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Weighted Chern-Mather classes and
Milnor classes of hypersurfaces
Paolo Aluffi
Abstract.

We introduce a class extending the notion of Chern-Mather class
to possibly nonreduced schemes, and use it to express the difference
between Schwartz-MacPherson’s Chern class and the class of the vir-
tual tangent bundle of a singular hypersurface of a nonsingular va-
riety. Applications include constraints on the possible singularities
of a hypersurface and on contacts of nonsingular hypersurfaces, and
multiplicity computations.

§0. Introduction

The notion of Chern-Mather class was introduced by Robert Mac-
Pherson in [10], as one of the main ingredients in his definition of functo-
rial Chern classes for possibly singular complex varieties. An equivalent
notion had in fact already been given by Wentsiin Wu; the two notions
are compared in [15]. One way to think about Mather’s class of Y as
defined by MacPherson is the following: blow-up Y so that the pull-back
of its sheaf of differentials is locally free modulo torsion; then mod out
the torsion, dualize, and take Chern classes. The operation can in fact
be performed for any sheaf; this is worked out in [9].

This definition ignores possible nilpotents on Y. We feel that it
would be desirable to have a class in the spirit of Chern-Mather class,
but in some way sensitive to possible nonreduced structures on Y: first,
this is natural from the algebro-geometric standpoint; secondly, as we
will see, a natural candidate carries useful information when applied to
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the singularity subscheme of a hypersurface (for which possibly non-
reduced scheme structures play a fundamental role).

Our candidate is introduced in §1. Its definition is a suitable weighted
sum of ‘conventional’ Chern-Mather classes of subvarieties of Y. The
subvarieties are the supports of the components of the (intrinsic) normal
cone of Y, and the weights are the lengths of the components of this cone.
The class we obtain (trivially) agrees with Mather’s if Y is a reduced
local complete intersection.

If Y is the singularity subscheme of a hypersurface, we can relate
the weighted Chern-Mather class with other natural classes defined in
this case. For example, in [1] we have defined and studied a p-class
associated with the singularity subscheme of a hypersurface; in this pa-
per, we answer a question which we could not address previously: how
to give a reasonable definition for arbitrary schemes Y, from which the
p-class could be recovered if Y is the singularity subscheme of a hyper-
surface X. The weighted Chern-Mather class is precisely such a class
(Corollary 1.4). We hope that this viewpoint will eventually give us the
right hint on how to define a p-class for the singularities of more general
varieties X.

The main application of weighted Chern-Mather classes is to the
computation of the difference between Schwartz-MacPherson’s class of
a hypersurface and the class of its virtual tangent bundle. A formula
for the difference, in terms of the p-class, is proved ‘numerically’ in [3],
and at the level of Chow groups in [2] (Theorem I.5). Such differences
have been named ‘Milnor classes’, as they generalize the fact that, for lo-
cal complete intersections with isolated singularities, the Milnor number
computes the difference between the (topological) Euler characteristic
and the degree of the class of the virtual tangent bundle (see [13], [14],
[12], [5], and references therein).

Weighted Chern-Mather classes allow us to recast the formula from
[2]. We state this in §1 (Theorem 1.2), together with other facts about
weighted Chern-Mather classes, such as their relation vis-a-vis a class
appearing in [12] or their behavior under blow-ups. Proofs of these
statements are sketched in §2, together with a few general considerations
regarding Milnor classes. Theorem 1.2 is proved in full in §2.

The expression for the u-class in terms of weighted Chern-Mather
classes allows us in principle to compute the former for a wide class of
examples. We give a couple of applications in this direction in §3, in the
spirit of the examples worked out in [1], §4. For example, we prove that
if two nonsingular hypersurfaces M;, M> of degrees d;, ds in projective
space are tangent along a positive dimensional subvariety, then d; = ds.
This fact was proved in [2], but with a strong additional hypothesis on
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the contact locus of M; and Ms; the new formula for the p-class shows
that the extra hypothesis is unnecessary. We also collect in §3 a few
explicit computations of weighted Chern-Mather classes.

The core of this paper is little more than a rewriting of a part of [12].
In that reference, Adam Parusinski and Piotr Pragacz give an alterna-
tive proof of the formula in [2] by a local computation of multiplicities,
which relates it to a formula from [6] (over C, and in homology) for the
characteristic cycle of a hypersurface. For singularities of a hypersurface,
a complex geometry analog of weighted Chern-Mather classes is intro-
duced in [12]; the classes are compared here in Theorem 1.5. The proof
of Theorem 1.2 given in §2 owes much to the approach of Parusinski and
Pragacz: it is my attempt to produce a proof in the style of [12], but
in a set-up closer to intersection theory in algebraic geometry (hence
valid for rational equivalence; and potentially more amenable to alge-
braic generalizations, e.g., to positive characteristic). The reference to
[6] is bypassed by an explicit computation of local Euler obstructions.

Acknowledgements. I am very grateful to Jean-Paul Brasselet
and to Tatsuo Suwa for organizing the Sapporo symposium on ‘Singu-
larities in Geometry and Topology’. Conversations with the participants
at the meeting, especially Piotr Pragacz and Shoji Yokura, were very
helpful. T am particularly indebted to Piotr Pragacz (and to the referee
of [2]) for pointing out that the main formula in [2] should be interpreted
as the computation of the characteristic cycle of a hypersurface.

§1. Weighted Chern-Mather classes.

All schemes in this note are of finite type over an algebraically closed
field of characteristic 0, and (for simplicity) embeddable in an ambient
nonsingular variety, which we will denote by M.

Assume that Y is reduced and irreducible, of dimension k. The
Chern-Mather class of Y can be defined as follows. Let Gx(T'M) denote
the Grassmann bundle whose fiber over p € M consists of the Grass-
mannian of k-planes in TM, and let Y° be the nonsingular locus in Y.
Consider the map

Y° — Gx(TM)

defined by sending p € Y° to T,,Y C T, M. The Nash blow-up of Y is the
closure Y of the image of this map; it comes equipped with a proper map
v to Y, and with the restriction 7" of the tautological subbundle over
Gr(TM). This data is easily checked to be independent of the ambient
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variety M. The Chern-Mather class of Y is defined by
ema(Y) = vy (e(T) N 7))

in the Chow group A.Y of Y. This class of course agrees with the
total (‘homology’) class of the tangent bundle of Y if Y happens to be
nonsingular to begin with.

Note that this definition assumes that Y is reduced, as it needs Y
to be nonsingular at the general point, and ignores by construction the
presence of nilpotents along subvarieties of Y. Our task is to modify
this notion to take account of possible nilpotents on Y.

Let then Y C M be arbitrary. We consider the normal cone Cy M of

Y in M, and associate with Y the set {(Yi, m;)}:, where the Y; LY are
the supports of the irreducible components C; of Cy M, and m; denotes
the geometric multiplicity of C; in Cy M (so [C;] = m;[(Ci)red])-

Lemma 1.1. The data {(Y;,m;)} is intrinsic of Y, i.e., indepen-
dent of the ambient nonsingular variety.

Proof. (Cf. [7], Example 4.2.6.) It is enough to compare embed-
dings Y — M, Y — M’, where both M, M’ are nonsingular, and M is
smooth over M’. In this case there is an exact sequence of cones

0— Ty = CyM — CyM' — 0

(where T/ |p is the relative tangent bundle) in the sense of [7], Exam-
ple 4.1.6, and it follows that the supports of the irreducible components
of the two cones coincide, as well as the geometric multiplicities of the
components. Q.E.D.

By Lemma 1.1, the following definition is also intrinsic of Y:

Definition. The weighted Chern-Mather class of Y is

coma(Y) i= ) (=) Y=dmYim, g opa(Y;) in ALY

(Warning: we will henceforth neglect to indicate ‘obvious’ push-forwards
such as j;«, and pull-backs.)

Note that if Y is a reduced irreducible local complete intersection,
then its normal cone is reduced and irreducible, so the class defined
here agrees with the Chern-Mather class of Y. In particular, if Y is
nonsingular then cyma(Y) = ¢(TY) N [Y] is the total homology class of
the tangent bundle of Y.
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A few examples of computations of weighted Chern-Mather classes
can be found in §3. Our main motivation in introducing the class
cwMa(Y) is that we can prove it is particularly well-behaved if Y is
the singularity scheme of a hypersurface X in a nonsingular variety M.
By hypersurface here we mean the zero-scheme of a nonzero section of
a line-bundle £ on M; the singularity subscheme of X is the subscheme
locally defined by the partial derivatives of an equation for X. (This
scheme structure is independent of the ambient variety M.) In the rest
of this section we survey a few facts about cyMma(Y) under the hypothesis
that Y is the singularity subscheme of a hypersurface. Proofs are given
in §2.

Our motivation is to highlight apparently different contexts in which
the class cyma(Y) manifests itself. Although these contexts will invoke
other characters of the play, remember that cyma(Y) is a class intrinsic
of Y, and which is defined regardless of whether Y is the singularity
subscheme of a hypersurface. The challenge is to find extensions of
these results which do not assume that Y is the singularity subscheme
of a hypersurface.

For the first fact, let csm(X) € A« X denote Schwartz-MacPherson’s
Chern class of X, and let cp(X) € A.X denote the class of its virtual
tangent bundle; the subscript F is to remind us that this class agrees
with the class introduced (for much more general schemes) by William
Fulton, cf. Example 4.2.6 of [7].

Theorem 1.2. Let L = O(X), and let Y be the singularity sub-
scheme of X. Then

cora(Y) = (-1)ImX=dmY £y (cp(X) — csm(X))  in Au(X).

That is, cuma(Y) essentially measures the difference between the
functorial homology Chern class csm(X) and the class of the virtual
tangent bundle of X. The functoriality of the class csm(X) was proved
by Robert MacPherson [10]; the class was later shown to agree with
the class previously defined by Marie-Hélene Schwartz. For a treatment
of Schwartz-MacPherson’s classes over any algebraically closed field of
characteristic 0, see [8]; this is the context we assume here. Also, we let
csm(X) = csm(Xred); with this proviso, Theorem 1.2 holds for nonre-
duced hypersurfaces X —remarkably, the drastic change in cp when some
component of X is replaced by a multiple is precisely compensated by
the change in the weighted Mather class of the singularity subscheme.

For the next result, it is convenient to employ the following notations
(a variation on the notations used in [2], [3]): for a € A, and L a line
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bundle, set
ay =(-1DPa , ac=c(L)’Na

(So ag = ¢(L)" N (a® L), where the term in () uses the definition in (3],
and n is the dimension of the ambient scheme). These notations behave
well with respect to several natural operations, similarly to the notations
introduced in [3]. For example, the formula on the right defines an action

of Pic on the Chow group: that is, az,gc, = (ar,)z, for line bundles
L1 and Ls.

Proposition 1.3. LetY be the singularity subscheme of a section
of a line bundle L on a nonsingular variety M. Then

cwuma(Y) = (=1)3™Y ((T*M ® £) N s(Y,M)), . in AY.

Here s(Y, M) denotes the Segre class of Y in M, in the sense of
[7], Chapter 4. Note that this equality is completely false unless Y is
a singularity subscheme of a hypersurface in M. However, if Y is a
singularity subscheme of a hypersurface in M, then the right-hand-side
must be independent of M: this was proved directly in [1], Corollary 1.7,
and follows again as the left-hand-side is intrinsic of Y. Proposition 1.3
is significant in view of the consequence:

Corollary 1.4.
.uE(Y) = (_1)dim YCwMa(Y)v[l

The class pz(Y) is the ‘p-class’ defined and studied in [1]; it carries
a notable amount of information about X, with applications to duality
and to the study of contacts of hypersurfaces. Corollary 1.4 solves a
puzzle left open in [1] (p. 326): to define a class for arbitrary schemes,
specializing to ps(Y') for singular schemes of hypersurfaces. It also clar-
ifies the dependence of the p-class on the line bundle £: it follows from
Corollary 1.4 that if £y, L2 are line bundles, then

He, (Y) = ML, (Y)£Y®£2

(this does not follow formally from the expression for the u-class in
terms of the Segre class of Y.) For applications of Proposition 1.3 and
Corollary 1.4, see Examples 3.4, 3.5.

The next fact we list also requires some notations. We now assume
that X is a reduced hypersurface, over C. The question is whether,
in this particularly ‘geometric’ case, cyma(Y) can be recovered from
numerical invariants of X. The answer comes from [12]: define a function
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p:Y — Z by setting p(y) = (—1)4mX(x(y) — 1), where x(y) is the
Euler characteristic of the Milnor fiber of X at y; u is a constructible
function on Y, so we can apply to it MacPherson’s transformation cgy
(that is, write u as a linear combination of characteristic functions 1z
for subvarieties Z of Y, then replace each 1z in this combination by

csm(Z)).
Theorem 1.5.

corma(Y) = (=)™ Yesp(n) in AY.

Equivalently, write u as a linear combination of local Euler obstruc-
tions (also an ingredient in [10]): p = ) ¢;Euy,; then the content of
Theorem 1.5 is that in this situation the Y;’s are precisely the supports
of the components of the normal cone of Y, and the numbers ¢; deter-
mined by p agree (up to sign) with the multiplicities m; used to define
cwMa(Y). Again, we would be very interested in extensions of this result
to more general Y: what numerical invariants of a space X (not nec-
essarily a hypersurface) determine the multiplicities of the components
of the normal cone of its singularity subscheme? Can these multiplici-
ties be computed for an arbitrary scheme Y, by a similar ‘Milnor fiber’
approach? Once more, note that the left-hand-side in Theorem 1.5 is
defined for arbitrary Y; to what extent can the right-hand-side also be
defined for arbitrary Y? We know of several problems in enumerative
geometry for which finding these multiplicities is one of the main com-
putational ingredients. For an explicit computation (not directly related
to enumerative geometry) see Example 3.6.

Finally, it would be interesting to have results on the functoriality of
the class cyMma(Y); little is known about the functoriality of the ordinary
Chern-Mather class. Again, something can be said if Y is the singularity
subscheme of a hypersurface X (over an arbitrary algebraically closed
field of characteristic zero, and possibly nonreduced). Let Z be a non-

singular subvariety of Y C X C M, and consider the blow-up M of M
along Z:

Y’ > X/ ;M
Lo
Z Y — X > M

Here X’ = n~1X is the scheme-theoretic inverse image of X, a hyper-
surface of M, and Y” is the singularity subscheme of X'.

Proposition 1.6. Assume Z has codimension d in M. Then

prCuma(Y') = (=1)dimX—dimYe (V) — (d — Dewma(Z)  in AX.
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Here of course cyma(Z) = ¢(T'Z) N [Z], as Z is nonsingular. Also
note that by assumption X is singular along Z, hence Y’ contains the
exceptional divisor in M.

Proofs of the statements made in this section are sketched in §2, with
emphasis on Theorem 1.2, which relates the weighted Chern-Mather
class of the singularity of a hypersurface with its Milnor class.

§2. The Milnor class of a hypersurface.

As is well known, for a compact complex hypersurface X with iso-
lated singularities the sum of the Milnor numbers of the singularities
measures the difference between the topological Euler characteristic of
X and that of a nonsingular hypersurface linearly equivalent to X (if
there is such a hypersurface). To my knowledge, the first who used
this fact to define and study a generalization of the Milnor number to
non-isolated hypersurface singularities is Adam Parusinski, [11].

Now, the functoriality of Schwartz-MacPherson’s class implies that,
for a hypersurface X as above, the Euler characteristic of X equals the
degree of the (zero-dimensional component of the) class cgm(X). On
the other hand, the Euler characteristic of a nonsingular hypersurface
linearly equivalent to X equals the degree of the class of the virtual
tangent bundle of X (that is, of cp(X) with notations as in §1). That
is, Parusinski’s Milnor number equals (up to a sign), the degree of the
difference between the two classes:

[ ee) = csu(x))

It is natural then to study the whole class cp(X) — csm(X); this (or
slight variations of it) has been named the Milnor class of X by some
authors (see [5], [12], [14]).

Note that nothing in the definition of the class cp(X) — csm(X)
requires X to be a hypersurface: both Schwartz-MacPherson’s and Ful-
ton’s classes can be defined for arbitrary varieties. For reduced compact
complex local complete intersections, the Milnor class is computed in
homology in [5] in terms of vector fields on X, an approach reminiscent
of Schwartz’s definition of cgp(X).

In fact the class makes sense for arbitrary schemes X over any alge-
braically closed field of characteristic 0, and naturally lives in the Chow
group A.Y of the singular locus of X. We would like to pose the follow-
ing question:

—To what extent is the Milnor class of X determined by the singu-
larity subscheme Y of X ¢ or, in more ambitious terms:
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—Is there a natural definition of a class on an arbitrary scheme Y,
from which the Milnor class of X can be computed if Y is the singularity
subscheme of X ?

In view of the results collected in §1, the situation is clear for hy-
persurfaces. The singular locus of a hypersurface has a natural scheme
structure, given by the partial derivatives of local equations of X. The-
orem 1.2 then asserts that (for arbitrary hypersurfaces X over an alge-
braically closed field of characteristic 0, and writing £ = O(X)y)

er(X) — csm(X) = (=1)dmX—dimY (V=1 q o (V) in A, X

that is, if two hypersurfaces have the same singularity subscheme Y and
their line bundles restrict to the same bundle on Y, then they have the
same Milnor class; and, further, this can be recovered from the class
cwMa(Y), which can be defined for arbitrary schemesY .

Therefore, Theorem 1.2 answers the two questions posed above, for
hypersurfaces. To our knowledge, the questions are completely open for
more general schemes X. Milnor classes of local complete intersections
(for which the singular locus also carries a natural scheme structure)
have been studied in [5], but from a different viewpoint, which does not
seem to address questions such as the ones posed above.

Theorem 1.2 could be deduced from results in the existing literature
(particularly from [12] or [2]). However, while the main result in [2] is
at the level of generality at which we are aiming, its proof is rather un-
enlightening. The approach in [12] is much more cogent, but it is stated
in homology and relies on the complex geometry of the situation—for
example, in [12] the hypersurface is assumed to be reduced and compact.
The argument given below works for possibly nonreduced hypersurfaces,
over arbitrary algebraically closed fields of characteristic 0, and gives the
formula in rational equivalence; it only relies on the basic formalism of
Schwartz-MacPherson’s classes (as developed in [8]). We would like to
stress that, anyway, at its core is a multiplicity computation we learned
from [12].

