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Weighted Chern-Mather classes and
Milnor classes of hypersurfaces

Paolo Aluffi

Abstract.

We introduce a class extending the notion of Chern-Mather class
to possibly nonreduced schemes, and use it to express the difference
between Schwartz-MacPherson’s Chern class and the class of the vir-
tual tangent bundle of a singular hypersurface of a nonsingular va-
riety. Applications include constraints on the possible singularities
of a hypersurface and on contacts of nonsingular hypersurfaces, and
multiplicity computations.

\S 0. Introduction

The notion of Chern-Mather class was introduced by Robert Mac-
Pherson in [10], as one of the main ingredients in his definition of functo-
rial Chern classes for possibly singular complex varieties. An equivalent
notion had in fact already been given by Wents\"un Wu; the two notions
are compared in [15]. One way to think about Mather’s class of $Y$ as
defined by MacPherson is the following: blow-up $Y$ so that the pull-back
of its sheaf of differentials is locally free modulo torsion; then $mod$ out
the torsion, dualize, and take Chern classes. The operation can in fact
be performed for any sheaf; this is worked out in [9].

This definition ignores possible nilpotents on $Y$ . We feel that it
would be desirable to have a class in the spirit of Chern-Mather class,
but in some way sensitive to possible nonreduced structures on $Y$ : first,

this is natural from the algebro-geometric standpoint; secondly, as we
will see, a natural candidate carries useful information when applied to
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the singularity subscheme of a hypersurface (for which possibly non-
reduced scheme structures play a fundamental r\^ole).

Our candidate is introduced in \S 1. Its definition is a suitable weighted
sum of ’conventional’ Chern-Mather classes of subvarieties of $Y$ . The
subvarieties are the supports of the components of the (intrinsic) normal
cone of $V$ , and the weights are the lengths of the components of this cone.
The class we obtain (trivially) agrees with Mather’s if $Y$ is a reduced
local complete intersection.

If $Y$ is the singularity subscheme of a hypersurface, we can relate
the weighted Chern-Mather class with other natural classes defined in
this case. For example, in [1] we have defined and studied a $\mu$ class
associated with the singularity subscheme of a hypersurface; in this pa-
per, we answer a question which we could not address previously: how
to give a reasonable definition for arbitrary schemes $Y$ , from which the
$\mu$-class could be recovered if $Y$ is the singularity subscheme of a hyper-
surface $X$ . The weighted Chern-Mather class is precisely such a class
(Corollary 1.4). We hope that this viewpoint will eventually give us the
right hint on how to define a $\mu$-class for the singularities of more general
varieties $X$ .

The main application of weighted Chern-Mather classes is to the
computation of the difference between Schwartz-MacPherson’s class of
a hypersurface and the class of its virtual tangent bundle. A formula
for the difference, in terms of the $\mu$-class, is proved ’numerically’ in [3],
and at the level of Chow groups in [2] (Theorem 1.5). Such differences
have been named ’Milnor classes’, as they generalize the fact that, for lo-
cal complete intersections with isolated singularities, the Milnor number
computes the difference between the (topological) Euler characteristic
and the degree of the class of the virtual tangent bundle (see [13], [14],
[12], [5], and references therein).

Weighted Chern-Mather classes allow us to recast the formula from
[2]. We state this in \S 1 (Theorem 1.2), together with other facts about
weighted Chern-Mather classes, such as their relation vis-a-vis a class
appearing in [12] or their behavior under blow-ups. Proofs of these
statements are sketched in \S 2, together with a few general considerations
regarding Milnor classes. Theorem 1.2 is proved in full in \S 2.

The expression for the $\mu$-class in terms of weighted Chern-Mather
classes allows us in principle to compute the former for a wide class of
examples. We give a couple of applications in this direction in \S 3, in the
spirit of the examples worked out in [1], \S 4. For example, we prove that
if two nonsingular hypersurfaces $M_{1}$ , $M_{2}$ of degrees $d_{1}$ , $d_{2}$ in projective
space are tangent along a positive dimensional subvariety, then $d_{1}=d_{2}$ .
This fact was proved in [2], but with a strong additional hypothesis on
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the contact locus of $M_{1}$ and $M_{2}$ ; the new formula for the $\mu$ class shows
that the extra hypothesis is unnecessary. We also collect in \S 3 a few
explicit computations of weighted Chern-Mather classes.

The core of this paper is little more than a rewriting of a part of [12].
In that reference, Adam $Parusi\acute{n}$ski and Piotr Pragacz give an alterna-
tive proof of the formula in [2] by a local computation of multiplicities,
which relates it to a formula from [6] (over $\mathbb{C}$ , and in homology) for the
characteristic cycle of a hypersurface. For singularities of a hypersurface,
a complex geometry analog of weighted Chern-Mather classes is intro-
duced in [12]; the classes are compared here in Theorem 1.5. The proof
of Theorem 1.2 given in \S 2 owes much to the approach of $Parusi\acute{n}$ski and
Pragacz: it is my attempt to produce a proof in the style of [12], but
in a set-up closer to intersection theory in algebraic geometry (hence
valid for rational equivalence; and potentially more amenable to alge-
braic generalizations, e.g., to positive characteristic). The reference to
[6] is bypassed by an explicit computation of local Euler obstructions.

Acknowledgements. I am very grateful to Jean-Paul Brasselet
and to Tatsuo Suwa for organizing the Sapporo symposium on ’Singu-
larities in Geometry and Topology’. Conversations with the participants
at the meeting, especially Piotr Pragacz and Shoji Yokura, were very
helpful. I am particularly indebted to Piotr Pragacz (and to the referee
of [2] $)$ for pointing out that the main formula in [2] should be interpreted
as the computation of the characteristic cycle of a hypersurface.

\S 1. Weighted Chern-Mather classes.

All schemes in this note are of finite type over an algebraically closed
field of characteristic 0, and (for simplicity) embeddable in an ambient
nonsingular variety, which we will denote by $M$ .

Assume that $Y$ is reduced and irreducible, of dimension $k$ . The
Chern-Mather class of $Y$ can be defined as follows. Let $G_{k}(TM)$ denote
the Grassmann bundle whose fiber over $p\in M$ consists of the Grass-
mannian of $k$-planes in $TM$ , and let $Y^{O}$ be the nonsingular locus in $Y$ .

Consider the map

$Y^{o}\rightarrow G_{k}(TM)$

defined by sending $p\in Y^{o}$ to $T_{p}Y\subset T_{p}M$ . The Nash blow-up of $Y$ is the

closure $Y$ of the image of this map; it comes equipped with a proper map
$lJ$ to $Y$ , and with the restriction $T$ of the tautological subbundle over
$Gk(TM)$ . This data is easily checked to be independent of the ambient
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variety $M$ . The Chern-Mather class of $Y$ is defined by

$c_{Ma}(Y):=\nu_{*}(c(T)\cap[\overline{Y}])$

in the Chow group $A_{*}Y$ of $Y$ . This class of course agrees with the
total (’homology’) class of the tangent bundle of $Y$ if $Y$ happens to be
nonsingular to begin with.

Note that this definition assumes that $Y$ is reduced, as it needs $Y$

to be nonsingular at the general point, and ignores by construction the
presence of nilpotents along subvarieties of $Y$ . Our task is to modify
this notion to take account of possible nilpotents on $Y$ .

Let then $Y\subset M$ be arbitrary. We consider the normal cone $C_{Y}M$ of

$Y$ in $M$ , and associate with $Y$ the set $\{(Y_{i}, m_{i})\}_{i}$ , where the $Y_{i}\simeq^{j_{i}}\rightarrow Y$ are
the supports of the irreducible components $C_{i}$ of $C_{Y}M$ , and $m_{i}$ denotes
the geometric multiplicity of $C_{i}$ in $C_{Y}M$ (so $[C_{i}]=m_{i}[(C_{i})_{red}]$ ).

Lemma 1.1. The data $\{(Y_{i}, m_{i})\}$ is intrinsic of $Y$ , $i.e.$ , indepen-
dent of the ambient nonsingular variety.

Proof. (Cf. [7], Example 4.2.6.) It is enough to compare embed-
dings $Y\llcorner_{\rightarrow M,,,Y\llcorner_{\rightarrow M’}}$ , where both $M$ , $M’$ are nonsingular, and $M$ is
smooth over $M’$ . In this case there is an exact sequence of cones

0- $T_{M’|M}\rightarrow C_{Y}M\rightarrow C_{Y}M’\rightarrow 0$

(where $T_{M’|M}$ is the relative tangent bundle) in the sense of [7], Exam-
ple 4.1.6, and it follows that the supports of the irreducible components
of the two cones coincide, as well as the geometric multiplicities of the
components. Q.E.D.

By Lemma 1.1, the following definition is also intrinsic of $Y$ :

definition. The weighted Chern-Mather class of $Y$ is

$c_{wMa}(Y):=\sum_{i}(-1)^{dimY-dimY_{i}}m_{i}j_{i*}c_{Ma}(Y_{i})$ in $A_{*}Y$ .

(Warning: we will henceforth neglect to indicate ’obvious’ push-forwards
such as $j_{i*}$ , and pull-backs.)

Note that if $Y$ is a reduced irreducible local complete intersection,
then its normal cone is reduced and irreducible, so the class defined
here agrees with the Chern-Mather class of $Y$ . In particular, if $Y$ is
nonsingular then $c_{wMa}(Y)=C(TY)\cap[Y]$ is the total homology class of
the tangent bundle of $Y$ .
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A few examples of computations of weighted Chern-Mather classes
can be found in \S 3. Our main motivation in introducing the class
$c_{wMa}(Y)$ is that we can prove it is particularly well-behaved if $Y$ is
the singularity scheme of a hypersurface $X$ in a nonsingular variety $M$ .

By hypersurface here we mean the zero-scheme of a nonzero section of
a line-bundle $\mathcal{L}$ on $M$ ; the singularity subscheme of $X$ is the subscheme
locally defined by the partial derivatives of an equation for X. (This
scheme structure is independent of the ambient variety $M.$ ) In the rest
of this section we survey a few facts about $c_{wMa}(Y)$ under the hypothesis
that $Y$ is the singularity subscheme of a hypersurface. Proofs are given
in \S 2.

Our motivation is to highlight apparently different contexts in which
the class $c_{wMa}(Y)$ manifests itself. Although these contexts will invoke
other characters of the play, remember that $c_{wMa}(Y)$ is a class intrinsic

of $Y$ , and which is defined regardless of whether $Y$ is the singularity
subscheme of a hypersurface. The challenge is to find extensions of
these results which do not assume that $Y$ is the singularity subscheme
of a hypersurface.

For the first fact, let $c_{SM}(X)\in A_{*}X$ denote Schwartz-MacPherson’s
Chern class of $X$ , and let $c_{F}(X)\in A_{*}X$ denote the class of its virtual
tangent bundle; the subscript $F$ is to remind us that this class agrees
with the class introduced (for much more general schemes) by William
Fhlton, cf. Example 4.2.6 of [7].

Theorem 1.2. Let $\mathcal{L}=\mathcal{O}(X)$ , and let $Y$ be the singularity sub-
scheme of X. Then

$c_{wMa}(Y)=(-1)^{dimX-dimY}c(\mathcal{L})\cap(c_{F}(X)-c_{SM}(X))$ in $A_{*}(X)$ .

That is, $c_{wMa}(Y)$ essentially measures the difference between the
functorial homology Chern class $c_{SM}(X)$ and the class of the virtual
tangent bundle of $X$ . The functoriality of the class $c_{SM}(X)$ was proved
by Robert MacPherson [10]; the class was later shown to agree with
the class previously defined by Marie-H\’el\‘ene Schwartz. For a treatment
of Schwartz-MacPherson’s classes over any algebraically closed field of
characteristic 0, see [8]; this is the context we assume here. Also, we let
$csu(X)=c_{SM}(X_{red})$ ; with this proviso, Theorem 1.2 holds for nonre-
duced hypersurfaces X–remarkably, the drastic change in $c_{F}$ when some
component of $X$ is replaced by a multiple is precisely compensated by
the change in the weighted Mather class of the singularity subscheme.

For the next result, it is convenient to employ the following notations
(a variation on the notations used in [2], [3]): for $a\in A_{p}$ and $\mathcal{L}$ a line
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bundle, set

$a_{\vee}=(-1)^{p}a$ $a_{\mathcal{L}}=c(\mathcal{L})^{p}\cap a$

(So $a_{\mathcal{L}}=c(\mathcal{L})^{n}\cap(a\otimes \mathcal{L})$ , where the term in $()$ uses the definition in [3],
and $n$ is the dimension of the ambient scheme). These notations behave
well with respect to several natural operations, similarly to the notations
introduced in [3]. For example, the formula on the right defines an action
of Pic on the Chow group: that is, $a_{\mathcal{L}_{1}\otimes \mathcal{L}_{2}}=(a_{\mathcal{L}_{1}})_{\mathcal{L}_{2}}$ for 1me bundles
$\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ .

Proposition 1.3. Let $Y$ be the singularity subscheme of a section

of a line bundle $\mathcal{L}$ on a nonsingular variety M. Then

$c_{wMa}(Y)=(-1)^{dimY}(c(T^{*}M\otimes \mathcal{L})\cap s(Y, M))_{\vee \mathcal{L}}$ in $A_{*}Y$ .

Here $s(Y, M)$ denotes the Segre class of $Y$ in $M$ , in the sense of
[7], Chapter 4. Note that this equality is completely false unless $Y$ is
a singularity subscheme of a hypersurface in $M$ . However, if $Y$ is a
singularity subscheme of a hypersurface in $M$ , then the right-hand-side
must be independent of $M$ : this was proved directly in [1], Corollary 1.7,
and follows again as the left-hand-side is intrinsic of $Y$ . Proposition 1.3
is significant in view of the consequence:

Corollary 1.4.

$\mu c(Y)=(-1)^{dimY}c_{wMa}(Y)_{\vee \mathcal{L}}$

The class $\mu_{\mathcal{L}}(Y)$ is the $‘\mu$-class’ defined and studied in [1]; it carries
a notable amount of information about $X$ , with applications to duality
and to the study of contacts of hypersurfaces. Corollary 1.4 solves a
puzzle left open in [1] (p. 326): to define a class for arbitrary schemes,
specializing to $\mu_{\mathcal{L}}(Y)$ for singular schemes of hypersurfaces. It also clar-
ifies the dependence of the $\mu$-class on the line bundle $\mathcal{L}$ : it follows from
Corollary 1.4 that if $\mathcal{L}_{1}$ , $\mathcal{L}_{2}$ are line bundles, then

$\mu_{\mathcal{L}_{2}}(Y)=\mu c_{1}(Y)_{\mathcal{L}_{1}^{\vee}\otimes \mathcal{L}_{2}}$

(this does not follow formally from the expression for the $\mu$ class in
terms of the Segre class of $Y.$ ) For applications of Proposition 1.3 and
Corollary 1.4, see Examples 3.4, 3.5.

The next fact we list also requires some notations. We now assume
that $X$ is a reduced hypersurface, over $\mathbb{C}$ . The question is whether,
in this particularly ’geometric’ case, $c_{wMa}(Y)$ can be recovered from
numerical invariants ofX. The answer comes from [12]: define a function
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$\mu$ : $Y\rightarrow \mathbb{Z}$ by setting $\mu(y)=(-1)^{dimX}(\chi(y)-1)$ , where $\chi(y)$ is the
Euler characteristic of the Milnor fiber of $X$ at $ y;\mu$ is a constructible
function on $Y$ , so we can apply to it MacPherson’s transformation $c_{SM}$

(that is, write $\mu$ as a linear combination of characteristic functions $1_{Z}$

for subvarieties $Z$ of $Y$ , then replace each $1_{Z}$ in this combination by
$c_{SM}(Z))$ .

Theorem 1.5.

$c_{wMa}(Y)=(-1)^{dimY}c_{SM}(\mu)$ in $A_{*}Y$ .

Equivalently, write $\mu$ as a linear combination of local Euler obstruc-
tions (also an ingredient in [10]): $\mu=\sum\ell_{i}Eu_{Y_{i}}$ ; then the content of
Theorem 1.5 is that in this situation the $Y_{i}$ ’s are precisely the supports
of the components of the normal cone of $Y$ , and the numbers $\ell_{i}$ deter-
mined by $\mu$ agree (up to sign) with the multiplicities $m_{i}$ used to define
$c_{wMa}(Y)$ . Again, we would be very interested in extensions of this result
to more general $Y$ : what numerical invariants of a space $X$ (not nec-
essarily a hypersurface) determine the multiplicities of the components
of the normal cone of its singularity subscheme? Can these multiplici-
ties be computed for an arbitrary scheme $Y$ , by a similar ’Milnor fiber’
approach? Once more, note that the left-hand-side in Theorem 1.5 is
defined for arbitrary $Y$ ; to what extent can the right-hand-side also be
defined for arbitrary $Y$? We know of several problems in enumerative
geometry for which finding these multiplicities is one of the main com-
putational ingredients. For an explicit computation (not directly related
to enumerative geometry) see Example 3.6.

Finally, it would be interesting to have results on the functoriality of
the class $c_{wMa}(Y)$ ; little is known about the functoriality of the ordinary
Chern-Mather class. Again, something can be said if $Y$ is the singularity
subscheme of a hypersurface $X$ (over an arbitrary algebraically closed
field of characteristic zero, and possibly nonreduced). Let $Z$ be a non-

singular subvariety of $Y\subset X\subset M$ , and consider the blow-up $\overline{M}$ of $M$

along $Z$ :

$Y’\downarrow\rightarrow X’\rightarrow\overline{M}$

$\{$$\{$ $\rho$ $\pi$

$Z\rightarrow Y-X\rightarrow M$

Here $X’=\pi^{-1}X$ is the scheme-theoretic inverse image of $X$ , a hyper-

surface of $\overline{M}$ , and $Y’$ is the singularity subscheme of $X’$ .

Proposition 1.6. Assume $Z$ has codimension $d$ in M. Then

$\rho_{*}c_{wMa}(Y’)=(-1)^{dimX-dimY}c_{wMa}(Y)-(d-1)c_{wMa}(Z)$ in $A_{*}X$ .
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Here of course $c_{wMa}(Z)=c(TZ)\cap[Z]$ , as $Z$ is nonsingular. Also
note that by assumption $X$ is singular along $Z$ , hence $Y’$ contains the

exceptional divisor in $M$ .

Proofs of the statements made in this section are sketched in \S 2, with
emphasis on Theorem 1.2, which relates the weighted Chern-Mather
class of the singularity of a hypersurface with its Milnor class.

\S 2. The Milnor class of a hypersurface.

As is well known, for a compact complex hypersurface $X$ with iso-
lated singularities the sum of the Milnor numbers of the singularities
measures the difference between the topological Euler characteristic of
$X$ and that of a nonsingular hypersurface linearly equivalent to $X$ (if
there is such a hypersurface). To my knowledge, the first who used
this fact to define and study a generalization of the Milnor number to
non-isolated hypersurface singularities is Adam $Parusi\acute{n}$ski, [11].

Now, the functoriality of Schwartz-MacPherson’s class implies that,
for a hypersurface $X$ as above, the Euler characteristic of $X$ equals the
degree of the (zero-dimensional component of the) class $c_{SM}(X)$ . On
the other hand, the Euler characteristic of a nonsingular hypersurface
linearly equivalent to $X$ equals the degree of the class of the virtual
tangent bundle of $X$ (that is, of $c_{F}(X)$ with notations as in \S 1). That
is, $Parusi\acute{n}$ski’s Milnor number equals (up to a sign), the degree of the
difference between the two classes:

$\int(c_{F}(X)-c_{SM}(X))$

It is natural then to study the whole class $c_{F}(X)-c_{SM}(X)$ ; this (or
slight variations of it) has been named the Milnor class of $X$ by some
authors (see [5], [12], [14]).

Note that nothing in the definition of the class $c_{F}(X)-c_{SM}(X)$

requires $X$ to be a hypersurface: both Schwartz-MacPherson’s and Pul-
ton’s classes can be defined for arbitrary varieties. For reduced compact
complex local complete intersections, the Milnor class is computed in
homology in [5] in terms of vector fields on $X$ , an approach reminiscent
of Schwartz’s definition of $c_{SM}(X)$ .

In fact the class makes sense for arbitrary schemes $X$ over any alge-
braically closed field of characteristic 0, and naturally lives in the Chow
group $A_{*}Y$ of the singular locus of $X$ . We would like to pose the follow-
ing question:

-To what extent is the Milnor class of $X$ determined by the singu-
larity subscheme $Y$ of $X^{p}$ or, in more ambitious terms:
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-Is there a natural definition of a class on an arbitrary scheme $Y$ ,

from which the Milnor class of $X$ can be computed if $Y$ is the singularity
subscheme of $X^{p}$

In view of the results collected in \S 1, the situation is clear for hy-
persurfaces. The singular locus of a hypersurface has a natural scheme
structure, given by the partial derivatives of local equations of $X$ . The-
orem 1.2 then asserts that (for arbitrary hypersurfaces $X$ over an alge-
braically closed field of characteristic 0, and writing $\mathcal{L}=\mathcal{O}(X)_{|Y})$

$c_{F}(X)-c_{SM}(X)=(-1)^{dimX-dimY}c(\mathcal{L})^{-1}\cap c_{wMa}(Y)$ in $A_{*}X$ :

that is, if two hypersurfaces have the same singularity subscheme $Y$ and
their line bundles restrict to the same bundle on $Y$ , then they have the
same Milnor class; and, further, this can be recovered from the class
$c_{wMa}(Y)$ , which can be defined for arbitrary schemes $Y$ .

Therefore, Theorem 1.2 answers the two questions posed above, for
hypersurfaces. To our knowledge, the questions are completely open for
more general schemes $X$ . Milnor classes of local complete intersections
(for which the singular locus also carries a natural scheme structure)

have been studied in [5], but from a different viewpoint, which does not
seem to address questions such as the ones posed above.

Theorem 1.2 could be deduced from results in the existing literature
(particularly from [12] or [2]). However, while the main result in [2] is
at the level of generality at which we are aiming, its proof is rather un-
enlightening. The approach in [12] is much more cogent, but it is stated
in homology and relies on the complex geometry of the situation–for
example, in [12] the hypersurface is assumed to be reduced and compact.
The argument given below works for possibly nonreduced hypersurfaces,
over arbitrary algebraically closed fields of characteristic 0, and gives the
formula in rational equivalence; it only relies on the basic formalism of
Schwartz-MacPherson’s classes (as developed in [8]). We would like to
stress that, anyway, at its core is a multiplicity computation we learned
from [12].

Proof of Theorem 1.2. We consider the blow-up $\overline{M}\rightarrow\pi M$ along
$Y$ , and let $\mathcal{X}$ , $\mathcal{Y}$ be the pull-back of $X$ and the exceptional divisor,
$res\underline{pe}ctively$. Note that $\mathcal{Y}\subset \mathcal{X}$ , $so^{1}$ there is an effective Cartier divisor
in $M$ whose cycle equals $\mathcal{X}-\mathcal{Y}$ ; we will denote this divisor by $\mathcal{X}-\mathcal{Y}$ .

1A note of warning to non-algebraic geometers: here and in the following
we are using common set-theoretic notations (such as $\subset$ , -, etc.) in their
scheme-theoretic sense. For example, $\mathcal{Y}\subset \mathcal{X}$ means that the ideal sheaf of $\mathcal{X}$

is contained in the ideal sheaf of $\mathcal{Y}$ . Since both $\mathcal{X}$ and $\mathcal{Y}$ are Cartier divisors,
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Now let $p$ be a point of $X$ . We have $\pi^{-1}(p)\subset \mathcal{X}-\mathcal{Y}$ , so it makes sense
to consider the Segre class of $\pi^{-1}(p)$ in $\mathcal{X}-\mathcal{Y}$ .

Claim 2.1. Denoting degree by $\int$ ,

$\int\frac{s(\pi^{-1}(p),\mathcal{X}-\mathcal{Y})}{1+\mathcal{X}-\mathcal{Y}}=1$

A preliminary result is in order before we prove this claim. We have

$\pi^{-1}(p)c\rightarrow(\mathcal{X}-\mathcal{Y})\leftarrow’\overline{M}$

where the second embedding is regular. We claim that

$s(\pi^{-1}(p), \mathcal{X}-\mathcal{Y})=c(N_{\mathcal{X}-\mathcal{Y}}\overline{M})\cap s(\pi^{-1}(p),\overline{M})$

Note that this is not automatic in this situation, cf. Example 4.2.8 in
[7]. In our case, it will follow from the following lemma:

Lemma 2.2. Let $D$ , $E$ be hypersurfaces in a variety V. Assume
that $D-E$ is positive and has no components in common with E. Then
$s(E, D)=c(N_{D}V)\cap s(E, V)$ .

Proof of the lemma. By the hypothesis and Lemma 4.2 in [7],

$s(E, D)$ $=$ $s(E, E)+s(E\cap(D-E), D-E)=[E]+\frac{E\cdot(D-E)}{1+E}$

$=$ $\frac{([E]+E\cdot E)+E\cdot(D-E)}{1+E}=(1+D)\cap\frac{[E]}{1+E}$

$=$ $c(N_{D}V)\cap s(E, V)$ Q.E.D.

$Proo\underline{fo}f$ Claim 2.1. We apply Lemma 2.2 to the normalized blow-

up $V$ of $M$ along $\pi^{-1}(p)$ , with $E=the$ exceptional divisor, and $D=the$

inverse image of $\mathcal{X}-\mathcal{Y}$ . To see that the hypotheses are satisfied, we have
to show that every component of $E$ appears with the same multiplicity
in $E$ and $D$ .

For this2 , let $\gamma(t)$ be a germ of a nonsingular curve centered at the
general point of a component of $E$ , let $\tilde{\gamma}(t)$ be the composition to $M$ ,

and let $F$ be a local equation for $X$ at $p$ ; also, choose local parameters
$x_{1}$ , $\ldots$ , $x_{n}$ for $M$ at $p$ . The ideal of $E$ is the pull-back of $(x_{1}, \ldots, x_{n})$

to $V$ , so the multiplicity $m_{E}$ of the component in $E$ equals the order of

this just says that local equations for $\mathcal{X}$ are multiples of local equations for $\mathcal{Y}$ .
This is necessary for the statement that follows.

$2This$ computation is essentially lifted from an analogous computation in
the proof of Proposition 2.2 in [12].
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vanishing of the pull-back $x_{i}(t)=\tilde{\gamma}^{*}x_{i}$ of a generic local parameter. The
multiplicity $m_{D}$ in $D$ equals $m_{\mathcal{X}}$ -my, where $m_{\mathcal{X}}$ , my are respectively
the multiplicities in the pull-backs of $\mathcal{X}$ , $\mathcal{Y}$ .

Now $m_{\mathcal{X}}$ is the order of vanishing of

$\tilde{\gamma}^{*}F=F(x_{1}(t), \ldots, x_{n}(t))$

while my is the order of vanishing of the pull-back of

$(F$, $\frac{\partial F}{\partial x_{1}}$ , $\ldots$ , $\frac{\partial F}{\partial x_{n}})$

that is, the order of vanishing of $\tilde{\gamma}^{*}\frac{\partial F}{\partial x_{i}}$ for a generic local parameter $x_{i}$ .

Now taking the derivative with respect to $t$ gives (by the chain rule!)

$mx$ $-1=my+m_{E}-1$

from which the desired equality $m_{E}=m_{D}$ follows.
Applying Lemma 2.2, we get

$s(E, D)=(1+\mathcal{X}-\mathcal{Y})\cap s(E, V)$

hence

$s(\pi^{-1}(p), \mathcal{X}-\mathcal{Y})=(1+\mathcal{X}-\mathcal{Y})\cap s(\pi^{-1}(p),\overline{M})$

by the birational invariance of Segre classes ([7], Proposition 4.2). Rom
this,

$\pi_{*}\frac{s(\pi^{-1},\mathcal{X}-\mathcal{Y})}{1+\mathcal{X}-\mathcal{Y}}=s(p, M)=[p]$

again by the birational invariance of Segre classes, and the claim follows
by taking degrees. Q.E.D.

We are finally ready to prove Theorem 1.2. Identify $\mathcal{Y}$ with the
projective normal cone of $Y$ in $M$ , let $y_{i}$ be the reduced components of
$\mathcal{Y}$ , and let $Y_{i}$ be their support in $Y$ . Then

$\{$

$\mathcal{X}$ $=\overline{X}+\sum n_{i}\mathcal{Y}_{i}$

$\mathcal{Y}$ $=\sum m_{i}\mathcal{Y}_{i}$
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for suitable $m_{i}$ , $n_{i}$ . By Claim 2.1,

1 $=$ $\int\frac{s(\pi^{-1}(p),\mathcal{X}-\mathcal{Y})}{1+\mathcal{X}-\mathcal{Y}}$

$=$
$\int\frac{s(\pi^{-1}(p)\cap\overline{X},\overline{X})+\sum(n_{i}-m_{i})s(\pi^{-1}(p)\cap \mathcal{Y}_{i},\mathcal{Y}_{i})}{1+\mathcal{X}-\mathcal{Y}}$

by Lemma 4.2 in [7]

$=$ $Eu_{X}(p)+\sum(n_{i}-m_{i})(-1)^{dimM+1-dimY_{i}}Eu_{Y_{i}}(p)$

using the formula for Euler obstructions due to Gonzalez-Sprinberg and
Verdier, as computed in [8], Lemma 2 (as pointed out in [2], \S 1.3 and in
[12], \S 3, the divisor $\mathcal{X}-\mathcal{Y}$ can be embedded in $\mathbb{P}(T^{*}M)$ , and $1+\mathcal{X}-\mathcal{Y}$ is
then the restriction of the class of the tautological bundle in $\mathbb{P}(T^{*}M))$ .
Now, every relation between constructible functions yields a relation for
characteristic classes. Here, this gives (using the formula for Mather’s
classes in [8], Lemma 1, going back to Claude Sabbah):

$c_{SM}(X)$ $=$ $c_{Ma}(X)+\sum(n_{i}-m_{i})(-1)^{dimM+1-dimY_{i}}c_{Ma}(Y_{i})$

$=$ $c(TM)\cap\pi_{*}(\frac{[\overline{X}]}{1+\mathcal{X}-\mathcal{Y}}+\sum(n_{i}-m_{i})\frac{[\mathcal{Y}_{i}]}{1+\mathcal{X}-\mathcal{Y}})$

$=$ $c(TM)\cap\pi_{*}(\frac{[\mathcal{X}]}{1+\mathcal{X}}-\frac{1}{1+\mathcal{X}}\sum m_{i}\frac{[\mathcal{Y}_{i}]}{1+\mathcal{X}-\mathcal{Y}})$

$=$ $c_{F}(X)+c(\mathcal{L})^{-1}\cap\sum m_{i}(-1)^{dimM-dimY_{i}}c_{Ma}(Y_{i})$

$=$ $c_{F}(X)+(-1)^{dimM-dimY}c(\mathcal{L})^{-1}\cap c_{wMa}(Y)$

which is the desired formula. Q.E.D.

As observed in the proof, $\mathcal{X}-\mathcal{Y}$ can be naturally embedded in
$\mathbb{P}(T^{*}M)$ . The content of Claim 2.1 is that $\mathcal{X}-\mathcal{Y}$ gives then the char-
acteristic cycle of $X$ (corresponding to the characteristic function $1_{X}$ of
$X$ in $M$ ).

The other statements in \S 1 now follow easily, either by comparing
the expression for $c_{SM}$ with the expressions in [2] and [12], or by direct
manipulations that can be extracted from those sources. The argument
given here $r$ -proves Theorem 1.3 in $[2]/Theorem3.1$ in [12]; and for
example, \S 1 in [2] shows how to go directly from this form of the re-
sult to expressions in terms of Segre classes or $\mu$ classes (thus proving
Proposition 1.3, Corollary 1.4).
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The details are left to the reader. Theorem 1.5 is our reading of
Theorem 2.3 (iii) from [12]. The blow-up formula of Proposition 1.6
follows from Proposition IV.2 in [2].

\S 3. Examples and applications.

Normal cones behave well with respect to proper finite maps and
with respect to flat maps, cf. Proposition 4.2 in [7]. For example, assume
that $Y$ is irreducible, and $\overline{M}\rightarrow M\pi$ is a surjective birational map on the
ambient space. Then there is an induced surjective map from the cone of
$\pi^{-1}Y$ to the cone of $Y$ . This can be used to obtain the data $\{(Y_{i}, m_{i})\}$

of \S 1, for example by suitably blowing up an ambient space; this can
lead to direct computations of weighted Chern-Mather classes.

Example 3.1. Suppose $Y$ consists of a curve $C$ , with an embed-
ded multiple planar point at a point $p$ . More precisely, assume $C$ , $Y$

have local ideals respectively $I_{C}$ , $I_{C}$ . $(x, y)^{m}$ , $m\geq 1$ , near $p$ in a nonsin-
gular ambient surface $S$ with local parameters $x$ , $y$ . Also, assume that
$C$ has multiplicity $r$ at $p$ . Then

$c_{wMa}(Y)=c_{Ma}(C)-(m+r)[p]$

Indeed, blow-up $S$ at $p$ ; the total transform of $Y$ consists of the proper
transform of $C$ , and of $(m+r)$ times the exceptional divisor. Therefore,
the normal cone of $Y$ contains a component with multiplicity $m+r$ over
$p$ . (But note there is no such component if $m=0.$ )

For example, take $Y$ to be the union of two lines $\ell_{1}$ , $\ell_{2}$ in $\mathbb{P}^{2}$ , with an
embedded planar point at the intersection $p=\ell_{1}\cap\ell_{2}$ ; then $c_{wMa}(Y)=$

$[\ell_{1}]+[\ell_{2}]+[p]$ . If the embedded point is on one of the lines, but not at
$p$ , then $c_{wMa}(Y)=[\ell_{1}]+[\ell_{2}]+2[p]$ . If each line comes with multiplicity
$r$ , and the embedded point is at $p$ , then the class is

$rc_{Ma}(\ell_{1})+rc_{Ma}(\ell_{2})-(1+2r)[p]=r[\ell_{1}]+r[\ell_{2}]+(2r-1)[p]$

Example 3.2. Example 3.1 can be easily generalized to the sit-
uation in which $Y$ is a subscheme of a given ambient space $M$ , and
the residual to a Cartier divisor $D$ in $Y$ is a known scheme $Y’$ . Then
$c_{wMa}(Y)$ can be written in terms of $c_{Ma}(D)$ , $c_{wMa}(Y’)$ , and the multi-
plicity of $D$ along the distinguished components of $Y’$ ; details are leffi to
the reader. A very different expression can be obtained if $Y’$ is the sin-
gularity subscheme of a hypersurface $X$ in $M$ , and $D$ is the $r$-th multiple
of $X(r\geq 0)$ .
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Claim 3.1. Let $\mathcal{L}=\mathcal{O}(X)_{|Y’}$ . Then

$c_{wMa}(Y)=rc_{F}(X)+(-1)^{dimX-dimY_{\frac{c(\mathcal{L}^{\otimes(r+1)})}{c(\mathcal{L})}}’}\cap c_{wMa}(Y’)$

The proof is an easy application of the results in \S 1, and is also leffi
to the reader.

To contrast the two approaches, take again the example of the union
of two lines $\ell_{1}$ , $\ell_{2}$ in $\mathbb{P}^{2}$ , each coming with multiplicity $r$ , with an em-
bedded planar point at the intersection. Since the planar point is the
singularity subscheme of the union of two (simple) lines, Claim 3.1 com-
putes the weighted Chern-Mather class of this scheme as

$rc_{F}(X)+(-1)^{dimX-dimY_{\frac{c(\mathcal{L}^{\otimes(r+1)})}{c(\mathcal{L})}}’}\cap c_{wMa}(Y’)$

$=r\frac{c(T\mathbb{P}^{2})}{c(\mathcal{O}_{\mathbb{P}^{2}}(2))}\cap([\ell_{1}]+[\ell_{2}])-[p]$

$=r([\ell_{1}]+[p])+r([\ell_{2}]+[p])-[p]$

with the same result as before, but by a very different route.
It would be useful to have formulas such as Claim 3.1, but with less

stringent hypotheses on $X$ .

Example 3.3. If $X=X_{1}\cup\cdots\cup X_{r}$ is a divisor with normal
crossings, with all $X_{i}$ supported on nonsingular hypersurfaces $(X_{i})_{red}$ ,

and $Y$ is its singularity subscheme, then

$c_{wMa}(Y)=\pm c(TM)\cap(1-\frac{1+[X]}{(1+(X_{1})_{red})(1+(X_{r})_{red})}\cdots)\cap[M]$

taking the $sign+$ , resp. -according to whether $X$ is reduced or not. The
expression is interpreted by expanding it, which leaves a class naturally
supported on $Y$ ; it follows from Proposition 1.3 and [2], \S 2.2 (Lemma II.2
in [2] computes the Segre class if $X$ is reduced, and the computation in

the proof of Lemma II.1 is used to cover the non-reduced case).

Example 3.4. What do we learn about hypersurfaces by studying
their Milnor classes?

As shown in [1], the $\mu$-class of a hypersurface $X$ packs a good amount
of information about $X$ : for example, the multiplicity of $X$ as a point

of the discriminant of a linear system and the dimension of this dis-
criminant can be recovered very easily from the $\mu$-class (hence from the
Milnor class). In the classical language, the $\mu$-classes of hyperplane sec-
tions of an embedded nonsingular projective variety $M$ give a localized
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analog of the ranks of $M$ , and provide a natural tool to study projective
duality.

In a different direction, the good behavior of the $\mu$-class can be
used to put restrictions on the possible singularities of a hypersurface
in a given ambient space. Several examples of this phenomenon are
illustrated in [1], \S 3, where the main tool was the observation that if the
singularity subscheme $Y$ of a hypersurface $X$ is nonsingular, then

$\mu c(Y)=c(T^{*}Y\otimes \mathcal{L})\cap[Y]$

Now, Corollary 1.4 from \S 1:

$\mu c(Y)=(-1)^{dimY}c_{wMa}(Y)_{\vee \mathcal{L}}$

is a substantial upgrade of this formula, and this allows us to extend
some of those results.

Claim 3.2. If two smooth hypersurfaces of degree $d_{1}$ , $d_{2}$ in pro-
jective space are tangent along a positive dimensional set, then $d_{1}=d_{2}$ .

