution but it has only a finite

degree of smoothness up to the boundary (cf. Cheng-Yau [CY]):

(1.14) $u^{MA}\in C^{\infty}(\Omega)\cap C^{n+3/2-\in}(\overline{\Omega})$ for any $\epsilon>0$ .

The solution $u^{MA}$ admits an asymptotic expansion, with an arbitrary
defining function $r$ of $\partial\Omega$ such that $\Omega=\{r>0\}$ (cf. Lee-Melrose [LM]):

(1.15) $u^{MA}\sim r\sum_{k=0}^{\infty}\eta_{k}\cdot(r^{n+1}\log r)^{k}$ , $\eta_{k}\in C^{\infty}(\overline{\Omega})$ .

In particular, (1.14) is improved as follows: $u^{MA}\in C^{n+2-\in}(\overline{\Omega})$ for any
$\epsilon>0$ small. In the expansion (1.15) considered near a reference point
at the boundary, the function $\eta_{0}$ depends globally on the choice of $r$ ,
whereas the Taylor expansions of $\eta_{k}$ for $k\geq 1$ are determined locally by
those of $\eta_{0}$ and $r$ (cf. [LM]).

Though the solution $u^{MA}$ of (1.13) is a defining function of $\partial\Omega$ and
satisfies a transformation law of weight -1, it is not $C^{\infty}$ smooth up to
the boundary Thus we cannot use $u^{MA}$ in an invariant expansion of the
Bergman kernel of the form (1.12). Instead, we confine ourselves to a
$C^{\infty}$ defining function $r=r^{F}$ of $\partial\Omega$ satisfying (1.13) approximately in
the sense that

(1.16) $J[r^{F}]=1+O^{n+1}(r)$ near $\partial\Omega$ ($r=r^{F}>0$ in $\Omega$ ).

Fefferman [F2] considered $r^{F}$ precedent to the above stated works of
Cheng-Yau [CY] and Lee-Melrose [LM]. In [F2], an explicit algorithm of

constructing $r^{F}$ is given locally near a boundary point (cf. Subsection
3.2 below). We refer to $r^{F}$ as a Fefferman’s defifining function. For later

use, we summarize properties of $r^{F}$ :

$(1^{F})$ $r^{F}$ is unique modulo $O^{n+2}(r)$ , or the ambiguity of $r^{F}$ is $O^{n+2}(r)$ ;
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$(2^{F})$ $r^{F}$ satisfies a transformation law of weight-l modulo $O^{n+2}(r)$ ;
$(3^{F})$ $r^{F}$ makes sense locally near a reference point at the boundary.

By $(1^{F})$ , we mean that if $r_{1}^{F}$ and $r_{2}^{F}$ satisfy (1.16) then $r_{1}^{F}-r_{2}^{F}=O^{n+2}(r)$

and that if $r_{1}^{F}$ satisfies (1.16) so does $ r_{2}^{F}=r_{1}^{F}+\delta$ whenever $\delta=O^{n+2}(r)$ .

The fact $(1^{F})$ follows from the condition (1.16); and $(1^{F})$ implies $(2^{F})$ ,
because if $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ is biholomorphic then

$ J[r_{1}^{F}]=J[r_{2}^{F}]\circ\Phi$ with $ r_{1}^{F}=|\det\Phi’|^{-2/(n+1)}r_{2}^{F}o\Phi$

for any Fefferman’s defining function $r_{2}^{F}$ of $\Omega_{2}$ . By $(3^{F})$ , we mean that

the properties $(1^{F})$ and $(2^{F})$ are valid locally near a reference point at
the boundary.

By continuing Fefferman’s construction beyond $r^{F}$ , Graham [G2]

constructed a local asymptotic solution $u^{G}$ of (1.13) in the form

(1.17) $u^{G}=r\sum_{k=0}^{\infty}\eta_{k}^{G}\cdot(r^{n+1}\log r)^{k}$ , $\eta_{k}^{G}\in C^{\infty}(\overline{\Omega})$ .

Theorem 1.3 ([G2]). Let $r=r^{F}$ be a Fefferman’s defifining func-
tion of $\Omega$ . Then, for any $a\in C^{\infty}(\partial\Omega)$ , there exists a unique asymptotic

solution $u=u^{G}$ of the form (1.17) to the problem

(1.18) $J[u]=1+O^{\infty}(r)$ near $\partial\Omega$ , $\eta_{0}^{G}=1+ar^{n+1}+O^{n+2}(r)$ .

Furthermore, $\eta_{k}^{G}$ for each $k\geq 1$ has the following properties:

$(1^{G})$ $\eta_{k}^{G}$ modulo $O^{n+1}(r)$ is independent of the choice of $a$ and $r^{F}$ ;
$(2^{G})$ $\eta_{k}^{G}$ has a transformation law of weight $k(n+1)$ modulo $ O^{n+1}(r),\cdot$

$(3^{G})$ $\eta_{k}^{G}$ modulo $O^{n+1}(r)$ makes sense locally near a boundary point.

The asymptotic solution $u^{G}$ is a formal series of the form (1.17).

The first relation of (1.18) means that $J[u^{G}]-1$ is formally flat on $\partial\Omega$

in the sense that for any $m\in \mathbb{N}$ there exists a finite sum $u_{m}^{G}$ correspond-

ing to (1.17) such that $J[u_{m}^{G}]-1$ is continuously divisible by $r^{m}$ . The

meanings of $(1^{G})-(3^{G})$ are similar to those of $(1^{F})-(3^{F})$ , except for the
fact that $u^{G}$ is uniquely determined by $a$ and $r^{F}$ , where $a$ is prescribed
in a neighborhood of a reference point at the boundary.

Let us return to the problem mentioned at the end of the previous
subsection. We wish to realize an invariant expansion of the Bergman
kernel of the form (1.12) with $r=r^{F}$ . Because of the ambiguity of $r^{F}$ ,

the invariance becomes approximate and the expansion of $\psi^{B}$ , even if
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possible, only makes sense as a finite sum, say,

$(1.12)_{N}’$ $\psi^{B}=\varphi_{n+1}+\varphi_{n+2}r+\cdots+\varphi_{N}r^{N-n-1}$ $mod O^{N-n}(r)$ .

Suppose we are given vector subspaces $I_{j}^{W}\subset C^{\infty}(\overline{\Omega})(0\leq j\leq N)$ with

the following properties:

$(1^{W})$ Elements of $I_{j}^{W}$ make sense modulo $O^{N-j+1}(r)$ (we regard these

as equivalence classes modulo $O^{N-j+1}(r))$ ;
$(2^{W})$ Each element of $I_{j}^{W}$ satisfies the transformation law of weight $j$

modulo $O^{N-j+1}(r)$ ;
$(3^{W})$ The boundary value of each element $\varphi\in I_{j}^{W}$ is a $CR$ invariant,

and the resulting mapping $I_{j}^{W}\rightarrow I_{j}^{CR}$ is surjective. In addition,

if the boundary $\partial\Omega$ is in normal form $N(A)$ near the origin, then
$\partial_{z}^{\alpha}\partial\frac{\beta}{z}\varphi(0)(|\alpha|+|\beta|\leq N-j)$ for $\varphi\in I_{j}^{W}$ are polynomials in $A$ .

The latter condition in $(3^{W})$ is referred to as the polynomial dependence

of $\varphi\in I_{j}^{W}$ on the boundary. The functions $\varphi^{B}$ , $\psi^{B}$ and $r^{F}$ have a
similar property, as we shall see in Sections 3 and 4. If $N\geq n$ , then
the conditions $(1^{W})-(3^{W})$ yield the expansion of $\varphi^{B}$ in (1.12) as follows.
Since the boundary value of $\varphi^{B}$ is an element of $I_{0}^{CR}$ being a constant,
$(3^{W})$ implies the existence of $\varphi_{0}\in I_{0}^{W}$ such that $\varphi^{B}=\varphi_{0}+O^{1}(r)$ . Then

the approximate invariance of the smooth function $\overline{\varphi}_{1}:=(\varphi^{B}-\varphi o)/r$

makes sense. By virtue of $(1^{W})-(3^{W})$ and the polynomial dependence

of $\varphi^{B}$ and $r^{F}$ , the boundary value of $\overline{\varphi}_{1}$ belongs to $I_{1}^{CR}$ , and thus $(3^{W})$

implies as before the existence of $\varphi_{1}\in I_{1}^{W}$ such that $\varphi^{B}=\varphi_{0}+\varphi_{1}r+$

$O^{2}(r)$ . Then induction yields the expansion of $\varphi^{B}$ as in (1.12).

A construction of $I_{j}^{W}$ for $0\leq j\leq n$ is discussed in the next section.

The same argument applies to the expansion of $\psi^{B}$ as in $(1.12)_{N}’$ ,
but the approximate invariance of the right side of $(1.12)_{N}’$ only makes

sense modulo $O^{n+1}(r)$ by the ambiguity of $r=r^{F}$ . Consequently, we
have invariant expressions of $\varphi_{j}$ for $0\leq j\leq\min(N, 2n+1)$ whenever
$I_{j}^{W}$ for $0\leq j\leq N$ are constructed. In Section 3, we consider the case
$n=2$ and realize the optimal case $N=5$ , that is, we express $\varphi_{j}$ for
$0\leq j\leq 5$ explicitly by constructing $I_{j}^{W}$ for $0\leq j\leq 5$ .

\S 2 Weyl invariants

Elements of the spaces $I_{j}^{W}(0\leq j\leq n)$ in Subsection 1.3 are realized

by Weyl invariants in the sense of Fefferman [F3]. This notion was
introduced in [F3] as an analogy of that in Riemannian Geometry, where
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the Bergman kernel is compared with the heat kernel. Reviewing quickly
the heat kernel asymptotics in Subsection 2.1, we give the definition of
Weyl invariants in Subsection 2.2. Then in Subsection 2.3, we state the
main results of this section, due to Fefferman [F3] and Bailey-Eastwood-
Graham [BEG], on Weyl invariants and the invariant expansion of the
Bergman kernel.

2.1 Heat kernel on a Riemannian manifold

Let $(M, g)$ be an $n$-dimensional compact Riemannian manifold. We
denote by $\triangle_{g}$ the (negative) Laplacian acting on functions on $M$ , and
consider the initial value problem for the heat equation:

$\partial u/\partial t-\triangle_{g}u=0$ on $M\times[0, \infty)$ , $u|_{t=0}=f$ ,

where $f\in C^{\infty}(M)$ is prescribed arbitrarily. Then there exists a unique

solution, which has the form $u(x, t)=\int_{M}H_{t}(x, y)f(y)dV(y)$ , where $dV$

stands for the volume element on $M$ . The function $H_{t}(x, y)$ for $x$ , $y\in M$

and $t>0$ is called the heat kernel (for functions) associated with $\triangle_{g}$ .

Let us consider the restriction $H_{t}(x, x)$ to the diagonal of $M\times M$ . This
is a smooth function as far as $t>0$ , but becomes singular as $t\rightarrow+0$ .

More precisely, the following asymptotic expansion holds:

$H_{t}(x, x)\sim t^{-n/2}\sum_{m=0}^{\infty}a_{m}(x)t^{m}$ with $a_{m}\in C^{\infty}(M)$ .

The coefficient functions $a_{m}$ are determined locally by the metric
$g$ . In addition, these are Riemannian invariants defined as follows. Let
us take a normal coordinate system $x=(x_{1}, \ldots, x_{n})$ about a reference
point $p\in M$ . The choice of normal coordinate systems has freedom
corresponding to the action of the isotropy group $O(n)$ , and an action
of $o(n)$ is induced on jets of the metric, $gjk,ab\cdots c$

$=\partial_{x_{a}}\partial_{x_{b}}\cdots\partial_{x_{c}}g_{jk}(p)$ ,

where $\partial_{x_{a}}=\partial/\partial x_{a}$ , etc. A universal polynomial $P_{m}=P_{m}(g_{jk,abc}\cdots)$ is
called a (local) Riemannian invariant if it is invariant under this action
of $O(n)$ .

For the curvature tensor $R$ of $g$ , we consider its successive covariant

derivatives and denote the components by $ R_{ijkl,abc}\cdots$ . Then each $ g_{jk,abc}\cdots$

is a polynomial of $(R_{ijkl,abc}\cdots)$ , and thus each Riemannian invariant is
written as an $O(n)$ -invariant polynomial of $(R_{ijkl,abc}\cdots)$ , where $O(n)$

acts tensorially on $(R_{ijkl,abc}\cdots)$ . According to Weyl’s invariant theory,
the vector space of all Riemannian invariants is generated by complete
contractions of the form

contr $(\nabla^{p1}R\otimes\cdots\otimes\nabla^{p_{\epsilon}}R)$ ,
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where the contractions are taken over all indices. Consequently, each $a_{m}$

in the heat kernel is expressed as a linear combination of these complete
contractions such that $2m=p_{1}+\cdots+p_{S}+s$ . This equality is seen by
scaling the metric.

2.2 Definition of Weyl invariants

$CR$ invariants can be compared with Riemannian invariants with
Moser’s normal coordinates in place of Riemannian normal coordinates.
A substitute for the Riemannian curvature is the curvature of the am-
bient metric, which is defined as follows.

Let $r=r^{F}$ be a Fefferman’s defining function of the domain $\Omega$ .

Introducing an extra variable $z_{0}\in \mathbb{C}^{*}=\mathbb{C}\backslash \{0\}$ , we consider a function
$r\not\simeq\neq(z_{0}, z)=|z_{0}|^{2}r(z)$ on $\mathbb{C}^{*}\times\overline{\Omega}$ . Then, a tensor of $(1, 1)$-type

$g=\sum_{j.k=0}^{n}g_{j\overline{k}}dz_{j}d\overline{z}_{k}=\sum_{j.k=0}^{n}\frac{\partial^{2}r_{\#}}{\partial z_{j}\partial\overline{z}_{k}}dz_{j}d\overline{z}_{k}$

defines a Lorentz-K\"ahler metric in a neighborhood of $\mathbb{C}^{*}\times\partial\Omega$ . This
metric $g$ is called an ambient metric associated with $\partial\Omega$ . Due to the
ambiguity of $r=r^{F}$ modulo $O^{n+2}(r)$ , the ambient metric is well-defined
only up to the $n$-th jets along $\mathbb{C}^{*}\times\partial\Omega$ .

As in the Riemannian case, scalar invariants are constructed from
the metric $g$ as follows. For the curvature tensor $R$ of $g$ , we consider
successive covariant derivatives $R^{(p,q)}=\overline{\nabla}^{q-2}\nabla^{p-2}R$ and complete con-
tractions of the form

(2.1) $W_{\#}=contr$ $(R^{(p_{1},q_{1})}\otimes\cdots\otimes R^{(p_{s},q_{s})})$ .

These are functions in a neighborhood of $\mathbb{C}^{*}\times\partial\Omega\subset \mathbb{C}^{*}\times\overline{\Omega}$ , and the
restrictions $W=W_{\#}|_{z_{0}=1}$ are defined near $\partial\Omega$ . The weight of $W_{\#}$ in

(2.1) is defined by $w=\sum_{j=1}^{s}(p_{j}+q_{j})/2-s$ .

DEFINITION. A Weyl invariant of weight $w$ is a linear combination
of complete contractions of the form (2.1) of the weight $w$ .

By definition, a Weyl invariant $W_{\#}$ is a functional of $r$ . Nevertheless,
we also use this terminology for the composite function $(z_{0}, z)\mapsto W_{\#}$

or the equivalence class modulo the ambiguity of $r=r^{F}$ . For a Weyl
invariant $W_{\#}$ of weight $w$ , we set $W=W_{\#}|_{z_{0}=1}$ . Then

$W_{\#}(z_{0}, z)=|z_{0}|^{-2w}W(z)$ .

Accordingly, we still call $W$ a Weyl invariant of weight $w$ .
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Let us recall that $r^{F}$ is a local domain functional of weight-l in the
sense of (1.12) but with error of $O^{n+2}(r)$ . Likewise, Weyl invariants $W$ of
weight $w$ are local domain functionals of weight $w$ with some error. The
argument involving the error is somewhat technical, and we postpone
it until the next subsection. Instead, we give here a transformation law
under a biholomorphic mapping $\Phi:\Omega_{1}\rightarrow\Omega_{2}$ for representatives of Weyl
invariants defined by a Fefferman’s defining function $r_{2}$ of $\Omega_{2}$ and its pull-

back $ r_{1}=|\det\Phi’|^{-2/(n+1)}r_{2}o\Phi$ to $\Omega_{1}$ . To emphasize the dependence

on $r=r^{F}$ , we write $g=g[r]$ , $W_{\#}=W\not\simeq\neq[r]$ , $W=W[r]$ . Then

(2.2) $ W[r_{1}]=|\det\Phi’|^{2w/(n+1)}W[r_{2}]\circ\Phi$ .

This is seen as follows. We lift $\Phi$ to a bundle map $\Phi_{\#}$ : $\mathbb{C}^{*}\times\Omega_{1}\rightarrow \mathbb{C}^{*}\times\Omega_{2}$

defined by

(2.3) $\Phi_{\#}(z_{0}, z)=(z_{0}\cdot(\det\Phi’(z))^{-1/(n+1)}, \Phi(z))$ .

Then $(r_{1})_{\#}=(r_{2})_{\#}\circ\Phi_{\#}$ , and $\Phi_{\#}$ is an isometry with respect to the
metrics $g[r_{1}]$ and $g[r_{2}]$ . Thus $W_{\#}[r_{2}]\circ\Phi_{\#}=W_{\#}[r_{1}]$ , which implies (2.2).

2.3 Results of Fefferman and Bailey-Eastwood-Graham

We begin with a consideration of the dependence on the choice of
Fefferman’s defining function.

Proposition 2.1. If $W[r]$ is a Weyl invariant of weight $w\leq n$ ,

then $W[r]$ modulo $o^{n-w+1}(r)$ is independent of the choice of $r=r^{F}$ .

The proof of Proposition 2.1 is done by using Moser’s normal coor-
dinates. If the boundary $\partial\Omega$ is locally in Moser’s normal form $N(A)$ ,

then $W[r]$ is written in terms of the coordinate system $(z’, \overline{z’}, \rho_{A}, v)$ as

$W[r]=\sum_{m=0}^{n-w}\sum_{\alpha,\beta,\ell}P_{\alpha}^{\ell}\frac{m}{\beta}(A)z_{\alpha}’\overline{z_{\beta}’}v^{\ell}\rho_{A}^{m}+O^{n-w+1}(\rho_{A})$ ,

where $P^{\ell}\frac{m}{\beta}\alpha(A)$ are polynomials in $A$ (cf. the statement $(\#)$ in Subsection

3.2, (B) below.) The desired result then follows, since the main part of

the expression of $W[r]$ above is independent of the choice of $r=r^{F}$ .

By Proposition 2.1 above and (2.2) in the previous subsection, we
have an approximate transformation law corresponding to (2.2), but for

arbitrary Fefferman’s defining functions $r_{j}=r_{j}^{F}$ of $\Omega_{j}(j=1,2)$ :

(2.4) $ W[r_{1}]=|\det\Phi’|^{2w/(n+1)}W[r_{2}]\circ\Phi$ $mod O^{n-w+1}(r_{1})$ .
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In particular, the boundary value of a Weyl invariant of weight $w\leq n$

gives a $CR$ invariant of weight $w$ . The converse is the first main result
of this section.

Theorem 2.1 ([F3], [BEG]). Every $CR$ invariant of weight $\leq n$

is given by the boundary value of a Weyl invariant

The statement of Theorem 2.1 was first proved by Fefferman [F3] for
$CR$ invariants of weight $\leq n-19$ . The weight restriction was removed
recently by Bailey-Eastwood-Graham [BEG]. We outline the proof of
Theorem 2.1 in Section 5.

Let $I_{w}^{W}$ denote the totality of Weyl invariants of weight $w$ . By virtue

of Proposition 2.1 and Theorem 2.1 above, the spaces $I_{w}^{W}$ for $0\leq w\leq n$

satisfy the conditions $(1^{W})$ , $(2^{W})$ and $(3^{W})$ in Subsection 1.3 with $N=n$ .

Consequently, the argument given there is valid, and we have:

Theorem 2.2 $([F3],[BEG])$ . For $\varphi^{B}$ in the expression (1.10) of the
Bergman kernel, the following expansion holds:

$\varphi^{B}=\sum_{k=0}^{n}W_{k}r^{k}+O^{n+1}(r)$ with $W_{k}\in I_{w}^{W}$ .

\S 3 Explicit computation in the two dimensional case

For domains in $\mathbb{C}^{2}$ , it is possible to refine Theorems 2.1 and 2.2,
as we mentioned at the end of Section 1. We also get explicit results,
which are stated in Subsection 3.1. These results are obtained with
the aid of asymptotic calculi of the Monge-Amp\‘ere equation and the
Bergman kernel, where explicit algorithms are necessary. Postponing
the calculus of the Bergman kernel until the next section, we discuss
that of the Monge-Amp\‘ere equation in Subsection 3.2.

3.1 The two dimensional case

(A) Results. Consider for a domain $\Omega$ in $\mathbb{C}^{2}$ the approximate

invariant expansions of $\varphi^{B}$ and $\psi^{B}$ expressing the singularity of the
Bergman kernel

$K^{B}=\varphi^{B}r^{-3}+\psi^{B}\log r$ with $r=r^{F}$

in terms of Fefferman’s defining function $r^{F}$ . To write down explicit
results, it is convenient to normalize $\varphi^{B}$ and $\psi^{B}$ by writing

$K^{B}=\frac{2}{\pi^{2}}(\overline{\varphi}^{B}r^{-3}+\overline{\psi}^{B}\log r)$ ,
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so that $\overline{\varphi}^{B}=1$ on $\partial\Omega$ , cf. (1.8). As we shall see below, we can completely

determine $\overline{\varphi}^{B}$ and $\overline{\psi}^{B}$ both modulo $O^{3}(r)$ . The results are optimal and
better than those in the higher dimensional case.

As before, let $M$ be a portion of $\partial\Omega$ , and assume that $M$ is in

Moser’s normal form $N(A)$ , where $A=(A^{\ell})\alpha\overline{\beta}\in N$ . Changing notation

slightly, we write $A_{p\overline{q}}^{\ell}$ in place of $A^{\ell}\alpha\overline{\beta}$ with $|\alpha|=p$ and $|\beta|=q$ , since

$(\alpha, \beta)\mapsto(p, q)$ is bijective. Then the $trace$ conditions on $A$ take the
form

$A_{2\overline{2}}(v)=A_{2\overline{3}}(v)=A_{3\overline{3}}(v)=0$ ,

so that $A_{p\overline{q}}^{\ell}=0$ for $p+q+\ell\leq 5$ . That is, $M$ can be approximated

by a sphere to order 5, though in the higher dimensional case the third
order approximation is optimal. By this fact, the two dimensional case
is exceptional in the sense that the Weyl invariants are less ambiguous
(cf. Lemma 3.3 and Remark 3.2 below).

To state the main results of this section, we begin by presenting
bases of the vector spaces $I_{w}^{CR}$ of $CR$ invariants of weight $w\leq 5$ .

Lemma 3.1. $I_{1}^{CR}=I_{2}^{CR}=\{0\}$ and

$dimI_{3}^{CR}=dimI_{4}^{CR}=1$ , $dimI_{5}^{CR}=2$ .

The spaces $I_{3}^{CR}$ and $I_{4}^{CR}$ are generated by $A_{4\overline{4}}^{0}$ and $|A_{2\overline{4}}^{0}|^{2}$ , respectively.

The space $I_{5}^{CR}$ is spanned by $F_{5}^{CR}(1,0)$ and $F_{5}^{CR}(0,1)$ , where

$F_{5}^{CR}(a, b)=F(a, b, -2a+(10/9)b, -a+b/3)$

with $F(a, b, c, d)=a|A_{5\overline{2}}^{0}|^{2}+b|A_{4\overline{3}}^{0}|^{2}+Re\{(cA_{3\overline{5}}^{0}-idA_{2\overline{4}}^{1})A_{4\overline{2}}^{0}\}$ .

For the proof, see [G1] for $w\leq 4$ and [HKN2] for $w=5$ .
As a consequence of Lemma 3.1, the expansion of $\overline{\varphi}^{B}$ is trivial:

(3.1) $\overline{\varphi}^{B}=constant+O^{3}(r)$ (constant $=1$ ).

To proceed further, it is necessary to extend $A_{4\overline{4}}^{0}\in I_{3}^{CR}$ approximate

invariantly to the domain $\Omega$ . This is done by using the first coefficient

function $\eta_{1}^{G}$ of the asymptotic series $u^{G}$ in Subsection 1.3. It is proved
by Graham [G2] that:

Lemma 3.2. The boundary value of $\eta_{1}^{G}$ is a $CR$ invariant of
weight 3. Specififically, $\eta_{1}^{G}=4A_{4\overline{4}}^{0}$ on $M$ .

Let us proceed further to describe $\overline{\psi}^{B}$ modulo $O^{3}(r)$ . As we stated

in Subsection 1.3, Fefferman’s defining function $r=r^{F}$ makes invariant
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sense modulo $O^{4}(r)$ , and $\eta_{1}^{G}$ modulo $O^{3}(r)$ is independent of the choices
of $r^{F}$ and the data $a\in C^{\infty}(M)$ determining $u^{G}$ . Consequently, it suffices
to extend $|A_{2\overline{4}}^{0}|^{2}\in I_{4}^{CR}$ to $\Omega$ in such a way that the extension satisfies

an approximate transformation law of weight 4 modulo $O^{2}(r)$ . Such an
extension is realized by a Weyl invariant. (The Weyl invariant of weight
$\geq 3$ are subject to a restriction stronger than that in Subsection 2.2,
because Proposition 2.1 is irrelevant to the case $n=2$ . See Remark
3.2 below.) Specifically, we consider complete contractions of weight
$w=p+q-2$ of the form:

$||R^{(p,q)}||^{2}=\sum g^{\alpha_{1}\alpha_{1}’}\cdot\cdot g^{\alpha_{p}\alpha_{\acute{p}}}g^{\beta_{1}’\overline{\beta}_{1}}\cdots g^{\beta_{q}’\overline{\beta}_{q}}R_{\alpha\overline{\beta}}R_{\beta’\alpha’}--.-$ ,

where the sum runs over ordered multi-indices $\alpha$ , $\alpha’$ , $\beta$ , $\beta’$ of lengths
$|\alpha|=|\alpha’|=p$ , $|\beta|=|\beta’|=q$ , e.g. $\alpha=(\alpha_{1}, \ldots, \alpha_{p})\in\{0,1, 2\}^{p}$ , and

$ R_{\alpha_{1}\alpha_{q}\overline{\beta}_{1}\overline{\beta}_{q}}\cdots\cdots=R_{\alpha_{1}\overline{\beta}_{1}\alpha_{2}\overline{\beta}_{2};\alpha_{3}\alpha_{q}\overline{\beta}_{3}\overline{\beta}_{q}}\cdots\cdots$ .

As before, we restrict $||R^{(p,q)}||^{2}$ to $z_{0}=1$ and regard it as a function on
the base domain $\Omega$ . It is shown in [HKN2] that (cf. Remark 3.2 below):

Lemma 3.3. If$w=p+q-2=4,5$ then $||R^{(p,q)}||^{2}$ modulo $O^{6-w}(r)$

is independent of the ambient metric. The boundary values are given by

$3||R^{(4,2)}||^{2}|_{M}=7||R^{(3,3)}||^{2}|_{M}=2^{8}\cdot 21|A_{4\overline{2}}^{0}|^{2}$ ,

$||R^{(5,2)}||^{2}|_{M}=-4\cdot(5!)^{2}F_{5}^{CR}(1,18)$ ,

$||R^{(4,3)}||^{2}|_{M}=-4\cdot(5!)^{2}F_{5}^{CR}(4/3,57/5)$ .

Using these three lemmas, we get:

Theorem 3.1. There exist universal constants $c_{0}$ , $c_{1}$ , $c_{2}$ , $c_{3}$ , $c_{1}’$ ,
$c_{2}’$ , $c_{3}’$ independent of $A\in N$ such that

$\overline{\psi}^{B}+c_{0}\eta_{1}^{G}=c_{1}||R^{(3,3)}||^{2}r+(c_{2}||R^{(5,2)}||^{2}+c_{3}||R^{(4,3)}||^{2})r^{2}+O^{3}(r)$

$=c_{1}’||R^{(4,2)}||^{2}r+(c_{2}’||R^{(5,2)}||^{2}+c_{3}’||R^{(4,3)}||^{2})r^{2}+O^{3}(r)$ .

The constant $c_{0}$ was determined in Graham [G1], where he proved

(3.2) $\overline{\psi}^{B}=-12A_{4\overline{4}}^{0}$ on $M$ , so that $c_{0}=3$ .

It is shown in [HKN2] that:
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Theorem 3.2. For other universal constants in Theorem 3.1 above,

$c_{1}=\frac{1}{160}$ , $c_{2}=\frac{1}{20160}$ , $c_{3}=\frac{1}{560}$ ;

$c_{1}’=\frac{3}{1120}$ , $c_{2}’=\frac{61}{141120}$ , $c_{3}’=\frac{3}{7840}$ .

Theorems 3.1 and 3.2 together with (3.1) and (3.2) are the main
results of this section.

Remark 3.1. For the two dimensional analysis of $\varphi^{B}$ and $\psi^{B}$ stated
above, Graham [G1] originally proved (3.1) and

$\overline{\psi}^{B}+3\eta_{1}^{G}=(constant)|A_{2\overline{4}}^{0}|^{2}r+O^{2}(r)$ (constant $=24/5$ ),

where the determination of the constant is due to [HKNI]. This result

on $\overline{\psi}^{B}$ is refined one step further in [HKN2] to get Theorems 3.1 and
3.2, where the first statement of Lemma 3.3 concerning the ambiguity
of the Weyl invariants is crucial.

Remark 3.2. In the argument above, we have only considered the
complete contractions of the form $||R^{(p,q)}||^{2}$ , because these generate all
Weyl invariants of weight $w\leq 5$ , $w\neq 3$ (see [HKN2]). To state it more
precisely, let $I_{w}^{W}$ denote the vector space of all Weyl invariants of weight

$w$ which are well-defined modulo $o^{6-w}(r)$ , and set $\overline{I}_{w}^{W}=I_{w}^{W}/\sim$ , where
$\sim stands$ for the equivalence relation of having the same boundary value.

Then $dim\overline{I}_{1}^{W}=dim\overline{I}_{2}^{W}=dim\overline{I_{3}}^{W}=0$ , $dim\overline{I_{4}}^{W}=1$ and $dim\overline{I}_{5}^{W}=2$ .

Bases of $\overline{I_{4}}^{W}$ and $\overline{I_{5}}^{W}$ are given by the boundary values of

$||R^{(4,2)}||^{2}$ (or $||R^{(3,3)}||^{2}$ ) and $\{||R^{(5,2)}||^{2}, ||R^{(4,3)}||^{2}\}$ ,

respectively. Consequently, there are isomorphisms $\overline{I}_{w}^{W}\cong\overline{I}_{w}^{CR}$ for $w\leq 5$ ,
$w\neq 3$ . In the exceptional case $w=3$ , the $CR$ invariant $A_{4\overline{4}}^{0}$ generating

the space $I_{3}^{CR}$ is realized by the boundary value of a linear complete con-
traction, but the contraction is defined only up to $O^{1}(r)$ (see [HKN2]).

(B) Determination of the universal constants. We first write

down $\overline{\psi}^{B}$ explicitly in terms of Moser’s normal coordinate system $z=$

$(z_{1}, z_{2})$ . It is sufficient to consider an expansion of $\overline{\psi}^{B}$ along the half-line
$p_{t}=(0, t/2)\in \mathbb{C}^{2}(t>0)$ . Let $F(a, b, c, d)$ be as in Lemma 3.1. Using a
method which will be explained in Section 4, We have:
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Proposition 3.1. As $t\rightarrow+0$ along the half-line $p_{t}=(0, t/2)$ ,

$\overline{\psi}^{B}=-12A_{4\overline{4}}^{0}-(216|A_{2\overline{4}}^{0}|^{2}+a_{1}A_{5\overline{5}}^{0}+a_{2}A_{4\overline{4}}^{1})t$

$+$ $(F(660, 1116, a_{3}, a_{4})+a_{5}A_{6\overline{6}}^{0}+a_{6}A_{5\overline{5}}^{1}+a_{7}A_{4\overline{4}}^{2})t^{2}+O^{3}(t)$ ,

where $a_{j}$ for $j=1,2$ , $\ldots$ , 7 are constants independent of $A\in N$ .

We next refine Lemmas 3.2 and 3.3. It is rather easy to see that

(3.3) $r^{F}=t+O^{3}(t)$ as $t\rightarrow+0$ along $p_{t}=(0, t/2)$ .

We have the following two propositions.

Proposition 3.2. As $t\rightarrow+0$ along the half-line $p_{t}=(0, t/2)$ ,

$\eta_{1}^{G}=4A_{4\overline{4}}^{0}+(\frac{368}{5}|A_{2\overline{4}}^{0}|^{2}+b_{1}A_{5\overline{5}}^{0}+b_{2}A_{4\overline{4}}^{1})t$

-( $F$ ( $\frac{680}{3}$ , $\frac{1956}{5}$ , $b_{3}$ , $b_{4}$ ) $+b_{5}A_{6\overline{6}}^{0}+b_{6}A_{5\overline{5}}^{1}+b_{7}A_{4\overline{4}}^{2}$) $t^{2}+O^{3}(t)$ ,

where $b_{j}$ for $j=1,2$ , $\ldots$ , 7 are constants independent of $A\in N$ .

Proposition 3.3. As $t\rightarrow+0$ along the half-line $p_{t}=(0, t/2)$ ,

$||R^{(4,2)}||^{2}=2^{8}\cdot 7|A_{4\overline{2}}^{0}|^{2}+2^{8}F(50,936, d_{1}, d_{2})t+O^{2}(t)$ ,

$||R^{(3,3)}||^{2}=2^{8}\cdot 3|A_{4\overline{2}}^{0}|^{2}+2^{8}\cdot 3F(25,243, d_{3}, d_{4})t+O^{2}(t)$ ,

where $d_{1}$ , $d_{2}$ , $d_{3}$ , $d_{4}$ are constants independent of $A\in N$ .

Using these three propositions together with Lemma 3.3, (3.2) and
(3.3), we can determine all universal constants in Theorem 3.1 and get
Theorem 3.2.

3.2 The complex Monge-Amp\‘ere asymptotics

The proofs of the results stated in Section 2 and Subsection 3.1
require knowledge of the construction and properties of the asymptotic
solutions of the complex Monge-Amp\‘ere boundary value problem (1.13).
In this subsection, we summarize these. In particular, we present the
method of proving Proposition 3.2. After reviewing in the part (A)

Graham’s construction of his asymptotic solutions as in Theorem 1.3,
we consider in the part (B) its expansion with respect to Moser’s normal

form coefficients $A=(A^{\ell})\alpha\overline{\beta}$ . We are then required to write down the

linearization with respect to $A$ , and this is done finally in the part (C).
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(A) Construction of the asymptotic solution. We first recall
Fefferman’s construction [F2] of his defining functions $r^{F}$ of $ M\subset\partial\Omega$ ,

which are locally defined smooth approximate solutions of (1.13). Start-
ing from an arbitrary smooth defining function $\rho$ of $M$ , we define $r_{s}$ for
$s=1$ , $\ldots$ , $n+1$ successively by

(3.4) $ r_{1}=J[\rho]^{-1/(n+1)}\rho$ , $r_{s}=(1+c_{s}^{-1}(1-J[r_{s-1}]))r_{s-1}$ ,

where $c_{s}=s(n+2-s)$ . Then $r_{s}$ are smooth defining functions satisfying

$(3.5)_{s}$ $J[r_{s}]=1+O^{s}(\rho)$ $(s=1, \ldots, n+1)$ ,

and thus we may set $r^{F}=r_{n+1}$ . In fact, $(3.5)_{1}$ holds, since $J[\phi\rho]=$

$\phi^{n+1}J[\rho]+O^{1}(\rho)$ whenever $\phi$ is smooth. Furthermore, $(3.5)_{s}$ implies
$(3.5)_{s+1}$ for $1\leq s\leq n$ , since

(3.6) $J[r+\phi r^{s+1}]=J[r]+c_{s+1}\phi r^{s}+O^{s+1}(\rho)$ $(s=1, \ldots, n+1)$

whenever $r$ is a smooth defining function of $Msatis5^{r}ingJ[r]=1+$

$O^{s}(\rho)$ . Note that $c_{n+2}=0$ and thus $r_{n+2}$ cannot be defined by (3.4).
Instead, the above equality (3.6) for $s=n+1$ yields the uniqueness of
$r^{F}$ modulo $O^{n+2}(\rho)$ .

We next recall Graham’s construction [G2] of his asymptotic solu-

tions $u^{G}$ of (1.13), which are formal series of the form

$r+r\sum_{k=0}^{\infty}\eta_{k}\cdot(r^{n+1}\log r)^{k}$ with $r=r^{F}$ ,

where $\eta_{k}$ are functions of $(z,\overline{z})$ smooth up to $M$ . Starting from a
Fefferman’s defining function $r=r^{F}$ with the initial defining function $\rho$

arbitrarily chosen, we set $u_{n+1}=r$ and define $u_{s}$ for $s\geq n+2$ succes-
sively in such a way that each $u_{s}$ is a formal series as above (in fact, we
can choose $u_{s}$ to be a finite sum) and satisfies

$(3.7)_{s}$ $J[u_{s}]=1+O^{s-0}(r)$ $(s\geq n+2)$ ,

where $o^{s-0}(r)$ stands for an error term of the form $r^{s}\sum_{k=0}^{\infty}\eta_{k}\cdot(\log r)^{k}$ .
Obviously, $(3.7)_{7l+1}$ follows from $(3.5)_{n+1}$ . For the ambient metric $g=$

$(g_{j\overline{k}})$ with potential $r_{\#}$ , we define an approximate Laplacian by

$\triangle[g]=\sum_{j,k=0}^{n}g^{j\overline{k}}\frac{\partial^{2}}{\partial z_{j}\partial\overline{z}_{k}}$ , where $(g^{j\overline{k}})=(g_{j\overline{k}})^{-1}$ .
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Using this, we define a linear differential operator $L=L[r]$ by

$L[r]f=\triangle[g](|z_{0}|^{2}f)|_{z0=1}$ .

It follows that if $u_{s}$ satisfies $(3.7)_{s}$ then

$J[u_{s}+\phi_{s+1}r^{s+1}]=J[u_{s}]+L(\phi_{s+1}r^{s+1})+O^{s+1-0}(r)$ ,

where $\phi_{s+1}$ is a formal series of the form $\sum_{k=0}^{\infty}\eta_{k}\cdot(\log r)^{k}$ . Thus $(3.7)_{s+1}$

is satisfied by $u_{s+1}=u_{s}+\phi_{s+1}r^{s+1}$ if $\phi_{s+1}$ is subject to

$(3.8)_{s}$ $L(\phi_{s+1}r^{s+1})=1-J[u_{s}]+O^{s+1-0}(r)$ $(s\geq n+1)$ ,

which is regarded as a linearized equation of $J[u]=1$ . If $(3.8)_{s}$ is solved

for all $s$ , then an asymptotic solution $u^{G}$ is given by the formal limit of
$u_{s}$ as $ s\rightarrow\infty$ .

To solve $(3.8)_{s}$ for $s\geq n+1$ , we use the coordinate system $(z’, \overline{z’}, r, v)$

and try to determine successively the coefficients of the expansion

$\phi_{s+1}r^{s+1}=\sum_{j\geq s}\sum_{k\geq 0}c_{j,k}[\phi_{s+1}]r^{j}(\log r)^{k}$
,

where $c_{j,k}[\phi_{s+1}]$ are smooth functions of $(z’, \overline{z’}, v)$ . Setting

$L=I+E$ with $I$ $=\partial_{r}(r\partial_{r}-n-2)$ ,

we see that $E$ is a tangential operator in the sense that it does not contain
differentiation with respect to $r$ . Consequently, if we write $(3.8)_{s}$ as

$(3.9)_{s}$ $I(\phi_{s+1}r^{s+1})=1-J[u_{s}]+O^{s+1-0}(r)$ $(s\geq n+1)$ ,

then the right side belongs to $O^{s-0}(r)$ . Dropping the error term
$O^{s+1-0}(r)$ in $(3.9)_{s}$ and regarding the result as an ordinary differen-
tial equation of the form If $=g$ , we can determine all the coeffi-
cients $c_{j,k}[\phi_{s+1}]$ uniquely provided $c_{n+2,0}[\phi_{n+2}]$ is prescribed, a condi-

tion which exactly corresponds to the ambiguity of $u^{G}$ . Therefore, $u^{G}$

is obtained as desired.

(B) Dependence of the asymptotic solution on the normal
form coefficients.

use the real coordinate system $(z’, \overline{z’}, \rho_{A}, v)$ . If we consider the Taylor
expansions with respect to this coordinate system, then

$(\neq)$ the Taylor coefficients of $r^{F}$ modulo $O^{n+2}(\rho_{A})$ and those of $\eta_{k}^{G}$

modulo $O^{n+1}(\rho_{A})$ are polynomials in $A$ .
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This can be seen as follows. Starting from the defining function $\rho=\rho_{A}$ ,
we construct $r=r^{F}$ and $u^{G}$ with $c_{n+2}[\phi_{n+1}]=0$ by the algorithm given
in the part (A) above. Then $(\#)$ holds without error terms, and thus

we may write $r^{F}=r_{A}^{F}$ and $u^{G}=u_{A}^{G}$ . The statement $(\#)$ for general $r^{F}$

and $u^{G}$ follows from $(1^{F})$ and $(1^{G})$ in Subsection 1.3.
To prove Proposition 3.2, we need to know the explicit dependence

of $r_{A}^{F}$ and $u_{A}^{G}$ on $A$ . We thus expand $u_{A}^{G}$ in powers of $A$ as follows (the

expansion of $r_{A}^{F}$ in powers of $A$ will be discussed in the part (C) below):

(3.10) $u_{A}^{G}=\sum_{s=0}^{\infty}\psi_{s}$ with
$\psi_{s}=\sum_{j\geq 1}\sum_{k\geq 0}\eta_{j,k}[\psi_{s}]p_{A}^{?}(\log\rho_{A})^{k}$

,

where $\eta_{j,k}[\psi_{s}]=\eta j,k[\psi_{S}](z’,\overline{z’}, v;A)$ are homogeneous polynomials of

degree $s$ in $A$ such that the coefficients are polynomials in $(z’, \overline{z’}, v)$ .
Regarding (3.10) as an asymptotic series in powers of $A$ , we have:

Proposition 3.4. There exists a unique asymptotic series $u_{A}^{G}$ of
the form (3.10) such that $J[u_{A}^{G}]=1$ and $\eta_{n+2,0}:=\sum_{s=0}^{\infty}\eta_{n+2,0}[\psi_{s}]=0$ .

Proposition 3.4 is proved by constructing $u_{A,s}^{G}:=\sum_{m\leq s}\psi_{m}$ for
$s\in \mathbb{N}_{0}$ , and the algorithm is actually used in the proof of Proposition
3.2 (cf. [HKN2]). The construction is similar to that of $u_{s}$ in the part

(A) above, and done as follows. First, $u_{A,0}^{G}=\psi_{0}=\rho_{A}$ follows from the

condition $\eta_{n+2,0}[\psi_{0}]=0$ . For $s>0$ , we have by induction on $s$ that

$J[u_{A}^{G}]=J[u_{A,s-1}^{G}]+L[\rho_{A}]\psi_{s}+O^{s+1}(A)$ ,

where $O^{s+1}(A)$ stands for a term which does not contain polynomials
of degree $\leq s$ in A. (Here, $\rho_{A}$ is regarded as an independent variable,
and the dependence of $\rho_{A}$ on $A$ is not taken into account.) The above
equality is written as a linear equation for $\psi_{s}$ (cf. $(3.8)_{s}$ in the part (A)):

$L[\rho_{A}]\psi_{s}=1-J[u_{A,s-1}^{G}]+O^{s+1}(A)$ .

Therefore, $\psi_{s}$ and thus $u_{A,s}^{G}$ are determined inductively by solving this

equation under the condition $\eta_{n+2,0}[\psi_{s}]=0$ .

(C) First variation of the Monge-Amp\‘ere equation. Let us
next consider the dependence of $r_{A}^{F}$ on $A\in N$ . To prove Proposition 3.3

in the previous subsection, we need to know $r_{A}^{F}$ modulo $O^{2}(A)$ explicitly.
Less precise information is required also in the proof of Theorem 2.1 (see

Section 5 below). We thus consider $r_{\in A}^{F}$ for a real parameter $\epsilon$ , and seek
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an approximate boundary value problem which characterizes the first
variation $\hat{r}_{A}^{F}=(d/d\epsilon)r_{\in A}^{F}|_{\in=0}$ .

We begin with a heuristic argument for an exact asymptotic solution
$u_{A}^{G}$ in place of a smooth approximate one $r_{A}^{F}$ , disregarding the difficulty
due to the ambiguity of Fefferman’s defining functions. Supposing as if
$u_{\in A}^{G}$ were smoothly depending on $\epsilon\in \mathbb{R}$ small and had no singularity

even on the boundary, we set $\overline{u}_{A}^{G}=(d/d\epsilon)u_{\in A}^{G}|_{\in=0}$ . Then, a relation

characterizing $\overline{u}_{A}^{G}$ is obtained by taking the first variation of the formal
boundary value problem

(3.11) $J[u_{\in A}^{G}]=1$ in $\Omega_{\in}$ , $u_{\in A}^{G}=0$ on $\partial\Omega_{\in}=N(\epsilon A)$ ,

where $\Omega_{\in}$ is a pseudoconvex side of $N(\epsilon A)$ . The first equality yields

(3.12) $L[\rho_{0}]\overline{u}_{A}^{G}=0$ in $\Omega_{0}$ .

The second equality of (3.11) is written as $u_{\in A}^{G}(z’, \overline{z}’, u, v)=0$ evaluated

at $u=(|z’|^{2}+\epsilon F_{A}(z’,\overline{z’}, v))/2$ . Differentiating both sides of this equality
with respect to $\epsilon$ and evaluating the result at $\epsilon=0$ , we have

$\overline{u}_{A}^{G}(z^{\prime },\overline{z’}, |z’|^{2}/2, v)=-\frac{1}{2}\frac{\partial u_{0}^{G}}{\partial u}(z^{\prime },\overline{z’}, |z’|^{2}/2, v)F_{A}(z’,\overline{z’}, v)$ .

Recalling that $u_{0}^{G}=\rho_{0}=2u-|z’|^{2}$ , we get

(3.13) $\overline{u}_{A}^{G}=-F_{A}$ on $\partial\Omega_{0}=N(0)=\{\rho_{0}=0\}$ .

The function $\overline{u}_{A}^{G}$ is obtained by solving the linear equation (3.12) under
the boundary condition (3.13).

Returning to the original problem of expressing the first variation
of $r_{A}^{F}$ , we have:

Proposition 3.5. The fifirst variation $\overline{r}_{A}^{F}=(d/d\epsilon)r_{\in A}^{F}|_{\in=0}$ exists

and satisfifies the approximate boundary value problem

(3.14) $L[\rho_{0}]\hat{r}_{A}^{F}=O^{n+1}(\rho o)$ in $\Omega_{0}$ , $\tilde{r}_{A}^{F}=-F_{A}$ on $\partial\Omega_{0}=N(0)$ .

The problem (3.14) has a formal power series solution which is unique
modulo $O^{n+2}(\rho_{0})$ .

The proof of the latter part of Proposition 3.5 above is done similarly
to that of Proposition 3.4.
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To give an explicit representation of $\tilde{r}_{A}^{F}$ , it is convenient to lift the

problem (3.14) to $\mathbb{C}^{*}\times\Omega_{0}$ . Setting $(\rho_{0})_{\#}=|z_{0}|^{2}\rho_{0}$ , $(F_{A})_{\#}=|z_{0}|^{2}F_{A}$

and $(\overline{r}_{A}^{F})_{\#}=|z_{0}|^{2}\overline{r}_{A}^{F}$ , we write (3.14) as

(3.15) $\triangle 0(\hat{r}_{A}^{F})_{\#}=O^{n+1}((\rho_{0})_{\#})$ , $(\tilde{r}_{A}^{F})_{\#}=-(F_{A})_{\#}+O^{1}((\rho_{0})_{\#})$ ,

where $\triangle 0=\triangle[g_{0}]$ , which is the (negative) Laplacian with respect to the
ambient metric $g_{0}$ with potential $(\rho_{0})_{\#}$ . Solutions of (3.15) are given by

(3.16) $(\overline{r}_{A}^{F})_{\#}=-(F_{A})_{\#}-\sum_{s=1}^{n+1}\frac{(-\rho_{0})_{\#}^{s}\triangle_{0}^{s}(F_{A})_{\#}}{c_{1}c_{s}}\cdots$ $mod O^{n+2}((\rho_{0})_{\#})$ ,

where $c_{s}=s(n+2-s)$ , which are the same constants as those in (3.4).
To see that the right side of (3.16) gives a solution of (3.15), we use the
projective coordinates $z_{0}=\zeta_{0}$ , $z_{j}=\zeta_{j}/\zeta_{0}(j=1, \ldots, n)$ . Then

$(\rho_{0})_{\#}=\zeta_{0}\overline{\zeta}_{n}+\zeta_{n}\overline{\zeta}_{0}-\sum_{j=1}^{n-1}|\zeta_{j}|^{2}$ and $g_{0}=\left(\begin{array}{lll}0 & 0 & 1\\0 & -I_{n-1} & 0\\1 & 0 & 0\end{array}\right)$ ,

where $I_{n-1}$ is the identity matrix. Noting that $(go)^{-1}=g_{0}$ , we have

$\triangle 0=\frac{\partial^{2}}{\partial\zeta_{0}\partial\overline{\zeta}_{n}}+\frac{\partial^{2}}{\partial\zeta_{n}\partial\overline{\zeta}_{0}}-\sum_{j=1}^{n-1}\frac{\partial^{2}}{\partial\zeta_{j}\partial\overline{\zeta}_{j}}$ .

This expression permits us to compute the commutator

$[\triangle_{0}, (\rho_{0})_{\#}^{s}]=s(\rho_{0})_{\#}^{s-1}(Z+\overline{Z}+n+s)$ ,

where $Z=\sum_{j=0}^{n}\zeta_{j}\partial/\partial\zeta_{j}$ . Consequently,

$\triangle 0((\rho_{0})_{\#}^{s}\triangle_{0}^{s}(F_{A})_{\#})=(\rho_{0})_{\#}^{s}\triangle_{0}^{s+1}(F_{A})_{\#}+c_{s}(\rho_{0})_{\#}^{s-1}\triangle_{0}^{s}(F_{A})_{\#}$ .

Therefore, $(\hat{r}_{A}^{F})_{\#}$ in (3.16) satisfies (3.15).

Remark 3.3. In proving Lemma 3.2 stated in the previous sub-
section, Graham [G2] uses essentially the same expression $forr_{A}\nearrow*$ as that
for $(\hat{r}_{A}^{F})_{\#}$ given by (3.16).

\S 4 Microlocal calculus of the Bergman kernel

4.1 Outline

Proposition 3.1 is proved by using a method of Boutet de Monvel
$[B1]-[B3]$ of computing explicitly the singularity of the Bergman kernel.
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In this section, we briefly explain his method which remains valid in the
$n$ dimensional case (cf. Theorem 4.2 below). To get an alternative proof
of Theorem 1.2, Boutet de Monvel and Sj\"ostrand constructed in [BS] a
Fourier integral operator $A^{FIO}$ with complex phase, which transforms
the Bergman kernel of a strictly pseudoconvex domain $\Omega\subset \mathbb{C}^{n}$ to that
of a model domain $\Omega_{0}$ (cf. Example in Subsection 1.2). It might be

difficult to derive information we need from $A^{FIO}$ . It would seem, for a
general strictly pseudoconvex domain $\Omega$ , that there is no known system
of differential equations which characterizes the Bergman kernel, and
that this is a reason why the computation of the Bergman kernel was
not so easy.

Kashiwara discovered in [Kas] a system of microdifferential equa-
tions (i.e. pseudodifferential equations in the real analytic category or
its complexification) which characterizes the Bergman kernel $K^{B}(z, \overline{z})$

up to a multiplicative constant. This system arises as the formal adjoint
of a system which characterizes the singularity of the Heaviside function
of the domain $\Omega$ (i.e. the characteristic function of $\Omega$ or its complexi-
fication) up to a multiplicative constant (cf. Theorem 4.1 below). The
Heaviside function of the model domain $\Omega_{0}$ is transformed to that of $\Omega$

by a shift (or translation) operator $A^{shift}(z, \partial_{z})$ , and consequently, the

operator $A^{B}(z, \partial_{z})$ which transforms the Bergman kernel of $\Omega_{0}$ to that
of $\Omega$ is given by

(4.1) $A^{B}=A^{*-1}=\sum_{j=0}^{\infty}(1-A^{*})^{j}$ for $A=A^{shift}$ ,

where $A^{*}=A^{*}(z, \partial_{z})$ is the formal adjoint of the shift operator $A=$

$A(z, \partial_{z})$ . This formula, due to Boutet de Monvel, remains valid formally
in the $C^{\infty}$ category.

The operator $A^{B}$ is much simpler than the Fourier integral operator
$A^{FIO}$ , because the $shif+operatorA^{shift}$ is completely explicit. However,
we have to be careful with two points. We are now in a complexified
world, so that $z$ and $\overline{z}$ are independent variables. A point in (4.1) is

that $A^{shift}=A^{shift}(z, \partial_{z})$ is realized as a holomorphic operator, and it

is convenient to regard $A^{shift}$ as a (formal) microdifferential operator of
infinite order. For such operators, usual definitions of the composition,
the formal adjoint and the asymptotic expansion should be modified.
Another point in (4.1) is that $A^{B}$ acts on functions on $\Omega_{0}$ , while $A^{*}$

with $A=A^{shift}$ acts on functions on $\Omega$ . Though we only consider as
operands special types of functions related to the asymptotic expansion
of the Bergman kernel as in the part (B) of Subsection 3.2, we need to
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expand these functions in powers of $A$ . Then the singularity on $N(A)$

loses its role in the asymptotic expansions of operators and operands.
We thus need to introduce the notion of weight for formal operators and
operands. The formal setting in this sense is necessary even under the
assumption that the boundary is real analytic.

The proof of Proposition 3.1 is done by computing explicitly the
necessary terms in the right side of (4.1). In the remaining part of this
section, we describe briefly the justification of (4.1) and its application
to the proof of Proposition 3.1, after a quick overview of the theory of
hyperfunctions

4.2 Quick review of hyperfunction theory

For a mild function $f$ on $\mathbb{R}$ , say, in the Schwartz class, let us consider
the Cauchy integrals

$F^{\pm}(z):=\frac{1}{2\pi i}\int_{\mathbb{R}}\frac{f(t)}{t-z}dt$ for $z\in \mathbb{C}^{\pm}$ ,

where $\mathbb{C}^{\pm}=\{z\in \mathbb{C};\pm Imz>0\}$ . According to the Plemelj formula,

the boundary values $f^{\pm}(x)=F^{\pm}(x\pm i0)$ for $x\in \mathbb{R}$ exist and satisfy
2 $f^{\pm}=\pm f+iTi[f]$ , where $\prime H$ is the Hilbert transformation. In particular,

(4.2) $f^{+}-f^{-}=f$ in $\mathbb{R}$ .

More generally, for a Schwartz distribution $f\in D’(\mathbb{R})$ , there exist
$F^{\pm}\in \mathcal{O}(\mathbb{C}^{\pm})$ such that the boundary values $f^{\pm}$ on $\mathbb{R}$ exist in $D’(\mathbb{R})$

and satisfy (4.2). Consequently, $f$ is realized by the pair $F=(F^{+}, F^{-})$

regarded as a holomorphic function in a disconnected open set $\mathbb{C}^{+}\cup \mathbb{C}^{-}$

We identify $F_{1}$ , $F_{2}\in \mathcal{O}(\mathbb{C}^{+}\cup \mathbb{C}^{-})$ if $F_{1}-F_{2}$ extends holomorphically to $\mathbb{C}$ ,
and denote the quotient space by $B(\mathbb{R})$ . Thus $D’(\mathbb{R})\subset B(\mathbb{R})$ . Elements
of $B(\mathbb{R})$ are called hyperfunctions on $\mathbb{R}$ . For $F\in \mathcal{O}(\mathbb{C}^{+}\cup \mathbb{C}^{-})$ , we regard
(4.2) as a formal expression and write $f\in B(\mathbb{R})$ . Differentiation of
$f\in B(\mathbb{R})$ is then defined by that of $F\in \mathcal{O}(\mathbb{C}^{+}\cup \mathbb{C}^{-})$ , and the definition
is compatible with that on $D’(\mathbb{R})$ .

The space $B(X)$ of hyperfunctions on an arbitrary open set $X\subset \mathbb{R}$

is defined similarly by taking an open set $U\subset \mathbb{C}$ such that $X\subset U$

is relatively closed. Each element $f\in B(X)$ is realized by a function
$F\in \mathcal{O}(U\backslash X)$ , and two functions $F_{1}$ , $F_{2}\in \mathcal{O}(U\backslash X)$ are identified when
$F_{1}-F_{2}$ extends holomorphically to $U$ . The space $B(X)$ is independent of
the choice of $U$ . Multiplication of $f\in B(X)$ by a real analytic function $g$

on $X$ is then defined by that on $F\in \mathcal{O}(U\backslash X)$ by the complex extension
of $g$ to a suitable $U$ , and the definition is again compatible with that on
$D’(\mathbb{R})$ . It is remarkable that the restriction mapping $\mathcal{B}(\mathbb{R})\rightarrow B(X)$ is
surj ective.
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Example. The Heaviside function $Y\in D’(\mathbb{R})$ is realized by a func-
tion $F\in \mathcal{O}(\mathbb{C}\backslash [0, \infty))$ satisfying $f^{+}(x)=(-1/2\pi i)$ logx for $x>0$ .

Thus, the Delta measure $\delta\in D’(\mathbb{R})$ is realized by the function $-1/2\pi iz$ .

More generally, a class of distributions on an open set $X\subset \mathbb{R}$ containing
the origin is given by holomorphic functions on $U\backslash X$ , with $U$ as above,
of the form

$\frac{\varphi(z)}{z^{\ell}}+\psi(z)\log z$ with $\ell\in \mathbb{N}_{0}$ and $\varphi$ , $\psi\in \mathcal{O}(U)$ .

For $f\in B(X)$ , its support $suppf$ is defined by the complement of the
largest open subset of $X$ on which $f=0$ . For a compact set $K\subset X$ , we
denote by $B_{K}(X)$ the totality of $f\in B(X)$ such that $suppf\subset K$ . Then
$B_{K}(X)$ is identified with the dual of the space $C^{\omega}(K)$ of real analytic

functions near $K$ . Thus, elements of $B_{K}(X)$ are regarded as analytic
functionals. Each element $f\in B(X)$ is expressed as a locally finite sum
$f=\sum f_{j}$ such that $suppf_{j}\subset X$ are compact. This gives an alternative

definition of $B(X)$ , which remains valid in the higher dimensional case.
For a Schwartz distribution $f$ on an open set $X\subset \mathbb{R}^{n}$ , there exist

open convex cones $\Gamma_{j}\subset \mathbb{R}^{n}$ with vertices at the origin and functions
$F_{j}\in \mathcal{O}(X+i\Gamma_{j})$ for $j=1$ , $\ldots$ , $N$ such that

(4.3) $f(x)=\sum_{j=1}^{N}F_{j}(x+i\Gamma_{j}0)$ for $x\in X$ ,

where $F_{j}(x+i\Gamma_{j}0)$ denote the limits of $F_{j}(x+iy)$ as $y\rightarrow 0$ with
$y\in\Gamma_{j}$ . Similarly for $f\in B(X)$ , and this property can be used as a
definition of $B(X)$ , in which an arbitrary list of holomorphic functions
$(F_{1}, \ldots, F_{N})$ is considered. Let $WF_{A}(f)$ denote the analytic wave front
set of $f\in D’(X)$ . Then for $(x_{0}, y)\in T^{*}X\backslash 0$ , we have $(x_{0}, y)\not\in WF_{A}(f)$

if and only if there exists a representation of $f$ of the form (4.3) for $x$

near $x_{0}$ such that $y\not\in\cup\Gamma_{j}^{o}$ , where $\Gamma_{j}^{O}$ denote the (open) dual cones of
$\Gamma_{j}$ . The microanalyticity of $f\in B(X)$ is defined by this condition, and
the singular spectrum of $f$ is defined by S.S. $ f=\{(x, y)\in T^{*}X\backslash 0;f\not\in$

$A_{(x,y)}\}$ , where $A_{(x,y)}$ denotes the set of germs of hyperfunctions which

are microanalytic in the direction $(x, y)$ . Thus S.S. $f=WF_{A}(f)$ for
$f\in D’(X)$ .

A microlocal singularity (in the analytic category) of a hyperfunction
is called a microfunction. That is, for $f\in B(X)$ , a microfunction at
$(x, y)\in T^{*}X\backslash 0$ is defined by $f$ modulo $A_{(x,y)}$ . The equivalence class is

denoted by $[f]$ , and the totality of such equivalence classes is denoted by
$C_{(x,y)}$ . Given a microfunction $[f]\in C_{(x,y)}$ , there exists $F\in \mathcal{O}(X+i\Gamma)$
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with an open convex cone $\Gamma$ such that $y\in\Gamma^{o}$ and that $f(x)-F(x+i\Gamma 0)$

is microanalytic in the direction $(x, y)$ . Thus $[f]$ is identified with the
equivalence class $[F]$ of $F(x+i\Gamma 0)$ .

Differentiation of a microfunction $[f]\in C_{(x,y)}$ is defined by using a

holomorphic function $F$ such that $f(x)-F(x+i\Gamma 0)$ is microanalytic,
and similarly for multiplication by a real analytic function. These define
the action of linear differential operators with analytic coefficients on
microfunctions. It is also possible to define indefinite integration of $[f]$

with respect to a variable, say $\partial_{x_{1}}^{-1}$ at $(x, y)$ with $y_{1}\neq 0$ . The analogue
of pseudodifferential operator in analytic category, acting on microfunc-
tion, is called microdifferential operator. The symbol of a microdiffer-
ential operator of order $m$ is a formal series $P(z, \xi)=\sum_{j=-\infty}^{m}p_{j}(z, \xi)$

of holomorphic functions on a conic open set $\Omega\subset T^{*}\mathbb{C}^{n}\backslash 0$ such that
each $p_{j}$ is homogeneous of degree $j$ in $\xi$ and satisfies

(4.4) $|p_{j}(z, \xi)|\leq C_{K}^{-j}(-j)!$ for $j<0$

on each compact set $ K\subset\Omega$ , where $C_{K}>0$ is a constant. Near a point
$(x, y)\in\Omega\cap T^{*}\mathbb{R}^{n}$ with $y_{n}\neq 0$ , each $p_{j}(z, \xi)$ admits an expansion

$p_{j}(z, \xi)=\sum_{k=-\infty}^{j}\sum_{|\alpha|=j-k}a_{k\alpha}(z)\xi^{\prime\alpha}\xi_{n}^{k}$ .

Thus replacing $\xi$ by $\partial_{z}$ we may define $P(z, \partial_{z})F(z)$ as a convergent
series for each holomorphic function $F(z)$ on a wedge $ X+i\Gamma$ such that
$ X+i\Gamma^{o}\subset\Omega$ . In this action the ambiguity of the indefinite integral $\partial_{z_{n}}^{-1}$

causes only a difference by a function that extends holomorphically to

$z=x$ . Thus the action of $P(z, \partial_{z})$ to $[F(x+i\Gamma 0)]\in C_{(x,y)}$ can be defined

by the modulo class of $P(z, \partial_{z})F(z)$ .

Remark 4 $\cdot$ 1. A microdifferential operator of infinite order $P(z, \partial_{z})$

is also defined by giving the symbol

$P(z, \xi)=\sum_{j=-\infty}^{\infty}p_{j}(z, \xi)$ $(p_{j}\in \mathcal{O}(\Omega))$ ,

where each $p_{j}$ is homogeneous of degree $j$ in $\xi$ . In addition to (4.4), it

is required that

$|p_{j}(z, \xi)|\leq C_{K,\in}\epsilon^{j}/j^{I}$. $(j\in \mathbb{N}_{0}, \epsilon>0)$ ,

where $C_{K,\in}>0$ is a constant. Thus $P(z, \partial_{z})$ is a local operator. In
Subsection 4.4 below, we shall be concerned with a shift operator $A=$
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$A(z, \partial_{z})$ . Though A is not a local operator, we regard it as a formal
microdifferential operator of infinite order.

A far more precise description of the matters in this subsection is
found in a book by Kaneko [Kan].

4.3 Kashiwara’s characterization of the Bergman kernel

Let $\Omega\subset \mathbb{C}^{n}$ be a strictly pseudoconvex domain with a local defin-
ing function $\rho$ which is positive in $\Omega$ and real analytic near a point
$ p\in\partial\Omega$ , and let $M$ $\subset\partial\Omega$ be a small neighborhood of $p$ . Setting
$X=\mathbb{C}^{n}$ and denoting by $X’$ the complex conjugate of $X$ , we regard
$X\times X’$ as the complexification of $X$ identified with $\mathbb{R}^{2n}$ . Then $\rho$ ex-
tends holomorphically to a neighborhood $U\subset X\times X’$ of $M$ , and the
complexification of $M$ is given by $N=\{\rho(z,\overline{z})=0\}\subset U$ . We also have
$\Omega=\{\rho(z, \overline{z})>0\}\subset X\times X’$ and $\Omega\times\Omega’\subset\{Re\rho(z, \overline{z})>0\}$ near $M$ .

The Bergman kernel $ K^{B}=\varphi^{B}\rho^{-n-1}+\psi^{B}\log\rho$ near $M$ has a multi-
valued holomorphic extension to $U\backslash N$ (cf. Remark 1.3). Thus, setting

$U^{\pm}=\{(z, \overline{z})\in U;\pm Im\rho(z, \overline{z})>0\}$ ,

we have $K^{B}\in \mathcal{O}(U^{+})$ . Another multi-valued function on $U\backslash N$ is
defined by $ Y(\rho)=-(1/2\pi i)\log\rho$ , and we have $Y(\rho)\in \mathcal{O}(U^{+}\cup U^{-})$

which represents the characteristic function of $\Omega$ near $M$ . Let us regard
$K^{B}$ and $Y(\rho)$ as elements of $\mathcal{O}(U^{+})$ . Then these define hyperfunctions
with the same singular spectrum

$T_{M}^{*}X=$ $\{(x, \lambda d\rho(x))\in T^{*}X;x\in M, 0\neq\lambda\in \mathbb{R}\}$ ,

the conormal bundle of $M$ . Similarly for multi-valued functions on $U\backslash N$

of the form

(4.5) $ K=\sum_{\ell=1}^{m}\varphi\ell\rho^{-\ell}+\psi\log\rho$ with $\varphi_{\ell}$ , $\psi\in \mathcal{O}(U)$ , $m\in \mathbb{N}$ .

For $(x, y)=(x, d\rho(x))\in T_{M}^{*}X$ , elements $[K]\in C_{(x,y)}$ defined by $K$ of

the form (4.5) are called holomorphic microfunctions, and the totality of
these is denoted by $(C_{N|X\times X’})_{(x,y)}$ . In what follows, we omit the bracket
in $[K]$ and regard $K$ as a holomorphic microfunction.

Action of microdifferential operators on $C_{(x,y)}$ preserves the subspace
$(C_{N|X\times X’})_{(x,y)}$ . Let $K\in(C_{N|X\times X’})_{(x,y)}$ such that $\varphi\neq 0$ in (4.5). Then,

for a microdifferential operator of the form $P(z, \partial_{z})$ , there exists a unique
microdifferential operator of the form $Q(\overline{z}, \partial_{\overline{z}})$ such that

(4.6) $P(z, \partial_{z})K=Q(\overline{z}, \partial_{\overline{z}})K$ .
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Such an operator $P$ is generated by $z_{j}$ and $\partial/\partial z_{j}$ for $j=1$ , $\ldots$ , $n$ . Using
these generators, we get a system of equations of the form (4.6), and this
system characterizes $K$ in $(C_{N|X\times\overline{X}})_{(x,y)}$ up to a constant multiple. For

a general theory including these facts, see Sato-Kawai-Kashiwara [SKK]
and Schapira [Sea].

A system characterizing the Bergman kernel can be written down
explicitly. The following theorem is due to Kashiwara [Kas].

Theorem 4.1 ([Kas]). The Bergman kernel $K^{B}$ satisfifies

(4.7) $P^{*}(z, \partial_{z})K^{B}=Q^{*}(\overline{z}, i\succ_{z})K^{B}$ ,

whenever $P(z, \partial_{z})Y(\rho)=Q(\overline{z}, \partial_{\overline{z}})Y(\rho)$ with $ Y(\rho)=(-1/2\pi i)\log\rho$ ,
where $P^{*}=P^{*}(z, \partial_{z})$ and $Q^{*}=Q^{*}(\overline{z}, i\succ_{z})$ are the formal adjoints of $P$

and $Q$ , respectively.

In the next subsection, we shall give a procedure of constructing the
solution to this system of equation by using Moser’s normal coordinates.

4.4 A formula of Boutet de Monvel

In the previous subsection, we fixed a domain and considered micro-
differential operators of finite order. To study the shift operator A
mentioned in Subsection 4.1, we need to define formal microdifferential
operators of infinite order. These operators act on holomorphic micro-
functions of infinite order defined by setting $ m=\infty$ in (4.5).

It is non-trivial to define such operators, via the symbols, carrying
the operations of taking composition, formal adjoint and inverse. We
need to introduce the notion of weight for the variable $z=(z_{1}, \ldots, z_{n})$

by setting

$w(z_{j})=-1/2$ $(j=1, \ldots, n -1)$ , $w(z_{n})=-1$ ,

and extend it to $\partial_{z}$ and the dual variable $\xi=(\xi_{1}, \ldots, \xi_{n})$ of $z$ by

$w(\partial/\partial z_{j})=w(\xi_{j})=-w(z_{j})$ $(j=1, \ldots, n)$ .

(We do not consider the notion of weight for polynomials in $A\in N$ in this

subsection.) Then we may say polynomials $P_{w/2}=P_{w/2}(z, \xi, \xi_{n}^{-1})$ to be

of homogeneous weight $w/2$ . By a formal sum of such polynomials $P_{w/2}$

with respect to $w\in \mathbb{Z}$ bounded above, we define the (total) symbol of
a formal microdifferential operator of infifinite order. In other words, we
regard the symbol as an asymptotic series of decreasing weight. For these
operators, operations of taking the composition, the formal adjoint and
the inverse are defined, as usual, by using weight in place of order. These
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operations are compatible with those for microdifferential operators of
finite order.

We next define holomorphic microfunctions of infinite order. Again,
it is necessary to introduce the notion of weight for holomorphic micro-

functions with support $N(0)=\{\rho_{0}=0\}\subset X\times\overline{X}$ by setting

$w(\overline{z}_{j})=w(z_{j})$ , $w(\log\rho 0)=0$ , $w(\rho_{0}^{-\ell})=\ell$ .

We consider asymptotic series of decreasing weight:

(4.8) $K=$ $\sum mK_{j/2}$ with $w(K_{2/j})=2/j$ ,
$ j=-\infty$

where $K_{j/2}\in(C_{N(0)|X\times\overline{X}})_{(0,dz_{0})}$ . Then we can define an action of formal

operators of infinite order $P(z, \partial_{z})=\sum_{j=-\infty}^{m’}P_{j/2}(z, \partial_{z})$ to $K$ of the

form (4.8) by setting

$P(z, \partial_{z})K=\sum_{j=-\infty}^{m+m’}K_{j/2}’$ with
$K_{j/2}’=\sum_{k+\ell=j}P_{k/2}(z, \partial_{z})K_{\ell/2}$

.

We refer to a series of the form (4.8) as a holomorphic microfunction of
infifinite order.

Let us restrict ourselves to real analytic surfaces in Moser’s normal
form $N(A)(A\in N)$ . To define the shift operator A by giving its symbol,
we need the following:

Lemma 4.1 ([B1]). There exists a unique complex-valued defifining

function of $N(A)$ of the form $\rho_{B}^{BM}(z, \overline{z})=\rho 0(z, \overline{z})-H_{B}(z, \overline{z’})$ , where
$H_{B}(z,\overline{z’})$ are convergent power series of the form

$H_{B}(z, \overline{z’})=\sum_{|\alpha|,|\beta|\geq 2}B_{\alpha\overline{\beta}}(z_{n})z_{\alpha}’\overline{z_{\beta}’}$ , $B_{\alpha\overline{\beta}}(z_{n})=\sum_{\ell=0}^{\infty}B_{\alpha\overline{\beta}}^{\ell}z_{n}^{\ell}$ .

The coefficients $B=(B^{\ell})\alpha\overline{\beta}$ are polynomials in $A=(A^{\ell})\alpha\overline{\beta}$ , and the trace

conditions (1.3) are valid for $B_{\alpha\overline{\beta}}(z_{n})$ in place of $A_{\alpha\overline{\beta}}(v)$ .

With the defining function $\rho_{B}^{BM}$ in Lemma 4.1, any holomorphic
microfunction with support $N(A)$ is written as

(4.9) $\varphi\rho^{-m}+\psi\log\rho$ with $\rho=\rho_{B}^{BM}$ .
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Let us expand (4.9) by using

$(\rho_{B}^{BM})^{-m}=\rho_{0}^{-m}(1-\frac{H_{B}}{\rho_{0}})^{-m}=\sum_{\ell=0}^{\infty}$ $\left(\begin{array}{l}m\\\ell\end{array}\right)$ $(-H_{B})^{\ell}\rho_{0}^{-m-\ell}$ ,

$\log\rho_{B}^{BM}=\log\rho_{0}+\log(1-\frac{H_{B}}{\rho_{0}})=\log\rho_{0}-\sum_{\ell=1}^{\infty}\frac{1}{\ell}(\frac{H_{B}}{\rho_{0}})^{\ell}$

The right sides are asymptotic series of decreasing weight, since $H_{B}$

consists of terms of weight $\leq-2$ . Consequently, we obtain an expression
of (4.9) as a formal sum of holomorphic microfunctions with support
$N(0)$ . The asymptotic series thus obtained uniquely determines the
original holomorphic microfunction (4.9). We thus identify (4.9) with
its asymptotic expansion of the form (4.8).