Proof of Theorem 1.2. We consider the blow-up M35 M along
Y, and let X', ) be the pull-back of X and the exceptional divisor,
respectively. Note that Y C X, so! there is an effective Cartier divisor

in M whose cycle equals X — Y; we will denote this divisor by & — ).

1 A note of warning to non-algebraic geometers: here and in the following
we are using common set-theoretic notations (such as C, —, etc.) in their
scheme-theoretic sense. For example, Y C X means that the ideal sheaf of A’
is contained in the ideal sheaf of ). Since both A and Y are Cartier divisors,
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Now let p be a point of X. We have 7~}(p) C X — ), so it makes sense
to consider the Segre class of 77 1(p) in & — .
Claim 2.1. Denoting degree by |,
/ s(n”(p), X =)
1+x-)

A preliminary result is in order before we prove this claim. We have

=1

mip) o> (X =YV) o M
where the second embedding is regular. We claim that
s(n™(p), X = ¥) = c(Nx-yM) N s(x~"(p), M)

Note that this is nmot automatic in this situation, cf. Example 4.2.8 in
[7]. In our case, it will follow from the following lemma:

Lemma 2.2. Let D, E be hypersurfaces in a variety V. Assume

that D — E 1is positive and has no components in common with E. Then
s(E,D) =c¢(NpV)ns(E,V).

Proof of the lemma. By the hypothesis and Lemma 4.2 in [7],

s(E,D) = dEEwaﬂu%JﬂD—Ey4M+E%%%@
_ (E]+E-E)+E-(D-E) [E]
= T E =(1+D)NT—F%
= c¢(NpV)Ns(E,V) . Q.E.D.

Proof of Claim 2.1.  We apply Lemma 2.2 to the normalized blow-
up V of M along w~1(p), with E =the exceptional divisor, and D =the
inverse image of X — ). To see that the hypotheses are satisfied, we have
to show that every component of E appears with the same multiplicity
in F and D.

For this?, let v(t) be a germ of a nonsingular curve centered at the
general point of a component of E, let 5(t) be the composition to M,
and let F be a local equation for X at p; also, choose local parameters
Zi,...,%, for M at p. The ideal of E is the pull-back of (z1,...,z,)
to V, so the multiplicity mg of the component in E equals the order of

this just says that local equations for A are multiples of local equations for ).
This is necessary for the statement that follows.

2This computation is essentially lifted from an analogous computation in
the proof of Proposition 2.2 in [12].
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vanishing of the pull-back x;(t) = *z; of a generic local parameter. The
multiplicity mp in D equals mx — my, where my, my are respectively
the multiplicities in the pull-backs of X, ).

Now my is the order of vanishing of

F*F = F(z1(t),...,za(t))

while my is the order of vanishing of the pull-back of

OF oF

that is, the order of vanishing of f”y*gf; for a generic local parameter x;.

Now taking the derivative with respect to ¢ gives (by the chain rule!)
my —1l=my+mg—-1 ,

from which the desired equality mg = mp follows.
Applying Lemma 2.2, we get

s(E,D)=(1+X -Y)ns(E,V) ,
hence
s(r7H(p), X = Y) = (1 + X — V) 0 s(n~}(p), M)

by the birational invariance of Segre classes ([7], Proposition 4.2). From
this,

s(r=1, X -Y)
1+X-)

T

=s(p, M) =[p] ,

again by the birational invariance of Segre classes, and the claim follows
by taking degrees. Q.E.D.

We are finally ready to prove Theorem 1.2. Identify ) with the
projective normal cone of Y in M, let ); be the reduced components of
Y, and let Y; be their support in Y. Then

X :)?+Zn¢y¢
Yy :Zmz’y'i
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for suitable m;, n;. By Claim 2.1,

[ s(m 7 (p), X =)
b= / I+X-y
/ s(m=Hp) N X, X) + Y (ni — my)s(x=1(p) N Vi, Vi)
1+x =)

by Lemma 4.2 in {7]
= Bux(p) +)_(n; — my) (=) M=V Buy, (p)

using the formula for Euler obstructions due to Gonzalez-Sprinberg and
Verdier, as computed in [8], Lemma 2 (as pointed out in [2], §1.3 and in
[12], §3, the divisor X —) can be embedded in P(T*M), and 1+ X — ) is
then the restriction of the class of the tautological bundle in P(T™M)).
Now, every relation between constructible functions yields a relation for
characteristic classes. Here, this gives (using the formula for Mather’s
classes in [8], Lemma 1, going back to Claude Sabbah):

csm(X) = ema(X) + ) (s —my)(-1)tmMHIdimYiey (v))
_ [X] SN O
= c(TM)ﬂ?T* (m-*—Z(nz—mz)l_*_X_y)
_ [X] [Vi]
= dmﬂn“(1+x_1+x§: T+x— y)

= cp(X)+c(L)7I N my(-1)timM-dimYigy, ()
cp(X) + (=1)dmM—dimY (/=1 q e (V)

which is the desired formula. Q.E.D.

As observed in the proof, X — )Y can be naturally embedded in
P(T*M). The content of Claim 2.1 is that X — ) gives then the char-
acteristic cycle of X (corresponding to the characteristic function 1x of
X in M).

The other statements in §1 now follow easily, either by comparing
the expression for cgy with the expressions in [2] and [12], or by direct
manipulations that can be extracted from those sources. The argument
given here re-proves Theorem 1.3 in [2|/Theorem 3.1 in [12]; and for
example, §1 in [2] shows how to go directly from this form of the re-
sult to expressions in terms of Segre classes or u-classes (thus proving
Proposition 1.3, Corollary 1.4).
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The details are left to the reader. Theorem 1.5 is our reading of
Theorem 2.3 (iii) from [12]. The blow-up formula of Proposition 1.6
follows from Proposition IV.2 in [2].

§3. Examples and applications.

Normal cones behave well with respect to proper finite maps and
with respect to flat maps, cf. Proposition 4.2 in [7]. For example, assume

that Y is irreducible, and M 5 M is a surjective birational map on the
ambient space. Then there is an induced surjective map from the cone of
7Y to the cone of Y. This can be used to obtain the data {(Y;,m;)}
of §1, for example by suitably blowing up an ambient space; this can
lead to direct computations of weighted Chern-Mather classes.

Example 3.1. Suppose Y consists of a curve C, with an embed-
ded multiple planar point at a point p. More precisely, assume C, Y
have local ideals respectively Z¢, Z¢ - (z,y)™, m > 1, near p in a nonsin-
gular ambient surface S with local parameters z, y. Also, assume that
C has multiplicity r at p. Then

CwMa(Y) = CMa(C) - (m + T) [p]

Indeed, blow-up S at p; the total transform of Y consists of the proper
transform of C, and of (m + r) times the exceptional divisor. Therefore,
the normal cone of Y contains a component with multiplicity m + r over
p. (But note there is no such component if m = 0.)

For example, take Y to be the union of two lines ¢1, £, in P2, with an
embedded planar point at the intersection p = £; N #3; then cyma(Y) =
[¢1] + [£2] + [p]. If the embedded point is on one of the lines, but not at
P, then cyma(Y) = [€1] + [£2] + 2[p]. If each line comes with multiplicity
r, and the embedded point is at p, then the class is

rema(61) + rema(b2) — (14 2r)[p] = rba] + o] + (2r — 1)[p]

Example 3.2. Example 3.1 can be easily generalized to the sit-
uation in which Y is a subscheme of a given ambient space M, and
the residual to a Cartier divisor D in Y is a known scheme Y’. Then
cwMa(Y) can be written in terms of cva(D), cwma(Y'), and the multi-
plicity of D along the distinguished components of Y’; details are left to
the reader. A very different expression can be obtained if Y’ is the sin-
gularity subscheme of a hypersurface X in M, and D is the r-th multiple
of X (r >0).
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Claim 3.1. Let L= O(X)|y:. Then

o e(L®rtD)
CwMa(Y) = T‘CF(X) + (_1)dlmX dimY _(______)

C([:) n CwMa(Y/)

The proof is an easy application of the results in §1, and is also left
to the reader.

To contrast the two approaches, take again the example of the union
of two lines #1, {5 in P?, each coming with multiplicity r, with an em-
bedded planar point at the intersection. Since the planar point is the
singularity subscheme of the union of two (simple) lines, Claim 3.1 com-
putes the weighted Chern-Mather class of this scheme as

rep(X) + (—1)dim X —dimY” C(Cj((;;l)) N ewma(Y')
e () + () - [

= r([&1] + [p]) + 7([£2] + [p]) — [P]

with the same result as before, but by a very different route.
It would be useful to have formulas such as Claim 3.1, but with less
stringent hypotheses on X.

Example 3.3. If X = X; U ---U X, is a divisor with normal
crossings, with all X; supported on nonsingular hypersurfaces (X;)red,
and Y is its singularity subscheme, then

1+ [X]
- (1 + (Xl)red) fec (1 + (X'r)red)) " [M] ,

taking the sign +, resp. — according to whether X is reduced or not. The
expression is interpreted by expanding it, which leaves a class naturally
supported on Y'; it follows from Proposition 1.3 and [2], §2.2 (Lemma II.2
in [2] computes the Segre class if X is reduced, and the computation in
the proof of Lemma II.1 is used to cover the non-reduced case).

cuMa(Y) = £e(TM)N (1

Example 3.4. What do we learn about hypersurfaces by studying
their Milnor classes?

As shown in [1], the py-class of a hypersurface X packs a good amount
of information about X: for example, the multiplicity of X as a point
of the discriminant of a linear system and the dimension of this dis-
criminant can be recovered very easily from the u-class (hence from the
Milnor class). In the classical language, the u-classes of hyperplane sec-
tions of an embedded nonsingular projective variety M give a localized
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analog of the ranks of M, and provide a natural tool to study projective
duality.

In a different direction, the good behavior of the pu-class can be
used to put restrictions on the possible singularities of a hypersurface
in a given ambient space. Several examples of this phenomenon are
illustrated in [1], §3, where the main tool was the observation that if the
singularity subscheme Y of a hypersurface X is nonsingular, then

pe(Y) = (T"Y @ £) Y]
Now, Corollary 1.4 from §1:
pe(Y) = (1) euma(YV)ve

is a substantial upgrade of this formula, and this allows us to extend
some of those results.

Claim 3.2. If two smooth hypersurfaces of degree dy, ds in pro-
jective space are tangent along a positive dimensional set, then dy = da.

More generally, if two smooth hypersurfaces M;, M> of a variety V
are tangent along an irreducible (for simplicity) set Z, and dim Z > 0,
then we claim that

TMl [Z] —':'I“MQ- [Z] y

where 7 is the order of tangency of M; and M> (for example, r = 1 if M,
M5 have simple contact). This is essentially Proposition IV.7 in 2], with
all hypotheses on the contact locus (except the positive dimensionality)
removed. The stronger statement given above follows from the results in
§1. Indeed, in the situation of the statement, let X = M; N M>; then X
is a hypersurface in two distinct ways: with respect to L2 = O(Ma)ar,
in Mj, and with respect to £L; = O(M1)|p, in M. The contact locus is
Y = Sing X (with the scheme structure specified in §1), and [Y] = r[Z].
By Theorem 1.2

c(L2) P Newma(Y) = c(L£1) P Newma(Y)
implying
a(L)N[Y]=a(L)n[Y] ,
which is the statement.

Example 3.5. We say that a hypersurface X of a nonsingular
variety M is (analytically) ‘homogeneous at p’ if the equation of X is
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homogeneous for some choice of system of parameters in the completion
of the local ring for M at p. We are going to consider degree-d hyper-
surfaces X in P”, whose singular scheme Y has a connected component
supported on a nonsingular curve C' of genus g and degree r; we as-
sume that Y has the reduced structure at all but finitely many points
q,---,qs, and that X is homogeneous at each of the ¢;. In particular, X
has multiplicity 2 at all other points of C; we let m; be the multiplicity
of X at g;.

How constrained is this situation? Examples 3.4—3.6 in [1] deal
with the case in which the singular scheme is reduced, that is, there are
no points ‘q;’ as above. This situation is then very rigid: for example,
one sees that only quadrics can have singular scheme equal to a line,
and no hypersurface in projective space can have singular scheme equal
to a twisted cubic (cf. p. 347 in [1]).

The natural expectation would be that letting the singular scheme
be nonreduced should allow many more examples. For instance, cones
over nodal plane curves give examples of hypersurfaces in P? of arbi-
trary degree > 2 and singular scheme generically reduced, but with an
embedded homogeneous point (at the vertex). However, the results in
this paper show that the situation is still quite rigid:

Claim 3.3. Under the hypotheses detailed above, (n — 1) must di-
vide 4(g +r — 1). In fact, necessarily

(n=1)((d=-2)r =D (mi—2)) =4(g+7~1)

For example, twisted cubics can support singularity subschemes as
above only in dimensions n = 3,5, 9, regardless of the number of embed-
ded points allowed on them. (We do not know if such examples do exist.)
The only situation in unconstrained dimension is for g+ r —1 = 0, that
is, g = 0 and r = 1: lines are the only nonsingular curves in projective
space which may support a generically reduced singularity subscheme in
all dimensions (under the local homogeneity assumption). Further, if Y’
is supported on a line and only has one embedded homogeneous point,
then the formula implies that the multiplicity of X at this point is d;
therefore, X is necessarily a cone in this case.

For > (m; — 2) = 0, the formula in Claim 3.3 recovers the formula
at p. 347 of [1] (that is, the reduced case). For n = 2, the hypotheses
imply that X is a plane curve consisting of a double component C' and
a residual curve of degree (d — 2r); the formula then follows from the
genus formula and Bézout’s theorem. In higher dimensions, the following
argument is the only proof we know.
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Proof of the claim. We compute directly the weighted Chern-Ma-
ther class of Y and the Segre class s(Y,P"). Proposition 1.3 gives a
relation between these two classes, and the formula follows by taking
degrees.

Explicitly, blow-up P" at the ‘special’ points qi,...,¢s, and then
along the proper transform of the curve C. The homogeneity hypothesis
implies that the (scheme-theoretic) inverse image of Y in the top blow-
up is a Cartier divisor, with a component of multiplicity 1 dominating C,
and s components with multiplicity (m; — 1),...,(ms; — 1) dominating
the ¢;’'s. The Segre class of Y in P" is then computed by using the
birational invariance of Segre classes, and we get

ixs(Y, P")

=r[P'] + (s(n -1D+2-29—-r(n+1)+ Z((m, - 1" —n(m; — 1))) [PO]

2

(where ¢ : Y — P™ is the inclusion).

On the other hand, the component dominating g; maps to a corre-
sponding component of the projective normal cone to Y in P"; comput-
ing differentials, we see that this map has degree (m; — 1)»~! — 1. This
allows us to compute the weighted Chern-Mather class of Y:

cwMa(Y) = eMa(C) — Z ((mt - 1)n_1 - 1) (mi — Demalgs)

from which
ivcurta(Y) = r[PY) + (2 29— 3 ((mi — 1"~ (mi - 1>>) P°)

Now let h denote the hyperplane class in P". The expression for the
Segre class gives

(1+ (d - 1h)"Ht
1+ dh

+ ((s +rd—-2r)(n—-1)+2—-29—4r+rd+ Z((mi - 1" —n(m; — 1))) [PO]

2

ic(T*P" @ O(d)) N s(Y,P") = i. N s(Y,P") = r[P!]

and therefore
ix(—1)4™Y ((T*M ® £) N s(Y, M), = [P}

+ ((21‘ —dr —s)(n—1) —2+2g+4r — Z:((mz - 1" — n(m; — 1))) [P9].

2
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By Proposition 1.3, this class must equal t.cyma(Y). Equating the
two expressions gives the formula in the statement. Q.E.D.

Example 3.6. Finally, we give an example of the use of weighted
Chern-Mather classes in the computation of the multiplicities of compo-
nents of a normal cone. Such multiplicities are important for enumera-
tive applications, and it would be very useful to develop tools to compute
them. For singularity subschemes of hypersurfaces, the connection be-
tween weighted Chern-Mather classes and Milnor classes often lets us
recover these multiplicities from computations of MacPherson’s classes
and local Euler obstructions. It would be interesting to extend such
techniques to more general schemes.

Let D be the hypersurface of P? parametrizing singular plane cubics,
and let Y be its singularity subscheme. The following picture represents
the natural stratification of D (with arrows denoting specialization):

<<>/
= %%X\

The scheme Y is supported on the union of the closures C, G of the loci
parametrizing cuspidal cubics and binodal cubics. What are the multi-
plicities of the components of the normal cone of Y in P?? The point here
is that we can compute cyMma(Y) without knowing these multiplicities:

Claim 3.4. Denote by i the inclusion of Y in P°. Then

ivCuma(Y) = 69[P7]
+ 120[P®] + 210[P%] 4 252[P*] + 210[P?] 4 120[P?] 4 45[P*] + 10[PY].

Proof. This follows from Theorem 1.2 and the computations of
characteristic classes for D in §4 of [4]. Q.E.D.

Now the task is to find the coefficients expressing the weighted Chern-
Mather class of Y as a combination of the Chern-Mather classes of the
loci C, G, etc. We first find the constructible function v corresponding to
cwMa(Y') under MacPherson’s transformation. For this, we use the result
of the computation from [4] of Chern-Schwartz-MacPherson’s classes of
the strata of D. Writing cyma(Y) = csm(v) = v(C) - csm(le) + v(G) -
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csm(lg) + ... and solving the resulting system of linear equations, we
find

v(C)=2; V(G)=1; v(P)=0; v(T)=1;
v(S)=3;, v(X)=1; v(I) = 1.

(The paragraph preceding the statement of Theorem 1.5 gives a geomet-
ric interpretation of 4 = —v.) As pointed out in the discussion following
Theorem 1.5, to find the multiplicities we now need to express this con-
structible function as a combination of local Euler obstructions of the
strata. These are easy to compute in codimension one, and we proceed
to the computation of the multiplicities for the components dominating
the loci C, G, P, T. For these loci, we only need to observe that C, G
are nonsingular along P, and G has multiplicity 3 along T' (these follows
from easy local computations). As the local Euler obstruction agrees
with the multiplicity in codimension one, this gives

O O
QQvwN:
O = = W
AQwN:

where we indicate the value of the function at the general point of the
listed locus. Therefore

v = 2Euc + Eug — 3Eup — 2Eur + ...

from which we read that the multiplicities of the components of the
normal cone are: 2 over C, 1 over G, 3 over P, 2 over T.