More generally, if two smooth hypersurfaces $M_{1}$ , $M_{2}$ of a variety $V$

are tangent along an irreducible (for simplicity) set $Z$ , and $dimZ>0$ ,

then we claim that

$rM_{1}\cdot[Z]=rM_{2}\cdot[Z]$

where $r$ is the order of tangency of $M_{1}$ and $M_{2}$ (for example, $r=1$ if $M_{1}$ ,
$M_{2}$ have simple contact). This is essentially Proposition IV.7 in [2], with
all hypotheses on the contact locus (except the positive dimensionality)

removed. The stronger statement given above follows from the results in

\S 1. Indeed, in the situation of the statement, let $X=M_{1}\cap M_{2}$ ; then $X$

is a hypersurface in two distinct ways: with respect to $\mathcal{L}_{2}=\mathcal{O}(M_{2})_{|M_{1}}$

in $M_{1}$ , and with respect to $\mathcal{L}_{1}=\mathcal{O}(M_{1})_{|M_{2}}$ in $M_{2}$ . The contact locus is
$Y=SingX$ (with the scheme structure specified in \S 1), and $[Y]=r[Z]$ .

By Theorem 1.2

$c(\mathcal{L}_{2})^{-1}\cap c_{wMa}(Y)=c(\mathcal{L}_{1})^{-1}\cap c_{wMa}(Y)$

implying

$c_{1}(\mathcal{L}_{1})\cap[Y]=c_{1}(\mathcal{L}_{2})\cap[Y]$

which is the statement.

Example 3.5. We say that a hypersurface X of a nonsingular
variety M is (analytically) ’homogeneous at p’ if the equation of X is
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homogeneous for some choice of system of parameters in the completion
of the local ring for $M$ at $p$ . We are going to consider degree-d hyper-

surfaces $X$ in $\mathbb{P}^{n}$ , whose singular scheme $Y$ has a connected component
supported on a nonsingular curve $C$ of genus $g$ and degree $r$ ; we as-
sume that $Y$ has the reduced structure at all but finitely many points
$q_{1}$ , $\ldots$ , $q_{s}$ , and that $X$ is homogeneous at each of the $q_{i}$ . In particular, $X$

has multiplicity 2 at all other points of $C$ ; we let $m_{i}$ be the multiplicity
of $X$ at $q_{i}$ .

How constrained is this situation?. Examples 3.4–3.6 in [1] deal
with the case in which the singular scheme is reduced, that is, there are
no points $‘ q_{i}$

’ as above. This situation is then very rigid: for example,
one sees that only quadrics can have singular scheme equal to a line,
and no hypersurface in projective space can have singular scheme equal
to a twisted cubic (cf. p. 347 in [1]).

The natural expectation would be that letting the singular scheme
be nonreduced should allow many more examples. For instance, cones
over nodal plane curves give examples of hypersurfaces in $\mathbb{P}^{3}$ of arbi-
trary degree $\geq 2$ and singular scheme generically reduced, but with an
embedded homogeneous point (at the vertex). However, the results in
this paper show that the situation is still quite rigid:

Claim 3.3. Under the hypotheses detailed $above_{f}(n-1)$ must di-
vide $4(g+r-1)$ . In fact, necessarily

$(n-1)((d-2)r-\sum(m_{i}-2))=4(g+r-1)$

For example, twisted cubics can support singularity subschemes as
above only in dimensions $n=3,5,9$ , regardless of the number of embed-
ded points allowed on them. (We do not know if such examples do exist.)
The only situation in unconstrained dimension is for $g+r-1=0$ , that
is, $g=0$ and $r=1$ : lines are the only nonsingular curves in projective
space which may support a generically reduced singularity subscheme in
all dimensions (under the local homogeneity assumption). Further, if $Y$

is supported on a line and only has one embedded homogeneous point,
then the formula implies that the multiplicity of $X$ at this point is $d$ ;
therefore, $X$ is necessarily a cone in this case.

For $\sum(m_{i}-2)=0$ , the formula in Claim 3.3 recovers the formula
at p. 347 of [1] (that is, the reduced case). For $n=2$ , the hypotheses
imply that $X$ is a plane curve consisting of a double component $C$ and
a residual curve of degree $(d-2r)$ ; the formula then follows from the
genus formula and B\’ezout’s theorem. In higher dimensions, the following
argument is the only proof we know.
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Proof of the claim. We compute directly the weighted Chern-Ma-
ther class of $Y$ and the Segre class $s(Y, \mathbb{P}^{n})$ . Proposition 1.3 gives a
relation between these two classes, and the formula follows by taking
degrees.

Explicitly, blow-up $\mathbb{P}^{n}$ at the ’special’ points $q_{1}$ , $\ldots$ , $q_{s}$ , and then
along the proper transform of the curve $C$ . The homogeneity hypothesis
implies that the (scheme-theoretic) inverse image of $Y$ in the top blow-
up is a Cartier divisor, with a component of multiplicity 1 dominating $C$ ,
and $s$ components with multiplicity $(m_{1}-1)$ , $\ldots$ , $(m_{s}-1)$ dominating
the $q_{i}$ ’s. The Segre class of $Y$ in $\mathbb{P}^{n}$ is then computed by using the
birational invariance of Segre classes, and we get

$i_{*}s(Y,\mathbb{P}^{n})$

$=r[\mathbb{P}^{1}]+(s(n-1)+2-2g-r(n+1)+\sum_{i}((m_{i}-1)^{n}-n(m_{i}-1)))[\mathbb{P}^{0}]$

(where $i$ : $Yc-\rangle \mathbb{P}^{n}$ is the inclusion).
On the other hand, the component dominating $q_{i}$ maps to a corre-

sponding component of the projective normal cone to $Y$ in $\mathbb{P}^{n}$ ; comput-
ing differentials, we see that this map has degree $(m_{i}-1)^{n-1}-1$ . This
allows us to compute the weighted Chern-Mather class of $Y$ :

$c_{wMa}(Y)=c_{Ma}(C)-\sum_{i}((m_{i}-1)^{n-1}-1)(m_{i}-1)c_{Ma}(q_{i})$

from which

$i_{*}c_{wMa}(Y)=r[\mathbb{P}^{1}]+(2-2g-\sum_{i}((m_{i}-1)^{n}-(m_{i}-1)))[\mathbb{P}^{0}]$

Now let $h$ denote the hyperplane class in $\mathbb{P}^{n}$ . The expression for the
Segre class gives

$i_{*}c(T^{*}\mathbb{P}^{n}\otimes \mathcal{O}(d))\cap s(Y, \mathbb{P}^{n})=i_{*}\frac{(1+(d-1)h)^{n+1}}{1+dh}\cap s(Y, \mathbb{P}^{n})=r[\mathbb{P}^{1}]$

$+((s+rd-2r)(n-1)+2-2g-4r+rd+\sum_{i}((m_{i}-1)^{n}-n(m_{i}-1)))[\mathbb{P}^{0}]$

and therefore

$i_{*}(-1)^{dimY}(c(T^{*}M\otimes \mathcal{L})\cap s(Y, M))_{\vee \mathcal{L}}=r[\mathbb{P}^{1}]$

$+$ ($(2r-dr -s)(n-1)-2+2g+4r-\sum_{i}((m_{i}-1)^{n}-n(m_{i}-1))$) $[\mathbb{P}^{0}]$ .
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By Proposition 1.3, this class must equal $i_{*}c_{wMa}(Y)$ . Equating the
two expressions gives the formula in the statement. Q.E.D.

Example 3.6. Finally, we give an example of the use of weighted
Chern-Mather classes in the computation of the multiplicities of compo-
nents of a normal cone. Such multiplicities are important for enumera-
tive applications, and it would be very useful to develop tools to compute
them. For singularity subschemes of hypersurfaces, the connection be-
tween weighted Chern-Mather classes and Milnor classes often lets us
recover these multiplicities from computations of MacPherson’s classes
and local Euler obstructions. It would be interesting to extend such
techniques to more general schemes.

Let $D$ be the hypersur of $\mathbb{P}^{9}$ parametrizing singular plane cubics,
and let $Y$ be its singularity subscheme. The following picture represents
the natural stratification of $D$ (with arrows denoting specialization):

$P$

$C$

$*N$
$\ovalbox{\tt\small REJECT}*\prec>\emptyset>G\parallel$

The scheme $Y$ is supported on the union of the closures $\overline{C}$ , $\overline{G}$ of the loci
parametrizing cuspidal cubics and binodal cubics. What are the multi-
plicities of the components of the normal cone of $Y$ in $\mathbb{P}^{9}$ ? The point here
is that we can compute $c_{wMa}(Y)$ without knowing these multiplicities:

Claim 3.4. Denote by i the inclusion of Y in $\mathbb{P}^{9}$ . Then

$i_{*}c_{wMa}(Y)=69[\mathbb{P}^{7}]$

$+120[\mathbb{P}^{6}]+210[\mathbb{P}^{5}]+252[\mathbb{P}^{4}]+210[\mathbb{P}^{3}]+120[\mathbb{P}^{2}]+45[\mathbb{P}^{1}]+10[\mathbb{P}^{0}]$ .

Proof. This follows from Theorem 1.2 and the computations of
characteristic classes for $D$ in \S 4 of [4]. Q.E.D.

Now the task is to find the coefficients expressing the weighted Chern-
Mather class of $Y$ as a combination of the Chern-Mather classes of the
loci $C$ , $G$ , etc. We first find the constructible function $\nu$ corresponding to
$c_{wMa}(Y)$ under MacPherson’s transformation. For this, we use the result
of the computation from [4] of Chern-Schwartz-MacPherson’s classes of
the strata of $D$ . Writing $c_{wMa}(Y)=c_{SM}(\nu)=v(C)\cdot c_{SM}(1_{C})+v(C)$ .
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$ c_{SM}(1_{G})+\ldots$ and solving the resulting system of linear equations, we
find

$\nu(C)=2;\nu(G)=1;\nu(P)=0;\nu(T)=1$ ;

$\nu(S)=3;\nu(X)=1;\nu(I)=1$ .

(The paragraph preceding the statement of Theorem 1.5 gives a geomet-
ric interpretation of $\mu=-\nu.$ ) As pointed out in the discussion following
Theorem 1.5, to find the multiplicities we now need to express this con-
structible function as a combination of local Euler obstructions of the
strata. These are easy to compute in codimension one, and we proceed
to the computation of the multiplicities for the components dominating
the loci $\overline{C}$ , $\overline{G}$ , $\overline{P}$ , $\overline{T}$ . For these loci, we only need to observe that $\overline{C}$ , $\overline{G}$

are nonsingular along $P$ , and $\overline{G}$ has multiplicity 3 along $T$ (these follows
from easy local computations). As the local Euler obstruction agrees
with the multiplicity in codimension one, this gives

$Eu_{C}=\{$

0 $T$

1 $P$

0 $G$

1 $C$

$Eu_{G}=\{$

3 $T$

1 $P$

1 $G$

0 $C$

where we indicate the value of the function at the general point of the
listed locus. Therefore

$\nu=2Eu_{C}+Eu_{G}-3Eu_{P}-2Eu_{T}+\ldots$

from which we read that the multiplicities of the components of the
normal cone are: 2 over $C$ , 1 over $G$ , 3 over $P$ , 2 over $T$ .

Finding the multiplicities over the remaining three loci $S$ , $X$ , $I$

requires computing the local Euler obstructions for all the strata of $D$ .
We leave this to the motivated reader.
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Abstract.

In this paper, we give a survey and recent developments about
the definitions of characteristic classes for possibly singular complex
analytic (or algebraic) varieties. We recall the classical construc-
tion of characteristic classes in the case of manifolds, by obstruction
theory and using Schubert cycles. Then, we present various gener-
alizations of characteristic classes to singular varieties, due to M.H.
Schwartz, $W.T$ . Wu, J. Mather, R. MacPherson, W. Fulton and K.
Johnson and we discuss relations among these definitions. More re-
cent results concern the definition and properties of so-called Mil-
nor classes, as developped by P. Aluffi, J.P. Brasselet-D. Lehmann-J.
Seade-T. Suwa, A. $Parusi\acute{n}ski$-P. Pragacz and S. Yokura.

\S 0. Introduction

The Euler-Poincar\’e characteristic was the first characteristic class
(or number) to be introduced. For a triangulable (possibly singular)
compact variety $X$ without boundary, it can be defined, as

$\chi(X)=\sum(-1)^{i}n_{i}$ ,

where $n_{i}$ is the number of $i$-dimensional simplices. It is also equal to
$\sum(-1)^{i}b_{i}$ where $b_{i}=rkHi(X)$ . The Poincar\’e-Hopf theorem says that,
if $X$ is a manifold and $v$ a (continuous) vector field with a finite number
of isolated singularities $a_{k}$ of indices $I(v, a_{k})$ , then

$\chi(X)=\sum I(v, a_{k})$ .

Received August 9, 1999
Revised February 7, 2000
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This means that the Euler-Poincar\’e characteristic measures the ob-
struction to the existence of a non-zero vector field tangent to $X$ .

On another hand, characteristic classes of projective varieties have
been defined by Severi, Todd and others using polar varieties. Then
Chern defined such characteristic clases for hermitian manifolds, in sev-
eral ways, in particular as measuring the obstruction to the construction
of complex $r$-frames tangent to the manifold, and using Schubert vari-
eties (related to polar varieties). During some time, the attractiveness of
the axiomatic properties of Chern classes caused the viewpoint of polar
varieties to be somewhat forgotten.

For singular varieties, it appears that Wu and Mather classes can
be defined in terms of polar varieties, with a formula similar to the
non-singular case. On the other hand, the obstruction theory Chern’s
point of view has been generalized by $M.H$ . Schwartz, and the axiomatic
point of view by R. MacPherson. The Schwartz and MacPherson classes
coincide, via Alexander duality.

The Fulton and Fulton-Johnson classes use Segre classes definition,
without reference to the original definitions of Chern classes of varieties
(for complete intersections they correspond to the Chern classes of the
virtual bundle, generalization of the tangent bundle).

A natural question was to compare the Schwartz-MacPherson and
the Fulton-Johnson classes. A result of Suwa shows that in the case of
isolated singularities, the difference is given by the Milnor numbers in
the singular points. It was natural to call Milnor classes the difference
arising in the general case. This difference has been described by several
authors by different means.

In this paper, cohomology classes will be constructed in the context
of cell decompositions in order to keep things consistent with Poincar\’e

duality. We will denote by $M$ a complex manifold, by (K) a triangulation
of $M$ , $(K’)$ a barycentric subdivision of (K) and (D) the associated dual
cell decomposition. The dual cell of a simplex $\sigma\in K$ will be denoted
by $d(\sigma)$ or simply $d$ if there is no possible confusion. The barycenter $\hat{\sigma}$

is the intersection point $\hat{\sigma}=\hat{d}(\sigma)=d(\sigma)\cap\sigma$ . The (D)-cochain whose

value is 1 at $d(\sigma)$ and 0 at other cells of (D) will be denoted by $\overline{d}(\sigma)$ .

In the sequel, all homology and cohomology groups will be under-
stood with integer coefficients. Recall that if $M$ is a compact complex
$m$-dimensional manifold, the Poincar\’e duality isomorphism

$H^{2m-i}(M)\rightarrow H_{i}(M)$ ,

the cap-product with the fundamental class $[M]\in H_{2m}(M)$ , is repre-

sented at the chain level as the homomorphism $C_{(D)}^{2m-i}(M)\rightarrow C_{i}^{(K)}(M)$
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sending the elementary (D)-cochain $\overline{d}(\sigma)$ to the elementary (K)-chain
$\sigma$ .

It was a great pleasure for me to participate in the Franco-Japanese
congress on singularities in Sapporo. I want to thank all people who
made remarks and comments about a preliminary version of this survey,
especially P. Aluffi, G. Barthel, P. Pragacz, J. Seade, T. Suwa, B. Teissier
and S. Yokura.

\S 1. Chern classes in the non-singular case.

In his original paper [Ch], Chern gave several constructions of char-
acteristic classes for Hermitian manifolds: by obstruction theory, using
the decomposition of the Grassmann manifold in Schubert cycles, using
differential forms and by transgression cocycles. We will briefly recall
the first two definitions, which extend to singular varieties. The paper
[Ch] is highly recommended for the study of Chern classes.

1.1. Chern classes by obstruction theory.

Let us recall the idea of constructing Chern classes by obstruction
theory (see [Ch]), following Steenrod [Ste], part III.

We denote by $TM$ the complex tangent bundle to the complex m-
dimensional manifold $M$ and by $T_{r}M$ the bundle of complex $r$-frames
tangent to $M$ . The fiber of $T_{r}M$ over a point $x\in M$ is the Stiefel
manifold $W_{r,,,m}$ of complex $r$-frames in $C^{m}$ . Let $d=d(\sigma)$ be a $k$-cell in a
trivialization domain $U$ of $T_{r}M$ , i.e. $T_{r}M|_{U}\cong U\times W_{r,,,m}$ . Let us suppose
that we are given an $r$-frame $v^{(r)}=(v_{1}, \ldots, v_{r})$ on the boundary $\partial d$ of
$d$ . This defines a section of $T_{r}M$ over $\partial d$ and, by composition, a map

$S^{k-1}\cong\partial d\rightarrow T_{r}M|_{U}v^{(r)}\rightarrow W_{r,m}pr_{2}$

where $pr_{2}$ denotes the projection to the second factor. We thus obtain
an element

$[v^{(r)},\cdot\partial d]\in\pi_{k-1}(W_{r,,,m})$

which vanishes if and only if the $r$-frame $v^{(r)}$ can be extended without
singularity to all of $d$ . We remark that if this element is non-zero, then we
can extend the $r$-frame to the relative interior of $d$ by homothety centered
at the barycenter $\hat{d}=\hat{d}(\sigma)$ , thus obtaining an isolated singularity of
index $[v^{(r)} ; \partial d]$ .

Let us recall ([Ste], 25.7) that

$\pi_{i}(W_{r,m})=\{$
0 for $i<2m-2r+1$ ,

$Z$ for $i=2m-2r+1$ .
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This result implies that we can construct an $r$-frame $v^{(r)}$ , i.e. a section
of $T_{r}M$ , by induction on the dimension of cells of the given cell decom-
position of $M$ without singularity up to the $(2m-2r+1)$-skeleton and
with isolated singularities on the $2p=2(m-r+1)$-skeleton. For each

cell $d(\sigma)$ , the index of the complex $r$-frame $v^{(r)}$ at its only singular

point $\hat{d}=d(\sigma)\cap\sigma$ in $d$ is $I(v^{(r)},\hat{d})=[v^{(r)} ; \partial d]\in Z$ . Associating to each

$p$-cell $d(\sigma)$ the integer $I(v^{(r)},\hat{d})$ defines a $2p$-cochain that actually is a
cocycle, called the obstruction cocycle.

Definition ([Ch]). The $p$-th (cohomology) Chern class of $M$ , $c^{p}(M)$

$\in H^{2p}(M;Z)$ is the class of the obstruction cocycle.

By the Poincar\’e duality isomorphism, the image of $c^{p}(M)$ in
$H_{2(r-1)}(M)$ is the $(r-1)- st$ homology Chern class of $M$ represented by
the cycle

(1)
$\sum_{dim\sigma=2(r-1)}I(v^{(r)},\hat{d}(\sigma))\sigma$

.

In particular, the evaluation of $c^{m}(M)$ on the fundamental class $[M]$

of $M$ yields the Euler-Poincar\’e characteristic.

1.2. Chern classes using Schubert cycles and polar vari-
eties.

The construction of Chern classes using Schubert cycles was already
present in Chern’s original paper. This construction was emphasized by
Gamkrelidze in [Gal] and [Ga2]. A historical introduction and complete
bibliography can be found in the Teissier’s paper [T2].

The Schubert cell decomposition of the Grassmann manifold $\mathcal{G}=$

$\mathcal{G}(n, m)$ of $n$-planes in $C^{m}$ has been described by Ehresmann [Eh] and it
was used by Chern to give an alternative definition of his characteristic
classes. Let

(D) $\{0\}=D_{m}\subset D_{m-1}\subset\cdots\subset D_{1}\subset D_{0}=C^{m}$

be a flag in $C^{m}$ , with $codim_{C}D_{j}=j$ .

For each integer $k$ , with $0\leq k\leq n$ , the $k$-th Schubert variety
associated to $D$ , defined by

$M_{k}(D)=\{T\in \mathcal{G}(n, m) : dim(T\cap D_{n-k+1})\geq k\}$

is an algebraic subvariety of $\mathcal{G}(n, m)$ of pure codimension $k$ . The in-

equality condition is equivalent to saying that $T$ and $D_{n-k+1}$ do not
span $C^{m}$ .

Let $\theta^{n}$ be the universal (sub)bundle over $\mathcal{G}(n, m)$ . The cycle



From Chern classes to Milnor classes 35

$(-1)^{k}M_{k}(D)$ represents the image, under the Poincar\’e duality isomor-
phism, of the Chern class $c^{k}(\theta^{n})\in H^{2k}(\mathcal{G}(n, m))$ . If $V$ is an n-dimensio-
nal complex analytic manifold and $f$ : $V\rightarrow \mathcal{G}(n, m)$ is the classifying
map for $TV$ , i.e. such that $TV\cong f^{*}(\theta^{n})$ , then the cohomological Chern
classes of $V$ are $c^{k}(V)=c^{k}(TV)=f^{*}(c^{k}(\theta^{n}))$ (see [MS]).

Let us consider the projective situation. We denote by $G(n, m)$ the
Grassmann manifold of $n$-dimensional linear subspaces in $P^{m}$ . We fix a
flag of projective linear subspaces

(D) $L_{m}\subset L_{m-1}\subset\cdots\subset L_{1}\subset L_{0}=P^{m}$

where $codim_{C}L_{j}=j$ . The $k$-th Schubert variety associated to $D$ is
defined by

$M_{k}(D)=\{\overline{T}\in G(n, m):dim(\overline{T}\cap L_{n-k+2})\geq k-1\}$

Let us remark that we always have $dim(\overline{T}\cap L_{n-k+2})\geq k-2$ . The
Schubert variety $M_{k}(D)$ has codimension $k$ in $G(n, m)$ .

Let us denote $N=nm=dim_{C}G(n, m)$ and fix $0\leq s\leq m$ . The
Schubert variety

$M_{k}^{N-s}=\{(x, T):x\in L_{s-k}, x\in T, dim(T\cap L_{n-k+2})\geq k-2\}$
$(2)$

$=L_{s-k}\cap M_{k}(D)$

is the intersection of $M_{k}(D)$ with a general $(s-k)$-codimensional plane
and it has codimension $s$ in $G(n, m)$ . The (homological) Chern classes
of $G(n, m)$ are

(3) $c_{N-s}(G(n, m))=\sum_{k=0}^{s}(-1)^{k}$ $\left(\begin{array}{ll}n-s & +1\\n-k & +1\end{array}\right)$ $M_{k}^{N-s}$ .

Let us now consider the case of an $n$-projective manifold $V\subset P^{m}$ .

The $k$-th polar variety is defined by

$P_{k}=\{x\in V:dim(T_{x}(V)\cap L_{n-k+2})\geq k-1\}$ ,

where $T_{x}(V)$ is the projective tangent space to $V$ at $x$ . For $L_{n-k+2}$

sufficiently general, the codimension of $P_{k}$ in $V$ is equal to $k$ . Also, the
class $[P_{k}]$ of $P_{k}$ modulo rational equivalence in the Chow group $A_{n-k}(V)$

does not depend on $L_{n-k+2}$ for $L_{n-k+2}$ sufficiently general. This class
is called the $k$-th polar class of V.

Let $\gamma$ : $V\rightarrow G(n, m)$ be the Gauss map, i.e. the map defined by

$\gamma(x)=T_{x}(V)\subset P^{m}$ .
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Then

$P_{k}=\gamma^{-1}(M^{k}(D))$ .

The relation between Chern classes and polar classes has been de-
scribed by Gamkrelidze and Todd.

If $\mathcal{L}=\mathcal{O}_{P^{m}}(1)|_{V}$ , then we obtain the Todd formula (compare with
(3) $)$ :

(4) $c_{n-s}(V)=\sum_{k=0}^{s}(-1)^{k}$ $\left(\begin{array}{ll}n-s & +1\\n-k & +1\end{array}\right)$ $c^{1}(\mathcal{L})^{s-k}\cap[P_{k}]$

where the cap-product with $c^{1}(\mathcal{L})^{s-k}$ is equivalent to the intersection
with a general $(s-k)$-codimensional plane.

\S 2. Chern classes in the singular case.

In the singular case, there are different possible definitions of Chern
classes, generalizing the ones in the non-singular case.

The Wu and Mather classes generalize the definitions by Schubert
cycles and polar varieties. J. Zhou proved that Wu and Mather classes
coincide.

The Schwartz classes use obstruction theory, and the MacPherson
classes, defined in an algebraic geometry way, satisfy good functorial
properties. J.P. Brasselet and $M.H$ . Schwartz proved that Schwartz and
MacPherson classes coincide, via Alexander duality.

The Fulton and Fulton-Johnson definitions of Chern classes use
Segre classes and correspond to the class of the virtual tangent bun-
dle in the case of local complete intersections (for example).

The relation between Wu-Mather classes and Schwartz-MacPherson
classes appears in MacPherson’s definition itself. The MacPherson con-
struction uses Wu-Mather classes, taking into account the local com-
plexity of the singular locus along Whitney strata. This is the role of
the local Euler obstruction.

The difference between Schwartz-MacPherson and Fulton-Johnson
classes is expressed, in the case of isolated singularities, in terms of
the Milnor numbers (at the singularities) (Seade-Suwa). In the general
case, this difference is called Milnor class and has been studied by sev-
eral authors: P. Aluffi, $J.P$ . Brasselet-D. Lehmann-J. Seade-T. Suwa, A.
Parusinski-P. Pragacz and S. Yokura.

2.1. The Wu classes (1965).

In the singular case, Wu [Wu2] generalized Chern’s and Gamkre-
lidze’s constructions in the following way: Let $X^{n}\subset P^{m}$ be a complex
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projective algebraic variety and let $X’$ be a subvariety of $X$ containing
the singular part $X_{sing}$ . Denoting by $A_{*}(X)$ the Chow group of classes
of algebraic cycles of $X$ and with $A_{*}(X, X’)$ the subgroup of classes that
have no component in $X’$ , there is a natural inclusion

$J:A_{*}(X, X’)\rightarrow A_{*}(X)$ .

Wu defines a notion of transform of $X$ , which coincides with the
Nash transform (see [Z1]). We recall the definition of Nash transform,
the original definition of Wu being slightly different.

Let us denote by $iJ$ : $G\rightarrow P^{m}$ the Grassmann bundle over $P^{m}$ whose
fibre over $x$ is the Grassmann manifold $G(n, m)$ of $n$-linear subspaces in
$T_{x}P^{m}$ . The Gauss map $\gamma$ : $X_{reg}\rightarrow G$ is defined on the regular part
$X_{reg}=X\backslash X_{sing}$ of $X$ by

$\gamma(x)=T_{x}(X_{reg})\subset T_{x}P^{m}$

The $Wu$ (or Nash) $\underline{t}ransform\overline{X}$ is defined as the closure of the image of
$\gamma$ in $G$ . In general $X$ is singular; nevertheless, if $X$ is an analytic variety,

then $\overline{X}$ is also analytic, and the restriction $lJ:\overline{X}\rightarrow X$ of the projection
$\iota/:G\rightarrow P^{m}$ is analytic. It induces a map

$\iota/_{*}$ : $A_{*}(\overline{X},\overline{X}’)\rightarrow A_{*}(X, X’)$

where $\overline{X}’=\iota/-1(X’)$ .

The (transverse) intersection of cycles with $\overline{X}$ defines a map

$A_{d-s}(G)\rightarrow A_{n-s}(\overline{X},\overline{X}’)I$ ,

with dime $G=d$ .
Finally, let $D$ : $A_{s}(G)\rightarrow A_{d-s}(G)$ be the duality map in $G$ . The

composition $W=J\circ\iota/_{*}\circ I$ $\circ D$ is a map

$W_{s}$ : $A_{s}(G)\rightarrow A_{n-s}(X)$

In analogy to the formula (3), we have:

Definition ([Wul]). The Wu classes are defined by

$c_{n-s}^{W}(X)=\sum_{k=0}^{s}(-1)^{k}$ $\left(\begin{array}{ll}n-s & +1\\n-k & +1\end{array}\right)$ $W_{s}(M_{k}^{s})$
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2.2. The Mather classes (1974).

R. MacPherson named Mather classes the classes that Mather de-
scribed to him on a blackboard (see [M2]). Let us recall their definition.

Let $X$ be an $n$-dimensional analytic complex $subvariet\underline{y}X$ of an m-
dimensional manifold $M$ . We consider the Nash transform $X$ and denote
by $E$ the tautological bundle over the Grassmann bundle $G$ . The fiber
of $E$ over $P\in G$ is

$E_{P}=\{v(x)\in T_{x}(M):v(x)\in P, x=\iota/(P)\}$ .

Let us denote by $\overline{E}$ the restriction of $E$ to $\overline{X}$

. We have a commuta-
tive diagram:

$\overline{E}$

$\epsilon_{-t}$ $E$

$\frac{\downarrow}{X}$

$L\rightarrow$

$ G\downarrow$

$\downarrow$ $\downarrow$

$X$ $\simeq\rightarrow$ $M$

Definition ([M2]). The Mather class of $X$ is defined by

$c^{M}(X)=\nu_{*}(c^{*}(\overline{E})\cap[\overline{X}])$ ,

where $c^{*}(\overline{E})$ denotes the usual (total) Chern class of the bundle $\overline{E}$ in
$H^{*}(\overline{X})$ and the cap-product with $[\overline{X}]$ is the Poincar\’e duality homomor-
phism (in general not an isomorphism).

The Mather class can be defined by using polar varieties in the
following way: First of all, let us consider the local situation. For a
general flag $V$ and an affine variety $X^{n}\subset C^{m}$ , we define

$\overline{X}$

$\epsilon-$, $\mathcal{G}(n, m)\times C^{m}$
$\rightarrow\pi_{1}$

$\mathcal{G}(n, m)$

$\sigma\nearrow$ $\downarrow\iota/$ $\downarrow\pi_{2}$

$X_{reg}$ $\simeq\rightarrow$ $X$ $c_{-\rangle}$ $C^{m}$

and we denote by $\overline{\gamma}=\pi_{1}|_{\overline{X}}$ : $\overline{X}\rightarrow \mathcal{G}(n, m)$ the Gauss map.
Let us define the following analytic subspace of $X[LT]$ :

$N_{k}(D)=\nu\circ\overline{\gamma}^{-1}(M_{k}(D))=\nu(\overline{\gamma}^{-1}(M_{k}(D))\cap\sigma(X_{reg}))$

If the flag $V$ is good (sufficiently general), i.e. $\overline{\gamma}$ is transverse to the
strata

$M_{k,,,i}(D)=\{W\in \mathcal{G}(n, m):codim(W+D_{n-k+i-1})=k+1\}$
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of $M_{k}(D)$ , then the cycle $N_{k}(D)$ is well defined and independent of the
choice of the (good) flag. In that case, it is called the polar variety
(L\^e-Teissier).

If the flag $D$ is good, and still in the local situation, let $\pi$ : $ X\rightarrow$

$C^{n-k+1}$ $ke$ the restriction to $X$ of alinear projection with kernel $D_{n-k+1}$ ,
then $N_{k}(D)$ is the closure (in $X$ ) of the critical locus of the restriction
of $\pi$ to $X_{reg}[LT]$ .

In the projective case, the polar variety is the closure of

(5) $\{x\in X_{reg} : dim(T_{x}(X_{reg})\cap L_{n-k+2})\geq k-1\}$

where $codim_{C^{m}}L_{n-k+2}=n-k+2$ .

Now, if $X^{n}\subset P^{m}$ is a projective variety, then (see (4) and [Pi2])

$c_{n-s}^{M}(X)=\sum_{k=0}^{s}(-1)^{k}$ $\left(\begin{array}{ll}n-s & +1\\n-k & +1\end{array}\right)$ $c^{1}(\mathcal{L})^{s-k}\cap[N_{k}(D)]$

where $\mathcal{L}=\mathcal{O}_{P^{m}}(1)|_{X}$ .

Theorem ([Z1]). Let $X$ be a projective variety. Then the Mather
and $Wu$ classes of $X$ coincide.

The Mather classes can be also expressed in terms of conormal space,
notion which is strongly related to the one of polar variety (see [T1] and
[S] $)$ . The conormal space is the subvariety of the cotangent bundle $T^{*}M$

of $M$ defined as the closure of

$T_{X}^{*}M=\{(x, \xi)\in T^{*}M:x\in X_{reg}, \xi|_{T_{x}(X_{reg})}\equiv 0\}$ .

We denote by $C(X, M)\subset PT^{*}M$ the projectivization of the conormal
space and by $\tau$ the projection $\tau$ : $C(X, M)\rightarrow X$ , restriction of the
projection $PT^{*}M\rightarrow M$ to $C(X, M)$ . By [S] (see also [PP4] and [Kel]),
we have

$c_{*}^{M}(X)=(-1)^{m-n-1}c(TM|x)\cap\tau_{*}(c(\mathcal{L})^{-1}\cap[C(X, M)])$ .

The Mather classes do not verify the Deligne-Grothendieck axioms
that we recall below. That is the MacPherson’s motivation for introduc-
ing the so-called Schwartz-MacPherson classes.

2.3. The Schwartz classes (1965).

The first definition of Chern class for singular varieties was given
in 1965 by $M.H$ . Schwartz in two “Notes aux CRAS” [Scl]. We briefly
recall her construction. Let $X\subset M$ be a singular $n$-dimensional complex
variety embedded in a complex $m$-dimensional manifold. Let us consider
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a Whitney stratification $\{V_{\alpha}\}$ of $M$ [Wh] such that $X$ is a union of
strata and denote by (K) a triangulation of $M$ compatible with the
stratification, i.e. each open simplex is contained in a stratum.

As before, we denote by $(K’)$ a barycentric subdivision of (K) and
(D) the associated dual cell decomposition. Each cell of (D) is transverse
to the strata. This implies that if $d$ is a cell of dimension $2p=2(m-r+1)$

and $V_{\alpha}$ is a stratum of dimension $2s$ , then $d\cap V_{\alpha}$ is a cell such that

$dim(d\cap V_{\alpha})=2(s-r+1)$

This means that if $d$ is a cell whose dimension is the dimension of ob-
struction to the construction of an $r$-frame tangent to $M$ , then $d\cap V_{\alpha}$

is a cell whose dimension is exactly the dimension of obstruction to the
construction of an $r$-frame tangent to the stratum $V_{\alpha}$ .

This fact leads $M.H$ . Schwartz to the very nice construction of a
stratified radial $r$-frame in the following way:

An $r$-frame $v^{(r)}$ , defined on a part $A\subset M$ , is called a stratified
$r$-frame if at each point $x\in A$ , $v^{(r)}(x)$ is tangent to the stratum $V_{\alpha}$

containing $x$ . In the following we write $v^{(r)}$ as $(v^{(r-1)}, v_{r})$ , the last
vector being individualized.

Proposition ([Scl] [Sc2]). One can construct, on the $2p$-skeleton
$(D)^{2p}$ , a stratified $r$ -frame $v^{(r)}$ , called radial frame, whose singularities
satisfy the following properties:

(i) $v^{(r)}$ has only isolated singular points, which are zeroes of the
last vector $v_{r}$ . On $(D)^{2p-1}$ , the $r$ -frame $v^{(r)}$ has no singular point and
on $(D)^{2p}$ the $(r-1)$ -frame $v^{(r-1)}$ has no singular point

(ii) Let $a\in V_{\alpha}\cap(D)^{2p}$ be a singular point of $v^{(r)}$ in the 2s-
dimensional stratum $V_{\alpha}$ . If $s>r-1$ , the index of $v^{(r)}$ at $a$ , de-
noted by $I(v^{(r)}, a)$ , is the same as the index of the restriction of $v^{(r)}$

to $V_{\alpha}\cap(D)^{2p}$ considered as an $r$ -frame tangent to $V_{\alpha}$ . If $s=r-1$ , then
$I(v^{(r)}, a)=+1$ .

(iii) Inside a $2p$ cell $d$ which meets several strata, the only singu-

larities of $v^{(r)}$ are inside the lowest dimensional one (in fact located in
the barycenter of $d$ ).

(iv) The $r$ -frame $v^{(r)}$ is “pointing outward” $a$ (particular) regular
neighborhood $U$ of $X$ in M. It has no singularity on $\partial U$ .

The procedure of the construction of radial frames is made by in-
duction on the dimension of the strata, using the properties of Whitney
stratifications for proving the existence of frames “pointing outward”
regular neighborhoods and satisfying property (ii). An $r$-frame already
known on a neighborhood of the boundary of a stratum is extended with
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isolated singularities inside (a suitable skeleton) of the stratum and then
extended with property (ii) to a regular neighborhood of this stratum.

Let us denote by $\mathcal{T}$ the tubular neighborhood of $X$ in $M$ consisting

of the (D)-cells which meet $X$ . Let us recall that $\overline{d}$ is the elementary
(D)-cochain whose value is 1 at $d$ and 0 at all other cells. We can define
a $2p$-dimensional (D)-cochain in $C^{2p}(\mathcal{T}, \partial \mathcal{T})$ by:

$\sum_{d\in \mathcal{T}}I(v^{(r)},\hat{d})\overline{d.}$

This cochain is a cocycle whose class lies in

$H^{2p}(\mathcal{T}, \partial I)\cong H^{2p}(\mathcal{T}, \mathcal{T}\backslash X)\cong H^{2p}(M, M\backslash X)$ ,

where the first isomorphism is given by retraction and the second by
excision.

Definition ([Scl] [Sc2]). The $p$-th Schwartz class $c^{p}(X)$ is the
class obtained in $H^{2p}(M, M\backslash X)$ .