Lemma 4.2 ([B1]). Let $A(z, \partial_{z})$ be a formal microdifferential op-
erator of infifinite order defifined by the symbol

$A(z, \xi)=\exp[-H_{B}(z, -\xi’/\xi_{n})\xi_{n}]$ with $\xi=(\xi’, \xi_{n})$ .

Then
$Y(\rho_{B}^{BM})=AY(\rho_{0})$ .

Lemma 4.2 is proved by direct computation using the relations

$(\partial/\partial z_{j})(\partial/\partial z_{n})^{-1}\log\rho_{0}=\overline{z}_{j}\log\rho_{0}$ $(j=1, \ldots, n -1)$ .

Changing the notation slightly, we denote by $K_{A}^{B}$ the Bergman kernel
associated with the domain bounded by $N(A)$ . The singularity of its

complex extension is again denoted by $K_{A}^{B}=K_{A}^{B}(z,\overline{z})$ . Regarding it
as a holomorphic microfunction, we can state the following theorem of
Boutet de Monvel [B1], which is used in the proof of Proposition 3.1.

Theorem 4.2 ([B1]). Let $A(z, \partial_{z})$ be as in Lemma $4\cdot 2$ . Then the

formal adjoint $A^{*}$ is invertible as a formal microdifferential operator of
infifinite order, and the following equality holds:

(4.10) $K_{A}^{B}=A^{*-1}K_{0}^{B}$ .

The invertibility of $A^{*}$ is a consequence of the fact that the symbol
expansion of $1-A^{*}$ consists of terms of negative weight. In fact, the
inverse $A^{*-1}$ is given by (4.1), because the right side of (4.1) makes sense
as an asymptotic series of decreasing weight. The formula (4.10) follows
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from Theorem 4.1, since $K=A^{*-1}K_{0}^{B}$ satisfies the microdifferential
equation $P^{*}K=Q^{*}K$ whenever $P=P(z, \partial_{z})$ and $Q=Q(\overline{z}, \#_{z})$ satisfy

(4.11) $PY(\rho_{B}^{BM})=QY(\rho_{B}^{BM})$ .

In fact, by virtue of Lemma 4.2 and the commutation relation

$ Q(\overline{z}, \#_{z})\circ$ A $(z, \partial_{z})=A(z, \partial_{z})\circ Q(\overline{z}, k_{z})$ ,

it follows from (4.11) that

(4.12) $A^{-1}\circ P\circ AY(\rho_{0})=QY(\rho_{0})$ .

Then Theorem 4.1 yields $A^{*}\circ P^{*}\circ A^{*-1}K_{0}^{B}=Q^{*}K_{0}^{B}$ , so that $P^{*}K=$

$Q^{*}K$ . A point is that $A^{-1}\circ P\circ$ A is an operator of finite order. This
fact automatically follows from the relation (4.12).

Let us next sketch the proof of Proposition 3.1 by using the formula

(4.10) in Theorem 4.2. We consider the expansion of $\overline{\psi}^{B}$ along the half-

line $p_{t}=(0, t/2)\in \mathbb{C}^{2}(t>0)$ :

$\overline{\psi}^{B}(p_{t})=F_{3}(A)+F_{4}(A)t+F_{5}(A)t^{2}+\cdots$ .

Then each $F_{j}$ depends only on the terms in $A^{*-1}$ of the form

(4.13) $F_{jk}(A)z_{2}^{k}(\partial/\partial z_{2})^{k-j}$ $(k=0,1, \ldots,j-3)$ .

In addition, if we write $A^{*-1}=1+\sum_{j=-\infty}^{-1}Q_{j/2}$ the expansion of $A^{*-1}$

of decreasing weight, then $F_{j}$ is determined by $Q_{-j}$ . On the other hand,

if we set $A=1+\sum_{j=-\infty}^{-1}P_{j/2}$ , then the $trace$ conditions (1.3) for $H_{B}$

yield $P_{j/2}=0$ for $j\geq-4$ , and thus $A=1+\sum_{j=-\infty}^{-5}P_{j/2}$ . Using these

facts, we can show that $Q_{-3}$ , $Q_{-4}$ and $Q_{-5}$ are written as

$Q_{-3}=-P_{-3}^{*}$ , $Q_{-4}=-P_{-4}^{*}+P_{-2}^{*}oP_{-2}^{*}$

$Q_{-5}=-P_{-5}^{*}+P_{-5/2}^{*}\circ P_{-5/2}^{*}+P_{-2}^{*}\circ P_{-3}^{*}+P_{-3}^{*}\circ P_{-2}^{*}$ .

The identification of $F_{j}(A)$ given in Proposition 3.1 is done by computing
explicitly the terms of the form (4.13) in each $Q_{-j}$ .

\S 5 Parabolic invariant theory

In this section, we outline the proof of Theorem 2.1. This amounts
to reviewing the invariant theory of Fefferman [F3] supplemented by
Bailey-Eastwood-Graham [BEG].
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5.1 $H_{\#}$ -invariants of the curvature

Recall that $CR$ invariants are $H$ invariants of $A\in N$ (cf. (1.5)).
To compare the boundary values of Weyl invariants with $CR$ invariants,
it is convenient to represent linear fractional transformations $h\in H$ by
matrices $ h\not\simeq\neq$ with respect to the projective coordinates $\zeta=(\zeta_{0}, \ldots, \zeta_{n})$

used in Subsection 3.2, (C). Let $H_{\#}$ denote the (parabolic) subgroup of
$SU(g_{0})$ given by

$H_{\neq\neq}=$ { $h_{\#}\in SU(go);h_{\#}e_{0}=\lambda e_{0}$ with some $\lambda\in \mathbb{C}^{*}$ },

where $e_{0}={}^{t}(1,0, \ldots, 0)\in \mathbb{C}^{n+1}$ . Then each element $h_{\#}\in H_{\#}$ defines

$h\in H$ such that $\lambda=(\det h’(0))^{-1/(n+1)}$ An $H_{\#}$ -action on $N$ is given

by $h_{\#}.A=h.A$ , and the definition of $CR$ invariants (1.5) is written as

$P(h_{\#}.A)=|\lambda|^{2w}P(A)$ for $h_{\#}\in H_{\#}$ , $A\in N$ .

To regard the boundary values of Weyl invariants as $H_{\#}$ invariants,
we need to define $H_{\#}$ -invariants of the curvature $R$ of the ambient metric
by using the $H_{\#}$ -action on $A\in N$ . We first identify $R$ with its Taylor
expansion about $e_{0}$ with respect to the coordinates $\zeta=(\zeta_{0}, \ldots, \zeta_{n})$ .

That is, given a domain with boundary in Moser’s normal form $N(A)$ ,
we write $R=(R_{\alpha\overline{\beta}})_{|\alpha|,|\beta|\geq 2}$ for the components

$ R_{\alpha\overline{\beta}}=R_{\alpha_{1}\overline{\beta}_{1}\alpha_{2}\overline{\beta}_{2};\alpha_{3}\alpha_{p}\overline{\beta}_{3}\overline{\beta}_{q}}\cdots\cdots$

of the covariant derivatives of the curvature $R$ evaluated at $e_{0}$ , where $\alpha=$

$\alpha_{1}\cdots\alpha_{p}$ and $\beta=\beta_{1}\cdots\beta_{q}$ are lists of holomorphic indices 0, 1, . . . ’
$n$ .

We now introduce the notion of weight for the components $R_{\alpha\overline{\beta}}$ , as a

generalization of that for Weyl invariants, by setting

$w(R_{\alpha\overline{\beta}})=w(\alpha\overline{\beta})=\frac{||\alpha\overline{\beta}||}{2}-1$ with $||\alpha\overline{\beta}||=\sum_{j=1}^{p}||\alpha_{j}||+\sum_{j=1}^{q}||\beta_{j}||$ ,

where $||0||=0$ , $||j||=1$ for $j=1$ , $\ldots$ , $n$ $-1$ and $||n||=2$ .
Let us next restrict ourselves to the components $R_{\alpha\overline{\beta}}$ of weight $\leq n$ .

We then see, as in the proof of Proposition 2.1, that $R_{\alpha\overline{\beta}}$ is a polynomial

in $A$ , so that we may write $R_{\alpha\overline{\beta}}$ as $R_{\alpha\overline{\beta}}(A)$ . Furthermore,

$(5.1)_{1}$ $R_{\alpha\overline{\beta}}(A)$ is a polynomial in $A$ of homogeneous weight $w(\alpha\overline{\beta})$ ,

$(5.1)_{2}$ $R_{\alpha\overline{\beta}}(A)=0$
$(-1\leq w(\alpha\overline{\beta})<1)$ .
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These are seen as follows. Given $h_{\#}=(h_{i}^{j})\in H_{\#}$ , we consider the
curvature corresponding to $h_{\#}.A\in N$ . Then the components of weight
$\leq n$ and of type $(p, q)$ are transformed by

(5.2)
$R_{\alpha\overline{\beta}}(h_{\#}.A)=\lambda^{p-1}\overline{\lambda}^{q-1}\sum_{|\alpha’|=p,|\beta’|=q}h_{\alpha}^{\alpha’}\overline{h_{\beta^{\beta’}}}R_{\alpha’\overline{\beta’}}(A)$

with $\lambda\in \mathbb{C}$ defined by $h_{\#}e_{0}=\lambda e_{0}$ , where $h_{\alpha}^{\alpha’}=h_{\alpha_{1}}^{\alpha_{1}’}\cdots h_{\alpha_{p}}^{\alpha_{\acute{p}}}$ and
$h_{\beta^{\beta’}}=h_{\beta_{1}}^{\beta_{1}’}\cdots h_{\beta_{q}}^{\beta_{q}’}$ . The transformation law is thus weighted by the

factor $\lambda^{p-1}\overline{\lambda}^{q-1}$ . If in particular $h_{\#}$ corresponds to a dilation $\phi_{r}$ , then

$R_{\alpha\overline{\beta}}(h_{\#}.A)=r^{-2w(\alpha\overline{\beta})}R_{\alpha\overline{\beta}}(A)$ . Thus $(5.1)_{1}$ is obtained. The proof

of $(5.1)_{2}$ is simple. Since components of $A\in N$ satisfy $w(A^{\ell})\alpha\overline{\beta}\geq 1$ ,

it follows that each $R_{\alpha\overline{\beta}}(A)$ with $w(\alpha\overline{\beta})<1$ is a constant, which is 0

because $R_{\alpha\overline{\beta}}(0)=0$ .

Regarding $R_{\alpha\overline{\beta}}\in \mathbb{C}=\mathbb{R}+i\mathbb{R}$ with $|\alpha|$ , $|\beta|\geq 2$ as independent

variables, we denote by $\mathcal{R}^{aux}$ the totality of the points $R=(R_{\alpha\overline{\beta}})_{|\alpha|,|\beta|\geq 2}$

satisfying

(5.3) $R_{\alpha\overline{\beta}}=0$
$(-1\leq w(\alpha\overline{\beta})<1)$ .

Thus $\mathcal{R}^{aux}$ is a countable dimensional real vector space. Truncating
components of $R=(R_{\alpha\overline{\beta}})\in \mathcal{R}^{aux}$ by $w(\alpha\overline{\beta})\leq n$ , we obtain an infinite

dimensional vector space $\mathcal{R}_{n}^{aux}$ as the quotient space of $\mathcal{R}^{aux}$ . This space
$\mathcal{R}_{n}^{aux}$ admits an $H_{\#}$-action

$H_{\#}\times \mathcal{R}_{n}^{aux}\ni(h_{\#}, R_{n})\mapsto h_{\#}.R_{n}\in \mathcal{R}_{n}^{aux}$

given by the right side of (5.2) with $R_{\alpha\overline{\beta’}}$, in place of $R_{\alpha\overline{\beta’}},(A)$ . In fact,

since $h_{i}^{j}=0$ for $||i||<||j||$ , it follows that the $H_{\#}$-action on $\mathcal{R}_{n}^{aux}$ above
is well-defined.

Returning to the components of the curvature $R=(R_{\alpha\overline{\beta}})_{|\alpha|,|\beta|\geq 2}$ ,

we write $R_{n}(A)=(R_{\alpha\overline{\beta}}(A))_{w(\alpha\overline{\beta})\leq n}$ and denote by $\mathcal{R}_{n}$ the image of

the map $N\ni A\mapsto R_{n}(A)\in \mathcal{R}_{n}^{aux}$ . It then follows from (5.2) and the
definition of the $H_{\#}$-action on $\mathcal{R}_{n}^{aux}$ that

$h_{\#}.(R_{n}(A))=R_{n}(h_{\#}.A)\in \mathcal{R}_{n}^{aux}$ .

That is, the map $A\mapsto R_{n}(A)$ is $H_{\#}$ -equivariant and $\mathcal{R}_{n}$ is an $H_{\#}-$

invariant subset of $\mathcal{R}_{n}^{aux}$ . In what follows, we sometimes abbreviate the
variable $R_{n}\in \mathcal{R}_{n}^{aux}$ by writing $R$ .
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DEFINITION. A polynomial $P=P(R)$ in $R\in \mathcal{R}_{n}^{aux}$ is called an
$H_{\#}$Invariant of $\mathcal{R}_{n}$ of weight $w\leq n$ if

$P(h_{\#}.R)=|\lambda|^{2w}P(R)$ for any $(h_{\#}, R)\in H_{\#}\times \mathcal{R}_{n}$ .

Two $H_{\#}$ -invariants are identified if these are identical as functions on
$\mathcal{R}_{n}$ . The totality of $H_{\#}$ invariants of $\mathcal{R}_{n}$ is denoted by $I_{w}(\mathcal{R}_{n})$ .

For $R\in \mathcal{R}^{aux}$ , let us consider complete contractions

(5.4) $W(R)=contr(R^{(p_{1},q_{1})}\otimes\cdots\otimes R^{(p_{3}}$
,

$q_{\epsilon}))$

of the tensors $R^{(p,q)}=(R_{\alpha\overline{\beta}})_{|\alpha|=p,|\beta|=q}$ with respect to the flat metric

$g_{0}$ . Then $W(R)$ is a polynomial in $R\in \mathcal{R}^{aux}$ of homogeneous weight. If
$w(W(R))\leq n$ , then $W(R)$ depends only on $R\in \mathcal{R}_{n}^{aux}$ because of (5.3),

and thus $W(R)$ gives an $H_{\#}$ Invariant of $\mathcal{R}_{n}$ . We define Weyl $invar\dot{v}$ants

of $\mathcal{R}_{n}$ as linear combinations of the complete contractions of the form
(5.4) which are of homogeneous weight $\leq n$ . Denoting by $I_{w}^{W}(\mathcal{R}_{n})$ the

totality of Weyl invariants of weight $w$ , we have $I_{w}^{W}(\mathcal{R}_{n})\subset I_{w}(\mathcal{R}_{n})$ for
$w\leq n$ .

The surjection $N\ni A\mapsto R(A)\in \mathcal{R}_{n}$ induces a map

(5.5) $I_{w}(\mathcal{R}_{n})\ni P(R)\mapsto P(R(A))\in I_{w}^{CR}$ $(w\leq n)$ .

Therefore, Theorem 2.1 follows from:

Theorem 2.1’. (I) The map (5.5) is surjective (and thus bijec-
tive).

(II) $I_{w}^{W}(\mathcal{R}_{n})=I_{w}(\mathcal{R}_{n})$ for $w\leq n$ .

We outline the proofs of (I) and (II) in Subsections 5.2 and 5.3,
respectively.

5.2 Bijectivity of (5.5)

The proof of the part (I) in Theorem 2.1’ is done by giving the

inverse of the map (5.5). We first note by $w\leq n$ that any $Q(A)\in I_{w}^{CR}$

depends only on

$A_{n}=(A_{\alpha\overline{\beta}}^{\ell})_{w(\alpha\overline{\beta}\ell)\leq n}$ for $A=(A_{\alpha\overline{\beta}}^{\ell})\in N$ ,

so that one may write $Q(A)=Q(A_{n})$ . Let $N_{n}$ denote the totality of
such $A_{n}$ , that is, $N_{n}=\{A_{n}; A\in N\}$ . Then, $R(A)\in \mathcal{R}_{n}$ for $A\in N$
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depends only on $A_{n}\in N_{n}$ , and thus the map $N\ni A\mapsto R(A)\in \mathcal{R}_{n}$

induces a surjection

(5.6) $\mathcal{F}:N_{n}\ni A_{n}\mapsto R(A_{n})\in \mathcal{R}_{n}$ , where $R(A_{n})=R(A)$ .

This surjection is $H_{\#}$-equivariant, where the $H_{\#}$ -action

$H_{\#}\times N_{n}\ni(h_{\#}, A_{n})\mapsto h_{\#}.A_{n}\in N_{n}$

is well-defined from the $H_{\#}$ -action on $N$ . We have:

Theorem 5.1. The surjection $\mathcal{F}$ in (5.6) is bijective and the in-
verse $\mathcal{G}=\mathcal{F}^{-1}$ extends to a polynomial map $\mathcal{R}_{n}^{aux}\rightarrow N_{n}$ , in the sense
that the components are polynomials in $R\in \mathcal{R}_{n}^{aux}$ . (The map $\mathcal{G}$ is auto-
matical $lyH_{\#}$ -equivariant.)

Assuming for a while the validity of Theorem 5.1, let us first prove
the bijectivity of the map (5.5). Given $Q(A_{n})\in I_{w}^{CR}$ arbitrarily, we set
$P(R)=Q(\mathcal{G}(R))$ for $R\in \mathcal{R}_{n}$ . Then

$P(\mathcal{F}(A_{n}))=Q(\mathcal{G}\circ \mathcal{F}(A_{n}))=Q(A_{n})$ ,

and the $H_{\#}$-equivariance of $\mathcal{G}$ implies $P(R)\in I_{w}(\mathcal{R}_{n})$ . Conversely, given
$P(R)\in I_{w}(\mathcal{R}_{n})$ arbitrarily, we set $Q(A_{n})=P(\mathcal{F}(A_{n}))$ for $A_{n}\in N_{n}$ .

Then
$Q(\mathcal{G}(R))=P(\mathcal{F}o\mathcal{G}(R))=P(R)$ ,

and the $H_{\#}$ -equivariance of $\mathcal{F}$ implies $Q(A_{n})\in I_{w}^{CR}$ . Consequently, the
pull-back by $\mathcal{G}$ gives the inverse map of (5.5), and thus (I) in Theorem
2.1’ is proved.

To prove Theorem 5.1, we extend the target space $\mathcal{R}_{n}$ of the map
$\mathcal{F}$ in (5.6) to $\mathcal{R}_{n}^{aux}$ . That is, if we denote this new map again by $\mathcal{F}$ ,

(5.7) $\mathcal{F}:N_{n}\rightarrow \mathcal{R}_{n}^{aux}$ (and $\mathcal{F}(N_{n})=\mathcal{R}_{n}$ ).

Now note that $\mathcal{F}$ is finite dimensional in the sense that $N_{n}$ is a finite
dimensional vector space. Then the injectivity of $\mathcal{F}$ follows from the
following proposition.

Proposition 5.1. The differential $\mathcal{F}’(0)$ : $N_{n}\rightarrow \mathcal{R}_{n}^{aux}$ of $\mathcal{F}$ in
(5.7) at the origin is injective. Consequently, $\mathcal{F}$ is an embedding and
$\mathcal{R}_{n}\subset \mathcal{R}_{n}^{aux}$ is $a$ fifinite dimensional manifold. (We are always working
near the origin.)

To complete the proof of Theorem 5.1, it remains to show that $\mathcal{G}$

extends to a polynomial map. By Proposition 5.1, we get an extension
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of $\mathcal{G}$ ,
$\mathcal{R}_{n}^{aux}\ni R\mapsto A(R)=(A_{\alpha\overline{\beta}}^{\ell}(R))\in N_{n}$ ,

such that each component $A^{\ell}\overline{\beta}(\alpha R)$ is a formal power series in $R$ of ho-

mogeneous weight $w(\alpha\overline{\beta}\ell)$ . In addition, the series $A^{\ell}\overline{\beta}(\alpha R)$ depends only

on a finite number of components of $R$ and is convergent near the ori-

gin. Using $(5.1)_{2}$ , we can remove monomials of degree $>w(\alpha\overline{\beta}\ell)$ from
$A^{\ell}\overline{\beta}(\alpha R)$ without changing the value on $\mathcal{R}_{n}$ . The resulting polynomials

give a polynomial extension of $\mathcal{G}$ .

We conclude this subsection by sketching the proof of Proposition
5.1. Setting $R_{n}=\mathcal{F}’(0)A_{n}$ , we wish to show that $R_{n}=0$ implies
$A_{n}=0$ . To express $R_{n}=(R_{\alpha\overline{\beta}})$ explicitly, we take Fefferman’s defining

functions $r_{\in A}$ of $N(\epsilon A)$ given in Subsection 3.2, (B), and denote by $\tilde{r}_{A}^{F}$

the first variation at $\epsilon=0$ . Then

(5.8) $R_{\alpha\overline{\beta}}=\partial_{\zeta}^{\alpha}\partial\frac{\beta}{\zeta}(\tilde{r}_{A}^{F})_{\#}|_{e_{O}}$ , where $(\hat{r}_{A}^{\theta})_{\#}(\zeta,\overline{\zeta})=|z_{0}|^{2}\hat{r}_{A}^{F}(z,\overline{z})$ .

Turning from $\partial_{\zeta}and\&_{\zeta}$ to $\partial_{z}$ and $a_{\overline{z}}$ , we see that the assumption $R_{n}=0$

is equivalent to

(5.9) $\partial_{z}^{\alpha}\partial_{\frac{\beta}{z}}(\hat{r}_{A}^{F})_{\#}(0,0)=0$ $(w(\alpha\overline{\beta})\leq n, |\alpha|, |\beta|\geq 2)$ .

On the other hand, we have seen in Subsection 3.2, (C) that $\overline{r}_{A}^{F}$ is

uniquely determined modulo $O^{n+2}(\rho_{0})$ as a solution of the linear equa-
tion

(5.10) $L_{\rho o}(\overline{r}_{A}^{F})_{\#}=O^{n+1}(\rho_{0})$ , $\hat{r}_{A}^{F}|_{2u=|z’|^{2}}=-$ $\sum$ $A_{\alpha\overline{\beta}}^{\ell}z_{\alpha}’\overline{z_{\beta}’}v^{\ell}$ .
$w(\alpha\overline{\beta}\ell)\leq n$

Now $A_{n}=0$ follows from (5.9) via (5.10). The proof is similar to that of
the uniqueness of Moser’s normal form, where the $trace$ conditions (1.3)
are used crucially.

5.3 $H_{\#}$ -invariants of $\mathcal{R}_{n}$ are Weyl invariants.

Let $T_{0}\mathcal{R}_{n}$ denote the tangent space of $\mathcal{R}_{n}$ at the origin, and thus

$T_{0}\mathcal{R}_{n}=\mathcal{F}’(0)T_{0}N_{n}\subset \mathcal{R}_{n}^{aux}$ ( $T_{0}N_{n}=N_{n}$ as a set).

Then the $H_{\#}$-action on $\mathcal{R}_{n}$ induces an $H_{\not\simeq\neq}$-action on $T_{0}\mathcal{R}_{n}$ , which agrees
with that on $\mathcal{R}_{n}^{aux}$ restricted to $T_{0}\mathcal{R}_{n}$ . The $H_{\#}$ -invariants of $T_{0}\mathcal{R}_{n}$ is
defined as in the definition of those of $\prime \mathcal{R}_{n}$ , in which $\mathcal{R}_{n}$ is literally
replaced by $T_{0}\mathcal{R}_{n}$ . Now the proof of the part (II) in Theorem 2.1’ is
reduced to:
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Theorem 5.2. Every $H_{\#}$ invariant of $T_{0}\mathcal{R}_{n}$ of weight $\leq n$ is $a$

Weyl invariant.

Assuming the validity of Theorem 5.2 above for a moment, we first
prove the statement (II). Let $P(R)$ be an $H_{\not\simeq\neq}$ invariant of $\mathcal{R}_{n}$ of weight
$\leq n$ . We denote by $p(R)$ the lowest degree part of $P(R)$ . Then $p(R)$

is an $H_{\not\simeq\neq}$ invariant on $T_{0}\mathcal{R}_{n}$ . It then follows from Theorem 5.2 that
there exists a Weyl invariant $W(R)$ such that $p(R)=W(R)$ on $T_{0}\mathcal{R}_{n}$ .

Though $W(R)$ differs $p(R)$ from on $\mathcal{R}_{n}$ , the difference consists of terms
of higher degree. Thus we can repeat this procedure and write $P(R)$ as
a sum of Weyl invariants. This proves (II).

The proof of Theorem 5.2 requires a defining system of equations of
$T_{0}\mathcal{R}_{n}$ . In view of (5.8), we have

$T_{0}’\mathcal{R}_{n}=\{(R_{\alpha\overline{\beta}})\in \mathcal{R}_{n}^{aux} ^{;} ^{R_{\alpha\overline{\beta}}}=\partial_{\zeta}^{\alpha}\partial\frac{\beta}{\zeta}(\overline{r}_{A}^{F})_{\#}|_{e_{0}}, A\in N_{n}\}$ .

From this expression, we obtain a defining system of $T_{0}\mathcal{R}_{n}$ in terms of
the variables $(R_{\alpha\overline{\beta}})\in \mathcal{R}_{n}^{aux}$ :

$(5.11)_{1}$ $R_{\alpha\overline{\beta}}=\overline{R_{\beta’\alpha’}-}$ (for any permutation $\alpha’\overline{\beta’}$ of $\alpha\overline{\beta}$ ),

$(5.11)_{2}$ $R_{0\alpha\overline{\beta}}=(1-|\alpha|)R_{\alpha\overline{\beta}}$ , $R_{\alpha\overline{0\beta}}=(1-|\beta|)R_{\alpha\overline{\beta}}$ ,

$(5.11)_{3}$ $\sum_{j,k=0}^{n}g_{0}^{j\overline{k}}R_{j\alpha\overline{k\beta}}=R_{0\alpha\overline{n}\overline{\beta}}+R_{n\alpha\overline{0\beta}}-\sum_{j=1}^{n-1}R_{j\alpha\overline{j\beta}}=0$ .

Here $(g_{0}^{j\overline{k}})=(g_{0})^{-1}=g_{0}$ . The Hermitian symmetry $(5.11)_{1}$ is equivalent

to the fact that $(\hat{r}_{A}^{F})_{\#}$ is real. The reduction rule $(5.11)_{2}$ is a consequence

of the homogeneity of $(\hat{r}_{A}^{F})_{\#}$ in $\zeta$ and $\overline{\zeta}$ . (Here we have set $R_{\alpha\overline{\beta}}=0$

if $|\alpha|\leq 1$ or $|\beta|\leq 1.$ ) The relation $(5.11)_{3}$ comes from $\triangle 0(\tilde{r}_{A}^{F})_{\#}=$

$O^{n+1}((\rho_{0})_{\#})$ of (3.15).
Disregarding the weight restriction, we consider $H_{\#}$ invariants of

$\prime H$ $=$ { $(R_{\alpha\overline{\beta}})_{|\alpha|,|\beta|\geq 2;}R_{\alpha\overline{\beta}}$ satisfy $(5.11)_{1}$ , $(5.11)_{2}$ and $(5.11)_{3}$ }.

As far as $H_{\#}$-invariants of weight $\leq n$ are concerned, an invariant of
$T_{0}\mathcal{R}_{n}$ is an invariant of $\mathcal{H}$ , and vice versa. Consequently, Theorem 5.2
is contained in a more general:

Theorem 5.3. Every $H_{\#}$ invariant of $\prime H$ is a Weyl invariant.

Fefferman [F3] proved this result for invariants of weight $\leq n-19$ .

The weight restriction was later removed by Bailey-Eastwood-Graham
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[BEG]. The proof in [BEG] is constructive and gives an algorithm of
writing the given $ H\not\simeq\neq$ -invariant as a linear combination of complete con-
tractions. In what follows, we explain this algorithm.

Let $R=(R_{\alpha\overline{\beta}})\in H$ . Then each $R_{\alpha\overline{\beta}}$ is written as a linear combina-

tion of
$\overline{A}_{\alpha’\overline{\beta’}}^{\ell}=R_{\alpha’nn\overline{\beta’}}\cdots$

where $\alpha’$ and $\beta’$ are lists of $\{1, \ldots, n -1\}$ of length $\geq 2$ , and the number

of $n$ is $\ell$ . In fact, indices 0, $\overline{0}$ , $\overline{n}$ in $R_{\alpha\overline{\beta}}$ can be deleted by repeated use

of $(5.11)_{2}$ and $(5.11)_{3}$ . Setting $\overline{A}_{p\overline{q}}^{\ell}=(\overline{A}^{\ell})_{|\alpha|=p,|\beta|=q}\alpha\overline{\beta}$ , we regard it as

a symmetric tensor on $\mathbb{C}^{n-1}$ of type $(p, q)$ . Then the $U(n-1)$ action

on $\overline{A}_{p\overline{q}}^{\ell}$ is the restriction of the $H_{\#}$ action to $U(n-1)\subset H_{\#}$ . Thus

an $H_{\#}$ invariant $P(R)$ can be regarded as a $U(n-1)$ invariant $P(\overline{A})$ of

$\overline{A}^{\ell}\alpha\overline{\beta}$ . (This procedure amounts to rewriting polynomials in $R$ as those

in $A^{\ell}.$ )
$\alpha\overline{\beta}$

Using Weyl’s invariant theory for $U(n-1)$ , we can write $P(\overline{A})$

as a linear combination of complete contractions on $\mathbb{C}^{n-1}$ , that is, those

with respect to $(\delta^{j\overline{k}})$ :

(5.12) contr $(\overline{A}_{p_{1}\overline{q}_{1}}^{\ell_{1}}\otimes\cdots\otimes\overline{A}_{p_{d}\overline{q}_{d}}^{\ell_{d}})$ .

In addition, we can make so that these contractions do not contain

$tr\overline{A}_{2\overline{2}}^{\ell}$ , $(tr)^{2}\overline{A}_{2\overline{3}}^{\ell}$ , $(tr)^{2}\overline{A}_{3\overline{2}}^{\ell}$ , $(tr)^{3}\overline{A}_{3\overline{3}}^{\ell}$ .

From these contractions on $\mathbb{C}^{n-1}$ , we manufacture complete contractions
with respect to the ambient metric $g_{0}$ , depending on the degree $d$ of the

polynomial $P(\overline{A})$ , as follows.

At first, let $d<n$ . From the linear combination $P(\overline{A})$ of complete
contractions of the form (5.12), we make a partial sum consisting of
terms corresponding to $\ell_{1}=\cdots=\ell_{d}=0$ , and replace the complete
contractions there formally by those with respect to $g_{0}$ :

contr $(R^{(p_{1},q_{1})}\otimes\cdots\otimes R^{(p_{d},q_{d})})$ .

Then we get a Weyl invariant, which agrees with the given $H_{\#}$ invariant
$P(R)$ . The proof of this fact requires careful examination of the $H_{\#}-$

action on complete contractions of the form (5.12).
When $d\geq n$ , we cannot expect this. In fact, if for instance an

$H_{\#}$ invariant $P(R)$ of degree $d\geq n$ contains an alternating sum of $n$

indices, then $P(R)$ is not manufactured by the procedure above. We
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thus proceed as follows. Let us first recall that, in the case $d<n$ , we

have formally replaced complete contractions with respect to $(\delta^{j\overline{k}})$ by
those with respect to $g_{0}$ . That is, we have ignored the right side of

$\sum_{j,k=1}^{n-1}\delta^{j\overline{k}}T_{j\overline{k}}+\sum_{j,k=0}^{n}g_{0}^{j\overline{k}}T_{j\overline{k}}=T_{0\overline{n}}+T_{n\overline{0}}$

for an arbitrary tensor $(T_{j\overline{k}})$ of type $(1, ^{1})$ . Taking account of the right

side, we now express complete contractions of the form (5.12) in terms of
partial contractions with respect to $g_{0}$ . That is, we manufacture tensors
$(T_{\alpha\overline{\beta}})$ by partially contracting $R^{(p_{1},q_{1})}\otimes\cdots\otimes R^{(p_{s},q_{s})}$ in such a way that

(5.12) is given by a linear combination of components of $(T_{\alpha\overline{\beta}})$ of the form

$ T_{00nn\overline{0}\overline{0}\overline{n}\overline{n}}\cdots\cdots\cdots\cdots$ . The indices 0 and $\overline{0}$ can be eliminated by repeated use
of $(5.11)_{2}$ . We then get an expression of the given $H_{\#\neq}$ invariant $P(R)$

as a linear combination of components $T_{n\cdot\cdot n\overline{n}\cdot\cdot\overline{n}}$ of $(T_{\alpha\overline{\beta}})$ . Let us recall

by the definition of $T_{0}’\mathcal{R}_{n}$ that $R_{\alpha\overline{\beta}}=\partial_{\zeta}^{\alpha}\partial\frac{\beta}{\zeta}(\hat{r}_{A}^{F})_{\#}|_{e_{0}}$ . Likewise, $T_{\alpha\overline{\beta}}$ are

given by the “values” of formal power series at $e_{0}$ . Then $T_{\alpha\overline{\beta}}$ are ex-

tended to jets at $e_{0}$ , and the partial derivatives of the extensions of $T_{\alpha\overline{\beta}}$

make sense. If these are used as substitutes for the covariant derivatives,
then a scalar is obtained by the complete contraction. We do this proce-
dure after some algebraic manipulations which are technical. Then the
scalar above is a Weyl invariant, which coincides with the original $H_{\#}-$

invariant $P(R)$ up to a multiple. It turns out that components of $(T_{\alpha\overline{\beta}})$

other than $ T_{nn\overline{n}\cdot\cdot\overline{n}}\cdots$ do not contribute to the resulting Weyl invariant.

\S 6 Eull invariant expansion of the Bergman kernel

So far, we have considered an invariant expression of the singularity
of the Bergman kernel $K^{B}=\varphi^{B}r^{-n-1}+\psi^{B}\log r$ by using Fefferman’s
defining function $r=r^{F}$ . Because of the ambiguity of $r^{F}$ , it was only
possible to express $\varphi^{B}$ modulo $O^{n+1}(r)$ in general (Theorem 2.2), and
$\psi^{B}$ modulo $O^{2}(r)$ even in the case $n=2$ (Theorems 3.1 and 3.2). In

this section, we express $\psi^{B}$ modulo $O^{\infty}(r)$ invariantly by using a special
family of Fefferman’s defining functions. (The details are found in [Hi].)

That family, which we denote by $\mathcal{R}_{\partial\Omega}^{F}$ , is parametrized by $C^{\infty}(\partial\Omega)$ and
satisfies

(6.1) $r_{1}:=|\det\Phi’|^{-2/(n+1)}r_{2}\circ\Phi\in \mathcal{R}_{\partial\Omega_{1}}^{F}$ for $r_{2}\in \mathcal{R}_{\partial\Omega_{2}}^{F}$

for biholomorphic mappings $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ . This can be regarded as an
exact transformation law of weight -1 without error.
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In Subsection 6.1 below, we lift the Monge-Amp\‘ere boundary value
problem (1.12) to a $\mathbb{C}^{*}$ bundle over $\Omega$ . Then the lifted problem admits
asymptotic solutions which are similar to those of the original problem
(1.12) in Theorem 1.3. Elements of $\mathcal{R}_{\partial\Omega}^{F}$ are obtained as the “smooth

parts” of these asymptotic solutions. Using $r\in \mathcal{R}_{\partial\Omega}^{F}$ , we define as before

Weyl invariants, which inherit the ambiguity measured by $\mathcal{R}_{\partial\Omega}^{F}$ . These
Weyl invariants with ambiguity, together with $r$ , are used in expressing
a full expansion of $\psi^{B}$ in the Bergman kernel.

6.1 A special family of Fefferman’s defining functions

Given a strictly pseudoconvex domain $\Omega$ with $C^{\infty}$ boundary, we take

a thin one-sided neighborhood $V\subset\overline{\Omega}$ of $\partial\Omega$ and consider the following
equation for a function $U=U(z_{0}, z)$ on $\mathbb{C}^{*}\times V$ :

(6.2) $(-1)^{n}\det(\partial^{2}U/\partial z_{j}\partial\overline{z}_{k})_{j,k=0,,n}\ldots=|z_{0}|^{2n}$ .

In terms of differential forms, (6.2) is intrinsically written as

(6.3) $(-1)^{n}(\partial\overline{\partial}U)^{n+1}=dv$ ,

where $dv=(n+1)!|z_{0}|^{2n}dz_{0}\wedge d\overline{z}_{0}\wedge\cdots\wedge dz_{n}\wedge d\overline{z}_{n}$ . If $U$ is of the form
$U(z_{0}, z)=|z_{0}|^{2}u(z)$ , then (6.2) is reduced to the equation $J[u]=1$ .
That is, (6.2) is a lift of the complex Monge-Amp\‘ere equation to the
$\mathbb{C}^{*}$ bundle $\mathbb{C}^{*}\times V$ . The bundle structure on $\mathbb{C}^{*}\times V$ is given by $\Phi_{\#}$ in

(2.3), where $\Phi$ is a local (or formal) biholomorphic change of coordinates
near a point of $\partial\Omega$ . The transition function $\Phi_{\#}$ preserves $dv$ . Thus $\Phi_{\#}$

preserves the equation (6.3) in the sense that if $U_{2}$ satisfies (6.3) so does
$U_{1}=U_{2}\circ\Phi_{\#}$ .

We consider asymptotic solutions to (6.2) of the form

(6.4) $U=r_{\#}+r_{\#}\sum_{k=1}^{\infty}\eta_{k}\cdot(r^{n+1}\log r_{\#})^{k}$ with $r_{\#}=|z_{0}|^{2}r$ ,

where $\eta_{k}\in C^{\infty}(V)$ , and $r$ is a defining function of $\Omega$ , $r>0$ in $\Omega$ .

Let us identify two such formal series if the corresponding $r$ and $\eta_{k}$

agree modulo $O^{\infty}(\partial\Omega)$ . Then the totality of such asymptotic solutions
is parametrized by $C^{\infty}(\partial\Omega)$ as follows.

Proposition 6.1. Let $X$ be a $C^{\infty}$ vector fifield on $V$ which is

transversal to $\partial\Omega$ . Then, for any $f\in C^{\infty}(\partial\Omega)$ , there exists a unique
asymptotic solution $U$ of the form (6.4) to the equation (6.2) such that

$X^{n+2}r|_{\partial\Omega}=f$ .
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If $U_{2}$ is an asymptotic solution of the form (6.4) in $V_{2}\supset\partial\Omega_{2}$ so
is $U_{1}=U_{2}\circ\Phi_{\#}$ in $V_{1}\supset\partial\Omega_{1}$ , where $\Phi$ : $V_{1}\rightarrow V_{2}$ is a biholomorphic
mapping satisfying $\Phi(\partial\Omega_{1})=\partial\Omega_{2}$ . This transformation law is rewritten

as $ r_{1}=|\det\Phi’|^{-2/(n+1)}r_{2}o\Phi$ and $\eta 1,k$
$=|\det\Phi’|^{2k}\eta_{2,k}o\Phi$ , where

$U_{j}=(r_{j})_{\#}+(r_{j})_{\#}\sum_{k=1}^{\infty}\eta_{j,k}\cdot(r_{j}^{n+1}\log(r_{j})_{\#})^{k}$ $(j=1,2)$ .

For an asymptotic solution $U$ to (6.2) of the form (6.4), we call $r$

in (6.4) the smooth part of $U$ , and denote by $\mathcal{R}_{\partial\Omega}^{F}$ the totality of the

smooth parts. Then the transformation law (6.1) for $\mathcal{R}_{\partial\Omega}^{F}$ is valid. In
addition, each smooth part $r$ is a Fefferman’s defining function, that is,
$r$ satisfies $J[r]=1+O^{n+1}(r)$ .

Remark 6.1. If we drop the subscript $\#$ from $r_{\#}$ in (6.4), then we

get Graham’s asymptotic solutions (1.17) with $\eta_{0}^{G}=1$ . However, the
transformation law (6.1) breaks down. Similarly, if we add the subscript
$\#$ to $r$ in $r^{n+1}\log r_{\#}$ , then again (6.1) breaks down.

6.2 A refinement of Theorem 2.2

Starting from a Fefferman’s defining function $r\in \mathcal{R}_{\partial\Omega}^{F}$ , we construct
Weyl invariants as in Subsection 2.2. That is, for the Lorentz-K\"ahler

metric $g$ with potential $r_{\#}$ in a thin neighborhood $\mathbb{C}^{*}\times V\subset \mathbb{C}^{*}\times\overline{\Omega}$

of $\mathbb{C}^{*}\times\partial\Omega$ , we consider the curvature $R$ of $g$ and successive covariant

derivatives $R^{(p,q)}=\overline{\nabla}^{q-2}\nabla^{p-2}R$ . Then a Weyl invariant of weight $w$ is
defined as a linear combination of the complete contractions of the form

contr $(R^{(p_{1},q_{1})}\otimes\cdots\otimes R^{(p_{s},q_{s})})$ with $\frac{1}{2}\sum_{j=1}^{s}(p_{j}+q_{j})-s=w$ .

By definition, a Weyl invariant $W_{\#}$ is a functional of $r\in \mathcal{R}_{\partial\Omega}^{F}$ , and thus
we write $W_{\not\simeq\neq}=W_{\#}[r]$ . As in Section 2, we also use this terminology
for the composite function $(z_{0}, z)\mapsto W_{\not\simeq\neq}[r]$ . We denote the restriction
of $W_{\#}[r]$ to $z_{0}=1$ by $W[r]$ , and still call it a Weyl invariant. It follows

from the construction that the transformation law (6.1) for $\mathcal{R}_{\partial\Omega}^{F}$ implies

$ W[r_{1}]=|\det\Phi’|^{2w/(n+1)}W[r_{2}]\circ\Phi$

for a Weyl invariant of weight $w$ , cf. (2.4) in Subsection 2.3.
With $r\in \mathcal{R}_{\partial\Omega}^{F}$ , let us consider the expression (1.10) in Theorem 1.2

for the Bergman kernel. Observe that $\psi^{B}$ is uniquely determined modulo
$O^{\infty}(r)$ and independent of the choice of $r$ . Nevertheless, we regard $\psi^{B}$

as a functional of $r\in \mathcal{R}_{\partial\Omega}^{F}$ and write $\psi^{B}=\psi^{B}[r]$ . Then we have:
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Theorem 6.1. For each $j\geq n+1$ , there exists a Weyl invariant
$W_{j}$ of weight $j$ such that if $r\in \mathcal{R}_{\partial\Omega}^{F}$ then

$\psi^{B}[r]=\sum_{k=0}^{\infty}W_{k+n+1}[r]r^{k}$ $mod O^{\infty}(r)$ .

That is, for each $m>0$ , $\psi^{B}[r]=\sum_{k=0}^{m}W_{k+n+1}[r]r^{k}mod O^{m+1}(r)$ .

This theorem refines Theorem 2.2 (cf. Remark 6.2 below).

6.3 Generalization of the $CR$ invariant

Recall that Theorem 2.2 follows from Theorem 2.1. In order to refine
Theorem 2.1, we need to generalize the notion of $CR$ invariant taking
account of the ambiguity described by $\mathcal{R}_{\partial\Omega}^{F}$ . Let us begin by recalling

that Proposition 6.1 gives a bijection $C^{\infty}(\partial\Omega)\rightarrow \mathcal{R}_{\partial\Omega}^{F}$ as far as a vector
field $X$ is specified. For a reference point $ p\in\partial\Omega$ , this parametrization
is localizable to a neighborhood of $p$ , but we rather consider formally.
We have a bijection $C_{\partial\Omega,p}^{\infty}\rightarrow \mathcal{R}_{\partial\Omega,p}^{F}$ , where $C_{\partial\Omega,p}^{\infty}$ and $\mathcal{R}_{\partial\Omega,p}^{F}$ denote

the spaces of all Taylor expansions about $p$ of elements of $C^{\infty}(\partial\Omega)$ and
$\mathcal{R}_{\partial\Omega}^{F}$ , respectively. Thus $C_{\partial\Omega,p}^{\infty}$ and $\mathcal{R}_{\partial\Omega,p}^{F}$ consist of formal power series,

though the notation $C_{\partial\Omega,p}^{\infty}$ might be somewhat confusing.

The family $\mathcal{R}_{\partial\Omega,p}^{F}$ satisfies a formal transformation law correspond-

ing to (6.1), and this transformation law is transplanted to $C_{\partial\Omega,p}^{\infty}$ . To

write it down explicitly, we assume that $\partial\Omega$ near $p$ is in Moser’s normal
form $N(A)$ , and take $X=\partial/\partial\rho_{A}$ with respect to the coordinate system
$(z’, \overline{z’}, \rho_{A}, v)$ . Each element $f\in C_{\partial\Omega,p}^{\infty}$ is written in the form

$f(z^{\prime },\overline{z’}, v)=\sum_{\alpha,\beta,\ell}C_{\alpha\overline{\beta}}^{\ell}z_{\alpha}’\overline{z_{\beta}’}v^{\ell}$
.

We denote by $C$ the totality of collections of the coefficients $C=(C^{\ell})\alpha\overline{\beta}$ .

Thus $C_{\partial\Omega,p}^{\infty}$ is identified with C. If $r\in \mathcal{R}_{\partial\Omega,p}^{F}$ is in the image of $f$ under

the bijection $C_{\partial\Omega,p}^{\infty}\rightarrow \mathcal{R}_{\partial\Omega,p}^{F}$ , then

$r=\sum_{\alpha,\beta,\ell,m}P_{\alpha}^{\ell}\frac{m}{\beta}(A, C)z_{\alpha}’\overline{z_{\beta}’}v^{\ell}\rho_{A}^{m}$
,

where $P^{\ell}\frac{m}{\beta}\alpha(A, C)$ are polynomials in $(A, C)\in N\times C$ . We thus write

$r=r(A, C)$ , and use the notation $\mathcal{R}_{N(A)}^{F}$ for the totality of $r=r(A, C)$

with $(A, C)\in N\times C$ . Thus $\mathcal{R}_{\partial\Omega,p}^{F}$ is identified with $\mathcal{R}_{N(A)}^{F}$ , and we have

a bijection $C$
$\rightarrow \mathcal{R}_{N(A)}^{F}$ as far as $A\in N$ is specified.
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The $H$-action (1.4) on $N$ extends to that on $N\times C$ as follows. For

$(A, C)\in N\times C$ and $h\in H$ , we define $(\overline{A},\overline{C})=h.(A, C)$ by $\overline{A}=h.A$

and $r(\overline{A},\overline{C})=|\det E_{h,A}’|^{-2/(n+1)}r(A, C)\circ h$ , where $E_{h,A}$ is defined by

(1.4)’. Then we have, as a generalization of (1.4), a group action

(6.5) $H\times N\times C\ni(h, A, C)\mapsto h.(A, C)\in N\times C$ ,

which is regarded as a transformation law for $C_{\partial\Omega,p}^{\infty}$ parametrizing $\mathcal{R}_{\partial\Omega,p}^{F}$ .

We now recall that $CR$ invariants are defined by (1.5). This notion

is generalized as follows. Let $I_{w}^{CR}(C)$ denote the totality of polynomials
$P$ in $(A, C)\in N\times C$ such that

$P(A, C)=|\det h’(0)|^{2w/(n+1)}P(h.(A, C))$ for any $h\in H$ .

Then $I_{w}^{CR}=I_{w}(N)\subset I_{w}(N\times C)=I_{w}^{CR}(C)$ , where $I_{w}(N\times C)$ stands for
the space of $H$ invariants of $N\times C$ , and similarly for $I_{w}(N)$ . As in the

case of $CR$ invariants, elements of $I_{w}^{CR}(C)$ can be identified with smooth
( $C^{\infty}$ or real analytic) functions on $\partial\Omega$ .

6.4 Boundary values of $\mathcal{C}$-dependent Weyl invariants

We want to refine Theorem 2.1 in such a way that the refinement
implies Theorem 6.1. As in the previous subsection, let us consider a
surface in Moser’s normal form $N(A)$ , and take $X=\partial/\partial\rho_{A}$ with respect

to the coordinate system $(z’, \overline{z’}, \rho_{A}, v)$ . For a Weyl invariant $W=W[r]$
of weight $w$ , the value at the origin is a polynomial in $(A, C)$ . We thus
write it as $W(A, C)$ , and denote the totality of these polynomials by
$I_{w}^{W}(N\times C)$ . Let $I_{w}^{W}(N)$ denote the totality of $W(A, C)\in I_{w}^{W}(N\times C)$

which do not contain the variable $C\in C$ . Then Proposition 2.1 implies
$I_{w}^{W}(N\times C)=I_{w}^{W}(N)$ for $w\leq n$ , and Theorem 2.2 is restated as

$I_{w}^{W}(N\times C)=I_{w}^{W}(N)=I_{w}^{CR}$ for $w\leq n$ .

Improving this, we have:

Theorem 6.2. For any $w\in \mathbb{N}_{0}$ , $I_{w}^{W}(N\times C)=I_{w}^{CR}(C)$ and thus
$I_{w}^{W}(N)=I_{w}^{CR}$ .

Theorem 6.3. If $n$ $\geq 3$ , then $I_{w}^{W}(N\times C)=I_{w}^{W}(N)$ for $w\leq n+2$

and $I_{n+3}^{W}(N\times C)\neq I_{n+3}^{W}(N)$ . If $n$ $=2$ , then $I_{w}^{W}(N\times C)=I_{w}^{W}(N)$ for
$w\leq 5$ and $I_{6}^{W}(N\times C)\neq I_{6}^{W}(N)$ .

In the case $n$ $=2$ , these theorems imply $I_{w}^{W}(N\times C)=I_{w}^{W}(N)=I_{w}^{CR}$

for $w\leq 5$ (cf. Remark 3.2).
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Remark 6.2. By direct computation, we can show that if $n=2$
then $W_{6}(A, C)\not\in I_{6}^{W}(N)$ for the Weyl invariant $W_{6}$ in Theorem 6.1.
This fact will be published elsewhere.

Theorem 6.1 is proved by using Theorem 6.2 if we recall the proof of
Theorem 2.2 which uses Theorem 2.1. In the next subsection, we outline
the proof of Theorem 6.2, which is analogous to that of Theorems 2.1.
We omit the proof of Theorem 6.3, which is technical and consists of
careful inspection of the proof of Theorem 6.2.

6.5 $\mathcal{C}$-dependent invariant theory

Recalling that Theorem 2.1 follows from Theorem 2.1’ at the end of
Subsection 5.1, let us first formulate a substitute for Theorem 2.1’. We
have to remove the weight restriction by using $N\times C$ in place of $N$ .

For a surface in Moser’s normal form $N(A)$ with $X=\partial/\partial\rho_{A}$ , we
take $r=r(A, C)\in \mathcal{R}_{N(A)}^{F}$ and consider the curvature $R$ of the Lorentz-

K\"ahler metric $g$ with potential $ r\neq\neq$ . As in Subsection 5.1, we identify $R$

with the collection of the components $R_{\alpha\overline{\beta}}$ of the covariant derivatives

at $e_{0}$ , and write $R=(R_{\alpha\overline{\beta}})$ . Then each $R_{\alpha\overline{\beta}}$ is a polynomial in $(A, C)\in$

$N\times C$ . We thus write $R_{\alpha\overline{\beta}}=R_{\alpha\overline{\beta}}(A, C)$ and define a map

$\mathcal{F}$ : $N\times C\ni(A, C)\mapsto R(A, C)\in \mathcal{R}^{aux}$ ,

where $R(A, C)=(R_{\alpha\overline{\beta}}(A, C))$ , and set $\mathcal{R}=\mathcal{F}(N\times C)$ . This map $\mathcal{F}$ and
$\mathcal{R}$ are refinements of the map in (5.7) and $\mathcal{R}_{n}$ .

Let us recall that the $H_{\#}$ -action on $N$ induces that on $\mathcal{R}_{n}$ via (5.2).
Likewise, the $H_{\neq\neq}$ -action on $N\times C$ , defined by $h_{\#}.(A, C)=h.(A, C)$ ,

induces that on $\mathcal{R}$ . Thus we can define $H_{\#}$ -invariants of weight $w$ on
$\mathcal{R}$ , and we denote the totality of these by $I_{w}(\mathcal{R})$ . The map $\mathcal{F}$ is $H_{\#}-$

equivariant and induces an injection

$\mathcal{F}^{*}:$ $I_{w}(\mathcal{R})\ni P(R)\mapsto P(\mathcal{F}(A, C))\in I_{w}(N\times C)=I_{w}^{CR}(C)$ ,

which corresponds to the map in (5.5). Let $I_{w}^{W}(\mathcal{R})$ denote the subspace
of $I_{w}(\mathcal{R})$ consisting of elements which are given by linear combinations
of complete contractions of the form (5.4) of weight $w$ . Then we can
state a substitute for Theorem 2.1’ as follows.

Theorem 6.2’. (I) The map $\mathcal{F}^{*}$ is bijective.

(II) $I_{w}(\mathcal{R})=I_{w}^{W}(\mathcal{R})$ for each $w\in \mathbb{N}_{0}$ .

Theorem 6.2 follows from Theorem 6.2’.
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As in the case of Theorem 2.1’, the proof of (I) is reduced to proving
the injectivity of $\mathcal{F}’(0)$ .

The statement (II) for $w\leq n$ is equivalent to that in Theorem 2.1’,
and most parts of the proof work as well for the case $w>n$ . The point
is to show

(6.6) $I_{w}^{W}(T_{0}\mathcal{R})=I_{w}(T_{0}\mathcal{R})$ ,

where $T_{0}\mathcal{R}\subset \mathcal{R}^{aux}$ is the tangent space of $\mathcal{R}$ at 0. In Subsection 5.3, we
outlined the proof of (6.6) for $w\leq n$ , where $(5.11)_{3}$ was used crucially.
The equality $(5.11)_{3}$ , stating that $(R_{\alpha\overline{\beta}})$ is $trace$-free, follows from the

equation

(6.7) $\triangle 0(\overline{r}_{A}^{F})_{\#}=O^{n+1}((\rho_{0})_{\#})$ .

where $\triangle 0$ and $(\rho_{0})_{\#}$ are those in (3.15). To prove (6.6) in the case

$w>n$ , we need to compute explicitly the error term $O^{n+1}((\rho_{0})_{\#})$ of

(6.7) when $\hat{r}_{A}^{F}$ is replaced by

$\overline{r}_{A,C}=\frac{d}{d\epsilon}r(\epsilon A, \epsilon C)|_{\in=0}$

The result is:

$\triangle_{0}\overline{r}_{A,C}=c_{n}\mu^{n+1}\triangle_{0}^{n+2}\overline{r}_{A,C}$ , where $c_{n}=\frac{(-1)^{n+1}}{(n+1)!^{2}}$ .

Using this equality in place of (6.7), we can remove the restriction $w\leq n$

in the argument of Subsection 5.3, and obtain (6.6) with the aid of the
invariant theory of [BEG].

Remark 6.3. In general, the Weyl invariants $W_{k}$ in Theorem 6.1
are not uniquely determined, since there are linear relations among the
boundary values of complete contractions of the form (2.1). For instance,

in the case $n$ $=2$ , the boundary values of $||R^{(4,2)}||^{2}$ and $||R^{(3,3)}||^{2}$ are
linearly dependent (and, accordingly, Theorem 3.1 includes two expres-

sions for $W_{4}$ and $W_{5}$ ). Under the terminology of this section, $||R^{(3,3)}||^{2}$

and $||R^{(2,4)}||^{2}$ are polynomials on $\mathcal{R}^{aux}$ such that the restrictions to the
submanifold $\mathcal{R}$ are linearly dependent functions.

The situation is similar for the Weyl invariants $W_{k}$ in Theorem 2.2,
though we do not know specific examples of non-uniqueness. (Note that
$||R^{(3,3)}||^{2}$ and $||R^{(2,4)}||^{2}$ for $n$ $=2$ are irrelevant to Theorem 2.2 because
of the weight restriction.) It should be mentioned that a basis of Weyl
invariants of degree $d<n$ is given in [BEG]; in particular, it is shown
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that, if $d=2<n$ , then $||R^{(p,q)}||^{2}(p\geq q\geq 2)$ form a basis of quadratic
Weyl invariants.
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Spaces of Cauchy-Riemann Manifolds

L\’aszl\’o Lempert

\S 1. Introduction.

This work deals with the embeddability problem for three dimen-
sional, compact, strongly pseudoconvex Cauchy-Riemann (CR) mani-
folds. Such a $CR$ manifold is given by a compact manifold $M$ without
boundary, $dimM$ $=3$ ; a rank two subbundle $H\subset TM$ ; and an endo-
morphism $J$ : $H\rightarrow H$ that satisfies $J^{2}=-id$ . (All manifolds, bundles
etc. in this paper are $C^{\infty}$ smooth.) Strong pseudoconvexity means that
for any nonzero local section $X$ of $H$ the vector field $[X, JX]$ is trans-
verse to $H$ ; or, equivalently, $H$ defines a contact structure on $M$ . By
declaring the frame $X$ , $JX$ , $[JX, X]$ positively oriented, $M$ acquires a
canonical orientation.

A $C^{1}$ function $f$ : $M$ $\rightarrow \mathbb{C}$ is $CR$ if it satisfies the tangential Cauchy-
Riemann equations

(1.1) $Xf+iJXf=0$ , $X\in H$ .

A central problem of the theory is to understand how many solutions
(1.1) has; in particular, if there are sufficiently many $C^{\infty}$ solutions
$f_{1}$ , $\ldots$ , $f_{k}$ to give rise to a smooth embedding $f=(f_{j})$ : $M$ $\rightarrow \mathbb{C}^{k}$

into some Euclidean space. If this is so, the $CR$ manifold $(M, H, J)$ is
called embeddable. In contrast with the higher dimensional case (see
[3] $)$ there may be very few $CR$ functions on a three dimensional $CR$

manifold; in fact, typically, the only $CR$ functions are the constants, see
[4,8,10,20,21].

We would like to describe the space of all (three dimensional, com-
pact, strongly pseudoconvex) $CR$ manifolds $(M, H, J)$ ; the subspace
of embeddable manifolds; and also to understand how many non iso-
morphic embeddable $CR$ manifolds there are. Here two $CR$ manifolds
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$(M, H, J)$ , $(M’, H’, J’)$ are isomorphic if there is a diffeomorphism $\Phi$ :
$M\rightarrow M’$ such that $\Phi_{*}H=H’$ and $\Phi_{*}J=J’$ .

The above classification problems have two components. One is to
classify all contact manifolds $(M, H)$ . This is a problem of differential
topology, and we shall not consider it here. Instead, we shall deal with
the other component of classification: given a contact manifold $(M, H)$

describe the space of (embeddable) $CR$ structures $J$ on it. Thus, given
a compact three dimensional $(M, H)$ , let $S_{0}=S_{0}(M, H)$ denote the set
of smooth $CR$ structures $J$ : $H\rightarrow H$ on it. It is easy to endow this set
with the structure of a smooth Fr\’echet manifold (in the sense of [9,19]).
Further, let $B_{0}\subset S_{0}$ denote the set of embeddable $CR$ structures, and
$\mathcal{M}_{0}=B_{0}/\sim the$ moduli space of $CR$ structures on $M$ , where
$J\sim J’$ if $(M, H, J)$ and $(M, H, J’)$ are isomorphic. The Fr\’echet-Lie

group Cont of contact diffeomorphisms of $(M, H)$ acts on $B_{0}$ , and two
$CR$ structures are isomorphic if they are on the same Cont orbit; thus
A4 $0=B_{0}/Cont$ .

The problem of describing the moduli space $\lambda 4_{0}$ is complicated by
the circumstance that the action of Cont is not free: this is due to the
fact that most $CR$ manifolds have no $CR$ automorphisms other than
the identity while some, such as the standard sphere in $\mathbb{C}^{2}$ , have. As a
result, even if $B_{0}$ turns out to be a smooth submanifold of $S_{0}$ , one will
expect $\mathcal{M}_{0}$ to have complicated singularities. To get around this, we
will endow our $CR$ manifolds with a marking, a device comparable to
passing from the moduli space of Riemann surfaces to the Teichm\"uller

space. It is quite likely that for different $CR$ manifolds different types
of marking will be convenient; the markings we will introduce work very
well for $CR$ manifolds that are close to the simplest $CR$ manifold, the
sphere in $\mathbb{C}^{2}$ . Thus, a marking $\mu$ will consist of an ordered pair of
distinct points $p_{1},p_{2}\in M$ and vectors $v_{i}\in T_{p_{i}}M$ transverse to $H_{p_{i}}$ . We
will also require that $v_{i}$ point to the positive side of $H_{p_{i}}$ , i.e., $X$ , $JX$ , $v_{2}$

should be a positively oriented frame for nonzero $X\in H_{p_{i}}$ . Given
$(M, H)$ , we let $S$ $=S(M, H)$ denote the Fr\’echet manifold of pairs $(J, \mu)$ ,

where $J$ is a $CR$ structure on $(M, H)$ and $\mu$ is a marking; and $B$ $=$

$B(M, H)\subset S$ the subset corresponding to embeddable structures. As
contact diffeomorphisms act on markings, we have an action of Cont on
$B$ , and we denote $\mathcal{M}=\mathcal{M}(M, H)=\#/Cont$ . The spaces $S$ , $B$ , $\mathcal{M}$ are
not very different from $S_{0}$ , $B_{0}$ , $\mathcal{M}_{0}$ . Indeed, the mappings $S$ $\rightarrow S_{0}$ etc.
obtained by forgetting the marking are surjective and have finite (twelve)

dimensional fibers. On the other hand, as we shall see, sometimes Cont
acts on $B$ freely, and this means that the structure of $\mathcal{M}$ is easier to
describe than that of $\mathcal{M}_{0}$ .

One can in general conjecture that $B$ (resp $B_{0}$ ) is a closed subset
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of $S$ (resp $S_{0}$ ), and even an analytic subset. Further, when $B$ is a
submanifold, $\mathcal{M}$ should also be a manifold. At present there are some
results which point in this direction, that we will survey below; but
overall, the conjectures are very much open.

Most available results pertain to $CR$ manifolds that are embeddable
into $\mathbb{C}^{2}$ . Thus, suppose $(M, H, J_{0})$ is embeddable into $\mathbb{C}^{2}$ .

Theorem 1.1. $J_{0}\in S_{0}$ has a neighborhood $N_{0}$ such that $N_{0}\cap B_{0}$

is closed in $N_{0}$ . Similarly, for any marking $\mu_{0}$ , $(J_{0}, \mu o)\in\S$ has a closed
neighborhood $N$ such that $N\cap B$ is closed in $S$ .

This was first proved by Epstein, see [7]. The proof given in Section
2 is based on the stability theorem of [17], also used by Epstein; but our
proof avoids the very precise spectral analysis of the tangential Cauchy-
Riemann operator from [7]. Applying the more general stability results
of H.-L. Li, see [18], the same theorem can be proved e.g. for $(M, H, J_{0})$

that is embeddable into the total space of a line bundle over $\mathbb{P}_{1}$ as the
boundary of a neighborhood of the zero section.

For stronger results we will need to assume that $(M, H, J_{0})$ is
$(S^{3}, H_{0}, J_{0})$ , the $CR$ structure inherited by the unit sphere { $z\in \mathbb{C}^{2}$ :
$|z|=1\}$ from $\mathbb{C}^{2}$ .

Theorem 1.2. (Bland [1]) If $(M, H, J_{0})=(S^{3}, H_{0}, J_{0})$ then $ J_{0}\in$

$S_{0}$ has a neighborhood $N_{0}$ such that $N_{0}\cap B_{0}$ is a submanifold of $N_{0}$ .

Given a marking $\mu=(p_{i}, v_{i})$ on $(S^{3}, H_{0})\subset \mathbb{C}^{2}$ , look at the complex

lines $L_{i}\subset \mathbb{C}^{2}$ that pass through $p_{i}$ and whose tangent space contains
$v_{i}$ . If $L_{1}$ and $L_{2}$ intersect each other in one point, and this point is an
interior point of the unit ball, we say that the marking is elliptic.

Theorem 1.3. If $\mu_{0}$ is an elliptic marking of $(S^{3}, H_{0})$ then
$(J_{0}, \mu_{0})\in S$ has $a$ Cont invariant neighborhood $N$ such that
(a) $\mathcal{U}=N\cap B$ is a submanifold of $N$ .

(b) $\mathcal{U}\rightarrow \mathcal{U}/Cont(\subset \mathcal{M})$ is a trivial smooth principal Cont bundle for
some smooth structure on $\mathcal{U}/Cont$ .

Thus a nonempty open piece of the moduli space $\mathcal{M}$ is an infinite
dimensional Fr\’echet manifold. It is very likely that the neighborhood $N$

in the above theorem can be chosen to contain all $CR$ structures that
admit an embedding into $\mathbb{C}^{2}$ as a strongly convex hypersurface, with
arbitrary “elliptic” markings (ellipticity of a marking in this case can
also be defined in terms of the Kobayashi metric, see section 5). What
is missing from the proof is an improvement on Bland’s Theorem 1.2
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to the effect that $N_{0}$ can be chosen to consist of all $CR$ manifolds that
embed into $\mathbb{C}^{2}$ as strongly convex hypersurfaces.

As to its form, Theorem 1.3 is related to the slice theorem of Cheng
and Lee in [6], but the content is rather different. Indeed, Cheng and
Lee construct a local slice for the action of Cont on the space of all
$CR$ structures (not just embeddable ones). Also, their approach is more
abstract, and the slice is obtained by the application of the implicit
function theorem, while in our approach the moduli space is represented
in rather concrete terms.

\S 2. Proof of Theorem 1.1

We first observe that there is a positive integer $k$ such that if a
$CR$ manifold $(M, H, J)$ admits a $CR$ embedding into $\mathbb{C}^{2}$ of class $C^{k}$

then it also admits a $CR$ embedding of class $C^{\infty}$ , i.e., is embeddable in

our terminology. To check this we recall Boutet de Monvel’s criterion,
see [3], that $(M, H, J)$ is embeddable if the tangential Cauchy-Riemann
operator $\overline{\partial}_{J}$ : $L^{2}(M)\rightarrow L_{0,1}^{2}(M)$ has closed range (to define the above $L^{2}$

spaces we endow $M$ with a continuous Riemann metric). On the other

hand if $(M, H, J)$ is $C^{k}$ embeddable into $\mathbb{C}^{2}$ then it can be regarded as

the $C^{k}$ boundary of a strongly pseudoconvex domain $D\subset \mathbb{C}^{2}$ , and $\overline{\partial}_{J}$

becomes the boundary operator $\overline{\partial}_{b}$ . Now Kohn in [12] shows that in this
case $\overline{\partial}_{b}$ : $L^{2}(\partial D)\rightarrow L_{0,1}^{2}(\partial D)$ has closed range. Strictly speaking Kohn
assumes that $D$ has $C^{\infty}$ boundary, but his proof uses only finitely many
derivatives of a defining function of $D$ ; whence the theorem is true as
soon as $\partial D$ is of class $C^{k}$ with $k$ sufficiently large. Putting these two
results together we obtain our claim.

Next choose a $CR$ embedding $f_{0}$ : $(M, H, J_{0})\rightarrow \mathbb{C}^{2}$ of class $C^{\infty}$ , a $k$

as in the above observation, and an $\epsilon>0$ with the property that any $C^{k}$

mapping $f$ : $M$ $\rightarrow \mathbb{C}^{2}$ whose $C^{k}$ -distance to $f_{0}$ is $\leq\epsilon$ is a (differentiate)
embedding. In [17] we proved $J_{0}$ has a neighborhood $N_{0}\subset S_{0}$ such that
for any $J\in N_{0}\cap B_{0}$ the $CR$ manifold $(M, H, J)$ admits a $CR$ embedding
$f$ into $\mathbb{C}^{2}$ with $|f-f_{0}|_{C^{k+1}}<\epsilon$ . To verify $N_{0}\cap B_{0}$ is closed in $N_{0}$ ,
let $J_{l/}\in N_{0}\cap B_{0}$ be a sequence converging to $J\in N_{0}$ . Choose $CR$

embeddings $f_{lJ}$ : $(M, H, J_{\iota/})\rightarrow \mathbb{C}^{2}$ with $|f_{l/}-f_{0}|_{C^{k+1}}<\epsilon$ . In view of the
Arzel\‘a-Ascoli theorem there is a subsequence $f_{l/_{j}}$ that converges to some
$f$ : $M\rightarrow \mathbb{C}^{2}$ in the $C^{k}$ topology; as $|f-f_{0}|_{C^{k}}\leq\epsilon$ , $f$ is an embedding.

It is in fact a $CR$ embedding of $(M, H, J)$ of class $C^{k}$ . According to our
initial observation this implies $J$ is embeddable, $J\in N_{0}\cap B_{0}$ , and we
are done.

The second claim of Theorem 1.1 follows from the first if we note
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that the mapping $N$ $\rightarrow N_{0}$ defined by forgetting the marking is smooth
and $B$ is the preimage of $B_{0}$ .

\S 3. Embedding families of $CR$ structures.

In this section we will consider a $CR$ manifold $(M, H, J_{0})$ with a
$CR$ embedding $f_{0}$ : $M\rightarrow \mathbb{C}^{2}$ , and a smooth family $j$ : $\mathcal{T}_{1}\rightarrow S_{0}$ of
$CR$ structures, parametrized by some neighborhood $\mathcal{T}_{1}$ of 0 in a Fr\’echet

space $\mathcal{T}$ , $j(0)=J_{0}$ . We will also assume that $j$ takes values in the
subspace of embeddable $CR$ structures $B_{0}\subset S_{0}$ . We will prove

Theorem 3.1. There are a neighborhood $\mathcal{T}_{2}\subset \mathcal{T}_{1}$ of 0 and $a$

smooth family of $CR$ embeddings $f(t)$ : $(M, H,j(t))\rightarrow \mathbb{C}^{2}$ , $t\in \mathcal{T}_{2}$ , such
that $f(0)=f_{0}$ .

Above $f(t)$ being a smooth family means that $\mathcal{T}_{2}\ni t\mapsto f(t)\in$

$C^{\infty}(M, \mathbb{C}^{2})$ is a $C^{\infty}$ mapping. A closely related result is given in [7,
part $II$ , Theorem 8.1]. There a real analytic family of embeddable $CR$

structures parametrized by an interval is considered; it is not assumed,
though, that the manifolds embed into $\mathbb{C}^{2}$ . The conclusion is then as
above (with $\mathbb{C}^{2}$ replaced by some $\mathbb{C}^{n}$ , and without $f(0)=f_{0}$ ). It is also
indicated how to extend that theorem to higher dimensional parameter
spaces and smooth families if a certain relative index vanishes. This

$1att\mathbb{C}^{2}$.er condition is known to be satisfied when $(M, H,j(0))$ embeds into

Observe that Theorem 3.1 is a counterpart of Theorem 1.1 in [17],
but while [17] is about embeddings of perturbations $J_{1}$ of $J_{0}$ , Theorem
3.1 is about embeddings of deformation families. Neither result is a
consequence of the other, but their proofs use similar tools. For this
reason we start by recalling some results from [17].

Let $\overline{Y}$ be a compact complex manifold with smooth boundary $\partial Y$

and interior $Y$ ; we will denote the complex structure of $\overline{Y}$ by $J_{0}$ . Let
$L\rightarrow(\overline{Y}, J_{0})$ be a smooth line bundle, holomorphic on $Y$ . The Cauchy-
Riemann operator $C^{\infty}(L)\rightarrow C_{0,1}^{\infty}(L)$ will be denoted $\overline{D}$ . In [17] we

introduced a scale of anisotropic Sobolev norms $||||_{s}$ , $s=1,2$ , $\ldots$ on
$C^{\infty}(L)$ resp. $C_{0,1}^{\infty}(L)$ whose basic properties we will list below.

Proposition 3.2. $C^{k}$ H\"older norms $(k=1,2, \ldots)$ are dominated
by $||||_{s}$ if $s>2(n+k)$ , $n=dim_{\mathbb{C}}Y$ .

The norms $||||_{s}$ come from inner products $(, )_{s}$ . It follows that if
we denote the completion of $C^{\infty}(L)$ , $C_{0,1}^{\infty}(L)$ with respect to $||||_{s}$ by $\mathcal{H}^{s}$ ,

$H_{0,1}^{s}$ , these spaces are Hilbert spaces with inner product (the extension
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of) $(, )_{s}$ , and for $s>2n+2$ they are continuously embedded into $C^{1}(L)$

resp. $C_{0,1}^{1}(L)$ . Also, [17, Proposition 2.2] implies that $\overline{D}:\prime H^{s}\rightarrow H_{0,1}^{s-1}$

is continuous.
Rom now on we will also assume that the Levi form of $\partial Y$ has at

least one negative eigenvalue in every point of $\partial Y$ . Then we have

Proposition 3.3. There are constants $C_{s}$ such that for $u\in H^{s}$

$(3.1)$ $||u||_{s}\leq C_{s}(||\overline{D}u||_{s-1}+||u||_{0})$ .

Proof. (3.1) is proved in [17, Theorem 3.1] for $u\in C^{\infty}(L)$ ; since
$C^{\infty}(L)$ is dense in $H^{s}$ it is true for $u\in H^{s}$ as well.

Now assume that $(Y, J_{0})$ contains a nonsingular compact complex
hypersurface $Z$ without boundary, and that $j(t)$ is a smooth family
of complex structures on $\overline{Y}$ parametrized by some open neighborhood
$\mathcal{T}’$ of 0 in a Fr\’echet space $T$ . We will also assume that $J(0)=J_{0}$ ,
and that the tangent bundle $TZ$ is invariant under all $J(t)$ ; thus $Z$ is
a complex submanifold of all $(Y, J(t))$ . Let $L(t)\rightarrow(\overline{Y}, J(t))$ denote
the line bundles determined by the divisor $Z$ , $L(0)=L$ , and $\overline{D}(t)$ :
$C^{1}(L(t))\rightarrow C_{0,1}(L(t))$ the corresponding Cauchy-Riemann operators,
$\overline{D}(0)=\overline{D}$ .