Finding the multiplicities over the remaining three loci S, X, I
requires computing the local Euler obstructions for all the strata of D.
We leave this to the motivated reader.
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From Chern classes to Milnor classes
A history of characteristic classes for singular
varieties

Jean-Paul Brasselet

Abstract.

In this paper, we give a survey and recent developments about
the definitions of characteristic classes for possibly singular complex
analytic (or algebraic) varieties. We recall the classical construc-
tion of characteristic classes in the case of manifolds, by obstruction
theory and using Schubert cycles. Then, we present various gener-
alizations of characteristic classes to singular varieties, due to M.H.
Schwartz, W.T. Wu, J. Mather, R. MacPherson, W. Fulton and K.
Johnson and we discuss relations among these definitions. More re-
cent results concern the definition and properties of so-called Mil-
nor classes, as developped by P. Aluffi, J.P. Brasselet-D. Lehmann-J.
Seade-T. Suwa, A. Parusinski-P. Pragacz and S. Yokura.

80. Introduction

The Euler-Poincaré characteristic was the first characteristic class
(or number) to be introduced. For a triangulable (possibly singular)
compact variety X without boundary, it can be defined, as

x(X) = Y (~1)n,

where n; is the number of i-dimensional simplices. It is also equal to
> (—1)%b; where b; = rkH;(X). The Poincaré-Hopf theorem says that,
if X is a manifold and v a (continuous) vector field with a finite number
of isolated singularities ay of indices I(v,ay), then

x(X) = Y I(v,ax).

Received August 9, 1999
Revised February 7, 2000
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This means that the Euler-Poincaré characteristic measures the ob-
struction to the existence of a non-zero vector field tangent to X.

On another hand, characteristic classes of projective varieties have
been defined by Severi, Todd and others using polar varieties. Then
Chern defined such characteristic clases for hermitian manifolds, in sev-
eral ways, in particular as measuring the obstruction to the construction
of complex r-frames tangent to the manifold, and using Schubert vari-
eties (related to polar varieties). During some time, the attractiveness of
the axiomatic properties of Chern classes caused the viewpoint of polar
varieties to be somewhat forgotten.

For singular varieties, it appears that Wu and Mather classes can
be defined in terms of polar varieties, with a formula similar to the
non-singular case. On the other hand, the obstruction theory Chern’s
point of view has been generalized by M.H. Schwartz, and the axiomatic
point of view by R. MacPherson. The Schwartz and MacPherson classes
coincide, via Alexander duality.

The Fulton and Fulton-Johnson classes use Segre classes definition,
without reference to the original definitions of Chern classes of varieties
(for complete intersections they correspond to the Chern classes of the
virtual bundle, generalization of the tangent bundle).

A natural question was to compare the Schwartz-MacPherson and
the Fulton-Johnson classes. A result of Suwa shows that in the case of
isolated singularities, the difference is given by the Milnor numbers in
the singular points. It was natural to call Milnor classes the difference
arising in the general case. This difference has been described by several
authors by different means.

In this paper, cohomology classes will be constructed in the context
of cell decompositions in order to keep things consistent with Poincaré
duality. We will denote by M a complex manifold, by (K) a triangulation
of M, (K') a barycentric subdivision of (K') and (D) the associated dual
cell decomposition. The dual cell of a simplex ¢ € K will be denoted
by d(o) or simply d if there is no possible confusion. The barycenter &
is the intersection point & = d(¢’) = d(c) N 0. The (D)-cochain whose
value is 1 at d(c) and 0 at other cells of (D) will be denoted by d(c).

In the sequel, all homology and cohomology groups will be under-
stood with integer coefficients. Recall that if M is a compact complex
m-dimensional manifold, the Poincaré duality isomorphism

H>™ (M) — Hy(M),

the cap-product with the fundamental class [M] € Hap, (M), is repre-
sented at the chain level as the homomorphism C(zg)_i(M ) — C’i(K)(M )
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sending the elementary (D)-cochain d(o) to the elementary (K)-chain
o

It was a great pleasure for me to participate in the Franco-Japanese
congress on singularities in Sapporo. I want to thank all people who
made remarks and comments about a preliminary version of this survey,
especially P. Aluffi, G. Barthel, P. Pragacz, J. Seade, T. Suwa, B. Teissier
and S. Yokura.

§1. Chern classes in the non-singular case.

In his original paper [Ch], Chern gave several constructions of char-
acteristic classes for Hermitian manifolds: by obstruction theory, using
the decomposition of the Grassmann manifold in Schubert cycles, using
differential forms and by transgression cocycles. We will briefly recall
the first two definitions, which extend to singular varieties. The paper
[Ch] is highly recommended for the study of Chern classes.

1.1. Chern classes by obstruction theory.

Let us recall the idea of constructing Chern classes by obstruction
theory (see [Ch]), following Steenrod [Ste], part III.

We denote by T'M the complex tangent bundle to the complex m-
dimensional manifold M and by T;-M the bundle of complex r-frames
tangent to M. The fiber of T,.M over a point x € M is the Stiefel
manifold W, ,, of complex r-frames in C™. Let d = d(c) be a k-cell in a
trivialization domain U of T, M, i.e. T, M|y = U X W ,. Let us suppose
that we are given an r-frame v(") = (vy,...,v,) on the boundary dd of
d. This defines a section of T, M over dd and, by composition, a map

(r) r
Skl 9d s T M|y 72 W,

where pr, denotes the projection to the second factor. We thus obtain
an element

[v(r); ad] € mg—1(Wrm)

which vanishes if and only if the r-frame v(") can be extended without
singularity to all of d. We remark that if this element is non-zero, then we
can extend the r-frame to the relative interior of d by homothety centered
at the barycenter d = dA(a), thus obtaining an isolated singularity of
index [v("); 8d).

Let us recall ([Ste], §25.7) that

0 for i<2m—2r+1,
Z for i=2m—2r+1.

Ti(Wrm) = {
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This result implies that we can construct an r-frame v("), i.e. a section
of T,-M, by induction on the dimension of cells of the given cell decom-
position of M without singularity up to the (2m — 2r + 1)-skeleton and
with isolated singularities on the 2p = 2(m — r 4 1)-skeleton. For each
2p-cell d(o), the index of the complex r-frame v(") at its only singular
point d = d(o) No in d is I(v™,d) = [v(");8d] € Z. Associating to each
p-cell d(o) the integer I(v(™, ci) defines a 2p-cochain that actually is a
cocycle, called the obstruction cocycle.

Definition ([Ch]). The p-th (cohomology) Chern class of M, cP (M)
€ H?P(M;Z) is the class of the obstruction cocycle.

By the Poincaré duality isomorphism, the image of ¢?(M) in
Hy(,—1)(M) is the (r — 1)-st homology Chern class of M represented by
the cycle

(1) > I",d(0)) o

dim o=2(r—1)

In particular, the evaluation of ¢ (M) on the fundamental class [M]
of M yields the Euler-Poincaré characteristic.

1.2. Chern classes using Schubert cycles and polar vari-
eties.

The construction of Chern classes using Schubert cycles was already
present in Chern’s original paper. This construction was emphasized by
Gamkrelidze in [Gal] and [Ga2|. A historical introduction and complete
bibliography can be found in the Teissier’s paper [T2].

The Schubert cell decomposition of the Grassmann manifold G =
G(n,m) of n-planes in C™ has been described by Ehresmann [Eh] and it
was used by Chern to give an alternative definition of his characteristic
classes. Let

(D) {0} =Dp, CDp1C---CDy CDy=C™

be a flag in C™, with codimcD; = j.
For each integer k, with 0 < k < n, the k-th Schubert variety
associated to D, defined by

M (D) ={T € G(n,m) : dim(T N Dp_g41) > k}

is an algebraic subvariety of G(n,m) of pure codimension k. The in-
equality condition is equivalent to saying that 1" and D,,_x4+; do not
span C™.

Let 8™ be the universal (sub)bundle over G(n,m). The cycle
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(—1)k M (D) represents the image, under the Poincaré duality isomor-
phism, of the Chern class ¢*(8") € H?*(G(n, m)). If V is an n-dimensio-
nal complex analytic manifold and f : V — G(n,m) is the classifying
map for TV, i.e. such that TV & f*(6™), then the cohomological Chern
classes of V are cf(V) = cF(TV) = f*(c*(6")) (see [MS)).

Let us consider the projective situation. We denote by G(n,m) the
Grassmann manifold of n-dimensional linear subspaces in P™. We fix a
flag of projective linear subspaces

(D) LmCLm_lC"'CL1CLO:Pm

where codimcL; = j. The k-th Schubert variety associated to D is
defined by

Mi(D) = {T € G(n,m) : dim(T N Lpp_g42) > k — 1}

Let us remark that we always have dim(f N Lp_k42) > k—2. The
Schubert variety M} (D) has codimension k in G(n, m).

Let us denote N = nm = dimc G(n,m) and fix 0 < s < m. The
Schubert variety

M’.:V—s = {(:1:, TY:x € Lg_g, x €T, dim(T N Ly_g42) > k — 2}

(2)
=Ls_p N M, (D)

is the intersection of My (D) with a general (s — k)-codimensional plane

and it has codimension s in G(n,m). The (homological) Chern classes

of G(n, m) are

3)  en-s(G(n,m)) = ;(—n’“ (Z _ Zii) M.

Let us now consider the case of an n-projective manifold V' C P™.
The k-th polar variety is defined by

Po={z eV :dim(Te(V) N Ln_ks2) > k — 1},

where T,(V) is the projective tangent space to V at . For L,_g4o
sufficiently general, the codimension of Py in V is equal to k. Also, the
class [Py] of P, modulo rational equivalence in the Chow group A4,,_ (V)
does not depend on L,,_g4o for L,_r4o sufficiently general. This class
is called the k-th polar class of V.

Let v : V — G(n, m) be the Gauss map, i.e. the map defined by

v(x) =T, (V) C P™.
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Then
Py =~ (M*(D)).

The relation between Chern classes and polar classes has been de-

scribed by Gamkrelidze and Todd.
If £ = Opm(1)|v, then we obtain the Todd formula (compare with

(3)):
_x k(n—s+1\ 1,65k
@ e =0 (B2 1) et

k=0

where the cap-product with c¢!(£)*~* is equivalent to the intersection
with a general (s — k)-codimensional plane.

§2. Chern classes in the singular case.

In the singular case, there are different possible definitions of Chern
classes, generalizing the ones in the non-singular case.

The Wu and Mather classes generalize the definitions by Schubert
cycles and polar varieties. J. Zhou proved that Wu and Mather classes
coincide.

The Schwartz classes use obstruction theory, and the MacPherson
classes, defined in an algebraic geometry way, satisfy good functorial
properties. J.P. Brasselet and M.H. Schwartz proved that Schwartz and
MacPherson classes coincide, via Alexander duality.

The Fulton and Fulton-Johnson definitions of Chern classes use
Segre classes and correspond to the class of the virtual tangent bun-
dle in the case of local complete intersections (for example).

The relation between Wu-Mather classes and Schwartz-MacPherson
classes appears in MacPherson’s definition itself. The MacPherson con-
struction uses Wu-Mather classes, taking into account the local com-
plexity of the singular locus along Whitney strata. This is the role of
the local Euler obstruction.

The difference between Schwartz-MacPherson and Fulton-Johnson
classes is expressed, in the case of isolated singularities, in terms of
the Milnor numbers (at the singularities) (Seade-Suwa). In the general
case, this difference is called Milnor class and has been studied by sev-
eral authors: P. Aluffi, J.P. Brasselet-D. Lehmann-J. Seade-T. Suwa, A.
Parusinski-P. Pragacz and S. Yokura. ‘

2.1. The Wu classes (1965).

In the singular case, Wu [Wu2| generalized Chern’s and Gamkre-
lidze’s constructions in the following way: Let X™ C P™ be a complex
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projective algebraic variety and let X’ be a subvariety of X containing
the singular part Xgng. Denoting by A.(X) the Chow group of classes
of algebraic cycles of X and with A, (X, X') the subgroup of classes that
have no component in X’, there is a natural inclusion

J: A(X, X" = A (X).

Wu defines a notion of transform of X, which coincides with the
Nash transform (see [Z1]). We recall the definition of Nash transform,
the original definition of Wu being slightly different.

Let us denote by v : G — P™ the Grassmann bundle over P whose
fibre over z is the Grassmann manifold G(n, m) of n-linear subspaces in
T;P™. The Gauss map 7y : X;¢g — G is defined on the regular part
Xreg = X \ Xsing of X by

V() = To(Xreg) C ToP™

The Wu (or Nash) transform X is defined as the closure of the image of
v in G. In general X is singular; nevertheless, if X is an analytic variety,
then X is also analytic, and the restriction v : X — X of the projection
v: G — P™ is analytic. It induces a map

Ve t A (X, X') = A(X, X')

where X’ = v=1(X").
The (transverse) intersection of cycles with X defines a map

Aa—s(G) = Ap_o(X, X)),
with dimc G = d.
Finally, let D : A;(G) — A4—s(G) be the duality map in G. The
composition W = Jov, ol oD is a map

W, : Ag(G) = An_s(X)

In analogy to the formula (3), we have:

Definition ([Wul]). The Wu classes are defined by

> n—s+1 s
0 = 320" (h2ati)weon
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2.2. The Mather classes (1974).

R. MacPherson named Mather classes the classes that Mather de-
scribed to him on a blackboard (see [M2]). Let us recall their definition.

Let X be an n-dimensional analytic complex subvariety X of an m-
dimensional manifold M. We consider the Nash transform X and denote
by FE the tautological bundle over the Grassmann bundle G. The fiber
of E over P € G is

Ep = {v(z) € To(M): v(z)€ P, z=v(P)}.

Let us denote by E the restriction of E to X. We have a commuta-
tive diagram:

FE —- F
L !
X — G
! |
X — M

Definition ([M2]). The Mather class of X is defined by
M(X) = v(c*(B) N X)),

where ¢*(E) denotes the usual (total) Chern class of the bundle E in
H*(X) and the cap-product with [X] is the Poincaré duality homomor-
phism (in general not an isomorphism).

The Mather class can be defined by using polar varieties in the
following way: First of all, let us consider the local situation. For a
general flag D and an affine variety X™ C C™, we define

X < Gmm)xC™ I G(n,m)

o/ |v 1 m

Xiegg — X = cm
and we denote by 7 = m| 5 : X — G(n,m) the Gauss map.
Let us define the following analytic subspace of X [LT]:

Ni(D) = v o7~ H(Mk(D)) = v(3~(Mk(D)) N 0(Xreg))

If the flag D is good (sufficiently general), i.e. 7 is transverse to the
strata

My (D) = {W € G(n,m) : codim(W + Dp_gy;—1) =k + 1}
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of My (D), then the cycle Ni(D) is well defined and independent of the
choice of the (good) flag. In that case, it is called the polar variety
(Lé-Teissier).

If the flag D is good, and still in the local situation, let 7 : X —
Cn—%+1 be the restriction to X of a linear projection with kernel D,, 141,
then Ng(D) is the closure (in X) of the critical locus of the restriction

of ™ to Xyeg [LT].
In the projective case, the polar variety is the closure of

(5) {x € Xreg : Aim(T(Xreg) N Ln—k42) > k — 1}

where codimgm Ly, g2 =n — k + 2.
Now, if X™ C P™ is a projective variety, then (see (4) and [Pi2])

) = L0 (2R ) et n )
k=0

where £ = Opm(l)lx.

Theorem ([Z1]). Let X be a projective variety. Then the Mather
and Wu classes of X coincide.

The Mather classes can be also expressed in terms of conormal space,
notion which is strongly related to the one of polar variety (see [T1] and
[S]). The conormal space is the subvariety of the cotangent bundle T*M
of M defined as the closure of

T)*(M = {(x,{) eT*M :z € Xreg’£|Tx(Xreg) = O}

We denote by C(X, M) C PT*M the projectivization of the conormal
space and by 7 the projection 7 : C(X, M) — X, restriction of the
projection PT*M — M to C(X, M). By [S] (see also [PP4] and [Kel]),

we have
M(X) = (-1)""e(TM|x) N (c(£)" 1 N[C(X, M))).

The Mather classes do not verify the Deligne-Grothendieck axioms
that we recall below. That is the MacPherson’s motivation for introduc-
ing the so-called Schwartz-MacPherson classes.

2.3. The Schwartz classes (1965).

The first definition of Chern class for singular varieties was given
in 1965 by M.H. Schwartz in two “Notes aux CRAS” [Scl]. We briefly
recall her construction. Let X C M be a singular n-dimensional complex
variety embedded in a complex m-dimensional manifold. Let us consider
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a Whitney stratification {V,} of M [Wh] such that X is a union of
strata and denote by (K) a triangulation of M compatible with the
stratification, i.e. each open simplex is contained in a stratum.

As before, we denote by (K’) a barycentric subdivision of (K) and
(D) the associated dual cell decomposition. Each cell of (D) is transverse
to the strata. This implies that if d is a cell of dimension 2p = 2(m—r+1)
and V,, is a stratum of dimension 2s, then d NV, is a cell such that

dim(dNVy) =2(s—r+1)

This means that if d is a cell whose dimension is the dimension of ob-
struction to the construction of an r-frame tangent to M, then d NV,
is a cell whose dimension is exactly the dimension of obstruction to the
construction of an r-frame tangent to the stratum V.

This fact leads M.H. Schwartz to the very nice construction of a
stratified radial r-frame in the following way:

An r-frame v("), defined on a part A C M, is called a stratified
r-frame if at each point z € A, v(")(z) is tangent to the stratum V,
containing z. In the following we write v(") as (v("~1 4,), the last
vector being individualized.

Proposition ([Scl] [Sc2]). One can construct, on the 2p-skeleton
(D)?P, a stratified r-frame v("), called radial frame, whose singularities
satisfy the following properties:

(i) o) has only isolated singular points, which are zeroes of the
last vector v,. On (D)?P~1, the r-frame v(") has no singular point and
on (D)? the (r — 1)-frame v("=V) has no singular point.