2.4. The MacPherson classes (1974).

Let us recall firstly some basic definitions.
A constructible set in a variety $X$ is a subset obtained by finitely

many unions, intersections and complements of subvarieties. A con-
structible function $\alpha$ : $X\rightarrow Z$ is a function such that $\alpha^{-1}(n)$ is a
constructible set for all $n$ . The constructible functions on $X$ form a
group denoted by $F(X)$ . If $A\subset X$ is a subvariety, we denote by $1_{A}$ the
characteristic function whose value is 1 over $A$ and 0 elsewhere.

If $X$ is triangulable, $\alpha$ is a constructible function if and only if there
$\tilde{1}S$ a triangulation (K) of $X$ such that $\alpha$ is constant on the interior of
each simplex of (K). Such a triangulation of $X$ is called $\alpha$-adapted.

The correspondence $F$ : $X\rightarrow F(X)$ defines a contravariant functor
when considering the usual pull-back $f^{*}$ : $F(Y)\rightarrow F(X)$ for a morphism
$f$ : $X\rightarrow Y$ . One interesting fact is that it can be made a covariant func-
tor when considering the pushforward defined on characteristic functions
by:

$f_{*}(1_{A})(y)=\chi(f^{-1}(y)\cap A)$ ,

for all $y\in Y$ , and linearly extended to elements of $F(X)$ .

The following result was conjectured by Deligne and Grothendieck
in 1969 and proved by R. MacPherson [M2] in 1974.

Theorem ([M2]). Let $F$ be the covariant functor of constructible
functions and let $H_{*}$ ( ; Z) be the usual covariant $Z$ -homology functor.
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Then there exists a unique natural transformation
$c_{*}$ : $F\rightarrow H_{*}$ ( ; Z)

satisfying that $c_{*}(1_{X})=c^{*}(X)\cap[X]$ if $X$ is a manifold.
The MacPherson’s construction uses Mather classes and local Euler

obstruction that we briefly recall.
The notion of local Euler obstruction was defined originally by R.

MacPherson [M2] in 1974. It has been shown in [BDK] that the local
invariant of singularities which appear in the Kashiwara formula for the
index of holonomic modules [Ka] is equal to the local Euler obstruction.
Definitions equivalent to MacPherson’s have been given by several au-
thors. We recall the one in [BS]: Let $v$ be a radial vector field with an
isolated singularity at $x\in V_{\alpha}$ . Let $B$ be a ball centered at $x$ , small
enough to be transversal to every stratum $V_{\beta}$ with $V_{\alpha}\subset\overline{V_{\beta}}$ , and such
that $x$ is the unique zero of $v$ inside $B$ . Using the Whitney conditions,

it is possible to prove that there is a canonical lifting $\overline{v}$ of $v|_{\partial B\cap X}$ as a

section of $\overline{E}|_{\iota/^{-1}(\partial B\cap X)}$ (see [BS], Proposition 9.1). The obstruction to

the extension of $\overline{v}$, on $\nu^{-1}(B\cap X)$ , as a non-zero section of $\overline{E}$ , evalu-
ated on the corresponding fundamental class, is an integer denoted by
$Eu_{x}(X)$ .

The local Euler obstruction is a constructible function $Eu_{X}$ , con-
stant on each stratum of the Whitney stratification. The relation be-
tween the local Euler obstruction and the polar varieties is given by L\^e

and Teissier [LT]:

Theorem ([LT]). For a sufficiently general flag $V$ in $C^{m}$ , the lo-
$cal$ Euler obstruction is expressed as

$Eu_{x}(X)=\sum_{i=0}^{n-1}(-1)^{n-1-i}m_{x}(N_{n-1-i}(D))$

where $m_{x}(C)$ denotes the multiplicity of $C$ at $x$ .

For a Whitney stratification, we have the following lemma:

Lemma ([M1]). There are integers $n_{\alpha}$ such that, for every point
$x\in X$ , we have:

$\sum_{\alpha}n_{\alpha}Eu_{x}(\overline{V_{\alpha}})=1$
.

Definition ([M1]). The MacPherson class of $X$ is defined by

$c_{*}(X)=c_{*}(1_{X})=\sum_{\alpha}n_{\alpha}i_{*}c_{M}(\overline{V_{\alpha}})$
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where $i$ denotes the inclusion $\overline{V_{\alpha}}c\rightarrow X$ .

Note that we have the following relation: $c^{M}(X)=c_{*}(Eu_{X})$ .

In [BS] was proved the following result:

Theorem ([BS]). The MacPherson class is the image of the Sch-
wartz class by the Alexander duality isomorphism

$ H^{2(m-r+1)}(M, M\backslash X)\rightarrow H_{2(r-1)}(X)\cong$ .

One of the consequences of this result is that the $(r-1)- st$ MacPher-
son class $c_{r-1}(X)$ is represented by the cycle

$\sum_{\sigma\in X}I(v^{(r)},\hat{d}(\sigma))\sigma$

where $dim\sigma=2(r-1)$ (see (1)).
The following theorem gives an expression of the MacPherson class

in terms of Segre classes (see 2.5).

Theorem ([A3]). If $X$ is a hypersurface in a nonsingular variety
$M$ and $Y$ is its singular scheme, then

$c_{*}(X)=c(TM)\cap s(X\backslash Y, M)$

Following Sabbah [S] (see also [PP4]), we obtain a formula giving
the Schwartz-MacPherson classes in terms of characteristic cycles. De-
noting by $PCh(1x)\subset T^{*}M$ the characteristic cycle associated to the
constructible function $1_{X}$ on $M$ , we have (see the analogous formula for
the Mather classes):

$c_{*}(X)=(-1)^{n-1}c(TM|x)\cap\tau_{*}(c(\mathcal{L})^{-1}\cap[PCh(1_{X})])$ .

2.5. The Ehlton classes (1984) ([Fu] exemple 4.2.6 (a)).

If $X$ is a proper subvariety of a variety $M$ , the Segre class $s(X, M)$

of $X$ in $M$ is the class in $A_{*}(X)$ defined as follows (see [F], \S 4): the
normal cone to the closed subscheme $X$ in the scheme $M$ is defined as

$C=C_{X}M=Spec(\sum_{i=0}^{\infty}I^{i}/I^{i+1})$

where I is the ideal sheaf defining $X$ in $M$ . We denote by $P(C)$ the
projectivized normal cone and $p$ the projection $p:P(C)\rightarrow X$ . Then

$s(X, M)=\sum_{i\geq 0}p_{*}(c^{1}(\mathcal{O}(1))^{i}\cap[P(C)])$
.
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When $X$ is regularly imbedded in $M$ , $C=N_{X}M$ is the normal vector
bundle, and

$s(X, M)=c(N_{X}M)^{-1}\cap[X]$ .

The following Pl\"ucker formula, due to R. Piene, gives the relation
between polar varieties (hence Mather classes) and Segre classes:

Theorem ([Pil]). Let $X$ be an hypersurface of degree $d$ in $P^{m}$

and let $\mathcal{L}=\mathcal{O}_{P^{m}}(1)|_{X}$ . Then the polar variety $N_{k}$ is given by

$[N_{k}]=(d-1)^{k}c^{1}(\mathcal{L})^{k}\cap[X]+\sum_{i=0}^{k-1}$ $\left(\begin{array}{l}k\\i\end{array}\right)$ $(d-1)^{i}c^{1}(\mathcal{L})^{i}\cap s_{k-i}(X_{sing}, X)$ .

The Fulton classes are defined by:

Definition ([Fu]). Let $X$ be an algebraic scheme which can be
imbedded as a closed subscheme of a non-singular variety $M$ . We define
the Fulton class of $X$ in $A_{*}(X)$ by the formula

$c^{F}(X)=c(TM|x)\cap s(X, M)$ ,

where $c(TM|x)$ is the total Chern class of the tangent bundle of $M$

restricted to $X$ and $s(X, M)$ is the Segre class of $X$ in $M$ .

This definition is independent of the choice of the embedding.
If $X$ is a local complete intersection, then the normal bundle of $X_{reg}$

in $M$ extends canonically to $X$ as a vector bundle $N_{X}M$ and

(6) $c^{F}(X)=c(TM|_{X})c(N_{X}M)^{-1}\cap[X]=c(\tau_{X})\cap[X]$ .

Here $\tau_{X}=TM|_{X}-NxM$ denotes the virtual tangent bundle on $X$ ,
defined in the Grothendieck group of vector bundles on $X$ .

Let $M$ be a non-singular compact complex analytic variety of pure
dimension $n+1$ and let $L$ be a holomorphic line bundle on $M$ . Take
$f\in H^{0}(M, L)$ , a holomorphic section of $L$ , such that the variety $X$ of
zeroes of $f$ is a (nowhere dense) hypersurface in $M$ . Then, the Fulton
class of $X$ is

$c^{F}(X)=c(TM|_{X}-L|x)\cap[X]$ .

In [A1] P. Aluffi defines a notion of “thickening” of the scheme $X$

along its singular subscheme $Y$ : if $I_{Y}$ denotes the ideal of $Y$ and I
the locally principal ideal of $X$ , we denote by $X^{k}$ the subscheme of $M$

defined by the ideal $I.I_{Y}^{k}$ . Then the Schwartz-MacPherson class and the
Fulton class satisfy:

$c_{*}(X)=c_{F}(X^{-1})$ $c^{F}(X)=c^{F}(X^{0})$
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2.6. The Fulton-Johnson classes (1980) ([FJ], [Fu] exemple
4.2.6 $(c))$ .

The definition (6) can also be generalized to arbitrary singular vari-
eties in another way : for any coherent sheaf F on an algebraic scheme,
one defines the Segre class $s(F)$ in the group $A_{*}(X)$ of cycles modulo
rational equivalence as follows: Let PiJF)=Proj(Sym(F)), with pro-
jection p: $P(\mathcal{F})\rightarrow X$ . Let us denote by $\mathcal{O}_{\mathcal{F}}(1)$ the canonical invertible
sheaf which is the universal quotient of $p^{*}(F)$ . If the support of $\mathcal{F}$ is X,
define its Segre class $s(\mathcal{F})$ in $A_{*}(X)$ by the formula

$s(\mathcal{F})$ $=$ $p_{*}(\sum_{i\geq 0}c^{1}(\mathcal{O}_{F}(1))^{i}\cap[P(\mathcal{F})])$

$=$ $p_{*}(c(\mathcal{O}_{\mathcal{F}}(-1))^{-1}\cap[P(F)])$

For an arbitrary coherent sheaf F on X, define $s(\mathcal{F})$ to be $s(\mathcal{F}\oplus \mathcal{E}^{1})$ ,
where $\mathcal{E}^{1}$ is the trivial locally free sheaf of rank one on X.

Definition ([FJ]). If $X$ is an algebraic scheme which may be
imbedded in a non-singular scheme $M$ , we define the Fulton-Johnson
class of $X$ in $A_{*}(X)$ by the formula

$c^{FJ}(X)=c(TM|x)\cap s(N)$ ,

where $c(TM|x)$ is the total Chern class of the tangent bundle of $M$

restricted to $X$ and $s(N)$ is the Segre class of the conormal sheaf of the
embedding of $X$ in $M$ .

Remark. In the case of local complete intersection, the Fulton
and Fulton-Johnson classes coincide and are equal to

$c(TM|_{X}-N_{X}M)\cap[X]$ .

\S 3. The Milnor classes.

The comparison between the Schwartz-MacPherson classes and the
Fulton-Johnson classes can be viewed in two ways, which coincide in

some classical situations. We observe that, in the case of isolated sin-
gularities, the difference is given by the Milnor numbers at the singular
points. On the other hand, for a radial vector field tangent to the singu-
lar locus and with isolated singularity at a singular point, the difference
between the “Schwartz” (classical) index and the “virtual” (GSV)index
is the Milnor number at this point. This observation motivates defini-
tion 2 below.



46 J.-P. Brasselet

3.1. Definition and main properties of Milnor classes.

The following general definition is given by the corresponding au-
thors in particular cases.

Definition 1 ([A3], [BLSSI], [PP4], [Y2]). The difference class

$\mu_{*}(X)=(-1)^{n}(c^{F}(X)-c_{*}(X))$

is called the Milnor class of $X$ .

Let us consider the following situation $(?t):X$ is an $n$-subvariety
in the $m$-manifold $M$ defined by a regular section, i.e. a holomorphic
section generically transverse to the zero section, of a holomorphic vector
bundle $E$ (of rank $k=m-n$ ) over $M$ [Su2]. We set $N=E|_{X}$ . The
virtual tangent bundle of $X$ is denoted by

$\tau_{X}=TM|_{X}\backslash N$

Let us consider a compact connected subset $S\subset X$ (in particular
a component of $X_{sing}$ ) and a neighborhood $U$ of $S$ in $M$ such that
$U\cap X-S\subset X_{reg}$ . For each $r$-frame $v^{(r)}$ tangent to $X_{reg}$ on $\partial U\cap X\cap D^{(2p)}$

with $2p=2(m-r+1)$ (see 2.3), we can define:

a) the localized Schwartz (usual) class $Sch(v^{(r)}, S)\in H_{2(r-1)}(S)$

which computes the obstruction to the extension of $v^{(r)}$ as a
stratified $r$-frame inside $U\cap X\cap D^{(2p)}$ . It is the contribution of
$S$ to $c_{r-1}(X)\in H_{2(r-1)}(X)$ ([BLSSI], Theorem 2.13),

b) the localized virtual class $Vir(v^{(r)}, S)\in H_{2(r-1)}(S)$ which com-
putes the “obstruction to the extension of $v^{(r)}$ as linearly inde-
pendent sections of $\tau_{X}’’$ , i.e. which is the contribution of $S$ to
$c_{r-1}(\tau_{X})\in H_{2(r-1)}(X)$ ([BLSSI], Theorem 5.9).

Definition 2 ([BLSSI]). The $(r-1)- st$ localized Milnor class of
$X$ at a compact component $S$ of $X_{sing}$ is defined by

$\mu_{r-1}(X, S)=(-1)^{n-1}(Sch(v^{(r)}, S)-Vir(v^{(r)}, S))$ in $H_{2(r-1)}(S)$

The total Milnor class is the sum over the components of $X_{sing}$ :

$\mu_{(r-1)}(X)=\sum_{S_{\alpha}\subset X_{sing}}(i_{\alpha})_{*}\mu_{(r-1)}(X, S_{\alpha})\in H_{2(r-1)}(X)$

where $i_{\alpha}$ denotes the inclusion $S_{\alpha}\llcorner_{\rightarrow X}$ .

The Milnor class $\mu_{*}(X)$ is supported on the singular locus of $X$ .

When $k=1$ and $r=1$ , $\mu_{0}(X, S)$ is the Parusinski generalized Milnor
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number [Pa]. Also, if $S$ is a point $p$ and $X$ a complete intersection near
$p$ , then $\mu_{0}(X, S)$ is the usual Milnor number.

The two definitions coincide in the case of local complete intersec-
tions, in particular in the case of hypersurfaces.

In the case $r=1$ , i.e. $v^{(1)}=v$ , and for an isolated singularity $p$ , the
Schwartz index is the usual index and the virtual index coincides with
the GSV-index (see [GSV], [LSS], [SS]). The difference of these indices
is the Milnor number of $X$ at $p$ :

Sch(v, $p$ ) $-$ Vir(v, $p$ ) $=(-1)^{n+1}\mu(X,p)$ .

Theorem ([SS]). In the situation $H$ , suppose that $X$ is compact
and the singularities of $X$ are isolated points $\{x_{i}\}$ where $X$ is a local
complete intersection. Then

$\mu_{0}(X)=(-1)^{n+1}\sum_{i=1}^{q}\mu(X, x_{i})[x_{i}]\in H_{0}(X)$

Theorem ([Su]). In the previous situation, $\mu_{i}(X)=0$ for $i>0$ .

This result was also proved by [Pa] and [PP] for hypersurfaces with
arbitrary singularities. It is generalized in the following way:

Theorem ([BLSSI] [BLSS2]). Let $X$ be a subvariety of a complex

manifold in the situation $H$ , if $X$ is compact, then we have, for each
$r=0$ , $\ldots$ , $n-1$ :

$c_{r}(X)=c_{r}(TM|_{X}-N)+(-1)^{n+1}\mu_{r}(X)$ in $H_{2r}(X)$ .

In other words, the difference between the total Schwartz-MacPher-
son class $c_{*}(X)$ of $X$ and the total virtual class $c_{*}(TM|_{X}-N)$ , regarded
in homology, is the sum over the connected components of Sing(X) of
the “total” localized Milnor classes $\mu_{*}(X, S)=\oplus_{i=0}^{n-1}\mu_{i}(X, S)$ .

A similar formula for hypersurfaces is given by Aluffi (see [A1] for
the notations):

Theorem ([A3]). Let $X\subset M$ be a hypersurface with its singular
subscheme $Y$ and $\mathcal{L}=\mathcal{O}(X)$ . Then we have

$c_{*}(X)=c^{F}(X)+c(\mathcal{L})^{dimX}\cap(\mu c(Y)^{\vee}\otimes_{M}\mathcal{L})$ ,

where $\mu c(Y)=c(T^{*}(M)\otimes \mathcal{L})\cap s(Y, M)$ .

We have the following Lefschetz-type formulae for the Milnor class:
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Theorem ([BLSSI] [BLSS2]). Let us denote by $\ell$ the complex di-
mension of $S$ and let $H$ be a complex $(m-\ell)$ -dimensional plane trans-
verse to $S$ in $M$ .

a) If $X$ is a hypersurface in $M$ , defined by a holomorphic section

of a holomorphic line bundle $E$ , and $S$ a compact component of $X_{sing}$ ,
then

$\mu_{r-1}(X, S)=(-1)^{\ell}\mu(X\cap H,p)\cdot[c(S)c(E)^{-1}]^{l-r+1}\cap[S]$

b) If $r=\ell+1$ and $k$ is arbitrary, then

$\mu_{r-1}(X, S)=(-1)^{\ell}\mu(X\cap H,p)\cdot[S]$

In the case where $\mu(X\cap H,p)=1$ , the formula (a) is proved in [A3].

3.2. Description in terms of constructible functions [PP4].

Consider the function $\chi$ : $X\rightarrow Z$ defined by $\chi(x):=\chi(F_{x})$ , where
$F_{x}$ denotes the Milnor fibre at $x$ and $\chi(F_{x})$ its Euler characteristic.
Define also the function $\mu$ : $X\rightarrow Z$ by $\mu=(-1)^{n-1}(\chi-1_{X})$ .

Fix any stratification $S$ of $X$ such that $\mu$ is constant on the strata of
$S$ , for instance any Whitney stratification of $X$ . The topological type of
the Milnor fibre is constant along the strata of any Whitney stratification
of $Z$ . Let us denote the value of $\mu$ on the stratum $S$ by $\mu_{S}$ .

Let

$\alpha(S)=\mu s-\sum_{S’\neq S,S\subset\overline{S’}}\alpha(S’)$

be the numbers defined inductively on descending dimensions of $S$ .

Theorem ([PP4]). We have

$\mu_{*}(X)=\sum_{S\in S}\alpha(S)c(L|x)^{-1}\cap(i_{\overline{S}})_{*}c_{*}(\overline{S})=c(L|x)^{-1}\cap c_{*}(\mu)$
,

where $i_{\overline{S}}$ : $\overline{S}\rightarrow X$ denotes the natural inclusion.

The formula was conjectured in [Y2] when $X$ is projective. Under
this last assumption, [PP2] proved earlier that

$\int_{X}\mu_{*}(X)=\sum_{S\in S}\alpha(S)\int_{\overline{S}}c(L|_{\overline{S}})^{-1}\cap c_{*}(\overline{S})$
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3.3. Description in terms of divisors [A3].

Let $B=BlyM\rightarrow M$ be the blow-up of $M$ along the singular
subscheme $Y$ of $X$ . Let $\mathcal{X}$ and $\mathcal{Y}$ denote the total transform of $X$ and
the exceptional divisor in $B$ , respectively.

Theorem ([A2]). Let $\pi$ : $\mathcal{X}\rightarrow X$ be the restriction of the blow-up
to X. Then

$c_{*}(X)=c(TM|x)\cap\pi_{*}(\frac{[\mathcal{X}]-[\mathcal{Y}]}{1+\mathcal{X}-\mathcal{Y}})$ ,

where, on the right hand side, $\mathcal{X}$ and $\mathcal{Y}$ mean the first Chern classes

of the line bundles associated with $\mathcal{X}$ and $\mathcal{Y}$ , $i.e$ . those of $\pi^{*}(L|x)$ and
$\mathcal{O}_{B}(-1)$ , the latter being the canonical line bundle on $B$ .

Let us denote by $\mathcal{X}’$ the proper transform of $X$ , the following for-
mulae are also due to Aluffi [A3]

$c^{M}(X)=c_{*}(Eux)=c(TM|_{X})\cap\pi_{*}(\frac{[\mathcal{X}’]}{1+\mathcal{X}-\mathcal{Y}})$

$c^{F}(X)=c(TM|x)\cap\pi_{*}(\frac{[\mathcal{X}]}{1+\mathcal{X}})$

and we deduce [PP4]:

$\mu_{*}(X)=(-1)^{n-1}c(TM|_{X})\cap\pi_{*}(\frac{[\mathcal{Y}]}{(1+\mathcal{X})(1+\mathcal{X}-\mathcal{Y})})$ .

3.4. Specialization (the hypersurface case) [PP4].

Suppose that $X=f^{-1}(0)$ where $f$ is a section of the line bundle
$L$ over $M$ . Suppose that there exists a section $g\in H^{0}(M, L)$ such that
$g^{-1}(0)$ is non-singular and transverse to the strata of a (fixed) Whitney
stratification of $X$ . For $t\in C$ denote $f_{t}=f-tg$ and set $X_{t}=f_{t}^{-1}(0)$ .
We denote by $X$ the following correspondence in $M\times C$ :

$X=\{(x, t)\in M\times C|x\in X_{t}\}$ .

Denoting by $p$ : $X\rightarrow C$ the restriction to $X$ of the projection onto the
second factor, then $X_{t}=p^{-1}(t)$ for $t\in C$ and $X=X_{0}$ . Denote by

$\sigma_{F}$ : $F(X)\rightarrow F(X)$

the specialization map on constructible functions and

$\sigma_{H}$ : $H_{*}(X_{t})\rightarrow H_{*}(X)$



50 J.-P. Brasselet

the specialization map of homology classes (see [Ve]). For $\varphi\in F(X)$ and
$t$ sufficiently small, one has $\sigma_{H}c_{*}(\varphi|_{X_{t}})=c_{*}(\sigma_{F}\varphi)$ .

The Fulton class $c^{F}(X)$ is given, in terms of MacPherson class as:

$c^{F}(X)=c_{*}(\sigma_{F}(1_{X}))$

and the Milnor clffis as:

$\mu_{*}(X)=c_{*}(\sigma_{F}(1_{X})-1_{X})$ .
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\S 0. Introduction

The so-called Chern-Schwartz-MacPherson class (or transformation)

is the unique natural transformation from the covariant functor of con-
structible functions to the integral homology covariant functor, satisfying
a certain normalization condition (see [14], and also [3], [10]. [20].) The
bivariant theory has been introduced by W.Fulton and R.MacPherson
[9], and they conjectured (or posed as a question) the existence of a
Grothendieck transformation from the bivariant theory of constructible
functions to the bivariant homology theory in the category of complex
algebraic varieties, which specializes to the original Chern-Schwartz-
MacPherson transformation. The conjecture has been solved by Brasse-
let for a certain reasonable category [2] (see also [19] and [24]). In this
paper we report some consequences of this Brasselet’s theorem, concern-
ing bivariant constructible functions (i.e., constructible functions satis-
fying the local Euler condition) and some related results and we also
pose some problems.

\S 1. Constructible functions and Chern-Schwartz-MacPherson
classes

A constructible set of an analytic variety $X$ is obtained from ana-
lytic subvarieties of $X$ by a finite number of unions, intersections and
complements. A constructible function on a compact complex analytic
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variety $X$ is an integer-valued function on $X$ , $\alpha$ : $X\rightarrow \mathbb{Z}$ , such that for
each integer $n$ , $\alpha^{-1}(n)$ is a constructible set of $X$ . We say that a cellular
decomposition (K) of $X$ is $\alpha$-adapted if $\alpha$ is constant on the interior of
each cell $\sigma$ of (K), the value beeing denoted by $\alpha(\sigma)$ .

Let $\mathcal{F}(X)$ denote the abelian group of constructible functions on $X$ .

Any constructible function can be expressed as a (finite) linear combi-
nation of the characteristic functions $11_{W}$ ’s where $W$ are reduced and
irreducible subvarieties of $X$ . Clearly the correspondence $\mathcal{F}$ assigning to
each variety $X$ the abelian group $\mathcal{F}(X)$ becomes a contravariant functor
when we consider the usual (functional) pull-back $f^{*}$ : $\mathcal{F}(Y)\rightarrow \mathcal{F}(X)$

for a morphism $f$ : $X\rightarrow Y$ ; i.e., $f^{*}(\alpha)(x):=\alpha(f(x))$ . An interest-
ing feature of the correspondence $\mathcal{F}$ is that it can be made a covariant
functor when we consider the following pushforward:

$f_{*}(]1_{W})(y):=\chi(f^{-1}(y)\cap W)$ ,

which is linearly extended with respect to the generators ]$1_{W}$ . Here
$\chi(F)$ denotes the topological Euler-Poincar\’e characteristic of the space
$F$ . The proof of the covariant functoriality of $\mathcal{F}$ requires a stratification
of the morphism $f$ (see [14], [21]).

Deligne and Grothendieck (in 1969) conjectured the following in the
algebraic category:
Let $\mathcal{F}$ be the above covariant functor of constructible functions and
$H_{*}( : \mathbb{Z})$ be the usual $\mathbb{Z}$ -homology covariant functor. Then there exists
a unique natural transformation

$C_{*}$ : $\mathcal{F}$ $\rightarrow H_{*}( : \mathbb{Z})$

such that {normalization condition) if $X$ is smooth, then

$C_{*}(1_{X})=c(T_{X})\cap[X]$ ,

where $c(T_{X})$ is the total Chern cohomology class of the tangent bundle
$T_{X}$ and $[X]$ is the fundamental homology class of $X$ .

The conjecture was solved by MacPherson [14] (in 1974), using
Chern-Mather classes, local Euler obstructions (which are constructible
functions) and graph construction method. The folklore was that the
above conjecture or theorem now was true in the analytic category also,
and indeed in the analytic category MacPherson’s proof works mutatis
mutandis, except for the analyticity of the graph construction. However
this analyticity was finally resolved affirmatively by M. $Kwieci\acute{n}ski$ in
his thesis [13]. Thus the Chern-Schwartz-MacPherson transformation
$C_{*}$ : $\mathcal{F}\rightarrow H_{*}( : \mathbb{Z})$ can be considered in both the algebraic and ana-
lytic categories. The total homology class $C_{*}(I_{X})$ is called the Chern-
Schwartz-MacPherson class of $X$ . To avoid some possible confusion,
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we call the above transformation $C_{*}$ the Chern-Schwartz-MacPherson
transfomation, emphasizing that it is a transformation. In fact, before
the above conjecture was made M.-H.Schwartz [20] had already con-
structed characteristic cohomology classes of a (possibly singular) ana-
lytic variety embedded in a complex manifold, using the notion of radial
vector field. For a given embedding $X$ in a manifold $M$ the Schwartz
classes lie in $H_{X}^{*}(M)=H^{*}(M, M -X)$ . It turned out that they are
isomorphic to MacPherson’s classes via Alexander duality isomorphism
(see [3]).

\S 2. Bivariant theory of constructible functions

Let $\alpha$ be a constructible function on $X$ . For $A\subset X$ , we define

$\chi(A;\alpha)=\sum_{n\in \mathbb{Z}}n\chi(A\cap\alpha^{-1}(n))$
,

which is the Euler-Poincar\’e characteristic of A weighted by $\alpha(‘‘$ pon-
d\’er\’ee par $\alpha$ ”) ([2], [14], [19]). With this notation, the pushforward
$ f_{*}\alpha$ of the constructible function $\alpha$ under a morphism $f$ : $X\rightarrow Y$ is
expressed as follows:

$(f_{*}\alpha)(y):=\chi(f^{-1}(y);\alpha)$ ,

i.e., the Euler-Poincar\’e characteristic of the fiber $f^{-1}(y)$ weighted by $\alpha$ .

Put it in another way, using the Chern-Schwartz-MacPherson transfor-
mation $C_{*}$ , it can be rewritten as follows:

$(f_{*}\alpha)(y)=\int_{f^{-1}(y)}C_{*}(\alpha|_{f^{-1}(y)})$ ,

the degree of the 0-dimensional component of the total Chern-Schwartz-
MacPherson class of the constructible function $\alpha|_{f^{-1}(y)}$ on the fiber
$f^{-1}(y)$ . This simple interpretation leads us to a naive question of what
one could say about these classes $C_{*}(\alpha|_{f^{-1}(y)})$ parameterized by the
target variety $Y$ . It turns out that for this we need the bivariant the-
ory of constructible functions which has been introduced by Fulton and
MacPherson [9].

For a technical reason, the category which we treat is the following
one, denoted by $SC$ :
(i) The objects $Obj(SC)$ consist of compact complex analytic varieties
which are embeddable into smooth manifolds, and
(ii) The morphisms $\prime Hom_{SC}(X, Y)$ consist of analytic maps $f$ : $X\rightarrow Y$

which are cellular, i.e., with (K) and (L) being cellular decompositions
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of $X$ and $Y$ respectively, the image of each cell of (K) is a cell of (L)
and the restriction of $f$ to the interior of each cell is constant rank.
At the moment it is not known whether any analytic map is cellular.
Conjecturally it would be so.

In the following “cell” will always mean a closed cell, the interior of
$\sigma$ will be denoted by $\sigma^{o}$ and we define the star $ St^{o}\sigma$ as the set of cells
which meet the interior of $\sigma$ .

In this category, the pushforward can be written as follows: Given
cellular decompositions (K) and (L) of $X$ and $Y$ respectively, such that
(K) is $\alpha$-adapted and $f$ cellular, then

(2.1.1) $(f_{*}\alpha)(y)=$ $\sum$ $(-1)^{dim_{f}\sigma}\alpha(\sigma)$

$\sigma\cap f^{-1}(y)\neq\emptyset$

where $dim_{f}\sigma$ denotes the relative dimension of $\sigma\in(K)$ . Here we note
that the above formula (2.1.1) is due to the fact that the topological
Euler-Poincar\’e characteristic of a $CW$-complex can be also defined to
be the alternating sum of the number of cells of a (in fact, any) cel-
lular decomposition of the $CW$-complex, and therefore that the Euler-
Poincar\’e characteristic weighted by $\alpha$ is equal to the alternating sum of
the number of cells multiplied by the weights “

$\alpha‘‘$ .

Defifinition (2.1). Let $\alpha$ be a constructible function on $X$ and let
$f$ : $X\rightarrow Y$ be an analytic map. We say that $\alpha$ satisfies the local Euler
condition with respect to $f$ if for any cellular decompositions (K) and (L)
of $X$ and $Y$ respectively, such that (K) is $\alpha$-adapted and $f$ is cellular,
and if for any $x\in X$ , $x\in\sigma^{o}$ , $\sigma\in(K)$ , the following equality holds

$\alpha(x)=\chi(St^{o}\sigma\cap f^{-1}(y);\alpha)$

where $y\in St^{o}f(\sigma)$ is arbitrary.

Using the values of $\alpha$ on the cells of (K), the previous formula can
be written

(2.1.2)
$\alpha(x)=\sigma’CSt^{o}\sigma\sum_{\sigma’\cap f^{-1_{(y)\neq\phi}}}(-1)^{dim_{f}\sigma’}\alpha(\sigma’)$

Remark 2.2. There is another definition of local Euler condition
without refering to the cellular decomposition of a morphism (see [19]):
$\alpha\in \mathcal{F}(X)$ satisfies the local Euler condition with respect $tof$ if for any
point $x\in X$ and any local embedding $(X, x)\rightarrow(C^{N}, 0)$ the following
equality holds

$\alpha(x)=\chi(B_{\epsilon}\cap f^{-1}(z);\alpha)$ ,
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where $B_{\epsilon}$ is a sufficiently small open ball of the origin 0 with radius $\epsilon$

and $z$ is any point close to $f(x)$ .

Defifinition (2.3). The bivariant group of constructible functions is
defined, for every morphism $f$ : $X\rightarrow Y$ , by:

$F(X\rightarrow Y)f:=\{\alpha\in \mathcal{F}(X)|\alpha$ satisfies the local Euler condition

with respect to $f$ }.

Rom this definition we see that

$F(X\rightarrow X)id=$ { $\alpha\in \mathcal{F}(X)|\alpha$ is locally constant}.

This fact will be used later.
For simplicity a constructible function satisfying the local Euler con-

dition shall be called a bivariant constructible function. If $I_{X}$ satisfies
the local Euler condition with respect to the morphism $f$ : $X\rightarrow Y$ , i.e.,
$I_{X}\in F(X\rightarrow Y)f$ , then the morphism $f$ is called an Euler morphism.

We can define the following three basic operations on $F(X\rightarrow Y)$ ,

which are called bivariant operations.
(BO-I) (Product operations): For morphisms $f$ : $X\rightarrow Y$ and $g:Y\rightarrow Z$ ,
the product operation

$\ovalbox{\tt\small REJECT}$ : $F(X\rightarrow Y)f\otimes F(Y\rightarrow Zg)\rightarrow F(X\rightarrow Zgf)$

is defined, for $\alpha\in F(X\rightarrow Y)f$ and $\beta\in F(Y\rightarrow Zg)$ , by:

$(\alpha\ovalbox{\tt\small REJECT}\beta)(x):=\alpha(x)\cdot\beta(f(x))$ ,

i.e., $\alpha\ovalbox{\tt\small REJECT}\beta:=\alpha\cdot f^{*}\beta$ . (To avoid some confusion, the symbol $\ovalbox{\tt\small REJECT}$ is used.)

(BO-II) (Pushforward operations): For morphisms $f$ : $X\rightarrow Y$ (proper)
and $g:Y\rightarrow Z$ , the pushforward operation

$f_{*}$ : $F(X\rightarrow Zgf)\rightarrow F(Y\rightarrow Zg)$

is defined, for $\alpha\in F(X\rightarrow Z)gf$ , by:

$(f_{*}\alpha)(y):=\chi(f^{-1}(y);\alpha)$ ,

which is the same as one described in \S 1.
(BO-III) (Pull-back operations): For a fiber square

$f’\downarrow X’$

$\rightarrow g’$

$X\downarrow f$

$Y’$
$\rightarrow g$

$Y$,
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where $X’=Y’\times_{g=f}X$ is the fiber product and $f’$ : $X’\rightarrow Y’$ and
$g’$ : $X’\rightarrow X$ are the canonical projections, the pull-back operation

$g^{*}$ : $F(X\rightarrow Y)f\rightarrow F(X’\rightarrow Y’)g$

is defined, for $\alpha\in F(X\rightarrow Y)f$ , by:

$g^{*}\alpha:=g’\alpha*$ ,

which is the usual (functional) pull-bak.
It is known that these three operations are well-defined, and we give

a proof of this fact for the sake of completeness.

Proof of well-defifinedness.
Let (K), (L) and (M) be any cellular decompositions of $X$ , $Y$ and

$Z$ respectively adapted to the corresponding constructible functions and
such that the corresponding morphisms are cellular.
(BO-I): Let $x_{o}$ be a point of the interior of $\sigma_{o}\in(K)$ . What we want to
show is that

$\alpha\ovalbox{\tt\small REJECT}\beta(x_{o})=(\alpha\cdot f^{*}\beta)(x_{o})=\alpha(x_{o})\beta(f(x_{o}))=\chi(St^{o}\sigma_{o}\cap(gof)^{-1}(z);\alpha\ovalbox{\tt\small REJECT}\beta)$

where $z\in St^{o}(g\circ f)\sigma_{o}$ . We will denote by $y$ a point in $St^{o}f(\sigma_{o})$ and by
$\tau_{o}=f(\sigma_{o})$ , so $z\in St^{o}g(\tau_{o})$ . We start with the last term:

$\chi(St^{o}\sigma_{o}\cap(gof)^{-1}(z);\alpha\ovalbox{\tt\small REJECT}\beta)$

$=$

$\sigma\subset St^{\circ}\sigma_{O}\sum_{\sigma\cap(gof)^{-1_{(z)\neq\phi}}}(-1)^{dim_{f}\sigma}\alpha(\sigma)\cdot(-1)^{dim_{g}f(\sigma)}\beta(f(\sigma))$

$=$

$\tau\subset St^{\circ}\tau_{O}\sum_{\tau n_{g}-1_{(z)\neq\emptyset}}(-1)^{dim_{g}\tau}\beta(\tau)\cdot\sigma\cap f^{-1_{(y)\neq\phi}}\sigma\subset St^{\circ}\sigma_{O}\sum_{\tau=f(\sigma)}(-1)^{dim_{f}\sigma}\alpha(\sigma)$

$=$

$\tau\subset St^{\circ}\tau_{O}\sum_{\tau n_{9}-1_{(z)\neq\phi}}(-1)^{dim_{g}\tau}\beta(\tau)\cdot\chi(St^{o}\sigma_{o}\cap f^{-1}(y);\alpha)$

$=$ $\beta(f(x_{o}))\cdot\alpha(x_{o})$

$=$ $\alpha\ovalbox{\tt\small REJECT}\beta(x_{o})$ .

Q.E.D

(BO-II): We must prove that, if $y\in\tau^{o}$ with $\tau\in(L)$ , then

$(f_{*}\alpha)(y)=\chi(St^{o}\tau\cap g^{-1}(z);f_{*}\alpha)$

for any $z\in St^{o}g(\tau)$ .

Denoting $h=g\circ f$ , let us remark the following properties:
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$ f^{-1}(g^{-1}(z)\cap St^{o}\tau)=f(\sigma)=\tau\cup h^{-1}(z)\cap St^{o}\sigma$

Let $\sigma’$ be a cell of (X) such that $ f(\sigma’)\subset St^{o}\tau$ , then

$A(\sigma’, \tau)=\{\sigma\in(K)|\sigma’\subset St^{o}\sigma, f(\sigma)=\tau\}$ ,

is the subset of the face $\sigma’\cap f^{-1}(\tau)$ of $\sigma’$ consisting of cells whose image
is $\tau$ . Its restriction to any fiber $f^{-1}(y)$ , $y\in\tau^{o}$ is a cell whose Euler-
Poincar\’e characteristic is

2.3.1)
$\chi(\sigma’\cap f^{-1}(y))=\sum_{\sigma\in A(\sigma’,\tau)}(-1)^{dim_{f}\sigma}=1$

.