Proposition 3.4. There are a neighborhood $\mathcal{T}’’\subset \mathcal{T}’$ of 0, $a$

family of smooth bundle isomorphisms $\Phi_{t}$ : $L\rightarrow L(t)$ , and a smooth
family of first order linear partial differential operators $\Lambda_{t}$ : $ C^{\infty}(L)\rightarrow$

$C_{0,1}^{\infty}(L)$ , $t\in \mathcal{T}^{JJ}$ , such that

(i) $\Lambda_{0}=0$ ,
(ii) for every $s=1,2$ , $\ldots$ , $\Lambda_{t}$ extends to a smooth family of operators

$H^{s}\rightarrow H_{0,1}^{s-1}$ ;

(ii) for $u\in C^{\infty}(L)$ the Cauchy-Riemann equation $\overline{D}(t)\Phi_{t}ou=0$ is
equivalent to
$\overline{D}u+\Lambda_{t}u=0$ .

The proof of this parallels the proof of [17, Lemma 4.2], so we omit
it. Here we record that according to the proof in [17], $\Phi_{t}$ , $\Lambda_{t}$ satisfy

(3.2) $\overline{D}(t)\Phi_{t}$ $\circ u=\Phi_{t}\circ\overline{D}u+\Phi_{t}\circ\Lambda_{t}u$ .

It follows that for $t\in \mathcal{T}’’$ , $s=1,2$ , $\ldots$ there are constants $C_{s,t}$ such that
for $u\in H^{s}$

(3.3) $||u||_{s}\leq C_{s,t}(||\overline{D}u+\Lambda_{t}u||_{s-1}+||u||_{0})$ .
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Indeed, this is just (3.1) applied to $\overline{D}(t)$ , $L(t)$ instead $\overline{D}$ , $L$ (here we
assume $I’’$ is so small that the Levi form of $\partial(Y, J(t))$ has a negative
eigenvalue for $t\in \mathcal{T}’’$ ).

Proposition 3.5. Given $s$ , the constant $C_{s,t}$ in (3.3) is locally

uniform in $t\in \mathcal{T}’’$ .

Proof. Fix $\tau\in \mathcal{T}’’$ . With $t\in I’’$ we have

$||u||_{s}\leq C_{s,\tau}(||(\overline{D}+\Lambda_{\tau})u||_{s-1}+||u||_{0})$

$\leq C_{s,\tau}(||(\overline{D}+\Lambda_{t})u||_{s-1}+||u||_{0})+C_{s,\tau}||(\Lambda_{\tau}-\Lambda_{t})u||_{s-1}$ .

If $t$ is sufficiently close to $\tau$ , Proposition 3.4 (ii) implies that the last
term here is $\leq||u||_{s}/2$ . It then follows that $C_{s,t}=2C_{s,\tau}$ can be chosen
in (3.3).

Proposition 3.6. There is a neighborhood $\mathcal{T}’’’\subset \mathcal{T}’’$ of 0 such
that given $s>2n+4$ we have with constants $\overline{C}_{s,t}(t\in \mathcal{T}^{JJJ})$

$||u||_{s}\leq\overline{C}_{s,t}||\overline{D}u+\Lambda_{t}u||_{s-1}$ ,

whenever $u\in\prime\kappa^{s}$ is orthogonal to $H^{0}(L)$ with respect to $(, )_{0}$ . Here
$\overline{C}_{s,t}$ can be chosen locally uniform in $t\in \mathcal{T}^{JJJ}$ .

Proof. Let $\tau\in \mathcal{T}^{JJ}$ If we can not find uniform constants $\overline{C}_{s,t}$

in any neighborhood of $\tau$ then in view of Proposition 3.5 there exist
a sequence $ t_{i}\rightarrow\tau$ and $u_{i}\in H^{s}$ orthogonal to $H^{0}(L)$ with $||u_{i}||_{0}=1$ ,
$||\overline{D}u_{i}+\Lambda_{t_{i}}u_{i}||_{s-1}\rightarrow 0$ . By Proposition 3.5, $||u_{i}||_{s}$ is bounded, hence
by Proposition 3.2 and the Arzel\‘a-Ascoli theorem a subsequence $u_{l/_{i}}$

converges to $u\in C^{1}(L)$ in $C^{1}$ -norm. Then $||u||_{0}=1$ . Also $\overline{D}u+\Lambda_{\tau}u=0$ ,
so that $\phi_{\tau}ou\in H^{0}(L(\tau))$ , and $u$ is orthogonal to $H^{0}(L)$ . But by
[17, Proposition 5.2] this implies $u=0$ if $\tau$ is in a sufficiently small
neighborhood $\mathcal{T}^{JJJ}$ of 0, which is a contradiction.

Corollary 3.7. The operator

$\overline{D}+\Lambda_{t}$ : $H^{s}\rightarrow H_{0,1}^{s-1}$

has closed range if $s>2n+4$ , $t\in \mathcal{T}’’’$ .

Proof of Theorem 3.1. We can assume that $M$ is a hypersurface in
$\mathbb{C}^{2}$ and its $CR$ structure $J_{0}$ is inherited from $\mathbb{C}^{2}$ ; further, that $f_{0}$ is the
inclusion $M$ $\subset \mathbb{C}^{2}$ . $M$ divides $\mathbb{P}_{2}\supset \mathbb{C}^{2}$ in two parts, let $Y$ denote the
pseudoconcave one, and $\overline{Y}=Y\cup M$ . Denote the complex structure on
$\overline{Y}$ inherited from $\mathbb{P}_{2}$ by $J_{0}$ . Also, let $Z\subset Y$ be the line at infinity. In
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[16] we pointed out that Kiremidjian’s theorem in [11] implies that for
$t\in \mathcal{T}_{1}$ near 0 $\overline{Y}$ admits a complex structure $J(t)$ that induces the $CR$

structure $j(t)$ on $(M, HM)$ , and which agrees with $J_{0}$ in points of $Z$ . In
fact Kiremidjian’s proof constructs a unique such $J(t)$ , and one checks
that $J(t)$ depends smoothly on $t$ . Also $J(0)=J_{0}$ .

Let now $L(t),\overline{D}(t)$ , $\gamma\{^{s}$ , $H_{0,1}^{s-1}$ be as above, and $\Phi_{t}$ , $\Lambda_{t}$ as in Proposi-

tion 3.4. The homogeneous coordinates on $\mathbb{P}_{2}$ give rise to three sections
$u_{0}^{i}\in H^{0}(L)$ , $i=0,1$ , 2 that span $H^{0}(L)$ . In [17, Section 5] we proved
that with a sufficiently small neighborhood $\mathcal{T}_{2}$ of 0 there are unique sec-
tions $u_{t}^{i}\in C^{\infty}(L)$ , $t\in I_{2}$ , such that $\Phi_{t}\circ u_{t}^{i}\in H^{0}(L(t))$ and $u_{t}^{i}-u_{0}^{i}$ is
orthogonal to $H^{0}(L)$ with respect to $(, )_{0}$ , $i=0,1,2$ . We will assume
$I_{2}\subset \mathcal{T}’’’$ from Proposition 3.6, and proceed to show that $u_{t}^{i}\in C^{\infty}(L)$

depends smoothly on $t$ . It will suffice to show that for every $s>8$ ev-
ery $\tau\in \mathcal{T}_{2}$ has a neighborhood on which the mapping $t\mapsto u_{t}^{i}\in\prime H^{s}$ is
smooth.

Observe that $\Phi_{t}\circ u_{t}^{i}\in H^{0}(L(t))$ implies $(\overline{D}+\Lambda_{t})u_{t}^{i}=0$ , hence also

(3.4) $(\overline{D}+\Lambda_{\tau})(u_{t}^{i}-u_{\tau}^{i})+(\Lambda_{t}-\Lambda_{\tau})(u_{t}^{i}-u_{\tau}^{i})=(\Lambda_{t}-\Lambda_{\tau})u_{\tau}^{i}$ .

Introduce a left inverse $Q$ of $\overline{D}+\Lambda_{\tau}$ as follows. Given $s>8$ and
$\alpha\in H_{0,1}^{s-1}$ , write $\alpha=\beta+\gamma$ with $\beta$ in the range of $\overline{D}+\Lambda_{\tau}$ : $H^{s}\rightarrow H_{0,1}^{s}$

and $\gamma$ orthogonal to this range with respect to $(, )_{s-1}$ . By virtue of

Corollary 3.7 this can be done. Put $Q\alpha=u\in\prime H^{s}$ if $(\overline{D}+\Lambda_{\tau})u=\alpha$

and $u$ is orthogonal to $H^{0}(L)$ with respect to $(, )_{0}$ . Such a $u$ can be

found because $dimH^{0}(L)=dimKer(\overline{D}+\Lambda_{\tau})=3$ , see [17, Proposition

5.1, also Proposition 5.2]. Also note that $Q$ : $H_{0,1}^{s-1}\rightarrow\prime H^{s}$ is a bounded
operator.

Putting $(\overline{D}+\Lambda_{t})(u_{t}^{i}-u_{\tau}^{i})=\alpha_{t}$ we can write (3.4) as

$\alpha_{t}+(\Lambda_{t}-\Lambda_{\tau})Q\alpha_{t}=(\Lambda_{t}-\Lambda_{\tau})u_{\tau}^{i}$ .

If $t$ is sufficiently close to $\tau$ , the norm of the operator $(\Lambda_{t}-\Lambda_{\tau})Q$ :
$H_{0,1}^{s-1}\rightarrow H_{0,1}^{s-1}$ is less than one, whence it follows that

$\alpha_{t}=(I+(\Lambda_{t}-\Lambda_{\tau})Q)^{-1}(\Lambda_{t}-\Lambda_{\tau})u_{\tau}^{i}\in H_{0,1}^{s-1}$

depends smoothly on $t$ . Therefore the same holds for $ u_{t}^{i}=u_{\tau}^{i}+Q\alpha_{t}\in$

$H^{s}$ , and this proves that $t\mapsto u_{t}^{i}\in C^{\infty}(L)$ is smooth.
Assuming $I_{2}$ is sufficiently small we now obtain the smooth family

$f(t)$ of the Theorem in the form

$f(t)=(\frac{u_{t}^{1}}{u_{t}^{0}},$ $\frac{u_{t}^{2}}{u_{t}^{0}})|_{M}=(\frac{\Phi_{t}\circ u_{t}^{1}}{\Phi_{t}\circ u_{t}^{0}}$ , $\frac{\Phi_{t}\circ u_{t}^{2}}{\Phi_{t}\circ u_{t}^{0}})|_{M}$
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\S 4. Moduli spaces of convex domains

Our approach to Theorem 1.3 will be through moduli spaces of con-
vex domains. In this section we will review the relevant facts.

We will denote by $\mathcal{X}_{0}$ the space of strongly convex smoothly bounded
domains $D\subset \mathbb{C}^{2}$ that contain the origin. As explained in [15] (where
the notation was $\mathcal{X}$ ) this is a Fr\’echet manifold, in fact an open convex
cone in some Fr\’echet space. The set of those $D\in \mathcal{X}_{0}$ that are invariant
under the circle action

(4.1) $\gamma_{t}$ : $z\mapsto e^{it}z$
$(t\in \mathbb{R})$ ,

i.e. the circular domains, will be denoted $C_{0}$ . We will work with marked
domains, too. A marking for $D\in \mathcal{X}_{0}$ consists of a pair $\eta$ of linearly

independent vectors $\eta_{1}$ , $\eta_{2}\in T_{0}^{1,0}D$ . The space of marked domains $(D, \eta)$

with $D\in \mathcal{X}_{0}$ will be denoted $\mathcal{X}$ ; this is again a Fr\’echet manifold. We
will say that two marked domains $(D, \eta)$ , $(D’, \eta\prime)\in \mathcal{X}$ are equivalent,
$(D, \eta)\sim(D’, \eta\prime)$ , if there is a biholomorphism $\Phi$ : $D\rightarrow D’$ that fixes 0
and maps the marking $\eta=(\eta_{1}, \eta_{2})$ to $\eta’=(\eta_{1}’, \eta_{2}’)$ . The moduli space
$\mathcal{X}/\sim of$ strongly convex smooth domains was described in [2] and [15]
in terms of invariants associated with the Kobayashi metric. We will
briefly recall how this can be done, mostly following [2], though not its
notation.

Given any strongly convex domain $D$ , a point $a\in D$ and a vector
$v\in T_{a}^{1,0}D$ , consider holomorphic mappings $f$ of the unit disc

$\triangle=\{\zeta\in \mathbb{C} : |\zeta|<1\}$

into $D$ such that $f(O)=a$ and $f_{*}(0)\partial/\partial\zeta=\lambda v$ with some $\lambda\geq 0$ .

There is a unique mapping $f$ that maximizes the value of $\lambda$ , called
extremal map (determined by $a$ and $v$ ); this map is smooth on $\triangle-$ and
maps the circle $\partial\triangle$ into $\partial D$ , see [13]. If, for fixed $a$ we let $v$ vary, the
vectors $ f_{*}(0)\partial/\partial\zeta$ for the corresponding extremal maps $f$ will $trace$ the

smooth boundary of a strongly convex circular domain in $T_{a}^{1,0}D$ , called
the Kobayashi indicatrix.

Now the first invariant of $(D, \eta)\in \mathcal{X}$ is obtained by looking at the

Kobayashi indicatrix $I^{*}\subset T_{0}^{1,0}D$ of $D$ at 0. There is a unique linear map
$A$ : $T_{0}^{1,0}D\rightarrow \mathbb{C}^{2}$ that sends the marking $(\eta_{1}, \eta_{2})$ to the standard basis
$(1, 0)$ , $(0, 1)$ of $\mathbb{C}^{2}$ ; the image of $I^{*}$ under $A$ will be denoted $I$ $=I(D, \eta)$ .

An exponential-like mapping $r$ : $\partial I\rightarrow\partial D$ , called the circular rep-
resentation, can be defined as follows. Given $v\in\partial I$ , let $f$ : $\triangle\rightarrow D$ be

the extremal map determined by $O\in D$ , $A^{-1}v\in T_{0}^{1,0}D$ . Then putting
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$r(v)=f(1)$ a diffeomorphism $r$ : $\partial I\rightarrow\partial D$ is obtained. This diffeomor-
phism has a natural extension to a homeomorphism $\overline{I}\rightarrow\overline{D}$ , smooth off
0, which is also called circular representation, but we will not deal with
this extension.

The hypersurfaces $\partial D$ , $\partial I\subset \mathbb{C}^{2}$ inherit a $CR$ structure from $\mathbb{C}^{2}$ ,
denoted $(\partial D, H(\partial D)$ , $J_{D})$ resp. $(\partial I, H(\partial I),$ $J_{I})$ , and it turns out that
the circular representation $r$ maps $H(\partial I)$ to $H(\partial D)$ , i.e. $r$ is a contact
diffeomorphism. However, in general it does not intertwine $J_{D}$ , $J_{I}-$ in
other words, it is not a $CR$ isomorphism -and one can measure the
extent to which it distorts the $CR$ structure by looking at the complex
line bundles over $\partial D$ resp. $\partial I$

$H^{0,1}(\partial D)=\{\xi+iJ_{D}\xi : \xi\in H(\partial D)\}\subset \mathbb{C}\otimes H(\partial D)$ ,

$H^{0,1}(\partial I)=\{\xi+iJ_{I}\xi : \xi\in H(\partial I)\}\subset \mathbb{C}\otimes H(\partial I)$ ,

$H^{1,0}(\partial I)=H^{0,1}(\partial I)$ ,

and the $CR$ deformation tensor which is a bundle map

$\Phi_{D,\eta}$ : $H^{0,1}(\partial I)\rightarrow H^{1,0}(\partial I)$

with the property that the pull back

$r_{*}^{-1}H^{0,1}(\partial D)\subset \mathbb{C}\otimes H(\partial I)=H^{0,1}(\partial I)\oplus H^{1,0}(\partial I)$

is the graph of $\Phi_{D,\eta}$ . By [2], the pair $(I(D, \eta)$ , $\Phi_{D,\eta})$ depends only
the equivalence class of $(D, \eta)\in \mathcal{X}$ , and conversely, the knowledge of
$(I(D, \eta)$ , $\Phi_{D,\eta})$ allows one to reconstruct the equivalence class of $(D, \eta)$ .

Furthermore, the range of the invariants $I(D, \eta)$ , $\Phi_{D,\eta}$ can also be de-
scribed to some extent.

To this end notice that the circle action (4.1) decomposes any tensor
$\Phi$ : $H^{0,1}(\partial I)\rightarrow H^{1,0}(\partial I)$ into homogeneous tensors: $\Phi=\sum_{-\infty}^{\infty}\Phi_{\iota/};$

here $\gamma_{t}^{*}\Phi_{\iota/}=e^{i_{l}/t}\Phi_{1J}$ . Denote by $D_{I}$ the Fr\’echet space of smooth tensors
$\Phi$ : $H^{0,1}(\partial I)\rightarrow H^{1,0}(\partial I)$ whose decomposition contains homogeneous
terms $\Phi_{\iota/}$ with $lJ$ $>0$ only. These spaces patch together to form a
smooth Fr\’echet bundle $\prime D$

$=\bigcup_{I\in C_{0}}\prime D_{I}\rightarrow C_{0}$
. By [2] for any $(D, \eta)\in$

$\mathcal{X}$ the $CR$ deformation tensor $\Phi_{D,\eta}$ is in $\prime D_{I(D,\eta)}$ , whence we obtain a

(smooth) mapping $\overline{h}$ : $\mathcal{X}\rightarrow D$ that associates with $(D, \eta)\in \mathcal{X}$ the pair

of invariants $(I(D, \eta)$ , $\Phi_{D,\eta})$ . By the above discussion $h$ descends to a
mapping $h$ : $\mathcal{X}/\sim\rightarrow D\prime$ , and it turns out that $h$ is a homeomorphism onto
an open neighborhood of the zero section in the bundle $\prime D$ $\rightarrow C_{0}$ . This
is essentially contained in [2], although Bland and Duchamp consider
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only domains with fixed indicatrix $I$ . The proof, however, carries over
for variable indicatrices; see also equivalent result. As in [15, Theorem

10.2] one can prove that $\tilde{h}$ has smooth local right inverses. That is, given
$(D, \eta)\in \mathcal{X}$ , there are a neighborhood $\mathcal{V}\subset D$ of $\tilde{h}(D, \eta)$ and a smooth

mapping $k:\mathcal{V}\rightarrow \mathcal{X}$ with $\tilde{h}\circ k=id_{\mathcal{V}}$ and $k(\tilde{h}(D, \eta))=(D, \eta)$ .

In the sequel we will endow $\mathcal{X}/\sim with$ the smooth structure that
is induced from $V$ by the homeomorphism $h$ . Thus we have

Proposition 4.1. The canonical projection $\mathcal{X}\rightarrow \mathcal{X}/\sim is$ smooth
and has smooth local right inverses.

In addition to the circular representation $r$ : $\partial I\rightarrow\partial D$ discussed
above, later we will also need a canonical contact diffeomorphism be-
tween $(\partial D, H(\partial D))$ and $(S^{3}, H_{0})$ . We end this section by describing
how such a diffeomorphism can be constructed. This construction is not

holomorphically invariant (unlike the circular representation); it
could be made invariant for marked domains $(D, \eta)$ , but invariance will
not be the issue in our discussion.

Our first observation is the following. Let $H_{t}(t\in[0,1])$ be a smooth
family of contact structures on a manifold $M$ . Then one can canoni-
cally associate with this family a contact diffeomorphism $g$ : $(M, H_{0})\rightarrow$

$(M, H_{1})$ .

We will justify this observation under the assumption that $H_{t}$ are
orientable, hence given by a smooth family $\alpha_{t}$ of one forms on $M$ : $H_{t}=$

$Ker\alpha_{t}$ . The forms $d\alpha_{t}$ restricted to $H_{t}$ are nondegenerate, whence there
is a unique smooth family $V_{t}$ of vector fields tangent to $H_{t}$ such that

$V_{t}\lrcorner d\alpha_{t}|_{H_{t}}=\frac{d\alpha_{t}}{dt}|_{H_{t}}$

Denoting Lie derivative by $\mathcal{L}$ , these vector fields therefore satisfy

$\mathcal{L}_{V_{t}}\alpha_{t}=d(V_{t^{\lrcorner}}\alpha_{t})+V_{t^{\lrcorner}}d\alpha_{t}=V_{t^{\lrcorner}}d\alpha_{t}\equiv\frac{d\alpha_{t}}{dt}mod \alpha_{t}$ .

This implies that the flow $g_{t}$ of the time dependent field $V_{t}$ pulls back $\alpha_{t}$

to some multiple of $\alpha_{0}$ , in particular $g=g_{1}$ is a contact diffeomorphism
between $(M, H_{0})$ and $(M, H_{1})$ .

If now $D\in \mathcal{X}_{0}$ , the mapping $\rho(z)=z/||z||$ defines a diffeomorphism

of $\partial D$ to $S^{3}$ , although this is not in general a contact diffeomorphism
between $(\partial D, H(\partial D))$ and $(S^{3}, H_{0})$ . To remedy this, denoting the unit
ball of $\mathbb{C}^{2}$ by $B$ , and putting $D_{t}=tD+(1-t)B$ , $\rho|_{\partial D_{t}}$ will push
forward the contact structures $H(\partial D_{t})$ to a smooth family of contact
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structures $H_{t}$ on $S^{3}$ . Our observation above now supplies a canonical
contact diffeomorphism $g$ : $(S^{3}, H_{0})\rightarrow(S^{3}, H_{1})$ , whence also a canonical
contact diffeomorphism

(4.2) $ g^{-1}\circ\rho$ : $(\partial D, H(\partial D))\rightarrow(S^{3}, H_{0})$ .

\S 5. Proof of Theorem 1.3

The previous section described the spaces $\mathcal{X}$ , $\mathcal{X}/\sim of$ convex do-

mains; we shall now connect those spaces with the spaces $B(S^{3}, H_{0})$ ,
$\mathcal{M}(S^{3}, H_{0})$ of $CR$ manifolds. Thus, let $(D, \eta)\in \mathcal{X}$ be a marked domain.
Its boundary $\partial D$ inherits a $CR$ structure from $\mathbb{C}^{2}$ , $(\partial D, H(\partial D)$ , $J_{D})$ .
The marking $\eta$ of $D$ determines a marking $\mu’$ of this $CR$ manifold as
follows. For $i=1,2$ , consider the extremal mapping $e^{i}$ : $\triangle\rightarrow D$ deter-
mined by $\eta_{i}$ , and put

$p_{i}=e^{i}(1)$ , $v_{i}=-\frac{1}{\lambda}e_{*}^{i}(1)Im\frac{\partial}{\partial\zeta}$ .

The marking $\mu’=(p_{i}, v_{?}.)$ defines a marked $CR$ manifold $(\partial D, H(\partial D)$ ,
$J_{D}$ , $\mu’)$ . Via the contact diffeomorphism (4.2) constructed in Section 4
this marked $CR$ manifold can be identified with a marked $CR$ manifold
$(J, \mu)\in B(S^{3}, H_{0})$ , which we will also denote $\Theta(D, \eta)$ . Thus $\Theta$ is a
mapping from $\mathcal{X}$ to $B$ , and indeed a smooth mapping that descends to
a mapping $\theta$ : $\mathcal{X}/\sim\rightarrow \mathcal{M}$ .

Conversely, consider a marked $CR$ manifold $(J, \mu)\in B$ , where $J$ is
sufficiently close to the standard $CR$ structure $J_{0}$ of the sphere. By [17]
this implies there is a smooth $CR$ embedding

(5.1) $f$ : $(S^{3}, H_{0}, J)\rightarrow \mathbb{C}^{2}$

with image a strongly convex hypersurface. Denote the domain bounded
by this hypersurface by $D$ ; the marking $\mu=(p_{i}, v_{i})$ then defines points
$p_{i}’=f(p_{i})\in\partial D$ and vectors $v_{i}’=f_{*}v_{i}\in T_{p_{i}}’\partial D$ .

By [5] there are extremal mappings $e^{i}$ : $\triangle-\rightarrow\overline{D}$ with

$e^{i}(1)=p_{i}’$ , $e_{*}^{i}(1)Im\partial/\partial\zeta=-\lambda_{i}v_{i}’$ $(\lambda_{i}>0)$ .

These extremal mappings are unique up to composition by holomorphic
automorphisms of $\triangle$ that fix 1. When $J=J_{0}$ and $\mu=\mu_{0}$ is an elliptic
marking, the extremal discs $e^{1}(\triangle)$ , $e^{2}(\triangle)$ intersect in one point inside
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$D$ . More generally, if a $CR$ manifold $(S^{3}, H_{0}, J)$ admits a strongly con-
vex embedding into $\mathbb{C}^{2}$ , we will say that a marking $\mu$ is elliptic if the
two extremal discs $e^{1}(\triangle)$ , $e^{2}(\triangle)$ determined by the marking as above,
intersect (in which case they intersect in exactly one point). The set of
elliptically marked $CR$ manifolds will be denoted $\mathcal{E}\subset B$ .

Below we will need the fact that the extremal discs $e^{i}(\triangle)$ depend
smoothly on $D$ and $p_{i}’$ , $v_{i}’$ . This does not seem to have been published
anywhere, but a proof can be easily obtained by a small modification
of the arguments in [14]. A slightly weaker theorem is proved in [5],
where $D$ is, however, kept fixed. In any case, this shows that the subset
$\mathcal{E}$ of elliptically marked $CR$ manifolds is open in $B$ ; in particular, if
the marking $\mu$ above was close to an elliptic marking $\mu_{0}$ of $(S^{3}, H_{0}, J_{0})$

then itself is elliptic, that is, the extremal discs $e^{1}(\triangle)$ , $e^{2}(\triangle)$ above
intersect in some point. By modifying the embedding of $(S^{3}, H_{0}, J)$

into $\mathbb{C}^{2}$ we can assume that the point of intersection is 0; and also that
$e^{1}(0)=e^{2}(0)=0$ . With this normalization the $\lambda_{i}$ in (4.2) are uniquely
determined, and we can define a marking $\eta$ of $D\in \mathcal{X}_{0}$ by

$\eta_{i}=\frac{1}{\lambda_{i}}e^{i}(0)\frac{\partial}{\partial\zeta}\in T_{0}^{1,0}D$ $(i=1,2)$ .

We have thus associated a marked domain $(D, \eta)\in \mathcal{X}$ with an ellip-
tically marked $CR$ structure $(J, \mu)\in \mathcal{E}$ , in particular, with $(J, \mu)$ close
to $(J_{0}, \mu_{0})$ . This association is not unique, for it depends on the $CR$

embedding (5.1) we choose. However, Bland’s theorem (Theorem 1.2)
implies that $(J_{0}, \mu_{0})$ has a neighborhood $N\subset S$ such that $\mathcal{U}=N\cap B$ is
a submanifold of $N$ , and then Theorem 3.1 implies that (after a possible
shrinking) the mapping $f$ in (5.1) can be chosen to depend smoothly on
$(J, \mu)$ . This then makes the passage from $(J, \mu)\in \mathcal{U}$ to $(D, \eta)$ a smooth
mapping $\Psi$ : $\mathcal{U}\rightarrow \mathcal{X}$ . The construction was such that for $u\in \mathcal{U}\Theta(\Psi(u))$

is on the Cont orbit of $u$ , and for $x\in \mathcal{X}$ the marked domains $\Psi(\ominus(x))$

and $x$ are equivalent. By replacing $N$ by its Cont orbit we can assume
that $N$ , hence $\mathcal{U}$ are Cont invariant; then $\Psi$ descends to a continuous
open mapping $\psi$ : $U/Cont$ $\rightarrow \mathcal{X}/\sim and\theta\circ\psi=id_{\mathcal{U}/Cont}$ .

Ideas like the ones employed in the construction of the mappings $\Theta$ ,
$\Psi$ also let one understand the action of Cont on the open set $\mathcal{E}\subset B$ .

Proposition 5.1. If two elliptically marked $CR$ manifolds are $CR$

diffeomorphic then there is a unique $CR$ diffeomorphism between them.
Moreover, if $\mathcal{T}_{1}$ is an open set in some Fr\’echet space and $F$, $G$ : $I_{1}\rightarrow$

$\mathcal{E}\subset S$ are smooth mappings (as mappings into $S$) such that for every
$t\in I_{1}$ , $F(t)$ and $G(t)$ are $CR$ diffeomorphic, then the $CR$ diffeomorphism
between them (an element of Cont) depends smoothly on $t$ .
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Proof. If the elliptically marked $CR$ manifolds $(S^{3}, H_{0}, J, \mu)$ and
$(S^{3}, H_{0},\hat{J},\hat{\mu})$ are $CR$ diffeomorphic, the unique $CR$ diffeomorphism be-
tween them can be constructed as follows. Taking suitable convex em-
beddings of these $CR$ manifolds into $\mathbb{C}^{2}$ the image hypersurfaces will

bound strongly convex domains $D,\hat{D}$ and the markings $\mu,\hat{\mu}$ will induce
markings $\eta,\hat{\eta}$ on them, as explained above. It will suffice to show that

there is a unique biholomorphism $H$ between $(D, \eta)$ and $(\hat{D},\hat{\eta})$ , this
latter being a consequence of the biholomorphic invariance of extremal

discs. Indeed, let the linear map $L$ : $T_{0}^{1}$ ’ $0D\rightarrow T_{0}^{1}$ ’ $0\hat{D}$ map $\eta$ to $\hat{\eta}$ , then

for any $z\in\overline{D}\backslash \{0\}H(z)\in\overline{\hat{D}}$ can be obtained as follows. Let $e$ : $\triangle\rightarrow\triangle$

be the unique extremal mapping such that $e(0)=0$ , $e(\alpha)=z$ with some
$\alpha$ , $0<\alpha\leq 1$ , and let \^e : $\triangle\rightarrow\hat{D}$ be the unique extremal mapping such
that $\hat{e}_{*}(0)\partial/\partial\zeta=\lambda Le_{*}(0)\partial/\partial\zeta$ , with some $\lambda>0$ . Then $H(z)$ is given
by \^e(a); in particular $H$ is unique.

The second half of the Proposition is proved using the above passage
from $\mathcal{E}$ to $\mathcal{X}$ , and in addition Theorem 3.1 and the smooth dependence
of extremal maps on the data (the target domain, base points, resp.
tangent vector).

At this point we are ready to prove Theorem 1.3. Let $\pi$ , $\omega$ denote the
canonical projections $B\rightarrow B/Cont$ resp. $\mathcal{X}\rightarrow \mathcal{X}/\sim$ , see the diagrams:

$B$
$\underline{O-}$

$\mathcal{X}$ $B$ $\supset \mathcal{U}$

$\rightarrow\Psi$
$\mathcal{X}$

$\pi\downarrow$ $\omega\downarrow$ $\pi\downarrow$ $\omega\downarrow$

$B/Cont$ $\underline{\theta}\mathcal{X}/\sim$ $B/Cont$ $\rightarrow\psi \mathcal{X}/\sim$ .

The pullback of the smooth structure of $\mathcal{X}/\sim by\psi$ defines a smooth
structure on $\mathcal{U}/Cont$ . Thus $\psi$ and its inverse $\theta|_{\psi(\mathcal{U}/Cont)}$ are diffeomor-

phisms. We need to show that $\pi$ : $\mathcal{U}\rightarrow \mathcal{U}/Cont$ is a trivial smooth
principal bundle with structure group Cont. First, $\pi=\theta\circ\omega\circ\Psi$ is
smooth. Second, assuming $\mathcal{U}$ is sufficiently small, a section of $\pi$ can
be gotten by looking at a smooth local right inverse $\sigma$ of $\omega$ defined near
$\omega(\Psi(J_{0}, \mu_{0}))$ (cf. Proposition 4.1); then $\kappa=\Theta\circ\sigma\circ\psi$ is a smooth section
of $\pi$ . Finally, denoting the action of a contact diffeomorphism $\gamma\in Cont$

on $\mathcal{U}$ by a superscript, we define a smooth Cont equivariant mapping

Cont $\times B/Cont$ $\ni(\gamma,\overline{u})\mapsto(\kappa(\overline{u}))^{\gamma}\in \mathcal{U}$ .
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This has a smooth inverse

$\mathcal{U}\ni u\mapsto$ $(\Gamma(\kappa(\pi(u)), u)$ , $\pi(u))$ ,

where $\Gamma(v, u)$ denotes the unique $CR$ diffeomorphism between $v\in \mathcal{U}$ and
$u\in \mathcal{U}$ , cf. Proposition 5.1. Hence the Cont bundles $\mathcal{U}\rightarrow \mathcal{U}/Cont$ and
Cont $\times$ $Cont\rightarrow ZY/Cont$ are isomorphic, whence the theorem follows.
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Some Remarks on
Compact Strongly Pseudoconvex $CR$ Manifolds

Hing Sun LUK and Stephen S. T. YAU

Dedicated to Professor M. Kuranishi on his 70th birthday

\S 0. Introduction.
In this note, we make some remarks on compact strongly pseudocon-

vex $CR$ manifolds. These remarks are related to the problem of minimal
embedding dimension of a compact strongly pseudoconvex $CR$ manifold
in complex Euclidean space and the classification problem of compact
strongly pseudoconvex $CR$ manifolds. Most are contained in [LuY1-3]
and in our joint paper with Yung Yu [LuYY]. We hope that this expos-
itory note would be of interest for the study of the relationship between
the geometry of a compact strongly pseudoconvex $CR$ manifold and the
singularities that it may bound, much in the spirit of Kuranishi’s ap-

plication of $\overline{\partial}_{b}$ to the deformation of isolated singularities [Kul]. The
first author most gratefully recalls the years at Columbia when he stud-
ied with Professor Kuranishi and was brought into the fascinating field
of $CR$ geometry, being inspired by Professor Kuranishi’s mathematical
power and depth.

\S 1 Preliminary

Definition 1.1. Let $X$ be a connected real manifold of dimension
$2n-1$ , $n\geq 2$ . A $CR$ structure on $X$ is an $(n-1)$ -dimensional subbundle
$S$ of the complexifified tangent bundle $\mathbb{C}TX$ such that

(a) $S\cap\overline{S}=\{0\}$ ,

(b) If $L$ , $L^{/}$ are local sections of $S$ , then so is $[L, L^{J}]$ .

Definition 1.2. Let $L_{1}$ , $\ldots$ , $L_{n-1}$ be a local frame of S. Then
$\overline{L}_{1}$ , $\ldots,\overline{L}_{n-1}$ is a local frame of $\overline{S}$ and one may choose a local section $N$

Received September 25, 1995
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of $TX$ such that $L_{1}$ , $\ldots$ , $L_{n-1}$ , $\overline{L}_{1}$ , $\ldots$ , $\overline{L}_{n-1}$ , $N$ is a local frame of $\mathbb{C}TX$ .

The matrix $(c_{ij})$ defifined by

$[L_{i},\overline{L}_{j}]=\sum a_{ij}^{k}L_{k}+\sum b_{ij}^{k}\overline{L}_{k}+\sqrt{-1}c_{ij}N$

is Hermitian and is called the Levi form. The $CR$ manifold $X$ is called
strongly pseudoconvex if its Levi form is defifinite at each point of $X$ .

This condition is independent of the choice of local frame and it implies
the orientability of $X$ .

A fundamental invariant in $CR$ geometry is the $\overline{\partial}_{b}$ cohomology in-
troduced by Kohn-Rossi [KR]. The formulation below follows Tanaka
[T].

Definition 1.3. Let $A^{k}(X)=\Lambda^{k}\mathbb{C}TX^{*}$ and $A^{k}(X)=\Gamma(A^{k}(X))$ .

Then $\{A^{k}(X), d\}$ is the deRham complex. With the notation in Defifini-
tion 1.1, let

$A^{p,q}(X)=\{\varphi\in A^{p+q}(X)$ : $\varphi(Y_{1}, \ldots, Y_{p-1}, \overline{Z}_{1}, \ldots,\overline{Z}_{q+1})=0$ ,

for all $Y$ ’s in $\mathbb{C}TX$ and $Z$ ’s in $S$ }

and $A^{p,q}(X)=\Gamma(A^{p,q}(X))$ . Then

$A^{p+1,q-1}(X)\subset A^{p,q}(X)$ and $dA^{p,q}(X)\subset A^{p,q+1}(X)$ .

Hence let $C^{p,q}(X)=A^{p,q}(X)/A^{p+1,q-1}(X)$ and $C^{p,q}(X)=\Gamma(C^{p,q}(X))$ .
Then

$ A^{p,q}(X)\cup$

$\rightarrow d$

$A^{p,q+1}(X)$ induces $C^{p,q}(X)\rightarrow C^{p,q+1}\overline{\partial}_{b}(X)$ .
$\cup$

$A^{p+1,q-1}(X)$
$\rightarrow d$

$A^{p+1,q}(X)$

The cohomology groups of the resulting complex $\{C^{p,q}(X), \overline{\partial}_{b}\}$ will be
denoted by $H^{p,q}(X)$ .

The harmonic theory for the $\overline{\partial}_{b}$ complex on compact strongly pseu-
doconvex $CR$ manifolds was developed by Kohn [Ko]. The theory of
harmonic integrals on strongly pseudoconvex $CR$ structures over small
balls was due to Kuranishi [Ku2]. Using the former theory, Boutet de
Monvel [B] proved that if $X$ is a compact strongly pseudoconvex $CR$

manifold of dimension $2n-1$ and $n\geq 3$ , then there exist $C^{\infty}$ functions
$f_{1}$ , $\ldots$ , $f_{N}$ on $X$ such that each $\overline{\partial}_{b}h_{j}=0$ and $f=(f_{1}, \ldots, f_{N})$ defines
an embedding of $X$ in $\mathbb{C}^{N}$ . Thus, any compact strongly pseudoconvex
$CR$ manifold of dimension $\geq 5$ can be $CR$ embedded in some complex
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Euclidean space. Using the theory of harmonic integrals over small balls
of special type, Kuranishi [Ku2] proved that any strongly pseudoconvex
$CR$ manifold of dimension $2n-1$ with $n\geq 5$ can be locally $CR$ embed-
ded as a real hypersurface in $\mathbb{C}^{n}$ . For $n=4$ , Akahori [Ak] proved that
Kuranishi’s local embedding theorem is also true.

\S 2 Concerning the minimal embedding dimension in complex
Euclidean space

Let us first consider a compact strongly pseudoconvex manifold $X$

of dimension $2n-1$ where $n\geq 3$ . As mentioned above, $X$ can be $CR$

embedded in some $\mathbb{C}^{N}$ . It is therefore of interest to study the minimal
dimensional complex Euclidean space in which $XCR$ embeds. Our
starting point is the following two theorems.

Theorem 2.1. (Harvey-Lawson $[HL]$, see also $Yau[Y]$) Let $X$

be a compact strongly pseudoconvex $CR$ manifold of dimension $2n-1$ ,
$n\geq 2$ , in $\mathbb{C}^{N}$ . Then there exists a unique bounded complex analytic
subvariety $V$ of dimension $n$ in $\mathbb{C}^{N}\backslash X$ such that $X$ is the boundary

of $V$ in the $C^{\infty}$ sense. Further, $V$ is smooth except at fifinitely many
isolated singular points.

Theorem 2.2. $(Yau[Y])$ Let $X$ be a compact strongly pseudo-
convex $CR$ manifold of dimension $2n-1$ , $n\geq 3$ , which is the bound-
ary of a Stein space $V$ with isolated singularities $p_{1}$ , $\ldots,p_{m}$ . Then for
$1\leq q\leq n-2$ ,

$m$

$H^{p,q}(X)\cong\oplus i=1H_{p_{i}}^{q+1}(V, \Omega_{V}^{p})$

where $\Omega_{V}^{p}$ is the sheaf of germs of holomorphic $p$-forms on V. If $p_{1}$ , $\ldots$ ,
$p_{m}$ are hypersurface singularities, then

$dimH^{p,q}(X)=\{$

0 $p+q\leq n-2$ $1\leq q\leq n-2$

$\sum_{i=1}^{m}\tau_{i}$ $p+q=n-1$ , $n$ $1\leq q\leq n-2$

0 $p+q\geq n+1$ $1\leq q\leq n-2$

where $\tau_{i}$ is the number of moduli of $V$ at $p_{i}$ .

Theorem 2.2 provides a solution to the Kohn-Rossi conjecture [KR]
that “in general, either there is no boundary cohomology (in degree
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$(p, q)$ , $q\neq 0$ , $n-1)$ or it must result from the interior singularities”.
Moreover it provides us with obstructions to $CR$ embedding:

Theorem 2.3. Let $X$ be a compact strongly pseudoconvex $CR$

manifold of dimension $2n-1$ , $n\geq 3$ . Then $X$ cannot be $CR$ embedded
in $\mathbb{C}^{n}$ unless all $H^{p,q}(X)=0,1\leq q\leq n-2$ . Further, $X$ cannot be $CR$

embedded in $\mathbb{C}^{n+1}$ if one of the following does not hold:

(1) $H^{p,q}(X)=0$ for $p+q\leq n-2$ and $1\leq q\leq n-2$

(2) $dimH^{p,q}(X)=dimH^{p^{J},q^{J}}(X)$ for $pp,$ $+q+q$ , $\}=n-1$ , $n$ and

$1\leq q$ , $q’\leq n-2$

(3) $H^{p,q}(X)=0$ for $p+q\geq n+1$ and $\leq q\leq n-2$

We next consider an interesting class of $CR$ manifolds.

Definition 2.4. Let $X$ be a $CR$ manifold with structure bundle $S$ .
Let $\alpha$ be a smooth $S^{1}$ -action on $X$ and $v$ be its generating vector fifield.
The $S^{1}$ -action $\alpha$ is called holomorphic if $\mathcal{L}_{v}\Gamma(S)\subset\Gamma(S)$ . It is called

transversal if $v$ is transversal to $S\oplus\overline{S}$ in $\mathbb{C}TX$ at every point of $X$ .

For a $CR$ manifold $X$ which admits a transversal holomorphic $S^{1}-$

action, the invariant Kohn-Rossi cohomology is defined as follows:

Definition 2.5. With the notation in Defifinition 2.4, consider fifirst
the differential operator on $k$ forms $N$ : $A^{k}(X)\rightarrow A^{k}(X)$ defifined by
$ N\varphi=\sqrt{-1}\mathcal{L}_{v}\varphi$ , $\varphi\in A^{k}(X)$ . Observe that $N$ leaves invariant the spaces
$A^{p,q}(X)$ and $C^{p,q}(X)$ , and commutes with the operators $d$ and $\overline{\partial}_{b}$ . Hence
$N$ acts on the cohomology groups $H^{p,q}(X)$ . Now defifine the invariant

Kohn-Rossi cohomology by $\tilde{H}^{p,q}(X)=\{c\in H^{p,q}(X) : Nc=0\}$ .

For a compact strongly pseudoconvex $CR$ manifold $X$ of dimension
$2n-1$ , $n\geq 3$ , which admits a transversal holomorphic $S^{1}$ -action the

invariant Kohn-Rossi cohomology $\tilde{H}^{p,q}(X)$ , for $1\leq p+q\leq 2n-N-1$ , are
obstructions to $CR$ embedding in $\mathbb{C}^{N}$ . This is implied by the following
theorem:

Theorem 2.6. Let $X$ be a compact strongly pseudoconvex $CR$

manifold of dimension $2n-1$ , $n\geq 3$ , which admits a transversal holo-
morphic $S^{1}$ -action. Suppose that $X$ is $CR$ embeddable in $\mathbb{C}^{N}$ . Then
$\tilde{H}^{p,q}(X)=0$ for all $1\leq p+q\leq 2n-N-1$ .

The proof of Theorem 2.6 contains two main parts. The first part
depends heavily on the work of Lawson-Yau [LY], which provides us with
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topological restrictions on $X$ . In particular it can be shown that the de
Rham cohomology groups $H^{k}(X)=0$ for $1\leq k\leq 2n-N-1$ . The sec-

ond part follows Tanaka’s differential geometric study on the $\overline{\partial}_{b}$ cohomol-
ogy groups [T]. The existence of the vector field $v$ with $[v, \Gamma(S)]\subset\Gamma(S)$

entails a formalism analogous to K\"ahler geometry linking the various
cohomology groups via harmonic forms. The details of the proof of
Theorem 2.6 are contained in $[LuY2]$ .

For 3 dimensional compact strongly pseudoconvex $CR$ manifolds,
global $CR$ embedding in complex Euclidean space may fail and much
work has been done recently on this phenomenon. See for example
$[B1E]$ , $[BuE]$ , [L]. We only remark that as a consequence of the global
invariants to be discussed in the next section, we find obstructions to $CR$

embedding in $\mathbb{C}^{3}$ , assuming that the 3 dimensional strongly pseudocon-

vex $CR$ manifold is $CR$ embeddable in some $\mathbb{C}^{N}$ to begin with. These
obstructions provide us with numerous examples of such 3 dimensional
$CR$ manifolds not $CR$ embeddable in $\mathbb{C}^{3}$ .

\S 3 Concerning invariants of compact strongly pseudoconvex
CR manifolds

As a first step towards the difficult classification problem of compact
strongly pseudoconvex $CR$ manifolds, it would be useful to understand
the following notion of equivalence which is weaker than $CR$ equivalence.

Definition 3.1. Assume that $X_{1}$ , $X_{2}$ are compact strongly pseu-
doconvex $CR$ manifolds of dimension $2n-1$ , $n\geq 2$ , which are $CR$ em-
beddable in some $\mathbb{C}^{N_{1}}$ , $\mathbb{C}^{N_{2}}$ respectively. $X_{1}$ , $X_{2}$ are called algebraically
equivalent if the corresponding varieties $V_{1}$ , $V_{2}$ , which are bounded by
$X_{1}$ , $X_{2}$ in $\mathbb{C}^{N_{1}}$ , $\mathbb{C}^{N_{2}}$ according to Theorem 2.1, have isomorphic singu-
larities $Y_{1}$ , $Y_{2}$ , $i.e.$ , $(V_{1}, Y_{1})\cong(V_{2}, Y_{2})$ as germs of varieties.

Thus, for $n=2$ , we are restricting ourselves to embeddable compact
strongly pseudoconvex $CR$ manifolds. It is not difficult to show that $CR$

equivalence implies algebraic equivalence.

In case a compact strongly pseudoconvex $CR$ manifold $X$ of dimen-
sion $2n-1$ embeds in $\mathbb{C}^{n+1}$ , $n\geq 2$ , it is the boundary of a complex
hypersurface $V$ with isolated singularities $p_{1}$ , $\ldots,p_{m}$ . In this case, an
Artinian algebra can be associated to $X$ as follows.

Definition 3.2. With the above notation, let $f_{i}$ be a defifining

function of the germ $(V,p_{i})$ , 1 $\leq i\leq m$ . Then the $\mathbb{C}$ algebra $A_{i}=$
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$\mathcal{O}_{n+1}/(f_{i}, \frac{\partial f_{i}}{\partial z_{0}}, \ldots, \frac{\partial f_{i}}{\partial z_{n}})$ is a commutative local Artinian algebra called

the moduli algebra of $(V,p_{i})$ . The moduli algebra is independent of the
choice of defifining function. We associate to the $CR$ manifold $X$ the

Artinian algebra $A(X)=\bigoplus_{i=1}^{m}A_{i}$ .

By the work of Mather-Yau [MY] on isolated hypersurface singular-
ities, it can be shown that the associated Artinian algebras are complete
algebraic $CR$ invariants in the following sense.

Theorem 3.3. [Lu $YS$] Two compact strongly pseudoconvex real
codimension 3 $CR$ manifolds $X_{1}$ , $X_{2}$ are algebraically equivalent if and
only if the associated Artinian algebras $A(X_{1})$ , $A(X_{2})$ are isomorphic $\mathbb{C}$

algebras.

We remark that there are Torelli type examples in which the Ar-
tinian algebras $A(X_{t})$ associated to a family of compact strongly pseu-
doconvex real codimension 3 $CR$ manifolds $X_{t}$ suffice to distinguish
$CR$ equivalence. For example, in the family $X_{t}=\{(x, y, z)\in \mathbb{C}^{3}$ :
$x^{6}+y^{3}+z^{2}+tx^{4}y=0$ and $|x|^{2}+|y|^{2}+|z|^{2}=\epsilon^{2}$ } where $\epsilon>0$ is a small
fixed number and $t\in \mathbb{C}$ with $4t^{2}+27\neq 0$ , $X_{t_{1}}$ , $X_{t_{2}}$ are $CR$ equivalent
if and only if $A(X_{t_{1}})$ , $A(X_{t_{2}})$ are isomorphic $\mathbb{C}$ algebras.

For the rest of this section, we consider embeddable 3 dimensional
compact strongly pseudoconvex $CR$ manifolds. By taking resolutions of
the singularities of the subvariety $V$ bounded by such a $CR$ manifold $X$

in complex Euclidean space, numerical invariants under algebraic equiv-
alence may be defined, as follows.

Definition 3.4. Let $\pi$ : $M$ $\rightarrow V$ be a resolution of the singularities
$Y$ of $V$ such that the exceptional set $A=\pi^{-1}(Y)$ has normal crossing,
$i.e.$ , the irreducible components $A_{i}$ of $A$ are nonsingular, they intersect
transversally and no three meet at a point. According to Artin $[Ar]$, there
exists a unique minimal positive divisor $Z$ , called the fundamental cycle,
with support on $A$ , such that $Z\cdot A_{i}\leq 0$ for all $i$ . For any positive divisor
$D=\sum d_{i}A_{i}$ , let $\mathcal{O}_{M}(-D)$ be the sheaf of germs of holomorphic func-
tions on $M$ vanishing to order $d_{i}$ on $A_{i}$ , let $\mathcal{O}_{D}=\mathcal{O}_{M}/\mathcal{O}_{M}(-D)$ and

let $\chi(\mathcal{O}_{D})=\sum_{i=0}^{2}(-1)^{i}dimH^{i}(M, \mathcal{O}_{D})$ . It can be proved that $p_{f}(X)def=$

$1-\chi(\mathcal{O}_{Z})$ , $p_{a}(X)def=\sup(1-\chi(\mathcal{O}_{D}))$ where $D$ ranges over all positive

divisors with support on $A$ and $p_{g}(X)d=defimH^{1}(M, \mathcal{O})$ are defifined in-
dependent of the resolution $\pi$ and are invariants of $X$ under algebraic
equivalence. The detailed proofs are contained in [LuYY]. We refer to
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$p_{f}(X)$ , $p_{a}(X)$ and $p_{g}(X)$ as the fundamental genus, arithmetic genus
and geometric genus of $X$ respectively.

The following facts are known

$o$ $0\leq p_{f}(X)\leq p_{a}(X)\leq p_{g}(X)$

$\blacksquare p_{f}(X)=0\Leftrightarrow p_{a}(X)=0\Leftrightarrow p_{g}(X)=0$ .

Further numerical invariants under algebraic equivalence are given

by $m_{Z}(X)def=Z$ . $Z$ , $q(X)d=defimH^{0}(M-A, \Omega^{1})/H^{0}(M, \Omega^{1})$ , $\chi(X)def=$

$K\cdot K+\chi\tau(A)$ and $\omega(X)d=Kef.K+dimH^{1}(M, \Omega^{1})$ , where $\Omega^{1}$ is the sheaf
of germs of holomorphic 1-form on $M$ , $\chi_{T}(A)$ is the topological Euler
characteristic of $A$ and $K$ is the canonical divisor on $M$ . These invariants
are defined independent of the choice of the resolution $\pi$ . Since $K$ is a
divisor with rational coefficient, $\chi(X)$ and $\omega(X)$ are in general rational
numb $ers$ .

Using the above invariants, one may attempt a rough algebraic clas-
sification of embeddable 3 dimensional compact strongly pseudoconvex
$CR$ manifolds. In particular,

Definition 3.5. An embeddable 3 dimensional compact strongly
pseudoconvex $CR$ manifold $X$ is called a rational (resp. elliptic) $CR$

manifold if $p_{a}(X)=0$ (resp. $p_{a}(X)=1$ ).

If $X$ is a rational or an elliptic $CR$ manifold embeddable in $\mathbb{C}^{3}$ and
$M_{0}$ is the minimal good resolution of the subvariety $V$ bounded by $X$ in
$\mathbb{C}^{3}$ , then the weighted dual graph for the exceptional set of $M_{0}$ is com-
pletely classified. The same also holds for those $X$ embeddable in $\mathbb{C}^{3}$ and
has $p_{g}(X)=1$ . With the weighted dual graphs classified, the topology
of the embedding of the exceptional set in $M_{0}$ is well understood.

As an application, one obtains obstructions to embedding in $\mathbb{C}^{3}$ for
the above three classes of $CR$ manifolds when their weighted dual graphs
fail to have the required forms. For example, a rational $CR$ manifold
whose weighted dual graph is not a direct sum of the graphs $A_{k}$ , $D_{k}$ ,
$E_{6}$ , E7, $E_{8}$ is not embeddable in $\mathbb{C}^{3}$ .

Similarly in view of the following theorem, one obtains numerical
obstructions to embedding in $\mathbb{C}^{3}$ for those $CR$ manifolds failing the con-
ditions in the theorem.

Theorem 3.6. Let $X$ be a compact strongly pseudoconvex 3 di-
mensional $CR$ manifold embeddable in $\mathbb{C}^{3}$ . Then

(1) $\chi(X)$ and $\omega(X)$ are integers.
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(2) $10p_{g}(X)+\omega(X)\geq 0$ .

(3) If $p_{a}(X)=1$ , then $\chi(X)\geq-3$ .

(4) If $X$ admits a transversal holomorphic $S^{1}$ -action, then $6p_{g}(X)+$

$\chi(X)>0$ .

The proof of Theorem 3.6 is contained in [LuYl], [LuYY]. We re-
mark that (4) depends on the Durfee conjecture which is solved by Xu
and the second author in [XY].

It is interesting to note that there are compact strongly pseudocon-
vex 3 dimensional $CR$ manifolds with arbitrarily large minimal embed-
ding dimensions. For any positive integer $N$ , take any 2 dimensional
strongly pseudoconvex complex manifold with maximal compact ana-
lytic set $A$ which is a smooth rational curve having self intersection

number $-N$ . The corresponding weighted dual graph is hence $-N.$ . On
blowing down $A$ , one gets a 2 dimensional rational singularity $(V,p)$ .

The minimal embedding dimension of $(V,p)$ is $-A$ . $A+1=N+1$ . Let
$X$ be the intersection of $V$ with a small sphere centered at $p$ . Then the
minimal embedding dimension of $X$ is $N+1$ .

Work is in progress on determining the weighted dual graph associ-
ated to $X$ as above, in terms of the $CR$ manifold $X$ intrinsically. This
however is a difficult problem.
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Deformation Theory of $CR$-Structures
and Its Application to

Deformations of Isolated Singularities II

Kimio Miyajima

Introduction

Deformations of an analytic variety with only isolated singular
points induce deformations of strongly pseudo-convex $CR$ structures on
its link. It is M. Kuranishi who initiated to consider deformations of
compact strongly pseudo-convex $CR$ structures expecting to describe
deformations of isolated singular points of analytic varieties. Since non-
equivalent $CR$ manifolds can bound the same isolated singular point, we
consider deformations of $CR$ structures up to equivalence weaker than
the $CR$-equivalence. This equivalence is induced from wiggling in a
complex manifold and we will call the deformation theory of $CR$ struc-
tures under that equivalence the Kuranishi deformation theory of $CR$

structures. In [Ku3], [Ku4], M. Kuranishi obtained a $C^{\infty}$ -family of de-
formations of the $CR$ structure on a compact strongly pseudo-convex $CR$

manifold of real dimension five or higher, continuing his early works on
deformations of compact complex structures ([Kul], [Ku2]). We consider
holomorphic families of $CR$ structures. In the first half of this survey,
we will review the holomorphically parametrized deformation theory of
strongly pseudo-convex $CR$ structures developped by T. Akahori et al.
([Akl], [Ak2], [Ak3], [Ak4], [Ak-Myl], [Ak-My2], [Ak-My3], [Ak-My4],
[Bu-Ml], [Myl], [My2], [My3] $)$ and its relationship with algebraic defor-
mation theory of isolated singularities ([Do], [Gr], [Tj]).

The relationship between compact strongly pseudo-convex $CR$ man-
ifolds and isolated singularities is based on the fact that an embeddable
compact strongly pseudo-convex $CR$ manifold bounds a unique normal
Stein complex space ([Ha-La]) and all compact strongly pseudo-convex
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$CR$ manifolds of real dimension five or higher are embeddable ([BM]).
In contrast with the higher dimensional case, embeddable three dimen-
sional $CR$ manifolds are rare. (Embeddability is a major problem in the
study of three dimensional compact strongly pseudo-convex $CR$ mani-
folds. Refer to the references of [Bl-Du], [Ep] and [Lm] for papers about
that problem.) Recently, J. Bland and C. Epstein generalized the Kuran-
ishi deformation theory to embeddable compact strongly pseudo-convex
three dimensional $CR$ structure case and show that the stably embed-
dable formal deformation theory of a strongly pseudo-convex three di-
mensional $CR$ structure is isomorphic to the formal deformation theory
of the normal isolated surface singularity it bounds ([Bl-Ep]). In the
latter half of this survey, we will develop their deformation theory to
the actual deformation level in the higher dimensional case and com-
pare it with the deformation theory of normal isolated singularities. By
this argument, we will see that the stably embeddable deformation the-
ory of strongly pseudo-convex $CR$ structures fits to the flat deformation
theory of normal isolated singularities and then we will complete Ku-
ranishi’s program describing the semi-uinversal family of normal isolated
singularities of complex dimension three or higher in terms of the $CR$

language.
Other developments in the study of isolated singularities by $CR$

geometry are done in [Lu-Ya] and [Ya]. Refer to [Oh3] for other re-
sults in the study of isolated singularities by transcendental methods.
The moduli of compact strongly pseudo-convex $CR$ manifolds under
$CR$-equivalence is of natural interest from $CR$-geometry. It is treated
in [Ch-Le] and [Lm] in three dimensional cases. The moduli space of
strongly pseudo-convex $CR$ structures on a compact real three-fold di-
vides into two parts; the part of embeddable $CR$ structures and the part
of non-embeddable ones. In [Ep], moduli of embeddable $CR$ structures
is considered in connection with deformations of isolated singularities,
and in [Bl-Du], moduli of non-embeddable ones on $S^{3}$ is considered.

In this survey, we consider only the case of real dimension five or
higher. In Sections 1-4, we will review the construction of the Ku-
ranishi semi-universal family of compact strongly pseudo-convex $CR$

structures and its relationship with the semi-universal family of nor-
mal isolated singularities. The main part of the construction of the
Kuranishi semi-universal family was presented in Part I under the as-
sumption $H\frac{2}{\partial}\tau’(T^{l})=0$ . Hence we will only give a modification needed

for treating the general case. In Sections 5 and 6, we will work on the
stably embeddable deformation theory of strongly pseudo-convex $CR$

structures on a link of a normal isolated singularity.
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Notation

(N. 1) Let $V$ be a closed normal subvariety of a ball

$B(c^{*}):=\{w\in C^{N}|\sum_{\beta=1}^{N}|w^{\beta}|^{2}<c^{*}\}$

such that the origin $0\in C^{N}$ is the only singular point of $V$ and $V$ and
$\partial B(c)$ intersect transversally for any $0<c<c^{*}$ . We denote by $U$ the

regular part of $V$ and by $\iota$ the natural inclusion map $U\subseteq->C^{N}$ . We will
use the following notations throughout this survey:

$G(a, b):=\{w\in C^{N}|a<\sum_{\beta=1}^{N}|w^{\beta}|^{2}<b\}(0<a<b<c^{*})$ ,

$S_{c}:=\{w\in C^{N}|\sum_{\beta=1}^{N}|w^{\beta}|^{2}=c\}(0<a<c\leq b)$ ,

$\Omega(a, b):=V\cap G(a, b)$ , $M_{c}:=V\cap S_{c}$ .

(N.2) For a holomorphic vector bundle over a $CR$ manifold $M$ , we

denote by $A_{b}^{0,q}(E)$ (resp. $\Gamma$ ( $U$, $E$ )) the space of $E$-valued tangential
$(O,q)$ -forms (resp. the space of $C^{\infty}$ -sections of $E$ over a domain $U\subset M$ ).
$A_{b,k}^{0,q}(E)$ (resp. $\Gamma_{k}$ ( $U$, $E$ ) and $\Gamma_{k}^{l}(U,$ $E)$ ) the completion of $A_{b}^{0,q}(E)$ with

respect to the Sobolev $k$-norm (resp. of $\Gamma(U, E)$ with respect to the
Sobolev $k$-norm and the Folland-Stein $k$-norm).

(N.3) Let $S$ be a germ of a (not necessarily reduced) complex space
at the distinguished point $s_{o}\in S$ and $X$ be a (not necessarily compact)
complex manifold (in our argument below, $X$ is a neighbourhood of $M_{c}$

in $U$ ). By a family of deformations of $X$ over $(S, s_{o})$ , we mean a smooth
holomorphic map (in Grothendieck’s sense) of complex spaces $\pi$ : $\mathcal{X}\rightarrow S$

with $\pi^{-1}(s_{o})\simeq X$ , that is, for any $x\in \mathcal{X}$ there exist neighbourhoods
$\mathcal{W}$ of $x$ in $\mathcal{X}$ , $W$ of the origin in $C^{n}(n=dim_{C}X)$ and an isomorphism
$q$ so that the diagram

$\mathcal{W}\rightarrow qW\times S$

$\pi\downarrow$ $\downarrow p_{2}$

$S=$ $S$

commutes where $p_{2}$ denotes the projection onto the second factor. As
a local trivialization of a family of deformations of $X$ , we always take a
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local trivialization of this type. Then we always have a local coordinate
$(\zeta^{1}, \ldots, \zeta^{n}, s_{1}, \ldots, s_{d})$ of $\mathcal{X}$ such that $(\zeta^{1}, \ldots, \zeta^{n})$ (resp. ( $s_{1}$ , $\ldots$ , $s_{d}$ )) is

the coordinate of $W$ (resp. of an ambient space $C^{d}$ of $S$ ) in the above
trivialization.

(N.4) Suppose that $X$ is a locally closed sub-manifold of $C^{N}$ . By

a family of displacements of $X$ in $C^{N}$ over a germ $(S, s_{o})$ , we mean
a family of deformations of $X$ over $(S, s_{o})$ , $\pi$ : $\mathcal{X}\rightarrow S$ , together with
an embedding $\Phi$ : $\mathcal{X}\rightarrow C^{N}\times S$ such that $\pi=p_{2}\circ\Phi$ holds where
$p_{2}$ : $C^{N}\times S\rightarrow S$ denotes the projection onto the second factor.

(N.5) There are two approaches to the $CR$ manifolds; the extrinsic
approach and the intrinsic one (i.e. treatments as a real submanifold of a
complex manifold and as a real manifold equipped with an abstract $CR$

structure, respectively). These approaches are equivalent in the case of
compact strongly pseudo-convex $CR$ manifolds of real dimension greater
than or equals to five, while there are differences between them in real
three dimensional case. Our treatment of deformations of $CR$ structures
is based on the intrinsic approach. Refer to [Ta] for the systematic study
of this approach. In order to compare deformations of $CR$ structures and
that of singularities, we need to take account of the extrinsic approach
as well. Refer to [Fo-Ko] or [Ko-Ro] for the extrinsic approach.

Our approach to deformations of normal isolated singularities from
deformation theory of $CR$ structures will be done through the following
three steps. In each step, we use several fundamental theories. First
step: We construct a family of $CR$ structures by a generalized Kodaira-
Spencer construction. Refer to [Ko] for the Kodaira-Spencer construc-
tion in the case of deformations of compact complex manifolds. The
Kodaira-Spencer construction heavily depends on the harmonic theory.
Refer to [Fo-Ko] for the standard harmonic theory on a $CR$ manifold.
Second step: We prove that the family constructed in the first step is
Kuranishi versal. In order to carry out the ideal theoretic argument
in the proof, we use the Grauert division theorem. Refer to [Gr] or
[Fo-Kn] for the Grauert division theorem. Third step: We compare the
family constructed in the first step with the semi-universal family of
normal isolated singularities. By the comparison using the Kuranishi
semi-universality of the family of $CR$ structures and the semi-versality
of the family of isolated singularities, we have a formal isomorphism of
their parameter spaces. In order to reach the actual isomorphism, we
use the Artin approximation theorem. Refer to [Ar] for the Artin ap-
proximation theorem.

We remark that W. Goldmann and J. Millson established a general
comparison method. We can compare the above two families directly
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(without Step 2) using this general method. Refer to [Go-Mil] and [Go-
M12] for this general comparison method and to [Bu-Ml] for the approach
using this method.

\S 1. Kuranishi deformation theory of $CR$ structures

Let $M$ $:=M_{c}$ for some $0<c<c^{*}$ (cf. (N.I)) and $\circ T’’$ be the
strongly pseudo-convex $CR$ structure on $M$ induced from the complex
structure of $V$ (cf. Part $I$ , sections 2.1 for the notion of a strongly pseudo-
convex $CR$ structures). In this section, we formulate some fundamental
notions of Kuranishi deformation theory of $CR$ structures on $M$ .

A holomorphic family of $CR$ structures is a notion analogous to a
family of complex structures. We fix a splitting Part $I$ , (2.1.6);

$CTM=\circ T^{J}+\circ T^{lJ}+CF$

and denote by $T^{J}=\circ T’+CF$ the holomorphic tangent bundle of $M$ .

Definition 1.1. Let $T$ be a germ of a complex subspace of $C^{d}$

at the origin defined by an ideal $J_{T}^{\sim}\subset C\{t_{1}, \ldots, t_{d}\}$ . A holomorphic

family of deformations of the $CR$ structure $\circ T^{JJ}$ over $(T, 0)$ is $\phi(t)\in$

$A_{b}^{0,1}(T^{J})[[t_{1}, \ldots, t_{d}]]\cap\bigcap_{k>0}A_{b,k}^{0,1}(T^{J})\{t_{1}, \ldots, t_{d}\}$ satisfying

(1) $\phi(0)=0$ ,

(2) $P(\phi(t))\in\tilde{J}_{T}A_{b,k-1}^{0,2}(T^{J})\{t_{1}, \ldots, t_{d}\}$ for all $k>>0$

where $P(\phi)=0$ is the integrability condition (cf. Part $I$, Section 3.2).

We will simply denote it by $\phi(t)(t\in(T, 0))$ .

An embedding of $M$ into a family of complex manifolds induces a
family of $CR$ structures.

Definition 1.2. Let $S$ be a germ of a complex subspace of
$C^{d’}$ at

the origin defined by an ideal $t_{S}^{\sim}\subset C\{s_{1}, \ldots, s_{d’}\}$ . Let $\pi$ : $\mathcal{U}\rightarrow S$ be $a$

family of complex manifolds. A holomorphic family of embeddings of $M$

into that family is a mapping $F$ : $M\times S\rightarrow \mathcal{U}$ with $\pi\circ F=p_{2}$ where $p_{2}$

denotes the projection onto the second factor, which is described locally
as follows: Let $\{(\mathcal{W}_{i}, (\zeta_{i}^{1}, \ldots, \zeta_{i}^{n}, s_{1}, \ldots, s_{d’}))\}_{i\in\Lambda}$ be a system of local
coordinates of $\mathcal{U}$ as in (N. 3). Let $\{U_{i}\}_{i\in\Lambda}$ be an open covering of $M$ such
that $F(U_{i}\times S)\subset \mathcal{W}_{i}$ . If $F$ is described by $\zeta_{i}^{\alpha}=F_{i}^{\alpha}(x_{i}, s)(\alpha=1, \ldots, n)$

on $U_{i}\times S$ with respect to the above local coordinate of $\mathcal{W}_{i}$ and the local
coordinate $(x_{1}^{1}, \ldots, x_{i}^{2n-1})$ of $U_{i}$ , then

(1) $F_{i}^{\alpha}(s)\in\Gamma(U_{i}, 1)$ $[[s_{1}, \ldots, s_{d^{J}}]]\cap\Gamma_{k}(U_{i}, 1)\{s_{1}, \ldots, s_{d^{l}}\}$ $(\alpha=$

1, \ldots , n) for all k $>>0$ ,
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(2) $F_{i}^{\alpha}(s)-f_{ij}^{\alpha}(F_{j}(s), s)\in\tilde{J}_{S}\Gamma_{k}(U_{i}\cap U_{j}, 1)\{s_{1}, \ldots, s_{d^{J}}\}$ $(\alpha=$

1, \ldots , n) for all k $>>0$ ,

$\mathcal{W}_{i}\cap \mathcal{W}_{j}where\zeta_{i}^{\alpha}.=f_{ij}^{\alpha}(\zeta_{j}, s)(\alpha=1, \ldots, n)$

is the coordinate transformation on

The holomorphic family $\phi(s)(s\in(S, 0))$ of $CR$ structures induced
by $F$ is characterized by

$(\overline{\partial}_{b}-\phi(s))F_{i}^{\alpha}(s)\in 2_{S}A_{b}^{0,1}(U_{i}, 1)[[s_{1}, \ldots, s_{d^{l}}]]$ .

We call this $\phi(s)(s\in(S, s_{o}))$ the family of $CR$ structures induced by
$F$ .

Since the Kuranishi $CR$ deformation theory is arranged suitable for
deformation theory of normal isolated singularities, we do not consider
$CR$ structures up to $CR$ isomorphism but consider them up to wiggling
in an ambient complex manifold. The following notion of the versality
is reasonable for our deformation theory.

Definition 1.3. A holomorphic family $\phi(t)(t \in(T, 0))$ of de-

formations $of\circ T^{JJ}$ is Kuranishi versal if it has the following property:
For any family of deformations of complex manifolds $\pi$ : $\mathcal{U}\rightarrow S$ over
$(S, s_{o})$ such that $\pi^{-1}(s_{o})$ is a neighbourhood of $M$ in $U$ , there exist $a$

holomorphic map of germs $\tau$ : $(S, s_{o})\rightarrow(T, 0)$ and a holomorphic fam-
$ily$ of embeddings $F$ : $M$ $\times S\rightarrow \mathcal{U}$ such that $ F_{|M\times s_{o}}=\iota$ holds and
the holomorphic family of $CR$ structures induced by $F$ coincides with
$\phi(\tau(s))(s\in(S, s_{o}))$ .

We will examine the fist derivative of a family of $CR$ structures. Let
$\phi(t)(t \in(T, 0))$ be a holomorphic family of deformations of $\circ T’’$ Since
the linear term of $P(\phi)$ is $\overline{\partial}_{T^{J}}\phi$ , we have $\overline{\partial}_{T’}v(\phi(t))=0$ for $v\in T_{0}T$

where we denote by $T_{0}T$ the Zariski tangent space of $T$ at 0. Next, if
$\phi(t)(t \in(T, 0))$ and $\psi(t)(t\in(T, 0))$ are holomorphic families of $CR$

structures induced by holomorphic families of embeddings into a family
of complex manifolds $F$, $G$ : $M\times T\rightarrow \mathcal{U}$ respectively, then we have

$\{\sum_{\alpha=1}^{n}v(F_{i}^{\alpha}(t)-G_{i}^{\alpha}(t))\frac{\partial}{\partial\zeta_{i}^{\alpha}}\}\in A_{b}^{0}(T^{J}U_{|M})$

and

$\rho^{1,0}(v(\phi(t)-\psi(t)))=\overline{\partial}_{b}(\sum_{\alpha=1}^{n}v(F_{i}^{\alpha}(t)-G_{i}^{\alpha}(t))\frac{\partial}{\partial\zeta_{i}^{\alpha}})$
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where $\rho^{1,0}$ : $CTU|M\rightarrow T^{l}U_{|M}$ denotes the projection onto the $(1,0)$ -

part. Hence, it is natural to call the $\overline{\partial}_{T^{l}}$ cohomology class of $v(\phi(t))$ the
infinitesimal deformation class of the family $\phi(t)(t \in(T, 0))$ along the
direction $v\in T_{0}T$ .

Definition 1.4. For a holomorphic family $\phi(t)(t \in(T, 0))$ of
deformations of $CR$ structures, the infinitesimal deformation map is $a$

linear map $\rho$ : $T_{0}T\rightarrow H\frac{1}{\partial}\tau’(T’)$ given by $\rho(v):=the$ cohomology class

of $v(\phi(t))$ . A holomorphic family is called effective if its infinitesimal
deformation map is injective.

An effective and Kuranishi versal family is called a Kuranishi semi-
universal family.

\S 2. Construction of the Kuranishi semi-universal family of $CR$

structures

In this section, we consider how to construct the Kuranishi semi-
universal family of $CR$ structures on $M$ .

(I) First, we consider the case of $dim_{R}M\geq 7$ and will review the
construction of the Kuranishi semi-universal family in [Ak3] and [Ak-
Myl]. However we modify the ideal theoretic argument in [Ak-Myl]
by using the Grauert division theorem instead of a small trie there,
because the adaptation of the division theorem is the most relevant
way to treat the case of non-reduced parameter spaces. We first try
to construct it using J. J. Kohn’s solution of the $\overline{\partial}_{b}$-Neumann problem
(cf. [Fo-Ko]). Though it works only on the formal family level, we
will try it, because this is a straightforward analogue of the standard
Kodaira-Spencer construction in the case of deformations of complex
structures on a compact complex manifold and, by this consideration, we
will well understand the naturality of the adaptation of the sub-complex
$(\Gamma(M, E_{q}),\overline{\partial}_{q})$ in [Ak3] (cf. Part $I$ , Section 3). The $\overline{\partial}_{b}$-Neumann Hodge
decomposition which we will use is

(2.1) $\eta=\rho_{T’}\eta+\overline{\partial}_{T^{J}}\overline{\partial}_{T}^{*},N_{T^{J}}\eta+\overline{\partial}_{T}^{*},\overline{\partial}_{T^{l}}N_{T^{\gamma}}\eta$ for $\eta\in A_{b}^{0,2}(T^{J})$ ,

where $\rho_{T^{J}}$ denotes the orthogonal projection onto the harmonic space
$H_{b}^{2}(T^{J})$ (cf. [Fo-Ko, Theorem 5.4.12]). Let $d=dimH\frac{1}{\partial}\tau’(T^{J})$ and

$\phi_{1}$ , $\ldots$ , $\phi_{d}$ be $\overline{\partial}_{T^{J}}$ -closed forms which give cohomology basis of $H\frac{1}{\partial}\tau’(T^{J})$ .
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Set

(2.2) $\phi_{1}(t_{1}, \ldots, t_{d}):=\sum_{\sigma=1}^{d}\phi_{\sigma}t_{\sigma}$ ,

$\phi_{\mu}(t_{1}, \ldots, t_{d}):=\mu$-th homogeneous term of

$-\overline{\partial}_{T}^{*}$ , $N_{T^{J}}P(\phi^{(\mu-1)}(t_{1}, \ldots, t_{d}))$

(cf. Part $I$ , section 3.2 for the definition of $P(\phi)$ ),

$\phi^{(\mu)}(t_{1}, \ldots, t_{d}):=\phi^{(\mu-1)}(t_{1}, \ldots, t_{d})+\phi_{\mu}(t_{1}, \ldots, t_{d})$

and
$\hat{\phi}(t_{1}, \ldots, t_{d}):=\lim_{\mu\rightarrow\infty}\phi^{(\mu)}(t_{1}, \ldots, t_{d})$ .

