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Deformations of Coxeter hyperplane arrangements

and their characteristic polynomials

Christos A. Athanasiadis

Abstract.

Let $A$ be a Coxeter hyperplane arrangement, that is the arrange-
ment of reflecting hyperplanes of an irreducible finite Coxeter group.
A deformation of $A$ is an affine arrangement each of whose hyper-
planes is parallel to some hyperplane of $A$ . We survey some of the
interesting combinatorics of classes of such arrangements, reflected
in their characteristic polynomials.

\S 1. Introduction

Much of the motivation for the study of arrangements of hyperplanes
comes from Coxeter arrangements. Because of their importance in alge-
bra, Coxeter arrangements have been studied a great deal in the context
of representation theory of semisimple Lie algebras (where they arose),

invariant theory of reflection groups, combinatorics of root systems and
Coxeter groups, combinatorics of convex polytopes and oriented ma-
troids and within the general theory of hyperplane arrangements [42].
Prom a geometric, combinatorial and algebraic point of view, they are
fairly well understood in terms of their classification, facial structure, in-
tersection posets, characteristic polynomials and freeness; see [17, 2.3]
and [42, Chapter 6].

A deformation of a Coxeter arrangement $A$ is an affine arrangement
each of whose hyperplanes is parallel to some hyperplane of $A$ . Inter-
esting examples of such arrangements first arose in the study of affine
Weyl groups by Shi $[53, 54]$ and have appeared since then in various
mathematical contexts. Their combinatorics was first investigated sys-
tematically by Stanley [59] and relates to objects studied classically in
enumeration such as trees, set partitions and partially ordered sets. A

$1The$ present article was written while the author was a Hans Rademacher
Instructor at the University of Pennsylvania.
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major role in this study has been played by the characteristic polyno-
mial.

In the present exposition we describe some of the lively work on
deformations of Coxeter arrangements that has been carried out in the
recent past. We emphasize the combinatorial and algebraic properties
related to their characteristic polynomials, a topic which we find rich
and interesting enough to stand on its own. We discuss some of the
relevant motivation and include a number of open questions which are
often suggested naturally by the results.

Acknowledgement. The author has benefited from the work of
Alexander Postnikov and Richard Stanley [44, Chapter 1] $[45, 59]$ , some

of which was carried out in parallel with his own thesis work [3] [4,
Part $II$], as well as from various discussions with Anders Bj\"orner, Vic-
$tor$ Reiner, Gian-Carlo Rota, Bruce Sagan, Hiroaki Terao and G\"unter

Ziegler. He is indebted to Victor Reiner and Richard Stanley for their
valuable comments.

\S 2. Background

The characteristic polynomial. Let $K$ be a field. A hyperplane
arrangement $A$ in $K^{\ell}$ is a finite collection of affine hyperplanes in $K^{\ell}$ , i.e.
affine subspaces of $K^{\ell}$ of codimension one. We will mostly be interested
in arrangements over the reals, so that $K=\mathbb{R}$ . We call A central if
all hyperplanes in $A$ are linear. The characteristic polynomial of $A$ is
defined as

(1)
$\chi(A, q)=\sum_{x\in L_{A}}\mu(\hat{0}, x)q^{dimx}$

,

where $L_{A}=\{\cap \mathcal{F} : \mathcal{F}\subseteq A\}$ (partially ordered by reverse inclusion) is

the intersection poset of $A,\hat{0}=K^{\ell}$ is the unique minimal element of
$L_{A}$ (which corresponds to $\mathcal{F}$ being empty) and $\mu$ stands for its M\"obius

function [60, 3.7].
The characteristic polynomial $\chi(A, q)$ is a fundamental combinato-

rial and topological invariant of $A$ and plays a significant role throughout
the theory of hyperplane arrangements [42]. If $K=\mathbb{R}$ then $\chi(A, q)$ gives
valuable enumerative information about the cell decomposition of the
space $\mathbb{R}^{\ell}$ , induced by $A[17, \S 2.1]$ . The cells in this decomposition are
the faces of $A$ . The faces of dimension $\ell$ are simply the connected com-
ponents of the space obtained from $\mathbb{R}^{\ell}$ by removing the hyperplanes of
$A$ and are called the regions or chambers of $A$ .
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2.1. Theorem (Zaslavsky [69]). The number of regions into which
A dissects $\mathbb{R}^{\ell}$ is equal to $(-1)^{\ell}\chi(A, -1)$ .

In particular, for any $k$ , the number of faces of $A$ of dimension $k$

depends only on $L_{A}$ and $\ell$ .

On the other hand, if $K=\mathbb{C}$ then $\chi(A, q)$ gives topological informa-
tion about the complement $M_{A}=\mathbb{C}^{\ell}-\bigcup_{H\in A}H$ . The following result
was proved by Orlik and Solomon in the context of their fundamental
work [41] on the cohomology algebra $H^{*}(M_{A}, \mathbb{Z})$ of $M_{A}$ .

2.2. Theorem (Orlik-Solomon [41]). If is a central arrangement
in $\mathbb{C}^{\ell}$ then

$\sum_{i\geq 0}rankH^{i}(M_{A}, \mathbb{Z})q^{i}=(-q)^{\ell}\chi(A, -1/q)$
.

For the cohomological significance of $\chi(A, q)$ when $A$ is a subspace
arrangement we refer to Bj\"orner [15, \S 7] and Bj\"orner and Ekedahl [16].
The following corollary of Theorem 2.2 continues to hold when $A$ is a
subspace arrangement, see [15, 8.3].

2.3. Corollary. If $A$ is an arrangement in $\mathbb{R}^{\ell}$ then

$\sum_{i\geq 0}$

rank
$H^{i}(M_{A}, \mathbb{Z})=\sum_{i\geq 0}$

rank $H^{i}(M_{A}-., \mathbb{Z})$ ,

where $M_{A}$ is the complement of $A$ in $\mathbb{R}^{\ell}$ and $M_{A^{\mathbb{C}}}$ is the complement of
its complexification $A^{\mathbb{C}}$ in $\mathbb{C}^{\ell}$ .

Freeness. Let $A$ be central and $S:=K[x_{1}, x_{2}, \ldots, x_{\ell}]$ be the poly-
nomial ring over $K$ in $\ell$ variables. Let $Q$ be the product of the linear
forms in $S$ defining the hyperplanes of $A$ , so that $Q$ is unique up to
multiplication by an element of $K^{*}$ , and let Q@ be the principal ideal
in $S$ generated by $Q$ . The module of derivations $D(A)$ of $A$ is the set
of all derivations $\theta$ : $S\rightarrow*S$ such that $\theta(Q)\in Q$ S. $D(A)$ is actually a
module over S. The arrangement $A$ is called free [63] if $D(A)$ is a free
$S$-module. One can associate to $A$ a multiset of $\ell$ nonnegative integers,
called the exponents of $A$ . They are the degrees of the elements in any
basis of the free $S$ module $D(A)$ .

2.4. Theorem (Terao [65] [41, Theorem 4.137]). If $A$ is free with
exponents $e_{1}$ , $e_{2}$ , $\ldots$ , $e_{\ell}$ then

$\chi(A, q)=\prod_{i=1}^{\ell}(q-e_{i})$ .
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Theorem 2.4 is one of a number of results which explain factorization
phenomena for $\chi(A, q)$ . Other approaches include supersolvability [58]
and its generalizations $[14, 19]$ , inductive freeness [63], recursive freeness
[75], factorization of rooted complexes [18], factorization $[26, 67]$ and in-
ductive factorization [34]. For background we refer to these sources, [42,
Chapter 4] and the survey article [50]. A purely algebraic-combinatorial
proof of Theorem 2.4 was given in Solomon and Terao [56]; see also [42,
Chapter 4].

Coxeter arrangements. Let $\Phi$ be an irreducible root system in
$\mathbb{R}^{\ell}[33, \S 1.2]$ , equipped with the standard inner product. We rely on [33]
for basic background and terminology on root systems. The Coxeter
arrangement $A_{\Phi}$ corresponding to $\Phi$ is the arrangement of the linear
hyperplanes

$(\alpha, x)=0$

orthogonal to the roots $\alpha\in\Phi$ , i.e. the reflecting hyperplanes of the
associated finite Coxeter group $W$ . See [42, Chapter 6] and [17, 2.3]
for expositions of Coxeter arrangements from algebraic-topological and
geometric-combinatorial points of view, respectively. The following re-
sult will be of interest here.

2.5. Theorem (Arnol’d [1, 2], Saito [51, 52]). The Coxeter ar-
rangement $A_{\Phi}$ is free with exponents the exponents of the root system
$\Phi$ .

In fact, explicit bases for the modules of derivations were constructed
in terms of the basic invariants [33, 3.5] of the algebra of $W$-invariant
polynomials by Saito [51] and Terao [64]. The analogue of Theorem
2.5 for complex reflection groups and a generalization to all reflection
arrangements appear in Terao $[64, 66]$ .

2.6. Corollary. If $e_{1}$ , $e_{2}$ , $\ldots$ , $e_{\ell}$ are the exponents of $\Phi$ then

$\chi(A_{\Phi}, q)=\prod_{i=1}^{\ell}(q-e_{i})$ .

\S 3. Deformations of Coxeter arrangements

We now assume that $\Phi$ is crystallographic [33, 2.9], so that $W$ is
a Weyl group. We let $\Phi^{+}$ be a choice of positive roots. When we give
equations for the hyperplanes of deformations of $A_{\Phi}$ we will choose $\Phi$ and
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$\Phi^{+}$ as in [33, 2.10] and denote the dimension of the ambient space by
$n$ . The braid arrangement $A_{n}$ , for instance, consists of the hyperplanes
in $\mathbb{R}^{n}$ of the form $x_{i}-x_{j}=0$ . In this notation we prefer to consider
$A_{n}$ as an arrangement in $\mathbb{R}^{n}$ (so that its characteristic polynomial has
$q$ as a factor), even though it corresponds to the Coxeter arrangement
$A_{\Phi}$ for $\Phi=A_{n-1}$ , which is an arrangement in $\mathbb{R}^{n-1}$ (so that $\ell=n-1$ ).
We extend this convention to deformations of $A_{n}$ as well.

We begin with three motivating classes of examples to which we will
come back in the next section.

FIG 1. The Catalan arrangement for $A_{2}$ .

The Catalan arrangement. The Catalan arrangement $Cat_{\Phi}$ con-
sists of the hyperplanes

$(\alpha, x)=-1$ ,
$(\alpha, x)=0$ , $\alpha\in\Phi^{+}$

$(\alpha, x)=1$ ,

in $\mathbb{R}^{\ell}$ . It is invariant under the action of the Weyl group $W$ and is shown
in Figure 1 for $\Phi=A_{2}$ . For $\Phi=A_{n-1}$ the hyperplanes are

$x_{i}-x_{j}=-1,0,1$ for $1\leq i<j\leq n$ .

We denote this arrangement in $\mathbb{R}^{n}$ by Catn. The terminology “Catalan
arrangement” comes from the fact that the number of regions of Catn,

divided by $n!$ , is equal to the $nth$ Catalan number. It was observed by
Stanley [59, \S 2] that the regions of $Cat_{n}$ within the fundamental Weyl
chamber of $A_{n}$ are in bijection with unit interval orders with $n$ elements,
i.e. partial orders which come from unit intervals $I_{1}$ , $I_{2}$ , $\ldots$ , $I_{n}$ on the
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real line by letting $I_{i}<I_{j}$ if $I_{i}$ lies entirely to the left of $I_{j}$ . To see this,

it suffices to let the $ith$ interval be $[x_{i}, x_{i}+1]$ , where $x_{1}<x_{2}<\cdots<x_{n}$ ,

and observe that the partial order defined by these $n$ intervals depends
only on the region of $Cat_{n}$ in which the point $(x_{1}, x_{2}, \ldots, x_{n})$ lies. For
a treatment of the theory of interval orders see [27].

In another direction, it was observed by Postnikov (see Remark 2 in
[47, \S 6] and [7] $)$ that the regions of $Cat_{\Phi}$ within the fundamental Weyl
chamber of $A_{\Phi}$ are in bijection with nonnesting partitions on $\Phi$ , i.e.
antichains in the root order of $\Phi$ , defined on $\Phi^{+}$ by $\alpha\leq\beta$ if $\beta-\alpha$ is a
linear combination of positive roots with nonnegative coefficients. The
following theorem is a special case of Theorem 4.6 for the classical root
systems and has also been verified for $\Phi=G_{2}$ , $F_{4}$ and $E_{6}$ (see [24, 3]).

3.1. Theorem ([3, 4]). Let $\Phi$ be of type $A$ , $B$ , $C$ or D. We have
$\chi(Cat_{\Phi}, q)=\chi(A_{\Phi}, q-h)$ , where $h$ is the Coxeter number of $\Phi$ . In
particular, the number of regions of $Cat_{\Phi}$ is equal to

$\prod_{i=1}^{\ell}(e_{i}+h+1)$

and the number of nonnesting partitions on $\Phi$ is equal to

$\prod_{i=1}^{\ell}\frac{e_{i}+h+1}{e_{i}+1}$ ,

where $e_{1}$ , $e_{2}$ , $\ldots$ , $e_{\ell}$ are the exponents of $\Phi$ .

The Shi arrangement. The Shi arrangement $S_{\Phi}$ consists of the
hyperplanes

$(\alpha, x)=0$ ,
$\alpha\in\Phi^{+}$

$(\alpha, x)=1$ ,

in $\mathbb{R}^{\ell}$ . This is shown in Figure 2 for $\Phi=A_{2}$ . For $\Phi=A_{n-1}$ the
hyperplanes are

$x_{i}-x_{j}=0$ for $1\leq i<j\leq n$ ,

$x_{i}-x_{j}=1$ for $1\leq i<j\leq n$ .

We denote this arrangement in $\mathbb{R}^{n}$ by $S_{n}$ . The arrangement $S_{\Phi}$ was first

considered by Shi in his investigation of the affine Weyl group $\overline{A}_{n-1}$ of
type $A_{n-1}[53, \S 7]$ . The regions of $S_{n}$ correspond to certain equivalence

classes of elements of $\overline{A}_{n-1}$ , called “admissible sign types”, which were
shown by Shi to play a significant role in the Kazhdan-Lusztig theory
of cells [36] for this group.
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FIG 2. The Shi arrangement for $A_{2}$ .

Since Shi’s work, the arrangement $S_{\Phi}$ has continued to appear as
related to affine Weyl groups in Headley [30, 31, 32], invariant theory
of finite Coxeter groups in Solomon and Terao [57], and representations
of affine Hecke algebras in Ram [46], as an object of independent in-
terest in enumerative combinatorics in the type $A$ case [5, 10, 59, 61],
and as a particularly nice example where techniques from the theory of
hyperplane arrangements apply [3, 4, 6, 32, 44, 45]. Much of the in-

terest initially attracted by the Shi arrangement is due to the following
surprising result.

3.2. Theorem (Shi [54], [53, Corollary 7.3.10] for $\Phi=A_{n-1}$ ). The
number of regions of $S_{\Phi}$ is $(h+1)^{\ell}$ , where $h$ is the Coxeter number of
$\Phi$ . In particular, the number of regions of $S_{n}$ is $(n+1)^{n-1}$ .

Shi gave a constructive proof of this fact for $S_{n}[53]$ by considering
the elements of the affine Weyl group of type $A_{n-1}$ which correspond
to the regions and a uniform but lengthy proof in the general case [54]
using his notion of “sign type” for affine Weyl groups. More direct
combinatorial proofs in the type $A$ case can be found in Headley [31],
Stanley [59] and Athanasiadis and Linusson [10, \S 2]. The proof in [59]
yields an interesting refinement of the enumeration of the regions by a
certain distance statistic; see Theorem 6.13.

The following stronger result, via Theorem 2.1, on the characteristic
polynomial of $S_{\Phi}$ was proved by Headley, whose argument relied on
Theorem 3.2 and induction.
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3.3. Theorem (Headley [30, 31, 32]). We have $\chi(S_{\Phi}, q)=(q-h)^{\ell}$ ,

where $h$ is the Coxeter number of $\Phi$ . In particular, we have $\chi(S_{n}, q)=$

$q(q-n)^{n-1}$ .

FIG 3. The Linial arrangements for $A_{2}$ and $B_{2}$ .

The Linial arrangement. In the rest of the paper we allow $\Phi$ to
be the non-reduced system $BC_{n}$ , which is the union of $B_{n}$ and $C_{n}$ in
the standard choice of [33, 2.10].

The Linial arrangement $\mathcal{L}_{\Phi}$ consists of the hyperplanes

$(\alpha, x)=1$ , $\alpha\in\Phi^{+}$

in $\mathbb{R}^{\ell}$ . It is shown in Figure 3 for $\Phi=A_{2}$ and $B_{2}$ . For $\Phi=A_{n-1}$ the
hyperplanes are

$x_{i}-x_{j}=1$ for $1\leq i<j\leq n$ .

We denote this arrangement in $\mathbb{R}^{n}$ by $\mathcal{L}_{n}$ . Interest in the arrangement
$\mathcal{L}_{n}$ came from a surprising conjecture of Linial, Ravid and Stanley (see
[59, \S 4] $)$ stating that the number of regions of $\mathcal{L}_{n}$ is equal to the number
$f_{n}$ of alternating trees on $n+1$ vertices, i.e. trees on the vertex set
$\{1, 2, \ldots, n+1\}$ such that no $\dot{?}<j<k$ are consecutive vertices of a
path in the tree, in the order $i,j$ , $k$ . Alternating trees first appeared in
[28]. The explicit formula

(2) $f_{n}=\frac{1}{2^{n}}\sum_{k=0}^{n}$
$\left(\begin{array}{l}n\\k\end{array}\right)$ $(k+1)^{n-1}$

was found by Postnikov [43, Theorem 1], who later proved the conjecture
about $\mathcal{L}_{n}$ as follows.



Deformations of Coxeter arrangements 9

3.4. Theorem (Postnikov [44, Theorem 1.4.5] [45, Theorem 8.1]).
The number of regions of the Linial arrangement $\mathcal{L}_{n}$ is equal to $f_{n}$ .

There is no bijective proof of the Linial-Ravid-Stanley conjecture at
present. Postnikov’s theorem naturally suggests the problem of finding
directly an explicit formula for the characteristic polynomial of $\mathcal{L}_{n}$ . Such
a formula was first given in $[3, 4]$ ; see also [44, 1.5] [45, \S 9] and [59,
Corollary 4.2]. The proof in $[3, 4]$ was simplified in [9, \S 3]; see also
Section 4.

3.5. Theorem ([3, Theorem 4.2] [4, Theorem 6.4.2]). The Linial
arrangement $\mathcal{L}_{n}$ has characteristic polynomial

$\chi(\mathcal{L}_{n}, q)=\frac{q}{2^{n}}\sum_{k=0}^{n}$ $\left(\begin{array}{l}n\\k\end{array}\right)$ $(q-k)^{n-1}$ .

This expression implies Theorem 3.4, via Theorem 2.1. For results
on the asymptotic behaviour of $\chi(\mathcal{L}_{n}, q)$ for large $n$ , see Postnikov [44,
1.6.3]. The analogous problem to compute $\chi(\mathcal{L}_{\Phi}, q)$ in general is also

suggested by a conjecture of Postnikov and Stanley [45, \S 9] which, in a
special case, states that all roots of $\chi(\mathcal{L}_{\Phi}, q)$ have the same real part;
see Conjecture 3.6.

The affine Weyl arrangement. As is apparent from the previous
examples, interesting deformations of $\underline{A}_{\Phi}$ often occur as subarrange-

ments of the affine Weyl arrangement $A_{\Phi}$

$(\alpha, x)=k$ , $\alpha\in\Phi^{+}$ , $k\in \mathbb{Z}$ ,

the arrangement of reflecting hyperplanes of the affine Coxeter group $\overline{W}$

.

For integers $a\leq b$ we denote by $A_{\Phi}^{[a,b]}$ the subarrangement of hyperplanes

$(\alpha, x)=k$ , $\alpha\in\Phi^{+}$ , $k=a$ , $a+1$ , $\ldots$ , $b$ .

These include $A_{\Phi}$ , $Cat_{\Phi}$ , $S_{\Phi}$ and $\mathcal{L}_{\Phi}$ and, more generally, the extended

Catalan arrangements $A_{\Phi}^{[-a,a]}$

$(\alpha, x)=-a,$ $-a+1$ , $\ldots$ , $a$ , $\alpha\in\Phi^{+}$ ,

the extended $Shi$ arrangements $A_{\Phi}^{[-a+1,a]}$

$(\alpha, x)=-a+1,$ $-a+2$ , $\ldots$ , $a$ , $\alpha\in\Phi^{+}$

and the extended Linial arrangements $A_{\Phi}^{[1,b]}$

$(\alpha, x)=1,2$ , $\ldots$ , $b$ , $\alpha\in\Phi^{+}$ .
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These extended analogues have similar properties with those of Cat$,
$S_{\Phi}$ and $\mathcal{L}_{\Phi}$ , respectively; see Section 4. The connection between interval
orders and deformations of $A_{n}$ , for instance, was extended in [59, \S 2] by
considering labeled marked intervals with arbitrary prescribed lengths.
As an example, suppose that the $ith$ interval $I_{i}=[x_{i}, x_{i}+\lambda_{i}-1]$ has
integral length $\lambda_{i}-1$ and is marked at all its points $x_{i}+k$ which are an
integral distance $k$ from the endpoint $x_{i}$ . The number of inequivalent
orders for placing these marked intervals on a line such that no two
marks coincide is equal to the number of regions of the deformation of
$A_{n}$ with hyperplanes

(3) $x_{i}-x_{j}=-\lambda_{i}+1$ , $\ldots,$ -1, 0, 1, $\ldots$ , $\lambda_{j}-1$ for $1\leq i<j\leq n$ ,

since comparing the marks $x_{i}+k$ and $x_{j}+l$ amounts to choosing
one of the halfspaces determined by the hyperplane $x_{i}+k=x_{j}+l$ .

These placements correspond to nonnesting set partitions [7] whose
blocks are labeled and have sizes $\lambda_{1}$ , $\lambda_{2}$ , $\ldots$ , $\lambda_{n}$ (a set partition $\pi$ of
$[m]:=\{1, 2, \ldots, m\}$ is nonnesting if whenever $a<b<c<d$ and $a$ , $d$

are consecutive elements of a block $B$ of $\pi$ , $b$ and $c$ are not both con-
tained in a block $B^{J}$ of $\pi$ ). They have also appeared in a geometric
context related to monotone paths on polytopes [8]. The characteristic
polynomials of the arrangements (3), which include the extended Cata-
lan arrangements of type $A$ , and those of root system analogues of (3)
have turned out to be useful for the enumeration of nonnesting partitions
by block size; see Proposition 4.7 and [7].

The family of arrangements in the following conjecture includes the
extended Shi and Linial arrangements.

3.6. Conjecture (Postnikov-Stanley [45, 9]). If a, b are non-
negative integers, not both zero, satisfying a $\leq b$ then all roots of the

polynomial $\chi(A_{\Phi}^{[-a+1,b]}, $q) have the same real part.

For a semi-generic deformation of $A_{n}$ , see [59, \S 3] $[45, [8]$ . Other
deformations of Coxeter arrangements appear in [59, \S 2], [4, Chapters
6-7].

\S 4. The characteristic polynomial

The examples in the previous section make it clear that tools to
compute the characteristic polynomial explicitly are desirable. Such
tools have traditionally included the following.
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Definition: the defining equation (1) [32] or the equivalent expres-
sion, given in [42, Lemma 2.55],

(4)
$\chi(A, q)=\sum_{F\subseteq A}(-1)^{\#\mathcal{F}}q^{di_{1t1}\mathcal{F}}$

,

where the sum is over all subarrangements $\mathcal{F}$ of $A$ and $dim\mathcal{F}$ is the
dimension of the intersection of the hyperplanes in $\mathcal{F}$ ; see, e.g., $[44, 45]$ .

Deletion-Restriction: this powerful technique in the theory of
arrangements yields the formula ([42, Theorem 2.56])

$\chi(A, q)=\chi(A’, q)-\chi(A^{\prime/}, q)$ ,

where $A^{J}$ and $A’’$ are obtained from $A$ by deleting or restricting on a
hyperplane $H\in A$ [$42$ , p. 14]; see, e.g., [23, 24, 6].

Chromatic Polynomials: the “signed chromatic polynomial” in-
terpretation of Zaslavsky [70] (if $A$ consists of some of the reflecting
hyperplanes of Coxeter type $B$ ) and its generalization to “gain graph
coloring” [73, \S 4]; see, e.g., [70, 71, 20], [42, 2.4] and [29, 73, 74], re-
spectively.

Factorizations: the theory of supersolvable [58], inductively free
[63] or, more generally, free arrangements [63] [42, Chapter 4], when
$\chi(A, q)$ factors; see, e.g., [42, 4.3] and [23, 24, 6, 12, 35].

For a discussion from a matroid theoretic point of view we refer to
Kung [38, \S 5]; see also Zaslavsky [72]. Here we mention that Crapo’s
identity [21] [38, p. 49], which, in the language of arrangements, ex-
presses the characteristic polynomial of a subarrangement of $A$ in terms
of those of its restrictions, has been of use in this context; see, e.g., [39].

Useful tools have resulted recently by interpreting the right hand
sides of (1) or (4) using M\"obius inversion or inclusion-exclusion, respec-
tively. This is easily done when $A$ is defined over a finite field $F_{q}$ , since
then $q^{di_{l}nx}$ is the cardinality of $x$ . The following theorem appeared, in
a dual formulation, as early as 1970 in the work of Crapo and Rota [22,

\S 16] (see the discussion in [3, \S 1]) and was stated in the language of ar-
rangements by Terao [66, Proposition 4.10]; see also [42, Theorem 2.69].
The proof is an easy application of M\"obius inversion [49] [60, 3.7]. We
denote by $V_{A}$ the union of the hyperplanes of $A$ .

4.1. Theorem (Crapo-Rota [22], Terao [66]). If $A$ is an arrange-
ment in $F_{q}^{n}$ then the cardinality of $F_{q}^{n}-V_{A}$ is equal to the value $\chi(A, q)$

of the characteristic polynomial of $A$ at $q$ .
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Let $A$ be an arrangement in $K^{n}$ where $K$ has characteristic zero, say
$K=\mathbb{R}$ for simplicity, and let $\mathbb{Z}_{q}$ denote the abelian group of integers
modulo $q$ . We call $A$ a $\mathbb{Z}$ arrangement if its hyperplanes are given by
equations with integer coefficients. Such equations define subsets of the
finite set $\mathbb{Z}_{q}^{n}$ if we reduce their coefficients modulo $q$ . We still denote by
$V_{A}$ the union of these subsets, supressing $q$ in the notation. If $q$ avoids
a finite set of prime factors, which depends on $A$ , then the intersection
poset of the reduced arrangement in $\mathbb{Z}_{q}^{n}$ is isomorphic to that of $A$ and
Theorem 4.1 gives a combinatorial interpretation to the value $\chi(A, q)$ .

This idea was first used for the purpose of computing the characteristic
polynomial in [3] [4, Part $II$ ] and allows for a variety of techniques from
enumerative combinatorics to be employed.

The next theorem, stated as in [9, Theorem 2.1], generalizes easily
to subspace arrangements [3, Theorem 2.2] [4, Theorem 5.2.1] [16]. It
was given independently by Bj\"orner and Ekedahl in their recent work
[16] on the cohomology of subspace arrangements over finite fields; see
Proposition 3.2 and Lemma 5.1 in [16].

4.2. Theorem (Athanasiadis [3, 4, 9], Bj\"orner-Ekedahl [16]). Let
$A$ be $a\mathbb{Z}$ arrangement in $\mathbb{R}^{n}$ . There exist positive integers $m$ , $k$ which
depend only on $A$ , such that for all $q$ relatively prime to $m$ with $q>k$ ,

$\chi(A, q)=\#(\mathbb{Z}_{q}^{n}-V_{A})$ .

For subarrangements of the Coxeter arrangement of type $B$ , Theo-
rem 4.2 specializes to Zaslavsky’s chromatic polynomial interpretation
[70] or its generalization to subspace arrangements by Blass and Sagan
[20, Theorem 2.1]. For a different generalization of Theorem 4.1 in the
context of the Tutte polynomial see Reiner [48]. Finally, an interesting
point of view and interpretation to (1) and (4) in terms of valuations
appears in Ehrenborg and Readdy [25], who give several applications to
classes of complex arrangements.

Theorem 4.2 has been quite useful for classes of deformations of
Coxeter arrangements [3, 4, 7, 8, 9] [68, \S 4]. In the remainder of this
section we give applications related to the examples in Section 3. For
an illustration, we give a proof of Theorem 3.3 in the case $\Phi=A_{n-1}$ ,

taken from $[3, 4]$ .

Proof of Theorem 3.3 for $\Phi=A_{n-1}$ . Theorem 4.2 implies that, for large
primes $q$ , $\chi(S_{n}, q)$ counts the number of $n$-tuples $ x=(x_{1}, x_{2}, \ldots, x_{n})\in$

$F_{q}^{n}$ which satisfy

$x_{i}-x_{j}\neq 0,1$
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in $F_{q}$ for alll $\leq i<j\leq n$ . Since $x$ satisfies these conditions if and only if
$x+m:=(x_{1}+m, \ldots, x_{n}+m)$ does so, this number is the number of such
$x$ with $x_{n}=0$ , multiplied by $q$ . These $n$-tuples $x$ are in bijection with
linear orderings of the integers 1, 2, . . . ’

$n$ and $q-n$ indistinguishable
objects such that $n$ is first in the ordering and no two integers $\dot{?}<j$

occur consecutively in the order $j$ , $i$ . Indeed, let $i$ be in position $k+1$ if
$x_{i}=kmod q$ , to get such an ordering.

To construct these orderings, one can place the $q-n$ objects along a
line, place $n$ first from the leffi and then insert 1, . . . ’

$n-1$ in $(q-n)^{n-1}$

ways, so that between any two consecutive objects or to the right of the
rightmost one, the integers are ordered in increasing order. This shows
that $\chi(S_{n}, q)=q(q-n)^{n-1}$ for infinitely many values of $q$ and proves
the result. Q.E.D.

The next few results can be proved by variations of the argument in
the previous proof. The proofs of Theorems 4.3 and 4.6 are case by case.
The next result was also obtained by Postnikov and Stanley [44, p. 39]
[45, 9.2] for $\Phi=A_{n-1}$ (see also [9, Proposition 5.3]) and generalizes
Theorem 3.3 for the classical root systems.

4.3. Theorem ([4, 7.1-7.2]). Let $\Phi$ be of type $A$ , $B$ , $C$ , $D$ or $BC$ .

For the extended $Shi$ arrangement $A=A_{\Phi}^{[-a+1,a]}$ we have

$\chi(A, q)=(q-ah)^{\ell}$ ,

where for $\Phi=BC_{n}$ the Coxeter number is defined as $h=2n+1$ . In

particular, the number of regions of $A_{\Phi}^{[-a+1,a]}$ is $(ah+1)^{\ell}$ .

An application in the spirit of $[23, 35]$ comes from considering ar-
rangements between the braid and Catalan arrangement $A_{n}$ and Catn.
For $G\subseteq \mathcal{E}_{n}:=\{(i, j)\in[n]\times[n] : i\neq j\}$ , let $A_{n,G}$ be the arrangement
of hyperplanes

$x_{i}-x_{j}=0$ for $1\leq\dot{?}<j\leq n$ ,
(5)

$x_{i}-x_{j}=1$ for $(j, i)\in G$ .

Note that if $G$ is empty, $G=\{(j, i)\in \mathcal{E}_{n} : i<j\}$ , or $G=\mathcal{E}_{n}$ , then
$A_{n,G}$ specializes to $A_{n}$ , $S_{n}$ , or Catn, respectively, to which the next
proposition applies. For a generalization and analogous results for other
root systems see [4, Theorem 6.2.10 and 6.3] [3, \S 3].

4.4. Proposition ([3, Theorem 3.9] [4, Theorem 6.2.7]). Suppose
that the set $G\subseteq \mathcal{E}_{n}$ has the following properties:

(i) If $i,j<k$ , $i\neq j$ and $(i,j)\in G$ , then $(i, k)\in G$ or $(k,j)\in G$ .
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(ii) If ?., $j<k$ , $i\neq j$ and $(i, k)\in G$ , $(k, j)\in G$ , then $(i, j)\in G$ .

Then

$\chi(A_{n},c, q)=q\prod_{1<j\leq n}(q-c_{j})$
,

where $c_{j}=n+a_{j}-j+1$ and $a_{j}$ is the number of $(j, i)$ or $(i,j)$ in $G$

with $i<j$ .

The conditions in Proposition 4.4 become simpler if $A_{n,G}$ contains
hyperplanes of the form $x_{i}-x_{j}=1$ only for $i<j$ , i.e. if it lies between
$A_{n}$ and $S_{n}$ . We state this special case for later reference.

4.5. Corollary ([3, Theorem 3.4] [4, Theorem 6.2.2]). Suppose that
the set $G\subseteq\{(j, i)\in \mathcal{E}_{n} : i<j\}$ has the following property: if $1\leq i<$

$j<k\leq n$ and $(j, i)\in G$ then $(k, i)\in G$ . Then

$\chi(A_{n},c, q)=q\prod_{1<j\leq n}(q-c_{j})$
,

where $c_{j}=n-\#\{i<j:(j, i)\not\in G\}$ .

Recall from Theorem 2.6 that the characteristic polynomial of $A_{\Phi}$

factors with roots the exponents of $\Phi$ . The following result was also
obtained in [44, Proposition 1.5.8] [45, Theorem 9.8] for $\Phi=A_{n-1}$ ; see
also [3, Theorem 5.5] and [9, Proposition 5.3].

4.6. Theorem ([4, Corollary 7.2.3 and Theorem 7.2.6]). Let $\Phi$ be

of type $A$ , $B$ , $C$ , $D$ or $BC$ . For the extended Catalan arrangement $A=$

$A_{\Phi}^{[-a,a]}$ we have

$\chi(A, q)=\chi(A_{\Phi}, q-ah)$ ,

if $\Phi$ has type $A$ , $B$ , $C$ or $D$ and

$\chi(A, q)=\{$
$\chi(A_{\Phi}, q-(2n+1)a)$ , if $a?.S$ even,

$\chi(A_{\Phi}, q-(2n+1)a-1)$ , if $a$ is $odd_{)}$

if $\Phi$ has type $BC$ .

The arrangement (3) reduces to the extended Catalan arrangement
of type $A$ for $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=a+1$ . Its characteristic polynomial
can be computed by an easy application of Theorem 4.2.
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4.7. Proposition ([8, 4]). If $A$ is the arrangement (3) and $m$ is
the sum of the positive integers $\lambda_{i}$ for $1\leq i\leq n$ , then

$\chi(A, q)=q\prod_{j=m-n+1}^{m-1}(q-j)$ .

In particular, the number of nonnesting partitions of $[m]$ with block sizes
$\lambda_{1}$ , $\lambda_{2}$ , $\ldots$ , $\lambda_{n}$ is equal to

$\frac{m!}{r_{\lambda}(m-n+1)!}$ ,

where $r_{\lambda}=r_{1}!r_{2}$ ! $\cdots$ and $r_{j}$ is the number of indices $i$ with $\lambda_{i}=j$ .

Root system analogues of Proposition 4.7 for $\Phi=B_{n}$ and $C_{n}$ appear
in [7].

The expression for $\chi(\mathcal{L}_{n}, q)$ in Theorem 3.5 was obtained in $[3, 4]$

by a similar but less straightforward argument, based on Theorem 4.2.
It generalizes easily to the extended Linial arrangements. Let $S$ be the

shift operator, acting on polynomials in $y$ by

$Sf(y):=f(y-1)$ .

We state the next result in the elegant form given in $[44, 45]$ . For a
relatively short proof based on Theorem 4.2 see [9, \S 3].

4.8. Theorem ([3, \S 4] [4, 6.4] [45, Theorem 9.7]). For $\Phi=A_{n-1}$

and $a\geq 1$ , the extended Linial arrangement has characteristic polyno-
mial

$\chi(A_{\Phi}^{[1,a]}, q)=\frac{1}{(a+1)^{n}}(1+S+S^{2}+\cdots+S^{a})^{n}q^{n-1}$ .

Theorem 4.8 implies the fact that all roots of $\chi(A_{\Phi}^{[1,a]}, q)$ have the
same real part. Indeed, if the polynomial $f$ has this property then so
does $(S+\zeta)f$ , if $\zeta\in \mathbb{C}$ satisfies $|\zeta|=1$ ; see [44, Lemma 1.5.12] [45, Lemma
9.12] for an elegant, short proof. Using this reasoning, Postnikov and
Stanley settled their Conjecture 3.6 in the type $A$ case.

4.9. Theorem ([44, Theorem 1.5.11] [45, Theorem 9.11]). Conjec-
ture 3.6 is true for $\Phi=A_{n-1}$ .

Explicit formulae for the characteristic polynomials of the arrange-
ments in Conjecture 3.6 were obtained in [9, 4-5] for the other classical
root systems. The proofs follow the ones for the type $A$ case in [9, \S 3]
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but are more involved. We give the formulae for the extended Linial
arrangements.

4.10. Theorem ([9, 4]). For the extended Linial arrangement
$A=A_{\Phi}^{[1,a]}$ and for $a$ even or odd, $ respectively\rangle$ $\chi(A, q)$ is equal to

$\{$

$\frac{1}{(a+1)^{r\iota+1}}(1+S^{2}+S^{4}+\cdots+S^{2a})^{n-1}(1+S+S^{2}+\cdots+S^{a})q^{n}$ ,

$\frac{4S}{(a+1)^{r\iota+1}}(1+S^{2}+S^{4}+\cdots+S^{2a})^{n-1}(1+S^{2}+S^{4}+\cdots+S^{a-1})q^{n}$

if $\Phi=B_{n}$ or $C_{n}$ ,

$\{$

$\frac{1}{(a+1)^{r\iota+1}}(1+S^{2}+S^{4}+\cdots+S^{2a})^{n-2}(1+S+S^{2}+\cdots+S^{a})^{4}q^{n}$ ,

$\frac{8S}{(a+1)^{\tau\iota+1}}(1+S^{2})(1+S^{2}+\cdots+S^{2a})^{n-1}(1+S^{2}+\cdots+S^{a-1})^{4}q^{n}$

if $\Phi=D_{n}$ and

$\{$

$\frac{1}{(a+1)\iota+1}.(1+S^{2}+S^{4}+\cdots+S^{2a})^{n}(1+S+S^{2}+\cdots+S^{a})q^{n}$ ,

$\frac{2S}{(a+1)^{\tau\iota+1}}(1+S^{2}+S^{4}+\cdots+S^{2a})^{n}(1+S^{2}+S^{4}+\cdots+S^{a-1})q^{n}$

if $\Phi=BC_{n}$ .

The next result follows as in the type $A$ case; see [9].

4.11. Theorem ([9, Theorem 1.2]). Conjecture 3.6 is true for all
root systems of type A, B, C, D or BC.

\S 5. Freeness

Recall from Theorem 2.4 that the characteristic polynomial of a free
arrangement factors completely over the nonnegative integers and from
Theorem 2.5 that the Coxeter arrangement $A_{\Phi}$ is free with exponents
the exponents $e_{1}$ , $e_{2}$ , $\ldots$ , $e_{\ell}$ of $\Phi$ . In view of the numerous instances in
Sections 3 and 4 in which $\chi(A, q)$ factors, it is natural to ask whether
various deformations of $A_{\Phi}$ are free, when homogenized to central ar-
rangements by the cone operation [42, Definition 1.15].

Freeness of the cones of the extended Catalan and Shi arrangements
was conjectured in [24] and remains unsettled, except for the type $A$

case [24, \S 3] [6, \S 3]. We continue to denote by $h$ the Coxeter number of
$\Phi$ .

5.1. Conjecture (Edelman-Reiner [24, Conjecture 3.3]). The cone

of the extended Catalan arrangement $A_{\Phi}^{[-a,a]}$ is free with exponents 1, $e_{1}+$

ah, $e_{2}+ah$ , \ldots ,
$e_{\ell}+ah$ .
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5.2. Conjecture (Edelman-Reiner [24, Conjecture 3.3]). The cone

of the extended Shi arrangement $A_{\Phi}^{[-a+1}$
, a]

is free with exponents 1 with
multiplicity one, and ah with multiplicity $\ell$ .

Edelman and Reiner have stated these conjectures for an irreducible
crystallographic root system $\Phi$ . In view of Theorems 4.3 and 4.6, it is
natural to include the non-reduced system $BC_{n}$ . The conjectures are
not true in general in the non-crystallographic case; see the comments
after Conjecture 3.3 in [24].

Except for Theorems 4.3 and 4.6, evidence in support of the con-
jectures is provided by the fact that they have been verified in the case
of type $A$ ; see the proof of [24, Theorem 3.2] and [6, Corollary 3.4], re-
spectively. Moreover, in the case of Conjecture 5.2, additional evidence
is provided by work of Solomon and Terao [57] on the double Coxeter
arrangement, which we will briefly describe.

Suppose $A$ is central in $K^{\ell}$ and that $\alpha_{H}$ is the linear form which
defines $H\in A$ , so that $H=ker(\alpha_{H})$ . Let $S=K[x_{1}, x_{2}, \ldots, x\ell]$ be the
polynomial ring, as in Section 2, and Der be its module of derivations.
In his theory of free multiarrangements [76], Ziegler has defined the S-
module

$E(A)=$ { $\theta\in Der_{S}$ : $\theta(\alpha_{H})\in S\alpha_{H}^{2}$ for $H\in A$ },

which is a submodule of $D(A)$ . Note that the restriction of the cone of $S_{\Phi}$

to the hyperplane at infinity $x_{0}=0$ is the double Coxeter arrangement,
i.e. $A_{\Phi}$ with each hyperplane having multiplicity two. Thus by Ziegler’s
[76, Theorem 11], the $a=1$ case of Conjecture 5.2 implies that the
double Coxeter arrangement is free, in the sense of the following theorem.

5.3. Theorem (Solomon-Terao [57]). Let $\Phi$ be any irreducible root
system. The module $E(A_{\Phi})$ is free with all degrees of the elements in $a$

basis equal to the Coxeter number $h$ .

Moreover, Solomon and Terao [57, Theorem 1.4] construct an ex-
plicit basis of $E(A_{\Phi})$ in terms of the invariant theory of the Coxeter
group $W$ . This raises naturally the following question.

5.4. Question. Is there a basis of the module of derivations of
the cone of $S_{\Phi}$ which can be described explicitly in terms of the invariant
theory of the Weyl group $W^{p}$

Beginning with work of Stanley [58] on subarrangements of the braid
arrangement $A_{n}$ , called graphical arrangements, classes of subarrange-
ments of Coxeter arrangements have been studied [35] and characterized
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$[23, 13]$ from the point of view of freeness; see also [24], [11, \S 7] [12]. It
was shown by Stanley [58] that the supersolvable–or free–graphical
arrangements correspond to chordal graphs and by Edelman and Reiner
[23] that the free arrangements between $A_{n}$ and the Coxeter arrange-
ment of type $B_{n}$ correspond to threshold graphs. For interesting classes
of free or non-free subarrangements, in particular for non-free graphical
arrangements whose characteristic polynomials factor completely over
the integers, see Kung [38].

Various deformations of $A_{n}$ were studied in this sense in [6]. We
mention a complete characterization for the family of arrangements
$A_{n,G}$ , defined in (5), which lie between $A_{n}$ and $S_{n}$ . The class of ar-
rangements in this family with free cones turns out to be, essentially,
the class which appears in Corollary 4.5. The condition in Corollary
4.5 has also appeared in the characterization of freeness in a different
family; see Bailey [11, Theorem 7.3] [12].

5.5. Theorem ([6, Theorem 4.1]). Let $ G\subseteq E_{n}:=\{(j, i)\in[n]\times$

$[n]$ : $i<j$ }. The following are equivalent:

(i) $A_{n,G}$ is inductively free.
(ii) The cone of $A_{n,G}$ is free.
(iii) There is a permutation $w=w_{1}w_{2}\cdots w_{n}$ of $[n]$ such that

$w^{-1}\cdot G=\{(j, i) : (w_{j}, w_{i})\in G\}$

is contained in $E_{n}$ and satisfies the condition in Corollary 4.5.

A similar characterization for the family of arrangements between
$S_{n}$ and $Cat_{n}$ is given in [6, Theorem 4.3]. Specifically, if $E_{n}\subseteq G\subseteq \mathcal{E}_{n}$

and $\overline{G}=\{(j, i) : (i, j)\in \mathcal{E}_{n}-G\}\subseteq E_{n}$ , then $A_{n,G}$ has free cone if
and only if so does $A_{n,\overline{G}}$ . In contrast with the situation in [23], most

of the free arrangements of Theorem 5.5 are not supersolvable; see [6,
Theorem 4.2]. For characterizations of supersolvability for deformations
of $A_{n}$ , see Zaslavsky [74, \S 3].

\S 6. Remarks and open questions

In this section we include a number of questions other than Con-
jecture 3.6 (which is still open for the exceptional root systems), Con-
jectures 5.1 and 5.2 and Question 5.4. Our main objective is to point
out that from many perspectives, the classes of deformations of Coxeter
arrangements we have discussed are still not well understood.

All known proofs of Theorem 3.3 proceed with a case by case veri-
fication. A positive answer to Question 5.4 would give a uniform proof,
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via Terao’s factorization theorem. The fact that Theorem 3.3 is stated
in an elementary, uniform way suggests the following question.

6.1. Question. Is there an elementary, case-free proof of Theorem
3.3 $.p$

Similar questions can be asked about Theorems 4.3 and 4.6 and the
curious property of $\chi(A, q)$ in Conjecture 3.6, which Postnikov and Stan-
ley refer to as the “Riemann hypothesis” for $A[44,45]$ . In particular,
it is natural to ask whether Theorems 4.3, 4.6 and 4.11 extend to the
exceptional root systems.

6.2. Question. Are there case-free proofs of Theorems 4.3 and
4.6 $p$ In particular, are these theorems valid for the exceptional crystal-
lographic root systems $p$

6.3. Question. Is there a case-free, conceptual proof of Conjecture
3.6 $p$

It would also be desirable to find simpler derivations of the formulae
in Theorem 4.10 than those of [9], which may not give the best insight
possible, especially in the case of the root system $D_{n}$ . In particular, there
is no conceptual explanation to the fact that these formulae coincide for
the root systems $B_{n}$ and $C_{n}$ .

The Riemann hypothesis for $A$ does not apply exclusively to the
arrangements of Conjecture 3.6, as the following example shows.

6.4. Example ([9, Proposition 6.1]). The arrangement with hy-
perplanes

$2x_{i}=0,1,2$ , \ldots , 2a for $1\leq?$
.

$\leq n$ ,
$x_{i}-x_{j}=0,1$ , \ldots , a for $1\leq i<j\leq n$ ,
$x_{i}+x_{j}=0,1$ , \ldots , a for $1\leq i<j\leq n$

has characteristic polynomial

$\frac{1}{a^{n+1}}S^{2n+1}(1+S^{2}+S^{4}+\cdots+S^{2a-2})^{n+1}q^{n}$

and hence satisfies Conjecture 3. $\theta$ .

By analogy with the numerous theories built to explain the phenom-
enon of complete factorization of $\chi(A, q)$ over the integers (see Section
2), we ask the following.

6.5. Question. Is there a natural algebraic condition on A which
implies the Riemann hypothesis of Conjecture 3.6 for $\chi(A, q)^{p}$
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In various characterizations of freeness, such as those in [23, 24, 6,
11], the families of arrangements under consideration are indexed by
undirected graphs on $n$ vertices. Classes of arrangements which corre-
spond to pairs of graphs seem to be more challenging to analyze from
the point of view of freeness. It is not known, for instance, which the free
subarrangements of the Coxeter arrangement of type $B_{n}$ are; see [23].
Proposition 4.4 suggests an explicit characterization of the arrangements
between $A_{n}$ and $Cat_{n}$ with free cones.

6.6. Conjecture. For G $\subseteq \mathcal{E}_{n\rangle}$ the cone of $A_{n,G}$ is free if and
only if G satisfies the two conditions in Proposition 4.4.

Motivated by the fact that Coxeter arrangements are $K(\pi, 1)[42$ ,

Chapter 6] we ask the following about the topology of the complexifica-
tions of $S_{\Phi}$ and $Cat_{\Phi}$ .

6.7. Question. Is the Shi arrangement $S_{\Phi}$ a $K(\pi, $1) arrange-
ment? Is the Catalan arrangement $Cat_{\Phi}$ a $K(\pi, $1) arrangement’?

Finally, we collect some questions and facts about the combinatorics
of the face structure of the arrangements in Section 3.

Direct bijective proofs of Theorem 3.2 for the type $A$ case can be
found in [61, \S 2] [10, \S 2]; see also [31] and Remark 1 in [10, \S 4] for
a proof by deletion-restriction. The bijections in $[61, 10]$ generalize to
the extended Shi arrangements. The one in [10] generalizes also to the
family of arrangements between $A_{n}$ and $S_{n}$ [ $10$ , Theorem 1.2].

6.8. Question. Are there simple bijective proofs of Theorem 3.2

for cases other than that of type $A.$?

For the braid arrangement $A_{n}$ , it is well known that faces of a fixed
dimension $k$ correspond to ordered partitions of the set $[n]$ with $k$ blocks.
In the case of type $A$ , Shi’s formula for the number of regions of $S_{n}$ was
generalized to $k$-dimensional faces in [3, Theorem 6.5] [4, Corollary 8.2.2]
as follows.

6.9. Theorem ([3, 4]). For $0\leq k\leq n$ , the number of faces of $S_{n}$

of dimension $k$ is given by

$f_{k}(S_{n})=\left(\begin{array}{l}n\\k\end{array}\right)n\sum_{i=0}^{-k}(-1)^{i}$ $\left(\begin{array}{l}n-k\\i\end{array}\right)$ $(n-i+1)^{n-1}$ .
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Equivalently,

(6) $f_{k}(S_{n})=\left(\begin{array}{l}n\\k\end{array}\right)$ $\#$ $\{f : [n-1]\rightarrow[n+1]|[n-k]\subseteq Imf\}$ ,

where $Imf$ is the image of the map $f$ .

6.10. Question. Is there a simple bijective proof of Theorem
$6.9/.p$ Can the poset of faces of $S_{n}$ , partially ordered by inclusion of their
closures, be described in terms of the maps in (6) $p$

It is plausible that such a bijection will specialize to the one between
regions of $S_{n}$ and parking functions given in [10, \S 2] for $k=n$ . Theorem
6.9 generalizes to the extended Shi arrangements [4, Theorem 8.2.1].

The “coincidence” of the formulae for the number $f_{n}$ of regions of the
Linial arrangement $\mathcal{L}_{n}$ and alternating trees on $n+1$ vertices suggests
the following question.

6.11. Question. Is there a bijective proof of Theorem 3.4 $.p$

We refer to [59, \S 4] for a number of combinatorial interpretations
and expressions for $f_{n}$ . In particular, Postnikov [43, \S 4] [44, Theorem
1.4.3] has given a bijection between alternating trees on $n+1$ vertices
and local binary search trees on $n$ vertices. Here we remark that $f_{n}$ is
also equal to the number of $n$-tuples $x=(x_{1}, x_{2}, \ldots, x_{n})\in \mathbb{Z}_{n+1}^{n}$ which
satisfy $x_{i}-x_{j}\neq 1$ in $\mathbb{Z}_{n+1}$ for 1 $\leq i<j\leq n$ and $x_{1}=0$ or, in
other words, to the number of ways to distribute 1, 2, . . . ’

$n$ in $n+1$

boxes arranged cyclically, with repetitions allowed, such that no $j$ is
immediately followed clockwise by an $i<j$ . This follows from the proof
of Theorem 3.5 in [3, 4, 9] by letting $q=n+1$ .

The regions of Catn, $S_{n}$ and $\mathcal{L}_{n}$ are in bijection with certain classes
of posets that can be characterized in terms of forbidden induced sub-
posets, see [44, 1.3.1] [45, \S 7], [5] and [44, 1.4.6] [45, 8.2], respectively.
It would be interesting to find other instances of this phenomenon.

The enumeration of regions by the “distance statistic” has been of
interest in the context of deformations of Coxeter arrangements. The
distance $\rho_{R_{0}}(R)$ of a region $R$ of $A$ from a fixed base region $R_{0}$ is the
number of hyperplanes of $A$ which separate $R$ from $R_{0}$ . The following
result for Coxeter arrangements is classical.
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6.12. Theorem (Solomon [55]). For any irreducible root system
$\Phi$ we have

$\sum_{R}q^{\beta J?o(R)}=\prod_{i=1}^{\ell}(1+q+q^{2}+\cdots+q^{e_{i}})$ ,

where $R$ runs through all regions of $A_{\Phi}$ , $R_{0}$ is any fixed region and
$e_{1}$ , $e_{2}$ , $\ldots$ , $e_{\ell}$ are the exponents of $\Phi$ .

For the Shi arrangement $S_{n}$ the distance enumerator, for a suitably
chosen base region $R_{0}$ , turns out to be the inversion enumerator for
trees [40]. Indeed, let $R_{0}$ be the region defined by the inequalities $x_{1}>$

$x_{2}>\cdots>x_{n}$ and $x_{1}-x_{n}<1$ . An inversion of a tree $T$ on the vertex
set $\{0, 1, \ldots, n\}$ is a pair $(i,j)$ with $1\leq i<j\leq n$ such that vertex $j$

lies on the path in $T$ from 0 to $i$ . The bijection described in [59, \S 5]
and one due to Kreweras [37] yield the following result. A proof and
generalization to the extended Shi arrangements is given in [61].

6.13. Theorem (Pak-Stanley [59, Theorem 5.1] [61]). For each
$m=0,1$ , $\ldots$ , $\left(\begin{array}{l}n\\2\end{array}\right)$ , the number of regions $R$ of $S_{n}$ with distance $m$ from $R_{0}$

is equal to the number of trees on $\{0, 1, \ldots, n\}$ with $\left(\begin{array}{l}n\\2\end{array}\right)$ $-m$ inversions.

It would be interesting to find a simpler and more direct proof of
this theorem. See the notes in [61, \S 3] for related open questions.

6.14. Question (Stanley [62]). Are there analogues of Theorem
6.13 for root systems other than those of type A $p$ Is there an analogue

for the Linial arrangement $\mathcal{L}_{n}p$

It was observed by Stanley [62] that the distance enumerator for the
Catalan arrangement $Cat_{n}$ is

$\sum_{R}q^{\rho_{R_{0}}(R)}=C_{n}(q)\prod_{i=1}^{n-1}(1+q+q^{2}+\cdots+q^{i})$ ,

where $R_{0}$ is as in the case of $S_{n}$ and

$C_{n}(q)=\sum_{\lambda}q^{|\lambda|}$
,

with $\lambda=(\lambda_{1}, \lambda_{2}, \ldots)$ running over all partitions with $\lambda_{i}\leq n-i$ .
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Abstract.

We relate the cohomology of the Orlik-Solomon algebra of a dis-
criminantal arrangement to the local system cohomology of the com-
plement. The Orlik-Solomon algebra of such an arrangement (viewed
as a complex) is shown to be a linear approximation of a complex aris-
ing from the fundamental group of the complement, the cohomology
of which is isomorphic to that of the complement with coefficients
in an arbitrary complex rank one local system. We also establish
the relationship between the cohomology support loci of the comple-
ment of a discriminantal arrangement and the resonant varieties of
its Orlik-Solomon algebra.

Introduction

Let $A$ be an arrangement of $N$ complex hyperplanes, and let $M(A)$

be its complement. For each hyperplane $H$ of $A$ , let $f_{H}$ be a linear
polynomial with kernel $H$ , and let $\lambda_{H}$ be a complex number. Each point
$\lambda=(\ldots, \lambda_{H}, \ldots)\in \mathbb{C}^{N}$ determines an integrable connection $\nabla=d+\Omega_{\lambda}$

on the trivial line bundle over $M(A)$ , where $\Omega_{\lambda}=\sum_{H\in A}\lambda_{H}d\log f_{H}$ ,

and an associated complex rank one local system $\mathcal{L}$ on $M(A)$ . Alter-
natively, if $t\in(\mathbb{C}^{*})^{N}$ is the point in the complex torus corresponding
to $\lambda$ , then the local system $\mathcal{L}$ is induced by the representation of the
fundamental group of $M(A)$ which sends any meridian about $H\in A$ to
$t_{H}=\exp(-2\pi i\lambda_{H})$ .
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Due largely to its various applications, the cohomology of $M(A)$

with coefficients in $\mathcal{L}$ has been the subject of considerable recent interest.
These applications include representations of braid groups, generalized
hypergeometric functions, and the Knizhnik-Zamolodchikov equations
from conformal field theory. See, for instance, the works of Aomoto,
Kita, Kohno, Schechtman, and Varchenko [1, 2, 21, 28, 30], and see Orlik
and Terao [25] as a general reference for arrangements. Of particular
interest in these applications are the discriminantal arrangements of [28],
the complements of which may be realized as configuration spaces of
ordered points in $\mathbb{C}$ punctured finitely many times. (Note that our use
of the term “discriminantal” differs from that of [25].)

The local system cohomology $H^{*}(M(A);\mathcal{L})$ may be studied from
a number of points of view. For instance, if $A$ is real, that is, defined
by real equations, the complement $M(A)$ is homotopy equivalent to the
Salvetti complex $X$ of $A$ , see [26]. In this instance, the complex $X$

may be used in the study of local systems on $M(A)$ . This approach
is developed by Varchenko in [30], to which we also refer for discussion
of the applications mentioned above, and has been pursued by Denham
and Hanlon [13] in their study of the homology of the Milnor fiber of an
arrangement.

If $A$ is $K(\pi, 1)$ , that is, the complement $M(A)$ is a $K(\pi, 1)$ -space,
then local systems on $M(A)$ may be studied from the point of view of
cohomology of groups. Any representation of the fundamental group $G$

of the complement of a $K(\pi, 1)$ arrangement gives rise to a $G$-module
$L$ , and a local system of coefficients $\mathcal{L}$ on $M(A)$ . Since $M(A)$ is a
$K(\pi, 1)$ -space, we have $H_{*}(M(A);\mathcal{L})=H_{*}(G;L)$ and $H^{*}(M(A);\mathcal{L})=$

$H^{*}(G;L)$ , see for instance Brown [8]. The class of $K(\pi, 1)$ arrangements
includes the discriminantal arrangements noted above, as they are exam-
ples of fiber-type arrangements, well-known to be $K(\pi, 1)$ , see e.g. Falk
and Randell [17].

For any arrangement $A$ , let $B(A)$ denote the Brieskorn algebra of
$A$ , generated by 1 and the closed differential forms dlog $f_{H}$ , $H\in A$ . As
is well-known, the algebra $B(A)$ is isomorphic to $H^{*}(M(A);\mathbb{C})$ , and to
the Orlik-Solomon algebra $A(A)$ , so is determined by the lattice of $A$ ,

see [7, 24, 25]. If $\mathcal{L}$ is a local system on $M(A)$ determined by “weights”
$\lambda$ which satisfy certain Aomoto non-resonance conditions, work of Es-
nault, Schechtman, and Viehweg [14], extended by Schechtman, Terao,

and Varchenko [27], shows that $H^{*}(M(A);\mathcal{L})$ is isomorphic to the co-
homology of the complex $(B(A), \Omega_{\lambda}\wedge)$ . Thus for non-resonant weights,
the local system cohomology may be computed by combinatorial means,
using the Orlik-Solomon algebra equipped with differential $\mu(\lambda)$ , given
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by left-multiplication by $\omega_{\lambda}$ , the image of $\Omega_{\lambda}$ under the isomorphism
$B(A)\rightarrow A(A)$ .

For arbitrary (resonant) weights, one has

$dimH^{k}(A(A), \mu(\lambda))\leq dimH^{k}(M(A);\mathcal{L})\leq dimH^{k}(M(A);\mathbb{C})$

for each $k$ . See Libgober and Yuzvinsky [23] for the first of these in-
equalities. The second is obtained using stratified Morse theory in [9],
and resolves a question raised by Aomoto and Kita in [2]. For resonant
weights, the precise relation between $H^{*}(A(A), \mu(\lambda))$ and $H^{*}(M(A);\mathcal{L})$

is not known.
However, recent results suggest that $H^{k}(A(A), \mu(\lambda))$ may be viewed

as a “linear approximation” of $H^{k}(M(A);\mathcal{L})$ , at least for small $k$ . The
resonant varieties, $\mathcal{R}_{k}^{m}(A(A))=\{\lambda\in \mathbb{C}^{N}|dimH^{k}(A(A), \mu(\lambda))\geq m\}$ ,

of the Orlik-Solomon algebra were introduced by Falk in [16]. For $k=1$

and any arrangement $A$ , it is known that $\mathcal{R}_{1}^{m}(A(A))$ coincides with
the tangent cone of the cohomology support locus of the complement,
$\Sigma_{m}^{1}(M(A))=\{t\in(\mathbb{C}^{*})^{N}|dimH^{1}(M(A);\mathcal{L})\geq m\}$ , at the point
$(1, \ldots, 1)$ , see [11, 22, 23]. For certain arrangements, we present fur-
ther “evidence” in support of this philosophy here.

If $A$ is a fiber-type arrangement, the fundamental group $G$ of the
complement $M(A)$ may be realized as an iterated semidirect product of
free groups, and $M(A)$ is a $K(G, 1)$ -space, see $[17, 25]$ . For any such
group, we construct a finite, free $\mathbb{Z}G$-resolution, $C.(G)$ , of $\mathbb{Z}$ in [10].
This resolution may be used to compute the homology and cohomol-
ogy of $G$ with coefficients in any $G$-module $L$ , or equivalently, that of
$M(A)$ with coefficients in any local system $\mathcal{L}$ . We have $H_{*}(M(A);\mathcal{L})=$

$H_{*}(C.(G)\otimes_{G}L)$ and $H^{*}(M(A);\mathcal{L})=H^{*}(’Hom_{G}(C.(G), L))$ , see [8].
Briefly, for a fiber-type arrangement $A$ , the relationship between the

cohomology theories $H^{*}(A(A), \mu(\lambda))$ and $H^{*}(M(A);\mathcal{L})$ is given by the
following assertion. For any $\lambda$ , the complex $(A(A), \mu(\lambda))$ is a linear ap-
proximation of the complex $\prime\mu om_{G}(C.(G), L)$ . We prove a variant of this
statement in the case where $A$ is a discriminantal arrangement here. We
also establish the relationship between the resonant varieties $\mathcal{R}_{k}^{m}(A(A))$

and cohomology support loci $\Sigma_{m}^{k}(M(A))$ of these arrangements, analo-
gous to that mentioned above in the case $k=1$ .

The paper is organized as follows. The Orlik-Solomon algebra of a
discriminantal arrangement admits a simple description, which fascili-
tates analysis of the differential of the complex $(A(A), \mu(\lambda))$ . We carry
out this analysis, which is elementary albeit delicate, in section 1, and
obtain an explicit (inductive) description of the differential $\mu(\lambda)$ . In
section 2, we recall the construction of the resolution $C.(G)$ from [10]
in the instance where $G$ is the fundamental group of the complement of
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a discriminantal arrangement, and exhibit a complex (C., $\delta.(t)$ ) which
computes the cohomology $H^{*}(M(A), \mathcal{L})$ for an arbitrary rank one local
system. We then study in section 3 a linear approximation of (C., $\delta.(t)$ ),
and relate it, for arbitrary $\lambda$ , to the complex $(A(A), \mu(\lambda))$ . We con-
clude by realizing the resonant varieties of the Orlik-Solomon algebra of
a discriminantal arrangement as the tangent cones at the identity of the
cohomology support loci of the complement in section 4.

\S 1. Cohomology of the Orlik-Solomon Algebra

Let $M_{n}=$ { $(x_{1}$ , $\ldots$ , $x_{n})\in \mathbb{C}^{n}1x_{i}\neq x_{j}$ if $i\neq j$ } be the configura-
tion space of $n$ ordered points in $\mathbb{C}$ . Note that $M_{n}$ may be realized as the
complement of the braid arrangement $A_{n}=\{x_{i}=x_{j}, 1\leq i<j\leq n\}$

in $\mathbb{C}^{n}$ . Classical work of Fadell and Neuwirth [15] shows the projection
$\mathbb{C}^{n}\rightarrow \mathbb{C}^{\ell}$ defined by forgetting the last $ n-\ell$ coordinates gives rise to a
bundle map $p$ : $M_{n}\rightarrow M_{\ell}$ . From this it follows that $M_{n}$ is a $K(P_{n}, 1)-$

space, where $P_{n}=\pi_{1}(M_{n})$ is the pure braid group on $n$ strands.
The typical fiber of the bundle of configuration spaces $p$ : $ M_{n}\rightarrow$

$M_{\ell}$ may be realized as the complement of an arrangement in $\mathbb{C}^{n-\ell}$ , a
discriminantal arrangement in the sense of Schechtman and Varchenko,
see $[28, 30]$ . The fiber over $z=(z_{1}, \ldots, z_{\ell})\in M_{\ell}$ may be realized as
the complement, $M_{n,,,\ell}=M(A_{n,\ell})$ , of the arrangement $A_{n,,,\ell}$ consisting

of the $N=\left(\begin{array}{l}n\\2\end{array}\right)-\left(\begin{array}{l}\ell\\ 2\end{array}\right)$ hyperplanes

$H_{i,,,j}=\{$

$ker(x_{j}-x_{i})$ $\ell+1\leq i<j\leq n$ ,

$ker(x_{j}-z_{i})$ $ 1\leq i\leq\ell$ , $\ell+1\leq j\leq n$ ,

in $\mathbb{C}^{n-\ell}$ (with coordinates $x_{\ell+1}$ , $\ldots$ , $x_{n}$ ). Note that $M_{n,,,\ell}$ is the config-
uration space of $ n-\ell$ ordered points in $\mathbb{C}\backslash \{z_{1}, \ldots, z_{\ell}\}$ , and that the
topology of $M_{n,\ell}$ is independent of $z$ , see [15, 5, 20]. We first record
some known results on the cohomology of $M_{n,,,\ell}$ .

1.1. The Orlik-Solomon Algebra

The fundamental group of the configuration space $M_{n,,,\ell}$ may be real-
ized as $P_{n,,,\ell}=\pi_{1}(M_{n,\ell})=ker(P_{n}\rightarrow P_{\ell})$ , the kernel of the homorphism
from $P_{n}$ to $P_{\ell}$ defined by forgetting the last $n$ $-\ell$ strands. From the
homotopy exact sequence of the bundle $p:M_{n}\rightarrow M_{\ell}$ , we see that $M_{n,\ell}$

is a $K(P_{n,\ell}, 1)$ -space. The cohomology of this space, and hence of this
group, may be described as follows.

Let $\mathcal{E}=\oplus_{q=0}^{N}\mathcal{E}^{q}$ be the graded exterior algebra over $\mathbb{C}$ , generated
by $e_{i,j}$ , $\ell+1\leq j\leq n$ , $1\leq i<j$ . Let I be the ideal in $\mathcal{E}$ generated, for
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$1\leq i<j<k\leq n$ , by

$e_{i,,,j}\wedge e_{i,,,k}-e_{i,j}\wedge e_{j,k}+e_{i,,,k}\wedge e_{j,k}$ if $j\geq\ell+1$ , and $e_{i,,,k}\wedge e_{j,k}$ if $ j\leq\ell$ .

Note that $\mathcal{E}^{q}\subset I$ for $ q>n-\ell$ . The Orlik-Solomon algebra of the
discriminantal arrangement $A_{n,,,\ell}$ is the quotient $A=\mathcal{E}/I$ .

Theorem 1.2. The cohomology algebra $H^{*}(M_{n,,,\ell;}\mathbb{C})=H^{*}(P_{n,,,\ell;}\mathbb{C})$

is isomorphic to the Orlik-Solomon algebra $A=A(A_{n,,,\ell})$ .

The grading on $\mathcal{E}$ induces a grading $A=\oplus_{q=0}^{n-\ell}A^{q}$ on the Orlik-
Solomon algebra $A=A(A_{n,,,\ell})$ . Let $a_{i,,,j}$ denote the image of $e_{i,,,j}$ in $A$ ,

and note that these elements form a basis for $A^{1}$ and generate $A$ . From
the description of the ideal I above, it is clear that all relations among
these generators are consequences of the following:

(1.1) $a_{i,,,k}\wedge a_{j,k}=\{$

$a_{i,,,j}\wedge(a_{j,k}-a_{i,,,k})$ if $j\geq\ell+1$ ,

0 if $ j\leq\ell$ ,

for $1\leq i<j<k\leq n$ .

This observation leads to a natural choice of basis for the algebra
$A$ . For $m\leq n$ , write $[m, n]=\{m, m+1, \ldots, n\}$ . If $I$ $=\{i_{1}, \ldots, i_{q}\}$ and
$J=\{j_{1}, \ldots,j_{q}\}$ satisfy the conditions $J\subseteq[\ell+1, n]$ and $1\leq i_{p}<j_{p}$ for
each $p$ , let $a_{I,,,J}=a_{i_{1},,,j_{1}}\wedge\cdots\wedge a_{i_{q},,,j_{q}}$ . If $|J|=0$ , set $a_{I,,,J}=1$ .

Proposition 1.3. For each $q$ , $ 0\leq q\leq n-\ell$ , the forms $a_{I,,,J}$ with
$|J|=q$ and I as above form a basis for the summand $A^{q}$ of the Orlik-
Solomon algebra $A$ of the discriminantal arrangement $A_{n,\ell}$ . Further-
more, the summand $A^{q}$ decomposes as a direct sum, $A^{q}=\oplus_{|J|=q}A_{J}$ ,

where $A_{J}=\oplus_{I}\mathbb{C}a_{I,,,J}$ .

Remark 1.4. These results are well-known. For instance, if $A=$
$A_{n}$ is the braid arrangement, Theorem 1.2 follows from results of Arnol’d
[4] and Cohen [12], which show that $H^{*}(M_{n}; \mathbb{C})$ is generated by the forms
$a_{i,,,j}=d\log(x_{j}-x_{i})$ , with relations (1.1) (with $\ell=1$ ). For any discrim-
inantal arrangement $A_{n,,,\ell}$ , Theorem 1.2 is a consequence of results of
Brieskorn and Orlik-Solomon, see [7, 24, 25].

As mentioned in the Introduction, the discriminantal arrangements
$A_{n,,,\ell}$ are examples of (affine) fiber-type or supersolvable arrangements.
The structure of the Orlik-Solomon algebra of any such arrangement
$A$ was determined by Terao [29]. The basis for the algebra $A(A_{n,,,\ell})$

exhibited in Proposition 1.3 above is the $nbc$-basis (with respect to a
natural ordering of the hyperplanes of $A_{n,,,\ell}$ ), see [25]. The Orlik-Solomon
algebra of any supersolvable arrangement admits an analogous basis,
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see Bj\"orner-Ziegler [6], and see Falk-Terao [18] for affine supersolvable
arrangements.

1.5. The Orlik-Solomon Algebra as a Complex

Recall that $N=\left(\begin{array}{l}n\\2\end{array}\right)-\left(\begin{array}{l}\ell\\ 2\end{array}\right)$ , and consider $\mathbb{C}^{N}$ with coordinates $\lambda_{i,,,j}$ ,
$\ell+1\leq j\leq n$ , 1 $\leq i<j$ . Each point $\lambda\in \mathbb{C}^{N}$ gives rise to an
element $\omega=\omega_{\lambda}=\sum\lambda_{i,,,j}\cdot a_{i,,,j}$ of $A^{1}$ . Left-multiplication by $\omega$ induces
a map $\mu^{q}(\lambda)$ : $A^{q}\rightarrow A^{q+1}$ , defined by $\mu^{q}(\lambda)(\eta)=\omega\wedge\eta$ . Clearly,
$\mu^{q+1}(\lambda)\circ\mu^{q}(\lambda)=0$ , so (A9, $\mu.(\lambda)$ ) is a complex.

We shall obtain an inductive formula for the boundary maps of the
complex (A9, $\mu.(\lambda)$ ). The projection $\mathbb{C}^{n-\ell}\rightarrow \mathbb{C}$ onto the first coordinate
gives rise to a bundle of configuration spaces, $M_{n,,,\ell}\rightarrow M_{\ell+1,\ell}$ , with fiber
$M_{n,\ell+1}$ , see [15, 5, 20]. The inclusion of the fiber $M_{n,,,\ell+1}c_{-\rangle}M_{n,,,\ell}$ induces
a map on cohomology which is clearly surjective. This yields a surjection
$\pi$ : $A(A_{n,,,\ell})\rightarrow A(A_{n,,,\ell+1})$ .

Write $A=A(A_{n,,,\ell})$ and $\hat{A}=A(A_{n,,,\ell+1})$ , and denote the generators

of both $A$ and $\hat{A}$ by $a_{i,,,j}$ . In terms of these generators, the map $\pi$

is given by $\pi(a_{i,,,\ell+1})=0$ , and $\pi(a_{i,,,j})=a_{i,,,j}$ otherwise. Let $\hat{\omega}\in\hat{A}$

denote the image of $\omega\in A^{1}$ under $\pi$ . If we write $\omega=\sum_{k=\ell+1}^{n}\omega_{k}$ , where
$\omega_{k}=\sum_{i=1}^{k-1}\lambda_{i,,,k}\cdot a_{i,k}$ , then $\hat{\omega}=\sum_{k=\ell+2}^{n}\omega_{k}$ . As above, left-multiplication

by $\hat{\omega}$ induces a map $\hat{\mu}^{q}(\lambda)$ : $\hat{A}^{q}\rightarrow\hat{A}^{q+1}$ , and $(\hat{A}.,\hat{\mu}.(\lambda))$ is a complex.
The following is straightforward.

Lemma 1.6. The map $\pi$ : (A9, $\mu.(\lambda)$ ) $\rightarrow(\hat{A}.,\hat{\mu}.(\lambda))$ is a surjec-
tive chain map.

Let (B9, $\mu_{B}.(\lambda)$ ) denote the kernel of the chain map $\pi$ . The terms are
of the form $B^{q}=\oplus A_{K}^{q}$ , where $\ell+1\in K$ and $|K|=q$ . In particular,
$B^{0}=0$ . We now identify the differential $\mu_{\dot{B}}(\lambda)$ . If $k<m\leq n$ and
$J\subseteq[m, n]$ , let $\{k, J\}$ denote the (ordered) subset $\{k\}\cup J$ of $[k, n]$ . For
a linear map $F$ , write $[F]^{k}$ for the map $\oplus_{1}^{k}F$ .

Proposition 1.7. The complex (B9, $\mu_{B}.(\lambda)$ ) decomposes as the di-

rect sum of $\ell$ copies of the complex $\hat{A}.$ , shifted in dimension by one, with
the sign of the boundary map reversed. In other words, (B9, $\mu_{\dot{B}}(\lambda)$ ) $\cong$

$((\hat{A}.-1)^{\ell}, -[\hat{\mu}.-1(\lambda)]^{\ell})$ .

Proof For $ 1\leq q\leq n-\ell$ , we have $B^{q}=\oplus A_{\{\ell+1,J\}}^{q}$ , where the sum

is over all $J\subseteq[\ell+2, n]$ with $|J|=q-1$ . Each summand may be written

as $A_{\{\ell+1,J\}}^{q}=\oplus_{i=1}^{\ell}a_{i,,,\ell+1}\wedge A_{J}^{q-1}$ Thus, $B^{q}=\oplus_{i=1}^{\ell}a_{i,,,\ell+1}\wedge\hat{A}^{q-1}$ is

isomorphic to the direct sum of $\ell$ copies of $\hat{A}^{q-1}$ via the map $ B^{q}\rightarrow$

$[\hat{A}^{q-1}]^{\ell}$ , $a_{i,,,\ell+1}\wedge a_{I,,,J}\mapsto(0, \ldots, a_{I,,,J}, \ldots, 0)$ .
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Now consider the boundary map $\mu_{B}^{q}(\lambda)$ : $B^{q}\rightarrow B^{q+1}$ of the complex
B., induced by left-multiplication by $\omega=\sum_{k^{\tau}=\ell+1}^{n}\omega_{k}$ . Let $\eta=a_{i,,,\ell+1}\wedge$

$a_{I,,,J}$ be a generator for $B^{q}$ . Since $a_{i,,,k}\wedge a_{j,k}=0$ for all $i,j<k$ , we have
$\omega_{\ell+1}\wedge\eta=0$ . Thus,

$\mu_{B}^{q}(\lambda)(\eta)=\omega\wedge\eta=(\omega-\omega_{\ell+1})\wedge\eta=-a_{i,,,\ell+1}\wedge(\omega-\omega_{\ell+1})\wedge a_{I,,,J}$ .

Write $(\omega-\omega_{\ell+1})\wedge a_{I,,,J}=\xi_{1}+\xi_{2}$ in terms of the basis for $A$ specified in
Proposition 1.3, where $\xi_{1}\in\oplus_{\ell+1\in K}A_{K}^{q}$ and $\xi_{2}\in\oplus_{\ell+1\not\in K}A_{K}^{q}$ . Then
we have $\omega\wedge\eta=-a_{i,,,\ell+1}\wedge(\xi_{1}+\xi_{2})=-a_{i,,,\ell+1}\wedge\xi_{2}$ . Checking that $\hat{\omega}\wedge a_{I,,,J}=$

$\xi_{2}$ in $\hat{A}$ , we have $\mu_{B}^{q}(\lambda)(a_{i,,,\ell+1}\wedge a_{I,,,J})=-a_{i,,,\ell+1}\wedge\hat{\mu}^{q-1}(\lambda)(a_{I,,,J})$ . Thus,

with the change in sign, the boundary map $\mu_{B}.(\lambda)$ respects the direct

sum decomposition $B$ . $\cong(\hat{A}.-1)^{\ell}$ . Q.E.D.

1.8. Boundary Maps

We now study the differential of the complex (A., $\mu.(\lambda)$ )
$\wedge\cdot$

The di-

rect sum decompositions of the terms of the complexes A9, A., and $B$ .
exhibited above yield

$A^{q}=\oplus_{|J|=q}A_{J}^{q}=(\oplus_{\ell+1\in J}A_{J}^{q})\oplus(\oplus_{\ell+1\not\in J}A_{J}^{q})=B^{q}\oplus\hat{A}^{q}$ .

Let $\pi_{B}$ : $A^{q}\rightarrow B^{q}$ denote the natural projection. With respect to

the direct sum decomposition of the terms $A^{q}=B^{q}\oplus\hat{A}^{q}$ , the boundary
map $\mu.(\lambda)$ of the complex A. is given by $\mu^{q}(\lambda)(v_{1}, v_{2})=(\mu_{B}^{q}(\lambda)(v_{1})+$

$\Psi^{q}(\lambda)(v_{2}),\hat{\mu}^{q}(\lambda)(v_{2}))$ , where $\Psi^{q}(\lambda)=\pi_{B}\circ\mu^{q}(\lambda)$ : $\hat{A}^{q}\rightarrow B^{q+1}$

. In
matrix form, we have

(1.3) $\mu^{q}(\lambda)=(_{\Psi^{q}(\lambda)}^{\mu_{B}^{q}(\lambda)}$ $\hat{\mu}^{q}(\lambda)0)$ .

Since $\hat{A}$. is the complex associated to the discriminantal arrange-
ment $A_{n,,,\ell+1}$ in $\mathbb{C}^{n-\ell-1}$ and $B$ . $\cong(\hat{A}.-1)^{\ell}$ decomposes as a direct sum
by Proposition 1.7, we inductively concentrate our attention on the maps
$\Psi^{q}(\lambda)$ . Fix $J\subseteq[\ell+2, n]$ , and denote the restriction of $\Psi^{q}(\lambda)$ to the

summand $A_{J}^{q}$ of $\hat{A}^{q}$ by $\Psi_{J}^{q}(\lambda)$ . For $\eta\in A_{J}^{q}$ , since $\pi_{B}(\omega_{k}\wedge\eta)=0$ if
$k\not\in\{\ell+1, J\}$ , we have $\Psi_{J}^{q}(\lambda)(\eta)=\omega_{\ell+1}\wedge\eta+\sum_{j\in J}\pi_{B}(\omega_{j}\wedge\eta)$ . Thus,

$\Psi_{J}^{q}(\lambda)$ : $A_{J}^{q}\rightarrow A_{\{\ell+1,J\}}^{q+1}=\oplus_{m=1}^{\ell}a_{m,\ell+1}\wedge A_{J}^{q}$ .

For $ 1\leq m\leq\ell$ , let $\pi_{m,,,\ell+1}$ : $A_{\{\ell+1,J\}}^{q+1}\rightarrow a_{m,,,\ell+1}\wedge A_{J}^{q}$ denote the

natural projection. Then (the matrix of) $\Psi_{J}^{q}(\lambda)$ : $A_{J}^{q}\rightarrow(A_{J}^{q})^{\ell}$ may be
expressed as

(1.3)

$\Psi_{J}^{q}(\lambda)=(\pi_{1,,,\ell+1}o\Psi_{J}^{q}(\lambda) \cdots \pi_{m,,,\ell+1}o\Psi_{J}^{q}(\lambda) \cdots \pi_{\ell,,,\ell+1}o\Psi_{J}^{q}(\lambda))$ ,



34 D. Cohen

and we focus our attention on one such block, that is, on the composition

(1.4) $\pi_{m,,,\ell+1}o\Psi_{J}^{q}(\lambda)$ : $A_{J}^{q}\rightarrow A_{\{1,J\}}^{q+1}\rightarrow a_{m,,,\ell+1}\wedge A_{J}^{q}$ .

Write $J=\{j_{1}, \ldots,j_{q}\}$ and for $1\leq p\leq q$ , let $J_{p}=\{j_{1}, \ldots, j_{p}\}$ and
$J^{p}=J\backslash J_{p}$ . If $p=0$ , set $ J_{0}=\emptyset$ and $J^{0}=J$ . Then for $a_{I,,,J}\in A_{J}^{q}$ , it
is readily checked that $\pi_{m,,,\ell+1}\circ\Psi_{J}^{q}(\lambda)(a_{I,,,J})=\pi_{m,,,\ell+1}\circ\pi_{B}(\omega\wedge a_{I,,,J})$ is
given by

(1.5)

$\pi_{m,,,\ell+1}o\Psi_{J}^{q}(\lambda)(a_{I,,,J})=\sum_{p=0}^{q}\pi_{m,,,\ell+1}o\pi_{B}(\omega_{j_{p}}\wedge a_{I_{r},,,J_{p}},)\wedge a_{I^{p},,,JT^{J}}$ ,

where $j_{0}=\ell+1$ . In light of this, we restrict our attention to $\pi_{m,,,\ell+1}\circ$

$\pi_{B}(\omega_{j(}, \wedge a_{I,,,J})$ . We describe this term using the following notion.

Definition 1.9. Fix $J=\{j_{1}, \ldots, j_{q}\}\subseteq[\ell+2, n]$ and $ m\leq\ell$ . $IfI$ $=$

$\{i_{1}, \ldots, i_{q}\}$ and $1\leq i_{p}<j_{p}$ for each $p$ , a set $K=\{k_{s_{1}}, \ldots, k_{s_{t}}, k_{s_{t+1}}\}$ is
called $I$ -admissible if

1. $\{i_{s_{1}}, \ldots, i_{s_{t}}\}\subseteq I\backslash \{i_{q}\}$ and $i_{s_{t+1}}=i_{q}$ ;
2. $\{k_{81}, i_{s_{1}}\}=\{m, \ell+1\}$ ; and
3. $\{k_{s_{l^{J}}}, i_{s_{p}}\}=\{k_{s_{l^{\prime-1}}},j_{s_{p-1}}\}$ for $p=2$ , $\ldots$ , $t+1$ .

Note that the last condition is vacuous if $K$ is of cardinality one. Note
also that $1\leq k_{s,)},<j_{s_{p}}$ and $k_{s_{p}}\neq i_{s_{p}}$ for each $p$ .

Lemma 1.10. We have

$\pi_{m,,,\ell+1}o\pi_{B}(\omega_{j_{q}}\wedge a_{I,,,J})=\sum_{K}\lambda_{k_{q},,,j_{q}}a_{m,,,\ell+1}\wedge b_{j_{1}}\wedge\cdots\wedge b_{j_{C\prime}}$ ,

where the sum is over all $I$ -admissible sets $K=\{k_{s_{1}}, \ldots, k_{s}, , k_{s},+1=k_{q}\}$ ,
and

$b_{j_{l’}}=\{$

$a_{i_{p},,,j_{p}}-a_{k_{T^{\lambda}},,,j,)}$ if $p\in\{s_{1}, \ldots, s_{t}, q\}$ ,

$a_{i_{p},,,j_{p}}$ if $p\not\in\{s_{1}, \ldots, s_{t}, q\}$ .

Proof. Let $a_{i,,,j}$ and $a_{k,j}$ be elements of $A_{\{j\}}^{1}$ . Write $r=\min\{i, k\}$

and $s=\max\{i, k\}$ . From (1.1), we have either $a_{i,,,j}\wedge a_{k,,,j}=a_{r,s}\wedge(a_{k,j}-$

$a_{i,,,j})$ if $s\geq\ell+1$ , or $a_{i,,,j}\wedge a_{k,,,j}=0$ if $ s\leq\ell$ . It follows from these
considerations, and a routine exercise to check the sign, that summands
$\lambda_{k_{q},,,j_{q}}a_{m,,,\ell+1}\wedge b_{j_{1}}\wedge\cdots\wedge b_{j_{q}}$ of $\pi_{m,\ell+1}\circ\pi_{B}(\omega_{j,(}\wedge a_{I,,,J})$ arise only from
$I$-admissible sets $K$ . Q.E.D.