This equality is a crucial observation which makes the proof of BO-II
“the most fun” ( $cf[9,$ $6.1.2$ , the last two lines of p. 61]). We have:

$(f_{*}\alpha)(y)$ $=$ $\chi(f^{-1}(y);\alpha)$

$=$
$\sum_{\sigma\cap f^{-1}(y)\neq\emptyset}(-1)^{dim_{f}\sigma}\alpha(\sigma)$

(by 2.1.1)

$=$
$\sum_{\sigma\cap f^{-1}(y)\neq\emptyset}(-1)^{dim_{f}}$

$\sigma’\cap h\sigma\sigma’\subset St^{O}\sigma\sum_{-,1_{(z)\neq\emptyset}}(-1)^{dim_{h}\sigma^{J}}\alpha(\sigma’)$

(by 2.1.2)

$=$
$\sigma’\cap h^{-1}(z)\neq\phi\sum_{\sigma’\subset St^{\circ}\sigma}(-1)^{dim_{h}\sigma’}(\sum_{\sigma\in A(\sigma’,\tau)}(-1)^{dim_{f}\sigma})\alpha(\sigma’)$

$=$

$\sigma’\cap h(z)\neq\phi\sigma’\subset St^{O}\sigma\sum_{-1}(-1)^{dim_{h}\sigma’}\alpha(\sigma’)$

(by 2.3.1)

$=$

$\sigma’\cap h(z)\neq\phi\sigma’\subset St^{\circ}\sigma\sum_{-1}(-1)^{dim_{g}f(\sigma’)}(-1)^{dim_{f}\sigma’}\alpha(\sigma’)$

$=$
$\tau’\cap g(z)\neq\phi\tau’\subset Sl^{\circ}\tau\sum_{-1}(-1)^{dim_{g}\tau’}(\sum_{f(\sigma)=\tau’},(-1)^{dim_{f}\sigma^{J}}\alpha(\sigma’))$

$=$

$\mathcal{T}’n_{g}-1_{(z)\neq\phi}\sum_{\tau’\subset St^{\circ}\tau}(-1)^{dim_{g}\tau’}\chi(f^{-1}(\tau’);\alpha)$

$=$

$\tau’n_{g}-1_{(z)\neq\phi}\sum_{\tau’\subset St^{\circ}\tau}(-1)^{dim_{g}\tau’}(f_{*}\alpha)(\tau’)$

$=$ $\chi(St^{o}\tau\cap g^{-1}(z);f_{*}\alpha)$ . Q.E.D
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(BO-III): Let $x’\in\tau_{o}^{o}$ be a point in $X’$ . Then for any $y’\in St^{o}f’(\tau_{o})$ in
$Y’$ , letting $\sigma_{o}=g’(\tau_{o})$ and $y=g(y’)$ , we have

$\chi(St^{o}\tau_{o}\cap f^{\prime^{-1}}(y’);g^{*}\alpha)$ $=$

$\tau\cap f^{\prime-1}(y’)\neq\phi\sum_{\tau\subset St^{\circ}\tau_{O}}(-1)^{dim_{f’}\tau}g^{*}\alpha(\tau)$

$=$

$\mathcal{T}\cap f^{;-1_{(y’)\neq\phi}}\sum_{\tau\subset St^{\circ}\tau_{O}}(-1)^{dim_{f’}\tau}\alpha(g’(\tau))$

$=$

$\sigma\cap f^{-1}(y)\neq\emptyset\sum_{\sigma\subset St^{\circ}\sigma_{O}}(-1)^{dim_{f}\sigma}\alpha(\sigma)$

$=$ $\alpha(g’(x’))=(g^{*}\alpha)(x’)$ .

Q.E.D

It is easy to see that these bivariant operations enjoy the following
seven properties.

(B-1) Product is associative : for a diagram $X\rightarrow Y\rightarrow Z\rightarrow Wfgh$ and
$\alpha\in F(X\rightarrow Y)f$ , $\beta\in F(Y\rightarrow Z)g$ and $\gamma\in F(Z\rightarrow W)h$ ,

$(\alpha\ovalbox{\tt\small REJECT}\beta)\ovalbox{\tt\small REJECT}\gamma=\alpha\ovalbox{\tt\small REJECT}(\beta\ovalbox{\tt\small REJECT}\gamma)\in F(X\rightarrow W)hgf$ .

(B-2) Pushforward is functorial: for a diagram $X\rightarrow Yf\rightarrow gZ\rightarrow hW$

and $\alpha\in F(X\rightarrow W)hgf$ ,

$(gf)_{*}(\alpha)=g_{*}f_{*}(\alpha)\in F(Z\rightarrow W)h$ .

(B-3) Pullback is functorial: for a double fiber square

$X’’\downarrow f’$

’

$\rightarrow h’$

$X’\downarrow f$ ,

$\rightarrow g’$

$X\downarrow f$

$Y’’$
$\rightarrow h$

$Y’$
$\rightarrow g$

$Y$

and $\alpha\in F(X\rightarrow Y)f$ ,

$(gh)^{*}(\alpha)=h^{**}g(\alpha)\in F(X’’\rightarrow Y’’)f^{JJ}$ .

(B-4) Product and pushforward commute: for a diagram $X\rightarrow Yf\rightarrow g$

$Z\rightarrow Wh$ and $\alpha\in F(X\rightarrow Z)9f$ , $\beta\in F(Z\rightarrow W)h$ ,

$f_{*}(\alpha\ovalbox{\tt\small REJECT}\beta)=f_{*}(\alpha)\ovalbox{\tt\small REJECT}\beta\in F(Y\rightarrow W)hg$ .



Bivariant constructible functions 61

(B-5) Product and pullback commute: for a double fiber square

$h^{Jl}$

$X’\downarrow f$ ,
$\rightarrow$

$X\downarrow f$

$h’$

$Y’\downarrow g$ ,
$\rightarrow$

$Y\downarrow g$

$h$

$Z’$ $\rightarrow$ $Z$

and $\alpha\in F(X\rightarrow Y)f$ , $\beta\in F(Y\rightarrow Z)g$ ,

$h^{*}(\alpha\ovalbox{\tt\small REJECT}\beta)=h’(*\alpha)\ovalbox{\tt\small REJECT} h^{*}(\beta)\in F(X’\rightarrow Z’g’f’)$ .

(B-6) Pushforward and pullback commute: for a double fiber square

$h^{JJ}$

$ X’\downarrow f’\rightarrow$ $X\downarrow f$

$h’$

$Y’\downarrow g$ ,
$\rightarrow$

$Y\downarrow g$

$h$

$Z’$ $\rightarrow$ $Z$

and $\alpha\in F(X\rightarrow Z)gf$ ,

$f_{*}’(h^{*}(\alpha))=h^{*}f_{*}(\alpha)\in F(Y’\rightarrow Z’)g’$ .

(B-7) Projection formula: For a fiber square

$X’\downarrow f$ ,

$\rightarrow g’$

$X\downarrow f$

$Y’$
$\rightarrow g$

$Y$,

a morphism $Y\rightarrow Zh$ , $\alpha\in F(X\rightarrow Y)f$ and $\beta\in F(Y’\rightarrow Z)hg$ ,

$g_{*}’((g^{*}\alpha)\ovalbox{\tt\small REJECT}\beta)=\alpha\ovalbox{\tt\small REJECT} g_{*}(\beta)\in F(X\rightarrow Z)hf$ .
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Before finishing this section we note that the well-definedness of the
pushforward (BO-II) implies the following

Proposition (2.4). Let $\alpha\in F(X\rightarrow fY)_{\rangle}$ then the pushforward
$ f_{*}\alpha$ is a locally constant function on $Y$ .

This can be seen as follows: Consider the pushforward on the fol-
lowing diagram:

$X\rightarrow Y\rightarrow Yfid$
.

Indeed, for $\alpha\in F(X\rightarrow Y)f=F(X\rightarrow Y)id\cdot f$

$f_{*}\alpha\in F(Y\rightarrow Y)id$ ,

which implies that $ f_{*}\alpha$ is locally constant since

$F(X\rightarrow X)id=$ { $\alpha\in \mathcal{F}(X)|\alpha$ is locally constant

In other words the local Euler condition posed on a constructible func-
tion may be a right local condition to guarantee such a strong require-
ment that the Euler-Poincar\’e characteristic of the fibers weighted by $\alpha$

are locally constant. This is certainly a strong requirement for a map.

\S 3. Bivariant Chern classes

In general, a bivariant theory $B$ on a category $C$ to abelian groups
is an assignment to each morphism

$X\rightarrow Yf$

in the category $C$ an abelian group

$B(X\rightarrow Y)f$

which is equipped with the three basic operations such as in (BO-I,
BO-II, BO-III) above and satisfy the seven properties as in (B-I)-(B-7).

Let $\mathbb{H}(X\rightarrow Y)$ be the bivariant homology theory (see [2] and [9]).
For a morphism $f$ : $X\rightarrow Y$ and for any integer $i$ , $H^{i}(X\rightarrow Y):=$

$H^{i+2m}(Y\times M, Y\times M-\Phi(X))$ , where $\phi$ : $X\rightarrow M$ is an embedding into
a smooth manifold of real dimension $2m$ and $\Phi$ $:=(f, \phi)$ : $X\rightarrow Y\times M$ is
an embedding. The definition is independent of the embedding $\phi$ : $ X\rightarrow$

$M$ . Then as in the case of the bivariant constructible function theory
the three basic bivariant operations can be defined for the bivariant
homology theory, namely we have the following (for details see Fulton-
MacPherson’s book [9] $)$ :
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$(BO- I:\mathbb{H})$ (Product operations): For morphisms $f$ : $X\rightarrow Y$ and $ g:Y\rightarrow$

$Z$ , the product operation

$\ovalbox{\tt\small REJECT}_{\mathbb{H}}$ : $\mathbb{H}(X\rightarrow Y)f\otimes \mathbb{H}(Y\rightarrow Z)g\rightarrow \mathbb{H}(X\rightarrow Z)gf$

is defined.
$(BO- II:\mathbb{H})$ (Pushforward operations): For morphisms $f$ : $X\rightarrow Y$ (prop-
er) and $g$ : $Y\rightarrow Z$ , the pushforward operation

$f_{*}$ : $\mathbb{H}(X\rightarrow Z)gf\rightarrow \mathbb{H}(Y\rightarrow Z)g$

is defined.
$(BO- III:\mathbb{H})$ (Pull-back operations): For a fiber square

$X’\downarrow f$ ,

$\rightarrow g’$

$X\downarrow f$

$Y’$
$\rightarrow g$

$Y$

the pull-back operation

$g^{*}$ : $\mathbb{H}(X\rightarrow Y)f\rightarrow \mathbb{H}(X’\rightarrow Y’)g$

is defined.
Fulton and MacPherson [9] conjectured (or posed as a question)

the existence of a bivariant version of the Chern-Schwartz-MacPherson
transformation $C_{*}$ : $\mathcal{F}\rightarrow H_{*}( : \mathbb{Z})$ , i.e., the existence of Grothendieck
transformation (or “bivariant Chern class”), in the category of complex
algebraic varieties. Brasselet [2] proved this conjecture in the category
$SC$ defined in \S 2. Also C. Sabbah [19] constructed a bivariant theory
of cycles and J.Zhou [24] proved that Sabbah’s bivariant Chern classes
defined by bivariant cycles are the same as Brasselet’s bivariant Chern
classes.

Theorem (3.1). (Brasselet [2, $III$, Th\’eor\‘eme]) Let $SC$ be the cate-
gory to be considered. There exists a Grothendieck transformation

$\gamma$ : $F\rightarrow \mathbb{H}$

such that if $X$ is a smooth variety, then

$\gamma(I_{\pi})=c(TX)\cap[X]$ ,

where $\pi$ : $X\rightarrow pt$ is a map to a point $pt$ and $11_{\pi}:=$ ]$ 1_{X}\in F(X\rightarrow pt)\pi$ .
Namely, for each morphism $f$ : $X\rightarrow Y$ , $\gamma$ gives rise to a homomorphism

$\gamma$ : $F(X\rightarrow Y)f\rightarrow \mathbb{H}(X\rightarrow Y)f$
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such that $\gamma$ preserves the basic three operations, $i.e.$ , (i) $\gamma(\alpha\ovalbox{\tt\small REJECT}\beta)=$

$\gamma(\alpha)\ovalbox{\tt\small REJECT}_{\mathbb{H}}\gamma(\beta),$ $(ii)\gamma(f_{*}\alpha)=f_{*}\gamma(\alpha)$ and (iii) $\gamma(f^{*}\alpha)=f^{*}\gamma(\alpha)$ .

Remark 3.2 The uniqueness problem of $\gamma$ is still open. We will
discuss it a little later in the next section (Remark (4.10)).

Brasselet constructs the above transformation in such a way that
the Chern-Schwartz-MacPherson classes $i_{y_{*}}C_{*}(\alpha|_{f^{-1}(y)})$ of the fibers

weighted by $\alpha$ are locally constant, where $i_{y}$ : $f^{-1}(y)\rightarrow X$ is the inclu-
sion map. Of course this is a much stronger requirement than the local
constancy of the Euler-Poincar\’e characteristic of the fibers weighted by
the constructible function $\alpha$ . In fact as a consequence of the above
Brasselet’s theorem we can say more and we see that this quite strong
requirement is a necessity for a bivariant constructible function.

Theorem (3.3). (1) Let $\alpha\in F(X\rightarrow Y)f$ and let $V_{1}$ , $V_{2}$ be subva-
rieties of $Y$ such that the Chern-Schwartz-MacPherson classes of $V_{1}$

and $V_{2}$ are homologous in $Y$ , then the Chern-Schwartz-MacPherson
classes $C_{*}(\alpha|_{f^{-1}(V_{1})})$ and $C_{*}(\alpha|_{f^{-1}(V_{2})})$ of the inverses $f^{-1}(V_{1})$ , $f^{-1}(V_{2})$

weighted with $\alpha$ are also homologous in X. Namely, if

$i_{1*}C_{*}(V_{1})=i_{2*}C_{*}(V_{2})$

with $i_{j}$ : $V_{j}\rightarrow Y$ being the inclusion maps $(j=1,2)$ , then

$e_{1*}C_{*}(\alpha|_{f^{-1}(V_{1})})=e_{2*}C_{*}(\alpha|_{f^{-1}(V_{2})})$

with $e_{j}$ : $f^{-1}(V_{j})\rightarrow X$ being the inclusion maps $(j=1,2)$ .

(2) In particular, if $\alpha\in F(X\rightarrow fY)$ , then the Chern-Schwartz-Mac-
Pherson classes $i_{y_{*}}C_{*}(\alpha|_{f^{-1}(y)})$ of the fifibers weighted by $\alpha$ are locally

constant, where $i_{y}$ : $f^{-1}(y)\rightarrow X$ is the inclusion map.

Corollary (3.4). Let $f$ : $X\rightarrow Y$ be an Euler morphism. Then if
$V_{1}$ , $V_{2}$ be subvarieties of $Y$ such that the Chern-Schwartz-MacPherson
classes of $V_{1}$ and $V_{2}$ are homologous in $Y$ , then the Chern-Schwartz-
MacPherson classes $C_{*}(f^{-1}(V_{1}))$ and $C_{*}(f^{-1}(V_{2}))$ of the inverses
$f^{-1}(V_{1})$ , $f^{-1}(V_{2})$ are also homologous in X. Namely, if

$i_{1*}C_{*}(V_{1})=i_{2*}C_{*}(V_{2})$

with $i_{j}$ : $V_{j}\rightarrow Y$ being the inclusion maps $(j=1,2)$ , then

$e_{1*}C_{*}(f^{-1}(V_{1}))=e_{2*}C_{*}(f^{-1}(V_{2}))$
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with $e_{j}$ : $f^{-1}(V_{j})\rightarrow X$ being the inclusion maps $(j=1,2)$ . In particular,
the Chern-Schwartz-MacPherson classes $i_{y_{*}}C_{*}(f^{-1}(y))$ of the fibers are
locally constant.

The proof of Theorem (3.3) goes as follows; for the sake of later use
we give a detailed proof.

Proof of Theorem (3.3). The constructible function $\alpha$ induces the
following homomorphism,

$\alpha^{F}$ : $\mathcal{F}(Y)\rightarrow \mathcal{F}(X)$

defined by

$\alpha^{F}(\beta):=\alpha\ovalbox{\tt\small REJECT}\beta=\alpha\cdot f^{*}\beta$ .

Then we can get the following commutative diagram:

$\alpha^{F}$

(3.3.1)
$c_{*}\downarrow \mathcal{F}(Y)$

$\rightarrow$

$\mathcal{F}(X)\downarrow c_{*}$

$H_{*}(Y;\mathbb{Z})$

$\rightarrow\alpha_{\gamma}^{\mathbb{H}}$

$H_{*}(X;\mathbb{Z})$

Here $\alpha_{\gamma}^{\mathbb{H}}$ : $H_{*}(Y;\mathbb{Z})=\mathbb{H}(Y\rightarrow pt)\rightarrow H_{*}(X;\mathbb{Z})=\mathbb{H}(X\rightarrow pt)$ is defined
by

$\alpha_{\gamma}^{\mathbb{H}}(a):=\gamma(\alpha)\ovalbox{\tt\small REJECT}_{\mathbb{H}}a$ ,

where $\gamma$ : $F\rightarrow \mathbb{H}$ is a Grothendieck transformation and $\ovalbox{\tt\small REJECT}_{\mathbb{H}}$ : $\mathbb{H}(X\rightarrow f$

$Y)\otimes \mathbb{H}(Y\rightarrow pt)\rightarrow \mathbb{H}(X\rightarrow pt)$ is the bivariant homology product
operation. Here it should be noted that since the uniqueness of the
Grothendieck transformation $\gamma$ is not known yet the homomorphism $\alpha_{\gamma}^{\mathbb{H}}$

could depend on the transformation $\gamma$ but that our statement is inde-
pendent of the choice of $\gamma$ . Of course the commutativity of the above
diagram follows from the fact that the Grothendieck transformation pre-
serves the three basic operations. First note that for a morphism $X\rightarrow pt$

the Grothendieck homomorphism $\gamma$ : $F(X\rightarrow pt)\rightarrow \mathbb{H}(X\rightarrow pt)$ is noth-
ing but the Chern-Schwartz-MacPherson transformation $C_{*}$ : $\mathcal{F}(X)\rightarrow$

$H_{*}(X;\mathbb{Z})$ . Then the commutativity can be seen as follows

$C_{*}\alpha^{F}(\beta)$ $=$ $C_{*}(\alpha\ovalbox{\tt\small REJECT}\beta)$

$=$ $\gamma(\alpha\ovalbox{\tt\small REJECT}\beta)$

$=$ $\gamma(\alpha)\ovalbox{\tt\small REJECT}_{\mathbb{H}}\gamma(\beta)$

$=$ $\gamma(\alpha)\ovalbox{\tt\small REJECT}_{\mathbb{H}}C_{*}(\beta)$

$=$ $\alpha_{\gamma}^{\mathbb{H}}C_{*}(\beta)$ .
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We call the commutative diagram (3.3.1) a Verdier-type Riemann-Roch
associated with the constructible function $\alpha$ (cf. [22]). To finish the
proof of (1), we just apply this Verdier-type Riemann-Roch to two con-
structible functions ]$1_{V_{1}}$ , $I_{V_{2}}$ . First observe that for any subset $A\subset Y$

$\alpha^{F}(I_{A})=\alpha\cdot f^{*}I_{A}=\alpha\cdot]\iota_{f^{-1}(A)}=e_{*}\alpha|_{f^{-1}(A)}$ , where $e:f^{-1}(A)\rightarrow X$

is the inclusion map. Now suppose thatVi, $V_{2}$ are subvarieties of $Y$ such
that the Chern-Schwartz-MacPherson classes of $V_{1}$ and $V_{2}$ are homol-
ogous in $X$ , $i.e$ , $i_{1*}C_{*}(V_{1})=i_{2*}C_{*}(V_{2})$ with $i_{j}$ : $V_{j}\rightarrow Y$ being the
inclusion maps $(j=1,2)$ . Then we have

$e_{1*}C_{*}(\alpha|_{f^{-1}(V_{1})})$ $=$ $C_{*}(e_{1*}\alpha|_{f^{-1}(V_{1})})$

$=$ $C_{*}\alpha^{F}(]1_{V_{1}})$

$=$ $\alpha_{\gamma}^{\mathbb{H}}(C_{*}(I_{V_{1}}))$

$=$ $\alpha_{\gamma}^{\mathbb{H}}(i_{1*}C_{*}(V_{1}))$

$=$ $\alpha_{\gamma}^{\mathbb{H}}(i_{2*}C_{*}(V_{2}))$ (since $i_{1*}C_{*}(V_{1})=i_{2*}C_{*}(V_{2})$ )

$=$ $\alpha_{\gamma}^{\mathbb{H}}(C_{*}(]1_{V_{2}}))$

$=$ $C_{*}\alpha^{F}(]t_{V_{2}})$

$=$ $C_{*}(e_{2*}\alpha|_{f^{-1}(V_{2})})$

$=$ $e_{2*}C_{*}(\alpha|_{f(V_{2})}-1)$ .

Thus (1) is proved and (2) is a special case of (1). $Q.E.D$

Remark (3.5). It follows from the definition of Eulerness that any
local trivial fibration is always Euler. But Eulerness does not imply local
triviality, as the following example (given by T. Ohmoto) shows. Let
$ X=\{(x, y, z)\in \mathbb{C}^{3}|x^{2}+y^{2}+z=0\}\cup$ {the $z$-axis} and let $f$ : $X\rightarrow \mathbb{C}$

be the restriction to $X$ of the projection $p:\mathbb{C}^{3}\rightarrow \mathbb{C}$ to the third factor
$\mathbb{C}$ . The Milnor fiber at the origin is homotopic to the disjoint union of
circle (i.e., the vanishing cycle) and one point, thus the Euler-Poincar\’e

characteristic of a nearby fiber in a small neighborhood of the origin is
equal to one. Hence at the origin it satisfies the local Euler condition,
but it is not a local trivial fibration. At every point of $X$ off the origin the
map $f$ is a local trivial fibration. Thus $f$ is Euler but not a local trivial
fibration. The map $f$ is not proper, but the example can be modified
into the following example of a map between compact varieties. Let us
consider the following surface $E$ in $\mathbb{P}^{2}\times \mathbb{P}^{1}$ :

$E$ : $=$ $\{([x_{0} : x_{1} : x_{2}], [w_{0} : w_{1}])\in \mathbb{P}^{2}\times \mathbb{P}^{1}|$

$w_{0}x_{0}^{2}+(w_{0}+w_{1})x_{1}^{2}+w_{1}x_{2}^{2}=0\}$ .
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Let

$X:=E\cup([1 : 0: o] \times \mathbb{P}^{1})\cup([0:1 : 0] \times \mathbb{P}^{1})\cup([0:0:1]\times \mathbb{P}^{1})$ .

and let $f$ : $X\rightarrow \mathbb{P}^{1}$ be the restriction to the subvariety $X$ of the pro-
jection $\mathbb{P}^{2}\times \mathbb{P}^{1}\rightarrow \mathbb{P}^{1}$ to the second factor. Then just like the above
example, at the three distinguished points ([1 : 0 : 0], [0 : 1]), ([0 : 1 :

0], [1 : -1] $)$ , ([0 : 0 : 1], [1 : 0]) the Milnor fiber of $f$ is homotopic to the
union of the circle and one point and otherwise $f$ is locally trivial off
these three points. Hence $f$ : $X\rightarrow \mathbb{P}^{1}$ is Euler but not a local trivial
fibration.

In general, some other well-studied morphisms, such as flat, open,
$A_{f}$ , and triangulable morphisms, are not Euler. For example, consider
a Kodaira’s elliptic surface [12], i.e., a surjective holomorphic map

$f$ : $S\rightarrow C$

of a smooth compact complex surface $S$ onto a smooth compact complex
curve $C$ such that its generic fiber is a smooth elliptic curve and that
it has only finitely many singular fibers. This Kodaira elliptic surface
$f$ : $S\rightarrow C$ is not Euler, because the topological Euler-Poincar\’e char-
acteristics of the fibers are not constant; the topological Euler-Poincar\’e

characteristic of the generic fiber is zero but that of the singular fibers
are not zero. On the other hand, it follows from [11, \S 4] that the map
$f$ : $S\rightarrow C$ is flat since $S$ and $C$ are smooth and (locally) the fibers have
the same dimension $(=1)$ and furthermore, since $C$ is smooth, hence
Cohen-Macauley, $f$ is open due to the universal openness of the flat map.
Since the target $C$ of the map $f$ is a smooth analytic curve, it follows
from [11, Corollary 1, p.248] that $f$ is $A_{f}$ , i.e., there exists a Whitney
stratification of $f$ which satisfies Thom’s $A_{f}$ condition. It is not clear
whether it is triangulable or not, which is lefli for the reader. However,

as an example of a morhism which is triangulable but not Euler, we can
consider the following simple situation:

$X:=(\mathbb{P}^{1}\times[1 : 0])\cup([1 : 0] \times \mathbb{P}^{1})\subset \mathbb{P}^{1}\times \mathbb{P}^{1}$ .

Namely, if we let $[z_{0} : z_{1}]$ and $[w_{0} : w_{1}]$ be the homogeneous coordinates
of the first and second factor $\mathbb{P}^{1}$ , respectively, then $X$ is defined by the
equation $z_{1}w_{1}=0$ . Let $f$ : $X\rightarrow \mathbb{P}^{1}$ be the restriction of the projection
$\mathbb{P}^{1}\times \mathbb{P}^{1}\rightarrow \mathbb{P}^{1}$ (either to the first factor or to the second factor) to
the subvariety $X$ . Then $f$ is obviously triangulable, but certainly not
Euler because the topological Euler-Poincar\’e characteristics of the fibers
are not constant; $\chi(f^{-1}([1 : 0]))=\chi(\mathbb{P}^{1})=2$ and $\chi(f^{-1}(x))=1$ if
$x\neq[1 : 0]$ .
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At the moment a reasonable characterization of Eulerness is not
known yet.

Before finishing this section we pose one problem. First, suggested
by Proposition (2.4), one might be able to consider the following naive
group of constructible functions:

$F^{l.c}.(X\rightarrow Y)f:=$ { $\alpha\in \mathcal{F}(X)|f_{*}\alpha$ is a locally constant function on $Y$ }

Then we can show the following

Proposition (3.6). Let us consider only topologically connected
compact complex analytic varieties. Then the above $nai\dot{v}e$ group of con-
structible functions $F^{l.c}\cdot(X\rightarrow Y)f$ becomes a bivariant theory with the

same operations as ones for $F(X\rightarrow Y)f$ .

Proof We have only to show that the three operations are well-
defined. First we note that since our varieties are assumed to be topo-
logically connected, that $ f_{*}\alpha$ is locally constant on $Y$ means that it is
a constant function on Y. This constancy is needed only for the well-
definedness of the product operation, as we see below.
(1) (BO-I) (Product operations) For morphisms $f$ : $X\rightarrow Y$ and $g$ : $ Y\rightarrow$

$Z$ , let $\alpha\in \mathcal{F}(X)$ such that $ f_{*}\alpha$ is a constant function on $Y$ and $\beta\in \mathcal{F}(Y)$

such that $ f_{*}\beta$ is a constant function on $Z$ . Then we need to show that
$(gf)_{*}(\alpha\ovalbox{\tt\small REJECT}\beta)$ is a constant function. First we note $thatf_{*}(\alpha\ovalbox{\tt\small REJECT}\beta)=$

$(f_{*}\alpha)\ovalbox{\tt\small REJECT}\beta$ by the commutativity of pushforward and product operation

(B-4). Then since we can consider $f_{*}\alpha\in F(Y\rightarrow idY)$ , $(f_{*}\alpha)\ovalbox{\tt\small REJECT}\beta=$

$(f_{*}\alpha)\cdot\beta=c\cdot\beta$ , where $c=\chi(f^{-1}(y);\alpha)$ for any $y\in Y$ is a constant.
Therefore $(gf)_{*}(\alpha\ovalbox{\tt\small REJECT}\beta)=g_{*}(f_{*}(\alpha\ovalbox{\tt\small REJECT}\beta))=g_{*}(c\cdot\beta)=c\cdot g_{*}(\beta)$ , which is
a constant function because $g_{*}(\beta)$ is so. As we can see, the constancy of
$ f_{*}\alpha$ is crucial. (If it is not constant, we can easily get a counterexample.)
(2) (BO-II) (Pushforward operations) For morphisms $f$ : $X\rightarrow Y$ and

$g$ : $Y\rightarrow Z$ , and $\alpha\in F^{l.c}(X\rightarrow gfZ)$ we want to show that $ f_{*}\alpha\in$

$F^{l.c}(Y\rightarrow Z)g$ . But this is obvious, because $(gf)_{*}\alpha=g_{*}(f_{*}\alpha)$ .
(3) (BO-III) (Pull-back operations) For a fiber square

$f’\downarrow X’$

$\rightarrow g’$

$X\downarrow f$

$Y’$
$\rightarrow g$

$Y$,
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and $\alpha\in \mathcal{F}(X)$ , we need to show that if $ f_{*}\alpha$ is locally constant on $V$ ,

then $f_{*}’g’\alpha*$ is locally constant. For this we can use the following lemma
([5, Proposition 3.5]):

Lemma (3.6.1). The following diagram is commutative:

$\mathcal{F}(X)f’\downarrow$

$\rightarrow g’$

$\mathcal{F}(X’)\downarrow f$

$\mathcal{F}(Y)$

$\rightarrow g$

$\mathcal{F}(Y’)$

Since $ f_{*}\alpha$ is locally constant, $ g^{*}f_{*}\alpha$ is also locally constant. Then
using the lemma, $g^{*}f_{*}\alpha=f_{*}’g’\alpha*$ is locally constant, thus $ g^{*}\alpha:=g’\alpha*\in$

$F^{l.c}\cdot(X’\rightarrow Y’)f’$ . Q.E.D

Note that

(1) $F^{l.c}.(X\rightarrow pt)=F(X\rightarrow pt)=\mathcal{F}(X)$ ,

(2) $F^{l.c}.(X\rightarrow X)id=F(X\rightarrow X)id$

$=$ { $\alpha\in \mathcal{F}(X)|\alpha$ is locally constant $onX$ },

and
(3) in general, $F(X\rightarrow Y)\subset F^{l.c}\cdot(X\rightarrow Y)$ and they are not necessarily
equal as the following example shows: (Example) Let $L_{1}$ be the diagonal
of the cartesian product $\mathbb{P}^{1}\times \mathbb{P}^{1}$ of the 1-dimensional projective space
$\mathbb{P}^{1}$ . Choose a point $z_{0}$ in $\mathbb{P}^{1}$ , and consider another line $L_{2}$ : $\{(z, z_{0})|z\in$

$P^{1}\}\subset \mathbb{P}^{1}\times \mathbb{P}^{1}$ . Set $L:=L_{1}\cup L_{2}\subset \mathbb{P}^{1}\times \mathbb{P}^{1}$ . Let $E$ be a smooth elliptic
curve, so that its Euler characteristic $\chi(E)=0$ . Let $X:=L\times E$ .

And let $f$ : $X\rightarrow \mathbb{P}^{1}$ be the composite of the inclusion $ X=L\times E\rightarrow$

$\mathbb{P}^{1}\times \mathbb{P}^{1}\times E$ , the projection to the first two factors $\mathbb{P}^{1}\times \mathbb{P}^{1}\times E\rightarrow \mathbb{P}^{1}\times \mathbb{P}^{1}$

and the projection to the first factor $\mathbb{P}^{1}\times \mathbb{P}^{1}\rightarrow \mathbb{P}^{1}$ . Then the Euler-
Poincar\’e characteristic of the fibers are clearly locally constant; in fact
$\chi(f^{-1}(z))=0$ for any point $z$ , which comes from the fact that $\chi(E)=0$ .

Thus the pushforward $f_{*}I_{X}$ is locally constant. However, it is easy to

see that the map $f$ is not Euler, i.e., $I_{X}\not\in F(X\rightarrow fY)$ . Because at
every point of the fiber $f^{-1}(z_{0})=\{(z_{0}, z_{0})\}\times E$ , $I_{X}$ does not satisfy
the local Euler condition with respect to $f$ .

Let $\iota$ : $F\rightarrow F^{l.c}$ . be the inclusion, i.e., $\iota(\alpha)=\alpha$ .

Problem (3.7). Can one construct a Grothendieck transformation
$\gamma^{l.c}$ . : $F^{l.c}\cdot\rightarrow \mathbb{H}$ such that (1) $\gamma^{l.c}\cdot(1_{\pi})=c(T_{X})\cap[X]$ if $X$ is smooth and
(2) $\gamma=\gamma^{l.c}$ .

$\circ\iota$ ?
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\S 4. Generalized Milnor numbers

Definition (4-1)- ( $Parusi\acute{n}$ski’s generalized Milnor number)([15],
[16] and [17] $)$ Let $X$ be a local complete intersection variety of a smooth
variety $M$ . Let $n=dim$X. Then the $Parusi\acute{n}ski$ ’s generalized Milnor
number $\mu(X)$ is defined to be

$\mu(X):=(-1)^{n+1}[\chi(X)-\int_{X}C^{FJ}(X)]$ ,

where $C^{FJ}(X)$ is Fulton-Johnson’s Chern class, defined to be $c(TM|x-$
$N_{X}M)\cap[X]$ with $N_{X}M$ being the normal bundle of $X$ . Note that this
class is independent of the embedding of $X$ into a smooth variety $M$

(see Fulton’s book [7, Example 4.2.6]).

Since $\chi(X)=\int_{X}C_{*}(X)$ , as a simple generalization of the general-
ized Milnor number we have the following

Defifinition $(4\cdot 2)$ . (see [1], [4], [18], [23]) Let the situation be as in
Definition (4.1). The Milnor class $\mathcal{M}(X)$ is defined by

$\mathcal{M}(X):=(-1)^{n+1}[C_{*}(X)-C^{FJ}(X)]$ .

With these definitions we can show the following theorem.

Theorem (4.3). Let $f$ : $X\rightarrow rM\rightarrow pY$ be an Euler and local
complete intersection morphism ($i.e.$ , $r:X\rightarrow M$ is a regular embedding
and $p:M$ $\rightarrow Y$ is a smooth morphism) such that over each point $y\in Y$ ,

the restriction to the fibers $r_{y}$ : $X_{y}\rightarrow M_{y}$ is also a regular embedding
with $dimX_{y}=n$ , $i.e.$ , the fifiber $X_{y}:=f^{-1}(y)$ is a local complete inter-
section variety of the smooth fifiber $M_{y}:=p^{-1}(y)$ . Then the Milnor class
$\mathcal{M}(X_{y})$ of the fifiber $X_{y}$ (considered as classes of $X$) are locally constant.
In particular, the generalized Milnor number of the fifibers $X_{y}$ are locally
constant.

Proof. Firstly we remark that the smoothness of the fiber $M_{y}$

comes from the smoothness of the morphism $p$ . Since $f$ : $X\rightarrow Y$ is
a local complete intersection morphism, we can define the following ho-
momorphism

$c(T_{f})\cap f^{*}$ : $H_{*}(Y;\mathbb{Z})\rightarrow H_{*}(X;\mathbb{Z})$ ,

where $T_{f}$ is the virtual relative tangent bundle, defined to be

$T_{f}:=i^{*}T_{p}-N_{X}M$ ,

and $f^{*}$ : $H_{*}(Y;\mathbb{Z})\rightarrow H_{*}(X;\mathbb{Z})$ is the Gysin homomorphism [7, Exam-
ple 19.2.1]. Since we are in the homology theory, the homology classes
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$c(T_{f})\cap f^{*}([y])$ are certainly locally constant. Since $f$ : $X\rightarrow Y$ is also Eu-
ler, it follows from Corollary (3.4) that the Chern-Schwartz-MacPherson
classes $i_{y_{*}}C_{*}(X_{y})$ of the fibers $X_{y}$ are locally constant. So to prove the
theorem we only need to prove the following equality

$c(T_{f})\cap f^{*}([y])=i_{y_{*}}C^{FJ}(X_{y})$

for which we proceed as follows:

$c(T_{f})\cap f^{*}([y])=c(T_{f})\cap i^{*}([M_{y}])$

$=c(T_{f})\cap i^{*}i_{y_{*}}([M_{y}])$

$=c(T_{f})\cap i_{y_{*}}i^{*}([M_{y}])$ (by [5, Theorem (6.2)(a)])

$=i_{y_{*}}(c(i_{y}^{*}T_{f})\cap i^{*}([M_{y}]))$ (by the projection formula)

$=i_{y_{*}}(c(T_{fy})\cap[X_{y}]))$ (by [5, Example (6.2.1)])

$=i_{y_{*}}C^{FJ}(X_{y})$ .

Q.E.D

Motivated by this result, we can consider the following: Since we
are mostly interested in homology classes determined by subvarieties
of a variety, we consider the Chow group $A(X)$ , i.e., the group of cy-
cles modulo rational equivalence [7], and the following homology group,
which shall be provisionally called the “algebraic homology group”, de-
noted by $AH_{*}(X;\mathbb{Z})$ :

$AH_{*}(X;\mathbb{Z}):=Image(d:A(X)\rightarrow H_{*}(X;\mathbb{Z}))$ ,

where $d$ : $A(X)\rightarrow H_{*}(X;\mathbb{Z})$ is the cycle map [6, 19.1].

Lemma (4.4). For a variety $X$ ,

$AH_{*}(X;\mathbb{Z})=Image(C_{*} : \mathcal{F}(X)\rightarrow H_{*}(X;\mathbb{Z}))$ .