Thus we have $\hat{\phi}(t_{1}, \ldots, t_{d})\in A_{b}^{0,1}(T^{l})[[t_{1}, \ldots, t_{d}]]$ (we will denote it sim-

ply by $\hat{\phi}(t))$ satisfying

(2.3) $\hat{\phi}(t)+\overline{\partial}_{T}^{*}$ , $N_{T^{J}}R(\hat{\phi}(t))=\phi_{1}(t)$

where $R(\phi):=R_{2}(\phi)+R_{3}(\phi)$ . Take a basis $e_{1}$ , $\ldots$ , $ e\ell$ of $H_{b}^{2}(T^{J})$ , then

we have $\hat{b}_{1}(t)$ , $\ldots,\hat{b}_{\ell}(t)\in C[[t_{1}, \ldots, t_{d}]]$ such that

$\rho_{T^{J}}P(\hat{\phi}(t))=\sum_{\gamma=1}^{\ell}\hat{b}_{\gamma}(t)e_{\gamma}$ .

Denote by $\tilde{J}\wedge$ an ideal of $C[[t_{1}, \ldots, t_{d}]]$ generated by $\hat{b}_{1}(t)$ , $\ldots,\hat{b}_{r}(t)$ .

Proposition 2.1.

$P(\hat{\phi}(t))\in\hat{2}A_{b}^{0,2}(T^{J})[[t_{1}, \ldots, t_{d}]]$ .

Proof. By (2.3) and using the Hodge decomposition (2.1), we have

$P(\hat{\phi}(t))=\rho_{T^{l}}R(\hat{\phi}(t))+\overline{\partial}_{T}^{*},\overline{\partial}_{T^{J}}N_{T’}R(\hat{\phi}(t))$ .

Using the fact $\overline{\partial}_{b}^{\phi}P(\phi)=0$ (cf. Part $I$ , Lemma 3.7.2), we can prove by
induction on $\mu$ that

$\overline{\partial}_{T^{J}}R(\hat{\phi}(t))\in(\hat{3}+\mathfrak{m}^{\mu+1})A_{b}^{0,3}(T^{J})[[t_{1}, \ldots, t_{d}]]$
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holds for all $\mu\geq 1$ where $\mathfrak{m}$ denotes the maximal ideal of $C\{t_{1}, \ldots, t_{d}\}$ .

Q.E.D.

Proposition 2.2. $\hat{\phi}(t)$ is formally Kuranishi versal, that is, for
any family of $defo7mations$ of a neighborhood of $M$ in $U$ there exist $\tau$

and $F$ in Definition 1.3 as formal power series in $s$ .

Proof. Let $S$ be a germ of an analytic sub-space of
$C^{d^{l}}$

defined
by an ideal $J_{S}^{\sim}\subset C\{s_{1}, \ldots, s_{d’}\}$ and let $\pi$ : $\mathcal{U}\rightarrow S$ be a family of

complex manifolds such that $\pi^{-1}(0)$ is a neighbourhood of $M$ in $U$ and
$\{(\zeta_{i}^{1}, \ldots, \zeta_{i}^{n}, s_{1}, \ldots, s_{d^{l}})\}_{i\in\Lambda}$ be a system of local coordinates of $\mathcal{U}$ , as in
(N.3), with the coordinate transformation $\zeta_{i}^{\alpha}=f_{ij}^{\alpha}(\zeta_{j}, s)(\alpha=1, \ldots, n)$ .

Then we will construct $\{\hat{F}_{i}^{\alpha}(s)\}(\alpha=1, \ldots, n)$ and $\hat{\tau}(s)$ by solving the
following equations inductively, where we denote by $F_{i|\mu}^{\alpha}(s)$ and $\tau_{\mu}(s)$

the homogeneous terms of $\hat{F}_{i}^{\alpha}(s)$ and $\hat{\tau}(s)$ of degree $\mu$ respectively and

denote $F_{i}^{(\mu)\alpha}(s)=F_{i|0}^{\alpha}(s)+\cdots+F_{i|\mu}^{\alpha}(s)$ and $\tau^{(\mu)}(s)=\tau_{0}(s)+\cdots+\tau_{\mu}(s)$ .

$(2.4)_{\mu}$ $F_{i}^{(\mu-1)\alpha}(s)-f_{ij}^{\alpha}(F_{j}^{(\mu-1)}(s), s)$

$\in(3_{S}+\mathfrak{m}^{\mu})\Gamma(U_{i}\cap U_{j}, 1)[[s_{1}, \ldots, s_{d’}]]$ ,

$(2.5)_{\mu}$ $(\overline{\partial}_{b}-\hat{\phi}(\tau^{(\mu-1)}(s)))F_{i}^{(\mu-1)\alpha}(s)\in(2_{S}+\mathfrak{m}^{\mu})\Gamma(U_{i}, 1)[[s_{1}, \ldots, s_{d’}]]$ ,

$(2.6)_{\mu}$ $\hat{b}_{\gamma}(\tau^{(\mu-1)}(s))\in(3_{S}+\mathfrak{m}^{\mu})C[[s_{1}, \ldots, s_{d^{l}}]](\gamma=1, \ldots, \ell)$ .

Let $F_{i}^{(0)\alpha}(s)=z_{i}^{\alpha}(\alpha=1, \ldots, n)$ and $\tau_{0}(s)=0$ . Suppose that
$F_{i}^{(\mu-1)\alpha}(s)$ and $\tau^{(\mu-1)}(s)$ are obtained such that $(2.4)_{\mu-1}-(2.6)_{\mu-1}$ hold.

Let $F_{i|\mu}^{J}\alpha(s)$ be the solution of

(2.7) -

$\sum_{\alpha=1}^{n}\{F_{i|\mu}^{\alpha}(\prime s)-\sum_{\gamma=1}^{n}\mathring{\frac{\partial f_{j}^{\alpha}}{\partial z_{j}^{\gamma}}}(\zeta_{j}, 0)F_{j1\mu}^{\gamma}(s)\}\frac{\partial}{\partial z_{i}^{\alpha}}\prime\equiv$

$\sum_{\alpha=1}^{n}\{F_{i}^{(\mu-1)\alpha}(s)-f_{ij}^{\alpha}(F_{j}^{(\mu-1)\alpha}(s), s)\}\frac{\partial}{\partial z_{i}^{\alpha}}$

$mod (\tilde{J}_{S}+\mathfrak{m}^{\mu+1})\Gamma(U_{i}, T^{J}X_{|M})[[s_{1}, \ldots, s_{d’}]]$ .

Then, there exists $\theta(s)\in A_{b}^{0,1}(T^{l}X_{|M})[[s_{1}, \ldots, s_{d’}]]$ such that

$\theta(s)-(\overline{\partial}_{b}-\hat{\phi}(\tau^{(\mu-1)}(s)))(\sum_{\alpha=1}^{n}F_{i}^{(\mu-1)\alpha}(s)\frac{\partial}{\partial z_{i}^{\alpha}})$

$\in(J_{S}\sim+\mathfrak{m}^{\mu+1})A_{b}^{0,1}(U_{i}, T’X_{|M})[[s_{1}, \ldots, s_{d^{J}}]]$ .
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By a direct calculation, we have

Lemma 2.3.
$(\overline{\partial}_{b}-\phi)^{2}=-P(\phi)-Q(\phi)$

where $Q(\phi)\in A_{b}^{0,2}(^{\phi}T^{lJ})$ is given by

$Q(\phi)(\overline{X},\overline{Y})f:=$

$(\overline{\partial}_{b}-\phi)f([\overline{X}, \phi(\overline{Y})]_{\circ\tau^{ll}}+[\phi(\overline{X}),\overline{Y}]_{\circ\tau^{JJ}}-[\phi(\overline{X}), \phi(\overline{Y})]_{\circ\tau’’})$

for a function $f$ on $M$ .

Lemma 2.4.

(1) $\hat{b}_{\gamma}(\tau^{(\mu-1)}(s))\in(\hat{3}_{S}+\mathfrak{m}^{\mu+1})C[[s_{1}, \ldots, s_{d^{J}}]](\gamma=1, \ldots, r)$ ,

(2) $\overline{\partial}_{b}\theta(s)\in(\hat{3}_{S}+\mathfrak{m}^{\mu+1})A_{b}^{0,2}(U_{i}, T^{J}X_{|M})[[s_{1}, \ldots, s_{d’}]]$ .

Proof (1) By Lemma 2.3, we have

$\overline{\partial}_{b}\theta(s)+\rho^{1,0}P(\hat{\phi}(\tau^{(\mu-1)}(s)))\in(\tilde{J}_{S}\wedge+\mathfrak{m}^{\mu+1})A_{b}^{0,2}(T’X_{|M})[[s_{1}, \ldots, s_{d^{J}}]]$

where $\rho^{1,0}$ : $CTU_{|M}\rightarrow T^{l}U_{|M}$ denotes the projection onto the $(1,0)$ -

part. Hence

$\rho_{T^{l}}P(\hat{\phi}(\tau^{(\mu-1)}(s)))\in(\hat{3}_{S}+\mathfrak{m}^{\mu+1})A_{b}^{0,2}(T^{J})[[s_{1}, \ldots, s_{d^{l}}]]$ .

(2) follows from (1) Q.E.D.

Let $F_{\mu}’’\alpha(s)$ and $\tau_{\mu}(s)$ be the solutions of

(2.8) $\overline{\partial}_{b}\{\sum_{\alpha=1}^{n}F_{\mu}^{ll}\alpha(s)\frac{\partial}{\partial z_{i}^{\alpha}}\}-(\sum_{\sigma=1}^{d}\phi_{\sigma}\tau_{\mu}^{\sigma}(s))$

$\equiv-(\overline{\partial}_{b}-\hat{\phi}(\tau^{(\mu-1)}(s))(\sum_{\alpha=1}^{n}(F_{i}^{(\mu-1)\alpha}(s)+F_{i|\mu}^{l}\alpha(s))\frac{\partial}{\partial z_{i}^{\alpha}})$

$mod (\sim J_{S}+\mathfrak{m}^{\mu+1})A_{b}^{0,1}(T^{J}X_{|M})[[s_{1}, \ldots, s_{d^{J}}]]$ .

Then it is clear that

$\{$

$F_{i}^{(\mu)\alpha}(s):=F_{i}^{(\mu-1)\alpha}(s)+F_{i|\mu}^{J}\alpha(s)+F_{\mu}’’\alpha(s)$

$\tau^{(\mu)}(s):=\tau^{(\mu-1)}(s)+\tau_{\mu}(s)$
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satisfy $(2.4)_{\mu}-(2.6)_{\mu}$ . Since the solvability of the equation (2.8) is assured

by Lemma 2.4, we have $\{F_{i}^{(\mu)\alpha}(s)\}$ and $\tau^{(\mu)}(s)$ for all $\mu\geq 0$ . Q.E.D.

In the proof of Proposition 2.2, we used the Grauert division theorem
(cf. [Gr]) in order to solve the linear equations (2.7) and (2.8).

In order to show the convergence of $\hat{\phi}(t)$ , $\{\hat{b}_{\gamma}(t)\}_{1\leq\gamma\leq l},\hat{\tau}(s)$ and
$\{\hat{F}_{i}^{\alpha}(s)\}$ with respect to the Sobolev norm, we need the coercive estimate
for the Neumann problem. Though $\overline{\partial}_{b}$-Neumann problem is not the case,
we remark that the following weak-coercive estimate

(2.8) $||\theta_{T^{J}}N_{T^{J}}\xi||_{k}’\leq c||\xi||_{k}$ for $\xi\in\Gamma(M, T^{J})$

is enough for the convergence of them with respect the Folland-Stein

norm $||||_{k}’$ (cf. Part $I$ , section 3.5 for the definition of the Folland-Stein

norm), as long as $\hat{\phi}(t)$ is $\circ T^{J}$ -valued.

In fact, if $\hat{\phi}(t)\in A_{b}^{0,1}(^{o}T^{l})[[t_{1}, \ldots, t_{d}]]$ is assured in the above con-
struction, we have

$||\phi_{\mu}(t)||_{k}^{J}<<||\theta_{T^{l}}N_{T’}R(\phi^{(\mu-1)}(t))||_{k}’<<C||\phi^{(\mu-1)}(t)||_{k}^{2}$
’

by (2.9) and Part $I$ , Lemma 3.6.3 (we should remark that the estimate

in Part $I$ , Lemma 3.6.3 holds for all $\phi\in A_{b}^{0,1}(^{o}T^{J}))$ . Where we use the
same notation $A(t)<<B(t)$ as in Part $I$ , Section 3.7.

Taking account of the following Lemma together with Part $I$ , The-
orems 3.3.2 and 3.5.2, we can $trace$ the above construciton relying on

the complex $(\Gamma(M, E_{q}),\overline{\partial}_{q})$ instead of $(A_{b}^{0,q}(T^{J}),\overline{\partial}_{T^{l}})$ and obtain $\hat{\phi}(t)$

which is $A_{b}^{0}$
’ 1 $(^{o}T^{l})$ -valued and satisfies (2.2) and (2.3). (This is the reson

why the sub-complex $(\Gamma(M, E_{q}),\overline{\partial}_{q})$ of $(A_{b}^{0,q}(T^{l}),\overline{\partial}_{T^{J}})$ was introduced in

[Ak3].)

Lemma 2.5. ($[Myl$ , Proposition 1.1]) For $\phi\in\Gamma(M, E_{1})$ , $P(\phi)$ is
in $\Gamma(M, E_{2})$ .

Hence, we obtain convergent $\phi(t)$ and $\{b_{\gamma}(t)\}_{1\leq\gamma\leq\ell}$ , by modifying

the construction as above using $(\Gamma(M, E_{q}),\overline{\partial}_{q})$ and the Hodge decom-

position in Part $I$ , Theorem 3.5.2 instead of $(A_{b}^{0,q}(T^{J}),\overline{\partial}_{T^{J}})$ and the

standard $\overline{\partial}_{b}$-Neumann Hodge decomposition (2.1) respectively. If we set

$\sim J:=(b_{1}(t), \ldots, b_{\ell}(t))\subset C\{t_{1}, \ldots, t_{d}\}$ .

then the Grauert division theorem ([Gr]) says that Proposition 2.1 im-
plies

$P(\phi(t))\in 2A_{b,k}^{0,2}(T’)\{t_{1}, \ldots, t_{d}\}$ for all $k>>0$ .
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The proof of convergence of $\hat{\tau}(s)$ and $\{\hat{F}_{i}^{\alpha}(s)\}$ is done by the same calcu-

lation as in [My3, Note], since $\hat{\phi}(t)\in A_{b}^{0,1}(^{o}T^{l})[[t_{1}, \ldots, t_{d}]]$ holds. And
we have, by $(2.4)_{\mu}-(2.6)_{\mu}(\mu\geq 0)$ ,

$F_{i}^{\alpha}(s)-f_{ij}^{\alpha}(F_{j}(s), s)\in Z_{S}\Gamma_{k}(U_{i}\cap U_{j}, 1)\{s_{1}, \ldots, s_{d^{J}}\}(\alpha=1, \ldots, n)$

for all $k>>0$ ,

$(\overline{\partial}_{b}-\phi(\tau(s)))F_{i}^{\alpha}(s)\in\tilde{\wedge J}_{S}\Gamma_{k}(U_{i}, 1)\{s_{1}, \ldots, s_{d^{J}}\}(\alpha=1, \ldots, n)$

for all $k>>0$ ,
$b_{\gamma}(\tau(s))\in\tilde{J}_{S}(\gamma=1, \ldots, \ell)$ .

Hence we have a Kuranishi semi-universal family of deformations of $\circ T^{ll}$

The parameter space of that semi-universal family is described as
$b^{-1}(0)$ by means of the holomorphic map $b$ : $H\frac{1}{\partial}b(T’)\supset D\rightarrow H^{2}$ $\simeq$

$H\frac{2}{\partial}b(T^{l})$ given by $h(t)=\rho P(\phi(t))$ where $\rho$ : $\Gamma(M, E_{2})\rightarrow H^{2}$ is the

orthogonal projection onto the harmonic space $H^{2}\subset\Gamma(M, E_{2})$ (cf. Part
$I$ , section 2.5).

(II) Next, we consider the case of $dim_{R}M=5$ . In this case,

$H\frac{2}{\partial}\tau’(T^{l})$ may be infinite dimensional. However, the $\overline{\partial}_{b}$-Neumann har-

monic space $H_{b}^{2}(T^{l})$ is a closed subspace of the $L^{2}$ -completion $A_{b,0}^{0,2}(T’)$

of $A_{b}^{0,2}(T^{J})$ and the projection operator onto it makes sense. The Hodge

decompositions at degree 2 are obtained as follows using the $\overline{\partial}_{b}$-Neumann
operators at degree 1

(2.10) $\eta=\rho_{T^{J}}\eta+\overline{\partial}_{T^{J}}N_{T^{J}}\overline{\partial}_{T}^{*},\eta$ for $\eta\in A_{b}^{0,2}(T^{J})$ ,

where $\rho_{T^{l}}$ denotes the orthogonal projection onto $H_{b}^{2}(T’)$ . The con-

struction of $\hat{\phi}(t)\in A_{b}^{0,1}(T’)[[t_{1}, \ldots, t_{d}]]$ in part (I) can be carried out
using the decomposition (2.10) as follows: Let

$\phi_{1}(t_{1}, \ldots, t_{d}):=\sum_{\sigma=1}^{d}\phi_{\sigma}t_{\sigma}$ ,

$\phi_{\mu}(t):=\mu$-th homogeneous term of $-N_{T^{J}}\overline{\partial}_{T}^{*}$ , $P(\phi^{(\mu-1)}(t))$ ,

$\phi^{(\mu)}(t_{1}, \ldots, t_{d}):=\phi^{(\mu-1)}(t_{1}, \ldots, t_{d})+\phi_{\mu}(t_{1}, \ldots, t_{d})$

and
$\hat{\phi}(t_{1}, \ldots, t_{d}):=\lim_{\mu\rightarrow\infty}\phi^{(\mu)}(t_{1}, \ldots, t_{d})$ .
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And let $\{\hat{b}_{\lambda}(t)\}_{\lambda\in\Lambda}$ be given by

$\hat{b}_{\lambda}(t)=(\rho_{T^{J}}P(\hat{\phi}(t)),$ $e_{\lambda})$

for an orthonormal basis $\{e_{\lambda}\}_{\lambda\in\Lambda}$ of $A_{b,0}^{0,2}(T^{l})$ . Let $\hat{\tilde{J}}$ be an ideal of

$C[[t_{1}, \ldots, t_{d}]]$ generated by $\{\hat{b}_{\lambda}(t)\}_{\lambda\in\Lambda}$ . If we note that $ P(\hat{\phi}(t))\in$

$\hat{\tilde{J}}A_{b}^{0,2}(T^{J})[[t_{1}, \ldots, t_{d}]]$ is equivalent to $(P(\hat{\phi}(t)),$ $e_{\lambda})\in\hat{\tilde{J}}$ for all $\lambda\in\Lambda$ ,

Proposition 2.1 also holds and Proposition 2.2 can be proved by the
same argument. Therefore the construction of a formally Kuranishi
semi-universal formal family in part (I) of this section is also valid for
the case of diniRM $=5$ .

In the case of normal strongly pseudo-convex $CR$ manifolds of real-

dimension 5, T. Akahori constructed $\hat{\phi}(t)\in A_{b}^{0}$ ’
$1$

$(T^{l})[[t_{1}, \ldots, t_{d}]]$ which

is convergent with respect to the $||||_{k}’’$ -norm (cf. [Ak4]).

\S 3. Smoothness of the Kuranishi semi-universal families

In this section, we consider the problem of when the parameter space
of the Kuranishi semi-universal family of $CR$ structures on $M$ is smooth.
We denote the parameter space of the Kuranishi semi-universal family
by $T_{CR}$ (in five dimensional case, we denote the parameter space of the

formally Kuranishi semi-universal formal family by $\hat{T}_{CR}$ ).

(I) The Kodaira-Spencer-type smoothness. By the construction of
$T_{CR}$ or $\hat{T}_{CR}$ in \S 2, it is clear that if $H\frac{2}{\partial}\tau’(T^{J})=0$ then $T_{CR}(\hat{T}_{CR}$ in five

dimensional case) is smooth.

(II) The Bogomolov-type smoothness. The Bogomolov smoothness
theorem is a smoothness theorem based on the other principle: In the
case of deformations of a compact K\"ahler manifolds, if the canonical
bundle $K_{X}$ is trivial, then by the inner product with a non-vanishing
holomorphic $(n, 0)$ -form, the integrability condition $P(\phi)$ is converted
to an equation of ordinary differential $(n-1,1)$ -forms. Using the pure
Hodge structure on a compact K\"ahler manifold, the converted equation

is solved without obstructions. Hence the parameter space of the semi-
universal family is smooth.

On a strongly pseudo-convex $CR$ manifold, there does not exists
a natural pure Hodge structure much less a $(\partial_{b},\overline{\partial}_{b})$ -double complex.

In [Ak-My2], we introduced a sub-space $F^{p,q}\subset A_{b}^{p}$
’ $q(T^{l})$ . Let $\theta$ be a

real contact form (that is, a non-vanishing real 1-form which annihilates
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$\circ T^{J}+\circ T’’)$ and let

$F^{p,q}:=\{\theta\wedge\alpha\in\theta\wedge\Gamma(M, \wedge^{p-1}(^{o}T^{J})^{*}\wedge\wedge^{q}(^{o}T^{lJ})^{*})|d\theta\wedge\alpha=0\}$ .

Then a double-complex $(F^{p,q}; \partial,\overline{\partial})$ is naturally induced. The higher part

of the total simple complex of $(F^{p,q}; \partial,\overline{\partial})$ coincides with (the higher part
of) the Rumin complex (cf. [Ru] for the Rumin complex). If there exists

a $\overline{\partial}_{b}$-closed non-vanishing $(n, 0)$ -form (i.e. there exists a non-vanishing
$\omega\in\Gamma(M, \wedge^{n}(T^{l})^{*})$ satisfying $\overline{\partial}_{\wedge^{n}(T^{l})^{*}}\omega=0$ or equivalently there exists

a non-vanishing $\omega\in\Gamma(M, \wedge^{n}(T^{l}U_{|M})^{*})$ satisfying $\overline{\partial}_{b}\omega=0$ ), the inner

product with that $(n, 0)$ -form induces an isomorphism of complexes

$\iota$ : $(\Gamma(M, E_{q}),\overline{\partial}_{q})\simeq(F^{n-1,q},\overline{\partial})$ ,

where $(\Gamma(M, E_{q}),\overline{\partial}_{q})$ is the sub-complex of $(A_{b}^{0,q}(T^{l}),\overline{\partial}_{T^{J}})$ introduced
by T. Akahori (cf. Part $I$ , Section 3). Hence, the only difference from
the compact K\"ahler case is the lack of the pure Hodge structure on
$(F^{p,q}; \partial,\overline{\partial})$ . Because of this lack, the analogue of the Bogomolov smooth-
ness does not necessarily hold in deformations of $CR$ structures (cf. [Ak-

My3]). Hence, we consider unobstructedness of a subspace of $H\frac{1}{\partial}\tau’(T^{l})$ ,

where we call a subspace unobstructed if there exists a holomorphic fam-
ily of $CR$ structures whose infinitesimal deformation space coincides with
that space.

Let $I^{p,q}:=Z_{\partial}^{p,q}\cap Z\frac{p}{\partial},q/Z_{\partial}^{p,q}\cap\overline{\partial}F^{p,q-1}$ and $ J^{p,q}:=\partial F^{p-1,q}\cap$

$Z\frac{p}{\partial},q/\partial F^{p-1_{)}q}\cap\overline{\partial}F^{p,q-1}$ with denoting $Z_{\partial}^{p,q}:=Ker\partial\cap F^{p,q}$ and $Z\frac{p}{\partial},q:=$

$Ker\overline{\partial}\cap F^{p,q}$ .

Theorem 3.1. ([Ak-My2], [Ak-My4]) Suppose that $dim_{R}M\geq 7$ .

If $J^{n-1,2}=0$ then $\iota^{-1}(I^{n-1,1})$ is unobstructed.

Further developments in connection with deformations of isolated
singularities are done in [My5] and [My6] using the Hodge structure on
a strongly pseudo-convex domain ([De], [Ohl], [Oh2], [Oh-Ta]).

\S 4. Deformation theory of normal isolated singularities

In this section, we review briefly deformation theory of normal iso-
lated singularities. Refer to [Tj] and [Gr] for details.

Let $V$ be a germ of an analytic variety with a unique singular point
$o$ . In this article, we assume that $V$ is a normal complex space.
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Definition 4.1. A family of deformations of $V$ over a germ $(S, s_{o})$

is a flat holomorphic mapping of germs $f$ : $\mathcal{V}\rightarrow S$ with $f^{-1}(s_{o})\simeq V$ .

The equivalence of two families are defined by the equivalence of
the two flat holomorphic mappings and the notion of versality is defined
in a usual manner. The infinitesimal deformation map is a map $\rho$ :
$T_{s_{o}}S\rightarrow Ext^{1}(\Omega_{V}^{1}, \mathcal{O}_{V})$ and a holomorphic family is called effective if
the infinitesimal deformation map is injective. An effective and versal
family is called a semi-universal family. It is shown in [Tj] that the
obstruction space is Ext2 $(\Omega_{V}^{1}, \mathcal{O}_{V}) $and$ $H.$ $Grauert$ $([Gr])$ $proved$ $the
existence of the semi-universal family.

We may assume that $V$ is a closed subvariety of a ball $B(c^{*})$ in $C^{N}$

defined by $\tilde{h}_{1}=\cdots=\tilde{h}_{m_{1}}=0$ and $o$ is the origin of $C^{N}$ . Denote $B:=$

$B(c^{*})$ , $\Omega:=\Omega(a, b)$ , and $M:=M_{c}$ for some fixed $0<a<c\leq b<c^{*}$ .
We recall Tjurina’s description of $Ext^{q}(\Omega_{V}^{1}, \mathcal{O}_{V})$ (cf. [Tj]): The

sheaf of germs of K\"ahler differentials $\Omega_{V}^{1}$ is given by $\Omega_{V}^{1}:=\Omega_{B}^{1}/\Omega_{|V}^{J}$

where $\Omega^{l}$ is the sub-sheaf of $\Omega_{B}^{1}$ consisting of germs of forms $\omega$ such that
$\omega=\sum_{\lambda}f_{\lambda}d\tilde{h}_{\lambda}+\sum_{\lambda}\tilde{h}_{\lambda}\phi_{\lambda}$ with $f_{\lambda}\in \mathcal{O}_{B}$ and $\phi_{\lambda}\in\Omega_{B}^{1}$ . Hence, we have

a free resolution of $\Omega_{V}^{1}$ ,

$ 0-\Omega_{V}^{1}\leftarrow\Omega_{B}^{1}\otimes \mathcal{O}_{V}\mathring{\underline{d}}\mathcal{O}_{V}^{m_{1}}\leftarrow \mathcal{O}_{V}^{m_{2}}d_{1}\underline{d_{2}}\mathcal{O}_{V}^{m_{3}}\underline{d_{3}}\ldots$

where $d_{0}(u_{1}, \ldots, u_{m_{1}}):=\sum_{\lambda}u_{\lambda}d\tilde{h}_{\lambda}$ .

Ext* $(\Omega_{V}^{1}, \mathcal{O}_{V}) $is$ $the$ $cohomology$ $groups$ $of$ $the$ $following$ $complex:

$ 0-H^{0}(V, \Theta_{B}\otimes \mathcal{O}_{V})\mathring{\rightarrow}H^{0}d^{*}(V, \mathcal{O}_{V}^{m_{1}})\rightarrow H^{0}d_{1}^{*}(V, \mathcal{O}_{V}^{m_{2}})\rightarrow H^{0}d_{2}^{*}(V, \mathcal{O}_{V}^{m_{3}})\rightarrow$ .

Since $V$ is normal, this complex is quasi-isomorphic to the following
complex:

$ 0\rightarrow H^{0}(\Omega, \Theta_{B}\otimes \mathcal{O}_{\Omega})\rightarrow H^{0}d_{0}^{*}(\Omega, \mathcal{O}_{\Omega}^{m_{1}})d_{1}^{*}\rightarrow H^{0}(\Omega, \mathcal{O}_{\Omega}^{m_{2}})d_{2}^{*}\rightarrow H^{0}(\Omega, \mathcal{O}_{\Omega}^{m_{3}})\rightarrow$

where we note that $d_{0}^{*}(v)=(v(\tilde{h}_{1}), \ldots, v(\tilde{h}_{m_{1}}))v\in H^{0}(\Omega, \Theta_{B}\otimes \mathcal{O}_{\Omega})$ .
Using the commutative diagram,

0 $\rightarrow$

$\Theta_{\Omega}||$

$\rightarrow F$

$\Theta_{B}\bigotimes_{||}\mathcal{O}_{\Omega}$

$\rightarrow$

$ N_{\Omega/B}\downarrow$

$\rightarrow$ 0

0 $\rightarrow$ $\Theta_{\Omega}$

$\rightarrow F$

$\Theta_{B}\otimes \mathcal{O}_{\Omega}$

$\mathring{\rightarrow}d^{*}$

$\mathcal{O}_{\Omega}^{m_{1}}$ $\rightarrow$

$\ldots$

where $F$ : $\Theta_{\Omega}\rightarrow\Theta_{B}\otimes \mathcal{O}_{\Omega}$ denotes the differential of the natural em-
bedding $\iota$ : $\Omega\rightarrow G$ and $N_{\Omega/G}$ is the normal bundle of $\Omega$ in $G$ , we have
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Proposition 4.1.

(1) $Ext\ovalbox{\tt\small REJECT}$

(2) $Ext1$

(3) $Ext2$

Using [Ya, pp.81-82] and [H\"o, Theorem 3.4.9] and noting that
depth $\mathcal{O}_{V,o}\geq r$ is equivalent to $H^{q}(V\backslash o, \mathcal{O}_{V\backslash o})=0(1\leq q\leq r-2)$ (cf.

[Ba] $)$ , we have

Theorem 4.2. If depth $\mathcal{O}_{V,o}\geq 3$ and dimcV $\geq 4$ ,

(1) $Ext1$

(2) $Ext2$

Remark. (Cf. [Bl-Ep], Propositions 6.1 and 6.2 below.) In the case
of dimcV $=2$ :

(1) $Ext1$

though the latter space is infinite dimensional.
(2) Ext2 $(\Omega_{V}^{1}, \mathcal{O}_{V}) $is$ $a$ $finite$ $dimensional$ $subspace$ $of$ ^{H\frac{1}{\partial}}b(N_{\Omega/G|M})$ .

Suppose that $dim_{C}V\geq 4$ . Take a model of the semi-universal fam-
ily of deformations of $V$ , say $f$ : $\mathcal{V}\rightarrow S$ , such that $f^{-1}(s_{o})\simeq V(s_{o}\in S)$

as germs at the singular point $o$ . We may assume that $\Omega\subset f^{-1}(s_{o})$ and
let $\phi(t)(t\in(T_{CR}, 0))$ be the Kuranishi semi-universal family of defor-
mations of $CR$ structures on $M$ constructed in \S 2. Based on Theorem
4.2, the following comparison theorem is proved.

Theorem 4.3. ([Bu-Ml], $[My2]$) If $dim_{C}V$ $\geq$ 4 and depth
$\mathcal{O}_{V,o}\geq 3$ , then $(T_{CR}, O)\simeq(S, s_{o})$ and the holomorphic family $\phi(t)(t\in$

$(T_{CR}, 0))$ is induced by a holomorphic family of embeddings $F$ :

$M\times T_{CR}$
$\rightarrow F$

$\mathcal{V}$

$\downarrow p_{2}$ $\downarrow f$

$T_{CR}$ $\simeq$ $S$ .

\S 5. Stably embeddable deformations of $CR$ structures

A compact strongly pseudo-convex $CR$ manifold arises as a bound-
ary of a Stein space if and only if it is embedded in a complex Euclidean
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space ([Ha-La]). Such $CR$ manifolds are called embeddable $CR$ mani-
folds. While all compact strongly pseudo-convex $CR$ manifold of real
dimension five or higher are embeddable ([BM]), embeddable $CR$ mani-
folds are rare in the three dimensional case. In [Bl-Ep], J. Bland and C.
Epstein formulated deformation theory of embeddable three dimensional
$CR$ structures and showed that it is equivalent on the formal deformation
level to the deformation theory of normal isolated surface singularities.

In the higher dimensional case, though all compact strongly pseudo-
convex $CR$ manifolds bound Stein spaces, there are differences between
the Kuranishi deformation theory of $CR$ structures and the deformation
theory of normal isolated singularities, unless $depth\mathcal{O}_{V,\circ}\geq 3$ (cf. [Bu-
Ml, 10]). The Kuranishi deformation theory of $CR$ structures would
correspond to the non-flat deformation theory (cf. [Es]), while the flat
deformation theory corresponds to a special deformation theory of $CR$

structures. Recently, [My6] generalizes the stably embeddable deforma-
tion theory of three dimensional $CR$ structures in [Bl-Ep] to the higher
dimensional complex structure case, and shows that it fits to the de-
formation theory of normal isolated singularities. In this section and
the next one, we consider the $CR$-version of [My6] and complete the
Kuranishi program describing the semi-universal family of normal iso-
lated singularities in terms of the $CR$-language, in the case of complex
dimension three or higher.

Let $V$ be as at the beginning of \S 4 and use the same notation about
$M$ , $\circ T^{JJ}$ , $B$ and $\Omega$ as in \S 4.

Definition 5.1. Let $T$ be a germ of a complex subspace of $C^{d}$ at
the origin defined by an ideal $\sim t_{T}\subset C\{t_{1}, \ldots, t_{d}\}$ . A stably embeddable

family of deformations of the $CR$ structure $\circ T’’$ in $C^{N}$ over $(T, 0)$ is

a holomorphic family $\phi(t)$ of deformations of $T^{JJ}$ over $(T, 0)$ such that
there exists

$g(t)\in A_{b}^{0}(T^{J}C_{|M}^{N}))[[t_{1}, \ldots, t_{d}]]\cap\bigcap_{k>0}A_{b,k}^{0}(T^{J}C_{|M}^{N}))\{t_{1}, \ldots, t_{d}\}$

satisfying

$(\overline{\partial}_{b}-\phi(t))(\iota+g(t))\in\sim J_{T}A_{b,k}^{0,1}(T^{J}C_{|M}^{N})\{t_{1}, \ldots, t_{d}\}$

for all $k>>0$ .

We consider a stably embeddable family of $CR$ structures up to
wiggling in an ambient complex manifold. Hence, we take the following
notion of versality.
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Definition 5.2. A stably embeddable family $\phi(t)(t\in(T, 0))$ of
deformations $of\circ T^{lJ}$ in $C^{N}$ is Kuranishi versal if it has the following
property: For any family of displacements (in $C^{N}$ ) of a neighbourhood

of $M$ in $U$ , over a germ $(S, s_{o})$ , say

$\mathcal{U}$ $c_{-t}$ $C^{N}\times S$

$\downarrow\pi$ $\downarrow p_{2}$

$S$ $=$ $S$ ,

there exist a holomorphic map $\tau$ : $(S, s_{o})\rightarrow(T, 0)$ and a holomor-
phic family of embeddings $F$ : $M\times S\rightarrow \mathcal{U}$ such that $ F_{|M\times 0}=\iota$ and
the holomorphic family of $CR$ structures induced by $F$ coincides with
$\phi(\tau(s))(s\in(S, s_{o}))$ .

Let $(\phi(t)(t \in(T, 0))$ be a stably embeddable family of deformations

of $\circ T^{lJ}$ with which $g(t)$ is associated. Since

$P(\phi(t))=\overline{\partial}_{T^{J}}\phi(t)+R_{2}(\phi(t))+R_{3}(\phi(t))=0$ and $(\overline{\partial}_{b}-\phi(t))(\iota+g(t))=0$ ,

we have

$\overline{\partial}_{T’}v(\phi(t))=0$ and $\overline{\partial}_{b}v(g(t))-d\iota v(\phi(t))=0$

for $v\in T_{0}T$ . Hence $v(\phi(t))$ is $\overline{\partial}_{T^{J}}$ -closed and $d\iota v(\phi(t))$ is $\overline{\partial}_{b}$-exact.

Definition 5.3. For a stably embeddable family $\phi(t)(t\in(T, 0))$

of deformations of a $CR$ structure, the $\inf finitesimal$ deformation map is
the linear map

$\rho$ : $T_{0}T\rightarrow Ker\{H_{b}^{1}(T^{l})\rightarrow H_{b}^{1}(T^{l}C_{|M}^{N})\}$

given by $\rho(v):=the$ cohomology class of $v(\phi(t))$ . A holomorphic family
is called effective if its $\inf finitesimal$ deformation map is injective.

An effective and Kuranishi versal family is called a Kuranishi semi-
universal family.

\S 6. Construction of the Kuranishi semi-universal family of
stably embeddable deformations of $CR$ structures

In this section, we will use the same notation as in \S 5. In [M6], we
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introduced a double-complex $K_{\overline{\Omega}}.,.$ :

0 0
$\downarrow$ $\downarrow$

0 $\rightarrow$ $H^{0}(\overline{\Omega}, T’B_{|U})$
$\rightarrow H$

$H^{0}(\overline{\Omega}, \oplus^{m_{1}}1_{U})$ $\rightarrow$ 0
$\downarrow$ $\downarrow i$ $\downarrow i$

0 $\rightarrow$ $A\frac{0}{\Omega}(T^{J}U)$
$\rightarrow F$

$A\frac{0}{\Omega}(T^{l}B_{|U})$
$\rightarrow H$

$A\frac{0}{\Omega}(\oplus^{m_{1}}1)$ $\rightarrow$ 0
$\downarrow\overline{\partial}$ $\downarrow\overline{\partial}$ $\downarrow\overline{\partial}$

0 $\rightarrow$ $A_{\frac{0}{\Omega}}^{1}’(T^{l}U)$

$\rightarrow F$

$A_{\frac{0}{\Omega}}^{1}’(T^{l}B_{|U})$

$\rightarrow H$

$A_{\frac{0}{\Omega}}^{1}’(\oplus^{m_{1}}1)$ $\rightarrow$ 0
$\downarrow\overline{\partial}$ $\downarrow\overline{\partial}$ $\downarrow\overline{\partial}$

0 $\rightarrow$

$A_{\frac{0}{\Omega}}^{2}’(T^{l}U)\downarrow\overline{\partial}$

$\rightarrow F$

$A_{\frac{0}{\Omega}}^{2}’(T^{l}B_{|U})\downarrow\overline{\partial}$

$\rightarrow H$

$A_{\frac{0}{\Omega}}^{2}’(\bigoplus_{\overline{\partial}\downarrow}m_{1}1)$

$\rightarrow$ 0

. ...

where $K\frac{0}{\Omega},0=A\frac{0}{\Omega}(T^{l}U)$ and we denote $H^{0}(\overline{\Omega}, E):=\{u\in A\frac{0}{\Omega}(E)|\overline{\partial}u=$

$0\}$ for a holomorphic vector bundle $E$ over $U$ , $i$ denotes the inclusion
map and $F$ (resp. $H$ ) is the differential of the natural embedding $\iota$ :
$U\rightarrow B$ (resp. the homomorphism given by $H(v)=(v(\tilde{h}_{1}), \ldots, v(\tilde{h}_{m_{1}}))$

for $v\in T^{l}B_{|U}$ ).

Proposition 6.1 ([My7]).

$Ext^{q}(\Omega_{V}^{1}, \mathcal{O}_{V})\simeq H^{q}(K_{\overline{\Omega}}.,.)(q=1,2)$ .

As the $CR$-version of $K_{\overline{\Omega}}.,.$ , we consider the following double complex
$K_{M}.,$

.
;

0 0
$\downarrow$ $\downarrow$

0 $\rightarrow$ $H_{b}^{0}(T^{l}B_{|M})$
$\rightarrow H$

$H_{b}^{0}(\oplus^{m_{1}}1)$ $\rightarrow$ 0
$\downarrow$ $\downarrow i$ $\downarrow i$

0 $\rightarrow$ $A_{b}^{0}(T’U_{|M})$
$\rightarrow F$

$A_{b}^{0}(T^{J}B_{|M})$
$\rightarrow H$

$A_{b}^{0}(\oplus^{m_{1}}1)$ $\rightarrow$ 0
$\downarrow\overline{\partial}_{b}$ $\downarrow\overline{\partial}_{b}$ $\downarrow\overline{\partial}_{b}$

0 $\rightarrow$ $A_{b}^{0,1}(T^{J}U_{|M})$
$\rightarrow F$

$A_{b}^{0,1}(T^{l}B_{|M})$
$\rightarrow H$

$A_{b}^{0,1}(\oplus^{m_{1}}1)$ $\rightarrow$ 0
$\downarrow\overline{\partial}_{b}$ $\downarrow\overline{\partial}_{b}$ $\downarrow\overline{\partial}_{b}$

0 $\rightarrow$

$A_{b}^{0,2}(T^{l}U_{|M})\downarrow\overline{\partial}_{b}$

$\rightarrow F$

$A_{b}^{0,2}(T^{J}B_{|M})\downarrow\overline{\partial}_{b}$

$\rightarrow H$

$A_{b}^{0,2}(\oplus m_{1}1)\downarrow\overline{\partial}_{b}$

$\rightarrow$ 0
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where $K_{M}^{0,0}=A_{b}^{0}(T^{l}U_{|M})$ , $H_{b}^{0}(E)$ denotes the space of all $CR$-sections
of a holomorphic vector bundle $E$ on $M$ and we denote by the same

symbol $F$ the composite of the projection $\rho^{1,0}$ : $T^{l}\rightarrow T’U_{|M}$ and $F$ :

$T^{J}U_{|M}\rightarrow T^{l}B_{|M}$ , and $i$ and $H$ are the same as above.

The analytic restrictions $\tau$ : $A_{\frac{0}{\Omega}}^{q}’(T^{l}U)\rightarrow A_{b}^{0,q}(T^{l}U_{|M})$ and $\tau$ :

$A_{\frac{0}{\Omega}}^{q}’\rightarrow A_{b}^{0,q}$ induce a homomorphism of double complexes

$\tau$ : $K_{\overline{\Omega}}.,$

.
$\rightarrow K_{M}.,.$ .

Proposition 6.2. $\tau$ induces an isomorphism

$H^{q}(K_{\overline{\Omega}}.,.)\simeq H^{q}(K_{M}.,.)$

for $q=1,2$ .

For the proof, we use the following lemma.

Lemma 6.3. Let $M$ be a real hypersurface of a complex manifold
$U$ and $\gamma$ : $E_{2}\rightarrow E_{3}$ a surjective homomorphism of $C^{\infty}$ -vector bundles
over U. We suppose that there exists a splitting $j$ : $E_{3}\rightarrow E_{2}$ . Then,

for any $u_{3}\in\Gamma(U, E_{3})$ and $u_{2}\in\Gamma(M, E_{2|M})$ with $\gamma(u_{2})=u_{3|M}$ , there

exists $u_{2}\in\Gamma(U, E_{2})$ such that $\gamma(u_{2})=u_{3}$ and $u_{2|M}=u_{2}$ .

Proof. We may assume that $\Omega=M\times(-\epsilon, \epsilon)$ . Let $u_{2}(x, t)$ $:=$

$j(u_{3}(x, t))-j(u_{3}(x, 0))+u_{2}(x)$ . The $u_{2}(x, 0):=u_{2}(x)$ and $\gamma(u_{2}(x, t))=$

$u_{3}(x, t)-u_{3}(x, 0)+\gamma(u_{2}(x))=u_{3}(x, t)$ . Q.E.D.

Proof of Proposition 6.2. The case of $q=2$ : First, we prove the
surjectivity. Let

$(\varphi_{2}, g_{1}, h_{0})\in A_{b}^{0,2}(T^{J}U_{|M})\oplus A_{b}^{0,1}(T^{l}B_{|M})\oplus A_{b}^{0}(\oplus^{m_{1}}1_{M})$

satisfies $d(\varphi_{2}, g_{1}, h_{0})=(0,0,0)$ . We will find

$(\overline{\phi}_{2},\overline{g}_{1},\overline{h}_{0})\in A_{\frac{0}{\Omega}}^{2}’(T^{l}U)\oplus A_{\frac{0}{\Omega}}^{1}’(T^{l}B_{|U})\oplus A\frac{0}{\Omega}(\oplus^{m_{1}}1_{U})$

satisfying $d(\overline{\phi}_{2},\overline{g}_{1},\overline{h}_{0})=(0,0,0)$ and $\tau(\overline{\phi}_{2},\overline{g}_{1},\overline{h}_{0})=(\varphi_{2}, g_{1}, h_{0})$ . Ap-
plying [Ko-Ro, Theorem 7.5] to $k_{0}:=\gamma h_{0}\in H_{b}^{0}(E_{|M})$ , there exists
$\overline{k}_{0}\in H^{0}(\overline{\Omega}, E)$ such that $\overline{k}_{0}=k_{0}$ where we denote by $E$ the quotient
bundle $\oplus^{m_{1}}1_{U}/N_{U/B}$ . By Lemma 6.3, there exists $h_{0}\in A\frac{0}{\Omega}(\oplus^{m_{1}}1_{U})$

such that $\gamma(h_{0})=k_{0}$ and $h_{0|M}=h_{0}$ . Since $\gamma(\overline{\partial}h_{0})=\overline{\partial}k_{0}=0$ , by

Lemma 6.3, there exists $g_{1}\in A\frac{0}{\Omega},1(T^{J}B_{|U})$ such that $\alpha(g_{1})=\beta^{-1}(\overline{\partial}h_{0})$

and $\tau g_{1}=g_{1}$ . Since $\beta\circ\alpha(\overline{\partial}g_{1})=0$ , by Lemma 6.3, there exists
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$\phi_{2}\in A_{\frac{0}{\Omega}}^{2}’(T^{J}U)$ such that $F\phi_{2}=\overline{\partial}g_{1}$ and $\tau\phi_{2}=\varphi_{2}$ . Next, we prove the

injectivity. Let

$(\overline{\phi}_{2},\overline{g}_{1},\overline{h}_{0})\in A_{\frac{0}{\Omega}}^{2}’(T’U)\oplus A_{\frac{0}{\Omega}}^{1}’(T^{J}B_{|U})\oplus A\frac{0}{\Omega}(\oplus^{m_{1}}1_{U})$

and suppose $\tau(\overline{\phi}_{2},\overline{g}_{1},\overline{h}_{0})=d(\varphi_{1}, g_{0}, h_{-1})$ where

$(\varphi_{1}, g_{0}, h_{-1})\in A_{b}^{0,1}(T’U_{|M})\oplus A_{b}^{0}(T^{l}B_{|M})\oplus H_{b}^{0}(\oplus^{m_{1}}1_{M})$ .

By the Lewy extension theorem, we have $\overline{h}_{-1}\in H^{0}(\overline{\Omega}, \oplus^{m_{1}}\mathcal{O}_{U})$ such
that $\overline{h}_{-1|M}=h_{-1}$ . Since $\overline{\partial}\gamma(h_{0}-h_{-1})=\gamma\overline{\partial}h_{0}=\gamma\beta\alpha(g_{1})=0$ and
$\gamma(h_{0}-h_{-1})_{|M}=\gamma\beta\alpha(g_{0})=0$ , $\gamma(h_{0}-h_{-1})=0$ . Hence, by Lemma 6.3,

there exists $g_{0}\in A\frac{0}{\Omega}(T^{l}B_{|U})$ such that $\alpha(go)=h_{0}-h_{-1}$ and $g_{0|M}=g_{0}$ .

Since $\beta\alpha(g_{1}-\overline{\partial}g_{0})=\overline{\partial}h_{0}-\overline{\partial}(h_{0}-h_{-1})=0$ , $g_{1}-\overline{\partial}g_{0}\in A_{\frac{0}{\Omega}}^{1}’(T^{J}U)$ . Hence,

if we set $F\phi_{1}:=-g_{1}+\overline{\partial}g_{0}$ , then $\overline{\partial}\phi_{1}=\phi_{2}$ because $F\overline{\partial}\phi_{1}=-\overline{\partial}g_{1}=F\phi_{2}$ .

The case of $q=1$ : First, we prove the surjectivity. Let

$(\varphi_{1}, g_{0}, h_{-1})\in A_{b}^{0,1}(T^{J}U_{|M})\oplus A_{b}^{0}(T’B_{|M})\oplus H_{b}^{0}(\oplus^{m_{1}}1_{M})$

satisfies $d(\varphi_{1}, g_{0}, h_{-1})=(0,0,0)$ . We will find

$(\overline{\phi}_{1},\overline{g}_{0},\overline{h}_{-1})\in A_{\frac{0}{\Omega}}^{1}’(T^{l}U)\oplus A\frac{0}{\Omega}(T^{J}B)\oplus H^{0}(\overline{\Omega}, \oplus^{m_{1}}\mathcal{O}_{U})$

satisfying $d(\overline{\phi}_{1},\overline{g}_{0},\overline{h}_{-1})=(0,0,0)$ and $\tau(\overline{\phi}_{1},\overline{g}_{0},\overline{h}_{-1})=(\varphi_{1}, g_{0}, h_{-1})$ .

By the Lewy extension theorem, there exists $\overline{h}_{-1}\in H^{0}(\overline{\Omega}, \oplus^{m_{1}}\mathcal{O}_{U})$ such
that $\overline{h}_{-1|M}=h_{-1}$ . If we set $\overline{k}_{-1}:=\gamma(\overline{h}_{-1})\in H^{0}(\overline{\Omega}, E),\overline{k}_{-1}=0$

because $k_{-1|M}=0$ . Hence $\overline{h}_{-1}\in H^{0}(\overline{\Omega}, N_{U/B})$ and by Lemma 6.3,

there exists $\overline{g}_{0}\in A\frac{0}{\Omega}(T^{J}B)$ such that $\beta\alpha(\overline{g}_{0})=\overline{h}_{-1}$ and $\overline{g}_{0|M}=g_{0}$ .

Since $\beta\alpha(\overline{\partial}\overline{g}_{0})=\overline{\partial}\overline{h}_{-1}=0,\overline{\partial}\overline{g}_{0}\in A\frac{0}{\Omega},1(T^{l}U)$ . Hence, there exists

$\overline{\phi}_{1}\in A\frac{0}{\Omega},1(T^{J}U)$ such that $F\overline{\phi}_{1}=\overline{\partial}\overline{g}_{0}$ and $\tau\overline{\phi}_{1}=\varphi_{1}$ . Next, we prove the

injectivity. Let

$(\overline{\phi}_{1},\overline{g}_{0},\overline{h}_{-1})\in A_{\frac{0}{\Omega}}^{1}’(T^{l}U)\oplus A\frac{0}{\Omega}(T^{l}B)\oplus H^{0}(\overline{\Omega}, \oplus^{m_{1}}\mathcal{O}_{U})$

and suppose $\tau(\overline{\phi}_{1},\overline{g}_{0},\overline{h}_{-1})=d(\varphi_{0}, g_{-1})$ where $(\varphi_{0}, g_{-1})\in A_{b}^{0}(T^{l}U_{|M})\oplus$

$H_{b}^{0}(T^{J}B_{|M})$ . We have $\overline{g}_{-1}\in H^{0}(\overline{\Omega}, T’B)$ such that $\overline{g}-1|M=g_{-1}$ by the

Lewy extension theorem. Since $(\overline{h}_{-1}-H(\overline{g}_{-1}))_{|M}=0,\overline{h}_{-1}-H(\overline{g}_{-1})=$

$0$ . Since $\beta\alpha(\overline{g}_{0}-\overline{g}_{-1})=\overline{h}_{-1}-H(\overline{g}_{-1})=0$ , there exists $\overline{\phi}_{0}\in A\frac{0}{\Omega}(T^{J}U)$

such that $F\overline{\phi}_{0}=\overline{g}_{0}-\overline{g}_{-1}$ and $\overline{\phi}_{0|M}=\varphi_{0}$ . Since $F\overline{\phi}_{1}=\overline{\partial}\overline{g}_{0}=F\overline{\partial}\overline{\phi}_{0}$ ,

we have $\overline{\phi}_{1}=\overline{\partial}\overline{\phi}_{0}$ . Q.E.D

Let $(K_{M^{ }}., d)$ be the total simple complex of the double complex $K_{M}.,.$ .



268 K. Miyajima

Proposition 6.4. If $dim_{R}M\geq 5$ , there exist operators $Z$ : $ K_{M}^{q}\rightarrow$

$Kerd$ and $Q$ : $Kerd\rightarrow K_{M}^{q-1}(q=1,2)$ , satisfying

(1) $Z_{|Kerd}=id_{Kerd}$ ,

(2) $d\circ Q\circ d=d$ .

Hence, if we set $\prime H_{M}^{q}:=(1-d\circ Q)\circ Z(K_{M}^{q})$ and $\rho_{H}:=(1-d\circ Q)\circ Z$ :
$K_{M}^{q}\rightarrow\prime H_{M}^{q}$ , then we have

Corollary 6.5. For $q=1,2$ ,

(1) The natural homomorphism $\prime\mu_{M}^{q}\rightarrow H^{q}(K_{M}.,.)$ is an isomor-
phism,

(2) a homotopy formula $u=\rho_{\mathcal{H}}u+d\circ Q\circ Zu+(1-Z)u$ holds for
$u\in K_{M}^{q}$ .

The existence of $Z$ and $Q$ is proved by a parallel argument of [My6,

\S 4] with the $\overline{\partial}$-analysis on $\overline{\Omega}$ replaced by the $\overline{\partial}_{b}$-analysis on $M$ , where

we use the standard $\overline{\partial}_{b}$-Neumann Hodge decompositions at $A_{b}^{0}$
’

$1$

$(T^{l})$ ,

$A_{b}^{0,1}(N_{U/B|M})$ and $A_{b}^{0,1}$ ; say $\eta=\rho\eta+\overline{\partial}_{b}\overline{\partial}_{b}^{*}N_{b}\eta+\overline{\partial}_{b}^{*}\overline{\partial}_{b}N_{b}\eta$ , and the ones at

$A_{b}^{0}(T^{J}B_{|M})$ and $A_{b}^{0}$ ; say $\eta=\rho\eta+\overline{\partial}_{b}^{*}N_{b}\overline{\partial}_{b}\eta$ . These Hodge decompositions

are all possible if $dim_{R}M\geq 5$ (cf. [Fo-Ko]). At the same time, we have

the following estimates. We denote by $||||_{k}$ and $||||_{k}’$ the Sobolev norm
and the Folland-Stein norm respectively of order $k$ .

Proposition 6.6.

(1) For $(a_{1}, b_{0}, c_{-1})\in K_{M}^{0,1}\oplus K_{M}^{1,0}\oplus K_{M}^{2,-1}$ , let $Z(a_{1}, b_{0}, c_{-1})=$

$(a_{1}^{l}, b_{\acute{0}}, c_{-1}^{J})$ and $Q(a_{1}^{l}, b_{\acute{0}}, c_{-1}^{l})=(a_{\acute{0}}, b_{-1}^{ll})$ . Then

$||a_{\acute{0}}||_{k}’\leq C||a_{1}^{J}||_{k}\leq C^{l}||a_{1}||_{k}$

holds.
(2) For $(a_{2}, b_{1}, c_{0})$ $\in$ $K_{M}^{0,2}\oplus K_{M}^{1,1}\oplus K_{M}^{2,0}$ , let $Z(a_{2}, b_{1}, c_{0})$ $=$

$(a_{2}^{J}, b_{1}^{J}, c_{\acute{0}})$ and $Q(a_{2}^{J}, b_{1}^{l}, c_{\acute{0}})=(a_{1}^{JJ}, b_{\acute{0}}, c_{-1}^{!J})$ . Then

$||a_{1}^{lJ}||_{k}+||b_{0}^{JJ}||_{k}’\leq C||b_{1}’||_{k}\leq C^{l}||b_{1}||_{k}$

holds.

Here $C$ and $C^{l}$ denote constants independent of $(a_{1}, b_{0}, c_{-1})$ nor
$(a_{2}, b_{1}, c_{0})$ .

Furthermore, the same adjustments as [My6] are possible.
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Let

$\circ K_{hf}^{0,q}:=\{a_{q}\in A_{b}^{0,q}(^{o}T^{l})|\overline{\partial}_{b}a_{q}\in A_{b}^{0,q+1}(^{o}T’)\}$ ,

$\circ K_{M}^{1,q}:=\{b_{q}\in A_{b}^{0,q}(^{o}\tilde{T}^{J}B_{|\partial\Omega})|\overline{\partial}_{b}b_{q}\in A_{b}^{0,q+1}(^{o}\tilde{T}^{J}B_{|\partial\Omega})\}$

where $\circ\tilde{T}’B$ is the subbundle of $T’B$ given by

$\circ\tilde{T}^{J}B:=\{v\in T^{J}B|v(\sum_{\beta=1}^{N}|w^{\beta}|^{2})=0\}$ .

Then by the parallel argument as in the latter part of [My6, \S 3], we can
construct $Z$ and $Q$ so that the following proposition holds.

Proposition 6.7. For any cohomology class in $H^{1}(K_{M}. )$ has $a$

representative $in\circ K_{M}^{0,1}\oplus\circ K_{M}^{1,0}\oplus K_{M}^{2,-1}$

Proposition 6.8.

(1) $Z(a_{2}, b_{1}, c_{0})\in\circ K_{M}^{0,2}\oplus\circ K_{M}^{1,1}\oplus K_{M}^{2,0}$ ,

if $(a_{2}, b_{1}, c_{0})\in\circ K_{M}^{0,2}\oplus\circ K_{M}^{1,1}\oplus K_{M}^{2,0}$ ,

(2) $Q(a_{2}, b_{1}, c_{0})\in\circ K_{M}^{0,1}\oplus\circ K_{M}^{1,0}\oplus K_{M}^{2,-1}$ ,

if $(a_{2}, b_{1}, c_{0})\in\circ K_{hT}^{0,2}\oplus\circ K_{M}^{1,1}\oplus K_{M}^{2,0}$ .

Using $Z$ and $Q$ , we construct the Kuranishi semi-universal family of

stably embeddable deformations of $\circ T’’$ by the argument in \S 2. Though

a stably embeddable deformation of $\circ T’’$ is represented by $\phi\in K_{M}^{0,1}$ with

which a $g\in K_{M}^{1,0}$ satisfying $(\overline{\partial}-\phi)(\iota+g)=0$ is associated, we consider

a triple $(\phi, g, k)\in K_{M}^{0,1}\oplus K_{M}^{1,0}\oplus K_{M}^{2,-1}$ satisfying

$P(\phi, g, k):=$

( $\overline{\partial}_{b}\phi+R_{2}(\phi)+R_{3}(\phi)$ , $(\overline{\partial}-\phi)(\iota+g)$ , $(\tilde{h}+\tilde{k})\circ(\iota+g))=(0,0,0)$

where $\tilde{k}$ denotes a holomorphic extension of $k$ over $\overline{B}(c)$ . Note that
the holomorphic extension of $k$ is possible in a unique way (cf. [Bl-Ep,

Theorem A. $I$ ]), and that $\tilde{k}o(\iota+g)$ is considered as a Taylor series. We
remark that the last term concerns the equation of the image $(\iota+g)(M)$ ;

that is, $\tilde{h}+\tilde{k}$ is the defining equation of the subvariety which $(\iota+g)(M)$

bounds.
The construction of the Kuranishi semi-universal family using the

complex $(K_{M^{ }}., d)$ is parallel to the argument in \S 2. In fact, by the
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argument with $(A_{b}^{0}’.(T^{J}),\overline{\partial}_{b})$ , $\rho+\overline{\partial}_{b}\overline{\partial}_{b}^{*}N$ and $\overline{\partial}_{b}^{*}N$ replaced by $(K_{M }., d)$ ,
$Z$ and $Q$ respectively, we can prove the existence of

$(\hat{\phi}(t),\hat{g}(t),\hat{k}(t))\in(K_{M}^{0,1}\oplus K_{M}^{1,0}\oplus K_{M}^{2,-1})[[t_{1}, \ldots, t_{d}]]$

such that

(6.1) $(\hat{\phi}(0),\hat{g}(0),\hat{k}(0))=(0,0,0)$ ,

(6.2) $(\hat{\phi}(t),\hat{g}(t),\hat{k}(t))\equiv\sum_{\sigma=1}^{d}(\phi_{\sigma}, g_{\sigma}, k_{\sigma})t_{\sigma}mod \mathfrak{m}^{2}$

where $\{[(\phi_{\sigma}, g_{\sigma}, k_{\sigma})]\}_{\sigma=1}^{d}$ is a cohomology basis of $H^{1}(K_{M}.,.)$ and $\mathfrak{m}$

denotes the maximal ideal of $C\{t_{1}, \ldots, t_{d}\}$ ,

(6.3) there exists an extension $\tilde{k}(t)\in H^{0}(\overline{B}, \mathcal{O}_{B})$ of $\hat{k}(t)$ such that

$P(\hat{\phi}(t),\hat{g}(t),\tilde{k}(t)):=$

$(\overline{\partial}\hat{\phi}(t)-\frac{1}{2}[\hat{\phi}(t),\hat{\phi}(t)]$ , $(\overline{\partial}-\hat{\phi}(t))(\iota+\hat{g}(t))$ , $(\tilde{h}+\tilde{k}(t))\circ(\iota+\hat{g}(t)))$

$\in\hat{3}(K_{\phi f}^{0,2}\oplus K_{M}^{1,1}\oplus K_{M}^{2,0})[[t_{1}, \ldots, t_{d}]]$ ,

where $\hat{\tilde{J}}$ is an ideal of $C[[t_{1}, \ldots, t_{d}]]$ generated by $\hat{b}_{1}(t)$ , $\ldots,\hat{b}_{\ell}(t)$

and $\rho_{\mathcal{H}}P(\hat{\phi}(t),\hat{g}(t),\tilde{k}(t))=\sum_{\beta=1}^{\ell}\hat{b}_{\beta}(t)e_{\beta}$ with respect to a basis

$e_{1}$ , $\ldots$ , $e_{\ell}$ of $H^{2}$ ,

(6.4) it is formally Kuranishi versal, that is, there exists $\tau$ and $F$ in
Definition 5.2 as formal power series in $s$ .

The proof of (6.4) needs to treat an extra term other than the
argument in the proof of Proposition 2.2. Let $\pi$ : $\mathcal{U}\rightarrow S$ together
with an embedding $\Psi$ : $\mathcal{U}c_{-\rangle}C^{N}\times S$ be a family of displacements
(in $C^{N}$ ) of a neighborhood of $M$ in $U$ . Suppose that $\Psi$ is expressed

by $w^{\beta}=\Psi_{i}^{\beta}(\zeta_{i}, s)(\beta=1, \ldots, N)$ with respect to a local coordinate
$(\zeta_{i}^{1}, \ldots, \zeta_{i}^{n}, s_{1}, \ldots, s_{d^{J}})$ of $\mathcal{U}$ as in (N.3) and the coordinate $(w^{1}, \ldots, w^{N})$

of $C^{N}$ . By the argument parallel to the proof of Proposition 2.2, we can
prove the existence of

$\hat{\tau}(s)\in C^{d}[[s_{1}, \ldots, s_{d^{J}}]]$

$\hat{F}_{i}^{\alpha}(s)\in\Gamma(U_{i}, T^{J}U_{|M})[[s_{1}, \ldots, s_{d^{J}}]](\alpha=1, \ldots, n)$

$\hat{\eta}^{\beta}(s)\in H^{0}(\overline{B}(c), \mathcal{O}_{B})[[s_{1}, \ldots, s_{d’}]](\beta=1, \ldots, N)$
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satisfying

(1) $\hat{\tau}(0)=0,\hat{F}_{i}^{\alpha}(0)=id_{M},\hat{\eta}^{\beta}(0)=w^{\beta}$

(2) $\hat{F}_{i}^{\alpha}(s)-f_{ij}^{\alpha}(\hat{F}_{j}(s), s)\equiv 0mod \tilde{J}s$

(3) $(\overline{\partial}-\hat{\phi}(\hat{\tau}(s)))\hat{F}_{i}^{\alpha}(s)\equiv 0mod 2_{S}$

(4) $\hat{\eta}^{\beta}(\Psi_{i}(\hat{F}_{i}(s), s),$ $s)-\hat{g}_{i}^{\beta}(\hat{\tau}(s))\equiv 0mod \tilde{J}_{S}$

(5) $b_{\gamma}(\hat{\tau}(s))\equiv 0mod \tilde{J}_{S}$ ,

where $\zeta^{\alpha}=f_{ij}^{\alpha}(\zeta_{j}, s)(\alpha=1, \ldots, n)$ is the coordinate transformation

and $\tilde{J}_{S}$ denotes the defining ideal of $S$ in $C\{s_{1}, \ldots, s_{d^{J}}\}$ . Then (6.4)

follows from the existence of the above $\{\hat{F}_{i}^{\alpha}(s)\}$ and $\hat{\tau}(s)$ .

In order to assure the convergence of $\hat{\phi}(t),\hat{g}(t),\hat{b}_{\gamma}(t)(\gamma=1,$
$\ldots$ ,

$\ell),\hat{\tau}(s)$ and $\{\hat{F}_{i}^{\alpha}(s)\}$ , we need the adjustment of $Z$ and $Q$ as above.
Indeed, by these adjustment and by starting the construction with the
initial term

$(\hat{\phi}_{1}(t),\hat{g}_{1}(t),\hat{k}_{1}(t))=\sum_{\sigma=1}^{d}(\phi_{\sigma}, g_{\sigma}, k_{\sigma})t_{\sigma}$

such that

$(\phi_{\sigma}, g_{\sigma}, k_{\sigma})\in\circ K_{M}^{0,1}\oplus\circ K_{M}^{1,0}\oplus K_{M}^{2,-1}(\sigma=1, \ldots, d)$

holds (it is possible by Proposition 6.7),we have $\hat{\phi}(t)\in\circ K_{\Lambda I}^{0,1}[[t_{1}, \ldots, t_{d}]]$

which assures the convergence of $\hat{\phi}(t)$ and $\hat{g}(t)$ for the same reason as in

\S 2, using the estimate of $Z$ and $Q$ (cf. Proposition 6.6). The convergence

of $\hat{b}_{\gamma}(t)$ follows from the fact that $P_{|H}$ : $H$ $\rightarrow K_{M}^{0,2}\oplus K_{M}^{1,1}$ is injective

where $P$ denotes the projection operator of $K_{M}^{0,2}\oplus K_{M}^{1,1}\oplus K_{M}^{2,0}$ onto the

first two factors. The convergence of $\hat{\tau}(s)$ and $\{\hat{F}_{i}^{\alpha}(s)\}$ is proved by the

same calculation as in [My3].
Hence we have

Theorem 6.9. Let $V$ be a locally closed normal Stein subvariety

in $C^{N}$ and $M$ a link of one singular point V. If dimcV $\geq 3$ , then there
exists a Kuranishi semi-universal family of stably embeddable deforma-
tions of $CR$ structures on $M$ .

Let $V$ and $M$ be as in Theorem 6.9 and $o$ the normal isolated singular
point which $M$ bounds. Let $f$ : $\mathcal{V}\rightarrow S$ be the semi-universal family of
flat deformations of the germ $(V, o)$ . We may assume that $\mathcal{V}\subset C^{N}\times S$

is a subspace and $M$ $\subset f^{-1}(s_{o})(s_{o}\in S)$ .
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Theorem 6.10. Let $V$ and $M$ be as in Theorem 6.9 and $f$ : $\mathcal{V}\rightarrow S$

as above. Let $\phi(t)(t \in(T, 0))$ be the Kuranishi semi-universal family

of stably embeddable deformations of $CR$ structures on $M$ (obtained in

Theorem 6.9). Then $(T, 0)\simeq(S, s_{o})$ and there exists a holomorphic
family of embeddings of $M$ into the family $\mathcal{V}\rightarrow S$ such that $\phi(t)(t\in$

$(T, 0))$ is induced from this family of embeddings.

Outline of the proof. A formal family $\tilde{h}_{1}+\tilde{k}_{1}(t)$ , $\ldots,\tilde{h}_{m_{1}}+\tilde{k}_{m_{1}}(t)$

of holomorphic functions on $\overline{B}(c)$ (obtained in Theorem 6.9) defines a

formal family of subvarieties of $\overline{B}(c)$ , say $\hat{\mathcal{V}}\subset\overline{B}(c)\times\hat{T}$ , and we can
prove that it is a flat family by the same argument as [Bl-Ep, Theorem
5.1]. Hence, we can compare $\phi(t)(t\in(T, 0))$ with $f$ : $\mathcal{V}\rightarrow S$ using
their Kuranishi semi-universality and formally semi-universality respec-
tively. Theorem 6.10 follows from this comparison taking account of
Propositions 6.1 and 6.2.

In the case of $dim_{C}V=2$ , our notion of stably embeddable defor-
mations of $CR$ structures is nothing but the one of three dimensional
embeddable $CR$ structures in [Bl-Ep]. In fact, $H^{1}(K_{\dot{M}})$ coincides with
$Def_{1}(M,\overline{Z}, X_{0})$ (the space of first order embeddable deformations) in

[Bl-Ep], where $\overline{Z}$ denotes the original $CR$ structure on $M$ and $X_{0}$ coin-
cides with the embedding $\iota$ . However, the construction of the (conver-
gent) semi-universal family of stably embeddable deformations of three
dimensional $CR$ structures on $M$ is still open due to the difficulty of the
analysis at $K_{M}^{2}$ .
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A Report on Isolated Singularities by

Transcendental Methods

Takeo Ohsawa

Dedicated to Professor M. Kuranishi on his 70th birthday

1. An isolated singularity (of a complex analytic space) is by defi-
nition a germ of a reduced and irreducible complex analytic space at an
isolated singular point. By a model of an isolated singularity we shall
mean an irreducible complex analytic subset $V$ of $\mathbb{C}^{N}$ containing the
origin as the unique singular point. To any model $V$ of an isolated sin-
gularity $(V, o)$ , one can associate three manifolds of completely different
nature.

i) A nonsingular model of $V$ : By Hironaka’s desingularization the-

orem, there exists a complex manifold $\tilde{V}$ and a proper holomorphic map
$\pi$ : $\tilde{V}\rightarrow V$ such that $\pi|\tilde{V}\backslash \pi^{-1}(o)$ is a biholomorphism. In virtue of the

existence of $\tilde{V}$ , equivalence questions between the isolated singularities
can be transferred to more geometric ones (cf. [G-2], [H-R]). Moreover
a lot of work has been done on the classification of isolated singularities

by manipulating the invariants on $\tilde{V}$ (cf. [I]).
$ii)$ $V\cap S_{\Xi}$ , where $S_{\xi i}=\{z\in \mathbb{C}^{N}|||z||=\epsilon\}$ and $\epsilon$ is so chosen

that $S_{\Xi’}$ and $V$ intersect transversally for all $\epsilon’\in(0,2\epsilon)$ : As a differen-
tiable manifold, $V\cap S_{\epsilon}$ falls into the class of strongly pseudoconvex $CR$

manifolds, or $spc$ manifolds. Since the $spc$ structure naturally yields $L^{2}$

estimates for the tangential Cauchy-Riemann operators, the method of
PDE in the theory of deformation of complex manifolds is carried over
to $spc$ manifolds. As a result, several fundamental questions including
the construction of the versal family of singularities have been solved by
this method (cf. [A-1], [A-M] and [N-O]).

$iii)$ $V\backslash \{o\}$ : Manifolds of this type appear as the ends of locally
symmetric varieties of rank one, and they were studied in a general
framework by Andreotti-Grauert [A-G] as the ends of “pseudoconcave”
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spaces. Afterwards it was noticed that some questions on isolated sin-
gularities are tractable as a sort of boundary value problem on $V\backslash \{o\}$

for the $\overline{\partial}$-operator. In fact, analysis of this type turned out to be useful
when one wants to understand the intersection cohomology of projective
varieties (cf. [O-4,5,9]).

The purpose of this note is to report miscellaneous results on these
three types of manifolds that are obtained since Professor M. Kuranishi
gave a series of inspiring lectures at RIMS in 1976.

2. Given any desingularization $\pi$ : $\tilde{V}\rightarrow V$ , $\pi^{-1}(o)$ is called the
exceptional set. Topology of the exceptional set is somewhat restrictive
in the following sense.

Theorem 1. $dim_{\mathbb{C}}H^{r}(\pi^{-1}(o), \mathbb{C})\equiv 0(mod 2)$ if $r\geq n$ and $r\equiv 1$

$(mod 2)$ .

This result seems to have been a sort of folklore in the late seventies
(cf. [L-R], [F]), but rigorous proofs appeared only gradually in [0-1,2,6]
and [O-T]. Although a complete proof of Theorem 1 is only available
via Artin’s algebraization theorem and Deligne’s mixed Hodge theory,
it may be worthwhile to note that the following constitutes already a
significant part of the proof, which motivated further generalization of
the Hodge theory to noncompact manifolds.