Now write $\pi_{m,,,\ell+1}\circ\pi_{B}(\omega_{j_{C\prime}}\wedge a_{I,,,J})=\sum_{R}\lambda_{R,,,I}^{J}a_{m,,,\ell+1}\wedge a_{R,,,J}$ , where
the sum is over all $R=\{r_{1}, \ldots, r_{q}\}$ , $1\leq r_{p}<j_{p}$ , $1\leq p\leq q$ , and
$\lambda_{R,,,I}^{J}\in \mathbb{C}$ .
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Proposition 1.11. The coefficient $\lambda_{R,,,I}^{J}$ of $a_{m,,,\ell+1}\wedge a_{R,,,J}$ in
$\pi_{m,\ell+1}\circ\pi_{B}(\omega_{j_{i}(}\wedge a_{I,,,J})$ is given by

$\lambda_{R,,,I}^{J}=(-1)^{|R\backslash R\cap I|}\sum_{K}\lambda_{kj}‘$

” $‘$’

where the sum is over all $I$ -admissible sets $K$ such that $R\backslash R\cap I$ $\subseteq K$ .

Proof. Let $K=\{k_{s_{1}}, \ldots, k_{s_{t}}, k_{q}\}$ be an $I$-admissible set. As-
sociated with $K$ , we have the term $\lambda_{k_{q},,,j_{q}}a_{m,,,\ell+1}\wedge b_{j_{1}}\wedge\cdots\wedge b_{j}.‘$

’
of

$\pi_{m,,,\ell+1}\circ\pi_{B}(a_{I,,,J}\wedge\omega_{j_{q}})$ from Lemma 1.10. If $ R\backslash R\cap I\not\in$ $K$ , $1t$ is
readily checked that this term contributes nothing to the coefficient
$\lambda_{R,,,I}^{J}$ of $a_{m,,,\ell+1}\wedge a_{R,,,J}$ . On the other hand, if $R\backslash R\cap I$ $\subseteq K$ , then

the above term contributes the summand (-1)$ ^{|R\backslash R\cap I|}\lambda_{k,,,,j_{q}}$ to the coef-

ficient $\lambda_{R,I}^{J}$ . Q.E.D.

We now obtain a complete description of the map $\pi_{m,,,\ell+1}\circ\Psi_{J}^{q}(\lambda)$ :
$A_{J}^{q}\rightarrow a_{m,,,\ell+1}\wedge A_{J}^{q}$ from (1.4). Write

$\pi_{m,\ell+1}o\Psi_{J}^{q}(\lambda)(a_{I,,,J})=\sum_{R}\Lambda_{R,,,I}^{J}a_{m,\ell+1}\wedge a_{R,,,J}$ ,

where, as above, the sum is over all $R=\{r_{1}, \ldots, r_{q}\}$ , $1\leq r_{p}<j_{p}$ ,
$1\leq p\leq q$ , and $\Lambda_{R,,,I}^{J}\in \mathbb{C}$ . Let $\epsilon_{R,,,I}=1$ if $R=I$ , and $\epsilon_{R,,,I}=0$ otherwise.

Theorem 1.12. The coefficient $\Lambda_{R,,,I}^{J}$ of $a_{m,,,\ell+1}\wedge a_{R,,,J}$ in
$\pi_{m,,,\ell+1}\circ\Psi_{J}^{q}(\lambda)$ is given by

$\Lambda_{R,,,I}^{J}=(-1)^{|R\backslash R\cap I|}(\epsilon_{R,,,I}\lambda_{m,,,\ell+1}+\sum_{j\in J}\sum_{K}\lambda_{k,,,j})$ ,

where, if $j=j_{p_{f}}$ the second sum is over all $I_{p}$ -admissible sets $K=$
$\{k_{s_{1}}, \ldots, k_{s_{l}}, k\}$ for which $R\backslash R\cap I$ $\subseteq K$ .

Proof. From (1.5), we have

$\pi_{m,,,\ell+1}\circ\Psi_{J}^{q}(a_{I,,,J})=\sum_{p=0}^{q}\pi_{m,,,\ell+1}o\pi_{B}(\omega_{j_{p}}\wedge a_{I_{p},,,J_{I^{J}}})\wedge a_{I^{p},,,J^{\mathfrak{l}^{J}}}$ ,

and the summand corresponding to $p=0$ is simply $\lambda_{m,,,\ell+1}a_{m,\ell+1}\wedge a_{I,,,J}$ .

For $p\geq 1$ , write $\pi_{m,,,\ell+1}\circ\pi_{B}(\omega_{j_{T)}}\wedge a_{I_{I)},,J_{p}},)=\sum_{R_{p}}\lambda_{R_{l’},,,I_{2}}^{J_{p}},a_{m,,,\ell+1}\wedge a_{R,,,,,J_{p}}$ ,

where the sum is over all $R_{p}=\{r_{1}, \ldots, r_{p}\}$ . For a fixed $R$ , the coefficient
of $a_{m,,,\ell+1}\wedge a_{R,,,I}$ in $\pi_{m,,,\ell+1}\circ\pi_{B}(\omega\wedge a_{I,,,J})$ may then be expressed as

$\Lambda_{R,,,I}^{J}=\epsilon_{R,,,I}\lambda_{m,\ell+1}+\sum_{p=1}^{q}\lambda_{R_{p},,,I_{T)}}^{J_{p}}$ ,

where $R=R_{p}\cup I^{p}$ . Note that we have $R\backslash R\cap I=R_{p}\backslash R_{p}\cap I_{p}$ for such
$R$ .
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By Proposition 1.11, we have $\lambda_{R_{i^{t}},,,I}^{J}’$), $J=(-1)^{|R_{J^{l}}\backslash R_{l)}\cap I_{T’}|}\sum_{K}\lambda_{k_{l^{J}},j,)}$ ,

where the sum is over all $I_{p}$-admissible sets $K$ with $R_{p}\backslash R_{p}\cap I_{p}\subseteq K$ .

Thus,

$\Lambda_{R,,,I}^{J}=\epsilon_{R,,,I}\lambda_{m,,,\ell+1}+\sum_{p=1}^{q}(-1)^{|R_{l^{y}}\backslash R_{\ddagger)}\cap I_{p}|}\sum_{K}\lambda_{k_{J},,,j},,,$ ,

and since $R=R_{p}\cup I^{p}$ , we have $R\backslash R\cap I$ $=R_{p}\backslash R_{p}\cap I_{p}\subseteq K$ . Q.E.D.

Remark 1.13. In light of the decomposition of the boundary maps
of the complex (A., $\mu.(\lambda)$ ) given by (1.2) and (1.3), the above theorem,
together with the “initial conditions”

$\mu^{0}(\lambda)$ : $A^{0}\rightarrow A^{1},1\mapsto\sum_{k=\ell+1}^{n}\omega_{k}=\sum_{k=\ell+1}^{n}\sum_{i=1}^{k-1}\lambda_{i,,,k}a_{i,,,k}$ ,

provides a complete description of the boundary maps $\mu.(\lambda)$ .

\S 2. Resolutions and Local Systems

The fundamental group of the complement of a discriminantal ar-
rangement, and more generally that of any fiber-type arrangement, may
be realized as an iterated semidirect product of free groups. For any
such group $G$ , in [10] we construct a finite free $\mathbb{Z}G$ resolution $C.(G)$ of
the integers. We recall the construction of this resolution in notation
consonant with that of the previous section.

Denote the standard generators of the pure braid group $P_{n}$ by $\gamma_{i,,,j}$ ,
$1\leq i<j\leq n$ , and for each $j$ , let $G_{j}$ be the free group on the $j-1$

generators $\gamma_{1,,,j}$ , $\ldots$ , $\gamma_{j-1,j}$ . Then the pure braid group may be realized
as $P_{n}=G_{n}$ ) $\triangleleft\cdots$ ) $\triangleleft G_{2}$ . More generally, for $1\leq\ell\leq n$ , the group $P_{n,,,\ell}=$

$ker(P_{n}\rightarrow P_{\ell})$ may be realized as $P_{n,\ell}=G_{n}\lambda\cdots>\triangleleft G_{\ell+1}$ . Note that $P_{n}=$

$P_{n,,,1}$ . For $\ell<j$ , the monodromy homomorphisms $ P_{j-1,\ell}\rightarrow$ Aut $(G_{j})$

are given by the (restriction of the) Artin representation. For $s<j$ ,
we shall not distinguish between the braid $\gamma_{r,,,s}$ and the corresponding
(right) automorphism $\gamma_{r,,,s}\in Aut(G_{j})$ . The action of $\gamma_{r,,,s}$ on $G_{j}$ is by
conjugation: $\gamma_{r,,,s}(\gamma_{i,,,j})=\gamma_{r,,,s}^{-1}\cdot\gamma_{i,j}\cdot\gamma_{r,,,s}=z_{i}\cdot\gamma_{i,,,j}\cdot z_{i}^{-1}$ , where

(2.1) $z_{i}=\{$

$\gamma_{r,,,j}\gamma_{s,,,j}$ if $i=r$ or $i=s$ ,

$[\gamma_{r,,,j}, \gamma_{s,,,j}]$ if $r<i<s$ ,

1 otherwise.

See Birman [5] and Hansen [20] for details, and as general references on
braids.
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2.1. Some Fox Calculus

We first establish some notation and record some elements of the
Fox Calculus $[19, 5]$ , and results from [10] necessary in the construction.

Denote the integral group ring of a (multiplicative) group $G$ by $\mathbb{Z}G$ .

We regard modules over $\mathbb{Z}G$ as left modules. Elements of the free module
$(\mathbb{Z}G)^{n}$ are viewed as row vectors, and $\mathbb{Z}G$-linear maps $(\mathbb{Z}G)^{n}\rightarrow(\mathbb{Z}G)^{m}$

are viewed as $n\times m$ matrices which act on the right. For such a map
$F$ , denote the transpose by $F^{T}$ , and recall that $[F]^{k}$ denotes the map
$\oplus_{1}^{k}F$ . Denote the $n\times n$ identity matrix by $I_{n}$ .

For the single free group $ G_{j}=\langle\gamma_{i,,,j}\rangle$ , a free $\mathbb{Z}G_{j}$ -resolution of $\mathbb{Z}$ is
given by

(2.2) 0– $(\mathbb{Z}G_{j})^{j-1}\rightarrow \mathbb{Z}G_{j}\triangle_{j}\rightarrow \mathbb{Z}\epsilon\rightarrow 0$ ,

where $\triangle_{j}=$ $(\gamma_{1,,,j} -1 \cdots \gamma_{j-1,j}-1)^{T}$ , and $\epsilon$ is the augmentation
map, given by $\epsilon(\gamma_{i,j})=1$ . For each element $\gamma\in P_{j-1,\ell}$ , conjugation by
$\gamma$ induces an automorphism $\gamma$ : $G_{j}\rightarrow G_{j}$ , and a chain automorphism $\gamma$.
of (2.2), which by the “fundamental formula of Fox Calculus,” can be
expressed as

(2.3)
$(\mathbb{Z}G_{j})^{j-1}\rightarrow\downarrow J(\gamma)o\overline{\gamma}\triangle_{j}\mathbb{Z}G_{j}\downarrow\overline{\gamma}$

$(\mathbb{Z}G_{j})^{j-1}\rightarrow\triangle_{j}\mathbb{Z}G_{j}$

where $J(\gamma)=(\frac{\partial\gamma(\gamma_{r,j})}{\partial\gamma_{k,j}})$ is the $(j-1)$ $\times(j-1)$ Jacobian matrix of

Fox derivatives of $\gamma$ , and $\tilde{\gamma}$ denotes the extension of $\gamma$ to the group
ring $\mathbb{Z}G_{j}$ , resp., to $(\mathbb{Z}G_{j})^{j-1}$ . For a second element $\beta$ of $P_{j-1,\ell}$ , we
have $(\gamma. \beta)$ . $=(\beta\circ\gamma)$ . $=\beta$. $\circ\gamma$. by the “chain rule of Fox Calculus” :
$J(\beta\circ\gamma)=\tilde{\beta}(J(\gamma))$ . $J(\beta)$ . In particular, $J(\gamma^{-1})=\tilde{\gamma}^{-1}(J(\gamma)^{-1})$ .

Now fix $\ell$ , $1\leq\ell\leq n$ , and consider the group $P_{n,\ell}=G_{n}\lambda\cdots\lambda G_{\ell+1}$ .

Let $\mathcal{R}=\mathbb{Z}P_{n,,,\ell}$ denote the integral group ring of $P_{n,,,\ell}$ , For $\gamma\in P_{j-1,\ell}$ as
above, define $m_{\gamma}$ : $\mathcal{R}\rightarrow \mathcal{R}$ by $m_{\gamma}(r)=\gamma\cdot r$ . From (2.3) and extension
of scalars, we obtain

$\mathcal{R}\otimes_{\mathbb{Z}G_{j}}(\mathbb{Z}G_{j})^{j-1_{\rightarrow}^{id\otimes\Delta_{j}}}\downarrow m_{\gamma}\otimes J(\gamma)o\overline{\gamma}\mathcal{R}\otimes_{\mathbb{Z}G_{j}}\mathbb{Z}G_{j}\downarrow m_{\gamma}\otimes\tilde{\gamma}$

$\mathcal{R}\otimes_{\mathbb{Z}G_{j}}(\mathbb{Z}G_{j})^{j-1}\rightarrow id\otimes\triangle_{j}\mathcal{R}\otimes_{\mathbb{Z}G_{j}}\mathbb{Z}G_{j}$
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The map $m_{\gamma}\otimes J(\gamma)\circ\tilde{\gamma}$ and the canonical isomorphism $\mathcal{R}\otimes_{\mathbb{Z}G_{j}}(\mathbb{Z}G_{j})^{j-1}$

$\cong \mathcal{R}^{j-1}$ define an $\mathcal{R}$-linear automorphism $\rho_{j}(\gamma)$ : $\mathcal{R}^{j-1}\rightarrow \mathcal{R}^{j-1}$ , whose
matrix is $\gamma$

. $J(\gamma)$ , see [10, Lemma 2.4]. Furthermore, we have the
following.

Lemma 2.2 ([10, Lemma 2.6]). For each $j$ , $2\leq j\leq n$ , the action

of the group $P_{j-1,\ell}$ on the free group $G_{j}$ gives rise to a representation
$\rho_{j}$ : $P_{j-1,\ell}\rightarrow Aut_{R}(\mathcal{R}^{j-1})$ with the property that $\rho_{j}(\gamma)=m_{\gamma}\otimes J(\gamma)\circ\tilde{\gamma}$

for every $\gamma\in P_{j-1,\ell}$ .

Remark 2.3. Via the convention $\rho_{j}(\gamma_{p,q})=I_{j-1}$ for $q\geq j$ , the
above extends to a representation $\rho_{j}$ : $P_{n,,,\ell}\rightarrow Aut_{R}(\mathcal{R}^{j-1})$ of the entire
group $P_{n,,,\ell}$ . We denote by $\tilde{\rho}_{j}$ : $\mathcal{R}$ $\rightarrow End_{R}(\mathcal{R}^{j-1})$ the extension of
$\rho_{j}$ to the group ring $\mathcal{R}$ . We also use $\tilde{\rho}_{j}$ to denote the homomorphism
$Hom_{R}(\mathcal{R}^{m}, \mathcal{R}^{n})\rightarrow Hom_{R}(\mathcal{R}^{m(j-1)}, \mathcal{R}^{n(j-1)})$ defined by replacing each
entry $x$ of an $mx$ $n$ matrix by $\tilde{\rho}_{j}(x)$ .

2.4. The Resolution

We now recall the construction of the free resolution $\epsilon$ : C. $=$

$C.(G)\rightarrow \mathbb{Z}$ over the ring $\mathcal{R}=\mathbb{Z}G$ from [10], in the case where $G=P_{n,,,\ell}$

is the fundamental group of the complement of the discriminantal ar-
rangement $A_{n,,,\ell}$ . If $J=\{j_{1}, \ldots,j_{q}\}\subseteq[\ell+1, n]$ , recall that for $p<q$ ,

$J_{p}=\{j_{1}, \ldots,j_{p}\}$ and $J^{p}=J\backslash J_{p}$ . For such a set $J$ , let $C_{q}^{J}$ be a free
$\mathcal{R}$-module of rank $(j_{1}-1)\cdots(j_{q}-1)$ .

Let $C_{0}=\mathcal{R}$ , and, for $ 1\leq q\leq n-\ell$ , let $C_{q}=\oplus_{1}{}_{J|=q}C_{q}^{J}$ , where

the sum is over all $J\subseteq[\ell+1, n]$ . The augmentation map, $\epsilon$ : $C_{0}\rightarrow \mathbb{Z}$ ,

is the usual augmentation of the group ring, given by $\epsilon(\gamma)=1$ , for
$\gamma\in P_{n,,,\ell}$ . We define the boundary maps of C. by recursively specifying
their restrictions $\triangle^{J}$ to the summands $C_{q}^{J}$ as follows:

If $J=\{j\}$ , we define $\triangle_{J}$ : $C_{1}^{J}=\mathcal{R}^{j-1}\rightarrow \mathcal{R}=C_{0}$ as in the resolution

(2.2), by $\triangle_{J}=(\gamma_{1,,,j} -1 \cdots \gamma_{j-1,j}-1)^{T}$

In general, if $J=\{j_{1}, \ldots, j_{q}\}$ , then $J^{1}=\{j_{2}, \ldots,j_{q}\}$ and $J_{q-1}=$

$\{j_{1}, \ldots,j_{q-1}\}$ , and we define $\triangle_{J}$ : $C_{q}^{J}\rightarrow C_{q-1}^{J^{1}}$ by $\triangle_{J}=-\tilde{\rho}_{j_{q}}(\triangle_{J_{q-1}})$

Now define $\triangle^{J}$ : $C_{q}^{J}\rightarrow\oplus_{p=1}^{q}C_{q-1}^{J\backslash \{j,,\}}$ by

$\triangle^{J}=(\triangle_{J}$ , $[\triangle_{J^{1}}]^{d_{1}}$ , $\ldots$ , $[\triangle_{J^{p}}]^{d_{l^{y}}}$ , $\ldots$ , $[\triangle_{J^{q-1}}]^{d_{q-1}}$ ),

where $d_{p}=(j_{1}-1)\cdots(j_{p}-1)$ .

Finally, define $\partial_{q}$ : $C_{q}\rightarrow C_{q-1}$ by $\partial_{q}=\sum_{|J|=q}\triangle^{J}$ .
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Theorem 2.5 ([10, Theorem 2.10]). Let $\mathcal{R}=\mathbb{Z}P_{n,,,\ell}$ be the inte-
gral group ring of the group $P_{n,\ell}$ . Then the system of $\mathcal{R}$ -modules and
homomorphisms (C., $\partial.$ ) is a finite, free resolution of $\mathbb{Z}$ over $\mathcal{R}$ .

Remark 2.6. The proof of this result in [10] makes use of a map-
ping cone decomposition of the complex (C., $\partial.$ ). This decomposi-

tion may be described as follows. Let $(\hat{C}.,\hat{\partial}.)$ denote the subcom-

plex of (C., $\partial.$ ) with terms $\hat{C}_{q}=\oplus_{\ell+1\not\in J}C_{q}^{J}$ , and boundary maps

$\hat{\partial}_{q}=\partial_{q}|_{\hat{C}_{q}}$ given by restriction. The complex $\hat{C}$. may be realized as
$\hat{C}$. $=C.(P_{n,,,\ell+1})\otimes_{P_{\tau\iota,\ell}}\mathcal{R}$ , where $\epsilon$ : $C.(P_{n,\ell+1})\rightarrow \mathbb{Z}$ is the resolution
over $\mathbb{Z}P_{n,,,\ell+1}$ obtained by applying the above construction to the group
$P_{n,,,\ell+1}<P_{n,,,\ell}$ .

Let (D., $\partial^{D}.$ ) denote the direct sum of $\ell$ copies of the complex $\hat{C}.$ ,

with the sign of the boundary map reversed. That is, $D_{q}=(\hat{C}_{q})^{\ell}$

and $\partial_{q}^{D}=-[\hat{\partial}_{q}]^{\ell}$ . The terms of this complex may be expressed as
$D_{q}=\oplus_{\ell+1\in K}C_{q+1}^{K}$ , where $|K|=q$ . Using this description, define

a map—. : $D$. $\rightarrow\hat{C}$. by setting the restriction $of---q$ to the summand
$C_{q+1}^{K}$ of $D_{q}$ to be equal to $\triangle_{K}$ : $C_{q+1}^{K}\rightarrow C_{q}^{J}\subset\hat{C}_{q}$ , where $K=\{\ell+1\}\cup J$ .

As shown in [10], the map—. : $D$. $\rightarrow\hat{C}$. is a chain map, and the
original complex (C., $\partial.$ ) may be realized as the mapping cone $of\cup--.$ .

Explicitly, the terms of C. decompose as $C_{q}=D_{q-1}\oplus\hat{C}_{q}$ . With respect
to this decomposition, the boundary map $\partial_{q+1}$ : $C_{q+1}\rightarrow C_{q}$ is given by
$\partial_{q+1}(u, v)=(-\partial_{q}^{D}(u), ---q(u)+\hat{\partial}_{q+1}(v))$ .

2.7. Rank One Local Systems

The abelianization of the group $P_{n,,,\ell}$ is free abelian of rank $N=$
$\left(\begin{array}{l}n\\2\end{array}\right)-\left(\begin{array}{l}\ell\\ 2\end{array}\right)$ . Let $(\mathbb{C}^{*})^{N}$ denote the complex torus, with coordinates $t_{i,,,j}$ ,

$\ell+1\leq j\leq n$ , $1\leq i<j$ . Each point $t\in(\mathbb{C}^{*})^{N}$ gives rise to a rank one
representation $\nu_{t}$ : $P_{n,,,\ell}\rightarrow \mathbb{C}^{*}$ , $\gamma_{i,,,j}\mapsto t_{i,,,j}$ , an associated $P_{n,,,\ell}$-module
$L=L_{t}$ , and a rank one local system $\mathcal{L}=\mathcal{L}_{t}$ on the configuration
space $M_{n,,,\ell}$ . The homology and cohomology of $P_{n,,,\ell}$ with coefficients
in $L$ (resp., that of $M_{n,,,\ell}$ with coefficients in $\mathcal{L}$ ) are isomorphic to the
homology and cohomology of the complexes C. $:=C.\otimes_{P_{7l},,\ell},L$ and C. $:=$

$\prime\mu om_{P_{n,\ell}}$ (C., $L$ ) respectively, see [8].
The terms, $C_{q}=C_{q}\otimes n\mathbb{C}$ and $C^{q}=Hom_{P_{r\iota,\ell}}(C_{q}, L)$ , of these

complexes are finite dimensional complex vector spaces. Notice that
$dimC_{q}=dimC^{q}=dimA^{q}=\sum_{|J|=q}(j_{1}-1)\cdots(j_{q}-1)$ , where the sum
is over all $J\subseteq[\ell+1, n]$ . Denote the boundary maps of C. and C. by
$\partial_{q}(t)$ : $C_{q}\rightarrow C_{q-1}$ and $\delta^{q}(t)$ : $C^{q}\rightarrow C^{q+1}$ As we follow [8] in our
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definition of C., these maps are related by

(2.4) $\delta^{q}(t)(u)(x)=(-1)^{q}u(\partial_{q+1}(t)(x))$

for $u\in C^{q}$ and $x\in C_{q+1}$ . To describe these maps further, we require

some notation.
Consider the evaluation map $\mathcal{R}\times(\mathbb{C}^{*})^{N}\rightarrow \mathbb{C}$ , which takes an ele-

ment $f$ of the group ring, and a point $t$ in $(\mathbb{C}^{*})^{N}$ and yields $f(t):=\tilde{\nu}_{t}(f)$ ,

the evaluation of $f$ at $t$ . Fixing $f\in \mathcal{R}$ and allowing $t\in(\mathbb{C}^{*})^{N}$ to vary,
we get a holomorphic map $f$ : $(\mathbb{C}^{*})^{N}\rightarrow \mathbb{C}$ . More generally, we have the
map $Mat_{rxs}(\mathcal{R})\times(\mathbb{C}^{*})^{N}\rightarrow Mat_{r\times s}(\mathbb{C})$ , $(F, t)\mapsto F(t):=\tilde{\nu}_{t}(F)$ . For
fixed $F\in Mat_{p\times q}(\mathcal{R})$ , we get a map $F$ : $(\mathbb{C}^{*})^{N}\rightarrow Mat_{r\times s}(\mathbb{C})$ . With
these conventions, if $dimC_{q}=r$ and $dim$ $C_{q+1}=s$ , the boundary maps
of the complexes C. and C. may be viewed as evaluations, $\partial_{q}(t)$ and
$\delta^{q}(t)$ , of maps $\partial_{q}$ : $(\mathbb{C}^{*})^{N}\rightarrow Mat_{r\times s}(\mathbb{C})$ and $\delta^{q}$ : $(\mathbb{C}^{*})^{N}\rightarrow Mat_{s\times r}(\mathbb{C})$ .

We shall subsequently be concerned with the derivatives of these
maps at the identity element $1=(1, \ldots, 1)$ of $(\mathbb{C}^{*})^{N}$ . The (holomorphic)
tangent space of $H^{1}(M_{n,,,\ell;}\mathbb{C}^{*})=(\mathbb{C}^{*})^{N}$ at 1 is $H^{1}(M_{n,,,\ell;}\mathbb{C})=\mathbb{C}^{N}$ ,

with coordinates $\lambda_{i,,,j}$ . The exponential map $T_{1}(\mathbb{C}^{*})^{N}\rightarrow(\mathbb{C}^{*})^{N}$ is the
coefficient map $H^{1}(M_{n,,,\ell;}\mathbb{C})\rightarrow H^{1}(M_{n,\ell;}\mathbb{C}^{*})$ induced by $\exp$ : $\mathbb{C}\rightarrow$

$\mathbb{C}^{*}$ , $\lambda_{i,,,j}\mapsto e^{\lambda_{r,j}}=t_{i,,,j}$ . For an element $f$ of $\mathcal{R}$ , the derivative of the
corresponding map $f$ : $(\mathbb{C}^{*})^{N}\rightarrow \mathbb{C}$ at 1 is given by $f_{*}$ : $\mathbb{C}^{N}\rightarrow \mathbb{C}$ ,
$f_{*}(\lambda)=\frac{d}{dx}|_{x=0}f(\ldots e^{x\lambda_{i,j}}\ldots)$ . More generally, for $F\in Mat_{r\times s}(\mathcal{R})$ , we

have $F_{*}$ : $\mathbb{C}^{N}\rightarrow Mat_{r\times s}(\mathbb{C})$ .

\S 3. A Complex of Derivatives

We now relate the cohomology theories $H^{*}(A;\mu.(\lambda))$ and $H^{*}(M_{n}; \mathcal{L})$

by relating the complexes (A., $\mu.(\lambda)$ ) and (C., $\delta.(t)$ ). As above, let
$(\partial_{q})_{*}$ and $\delta_{*}^{q}$ denote the derivatives of the maps $\partial_{q}$ and $\delta^{q}$ at $1\in(\mathbb{C}^{*})^{N}$ .

Theorem 3.1. The complex (A., $\mu.(\lambda)$ ) is a linear approximation

of the complex (C., $\delta.(t)$ ). For each $\lambda\in \mathbb{C}^{N}$ , the system of complex
vector spaces and linear maps (C., $\delta_{*}.(\lambda)$ ) is a complex. For each $q$ , we
have $A^{q}\cong C^{q}$ , and, under this identification, $\mu^{q}(\lambda)=\delta_{*}^{q}(\lambda)$ .

From the discussions in sections 1.1 and 2.7, it is clear that $A^{q}\cong C^{q}$ .

In light of the sign conventions (2.4) used in the construction of the
complex (C., $\delta.(t)$ ) and the fact that (A., $\mu.(\lambda)$ ) is a complex, to show
that (C., $\delta_{*}.(\lambda)$ ) is a complex, and to prove the theorem, it suffices to
establish the following.

Proposition 3.2. For each $q$ , we have $\mu^{q}(\lambda)=(-1)^{q}[(\partial_{q+1})_{*}(\lambda)]^{T}$.
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The maps $\mu^{q}(\lambda)$ were analyzed in section 1.5. We now carry out a
similar analysis of the maps $(\partial_{q+1})_{*}(\lambda)$ .

3.3. Some Calculus

We first record some facts necessary for this analysis. Recall that
$\mathcal{R}$ denotes the integral group ring of the group $P_{n,,,\ell}$ . For $f$ , $g\in \mathcal{R}$ , the
Product Rule yields $(f. g)_{*}(\lambda)=f_{*}(\lambda)\cdot g(1)+f(1)\cdot g_{*}(\lambda)$ . Similarly,
for $F\in Mat_{p\times q}(\mathcal{R})$ and $G\in Mat_{q\times r}(\mathcal{R})$ , matrix multiplication and the
differentiation rules yield

(3.1) $(F\cdot G)_{*}(\lambda)=F_{*}(\lambda)\cdot G(1)+F(1)\cdot G_{*}(\lambda)$ .

As an immediate consequence of the Product Rule, for $\gamma$ , $\zeta\in P_{n,,,\ell}$ and
$\tau=[\zeta, \gamma]$ a commutator, we have $(\gamma^{-1})_{*}=-\gamma_{*}$ , and $\tau_{*}=0$ . Conse-
quently, $(\zeta\cdot\gamma\cdot\zeta^{-1})_{*}=\gamma_{*}$ .

Now recall the representations $\rho_{j}$ defined in Lemma 2.2, and used in
the construction of the resolution Cm. Associated to each $\gamma\in P_{j-1,\ell}$ , we
have a map $\rho_{j}(\gamma)$ : $(\mathbb{C}^{*})^{N}\rightarrow$ Aut $(\mathbb{C}^{j-1})$ . Since $\gamma$ acts on the free group
by conjugation, we have $\rho_{j}(\gamma)(1)=I_{j-1}$ . Identify $End(\mathbb{C}^{j-1})$ as the

tangent space to Aut $(\mathbb{C}^{j-1})$ at the identity, and denote the derivative of
the map $\rho_{j}(\gamma)$ at 1 by $\rho_{j}(\gamma)_{*}$ : $\mathbb{C}^{N}\rightarrow End(\mathbb{C}^{j-1})$ .

Define $(\rho_{j})_{*}$ : $P_{j-1,\ell}\rightarrow Hom(\mathbb{C}^{N}, End(\mathbb{C}^{j-1}))$ by $(\rho_{j})_{*}(\gamma)=\rho_{j}(\gamma)_{*}$ .

The chain rule of Fox Calculus and a brief computation reveal that $(\rho_{j})_{*}$

is a homomorphism, and is trivial on the commutator subgroup $P_{n,,,\ell}^{/}$ .

This yields a map $\mathbb{C}^{N}\rightarrow Hom(\mathbb{C}^{N}, End(\mathbb{C}^{j-1}))$ , $\lambda_{r,,,s}\mapsto\rho_{j}(\gamma_{r,,,s})_{*}$ , which
we continue to denote by $(\rho_{j})_{*}$ . For $\gamma\in P_{n,,,\ell}$ , view the derivative,
$\gamma_{*}(\lambda)=\sum c_{r,,,s}\lambda_{r,s}$ , of the corresponding map $\gamma$ as a linear form in the
$\lambda_{r,,,s}$ . Then we have the following “chain rule” :

(3.2) $\rho_{j}(\gamma)_{*}(\lambda)=\sum c_{r,,,s}(\rho_{j})_{*}(\lambda_{r,,,s})=(\rho_{j})_{*}(\gamma_{*}(\lambda))$ .

In particular, $\rho(\gamma_{r,,,s})_{*}=\rho_{*}(\lambda_{r,,,s})$ , which we now compute.

Lemma 3.4. For $r<s<j$ , the derivative of the map $\rho_{j}(\gamma_{r,,,s})$ is
given by $\rho_{j}(\gamma_{r,,,s})_{*}(\lambda)=$

$\{$ $\lambda_{r,,,s}I_{r-1}00\dot{0}0$ $\lambda_{r,,,s}+\lambda-\lambda_{s,,,j}000s,j$ $\lambda_{r,,,s}\cdot I_{s-r-1}0000$ $\lambda_{r,,,s}+\lambda_{r,,,j}-\lambda 000r,j$ $\lambda_{r,,,s}\cdot I_{j-s-1}00)00$ .
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Proof. The matrix of $\rho_{j}(\gamma_{r,s})$ is $\gamma_{r,s}$
. $J(\gamma_{r,s})$ , where $J(\gamma_{r,s})$ is

the Fox Jacobian. Thus, $\rho_{j}(\gamma_{r,,,s})(t)=t_{r,,,s}\cdot J(\gamma_{r,,,s})(t)=(t_{r,,,s}\cdot I_{j-1})$ .

$J(\gamma_{r,,,s})(t)$ , where $J(\gamma_{r,s})(t)$ is the map induced by the Fox Jacobian.
By the Product Rule (3.1), we have

$\rho_{j}(\gamma_{r,,,s})_{*}(\lambda)=(\lambda_{r,s}\cdot I_{j-1})\cdot J(\gamma_{r,s})(1)+J(\gamma_{r,,,s})_{*}(\lambda)$ .

The action of $\gamma_{r,s}$ on the free group $ G_{j}=\langle\gamma_{i,,,j}\rangle$ is recorded in (2.1). Com-
puting Fox derivatives and evaluating at $t$ yields the familiar Gassner
matrix of $\gamma_{r,,,s}$ (see [5]), $J(\gamma_{r,,,s})(t)=$

$\left(\begin{array}{lllll}I_{r-1} & 0 & 0 & 0 & 0\\0 & 1-t_{r,,,j}+t_{r,,,j}t_{s,,,j} & 0 & t_{r,j}(1-t_{r,,,j}) & 0\\0 & \tilde{u} & I_{s-r-1} & -\overline{u} & 0\\0 & 1-t_{s,,,j} & 0 & t_{r,,,j} & 0\\0 & 0 & 0 & 0 & I_{j-s-1}\end{array}\right)$ ,

where $\overline{u}=$ $((1-t_{r+1,j})(1-t_{r,j}) \cdots (1-t_{s-1,,,j})(1-t_{r,j}))^{T}$ Since
$J(\gamma_{r,s})(1)=I_{j-1}$ , the result follows upon differentiating $J(\gamma_{r,s})(t)$ .

Q.E.D.

3.5. Boundary Map Derivatives

We now obtain an inductive formula for the derivatives of the bound-
ary maps of the complex (C#, $\partial.(t)$ ). The mapping cone decomposition
of the resolution (C., $\partial.$ ) discussed in Remark 2.6 gives rise to an anal-
ogous decomposition of the complex (C., $\partial(t)$ ). Specifically, the terms

decompose as $C_{q}=D_{q-1}\oplus\hat{C}_{q}$ , and with respect to this decomposition,
the matrix of the boundary map $\partial_{q+1}(t)$ : $C_{q+1}\rightarrow C_{q}$ is given by

(3.3) $\partial_{q+1}(t)=(_{0}^{-\partial_{q}^{D}(t)}$ $\hat{\partial}_{q+1}(t)---q(t))$ .

Up to sign, the complex (D., $\partial^{D}.(t)$ ) is a direct sum of $\ell$ copies of the

complex $(\hat{C}.,\hat{\partial}.(t))$ , which arises from the group $P_{n,,,\ell+1}<P_{n,\ell}$ . In light
of this, we restrict our attention to the chain $map\cup--$. and its components
$\triangle\{\ell+1,J\}$ , their evaluations —. (t) and $\Delta_{\{\ell+1,J\}}(t)$ , and the derivatives
of these evaluations at 1.

For $J=\{j_{1}, \ldots,j_{q}\}\subseteq[\ell+2, n]$ , let $\rho_{J}=\tilde{\rho}_{j_{q}}\circ\cdots\circ\tilde{\rho}_{j_{1}}$ and $d_{J}=$

$(j_{1}-1)\cdots(j_{q}-1)$ . Then $\triangle\{\ell+1,J\}=(-1)^{q}\rho_{J}(\triangle\ell+1)$ , where $\triangle\ell+1=$

$(\gamma_{1,,,\ell+1} -1 \cdots \gamma_{\ell,,,\ell+1}-1)^{T}$ , and the matrix of $\triangle\{\ell+1,J\}$ is $\ell\cdot d_{J}\times d_{J}$

with $d_{J}\times d_{J}$ blocks $(-1)^{q}\rho_{J}(\gamma_{m,\ell+1}-1)$ , $ 1\leq m\leq\ell$ . We concentrate
our attention on one such block.
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Fix $m$ , $ 1\leq m\leq\ell$ , and let $M$ denote the matrix of $\rho_{J}(\gamma_{m,,,\ell+1}-1)$ .

Similarly, let $M^{J}$ denote the matrix of $\rho_{J_{-1}}‘’(\gamma_{m,,,\ell+1}-1)$ . Then $M$ is the

matrix of $\tilde{\rho}_{j}(:(M^{J})$ . Since $M$ is $d_{J}\times d_{J}$ , its rows and columns are naturally
indexed by sets $R=\{r_{1}, \ldots, r_{q}\}$ and $I$ $=\{i_{1}, \ldots, i_{q}\}$ , $1\leq r_{p}$ , $i_{p}\leq j_{p}-1$ .

We thus denote the entries of $M$ by $M_{R,,,I}$ . With these conventions, we
have

(3.4) $M_{R,,,I}=[\tilde{\rho}_{j_{i}}((M_{R’,,,I’}^{J})]_{r,,,,i,}‘‘$

where, for instance, $I^{/}=I_{q-1}=I\backslash \{i_{q}\}$ .

Now consider the block $M(t)$ of $\Delta_{\{\ell+1,J\}}(t)$ arising from the block
$M$ of the matrix of $\triangle\{\ell+1,J\}$ above. Recall the notion of an $I$-admissible
set from Definition 1.9, and recall that $\epsilon_{R,I}=1$ if $R=I$ , and $\epsilon_{R,,,I}=0$

otherwise.

Theorem 3.6. Let $J\subseteq[\ell+2, n]$ and let $M$ denote the matrix

of $\rho_{J}(\gamma_{m,,,\ell+1}-1)$ . Then the entries of the derivative, $M_{*}(\lambda)$ , of the
evaluation $M(t)$ are given by

$[M_{*}(\lambda)]_{R,I}=(-1)^{|R\backslash R\cap I|}(\epsilon_{R,,,I}\lambda_{m,\ell+1}+\sum_{j\in J}\sum_{K}\lambda_{k,,,j})$ ,

where, if $j=j_{p}$ , the second sum is over all $I_{p}$ -admissible sets $K=$
$\{k_{s_{1}}, \ldots, k_{s_{l}}, k\}$ for which $R\backslash R\cap I$ $\subseteq K$ .

Proof. The proof is by induction on $|J|$ .

If $J=\{j\}$ , then $M=\gamma_{m,,,\ell+1}\cdot J(\gamma_{m,,,\ell+1})-I_{j-1}$ is the matrix of
$\tilde{\rho}_{j}(\gamma_{m,,,\ell+1}-1)$ , so $M(t)=\gamma_{m,\ell+1}(t)\cdot J(\gamma_{m,\ell+1})(t)-I_{j-1}$ . Since the
derivative of the constant $I_{j-1}$ is zero, the entries of $M_{*}(\lambda)$ are given by
Lemma 3.4 (with $r=m$ and $s=\ell+1$ ). In this instance, we have $I$ $=\{i\}$ ,
and a set $K=\{k\}$ is $I$-admissible if $k\neq i$ and $\{k, i\}=\{m, \ell+1\}$ . It
follows that the case $|J|=1$ is a restatement of Lemma 3.4.

In general, let $J=\{j_{1}, \ldots,j_{q-1},j_{q}\}$ and, as in (3.4) above, write
$M_{R,,,I}=[\tilde{\rho}_{j_{q}}(M_{R’,,,I’}^{J})]_{r_{q},,,i_{q}}$ . Then we have

$[M(t)]_{R,I}=[\tilde{\rho}_{j_{q}}(M_{R’,,,I’}^{J})(t)]_{r_{q},i_{q}}$ and

$[M_{*}(\lambda)]_{R,,,I}=[\tilde{\rho}_{j_{q}}(M_{R’,,,I’}^{J})_{*}(\lambda)]_{r_{q},,,i_{q}}$

By induction, the entries of the matrix $M_{*}^{J}(\lambda)$ are given by

$[M_{*}^{J}(\lambda)]_{R’,,,I’}=(-1)^{|R’\backslash R’\cap I’|}(\epsilon_{R’,,,I’}\lambda_{m,,,\ell+1}+\sum_{j_{p}\in J’}\sum_{K}\lambda_{k_{1)},,j_{l^{J}})},$ ,
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where $J’=J_{q-1}=J\backslash \{j_{q}\}$ , and for $j_{p}\in J^{J}$ , the second sum is over all
$I_{p}$-admissible sets $K$ for which $R’\backslash R’\cap I^{J}\subseteq K$ .

By the chain rule (3.2), the entries of $M_{*}(\lambda)$ are given by

(3.5)

$[M_{*}(\lambda)]_{R,,,I}=[\tilde{\rho}_{j_{q}}(M_{R’,,,I’}^{/})_{*}(\lambda)]_{r_{q},,,i_{q}}=[(\rho_{j_{q}})_{*}((M_{R’,,,I’}^{/})_{*}(\lambda))]_{r_{q},i_{q}}$

$=[S(\epsilon_{R’,,,I’}(\rho_{j_{q}})_{*}(\lambda_{m,,,\ell+1})+\sum_{j_{l},\in J’}\sum_{K}(\rho_{j_{q}})_{*}(\lambda_{k_{Y’},,,j_{p}}))]_{r_{q},i_{q}}$ ,

where $S=(-1)^{|R’\backslash R’\cap I’|}$ . By Lemma 3.4, for $r<s<j_{q}$ , we have

(3.6)

$[(\rho_{j_{q}})_{*}(\lambda_{r,,,s})]_{r_{q},i_{q}}=\{$

$\lambda_{r,,,s}+\lambda_{k_{q},j_{q}}$ if $i_{q}=r_{q}$ and $\{k_{q}, i_{q}\}=\{r, s\}$ ,

$-\lambda_{rj_{q}}‘$

”
if $i_{q}\neq r_{q}$ and $\{r_{q}, i_{q}\}=\{r, s\}$ ,

0 otherwise.

The entries of $M_{*}(\lambda)$ may be calculated from (3.5) using (3.6), yield-
ing the formula in the statement of the theorem. We conclude the proof
by making several observations which elucidate this calculation.

First consider the case $R’=I’$ . Then $S=1$ and $\epsilon_{R’,I’}=1$ . If $r_{q}=$

$i_{q}$ , then the first case of (3.6) yields a contribution of $\lambda_{m,,,\ell+1}+\lambda_{k_{q},,,j_{q}}$ to
$[M_{*}(\lambda)]_{I,,,I}$ , provided that $\{k_{q}, i_{q}\}=\{m, \ell+1\}$ . Note that this condition

implies that the set $K=\{k_{q}\}$ is $I$-admissible (and that $k_{q}\neq i_{q}$ ). Note
also that in this instance we have $R=I$ , $R\backslash R\cap I$ $=\emptyset\subset K$ , $\epsilon_{R,,,I}=1$ ,

and $|R\backslash R\cap I|=0$ .

If $R^{/}=I^{J}$ and $r_{q}\neq i_{q}$ , then the second case of (3.6) contributes
$-\lambda_{r_{q},j_{q}}$ to $[M_{*}(\lambda)]_{R,,,I}$ if $\{r_{q}, i_{q}\}=\{m, \ell+1\}$ . In this instance, the set
$\{r_{q}\}$ is $I$-admissible. Since $R^{/}=I^{/}$ and $r_{q}\neq i_{q}$ , we have $|R\backslash R\cap I|=1$ .

For general $R^{J}$ and $I^{J}$ , suppose that $S\cdot\lambda_{k_{p},,,j_{p}}$ is a summand of
$[M_{*}’(\lambda)]_{R’,,,I’}$ for some $p\leq q-1$ . Then, by the inductive hypothesis,

this summand arises from an $I_{p}$-admissible set $K=\{k_{s_{1}}, \ldots, k_{s_{t}}, k_{p}\}$

with $R^{J}\backslash R’\cap I’\subseteq K$ . If $r_{q}=i_{q}$ , then the first case of (3.6) yields a
contribution of $S\cdot(\lambda_{k_{p},j_{p}}+\lambda_{k_{q},j_{q}})$ to $[M_{*}(\lambda)]_{R,,,I}$ , provided that $\{k_{q}, i_{q}\}=$

$\{k_{p},j_{p}\}$ . For such $k_{q}$ , it is readily checked that the set $K\cup\{k_{q}\}$ is I-
admissible. Also, since $r_{q}=i_{q}$ , we have $R\backslash R\cap I$ $=R^{/}\backslash R’\cap I^{J}\subseteq K$ .

If, as above, $S\cdot\lambda_{k,,,,j_{p}}$ is a summand of $[M_{*}^{/}(\lambda)]_{R’,,,I’}$ and $r_{q}\neq i_{q}$ , then

the second case of (3.6) contributes $-S\cdot\lambda_{r_{q},,,j_{q}}$ to $[M_{*}(\lambda)]_{R,,,I}$ provided
$\{r_{q}, i_{q}\}=\{k_{p}.j_{p}\}$ . In this instance, the set $K\cup\{r_{q}\}$ is $I$-admissible, and
since $r_{q}\neq i_{q}$ , we have $R\backslash R\cap I$ $=(R^{/}\backslash R^{J}\cap I^{/})\cup\{r_{q}\}\subseteq K\cup\{r_{q}\}$ , and
$|R\backslash R\cap I|=|R^{/}\backslash R^{J}\cap I^{J}|+1$ .

Applying these observations to (3.5) above completes the proof.
Q.E.D.
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3.7. Proof of Proposition 3.2

We now use Theorems 1.12 and 3.6 to show that the differential
of the complex (A., $\mu.(\lambda)$ ) is given by $\mu^{q}(\lambda)=(-1)^{q}[(\partial_{q+1})_{*}(\lambda)]^{T}$

where $(\partial_{q})_{*}(\lambda)$ is the derivative of the boundary map of the complex
(C9) $\partial.(t))$ , thereby proving Proposition 3.2 and hence Theorem 3.1 as
well.

The proof is by induction on $ d=n-\ell$ , the cohomological dimension
of the group $P_{n,,,\ell}$ , (resp., the rank of the discriminantal arrangement
$A_{n,,,\ell})$ .

In the case $d=1$ , the complexes A. and C. are given by

$A^{0}\rightarrow A^{1}\mu^{0}(\lambda)$

and $C_{1}\rightarrow C_{0}\partial_{1}(t)$

respectively, where $A^{0}=C_{0}=\mathbb{C}$ , $A^{1}=\oplus_{i<n}\mathbb{C}a_{i,,,n}$ , and $C_{1}=\mathbb{C}^{n-1}$ .

The boundary maps are $\mu^{0}(\lambda)$ : 1 $\mapsto\sum_{i<n}\lambda_{i,,,n}\cdot a_{i,,,n}$ and $\partial_{1}(t)=$

$(t_{1,,,n} -1 \cdots t_{n-1,,,n}-1)^{T}$ Identifying $A^{1}$ and $C_{1}$ in the obvious

manner, we have $\mu^{0}(\lambda)=(-1)^{0}[(\partial_{1})_{*}(\lambda)]^{T}$ .

In the general case, we identify $A^{q}$ and $C_{q}$ in an analogous manner.
In particular, the rows and columns of the matrix of the boundary map
$\partial_{q+1}(t)$ : $C_{q+1}\rightarrow C_{q}$ are indexed by basis elements $a_{I,,,J}$ of $A^{q+1}$ and
$A^{q}$ , or simply by the underlying sets I and $J$ , respectively. To show that
$\mu^{q}(\lambda)=(-1)^{q}[(\partial_{q+1})_{*}(\lambda)]^{T}$ , we make use of the decomposition of the
complex A. established in Proposition 1.7, and that of C. stemming
from the mapping cone decomposition of the resolution C. described
in Remark 2.6. Recall from (1.2) and (3.3) that with respect to these
decompositions, the boundary maps may be expressed as

$\mu^{q}(\lambda)=(_{\Psi^{q}(\lambda)}^{\mu_{B}^{q}(\lambda)}$ $\hat{\mu}^{q}(\lambda)0)$ and $\partial_{q+1}(t)=(_{0}^{-\partial_{q}^{D}(t)}$ $\hat{\partial}_{q+1}(t)---q(t))$ .

The maps $\hat{\mu}^{q}(\lambda)$ and $\hat{\partial}_{q+1}(t)$ are the boundary maps of the com-

plexes $\hat{A}$. and $\hat{C}$ . arising from the cohomology algebra $A(A_{n,,,\ell+1})$ and
fundamental group $P_{n,,,\ell+1}$ of the complement of the discriminantal ar-

rangement $A_{n,,,\ell+1}$ . So by induction, we have $\hat{\mu}^{q}(\lambda)=(-1)^{q}[(\hat{\partial}_{q+1})_{*}(\lambda)]^{T}$

for each $q$ . Since the complexes $B$ . $\cong(\hat{A}.)^{\ell}$ and D. $\cong(\hat{C}.)^{\ell}$ decom-
pose as direct sums, with boundary maps $\mu_{B}^{q}(\lambda)=-[\hat{\mu}^{q-1}(\lambda)]^{\ell}$ and
$\partial_{q}^{D}(t)=-[\hat{\partial}_{q}(t)]^{\ell}$ the inductive hypothesis also implies that

$\mu_{B}^{q}(\lambda)=-[(-1)^{q-1}[(\hat{\partial}_{q})_{*}(\lambda)]^{T}]^{\ell}$

$=(-1)^{q}[[(\hat{\partial}_{q})_{*}(\lambda)]^{\ell}]^{T}=(-1)^{q}[-(\partial_{q}^{D})_{*}(\lambda)]^{T}$
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Thus it remains to show that $\Psi^{q}(\lambda)=(-1)^{q}[(_{-,,q}^{--})_{*}(\lambda)]^{T}$ For this,

it suffices to show that the restriction $\Psi_{J}^{q}(\lambda)$ : $A_{J}^{q}\rightarrow A_{\{\ell+1,J\}}^{q+1}$ of $\Psi^{q}(\lambda)$

is dual to the derivative of the summand $\Delta_{\{\ell+1,J\}}(t)$ : $C_{q+1}^{\{\ell+1,J\}}\rightarrow C_{q}^{J}$

$of---q(t)$ for each $J=\{j_{1}, \ldots,j_{q}\}\subseteq[\ell+2, n]$ . As noted in (1.3), the
matrix of $\Psi_{J}^{q}(\lambda)$ is $d_{J}\times\ell\cdot d_{J}$ with $d_{J}\times d_{J}$ blocks $\pi_{m,,,\ell+1}\circ\Psi_{J}^{q}(\lambda)$ ,

where $d_{J}=(j_{1}-1)\cdots(j_{q}-1)$ . Similarly, from the discussion in sec-
tion 3.5, we have that the matrix of $\Delta_{\{\ell+1,J\}}(t)$ is $\ell\cdot d_{J}\times d_{J}$ with
$d_{J}\times d_{J}$ blocks $(-1)^{q}(\rho_{J}(\gamma_{m,,,\ell+1})(t)-I_{d_{J}})$ . Comparing the formulas ob-
tained in Theorem 1.12 and Theorem 3.6, we see that $\pi_{m,,,\ell+1}\circ\Psi_{J}^{q}(\lambda)=$

$[\rho_{J}(\gamma_{m,,,\ell+1})_{*}(\lambda)]^{T}$ . It follows readily that

$\Psi_{J}^{q}(\lambda)=(-1)^{q}[(\Delta_{\{\ell+1,J\}})_{*}(\lambda)]^{T}$ ,

completing the proof.

\S 4. Cohomology Support Loci and Resonant Varieties

In an immediate application of Theorem 3.1, we establish the re-
lationship between the cohomology support loci of the complement of
the discriminantal arrangement $A_{n,,,\ell}$ and the resonant varieties of its
Orlik-Solomon algebra.

Recall that each point $t\in(\mathbb{C}^{*})^{N}$ gives rise to a local system $\mathcal{L}=$

$\mathcal{L}_{t}$ on the complement $M_{n,\ell}$ of the arrangement $A_{n,\ell}$ . For sufficiently
generic $t$ , the cohomology $H^{k}(M_{n,,,\ell}, \mathcal{L}_{t})$ vanishes (for $ k<n-\ell$), see
for instance $[21, 10]$ . Those $t$ for which $H^{k}(M_{n,,,\ell;}\mathcal{L}_{t})$ does not vanish
comprise the cohomology support loci

$\Sigma_{m}^{k}(M_{n,\ell})=\{t\in(\mathbb{C}^{*})^{N}|dimH^{k}(M_{n,,,\ell;}\mathcal{L}_{t})\geq m\}$ .

These loci are algebraic subvarieties of $(\mathbb{C}^{*})^{N}$ , which, since $M_{n,,,\ell}$ is a
$K(P_{n,\ell}, 1)$ -space, are invariants of the group $P_{n,\ell}$ .

Similarly, each point $\lambda\in \mathbb{C}^{N}$ gives rise to an element $\omega=\omega_{\lambda}\in A^{1}$

of the Orlik-Solomon algebra of the arrangement $A_{n,,,\ell}$ . For sufficiently
generic $\lambda$ , the cohomology $H^{k}$ (A., $\mu.(\lambda)$ ) vanishes (for $ k<n-\ell$), see
$[31, 16]$ . Those $\lambda$ for which $H^{k}$ (A., $\mu.(\lambda)$ ) does not vanish comprise the
resonant varieties

$\mathcal{R}_{k}^{m}(A)=$ { $\lambda\in \mathbb{C}^{N}|dimH^{k}$ (A., $\mu.(\lambda))\geq m$ }.

These subvarieties of $\mathbb{C}^{N}$ are invariants of the Orlik-Solomon algebra $A$

of $A_{n,,,\ell}$ .

Recall that $1=(1, \ldots, 1)$ denotes the identity element of $(\mathbb{C}^{*})^{N}$ .
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Theorem 4.1. Let $A_{n,,,\ell}$ be a discriminantal arrangement with com-
plement $M_{n,,,\ell}$ and Orlik-Solomon algebra A. Then for each $k$ and each
$m$ , the resonant variety $\mathcal{R}_{k}^{m}(A)$ coincides with the tangent cone of the
cohomology support locus $\Sigma_{m}^{k}(M_{n,\ell})$ at the point 1.

Proof For each $t\in(\mathbb{C}^{*})^{N}$ , the cohomology of $M_{n,\ell}$ with coef-
ficients in the local system $\mathcal{L}_{t}$ is isomorphic to that of the complex
(C., $\delta.(t)$ ). So $t\in\Sigma_{m}^{k}(M_{n,,,\ell})$ if and only if $dimH^{k}$ (C., $\delta.(t)\geq m$ . An
exercise in linear algebra shows that

$\Sigma_{m}^{k}(M_{n,,,\ell})=\{t\in(\mathbb{C}^{*})^{N}|rank\delta^{k-1}(t)+rank\delta^{k}(t)\leq dimC^{k}-m\}$ .

For $\lambda\in \mathbb{C}^{N}$ , we have $\lambda\in \mathcal{R}_{k}^{m}$ if $dimH^{k}$ (A., $\mu.(\lambda)$ ) $\geq m$ . So, as
above,

$\mathcal{R}_{k}^{m}(A)=\{\lambda\in \mathbb{C}^{N}|rank\mu(k-1\lambda)+rank\mu(k\lambda)\leq dimA^{k}-m\}$ .

By Theorem 3.1, $dimA^{k}=dimC^{k}$ and $\mu^{k}(\lambda)=\delta_{*}^{k}(\lambda)$ for each $k$ . Thus,

$\mathcal{R}_{k}^{m}(A)=\{\lambda\in \mathbb{C}^{N}|rank\delta_{*}^{k-1}(\lambda)+rank\delta_{*}^{k}(\lambda)\leq dimC^{k}-m\}$ ,

and the result follows. Q.E.D.

The cohomology support loci are known to be unions of torsion-
translated subtori of $(\mathbb{C}^{*})^{N}$ , see [3]. In particular, all irreducible com-
ponents of $\Sigma_{m}^{k}(M_{n,,,\ell})$ passing through 1 are subtori of $(\mathbb{C}^{*})^{N}$ . Conse-
quently, all irreducible components of the tangent cone are linear sub-
spaces of $\mathbb{C}^{N}$ . So we have the following.

Corollary 4.2. For each $k$ and each $m$ , the resonant variety $\mathcal{R}_{k}^{m}(A)$

is the union of an arrangement of subspaces in $\mathbb{C}^{N}$ .

Remark 4.3. For k $=1$ , Theorem 4.1 and Corollary 4.2 hold for
any arrangement $A$ , see [11, 22, 23]. In particular, as conjectured by
Falk [16, Conjecture 4.7], the resonant variety $\mathcal{R}_{1}^{m}(A(A))$ is the union
of a subspace arrangement. Thus, Corollary 4.2 above may be viewed
as resolving positively a strong form of this conjecture in the case where
$A=A_{n,\ell}$ is a discriminantal arrangement.
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Arrangements

James Damon*

To Peter Orlik on his sixtieth birthday

For a real hyperplane arrangement $A\subset \mathbb{R}^{n}$ , among the first in-
variants that were determined for $A$ were the number of chambers in
the complement $\mathbb{R}^{n}\backslash A$ by Zavslavsky [Za] and the number of bounded
chambers by Crapo [Cr]. In the consideration of certain classes of hy-
pergeometric functions, there also arise arrangements of hypersurfaces
which need not be hyperplanes (see e.g. Aomoto [Ao]). In this paper we
will obtain a formula for the number of bounded regions (i.e. chambers)
in the complement of a nonlinear arrangement of hypersurfaces. For ex-
ample, for the general position arrangements of quadrics in Figure 1, we
see the number of bounded regions in the complement are respectively
1, 5, and 13.

Figure 1

A computation of the number of bounded regions in the complement
depends on the degrees of the hypersurfaces as well as the combinatorial
structure of the arrangement. Hence, the form such a formula should
take is less obvious, even given the answer for hyperplane arrangements.
Moreover, in the real case for hypersurfaces of degree $>1$ there is the
added complication that the number depends upon the specific hypersur-
faces (another choice of real quadrics could have fewer real intersections).

In the case of real hyperplane arrangements, the number of bounded
regions in the complement represents an intrinsic invariant for the as-
sociated complex arrangements. Each bounded region has a bounding

*Partially supported by a grant from the National Science Foundation.
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cycle, and these cycles represent the nontrivial cycles in the associated
complex hyperplane arrangement. For arrangements of hypersurfaces of
degree>2, there is the added complication that the number of bounded
regions does not accurately count the number of “bounding cycles” for
the complexification. For example, the arrangement in figure 2 of a
quadric and elliptic curve has a maximum of 6 bounded regions while
by [Dl, \S 6], the number of “bounding cycles” for the complexification
is 8. In fact, it is the number of “bounding cycles” for arrangements of
smooth complex hypersurfaces $A\subset \mathbb{C}^{n}$ which is intrinsic and we shall
refer to these cycles as the “bounding cycles”.

Figure 2

In order to obtain a formula for the number of bounding cycles, we
are led to consider more generally a nonlinear arrangement of hypersur-
faces $A$ on a smooth complete intersection $X\subset \mathbb{C}^{n}$ , and consider the
corresponding number of “relative bounding cycles” for $(X, A)$ . More-
over, we consider nonlinear arrangements which are the analogues of
arbitrary hyperplane arrangements rather than just general position ar-
rangements. Then, in Theorem 1, we shall give a general formula (5.13)

for the number of “relative bounding cycles” for a nonlinear arrange-
ment $A$ of q-tic hypersurfaces on a smooth complete intersection $X$ of
multidegree $d$ , where the nonlinear arrangement is generally based on
any central hyperplane arrangement $A$ . The formula is valid for general
nonlinear arrangements provided that the arrangement and complete
intersection are “nondegenerate at infinity” (see \S 1). It has the form

$d\cdot(\sum_{j=0}^{r}\alpha_{j}\cdot q^{r-j}\mu_{r-j}(A))$
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Here, $d$ is the product of the multidegrees and the coefficient $\alpha_{j}$ involves
$s_{j}$ , the $j$-th complementary function to the elementary symmetric func-
tions, applied to the multidegree $d$ and common arrangement degree $q$ .

Also, $\mu_{r-j}(A)$ are the higher multiplicities of the arrangement $A$ [D2,

\S 4]. The higher multiplicities are certain intrinsic geometric invariants
of the central arrangement, which are the analogues of those originally
introduced by Teissier [Te] for hypersurfaces (see \S 2).

Several key ideas play crucial roles in obtaining such a formula. In

\S 1 we reduce computation of global invariants to local invariants of an
appropriate mapping (1). Then, the number of “relative bounding cy-
cles” turns out to be a “relative singular Milnor number” which, in turn,

is sum of the usual Milnor number for an isolated complete intersection
singularity and the “singular Milnor number” for the intersection of the
arrangement and the complete intersection. In the special case that
such a nonlinear arrangement is based on a free arrangement, formulas
were given in [D1] for the special case where $X=\mathbb{C}^{n}$ or $X$ is a smooth
complete intersection but the arrangement consists of hyperplanes. We
recall these formulas in \S 5. To generalize these formulas for all central ar-
rangements rather than just free arrangements, we introduce a version of
“nonlinear deletion-restriction” (3). The version we give does not yield
analogues of the complete results obtained by Orlik-Terao [OT] for the
topology of complements of hyperplane arrangements; however, it suf-
fices for counting the number of bounding cycles. It leads to functional
equations (4.1) which such a formula for the number of bounding cycles
must satisfy (4). The form of the solution to these functional equations
is obtained in terms of the higher multiplicities of the central arrange-
ment and the multidegree of the complete intersection $X$ . It is obtained
by expressing the formulas valid for free central arrangements in terms
of higher multiplicities (5). The proof that the formula satisfies the
functional equations is given in \S 6. As a consequence, it follows that the
formulas which originally were obtained for the special case of nonlinear
arrangements based on free arrangements, when reexpressed in terms of
higher multiplicities, are seen to hold for all nonlinear arrangements.

In all that follows, we shall use standard notation and terminology
for hyperplane arrangements as given in [OT], especially chapters 1 and
2.

Contents

(1) \S 1 Nonlinear Arrangements Nondegenerate at $\infty$

(2) \S 2 Higher Multiplicities of Central Arrangements
(3) \S 3 Nonlinear Deletion-Restriction
(4) \S 4 Functional Equations for the Number of Bounding Cycles
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(5) \S 5 Formula for the Number of Relative Bounding Cycles
(6) \S 6 Proof of the General Formula

\S 1. Nonlinear Arrangements Nondegenerate at $\infty$

To define a nonlinear arrangement exhibiting intersection proper-
ties of a linear arrangement, we begin by defining a nonlinear arrange-
ment based on a central hyperplane arrangement. We modify the ap-
proach to nonlinear arrangements given in [D2]. Consider a smooth
complete intersection $X\subset \mathbb{C}^{n}$ of dimension $r$ defined by a polynomial
map $g=(g_{1}, \ldots, g_{n-r})$ : $\mathbb{C}^{n}\rightarrow \mathbb{C}^{n-r}$ . We let $deg(g_{i})=d_{i}$ and refer to
$X$ as having multidegree $d=(d_{1}, \ldots, d_{n-r})$ . Also, consider a central hy-
perplane arrangement $A(=\cup H_{i})\subset \mathbb{C}^{p}$ (for which all of the hyperplanes
$H_{i}$ contain 0). Let $\varphi$ : $\mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$ be a polynomial mapping.

Definition 1.1. A nonlinear (affine) arrangement of smooth hy-
persurfaces $A\subset X$ based on a central hyperplane arrangement $A\subset \mathbb{C}^{p}$

is defined by $A=\varphi^{J-1}(A)$ where $\varphi$ : $\mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$ is a polynomial map and
$\varphi’=\varphi|X$ is transverse to $A$ (i.e. $\varphi’$ is transverse to each flat of $A$).

In the special case that $X=\mathbb{C}^{n}$ , we obtain a nonlinear arrangement
$A\subset \mathbb{C}^{n}$ . If $A’\subset \mathbb{C}^{n}$ is a nonlinear arrangement and $X$ is a smooth
complete intersection which is transverse to $A’$ (i.e. to the “nonlinear
flats” $A’$ ), then $A=X\cap A’$ is a nonlinear arrangement in $X$ .

Example 1.2. If $A_{n}\subset \mathbb{C}^{n}$ denotes the Boolean arrangement of
coordinate hyperplanes and $\varphi$ : $\mathbb{C}^{2}\rightarrow \mathbb{C}^{n}$ is a polynomial mapping
whose coordinate functions are generic quadratic polynomials, let $A=$

$\varphi^{-1}(A_{n})$ . Then $A$ is a general position arrangement of quadrics as in
figure 1 for $n=1,2,3$ .

Example 1.3. If in place of $A_{n}$ in example 1.2, we consider the
braid arrangement $B_{3}\subset \mathbb{C}^{3}$ and let $\varphi$ : $\mathbb{C}^{2}\rightarrow \mathbb{C}^{3}$ be given by

$\varphi(z_{1}, z_{2})=(2z_{1}^{2}+6z_{2}^{2}-8, z_{1}^{2}+4z_{2}^{2}-5,4z_{1}^{2}+7z_{2}^{2}-11)$

then $A$ consists of the three quadrics whose common intersection exhibits
the triple intersection of the braid arrangement $B_{3}$ . This nonlinear ar-
rangement has 9 bounding cycles as we see in figure 3

Example 1.4. Again let $A_{n}\subset \mathbb{C}^{n}$ denote the Boolean arrange-
ment of coordinate hyperplanes and let $\varphi$ : $\mathbb{C}\rightarrow \mathbb{C}^{n}$ be a polynomial
mapping whose coordinate functions are generic polynomials of degrees
$(q_{1}, \ldots, q_{n})$ . Then, set-theoretically, $A=\varphi^{-1}(A_{n})$ is a collection of
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Figure 3

$q=\sum q_{i}$ points in $\mathbb{C}$ , and appears identical to a general position ar-
rangement of points in $\mathbb{C}$ . However, $A$ is a nonlinear general position
arrangement of 0-dimensional varieties each consisting of $q_{i}$ points. It is
analogous to a colored braid arrangement where sets of $q_{i}$ points share
the same color and are indistinguishable.

Example 1.5. Lastly, we let $X\subset \mathbb{C}^{3}$ denote a quadric surface
and we consider the nonlinear arrangement $A$ on $X$ obtained as the
intersection $A=X\cap B_{3}$ . A real version of this is given in figure 4.
Although $H_{1}(A)$ is generated by 5 cycles, there are 6 relative bounding
cycles corresponding to the 6 regions in the ellipsoid.

The conditions we have given for nonlinear arrangements are not
in themselves sufficient to allow us to determine the number of bound-
ing cycles. We must also control the behavior at infinity for both the
complete intersection $X$ and the nonlinear arrangement $A$ .

(1.6) We do this by viewing both as the intersection of singular
complete intersections and nonlinear arrangements in $\mathbb{C}^{n+1}$ with the
affine space $\mathbb{C}^{n}\times\{1\}$ . We extend both polynomial mappings $g$ and $\varphi$

by homogenization. However, we view the homogenized maps as germs
at 0. For example, from $g=(g_{1}, \ldots, g_{n-r})$ : $\mathbb{C}^{n}\rightarrow \mathbb{C}^{n-r}$ defining $X$ , we
define $G=(G_{1}, \ldots, G_{n-r}):\mathbb{C}^{n+1},0\rightarrow \mathbb{C}^{n-r}$ , 0 where

$G_{i}(z_{1}, \ldots, z_{n+1})=(z_{n+1})^{d_{i}}\cdot g_{i}(z_{1}/z_{n+1}, \ldots, z_{n}/z_{n+1})$
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Figure 4

with $d_{i}=deg(g_{i})$ . We similarly define $\Phi$ : $\mathbb{C}^{n+1},0\rightarrow \mathbb{C}^{p}$ , 0 from $\varphi$ . We
let $\mathcal{X}=G^{-1}(0)$ , $\Phi’=\Phi|\mathcal{X}$ , and $\tilde{A}=\Phi^{J-1}(A)$ .

The properties of $X$ and $A$ at infinity are given by the properties of
$\mathcal{X}$ and $\tilde{A}$ .

Definition 1.7. First, we say that $X$ is smooth including $\infty$ if
both $G$ and $G|\mathbb{C}^{n}$ define isolated complete intersection singularities $([CI9$

$\mathcal{X}=G^{-1}(0)$ and $X_{0}=\mathcal{X}\cap \mathbb{C}^{n}$ (the conditions imply that $\mathcal{X}$ and $\mathbb{C}^{n}$ are
transverse off 0). Second, we say that the nonlinear arrangement $A\subset X$

is nondegenerate at $\infty$ if both $\Phi’=\Phi|\mathcal{X}$ and $\Phi|X_{0}$ are transverse to $A$

in a punctured neighborhood of 0.

In figure 5, We observe the relation between $\mathcal{X}$ , $A$ , etc.
The results that we obtain will apply to a nonlinear arrangement

$A\subset X$ which is nondegenerate at $\infty$ and $X$ is smooth including $\infty$ .

Observe that if $\tilde{A}=\Phi^{\prime-1}(A)$ , $\mathcal{X}$ , and $\mathbb{C}^{n}$ are in general position off 0,
then $A’=A\cap X\subset X$ is a nonlinear arrangement which is nondegenerate
at $\infty$ (this was the definition used in [D2]).

We should mention that we add the descriptive term “affine” in the
referring to a nonlinear arrangement to distinguish from the case of a
central nonlinear arrangement such as $\tilde{A}=\Phi^{-1}(A)$ where the defining
map $\Phi$ is only required to be transverse to $A$ off 0 (see [Dl, 6]).
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$x_{0}$

Figure 5

In order to apply deletion-restriction later to nonlinear arrange-
ments, we shall make use of the following lemma.

Lemma 1.8. Suppose $X\subset \mathbb{C}^{n}$ is smooth including $\infty$ , and $A\subset X$

is a nonlinear arrangement nondegenerate at $\infty$ (defined as $\varphi^{-1}(A)$ ).

Let $K$ be a flat of $A$ and $A^{K}$ denote the restriction of $A$ to K. Then,
$X_{K}=\varphi^{-1}(K)$ is smooth including $\infty$ , and $A^{K}=\varphi^{-1}(A^{K})\subset X_{K}$ is $a$

nonlinear arrangement nondegenerate at $\infty$ .

Proof. By assumption, both $\Phi’$ : $\mathcal{X}\rightarrow \mathbb{C}^{p}$ and $\Phi’|X_{0}$ are trans-
verse to the central hyperplane arrangement $A\subset \mathbb{C}^{p}$ in a punctured
neighborhood of 0. In particular, they are transverse to $K$ in a punc-
tured neighborhood of 0. Then, by a straighforward fiber square argu-
ment, $\mathcal{X}_{K}=\Phi^{\prime-1}(K)$ and $X_{0K}=\Phi^{J-1}(K)\cap X_{0}$ are ICIS, and both
$\Phi’|\mathcal{X}_{K}$ : $\mathcal{X}_{K}\rightarrow K$ and $\Phi’|X_{0K}$ : $X_{0K}\rightarrow K$ are transverse to $A^{K}$ in a
punctured neighborhood of 0. Hence, $A^{K}\subset X_{K}$ is a nonlinear arrange-
ment nondegenerate at $\infty$ . Q.E.D.

Reduction from Global to Local Properties:

Suppose $A\subset X$ is a nonlinear affine arrangement nondegenerate
at $\infty$ and that $X$ is smooth including $\infty$ . We constuct as in (1.6) the
associated homogeneous objects $\mathcal{X}$ , etc. There is a basic relation between
the local properties of the homogeneous objects and the corresponding
affine ones. First, both $\mathcal{X}$ and $\tilde{A}$ are transverse to $\mathbb{C}^{n}$ off 0. Second,
since $\mathbb{C}^{n}$ is transverse to $\mathcal{X}$ off 0, it follows that $\mathbb{C}^{n}\times\{t\}$ is transverse
to $\mathcal{X}$ and $X=\mathcal{X}\cap(\mathbb{C}^{n}\times\{1\})$ is the smooth complete intersection in
$\mathbb{C}^{n}\times\{1\}\simeq \mathbb{C}^{n}$ . We let $X_{t}=\mathcal{X}\cap(\mathbb{C}^{n}\times\{t\})$ . Likewise, $A=\tilde{A}\cap(\mathbb{C}^{n}\times\{1\})$

is the nonlinear affine arrangement in $X$ . Third, $\varphi=\Phi|\mathbb{C}^{n}\times\{1\}$ .
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Then, by a theorem of Hamm [Ha], for a sufficiently small ball $B_{\epsilon}$

and $ 0<|t|<<\epsilon$ , $X_{t}\cap B_{\epsilon}$ is the Milnor fiber of the ICIS $X_{0}$ and is
homotopy equivalent to a bouquet of spheres of (real) dimension $r$ . The
number of such spheres is the Milnor number, which we denote by $\mu(X_{0})$ .

Also, by [Dl, \S 7] (and see [D3]), for $\epsilon$ sufficiently small and $0<$

$|t|<<\epsilon$ , $X_{t}\cap\overline{A}\cap B_{\epsilon}$ is the singular Milnor fiber of the nonisolated
complete intersection singularity $A_{0},0$ viewed as a nonlinear section of
$\{O\}\times A$ , $0\subset \mathbb{C}^{n-r+1+p}$ , 0. Using a theorem of L\^e [L\^el], it is also proven

that $X_{t}\cap\tilde{A}\cap B_{\epsilon}$ is homotopy equivalent to a bouquet of spheres of (real)
dimension $r-1$ . Then, $X_{t}\cap\tilde{A}\cap B_{\epsilon}$ is called the singular Milnor fiber
of $A_{0}$ , and the number of such spheres is the singular Milnor number,

denoted by $\mu(A_{0})$ ( $[DM,$ \S 4], [Dl, \S 7] and [D3]). Strictly speaking, these
(singular) Milnor fibers are associated to the mappings $g’=(g, z_{n+1})$

and $(g’, \Phi)$ defining $X_{0}$ and $A_{0}$ as an ICIS or a nonlinear section of a
complete intersection; however, by [Dl, \S 6, 7] the description given here
is consistent with the definition for the mappings.

Figure 6

The global affine spaces $X$ and $A$ are related to the (singular) Milnor
fibers by the following result, which is a slight variant of Prop. 2.5 in
[D2], but whose proof is virtually identical.

Proposition 1.9. Suppose $A\subset X$ is a nonlinear (affine) arrange-
ment nondegenerate at $\infty$ (with $X$ smooth including $\infty$ ). Then, $X$ is
homeomorphic to the Milnor fiber $X_{t}\cap B_{\epsilon}$ of $X_{0}$ via a homeomorphism
$\psi$ which can be chosen to send $A$ to $X_{t}\cap\tilde{A}\cap B_{\epsilon}$ (see fig. 6).

Number of Bounding Cycles as Relative Singular Milnor Numbers:

In light of the preceding discussion of the relation between nonlinear
arrangements and singular Milnor fibers, we define the number of bound-
ing cycles in terms of (relative) homology of the nonlinear arrangement.
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Definition 1.10. If the nonlinear arrangement $A\subset \mathbb{C}^{n}$ is non-
degenerate at $\infty$ , then the number of bounding cycles is defined to be
$dim$ $H_{n-1}(A)$ . If $A\subset X$ is a nonlinear (affine) arrangement nondegen-
erate at $\infty$ (with $X$ smooth including $\infty$ ), then the number of relative
bounding cycles is defined to be $dimH_{r}(X, A)$ .

We observe that if $X=\mathbb{C}^{n}$ , then the number of relative bounding
cycles for $A$ is the same as the number of bounding cycles. Because the
relative Milnor fiber $(X_{t}\cap B_{\epsilon}, X_{t}\cap\tilde{A}\cap B_{\epsilon})$ is a relative $CW$-complex of
dimension $r$ , by the homotopy properties of (singular) Milnor fibers we
see that

$dimH_{r}(X_{t}\cap B_{\epsilon}, X_{t}\cap\tilde{A}\cap B_{\epsilon})$

$=dimH_{r}(X_{t}\cap B_{\epsilon})+dimH_{r-1}(X_{t}\cap\tilde{A}\cap B_{\epsilon})$

By proposition 1.9 and the exact sequence of a pair, this implies for the
affine spaces that $H_{k}(X, A)$ is only nonzero when $k=r$ and

(1.11) $dimH_{r}(X, A)=dimH_{r}(X)+dimH_{r-1}(A)$

We shall refer to $dimH_{r}(X_{t}\cap B_{\epsilon}, X_{t}\cap\tilde{A}\cap B_{\epsilon})$ as the relative singular
Milnor number of $A_{0}$ . Via proposition 1.9 and 1.11, we can summarize
the discussion by

(1.12) the number of relative bounding cycles for $(X, A)=$

the relative singular Milnor number of $(X_{0}, A_{0})$

Remark 1.13. The singular Milnor numbers can be explicitly
computed in the case that $A$ is a free arrangement [Dl, \S 6], then $A_{0}$

is called an almost free arrangement and $\mu(A_{0})$ can be computed as the
length of a determinantal module, see [DM, thms 5, 6] and [Dl, \S 4]. This
is further extended in [Dl, \S 7, 8] to almost free complete intersections,
intersections of almost free divisors which are the transverse off 0. This
includes nonlinear arrangements such as $A_{0}$ .

It was the formulas for almost free nonlinear arrangements $A_{0}$ which
suggested the existence and form for a general formula given in \S 5.

\S 2. Higher Multiplicities of Central Arrangements

A general formula for the number of bounding cycles must be ex-
pressed in terms on intrinsic invariants of arrangements. We recall
just such a set of intrinsic geometric invariants of central arrangements,
viewed as nonisolated singularities. These are the higher multiplicities.
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For the case of isolated hypersurface singularities, Teissier [Te] intro-
duced a series of higher multiplicities, namely the $\mu_{i}$ appearing in his
$\mu^{*}-$sequence $\mu^{*}=(\mu_{0}, \ldots, \mu_{n})$ . Specifically, given $f_{0}$ : $\mathbb{C}^{n}$ , $0\rightarrow \mathbb{C}$ , 0, if
$\Pi$ is a generic $s$-dimensional subspace in $\mathbb{C}^{n}$ then $f_{0}|\square $ has an isolated
singularity and Teissier defines $\mu_{s}(f_{0})=\mu(f_{0}|\square )$ , where $\mu(\cdot)$ denotes
the usual Milnor number. This was extended to arbitrary singularities
$(V, 0)$ by L\^e and Teissier [L\^eT] considering instead generic projections
$V$, $ 0\rightarrow\Pi$ , 0 for linear subspaces $\Pi$ of varying dimensions. They consider
the Euler characteristics of Milnor fibers of such projections.

In [Dl, \S 4], we considered higher multiplicities for nonisolated com-
plete intersection singularities $V$, $0\subset \mathbb{C}^{n}$, 0 using the analogue of Teissier’s
original definition. A Zariski open subset of $s$-dimensional subspaces
$\Pi\subset \mathbb{C}^{n}$ are (geometrically) transverse to $V$ off 0. We view the inclusion
$i:\square \rightarrow \mathbb{C}^{n}$ as a section of $V$ . For simplicity we assume $P=\mathbb{C}^{s}$ so that
we have a map germ $i:\mathbb{C}^{s}$ , $0\rightarrow \mathbb{C}^{n}$ , 0 which is then transverse to $V$ off
0. By the $s$-th higher multiplicity $\mu_{s}(V)$ we mean the singular Milnor

number of the generic nonlinear section $i$ (and $\mu_{0}(V)d=1ef$ ). For a cen-
tral arrangement $A\subset \mathbb{C}^{p}$ , if $i_{t}$ is a perturbation of $i$ which is transverse
to $A$ , then the affine arrangement $\dot{u}$ $(\mathbb{C}^{s})\cap A$ is homotopy equivalent to a
bouquet of $s-1$ -spheres and $\mu_{s}(A)$ counts the number of such spheres.

We summarize the main properties on the higher multiplicities of
central hyperplane arrangements.

Proposition 2.1. Suppose that $A\subset \mathbb{C}^{p}$ is a central arrangement.

(1) If $r=r(A)$ is the rank of $A=\cup H_{i}(=codim(\cap H_{i}))$ , then
$\mu_{k}(A)=0$ if $k\geq r$ and

$\mu_{r-1}(A)=|\mu_{Mob}(A)|$

( $\mu_{Mob}(A)$ denotes the M\"obius function of the lattice $L(A)$ , $[OT$ ,

Chap. 2]);
(2) If $(A, A’, A’’)$ is a deletion-restriction triple, then

$\mu_{k}(A)=\mu_{k}(A’)+\mu_{k-1}(A’’)$

(3) The $k$ -th Betti number of the complement $M(A)=\mathbb{C}^{p}\backslash A$ is
given by

$b_{k}(M(A))=\mu_{k}(A)+\mu_{k-1}(A)$

(in particular, $b_{r}(M(A))=\mu_{r-1}(A)$ as $\mu_{r}(A)=0$ ).
(4) If $A$ is a free arrangement, then

$\mu_{k}(A)=\sigma_{k}(\exp’(A))$
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If $\exp(A)=(e_{0}, e_{1}, \ldots, e_{p-1})$ with $e_{0}=1$ , then $\exp’(A)=$

$(e_{1}, \ldots, e_{p-1})$ and $\sigma_{k}(\cdot)$ denotes the $k$ -th elementary symmet-
ric function.

(5) If $A$ is the complexification of a real, essential arrangement $A_{\mathbb{R}}$ ,

then the $\beta$ invariant of Crapo is given by

$\beta(A)=\mu_{p-1}(A)$

Proof. The proofs of these results essentially follow from [Dl, \S 5].
1), 3), and 4) are respectively Proposition 5.6, Lemma 5.6, and Propo-
sition 5.2 of [D1]. 5) follows from 1) and the equality of $\beta(A)$ and
$\mu Mob(A)$ . Lastly, for 2) if $\Pi$ is a generic $k$-dimensional subspace, then
$(A\cap\square , A’\cap\Pi, A’’\cap\square )$ is still a deletion-restriction triple. Then,
if $k+1=dim(\Pi)>r(A)$ then $\mu_{k}(A)$ , $\mu_{k}(A’)$ , and $\mu_{k-1}(A’’)$ are
zero. If $k<r(A)$ , then by 1) these multiplicities are $|\mu_{Mob}(A\cap\Pi)|$ ,
$|\mu_{Mob}(A’\cap\Pi)|$ , and $|\mu_{k-1}(A’’\cap\Pi)|$ . Then, the result follows from Corol-
lary 2.3.12 of [OT] (if $ H\cap\Pi$ is not a separator, then $r(A’\cap\Pi)<k+1$

so $\mu_{k}(A’)=0)$ . Q.E.D.

We give several corollaries.

Corollary 2.2. For a central hyperplane arrangement $A\subset \mathbb{C}^{p}$ ,
the Poincare polynomial of the complement $M(A)$ is given by

$P(A, t)=(1+t)\cdot\mu(A, t)$ where $\mu(A, t)=\sum_{j=0}^{p-1}\mu_{j}(A)t^{j}$

is the “multiplicity polynomial”of $A$ .

We should note that in [OT], $P(A, t)$ is equivalently given by $\pi(A, t)$ .

As a second corollary we obtain a formula for the multiplicities of
a “product of arrangements” $A\subset \mathbb{C}^{p1}$ and $B$ $\subset \mathbb{C}^{p_{2}}$ . This is the ar-
rangement $(A\times \mathbb{C}^{p_{2}})\cup(\mathbb{C}^{p_{1}}\times B)\subset \mathbb{C}^{p}$ , where $p=p_{1}+p_{2}$ . This same
construction appears in other situations in singularity theory where the
term “product” is misleading, so we refer to it more generally as the
“product union” of $A$ and $B$ , and denote it by $A$ $MB$ [Dl, \S 3]. Let

$\lambda_{k}(A, B)=\sum_{j=0}^{k}\mu_{j}(A)\mu_{k-j}(B)$ .

Corollary 2.3. For a central hyperplane arrangements $A$ and $B$

$(2.4)$ $\mu_{k}$ (A $MB$ ) $=\lambda_{k}(A, B)+\lambda_{k-1}(A, B)$
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Proof. By [$OT$ , Lemma 2.3.3]

$P(AMB, t)=P(A, t)\cdot P(B, t)$

Then, using Corollary 2.2 we conclude

(2.5) $\mu(AMB, t)=(1+t)\mu(A, t)\cdot\mu(B, t)$

Equating coefficients of $t^{k}$ in (2.5) yields the corollary Q.E.D.

Remark 2.6. The expression in Corollary 2.3 does not obviously
depend upon $A$ nor $B$ being arrangements. This suggests the conjecture
that Formula 2.4 is valid for arbitrary germs of hypersurfaces $A$ and $B$ .