Proof. First of all we note that MacPherson’s proof [14] actually
shows that $C_{*}$ : $\mathcal{F}(X)\rightarrow H_{*}(X;\mathbb{Z})$ is the composite of the homomor-
phism $C_{*}$ : $\mathcal{F}(X)\rightarrow A(X)$ into the Chow homology group and the cycle
map $d$ : $A(X)\rightarrow H_{*}(X;\mathbb{Z})$ . Here we use the same notation $C_{*}$ , i.e.,

$C_{*}=d\circ C_{*}$ .
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In fact it is easy to see by induction on dimension that the homomor-
phism $C_{*}$ : $\mathcal{F}(X)\rightarrow A(X)$ is always surjective, because for any sub-
variety $WC_{*}(I_{W})=[W]+1ower$ classes. Thus we get $AH_{*}(X;\mathbb{Z})=$

Image $(C_{*} : \mathcal{F}(X)\rightarrow H_{*}(X;\mathbb{Z}))$ . Q.E.D

Now consider a Verdier-type Riemann-Roch diagram associated with
the bivariant constructible function $I_{X}$ :

$c_{*}\downarrow \mathcal{F}(Y)$

$\rightarrow f^{*}=(1\chi)^{F}$

$\mathcal{F}(X)\downarrow c_{*}$

$H_{*}(Y;\mathbb{Z})$

$\rightarrow(1_{X})_{\gamma}^{E1}$

$H_{*}(X;\mathbb{Z})$

where $\gamma$ : $F\rightarrow \mathbb{H}$ is a Grothendieck transformation (cf. [22]). It follows
from Lemma (4.4) that the restricted homomorphism
$f^{Eu}:=(]1_{X})_{\gamma}^{\mathbb{H}}|_{AH_{*}(Y;\mathbb{Z})}$ : $AH_{*}(Y;\mathbb{Z})\rightarrow AH_{*}(X;\mathbb{Z})$ can be expressed as
follows:

$f^{Eu}:=C_{*}f^{*}C_{*}^{-1}$ : $AH_{*}(Y;\mathbb{Z})\rightarrow AH_{*}(X;\mathbb{Z})$ ,

which is well-defined because of the commutativity of the above Verdier-
type Riemann-Roch diagram. And of course we have the following ho-
momorphism

$c(T_{f})\cap f^{*}:$ $AH_{*}(Y;\mathbb{Z})\rightarrow AH_{*}(X;\mathbb{Z})$ .

These two homomorphisms coincide when $f$ : $X\rightarrow Y$ is a smooth
morphism, but in general they are not identical if $f$ is not smooth ([22]).
So it is quite natural to pose the problem of describing the difference
between the two.

Problem (4.5). Let $f$ : $X\rightarrow Y$ be an Euler and local complete
intersection morphism. Then give an explicit description of the following
defect $\delta$ :

$ f^{Eu}=c(T_{f})\cap f^{*}+\delta$ .

Remark 4.6. For a hypersurface $XParusi\acute{n}$ski and Pragacz [17] give
an interesting and promising formula for the generalized Milnor number
$\mu(X)$ , in terms of the Chern-Schwartz-MacPherson of the closure of
the strata of a Whitney stratification of $X$ . Suggested by their result
and Theorem (4.3), we expect that the defect $\delta$ in the above looked-for
formula will be possibly described using a Whitney stratification of a
morphism $f$ . After the preparation of the manuscript we learned that in
the hypersurface case the $Parusi\acute{n}ski$-Pragacz’s formula for the Milnor
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number $\mu(X)$ has been generalized to a formula for the Milnor class
$\mathcal{M}(X)$ in [18].

An interesting feature of this looked-for formula is that it implies
some relationship among Fulton-Johnson’s canonical class
$C(f):=c(T_{f})\cap[X]$ of a local complete intersection morphism $f[8]$ and
the Chern-Schwartz-MacPherson class $C_{*}(X)$ of the source variety $X$

and (hopefully) some kind of invariants of singularities of the morphism
$f$ . Here is a citation from [8, p.382]: “

$\ldots$ It would be interesting to relate
the canonical class of a mapping to its singularities.”

Proposition (4.7). Let $f$ : $X\rightarrow Y$ be an Euler and local complete
intersection morphism. Then we have the following formula:

$C(f)=C_{*}(X)+\sum a_{V}C_{*}(f^{-1}(V))-\delta([Y])$ ,

where $[Y]=C_{*}(Y)+\sum_{dimV<dimY}a_{V}C_{*}(V)$ . In particular, if $f$ is
smooth, then

$C(f)=C_{*}(X)+\sum a_{V}C_{*}(f^{-1}(V))$ .

Proof. First we observe that since

$[Y]=C_{*}(Y)+\sum_{dimV<dimY}a_{V}C_{*}(V)$

we can take

$C_{*}^{-1}([Y])=I_{Y}+\sum_{dimV<dimY}a_{V}I_{V}$
.

Then

$C(f)$ $=$ $c(T_{f})\cap[X]$

$=$ $c(T_{f})\cap f^{*}([Y])$

$=$ $f^{Eu}([Y])-\delta([Y])$

$=$ $C_{*}f^{*}C_{*}^{-1}([Y])-\delta([Y])$

$=$ $C_{*}f^{*}(I_{Y}+\sum_{dimV<dimY}a_{V}I_{V})-\delta([Y])$

$=$
$C_{*}(X)+\sum_{dimV<dimY}a_{V}C_{*}(f^{-1}(V))-\delta([Y])$

.

$Q.E.D$

Proposition (4.8). Let $f$ : $X\rightarrow Y$ be an Euler morphism and
let $Y$ be topologically connected. Then for any algebraic homology class
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$\alpha\in AH_{*}(Y;\mathbb{Z})$ we have

$\int_{X}f^{Eu}(\alpha)=\chi_{f}\cdot\int_{Y}\alpha$ .

Here $\chi_{f}$ denotes the topological Euler-Poincar\’e characteristic of any

fiber.

Proof. Since any homology class $\alpha\in AH_{*}(Y;\mathbb{Z})$ is generated by
the Chern-Schwartz-MacPherson class $C_{*}(V)=C_{*}(I_{V})$ of subvarieties
$V$ , it suffices to show the formula for $\alpha=C_{*}(I_{V})$ .

$\int_{X}f^{Eu}(C_{*}(]1_{V}))=\int_{Y}f_{*}f^{Eu}(C_{*}(I_{V}))$

$=\int_{Y}f_{*}C_{*}f^{*}C_{*}^{-1}(C_{*}(I_{V}))$ (since $f^{Eu}=C_{*}f^{*}C_{*}^{-1}$ )

$=\int_{Y}C_{*}f_{*}f^{*}(]1_{V})$ (since $f_{*}C_{*}=C_{*}f_{*}$ )

$=\int_{Y}C_{*}(\chi_{f}\cdot]1_{V})$ $(f_{*}f^{*}(]1_{V})=\chi_{f}\cdot I_{V})$

$=\chi_{f}\cdot\int_{Y}C_{*}(I_{V})$ .

Q.E.D

Problem (4.9).

1. Let $f$ : $X\rightarrow Y$ be a local complete intersection morphism and let
$Y$ be topologically connected. Let $\alpha\in AH_{*}(Y;\mathbb{Z})$ . Describe the
following number as in the above proposition

$\int_{X}c(T_{f})\cap f^{*}(\alpha)$ .

2. Let $f$ : $X\rightarrow Y$ be a local complete intersection morphism with
$Y$ being topologically connected such that $f$ : $X\rightarrow M\rightarrow Y$ and
that for each $y\in Yr_{y}$ : $X_{y}\rightarrow M_{y}$ is a regular embedding with
$dimX_{y}=n$ , $i.e.$ , $X_{y}$ is a local complete intersection of the smooth

fifiber $M_{y}$ . Then is it true that

$\int_{X}c(T_{f})\cap f^{*}(\alpha)=\chi_{f^{FJ}}\cdot\int_{Y}\alpha$ ?

Here $\chi_{f^{FJ}}=\int_{X_{y}}C^{FJ}(X_{y})$ is called the Fulton-Johnson’s char-

acteristic of the fifiber.



Bivariant constructible functions 75

If (2) of the above problem be true, then we will get the following
formula:

$\int_{X}\delta(\alpha)=(-1)^{n+1}\mu_{f}\cdot\int_{Y}\alpha$ ,

where $\mu_{f}$ is the generalized Milnor number of the fiber.

Remark 4.10. Here we remark a little on the uniqueness problem of
the bivariant Chern class. If we consider the algebraic homology group
instead of the usual homology group, then to some extent we could
see the “uniqueness” in the following sense. We want to see that if
$\gamma$ , $\gamma’$ : $F\rightarrow \mathbb{H}$ are two Grothendieck-Chern transformations, then for any
bivariant constructible function $\alpha$ the bivariant homology $\gamma(\alpha)=\gamma’(\alpha)$ .

If we consider these two bivariant homology classes $\gamma(\alpha)$ and $\gamma’(\alpha)$ as
homological operators $\alpha_{\gamma}^{\mathbb{H}}(a)=\gamma(\alpha)\ovalbox{\tt\small REJECT}_{\mathbb{H}}$ $a$ and $\alpha_{\gamma’}^{\mathbb{H}}(a)=\gamma’(\alpha)\ovalbox{\tt\small REJECT}_{\mathbb{H}}a$ , which
both define the homomorphism

$AH_{*}(Y;\mathbb{Z})\rightarrow AH_{*}(X;\mathbb{Z})$ .

However, in the same argument as above we have the following equality:

$\alpha_{\gamma}^{\mathbb{H}}=C_{*}\alpha^{F}C_{*}^{-1}=\alpha_{\gamma’}^{\mathbb{H}}$ .

Thus all the Grothendieck transformations induce the same homological
operators if they are restricted to the algebraic homological classes. In
particular, in the case when the cycle map $d$ : $A_{*}(X)\rightarrow H_{*}(X)$ is an
isomorphism, e.g., if $X$ has a cellular decomposition (see [7, Example
1.9.1 and Example 19.1.11]), then the transformation $\gamma$ : $F\rightarrow \mathbb{H}$ is
unique if it is considered as the homological operator $\alpha_{\gamma}^{\mathbb{H}}$ . When the
bivariant homology theory is replaced by the bivariant Chow homology
theory ([6], [7]), see [6] for the uniqueness.
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Constructibilit\’e de l’id\’eal de Bernstein

Jo\"el Briangon, Philippe Maisonobe et Michel Merle

Soit $X$ une vari\’et\’e analytique, $f=(f_{1}, \ldots, f_{p})$ des fonctions analy-
tiques sur $X$ , $F=f_{1}\ldots f_{p}$ leur produit.
Soit $M$ un $D_{X}$ -Module holonome r\’egulier; C. Sabbah montre dans [Sab 1]
[Sab 2] que toute section $m$ de $M$ satisfait localement des \’equations non
triviales

$(*)$ $b(s_{1}, \ldots, s_{p})mf_{1}^{s_{1}}\ldots f_{p^{p}}^{s}\in D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}+1}\ldots f_{p^{\rho}}^{s+1}$

o\‘u $b(s_{1}, \ldots, s_{p})$ est un produit de formes affines. De plus, les coefficients
de la partie lin\’eaire de ces formes sont des entiers positifs ou nuls. En par-
ticulier, l’id\’eal $B(x, f_{1}, \ldots, f_{p}, m)$ des polyn\^omes $b(s_{1}, \ldots, s_{p})$ v\’erifiant

au voisinage d’un point $x$ une \’equation fonctionnelle $(*)$ est non r\’eduit \‘a

z\’ero. D\’esignons par car $M$ $=\bigcup_{l\in L}T_{Y_{l}}^{*}X$ la vari\’et\’e caract\’eristique de $M$ .

Nous montrons que le germe de l’id\’eal $B(x, f_{1}, \ldots, f_{p}, m)$ est constant le
long des composantes d’une partition qui se d\’etermine g\’eom\’etriquement
\‘a partir des restrictions de la seule fonction $F$ aux $Y_{l}$ . En particulier,
nous en d\’eduisons le r\’esultat :

Th\’eor\‘eme. Soit $M$ un $D_{X}$ -Module holonome r\’egulier engendr\’e
par une section $m$ et car $M$ $=\bigcup_{l\in L}T_{Y_{l}}^{*}X$ sa vari\’et\’e caract\’eristique. Soit
$(V_{\beta})_{\beta\in\Gamma}$ une stratifification analytique de $\bigcup_{l\in_{-}L}Y_{l}$ compatible aux $Y_{l}$ et
\‘a $F^{-1}(0)$ , satisfaisant la condition de fronti\‘ere et la condition $a_{F}$ de
Thom.

Le germe de $l$ ’id\’eal de Bernstein de $f_{1}$ , $\ldots$ , $f_{p}$ , $m$ est constant le long
des strates de la stratifification $(V_{\beta})_{\beta\in\Gamma}$ .

Ce r\’esultat g\’en\’eralise celui obtenu par J. Briangon et H. Maynadier
([B. $M]$ th\’eor\‘eme 3.3 page 14) dans le cas o\‘u $p=1$ et $m$ une fonction
constante sur $X$ .

D\’etaillons section par section les r\’esultats que nous obtenons.

Received March 24, 1999
Revised July 22, 1999
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Section 1 Soit $Y$ un sous-espace analytique irr\’eductible de $X$ . On
note $T^{*}X$ le fibr\’e cotangent \‘a $X$ , $T_{Y}^{*}X$ l’espace conormal \‘a $Y$ dans $X$ .

Soit $A$ le sous-ensemble de $T^{*}X\times C^{p}$ d\’efini par :

$A=\{(x,$ $\eta+s_{1}\frac{df_{1}(x)}{f_{1}(x)}+\cdots+s_{p}\frac{df_{p}(x)}{f_{p}(x)}$ , $s_{1}$ , $\cdots$ , $s_{p})$

; $F(x)\neq 0$ et $(x, \eta)\in T_{Y}^{*}X\}$

L’espace $ W_{f_{1},,f_{\mathcal{P}},Y}^{\#}\ldots$

’
adh\’erence de $A$ dans $T^{*}X\times C^{p}$ a \’et\’e introduit par

T. Kawai et M. Kashiwara $([K.K])$ .

Nous donnons ici quelques propri\’et\’es de $ W_{f1,,f_{\mathcal{P}},Y}^{\#}\ldots\cdot$ D\’esignons par
$\pi_{2}$ la projection de $T^{*}X\times C^{p}$ sur $C^{p}$ .

1. Les fibres r\’eduites de la restriction de $\pi_{2}$ \‘a $ W_{f_{1},,f_{p},Y}^{\Downarrow}\ldots$ sont des

sous-espaces lagrangiens de $T^{*}X$ . La fibre au-dessus de l’origine
est en particulier un sous-espace lagrangien conique.

2. La projection par $\pi_{2}$ de la $trace$ de $ W_{f1,,f_{P},Y}^{\#}\ldots$ sur l’hypersur-

face d’\’equation $F=0$ est une r\’eunion $H$ d’hyperplans vectoriels
de $C^{p}$ dont les \’equations sont des formes lin\’eaires \‘a coefficients
entiers positifs ou nuls.

3. La partie de $ W_{f1,,f_{\mathcal{P}},Y}^{\#}\ldots$ au dessus de la droite vectorielle $s_{1}=$

$\ldots$ $=s_{p}$ de $C^{p}$ s’identifie \‘a l’espace $ W_{F,Y}^{Q},\cdot$

Section 2 Nous \’etudions ici des propri\’et\’es g\’en\’erates des $D_{X}[s_{1}, \ldots, s_{p}]-$

Modules coh\’erents. Nous dirons qu’un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module coh\’erent
$M$ est \‘a fibre lagrangienne si $(car_{D_{X}[s_{1},,s_{\rho}]}\ldots M)(0)$ , intersection de sa
vari\’et\’e caract\’eristique et de $\pi_{2}^{-1}(0)$ , est un sous-espace lagrangien de
$T^{*}X$ . Nous \’etudions plus particuli\‘ement les $D_{X}[s_{1}, \ldots, s_{p}]$ Modules coh\’e-

rents \‘a fibre lagrangienne. Ils se comportent bien par suite exacte. Nous
montrons que l’id\’eal des polyn\^omes de $C[s_{1}, \ldots, s_{p}]$ annulant le germe
en un point d’un tel module est localement constant le long des strates
d’une stratification associ\’ee \‘a la vari\’et\’e lagrangienne $(car_{D_{X}[s_{1},,s_{p}]}\ldots M)$

$(0)$ .
Section 3 Soit $m$ une section engendrant un $D_{X}$ -Module holonome
r\’egulier $M$ . D\’esignons par car $M=\bigcup_{l\in L}T_{Y_{l}}^{*}X$ sa vari\’et\’e caract\’eristi-

que. Nous commengons par \’etablir le r\’esultat suivant :
Le $D_{X}[s_{1}, \ldots, s_{p}]$ -Module $D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}}\ldots f_{p}^{s_{p}}$ est coh\’erent

de vari\’et\’e caract\’eristique :

$car_{D_{X}[s_{1},,s_{\rho}]}\ldots D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}}\ldots f_{p^{\rho}}^{s}=\bigcup_{F|_{Y_{l}}\neq 0}W_{f1,,f_{P},Y_{l}}^{\#}\ldots$
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Ce r\’esultat compl\‘ete ceux de Particle [B.B.M.M]; nous le montrons \‘a

l’aide du th\’eor\‘eme de C. Sabbah sur les vari\’et\’es caract\’eristiques de
Modules relatifs [Sab 2].

On en d\’eduit que $D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}}\ldots f_{p}^{s_{\rho}}$ est un $D_{X}[s_{1}, \ldots, s_{p}]-$

Module coh\’erent \‘a fibre lagrangienne. Done, la vari\’et\’e caract\’eristique

du $D_{X}[s_{1}, \ldots, s_{p}]$ -Module \‘a gauche coh\’erent :

$ N=\ldots\frac{D_{X}[s_{1},,s_{p}]mf_{1}^{s_{1}}f_{p}^{s_{p}}}{D_{X}[s_{1},,s_{p}]mf_{1}^{s_{1}+1}f_{p}^{s_{p}+1}}\ldots\ldots\cdots$

est incluse dans $(\bigcup_{F|_{Y_{l}}\neq 0}W_{f_{1}}^{\#},..,f_{\rho},Y_{l})\cap F^{-1}(0)$ . Ce Module est encore

\‘a fibre lagrangienne; il en r\’esulte que l’id\’eal $B(x, f_{1}, \ldots, f_{p}, m)$ des
polyn\^omes $b(s_{1}, \ldots, s_{p})$ v\’erifiant au voisinage d’un point $x$ de $X$ une
\’equation fonctionnelle

$(*)$ $b(s_{1}, \ldots, s_{p})mf_{1}^{s_{1}}\ldots f_{p^{p}}^{s}\in D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}+1}\ldots f_{p^{p}}^{s+1}$

est constant le long des strates d’une partition canoniquement associ\’ee

\‘a la vari\’et\’e lagrangienne

( $\cup$ $W_{f_{1},,f_{p},Y_{l}}^{\Downarrow}\ldots)\cap F^{-1}(0)\cap\pi_{2}^{-1}(0)$

$F|_{Y_{l}}\neq 0$

\’egale \‘a la $trace$ sur $F^{-1}(0)$ de l’espace conormal relatif \‘a $F$ sur $\bigcup_{F|_{Y_{l}}\neq 0}Y_{l}$ .
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\S 1. Famille de vari\’et\’es lagrangiennes

Soit $X$ une vari\’et\’e analytique complexe de dimension $n$ . Soit $f=$

$(f_{1}, \ldots, f_{p})$ des fonctions holomorphes sur $X$ . Nous d\’esignons par $T^{*}X$

le fibr\’e cotangent \‘a $X$ et par $\pi_{1}$ (resp. $\pi_{2}$ ) la projection de $T^{*}X\times C^{p}$ sur
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$T^{*}X$ (resp. sur $C^{p}$ ). On note $F$ le produit $f_{1}\ldots f_{p}$ . Soit $Y\subset X$ un sous
espace analytique irr\’eductible non contenu dans l’hypersurface $F^{-1}(0)$ .

On d\’esigne par $T_{Y}^{*}X$ l’espace conormal \‘a $Y$ dans $X$ , \’egal \‘a l’adh\’erence

dans $T^{*}X$ du fibr\’e conormal \‘a la partie lisse de Y.

Notation 1. Soit A le sous-ensemble de $T^{*}X\times C^{p}$ d\’efifini par:

$A=\{(x,$ $\eta+s_{1}\frac{df_{1}(x)}{f_{1}(x)}+\cdots+s_{p}\frac{df_{p}(x)}{f_{p}(x)}$ , $s_{1}$ , $\cdots$ , $s_{p})$

; $F(x)\neq 0$ et $(x, \eta)\in T_{Y}^{*}X\}$

Nous notons $W_{f1,f_{P}Y}^{\#}\cdots,,l$ ’adh\’erence de A dans $T^{*}X\times C^{p}$ . $L$ ’ensemble

$ W_{f1,,f_{p},Y}^{Q}\cdots$ est un espace analytique complexe irr\’eductible de dimension

$n+p$ . $L$ ’action de $C^{*}$ sur $T^{*}X\times C^{p}$ donn\’ee par:

$\lambda$ , $(x, \xi, s)\mapsto(x, \lambda\xi, \lambda s)$

laisse stable $A$ , done $ W_{f1,f_{p}Y}^{\#}\cdots,,\cdot$ Le diviseur $F^{-1}(0)$ est \’egalement laiss\’e

stable par cette action.

Notation 2. Pour tout $c\in C^{p}$ , nous noterons $W_{f1,..,f_{\rho},Y}^{\beta}(c)$ la

fifibre au-dessus de $c$ de la restriction de $\pi_{2}$ \‘a $ W_{f_{1},,f_{P},Y}^{\Downarrow}\ldots$ :

$W_{f1,f_{\rho}Y}^{\beta}\ldots,,(c)=W_{f1,f_{\mathcal{P}}Y}^{\Downarrow}\ldots,,\cap\pi_{2}^{-1}(c)$

On identififie $W_{f_{1},..,f_{p},Y}^{\Downarrow}(c)$ \‘a un sous espace analytique de $T^{*}X$ . Pour
$c=0$ , $c$ ’est un sous-espace stable par I’action de $C^{*}$ sur $T^{*}X$ donn\’ee

par:
$\lambda$ , $(x, \xi)\mapsto(x, \lambda\xi)$ .

Proposition 1. Pour tout $c\in C^{p}$ , l’espace $W_{f1,f_{\rho}Y}^{\Downarrow}\ldots,,(c)$ est un
sous-espace lagrangien de $T^{*}X$ .

Preuve. Soit $c=(c_{1}, \ldots, c_{p})\in C^{p}$ . L’espace $W_{f_{1}f_{\mathcal{P}}Y}^{\phi},\ldots,$

, \’etant

un espace analytique irr\’eductible de dimension $n+p$ , les composantes
irr\’eductibles de l’espace analytique r\’eduit sous jacent \‘a $W_{f_{1},,f_{p},Y}^{\beta}\ldots(c)$

sont de dimension sup\’erieure ou \’egale \‘a $n$ . Pour \’etablir la proposition,

il suffira done de montrer que $W_{f_{1},,f_{\rho},Y}^{\mathfrak{g}}\ldots(c)$ est isotrope. D\’esignons par
$\alpha$ la 1-forme canonique sur $T^{*}X$ . Nous avons done \‘a montrer que la re-
striction de $ d\alpha$ \‘a la partie lisse de toute composante de $W_{f1}^{Q},\ldots,f_{p},Y(c)$ est

nulle. Pour cela, consid\’erons l’\’eclatement normalis\’e $E$ : $\overline{W}_{f_{1},,f_{p},Y}^{\Downarrow}\ldots\rightarrow$
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$W_{f1}^{\phi}$

, . ’
$f_{p},Y$

de l’id\’eal engendr\’e par $(s_{1}-c_{1}, \ldots, s_{p}-c_{p})$ dans l’anneau

structural de $ W_{f_{1}\cdot\cdot,f_{\nu},Y}^{\#},\cdot$ On a le diagramme commutatif:

$\overline{C}=E^{-1}(C)$ $L\rightarrow$ $\overline{W}_{f1,f_{\mathcal{P}}}^{\#}\ldots$

,

$\downarrow E$ $\downarrow E$

$C=W_{f1,,f_{\rho}Y}^{\#}\ldots,(c)$ $\simeq\rightarrow$ $W_{f1,f_{p}Y}^{\#}\ldots,$

,

$\rightarrow T^{*}X\pi_{1}^{J}$

dans lequel $\overline{C}$ est le diviseur exceptionnel et $\pi_{1}’$ la restriction de $\pi_{1}$ \‘a

$ W_{f1,..f_{p}Y}^{\beta},,\cdot$

On a $d\alpha|c=((\pi_{1}’)^{*}d\alpha)|c$ . Il suffira done de montrer que la restric-

tion de $E^{*}((\pi_{1}’)^{*}d\alpha)$ \‘a la partie lisse de toute composante de $\overline{C}$ est nulle.
Plagons nous au voisinage d’un $p_{-}ointg\acute{e}n\acute{e}riquee$ d’une $compo\underline{s}ante$ de
$\overline{C}$ . Le point $e$ est un point lisse de $C$ et de $\overline{W}_{f1,,f_{\rho}Y}^{\#}\ldots$

, (car $C$ est un

diviseur d’un espace normal); ainsi, il existe une fonction holomorphe $\psi$

telle que $\overline{C}$ soit d\’efini au voisinage de $e$ par F\’equation $\psi=0$ . Pour tout
$j\in\{1, \ldots,p\}$ , il existe done un entier naturel $m_{j}$ strictement positif et
une unit\’e $u_{j}$ tels que :

$s_{j}-c_{j}=u_{j}\psi^{m_{j}}$

et il existe un entier $n_{j}$ et une unit\’e $v_{j}$ tels que :

$f_{j}=v_{j}\psi^{n_{j}}$

Notons $\Omega$ l’ouvert dense de $Y$ des points lisses o\‘u $F$ n’est pas nulle.
Notons $U=\pi_{1}^{;-1}(\pi^{-1}(\Omega))$ , si $\pi$ : $T^{*}X\rightarrow X$ d\’esigne la projection

canonique. $C$ ’est un ouvert lisse dense de $ W_{f1,,f_{p}Y}^{\#}\cdots,\cdot$ Par d\’efinition de
$A$ (sachant que la restriction de $\alpha$ \‘a la vari\’et\’e lagrangienne $T_{Y}^{*}X$ est
nulle), nous avons :

$((\pi_{1}’)^{*}\alpha)|_{U}=(\sum_{j=1}^{p}s_{j}\frac{df_{j}}{f_{j}})|_{U}$

$((\pi_{1}’)^{*}d\alpha)|_{U}=(\sum_{j=1}^{p}ds_{j}\wedge\frac{df_{j}}{f_{j}})|_{U}$

Ainsi, au voisinage de $e$ :

$(E^{*}(\pi_{1}’)^{*}d\alpha)|_{E^{-1}(U)}$

$=(\sum_{j=1}^{p}\psi^{m_{j}}du_{j}\wedge\frac{dv_{j}}{v_{j}}+\sum_{j=1}^{p}\psi^{m_{j}-1}(n_{j}du_{j}-m_{j}u_{j}\frac{dv_{j}}{v_{j}})\Lambda d\psi)|_{E^{-1}(U)}$

La restriction de cette forme \‘a $\psi=0$ est nulle, d’o\‘u le r\’esultat.
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Proposition 2. Soit $W_{f_{1},f_{\rho}Y}^{\Downarrow}\ldots,,\cap F^{-1}(0)$ la trace de Vhypersur-

face $F^{-1}(0)$ sur $W_{f_{1}f_{p}Y}^{\phi},\ldots,,\cdot L$ ’espace:

$\pi_{2}(W_{f1}^{\#},\ldots,f_{\rho},Y\cap F^{-1}(0))$

est une r\’eunion $d$ ’hyperplans de $C^{p}$ d\’efifinis par des \’equations \‘a coeffi-
cients entiers positifs. La famille de ces hyperplans est localement fifinie
sur $F^{-1}(0)$ .

Preuve. Consid\’erons la normalisation $G$ : $\overline{W}\rightarrow W_{f1,fp}^{\beta}\ldots,,Y$ de

$ W_{f_{1},,f_{\rho},Y}^{\#}\ldots\cdot$ On a le diagramme commutatif:

$\overline{Z}=G^{-1}(Z)$ $e\rightarrow$
$\overline{W}$

$\downarrow G$ $\downarrow G$

$Z=W_{f_{1},,f_{p},Y}^{\phi}\ldots\cap F^{-1}(0)$ $c\rightarrow$ $ W_{f_{1},,f_{p},Y}^{\#}\ldots$

$\rightarrow T^{*}X\pi_{1}’$

Soit $T$ une composante de $Z$ . Soit $e$ un point g\’en\’erique d’une composante
de $\overline{Z}$ se projetant surjectivement sur $T$ . Le point $e$ est un point lisse de
l’hypersurface $\overline{Z}$ et de $\overline{W}$ . Soit $\psi=0$ une \’equation r\’eduite de $\overline{Z}$ au
voisinage de $e$ . Pour tout $j\in\{1, \ldots,p\}$ , il existe un entier posit $n_{j}$

(stictement positif pour au moins un indice) et $v_{j}$ une unit\’e tels qu’au
voisinage de $e$ on ait :

$f_{j}=v_{j}\psi^{n_{j}}$

On d\’esigne par $U$ le m\^eme ouvert que dans la preuve de la proposition
pr\’ec\’edente. On a au voisinage de $e$ :

$(G^{*}(\pi_{1}’)^{*}\alpha)|_{G^{-1}(U)}$ $=$ $(G^{*}(\sum_{j=1}^{p}s_{j}df_{j}/f_{j}))|_{G^{-1}(U)}$

$=$ $\sum_{j=1}^{p}s_{j}n_{j}d\psi/\psi+\sum_{j=1}^{p}s_{j}dv_{j}/v_{j}$

Cette forme est la restriction de la forme holomorphe $ G^{*}(\pi_{1}’)^{*}\alpha$ . Il faut
done que $\sum_{j=1}^{p}s_{j}n_{j}$ soit un multiple de $\psi$ . Ainsi, $\pi_{2}(T)$ est contenu dans
l’hyperplan $H_{T}$ d’\’equation :

$\sum_{j=1}^{p}s_{j}n_{j}=0$

Consid\’erons la restriction $\pi_{2}|_{T}$ : $T\rightarrow H_{T}$ . Pour tout $c\in C^{p}$ les fibres :

$(\pi_{2}|_{T})^{-1}(c)$
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sont incluses dans $W_{f1,,f_{p},Y}^{\Downarrow}\cdots(c)$ et sont done d’apr\‘es la proposition 1 de

dimension inf\’erieure ou \’egale \‘a $n$ . La dimension de $T$ est $n+p-1$ et la di-
mension de $H_{T}$ est $p-1$ , les fibres de $\pi_{2}|_{T}$ sont done \’equidimensionnelles

de dimension $n$ .
$T$ \’etant stable sous Faction de $C^{*}$ sur $T^{*}X\times C^{p}$ et ferm\’ee dans

ce dernier espace, elle contient done des points de la forme $(x, 0,0)$ . La
fibre de $\pi_{2}|_{T}$ au dessus de 0 est done non vide et de plus isotrope et
conique. Comme $H_{T}$ est lisse, le morphisme $\pi_{2}|\tau$ est ouvert en un tel
point $(x, 0, O)\in T$ et son image contient done un voisinage de l’origine
de $H_{T}$ . Comme cette image est conique, $\pi_{2}(T)=H_{T}$ . On en d\’eduit la
proposition 2 et la remarque suivante :

Remarque 1. Soit $c\in C^{p}$ . Si $W_{f1,,f_{p}Y}^{\Downarrow}\ldots,(c)\cap F^{-1}(0)$ n’est pas

vide, $e’ est$ une r\’eunion de composantes irr\’eductibles de $W_{f1,f_{p}Y}^{\Downarrow}\cdots,,(c)$ ,

done un espace lagrangien.

Corollaire 1. $L$ espace $W_{f_{1},,f_{p},Y}^{\#}\cdots\cap\{s_{1}=\ldots=s_{p}\}s$
’
$identififie$

(par le plongement diagonal de $C$ dans $C^{p}$ ) au sous-espace $W_{F,Y}^{\Downarrow}$

, de
$T^{*}X\times C$ .

Preuve. $W_{F,Y}^{\#}$

, est l’adh\’erence de

$\{x, \eta+t(dF(x)/F(x)), t);(x, \eta)\in T_{Y}^{*}X;F(x)\neq 0\}$

On a clairement l’inclusion :

$W_{F,Y}^{\#},\subset W_{f1,f_{p}Y}^{\#}\ldots,,\cap(s_{1}=\ldots=s_{p})$

En dehors de l’hypersurface $F^{-1}(0)$ , cette inclusion est une \’egalit\’e.

Il r\’esulte de la proposition 1 que $W_{f1,,f_{p},Y}^{\#}\ldots\cap(s_{1}=\ldots=s_{p})$ est
\’equidimensionnelle de dimension $n+1$ , done de m\^eme dimension que
$ W_{F,Y}^{\phi},\cdot$ Pour montrer le corollaire, il suffit done de montrer qu’aucune

composante irr\’eductible de $W_{f_{1},,f_{\rho}Y}^{\#}\ldots,\cap(s_{1}=\ldots=s_{p})$ n’est con-

tenue dans $F^{-1}(0)$ . Supposons le contraire : soit $Z$ une composante
contenue dans $F^{-1}(0);\pi_{2}(Z)$ est contenue d’apr\‘es la proposition 2 dans
un hyperplan \‘a coefficients entiers positifs. $Z$ est done contenue dans
$W_{f1,,f_{p}Y}^{\#}\cdots,(0)$ qui est, d’apr\‘es la proposition 1, de dimension $n$ . C’est
impossible, puisque $Z$ est de dimension $n+1$ .

\S 2. $D[s_{1, }\ldots, s_{P}]$ -Module coh\’erent \‘a fibre lagrangienne

2.1. D\’efinitions

On reprend les notations du d\’ebut de la section 1.
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D\’esignons par $D_{X}$ , le faisceau des op\’erateurs diff\’erentiels sur la
vari\’et\’e $X$ . Pour $k\in N$ , notons $D_{X}(k)$ le $k^{i\grave{e}me}$ terme de la filtration
de $D_{X}$ : si $(x_{1}, \ldots, x_{n})$ d\’esigne un syst\‘eme de coordonn\’ees locales de $X$

et $\beta=(\beta_{1}, \ldots, \beta_{n})\in N^{n}$ , notons :

$\partial^{\beta}=(\frac{\partial}{\partial x_{1}})^{\beta_{1}}\cdots(\frac{\partial}{\partial x_{n}})^{\beta_{n}}$ et $|\beta|=\beta_{1}+\ldots+\beta_{n}$

Un op\’erateur $P$ de $D_{X}(k)$ , d\’efini localement, s’\’ecrit :

$P=\sum_{|\beta|\leq k}c_{\beta}(x)\partial^{\beta}$

On appelle degr\’e de $P$ et on note $degP$ l’entier $\sup\{|\beta|;c_{\beta}\neq 0\}$ . Le
symbole principal d’ordre $k$ de $P$ est l’\’el\’ement de $\mathcal{O}_{C^{n}}[\xi_{1}, \ldots, \xi_{n}]$ :

$\sigma_{k}(P)=\sum_{|\beta|=k}c_{\beta}(x)\xi^{\beta}$

et se recolle en une fonction $\sigma_{k}(P)$ sur le fibr\’e cotangent $T^{*}X$ . Con-
sid\’erons $D_{X}[s_{1}, \ldots, s_{p}]=C[s_{1}, \ldots, s_{p}]\otimes_{C}D_{X}$ . Pour $j\in N$ , notons
par $C[s_{1}, \ldots, s_{p}](j)$ le sous-espace vectoriel de $C[s_{1}, \ldots, s_{p}]$ constitu\’e

des polyn\^omes de degr\’e inf\’erieur ou \’egal \‘a $j$ . L’anneau $D_{X}[s_{1}, \ldots, s_{p}]$

est alors naturellement filtr\’e : pour $l$ $\in N$ , le terme d’ordre $l$ de cette
filtration est

$D_{X}[s_{1}, \ldots, s_{p}](l)=\sum_{j+k=l}C[s_{1}, \ldots, s_{p}](j)\otimes_{C}D_{X}(k)$

$C$ ’est une filtration croissante. Pour tout $l$ $\in N$ , $D_{X}[s_{1}, \ldots, s_{p}](l)$ est un
$\mathcal{O}_{X}$ -Module localement libre de type fini.

Pour $\alpha=(\alpha_{1}, \ldots, \alpha_{p})\in N^{p}$ , notons $s^{\alpha}=s_{1}^{\alpha_{1}}\ldots s_{p}^{\alpha_{p}}$ . Dans un
syst\‘eme de coordonn\’ees locales $(x_{1}, \ldots, x_{n})$ de $X$ , un op\’erateur $P$ de
$D_{X}[s_{1}, \ldots, s_{p}](l)$ s’ecrit localement :

$P=\sum_{|\alpha|+degP_{\alpha}\leq l}s^{\alpha}P_{\alpha}$

avec $P_{\alpha}$ dans $D_{X}$ . Le symbole principal d’ordre $l$ de $P$ est l’\’el\’ement de
$\mathcal{O}_{C^{n}}[\xi_{1}, \ldots, \xi_{n}, s_{1}, \ldots, s_{p}]$ :

$\sigma_{l}(P)=\sum_{|\alpha|+degP_{\alpha}=l}s^{\alpha}\sigma_{degP_{\alpha}}(P_{\alpha})$
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et se recolle en une fonction sur $T^{*}X\times Cp$ , encore not\’ee $\sigma_{l}(P)$ , homog\‘ene
sur les fibres de la projection $\pi\circ\pi_{1}$ sur $X$ . On appelle degr\’e de $P$ et
on note $degP$ l’entier $\sup\{|\alpha|+degP_{\alpha} ; P_{\alpha}\neq 0\}$ . On v\’erifie que si $P$

(resp. $Q$ )est une section de $D_{X}[s_{1}, \ldots, s_{p}](l)$ (resp. $D_{X}[s_{1},$
$\ldots$ , $s_{p}](m)$ )

l’op\’erateur :

$PQ-QP\in D_{X}[s_{1}, \ldots, s_{p}](l+m-1)$

De plus, le symbole d’ordre $l+m-1$ de PQ-QP est, dans un syst\‘eme
de coordonn\’ees locales :

$\{\sigma_{l}(P), \sigma_{m}(Q)\}=\sum_{i=1}^{n}\frac{\partial\sigma_{m}(Q)}{\partial x_{i}}\frac{\partial\sigma_{l}(P)}{\partial\xi_{i}}-\frac{\partial\sigma_{m}(Q)}{\partial\xi_{i}}\frac{\partial\sigma_{l}(P)}{\partial x_{i}}$

Cette formule est une extension du crochet de Poisson associ\’e \‘a deux
symboles d’op\’erateurs diff\’erentiels de $D_{X}$ .