Theorem 2 (cf. [0-1,2], [O-T]). Let $X$ be a K\"ahler manifold of
dimension $n$ and let $D\subset X$ be a strongly pseudoconvex domain with
$C^{2}$ -smooth boundary. Then there exists a complete K\"ahler metric $\omega$ on
$D$ such that $H^{r}(D, \mathbb{C})$ are canonically isomorphic to the space of $L^{2}$

harmonic forms of degree $r$ with respect to $\omega$ for all $r>n$ .

The range $r>n$ is optimal. In fact, $dim_{\mathbb{C}}H^{n}(D, \mathbb{C})<\infty$ but the

space of $L^{2}$ harmonic $n$-forms is infinite dimensional for any strongly
pseudoconvex domain. As the above $\omega$ one may take any complete
K\"ahler metric which is quasi-isometrically equivalent to the Levi form
of a $C^{\infty}$ exhaustion function with bounded gradient outside a compact
subset of $D$ . A typical example of such a metric is the Bergman metric
on strongly pseudoconvex domains in $\mathbb{C}^{n}$ (cf. [D-F]). For the Bergman
metric, the $L^{2}$ cohomology groups of type $(p, q)$ are known to be infinite
dimensional for $p+q=n$ (cf. [D-F], [0-8]). Recently the bound-
ary values of these cohomology classes are studied for the unit ball (cf.
[J-K] $)$ .

Applying Theorem 2, one can deduce the following Hartogs type
theorem.



278 T. Ohsawa

Theorem 3 (cf. [0-2]). The natural restriction map

$i^{p,q}$ : $H^{p,q}(\tilde{V})\rightarrow H^{p,q}(\tilde{V}\backslash \pi^{-1}(0))$

is surjective if $p+q<n-1$ .

The range $p+q<n-1$ is also optimal. In fact, since $\tilde{V}\backslash \pi^{-1}(o)\cong$

$V\backslash \{o\}$ and $H^{n,0}(\tilde{V})$ is naturally identified with the set of $L^{2}$ holomor-
phic $n$-forms on $V\backslash \{o\}$ , $dim_{\mathbb{C}}Coker\rho^{n,0}$ does not depend on the choice

of the nonsingular model $\tilde{V}$ . It is easy to see that $dim_{\mathbb{C}}Coker\rho^{n,0}=$

$dim_{\mathbb{C}}H^{1}(\tilde{V}, \mathcal{O}_{\overline{V}})$ and to verify that $H^{1}(\tilde{V}, O_{\overline{V}})\neq\{o\}$ if $dimV=2$ and
$\tilde{V}$ contains a nonrational curve.

Van Straten [V-S] discovered a remarkable application of Theorem
3 to Zariski-Lipman conjecture by showing for the case $dimV\geq 3$ that
the germ $(V, o)$ is nonsingular if the tangent sheaf of $V$ is locally free.

As for the de Rham cohomology classes on $\tilde{V}\backslash \pi^{-1}(o)$ , we have
the same extendability result for the degrees less than $n-1$ . This
range is also optimal in general, although one can prove the following
by analysing a spectral sequence that abuts to $H^{r}(\pi^{-1}(o), \mathbb{C})$ .

Theorem 4 (cf. [0-6]). If the inclusion map $\pi^{-1}(0)c_{-\rangle}\tilde{V}$ is $a$

homotopy equivalence, the natural restriction map

$H^{r}(\tilde{V}, \mathbb{C})\rightarrow H^{r}(\tilde{V}\backslash \pi^{-1}(0), \mathbb{C})$

is surjective for $r\leq n-1$ .

Corollary. In the above situation, every cohomology class in
$H^{n}(\overline{V}, \mathbb{C})$ can be represented by a compactly supported closed form.

Thus we are naturally led to the following

Question. Is every closed holomorphic (n-1) form on $\tilde{V}\backslash \pi^{-1}(o)$

holomorphically extendable to $\tilde{V}.$?

Note that this is certainly true if $n=1$ , since closed 0-forms are
locally constant functions. The first nontrivial case $n=2$ was solved
affirmatively by T. Ueda [U]. Mentioning further a partial result, we have

that if $\tilde{V}$ is a Zariski open subset of a nonsingular projective variety $Z$

and the given form is extendable to $Z\backslash \pi^{-1}(o)$ then it is extendable also

across $\pi^{-1}(o)$ . In fact one can prove the following.
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Theorem 5 (cf. [F1], [O-1O]). Let $X$ be an irreducible projective
variety with singular locus $Y$ , and let $p$ be a nonnegative integer satisfy-
ing $p<codim$ Y. Then a holomorphic $p$-form $f$ is extendable holomor-
phically to a nonsingular model of $X$ if and only if $f$ is closed.

After [O-1O] was written down, S. Kosarew settled the question af-
firmatively by an algebraic method (personal communication).

As another question on $\tilde{V}$ we would like to mention the following
which was asked by S. Nakano around 1976.

Problem. Is any $d$ -exact (1,$ 1)$ -form on $\tilde{V}$ of the form $\partial\overline{\partial}\varphi^{p}$.

In case the canonical bundle of $\tilde{V}$ is trivial, one may employ the
above mentioned $L^{2}$ Hodge theory (cf. Theorem 2 and the remark) to
solve it affirmatively. As a result, one has the smoothness of Kuranishi
spaces for the deformation of certain isolated singularities (cf. [M]). It
should be noted, however, that the answer to Nakano’s question is nega-
tive in general, because it is not necessarily true that all the topologically

trivial line bundles over $\tilde{V}$ arise as flat $U(1)$ bundles.

3. Applying Theorem 4, one can describe some topological prop-
erties of $V\cap S_{\in}$ .

Theorem 6. Let $\alpha_{i}\in H^{r_{i}}(V\cap S_{\in}, \mathbb{C})$ , $i=1,2$ , $\ldots$ , $m$ . Then the
cup product $\alpha_{1}\cup\alpha_{2}\cup\cdots\cup\alpha_{m}$ is zero whenever $\sum_{i=1}^{m}r_{i}\geq n$ and $r_{i}\leq n-1$

for all $i$ .

Proof Let $\tilde{V}_{\Xi}:=\{w\in\tilde{V}|||\pi(w)||<2\epsilon\}$ . Then, by Theorem 4

there exist $\tilde{\alpha}_{i}\in H^{r_{i}}(\tilde{V}_{\in}, \mathbb{C})$ such that $\tilde{\alpha}_{i}|V\cap S_{\epsilon}=\alpha_{i}$ . Since $\alpha_{1}\cup\cdots\cup$

$\alpha_{m}=(\tilde{\alpha}_{1}\cup\cdots\cup\tilde{\alpha}_{m})|V\cap S_{\Xi}$ , we obtain the conclusion from the corollary
of Theorem 4.

Corollary. If $n\geq 2$ , there does not exist an isolated singularity
$(V, o)$ for which $V\cap S_{\in}is$ homotopically equivalent to $S^{1}\times\cdots\times S^{1}$ .

$2n-1$

Such a phenomenon was first noticed by D. Sullivan for hypersurface
singularities of dimension 2 (cf. [Ka]).

As we have mentioned earlier, there is a natural abstract notion of
$spc$ manifolds. Recall that a $(2n-1)$ -dimensional differentiate manifold
$M$ of class $C^{\infty}$ is called a $CR$ manifold if there are subbundles $T$ , $T’$ , $F$

of the complexified tangent bundle $T_{M}\otimes \mathbb{C}$ such that $T$ is involutive,
$T$ $=\overline{T’}$ , rankc $F=1$ and $T_{M}\otimes \mathbb{C}=T\oplus T’\oplus F$ . For any local frame
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$\{\omega_{1}, \ldots, \omega_{n-1}\}$ for $T$ and a local frame $\theta$ for $F$ with $\overline{\theta}=-\theta$ , one has
a matrix valued function $(c_{ij})$ defined by $[\omega_{i},\overline{\omega}_{j}]=c_{ij}\theta(mod T\oplus T’)$ .

We say $M$ is a strongly pseudoconvex $CR$ manifold, or shortly an $spc$

manifold, if one can choose the frames $\{\omega_{i}\}$ and $\theta$ around each point of
$M$ so that $(c_{ij})$ is positive definite. $V\cap S_{\in}$ is then an $spc$ manifold if

one puts $T=(T_{V\cap S_{\in}}\otimes \mathbb{C})\cap T_{\mathbb{C}}^{1}i_{\vee}^{0}$ , $T’=\overline{T}$ and $F=(T\oplus T’)^{\perp}$ . In the
same manner, the boundary of any strongly pseudoconvex domain is,
if it is of class $C^{\infty}$ , regarded as an $spc$ manifold. The following result
ensures that passage from $V\cap S_{\epsilon}$ to the class of $spc$ manifolds is a good
abstraction.

Theorem 7(cf. [B], [0-3]). Every connected compact $spc$ manifold
of dimension $\geq 5$ is the boundary of a strongly pseudoconvex domain in
a complex manifold.

Therefore, combining Theorem 7 with the remark preceding Theo-
rem 4, one has the following by the same argument as in the proof of
Theorem 6.

Theorem 8. Let $M$ be a connected compact $spc$ manifold of di-
mension $2n-1$ with $n\geq 3$ . Then the cup product $\alpha_{1}\cup\cdots\cup\alpha_{m}$ of
$\alpha_{i}\in H^{r_{i}}(M, \mathbb{C})$ is zero whenever $\sum_{i=1}^{m}r_{i}\geq n+1$ and $r_{i}\leq n-2$ for all
$i$ .

Question. Is there any direct proof of Theorem 8 that does not use
Theorem 7 and the Hodge theory on strongly pseudoconvex domains $.p$

A recent work of T. Akahori [A-2] may lead to an answer to it.
For three dimensional $spc$ manifolds, it is well known that they are

even locally not embeddable as a real hypersurface of a complex mani-
fold (cf. [Ni]). As for the recent embeddability and non-embeddability
results, the reader is referred to articles of C. Epstein [E-1,2].

4. Although the compactness of $V\cap S_{\in}$ is a great advantage for
using analytic tools, one might also be inclined to study analytic objects
on the manifold $V\backslash \{o\}$ because it carries a complete K\"ahler metric
by a theorem of Grauert (cf. [G1]). Since Grauert’s K\"ahler metric

on $V\backslash \{o\}$ is of the form $\partial\overline{\partial}\varphi$ , where $\varphi$ is bounded near $o$ , one can

immediately deduce from Bochner-Nakano’s formula that the $\overline{\partial}$-equation
$\overline{\partial}f=g$ has an $L^{2}$ solution near $o$ for any $\overline{\partial}$-closed $L^{2}(p, q)$ form $g$ on
$V$ , provided that $p+q>n$ . In order to proceed further, we need the
following observation due to Donnelly and Fefferman [D-F] (See [O-T]
for a simplified proof).
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Theorem 9. Let $(M, \omega)$ be a connected complete Kdhler mani-

fold of dimension $n$ such that there exists a $C^{\infty}$ strictly plurisubhar-
monic function $\varphi$ with bounded gradient on $M$ such that $\partial\overline{\partial}\varphi$ is quasi-

isometrically equivalent to $\omega$ . Then the $L^{2}\overline{\partial}$ -cohomology group of $(M, \omega)$

of type $(p, q)$ vanishes if $p+q\neq n$ .

Metrics satisfying the hypothesis of Theorem 9 arise very naturally.
Instances are the metric $\partial\overline{\partial}(-\log(-\log||z||))$ on the punctured unit ball
$B_{*}:=\{z\in \mathbb{C}^{N}|0<||z||<1\}$ and its restriction to $V\cap B_{*}$ . As another
immediate instance, one can mention the Bergman metric on a strongly
pseudoconvex domain in $\mathbb{C}^{n}$ . A remarkable fact attached to the $L^{2}$

cohomology vanishing in Theorem 9 is that the $L^{2}$ estimates

$||u||\leq C(||\overline{\partial}u||+||\overline{\partial}^{*}u||)$

hold for $C=3\sup|\partial\varphi|_{\omega}$ . This allows us to study the $L^{2}$ cohomology
of $V\cap B_{*}$ with respect to non-complete metrics that are the limits of
$\partial\overline{\partial}\varphi_{t}$ satisfying the uniformity condition $\partial\overline{\partial}\varphi_{t}\geq\partial\varphi_{t}\cdot\overline{\partial}\varphi_{t}$ . Among
such metrics is the restriction of the Euclidean metric $\partial\overline{\partial}||z||^{2}$ to $ V\cap$

$B_{*}$ . To state results of this kind, let us denote by $H_{(2)}^{p,q}(U)$ , for any

neighbourhood $U$ of $o$ in $V$ , the $L^{2}\overline{\partial}$-cohomology group of $U\backslash \{o\}$ of

type $(p, q)$ . For the unit ball $B=\{z\in \mathbb{C}^{N}|||z||<1\}$ , it has long been

known that $H_{(2)}^{0,q}(B)=\{0\}$ for $q\geq 1$ (cf. [H\"o]). By the above mentioned

argument one can show that $H_{(2)}^{p,q}(B\cap V)=\{0\}$ if $p+q>n$ (cf. [O-4]). If

one denotes by $H_{(2),0}^{p,q}(B\cap V)$ the $L^{2}\overline{\partial}$ cohomology of $B_{*}\cap V$ with respect

to $\partial\overline{\partial}||z||^{2}$ with supports contained in compact subsets of $V$ , one has also
the dual vanishing $H_{(2),0}^{p,q}(B\cap V)=\{0\}$ , $p+q<n$ (cf. [0-7]). Similarly

one has also the vanishing of the $L^{2}$ de Rham cohomology groups for
the corresponding degrees. Moreover, with an additional technical effort
one can manage to prove

Theorem 10 (cf. [O-7,9]).

$H_{(2)}^{r}(V\cap B)=\{0\}$ for $r\geq n$

and

$H_{(2),0}^{r}(V\cap B)=\{0\}$ for $r<n$ .

Here $H_{(2)}^{r}(V\cap B)$ (resp. $H_{(2),0}^{r}(V\cap B)$ ) denotes the $r$ -th $L^{2}$ de Rham co-

homology group of $V\cap B$ with respect to $\partial\overline{\partial}||z||^{2}$ (resp. that with relatively
compact supports in $V$ ).
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Corollary. For any projective variety $X\subset \mathbb{P}^{N}$ whose singular
points are isolated, the $L^{2}$ de Rham cohomology group of $X$ is canonically
isomorphic to the intersection cohomology group of $X$ in the sense of
Goresky-MacPherson.

As a concluding remark we would like to indicate a next interesting
topic in the analysis of isolated singularities. This will be a question
of estimating $dimH_{(2)}^{p,q}(V\cap B_{*})$ or $dimH_{(2)}^{r}(V\cap B_{*})$ with respect to

complete K\"ahler metrics on $V\backslash \{o\}$ that does not satisfy the condition
of Theorem 9. Such metrics arise naturally by adding K\"ahler metrics on
$\tilde{V}$ . Therefore it seems that something like the following must have an
answer.

Question. Let $\omega_{1}$ and $\omega_{2}$ be complete K\"ahler metrics on $V\backslash \{o\}$ .

Is it true that $\omega_{1}\geq\omega_{2}$ implies $dimH_{(2)}^{r}(V\cap B_{*})_{\omega_{1}}\geq dimH_{(2)}^{r}(V\cap B_{*})_{\omega_{2}}.$?
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Let $E(k, n; \alpha)$ be the hypergeometric system of differential equations
of type $(k, n)$ defined on the configuration space $X(k, n)$ of $n$ hyperplanes

in general position of the projective space $\mathbb{P}^{k-1}$ , where $\alpha$ is a system of
parameters:

$\alpha=(\alpha_{1}, \ldots, \alpha_{n})$ , $\alpha_{1}+\cdots+\alpha_{n}=n-k$ .

The space $X(k, n)$ is an affine set of dimension

$m=(n-k-1)(k-1)$ ,

and the rank (the dimension of the linear space of solutions at a generic
point) of the system $E(k, n; \alpha)$ is

$r=\left(\begin{array}{ll}n & -2\\k & -1\end{array}\right)$ .

A projective solution $\varphi$ : $X(k, n)\rightarrow \mathbb{P}^{r-1}$ is defined by $x$ $\mapsto u_{1}(x)$ : $\cdots$ :
$u_{r}(x)$ , where the $u_{j}$ ’s are linearly independent solutions of the system.
Note that $\varphi$ is multi-valued.

When $k=2$ , we have

$r=m+1$ ;

so the dimension of the source space and that of the target space of the
map $\varphi$ agree.
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When $(k, n)=(3,6)$ , we have

$r=m+2(=6)$ ;

so the image of $\varphi$ is a hypersurface of $\mathbb{P}^{5}$ .

These exhaust all the cases when the codimension of the image
$Im(\varphi)$ of the projective solution $\varphi$ does not exceed 1.

Consider the following integral

$u_{\triangle}(x)=\int_{\triangle}\prod_{j=1}^{n-1}l_{j}(x, t)^{\alpha_{j}-1}dt_{1}\wedge\cdots\wedge dt_{k-1}$ ,

where $l_{j}(x, t)$ are defining equations of the $n$ hyperplanes ( $l_{n}$ is the hy-

perplane at infinity) of $\mathbb{P}^{k-1}$ representing $x\in X(k, n)$ , and $\triangle$ is a real
$(k-1)$ -dimensional twisted cycle. If $\alpha_{j}\not\in \mathbb{Z}$ , there are $r$ cycles $\triangle_{\iota/}$ such
that the $u_{\triangle_{\nu}}$ ’s are linearly independent solutions.

Notice that when $n=2k$ , the most symmetric system of parameters
is given by

$\{\frac{1}{2}\}=(\frac{1}{2}$ , $\ldots$ , $\frac{1}{2}$).
When $(k, n; \alpha)=(2,4;\{1/2\})$ , the following facts are classical: The

integrals above are elliptic integrals, i.e., periods of elliptic curves, the
equation describes the family of elliptic curves (double covers of $\mathbb{P}^{1}-$

{4 points ), the image $Im(\varphi)$ of the projective solution $\varphi$ is the upper
half plane $H\subset \mathbb{P}^{1}$ , and the map $\varphi$ has a single-valued inverse so that
we have the isomorphism

$X(2,4)\cong H/\Gamma(2)$ ,

where $\Gamma(2)\subset SL(2, \mathbb{Z})$ is the principal congruence subgroup of level 2.

When $(k, n;\alpha)=(3,6;\{1/2\})$ , the following is known ([MSYI]):

The integrals above give periods of K3 surfaces (double covers of $\mathbb{P}^{2}-$

{6 $1i$ es ), the equation describes a 4-dimensional family of such K3
surfaces, the image $Im(\varphi)$ of the projective solution $\varphi$ lies in a non-
singular quadratic hypersurface $Q$ of $\mathbb{P}^{5}$ ; indeed it is an open dense
subset of the non-compact dual $D\subset Q$ of $Q$ , and that $\varphi$ has a single-
valued inverse map so that we have an isomorphism

$ X(3,6)\cong$ ($D-$ {fixed points of $\Gamma\}$ ) $/\Gamma$ ,

where $\Gamma$ is an arithmetic subgroup of the group of automorphisms of $D$ .
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Since $Q$ can be regarded as the Grassmannian variety $Gr_{2,,,4}$ , and
since the Grassmannian $Gr_{k-1,,,n-2}$ can be equivariantly and minimally

embedded in $\mathbb{P}^{r-1}$ , we are very happy if $Im(\varphi)$ might lie in $Gr_{k-1,,,n-2}\subset$

$\mathbb{P}^{r-1}$ .
Especially when $(k, n;\alpha)=(4,8;\{1/2\})$ , many mathematicians are

expecting that $Im(\varphi)$ would lie in $Gr_{3,,,6}\subset \mathbb{P}^{20-1}$ , and that we get a
nice isomorphism like the examples above. Because the system de-
scribes a 9-dimensional family of Calabi-Yau 3-folds (double covers of
$\mathbb{P}^{3}-$ { $8$ planes} $)$ , it is a hot topic now. Notice that the integral above
gives periods of such 3-folds.

We are very sorry to declare the following

Theorem 1. If $k\geqq 3$ , $n$ $-k\geqq 3$ and $(k, n)\neq(3,6)$ , then the
image $Im(\varphi)$ of the projective solution of the system $E(k, n; \alpha)$ does not
lie $?.n$ $Gr_{k-1,,,n-2}\subset \mathbb{P}^{r-1}$ for any $\alpha_{j}$ .

The proof is given by showing that the system $E(k, n)$ is not equiv-
alent to the system of differential equations defining the Pl\"ucker em-
bedding of $Gr_{k,,,1,n-2}$ . The actual key to proving inequivalence is the
computation of certain Lie algebra cohomology, which due to Se-ashi
reduces the problem to the comparison of the symbols of both systems.

In Sections 1 and 2 we review the equivalence problem of differen-
tial systems and prove a general result on rigidity of differential systems
modelled on equivariant projective embedding of the hermitian symmet-
ric spaces (Corollary 3). The comparison of the symbols will be given in
Section 3. In Section 4 we provide a much simpler proof of inequivalence
valid for $E(4,8)$ .

Acknowledgment: When the first and the third authors were preparing
the paper [MSYI], they dreamed about the story of $E(4,8;\{1/2\})$ anal-
ogous to $E(3,6;\{1/2\})$ . It was disproved soon; they were disappointed
and had no idea to publish this negative fact. After Professor Y. Se-ashi’s
unexpected death, his notes were completed by the second author, who
pointed out that the conjecture could be disproved generally by follow-
ing the line of the completed note. Meanwhile several mathematicians
asked the third author whether the image of the projective solution of
$E(4,8;\{1/2\})$ is in $Gr_{3,,,6}$ , moreover some of them showed him (sketchy)
proofs. So we decided to publish this negative result.

1. Projective embedding of hermitian symmetric spaces

As we explained in [MSY2], it is classically well known that a system $R$

in $m$ variables of rank $r$ is nothing but an $m$-dimensional submanifold
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$M$ in $\mathbb{P}^{r-1}$ ; more precisely, two such systems are said to be equivalent if
one is transformed into the other by a change of independent variables
and by the replacement of the unknown by its product with a non-zero
function and we have the bijective correspondence

{germs of systems in $m$ variables of rank $r$ } $/equivalence$

$\leftrightarrow$ {germs of $m$-dimensional submanifolds in $\mathbb{P}^{r-1}$ } $/PGL(r)$

by associating to a system $R$ the image $M$ of its projective solution.

As for the system $E(3,6;\{1/2\})$ , we checked in [MSYI] that the
image of the projective solution lies in a non-singular quadratic hyper-
surface $Q$ by utilizing the projective hypersurface theory in $\mathbb{P}^{5}$ .

Our concern in this paper is the Grassmannian variety $Gr_{k-1,,,n-2}$

in $\mathbb{P}^{r-1}$ embedded as the image of the Pl\"ucker embedding, on the lower
side of the above correspondence. Hence, in this section, we would like
to construct group-theoretically a system $R(k, n)$ in $m$ variables of rank
$r$ , which corresponds to $Gr_{k-1,,,n-2}$ in $\mathbb{P}^{r-1}$ in the above diagram, where

$m=(n-k-1)(k-1)$ and $r=\left(\begin{array}{l}n-2\\k-1\end{array}\right)$ , and we discuss the inequivalence of

$E(k, n)$ and $R(k, n)$ in \S 3 by virtue of Se-ashi’s theory for the equivalence
of integrable linear differential equations of finite type.

For this purpose and also as a motivation to introduce Se-ashi’s
theory in \S 2, which in fact enables us to construct $R(k, n)$ a little gener-
ally, we will consider here projective embedding of hermitian symmetric
spaces.

Group-theoretically, a compact irreducible hermitian symmetric
space $M$ corresponds to a simple graded Lie algebra of the first kind
as follows: Let [ $=\iota_{-1}\oplus \mathfrak{l}_{0}\oplus t_{1}$ be a simple graded Lie algebra of the
first kind, i.e. ,

(i) (is a simple Lie algebra over $\mathbb{C}$ .

(ii) ( $=t_{-1}\oplus \mathfrak{l}_{0}\oplus t_{1}$ is a vector space direct sum such that
$(_{-1}\neq\{0\}$ .

(iii) $[(_{p}, (_{q}]\subset 1_{p+q}$ , where $t_{p}=\{0\}$ for $|p|\geqq 2$ .

Let $L$ be the simply connected Lie group with Lie algebra [and $L’$ be the
analytic subgroup of $L$ with Lie algebra $t’=\mathfrak{l}_{0}\oplus(_{1}$ . Then $M$ $=L/L’$ is
a compact (irreducible) hermitian symmetric space and every compact
irreducible hermitian symmetric space is obtained in this manner from a
simple graded Lie algebra of the first kind. $M$ is called the model space
associated with ( $=\mathfrak{l}_{-1}\oplus \mathfrak{t}_{0}\oplus \mathfrak{l}_{1}$ . For example, when $M$ $=Gr_{k-1,,,n-2}$ ,
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we have [ $=\epsilon \mathfrak{l}(n-2, \mathbb{C})$ and the gradation [ $=(_{-1}\oplus t_{0}\oplus \mathfrak{l}_{1}$ is given by
subdividing matrices as follows:

(1.1)

$\mathfrak{l}_{-1}=\{$ $\left(\begin{array}{ll}0 & 0\\C & 0\end{array}\right)$ $|C\in M(p, i)\}$ , $[_{1}=\{$ $\left(\begin{array}{ll}0 & D\\0 & 0\end{array}\right)$ $|D\in M(i,p)\}$ ,

$\mathfrak{l}_{0}=\{$ $\left(\begin{array}{ll}A & 0\\0 & B\end{array}\right)$ $|A\in M(i, i)$ , $B\in M(p,p)$ and $trA+trB=0\}$ .

where $i=k-1$ , $p=n-k-1$ and $M(a, b)$ denotes the set of $a\times b$

matrices.
An equivariant projective embedding of the model space $M=L/L’$

can be obtained from an irreducible representation of $L$ as follows: Let
$\tau$ : $L\rightarrow GL(T)$ be an irreducible representation of $L$ with the highest
weight $\Lambda$ . Let $t_{\Lambda}$ be a maximal vector in $T$ of the highest weight $\Lambda$ .

Then a stabilizer of the line $[t_{\Lambda}]$ spanned by $v_{\Lambda}$ in $T$ is a parabolic
subgroup of $L$ . When this stabilizer coincides with $L’$ , we obtain an
equivariant projective embedding of $M=L/L’$ by taking the $L$-orbit
passing through $[t_{\Lambda}]$ in the projective space $P(T)$ consisting of all lines
in $T$ passing through the origin. For example, when $M=Gr_{k-1,,,n-2}$ ,

we take the exterior representation $\tau_{0}$ of $L=SL(n-2, \mathbb{C})$ on $T$ $=$

$\wedge^{k-1}\mathbb{C}^{n-2}$ :
$\tau_{0}$ : $SL(n-2, \mathbb{C})\rightarrow GL(\wedge^{k-1}\mathbb{C}^{n-2})$ ,

where $\tau_{0}(a)(v_{1}\wedge\cdots\wedge v_{k-1})=a(v_{1})\wedge\cdots\wedge a(v_{k-1})$ for $a\in SL(n-2, \mathbb{C})$

and $v_{i}\in \mathbb{C}^{n-2}$ $(i=1,2, \ldots, n -1)$ . Let $\{e_{1}, \ldots, e_{n-2}\}$ be the natural

basis of $\mathbb{C}^{n-2}$ . Then $\tau_{0}$ is an irreducible representation of $SL(n-2, \mathbb{C})$

with the maximal vector $e_{1}\wedge\cdots\wedge e_{k-1}$ for a suitable choice of a Cartan
subalgebra and a simple root system of $\epsilon \mathfrak{l}(n-2, \mathbb{C})$ . From (1.1), we see
that the stabilizer of the line $[e_{1}\wedge\cdots\wedge e_{k-1}]$ coincides with $L’$ . Thus
we see that the Pl\"ucker embedding of $Gr_{k-1,,,n-2}$ is obtained from the
irreducible representation $\tau_{0}$ of $SL(n-2, \mathbb{C})$ .

Next, for an irreducible representation $\tau$ : $L\rightarrow GL(T)$ , we will
construct a (positive) line bundle $F$ over $M$ such that the above orbit
is obtained as an embedding of $M$ by global sections of $F$ . To construct
$F$ , let us take the dual representation $\rho$ : $L\rightarrow GL(S)$ of $\tau$ , i.e., $S=T^{*}$

is the dual space of $T$ and $\rho=\tau^{*}$ is defined by

$\langle\rho(g)(\xi), t\rangle=\langle\xi, \tau(g^{-1})(t)\rangle$ ,

for $g\in L$ , $t\in T$ , $\xi\in T^{*}$ and $\langle, \rangle$ is the canonical pairing between $T^{*}$ and
$T$ . Then, when $\tau$ is an irreducible representation with the highest weight
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$\Lambda$ (for a fixed choice of a Cartan subalgebra and a simple root system of
[ $)$ , $\rho$ is the irreducible representation with the lowest weight $-\Lambda$ . Let
us take a basis $\{t_{1}, \ldots, t_{r}\}$ of $T$ consisting of weight vectors of $\tau$ such
that $t_{1}=t_{\Lambda}$ . Then the dual basis $\{s_{1}, \ldots, s_{r}\}$ of $\{t_{1}, \ldots, t_{r}\}$ in $S=T^{*}$

consists of weight vectors of $\rho$ and $s_{1}$ is a weight vector corresponding
to $-\Lambda$ . Let $W$ and $W’$ be the subspaces of $S$ spanned by a vector $s_{1}$

and by vectors $s_{2}$ , $\ldots$ , $s_{r}$ , respectively. Since $L’$ is the stabilizer of the
line $[t_{1}]$ , $W’$ is preserved by $L’$ . Hence we get the representation $\rho_{W}$ of
$L’$ :

$\rho_{W}$ : $L’\rightarrow GL(W)$ ,

through the projection $\pi_{0}$ : $S=W\oplus W’\rightarrow W$ .

Relative to the representation $\rho_{W}$ , $L’$ acts on $L\times W$ on the right by

$(g, w)g’=(gg’, \rho_{W}(g’)^{-1}(w))$ ,

for $g\in L$ , $w\in W$ and $g’\in L’$ . Then $F=L\times W/L’$ is the line bundle
over $M=L/L’$ .

As is well known, the space $\Gamma(F)$ of global sections of $F$ is identified
with the space $F(L, W)_{L’}$ of all $W$-valued functions $f$ on $L$ satisfying

$f(gg’)=\rho_{W}(g’)^{-1}f(g)$ ,

for $g\in L$ and $g’\in L’$ , via the correspondence $ f\in F(L, W)_{L’}\mapsto\sigma_{f}\in$

$\Gamma(F)$ given by

$\sigma_{f}(\pi_{1}(g))=\pi_{2}(g, f(g))$ ,

where $\pi_{1}$ : $L\rightarrow M=L/L’$ and $\pi_{2}$ : $L\times W\rightarrow F$ denote the natural
projections. Then each $s\in S$ defines an element $\sigma_{s}\in\Gamma(F)$ via the
above correspondence by

$f_{s}(g)=\pi_{0}(\rho(g^{-1})s)$

for $g\in L$ .
Now let us check that global sections of $F$ give the desired embedding

of $M$ into $P(T)$ . We utilize the above basis $\{t_{1}, \ldots, t_{r}\}$ and $\{s_{1}, \ldots, s_{r}\}$

of $T$ and $S=T^{*}$ . Let us consider a map $\hat{\varphi}$ of $L$ into $T$ defined by

(1.2) $\hat{\varphi}(g)=\sum_{i=1}^{r}\langle f_{s_{i}}(g), t_{1}\rangle t_{i}$

for $g\in L$ . Then, from $\langle f_{s_{i}}(g), t_{1}\rangle=\langle\rho(g^{-1})s_{i}, t_{1}\rangle,\hat{\varphi}$ induces a map $\varphi$
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of $M$ into $P(T)$ satisfying the commutative diagram

$L$ $\rightarrow\hat{\varphi}T\backslash \{0\}$

$\downarrow$ $\downarrow$

$M=L/L’\rightarrow\varphi P(T)$ .

For $g\in L$ , if we represent $\tau(g)$ as a matrix $A$ with respect to the basis
$\{t_{1}, \ldots, t_{r}\}$ , $\rho(g^{-1})$ is represented by the transposed matrix ${}^{t}A$ of $A$

with respect to the basis $\{s_{1}, \ldots, s_{r}\}$ .From (1.2), $\hat{\varphi}(g)$ corresponds to
the first row vector of ${}^{t}A$ . Hence we obtain

$\hat{\varphi}(g)=\tau(g)(t_{1})$ .

Thus the image of $\varphi$ coincides with the $L$-orbit passing through $[t_{1}]$ in
$P(T)$ .

Owing to Se-ashi’s theory, which will be discussed in the next sec-
tion, we can construct a system $R_{\rho}$ of linear differential equations of
rank $r$ on $F$ such that every local solution of $R_{\rho}$ is a restriction of $\sigma_{s}$

for some $s\in S$ as in the following: Let $J^{p}(F)$ be the bundle of $p$-jets
of $F$ . The fiber $J_{x}^{p}(F)$ of $J^{p}(F)$ over a point $x$ of $M$ is the quotient of
the space of germs of sections of $F$ at $x$ by the subspace of germs which
vanish to order $p+1$ at $x$ . Let $\pi_{q}^{p}$ : $J^{p}(F)\rightarrow J^{q}(F)$ denote the natural

projection for $p>q$ . At each point $x\in M=L/L’$ , let $(R_{p}^{\rho})_{x}$ be the

subspace of $J_{x}^{p}(F)$ defined by

$(R_{p}^{\rho})_{x}=\{j_{x}^{p}(\sigma_{s})|s\in S\}$ ,

where $j_{x}^{p}(\sigma_{s})$ is the $p$-jet at $x$ of the section $\sigma_{s}$ . Let $R_{p}^{\rho}$ be the subbundle

of $J^{p}(F)$ defined by

$R_{p}^{\rho}=x\in M\cup(R_{p}^{\rho})_{x}$
.

Then there exists a natural number $p_{0}$ such that $\pi_{p-1}^{p}$ induces a bundle

isomorphism of $R_{p}^{\rho}$ onto $R_{p-1}^{\rho}$ for every $p\geqq p_{0}$ ( $fr$ more detail, see 2.2).

Putting $R^{\rho}=R_{po}^{\rho}$ , we see that $R^{\rho}$ has the desired property. In fact, $R^{\rho}$

is the model equation for the typical symbol of type $([, \rho)$ in Se-ashi’s
theory (see Proposition in 2.3).

We denote by $R(k, n)$ the system constructed as above from the

exterior representation $\rho_{0}$ of $L=SL(n-2, \mathbb{C})$ on $S=\wedge^{n-k-1}\mathbb{C}^{n-2}$ ,
which is dual to the representation $\tau_{0}$ . Then, from the construction,
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the projective solution of $R(k, n)$ coincides with the Pl\"ucker embedding
of $M=Gr_{k-1,,,n-2}$ . Thus we obtain the system in $m$ variables of rank
$r$ corresponding to $Gr_{k-1,,,n-2}$ in $\mathbb{P}^{r-1}$ in the bijective correspondence
given at the beginning of this section. We shall examine the symbol of
$R(k, n)$ in detail and discuss the inequivalence of $E(k, n)$ and $R(k, n)$ in

\S 3.

2. Se-ashi’s Theorem

Se-ashi’s theory on the equivalence of integrable linear differential equa-
tions of finite type deals with the special classes of equations character-
ized by their symbols, namely, with those equations having the typical
symbol of type $([, \rho)$ , where $\rho$ is an irreducible representation of a (semi-
simple graded Lie algebra [ of the first kind. We will briefly review
his theory and also prove a theorem on the Lie algebra cohomology,
which was left unpublished in his note. We will confine ourselves in the
holomorphic category and take [ to be a simple Lie algebra over $\mathbb{C}$ in

the following argument, although his theory applies also in the real $C^{\infty}$

category and for semi-simple Lie algebras over $\mathbb{R}$ .

2.1. Linear differential equations of finite type. Let us begin
with recalling some generalities on jet bundles. Let M be a manifold of
dimension m. We denote by T and $T^{*}$ the tangent and the cotangent
bundle of M respectively. For a vector bundle E over M, we denote by
$J^{p}(E)$ the bundle of $p$-jets of E. The fibre of $J^{p}(E)$ over a point x of
M is the quotient of the space of germs of sections of E at x by the
subspace of germs which vanish to order $p+1$ at x. We identify $J^{0}(E)$

with E and put $J^{-1}(E)=M$ for convention. Let $\pi_{q}^{p}$ denote the natural

projection of $J^{p}(E)$ onto $J^{q}(E)$ for p $>q$ . For a section s of E, its
$p$-th jet at x is denoted by $j_{x}^{p}(s)$ . There exist the natural vector bundle
$morphism\in_{P}$ : $S^{p}T^{*}\otimes E\rightarrow J^{p}(E)$ and the exact sequence

$0\rightarrow S^{p}T^{*}\otimes E\rightarrow J^{p}(E)\rightarrow\epsilon_{p}\pi_{p-1}^{p}J^{p-1}(E)\rightarrow 0$ ,

where $S^{p}T^{*}$ denotes the $p$-th symmetric product of $T^{*}$ .

A subbundle $R$ of $J^{p}(E)$ is called a system of (homogeneous) linear
differential equations of order $p$ on $E$ . A solution of $R$ is a (local) section
$s$ of $E$ satisfying $j_{x}^{p}(s)\in R_{x}$ at each $x\in M$ . Let $R_{r}=\pi_{r}^{p}(R)$ be the
image of the projection of $R$ into $J^{r}(E)$ and put $g_{r}=R_{r}\cap(S^{r}T^{*}\otimes E)$ for
$r\leqq p$ , which is called the $r$-th symbol of $R$ . We have an exact sequence

$0\rightarrow g_{r}\rightarrow R_{r}\rightarrow e_{r}\pi_{r-1}^{r}R_{r-1}\rightarrow 0$ .
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The direct sum $S_{x}=\oplus_{r=0}^{p}(g_{r})_{x}$ is called the (total) symbol of $R$ at
$x\in M$ , where $(g_{r})_{x}\subset S^{r}T_{x}^{*}\otimes E_{x}$ denotes the fibre of $g_{r}$ over $x$ .

A system $R$ of order $p$ is said to be of finite type if $g_{p}=0$ , i.e., if
$\pi_{p-1}^{p}$ : $R\rightarrow R_{p-1}$ is an isomorphism. A system $R$ of finite type is said

to be integrable if, for each $\eta\in R$ , there is a (local) solution $s$ for which
$ j_{x}^{p}(s)=\eta$ , where $x=\pi_{-1}^{p}(\eta)$ . In this case, such a solution $s$ is uniquely
determined by the initial condition $\eta\in R_{x}$ . Thus, by a continuation of
solutions along a curve $x_{t}$ , $t$ $\in[0,1]$ on $M$ , we get a parallel displacement
$\tau$ : $R_{x_{0}}\rightarrow R_{x_{1}}$ . Namely, for each $\eta_{0}\in R_{x_{0}}$ , we take a local solution $s$

of $R$ such that $j_{x_{0}}^{p}(s)=\eta_{0}$ , continue this solution along $x_{t}$ and put
$\tau(\eta o)=\eta_{1}=j_{x_{1}}^{p}(s)\in R_{x_{1}}$ . In this manner, we obtain a connection $\nabla$

in the vector bundle $R$ over $M$ . Since the above parallel displacement is
independent of curves joining $x_{0}$ and $x_{1}$ in a neighborhood of $x_{0}$ , $\nabla$ is a
flat connection. In fact, $\nabla$ is induced from the Spencer operator acting
on $J^{p}(E)$ (Proposition 1.5.1 [S]).

Let $E$ and $E’$ be vector bundles over $M$ . Let $R$ and $R’$ be systems
of order $p$ on $E$ and $E’$ , respectively. Then a bundle isomorphism $\phi$ :
$E\rightarrow E’$ is called an isomorphism of $R$ onto $R’$ if $J^{p}(\phi)$ maps $R$ onto $R’$ ,
where $J^{p}(\phi)$ : $J^{p}(E)\rightarrow J^{p}(E’)$ is the lift of $\phi$ . In this case we denote
by $R^{p}(\phi)$ the restriction of $J^{p}(\phi)$ to $R$ . Obviously, $R^{p}(\phi)$ is a vector
bundle isomorphism of $R$ onto $R’$ , which preserves the flat connections
in $R$ and $R’$ .

2.2. Typical symbol of type $( \mathfrak{l}, \rho)$ . Let $R$ be a system of linear
differential equations of order $p$ on $E$ and let $g_{r}$ be the $r$-th symbol of
$R$ for $r=0$ , $\ldots,p$ . We fix vector spaces $V$ and $W$ over $\mathbb{C}$ such that $dim$

$V=dimM$ and $dimW=rankE$ , respectively. Let $S=\oplus_{r=0}^{p}S_{r}$ be

a graded vector subspace of $\oplus_{r=0}^{p}S^{r}V^{*}\otimes W$ . Then the system $R$ is
said to be of type $S$ if, for each $x\in M$ , there exist linear isomorphisms
$z_{T}$ : $V\cong T_{x}$ and $z_{E}$ : $W\cong E_{x}$ such that the induced isomorphism
$(^{t}z_{T}^{-1})\otimes z_{E}$ : $S^{r}V^{*}\otimes W\cong S^{r}T_{x}^{*}\otimes E_{x}$ sends $S_{r}$ onto $(g_{r})_{x}$ for every $r$ .

In this case, $S$ is called the typical symbol of $R$ .

Now we introduce the important classes of typical symbols for in-
tegrable systems of linear differential equations of finite type in the fol-
lowing.

Let [ $=\mathfrak{l}_{-1}\oplus 1_{0}\oplus \mathfrak{l}_{1}$ be a simple graded Lie algebra over $\mathbb{C}$ of the
first kind and $\rho$ : [ $\rightarrow g\downarrow(S)$ an irreducible representation of [on a vector
space $S$ .

As is well-known, there exists a unique element $Z\in(_{0}$ (Lemma
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4.1.1. [S] $)$ such that

$(_{p}=\{X\in(|[Z, X]=pX\}$ $(p=-1,0,1)$ .

$Z$ is called the characteristic element of [ $=1_{-1}\oplus t_{0}\oplus(_{1}$ . Since $ad(Z)$ is a
semi-simple endomorphism with eigenvalues-l, 0 and 1, $\rho(Z)$ is a semi-
simple endomorphism of $S$ (Corollary 6.4 [Hu]) with real eigenvalues (see
the arguments in 2.5). Moreover, putting $S_{(\mu)}=\{s\in S|\rho(Z)(s)=$

$\mu s\}$ , we have

$\rho([_{p})S_{(\mu)}\subset S_{(\mu+p)}$ for $p=-1,0,1$ .

Let $\lambda_{0}$ be the minimum eigenvalue of $\rho(Z)$ and put $S_{r}=S_{(\lambda_{0}+r)}$ for
$r\geqq 0$ . Then, since $\rho$ is irreducible, there exists a natural number $p_{0}$

(Proposition 4.2.1 [S]) such that $S_{r}\neq\{0\}$ for $r=0,1$ , $\ldots,p_{0}-1$ and

$S=p_{0}-1\oplus S_{r}r=0$ .

For each integer $q(0\leqq q<po)$ put $S_{q}(q)=\{s\in S_{q}|\rho(t_{-1})(s)=0\}$ .

Then $S_{0}(0)=S_{0}$ and $S_{q}(q)$ is a $\rho([_{0})$ -invariant subspace of $S_{q}$ . We define
a linear subspace $S(q)=\oplus_{q}\leqq r<poS_{r}(q)$ of $S$ inductively by

$S_{r+1}(q)=\rho(1_{1})(S_{r}(q))\subset S_{r+1}$ .

One can easily check that $S_{r}(q)$ is $\rho(\mathfrak{l}_{0})$ -invariant and $\rho([_{-1})(S_{r+1}(q))\subset$

$S_{r}(q)$ by induction on $r\geqq q$ . Thus $S(q)$ is a $\rho([)$ -submodule of $S$ . Since
$\rho$ is irreducible, we get $S(0)=S$ and $S(q)=0$ for $q>0$ . Hence, putting
$S_{r}=\{0\}$ for $r\geqq p_{0}$ , we obtain

(2.1) $S_{0}=\{s\in S|\rho((_{-1})(s)=0\}$ ,

and

(2.2) $S_{r+1}=\rho(t_{1})(S_{r})$ for $r\geqq 0$ .

Now we put $V=\mathfrak{l}_{-1}$ and $W=S_{0}$ . Then we have a linear isomor-
phism $\iota_{r}$ of $S_{r}$ into $S^{r}V^{*}\otimes W(r=1, \ldots,p_{0}-1)$ defined by

$\iota_{r}(s)(X_{1}, \ldots, X_{r})=(-1)^{r}\rho(X_{1})\cdots\rho(X_{r})(s)$ .

Since $t_{-1}$ is abelian, $\iota_{r}$ is well-defined. In this manner, $S=\oplus_{r\geqq 0}S_{r}$

is regarded as a graded vector subspace of $\oplus_{r\geqq 0}S^{r}V^{*}\otimes W$ , which is

called the typical symbol of type $([, \rho)$ .
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As an example, we construct the typical symbol of type $([, \rho)$ , when
[ $=\epsilon((n-2, \mathbb{C})$ is endowed with the gradation given in (1.1) and $\rho=\rho_{0}$

is the exterior representation on $S=\wedge^{n-k-1}\mathbb{C}^{n-2}$ :

$n-k-1$

$\rho$ : $g[(n-2, \mathbb{C})\rightarrow g\mathfrak{l}( \wedge \mathbb{C}^{n-2})$ ,

where

$\rho(X)(v_{1}\wedge\cdots\wedge v_{n-k-1})=\sum_{i=1}^{n-k-1}v_{1}\wedge\cdots\wedge X(v_{i})\wedge\cdots\wedge v_{n-k-1}$

for $X\in\epsilon \mathfrak{l}(n-2, \mathbb{C})$ and $v_{i}\in \mathbb{C}^{n-2}$ ( $ i=1,2, \ldots$ ,$ $n–k–l).

Let $\{e_{1}, \ldots, e_{n-2}\}$ be the natural basis of $\mathbb{C}^{n-2}$ . Then $\mathfrak{l}’=\mathfrak{l}_{0}\oplus 1_{1}$ is

the isotropy (stabilizer) algebra of the line $[e_{1}\wedge\cdots\wedge e_{k-1}]in\wedge^{k-1}\mathbb{C}^{n-2}$ .

We denote by $E_{ab}\in g\mathfrak{l}(n-2, \mathbb{C})$ $(1 \leqq a, b\leqq n-2)$ the matrix whose
$(a, b)$ -component is 1 and all of whose other components are 0. From
(1.1), we have the following basis for $V=\downarrow-1$ and $(_{1}$ :

$ V=[_{-1}=\langle E_{pi}|1\leqq i\leqq k-1, k\leqq p\leqq n-2\rangle$

$t_{1}=\langle E_{ip}|1\leqq i\leqq k-1, k\leqq p\leqq n-2\rangle$

Since $E_{pi}(e_{j})=\delta_{ij}e_{p}$ for $1\leqq j\leqq k-1$ and, $E_{pi}(e_{q})=0$ for $k\leqq q\leqq n-2$ ,

we have from (2.1)

$ W=S_{0}=\langle e_{k}\wedge\cdots\wedge e_{n-2}\rangle$ .

For $1\leqq i_{1}<\cdots<i_{r}\leqq k-1$ and $k\leqq p_{1}<\cdots<p_{r}\leqq n-2$ , we put

$n-k-r-1$

$ e(p_{1}, \ldots,p_{r})=e_{k}\wedge\cdots\wedge\hat{e}_{p1}\wedge\cdots\wedge\hat{e}_{p_{r}}\wedge\cdots\wedge e_{n-2}\in$ $\wedge$
$\mathbb{C}^{n-2}$ ,

and consider the following element of $S$ :

$n-k-1$

$s(i_{1}, \ldots, i_{r},p_{1}, \ldots,p_{r})=e_{i_{1}}\wedge\cdots\wedge e_{i_{r}}\wedge e(p_{1}, \ldots,p_{r})\in S=$ $\Lambda$
$\mathbb{C}^{n-2}$ .

Then, from (2.2) and $E_{ip}(e_{j})=0$ , $E_{ip}(e_{q})=\delta_{pq}e_{i}$ for $1\leqq j\leqq k-1$ , $ k\leqq$

$q\leqq n-2$ , we get

$S_{r}=\langle s(i_{1}, \ldots, i_{r},p_{1}, \ldots,p_{r})|$

$1\leqq i_{1}<\cdots<i_{r}\leqq k-1$ , $ k\leqq p_{1}<\cdots<p_{r}\leqq n-2\rangle$ ,
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for $r=1,2$ , $\ldots,p_{0}-1$ and

$S_{r}=\{0\}$ ,

for $r\geqq p_{0}=\min\{k, n -k\}$ . Moreover, for $X=\sum_{ip}X_{ip}E_{pi}\in V$ , we

have

$\iota_{r}(s(i_{1}, \ldots, i_{r}, p_{1}, \ldots,p_{r}))(X, \ldots, X)$

$=r^{I}.(-1)^{r}X(e_{i_{1}})\wedge\cdots\wedge X(e_{i_{r}})\wedge e(p_{1}, \ldots,p_{r})$

$=r!(-1)^{r}(\sum_{\sigma}sgn\sigma X_{i_{1}p_{\sigma(1)}}\cdots X_{i_{r}p_{\sigma(r)}})e_{p_{1}}\wedge\cdots\wedge e_{p_{r}}\wedge e(p_{1}, \ldots,p_{r})$
.

Thus, by fixing a basis of $W$ and identifying $SV^{*}$ with the ring of poly-
nomials on $V$ , we see that $S_{1}=V^{*}$ and $S_{r}\subset S^{r}V^{*}$ is spanned by the
minor determinants of degree $r$ of the matrix $(X_{ip})$ , which are the linear
coordinates of $V$ .

2.3. Model systems. Starting from the typical symbol S $=$

$\oplus_{r=0}^{p}S_{r}\subset\oplus_{r=0}^{p}S^{r}V^{*}\otimes W$ with the properties $S_{0}=W$ and $S_{p}=0$ ,
we now explain a recipe to construct an integrable system of differential
equations of finite type of order p modeled after S.

The construction of the model system $R_{S}$ is preceded by the con-
sideration of the Lie algebra $\mathfrak{g}$ of infinitesimal automorphisms of the
constant coefficient differential equations modeled after S.

Let $E_{0}=V\times W$ be the trivial bundle over the vector space $V$ .

Then the fibre $J_{0}^{p}(E_{0})$ of $J^{p}(E_{0})$ at the origin $O\in V$ is identified with
$\oplus_{r=0}^{p}S^{r}V^{*}\otimes W$ , where $S^{r}V^{*}\otimes W$ can be regarded as the set of $W$-valued
homogeneous polynomials of degree $r$ on $V$ . Thus, starting from the
typical symbol $S=\oplus_{r=0}^{p}S_{r}\subset\oplus_{r=0}^{p}S^{r}V^{*}\otimes W$ , our first (local) model
is the constant coefficient differential equations given as the subbundle
$\hat{R}_{S}=V\times S$ of $J^{p}(E_{0})$ , whose solutions consist of $W$-valued polynomials
contained in $S\subset SV^{*}\otimes W$ .

Let us consider an infinitesimal bundle automorphism of $E_{0}$ preserv-

ing $\hat{R}_{S}$ . An infinitesimal bundle automorphism of $E_{0}$ has a form

$\sum_{i}\xi^{i}(x)\frac{\partial}{\partial x^{i}}+\sum_{\alpha,,,\beta}A_{\alpha,,,\beta}(x)y^{\beta}\frac{\partial}{\partial y^{\alpha}}$ ,

where $(x^{i})$ and $(y^{\alpha})$ are linear coordinates of $V$ and $W$ , respectively.
Thus the Lie algebra $\alpha$ of (formal) infinitesimal bundle automorphisms
of $E_{0}$ can be expressed as a graded Lie algebra $\alpha=\oplus_{r\geqq-1}\alpha_{r}$ by putting

$\alpha_{r}=S^{r+1}V^{*}\otimes V\oplus S^{r}V^{*}\otimes gt(W)$ ,
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where $\alpha_{-1}=V$ corresponds to constant coefficient vector fields on $V$ .

The bracket operation in $\alpha$ is given by

$[f\otimes v, g\otimes w]=-f(i(v)g)\otimes w+g(i(w)f)\otimes v$ ,

$[f\otimes A, g\otimes w]=g(i(w)f)\otimes A$ ,

$[f\otimes A, g\otimes B]=fg\otimes[A, B]$ ,

where $f$ , $g\in SV^{*}$ , $v$ , $w\in V$ and $A$ , $B\in \mathfrak{g}t(W)$ ; $i(v)$ denotes the inner
multiplication. The Lie algebra $\alpha$ acts naturally on the space $SV^{*}\otimes W$

that is regarded as the space of cross sections of $E_{0}$ :

$(f\otimes v+g\otimes A)(h\otimes w)=-f(i(v)h)\otimes w+gh\otimes A(w)$ ,

where $f$ , $g$ , $h\in SV^{*}$ , $v$ , $w\in V$ and $A\in g1(W)$ .

Then the Lie algebra $\mathfrak{g}$ of infinitesimal automorphisms of $\hat{R}_{S}$ is given
by

$g$ $=\{X\in\alpha|X(S)\subset S\}$ .

$g$ is a graded subalgebra of $\alpha=\oplus_{r\geqq-1}\alpha_{r}$ , i.e., $g$ $=\oplus_{r\geqq-1}\mathfrak{g}_{r}$ , where

$g_{r}=g\cap\alpha_{r}$ . The Lie algebra $g((S)$ has also the gradation given by

$g((S)_{r}=$ { $X\in \mathfrak{g}\mathfrak{l}(S)|X(S_{l})\subset S_{l+r}$ for any $l$ }.

Referring the action above we have a restriction homomorphism: $\mathfrak{g}\rightarrow$

$g\downarrow(S)$ , which sends $g_{r}$ into $gt(S)_{r}$ . Assume here the following two condi-
tions for $S$ , which are satisfied by the typical symbol of type $([, \rho)$ :

(A1) The action of $\alpha_{-1}=V$ leave $S$ invariant.

(A2) The action of $\alpha_{-1}=V$ on $S$ is faithful.

Then this homomorphism turns out to be injective and we can charac-
terize $g_{r}$ as a subspace of $g1(S)_{r}$ as follows:

$\emptyset-1=V$,
(2.3)

$g_{r}=\{X\in g[(S)_{r}|[\mathfrak{g}_{-1}, X]\subset \mathfrak{g}_{r-1}\}$ for $r\geqq 0$ .

Put $u_{r}=S^{r}V^{*}\otimes \mathfrak{g}\mathfrak{l}(W)\subset\alpha_{r}$ . Then $u$ $=\oplus_{r\geqq 0}u_{r}$ is an ideal of $\alpha$ and

$\tau\iota=u\cap\emptyset$ is an ideal of $\mathfrak{g}$ . We can see

(2.4) $\tau\iota_{r}=\{X\in g1(S)_{r}|[\mathfrak{g}_{-1}, X]\subset tt_{r-1}\}$ for $r\geqq 0$ ,

where we put $\mathfrak{n}_{-1}=\{0\}$ for convention.
In the case of the typical symbol of type $([, \rho)$ , we have the follow-

ing: We identify [ with its image $\rho(\mathfrak{l})$ in $g[(S)$ as follows. Let $c$ denote
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the centralizer of [ in $\mathfrak{g}\mathfrak{l}(S)$ and $g^{\perp}$ the orthogonal complement of $g$

in $gi(S)$ with respect to the non-degenerate bilinear form Tr given by
Tr(X, $Y$ ) $=traceXY$ for $X$ , $Y\in g[(S)$ . Then, from (2.3) and (2.4), we
have (Proposition 4.4.1 [S])

(2.5) $g$ $=[\oplus c,$ $\mathfrak{n}=c$ , $g1(S)=[\oplus \mathfrak{n}\oplus g^{\perp}$ (Tr-orthogonal).

In fact, since $\rho$ is irreducible, $c$ coincides with the center of $g((S)$ in our
case.

Now let $S=\oplus_{r=0}^{p}S_{r}$ be a typical symbol satisfying $S_{0}=W$ ,

$S_{p}=0$ , and the above conditions (A.I) and (A.2). Then the model
system $R_{S}$ is constructed as follows: We filtrate the space $S$ by subspaces
$S^{r}=\oplus_{l=r}^{p}S_{l}$ . Notice that the group $GL(V)\times GL(W)$ acts on $\alpha$ by the
adjoint action: for $a\in GL(V)\times GL(W)$ and $ X\in\alpha$ , the action is
$(aX)(s)=(a\cdot X\cdot a^{-1})(s)$ for $s\in S$ . Let us define groups

$G_{0}=\{a\in GL(V)\times GL(W)|a(S)\subset S\}$ ,

$GL^{(0)}(S)=$ { $g\in GL(S)|g(S^{r})\subset S^{r}$ for any $r$ }.

Let $\overline{G}$ be the analytic subgroup of $GL(S)$ with Lie algebra $g$ $\in g[(S)$ and
put

$G=\overline{G}\cdot G_{0}$ ,

$G’=G\cap GL^{(0)}(S)$ .

We see that the groups $G_{0}$ and $G’$ are Lie subgroups of $GL(S)$ with
Lie algebras 90 and $g’=\oplus_{r\geqq 0}g_{r}$ respectively. Since $G’$ preserves the

filtration $\{S^{r}\}_{r}\geqq 0$ of $S$ , we get the representation $\rho_{W}$ of $G’$ :

$\rho_{W}$ : $G’\rightarrow GL(W)$ ,

through the projection $\pi_{0}$ : $S=\oplus_{r=0}^{p}S_{r}\rightarrow S_{0}=W$ .

Let $E_{S}$ be the vector bundle over $M=G/G’$ associated with the

representation $\rho_{W}$ : $G’\rightarrow GL(W)$ ; $G’$ acts on $G\times W$ on the right by

$(g, w)g’=(gg’, \rho_{W}(g’)^{-1}(w))$ ,

for $g\in G$ , $w\in W$ and $g’\in G’$ . Then $E_{S}$ is the vector bundle over $M=$

$G/G’$ defined by $E_{S}=G\times W/G’$ . As in \S 1, each $s\in S$ defines an element
$\sigma_{s}\in\Gamma(E_{S})$ by considering the equivalence class of $(g, \rho_{W}(g^{-1})(s))\in$

$G\times W$ .
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At each point $x\in M=G/G’$ , let $(R_{S})_{x}$ be the subspace of $J_{x}^{p}(E_{S})$

defined by
$(R_{S})_{x}=\{j_{x}^{p}(\sigma_{s})|s\in S\}$ .

Let $R_{S}$ be the subbundle of $J^{p}(E_{S})$ defined by

$R_{S}=x\in M\cup(R_{S})_{x}$
.

Then we have

Proposition. (Proposition 2.4.1 [S].) $R_{S}$ is an integrable system

of linear differential equations of finite type of order $p$ of type $S$ and
every local solution of $R_{S}$ is a restriction of $\sigma_{s}$ for some $s\in S$ .

We call $R_{S}$ the system of equations modeled after $S$ . In the case
when $S$ is the typical symbol of type $([, \rho)$ , it follows from (2.5) that
$G/G’=L/L’$ . Moreover, when $\rho$ is the irreducible representation of
[given in \S 1, we see that $R^{\rho}$ coincides with the system of equations
modeled after $S$ .

2.4. Normal reduction. Let R be an integrable system of linear
differential equations of finite type of order p of type S on E. Then R is
a vector bundle over the base manifold M with typical fibre S. A frame
z of R at x $\in M$ is a linear isomorphism of S onto $R_{x}$ . Let $F(R)$ be the
frame bundle of R:

$F(R)=x\in M\cup F_{x}(R)$
,

where $F_{x}(R)$ denotes the set of all frames of R at x $\in M$ . $F(R)$ is a
principal $GL(S)$ -bundle over M. The flat connection $\nabla$ in R induces the
connection and the connection form $\tilde{\omega}$ on $F(R)$ is a $g[(S)$ -valued 1-form.
Se-ashi’s theorem (Theorem A below) asserts the existence of a good
reduction of the pair $(F(R),\tilde{\omega})$ for a system R with the typical symbol
of type ((,$ \rho)$ . This reduction is carried out in several steps.

First, let $\{S^{r}\}_{r\geqq 0}$ be the filtration of $S$ . The associated graded

vector space $gr(S)=\oplus_{r\geqq 0}S^{r}/S^{r+1}$ can be naturally identified with

$S=\oplus_{r}\geqq 0S_{r}$ . Let $GL^{(0)}(S)$ denote the subgroup of $GL(S)$ consisting

of all elements $a\in GL(S)$ which preserve the filtration $\{S^{r}\}_{r\geqq 0}$ of $S$ . For

$a\in GL^{(0)}(S)$ , we denote by $gr(a)\in GL(S)$ the induced automorphism
of the graded vector space $S=\oplus_{r=0}^{p}S_{r}$ . Define

$G^{(0)}=\{a\in GL^{(0)}(S)|gr(a)\in G_{0}\}$ .
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The Lie algebra of $G^{(0)}$ is given by $g^{(0)}=90\oplus\oplus_{r=1}^{p-1}gt(S)_{r}$ . Then we

have the natural reduction of the structure group $GL(S)$ of $F(R)$ to $G^{(0)}$

as follows : At each $x\in M$ , $R_{x}$ has a filtration $\{R_{x}^{r}\}_{r\geqq 0}$ given by

$R_{x}^{r}=Ker(\pi_{r-1}^{p} : R_{x}\rightarrow J_{x}^{r-1}(E))$

Put
$\hat{P}_{x}(R)=$ { $z\in F_{x}(R)|z(S^{r})\subset R_{x}^{r}$ for any $r$ }.

Obviously, $\hat{P}(R)=\bigcup_{x\in M}\hat{P}_{x}(R)$ is a principal

$GL^{(0)}(S)$ -subbundle of $F(R)$ . Since $g_{r}=R_{r}\cap(S^{k}T^{*}\otimes E)$ denotes

the $r$-th symbol of $R$ , each frame $z\in\hat{P}_{x}(R)$ induces a graded map
$gr(z)$ : $S_{r}\rightarrow(g_{r})_{x}$ . We put

$P_{x}(R)=\{z\in\hat{P}_{x}(R)|$

$gr(z)$ is the extension of isomorphisms $V\cong T_{x}$ and $W\cong E_{x}$ }.

Then $P(R)=\bigcup_{x\in M}P_{x}(R)$ is a principal $G^{(0)_{-}}$subbundle of $F(R)$ . Let
$\pi$ : $P(R)\rightarrow M$ be the bundle projection and let $\omega$ be the restriction to
$P(R)$ of the connection form $\tilde{\omega}$ on $F(R)$ . According to the decomposition
$\mathfrak{g}\mathfrak{l}(S)=\oplus_{r=-p+1}^{p-1}\mathfrak{g}((S)_{r}$ , the form $\omega$ is decomposed as

$\omega=\sum\omega_{r}$ .

It has the following properties (Proposition 3.2.2 [S]):

(2.6) $\{$

(1) $d\omega+\frac{1}{2}\omega\wedge\omega=0$ ,

(2) $\omega_{r}=0$ for $r\leqq-2$ ,

(3) $\omega_{-1}$ is a $g_{-1}$ -valued basic form, that is, $\omega_{-1}$ gives the

isomorphism $T_{z}(P(R))/Ker\pi\cong g_{-1}$ at each $z\in P(R)$ .

The pair $(P(R), \omega)$ characterizes the equivalence class of the system
$R$ (Proposition 3.3.1 [S]). Namely, let $R$ and $R’$ be integrable systems
of type $S$ . Then an isomorphism $\phi$ of $R$ onto $R’$ induces the bundle
isomorphism $P(\phi)$ : $(P(R), \omega)\rightarrow(P(R’), \omega’)$ , i.e., $P(\phi)$ is a bundle
isomorphism of $P(R)$ onto $P(R’)$ satisfying $ P(\phi)^{*}\omega’=\omega$ . Conversely,
for any isomorphism $\Psi$ : $(P(R), \omega)\rightarrow(P(R’), \omega’)$ , there exists a unique
isomorphism $\phi$ of $R$ onto $R’$ such that $\Psi=P(\phi)$ .
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Second, in order to state the normality condition for $G’$-reduction of
$P(R)$ , we prepare the Spencer cohomology associated with the adjoint
representation of $\iota_{-1}$ on $g\mathfrak{l}(S)$ .

On the space $C=\oplus C^{p,q}$ of cochains

$C^{p,q}=\wedge^{q}(\mathfrak{l}_{-1})^{*}\otimes g\mathfrak{l}(S)_{p-1}$

,

we define the coboundary operator $\partial$ : $C^{p,q}\rightarrow C^{p-1,q+1}$ by

$\partial c(X_{0}, \ldots, X_{q})=\sum_{j}(-1)^{j}[\rho(X_{j}), c(X_{o}, \ldots,\hat{X}_{j}, \ldots, X_{q})]$
.

The cohomology group $H^{q}(1_{-1}, g\downarrow(S))=\oplus_{p}H^{p,q}(t_{-1}, g\mathfrak{l}(S))$ of this

cochain complex $(C, \partial)$ is called the Spencer cohomology group asso-
ciated with the adjoint representation of $\mathfrak{l}_{-1}$ on $gt(S)$ . Moreover, the
adjoint operator $\partial^{*}$ : $C^{p-1,q+1}\rightarrow C^{p,q}$ is given by

$\partial^{*}c(X_{1}, \ldots, X_{q})=\sum_{i}[\rho(E^{i}), c(E_{i}, X_{1}, \ldots, X_{q})]$
,

where $\{E_{i}\}$ is a basis of $[_{-1}$ and $\{E^{i}\}$ is the dual basis of $(_{1}$ relative to the
Killing form $B$ . Let $\tau$ be the complex conjugation relative to a compact

real form of [such that $\tau((_{1})=[_{-1}$ and $\tau(\mathfrak{l}_{0})=\mathfrak{l}_{0}$ . We have a (hermitian)
inner product given by $\{X, Y\}=-B(X, \tau(Y))$ . Moreover, since ( is
simple, we can find an inner product $\langle, \rangle$ on $S$ such that $\langle\rho(X)(s), s’\rangle+$

$\langle s, \rho(\tau(X))(s’)\rangle=0$ for $s$ , $s’\in S$ and $ X\in$ (. Then we define the inner
product $(, )$ on $g[(S)$ by $(u, v)=trace(uv^{*})$ , where $u$ , $v\in g\mathfrak{l}(S)$ and $v^{*}$

is the adjoint of $v$ relative to $\langle, \rangle$ . These inner products induce naturally
an inner product on $C^{p,q}$ . Then, relative to this inner product, $\partial^{*}$ is
seen to be the adjoint of $\partial$ . Thus we can develop a harmonic theory
for $(C, \partial)$ , using the laplacian $\triangle=\partial\partial^{*}+\partial^{*}\partial$ . In fact, we will apply

the harmonic theory of Kostant to compute $H^{p,1}([_{-1}, \mathfrak{g}^{\perp})$ in 2.5. We

denote by $H$ the harmonic projection. For $t$-submodule $g^{\perp}$ of $g[(S)$ , we
put $C(g^{\perp})=\wedge(\mathfrak{l}_{-1})^{*}\otimes g^{\perp}$ . Then $(C(g^{\perp}), \partial)$ is a subcomplex of $(C, \partial)$ .

Let $(Q(R), \chi)$ be a $G’$-reduction of $(P(R), \omega)$ ;i.e., $Q(R)$ is a $G’-$

principal subbundle of $P(R)$ and $\chi$ is the restriction of $\omega$ to $Q(R)$ . Ac-

cording to the decomposition $gt(S)=g\oplus g^{\perp}$ , the $f^{-}orm\chi$ is decomposed
as

$\chi=\chi_{g}+\chi_{9}\perp$ .

Since Tr is $Ad(G’)$ -invariant, we have $R_{a}^{*}\chi_{9}=Ad(a^{-1})\chi_{g}$ and $R_{a}^{*}\chi_{g}\perp=$

$Ad(a^{-1})\chi_{9^{\perp}}$ for any $a\in G’$ . For $X\in g’$ , $\chi_{g}\perp(X^{*})=0$ since $\chi(X^{*})=X$ .
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From (2) and (3) of (2.6), we have $(\chi_{g}\perp)_{p}=0$ for $p\leqq-1$ . Moreover, $\chi_{9}$

gives an isomorphism between $T_{u}(Q(R))$ and $g$ at each point $u\in Q(R)$ .

Namely, we have (Proposition 5.1.1 [S]) the following.

(1) $(Q(R), \chi_{g})$ is a Cartan connection of type $G/G’$ over $M$ .

(2) $\chi_{g}\perp is$ a tensorial 1-form on $Q(R)$ .

We now define a $C^{1}(g^{\perp})(=Hom(1_{-1}, g^{\perp}))$-valued function $c$ on $Q(R)$ by

$c(u)(X)=\chi_{g}\perp(X_{u}^{*})$ for $u\in Q(R)$ , $X\in[_{-1}$ .

$c$ is called the structure function on $Q(R)$ . For each $p$ , $c^{p}$ denotes the
$C^{p,1}(g^{\perp})$ -component of $c$ , i.e., $c^{p}(u)(X)=(\chi_{g}\perp)_{p-1}(X_{u}^{*})$ . Then

(2.7) $c^{p}=0$ for $p\leqq 0$ .

We note here that, if $c$ vanishes identically, we have $\chi=\chi_{g}$ and, from
(1) of (2.6), $(Q(R), \chi)$ is a flat Cartan connection of type $G/G’$ .

A $G’$ reduction $(Q(R), \chi)$ is said to be normal if the function $c$ is $\partial^{*}-$

closed. Now we can state Se-ashi’s Theorem (Theorem 5.1.2, Theorem
5.2.2 [S] $)$ as follows.

Theorem A. (1) For every integrable system $R$ of differential
equations of type $(\mathfrak{l}, \rho)$ , there exists a unique normal reduction $(Q(R), \chi)$

of $(P(R), \omega)$ .
(2) Let $R$ and $R’$ be integrable systems of type $(\mathfrak{l}, \rho)$ . Then an iso-

morphism $\phi$ of $R$ onto $R’$ induces the isomorphism $Q(\phi)$ : $(Q(R), \chi)\rightarrow$

$(Q(R’), \chi’)$ , $i.e.$ , $Q(\phi)$ is a bundle isomorphism of $Q(R)$ onto $Q(R’)$ sat-
isfying $ Q(\phi)^{*}\chi’=\chi$ . Conversely, for an isomorphism $\Psi$ : $(Q(R), \chi)\rightarrow$

$(Q(R’), \chi’)$ , there exists a $uni$que isomorphism $\phi$ of $R$ onto $R’$ such that
$\Psi=Q(\phi)$ .

(3) If the structure function $c$ vanishes identically, then $R$ is lo-
cally isomorphic with the model system of type $(I, \rho)$ . Furthermore, the
harmonic part $\prime Hc$ of $c$ gives a fundamental system of invariants of $R$ ,
$i.e.$ , $c$ vanishes if and only if $\mathcal{H}c$ vanishes.

2.5. Vanishing theorem on $H^{1}(\mathfrak{l}_{-1}, \mathfrak{g}^{\perp})$ . Let us recall some
facts on simple graded Lie algebras [ $=\iota_{-1}\oplus(_{0}\oplus(_{1}$ of the first kind,

following [Y], which are necessary in the subsequent discussion.

Let $Z$ be the characteristic element of [ $=[_{-1}\oplus \mathfrak{l}_{0}\oplus[_{1}$ . Since $ad(Z)$

is a semi-simple endomorphism of [, we can take a Cartan subalgebra $\{$
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of [ containing $Z$ . Let $\Phi$ be the set of roots of ( relative to $t$ . Then we
have the root space decomposition of [:

$\mathfrak{l}=\mathfrak{t}\oplus\oplus(_{\alpha}\alpha\in\Phi$

,

where $[_{\alpha}=$ { $X\in(|[H, X]=\alpha(H)X$ for all $H\in t$ } is the root
space for $\alpha\in\Phi$ . We have by definition $\alpha(Z)=-1,0$ or 1 for any $\alpha\in\Phi$ .

Let us choose a simple root system $\triangle=\{\alpha_{1}, \ldots, \alpha_{l}\}$ of $\Phi$ such that
$\alpha(Z)\geqq 0$ for all $\alpha\in\triangle$ . Then there exists a unique simple root $\alpha_{i_{O}}\in\triangle$

such that $\alpha_{i_{O}}(Z)=1$ , $\alpha_{i}(Z)=0$ for $i\neq i_{0}$ and the gradation is given by

(2.8)
$(_{0}=t\oplus\alpha\in\Phi_{0}^{+}\oplus(\mathfrak{l}_{\alpha}\oplus \mathfrak{l}_{-\alpha})$

,

$[_{-1}=\oplus t_{-\alpha}\alpha\in\Phi_{1}^{+}$

,
$[_{1}=\oplus(_{\alpha}\alpha\in\Phi_{1}^{+}$

,

where $\Phi_{p}^{+}=\{\alpha\in\Phi^{+}|\alpha(Z)=p\}$ and $\Phi^{+}$ is the set of positive roots.

Because of the partition $\Phi^{+}=\Phi_{0}^{+}\cup\Phi_{1}^{+}$ , we see that $n_{i_{0}}(\theta)=1$ for the

highest root $\theta=\sum_{i=1}^{l}n_{i}(\theta)\alpha_{i}$ and that

(2.8) $\Phi_{p}^{+}=\{\alpha=\sum_{i=1}^{l}n_{i}(\alpha)\alpha_{i}\in\Phi^{+}|n_{i_{0}}(\alpha)=p\}$ for $p=0,1$ .

Conversely, let (be a simple Lie algebra over $\mathbb{C}$ . Let us fix a Cart
subalgebra $t$ of ( and a simple root system $\triangle=\{\alpha_{1}, \ldots, \alpha_{l}\}$ of $\Phi$ .