(i) Let a € Vo N (D)* be a singular point of v(™ in the 2s-
dimensional stratum V,. If s > r — 1, the index of v at a, de-
noted by I(v(™,a), is the same as the index of the restriction of v(™)
to Vo, N (D)?P considered as an r-frame tangent to V,. If s =1 —1, then
I(v(M a) = +1.

(iii) Inside a 2p-cell d which meets several strata, the only singu-
larities of v") are inside the lowest dimensional one (in fact located in
the barycenter of d).

(iv) The r-frame v(") is “pointing outward” a (particular) regular
neighborhood U of X in M. It has no singularity on OU.

The procedure of the construction of radial frames is made by in-
duction on the dimension of the strata, using the properties of Whitney
stratifications for proving the existence of frames “pointing outward”
regular neighborhoods and satisfying property (ii). An r-frame already
known on a neighborhood of the boundary of a stratum is extended with
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isolated singularities inside (a suitable skeleton) of the stratum and then
extended with property (ii) to a regular neighborhood of this stratum.

Let us denote by 7 the tubular neighborhood of X in M consisting
of the (D)-cells which meet X. Let us recall that d is the elementary
(D)-cochain whose value is 1 at d and 0 at all other cells. We can define
a 2p-dimensional (D)-cochain in C?P(7,37) by:

> 1™, d) d.

deT

This cochain is a cocycle whose class lies in
H?®(T,0T) = H®(T, T\ X) = H**(M,M \ X),

where the first isomorphism is given by retraction and the second by
excision.

Definition ([Scl] [Sc2]). The p-th Schwartz class ¢?(X) is the
class obtained in H?*?(M, M \ X).

2.4. The MacPherson classes (1974).

Let us recall firstly some basic definitions.

A constructible set in a variety X is a subset obtained by finitely
many unions, intersections and complements of subvarieties. A con-
structible function o : X — Z is a function such that a~!(n) is a
constructible set for all n. The constructible functions on X form a
group denoted by F(X). If A C X is a subvariety, we denote by 14 the
characteristic function whose value is 1 over A and 0 elsewhere.

If X is triangulable, « is a constructible function if and only if there
is a triangulation (K) of X such that «a is constant on the interior of
each simplex of (K). Such a triangulation of X is called a-adapted.

The correspondence F : X — F(X) defines a contravariant functor
when considering the usual pull-back f* : F(Y) — F(X) for a morphism
f: X — Y. One interesting fact is that it can be made a covariant func-
tor when considering the pushforward defined on characteristic functions
by:

£1a) () = x(F 1 (y)n A4),

for all y € Y, and linearly extended to elements of F(X).
The following result was conjectured by Deligne and Grothendieck
in 1969 and proved by R. MacPherson [M2] in 1974.

Theorem ([M2]). Let F be the covariant functor of constructible
functions and let H.( ;Z) be the usual covariant Z-homology functor.



42 J.-P. Brasselet

Then there exists a unique natural transformation
¢« :F— H,(;7Z)
satisfying that c.(1x) = c*(X) N[X] if X is a manifold.

The MacPherson’s construction uses Mather classes and local Euler
obstruction that we briefly recall.

The notion of local Euler obstruction was defined originally by R.
MacPherson [M2] in 1974. It has been shown in [BDK] that the local
invariant of singularities which appear in the Kashiwara formula for the
index of holonomic modules [Ka] is equal to the local Euler obstruction.
Definitions equivalent to MacPherson’s have been given by several au-
thors. We recall the one in [BS]: Let v be a radial vector field with an
isolated singularity at x € V,,. Let B be a ball centered at z, small
enough to be transversal to every stratum V3 with V, C V3, and such
that x is the unique zero of v inside B. Using the Whitney conditions,
it is possible to prove that there is a canonical lifting v of v|spnx as a
section of E’|,,_1(33n x) (see [BS], Proposition 9.1). The obstruction to

the extension of ¥, on »~}(B N X), as a non-zero section of E, evalu-
ated on the corresponding fundamental class, is an integer denoted by
Eu,(X).

The local Euler obstruction is a constructible function Euyx, con-
stant on each stratum of the Whitney stratification. The relation be-
tween the local Euler obstruction and the polar varieties is given by Lé
and Teissier [LT]:

Theorem ([LT]). For a sufficiently general flag D in C™, the lo-
cal Euler obstruction is expressed as

n—1
Bug(X) = Y (~1)" " my(Nn1-4(D))
1=0

where m4(C) denotes the multiplicity of C at x.
For a Whitney stratification, we have the following lemma:

Lemma ([M1]). There are integers n, such that, for every point
x € X, we have:

ZnaEum(Vg) =1.

Definition ([M1]). The MacPherson class of X is defined by

(X)) =c(1x) = Y N iucmr(Va)
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where i denotes the inclusion V,, — X.

Note that we have the following relation: ¢c™ (X) = c,(Euy).
In [BS] was proved the following result:

Theorem ([BS]). The MacPherson class is the image of the Sch-
wartz class by the Alerander duality isomorphism

H2m=r+D) (M M\ X) = Hyr_1y(X).

One of the consequences of this result is that the (r —1)-st MacPher-
son class ¢,_1(X) is represented by the cycle

Z Iw™, d(c)) o
ceX
where dim o = 2(r — 1) (see (1)).
The following theorem gives an expression of the MacPherson class
in terms of Segre classes (see 2.5).

Theorem ([A3]). If X is a hypersurface in a nonsingular variety
M andY is its singular scheme, then

eu(X) = (TM) N s(X \ Y, M)

Following Sabbah [S] (see also [PP4]), we obtain a formula giving
the Schwartz-MacPherson classes in terms of characteristic cycles. De-
noting by PCh(1x) C T*M the characteristic cycle associated to the
constructible function 1x on M, we have (see the analogous formula for
the Mather classes):

cx(X) = (=1)" e(TM|x) N7 (c(£L)"' N [PCh(1x)]) .

2.5. The Fulton classes (1984) ([Fu] exemple 4.2.6 (a)).

If X is a proper subvariety of a variety M, the Segre class s(X, M)
of X in M is the class in A,(X) defined as follows (see [F|, §4): the
normal cone to the closed subscheme X in the scheme M is defined as

C = CxM = Spec (ZI" /I’“)
i=0

where 7 is the ideal sheaf defining X in M. We denote by P(C) the
projectivized normal cone and p the projection p : P(C) — X. Then

s(X, M) = p.(c(OQ) N [P(O)).

i>0
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When X is regularly imbedded in M, C = Nx M is the normal vector
bundle, and

s(X, M) = ¢(Nx M)~ n[X].

The following Pliicker formula, due to R. Piene, gives the relation
between polar varieties (hence Mather classes) and Segre classes:

Theorem ([Pil]). Let X be an hypersurface of degree d in P™
and let L = Opm(1)|x. Then the polar variety N is given by

k-1
[Ne] = (d - D*e (L) n[X]+ ) (’:) (d - 1)c*(L)* N sp—i(Xsing, X).
1=0

The Fulton classes are defined by:

Definition ([Fu]). Let X be an algebraic scheme which can be
imbedded as a closed subscheme of a non-singular variety M. We define
the Fulton class of X in A.(X) by the formula

¢F(X) = e(TM|x) N s(X, M),

where ¢(T'M|x) is the total Chern class of the tangent bundle of M
restricted to X and s(X, M) is the Segre class of X in M.

This definition is independent of the choice of the embedding.
If X is a local complete intersection, then the normal bundle of X,
in M extends canonically to X as a vector bundle Nx M and

(6) cF(X) = e(TM|x)e(Nx M)~ n[X] = c(rx) N [X].

Here 7x = TM|x — NxM denotes the virtual tangent bundle on X,
defined in the Grothendieck group of vector bundles on X.

Let M be a non-singular compact complex analytic variety of pure
dimension n + 1 and let L be a holomorphic line bundle on M. Take
f € H°(M, L), a holomorphic section of L, such that the variety X of
zeroes of f is a (nowhere dense) hypersurface in M. Then, the Fulton
class of X is

cF(X) = c(TM|x — L|x) N [X].

In [Al] P. Aluffi defines a notion of “thickening” of the scheme X
along its singular subscheme Y: if Zy denotes the ideal of Y and Z
the locally principal ideal of X, we denote by X* the subscheme of M
defined by the ideal Z.Z%. Then the Schwartz-MacPherson class and the
Fulton class satisfy:

(X)) =cr(X7Y)  F(X)=cF (X
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2.6. The Fulton-Johnson classes (1980) ([FJ], [Fu] exemple
4.2.6 (c)).

The definition (6) can also be generalized to arbitrary singular vari-
eties in another way : for any coherent sheaf F on an algebraic scheme,
one defines the Segre class s(F) in the group A.(X) of cycles modulo
rational equivalence as follows: Let P(F) = Proj(Sym(F)), with pro-
jection p : P(F) — X. Let us denote by Oz(1) the canonical invertible
sheaf which is the universal quotient of p*(F). If the support of F is X,
define its Segre class s(F) in A.(X) by the formula

S(F) = puo| D NOx(1) n[PF)

i>0
= pu (c(O£(-1))" N [P(F)))

For an arbitrary coherent sheaf F on X, define s(F) to be s(F @ &),
where £! is the trivial locally free sheaf of rank one on X.

Definition ([FJ]). If X is an algebraic scheme which may be
imbedded in a non-singular scheme M, we define the Fulton-Johnson
class of X in A.(X) by the formula

(X)) = o(TM|x) N s(N),

where ¢(T'M|x) is the total Chern class of the tangent bundle of M
restricted to X and s(N) is the Segre class of the conormal sheaf of the
embedding of X in M.

Remark. In the case of local complete intersection, the Fulton
and Fulton-Johnson classes coincide and are equal to

C(TM'X —NxM)ﬂ[X].

§3. The Milnor classes.

The comparison between the Schwartz-MacPherson classes and the
Fulton-Johnson classes can be viewed in two ways, which coincide in
some classical situations. We observe that, in the case of isolated sin-
gularities, the difference is given by the Milnor numbers at the singular
points. On the other hand, for a radial vector field tangent to the singu-
lar locus and with isolated singularity at a singular point, the difference
between the “Schwartz” (classical) index and the “virtual” (GSV)-index
is the Milnor number at this point. This observation motivates defini-
tion 2 below.
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3.1. Definition and main properties of Milnor classes.

The following general definition is given by the corresponding au-
thors in particular cases.

Definition 1 ([A3], [BLSS1], [PP4], [Y2]). The difference class
pe(X) = (=1)"("(X) — (X))
is called the Milnor class of X.

Let us consider the following situation (H): X is an n-subvariety
in the m-manifold M defined by a regular section, i.e. a holomorphic
section generically transverse to the zero section, of a holomorphic vector
bundle E (of rank k = m — n) over M [Su2]. We set N = E|x. The
virtual tangent bundle of X is denoted by

TX :TM|X\N

Let us consider a compact connected subset S C X (in particular
a component of Xng) and a neighborhood U of S in M such that
UNX—S C X,eg. For each r-frame v tangent to X;ez On oUNXNDp)
with 2p = 2(m — r + 1) (see §2.3), we can define:

a) the localized Schwartz (usual) class Sch(v(™,S) € Hy,_1)(S)
which computes the obstruction to the extension of v(") as a
stratified r-frame inside U N X N D®P)_ It is the contribution of
S to cy—1(X) € Hy(r—1)(X) ([BLSS1], Theorem 2.13),

b) the localized virtual class Vir(v("),S) € Hyr_1)(S) which com-
putes the “obstruction to the extension of v(" as linearly inde-

pendent sections of 7x”, i.e. which is the contribution of S to
cr-1(Tx) € Hyr—1)(X) ([BLSS1], Theorem 5.9).

Definition 2 ([BLSS1]). The (r — 1)-st localized Milnor class of
X at a compact component S of X, is defined by

pr-1(X,8) = (=1)""1(Sch(v™, 8) — Vir(®™,S))  in Hy(_1)(S)
The total Milnor class is the sum over the components of Xging:
pr-n(X) = D (a)ebr-1)(X, Sa) € Haro1)(X)
Sacxsing
where i, denotes the inclusion S, — X.

The Milnor class p.(X) is supported on the singular locus of X.
When k£ =1 and r = 1, po(X,S) is the Parusinski generalized Milnor
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number [Pal. Also, if S is a point p and X a complete intersection near
p, then po(X,S) is the usual Milnor number.

The two definitions coincide in the case of local complete intersec-
tions, in particular in the case of hypersurfaces.

In the case r = 1, i.e. v(1) = v, and for an isolated singularity p, the
Schwartz index is the usual index and the virtual index coincides with
the GSV-index (see [GSV], [LSS], [SS]). The difference of these indices
is the Milnor number of X at p:

SCh(’U,p) - Vir(vvp) = (_1)n+lﬂ(X’p)'

Theorem ([SS]). In the situation H, suppose that X is compact
and the singularities of X are isolated points {x;} where X is a local
complete intersection. Then

po(X) = (1)) " u(X, z;)[z:] € Ho(X)

i=1
Theorem ([Su]). In the previous situation, p;(X) =0 fori > 0.

This result was also proved by [Pa] and [PP] for hypersurfaces with
arbitrary singularities. It is generalized in the following way:

Theorem ([BLSS1| [BLSS2]). Let X be a subvariety of a complex
manifold in the situation H, if X is compact, then we have, for each
r=0,...,n—1:

cr(X) = ¢ (TM|x — N) + (-=1)" Ty, (X) in Hor(X).

In other words, the difference between the total Schwartz-MacPher-
son class ¢.(X) of X and the total virtual class c.(T'M|x — N), regarded
in homology, is the sum over the connected components of Sing(X) of
the “total” localized Milnor classes p.(X,S) = &7 ui(X, 9).

A similar formula for hypersurfaces is given by Aluffi (see [Al] for
the notations):

Theorem ([A3]). Let X C M be a hypersurface with its singular
subscheme Y and £ = O(X). Then we have

cx(X) = (X)) + (D)™ X 0 (ue (Y)Y ©m L),

where pp(Y) = c(T*(M) ® L) N s(Y, M).

We have the following Lefschetz-type formulae for the Milnor class:
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Theorem ([BLSS1] [BLSS2]). Let us denote by £ the complex di-
mension of S and let H be a complex (m — £)-dimensional plane trans-
verse to S in M.

a) If X is a hypersurface in M, defined by a holomorphic section

of a holomorphic line bundle E, and S a compact component of Xing,
then

pr—1(X, 8) = (-1)*u(X N H,p) - [e(S)e(E) ' 0 [S]
b) Ifr =£¢+1 and k is arbitrary, then
pr—1(X, 8) = (-1)*u(X N H,p) - 9]
In the case where u(X N H,p) = 1, the formula (a) is proved in [A3].

3.2. Description in terms of constructible functions [PP4].

Consider the function x : X — Z defined by x(z) := x(F%), where
F, denotes the Milnor fibre at x and x(Fy) its Euler characteristic.
Define also the function p: X — Z by p = (-1)""}(x — 1x).

Fix any stratification S of X such that pu is constant on the strata of
S, for instance any Whitney stratification of X. The topological type of
the Milnor fibre is constant along the strata of any Whitney stratification
of Z. Let us denote the value of 1 on the stratum S by ugs.

Let

oS)=ps~ Y o)

S'#8,5CS’
be the numbers defined inductively on descending dimensions of S.

Theorem ([PP4]). We have

pe(X) = D alS)e(Lix) ™! N (i x)xex(S) = e(Llx) ™' Newlp),
Ses

where i35 x S — X denotes the natural inclusion.

The formula was conjectured in [Y2| when X is projective. Under
this last assumption, [PP2] proved earlier that

[ 1) =X al8) [ elzln ™ ned)

Ses
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3.3. Description in terms of divisors [A3].
Let B = BlyM — M be the blow-up of M along the singular

subscheme Y of X. Let X and Y denote the total transform of X and
the exceptional divisor in B, respectively.

Theorem ([A2]). Letw:X — X be the restriction of the blow-up
to X. Then

_ (X1 -]
c(X) =c(TM|x) N, (1+X —5 )
where, on the right hand side, X and Y mean the first Chern classes
of the line bundles associated with X and Y, i.e. those of n*(L|x) and
Op(—1), the latter being the canonical line bundle on B.

Let us denote by X’ the proper transform of X, the following for-
mulae are also due to Aluffi [A3]

M (X) = eulBux) = o(TMlx) 1 (15 )

F(X) = «(TM|x) N, (1[;})]26)

and we deduce [PP4]:

(X)) = (=1 Le(TM|x) N s ((1 n X)([ﬂ —— y)) .

3.4. Specialization (the hypersurface case) [PP4].

Suppose that X = f~1(0) where f is a section of the line bundle
L over M. Suppose that there exists a section g € H°(M, L) such that
g~ 1(0) is non-singular and transverse to the strata of a (fixed) Whitney
stratification of X. For t € C denote f; = f — tg and set X; = f; *(0).
We denote by X the following correspondence in M x C:

X ={(z,t) e M x Clx € X;}.

Denoting by p : X — C the restriction to X of the projection onto the
second factor, then X; = p~1(t) for t € C and X = X,. Denote by

or : F(X) - F(X)
the specialization map on constructible functions and

o Ho(X:) — Hio(X)
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the specialization map of homology classes (see [Ve|). For ¢ € F(X) and
t sufficiently small, one has ogc«(p|x,) = c«(oFyp).
The Fulton class ¢/'(X) is given, in terms of MacPherson class as:

"'(X) = cu(or(1x))

and the Milnor class as:

[A1]
[A2]
[A3]
[A4]
[BS]

[BLSS1]

[BLSS2]

[BDK]

[Ch]
[Eh]

[Fu]
[FJ]

[Gal]

[Ga2]

px(X) = e(op(1x) — 1x).
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§0. Introduction

The so-called Chern-Schwartz-MacPherson class (or transformation)
is the unique natural transformation from the covariant functor of con-
structible functions to the integral homology covariant functor, satisfying
a certain normalization condition (see [14], and also [3], [10]. [20].) The
bivariant theory has been introduced by W.Fulton and R.MacPherson
[9], and they conjectured (or posed as a question) the existence of a
Grothendieck transformation from the bivariant theory of constructible
functions to the bivariant homology theory in the category of complex
algebraic varieties, which specializes to the original Chern-Schwartz-
MacPherson transformation. The conjecture has been solved by Brasse-
let for a certain reasonable category [2] (see also [19] and [24]). In this
paper we report some consequences of this Brasselet’s theorem, concern-
ing bivariant constructible functions (i.e., constructible functions satis-
fying the local Euler condition) and some related results and we also
pose some problems.