\S 3. Nonlinear Deletion-Restriction

We consider a central arrangement $A\subset \mathbb{C}^{p}$ with $H$ a hyperplane
in $A$ . Let $(H\subset A, A’, A’’)$ be a deletion-restriction triple for the
hyperplane $H$ [$OT$ , def. 1.2.14]. Recall it consists of arrangements
$A’=\{H’\in A : H’\neq H\}$ , and $A’’=A^{H}(=H\cap(\cup H’)$ , where the
union is over $H’\in A’$ ).

Definition 3.1. Let $A\subset X$ be a nonlinear arrangement nonde-
generate at $\infty$ defined as $\varphi^{\prime-1}(A)$ for $\varphi’=\varphi|X$ (with $X$ smooth in-
cluding $\infty$ ). The associated nonlinear deletion-restriction triple $(H’\subset$

$A$ , $A’$ , $A’’)$ consists of the smooth hypersurface $H’=X_{H}$ , and the non-
linear arrangements $A$ , $A’=\varphi^{\prime-1}(A’)$ , and $A’’=\varphi^{\prime-1}(A’’)$ .

By proposition 1.8, $H’$ is smooth including $\infty$ and both $A’\subset X$ and
$A’’\subset H’$ are nondegenerate at $\infty$ .

If $\chi(Y)$ denotes the Euler characteristic of $Y$, then nonlinear deletion-
-restriction takes the following simple form.

Proposition 3.2 (Nonlinear Deletion-Restriction). For the non-
linear deletion-restriction triple $(H’\subset A, A’, A’’)$ ,

$\chi(X, A)=\chi(X, A’)-\chi(H’, A’’)$

Proof. This is a simple application of Euler characteristic argu-
ments for exact sequences. As $A’’=A’\cap H’$ and $A=A’\cup H’$ , Mayer-
Vietoris implies

(3.3) $\chi(A)=\chi(H’)+\chi(A’)-\chi(A’’)$

Subtracting both sides of (3.3) from $\chi(X)$ , and using that for $Y\subset X$ ,
$\chi(X, Y)=\chi(X)-\chi(Y)$ , we obtain the conclusion. Q.E.D.
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Normally, Proposition 3.2 would not yield strong conclusions. However,
in our case all of the arrangements are nondegenerate at $\infty$ . We recall by
proposition 1.9 and the discussion following that $X$ is homeomorphic to
the Milnor fiber of an ICIS of dimension $r$ , and $A$ is homeomorphic to the
singular Milnor fiber for a nonlinear section of a (nonisolated) complete
intersection. Then, $(X, A)$ is a relative $CW$-complex of dimension $r$ , and
$X$ and $A$ are homotopy equivalent to bouquets of spheres of dimensions
$r$ , respectively $r-1$ . Hence, by (1.11)

$\chi(X, A)$ $=$ $(-1)^{r}dim$ $Hr(X, A)$

(3.4) $=$ $(-1)^{r}(dimH_{r}(X)+dimH_{r-1}(A))$

$=$ $(-1)^{r}(\mu(X_{0})+\mu(A_{0}))$

(here $\mu(X_{0})$ and $\mu(A_{0})$ denote the (singular) Milnor numbers of the
(singular) Milnor fibers).

Thus, nonlinear deletion-restriction (3.2) takes the form

(3.5) $dimH_{r}(X, A)=dimH_{r}(X, A’)+dimH_{r-1}(H’, A’’)$

Our next goal is to find a formula for $dimH_{r}(X, A)$ which satisfies (3.5).

Remark. Even if we only wanted a formula for the number of
bounding cycles for a nonlinear arrangement in $\mathbb{C}^{n}$ , we see that deletion-
restriction leads us to consider via (3.5) the relative number of bounding
cycles of $A’’$ on the nonlinear hypersurface $H’$ . Hence, it is really neces-
sary to establish a general result of the form we obtain.

\S 4. Functional Equations for the Number of Bounding Cycles

The formula for the number of relative bounding cycles is a formula
for $H^{r}(X, A)$ which must satisfy nonlinear deletion-restriction in the
form (3.5). At this point we restrict to the case where all of the coordi-
nate functions of $\Phi$ are homogeneous of the same degree $q$ so that $A$ is
a nonlinear arrangement of q-tic hypersurfaces, as will be any nonlin-
ear arrangement obtained by deletion or restriction. In the special case
when $A$ consists of a single hyperplane $H$ , we also have $A$ is the Milnor
fiber of the homogeneous ICIS $\mathcal{X}\cap\Phi^{-1}(H)\cap \mathbb{C}^{n}$ which has multide-
gree $d=(d_{1}, \ldots, d_{n-r}, q)$ . Thus, as in (3.4) $dimH_{r}(X, A)$ is the sum
of two Milnor numbers of homogeneous ICIS, and hence is given by the
formulas of Greuel-Hamm [GH] and Giusti [Gi] which only involve the
multidegree. We denote these formulas for Milnor numbers by $\mu(d)$ and
$\mu(d, q)$ .
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Also, in the case when $A$ is a free arrangement and $\Phi$ is homoge-
neous, we may apply the formula for the singular Milnor number $\mu(A)$

in [Dl, Thm 2] together with the formula from [DM, Thm 5], together
with proposition 2.3 of [D4] to conclude that for $A$ fixed, $\mu(A)$ only de-
pends on the multidegree $d=(d_{1}, \ldots, d_{n-r})$ , and the degree $q$ . Thus,
we seek a formula for $dimH_{r}(X, A)$ in the form $p(d, q, A)$ which satisfies
the equation (3.5) so that when $A$ is a single hyperplane, it becomes the
sum of the Milnor numbers for the pair of ICIS $(X, A)$ . These equations
become the following functional equations.

(4.1) Functional Equations for a Nonlinear Deletion-Restriction Triple:

$(H\subset A, A’, A’’)$

(1)

$p(d, q, A)=p(d, q, A’)+p((d, q),$ $q$ , $A’’)$

(2)

$p(d, q, \{H\})=\mu(d)+\mu(d, q)$

Remark. To reduce excessive notation, it will be understood in
the functional equations (4.1) that the ambient space for the nonlinear
arrangements is $\mathbb{C}^{n}$ .

Proposition 4.2. Suppose $p(d, q, A)$ satisfies the functional equa-
tions (4.1) for all deletion-restriction triples $(H\subset A, A’, A’’)$ . If $X$ is
a homogeneous hypersurface of multidegree $d$ , smooth including $\infty$ and
$A\subset X$ is a nonlinear arrangement of smooth q-tic hypersurface non-
degenerate at $\infty$ , then

$dimH_{r}(X, A)=p(d, q, A)$

Proof This is proven by induction on the number $|A|$ of hyper-
planes in $A$ . For one hyperplane, it follows by (4.1-2). Then, by the
induction hypothesis, if it holds for arrangements $A’$ with $|A’|<m$ and
$|A|=m$ , then by (4.1-1) and (3.5) we obtain the result for $A$ . Q.E.D.

\S 5. Formula for the Number of Relative Bounding Cycles

To find a candidate for $p(d, q, A)$ , we examine special cases obtained
in [D2] for the case that $A$ is a free arrangement. The special cases com-
pute the singular Milnor number of central nonlinear arrangements based
on free arrangements. The (relative) singular Milnor number computes
the the number of (relative) bounding cycles for the associated affine
nonlinear arrangement.
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First for hyperplane arrangements, we recall ([Dl, \S 5] or [D3, \S 7])
that if $\Phi$ : $\mathbb{C}^{n+1}\rightarrow \mathbb{C}^{p}$ and $\Phi|(\mathbb{C}^{n}\times\{0\})$ are linear embeddings transverse
to $A$ off 0, then $\tilde{A}=\Phi^{-1}(A)$ is called an almost free arrangement and
$A=\tilde{A}\cap(\mathbb{C}^{n}\times\{1\})$ is called an almost free affine arrangement (based
on $A$). We also refer to $A$ as being A-generic. For example, if $A$ is a
Boolean arrangement, then an affine $A$-generic arrangement is a general
position arrangement.

The almost free affine arrangement $A$ is the singular Milnor fiber of a
generic hyperplane section of the almost free arrangement $\tilde{A}=\Phi^{-1}(A)$ .

The singular Milnor number $\mu(\tilde{A})$ also gives the higher multiplicity
$\mu_{n}(A)$ [Dl, 4,5]. Also, for an almost free arrangement $A$ based on $A$ ,
$\mu_{k}(A)=\sigma_{k}(\exp’(A))$ where $\exp’(A)=(e_{1}, \ldots, e_{p-1})$ and $\sigma_{k}(x)$ denotes
the $k$-th elementary symmetric function in $x=(x_{1}, \ldots, x_{p-1})$ .

Notation. In the formulas that follow, in addition to the ele-
mentary symmetric functions $\sigma_{k}(x)$ , we shall also need the collection
of related functions $s_{k}(x)$ . Here $s_{k}(x)$ is defined to be the polynomial

defined as the sum of all monomials of degree $k$ in $x$ (here $s_{0}(x)d=1ef$ ).
These functions naturally complement the elementary symmetric func-
tions, have analogous expansions as well as other properties listed in
[D4, 2.]. In using these functions we will have occasion to evaluate
$\sigma_{k}(x)$ where $x_{j}=a$ for say the last $\ell$ values of $j$ . We indicate this by
$\sigma_{k}(x_{1}, \ldots, x_{p-}\ell, a^{\ell})$ . We may do this for several different $a_{i}$ , and as well
for the functions $s_{k}$ .

Two special cases of the general formula we seek are given by the
following.

Proposition 5.1 ([Dl, prop. 6.12]). Let $A$ be an $A$ -generic affine
nonlinear arrangement of hypersurfaces each of degree $q$ (with A free).
Then,

(5.2) the number of bounding cycles of $A=\sigma_{n}((q-1)^{n}, qe_{1}, \ldots, qe_{p-1})$

(where again $\exp’(A)=(e_{1},$
$\ldots$ , $e_{p-1})$ ).

In [D1], we used a special form of nonlinear arrangement $A=X\cap A’$

where $X$ is the transverse to the nonlinear arrangement $A’$ including
points at $\infty$ (see also [D2, def. 2.6]).

Proposition 5.3 ([Dl, Theorem 8.19]). Suppose that $A’$ is an $A-$

generic affine hyperplane arrangement with A free. Let $A=X\cap A’$ where
$X$ is smooth of multidegree $d$ including $\infty$ and transverse to $A’$ including
$\infty$ . Then
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(5.4) the number of relative bounding cycles of $(X, A)$

$=d\cdot(\sum_{j=0}^{r}s_{j}(d-1)\mu_{r-j}(A))$

where $d=\prod_{i=1}^{n-r}d_{i}$ and $d-1=(d_{1}-1, \ldots, d_{n-r}-1)$ .

Comparing these two results we first notice that (5.4) is given in
terms of the multidegree $d$ and the higher multiplicities $\mu_{j}(A)$ , while
that (5.2) is not. Second, in the special case of a smooth hypersurface
$X$ , (5.4) can be reexpressed as follows.

Corollary 5.5. Suppose $A’$ is an $A$ -generic affine arrangement
(with A free), and that $X$ is an $r-$dimensional smooth hypersurface of
degree $d+1$ which is smooth and transverse to $A’$ including $\infty$ . Then,

for $A=X\cap A’$

(5.6) the number of relative bounding cycles of $(X, A)=d^{n}\cdot P(A, d^{-1})$

Remark. It follows from results of Orlik-Terao [OT2] that when
$X$ is a homogeneous hypersurface, the relative Euler characteristic equals
the RHS of (5.6) for arbitrary arrangements $A$ . This suggests that
Proposition 5.3 should hold without the condition on $A$ . To compare
(5.2) and (5.4) we first restate (5.2) in a form involving the higher mul-
tiplicities as follows.

Proposition 5.7. Let $A$ be an $A$-generic affine nonlinear arrange-
ment of hypersurfaces each of degree $q$ (with A free). Then,

(5.8) the number of bounding cycles of $A$

$=\sum_{j=0}^{n}$
$\left(\begin{array}{l}n\\j\end{array}\right)$ $(q-1)^{j}q^{n-j}\mu_{n-j}(A)$

Proof. Using properties of elementary symmetric functions, we ex-
pand

(5.9) $\sigma_{n}((q-1)^{n}, qe_{1}, \ldots, qe_{p-1})$

$=\sum_{j=0}^{n}\sigma_{j}((q-1)^{n})\sigma_{n-j}(qe_{1}, \ldots, qe_{p-1})$

Also,

(5.10) $\sigma_{j}((q-1)^{n})=(q-1)^{j}\sigma_{j}(1^{n})=(q-1)^{j}$ $\left(\begin{array}{l}n\\j\end{array}\right)$

Similarly,
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(5.11) $\sigma_{n-j}(qe_{1}, \ldots, qe_{p-1})=q^{n-j}\sigma_{n-j}(e_{1}, \ldots, e_{p-1})=q^{n-j}\mu_{n-j}(A)$

Here the last equality follows from (2.1-4) as $A$ is a free arrangement.
Substituting (5.10) and (5.11) into (5.9) gives the result. Q.E.D.

The formulas in Proposition 5.3 and 5.8 show a greater resemblance if
we observe that by properties of the functions $s_{j}$ (see [Dl, 2]),

$\left(\begin{array}{l}n\\j\end{array}\right)$ $(q-1)^{j}=s_{j}((q-1)^{n-j-1})$

so that (5.8) can be written

(5.12) $\sum_{j=0}^{n}s_{j}((q-1)^{n-j-1})q^{n-j}\mu_{n-j}(A’)$

Then, the form of (5.4) and (5.12) suggest the following candidate
as a general formula.

(5.13) $p(d, q, A)=d$ . $(\sum_{j=0}^{r}s_{j}(d-1, (q-1)^{r-j+1})\cdot q^{r-j}\mu_{r-j}(A))$

where $d=\prod_{\dot{\iota}=1}^{n-r}d_{i}$ and $d-1=(d_{1}-1, \ldots, d_{n-r}-1)$ .

We shall show that this is correct.

Theorem 1. Suppose $X\subset \mathbb{C}^{n}$ is an $r-$dimensional complete in-
tersection of multidegree $d$ , which is smooth including $\infty$ . Let $A\subset X$ be
a nonlinear arrangement of smooth q-tic hypersurfaces based on central
arrangement $A$ and nondegenerate at $\infty$ . Then,

the number of relative bounding cycles of $(X, A)$

$=p(d, q, A)$ given by (5.13)

Because (5.4) and (5.8) are special cases of this result, we obtain as
a corollary.

Corollary 2. In the special cases of propositions 5.3 or 5.7, except
that we allow $A\subset \mathbb{C}^{n}$ to be a nonlinear arrangement based on any central
arrangement $A$ , then the number of bounding cycles of $A$ , respectively the
number relative bounding cycles of $(X, A)$ , is given by (5.8), respectively
(5.4).

Also, because the number of relative bounding cycles is also a rela-
tive singular Milnor number, we can also deduce as a corollary both the
singular Milnor number and higher multiplicities.
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Corollary 3. Let $X_{0}$ be a homogeneous $r$ -dimensional ICIS of
multidegree $d$ . Also, let $A_{0}=\Phi^{\prime-1}(A)\subset X_{0}$ be a nonlinear central ar-
rangement consisting of hypersurfaces of degree $q$ , where $\Phi’$ : $X_{0}\rightarrow \mathbb{C}^{p}$

is transverse to $A$ off 0. Then,

(1)

the singular Milnor number $\mu(A_{0})=p(d, q, A)-\mu(X_{0})$

(2) Likewise, the $k$ -th higher multiplicity is given by

$\mu_{k}(A_{0})=p((d, 1^{n-k}),$
$q$ , $A)-\mu_{k}(X_{0})$

Example 5.14. We return to the examples (1.2) and (1.3) of non-
linear arrangements of quadrics $A\subset \mathbb{C}^{2}$ based on a central arrangement
$A$ . By Corollary 2,

(5.15) number of bounding cycles of $A$ $=$ $1+4(\mu_{1}(A)+\mu_{2}(A))$

$=$ $1+4b_{2}(A)$

where $b_{2}(A)$ denotes the second Betti number of $M(A)$ . For $A$ the
Boolean arrangement $A_{p}\subset \mathbb{C}^{p}$ , $\mu_{k}(A_{p})=$ $\left(\begin{array}{l}p-1\\k\end{array}\right)$ where $\left(\begin{array}{l}p-1\\k\end{array}\right)$ $=0$ if
$k>p-1$ . After simplifying (5.15), we obtain for general position
arrangements of $p$ quadrics in general position in $\mathbb{C}^{2},1+4\left(\begin{array}{l}p\\2\end{array}\right)$ bounding
cycles. This yields the numbers 1, 5, and 13 for the first three cases in
Fig. 1 (providing an alternate formula to Corollary 5.1).

For example (1.3), we have by (4) of proposition 2.1, for the braid
arrangement $B_{p}\subset \mathbb{C}^{p}$ , $\mu_{k}(B_{p})=\sigma_{k}(2, \ldots,p -1)$ . So for a nonlinear
braid arrangement in example (1.3), we have by (5.15) the number of
bounding cycles equals $1+4(\left(\begin{array}{l}3\\2\end{array}\right))=9$ .

Example 5.16. Second, consider as in example (1.5) a nonlinear
hyperplane braid arrangement $A$ on the hypersurface $X$ of degree $d$ in
$\mathbb{C}^{n}$ . By Corollary 2 and Proposition 5.3, the number of relative bounding
cycles equals

(5.17) $d((d-1)^{n-1}+(d-1)^{n-2}\cdot\sigma_{1}(2, \ldots, n-1)+\cdots+$

$(d-1)\cdot\sigma_{n-2}(2, \ldots, n-1)+\sigma_{n-1}(2, \ldots, n-1)$

For example, on $\mathbb{C}^{3}$ when $d=2$ , we obtain $2(1^{2}+1\cdot 2+0)=6$ relative
bounding cycles as shown in Fig. 4.
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\S 6. Proof of the General Formula

We note that Theorem 1 is an immediate consequence of Proposi-
tion 4.2, provided we can show that $p(d, q, A)$ satisfies the functional
equations (4. 1).

For the first functional equation, we may write
$p(d, q, A’)+p((d, q),$ $q$ , $A’’)$ as

(6.1) $d\cdot(\sum_{j=0}^{r}s_{j}(d-1, (q-1)^{r-j+1})\cdot q^{r-j}\mu_{r-j}(A’))$

$+d$ . $q\cdot(\sum_{j=0}^{r-1}s_{j}((d, q)-1,$ $(q-1)^{r-1-j+1})\cdot q^{r-1-j}\mu_{r-1-j}(A’’))$

The first sum can be written

(6.2) $d\cdot s_{r}(d-1, q-1)\mu_{0}(A’)$

$+d$ . $(\sum_{j=0}^{r-1}s_{j}(d-1, (q-1)^{r-j+1})\cdot q^{r-j}\mu_{r-j}(A’))$

In the second sum, we see

(6.3) $s_{j}((d, q)-1,$ $(q-1)^{r-1-j+1})=s_{j}(d-1, (q-1)^{r-j+1})$

Using (6.3) and taking the factor $q$ inside, the second sum becomes

(6.4) $d\cdot(\sum_{j=0}^{r-1}s_{j}(d-1, (q-1)^{r-j+1})\cdot q^{r-j}\mu_{r-1-j}(A’’))$

Thus, if we add (6.2) to (6.4) we obtain

(6.5) $d\cdot s_{r}(d-1, q-1)\mu_{0}(A’)$

$+d$ . $(\sum_{j=0}^{r-1}s_{j}(d-1, (q-1)^{r-j+1})\cdot q^{r-j}(\mu_{r-j}(A’)+\mu_{r-1-j}(A’’)))$

Then, $\mu_{0}(A’)=1=\mu_{0}(A))$ and by (2) of Proposition 2.1,

$\mu_{r-j}(A)=\mu_{r-j}(A’)+\mu_{r-1-j}(A’’)$

Hence, (6.5) becomes

$d$ . $(\sum_{j=0}^{r}s_{j}(d-1, (q-1)^{r-j+1})q^{r-j}\mu_{r-j}(A))=p(d, q, A)$
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this establishes the first functional equation.
For the second equation, we use the formulas of Greuel-Hamm [GH]

and Giusti [Gi] for the Milnor number of a homogeneous ICIS. If it has
multidegree $d=(d_{1}, \ldots, d_{n-r})$ . We write it in an equivalent form as in
the remark following Theorem 8.10 in [D2]

(6.6) $\mu(d)=(-1)^{r+1}+d\cdot\sum_{j=0}^{r}\sigma_{r-j}((-1)^{n})s_{j}(d)$

where again $d=\prod_{i=1}^{n-r}d_{i}$ and $\sigma_{k}((-1)^{n})=\sigma_{k}(-1, \ldots, -1)$ with $n$ fac-
tors -1. Now, we may apply the $\tau$ function in [D3] and write the sum
in (6.6) as $\tau(D)$ where $D$ is the $r\times(n-r+1)$ matrix

$D=\left(\begin{array}{lllllll}d_{1} & -1 & d_{2}-1 & \cdots & d_{n-r} & -1 & -1\\d_{1} & -1 & d_{2}-1 & \cdots & d_{n-r} & -1 & -1\\ & \vdots & \vdots & \ddots & \vdots & & \vdots\\ & d_{1}-1 & d_{2}-1 & \cdots & d_{n-r} & -1 & -1\end{array}\right)$

Then, by the definition of $s_{r}$ in [D3, \S 2],

$\tau(D)$ $=$ $s_{r}(d_{1}-1, d_{2}-1, \ldots, d_{n-r}-1, -1)$

(6.7)
$=$ $s_{r}(d-1, -1)$

Then, we let $d_{n-r+1}=q$ , and $d’=(d_{1}, \ldots, d_{n-r}, d_{n-r+1})$ . Using (6.7)

$\mu(d)+\mu((d, q))=(-1)^{r+1}+d\cdot s_{r}(d-1, -1)$

(6.8)
$+(-1)^{r-1+1}+d\cdot d_{n-r+1}\cdot s_{r-1}(d’-1, -1)$

Then, (6.8) equals

(6.9) $d\cdot(s_{r}(d-1, -1)+d_{n-r+1}\cdot s_{r-1}(d’-1, -1))$

We may rewrite the second term of (6.9)

$d_{n-r+1}\cdot s_{r-1}(d’-1, -1)=(d_{n-r+1}-1)\cdot s_{r-1}(d’-1, -1)$

(6.10)
$+s_{r-1}(d’-1, -1)$

Also, by the “Generalized Pascal Relation”for $s_{j}$ (see [D3, \S 2])

$(6.11)s_{r}(d’-1, -1)=s_{r}(d-1, -1)+(d_{n-r+1}-1)\cdot s_{r-1}(d’-1, -1)$

Thus, we may apply (6.10) and (6.11) to rewrite (6.9) as

(6.12) $d\cdot(s_{r}(d’-1, -1)+s_{r-1}(d’-1, -1))$
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We may apply the expansion property of the $s_{j}$ functions (again see [D3,

\S 2]) to obtain

(6.13) $s_{r}(d’-1, -1)=s_{r}(d’-1)+(-1)s_{r-1}(d’-1, -1)$

Thus, substituting (6.13) into (6.12), we obtain for (6.9)

$d\cdot s_{r}(d’-1)$ $=$ $d\cdot s_{r}(d-1, d_{n-r+1}-1)$

$=$ $d\cdot s_{r}(d-1, q-1)=p(d, q, \{H\})$

The last equation results from $\mu_{j}(\{H\})=0$ for all $j>0$ .

This completes the proof of the theorem.
Corollary 2 is an immediate consequence of Theorem 1. For Corol-

lary 3, we need only observe that the relative singular Milnor number

$\mu(X_{0}, A_{0})=\mu(X_{0})+\mu(A_{0})$

is exactly the number of relative bounding cycles, which by (5.13) yields
the formula for the singular Milnor number.

Also, for the $k$-th higher multiplicities we also have for a generic
$k$-plane $\Pi$

(6.10) $\mu(\Pi\cap X_{0}, \Pi\cap A_{0})=\mu(\Pi\cap X_{0})+\mu(\square \cap A_{0})$

while

(6.11) $\mu_{k}(X_{0})=\mu(\square \cap X_{0})$ and $\mu_{k}(A_{0})=\mu(\square \cap A_{0})$

Thus, combining (6.10) and (6.11) with the result for the singular Milnor
fiber gives the result for higher multiplicities.
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Embedding the graphs of regular tilings and
star-honeycombs into the graphs of hypercubes and

cubic lattices*

Michel Deza and Mikhail Shtogrin

Abstract.

We review the regular tilings of $d$-sphere, Euclidean $d$-space, hy-
perbolic $d$-space and Coxeter’s regular hyperbolic honeycombs (with
infinite or star-shaped cells or vertex figures) with respect of possible
embedding, isometric up to a scale, of their skeletons into a $m$-cube
or $m$-dimensional cubic lattice. In section 2 the last remaining 2-
dimensional case is decided: for any odd $m\geq 7$ , star-honeycombs
$\{m, m/2\}$ are embeddable while $\{m/2, m\}$ are not (unique case of
non-embedding for dimension 2). As a spherical analogue of those
honeycombs, we enumerate, in section 3, 36 Riemann surfaces rep-
resenting all nine regular polyhedra on the sphere. In section 4,

non-embeddability of all remaining star-honeycombs (on 3-sphere and
hyperbolic 4-space) is proved. In the last section 5, all cases of em-
bedding for dimension $d>2$ are identified. Besides hyper-simplices
and hyper-octahedra, they are exactly those with bipartite skeleton:
hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-,
5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact
both, facets and vertex figures).

\S 1. Introduction

We say that given tiling (or honeycomb) $T$ has a $l_{1}$ -graph and embeds
up to scale $\lambda$ into $m$-cube $H_{m}$ (or, if the graph is infinite, into cubic
lattice $Z_{m}$ ), if there exists a mapping $f$ of the vertex-set of the skeleton
graph of $T$ into the vertex-set of $H_{m}$ (or $Z_{m}$ ) such that

$\lambda d_{T}(v_{i}, v_{j})=||f(v_{i})$ , $f(v_{j})||_{l_{1}}$

$=\sum_{1\leq k\leq m}|f_{k}(v_{i})-f_{k}(v_{j})|$
for all vertices $v_{i}$ , $v_{j}$ ,

*This work was supported by the Volkswagen-Stiftung (RiP-program at
Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166).
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where $d_{T}$ denotes the graph-theoretical distance in contrast to the nor-
med-space distance $l_{1}$ . The smallest such number $\lambda$ is called minimal
scale.

Denote by $T\rightarrow H_{m}$ (by $T\rightarrow Z_{m}$ ) isometric embedding of the
skeleton graph of $T$ into $m$-cube (respectively, into $m$-dimensional cubic
lattice); denote by $T\rightarrow(1/2)H_{m}$ and by $T\rightarrow(1/2)Z_{m}$ isometric up to
scale 2 embedding.

Call an embeddable tiling $l_{1}$ -rigid, if all its embeddings as above are
pairwise equivalent. All, except hyper-simplexes and hyper-octahedra
(see Remark 4 below), embeddable tilings in this paper turn out to
be $l_{1}$ -rigid and so, by a result from [Shp93], having scale 1 or (only

for non-bipartite planar tilings) 2. Those embeddings were obtained
by constructing a complete system of alternated zones; see [CDG97],
[DSt96], [DSt97].

Actually, a tiling is a special case of a honeycomb, but we reserve the
last term for the case when the cell or the vertex figure is a star-polytope
and so the honeycomb covers the space several times; the multiplicity of
the covering is called its density.

Embedding of Platonic solids was remarked in [Ke175] and pre-
cised, for the dodecahedron, in [ADe80]. Then [Ass81] showed that
{3, 6}, {6, 3}, and $\{m, k\}$ (for even $m\geq 8$ and $ m=\infty$ ) are embeddable.
The remaining case of odd $m$ and limit cases of $m=2$ , $\infty$ was decided
in [DSt96]; all those results are put together in the Theorem 1 below.

All four star-polyhedra are embeddable. The great icosahedron
{3, 5/2} of Poinsot and the great stellated dodecahedron {5/2, 3} of
Kepler have the skeleton (and, moreover, the surface) of, respectively,
icosahedron and dodecahedron; each of them has density 7. All ten
star-4-po1ytopes are not embeddable: see the Theorem 3 below.

The case of Archimedean tilings of 2-sphere and of Euclidean plane
was decided in [DSt96]; it turns out that for any such tilings (except
$Prism_{3}$ and its dual, both embeddable) exactly one of two (a tiling
and its dual) is embeddable. For 3-sphere and 3-space it was done
in $[DSt98b]$ ; for example, Gosset’s semiregular 4-polytope snub 24-cell
turns out to be embeddable into half-12-cube. All 92 regular-faced
3-polytopes were considered in $[DGr97b]$ and, for all higher dimen-
sions, in [DSt96]. The truncations of regular polytopes were consid-
ered in [DSt97]. Another large generalization of Platonic solids -bi-

faced polyhedra - were considered in $[DGr97b]$ . (Some generalizations
of Archimedean plane tilings, 2-uniform ones and equi-transitive ones,
were treated in [DSt96], [DSt97], respectively.) Finally, skeletons of (De-
launay and Voronoi tilings of) lattices were dealt with in $[DSt98a]$ .
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Embeddable ones, among all regular tilings of all dimensions, having
compact facets and vertex fugures, were identified in [DSt96], [DSt97].

Coxeter (see [Cox54]) extended the concept of regular tiling, permit-
ting infinite cells and vertex figures, but with the fundamental region of
the symmetry group of a finite content. His second extension was to per-
mit honeycombs, i.e. star-polytopes can be cells or vertex figures. For
the 2-dimensional case, on which we are focusing in the next Section,
above extensions produced only following new honeycombs $-\{m/2, m\}$

and $\{m, m/2\}$ for any odd $m\geq 7-$ which are hyperbolic analogue of
spherical star-polyhedra {5/2, 5} (the small stellated dodecahedron of
Kepler) and {5, 5/2} (the great dodecahedron of Poinsot). Both {5/2, 5}
and {5, 5/2} have the skeleton of the icosahedron. For any odd $m$ above
honeycombs cover the space (2-sphere for $m=5$ ) $3$ times. The skeleton
of $\{m, m/2\}$ is, evidently, the same as of $\{3, m\}$ , because it can be seen
as $\{3, m\}$ with the same vertices and edges forming $m$-gons instead of
triangles. The faces of $\{m/2, m\}$ are stellated faces of $\{m, 3\}$ and it have
the same vertices as $\{3, m\}$ .

We adopt here classical definition of the regularity: the transitiv-
ity of the group of symmetry on all faces of each dimension. But, as
remarked the referee, the modern concept of regularity, which requires
transitivity on flags, would not necessitate any change in the results.

The following 5-gonal inequality (see [Dez60]):
$d_{ab}+(d_{xy}+d_{xz}+d_{yz})\leq(d_{ax}+d_{ay}+d_{az})+(d_{bx}+d_{by}+d_{bz})$

for distances between any five vertices $a$ , $b$ , $c$ , $x$ , $y$ , is an important
necessary condition for embedding of graphs, which will be used in proofs
of Theorems 3,4 below.

This paper is a continuation of general study of $l_{1}$ -graphs and $l_{1^{-}}$

metrics, surveyed in the book [DLa97], where many applications and
connections of this topic are given. In addition, we tried here to extract
from purely geometric, affine structures, considered below, their new,
purely combinatorial (in terms of metrics of their graphs) properties.

\S 2. Planar tilings and hyperbolic honeycombs

They are presented in the Table 1 below; we use the following nota-
tion:

1. The row indicates the facet (cell) of the tiling (or honeycomb),
the column indicates its vertex figure. The tilings and honeycombs are
denoted usually by their Schl\"afli notation, but in the Tables 1, 3-5 below
we omit the brackets and commas for convenience (in order to fit into
page).

2. By $m$ we denote m-gon, by $m/2$ star-m-gon (if $m$ is odd). By $\alpha_{3}$ ,
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$\beta_{3}$ , $\gamma_{3}$ , Ico, Do and $\delta_{2}$ we denote regular ones tetrahedron {3, 3}, octa-
hedron {3, 4}, cube {4, 3}, icosahedron {3, 5}, dodecahedron {5, 3} and
the square lattice $Z_{2}=\{4,4\}$ . The numbers are: any $m\geq 7$ in 8th
column, row and any odd $m\geq 7$ in 9th column, row.

3. We consider that: $\{2, m\}$ is a 2-vertex multi-graph with $m$ edges;
$\{m, 2\}$ can be seen as a m-gon; all vertices of $\{m, \infty\}$ are on the absolute
conic at infinity (it has an infinite degree); the faces $\infty$ of $\{\infty, m\}$ are
inscribed in horocycles (circles centered in $\infty$ ).

Table 1. 2-dimensional regular tilings and honeycombs.

Theorem 1. All 2-dimensional tilings $\{m, k\}$ are embeddable,
namely:

(i) if $1/m+1/k>1/2$ (2-sphere), then
$\{2, m\}\rightarrow H_{1}$ for any $m$ , $\{m, 2\}\rightarrow(1/2)H_{m}$ for odd $m$ and $\{m, 2\}\rightarrow$

$H_{m/2}$ for even $m$ ;
$\{3, 3\}=\alpha_{3}\rightarrow(1/2)H_{3}$ , $(1/2)H_{4}$ ; $\{4, 3\}=\gamma_{3}\rightarrow H_{3}$ ; $\{3, 4\}=\beta_{3}\rightarrow$

$(1/2)H_{4;}$

$\{3, 5\}=Ico(\sim\{3,5/2\}\sim\{5,5/2\}\sim\{5/2,5\})\rightarrow(1/2)H_{6}$ and
$\{5, 3\}=Do(\sim\{5/2,3\})\rightarrow(1/2)H_{10}$ ;

(ii) if $1/m+1/k=1/2$ (Euclidean plane), then
$\{2, \infty\}\rightarrow H_{1}$ , $\{\infty, 2\}\rightarrow Z_{1}$ ; $\{4, 4\}=\delta_{2}\rightarrow Z_{2}$ , $\{3, 6\}\rightarrow(1/2)Z_{3}$ ,

$\{6, 3\}\rightarrow Z_{3;}$

(iii) if $1/2>1/m+1/k$ (hyperbolic plane), then
$\{m, k\}\rightarrow(1/2)Z_{\infty}$ if $m$ is odd, $ k\leq\infty$ and $\{m, k\}\rightarrow Z_{\infty}$ is $m$ is

even or $\infty$ , $ k\leq\infty$ .

Remark 1 (notation and terms here are from [Cox37], [Cro97]).
(i) The embedding of the icosahedron {3, 5} into $(1/2)H_{6}$ was men-
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tioned in [Cox50] on pages 450-451, as regular skew icosahedron. There
are 5 proper regular-faced fragments of {3, 5}: 5-pyramid, 5-antiprism,
para-bidiminished {3, 5}, meta-bidiminished {3, 5}, and tridiminished
{3, 5}; 5-pyramid embeds into $(1/2)H_{5}$ , all others into $(1/2)H_{6}$ .

(ii) The antipodal quotients of (embeddable, see Theorem 1 (i)
above) cube, icosahedron, dodecahedron are regular maps $\{4, 3\}_{3}$ , $\{3, 5\}_{5}$ ,
$\{5, 3\}_{5}$ on the projective plane, which are $K_{4}$ , $K_{6}$ , the Petersen graph;
they embed into $(1/2)H_{m}$ for $m=4,6,6$ , respectively.

(iii) Besides {4, 4}, {3, 6}, {6, 3} (embeddable, see Theorem 1 (ii)
above), there are exactly three other infinite regular polyhedra. They
are regular skew polyhedra $\{4, 6|4\}$ , $\{6, 4|4\}$ , $\{6, 6|3\}$ , which can be ob-
tained by deleting of cells from the tilings of 3-space by cubes $(Z_{3})$ ,

by truncated octahedra (the Voronoi tiling for the lattice $A_{3}^{*}$ ), by reg-
ular tetrahedra and truncated tetrahedra (F\"oppl uniform tiling). They
are, respectively: embeddable into $Z_{3}$ , embeddable into $Z_{6}$ , not 5-gonal.
All finite regular skew 4-polytopes are: the family $\{4, 4|m\}$ of self-dual
quadringulations of the torus (it is the product of two $m$-cycles and
so embeddable into $(1/2)H_{2m}$ for odd $m$ or into $H_{m}$ for even $m$ ), not
5-gonal $\{6, 4|3\}$ , $\{4, 6|3\}$ , $\{8, 4|3\}$ and its undecided dual $\{4, 8|3\}$ .

(iv) Examples of other interesting regular maps are the Dyck map
$\{3, 8\}_{6}$ (8-valent map with 12 vertices and 32 triangular faces), the Klein
map $\{3, 7\}_{8}$ (7-valent map with 24 vertices and 56 triangular faces) and
$\{4, 5\}_{5}$ (5-valent map with 16 vertices and 20 quadrangular faces). Those
maps (all of oriented genus 3) come from the hyperbolic tilings {3, 8},
{3, 7}, {5, 4}, respectively (which are embeddable; see Theorem 1 (iii)
above) by identification of some vertices of the unit cell. Those three
maps and their duals are all not 5-gonal. But, for example, the 3-valent
partition of the torus into 4 hexagons is embeddable: it is the cube on
the torus.

Remark 2 (notation and terms here are from [Cox73], [Wen71]
and [Cro97] $)$ . With V.P. Grishukhin we considered embeddability of
following non-convex polyhedra:

(i) All non-Platonic facetings of Platonic solids (see [Cox73], page
100) are: 4 star-polyhedra {5/2, 5}, {5, 5/2}, {5/2, 3}, {3, 5/2} and 4
regular compounds $2\alpha_{3}$ (Kepler’s stella octangula), $5\gamma_{3},5\alpha_{3},10\alpha_{3}$ . The
remaining regular compound is $5\beta_{3}$ , which is dual to $5\gamma_{3}$ . In this Remark
only, contrary to Theorem 1 (i), we consider all visible “vertices” of poly-
hedra, not only those of their shells. Then it turns out, that {5/2, 5},
{5, 5/2}, {5/2, 3}, {3, 5/2}, $2\alpha_{3},5\beta_{3}$ have the same skeletons as dual
truncated, respectively, {3, 5}, {5, 3}, {5, 3}, truncated {3, 5}, $\gamma_{3}$ , icosi-
dodecahedron. $5\alpha_{3}$ has the same skeleton as dual snub dodecahedron.
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Among all 4 star-polyhedra, 5 regular compounds and their 9 duals, all
embeddable ones are:

$\{5/2, 5\}\rightarrow(1/2)H_{10}$ , {5, 5/2} $(\sim\{5/2,3\})\rightarrow(1/2)H_{26}$ , {3, 5/2}\rightarrow
$(1/2)H_{70},2\alpha_{3}\rightarrow(1/2)H_{12}$ , dual $5\beta_{3}(\sim 5\gamma_{3})\rightarrow H_{15}$ , dual $ 5\alpha_{3}\rightarrow$

$(1/2)H_{15}$ .

(ii) Among 8 stellations $A-H$ of {3, 5} (the main sequence, see
[Cro97], page 272), all embeddable ones are $A=\{3,5\}$ , $B\sim\{5,5/2\}$

and $G\sim H\sim\{3,5/2\}$ . Also the dual of the stellation $De_{2}f_{2}$ of {3, 5}
has the same skeleton as the rhombicosidodecahedron and it embeds
into $(1/2)H_{16}$ . The stellations $De_{1}\sim Fg_{2}\sim C=5\alpha_{3}$ and $Fg_{1}$ , $De_{2}f_{2}$

are not embeddable.
(iii) Among the compounds of two dual Platonic solids and dual

compounds, all embeddable ones are $2\alpha_{3}$ and, into $(1/2)H_{28}$ , the dual of
$\{3, 5\}+\{5,3\}$ . Among all 53 non-convex non-regular uniform polyhedra
(Nos. 67-119 in [Wen71]), two are quasi-regular: the dodecadodecahe-
dron and the great icisidodecahedron (see [Cox73], page 101 and Nos.
73, 94 in [Wen71] $)$ . Again we consider all visible “vertices” and see a
pentagram 5/2 as pentacle (10-sided non-convex polygon). Then both
above polyhedra and their duals are not embeddable. But, for example,
the ditrigonal dodecahedron (No. 80 in [Wen71], a relative of No. 73)
embeds into (1/2) $H_{20}$ .

The following theorem gives the family of all non-embeddable regu-
lar planar cases.

Theorem 2. For any odd $m\geq 7$ we have
(i) $\{m/2, m\}$ is not embeddable.
(ii) $\{m, m/2\}(\sim\{3, m\})\rightarrow(1/2)Z_{\infty}$ .

The assertion (ii) is trivial. The proof of (i) will be preceded by 3
lemmas and first two of them are easy but of independent interest for
embedding of (not necessary planar) graphs. Lemma 1 can be extended
on the isometric cycles.

Let $G$ be a graph, scale $\lambda$ embeddable into $Z_{m}$ , let $C$ be an oriented
circuit of length $t$ in $G$ and let $e$ be an arc in $C$ . Then there are $\lambda$

elementary vectors, i.e. steps in the cubic lattice $Z_{m}$ , corresponding to
the arc $e$ ; denote them by $x_{1}(e)$ , $\ldots$ , $x_{\lambda(e)}$ . Clearly, the sum of all vectors
$x_{i}(e)$ by all $i$ and all arcs $e$ of the circuit, is the zero-vector.

Now, if $t$ is even, denote by $e^{*}$ the arc opposite to $e$ in the circuit
$C$ ; if $t$ is odd, denote by $e^{J}$ , $e^{\prime/}$ two arcs of $C$ opposite to $e$ . For even $t$ ,
call the arc $e$ balanced if the set of all its vectors $x_{i}(e)$ coincides with
the set of all $x_{i}(e^{*})$ , but the vectors of arc $e^{*}$ go in opposite direction on
the circuit $C$ to the vectors of $e$ . For odd $t$ , call the arc $e$ balanced if a
half of vectors of $e^{J}$ together with a half of vectors of the second opposite
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arc $e^{J\prime}$ form a partition of the set of vectors of $e$ and those vectors go in
opposite direction (on $C$ ) to those of arc $e$ .

Remind, that the girth of the graph is the length of its minimal
circuit.

Lemma 1. Let $G$ be an embeddable graph of girth $t$ . Then
(i) any arc of a circuit of length $t$ is balanced;
(ii) if $t$ is even, then any arc of a circuit of length $t+1$ is also

balanced.

Lemma 2. Let $G$ be an embeddable graph of girth $t$ and let $P$ be
an isometric oriented path of length at most $\lfloor t/2\rfloor$ in G. Then there
are no two arcs on this path having vectors, which are equal, but have
opposite directions on the path.

Lemma 3. The girth of the skeleton of $\{m/2, m\}$ is 3 for $m=5$
and $m-1$ for any odd $m\geq 7$ .

Proof of Lemma 3.
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Fig. la. A fragment of {7/2, 7}

Consider Fig. la. Take a cell $A=(a_{0}, \ldots, a_{m}=a_{0})$ of the $\{m/2, m\}$ ,

i.e. a star m-gon, seen as an oriented cycle of length $m=2k+1$ . Con-
sider following automorphism of the honeycomb: a turn by 180 degrees
around the mid-point of the segment $[a_{0}, a_{k}]$ . The image of $A$ is the ori-
ented star m-gon $B=(b_{0}, \ldots, b_{m}=b_{0})$ with $b_{0}=a_{k}$ , $b_{k}=a_{0}$ . Consider
now oriented cycle $C=(a_{0}, a_{1}, \ldots, a_{k}=b_{0}, \ldots, b_{k}=a_{0})$ of even length
$m-1=2k$ . In order to prove the Lemma 3, we will show that $C$ is a
cycle of minimal length.
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First we show that the graph distance $d(a_{0}, a_{k})=k$ , i.e. the path
$P:=(a_{0}, a_{1}, \ldots, a_{k})$ is a shortest path from $a_{0}$ to $a_{k}$ . It will imply
that $d(a_{0}, c(A))=d(a_{k}, c(A))=k$ , where $c(A)$ is the center of the cell
$A$ , because all vertices of $\{m/2, m\}$ are vertices of regular triangles of
$\{3, m\}$ .

Let $Q$ be a shortest path from $a_{0}$ to $a_{k}$ . Then it goes around the
vertex $c(A)$ or the center $c(B)$ of the cell $B$ , because otherwise $Q$ goes
through at least one of the vertices $a_{k+1}$ , $a_{2k}$ , $b_{k+1}$ , $b_{2k}$ and so $Q$ contains
at least one of the pairs of vertices $(a_{0}, a_{k+1})$ , $(a_{0}=b_{k}, b_{2k})$ , $(b_{k}=$

$a_{0}$ , $a_{2k})$ , $(a_{k}=b_{0}, b_{k+1})$ . But each of those pairs has, by the symmetry
of our honeycomb $\{m/2, m\}$ , same distance between them as $(a_{0}, a_{k})$ ;
it contradicts to the supposition that $Q$ is a shortest path. So, we can
suppose that $Q$ goes around $c(A)$ (the argument is the same if it goes
around $c(B))$ . Now, to each edge $(s, t)$ , corresponds, from the center
$c(A)$ of $A$ , the angle $(s, c(A),$ $t)$ . The $2k+1$ edges of $A$ are only edges,
for which this angle is $4k\pi/(2k+1)$ ; for any other edge, the angle is
smaller, since it is more far from $c(A)$ . So, if $Q$ contains an edge, other
than one from $A$ , then, in order to reach $a_{k}$ from $a_{0}$ , it should be of
length more than $k$ . Therefore, any shortest path from $a_{0}$ to $a_{k}$ , should
consist only of edges of $A$ and then it is of length $k$ . So, $d(a_{0}, c(A))=k$

also, as well as for any edge of $\{3, m\}$ . Same holds for $m=5$ .

We will show now that:
(i) any path $R$ of length $2k-2$ is not closed and
(ii) $R$ cannot be closed by only one edge.
But $C$ is a closed path of length $2k$ ; so (i), (ii) will imply that $2k$

(respectively, $2k+1$ ) is the minimal length of any (respectively, any odd)
simple isometric cycle in the graph. For $m=5(ii)$ does not holds.

Suppose that $R$ is closed; let as see it as a 2k-2-gon on hyperbolic
plane. Any angle of $R$ is a multiple $i(2\pi/m)$ , but $i>1$ for at least
one angle, because $(2k-2)(2\pi/m)<2\pi$ . Suppose that a angle has
$1<i\leq k$ ; the argument will be the same if $k+1\leq i<m-1$ , but for
the complementary angle $(m-i)(2\pi/m)$ with $1<m-i\leq k$ .

See Fig. $1b$ for the following argument. Fix an angle $r$ , $s$ , $t$ between
two adjacent edges $(r, s)$ and $(s, t)$ of $R$ . Let $s*be$ the opposite vertex to
$s$ on $R$ , let $(s, r^{J})$ , $(s, t’)$ be the edges such that the angles $r$ , $s$ , $r^{J}$ , $t$ , $s$ , $t^{/}$

are $2\pi/m$ . Let $A$ , $B$ be the cells $m/2$ , defined by pairs $(r, s)$ , $(s, r^{J})$ and
$(t, s)$ , $(s, t’)$ of their adjacent edges and $c(A)$ , $c(B)$ are their centers. The
vertex $c(A)$ not belongs to the path from $s$ to $s*of$ length $k-1$ , since we
proved above that $d(s, c(A)=k)$ ; so this path should go around $c(A)$ .

Let $p$ be the vertex of $A$ , reachable from $s$ by $k-1$ steps on $A$ , starting
by $r$ ; let $q$ be the vertex of $B$ , reachable from $s$ by $k-1$ steps on $B$ ,

starting by $t$ . By mirror on $(r, s)$ (respectively, ( $s$ , $t$ )) we obtain the cells
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$A’$ , $B’$ , their centers $c(A’)$ , $c(B’)$ and vertices $p’$ , $q^{/}$ , which are reflections
of $p$ , $q$ . Call $A$ -domain, the part of the hyperbolic plane, bounded by
half-lines $(c(A),p, \infty)$ , $(c(A’),p^{J}\infty)$ and the angle $(c(A), s, c(A^{J}))$ ; call
$B$-domain, the part, bounded similarly for $B$ . Actually, $B$-domain is the
reflection of $A$-domain by the bisectrisse of the angle $(r, s, t)$ .

We will show now that the vertex $s*should$ belong to both $A$ and
$B$-domains. But they do not have common points, besides $s$ . This
contradiction will show that our $R$ , a closed path of length $2k-2$ , do
not exists. Any edge of the path $(s, t, \ldots, s*)$ of length $k-1$ is seen from
$c(A)$ under angle at most $4\pi/m$ with equality if and only if this edge
belongs to $A$ (as, for example, the edge ( $r$ , $s$ )). Summing up those angles
along the path $(st, \ldots, s*)$ , we get less than $(k-1)(4\pi/m)$ , obtained for
the path of length $k-1$ from $s$ to $p$ , going along $A$ . It implies that $s*$

belongs to $A$-domain and also, by reflection, to $B$-domain.

– – – – – – – – – –

Fig. $1b$ . A fragment of {9/2, 9}

But $A$ and $B$-domains intersect only in point $s$ , because the lines
through $(c(A),p)$ and $(s, r’)$ diverge on the hyperbolic plane. In fact,
denote by $\alpha_{1}$ , $\alpha_{2}$ , $\beta_{1}$ , $\beta_{2}$ the angles $(p, c(A)$ , $s)$ , $(c(A), s, r^{J})$ , $(c(A),p, r^{/})$ ,
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$(p, r^{J}, s)$ , respectively. They are equal to $4\pi/m+2\pi/m$ , $\pi/m$ , $\pi/m+\pi/m$ ,
$2\pi/m+\pi/m$ , respectively. So $\alpha_{1}+\alpha_{2}=7\pi/m\leq\pi$ , since $m\geq 7$ and
the lines, if they converge or parallel, do it on the right side of Fig. $1b$ .

Now, $\beta_{1}+\beta_{2}=5\pi/m<\pi$ and the lines, if they converge or parallel, do
it on the left. So, they diverge.

We demonstrated $ad$ absurdum, the non-existence of the vertex $s*$

and so, of the closed path $R$ . So, a path $R$ of length $2k-2$ is not closed.
But $p$ , $q$ is never an edge; so we need at least two edges in order to
close $R$ . If two edges are enough, then points $r^{J}$ , $t^{J}$ coincide, i.e. $i=2$ ;
actually, two edges will be enough in the case $m=7$ . The proof of
Lemma 3 is completed. Q.E.D.

Proof of Theorem 2. Consider star-ra-gons $A$ , $B$ and the circuit
$C$ as in beginning of the proof of Lemma 3 above. Take the arc $e=$

$(a_{0}, a_{1})$ on the circuit $C$ ; by Lemma 1 (i), $e$ is balanced, i.e. the vectors
$x_{i}(e^{*})$ of the opposite arc $e^{*}=(b_{0}, b_{1})$ are the same, as of the arc $e$ , but
they have opposite directions with respect of the circuit $C$ . The same
arc $e$ , seen as an arc of the circuit $B$ of length $m$ , is opposite to two
arcs in this odd circuit and, in particular, to the arc $(a_{k}, a_{k+1})$ . The last
arc has, by Lemma 1 (ii), $\lambda/2$ vectors, coinciding with vectors of $e$ , but
with opposite direction on the circuit $B$ . Finally, consider the oriented
path $(a_{k+1}, a_{k}=b_{0}, b_{1})$ of length 2 in our $\{m/2, m\}$ . Its two arcs have
vectors, coinciding, but going in opposite direction on this path. But it
contradicts to Lemma 2, because $2<k$ . Q.E.D.

\S 3. Spherical analogue of Coxeter’s honeycombs

In this Section we consider, for any pair $(i, m)$ of integers, such
that $1\leq\dot{?}<m/2$ and $g.c.d.(i, m)=1$ , star-polygons $m/i$ . Clearly, $m/1$

denotes now a convex m-gon; so we see star-polygons as a generalization
of convex ones. We will allow further extension: star-polygons $m/i$ with

$m/2<i<m$ , let us call them large star-polygons. They cannot be
represented on Euclidean or hyperbolic plane, because they have there
the same representation as $m/(m-i)$ . But they can be represented on
the sphere by the following way; see Fig. 2 for the simplest 3/1 and 3/2.
Let $a_{0}$ , $\ldots$ , $a_{m-1}$ be $m$ points, placed in this order, on a great circle of
the sphere, in order to form a regular ra-gon. Then the spherical (great
circle) distance $d(a_{0}, a_{i})$ is $2\pi i/m$ , but on $m/i$ , the length of the way
is $d(a_{0}, a_{i})$ for $i<m/2$ and $2\pi-d(a_{0}, a_{i})$ otherwise. Using this larger
set of polygons, we will look for spherical representations of regular (i.e.
with a group of symmetry acting transitively on all $j$-faces, $0\leq j\leq 2$ )
polyhedra.
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Fig. $2a$ . 3/1 Fig. $2b$ . 3/2

In the Table 2 below, the rows (columns) denote a cell (respectively,
a vertex figure) of would-be representations. If the representation, cor-
responding to a given pair of $\{m/i, n/j\}$ of polygons, exists, we denote
it by this pair and write its density in corresponding cell of the Ta-
ble 2. The densities were counted directly, by superposing the repre-
sentation on corresponding regular polyhedron. But the expression of
the density, given in the formula 6.41 of [Cox73] for multiply-covered
sphere is valid for our representations, i.e. the density of $\{m/i, n/j\}$ is
$N_{1}(?./m+j/n-1/2)$ , where $N_{1}$ is the number of edges. (Above expres-
sion is equivalent to Cayley’s generalization of Euler’s Formula, given as
the formula 6.42 in [Cox73].) Our representations are Riemann surfaces,
i.e. $d$-sheeted spheres (or $d$ almost coincident, almost spherical surfaces)
with the sheets connected in certain branch-points.

We see a $m/\dot{?}$ as a representation of the $m$-cycle on the sphere,
together with a $bi$-partition of $i$-covering of the sphere. Call interior
the part with angle, which is less than $\pi$ . For representations below,
the vertex figure selects uniquely the part of the cell: namely, the vertex
figure $n/j$ gives the value $2\pi j/n$ for the angle of the cell. It takes interior
of the cell if $j<n/2$ and exterior otherwise.

The Table 2 shows that each of all nine regular polyhedra (seen as
abstract surfaces) admits four such Riemann surfaces and we checked,

case by case, that all 36 are different and that remaining 28 possible
representations do not exist. Each of four representations for each regu-
lar polyhedron has same genus as corresponding abstract surface; so the
genus is four for 8 representations of the form $\{5/i, 5/j\}$ and zero for all
others.

In the Table 2, the column with 2/1 corresponds to doubling of
regular polygons. Alexandrov ([Ale58]) considered, for other purpose,
the doubling of any convex polygon as an abstract sphere, realized as a
degenerated (i.e. with volume 0) convex polyhedron. $\{m, 2\}$ and $\{2, n\}$
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on the plane and the sphere appeared also in Section 7 of [FTo64]. By
analogy, we will do such doubling for star-polygons $m/i$ with $i<m/2$ .

But for large star-polygons we should do doubling on the sphere. The
row and the column with $m/i$ correspond to any pair of mutually prime
integers $(i, m)$ , $1\leq\dot{?}<m$ . As Table 2 shows, there exist all represen-
tations $\{2/1, m/i\}$ and $\{m/i, 2/1\}$ and each of them has density $i$ (and
the genus 0).

An infinity of other representations can be obtained by permitting
polygons $m/(i+tm)$ for any integer $t\geq 0$ ; the way on the edge $(a_{0}, a_{i+tm})$

will be $2\pi t-d(a_{0}, a_{i+tm})$ .

Table 2. 36 representations of regular polyhedra on the
sphere.

\S 4. Star{?}honeycombs

Besides star-polygons and four regular star-polyhedra on 2-sphere,
which are all embeddable (last four are isomorphic to Ico or Do), there
are ([Cox54]) only following regular star-honeycombs: ten regular star-
polytopes on 3-sphere and four star-honeycombs in hyperbolic 4-space;
see the Tables 1, 3-5. In this Section we show that none of last 14 is
embeddable. Consider first the case of 3-sphere.

There are six regular 4-polytopes (4-simplex $\alpha_{4}$ , 4-cross-polytope $\beta_{4}$ ,
4-cube $\gamma_{4}$ , self-dual 24-cell and the pair of dual 600-cell and 120-cell) and
ten star-4-po1ytopes; see the Chapter 14 in [Cox73]. [Ass81] showed non-
embeddability of 24-and 600-cell; $[DGr97c]$ did it for 120-cell. Clearly,
$\gamma_{4}$ and $\beta_{4}$ are $H_{4}$ and $(1/2)H_{4}$ themselves.
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Embeddable ones among Archimedean tilings of 3-sphere and 3-
space, were identified in $[DSt98b]$ ; for example, snub 24-cell (semi-regular

Gosset’s 4-polytope $s\{3,4,3\})$ embeds into $(1/2)H_{12}$ while the Grand
Antiprism of [Con67] is not embeddable.

The isomorphisms among ten star-4-po1ytopes, see $[vOsl5]$ and pages
266-267 of [Cox73], preserve all incidencies and imply, of course, isomor-
phisms of the skeletons of those polytopes. Using Schl\"afli notation, those
isomorphisms of graphs are:

(i) $\{5/2, 5, 3\}\sim\{5,5/2,3\}$ ;

(ii) $\{5/2, 3, 3\}\sim 120$-cell (remind the isomorphism of {5/2, 3} and

{5, 3} $)$ ;
(iii) all remaining seven skeletons are isomorphic with the skeleton of

600-cell (moreover, {3, 5, 5/2} has same faces; remind the isomorphism
of {3, 5/2} and {3, 5} $)$ .

So eight star-polytopes from (ii) and (iii) above are not embeddable.
Remaining case (i) is decided by the Theorem 3 below, using 5-gonal
inequality.

Theorem 3. None of ten star-4-polytopes is embeddable.

Proof of Theorem 3. In view of above isomorphisms, it will be
enough to show that (the skeleton of) 4-polytope $P:=\{5/2,5,3\}$ is not
5-gonal. $P$ is the stellated 120-cell and {5/2, 5} is the (small) stellated
dodecahedron, i.e. all face-planes are extended until their intersections
form a pyramid on each face. $P$ has 120 vertices, as 600-cell; namely,
the centers of all 120 (dodecahedral) cells of 120-cell. For any vertex $s$

of $P$ , denote by Do(s) the corresponding dodecahedron. $P$ has (as well
as 120-cell) 1200 edges, 720 faces and 120 cells; its density is 4. Any
edge $(s, t)$ of $P$ goes through interiors of Do(s), Do(t) and the edge of
120-cell, linking those dodecahedra; $(s, t)$ is a continuation of this edge
in both directions till the centers of dodecahedra Do(s), Do{t).

Consider now Fig. 3. Take as vertices $a$ and $b$ (for future contre-
example for 5-gonal inequality) some two vertices of {5/2, 5} (a cell of
$P)$ , which are centers of two face-adjacent dodecahedral cells of 120-cell.
Let $Q:=(q_{1}, q_{2}, q_{3}, q_{4}, q_{5})$ be this common face of adjacency, presented
by the 5-cycle of its vertices. For any $q_{i}$ there is unique star-5-gon
$(a, d_{i}, b, d_{i}^{J}, d_{i}^{//})$ , such that sides $(b, d_{i}^{J})$ and $(d_{i}^{//}, a)$ intersect in the point
$q_{i}$ . Now, $D:=(d_{1}, d_{2}, d_{3}, d_{4}, d_{5})$ is a 5-cycle in $P$ , because each $(d_{i-1}, d_{i})$

is an edge in one of five cells {5/2, 5} of $P$ , containing vertices $a$ and $b$ .

Put $x:=d_{1}$ , $y:=d_{2}$ , $z:=d_{4}$ and check that the 5-gonal inequality for
five vertices $a$ , $b$ , $x$ , $y$ , $z$ of $P$ , does not hold.

In fact, $d_{xy}=1.=d_{ax}=d_{ay}=d_{az}=d_{bx}=d_{by}=d_{bz}$ , because
of the presence of corresponding edges in $P$ . Therefore, $d_{xz}$ , $d_{yz}$ and
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Fig. 3. A fragment of 5/253

$d_{ab}$ are at most 2. So, the absence of edges $(x, z)$ , $(y, z)$ and $(a, b)$ will
complete the proof of the Theorem 3. The edge $(a, b)$ does not exist,

because Do(a) is face-adjacent to Do(b). The edge $(x, z)$ does not exists,
because the line, linking vertices $x$ and $z$ , goes, besides Do{x) and Do(z),
through two other dodecahedra (such that their stellations are {5/2, 5},
containing vertices $a$ , $b$ , $d_{2}$ , $d_{3}$ or $a$ , $b$ , $d_{3}$ , $d_{4}$ ). By symmetry, the edge
$(y, z)$ does not exist also. We are done. Q.E.D.

Corollary. None of four star-honeycombs in hyperbolic 4-space is
embeddable.

Proof of Corollary. In fact, {5/2, 5, 3, 3} has cell which contains
(because of the Theorem 3), as an induced subgraph, non-5-gona1 graph
$K_{5}-K_{3}$ . But any induced graph of diameter 2 is isometric; so {5/2, 5, 3, 3}
is not 5-gonal. {3, 3, 5, 5/2} has cell $\{3, 3, 5\}=600$-cell. Two other have
cells which are isomorphic to 600-cell. But 600-cell (seen by Gosset’s con-
struction as capping of all 24 icosahedral cells of snub 24-cell) contains
also a forbidden induced graph of diameter 2: pyramid on icosahedron
(it violates 7-gonal inequality, which is also necessary for embedding; see
[Dez60], [DSt96] $)$ . So, three other star-4-po1ytopes are also non-7-gona1
and non-embeddable. Q.E.D.
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\S 5. Regular tilings of dimension $d\geq 3$

The Tables 3-5 below present all of them and also all regular honey-
combs in the dimensions 3, 4, 5,$\cdot$ for higher dimensions, $(d+1)$ -simplices
$\alpha_{d+1}$ , $(d+1)$-cross-polytopes $\beta_{d+1}$ , $(d+1)$ -cubes $\gamma_{d+1}$ and cubic lattices
$\delta_{d}$ are only regular ones.

In those Tables, 24-, 600-, 120- are regular spherical 4-polytopes

{3, 4, 3}, {3, 3, 5}, {5, 3, 3} with indicated number of cells and $De(D_{4})$ ,
$Vo(D_{4})$ are regular partitions {3, 3, 4, 3}, {3, 4, 3, 3} of Euclidean 4-
space, which are also Delaunay (Voronoi, respectively) partitions as-
sociated with the (point) lattice $D_{4}$ .

All cases of embeddability are marked be the star*in the Tables.
As in Table 1 above, we omit in Tables 3-5 (in order to fit them in the
page) the brackets and commas in Schl\"afli notation.

Table 3. 3-dimensional regular tilings and honeycombs.

Table 4. 4-dimensional regular tilings and honeycombs.
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Table 5. 5-dimensional regular tilings and honeycombs.

$T\overline{heoremsl,2}$above showthat allregular2-dimensional tilin $gs$ and
star-honeycombs are embeddable except $\{m/2, m\}$ for all odd $m\geq 7$ .

The following Theorem decides all remaining regular cases.

Theorem 4. All embeddable regular tilings and honeycombs of di-
mension $d\geq 3$ are tilings:

(i) either $\alpha_{d+1}$ , or $\beta_{d+1}$ , or
(ii) all with bipartite skeleton:
(ii-l) all with cell $\gamma_{d}$ : $\gamma_{d+1}$ , $\delta_{d}$ and 3 hyperbolic ones: {4, 3, 5},

{4, 3, 3, 5}, non-compact {4, 3, 6};
(ii-2) all 4 with cell $\delta_{d-1}$ : hyperbolic non-compact {4, 4, 3}, {4, 4, 4},

{4, 3, 4, 3} and {4, 3, 3, 4, 3};
(ii-3) all 4 with cell {6, 3}: hyperbolic non-compact {6, 3, 3}, {6, 3, 4},

{6, 3, 5}, {6, 3, 6}.
All $l_{1}$ -rigid regular tilings are the bipartite ones; all bipartite ones

(except $\gamma_{d+1}$ and $\delta_{d}$ themselves) embed into $Z_{\infty}$ .

Proof of Theorem 4. In fact, we review all cases of Tables 3-5.
All compact cases (on first 5 rows, columns of Table 3 and first 6 rows,
columns of Table 4) were decided in [DSt97]. Non-embeddability for all
14 star-polytopes and star-honeycombs (in Tables 3, 4) was established
in Section 4. It remains 11, 2, 5 non-compact tilings of hyperbolic 3-, 4-,
5-space; we will show that 7, 1, 1, respectively, of them are embeddable
into $Z_{\infty}$ , while 8 others are not 5-gonal.

The tilings {3, 4, 3, 4}, {3, 4, 3, 3, 3}, {3, 3, 4, 3, 3}, {3, 4, 3, 3, 4} have
non-5-gona1 graph $K_{5}-K_{3}$ as induced subgraph of the cell. {3, 6, 3}
(respectively, {3, 4, 4}) contain induced $K_{5}-K_{3}$ , because each its edge
is common to 3 (respectively, to 4) triangles. {3, 3, 6} is a simplicial
manifold with 6 triangles on an edge; taking l-st, 3-rd and 5-th of them,
we get again induced $K_{5}-K_{3}$ . A particularity of $T:=\{3,3,3,4,3\}$ is
that the cell $\beta_{4}$ of its vertex figure $De(D_{4})$ is also the equatorial section
of the cell $\beta_{5}$ of $T$ . All neighbors of a vertex $s$ of $T$ form $De(D_{4})$ . Take an
isometric subgraph $K_{5}-K_{3}$ in $De(D_{4})$ , given in $[DSt98a]$ . The vertex $s$
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is a neighbor of each of its five vertices; obtained 6-vertex graph is non-5-
gonal graph of diameter 2, which is, using above particularity of $T$ , is an
induced subgraph of T. (Compare with embeddable tiling {4, 3, 3, 4, 3}
by $\gamma_{5}$ , having the same vertex figure.) All seven above tilings are not
5-gonal, because any induced graph of diameter 2 is isometric. Finally,
each edge of {5, 3, 6} is common to 6 disjoint pentagons; taking l-st, 3-rd
and 5-th of them we obtain non-5-gona111-vertex induced subgraph of
diameter 4 of {5, 3, 6}; a routine check shows that it is isometric.

Other hyperbolic tilings embed into $Z_{\infty}$ , because of Lemma 4 below;
it is easy to find reflections, required by Lemma 4 in each case. It is easy
to check $l_{1}$ -rigidity for all (except of Tetrahedron, which is not $l_{1}$ -rigid)

cases of embedding for dimension 2. Now, any bipartite embeddable
graph is $l_{1}$ -rigid, because it has scale 1. The proof is complete. Q.E.D.

Let $T$ be any (not necessary regular) convex $d$-polytope or tiling
of Euclidean or hyperbolic $d$-space by convex polytopes, such that the
skeleton is a bipartite graph. (We admit infinite cells and, if regular,
infinite vertex figures.) Then the set of its edges can be partitioned into
zones, i.e. sequences of edges, such that any edge of a sequence is the
opposite to the previous one on a 2-face (which should, therefore, be
even).

Lemma 4. Let $T$ is as above; suppose that the mid-points of edges
of each zone lie on hyperplanes, different for each zone, which are (some
of) reflection hyperplanes of $T$ and perpendicular to edges of their zones.
Then $T$ embeds into $Z_{m}$ with $m$ no more than the number of zones.

Proof of Lemma 4. It follows directly from the fact that each
geodesic path (in the skeleton of $T$ ) intersects any zone in at most one
edge. Q.E.D.

Remark 3. Embedding of any bipartite regular tiling can be ob-
tained, using Lemma 4. The reflections, required by Lemma 4 (let us call
them zonal reflections) generate, because of simple connectedness of $T$ , a
vertex-transitive group of automorphisms of $T$ (call it zonal group); so $T$

is uniform and the zonal group is generated by the zonal reflections of all
edges incident to a fixed vertex of $T$ . For any fixed 2-face of $T$ , which is
a 2/c-gon, let $m_{1},\ldots,m_{k}$ be the zonal reflections of its edges, considered in
the cyclic order. Then the product $ m_{1}\ldots m_{k}m_{1}\ldots m_{k}=\langle 1\rangle$ (i.e. $m_{1}\ldots m_{k}$

is an involution) and those relations, for all 2-faces around a fixed vertex
of $T$ , are all defining relations for the zonal group of $T$ . So, the zonal
group is not 2-transitive on vertices. For example, the zonal group of
Archimedean truncated $\beta_{3}$ is an 1-transitive subgroup of index 2 of the
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octahedral group Aut(T) $=O_{h}$ , which is 2-transitive. Also, a polytope
in the conditions of Lemma 4 is not necessary zonotope. For example,
any centrally-symmetric non-Archimedean (by choice of the length of
truncation) truncated $\beta_{3}$ fits in it; it is a zonohedron in original sense
of Fedorov, but not in usual sense of Minkowski (with all edges of each
zone having same length).

Remark 4. All infinite families of regular tilings are embeddable.
In fact, $m$-gons, $\delta_{n-1}=Z_{n}$ , $\gamma_{n}=H_{n}$ , $\alpha_{n}$ , $\beta_{n}$ are embeddable and,
moreover, first three are $l_{1}$ -rigid. But embeddings of skeletons of $\alpha_{n}$ and,
for $n\geq 4$ , $\beta_{n}$ , is more complicate. It is considered in detail (in terms of
corresponding complete graph $K_{n+1}$ and Cocktail-Party graph $K_{n\times 2}$ in
Chapter 23 [DLa97] and Section 4 of Chapter 7 [DLa97], respectively.
Any $\alpha_{n}$ , $n\geq 3$ , is not $l_{1}$ -rigid, i.e. it admits at least two different
embeddings. We give now two embeddings of $\alpha_{n}$ into $m$-cubes with
scale $\lambda$ , realizing, respectively, maximum and minimum of $ m/\lambda$ . The
first one is $\alpha_{n}\rightarrow(1/2)H_{n+1}$ . Now define $m_{n}=2n/(n+1)$ for odd $n$ and
$=(2n+2)/(n+2)$ for even $n$ ; define $\lambda_{n}$ be the minimal even positive
number $t$ such that $tm_{n}$ is an integer. Then $\alpha_{n}$ embeds into $tm_{n}$-cube
with scale $\lambda_{n}$ ; for example, $\alpha_{4}$ embeds into 10-cube with scale 6. Any
$\beta_{n}$ , $n\geq 4$ , is not $l_{1}$ -rigid. All embeddings of $\beta_{n}$ are into $ 2\lambda$-cube with
any such even scale $\lambda$ that $\alpha_{n-1}$ embeds into $m$-cube, $ m\leq 2\lambda$ , with
scale $\lambda$ . For minimal such scale, denote it $\mu_{n}$ , the following is known:
$ n>\mu_{n}\geq 2\lceil n/4\rceil$ with equality in the lower bound for any $n\leq 80$ and,
in the case of $n$ divisible by 4, if and only if there exists an Hadamard
matrix of order $n$ . In particular, $\beta_{3}\rightarrow(1/2)H_{4}$ , $\beta_{4}\rightarrow(1/2)H_{4}$ (in fact,
they coincide as 4-polytopes, but there are two embeddings), and $\beta_{5}$

embeds only with scale 4 (into $H_{8}$ ).

Remark 5. This note finalizes the study of embeddability for reg-
ular tilings done in [DSt96], [DSt97]; we correct now following misprints

there: a) in the sentence “Any $l_{1}$ -graph, not containing $K_{n}$ , is $l_{1}$ -rigid”
on 1193 [DSt96], should be $K_{4}$ instead of $K_{n}$ ; b) in the sentence, on
1194 [DSt96], about partitions of Euclidean plane, embeddable into

$Z_{m}$ , $ m<\infty$ , should be $\leq instead$ of $<;c$ ) in the sentence about F\"oppl
partition on 1292 [DSt97], should be $\alpha_{3}$ and truncated $\alpha_{3}$ instead of
$\alpha_{3}$ .
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On the homotopy theory of arrangements, II

Michael Falk and Richard Randell

Abstract.

In “On the homotopy theory of arrangements” published in 1986
the authors gave a comprehensive survey of the subject. This arti-
cle updates and continues the earlier article, noting some key open

problems.

Let $M$ be the complement of a complex arrangement. Our interest

here is in the topology, and especially the homotopy theory of $M$ , which
turns out to have a rich structure. In the first paper of this name [37],
we assembled many of the known results; in this paper we wish to sum-
marize progress in the intervening years, to reiterate a few key unsolved
questions, and propose some new problems we find of interest.

In the first section we establish some terminology and notation, and
discuss general homotopy classification problems. We introduce the
matroid-theoretic terminology that has become more prevalent in the
subject in recent years. In this section we also sketch Rybnikov’s con-
struction of arrangements with the same matroidal structure but non-
isomorphic fundamental groups. In Section 2 we consider some algebraic
properties of the fundamental group of the arrangement. Properties of
interest include the lower central series, the Chen groups, the rational
homotopy theory of the complement, and the cohomology of the group.
At the time of our first paper many questions in this area were in flux,
so we make a special effort here to clarify the situation. The group
cohomology is naturally of interest in the third section as well, which
focuses on when or if the complement is aspherical. It is this property
which fostered much of the initial interest in arrangements (in the guise
of the pure braid space); it is of interest that the determination of when
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the complement is aspherical is far from settled. Finally, in the fourth
section we consider what one might call the topology of the fundamen-
tal group. We describe group presentations that have been discovered
since the publication of [37], including the recent development of braided
wiring diagrams. We also sketch the considerable progress in the study
of the Milnor fiber associated with an arrangement.

In 1992 the long-awaited book Arrangements of Hyperplanes, by Pe-
ter Orlik and Hiroaki Terao appeared, to the delight of all of us working
in arrangements. We refer the reader to this text as a general refer-
ence on arrangements, and adopt their notation and terminology except
where specified. We also mention that perhaps the most interesting de-
velopment in arrangements in the last ten years involves the deep and
fascinating connections with hypergeometric functions. We are pleased
to refer the reader to the lecture notes of Orlik and Terao [64] from the
1998 Tokyo meeting for a comprehensive exposition of this material.

S1. Combinatorial and topological structure

One significant change in the study of the homotopy theory of ar-
rangements since the publication of [37] has been the introduction of
matroid-theoretic terminology and techniques into the subject. In this
section we review this approach and describe progress toward the topo-
logical classification of hyperplane complements. Refer to $[89, 66]$ for
further details on matroids.

1.1. The matroid of an arrangement

Let $V=\mathbb{C}^{\ell}$ and let $A$ $=\{H_{1}, \ldots, H_{n}\}$ be a central arrangement
of hyperplanes in $V$ . For each hyperplane $H_{i}$ choose a linear form $\alpha_{i}\in$

$V^{*}$ with $H_{i}=ker(\alpha_{i})$ . The product $Q(A)=\prod_{i=1}^{n}\alpha_{i}$ is the defifining
polynomial of the arrangement.

The underlying matroid $G(A)$ of $A$ is by definition the collection of
subsets of $[n]:=\{1, \ldots, n\}$ given by

$G(A)=$ { $S\subseteq[n]|\{\alpha_{i}|i\in S\}$ is linearly dependent}.

Elements of $G=G(A)$ are called dependent sets. Minimal depen-
dent sets are called circuits. Independent sets and bases are defined in
the obvious way. The rank $rk(S)$ of a set $S\subseteq[n]$ is the size of a maximal
independent subset of $S$ . The rank of $G$ (or $A$ ) is $rk([n])$ . The closure
$\overline{S}$ of a set $S$ is defined by

$\overline{S}=\cup$ { $T$ $\subseteq[n]|T$ $\supseteq S$ and $rk(T)=rk(S)$ }.
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A set $S$ is closed if $\overline{S}=S$ . Closed sets are also called flats. The
collection of closed sets, ordered by inclusion, forms a geometric lat-
tice $L(G)$ which is isomorphic to the intersection lattice $L(A)$ defined
and studied in [65]. The isomorphism $L(G)\rightarrow L(A)$ is given by $ S\mapsto$

$\bigcap_{i\in S}H_{i}$ .

Thus the matroid $G(A)$ contains the same information as the in-
tersection lattice $L(A)$ . One of the simple advantages of the matroid-
theoretic approach is the fact that the matroid $G(A)$ is determined
uniquely by any of a number of different pieces of data besides the set
of flats. For instance, the set of circuits, the rank function, or the set of
bases, each determine the matroid, and thus the intersection lattice. Be-
sides giving a nice conceptual framework for the combinatorial structure
of arrangements, techniques and deep results from the matroid theory
literature have been applied with some benefit in the study of the topol-
ogy of arrangements.

The line generated by $\alpha_{i}$ in $V^{*}$ depends only on $H_{i}$ , and thus
$A$ determines a unique point configuration $A^{*}$ in the projective space
$\mathbb{P}(V^{*})\cong \mathbb{C}P^{\ell-1}$ . The dual point configuration $A^{*}$ can be used to de-
pict the combinatorial structure of an arrangement in case $rk(A)\leq 4$ if
the defining forms $\alpha_{i}$ have real coefficients. (In this case $A$ is called a
complexifified arrangement.) One merely plots the points $\alpha_{i}$ in a suitably
chosen affine chart $\mathbb{R}^{\ell-1}$ in the real projective space $\mathbb{R}P^{\ell-1}$ , for instance
by scaling the $\alpha_{i}$ so that the coefficient of $x_{1}$ in each is equal to 1, and
then ignoring this coefficient. Dependent flats of rank two (or three) are
seen in these affine configurations as lines (or planes) containing more
than two (or three) points. These lines and planes are usually explicitly
indicated in the picture. This is especially useful for arrangements of
rank four. Since the hyperplanes are indicated by points in $\mathbb{R}^{3}$ , they
don’t obscure the internal structure as a collection of affine planes in
$\mathbb{R}^{3}$ would (see Figure 5). These depictions of projective point config-
urations are generalized to give affine diagrams of arbitrary matroids.
Dependent flats are again explicitly indicated with “lines” or “planes”,
which in the general case may not be straight or flat in the euclidean
sense. It is common to refer to flats of rank one, two, or three in an ar-
bitrary matroid as points, lines, or planes respectively. These diagrams
are useful for the study of arrangements which are not complexified real
arrangements (see Figures 1 and 2).

1.2. Basic topological results

The seminal result in the homotopy theory of arrangements is the
calculation of the cohomology algebra of the complement $M=M(A):=$
$\mathbb{C}^{\ell}-\bigcup_{i=1}^{n}H_{i}$ by Orlik and Solomon [63]. Motivated by work of Arnol’d
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[1], and using tools established by Brieskorn [10], they gave a presenta-
tion of $H^{*}(M)$ in terms of generators and relations. The presentation
$A(A)$ depends only on the underlying matroid $G=G(A)$ , and is now
called the Orlik-Solomon (or $OS$ ) algebra of $G$ . Henceforth we will refer
to the $OS$ algebra $A(A)$ rather than the cohomology ring $H^{*}(M)$ . The
algebra $A(A)$ is defined as the quotient of the exterior algebra on gener-
ators $e_{1}$ , $\ldots$ , $e_{n}$ by the ideal I generated by “boundaries” of dependent
sets of $G$ . See [65] for a precise definition.

This result of [63] gave rise to a collection of “homotopy type” con-
jectures, which assert that various homotopy invariants of the comple-
ment depend only on $G(A)$ . A great deal of research in the homotopy
theory of arrangements has been focused on conjectures of this type.
Note that such conjectures may have “weak” or “strong” solutions: one
may show that the invariant depends only on the matroid, or one may
give an algorithm to compute the invariant from matroidal data.

The major positive result in this direction is the lattice-isotopy the-
orem, proved by the second author in [77]. It asserts that the homo-
topy type, indeed the diffeomorphism type of the complement remains
constant through a “lattice-isotopy,” that is, a one-parameter family of
arrangements in which the intersection lattice, or equivalently, the un-
derlying matroid remains constant.

This result is often recast in terms of matroid realization spaces,
which are related to the well-known “matroid stratification” of the Grass-
mannian. We describe this connection. The defining forms $\alpha_{i}$ of $A$ can
be identified with row vectors, and thus the arrangement $A$ can be iden-
tified with an $ n\times\ell$ matrix $R$ over $\mathbb{C}$ . This matrix is called a realization
of the underlying matroid. Two realizations $R$ and $R^{/}$ are equivalent if
there is a nonsingular diagonal $n\times n$ matrix $S$ and a nonsingular $\ell\times\ell$

matrix $T$ such that $R^{/}=SRT$ . The corresponding arrangements will
then be linearly isomorphic. The set of equivalence classes of realiza-
tions of a fixed matroid $G$ is called the (projective) realization space
$\mathcal{R}(G)$ of $G$ . Now assume the matrix $R$ has rank $\ell$ , i.e., that $A$ is an
essential arrangement. Then the column space of $R$ is an $\ell$-plane $P_{R}$

(sometimes denoted $P_{A}$ ) in $\mathbb{C}^{n}$ . Note that an isomorphic copy of the
arrangement $A$ inside $P_{R}$ is formed by the intersection of $P_{R}$ with the
coordinate hyperplanes in $\mathbb{C}^{n}$ . Postmultiplying $A$ by a nonsingular ma-
trix doesn’t affect $P_{R}$ . Thus we see that the realization space $\mathcal{R}(G)$ can
be identified with a subset $\Gamma(G)$ of the space of orbits of the diagonal
$(\mathbb{C}^{*})^{n}$ action on the Grassmanian $\mathcal{G}\ell(\mathbb{C}^{n})$ of $\ell$-planes in $\mathbb{C}^{n}$ . The sub-

sets $\hat{\Gamma}(G)=$ { $P_{R}|R$ is a realization of $G$ } $\subseteq \mathcal{G}\ell(\mathbb{C}^{n})$ are called matroid
strata, although they do not comprise a stratification in the usual sense,
since the closure of a stratum may not be a union of strata [85]. These
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strata play a central role in the theory of generalized hypergeometric
functions, especially when the original arrangement $A$ is generic. The
topology of the strata themselves can be as complicated as arbitrary
affine varieties over $\mathbb{Q}$ even for matroids of rank three, by a celebrated
theorem of Mn\"ev [59]. These strata are connected by “deletion maps,”
whose fibers are themselves complements of arrangements $[5, 30]$ .

Realizations in $\Gamma(G)$ correspond to arrangements which have the
same underlying matroid $G$ , as determined by the arbitrary ordering of
the hyperplanes. Thus, for the study of homotopy type as a function of
intrinsic combinatorial structure (i.e., without regard to labelling), the
true “moduli space” for arrangements should be the quotient of $\mathcal{G}\ell(\mathbb{C}^{n})$

by the action of the $S_{n}\times(\mathbb{C}^{*})^{n}$ . Then linear isomorphism classes of ar-
rangements with isomorphic underlying matroids (or isomorphic inter-
section lattices) correspond to points of the orbit space $\Gamma(G)/Aut(G)$ .

Randell’s lattice-isotopy theorem can be reformulated as follows:

two arrangements which are connected by a path in $\hat{\Gamma}(G)$ (or $\Gamma(G)$ ) have
diffeomorphic complements. Thus one is led to the difficult problem of
understanding the set of path components of $\Gamma(G)/Aut(G)$ .

More detailed combinatorial data will suffice to uniquely determine
the homotopy type of the complement. For instance, in the case of com-
plexified real arrangements, the defining forms $\alpha_{i}$ , $1\leq i\leq n$ determine
an underlying oriented matroid. This is most easily described in terms
of bases: the matroid $G(A)$ is determined by the collection $B$ of max-
imal independent subsets $B\subseteq[n]$ . These can naturally be identified

with ordered subsets of $[n]$ . The oriented matroid $\hat{G}(A)$ is then a par-
tition $B$ $=g_{+}\cup B_{-}$ of the set of ordered bases of $G(A)$ into positive
and negative bases, corresponding to the sign of the (nonzero) deter-
minant of the corresponding ordered sets of linear forms. The work of
Salvetti [81], as refined by Gelfand and Rybnikov [39], shows that the
underlying oriented matroid of a complexified real arrangement uniquely
determines the homotopy type of the complement. In fact one can con-
struct a partially ordered set $\mathcal{K}(\hat{G})$ directly from the oriented matroid
$\hat{G}$ whose “nerve” , or collection of linearly ordered subsets, forms a sim-
plical complex homotopy equivalent to the complement. In subsequent
work, Bj\"orner and Ziegler [7] (see also Orlik [61]) generalized the con-
struction to arbitrary arrangements (or arrangements of subspaces), in
terms of combinatorial structures called 2-matroids[7] or complex ori-
ented matroids [93]. They showed that this detailed combinatorial data
determines the complement up to piecewise-linear homeomorphism.

The relation between Randell’s lattice-isotopy theorem and the com-
binatorial complexes of [81, 39, 7, 61] has not been fully explored. In
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particular, it would be interesting to cast the notion of lattice-isotopy in
combinatorial terms, i.e., as a sequence of elementary “isotopy moves”
on the posets $\mathcal{K}(\hat{G})$ which leave the homotopy type of the nerve un-
changed. A first step in this direction was accomplished in [29]. We
pose this as our first open problem.