Choose a simple root $\alpha_{i_{0}}$ such that $n_{i_{O}}(\theta)=1$ for the highest root
$\theta=\sum_{i=1}^{l}n_{i}(\theta)\alpha_{i}$ , and define the partition $\Phi^{+}=\Phi_{0}^{+}\cup\Phi_{1}^{+}$ by (2.9).
Then we can construct the gradation of [ of the first kind by (2.8), i.e.,
by defining the characteristic element $Z\in t$ by

(2.10) $\alpha_{i}(Z)=\{$

1 if $i=i_{0}$ ,

0 if $i\neq i_{0}$ .

We denote the simple graded Lie algebra [ $=t_{-1}\oplus \mathfrak{l}_{0}\oplus t_{1}$ obtained in this
manner by $(X_{l}, \{\alpha_{i_{O}}\})$ , when ( is a simple Lie algebra of type $X_{l}$ . Here
$X_{l}$ stands for the Dynkin diagram of (representing $\triangle$ and $\alpha_{i_{0}}$ is a vertex
of $X_{l}$ with the coefficient 1 for the highest root. It is known $[Y, \S 3]$ that
simple graded Lie algebras of the first kind are completely classified by
the diagram automorphism of $(X_{l}, \{\alpha_{i_{0}}\})$ . For example, the gradation
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of [ $=\epsilon t(n-2, \mathbb{C})$ given in (1.1) corresponds to $(A_{n-3}, \{\alpha_{k-1}\})$ . We
refer the reader to $[Y, \S 4.4]$ for the detail.

Let $\tau$ : ( $\rightarrow g1(T)$ be an irreducible representation with the highest
weight $\Lambda$ . Let $t_{\Lambda}$ be a maximal vector in $T$ of the highest weight $\Lambda$ .
Then an isotropy algebra at $[t_{\Lambda}]\in P(T)$ coincides with $1’=[_{0}\oplus(_{1}$ if and
only if $(\Lambda, \alpha_{i_{0}})\neq 0$ and $(\Lambda, \alpha_{i})=0$ for simple roots $\alpha_{i}$ other than $\alpha_{i_{0}}$ ,

where $(, )$ denotes the inner product in $(t_{\mathbb{R}})^{*}$ .

Let $\rho$ : ( $\rightarrow g\downarrow(S)$ be the dual representation of $\tau$ ; i.e., $S=T^{*}$ is the
dual space of $T$ and $\rho=\tau^{*}$ is defined by

$\langle\rho(X)(\xi), t\rangle+\langle\xi, \tau(X)(t)\rangle=0$ ,

for $X\in t$ , $t$ $\in T$ , $\xi\in T^{*}$ and $\langle, \rangle$ is the canonical pairing between $T^{*}$

and $T$ . Then $\rho$ is an irreducible representation with the lowest weight
$\Gamma=-\Lambda$ . Hence the minimum eigenvalue $\lambda_{0}$ of $\rho(Z)$ is given by $\lambda_{0}=$

$\Gamma(Z)$ . From (2.10), we see that the eigenvalues of $\rho(Z)$ are of the form

; $\lambda_{0}$ , $\lambda_{0}+1$ , $\ldots$ , $\lambda_{0}+p_{0}-1=\hat{\Lambda}(Z)$ , where $\hat{\Lambda}$ is the highest weight of
$\rho$ . When $t’=[_{0}\oplus \mathfrak{t}_{1}$ is the isotropy algebra at $[t_{\Lambda}]$ , the $\lambda_{0}$-eigenspace of
$\rho(Z)$ coincides with the weight space for $\Gamma$ , i.e., $ S_{0}=\langle s_{1}\rangle$ in the notation
of \S 1.

Given an irreducible representation $\rho$ : [ $\rightarrow gt(S)$ on $S$ , consider
the adjoint representation $ad\circ\rho$ : ( $\rightarrow g\mathfrak{l}(g\mathfrak{l}(S))$ on $\mathfrak{g}t(S)$ . Then, from
$[\rho(Z), Y](s)=\rho(Z)Y(s)-rY(s)$ for $s\in S_{r}$ , we have

$Y(Sr)\subset S_{l+r}$ for all $r$ if and only if $[\rho(Z), Y]=lY$.

Thus $\rho(Z)\in g((S)$ is the characteristic element of the gradation of
$g\mathfrak{l}(S)=\oplus_{r}g\mathfrak{l}(S)_{r}$ .

To state the theorem of Kostant, we prepare the notation for the
Weyl group $W$ of the root system $\Phi$ . For an element $\sigma\in W$ , we put
$\Phi^{-}=-\Phi^{+}$ and $\Phi_{\sigma}=\sigma(\Phi^{-})\cap\Phi^{+}$ . Then $\sigma(\delta)=\delta-\langle\Phi_{\sigma}\rangle$ , where
$\delta=\frac{1}{2}\sum_{\alpha\in\Phi}+\alpha$ and $\langle\Phi_{\sigma}\rangle$ denotes the sum of all elements in $\Phi_{\sigma}$ . For a

fixed $(X_{l}, \{\alpha_{i_{O}}\})$ , we define the subset $W^{0}$ of $W$ by putting

$W^{0}=\{\sigma\in W|\Phi_{\sigma}\subset\Phi_{1}^{+}\}$ .

Moreover, we put

$W(q)=\{\sigma\in W|n(\sigma)=q\}$ and $W^{0}(q)=W^{0}\cap W(q)$ ,

where $n(\sigma)$ is the number of roots in $\Phi_{\sigma}$ . For an element $\sigma\in W^{0}(q)$ ,

we put $x_{\Phi_{\sigma}}=x_{\beta_{1}}\wedge\cdots\wedge x_{\beta_{q}}$ where $\Phi_{\sigma}=\{\beta_{1}, \ldots, \beta_{q}\}\subset\Phi_{1}^{+}$ and $x_{\beta_{i}}$ is

a root vector for the root $\beta_{i}\in\Phi_{1}^{+}$ .

The theorem due to Kostant that we utilize is the following.
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Theorem B. (Proposition 10.1 [MM], Theorem (Kostant) $[Y$ ,
5.1].) Let ( $=[_{-1}\oplus \mathfrak{l}_{0}\oplus \mathfrak{l}_{1}$ be a simple graded Lie algebra over $\mathbb{C}$

represented by $(X_{l}, \{\alpha_{i_{0}}\})$ as above. Let $\tau$ : [ $\rightarrow g[(T)$ be an irreducible
representation of ( on $T$ with the lowest weight $\Gamma$ .

Then the harmonic space $\prime H^{q}$ of the cochain complex $ C^{q}=T\otimes$

$\wedge^{q}([_{-1})^{*}$ can be decomposed into the irreducible $\mathfrak{l}_{0}$ -module as follows:

$H^{q}=\sigma\in W^{0}(q)\oplus H^{\xi_{\sigma}}$
,

where $\mathcal{H}^{\xi_{\sigma}}$ is the irreducible $t_{0}$ -module with the lowest weigh $\xi_{\sigma}=$

$\sigma(\Gamma-\delta)+\delta=\sigma(\Gamma)+\langle\Phi_{\sigma}\rangle$ generated by the lowest weight vector

$t_{\sigma(\Gamma)}\otimes x_{\Phi_{\sigma}}$ ,

where $t_{\sigma(\Gamma)}$ is a weight vector in $T$ with weight $\sigma(\Gamma)$ and
$x_{\Phi_{\sigma}}=x_{\beta_{1}}\wedge\cdots\wedge x_{\beta_{q}}\in\wedge^{q}\mathfrak{l}_{1}\cong\wedge^{q}(\mathfrak{l}_{-1})^{*}$ .

We apply this theorem to our case when $q=1$ . In this case we have
$W^{0}(1)=\{\sigma_{i_{0}}\}$ , where $\sigma_{i_{O}}=\sigma_{\alpha_{i_{0}}}$ is the reflection corresponding to the

simple root $\alpha_{i_{O}}$ . Hence $H^{1}$ is an irreducible $(_{0}$-module with the lowest
weight $\xi_{i_{0}}=\sigma_{i_{0}}(\Gamma)+\alpha_{i_{0}}$ .

Now we show the following vanishing theorem for $H^{p,1}(\{_{-1}, g^{\perp})$ .

Theorem 2. Let [ $=t_{-1}\oplus(_{0}\oplus t_{1}$ be a simple graded Lie algebra over
$\mathbb{C}$ and let $M=L/L’$ be the model space associated with $(=t_{-1}\oplus(_{0}\oplus\downarrow 1\cdot$

Let $\rho$ : [ $\rightarrow g[(S)$ be an irreducible representation on $S$ and $H^{1}(1_{-1}, g^{\perp})$

be the first Lie algebra cohomology associated with the adjoint repre-
sentation of $t_{-1}$ on $\emptyset^{\perp}$ induced from $ ad\circ\rho$ : $t_{-1}\rightarrow g((g1(S))$ , where
$g[(S)=g\oplus g^{\perp}$ .

Then, for each $\rho$ : $[\rightarrow g1(S)$ ,

$H^{p,1}((_{-1}, g^{\perp})=\{0\}$ for all $p\geqq 1$ ,

except when $M$ is a projective space $\mathbb{P}^{m}$ or a hyperquadric $Q^{m}$ .

Proof The adjoint representation $ad\circ\rho$ : [ $\rightarrow g1(g[(S))$ on $g\mathfrak{l}(S)$ is
decomposable according to the decomposition

$g((S)=g\oplus g^{\perp}$ ,

and the gradation $g((S)=\oplus_{r}g[(S)_{r}$ coincides with the eigenspace de-
composition of $ad\circ\rho(Z)$ . To utilize Theorem $B$ , we further decompose
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$g^{\perp}$ into direct sum of irreducible 1-modules

$g^{\perp}=\oplus m_{\Gamma}T_{\Gamma}$ ,

where $T_{\Gamma}$ is an irreducible 1-submodule with the lowest weight $\Gamma$ . Then
we have

$H^{1}((_{-1}, \mathfrak{g}^{\perp})=\oplus m_{\Gamma}H^{1}(\mathfrak{t}_{-1}, T_{\Gamma})$ .

By Theorem $B$ , the harmonic space $H_{\Gamma}^{1}$ representing $H^{1}(t_{-1}, T_{\Gamma})$ is an
irreducible $1_{0}$-module in $T_{\Gamma}\otimes(_{1}$ generated by

$t_{\sigma_{i_{0}}(\Gamma)}\otimes x_{\alpha_{i_{0}}}$ ,

where $t_{\sigma_{i_{0}}(\Gamma)}$ is the weight vector with weight $\sigma_{i_{0}}(\Gamma)$ and $x_{\alpha_{i_{0}}}$ is a root

vector for $\alpha_{i_{0}}\in\Phi_{1}^{+}$ . Thus $H_{\Gamma}^{1}\subset C^{p,1}(g^{\perp})$ , if $t_{\sigma_{i_{0}}(\Gamma)}\in \mathfrak{g}t(S)_{p-1}$ . Hence

$p$ is given by
$p-1=\sigma_{i_{O}}(\Gamma)(Z)$ .

Let us compute the integer $\sigma_{i_{0}}(\Gamma)(Z)$ . For each $\alpha\in t^{*}$ , we denote
by $t_{\alpha}$ and $h_{\alpha}$ the elements of $t$ defined by

$B(t_{\alpha}, h)=\alpha(h)$ for $h\in t$ and $h_{\alpha}=\frac{2t_{\alpha}}{(\alpha,\alpha)}$ ,

where $(\alpha, \alpha)=B(t_{\alpha}, t_{\alpha})$ and $B$ is the Killing form of [. Moreover, we
put

$\langle\mu, \alpha\rangle=\frac{2(\mu,\alpha)}{(\alpha,\alpha)}=\mu(h_{\alpha})$ for $\mu\in t^{*}$ .

Thus, for the simple root system $\{\alpha_{1}, \ldots, \alpha_{l}\}$ of $\Phi$ , $\{h_{\alpha_{1}}, \ldots, h_{\alpha_{l}}\}$ forms
a basis of $t$ . With respect to this basis, we put

$Z=\sum_{i=1}^{l}a_{i}h_{\alpha_{i}}$ .

Then we compute

$\sigma_{i_{0}}(\Gamma)(Z)=(\Gamma-\langle\Gamma, \alpha_{i_{0}}\rangle\alpha_{i_{o}})(Z)=\Gamma(Z)-\langle\Gamma, \alpha_{i_{0}}\rangle$

(2.11)
$=(a_{i_{0}}-1)\langle\Gamma, \alpha_{i_{0}}\rangle+\sum_{i\neq i_{O}}a_{i}\langle\Gamma, \alpha_{i}\rangle$

Since $\Gamma$ is the lowest weight, we have $\langle\Gamma, \alpha_{i}\rangle\leqq 0$ for $i=1$ , $\ldots$ , $l$ and
$\langle\Gamma, \alpha_{j}\rangle<0$ for some $j$ . Let us now check the sign of $(a_{i_{0}}-1)$ and $a_{i}$ .
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From (2.10), we have

$\alpha_{i}(Z)=\sum_{j=1}^{l}\langle\alpha_{i}, \alpha_{j}\rangle a_{j}=\{$

1 if $i=i_{0}$ ,

0 if $i\neq i_{0}$ .

Hence, we see that $(a_{1}, \ldots, a_{l})$ coincides with the $i_{0}$-th column vector

of the inverse matrix $C^{-1}$ of the Cartan matrix $C=(\langle\alpha_{i}, \alpha_{j}\rangle)$ of [. It

is a well-known fact that all entries of $C^{-1}$ are positive numbers (see,
e.g., Table 1 [Hu, p.69] $)$ . Moreover, if $a_{i_{0}}>1$ , we see, from (2.11), that
$\sigma_{i_{O}}(\Gamma)(Z)<0$ for every $\Gamma$ , i.e., $p<1$ for every $H_{\Gamma}^{1}\subset C^{p,1}(\mathfrak{g}^{\perp})$ . Hence

we get $H^{p,1}(t_{-1}, g^{\perp})=\{0\}$ for all $p\geqq 1$ in this case. Thus our task is
to list up those $(X_{l}, \{\alpha_{i_{O}}\})$ for which $a_{i_{O}}\leqq 1$ . In fact, from Table 1 [Hu,
p.69], we obtain the following list of $(X_{l}, \{\alpha_{i_{0}}\})$ for which $a_{i_{O}}\leqq 1$ :

$(A_{l}, \{\alpha_{1}\})$ $a_{1}=\frac{l}{l+1}$ $(l \geqq 1)$ , $(A_{3}, \{\alpha_{2}\})$ $a_{2}=1$

$(B_{l}, \{\alpha_{1}\})$ $a_{1}=1$ $(\mathfrak{l}\geqq 2)$ , $(D_{l}, \{\alpha_{1}\})$ $a_{1}=1$ $([ \geqq 4)$ ,

Here we identify $(B_{2}, \{\alpha_{1}\})\cong(C_{2}, \{\alpha_{2}\})$ , $(D_{4}, \{\alpha_{1}\})\cong(D_{4}, \{\alpha_{3}\})\cong$

$(D_{4}, \{\alpha_{4}\})$ and $(A_{l}, \{\alpha_{1}\})\cong(A_{l}, \{\alpha\iota\})$ by diagram automorphisms. One
can easily check (cf. $[Y,$ $4.4]$ ) that, when $(X_{l}, \{\alpha_{i_{O}}\})$ coincides with one
of the above list, the model space $M=L/L’$ corresponds to $\mathbb{P}^{l}$

$(l \geqq 1)$ ,
$Q^{4}=Gr_{2,,,4}$ , $Q^{2l-1}$ $(l \geqq 2)$ and $Q^{2(l-1)}(l \geqq 4)$ . This completes the proof
of Theorem C.

Now, combining Theorem A (3), Theorem $C$ and (2.7), we obtain

Corollary 3. Let ( $=\mathfrak{l}_{-1}\oplus(_{0}\oplus \mathfrak{l}_{1}$ be a simple graded Lie algebra
over $\mathbb{C}$ and let $M=L/L’$ be the model space associated with $($ $=t_{-1}\oplus$

$\mathfrak{l}_{0}\oplus\downarrow 1$ . Let $\rho$ : [ $\rightarrow g1(S)$ be an irreducible representation of (. Then,
except when $M=\mathbb{P}^{m}$ or $Q^{m}$ , every integrable system $R$ of differential
equations of type $([, \rho)$ is locally isomorphic with the model system $R^{\rho}$ of
type $(t, \rho)$ .

3. Proof of Theorem 1

In this section we will show the inequivalence of $E(k, n)$ and $R(k, n)$

for $(k, n)\neq(3,6)$ and prove Theorem. Recall that $R(k, n)$ is the model
system of type $([, \rho o)$ , where [ $=\epsilon t(n-s, \mathbb{C})$ with the gradation $(=\mathfrak{l}_{-1}\oplus$

$[_{0}\oplus t_{1}$ given by (1.1) and $\rho_{0}$ is the exterior representation of $g((n-2, \mathbb{C})$

$on\wedge^{n-k-1}\mathbb{C}^{n-2}$ . By the argument in \S 2.2 and \S 2.3, we see that $R(k, n)$

is an integrable system of order $p_{0}=\min\{k, n-k\}$ over the model
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space $M=Gr_{k-1,,,n-2}$ . Hence, by Corollary $D$ , $R(k, n)$ is characterized
solely by its symbol. Thus, to prove Theorem, we need only to show
that $E(k, n)$ is not of type $(\mathfrak{l}, \rho_{0})$ for $(k, n)\neq(3,6)$ , i.e., the symbol
of $E(k, n)$ at a generic point is not equivalent to the typical symbol of
$R(k, n)$ discussed in \S 2.2 for $(k, n)\neq(3,6)$ .

3.1. The symbol of the Pl\"ucker embedding

We recall the calculations in 2.2. Let us take the following basis for
$V=\mathfrak{l}_{-1}$ and $S_{r}$ ,

$ V=[_{-1}=\langle E_{pi}|1\leqq i\leqq k-1, k\leqq p\leqq n-2\rangle$ ,

$S_{r}=\langle s(i_{1}, \ldots, i_{r},p_{1}, \ldots,p_{r})|$

$1\leqq i_{1}<\cdots<i_{r}\leqq k-1$ , $ k\leqq p_{1}<\cdots<p_{r}\leqq n-2\rangle$ ,

where

$n-k-1$

$s(i_{1}, \ldots, i_{r}, p_{1}, \ldots,p_{r})=e_{i_{1}}\wedge\cdots\wedge e_{i_{r}}\wedge e(p_{1}, \ldots,p_{r})\in S=$ $\wedge$
$\mathbb{C}^{n-2}$ .

Then we have

$\iota_{r}(s(i_{1}, \ldots, i_{r},p_{1}, \ldots,p_{r}))(X, \ldots, X)=$

$r^{I}.(-1)^{r}(\sum_{\sigma}sgn\sigma X_{i_{1}p_{\sigma(1)}}\cdots X_{i_{r}p_{\sigma(r)}})e_{p_{1}}\wedge\cdots\wedge e_{p_{\Gamma}}\wedge e(p_{1}, \ldots,p_{r})$
,

for $X=\sum_{ip}X_{\dot{\iota},p},E_{pi}\in V$ . Thus, by fixing a basis of $W=S_{0}$ and

identifying $SV^{*}$ with the ring of polynomials on $V$ , we see that $S_{1}=V^{*}$

and $S_{r}\subset S^{r}V^{*}$ is spanned by the minor determinants of degree $r$ of the
matrix $(X_{ip})$ . By construction of $R(k, n)$ ,

$S=\oplus S_{r}r=0p0$

is the typical symbol of $R(k, n)$ . Hence, putting $R_{r}(k, n)=\pi_{r}^{po}(R(k, n))$ ,

the symbol $g_{r}=R_{r}(k, n)\cap(S^{r}T^{*}\otimes E)$ of $R_{r}(k, n)$ is of type $S_{r}\subset S^{r}V^{*}$

at each point of $M$ $=Gr_{k-1,,,n-2}$ .

Now let us first show that $R(k, n)$ is essentially a second order sys-
tem. More precisely, we claim

$R(k, n)$ is the $(p_{0}-2)$ -th prolongation of $R_{2}(k, n)$

Namely $p_{0}$ -th order system $R(k, n)$ is obtained from the second order
system $R_{2}(k, n)$ by adding successive (partial) derivatives to $R_{2}(k, n)$ .

In order to show this, since $\pi_{r-1}^{r}$ : $R_{r}(k, n)\rightarrow R_{r-1}(k, n)$ is onto by
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construction, we need only to show that the symbol $g_{r}$ of $R_{r}(k, n)$ is the
$(r-2)$ -th prolongation of $g_{2}$ . In fact we have

Lemma 3.1. The space $S_{r}\subset S^{r}V^{*}$ is equal to the $(r-2)$ -th

prolongation $p^{(r-2)}(S_{2})$ of $S_{2}\subset S^{2}V^{*}$ .

Here we recall that $s$-th (algebraic) prolongation $p^{(s)}(S_{2})$ of $S_{2}$ is
given by

$p^{(s)}(S_{2})=S_{2}\otimes\otimes^{s}V^{*}\cap S^{s+2}V^{*}$ .

Proof. Let $T_{r}$ be the annihilator of $S_{r}$ in $S^{r}V$ , where we identify $S^{r}V$

with the dual space of $S^{r}V^{*}$ . Then $T_{2}$ is generated by the following
vectors ;

$E_{pi}\cdot E_{qj}+E_{qi}\cdot E_{pj}$ $(1 \leqq i<j\leqq k-1, k\leqq p<q\leqq n-2)$

$E_{pj}\cdot E_{qj}$ $(1 \leqq i\leqq k-1, k\leqq p<q\leqq n-2)$

$E_{qi}\cdot E_{qj}$ $(1 \leqq i<j\leqq k-1, k\leqq q\leqq n-2)$

$E_{qj}^{2}$ $(1 \leqq j\leqq k-1, k\leqq q\leqq n-2)$

where. denotes the symmetric product. Let $T_{2}^{(s)}$ denote the annihilator

of $p^{(s)}(S_{2})$ in $S^{s+2}V$ . Then we have

$ T_{2}^{(s)}=\langle$
$f$ . $g|f\in S^{s}V$ and $ g\in T_{2}\rangle$ .

Moreover, since $S_{s+2}$ is generated by the minor determinants of degree
$s+2$ of the matrix $(X_{ip})$ , we have

(3.1) $T_{2}^{(s)}\subset T_{s+2}$ .

We observe here that each monomial $E_{p_{1}i_{1}}\cdot E_{p_{2}i_{2}}\cdots\cdot\cdot E_{p_{s+2}i_{s+2}}$ in $S^{s+2}V$

belongs to $T_{2}^{(s)}$ if there is a repetition among the indices $i_{1}$ , $\ldots$ , $i_{s+2}$ or
$p_{1}$ , $\ldots,p_{s+2}$ . On the other hand, given indices $i_{1}$ , $\ldots,\dot{0}_{s+2}$ and $p_{1}$ , $\ldots$ ,
$p_{s+2}$ such that $1\leqq i_{1}<\cdots<i_{s+2}\leqq k-1$ and $ k\leqq p_{1}<\cdots<p_{s+2}\leqq$

$n-2$ , we see that $(s+2)!$ monomials

$E_{p_{1}i_{\sigma(1)}}\cdot E_{p_{2}i_{\sigma(2)}}\cdot\cdots\cdot E_{p_{s+2}i_{\sigma(s+2)}}$ ,

where $\sigma$ runs for all permutations of degree $s+2$ , span (at most) 1-

dimensional subspace modulo $T_{2}^{(s)}$ . In fact, to see this, it is enough
to line up all the permutations of degree $(s+2)$ in one row so that
each permutation $(l_{1}, \ldots, l_{s+2})$ , where $l_{i}=\sigma(i)(i=1,2, \ldots, s+2)$ , is
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obtained by a transposition from the former permutation in this row.
Then the dimension count shows

$codimT_{2}^{(s)}\leqq\left(\begin{array}{ll}k & -1\\s & +2\end{array}\right)$ $\times$ $\left(\begin{array}{ll}n-k & -1\\s+2 & \end{array}\right)=dimS_{s+2}$ ,

which, together with (3.1), implies $T_{2}^{(s)}=T_{s+2}$ . This completes the
proof of Lemma.

In view of this lemma, we will discuss the inequivalence of second
order systems $E(k, n)$ and $R_{2}(k, n)$ in 3.3. Here the symbol $g_{2}=$

$R_{2}(k, n)\cap(S^{2}T^{*}\otimes E)$ of $R_{2}(k, n)$ is of type $S_{2}\subset S^{2}V^{*}$ at each point of
$M=Gr_{k-1,,,n-2}$ . Let $\{e_{ip}\}$ denote the dual basis of $\{E_{pi}\}$ in $V^{*}$ . Then

recall that $S_{2}\subset S^{2}V^{*}$ is generated by the following elements of $S^{2}V^{*}$ ;

$S_{ijpq}=e_{ip}\cdot e_{jq}-e_{iq}\cdot e_{jp}$ , $(1 \leqq i<j\leqq k-1, k\leqq p<q\leqq n-2)$ .

3.2. The symbol of $E(k, n)$

For a set of parameters

$\alpha=(\alpha_{1, }\ldots, \alpha_{n})$ , $\sum_{j=1}^{n}\alpha_{j}=n-k$ ,

the hypergeometric system of type $(k, n)$ is the system of linear differ-
ential equations:

$\sum_{j=1}^{n}x_{lj}\frac{\partial u}{\partial x_{\dot{0}j}}+\delta_{il}u=0$ ,

$\sum_{i=1}^{k}x_{ij^{\frac{\partial u}{\partial x_{ij}}}}-(\alpha_{j}-1)u=0$ ,

$\frac{\partial^{2}u}{\partial x_{ip}\partial x_{jq}}-\frac{\partial^{2}u}{\partial x_{iq}\partial x_{jp}}=0$ ,

where

$(x_{ij})\in M^{*}(k, n)=$ { $k\times n$-matrices such that no $k$-minor vanishes}.

The configuration space $X(k, n)$ of distinct $n$ points on the projective
$(k-1)$ -space is by definition given as

$X(k, n)=GL(k)\backslash M^{*}(k, n)/H(n)$ ,
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where $H(n)$ is the group consisting of diagonal non-singular $n$-matrices.
Though the above system is not defined on $X(k, n)$ , its projective so-
lutions are defined on it. So instead of transforming the system into a
$GL(k)\times H(n)$ -invariant form, we restrict this system to the “subset” of
$M^{*}(k, n)$ defined as follows:

$\left(\begin{array}{lllllllll}1 & 0 & \cdots & 0 & 1 & & 1 & \cdots & 1\\0 & 1 & \cdots & 0 & 1 & x_{2} & k+2 & \cdots & x_{2n}\\\vdots & & \ddots & & \vdots & & \vdots & & \vdots\\ 0 & 0 & \cdots & 1 & 1 & x_{k} & k+2 & \cdots & x_{kn}\end{array}\right)$ .

Note that any element of $M^{*}(k, n)$ can be taken to this form by $ GL(k)\times$

$H(n)$ , in other words, this is a section of the projection $ M^{*}(k, n)\rightarrow$

$X(k, n)$ . So in the following, we identify this subset with $X(k, n)$ , i.e.,
we regard $(x_{ip})\in X(k, n)$ .

The restricted system $E(k, n)=E(k, n;\alpha_{1}, \ldots, \alpha_{n})$ consists of the
following differential equations relative to the variables $x_{ip}$ , $2\leqq i\leqq k$ ,
$k+2\leqq p\leqq n$ .

$(\alpha-1+\theta)\theta_{jq}u=x_{jq}(\theta^{q}-\alpha_{q}+1)(\theta_{j}+\alpha_{j})u$ ,

$x_{jp}(\theta^{p}-\alpha_{p}+1)\theta_{jq}u=x_{jq}(\theta^{q}-\alpha_{q}+1)\theta_{jp}u$ ,
(3.2)

$x_{iq}(\theta_{i}+\alpha_{i})\theta_{jq}u=x_{jq}(\theta_{j}+\alpha_{j})\theta_{iq}u$ ,

$x_{iq}x_{jp}\theta_{ip}\theta_{jq}u=x_{ip}x_{jq}\theta_{iq}\theta_{jp}u$ ,

where

$\theta_{ip}=x_{ip}\frac{\partial}{\partial x_{ip}}$ , $\theta_{i}=\sum_{p=k+2}^{n}\theta_{ip}$ , $\theta^{p}=\sum_{i=2}^{k}\theta_{ip}$ , $\theta=\sum_{i=2}^{k}\sum_{p=k+2}^{n}\theta_{ip}$ .

and
$\alpha=\alpha_{2}+\cdots+\alpha_{k+1}$ .

Refer to [MSYI]. Here and in the following, the indices $i$ and $j$ run from
2 to $k$ , and the indices $p$ and $q$ from $k+2$ to $n$ .

Now let us calculate the symbol of $E(k, n)$ . In the spirit of \S 2,
we regard $E(k, n)$ as the subbundle of $J^{2}(E)$ defined by (3.2), where
$E=\mathbb{C}\times X(k, n)$ is the trivial line bundle over the configuration space
$X(k, n)$ . Let $S_{2}(x)=E(k, n)\cap(S^{2}T_{x}^{*}\otimes \mathbb{C})$ be the symbol of $E(k, n)$ at
$x=(x_{ip})\in X(k, n)$ . We regard $S_{2}(x)$ as a subspace of $S^{2}T_{x}^{*}$ . Then, from
(3.2), we see that the annihilator $T_{2}(x)$ of $S_{2}(x)$ in $S^{2}T_{x}$ is generated by
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the following elements:

$A_{jq}=\sum_{i,,,p}(x_{ip}\xi_{ip}x_{jq}\xi_{jq}-x_{jq}x_{iq}\xi_{iq}x_{jp}\xi_{jp})$
,

$B_{jpq}=x_{jp}\sum_{i}x_{ip}\xi_{ip}x_{jq}\xi_{jq}-x_{jq}\sum_{i}x_{iq}\xi_{iq}x_{jp}\xi_{jp}$
,

$C_{ijq}=x_{iq}\sum_{p}x_{ip}\xi_{ip}x_{jq}\xi_{jq}-x_{jq}\sum_{p}x_{iq}\xi_{iq}x_{jp}\xi_{jp}$
,

$D_{ijpq}=x_{iq}x_{jp}x_{ip}\xi_{ip}x_{jq}\xi_{jq}-x_{ip}x_{jq}x_{iq}\xi_{iq}x_{jp}\xi_{jp}$ .

where we put $\xi_{ip}=\frac{\partial}{\partial x_{ip}}$ , and $\{\xi_{ip}\}$ forms a basis of $T_{x}$ . Since

$B_{jpq}=x_{jp}x_{jq}((\sum_{i}x_{ip}\xi_{ip})\xi_{jq}-(\sum_{i}x_{iq}\xi_{iq})\xi_{jp})$
,

$C_{ijq}=x_{iq}x_{jq}((\sum_{p}x_{ip}\xi_{ip})\xi_{jq}-(\sum_{p}x_{jp}\xi_{jp})\xi_{\dot{x}})$
,

$D_{ijpq}=x_{ip}x_{iq}x_{jp}x_{jq}(\xi_{ip}\xi_{jq}-\xi_{iq}\xi_{jp})$ ,

and

$A_{jq}\equiv x_{jq}(\sum_{p}x_{jp}\xi_{jp})(\sum_{i}(1-x_{iq})\xi_{iq})$
modulo $D_{ijpq}$ ,

$T_{2}(x)$ is generated by

$A_{jq}’=\eta_{j}\eta^{q}$ ,

$B_{jpq}’=\eta^{p}\xi_{jq}-\eta^{q}\xi_{jp}$ ,

$C_{ijq}’=\eta_{i}\xi_{jq}-\eta_{j}\xi_{iq}$ ,

$D_{ijpq}’=\xi_{ip}\xi_{jq}-\xi_{iq}\xi_{jp}$ ,

where

$\eta_{j}=\sum x_{jp}\xi_{jp}$ ,
$\eta^{q}=\sum_{i}(1-x_{iq})\xi_{iq}$

.

Furthermore, the first three are equal to the following, respectively,
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modulo the generator $D_{ijpq}’$ .

$\hat{A}_{jq}=(\sum_{i,,,p}(x_{ip}-x_{iq}x_{jp})\xi_{ip})\xi_{jq}$
,

$\hat{B}_{jpq}=(\sum_{i}(x_{iq}-x_{ip})\xi_{ip})\xi_{jq}$ ,

$\hat{C}_{ijq}=(\sum(x_{ip}-x_{jp})\xi_{ip})\xi_{jq}$ .

Let us now compute the generators of $S_{2}(x)$ . We denote by $\{e_{ip}\}$

the dual basis of $\{\xi_{ip}\}$ . Since any elements of $S_{2}(x)$ are annihilated by
above elements of $T_{2}(x)$ , we look for the elements of the form

$E_{ijpq}=e_{ip}\cdot e_{jq}+e_{iq}\cdot e_{jp}+\sum_{\ell<m,s}P_{\ell ms}^{ijpq}e_{\ell s}\cdot e_{ms}$

$+\sum_{m,,,r<s}Q_{mrs}^{ijpq}e_{mr}\cdot e_{ms}+\sum_{m,,,s}R_{ms}^{ijpq}e_{ms}^{2}$
.

Obviously, this satisfies $D_{\ell mrs}’(E_{ijpq})=0$ . By requiring $E_{ijpq}$ to be

annihilated by $\hat{C}_{\ell ms}$ and by $\hat{B}_{mrs}$ , we can determine the coefficients $P$ ’s
and $Q$ ’s as follows:

$E_{ijpq}=e_{ip}\cdot e_{jq}+e_{iq}\cdot e_{jp}-\underline{x_{iq}-x_{jq}}\underline{x_{ip}-x_{jp}}e_{ip}\cdot e_{jp}-e_{iq}\cdot e_{jq}$

$x_{ip}-x_{jp}$ $x_{iq}-x_{jq}$

$-\frac{x_{jq}-x_{jp}}{x_{iq}-x_{ip}}e_{ip}\cdot e_{iq}-\frac{x_{iq}-x_{ip}}{x_{jq}-x_{jp}}e_{jp}\cdot e_{jq}+\sum_{m,,,s}R_{ms}^{ijpq}e_{ms}^{2}$
.

The condition $\hat{A}_{ms}(E_{ijpq})=0$ is a little complicated; a calculation shows

$R_{ip}^{ijpq}=-\frac{x_{jq}-x_{jp}x_{iq}}{(1-x_{ip})x_{ip}}+\frac{x_{jp}}{x_{ip}}\frac{x_{iq}-x_{jq}}{x_{ip}-x_{jp}}+\frac{x_{iq}}{x_{ip}}\frac{x_{jq}-x_{jp}}{x_{iq}-x_{ip}}$ ,

$R_{iq}^{ijpq}=-\frac{x_{jp}-x_{jq}x_{ip}}{(1-x_{iq})x_{iq}}+\frac{x_{jq}}{x_{iq}}\frac{x_{ip}-x_{jp}}{x_{iq}-x_{jq}}+\frac{x_{ip}}{x_{iq}}\frac{x_{jq}-x_{jp}}{x_{iq}-x_{ip}}$ ,

$R_{jp}^{ijpq}=-\frac{x_{iq}-x_{ip}x_{jq}}{(1-x_{jp})x_{jp}}+\frac{x_{ip}}{x_{jp}}\frac{x_{iq}-x_{jq}}{x_{ip}-x_{jp}}+\frac{x_{jq}}{x_{jp}}\frac{x_{iq}-x_{ip}}{x_{jq}-x_{jp}}$ ,

$R_{jq}^{ijpq}=-\frac{x_{ip}-x_{iq}x_{jp}}{(1-x_{jq})x_{jq}}+\frac{x_{iq}}{x_{jq}}\frac{x_{ip}-x_{jp}}{x_{iq}-x_{jq}}+\frac{x_{jp}}{x_{jq}}\frac{x_{iq}-x_{ip}}{x_{jq}-x_{jp}}$ ,

$R_{ms}^{ijpq}=0$ otherwise.

We put
$R_{ip}=R_{ip}^{ijpq}$ ;
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then, we see that

(3.3)

$E_{ijpq}=e_{ip}\cdot e_{jq}+e_{iq}\cdot e_{jp}-\underline{x_{iq}-x_{jqe_{ip}\cdot e_{jp}}}-\underline{x_{ip}-x_{jpe_{iq}\cdot e_{jq}}}$

$x_{ip}-x_{jp}$ $x_{iq}-x_{jq}$

$-\frac{x_{jq}-x_{jp}}{x_{iq}-x_{ip}}e_{ip}\cdot e_{iq}-\frac{x_{iq}-x_{ip}}{x_{jq}-x_{jp}}e_{jp}\cdot e_{jq}$

$+R_{ip}e_{ip^{2}}+R_{iq}e_{iq}^{2}+R_{jp}e_{jp}^{2}+R_{jq}e_{jq}^{2}$ .

Here we note that $E_{ijpq}$ is a quadratic polynomial in four variables $e_{ip}$ ,

$e_{iq}$ , $e_{jp}$ and $e_{jq}$ . Thus, the space $S_{2}(x)$ is generated by these elements
$E_{ijpq}$ $(2\leqq i<j\leqq k, k+2\leqq p<q\leqq n)$ .

In the following, we use $R_{ip}$ written in the form

$R_{ip}=\frac{x_{iq}x_{jp}-x_{iq}-x_{jp}+x_{jq}}{x_{ip}}+\frac{x_{iq}x_{jp}-x_{jq}}{1-x_{ip}}$

(3.4)

$+\frac{x_{iq}-x_{jq}}{x_{ip}-x_{jp}}+\frac{x_{jp}-x_{jq}}{x_{ip}-x_{iq}}$ .

3.3. Proof

By summarizing the discussion in the above subsections, our task is

now to show the inequivalence of the symbol spaces $S_{2}(x)$ and $S_{2}$ for a
generic point $x$ of $X(k, n)$ . More precisely, we need to show that, for a
generic point $x\in X(k, n)$ , there does not exist a linear isomorphism $\phi$

of $V$ onto $T_{x}$ such that $\phi^{*}$ : $S^{2}T_{x}^{*}\rightarrow S^{2}V^{*}$ sends $S_{2}(x)$ onto $S_{2}$ . In other
words our task is to show, for a generic point $x\in X(k, n)$ , the projective
inequivalence of the varieties $V(S_{2}(x))$ and $V(S_{2})$ , where $V(S_{2}(x))$ and
$V(S_{2})$ are varieties in the projective spaces $PT_{x}^{*}$ and $PV^{*}$ , which are
defined by the quadratic generators of $S_{2}(x)$ and $S_{2}$ , respectively.

Here we note that, since the generators of $S_{2}$ are minor determinants
of degree 2 of the matrix $(e_{ip})$ , $V(S_{2})$ is called the Segre variety and

coincides with the image of $\mathbb{P}^{k-2}\times \mathbb{P}^{n-k-2}$ under the Segre embedding.
Especially, we see that $V(S_{2})$ is a smooth projective variety of dimension
$n-4$ . Referring to this fact, we will check the above inequivalence by
looking at the most primitive invariants of varieties, i.e., by counting the
dimension of $V(S_{2}(x))$ . In fact we can check that

$dimV(S(x))<n-4$ ,

at a generic point $x=(x_{ip})\in X(k, n)$ as in the following.
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Let us first examine the typical and easiest case when $(k, n)=(3,7)$ .

The dimension of $S_{2}$ is 3; the space $S_{2}$ is generated by

$E_{2356}$ , $E_{2357}$ , $E_{2367}$ .

For ease of reference we index the coordinates as follows:

$\left(\begin{array}{lll}x_{25} & x_{26} & x_{27}\\x_{35} & x_{36} & x_{37}\end{array}\right)$ $=$ $\left(\begin{array}{lll}x & \alpha_{1} & \alpha_{2}\\\beta & \gamma_{1} & \gamma_{2}\end{array}\right)$ .

Each $E_{*}$ is a homogeneous polynomial of $e_{\dot{\iota},p},$ . We introduce inhomoge-
neous coordinates by

$Y_{1}=e_{26}/e_{25}$ , $Y_{2}=e_{27}/e_{25}$ , $Z=e_{35}/e_{25}$ , $W_{1}=e_{36}/e_{25}$ , $W_{2}=e_{37}/e_{25}$ .

Then the $E_{*}$ ’s, more precisely the quotients $E_{*}/e_{25^{2}}$ , are functions of
the inhomogeneous coordinates. The explicit forms are given by (3.3)
and (3.4) as follows:

$E_{2356}=W_{1}+Y_{1}Z+A_{1}+B_{1}Y_{1}^{2}+C_{1}Z^{2}+D_{1}W_{1}^{2}$

$-\frac{\alpha_{1}-\gamma_{1}}{x-\beta}Z-\frac{x-\beta}{\alpha_{1}-\gamma_{1}}Y_{1}W_{1}-\frac{\gamma_{1}-\beta}{\alpha_{1}-x}Y_{1}-\frac{\alpha_{1}-x}{\gamma_{1}-\beta}ZW_{1}$ ,

where

$A_{1}=\frac{\alpha_{1}\beta-\alpha_{1}-\beta+\gamma_{1}}{x}+\frac{\alpha_{1}\beta-\gamma_{1}}{1-x}+\frac{\alpha_{1}-\gamma_{1}}{x-\beta}+\frac{\beta-\gamma_{1}}{x-\alpha_{1}}$ ,

$B_{1}=\frac{x\gamma_{1}-x-\gamma_{1}+\beta}{\alpha_{1}}+\frac{x\gamma_{1}-\beta}{1-\alpha_{1}}+\frac{x-\beta}{\alpha_{1}-\gamma_{1}}+\frac{\gamma_{1}-\beta}{\alpha_{1}-x}$ ,

$C_{1}=\frac{\gamma_{1}x-\gamma_{1}-x+\alpha_{1}}{\beta}+\frac{\gamma_{1}x-\alpha_{1}}{1-\beta}+\frac{\gamma_{1}-\alpha_{1}}{\beta-x}+\frac{x-\alpha_{1}}{\beta-\gamma_{1}}$ ,

$D_{1}=\frac{\beta\alpha_{1}-\beta-\alpha_{1}+x}{\gamma_{1}}+\frac{\beta\alpha_{1}-x}{1-\gamma_{1}}+\frac{\beta-x}{\gamma_{1}-\alpha_{1}}+\frac{\alpha_{1}-x}{\gamma_{1}-\beta}$ ;

$E_{2357}=W_{2}+Y_{2}Z+A_{2}+B_{2}Y_{2}^{2}+C_{2}Z^{2}+D_{2}W_{2}^{2}$

$-\frac{\alpha_{2}-\gamma_{2}}{x-\beta}Z-\frac{x-\beta}{\alpha_{2}-\gamma_{2}}Y_{2}W_{2}-\frac{\gamma_{2}-\beta}{\alpha_{2}-x}Y_{2}-\frac{\alpha_{2}-x}{\gamma_{2}-\beta}ZW_{2}$ ,
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where

$A_{2}=\frac{\alpha_{2}\beta-\alpha_{2}-\beta+\gamma_{2}}{x}+\frac{\alpha_{2}\beta-\gamma_{2}}{1-x}+\frac{\alpha_{2}-\gamma_{2}}{x-\beta}+\frac{\beta-\gamma_{2}}{x-\alpha_{2}}$ ,

$B_{2}=\frac{x\gamma_{2}-x-\gamma_{2}+\beta}{\alpha_{2}}+\frac{x\gamma_{2}-\beta}{1-\alpha_{2}}+\frac{x-\beta}{\alpha_{2}-\gamma_{2}}+\frac{\gamma_{2}-\beta}{\alpha_{2}-x}$ ,

$C_{2}=\frac{\gamma_{2}x-\gamma_{2}-x+\alpha_{2}}{\beta}+\frac{\gamma_{2}x-\alpha_{2}}{1-\beta}+\frac{\gamma_{2}-\alpha_{2}}{\beta-x}+\frac{x-\alpha_{2}}{\beta-\gamma_{2}}$ ,

$D_{2}=\frac{\beta\alpha_{2}-\beta-\alpha_{2}+x}{\gamma_{2}}+\frac{\beta\alpha_{2}-x}{1-\gamma_{2}}+\frac{\beta-x}{\gamma_{2}-\alpha_{2}}+\frac{\alpha_{2}-x}{\gamma_{2}-\beta}$ ;

$E_{2367}=Y_{1}W_{2}+Y_{2}W_{1}+AY_{1}^{2}+BY_{2}^{2}+CW_{1}^{2}+DW_{2}^{2}$

$-\frac{\alpha_{2}-\gamma_{2}}{\alpha_{1}-\gamma_{1}}Y_{1}W_{1}-\frac{\alpha_{1}-\gamma_{1}}{\alpha_{2}-\gamma_{2}}Y_{2}W_{2}-\frac{\gamma_{2}-\gamma_{1}}{\alpha_{2}-\alpha_{1}}Y_{1}Y_{2}-\frac{\alpha_{2}-\alpha_{1}}{\gamma_{2}-\gamma_{1}}W_{1}W_{2}$ ,

where

$A=\frac{\alpha_{2}\gamma_{1}-\alpha_{2}-\gamma_{1}+\gamma_{2}}{\alpha_{1}}+\frac{\alpha_{2}\gamma_{1}-\gamma_{2}}{1-\alpha_{1}}+\frac{\alpha_{2}-\gamma_{2}}{\alpha_{1}-\gamma_{1}}+\frac{\gamma_{1}-\gamma_{2}}{\alpha_{1}-\alpha_{2}}$ ,

$B=\frac{\alpha_{1}\gamma_{2}-\alpha_{1}-\gamma_{2}+\gamma_{1}}{\alpha_{2}}+\frac{\alpha_{1}\gamma_{2}-\gamma_{1}}{1-\alpha_{2}}+\frac{\alpha_{1}-\gamma_{1}}{\alpha_{2}-\gamma_{2}}+\frac{\gamma_{2}-\gamma_{1}}{\alpha_{2}-\alpha_{1}}$ ,

$C=\frac{\gamma_{2}\alpha_{1}-\gamma_{2}-\alpha_{1}+\alpha_{2}}{\gamma_{1}}+\frac{\gamma_{2}\alpha_{1}-\alpha_{2}}{1-\gamma_{1}}+\frac{\gamma_{2}-\alpha_{2}}{\gamma_{1}-\alpha_{1}}+\frac{\alpha_{1}-\alpha_{2}}{\gamma_{1}-\gamma_{2}}$ ,

$D=\frac{\gamma_{1}\alpha_{2}-\gamma_{1}-\alpha_{2}+\alpha_{1}}{\gamma_{2}}+\frac{\gamma_{1}\alpha_{2}-\alpha_{1}}{1-\gamma_{2}}+\frac{\gamma_{1}-\alpha_{1}}{\gamma_{2}-\alpha_{2}}+\frac{\alpha_{2}-\alpha_{1}}{\gamma_{2}-\gamma_{1}}$ .

Thus, on the Zariski open subset ( $D_{1}\neq 0$ and $D_{2}\neq 0$ ) of $X(3,7)$ , from
the equations $E_{2356}=E_{2357}=0$ , we can solve $W_{1}$ and $W_{2}$ in terms of $Y_{1}$ ,
$Z$ and $Y_{2}$ , $Z$ , respectively. Substituting these into $E_{2367}=0$ , we get a
non-trivial equation for $Y_{1}$ , $Y_{2}$ and $Z$ . Thus we see that $dimV(S_{2}(x))=$

$2$ at a generic point of $X(3,7)$ , whereas $dimV(S_{2})=3$ . More precisely,
we observe this fact from the following computation of the differentials:

$dE_{2356}=(1-\frac{x-\beta}{\alpha_{1}-\gamma_{1}}Y_{1}-\frac{\alpha_{1}-x}{\gamma_{1}-\beta}Z+2D_{1}W_{1})dW_{1}$

$+(Z-\frac{x-\beta}{\alpha_{1}-\gamma_{1}}W_{1}-\frac{\gamma_{1}-\beta}{\alpha_{1}-x}+2B_{1}Y_{1})dY_{1}$

$+(Y_{1}-\frac{\alpha_{1}-\gamma_{1}}{x-\beta}-\frac{\alpha_{1}-x}{\gamma_{1}-\beta}W_{1}+2C_{1}Z)dZ$ ,
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$dE_{2357}=(1-\frac{x-\beta}{\alpha_{2}-\gamma_{2}}Y_{2}-\frac{\alpha_{2}-x}{\gamma_{2}-\beta}Z+2D_{2}W_{2})dW_{2}$

$+(Z-\frac{x-\beta}{\alpha_{2}-\gamma_{2}}W_{2}-\frac{\gamma_{2}-\beta}{\alpha_{2}-x}+2B_{2}Y_{2})dY_{2}$

$+(Y_{2}-\frac{\alpha_{2}-\gamma_{2}}{x-\beta}-\frac{\alpha_{2}-x}{\gamma_{2}-\beta}W_{2}+2C_{2}Z)dZ$ ,

$dE_{2367}=(Y_{2}-\frac{\alpha_{2}-\gamma_{2}}{\alpha_{1}-\gamma_{1}}Y_{1}-\frac{\alpha_{2}-\alpha_{1}}{\gamma_{2}-\gamma_{1}}W_{2}+2CW_{1})dW_{1}$

$+(W_{2}-\frac{\alpha_{2}-\gamma_{2}}{\alpha_{1}-\gamma_{1}}W_{1}-\frac{\gamma_{2}-\gamma_{1}}{\alpha_{2}-\alpha_{1}}Y_{2}+2AY_{1})dY_{1}$

$+(Y_{1}-\frac{\alpha_{1}-\gamma_{1}}{\alpha_{2}-\gamma_{2}}Y_{2}-\frac{\alpha_{1}-\alpha_{2}}{\gamma_{1}-\gamma_{2}}W_{1}+2DW_{2})dW_{2}$

$+(W_{1}-\frac{\alpha_{1}-\gamma_{1}}{\alpha_{2}-\gamma_{2}}W_{2}-\frac{\gamma_{1}-\gamma_{2}}{\alpha_{1}-\alpha_{2}}Y_{1}+2BY_{2})dY_{2}$ .

In the general case, we take the following inhomogeneous coordinates;

$Y_{p}=e_{2p}/e_{2k+2}$ $(k+2<p\leqq n)$ , $Z_{i}=e_{ik+2}/e_{2k+2}$ $(2<i\leqq k)$ ,

$W_{ip}=e_{ip}/e_{2k+2}$ $(2<i\leqq k, k+2<p\leqq n)$ .

Then, similarly as in the case of $(k, n)=(3,7)$ , from the quadratic
equation $E_{2ik+2p}=0$ , we can solve $W_{ip}$ $(2<i\leqq k, k+2<p\leqq n)$ in
terms of $Y_{p}$ and $Z_{i}$ on the Zariski open subset of $X(k, n)$ . Substituting
these into $E_{ijpq}=0$ , we get non-trivial equations for $Y$ ’s and $Z$ ’s. Thus,
at a generic point $x\in X(k, n)$ , we obtain

$dimV(S_{2}(x))<n-4=dimV(S_{2})$ ,

which completes the proof of Theorem.

4. Disproof of a dream on $E(4,8; \{1/2\})$

The authors are afraid that the reader would not be satisfied by the ar-
gument in the previous section based on [S] and [Y], which are hardly ele-
mentary. So in this section we give an elementary proof for $E(4,8;\{1/2\})$

that $Im(\varphi)$ does not lie in $Gr_{3,,,6}\subset \mathbb{P}^{19}$ .

The idea is as follows: Assume the contrary. Then the restriction
of the projective solution to any stratum consisting of degenerate 8-
plane arrangements in $P^{3}$ has its image in quadratic hypersurfaces in a
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projective space, since Grassmannians can be defined only by quadratic
equations. If we choose a 1-dimensional stratum, the restricted equation
is an ordinary differential equation; so we can know whether its image
lies in a quadric by the vanishing of the Laguerre-Forsyth invariant.

Let us carry out the above program. We consider the degenerate
stratum given by the following matrix:

$\left(\begin{array}{llllllll}1 & & & & 1 & & & 1\\ & 1 & & & -1 & 1 & & \\ & & 1 & & & -1 & 1 & \\ & & & 1 & & & -1 & -x\end{array}\right)$ ,

where each column defines a hyperplane. The integral belonging to the
stratum is of the form

$\int t_{1}^{\alpha_{1}-1}t_{2}^{\alpha_{2}-1}t_{3}^{\alpha_{3}-1}(1-t_{1})^{\alpha_{4}-1}(t_{1}-t_{2})^{\alpha_{5}-1}(t_{2}-t_{3})^{\alpha_{6}-1}(1-xt_{3})^{\alpha_{7}-1}dT$ ,

where $dT=dt_{1}\wedge dt_{2}\wedge dt_{3}$ . The associated ordinary differential equa-
tion in $x$ is of fourth order and coincides with the so-called generalized
hypergeometric differential equation $4E_{3}(a_{1}, a_{2}, a_{3}, a_{4}; b_{1}, b_{2}, b_{3})$ :

$\theta(\theta+b_{1}-1)(\theta+b_{2}-1)(\theta+b_{3}-1)z-x(\theta+a_{1})(\theta+a_{2})(\theta+a_{3})(\theta+a_{4})z=0$ ,

where $\theta=xd/dx$ (refer to [E]), which admits the solution given by the
following power series:

$4F_{3}(a_{1}, a_{2}, a_{3}, a_{4;} ^{b_{1}}=\sum_{n=0}^{\infty}\frac{(a_{1},n)(a_{2},n)(a_{3},n)(a_{4},n)}{(b_{1},n)(b_{2},n)(b_{3},n)(1,n)}x^{n}$ ,

where

$a_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{5}+\alpha_{6}-2$ , $a_{2}=\alpha_{2}+\alpha_{3}+\alpha_{6}-1$ , $a_{3}=\alpha_{3}$ ,

$a_{4}=1-\alpha_{7}$ , $b_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}-2$ ,

$b_{2}=\alpha_{2}+\alpha_{3}+\alpha_{5}+\alpha_{6}-1$ , $b_{3}=\alpha_{3}+\alpha_{6}$ ,

and $(a, n)=a(a+1)\cdots$ $(a+n-1)$ .

Now, consider the case where all $\alpha_{i}$ are equal to 1/2; the correspond-
ing parameters are $a_{1}=a_{2}=a_{3}=a_{4}=1/2$ and $b_{1}=b_{2}=b_{3}=1$ . The
question is to see if the curve in $\mathbb{P}^{3}$ defined by the $4E3$ lies on quadratic

surfaces for this special choice of parameters. To proceed further, we
need to recall a bit of the Laguerre-Forsyth theory. We start with an
ordinary differential equation of the form

$y\ldots.+4p_{1}y\ldots+6p_{2}y..+4p_{3}y$
.
$+p_{4}y=0$ ,
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where $y$ is the indeterminate of the variable $x$ and the dot denotes the
derivation relative to $x$ . We can find a non-vanishing function $\lambda$ and a
new variable $t$ so that the function $z=\lambda y$ relative to the coordinate $t$

satisfies the ordinary differential equation

(4.1) $z^{\prime\prime\prime\prime}+4r_{3}z’+r_{4}z=0$ ,

where $r_{3}$ and $r_{4}$ are differential polynomials of $p_{i}$ , and ’ denotes the
derivation relative to $t$ . The Laguerre-Forsyth theory (refer to, say,
[MSY2], [W] $)$ tells us that

$\theta_{3}=r_{3}dt^{3}$ and $\theta_{4}=(r_{4}-2r_{3}’)dt^{4}$

are projective invariants; that is, independent of the choice of such a
coordinate $t$ . For the case $4E_{3}$ $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2};1,1, 1)$ , a calculation shows
$r_{3}=0$ .

On the other hand, for the ordinary differential equation

$z^{\prime\prime\prime\prime}+rz=0$ ,

we can check that

$I$ $=\frac{(8rr’’-9(r’)^{2})^{2}}{r^{5}}$

is an absolute invariant; in our case it is equal to

$-\frac{16(125x^{6}-4650x^{5}+3075x^{4}-38572x^{3}+3075x^{2}-4650x+125)^{2}}{x(5x+1)^{5}(x+5)^{5}}$ .

In particular, I is not constant.
We next consider the case where the project curve defined by

the equation (4.1) is on a nondegenerate quadratic surface, say, $\zeta_{1}\zeta_{4}=$

$\zeta_{2}\zeta_{3}$ in $\mathbb{P}^{3}(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4})$ . Then around a generic point, we can choose a
coordinate $t$ so that the set of independent solutions is $\{1, t, f, tf\}$ for a
function $f$ . This means that the equation (4.1) is the tensor product of
two differential equations

$y_{1}’’=0$ and $y_{2}’’=\frac{f’’}{f’}y_{2}’$ ;

namely, $y_{1}y_{2}$ are general solutions of (4.1). Such an ordinary differential
equation is studied by [Ha] and its general form is known to be

$z^{\prime\prime\prime\prime}-2gz^{JJJ}-2g’z’+(g^{2}-g’’-c^{2})z=0$ ,
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where $g$ is a function and $c$ is a constant. The invariants $r_{3}$ and $r_{4}$ of
this equation are given by

$r_{3}=\frac{1}{2}g’$ , $r_{4}=4c^{2}-\frac{1}{5}g^{JJ}-\frac{36}{25}g^{2}$ .

If the image curve of a projective solution of the equation
$4E3(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2};1,1,1)$ lies on a nondegenerate quadratic surface, since
$r_{3}=0$ , the function $g$ must be constant, and so $r_{4}$ should also be con-
stant, which implies $I$ $=0$ . Therefore, our curve does not lie on any
nondegenerate quadratic surface.

Suppose that the image $Im\varphi$ is on the Grassmannian $Gr_{3,,,6}$ , then the
image of a projective solution of the restricted system $4E3$ would be in
the intersection $Gr_{3,,,6}\cap L$ of $Gr_{3,,,6}$ and a 3-dimensional linear subvariety
$L$ of $\mathbb{P}^{20-1}$ . Since Grassmannians can be defined only by quadrics, the
curve $Gr_{3,,,6}\cap L$ in $L$ must be the intersection of two quadric surfaces.
If the pencil generated by two quadric surfaces consists of degenerate
quadrics only, the intersection must be linear, which contradicts that
the projective solution is defined by linearly independent solutions.
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Infinitesimal $CR$ Automorphisms

Nancy K. Stanton

To Masatake Kuranishi on his seventieth birthday

Let $M$ be a real hypersurface through the origin in $C^{n}$ or, more
generally, an integrable $CR$ manifold of hypersurface type. A smooth
vector field $X$ on $M$ is called an infifinitesimal $CR$ automorphism of $M$

if the local one-parameter group it generates is a local group of $CR$ au-
tomorphisms of $M$ . Fix $p\in M$ and let $aut(M,p)$ denote the space of
infinitesimal $CR$ automorphisms of $M$ which are defined in a neighbor-
hood of $p$ .

Throughout this paper, $M$ will denote a connected analytic real
hypersurface in $C^{n}$ . For $p\in M$ , there is a distinguished subspace
$ho1(M,p)\subset aut(M,p)$ defined as follows. If $Z$ is a holomorphic vector
field defined in a neighborhood of $p\in C^{n}$ and $X=ReZ$ , then the local
one-parameter group of $X$ is a group of biholomorphic transformations
[$KN$ , remarks preceding Proposition IX.2.10]. Here, by holomorphic vec-
tor field, I mean a vector field of type $(1, 0)$ with holomorphic coefficients.
Hence, if $X$ is tangent to $M$ , then $X\in aut(M,p)$ . Let $ho1(M,p)$ denote
the space of all infinitesimal $CR$ automorphisms $X$ of $M$ defined in some
neighborhood of $p$ which are of the form $X=ReZ$ for some holomor-
phic vector field $Z$ , $ho1(M,p)\subset aut(M,p)$ . Let $ho1(M)=ho1(M, 0)$ and
$aut(M)=aut(M) 0)$ .

Infinitesimal $CR$ automorphisms are useful in the study of hyper-
surfaces with degenerate Levi form. I will survey some recent results
about $ho1(M)$ and $aut(M)$ and their applications. In Section 1, I use
infinitesimal $CR$ automorphisms to characterize homogeneous hypersur-
faces. Section 2 describes applications of holomorphic nondegeneracy to
finite dimensionality of $ho1(M)$ and to mappings of algebraic hypersur-
faces. I will discuss some conditions for equality of $ho1(M)$ and $aut(M)$

in Section 3.

Received October 2, 1995
Research supported in part by NSF grant DMS 93-01345
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1. Homogeneous hypersurfaces Following the terminology of
Baouendi, Rothschild and Tr\‘eves ([BRT]), a real hypersurface in $C^{n}$ is
called rigid if there are coordinates $(z_{1}, $

\ldots ,$ z_{n-1}, $w $=u+iv)$ such that
M is given by an equation of the form

v $=F(z, \overline{z})$ ,

a rigid equation. Tanaka [T] called these regular and D’Angelo [DA]
called them $T$-regular.

Among rigid hypersurfaces, the simplest ones are the homogeneous
hypersurfaces. A rigid hypersurface is homogeneous if it is locally bi-
holomorphically equivalent to

(1.1) $v=p(z, \overline{z})$

with $p$ a homogeneous polynomial. This terminology comes from the
fact that (1.1) is invariant under the nonisotropic dilations

(1.2) $(z, w)\rightarrow(tz, t^{m}w)=\delta_{t}(z, w)$

where $m$ is the degree of the polynomial $p$ .

How can you tell if a rigid hypersurface is homogeneous? This prob-
lem was first posed by Linda Rothschild. The problem is local, so I will
assume that $O\in M$ and will work locally in a neighborhood of 0. Equiv-
alences will preserve the origin. I can make a biholomorphic change of
coordinates so that either $M$ is the hyperplane $v=0$ or $M$ is given by
an equation of the form

$v=p(Z_{)}\overline{z})+O(m+1)$

where $p$ is a nontrivial homogeneous polynomial of degree $m$ with no
pure terms in $z$ or $\overline{z}$ . In this case, $m$ is an invariant, the type of $M$ at
the origin, and $M$ is of fifinite type at the origin. Suppose that the origin
is a point of type $m$ . A vector field $Y$ is homogeneous of weight $j$ if

$Y(fo\delta_{t})=t^{-j}(Yf)o\delta_{t}$

where $\delta_{t}$ is the nonisotropic dilation (1.2).
If $M$ is homogeneous, given by

$v=p(z, \overline{z})$

with $p$ homogeneous of degree $m$ , then

$Y_{0}=2Re(\sum_{j=1}^{n-1}z_{j^{\frac{\partial}{\partial z_{j}}}}+mw\frac{\partial}{\partial w})$
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is in $ho1(M)$ and is homogeneous of weight 0. It is the infinitesimal gen-
erator of the dilations $\delta_{e^{t}}$ . Call a vector field $Y\in ho1(M)$ an approximate

infifinitesimal dilation if

$Y=Y_{0}+terms$ of weight $\geq 1$ .

Theorem 1.3 ([S5, Theorem 4.1]). Let $M$ be a rigid analytic
real hypersurface through the origin in $C^{n}$ . Suppose $M$ is given by $a$

rigid equation of the form

$v=p(z, \overline{z})+O(m+1)$

with $p$ a nontrivial polynomial homogeneous of degree $m$ having no pure
terms. Then $M$ is homogeneous if and only if $M$ has an approximate

infifinitesimal dilation.

This theorem was first proved in $C^{2}$ ([SI], [S2], [S3]), then in $C^{n}$

under the additional hypothesis that $dimho1(M)<\infty$ ([S4]).
Theorem 1.3 can be generalized to characterize weighted homoge-

neous hypersurfaces. Fix positive integers $m_{1}$ , $\ldots$ , $m_{n}$ . Now I will use
$(z_{1}, \ldots, z_{n})$ as coordinates. The non-isotropic group of dilations deter-
mined by $(m_{1}, \ldots, m_{n})$ is the group $\{\delta_{t} : t>0\}$ where

$\delta_{t}(z)=(t^{m_{1}}z_{1}, \ldots, t^{m_{n}}z_{n})$ .

A function $h$ is homogeneous of weight $j$ if $h\circ\delta_{t}=t^{j}h$ . A vector field
$Y$ is homogeneous of weight $j$ if

$Y(f\circ\delta_{t})=t^{-j}(Yf)\circ\delta_{t}$ .

Let

$Y_{0}=2Re\sum_{j=1}^{n}m_{j}z_{j}\frac{\partial}{\partial z_{j}}$ .

The one-parameter group generated by $Y_{0}$ is the group of non-isotropic
dilations $\{\delta_{e^{t}} : t\in R\}$ . An analytic real hypersurface $M$ is weighted
homogeneous (with respect to the non-isotropic group of dilations) if it
is locally equivalent, via a biholomorphic map which preserves the origin)

to a hypersurface given by an equation of the form

$P(z, \overline{z})=0$

where $P$ a polynomial which is homogeneous with respect to the non-
isotropic group of dilations.

As before, call a vector field $Y\in ho1(M)$ an approximate infifinitesi-
$mal$ dilation if

$Y=Y_{0}+terms$ of weight $\geq 1$ .
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Theorem 1.4 ([S5, Theorem 4.1]). Let $M$ be an analytic real
hypersurface through the origin in $C^{n}$ and suppose there is an approx-
imate infifinitesimal dilation $Y\in ho1(M)$ . Then $M$ is weighted homoge-
neous.

This theorem does not require the hypothesis that $M$ be rigid and
there is no nondegeneracy hypothesis or finite type hypothesis on $M$ .

The theorem can be proved by a technique used by Poincar\’e in his
thesis [P] and generalized by Dulac [Du]. One linearizes $Y$ , that is, one
finds a change of coordinates so that in the new coordinates $\overline{z}$,

$Y=2Re\sum_{j=1}^{n}m_{j}\overline{z}_{j}\frac{\partial}{\partial\overline{z}_{j}}$ .

To do this, one first finds a formal change of variables, then one ap-
plies Poincar\’e’s by now standard domination argument to prove that
the formal change converges.

Now, after reordering the coordinates and multiplying $\overline{z}_{n}$ by $i$ if
necessary, I can assume $M$ is given by an equation of the form

(1.5) $Im\overline{z}_{n}=\overline{F}(\overline{z}^{J}, ^{-}\overline{z}^{J}, Re\overline{z}_{n})$

where $\overline{z}^{/}=(\overline{z}_{1}, \ldots,\overline{z}_{n-1})$ . Applying $Y$ to this equation shows that the
right side of this equation is a weighted homogeneous polynomial and
hence $M$ is homogeneous.

By replacing $\overline{z}_{n}$ with $a\overline{z}_{n}$ for an appropriate $a\in C$ , one may assume
that (1.5) is a rigid equation. This yields the following proposition.

Proposition 1.6 ([S5, Proposition 4.3]). If $M$ is weighted ho-
mogeneous then $M$ is rigid.

2. Holomorphic nondegeneracy How can one tell whether
$ho1(M)$ is finite dimensional? In $C^{2}$ it is for any hypersurface M of
finite type. The example

v $=|z_{1}|^{2}$

in $C^{n}$ , n $\geq 3$ , shows that some stronger nondegeneracy hypothesis is

required in higher dimensions. In this example, Re $f(z, w)\frac{\partial}{\partial z_{2}}\in ho1(M)$

for any holomorphic function f.

Definition. Let $M$ be an analytic real hypersurface in $C^{7l}$ . $A$

nontrivial holomorphic vector fifield $W$ is called a holomorphic tangent
to $M$ at $p$ if $W$ is defifined in a neighborhood of $p$ and $W|_{M}$ is tangent
to M. The hypersurface $M$ is holomorphically nondegenerate at $p$ if $M$



Infinitesimal CR Automorphisms 359

has no holomorphic tangent at $p$ . If $M$ has a holomorphic tangent at $p$ ,
$M$ is holomorphically degenerate at $p$ .

Theorem 2.1 ([S4, Theorem 4.3]). Let $M$ be an analytic real

hypersurface through the origin in $C^{2}$ . The following are equivalent.

(1) $ho1(M)$ is fifinite dimensional;
(2) $M$ is not flat;
(3) the Levi form of $M$ is somewhere nondegenerate;
(4) $M$ is holomorphically nondegenerate at the origin.

In higher dimensions holomorphic nondegeneracy is not the same as
nonflat, finite type, essentially finite or somewhere Levi nondegenerate.
(See [BJT] for the definition of essentially finite.)

Theorem 2.2 ([BR2, Theorem 2, Proposition 4.2], [S6,
Corollaries 3.3, 3.4]). Let $M$ be an analytic real hypersurface
through the origin in $C^{n}$ . The following are equivalent.

(1) $M$ is holomorphically nondegenerate at the origin.
(2) $M$ is everywhere holomorphically nondegenerate.
(3) $M$ is essentially fifinite on an open dense set.

In general, and even for many simple examples of hypersurfaces with
polynomial defining equations, it is very difficult to compute $ho1(M)$ .

If $M$ is rigid with a rigid defining equation which is a polynomial, in
principle–and often in fact–it is easy to check whether $M$ is holomor-
phically nondegenerate at the origin.

Holomorphic nondegeneracy is a natural condition to introduce in
connection with finite dimensionality of $ho1(M)$ . Suppose $M$ is a holo-
morphically degenerate real hypersurface, with holomorphic tangent $Z$ .

Then for all multi-indices $\alpha$ , $X_{\alpha}=Rez^{\alpha}Z\in ho1(M)$ so $dimho1(M)=$
$\infty$ . This gives one direction of the following theorem.

Theorem 2.3 ([S4, Theorem 4.16], [S6, Theorem 1-7]). Let
$M$ be an analytic real hypersurface through the origin in $C^{n}$ . Then the
space $ho1(M)$ is fifinite dimensional if and only if $M$ is holomorphically
nondegenerate.

In $C^{2}$ the theorem follows easily from Theorem 2.1. Theorem 2.3
was first proved in the case of rigid hypersurfaces [S4]. In the rigid case
the proof is long and technical; much of the work goes into proving an
approximate version of the theorem, which requires a polynomial hyper-
surface to approximate $M$ and an approximate version of $ho1(M)$ . In
dimensions greater than 2, the approximating hypersurface must include
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some higher order terms; the homogeneous part may not give a good ap-
proximation. The proof gives a bound on $dimho1(M)$ which depends on
the type at the origin and the defining equation. To prove the theorem
in the general case, one shows that if $M$ is holomorphically nondegener-
ate and $dimho1(M)\geq 1$ , then there is an open dense set $U\subset M$ and an
integer $\ell$ (computable in terms of an appropriate defining function for
$M)$ such that if $p\in U$ , then $M$ is rigid, essentially finite and of type 2
at $p$ , and $dimho1(M,p)\leq\ell$ .

The following theorem of Baouendi and Rothschild gives an appli-
cation of holomorphic nondegeneracy to mappings of algebraic hyper-
surfaces. A real hypersurface is algebraic if it is contained in the zero
set of a nontrivial real valued polynomial. A holomorphic map is al-
gebraic if its components satisfy polynomial equations with polynomial
coefficients.

Theorem 2.4 ([BR2, Theorem 1]). Let $M$ be a holomorphi-
cally nondegenerate algebraic real hypersurface in $C^{n}$ and let $M’$ be an
algebraic real hypersurface in $C^{n}$ . If $f$ is a biholomorphic map taking $M$

to $M’$ then $f$ is algebraic. Conversely, if $M$ is a holomorphically degen-
erate algebraic real hypersurface which contains the origin, then there
is a nonalgebraic biholomorphic map $f$ defifined in a neighborhood of the
origin, with $f(0)=0$ , which takes $M$ to itself.

3. Analyticity of infinitesimal $CR$ automorphisms For any
analytic real hypersurface $M$ and any $p\in M$ , $ho1(M,p)\subset aut(M,p)$ .

The two spaces are not always equal.

Example 3.1 ([S4, Example 7.11]). Let $M$ $=\{v=0\}\subset C^{2}$ .

Then

$X=e^{-1/u^{2}}\frac{\partial}{\partial u}\in aut(M)$ .

However, $X\not\in ho1(M)$ so $hol(M)\subseteq aut(M)$ .

There is a sufficient condition for equality of $ho1(M)$ and $aut(M)$ .

Proposition 3.2 ([S3, Remark 2.5]). Let $M$ be an analytic
real hypersurface through the origin in $C^{n}$ . Suppose every $CR$ diffeo-
morphism on $M$ is analytic. Then $hol(M)=aut(M)$ .

The next theorem summarizes what is known about equality of
$ho1(M)$ and $aut(Af)$ in the case that $ho1(M)$ is finite dimensional.

Theorem 3.3. Let $M$ be an analytic real hypersurface through the
origin in $C^{n}$ . Suppose that one of the following holds.

(1) $M$ is essentially fifinite;
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(2) $M$ is rigid and every neighborhood $U$ of 0 contains a point $p\in M$

such that the Levi form of $M$ is nondegenerate at $p$ ;
(3) $M$ is algebraic and holomorphically nondegenerate.

Then $aut(M)$ is fifinite dimensional and $aut(M)=ho1(M)$ .

Theorem 3.3 was proved for hypersurfaces satisfying (1) and (2) in
[S4, Theorem 6.1]. For hypersurfaces satisfying (3) it follows from Propo-
sition 3.2 and the following theorem of Baouendi, Huang and Rothschild.

Theorem 3.4 [BHR, Theorem 1]. Let $M$ and $M’$ be algebraic
real hypersurfaces in $C^{n}$ and suppose that $M$ is holomorphically nonde-
generate. If $H$ is a smooth $CR$ map from $M$ to $M’$ and the Jacobian
determinant of $H$ is not everywhere 0, then $H$ extends holomorphically
to a neighborhood of $M$ .

To describe additional results on the question of when $ho1(M)=$

$aut(M)$ , I need a characterization of infinitesimal $CR$ automorphisms
analogous to the definition of $ho1(M)$ .

Proposition 3.5. Let $M$ be a real hypersurface through the origin
in $C^{n}$ and let $X$ be a smooth tangent vector fifield defifined in a neighbor-
hood of the origin on M. Then $X\in aut(M)$ if and only if

(3.6) $X=Re\sum_{j=1}^{n}f_{j}\frac{\partial}{\partial z_{j}}$

where each $f_{j}$ is a $CR$ function on a neighborhood of the origin in $M$ .