§1. Constructible functions and Chern-Schwartz-MacPherson
classes

A constructible set of an analytic variety X is obtained from ana-
lytic subvarieties of X by a finite number of unions, intersections and
complements. A constructible function on a compact complex analytic
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variety X is an integer-valued function on X, o : X — Z, such that for
each integer n, a~!(n) is a constructible set of X. We say that a cellular
decomposition (K) of X is a-adapted if « is constant on the interior of
each cell o of (K), the value beeing denoted by a(c).

Let F(X) denote the abelian group of constructible functions on X.
Any constructible function can be expressed as a (finite) linear combi-
nation of the characteristic functions Iy ’s where W are reduced and
irreducible subvarieties of X. Clearly the correspondence F assigning to
each variety X the abelian group F(X) becomes a contravariant functor
when we consider the usual (functional) pull-back f* : F(Y) — F(X)
for a morphism f : X — Y; ie., f*(a)(z) := a(f(z)). An interest-
ing feature of the correspondence F is that it can be made a covariant
functor when we consider the following pushforward:

£w) () = x(f () n W),

which is linearly extended with respect to the generators 1yy. Here
X(F') denotes the topological Euler-Poincaré characteristic of the space
F. The proof of the covariant functoriality of F requires a stratification
of the morphism f (see [14], [21]).

Deligne and Grothendieck (in 1969) conjectured the following in the
algebraic category:
Let F be the above covariant functor of constructible functions and
H.( : Z) be the usual Z-homology covariant functor. Then there exists
a unique natural transformation

Ci:F—-H. :2Z)
such that (normalization condition) if X is smooth, then
Ci(1x) = c(Tx) N [X],

where ¢(T'x) is the total Chern cohomology class of the tangent bundle
Tx and [X] is the fundamental homology class of X.

The conjecture was solved by MacPherson [14] (in 1974), using
Chern-Mather classes, local Euler obstructions (which are constructible
functions) and graph construction method. The folklore was that the
above conjecture or theorem now was true in the analytic category also,
and indeed in the analytic category MacPherson’s proof works mutatis
mutandis, except for the analyticity of the graph construction. However
this analyticity was finally resolved affirmatively by M. Kwiecinski in
his thesis [13]. Thus the Chern-Schwartz-MacPherson transformation
C, : F — H,( : Z) can be considered in both the algebraic and ana-
lytic categories. The total homology class Cx(1x) is called the Chern-
Schwartz-MacPherson class of X. To avoid some possible confusion,
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we call the above transformation C, the Chern-Schwartz-MacPherson
transformation, emphasizing that it is a transformation. In fact, before
the above conjecture was made M.-H.Schwartz [20] had already con-
structed characteristic cohomology classes of a (possibly singular) ana-
lytic variety embedded in a complex manifold, using the notion of radial
vector field. For a given embedding X in a manifold M the Schwartz
classes lie in H% (M) = H*(M,M — X). It turned out that they are
isomorphic to MacPherson’s classes via Alexander duality isomorphism
(see [3]).

§2. Bivariant theory of constructible functions

Let a be a constructible function on X. For A C X, we define

x(4;a) = Zn X(Aﬂa"l(n)),

nez

which is the Fuler-Poincaré characteristic of A weighted by o (“ pon-
dérée par o”) ([2], [14], [19]). With this notation, the pushforward
f«a of the constructible function a under a morphism f : X — Y is
expressed as follows:

(fea)(y) == x(F ' (y);0),

i.e., the Euler-Poincaré characteristic of the fiber f~1(y) weighted by a.
Put it in another way, using the Chern-Schwartz-MacPherson transfor-
mation C,, it can be rewritten as follows:

)= [ | Clel)

the degree of the 0-dimensional component of the total Chern-Schwartz-
MacPherson class of the constructible function a|f-1(,) on the fiber
f~Y(y). This simple interpretation leads us to a naive question of what
one could say about these classes Ci(c|s-1(y)) parameterized by the
target variety Y. It turns out that for this we need the bivariant the-
ory of constructible functions which has been introduced by Fulton and
MacPherson [9].

For a technical reason, the category which we treat is the following
one, denoted by SC:
(i) The objects Obj(SC) consist of compact complex analytic varieties
which are embeddable into smooth manifolds, and
(ii) The morphisms Homsc(X,Y) consist of analytic maps f: X — Y
which are cellular, i.e., with (K) and (L) being cellular decompositions
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of X and Y respectively, the image of each cell of (K) is a cell of (L)
and the restriction of f to the interior of each cell is constant rank.
At the moment it is not known whether any analytic map is cellular.
Conjecturally it would be so.

In the following “cell” will always mean a closed cell, the interior of
o will be denoted by ¢° and we define the star St°c as the set of cells
which meet the interior of o.

In this category, the pushforward can be written as follows: Given
cellular decompositions (K) and (L) of X and Y respectively, such that
(K) is a-adapted and f cellular, then

(2.1.1) (f)y) = Y (-1)*™%a(o)

onf=1(y)#¢

where dimy o denotes the relative dimension of ¢ € (K). Here we note
that the above formula (2.1.1) is due to the fact that the topological
Euler-Poincaré characteristic of a CW-complex can be also defined to
be the alternating sum of the number of cells of a (in fact, any) cel-
lular decomposition of the CW-complex, and therefore that the Euler-
Poincaré characteristic weighted by « is equal to the alternating sum of
the number of cells multiplied by the weights “a”.

Definition (2.1). Let a be a constructible function on X and let
f : X — Y be an analytic map. We say that « satisfies the local Fuler
condition with respect to f if for any cellular decompositions (K) and (L)
of X and Y respectively, such that (K) is a-adapted and f is cellular,
and if for any z € X, z € 0°, 0 € (K), the following equality holds

a(z) = x(St°% N f7(y); @)
where y € St°f(o) is arbitrary.

Using the values of a on the cells of (K), the previous formula can
be written

(2.1.2) alz)= Y. (1% 7o)
o/ CSt%c
o' nf—l(y)#¢

Remark 2.2. There is another definition of local Euler condition
without refering to the cellular decomposition of a morphism (see [19]):
a € F(X) satisfies the local Euler condition with respect tof if for any
point z € X and any local embedding (X,z) — (C¥,0) the following
equality holds

a(z) = x(Be N f1(2); q),
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where B, is a sufficiently small open ball of the origin 0 with radius €
and z is any point close to f(z).

Definition (2.3). The bivariant group of constructible functions is
defined, for every morphism f: X — Y, by:

F(X 7, Y) := {a € F(X) | a satisfies the local Euler condition
with respect to f}.

From this definition we see that
F(X i, X) ={a € F(X)|a is locally constant}.

This fact will be used later.

For simplicity a constructible function satistying the local Euler con-
dition shall be called a bivariant constructible function. If 1x satisfies
the local Euler condition with respect to the morphism f: X — Y i.e,,

1x e F(X N Y'), then the morphism f is called an Euler morphism.
We can define the following three basic operations on F(X — Y),

which are called bivariant operations.

(BO-I) (Product operations): For morphisms f : X - Y andg:Y — Z,

the product operation

o:FX L y)oFy % 2) - Fx 2L 2)
is defined, for a € F(X S, Y) and 8 e F(Y % Z), by:
(a©f)(z) := alz) - B(f(2)),

ie, a®f:=a- f*B. (To avoid some confusion, the symbol © is used.)
(BO-II) (Pushforward operations): For morphisms f : X — Y (proper)
and g : Y — Z, the pushforward operation

fo F(X 2 2) S FY - 2)
is defined, for a € F(X EIR ), by:
(fra)(y) = x(F(v); @),

which is the same as one described in §1.
(BO-III) (Pull-back operations): For a fiber square

’

x 2., x
fl lf
9

Y — Y,
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where X' = Y’ x4y X is the fiber product and f’ : X’ — Y’ and
g’ : X' — X are the canonical projections, the pull-back operation

¢ FX L Y)-FX LY
is defined, for & € F(X -5 Y), by:
g'a:=¢"a,

which is the usual (functional) pull-bak.
It is known that these three operations are well-defined, and we give
a proof of this fact for the sake of completeness.

Proof of well-definedness.

Let (K), (L) and (M) be any cellular decompositions of X, Y and
Z respectively adapted to the corresponding constructible functions and
such that the corresponding morphisms are cellular.
(BO-I): Let x, be a point of the interior of o, € (K). What we want to
show is that

a®f(z,) = (a-f*B)(0) = a(z0)B(f (o)) = X(St°0oN(gof) ™ (2); a®P)
where z € St°(go f)o,. We will denote by y a point in St°f(o,) and by
To = f(0,), so z € St°g(7,). We start with the last term:
X(St°0, N (go f)"H(2); 2 © B)
= Y. (-1)F™roa(o) - (—1) e S B(f(0))

oCSt%o,
on(gof)~1(z)#¢

_ Z (__1)dimg 7')8(7_) . Z (_1)dimf ”a(a)

TCSt%To T=f(o)

Tng—1(z)#¢ oCSto0,
onf—l(y)#¢
= ) (-D)¥TB(r) - x(St°0, 0 f T (y); )
s v
= B(f(z,)) - afzo)
= a0 f(xz,).

QE.D
(BO-II): We must prove that, if y € 7° with 7 € (L), then
(fra)(y) = x(St°7 N g7 (2); fu)

for any z € St°g(7).
Denoting h = g o f, let us remark the following properties:
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Uo7t nster) = |J h7l(z) NSt
flo)=T

Let ¢’ be a cell of (K) such that f(o’) C St°r, then
A(d’,7) ={o € (K) | o' C Sto, f(o) =T},

is the subset of the face o’ N f~1(7) of ¢’ consisting of cells whose image
is 7. Its restriction to any fiber f~1(y), y € 7° is a cell whose Euler-
Poincaré characteristic is

(231)  x(@'nfl)= ) (-nFme=1

oc€A(o',T)

This equality is a crucial observation which makes the proof of BO-II
“the most fun” (cf [9, §6.1.2, the last two lines of p. 61]). We have:

(fe)(¥) = x(f ' (y);0)

= Y (-1)¥mro0(0) (by 2.1.1)
oNfT(y)#4

— Z (_l)dimf o Z (_l)dim;L a’a(a_l) (by 212)
onf-Y(y)#¢ o’/CStoo

o'Nh=1(z)#¢

— Z (_]-)dim;L a'( Z '(_l)dimf a)a(o,/)

S e redlenm)
= Y (-1ma(o) (by 2.3.1)
o/ CSto%co

o/nh—1(z)#¢

— Z (_1)dimg f(O'I)(_l)dimf a'a(o,l)

o/ CSt%¢

o'nh—1(z)#£¢
- 3 (X comeaw)
r'cStoer f(a’):’r’

'ng—1(z)#£¢

= > ()T
'cstor
m'ng—1(z)£¢

= Y (=TT (Rae)(r)

r'CcSstor
m'ng—1(z)#£¢

= x(Stor N g7M(z); fu). QED
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(BO-III): Let 2’ € 72 be a point in X’. Then for any y’ € St°f’(7,) in
Y’, letting 0, = ¢'(7,) and y = g(y’), we have

XS0 f 7Y = Y (-)*™ Tga(n)
Tﬂ;’c_slt(ytc),#¢
= ). (F)TrTal(n)

TCSt%T,
rf 1y )#e

— Z (_1)dimf aa(o_)

oCSt%0,
onf—1(y)#¢

= a(d'(z)) = (g")(2").
QED

It is easy to see that these bivariant operations enjoy the following
seven properties.
(B-1) Product is associative : for a diagram X Ly L.z

aecFX -LY), BeFY % 2) and vy € F(Z - W),

h>Wand

(@OB)®y=a06(B07)cFX X w).

(B-2) Pushforward is functorial: for a diagram X Ly Lzt

and o € F(X hef, W),

> W

(9)+(@) = guful@) € F(Z 1 W),

(B-3) Pullback is functorial: for a double fiber square

X" L, X! g_, X
Ls” Ly lf
h g

Y// RN Y/ - Y
and a € F(X -1 1),
(gh)*(a) = h*g*(a) € F(X" 5 vm).

(B-4) Product and pushforward commute: for a diagram X Ly,
ZL»WandaEIF(X—g—f»Z),,BEIF(ZLW),

fo(@© B) = fu(@) @ B F(Y 2% W),
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(B-5) Product and pullback commute: for a double fiber square

X — X
L Lrf

Y — Y
g lg

h
Z! — Z

and @ € F(X 15 Y), B e F(Y -% 2),

h*(a © B) = k() ® k*(8) € F(X' 24 77).

(B-6) Pushforward and pullback commute: for a double fiber square

X — X
Lf L

Y — Y
ld lg

h
Z! — Z

and o € F(X 2L 2),

FLN* (@) = b f.(@) € F(Y' £ 2).
(B-7) Projection formula: For a fiber square

7

x 2, x

L f s
vy 2, v,

a morphism Y -5 Z, a € F(X S, Y)and g e F(Y’ b, Z),

g.((g"a) © B) = a © g.(B) € F(X 2L 7).

61
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Before finishing this section we note that the well-definedness of the
pushforward (BO-II) implies the following

Proposition (2.4). Let a € F(X N Y), then the pushforward

f«a is a locally constant function onY .

This can be seen as follows: Consider the pushforward on the fol-
lowing diagram:
x Ly Yy
Indeed, for a € F(X L V) = F(X 2% v)
fia e FY L v),
which implies that f.« is locally constant since

F(X A, X) = {a € F(X)|a is locally constant}.

In other words the local Euler condition posed on a constructible func-
tion may be a right local condition to guarantee such a strong require-
ment that the Euler-Poincaré characteristic of the fibers weighted by «
are locally constant. This is certainly a strong requirement for a map.

§3. Bivariant Chern classes

In general, a bivariant theory B on a category C to abelian groups
is an assignment to each morphism

x-Ly
in the category C an abelian group
Bx Ly

which is equipped with the three basic operations such as in (BO-I,
BO-II, BO-III) above and satisfy the seven properties as in (B-1)-(B-7).

Let H(X — Y') be the bivariant homology theory (see [2] and [9]).
For a morphism f : X — Y and for any integer i, HY(X — Y) :=
H*F2™(Y x M,Y x M — ®(X)), where ¢ : X — M is an embedding into
a smooth manifold of real dimension 2m and ® := (f,¢) : X - Y x M is
an embedding. The definition is independent of the embedding ¢ : X —
M. Then as in the case of the bivariant constructible function theory
the three basic bivariant operations can be defined for the bivariant

homology theory, namely we have the following (for details see Fulton-
MacPherson’s book [9]):
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(BO-I:H) (Product operations): For morphisms f: X - Y andg:Y —
Z, the product operation

on:HX L v)oHY % 2) - H(X 2 2)

is defined.
(BO-II:H) (Pushforward operations): For morphisms f: X — Y (prop-
er) and g : Y — Z, the pushforward operation

fo H(X 2L 2y S HEY % 2)

is defined.

(BO-III:H) (Pull-back operations): For a fiber square
x 2. x
Ly Ls
N

the pull-back operation
g HX Ly s HX L YY)

is defined.

Fulton and MacPherson [9] conjectured (or posed as a question )
the existence of a bivariant version of the Chern-Schwartz-MacPherson
transformation C, : F — H,.( : Z), i.e., the existence of Grothendieck
transformation (or “bivariant Chern class”), in the category of complex
algebraic varieties. Brasselet [2] proved this conjecture in the category
SC defined in §2. Also C. Sabbah [19] constructed a bivariant theory
of cycles and J.Zhou [24] proved that Sabbah’s bivariant Chern classes
defined by bivariant cycles are the same as Brasselet’s bivariant Chern
classes.

Theorem (3.1).(Brasselet [2, III, Théoréme]) Let SC be the cate-
gory to be considered. There exists a Grothendieck transformation

~v:F - H
such that if X is a smooth variety, then
v(z) = c(TX) N [X],

where w: X — pt is a map to a point pt and 1, := 1x € F(X = pt).
Namely, for each morphism f : X — Y, 7 gives rise to a homomorphism

v:FX Ly -Hx-Lv)
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such that 7y preserves the basic three operations, i.e., (i) v(a ® B) =
v(a) ©u v(B), (i) v(fva) = fuy(a) and (iii) v(f*a) = f*y(a).

Remark 3.2 The uniqueness problem of « is still open. We will
discuss it a little later in the next section (Remark (4.10)).

Brasselet constructs the above transformation in such a way that
the Chern-Schwartz-MacPherson classes i, Cy(a|s-1(,)) of the fibers
weighted by a are locally constant, where i, : f~1(y) — X is the inclu-
sion map. Of course this is a much stronger requirement than the local
constancy of the Euler-Poincaré characteristic of the fibers weighted by
the constructible function «. In fact as a consequence of the above
Brasselet’s theorem we can say more and we see that this quite strong
requirement is a necessity for a bivariant constructible function.

Theorem (3.3). (1) Let a € F(X 1, Y) and let V1,V, be subva-
rieties of Y such that the Chern-Schwartz-MacPherson classes of V3
and V3 are homologous in Y, then the Chern-Schwartz-MacPherson
classes Cy(af-1(vy)) and Cs(a|f-1(v,)) of the inverses f~1(V4), f~1(Vz)
weighted with o are also homologous in X. Namely, if

1.Cx (V1) = 12, Cs(V2)
with ij : V; = Y being the inclusion maps (j = 1,2), then

e1:Culalf-1(v1)) = e2:Cs(@f-1(vy))

with e; : f~1(V;) — X being the inclusion maps (j = 1,2).

(2) In particular, if o € F(X 1, Y'), then the Chern-Schwartz-Mac-
Pherson classes iy, Ci(a|s-1(y)) of the fibers weighted by a are locally
constant, where i, : f~1(y) — X is the inclusion map.