D’apr\‘es ce qui pr\’ec\‘ede, le gradu\’e $grD_{X}[s_{1}, \ldots, s_{p}]$ de $D_{X}[s_{1}, \ldots, s_{p}]$

est un anneau commutatif. $II$ s’identifie au sous-faisceau de
$(\pi\circ\pi_{1})_{*}(\mathcal{O}_{T^{*}X\times C^{\rho}})$ des fonctions homog\‘enes relativement aux variables
$(\xi, s)$ . Les faisceaux d’anneaux grDx [si,$ \ldots$ ,$ s_{p}$ ] et $D_{X}[s_{1}, \ldots, s_{p}]$ sont
coh\’erents

Donnons maintenant quelques propri\’et\’es de la cat\’egorie des
$D_{X}[s_{1}, \ldots, s_{p}]$ -Modules coh\’erents \‘a gauche, qui g\’en\’eralisent les pro-
pri\’et\’es des $D_{X}$ -Modules coh\’erents (leurs d\’emonstrations sont les m\^emes,
voir par exemple $[G.M])$ . Soit $M$ un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module coh\’erent \‘a

gauche; localement $M$ admet une bonne filtration $(M_{k})_{k\in N}$ . Le fais-
ceau $\sqrt{ann_{grD_{X}[s_{1},s_{p}]}grM}\ldots$, d\’efinit un id\’eal $J(M)$ de $grD_{X}[s_{1}, \ldots, s_{p}]$

ind\’ependant des bonnes filtrations locales. Il en est de m\^eme de la mul-
tiplicit\’e de $grM$ en un point g\’en\’erique d’une composante irr\’eductible de
son support.

La vari\’et\’e des z\’eros de Fid\’eal $J(M)$ est $car_{D_{X}[s_{1},,s_{p}]}\ldots M$ , un sous-
ensemble analytique de $T^{*}X\times C^{p}$ appel\’e vari\’et\’e caract\’eristique de $M$ .

On appelle cycle caract\’eristique de $M$ le cycle associ\’e au module $grM$ .

On le note $Car_{D_{X}[s_{1},,s_{p}]}\ldots M$ .

Le th\’eor\‘eme de Gabber s’\’enonce dans notre situation ([G]) :

Soit $M$ un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module coh\’erent \‘a gauche. Si $\sigma$ et $\tau$ sont
deux sections de $J(M)$ , leur crochet $\{\sigma, \tau\}$ est une section de $J(M)$ .

Notation 3. Soit $\pi_{2}$ : $T^{*}X\times C^{p}\rightarrow C^{p}$ la projection sur $C^{p}$ . Soit
$M$ un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module coh\’erent \‘a gauche. On notera
$(car_{D_{X}[s_{1},,s_{\rho}]}\ldots M)(c)$ la fifibre du point $c=(c_{1}, \ldots, c_{p})$ de la restriction
de $\pi_{2}$ \‘a $car_{D_{X}[s_{1},s_{p}]}\ldots$, M. En particulier

$(car_{D_{X}[s_{1},,s_{p}]}\ldots M)(0)=(car_{D_{X}[s_{1},,s_{p}]}\ldots M)\cap\pi_{2}^{-1}(0)$
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Tout point de $(car_{D_{X}[s_{1},,s_{p}]}\ldots M)(c)$ est limite de points lisses de la
vari\’et\’e caract\’eristique de $M$ en lesquels la restriction de $\pi_{2}$ est de rang
localement constant. Les fibres de $\pi_{2}$ en ces points sont lisses r\’eduites. Il
r\’esulte alors du th\’eor\‘eme de Gabber qu’au voisinage d’un de ses points
g\’en\’eriques, cette fibre, identifi\’ee \‘a un sous espace de $T^{*}X$ , est involutive
au sens de la 2-forme canonique sur l’espace cotangent \‘a $X$ . Elle est done
de dimension sup\’erieure ou \’egale \‘a la dimension de $X$ . La semi-continuit\’e

de la dimension des fibres implique alors :

Proposition 3. Soit $M$ un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module coh\’erent \‘a gau-
$che$ . Les fifibres $(car_{D_{X}[s_{1},,s_{p}]}\ldots M)(c)$ non vides ont leurs composantes
irr\’eductibles de dimensions sup\’erieures ou \’egales \‘a la dimension de $X$ .

Compte-tenu du caract\‘ere conique des vari\’et\’es caract\’eristiques, on
a en identifiant $X$ \‘a la section nulle de $T^{*}X\times C^{p}$ :

Supp(M) $=$ $car_{D_{X}[s_{1},,s_{p}]}\ldots M\cap\{s=\xi=0\}$

$=$ $(car_{D_{X}[s_{1},,s_{\rho}]}\ldots M)(0)\cap\{\xi=0\}$

D’o\‘u :

Remarque 2. Soit M un $D_{X}[s_{1}, $
\ldots ,

$ $sp]-Module coh\’erent \‘a gau-
che : M $=0$ si et seulement si $(car_{D_{X}[s_{1},,s_{p}]}\ldots M)(0)=\emptyset$

D\’efinition 1. Soit $M$ un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module coh\’erent \‘a gau-
che. On dira que $M$ est \‘a fibre lagrangienne si $(car_{D_{X}[s_{1},,s_{p}]}\ldots M)(0)$ , est
une sous-vari\’et\’e lagrangienne de $T^{*}X$ .

Soit $O\rightarrow M’\rightarrow M\rightarrow M’’\rightarrow 0$ une suite exacte de $D_{X}[s_{1}, \ldots, s_{p}]-$

Modules coh\’erents \‘a gauche. Comme dans le cadre des $D_{X}$ Modules on
a:

$car_{D_{X}[s_{1},,s_{p}]}\ldots M=car_{D_{X}[s_{1},,s_{\rho}]}\ldots M’\cup car_{D_{X}[s_{1},,s_{p}]}\ldots M’’$

On en d\’eduit en particulier la proposition suivante :

Proposition 4. Soit $O\rightarrow M’\rightarrow M\rightarrow M’’\rightarrow 0$ une suite ex-
acte de la cat\’egorie des $D_{X}[s_{1}, \ldots, s_{p}]$ -Modules coh\’erents \‘a gauche. Le
Module $M$ est \‘a fifibre lagrangienne si et seulement si $M’$ et $M’’$ le sont.

2.2. Constructibilit\’e de l’id\’eal associ\’e

Dans ce paragraphe, $M$ d\’esignera un $D_{X}[s_{1}, \ldots, s_{p}]$ Module \‘a gau-
che coh\’erent \‘a fibre lagrangienne. Soit $(X_{\alpha})_{\alpha\in A}$ les projections des com-
posantes irr\’eductibles de la vari\’et\’e lagrangienne conique
$(car_{D_{X}[s_{1},,s_{\rho}]}\ldots M)(0)$ :

$(car_{D_{X}[s_{1},,s_{\rho}]}\ldots M)(0)=\alpha\in A\cup T_{X_{\alpha}}^{*}X$
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L’espace $\bigcup_{\alpha\in A}X_{\alpha}$ est le support de $M$ et la famille $(X_{\alpha})_{\alpha\in A}$ de sous-
ensembles irr\’eductibles est localement finie. Pour $J=(\alpha_{1}, \ldots, \alpha_{l})$ un
$l$-uplet d’\’el\’ements de $A$ , on note :

$U_{J}=X_{\alpha_{1}}\cap\cdots\cap X_{\alpha_{l}}-\beta\not\in J\cup X_{\beta}\cap X_{\alpha_{1}}\cap\ldots\cap X_{\alpha_{l}}$

Soit $A$ $=P^{f}(A)$ ensemble des parties finies $J$ de $A$ pour lesquelles
$ U_{J}\neq\emptyset$ . Alors, $\{U_{J}\}_{J\in A}$ est une partition de $\bigcup_{\alpha\in A}X_{\alpha}$ . En effet pour
$J\in A:x\in U_{J}$ si et seulement si $J=\{\alpha ; x\in X_{\alpha}\}$

D\’efinition 2. La partition $\{U_{J}\}_{J\in A}$ est appel\’ee la partition as-
soci\’ee \‘a la vari\’et\’e lagrangienne $\bigcup_{\alpha\in A}T_{X_{\alpha}}^{*}X$ .

Notons pour $\alpha\in A$ :

$U_{\alpha}’=X_{\alpha}-\bigcup_{X_{\alpha}\not\subset X_{\beta}}X_{\beta}\cap X_{\alpha}$

Si $J(\alpha)=\{\gamma\in A;X_{\alpha}\subset X_{\gamma}\}$ , $J(\alpha)\in A$ et $U_{\alpha}’=U_{J(\alpha);}$ c’est un ouvert
connexe dense de $X_{\alpha}$ .

Notation 4. Nous notons $B(x, $M) l’id\’eal de $C[s_{1}, $
\ldots ,

$ s_{p}]$ des
polyn\^omes annulant le germe de M en x.

Proposition 5. Soit $M$ un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module \‘a gauche coh\’e-

rent \‘a fifibre lagrangienne. Pour tout $J\in A$ , $l$ ’id\’eal $B(x, M)$ est constant
pour $x\in U_{J}$ , et est not\’e $B_{J}(M)$ . En particulier, $B_{\alpha}(M)=B_{J(\alpha)}(M)$

est constant sur $U_{\alpha}’$ et on $a$ :

$B_{J}(M)=\alpha\in J\cap B_{\alpha}(M)$

Preuve. Soit $x\in U_{J}$ . Consid\’erons le sous $D_{X}[s_{1}, \ldots, s_{p}]$ -Module
de $M$ :

$L=B(x, M)M$

La vari\’et\’e caract\’eristique $car_{D_{X}[s_{1},,s_{p}]}\ldots L$ de $L$ est contenue dans la
vari\’et\’e caract\’eristique de $M$ . Comme cette derni\‘ere est suppos\’ee \‘a fi-
bre lagrangienne, il r\’esulte de la proposition 3 que Pensemble des com-
posantes irr\’eductibles de $(car_{D_{X}[s_{1},,s_{p}]}\ldots L)(0)$ est contenu dans Pensem-
ble des composantes irr\’eductibles de $(car_{D_{X}[s_{1},,s_{p}]}\ldots M)(0)$ : $\{T_{X_{\alpha}}^{*}X\}_{\alpha\in A}$ .

Par d\’efinition de l’id\’eal $B(x, M)$ , $L$ est nul au voisinage de $x$ , done
$(car_{D_{X}[s_{1},,s_{\rho}]}\ldots L)(0)$ est vide au voisinage de $x$ . Ainsi, pour $\gamma\in J$ , la
vari\’et\’e $T_{X_{\gamma}}^{*}X$ n’est pas une composante irr\’eductible de $(car_{D_{X}[s_{1},,s_{\rho}]}\ldots L)$

$(0)$ . Si $y\in U_{J}$ , comme $J=\{\gamma ; x\in X_{\gamma}\}$ , on obtient que $(car_{D_{X}[s_{1},,s_{p}]}\ldots L)$
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(0) est vide au voisinage de $y$ . Ainsi, $L$ est nul en restriction \‘a $U_{J}$ . L’id\’eal

$B(x, M)$ est done \’egal \‘a l’id\’eal de $C[s_{1}, \ldots, s_{p}]$ annulant la restriction
de $M$ \‘a $U_{J}$ , $B_{J}(M)$ .

D’autre part, pour $x\in U_{J}$ , le module $L$ est nul au voisinage de $x$ . Done,
pour $\alpha\in J$ , le Module $L$ est nul en un point de $U_{\alpha}’$ . On a done :

$B(x, M)\subset\alpha\in J\cap B_{\alpha}(M)$

Inversement pour $\gamma\in J$ , $T_{X_{\gamma}}^{*}X$ n’est pas une composante irr\’eductible

de la vari\’et\’e caract\’eristique de $(\bigcap_{\alpha\in J}B_{\alpha}(M)).M$ . Et done
$(\bigcap_{\alpha\in J}B_{\alpha}(M)).M$ est nul au voisinage de $x\in U_{J}$ . L’inclusion pr\’ec\’edente
est done une \’egalit\’e.

\S 3. $D[s_{1, }\ldots, s_{p}]$ -Modules et \’equations fonctionnelles associ\’es

\‘a $p$ fonctions holomorphes

Soit $f=(f_{1}, \ldots, f_{p})$ des fonctions holomorphes sur $X$ . On d\’esigne
par $F$ le produit de ces $p$ fonctions. Soit $M$ un $D_{X}$ -Module holonome.
La vari\’et\’e caract\’eristique de $M$ s’\’ecrit car $M=\bigcup_{l\in L}T_{Y_{l}}^{*}X$ o\‘u $Y_{l}\subset X$

est un sous-espace analytique irr\’eductible de $X$ . Consid\’erons :

$\mathcal{O}_{X}[s_{1}, \ldots, s_{p}, 1/F]f_{1}^{s_{1}}\ldots f_{p^{\rho}}^{s}$

$\mathcal{O}_{X}[s_{1}, \ldots, s_{p}, 1/F]$ -Module libre de rang 1 engendr\’e par $f_{1}^{s_{1}}\ldots f_{p}^{s_{p}}$ . Le
produit tensoriel $M\otimes o_{X}\mathcal{O}_{X}[s_{1}, \ldots, s_{p}, 1/F]f_{1}^{s_{1}}\ldots f_{p}^{s_{\rho}}$ est muni de la
structure de $D_{X}$ -Module obtenue en posant :

$\frac{\partial}{\partial x_{i}}(m\otimes af_{1}^{s_{1}}\ldots f_{p^{\rho}}^{s})$

$=\frac{\partial}{\partial x_{i}}m\otimes af_{1}^{s_{1}}\ldots f_{p^{p}}^{s}+m\otimes\frac{\partial a}{\partial x_{i}}f_{1}^{s_{1}}\ldots f_{p^{\rho}}^{s}+\sum_{j=1}^{p}s_{j}m\otimes\frac{\frac{\partial f}{\partial x_{i}}a}{f_{j}}.f_{1}^{s_{1}}\ldots f_{p^{\rho}}^{s}$

pour tout $i\in\{1, \ldots, n\}$ et pour toute section locale $m$ (resp. $a$ ) de $M$

(resp. de $\mathcal{O}_{X}[s_{1},$
$\ldots$ , $s_{p}$ , $1/F]$ ). Si $m$ est une section de $M$ , on notera

$mf_{1}^{s_{1}}\ldots f_{p}^{s_{p}}=m\otimes f_{1}^{s_{1}}\ldots f_{p}^{s_{p}}$ .

3.1. Rappels et compl\’ements

Soit $m$ une section de $M$ . A l’aide du crit\‘ere usuel sur les bonnes
filtrations (voir [G. $M]$ ), on montre que $D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}}\ldots f_{p}^{s_{\rho}}$ est
$D_{X}[s_{1}, \ldots, s_{p}]$ -coh\’erent.
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Th\’eor\‘eme 1. Soit $m$ une section engendrant un $D_{X}$ -Module holo-
nome r\’egulier $M$ de vari\’et\’e caract\’eristique $\bigcup_{l\in L}T_{Y_{l}}^{*}$ X. Le module
$D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}}\ldots f_{p}^{s_{p}}$ est un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module coh\’erent de
vari\’et\’e caract\’eristique :

$car_{D_{X}[s_{1},,s_{p}]}\ldots D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}}\ldots f_{p^{p}}^{s}=\bigcup_{F|_{Y_{l}}\neq 0}W_{f1,,f_{P},Y_{l}}^{\#}\ldots$

Preuve. Ce th\’eor\‘eme a \’et\’e demontr\’e dans le cas $m=1$ et $M=$
$\mathcal{O}_{X}$ \‘a l’aide d’un th\’eor\‘eme de C. Sabbah ([Sab 2] th\’eor\‘eme 3.2., page
228)(voir aussi [B.B.M.M]). Commengons par \’etablir un corollaire direct
du th\’eor\‘eme de C. Sabbah.

Soit $\phi$ : $\mathcal{X}\rightarrow S$ une submersion entre deux espaces analytiques lisses.
D\’esignons par $D_{\mathcal{X}/S}$ l’anneau des op\’erateurs relatifs au morphisme $\phi$ .
Soit $T^{*}\mathcal{X}/S$ le fibr\’e cotangent relatif. A tout $D_{\mathcal{X}/S}$-Module coh\’erent $N$ ,
on associe sa vari\’et\’e caract\’eristique $car_{D_{\lambda i/S}}N\subset T^{*}\mathcal{X}/S$ . Si $\mathcal{Y}\subset \mathcal{X}$ est
un sous-espace analytique, on d\’esigne par $T_{\phi 1_{\mathcal{Y}}}^{*}(\mathcal{X}/S)$ l’espace conormal

relatif \‘a la restriction de $\phi$ \‘a $\mathcal{Y}$ . Il s’agit de l’adh\’erence dans $T^{*}\mathcal{X}/S$

de l’ensemble des vecteurs conormaux nuls sur les espaces tangents aux
fibres de la restriction de $\phi$ \‘a $\mathcal{Y}$ . Nous dirons que $\phi$ est non caract\’eristique

pour $\mathcal{Y}$ , si l’intersection de l’image du morphisme naturel $ T^{*}S\times_{\mathcal{X}}\mathcal{X}\rightarrow$

$T_{\mathcal{Y}}^{*}\mathcal{X}$ est contenue dans la section nulle.

Lemme 1. Soit $\mathcal{M}$ un $D_{\mathcal{X}}$ -Module holonome r\’egulier de vari\’et\’e

caracteristique car $\mathcal{M}=\bigcup_{l\in L}T_{\mathcal{Y}\iota}^{*}\mathcal{X}$ , et $F$ : $\mathcal{X}$
– $C$ une fonction non

triviale qui $s$ ’annule identiquement sur tout $\mathcal{Y}\iota$ dont $l$ ’image par $\phi$ ne con-
tient pas un ouvert non vide de S. Soit $N$ un $D_{\mathcal{X}/S}$ -Module coh\’erent qui
engendre $\mathcal{M}$ . Supposons de plus que A4 soit sans $F$ -torsion. La vari\’et\’e

caract\’eristique de $N$ est alors donn\’ee par

$car_{D_{\mathcal{X}/S}}N=\bigcup_{F|_{\mathcal{Y}_{l}}\neq 0}T_{\phi 1y_{1}}^{*}(\mathcal{X}/S)$

Preuve du lemme. Le th\’eor\‘eme de C. Sabbah $dit$ exactement
que si $\Sigma$ est une composante irr\’eductible de la vari\’et\’e caract\’eristique de
$N$ , il existe $l$ $\in L$ tel que $\Sigma=T_{\phi 1_{\mathcal{Y}_{\iota}}}^{*}(\mathcal{X}/S)$ .

Supposons que $F$ ne s’annule pas identiquement sur $\mathcal{Y}\iota$ . En un point
g\’en\’erique de $\mathcal{Y}\iota$ , le morphisme $\phi$ , transverse aux $y_{j}$ passant par ce point,
n’est done pas caract\’eristique pour $\mathcal{M}$ . Au voisinage de ce point, $\mathcal{M}$ est
alors coh\’erent comme $D_{\mathcal{X}/S}$-Module. Par des arguments simples, on peut
d\’eterminer la vari\’et\’e caract\’eristique de $\mathcal{M}$ comme $D_{\mathcal{X}/S}$-Module Cette
vari\’et\’e est la m\^eme que celle de $N$ ([Sch] lemme 1.3.3, page 125). Cela
prouve que $T_{\phi 1_{\mathcal{Y}_{l}}}^{*}(\mathcal{X}/S)$ est contenu dans la vari\’et\’e caract\’eristique de $N$ .
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Si $F$ s’annule identiquement sur $\mathcal{Y}\iota$ , alors $T_{\phi 1_{\mathcal{Y}_{l}}}^{*}(\mathcal{X}/S)$ est de dimension

strictement inf\’erieure \‘a $dim\mathcal{X}$ . Supposons que la vari\’et\’e caract\’eristi-

que de $N$ ne soit pas de dimension pure $dim\mathcal{X}$ . Soit $\mathcal{F}(N)$ le plus grand
sous-module coh\’erent de $N$ de dimension strictement inf\’erieure \‘a $dim\mathcal{X}$ .

D’apr\‘es [Bj] (Chap. 2.7 et Chap. 5.6), $\mathcal{F}(N)$ est alors non nul. Il engendre
sur $D_{\mathcal{X}}$ un sous-Module de $\mathcal{M}$ . D’apr\‘es $nos$ hypoth\‘eses et le th\’eor\‘eme

de C. Sabbah, ce Module serait annul\’e par une puissance de $F$ , d’o\‘u la
contradiction.

Terminons la preuve du th\’eor\‘eme. Consid\’erons l’application :

$X\times C^{p}\rightarrow Xi\times C^{p}\times C^{p}=\mathcal{X}$

$(x, y)\mapsto(x, y, t_{1}=e^{y_{1}}f_{1}(x), \ldots, t_{p}=e^{y_{\rho}}f_{p}(x))$

Soit $p:X\times C^{p}\rightarrow X$ la projection sur $X$ . Notons $M’=\mathcal{O}_{X\times C^{p}}\otimes_{p^{-1}\mathcal{O}_{X}}$

$p^{-1}M$ l’image inverse par $p$ de $M$ . L’image directe $\mathcal{M}=i^{+}(M’)$ est un
$D_{\mathcal{X}}$-Module r\’egulier de vari\’et\’e caract\’eristique (voir par exemple [G. $M$]
page 130.)

$\bigcup_{l\in L}T_{i(Y_{l}\times C^{p})}^{*}\mathcal{X}$

Consid\’erons $\phi$ : $\mathcal{X}\rightarrow S=C^{p}$ , $(x, y, t)\mapsto t$ . Pour d\’emontrer le th\’eor\‘eme,
quitte \‘a remplacer $M$ par $M[1/F]$ , on peut supposer que $M$ est sans F-
torsion. Comme $\phi$ est submersif en restriction \‘a $i(Yi\times Cp)$ si et seulement
si $F$ est non nulle sur $Y_{l}$ , le lemme permet alors de calculer la vari\’et\’e

caract\’eristique de $D_{\mathcal{X}/S}(1\otimes m)(e^{y_{1}}f_{1})^{s_{1}}\ldots(e^{y_{p}}f_{p})^{s_{\rho}}$ . Le th\’eor\‘eme s’en
d\’eduit par le m\^eme principe que dans le cas $m=1$ et $M=\mathcal{O}_{X}$ (voir
[B.B.M.M] page 126).

Il r\’esulte de la proposition 1 que $D_{X}[s_{1}, \ldots, s_{p}]mf_{1}^{s_{1}}\ldots f_{p}^{s_{p}}$ est \‘a

fibre lagrangienne. Comme cons\’equence directe du th\’eor\‘eme 1, nous
obtenons :

Corollaire 2. Sous les hypoth\‘eses du th\’eor\‘eme 1, la vari\’et\’e ca-
ract\’eristique du $D_{X}[s_{1}, \ldots, s_{p}]$ -Module \‘a gauche coh\’erent

$ N=\ldots\frac{D_{X}[s_{1},,s_{p}]mf_{1}^{s_{1}}f^{s_{\rho}}}{D_{X}[s_{1},,s_{p}]mf_{1}^{s_{1}+1}f_{p}^{ss_{\rho}+1}}\ldots\ldots\cdots$

est contenue dans $(\bigcup_{F|_{Y_{l}}\neq 0}W_{f_{1},,f_{\rho},Y_{l}}^{\#}\ldots)\cap F^{-1}(0)$ .

Remarque 3. On peut montrer (ce sera fait dans un prochain
travail) que cette inclusion est en fait une \’egalit\’e. Nous n’utiliserons pas
ce fait ici.
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3.2. Id\’eal de Bernstein

Dans ce paragraphe $M$ d\’esigne un $D_{X}$ -Module holonome r\’egulier
engendr\’e par une section $m$ . Soit car $M=\bigcup_{l\in L}T_{Y_{l}}^{*}X$ sa vari\’et\’e caract\’e-

ristique. Pour tout $x\in X$ , l’id\’eal $B(x, f_{1}, \ldots, f_{p}, m)$ des polyn\^omes de
$C[s_{1}, \ldots, s_{p}]$ annulant la fibre en $x$ du $D_{X}[s_{1}, \ldots, s_{p}]$ -Module \‘a gauche:

$ N=\ldots\frac{D_{X}[s_{1},,s_{p}]mf_{1}^{s_{1}}f_{p}^{s_{p}}}{D_{X}[s_{1},,s_{p}]mf_{1}^{s_{1}+1}f_{p}^{s_{\rho}+1}}\ldots\ldots\cdots$

est appel\’e id\’eal de Bernstein de $f_{1}$ , $\ldots$ , $f_{p}$ , $m$ en $x$ . Il est montr\’e dans
[Sab 1] [Sab 2] que cet id\’eal contient un polyn\^ome non nul qui s’\’ecrit

comme produit de formes lin\’eaires affines \‘a coefficients rationnels posi-
tifs. Le module $N$ , quotient d’un $D_{X}[s_{1}, \ldots, s_{p}]$ -Module \‘a fibre lagran-
gienne, est done \‘a fibre lagrangienne. Et on a l’inclusion (corollaire 2) :

$car_{D_{X}[s_{1},,s_{p}]}\ldots N\subset(\bigcup_{F|_{Y_{l}}\neq 0}W_{f_{1},,f_{p},Y_{l}}^{\Downarrow}\ldots)\cap F^{-1}(0)$

D’o\‘u l’inclusion :

$(car_{D_{X}[s_{1}},..,s_{p}]N)(0)\subset\bigcup_{F|_{Y_{l}}\neq 0}(W_{f1,,f_{p},Y_{l}}^{Q}\ldots)(0)\cap F^{-1}(0)$

Il r\’esulte de la remarque 1 que $(W_{f1,f_{p}Y_{l}}^{\Downarrow}\ldots,,)(0)\cap F^{-1}(0)$ est une vari\’et\’e

lagrangienne contenue dans $(W_{f1,,f_{p}Y_{l}}^{\beta}\ldots,)(0)$ . De plus, d’apr\‘es le corol-

laire 1, $(W_{f_{1},f_{p}Y_{l}}^{\mathfrak{g}}\ldots,,)(0)=(W_{F,Y_{l}}^{\Downarrow},)(0)$ . ’baduisons la proposition 5 :

Th\’eor\‘eme 2. Soit $M$ un $D_{X}$ -Module holonome r\’egulier engendr\’e
par une section $m$ et car $M=\bigcup_{l\in L}T_{Y_{l}}^{*}X$ sa vari\’et\’e caract\’eristique.
$L$ ’id\’eal de Bernstein de $f_{1}$ , $\ldots$ , $f_{p}$ , $m$ en $x$ est constant le long des strates
de la partition associ\’ee \‘a la vari\’et\’e lagrangienne :

$(\bigcup_{F|_{Y_{l}}\neq 0}W_{F,Y_{l})}^{\#},(0)\cap F^{-1}(0)$

Soit $l$ tel que $F|_{Y_{l}}\neq 0$ . L’espace $(W_{F,Y_{l}}^{t},)(0)$ est la r\’eunion de $T_{Y_{l}}^{*}X$

et de $(W_{F,Y_{l}},)(0)$ , $trace$ de $F^{-1}(0)$ sur l’espace conormal relatif de la
restriction de $F$ \‘a $Y_{l}$ . Soit $(V_{\beta})_{\beta\in\Gamma_{l}}$ une stratification analytique de $Y_{l}$

(partition localement finie par des strates lisses connexes) compatible \‘a

$F^{-1}(0)$ et satisfaisant la condition de ffonti\‘ere et la condition $a_{F|_{Y_{l}}}$ de
Thom. Cette condition entraine l’inclusion :

$W_{F,Y_{l}}^{\#},(0)\cap F^{-1}(0)\subset\beta\in\Gamma_{t}\cup T_{V_{\beta}}^{*}X$
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Done, si $T_{X_{\alpha}}^{*}X$ est une composante irr\’eductible de $(W_{F,Y_{l}}^{\#},)(0)\cap F^{-1}(0)$ ,
il existe $\beta\in\Gamma_{l}$ tel que $X_{\alpha}$ soit l’adh\’erence de $V_{\beta}$ . Done, gr\^ace \‘a la condi-
tion de fronti\‘ere, $X_{\alpha}$ est r\’eunion de strates de la stratification $(V_{\beta})_{\beta\in\Gamma_{l}}$ .

On obtient ainsi le corollaire :

Corollaire 3. Soit $M$ un $D_{X}$ -Module holonome r\’egulier engendr\’e
par une section $m$ et car $M$ $=\bigcup_{l\in L}T_{Y_{l}}^{*}X$ sa vari\’et\’e caract\’eristique. Soit
$(V_{\beta})_{\beta\in\Gamma}$ une stratifification analytique de $\bigcup_{l\in L}Y_{l}$ compatible aux $Y_{l}$ et \‘a

$F^{-1}(0)$ satisfaisant la condition de fronti\‘ere et la condition $a_{F}$ de Thom.
Alors $l$ ’id\’eal de Bernstein de $f_{1}$ , $\ldots$ , $f_{p}$ , $m$ en $x$ est constant le long des
strates de la stratifification $(V_{\beta})_{\beta\in\Gamma}$ .

Remarque 4 (apr\‘es [B.M. $M]$ (th\’eor\‘eme 4.2.1 page 541)). Si la
stratification $(V_{\beta})_{\beta\in\Gamma}$ est de Whitney, nous savons qu’elle satisfait alors
la condition $a_{F}$ de Thom et la conclusion reste valable.

Dans le cas $p=1$ , $N$ est un $D_{X}[s_{1}]$ -Module qui est holonome en
tant que $D_{X}$ -Module. Dans ce cas, la preuve de la proposition 5 est
plus simple : on peut montrer directement par la m\^eme m\’ethode que
le polyn\^ome minimal de la fibre en un point d’un endomorphisme du
$D_{X}$ -Module holonome $M$ est constant le long des strates de la partition
associ\’ee \‘a sa vari\’et\’e caract\’eristique. On obtient ainsi une autre preuve de
la proposition de [B. $M$]. Gr\^ace \‘a la correspondance de Riemann-Hilbert
[M] [K], cette preuve se transcrit dans la cat\’egorie des faisceaux pervers,
o\‘u l’on dispose \’egalement de la notion de vari\’et\’e caract\’eristique, de la
mani\‘ere suivante :

Remarque 5. Soit $f$ : $X\rightarrow C$ une application analytique. Soit $\mathcal{F}$

un faisceau pervers sur $X$ de vari\’et\’e caract\’eristique $\bigcup_{l\in L}T_{Y_{l}}^{*}X$ et $\psi_{f}\mathcal{F}$ le
faisceau des cycles proches muni de son automorphisme de monodromie
(voir $[D.K]$ ).

On obtient ainsi, par exemple, que le polynome minimal de la mo-
nodromie du germe du faisceau pervers $\psi_{f}\mathcal{F}$ est constant le long des
strates d’une stratification compatible aux $Y_{l}$ et \‘a $f^{-1}(0)$ , satisfaisant
de plus la condition de fronti\‘ere et la condition $a_{f}$ de Thom.

On pourra se reporter \‘a [B.M.M] [Sab 3] [Gn] pour le calcul de la
vari\’et\’e caract\’eristique de $\psi_{f}\mathcal{F}$ .
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Abstract.

Generalized Enriques diagrams are combinatorial data associ-
ated with constellations of infinitely near points and proximity rela-
tions. Classically they were introduced to deal with linear systems
of curves with base conditions. We present a survey on some as-
pects and new results on this diagrams, examples and applications
to relative characteristic cones and Zariski’s complete ideal theory.

\S 1. Introduction

In [6] (Libro Quarto: “Le singolarit\‘a delle curve algebriche” , I. 12
et $II$ . 17), Enriques and Chisini consider systems of plane curves pass-
ing, with assigned multiplicities, through an assigned set of points or
infinitely near points to a point of the plane. They found that there
exist curves with such prescribed multiplicities (with no conditions on
the degree of the curves) if and only if some inequalities, on these virtual
multiplicities, hold for the given points, the so-called proximity relations.
Enriques associates a graph (”schema grafico”) to the constellation of
infinitely near points appearing in the desingularisation of a plane curve
and equiped this graph with the data of the proximity relations which
keep track of the incidence between points and the exceptional divisors
obtained by blowing-up precedent points. Du Val also considers these
proximities relations (see [5]) and defines the proximity matrix.
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Some years later Zariski introduces the notion of complete ideals to
give a new algebraic setup of the previous geometric theory ([14], [15]),

where complete (i.e. integrally closed) ideals are the local avatars of com-
plete linear systems. One of the main results is that any complete ideal
I in a two dimensional local ring has a unique factorization into simple
ideals, which corresponds to the factorization of the general element of
I into analytically irreducible factors. This fact may be reformulated as
the regularity of the relative characteristic cone associated with the min-
imal blowing-up of (infinitely near) points for which I becomes locally
principal. The condition of regularity of a cone is considered in the sense
of rational cones of toric varieties, i.e. with primitive integral extremal
points forming a subset of a basis of the lattice. The characteristic and
the quasi-ample cone of a proper morphism have been considered by
Hironaka, Mumford and Kleiman [9] in the $60’ s$ .

In higher dimension than two, as Zariski had noted, the theory is
much more involved and the main results do not extend, or not in the
same terms. First, one has to restrict to fifinitely supported complete
ideals in order to deal with constellations of closed points. But even
with this restriction, the characteristic cone is not regular, or polyhe-
dral, in the general case (see [4] or [1] for some examples). Lipman
extended this theory for two dimensional local rings with rational singu-
larities [10], and for higher dimensional regular local rings he obtained
a unique factorization result by allowing negative exponents [11].

The preceding lines do not pretend to be an exhaustive account on
the history of the subject, but only a sketch to situate it; many other
important contributions have been made to this “theory in search of
theorems”, as Lipman says.

In this work we summarize two generalizations of Enriques diagrams
in higher dimensions; there are two natural generalizations because the
dimension one and codimension one conditions that coincide in the two-
dimensional classic case are not equivalent when the ambient dimension
is at least three.

First we characterize the so called proximity $P$ Enriques diagrams
and determine, in terms of numerical invariants of such a diagram, the
minimal dimension of a constellation of infinitely near points which in-
duces a given diagram.

Then, we consider a case where the characteristic and the quasi-
ample cones are equal, namely the toric constellations, and characterize
the $P$-Enriques diagrams associated with them.
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Finally we consider the so called linear proximity LP-Enriques di-
agrams, which determine the characteristic cone in the toric constella-
tion case, and show a converse Zariski theorem: the characteristic cone
is regular if and only if the LP-Enriques diagram comes from a two-
dimensional constellation.

“Qui oserait dire que ce que nous avons d\’etruit

valait cent fois mieux que ce que nous avions r\^ev\’e

et transfigur\’e sans rel\^ache en murmurant aux ruines $\prime\prime$”

Ren\’e Char

\S 2. Constellations of infinitely near points and $P$ Enriques
diagrams

2.1. Let $X$ be a regular variety over an algebraically closed field $K$ ,

of dimension $d\geq 2$ . Consider varieties obtained from $X$ by a finite
sequence of closed points blowing-ups. Any point in such a variety is
called an infinitely near point of $X$ .

A point $P$ is infinitely near $Q\in X$ if $Q$ is the image of $P$ under the
composition of the blowing-ups; $P\geq Q$ in symbol.

A constellation of infifinitely near points (in short, a constellation,

if there is no confusion with other astronomical objects) is a set $C$ $=$

$\{Q_{0}, \ldots, Q_{n}\}$ , with $Q_{i}\geq Q_{0}\in X_{0}=X$ , such that $Q_{i}\in Bl_{Q_{i-1}}X_{i-1}=$ :
$X_{i}\sigma_{i-1}-\rightarrow X_{i-1}$ , for $1\leq i\leq n$ ; where $Bl_{Q_{i-1}}X_{i-1}$ denotes the blowing-up
of $X_{i-1}$ with center $Q_{i-1}$ .

The point $Q_{0}$ is called the origin of the constellation C. We call also
the dimension of $X$ the dimension of C.

Let $\sigma_{C}=\sigma_{0}\circ\cdots\circ\sigma_{n}$ : $X_{C}\rightarrow X_{0}$ denote the composition of the
blowing-ups of all the points of $C$ , where $X_{C}=X_{n+1}$ . Two constellations
$C$ and $C’$ over $X$ are identified if there is an automorphism $\pi$ of $X$ and
an isomorphism $\pi’$ : $X_{C}\rightarrow X_{C’}$ such that $\sigma_{C’}\circ\pi’=\pi\circ\sigma_{C}$ .

The relation $Q_{j}\geq Q_{i}$ , meaning that a composition of blowing-ups
sends $Q_{j}$ to $Q_{i}$ in $X_{i}$ , is a partial ordering on the points of C. If this
ordering is total, i.e. $Q_{n}\geq\cdots\geq Q_{0}$ , we say that $C$ is a chain constella-
tion.

For example, for any constellation $C$ and any $Q\in C$ , the set
$C^{Q}:=\{P\in C|Q\geq P\}$ of preceding points is a chain constellation.
The number of points in $C^{Q}$ , different from $Q$ , is called the level of $Q$ .

For each point $Q\in C$ let $Q^{+}$ be the set of points of $C$ consecutive to
$Q$ , i.e. the points following $Q$ such that there is no strict intermediate
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point; write $|Q^{+}|$ for the cardinal of this set. If $Q^{+}$ has only one point,
it denotes this point, by a slight abuse of notation.