Problem 1.1. Prove a combinatorial lattice-isotopy theorem, that
“isotopic” (complex) oriented matroids (with the same underlying ma-
troid) determine homotopy equivalent cell complexes.

1.3. Homotopy classification

The fundamental question whether the homotopy type of $M(A)$ is
uniquely determined by $G(A)$ was answered in the negative by Rybnikov
in [80]. The basic building block of his construction is the MacLane ma-
troid, whose affine diagram is pictured in Figure 1. For this matroid

FIGURE 1. The MacLane matroid

$G$ , the realization space $\mathcal{R}(G)$ consists of two conjugate complex real-
izations $R$ and $\overline{R}$ , corresponding to arrangements $A$ and A. One can
“amalgamate” these realizations along one of the three-point lines (rank-

two flats) to form arrangements $A*A$ and $A*\overline{A}$ of rank four with thirteen
hyperplanes. These arrangements have the same underlying matroid, of
rank four on 13 points, pictured in Figure 2. Rybnikov establishes some
special properties of this matroid, for instance, that any automorphism
of the $OS$ algebra arises from a matroid automorphism, which must pre-
serve or interchange the factors of the amalgamation. Using these he is
able to show that the arrangements $A*A$ and $A*\overline{A}$ have nonisomorphic
fundamental groups, since the first has an automorphism which switches
the factors preserving orientations of the natural generators, while the
only automorphism of the second which switches factors must reverse
orientations. Refer to Section 4.1 for a more detailed description of the
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FIGURE 2. The Rybnikov matroid

fundamental group. Rybnikov actually uses the rank-three truncation of
this matroid, and 3-dimensional generic sections of these arrangements,
but this operation does not affect the fundamental group.

The last part of Rybnikov’s argument is quite delicate and very
specialized. None of the known invariants of fundamental groups, for
instance those described elsewhere in this paper, will distinguish these
two groups.

Problem 1.2. Find a general invariant of arrangement groups
that distinguishes the two Rybnikov arrangements, and generalize his
construction.

To date this is the only known example of this phenomenon. In
particular it is not known if this behavior is exhibited by complexified
arrangements.

Problem 1.3. Prove that the underlying matroid of a complexifified
arrangement determines the homotopy type, or fifind a counter-example.

Partial results along these lines were obtained by Jiang and Yau [44]
and Cordovil [18]. In [44] a condition on the underlying matroid $G$ is
given which implies that the realization space of $G$ is path-connected, so
that any two arrangements realizing $G$ have diffeomorphic complements
by the lattice-isotopy theorem. In [18] it is shown that complexified
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arrangements whose underlying matroids are isomorphic via a corre-
spondence which preserves a (geometrically defined)“shelling order”
will have identical braid-monodromy groups.

The extent to which arrangements with non-isomorphic matroids
can have homotopy equivalent complements has also been studied (see,
e.g., [28, 29, 13, 24, 32] $)$ with some degree of success. One approach
to this problem is purely combinatorial, namely to classify $OS$ alge-
bras up to graded algebra isomorphism. This approach is adopted in
[28, 32, 24]. A powerful invariant is developed in [32], sufficient to dis-
tinguish all known non-trivial examples which are not already known to
be isomorphic.

At this point all known examples of matroids with isomorphic $OS$

algebras can be explained by two simple operations $[35, 72]$ . The first
of these is a construction involving a well-known equivalence of affine
arrangements arising from the “cone-decone” construction [65, Prop.
5.1], along with the trivial fact that the complement of the direct sum of
affine arrangements, denoted $\square $ in [65], is diffeomorphic to the cartesian
product of the complements of the factors. In fact this construction can
be applied to arbitrary pairs of matroids to yield central arrangements
with non-isomorphic matroids and diffeomorphic complements $[24, 35]$ .

This construction always yields arrangements with non-connected (i.e.,
nontrivial direct sum) matroids. Jiang and Yau [45] show that this
phenomenon cannot occur in rank three, that is, the diffeomorphism
type of the complement of a rank-three arrangement uniquely determines
the underlying matroid. Thus the rank-three examples of [29], which
have non-isomorphic underlying matroids, have complements which are
homotopy equivalent but not diffeomorphic.

The second operation which yields isomorphic $OS$ algebras is trun-
cation. It is shown in [72] that the truncations of two matroids with
isomorphic $OS$ algebras will have the same property. (It is not known if
truncation preserves homotopy equivalence). These two “moves” suffice
to explain the examples produced in $[65, 29]$ , indeed all known exam-
ples of this phenomenon. Thus it seems an orderly classification of $OS$

algebras may be within reach.

Problem 1.4. Classify OS algebras up to graded isomorphism.

In the alternative, we suggest the following.

Problem 1.5. Find a pair of arrangements with homotopy equiv-
alent complements and whose underlying matroids are non-isomorphic,
connected, and inerectible ( $i.e.$ , not truncations).
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Cohen and Suciu in [12, 13, 14] approach this same problem of ho-
motopy classification using invariants of the fundamental group. Their
approach has the advantage that it may also be used to distinguish the
complements of arrangements with the same underlying matroid. Some
of this work is described elsewhere in this paper. Here we merely re-
mark on the surprising connection described in [14, 55, 54] between the
characteristic varieties of [53] arising from the Alexander invariant of the
fundamental group, and the resonant varieties of [32], which arise from
the $OS$ algebra.

S2. Algebraic properties of the group of an arrangement

The topology of hyperplane complements seems to be to a large ex-
tent controlled by the fundamental group. These “arrangement groups”
have relatively simple global structure, being pieced together out of free
groups in a fairly straightforward way (see Sections 4.1 and 3.3), but
have surprisingly delicate fine structure. At the time of the writing of
[37] there was a great deal of activity around the study of the lower
central series of these groups, and connections with rational homotopy
theory and Chen’s theory of iterated integrals. In this section we report
on progress in these areas in the intervening years.

2.1. The LCS formula, quadratic algebras, rational $K(\pi, 1)$

and parallel arrangements

Discoveries of Kohno [48] and the authors [36] showed that Witt’s
formula for the lower central series of finitely generated free Lie algebras
(or, equivalently, free groups) generalized to a wide class of hyperplane
complements. The so-called LCS formula reads

$\prod_{n\geq 1}(1-t^{n})^{\phi_{r\iota}}=\sum_{i\geq 0}b_{i}(-t)^{i}$
,

relating the ranks $\phi_{n}$ of factors in the lower central series of the funda-
mental group $\pi_{1}(M)$ to the betti numbers $b_{i}=dim(A^{i}(A))$ of $M$ . In
$[36, 43]$ it is shown that this formula holds for all fiber-type arrange-
ments. These are arrangements whose underlying matroids are super-
solvable [87]. This result was ostensibly extended to rational $K(\pi, 1)$

arrangements in $[26, 47]$ . (See also Section 2.2.) We refer the reader to
$[26, 65]$ for a precise definition of rational $K(\pi, 1)$ arrangement. Briefly,
if $S$ is the 1-minimal model of $M$ (or, equivalently, of $A(A)$ ), then $A$ is
rational $K(\pi, 1)$ if $H^{*}(S)\cong A(A)$ . It is shown in [26] that fiber-type
arrangements are rational $K(\pi, 1)$ .
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The technical results of [36] were used in [38] to show that funda-
mental groups of fiber-type arrangements (in particular, the pure braid
group) are residually nilpotent. This result turned out to be important
for the theory of knot invariants of finite type [84].

The situation surrounding the LCS formula was very much in flux
during the preparation of [37], a fact reflected in the equivocal foot-
notes in the table of implications in that paper. The situation has been
clarified somewhat in the meantime. Our purpose here is to briefly sum-
marize the current understanding of these issues.

Recall that an arrangement of rank three is parallel if for any four
hyperplanes of $A$ in general position, there is a fifth hyperplane in $A$

containing two of the six pairwise intersections. The $OS$ algebra $A(A)$

is quadratic if the relation ideal $I$ (defined in Section 1.2) is generated by
its elements of degree two. We will sometimes say $A$ is quadratic. This
is a combinatorial condition, which will be discussed in further detail in
Section 3.2. In general the quotient of the exterior algebra $\Lambda(e_{1}, \ldots, e_{n})$

by the ideal generated by the degree two elements of I is called the
quadratic closure of $A(A)$ , denoted $\overline{A}(A)$ . Here is a summary of cogent
results established in $[26, 27]$ .

(i) If $A$ is a rational $K(\pi, 1)$ arrangement, then $A$ is quadratic.
(ii) Every parallel arrangement is quadratic.
(iii) Every rational $K(\pi, 1)$ arrangement satisfies the LCS formula.
(iv) Every quadratic arrangement satisfies the LCS formula at least

to third degree.

In [37] we cited an unpublished note which claimed that every par-
allel arrangement is a rational $K(\pi, 1)$ . Using the construction of [26],
in 1994 Falk wrote a Mathematica program to compute $\phi_{4}$ , and checked
the smallest example of a parallel, non-fiber-type arrangement of rank
3. This arrangement, labelled $X_{2}$ in [37], consists of the planes $x\pm z=$

$0$ , $y\pm z=0$ , $x+y\pm 2z=0$ , and $z=0$ , and is pictured in Figure 3.
We obtained the result $\phi_{4}=15$ , whereas the LCS formula would predict
$\phi_{4}=10$ .

So the implications

parallel $\Rightarrow$ rational $K(\pi, 1)$ ,

quadratic $\Rightarrow$ rational $K(\pi, 1)$ ,

parallel $\Rightarrow$ LCS,

and

quadratic $=$, LCS

recorded in [37] are all false.



Homotopy theory) $\Pi$ 103

FIGURE 3. The arrangement $X_{2}$

Subsequently, work of Shelton-Yuzvinsky [82], and Papadima-Yuz-
vinsky [67] provided further clarification. Let $\mathcal{L}$ denote the holonomy Lie
algebra of $M$ , the quotient of the free Lie algebra on generators $x_{1}$ , $\ldots x_{n}$

by the image of the map $H_{1}(M)\rightarrow\Lambda^{2}(H_{1}(M))$ dual to the cup product.
Let $U=U(A)$ be its universal enveloping algebra, a dual object to
the 1-minimal model $S$ . The Hilbert series of $U$ is $\prod_{n\geq 1}(1-t^{n})^{-\phi_{7\prime}}$ .

Kohno constructs a chain complex $(R, \delta)$ which, when exact, forms a
resolution of $\mathbb{Q}$ as a trivial $U$-module. In this case $A$ is a rational $K(\pi, 1)$

arrangement, and the LCS formula holds.
Shelton and Yuzvinsky [82] realized that $U(A)$ is the Koszul dual of

the quadratic closure of $A(A)$ . We refer the reader to [82] for a precise
definition; loosely speaking, the defining relations for the Koszul dual
$U$ form the orthogonal complement to those of $\overline{A}(A)$ inside the tensor
product $T_{2}(A^{1}(A))$ . They observed that the Aomoto-Kohno complex
$(R, \delta)$ is the usual Koszul complex of $U$ , and thus is exact if and only if
$U$ is a Koszul algebra – $U$ is Koszul iff $Ext_{U}^{pq}(\mathbb{Q}, \mathbb{Q})=0$ unless $p=q$ .

It follows from this that $A(A)$ is a quadratic algebra. (This observation
was also made by Hain [41].) The LCS formula is then a consequence of
Koszul duality. They give a combinatorial proof that $A(A)$ is quadratic
and that $U(A)$ is Koszul if $A$ is a supersolvable arrangement.

The results of [82] were strenghened and extended in [67] to give a
description of $H^{*}(S)$ in terms of Koszul algebra theory, for more general
spaces. In particular, it is shown in [67] that $A$ is rational $K(\pi, 1)$ if
only if the $OS$ algebra is Koszul. In addition, Papadima and Yuzvinsky
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gave an alternate proof that the arrangement $X_{2}$ above fails the LCS
formula. Finally, using a “central-to-affine” reduction argument, they
were able to prove the following.

Theorem 2.1 ([67]). For arrangements of rank three, the $LCS$

formula holds if and only if the arrangement is fifiber-type.

Peeva [71] applies techniques of commutative algebra and Gr\"obner basis
theory to obtain a short proof that supersolvable arrangements satisfy
the LCS formula, in addition to other related computational results.

In research closely related to the lower central series of arrange-
ment groups, Kohno used the iterated $integral/holonomy$ Lie algebra
approach to construct representations of the (pure) braid group, and
more generally to study the monodromy of local systems over hyper-
plane complements. This work is also closely tied to the theory of gen-
eralized hypergeometric functions. See [49] for a description of these
developments. Cohen and Suciu pursued similar ideas using methods
more closely connected to those of [36] in [15].

2.2. The $D_{n}$ reflection arrangements

The fundamental groups of the reflection arrangements of type $D_{n}$

have been studied using some of the technical machinery of [36]. Note
that these arrangements, for $n$ $>3$ , are not supersolvable. The author
of [58] constructs a presentation which he claims presents these funda-
mental groups as “almost direct products” in the sense of $[36, 15]$ . He
used this to show that these groups are residually nilpotent. In 1994
we tried to use this presentation to get more precise calculations for
the lower central series of these groups, at least for $n=4$ . In fact
we found that the presentation in [58] is not correct. Even for the $D_{3}$

arrangement, which is supersolvable, the results one deduces from [58]
do not jibe with the LCS formula, which is known to hold for $D_{3}$ . In
[56] Liebman and Markushevich adopt a different approach and derive
a different presentation to show that the $D_{n}$ arrangement groups are
residually nilpotent.

It was in the course of this research that we started computing $\phi_{4}$

by machine. In addition to finding the counterexample $X_{2}$ described
above, we also computed $\phi_{4}=183$ for the $D_{4}$ reflection arrangement.
The LCS formula yields $\phi_{4}=186$ . So the $D_{4}$ arrangement fails the LCS
formula, contrary to another assertion [46] reported on in [37].

The work of Shelton and Yuzvinsky [82] make it clear why the ar-
gument of [46] for the LCS formula for the $D_{n}$ reflection arrangements
fails: these arrangements, for $n$ $>3$ , do not have quadratic $OS$ algebras,



Homotopy theory, II 105

by [26]. Hence the Aomoto-Kohno complex R. cannot be exact for these
arrangements.

So we are left with no examples of arrangements which are not
supersolvable, yet are rational $K(\pi, 1)$ , and no examples of arrangements
satisfying the LCS formula which are not rational $K(\pi, 1)$ .

Problem 2.2. Find examples of non-supersolvable or non-rational
$K(\pi, 1)$ arrangements satisfying the $LCS$ formula, or prove that such ex-
amples do not exist.

2.3. Work of Cohen and Suciu on the Chen groups

As noted above, the ranks of the quotients in the lower central series
of fiber-type arrangements are determined by the betti numbers of the
complement. Prom this point of view, the pure braid groups look like
products of free groups (though they are not; see [38].) In the last few
years, Cohen and Suciu have introduced the Chen groups into the study
of arrangements, providing a computable tool for distinguishing similar
arrangements.

The Chen groups of a group $G$ are the lower central series quotients
of $G$ modulo its second commutator subgroup $G’’$ . If for any group
$G$ we let $\Gamma_{k}(G)$ denote the $k^{th}$ lower central series subgroup, then the
homomorphism $G\rightarrow G/G^{//}$ induces an epimorphism

$\frac{\Gamma_{k}(G)}{\Gamma_{k+1}(G)}\rightarrow\frac{\Gamma_{k}(G/G^{J/})}{\Gamma_{k+1}(G/G^{J})},=k^{th}$ Chen group

Thus the ranks $\phi_{k}$ of quotients of lower central series groups are no
less than the corresponding ranks $\theta_{k}$ of Chen groups. In the case of the
pure braid group, the ranks $\theta_{k}$ are determined in [12]; they are given by
the generating function

$\sum_{k=2}^{\infty}\theta_{k}t^{k-2}=\left(\begin{array}{ll}n & +1\\ & 4\end{array}\right)$ . $\frac{1}{(1-t)^{2}}-$ $\left(\begin{array}{l}n\\4\end{array}\right)$

In particular, these numbers differ from those for the product of free
groups, providing a tidy proof that the pure braid groups are not such
products.

Cohen and Suciu [11] provide a detailed study of these groups includ-
ing a method for their computation from a presentation of the Alexander
invariant (see the discussion of presentations of the fundamental group
below.) It is interesting that while these groups are very effective in
distinguishing similar groups, there is not yet an example of combinato-
rially equivalent arrangements with different Chen ranks. In particular,
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they do not distinguish the examples of Rybnikov [80] of combinatorially
equivalent, homotopically different arrangements (see Section 1.3).

2.4. Cohomological properties of the fundamental group

In 1972 Deligne [21] proved that for a complexification of a real
simplicial arrangement, the complement $M$ is aspherical (also expressed
by saying that $M$ is a $K(\pi, 1)$ space.) That is, the universal cover of
$M$ is contractible. Since all real reflection arrangements are simplicial,
this solved a question raised and partially answered by Brieskorn in
[9]. The original study of this sort of problem was the work of Fadell
and Neuwirth [25] on the pure braid group. Following [86], the authors
introduced in [36] the notion of fiber-type arrangement and observed
that for this class $M$ is aspherical, essentially by the iterated fibration
argument of Fadell and Neuwirth. So it is natural to ask: for what
arrangements is $M$ aspherical?. It is known by work of Hattori [42] that
not all are – the arrangement defined by $Q=xyz(x+y+z)$ is the
simplest example.

Here we wish to touch upon the algebraic consequences of aspheric-
ity. Now if $M$ is aspherical, the (known) cohomology of $M$ is isomorphic
to the cohomology of the group. Since $M$ has cohomological dimension
$rk(A)<\infty$ , $\pi_{1}(M)$ does also. In addition, $\pi_{1}(M)$ has no torsion, and
there is a $K(\pi, 1)$ space, $\pi=\pi_{1}(M)$ , with the homotopy type of a finite
complex (namely, $M$ ). So here is another open problem:

Problem 2.3. Are all arrangement groups torsion-free l?

The answer is of course yes for real reflection arrangements and
for fiber-type (or supersolvable) arrangements. One approach to this
question is to show that all arrangement groups are orderable. Here we
say a group $G$ is orderable provided that there is a linear order $<onG$

so that $g<h$ implies $cg<ch$ for all $c\in G$ . It follows easily that an
orderable group has no torsion. The braid group was shown orderable
by Dehornoy in [20]; at the Tokyo meeting L. Paris proved that the
group of a fiber-type arrangement is orderable [68]. It is not known
whether all arrangement groups are orderable. Note that the group of
an arrangement has a finite presentation of a fairly restricted type, as
described in Section 4.1, and that the relators all lie in the commutator
subgroup.

There are some useful observations concerning these ideas in [78].
For instance, we have the following theorem.

Theorem 2.4. For $j\geq 2$ the Hurewicz map

$\phi$ : $\pi_{j}(M)\rightarrow H_{j}(M)$
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is trivial.

As a consequence, the second homology of $\pi_{1}(M)$ is isomorphic to
$H_{2}(M)$ . In addition, it is mentioned there that the arrangement defined
by

$Q=xyz(y+z)(x-z)(2x+y)$

has the property that there is no arrangement with aspherical com-
plement with the same intersection lattice in rank one and two. The
following result is also proved in [78].

Theorem 2.5. The complement of a central arrangement of rank
three is aspherical provided that the fundamental group has cohomological
dimension three and is of type $FL$ .

A group $\pi$ is type $FL$ provided that $\mathbb{Z}$ (as a trivial $\mathbb{Z}[\pi]$ module
has a finite resolution by free $\mathbb{Z}[\pi]$ -modules. An equivalent statement is
that there should exist a fifinite $CW$ complex which is a $K(\pi, 1)$ -space.
Theorem 2.5 shows that for central rank three arrangements asphericity
is determined by the fundamental group.

S3. Arrangements with aspherical complements

Much of the early history of the topology of arrangements revolves
around the “

$K(\pi, 1)$ problem,” the problem of determining which ar-
rangements have aspherical complements. (Such an arrangement is
called a $K(\pi, 1)$ arrangement) This history is described in some detail
in [37] (see also Section 2.4). In addition, we proved an $adhoc$ necessary
condition [37, Thm. 3.1] for asphericity involving “simple triangles,” and
introduced the notion of formal arrangement, which was shown to be a
necessary condition for $K(\pi, 1)$ and rational $K(\pi, 1)$ arrangements. A
great deal of progress was made in these areas in the intervening years,
which we report on in this section.

3.1. Free arrangements are not aspherical

In our earlier survey, we highlighted the Saito conjecture, that all
free arrangements are aspherical. In 1995 Edelman and Reiner [23] pro-
vided counterexamples, which we briefly describe.

Let $S$ denote the polynomial ring of $V$. A linear map $\theta$ : $S\rightarrow S$ is a
derivation if for $f$ , $g\in S$ , we have $\theta(fg)=f\theta(g)+g\theta(f)$ . The module
of $A-$derivations is defined by

$D(A)=\{\theta|\theta(Q)\in QS\}$
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where $Q$ is the defining polynomial of the arrangement. Then the ar-
rangement is free provided that $D(A)$ is a free $S$-module.

It is known [86] that reflection arrangements are free; for their many
pleasant properties see [65]. In 1975 K. Saito conjectured that free ar-
rangements should be aspherical. In their study of tilings of centrally
symmetric octagons in [23], Edelman and Reiner found the family of
arrangements given by

$Q(A_{\alpha})=xyz(x-y)(x-z)(y-z)(x-\alpha y)(x-\alpha z)(y-\alpha z)$

with $\alpha\in \mathbb{R}$ . They proved that the corresponding arrangements are free
for all $\alpha$ , while they are not aspherical for $\alpha\neq-1,0,1$ . The proof of
freeness is direct, using addition-deletion [65, Theorem 4.51] while the
non-asphericity follows from the “simple triangle” criterion of [37]. The
counter-example $A_{-2}$ is pictured in Figure 4.

FIGURE 4. Free but not $K(\pi, 1)$

3.2. Formality and related concepts

The fundamental group of arrangement is determined by a generic
3-dimensional section. Based on the idea that $K(\pi, 1)$ arrangements
should be extremal in some sense, we developed the notion of formal
arrangement in [37]. This has been the subject of several papers since
[5, 8, 91, 33], which provide a better understanding of the concept. Here
is a “modern” definition, equivalent to the original from [37].
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Let $\Phi$ : $\mathbb{C}^{n}\rightarrow V^{*}$ be given by $\Phi(x)=\sum_{i=1}^{n}x_{i}\alpha_{i}$ , where the $\alpha_{i}$ are
the defining forms for $A$ . Let $K=ker(\Phi)$ and let $F$ be the subspace
of $K$ spanned by its elements of weight three (i.e., having three nonzero
entries). Then the arrangement $A$ is formal if $F=K$ .

The orthogonal complement $K^{\perp}\subseteq \mathbb{C}^{n}$ coincides with the point $ P_{A}\in$

$\mathcal{G}\ell(\mathbb{C}^{n})$ defined in Section 1.2. Thus the arrangement $A$ is isomorphic to
the arrangement in $K^{\perp}$ formed by the coordinate hyperplanes. In the
same way, the orthogonal complement $F^{\perp}\supseteq K^{\perp}$ defines an arrangement
$A_{F}$ , called the formalization of $A$ . So $A$ is formal if and only if $A=$
$A_{F}$ . If $A$ is not formal, $A_{F}$ has strictly greater rank, and $A$ is a (not
necessarily generic) section of $A_{F}$ . Also, $A$ and $A_{F}$ have isomorphic
generic “planar” (i.e., rank-three) sections.

These properties of formalization were asserted in [37], but the ar-
guments we had in mind were not correct. The clarification described
here is due to Yuzvinsky [91]. Examples in [74] show that non-formal ar-
rangements need not be generic sections of their formalizations. The ar-
rangement of Example 2.19 of [74] has the property that the free erection
of the underlying matroid is not realizable, but (contrary to the asser-
tion in [74] $)$ there is nevertheless a realizable (formal) erection. Matroid
“erection” is the reverse of (corank one) truncation; truncation is the
matroid-theoretic analogue of generic section. The free erection of an
erectible matroid is the unique erection with “the most general position”
– see [89].

These observations are enough to establish the following results from
[37]. The third assertion follows immediately from the second.

(i) If $A$ is a $K(\pi, 1)$ arrangement, then $A$ is formal.
(ii) If $A$ is quadratic, then $A$ is formal.
(iii) If $A$ is a rational $K(\pi, 1)$ arrangement, then $A$ is formal.

We asked whether free arrangements are also necessarily formal.
This was established by Yuzvinsky.

Theorem 3.1 ([91]). If $A$ is a free arrangement, then $A$ is for-
mal

The preceding result was generalized by Brandt and Terao [8]. They
define the notion of $k$-formal arrangement. A formal arrangement has
the property that all relations among the defining equations are conse-
quences of relations which are “localized” at rank-two flats, in the sense
that an element of $K$ of weight three gives rise to a three-element sub-
set of a rank-two flat. A formal arrangement is 3-formal if all relations
among these local generators of $F=K$ are themselves consequences of
relations which are localized at rank-three flats of $A$ . This construction
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is iterated to define the notion of $k$-formal arrangement for every $k\geq 2$ .

See [8] for the precise definition. An arrangement of rank $r$ is automati-
cally $k$-formal for every $k\geq r$ . The original notion of formality coincides
with the case $k=2$ .

Theorem 3.2 ([8]). If $A$ is a free arrangement of rank $r$ , then $A$

is $k$ -formal for every $2\leq k<r$ .

The converse is false [8].
Related work appears in [5], where the authors show that the dis-

criminantal arrangements of Manin and Schechtman [57] (see Section
3.4.2) are formal, and the “very generic” discriminantal arrangements
are 3-formal, though none are free.

An arrangement is locally formal [91] if, for every flat $X\subseteq[n]$ , the
arrangement $Ax=\{H_{i}|i\in X\}$ is formal. Since freeness, quadratic-
ity, and $K(\pi, 1)$ -ness are all “hereditary properties,” in that they are
inherited by the localizations $A_{X}$ , one has that every free, quadratic, or
$K(\pi, 1)$ arrangement is locally formal.

We asked in [37] whether formality is a “combinatorial property”,
depending only on the underlying matroid. Yuzvinsky constructed coun-
ter-examples in [91].

Theorem 3.3 ([91]). There exist arrangements $A_{1}$ and $A_{2}$ with
the same underlying matroid, such that $A_{1}$ is formal and $A_{2}$ is not
$form$al.

In Figure 5 are the dual point configurations of Yuzvinsky’s ar-
rangements. The dotted line in Figure 5(b) indicates where to “fold”
the configuration to erect it to a rank-four configuration. The nontrivial
planes in the erection are

12389, 12456, 13458, 13678, 14579, 23567, 24789, 25689, and 34679.

Note that these two configurations are lattice-isotopic (over $\mathbb{C}$ ), so nei-
ther is free or $K(\pi, 1)$ .

If $A$ is not formal, then the underlying matroid of $A$ is a strong
map image (under the identity map) of that of $A_{F}$ (see [66] for the gen-
eral definition), and the two matroids have the same rank-three trunca-
tions. These combinatorial properties gave rise to several attempts to
replace the notion of formality with some clearly matroidal condition,

and strenghen Theorem 3.1 and assertion (i) above. For example one
can ask for conditions on a matroid $G$ so that every (complex) realization
of $G$ is formal. One is naturally led to the notion of line-closure.
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(a) A formal configuration (b) A non-formal configuration

FIGURE 5. Formality is not matroidal

Let $G$ be a matroid on ground set $[n]$ . the line-closure of a subset
$S$ of $[n]$ is the smallest subset of $[n]$ which contains every line (that is,
rank-two flat) spanned by points of $S$ . A set is line-closed if it is equal to
its line-closure. The matroid $G$ is line-closed if every line-closed subset
of $[n]$ is a flat of $G$ . In his current work in progress [33], the first author
has established the following result.

Theorem 3.4. An arrangement $A$ is quadratic only if the under-
lying matroid $G(A)$ is line-closed.

Corollary 3.5. The underlying matroid of a rational $K(\pi, 1)$ ar-
rangement is necessarily line-closed.

The converse of Theorem 3.4, that $A$ is quadratic when $G(A)$ is
line-closed, is very likely also true. A crucial step in the proof is yet to
be completed, however, so this assertion remains an open problem.

Yuzvinsky [90] defined a formal matroid to be a matroid $G$ possessing
a basis (of $rk(G)$ points) whose line-closure is $[n]$ . Every line-closed
matroid is formal in this sense. In fact a matroid $G$ is line-closed if and
only if the line-closure of every basis of each flat $X$ is equal to $X$ . Every
realization of a formal matroid is formal.

In [33] we define a matroid $G$ to be taut if $G$ is not a strong map
image of a matroid $G^{J}$ of greater rank with the same points and lines,

and locally taut if every flat of $G$ is taut. Every line-closed matroid is
locally taut, in fact every formal matroid is taut. Every realization of
a (locally) taut matroid is (locally) formal. There exist matroids which
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are taut but not formal [19]. A weak version of the first part of the
following problem was suggested by Yuzvinsky in his talk [90].

Problem 3.6. Prove that the matroid of a free or $K(\pi, $1) ar-
rangement is necessarily taut.

Joseph Kung has pointed out to us that a locally taut matroid is
uniquely determined by its points and lines, which suggests the following
interesting problem.

Problem 3.7. Prove that the underlying matroid of a locally for-
mal arrangement ( $e.g$ . a free or $K$ ( $\pi$ , 1) arrangement) is uniquely de-
termined by its points and lines.

This last problem is a variant on the following questions from [37],
the first of which is Terao’s Conjecture, and both of which remain open.

Problem 3.8. Prove that freeness and $K(\pi, 1)$ -ness of arrange-
ments are matroidal properties.

We will refrain from discussing Terao’s Conjecture further, except to
pose a weak version which fits the spirit of this paper, and is interesting
in its own right.

Problem 3.9. Prove that freeness is preserved under lattice-isotopy.

3.3. Tests for asphericity

Some progress was also made on the problem of finding sufficient
conditions for an arrangement to be $K(\pi, 1)$ . The main results are the
weight test of [31] and its application to factored arrangements by Paris
[69]. A new technique involving modular flats was recently discovered
and presented at the conference $[70, 35]$ .

The complement $M$ of a 2-dimensional affine arrangement $A$ is built
up out of $K(\pi, 1)$ spaces, specifically $(r, r)$ torus link complements, in a
relatively simple way, as is reflected in the Randell-Salvetti-Arvola pre-
sentations (see Section 4.1). In fact this structure mirrors precisely con-
structions from geometric group theory related to complexes of groups.
This observation allows one to construct a relatively well-behaved cell
complex which has the homotopy type of the universal cover of $M$ , and
to apply the weight test of Gersten and Stallings [83] to derive a test for
asphericity of $M$ .

Theorem 3.10 ([31]). If $A$ is a complexifified affine arrangement
in $\mathbb{C}^{2}$ that admits an $A$ -admissible, aspherical system of weights, then
$A$ is a $K(\pi, 1)$ arrangement.
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The question remains what an $A$-admissible, aspherical system of
weights is. This involves the complex $B$ of bounded faces in the subdi-
vision of $\mathbb{R}^{2}$ determined by $A$ . A weight system is an assignment of a
real number weight to each “corner” of each 2-cell in $B$ . The system is
aspherical if the sum of weights around any d-gon at most $d-2$ . The
system is $A$-admissible if certain sums of weights at vertices of $\Gamma$ are at
least $ 2\pi$ . See [31] for more detail.

The universal cover complex constructed in [31] may be used in
some cases to construct explicit essential spheres showing that $M$ is
not aspherical. Radloff [74] used this method to prove some necessary
conditions for $K(\pi, 1)$ -ness, along the lines of the “simple triangle” test
of [37], and found several new examples of non- $K(\pi, 1)$ arrangements.

Falk and Jambu introduced the notion of factored arrangement in
[34], originally in an attempt to find a combinatorial criterion for free-
ness. A factorization of an arrangement $A$ is a partition of $[n]$ such that
each flat of $G(A)$ of rank $p$ meets precisely $p$ blocks, and meets one of
them in a singleton, for each $p$ . This property is necessary and sufficient
for the $OS$ algebra $A(A)$ to have a complete tensor product factorization
-see [6, 34, 88, 65]. When $A$ has a factorization, we say $A$ is factored.

Paris realized that a factorization of a rank-three arrangement pro-
vides a template for a very simple $A$-admissible, aspherical weight sys-
tem.

Theorem 3.11 ([69]). If $A$ is a factored, complexifified arrange-
ment in $\mathbb{C}^{3}$ , then $A$ is a $K(\pi, 1)$ arrangement.

Every supersolvable arrangement is factored, so this result provides
a new, wider class of $K(\pi, 1)$ arrangements, at least in rank three.

Problem 3.12. Show that factored arrangements of arbitrary rank
are $K(\pi, $1).

A flat $X$ of a matroid $G$ is modular if $rk(X\vee Y)+rk(X\wedge Y)=$

$rk(X)+rk(Y)$ for every flat Y. The following result was discovered
independently by Paris and Falk-Proudfoot

Theorem 3.13 ([70, 73, 35]). If $X$ is a modular flat of arbitrary
rank in $G(A)$ , then there is a topological fifibration $M(A)\rightarrow M(A_{X})$

whose fifiber is the complement of a projective arrangement.

This generalizes the corank-one case, which gives rise to fiber-type
arrangements, established in [87]. The new result can be used to con-
struct or recognize $K(\pi, 1)$ arrangements if the base (whose matroid is
the modular flat $X$ ) and fiber (whose matroid is the complete principal
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truncation of $G(A)$ along $X$ ) are known to be $K(\pi, 1)$ . This method is
used to construct some interesting new examples in [35]. Refer to Paris’
paper [68] in this volume for more details.

3.4. Some crucial examples

In this section we want to briefly discuss some specific and inter-
esting types of arrangements for which the $K(\pi, 1)$ problem is unsolved.
These might be regarded as test subjects for new techniques; they qualify
as “the first unknown cases.”

First we cite another improvement to the table of implications in

[37]. Recall the definition of parallel arrangement from Section 2.1.
In [37] we had listed the implication “parallel $\Rightarrow$ $K(\pi, 1)$

” as “not
known, of significant interest.” In unpublished work, Luis Paris has
shown this implication to be false. Specifically, he showed that the
Kohno arrangement $X_{2}$ (defined in Section 2.1) is not $K(\pi, 1)$ . The proof
establishes that the fundamental group contains a subgroup isomorphic
to $\mathbb{Z}^{4}$ ; the result then follows from [37, Thm. 3.2]. The copy of $\mathbb{Z}^{4}$ is
generated by $a$ , $b$ , $c$ , and the commutator $[d, e]$ , where $a$ , $b$ , $c$ , $d$ , and $e$

are the canonical generators corresponding to the hyperplanes $x\pm z=$

$0$ , $z=0$ , and $x+y\pm 2z=0$ respectively.
3.4.1. Complex reflection arrangements Fadell and Neuwirth showed

in 1962 that the complement of the $A_{\ell}$ reflection (or braid) arrangement
is $K(\pi, 1)$ . In 1973 Brieskorn proved this for many real reflection ar-
rangements, followed soon thereafter by Deligne’s proof of the general
case. Orlik and Solomon extensively studied arrangements of hyper-
planes invariant under finite groups generated by complex reflections
(see [65, Chapter 6]). It is natural to ask if all such arrangements are as-
pherical. We believe the conjecture that they are is due to Orlik, though
it was proposed long before it ever appeared in print. It is known [65]
that the answer is affirmative in all cases except six exceptional, non-
complexified arrangements, some of which have rank three. The proofs
for the known cases use a variety of techniques, and essentially proceed
from the Shepard-Todd classification of irreducible unitary reflection
groups (see, e.g., [65]). What seems to be missing is a unifying prop-
erty, similar to the simplicial property for real reflection arrangements
exploited by Deligne. The closest approach to this goal is the work
reported in [65, p. 265] which proves the asphericity of arrangements
associated to Shephard groups (symmetry group of a regular convex
polytope.) Here the problem is reduced to the (already solved) problem
for an associated real reflection arrangement.

Problem 3.14. Give a uniform proof that all unitary reflection
arrangements are $K(\pi, $1).
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3.4.2. Discriminantal arrangements Experience seems to show us
that questions involving asphericity are quite complex for all arrange-
ments but tractible for restricted classes (reflection, fiber-type, generic).
One interesting class is that of the discriminantal arrangements intro-
duced by Manin and Schechtmann [57]. Rather than give the full defi-
nition here we will describe the rank three examples, where the problem
is already interesting.

Consider a real affine arrangement of lines in the plane, obtained
by taking a collection of $n$ points, no three of which are collinear, and
drawing all $\left(\begin{array}{l}n\\2\end{array}\right)$ lines through pairs of these points. Then embed this
configuration in the plane $z=1$ in three-space and cone over the origin
to obtain a central real three-arrangement. Then complexify.

This process can result in arrangements with distinct matroidal and
topological structure, even for fixed $n[30,5]$ . The discriminantal ar-
rangements are obtained from “very generic” collections of points, for
which no three of the $\left(\begin{array}{l}n\\2\end{array}\right)$ lines are concurrent except at the original $n$

points.
The arrangement $C(4)$ is linearly equivalent to the braid arrange-

ment of rank three. An easy calculation shows that the Poincar\’e poly-
nomial associated to the cohomology of $C(n)$ does not factor over $\mathbb{Z}$ for
$n\geq 5$ , so that these arrangements are not free and are not of fiber-type.
Also $C(n)$ is not simplicial for $n\geq 5$ . The arrangements $C(n)$ for $n\geq 6$

are not aspherical, by [37, Thm. 3.1].
For $n=5$ , one obtains a complexified central three-arrangement of

10 planes. This arrangement is not factored. More generally $C(5)$ does
not support an admissible, aspherical system of weights, so the weight
test fails. On the other hand, all of the standard necessary conditions
for asphericity hold.

Problem 3.15. Determine whether the discriminantal arrange-
ment $C(5)$ is $K(\pi, $1).

A solution to this problem would also determine whether the space
of configurations of six points in general position in $\mathbb{C}P^{2}$ is aspherical
[30], a result which would be of significant interest.

3.4.3. Deformations of reflection arrangements A “deformation” of
a reflection arrangement is an affine arrangement with defining equations
of the form

$\alpha_{i}(x_{1}, \ldots, x_{\ell})=c_{ij}$ ,

where the $\alpha_{i}$ are the positive roots in some root system, and $c_{ij}\in \mathbb{R}$ .

This class of arrangements is of great interest to combinatorialists, and
is the subject of the paper of Athanasiadis in this volume [4].
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As is our custom, we “cone” to obtain a central arrangement. For
instance, based on the root system of type $B_{2}$ , we obtain the $B_{2}Shi$

arrangement, defined by the polynomial

$Q=xyz(x+y)(x -y)(x-z)(y-z)(x+y-z)(x-y -z)$ .

(Shi arrangements are obtained by setting $c_{i1}=0$ and $c_{i2}=1$ for all
$i.)$ This nine-line complexified arrangement has a factorization, given
by the partition

$\{\{4\}, \{1, 2, 5, 7\}, \{3, 6, 8, 9\}\}$ ,

and is therefore a $K(\pi, 1)$ arrangement. On the other hand, the Shi
arrangement constructed in a similar way from the root system of type
$G_{2}$ is not factored or simplicial, and has no simple triangle.

Problem 3.16. Decide whether the $G_{2}$ Shi arrangement is $K(\pi, $1).

More generally, we propose the following.

Problem 3.17. Decide which Shi arrangements are $K(\pi, $1).

S4. Topological properties of the group of an arrangement

At the time of the publication of [37], a presentation of the fun-
damental group of the complement of a complexified arrangement had
been derived [76]. In the meantime, a similar presentation was found for
arbitrary complex arrangements [3], and several different “spines” for
the complement, some of them modelled on group presentations, were
constructed [81, 29, 13, 50]. These group presentations have been used to
study the Milnor fibration and Alexander invariants of the complement.
We report briefly on these ideas here.

4.1. Presentations of $\pi_{1}$

We have seen earlier in the discussion of the lower central series,

Chen groups and group cohomology that certain classes of arrangements
(fiber-type, simplicial) have well-behaved fundamental groups. Due to
work of Arvola [3], Randell [76] and Salvetti [81] an explicit presentation
of $\pi_{1}(M)$ can be written. See [65, Section 5.3] for a clear exposition of
Arvola’s presentation for any complex arrangement, and [29] for the
explicit presentation and some applications of Randell’s presentation,
which holds for complexified arrangements and is naturally simpler than
the general case. A different approach, using the notion of “labyrinth,”
is adopted by Dung and Vui in [22] to arrive at similar presentations for
arbitrary arrangement groups.
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In these presentations one first takes a planar section (or, more
precisely, the projective image), so that one is working with an affine
arrangement in $\mathbb{C}^{2}$ . Then there is one generator for each line of the
arrangement, and one set of relations for each intersection. In all cases
the relations consist entirely of commutators, but to date this has not
shed much light on the questions of group cohomology, torsion in the
fundamental group, or other properties (such as orderability) of the fun-
damental group. A general theme for questions is: to what extent do
arrangement groups mimic the properties of the pure braid groups.

The concept of braid monodromy was introduced by B. Moishezon
[60]. Libgober showed in [50] that the braid monodromy presentation of
the fundamental group yields a two-complex with the homotopy type of
the complement of an algebraic curve (e.g., a line arrangement) trans-
verse to the line at infinity.

Motivated in part by [50], the first author showed in [29] that for
arbitrary line arrangements the 2-complex modelled on the presentation
of [76] serves as an efficient model for constructing the homotopy type of
the complement (in the case of 3-arrangements). This construction was
then used to construct a number of examples with different intersection
lattice but same homotopy type (see also Section 1.3).

In related work Cohen and Suciu [13] have given an explicit descrip-
tion of the braid monodromy of a complex arrangement, using Hansen’s
theory of polynomial covering maps. They show that the resulting pre-
sentation of the fundamental group is equivalent to the Randell-Arvola
presentation via Tietze transformations that do not affect the homo-
topy type of the associated 2-complex. It follows that the complement
is homotopy equivalent to the 2-complex modelled on either of these
presentations, generalizing the result of [29]. For this work Cohen and
Suciu used extensively the concept of braided wiring diagram, which we
briefly describe below. The notion of braided wiring diagram generalizes
Goodman’s concept of wiring diagram [40], and was earlier considered
for arrangements in [17]. (Wiring diagrams appear in combinatorics as
geometric models for rank-three oriented matroids.) The presentations
of [76] and [3] use versions of this idea. In brief, the braided wiring
diagram can be thought of as a template for the fundamental group (or,

for line arrangements, the homotopy type.)
Here is a sketch of the construction. For examples and further

details, in particular, a beautiful derivation using polynomial covering
space theory, see [13]. Since we are interested in the fundamental group,
consider an affine arrangement $A$ in $\mathbb{C}^{2}$ . Choose coordinates in $\mathbb{C}^{2}$ so
that the projection to the first coordinate is generic. Suppose that the
images $y_{1}$ , $\ldots$ , $y_{n}$ of the intersections of the lines have distinct real parts.
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Choose a basepoint $y_{0}\in \mathbb{C}\backslash \{y_{1}, \ldots, y_{n}\}$ , and assume the real parts of
$y_{i}$ are decreasing with $i$ . Let $\xi$ be a smooth path which begins with $y_{0}$

and passes in order through the $y_{i}$ , horizontal near each $y_{i}$ . Then the
braided wiring diagram is $\mathcal{W}=\{(x, z)\in\xi\times \mathbb{C}|Q(x, z)=0\}$ . (Recall
that $Q$ is the defining polynomial of the arrangement.)

This braided wiring diagram should be viewed as a picture of the
braid monodromy of the fundamental group of the arrangement (or as
a picture of the fundamental group itself). In a sense, it carries the
attaching (or amalgamating) information as one computes the funda-
mental group using the Seifert-Van Kampen theorem. Each actual node
in the wiring diagram gives a set of relators, as does each crossing. In
particular, it is shown in [13] that the braided wiring diagram recovers
the Arvola or Randell presentation of $\pi_{1}(M)$ . Indeed, in the real case,
the braided wiring diagram can be identified with the usual drawing of
the arrangement in $\mathbb{R}^{2}$ .

As is the case with ordinary braids, there are “Markov moves”
with which one can modify such a wiring diagram to realize any braid-
equivalence of the underlying braid monodromies. These are given ex-
plicitly in [13]. Rudimentary moves of this type, called “flips,” first
appeared in [29]. Among the consequences we note the following results
which relate braid monodromy and braided wiring diagrams to lattice
isotopy of line arrangements (that is, arrangements in $\mathbb{C}^{2}$ ).

Theorem 4.1 ([13]). Lattice-isotopic arrangements in $\mathbb{C}^{2}$ have
braided wiring diagrams which are related by $a$ fifinite sequence of Markov
moves and their inverses.

Theorem 4.2 ([13]). Line arrangements with braid-equivalent mo-
nodromies have isomorphic underlying matroids.

4.2. The Milnor fiber

The defining polynomial $Q=\prod_{i=1}^{n}\alpha_{i}$ is homogeneous of degree $n$

and can be considered as a map

$Q:M$ $\rightarrow \mathbb{C}^{*}$

It is well-known that this map is the projection of a fiber bundle, called
the Milnor fibration, and that the Milnor fiber $F=Q^{-1}(1)$ should be
of interest. In [79] it was shown that this Milnor fibration is constant in
a lattice-isotopic family, so that the Milnor fiber is indeed an invariant
of lattice-isotopy. Because of this we propose the following definition,
analogous to the definition made in the theory of knots.
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Definition 4.3. Two arrangements are called (topologically) equiv-
alent if they are lattice-isotopic. We say the arrangements have the same
(topological) type.

Thus, arrangements are topologically equivalent if and only if they
lie in the same path component of some matroid stratum in the Grass-
mannian. With this terminology, we have the following result.

Theorem 4.4 ([79]). The Milnor fifiber and fifibration are invari-
ants of topological type.

Now, $F$ is simply an $n$ -fold cover of the complement of the pro-
jectivized arrangement in $\mathbb{C}P^{\ell-1}$ . Since the algorithms of the previous
section work to compute the fundamental group of this latter space,
questions involving the fundamental group and cohomology of $F$ are also
questions involving the group of the arrangement. In particular, while
the cohomology of $M$ is determined by the intersection lattice, that of
$F$ may not be. The situation is analogous to that of plane curves, where
work going back to Zariski [92] shows that not only the type but the po-
sition of the singularities affects the irregularity. (The irregularity here
is simply half the “excess” in the first betti number of $F.$ )

Early results concerning the Milnor fiber of an arrangement (of-
ten in the general context of plane curves) appear in work of Libgober
[50, 51, 52, 53] and Randell [75], particularly with respect to Alexan-
der invariants. Libgober’s work gave considerable information about
the homology of the Milnor fiber in relation to the number and type of
singularities of the arrangement, their position and the number of lines.
The paper [75] observed that the Alexander polynomial was equal to the
characteristic polynomial of the monodromy on the Milnor fiber.

The paper of Artal-Bartolo [2] included an interesting example: for
the rank three braid arrangement $A_{3}$ the first betti number of the Milnor
fiber is seven, an excess of two over the five” predicted” by the number of
lines. (This result can be obtained as an interesting exercise by applying
the Reidemeister-Schreier rewriting algorithm to the presentations of the
fundamental group.) Orlik and Randell [54] showed that in the generic
case the cohomology of the Milnor fiber is minimal, given the number
of lines, below the middle dimension.

Cohen and Suciu carry forward the study of the Milnor fiber in [11].
Using the group presentation and methods of Fox calculus they give
twisted chain complexes whose homology gives that of the Milnor fiber.
Their methods are effective, and several explicit examples are given.
The monodromy action on the Milnor fiber is of course crucial, and this
monodromy is determined as well.
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Finally, we note the following problem, which remains open after
many years.

Problem 4.5. Prove that the homology of the Milnor fifiber of $A$

depends only on the underlying matroid.
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Abstract.

Consider the set of surface-curve pairs $(X, C)$ , where $X$ is a
normal surface and $C$ is an algebraic curve. In this paper, we de-
fine a family $\mathcal{F}$ of normal surface-curve pairs, which is closed under
coverings, and which contains all smooth surface-curve pairs $(X, C)$ ,

where $X$ is smooth and $C$ has smooth irreducible components with
normal crossings. We give a modification of W. Neumann’s defini-
tion of plumbing graphs, their associated 3-dimensional graph mani-
folds, and intersection matrices, and use this construction to describe
rational intersection matrices and boundary manifolds for regular
branched coverings.

\S 1. Introduction

Let $(X, C)$ be a surface-curve pair, consisting of a normal surface
$X$ and an algebraic curve $C$ $\subset X$ . The boundary manifold of a regu-
lar neighborhood $M(X,\underline{C})-$ of $C$ in $X$ can be simply described by taking

any smooth model $(X, C)$ of $(X, C)$ , and using W. Neumann’s associ-
ated plumbing graphs $\Gamma_{p1u1nb}(X, C)$ (see [Neu]). The intersection matrix
$S(X, C)$ of a surface-curve pair $(X, C)$ is the matrix with entries the pair-
wise rational intersections of irreducible components of $C$ with respect
to some ordering. When $(X,C)$ is a smooth surface-curve pair, where $X$

is smooth and $C$ has smooth irreducible components with normal cross-
ings, the intersection matrix $S(X, C)$ only depends on the combinatorics
of $C$ , and thus is also determined by $\Gamma_{p1umb}(X,C)$ . Neumann defines
the intersection matrix $S(\Gamma_{p1umb})$ for the plumbing graph of a smooth
surface-curve pair $(X, C)$ , so that $S(X, C)=S(\Gamma_{p1umb}(X, C))$ .

A modified definition of plumbing graphs is useful for dealing with
branched coverings. A (regular) covering of surface-curve pairs

$\rho:(Y, D)\rightarrow(X,C)$
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is a finite surjective morphism

$\rho$ : $Y\rightarrow X$

so that $V$ $=\rho^{-1}(C)$ and the restriction

$\rho$ : $Y\backslash D\rightarrow X\backslash C$

is a (regular) unbranched covering. Even if $(X,C)$ is a smooth surface-
curve pair, the covering $(Y, D)$ of $(X, C)$ need not be smooth.

Let $S$ be the collection of smooth surface-curve pairs. We will define
a family $T$ of normal surface-curve pairs, which contains $S$ and is closed
under coverings, in the sense that: if $(X, C)\in \mathcal{F}$ , and $\rho:(Y, D)\rightarrow(X, C)$

is a covering of surface-curve pairs, then $(Y, D)\in \mathcal{F}$ . We modify Neu-
mann’s definition of plumbing graphs and their intersection matrices
to describe the local topology of surface-curve pairs in $\mathcal{F}$ and their in-
tersection matrices. This gives a method for studying coverings and
computing intersection matrices without having to pass to smooth mod-
els, and generalizes the results of [Hirl] and [Hir2], where formulas for
intersection matrices of abelian coverings are given.

The reader is reminded of basic definitions and properties of graphs
of groups and complexes in Section 2. The modified definition of plumb-
ing graphs, and their associated 3-manifolds and coverings are given in
Sections 3. Section 4 contains a definition of normal surface-curve pairs,
their associated plumbing graphs, and associated intersection matrices.
Formulas for invariants of the plumbing graph of a covering of a normal
surface-curve pair from covering data are given in Section 5.

\S 2. Graphs of groups and complexes

The concept of plumbing graph comes out of a more general con-
struction by which finite $CW$-complexes and finitely generated groups
are described in terms of information attached to the nodes and vertices
of a graph. We give the basics of these definitions in this section.

By a graph $\Gamma$ we mean a collection of vertices $\mathcal{V}(\Gamma)$ and oriented
edges $\mathcal{Y}(\Gamma)$ . For any $y\in \mathcal{Y}(\Gamma)$ , we write $o(y)$ for the initial point and
$t(y)$ for the terminal point. We will always assume that graphs are finite
and connected. Furthermore, given $y\in \mathcal{Y}(\Gamma)$ , we will assume $\overline{y}\in \mathcal{Y}(\Gamma)$ ,

where

$o(\overline{y})$ $=$ $t(y)$ , and

$t(\overline{y})$ $=$ $o(y)$ .

For any vertex $v\in \mathcal{V}(\Gamma)$ , denote by $d(v)$ the degree of the graph $\Gamma$ at $v$ .
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A graph of groups $G(\Gamma)$ over $\Gamma$ is a collection of groups

$G_{v}$ , $v\in \mathcal{V}(\Gamma)$ ,

$G_{y}$ , $y\in \mathcal{Y}(\Gamma)$ ,

so that $G_{y}=G_{\overline{y}}$ ; and monomorphisms

$h:G_{y}\rightarrow G_{t(y)}$ ,

for each $y\in \mathcal{Y}(\Gamma)$ .

A path on $\Gamma$ is an ordered, possibly empty, collection

$c=(y_{1}, \ldots, y_{k})$ ,

where
$y_{i}\in \mathcal{Y}(\Gamma)$ for $\dot{?}=1$ , $\ldots$ , $k$ ,

and
$t(y_{i})=o(y_{i+1})$ , for $i=1$ , $\ldots$ , $k-1$ .

Given a path $c=(y_{1}, \ldots, y_{k})$ on $\Gamma$ and collection $r=(r_{0}, \ldots, r_{k})$ , where
$r_{0}\in G_{o(y_{1})}$ , and $r_{i}\in G_{t(y_{i})}$ , for $i=1$ , $\ldots$ , $k$ . Let $|c$ , $r|$ be the word

$r_{0}y_{1}r_{1}\ldots y_{k}r_{k}$ .

Let $F(G(\Gamma))$ be the group of words $|c$ , $r|$ subject to the relations in the
vertex and edge groups $G_{v}$ and $G_{y}$ , and the relation

$yr\overline{y}=r_{1}$ ,

if and only if $r=h_{y}(r_{1})$ .

The fundamental group $\pi_{1}(G(\Gamma))$ can be defined in two ways. The
first is in terms of a basepoint $v_{0}\in \mathcal{V}(\Gamma)$ . A path $c=(y_{1}, \ldots, y_{k})$ is a
closed circuit based at $v_{0}$ , where $v_{0}\in \mathcal{V}(\Gamma)$ , if

$v_{0}=o(y_{1})=t(y_{k})$ .

The fundamental group $\pi_{1}(G(\Gamma), v_{0})$ is defined to be the set of words
$|c$ , $r|$ , where $c$ is a closed circuit based at $v_{0}$ .

The second way to describe the fundamental group $\pi_{1}(G(\Gamma))$ is in
terms of a maximal tree inside $\Gamma$ . A maximal tree $\mathcal{T}$ in $\Gamma$ is a subgraph
containing all vertices of $\Gamma$ , and such that, given any two distinct vertices
$v_{1}$ , $v_{2}\in \mathcal{V}(\Gamma)$ , there is a unique path $c=(y_{1}, \ldots, y_{k})$ in $\mathcal{T}$ so that

$y_{i}\neq\overline{y_{i+1}}$ ,

for $i=1$ , $\ldots$ , $k-1$ , and $v_{1}=o(y_{1})$ , $v_{2}=t(y_{k})$ . The fundamental
group $\pi_{1}(G(\Gamma), \mathcal{T})$ is the group $F(G(\Gamma))$ modulo the normal subgroup
generated by the edges in $\mathcal{Y}(\mathcal{T})$ thought of as elements of $F(G(\Gamma))$ .
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Lemma 0.1 ([Ser], p. 43). The natural homomorphism

$\pi_{1}(G(\Gamma), v_{0})\rightarrow\pi_{1}(G(\Gamma), \mathcal{T})$ ,

given by including $\pi_{1}(G(\Gamma), v_{0})$ in $F(G(\Gamma))$ and then taking the quotient
by the normal subgroup generated by $\mathcal{Y}(\mathcal{T})$ , is an isomorphism.

Given a maximal tree $\mathcal{T}$ of $\Gamma$ , there are natural maps

$\psi_{v}$ : $G_{v}\rightarrow\pi_{1}(G(\Gamma), \mathcal{T})$

induced by the natural inclusion of $G_{v}$ in $F(G(\Gamma))$ .

Lemma 0.2 ([Ser], Theorem 11, Corollary 1). The maps $\psi_{v}$ are
monomorphisms.

The fundamental group of $G(\Gamma)$ can also be considered as the fun-
damental group of a naturally associated finite $CW$-complex. A graph
of complexes $\Sigma(\Gamma)$ , is a collection of finite $CW$ complexes

$X_{v}$ , $v\in \mathcal{V}(\Gamma)$ ,

and subcomplexes
$X_{y}\subset X_{t(y)}$ , $y\in \mathcal{Y}(\Gamma)$ ,

such that the induced maps

$\pi_{1}(X_{y})\rightarrow\pi_{1}(X_{t(y)})$

are injective, with homeomorphisms

$h_{y}$ : $X_{\overline{y}}\rightarrow X_{y}$ ,

so that $h_{\overline{y}}=h_{y}^{-1}$ .

Given a graph of complexes $\Sigma(\Gamma)$ , the associated graph complex,
which we will also denote by $\Sigma(\Gamma)$ , is the $CW$-complex obtained by
gluing together the $X_{v}$ along the $X_{y}$ according to the identifications $h_{y}$ .

Setting $G_{v}=\pi_{1}(X_{v})$ , for $v\in \mathcal{V}(\Gamma)$ , and $G_{y}=\pi_{1}(X_{y})$ , for $y\in \mathcal{Y}(\Gamma)$ ,

gives a corresponding graph of groups $G_{\Sigma}(\Gamma)$ .

Theorem 1 ([Hem], Theorem 2.1). The fundamental group of
$G_{\Sigma}(\Gamma)$ is isomorphic to the fundamental group of $\Sigma(\Gamma)$ .

A morphism between graphs of complexes

$\Psi$ : $\Sigma^{J}(\Gamma^{/})\rightarrow\Sigma(\Gamma)$
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is a morphism of graphs
$\Psi_{\Gamma}$ : $\Gamma^{J}\rightarrow\Gamma$

and cellular maps

$\Psi_{v}$ : $X_{v}\rightarrow X_{\Psi_{\Gamma}(v)}$ , $v\in \mathcal{V}(\Gamma^{/})$ , and

$\Psi_{y}$ : $X_{y}\rightarrow X_{\Psi_{\Gamma}(y)}$ , $y\in \mathcal{Y}(\Gamma’)$ ,

so that

$h_{\tau/\downarrow}X_{y}$

$\rightarrow X_{\Psi_{\Gamma}(y)}\Psi_{y}h_{\Psi_{\Gamma}(/)\downarrow}$

.
$X_{t(y)}\rightarrow\Psi_{t(\tau/)}X_{\Psi_{\Gamma}(t(y))}$

commutes, for all $y\in \mathcal{Y}(\Gamma^{J})$ .

An (unbranched) covering

$\rho:\Sigma^{/}(\Gamma^{J})\rightarrow\Sigma(\Gamma)$

is a morphism of graph complexes so that

$\rho_{\Gamma}$ : $\Gamma’\rightarrow\Gamma$

is onto, and

$\rho_{v}$ : $X_{v}\rightarrow X_{\rho r(v)}$ , $v\in \mathcal{V}(\Gamma^{/})$ , and

$\rho_{y}$ : $X_{y}\rightarrow X_{\rho r(y)}$ , $y\in \mathcal{Y}(\Gamma’)$

are unbranched coverings. Note that if $\rho$ is an unbranched covering,
then the induced map

$G_{\Sigma’}(\Gamma’)\rightarrow G_{\Sigma}(\Gamma)$

on graphs of groups induces a monomorphism of groups

$\rho_{*}$ : $\pi_{1}(G_{\Sigma’}(\Gamma), v_{0})\rightarrow\pi_{1}(G\Sigma(\Gamma), \rho(v_{0}))$ ,

for any $v_{0}\in\Gamma’$ .

An unbranched covering

$\rho:\Sigma^{J}(\Gamma^{J})\rightarrow\Sigma(\Gamma)$

is regular if the maps $\rho_{v}$ and $\rho_{y}$ are regular coverings, for all $v\in \mathcal{V}(\Gamma^{J})$

and all $y\in \mathcal{Y}(\Gamma^{J})$ . Regular coverings $\Sigma^{J}(\Gamma^{J})$ of $\Sigma(\Gamma)$ correspond to
epimorphisms

$\psi$ : $\pi_{1}(G_{\Sigma}(\Gamma))\rightarrow F$,
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where $F$ is a finite group.
Fix a maximal tree in $\Gamma$ . A lift

$\ell$ : $\mathcal{T}\rightarrow\Gamma’$

of $\mathcal{T}$ in the covering graph $\Gamma^{J}$ , is a morphism of graphs so that

$\rho_{\Gamma}(\ell(v))$ $=$ $v$ , $v\in \mathcal{V}(\mathcal{T})$ , and

$\rho_{\Gamma}(\ell(y))$ $=$ $y$ , $y\in \mathcal{Y}(\mathcal{T})$ .

Identify $G_{v}=\pi_{1}(X_{v})$ and $G_{y}=\pi_{1}(X_{y})$ with the corresponding
subgroups of

$\pi_{1}(G_{\Sigma}(\Gamma))=\pi_{1}(G_{\Sigma}(\Gamma), \mathcal{T})$ .

For each $v\in \mathcal{V}(\Gamma)$ , let $\psi_{v}$ be the restriction of $\psi$ to $G_{v}$ , and, for each
$y\in \mathcal{Y}(\Gamma)$ , let $\psi_{y}$ be the restriction of $\psi$ to $G_{y}$ .

Let

$F_{v}$ $=$ $\psi_{v}(G_{v})$ , $v\in \mathcal{V}(\Gamma)$ , and

$F_{y}$ $=$ $\psi_{y}(G_{y})$ , $y\in \mathcal{Y}(\Gamma)$ .

Note that the conjugacy classes of $G_{v}$ and $G_{y}$ , and hence $F_{v}$ and $F_{y}$

don’t depend on the choice of maximal tree $\mathcal{T}$ .

For $y\in \mathcal{Y}(\Gamma)$ , let $s(y)=\psi(y)$ , where we identify $\mathcal{Y}(\Gamma)$ with its
natural image in $\pi_{1}(G_{\Sigma}(\Gamma), \mathcal{T})$ .

The following propositions and corollaries follow from elementary
properties of coverings.

Proposition 2. For $v\in \mathcal{V}(\Gamma)$ , the identification
$[\alpha F_{v}]=\alpha\ell(v)$

gives $a$ one-to-one correspondence between elements in the preimage
$\rho^{-1}(v)$ cosets of $F_{v}$ in F. Furthermore, for $v^{J}\in\rho^{-1}(v)$ , the covering

$\Sigma_{v}^{/},$ $\rightarrow\Sigma_{v}$

has defining map
$\psi_{v}$ : $\pi_{1}(\Sigma_{v})=G_{v}\rightarrow F_{v}$ .

Corollary 3. The number of vertices in $\rho^{-1}(v)$ is

$\#|\rho^{-1}(v)|=[F:F_{v}]$

where $[F : F_{v}]$ is the index of $F_{v}$ in F. For $v^{/}\in\rho^{-1}(v)$ , the degree of
the covering

$\Sigma_{v}^{/},$ $\rightarrow\Sigma_{v}$

is $\#|F_{v}|$ , the order of $F_{v}$ .
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Similarly, for the edges, we have the following.

Proposition 4. For $y\in \mathcal{Y}(\Gamma)$ , the identification

$\alpha\ell(y)=[\alpha F_{y}]$

gives $a$ one to one correspondence between the edges in $\rho^{-1}(y)$ and cosets

of $F_{y}$ in $F$ so that

$t(\alpha\ell(y))=\alpha(s(y)\ell(t(y))=[\alpha s(y)F_{t(y)}]$ .

Furthermore, the covering
$\Sigma_{y}^{J},$ $\rightarrow\Sigma_{y}$

has defining map
$\psi_{y}$ : $\pi_{1}(\Sigma_{y})=G_{y}\rightarrow F_{y}$ .

Corollary 5. For $y\in \mathcal{Y}(\Gamma)$ ,

$\#|\rho^{-1}(y)|=[F:F_{y}]$ ;

for $y^{J}\in\rho^{-1}(y)$ , the covering

$\Sigma_{y}^{/},$ $\rightarrow\Sigma_{y}$

has degree $\#|F_{y}|$ ; and, if $t(y)=v$ and $v’\in\rho^{-1}(v)$ , we have

$\#\{y^{J}\in\rho^{-1}(y) : t(y^{J})=v’\}=\frac{\# F_{v}}{\# F_{y}}$ .

\S 3. Plumbing graphs

In [Wai], F. Waldhausen defines a 3-dimensional graph manifold to
be a manifold with a torus decomposition into Seifert fibered pieces,
noting that this gives the manifold an underlying graph structure. Neu-
mann distills the information using plumbing graphs in [Neu], and devel-
ops a calculus for determining the topological equivalence of two graph
manifolds. In this section, we review the part of his definition of graph
manifold which applies to smooth surface-curve pairs, and then define a
modification which we later show applies to normal surface-curve pairs.

A plumbing graph $\Gamma_{p1u1nb}=\langle\Gamma, g, e\rangle$ is a finite connected graph $\Gamma$ ,
together with maps

$g$ : $\mathcal{V}(\Gamma)\rightarrow \mathbb{Z}\geq 0$

: $\mathcal{V}(\Gamma)\rightarrow \mathbb{Z}$
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Given a plumbing graph $\Gamma_{p1u1nb}$ , there is an associated graph of com-
plexes $M(\Gamma_{p1umb})$ given as follows. For each vertex $v\in \mathcal{V}(\Gamma)$ , let $S_{v}$

be an oriented surface of genus $g(v)$ , with $d(v)$ boundary components,
labeled by the edges $y\in \mathcal{Y}(\Gamma)$ , where $t(y)=v$ ; and let $f_{v}$ : $M_{v}\rightarrow S_{v}$ be
an $S^{1}-$bundle map, with triviahzations at the boundary components of
$S_{v}$ , so that $f_{v}$ has Euler number $e(v)$ .

Let $h$ : $S^{1}\times S^{1}\rightarrow S^{1}\times S^{1}$ be the automorphism defined by $h(a, b)=$

$(b, a)$ . We can think of $h$ as being induced by the action of

$H=\left\{\begin{array}{ll}0 & 1\\1 & 0\end{array}\right\}$

on $\pi_{1}(S^{1}\times S^{1})$ , with respect to the natural identification

$\pi_{1}(S^{1}\times S^{1})=\mathbb{Z}\oplus \mathbb{Z}$ .

Let $T_{y}\in M_{t(y)}$ be the boundary component of $M_{t(y)}$ associated to
the oriented edge $y$ . The local trivialization of $f_{v}$ at $T_{y}$ , canonically
identifies $T_{y}$ with $S^{1}\times S^{1}$ so that $f_{v}|_{T_{\tau/}}$ is projection onto the second
component.

The graph of complexes associated to $\Gamma_{p1umb}$ consists of the mani-
folds

$X_{v}$ $=$ $M_{v}$ , $v\in \mathcal{V}(\Gamma)$ , and

$X_{y}$ $=$ $T_{y}$ , $y\in \mathcal{Y}(\Gamma)$ .

with gluing maps

$T_{\overline{y}}$

$\rightarrow h_{\tau p}$

$T_{y}$

$||$ $||$

$S^{1}\times S^{1}\rightarrow hS^{1}\times S^{1}$

The graph of complexes $M(\Gamma_{p1umb})$ is a graph manifold.
Let $Fin(S^{1}\times S^{1})$ be the set of finite unbranched coverings of $S^{1}\times S^{1}$

to itself. A modified plumbing graph $\Gamma_{p1umb}^{m}=\langle\Gamma, g, e, m\rangle$ is a plumbing
graph with maps

$m:\mathcal{Y}(\Gamma)\rightarrow Fin(S^{1}\times S^{1})$

so that

(1) the induced maps

$m(y)_{*}$ : $\mathbb{Z}\oplus \mathbb{Z}\rightarrow \mathbb{Z}\oplus \mathbb{Z}$



Plumbing Graphs for Normal Surface-Curve Pairs 135

are non-negative upper triangular matrices in $M_{2}(\mathbb{Z})$ ,

$m(y)_{*}=\left\{\begin{array}{ll}a(y) & b(y)\\0 & c(y)\end{array}\right\}$

where $0\leq b(y)<a(y)$ and $c(y)>0$ ; and
(2) the matrices $m(y)_{*}$ and $Hm(\overline{y})_{*}$ have the same image in $\mathbb{Z}\oplus \mathbb{Z}$ .

Given a modified plumbing graph $\Gamma_{p1umb}^{111}=\langle\Gamma, g, e, m\rangle$ , we define an
associated graph manifold $M(\Gamma_{p1u1nb}^{\ln})$ to have vertex and edge manifolds

as for $\Gamma_{p1u1nb}=\langle\Gamma, g, e\rangle$ , except that we identify $T_{y}$ with $S^{1}\times S^{1}$ so that
if $R$ is the element of $GL(2, \mathbb{Z})$ giving

$m(y)_{*}R=Hm(\overline{y})_{*}$ ,

then $h_{y}$ : $T_{\overline{y}}\rightarrow T_{y}$ is the map induced by $R$ . We thus have a commutative
diagram

$m(\overline{y})\downarrow T_{\overline{y}}$

$\rightarrow T_{y}h_{y}m(y)\downarrow$

$S^{1}\times S^{1}\rightarrow hS^{1}\times S^{1}$

Since $h=h^{-1}$ , it follows that $h_{\overline{y}}=h_{y}^{-1}$ .

Morphisms and coverings of modified plumbing graphs are mor-
phisms and coverings of the associated graph manifolds

$\Psi$ : $M(\Gamma_{p1umb}^{m})\rightarrow M(\Gamma_{p1u\iota \mathfrak{n}b}^{m\prime})$

such that the following diagram commutes:

$T_{y}$

$\rightarrow m(y)$
$S^{1}\times S^{1}$

$\Psi_{y}\downarrow$ $||$

$T_{\Psi_{\Gamma}(y)}\rightarrow m(\Psi_{\Gamma}(y))S^{1}\times S^{1}$

Given a plumbing graph $\Gamma_{p1umb}$ , one can associate a modified plumb-
ing graph $\Gamma_{p1umb}^{m}$ , by setting all maps $m(y)$ to be the identity. One can
easily verify that, in this case, the definitions for the associated graph
manifold, and morphisms are the same.

\S 4. Normal surface-curve pairs

Let $X$ be a normal complex projective surface, and let $C$ $\subset X$ be
an algebraic curve. We will assume for simplicity that $C$ is connected.
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Let $|C|$ be the set of irreducible curves in $C$ , and let $\prime\rho=Sing(C)$ . Let
$\mathcal{F}$ be the family of surface-curve pairs $(X, C)$ satisfying the following
conditions:

(1) each $C\in|C|$ is unibranched;
(2) Sing(X)\cap C\subset P; and
(3) for each $p\in Sing(C)$ , there is a locally defined finite covering of

surface-curve pairs

$\mu_{p}$ : $(X, C)\rightarrow(\mathbb{C}^{2}, \{x=0\}\cup\{y=0\}))$

defined near the germ $(X,p)$ .

A surface-curve pair $(X, C)\in \mathcal{F}$ is call a normal surface-curve pair.
The following is immediate.

Lemma 5.1. The family of normal surface-curve pairs is closed
under coverings of surface-curve pairs.

The fundamental group $\pi_{1}(\mathbb{C}^{2}\backslash \{x=0\}\cup\{y=0\})$ is canonically
isomorphic to the integer lattice $\mathbb{Z}\oplus \mathbb{Z}$ , with natural generators given
by meridian loops around $\{x=0\}$ and $\{y=0\}$ . Thus, finite coverings
correspond to 2-dimensional lattices of finite index. Given $p\in P$ , and
$C$ , $D\in C$ containing $p$ , let $a$ , $b$ , $c$ be non-negative integers so that $(a, 0)$

and $(b, c)$ generate the sublattice, and $0\leq b<a$ . Note that the numbers
$a$ , $b$ , $c$ are uniquely determined given the ordering of $C$ and $D$ . Changing
the ordering corresponds to changing the order of the canonical basis for
$\mathbb{Z}\oplus \mathbb{Z}$ , and hence corresponds to switching columns of the matrix

$\left\{\begin{array}{ll}a & b\\0 & c\end{array}\right\}$ ,

and column-reducing to get

$\left\{\begin{array}{ll}a^{J} & b^{J}\\0 & c,\end{array}\right\}=\left\{\begin{array}{ll}a & b\\0 & c\end{array}\right\}$ $R$ ,

where $0\leq b’<a$ and $R\in GL(2, \mathbb{Z})$ .

The matrix $R$ can be obtained from a continued fraction expansion
$[m_{1}, \ldots, m_{k}]$ for $a/b$ , where

$\frac{a}{b}=m_{1}-$

1

$m_{2}-\frac{1}{1}$

$m_{k}$
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Lemma 5.2. The matrix $R$ is given by

$R=HMXH\cdots HM_{k}H$ ,

where

$M_{i}=(M_{i})^{-1}=\left\{\begin{array}{ll}1 & m_{i}\\0 & -1\end{array}\right\}$ ,

for $i=1$ , $\ldots$ , $k$ . Furthermore,

$R^{-1}=HM_{k}H\cdots HM_{1}H$ .

One proof of this lemma comes from a study of the singularity $(X,p)$

(see Theorem 7).

Theorem 6 ([Lauf], [Hir2]). The germ $(X,p)$ is smooth if and
only if $b=0$ . In this case, $C$ must have a normal crossing at $p$ . Other-
wise, the germ $(X,p)$ can be desingularized by replacing $p$ by exceptional
curves $E_{1}$ , $\ldots$ , $E_{k}$ , with self-intersections

$E_{i}^{2}=-m_{i}$ , for $i=1$ , $\ldots$ , $k$ ,

where $[m_{1}, \ldots, m_{k}]$ is the continued fraction expansion for $a/b$ .

Note that reversing the order of the pair of curves $C$ and $D$ passing
through to $p$ simply reverses the order of $E_{1}$ , $\ldots$ , $E_{k}$ . The exceptional
curves and the proper transforms of $C$ and $D$ are arranged as in the
graph of Figure 1,

Figure 1.

where all edges in the graph correspond to normal crossing intersec-
tions.

Given a surface-curve pair $(X, C)\in \mathcal{F}$ , with specified maps $\mu_{p}$ for
$p\in Sing(X)$ , there is a canonically associated modified plumbing graph
$\Gamma_{p1umb}^{m}=\Gamma_{p1u1nb}^{m}(X, C)$ given as follows. Let $(\overline{X},\overline{C})$ be a minimal desin-
gularization of $(X, C)$ obtained from the $\mu_{p}$ as in [$Lauf|$ . For each $C\in|C|$ ,

let $\overline{C}\in C’$ be the proper transform of $C$ .

(1) The graph $\Gamma$ for $\Gamma_{p1_{\mathfrak{U}1}nb}^{m}$ has vertices and edges

$V(\Gamma)$ $=$ $\{ vc : C\in|C|\}$ , and
$\mathcal{Y}(\Gamma)$ $=$ $\{ y_{p},c : p\in P\cap C\}$ ,
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where $t(yPic)=vc$ ; and for each $p\in P$ , if $C$ , $D\in|C|$ is the pair
of curves so that $p\in C\cap D$ , then we have

$\overline{y_{p,C}}=y_{p,D;}$

(2) for each $C\in|C|$ , let

$g(vc)$ $=$ $g(\overline{C})=g(C)$ , and

$e(V_{C})$ $=$ $e(\overline{C})=\overline{C}^{2}$ ;

and
(3) for each $y=y_{p,C}\in \mathcal{Y}(\Gamma)$ , let

$m(y_{p},c)$ : $S^{1}\times S^{1}\rightarrow S^{1}\times S^{1}$

be the finite unbranched covering induced by the matrix

$\left\{\begin{array}{ll}a(y) & b(y)\\0 & c(y)\end{array}\right\}$ ,

where $(a(y), 0)$ and $(b(y), c(y))$ generate the image of

$(\mu_{p})_{*}$ : $\pi_{1}(X\backslash C\cup D)\rightarrow\pi_{1}(\mathbb{C}^{2}\backslash \{x=0\}\cup\{y=0\})$ ,

and $0\leq b(y)<a(y)$ , $0<c(y)$ .

Let $M(X, C)$ be the boundary of a regular neighborhood of $C$ in $X$ .

Theorem 7. The graph manifold $M(\Gamma_{p1umb}(X, C))$ is homeomor-
phic to $M(X, C)$ .

Proof. For the case when $X$ is smooth see [Neu], p. 333. When $X$

has a singularity at $p$ , since $(X, C)$ is a normal surface-curve pair, there
are exactly two curves $C$ , $D\in C$ so that $p\in C\cap D$ . The link $S_{p}$ of the
singularity $(X,p)$ is a lens space, and $X\backslash C$ looks locally like a cone over
$S^{3}\backslash L$ near $p$ , where $L$ is an oriented Hopf link. Let $T_{C}$ and $T_{D}$ be the
torus boundary components of $M_{C}$ and $M_{D}$ near $p$ . Then

$M_{p}=S_{p}\backslash U(C_{p})$ ,

where $U(C_{p})$ is a regular neighborhood of $C$ in $X$ , is homeomorphic to a
thickened torus with boundary components $T_{C}$ and $T_{D}$ . Identifying $M_{p}$

with the product of a torus and an interval determines a homeomorphism
of $T_{C}$ to $T_{D}$ , which we will now describe.

Let $y=y_{p},c$ (so we have $o(y)=D$ and $t(y)=C$ ), and suppose

$m(y)_{*}=\left\{\begin{array}{ll}a(y) & b(y)\\0 & c(y)\end{array}\right\}$ .
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Then $(X,p)$ can be desingularized as in Figure 1.
Give $T_{C}$ and $T_{D}$ trivializations so that $M_{C}$ and $M_{D}$ have Euler

number equal to the self intersections of the proper transforms $C$ and
$\overline{D}$ in the minimal desingularization $(\overline{X}, \overline{C})_{-}of(X, C)$ .

Consider the plumbing graph of $(\overline{X}, C)$ over $p$ , which is shown in
Figure 1. The vertices corresponding to the $E_{i}$ have corresponding ver-
tex manifolds which are thickened tori with two boundary components.
If we give these boundary components trivializations so that the Euler
number of the associated $S^{1}-$bundle is $-m_{i}$ , then the boundary compo-
nents are identified via the product structure by the map

$S^{1}\times S^{1}\rightarrow S^{1}\times S^{1}$

corresponding to $M_{i}$ .
The gluing map

$h_{y}$ : $T_{C}\rightarrow T_{D}$

can be $tho\underline{u}g\underline{ht}$ of as a composition of the gluing maps for the plumbing
graph of $(X, C)$ over $p$ . Thus, $h_{y}$ is the map corresponding to

$(h_{y})_{*}=HM_{1}H\cdots HM_{k}H$

as in Lemma 5.2.
By the construction,

$h\circ m(\overline{y})=m(y)\circ h_{y}$ ,

and it is also easy to see that $M_{i}=M_{i}^{-1}$ , for $i=1$ , $\ldots$ , $k$ , and

$(h_{\overline{y}})_{*}=HM_{k}H\cdots HM_{1}H$ .

Q.E.D.

Given a non-modified plumbing graph $\Gamma_{p1umb}$ , and an ordering of the
vertices $v_{1}$ , $\ldots$ , $v_{k}\in \mathcal{V}(\Gamma)$ , the associated intersection matrix $S(\Gamma_{p1u1nb})$

is the $k\times k$ matrix with entries $a_{i,j}$ , where

$a_{i,j}=\{$
$e(v_{i})$ if $i=j$

$n(i, j)$ otherwise

where $n(i,j)$ is the number of $y\in \mathcal{Y}(\Gamma)$ , with $o(y)=v_{i}$ and $t(y)=v_{j}$ .
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When $\Gamma_{p1u1nb}^{1t1}$ is modified, then we define the intersection matrix
$S(\Gamma_{p1umb}^{111})$ to be the matrix with entries $a_{i,j}$ given by

$a_{i,j}=\{$

$e(v_{i})+t(y)=v_{i}\sum_{y\in \mathcal{Y}(\Gamma)}\frac{b(y)}{a(y)}$

if $i=j$

$o(y)=v_{i},t(y)=v_{j}\sum_{y\in \mathcal{Y}(\Gamma)}\frac{gcd(a(y),b(y))}{a(y)}$

otherwise

Note that the intersection matrices for the modified and non-modified
plumbing graphs agree if and only if $b(y)=0$ for all $y\in \mathcal{Y}(\Gamma)$ .

Theorem 8. If $(X, C)$ is a normal surface-curve pair, then the
intersection matrix $S(\Gamma_{p1umb}^{\iota n}(X, C))$ equals $S(X, C)$ .

Proof. The formula for intersection numbers of distinct pairs fol-
lows directly from [Hir2] (see Lemma 3.5 and Lemma 3.7). For the self
intersections, recall that, for any $C\in|C|$ , the pull-back $\overline{C}$ of $C$ in the
minimal desingularization is defined to be the divisor equal to the proper
transform $\overline{C}$ of $C$ plus the unique rational multiples of the exceptional
curves, determined by the condition that

$\overline{C}.E=0$ ,

for any exceptional curve $E$ (see [Mum]). This implies that for each
$p\in P\cap C$ , we need only be concerned with the coefficient $r_{p}$ of the

unique exceptional curve $E_{p}$ over $p$ which intersects $\overline{C}$ . That is,

$C^{2}$
$=$ $(\overline{C})^{2}$

$=$
$\overline{C}$ . $(\overline{C}+\sum_{p\in P\cap C}r_{p}E_{p})$

$=$
$(\overline{C})^{2}+\sum_{p\in P\cap C}r_{p}$

.

The rest follows from the calculations in [Hir2] (see Lemma 3.7). Q.E.D.

\S 5. Applications to computations on coverings

Let $(X, C)$ be a normal surface-curve pair, and let
$\Gamma_{p1umb}^{m}=\Gamma_{p1_{\mathfrak{U}1}nb}^{m}(X, C)$ be its modified plumbing graph. Let

$\rho$ : $(Y, D)\rightarrow(X, C)$
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be a regular covering defined by the epimorphism

$\phi$ : $\pi_{1}(X, C)\rightarrow F$.

In this section, we describe the intersection matrix and modified plumb-
ing data for the covering $(Y, D)$ in terms of $\Gamma_{p1u111b}^{111}$ , and the induced
defining map

$\psi$ : $\pi_{1}(G(\Gamma_{p1u\iota nb}^{\iota uu}), \mathcal{T})\rightarrow F$

where $\mathcal{T}$ is a maximal tree in $\Gamma$ .

Let $F_{v}=\psi(G_{v})$ , $F_{y}=\psi(G_{y})$ , and let $I_{v}=\psi(Z_{v})$ , where $Z_{v}$ is the
subgroup of $G_{v}=\pi_{1}(M_{v})$ generated by the fiber of the $S^{1}$ -bundle $M_{v}$ .

For each $y\in \mathcal{Y}(\Gamma)$ , let $s(y)=\psi(y)$ , where $y$ is considered as an element
of $\pi_{1}(G(\Gamma_{p1umb}^{1n}), \mathcal{T})$ . (This $s(y)$ is called the twisting data in [Hirl] and

[Hir2] $)$

Let $\Gamma’$ be the graph consisting of vertices

$\mathcal{V}(\Gamma^{J})=\{[\alpha F_{v}] : v\in \mathcal{V}(\Gamma), \alpha\in F\}$

and edges
$\mathcal{Y}(\Gamma’)=\{[\alpha F_{y}] : y\in \mathcal{Y}(\Gamma), \alpha\in F\}$ ;

where, if $y’=[\alpha F_{y}]$ , let $\overline{y^{J}}=[\alpha F_{\overline{y}}]$ , and let $t(y’)=v’$ where $v’=$

$[\alpha s(y)F_{v}]$ .

Lemma 8.1. The graph $\Gamma^{J}$ is the underlying graph of the covering,
and the map

$\rho_{\Gamma}$ : $\Gamma’\rightarrow\Gamma$

is given by

$\rho r([\alpha F_{v}])$ $=$ $v$ , $v\in \mathcal{V}(\Gamma)$ , and

$\rho r([\alpha F_{y}])$ $=$ $y$ , $y\in \mathcal{Y}(\Gamma)$ .

Note that this presentation of the graph $\Gamma^{J}$ contains within it a
natural $1i$ fting of a maximal tree $\mathcal{T}$ in $\Gamma$ . Giving an identification of
$\mathcal{V}(\Gamma’)$ with $|D|$ requires some extra information. Choose a section

$\tau$ : $\mathcal{T}\rightarrow M(X, C)$ .

This amounts to choosing base-points in $M_{v}$ and $M_{y}$ , for all $v\in \mathcal{V}(\Gamma)$

and $y\in \mathcal{Y}(\Gamma)$ , and connecting paths, for each $y\in \mathcal{Y}(\Gamma)$ , connecting
the base-point in $M_{y}$ to the base-point in $M_{t(y)}$ . The section $\tau$ lifts to
the boundary manifold $M(Y, D)$ and gives a natural identification of $|D|$
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with the vertices in $\mathcal{V}(\Gamma^{J})$ so that the liffi of $\tau(v)$ lies on $D\in|D|$ if and
only if

$v_{\alpha D}=[\alpha F_{v_{\rho(I2)}}]$ ,

for all $\alpha\in F$ . We will call such an identification a compatible identifica-
tion of $|D|$ with $\mathcal{V}(\Gamma^{/})$ .