Corollary (3.4). Let f : X — Y be an Fuler morphism. Then if
Vi, Vo be subvarieties of Y such that the Chern-Schwartz-MacPherson
classes of Vi and V5 are homologous in Y, then the Chern-Schwartz-
MacPherson classes C(f~1(V1)) and C(f~1(V2)) of the inverses
(), f~Y(V») are also homologous in X. Namely,. if

115Ce (V1) = 2, Cs(V2)
with i; : V; = Y being the inclusion maps (j = 1,2), then

e1xCu(f 71 (V1)) = €2.Cu(f 1 (V2))
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with e; : f~1(V;) — X being the inclusion maps (j = 1,2). In particular,
the Chern-Schwartz-MacPherson classes i, ,C(f~(y)) of the fibers are
locally constant. '

The proof of Theorem (3.3) goes as follows; for the sake of later use
we give a detailed proof.

Proof of Theorem (8.3). The constructible function a induces the
following homomorphism,

of 1 F(Y) - F(X)
defined by
oF(B):=a0B=a- fB

Then we can get the following commutative diagram:
all"‘
FY) — F(X)
(3.3.1) c. | | c.

a]HI

H.(Y;Z) —— H(X;Z)

Eere off : H(Y;Z) = H(Y — pt) — H.(X;Z) = H(X — pt) is defined
Yy

ol (a) := 7(a) On ,

where v : F — H is a Grothendieck transformation and O : H(X 1,
Y)® HY — pt) — H(X — pt) is the bivariant homology product
operation. Here it should be noted that since the uniqueness of the
Grothendieck transformation =y is not known yet the homomorphism aﬂv']I
could depend on the transformation v but that our statement is inde-
pendent of the choice of 7. Of course the commutativity of the above
diagram follows from the fact that the Grothendieck transformation pre-
serves the three basic operations. First note that for a morphism X — pt
the Grothendieck homomorphism v : F(X — pt) — H(X — pt) is noth-
ing but the Chern-Schwartz-MacPherson transformation C, : F(X) —
H.(X;Z). Then the commutativity can be seen as follows

Cudf(B) = Ci(a@p)
= (a0p)
= v(a) Orv(B)
= (o) Om C«(B)
= oy C.(B).
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We call the commutative diagram (3.3.1) a Verdier-type Riemann-Roch
associated with the constructible function a(cf. [22]). To finish the
proof of (1), we just apply this Verdier-type Riemann-Roch to two con-
structible functions 1y,, 1y,. First observe that for any subset A C Y
of(lg) =a- f*Ug=0o-Uj104) = esa|f-104), Where e : f71(4) - X
is the inclusion map. Now suppose thatV;, V5 are subvarieties of Y such
that the Chern-Schwartz-MacPherson classes of V; and V5 are homol-
ogous in X, i.e, 91,C:(V1) = 12,Cx(V2) with i; : V; — Y being the
inclusion maps (j = 1,2). Then we have

er.Culalf-1v)) = Cilerialf-11))
= C*aF(llvl)
= a(C.(1v))
= all(i1.0. (V1))
= a],}yﬂ(ig*C*(Vg)) (since 11,Cx (V1) = 12,C(V2))
= of(Ci(1y,))
= C*aF(]lV,_,)
Ci(e2.alf-1(1y))
= e2.Cu(alf-1(vy))-

Thus (1) is proved and (2) is a special case of (1). Q.E.D

Remark (3.5). It follows from the definition of Eulerness that any
local trivial fibration is always Euler. But Eulerness does not imply local
triviality, as the following example (given by T. Ohmoto) shows. Let
X ={(z,y,2) € C3|z® + y* + 2 = 0} U {the z-axis} and let f: X — C
be the restriction to X of the projection p : C3 — C to the third factor
C. The Milnor fiber at the origin is homotopic to the disjoint union of
circle (i.e., the vanishing cycle ) and one point, thus the Euler-Poincaré
characteristic of a nearby fiber in a small neighborhood of the origin is
equal to one. Hence at the origin it satisfies the local Euler condition,
but it is not a local trivial fibration. At every point of X off the origin the
map f is a local trivial fibration. Thus f is Euler but not a local trivial
fibration. The map f is not proper, but the example can be modified
into the following example of a map between compact varieties. Let us
consider the following surface E in P? x P!:

E: = {([zo:T1:32],[wo:wi]) € P* x P!

woTs + (wo + wy)z3 + wiz2 = 0}.
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Let
X:=EU(1:0:0]xPHu(0:1:0] xP)u([0:0:1] x Ph).

and let f : X — P! be the restriction to the subvariety X of the pro-
jection P2 x P! — P! to the second factor. Then just like the above
example, at the three distinguished points ([1 : 0 : 0],[0 : 1]),([0 : 1 :
0],[1:-1]),([0:0:1],[1:0]) the Milnor fiber of f is homotopic to the
union of the circle and one point and otherwise f is locally trivial off
these three points. Hence f : X — P! is Euler but not a local trivial
fibration.

In general, some other well-studied morphisms, such as flat, open,
Ay, and triangulable morphisms, are not Euler. For example, consider
a Kodaira’s elliptic surface [12], i.e., a surjective holomorphic map

f:8—-C

of a smooth compact complex surface S onto a smooth compact complex
curve C such that its generic fiber is a smooth elliptic curve and that
it has only finitely many singular fibers. This Kodaira elliptic surface
f : S — C is not Euler, because the topological Euler-Poincaré char-
acteristics of the fibers are not constant; the topological Euler-Poincaré
characteristic of the generic fiber is zero but that of the singular fibers
are not zero. On the other hand, it follows from [11, §4] that the map
f S8 — C is flat since S and C are smooth and (locally) the fibers have
the same dimension (= 1) and furthermore, since C is smooth, hence
Cohen-Macauley, f is open due to the universal openness of the flat map.
Since the target C of the map f is a smooth analytic curve, it follows
from [11, Corollary 1, p.248] that f is Ay, i.e., there exists a Whitney
stratification of f which satisfies Thom’s Ay condition. It is not clear
whether it is triangulable or not, which is left for the reader. However,
as an example of a morhism which is triangulable but not Euler, we can
consider the following simple situation:

X:=(P'x[1:0)u([1:0] x P cPxP.

Namely, if we let [zp : z;] and [wp : w1] be the homogeneous coordinates
of the first and second factor P!, respectively, then X is defined by the
equation z;w; = 0. Let f : X — P! be the restriction of the projection
P! x P! — P! (either to the first factor or to the second factor) to
the subvariety X. Then f is obviously triangulable, but certainly not
Euler because the topological Euler-Poincaré characteristics of the fibers
are not constant; x(f~!([1 : 0])) = x(P') = 2 and x(f~i(z)) = 1 if
x #[1:0].
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At the moment a reasonable characterization of Eulerness is not
known yet.

Before finishing this section we pose one problem. First, suggested
by Proposition (2.4), one might be able to consider the following naive
group of constructible functions:

Fhe (X 1, Y) :={a € F(X)|f«a is a locally constant function on Y}

Then we can show the following

Proposition (3.6). Let us consider only topologically connected
compact complex analytic varieties. Then the above naive group of con-

structible functions F*¢ (X 1, Y) becomes a bivariant theory with the

same operations as ones for F(X S, Y).

Proof. We have only to show that the three operations are well-
defined. First we note that since our varieties are assumed to be topo-
logically connected, that f.« is locally constant on Y means that it is
a constant function on Y. This constancy is needed only for the well-
definedness of the product operation, as we see below.

(1) (BO-I) (Product operations) For morphisms f: X - Y andg:Y —
Z,let @ € F(X) such that f.a is a constant functionon Y and 8 € F(Y)
such that f,( is a constant function on Z. Then we need to show that
(9f)+«(a ® B) is a constant function. First we note thatf.(a © ) =
(f«a) ® B by the commutativity of pushforward and product operation

(B-4). Then since we can consider f.a € F(Y A, Y), (fe) © 8 =
(fsa) - B = c- B, where ¢ = x(f~!(y);) for any y € Y is a constant.
Therefore (f)s( ® 8) = gu(fo(@ © ) = gu(c- B) = c- g.(8), which is
a constant function because g.(3) is so. As we can see, the constancy of

fxa is crucial. (If it is not constant, we can easily get a counterexample.)
(2) (BO-II) (Pushforward operations) For morphisms f : X — Y and

g:Y — Z and a € F-e(X o, ) we want to show that f.a €
Fle(Y -2 Z). But this is obvious, because (gf)«a = g« (f0).
(3) (BO-III) (Pull-back operations) For a fiber square

’

x 2, x
F) lf
vy 2, v
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and a € F(X), we need to show that if f.a is locally constant on Y,
then f!g¢'*a is locally constant. For this we can use the following lemma
([5, Proposition 3.5]):

Lemma (3.6.1). The following diagram is commutative:

’

FX) 2 Fx)

£l L
FY) - FY)

Since f.a is locally constant, g* f.« is also locally constant. Then
using the lemma, ¢* f.o = f/g¢'*a is locally constant, thus g*a := ¢"*a €

Fe(x' 25y, Q.E.D
Note that

(1) FX - pt) = F(X - pt) = F(X),
2  Fex S x) =Fx -5 Xx)
={a € F(X) | @ is locally constant onX},

and

(3) in general, F(X — Y) C F"“(X — Y) and they are not necessarily
equal as the following example shows: (Example) Let L; be the diagonal
of the cartesian product P! x P! of the 1-dimensional projective space
P!. Choose a point z in P!, and consider another line L : {(z, 20)|z €
P} c P! x P! Set L:= L ULy C P! x Pl. Let E be a smooth elliptic
curve, so that its Euler characteristic x(F) = 0. Let X := L x E.
And let f : X — P! be the composite of the inclusion X = L x E —
P! x P! x E, the projection to the first two factors P! x P! x E — P! x P!
and the projection to the first factor P! x P! — P!. Then the Euler-
Poincaré characteristic of the fibers are clearly locally constant; in fact
x(f~1(z)) = 0 for any point z, which comes from the fact that y(E) = 0.
Thus the pushforward f.1x is locally constant. However, it is easy to
see that the map f is not Euler, ie., 1x ¢ F(X 4, Y). Because at
every point of the fiber f~!(z) = {(20,20)} x E, 1x does not satisfy
the local Euler condition with respect to f.

Let ¢ : F — F" be the inclusion, i.e., (o) = a.

Problem (3.7). Can one construct a Grothendieck transformation
Ahe Fhe — H such that (1) ¥4 (1) = c(Tx )N [X] if X is smooth and

(2) 7= 00
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§4. Generalized Milnor numbers

Definition (4.1). (Parusinski’s generalized Milnor number)([15],
[16] and [17]) Let X be a local complete intersection variety of a smooth
variety M. Let n = dim X. Then the Parusiriski’s generalized Milnor
number p(X) is defined to be

) = (-1 oo - [ er),

where C¥7(X) is Fulton-Johnson’s Chern class, defined to be c(TM|x —
Nx M) N [X] with NxM being the normal bundle of X. Note that this
class is independent of the embedding of X into a smooth variety M
(see Fulton’s book (7, Example 4.2.6]).

Since x(X) = [, Ci(X), as a simple generalization of the general-
ized Milnor number we have the following

Definition (4.2). (see [1], [4], [18], [23].) Let the situation be as in
Definition (4.1) . The Milnor class M(X) is defined by

M(X) = (-1)" T Cu(X) — CF(X)].

With these definitions we can show the following theorem.

Theorem (4.3). Let f : X — M 25 'Y be an Buler and local
complete intersection morphism (i.e., r : X — M is a regular embedding
andp: M —Y is a smooth morphism) such that over each pointy € Y,
the restriction to the fibers ry : Xy — My is also a regular embedding
with dimX, = n, i.e., the fiber X, := f~1(y) is a local complete inter-
section variety of the smooth fiber M, := p~1(y). Then the Milnor class
M(X,) of the fiber X, (considered as classes of X ) are locally constant.
In particular, the generalized Milnor number of the fibers X, are locally
constant.

Proof. Firstly we remark that the smoothness of the fiber M,
comes from the smoothness of the morphism p. Since f : X — Y is
a local complete intersection morphism, we can define the following ho-

momorphism
c(Tr) N f*: H(Y;Z) - Ho(X; Z),

where T is the virtual relative tangent bundle, defined to be
Ty :=14i"T, — NxM,

and f*: H.(Y;Z) — H.(X;Z) is the Gysin homomorphism (7, Exam-
ple 19.2.1]. Since we are in the homology theory, the homology classes
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c(Tr)N f*([y]) are certainly locally constant. Since f : X — Y is also Eu-
ler, it follows from Corollary (3.4) that the Chern-Schwartz-MacPherson
classes iy, Cy(Xy) of the fibers X, are locally constant. So to prove the
theorem we only need to prove the following equality

e(Ty) N F* () = i, C7 (Xy)

for which we proceed as follows:

o(Tr) N () = o(Ty) N ([My])

= c(Ty) Ni*iy, ([My)])

= c(Tf) Ny, i*([My]) (by [5, Theorem (6.2)(a)])
= iy, (c(iy*Ty) Ni*([My])) (by the projection formula)
= iy, (c(Ty,) N [Xy])) (by [5, Example (6.2.1)])

= iy, CF7(X,).

Q.E.D

Motivated by this result, we can consider the following: Since we
are mostly interested in homology classes determined by subvarieties
of a variety, we consider the Chow group A(X), i.e., the group of cy-
cles modulo rational equivalence [7], and the following homology group,
which shall be provisionally called the “algebraic homology group”, de-
noted by AH,(X;Z):

AH.(X;Z) := Image (cl : A(X) — H.(X;Z)),

where cl : A(X) — H.(X;Z) is the cycle map [6, §19.1].
Lemma (4.4). For a variety X,

AH,(X;Z) = Image (Cy : F(X) — H.(X;Z)).

Proof. First of all we note that MacPherson’s proof [14] actually
shows that C, : F(X) — H.(X;Z) is the composite of the homomor-
phism C, : F(X) — A(X) into the Chow homology group and the cycle
map cl : A(X) — H,(X;Z). Here we use the same notation C,, i.e.,

Cy =cloC,.
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In fact it is easy to see by induction on dimension that the homomor-
phism C, : F(X) — A(X) is always surjective, because for any sub-
variety W Ci(lw) = [W] + lower classes. Thus we get AH.(X;Z) =
Image (C, : F(X) — H.(X;Z)). Q.ED

Now consider a Verdier-type Riemann-Roch diagram associated with
the bivariant constructible function 1 x:

fr=x)F
FY) — 2 F(X)

c. | lc.
(1x)8

H(Y;Z) —— H.(X;2)

where v : F — H is a Grothendieck transformation (cf. [22]). It follows
from Lemma (4.4) that the restricted homomorphism

fBu = (]]-X)’f}y”AH*(Y;Z) : AH,(Y;Z) - AH,(X;Z) can be expressed as
follows:

fEv.=cC,f*Cct: AH(Y;Z) — AH.(X;Z),

which is well-defined because of the commutativity of the above Verdier-
type Riemann-Roch diagram. And of course we have the following ho-
momorphism

o(Ty) N f* : AH,(Y;Z) — AH,(X;Z).

These two homomorphisms coincide when f : X — Y is a smooth
morphism, but in general they are not identical if f is not smooth ([22]).
So it is quite natural to pose the problem of describing the difference
between the two.

Problem (4.5). Let f : X — Y be an Euler and local complete
intersection morphism. Then give an explicit description of the following
defect §:

B =c(Ty) N f* +6.

Remark 4.6. For a hypersurface X Parusifiski and Pragacz [17] give
an interesting and promising formula for the generalized Milnor number
#(X), in terms of the Chern-Schwartz-MacPherson of the closure of
the strata of a Whitney stratification of X. Suggested by their result
and Theorem (4.3), we expect that the defect § in the above looked-for
formula will be possibly described using a Whitney stratification of a
morphism f. After the preparation of the manuscript we learned that in
the hypersurface case the Parusinski-Pragacz’s formula for the Milnor
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number p(X) has been generalized to a formula for the Milnor class

M(X) in [18].

An interesting feature of this looked-for formula is that it implies
some relationship among Fulton-Johnson’s canonical class
C(f) := c(T¥) N [X] of a local complete intersection morphism f [8] and
the Chern-Schwartz-MacPherson class C.(X) of the source variety X
and (hopefully) some kind of invariants of singularities of the morphism
f. Here is a citation from [8, p.382]: “... It would be interesting to relate
the canonical class of a mapping to its singularities.”

Proposition (4.7). Let f : X — Y be an Euler and local complete
intersection morphism. Then we have the following formula:

C(f) = Cu(X) + > _avCu(f (V) = 8([Y]),

where [Y] = Cu(Y) 4+ Y gimv<dimy @vCx(V). In particular, if f is
smooth, then

C(f) = Cu(X) + Y _avCu(F7H(V)).
Proof. First we observe that since

Yl=C.¥)+ Y. avC.(V)
dim V<dimY

we can take

C*_l([Y]) =1y + Z ayly.
dim V<dimY

Then

C(f) = Ty)N[X]
= oTy)n (Y]
= fEYY]) - 8([Y))
= G.fC7([Y) - (Y]

— C.f* <1y+ > av11v>—5([Y])

dimV<dimY

- G+ Y wG W) - i),

dim V<dimY
Q.ED

Proposition (4.8). Let f : X — Y be an Euler morphism and
let Y be topologically connected. Then for any algebraic homology class
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a € AH.(Y;Z) we have

[ @ =xs- [

Here x5 denotes the topological Euler-Poincaré characteristic of any

fiber.

Proof. Since any homology class a € AH,.(Y;Z) is generated by
the Chern-Schwartz-MacPherson class C. (V) = Cy(1ly) of subvarieties
V, it suffices to show the formula for a = C,(1v).

[ sEreavy = [ r.rPec.av)
_ /Y fCuf*CIHCu(Ly))  (since f7* = Cuf*CJY)
:/YC*f*f*(Ilv) (since f.Cy = Cufs)
_ /Y Culxs-1v)  (fuf*(Iv) = xs - 1v)
_ xf./yc*(nv).

Q.E.D

Problem (4.9).