For each point $Q=Q_{i}$ , call $B_{Q}$ (or $B_{i}$ ) the exceptional divisor
$\sigma_{i}^{-1}(Q)$ on $X_{i+1}$ , and $E_{Q}$ (or $E_{i}$ ) its strict (or proper) successive trans-
forms on any $X_{j}$ (which will be specified if necessary) with $Q_{j}\geq Q$ , in
particular on $X_{C}$ . The total transforms are denoted $E_{Q}^{*}$ or $E_{i}^{*}$ .

The sets of divisors, $\{E_{Q}|Q\in C\}$ and $\{E_{Q}^{*}|Q\in C\}$ , considered
in $X_{C}$ , are two basis of the lattice $N^{1}=\oplus_{Q\in C}\mathbb{Z}E_{Q}\cong \mathbb{Z}^{n+1}$ of divisorial
cycles with exceptional support in $X_{C}$ .

Definition 2.2. A point $Q_{j}\geq Q_{i}$ is proximate to $Q_{i}$ if $Q_{j}\in E_{i}$

in $X_{j}$ ; notation : $Q_{j}\rightarrow Q_{i}$ (or $j\rightarrow i$ ).
The proximity index of a point $Q_{j}$ is defined as the number $ind(Q_{j})$

of points in $C$ approximated by $Q_{j}$ , i.e. $ind(Q_{j}):=\#\{Q_{i}\in C|Q_{j}\rightarrow$

$Q_{i}\}$ .

If $R\in Q^{+}$ then $R\rightarrow Q$ , these are the so called trivial proximities ;
if $R$ belongs to the intersection of several exceptional divisors produced
by blowing-up precedent points then $R$ is proximate to all these points.
In fact, if the dimension of $C$ is at least three, then $R\rightarrow Q$ if and only
$R\geq Q$ and $ E_{R}\cap E_{Q}\neq\emptyset$ in $X_{C}$ .

If $R\rightarrow Q$ then $R\geq Q$ ; the converse does not hold in general. The
proximity relation $(\rightarrow)$ is a binary relation on the set of points of a
constellation, but not an ordering one.

Remark 2.3. For each point $Q_{i}$ , the only exceptional divisors,
besides $E_{i}$ , appearing in the total transform $E_{i}^{*}$ , in $X_{C}$ , are exactly
those produced by blowing-up the points proximate to $Q_{i}$ . Therefore
$E_{i}=E_{i}^{*}-\sum_{j\rightarrow i}E_{j}^{*}$ The so called proximity matrix $((p_{ji}))$ , with
$p_{ii}=1$ , $p_{ji}=-1$ if $j\rightarrow i$ and 0 otherwise, is the basis change matrix
from the $E_{i}$ ’s to the $E_{j}^{*}’ s$

Definition 2.4. The (proximity) $P$-Enriques diagram of a cons-
tellation $C$ is the rooted tree $\Gamma_{C}$ equiped with the binary relation $(\sim)$ ,
whose vertices are in one to one correspondence with the points of $C$ ,
the edges with the couples of points $(R, Q)$ such that $R\in Q^{+}$ , the root
with the origin of $C$ , and the relation $(\sim)$ with the proximity relation
$(\rightarrow)$ .

Any (finite) rooted tree may be obtained in this way, but not with
the data of a binary relation Next we characterize the $P$-Enriques
diagrams, i.e. the rooted trees, equiped with a binary relation on the
set of vertices, which are induced by some constellation.
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Given a rooted tree $\Gamma$ , denote by $(\succeq)$ the natural partial ordering
on the set $\mathcal{V}(\Gamma)$ of its vertices : $p\succeq q$ if $q$ belongs to the chain from $p$

to the root; similarly, if $(\sim)$ is a binary relation on $\mathcal{V}(\Gamma)$ , let $ind(q)=$

$\#\{p\in \mathcal{V}(\Gamma)|q\sim p\}$ .

For each vertex $g$ , let $q^{+}$ be the set of consecutive vertices to $q$ with
respect to the ordering $(\succeq)$ .

Theorem 2.5. Let $\Gamma$ be $a$ fifinite rooted tree equiped with a binary
relation $(\sim)$ on the set of its vertices. Then $\Gamma$ is the graph associated
with a constellation of infifinitely near points $C$ and $(\sim)$ is induced by the
the proximity relation on $C$ if and only if , for any vertices $p$ , $q$ , $r$ of $\Gamma$ ,

the following conditions are satisfified:
(a) $q\sim p$ $\Rightarrow$ $q\succeq p$ , $q\neq p$

(b) $q\in p^{+}$ $\Rightarrow$ $q\sim p$

(c) $r\succeq p\succeq q$ and $r\sim q$ $\Rightarrow$ $p\sim q$

If these conditions hold, then the minimum dimension $d_{P}$ of a constel-
lation whose $P$-Enriques diagram is the given one is at most
$\max(2, \max_{q\in \mathcal{V}(\Gamma)}(ind(q))+1)$ .

Proof The necessity of the conditions follows easily. For the suffi-
ciency, proceed by induction on the number $|\mathcal{V}(\Gamma)|$ of vertices.

If $|\mathcal{V}(\Gamma)|>1$ , let $r$ be a maximal vertex of $\Gamma$ , and assume that a
constellation $C’$ of dimension $d$ works for $\Gamma’=\Gamma\backslash \{r\}$ . Let $r\in q^{+}$ , and
$Q$ be the point of $C’$ corresponding to $q$ . The set $Y:=\{P\in C’|r\sim p\}$

is contained in $C’ Q$ by (a) and $Q\in Y$ by (b).
By (c) one has $Q\rightarrow P$ for each $P\in Y\backslash \{Q\}$ , so that $Q\in F:=$

$\bigcap_{P\in Y,P\neq Q}E_{P}$ . $1t$ follows that $ F\neq\emptyset$ and $dim(F)=d+1-|Y|$ , by

the normal crossing of the divisors $E_{P}$ , and on the other hand $ind(Q)\geq$

$|Y\backslash \{Q\}|=|Y|-1$ .

Now, we need a point $R$ (in $X_{C’}$ ) corresponding to $r$ , having the
corresponding proximities, i.e. a point $R\in B_{Q}\cap F$ but not in
$(Q^{+}\bigcup_{P\in CQ\backslash Y}E_{P})$ . Such a point exists if $d\geq\max_{p\in \mathcal{V}(\Gamma)}ind(p)+1$ (and

at least 2), which is not less than $\max_{p\in \mathcal{V}(\Gamma’)}ind(p)+1$ so the inductive
hypothesis applies. This number is attained. Q.E.D.

Remark 2.6. The minimum dimension $d_{P}$ of constellations in-
ducing a given $P$-Enriques diagram may be one less than in the general
case if there are no two maximal vertices $r$ , with maximum indices, say
$r_{1}$ and $r_{2}$ , both in $q^{+}$ , such that $ind(ri)=ind(g)+1$ . Precisely, the
minimum dimension is

$d_{P}=\max(2, \max_{q\in \mathcal{V}(\Gamma)}(ind(q)+t(q))$ ,

where $t(q)=s(q)$ (resp. $t(q)=2$ ) if $s(q):=\#\{r\in q^{+}|ind(r)>ind(q)\}\leq 1$

(resp. if $s(q)\geq 2$ ).
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\S 3. Toric constellations and proximity

We begin by recalling some definitions and fixing notations for toric
varieties (for a detailed treatement see some of the basic references on
this subject, chapter 1 of [13] or [8] $)$ .

3.1. Let $N\cong \mathbb{Z}^{d}$ be a lattice of dimension $d\geq 2$ and $\Sigma$ a fan in
$N_{\mathbb{R}}=N\otimes_{\mathbb{Z}}\mathbb{R}$ , i.e. a finite set of strongly convex polyhedral cones such
that every face of a cone of $\Sigma$ belongs to $\Sigma$ and the intersection of two
cones of $\Sigma$ is a face of both. Denote by $X_{\Sigma}$ the toric variety over a field
$K$ associated with $\Sigma$ , equiped with the action of an algebraic torus $ T\cong$

$(K^{*})^{d}$ . There is a one to one canonical correspondence between the T-
orbits in $X_{\Sigma}$ and the cones of $\Sigma$ . Two basic facts of this correspondence
are that the dimension of a $T$-orbit is equal to the codimension of the
corresponding cone, and that a $T$-orbit is contained in the closure of
another $T$-orbit if and only if the cone associated with the first one
contains the cone associated with the second one.

The morphisms of toric varieties are the equivariant maps induced
by the maps of fans $\varphi$ : $(N’, \Sigma’)\rightarrow(N, \Sigma)$ such that $\varphi$ : $N’\rightarrow N$ is a
$\mathbb{Z}-$-linear homomorphism whose scalar extension $\varphi$ : $N_{\mathbb{R}}’\rightarrow N_{\mathbb{R}}$ has the
property that for each $\sigma’\in\Sigma’$ there exists $\sigma\in\Sigma$ such that $\varphi(\sigma’)\subset\sigma$ ;
(see [13], 1.5).

Let $X_{0}:=X_{\Sigma_{0}}\cong K^{d}$ be the $d$-dimensional affine toric variety asso-
ciated with the fan $\Sigma_{0}$ formed by all the faces of a regular $d$-dimensional
rational cone $\Delta$ in $N_{\mathbb{R}}$ . Recall that a rational cone is called regular (or
nonsingular) if the primitive integral extremal points form a subset of a
basis of the lattice.

A toric constellation of infinitely near points is a constellation $C$ $=$

$\{Q_{0}, \ldots, Q_{n}\}$ such that each $Q_{j}$ is a fixed point for the action of the
torus in the toric variety $X_{j}$ obtained by blowing-up $X_{j-1}$ with center
$Q_{j-1},1\leq j\leq n$ . If a toric constellation is a chain, it is called a toric
chain. The identification of constellations defined in 2.1 is the same in
the toric case, but considering equivariant isomorphisms.

3.2. By choosing a fixed ordered basis $B$ $=\{v_{1}, \ldots, v_{d}\}$ of the lattice $N$

we obtain a codifification of the toric constellations, as well as criteria for
proximity and (as shown in the following section) linear proximity.

Let $\Delta=\langle B\rangle$ be the (regular) cone generated by the basis $B$ . The
blowing-up $\sigma_{i}$ : $X_{i}\rightarrow X_{i-1}$ of the closed orbit $Q_{i-1}$ , is described as an
elementary subdivision of a fan, as follows.

The variety $X_{1}$ is the toric variety associated with the fan $\Sigma_{1}$ , ob-
tained as the minimal subdivision of $\Sigma_{0}$ which contains the ray through
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$u=\sum_{1<j\leq d}v_{j}$ .

For $each^{-}$ integer $i$ , $1\leq i\leq d$ , let $B_{i}$ be the ordered basis of $N$ obtained
by replacing $v_{i}$ by $u$ in the basis $B$ ; and let $\Delta_{i}:=\langle B_{i}\rangle$ . The exceptional
divisor $B_{0}$ is the closure in $X_{1}$ of the $T$-orbit defined by the ray through
$u$ , and each $T$-fixed point in $X_{1}$ corresponds to a maximal cone $\Delta_{i}$ of
the fan $\Sigma_{1},1\leq i\leq d$ .

The choice of the point $Q_{1}\geq Q_{0}$ is thus equivalent to the choice of
an integer $a_{1},1\leq a_{1}\leq d$ , which determines a cone $\Delta_{a_{1}}$ of the fan $\Sigma_{1}$ .

The subdivision $\Sigma_{2}$ of $\Sigma_{1}$ corresponding to the blowing-up of $Q_{1}$ is
obtained by replacing $\Delta_{a_{1}}$ (and its faces) in $\Sigma_{1}$ by the cones $\Delta_{a_{1}i}:=$

$\langle B_{a_{1}i}\rangle$ (and their faces), where $B_{a_{1}i}$ is the ordered basis of $N$ obtained
from $B_{a_{1}}$ by the substitution of its $i$-th vector by $\sum_{v\in B_{a_{1}}}v$ .

The choice of $Q_{2}\in B_{1}$ is equivalent to the choice of an integer $a_{2}$

$,1\leq a_{2}\leq d$ , which determines a (regular) cone $\Delta_{a_{1}a_{2}}$ .

Proceeding by induction on $n$ we obtain a codifification of toric chains
and also constellations, since for each $Q\in C$ , the constellation $C^{Q}$ is a
chain.

The codification is given by trees with weighted edges, where the
weights are integers $a$ , $1\leq a\leq d$ , which give the direction in which the
following blowing-up is done. The precise description follows.

Definition 3.3. Let $\Gamma$ be a tree, $\mathcal{E}(\Gamma)$ the set of edges of $\Gamma$ , $d$ an
integer, $d\geq 2$ .
A $d$-weihgting of $\Gamma$ is a map $\alpha$ : $\mathcal{E}(\Gamma)\rightarrow\{1, \ldots,d\}$ which associates to
each edge of $\Gamma$ a positive integer not greater than $d$ , such that two edges
with a common origin have different weights. A couple $(\Gamma, \alpha)$ is called a
$d$ weighted tree.

Proposition 3.4. Let $B$ be an ordered basis of the lattice $N$ and
$n$ a positive integer.

(a) The map which associates to each sequence of integers $\{a_{1}, \ldots, a_{n}\}$

such that $1\leq a_{i}\leq d,$ $1\leq i\leq n$ , the toric chain $\{Q_{0}, \ldots, Q_{n}\}$

where $Q_{0}$ is the $T$ -orbit corresponding to the cone $\Delta=\langle B\rangle$ , and
where $Q_{i}$ , $1\leq i\leq n$ , is the $T$ -orbit in $X_{i}$ corresponding to the
cone $\Delta_{a_{1}a_{i}}\ldots$ of the fan $\Sigma_{i}$ , is a bijection between the set of such
sequences and the set of $d$-dimensional toric chains with $n+1$

points.
(b) A natural bijection between the set of $d$-dimensional toric con-

stellations and the set of $d$-weighted trees is induced by the cor-
respondence (a).

Remark 3.5. Note that in a d-weighted tree each vertex is the
origin of at most d edges. A d-weight of a tree $\Gamma$ induces a partition
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of the set $\mathcal{E}(\Gamma)$ of edges, where two edges are in the same class if they
have the same weight. To each class of isomorphism of $d$-dimensional
toric constellations is associated a unique class of isomorphism of trees
equiped with a partition of the set of edges, partition with at most $d$

classes of edges [7].

3.6. Given a toric constellation by a $d$-weighted graph, a vertex follow-
ing $q$ through a chain with edges weighted by a sequence $(a_{1}, \ldots, a_{k})$ is
denoted by $q(a_{1}, \ldots, a_{k})$ ; if $Q$ is the point corresponding to $q$ , then
the point corresponding to $q(a_{1}, \ldots, a_{k})$ is written in a similar way
$Q(a_{1}, \ldots, a_{k})$ .

Proposition 3.7 {Criterion for proximity in terms of a codifica-
tion). $Q(a_{1}, \ldots, a_{k})\rightarrow Q$ if and only if $a_{1}\neq a_{j}$ for $2\leq j\leq k$ .

Proof. The criterion follows from the fact that this is the condi-
tion to obtain, by elementary subdivisions of a regular fan, an adjacent
maximal cone $\Delta_{a_{1}a_{k}}\ldots$ (corresponding to a 0-dimensional orbit) to the
central ray of $\Delta_{a_{1}}$ (corresponding to the exceptional divisor) of the first
subdivision of the cone $\Delta$ corresponding to $Q$ . This is equivalent to
saying that $Q(a_{1}, \ldots, a_{k})\in E_{Q}$ , i.e. $Q(a_{1}, \ldots, a_{k})\rightarrow Q$ . Q.E.D.

Theorem 3.8. A $P$-Enriques diagram $(\Gamma, (\sim))$ is toric, $i.e$ . may
be induced by a toric constellation, if and only if.

(a) The proximity index is non-decreasing, $i.e$ . $ind(r)\geq ind(q)$ if
$r\succeq q$ .

(b) If $r$ is proximate to $q$ , then there is at most one vertex $s$ con-
secutive to $r$ and not proximate to $q$ , $i.e$ . if $r\sim q$ then $\#\{s\in$

$ r^{+}|s\star$ $q\}\leq 1$ .

If these conditions hold, then the minimum dimension $dt_{P}(\Gamma, (\sim))$ of $a$

toric constellation inducing the given $P$-Enriques diagram $(\Gamma, (\sim))$ is
$\max(2, \max_{q\in\Gamma}(ind(q)+s(q)))$ , where $s(q):=\#\{r\in q^{+}|ind(r)>$

$ind(q)\}$ is the number of consecutive points to $q$ whose proximity index
is greater than the proximity index of $q$ .

Proof. In fact, if $R\in Q^{+}$ , then $ind(\#)\leq ind(Q)+1$ for any cons-
tellation, since, by (c) of Theorem 2.5, $R\rightarrow P$ implies $Q\rightarrow P$ ; in the
toric case one also has $ind(Q)\leq ind(R)$ because $R$ may loose at most one
proximity to a point approximated by $Q$ , but on the other hand $R\rightarrow Q$ .
Indeed, restricting to the chain ffom the origin to $R$ and by using the
codification and the criterion of proximity 3.7, let $R=Q(a)$ and assume
$Q\rightarrow P$ , $Q\rightarrow P’$ , $R\neq\Rightarrow P$ ; then $P^{+}=P(a)$ . Let $P^{\prime+}=P’(a’)$ . If
$P\geq P’$ (resp. if $P’\geq P$), then $a\neq a’$ , because $Q\rightarrow P’$ (resp. $Q\rightarrow P$ );
then $R\rightarrow P’$ . This shows the necessity of (a).
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To prove (b), recall that two edges with origin $R$ have necessarily
different weights, so there is at most one whose weight is equal to the
weight of the edge, with origin $Q$ , in the chain from $Q$ to $R$ .

To prove the sufficiency, proceed by induction on the number of
vertices and use the proximity criterion. Assume $|\mathcal{V}(\Gamma)|>1$ , let $r$ be
a maximal vertex of $\Gamma$ , say $r\in q^{+}$ . By the inductive hypothesis, the
full subgraph $\Gamma’=\Gamma\backslash q^{+}$ equiped with the binary relation restricted to
$\mathcal{V}(\Gamma’)$ , is also a $P$-Enriques diagram satisfying the conditions (a) and (b),
so may be induced by a toric constellation $C’$ , codified by a $d$-weighted
tree with $d\leq dt_{P}(\Gamma’, (\sim))$ . Let $q^{+}=\{r_{1}, \ldots, r_{s}, \ldots, r_{t}\}3$, by (i) one has
$ind(r_{j})\geq ind(g)$ , for $1\leq j\leq t$ . Let $r_{1}$ , $\ldots$ , $r_{s}$ be vertices, in $q^{+}$ , whose
index is greater than $ind(g)$ ; one needs $s=s(q)$ new weights to codify
these vertices; but for each $r_{j}$ with $s+1\leq j\leq t$ , the weight is determined
by the lost proximity among the vertices approximated by $q$ , and these
weights are all different by the condition (ii). This shows the inductive
step and the existence of a toric constellation associated with the given
$(\Gamma, (\sim))$ with the dimension $dt_{P}$ . This is the minimum dimension since
for any such constellation of dimension $d$ , one has $d\geq ind(q)+s(q)$ , for
each $q\in \mathcal{V}(\Gamma)$ . Q.E.D.

Remark 3.9. The minimum dimension $dt_{P}$ may be greater than
$d_{P}$ , the dimension in the not necessarily toric case (Theorem 2.5), be-
cause there are less points available, so one needs to add $s(q)$ to the
proximity index, not just 1 as in the general case.

Corollary 3.10. A $P$-Enriques diagram $(\Gamma, (\sim))$ whose graph $\Gamma$

is $a$ chain, is toric if and only if the proximity index is not decreasing.
In this case, the minimum dimension of an associated constellation is
the index of the terminal point (and at least 2).

Proof. In the toric chain case the condition (b) of the theorem is
automatically satisfied and

$\max_{q\in\Gamma}(ind(q)+s(q)))=\max_{q\in\Gamma}(ind(q))Q.E.D$

.holds.

Examples 3.11. (1) The simplest example of a non-toric P-
Enriques diagram is a chain with four vertices, say $q_{0}$ , $q_{1}$ , $q_{2}$ , $q_{3}$

such that, besides the trivial proximities of consecutive vertices,

the only other proximity is $q_{2}\rightarrow q_{0}$ . In this example one has
$ind(q_{2})=2$ and $ind(qs)=1$ ; condition (a) fails.

(2) Another example of a non-toric case is a graph of type $D_{4}$ , with
a non-central vertex as the root, and with only the proximities of
consecutive vertices. In this case condition (b) fails.

Remark that both cases may be induced by two dimensional
constellations.
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$I$

$[|_{q_{0}}^{q_{3}}QQ12$

$III$

Figure (1). Figure (2). Figure (1).

(3) If the central vertex is the root in a graph of type $D_{n}$ , with $n$ $\geq$

$4$ , and if the only proximities are those of consecutive vertices,
then conditions (a) and (b) hold; the minimal dimension of a
constellation inducing this $P$-Enriques diagram is three for toric
constellations and two for non-toric ones. If $q_{0}$ is the root, then
$ind(q_{0})=0$ , $s(q_{0})=3$ , $t(q_{0})=2$ , and $ind(q)=1$ , $s(q)=0$ for
each $q\neq q_{0}$ .

(See Figures (1), (2) and (3)).

\S 4. Linear proximity and characteristic cones

4.1. In dimension two, the exceptional divisors appearing in the defini-
tion of the proximity relations are (rational) curves; in higher dimension
we introduce, in the toric case, a condition involving curves, which will
be finer, in general, than the proximity.

Definition 4.2. Let $C$ $=\{Q_{0}, \ldots, Q_{n}\}$ be a toric constellation.
A point $Q_{j}$ is linear proximate to a point $Q_{i}$ with respect to a one
dimensional $T$-orbit $\ell$ $\subset B_{i}$ if $Q_{j}$ belongs to the strict transform in $X_{j}$

of the closure of $\ell$ .

This relation is denoted by $Q_{j}\rightarrow Q_{i}$ , or $Q_{j}\rightarrow\ell Q_{i}$ if we need to
specify the line $\ell$ involved.

If $R\rightarrow Q$ then $R\rightarrow Q$ , but the converse does not hold in general.

Proposition 4.3 (Criterion for the linear proximity in terms of a
codification). Let Q be a point in a toric constellation of dimension
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$d$ . Each 1-dimensional orbit $\ell$ in the exceptional divisor $B_{Q}$ contains in
its closure only two fifixed points, say $Q(a)$ and $Q(b)$ , which determine

$ uniquely\ell\ell$ .

$R\rightarrow Q$ if and only if there are integers $a$ , $b$ and $m$ such that $a\neq b$ ,
$1\leq a\leq d$ , $1\leq b\leq d$ , $0\leq m$ and $R=Q(a, b^{[m]})$ or $R=Q(b, a^{[m]})$ ,

where $x^{[m]}$ means $x$ repeated $m$ times.

Proof. The wall running between the cones corresponding to $Q(a)$

and $Q(b)$ is the cone corresponding to the line defined by this two points
in $B_{Q}$ . The only maximal cones, obtained by elementary subdivisions,

having this wall as a face are those corresponding to the points $Q(a, b^{[m]})$

or $Q(b, a^{[m]})$ for some $m\geq 0$ . Q.E.D.

In dimension two, proximity and linear proximity are equivalent.
One inclusion may be generalized for toric chains in any dimension.

Proposition 4.4. If $C$ is toric chain (in any dimension), the pro-
ximity relation determines the linear proximity relation.

Proof. If $R\rightarrow Q$ , then $P\rightarrow Q$ for any $P$ such that $ R\geq P\geq$

$Q$ , $P\neq Q$ , and these are the only proximities, for the intermediate
points in the chain from $Q$ to $R$ , besides the proximities of consecutive

$\ell$

points. Conversely, assuming this property, then $R\rightarrow Q$ for the line $\ell$

determined by the point $Q^{+}$ and the direction $Q^{++}$ in the projective
space $B_{Q}$ , if $Q^{++}$ is defined and precedes $R$ , or any line through $Q$

otherwise. Indeed, this assumption forces the code of $R$ to be
$Q(a,b^{[m]})Q.E.D$

.for some weights $a$ and $b$ , $m\geq 0$ .

On the other hand, in general the linear proximity does not deter-
mine the proximity, even for chains.

4.5. We introduce now some definitions leading to the notion of the so
called (linear proximity) LP-Enriques diagrams.

Given a rooted tree $\Gamma$ , a sub graph formed by two chains with a
common root and no common edge is called a $bi$-chain.

If $\Gamma$ is the rooted tree associated with a toric constellation $C$ , $q$ the
vertex corresponding to $Q\in C$ and $\ell$ is a 1-dimensional orbit in $B_{Q}$ ,
then $\Gamma_{q}(\ell)$ denotes the full subgraph of $\Gamma$ with vertices corresponding to

$\ell$

$Q$ and to the points $R\in C$ such that $R\rightarrow Q$ . Let $\Gamma(q)$ be the family of
the maximal $\Gamma_{q}(\ell)$ when $\ell$ describes the set of one dimensional orbits in
$B_{Q}$ .

A vertex $ q\in\Gamma$ is called simple (resp. ramifified) if $|q^{+}|=1$ (resp. if
$|q^{+}|>1)$ .
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The following properties are easily checked with the linear proximity
criterion (Proposition 4.3).

Proposition 4.6. Let $C$ be a toric constellation, $\Gamma$ the associated
tree.

1. (a) For each $ q\in\Gamma$ , the family $\Gamma(q)$ is non-empty and the ele-
ments of $\Gamma(q)$ are chains or $bi$-chains with root $q$ .

(b) If $\gamma$ , $\gamma’\in\Gamma(q)$ and $\gamma\subset\gamma’$ , then $\gamma=\gamma’$ .

2. (a) Two distinct elements $of\bigcup_{q}\Gamma(q)$ have at most one common
edge.

(b) Two edges with common ramifification root vertex $q$ (resp.
the edge with the simple root vertex $q$ ) belong (resp. belongs)
to one and only one element of $\Gamma(q)$ .

3. (a) For each $ q\in\Gamma$ and $r\in q^{+}$ there is at most one vertex
$s\in r^{+}$ such that the chain $(q, r, s)$ is not contained in any
element of $\Gamma(q)$ .

(b) If $(p, \ldots, q, r)$ is a chain contained in a $\gamma\in\Gamma(p)$ and
$s\in r^{+}$ satisfifies 3. (a), then the chain $(p, \ldots, q, r, s)$ is con-
tained in $\gamma$ .

Definition 4.7. The $LP$-Enriques diagram of a toric constellation
$C$ is the associated graph $\Gamma_{C}$ equiped with the linear proximity structure
formed by the family of full subgraphs $\{\Gamma_{C}(q)|q\in\Gamma_{C}\}$ .

Theorem 4.8. The couple $(\Gamma, \{\Gamma(q)|q\in\Gamma\})$ , given by a tree
$\Gamma$ and a family of full subgraphs $\Gamma(q)$ , is the $LP$-Enriques diagram of $a$

toric constellation $C$ if and only if the properties 1, 2 and 3 hold.

The minimum dimension of the constellations with given PL-En-
riques diagram is $d_{P\mathcal{L}}=\max(2, \max_{q\in\Gamma}(|q^{+}|+n_{q}))$ , where

$ n_{q}=r\in q\max_{+}\neq$ { $\gamma\in\Gamma(q)|r\in\gamma$ and $\gamma$ is a chain of length $>1$ }

Proof The proof uses the codification of toric constellations, the
linear proximity criterion 4.3 and proceeds by induction on the level of
the vertices. Let’s check that the dimension given in the statement is
the minimum possible dimension; this will also show the essential part
of the inductive step. Recall that the length of a chain graph is the
number of its edges.

Now assume that the LP-Enriques diagram of a $d$-dimensional toric
constellation $C$ is the given one, and consider a $d$-weighting of $\Gamma$ defining
C. For each $ q\in\Gamma$ one needs $d$ distinct weights for the $|q^{+}|$ edges with
root $q$ , hence $d\geq|q^{+}|$ . Furthermore, for each $r\in|q^{+}|$ one needs another
weight for the second edge of each chain $\gamma$ of length at least 2 such that
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$r\in\gamma\in\Gamma(q)$ , and this weight must be different from the $|q^{+}|$ weights of
tlle edges with root $q$ in order not to get a $bi$-chain and a contradiction
with the conditions $2(a)$ and $2(b)$ , and also different from the weights of
the second edge of the other chains of the same type containing $r$ . This
shows that $d\geq(|q^{+}|+n_{q})$ .

On the other hand, the $bi$-chains with root $q$ are automatically
weighted once the first edges are weighted, and the second edges of chains
with second vertex in $q^{+}$ different from $r$ may have the same weights as
those of the second vertices of chains through $r$ . The maximality of the
elements of $\Gamma(q)$ for each $ q\in\Gamma$ and the conditions $3(a)$ and $3(b)$ insure
that the codification in the inductive step is coherent with the preceding
weights, and that the minimum dimension is attained. Q.E.D.

Remark 4.9. A PL-Enriques diagram may be induced by two
non-isomorphic constellations. In some cases, for instance if for each
vertex $q$ the family $\Gamma(q)$ has only $bi$-chains or is reduced to the vertex,
then the constellation inducing the given PL-Enriques diagram is unique
(up to isomorphism of constellations), and its dimension is $|q_{0}^{+}|$ if $q_{0}$

denotes the root.
The maximum posible linear proximity dimension $d_{LP}$ of a fixed

tree, by changing its $LP$ structure, is the number of edges. In this case
all the chains (resp. $bi$-chains) have only one edge (resp. two edges) or
are reduced to a vertex, for the maximal ones.

4.10. We recall now some definitions and resume relevant facts on com-
plete ideal theory and characteristic cones (see [15], [10], [11], [9]), then
we give some examples and applications of the results on Enriques dia-
grams.

Let $X$ be an ideal in any commutative ring $\mathcal{R}$ ; an element $x\in \mathcal{R}$

is integral over I if $x$ satisfies a condition of the form $x^{n}+r_{1}x^{n-1}+$

$r_{2}x^{n-2}+\cdots+r_{n}=0$ for some $n$ $>0$ and some $r_{j}\in I^{j}$ , $1\leq j\leq n$ . The
set of all such $x$ , denoted $\overline{I}$ , is called the integral closure or completion

of $I$ ; it is itself an ideal and we have I $\subset\overline{I}=\overline{\overline{I}}$ .

The ideal I is integrally closed or complete if I $=\overline{I}$ .

For any two ideals $X$ , $J$ in $\mathcal{R}$ , define the $*$-product $I*J:=\overline{IJ}$

(the completion of the product $IJ$ ). Then we have $I*J=\overline{I}*\overline{J}$ .

The set of non-zero complete ideals in $\mathcal{R}$ with $the*$-product form a
commutative monoid with cancellation (i.e. $I_{1}*J=I_{2}*J$ $\Rightarrow$ $I_{1}=$

$I_{2})$ .

In the following let $\mathcal{R}$ be the local ring $\mathcal{O}_{X,Q_{0}}$ of the regular variety
$X$ at the origin $Q_{0}\in X$ of the constellations of infinitely points to
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consider. In this context, the ideals in $\mathcal{R}$ that we consider are the $\mathcal{M}-$

primary ideals, where $\mathcal{M}$ denotes the maximal ideal of $R$ .

An ideal I is fifinitely supported if I $\neq(0)$ and if there exists a
constellation $C$ such that $I\mathcal{O}_{X_{C}}$ is a locally principal ideal. The points
$Q_{i}$ , $0\leq i\leq n$ , of the minimal constellation $C_{\mathcal{T}}$ with this property are
called the base points of the ideal I.

If I is a non-zero ideal in $\mathcal{O}_{X_{i},,,Q_{i}}$ , let $ord_{Q_{i}}I=ord_{Q_{i}}f$ for a general
$f\in I$ .

Define recursively the weak transform $I_{i}=I_{Q_{i}}$ and the strict mul-
tiplicity (called point base in [11]) $m_{i}=m_{Q_{i}}$ of I at a base point $Q_{i}$ :

$I_{0}=I$ , $m_{0}=ord_{Q_{0}}$ I and for $R\in Q^{+}$ let $I_{R}=(x)^{-m_{Q}}I_{Q}\mathcal{O}_{X_{R},,,R}$

and $m_{R}=ord_{R}$ $I_{R}$ , where $x=0$ is a local equation of $B_{Q}$ at $R$ .

The divisor $D_{\mathcal{T}}=\sum_{i}m_{i}E_{i}^{*}$ is the divisor defined by I in $X_{C}$ , i.e.the
divisor $D_{\mathcal{T}}$ such that $I\mathcal{O}_{X_{C}}=\mathcal{O}_{X_{C}}(-D_{\mathcal{T}})$ .

If $\sigma=\sigma_{C}$ : $X_{C}\rightarrow X$ is the composition of the blowing-ups, then
the completion $\overline{I}$ of I is nothing but the stalk at $Q_{0}$ of $\sigma_{*}(\mathcal{O}_{X_{C}}(-D_{\mathcal{T}}))$ .

Therefore, if we consider the set of finitely supported complete ideals I

with base points contained in $C$ , the map $I\underline{\alpha}D_{\mathcal{T}}$ from this set into
the set of exceptional divisors of $X_{C}$ , is injective.

On the other hand, the image of the map $\alpha$ is the set of effec-
tive exceptional divisors $D$ in $X_{C}$ , such that $\mathcal{O}_{X_{C}}(-D)$ is generated
by its global sections in a neighborhood of the support of $D$ (such

divisors are called $\sigma$-generated), i.e. such that the natural morphism
$\sigma^{*}\sigma_{*}\mathcal{O}_{X_{C}}(-D)\rightarrow \mathcal{O}_{X_{C}}(-D)$ is surjective.

The map $\alpha$ is actually a monoid isomorphism onto its image, with
respect to $the*$-product and the addition of divisors, i.e. $\alpha(I_{1}*I_{2})=$

$\alpha(I_{1})+\alpha(I_{2})$ .

Remark 4.11. This map is analyzed in [2] in terms of clusters, i.e.
weighted constellations, where the weights are the strict multiplicities
$\underline{m}=(m_{i}|Q_{i}\in C)$ defined for a finitely supported (complete) ideal.
The clusters corresponding to images of $\alpha$ are called idealistic clusters.

4.12. Let $N_{1}=N_{1}(X_{C}/X)(resp.N^{1}=N^{1}(X_{C}/X))$ be the abelian
group of exceptional–i.e. whose support contracts to $Q_{0}-$ one dimen-
sional cycles on $X_{C}$ (resp. (Cartier) divisors on $X_{C}$ ) modulo numerical
equivalence. A one dimensional cycle $C$ (resp. a divisor $D$ ) is numer-
ically equivalent to 0 if the intersection number $(C. D)=0$ , for all
divisors $D$ (resp. all exceptional complete curves) on $X_{C}$ .

Set $A_{1}=A_{1}(X_{C}/X)=N_{1}\otimes_{\mathbb{Z}}\mathbb{R}$ , $A^{1}=A^{1}(X_{C}/X)=N^{1}\otimes_{\mathbb{Z}}\mathbb{R}$ . The
exceptional fiber $\sigma^{-1}(Q_{0})$ of $\sigma$ is a projective scheme over $K$ and the



Generalized Enriques diagrams and characteristic cones 129

vector space $A^{1}$ maps injectively into $A^{1}(\sigma^{-1}(Q_{0}))$ , so the dimension of
$A^{1}$ is finite and the intersection pairing makes $A_{1}$ and $A^{1}$ dual vector
spaces.

Now let NE(Xc/X) be the convex cone generated by the effective
exceptional curves in $A_{1}$ . Consider, in the dual space $A^{1}$ , two cones:

Definition 4.13. Let $P(XC/X)$ be the dual cone $of-NE(X_{C}/X)$ ,

i.e. the cone formed by the classes $d$ such that $(c\cdot d)\leq 0$ for every class $c$

of exceptional effective curve in $X_{C}$ . In other words, $P(X_{C}/X)$ is minus
the semiample relative cone for the morphism $\sigma$ at $Q_{0}$ (see [9]).

Let $\tilde{P}(X_{C}/X)$ be the convex cone generated by the classes of divisors
$D$ such that $\mathcal{O}_{X_{C}}(-D)$ is generated by their global sections; this cone
is called the characteristic cone for $\sigma$ at $Qo$ ; this terminology has been
introduced by H. Hironaka. $We’ 11$ say that this cone is associated with
C.

Remark 4.14. The set of lattice points of the characteristic cone
$\tilde{P}(X_{C}/X)$ (i.e. its intersection with the lattice $N^{1}$ ) is the monoid of
the classes of $\sigma$-generated divisors on $X_{C}$ . This monoid generates the
characteristic cone and is canonically isomorphic to the monoid of finitely
supported complete ideals in $\mathcal{O}_{X,,,Q_{0}}$ with base points contained in the
constellation $C$ , via the map $\alpha$ introduced above. (In [2] this monoid is
called the galaxy of the constellation).

Definition 4.15. Following Lipman [11], define a $*$-simple ideal
as an ideal $\prime p$ in $\mathcal{R}$ if $\prime p$ $\neq \mathcal{R}$ and if $\prime P$ does not have a non-trivial
$*$-factorization, i.e. if $P$ $=I_{1}*I_{2}$ then either $I_{1}=\mathcal{R}$ or $I_{2}=\mathcal{R}$ .

4.16. The central result on unique factorization in [11] may be formu-
lated as follows.

For each point $Q\in C$ there is a (unique complete) $*$-simple ideal
$\prime p_{Q}$ whose base points are the points of the chain from $Q$ to the origin
$Q_{o}$ , such that the set of strict multiplicities is minimal for the inverse
lexicographic order with respect to the natural ordering $(\geq)$ in $C$ , and
with $m_{Q}=1$ . Let’s call $\prime \mathcal{P}_{Q}$ the $special*$ -simple ideal associated with $Q$

It follows from this fact, that every finitely supported complete I
with base points contained in $C$ has a unique factorization as $a*$-product
of the special $*$-simple ideals $\prime p_{Q}$ , allowing negative exponents. This
means that there is a $*$ -product of I by special $*$-simple ideals, equal
to a product of $special*$-simple ideals, with different factors appearing
in each side of the equality; i.e. there are unique integers $r_{Q}$ such that

I $=\prod_{Q\in C}\prime P_{Q}^{r_{Q}}*$ .
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Indeed, it is straightforward to see, from the properties of the strict
multiplicities, of the $P_{Q}$ , that the set $\alpha(P_{Q})$ , $Q\in C$ , is a basis of the
lattice $N^{1}$ .