The genus associated to vertices in $\Gamma^{/}$ , and hence to the components
of $V$ are given as follows.

Lemma 8.2. For $v^{/}\in \mathcal{V}(\Gamma^{J})$ , and $\rho r(v^{/})=v$ , the genus $g(v^{/})$ is
given by

$g(v’)=\frac{1}{2}(2-\frac{\# F_{v}}{\# I_{v}}(2-2g(v)-d(v))-y\in \mathcal{Y}(\Gamma)\sum_{t(y)=v}\frac{\# F_{v}}{\# F_{y}})$ .

Proof. The formula follows from additive properties of th
$etopo- QED$

logical Euler characteristic, Corollary 3, and Corollary 5.

The map $m$ : $\mathcal{Y}(\Gamma^{J})\rightarrow Fin(S^{1}\times S^{1})$ can also be written in terms of
the covering data and the modified plumbing graph of the base.

Lemma 8.3. For $y^{/}\in \mathcal{Y}(\Gamma^{J})$ , and $y=\rho_{\Gamma}(y^{/})$ , $m(y^{/})$ is the com-
position

$m(y^{/})=m(y)\circ\rho_{y}$ ,

where $\rho_{y}\in Fin(S^{1}\times S^{1})$ is the unique map induced by

$\psi_{y}$ : $\mathbb{Z}\oplus \mathbb{Z}=G_{y}\rightarrow F_{y}$ ,

such that

$m(y^{/})_{*}=[_{0}^{a^{/}(y)}$ $c(y)b](y)]$ ,

where $0\leq b’(y)<a^{/}(y)$ and $0<c^{/}(y)$ .

Proof. This lemma is a consequence of the definitions of modified
plumbing graphs and Proposition 4, noting that the form of $m(y^{J})$ can
be arranged by composing with an automorphism of the domain of $\psi_{y}$ .

Q.E.D.

Lemma 8.3, leads to the following formulas for intersection matrices
of coverings, generalizing the results of [Hir2].
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Theorem 9. The intersection matrix $S(Y, D)$ , with respect to $a$

compatible identification $of|D|$ with $\mathcal{V}(\Gamma^{/})$ , is given by

$[\alpha F_{v}].[\beta F_{w}]=t(y)=wo(y)=v\sum_{y\in \mathcal{Y}(\Gamma)}\frac{\#(\alpha F_{v}\cap\beta s(y)^{-1}F_{w})}{\#(I_{v}+I_{w})}\frac{gcd(a’(y),b^{J}(y))}{a(y)}$

, ’

when $v$ , $w\in \mathcal{V}(\Gamma)$ are distinct pairs, and

$[\alpha F_{v}].[\beta F_{v}]=\frac{\#(\alpha F_{v}\cap\beta F_{v})}{(\# I_{v})^{2}}$ .

Proof. The first formula follows from Theorem 8, and Proposi-
tion 2, while the second formula follows from [Hir2] (see Lemma 3.3).

Q.E.D.

The second formula in Theorem 9 leads to the following formula for
the Euler numbers attached to vertices of $\Gamma^{J}$ .

Lemma 9.1. Given $v^{J}\in \mathcal{V}(\Gamma’)$ , and $v=\rho(v’)$ , the Euler number
$e(v^{J})$ is given by

$e(v^{/})=\frac{\# F_{v}}{(\# I_{v})^{2}}-y\in \mathcal{Y}(\Gamma)\sum_{t(y)=v}\frac{b’(y)}{a^{/}(y)}\frac{\# F_{v}}{\# F_{y}}$

.

Proof. The formula follows from Theorem 8 and Theorem 9. Q.E.D.

This completes the description of the covering modified plumbing
graph.

Note that the above formulas depend only on the map $\psi$ restricted
to $G_{v}$ , $G_{y}$ , $Z_{v}$ , and $\mathcal{Y}(\Gamma)$ . This leads to the question of which defining
maps for the boundary manifold $\psi$ are induced by global defining maps
on $\pi_{1}(X\backslash C)$ , and thus to the question of the relation between $\pi_{1}(X\backslash C)$

and $\pi_{1}(M(X\backslash C))$ .
In general (when $C$ supports an ample divisor), the fundamental

group of the boundary manifold of $C$ in $X$ surjects onto the fundamen-
tal group of $X\backslash C$ under the map induced by inclusion. To understand
the kernel of this map is a harder problem and includes the problem of
understanding the effect of locations of singularities on $C$ on the funda-
mental group of the complement.
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Polytopes, Invariants and Harmonic Functions

Katsunori Iwasaki

Abstract.

The classical harmonic functions are characterized in terms of
the mean value property with respect to the unit ball. Replacing
the ball by a polytope, we are led to the notion of polyhedral har-
monic functions, i.e., those continuous functions which satisfy the
mean value property with respect to a given polytope. The study
of polyhedral harmonic functions involves not only analysis but also
algebra, including combinatorics of polytopes and invariant theory
for finite reflection groups. We give a brief survey on this subject,
focusing on some recent results obtained by the author.

\S 1. Introduction

The harmonic functions are a very important class of functions in
mathematics as well as in physics. Let us recall a classical theorem of
Gauss and Koebe stating that they are characterized in terms of the
mean value property with respect to the unit ball.

Theorem 1.1 (Gauss-Koebe). Let $\Omega$ be a domain in $\mathbb{R}^{n}$ . Any

function $f\in C^{2}(\Omega)$ is harmonic if and only if $f\in C(\Omega)$ satisfies the
mean value property with respect to the $n$ -dimensional unit ball $B^{n}$ with
center at the origin:

$f(x)=\frac{1}{|B^{n}|}\int_{B^{71}}f(x+ry)dy$ $(\forall x\in\Omega, 0<\forall r<dist(x, \partial\Omega))$ ,

where $|B^{n}|$ denotes the volume of $B^{n}$ .

This theorem naturally leads us to the following simple question (see
Figure 1).

Problem 1.1. What happens if the ball is replaced by a polytope ?

Namely, we are interested in the problem of characterizing those
continuous functions which satisfy the mean value property with respect
to a given polytope. In this paper we give a brief survey on this subject,
focusing on some recent results obtained by the author. See also [22].
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FIG 1. Examples of Polyhedra

FIG 2. Skeletons of Pentagon

\S 2. Polyhedral Harmonic Funnctions

We formulate Problem 1.1 more precisely. Let $P$ be an $n$-dimensional
polytope, and $P(k)$ be the $k$-skeleton of $P$ for $k=0,1$ , $\ldots$ , $n$ (see Figure
2). A continuous function $f\in C(\Omega)$ is said to be $P(k)$Harmonic if $f$

satisfies the mean value property with respect to $P(k)$ , that is, for any
$ x\in\Omega$ , there exists a positive number $r_{x}>0$ such that

$f(x)=\frac{1}{|P(k)|}\int_{P(k)}f(x+ry)d\mu_{k}(y)$ $(\forall x\in\Omega, 0<\forall r<r_{x})$ ,

where $\mu_{k}$ is the $k$-dimensional Euclidean measure and $|P(k)|=\mu_{k}(P(k))$

is the total measure of $P(k)$ . Let $H_{P(k)}(\Omega)$ denote the linear space of all
$P(k)$-harmonic functions on $\Omega$ . Then our problem is stated as follows.

Problem 2.1. Characterize the function space $H_{P(k)}(\Omega)$ .

The history of polyhedral harmonics began with the works of Kaku-
tani and Nagumo[24] (1935) and Walsh[28] (1936), who considered the
vertex problem $(k=0)$ for a regular convex polygon. Since then several
authors have discussed various problems in various settings ([1] [2] [3] [5] [6]
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[16] [16] [16] [16] [25] $)$ . See the references in [16] for a more extensive litera-
ture. In particular, Friedman and Littman[12] posed a rather surprising
question.

Problem 2.2 (Friedman-Littman, 1962). Is $H_{P(k)}(\Omega)$ finite dimen-
sional ?

This problem had been open until recently when the author was
able to settle it in the affirmative.

\S 3. General Properties

In general the function space $H_{P(k)}(\Omega)$ satisfies the following prop-
erties.

Theorem 3.1 ([16]). Let $P$ be any $n$ -dimensional polytope and
$k\in\{0,1, \ldots, n\}$ . Then,

(1) $H_{P(k)}(\Omega)$ is independent of the domain $\Omega$ , namely, the restriction
map $Ti_{P(k)}:=H_{P(k)}(\mathbb{R}^{n})\rightarrow H_{P(k)}(\Omega)$ is an isomorphism;

(2) $H_{P(k)}$ is a finite-dimensional linear space of polynomials;
(3) Let $G\subset O(n)$ be the symmetry group of P. Then $dimH_{P(k)}\geq$

$|G|$ ;
(4) If $G$ is irreducible, then $H_{P(k)}$ is a finite-dimensional linear space

of harmonic polynomials;
(5) $H_{P(k)}$ is an $\mathbb{R}[\partial]$ -module, where $\mathbb{R}[\partial]$ is the ring of linear partial

differential operators with constant coefficients.

This theorem shows that the space $H_{P(k)}(\Omega)$ of polyhedral har-
monic functions is completely different from the space $H(\Omega)$ of clas-
sical harmonic functions. A summary of comparisons between them is
given in Table 1. The most remarkable contrast is their dimensionality;
$H_{P(k)}(\Omega)$ is finite dimensional, while $H(\Omega)$ is infinite dimensional. The
finite-dimensionality of $H_{P(k)}(\Omega)$ gives rise to the problem of computing
$dimH_{P(k)}(\Omega)$ and, moreover, that of constructing a natural basis of it.
In view of (5) of Theorem 3.1, investigating the structure of $H_{P(k)}(\Omega)$ as
an $\mathbb{R}[\partial]$ -module is also an interesting problem. Some results in these di-
rections will be presented in Sections 4 and 5. But these problems are yet
to be considered more extensively. Herea fter we put $H_{P(k)}=H_{P(k)}(\Omega)$ ,
since it is independent of the domain $\Omega$ .

\S 4. Regular Convex Polytopes

Our problem is of particular interest when $P$ admits ample symme-
try. A typical instance is the case where $P$ is a regular convex polytope
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$H(\Omega)$ : classical $H_{P(k)}$ $(\Omega)$ : polyhedral

domain $\Omega$ depends on $\Omega$ (natural boundary) independent of $\Omega$

dimension $dim\mathcal{H}(\Omega)=\infty$ $dimH_{P(k)}(\Omega)<\infty$

functions transcendental in general only polynomials

PDEs $\Delta f=0$ (single equation) an infinite system (holonomic)

TABLE 1. Classical $vs$ . Polyhedral Harmonic Functions

FIG 3. Platonic Solids (Regular Convex Polyhedra)

with center at the origin. We refer to [4] for the classification of regular
convex polytopes (see Figure 3 for $n=3$ ). In this case it is known that
the symmetry group of $P$ is a finite reflection group. So we can apply
invariant theory for finite reflection groups to characterize the function
space $H_{P(k)}$ .

We recall some basic definitions. A finite reflection group is a finite
group generated by reflections. Here a reflection is an orthogonal trans-
formation $g\in O(n)$ that takes a nonzero vector $v\in \mathbb{R}^{n}$ to its negative
$-v$ , while keeping the orthogonal complement $H$ to $v$ pointwise fixed.
The hyperplane $H=H_{g}$ is called the reflecting hyperplane of $g$ . Let
$\alpha_{g}$ : $\mathbb{R}^{n}\rightarrow \mathbb{R}$ be a linear form such that $Ker\alpha_{g}=Hg$ , (such an $\alpha_{g}$

is unique up to a nonzero constant multiple). Given a finite reflection
group $G$ , let $R$ be the set of all reflections in $G$ . Then the fundamental
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alternating polynomial for $G$ is defined by

$\Delta_{G}(x)=\prod_{g\in R}\alpha_{g}(x)$
.

It is uniquely determined up to a nonzero constant multiple. We give
an example.

Example 4.1. If $P$ is a regular $n$-simplex with center at the ori-
gin, then $G$ is the symmetric group $\mathfrak{S}_{n}$ acting on $\mathbb{R}^{n}$ by permuting the
coordinates $x_{1}$ , $\ldots$ , $x_{n}$ . In this case,

$\Delta_{G}(x)=\prod_{i<j}\langle p_{i}-p_{j}, x\rangle$
,

where $p_{0},p_{1}$ , $\ldots,p_{n}$ are the vertices of $P$ and $\langle\cdot, \cdot\rangle$ is the Euclidean inner
product on $\mathbb{R}^{n}$ .

Theorem 4.1 ([6] [10] [17] [20] [23]). Let $P$ be any $n$ -dimensional re-
gular convex polytope that is not a measure polytope. Let $G\subset O(n)$ be
the symmetry group of $P$ , and $\Delta_{G}(x)$ be the fundamental alternating
polynomial for the finite reflection group G. Then,

(1) $H_{P(k)}$ is independent of $k=dimP(k)$ ;

(2) The dimension of $H_{P(k)}$ is equal to the order of $G$ :

$dimH_{P(k)}=|G|$ ;
(3) $H_{P(k)}$ is generated by $\Delta_{G}(x)$ as an $\mathbb{R}[\partial]$ -module:

$H_{P(k)}=\mathbb{R}[\partial]\Delta_{G}(x)$ .

The author believes that the same result holds for the measure poly-
tope, although he does not have a complete proof as yet. (This was
proved in [13] only for $k=0.$ ) The dimension of $H_{P(k)}$ for each regu-
lar convex polytope $P$ is given in Table 2, (the value for the measure
polytope is still conjectural).

\S 5. Triangle Mean Value Property

We explicitly determine $?i_{\Delta(k)}$ for any triangle $\Delta$ in $\mathbb{R}^{2}$ and $k=$

$0,1,2$ . To state the result we introduce some notations. Let $A_{1}$ , $A_{2}$ , $A_{3}$

be the vertices of the triangle $\Delta$ . (A point $A$ in $\mathbb{R}^{2}$ is identified with the

vector $oA$ , where $o$ is the origin in $\mathbb{R}^{2}.$ ) The indices $i,j$ , $k$ stand for any
permutation of 1, 2, 3. Let $A_{i}’$ be the mid-point of the side $\overline{A_{j}A_{k}}$ :

$A_{i}’=\frac{A_{j}+A_{k}}{2}$ .
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$dim$ $P$ $P$ : regular solids $dim$ $H_{P(k)}$

2 regular m-gon $2m$

$n$ regular $n$-simplex (tetrahedron) $(n+1)!$

$n$ cross polytope (octahedron) $2^{n}n!$

$n$ measure polytope (cube) $2^{n}n^{I}$.

3 icosahedron 120

3 dodecahedron 120

4 24-cell 1152

4 600-cell 14400

4 120-cell 14400

TABLE 2. Dimension of $H_{P(k)}$ for Regular Solids

The reciprocal triangle $\Delta’$ of $\Delta$ is defined to be the triangle having
$A_{1}’$ , $A_{2}’$ , $A_{3}’$ as its vertices. Let $B:=(1/3)(A_{1}+A_{2}+A_{3})$ be the barycen-
ter of $\Delta$ , and $I’$ be the incenter of $\Delta’$ (see Figure 4). Then the center of
gravity $C_{k}$ for $\Delta(k)$ is defined by

$C_{k}=\{$

$B$

$I’$

$(k=0,2)$ ,

$(k=1)$ .



Harmonic Functions 151

FIG 4. Reciprocal Triangle and Its Incenter

Theorem 5.1 ([21]). The dimension of the linear space $H_{\Delta(k)}$ is
given by

$dim\mathcal{H}_{\Delta(k)}=\{$

6 $(C_{k}=O)$ ,

2 $(C_{k}\neq O)$ .

As an $\mathbb{R}[\partial]$ -module, $?i_{\Delta(k)}$ is generated by a single homogeneous polyno-
mial $F_{k}(x)$ :

$H_{\Delta(k)}=\mathbb{R}[\partial]F_{k}(x)$ .

Explicitly, $F_{k}(x)$ is given as follows: If $C_{k}=O$ , then

$F_{k}(x)=\{$ $i=1i=1\prod_{\sum^{3}}^{3}\langle_{i}\frac{A^{JJ},x\rangle\langle A_{i}’,x\rangle^{3}}{[a_{i}(a_{j}+a_{k})]^{2}}$,
$(k=1)$ ,

$(k=0,2)$ ,

where $a_{i}$ is the side-length of $\overline{A_{j}A_{k}}$ , and $A_{1}’’$ , $A_{2}’’$ , $A_{3}’’$ are the (unique)

vectors satisfying

$\langle A_{i}’’, A_{i}’\rangle=0$ , $\langle A_{i}’’, A_{j}’\rangle=\frac{1}{a_{j}}$ for $(i,j)=(1,2)$ , $(2, 3)$ , $(3, 1)$ .

If $C_{k}\neq O$ , then $ F_{k}(x)=\langle C_{k}’, x\rangle$ , where $C_{k}’$ is a nonzero vector perpen-
dicular to $C_{k}$ .

\S 6. Differential Equations

The classical harmonic functions are characterized as the solutions of
the Laplace equation $\Delta f=0$ . Note that the Laplace equation is a single
equation. The $P(k)$-harmonic functions can also be characterized in
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terms of partial differential equations, though, not by a single equation,
but by an infinite system. This system is described in terms of some
combinatorial data on $P(k)$ .

To describe the system we introduce some notations (see also Figure
5). For $j=0,1$ , $\ldots$ , $n$ , let $\{P_{i_{j}}\}_{i_{j}\in I_{j}}$ be the set of all $j$-dimensional faces
of $P$ , where $I_{j}$ is an index set; $H_{i_{j}}$ be the $j$-dimensional affine subspace
of $\mathbb{R}^{n}$ containing $P_{i_{\dot{\gamma}}}$ ; and $\pi_{i_{j}}$ : $\mathbb{R}^{n}\rightarrow H_{i_{j}}$ be the orthogonal projection
from $\mathbb{R}^{n}$ down to the subspace $H_{i_{j}}$ . Let $p_{i_{j}}\in \mathbb{R}^{n}$ be the vector (or
point) in $\mathbb{R}^{n}$ defined by

$p_{i_{j}}=\pi_{i_{j}}(0)\in H_{i_{j}}$ .

For $i_{j}\in I_{j}$ and $i_{j+1}\in I_{j+1}$ , we write $i_{j}\prec i_{j+1}$ if $P_{i_{j}}$ is a face of $P_{i_{j+1}}$ .

For $i_{j}\prec i_{j+1}$ , let $n_{i_{j}i_{j+1}}$ be the outer unit normal vector of $\partial P_{i_{j+1}}$ in
$H_{i_{\gamma+1}}$ at the face $P_{i_{j}}$ . It is easy to see that the vector $p_{i_{j}}-p_{i_{j+1}}$ is parallel
to $n_{i_{\dot{7}}i_{\dot{r}+1}}$ , so that one can define the incidence number $[i_{j} : i_{j+1}]\in \mathbb{R}$ by
the relation

$p_{i_{j}}-p_{i_{j+1}}=[i_{j} : i_{j+1}]n_{i_{j},i_{j+1}}$ .

For each $k=0,1$ , $\ldots$ , $n$ , let $I(k)$ be the set of $k$-flags defined by

$I(k)=\{i=(i_{0}, i_{1}, \ldots, i_{k});i_{j}\in I_{j}, i_{0}\prec i_{1}\prec\cdots\prec i_{k}\}$ .

For each $k$-flag $i=(i_{0}, i_{1}, \ldots, i_{k})\in I(k)$ , we set

$[i]=[i_{0} : i_{1}][i_{1} : i_{2}]\cdots$ $[i_{k-1} : i_{k}]$ $(k=1, \ldots, n)$ ,

with the convention $[i]=1$ for $k=0$ . Note that $[i]$ is the signed volume

of the $k$-simplex having $p_{i_{O}},p_{i_{1}}$ , $\ldots,p_{i_{k}}$ as its vertices. Let $h_{m}^{(j)}(\xi)$ denote
the complete symmetric polynomial of degree $m$ in $j$-variables:

$h_{m}^{(j)}(\xi_{1}, \ldots, \xi_{j})=\sum_{m_{1}+\cdot\cdot+m_{j}=m}\xi_{1}^{m_{1}}\xi_{2}^{m_{2}}\cdots\xi_{j}^{m_{j}}$
,

where the summation is taken over all $j$-tuples $(m_{1}, \ldots, m_{j})$ of nonneg-
ative integers satisfying the indicated condition. Finally we set $\langle\xi, \eta\rangle=$

$\xi_{1}\eta_{1}+\cdots+\xi_{n}\eta_{n}$ for two vectors $\xi=(\xi_{1}, \ldots, \xi_{n})$ , $\eta=(\eta_{1}, \ldots, \eta_{n})\in \mathbb{C}^{n}$ .

The following theorem gives a characterization of the $P(k)$ -harmonic
functions in terms of a system of partial differential equations.

Theorem 6.1 ([16]). Any $f\in H_{P(k)}(\Omega)$ is real analytic and sat-

isfies the system of partial differential equations:

(6.1) $\tau_{m}^{(k)}(\partial)f=0$ $(m=1,2,3, \ldots)$ ,
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FIG 5. Combinatorial Structure of $P$
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where $\tau_{m}^{(k)}(\xi)$ is the homogeneous polynomial of degree $m$ defined by

$\tau_{m}^{(k)}(\xi)=\sum_{i\in I(k)}[i]h_{m}^{(k+1)}(\langle p_{i_{0}}, \xi\rangle, \langle p_{i_{1}}, \xi\rangle, \ldots, \langle p_{i_{k}}, \xi\rangle)$

.

Conversely, any weak solution of (6.1) is real analytic, and belongs to
$H_{P(k)}(\Omega)$ .

The system (6.1) enjoys the following remarkable property.

Theorem 6.2 ([16]). The system (6.1) is holonomic. In particu-
lar, the solution space of (6.1) is finite dimensional.

The proof of Theorems 6.1 and 6.2 is based on geometry and com-
binatorics of the polytope $P$ . These theorems play a central role in
establishing Theorem 3. 1.

\S 7. Open Problem

Let $H_{n}$ be the linear space of all harmonic polynomials in $n$-variables.
Note that $H_{n}$ is infinite dimensional. By Theorem 3.1, if $P$ is an n-
dimensional polytope with ample symmetry (this means that the sym-
metry group of $P$ is irreducible), then $H_{P(k)}$ is a finite-dimensional linear
subspace of $7\{_{n}$ . Now a natural question arises: As the polytope $P$ ap-
proximates the unit ball $B^{n}$ , does the function space $H_{P(k)}$ approximate
$H_{n}/$? More precisely this problem is formulated as follows (see also
Figure 6).

FIG 6. Geodesic Domes

Problem 7.1. Is there an infinite sequence $\{P_{m}\}_{m\in N}$ of n-dimen-
sional polytopes with ample symmetry such that the following conditions
are satisfied ?

(1) $P_{m}\rightarrow B^{n}$ as $ m\rightarrow\infty$ (Hausdorff convergence),
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(2) $\ldots\subset H_{P_{\gamma\gamma 1}(k)}-1\subset H_{P_{rr\iota}(k)}\subset H_{P_{rr\iota+1}(k)}\subset\cdots$ ,

(3)
$m\bigcup_{\in N}H_{P_{m}(k)}=H_{n}$

.

If $n=2$ , the answer to this question is yes for $k=0,1,2$ . Indeed,
we can take $P_{m}$ to be a regular convex ra-gon with center at the origin.
However, if $n\geq 3$ , the problem becomes quite difficult. For the vertex
problem $(k=0)$ , we can also say that the answer is yes, but the proof
of it is based on a very deep result from spherical designs (see [26]). For
the remaining cases $n\geq 3$ and $k=1,2$ , $\ldots$ , $n$ , the problem is completely
open.
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Vassiliev Invariants of

Braids and Iterated Integrals

Toshitake Kohno

\S Introduction

The notion of finite type invariants of knots was introduced by Vas-
siliev in his study of the discriminats of function spaces (see [13]). It
was shown by Kontsevich [9] that such invariants, which we shall call the
Vassiliev invariants, can be expressed universally by iterated integrals of
logarithmic forms on the configuration space of distinct points in the
complex plane.

In the present paper we focus on the Vassiliev invariants of braids.
Our main object is to clarify the relation between the Vassiliev invari-
ants of braids and the iterated integrals of logarithmic forms on the
configuration space which are homotopy invariant. A version of such
description for pure braids is given in [6]. We denote by $B_{n}$ the braid
group on $n$ strings. Let $J$ be the ideal of the group ring $C[B_{n}]$ generated
by $\sigma_{i}-\sigma_{i}^{-1}$ , where $\{\sigma_{i}\}_{1\leq i\leq n-1}$ is the set of standard generators of $B_{n}$ .

The vector space of the Vassiliev invariants of $B_{n}$ of order $k$ with values
in $C$ can be identified with $Hom(C[B_{n}]/J^{k+1}, C)$ . Let us stress that such
vector space had been studied in terms of the iterated integrals due to
K. T. Chen before the work of Vassiliev. We introduce a graded algebra
$\tilde{A}_{n}$ , which is a semi-direct product of the completed universal enveloping
algebra of the holonomy Lie algebra of the configuration space and the
group algebra of the symmetric group. We construct a homomorphism
$\theta$ : $B_{n}\rightarrow\tilde{A}_{n}$ expressed as an infinite sum of Chen’s iterated integrals,
which gives a universal expression of the holonomy of logarithmic con-
nections. This homomorphism may be considered as a prototype of the
Kontsevich integral for knots. Using this homomorpshim we shall deter-
mine all iterated integrals of logarithmic forms which provide invariants
of braids (see Theorem 3.1). As a Corollary we recover the isomorphism

$\tilde{A}_{n}\cong\varliminf^{C}[B_{n}]/J^{j}$
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which also follows from Chen’s theory of iterated integrals (see also [11]).
Here we notice that the above isomorphism can be shown over $Q$ by
means of the expression of the Vassiliev invariants based on the Drinfel’ $d$

associator defined over Q.
The paper is organized in the following way. In Section 1 we discuss

in general the situation of the complement of an arrangement of hyper-
planes in a complex vector space and recall basic facts on the itegrability
of logarithmic connections. In Section 2 we give a brief summary of fun-
damental results in Chen’s theory of iterated integrals. Section 3 is the
main part of the present paper. We describe the Vassiliev invariants of
braids and their relation with Chen’s iterated integrals of logarithmic
forms.

\S 1. Arrangements and integrable connections

Let $H_{j}$ , $1\leq j\leq m$ , be affine hyperplanes in the complex vector
space $C^{n}$ and we denote by $f_{j}$ a linear form defining $H_{j}$ . We define the
logarithmic differential form $\omega_{j}$ by

$\omega_{j}=\frac{1}{2\pi\sqrt{-1}}$ dlog $f_{j}=\frac{1}{2\pi\sqrt{-1}}\frac{df_{j}}{f_{j}}$ .

We put $X=C^{n}\backslash \bigcup_{j=1}^{m}H_{j}$ . Let $V$ be a complex vector space and we
consider the trivial vector bundle $E=X\times V$ over $X$ . For $A_{j}\in End(V)$ ,

1 $\leq j\leq m$ , the 1-form $\omega=\sum_{j=1}^{m}A_{j}\omega_{j}$ defines a connection on the
vector bundle $E$ . We have the following Lemma.

Lemma 1.1. The 1-form $\omega=\sum_{j=1}^{m}A_{j}\omega_{j}$ defines an integrable
connection if the condition

$[A_{j_{p}}, A_{j_{1}}+\cdots+A_{j_{s}}]=0,1\leq p\leq s$

is satisfied for any maximal family of hyperplanes $H_{j_{1}}$ , $\cdots$ , $H_{j_{s}}$ such that

$codim_{C}(H_{j_{1}}\cap\cdots\cap H_{j_{6}})=2$ .

Proof For each triplet of hyperplanes $H_{i}$ , $H_{j}$ , $H_{k}$ contained in the
set of hyperplanes $\{H_{j_{p}}\}_{1\leq p\leq s}$ we have the relation

$\omega_{i}\wedge\omega_{j}+\omega_{j}\wedge\omega_{k}+\omega_{k}\wedge\omega_{i}=0$ .

To show the integrability of the connection defined by $\omega$ it is sufficient
to prove $\omega\wedge\omega=0$ since $d\omega=0$ . This follows from the above quadratic
relations among logarithmic forms. Q.E.D.
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The relation among the logarithmic forms used in the proof of
Lemma 1.1 is a special case of the relations for describing the struc-
ture of the cohomology ring of $X$ given by Orlik and Solomon [12]. We
denote by $X_{n}$ the configuration space of ordered distinct $n$ points in the
complex plane. Namely $X_{n}$ is defined by

$X_{n}=$ { ( $z_{1}$ , $\cdots$ , $z_{n})\in C^{n}$ ; $z_{i}\neq z_{j}$ if $i\neq j$ }.

Let us consider the action of the symmetric group $S_{n}$ on $X_{n}$ by the
permutation of the coordinates. The quotient space $S_{n}\backslash X_{n}$ is denoted
by $Y_{n}$ . We have an unramifled covering $\pi$ : $X_{n}\rightarrow Y_{n}$ . We fix basepoints
$x\in X_{n}$ and $y\in Y_{n}$ satisfying $\pi(x)=y$ . The fundamental group of
$X_{n}$ is by definition the braid group on $n$ strings and is denoted by $B_{n}$ .

The fundamental group of $Y_{n}$ is the pure braid group on $n$ strings and is
denoted by $P_{n}$ . We denote by $\sigma_{j}$ , $1\leq j\leq n-1$ , the standard generators
of $B_{n}$ , where $\sigma_{j}$ is represented by the braid interchanging the $j$-th and
$(j+1)- st$ strings in the positive direction. We put

$\gamma_{ij}=\sigma_{i}\cdots\sigma_{j-1}\sigma_{j}^{2}\sigma_{j-1}^{-1}\cdots\sigma_{i}^{-1}$

for $1\leq i<j\leq n$ . It is known that $P_{n}$ is generated by $\gamma_{ij}$ , $1\leq i<j\leq n$

(see [1]).
We consider the logarithmic differential forms

$\omega_{ij}=\frac{1}{2\pi\sqrt{-1}}d\log(z_{i}-z_{j})$ , $1\leq i<j\leq n$

defined on $X_{n}$ . It was shown by Arnold that the cohomology ring of $X_{n}$

is generated by the de Rham cohomology classes of the above logarithmic
forms with the relations

$\omega ij\wedge\omega jk+\omega jk\wedge\omega_{ki}+\omega_{ki}\wedge\omega_{ij}=0$ , $i<j<k$ .

Let $V$ be a complex vector space and let $A_{ij}$ , $1\leq i\neq j\leq n$ , be
linear transformations of $V$ satisfying $A_{ij}=A_{ji}$ . We consider the 1-form
$\omega=\sum_{i<j}A_{ij}\omega_{ij}$ . As a special case of Lemma 1.1, we see that $\omega$ defines
an integrable connection if the condition

$[A_{ik}, A_{ij}+A_{jk}]=0$ $i,j$ , $k$ distinct

$[A_{ij}, A_{kl}]=0$ $i$ , $j$ , $k$ , $l$ distinct

is satisfied. The above relation among $A_{ij}$ is called the infinitesimal pure
braid relation.

Now we explain the Knizhnik-Zamolodchikov connection as a typical
example. Let $g$ be a finite dimensional complex semi-simple Lie algebra
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and we denote by $I_{\mu}$ , $1\leq\mu\leq dimg$ , an orthonormal basis of $g$ with
respect to the Cartan-Killing form. Let $\rho_{j}$ : $g\rightarrow End(V\},)$ , $1\leq j\leq n$ ,

be representations of the Lie algebra $g$ . We put

$\Omega_{ij}=\sum_{\mu}1\otimes\cdots\otimes 1\otimes\rho_{i}(I_{\mu})\otimes 1\otimes\cdots\otimes 1\otimes\rho_{j}(I_{\mu})\otimes 1\otimes\cdots\otimes 1$

for $1\leq i,j\leq n$ , where $\rho_{i}(I_{\mu})$ stands for the action on the $i$-th component
of the tensor product $V_{1}\otimes\cdots\otimes V_{n}$ . By using the fact that the Casimir
element $\sum_{\mu}I_{\mu}\cdot I_{\mu}$ lies in the center of the universal enveloping algebra of
$g$ we can show that the above $\Omega_{ij}$ , $1\leq i,j\leq n$ , satisfy the infinitesimal
pure braid relation. Therefore the 1-form

$\omega=\lambda\sum_{i<j}\Omega_{ij}\omega_{ij}$

defines an integrable connection for any complex parameter $\lambda$ , which we
shall call the Knizhnik-Zamolodchikov connection. As the holonomy of
this connecion we obtain linear representations of the pure braid group.
We refer the readers to [4] and [7] for a detailed description of these
representations.

\S 2. Review of Chen’s iterated integrals

We recall the definition and basic properties of Chen’s iterated in-
tegrals. Let $M$ be a smooth manifold and we fix two points $a$ and $b$ in
$M$ . We denote by $P_{a,b}(M)$ the set of smooth paths $\gamma$ : $[0, 1]\rightarrow M$ . Let
$\triangle_{q}$ denote the simplex defined by

$\triangle_{q}=\{(t_{1}, \cdots, t_{q})\in R^{q} ; 0\leq t_{1}\leq\cdots\leq t_{q}\leq 1\}$ .

Let us consider the map

$\phi$ : $P_{a,b}(M)\times\triangle_{q}\rightarrow M^{q}$

defined by
$\phi(\gamma, (t_{1}, \cdots, t_{q}))=(\gamma(t_{1}), \cdots, \gamma(t_{q}))$

where $M^{q}$ stands for the $q$-fold Cartesian product of the manifold $M$ . Let
$\omega$ be a differential form of degree $p$ on $M$ . Then integrating the pull-back
$\phi^{*}\omega$ along the fiber of the projection map $\pi:P_{a,b}\prime(M)\times\triangle_{q}\rightarrow P_{a,b}(M)$ ,

we obtain

$\pi_{*}\phi^{*}\omega=\int_{\triangle_{q}}\phi^{*}\omega$ ,
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which is considered to be a differential form of degree $p-q$ on the path
space $P_{a,b}(M)$ . For differential forms $\omega_{j}$ , $1\leq j\leq q$ , on $M$ we denote by
$\omega_{1}\times\cdots\times\omega_{q}$ the differential form on $M^{q}$ given by $\pi_{1}^{*}\omega_{1}\wedge\cdots\wedge\pi_{q}^{*}\omega_{q}$ where
$\pi_{j}$ : $M^{q}\rightarrow M$ denotes the projection on the $j$-th factor. By applying the
above construction we obtain the differential form $\pi_{*}\phi^{*}(\omega_{1}\times\cdots\times\omega_{q})$ on
the path space $P_{a,b}(M)$ . The value of $\pi_{*}\phi^{*}(\omega_{1}\times\cdots\times\omega_{q})$ at $\gamma\in P_{a,b}(M)$

is also denoted by

$\int_{\gamma}\omega_{1}\cdots\omega_{q}$ .

which is by definition Chen’s iterated integral of $\omega_{1}$ , $\cdots$ , $\omega_{q}$ along the
path $\gamma$ . We can show that the differential form $d(\pi_{*}\phi^{*}\omega)$ on the path
space $P_{a,b}(M)$ is written as the sum of $\pi_{*}\phi^{*}(d\omega)$ and

$\int_{\partial\triangle_{q}}\phi^{*}\omega$

with a suitable sign convention. This leads us to define the following
double complex.

We denote by $A^{p}(M)$ the vector space of smooth differential forms
of deree $p$ on $M$ . We define $C^{p,-q}(M)$ to be the direct sum

$\oplus_{p_{1}+\cdot\cdot+p=p,p_{1}>0,\cdot\cdot,p_{l}>0}‘’‘[A^{p1}(M)\otimes\cdots\otimes A^{p_{q}}(M)]$ .

Let us introduce the differentials

$d_{1}$ : $C^{p,-q}\rightarrow C^{p+1,-q}$ , $d_{2}$ : $C^{p,-q}\rightarrow C^{p,-q+1}$

by

$d_{1}(\omega_{1}\otimes\cdots\otimes\omega_{q})=\sum_{i=1}^{q}(-1)^{i}(J\omega_{1}\otimes\cdots\otimes J\omega_{i-1}\otimes d\omega_{i}\otimes\cdots\otimes\omega_{q})$

$d_{2}(\omega_{1}\otimes\cdots\otimes\omega_{q})=\sum_{i=1}^{q-1}(-1)^{i-1}(J\omega_{1}\otimes\cdots\otimes J\omega_{i-1}\otimes(J\omega_{i}\wedge\omega_{i+1})$

$\otimes\omega_{i+2}\otimes\cdots\otimes\omega_{q})$

where $ J\omega$ stands for $(-1)^{deg\omega}\omega$ . Putting $C^{n}=\oplus_{p-}{}_{q=n}C^{p,-q}$ and $d=$

$d_{1}+d_{2}$ , we obtain the associated total complex C. $=\oplus_{n\in Z}C^{n}$ , which
we shall call the bar complex.

We define a linear map $\mu$ : C. $\rightarrow A.(P_{a,b}(M))$ by

$\mu(\omega_{1}\otimes\cdots\otimes\omega_{q})=\pi_{*}\phi^{*}(\omega_{1}\times\cdots\times\omega_{q})$ .

We have the following Proposition.
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Proposition 2.1 (K. T. Chen [2]). The map

$\mu$ : C. $\rightarrow A.(P_{a,b}(M))$

defines a homomorphism of graded differential algebras.

We fix a basepoint $x\in M$ and we denote by $\Omega_{x}(M)$ the loop space
of $M$ based at $x$ . Namely $\Omega_{x}(M)$ is by definition the space of paths
$P_{x,x}(M)$ . The following is a fundamental result due to K. T. Chen in
the case $M$ is simply connected.

Theorem 2.2 (K. T. Chen [2]). Let $M$ be a simply connected

manifold. The above map $\mu$ induces an isomorphism of cohomology

$H^{j}(C.)\cong H_{DR}^{j}(\Omega_{x}(M))$

where $H_{DR}^{j}(\Omega_{x}(M))$ denotes the de Rham cohomology of the loop space
$\Omega_{x}(M)$ .

Let us describe the relation between the fundamental group of $M$

and the 0-th cohomology $H^{0}$ (C.) of the bar complex C.. The iterated
integration map

$\iota$ : $C^{0}\times\Omega_{x}(M)\rightarrow R$

defined by $\iota(\omega_{1}\otimes\cdots\otimes\omega_{q}, \gamma)=\int_{\gamma}\omega_{1}\cdots\omega_{q}$ induces a natural paring map

$H^{0}$ (C.) $\times\pi_{1}(M, x)\rightarrow R$

which gives a bilinear map

$H^{0}$ (C.) $\times R[\pi_{1}(M, x)]\rightarrow$ R.

Here $R[\pi_{1}(M, x)]$ stands for the group algebra of $\pi_{1}(M, x)$ over R.
We denote by I the kernel of the augmentation homomorphism $\epsilon$ :
$R[\pi_{1}(M, x)]\rightarrow$ R. Let us introduce the increasing filtration $\mathcal{F}_{k}C^{n}$ ,
$k\geq 0$ , on the bar complex C. defined by

$\mathcal{F}_{k}C^{n}=\oplus_{p-q=n}$ , $q\leq kC^{p,-q}$ .

The above filtration is preserved by the differential and induces a filtra-
tion on the cohomology of the bar complex C.. The following Theorem
is due to K. T. Chen.

Theorem 2.3 (K. T. Chen [3]). The iterated integration map in-
duces an isomorphism

$\mathcal{F}_{k}H^{0}(C.)\cong Hom_{R}(R[\pi_{1}(M, x)]/I^{k+1}, R)$ .
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Let us denote by $Lib(H_{1}(M, Q))$ the free Lie algebra over $Q$ gener-
ated by the first homology $H_{1}(M, Q)$ . We consider the dual of the cup
product homomorphism

$\alpha$ : $H_{2}(M, Q)\rightarrow H_{1}(M, Q)\wedge H_{1}(M, Q)$

and the ideal in $Lib(H_{1}(M, Q))$ generated by $Im\alpha$ is denoted by I. Here
we identify the wedge product with the Lie bracket. The holonomy Lie
algebra of $M$ over $Q$ is defined to be

$g(M)_{Q}=Lib(ifi(M, Q))/I$ .

We have the filtration

$g(M)_{Q}=\Gamma_{0}\supset\Gamma_{1}\cdots\supset\Gamma_{j}\supset\cdots$

defined inductively by $\Gamma_{j+1}=[\Gamma_{0}, \Gamma_{j}]$ for $j\geq 0$ . As the quotient
$g(M)_{Q}/\Gamma_{j}$ we obtain a nilpotent Lie algebra whose universal envelop-
ing algebra is denoted by $U(g(M)_{Q}/\Gamma_{j})$ . We consider the $Q$ algebra
$A(M)_{Q}$ defined by the inverse limit

$A(M)_{Q}=\lim U(g(M)_{Q}/\Gamma_{j})$ .

In the case when the manifold $M$ is the complement of hyperlpanes
$X=C^{n}\backslash \bigcup_{j=1}^{m}H_{j}$ we have an isomorphism

$U(g(X)_{Q}/\Gamma_{j})\cong Q[\pi_{1}(X, x)]/I^{j+1}$

which induces an isomorphism of complete Hopf algebras

$A(X)_{Q}\cong\varliminf Q[\pi_{1}(X, x)]/I^{j}$ .

We refer the readers to [6] for the above isomorphisms. In this case
the algebra $A(X)_{Q}$ has the following explicit description. We take basis
$X_{j}$ , $1\leq j\leq m$ , whose dual basis consists of the logarithmic forms $\omega_{j}$ , $ 1\leq$

$j\leq m$ . Let us denote by $Q\langle\langle X_{1}, \cdots, X_{m}\rangle\rangle$ the algebra of formal power
series in the non-commutative indeterminates $X_{j}$ , $1\leq j\leq m$ , and let $J$

be its ideal generated by

$[X_{j_{p}}, X_{j_{1}}+\cdots+X_{j_{6}}]$ , $1\leq p\leq s$

for any maximal family of hyperplanes $H_{j_{1}}$ , $\cdots$ , $H_{j_{s}}$ such that

$codim_{C}(H_{j_{1}}\cap\cdots\cap H_{j_{s}})=2$ .
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Then we have an isomorphism

$A(X)_{Q}\cong Q\langle\langle X_{1}, \cdots, X_{m}\rangle\rangle/J$

as complete Hopf algebras.
For a field $k$ containing $Q$ we put $A(X)_{k}=A(X)_{Q}\otimes k$ . We are

going to construct a homomorphism

$\theta$ : $\pi_{1}(X, x)\rightarrow A(X)c$

which gives a universal expression of the holonomy of the connection
$\omega=\sum_{j=1}^{m}A_{j}\omega_{j}$ in Section 1. We put $\tilde{\omega}=\sum_{j=1}^{m}X_{j}\otimes\omega_{j}$ and we define
the map $\theta$ as the infinite sum of iterated integrals given by

$\theta(\gamma)=1+\int_{\gamma}\tilde{\omega}+\cdots+\int_{\gamma}\tilde{\omega}\cdots\tilde{\omega}+\tilde{k}\ldots$

for $\gamma\in\pi_{1}(X, x)$ . Here by definition

$\int_{\gamma}\tilde{\omega}\cdots\tilde{\omega}\check{k}=\sum_{j_{1},\cdot\cdot,j_{k}}(\int_{\gamma}\omega_{j_{1}}\cdots\omega_{j_{k}})X_{j_{1}}\cdots X_{j_{k}}$ .

We see that $\theta$ induces a homomorphism of algebras

$\tilde{\theta}:C[\pi_{1}(X, x)]\rightarrow A(X)c$ .

\S 3. Iterated integrals and invariants of braids

First we describe the notion of Vassiliev invariants of braids by
means of the group algebra of the braid group. Let $J$ be the kernel
of the natural homomorphism $\pi$ : $C[Bn]\rightarrow CSn$ . It turns out that $J$ is
the ideal generated by $\sigma_{i}-\sigma_{i}^{-1}$ , where $\{\sigma_{i}\}_{1\leq i\leq n-1}$ is the set of standard
generators of $B_{n}$ . Let $v$ : $B_{n}\rightarrow C$ be an invariant of braids with values
in C. Extending $v$ linearly we obtain a linear map $\tilde{v}$ : $C[B_{n}]\rightarrow$ C. We
shall say that $v$ is a Vassiliev invariant of order $k$ if $\tilde{v}$ factors through
$C[B_{n}]/J^{k+1}$ . We denote by $\mathcal{V}_{k}(B_{n})$ the complex vector space of the
Vassiliev invariants of order $k$ for $B_{n}$ . We have an identification

$\mathcal{V}_{k}(B_{n})\cong Hom_{C}(C[B_{n}]/J^{k+1}, C)$

as complex vector spaces. We have an increasing sequence of vector
spaces

$\mathcal{V}_{0}(B_{n})\subset\cdots\subset \mathcal{V}_{k}(B_{n})\subset \mathcal{V}_{k+1}(B_{n})\subset\cdots$
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whose union $\mathcal{V}(B_{n})=\bigcup_{k\geq}0\mathcal{V}_{k}(B_{n})$ is called the vector space of Vassiliev
invariants of braids.

For the configuration space $X_{n}$ defined in Section 1, we set $A_{n}=$

$A(X_{n})_{C}$ . The algebra $A_{n}$ is described as the quotient $C\langle\langle X_{ij}\rangle\rangle/J$ where
$C\langle\langle X_{ij}\rangle\rangle$ is the algebra of formal non-commutative power series with
indeterminates $X_{ij}$ , $1\leq i\neq j\leq n$ , and $J$ is the ideal generated by
$X_{ij}-X_{ji}$ and the infinitesimal pure braid relations

$[X_{ik}, X_{ij}+X_{jk}]$ $i$ , $j$ , $k$ distinct

$[X_{ij}, X_{kl}]$ $i$ , $j$ , $k$ , $l$ distinct.

Let us notice that $A_{n}$ has a structure of a graded algebra with $degX_{ij}=$

$1$ . We denote by $A_{n}^{p}$ the degree $p$ part of $A_{n}$ . We put $A_{n}^{\leq k}=\oplus_{p\leq k}A_{n}^{p}$ .

We introduce an extension $\tilde{A}_{n}$ of the algebra $A_{n}$ . As a vector space $\tilde{A}_{n}$

is defined to be the tensor product $A_{n}\otimes C[S_{n}]$ . We introduce a structure

of an algebra for $\tilde{A}_{n}$ by

$X_{ij}s=sX_{s(i)s(j)}$ .

for $X_{ij}\in A_{n}$ and $s\in S_{n}$ . The algebra $\tilde{A}_{n}$ is the semi-direct product
of $A_{n}$ and $C[S_{n}]$ defined by the above relation. This algebra has a
structure of a graded algebra with $degX_{ij}=1$ and $degs=0$ for $s\in S_{n}$ .

As in the case of $A_{n}$ , we denote by $\tilde{A}_{n}^{p}$ the degree $p$ part of $\tilde{A}_{n}$ . We put
$\tilde{A}_{n}^{\leq k}=\oplus_{p\leq k}\tilde{A}_{n}^{p}$ .

Our next object is to define a linear map

$w:\mathcal{V}_{k}(B_{n})\rightarrow Homc(\tilde{A}_{n}^{\leq k}, C)$ .

First we observe that an element of $\tilde{A}_{n}^{\leq k}$ is written as a linear combina-
tion of elements of the form

$X_{i_{1}j_{1}}\cdots X_{i_{p}j_{l^{J}}}s$ , $s\in S_{n}$ , $p\leq k$ .

We choose $\sigma\in B_{n}$ such that $p(\sigma)=s$ . The map $w$ is defined by

$w(v)(X_{i_{1}j_{1}}\cdots X_{i_{p}j_{p}}s)$

$=\overline{v}((\gamma_{i_{1}j_{1}}-1)\cdots(\gamma_{i_{p}j_{p}}-1)\sigma)$ .

We see that since $v$ is of order $k$ the map $w$ is well-defined. The above
$w(v)$ is called the weight system for $v$ .

Let us consider the loop space $\Omega_{y}(Y_{n})$ with basepoint $y\in Y_{n}$ . An
element of $\Omega_{y}(Y_{n})$ is called a geometric braid. We define $C^{0}(\Omega_{y}(Y_{n}))$ to
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be the subspace of $A^{0}(\Omega_{y}(Y_{n}))$ spanned by the functions whose values
at $\gamma\in\Omega_{y}(Y_{n})$ are given by the iterated integrals of the form

$\int_{\overline{\gamma}}\omega_{i_{1}j_{1}}\cdots\omega_{i_{k}j_{k}}$

with some $k$ , where $\tilde{\gamma}$ is the lift of $\gamma$ in $X_{n}$ starting at the basepoint
$x\in X_{n}$ . The 0-th cohomology $H^{0}$ (C. $(\Omega_{y}(Y_{n}))$ ) consists of the iterated
integrals of logarithmic forms depending only on the homotopy classes of
loops $\gamma\in\Omega_{y}(Y_{n})$ . This cohomology group has the increasing filtration
$\mathcal{F}_{k}H^{0}$ (C. $(\Omega_{y}(Y_{n}))$ , $k\geq 0$ , defined by the length of the iterated inte-
grals. The following Theorem permits us to determine all such iterated
integrals combinatorially in terms of the algebra $\tilde{A}_{n}$ .

Theorem 3.1. We have isomorphisms

$\mathcal{F}_{k}H^{0}$ (C. $(\Omega_{y}(Y_{n}))\cong \mathcal{V}_{k}(B_{n})\cong Hom_{C}(\tilde{A}_{n}^{\leq k}, C)$ .

Proof. We defined the map

$w:\mathcal{V}_{k}(B_{n})\rightarrow Hom_{C}(\tilde{A}_{n}^{\leq k}, C)$

by taking the associated weight system. To construct the inverse map
we consider the universal holonomy homomorphism

$\theta$ : $B_{n}\rightarrow\tilde{A}_{n}$

defined in the following way. We put $\tilde{\omega}=\sum_{i<j}X_{ij}\otimes\omega_{ij}$ and we define
the map $\theta$ as the infinite sum of iterated integrals given by

$\theta(\gamma)=(1+\int_{\overline{\gamma}}\tilde{\omega}+\cdots+\int_{\overline{\gamma}}\tilde{\omega}\cdots\tilde{\omega}+\check{k}\ldots)p(\gamma)$

for $B_{n}$ , where $\tilde{\gamma}$ is the lift of $\gamma$ in $X_{n}$ starting at the basepoint $x\in X_{n}$

as above and $p:B_{n}\rightarrow S_{n}$ is the narutal homomorphism. We denote by
$\tau$ : $\tilde{A}_{n}\rightarrow\tilde{A}_{n}^{\leq k}$ the truncation map. For $\beta\in Hom_{C}(\tilde{A}_{n}^{\leq k}, C)$ we obtain a
Vassiliev invariant of order $k$ of $B_{n}$ as the composition $\beta\circ\tau\circ\theta$ . One can
check that this construction gives the inverse of the map $w$ . We observe
that each element in $\mathcal{F}_{k}H^{0}$ (C. $(\Omega_{y}(Y_{n}))$ defines a Vassiliev invariant of
braids of order $k$ . Conversely, given a Vassiliev invariant $v$ of braids of
order $k$ , we consider the associated weight system $w(v)$ . Then as the
composition $ w(v)\circ\tau\circ\theta$ we recover the iterated integral expression of
the Vassiliev invariant $v$ . This shows the first isomorphism. Q.E.D.
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Corollary 3.2. We have an isomorphism

$\tilde{A}_{n}^{\leq k}\cong C[B_{n}]/J^{k+1}$

which induces an isomorphism of complete Hopf algebras

$\tilde{A}_{n}\cong\varliminf^{C}[B_{n}]/J^{j}$

Remark 3.3. It can been shown that the universal Vassiliev in-
variants with values in $Q$ can be defined by means of the Drinfel’d
associator defined over $Q$ (see [4], [5] and [10]). Using this expression
we can establish the isomorphism in the above Corollary over Q.
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Cohomology of Local systems

Anatoly Libgober1 and Sergey Yuzvinsky

\S 1. Introduction

This survey is intended to provide a background for the authors paper
[23]. The latter was the subject of the talk given by the second author
at the Arrangement Workshop. The central theme of this survey is the
cohomology of local systems on quasi-projective varieties, especially on
the complements to algebraic curves and arrangements of lines in $P^{2}$ . A
few of the results of [23] are discussed in section 4 while the first part of
this paper contains some of highlights of Deligne’s theory [7] and several
examples from the theory of Alexander invariants developed mostly by
the first author in the series of papers [17] $-[22]$ . We also included
several problems indicating possible further development. The second
author uses the opportunity to thank M. Oka and H. Terao for the hard
labor of organizing the Arrangement Workshop.

\S 2. Background on cohomology of local systems

Local systems. A local system of rank $n$ on a topological space $X$ is a
homomorphism $\pi_{1}(X)\rightarrow GL(n, C)$ . Such a homomorphism defines a
vector bundle on $X$ with discrete structure group or a locally constant
bundle (cf. [7], I. $I$ ). Indeed, if $\tilde{X}_{u}$ is the universal cover of $X$ then
$\tilde{X}_{u}\times_{\pi_{1}(X)}C^{n}$ is such a bundle (this product is the quotient of $\tilde{X}_{u}\times C^{n}$

by the equivalence relation $(x, v)\sim(x^{J}, v^{J})$ if and only if there is $ g\in$

$\pi_{1}(X)$ such that $x^{J}=gx$ , $v^{/}=gv$ ; this quotient has the projection onto
$\tilde{X}_{u}/\pi_{1}(X)=X$ with the fiber $C^{n}$ ). Vice versa, any locally constant
bundle defines a representation of the fundamental group of the base.

If $X$ is a complex manifold, then there is a one-to-one correspondence
between the local systems and pairs consisting of a holomorphic vector
bundle on $X$ and an integrable connection on the latter (cf. [7] 1.2,
Theorem 2.17). If $V$ is a vector bundle then a connection can be viewed
as a $C$-linear map defined for each open set $U$ of $X$ and acting as follows:

partially supported by NSF
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$\nabla$ : $V(U)\rightarrow\Omega^{1}(X)(U)\otimes_{\mathcal{O}(U)}V(U))$ . Here $V(U)$ (resp. $\mathcal{O}(U)$ , resp.
$\Omega(X)(U))$ is the space of sections of $V$ (resp. the space of functions and
the space of 1-forms) holomorphic on $U$ . It is required from $\nabla$ to satisfy
the Leibniz rule $\nabla(f\cdot s)=df\otimes s+f\cdot\nabla(s)$ . The integrability requirement
is that if one extends $\nabla$ to the maps $\nabla_{1}$ : $\Omega^{1}(X)(U)\otimes_{\mathcal{O}(U)}V(U)\rightarrow$

$\Omega^{2}(X)(U)\otimes_{\mathcal{O}(U)}V(U)$ using the rule $\nabla_{1}(\omega\otimes v)=d\omega\otimes v-\omega\wedge\nabla v$ then
$\nabla_{1}\circ\nabla=0$ .

The above correspondence can be described as follows. If $V$ is a
locally constant bundle, then on the holomorphic bundle $V\otimes_{C}\mathcal{O}$ , where
$\mathcal{O}$ is the trivial bundle, one can define the connection by $\nabla(f\otimes v)=df\otimes v$

where $f$ (resp. $v$ ) is a holomorphic function (resp. a section of a locally
constant bundle $V$ ) on $U$ . The sections $v$ of $V\otimes_{C}\mathcal{O}$ which are flat with
respect to this connection, i.e., such that $\nabla(v)=0$ , coincide with the
sections of $V$ . Vice versa, the sections of any holomorphic bundle with
integrable connection form a locally constant bundle, i.e., a local system.

Cohomology. The homology of a local system can be defined as the
homology of chain complex:

$\ldots$

$\rightarrow C_{i}(\tilde{X}_{u})\otimes_{\pi_{1}(X)}C^{n}\rightarrow\ldots$

Here the chain complex for $\tilde{X}_{u}$ can be the complex of singular chains, or
chains corresponding to a triangulation, or chains with a support, etc.

It is well known that the cohomology of $X$ with constant coefficients
can be calculated using the de Rham complex $A^{*}(X)$ of $C^{\infty}$ -differential
forms(the de Rham theorem). In the case where $X$ is a non singular
algebraic variety which is the complement to the union $Y$ of smooth
divisors on a projective variety $\overline{X}$ one can define a subcomplex $ A\langle Y\rangle$ of
de Rham complex $A^{*}(X)$ called $\log$-complex. It consists of $C^{\infty}$ forms
$\omega$ on $X$ with the property that near a point of $\overline{X}$ at which $Y$ has local
equation $Q=0$ both $ Q\omega$ and $Qdu$ admit extension to $\overline{X}$ . If the compo-
nents of $Y$ intersect transversally then the cohomology of the complex
$ A\langle Y\rangle$ is also isomorphic to $H^{*}(X)$ . Otherwise it is not valid in general,
though under some conditions on the singularities of $Y$ (e.g. if $Y$ is free)
it is still true (see [4, 34]).

The cohomology of local systems also can be described using dif-
ferential forms. Before stating this result let us recall that, though the
holomorphic $\log$-de Rham complex is too small to give full cohomol-
ogy groups, there is, nevertheless, a way to reconstruct cohomology of
$X$ using holomorphic $\log$-forms. Namely, one can consider a double
complex $F^{i,j}$ of sheaves such that all $\mathcal{F}^{i,j}$ are acyclic and $F^{i,*}$ form
a resolution of the sheaf of holomorphic $\log-$ forms $\Omega^{i}(X)\langle Y\rangle$ . The co-
homology of the double complex $\Gamma(F^{i,j})$ , i.e., the cohomology of the
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complex $\oplus_{i+j=k}\Gamma(F^{i,j})$ , is called the hypercohomolgy of $\Omega^{*}(X)\langle Y\rangle$ .

This construction of hypercohomology, applied verbatim to any complex
of sheaves $F^{*}$ instead of $\log$-complex, yields hypercohomology groups
$H^{*}(F^{*})$ . A theorem of Deligne states that the hypercohomolgy
$H^{i}(\Omega^{*}(X)\langle Y\rangle)$ is isomorphic to $H^{i}(X, C)$ (cf. [8]). On the other hand,
if $X$ is affine, e.g. a complement to a hypersurface in projective space
(cf. section 4.), then the cohomology $H^{i}(X, C)$ can be found using the
complex of rational forms (the algebraic de Rham theorem, cf. [12]).

Hypercohomology also yields the cohomology of local systems in
terms of differential forms, i.e., give a version of the de Rham theorem
for local systems. The (holomorphic) de Rham complex in this case is

formed by the sheaves of holomorphic forms with values in the holomor-
phic bundle $\mathcal{V}$ corresponding to the local system $V$ , i.e., $\Omega^{p}(\mathcal{V})=\Omega^{p}\otimes o\mathcal{V}$

with the differential given by $\nabla_{p}(\omega\otimes v)=d\omega\otimes v+(-1)^{deg(v)}\omega\wedge\nabla v$

( $\nabla_{1}$ above is a special case of the differential in this de Rham complex).

Note that integrability $\nabla_{1}\circ\nabla=0$ yields that $\nabla_{p+1}\circ\nabla_{p}=0$ , i.e., $\Omega^{p}(\mathcal{V})$

form indeed a complex of sheaves. This de Rham complex is a reso-
lution of the holomorphic bundle $\mathcal{V}$ and it yields“de Rham theorem”
$H^{p}(\Omega(X)(\mathcal{V}))=H^{p}(X, V)$ (if $V$ is a trivial local system one obtains
the standard de Rham theorem). Moreover, if $X$ is affine, the de Rham
theorem with twisted coefficients still holds, i.e., the cohomology of the
complex of rational forms with values in $\mathcal{V}$ is isomorphic to $H^{i}(X, V)$

(cf. [7], $II$ , cor.6.3)

Calculation of cohomology of local systems using logarithmic com-
plex is more subtle (even in the case of normal crossing), i.e., hyperco-
homology of $\log$-complex yield the cohomology of the local system only
if certain conditions are met. Deligne describes such sufficient condi-
tions. The conditions are stated in the case where the connection $\nabla$ has
logarithmic poles along $Y$ in the following sense. One assumes that the
bundle $\mathcal{V}$ on $X$ is a restriction of a holomorphic bundle $\overline{\mathcal{V}}$ on compactifi-
cation $\overline{X}$ of $X$ where $Y=\overline{X}-X$ is a divisor with normal crossings. The
logarithmic property of $\nabla$ means that in a sufficiently small neighbor-
hood $U_{p}$ of any point $p\in Y$ , such that there exists a choice of sections
$e_{i}\in\Gamma(U_{p},\overline{\mathcal{V}})$ forming a basis of any fiber of $\overline{V}$ in $U_{p}$ , the matrix of
$\nabla$ consists of 1-forms having logarithmic poles along $Y$ . The entries of
this matrix are $a_{i,j}\in\Omega^{1}(U_{p}\cap X\otimes \mathcal{V})$ such that $\nabla(e_{i})=\Sigma a_{i,j}\otimes e_{j}$ .

The matrix of $\nabla$ can be described in invariant terms as an element
of $\Omega^{1}(X)(End\mathcal{V})$ . On the other hand, near $p\in Y$ where $Y$ is given
by $z_{1}\cdots z_{k}=0$ , a log-l-form $\omega$ on $X$ can be written as $\Sigma\alpha_{i}dz_{i}/z_{i}$

where $\alpha_{i}$ are holomorphic in $U_{p}$ and hence defines a holomorphic section
${\rm Res}_{Y}(\omega)=\Sigma_{i}\alpha_{i}|Y$ on $Y$ called the residue of $\omega$ . If $\nabla$ is a connection
with logarithmic poles then one can define ${\rm Res}_{Y}(\nabla)$ as a matrix formed
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by the residues of log-l-forms $a_{i,j}$ . This matrix can be viewed as an
element of $End(\overline{\mathcal{V}}|_{Y})$ . Deligne’s fundamental theorem ([7], 3.15 ) states
that if none of the eigenvalues of matrices ${\rm Res}_{Y}(\nabla)(p)(p\in Y)$ is a
positive integer then one has the isomorphism of hypercohomology:

$H(X, \Omega_{\overline{X}}^{*}\langle Y\rangle(\mathcal{V}))=H(X, \Omega_{X}^{*}(\mathcal{V}))$

Rank one local systems. Rank one local systems on $X$ are just
the characters of fundamental group or equivalently of $H_{1}(X, \mathbb{Z})$ . We
will assume for simplicity that the latter group is torsion free. In this
case the” moduli space” of local systems of rank one is just the torus
Char(X) $=C^{*b_{1}}$ where $b_{1}=dim$ Hi $(X, R)$ (presence of torsion in
$H_{1}(X, Z)$ will yield Char(X) with several connected components, each
being a translation of a torus). For higher rank the construction of
moduli spaces in considerably more complicated (cf. [31]).

The torus Char(X) contains subvarieties $\Sigma_{i}^{k}$ that consist of local
systems $V$ such that $rkH^{k}(X, V)\geq i$ . $\Sigma_{i}^{k}$ are important invariants of
$X$ . They play a crucial role in several problems.

First, these subvarieties of Char(X) are closely related to the struc-
ture of the fundamental group of $X$ or more precisely to the Alexander
invariants of the latter. Those can be defined as follows (cf. [22]). Let
$\tilde{X}_{A}$ be an abelian cover of $X$ corresponding to the kernel of a surjection
$\phi_{A}$ : $\pi_{1}(X)\rightarrow A$ . The group $A$ is an abelian group of deck transfor-

mations. Though $\tilde{X}_{A}$ of course depends on $\phi_{A}$ we shall not specify this
dependence since in this paper this wouldn’t cause a confusion. The
group $H_{1}(\tilde{X}_{A}, C)$ can be considered as a module over the group ring of

the group of deck transformations of $\tilde{X}_{A}$ , i.e., over $R=C[A]$ . The lat-
ter, after a choice of independent generators in $A$ , can be identified with
the ring of Laurent polynomials of $rk(A)$ variables. This module is the
Alexander invariant of $X$ corresponding to $A$ and is denoted below by
$A(X, A)$ . A particularly important case is where $A=H_{1}(X, \mathbb{Z})$ , i.e., the
case of universal abelian cover, since in this case $A(X, A)$ is a homotopy
invariant of $X$ .

Definition 2.1. Let $R^{m}\rightarrow R^{n}\rightarrow A(X, A)\rightarrow 0$ be a presentation

of the Alexander invariant. The $\dot{?}$ -th characteristic variety is the set

of zeros in $(C^{*})^{rk(A)}$ of the polynomials in the ideal in $R$ generated by
minors of order $n-i+1$ ( $i$ -th Fitting ideal of $A$ ( $X$ , $A$ )).

If $A=H_{1}(X, \mathbb{Z})$ then $H_{1}(\tilde{X}_{A})=\pi_{1}^{J}(X)/\pi_{1}^{JJ}(X)\otimes C$ , i.e., depends
only on the fundamental group of $X$ . For any group $G$ , the Alexander
invariant of $X$ such that $\pi_{1}(X)=G$ provides an invariant of a pair
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$(G, A)$ where $A$ is a (free) abelian quotient of $G$ . For any $A$ the module
$A(X, A)$ can be computed directly using Fox calculus.

It turns out (cf. [14], [22]) that the $i$-th characteristic variety coin-
cides with $\Sigma_{i}^{1}$ (considered as subvariety of Char(A) of the space of rank
one local systems which factor through $A$ ). In the case where $\pi_{1}(X)$

is abelian and $\pi_{j}(X)=0$ for $j<k$ one can similarly interpret $\Sigma_{i}^{k}$ as
the set of zeros of polynomials in the $i$-th Fitting ideal of the module
$H_{k}(\tilde{X}_{H_{1}(X,\mathbb{Z})})$ (cf. [20] where typical case of such situation, i.e., when $X$

is a complement to a hypersurface in $C^{k+1}$ , is considered).
Second, the characteristic varieties $\Sigma_{i}^{1}$ determine the one dimen-

sional cohomology of branched and unbranched covers of $X$ (cf. [18],
[29] and the next section)

Third, the varieties $\Sigma_{i}^{1}$ allow one to detect dominant maps of $X$ on
curves. These results are going back to classical works of deFranchis
on the existence of irrational pencils on algebraic surfaces and to more
recent work of Green-Lazarsfeld, Beauville, Simpson, Deligne (when $X$

is projective) and D. Arapura (when $X$ is quasiprojective).

Theorem 2.2 ((D.Arapura) [2]). Let $X$ be a quasiprojective vari-
ety then any irreducible component of characteristic variety is a coset of
a subgroup of Char $\pi_{1}(X)$ . Moreover each component having a positive
dimension corresponds to a holomorphic map $f$ : $X\rightarrow C$ on a curve $C$

such that local systems in this component have the form $E\otimes f^{*}(L)$ where
$L$ runs through the local systems on $C$ .

\S 3. Local systems on complements to algebraic curves

Now we will restrict our attention to the case where $X$ is a complement

to an algebraic curve $C$ in afflne plane $C^{2}=P^{2}-L$ . The case where $L$ is
in general position relative to the projective closure $\overline{C}$ of $C$ is of particular
interest since in this case $\pi_{1}(P^{2}-\overline{C})$ is just a quotient of $\pi_{1}(C^{2}-C)$

by an element of its center (cf. [19]) which we will assume here. A
closely related case of local systems on complements to hypersurfaces
with isolated singularities is considered in [21].

With curve $C$ and surjection $H_{1}(C^{2}-C, \mathbb{Z})\underline{\rightarrow A}$ on a group $A$ (cf.

section 2) one can associate unbranched cover $(C^{2}-C)_{A}$ of $C^{2}-C$ and
branched cover of $P^{2}$ branched over the projective closure of $C$ with $A$

as the group of the cover. Since the first Betti number of an algebraic
surface is a birational invariant, the first Betti number of a resolution
of singularities of the latter cover depends only on $C$ and the group $A$ .

We shall denote a resolution of singularities of a cover of $P^{2}$ branched
along $C$ by $Z_{C,A}$ (though it depends, of course, on the surjection on
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$H_{1}(C^{2}-C)\rightarrow A)$ . Moreover, the first Betti numbers of $(C^{2}-C)_{A}$

and $Z_{C,A}$ depend only on the characteristic varieties of $C^{2}$ –C. More
precisely we have (cf. [18])

$rkH_{1}((C^{2}-C)_{A})=\Sigma_{\chi\in Char(A)}\max\{i|\chi\in\Sigma_{i}^{1}(C^{2}-C)\}$ .

For the branched case, for $\chi\in Char\pi_{1}(C^{2}-C)$ denote by $C_{\lambda}$ the curve
formed by the components $C_{i}$ of $C$ such that if $\gamma$ is the boundary of a
small 2-disk transversal to $C_{i}$ then $\chi(\gamma_{i})\neq 1$ . Then (cf. [29])

$rkH_{1}(Z_{C,A})=\Sigma_{\chi\in Char(A)}\max\{i|\chi\in\Sigma_{i}^{1}(C^{2}-C_{\chi})\}$ .

If $(G, A)$ is a pair as in section 2 where $A=\mathbb{Z}$ then all ideals in

$R=C[A]$ are principal. A generator of the $i$-th Fitting ideal for the
module $A(X, A)$ , (defined up to a unit of $R$ ) where $X$ is a space with
$\pi_{1}(X)=G$ is a polynomial called $i$-th Alexander polynomial $\Delta_{i}(C)$ of
C. Its set of zeros is $\Sigma_{i}^{1}$ . In the case when $rkA>1$ , Fitting ideals for
$Ker(G\rightarrow A)/Ker(G \rightarrow A)’\otimes C$ are not principal in general, though in
special case where $G$ is the fundamental group of a complement to a link
in a 3-sphere the first Fitting ideal is a product of a power of the maximal
ideal of the identity of Char $G$ and a principal ideal (whose generator
is the multivariable Alexander polynomial). A special feature of the
case where $G=\pi_{1}(C^{2}-C)$ is that one can determine the characteristic
varieties in terms of local type of singularities of $C$ and the geometry of
the set of singular points of $C$ in the projective plane containing $\overline{C}$ . In
fact, in the cyclic case, one obtains an expression for the whole Alexander
polynomial (cf. [33]). In the rest of this section we will describe this
calculation and give some examples only briefly indicating how this can
be generalized to the abelian case (i.e., when $rk(A)>1$ ) referring the
reader to [22] for complete details.

Let us first describe the local data which comes into the description
of the Alexander polynomials of algebraic curves (cf. [17]). We want to
associate with each germ of a plane curve singularity, say $f(x, y)=0$ at
the origin, a sequence of rational numbers $\kappa_{1}$ , $\ldots$ , $\kappa_{l}$ and corresponding
ideals $A_{\kappa_{1}}$ , .. $A_{\kappa_{l}}$ in the local ring $\mathcal{O}_{(0,0)}$ .

Recall that the adjoint ideal of an isolated singularity of a hypersur-
face $V$ at the origin near which $V$ is given by the equation $g(x_{1}, \ldots, x_{r})=$

$0$ consists of germs $\phi$ in the local ring of the origin such that $\phi$ . $(dx_{1}\wedge$

$\ldots\wedge\hat{d}x_{i}\wedge\ldots dx_{r})/g_{x_{i}}$ admits a holomorphic extension over the exceptional
set of some resolution of the singularity of $V$ . The adjoint ideal will be
denoted as $Adj(g=0)$ . In the case where $g(x_{1}, \ldots, x_{r})$ is generic for its

Newton polytope, a monomial $x_{1}^{i_{1}}\cdots x_{r}^{i_{7}}$
. belongs to the adjoint ideal if
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and only if $(i_{1}+1, \ldots, i_{r}+1)$ is strictly above the Newton polytope of $g$

(cf. [25]).
In order to define the constants $\kappa_{1}$ , $\ldots$ , $\kappa\iota$ (constants of quasiadjunc-

tion of the singularity of a germ of plane curve $f(x, y))$ let us consider
for each element $\phi$ in the local ring of the origin, the function

$\Psi_{\phi}(p)=\min\{k|z^{k}\cdot\phi\in Adj(z^{p}=f(x, y))\}$ .

One can show that this function can be written for an appropriate ratio-
nal number $\kappa_{\phi}$ as $\Psi_{\phi}(p)=[\kappa_{\phi}\cdot p]$ where $[\cdot]$ denotes the integer part (this
is immediate, in the case where $f(x, y)$ is generic for its Newton poly-
tope, from the description of the adjoint ideal mentioned in the previous
paragraph, since in this case the germ of $z^{p}=f(x, y)$ is generic for its
Newton polytope). Moreover, the set of rational numbers $\kappa_{\phi}$ , $\phi\in \mathcal{O}_{0,0}$ ,

is finite. In fact the set of numbers $-\kappa\psi$ forms a subset of Arnold-
Steenbrink spectrum of $f(x, y)=0$ belonging to the interval $(0, 1)$ (cf.
[24] $)$ . In particular $\exp(2\pi i\kappa)$ is a root of the local Alexander polynomial
of the link of the singularity $f(x, y)=0$ .

It follows from the definition that for each $\kappa$ the germs $\phi$ such that
$\kappa_{\phi}<\kappa$ form an ideal called an ideal of quasiadjunction and denoted $A_{\kappa}$ .

Now we are ready to describe the Alexander polynomial of $C$ $\subset C^{2}$ (cf.
[17] $)$ . For each rational $\kappa$ let us consider the ideal sheaf $I_{\kappa}\subset \mathcal{O}_{P^{2}}$ such
that $\mathcal{O}_{P^{2}}/I_{\kappa}$ is supported at the singular locus of $\overline{C}$ and such that the
stalk of $I_{\kappa}$ at a singular point $p$ of $C$ consists of germs belonging to the
ideal $A_{\kappa}$ of the singularity of $C$ at $p$ .

Theorem 3.1. The Alexander polynomial of $C$ having degree $d$ is
$\square _{\kappa}[(t-\exp(2\pi i\kappa))(t- \exp(-2\pi i\kappa)]^{di\iota nH^{1}(\mathcal{T}_{\kappa}(d-3-d\kappa))}$ where the product
is over all constants of quasiadjunction of all singular points of $C$ such
that $d$ . $\kappa\in \mathbb{Z}$ .

Examples 1. Let $\overline{C}$ be given by the equation $f_{3k}^{2}+f_{2k}^{3}=0$ where
$f_{l}$ is a generic form of degree $l$ . Then $\overline{C}$ is a curve of degree $6k$ having
$6k^{2}$ ordinary cusps (i.e., locally given by $x^{2}+y^{3}=0$ ) located at the set
of solutions of $f_{2k}=f_{3k}=0$ . Ordinary cusp has only one constant of
quasiadjunction $\kappa=1/6$ and the corresponding ideal of quasiadjunction
is just the maximal ideal (this follows directly from the above since the
ordinary cusp is weighted homogeneous and hence generic for its New-
ton polytope). The corresponding sheaf $I_{1/6}$ admits Koszul resolution
$0\rightarrow \mathcal{O}_{P^{2}}(-5k)\rightarrow \mathcal{O}_{P^{2}}(-3k)\oplus \mathcal{O}_{P^{2}}(-2k)\rightarrow I_{1/6}\rightarrow 0$ which yields

$dimH^{1}(P^{2},I_{1/6}(6k-3-6k/6))=1$ . Therefore the Alexander polyno-

mial is equal to $t^{2}-t+1$ . This, of course, provides complete description
of the cohomology of local systems on the complement to this curve.
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2. Let $\overline{C}$ be a sextic with 3 cusps and one singularity of type $x^{4}=y^{5}$

(cf. [26]). We start by describing the constants of quasiadjunction of
singularities of this curve which may contribute to the Alexander poly-
nomial. First, the constant of quasiadjunction of singularity $x^{4}=y^{5}$

corresponding to $\phi=x^{i}\cdot y^{j}$ is equal to $\kappa_{\phi}=\max\{(11-5i-4j)/20,0\}$

as follows from the description of adjoint ideals for polynomials generic
for their Newton polytopes mentioned earlier. We noted already that
$x^{2}=y^{3}$ has only one constant of quasiadjunction, i.e., 1/6. Second,
since the degree of the curve is 6, the contributing into Alexander poly-
nomial constants of quasiadjunction $\kappa$ should satisfy 6 $\cdot\kappa\in \mathbb{Z}$ . Third, it
follows again from the description of adjoint ideals that the monomial
$x^{i}y^{j}$ belongs to the ideal of quasiadjunction corresponding to the con-
stant of quasiadjunction 1/6 in the local ring of the singularity $x^{4}=y^{5}$

if and only if $x^{i}y^{j}z^{[p/6]}$ belongs to the adjoint ideal of $z^{p}=x^{4}-y^{5}$ .

This happens if an only if $5p(i+1)+4p(j+1)+20((p/6)+1)\geq 20p$

for any positive $p$ . This is equivalent to $5i+4j>7(2/3)$ , i.e., ei-
ther $i\geq 2$ or $j\geq 2$ or both $i,j\geq 1$ . Hence $\phi$ , which is a combi-
nation of $x^{i}y^{j}$ , is in the ideal of quasiadjunction of 1/6 of singularity
$x^{4}=y^{5}$ if and only if it is in the square of the maximal ideal. There-
fore the intersection index of the $\phi=0$ with $x^{4}=y^{5}$ is at least 8.
The ideal of quasiadjunction corresponding to the constant 1/6 for the
ordinary cusp is the maximal ideal. It follows from the Bezout theo-
rem that $H^{0}(I_{1/6}(2))=0$ . Now $\chi(I_{1/6}(2))=0$ , because the sum of
dimensions of stalks of $\mathcal{O}_{P^{2}}(2)/I_{1/6}=dimH^{0}(P^{2}, \mathcal{O}_{P^{2}}(2))=6$ , whence
$H^{1}(I_{1/6}(2))=0$ and the Alexander polynomial of this curve is 1.

\S 4. Local systems on the complements to arrangements of
hyperplanes

An interesting class of examples where cohomology of local systems and
characteristic varieties can be often explicitly computed is formed by
complements to hyperplane arrangements. Tools for computations are
given by combinatorial invariants of arrangements: the intersection lat-
tice and its Orlik-Solomon algebra.

Let $B$ be an arrangement $\{H_{1}, \ldots, H_{n}\}$ of hyperplanes in a com-
plex projective space $P$ and $L$ its intersection lattice (i.e., the set of
all intersections of the hyperplanes ordered opposite to inclusion and
augmented by the maximum element 1). Fix some homogeneous lin-
ear forms $\alpha_{1}$ , $\ldots$ , $\alpha_{n}$ such that the zero locus of $\alpha_{i}$ is $H_{i}$ . Recall that
the Orlik-Solomon algebra $S$ of $B$ (or of $L$ ) is the factor of the exterior
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algebra over $\mathbb{C}$ on generators $e_{1}$ , $\ldots$ , $e_{n}$ by the ideal generated by

$\sum_{j=1}^{p}(-1)^{j}e_{i_{1}}\cdots\hat{e}_{i_{j}}\cdots e_{i_{pr}}$

for all linearly dependent sets $\{\alpha_{i_{1}}, \ldots, \alpha_{i},)\}$ . Algebra $S$ is graded and
generated in degree one. Denote by $\overline{S}$ the subalgebra of $S$ generated by
the elements $\sum_{i=1}^{n}a_{i}e_{i}(a_{i}\in \mathbb{C})$ with $\sum_{i=1}^{n}a_{i}=0$ . According to the
projective version of the Brieskorn-Orlik-Solomon theorem ([3, 27]), $\overline{S}$

is isomorphic to the algebra $H^{*}(M, \mathbb{C})$ where $M$ is the complement of
the divisor $D=\bigcup_{i}H_{i}$ . The isomorphism is given by sending each $e_{i}$ to
the closed 1-form $\omega_{i}=d\alpha_{i}/\alpha_{i}$ and taking the cohomology class of the
latter.

The forms $\omega_{i}$ can be used to produce matrix-valued logarithmic
forms and local systems of higher rank on $M$ . For a positive integer $r$ ,

let $P_{i}(i=1, \ldots, n)$ be $r\times r$-matrices over $\mathbb{C}$ such that $\sum_{i}P_{i}=0$ and
$\omega\in H^{0}(P, \Omega^{1}\langle B\rangle\otimes \mathcal{O}^{r})$ be defined as

$\omega=\sum_{i=1}^{n}\omega_{i}\otimes P_{i}$ .

Via the construction mentioned in section 2, the form $\omega$ defines a connec-
tion on $\mathcal{O}_{M}^{r}$ which is integrable if an only if $\omega\wedge\omega=0$ . This connection
defines the local system of rank $r$ on $M$ and since $M$ is affine the co-
homology of this system is the cohomology of the complex of rational
forms:

$\Gamma=\Gamma(M, \Omega_{M}^{\star}\otimes \mathbb{C}^{r})$

with differential $ d+\omega\wedge$ (cf. section 2). The correspondence $e_{i}\mapsto\omega_{i}$

defines also an embedding

$\phi$ : $\overline{S}^{*}\otimes \mathbb{C}^{r}\subset\Gamma$

where $\overline{S}^{*}\otimes \mathbb{C}^{r}$ is the complex on $\overline{S}\otimes \mathbb{C}^{r}$ whose differential is the (le $ft$ )
multiplication by the element $a\in\overline{S}_{1}$ corresponding to the form $\omega$ . In
the rank one case which is of the main interest in this note we denote
the cohomology of that complex by $H^{*}(\overline{S}, a)$ .

For the arrangement of hyperplanes in general position or for a gen-
eral position $a$ the embedding $\phi$ is a quasi-isomorphism. More precise
sufficient conditions were obtained in $[9, 30]$ by blowing up at non-normal
crossings and applying Deligne’s theorem (see section 2). To state the
stronger version from [30] note that each $X\in L$ defines the subarrange-
ment $B_{X}=\{H\in B|X\subset H\}$ of $B$ . We put $P_{X}=\sum_{H_{i}}{}_{\in B_{X}}P_{i}$ and
call the subspace $X$ dense if $B_{X}$ is not the product of two non-empty
arrangements.
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Theorem 4.1 (Schechtman-Terao-Varchenko). If for any dense
subspace $X\in L$ none of the eigenvalues of $P_{X}$ is a positive integer
then $\phi$ is a quasi-isomorphism.

Theorem 4.1 brings up the combinatorial problem of computing
$H^{*}(\overline{S}, a)$ for various $a\in\overline{S}_{1}$ . In particular an important question for
applications (e.g. to hypergeometric functions, see [1]) is when this co-
homology vanishes in all but the maximum dimensions. This question
was studied in [35] (cf. also [16]) using sheaves on posets. In particular
it was proved there that a sufficient condition for the vanishing is

$\sum_{H_{\dot{\tau}}\in B_{X}}a_{i}\neq 0$

for every dense $X\in L$ . This work was continued in [11] where a basis of
cohomology of the maximum dimension was found that is independent
of $\omega$ .

Another interesting problem is to investigate connections between
the two types of cohomology (of rank 1 local system and of the com-
plex $\overline{S}^{*}$ ) when the conditions of Theorem 4.1 cease to hold (so called
resonance case). There are at least two related but different ways to do
that. One way is to relate the characteristic varieties of an arrangement
with the respective subvarieties of $\overline{S}_{1}$ . Let us define the latter. The first
relevant definition was given by Falk [10] who studied invariants of $S$ .

For an arrangement $B$ define the resonance variety

$R_{k}^{\ell}=R_{k}^{\ell}(B)=\{a\in\overline{S}_{1}|dimH^{\ell}(\overline{S}, a)\geq k\}$ .

Clearly each $R_{k}^{\ell}$ is an algebraic subvariety of the linear space $\overline{S}_{1}$ and the
easiest one to study is $R_{k}^{1}$ . The studies of these varieties were started in
[10]. Their relations with the characteristic varieties were first investi-
gated in [22] and then in [5].

Since we focus on the cohomology of dimension 1 it suffices to con-
sider arrangements of lines in the projective plane since by twisted ver-
sion of Lefschetz theorem [32] the fundamental group of the comple-
ment to an arrangement is the same as the one for the intersection of
this arrangement with a generic plane. For this case, the irreducible
components of $R_{k}^{1}$ are linear and there is a bijection $\mathcal{W}\mapsto W$ between
the set of these components and the set of all the positive dimension
components of $\Sigma_{k}^{1}$ passing through 1. The exponentiation defines the
universal covering of $W$ by $\mathcal{W}[22,23]$ and $R_{k}^{1}$ is the tangent cone of $\Sigma_{k}^{1}$

at the point 1 [5]. Characteristic varieties also yield a different sufficient
condition for the conclusion of Theorem 4.1 [22] to be true. Namely $\phi$
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is a quasi-isomorphism if

$(\exp(2\pi ia_{1}), \ldots, \exp(2\pi ia_{n}))\not\in Char^{1}$

The other way to relate the two kinds of cohomology is for individual
elements $a\in\overline{S}_{1}$ . This is the main theme of [23]. It starts with the
following inequality

$dimH^{p}(M, \mathcal{V}(a))\geq dimH^{p}(\overline{S}, a+N)$ $(*)$

for every $p$ and $a\in\overline{S}_{1}$ where $\mathcal{V}(a)$ is the rank 1 local system defined by
the 1-form corresponding to $a$ and $N$ is an arbitrary element of $\overline{S}_{1}$ with
integer coordinates in the canonical basis $(e_{1}, \ldots, e_{n})$ . This inequality
follows immediately from the two observations. First, by multiplying $a$

by $ 1+\epsilon$ with $|\epsilon|$ small one makes it satisfy the conditions of Theorem
4.1 and does not change $H^{p}(\overline{S}, a)$ . Now the upper semicontinuity of the
dimension of cohomology gives $(*)$ with $N=0$ . Second, adding $N$ to the
right hand side of $(*)$ does not change its left hand side since the local
system $\mathcal{V}(a)$ is defined by the character of $S_{1}$ given by $e_{k}\mapsto\exp(2\pi ia_{k})$ .