1. Let f: X — Y be a local complete intersection morphism and let
Y be topologically connected. Let o« € AH,(Y;Z). Describe the
following number as in the above proposition

[ exnnr@.
X

2. Let f : X — Y be a local complete intersection morphism with
Y being topologically connected such that f : X — M — Y and
that for each y € Y 1y : Xy — My is a regular embedding with
dim X, = n, i.e., Xy is a local complete intersection of the smooth
fiber M. Then is it true that

[ emnr@=x [a

Here xsF7 = ny CFPJ(X,) is called the Fulton-Johnson’s char-
acteristic of the fiber.
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If (2) of the above problem be true, then we will get the following

formula:
/5(a)=(—1)”+lﬂf'/a,
X Y

where 5 is the generalized Milnor number of the fiber.

Remark 4.10. Here we remark a little on the uniqueness problem of
the bivariant Chern class. If we consider the algebraic homology group
instead of the usual homology group, then to some extent we could
see the “uniqueness” in the following sense. We want to see that if
v,7" : F — H are two Grothendieck-Chern transformations, then for any
bivariant constructible function a the bivariant homology v(a) = v'().
If we consider these two bivariant homology classes y(a) and v/(«) as
homological operators a]fyﬂ(a) = v(a) ®ua and alfjl, (a) = v'(a) ®na, which
both define the homomorphism

AH,(Y;Z) - AH.(X;Z).
However, in the same argument as above we have the following equality:
a]ff =CofCt = agf.

Thus all the Grothendieck transformations induce the same homological
operators if they are restricted to the algebraic homological classes. In
particular, in the case when the cycle map ¢l : A.(X) — H,(X) is an
isomorphism, e.g., if X has a cellular decomposition (see {7, Example
1.9.1 and Example 19.1.11]), then the transformation v : F — H is
unique if it is considered as the homological operator a],?. When the
bivariant homology theory is replaced by the bivariant Chow homology
theory ([6], [7]), see [6] for the uniqueness.
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Constructibilité de 1’'idéal de Bernstein

Joél Briancon, Philippe Maisonobe et Michel Merle

Soit X une variété analytique, f = (fi,..., fp) des fonctions analy-
tiques sur X, F' = f; ... fp leur produit.
Soit M un Dx-Module holonome régulier; C. Sabbah montre dans [Sab 1]
[Sab 2] que toute section m de M satisfait localement des équations non
triviales

(%) b(s1,... ,sp)mfit... for € Dx[sy, ... ,splmfi . fort!

ou b(sy, ... ,Sp) est un produit de formes affines. De plus, les coefficients
de la partie linéaire de ces formes sont des entiers positifs ou nuls. En par-
ticulier, I'idéal B(z, fi,... , fp, m) des polynoémes b(sy,... ,sp) vérifiant
au voisinage d’un point z une équation fonctionnelle (*) est non réduit a
zéro. Désignons par car M = | ;¢ Ty X la variété caractéristique de M.
Nous montrons que le germe de I'idéal B(z, f1, ..., fp, m) est constant le
long des composantes d’une partition qui se détermine géométriquement

a partir des restrictions de la seule fonction F' aux Y;. En particulier,.
nous en déduisons le résultat :

Théoréeme. Soit M un Dx-Module holonome régulier engendré
par une section m et car M = | J;c; Ty, X sa variété caractéristique. Soit
(Vg)ger une stratification analytique de U, Y: compatible auz Y, et
a F~1(0), satisfaisant la condition de frontiére et la condition ap de
Thom.

Le germe de l'idéal de Bernstein de f1,. .., fp, m est constant le long
des strates de la stratification (Va)ger.-

Ce résultat généralise celui obtenu par J. Briancon et H. Maynadier
([B-M] théoreéme 3.3 page 14) dans le cas ol p = 1 et m une fonction
constante sur X.

Détaillons section par section les résultats que nous obtenons.
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Section 1 Soit Y un sous-espace analytique irréductible de X. On
note T* X le fibré cotangent a X, Ty X l'espace conormal & Y dans X.
Soit A le sous-ensemble de T*X x C? défini par :

A= {(“’""“lif{l((g S (o )

s F(z) #0 et (x,n) € T{'}X}

L’espace Wﬁl ¥ adhérence de A dans T*X x CP a été introduit par
T. Kawai et M. Kashiwara ([K.K]).

Nous donnons ici quelques propriétés de Wﬁl’_“ oY Désignons par
mo la projection de T*X x CP sur CP.

1. Les fibres réduites de la restriction de mp a W}jl oY sont des
sous-espaces lagrangiens de T X . La fibre au-dessus de l'origine
est en particulier un sous-espace lagrangien conique.

2. La projection par mo de la trace de W}ih_“, f,,y Sur I’hypersur-
face d’équation F' = 0 est une réunion H d’hyperplans vectoriels
de CP dont les équations sont des formes linéaires a coefficients
entiers positifs ou nuls.

3. La partie de Wﬂ1 o ufy,y AU dessus de la droite vectorielle sy =
... = sp de CP s’identifie a I'espace Wg,y.

Section 2 Nous étudions ici des propriétés générales des Dx[s1, . . ., Sp|-
Modules cohérents. Nous dirons qu'un Dx|sy,. .. , sp]-Module cohérent
M est a fibre lagrangienne si (carpy[s,,... s,JM)(0), intersection de sa
variété caractéristique et de m, 1(0), est un sous-espace lagrangien de
T*X . Nous étudions plus particuliement les Dx sy, . . ., sp]-Modules cohé-
rents a fibre lagrangienne. Ils se comportent bien par suite exacte. Nous
montrons que I'idéal des polynémes de Clsi,...,s,] annulant le germe
en un point d’un tel module est localement constant le long des strates
d’une stratification associée & la variété lagrangienne (carpy(s,,...,s,]M)
(0).
Section 3 Soit m une section engendrant un Dx-Module holonome
régulier M. Désignons par car M = (J;c; Ty, X sa variété caractéristi-
que. Nous commencons par établir le résultat suivant :

Le Dx|s1,... ,sp]-Module Dx|s1,...,sp]mfi ... fp? est cohérent
de variété caractéristique :

s1 Sp i
CaIpy [s1,... ,5p] DX[Sl’--- ’Sp]m 1 "‘fpp = U Wfl,...,fp,Yl
Fly, #0
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Ce résultat compléte ceux de l'article [B.B.M.M]; nous le montrons &

Paide du théoreme de C. Sabbah sur les variétés caractéristiques de
Modules relatifs [Sab 2].

On en déduit que Dx|[sy,... ,sp)mfi* ... fp* est un Dx|sy,. .., Sp)-
Module cohérent a fibre lagrangienne. Donc, la variété caractéristique
du Dx|si, ..., sp]-Module & gauche cohérent :

_ Dx[s1,.-. ,8p|mfit ... fpr
Dx|[s1,...,spmfir ... Srt

est incluse dans (UFlYl £0 Wﬁl,...,fp,Yz) (N F~1(0). Ce Module est encore

a fibre lagrangienne; il en résulte que l'idéal B(z, fi,..., fp,m) des
polynémes b(sy,... ,sp) vérifiant au voisinage d’un point x de X une
équation fonctionnelle

(%) b(s1,--. ,8p)mfit ... f;r € Dx|s1,. .. ,sp]'nv,ff‘“»...f;P+1

est constant le long des strates d’une partition canoniquement associée
a la variété lagrangienne

(U Wi )N @O0

Fly,#0

égale a la trace sur F~1(0) de I’espace conormal relatif & F sur | J Fly #0Yl-
1
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§1. Famille de variétés lagrangiennes

Soit X une variété analytique complexe de dimension n. Soit f =
(f1,..., fp) des fonctions holomorphes sur X. Nous désignons par T*X
le fibré cotangent & X et par m; (resp. m2) la projection de T* X x CP sur
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T*X (resp. sur CP). On note F le produit f; ... fp. Soit Y C X un sous
espace analytique irréductible non contenu dans I’hypersurface F~1(0).
On désigne par Ty X l'espace conormal & Y dans X, égal a I'adhérence
dans T*X du fibré conormal a la partie lisse de Y.

Notation 1. Soit A le sous-ensemble de T*X x CP défini par:

a={ (e o+ b o)

; F(x) #0 et (z,n) ET{?X}

Nous notons Wﬁl oY ’adhérence de A dans T*X x CP. L’ensemble

Wﬁl f,,Y €st un espace analytique complere irréductible de dimension
n + p. L’action de C* sur T*X x CP donnée par:

A’ (x, g’ S) — ("E’ AE? AS)

laisse stable A, donc Wﬂh
stable par cette action.

o f Y Le diviseur F_I(O) est également laissé

Notation 2. Pour tout ¢ € CP, nous noterons W (c) la
fl yee- 9fp7Y

fibre au-dessus de c de la restriction de 7y a Wﬁl o,

i 1
Wh o ny@ =W ;. ynmt(e)

On identifie Wﬁl ’ fp’y(c) a un sous espace analytique de T*X. Pour
c = 0, c’est un sous-espace stable par l'action de C* sur T*X donnée
par :

A, (x,8) — (z, AE).

Proposition 1. Pour tout ¢ € CP, l’espace W}il oy () estun
sous-espace lagrangien de T*X.

Preuve. Soit ¢ = (c1,...,¢p) € CP. L’espace Wﬁl,...,fp,Y étant
un espace analytique irréductible de dimension n + p, les composantes
irréductibles de I’espace analytique réduit sous jacent a Wﬁl , fp,y(c)
sont de dimension supérieure ou égale a n. Pour établir la proposition,
il suffira donc de montrer que Wﬁl , fp’y(c) est isotrope. Désignons par
a la 1-forme canonique sur 7* X . Nous avons donc a montrer que la re-
striction de da a la partie lisse de toute composante de Wf L fo,y(c) est

nulle. Pour cela, considérons I’éclatement normalisé F : Wf1 T
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W}il .y de I'idéal engendré par (s1 —ci,... ,Sp — ¢p) dans I'anneau

structural de Wﬁl Y On a le diagramme commutatif :

C = E-Y(0) - Wi .
|E |E

i f T s
O Wfl, '1fp1Y(C) - Wf17 ':fpyY _)T X

dans lequel C est le diviseur exceptionnel et 7] la restriction de m; a
Wi, oy

On a da|c = ((7])*da)|c. 1l suffira donc de montrer que la restric-
tion de E*((m})*da) & la partie lisse de toute composante de C est nulle.
Plagons nous au voisinage d’un point | generlque e d’une composante de
C. Le point e est un point lisse de C et de W! vy frY (car C est un
diviseur d’un espace normal) ; ainsi, il existe une fonction holomorphe %
telle que C soit défini au voisinage de e par I’équation ¥ = 0. Pour tout
j € {1,...,p}, il existe donc un entier naturel m; strictement positif et
une unité u; tels que :

S —Cj = Uj¢mj

et il existe un entier n; et une unité v; tels que :

fi = vp™
Notons Q l'ouvert dense de Y des points lisses ou F n’est pas nulle.
Notons U = =} '(x~1(Q)), si 7 : T*X — X désigne la projection
canonique. C’est un ouvert lisse dense de Wfﬁl’ oY Par définition de

A (sachant que la restriction de o a la variété lagrangienne 7y X est
nulle), nous avons :

() )y = (Z‘j{)

() da)ly = (Z ds; A %{j)

J=1

U

Ainsi, au voisinage de e :

(E*(71)"da)|g-1 )

p
(5 2 50 ) )

7=1

E-1(U)

La restriction de cette forme a 1 = 0 est nulle, d’ou le résultat.
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Proposition 2. Soit W}il oy F~1(0) la trace de Uhypersur-
face F~1(0) sur W}il ..y L'espace :

7I'2(VVu

fryerfo Y 1 F_I(O))

est une réunion d’hyperplans de CP définis par des équations a coeffi-
cients entiers positifs. La famille de ces hyperplans est localement finie

sur F~1(0).

Preuve. Considérons la normalisation G : W — W}il oY de

Wﬁl f,,v- On a le diagramme commutatif :
Z =G Y2) — W
|G |G
— wit ~1 f T
Z=Wh gy NETO) = Wy oy 2TX

Soit T une composante de Z. Soit e un point générique d’une composante
de Z se projetant surjectivement sur T'. Le point e est un point lisse de
I’hypersurface Z et de W. Soit 1 = 0 une équation réduite de Z au
voisinage de e. Pour tout j € {1,...,p}, il existe un entier positif n;
(stictement positif pour au moins un indice) et v; une unité tels qu’au
voisinage de e on ait :

fi = viyp™
On désigne par U le méme ouvert que dans la preuve de la proposition
précédente. On a au voisinage de e :

@ () a)lo-1ay = (G*@%‘dfﬁ“j»

P

¥4
= ) sinidp/v+ > sjdv;/v;

ij=1 j=1

G- (u)

Cette forme est la restriction de la forme holomorphe G*(71)*a. 1l faut
donc que Z?:l sjn; soit un multiple de . Ainsi, m2(T") est contenu dans
I’hyperplan Hr d’équation :

p
Z S j’l’Lj =0
=1
Considérons la restriction ma|r : T — Hr. Pour tout ¢ € CP les fibres :

(m2lr) " (¢)
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sont incluses dans Wﬁl , fp,y(c) et sont donc d’apres la proposition 1de
dimension inférieure ou égale a n. La dimension de T" est n+p—1 et la di-
mension de Hr est p—1, les fibres de m2|7 sont donc équidimensionnelles
de dimension n.

T étant stable sous l'action de C* sur T*X x CP et fermée dans
ce dernier espace, elle contient donc des points de la forme (x,0,0). La
fibre de m2|r au dessus de 0 est donc non vide et de plus isotrope et
conique. Comme Hrt est lisse, le morphisme 7|7 est ouvert en un tel
point (x,0,0) € T et son image contient donc un voisinage de I'origine
de Hr. Comme cette image est conique, m2(7") = Hy. On en déduit la
proposition 2 et la remarque suivante :

Remarque 1. Soit ¢ € CP. Si Wﬁl,...,f,,,y(c) N F~1(0) n’est pas
vide, c’est une réunion de composantes irréductibles de Wﬁl , fp,y(c),
donc un espace lagrangien.

Corollaire 1. L’espace W}il,_._,fp,y N{s1 = ... = sp} s’identifie
(par le plongement diagonal de C dans CP) au sous-espace Wg,y de
T*X x C.

Preuve. Wgﬁ’y est I’adhérence de
{x,n +t(dF(z)/F(x)),t); (z,n) € Ty X ; F(x) # 0}
On a clairement ’inclusion :
WIu;,’Y C Wﬁl,... NN N (.5‘1 =...= Sp)

En dehors de I'hypersurface F~1(0), cette inclusion est une égalité.
Il résulte de la proposition 1 que Wﬁl,...,fp,Y N(s1 = ... = sp) est
équidimensionnelie de dimension n + 1, donc de méme dimension que
Wl’fﬂ,y. Pour montrer le corollaire, il suffit donc de montrer qu’aucune

composante irréductible de W}tl,..., foy N (81 = ... = sp) nest con-

tenue dans F~1(0). Supposons le contraire : soit Z une composante
contenue dans F~1(0) ; m2(Z) est contenue d’apres la proposition 2 dans
un hyperplan a coefficients entiers positifs. Z est donc contenue dans
Wﬁl ’ f,,,Y(O) qui est, d’apres la proposition 1, de dimension n. C’est

impossible, puisque Z est de dimension n + 1.

§2. D[s1,...,Sp]-Module cohérent a fibre lagrangienne

2.1. Définitions
On reprend les notations du début de la section 1.
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Désignons par Dy, le faisceau des opérateurs différentiels sur la
variété X. Pour k € N, notons Dx (k) le k®™ terme de la filtration
de Dx : si (x1,... ,T,) désigne un systeme de coordonnées locales de X
et 3= (61,...,0n) € N", notons :

B B
af’=< 9 ) (—a—) et |Bl=F1+...406n

5?1 0x,

Un opérateur P de Dx(k), défini localement, s’écrit :

P = Z cp(x)0P

1BI<k

On appelle degré de P et on note degP l'entier sup {|8|;cs # 0}. Le
symbole principal d’ordre k de P est I'élément de Ocn [y, ... ,&n] :

or(P) = ) cp(z)e?

|8l=k

et se recolle en une fonction o (P) sur le fibré cotangent 7*X. Con-
sidérons Dx|si1,...,8p] = C[s1,...,8p] ®c Dx. Pour j € N, notons
par C[s1,...,sp|(j) le sous-espace vectoriel de Clsy,... ,sp| constitué
des polynémes de degré inférieur ou égal & j. L’anneau Dx|s1,... , Sp)
est alors naturellement filtré : pour [ € N, le terme d’ordre [ de cette
filtration est

Dx[s1,...,spl(1) = D Cls1,...,5](j) ®c Dx (k)

j+k=l
C’est une filtration croissante. Pour tout [ € N, Dx|sq,... ,sp](l) est un
Ox-Module localement libre de type fini.

Pour a = (ai,...,a,) € NP, notons s* = s{* ...5p". Dans un
systéme de coordonnées locales (z1,... ,2,) de X, un opérateur P de
Dx|s1,--- ,Sp)(l) s’ecrit localement :

P = Z s*P,
|a|+degPn <l

avec P, dans Dx. Le symbole principal d’ordre | de P est I’élément de
Oc-[&,--- ,&n, 515+, 8p]

o1 (P) = Z 5%0degP, (Pa)
|| +degPo =l
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et se recolle en une fonction sur 7* X x CP, encore notée o;(P), homogene
sur les fibres de la projection 7 o m; sur X. On appelle degré de P et
on note degP lentier sup{|a| + degP, ; P, # 0}. On vérifie que si P
(resp. Q)est une section de Dx|[s1,... , Sp|(l) (resp. Dx|s1,...,sp](m))
I'opérateur :

PQ — QP € Dx|[s1,...,8p|(l +m —1)

De plus, le symbole d’ordre [ +m — 1 de PQ — QP est, dans un systéme
de coordonnées locales :

{01(P), om(Q)} = Za”g; 3”55) aagg(iQ) aaal:ff)

Cette formule est une extension du crochet de Poisson associé a deux
symboles d’opérateurs différentiels de Dy .

D’apreés ce qui précede, le gradué grDx sy, ... , sp] de Dx[s1,. .. , Sp]
est un anneau commutatif. Il s’identifie au sous-faisceau de
(mom )« (Or+xxcr) des fonctions homogenes relativement aux variables
(&, s). Les faisceaux d’anneaux grDx|[si,...,Sp| et Dx|[s1,... ,Sp| sont
cohérents.