Proof. Let $X$ be a $C^{\infty}$ real vector field tangent to $M$ . By Theorem
1 of [BR1] , it suffices to show that $X$ is of the form (3.6) if and only if
for every smooth section $Y$ of $T^{0,1}(M)$ on a neighborhood of the origin,

(3.7) $[X, Y]\in T^{0,1}(M)$ .

Now $X=(Z+\overline{Z})|_{M}$ for some smooth vector field $Z=\sum_{j=1}^{n}f_{j}\frac{\partial}{\partial z_{j}}$ de-

fined in a neighborhood of the origin. Let $Y$ $=$ $\sum_{j=1}^{n}g_{j}\frac{\partial}{\partial\overline{z}_{j}}$ $\in$

$C^{\infty}(T^{0,1}(M))$ . Then $Y$ extends to a $C^{\infty}$ vector field $\overline{Y}$ of type $(0, 1)$

defined in a neighborhood of the origin. Now

$[X, Y]=([Z,\overline{Y}]+[\overline{Z},\overline{Y}])|_{M}$

$=(\sum_{j=1}^{n}(Zg_{j})\frac{\partial}{\partial\overline{z}_{j}}-\sum_{j=1}^{n}(Yf_{j})\frac{\partial}{\partial z_{j}}+[\overline{Z},\overline{Y}])|_{M}$ .
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The first and last terms are of type $(0, 1)$ . Hence (3.7) holds for all $Y$

if and only if $Yf_{j}\equiv 0$ for all smooth sections $Y$ of $T^{0,1}(M)$ , so if and
only if $f_{j}$ is a $CR$ function for each $j$ .

Baouendi, Huang and Rothschild proved the following theorem
about failure of analyticity of $CR$ diffeomorphisms for holomorphically
degenerate hypersurfaces.

Theorem 3.8 ([BHR, Theorem 4]). Let $M$ be an analytic holo-
morphically degenerate real hypersurface through the origin in $C^{n}$ . If
there is a germ at 0 of a smooth $CR$ function on $M$ which does not ex-
tend to be holomorphic in any neighborhood of 0, then there is a germ of
a smooth $CR$ diffeomorphism from $M$ to itself fifixing 0, which does not
extend holomorphically to any neighborhood of 0.

This result is closely related to the question of when $ho1(M)=$

$aut(M)$ in the holomorphically degenerate case.

Theorem 3.9. Let $M$ be a holomorphically degenerate analytic
real hypersurface through the origin in $C^{n}$ . Then $hol(M)=aut(M)$ if
and only if every $CR$ function defifined on a neighborhood of the origin in
$M$ extends to be holomorphic on a neighborhood of the origin in $C^{n}$ .

Proof Suppose every $CR$ function on a neighborhood of the origin
in $M$ extends to be holomorphic. Let $X\in aut(M)$ . Then $X$ is given by
(3.6) for some $CR$ functions $f_{j}$ . There is a neighborhood $U$ of the origin
in $C^{n}$ such that $f_{j}$ , $j=1$ , $\ldots$ , $n$ , extends to a holomorphic function $F_{j}$

on $U$ . Hence, $X=ReZ|_{M}$ where $Z=\sum F_{j^{\frac{\partial}{\partial z_{j}}})}$ and $X\in ho1(M)$ .

Suppose $hol(M)=aut(M)$ . Let $Z$ be a holomorphic tangent to $M$

at the origin, $Z=\sum f_{j^{\frac{\partial}{\partial z_{j}}})}$ for some holomorphic functions $f_{j}$ . Let $f$

be a $CR$ function defined on a neighborhood of the origin in $M$ . Then,
by Proposition 3.5,

$X=Re\sum_{j=1}^{n}ff_{j}\frac{\partial}{\partial z_{j}}$

is in $aut(M)$ , so $X\in ho1(M)$ . Because $X\in ho1(M)$ , the proof of
Theorem 3.8 shows that $f$ extends to be holomorphic in a neighborhood
of the origin, so every $CR$ function extends.
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Lie-Drach-Vessiot Theory

Infinite dimensional differential Galois theory

Hiroshi Umemura

Introduction

Despite trials of several authors since the 19-th century, at least to
our taste, infinite dimensional differential Galois theory is unfinished.
We propose an infinite dimensional differential Galois theory based on
a rigorous foundation. This note is prepared for the non-specialists as
an introduction to our papers [U5], [U6], where interested readers can
find details. After we briefly recall the history and the principle of
Galois theory, we show the marvelous ideas of the classical authors on
infinite dimensional differential Galois theory as well as the problems
which their ideas give rise to. We can avoid all these difficulties and
attach to an ordinary differential field extension $L/K$ of finite type, or
intuitively to an ordinary algebraic differential equation, a formal group
Inf-gal of infinite dimension. Inf-gal is a new invariant of an ordinary
algebraic differential equation. In fact, no such invariants were known.
We explain an application to be expected of the invariant Inf-gal to the
Painlev\’e equations in \S 6. A brief account on the formal group of infinite
dimension and the construction of Inf-gal is also given.

All the rings that we consider are commutative and unitary $\mathbb{Q}-$

algebras.

\S 1. History

Galois (1811-32) and Abel (1802-29) invented Galois theory of alge-
braic equations. Their purpose was proving the impossibility of solving
a general algebraic equation of degree 5 by extraction of radicals. This
historical problem is the origin of Galois theory but the significance of
Galois theory is prominent in later developments of number theory. We
cannot speak of algebraic number theory, class field theory... etc. with-
out Galois theory.

Received September 29, 1995
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It was Lie (1842-99) who, inspired by the works of Galois and Abel,
had a dream of applying their rich ideas to differential equations. This
dream was one of the ultimate goals of his career (cf. [L]). The differential
Galois theory that Lie had in his mind is essentially infinite dimensional.
However, he had to begin by constructing finite dimensional theories
such as, for example, theory of Lie groups. In the history of differential
Galois theory, we have to carefully distinguish the infinite dimensional
theories from the finite dimensional theories.

Picard (1856-1941) was the first who realized a part of Lie’s dream.
He published in 1887 Galois theory of linear differential equations that
we can find now in vol. 3 of his cours d’analyse [Pi]. The theory, nowa-
days called Picard-Vessiot theory, is finite dimensional.

In 1898 a young French mathematician Drach (1871-1941) published
an ambitious thesis [D1]. In his thesis he tried to construct a Galois
theory of non-linear ordinary differential equations, which is infinite di-
mensional. Being the first trial of differential Galois theory of infinite
dimension, the thesis is remarkable but it is troublesome too. For, soon
after Drach had got his degree, Vessiot pointed out important errors
in his thesis. We learn from letters in Pommaret [Po2] how Vessiot’s
comments embarrassed the judges of the thesis.

Vessiot not only discovered the defects of Drach’s thesis but he also
devoted himself in establishing Drach’s work on a rigorous foundation.
He was awarded the Grand Prix of the Academy of the Sciences of Paris
in 1902 for a series of papers [VI], [V2], [V3]. To his regret, today we
remember Vessiot in Picard-Vessiot theory, which is finite dimensional,
and not in infinite dimensional theory to which he was deeply attached.
In spite of Vessiot’s works, it seems, at least for our taste, general Galois
theory is not achieved. After Vessiot, the theory was lefli untouched for
several decades until Pommaret wrote the monograph [Pol] in 1983.

Kolchin (1916-91) is famous for his differential Galois theory. His
major contributions [K] to differential Galois theory are as follows.

(1) He made finite dimensional differential Galois theory complete.
The theory existed since the end of the 19-th century and he
constructed the theory on a rigorous foundation using the lan-
guage of algebraic geometry of Weil.

(2) He founded differential algebra.

The second contribution should be as important as the first.
In the 60’ $s$ Jacobson, Sweedler, Bourbaki et al. established Galois

theories of inseparable field extensions. The idea is to replace a finite
group by a finite group scheme or more generally by a bialgebra (cf.
[Wi] $)$ . Compared with the epoch of Vessiot and Drach, the evolution
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of algebraic geometry is remarkable. It allows us to propose an infinite
dimensional differential Galois theory.

\S 2. Ideal theory

We have two ideal Galois theories: (I) Classical Galois theory of field
extensions or Galois theory of algebraic equations, (II) Kolchin theory.

(I) Classical Galois theory of field extensions.

Let $L/K$ be a Galois extension and $G=Ga1(L/K)$ the Galois group.
So $G$ is the group of $K$-automorphisms of the field $L$ .

(i) Galois correspondence.

We have a 1 : 1-correspondence between the elements of the follow-
ing two sets.

(1) The set of intermediate fields of the extension $L/K$ .

(2) The set of subgroups of $G$ .

For an intermediate field $L\supset M\supset K$ , the corresponding subgroup
$G(M)$ is

{ $g$ $\in G|TheK$-automorphism $g$ : $L\rightarrow L$

leaves every element of $M$ invariant}.

To a given subgroup $H$ , there corresponds the intermediate field

$L^{H}=$ { $z\in L|z$ is invariant for every $g\in H$ }.

(ii) Surjectivity.

If $M$ is an intermediate field of $L/K$ such that $M/K$ is Galois, then

$G(M)=Ga1(L/M)$ is a normal subgroup of Gal(L/K) and we have an
exact sequence

$ 1\rightarrow$ Gal(L/M)– Gal(L/K)– Gal(M/K)–1.

(II) Kolchin theory.

In the Kolchin theory, we consider a differential field extension.
Namely an ordinary differential field is a pair $(L, \delta)$ consisting of a field
$L$ and a derivation $\delta$ : $L\rightarrow L$ so that we have $\delta(ab)=\delta(a)b+a\delta(b)$ for
every $a$ , $b\in L$ . We often denote the differential field $(L, \delta)$ by $L$ when
there is no danger of confusion. We say that an element $y\in L$ is a
constant if $\delta(y)=0$ . The set $C_{L}$ of constants of $L$ forms a subfield of $L$ .

Similarly a partial differential field

$(L, \{\delta_{1}, \delta_{2}, \ldots, \delta_{n}\})$
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consists of a field $L$ and derivations $\delta_{i}$ : $L\rightarrow L$ for $1\leq i\leq n$ that are
commutative: $\delta_{i}\delta_{j}=\delta_{j}\delta_{i}$ for $1\leq i$ , $j\leq n$ .

Kolchin introduces the notion of strongly normal extension that
generalizes classical Galois extension. Let $L/K$ be a differential field
extension that is strongly normal. The differential Galois group $G=$

Gal(L/K) of the extension $L/K$ is the group of differential if-automor-
phisms of $L$ . We can show that the Galois group $G$ is an algebraic group
defined over the field $C_{K}$ of constants of $K$ .

(i) Galois correspondence.

We have a 1:1-correspondence of the following two sets.

(1) The set of differential intermediate fields of the extension $L/K$ .

(2) The set of closed subgroups of the differential Galois group
Gal(L/K)

The correspondence is given as in classical Galois theory,

(ii) Surjectivity.

If $M$ is as intermediate field of the extension $L/K$ such that $M/K$ is
strongly normal, then $G(M)=Ga1(L/M)$ is a closed normal subgroup
of Gal(L/K) and we have an exact sequence

1– Gal(L/M) $\rightarrow Ga1(L/K)\rightarrow$ Gal(M/K) $\rightarrow 1$ .

In an ideal theory, we have on the one hand a field extension (resp.
abstract, differential, $\ldots$ ) and on the other hand a group like object
(resp. abstract group, algebraic group, $\ldots$ ) such that we have (i) the
Galois correspondence and (ii) the surjectivity. Moreover the group like
object should be simpler than the field extension.

Example (Jacobson, Sweedler et al.). In Galois theory of
inseparable fifield extension, we replace $a$ fifinite group by $a$ fifinite group
scheme. In this theory, we cannot expect an ideal theory and the Galois
group $G$ is not uniquely determined. For $a$ fifield extension $L/K$ that gen-
eralizes classical Galois extension, we have $a$ 1:1-correspondence between

the elements of the following two sets.

(1) The set of certain type of intermediate fifields of $L/K$ .

(2) The set of certain type of subalgebras of the Hopf algebra $G$ .

Here the adjective certain depends on the theory and the choice of the
Hopf algebra $G$ , which is not uniquely determined in general when the
extension $L/K$ is given. See $[Wi]$ .
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\S 3. Principle of Galois theory

Let us see the principle of Galois theory.

(I) Classical Galois theory or Galois theory of algebraic equations.

Let $K$ be a ground field. We consider an algebraic equation

(3.1) $a_{0}x^{n}+a_{1}x^{n-1}+\cdots+a_{n}=0$ $(a_{0}\neq 0)$

with coefficients in $K$ so that $a_{i}\in K$ for 0 $\leq i\leq n$ . We assume
that all the roots of (3.1) are simple. Let $S$ be the set of vectors
$x=(x_{1}, x_{2}, \ldots, x_{n})$ of distinct solutions $x_{i}$ of the algebraic equation
(3.1). The symmetric group $S_{n}$ of degree $n$ naturally operates on $S$ : For
$s\in S_{n}$ and $x=(x_{1}, x_{2}, \ldots, x_{n})\in S$ , we define

$s(x_{1}, x_{2}, \ldots, x_{n}):=(x_{s(1)}, x_{s(2)}, \ldots, x_{s(n)})$ .

If we take a fixed element $x\in S$ , then

$S_{n}\rightarrow S$ $s\mapsto s(x)$

is a bijection, i.e. $(S_{n}, S)$ is a principal homogeneous space. Evidently

$K(x)=K(x_{1}, x_{2}, \ldots, x_{n})$

coincides with
$K(s(x))=(x_{s(1)}, x_{s(2)}, \ldots, x_{s(n)})$ .

So a certain $s\in S_{n}$ defines a $K$-automorphism of the field extension
$K(x)/K$ .

(II) Kolchin theory

Let us take for example the differential field $(\mathbb{C}(x), d/dx)$ of rational
functions as a ground field. We consider a linear differential equation.

$a_{0}\frac{d^{n}y}{dx^{n}}+a_{1}\frac{d^{n-1}y}{dx^{n-1}}+\cdots a_{n}y=0$ $(a_{0}\neq 0)$

with coefficients in $\mathbb{C}(x)$ so that $a_{\dot{x}}\in \mathbb{C}(x)$ for $0\leq i\leq n$ . Let now $S$ be
the set of vectors $y={}^{t}(y_{1}, y_{2}, \ldots, y_{n})$ of linearly independent solutions
$y_{i}$ of (3.1) $(1 \leq i\leq n)$ . Then the general linear group $GL_{n}(\mathbb{C})$ of degree
$n$ operates on $S$ : For $A\in GL_{n}(\mathbb{C})$ and $y\in S$ , we have $Ay\in S$ . Moreover

$(GL_{n}(\mathbb{C}), S)$

is a principal homogeneous space. Namely if we take an element $y\in S$ ,
then

$GL_{n}(\mathbb{C})\rightarrow S$ , $A\mapsto Ay$



Lie-Drach-Vessiot Theory 369

is a bijection. Since we have $K(y)=K(Ay)$ for $A\in GL_{n}(\mathbb{C})$ , a cer-
tain $A\in GL_{n}(\mathbb{C})$ induces a $K$-automorphism of the differential field
extension $K(y)/K$ .

\S 4. Ideas of classical authors in infinite dimensional Galois
theories

We take for simplicity $(\mathbb{C}(x), d/dx)$ as a ground field and consider a
non-linear differential equation

(4.1) $y^{(n)}=A(x, y, y’, \ldots, y^{(n-1)})$

with coefficients in $\mathbb{C}(x)$ such that

$A\in \mathbb{C}(x)(y, y’, \ldots, y^{(n-1)})=\mathbb{C}(x, y, y’, \ldots, y^{(n-1)})$ .

Let us recall that a function

$F(X, Y_{0}, Y_{1}, \ldots, Y_{n-1})$

of $n+1$ variables
$X$ , $Y_{0}$ , $Y_{1}$ , $\ldots$ , $Y_{n-1}$

is a first integral of the differential equation (4.1) if $F(x, y, y’, \ldots, y^{(n-1)})$

is constant for a every solution $y$ of (4.1). As is well-known, the function

$F(X, Y_{0}, Y_{1}, \ldots, Y_{n-1})$

is a first integral of (4.1) if and only if it satisfies a partial linear differ-
ential equation

(4.2) $LF=0$ ,

where

$L=\partial/\partial X+Y_{1}\partial/\partial Y_{0}+\cdots+Y_{n-1}\partial/\partial Y_{n-2}$

$+A(X, Y_{0}, Y_{1}, \ldots, Y_{n-1})\partial/\partial Y_{n-1}$ .

If we have a vector $(F_{1}, F_{2}, \ldots, F_{n})$ of independent first integrals, i.e.
the Jacobian $|\partial F_{i}/\partial Y_{j}|\neq 0$ , then by the inverse function theorem, for
arbitrary constants $c_{1}$ , $c_{2}$ , $\ldots$ , $c_{n}\in \mathbb{C}$ , we get functions

$y_{j}(x, c_{1}, c_{2}, \ldots, c_{n})$ , $0\leq j\leq n-1$

satisfying

(4.3) $F_{i}(x, y_{0}(x, c), y_{1}(x, c), \cdots, y_{n}(x, c))=c_{i}$ , $1\leq i\leq n$ .
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Differentiating (4.3) with respect to $x$ , we get

(4.4) $\partial F_{i}/\partial x+\sum_{l=1}^{n}\partial F_{i}/\partial Y_{l}\cdot\partial y\iota/\partial x=0$ .

Since $F_{1}$ , $F_{2}$ , $\ldots$ , $F_{n}$ are independent, substituting

$Y_{0}=y_{0}$ , $Y_{1}=y_{1}$ , $\ldots$ , $Y_{n-1}=y_{n-1}$

in (4.2), we get from (4.4)

$\partial^{j}y(x, c)/\partial x^{j}=y_{j}(x, c)$ for $o\leq j\leq n-1$

and
$y^{(n)}=A(x, y, y’, \ldots, y^{(n-1)})$ ,

where in the latter equality the derivative is taken with respect to $x$ . So
$y(x, c)$ is a general solution of (4.1), i.e. a solution that depends on $n$

parameters. So transcendentally or more precisely modulo the inverse
function theorem, looking for a general solution $y(x, c_{1}, c_{2}, \ldots, c_{n})$ of the
non-linear ordinary differential equation (4.1) is equivalent to finding $n$

independent first integrals $F_{1}F_{2}$ , $\ldots$ , $F_{n}$ .

There are two procedures in infinite dimensional Galois theory of
the classical authors:

(1) Linearization. They replace the given ordinary non-linear dif-
ferential equation (4.1) by the linear partial equation (4.2).

(2) Galois theory of linear partial equations. They look for a Galois
theory of the partial linear equation (4.2).

We explain why they preferred the linear partial equation to the non-
linear ordinary equation. Let

$u=(u_{1}, u_{2}, \ldots, u_{n})\mapsto\varphi=(\varphi_{1}(u), \varphi_{2}(u),$
$\ldots$ , $\varphi_{n}(u))$

be a coordinate transformation of $n$ variables and

$F=(F_{1}, F_{2}, \ldots, F_{n})$

be a vector of independent solutions of (4.2). Then

$\varphi(F)=(\varphi_{1}(F), \varphi_{2}(F),$
$\ldots$ , $\varphi_{n}(F))$

is again a vector of independent solutions of (4.2). Hence if we set

$S=\{(F_{1}, F_{2}, \ldots, F_{n})|$

$F_{1}$ , $F_{2}$ , $\ldots$ , $F_{n}$ are independent solutions of (4.2) $\}$ ,
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then the pseudo-group $\Gamma_{n}$ of coordinate transformations (which we may
regard as an infinite dimensional Lie group) operates on $S$ in such a way
that

$(\Gamma_{n}, S)$

is a principal homogeneous space! So we are just as in the ideal theories
studied in \S 3. Of course since $\Gamma_{n}$ is not a group, we must clarify the
definition that

$(\Gamma_{n}, S)$

is a principal homogeneous space. This is a beautiful idea but there
are several difficulties to overcome. Let us study the idea more closely.
Galois theory of algebraic equations teaches us that the Galois group is
not attached to an algebraic equation but to a field extension. Therefore
one has to clarify the ground field, which the classical authors call le
domaine de rationalit\’e. So let $K$ be the ground field of the differential
equation (4.1) so that $K$ is a differential field such that

$x\in K$ and $A(x, y, y’, \ldots, y^{(n-1)})\in K(y, y’, \ldots, y^{(n-1)})$ .

We take a fixed solution $y$ of (4.1) and we consider a differential field

extension $K\langle y\rangle=K(y, y’, \ldots, y^{(n-1)})/K$ generated by $y$ over $K$ .

Problem 1. We start from the ground fifield and the particular

solution $y$ of $(4\cdot 1)$ When we pass from the non-linear ordinary to the
linear partial, it is not evident at all how to choose a ground fifield for the
linear partial equation $(4\cdot 2)$ .

Aside from Problem 1, in the Galois theory of the linear partial

equation, we have to choose a vector $(F_{1}, F_{2}, \ldots, F_{n})$ of independent
solutions of (4. 1).

Problem 2. Even if we can choose canonically the ground fifield $\mathcal{K}$

of the linear partial equation (4-2), namely even if we can solve Problem
1, there is no canonical choice of a vector $(F_{1}, F_{2}, \ldots, F_{n})$ of independent
solutions of $(4\cdot 2)$ .

More precisely, let $F’=(F_{1}’, F_{2}’, \ldots, F_{n}’)$ be another vector of inde-
pendent solutions of (4.2). We denote by

$\mathcal{K}\langle F\rangle=\mathcal{K}\langle F_{1}, F_{2}, \ldots, F_{n}\rangle$

(resp. $\mathcal{K}\langle F’\rangle=\mathcal{K}\langle F_{1}’$ , $F_{2}’$ , $\ldots$ , $ F_{n}’\rangle$ )

the partial differential field generated over $\mathcal{K}$ by

$F_{1}$ , $F_{2}$ , $\ldots$ , $F_{n}$ ( resp. $F_{1}’$ , $F_{2}’$ , $\ldots$ , $F_{n}’$ ).
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Then $\mathcal{K}\langle F\rangle$ is not $\mathcal{K}$-isomorphic to $\mathcal{K}\langle F’\rangle$ . So there is no chance that we
have

$\mathcal{K}\langle F\rangle=\mathcal{K}\langle F’\rangle$

contrary to the ideal theories. Consequently when $F’=\varphi(F)$ , we can
not hope that $\varphi$ induces a $\mathcal{K}$-automorphism of the differential field $\mathcal{K}\langle F\rangle$ .

Problem 3. In the Galois theory of the linear partial equation
(4.2), there are always obscurities related with pseudo-groups.

For example, we have to make clear the definition of a principal
homogeneous space of a pseudo-group. As they deal with pseudo-groups,

there are also uncomfortable question about domain of convergence.
Among these Problems 1, 2, 3, Problem 3 is less serious. Some

authors do not touch Problem 1. Just asserting that Galois theory of
the non-linear ordinary differential equation (4.1) is equivalent to Galois
theory of the linear partial differential equation (4.2), they devote them-
selves to Galois theory of the linear partial equation (4.2). Problem 2
annoyed the classical authors very much. Their efforts are concentrated
on overcoming this difficulty.

\S 5. Our theory

Inspired of an idea of Vessiot [V4] published in 1946, which is one of
his last articles, we propose a Galois theory of infinite dimension. Thanks
to theory of schemes, we can avoid all the problems in \S 4. Let $L/K$ be
an ordinary differential field extension such that the field $L$ is finitely
generated over $K$ as an abstract field. Intuitively this is equivalent to
considering a non-linear algebraic differential equation with coefficients
in $K$ . We attach to the extension $L/K$ a formal group

Inf-gal(L/K)

of infinite dimension in general. Inf-gal is short for infinitesimal Galois
group. Here are properties of the formal group.

(1) For a differential intermediate field $M$ of $L/K$ , we have a canon-
ical surjective morphism

Inf-gal $(L/K)\rightarrow Inf- gal(L/K)$

of formal groups.
(2) Kolchin introduced a strongly normal extension as a differential

counter part of a Galois extension in classical Galois theory. Let
$L/K$ be a strongly normal extension with Galois group $G$ in the



Lie-Drach-Vessiot Theory 373

sense of Kolchin so that $G$ is an algebraic group defined over
the field $C_{K}$ of constants of $K$ . Then the formal group

Inf-gal $(L/K)$

is isomorphic to the formal group $\hat{G}$ associated to the differential
Galois group $G$ of $L/K$ .

(3) If $L$ is finite algebraic over $K$ , then

Inf-$ga1(L/K)=0$

(4) If $L$ is generated by constants over $K$ , then

Inf-$ga1(L/K)=0$

(3) and (4) says that the invariant Inf-gal(L/K) ignores finite algebraic
difference and constant difference. Since the extensions in (3) and (4)
are trivial in general study of differential equations, an invariant may
vanish for these types of extensions. Moreover examples show that we
can not expect the Galois correspondence.

\S 6. An application to be expected

The Painlev\’e equations $(P_{1}, P_{2}, \ldots, P_{6})$ were discovered around 1900 :

$P_{1}$ $y’’=6y^{2}+x$ ;

$P_{2}$ $ y’’=2y^{3}+xy+\alpha$ , $\alpha\in \mathbb{C}$ being a parameter;

where the derivation is taken with respect to $x$ . The motivation of the
discovery was the research of special functions that generalize the Weier-
strafi $\wp$-function. Since the $\wp$-function is uniform on $\mathbb{C}$ and satisfies an
algebraic differential equation

$\wp^{J2}=4\wp^{3}-g_{2}\wp-g_{3}$ , with $g_{2}$ , $g_{3}\in \mathbb{C}$

of the first order. They had to study an algebraic differential equation

(6.1) $y’’=R(x, y, y’)$ ,

of the second order whose solutions are uniform on $\mathbb{C}$ , where $R(x, y, y’)$

is a rational function of $x$ , $y$ , $y’$ with coefficients in $\mathbb{C}$ . Since it is difficult
to characterize uniformity in terms of differential equation (6.1), they
replaced uniformity by an assumption on (6.1) that it has no moving



374 H. Umemura

singular points. Painlev\’e determined all such differential equations and
then he threw away those that he could integrate by the so far known
functions. This refining led him to the Painlev\’e equations. So it was nat-
ural to expect that the Painlev\’e equations are irreducible to the classical
functions or they define new functions.

Theorem-Conjecture (6.2) (Painlev\’e 1902). The fifirst Pain-
lev\’e equation $P_{1}$ is irreducible $p$

There was a controversy between Painlev\’e and Liouville on this
theorem- conjecture (1902/3) (cf. vol. 3, [P]). At the end of the dis-
pute, Painlev\’e had resort to Drach’s Galois theory. Painlev\’e knew that
the Drach theory [D1] is wrong but he believed that one could sooner
or later correct the errors. He was too optimist in this opinion (cf.

PainleveiSur l’irr\’eductibilit\’e de l’\’equation $y’’=6y^{2}+x$ , $pp$ 104-109, vol.
3, [P] $)$ . Finally in 1988 Nishioka proved

Theorem (6.3) ([N], [U]). The fifirst Painlev\’e equation $P_{1}$ is irre-
ducible.

Contrary to Painlev\’e’s guess, Nishioka’s proof does not depend on
infinite dimensional differential Galois theory. In fact, we had not yet
such a theory in $1988^{I}$. To explain Theorem (6.3), let us recall the defi-
nition of classical functions

Definition (6.4) ([U1], [U2]). We start from the fifield $\mathbb{C}(x)$ of
rational functions of one variable and construct recursively the fifield of
classical functions of one variable by iteration of the following permissi-

ble operations:

(1) The derivation $d/dx$ ;

(2) The four rules of $arithmetics:+,$ $-,$ $\times,$
$\div$ ;

(3) Solution of a homogeneous linear differential equation

$a_{0}\frac{d^{n}y}{dx^{n}}+a_{1}\frac{d^{n-1}y}{dx^{n-1}}+\cdots a_{n}y=0$ $(a_{0}\neq 0)$ ,

where the $a_{i}$ ’s are so far recursively constructed classical func-
tions;

(4) Substitution in an Abelian function. We can substitute so far
constructed functions into Abelian functions. For example, the
Weierstrass $\wp$-function is an abelian function so that for a clas-
sical function $f(x)$ , $\wp(f(x))$ is a new classical function.
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Definition (6.4) is a practical definition. Namely the meaning of
the permissible operations (1), (2), $(3)and(4)$ should be explained. The
operations (1) and (2) are equivalent to allowing construction of a differ-
ential field. There is a theoretical definition of the permissible operations

that unifies (3) and (4) (cf. [U1]). The precise form of theorem (6.2) is

Theorem (6.4). No solution of $P_{1}$ is classical.

As its assertion shows, theorem (6.2) is of negative character. We
can illustrate the assertion by the following picture. We compare func-
tions to stars and the adjective classical to observable by an old tele-
scope. We live on the earth and observe stars by telescope. So a classical
function is a star observable by an old telescope. The set of classical
functions forms a world around the earth, whereas a first Painlev\’e tran-
scendent, namely a solution of the first Painlev\’e equation $P_{1}$ , twinkles
far away from our planet. Thus we can rephrase theorem (6.2) in the
following manner.

Theorem (6.5). We cannot observe any solution of the fifirst
Painlev\’e equation $P_{1}$ by an old telescope.

The formal group Inf-gal offers us a new invariant of a non-linear
ordinary differential equation. So far we had no invariant of a non-linear
differential equation. The formal group Inf-gal allows us to observe
solutions of $P_{1}$ .

Problem (6.6). For a solution y of $P_{1}$ : $y’’=6y^{2}+x$ , calculate

Inf- $ga1(\mathbb{C}(x, y, y’)/\mathbb{C}(x))$ .

If we can calculate Inf- $ga1(\mathbb{C}(x, y, y’)/\mathbb{C}(x))$ , then it will be the
first positive result on the nature of a solution of $P_{1}$ , which implies in
particular the irreducibility of $P_{1}$ . There is an old conjectural result due
to Drach [D2] in 1915 which depends on his incomplete theory.

Theorem-Conjecture (6.6) (Drach). The Galois group of $P_{1}$

is the Lie pseudo-group of coordinate transformations of 2 variables that
leave the area invariant:

{ $(u_{1}, u_{2})\mapsto\varphi(u)=(\varphi_{1}(u), \varphi_{2}(u))|\varphi(u)$ is a coordinate

transformation with the Jacobian $\partial(\varphi_{1}, \varphi_{2})/\partial(u_{1}, u_{2})=1\}$ .

For formal groups and Lie pseudo-groups, see \S 7.
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\S 7. Lie pseudo-group and formal group

Let us recall the definition of a formal group. General references for
formal groups are Serre [S] and Hazewinkel [H].

Definition (7.1). A formal group of dimension $n$ over a commu-
tative ring $R$ is an $n$ -tuple $F=(f_{i})$ of formal power series

$f_{i}(u, v)\in R[[u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}]]=R[[u, v]]$

such that

(1) $F(u, 0)=u$ , $F(0, v)=v$ ,

(2) $F(u, F(v, w))=F(F(u, v, ), w)$ ,

where
$u=(u_{1}, u_{2}, \ldots, u_{n})$ , $0=(0,0, \ldots, 0)$ , $\ldots$ etc..

We can show that there exists an $n$-tuple

$\theta(u)=(\theta_{1}(u), \theta_{2}(u),$
$\ldots$ , $\theta_{n}(u))\in R[[u]]^{n}=R[[u_{1}, u_{2}, \ldots, u_{n}]]^{n}$

such that

$\theta(0)=0$ , and $F(u, \theta(u))=F(\theta(u), u)=0$ .

Example (7.2). A formal group arises from a Lie group. Let $G$

be a real or complex analytic Lie group of dimension $n$ . Writing the
group law

$G\times G\rightarrow G$

locally at $1\in G$ , we get a formal group $\hat{G}$ of dimension $n$ over $\mathbb{R}$ or

over $\mathbb{C}$ associated to G. For the additive group $\mathbb{R}$ of real numbers, $\hat{\mathbb{R}}$

is $F(u, v)=u+v$ . For the multiplicative group $\mathbb{R}^{*}$ of non-zero real

numbers, $\hat{\mathbb{R}}^{*}$ is $F(u, v)=u+v+uv$ .

Definition (7.3). A morphism

$\varphi$ : $F=(f_{1}, f_{2}, \ldots, f_{m})\rightarrow G=(g_{1}, g_{2}, \ldots, g_{n})$

of formal groups over $R$ is an $n$ -tuple

$\varphi=(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n})\in R[[u_{1}, u_{2}, \ldots, u_{m}]]^{n}$

such that

$\varphi(0)=0$ and $\varphi(F(u, v))=G(\varphi(u), \varphi(v))$ .
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Example (7.4). A morphism of Lie groups gives rise to a mor-
phism of the associated formal groups. Let

$\varphi$ : $G_{1}\rightarrow G_{2}$

be a morphism of analytic Lie groups. Writing $\varphi$ locally at 1, we get $a$

morphism $\hat{\varphi}$ : $\hat{G}_{1}\rightarrow\hat{G}_{2}$ of formal groups. Particularly if we consider $a$

morphism
$\varphi$ : $\mathbb{R}\rightarrow \mathbb{R}^{*}$ , $u\mapsto\exp u$ ,

then we get
$\hat{\varphi}$ : $\hat{\mathbb{R}}\rightarrow\hat{\mathbb{R}}^{*}$

given by a power series $\exp u-1$ .

Let now $A$ be an $R$-algebra. We denote by $N(A)$ the ideal of nilpo-
tent elements of the ring $A$ :

$N(A)=\{x\in A|$

$x^{m}=0$ for a certain positive integer $m$ depending on $x$ }.

A formal group $F$ of dimension $n$ over $R$ defines a group structure on

$N(A)^{n}=\{(a_{1}, a_{2}, \ldots, a_{n})|a_{i}\in N(A) 1\leq i\leq n\}$ ,

which we denote by $F(A)$ . In fact, we define the product of two elements
$a$ , $b\in N(A)^{n}$ by

$a$ . $b=F(a, b)=(f_{1}(a, b),$ $f_{2}(a, b)$ , $\ldots$ , $f_{n}(a, b))$ .

Then the product is associative, $0=(0,0, \ldots, 0)$ is the neutral element

and the inverse $a^{-1}$ is given by $\theta(a)$ . Since the construction is functorial
on $A$ , we get a group functor

$F$ : Category of $R$-algebras–Category of groups.

Let $\varphi$ : $F\rightarrow G$ be a morphism of formal groups over $R$ . Then the
morphism $\varphi$ induces a morphism $\varphi(A)$ : $F(A)\rightarrow G(A)$ of groups, Since
$\varphi(A)$ is functorial on $A$ , we get a morphism $\varphi$ : $F\rightarrow G$ of group functors.
We can recover the formal group $F$ from the group functor F. More
precisely we have,

Proposition (7.5). For formal groups $F$, $G$ over $R$ , we have

$Hom$ formal group ( $F$, $G$ ) $\overline{\rightarrow}Hom$

group functor $(F,$ $G)$ .
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Now we treat coordinate transformations of dimension $n$ . We as-
sume for simplicity $n=1$ . Let $A$ be a ring and

$\varphi(x)=a_{0}+a_{1}x+a_{2}x^{2}+\cdots$ ,

$\psi(x)=b_{0}+b_{1}x+b_{2}x^{2}+\cdots$

two power series with coefficients in $A:\varphi(x)$ , $\psi(x)\in A[[x]]$ . If we calculate
formally the composite, we get

$\psi\circ\varphi=b_{0}b_{1}a_{0}+b_{2}a_{0}^{2}+\cdots+(b_{1}a_{1}+2b_{2}a_{0}a_{1}+3b_{3}a_{0}^{2}a_{1}+\cdots)x+\cdots$ .

Since there is a problem of convergence of coefficients, $\psi\circ\varphi$ is not an
element of $A[[x]]$ . If $a_{0}$ is nilpotent or if there exists a positive integer $n$

with $a^{n}=0$ , then $\psi\circ\varphi$ is an element of $A[[x]]$ . We set

$\Gamma(A)=\{\varphi(x)=a_{0}+a_{1}x+a_{2}x^{2}+\cdots\in A[[x]]|$

$\varphi(x)$ is almost identity or $\varphi(x)\equiv x$ modulo nilpotent element,

in other words $a_{0}$ , $a_{1}-1$ , $a_{2}$ , $a_{3}$ , $\ldots\in N(A)\}$

So if
$\varphi(x)$ , $\psi(x)\in\Gamma(A)$ ,

then
$\psi$ $o\varphi\in\Gamma(A)$ .

We can show that for $\varphi(x)\in\Gamma(A)$ the inverse function $\varphi^{-1}(x)\in\Gamma(A)$

so that $\Gamma(A)$ is a group.

Remark. Another natural way of introducing the group $\Gamma(A)$ is
the group of infifinitesimal automorphisms of the topological ring $A[[x]]$ .
Namely it is easy to see

$\Gamma(A)=\{\varphi$ : $ A[[x]]\rightarrow A[[x]]|\varphi$ is an $A$ -automophism of the ring $A[[x]]$

continous with respect to the (x)-adic topology of which
the $reduction\overline{\varphi}$ : $(A/N(A))[[x]]\rightarrow(A/N(A))[[x]]$ is the identity.}.

Since $\Gamma(A)$ is functorial on $A$ , we get the group functor

$\Gamma_{1}$ : Category of $\mathbb{Q}$-algebras– Category of groups, $A\mapsto\Gamma(A)$

of infinitesimal coordinate transformations of 1-variable. We can regard
the group functor $\Gamma_{1}$ as a formal group over $\mathbb{Q}$ . In fact, let us consider
two formal power series

$\varphi(x)=u_{0}+(1+u_{1})x+u_{2}x^{2}+\cdots$ ,

$\psi(x)=v_{0}+(1+v_{1})x+v_{2}x^{2}+\cdots$ ,
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where
$u_{0}$ , $u_{1}$ , $u_{2}$ , $\ldots$ , $v_{0}$ , $v_{1}$ , $v_{2}$ , $\ldots$

are variables over $\mathbb{Q}$ . Then formally we have

$\psi\circ\varphi(x)=v_{0}(1+v_{1})u_{0}+v_{2}u_{0}^{2}+\ldots$

$+(1+u_{1}+v_{1}+2b_{2}u_{0}(1+u_{1})+3v_{3}u_{0}^{2}(1+u_{1})+\ldots)x+\ldots$

$=f_{0}(u, v)+(1+f_{1}(u, v))x+f_{2}(u, v)x^{2}+\ldots$ .

We set
$F=$ $(f_{0}(u, v)$ , $f_{1}(u, v)$ , $\ldots)\in \mathbb{Z}[[u, v]]^{\infty}$ .

Then we have

(1) $F(u, O)=u$ , $F(0, v)=v$ ,

(2) $F(u, F(v, w))=F(F(u, v, ), w)$ .

Namely $F(u, v)$ is a formal group of infinite dimension such that the as-
sociated group functor $F$ is the group functor $\Gamma_{1}$ . Ritt [R] had a similar
idea of introducing the formal group $F=$ $(f_{0}(u, v)$ , $f_{1}(u, v)$ , $\ldots)$ of infi-
nite dimension ( See also [W]). Similarly we introduce the group functor

$\Gamma_{n}$ : Category of $Q$-algebras $\rightarrow$ Category of groups

of infinitesimal coordinate transformations of $n$-variables. Let us now
consider the group subfunctor

$G_{1}(A)=$ { $\varphi(x)\in\Gamma_{1}(A)|a_{1}=a_{2}=\ldots=0$ , i.e. $\varphi(x)=a_{0}+x$ }

for every algebra $A$ . We can define the group subfunctor $G_{1}$ by a differ-
ential equation:

$G(A)=\{\varphi(x)\in\Gamma_{1}(A)|d\varphi/dx=1\}$

for every algebra $A$ . Similarly if we set

$G_{3}(A)=\{\varphi(x)\in\Gamma(A)|\{\varphi(x);x\}=0\}$ ,

for every algebra $A$ , then $G_{3}$ is a group subfunctor of $\Gamma_{1}$ . Here we denote
by $\{y;x\}$ the Schwarzian derivative

$(d^{3}y/dx^{3})/(dy/dx)-(3/2)[(d^{2}y/dx^{2})/(dy/dx)]^{2}$ .

$G_{1}$ and $G_{3}$ are subgroup functors of $\Gamma_{1}$ defined by a differential equation.
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Definition (7.6). A Lie-Ritt functor is a group subfunctor of $\Gamma_{n}$

defifined by differential equations.

$G_{1}$ and $G_{3}$ are examples of Lie-Ritt functor.

Remark (7.7). We should clarify the coefficients. Namely we
should say that a Lie-Ritt functor defifined over a ring $R$ is the group

subfunctor of $\Gamma_{nR}$ consisting of solutions of differential equations de-

fifined over $R[[x]]$ . Here $\Gamma_{nR}$ is the restriction of the group functor $\Gamma_{n}$

to the category of $R$ -algebras, which is a subcategory of the category of
$\mathbb{Q}$ algebras.

Definition (7.8). Let $G$ , $H$ be Lie-Ritt functors defifined over $a$

ring R. Then a morphism $G\rightarrow H$ of Lie-Ritt functors is a morphism
$G\rightarrow H$ of group functors.

Example (7.9). The Lie-Ritt functor $G_{1}$ is isomorphic to $\hat{\mathbb{R}}$ that

is isomorphic to $\hat{\mathbb{R}}^{*}$ . The Lie-Ritt functor $G_{3}$ is isomorphic to $\overline{SL}_{2\mathbb{R}}$ .

Since $G_{1}$ is defifined over $\mathbb{Q}$ and $\hat{\mathbb{R}}$ is defifined over $\mathbb{R}$ , precisely speaking,
we have to say either that the restriction $G_{1\mathbb{R}}$ of the functor $G_{1}$ to the

category of $\mathbb{R}$ -algebras is isomorphic to $\hat{\mathbb{R}}$ or that the Lie-Ritt functor $G_{1}$

is isomorphic to the formal group $\hat{G}_{a\mathbb{Q}}$ associated to the additive group
scheme $G_{a\mathbb{Q}}$ . A similar remark should be done for $G_{3}$ .

Definition (7.8) of morphism seems more natural than the traditional

definition using prolongations.

Question (7.10). Let G, H be Lie-Ritt functors defifined over $\mathbb{C}$ ,

which are traditionally called Lie pseudo-groups. Then

$Hom$ Lie pseudo-group ( $G$ , $H)=Hom$ Lie-Ritt $(G,$ $H)$ ?

\S 8. Construction of Inf-gal

Let $(A, \delta)$ be a differential $\mathbb{Q}$-algebra. We denote the abstract $\mathbb{Q}-$

algebra $A$ by $A^{\mathfrak{h}}$ , when we emphasize that we consider the abstract
algebra. We have a morphism

$i:A\rightarrow A^{\mathfrak{h}}[[t]]$
$a\mapsto\sum_{n=0}^{\infty}\frac{\delta^{n}a}{n!}t^{n}$

of rings. In fact, this is a morphism

$(A, \delta)\rightarrow(A^{\mathfrak{h}}[[t]], d/dt)$
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of differential rings. We call $i$ the universal Taylor morphism. For, $i$ is
universal among Taylor morphisms. A Taylor morphism is a differential
ring morphism

$(A, \delta)\rightarrow(B[[t]], d/dt)$ ,

where $B$ is an abstract $\mathbb{Q}$-algebra. Let now $L/K$ be an ordinary differ-
ential field extension such that $L^{\mathfrak{h}}$ is finitely generated over $K^{\mathfrak{h}}$ . We have
a commutative diagram

$L\rightarrow i$ $ L\#$
$[[t]]$

$\uparrow$ $\uparrow$

$K\rightarrow K\#[[t]]$ .

Let us now take a transcendence basis

$u_{1}$ , $u_{2}$ , $\ldots$ , $u_{n}$

of $L^{\mathfrak{h}}/K^{\mathfrak{y}}$ so that we have derivations

$\frac{\partial}{\partial u_{i}}$ : $K^{\mathfrak{h}}(u_{1}, u_{2}, \ldots, u_{n})\rightarrow K^{\mathfrak{h}}(u_{1}, u_{2}, \ldots, u_{n})$ for $1\leq i\leq n$ .

Since $L\#/K^{\mathfrak{h}}(u)$ is algebraic, the derivations

$\partial/\partial u_{i}$ : $K^{\mathfrak{y}}(u)\rightarrow K^{\mathfrak{h}}(u)$

extends to derivations $L^{\mathfrak{y}}\rightarrow L^{\mathfrak{y}}$ , which we also denote by $\partial/\partial u_{i}$ . So we
get a partial differential field

$(L\# [[t]][t^{-1}], \{d/dt, \partial/\partial u_{1}, \partial/\partial u_{2}, \ldots, \partial/\partial u_{n}\})$ .

Here the $\partial/\partial u_{i}$ operate on the coefficients of a formal Laurent series:

$\frac{\partial}{\partial u_{i}}\sum_{n>>-\infty}a_{n}t^{n}=\sum_{n>>-\infty}\frac{\partial a_{n}}{\partial u_{i}}t^{n}$ .

We define $\mathcal{L}$ as the partial differential subfield of $L^{\mathfrak{h}}[[t]][t^{-1}]$ generated

by $i(L)$ and the field $L^{\mathfrak{y}}$ of constant Laurent series. We denote by $\mathcal{K}$ the

partial differential subfield of $L^{\mathfrak{h}}[[t]][t^{-1}]$ generated by $i(K)$ and $L^{\mathfrak{y}}$ . So
we get a partial differential field extension $\mathcal{L}/\mathcal{K}$ . The definition of the

extension $\mathcal{L}/\mathcal{K}$ involves the $K$ derivations $\partial/\partial u_{i}$ : $ L^{\mathfrak{h}}\rightarrow L\#$ . But since

we added $L^{\mathfrak{y}}$ in construction, the extension $\mathcal{L}/\mathcal{K}$ is independent of the
choice of the $K$ derivations $\partial/\partial u_{i}$ or of the transcendence basis

$u_{1}$ , $u_{2}$ , $\ldots$ , $u_{n}$ .



382 H. Umemura

So we constructed $\mathcal{L}/\mathcal{K}$ canonically from $L/K$ . This is the key point to
avoid Problems 1 and 2 of \S 4.

We have the universal Taylor morphism

$j$ : $(L^{\mathfrak{h}},$ $\{\partial/\partial u_{1}, \partial/\partial u_{2}, \ldots, \partial/\partial u_{n}\}\rightarrow L^{\mathfrak{h}}[[w_{1}, w_{2}, \ldots, w_{n}]]$

sending an element $a\in L$ to

$\partial^{|m|}$

$\sum_{m\in \mathbb{N}^{n}}\frac{1}{m!}\overline{\partial u_{1}^{m_{1}}\partial u_{2}^{m_{2}}\ldots\partial u_{n}^{m_{n}}}w_{1}^{m_{1}}w_{2}^{m_{2}}\ldots w_{n}^{m_{n}}\in L^{\mathfrak{h}}[[w_{1}, w_{2}\ldots, w_{n}]]$ .

Here we use a usual notation: For $m=(m_{1}, m_{2}, \ldots, m_{n})\in \mathbb{N}^{n}$ ,

$m!=m_{1}!m_{2}$ ! $\ldots m_{n}!$ , $|m|=\sum_{i=1}^{n}m_{i}$ .

So we get a differential morphism

$h:L^{\#}[[t]][t^{-1}]\rightarrow L^{\mathfrak{h}}[[w, t]][t^{-1}]$

of expanding the coefficients:

$h(\sum_{i>>-\infty}a_{i}t^{i})=\sum_{i>>-\infty}j(a_{i})t^{i})$

for $\sum_{i>>-\infty}a_{i}t^{i}\in L^{\mathfrak{h}}[[t]][t^{-1}]$ . Hence by restriction to the subalgebra
$\mathcal{L}$ , we obtain a differential morphism

$\mathcal{L}\rightarrow L^{\mathfrak{h}}[[w, t]][t^{-1}]$

which we denote again by $h$ .
We now consider infinitesimal deformations of $h$ . Namely we set

$\mathcal{F}_{\mathcal{L}/\mathcal{K}}(A)=\{f$ : $\mathcal{L}\rightarrow A[[w, t]][t^{-1}]|f$ is a $\mathcal{K}$-differential morphism

such that $f\equiv h$ modulo nilpotent elements of $A$ }

for an $L^{\mathfrak{h}}$ -algebra $A$ so that $\mathcal{F}_{\mathcal{L}/\mathcal{K}}(A)$ is the set of infinitesimal deforma-

tions of $h$ in $A$ . Let $(Ag/L^{b})$ be the category of $L^{\mathfrak{h}}$ -algebras. We get a
functor

$\mathcal{F}_{\mathcal{L}/\mathcal{K}}$ : $(Ag/L^{\mathfrak{h}})\rightarrow(Set)$ ,

where we denote by (Set) the category of sets. We can show that there
exists a Lie-Ritt functor (or Lie pseudo-group in the traditional lan-

guage) $\mathcal{G}$ defined over $L^{\mathfrak{h}}$ that operates on the functor $\mathcal{F}_{\mathcal{L}/\mathcal{K}}$ in such a
way that

$(\mathcal{G}, \mathcal{F}_{\mathcal{L}/\mathcal{K}})$
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is a principal homogeneous space. The Lie-Ritt functor $\mathcal{G}$ is by definition
the infinitesimal Galois group Inf-gal(L/K) of the given extension $L/K$ .

Example (8.1). Let us see what we have done by one of the sim-

plest examples. Let $L$ be the differential subfifield of $(\mathbb{C}[[x]][x^{-1}], d/dx)$

generated by

$y=\exp x$

over $K=\mathbb{C}(x)$ . So $L=(\mathbb{C}(x, y),$ $d/dx)$ and we have $dy/dx$ $=y$ . It

follows from the defifinition of the universal Taylor morphism

$i:L\rightarrow L^{\#}[[t]]$ , $i(y)=y\exp t\in L^{\mathfrak{h}}[[t]]$ .

Since $L/K$ is a transcendental extension generated by $y$ , we take $u_{1}=y$

as a transcendence basis. So

$i(L).L^{\mathfrak{h}}=L^{\mathfrak{h}}(t, \exp t)\subset L^{\mathfrak{h}}[[t]][t^{-1}]$

is closed under $d/dt$ and $\partial/\partial y$ and hence

$\mathcal{L}=L^{\mathfrak{h}}(t, \exp t)$ .

We have evidently $\mathcal{K}=L^{\mathfrak{h}}(t)$ . For a $L^{\mathfrak{h}}$ -algebra $A$ , $a\mathcal{K}$ morphism

$f$ : $\mathcal{L}\rightarrow A[[t]][t^{-1}]$

is defifined by sending the generator $\exp t$ over $\mathcal{K}$ to $c$ . $\exp t$ with $c\in A$ .

So

$\mathcal{F}_{\mathcal{L}/\mathcal{K}}(A)=\{f$ : $\mathcal{L}\rightarrow A[[t]][t^{-1}]|$

There exists $c\in A$ such that $c\equiv 1mod N(A)$ , $f(\exp t)=c.\exp t\}$ .

The formal group

$\hat{G}_{mL\#}(A)=\{c\in A|c\equiv 1mod N(A)\}$

operates on $\mathcal{F}_{\mathcal{L}/\mathcal{K}}(A)$ . Namely for $f\in \mathcal{F}_{\mathcal{L}/\mathcal{K}}(A)$ with $f(\exp t)=c.\exp t$

and
$c’\in\hat{G}_{mL\#}\{c\in A|c\equiv 1mod N(A)\}$ ,

$c’f\in \mathcal{F}_{\mathcal{L}/\mathcal{K}}(A)$

is the $\mathcal{K}$ -morphism that sends $\exp t$ to $c’f(\exp t)=(c’c).\exp t$ :

$(c’f)(\exp t)=(c’c).\exp t$ .
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So
$(\hat{G}_{mL\#}(A), \mathcal{F}_{\mathcal{L}/\mathcal{K}}(A))$

is a principal homogeneous space and hence Inf-gal(L/K) $=\hat{G}_{mL\#}$ .

The argument above allows us to prove in general that for a strongly
normal extension $L/K$ with Galois group $G$ , we have

Inf-gal(L/K) $=\hat{G}_{L^{Q}}$ .
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Prolongation Projection Commutativity Theorem

Jose M. Veloso

Abstract.

If the symbol $g_{k}$ of a SPDE $R_{k}$ is 2-acyclic, then the operations
of prolongation and projection on $R_{k}$ commute

$\rho_{k+l+1}^{k+l+2}((R_{k})_{+l+2})=(\rho_{k+l^{+}}^{k+l1}((R_{k})_{+l+1}))_{+1}$

We apply this to study contact of three-dimensional $CR$-manifolds.

\S 1. Introduction

S. Chern and J. Moser [2] proved that two real hypersurfaces of
$C^{2}$ have a contact of fifth order and in the non-umbilic case of sixth
order. The $G$-structure associated to a real hypersurface is of order two
but their definition involves fifth order derivatives. Studying these facts
through the SPDE of jets of biholomorphic functions between the real
hypersurfaces, we found the following theorem:

Theorem 1.1 (Prolongation projection commutativity theorem).
Let $R_{k}\subset J_{k}(M, N, \rho)$ be a system of partial differential equations
such that

(i) $\alpha$ : $R_{k}\rightarrow N$ is a submersion
(ii) the symbol $g_{k}$ of $R_{k}$ is 2-acyclic

(ii) $g_{k+1}$ is a vector bundle on $(\rho_{k}^{k+1})^{-1}(R_{k})$

Then, for every $l$ $\geq 0$ ,

$\rho_{k+l+1}^{k+l+2}((R_{k})_{+l+2})=(\rho_{k+l}^{k+l+1}((R_{k})_{+l+1}))_{+1}$ .

Theorem 1.2 (Formal integrability theorem [4]). Under the hy-
pothesis of the above theorem and the assumption that

$\rho_{k}^{k+1}((R_{k})_{+1})=R_{k}$ ,

Received October 2, 1995.
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we get that

$\rho_{k+l}^{k+l+1}$ : $(R_{k})_{+l+1}\rightarrow(R_{k})_{+l}$

is a submersion for every $l$ $\geq 1$ .

The formal integrability theorem for linear PDE systems was first
proved by Quillen [6] and with weak assumptions by Goldschmidt [3],
who also proved it in the non-linear case [4]. A version of this theorem
using involutivity is in Kuranishi [5]. All these publications used the
set $R_{k}$ of integral jets of the PDE system to prove the theorem. Ruiz
[7, 8, 9] utilizes the sheaf $I_{k}$ of functions which are null on $R_{k}$ ; this
approach seems to us more natural and we follow this approach.

In Section 2 we present the basic facts following [7, 8, 9]. Section 3
contains the proof of Theorem 1.1. In Section 4 we apply the theorem to
study contact of three-dimensional $CR$-manifolds. Corollary 4.1 shows
that the $G$-structure associated to a $CR$-manifold $M$ is the projection
in order two of fifth order jets which have fifth-order contact with the
hyperquadric $Imw=z\overline{z}$ . Theorem4.3 relates the normal form of $M[2]$

with the invariants of Cartan [1].
I’d like to thank to A.M.Rodrigues and J.Verderesi for several dis-

cussions on this subject. I dedicate this paper to prof.M.Kuranishi, in
occasion of his seventieth birthday. He was very kind to me and my
contacts with him were always stimulating.

\S 2. Basic definitions

Let $M$ , $N$ be manifolds, $T=TN$ the tangent bundle of $N$ , $\rho$ : $M$ $\rightarrow$

$N$ a submersion, and $J_{k}=J_{k}(M, N, \rho)$ the manifold of $k$-jets of local
sections of $\rho$ : $M$ $\rightarrow N$ . Denoting by $\rho_{l}^{k}$ : $J_{k}\rightarrow J_{l}$ , $k>l$ , the canonical
projections, and by $\rho_{0}^{k}=\beta_{k}$ : $J_{k}\rightarrow M$ and $\rho_{-1}^{k}=\alpha_{k}$ : $J_{k}\rightarrow N$ the
projections to target and source respectively, the sheaf of algebras of $C^{\infty}-$

functions on $J_{k}$ will be denoted by $F_{k}$ . If $Z_{k}\in J_{k}$ , let be $Z_{l}=\rho_{l}^{k}(Z_{k})$ ,
for $l$ $\leq k$ . In particular, $\beta_{k}(Z_{k})=Z$ and $\alpha_{k}(Z_{k})=z$ .

We identify $Z_{k}$ with the linear application (cf. [7])

$Z_{k}=(Z_{k})_{*}$ : $T_{z}N\rightarrow T_{Z_{k-1}}J_{k-1}$

given by

$(Z_{k})_{*}=(j^{k-1}\sigma)_{*}v$

where $ Z_{k}=j_{z}^{k}\sigma$ .



388 J. M. Veloso

If $\theta$ is a vector field on $N$ , we define the formal derivative

$\partial_{\theta}$ : $F_{k}\rightarrow F_{k+1}$

by

$(\partial_{\theta}f)(Z_{k+1})=df(Z_{k+1})_{*}(\theta_{z}))$

where $f\in F_{k}$ . This derivative has the properties
(i) $\partial_{a.\theta}f=a.\partial_{\theta}f$

(ii) $\partial_{[\theta,\eta]}=[\partial_{\theta}, \partial_{\eta}]$

where $a$ is a real function on $N$ , and $\eta$ is a vector field on $N$ . Let
$x=(x^{1}, \cdots, x^{n})$ be a chart on $U\subset N$ , $(x, y)=(x^{1}, \cdots, x^{n}, y^{1}, \cdots, y^{m})$

a chart on $\rho^{-1}(U)$ , and $(x, y_{\alpha}^{j}, 0\leq j\leq m, 0\leq|\alpha|\leq k)$ a chart on
$(\rho_{0}^{k})^{-1}(U)$ , where

$y_{\alpha}^{j}(j_{z}^{k}\sigma)=\frac{\partial^{|\alpha|}\sigma^{j}}{\partial x^{\alpha}}(z)$

and $\sigma=(\sigma^{1}, \cdots, \sigma^{m})$ is a section of $\rho$ on $U$ .

In this coordinate system

$(Z_{k+1})_{*}(\frac{\partial}{\partial x^{i}})=\frac{\partial}{\partial x^{i}}+\sum_{|\alpha|\leq k}y_{\alpha+1_{i}}^{j}(Z_{k+1})\frac{\partial}{\partial y_{\alpha}^{j}}$

and

$\partial_{i}f=\frac{\partial}{\partial x^{i}}+\sum_{|\alpha|\leq k}\frac{\partial f}{\partial y_{\alpha}^{j}}y_{\alpha+1_{i}}^{j}$

where $f\in F_{k}$ , and $\partial_{i}$ denotes $\partial_{\theta}$ when $\theta=\partial/\partial x^{i}$ .

Let $Q_{k}=Ker(\rho_{k-1}^{k})_{*}$ be the vector bundle on $J_{k}$ of vertical tangent

vectors with respect to $\rho_{k-1}^{k}$ . The fiber of $Q_{k}$ on $Z_{k}$ is denoted by $Qz_{k}$ .

The dual bundle of $Q_{k}$ is denoted by $Q_{k}^{*}$ . If $f\in F_{k}$ , then $d(\partial_{\theta}f)|_{Qz_{k+1}}$

depends only on $df|_{Qz_{k}}$ and $\theta(z)$ . So we have a map

$d_{K}$ : $T_{z}N\otimes Q_{Z_{k}}^{*}\rightarrow Q_{Z_{k+1}}^{*}$

defined by

$d_{K}(\theta_{z}\otimes df|_{Qz_{k}})=d(\partial_{\theta}f)|_{Qz_{k+1}}$

In coordinates

$d_{K}(\frac{\partial}{\partial x^{i}}\otimes dy_{\alpha}j|_{Qz_{k}})=dy_{\alpha+1_{i}}j|_{Qz_{k+1}}$
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If $Q_{Z_{\infty}}^{*}=\sum_{k\geq 0}Q_{Z_{k}}^{*}$ , we define Koszul’$s$ complex $(\Lambda T_{z}\otimes Q_{Z_{\infty}}^{*}, d_{K})$ by

$d_{K}(v_{1}\wedge\cdots\wedge v_{l}\otimes\mu)=$

$\sum_{i=1}^{l}(-1)^{i+1}v_{1}\wedge\cdots\wedge v_{i-1}\wedge v_{i+1}\wedge\cdots\wedge v_{l}\otimes d_{K}(v_{i}\otimes\mu)$ .

Definition 2.1. A system ofpartial differential equations (SPDE)
is a subsheaf of ideals $I_{k}$ of $F_{k}$ locally finitely generated. The subset $R_{k}$

of $J_{k}$ ,

$R_{k}=\{Z_{k}\in J_{k} : f(Z_{k})=0, \forall f\in I_{k}\}$

is the set of integral jets of $I_{k}$ . In case $(R_{k}, N, \alpha_{k})$ is a submersion,
$I_{k}$ (or $R_{k}$ ) is said to be regular. The subsheaf of ideals of $F_{k+1}$ generated
by

$(\rho_{k}^{k+1})^{*}I_{k}\cup\{\partial_{\theta}f : f\in I_{k}, \theta\in\Gamma(TN)\}$

is called the prolongation $(I_{k})_{+1}$ of $I_{k}$ .

We shall write $I_{k+1}$ instead of $(I_{k})_{+1}$ . The subsheafs $I_{k+l}$ , $l$ $\geq 2$ are
defined inductively. Suppose $(x^{1}, \cdots, x^{n})$ is a chart on $N$ , and $f_{p}$ , $ 1\leq$

$p\leq r$ a system of (local) generators of $I_{k}$ , then a system of (local)
generators of $I_{k+l}$ is given by $\{\partial_{\alpha}f_{p} : 1\leq p\leq r, 0\leq|\alpha|\leq l\}$ , where
$\alpha=(\alpha_{1}, \cdots, \alpha_{n})$ and $\partial_{\alpha}f_{p}=\partial_{1}^{\alpha_{1}}\cdots\partial_{n^{n}}^{\alpha}f_{p}$ . We will assume that $F_{k}$ is

contained in $F_{k+l}$ , through the inclusion $(\rho_{k}^{k+l})^{*}$ : $F_{k}\rightarrow F_{k+l}$ .

Definition 2.2. The symbol $h_{Z_{k}}$ at the integral jet $Z_{k}$ of $I_{k}$ is the
subset of $Q_{Z_{k}}^{*}$ defined by

$h_{Z_{k}}=\{df|Qz_{k} : f\in I_{k}\}$

The family of symbols on $R_{k}$ is denoted by $h_{k}$ , $i.e$ . $(h_{k})_{Z_{k}}=h_{Z_{k}}$ .

If $Z_{k+1}\in(\rho_{k}^{k+1})^{-1}(Z_{k})$ , with $Z_{k}\in R_{k}$ , put $h_{Z_{k+1}}=d_{K}(T_{z}\otimes h_{Z_{k}})$ , and

$h_{Z_{k+l+1}}=d_{K}(T_{z}\otimes h_{Z_{k+l}})$ , $l$ $\geq 1$ for every $Z_{k+l+1}\in(\rho_{k}^{k+l+1})^{-1}(Z_{k})$ .
Also, we put

$h_{k+l}=\{h_{Z_{k+l}} : Z_{k+l}\in(\rho_{k}^{k+l})^{-1}(R_{k})\}$ .

In case $Z_{k+l}\in R_{k+l}$ , $h_{Z_{k+l}}$ coincides with the symbol of $I_{k+l}$ at $Z_{k+l}$ , i.e.
$h_{Z_{k+l}}=dI_{k+l}|_{Q_{Z_{k+l}}}$ . Let us put $h_{Z_{\infty}}=\sum_{l\geq 0}h_{Z_{k+l}}$ . The $h_{Z_{\infty}}\subset Q_{Z_{\infty}}^{*}$ ,

and from $d_{K}(T_{z}\otimes h_{Z_{\infty}})\subset h_{Z_{\infty}}$ it follows that $(\Lambda T_{z}\otimes h_{Z_{\infty}}, d_{K})$ is a
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subcomplex of Koszul’s complex. The $(j,k+l+l)$ -th homology group of
this subcomplex is

$H_{(j,k+l+1)}(Z_{k})=.\frac{ker(d_{K}.\Lambda^{j}T_{z}\otimes h_{Z_{k+l+1}}\rightarrow\Lambda^{j-1}T_{z}\otimes h_{Z_{k+l+2}})}{d_{K}(\Lambda^{j+1}T_{z}\otimes h_{Z_{k+l}})}$

for $l$ $\geq 0.We$ say that $h_{Z_{k}}$ is $r$-acyclic if $H_{j,k+l+1}(Z_{k})=0$ , for $0\leq j\leq r$ ,
$l$ $\geq 0$ and $h_{k}$ is $r$-acyclic if $h_{Z_{k}}$ is $r$-acyclic for every $Z_{k}\in R_{k}$ . Clearly,
$h_{k}$ is 0-acyclic. If $gz_{k}\subset Q_{Z_{k}}$ is defined by $g_{Z_{k}}^{\perp}=h_{Z_{k}}$ , then $gz_{k}$ is also
called the symbol of $R_{k}$ at $Z_{k}$ . It is proved in [9] that $h_{Z_{k}}$ is 1-acyclic if
and only if $g_{Z_{k}}$ is 2-acyclic in the sense of [4].

\S 3. The prolongation projection commutativity theorem

Let us put

$I_{k+l}^{k+l+1}=\{f\in F_{k+l} : (\rho_{k+l}^{k+l+1})^{*}f\in I_{k+l+1}\}$

for $l$ $\geq 0$ . It is clear that $I_{k+l}\subset I_{k+l}^{k+l+1}$ . If $R_{k+l}^{k+l+1}$ denotes the set of

integral jets of $I_{k+l}^{k+l+1}$ , then $\rho_{k+l}^{k+l+1}(R_{k+l+1})\subset R_{k+l}^{k+l+1}$ . In general the
equality doesn’t hold. The following proposition gives a condition for
this.

Proposition 3.1. If $I_{k}$ is a regular SPDE, and $h_{k+l+1}$ is a vector
bundle on $(\rho_{k}^{k+l+1})^{-1}(R_{k})$ , then

$R_{k+l}^{k+l+1}=\rho_{k+l}^{k+l+1}(R_{k+l+1})$ .

Furthermore, if $f_{p}$ , $1\leq p\leq r$ are local independent generators of $I_{k}$ ,

then $I_{k+l}^{k+l+1}$ is generated by

$\{\partial_{\alpha}f_{p}, 1\leq p\leq r, |\alpha|\leq l;g_{t}, 1\leq t\leq s\}$ ,

where $g_{t}=\sum_{p=1}^{r}(\sum_{|\beta|=l+1}a_{t}^{\beta,p}\partial_{\beta}f_{p}+b^{p}f_{p})$ with $a_{t}^{\beta,p}\in F_{k}$ , $b^{p}\in F_{k+l+1}$ .

$Proof\ovalbox{\tt\small REJECT}$ Let $U_{k}$ be an open set in $J_{k}$ , where $f_{p}$ , $1\leq p\leq r$ are defined,

and $U_{k+j}=(\rho_{k}^{k+j})^{-1}(U_{k})$ , $j\geq 1$ . By hypothesis, $df_{1}$ , $\cdots$ , $df_{r}$ are linearly
independents at every $Z_{k}\in U_{k}$ , then

$U_{k}\cap R_{k}=\{Z_{k}\in J_{k} : f_{p}(Z_{k})=0,1\leq p\leq r\}$ .

Let us put $V_{k+j}=U_{k+j}\cap(\rho_{k}^{k+j})^{-1}(R_{k}),j\geq 0$ . Since $h_{k+l+1}$ is a vector
bundle on $V_{k+l+1}$ , for every $p,1\leq p\leq r$ , there exist $\Lambda_{p}\subset\{\alpha\in N^{n}$ :
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$|\alpha|=l+1\}$ such that $\{d(\partial_{\alpha_{p}}f_{p})|_{Qz_{k+l+1}},1\leq p\leq r, \alpha_{p}\in\Lambda_{p}\}$ is a basis

of $h_{Z_{k+l+1}}$ , $Z_{k+l+1}\in V_{k+l+1}$ (eventually shrinking $U_{k}$ ). Then, given $q$

and $\alpha$ , $1\leq q\leq r$ , $|\alpha|=l+1$ , there exist functions $A_{q,\alpha}^{p,\alpha_{p}}$ on $V_{k}$ , such
that

$d(\partial_{\alpha}f_{q})|_{Qz_{k+1+1}}+\sum_{p=1}^{r}\sum_{\alpha_{p}\in\Lambda_{p}}A_{q,\alpha}^{p,\alpha_{p}}(Z_{k})d(\partial_{\alpha_{p}}f_{p})|_{Q_{Z_{k+\downarrow+1}}}=0$

for every $Z_{k+l+1}\in V_{k+l+1}$ . This is so since $d(\partial_{\alpha}f_{p})|_{Qz_{k+t+1}}$ depends

only on $Z_{k}$ . Let $a_{q,\alpha}^{p,\alpha_{p}}$ be extensions to $U_{k}$ of functions $A_{q,\alpha}^{p,\alpha_{p}}$ . Then
$\partial_{\alpha}f_{p}+\sum a_{q,\alpha}^{p,\alpha_{p}}\partial_{\alpha_{p}}f_{p}$ are constant on the fibers of the submersion
$\rho_{k+l}^{k+l+1}|_{V_{k+l+1}}$ : $V_{k+l+1}\rightarrow V_{k+l}$ . This implies that, given $q$ and $\alpha,1\leq$

$q\leq r$ , $|\alpha|=l+1$ , there are functions $g_{q,\alpha}$ on $U_{k+l}$ such that $\partial_{\alpha}f_{q}+$

$\sum a_{q,\alpha}^{p,\alpha_{p}}\partial_{\alpha_{p}}f_{p}-g_{q,\alpha}$ are identically zero on $V_{k+l+1}$ , which is the zero set

of functions $(\rho_{k+l}^{k+l+1})^{*}f_{p},1\leq p\leq r$ . By implicit function theorem there
are functions $b_{q,\alpha}^{p}\in U_{k+l+1}$ such that

$\partial_{\alpha}f_{q}+\sum a_{q,\alpha}^{p,\alpha_{p}}\partial_{\alpha_{p}}f_{p}-g_{q,\alpha}+\sum b_{q,\alpha}^{p}f_{p}=0$

in $U_{k+l+1}$ Then $I_{k+l+1}$ is generated by

$\{\partial_{\beta}f_{p}, |\beta|\leq l;g_{p,\alpha}, |\alpha|=l+1;\partial_{\alpha_{p}}f_{p}, \alpha_{p}\in\Lambda_{p}; ^{1}\leq p\leq r\}$

where $g_{p,\alpha}\in F_{k+l}$ . So $I_{k+l}^{k+l+1}$ is generated by

$\{\partial_{\beta}f_{p}, |\beta|\leq l;g_{p,\alpha}, |\alpha|=l+1;1\leq p\leq r\}$

which proves the second part of Proposition. Since $\partial_{\alpha_{p}}f_{p}$ are indepen-

dents, given $Z_{k+l}\in R_{k+l}^{k+l+1}\cap U_{k+l}$ , there exist $Z_{k+l+1}\in U_{k+l+1}$ such

that $\partial_{\alpha_{p}}f_{p}(Z_{k+l+1})=0$ . This implies $Z_{k+l+1}\in R_{*+l+1}$ , so $ R_{k+l}^{k+l+1}\subset$

$\rho_{k+l}^{k+l+1}(R_{k+l+1})$ , which completes the proof.

$R_{k+l+1}$ is not necessarily a manifold, nor $R_{k+l}^{k+l+1}$ . To guarantee this,

we need the following Proposition, which is dual of a result in [3].

Proposition 3.2. If $I_{k}$ is a regular SPDE such that
(i) $h_{k}$ is 1-acyclic;

(ii) $h_{k+1}$ is a vector bundle on $(\rho_{k}^{k+1})^{-1}(R_{k})$

then $h_{k+l+1}$ is a vector bundle on $(\rho_{k}^{k+l+1})^{-1}(R_{k})$ for every $l$ $\geq 0$ .

$Proof\ovalbox{\tt\small REJECT}$ By induction on $l$ , suppose $h_{k+l+1}$ is a vector bundle. For

every $Z_{k+l+2}\in(\rho_{k}^{k+l+2})^{-1}(R^{k})$ the sequence

$\Lambda^{2}T_{z}\otimes h_{Z_{k+l}}d_{K}\rightarrow T_{z}\otimes h_{Z_{k+l+1}}d_{P\zeta}\rightarrow h_{Z_{k+l+2}}$
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is exact by (i), then $dim(T_{z}\otimes h_{Z_{k+l+1}})=dimh_{Z_{k+l+2}}+dim(d_{K}(\Lambda^{2}T_{z}\otimes$

$h_{Z_{k+l}}))$ . If $I_{k}$ is generated by $f_{1}$ , $\cdots$ , $f_{r}$ , then $h_{k+l}$ is generated by the

restrictions to $(\rho_{k}^{k+l})^{-1}(R_{k})$ of $d(\partial_{\alpha}f_{p})|_{Q_{k+l}}$ , $1\leq p\leq r$ , $|\alpha|=l$ , and sim-
ilarly, $d_{K}(\Lambda^{2}T\otimes h_{k+l})$ and $h_{k+l+2}$ are generated by a finite number of
$C^{\infty}$ -sections. Since the rank of a linear system with variables coefficients
is a lower semicontinuous function, $dimh_{k+l+2}$ and $dim(\Lambda^{2}T\otimes h_{k+l})$

are lower semicontinuous functions, so by induction hypothesis and the
above equality, it follows $dimh_{k+l+2}$ and $dimd_{K}(\Lambda^{2}T\otimes h_{k+l})$ are con-
stant functions, which proves $h_{k+l+2}$ is a vector bundle.

Theorem 3.1 (Prolongation projection commutativity theorem).

If $I_{k}$ is a SPDE such that
(i) $h_{k}$ is 1-acyclic;

(ii) $h_{k+1}$ is a vector subbundle on $(\rho_{k}^{k+1})^{-1}(R_{k})$ ,
then

$(I_{k+l}^{k+l+1})_{+1}=I_{k+l+1}^{k+l+2}$

or equivalently

$(R_{k+l}^{k+l+1})_{+1}=R_{k+l+1}^{k+l+2}$

for all $l$ $\geq 0$ .