(Note that the differentials $d+\omega_{a}\wedge andd+\omega_{a+N}\wedge are$ different though
isomorphic via multiplication by a rational function.)

The main result of [23] is the following theorem.

Theorem 4.2. The left-hand side of $(*)$ is the supremum of its
right-hand side while $N$ is running through $\mathbb{Z}^{n}$ for all but finitely many
cosets mod $\mathbb{Z}^{n}$ of elements of $R^{1}$ .

The proof of this theorem required certain further resutls about ir-
reducible components of both the characteristic and resonance varieties.
With every $a\in R_{k}^{1}$ one can associate the set $\mathcal{X}(a)$ of multiple points of
intersection of lines such that the vector $(a_{i}|H_{i}\supset X)$ is not zero but
$\sum_{H_{i}\supset X}a_{i}=0$ . The set $\mathcal{X}(a)$ defines the collection of subsets of $B$ of

lines passing through a point $X\in \mathcal{X}$ . The incidence matrix $J(a)$ of the
collection defines the symmetric matrix $Q(a)=J^{t}J-E$ , where $E$ is the
matrix whose every entry is 1, that satisfies the conditions of a theo-
rem of Vinberg’s ([15], p.48) except that it is decomposable in general.
An application of this theorem to the indecomposable components of $Q$

shows that they should be either affine or finite with at least three affine
ones. In particular this implies that if $\mathcal{W}$ is an irreducible component of
$R_{k}^{1}$ and $a$ is an arbitrary nonzero vector form $\mathcal{W}$ then $\mathcal{W}$ is the $k+1-$

dimensional subspace of $\overline{S}_{1}$ given by the linear system $\sum_{H_{j}\supset X}x_{i}=0$

for all $X\in \mathcal{X}(a)$ . In particular $\mathcal{W}$ is defined by $\mathcal{X}(a)$ . In the ring
$\overline{S}$ , $\mathcal{W}$ is the annihilator of $a$ in degree one whence any two irreducible
components intersect at 0.
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On the other hand, let $W$ be a positive dimension component of
$\Sigma_{k}^{1}$ containing 1 with the universal cover $\mathcal{W}$ . Suppose $W$ is essential,
i.e., it is not the image of a component for a proper subarrangement
$B’$ of $B$ under the inclusion map $H^{1}(M^{/}, \mathbb{C}^{*})\rightarrow H^{1}(M, \mathbb{C}^{*})$ . Then one
can associate with $W$ a pencil of curves whose fibers do not have a
common component. Some degenerate fibers are the unions of lines from
$B$ passing through a point from $\mathcal{X}(a)$ where $a\in \mathcal{W}$ . If $P’$ is the blow
up of the projective plane at $\mathcal{X}(a)$ then matrix $Q$ can be recovered as
the minus intersection form on $P’$ . Using the pencil of curves, the Euler
characteristic of $P’$ can be computed in two different ways that gives
strong restrictions on the size and amount of indecomposable blocks of
$Q$ . Combining this with the condition on the blocks of being affine one
obtains strong restrictions on arrangements of lines with characteristic
varieties of positive dimension. For instance, if each line has precisely
three multiple points then the arrangement can be embedded into the
Hesse arrangement consisting of 12 lines passing each through 3 of 9
inflection points of a smooth cubic.

The following example from [5] can be used to show that the ex-
ceptional finitely many cosets of elements of $R^{1}$ from Theorem 4.2 can
indeed exist.

Example [5]. The arrangement consists of 7 lines that are the zero
loci of the following forms $\alpha_{i}$ (ordered from left to right): $x$ , $x+y+z$ ,

$x+y-z$ , $y$ , $x-y-z$ , $x-y+z$ , $z$ . These lines define 3 double and 6
triple points of intersection with the latter (viewed as the sets of indices
of lines passing through them) being

$X_{1}=\{1, 2, 5\}$ , $X_{2}=\{1, 3, 6\}$ , $X_{3}=\{2,3,7\}$ ,

$X_{4}=\{2,4,6\}$ , $X_{5}=\{3,4,5\}$ , $X_{6}=\{5,6,7\}$ .

The resonance variety $R^{1}=R_{1}^{1}$ has 3 irreducible components $W_{1}$ , $W_{2}$ ,

and $W_{3}$ of dimension 2 defined by the collections

$\mathcal{X}_{1}=\{X_{3}, X_{4}, X_{5}, X_{6}\}$ , $\mathcal{X}_{2}=\{X_{1}, X_{2}, X_{3}, X_{6}\}$ , $\mathcal{X}_{3}=\{X_{1}, X_{2}, X_{4}, X_{5}\}$

respectively. The pencil of quadrics corresponding to, say $\mathcal{W}_{1}$ , is gener-
ated by $x^{2}-y^{2}-z^{2}$ and $yz$ .

Consider $a=1/2(-e_{2}+e_{3}-e_{5}+e_{6})\in W_{1}$ . Then $a+N_{1}\in W_{2}$ and
$a+N_{2}\in W_{3}$ with $N_{1}=e_{2}-e_{6}$ and $N_{2}=e_{3}-e_{6}$ . Thus $\mathcal{V}(a)=\mathcal{V}(a+N_{i})$ .

It is not hard to see that $dimH^{1}(M, \mathcal{V}(a))=2$ , i.e., $\mathcal{V}(a)\in\Sigma_{2}^{1}$ . In fact,
$\mathcal{V}(a)$ together with the constant system forms a discrete component of
$\Sigma_{2}^{1}$ that is a group of order 2.



Cohomology of Local systems 181

\S 5. Problems

The emerging picture of the cohomology of rank one local systems is
far from being complete. We suggest several problems as an attempt to
clarify it.

The case of arrangements of lines in the projective plane seems to
be the most promising and a majority of our problems is devoted to this
case. In them, $M$ is the complement of the union of lines (cf. section 4).

Problem 5.1. Is it true that every positive dimensional irreducible
component of Char1 (M) contains 1 (whence is covered by a component

of the resonance variety $R^{1})^{p}$ The above example shows that it is not
true for discrete components.

Problem 5.2. For a $\in\overline{S}_{1_{f}}$ is it possible to compute $H^{1}(M, \mathcal{V}(a))$

knowing $H^{1}(\overline{S}, a+N)$ for all vectors N $\in \mathbb{Z}^{np}$

Theorem 4.2 gives the positive answer for almost all $a\in R^{1}$ . Even
for the exceptional $a$ in the above example the cocycles with coefficients
in $\mathcal{V}(a)$ are generated by differential forms corresponding to cocycles for
$a+N$ in $\overline{S}_{1}$ .

This problem may split depending on which $a$ one considers, from
$R^{1}$ or not. In particular the following particular case of the problem
might be easier.

Problem 5.3. Can there exist a $\in\overline{S}_{1}$ such that $H^{1}(\overline{S}, a+N)=0$

for all N $\in \mathbb{Z}^{n}$ but $H^{1}(X, \mathcal{V}(a))\neq 0^{p}$

Problem 5.4 (Combinatorial invariance of characteristic varieties).

Are the characteristic varieties combinatorial invariants of arrangements,
$i.e.$ , can one reconstruct them from the lattice of an arrangement?

It is known that the fundamental groups of the complements to arrange-
ments are not invariants of the lattice ([28]). On the other hand, the
results of [5], [22], and [23] show that components of positive dimension
containing the identity character are. For algebraic curves, Alexander
polynomials can not be determined just from the degrees of the curve
and the local type of singularities. This follows from seminal example
of two sextics with six cusps on and not on a conic. Recent results on
Zariski’s pairs and triples are discussed in [26].

Problem 5.5 (Realization and classification). How many compo-

nents can the characteristic variety have!? Can this number be arbitrary
larg $e$ Can one bound dimensions and the number of components in
terms of lattice of arrangement? Can one classify arrangements for
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which the characteristic varieties have components with positive dimen-
sion or sufficiently large dimension $.p$

Results of [23] show that the dimension of the characteristic variety
imposes a bound on the number of lines in the arrangement. Similar re-
alization problem for characteristic varieties and Alexander polynomials
of algebraic curves (e.g. which polynomials can appear as the Alexan-
der polynomials of algebraic curves or algebraic curves of given degree)

seems to be also open. More concretly: how large can the degree of the
Alexander polynomial be for a curve with nodes and cusps? For the
sextic dual to a non singular plane cubic the Alexander polynomial is
equal to $(t^{2}-t+1)^{3}$ . Are there the curves, with nodes and cusps only,
for which the degree of Alexander polynomial is bigger than 6? The
Alexander polynomial of the complement to an algebraic curve divides
the product of local Alexander polynomials and the Alexander polyno-
mial at infinity (cf. [17] and references there). This gives a bound for the
degree of the Alexander polynomial in terms of the degree of the curve.
For example for a curve with singularities not worse than ordinary cusps
we obtain $2(d-2)$ . For calculations of Alexander polynomials for curves
with more complicated singularites we refer to [6].
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Abstract.

For an arrangement with complement $X$ and fundamental group
$G$ , we relate the truncated cohomology ring, $H^{\leq 2}(X)$ , to the second
nilpotent quotient, $G/G_{3}$ . We define invariants of $G/G_{3}$ by count-
ing normal subgroups of a fixed prime index $p$ , according to their
abelianization. We show how to compute this distribution from the
resonance varieties of the Orlik-Solomon algebra $mod p$ . As an appli-
cation, we establish the cohomology classification of 2-arrangements
of $n\leq 6$ planes in $\mathbb{R}^{4}$ .

\S 0. Introduction

1. Two basic homotopy-type invariants of a path-connected space
$X$ are: the cohomology ring, $H^{*}(X)$ , and the fundamental group, $G=$

$\pi_{1}(X)$ . Given $X$ and $X’$ , one would like to know:

(I) Is there an isomorphism $H^{\leq q}(X)\cong H^{\leq q}(X’)$ between the coho-
mology rings, up to degree $q$?

(II) Is there an isomorphism $G/G_{q+1}\cong G’/G_{q+1}’$ between the $q^{th}$

nilpotent quotients?

We single out a class of spaces–including complements of complex
hyperplane arrangements, complements of ’rigid’ links, and complements
of arrangements of transverse planes in $\mathbb{R}^{4}$–for which the above ques-
tions are amenable to a detailed study, capable of yielding classification
results. The invariants that we use have a dual nature, being able to
capture both the ring-theoretic properties of the cohomology of $X$ , and
the group-theoretic properties of the nilpotent quotients of $G$ . Our main

2000 Mathematics Subject Classification. Primary $32S22,57M05$ ; Sec-
ondary $20F14,20J05$ .

Key words and phrases, complex hyperplane arrangement, 2-arrangement,
cohomology ring, resonance variety, nilpotent quotient, prime index subgroup.
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result is an explicit correspondence between two sets of invariants–one
determined by the vanishing cup products in $H^{\leq 2}(X)$ , the other by the
finite-index subgroups of $G/G_{3}$ .

2. For $q=1$ , questions (I) and (II) are equivalent, provided $H_{1}$ is
torsion free. Indeed, $H^{1}(X)=G/G_{2}$ under that assumption. For $q=2$ ,

the two questions are still equivalent, under some additional conditions:
If $H_{2}$ is also torsion-free, and the cup-product map $\mu$ : $H^{1}\wedge H^{1}\rightarrow H^{2}$

is surjective, then:

$H^{\leq 2}(X)\cong H^{\leq 2}(X’)$ if and only if $G/G_{3}\cong G’/G_{3}’$ .

Section 1 is devoted to a proof of this fact. A key ingredient is the
vanishing of the Hurewicz map $\pi_{2}(X)\rightarrow H_{2}(X)$ , which permits us to
identify $H^{\leq 2}(X)$ with $H^{\leq 2}(G)$ . The other ingredient is the interpreta-
tion of the $k$-invariant of the extension $ 0-G_{2}/G_{3}\rightarrow G/G_{3}\rightarrow G/G_{2}\rightarrow$

$0$ , in terms of the cup-products of $G$ .

In Section 2, we use commutator calculus to describe the nilpotent
quotients of $G$ . We restrict our attention to spaces $X$ , for which $G=$

$\pi_{1}(X)$ has a finite presentation $G=F/R$ , with $R\subset[F, F]$ . The cup
products in $H^{\leq 2}(G)$ can then be computed from the second order Fox
derivatives of the relators.

3. The invariants of the cohomology ring that we use are the reso-
nance varieties, first introduced by Falk [11] in the context of complex hy-
perplane arrangements. The $d^{th}$ resonance variety of $X$ , with coefficients
in a field $K$ , is the set $\mathcal{R}_{d}(X, K)$ of cohomology classes $\lambda\in H^{1}(X, K)$ for
which there is a subspace $W\subset H^{1}(X, K)$ , of dimension $d+1$ , such that
$\mu(\lambda\wedge W)=0$ .

In Section 3, we prove that $\mathcal{R}_{d}(X, K)$ equals $\mathcal{R}_{d}(G, K)$ , the resonance
variety of the Eilenberg-MacLane space $K(G, 1)$ . Moreover, we exploit
the Fox calculus interpretation of cup products to show that the varieties
$\mathcal{R}_{d}(G, K)$ are the determinantal varieties of the ’linearized’ Alexander
matrix of $G$ .

4. A well-known invariant of a group $G$ is the number of normal
subgroups of fixed prime index. For a commutator-relators group, that
number depends only on $n=rankG/G_{2}$ , and the prime $p$ . In order to
get a finer invariant, we consider the distribution of index $p$ subgroups,
according to their abelianization. The $lJ$-invariants of the nilpotent quo-
tients $G/G_{q+1}$ are defined as follows:

$lJ_{p,d}(G/G_{q+1})=\#\{K\triangleleft G/G_{q+1}|$
$[G/G_{q+1} : K]=p$ and
$dim_{\mathbb{Z}_{p}}$ (Tors $H_{1}(K)$ )

$\otimes \mathbb{Z}_{p}=d\}$ .
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In Section 4, we show how to compute the $\iota/$-invariants of $G/G_{3}$ from
the stratification of $\mathbb{P}(\mathbb{Z}_{p}^{n})$ by the projectivized $\mathbb{Z}_{p}$-resonance varieties of
$X$ :

$\iota/_{p,d}(G/G_{3})=\#(P_{d}(X, \mathbb{Z}_{p})\backslash P_{d+1}(X, \mathbb{Z}_{p}))$ .

This formula makes the computation of the $\iota/$-invariants practical. It
also makes clear that the $mod p$ resonance varieties of $X$ , which are
defined solely in terms of $H^{\leq 2}(X)$ , do capture significant group-theoretic
information about $G/G_{3}$ .

5. In the case where $X$ is the complement of a complex hyperplane
arrangement, the varieties $\mathcal{R}_{d}(X, \mathbb{C})$ have been extensively studied by
Falk, Yuzvinsky, Libgober, Cohen, and Suciu [11, 33, 19, 20, 7]. The
top variety, $\mathcal{R}_{1}(X, \mathbb{C})$ , is a complete invariant of the cohomology ring
$H^{\leq 2}(X)$ . Moreover, $\mathcal{R}_{1}(X, \mathbb{C})$ is a union of linear subspaces intersecting
only at the origin, and $\mathcal{R}_{d}(X, \mathbb{C})$ is the union of those subspaces of
dimension at least $d+1$ .

In Section 5, we use these results to derive a simple consequence.
Since $\mathcal{R}_{d}(X, \mathbb{C})$ has integral equations, we may consider its reduction
$mod p$ . If that variety coincides with $\mathcal{R}_{d}(X, \mathbb{Z}_{p})$ , we have:

$\iota/_{p,d-1}(G/G_{3})=\frac{p^{d}-1}{p-1}m_{d}$ ,

where $m_{d}$ is the number of components of $\mathcal{R}_{1}(X, \mathbb{C})$ of dimension $d$ .

In general, though, this formula fails, due to a different resonance
at ’exceptional’ primes. For such primes $p$ , the variety $\mathcal{R}_{d}(X, \mathbb{Z}_{p})$ is
not necessarily the union of the components of $\mathcal{R}_{1}(X, \mathbb{Z}_{p})$ of dimension
$\geq d+1$ . Furthermore, $\mathcal{R}_{1}(X, \mathbb{C})mod p$ and $\mathcal{R}_{1}(X, \mathbb{Z}_{p})$ may differ in
the number of non-local components, as well as in the dimensions of
those components. Most strikingly, $\mathcal{R}_{1}(X, \mathbb{Z}_{p})$ may have non-local com-
ponents, even though $\mathcal{R}_{1}(X, \mathbb{C})mod p$ has none.

6. Much of the original motivation for this paper came from an
effort to understand Ziegler’s pair of arrangements of 4 transverse planes
in $\mathbb{R}^{4}$ . Those arrangements have isomorphic lattices, but their comple-
ments have non-isomorphic cohomology rings, see [34]. In an earlier
work [23], we investigated the homotopy types of complements of 2-
arrangements, obtaining a complete classification for $n\leq 6$ planes. This
left open the problem of classifying cohomology rings for $n>4$ .

In Section 6, we start a study of the varieties $\mathcal{R}_{d}(X, \mathbb{C})$ , where $X$

is the complement of a 2-arrangement. The resonance varieties of real
arrangements exhibit a much richer geometry than those of complex
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arrangements. Most strikingly, $\mathcal{R}_{1}(X, \mathbb{C})$ may not be a union of linear
subspaces, and it may not determine $H^{*}(X)$ .

Using the $\iota/$-invariants of $G/G_{3}$ , we establish the cohomology clas-
sification of complements of 2-arrangements of $n\leq 6$ planes in $\mathbb{R}^{4}$ .

With one exception, this classification coincides with the homotopy-
type classification from [23]. The exception is Mazurovskii’s pair [24].
The two complements, $X$ and $X’$ , have isomorphic cohomology rings,
and thus $G/G_{3}\cong G’/G_{3}’$ . On the other hand, $\nu_{3,,,2}(G/G_{4})=162$ and
$\iota/_{3,2}(G’/G_{4}’)=172$ .

As this example shows, the $lJ$-invariants of the third nilpotent quo-
tient cannot be computed from the resonance varieties of the cohomology
ring. To arrive at a more conceptual understanding of these invariants,

one needs to look beyond cup-products, and on to the Massey products.
This will be pursued elsewhere.
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\S 1. Cohomology ring and second nilpotent quotient

In this section, we introduce a class of spaces that abstract the
cohomological essence of hyperplane arrangements. We then relate the
cohomology ring of such a space $X$ to the second nilpotent quotient of
the fundamental group of $X$ .

1.1. Cohomology ring

All the spaces considered in this paper have the homotopy type of
a connected $CW$-complex with finite 2-skeleton. Let X be such a space.
Consider the following conditions on the cohomology ring of X:
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(A) The homology groups $H_{*}(X)$ are free abelian.
(B) The cup-product map $\mu_{X}$ : $\wedge^{*}H^{1}(X)\rightarrow H^{*}(X)$ is surjective.

If conditions (A) and (B) only hold for $1\leq*\leq n$ , we will refer to them
as $(A_{n})$ and $(B_{n})$ .

Example 1.2. The basic example we have in mind is that of the
complement, $X=\mathbb{C}^{\ell}\backslash \bigcup_{H\in A}H$ , of a central hyperplane arrangement
$A$ in $\mathbb{C}^{\ell}$ . As shown by Brieskorn [3] (solving a conjecture of Arnol’d),
such a space $X$ satisfies conditions (A) and (B). Moreover, as shown
by Orlik and Solomon [25], the intersection lattice of the arrangement,
$L(A)=\{\bigcap_{H\in B}H|B\subseteq A\}$ , determines the cohomology ring of $X$ , as
follows:

$H^{*}(X)=\wedge^{*}\mathbb{Z}^{n}/(\partial e_{B}|codim_{H\in B}\cap H<|B|)$ .

Here $\wedge^{*}\mathbb{Z}^{n}$ is the exterior algebra on generators $e_{1}$ , $\ldots$ , $e_{n}$ dual to the
meridians of the hyperplanes; and, if $B$ $=\{H_{i_{1}}, \ldots, H_{i_{r}}\}$ is a sub-
arrangement, then $e_{B}=e_{i_{1}}\cdots e_{i_{7}}$ , and $\partial e_{B}=\sum_{q}(-1)^{q}e_{i_{1}}\cdots\overline{e_{i_{q}}}\cdots e_{i_{r}}$ .

See [26] for a thorough treatment of hyperplane arrangements.

Let $X$ be a space satisfying conditions $(A_{n})$ and $(B_{n})$ . The first
condition and the Universal Coefficient Theorem (see [2], Theorem 7.1,
p. 281) imply that $H_{*}(X)=H^{*}(X)$ , for $*\leq n$ . Write $H=H_{1}(X)=$
$H^{1}(X)$ . Denote by $I^{*}$ the kernel of the cup-product map. Condi-
tion $(B_{n})$ can be restated as saying that the following sequence is exact:

(1) $0\rightarrow I^{*}\rightarrow\iota\wedge^{*}H\rightarrow H^{*}(\mu xX)\rightarrow 0$ , $for*\leq n$ .

By condition $(A_{n})$ , this is in fact a split-exact sequence.

1.3. Hurewicz homomorphism

The following lemma was proved by Randell [27] in the case where
$X$ is the complement of a complex hyperplane arrangement.

Lemma 1.4. If $X$ satisfies conditions $(A_{n})$ and $(B_{n})$ , then the
Hurewicz homomorphism, $h$ : $\pi_{i}(X)\rightarrow H_{i}(X)$ , is the zero map, for
$2\leq i\leq n$ .

Proof. The proof is exactly as in $[2\underline{7}]$ . Let $p:\overline{X}\rightarrow X$ be the uni-

versal covering map. Recall that $p_{*}$ : $\pi_{i}(X)\rightarrow\pi_{i}(X)$ is an isomorphism,
for $i\geq 2$ . By naturality of the Hurewicz map, universal coefficients,

and condition $(A_{n})$ , it is enough to show that $p^{*}$ : $H^{i}(X)\rightarrow H^{i}(\overline{X})$ is

the zero map. This follows from $H^{1}(\overline{X})=0$ , condition $(B_{n})$ , and the
naturality of cup products: $p^{*}\circ\mu_{X}=\mu_{\overline{X}}\circ\wedge^{i}p^{*}$ . Q.E.D.
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1.5. Group cohomology

Let $G$ be a group. The $(co)homology$ groups of $G$ are by defini-
tion those of the corresponding Eilenberg-MacLane space: $H_{*}(G)=$

$H_{*}(K(G, 1))$ and $H^{*}(G)=H^{*}(K(G, 1))$ . Consider the following homo-
logical conditions on $G$ :

$(A’)$ The homology groups $H_{1}(G)$ and $H_{2}(G)$ are finitely generated
free abelian.

$(B’)$ The cup-product map $\mu c$ : $H^{1}(G)\wedge H^{1}(G)\rightarrow H^{2}(G)$ is surjec-
tive.

Proposition 1.6. Let $X$ be a space satisfying conditions $(A_{2})$ and
$(B_{2})$ , and let $G=\pi_{1}(X)$ be its fundamental group. Then the following
hold:

(a) $H_{1}(G)\cong H_{1}(X)$ and $H_{2}(G)\cong H_{2}(X)$ .

(b) The rings $H^{\leq 2}(G)$ and $H^{\leq 2}(X)$ are isomorphic.

Therefore, $G$ satisfies conditions $(A’)$ and $(B’)$ .

Proof Recall $X$ has the homotopy type of a connected $CW$-complex
$Y$ with finite 2-skeleton. A $K(G, 1)$ space may be obtained from $Y$ by
attaching suitable cells of dimension $\geq 3$ . The resulting map, $j$ : $ X\rightarrow$

$K(G, 1)$ , induces an isomorphism $H_{1}(X)\cong H_{1}(G)$ . From the Hopf

exact sequence $\pi_{2}(X)\rightarrow H_{2}(X)h\rightarrow H_{2}(G)\rightarrow 0$ and Lemma 1.4, we get
$H_{2}(X)\cong H_{2}(G)$ . This finishes the proof of (a).

By universal coefficients, the map $j^{*}$ : $H^{i}(G)\rightarrow H^{i}(X)$ is a group
isomorphism, for $i\leq 2$ . By naturality of cup products, we have $ j^{*}\mu c(a\wedge$

$b)=\mu x(j^{*}a\wedge j^{*}b)$ . This proves (b). Q.E.D.

Remark 1.7. The above conditions on $X$ also appear in $[1, 29]$ .

The surjectivity of $\mu$ : $H^{1}(X)\wedge H^{1}(X)\rightarrow H^{2}(X)$ is stated there dually,

as the injectivity of the holonomy map, $\mu^{T}$ : $H_{2}(X)\rightarrow\wedge^{2}H_{1}(X)$ .

1.8. Nilpotent quotients

Let $G$ be a finitely generated group. The lower central series of $G$ is
defined inductively by $G_{1}=G$ , $G_{q+1}=[G, G_{q}]$ , where $[G, G_{q}]$ denotes
the subgroup of $G$ generated by the commutators $[x, y]=xyx^{-1}y^{-1}$

with $x\in G$ and $y\in G_{q}$ . The quotient $G_{q}/G_{q+1}$ is a finitely generated

abelian group, called the $q^{th}$ lower central series quotient of $G$ . The
quotient $G/G_{q+1}$ is a nilpotent group, called the $q^{th}$ nilpotent quotient
of $G$ . See [21] for details.

We will be mainly interested in the second nilpotent quotient, $G/G_{3}$ .

This group is a central extension of finitely generated abelian groups,

(2) $0-G_{2}/G_{3}\rightarrow G/G_{3}\rightarrow G/G_{2}\rightarrow 0$ .
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The extension is classified by the $k$-invariant, $\overline{\chi}\in H^{2}(G/G_{2;}G_{2}/G_{3})$ .

The isomorphism type of $G/G_{3}$ is determined by $G/G_{2}$ , $G_{2}/G_{3}$ , and $\overline{\chi}$ ,

as follows.
Let $G$ and $G’$ be two groups. Then $G/G_{3}\cong G’/G_{3}’$ if and only

if there exist isomorphisms $\phi$ : $G/G_{2}\rightarrow G’/G_{2}’$ and $\psi$ : $ G_{2}/G_{3}\rightarrow$

$G_{2}’/G_{3}’$ under which the $k$-invariants correspond: $\psi_{*}(\overline{\chi})=\phi^{*}(\overline{\chi}’)\in$

$H^{2}(G/G_{2;}G_{2}’/G_{3}’)$ .

Now suppose $H=G/G_{2}$ is torsion-free. As is well-known, $ H_{*}(H)\cong$

$\wedge^{*}H$ . The classifying map for the extension (2),

$\chi$ : $\wedge^{2}H\rightarrow G_{2}/G_{3}$

is the image of $\overline{\chi}$ under the epimorphism

$H^{2}(H;G_{2}/G_{3})\rightarrow Hom(\wedge^{2}H, G_{2}/G_{3})$

provided by the Universal Coefficient Theorem (see [9]). It is given by
$\chi(x\wedge y)=[x, y]$ (see [4], Exercise 8, p. 97). The condition that the k-
invariants of $G/G_{3}$ and $G’/G_{3}’$ correspond translates to $\psi\circ\chi=\chi’\circ\wedge^{2}\phi$ .

We shall write this equivalence relation between classifying maps as $\chi\sim$

$\chi’$ .

Suppose now that $G_{2}/G_{3}$ is also torsion-free. Then, the universal
coefficient map is an isomorphism, and so $\overline{\chi}$ and $\chi$ determine each other.
Thus, for a group $G$ with $G/G_{2}$ and $G_{2}/G_{3}$ torsion-free, the isomorphism
type of $G/G_{3}$ is completely determined by the equivalence class of the
classifying map $\chi$ .

1.9. Cup product and commutators

The 5-term exact sequence for the extension $ 0\rightarrow G_{2}\rightarrow G\rightarrow\alpha$

$G/G_{2}\rightarrow 0$ yields:

(3) $H_{2}(G)\rightarrow H_{2}(\alpha_{*}G/G_{2})\rightarrow G_{2}/G_{3}\delta\rightarrow 0$ .

Under the identification $H_{2}(G/G_{2})\cong\wedge^{2}H$ , the boundary map $\delta$ corre-
sponds to the classifying map $\chi$ (see [4], Exercise 6, p. 47). The next
lemma interprets the map $\alpha_{*}$ in terms of the ring structure of $H^{*}(G)$ .

Lemma 1.10. The map $\alpha_{*}$ : $H_{2}(G)\rightarrow\wedge^{2}H$ is the dual of the
cup-product map $\mu c$ : $H^{1}(G)\wedge H^{1}(G)\rightarrow H^{2}(G)$ .
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Proof. Follows from the commutativity of the diagram

$H^{1}(H)\wedge H^{1}(H)\rightarrow\alpha^{*}\wedge\alpha^{*}H^{1}(G)\wedge H^{1}(G)$

$\downarrow\mu_{I\mathfrak{l}}$ $\downarrow\mu c$

$H^{2}(H)$
$\rightarrow\alpha^{*}$

$H^{2}(G)$

and the fact that the top and leffi arrows are isomorphisms. Q.E.D.

The following proposition generalizes a result proved by Massey and
Ealdi [22] in the case where $G$ is a link group.

Proposition 1.11. Let $G$ be a group satisfying conditions $(A’)$

and $(B’)$ . Then $G_{2}/G_{3}$ is torsion-free, and the following is a split exact
sequence:

(4) $0\rightarrow H_{2}(G)\rightarrow\mu^{T}\wedge^{2}H\rightarrow G_{2}/xG_{3}\rightarrow 0$ .

Proof. The proof follows closely that in [22]. By Lemma 1.10,

sequence (3) can be written as $H_{2}(G)\rightarrow\mu^{T}\wedge^{2}H\rightarrow\chi G_{2}/G_{3}\rightarrow 0$ . By
condition $(B’)$ , the map $\mu^{T}$ is a monomorphism, whence the exactness
of (4).

Since $\mu$ : $\wedge^{2}H\rightarrow H^{2}(G)$ is an epimorphism between finitely gen-
erated free abelian groups, it admits a splitting. Hence $\mu^{T}$ is a split
injection, and so $\chi^{T}$ is a split surjection. Since $\wedge^{2}H$ is torsion-free,
$G_{2}/G_{3}$ is also torsion-free. Q.E.D.

Remark 1.12. The injectivity of $\mu^{T}$ : $H_{2}(G)\rightarrow\wedge^{2}H$ is equiva-
lent to the vanishing of $\Phi_{3}(G)$ , where $ H_{2}(G)=\Phi_{2}(G)\supset\Phi_{3}(G)\supset\cdots$ is
the Dwyer filtration, $\Phi_{k}(G)=ker(H_{2}(G)\rightarrow H_{2}(G/G_{k-1}))$ , see [9].

1.13. Isomorphisms

The next result is an immediate consequence of Proposition 1.11:

Proposition 1.14. Let $X$ be a space satisfying conditions $(A_{2})$

and $(B_{2})$ , and let $G=\pi_{1}(X)$ . Then $I^{2}=G_{2}/G_{3}$ , and the exact sequence

(5) $0\rightarrow I^{2}\rightarrow\iota\wedge^{2}H^{1}(X)\rightarrow H^{2}(\mu X)\rightarrow 0$

is the dual of sequence (4).

We are now ready to establish the correspondence between the
truncated cohomology ring of $X$ and the second nilpotent quotient of
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$G=\pi_{1}(X)$ . A version of the equivalence $(b)\Leftrightarrow(c)$ below, with $\chi$ re-
placed by $\mu^{T}$ , was first established by Traldi and Sakuma [32], in the
case where $X$ is a link complement.

Theorem 1.15. Let $X$ and $X’$ be two spaces satisfying conditions
$(A_{2})$ and $(B_{2})$ , and let $G$ and $G’$ be their fundamental groups. The
following are equivalent:

(a) $H^{*}(X)\cong H^{*}(X’)for*\leq 2$ ;

(b) $G/G_{3}\cong G’/G_{3}’$ ;
(c) $\chi\sim\chi’$ .

Proof, $(a)\Leftrightarrow(c)$ . By Proposition 1.14, sequence (5) is exact, and
$\chi=\iota^{T}$ . The equivalence follows from the definitions.

$(b)\Leftrightarrow(c)$ . By Propositions 1.6 and 1.14, the first two lower central
series quotients of $G$ and $G’$ are torsion-free. The equivalence follows
from the discussion in 1.8. Q.E.D.

1.16. Invariants of $H^{\leq 2}(X)$ and $G/G_{3}$

In view of Theorem 1.15, an invariant of either the truncated co-
homology ring $H^{\leq 2}(X)$ , or the second nilpotent quotient $G/G_{3}$ , or the
classifying map $\chi$ , is an invariant of the other two. We will define in
subsequent sections a series of invariants of both $H^{\leq 2}(X)$ and $G/G_{3}$ ,

and relate them one to another. For now, let us define invariants of $\chi$ ,

following an idea of Ziegler [34], that originated from Falk’s work on
minimal models of arrangements [10].

Let $\mu_{H}$
$:\wedge^{i}H\otimes\wedge^{j}H\rightarrow\wedge^{i+j}H$ be the multiplication in the exterior

$a1gebra\wedge^{*}H$ . Consider the following finitely generated abelian group:

$Z_{i,j}(\chi)$

$=coker(\wedge^{i}H\otimes\wedge^{j}G_{2}/G_{3}\underline{id\otimes\wedge^{j}\chi^{T}}\wedge^{i}H\otimes\wedge^{2j}H\rightarrow\mu lJ\wedge^{i+2j}H)$ .

Clearly, if $\chi\sim\chi’$ then $Z_{i,,,j}(\chi)\cong Z_{i,j}(\chi’)$ . Thus, the rank and elementary
divisors of $Z_{i,,,j}(\chi)$ provide invariants of both $H^{\leq 2}(X)$ and $G/G_{3}$ .

\S 2. Generators and relators

In this section, we write down explicitly some of the maps introduced
in the previous section. We start with a review of some basic facts about
Hall commutators and the Fox calculus.
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2. 1. Basic commutators

Let $F(n)$ be the free group on generators $x_{1}$ , $\ldots$ , $x_{n}$ . A basic com-
mutator in $F=F(n)$ is defined inductively as follows (see [12, 21]):

(a) Each basic commutator $c$ has length $\ell(c)\in \mathbb{N}$ .

(b) The basic commutators of length 1 are the generators $x_{1}$ , $\ldots$ , $x_{n}$ ;
those of length $>1$ are of the form $c=[c_{1}, c_{2}]$ , where $c_{1}$ , $c_{2}$ are
previously defined commutators and $\ell(c)=\ell(c_{1})+\ell(c_{2})$ .

(c) Basic commutators of the same length are ordered arbitrarily; if
$\ell(c)>\ell(c’)$ , then $c>c’$ .

(d) If $\ell(c)>1$ and $c=[c_{1}, c_{2}]$ , then $c_{1}<c_{2}$ ; if $\ell(c)>2$ and $c=$

$[c_{1}, [c_{2}, c_{3}]]$ , then $c_{1}\geq c_{2}$ .

The basic commutators of the form $c=[x_{i_{1}}, [x_{i_{2}}, [\ldots[x_{i_{q-1}}, x_{i_{q}}]\ldots]]]$

are called simple. We shall write them as $c=[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{q}}]$ . For
$q\leq 3$ , all basic commutators are simple.

The following theorem of Hall is well-known (see $loc$ . $cit.$ ):

Theorem 2.2. The group $F_{q}/F_{q+1}$ is free abelian, and has a basis
consisting of the basic commutators of length $q$ .

In particular, if $w$ $\in F$ and $c_{1}$ , $\ldots$ , $c_{r}$ are the basic commutators of
length< $q$ , then $w^{(q)}:=wmod F_{q}$ may be written uniquely as $w^{(q)}=$

$c_{1}^{e_{1}}c_{2}^{e_{2}}\cdots c_{r}^{e_{7}}$ , for some integers $e_{1}$ , $\ldots$ , $e_{r}$ .

The Hall commutators may be used to write down presentations for
the nilpotent quotients of a finitely presented group $G=F/R$ . Indeed,
if $ G=\langle x_{1}, \ldots, x_{n}|r_{1}, \ldots, r_{m}\rangle$ , we have the following presentation for
$G/G_{q}=F/RF_{q}$ :

(6) $ G/G_{q}=\langle x_{1}, \ldots, x_{n}|r_{1}^{(q)}, \ldots, r_{m}^{(q)}, c_{1}, \ldots, c_{l}\rangle$ ,

where $r_{k}^{(q)}=r_{k}mod F_{q}$ , and $\{c_{h}\}_{1\leq h\leq l}$ are the basic commutators of
length $q$ .

2.3. Fox calculus

Let $\mathbb{Z}F$ be the group ring of $F$ , with augmentation map $\epsilon$ : $\mathbb{Z}F\rightarrow \mathbb{Z}$

given by $\epsilon(x_{i})=1$ . To each $x_{i}$ there corresponds a Fox derivative,
$\partial_{i}$ : $\mathbb{Z}F\rightarrow \mathbb{Z}F$ , given by $\partial_{i}(1)=0$ , $\partial_{i}(x_{j})=\delta_{ij}$ and $\partial_{i}(uv)=\partial_{i}(u)\epsilon(v)+$

$u\partial_{i}(v)$ . The higher Fox derivatives, $\partial_{i_{1},,,..,i_{k}}$ , are defined inductively in
the obvious manner. The composition of the augmentation map with
the higher derivatives yields operators $\epsilon_{i_{1},,,..,i_{k}}:=\epsilon\circ\partial_{i_{1}}$ , ’

$i_{k}$ : $\mathbb{Z}F\rightarrow \mathbb{Z}$ .

Let $\alpha$ : $F(n)\rightarrow \mathbb{Z}^{n}$ be the abelianization map, given by $\alpha(x_{i})=t_{i}$ .

The following lemma is lefli as an exercise in the definitions.

Lemma 2.4. We have:
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(a) $\partial_{i}[u, v]=(1-uvu^{-1})\partial_{i}u+(u-[u, v])\partial_{i}v$ .

(b) $\alpha(\partial_{i}[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{q}}])=(t_{i_{1}}-1)\cdots(t_{i_{q-2}}-1)((t_{i_{t|-1}}-1)\delta_{i,,,i_{q}}-$

$(t_{i_{q}}-1)\delta_{i,,,i(},-1)$ .

(c) $\epsilon_{I}(w)=0$ , if $w\in F_{q}$ and $|I|<q$ .
(d) $\epsilon_{I}(uv)=\epsilon_{I}(u)+\epsilon_{I}(v)$ , if $u$ , $v\in F_{q}$ and $|I|=q$ .

2.5. Commutator relations

We now make more explicit some of the constructions from section 1,

for the following class of groups.

Definition 2.6. A group $G$ is called a commutator-relators group
if it admits a presentation $G=F(n)/R$ , where $R$ is the normal closure
of a finite subset of $[F, F]$ .

In other words, $G$ has a finite presentation $ G=\langle x_{1}, \ldots, x_{n}|r_{1}, \ldots, r_{m}\rangle$ ,

and $G/G_{2}=\mathbb{Z}^{n}$ . Commutator-relators groups appear as fundamental
groups of certain spaces that we shall encounter later on. The following
proposition gives sufficient conditions for this to happen.

Proposition 2.7. Let $X$ be a space that is homotopy equivalent to
a finite $CW$-complex $Y$ , with 1-skeleton $Y^{(1)}=\ovalbox{\tt\small REJECT}_{i=1}^{n}S_{i}^{1}$ . If $H_{1}(X)=\mathbb{Z}^{n}$ ,
then $G=\pi_{1}(X)$ is a commutator-relators group.

Proof. The 2-skeleton $Y^{(2)}=\bigvee_{i=1}^{n}S_{i}^{1}\cup\bigcup_{k=1}^{m}e_{k}^{2}$ determines a pre-
sentation $ G=\langle x_{1}, \ldots, x_{n}|r_{1}, \ldots, r_{m}\rangle$ . A presentation matrix for
the abelianization of $G$ is $E=(\epsilon_{i}(r_{k}))$ . Since $H_{1}(X)=\mathbb{Z}^{n}$ , we have
$H_{1}(G)=\mathbb{Z}^{n}$ . Thus, $E$ is equivalent to the zero matrix, and hence $E$ is
the zero matrix. Thus, all relators $r_{k}$ are commutators. Q.E.D.

Now let $\phi$ : $F\rightarrow G$ be the quotient map, and let $\alpha$ : $G\rightarrow G/G_{2}$

be the abelianization map. Set $t_{i}=\alpha(\phi(x_{i}))$ . Then $\{t_{1}, \ldots, t_{n}\}$ form a
basis for $H_{1}(G)$ , and their Kronecker duals, $\{e_{1}, \ldots, e_{n}\}$ , form a basis
for $H^{1}(G)$ .

By the Hopf formula, we have $H_{2}(G)=R/[R, F]$ . Assume that
$H_{2}(G)$ is free abelian, and let $\theta_{k}=r_{k}mod [R, F]$ . Then $\{\theta_{1}, \ldots, \theta_{m}\}$

form a basis for $H_{2}(G)$ , and their duals, $\{\gamma_{1}, \ldots, \gamma_{m}\}$ , form a basis for
$H^{2}(G)$ .

Proposition 2.8. Let $G$ be a commutator-relators $ group\rangle$ such
that $H_{2}(G)$ is free abelian. In the basis specified above, the cup-product
map $\mu$ : $H^{1}(G)\wedge H^{1}(G)\rightarrow H^{2}(G)$ is given by

$\mu(e_{i}\wedge e_{j})=\sum_{k=1}^{m}\epsilon_{i,,,j}(r_{k})\gamma_{k}$ .

Proof. This follows immediately from [13], Theorem 2.3. Q.E.D.
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2.9. Links in $S^{3}$

We conclude this section with a classical example. Let $L$ be an
oriented link in $S^{3}$ , with components $L_{1}$ , $\ldots L_{n}$ . Its complement, $X=$
$S^{3}\backslash \bigcup_{i}L_{i}$ , has the homotopy type of a connected, 2-dimensional finite
$CW$-complex. The homology groups of $X$ are computed by Alexander
duality: $H_{1}(X)=\mathbb{Z}^{n}$ , $H_{2}(X)=\mathbb{Z}^{n-1}$ . It follows that Condition (A)

is always satisfied for a link complement. If $L=\hat{\beta}$ is the closure of a
pure braid $\beta\in P_{n}$ , then $X$ satisfies the assumption of Proposition 2.7,
and so $G=\pi_{1}(X)$ is a commutator-relators group, with presentation
$ G=\langle x_{1}, \ldots, x_{n}|\beta(x_{i})x_{i}^{-1}=1,1\leq i<n\rangle$ .

For an arbitrary link $L$ , let $\{e_{1}, \ldots, e_{n}\}$ be the basis for $H^{1}(X)$ dual
to the meridians of $L$ . Choose arcs $c_{i,,,j}$ in $X$ connecting $L_{i}$ to $L_{j}$ , and let
$\gamma_{i,j}\in H^{2}(X)$ be their duals. Then $\{\gamma_{1,,,n}, \ldots, \gamma_{n-1,n}\}$ forms a basis for
$H_{2}(X)$ . Let $l_{i,,,j}=1k(L_{i}, L_{j})$ be the linking numbers of $L$ . A presentation
for the cohomology ring of $X$ is given by:

(7) $H^{*}(X)=(e_{i},$ $\gamma_{i,j}|$ $\gamma_{i,,,i}=\gamma_{i,,,j}e_{k}=e_{k}\gamma_{i,,,j}e_{i}e_{j}=l_{i,,,j}\gamma_{i,,,j},\gamma_{i,,,j}+\gamma_{j,k}+\gamma_{k,,,i}=0=\gamma_{i,,,j}\gamma_{k},\iota=0)$ .

Let $\mathcal{G}$ be the “linking graph” associated to $L$ : It is the complete
graph on $n$ vertices, with edges labelled by the linking numbers. If $\mathcal{G}$

possesses a spanning tree $T$ with $n$ vertices, and all edges $labelled\pm 1$ ,

we say that $L$ is (cohomologically) rigid. The complement of such a link
satisfies condition (B), see [22, 17, 1]. Moreover, $G_{2}/G_{3}$ is free abelian
of rank $\left(\begin{array}{l}n-1\\2\end{array}\right)$ , with basis { $x_{ij}|ij\not\in T$ and $i<j$ }. The classifying map
$\chi:\wedge^{2}H\rightarrow G_{2}/G_{3}$ is given by

$\chi(e_{i}\wedge e_{j})=\{$

$x_{ij}$ if $ij\not\in T$ ,

$\sum_{\{k|ik\not\in T\}}l_{i,k}x_{ik}$ if $ij\in T$ ,

where $x_{ik}=-x_{ki}$ , for $i>k$ .

We will be mainly interested in those rigid links for which $l_{i,,,j}=\pm 1$ .

Examples include the Hopf links, and, more generally, the singularity
links of 2-arrangements in $\mathbb{R}^{4}$ (see 6.1). For such links, the presenta-
tion (7) simplifies to:

(8) $H^{*}(X)=(e_{i}|$ $e_{i}^{2}=0l_{i,j}e_{i}e_{j}’+l_{j,k}e_{j}e_{k}+l_{k,,,i}e_{k}e_{i}e_{i}e_{j}=-e_{j}e_{i},=0)$ .

Moreover, the transpose of the classifying map, $\chi^{T}$ : $G_{2}/G_{3}\rightarrow\wedge^{2}H$ , is
given by the simple formula

(9) $\chi^{T}(x_{ij})=(e_{i}-l_{i,,,j}e_{n})\wedge(e_{j}-l_{i,j}e_{n})$ .
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\S 3. Resonance varieties

In this section, we define the ’resonance’ varieties of the cohomology
ring of a space $X$ . We then show that, under certain conditions on $X$ ,

these varieties are the determinantal varieties of the linearized Alexander
matrix of the group $G=\pi_{1}(X)$ .

3.1. Filtration of first cohomology

Let $X$ be a space that satisfies conditions $(A_{2})$ and $(B_{2})$ of Section 1,

and the hypothesis of Proposition 2.7. We thus have: $H^{1}(X)=\mathbb{Z}^{n}$ ,
$H^{2}(X)=\mathbb{Z}^{m}$ , the cup-product map $\mu$ : $H^{1}(X)\wedge H^{1}(X)\rightarrow H^{2}(X)$ is
surjective, and $G=\pi_{1}(X)$ is a commutator-relators group.

Lemma 3.2. Let $X$ be as above, and let $K$ be a commutative field.
(a) The $K$ -cup products may be computed from the integral ones:

$\mu_{K}=\mu\otimes id_{K}$ .
(b) If $H^{\leq 2}(X)\cong H^{\leq 2}(X’)$ then $H^{\leq 2}(X, K)\cong H^{\leq 2}(X’, K)$ .

Proof. Let $\kappa$ : $\mathbb{Z}\rightarrow K$ be the homomorphism given by $\kappa(1)=1$ .

From the definitions, the coefficient map $\kappa_{*}$ : $H^{*}(X, \mathbb{Z})\rightarrow H^{*}(X, K)$ ,

and the map $id\otimes\kappa$ : $H^{*}(X)\otimes \mathbb{Z}\rightarrow H^{*}(X)\otimes K$ commute with cup
products. By the Universal Coefficient Theorem (see [2], Theorem 7.4,
p. 282), the map $v:H^{*}(X)\otimes K\rightarrow H^{*}(X, K)$ , $v([z]\otimes k)=[z\otimes k]$ is an
isomorphism $for*\leq 2$ . Since $v\circ(id\otimes\kappa)=\kappa_{*}$ , the map $v$ also commutes
with cup products. The conclusions follow. Q.E.D.

Definition 3.3. Let $d$ be an integer, $0\leq d\leq n$ . The $d^{th}$ reso-
nance variety of $X$ (with coefficients in K) is the subvariety of $H^{1}(X, K)$

$=K^{n}$ , defined as follows:

$\mathcal{R}_{d}(X, K)=\{\lambda\in H^{1}(X, K)|dimW=d+1and\mu(\lambda\wedge W)=0\exists subspaceW\subset H^{1}(X, K)suchthat\}$ .

The resonance varieties form a descending filtration $K^{n}=\mathcal{R}_{0}\supset$

$\mathcal{R}_{1}\supset\cdots\supset \mathcal{R}_{n-1}\supset \mathcal{R}_{n}=\emptyset$ . The ambient type of the $K$ resonance
varieties depends only on the truncated cohomology ring $H^{\leq 2}(X, K)$ ,

and thus, by Lemma 3.2 (b), only on $H^{\leq 2}(X)$ . More precisely, if
$H^{\leq 2}(X)\cong H^{\leq 2}(X’)$ , there exists a linear automorphism of $K^{n}$ taking
$\mathcal{R}_{d}(X, K)$ to $\mathcal{R}_{d}(X’, K)$ .

For a group $G$ , define the resonance varieties to be those of the
corresponding Eilenberg-MacLane space: $\mathcal{R}_{d}(G, K):=\mathcal{R}_{d}(K(G, 1),$ $K)$ .

Proposition 3.4. Let $X$ be a space satisfying conditions $(A_{2})$ and
$(B_{2})$ . Let $G=\pi_{1}(X)$ . then $\mathcal{R}_{d}(X, K)=\mathcal{R}_{d}(G, K)$ .
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Proof. By Proposition 1.6, the inclusion $j$ : $X\rightarrow K(G, 1)$ induces
an isomorphism $j^{*}$ : $H^{\leq 2}(G)\rightarrow H^{\leq 2}(X)$ . The conclusion follows from
Lemma 3.2 (b) above. Q.E.D.

3.5. Alexander matrices

Let $ G=\langle x_{1}, \ldots, x_{n}|r_{1}, \ldots, r_{m}\rangle$ be a commutator-relators group.
Recall the projection map $\phi$ : $F(n)\rightarrow G$ , and the abelianization map,
$\alpha$ : $G\rightarrow \mathbb{Z}^{n}$ , given by $\alpha(x_{i})=t_{i}$ .

Definition 3.6. The Alexander matrix of $G$ is the $m\times n$ matrix $A$

$=(\alpha\phi\partial_{i}(r_{k}))$ with entries in the Laurent polynomials ring $\mathbb{Z}[t_{1}^{\pm 1}, \ldots, t_{n}^{\pm 1}]$ .

Now let $\psi$ : $\mathbb{Z}[t_{1}^{\pm 1}, \ldots, t_{n}^{\pm 1}]\rightarrow \mathbb{Z}[[s_{1}, \ldots, s_{n}]]$ be the ring homomor-
phism given by $\psi(t_{i})=1+s_{i}$ and $\psi(t_{i}^{-1})=\sum_{q\geq 0}(-1)^{q}s_{i}^{q}$ . Also, let $\psi^{(q)}$

be the graded $q^{th}$ piece of $\psi$ . Since all the relators of $G$ are commutators,
the entries of $A$ are in the ideal $(t_{1}-1, \ldots, t_{n}-1)$ , and so $\psi^{(0)}A$ is the
zero matrix.

Definition 3.7. The linearized Alexander matrix of $G$ is the $m\times n$

matrix

$M$ $=\psi^{(1)}A$ .

Note that the entries of $M$ are integral linear forms in $s_{1}$ , $\ldots$ , $s_{n}$ .

By Lemma 2.4 (a), (b) we have $\psi^{(1)}\alpha\phi\partial_{i}(r_{k})=\psi^{(1)}\alpha\phi\partial_{i}(r_{k}^{(3)})$ . Thus,
$M$ depends only on the relators of $G$ , modulo length 3 commutators.

By Lemma 2.4 (c), (d) those truncated relators are given by $r_{k}^{(3)}=$

$\prod_{i<j}[x_{i}, x_{j}]^{\epsilon_{i,j}(r_{k})}$ . Thus, the entries of $M$ are:

(10) $M_{k,j}=\sum_{i=1}^{n}\epsilon_{i,j}(r_{k})s_{i}$ .

The linearized Alexander matrix of a link was first considered by
Traldi [31]. If the link $L$ has $n$ components, then $M$ has size $ n\times$ $(n-1)$ ,

and its entries are $M_{k,,,j}=l_{k,,,j}s_{k}-\delta_{k,,,j}(\sum_{i}l_{k,,,i}s_{i})$ .

3.8. Equations for resonance varieties

We now find explicit equations for the varieties $\mathcal{R}_{d}(X, K)$ . In view
of Proposition 3.4, that is the same as finding equations for $\mathcal{R}_{d}(G, K)$ ,
with $G=\pi_{1}(X)$ . Moreover, in view of Lemma 3.2 (a), the formula for
the integral cup products from Proposition 2.8 may be used to compute
the $K$-cup products. We will use the notations of that proposition for
the rest of this section.
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Let $M$ be the linearized Alexander matrix of $G$ . Let $M_{K}$ be the
corresponding matrix of linear forms over $K$ , and let $M(\lambda)$ be the matrix
$M_{K}$ evaluated at $\lambda=(\lambda_{1}, \ldots, \lambda_{n})\in K^{n}$ .

Theorem 3.9. For $G$ a commutator-relators group with $H_{2}(G)$

torsion free,

$\mathcal{R}_{d}(G, K)=\{\lambda\in K^{n}|rank_{K}M(\lambda)<n-d\}$ .

Proof. Let $\lambda=\sum_{i=1}^{n}\lambda_{i}e_{i}\in H^{1}(G, K)=K^{n}$ . We are looking for
$v=\sum_{i=1}^{n}v_{i}e_{i}$ such that $\mu(\lambda\wedge v)=0$ in $H^{2}(G, K)=K^{m}$ . Recall from
Proposition 2.8 that $\mu(e_{i}\wedge e_{j})=\sum_{k=1}^{m}\epsilon_{i,j}(r_{k})\gamma_{k}$ . It follows that

$\mu(\lambda\wedge v)=\sum_{k=1}^{m}(\sum_{1\leq i,j\leq n}\lambda_{i}v_{j}\epsilon_{i,,,j}(r_{k}))\gamma_{k}$ .

We thus obtain a linear system of $m$ equations in $v_{1}$ , $\ldots$ , $v_{n}$ :

$\sum_{j=1}^{n}(\sum_{i=1}^{n}\lambda_{i}\epsilon_{i,,,j}(r_{k}))v_{j}=0$ ,

with coefficient matrix $M(\lambda)$ .

Now $\lambda$ belongs to $\mathcal{R}_{d}(G, K)$ if and only if the space $W$ of solutions
of the linear system $M(\lambda)\cdot v=0$ is at least $(d+1)$ -dimensional. That
translates into the condition $rank_{K}M(\lambda)<n-d$ of the statement, and
we are done. Q.E.D.

We will be mainly interested in the coefficient fields $K=\mathbb{C}$ and
$K=\mathbb{Z}_{p}$ , for some prime $p$ . By the above theorem, the $\mathbb{C}$-resonance
varieties have integral equations. As we shall see in Section 5, although
$\mu_{\mathbb{Z}_{p}}$ : $H^{1}(X, \mathbb{Z}_{p})\wedge H^{1}(X, \mathbb{Z}_{p})\rightarrow H^{2}(X, \mathbb{Z}_{p})$ is the reduction $mod p$ of
$\mu$ : $H^{1}(X)\wedge H^{1}(X)\rightarrow H^{2}(X)$ , the variety $\mathcal{R}_{d}(X, \mathbb{Z}_{p})$ is not necessarily
the reduction $mod p$ of $\mathcal{R}_{d}(X, \mathbb{C})$ .

Example 3.10. Let $X$ be the complement of an $n$-component
rigid link. The matrix $M(\lambda)$ has entries $M(\lambda)_{k,j}=l_{k,,,j}\lambda_{k}-\delta_{k,j}(\sum_{i}l_{k,i}\lambda_{i})$ .

The variety $\mathcal{R}_{1}(X, K)$ is the zero-locus of a degree $n-2$ homogeneous
polynomial obtained by taking the greatest common divisor of the $(n-$

$1)$ $\times(n-1)$ minors of the matrix $M(\lambda)$ . At the other extreme, we have
$\mathcal{R}_{n-1}(X, K)=\{0\}$ . Indeed, the off-diagonal entries of $M(\lambda)$ correspond-
ing to the edges of the maximal spanning tree generate the maximal ideal
$(\lambda_{1}, \ldots, \lambda_{n})$ of $K[\lambda_{1}, \ldots, \lambda_{n}]$ .
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3.11. Projectivized resonance varieties

The affine variety $\mathcal{R}_{d}(X, K)\subset K^{n}$ is homogeneous, and so defines
a projective variety $P_{d}(X, K)\subset \mathbb{P}(K^{n})$ . If $H^{\leq 2}(X)$ is isomorphic to
$H^{\leq 2}(X’)$ , there is a projective automorphism $\mathbb{P}(K^{n})\rightarrow \mathbb{P}(K^{n})$ taking
$P_{d}(X, K)$ to $P_{d}(X’, K)$ . The rest of the above discussion applies to the
projective resonance varieties in an obvious manner. In particular, we
have:

Corollary 3.12. $P_{d}(G, K)=\{\lambda\in \mathbb{P}(K^{n})|rank_{K}M(\lambda)<n-d-1\}$ .

\S 4. Prime index normal subgroups

In this section, we consider nilpotent quotients of commutator-rela-
tors groups. We show how to count the normal subgroups of prime
index, according to their abelianization.

4.1. Counting subgroups

Let $G$ be a group. For a prime number $p$ , let $\Sigma_{p}(G)$ be the set
of index $p$ normal subgroups of $G$ , and let $N_{p}(G)=|\Sigma_{p}(G)|$ be its
cardinality.

Proposition 4.2. For the free group $F(n)$ , the set $\Sigma_{p}(F(n))$ is in
bijective correspondence with the projective space $\mathbb{P}(\mathbb{Z}_{p}^{n})$ .

Proof. Every index $p$ normal subgroup of $F(n)$ is the kernel of an
epimorphism $\lambda$ : $F(n)\rightarrow \mathbb{Z}_{p}$ . Such homomorphisms are parametrized by
$\mathbb{Z}_{p}^{n}\backslash \{0\}$ . Two epimorphisms $\lambda$ and $\lambda’$ have the same kernel if and only

if $\lambda=q\cdot\lambda’$ , for some $q\in \mathbb{Z}_{p}^{*}$ . Q.E.D.

Corollary 4.3. Let $G=F(n)/R$ be a commutator-relators group.
For all primes $p$ ,

$N_{p}(G)=\frac{p^{n}-1}{p-1}$ .

Proof. Since $R$ consists of commutators,

$Hom(G, \mathbb{Z}_{p})\cong Hom(F(n), \mathbb{Z}_{p})$ .

Thus, $\Sigma_{p}(G)$ is in one-to-one correspondence with $\Sigma_{p}(F(n))=\mathbb{P}(\mathbb{Z}_{p}^{n})$ .

Q.E.D.
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4.4. Abelianizing normal subgroups

Let $ G=\langle x_{1}, \ldots, x_{n}|r_{1}, \ldots, r_{m}\rangle$ be a commutator-relators group.
Let $K\triangleleft G$ be a normal subgroup of index $p$ , defined by a representation
$\lambda$ : $G\rightarrow \mathbb{Z}_{p}$ , $\lambda(x_{i})=\lambda_{i}$ . Let $\overline{\lambda}$ : $\mathbb{Z}G\rightarrow \mathbb{Z}\mathbb{Z}_{p}$ be the linear extension of $\lambda$

to group rings. More precisely, we view here $\mathbb{Z}_{p}$ as a multiplicative group,
with generator $\zeta$ . Then $\overline{\lambda}(x_{i})=\zeta^{\lambda_{i}}$ . Finally, let $\beta$ : $\mathbb{Z}\mathbb{Z}_{p}\rightarrow Mat(p, \mathbb{Z})$

be the ring homomorphism defined by the (left) regular representation
of $\mathbb{Z}_{p}$ .

Definition 4.5. For a given representation $\lambda$ : $G\rightarrow \mathbb{Z}_{p}$ , the
twisted Alexander matrix of $G$ is the $pm\times pn$ matrix

$A_{\lambda}=(\overline{\lambda}\phi\partial_{i}(r_{k}))^{\beta}$

obtained from $(\overline{\lambda}\phi\partial_{i}(r_{k}))$ by replacing each entry $e$ with $\beta(e)$ .

Proposition 4.6. Let $G$ be a commutator-relators group, and let
$K=ker(\lambda : G\rightarrow \mathbb{Z}_{p})$ . The matrix $A_{\lambda}$ is a relation matrix for the group
$H_{1}(K)\oplus \mathbb{Z}^{p-1}$ .

A proof can be found in [16]. The matrix $A_{\lambda}$ is equivalent (via row-
and-column operations) to a diagonal matrix, from which the rank and
elementary divisors of $H_{1}(K)$ can be read off.

4.7. Nilpotent quotients

We now apply the above procedure to a particular class of groups:
the nilpotent quotients $G/G_{q}$ , $q\geq 3$ , of a commutator-relators group
$G=F(n)/R$ .

Let $\lambda$ : $G/G_{q}\rightarrow \mathbb{Z}_{p}$ be a non-trivial representation. To describe
explicitly the presentation matrix $A_{\lambda}$ of Proposition 4.6, we need to

examine more closely the Fox derivatives of the relators $c_{h}$ and $r_{k}^{(q)}$ in
the presentation (6) for $G/G_{q}$ .

If $c$ is a non-simple basic commutator, then Lemma 2.4 (a), (b) gives
$\overline{\lambda}\phi(\partial_{i}c)=0$ . If $c=[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{q}}]$ is a simple commutator, then it

follows from Lemma 2.4 (b) that $\overline{\lambda}\phi(\partial_{i}c)$ is either zero or of the form
$e=\pm(\zeta^{a_{1}}-1)\cdots(\zeta^{a_{q-2}}-1)\in \mathbb{Z}\mathbb{Z}_{p}$ , for some integers $1\leq a_{j}\leq p-1$ .

Recall that the truncation $r_{k}^{(q)}$ is a product of basic commutators

of length $<q$ . The same argument shows that $\overline{\lambda}\phi(\partial_{i}r_{k}^{(q)})$ is a linear
combination of elements in $\mathbb{Z}\mathbb{Z}_{p}$ of the form $(\zeta^{a_{i_{1}}}-1)\cdots(\zeta^{a_{i_{j}}}-1)$ , for
$j<q-2$ .

The following lemma shows the typical simplifications that we will

perform on $(\overline{\lambda}\phi(\partial c_{h}))^{\beta}$ and $(\overline{\lambda}\phi(\partial r_{k}^{(q)}))^{\beta}$ .
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Lemma 4.8. The integral $p\times p$ matrix $e^{\beta}$ corresponding to $e=$

$(\zeta^{a_{1}}-1)\cdots(\zeta^{a_{k}}-1)\in \mathbb{Z}\mathbb{Z}_{p}$ has diagonal form
$(p^{r-1}, \ldots,p^{r-1},p^{r}, \ldots,p^{r}, 0)$ ,

p-l-l $\iota$

where $ r=\lceil\frac{k-1}{p-1}\rceil$ , and $l$ $=k-1-(r-1)(p-1)$ . Moreover, there is $a$

sequence of row and column operations, independent of the particular $e$ ,

that brings $e^{\beta}$ to that diagonal form.

Proposition 4.9. Let $K$ be an index $p$ normal subgroup of the

free nilpotent quotient $F(n)/F(n)_{q}$ . Then:

$H_{1}(K)=\mathbb{Z}^{n}\oplus(\mathbb{Z}/p^{r-1}\mathbb{Z})^{(n-1)(p-l-1)}\oplus(\mathbb{Z}/p^{r}\mathbb{Z})^{(n-1)l}$ ,

where $ r=\lceil\frac{q-2}{p-1}\rceil$ , and $l$ $=q-2-(r-1)(p-1)$ .

Proof In this case, only commutator relators are present, so Lemma
4.8, applied to each entry $\overline{\lambda}\phi(\partial c_{h})$ , shows that the matrix $A_{\lambda}$ is equiva-
lent the following diagonal matrix:

(11)
$D=(p^{r-1},\ldots,p^{r-1},p^{r},\ldots,p^{r},0,\ldots,0)(n-1)(p-l-1)(n-1)l\tilde{n+p-1}$

. Q.E.D.

Theorem 4.10. Let $G=F(n)/R$ be a commutator-relators group.

Let $K$ be an index $p$ normal subgroup of $G/G_{q}$ . Set $ r=\lceil\frac{q-2}{p-1}\rceil$ . Then:

$H_{1}(K)=\mathbb{Z}^{n}\oplus\oplus^{r}(\mathbb{Z}/p^{i}\mathbb{Z})^{d_{i}}i=0$ ,

for some positive integers $d_{0}$ , $\ldots$ , $d_{r}$ such that $d_{0}+\cdots+d_{r}=(n-1)(p-1)$

and $d_{r}\leq l(n-1)$ .

Proof Let $K=ker(\lambda : G/G_{q}\rightarrow \mathbb{Z}_{p})$ . Consider the relation ma-
trix $A_{\lambda}$ , corresponding to the presentation $G/G_{q}=F/RF_{q}$ from (6).

Partition $A_{\lambda}$ into two blocks, $A_{\lambda}=\left(\begin{array}{l}B_{\lambda}\\c_{\lambda}\end{array}\right)$ , where $B_{\lambda}$ corresponds to the
relators $R$ , and $C_{\lambda}$ corresponds to the basic commutators.

Assume that the row and column operations of Lemma 4.8 have
already been performed. Then, after moving all the zero columns to

the right, $A_{\lambda}$ is equivalent to $(_{D’0}^{B_{\lambda}’0})$ , where $D=(D’0)$ is the diagonal

matrix (11). Since the number of zero diagonal elements of $D$ is $n+p-1$ ,

the rank of $K$ is $n$ . Since the non-zero diagonal elements of $D$ are either
$p^{r-1}$ or $p^{r}$ , the elementary divisors of $K$ are among $p,p^{2}$ , $\ldots,p^{r}$ . The
conclusion readily follows. Q.E.D.
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4.11. $\nu$-Invariants

In view of Theorem 4.10, we define the following numerical invariants
of isomorphism type for the nilpotent quotients of a group.

Definition 4.12. Let $G$ be a commutator-relators group, and let
$G/G_{q}$ be the $(q-1)^{st}$ nilpotent quotient of $G$ . Given a prime $p$ , and a
positive integer $d$ , define

$\nu_{p,d}(G/G_{q})=\#\{K\triangleleft G/G_{q}|dim_{\mathbb{Z}_{p}}(.TorsH_{1}(K))[G/G_{q}.K]=pand\otimes \mathbb{Z}_{p}=d\}$ .

Example 4.13. If $q=3$ , then $H_{1}(K)=\mathbb{Z}^{n}\oplus \mathbb{Z}_{p}^{d}$ , for some $ 0\leq$

$d\leq n-1$ . So we have invariants $\nu_{p,0}(G/G_{3})$ , $\ldots$ , $\nu_{p,n-1}(G/G_{3})$ for the

second nilpotent quotient of $G$ . Since $\sum_{d=0}^{n-1}\nu_{p,d}=\frac{p^{r\iota}-1}{p-1}$ , it is enough to
compute $\nu_{p,1}$ , $\ldots$ , $\nu_{p,n-1}$ .

Example 4.14. If $q=4$ , and $p\geq 3$ , then $H_{1}(K)=\mathbb{Z}^{n}\oplus \mathbb{Z}_{p}^{d}$ , for

some $0\leq d\leq 2n-2$ . If $p=2$ , then $H_{1}(K)=\mathbb{Z}^{n}\oplus \mathbb{Z}_{2}^{d_{1}}\oplus \mathbb{Z}_{4}^{d_{2}}$ , for some
$0\leq d=d_{1}+d_{2}\leq n-1$ .

4.15. Second nilpotent quotient

We now restrict our attention to $G/G_{3}$ . From (6), for $q=3$ we
obtain the presentation:

(12) $ G/G_{3}=\langle x_{1}, \ldots, x_{n}|r_{1}^{(3)}, \ldots, r_{m}^{(3)}, c_{1}, \ldots, c_{l}\rangle$ ,

where $l$ $=2$ $\left(\begin{array}{l}n+1\\3\end{array}\right)$ , and $c_{1}$ , $\ldots$ , $c_{l}$ are the basic commutators $[x_{i}, [x_{j}, x_{k}]]$ ,

with $j<k$ and $i\geq j$ .

Theorem 4.16. Given an epimorphism $\lambda$ : $G/G_{3}\rightarrow \mathbb{Z}_{p}$ , with
kernel $K_{\lambda}$ , we have

$dim_{\mathbb{Z}_{\rho}}$ (Tors $H_{1}(K_{\lambda})$ ) $\otimes \mathbb{Z}_{p}=n-1-rank_{\mathbb{Z}_{p}}M(\lambda)$ .

Proof. Recall from the proof of Theorem 4.10 that the relation ma-

trix of the abelian group $H_{1}(K_{\lambda})$ has the following form: $A_{\lambda}=(_{C_{\lambda}0}^{B_{\lambda}’0},)$ .

We have already seen in Proposition 4.9 that $C_{\lambda}’$ is equivalent to a diag-

onal matrix $D’=\left(\begin{array}{lll}I_{(r\iota-1)(p-2)} & & 0\\0 & p & I_{7\iota-1}\end{array}\right)$ .

Recall also that $r_{k}^{(3)}=\prod_{i<j}[x_{i}, x_{j}]^{\epsilon_{i,\gamma}(r_{k})}$ . A computation using

formula (a) in Lemma 2.4 shows:

(13) $\overline{\lambda}\phi(\frac{\partial r_{k}^{(3)}}{\partial x_{l}})=\sum_{i=1}^{n}\epsilon_{i,l}(r_{k})(\zeta^{\lambda_{i}}-1)$ ,
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for $1\leq l\leq n$ and $1\leq k\leq m$ .

Consider $e=\sum_{\sigma=1}^{p-1}a_{\sigma}(\zeta^{\sigma}-1)\in \mathbb{Z}\mathbb{Z}_{p}$ . Set $a=\sum_{\sigma=1}^{p-1}a_{\sigma}$ . It is
readily seen that the matrix $e^{\beta}$ is equivalent to:

(14) $\left(\begin{array}{llll}* & \cdots \vdots & p\cdot a & 0\\\vdots & \vdots & \vdots & \vdots\\* & \cdots \vdots & p\cdot a & 0\\* & \cdots \vdots & \sum_{\sigma=1}^{p-1} & a_{\sigma}\cdot\sigma 0\end{array}\right)$ .

Now (10), together with (13) and (14), imply that $B_{\lambda}’$ is equivalent

to $(_{*M(\lambda)’}^{*0})$ , where $M(\lambda)’$ is some codimension 1 minor of $M(\lambda)$ . Hence,
$A_{\lambda}$ is equivalent to:

( $0*)(p-2)$

$p\cdot I_{n-1}M(\lambda)’00$ $00)00$ .

The theorem now follows from the following fact: An integral matrix

of the form $\left(\begin{array}{l}Q\\p\cdot I_{\tau\iota}\end{array}\right)$ is equivalent to $(_{0p\cdot I_{d}}^{I_{r}0})$ , where $r=rank_{\mathbb{Z}_{p}}Q\otimes id_{\mathbb{Z}_{l}},$ ,

and $d=n-r$ . Q.E.D.

Corollary 4.17. $\nu_{p,d}(G/G_{3})=\#\{K_{\lambda}\in\Sigma_{p}(G/G_{3})|rank_{\mathbb{Z}_{\rho}}M(\lambda)$

$=n$ -d-1}.

4.18. Resonance varieties and subgroups of $G/G_{3}$

The following theorem relates the distribution of index $p$ normal
subgroups of $G/G_{3}$ , according to their abelianization, to the number of
points on the $n$-dimensional projective space over $\mathbb{Z}_{p}$ , according to the
stratification by the resonance varieties.

Theorem 4.19. For $G$ a commutator-relators group with $H_{2}(G)$

torsion free,

$\nu_{p,d}(G/G_{3})=\#(P_{d}(G, \mathbb{Z}_{p})\backslash P_{d+1}(G, \mathbb{Z}_{p}))$ .

Proof. Follows from Corollary 3.12 and Corollary 4.17. Q.E.D.

\S 5. Complex arrangements

We illustrate the techniques developed in the previous sections with
the main example of spaces satisfying conditions (A) and (B): comple-
ments of complex hyperplane arrangements.
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5.1. Cohomology and fundamental group

Let $A’$ be a complex hyperplane arrangement, with complement $X’$ .

Let $A$ be a generic two-dimensional section of $A’$ , with complement
$X$ . Then, by the Lefschetz-type theorem of Hamm and L\^e [15], the
inclusion $i$ : $X\rightarrow X’$ induces an isomorphism $i_{*}$ : $\pi_{1}(X)\rightarrow\pi_{1}(X’)$

and a monomorphism $i^{*}$ : $H^{2}(X’)\rightarrow H^{2}(X)$ . By the Brieskorn-Orlik-
Solomon theorem, the map $i^{*}$ is, in fact, an isomorphism. So, for our
purposes here, we may restrict our attention to $A$ .

Let $A=\{H_{1}, \ldots, H_{n}\}$ be an arrangement of $n$ affine lines in $\mathbb{C}^{2}$ , in
general position at infinity. Let $v_{1}$ , $\ldots$ , $v_{s}$ be the intersection points of
the lines. If $v_{q}=H_{i_{1}}\cap\cdots\cap H_{i_{m}}$ , set $V_{q}=\{i_{1}, \ldots, i_{m}\}$ and $\overline{V}_{q}=V_{q}\backslash $

$\{\max V_{q}\}$ . The level 2 of the lattice of $A$ is encoded in the list $L_{2}(A)=$

$\{V_{1}, \ldots, V_{s}\}$ , which keeps track of the incidence relations between the
points and the lines of the arrangement.

The following properties hold:

(i) The homology groups of $X=\mathbb{C}^{2}\backslash \bigcup_{i}H_{i}$ are free abelian, of ranks
$b_{1}=n$ , $b_{2}=\sum_{q=1}^{s}|\overline{V}_{q}|$ , and $b_{i}=0$ for $i>2$ . The cohomology

ring is determined by $L_{2}(A)$ (see [26]):

$H^{*}(X)$

$=(e_{1}$ , $\ldots$ , $e_{n}|_{e_{i}e_{j}+e_{j}e_{k}+e_{k}e_{i}=0}e_{i}^{2}=0,e_{i}e_{j}=-e_{j}e_{i}$

for $i,j$ , $k\in V_{q}$ , $1\leq q\leq s$).
(ii) The fundamental group $G=\pi_{1}(X)$ is a commutator-relators

group:

$ G=\langle$ $x_{1}$ , $\ldots$ , $x_{n}|\beta_{q}(x_{i})x_{i}^{-1}=1$ for $i\in\overline{V}_{q}$ and $q=1$ , $\ldots$ , $ s\rangle$ .

The pure braid monodromy generators $\beta_{1}$ , $\ldots$ , $\beta_{s}$ can be read
off from a ’braided wiring diagram’ associated to $A$ (see [5]).
Moreover, the space $X$ is homotopy equivalent to the 2-complex
given by this presentation (see [18]).

(iii) The second nilpotent quotient is determined by $L_{2}(A)$ :

$G/G_{3}$

$=\langle x_{1}$ , $\ldots$ , $x_{n}|[x_{i},, \prod_{[\chi_{i}}j\in V_{q}x_{j}][x_{j},x_{k}]]$ $fori\in\overline{V}_{q}for1\leq j<’ k\leq n,j\leq 1\leq q\leq si\leq n\rangle$ .

This follows from the presentation in (ii), together with (12) (see

also [28] $)$ .
(iv) The linearized Alexander matrix is determined by $L_{2}(A)$ . It is

obtained by stacking $M_{V_{1}}(\lambda)$ , $\ldots$ , $M_{V_{8}}(\lambda)$ , where $M_{V}(\lambda)$ is the
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$|\overline{V}|\times n$ matrix with entries

$M_{V}(\lambda)_{i,,,j}=\delta_{j,V}(\lambda_{i}-\delta_{i,j}\sum_{k\in V}\lambda_{k})$
, for $i\in\overline{V}$ and $1\leq j\leq n$ .

For a detailed discussion of the Alexander matrix and the Alexan-
der invariant of $A$ , see [6].

Prom properties (i) and (ii), we deduce that $X$ satisfies the condi-
tions from Proposition 2.7.

5.2. Resonance varieties over $\mathbb{C}$

The resonance varieties of a complex hyperplane arrangement were
introduced by Falk in [11]. Let $A$ be an arrangement of $n$ affine lines in
$\mathbb{C}^{2}$ , in general position at infinity. Set $\mathcal{R}_{d}(A):=\mathcal{R}_{d}(X, \mathbb{C})$ . By Theorem
3.1 in [11], this definition agrees with Falk’s definition.

Qualitative results as to the nature of the resonance varieties of
complex arrangements were obtained by a number of authors, [33, 11,
7, 19, 20]. We summarize some of those results, as follows.

Theorem 5.3. Let $\mathcal{R}_{1}(A)\subset \mathbb{C}^{n}$ be the resonance variety of an
arrangement of $n$ complex hyperplanes. Then:

(a) The ambient type of $\mathcal{R}_{1}(A)$ determines the isomorphism type of
$H^{\leq 2}(X)$ .

(b) $\mathcal{R}_{1}(A)$ is contained in the hyperplane $\triangle_{n}:=\{\sum_{i=1}^{n}\lambda_{i}=0\}$ .

(c) Each component $C_{i}$ of $\mathcal{R}_{1}(A)$ is a linear subspace.
(d) $C_{i}\cap C_{j}=\{0\}$ for $i\neq j$ .
(e) $\mathcal{R}_{d}(A)=\{0\}\cup\bigcup_{dimC_{i}}{}_{\geq d+1}C_{i}$ .

Proof. Part (a) was proved in [11]. Part (b) was proved in [33]
and [11]. Part (c) was conjectured in [11], and proved in [7] and [19].
Part (d) is proved in [20]. Part (e) follows from [20], Theorem 3.4, as
was pointed out to us by S. Yuzvinsky. Q.E.D.

By Theorem 3.9, the resonance varieties $\mathcal{R}_{d}(A)$ are the determi-
nantal varieties associated to the linearized Alexander matrix, $M$ . For
another set of explicit equations, obtained from a presentation of the
linearized Alexander invariant, see [7].

All the components of $\mathcal{R}_{1}(A)$ arise from neighborly partitions of sub-
arrangements of $A$ , see [11], [20]. To a partition $\Pi$ of $A’\subset A$ , such that
a certain bilinear form associated to $\Pi$ is degenerate, there corresponds
a component $C_{\Pi}$ of $\mathcal{R}_{1}(A)$ . For each $V\in L_{2}(A)$ with $|V|\geq 3$ , there
is a local component, $C_{V}=\triangle_{n}\cap\{\lambda_{i}=0|i\not\in V\}$ , of dimension
$|V|-1$ , corresponding to the partition (V) of $A_{V}=\{H_{i}|i\in V\}$ . The
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other components of $\mathcal{R}_{1}(A)$ are called non-local. For more details and
examples, see [11, 7, 19, 20].

5.4. Resonance varieties over $\mathbb{Z}_{p}$

We now turn to the characteristic $p$ resonance varieties, $\mathcal{R}_{d}(A;\mathbb{Z}_{p})$ .

Recall that the variety $\mathcal{R}_{d}(A)$ has integral equations, so we may consider
its reduction $mod p$ . As we shall see, there are arrangements $A$ such that
$\mathcal{R}_{d}(A;\mathbb{Z}_{p})$ does not coincide with $\mathcal{R}_{d}(A)mod p$ , for certain primes $p$ .

Indeed:

$\circ$ The number of irreducible components, or the dimensions of the
components may be different, as illustrated in Examples 5.9 and
5.10 below.

$\circ$ The analogues of Theorem 5.3 (a) and (e) fail in general, as seen
in Examples 5.8 and 5.10 below.

On the other hand, it seems likely that the analogues of Theorem 5.3
(b), (c) and (d) hold for every prime $p$ .

Now let $\nu_{p,d}(A)=\nu_{p,d}(G/G_{3})$ be the number of normal subgroups
of $G/G_{3}$ with abelianization $\mathbb{Z}^{n}\oplus \mathbb{Z}_{p}^{d}$ , for $0\leq d\leq n-1$ . By properties (i)

and (ii) above, Theorem 4.19 applies, and so $\nu_{p,d}(A)$ can be computed
from the $\mathbb{Z}_{p}$-resonance varieties.

Corollary 5.5. If $\mathcal{R}_{d}(A, \mathbb{Z}_{p})=\mathcal{R}_{d}(A)mod p$ , for all $d\geq 1$ , then

$\nu_{p,d-1}(A)=\frac{p^{d}-1}{p-1}m_{d}$ ,

where $m_{d}$ is the number of components of $\mathcal{R}_{1}(A)$ of dimension $d$ .

Proof. Prom the assumption, properties $(c)-(e)$ hold for $\mathcal{R}_{d}(A, \mathbb{Z}_{p})$ .

Therefore, $P_{d}(X, \mathbb{Z}_{p})\backslash P_{d+1}(X, \mathbb{Z}_{p})$ consists of $m_{d}$ disjoint, $d$-dimensional
projective subspaces in $\mathbb{P}(\mathbb{Z}_{p}^{n})$ . The formula follows from Theorem 4.19.

Q.E.D.

If all the components of $\mathcal{R}_{1}(A)$ are local, then $m_{d}=\#\{V\in L_{2}(A)|$

$|V|=d+1\}$ , but the Corollary may not apply, see Example 5.9.

5.6. Examples

We conclude this section with a few examples that illustrate the
phenomena mentioned above. The motivation to look at Examples 5.8
and 5.10 came from S. Yuzvinsky, who was the first to realize that there
are exceptional primes for these arrangements. His method of computing
the corresponding non-local components is different from ours, though.
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Example 5.7. Let $A$ be the reflection arrangement of type $A_{3}$ ,
with lattice

$L_{2}(A)=\{123,145, 246, 356, 16, 25, 34\}$ .

The variety $\mathcal{R}_{1}(A)$ has 5 components of dimension 2. The non-local
component, $C_{\Pi}=\{\lambda_{1}-\lambda_{6}=\lambda_{2}-\lambda_{5}=\lambda_{3}-\lambda_{4}=0\}\cap\triangle_{6}$ , corresponds
to the partition $\Pi=(16|25|34)$ , see [11, 7, 19].

For all primes $p$ , Corollary 5.5 applies, giving $\nu_{p,1}=5(p+1)$ .

Example 5.8. Let $A$ be the realization of the non-Fano plane,
with lattice

$L_{2}(A)=\{123,147,156, 257, 345, 367, 24, 26, 46\}$ .

The variety $\mathcal{R}_{1}(A)$ has 9 components of dimension 2. The non-local
components are given by the partitions $\Pi_{1}=$ $(13 |46|57)$ , $\Pi_{2}=$

$(15 |24|37)$ , $\Pi_{3}=(17|26|35)$ of the corresponding type $A_{3}$ sub-
arrangements, see [7].

For $p>2$ , Corollary 5.5 applies, and so $\nu_{p,1}=9(p+1)$ .

For $p=2$ , though, $\mathcal{R}_{1}(A, \mathbb{Z}_{2})$ has a single, 3-dimensional non-local
component, $C_{\Pi}=\{\lambda_{1}+\lambda_{4}+\lambda_{7}=\lambda_{2}+\lambda_{5}+\lambda_{7}=\lambda_{3}+\lambda_{6}+\lambda_{7}=0\}n\triangle_{7}$ ,
corresponding to $\Pi=(1|3|5|7|246)$ . Furthermore, $\mathcal{R}_{2}(A, \mathbb{Z}_{2})$

has a single, 1-dimensional component, $C_{\Pi’}=\{\lambda_{1}+\lambda_{7}=\lambda_{3}+\lambda_{7}=$

$\lambda_{5}+\lambda_{7}=\lambda_{2}=\lambda_{4}=\lambda_{6}=0\}$ , corresponding to $\Pi’=(1|3|5|7)$ , and
$\mathcal{R}_{3}(A, \mathbb{Z}_{2})=\{0\}$ . Thus, $\nu_{2,,,1}=24$ and $\nu_{2,,,2}=1$ .

Example 5.9. Let A be one of the realizations of the MacLane
matroid, with

$L_{2}(A)=\{123, 456, 147, 267, 258, 348, 357, 168, 15, 24, 36, 78\}$ .

The variety $\mathcal{R}_{1}(A)$ has 8 local components. Despite the fact that $A$ sup-
ports many neighborly partitions, $\mathcal{R}_{1}(A)$ has no non-local components,
since Falk’s degeneracy condition is not satisfied, see [11].