Donnons maintenant quelques propriétés de la catégorie des
Dx|s1,- .. ,8p-Modules cohérents a gauche, qui généralisent les pro-
priétés des Dx-Modules cohérents (leurs démonstrations sont les mémes,
voir par exemple [G.M]). Soit M un Dx|sy, ... , sp]-Module cohérent &
gauche; localement M admet une bonne filtration (Mg)ren. Le fais-
ceau ,/anNgpy(s,,...,s,]8rM définit un idéal J(M) de grDx[s1, ... , Sp]
indépendant des bonnes filtrations locales. Il en est de méme de la mul-
tiplicité de grM en un point générique d’une composante irréductible de
son support.

La variété des zéros de I'idéal J(M) est carp,s,,... s,)M, un sous-
ensemble analytique de T*X x CP appelé variété caractéristique de M.
On appelle cycle caractéristique de M le cycle associé au module grM.
On le note Carpy[s,,... s,

Le théoreme de Gabber s’énonce dans notre situation ([G]) :

Soit M un Dx|sy,... , sp|-Module cohérent a gauche. Si o et 7 sont
deux sections de J (M), leur crochet {0, 7} est une section de J(M).

Notation 3. Soit my : T*X x CP — CP la projection sur CP. Soit
M un Dx|s1,... , sp|-Module cohérent a gauche. On notera
(carpy[sy,....s,]M)(c) la fibre du point ¢ = (c1,... ,cp) de la restriction
de Ty Q Carpy(s,,...,s,] M- En particulier

(Car'Dx [s1,--- ,SP]M)(O) = (Ca‘r’Dxfsl,--- 7Sp]M) ﬂ 7r2_1(0)
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Tout point de (carpy(s,,...,s,] M )(c) est limite de points lisses de la
variété caractéristique de M en lesquels la restriction de m; est de rang
localement constant. Les fibres de 75 en ces points sont lisses réduites. Il
résulte alors du théoreme de Gabber qu’au voisinage d’un de ses points
génériques, cette fibre, identifiée & un sous espace de 7* X, est involutive
au sens de la 2-forme canonique sur I'espace cotangent 4 X . Elle est donc
de dimension supérieure ou égale a la dimension de X . La semi-continuité
de la dimension des fibres implique alors :

Proposition 3. Soit M unDx]|si, ..., sp|-Module cohérent ¢ gau-
che. Les fibres (carpys,,...,s,JM)(c) non vides ont leurs composantes
irréductibles de dimensions supérieures ou égales a la dimension de X.

Compte-tenu du caractere conique des variétés caractéristiques, on
a en identifiant X & la section nulle de 7*X x CP :

Supp(M) = carpyfs,,..,s,|M ﬂ{s =£=0}
= (Car'Dx[sl,... ,sp]M)(O) ﬂ{g = 0}
D’olr :
Remarque 2. Soit M un Dx|sy, ..., sp]-Module cohérent a gau-
che : M =0 si et seulement si (carpy[s,,...,s,]JM)(0) = 0

Définition 1. Soit M un Dx|sy,... ,sp]-Module cohérent & gau-
che. On dira que M est & fibre lagrangienne si (carpys,,...,s,} M)(0), est
une sous-variété lagrangienne de 7% X.

Soit 0 - M’ — M — M" — 0 une suite exacte de Dx]|si,... , Sp)-
Modules cohérents a gauche. Comme dans le cadre des Dx-Modules, on
a:

__ ! "
Carpy [sy,...,sp) M = Carpysy,...,s M’ | Jearpysy,... s M

On en déduit en particulier la proposition suivante :
Proposition 4. Soit 0 - M’ — M — M"” — 0 une suite ex-

acte de la catégorie des Dx|s1,... ,sp|-Modules cohérents a gauche. Le
Module M est a fibre lagrangienne si et seulement st M' et M" le sont.

2.2. Constructibilité de 1’idéal associé

Dans ce paragraphe, M désignera un Dx|sy,... , Sp|-Module a gau-
che cohérent a fibre lagrangienne. Soit (X4)aec4 les projections des com-
posantes irréductibles de la variété lagrangienne conique

(caer [s1,... ,sp]M)(O) :

(carpy(s,...., s, M)(0) = | J Tx, X
acA
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L’espace UaE 4 Xo est le support de M et la famille (X4)aca de sous-
ensembles irréductibles est localement finie. Pour J = (aj,... ,) un
[-uplet d’éléments de A, on note :

Us=Xeo[ ) -[ 1 Xa = U X8[V X [ )+ -[ ) Xex

B¢J

Soit A = Pf(A) I'ensemble des parties finies J de A pour lesquelles
Uj # 0. Alors, {Us}jeca est une partition de |J,c 4 Xo. En effet pour
JeA:xeUjsiet seulement si J ={a; z € Xa}

Définition 2. La partition {U;}jc4 est appelée la partition as-
sociée a la variété lagrangienne | J 4 % X.

Notons pour a € A :

U,=Xa— |J XsnXa
XaZXp

SiJ(a)={ve A; Xo CX,},J(a) € Aet U, = Uy, ; c’est un ouvert
connexe dense de X,.

Notation 4. Nous notons B(x,M) l’idéal de Clsy,...,sp| des
polynomes annulant le germe de M en x.

Proposition 5. Soit M un Dx|s1,... , Sp|-Module d gauche cohé-
rent d fibre lagrangienne. Pour tout J € A, lidéal B(xz, M) est constant
pour © € Uy, et est noté Bj(M). En particulier, Bo(M) = B j(q)(M)
est constant sur U!, et on a :

BJ(M) = m Ba(M)

a€J
Preuve. Soit z € U;. Considérons le sous Dx|s1, ... , sp]-Module
de M :
L = B(z, M)M

La variété caractéristique carp,s,,...,s,]L de L est contenue dans la
variété caractéristique de M. Comme cette derniere est supposée a fi-
bre lagrangienne, il résulte de la proposition 3 que I’ensemble des com-
posantes irréductibles de (carp,s,,...,s,] L) (0) est contenu dans 'ensem-
ble des composantes irréductibles de (carpy[s,,...,5s,]M)(0) : {Tx_ X }aca-
Par définition de 'idéal B(xz,M), L est nul au voisinage de z, donc
(carpy(s,,...,s,)L)(0) est vide au voisinage de . Ainsi, pour v € J, la
variété T)*(WX n’est pas une composante irréductible de (carps,,...,s,} L)
(0). Siy € Uy, comme J={7v ; = € X}, on obtient que (carpy(s,,...,s,] L)
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(0) est vide au voisinage de y. Ainsi, L est nul en restriction a U;. L’idéal
B(z, M) est donc égal a I'idéal de Cfsy,... , sp] annulant la restriction
de M aUy, By(M).

D’autre part, pour z € Uy, le module L est nul au voisinage de x. Donc,
pour a € J, le Module L est nul en un point de U/,. On a donc :

B(z,M) C () Ba(M)
acJ

Inversement pour v € J, T)*C/X n’est pas une composante irréductible
de la variété caractéristique de ([ c; Ba(M)).M. Et donc

(Naes Ba(M)).M est nul au voisinage de x € U;. L’inclusion précédente
est donc une égalité.

83. D[s1,... ; Sp]-Modules et équations fonctionnelles associés
a p fonctions holomorphes

Soit f = (f1,..., fp) des fonctions holomorphes sur X. On désigne
par F' le produit de ces p fonctions. Soit M un Dx-Module holonome.
La variété caractéristique de M s’écrit car M = |J,c; Ty X ou ¥, C X
est un sous-espace analytique irréductible de X. Considérons :

Ox[s1,---»8p, 1/F]f* ... fpP
Ox|s1,-..,Sp,1/F]-Module libre de rang 1 engendré par fit.. . for. Le

produit tensoriel M ®o, Ox|s1,...,8p,1/F)fi* ... fp" est muni de la
structure de Dx-Module obtenue en posant :

0
(m®afyt...fp7)

6w,-
af;
Oa P ) -a
= Lo fir 4 m@ —fr. .. fr m® = ... fSe
ozx; for +m® Bxifl p +jzl $;mMe fi 1 p

pour tout 7 € {1,...,n} et pour toute section locale m (resp. a) de M
(resp de Ox]|s1,... ,sp,l/F]) Si m est une section de M, on notera
mfit .. fpf =mQ fi!

3.1. Rappels et compléments

Soit m une section de M. A 1’aide du critére usuel sur les bonnes
filtrations (voir [G.M]), on montre que Dx|[s1,...,sp|mfi* ... fp" est
Dx|s1,. .. ,Sp|-cohérent.
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Théoréme 1. Soit m une section engendrant un Dx -Module holo-
nome régulier M de variété caractéristique \J,c; Ty, X. Le module
Dx|[s1,... ,8p|mfit ... fp" est un Dx|[s1,.-. ,Sp]-Module cohérent de
variété caractéristique :

CAIDy [s1,...,5p] DX[S1,-- »Spimfit ... for = U Wﬁl,...,fp,Yz
Fly,#0

Preuve. Ce théoreme a été demontré danslecasm=1et M =
Ox a l'aide d’un théoréme de C. Sabbah ([Sab 2] théoréme 3.2., page
228)(voir aussi [B.B.M.M]). Commengons par établir un corollaire direct
du théoreme de C. Sabbah.

Soit ¢ : X — S une submersion entre deux espaces analytiques lisses.
Désignons par Dy ,s 'anneau des opérateurs relatifs au morphisme ¢.
Soit T*X /S le fibré cotangent relatif. A tout Dy ,g-Module cohérent N,
on associe sa variété caractéristique carp, s N C T*X/S. 81 Y C X est
un sous-espace analytique, on désigne par T’ ;;ly(X /S) Pespace conormal
relatif a la restriction de ¢ a Y. 1l s’agit de 'adhérence dans T*X' /S
de I'ensemble des vecteurs conormaux nuls sur les espaces tangents aux
fibres de la restriction de ¢ a ). Nous dirons que ¢ est non caractéristique
pour Y, si I'intersection de 'image du morphisme naturel 7*S x y X —
T5X est contenue dans la section nulle.

Lemme 1. Soit M un Dx-Module holonome régulier de variété
caractéristique car M = Ule 1 I3, &, et F: X — C une fonction non
triviale qui s’annule identiquement sur tout Y, dont l’image par ¢ ne con-
tient pas un ouvert non vide de S. Soit N un Dy /s-Module cohérent qui
engendre M. Supposons de plus que M soit sans F'-torsion. La variété
caractéristique de N est alors donnée par

carp,, N = |J Ty, (X/5)
F'V{#O

Preuve du lemme. Le théoréeme de C. Sabbah dit exactement
que si ¥ est une composante irréductible de ia variété caractéristique de
N, il existe | € L tel que ¥ = T;Iyl (x/9).

Supposons que F' ne s’annule pas identiquement sur );. En un point
générique de ), le morphisme ¢, transverse aux )); passant par ce point,
n’est donc pas caractéristique pour M. Au voisinage de ce point, M est
alors cohérent comme Dy, s-Module. Par des arguments simples, on peut
déterminer la variété caractéristique de M comme Dy s-Module. Cette
variété est la méme que celle de N ([Sch] lemme 1.3.3, page 125). Cela
prouve que T;lyl (X/S) est contenu dans la variété caractéristique de N.
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Si F' s’annule identiquement sur ), alors T3, (X'/S) est de dimension
1

strictement inférieure a dim X'. Supposons que la variété caractéristi-
que de N ne soit pas de dimension pure dimX. Soit F(N) le plus grand
sous-module cohérent de A/ de dimension strictement inférieure & dimX’.
D’aprés [Bj] (Chap. 2.7 et Chap. 5.6), F(N) est alors non nul. Il engendre
sur Dy un sous-Module de M. D’apres nos hypotheses et le théoreme
de C. Sabbah, ce Module serait annulé par une puissance de F', d’ou la
contradiction.
Terminons la preuve du théoreme. Considérons I'application :

XxCPLHLXXxCPxCP=X

(-'L',y) — (x)y,tl = eylfl(m)?' .- )tp = eypfp(x))

Soit p : X x CP — X la projection sur X. Notons M’ = Ox xcr ®p-104
p~ M l'image inverse par p de M. L’image directe M = it (M’) est un
Dx-Module régulier de variété caractéristique (voir par exemple [G.M]

page 130.)
U Tivixon ¥
lIEL

Considérons ¢ : X — S = CP, (z,y,t) — t. Pour démontrer le théoreme,
quitte & remplacer M par M[1/F], on peut supposer que M est sans F-
torsion. Comme ¢ est submersif en restriction & i(Y; x CP) si et seulement
si F' est non nulle sur Y; , le lemme permet alors de calculer la variété
caractéristique de Dy, g(1 ® m)(e¥* f1)%1 ... (e¥ f,)°%. Le théoreme s’en
déduit par le méme principe que dans le cas m =1 et M = Ox (voir
[B.B.M.M] page 126).

Il résulte de la proposition 1 que Dx|s1,...,sp]mfit... fo¥ est &
fibre lagrangienne. Comme conséquence directe du théoreme 1, nous
obtenons :

Corollaire 2. Sous les hypothéses du théoréme 1, la variété ca-

ractéristique du Dx|[s1,... ,sp|-Module a gauche cohérent
S
Dx[s1,...,spmfit ... fp"
- s1+1 sp+1
Dx|s1,...,spImfit™ .. fph

est contenue dans (Upy,, 40 Wﬁl o) NF7H0).

Remarque 3. On peut montrer (ce sera fait dans un prochain
travail) que cette inclusion est en fait une égalité. Nous n’utiliserons pas
ce fait ici.
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3.2. Idéal de Bernstein

Dans ce paragraphe M désigne un Dyx-Module holonome régulier
engendré par une section m. Soit car M = U, T v, X sa variété caracté-

ristique. Pour tout = € X, I'idéal B(z, fi1,... , fp,m) des polynomes de
Cls1,... ,sp) annulant la fibre en x du Dx[s1, ... , sp|-Module & gauche :
Dx[sl, e ,Sp]mffl . ;p
o +1
Dxls1,...,sp)mfa . foF
est appelé idéal de Bernstein de fi,..., fp,m en x. Il est montré dans

[Sab 1] [Sab 2] que cet idéal contient un polynéme non nul qui s’écrit
comme produit de formes linéaires affines a coefficients rationnels posi-
tifs. Le module N, quotient d’un Dx|sy,... , sp]-Module a fibre lagran-
gienne, est donc a fibre lagrangienne. Et on a linclusion (corollaire 2) :

CarDX[sl""’sp]N c ( U W.Ifilv"',fpan)ﬂF-l(O)
Fly, #0

D’ou linclusion :

(carpyfs,,.sxyN)O) C | W}, 1 y)(O)()F~'(0)
Fly, #0

Il résulte de la remarque 1 que (W}t1 R )(0) Y F~1(0) est une variété
lagrangienne contenue dans (W}S1 o Yi )(0). De plus, d’apres le corol-

laire 1, (W'jz1 1o.v1)(0) = (Wg‘,yl)(O). Traduisons la proposition 5 :

Théoréme 2. Soit M un Dx -Module holonome régulier engendré
par une section m et car M = ¢, Ty, X sa variété caractéristique.
L’idéal de Bernstein de f1,... , fp, m en T est constant le long des strates
de la partition associ€e a la variété lagrangienne :

(U wt)onro

Fly,#0

Soit [ tel que Fly, # 0. L’espace (WE’,Y, )(0) est la réunion de Ty X
et de (Wry;)(0), trace de F~1(0) sur I'espace conormal relatif de la
restriction de F' & Y;. Soit (V3)ger, une stratification analytique de Y;
(partition localement finie par des strates lisses connexes) compatible &
F~1(0) et satisfaisant la condition de frontiére et la condition ap),, de
Thom. Cette condition entraine I'inclusion :

Wiy, F0)c | 1v,X
BeT,



94 J. Briancon, P. Maisonobe et M. Merle

Donc, si T X est une composante irréductible de (WE‘YI )(0)F~1(0),
il existe 8 € I'; tel que X, soit 'adhérence de V3. Donc, grace a la condi-
tion de frontiére, X, est réunion de strates de la stratification (Vg)gaer, -
On obtient ainsi le corollaire :

Corollaire 3. Soit M un Dx -Module holonome régulier engendré
par une section m et car M = {J,¢p, Ty, X sa variété caractéristique. Soit
(Vg)per une stratification analytique de J;c; Y1 compatible auz Y] et a
F~1(0) satisfaisant la condition de frontiére et la condition ar de Thom.
Alors l'idéal de Bernstein de f1,..., fp,m en x est constant le long des
strates de la stratification (Vg)ger.

Remarque 4 (aprés [B.M.M] (théoréme 4.2.1 page 541)). Sila
stratification (V)ger est de Whitney, nous savons qu’elle satisfait alors
la. condition ap de Thom et la conclusion reste valable.

Dans le cas p = 1, N est un Dx|[s;]-Module qui est holonome en
tant que Dx-Module. Dans ce cas, la preuve de la proposition 5 est
plus simple : on peut montrer directement par la méme méthode que
le polyndome minimal de la fibre en un point d’'un endomorphisme du
Dx-Module holonome M est constant le long des strates de la partition
associée a sa variété caractéristique. On obtient ainsi une autre preuve de
la proposition de [B.M]. Grace a la correspondance de Riemann-Hilbert
[M] [K], cette preuve se transcrit dans la catégorie des faisceaux pervers,
ou 'on dispose également de la notion de variété caractéristique, de la
maniere suivante :

Remarque 5. Soit f : X — C une application analytique. Soit F
un faisceau pervers sur X de variété caractéristique Uze LIy X et s Fle
faisceau des cycles proches muni de son automorphisme de monodromie
(voir [D.K]).

On obtient ainsi, par exemple, que le polynome minimal de la mo-
nodromie du germe du faisceau pervers 1yF est constant le long des
strates d’une stratification compatible aux Y; et & f~!(0), satisfaisant
de plus la condition de frontiere et la condition ay de Thom.

On pourra se reporter & [B.M.M] [Sab 3] [Gn] pour le calcul de la
variété caractéristique de 15 F.
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