$Proof\ovalbox{\tt\small REJECT}$ Let $f_{p}$ , $1\leq p\leq r$ be a set of independent generators of $I_{k}$ .

It follows from Proposition3.2 that $h_{k+l+1}$ is a vector bundle for every
$l$ $\geq 0$ , and applying Proposition3.1, $I_{k+l+1}^{k+l+2}$ is generated by $\partial_{\beta}f_{p}$ , $ 1\leq$

$p\leq r$ , $|\beta|=l+1$ , and functions

$g_{t}=\sum_{p=1}^{r}\sum_{i,j=1}^{r}\sum_{|\alpha|=l}a_{i,j,t}^{\alpha,p}\partial_{i}\partial_{j}\partial_{\alpha}f_{p}+b_{t}^{p}f_{p}$ ,

where $a_{i,j,t}^{\alpha,p}\in F_{k}$ , $\nu_{t}^{y}\in F_{k+l+2}$ , $a_{i,j,t}^{\alpha,p}=a_{j,i,t}^{\alpha,p}$ and $1\leq t\leq s$ . To show
$I_{k+l+1}^{k+l+2}\subset(I_{k+l}^{k+l+1})_{+1}$ , we must prove that $g_{t}\in(I_{k+l}^{k+l+1})_{+1}$ , for every
$1\leq t\leq s$ . If $Z_{k+l+2}\in(\rho_{k}^{k+l+2})^{-1}(R_{k})$ , then

(3.1) $0=dg_{t}|_{Qz_{k+l+2}}=\sum a_{i,j,t}^{\alpha,p}d(\partial_{i}\partial_{j}\partial_{\alpha}f_{p})|_{Qz_{k+l+2}}$

by $f_{p}(Z_{k+l+2})=0,1\leq p\leq r$ . Put

$(w_{p,\alpha})_{Z_{k+l}}=d(\partial_{\alpha}f_{p})|_{Qz_{k+l}}$ ,

$(w_{p,\alpha,j})_{Z_{k+l+1}}=d(\partial_{j}\partial_{\alpha}f_{p})|_{Q_{Z_{k+l+1}}}$
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and

$(w_{p,\alpha,j,?}.)_{Z_{k+l+2}}=d(\partial_{i}\partial_{j}\partial_{\alpha}f_{p})|_{Qz_{k+l+2}}$

Then (3.1) can be written as $\sum a_{\dot{x},j,t}^{\alpha,p}w_{p,\alpha,j,i}=0$ on $(\rho_{k}^{k+l+2})^{-1}(R_{k})$ ,

which is equivalent to

$d_{K}(\sum a_{i,j,t}^{\alpha,p}\frac{\partial}{\partial x^{i}}\otimes w_{p,\alpha,j})=0$ .

From (i) there exist functions $B_{i,j,t}^{\alpha,p}$ on $R_{k}$ , with $B_{i,j,t}^{\alpha,p}=-B_{j,i,t}^{\alpha,p}$ , such
that

$d_{K}(\frac{1}{2}\sum B_{i,j,t}^{\alpha,p}\frac{\partial}{\partial x^{j}}\wedge\frac{\partial}{\partial x^{i}}\otimes w_{p,\alpha})=\sum\frac{\partial}{\partial x^{i}}\otimes a_{i,j,t}^{\alpha,p}w_{p,\alpha,j}$ .

Then $\sum\frac{\partial}{\partial x^{l}}\otimes(B_{i,j,t}^{\alpha,p}-a_{i,j,t}^{\alpha,p})w_{p,\alpha,j}=0$ , so $\sum(B_{i,j,t}^{\alpha,p}-a_{i,j,t}^{\alpha,p})w_{p,\alpha,j}=0$ .

Let be $b_{i,j,t}^{\alpha,p}$ extensions of $B_{i,j,t}^{\alpha,p}$ to $U_{k}$ so that

(3.1) $b_{i,j,t}^{\alpha,p}=-b_{j,i,t}^{\alpha,p}$ .

Then

$\sum_{j,\alpha,p}(b_{i,j,t}^{\alpha,p}-a_{i,j,t}^{\alpha,p})d(\partial_{j}\partial_{\alpha}f_{p})|_{Q_{k+l+1}}=0$

on $(\rho_{k}^{k+l+1})^{-1}(R^{k})$ . This means $\sum_{j,\alpha,p}(b_{i,j,t}^{\alpha,p}-a_{i,j,t}^{\alpha,p})\partial_{j}\partial_{\alpha}f_{p}$ is constant on

the fibers of $(\rho_{k+l}^{k+l+1})^{-1}(R_{k})$ over $(\rho_{k}^{k+l})^{-1}(R_{k})$ , so there exist functions
$H_{i,t}\in F_{k+l}$ such that

$\sum_{j,\alpha,p}(b_{i,j,t}^{\alpha,p}-a_{i,j,t}^{\alpha,p})\partial_{j}\partial_{\alpha}f_{p}-H_{i,t}=0$

on $(\rho_{k}^{k+l+1})^{-1}(R_{k})$ . This set is the null set of $f_{1}$ , $\cdots$ , $f_{r}$ , then there exist
functions $c_{i,t}^{p}\in F_{k+l+1}$ which satisfies

$\sum_{j,\alpha,p}(b_{\dot{x},j,t}^{\alpha,p}-a_{i,j,t}^{\alpha,p})\partial_{j}\partial_{\alpha}f_{p}-H_{i,t}=\sum_{p}d_{i,t}^{y}f_{p}$
.

It follows that $H_{i,t}\in I_{k+l}^{k+l+1}$ and

$\sum_{i}\partial_{i}H_{i,t}$
$=$

$\sum_{i,j,\alpha,p}(b_{i,j,t}^{\alpha,p}-a_{i,j,t}^{\alpha,p})\partial_{i}\partial_{j}\partial_{\alpha}f_{p}$

$+$
$\sum_{i,j,\alpha,p}\partial_{i}(b_{i,j,t}^{\alpha,p}-a_{i,j,t}^{\alpha,p})\partial_{j}\partial_{\alpha}f_{p}-\sum_{i,p}(c_{i,t}^{p}\partial_{i}f_{p}-\partial_{i}(c_{i,t}^{p})f_{p})$

.
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From (3.2), $\sum_{i,j}b_{i,j,t}^{\alpha,p}\partial_{i}\partial_{j}\partial_{\alpha}f_{p}=0$ , so

$\sum_{i}\partial_{i}H_{i,t}+g_{t}=0$
, $mod I_{k+l+1}.F_{k+l+2}$ .

But the left side is in $F_{k+l+1}$ so $\sum_{i}\partial_{i}H_{i,t}+g_{t}\in I_{k+l+1}$ , and consequently
$g_{t}\in(I_{k+l}^{k+l+1})_{+1},1\leq t\leq s$ , which completes the proof.

Corollary 3.1. Under the hypothesis of the preceding Theorem
and $I_{k}^{k+1}=I_{k}$ we have $I_{k+l}^{k+l+1}=I_{k+l}$ , for all $l$ $\geq 0$ .

Proof of Theorem1.2: From Theorem 1.1(i) we have $ I_{k}=\{f\in$

$F_{k}$ : $f(R_{k})=0\}$ is regular, from (ii) $h_{k}=g_{k}^{\perp}$ is 1-acyclic [9], from (iii)
$h_{k+1}$ is a vector bundle and $I_{k}^{k+1}=I_{k}$ . Applying Corollary3.1, $R_{k+l}^{k+l+1}=$

$R_{k+l}$ , $l$ $\geq 0$ , and from Proposition 3.1 we get $\rho_{k+l}^{k+l+1}$ : $R_{k+l+1}\rightarrow R_{k+l}$ is
onto, for every $l$ $\geq 0$ . The $g_{k+l+1}$ are vector bundles, so these projections
are submersions.

\S 4. Contact of hypersurfaces of $C^{2}$

A three dimensional manifold $M$ with a codimension one distribu-
tion $\triangle\subset TM$ , an operator $J$ on $\triangle$ such that $J^{2}=-I$ , and an one
form $\theta$ such that $\theta^{\perp}=\triangle$ and $\theta\wedge d\theta\neq 0$ is a Cauchy-Riemann mani-

fold. A real hypersurface of $C^{2}$ has a natural structure of $CR$ manifold
with $\triangle=TM\cap J(TM)$ . From now on, $M$ and $M^{/}$ will denote CR-
manifolds. A diffeomorphism $f$ : $M$ $\rightarrow M’$ is a $CR$ diffeomorphism if
$f_{*}(\triangle)=\triangle^{J}$ , and $f_{*}(J)=J’$ . If $\triangle c$ is the complexification of $\triangle$ , then
$\triangle c=\triangle^{1,0}\oplus\triangle^{0,1}$ , and $f$ is a $CR$-diffeomorphism if and only if

(4.3) $f_{*}(\triangle^{1,0})=(\triangle\prime)^{1,0}$ .

Let $U$ be an open set of $M$ , $Z_{1}$ a no null section of $\triangle^{1,0}|_{U}$ , $Z_{\overline{1}}=\overline{Z_{1}}$ ,
and

(4.4) $Z_{0}=-i[Z_{1}, Z_{\overline{1}}]$ .

Then $Z_{0}$ , $Z_{1}$ , $Z_{\overline{1}}$ is a basis of $T_{C}M|_{U}$ . If $h$ is a complex valued function
on $U$ , we will write $h_{i}=Z_{i}(h)$ , $i=0,1$ , $\overline{1}$ . Let $a$ , $b$ , $c$ be the complex
valued functions defined by

(4.5) $[Z_{1}, Z_{0}]=aZ_{1}+\overline{b}Z_{\overline{1}}+cZ_{0}$ ,

which satisfy, as a consequence of Jacobi’s identity

$b_{1}-a_{\overline{1}}+a\overline{c}-bc=0$
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$\overline{c}_{1}-c_{\overline{1}}+i(a+\overline{a})=0$ .

Let $U^{J}$ be an open set of $M^{/}$ , $Z_{i}^{J}$ , $i=0,1$ , $\overline{1}$ as above with the corre-
sponding functions $a^{/}$ , $b^{J}$ , $c^{J}$ . We denote by $D_{k}$ the open set of $J_{k}=$

$J_{k}(M\times M’, M, \pi_{1})$ corresponding to $k$-jets of local diffeomorphisms of
$M$ in $M’$ , where $\pi_{1}$ is the canonical projection of $M$ $\times M^{J}$ on $M$ . Put
$D_{k}(U, U^{J})=(\beta_{k})^{-1}(U\times U’)\subset D_{k}$ . On $D_{1}(U, U’)$ we introduce the
coordinates system

$p_{j}^{i}$ : $D_{1}(U, U’)\rightarrow C$ , $i,j=0,1$ , $\overline{1}$ ,

defined by

$f_{*}(Z_{j}(x))=\sum_{i=0,1,\overline{1}}p_{j}^{i}(j_{x}^{1}f)Z_{i}’(f(x))$
.

These coordinates are not independent, and satisfy the relations

$\overline{p_{j}^{i}}=p\overline{\frac{i}{j}}$ , $i$ , $j=0,1$ , $\overline{1}$ ,

where $\overline{0}=0,\overline{\overline{1}}=1$ by convention. The coordinates on $D_{2}(U, U’)$ are
defined by

$p_{jk}^{i}(j_{x}^{2}f)=Z_{j}(p_{k}^{i}(j^{1}f))(x)$ , $i,j$ , $k=0,1$ , $\overline{1}$ .

Again $\overline{p_{jk}^{i}}=p\overline{\frac{i}{j}}\overline{k}$ . If $[Z_{i}, Z_{j}]=\sum a_{ij}^{k}Z_{k}$ , it follows from $f_{*}[Z_{i}, Z_{j}]=$

$[f_{*}Z_{i}, f_{*}Z_{j}]$ that

$\sum_{k}a_{ij}^{k}(x)p_{k}^{m}(j_{x}^{1}f)=p_{ij}^{m}(j_{x}^{2}f)-p_{ji}^{m}(j_{x}^{2}f)+\sum_{r,s}p_{i}^{r}(j_{x}^{1}f)p_{j}^{s}(j_{x}^{1}f)a_{rs}^{;m}(f(x))$
.

For instance

(4.6)
$p_{1\overline{1}}^{0}-p_{1}^{\frac{0}{1}}=i(p_{0}^{0}-p_{1}^{1}p\overline{\frac{1}{1}}+p\frac{1}{1}p_{1}^{\overline{1}})+c’(p_{1}^{1}p\frac{0}{1}-p_{1}^{0}p\frac{1}{1})+\overline{c}^{J}(p_{1}^{\overline{1}}p\frac{0}{1}-p\overline{\frac{1}{1}}p_{1}^{0})$ .

Coordinates in $D_{3}(U, U’)$ are defined by

$p_{mjk}^{i}(j_{x}^{3}f)=Z_{m}(p_{jk}^{i}(j^{2}f))(x)$ , $i,j$ , $k=0,1$ , $\overline{1}$ ,

and successively.
Equation (4.3) in coordinates is

$f_{*}Z_{1}=p_{1}^{1}(j^{1}f)Z_{1}’$
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or

$p_{1}^{\overline{1}}(j^{1}f)=p_{1}^{0}(j^{1}f)=0$ .

Let $I_{1}$ be the SPDE generated on $D_{1}(U, U’)$ by

$I_{1}$ : { $p_{1}^{\overline{1}}=p_{1}^{0}=0$ and conjugated equations.

The solutions of $I_{1}$ are (local) $CR$-diffeomorphisms from $M$ to $M’$ . The
prolongation $I_{2}$ of $I_{1}$ is generated by

(4.7) $I_{2}$ : $\{$

$p_{1}^{\frac{11}{11}}=p_{1}p=p_{1}^{0}=0\overline{\frac{1}{1}}=p_{01}^{\overline{1}}=p_{11}^{0}=p\frac{0}{1}1=p_{01}^{0}=0$

and conjugated equations.

It follows from (4.6) and (4.7) that

(4.8) $p_{0}^{0}-p_{1}^{1}p\overline{\frac{1}{1}}=0$ .

If $I_{1}^{2}=\tilde{I}_{1}$ , then $\tilde{I}_{1}$ is generated as

$\tilde{I}_{1}$ : $\{$

$p_{1}^{\overline{1}}=p_{1}^{0}=p_{0}^{0}-p_{1}^{1}p\overline{\frac{1}{1}}=0$

and conjugated equations.

Proposition 4.1. $h_{1}$ is 1-acyclic.

$Proof\ovalbox{\tt\small REJECT}$ Put $\alpha=(\alpha_{0}, \alpha_{1}, \alpha_{\overline{1}})\in N^{3}$ , and write $ p_{\alpha}^{J}=p_{0011\overline{1}\overline{1}}^{j}\cdots\cdots\cdots$

’

where the index $i$ appears $\alpha_{i}-$times. Then $h_{k}$ is generated by

$h_{k}=[dp_{\alpha}1,$
$dp\frac{\overline{1}}{\alpha}$ , $\alpha_{\overline{1}}\neq 0;dp_{\alpha}0$ , $\alpha_{1}+\alpha_{\overline{1}}\neq 0;|\alpha|=k]$

and

$n_{k}=dimh_{k}=2\{\frac{(k+2)!}{k!2^{I}}.-\frac{(k+1)!}{k!1!}\}+\{\frac{(k+2)!}{k!2!}-1\}=\frac{3k^{2}+5k}{2}$ .

We will show that the sequence

(4.9) $0-\Lambda^{3}T\otimes h_{k-2}d_{K}\rightarrow\Lambda^{2}\otimes h_{k-1}d_{K}\rightarrow T\otimes h_{k}d_{K}\rightarrow h_{k+1}\rightarrow 0$

is exact in $T\otimes h_{k}$ , for $k\geq 2$ . As we know $d_{K}(T\otimes h_{k})=h_{k+1}$ , it is
enough to show that $dimd_{K}(\Lambda^{2}T\otimes h_{k-1})=3n_{k}-n_{k+1}$ , for $k\geq 2$ . But

$0\rightarrow\Lambda^{3}T\otimes Q_{k-2}d_{K}\rightarrow\Lambda^{2}T\otimes Q_{k-1}d_{K}\rightarrow T\otimes Q_{k}d_{K}\rightarrow Q_{k+1}\rightarrow 0$

is exact, so if $\omega\in\Lambda^{2}T\otimes h_{k-1}$ is such that $d_{K}\omega=0$ , then there exists
$\eta\in\Lambda^{3}T\otimes Q_{k-2}$ such that $ d_{K}\eta=\omega$ . If $\eta=Z_{0}\wedge Z_{1}\wedge Z_{\overline{1}}\otimes\theta$ , with
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$\theta\in Q_{k-2}$ , then $d_{K}\eta=Z_{1}\wedge Z_{\overline{1}}\otimes\partial_{0}\theta-Z_{0}\wedge Z_{\overline{1}}\otimes\partial_{1}\theta+Z_{0}\wedge Z_{1}\otimes\partial_{\overline{1}}\theta,where$

$\partial_{i}\theta=d_{K}(Z_{i}\otimes\theta)$ . Consequently, $\partial_{i}\theta\in h_{k-1}$ , for $i=0,1$ , $\overline{1}$ , so $\theta\in h_{k-2}$ .

Then $\eta\in\Lambda^{3}T\otimes h_{k-2}$ , and this shows (4.9) is exact at $\Lambda^{2}T\otimes h_{k-1}$ , so

$dimd_{K}(\Lambda^{2}T\otimes h_{k-1})$

$=dim\Lambda^{2}T\otimes h_{k-1}-dim\Lambda^{3}T\otimes h_{k-2}=3n_{k-1}-n_{k-2}$ .

The equality $3n_{k}-n_{k+1}=3n_{k-1}-n_{k-2}$ is a simple verification, which
shows (4.9) is exact.

Proposition 4.2. For every $k\geq 1$ ,

$I_{k}^{k+1}=\tilde{I}_{k}$

$Proof\ovalbox{\tt\small REJECT} This$ follows from Theorem3.1 and Proposition4. 1
The same way as above, we verify $\tilde{I}_{2}$ is generated by

(4.10) $\tilde{I}_{2}$ : $\{$

equations(4.7)(4.8)

$\frac{p_{\frac{0}{1}}^{0}op\frac{}{1}\overline{1}}{p\overline{\frac{1}{1}}}-p_{\overline{\frac{1}{1}}}1-p_{1}^{1}p_{0\overline{1}}^{\overline{1}},=0-2i\frac{p_{0}^{1}p_{0}^{1}}{p_{1}^{1}}-(\overline{c}-\overline{c})p\overline{\frac{1}{1}}=0$

and conjugated equations.

Then

$\tilde{I}_{1}^{2}=\tilde{I}_{1}$

and if we define

$\dot{I}_{2}=\tilde{I}_{2}^{3}$

then $\dot{I}_{2}$ is generated [10] by

(4.11) $\dot{I}_{2}$ : $\{$

equations(4.10)

$\mathring{\frac{p_{\overline{1}}^{\overline{1}}}{p\overline{\frac{1}{1}}}}-\mathring{\mathring{\frac{p^{0}+3ip_{0}^{1}p_{0}^{\overline{1}}}{2p_{00}^{0}}}}+\frac{i}{2}(d-d’p_{0}0)-\frac{1}{2}(cp_{0}^{1}-c’p_{0}^{\overline{1}})=0$

and conjugated equations

where

(4.12) $d=\frac{1}{2}(c_{\overline{1}}+i(a-2\overline{a})$ .

It follows from (4.11) that

$\dot{I}_{1}^{2}=\tilde{I}_{1}$ .
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Proposition 4.3. $\tilde{h}_{2}$ is 1-acyclic.

$Proof\ovalbox{\tt\small REJECT}$ It is easy to see that $\tilde{h}_{k}$ is generated by

$\tilde{h}_{k}$

$=$ $[dp_{\alpha}1,$
$dp\frac{\overline{1}}{\alpha}$ , $\alpha\neq$ $(k-1,1, 0)$ , $(k, 0,0);dp_{\alpha}0$ , $\alpha\neq(k, 0,0)$ ;

$dp_{(k,0,0)}0-p\overline{\frac{1}{1}}dp_{(k-1,1,0)}1-dp_{(1,k-1,0)}\overline{1}]$

and $\tilde{n}_{k}=dim\tilde{h}_{k}=3\frac{(k+2)!}{k!2!}-4$ . As in the proof of Proposition4.1,
$3\tilde{n}_{k}-\tilde{n}_{k+1}=3\tilde{n}_{k-1}-\tilde{n}_{k-2}$ for $k\geq 3$ . Observe that equality doesn’t

hold for $k=2$ , so $\tilde{h}_{1}$ is not 2-acyclic.

Proposition 4.4. For every $k\geq 2$ ,

$\tilde{I}_{k}^{k+1}=\dot{I}_{k}$ .

$Proof\ovalbox{\tt\small REJECT}$ The same as Proposition4.2.
Let be now

$\hat{I}_{2}=\dot{I}_{2}^{3}$ .

Then (cf. [10]) $\hat{I}_{2}$ is generated by

(4.13) $\hat{I}_{2}$ : $\{$

equations (4. 11)

$\mathring{\mathring{\frac{p^{\overline{1}}}{p\overline{\frac{1}{1}}}}}$

-
$\mathring{\mathring{\frac{p_{0^{p^{0}}}^{\overline{1}}}{p\overline{\frac{1}{1}}p_{0}^{0}}}}+(\kappa-\kappa’p_{1}^{1}p_{0}^{0})-\frac{ip_{0}^{1}(p_{0}^{\overline{1}})^{2}}{p\overline{\frac{1}{1}}p_{0}^{0}}$

$-c’\frac{p_{0}^{1}p_{0}^{\overline{1}}}{p\overline{\frac{1}{1}}}-b^{J11}p_{1}p_{0}+(id^{J}-\overline{a}^{J})p_{1}^{1}p_{0}^{\overline{1}}=0$

and conjugated equations

with

(4.14) $\kappa=-\frac{i}{3}(c_{0}-id_{1}+icd+ac-\overline{b}\overline{c})$ .

Proposition 4.5. $\dot{h}_{2}$ is 1-acyclic.

$Proof\ovalbox{\tt\small REJECT}$ The fiber bundle $\dot{h}_{k}$ , $k\geq 2$ is generated by

$\dot{h}_{k}$

$=$ [ $dp_{\alpha}1$ , $dp\frac{\overline{1}}{\alpha}$ , $\alpha\neq$ $(k-1,1, 0)$ , $(k, 0,0);dp_{\alpha}0$ , $\alpha\neq(k, 0,0)$ ;

$2p\overline{\frac{1}{1}}dp_{(k-1,1,0)}1-dp_{(k,0,0)}0$ ; $2^{1}p_{1}d^{\overline{1}}p_{(k-1,0,1)}-dp_{(k,0,0)}0]$ .

Define $\dot{h}_{1}$ , doing $k=1$ above. If $\dot{n}_{k}=dim\dot{h}_{k}=\frac{3(k+2)!}{k!2!}-3$ , then
$3\dot{n}_{k}-\dot{n}_{k+1}=3\dot{n}_{k-1}-\dot{n}_{k-2}$ for $k\geq 3$ , and the proof are in the same
lines of Proposition4.1.



Prolongation Projection Commutativity Theorem 399

Proposition 4.6. For every $k\geq 2$

$\dot{I}_{k}^{k+1}=\hat{I}_{k}$ .

$Proof\ovalbox{\tt\small REJECT}$ As in Proposition4.2.

Proposition 4.7. $\hat{h}_{2}$ is 1-acyclic.

$Proof\ovalbox{\tt\small REJECT} We$ have

$\hat{h}_{2}$

$=$ $[dp_{ij}0,$ $(i,j)\neq(0,0);dp_{ij}1$ , $(i,j)\neq(0,0)$ , $(1, 0)$ ; $dp_{00}1-\frac{p_{0}^{1}}{p_{0}^{0}}dp_{00}0$ ;

$dp_{01}1-\frac{1}{2p\overline{\frac{1}{1}}}dp_{00}0$ ; and conjugated elements

and $\hat{h}_{k}=Q_{k}^{*}$ , for $k\geq 3$ . It is enough to show $ d_{K}(\Lambda^{2}T\otimes\hat{h}_{2})=d_{K}(\Lambda^{2}T\otimes$

$Q_{2}^{*})$ , or, $d_{K}(\Lambda^{2}T\otimes[d^{0}p_{00}])\subset d_{K}(\Lambda^{2}T\otimes\hat{h}_{2})$ , and this is consequence of

$d_{K}(e_{1}\wedge e_{\overline{1}}\otimes dp_{00}0)=d_{K}(e_{0}\wedge e_{\overline{1}}\otimes d^{0}p_{01}-e_{0}\wedge e_{1}\otimes dp_{0\overline{1}}0)$

and

$d_{K}(e_{0}\wedge e_{1}\otimes dp_{00}0)$ $=$ $\frac{2}{p_{1}^{1}}d_{K}[e_{0}\wedge e_{\overline{1}}\otimes(dp_{01}\overline{1}-\frac{p_{0}^{\overline{1}}}{p_{0}^{0}}dp_{01}0)$

$+e_{1}\wedge e_{0}(dp_{0\overline{1}}\overline{1}-\frac{1}{2}p_{1}^{1}dp_{00}0-\frac{p_{0}^{\overline{1}}}{p_{0}^{0}}dp_{0\overline{1}}0)$

$-e_{1}\wedge e_{\overline{1}}(dp_{00}\overline{1}-\frac{p_{0}^{\overline{1}}}{p_{0}^{0}}dp_{00}0)]$ .

The SPDE $\hat{I}_{2}^{3}$ is generated by $(cf[10])$

(4.15) $\hat{I}_{2}^{3}$ : $\{$

$p\overline{\frac{1}{1}}r-p_{1}^{1}(p_{0}^{0})^{2}r’=0equations(4.13)$

and conjugated equations

where

(4.16) $r=\kappa_{1}-\overline{b}_{0}-2c\kappa-\overline{b}(a+\overline{a}-id)$ ;

If we define

$R|_{U}=rZ_{1}^{*}\wedge Z_{0}^{*}\otimes Z_{0}^{*}\otimes Z_{\overline{1}}+\overline{r}Z\frac{*}{1}\wedge Z_{0}^{*}\otimes Z_{0}^{*}\otimes Z_{1}$

then $R$ is a tensor on $M,i.e.$ , $R\in\Gamma(\Lambda^{2}T^{*}\otimes T^{*}\otimes T)$ .
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Definition 4.1. The tensor $R$ is the curvature tensor of the CR-

manifold M. We say $M$ is umbilic at $x\in M$ if $R(x)=0$ , otherwise $M$

is said non-umbilic at $x\in M;M$ is said umbilic(non-umbilic) if $M$ is
umbilic (non-umbilic) at every $x\in M$

Example: The quadric $Q$ is defined by $Q=\{(z, w)\in C^{2}$ : $w-\overline{w}=$

$2iz\overline{z}\}$ . If $Z_{1}=\frac{i}{2}\frac{\partial}{\partial z}-\overline{z}\frac{\partial}{\partial w}$ then $Z_{0}=-\frac{1}{2}(\frac{\partial}{\partial w}+\frac{\partial}{\partial\overline{w}})$ . Then $a=b=c=0$
and $R=0$ , so $Q$ is umbilic.

Proposition 4.8. The diagram

$I_{6}$ $\rightarrow$
$\tilde{I}_{5}$

$\rightarrow$
$\dot{I}_{4}$

$\rightarrow$
$\hat{I}_{3}$

$\rightarrow$
$\hat{I}_{2}^{3}$

$ I_{5}\downarrow$

$\rightarrow$

$\tilde{I}_{4}\downarrow$

$\rightarrow$

$\dot{I}_{3}\downarrow$

$\rightarrow$

$\hat{I}_{2}\downarrow$

$\rightarrow$

$\tilde{I}_{1}\downarrow$

$ I_{4}\downarrow$

$\rightarrow$

$\tilde{I}_{3}\downarrow$

$\rightarrow$

$\dot{I}_{2}\downarrow$

$\rightarrow$

$\tilde{I}_{1}\downarrow$

(4.17)
$ I_{3}\downarrow$

$\rightarrow$

$\tilde{I}_{2}\downarrow$

$\rightarrow$

$\tilde{I}_{1}\downarrow$

$ I_{2}\downarrow$

$\rightarrow$

$\tilde{I}_{1}\downarrow$

$\downarrow$

$I_{1}$

is commutative, with horizontal arrows surjective and the arrows repre-
senting the projection of projectable functions.

$Proof\ovalbox{\tt\small REJECT}$ It is a consequence of the above propositions.

Theorem 4.1. Given $CR$ manifold $M$ and $M$ ’ and points $x\in M$

and $x’\in M’$ there exist a fifth order jet of $CR$-diffeomorphism doing $a$

fifth order contact between $M$ and $M$ ’ at points $x$ and $x’$ .

$Proof\ovalbox{\tt\small REJECT}$ Proposition4.8 says that $\beta_{5}$ : $I_{5}\rightarrow M\times M’$ is surjective,
then there exists $X\in I_{5}$ such that $\beta_{5}(X)=(x, x’)$ .

Theorem 4.2. If $M$ ’ is umbilic, then it is locally $CR$-diffeomorphic
to the hyperquadric $Q$ .

$Proof\ovalbox{\tt\small REJECT} Let$ be $M=Q$ ; then $r$ and $r^{/}$ are 0, and from (4.15) we get $\hat{I}_{3}$

is onto $\hat{I}_{2}$ . As $\hat{h}_{2}$ is 1-acyclic, Corollary3.1 says $\hat{I}_{2}$ is formally integrable.

But $\hat{h}_{3}=Q_{3}^{*}$ , then $\hat{I}_{2}$ is completely integrable $(cf[5])$ , so there exists a
neighborhood $U$ of $x\in Q$ and a $CR$-diffeomorphism $f$ : $U\rightarrow f(U)\subset M’$

solution of $\hat{I}_{2}$ .
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Corollary 4.1. If $M’=Q$ , then $\hat{I}_{2}\cap\beta_{2}^{-1}(M, 0)$ is a $G$-structure
associated to $M$, where the group $G$ is the group of $CR$-automorphisms

of $Q$ .

Suppose now that $M$ and $M^{J}$ are non-umbilic. Then $\hat{I}_{2}^{3}$ is a regular
SEDP, and in (4.15) we can replace the new equation by

$p_{1}^{1}=\epsilon\frac{\lambda}{\lambda}$, ’
$\epsilon=\pm 1$

where

(4.18) $\lambda=\frac{\sqrt{r}}{\sqrt[8]{r\overline{r}}}$

( $\sqrt[8]{r\overline{r}}$ taken as positive root) and $\lambda’$ defined similarly. Then

(4.19) $\hat{I}_{2}^{3}$ : $\{$

equations (4. 13)
$p_{1}^{1}=\epsilon\lambda/\lambda’$ , $\epsilon=\pm 1$

and conjugated equations

Defining

$\overline{I}_{2}=\hat{I}_{2}^{3}$

we can verip

(4.21) $\overline{I}_{2}^{3}$ : $\{$

equations(4. 19)

$\beta=\alpha=\beta\alpha’$,

and conjugated equations

where

(4.21) $\alpha=\frac{\overline{\lambda}_{1}}{\overline{\lambda}}+\frac{\lambda_{1}}{2\lambda}-\frac{c}{2}$

and

(4.22) $\beta=2(\alpha-\frac{\overline{\lambda}_{1}}{\overline{\lambda}})(\overline{\alpha}-\frac{\lambda_{\overline{1}}}{\lambda})+\frac{\lambda_{\overline{1}}\overline{\lambda}_{1}}{\lambda\overline{\lambda}}-i(\frac{\lambda_{0}}{\lambda}-\frac{\overline{\lambda}_{0}}{\overline{\lambda}})-d$ .
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As $\overline{h}_{2}=\hat{h}_{2}$ , we obtain in non-umbilic case an extension of (4.17):

I7 $\rightarrow$

$\tilde{I}_{6}$

$\rightarrow$
$\dot{I}_{5}$

$\rightarrow$
$\hat{I}_{4}$

$\rightarrow$
$\overline{I}_{3}$

$\rightarrow$ $\overline{I}_{2}^{3}$

$ I_{6}\downarrow$

$\rightarrow$

$\tilde{I}_{5}\downarrow$

$\rightarrow$

$\dot{I}_{4}\downarrow$

$\rightarrow$

$\hat{I}_{3}\downarrow$

$\rightarrow$

$\frac{\downarrow}{I}2$

$ I_{5}\downarrow$

$\rightarrow$

$\tilde{I}_{4}\downarrow$

$\rightarrow$

$\dot{I}_{3}\downarrow$

$\rightarrow$

$\hat{I}_{2}\downarrow$

(4.23)
$ I_{4}\downarrow$

$\rightarrow$

$\tilde{I}_{3}\downarrow$

$\rightarrow$

$\dot{I}_{2}\downarrow$

$\rightarrow$

$\tilde{I}_{1}\downarrow$

$ I_{3}\downarrow$

$\rightarrow$

$\tilde{I}_{2}\downarrow$

$\rightarrow$

$\tilde{I}_{1}\downarrow$

$ I_{2}\downarrow$

$\rightarrow$

$\tilde{I}_{1}\downarrow$

$\downarrow$

$I_{1}$

where all horizontal arrows are onto.

Proposition 4.9. There exists a sixth order contact between two
$CR$-manifolds at two non-umbilic points.

$Proof\ovalbox{\tt\small REJECT}$ It follows from $\rho_{2}^{6}(I_{6})=\overline{I}_{2}$

The following theorem is in [2]:

Theorem 4.3. There existsa seventh order contact between a real
hypersurface of $C^{2}$ at a non-umbilic point and the hypersurface defined
by

$v=z\overline{z}+2Re\{z^{4}\overline{z}^{2}[1+\frac{16}{5}\alpha(0)z+i(\frac{275}{128}\alpha(0)\overline{\alpha}(0)-\beta(0))u]\}$

where $\alpha$ , $\beta$ are the functions defined in (4-21), $(4\cdot 23)$

$Proof\ovalbox{\tt\small REJECT} Let$ be $M$ $=$ { ( $z$ , $w)\in C^{2}$ : $v=F(z,\overline{z},$ $u)$ , with $w=u+iv$}.
Choosing coordinates $(z, u)$ on $M$ , take

(4.24) $Z_{1}=\frac{\partial}{\partial z}-A\frac{\partial}{\partial u}$ ;

then from (4.4)

(4.25) $Z_{0}=\frac{2B}{(1+f_{u}^{2})}\frac{\partial}{\partial u}$
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where $A=f_{z}/(f_{u}+i)$ and $B=-f_{z\overline{z}}+\overline{A}f_{uz}+Af_{u\overline{z}}-A\overline{A}f_{uu}$ . It follows
from (4.5)

(4.26) $a=b=0$ , $c=A_{u}-2\frac{f_{u}f_{uz}-Af_{u}f_{uu}}{1+f_{\tau\nu}^{2}}+\frac{B_{z}-AB_{u}}{B}$

(4.27) $f(z,\overline{z}, u)=\sum a_{jkl}z^{j}\overline{z}^{k}u^{l}$

with $a_{jkl}=0,j+k+l$ $\leq 5$ , $(j, k, l)\neq(1,1, 0);a_{1,1,0}=1;a_{kjl}=\overline{a_{jkl}}$

From (4.12),(4.14),(4.16),(4.24),(4.26)

(4.28) $r=-\frac{1}{6}c_{11\overline{1}}-\frac{i}{3}c_{10}+c(\frac{2}{3}ic_{0}+\frac{i}{2}c_{1\overline{1}}-\frac{1}{3}cc_{\overline{1}})+\frac{1}{6}c_{1}c_{\overline{1}}$ .

From (4.24), (4.25), (4.27), (4.28)

$Z_{1}(0)=\frac{\partial}{\partial z};Z_{0}(0)=-2\frac{\partial}{\partial u}$

$c(0)=c_{1}(0)=c_{\overline{1}}(0)=c_{0}(0)=c_{1\overline{1}}(0)=c_{10}(0)=0$

$c_{11\overline{1}}(0)=4!2!a_{420}$

$r(0)=a_{420}$ .

As $r(0)\neq 0$ , by Proposition4.9, we can choose $a_{420}=a_{240}=1$ , and all
others coefficients of sixtieth-order nulls, so $r(0)=1$ , and

(4.29) $v=z\overline{z}+2Re(z^{4}\overline{z}^{2})+o(7)$

Again from (4.24),(4.25),(4.28),(4.29)

(4.30) $c_{111\overline{1}}(0)=5!2!a_{520}$ ; $c_{\overline{1}11\overline{1}}(0)=4!3!a_{430}$ ; $c_{011\overline{1}}(0)=-4!2!2a_{421}$

and from (4.28);(4.30)

(4.31) $r_{1}(0)=5a_{520}$ ; $r_{\overline{1}}(0)=3a_{430}$ ; $r_{0}(0)=-2a_{421}$ .

From (4.17)

(4.32) $\lambda_{j}=\frac{\lambda}{8}(3\frac{r_{j}}{r}-\frac{\overline{r}_{j}}{\overline{r}})$ , $j=0,1$ , $\overline{1}$
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and from (4.18),(4.31)

$\lambda(0)=1;\lambda_{1}(0)=\frac{1}{8}(15a_{520}-3a_{430})$ ;

$\lambda_{\overline{1}}(0)=\frac{1}{8}(9a_{430}-5a_{520});\lambda_{0}(0)=\frac{1}{4}(a_{241}-a_{421})$ .

From (4.20), (4.21), (4.32)

$\alpha(0)=\frac{5}{16}(3a_{340}+a_{520})$

$\beta(0)$ $=$ $\frac{9}{128}(5\alpha(0)-16a_{340})(5\overline{\alpha}(0)-16a_{430})$

$+\frac{1}{64}(5\alpha(0)-24a_{340})(5\overline{\alpha}(0)-24a_{430}+Im(a_{241})$ .

Therefore we can choose

$a_{520}=\frac{16}{5}\alpha(0);a_{421}=-i(\beta(0)-\frac{275}{128}\alpha(0)\overline{\alpha}(0))$

$a_{250}=\overline{a_{520}};a_{241}=\overline{a_{421}}$

all the others coefficients nulls, and the theorem follows.
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A Complex Frobenius Problem

Sidney M. Webster

Dedicated to Professor Kuranishi

Introduction

A complex Frobenius structure on a smooth (real) manifold $M$ is a
smooth complex vector sub-bundle $E$ of the complexified tangent bundle
$T(M)\otimes C$ which satisfies the integrability condition $[E, E]\subseteq E$ (i.e. the
set of local sections of $E$ is closed under Lie bracket). Such a structure is
also termed formally integrable, or involutive. The bracket of a section
of $E$ with a section of the complex conjugate bundle $E$ , taken $mod$

$E+\overline{E}$ , gives the Levi-form of the structure. If $E\cap\overline{E}=0$ , then $E$

is a $CR$ structure; it is an almost complex structure if also $E+\overline{E}=$

$T(M)\otimes C$ . The integrability problem is to find independent functions,
the differentials of which span the sub-bundle $E^{\perp}$ of complex covectors
annihilating $E$ . The problem of local solvability is to establish a Poincar\’e

lemma in the natural de Rham-Dolbeault complex associated to the
differential ideal generated by sections of $E^{\perp}$ .

The case of identically vanishing Levi-form was already treated in
works by Nirenberg [13] and H\"ormander [7]. The Mizohata operator
[5], [12] on $R^{2}$ gives perhaps the simplest complex Frobenius structure
for which local solvability fails (it is also important for the canonical
transformation theory of partial differential equations [8] $)$ . Nirenberg
[14] has shown that local integrability fails for small perturbations of
this structure. Certain interesting higher dimensional analogues have
been studied by Tr\‘eves [18]. These are structures on $R^{n+1}$ induced
by (local) maps $f$ : $R^{n+1}\rightarrow C$ , $df\neq 0$ . The topology of the fibers
$f^{-1}(a)$ plays a key role in the questions of local solvability and of local
integrability for small perturbations of these structures. In his recent
book [19] \ulcorner b\‘eves also treats the integrability and solvability problem for
a variety of important structures.

Received May 9, 1995.
Partially supported by NSF Grant DMS-9201966.
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Here we consider local structures which are modeled on those in-
duced by generic folds $F$ : $M$ $\rightarrow C^{n}$ , where $M$ is an open subset of
$R^{2n}$ . The fiber is always a pair of points which coalesce along a smooth
hypersurface $N\subset M$ . For $n$ $=1$ , $F$ essentially induces the Mizohata
structure [17]. For $n$ $\geq 2$ the case where $F(N)$ is part of the boundary
of a strongly pseudoconvex domain $D\subset C^{n}$ is of special interest. $F$ is
an interior fold if $F(M)\subseteq\overline{D}$ , and an exterior fold if $ F(M)\cap D=\emptyset$ .

Our main result implies that complex Frobenius structures which
are small perturbations of strongly pseudoconvex interior folds are locally
integrable, if $n\geq 2$ . It is false for $n$ $=1$ by Nirenberg’s example. We
show by counterexample ((1.7) below) that local integrability also fails
for small perturbations of strongly pseudoconvex exterior folds $(n =2)$ .

Thus, fiber topology does not suffice to determine the main properties
of fold-like structures. The integrability results given here for them are
more similar to those known for $CR$ structures of hypersurface type. We
refer specifically to the positive embedding results of Kuranishi [11] and
Akahori [1], and the counterexamples of Nirenberg [14] and Jacobowitz
and Tr\‘eves [10]. Though we point out that there is no unresolved di-
mension as there is (presently) for $CR$ structures.

Originally we had hoped that the current problem would be more
similar to the Kuranishi embedding problem and be amenable to the
methods of [20]; but we were unable to construct an exact homotopy
formula, $i$ . $e$ . one valid without shrinking the domain. However, it turned
out that one could establish the above integrability result, and much
more easily, by reducing it to a theorem of Hanges and Jacobowitz [6].
One drawback to this method is that it only yields $C^{\infty}$ regularity. Thus
we were unable to address the question of $C^{k}$ regularity, one of out
original aims. However, we hope that the work will shed some further
light of the integrability problem.

The main result is proved also without the aid of the Poincar\’e

lemma. In fact we use our integrability theorem to reduce it to the
case of an interior fold, which we carry out in section 1, for the admis-
sible degrees. We are indebted to Cordaro and Tr\‘eves [3] for a helpful
remark in this respect. In section 2 we characterize intrinsically the var-
ious formal generic fold-like structures and give a useful normalization
for them. This is used in section 3 together with [6] to derive the main
result.
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\S 1. Generic folds

Let $z=(z’, z^{n}=x^{n}+iy^{n})$ be complex coordinates on $C^{n}$ and
consider a (local) domain with boundary

(1.1) $D:y^{n}>h(z’, x^{n})$ , $\partial D:y^{n}=h(z’, x^{n})$ ,

where $h$ is a smooth real function with $h(0)=0$ , $dh(0)=0$ . We also
use $(z’, t, s)$ as coordinates on $R^{2n}\cong C^{n-1}\times R^{2}$ and define a map
$F:M$ $\rightarrow C^{n}$ by

(1.2) $F(z’, t, s)=(z’, z^{n}=t+i(\frac{1}{2}s^{2}+h(z’, t)))$ ,

where $M$ is a suitable neighborhood of 0 in $R^{2n}$ which is symmetric
about $N$ ,

(1.3) $N=M\cap\{s=0\}$ .

$F$ is a generic fold of $M$ onto $\overline{D}$ with $F(N)=\partial D$ .

The complex one-forms

(1.4) $\theta^{\alpha}=dz^{\alpha}$ , $\theta^{n}=dz^{n}$ ,

$dz^{n}=(1+ih_{t})dt+i(sds+h_{\alpha}dz^{\alpha}+h_{\overline{\alpha}}dza$ ,

( $h_{\alpha}=\partial h/\partial z^{\alpha}$ , etc. ) span an $n$-dimensional sub-bundle $E^{\perp}$ of the
complex cotangent bundle. (We use the index ranges

(1.5) $ 1\leq\alpha$ , $\beta$ , $\gamma\leq n-1;1\leq i$ , $j$ , $k\leq n$ ,

and the summation convention for repeated indices). We let $E$ be the
sub-bundle of complex vectors annihilated by $E^{\perp}$ . With $\{\theta^{\alpha}, \theta^{n}, c\Gamma z^{\alpha}, ds\}$

as a basis of complex covectors, we get dual complex complex vector
fields $X_{\overline{\alpha}}$ , $X_{\overline{n}}$ spanning $E$ , for which

$df\equiv X_{\overline{\alpha}}fd\overline{z}^{\alpha}+Xnfds$ , $mod (\theta^{j})$ ,

for any smooth function $f$ . We readily compute

(1.6) $X_{\overline{\alpha}}=\partial_{\overline{\alpha}}-i\frac{h_{\overline{\alpha}}}{1+ih_{t}}\partial_{t}$ , $X_{\overline{n}}=\partial_{s}-i\frac{s}{1+ih_{t}}\partial_{t}$ .

These vectors together with their complex conjugates,

$X_{j}\equiv\overline{X}_{\overline{j}}$ ,
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are linearly independent except along $N$ , where $X_{\overline{n}}$ becomes real and
transverse and spans $E\cap\overline{E}$ . Along $N$ we have the bracket relations

$[X_{\alpha}, X_{\overline{\beta}}]|_{N}=-ig_{\alpha\overline{\beta}}\partial_{t}$ , $[X_{\alpha}, X_{\overline{n}}]|_{N}=0$ , $[X_{n}, X_{\overline{n}}]|_{N}=-ig_{n\overline{n}}\partial_{t}$ .

Here $g_{n\overline{n}}=[2(1+h_{t}^{2})]^{-1}$ , and $g_{\alpha\overline{\beta}}$ corresponds to the Levi-form of
$\partial D$ under the equivalence $F|_{N}$ . The full matrix $g_{i\overline{j}}$ , defined along $N$ ,

represents the Levi-form of the complex Frobenius structure $E$ . It is
positive definite if $D$ is strongly pseudoconvex, in which case $F$ is an
interior fold. $F$ is an exterior fold relative to $C^{n}-D$ if the latter domain
is strongly pseudoconvex.

Next we consider some abstractly defined structures $E$ on $R^{4}$ with
coordinates $(z=x+iy, t, s)$ . $E$ is the span of the complex vector fields

(1.7) $X_{\overline{1}}=\partial_{\overline{z}}$ , $X_{\overline{2}}=\partial_{s}-is(1+s\xi+z)\partial_{t}$ ,

where $\xi(t, s)$ is a smooth real valued function defined near 0. Clearly,
$[X_{\overline{1}}, X_{\overline{2}}]=0$ , $[X_{1}, X_{\overline{1}}]=0$ , and $[X_{1}, X_{\overline{2}}]=-i\partial_{t}$ . Thus $E$ is for-
mally integrable, and $E\cap\overline{E}$ is non-zero only along the hypersurface
$N$ : $x=-s-s^{2}\xi(t, s)$ , where it is spanned by the transverse vector
$X_{\overline{2}}=Re(X_{\overline{2}})$ . The Levi-form is non-degenerate indefinite along $N$ . In
[14] Nirenberg has constructed a function $\xi$ for which $(X_{\overline{2}}|_{z=0})u=0$

has no non-constant solution $u(t, s)$ . Thus, if $X_{\overline{j}}F=0$ , $j=1,2$ , then
$(dF\Lambda dz)(0)=0$ , so that $(dF_{1}\wedge dF_{2})(0)=0$ . Hence, the structure $E$ ,

which is a formally integrable strictly pseudo convex exterior fold is no
actually integrable near 0 for this choice of $\xi$ .

We return to the fold structure (1.2),(1.6) and consider the problem
of local solvability. We assume that the smooth one-form

(1.8) $\varphi=\varphi_{\overline{\alpha}}(\Gamma z^{\alpha}+\varphi_{\overline{n}}ds$ ,

satisfies the compatibility condition $\overline{\partial}_{E}\varphi=0$ , or

(1.9) $X_{\overline{i}}\varphi_{\overline{j}}-X_{\overline{j}}\varphi_{\overline{i}}=0,1\leq i$ , $j\leq n$ .

The problem is to find a smooth function $g$ with $\overline{\partial}_{E}g=\varphi$ , i.e.

(1.10) $X_{\overline{j}}g=\varphi_{\overline{j}}$ , $1\leq j\leq n$ .

We assume, in addition, that $\varphi$ satisfies

(1.11) $\varphi_{\overline{n}}=O(s^{\infty})$ ,

along $N$ . More intrinsically, $\varphi_{\overline{n}}$ is the interior product of $\varphi$ with a
smooth non-vanishing section of $E$ which becomes real along $N$ . Thus,
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(1.11) says that $\varphi$ is flat on the real characteristics of $E$ . By a standard
argument (see below) one can always achieve (1.11) by adding an exact
form to $\varphi$ . Grushin’s example shows that, even with this extra condition,
(1.10) may not have a solution for $n=1$ . However, if $n\geq 2$ and $F$ is a
strongly pseudoconvex interior fold, we shall show that (1.9) is sufficient
for the existence of a solution to (1.10).

We define open sets and maps

$M^{\pm}=\{(z’, t, s)\in M : \pm s>0\}$ , $ F_{\pm}=F|_{M}\pm$ ,

so that $F\pm:M^{\pm}\rightarrow D$ are isomorphisms of Frobenius structures. We
set $\varphi^{\pm}=(F_{\pm}^{-1})^{*}\varphi$ , so that

$\varphi^{\pm}$ $=$ $b_{\overline{\alpha}}^{\pm}d\overline{z}^{\alpha}\pm[2(y^{n}-h)]^{-1/2}b_{\overline{n}}^{\pm}d(y^{n}-h)$

(1.11) $\equiv$ $(b_{\overline{\alpha}}^{\pm}\pm\frac{-h_{\overline{\alpha}}b_{\overline{n}}^{\pm}}{\sqrt{2(y^{n}-h)}})d\overline{z}^{\alpha}\pm\frac{(i-h_{x^{n})}b_{\overline{n}}^{\pm}}{2\sqrt{2(y^{n}-h)}}d\overline{z}^{n}$ ,

where $b_{\overline{j}}^{\pm}=\varphi_{\overline{j}}\circ F_{\pm}^{-1}$ , and $\equiv is$ congruence $mod dz^{j}$ . These forms will

blow up along $\partial D$ , unless $\varphi_{\overline{n}}$ vanishes along $N$ . This is the motivation
for the condition (1.11).

Lemma 1.1. If (1.9) and (1.11) hold, then the forms $\varphi^{\pm}$ are
smooth $\overline{\partial}$-closed $(0, 1)$ -forms on the closure $\overline{D}$ .

proof. By (1.9) they are closed, and the $b_{\overline{n}}^{\pm}$ are clearly smooth on
$\overline{D}$ and vanish to infinite order on $\partial D$ by (1.11). By the chain rule and
(1.9) we have

(1.13) $-2i\theta_{\overline{z}^{n}}b_{\alpha}\pm=(1+ih_{x^{n}})(X_{\overline{\alpha}}\varphi_{\overline{n}})\circ F_{+}^{-1}$

But each $X_{\overline{\alpha}}\varphi_{\overline{n}}$ also vanishes to infinite order along $N$ , so these functions
are also smooth up to the boundary. For each fixed $z’$ we apply the
Cauchy formula to $ b_{\alpha}\pm$ on the domain with counter-clockwise boundary

(1.14) $D(z’)$ $=$ $\{z_{n} : |x^{n}|\leq\delta, h(z’, x^{n})\leq y^{n}\leq h(z’, x^{n})+\rho\}$ ,

$\partial D(z’)$ $=$ $a_{0}(z’)-a_{\rho}(z’)+c_{\delta}(z’)-c_{-\delta}(z’)$ ,

$a_{\sigma}(z’)$ $=$ $\{x^{n}+i(h(z’, x^{n})+\sigma) : -\delta\leq x^{n}\leq+\delta\}$ ,

$c_{\sigma}(z’)$ $=$ $\{\sigma+iyn : h(z’, \sigma)\leq y^{n}\leq h(z’, \sigma)+\rho\}$ ,

where $\delta>0$ , $\rho>0$ are sufficiently small. We have $(\zeta^{n}=\xi^{n}+i\eta^{n})$

(1.15)

$2\pi ib_{\alpha}\pm(z’, z^{n})=\int_{\partial D(z’)}\frac{b_{\alpha}\pm(z’,\zeta^{n})}{\zeta^{n}-z^{n}}d\zeta^{n}+\int_{D(z’)}\frac{\partial_{\overline{z}^{n}}b_{\alpha}\pm(z’,\zeta^{n})}{\zeta^{n}-z^{n}}d\zeta^{n}\wedge d\overline{\zeta}^{n}$
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In the double integral we extend the numerator of the integrand smoothly
by zero across $\partial D$ . Then we may change the domain of integration $D(z’)$

to one whose boundary is independent of $z’$ , except for the upper curve
$a_{\rho}(z’)$ , which varies smoothly with $z’$ . It’s then clear that the double
integral gives a function of $(z’, z^{n})$ which is smooth up to the boundary.
In the line integral over $c_{\delta}(z’)$ , we make the substitution $\sigma=\eta^{n}-h(z’, \delta)$

to get

$\int_{\sigma=0}^{\rho}\frac{\varphi_{\overline{\alpha}}(z’,\delta,\sqrt{2\sigma})}{\delta+i(\sigma+h(z,\delta))-z^{n}},id\sigma$ .

This is smooth in $(z’, z^{n})$ , as $z^{n}$ crosses the boundary curve $a_{0}(z’)$ . Sim-
ilarly for $c_{-\delta}(z’)$ . For the line integral over $a_{\rho}(z’)$ we have

$\int_{\xi^{n}=-\delta}^{+\delta}\frac{\varphi_{\overline{\alpha}}(z’,\xi^{n},\sqrt{2\rho})}{\xi^{n}+i(h(z’,\xi^{n})+\rho)-z^{n}}(1+ih_{x^{n}}(z’, \xi^{n}))d\xi^{n}$

This is also clearly smooth in $(z’, z^{n})$ across the boundary. For the
integral over $a_{0}(z’)$ , we set $\rho=0$ in the above. Then $\varphi_{\overline{\alpha}}(z’, \xi^{n}, 0)$ is a
smooth function. Thus we have a Cauchy integral of a smooth function
over a smooth curve, both depending smoothly on the parameter $z’$ . By
a well-known argument this gives a function of $(z’, z^{n})$ which is smooth
up to the boundary. The same argument for $\varphi^{-}$ completes the proof.

To achieve (1.11) we replace $\varphi$ by $\varphi-\overline{\partial}_{E}g$ , where $g$ is chosen so that
$\varphi_{\overline{n}}-X_{\overline{n}}g=O(s^{\infty})$ . Formally, we set

$\varphi_{\overline{n}}=\sum_{k=0}^{\infty}w_{k}(z’, t)s^{k}$ , $g=\sum_{k=1}^{\infty}g_{k}(z’, t)s^{k}$ ,

where $k!w_{k}=\partial_{s}^{k}\varphi_{\overline{n}}(z’, t, 0)$ . We determine the functions $g_{k}$ successively
by $g_{1}=w_{0},2g_{2}=w_{1}$ , and

$\frac{-i}{1+ih_{t}}\partial_{t}g_{k}+(k+2)g_{k+2}=w_{k+1}$ .

By the theorem of E. Borel (see [8]) there is a smooth function $g$ with
these prescribed $s$-derivatives along $s=0$ .

Now we assume that $D$ is strongly pseudoconvex, so that we may
invoke Kohn’s solution of the $\overline{\partial}$-problem [4]. Alternately, and in a more
elementary vein, we may employ the local solution operators of Range
and Lieb [15]. Thus, there exist functions $g^{\pm}$ smooth on $\overline{D}$ with $\overline{\partial}g^{\pm}=$

$\varphi^{\pm}$ . It follows that on $\partial D$ we have the tangential Cauchy-Riemann
equations $\overline{\partial}_{b}(g^{+}-g^{-})=0$ . By the H. Lewy extension theorem (smooth
version), there is a function $g^{0}$ , holomorphic on $D$ and smooth on $\overline{D}$ ,
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with $g^{0}=g^{+}-g^{-}$ on $\partial D$ . We replace $g^{-}$ by $g^{-}+g^{0}$ , so that $g^{+}=g^{-}$

on $\partial D$ . Then we define $g$ on $M$ by: $g=g^{+}oF$ on $M^{+}$ and $g=g^{-}oF$

on $M^{-}$ . Clearly, $g$ is continuous on $M$ and smooth on $M^{+}\cup M^{-}$ , where
it satisfies (1.10). Also, all tangential derivatives $\partial_{(z,t)}^{K}g$ are continuous

on $M^{+}\cup N$ and on $M^{-}\cup N$ . If we repeatedly differentiate the equation
$X_{\overline{n}}g=\varphi_{\overline{n}}$ and use (1.6), we see that all derivatives of $g$ are continuous
across $N$ . Thus, in contrast to the example of Grushin [5], [14] we have
the following.

Proposition 1.2 (Poincar\’e lemma). Let the smooth one-form $\varphi$

$(1.8)$ satisfy the compatibility condition (1.9) relative to the fold struc-
ture $E$ induced by the map $F(1.2)$ . If $n\geq 2$ and if $F$ is a strongly
pseudoconvex interior fold, then there exists a smooth function $g$ with
$\overline{\partial}_{E}g=\varphi$ .

The Poincar\’e lemma also holds for $(0, q)$ forms $(mod E^{\perp})$ for $ 2\leq$

$q\leq n-1$ . (That it does not hold for top degree forms follows from
a general result of Cordaro and Hounie [2] $)$ . We sketch the argument.
Relative to the coframe (1.4) the $(0, q)$ form $\varphi$ has the representation

$\varphi=\varphi’+ds\wedge\varphi’’$ ,

where $\varphi’$ , $\varphi’’$ are q- and $q-1$ forms in $d\overline{z}’$ with coefficients in $(z’, t, s)$ .

In an obvious notation

$\overline{\partial}_{E}\varphi=\overline{\partial}_{E}^{J}\varphi’+ds\wedge(X_{\overline{n}}\varphi\prime-\overline{\partial}_{E}^{J}\varphi’’)$ .

By a change $\varphi\mapsto\varphi-\overline{\partial}_{E}\psi’$ , where $\psi’$ is a $(0, q-1)$ -form without $ds$ ,

we can achieve $\varphi’’=O(s^{\infty})$ as above. Suppose that $\overline{\partial}_{E}\varphi=0$ . Then
the analogue of lemma (1.1) shows that the transplanted forms $\varphi^{\pm}$ are
smooth on $\overline{D}$ and agree along $\partial D$ . There exist smooth $(0, q-1)$ forms
$\psi^{\pm}$ on $\overline{D}$ with $\overline{\partial}\psi^{\pm}=\varphi^{\pm}$ . We have $\overline{\partial}(\psi^{+}-\psi^{-})=0$ along $\partial D$ . If we
are below the Lewy unsolvability degree, $i$ . $e$ . $q-1<n-1$ , then there
is a smooth $(0, q-2)$ form $\eta$ with $\overline{\partial}\eta=\psi^{+}-\psi^{-}$ along $\partial D$ . We replace
$\psi^{-}$ by $\psi^{-}+\overline{\partial}\eta$ . We patch together the forms $F^{*}\psi^{\pm}$ on $M^{\pm}$ as above
to get a smooth form $\psi$ satisfies $\overline{\partial}_{E}\psi=\varphi$ .

\S 2. Local normalization

We consider $n$ independent smooth $(C^{\infty})$ complex vector fields $X_{\overline{j}}$ ,

defined on an open set $M$ of $R^{2n}$ containing 0, and denote their complex
conjugates by $X_{j}$ as before. At each point $x\in M$ , $E_{x}$ is the complex

vector space spanned by the $X_{\overline{j}}(x)$ . We assume that $E_{0}\cap\overline{E}_{0}$ is one-
dimensional. After changing the frame, we may assume that $X_{\overline{n}}(0)=$
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$X_{n}(0)$ spans $E_{0}\cap\overline{E}_{0}$ , and that $X_{\overline{n}}(0)$ , $X_{\overline{\alpha}}(0)$ , $X_{\alpha}(0)$ (see (1.5)) span
$E_{0}+\overline{E}_{0}$ . We then choose coordinates $(z^{\alpha}=x^{\alpha}+iy^{\alpha}, t, s)$ so that
$X_{\overline{\alpha}}(0)=\partial_{\overline{\alpha}}$ , $X_{\overline{n}}=\partial_{s}$ , and $\partial_{t}$ is transverse to $E+\overline{E}$ at 0. Then we may
write

$X_{\overline{j}}=A_{\overline{j}}^{\overline{\beta}}\partial_{\overline{\beta}}+A_{\overline{j}}^{\overline{n}}\partial_{s}+A_{\overline{j}}^{\beta}\partial_{\beta}+B_{\overline{j}}\partial_{t}$ ,

where $A_{\overline{j}}^{\overline{i}}(0)=\delta_{\overline{j}}^{\overline{i}}$ . After changing the frame via the inverse matrix of

$A\frac{\overline{i}}{j}$ , we get

(2.1) $X_{\overline{\alpha}}$ $=$
$\partial_{\overline{\alpha}}+A\frac{\beta}{\alpha}\partial_{\beta}+B_{\overline{\alpha}}\partial_{t}$ ,

$X_{\overline{n}}$ $=$ $\partial_{s}+A\frac{\beta}{n}\partial_{\beta}+B_{\overline{n}}\partial_{t}$ ,

where $A_{\overline{i}}^{\beta}(0)=0$ , $B_{\overline{j}}(0)=0$ . In this form (2.1) the frame is uniquely de-

termined by the coordinate system $(z, t, s)$ , which we refer to as adapted
to our structure at 0.

The degeneracy locus,

(2.2) $N=\{x\in M : E_{x}\cap\overline{E}_{x}\neq 0\}$ ,

is the set of points where some non-trivial linear combination of the $X_{\overline{j}}$

is real, or equivalently, where the vectors $X_{\overline{j}}$ , $X_{j}$ are dependent. If we

write out the condition $0=a^{j}X_{\overline{j}}+b^{t}X_{j}$ and first eliminate $a^{n}$ , we get

(2.3) $N=\{r=0\}$ , $ r=\det[A^{\frac{\beta\alpha}{\beta\alpha}}B_{\alpha}\delta$ $ A\frac{\alpha}{\beta\alpha\beta}B_{\overline{\alpha}}\delta$

$2Im(B_{\overline{n}})-iA\frac{\alpha}{n}iA^{\frac{}{n\alpha}}]$

The shift in the bars over indices reflects complex conjugation, and a fac-
tor of $i$ has been inserted in the last column of the determinant to make
$r$ real. Our genericity assumption on the degeneracy is the transversality
condition

(2.4) $X_{\overline{n}}r(0)\neq 0$ .

It implies that $N$ is a smooth hypersurface in $M$ . Alternately, we may
state it as follows: $dr(0)$ , extended to $T_{0}(M)\otimes C$ and then restricted to
$E_{0}$ , is non-zero. It follows that $E\cap(T(N)\otimes C)$ gives a $CR$ structure
of real hypersurface type on $N$ . If we additionally restrict the initially
chosen frame above so that the $X_{\overline{\alpha}}$ span the $(0,1)$-vectors of this $CR$

structure, then $\partial_{\overline{\alpha}}r(0)=0$ . We then make the coordinate change

$z^{\prime\alpha}=z^{\alpha}$ , $t’=t$ , $s’=r(z, t, s)$ ,
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and the corresponding frame change

$X\frac{\prime}{n}=(r_{s}+A\frac{\beta}{n}r_{\beta}+B_{\overline{n}}r_{t})^{-1}X_{\overline{n}}$ , $X_{\overline{\alpha}}’=X_{\overline{\alpha}}-(r_{\overline{\alpha}}+A\frac{\beta}{\alpha}r_{\beta}+B_{\overline{\alpha}}r_{t})X_{\overline{n}}’$ .

After this we may assume that $N$ has the form (1.3), and that the vectors
$X_{\overline{j}}$ still have the form (2.1).

To preserve these normalizations, we restrict our coordinate changes
to the form

(2.5) $z^{\prime\alpha}=z^{\alpha}+f^{\alpha}$ , $t’=t+f^{0}$ , $s’=s+f^{n}$ ,

where

$f^{\alpha}=O(2)$ , $f^{0}=O(2)$ , $f^{n}=s\hat{f}^{n},\hat{f}^{n}=O(1)$ .

In the prime system there is a unique adapted $E$ frame

(2.8) $X_{\overline{\alpha}}’$ $=$ $\partial_{\overline{\alpha}}’+A_{\overline{\alpha}}^{\prime\beta}\partial_{\beta}’+B_{\overline{\alpha}}’\partial_{t’}$ ,

$X_{\overline{n}}’$ $=$ $\partial_{s’}+A_{\frac{\prime}{n}}^{\beta}\partial_{\beta}’+B\frac{\prime}{n}\partial_{t’}$ .

As in Section 1 of [20] we have the relations

$A\frac{\beta}{\alpha}+X_{\overline{\alpha}}f^{\beta}$ $=$ $(\delta\overline{\frac{\gamma}{\alpha}}+X_{\overline{\alpha}}f^{\overline{\gamma}})A_{\frac{;}{\gamma}}^{\beta}+X_{\overline{\alpha}}f^{n}A_{\frac{\prime}{n}}^{\beta}$ ,

$B_{\overline{\alpha}}+X_{\overline{\alpha}}f^{0}$ $=$ $(\delta\overline{\frac{\gamma}{\alpha}}+X_{\overline{\alpha}}f^{\overline{\gamma}})B\frac{\prime}{\gamma}+X_{\overline{\alpha}}f^{n}B\frac{\prime}{n}$ ,

(2.7)

$A\frac{\beta}{n}+X_{\overline{n}}f^{\beta}$ $=$ $X_{\overline{n}}f^{\overline{\gamma}}A_{\frac{\prime}{\gamma}}^{\beta}+(1+X_{\overline{n}}f^{n})A_{\overline{n}}^{\prime\beta}$ ,

$B_{\overline{n}}+X_{\overline{n}}f^{0}$ $=$ $X_{\overline{n}}f^{\overline{\gamma}}B_{\overline{\gamma}}’+(1+X_{\overline{n}}f^{n})B\frac{\prime}{n}$ .

Exactly as in [20] we may choose $f^{\alpha}(z, t)$ , $f^{0}(z, t)$ to achieve

(2.8) $[A\frac{\beta}{\alpha}]|_{N}=O(|(z, t)|^{2})$ ,

$[B_{\overline{\alpha}}]|_{N}=-ib_{\beta\overline{\alpha}}z^{\beta}+B_{\overline{\alpha}}^{*}(z, t)$ , $B_{\overline{\alpha}}^{*}=O(|(z, t)|^{2})$ ,

where the hermitian matrix $b_{\beta\overline{\alpha}}$ represents the Levi-form at 0 of the $CR$

structure on $N$ .

For all further normalizations, we restrict to changes (2.5) with $f=$

$s\hat{f}$ , so that $N$ and the functions (2.8) on it remain unchanged. The last
two equations of (2.7) give

$[A\frac{\beta}{n}+\hat{f}^{\beta}-f^{\overline{\gamma}}A\frac{\beta}{\gamma}]|_{N}=[(1+\hat{f}^{n})A_{\frac{\prime}{n}}^{\beta}]|_{N}$ ,
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$[B_{\overline{n}}+\hat{f}^{0}-f^{\overline{\gamma}}B_{\overline{\gamma}}]|_{N}=[(1+\hat{f}^{n})B_{\overline{n}}’]|_{N}$ .

We can choose $\hat{f}^{\beta}(z, t),\hat{f}^{0}(z, t)$ uniquely so that the left side of the first
equation, and the real part of the left side of the second vanish. After
this change we may assume

$A\frac{\beta}{n}=s\hat{A}\frac{\beta}{n}$ , $B_{\overline{n}}=s\hat{B}_{\overline{n}}$ , $Im(\hat{B}_{\overline{n}})\neq 0$ ,

since $r=0$ and $\partial_{s}r\neq 0$ on $N$ in (2.3). Now we restrict to changes (2.5)
with

(2.9) $f^{\beta}=s^{2}\hat{f}^{\beta}$ , $f^{0}=s^{2}\hat{f}^{0}$ , $f^{n}=s\hat{f}^{n}$

Substituting into (2.7), dividing by $s$ , and letting $s\rightarrow 0$ gives

$[\hat{A}\frac{\beta}{n}+2\hat{f}^{\beta}-2f^{\overline{\gamma}}A\frac{\beta}{\gamma}]|_{N}=[(1+\hat{f}^{n})\hat{A}_{\overline{n}}^{\prime\beta}]|_{N}$ ,

$[\hat{B}_{\overline{n}}+2\hat{f}^{0}-2f^{\overline{\gamma}}B_{\overline{\gamma}}]|_{N}=[(1+\hat{f}^{n})\hat{B}_{\overline{n}}’]|_{N}$ .

Thus we can choose $\hat{f}(z, t)$ to make

$[\hat{A}_{\overline{n}}^{\prime\beta}]|_{N}=0$ , $[Re(\hat{B}_{\overline{n}}’)]|_{N}=0$ , $[Im(\hat{B}_{\overline{n}}’)]|_{N}=-1$ .

After these preliminary normalizations we make the coordinate
change (2.5), (2.9) with

(2.10) $\hat{f}(z, t, s)=\sum_{j=1}^{\infty}\frac{1}{j!}s^{j}g(s/\in_{j})\hat{f}_{j}(z, t)$ ,

where $\hat{f}=(\hat{f}^{\beta},\hat{f}^{0},\hat{f}^{n})$ . Following [8], vol. $I$ , p. 16, we choose $g(s)$ to be

a fixed smooth real valued function of suitably small compact support

with $g(s)-1$ vanishing to infinite order at $s=0$ . The functions $\hat{f}_{j}$ are
successively chosen, depending on the previous choices, to achieve

(2.11) $A\frac{\beta}{n}=O(s^{j+1})$ , $B_{\overline{n}}+is=O(s^{j+1})$ .

This is independent of $\epsilon_{j}>0$ which is then chosen so small that

$|\partial_{(z,t,s)}^{K}[s^{j}g(s/\in_{j})\hat{f}_{j}(z, t)]|\leq j^{I}.2^{-j}$ , $|K|\leq j-1$ .

The transformation so constructed is smooth, and in the final coordinate
system (2.11) holds for every $j$ . Hence, we have established the following.
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Lemma 2.1. There exists a smooth adapted coordinate system
$(z, t, s)$ and corresponding frame (2.1) so that (1.3), (2.2) and (2.8)
hold, and

$A\frac{\beta}{n}=O(s^{\infty})$ , $B_{\overline{n}}+is=O(s^{\infty})$ .

For the case $n=1$ , see Sj\"orstrand [16] and rb\‘eves [17].

\S 3. Structures with positive definite Levi-form

With the normalizations of lemma (2.1) we have the bracket rela-
tions at 0

(3.1) $[X_{i}, X_{\overline{j}}]_{0}=-2ib_{i\overline{j}}\partial_{t}$ , $b_{\alpha\overline{n}}=0$ , $b_{n\overline{n}}=1/2$ .

$b_{i\overline{j}}$ represents the Levi-form of the structure $E$ at 0. It will be positive
definite precisely when $b_{\alpha\overline{\beta}}$ , which represents the Levi-form of the $CR$

structure on $N$ , is positive definite.

Theorem 3.1. Let $E$ be a complex Frobenius structure of rank
$n$ on a neighborhood of 0 in $R^{2n}$ with $n\geq 2$ . Suppose that $E$ has $a$

generic degeneracy with positive definite Levi-form at 0. Then there
exists a neighborhood $M$ of 0 and a strongly pseudoconvex interior fold
$F$ : $M$ $\rightarrow C^{n}$ inducing the structure $E$ on $M$ .

For the proof we assume the normalizations of lemma (2.1) and
consider the transformation

$T$ : $(z, t, s)\mapsto(z, t, y=\frac{1}{2}s^{2})$ ,

and its restrictions $T_{\pm}toM^{\pm}$ . On $U=T_{\pm}(M^{\pm})\subseteq\{y\geq 0\}$ we have the
vector fields

$X_{\overline{\alpha}}’=(T_{+})_{*}(X_{\overline{\alpha}})$ , $X_{\overline{n}}’=(T_{+})_{*}(\frac{1}{s}X_{\overline{n}})$ .

Clearly $X_{\overline{n}}’$ is smooth up to the boundary $y=0$ .
By a Cauchy integral argument similar to the one given in the proof

of lemma (1.1), it follows that the $X_{\overline{\alpha}}’$ ’s are also smooth up to the bound-
ary of $U$ . In fact, we just set $h\equiv 0$ in (1.13),(1.14), and replace $ b_{\alpha}\pm$ by
$A_{\frac{\beta}{\alpha}}o(T_{+})^{-1}$ , or $B_{\overline{\alpha}}\circ(T_{+})^{-1}$ in (1.15). $Hence,we$ have a smooth almost
complex structure with strongly pseudoconvex boundary on $U$ . By the
theorem of Hanges and Jacobowitz [6] there is a holomorphic coordinate
system $G_{+}$ : $U\rightarrow C^{n}$ which is smooth up to the boundary for a per-
haps smaller $U$ containing 0. Similarly, we have a smooth holomorphic
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$G_{-}$ : $U\rightarrow C^{n}$ for the almost complex structure induced by $T_{-}$ . The
map

$G_{+}^{-1}\circ G_{-}$ : $G_{-}(\partial U)\rightarrow G_{+}(\partial U)$

is a $CR$ equivalence. By the smooth version of the H. Lewy extension the-
orem, it extends to a biholomorphic equivalence $H$ : $G_{+}(U)\rightarrow G_{-}(U)$ ,

which is smooth up to the boundary. We replace $G_{-}$ by $H\circ G_{-}$ , and
then define

$F=\{$
$G_{+}\circ T$ on $M^{+}$

$G_{-}\circ T$ on $M^{-}$

An argument strictly analogous to that given in the proof of proposition
(1.2) shows that $F$ is smooth on $M$ . Since $F$ is an embedding of $N$ , its
coordinate functions are independent on $M$ also. Hence, $F$ satisfies the
requirements of the theorem.

The hypotheses on the Levi-form can clearly be weakened, since
they may be so in the Hanges-Jacobowitz theorem (Catlin), and in the
H. Lewy extension theorem (Trepreau).
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