For $p\neq 3$ , Corollary 5.5 applies, and so $\nu_{p,1}=8(p+1)$ .

For $p=3$ , though, the degeneracy condition is satisfied, and the
variety $\mathcal{R}_{1}(A, \mathbb{Z}_{3})$ has a non-local, 2-dimensional component,

$C_{\Pi}=\{\lambda_{2}+\lambda_{5}+\lambda_{8}=\lambda_{3}+\lambda_{5}-\lambda_{8}=\lambda_{4}-\lambda_{5}-\lambda_{8}$

$=\lambda_{5}-\lambda_{6}-\lambda_{8}=\lambda_{1}+\lambda_{5}=\lambda_{7}+\lambda_{8}=0\}$ ,

corresponding to $\Pi=(15|24|36|78)$ . Moreover, $\mathcal{R}_{2}(A, \mathbb{Z}_{3})=\{0\}$ .
Hence, $\nu_{3,,,1}=36$ .



Cohomology rings and nilpotent quotients of arrangements 209

Example 5.10. Let A be the realization of the affine plane over
$\mathbb{Z}_{3}$ , with lattice

$L_{2}(A)=\{123, 456, 789, 147, 258, 369, 1 9, 357, 168, 249, 267, 348\}$ .

The variety $\mathcal{R}_{1}(A)$ has 12 local components, and 4 non-local components
of dimension 2, see [11, 7, 19, 20].

For $p\neq 3$ , Corollary 5.5 applies, and so $\nu_{p,1}=16(p+1)$ .

On the other hand, $\mathcal{R}_{1}(A, \mathbb{Z}_{3})$ has a single, 3-dimensional non-local
component, $C_{\Pi}=\{\lambda_{1}+\lambda_{6}+\lambda_{8}=\lambda_{2}+\lambda_{4}+\lambda_{9}=\lambda_{3}+\lambda_{5}+\lambda_{7}=$

$\lambda_{3}+\lambda_{4}+\lambda_{8}=\lambda_{3}+\lambda_{6}+\lambda_{9}=\lambda_{7}+\lambda_{8}+\lambda_{9}=0\}$ , corresponding to

$\Pi=(123|456|789)$ , or any other of the partitions that give rise to
the 4 non-local components of $\mathcal{R}_{1}(A)$ . Moreover, $\mathcal{R}_{2}(A, \mathbb{Z}_{3})=C_{\Pi}$ , and
$\mathcal{R}_{3}(A, \mathbb{Z}_{3})=\{0\}$ . Thus, $\nu_{3,1}=48$ and $\nu_{3,,,2}=13$ .

Example 5.11. Let $A_{1}$ and $A_{2}$ be generic plane sections of the
two arrangements from [11], Example 4.10. Each arrangement consists
of 7 affine lines in $\mathbb{C}^{2}$ , and each resonance variety has only local com-
ponents. Thus, the $\nu$-invariants of $A_{1}$ and $A_{2}$ coincide. On the other
hand, as shown by Falk, there is no linear automorphism $\mathbb{C}^{7}\rightarrow \mathbb{C}^{7}$

restricting to an isomorphism $\mathcal{R}_{1}(A_{1})\rightarrow \mathcal{R}_{1}(A_{2})$ . The same ’polyma-
troid’ argument shows that there is no automorphism $\mathbb{P}(\mathbb{Z}_{p}^{7})\rightarrow \mathbb{P}(\mathbb{Z}_{p}^{7})$

restricting to $P_{1}(A_{1}, \mathbb{Z}_{p})\rightarrow P_{1}(A_{2}, \mathbb{Z}_{p})$ . Thus, the ambient type of the
(projective) resonance varieties carries more information than the count
of their points.

\S 6. Real arrangements

We conclude with an application to the classification of arrange-
ments of transverse planes in $\mathbb{R}^{4}$ . Though similar in some respects to
central line arrangements in $\mathbb{C}^{2}$ , such arrangements lack a complex struc-
ture. That difference manifests itself in the nature of the resonance
varieties.

6.1. Arrangements of real planes

A 2-arrangement in $\mathbb{R}^{4}$ is a finite collection A $=\{H_{1}, $
\ldots ,

$ H_{n}\}$ of
transverse planes through the origin of $\mathbb{R}^{4}$ . Such an arrangement A is a
realization of the uniform matroid $U_{2,,,n}$ ; thus, its intersection lattice is
solely determined by n. Let X $=\mathbb{R}^{4}\backslash \bigcup_{i}H_{i}$ be the complement of the
arrangement. The link of the arrangement is L $=S^{3}\cap\bigcup_{i}H_{i}$ . Clearly, the
complement of A deform-retracts onto the complement of L. The link
L is the closure of a pure braid in $P_{n}$ , see [24], [23]. Hence, G $=\pi_{1}(X)$

is a commutator-relators group.
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The linking numbers of $A$ are by definition those of the link $L$ .

They can be computed from the defining equations of $A$ : If $H_{i}=$

$\{\alpha_{i}=\alpha_{i}’=0\}$ , for some linear forms $\alpha_{i}$ , $\alpha_{i}’$ : $\mathbb{R}^{4}\rightarrow \mathbb{R}$ , then $l_{i,j}=$

$sgn(\det(\alpha_{i}, \alpha_{i}’, \alpha_{j}, \alpha_{j}’))$ , see [34]. A presentation for the cohomology ring
of $X$ in terms of the linking numbers is given in (8), see also [34].

Arrangements of transverse planes in $\mathbb{R}^{4}$ fall, in the terminology
of [8], into several types: horizontal and non-horizontal, decomposable
and indecomposable. A 2-arrangement $A$ is horizontal if it admits a
defining polynomial of the form $f(z, w)=\prod_{i=1}^{n}(z+a_{i}w+b_{i}\overline{w})$ , with $a_{i}$ ,
$b_{i}$ real. From the coefficients of $f$ , one reads off a permutation $\tau\in S_{n}$ .

Conversely, given $\tau$ , there is a horizontal arrangement, $A(\mathcal{T})$ , whose
associated permutation is $\tau$ . A 2-arrangement is decomposable if its
link is the $(1, \pm 1)$-cable of the link of another 2-arrangement, and it is
completely decomposable if its link can be obtained from the unknot by
successive $(1, \pm 1)$-cablings. See [23] for details.

6.2. Resonance varieties

Let $\mathcal{R}_{d}(A):=\mathcal{R}_{d}(X, \mathbb{C})$ be the $d^{th}$ resonance variety of $A$ . Recall
that the resonance varieties form a tower $\mathbb{C}^{n}=\mathcal{R}_{0}\supset \mathcal{R}_{1}\supset\cdots\supset$

$\mathcal{R}_{n-1}=\{0\}$ . Moreover, they are the determinantal varieties of the
$n\times(n-1)$ matrix $M(\lambda)$ , whose entries are given by $M(\lambda)_{k,,,j}=l_{k,,,j}\lambda_{k}-$

$\delta_{k,,,j}(\sum_{i}l_{k,,,i}\lambda_{i})$ .

If $A$ is decomposable, the top resonance variety, $\mathcal{R}_{1}(A)$ , contains as
a component the hyperplane $\triangle_{n}=\{\lambda_{1}+\cdots+\lambda_{n}=0\}$ . Moreover, if $A$ is
completely decomposable, $\mathcal{R}_{1}(A)$ is the union of a central arrangement of
$n-2$ hyperplanes in $\mathbb{C}^{n}$ (counting multiplicities), with defining equations
of the form $\epsilon_{1}\lambda_{1}+\cdots+\epsilon_{n}\lambda_{n}=0$ , where $\epsilon_{i}=\pm 1$ . If $A$ is indecomposable,
though, $\mathcal{R}_{1}(A)$ may contain non-linear components (see Example 6.5).

At the other extreme, all the components of the variety $\mathcal{R}_{n-2}(A)$

are linear. It can be shown that a horizontal arrangement $A$ is indecom-
posable if and only if $\mathcal{R}_{n-2}(A)=\{0\}$ .

Example 6.3. In [34], Ziegler provided the first examples of 2-
arrangements with isomorphic intersection lattices, but non-isomorphic
cohomology rings. Those arrangements are: $A=A(1234)$ and $A’=$

$A(2134)$ . We can distinguish their cohomology rings by counting the
components of their resonance varieties:

$\mathcal{R}_{1}(A)=\triangle_{4}$ , $\mathcal{R}_{1}(A’)=\triangle_{4}\cup\{\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{4}=0\}$ .

The example $A’$ shows that the analogues of Theorem 5.3 (b), (d), (e)
do not hold for 2-arrangements:
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$\circ$ The second component of $\mathcal{R}_{1}(A’)$ does not lie in the hyperplane
$\triangle_{4}$ .

$\circ$ The two components of $\mathcal{R}_{1}(A’)$ do not intersect only at the origin,
but rather, in the 2-dimensional subspace $\{\lambda_{1}+\lambda_{2}=\lambda_{3}+\lambda_{4}=0\}$ .

$\circ$ We have $\mathcal{R}_{2}(A’)=\{\lambda_{1}+\lambda_{2}=\lambda_{3}=\lambda_{4}=0\}\cup\{\lambda_{1}=\lambda_{2}=$

$\lambda_{3}+\lambda_{4}=0\}$ , and thus the stratification of $\mathcal{R}_{1}$ by $\mathcal{R}_{d}$ ’s is not by
dimension of components.

Example 6.4. Let $A=A(321456)$ and $A’=A(213456)$ . Then:

$\mathcal{R}_{1}(A)=\mathcal{R}_{1}(A’)=\triangle_{6}\cup\{\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{4}-\lambda_{5}-\lambda_{6}=0\}$ ,

$\mathcal{R}_{2}(A)=\mathcal{R}_{1}(A)$ , $\mathcal{R}_{2}(A’)=\triangle_{6}$ .

This example shows that the analogue of Theorem 5.3 (a) does not hold
for 2-arrangements: The variety $\mathcal{R}_{1}$ fails to determine $\mathcal{R}_{2}$ , and thereby
fails to determine the cohomology ring of the complement.

Example 6.5. The horizontal arrangement $A(31425)$ is indecom-
posable. Its resonance varieties are:

$\mathcal{R}_{1}=\{\lambda_{1}^{3}-\lambda_{2}^{3}-\lambda_{3}^{3}+\lambda_{4}^{3}-\lambda_{5}^{3}+\lambda_{1}^{2}\lambda_{2}-\lambda_{1}\lambda_{2}^{2}+\lambda_{1}^{2}\lambda_{3}-\lambda_{1}\lambda_{3}^{2}-\lambda_{1}^{2}\lambda_{4}-$

$\lambda_{1}\lambda_{4}^{2}+\lambda_{1}^{2}\lambda_{5}-\lambda_{1}\lambda_{5}^{2}+\lambda_{2}^{2}\lambda_{3}+\lambda_{2}\lambda_{3}^{2}-\lambda_{2}^{2}\lambda_{4}+\lambda_{2}\lambda_{4}^{2}+\lambda_{2}^{2}\lambda_{5}+\lambda_{2}\lambda_{5}^{2}-$

$\lambda_{3}^{2}\lambda_{4}+\lambda_{3}\lambda_{4}^{2}+\lambda_{3}^{2}\lambda_{5}+\lambda_{3}\lambda_{5}^{2}+\lambda_{4}^{2}\lambda_{5}-\lambda_{4}\lambda_{5}^{2}+2\lambda_{1}\lambda_{2}\lambda_{3}-2\lambda_{1}\lambda_{2}\lambda_{4}+$

$2\lambda_{1}\lambda_{2}\lambda_{5}-2\lambda_{1}\lambda_{3}\lambda_{4}+2\lambda_{1}\lambda_{3}\lambda_{5}-2\lambda_{1}\lambda_{4}\lambda_{5}+2\lambda_{2}\lambda_{3}\lambda_{4}-2\lambda_{2}\lambda_{3}\lambda_{5}+$

$2\lambda_{2}\lambda_{4}\lambda_{5}+2\lambda_{3}\lambda_{4}\lambda_{5}=0\}$

$\mathcal{R}_{2}=\{\lambda_{1}+\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}=0\}\cup\{\lambda_{1}+\lambda_{3}=\lambda_{2}=\lambda_{4}=\lambda_{5}=0\}\cup$

$\{\lambda_{2}+\lambda_{4}=\lambda_{1}=\lambda_{3}=\lambda_{5}=0\}\cup\{\lambda_{3}+\lambda_{4}=\lambda_{1}=\lambda_{2}=\lambda_{5}=0\}\cup$

$\{\lambda_{1}+\lambda_{5}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0\}\cup\{\lambda_{4}+\lambda_{5}=\lambda_{1}=\lambda_{2}=\lambda_{3}=0\}\cup$

$\{\lambda_{1}-\lambda_{4}=\lambda_{2}=\lambda_{3}=\lambda_{5}=0\}\cup\{\lambda_{2}-\lambda_{3}=\lambda_{1}=\lambda_{4}=\lambda_{5}=0\}\cup$

$\{\lambda_{2}-\lambda_{5}=\lambda_{1}=\lambda_{3}=\lambda_{4}=0\}\cup\{\lambda_{3}-\lambda_{5}=\lambda_{1}=\lambda_{2}=\lambda_{4}=0\}$

$\mathcal{R}_{3}=\{0\}$

This example shows that the analogue of Theorem 5.3 (c) does not hold
for 2-arrangements: The variety $\mathcal{R}_{1}$ is not linear.

6.6. Ziegler invariant

The cohomology rings of the arrangements in Example 6.3 were
distinguished by Ziegler by means of an invariant closely related to one
of the $Z$-invariants introduced in 1.16.

Recall the sequence $0\rightarrow G_{2}/G_{3}\rightarrow G/G_{3}\rightarrow H\rightarrow 0$ . This central

extension is determined by the map $\chi^{T}$ : $G_{2}/G_{3}\rightarrow\wedge^{2}H$ , given explicitly
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by (9). The invariant $Z_{0,,,1}(\chi)=coker\chi^{T}$ equals $H^{2}(G)=\mathbb{Z}^{n-1}$ . More
information is carried by the next invariant,

$Z_{0,,,2}(\chi)=coker(\mu_{H}\circ\wedge^{2}\chi^{T}$ $:\wedge^{2}G_{2}/G_{3}\rightarrow\wedge^{4}H)$ .

Set $Z(A):=Z_{0,,,2}(\chi)$ . It can be shown that $Z(A)=\mathbb{Z}\left(\begin{array}{l}\tau|-1\\3\end{array}\right)-r\oplus \mathbb{Z}_{2}^{r}$ , where
$r$ is some integer that can be read off from the linking graph $\mathcal{G}$ of the
link of $A$ .

For example, $Z(A(1234))=\mathbb{Z}$ and $Z(A(2134))=\mathbb{Z}_{2}$ , showing
again that the two arrangements have different cohomology rings. But
$Z(A)$ is not a complete invariant of the cohomology ring. For example,
$Z(A(21435))=Z(A(31425))=\mathbb{Z}_{2}^{4}$ , although the two arrangements are
distinguished by the $\nu$-invariants (see below).

TABLE 1. Arrangements of $n\leq 6$ planes in $\mathbb{R}^{4}$ : Number
$\nu_{3,,,d}$ of index 3 subgroups, according to their abelianiza-
tion, $\mathbb{Z}^{n}\oplus \mathbb{Z}_{3}^{d}$ .
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6.7. Classification for $n\leq 6$

Let $G$ the group of an arrangement of $n$ transverse planes in $\mathbb{R}^{4}$ ,

and $G/G_{3}$ its second nilpotent quotient. As can be seen in Table 1, the
$\nu_{3,,,d}$-invariants completely classify the second nilpotent quotients (and,
thereby the cohomology rings) of 2-arrangement groups, for $n\leq 6$ , with
a lone exception.

The exception is Mazurovskii’s pair, $\mathcal{K}=A(341256)$ and $\mathcal{L}$ . The
corresponding configurations of skew lines in $\mathbb{R}^{3}$ were introduced in
[24]. Explicit equations for $\mathcal{K}$ and $\mathcal{L}$ can be found in [23]. As noted
in [24], the links of $\mathcal{K}$ and $\mathcal{L}$ have the same linking numbers. Thus,
$H^{*}(X_{\mathcal{K};}\mathbb{Z})\cong H^{*}(X_{\mathcal{L};}\mathbb{Z})$ , and $G_{\mathcal{K}}/(G_{\mathcal{K}})_{3}\cong G_{\mathcal{L}}/(G_{\mathcal{L}})_{3}$ . On the other
hand, $G_{\mathcal{K}}/(G_{\mathcal{K}})_{4}\not\cong G_{\mathcal{L}}/(G_{\mathcal{L}})_{4}$ , as can be seen from the distribution of
the abelianization of their index 3 subgroups, shown in Table 2.

TABLE 2. The groups $G_{\mathcal{K}}/(G_{\mathcal{K}})_{4}$ and $G_{\mathcal{L}}/(G_{\mathcal{L}})_{4}$ : Num-
ber of index 3 subgroups, according to their abelianiza-
tion, $\mathbb{Z}^{6}\oplus \mathbb{Z}_{3}^{d}$ .

We summarize the above discussion, as follows:

Theorem 6.8. Let $(A, A’)\neq(\mathcal{K}, \mathcal{L})$ be a pair of 2-arrangements

of $n\leq 6$ planes in $\mathbb{R}^{4}$ . Then $H^{*}(X)\cong H^{*}(X’)$ if and only if $X\simeq X’$ .

In other words, up to 6 planes, and with the exception of Mazurov-
skii’s pair, the classification of complements of 2-arrangements up to
cohomology-ring isomorphism coincides with the homotopy-type classi-
fication. As shown in [23], the latter coincides with the isotopy-type
classification, modulo mirror images.
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Recent progress of intersection theory
for twisted (co)homology groups

Keiji Matsumoto and Masaaki Yoshida

\S 1. Introduction

Maybe you have ever seen at least one of the following formulae:

$B(p, q)B(-p, -q)=\frac{2\pi i(p+q)}{pq}\frac{1-e^{2\pi i(p+q)}}{(1-e^{2\pi ip})(1-e^{2\pi iq})}$ ,

$\Gamma(p)\Gamma(1-p)=\frac{\pi}{\sin\pi p}$ , $(\int_{-\infty}^{\infty}e^{-t^{2}/2}dt)^{2}=2\pi$ ,

where

$B(p, q):=\int_{0}^{1}t^{p}(1-t)^{q}\frac{dt}{t(1-t)}$ , $\Gamma(p):=\int_{0}^{\infty}t^{p}e^{-t}\frac{dt}{t}$

are the Gamma and the Beta functions.
In this paper, we give a geometric meaning for these formulae: If

one regards such an integral as the dual pairing between a (kind of)
cycle and a (kind of) differential form, then the value given in the right
hand side of each formula is the product of the intersection numbers of
the two cycles and that of the two forms appeared in the left-hand side.

Of course the intersection theory is not made only to explain these
well known formulae; for applications, see [CM], [KM], [Y1].

\S 2. Twisted (co)homology groups

Let $l_{1}$ , $\ldots$ , $l_{n+1}$ be polynomials of degree 1 in $t_{1}$ , $\ldots$ , $t_{k}$ , $(n\geq k\geq 1)$

and $\alpha_{1}$ , $\ldots$ , $\alpha_{n+1}$ be complex numbers satisfying
Assumption 1. $\alpha_{j}\not\in \mathbb{Z}$ , $\alpha_{0}:=-\alpha_{1}-\cdots-\alpha_{n+1}\not\in \mathbb{Z}$ .
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Put

$L_{j}=$ hyperplane defined by $l_{j}$ , $j=1$ , $\ldots$ , $n+1$ ,

$T=\mathbb{C}^{k}-\bigcup_{j=1}^{n+1}L_{j}$

$=\mathbb{P}^{k}-\bigcup_{j=0}^{n+1}L_{j}$ , $L_{0}$ : hyperplane at infinity,

$u=\prod_{j=1}^{n+1}l_{j}^{\alpha_{j}}$ : multi-valued function on $T$ ,

$\mathcal{L},\check{\mathcal{L}}$ : local systems caused by $u^{-1}$ and $u$ , respectively,

$\omega=\sum_{j=1}^{n}\alpha_{j}\frac{dl_{j}}{lj}$ : single-valued 1-form on $T$ ,

$\nabla=d+\omega\wedge$ , $\check{\nabla}=d-\omega\wedge$ : derivations.

Assumption 2. No $k+1$ hyperplanes in $\{L_{j}\}_{j=0}^{n+1}$ intersect in $\mathbb{P}^{k}$ .

Denoting the $k$-dimensional cohomology groups (with compact sup-
port) and the (locally finite) homology groups by the usual symbols, we
have the three natural dual parings (explained below):

$H_{c}^{k}(T, \mathcal{L})$ – $H^{k}(T,\check{\mathcal{L}})$

$ H_{k}^{lf}(T,\check{\mathcal{L}})\downarrow$ $ H_{k}(T, \mathcal{L})\downarrow$

.

All other dimensional $(co)homology$ groups vanish. By de Rham’s the-
orem, cohomology classes can be represented by smooth global forms:

$H_{c}^{k}(T, \mathcal{L})\cong H^{k}(\mathcal{E}_{c}., \nabla)$ , $H^{k}(T,\check{\mathcal{L}})\cong H^{k}(\mathcal{E}.,\check{\nabla})$ ,

where $\mathcal{E}^{p}$ and $\mathcal{E}_{c}^{p}$ are spaces of smooth $p$-forms on $T$ and those with com-
pact support. Through these isomorphisms, the columns in the above
diagram can be realized by the integration

$\langle\varphi, \delta\rangle:=\int_{\delta}\varphi u$ , or $\langle\psi, \gamma\rangle:=\int_{\gamma}\psi u^{-1}$

of $k$-forms along $k$-cycles, where

$\varphi\in H_{c}^{k}(T, \mathcal{L})$ , $\delta\in H_{k}^{\iota f}(T,\check{\mathcal{L}})$ , or $\psi\in H^{k}(T,\check{\mathcal{L}})$ , $\gamma\in H_{k}(T, \mathcal{L})$ ,

respectively. Such an integration is often called a hypergeometric integral
($HG$ integral for short) because if one let the hyperplanes $L_{j}$ move then
the integral defines a hypergeometric function of type $(k+1, n+2)$ .

When $k=1$ , $n=2$ this is indeed the Gauss hypergeometric function.
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The first row is the intersection form for cohomology groups, and
can be represented by the integral

$\varphi$
. $\psi:=\int_{T}(\varphi u)\wedge(\psi u^{-1})=\int_{T}\varphi\wedge\psi$

of $2k$-forms over $T$ , where $\varphi\in H^{k}(\mathcal{E}_{\dot{c}}, \nabla)$ , $\psi\in H^{k}(\mathcal{E}.,\check{\nabla})$ . (N.B. In
[KYI], $\psi\wedge\varphi$ is used in place of $\varphi\wedge\psi.$ )

Now these three pairings induce the Poincar\’e isomorphisms:

$H_{c}^{k}(T, \mathcal{L})\cong H_{k}(T, \mathcal{L})$ , $H^{k}(T,\check{\mathcal{L}})\cong H_{k}^{lf}(T,\check{\mathcal{L}})$ .

Thus through these two isomorphisms the intersection form for coho-
molog groups induces the dual pairing, called the intersection form for
homology groups, of the two homology groups. In this way we have the
four compatible pairings:

$H_{c}^{k}(T, \mathcal{L})$ – $H^{k}(T,\check{\mathcal{L}})$ intersection form. for $coh$ .

$ H_{k}^{lf}(T,\check{\mathcal{L}})\downarrow$

–
$ H_{k}(T, \mathcal{L})\downarrow$

intersection form. for $hom$ .

$HG$ integral $HG$ integral

Let us take bases as

$\varphi^{i}\in H_{c}^{k}(T, \mathcal{L})$ , $\psi^{i}\in H^{k}(T,\check{\mathcal{L}})$ ,
$\delta_{i}\in H_{k}^{lf}(T,\check{\mathcal{L}})$ , $\gamma_{i}\in H_{k}(T, \mathcal{L})$ .

Denoting the matrix $(\langle\varphi^{i}, \delta_{j}\rangle)_{ij}$ by $(\langle\varphi, \delta\rangle)$ and $(\delta_{i}\cdot\gamma_{j})_{i,,,j}$ by $(\delta\cdot \gamma)$ , we
have

$(\varphi. \psi)=(\langle\varphi, \delta\rangle)(\gamma\cdot \delta)^{-1}{}^{t}(\langle\psi, \gamma\rangle)$ ,

which gives quadratic relations among the $HG$ integrals.
Note that up to now we presented abstract nonsense which is valid

for any complex manifold and for any local system. Our task is, for the
special $T$ and $\mathcal{L}$ given above, to pick a suitable basis of each $(co)homology$

group and evaluate the intersection numbers.

\S 3. Intersection form for cohomology groups

To pick an explicit basis of the cohomology groups, holomorphic
forms or possibly algebraic forms are better. Recall the isomorphisms,

due to comparison theorems,

$H^{k}(T, \mathcal{L})\cong H^{k}(\mathcal{E}., \nabla)\cong H^{k}(\Omega., \nabla)$

$\cong H^{k}(\Omega.(*L), \nabla)\cong H^{k}(\Omega.(\log L), \nabla)$ ,
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where $\Omega^{p}$ , $\Omega^{p}(*L)$ and $\Omega^{p}(\log L)$ are spaces of holomorphic forms on $T$ ,

algebraic forms and logarithmic forms with poles only along $\bigcup_{j=0}^{n+1}L_{j}$ ,
respectively.

For a multi-index $I$ $=(i_{0}, \ldots, i_{k})$ , $0\leq i_{0}<\cdots<i_{k}\leq n+1$ , we
define a logarithmic $k$-form

$\varphi_{I}=\mathring{\frac{dl_{i}}{l_{i_{1}}}}\wedge\cdots\wedge\frac{dl_{i_{k-1}}}{l_{i_{k}}}$ .

For example, the following $\left(\begin{array}{l}n\\k\end{array}\right)$ forms give a basis of $H^{k}(\Omega.(\log L), \nabla)$ :

$\varphi_{I}$ , $i_{0}=0<i_{1}<\cdots<i_{k}\leq n$ .

It is known (e.g. [DM]) and easy to prove, under Assumption 1, the
isomorphism

$H_{c}^{k}(T, \mathcal{L})\cong H^{k}(T, \mathcal{L})$ .

Thus together with the isomorphism $H^{k}(T, \mathcal{L})\cong H^{k}(\Omega.(\log L), \nabla)$ above,
we can let $\varphi_{I}$ represent also an element of $H_{c}^{k}(T, \mathcal{L})$ . We wish to evaluate
the intersection numbers of these forms. The key point is to represent
the isomorphism

$\iota$ : $ H^{k}(\Omega.(\log L), \nabla)\rightarrow H^{k}(\mathcal{E}_{\dot{c}}, \nabla)\cong$ $(\cong H_{c}^{k}(T, \mathcal{L}))$ ,

explicit enough so that the $2k$-dimensional integral

$\int\iota(\varphi_{I})\wedge\varphi_{J}$

is computable. This can be done and we get

Theorem 1. The intersection number $\varphi_{I}\cdot\varphi_{J}$ of

$\varphi_{I}\in H_{c}^{k}(T, \mathcal{L})$ and $\varphi_{J}\in H^{k}(T,\check{\mathcal{L}})$ ,

where $I$ $=\{i_{0}, \ldots, i_{k}\}$ , $0\leq i_{0}<\cdots<i_{k}\leq n+1$ , $J=\{j_{0}, \ldots, j_{k}\}$ ,
$0\leq j_{0}<\cdots<j_{k}\leq n+1$ , is equal to the $(/, J)$ -minor of the $tri$-diagonal
symmetric matrix

$Int_{coh}(\alpha)=2\pi\sqrt{-1}\{$

$1/\alpha_{0}+1/\alpha_{1}1/\alpha_{1}$

0

.$\cdot$.

$1/\alpha_{1}.+..1/\alpha_{2}1/\alpha_{1}1/\alpha_{2}$ $1/\alpha_{2}.+..1/\alpha_{3}1/\alpha_{2}0$
$...\cdot..\cdot.\cdot)$ .
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Actual value of $\varphi_{I}\cdot\varphi_{J}$ is given as follows:

$(2\pi\sqrt{-1})^{k}\frac{\sum_{i\in I}\alpha_{i}}{\prod_{i\in I}\alpha_{i}}$ if $I$ $=J$,

$(2\pi\sqrt{-1})^{k}\frac{(-1)^{\mu+\nu}}{\prod_{i\in I\cap J}\alpha_{i}}$ if $\#(I\cap J)=k$ ,

0, otherwise, where $\mu$ and $\iota/$ are determined by $\{i_{\mu}\}=I-J$ and $\{j_{\iota/}\}=$

$J-I$ .

Though there are technical difficulties for general $k$ , the essential
idea of the proof can be seen from that of the case $k=1$ . So we prove
this theorem only when $k=1$ , and when $k\geq 2$ we describe where the
difficulty lies and how we can manage.

3.1. Proof of Theorem 1 when $k =1$ . We express the image
$\iota(\varphi_{I})$ explicitly. We find a smooth function f on T such that $\varphi_{I}-\nabla f$

is compactly supported. This means that $\varphi_{I}-\nabla f$ represents the class
$\iota(\varphi_{I})$ of $H_{c}^{1}(T, \mathcal{L})$ .

We can find a convergent power series $f_{p}$ centered at the point $L_{p}$

satisfying $\nabla f_{p}=\varphi_{I}$ . Let $h_{p}$ be a smooth real function on $\mathbb{P}^{1}$ such that
$h_{p}(t)=0$ (t $\not\in U_{p})$ , $0<h_{p}(t)<1(t\in U_{p}\backslash V_{p})$ , $h_{p}(t)=1$ (t $\in V_{p})$ ,

where $L_{p}\in V_{p}\subset U_{p}$ , and $U_{p}$ is a small neighborhood of $L_{p}$ . Regarding

f $:=\sum_{p=0}^{n+1}h_{p}f_{p}$ as defined on T, we have

$\varphi_{I}-\nabla f=\varphi_{I}-\sum_{p=0}^{n+1}[h_{p}\nabla(f_{p})+f_{p}dh_{p}]=\sum_{p=0}^{n+1}[(1-h_{p})\varphi_{I}-f_{p}dh_{p}]$ ,

which is of compact support on T. The Stokes theorem and the residue
theorem yields

$\int_{T}\iota(\varphi_{I})\wedge\varphi_{J}=\sum_{p=0}^{n+1}\int_{T}[(1-h_{p})\varphi_{I}-f_{p}dh_{p}]\wedge\varphi_{J}$

$=$ $\sum_{p=0}^{n+1}\int_{U_{p}\backslash V_{p}}-f_{p}dh_{p}\wedge\varphi_{J}=\sum_{p=0}^{n+1}\int_{\partial(U_{p}\backslash V_{p})}-h_{p}f_{p}\varphi_{J}$

$=$ $\sum_{p=0}^{n+1}\int_{\partial V_{\rho}}f_{p}\varphi_{J}=2\pi\sqrt{-1}\sum_{p=0}^{n+1}{\rm Res}_{L_{\rho}}(f_{p}\varphi_{J})$ .

Completion of the proof is now immediate.
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3.2. Strategy for $k \geq 2$ . We prepare some notation. Let $L_{P^{q}}$

be the intersection of $L_{p_{1}}$ , $L_{p_{2}}$ , \ldots ,
$L_{p_{q}}$ , and let $U_{P^{C\prime}}$ be a small tubular

neighborhood of $L_{P^{q}}$ in $\mathbb{P}^{k}$ , where $P^{q}$ is a multi-index with cardinality
q, say,

$P^{q}=\{p_{1},p_{2}\ldots,p_{q}\}$ , $0\leq p_{1}<p_{2}<\cdots<p_{q}\leq n+1$ .

For multi-indices $P^{q-1}$ and $P^{q}$ , if $P^{q-1}\subset P^{q}$ , then we put

$\delta(P^{q-1}\cdot P^{q}))=(-1)^{r}$ , where $\{p_{r}\}:=P^{q}\backslash P^{q-1}$ .

Step 1. Construct a system of holomorphic $(k-q)$ forms $f_{P^{q}}$ on $U_{P^{q}}\cap T$

such that

$\nabla(f_{P^{1}})$ $=$ $\varphi_{I}$ ,

$\nabla(f_{P^{q}})$ $=$
$\sum_{P^{C\prime-1}\subset P^{q}}\delta(P^{q-1} ^{;} ^{P^{q})f_{P^{q-1}}}$

$(2\leq q\leq k)$ ;

these can be obtained as convergent power series. Complexity lies on
the fact that the $singu1arities\cup L_{p=j}$ are not isolated.
Step 2. By patching $f_{P^{q}}$ inductively by the help of partition of the unity
on $\bigcup_{j=0}^{n+1}U_{j}$ , we get a smooth $(k-1)$ form $f$ on $T$ such that

$\nabla f=\varphi_{I}$ in $\bigcup_{j=0}^{n+1}U_{j}$ .

Since $\varphi_{I}-\nabla f$ is of compact support on $T$ and is cohomologous to $\varphi_{I}$

in $H^{k}(\mathcal{E}, \nabla)$ , it represents $\iota(\varphi_{I})$ .

Step 3. Repeated use of the Stokes theorem and the residue theorem
leads to

$\int_{T}\iota(\varphi_{I})\wedge\varphi_{J}$ $=$ $\int_{T}-df\wedge\varphi_{J}$

$=$
$(2\pi\sqrt{-1})^{k}\sum_{P^{k}}{\rm Res}_{L_{P^{k}}}(f_{P^{k}}\varphi_{J})$

,

which will imply the theorem.

\S 4. Intersection form for homology groups

Since we assumed that our hyperplane arrangement is in general
position (Assumption 2), we can continuously deform the arrangement,
keeping its intersection pattern, into a real arrangement, by which we
mean all the linear forms $l_{j}$ are defined over the real numbers. So we
assume that our arrangement is real.
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Note that there are many arrangements not in general position that
one can not deform into a real one.

Let $T_{\mathbb{R}}$ be the real locus of T. $\left(\begin{array}{l}n\\k\end{array}\right)$ bounded chambers support cycles

forming a basis of $H_{k}^{tf}(T,\check{\mathcal{L}})$ . One can load any branch of $u$ on the cham-
bers; too much freedom annoys us. In order to make it in a systematic
way, we further deform the arrangement and put the hypersurfaces in a
specially nice way. Then the $k$-dimensional cases can be reduced to the
simplest case $k=1$ .

Loaded cycles: We represent elements of $H_{p}(T,\check{\mathcal{L}})$ by loaded p-
cycles, which is convenient here and will be indispensable in 8.2. A
loaded $p$-chain is a formal sum of loaded $p$-simplexes. A loaded $p$-simplex
is a topological simplex on which a branch of $u$ is assigned. The bound-
ary operator is naturally defined. For example, the boundary of a loaded
path (1-chain) is given by

(ending point loaded with the value of the function there)

-(starting point loaded with the value of the function there).

The boundary of a higher dimensional loaded chain is defined in an
obvious way. A loaded $p$-chain is called a loaded $p$ -cycle if its boundary
vanishes.

4.1. Case $k =1$ . Let $x_{1}$ , \ldots , $x_{n+1}$ be distinct real points on $\mathbb{P}^{1}$

satisfying $x_{1}<\cdots<x_{n+1}$ . Then the multi-valued function

u $=\prod_{j=1}^{n}l_{j}^{\alpha_{j}}$ , $l_{j}=t-x_{j}$

is defined on T $=\mathbb{P}^{1}-\{x_{1}, $
\ldots ,

$ x_{n+1}, x_{0}=\infty\}$ . On each oriented interval
$\frac{\backslash }{(x_{p},x_{p+1})}$ , we load a branch of the function u determined by

$\arg(t-x_{j})=\{$
0 j $\leq p$ ,

$-\pi$ $p+1\leq j$ ,

and call this loaded path $\check{I}_{p}$ . Note that if you analytically continue the
branch of u corresponding to some loaded path $\check{I}_{j}$ through the lower
half part of the $t$-plane T, then you get the branches of u corresponding
to other loaded paths $\check{I}_{i}$ . But if you do the same starting from a point
in $(x_{j}, x_{j+1})$ , passing through the upper part and ending at a point in
$(x_{j-1}, x_{j})$ , you get

$c_{j}:=e^{2\pi i\alpha_{j}}$

times the branch u corresponding to the loaded paths $\check{I}_{j-1}$ .
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Anyway, $\check{I}_{j}$ represent elements of $H_{1}^{lf}(T,\check{\mathcal{L}})$ . For example, $n$ non-
compact loaded cycles $\check{I}_{1}$ , $\ldots,\check{I}_{n}$ form a basis. Loading $u^{-1}$ in place of
$u$ , we get non-compact loaded cycles $I_{j}$ ; for example, $I_{1}$ , $\ldots$ , $I_{n}$ form a

basis of $H_{1}^{lf}(T, \mathcal{L})$ .

As we did in \S 3, to define intersection numbers, we must make a
compact counterpart $reg/j$ , regularization of $I_{j}$ . This can be done by
attaching two circles at the ends:

$-\frac{c_{j}}{d_{j}}C_{\epsilon}^{j}+\overline{(x_{j}+\epsilon,x_{j+1}-\in)}+\frac{c_{j+1}}{d_{j+1}}C_{-\epsilon}^{j+1}$ , $d_{j}:=c_{j}-1$ ,

where $C_{\pm\epsilon}^{j}$ is the positively oriented circle of radius $\epsilon>0$ center at $x_{j}$

starting at $ x_{j}\pm\epsilon$ (see Figure 1), and by loading $u^{-1}$ along the three
paths, where the branch of $u^{-1}$ at each starting point is that of $I_{j}$ . Note

that $regI_{j}$ is homologous to $I_{j}$ in $H_{1}^{lf}(T, \mathcal{L})$ . $reg/j$ , $\ldots$ , $regI_{n}$ form a
basis of $H_{1}(T, \mathcal{L})$ .

Let us evaluate the intersection number $regI_{i}\cdot\check{I}_{j}$ . As is explained in

\S 2, the definition is made through the intersection number of cohomology
groups; it is $a$ , so to speak, indirect analytic definition. In the following,
we give a direct it topological definition, by which one can evaluate
intersection numbers explicitly. These two definitions agree (see [KYI]);
this fact will be referred to the compatibility of intersection forms for
homology and cohomology groups.

Deform the support of $\check{I}_{j}$ so that it intersects transversally with
that of $regI_{i}$ ; any deformation will do. At each intersection point of the
two supports, multiply the values of the two functions loaded to make
the local intersection number at this point. Then sum up all the local
intersection numbers, and finally change the sign to get $regI_{i}\cdot\check{I}_{j}$ (see
Figure 1). Here is an actual computation:

FIG 1. Intersection of $regI_{j}$ and $I_{j}$

$(regI_{j})\cdot\check{I}_{j}=-(\frac{c_{j}}{d_{j}}-1+\frac{c_{j+1}}{d_{j+1}})=-(\frac{d_{j,j+1}}{d_{j}d_{j+1}})$ ,

$(regI_{j})\cdot\check{I}_{j-1}=\frac{1}{d_{j}}$ , $(regI_{j-1})\cdot\check{I}_{j}=\frac{c_{j}}{d_{j}}$ ,
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0, otherwise, where $d_{ij}=c_{i}c_{j}-1$ . Therefore the intersection matrix
$Int_{hom}(\alpha)=(regI_{i}\cdot\check{I}_{j})_{ij}$ is given by the following $tri$-diagonal matrix

$Int_{hom}(\alpha)=-(d_{12}-1.../d_{2}/d_{1}d_{2}0$
$d_{23}./.d_{2}.d_{3}-c_{2}/d_{2}-1/d_{3}$ $d_{34}./.d_{3}.d_{4}-c_{3}/d_{3}0$

$....\cdot...\cdot..\cdot)$ .

(N.B. The intersection matrix in [KYI] is given by $-^{t}Int_{hom}(\alpha)=$

Inthom(-&) according to the definition of the intersection form for co-
homology groups made there (cf. 2).)

4.2. Case $k \geq 2$ . For given $n+1$ real points on $\mathbb{C}$

$x_{1}<\cdots<x_{j}<\cdots<x_{n+1}$ , $ x_{0}=\infty$ ,

we define $n+1$ real hyperplanes $L_{1}$ , $\ldots$ , $L_{n}$ in $t=(t_{1}, \ldots, t_{k})$-space by

$l_{j}:=t_{r}+(-x_{j})t_{r-1}+\cdots+(-x_{j})^{r-1}t_{1}+(-x_{j})^{r}$ , $1\leq j\leq n$ ,

and $L_{0}$ the hyperplane at infinity. This arrangent $\{L_{0}, \ldots, L_{n}\}$ is called
a Veronese arrangement, since an embedding of $\mathbb{P}^{1}$ into $\mathbb{P}^{k}$ by

$t_{0}=s^{k}$ , $t_{1}=s^{k-1}$ , $\ldots$ , $t_{k-1}=s$ , $t_{k}=1$

is called the Veronese embedding. When $k=2$ and $n=4$ , the arrange-
ment is illustrated in Figure 2. Set

$U=\prod_{j=1}^{n}l_{j}(t)^{\alpha_{j}}$ ,

where $l_{j}(t)$ is the linear form in $t$ just defined above. For a multi-index,

$I$ $=(i_{1}, \ldots, i_{k})$ , $1\leq i_{1}<\cdots<i_{k}\leq n$ ,

we define loaded cycles $D_{I}\in H_{k}^{\iota f}(T, \mathcal{L})$ and $\check{D}_{I}\in H_{k}^{lf}(T,\check{\mathcal{L}})$ with sup-
port on the chamber (see Figure 2)

$|D_{I}|=\{t\in T_{\mathbb{R}}|(-1)^{P(j)}l_{j}(t)>0_{)} 1\leq j\leq n\}$ ,

loaded with $U^{-1}$ and $U$ , respectively, with

$\arg l_{j}=-P(j)\pi$ , $1\leq j\leq n$ ,

where $P(j)$ denotes the cardinality of $\{p|i_{p}<j\}$ . Since each loaded
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FIG 2. A Veronese arrangement $(k=2, n=4)$ and the chambers

cycle is locally a direct product of 1-dimensional cycles, the regulariza-
tions $regDi\in H_{k}(T, \mathcal{L})$ are naturally defined. We now state the result,
which is very similar to Theorem 1.

Theorem 2. For multi-indices $I$ $=(i_{1}\ldots i_{k})$ , $ 1\leq i_{1}<\cdots<i_{k}\leq$

$n$ , $J=(j_{1}\ldots j_{k})$ , 1 $\leq j_{1}<\cdots<j_{k}\leq n$ , the intersection number
$regD_{I}\cdot\check{D}_{J}$ is equal to the $(/, J)$ -minor of the matrix $Int_{hom}(\alpha)$ .

For rigorous proofs, see [KY2]. This theorem can be naturally un-
derstood if you write

$D_{J}=I_{j_{1}}\wedge\cdots\wedge I_{j_{k}}$ , $J=(j_{1}, \ldots,j_{k})$

which is justified in [IK2].
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\S 5. Quadratic relations

As we pointed out at the end of \S 2 (see also the middle of 4.1),

the compatibility of the intersection forms for homology groups and
cohomology groups, which is a general, universal and abstract equality,
produces explicit quadratic relations among hypergeometric integrals–
twisted analogues of the Riemann equality for periods.

The simplest example is the one in \S 1

$B(p, q)B(-p, -q)=\frac{2\pi i(p+q)}{pq}$ . $\frac{1-e^{2\pi i(p+q)}}{(1-e^{2\pi ip})(1-e^{2\pi iq})}$ .

Now we know the meaning of the right-hand side: It is the product of
the intersection number of the forms

$\frac{dt}{t(1-t)}\in H^{1}(\Omega.(\log L), \nabla)$ and

$\frac{dt}{t(1-t)}\in H^{1}(\Omega.(\log L),\check{\nabla})$ , $L=\{0,1, \infty\}$

and that of the cycles

$(0, 1)\otimes u^{-1}\in H_{1}(T, \mathcal{L})$ and $(0, 1)\otimes u\in H_{1}(T,\check{\mathcal{L}})$ , $u:=t^{p}(1-t)^{q}$ .

Here is another example due to Gauss:

$F(a, b, c;x)F(1-a, 1-b, 2-c;x)$

$=$ $F(a+1-c, b+1-c, 2-C_{)}.x)F(c-a, c-b, C_{)}.x)$ ,

where $F$ is the hypergeometric function (cf. [CM], [Matl]).

Twisted analogues of Riemann inequality. When $\alpha_{j}\in \mathbb{R}$ , we
can speak about the Hodge structure on the cohomology groups, and
get twisted analogues of Riemann inequality. [HY] studies these when
$k=1$ .

\S 6. Further study

So far, we worked on the projective spaces $\mathbb{P}^{k}$ , linear forms $l_{j}$ , func-
tion $u=\prod l_{j}^{\alpha_{j}}$ , 1-form $\omega=du/u$ , etc, under Assumption 1: $\alpha_{j}\not\in \mathbb{Z}$ , and
Assumption 2: no $k+1$ hyperplanes in $\{L_{j}\}$ intersect.

For a general arrangement, without Assumption 2 but with a gener-
icity for $\alpha_{j}$ corresponding to Assumption 1, the structure of the coho-
mology group can be described in terms of the so-called Orlik-Solomon
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algebra, and an explicit basis of the homology group is known, if the
arrangement is real. By successive blowing-up one can make the proper
transform of the arrangement normally crossing–there is a systematic
way to do this–then one can, in principle, evaluate the intersection
numbers (cf. [KY2], [Yos2]). We expect that these intersection numbers
can be expressed combinatorially in a closed form.

For imaginary arrangements, $k\geq 2$ , or non-linear arrangements (cf.
[KY2] $)$ , little is known about explicit cycles.

Motivated by an integral whose integrand involves hypergeometric
functions, Hanamura, Ohara and Takayama study intersection theory
when the rank of the local system $\mathcal{L}$ is larger than 1 (cf. $[Ohal,2]$ ,

[OT] $)$ . They use hyperplane-section method, which is expected to be
effective also to the previous problem.

Recall the famous limit formula:

$(1+\lambda t)^{1/\lambda}\rightarrow e^{t}$ , as $\lambda\rightarrow 0$

and a less famous one

$(1+\lambda t)^{1/\lambda(\mu-\lambda)}(1+\mu t)^{1/\mu(\lambda-\mu)}\rightarrow e^{t^{2}/2}$ , as $\lambda$ , $\mu\rightarrow 0$ .

In \S 1, starting from the Beta integral you find two ’limit’ integrals, one of
them is the Gamma function. These formulae suggest another direction
of generalization of the theories stated above, that is, to consider for
example

$u=\prod_{j=1}^{m}(t-x_{j})^{\alpha_{j}}\exp f$ , $\omega=d\log u=\sum_{j=1}^{m}\alpha_{j}\frac{dt}{t-x_{j}}+df$ , $\nabla=d+\omega\wedge$ ,

where $f$ is a polynomial in $t$ . The corresponding hypergeometric inte-
grals represent various confluent hypergeometric functions; the extreme
ones are those without $ l_{j},\cdot$ such integrals are called generalized Airy in-
tegrals, because

$\int\exp(-t^{3}/3+xt)dt$

represents the Airy function.

In the following sections we study the confluent cases. Since the
above limit formulae are delicate, if you know what I mean, the above
theories in \S \S 2 –5 do not directly imply those for confluent cases; we
must establish it independently. Of course you can expect some limit
relations among them (see [KHT2], [Ha2]).
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\S 7. Confluent cases, general frame

Let $n_{1}\geq\cdots\geq n_{m}$ be natural numbers and $L_{j}(1\leq j\leq m)$ be
hyperplanes in $\mathbb{P}^{k}$ defined by linear forms $l_{j}$ of $t_{1}$ , $\ldots$ , $t_{k}$ ; put $T=\mathbb{P}^{k}\backslash $

$\bigcup_{j=1}^{m}L_{j}$ . We define a rational exact 1-form $\omega_{j}’$ with $n_{j}$ -fold poles along
$ L_{j},\cdot$ this is explicitly given in \S 9. Put

$\omega=\sum_{j=1}^{m}(\alpha_{j}\frac{dl_{j}}{l_{j}}+\omega_{j}’)$ , $\nabla=d+\omega\wedge$

and consider the following complex

$0\rightarrow\Omega^{0}(*L)\rightarrow\Omega^{1}(*L)\nabla\rightarrow\nabla\ldots\rightarrow\Omega^{k}(*L)\nabla\rightarrow 0$ .

We want to define the intersection pairing between $H^{k}(\Omega.(*L), \nabla)$

and $H^{k}(\Omega.(*L),\check{\nabla})$ as we did in non-confluent cases. However, we can
easily see that

$H^{k}(\mathcal{E}., \nabla)\not\simeq H^{k}(\Omega.(*L), \nabla)\not\simeq H^{k}(\mathcal{E}_{c}., \nabla)$

in general. So we need to introduce a reasonable cohomology theory on
which a perfect pairing can be naturally defined. We also want to have a
suitable homology theory and Poincar\’e isomorphisms to get intersection
numbers for homology groups. Up to now only two extreme cases are
studied:

Case $k=1$ ,

Case $T=\mathbb{C}^{k}$ , i.e. $\omega$ admites poles only along the hyperplane at
infinity.

\S 8. Confluent cases $k=1$

8.1. Twisted de Rham cohomology groups.
A smooth function $f$ defined in a neighborhood $U$ of the point $x$ is

said to be rapidly decreasing at $x$ if $f$ satisfies

$\frac{\partial^{p+q}}{\partial t^{p}\partial\overline{t}^{q}}f(x)=0$ , $p$ , $q=0,1$ , 2, $\ldots$ .

Let $S^{p}$ be the vector space of smooth $p$ forms on $\mathbb{P}^{1}$ which are rapidly
decreasing at $x_{i}(=L_{i})$ for every $i$ . A smooth function $f$ defined in $U\backslash \{x\}$

is said to be polynomially growing at $x$ if there exists $r\in \mathbb{N}$ such that
$(t-x)^{r}f$ is smooth on $U$. Let $\prime P^{p}$ be the vector space of smooth $p$-forms
$f$ on $T$ which are polynomially growing at $x_{i}$ for every $i$ .
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We consider two complexes with differential $\nabla$ :

(S., $\nabla$ ) : $ S^{0}\rightarrow S^{1}\nabla\rightarrow S^{2}\nabla\rightarrow 0\nabla$

,

(P., $\nabla$ ) : $ P^{0}\rightarrow P^{1}\nabla\rightarrow P^{2}\nabla\rightarrow 0\nabla$ .

The cohomology groups $H^{k}$ (S., $\nabla$ ) and $H^{k}$ (P., $\nabla$ ) are called rapidly de-
creasing and polynomially growing twisted de Rham cohomology groups
with respect to $\nabla$ , respectively. The inclusions

$(\Omega.(*L), \nabla)\subset(P., \nabla)$ , (S., $\nabla$ ) $\subset(P., \nabla)$

of complexes induce the following isomorphisms among twisted de Rham
cohomology groups.

Theorem 3. $H^{p}(\Omega.(*L), \nabla)\simeq H^{p}(’P., \nabla)\simeq H^{p}(S., \nabla)$ , p $=$

0,1,2.

The first isomorphism can be proved by the help of $\overline{\partial}$-calculus. Since
the injectivity of the natural map $H^{p}(S., \nabla)\rightarrow H^{p}(’P.\nabla))$ is easy, we
mention briefly its surjectivity when $p=1$ . For a $\nabla$-closed form $\varphi\in$

$\Omega^{1}(*L)$ , there exists a unique formal meromorphic Laurent series $F_{i}$

around $x_{i}$ satisfying $\nabla F_{i}=\varphi$ . If $n_{i}\geq 2$ , $F_{i}$ is divergent in general,
however, there exists a polynomially growing smooth function $f_{i}$ with
the same expansion as $F_{i}$ . Thus the form

$\varphi-\sum_{i=0}^{m}\nabla(h_{i}f_{i})$

is in $S^{1}$ , where $h_{i}$ is a smooth function defined in 3.1. This implies the
surjectivity.

8.2. Twisted homology groups. Let $\triangle$ be a singular $p$-simplex
in T, define a function $u_{\Delta}$ on $\triangle$ by

$u_{\Delta}(t)=\exp(\int^{t}\omega)$ ,

where the path of the integration is in $\triangle$ . We consider only chains $\rho$

such that if $x_{i}$ belongs to the closure of $\rho=\sum_{j}b_{j}\triangle_{j}$ in $\mathbb{P}^{1}$ then

$\lim_{t\rightarrow x_{i},,,t\in\rho}(t-x_{i})^{r}u_{\rho}(t)=0$ , $r=0,1$ , 2, $\ldots$ ,

where $u_{\rho}(t)=u_{\Delta_{j}}(t)(t\in\triangle_{j})$ . Let $C_{p}(T, \omega)$ be the space of loaded p-
chains $\sum_{j}b_{j}\triangle_{j}\otimes u_{\Delta_{j}}$ for all such $p$ chains $\rho=\sum_{j}b_{j}\triangle_{j}$ . The boundary
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operator $\partial_{\omega}$ on $C.(T, \omega)$ is naturally defined, and we get the $p$-th homol-
ogy group $H_{p}(C.(T, \omega)$ , $\partial_{\omega})$ as we did in \S 4. There is a natural pairing
between $H^{1}$ (S., $\nabla$ ) and $H_{1}(C.(T, \omega),$ $\partial_{\omega})$ through the (confluent) hyper-
geometric integral

$\langle\varphi, \gamma\rangle=\sum_{j}b_{j}\int_{\Delta_{j}}u_{\Delta_{j}}(t)\varphi$ ,

where $\varphi\in S^{1}$ , $\gamma=\sum_{j}b_{j}\triangle_{j}\otimes u_{\Delta_{j}}(t)\in C_{1}(T, \omega)$ .

Theorem 4. The pairing between $H^{1}$ (S., $\nabla$ ) and $H_{1}(C.(T, \omega),$ $\partial_{\omega})$

is perfect.

8.3. Intersection pairings.
There is a natural pairing between $S^{1}$ and $P^{1}$ by

$\int_{\mathbb{P}^{1}}\varphi\wedge\psi$ , $\varphi\in S^{1}$ , $\psi\in P^{1}$ .

This pairing descends to the perfect pairing. between $H^{1}$ (S., $\nabla$ ) and
$H^{1}$ (P., $\check{\nabla}$ ). Theorem 3 yields the isomorphism $\iota$ : $ H^{1}(\Omega.(*L), \nabla)\rightarrow$

$H^{1}(S.(*L), \nabla)$ , which induces the intersection pairing of $H^{1}(\Omega.(*L), \nabla)$

and $H^{1}(\Omega.(*L),\check{\nabla})$ by

$\varphi$
. $\psi=\int_{\mathbb{P}^{1}}\iota(\varphi)\wedge\psi$ .

Theorem 5. The intersection number $\varphi\cdot\psi$ of $\varphi\in H^{1}(\Omega.(*L), \nabla)$

and $\psi\in H^{1}(\Omega.(*L),\check{\nabla})$ is given by

$\varphi$
.

$\psi=2\pi i\sum_{j=0}^{m}{\rm Res}_{t=x_{j}}(F_{j}\psi)$ ,

where $F_{j}$ is the meromorphic formal Laurent series around $x_{j}$ satisfying
$\nabla F_{j}=\varphi$ .

Note that we can evaluate the intersection number $\varphi$
. $\psi$ by this

theorem; see examples in the next subsection.
So far in this section, we defined three pairings:

$H^{1}(\Omega.(*L), \nabla)\cong H^{1}$ (S., $\nabla$ ) – $H^{1}$ (P., $\check{\nabla}$ ) $\cong H^{1}(\Omega.(*L),\check{\nabla})$

$l$ $l$

$H_{1}(C.(T, \omega)$ , $\partial_{\omega})$ $H_{1}(C.(T, -\omega),$ $\partial_{-\omega})$ .

These pairings define a pairing between the two homology groups.
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Theorem 6. Suppose for two loaded cycles

$\rho^{+}=\sum_{i}b_{i}\triangle_{i}+\otimes u_{\Delta_{i}^{+}}(t)\in H_{1}(C.(T, \omega),$

$\partial_{\omega})$

and

$\rho^{-}=\sum_{j}b_{j}\triangle_{j}^{-}\otimes u_{\Delta^{\frac{1}{j}}}^{-}(t)\in H_{1}(C.(T, -\omega),$

$\partial_{-\omega})$ ,

$\triangle_{i}+and\triangle_{j}-$ meet transversally at finitely many points. Then the inter-

section number $\rho^{+}\cdot\rho^{-}$ is equal to

$\rho^{+}\cdot\rho^{-}=\sum_{i,,,jv\in}\sum_{\Delta_{i}^{+}\cap\Delta_{7}^{-}}b_{i}b_{j}[u_{\Delta_{2}}+(t)]_{t=v}[u_{\Delta^{\frac{1}{j}}}^{-}(t)]_{t=v}I_{v}(\triangle_{i}\triangle_{j})+,-$

,

where $I_{v}(\triangle_{i}\triangle_{j})+,-$ is the topological intersection number of $\triangle_{i}+and\triangle_{j}-$

at $v\in T$ .

8.4. Examples. The compatibility of the parings yields quadratic
relations among confluent hypergeometric functions.

Let $\omega=-tdt$ , so $u(t)=e^{-t^{2}/2}$ . The $(co)homology$ groups in question
are 1-dimensional. Put

$\rho^{+}=[-\infty, \infty]\otimes e^{-t^{2}/2}$ , $\rho^{-}=[-i\infty, i\infty]\otimes e^{t^{2}/2}$ .

Let us compute the intersection number dt.dt applying Theorem 5.
Since the pole of $\omega$ is at $\infty$ only, we solve the equation $\nabla F=dt$ at $\infty$ .

By a straightforward calculation, we have

F $=-s+s^{3}-2s^{5}+2\cdot 4s^{7}-2\cdot 4\cdot 6s^{9}+\cdots$ , s $=1/t$ .

Since ${\rm Res}_{s=0}(F(s)(-ds/s^{2}))=1$ , dt.dt equals 2ni. One can easily see
that Theorem 6 implies $\rho^{+}\cdot\rho^{-}=1$ . Since

\langle dt,$ \gamma^{+}\rangle=\int_{-\infty}^{+\infty}e^{-t^{2}/2}dt$ , \langle dt,$ \gamma^{-}\rangle=\int_{-i\infty}^{+i\infty}e^{t^{2}/2}dt=i\int_{-\infty}^{+\infty}e^{-t^{2}/2}dt$ ,

we have the formula announced in \S 1:

$(\int_{-\infty}^{\infty}e^{-t^{2}/2}dt)\cdot 1\cdot(i\int_{-\infty}^{\infty}e^{-t^{2}/2}dt)=2\pi i$ .

We present two more examples: the inversion formula for the gamma
function

$\Gamma(\alpha)\Gamma(1-\alpha)=\frac{\pi}{\sin\pi\alpha}$
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and Lommel’s formula

$J_{a}(z)J_{-a+1}(z)+J_{a-1}(z)J_{-a}(z)=\frac{2\sin(\pi a)}{\pi z}$ ,

which holds for the Bessel function with parameter $a\in \mathbb{C}\backslash \mathbb{Z}$

$J_{a}(z)=(\frac{z}{2})^{a}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!\Gamma(a+k+1)}(\frac{z}{2})^{k}$ ,

where $z\in\{z\in \mathbb{C}|Re(z)>0\}$ and the argument of $z$ is in $(-\pi/2, \pi/2)$ .

For details including proofs, refer to [MMT].

[Ha2] shows that such quadratic relations are indeed obtained from
these in \S 5 by confluence process.

\S 9. Confluent cases, generalized Airy $k \geq 2$

Let $\omega$ be an exact 1-form on $T=\mathbb{C}^{k}$ , with parameters $\alpha_{1}$ , $\ldots$ , $\alpha_{n}$ ,

defined as

$\omega=d\theta_{n+1}(t)+\sum_{j=1}^{n}\alpha_{j}d\theta_{j}(t)$ ,

where $\theta_{j}$ are polynomials in $t=(t_{1}, \ldots, t_{k})$ of degree $j$ defined by

$\log(1+t_{1}X+t_{2}X^{2}+\cdots+t_{k}X^{k})=\sum_{j\geq 1}\theta_{j}(t)X^{j}$
;

for example, $\theta_{1}(t)=t_{1}$ , $\theta_{2}(t)=t_{2}-t_{1}^{2}/2$ , $\theta_{3}(t)=t_{3}-t_{1}t_{2}+t_{1}^{3}/3$ .

Note that the form $\omega$ has poles of order $n+2$ along the hyperplane $L$ at
infinity. Let $H^{p}(\Omega., \nabla)$ be the $p$-th cohomology group of the complex

$(\Omega., \nabla)$ : $0\rightarrow\Omega^{0}\rightarrow\Omega^{1}\nabla\rightarrow\nabla\ldots\rightarrow\Omega^{k}\nabla\rightarrow 0$ ,

where $\Omega^{p}$ the vector space of polynomial $p$-forms. In [Kim2], it is shown
that only $H^{k}(\Omega., \nabla)$ survives and is $\left(\begin{array}{l}n\\k\end{array}\right)$ -dimensional, further it is conjec-

tured that there exists a basis expressed in terms of Schur polynomials.
This conjecture is established in [IM]. In order to state this, we consider
the map

$\phi$ : $\mathbb{C}^{k}\ni s=(s_{1}, \ldots, s_{k})\mapsto t=(t_{1}, \ldots, t_{k})=(e_{1}(s), \ldots, e_{k}(s))\in \mathbb{C}^{k}$ ,

where $e_{j}(s)$ is the elementary symmetric polynomial of degree $j$ .
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Theorem 7. $H^{k}(\Omega., \nabla)$ can be spanned by

$\Theta_{I}=d\theta_{i_{1}}\wedge\cdots\wedge d\theta_{i_{k}}$ , $I$ $=(i_{1}, \ldots, i_{k})$ , $1\leq i_{1}<\cdots<i_{k}\leq n$ .

The pull buck $\phi^{*}(\Theta_{I})$ of $O-_{I}$ by $\phi$ is given by

$\phi^{*}(\ominus_{I})=Sc_{\lambda}(s)\triangle(s)ds_{1}\wedge\cdots\wedge ds_{k}$ ,

where $Sc_{\lambda}(s)$ is the Schur polynomial attached to the Young digram $\lambda=$

$(i_{k}-k, \ldots, i_{1}-1)$ and $\triangle(s)$ is the difference product of $s_{1}$ , $\ldots$ , $s_{k}$ .

Let us define the intersection pairing $H^{k}(\Omega., \nabla)$ and $H^{k}(\Omega.,\check{\nabla})$ .

Note that the map $\phi$ induces the biholomorphic map from the quotient

variety $(\mathbb{P}^{1})^{k}/S_{k}$ to $\mathbb{P}^{k}$ . We can easily see that

$\phi^{*}(d\theta_{i}(t_{1}, \ldots, t_{k}))=\sum_{j=1}^{k}d\theta_{i}(s_{j}, 0, \ldots, 0)$ .

We regard $\phi^{*}(\omega)$ as a meromorphic 1-form on $(\mathbb{P}^{1})^{k}/S_{k}$ . We can deform
$\phi^{*}(\ominus_{I})$ into a $S_{k}$ -invariant rapidly decreasing $k$-form $\iota(\phi^{*}(\ominus_{I}))$ on $\mathbb{C}^{k}$ by
adding $dF+\phi^{*}(\omega)\wedge F$, where $F$ is a $S_{k}$ -invariant polynomially growing
$(k-1)$-form on $\mathbb{C}^{k}$ . Since $(\mathbb{P}^{1})^{k}$ is the $k!$-fold covering of $(\mathbb{P}^{1})^{k}/S_{k}$ ,

we define the intersection number $\ominus_{I}\cdot\Theta_{J}$ for $\ominus_{I}\in H^{k}(\Omega., \nabla)$ and
$\Theta_{J}\in H^{k}(\Omega.,\check{\nabla})$ as

$\langle\ominus_{I}, \Theta_{J}\rangle=\frac{1}{k!}\int_{\mathbb{C}^{k}}\iota(\phi^{*}(\ominus_{I}))\wedge\phi^{*}(\ominus_{J})$ .

Theorem 8. the intersection number $\langle\ominus_{I}, \Theta_{J}\rangle$ is equal to the
skew Schur polynomial $Sc_{\lambda/\overline{\mu}}(\alpha)$ with elementary symmetric polyno-
mials as variables, where $\tilde{\mu}$ is the complement of the Young diagram
$\mu=(j_{k}-k, \ldots,j_{1}-1)$ in the $k\times(n-k)$ rectangle, and $\lambda/\tilde{\mu}$ is the skew
Young diagram of $\lambda=(i_{k}-k, \ldots, i_{1}-1)$ and $\tilde{\mu}$ .

The cohomology theory introduced in this section will be presented
in full in [IM]. The homological counter part is still unsettled.
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Remarks on critical points of phase functions and

norms of Bethe vectors

Evgeny Mukhin and Alexander Varchenko

Dedicated to Peter Orlik on his sixtieth birthday

Abstract.

We consider a tensor product of a Verma module and the basic
linear representation of $sl(n+1)$ . We prove that the corresponding
phase function, which is used in the solutions of the $KZ$ equation

with values in the tensor product, has a unique critical point and
show that the Hessian of the logarithm of the phase function at this
critical point equals the Shapovalov norm of the corresponding Bethe
vector in the tensor product.

\S 1. Introduction

Let $g$ be a simple Lie algebra with simple roots $\alpha_{i}$ and Chevalley
generators $e_{i}$ , $f_{i}$ , $h_{i}$ , $i=1$ , $\ldots$ , $n$ . Let $V_{1}$ , $V_{2}$ be representations of $g$ with
highest weights $\lambda_{1}$ , $\lambda_{2}$ . The Knizhnik-Zamolodchikov (KZ) equation on
a function $u$ with values in $V_{1}\otimes V_{2}$ has the form

$\kappa\frac{\partial}{\partial z_{1}}u=\frac{\Omega}{z_{1}-z_{2}}u$ , $\kappa\frac{\partial}{\partial z_{2}}u=\frac{\Omega}{z_{2}-z_{1}}u$ ,

where $\Omega\in End(V_{1}\otimes V_{2})$ is the Casimir operator. Solutions with values
in the space of singular vectors of weight $\lambda_{1}+\lambda_{2}-\sum_{i=1}^{n}l_{j}\alpha_{j}$ are given
by hypergeometric integrals with $l$ $=\sum_{i=1}^{n}l_{j}$ integrations, see [SV].

For an ordered set of numbers $I$ $=\{i_{1}, \ldots, i_{m}\}$ , $i_{k}\in\{1, \ldots, n\}$ ,

and a vector $v$ in a representation of $g$ , denote $f^{I}v=f_{i_{1}}\ldots f_{i_{m}}v$ . The
hypergeometric solutions of the $KZ$ equation have the form

$u=\sum u_{I,J}f^{I}v_{1}\otimes f^{J}v_{2}$ , $u_{I,J}=\int_{\gamma}\tilde{\Phi}\tilde{\omega}_{I,J}dt_{1}\wedge\cdots\wedge dt_{l}$ ,

where $v_{1}$ , $v_{2}$ are highest weight vectors of $V_{1}$ , $V_{2}$ ; the summation is over
all pairs of ordered sets $I$ , $J$ , such that their union $\{i_{k},j_{s}\}$ contains a

2000 Mathematics Subject Classification. $14H10,14H30$ .
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number $i$ exactly $l_{i}$ times, $i=1$ , $\ldots$ , $ n;\gamma$ is a suitable cycle; $\tilde{\omega}_{I,J}=$

$\tilde{\omega}_{I,J}(z_{1}, z_{2}, t_{1}, \ldots, t_{l})$ are suitable rational functions, the function $\tilde{\Phi}=$

$\tilde{\Phi}(z_{1}, z_{2}, t_{1}, \ldots, t_{l})$ , called the phase function, is given by

$\tilde{\Phi}=(z_{1}-z_{2})^{(\lambda_{1},\lambda_{2})/\kappa}\prod_{j=1}^{l}(t_{j}-z_{1})^{-(\lambda_{1},\alpha’)/\kappa}j(t_{j}-z_{2})^{-(\lambda_{2},\alpha_{l_{\dot{\prime}}})/\kappa}$

$\times\prod_{1\leq i<j\leq l}(t_{i}-t_{j})^{(\alpha_{\iota_{i}},\alpha_{\mathfrak{l}_{j}})/\kappa}$
.

Here $(, )$ is the Killing form and $\alpha_{t_{i}}$ denotes the simple root assigned a
the variable $t_{i}$ by the following rule. The first $l_{1}$ variables $t_{1}$ , $\ldots$ , $t_{l_{1}}$ are
assigned to the simple root $\alpha_{1}$ , the next $l_{2}$ variables $t_{l_{1}+1}$ , $\ldots$ , $t_{l_{1}+l_{2}}$ to
the second simple root $\alpha_{2}$ , and so on.

Define the normalized phase function $\Phi$ by the formula

(1) $\Phi(\lambda_{1}, \lambda_{2}, \kappa)=\prod_{j=1}^{l}t_{j}^{-(\lambda_{1},\alpha’)/\kappa}j(1-t_{j})^{-(\lambda_{2},\alpha_{t_{j}})/\kappa}$

$\times\prod_{1\leq i<j\leq l}(t_{i}-t_{j})^{(\alpha_{t;},\alpha_{t_{j}})/\kappa}$
.

We also substitute $z_{1}=0$ , $z_{2}=1$ in the rational functions $\tilde{\omega}_{I,J}$ and
denote the result $\omega_{I,J}$ .

Conjecture 1. If the space of singular vectors of weight $\lambda_{1}+\lambda_{2}-$

$\sum_{i=1}^{n}l_{j}\alpha_{j}$ is one-dimensional, then there is a region $\triangle$ of the form $\Delta=$

$\{t\in \mathbb{R}^{l}|0<t_{\sigma_{l}}<\cdots<t_{\sigma_{1}}<1\}$ for some permutation $\sigma$ , such that the
integral $\int_{\triangle}\Phi dt$ can be computed explicitly. Moreover, up to a rational
number independent on $\lambda_{1}$ , $\lambda_{2}$ , $\kappa$ , it is equal to an alternating product

of Euler $\Gamma$ -functions whose arguments are linear functions of weights
$\lambda_{1}$ , $\lambda_{2}$ .

Example. The Selberg integral. Let $\emptyset=sl(2)$ . Let $V_{1}$ and $V_{2}$ be $sl(2)$

modules with highest weights $\lambda_{1}$ , $\lambda_{2}\in \mathbb{C}$ . Then the normalized phase
function (1) has the form

(2) $\Phi(\lambda_{1}, \lambda_{2}, \kappa)=\prod_{j=1}^{l}t_{j}^{-\lambda_{1}/\kappa}(1-t_{j})^{-\lambda_{2/\hslash}}\prod_{1\leq i<j\leq l}(t_{i}-t_{j})^{2/\kappa}$ .
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Conjecture 1 holds for $\mathfrak{g}=sl(2)$ according to the Selberg formula

$l!\int_{\triangle}\Phi(\lambda_{1}, \lambda_{2}, \kappa)dt_{1}\ldots dt_{l}$

$=$ $\prod_{j=0}^{l-1}\frac{\Gamma((-\lambda_{1}+j)/\kappa+1)\Gamma((-\lambda_{2}+j)/\kappa+1)\Gamma((j+1)/\kappa+1)}{\Gamma((-\lambda_{1}-\lambda_{2}+(2l-j-2))/\kappa+2)\Gamma(1/\kappa+1)}$ ,

where $\triangle=\{t\in \mathbb{R}^{l}|0<t_{1}<\cdots<t_{l}<1\}$ . $\square $

Using the phase function $\Phi$ and the rational functions $\omega_{I,J}$ , one can
construct singular vectors in $V_{1}\otimes V_{2}$ . Namely, if $t^{0}$ is a critical point
of the function $\Phi$ , then the vector $\sum\omega_{I,J}(t^{0})f^{I}v_{1}\otimes f^{J}v_{2}$ is singular,
see [RV]. The equation for critical points, $d\Phi=0$ , is called the Bethe
equation and the corresponding singular vectors are called the Bethe
vectors.

Conjecture 2. If the space of singular vectors of a given weight
in $V_{1}\otimes V_{2}$ is one-dimensional, then the corresponding phase function has
exactly one critical point modulo permutations of variables $t_{i}$ assigned
to the same simple root.

Example. The conjecture holds for $g$ $=sl(2)$ . If $(t_{1}, \ldots, t_{l})$ is a critical
point of the function $\Phi(\lambda_{1}, \lambda_{2}, \kappa)$ given by (2), then

$\sigma_{k}(t)=\left(\begin{array}{l}l\\k\end{array}\right)\prod_{=1}^{k}\frac{\lambda_{1}-l+j}{\lambda_{1}+\lambda_{2}-2l+j+1}$ ,

where $\sigma_{1}(t)=\sum t_{j}$ , $\sigma_{2}(t)=\sum t_{i}t_{j}$ , etc, are the standard symmetric
functions, see [V], so there is a unique critical point up to permutations

of coordinates. $\square $

The rational functions $\omega_{I,J}(t)$ are invariant with respect to permu-
tation of variables assigned to the same simple root. Thus, Conjecture
2 implies that there is a unique Bethe vector $X$ .

The space $V_{1}\otimes V_{2}$ has a natural bilinear form $B$ , called the Shapo-
valov form, which is the tensor product of Shapovalov forms of factors.

Conjecture 3. The length of a Bethe vector $X$ equals the Hessian

of the logarithm of the phase function $\Phi$ with $\kappa=1$ at a critical point
$t^{0})$

$B(X, X)=det(\frac{\partial^{2}}{\partial t_{i}\partial t_{j}}\ln\Phi(t^{0}))$ .
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Example. The conjecture holds for $g$ $=sl(2)$ , see [V]. $\square $

In this paper we prove Conjectures 1, 2 and 3 for the case when $g$ $=$

$sl(n+1)$ , $V_{1}$ is a Verma module and $V_{2}$ is the basic linear representation.

\S 2. The integral

Let

(3) $\overline{\Phi}_{n}(\alpha, \beta)=t_{1}^{\alpha_{1}}(1-t_{1})^{\beta_{1}}\prod_{j=2}^{n}t_{j}^{\alpha_{\dot{\gamma}}}(t_{j}-t_{j-1})^{\beta_{j}}$ .

Theorem 1. Let $\alpha_{i}>0$ , $\beta_{i}>0$ , $i=1$ , $\ldots n$ . Then

$\int_{\triangle_{7l}}\overline{\Phi}_{n}(\alpha, \beta)dt_{1}\ldots dt_{n}$

$=$ $\prod_{j=1}^{n}\cdots\cdots\frac{\Gamma(\beta_{j}+1)\Gamma(\alpha_{j}++\alpha_{n}+\beta_{j+1}++\beta_{n}+n-j+1)}{\Gamma(\alpha_{j}++\alpha_{n}+\beta_{j}++\beta_{n}+n-j+2)}\cdots\cdots$ ,

where $\triangle_{n}=\{t\in \mathbb{R}^{n}|0<t_{n}<\cdots<t_{1}<1\}$ .

Proof. The formula is clearly true for $n=1$ .

Fix $t_{1}$ , $\ldots$ , $t_{n-1}$ and integrate with respect to $t_{n}$ . We obtain the
recurrent relation

$\int_{\triangle_{r\iota}}\overline{\Phi}_{n}(\alpha, \beta)dt_{1}\ldots dt_{n}=\frac{\Gamma(\alpha_{n}+1)\Gamma(\beta_{n}+1)}{\Gamma(\alpha_{n}+\beta_{n}+2)}\times$

$\times\int\triangle_{n-1}\overline{\Phi}_{n-1}(\alpha_{1}, \ldots, \alpha_{n-1}, \beta_{1}, \ldots, \beta_{n-2}, \beta_{n-1}+\beta_{n}+\alpha_{n}+1)dt_{1}\ldots dt_{n-1}$ ,

which implies the Theorem. Q.E.D.

\S 3. The critical point

Let $\emptyset$ $=sl(n+1)$ . Let $V_{1}$ be a Verma module of highest weight
$\lambda$ , $(\lambda, \alpha_{i})=\lambda_{i}$ . Let $V_{2}$ be the basic linear representation, that is the
irreducible representation with highest weight $\omega$ , $(\omega, \alpha_{i})=\delta_{i,1}$ .

The nontrivial subspaces of singular vectors of a given weight in the
tensor product $V_{1}\otimes V_{2}$ are one dimensional and have weights $\lambda+\omega-$

$\sum_{i=1}^{k}\alpha_{i}$ , $k=0$ , $\ldots$ , $n$ . The computations for weights $\lambda+\omega-\sum_{i=1}^{k}\alpha_{i}$ ,
$k<n$ , are reduced to the case $g$ $=sl(k+1)$ . Consider the normalized
phase function $\Phi_{n}(\lambda, \kappa)$ corresponding to the weight $\lambda+\omega-\sum_{i=1}^{n}\alpha_{i}$ .
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We have $\Phi_{n}(\lambda, \kappa)=\Phi(\lambda,\omega, \kappa)$ , where $\Phi(\lambda, \omega, \kappa)$ is given by (1).
Note that

$\Phi_{n}(\lambda, \kappa)=\overline{\Phi}_{n}(-\lambda_{1}/\kappa, \ldots, -\lambda_{n}/\kappa, -1/\kappa, \ldots, -1/\kappa)$ ,

where $\overline{\Phi}_{n}$ is given by (3).

Theorem 2. The function $\Phi_{n}(\lambda, \kappa)$ has exactly one critical point
$t^{n}=(t_{1}^{n}, \ldots, t_{n}^{n})$ given by

$t_{j}^{n}(\lambda_{1}, \ldots, \lambda_{n})=\prod_{i=1}^{j}\cdots\cdots\frac{\lambda_{i}++\lambda_{n}+n-i}{\lambda_{i}++\lambda_{n}+n-i+1}$ .

Proof. The computation is obvious if $n$ $=1$ .

The equation $\partial\Phi_{n}/\partial t_{n}=0$ has the form

$t_{n}^{n}=\frac{\lambda_{n}}{\lambda_{n}+1}t_{n-1}^{n}$ .

Substituting for $t_{n}^{n}$ in the equations $\partial\Phi_{n}/\partial t_{i}=0$ , $i=1$ , $\ldots$ , $n-1$ and
comparing the result with the equation $d\Phi_{n-1}=0$ , we obtain

$t_{k}^{n}(\lambda_{1}, \ldots, \lambda_{n})=t_{k}^{n-1}(\lambda_{1}\ldots, \lambda_{n-2}, \lambda_{n-1}+\lambda_{n}+1)$ , $k=1$ , $\ldots$ , $n-1$ .

This recurrent relation implies the Theorem. Q.E.D.

\S 4. The norm of the Bethe vector

Let $V$ be a $g$ module with highest weight vector $v$ . The Shapovalov
form $B(, )$ : $V\otimes V\rightarrow \mathbb{C}$ is the unique symmetric bilinear form with the
properties

$B(e_{i}x, y)=B(x, f_{i}y)$ , $B(v, v)=1$ ,

for any $x$ , $y\in V$ . The Shapovalov form on a tensor product of modules
is the tensor product of Shapovalov forms of factors.

Let $g$ $=sl(n+1)$ . Let $V_{1}=V_{\lambda}$ be a Verma module of highest weight
$\lambda$ . Let $V_{2}=V_{\omega}$ be the basic linear representation. Then the space of
singular vecors in $V_{\lambda}\otimes V_{\omega}$ of weight $\lambda+\omega-\sum_{i=1}^{n}\alpha_{i}$ is one-dimensional
and is spanned by the Bethe vector $X^{n}(\lambda)$ corresponding to the critical
point of the function $\Phi_{n}(\lambda, \kappa)$ . The Bethe vector has the form

$X^{n}(\lambda)=x_{0}^{n}\otimes f_{n}\ldots f_{1}v_{0}+x_{1}^{n}\otimes f_{n-1}\ldots f_{1}v_{0}+\cdots+x_{n}^{n}\otimes v_{0}$ ,
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where $x_{i}^{n}\in V_{\lambda}$ and $v_{0}$ is the highest weight vector in $V_{\omega}$ . Here, $x_{0}^{n}=$

$a^{n}v_{\lambda}$ , where $v_{\lambda}$ is the highest weight vector in $V_{\lambda}$ and $a^{n}$ is the value of
the corresponding rational function

$\omega_{\emptyset,(n,n-1}$ , ’ 1)
$(t)=\frac{1}{t_{1}-1}\prod_{i=1}^{n-1}\frac{1}{t_{i+1}-t_{i}}$

at the critical point $t^{n}$ of function $\Phi_{n}(\lambda, \kappa)$ , given by Theorem 2. For a
description of all other rational functions whose values at $t^{n}$ determine
$x_{1}^{n}$ , $\ldots$ , $x_{n}^{n}$ , see [SV]. We have

$a^{n}=(-1)^{n}\prod_{k=1}^{n}\cdots\cdots\frac{(\lambda_{k}++\lambda_{n}+n-k+1)^{n-k+1}}{(\lambda_{k}++\lambda_{n}+n-k)^{n-k}}$ .

Theorem 3.

$(4)B(X^{n}(\lambda), X^{n}(\lambda))=\prod_{k=1}^{n}\cdots\cdots\frac{(\lambda_{k}++\lambda_{n}+n-k+1)^{2(n-k)+3}}{(\lambda_{k}++\lambda_{n}+n-k)^{2(n-k)+1}}$ .

Proof. We also claim

(5) $ B(x_{n}^{n}, x_{n}^{n})=\frac{B(X^{n}(\lambda),X^{n}(\lambda))}{\lambda_{1}++\lambda_{n}+n}\cdots$ .

Formulas (4), (5) are readily checked for $n=1$ .

The vectors $\{v_{0}, f_{1}v_{0}, f_{2}f_{1}v_{0}, \ldots, f_{n}\ldots f_{1}v_{0}\}$ form an orthonormal
basis of $V_{\omega}$ with respect to its Shapovalov form. Clearly, we have

$B(X^{n}(\lambda), X^{n}(\lambda))=(\frac{a^{n}(\lambda)}{a^{n-1}(\lambda)},)^{2}B(X^{n-1}(\lambda’), X^{n-1}(\lambda’))+B(x_{n}^{n}, x_{n}^{n})$ ,

where $\lambda’$ is the $sl\{n$ ) weight, such that $(\lambda’, \alpha_{i})=\lambda_{i+1}$ , $i=1$ , $\ldots$ , $n-1$ .

The vector $X^{n}$ is singular. In particular it means that $e_{i}x_{n}^{n}=0$

for $i>1$ and $e_{1}x_{n}^{n}=-x_{n-1}^{n}$ . The vector $x_{n}^{n}$ has the form $x_{n}^{n}=$

$\sum_{\sigma}b_{\sigma}^{n}f_{\sigma(1)}\ldots f_{\sigma(n)}v_{\lambda}^{n}$ , where the coefficients $b_{\sigma}^{n}$ are the values of the
corresponding rational functions at the critical point given by Theorem
2.

Let $b^{n}=b_{\sigma=id}^{n}$ . Then we have

$B(x_{n}^{n}, x_{n}^{n})=B(x_{n}^{n}, b^{n}f_{1}\ldots f_{n}v_{\lambda}^{n})=-b^{n}B(x_{n-1}^{n}, f_{2}\ldots f_{n}v_{\lambda}^{n})=$

$=-b^{n}\frac{a_{n}}{a_{n-1}}B(x_{n-1}^{n-1}, f_{1}, \ldots f_{n-1}v_{\lambda}^{n-1},)=-\frac{b^{n}}{b^{n-1}}\frac{a_{n}}{a_{n-1}}B(x_{n-1}^{n-1}, x_{n-1}^{n-1})$ ,

where $x_{n-1}^{n-1}$ is a component of the singular vector in $V_{\lambda^{J}}\otimes V_{\omega}$ .
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The coefficient $b^{n}$ is the value of the function

$\omega_{(n,n-1}$ , ,
$1),\emptyset(t)=\frac{1}{t_{n}}\prod_{i=1}^{n-1}\frac{1}{t_{i}-t_{i+1}}$

at the critical point $t^{n}$ , given by Theorem 2. We have

$ b^{n}=(-1)^{n-1}\frac{a_{n}}{\lambda_{1}++\lambda_{n}+n}\cdots\prod_{k=1}^{n}\cdots\frac{\lambda_{k}++\lambda_{n}+n-k+1}{\lambda_{k}++\lambda_{n}+n-k}\cdots$

Now, formulas (4), (5) are proved by induction on $n$ . Q.E.D.

Theorem 4.

$B(X^{n}(\lambda), X^{n}(\lambda))=det(\frac{\partial^{2}}{\partial t_{i}\partial t_{j}}\ln\Phi_{n}(\lambda, \kappa=1)(t^{n}))$ ,

where $t^{n}$ is the critical point of the phase function $\Phi_{n}(\lambda, \kappa)$ given by
Theorem 2.

Proof. It is sufficient to prove the Theorem for $\lambda_{i}>0$ , $\kappa<0$ . We
tend $\kappa$ to zero and compute the asymptotics of the integral $\int_{\triangle_{r\iota}}\Phi_{n}dt$ .

On the one hand, the integral is evaluated by Theorem 1. We com-
pute the asymptotics using the Stirling formula for $\Gamma$-functions.

On the other hand, the asymptotics of the same integral can be
computed by the method of stationary phase, since the critical point $t^{n}$

of the function $\Phi_{n}$ is non-degenerate by Theorem 1.2.1 in [V]. Then the
asymptotics of the integral is

$(2\pi\kappa)^{l/2}\Phi_{n}(\lambda, \kappa)(t^{n})(Hess(\kappa\ln\Phi_{n}(\lambda, \kappa)(t^{n}))^{-1/2}$

Note that $\kappa\ln\Phi_{n}(\lambda, \kappa)=\ln\Phi_{n}(\lambda, 1)$ , and

$\Phi_{n}(\lambda, \kappa)(t^{n})=\prod_{k=1}^{n}\cdots\cdots\frac{(\lambda_{k}++\lambda_{n}+n-k+1)^{(\lambda_{k}++\lambda_{r\iota}+n-k+1)/\kappa}}{(\lambda_{k}++\lambda_{n}+n-k)^{(\lambda_{k}++\lambda_{r\iota}+n-k)/\kappa}}\cdots$ .

Comparing the results we compute the Hessian explicitly and prove
the Theorem. Q.E.D.
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Local system homology of
arrangement complements

Peter Orlik1 and Roberto Silvotti2

Abstract.

We use the critical points of a multivalued holomorphic function
and Morse theory to find a basis for a local system homology group
defined on the complement of an arrangement of hyperplanes. This
generalizes results ofKohno [4] and Douai-Terao [2] from complexified
real arrangements to all arrangements. We also show that the set of
critical points satisfies the same recursion with respect to deletion
and restriction as the $\beta nbc$ set of the arrangement.

\S 1. Introduction

A finite set of hyperplanes in $\mathbb{C}^{\ell}$ is called an affine arrangement, $A$ .

Let

$N(A)=\bigcup_{H\in A}H$ , $M(A)=\mathbb{C}^{\ell}-N(A)$

be the divisor and the complement of $A$ . We assume that $A$ is essential:
$A$ contains $\ell$ linearly independent hyperplanes. For each $H\in A$ choose
an exponent $\lambda_{H}\in \mathbb{C}$ and let $\lambda=\{\lambda_{H}|H\in A\}$ . Let $\gamma_{H}$ be the standard
generator of $\pi_{1}(M)$ linking $H$ . Define a rank one local system $\mathcal{L}_{\lambda}$ on
$M$ by $\gamma_{H}\mapsto\exp(-2\pi i\lambda_{H})$ and let $\mathcal{L}_{\lambda}^{\vee}$ denote its dual. Let $z_{1}$ , $\ldots$ , $z_{\ell}$ be
coordinates in $\mathbb{C}^{\ell}$ . For each hyperplane $H\in A$ , choose a polynomial of
degree one, $\alpha_{H}$ , with $H=ker\alpha_{H}$ . Call $Q(A)=\prod_{H\in A}\alpha_{H}$ a defining
polynomial for $A$ . Define a multivalued holomorphic function on $M$ by

$\Phi_{\lambda}=\prod_{H\in A}\alpha_{H}^{\lambda_{JJ}}$
.

The hypergeometric pairing

$H_{\ell}(M;\mathcal{L}_{\lambda}^{\vee})\times H^{\ell}(M;\mathcal{L}_{\lambda})\rightarrow \mathbb{C}$

1,2 Partially supported by NSF
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is defined by $(\delta, \phi)\mapsto\int_{\delta}\Phi_{\lambda}\phi$ . Under suitable nonresonance conditions
on the exponents $\lambda$ , the groups in the hypergeometric pairing have rank
$\beta=(-1)^{\ell}\chi(M)$ , where $\chi$ denotes Euler characteristic. Falk and Terao
[3] constructed a basis for $H^{\ell}(M;\mathcal{L}_{\lambda})$ , but a basis for $H_{\ell}(M;\mathcal{L}_{\lambda}^{\vee})$ is
known only for complexified real arrangements [4], [2], defined in terms
of the bounded chambers of the underlying real arrangement. Our main
objective is to use Morse theory to construct a geometric homology basis
for all arrangements.

Deletion and restriction is a basic tool for various induction argu-
ments concerning arrangements [5]. Given a linear order on the hyper-
planes of $A$ , Ziegler [8] associated with it a combinatorially defined set
of cardinality $\beta$ , called $/3nbc$ , and proved that $\beta nbc$ satisfies a simple
recursion with respect to deletion and restriction. We call a basis for
either group in the hypergeometric pairing a $\beta nbc$-basis if its elements
are labeled by $\beta nbc$ and they satisfy the $\beta nbc$ recursion of Theorem 4.2.
The cohomology basis constructed by Falk and Terao [3] is a $\beta nbc$ basis
The homology basis constructed by Douai and Terao [2] for complexi-
fied real arrangements is also a $\beta nbc$-basis. We show that our homology
basis is also a $\beta nbc$ basis

\S 2. A Morse theoretic argument

A point $p\in M$ is a critical point of $\Phi_{\lambda}$ if and only if $d(\log\Phi_{\lambda})(p)=0$ .

Properties of this critical set were established in [6], [7]:

Proposition 2.1. For a dense open set of exponents $\lambda$ , every crit-
ical point of $\Phi_{\lambda}$ in $M$ is nondegenerate and has index $\ell$ . The number of
these critical points is $\beta=(-1)^{\ell}\chi(M)$ . Denote a critical set satisfying
these conditions

$C(A, \lambda)=\{p\in M|d(\log\Phi_{\lambda})(p)=0\}$ . Q. E. $D$ .

We would like to apply a Morse theoretic argument analogous to [7,
Sect. 5]. This argument relies on separating the divisors of zeroes and of
poles of a certain generalized meromorphic function whose orders along
its divisors generally are complex numbers, the exponents in our case.
However, this procedure is only possible when the exponents are rational
numbers or rational multiples of the same real number. Our strategy is
to prove first the required homotopy result working with strictly positive
rational exponents and subsequently extend its validity by perturbing
the relevant Morse function slightly around the rational point. Since any
open set in the space of exponents contains a rational point, the result
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will thus have been proven for all exponents with strictly positive real
part and small imaginary part.

Consider $\mathbb{C}^{\ell}\subset \mathbb{P}^{\ell}$ as the complement of the infinite hyperplane, $ P\wedge$

’

defined by $z_{0}=0$ . Assign it the exponent $\lambda_{P}=-\sum_{H\in A}\lambda_{H}$ . Let $H$

denote the projective closure of $H$ and define $A_{\infty}=\{\hat{H}|H\in A\}\cup\{P\}$ .

Then $A=\hat{N}\cup P$ is the divisor of the projective arrangement $A_{\infty}$ and
we have $\mathbb{P}^{\ell}-A=M=\mathbb{C}^{\ell}-N$ . Let $\hat{\alpha}_{H}$ be the homogenized $\alpha_{H}$ and
define

$\hat{\Phi}_{\lambda}=z_{0}^{\lambda_{J’}}\prod(\hat{\alpha}_{H})^{\lambda_{\mathfrak{l}i}}$ .

Assume that the exponents associated with the hyperplanes are ra-
tional and strictly positive, $\lambda_{H}\in \mathbb{Q}_{>0}$ for all $H\in A$ . The exponent
$\lambda_{P}$ at infinity is thus rational and strictly negative. There is an integer

$m>0$ so that $m\lambda_{H}$ is an integer for all $H\in A$ . The function $(\hat{\Phi}_{\lambda})^{m}$ is
a meromorphic function on $\mathbb{P}^{\ell}$ . Its set of critical points in $\mathbb{P}^{\ell}-A=M$

is $C(A, \lambda)$ and the same holds for $|\hat{\Phi}_{\lambda}^{m}|^{2}$ . We apply exactly the same
blow-up procedure as in [7]. We form a birational map $\sigma$ : $X\rightarrow \mathbb{P}^{\ell}$

by recursively blowing up points on $A$ until $\sigma^{-1}(A)=D$ has normal
crossings. Then $D=D_{0}\cup D_{\infty}\cup D^{/}$ where the divisor $D_{0}$ of zeroes
of the meromorphic function $\sigma^{*}\hat{\Phi}_{\lambda}^{m}$ is disjoint from the divisor $D_{\infty}$ of
poles and $D’$ consists of exceptional divisors connecting $D_{0}$ with $D_{\infty}$

along whose generic points $\sigma^{*}\hat{\Phi}_{\lambda}^{m}$ neither vanishes nor diverges. Note
that $\sigma^{-1}(N)\subset D_{0}$ and that in fact there are generally more irreducible
components in $D_{0}$ than in $\sigma^{-1}(N)$ .

Let $T_{0}$ and $T_{\infty}$ respectively be sufficiently small open regular neigh-
borhoods of $D_{0}$ and $D_{\infty}$ in $X$ and let $\overline{T}_{0}$ , $\overline{T}_{\infty}$ be their closures. By the
same argument as that leading to Theorem 5.3 of [7], the $C^{\infty}$ extension
$F$ of $\sigma^{*}|\hat{\Phi}_{\lambda}^{m}|^{2}$ to $X-D_{\infty}$ defines a Morse function on the compact man-
ifold $X-(T_{0}\cup T_{\infty})$ with boundary $\partial\overline{T}_{0}\cup\partial\overline{T}_{\infty}$ none of whose critical
points lies on $(X-(T_{0}\cup T_{\infty}))\cap D’$ . There is a homotopy equivalence

$X-(T_{0}\cup T_{\infty})\cong\partial\overline{T}_{0}\cup e_{1}\cup\cdots\cup e_{\beta}$ ,

with the following properties:
(1) Each $e_{i}$ is an -cell constructed in terms of the level sets of $F$

and it contains exactly one critical point of $F$ so the number of cells is
$\beta$ .

(2) The right hand side is in fact a deformation retract of $ X-(T_{0}\cup$

$T_{\infty})$ , hence of $X-(D_{0}\cup D_{\infty})$ as well.
The next step consists of deleting $D^{J}$ , or actually an arbitrarily small

neighborhood $T^{J}$ of $D^{J}$ . It is fairly obvious that deletion of $T’$ from
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$\partial\overline{T}_{0}\cup e_{1}\cup\cdots\cup e_{\beta}$ yields a deformation retract of $X-(T_{0}\cup T_{\infty}\cup T^{J})$ .

Note that the critical points of $F$ are not on $D’$ . In view of the manner
the cells $e_{i}$ are constructed, one may choose the $e_{i}$ so that $ e_{i}\cap T^{J}=\emptyset$

for all $i=1$ , $\ldots$ , $\beta$ . This granted, we have the homotopy equivalence

$X-(T_{0}\cup T_{\infty}\cup T^{J})\cong(\partial\overline{T}_{0}-\partial\overline{T}_{0}\cap T’)\cup e_{1}\cup\cdots\cup e_{\beta}$ .

Note that $T=\sigma(T_{0}\cup T_{\infty}\cup T^{/})$ is an open tubular neighborhood of $A$ .

Since $\sigma$ is an isomorphism outside $D$ , the left hand side is isomorphic to
the complement $\mathbb{P}^{\ell}-T$ . It follows that its affine part, $T_{a}=T\cap \mathbb{C}^{\ell}$ , is
an open tubular neighborhood of $N$ . Let $\overline{T}_{a}$ be its closure in $\mathbb{C}^{\ell}$ . Then
$\partial\overline{T}_{0}-\partial\overline{T}_{0}\cap T’\cong\partial\overline{T}_{a}$ .

Theorem 2.2. Let $A$ be an essential $\ell$ -arrangement Suppose the
exponents $\lambda_{H}$ have strictly positive real parts and small imaginary parts.
Then there is a homotopy equivalence

$\mathbb{C}^{\ell}-T_{a}=\mathbb{P}^{\ell}-T\cong\partial\overline{T}_{a}\cup p\in C(A,\lambda)\cup e_{p}$
,

where $e_{p}$ is an $i$ -cell attached to $\partial\overline{T}_{a}$ and “centered” at the critical point
$p\in C(A, \lambda)$ .

Proof. We proved the result for any rational point $\lambda$ in the con-
struction preceding the theorem. It remains to prove it for nearby points
$\lambda^{J}$ . The location of the critical points varies analytically with $\lambda^{J}$ . If $\lambda^{/}$ is
close to $\lambda$ , then the cell attached to a critical point $p^{/}$ of $\Phi_{\lambda’}$ is at most
a slight deformation of the cell centered at the nearby critical point $p$ of
$\Phi_{\lambda}$ . Q.E.D.

\S 3. Locally finite homology

Let $\mathcal{L}$ be any rank one complex local system on $\mathbb{P}^{\ell}-A=M=$

$\mathbb{C}^{\ell}-N$ . We consider the locally finite homology $H_{*}^{lf}(M;\mathcal{L})$ of $M$ with
coefficients in $\mathcal{L}$ , defined as the dual to the compactly supported coho-
mology of $\mathbb{P}^{\ell}-A$ with coefficients in the dual local system $\mathcal{L}^{\vee}:$

$H_{i}^{lf}(M;\mathcal{L})=H_{c}^{i}(M;\mathcal{L}^{\vee})^{*}$ .

It may be thought of as the homology of the complex of chains of the
form $\sum_{\sigma}a_{\sigma}\sigma$ . These are possibly infinite linear combinations of oriented
simplices $\sigma$ of a given triangulation of $M$ whose coefficients are local
sections $a_{\sigma}\in \mathcal{L}(\sigma)=H^{0}(\sigma, \mathcal{L})$ .
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In order to compute the locally finite homology we first identify it
with a relative homology group in Proposition 3.1. Its proof is related
to ideas in [1, pp. 10-12]. The Morse theoretic result of Theorem 2.2
on the homotopy of $M$ permits explicit determination which part of the
homology comes from the vicinity of $A$ and which part from the attached
1-cells.

Proposition 3.1. Let $T$ be a small open neighborhood of $A$ in $\mathbb{P}^{\ell}$ ,

let $\overline{T}$ denote its closure, and let $\partial\overline{T}$ denote the boundary ofT. There is
an isomorphism

$\iota_{*}\alpha$ : $H_{i}(\mathbb{P}^{\ell}-T, \partial(\mathbb{P}^{\ell}-T);\mathcal{L})\rightarrow H_{i}^{lf}(\mathbb{P}^{\ell}-A;\mathcal{L})$ .

Proof Consider the pair $(\mathbb{P}^{\ell}-T, \partial(\mathbb{P}^{\ell}-T))$ consisting of the (ori-

ented) topological manifold $\mathbb{P}^{\ell}-T$ together with its boundary. Notice
that $\partial(\mathbb{P}^{\ell}-T)$ is $\partial\overline{T}$ up to orientation and that removing the boundary
from $\mathbb{P}^{\ell}-T$ gives the open topological manifold $\mathbb{P}^{\ell}-T\cup\partial(\mathbb{P}^{\ell}-T)=$

$\mathbb{P}^{\ell}-\overline{T}$ . The Lefschetz duality isomorphism $ H_{i}(\mathbb{P}^{\ell}-T, \partial(\mathbb{P}^{\ell}-T);G)^{*}\cong$

$H^{2\ell-i}(\mathbb{P}^{\ell}-\overline{T};G)$ is well known for any constant abelian group of coef-
ficients $G$ . It generalizes to local coefficients in the form

$H_{i}(\mathbb{P}^{\ell}-T, \partial(\mathbb{P}^{\ell}-T);\mathcal{L})\cong H^{2\ell-i}(\mathbb{P}^{\ell}-\overline{T};\mathcal{L})^{*}$ .

Combined with Poincar\’e duality,

$H^{2\ell-i}(\mathbb{P}^{\ell}-\overline{T};\mathcal{L}^{\vee})$
$\rightarrow\sim$

$H_{c}^{i}(\mathbb{P}^{\ell}-\overline{T};\mathcal{L}^{\vee})$

$||$

$H_{i}^{lf}(\mathbb{P}^{\ell}-\overline{T};\mathcal{L})^{*}$

we obtain an isomorphism

$\alpha$ : $H_{i}(\mathbb{P}^{\ell}-T, \partial(\mathbb{P}^{\ell}-T);\mathcal{L})\rightarrow H_{i}^{lf}\sim(\mathbb{P}^{\ell}-\overline{T};\mathcal{L})$ .

The inclusion map $\iota$ : $\mathbb{P}^{\ell}-\overline{T}c-\rangle$ $\mathbb{P}^{\ell}-A$ is a homotopy equivalence. It
induces the isomorphism

$\iota_{*}$ : $H_{i}^{\iota f}(\mathbb{P}^{\ell}-\overline{T};\mathcal{L})\rightarrow H_{i}^{lf}\sim(\mathbb{P}^{\ell}-A;\mathcal{L})$ .

Thus we have

$\iota^{*}$ : $H_{c}^{i}(\mathbb{P}^{\ell}-A;\mathcal{L}^{\vee})$
$\rightarrow\sim$

$H_{c}^{i}(\mathbb{P}^{\ell}-\overline{T};\mathcal{L}^{\vee})$

$||$ $||$

$H_{i}^{lf}(\mathbb{P}^{\ell}-A;\mathcal{L})^{*}$ $H_{i}^{lf}(\mathbb{P}^{\ell}-\overline{T};\mathcal{L})^{*}$ ,

and the conclusion follows. $\bigcap_{-}F$, $n$Q.E.D.
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The isomorphism in Proposition 3.1 can be described concretely as
follows. A class in $H_{i}(\mathbb{P}^{\ell}-T, \partial(\mathbb{P}^{\ell}-T);\mathcal{L})$ is represented by a relative
cycle of the form $c=c’+C^{JJ}$ , where $c^{J}\in C_{i}(\mathbb{P}^{\ell}-T;\mathcal{L})$ with boundary
$\partial c^{J}\in C_{i-1}(\partial\overline{T};\mathcal{L})$ and $c^{J/}\in C_{i}(\partial\overline{T};\mathcal{L})$ . Then $\alpha(c)=C^{J}-\partial c’$ is the
interior of $c^{/}$ . Finally, $\iota_{*}\alpha(c)=\iota_{*}(c^{J}-\partial c’)$ is obtained by retracting
$\mathbb{P}^{\ell}-\overline{T}$ to $\mathbb{P}^{\ell}-A$ by letting $\partial\overline{T}$ “collapse” onto $A$ .

Definition 3.2. Let $\delta_{p}=\iota_{*}\alpha(e_{p})$ be the locally finite cycle ob-
tained from the interior of the cell $e_{p}$ of Theorem 2.2 by letting $\partial\overline{T}$

“collapse” onto $A$ and define
$\triangle(A, \lambda)=\{\delta_{p}|p\in C(A, \lambda)\}$ .

Lemma 3.3. Let $\mathcal{L}$ be a rank one complex local system on $M$ .

Then $dimH_{\ell}^{\iota f}(M;\mathcal{L})\geq\beta$ and $\triangle(A, \lambda)$ provides $\beta$ linearly independent
cycles.

Proof. The boundaries of the the $\ell-$cells $e_{p}$ of Theorem 2.2. lie on
$\partial\overline{T}$ . Since $e_{p}$ is simply connected, the sections of any local system $\mathcal{L}$ on
$\mathbb{P}^{\ell}-A$ over the cell $e_{p}$ are $H^{0}(e_{i}, \mathcal{L})=\mathbb{C}$ , the constant functions on $e_{p}$ .

It follows that any linear combination $\sum a_{p}e_{p}$ with constant coefficients
$a_{p}\in \mathbb{C}=H^{0}(e_{p}, \mathcal{L})$ is a relative cycle in $H_{\ell}(\mathbb{P}^{\ell}-T, \partial(\mathbb{P}^{\ell}-T);\mathcal{L})$ . Since
the $e_{p}$ are mutually disjoint, the space of such cycles has dimension $\beta$ .

Next we argue that the cells $e_{p}$ are homologically independent. Recall
from Theorem 2.2 that the space $\mathbb{P}^{\ell}-T$ is homotopically retractible
to $\partial\overline{T}_{a}\bigcup_{p\in C(A,\lambda)}e_{p}$ . Thus every $(\ell+1)-$chain in $C_{*}(\mathbb{P}^{\ell}-T)$ may be

retracted to lie within $\partial\overline{T}$ . Hence the boundaries $\partial C_{\ell+1}(\mathbb{P}^{\ell}-T,$ $\partial(\mathbb{P}^{\ell}-$

$T);\mathcal{L})$ form a subspace of $C_{\ell}(\partial(\mathbb{P}^{\ell}-T);\mathcal{L})$ .

Here we should note that there does not have to be any relationship
between the local system $\mathcal{L}$ and the function $\Phi_{\lambda}$ in terms of which the
cells $e_{p}$ are defined. Q.E.D.

Theorem 3.4. If $\mathcal{L}$ is generic, then $\triangle(A, \lambda)$ is a basis for
$H_{\ell}^{lf}(M;\mathcal{L})=H_{\ell}(M;\mathcal{L})$ . Thus $\triangle(A, \lambda)$ is a basis for $H_{\ell}(M;\mathcal{L}_{\lambda}^{\vee})$ for
generic $\lambda$ .

Proof. It is known [4] that for a sufficiently generic local system $\mathcal{L}$ ,
$H_{i}(M;\mathcal{L})=0=H_{2\ell-i}^{lf}(M;\mathcal{L})$ for $ i\neq\ell$ . In this case the dimension of

the only nonvanishing homology group is $dimH_{\ell}^{lf}(M;\mathcal{L})=\beta$ . Q.E.D.

\S 4. The $\beta nbc$ homology basis

We review first some combinatorial constructions for arrangements.
A set $S\subseteq A$ is dependent if $\bigcap_{H\in S}H\neq\emptyset$ and $codim(\bigcap_{H\in S}H)<|S|$ .
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A subset of $A$ which has nonempty intersection and is not dependent is
called independent. Maximal independent sets are called frames. Since
$A$ is essential, every frame has cardinality $\ell$ and intersection a point. In-
troduce a linear order in the arrangement by writing $A=\{H_{1}, \ldots, H_{n}\}$

and setting $H_{i}<H_{j}$ if $i<j$ . An inclusion-minimal dependent set is
called a circuit. A broken circuit is a subset $S$ of $A$ for which there
exists $H<\min(S)$ such that $H\cup S$ is a circuit. The non-broken circuit
complex of $A$ is the collection of subsets of $A$ which have nonempty inter-
section and contain no broken circuits. Maximal sets of this complex are
frames of $A$ called $nbc$-frames. We call an ordered frame $(H_{i_{1}}, \ldots, H_{i_{\ell}})$

standard if $i_{1}<\ldots<i_{\ell}$ .

Definition 4.1. An $nbc$ frame $B$ is called $a$ $\beta nbc$-frame if for ev-
$eryH\in B$ there exists $H^{J}<H$ in $A$ such that $(B-\{H\})\cup\{H^{J}\}$

is a frame. The set of standard ordered $\beta nbc$ -frames of $A$ is denoted
$\beta nbc(A)$ .

The notation and terminology reflect the fact that $|\beta nbc(A)|=\beta$ .

The set $\beta nbc(A)$ satisfies a recursion with respect to deletion and restric-
tion [8, Thm. 1.5]. Given $H\in A$ , let $A^{J}=A-\{H\}$ be the arrangement
with $H$ deleted and let $A^{J/}=\{H\cap K|K\in A^{J}, H\cap K\neq\emptyset\}$ be the
arrangement restricted to $H$ . We will always choose the last hyperplane
$H=H_{n}$ for the triple $(A, A^{/}, A^{JJ})$ . The linear order on $A’$ is inherited
from $A$ . The linear order on $A^{JJ}$ is determined by labeling each hy-
perplane $K$ of $A’’$ by the smallest hyperplane $\iota/(K)$ of $A$ containing it.
Clearly $\iota/(K)<H_{n}$ for all $K\in A^{J\prime}$ . If $S^{JJ}=(K_{i_{1}}, \ldots, K_{i_{p}})$ is a set of
hyperplanes in $A^{/\prime}$ , define $\nu(S^{\prime/})=(\iota/(K_{i_{1}}), \ldots, \mathfrak{l}J(K_{i_{p}}))$ .

Theorem 4.2 (Ziegler). Let $(A, A’, A’’)$ be a triple and assume
that $A^{/}is$ essential, Write $\overline{\beta nbc}(A^{/\prime})=\{(\nu(B^{JJ}), H_{n})|B^{JJ}\in\beta nbc(A’’)\}$ .

There is a disjoint union

$\beta nbc(A)=\beta nbc(A^{/})\cup\overline{\beta nbc}(A^{/;})$ . Q. E. $D$ .

We refer to this formula as the $\beta nbc$ recursion. When $\ell=1$ ,
$A=\{H_{1}, \ldots, H_{n}\}$ consists of $n\geq 1$ points in $\mathbb{C}$ . Here $\beta nbc(A)=$

$\{H_{2}, \ldots, H_{n}\}$ . In order to interpret the $\beta nbc$ recursion in this case, we
agree that $\beta nbc(A^{//})$ has one element, the empty set, so $\overline{\beta nbc}(A^{//})=$

$\{H_{n}\}$ . Introduce a linear order in $\beta nbc(A)$ using the lexicographic or-
der on the hyperplanes read from right to left. Note that in this order
elements of $\beta nbc(A’)$ are always smaller than elements of $\overline{\beta nbc}(A^{JJ})$ .

Next we show that the homology basis constructed in Theorem 3.4
is a $\beta nbc$ basis. Since $\triangle(A, \lambda)$ is labeled by $C(A, \lambda)$ , it suffices to show
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that the critical points may be labeled by $\beta nbc$ and satisfy the $\beta nbc$

recursion. The weights $\lambda^{J}$ of $A^{J}$ are inherited from $A$ : if $H\in A’$ , then
$\lambda_{H}^{l}=\lambda_{H}$ . The weights $\lambda^{//}$ of $A^{//}$ are defined by $\lambda_{K}^{/\prime}=\sum\lambda_{H}$ for $K\subset H$

and $H\in A^{/}$ . We may assume that $\lambda^{J}$ and $\lambda^{\prime/}$ are generic.

Lemma 4.3. If $A^{J}$ is essential, then the map $\lambda_{n}\mapsto 0$ induces $a$

bijection onto the disjoint union:

$\tau$ : $C(A, \lambda)\rightarrow C(A’, \lambda^{J})\cup C(A’’, \lambda^{JJ})$ .

Proof. Choose coordinates so that $H_{n}=ker$ $z_{1}$ and write $\lambda_{n}=t$ .

Then $Q=z_{1}Q’$ where $Q’$ defines the essential arrangement $A^{/}$ . Simi-
larly $\Phi=z_{1}^{t}\Phi’$ where $\Phi^{/}$ is the corresponding multivalued holomorphic
function for $A^{/}$ whose critical points are $C(A’, \lambda^{J})$ . Let $\Phi’’$ denote the
restriction of $\Phi^{/}$ to $H_{n}$ . The partial derivatives of $\Phi$ are

$\partial_{z_{1}}\log\Phi$ $=$ $g_{1}/(z_{1}Q’)$

$\partial_{z_{z}}\log\Phi$ $=$ $g_{i}/Q^{/}$ for $ 2\leq i\leq\ell$ where

$g_{1}$ $=$ $tQ^{/}+z_{1}Q^{/}\partial_{z_{1}}\log\Phi^{J}$

$g_{i}$ $=$ $Q’\partial_{z_{2}}\log\Phi^{J}$ for $ 2\leq i\leq\ell$

Note that only $g_{1}$ depends on $t$ . The zero set of the equations $\{g_{i}=$

$0|1\leq i\leq\ell\}$ in $M$ is $C(A, \lambda)$ when $t\neq 0$ . Setting $t=0$ gives the
solutions $C(A^{/}, \lambda’)$ of critical points of $\Phi^{J}$ in $M^{/}$ , the complement of $A’$ .

Next consider the points on $H_{n}$ defined by $\{z_{1}=0, g_{i}=0|1\leq i\leq\ell\}$ .

For $t\neq 0$ , these equations have no solution on $M^{JJ}=H_{n}\cap M^{J}$ , the
complement of $A^{//}$ . Adding $t=0$ to these equations gives exactly the
critical points of $\Phi^{//}$ on $M^{J/}$ . Q.E.D.

Theorem 4.4. There is a labeling of the critical points

$\rho$ : $C(A, \lambda)\rightarrow\beta nbc(A)$

which is a bijection and respects the $\beta nbc$ recursion.

Proof. We argue by double induction on $\ell$ and $n$ . We may assume
that in each arrangement the first $\ell$ hyperplanes are linearly indepen-
dent, so the induction starts with this essential arrangement and when
we add the next hyperplane all labels come from the restriction where
the induction hypothesis holds since it has lower dimension. If $\ell=1$ and
$n=2$ , then $\beta nbc(A)=\{(H_{2})\}$ and $C(A, \lambda)=\{p\}$ is a singleton. Define
$\rho(p)=(H_{2})$ . For the induction step we use the recursions in Theorem
4.2 and Lemma 4.4. We may assume that $\rho^{J}$ : $C(A’, \lambda^{/})\rightarrow\beta nbc(A^{J})$
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FIG 1. The Selberg arrangement

and $\rho^{/\prime}$ : $C(A^{//}, \lambda^{r/})\rightarrow\beta nbc(A^{J/})$ satisfy the theorem. For $p\in C(A, \lambda)$

define

$\rho(p)=\{$

$\rho^{J}(\tau(p))$ if $\tau(p)\in C(A’, \lambda’)$

$(\nu\rho^{//}(\tau(p)), H_{n})$ if $\tau(p)\in C(A^{/J}, \lambda^{JJ})$ .

This labeling respects the recursion by construction. Q.E.D.

Corollary 4.5. The critical point labeling of the open cells

$\triangle(A, \lambda)=\{\delta_{\rho(p)}|\rho(p)\in\beta nbc(A)\}$

provides a $\beta nbc$ basis for $H_{\ell}(M;\mathcal{L}_{\lambda}^{\vee})$ . Q. E. $D$ .

It is interesting to note that if $A$ is a complexified real arrangement
and the critical points lie in the bounded chambers, then the critical
point labeling may differ from the bounded chamber labeling of [2].

Example 4.6. Let $Q=(z_{1}+1)(z_{1}-1)(z_{2}+1)(z_{2}-1)(z_{1}-z_{2})$

be the Selberg arrangement with the given linear order, see Figure 1.
Then $\beta nbc(A)=\{(2,4), (2, 5)\}$ . The bounded chamber labeling of [2] is
independent of $\lambda$ . It assigns $(2, 4)$ to the upper left chamber and $(2, 5)$ to
the lower right. The critical point labeling depends on $\lambda$ . Let $\lambda_{5}=t$ be
a small positive real number. With $\lambda=(1.5,0.5,0.9,0.3, t)$ the critical
point labels are the same, but with $\lambda=(1.5,0.5,0.3,0.9, t)$ the labels are
reversed.
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On the fundamental group of the complement

of a complex plane arrangement

Luis Paris

Dedicated to Professor Peter Orlik on his 60th birthday

\S 1. Introduction

Let $K$ be a field, and let $V=K^{l}$ be a finite dimensional vector
space over K. An arrangement of hyperplanes in $V$ is a finite family $A$

of affine hyperplanes of $V$ . The complement of $A$ is defined by

$M(A)=V\backslash H\in A\cup H$
.

If $K$ is $C$ , then the complement $M(A)$ is an open and connected subset
of $V$ .

The present paper is concerned with fundamental groups of comple-
ments of complex arrangements of hyperplanes.

The most popular such a group is certainly the pure braid group;
it appears as the fundamental group of the complement of the “braid
arrangement” (see [OT]). So, $\pi_{1}(M(A))$ can be considered as a general-
ization of the pure braid group, and one can expect to show that many
properties of the pure braid group also hold for $\pi_{1}(M(A))$ . However, the
only general known results on this group are presentations [Ar], [CS1],
[Ra], [Sal]. Many interesting questions remain, for example, to know
whether such a group is torsion free.

We focus in this paper on two families of arrangements of hyper-
planes, to the fundamental group of which many well-known results on
the pure braid group can be extended. Both of them, of course, contain
the braid arrangement. These families are the “simplicial arrangements”
and the “supersolvable arrangements”. Note that there is another well-
understood family of arrangements, the “reflection arrangements” (see

$2000Mathematics$ Subject Classification. Primary: $32S22$ .
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[$OT$ , Ch. 6] and [BMR] $)$ , which contains the braid arrangement, and
which is not treated in the present paper.

The methods to approach each of these two families are completely
different. The first method, which applies to simplicial arrangements,
consists on associating with a real arrangement $A$ a groupoid $G(A)$ that
we call Deligne groupoid. Any vertex group of $G(A)$ is isomorphic to
$\pi_{1}(M(A_{C}))$ , where $A_{C}$ is the complexification of $A$ . If $A$ is a simplicial
arrangement, then it is shown that there exists an “automatic struc-
ture” on $G(A)$ . Then, follow many properties of $\pi_{1}(M(A))$ . This is the
object of Section 2. The second method, which applies to supersolvable
arrangements, consists on proving the existence of certain fibrations. In
the case of supersolvable arrangements, these fibrations give rise to a
presentation of $\pi_{1}(M(A))$ as an “iterated semidirect product” of free
groups. This is the object of Section 3.

\S 2. The Deligne groupoid

Throughout this section, $K$ is $R$ , and $A$ is a (real) arrangement of
hyperplanes in $V$ . The complexifification of $V$ is $V_{C}=C^{l}$ . The com-
plexifification of a hyperplane $H$ is the hyperplane $H_{C}$ of $V_{C}$ having the
same equation as $H$ . The complexifification of $A$ is the arrangement
$A_{C}=\{H_{C;}H\in A\}$ in $V_{C}$ .

DEFINITION. A groupoid is a category such that there is a mor-
phism between any two objects, and such that each morphism is invert-
ible.

A group is a groupoid with exactly one object. An object of a
groupoid $G$ is called vertex of $G$ . For any vertex $x$ , the set of morphisms
from $x$ to itself forms a group called vertex group and denoted by $G_{x}$ .

Now, in order to define the Deligne groupoid $G(A)$ associated with
a real arrangement of hyperplanes $A$ , we first give some terminology on
oriented graphs.

DEFINITION. An oriented graph $\Gamma$ is the following data:
1) a set $V(\Gamma)$ of vertices,
2) a set $A(\Gamma)$ of arrows,
3) a mapping $s$ : $A(\Gamma)\rightarrow V(\Gamma)$ called source, and a mapping $t$ :

$A(\Gamma)\rightarrow V(\Gamma)$ called target.

Consider the abstract set $A(\Gamma)^{-1}=\{a^{-1}; a\in A(\Gamma)\}$ in one-to-one
correspondence with $A(\Gamma)$ , and set $s(a^{-1})=t(a)$ and $t(a^{-1})=s(a)$ , for
$a$ in $A(\Gamma)$ . A path of $\Gamma$ is an expression

$g=a_{1}^{\epsilon_{1}}\ldots a_{d}^{\epsilon_{d}}$ ,
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where $a_{i}\in A(\Gamma)$ , $\epsilon_{i}\in\{\pm 1\}$ , and $t(a_{i}^{\epsilon_{\tau}})=s(a_{i+1}^{\epsilon_{\tau+1}})$ for all $i=1$ , $\ldots$ , $d-1$ .

The vertex $s(a_{1}^{\in_{1}})$ is called source of $g$ and is denoted by $s(g)$ , and the
vertex $t(a_{d}^{\in_{J}}()$ is called target of $g$ and is denoted by $t(g)$ . The integer
$d$ is the length of $g$ . Any vertex is assumed to be a path of length
0. For a path $f=a_{1}^{\epsilon_{1}}\ldots a_{d}^{\in\iota}‘$ , we write $f^{-1}=a_{d}^{-\in\iota}‘\ldots a_{1}^{-\in_{1}}$ . For two
paths $f=a_{1}^{\epsilon_{1}}\ldots a_{d}^{\in_{d}}$ and $g=b_{1}^{\mu_{1}}\ldots b_{k}^{\mu\iota}$ with $t(f)=s(g)$ , we write
$fg=a_{1}^{\in_{1}}\ldots a_{d}^{\in}’ {}^{t}b_{1}^{\mu 1}\ldots b_{k}^{\mu_{k}}$ . A positive path is a path $f=a_{1}^{\in_{1}}\ldots a_{d}^{\in_{(}\iota}$ with
$\in_{1}=\in_{2}=\cdots=\epsilon_{d}=1$ . The distance between two vertices $x$ and $y$ is
defined to be the minimal length of a path connecting $x$ and $y$ . Any
path which achieves this minimum is called minimal path.

Call an oriented graph connected if there is a path connecting any
two vertices.

DEFINITION. Let $\Gamma$ be an oriented connected graph. A congruence
on $\Gamma$ is an equivalence relation $\sim on$ the set of paths of $\Gamma$ , which satisfies
the following conditions:

1) if $f\sim g$ , then $s(f)=s(g)$ and $t(f)=t(g)$ ,

2) $ff^{-1}\sim s(f)$ for any path $f$ ,

3) if $f\sim g$ , then $f^{-1}\sim g^{-1}$ ,

4) if $f\sim g$ , $h_{1}$ is a path with $t(h_{1})=s(f)=s(g)$ , and $h_{2}$ is a path
with $s(h_{2})=t(f)=t(g)$ , then $h_{1}fh_{2}\sim h_{1}gh_{2}$ .

A $congruence\sim on$ a connected oriented graph $\Gamma$ determines a
groupoid $G(r_{ },\sim)$ : the objects of $G(r_{ },\sim)$ are the vertices, and the mor-
phisms of $G(r_{ },\sim)$ are the equivalence classes of paths.

Let $A$ be a (real) arrangement of hyperplanes. Now, we associate
with $A$ a connected oriented graph $\Gamma(A)$ and a $congruence\sim on\Gamma(A)$ ,

and we define the Deligne groupoid $G(A)$ associated with $A$ to be
$G(\Gamma(A), \sim)$ .

DEFINITION. A chamber $ofA$ is a connected component of $M(A)=$
$V\backslash (\bigcup_{H\in A}H)$ . Call two chambers $C$ and $D$ adjacent if there exists exactly
one hyperplane in $A$ which separates $C$ and $D$ . Let $\Gamma(A)$ be the oriented
graph whose vertices are the chambers, and whose arrows are the pairs
$(C, D)$ of adjacent chambers. Note that $(C, D)$ and $(D, C)$ are distinct
arrows of $\Gamma(A)$ , if $C$ , $D$ are adjacent chambers. $Let\sim be$ the smallest
congruence on $\Gamma(A)$ satisfying: if $\alpha$ and $\beta$ are both positive minimal
paths with the same source and the same target, then $\alpha\sim\beta$ . The
Deligne groupoid of $A$ is defined to be the groupoid $G(A)=G(\Gamma(A), \sim)$

associated with $\Gamma(A)and\sim$ . Note that, for two chamber $C$ , $D$ , there is
a unique equivalence class of positive minimal paths with source $C$ and
target $D$ . This class will be denoted by $\delta(C, D)$ .
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EXAMPLE. Consider the arrangement of lines $A=\{H_{1}, \ldots, H_{5}\}$

drawn in Figure 1. Then $\Gamma(A)$ is the oriented graph also drawn in Figure
1. Let

$\alpha=a_{1}a_{2}a_{3}a_{4}$ , $\beta=b_{1}b_{2}b_{3}b_{4}$ .

Then $\alpha$ and $\beta$ are both positive minimal paths with the same source and
the same target, thus $\alpha\sim\beta$ .

$H_{5}$

$H_{4}$

$H_{3}$

$H_{1}$ $H_{2}$
$a_{1}$

A $\Gamma(A)$

FIGURE 1

THEOREM 2.1 (PARIS [Pal], SALVETTI [Sal]). Let $A$ be $a$ (real) ar-
rangement of hyperplanes. Then any vertex group of $G(A)$ is isomorphic
to the fundamental group of $M(A_{C})$ .

The Deligne groupoid was first introduced, and Theorem 2.1 was
proved, in [De] for simplicial arrangements.

DEFINITION. Let $A$ be a (real) arrangement of hyperplanes. We
say that $A$ is central if all the hyperplanes of $A$ contain the origin. We
say further that $A$ is essential if the intersection of all the elements of
$A$ is {0}. Call A simplicial if it is central and essential, and if all the
chambers of $A$ are cones over simplices.

Two results on simplicial arrangements are particularly interesting.
The first one (Theorem 2.3) is due to Deligne [De], and the second
one (Theorem 2.5) is due to Charney [Ch]. Many properties of the
fundamental group of $M(A_{C})$ are derived from these theorems. The
proofs of both are very close from the work of Garside [Ga] and Thurston
[Th] on braid groups. They are both strongly based on the following
lemma 2.2. Note that, by [Pa2], the conclusion of Lemma 2.2 is true if
and only if $A$ is a simplicial arrangement.

Let $A$ be a (real) arrangement of hyperplanes. Let $f$ , $g$ be two
positive paths of $\Gamma(A)$ with $s(f)=s(g)$ . We say that $f$ begins with $g$
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if there exists a positive path $h$ such that $s(h)=t(g)$ , $t(h)=t(f)$ , and
$f\sim gh$ . For a positive path $f$ , let Begin(/) denote the set of positive
minimal paths $\alpha$ such that $f$ begins with $\alpha$ .

LEMMA 2.2 (DELIGNE [De]). Let $A$ be a simplicial arrangement of
hyperplanes. For every positive path $f$ of $\Gamma(A)$ , there exists $a$ (unique up
to equivalence) positive minimal path $\alpha$ such that Begin(f) $=Begin(\alpha)$ .

In particular, $f$ begins with $\alpha$ .

A space $M$ is called an Eilenberg-MacLane space if its universal
cover is contractible. Such a space is specially interesting to study its

fundamental group because the homologies of $M$ and $\pi_{1}(M)$ are equal
and, consequently, many topological properties of $M$ reflect on $\pi_{1}(M)$ .

We refer to [Br] for more details on the subject.

THEOREM 2.3 (DELIGNE [De]). Let $A$ be a simplicial arrangement

of hyperplanes. Then $M(Ac)$ is an Eilenberg-MacLane space.

COROLLARY 2.4. Let $A$ be a simplicial arrangement of hyperplanes.
i) $\pi_{1}(M(A_{C}))$ is torsion free.
$ii)\pi_{1}(M(A_{C}))$ has fifinite cohomological dimension.
$iii)H_{*}$ ( $\pi_{1}(M(A_{C}))$ ,$ $Z) is torsion free (by [OS]).

Automatic groups form a large class of groups which contains all fi-
nite groups, abelian groups, free groups, fundamental groups of compact
hyperbolic manifolds, and, more generally, hyperbolic groups in Gro-
mov’s sense [GH]. On the other hand, if an automatic group is nilpotent,
then it is virtually abelian. More generally, if a subgroup of a biauto-
matic group is nilpotent, then it is virtually abelian [GS]. Briefly, an
automatic group is a group provided with an extra combinatorial struc-
ture which “controls” the words and their lengths in the group. Such
a structure allows to compute the growth function of the group, gives
isoperimetric inequalities, and furnishes algorithms to solve the word
problem and, if the structure is biautomatic, to solve the conjugacy
problem. A finite index subgroup of an automatic group ” inherits” the
automatic structure from the group. Conversely, if a finite index sub-
group is automatic, then the automatic structure of the subgroup can
be extended to the whole group. The theory of $(bi)automatic$ groupoids
is identical to the theory of $(bi)automatic$ groups. In particular, an
automatic groupoid has finitely many vertices, and every vertex group
inherits the automatic structure from the groupoid. We refer to [ECH]
for a general exposition on the subject.

A natural question is whether the Deligne groupoid $G(A)$ of a real
arrangement $A$ admits an automatic structure. This question has been
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solved by Charney [Ch] in the case of simplicial arrangements. This is
the subject of the remainder of the section.

Now, we give a precise definition of a $(bi)automatic$ groupoid and,
after stating Charney’s theorem, we show the automatic structure on
$G(A)$ when $A$ is a simplicial arrangement. We will notice that the defi-
nition of this automatic structure highly depends on Lemma 2.2 above.

Let $A$ be a finite set (of letters). We write $A^{*}$ for the free monoid
generated by $A$ . The elements of $A$ will be called words.

DEFINITION. A fifinite state automaton is a quintuple
$\mathcal{F}=(V, A, \mu, Y, v_{0})$ , where $V$ is a finite set called state set, $A$ is a finite
set called the alphabet, $\mu$ : $V\times A\rightarrow V$ is a function called the transition
function, $Y$ is a subset of $V$ called the accept state set, and $v_{0}$ is an
element of $V$ called start state. For $v\in V$ and $f=x_{1}\ldots x_{n}\in A^{*}$ we
define the state $\mu(v, f)$ inductively on $n$ by:

$\mu(v, f)=\{$
$v$ if $n=0$
$\mu(\mu(v, x_{1}\ldots x_{n-1})$ , $x_{n})$ if $n\geq 1$

Then
$L_{\mathcal{F}}=\{f\in A^{*} ; \mu(v_{0}, f)\in Y\}$

is called the language recognized by $F$ . A regular language is a language
recognized by a finite state automaton.

DEFINITION. Let $G$ be a groupoid. A set $S$ of morphisms is called a
generating set if every morphism of $G$ is the composition of finitely many
elements of $S$ . The length of a morphism $f$ (with repect to $S$ ), denoted
by $g_{S}(f)$ , is the shortest length of a word in $S^{*}$ which represents $f$ . Let
$f$ , $g$ be two morphisms with the same source. The distance between $f$

and $g$ , denoted by $d_{S}(f, g)$ , is the length of $f^{-1}g$ .

REMARK. Let $A$ be a real arrangement of hyperplanes and $\Gamma=$

$\Gamma(A)$ . Then $G(A)$ has a natural generating set: $A(\Gamma)\cup A^{-1}(\Gamma)$ . However,
we will see later that this is not the generating set used to define the
automatic structure on $G(A)$ when $A$ is a simplicial arrangement.

DEFINITION. Let $G$ be a groupoid and $S$ a generating set of $G$ .

For $f\in S^{*}$ , we denote by $\overline{f}$ the morphism of $G$ represented by $f$ if it
exists. A language $L$ in $S^{*}$ represents $G$ if every element of $L$ represents
a morphism and every morphism is represented by an element of $L$ . For
$f=x_{1}\ldots x_{n}\in L$ and a positive integer $t$ , we write $\overline{f}(t)=\overline{x_{1}\ldots x_{t}}$ if
$1\leq t\leq n$ and $\overline{f}(t)=\overline{f}$ if $t\geq n$ . Let $\kappa$ be a positive integer. We say
that $L$ has the $\kappa$ -fellow traveller property if, for all $f$ , $g\in L$ such that $\overline{f}$

and $\overline{g}$ have the same source, we have:

$d_{S}(\overline{f}(t),\overline{g}(t))\leq\kappa\cdot d_{S}(\overline{f},\overline{g})$
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for all integer $t\geq 1$ .

DEFINITION. A groupoid $G$ is automatic if there exist a finite gen-
erating set $S$ of $G$ , a constant $\kappa\geq 1$ , and a regular language $L$ in $S^{*}$ ,

such that $L$ represents $G$ and has the $\kappa$-fellow traveller property. If, in
addition, the language $L^{-1}$ in $(S^{-1})^{*}$ , obtained by formally inverting
the elements of $L$ , also has the $\kappa$-fellow traveller property, then $G$ is

called biautomatic.

THEOREM 2.5 (CHARNEY [Ch]). Let $A$ be a simplicial arrange-
ment of hyperplanes, and let $G(A)$ be the Deligne groupoid of A. Then
$G(A)$ is biautomatic.

COROLLARY 2.6. Let $A$ be a simplicial arrangement of hyperplanes.
i) $\pi_{1}(M(A_{C}))$ is biautomatic.
$ii)\pi_{1}(M(A_{C}))$ has the conjugacy problem solvable.
$iii)\pi_{1}(M(A_{C}))$ has a quadratic isoperimetric inequality.

Let $A$ be a simplicial arrangement. We turn now to give the defini-
tion of the finite state automaton $\mathcal{F}=(V, S, \mu, Y, v_{0})$ which determines
the automatic structure on $G(A)$ . We refer to [Ch] for the proof that
both, the language $L$ recognized by $\mathcal{F}$ and its inverse $L^{-1}$ , have the 6
-fellow traveller property.

Let $\Gamma=\Gamma(A)$ . Recall that the vertex set $V(\Gamma)$ is the set of chambers
of $A$ . For $C$ , $D\in V(\Gamma)$ , we denote by $\delta(C, D)$ the (unique) equivalence
class of positive minimal paths with source $C$ and target $D$ . We write
$\triangle c=\delta(C, -C)$ for all $C\in V(\Gamma)$ . Then

$S=\{\delta(C, D) ; C, D\in V(\Gamma)\}\cup\{\triangle_{\overline{c}^{1}} ; C\in V(\Gamma)\}$ .

It is true but non trivial that $S$ generates $G(A)$ . Note also that $\delta(C, C)$

is the identity morphism on $C$ and lies in $S$ for all $C\in V(\Gamma)$ . We set

$V=S\cup\{v_{0}, v_{1}\}$ , $Y=S$ ,

where $v_{0}$ , $v_{1}$ are” abstract” states. $v_{0}$ is the start state and $v_{0}$ , $v_{1}$ are the
only non accept states. So, it remains to define the transition function
$\mu$ : $V\times S\rightarrow V$ . We say that $\delta(C_{0}, C_{1})\delta(C_{1}, C_{2})$ is normal if, according
to Lemma 2.2, $\delta(C_{0}, C_{1})$ is the (unique) class of positive minimal paths
such that

$Begin(\delta(C_{0}, C_{1})\delta(C_{1}, C_{2}))=Begin(\delta(C_{0}, C_{1}))$ .

Now:
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$\mu(v_{0}, x)$ $=$ $x$ for all $x\in S$

$\mu(v_{1}, x)$ $=$ $v_{1}$ for all $x\in S$

$\mu(\triangle_{\overline{c}^{1}}, \triangle_{D}^{-1})$ $=\{$

$\triangle_{D}^{-1}$ if $D=-C$
$v_{1}$ otherwise

$\mu(\triangle_{\overline{c}^{1}}, \delta(D_{0}, D_{1}))$ $=\{$

$\delta(D_{0}, D_{1})$ if $D_{0}=C$ and $D_{1}\neq-C$

$v_{1}$ otherwise
$\mu(\delta(C_{0}, C_{1})$ , $\triangle_{D}^{-1})$ $=$ $v_{1}$

$\mu(\delta(C_{0}, C_{1})$ , $\delta(D_{0}, D_{1}))=\{$

$\delta(D_{0}, D_{1})$ if $C_{1}=D_{0}$ and $\delta(C_{0}, C_{1})\delta(D_{0}, D_{1})$

is normal
$v_{1}$ otherwise

\S 3. Fibration theorem

Let $A$ be an arrangement of hyperplanes. The intersection poset of
$A$ is the set $L(A)$ of nonempty intersections of elements of $A$ , partially
ordered by reverse inclusion. It admits a rank function defined by $r(X)=$

CodimX, for $X$ in $L(A)$ . The space $V$ is the unique minimal element of
$L(A)$ , and, by [Sal], all the maximal elements have the same rank. Call
the arrangement $A$ essential if the maximal elements are points. Let
$X$ , $Y$ in $L(A)$ . Their meet is defined to be $ X\wedge Y=\cap\{H\in A;X\cup Y\subseteq$

$H\}$ . If $ X\cap Y\neq\emptyset$ , their join is defined to be $X\vee Y=X\cap Y$ .

Throughout this section, $K$ is $C$ , $A$ is a (complex) arrangement of
hyperplanes in $V$ , and $X$ is a linear subspace which is not necessarily in
$L(A)$ .

We say that a hyperplane $H$ of $A$ is parallel to $X$ if either $ H\cap X=\emptyset$

or $X\subseteq H$ . Consider the projection $p_{X}$ : $V\rightarrow V/X$ . If $H$ is parallel
to $X$ , then $px(H)$ is a hyperplane of $V/X$ . Let $ A/X=\{p_{X}(H),\cdot H\in$

$A$ and $H$ parallel to $X$ }. Then the projection $p_{X}$ induces a projection
$p_{X}$ : $M(A)\rightarrow M(A/X)$ .

PROPOSITION 3.1 (PARIS [Pa3]). The projection
$p_{X}$ : $M(A)\rightarrow M(A/X)$ admits a cross-section $s_{X}$ : $M(A/X)\rightarrow M(A)$ .

DEFINITION. Call $Y\in L(A)$ horizontal with respect to $X$ if $p_{X}(Y)$

$=V/X$ . Let $Hor_{X}$ denote the set of horizontal elements of $L(A)$ . The
bad set of $M(A/X)$ is

$B_{X}=\cup\{px(Y)\cap M(A/X) ; Y\in L(A)\backslash Hor_{X}\}$ .

THEOREM 3.2 (PARIS [Pa3]). Let

$N_{X}=M(A/X)\backslash B_{X}$ , $M_{X}=p_{X}^{-1}(N_{X})\cap M(A)$ .

Then the restriction $p_{X}$ : $M_{X}\rightarrow N_{X}$ of $p_{X}$ to $M_{X}$ is a locally trivial
$C^{\infty}$ fifibration.
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REMARK. i) The restriction of $s_{X}$ to $N_{X}$ determines a cross-section
$s_{X}$ : $N_{X}\rightarrow M_{X}$ of the fibration.

$ii)$ Let $y_{0}\in N_{X}$ , and let $z_{0}=s_{X}(y_{0})\in M_{X}$ . The fiber of $p_{X}$

containing $z_{0}$ is the complement of the arrangement $A_{z0}^{X}$ in $(z_{0}+X)$

defined by

$A_{zo}^{X}=$ { $(z_{0}+X)\cap H$ ; $H\in A$ and $H$ not parallel to $X$ }.

So, by [Hu, Ch. $V$ , Prop. 6.2]:

COROLLARY 3.3. The following sequence is exact and splits.

1 $-\pi_{1}(M(A_{zo}^{X}), z_{0})\rightarrow\pi_{1}(M_{X}, z_{0})\rightarrow\pi_{1}(N_{X}, yo)\rightarrow 1$

Another direct consequence of Theorem 3.2 is, by [Pa3]:

COROLLARY 3.4. The following sequence is exact and splits.

$\pi_{1}(M(A_{zo}^{X}), z_{0})\rightarrow\pi_{1}(M(A), z_{0})\rightarrow\pi_{1}(M(A/X), yo)\rightarrow 1$

Note that the morphism $\pi_{1}(M(A_{zo}^{X}), z_{0})\rightarrow\pi_{1}(M(A), z_{0})$ is not in-
jective in general.

DEFINITION. Assume that $A$ is a (complex) central arrangement
of hyperplanes. Call $X$ in $L(A)$ modular if $X\wedge Y=X+Y$ for all
$Y$ in $L(A)$ . Call A supersolvable if it is essential and there exists a
chain $0>X_{1}>\cdots>X_{l}=V$ in $L(A)$ such that $X_{\mu}$ is modular and
$dimX_{\mu}=\mu$ for all $\mu=1$ , $\ldots$ , $l$ .

Theorem 3.2 is particularly interesting if $X$ is modular, because of
the following theorem.

THEOREM 3.5 (TERAO [Te]). Let $A$ be a central arrangement of
hyperplanes, and let $X$ be a modular element of $L(A)$ . Then the bad set
$B_{X}$ is empty.

COROLLARY 3.6. Let $A$ be a central arrangement of hyperplanes,
and let $X$ be a modular element of $L(A)$ . Then $p_{X}$ : $M(A)\rightarrow M(A/X)$

is a locally trivial $C^{\infty}$ fifibration.

COROLLARY 3.7. Let $A$ be a central arrangement of hyperplanes,
and let $X$ be a modular element of $L(A)$ . Then the following sequence
is exact and splits.

$1\rightarrow\pi_{1}(M(A_{z_{0}}^{X}), z_{0})\rightarrow\pi_{1}(M(A), z_{0})\rightarrow\pi_{1}(M(A/X), yo)\rightarrow 1$
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Falk and Proudfoot [FP] have independently proved Corollary 3.6
using the same argument as sketched below. Corollary 3.6 is a classical
and well-known result in the case of a modular element of dimension
1 [Te]. One can easily verify in this particular case that each fiber
is diffeomorphic to $C$ minus $|A\backslash A_{X}|$ points; however, the existence
of trivializing neighborhoods is not explicitly proved in [Te]. To prove
the existence of trivializing neighborhoods, one can apply the techniques
shown below or, maybe, use simpler arguments like those given by Fadell
and Neuwirth in [FN].

The proof of Theorem 3.2 is an application of Thom’s first isotopy
lemma that we state now.

Let $M$ be a $C^{\infty}$ manifold, and let $A$ be a subset of $M$ . A $C^{\infty}$

Whitney prestratifification of $A$ is a partition $P$ of $A$ into subsets, that
are called strata, satisfying the following conditions:

1) each stratum is a $C^{\infty}$ submanifold of $M$ ;
2) $P$ is locally finite;
3) if $U$, $V\in P$ are such that $\overline{U}$

$\cap V\neq\emptyset$ , then $V\subseteq\overline{U}$ (in that case
we write $V<U$ );

4) if $U$, $V\in P$ are such that $V<U$ , then $(U, V)$ satisfies the Whitney
Condition (b) defined in [Ma].

THEOREM 3.8 (MATHER [Ma]). Let $M$ , $N$ be two $C^{\infty}$ manifolds,
let $f$ : $M\rightarrow N$ be a $C^{\infty}$ function, let $A$ be a subset of $M$ , and let $\prime p$ be $a$

Whitney prestratifification of A. Assume that the restriction $f|_{A}$ : $A\rightarrow N$

is a proper map, and that the restriction $f|_{U}$ : $U\rightarrow N$ is a submersion

for every $U\in P$ . Then $f|_{A}$ : $A\rightarrow N$ is a locally trivial $C^{0}$ fifibration,
and $f|_{U}$ : $U\rightarrow N$ is a locally trivial $C^{\infty}$ fifibration for all $U\in P$ .

We turn now to the proof of Theorem 3.2. Let $X$ be a linear sub-
space. We assume that $X=C^{d}$ , $V/X=C^{l-d}$ , and $p_{X}$ : $C^{d}\times C^{l-d}\rightarrow$

$C^{l-d}$ is the projection on the second coordinate. Let $P^{d}$ denote the com-
plex projective space of dimension $d$ . Consider the embedding of $C^{d}$ in
$P^{d}$ , and still denote by $p_{X}$ : $P^{d}\times C^{l-d}\rightarrow C^{l-d}$ the projection on the
second coordinate. The proof of Theorem 3.2 given in [FP] and [Pa3]
consists on defining a Whitney prestratification on $P^{d}\times N_{X}$ so that $M_{X}$

is a stratum and the restriction of the projection $p_{X}$ : $P^{d}\times N_{X}\rightarrow N_{X}$

on each stratum is a submersion, $p_{X}$ : $P^{d}\times N_{X}\rightarrow N_{X}$ being obviously
a proper map, by Theorem 3.8, it follows that $p_{X}$ : $M_{X}\rightarrow N_{X}$ is a
locally trivial $C^{\infty}$ fibration.

We focus now on the family of supersolvable arrangements. So, from
now on, $A$ is supposed to be a (complex) supersolvable arrangement of
hyperplanes.
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First, notice that, iterating Corollaries 3.6 and 3.7, one obtains the
following two theorems.

THEOREM 3.9 (TERAO [Te]). $M(A)$ is an Eilenberg-MacLane space.

THEOREM 3.10 (FALK and RANDELL [FR1]). $\pi_{1}(M(A))$ can be pre-
sented as

$\pi_{1}(M(A))=F_{1}x(F_{2}x(\ldots(F_{l-1}xZ)\ldots))$ ,

where $F_{1}$ , $\ldots$ , $F_{l-1}$ are free groups.

Like for complexifications of simplicial arrangements, Theorem 3.9
implies:

COROLLARY 3.11. i) $\pi_{1}(M(A))$ is torsion free.
$ii)\pi_{1}(M(A))$ has fifinite cohomological dimension.
$iii)H_{*}$ ( $\pi_{1}(M(A))$ ,$ $Z) is torsion free (by [OS]).

It is known not only that $\pi_{1}(M(A))$ can be written as an iterated
semidirect product of free groups, but also that the succesive actions on
the free groups are trivial at the homology level:

LEMMA 3.12. Let $\pi_{1}(M(A))=F_{1}>\triangleleft(F_{2}x(\ldots(F_{l-1}>\triangleleft Z)\ldots))$

be the decomposition of Theorem 3.10. Then $ F_{\mu+1}>\triangleleft(\ldots(F_{l-1}>\triangleleft$

$Z)\ldots)$ acts trivially on the homology of $F_{\mu}$ for all $\mu=1$ , $\ldots$ , $l$ $-1$ .

This last lemma is the key of the proof of many properties of
$\pi_{1}(M(A))$ . Cohen and Suciu [CS2] have recently proved that the action
of $F_{\mu+1}>\triangleleft(\ldots(F_{l-1}>\triangleleft Z)\ldots)$ on $F_{\mu}$ is actually a “pure braid action” ,

which is a stronger statement.
We focus now on one of these properties, the biordering, which is

not so well-known, and refer to [FR2] and [FR3] for an exposition on the
other properties of $\pi_{1}(M(A))$ (LCS formula, rational $K(\pi, 1)$ property,
Koszul property, etc.).

DEFINITION. Call a group $G$ biorderable if there exists a total or-
dering<on $G$ such that $f<g$ implies $h_{1}fh_{2}<h_{1}gh_{2}$ for all $h_{1}$ , $h_{2}$ , $f$ , $ g\in$

$G$ .

Recall that $A$ denotes a complex supersolvable arrangement of hy-
perplanes. We turn now to show that $\pi_{1}(M(A))$ is biorderable and
explain some consequences of this fact. We refer to [MR] for a general
exposition on biorderable groups.

Let $G$ be a biorderable group. Say that $g\in G$ is positive if $g>1$ ,

and denote by $P$ the set of positive elements. Then one has the disjoint

union $G=PuP^{-1}u\{1\}$ . Moreover, $P$ . $P\subseteq P$ , and $gPg-1=P$ for
all $g\in G$ . Conversely, these conditions imply that $G$ is biorderable,
namely:
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PROPOSITION 3.13. Let $G$ be a group, and let $P\subseteq G$ be a subset
such that $G=PuP^{-1}u\{1\}$ is a disjoint union, $P$ . $P\subseteq P$ , and
$gPg-1=P$ for all $g\in G$ . Then $G$ is biorderable, the ordering being
given by $g>f$ if $gf^{-1}\in P$ .

Now, consider an exact sequence

$1\rightarrow K\rightarrow G\rightarrow H\emptyset\rightarrow 1$ ,

and assume that $K$ and $H$ are both biorderable. Let $P_{K}$ and $P_{H}$ denote
the sets of positive elements of $K$ and $H$ , respectively. Say that $g\in G$

is positive if either $\phi(g)\in P_{H}$ , or $\phi(g)=1$ (namely, $g\in K$ ) and $g\in P_{K}$ .

Let $P$ denote the set of positive elements. We clearly have the disjoint
union $G=PuP^{-1}u\{1\}$ and the inclusion $P$ . $P\subseteq P$ . Moreover, we
have $gPg-1=P$ for all $g\in G$ if and only if we have $gP_{Kg}^{-1}=P_{K}$ for
all $g\in G$ . This last condition holds if $K$ is central, so:

PROPOSITION 3.14. Let

$1\rightarrow K\rightarrow G\rightarrow H\rightarrow 1$

be an exact sequence such that $K$ and $H$ are both biorderable and $K$ is
central in G. Then $G$ is also biorderable.

DEFINITION. Let $G$ be a group. For two subgroups $A$ , $B$ of $G$ , let
$[A, B]$ denote the subgroup generated by { $aba^{-1}b^{-1}$ ; $a\in A$ and $b\in B$ }.
The subgroups $G_{n}$ of the $/ower$ central series of $G$ are defined recursively
by

$G_{1}=G$ , $G_{n+1}=[G_{n}, G]$ $n=1,2$ , $\ldots$

A group $G$ for which $\bigcap_{n=1}^{\infty}G_{n}=\{1\}$ and $G_{n}/G_{n+1}$ is torsion free for all
$n$ , is called residually nilpotent without torsion.

An important result obtained with Lemma 3.12 is:

THEOREM 3.15 (FALK and RANDELL [FR1]). $\pi_{1}(M(A))$ is resi-
dually nilpotent without torsion.

Now, $\pi_{1}(M(A))$ is biorderable because of the following.

PROPOSITION 3.16. Let $G$ be a residually nilpotent without torsion
group. Then $G$ is biorderable.

Proof We first prove that $G/G_{n}$ is biorderable by induction on $n$ .

Consider the exact sequence

$1\rightarrow G_{n}/G_{n+1}\rightarrow G/G_{n+1}\rightarrow G/G_{n}\rightarrow 1$ .
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The group $G_{n}/G_{n+1}$ is a free abelian group thus is biorderable (take,
for example, the lexicographic order), $G/G_{n}$ is biorderable by induc-
tion hypothesis, and $G_{n}/G_{n+1}$ is central in $G/G_{n+1}$ , thus $G/G_{n+1}$ is
biorderable by Proposition 3.14.

Now, call $g\in G$ positive if there exists some $n\geq 1$ such that the class
$[g]\in G/G_{n}$ of $g$ is not the identity and is positive. By the definition of
the ordering on $G/G_{n}$ , this definition does not depend on the choice of $n$ .

Let $P$ denote the set of positive elements. The condition $\bigcap_{n=1}^{\infty}G_{n}=\{1\}$

implies that $G=PuP^{-1}U\{1\}$ is a disjoint union. Moreover, one can
easily verify that $P$ . $P\subseteq P$ and $gPg-1=P$ for all $g\in G$ . Q.E.D.

An alternative proof of the fact that $\pi_{1}(M(A))$ is biorderable can
be found in [KR]. There exists a” natural” ordering on any finitely gen-
erated free group called Magnus ordering. The key of the proof of Kim
and Rolfsen is the following lemma.

LEMMA 3.17 (KIM and ROLFSEN [KR]). Let $F$ be $a$ fifinitely gen-
erated free group, let $P$ be the set of positive elements of $F$ with respect
to the Magnus ordering, and let $\alpha\in Aut(F)$ which acts trivially on the
homology of F. Then $\alpha(P)=P$ .

We turn now to give this alternative proof. Let $\pi_{1}(M(A))=F_{1}>\triangleleft$

$(F_{2}>\triangleleft(\ldots(F_{l-1}>\triangleleft Z)\ldots))$ be the decomposition of $\pi_{1}(M(A))$ of The-
orem 3.10. Write $H_{\mu}=F_{\mu}>\triangleleft(\ldots(F_{l-1}>\triangleleft Z)\ldots)$ for $\mu=1$ , $\ldots$ , $l$ . It
clearly suffices to show that $H_{\mu-1}$ is biorderable if $H_{\mu}$ is biorderable.
Let $g\in H_{\mu-1}$ . Since $H_{\mu-1}=F_{\mu-1}>\triangleleft H_{\mu}$ , $g$ can be uniquely written in
the form $g=g_{1}g_{2}$ , where $g_{1}\in F_{\mu-1}$ and $g_{2}\in H_{\mu}$ . Say that $g$ is positive
if either $g_{2}$ is positive, or $g_{2}=1$ and $g_{1}$ is positive with repect to the
Magnus ordering. Let $P$ denote the set of positive elements of $H_{\mu-1}$ .

The fact that $H_{\mu}$ acts trivially on the homology of $F_{\mu-1}$ (Lemma 3.12)
and Lemma 3.17 imply that $gPg-1=P$ for all $g\in H_{\mu-1}$ . The disjoint
union $H_{\mu-1}=PuP^{-1}u\{1\}$ and the inclusion $P$ . $P\subseteq P$ are obvious.

We turn now to investigate two properties of biorderable groups.
The first one says that a biorderable group has no generalized torsion,
and the second one says that the group ring of a biorderable group has
no zero divisors.

DEFINITION. Let $G$ be a group. An element $g\in G$ is said to be a
generalized torsion element if there exist $ h_{1}\ldots$ , $h_{r}\in G$ such that

$(h_{1}gh_{1}^{-1})(h_{2}gh_{2}^{-1})\ldots(h_{r}gh_{r}^{-1})=1$ .

PROPOSITION 3.18. A biorderable group contains no generalized
torsion elements.
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Proof. Let $g\in G$ , $g\neq 1$ . Let $h_{1}$ , $\ldots$ , $h_{r}\in G$ . Either $g>1$ or
$g<1$ . Assume $g>1$ . Then $(h_{i}gh_{i}^{-1})>1$ for all $i=1$ , $\ldots$ , $r$ , thus

$1<(h_{1}gh_{1}^{-1})(h_{2}gh_{2}^{-1})\ldots(h_{r}gh_{r}^{-1})\neq 1$ . Q.E.D.

Proposition 3.18 says in particular that biorderable groups are tor-
sion free.

PROPOSITION 3.19. Let $G$ be a biorderable group. Then $ZG$ con-
tains no zero divisors.

Proof. Let $\alpha$ , $\beta$ be non zero elements of $ZG$ . We write

$\alpha=a_{1}g_{1}+\cdots+a_{p}g_{p}$ , $\beta=b_{1}f_{1}+\cdots+b_{q}f_{q}$ ,

where $a_{1}$ , $\ldots$ , $a_{p}$ , $b_{1}$ , $\ldots$ , $b_{q}\in Z\backslash \{0\}$ , $g_{1}$ , $\ldots$ , $g_{p}$ , $f_{1}$ , $\ldots$ , $f_{q}\in G$ , $g_{1}<$

$g_{2}<\cdots<g_{p}$ , and $f_{1}<f_{2}<\cdots<f_{q}$ . Then

$\alpha\beta=\sum_{i,j}(a_{i}b_{j})(g_{i}f_{j})$
,

$g_{1}f_{1}<g_{i}f_{j}$ if $i\neq 1$ or $j\neq 1$ ,

$a_{1}b_{1}\neq 0$ ,

thus $\alpha\beta\neq 0$ . Q.E.D.

Let $G$ be a biorderable group. We pointed out before that $G$ is then
torsion free because it has no generalized torsion elements. The fact that
$ZG$ has no zero divisors also implies that $G$ is torsion free. Indeed, if $g$

is a torsion element of a group $G$ (say of order $k$ ), then

$(1-g)(1+g+g^{2}+\cdots+g^{k-1})=1-g^{k}=0$ ,

thus $(1-g)$ is a zero divisor. It is not known whether $ZG$ has no zero
divisor in general if $G$ is torsion free.
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Logarithmic forms and anti-invariant forms of
reflection groups

Anne Shepler and Hiroaki Terao1

Dedicated to Peter Orlik on his sixtieth birthday

Abstract.

Let $W$ be a finite group generated by unitary reflections and $A$

be the set of reflecting hyperplanes. We will give a characterization of
the logarithmic differential forms with poles along $A$ in terms of anti-
invariant differential forms. If $W$ is a Coxeter group defined over $R$ ,

then the characterization provides a new method to find a basis for
the module of logarithmic differential forms out of basic invariants.

Basic definitions. Let $V$ be an $\ell$-dimensional unitary space. Let
$W\subset GL(V)$ be a finite group generated by unitary reflections and $A$ be
the set of reflecting hyperplanes. We say that $W$ is a unitary reflection
group and $A$ is the corresponding unitary reflection arrangement. Let $S$

be the algebra of polynomial functions on $V$. The algebra $S$ is naturally
graded by $S=\oplus_{q>0}S_{q}$ where $S_{q}$ is the space of homogeneous polyno-

mials of degree $q.\overline{T}husS_{1}=V^{*}$ is the dual space of $V$. Let $Der_{S}$ be the
$S$ module of $C$-derivations of $S$ . We say that $\theta\in Der_{S}$ is homogeneous
of degree $q$ if $\theta(S_{1})\subseteq S_{q}$ . Choose for each hyperplane $H\in A$ a linear
form $\alpha_{H}\in V^{*}$ such that $H=ker(\alpha_{H})$ . Define $Q\in S$ by

$Q=\prod_{H\in A}\alpha_{H}$
.

The polynomial $Q$ is uniquely determined, up to a constant multiple, by
the group $W$ . When convenient we choose a basis $e_{1}$ , $\ldots$ , $e_{l}$ for $V$ and
let $x_{1}$ , $\ldots$ , $x_{l}$ denote the dual basis for $V^{*}$ . Let $\langle, \rangle$ : $V^{*}\times V\rightarrow C$ denote
the natural pairing. Thus $\langle x_{i}, e_{j}\rangle=\delta_{ij}$ . For each $v\in V$ let $\partial_{v}\in Der_{S}$

be the unique derivation such that $\partial_{v}x=\langle x, v\rangle$ for $x\in V^{*}$ . Define
$\partial_{i}\in Der_{S}$ by $\partial_{i}=\partial_{e_{i}}$ . Then $\partial_{i}x_{j}=\delta_{ij}$ and $Der_{S}$ is a free $S$ module
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Revised April 10, 1999.
1 Partially supported by NSF-DMS 9504457.
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with basis $\partial_{1}$ , $\ldots$ , $\partial_{l}$ . There is a natural isomorphism $S\otimes V\rightarrow Der_{S}$ of
$S$-modules given by

$f\otimes v\mapsto f\partial_{v}$

for $f\in S$ and $v\in V$. Let $\Omega^{1}=Hom_{S}(Der_{S}, S)$ be the $S$-module dual
to Der5. Define $d$ : $S\rightarrow\Omega^{1}$ by $df(\theta)=\theta(f)$ for $f\in S$ and $\theta\in Der5$ .

Then $d(ff^{J})=(df)f’+f(df^{J})$ for $f$ , $f’\in S$ . Furthermore, $\Omega^{1}$ is a free
$S$-module with basis $dx_{1}$ , $\ldots$ , $dx_{l}$ and $df=\sum_{i=1}^{l}(\partial_{i}f)dx_{i}$ . There is a
natural isomorphism $S\otimes V^{*}\rightarrow\Omega^{1}$ of $S$-modules given by

$f\otimes x\mapsto fdx$

for $f\in S$ and $x\in V^{*}$ . The modules $Der_{S}$ and $\Omega^{1}$ inherit gradings from $S$

which are defined by $deg(f\partial_{v})=deg(f)$ and $deg(fdx)=deg(f)$ if $f\in S$

is homogeneous. Define $\Omega^{p}=\bigwedge_{S}^{p}\Omega^{1}(p=1, \ldots, \ell)$ . Let $\Omega^{0}=S$ . The S-
module $\Omega^{p}$ is free with a basis $\{dx_{i_{1}}\wedge\cdots\wedge dx_{i_{T^{J}}}|1\leq i_{1}<\cdots<i_{p}\leq\ell\}$ .

It is naturally isomorphic to $S\otimes c\wedge^{p}V^{*}$ . Let $\Omega^{p}(A)$ be the $S$-module
of logarithmic $p$ -forms with poles along $A$ [Sai3] $[OrT]$ :

$\Omega^{p}(A)=\{\frac{\eta}{Q}|\eta\in\Omega^{p}$ , $d(\frac{\eta}{Q})\in\frac{1}{Q}\Omega^{p+1}\}$

where $d$ is the exterior differentiation.
The unitary reflection group $W$ acts contragradiently on $V^{*}$ and

thus on $S$ . The modules $Der_{S}$ and $\Omega^{p}(p=0, \ldots, \ell)$ also have $W$-module
structures so that the above isomorphisms are $W$-module isomorphisms.
If $M$ is an $C[W]$ -module let $M^{W}=$ {$x\in M|wx$ $=x$ for all $w$ $\in W$ } de-

note the space of invariant elements in $M$ . Let $M^{\det^{-1}}=\{x\in M|wx=$

$\det(w)^{-1}x$ for all $w$ $\in W$ } denote the space of anti-invariant elements in
$M$ . Let $R=S^{W}$ be the invariant subring of $S$ under $W$ . By a theorem
of Shephard, Todd, and Chevalley [Bou, V.5.3, Theorem 3] there ex-
ist algebraically independent homogeneous polynomials $f_{1}$ , $\ldots$ , $f_{l}\in R$

such that $R=C[f_{1}, \ldots, f_{l}]$ . They are called basic invariants. Elements

of $S^{\det^{-1}}$ and $(\Omega^{p})^{\det^{-1}}$ are called anti-invariants and anti-invariant p-

forms respectively. It is well-known that $S^{\det^{-1}}=RQ$ .

The main theorem. The following theorem gives the relationship
between logarithmic forms and anti-invariant forms.

Theorem 1. For $ 0\leq p\leq\ell$ ,

$\Omega^{p}(A)=\frac{1}{Q}(\Omega^{p})^{\det^{-1}}\otimes_{R}S$ .
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Proof. When $p=0$ , the result follows from the formula $S^{\det^{-1}}=RQ$ .

Let $p>0$ . Let $x_{1}$ , $\ldots$ , $x_{\ell}$ be an orthonormal basis for $V^{*}$ . Let $\theta_{1}$ , $\ldots$ , $\theta_{\ell}$

be an $R$ basis for $Der_{S}^{W}$ . Then, by [$OrT$ , Theorem 6.59], $\theta_{1}$ , $\ldots$ , $\theta_{\ell}$ is
known to be an $S$-basis for the module $D(A)$ of $A$-derivations, where

$D(A)=\{\theta\in Der_{S}|\theta(Q)\in QS\}$ .

By the contraction $\langle, \rangle$ of a 1-form and a derivation, the $S$-modules
$D(A)$ and $\Omega^{1}(A)$ are $S$-dual to each other [Sai3, p.268] [$OrT$ , Theorem
4.75]. Let $\{\omega_{1}, \ldots, \omega_{\ell}\}\subset\Omega^{1}(A)$ be dual to $\{\theta_{1}, \ldots, \theta_{\ell}\}$ . In other words,
$\langle\theta_{i}, \omega_{j}\rangle=\delta_{ij}$ (Kronecker’s delta). Then $\{\omega_{1}, \ldots, \omega_{\ell}\}$ is an $S$ basis for
$\Omega^{1}(A)$ . Then each $\omega_{i}$ is obviously $W$-invariant and

$\omega_{i}\in(\frac{1}{Q}\Omega^{1})^{W}=\frac{1}{Q}(\Omega^{1})^{\det^{-1}}$

Therefore we have

$\Omega^{1}(A)\subseteq\frac{1}{Q}(\Omega^{1})^{\det^{-1}}\otimes_{R}S$ .

By [$OrT$ , Proposition 4.81], the set $\{\omega_{i_{1}}\wedge\cdots\wedge\omega_{i},, |1\leq i_{1}<\cdots<i_{p}\leq\ell\}$

is a basis for $\Omega^{p}(A)$ . In particular, $\omega_{i_{1}}\wedge\cdots\wedge\omega_{i_{l)}}\in(1/Q)\Omega^{p}$ . Since

$\omega_{i_{1}}\wedge\cdots\wedge\omega_{i_{\rho}}$ is $W$-invariant, $Q(\omega_{i_{1}}\wedge\cdots\wedge\omega_{i_{p}})\in(\Omega^{p})^{\det^{-1}}$ . This shows
that

$\Omega^{p}(A)\subseteq\frac{1}{Q}(\Omega^{p})^{\det^{-1}}\otimes_{R}S$ .

Conversely let $\omega\in(1/Q)(\Omega^{p})^{\det^{-1}}$ Then $Q\omega\in\Omega^{p}\subseteq\Omega^{p}(A)$ . Thus
$ Q\omega$ can be uniquely expressed as

$Q\omega=\sum_{i_{1}<\cdot\cdot<i_{p}}f_{i_{1}\cdot\cdot i_{p}}\omega_{i_{1}}\wedge\cdots\wedge\omega_{i_{l)}}(f_{i_{1}}. i_{\rho}\in S)$
.

Act $w\in W$ on both sides, and we get

$\det(w)^{-1}Q\omega=w(Q)\omega=\sum_{i_{1}<<i},,$
$w(f_{i_{1}i_{\rho}}\cdots)\omega_{i_{1}}\wedge\cdots\wedge\omega_{i_{P}}$ .

Therefore, by the uniqueness of the expression, we have

$\det(w)^{-1}f_{i_{1}}$
$i_{T},$

$=w(f_{i_{1}i_{p}}\cdots)(w\in W)$

and $f_{i_{1}i_{p}}\cdots\in S^{\det^{-1}}=RQ$ . This implies that each $f_{i_{1}\cdot\cdot i_{T^{J}}}/Q$ lies in $S$

and that

$\omega=\sum_{i_{1}<<i_{p}}\cdots(\frac{f_{i_{1}\cdot i_{J)}}}{Q})\omega_{i_{1}}\wedge\cdots\wedge\omega_{i_{p}}\in\Omega^{p}(A)$ .
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Thus we have shown the inclusion

$\frac{1}{Q}(\Omega^{p})^{\det^{-1}}\otimes_{R}S\subseteq\Omega^{p}(A)$ .

Q.E.D.

Taking the $W$-invariant parts of the both sides in Theorem 1, we
have

Corollary 2. For $ 0\leq p\leq\ell$ ,

$(\Omega^{p}(A))^{W}=\frac{1}{Q}(\Omega^{p})^{\det^{-1}}$

The following theorem is a special case of a theorem obtained by
Shepler [Shel].

Theorem 3 (Shepler). For $ 0\leq p\leq\ell$ ,

$(\Omega^{p})^{\det^{-1}}=Q^{1-p}\wedge(\Omega^{1})^{\det^{-1}}Rp$

Proof. Let $p=0$ . We naturally interpret the “empty exterior prod-
uct” to be equal to the coefficient ring. Thus the result follows from the
formula $S^{\det^{-1}}=RQ$ . Let $p>0$ . In the proof of Theorem 1, we have
already shown that the both sides have the same $R$-basis

$\{Q(\omega_{i_{1}}\wedge\cdots\wedge\omega_{i_{p}})|1\leq i_{1}<\cdots<i_{p}\leq\ell\}$ .

Q.E.D.

The Coxeter case. From now on we assume that $W$ is a Coxeter
group. In other words, for an $\ell$-dimensional Euclidean space $V$ , $ W\subset$

$GL(V)$ is a finite group generated by orthogonal reflections and $W$ acts
irreducibly on $V$ . The objects like $S$ , $R$ , and $\Omega^{p}$ are defined over R. Note
that $\det(w)$ is $either+1$ or-l for any $w\in W$ and thus $\det=\det^{-1}$ .

Recall the definition of the $R$-linear map $\hat{d}$ : $S\rightarrow\Omega^{1}$ in $[SoT$ ,

Proposition 6. 1]:

$\hat{d}f=\sum_{i=1}^{\ell}(\partial_{i}f)d(Q(Dx_{i}))$ .

Here $D$ is a Saito derivation introduced in [Sai2] [SYS]. The following
proposition is Proposition 6.1 in $[SoT]$ :
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Proposition 4 (Solomon-Terao). Let $f_{1}$ , $\ldots$ , $f_{\ell}$ be basic invari-
ants. Then

$(\Omega^{1})^{\det}=R\hat{d}f_{1}\oplus\cdots\oplus R\hat{d}f_{\ell}$ .

From Theorem 3 and Proposition 4 we get

Corollary 5. For $ 0\leq p\leq\ell$ ,

$(\Omega^{p})^{\det}=1\leq i_{1}<\cdot<i_{p}\leq\ell\oplus RQ^{1-p}(\hat{d}f_{i_{1}}\wedge\cdots\wedge\hat{d}f_{i_{l)}})$
.

Using Theorem 1, we have

Corollary 6. For $ 0\leq p\leq\ell$ ,

$\Omega^{p}(A)=1\leq i_{1}<\cdots<i_{p}\leq\ell\oplus SQ^{-p}(\hat{d}f_{i_{1}}\wedge\cdots\wedge\hat{d}f_{i_{\rho}})$
.

This corollary gives a new method using the new differential operator
$\hat{d}$ to calculate a basis for the module of logarithmic forms.

Taking the $W$-invariant parts of the both sides in Corollary 6, we
also have

Corollary 7. For $ 0\leq p\leq\ell$ ,

$(\Omega^{p}(A))^{W}=1\leq i_{1}<\cdots<i_{p}\leq\ell\oplus RQ^{-p}(\hat{d}f_{i_{1}}\wedge\cdots\wedge\hat{d}f_{i_{p}})$
.

Example 8 $(B_{2})$ . When $W$ is the Coxeter group of type $B_{2}$ , we
can choose

$f_{1}=\frac{1}{2}(x_{1}^{2}+x_{2}^{2})$ , $f_{2}=\frac{1}{4}(x_{1}^{4}+x_{2}^{4})$ .

Then, as seen in $[SoT, \S 5.2]$ , the operator $\hat{d}$ in Proposition 4 satisfies

$\hat{d}x_{1}=-dx_{2},\hat{d}x_{2}=dx_{1}$ .

Thus

$\hat{d}f_{1}=-x_{1}dx_{2}+x_{2}dx_{1},\hat{d}f_{2}=-x_{1}^{3}dx_{2}+x_{2}^{3}dx_{1}$ .

Then $\hat{d}f_{1}$ and $\hat{d}f_{2}$ form an $R$ basis for $(\Omega^{1})^{\det}$ and $\hat{d}f_{1}/Q$ and $\hat{d}f_{2}/Q$

form an $S$ basis for $\Omega^{1}(A)$ as Corollaries 5 and 6 assert.
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