4.17. The above factorisation for any finitely generated complete ideal
with base points in $C$ has non negative exponents if and only if the $\alpha(P_{Q})$ ,
with $Q\in C$ generate the characteristic cone of $\sigma_{C}$ , and this is equivalent
to saying that this cone is regular, in the sense of toric varieties, i.e.
rational and with primitive integral extremal points forming (a subset
of) a basis of the lattice.

The determination of the constellations with regular characteristic
cone is an interesting open question.

The result of Zariski (see [14], [15] and [12] for a recent presenta-
tion) is formulated in this language by saying that in dimension two the
characteristic cone is always regular. Furthermore, $the*$-product is just
the product of ideals, and $the*$-simple ideals are the simple ideals.

Examples 4.18. There are chain constellations whose characte-
ristic cone is polyhedral but not simplicial, or even non polyhedral, i.e.
the simplicial cone is not closed (see for instance [4] example 3, [1] ex-
amples 4.1, 4.2, 4.3).

Even for chain constellations in dimension three the characteristic
cone may be non regular. One could hope that for this “simple” case life
would be easy, since for the toric chains it is always regular (see 4.25),
as it follows from the linear proximities.

For example, a chain constellation consisting of six points with the
second point $Q_{1}$ in a non degenerate conic in the plane $B_{0}$ and the fol-
lowing points in the strict transform of the conic, has a characteristic
cone (in dimension six) with seven maximal faces and nine edges gener-
ated by the six integral points associated to the $special*$-simple ideals
and three others.

Another example is given by a regular non inflexion point on a ra-
tional plane cubic curve in $B_{0}$ and eight following points on the strict
transform of the cubic; in this case the monoid of integral points of the
characteristic cone in dimension ten is not finitely generated.

4.19. For toric constellations the characteristic cone may be explicitely
obtained (see [2], theorem 2.10). Note that in this case the characteristic
cone coincides with the semiample cone (see [8], page 47).

The natural ideals to consider are the invariant ideals for the toric
action, so that the constellations of base points are toric.
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The conditions that such an ideal I is finitely generated and com-
plete are formulated in terms of the Newton polyhedron $N$ of I relative
to the local system of parameters of the local ring, induced by a basis
of the lattice where the fan lives.

The first condition is that the fan associated to the Newton poly-
hedron (which gives the normalized blowing-up of center I) admits a
regular subdivision obtained by elementary subdivisions of the regular
cone $\Delta$ corresponding to $Q_{0}$ ; and the second one is that every monomial
corresponding to an integral point of $N+\Delta^{\vee}$ is in $I$ , where $\Delta^{\vee}$ denotes
the dual cone of $\Delta$ .

The following result generalizes, for toric constellations in any di-
mension, the two dimensional proximity inequalities found by Enriques.

Recall Proposition 4.3.

Theorem 4.20. Let $C$ be a toric constellation of dimension $d$ .
The characteristic cone associated with $C$ is the cone generated by the
classes of the divisors $D_{\underline{m}}=\sum_{Q\in C}m_{Q}E_{Q}^{*}$ such that $\underline{m}$ verififies the

linear proximity inequalities $m_{Q}\geq\sum_{P\rightarrow Q}pm_{P}$ for each $Q\in C$ and

each $\ell=\ell(Q(a), Q(b)),$ $a\neq b1\leq a\leq d$ , $1\leq b\leq d$ .

Proof The linear proximity inequalities are necessary, since they
are equivalent to $(D_{\underline{m}}\cdot\overline{\ell})\leq 0$ for a semiample divisor $-D_{\underline{m}}$ and the clo-

sure $\overline{\ell}$ of each one dimensional orbit $\ell(Q(a), Q(b))$ . Conversely, if these
inequalities hold, then $-D_{\underline{m}}$ is semiample since the classes of the clo-
sures of the one dimensional orbits generate the cone of the numerically
effective curves NE, and then the divisor is $\sigma$-generated because $\sigma$ is a
toric morphism. Q.E.D.

Remark 4.21. A constructive proof giving the Newton polyhe-
dron of the unique complete ideal associated to such a divisor $D_{\underline{m}}$ (or

the corresponding idealistic cluster) is presented in [2] theorem 2.10 (ii).

Corollary 4.22. We keep the notations of the theorem. Let $C$ $=$

$\{Q_{0}, \ldots, Q_{n}\}$ be a toric chain.

(a) The characteristic cone asociated with $C$ is given by

$m_{i}\geq\sum_{j\rightarrow i}m_{j}$ , $0\leq i\leq n$ .

(b) The divisor $D_{n}=\sum_{0\leq i\leq n}m_{i,,,n}E_{i}^{*}$ associated to the $special*-$

simple ideal $P_{Q_{n}}$ is given by $m_{n,,,n}=1$ , $m_{i,,,n}=\sum_{j\rightarrow i}m_{j,n}$ , for $0\leq i\leq n$ .

Proof (a) follows from the Theorem and the fact that for each
point there is only one relevant inequality, since $C$ is a chain.
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(b) follows from (a) since the minimality property of $\underline{m}$ is obtained
if $m_{n,,,n}=1$ and if every inequality involving an index $i\neq n$ becomes an
equality. Q.E.D.

The $special*$-simple ideals, and the exponents of the factorizations
are determined by the linear proximities:

Theorem 4.23. Let $C$ be a toric constellation.

(a) Let $(D_{Q})_{Q\in C}$ , be the basis of $N_{1}$ corresponding to the $special*-$

simple ideals with base points in C. Then $D_{Q}=\sum_{P\in C}m_{PQ}E_{P}^{*}$ , there
$m_{PQ}=0$ if $P\not\leq Q$ , $m_{QQ}=1$ and $m_{PQ}=\sum_{R\in C}|Q\geq R\rightarrow Pm_{RQ}$ if
$P\leq Q$ .

(b) Let $\mathbb{P}_{L}=((l_{PQ}))$ be the linear proximity matrix defifined by $l_{PP}=$

$1$ , $l_{PQ}=-1$ if $P\rightarrow Q$ and 0 otherwise.
Then $t\mathbb{P}_{L}$ is the basis change matrix from $(E_{Q}^{*})$ to $(D_{Q})$ .

(c) Let $X$ be a toric fifinitely generated ideal with base points in C.
Then the exponents of its factorisation in terms of $special*$ -simple

ideals are:
$r_{Q}=m_{Q}-\sum_{P\rightarrow Q}m_{P}$ .

Proof (a) follows from 4.22, (6).
(b) and (c) follow from (a) and linear algebra. Q.E.D.

Recall the definition of the $LP$ structure of the tree $\Gamma$ associated
with $C$ (Proposition 4.6).

Corollary 4.24. Let $P_{C}=P(X_{C}/X)$ be the characteristic cone
associated with C. The following conditions are equivalent:

(a) The cone $P_{C}$ is regular.
(b) $(D_{Q})_{Q\in C}$ is a basis of the semigroup $P_{C}\cap N^{1}$ .
(c) The cone $P_{C}$ is simplicial.
(d) The $special*$ -simple factorizations have only non negative expo-

nents.
(e) For each $Q\in C$ there is only one (maximal) chain or bichain in

$\Gamma(q)$ .

Proof The conditions (a), (6), (c) and (d) are equivalent since the
divisors $D_{Q}$ form a basis of $N^{1}$ . The equivalence between (e) and (c)
follows from the preceding theorem, and the fact that the supporting
hyperplanes of the maximal faces of the cone $P_{C}$ are those associated
with the maximal elements of $\Gamma_{Q}$ for each $Q\in C$ . Q.E.D.

Remark 4.25. In particular, every toric chain constellation in
any dimension has a regular characteristic cone. There are also non-
chain constellations with this property.
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We conclude with an application of the LP-Enriques diagrams for
a converse Zariski theorem for toric constellations. Recall the definition
of the minimal $LP$-dimension, $d_{\mathcal{L}P}$ of a LP-Enriques diagram (Theo-

rem 4.8).

Theorem 4.26. The characteristic cone of a toric constellation
is regular if and only if its $LP$-Enriques diagram is induced by a two
dimensional constellation.

Proof The characteristic cone of any two dimensional constellation
is regular, by Zariski. Conversely, assume that the characteristic cone
is regular. Then $\Gamma(q)$ has only one element for each $ q\in\Gamma$ , by the last
Corollary. It follows necessarily that $0\leq|q^{+}|\leq 2$ . Now, $0\leq|q^{+}|\leq 1$

implies that $0\leq n_{q}\leq 1$ and $|q^{+}|=2$ implies that $n_{q}=0$ . It follows
that the minimal dimension $d_{\mathcal{L}P}$ of a constellation inducing the given
LP-Enriques diagram is two. Q.E.D.
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The quotients of $\log$-canonical singularities
by finite groups

Shihoko Ishii1

Abstract.

In this paper we study the quotient of an isolated strictly log-
canonical singularity by a finite group. As a result, we obtain the
boundedness of indices of these singularities of dimension 3 and de-
termine all possible indices. We also determine the ramification in-
dices of the quotient map of a 2-dimensional strictly $\log$ canonical
singularities by a finite group.

\S 1. Introduction

A $\log$-canonical, non-log-terminal singularity is called strictly log-
canonical. Let $(X, x)$ be an isolated strictly $\log$ canonical singularity
over $\mathbb{C}$ . If its dimension is 2, then the index is 1, 2, 3, 4 or 6. This is ob-
served by checking the list of the weighted dual graphs of all strictly log-
canonical singularities. This is also proved by Shokurov [21] by means
of complements and by Okuma [18] by means of plurigenera. In the
3-dimensional case, the author heard that the boundedness of indices of
such singularities is proved by Shokurov in [22]. In this paper, we study
the quotient of isolated strictly $\log$-canonical singularities by finite group
actions. First, in case the group acts freely in codimension 1, we obtain
a formula for the indices of the quotient singularity (Lemma 3.3). By
this formula, we obtain a different proof of the above fact on indices
for dimension 2. We then prove that the index of 3-dimensional strictly
$\log$-canonical singularity is less than or equal to 66. More precisely, a
positive integer $r$ can be the index of such a singularity if and only if
$\varphi(r)\leq 20$ and $r$ $\neq 60$ , where $\varphi$ is the Euler function. This is related to
the finite automorphisms on $K3$-surfaces, Abelian surfaces and elliptic
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curves. Next we study finite groups which act non-freely in codimen-
sion 1. For the 2-dimensional case, we determine the quotients by these
groups with the branch divisors. Thus it follows that the ramification
index of each ramification divisor is 2, 3, 4 or 6.

The author would like to express her gratitude to Professor Viyach-
eslav Shokurov for asking her the question on indices, which gave the
motivation for this work. She is also grateful to Professors Viyacheslav
Nikulin, Shigeyuki Kondo and Keiji Oguiso for providing her with useful
information.

\S 2. Isolated strictly $\log$-canonical singularities.

2.1. Isolated strictly $\log$-canonical singularities are studied in [6].
In this section we summarize those results and add some basic facts on
these singularities.

Definition 2.2. Let $(X, x)$ be a germ of normal singularity. If

there is an integer $r$ such that $\omega_{X}^{[r]}$ is invertible, the singularity is called
a $\mathbb{Q}$-Gorenstein singularity. We call the minimum positive such number
$r$ the index of $(X, x)$ and denote by Ind(X, $x$ ).

Definition 2.3. A $\mathbb{Q}$-Gorenstein singularity $(X, x)$ is called a log-
canonical singularity (resp. $log$-terminal singularity) if for a good res-
olution $f$ : $Y\rightarrow X$ the canonical divisor on $Y$ has an expression in
$Div(Y)\otimes \mathbb{Q}$ :

$K_{Y}=f^{*}K_{X}+\sum_{i}m_{i}E_{i}$

with $m_{i}\geq-1$ (resp. $m_{i}>-1$ ) for every irreducible exceptional divisor
$E_{i}$ with $x\in f(E_{i})$ . Here a good resolution means a resolution whose
exceptional set is a normally crossing divisor with the non-singular ir-
reducible components. We call $m_{i}$ the discrepancy over $X$ at $E_{i}$ or the
discrepancy for $f$ at $E_{i}$ for each irreducible component $E_{i}$ .

2.4. In the case of index 1, a strictly $\log$-canonical singularity is
equivalent to a purely elliptic singularity ([6]). In this case we define
the essential divisor in the exceptional divisor of a good resolution. It
actually plays an essential role in the exceptional divisor (cf. Lemma
3.7 [6] $)$ .

Definition 2.5. Let $(X, x)$ be an isolated strictly $\log$ canonical
singularity of index 1 and $f$ : $Y\rightarrow X$ a good resolution. Then one has a
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representation

$K_{Y}=f^{*}K_{X}+\sum_{i\in I}m_{i}E_{i}-\sum_{j\in J}E_{j}$
,

with $m_{i}\geq 0$ , $ I\cap J=\emptyset$ and $ J\neq\emptyset$ . The divisor $E_{J}:=\sum_{j\in J}E_{j}$ is called
the essential divisor for a good resolution $f$ .

2.6. Let $(X, x)$ be an $n$-dimensional isolated strictly $\log$ canonical
singularity of index 1 and $f$ : $Y\rightarrow X$ a good resolution with the essential
divisor $E_{J}$ . Since $E_{J}$ is a complete variety with normal crossings,

$H^{n-1}(E_{J}, \mathcal{O}_{E_{J}})\simeq Gr_{F}^{0}H^{n-1}(E_{J}, \mathbb{C})=n-1\oplus H_{n-1}^{0,i}(E_{J})i=0$
’

where $F$ is the Hodge filtration and $H_{m}^{i,j}(*)$ is the $(i,j)$-Hodge-component
of $H^{m}(*, \mathbb{C})$ . As the leffi hand side is a 1-dimensional $\mathbb{C}$-vector space

(Lemma 3.7 [6]), it must coincide with one of $H_{n-1}^{0,i}(E_{J})(i=0,1,2,$
$\ldots$ ,

$n$ $-1)$ .

Definition 2.7. An $n$-dimensional isolated strictly $\log$ canonical
singularity $(X, x)$ of index 1 is said to be of type $(0, i)$ , if $H^{n-1}(E_{J}, \mathcal{O}_{E_{J}})$

$=H_{n-1}^{0,i}(E_{J})$ .

2.8. The type is independent of the choice of a good resolution
(Proposition 4.2 in [6]).

Example 2.9. A 2-dimensional srictly $\log$ canonical singularity
$(X, x)$ of index 1 is of type $(0, 1)$ if and only if $(X, x)$ is a simple elliptic
singularity and of type $(0, 0)$ if and only if it is a cusp singularity.

Proposition 2.10. Let $(X, x)$ be a 3-dimensional isolated strictly
$log$-canonical singularity of index 1 and of type $(0, 2)$ and $f$ : $Y\rightarrow X$ the
canonical model, $i.e$ . $Y$ has at worst canonical singularities and $K_{Y}$ is
$f$ -ample. Let $D$ be the exceptional divisor of $f$ with the reduced structure.
Then $Y$ has at worst teminal singularities and $D\dot{u}$ isomorphic to either
a normal $K3$ -surface or an Abelian surface. Here a nomal $K3$ -surface
is a normal surface whose minimal resolution is a $KS$ -surface.

Proof. First note that $E_{J}$ is irreducible by Lemma 6, [8]. Since the
discrepancy for $f$ at each exceptional component is negative (the proof of
Lemma 3.7 [8] $)$ , $D$ is irreducible. Let $g$ : $Y’\rightarrow Y$ be a proper birational
morphism whose composite fog: $Y’\rightarrow X$ is a good resolution. One sees
that $Y$ has at worst terminal singularities. Indeed, if not, there exists
an exceptional divisor $E_{0}$ which is crepant for $g$ . Then the discrepancy
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at $E_{0}$ for fog is less than 0, so $E_{0}$ becomes another component of the
essential divisor, which is a contradiction. Now one can prove that $Y$

is non-singular away from finite points. If $D$ has 1-dimensional singular
locus, then by the blowing-up at a 1-dimensional irreducible component
of the singular locus one obtains a component $E_{1}$ whose discrepancy
for fog is $-m+1<0$ , where $m$ is the multiplicity of $D$ at a general
point on the curve. It implies that $E_{1}$ is another component of the
essential divisor, which is a contradiction. Therefore $D$ is non-singular
away from finite points. On the other hand, since $\omega_{Y}\simeq \mathcal{O}_{Y}(-D)$ is
Cohen-Macaulay, so is $D$ . Hence by Serre’s criterion $D$ is normal. The
condition $\omega_{Y}\simeq \mathcal{O}_{Y}(-D)$ yields that $\omega_{D}\simeq \mathcal{O}_{D}$ . A normal surface with
this condition and $H^{2}(E_{J}, \mathcal{O}_{E_{j}})=\mathbb{C}$ , where $E_{J}$ is a resolution of $D$ , is
either a normal $K3$-surface or an Abelian surface ([23]). Q.E.D.

\S 3. Finite groups which act freely in codimension 1.

Definition 3.1. Let $G$ be a group and $(X, x)$ a germ of a singu-
larity. We say that $G$ acts on $(X, x)$ if $G$ acts on a neighbourhood of $x$

and fixes the point $x$ . We say that $G$ acts on $(X, x)$ freely in codimension
1, if there exists a closed subset $S$ of codimension greater than or equal
to 2 on a neighbourhood $X$ such that $G$ acts freely on $X\backslash S$ .

3.2. We denote the set of non-singular points of $X$ by $X_{reg}$ . Let
$(X, x)$ be a $\mathbb{Q}$-Gorenstein singularity of index $m$ and a group $G$ act on
$(X, x)$ . We denote the germ $(X/G, x’)$ by $(X, x)/G$ , where $x’\in X/G$ is
the image of $x$ . Denote the maximal ideal of $x$ by $\mathfrak{m}_{x}$ . Then it induces
a canonical representation

$\rho$ : $G\rightarrow GL(\omega_{X}^{[m]}/\mathfrak{m}_{x}\omega_{X}^{[m]})\simeq \mathbb{C}^{*}$ .

because $G$ fixes the point $x$ .

Lemma 3.3. Let $(X, x)$ be $a\mathbb{Q}$ -Gorenstein normal $singular\dot{\eta}ty$ of
index $m$ . Let $G$ be $a$ fifinite group which acts on $(X, x)$ freely in codimen-

sion 1 and $\rho:G\rightarrow GL(\omega_{X}^{[m]}/\mathfrak{m}_{x}\omega_{X}^{[m]})\simeq \mathbb{C}^{*}$ the canonical representation.
Then

Ind((X, $x)/G$ ) $=m|Im\rho|$ .

In particular,

Ind((X, $x)/G$ ) $\leq m|G|$ .
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Proof. Denote the order of $G$ by $d$ , $|Im\rho|$ by $r$ and Ind((X, $x)/G$ )

by $I$ . Let $g$ be a generator of $Im\rho$ and $\epsilon$ the primitive $r$-th root of 1

which corresponds to $g$ . Let $\omega$ be a generator of $\omega_{X}^{[m]}$ .

By the pull-back of a generator of $\omega_{X/G}^{[I]}$ , one has a $G$-invariant 7-ple
$n$-form $\theta$ which is holomorphic and does not vanish on $X_{reg}$ . Therefore
$I$ $=mm’$ for some $m’\in \mathbb{N}$ and $\theta=h\omega^{\otimes m’}$ , where $h$ is a nowhere
vanishing holomorphic function on $X$ . Since $\theta^{g}=\theta$ as an element of
$\omega_{X}^{[I]}/\mathfrak{m}_{x}\omega_{X}^{[I]}$ , one obtains that $\epsilon^{m’}h(x)\omega^{\otimes m’}=h(x)\omega^{\otimes m’}$ Hence $\epsilon^{m’}=$

$1$ . This shows $I$ $\geq mr$ . Next, to prove $I$ $\leq mr$ , we construct a G-
invariant mr-ple $n$-form which is holomorphic and does not vanish on
$X_{reg}$ . Denote an element of $G$ which corresponds to $ g\in Im\rho$ by the

same symbol $g$ . Let $\theta$ be an mr-ple $n$-form $\omega\otimes\omega^{g}\ldots\otimes\omega^{g^{r-1}}$ and $\tilde{\theta}$ be
$(1/d)\sum_{\sigma\in G}\theta^{\sigma}$ . Then $\tilde{\theta}$ is an invariant mr-ple $n$-form. Let $\rho(\sigma)=g^{i}$

for $\sigma\in G$ . Then in $\omega_{X}^{[mr]}/\mathfrak{m}_{x}\omega_{X}^{[mr]}$ , $\theta^{\sigma}=\epsilon^{ri+(1+2++r-1)}\ldots\omega^{\otimes r}$ which is
$\omega^{\otimes r}$ if $r$ is odd and $-\omega^{\otimes r}$ if $r$ is even. Therefore $\tilde{\theta}=\pm\omega^{\otimes r}+\lambda$ , where
$\lambda\in \mathfrak{m}_{x}\omega_{X}^{[mr]}$ . Since $\tilde{\theta}\not\in \mathfrak{m}_{x}\omega_{X}^{[mr]},\tilde{\theta}$ does not vanish on $X_{reg}$ , which

shows that $\tilde{\theta}$ is a required form. Q.E.D.

Corollary 3.4. Let $(X, x)$ be an isolated strictly $log$ canonical sin-
gularity of index 1 on which $a$ fifinite group $G$ acts. Let $f$ : $\tilde{X}\rightarrow X$ be a G-
equivariant resolution of the singularities and $\rho$ : $ G\rightarrow GL(\omega_{X}/f_{*}\omega_{X})\simeq$

$\mathbb{C}$ the induced representation. Then Ind((X, $x)/G$ ) $=|Im\rho|$ .

Proof. For an isolated strictly $\log$-canonical singularity of index 1,
it follows that $\mathfrak{m}_{x}\omega_{X}=f_{*}\omega_{\overline{X}}$ . Q.E.D.

Corollary 3.5. Let $(X, x)$ be an $n$ -dimensional isolated strictly
$log$-canonical singularity of index 1 on which $a$ fifinite group $G$ acts. As-
sume that there exists the canonical model $\varphi$ : $X’\rightarrow X$ and let $E$ be the
reduced exceptional divisor. Then the action induces a representation
$\rho:G\rightarrow GL(H^{n-1}(E, \mathcal{O}_{E}))$ and Ind(X, $x$ ) $/G=|Im\rho|$ .

Proof. Take a $G$ equivariant resolution $f$ : $\overline{X}\rightarrow X$ . Then
$\oplus_{m\geq 0}f_{*}\omega_{\overline{X}}^{\otimes m}$ admits the action of $G$ . So the canonical model admits
the equivariant action of $G$ , therefore the exceptional divisor $E$ also does.
Since $\omega_{X’}\simeq \mathcal{O}_{X’}(-E)$ (proof of Lemma 7 of [8]) and $X’$ is Gorenstein
in codimension 2, $E$ is Cohen-Macaulay and $\omega_{E}\simeq \mathcal{O}_{E}$ . These yield that
$H^{n-1}(E, \mathcal{O}_{E})=\mathbb{C}$ . As $R^{n-1}\varphi_{*}\mathcal{O}_{X’}\simeq R^{n-1}f_{*}\mathcal{O}_{\overline{X}}\simeq \mathbb{C}$ , the surjection
$R^{n-1}\varphi_{*}\mathcal{O}_{X’}\rightarrow H^{n-1}(E, \mathcal{O}_{E})$ is an isomorphism. On the other hand
$R^{n-1}f_{*}\mathcal{O}$ -is dual to $\omega_{X}/f_{*}\omega_{\overline{X}}$ , on which one can apply Corollary 3.4.

Q.E.D.
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Corollary 3.6. Let $(X, x)$ be an $n$ -dimensional isolated strictly
$log$-canonical singularity of index 1 on which $a$ fifinite group $G$ acts.
Let $f$ : $Y\rightarrow X$ be a $G$ -equivariant good resolution and $E_{J}$ the es-
sential divisor. Then the action induces a representation $\rho$ : $ G\rightarrow$

$GL(H^{n-1}(E_{J}, \mathcal{O}_{E_{J}}))$ and Ind(X, $x$ ) $/G=|Im\rho|$ .

Proof. It is clear that $G$ acts on $E_{J}$ . Since $E_{J}$ is the essential
divisor, $R^{n-1}f_{*}\mathcal{O}_{X’}\simeq H^{n-1}(E_{J}, \mathcal{O}_{E_{J}})$ by Lemma 3.7 [6]. On the other
hand $R^{n-1}f_{*}\mathcal{O}_{\overline{X}}$ is dual to $\omega_{X}/f_{*}\omega_{\overline{X}}$ , on which one can apply Corollary
3.4. Q.E.D.

\S 4. Index of isolated strictly $\log$-canonical singularities

4.1. In this section, one proves that the indices of isolated strictly
$\log$-canonical singularities of dimension 2 and 3 are determined. Here
one should note that the boundedness of indices does not hold for log-
terminal singularities and non-log-canonical singularities even for 2-di-
mensional case.

Example 4.2. (1) Let $(Z_{m}, z_{m})$ be the cyclic quotient singularity
$\mathbb{C}^{2}/G$ , where $G$ is generated by

$\left(\begin{array}{ll}\epsilon & 0\\0 & \epsilon\end{array}\right)$ .

Here $\epsilon$ is a primitive $m$-th root of unity. Then the exceptional curve
on the minimal resolution is $\mathbb{P}^{1}$ and its self-intersection number is $-m$ .

Therefore the index of $(Z_{m}, z_{m})$ is $m$ if $m$ is odd and $m/2$ if $m$ is even.
This shows that the indices of $\log$-terminal singularities are not bounded.

(2) Let $(X, x)\subset(\mathbb{C}^{3},0)$ be a hypersurface singularity defined by
$x^{4}+y^{4}+z^{4}=0$ and $(Z_{m}, z_{m})$ is its quotient by the cyclic group generated
by

$\left(\begin{array}{lll}\epsilon & 0 & 0\\0 & & 0\\0 & 0 & \epsilon\end{array}\right)$ ,

where $\epsilon$ is a primitive $m$-th root of unity. Then the index of $(Z_{m}, z_{m})$

is $m$ . This shows that the indices of non-log-canonical singularities are
not bounded.

4.3. Let $\pi$ : $(X, x)\rightarrow(Z, z)$ be a finite morphism \’etale in codi-
mension 1. Then $(X, x)$ is strictly $\log$-canonical if and only if $(Z, z)$ is
(see for example Proposition 1.7, [7]). Hence by the canonical cover, an
arbitrary strictly $\log$-canonical singularity is regarded as the quotient
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of such a singularity of index 1 by a finite group which acts on the
singularity freely in codimension 1.

Definition 4.4. An isolated strictly $\log$-canonical singularity is
called of type $(0, i)$ , if its canonical cover is of type $(0, i)$ .

Theorem 4.5. An arbitrary dimensional isolated strictly log-ca-
nonical $singula7\dot{u}ty$ of type $(0, 0)$ has index either 1 or 2.

Proof. This is proved in Theorem 3.10, [7]. One can also prove it
by using 3.6. Let $\pi$ : $(X, x)\rightarrow(Z, z)$ be the canonical cover of an n-
dimensional isolated strictly $\log$-canonical singularity $(Z, z)$ and $ G=\langle g\rangle$

the associated cyclic group. Let $f$ : $\tilde{X}\rightarrow X$ be a $G$-equivariant good
resolution of $(X, x)$ such that $\pi\circ f$ factors through a good resolution
$g$ : $\tilde{Z}\rightarrow Z$ of $(Z, z)$ . Denote the essential divisor for $f$ by $E_{J}$ and its
dual complex by $\Gamma$ . Then $g$ induces an automorphism $g^{*}$ on $H^{n-1}(\Gamma, \mathbb{Z})$ .
Since $(X, x)$ is of type $(0, 0)$ , $\mathbb{C}\simeq H_{n-1}^{0,0}(E_{J})$ and this is isomorphic

to $H^{n-1}(\Gamma, \mathbb{C})$ by 2.5, [12]. Therefore $H^{n-1}(\Gamma, \mathbb{Z})$ is of rank 1. Let
$\lambda$ be a free generator of $H^{n-1}(\Gamma, \mathbb{Z})$ Then $g^{*}(\lambda)=\pm\lambda+(torsion)$ in
$H^{n-1}(\Gamma, \mathbb{Z})$ . Therefore $ g^{*}(\lambda)=\pm\lambda$ in $H^{n-1}(\Gamma, \mathbb{C})$ . Hence the order of
the action of $G$ on $H^{n-1}(E_{J}, \mathcal{O}_{E_{J}})$ is 1 or 2. Now apply 3.6. Q.E.D.

4.6. A non-singular projective variety $X$ is called a Calabi-Yau va-
riety, if it satisfies that $\omega_{X}\simeq \mathcal{O}_{X}$ . It is well known that a 1-dimensional
Calabi-Yau variety is an elliptic curve and 2-dimensional one is either a
$K3$-surface or an Abelian surface. An automorphism $g$ on $X$ induces a
linear automorphism $g^{*}$ on $\Gamma(X, \omega_{X})=\mathbb{C}$ which is dual to $H^{n}(X, \mathcal{O}_{X})$ ,
where $n=dimX$ . Now let us introduce a conjecture on finite automor-
phisms on Calabi-Yau varieties, which is essential to our problem.

Conjecture 4.7. For $n\in \mathbb{N}$ , there is a number $B_{n}$ such that n-
dimensional Calabi-Yau variety $X$ and a finite automorphism $g$ on $X$ , the
order of the induced automorphism $g^{*}$ on $H^{n}(X, \mathcal{O}_{X})=\mathbb{C}$ is bounded
by $B_{n}$ .

For $n=1,2$ , the conjecture holds true.

Proposition 4.8. For an arbitrary elliptic curve $X$ , denote the
order $|Im\rho|$ by $r$ , where $\rho$ : $Aut(X)\rightarrow GL(H^{1}(X, \mathcal{O}_{X}))=\mathbb{C}^{*}$ is the
induced representation. Then $\varphi(r)\leq 2$ , which means $r=1,2,3,4$ or
6.

Proof. This is a classical result and proved in various ways. For
example, note that an automorphism of $X$ is the composite of a group
homomorphism and a translation. Since the translation has no effect on
$H^{1}(X, \mathcal{O}_{X})=\mathbb{C}$ , $Im\rho$ is $\rho(Aut(X, 0))$ , where Aut(X, 0) is the group of
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automorphisms. Since Aut $(X, 0)$ fixes the zero element of the group, it is
a finite group of order 1, 2, 4 or 6 (see, for example, $IV$ , 4.7, [5]). Q.E.D.

Proposition 4.9. (i) (10.1.2, [16]) For an arbitrary $K3$ surface
$X$ , denote the order1 $Im$ $\rho|$ by $r_{f}$ where $\rho$ : $Aut(X)\rightarrow GL(H^{2}(X, \mathcal{O}_{X}))=$

$\mathbb{C}^{*}$ is the induced representation. Then $\varphi(r)\leq 20$ , in particular $r\leq 66$ .

Here $\varphi$ is the Euler function.
(ii) (3.2, [4]) For an arbitrary Abelian surface $X$ , the order $r$ of $a$

fifinite automorphism on $X$ satisfifies $\varphi(r)\leq 4$ , which means that $r=1$ ,
2, 3, 4, 5, 6, 8, 10, 12.

Now one obtains a new proof of the following result.

Theorem 4.10. A 2-dimensional strictly $log$ canonical singularity
has index 1, 2, 3, 4 or 6.

Proof. Let $\pi$ : $(X, x)\rightarrow(Z, z)$ be the canonical cover of the strictly
$\log$-canonical singularity $(Z, z)$ and $G$ be the associated cyclic group.
By 4.5, it is sufficient to prove the case that $(X, x)$ is of type $(0, 1)$ .

Let $f$ : $Y\rightarrow X$ be the minimal resolution and $E$ the exceptional curve.
Then $f$ is a $G$-equivariant good resolution with the essential divisor
$E$ which is an elliptic curve. By 4.8, $|Im\rho|=1,2,3,4$ or 6, where
$\rho$ : $G\rightarrow GL(H^{1}(E, \mathcal{O}_{E}))=\mathbb{C}^{*}$ is the induced representation. Now
apply 3.6. Q.E.D.

Theorem 4.11. An isolated 3-dimensional strictly $log$ canonical
singularity of type $(0, 2)$ has index $r$ , where $\varphi(r)\leq 20$ .

Proof. Let $\pi$ : $(X, x)\rightarrow(Z, z)$ be the canonical cover of a 3-
dimensional strictly $\log$-canonical singularity $(Z, z)$ and $G$ the associated
cyclic group. Let $E$ be the exceptional divisor on the canonical model of
$X$ . Then by 2.10 $E$ is either a normal $K3$-surface or an Abelian surface.
Note that the action of $G$ on $E$ is lifted onto the minimal resolution
$\tilde{E}$ of $E$ . Since the singularities on $E$ are at worst rational double, one
obtains that $\Gamma(E, \omega_{E})=\Gamma(\tilde{E}, \omega_{\overline{E}})$ . By the Serre duality, the action of
$G$ on $H^{2}(E, \mathcal{O}_{E})$ is the same as the one on $H^{2}(\tilde{E}, \mathcal{O}_{\overline{E}})$ . Therefore by
3.5 and 4.9 $r=Ind(Z, z)$ satisfies $\varphi(r)\leq 20$ . Q.E.D.

Theorem 4.12. An isolated 3-dimensional strictly $log$ canonical
singularity of type $(0, 1)$ has index 1, 2, 3, 4 or 6.

4.13. For the proof of Theorem 4.12 one needs the discussion on
the following divisor: Let $E_{J}$ be a simple normal crossing divisor on
a non-singular 3-fold. Assume $E_{J}=E_{1}+E_{2}+\ldots+E_{s}$ is a cycle of
elliptic ruled surfaces $E_{i}$ and every intersection curve is a section on the
ruled surfaces. Decompose $E_{J}$ into two connected chains $E^{(i)}(i=1,2)$
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with no common components. Let $C_{1}$ and $C_{2}$ be the irreducible curves
of $E^{(1)}\cap E^{(2)}$ . Let $p$ : $E^{(1)}\rightarrow C$ and $q$ : $E^{(2)}\rightarrow C$ be the rulings
and $p_{i}$ : $C_{i}\rightarrow C$ be the restriction of $p$ on $C_{i}$ . Then one obtains the
Mayer-Vietoris exact sequence:

$H^{1}(E^{(1)}, \mathbb{C})\oplus H^{1}(E^{(2)}, \mathbb{C})\rightarrow H^{1}(C_{1}, \mathbb{C})\oplus H^{1}(C_{2}, \mathbb{C})$

$\rightarrow H^{2}(E_{J}, \mathbb{C})\rightarrow 0$ ,

which is an exact sequence of mixed Hodge structure. By taking $Gr_{F}^{0}$ ,

where $F$ is the Hodge filtration, one obtains the following:

$H^{1}(E^{(1)}, \mathcal{O})\oplus H^{1}(E^{(2)}, \mathcal{O})\rightarrow H^{1}(C_{1}, \mathcal{O})\Phi\oplus H^{1}(C_{2}, \mathcal{O})$

$\rightarrow H^{2}(E_{J}, \mathcal{O})\Psi\rightarrow 0$ .

Lemma 4.14. Assume that $H^{2}(E_{J}, \mathcal{O})=\mathbb{C}$ . Let $\Phi|_{H^{1}(E(i)\mathcal{O})},=$

$\varphi_{i}$ and $\Psi|_{H^{1}(C_{i},\mathcal{O})}=\psi_{i}$ . Then the following hold:
(i) $Im\varphi_{1}=Im\varphi_{2}=Im\Phi$ ;
(ii) $\psi_{i}$ is an isomorphism for $i=1,2$ and $Ker\Psi\circ(p_{1}^{*}\oplus p_{2}^{*})=\triangle$ ,

where $\triangle$ is the diagonal subspace of $H^{1}(C, \mathcal{O})\oplus H^{1}(C, \mathcal{O})$ ;
(iii) fifix $C_{1}$ , then the isomorphism $\psi_{1}$ is independent of the choice of

the decomposition of $E_{J}$ as in 4.13.

Proof If (i) does not hold, then $Im\Phi\neq Im\varphi_{1}$ , where $Im\varphi_{1}$ is of
dimension 1, because $\varphi_{1}$ is a non-zero map from 1-dimensional vector
space. Therefore $\Phi$ becomes surjective, a contradiction to $H^{2}(E_{J}, \mathcal{O}_{E_{J}})$

$\neq 0$ . For (ii), consider the composite:

$H^{1}(E^{(i)}, \mathcal{O}_{E^{(i)}})\rightarrow H^{1}(\varphi_{i}C_{1}, \mathcal{O}_{C_{1}})\oplus H^{1}(C_{2}, \mathcal{O}_{C_{2}})$

$p_{1}^{*-1}\oplus p_{2}^{*-1}\rightarrow H^{1}(C, \mathcal{O}_{C})\oplus H^{1}(C, \mathcal{O}_{C})$

.

One obtains that $Im((p_{1}^{*-1}\oplus p_{2}^{*-1})\circ\varphi_{i})=\triangle$ . Therefore $\psi_{i}$ is not a zero

map. For (iii), take another $C_{2}’$ and $E^{(i)’}(i=1,2)$ such that $ E^{(1)’}\cap$

$E^{(2)’}=C_{1}IIC_{2}’$ . One may assume that $C_{2}’\subset E^{(1)}$ and $E^{(1)’}\subset E^{(1)}$ and
$E^{(2)}\subset E^{(2)’}$ . Let $E^{(3)}$ be a subchain of $E_{J}$ such that $E^{(1)}\cap E^{(2)’}=$

$C_{1}\Pi E^{(3)}$ . Then $C_{2}$ , $C_{2}’\subset E^{(3)}$ . By these inclusions, we obtain the
commutative diagram:

$H^{1}(E^{(1)})\oplus H^{1}(E^{(2)})\rightarrow H^{1}(C_{1})\oplus H^{1}(C_{2})\rightarrow H^{2}(E_{J})\Psi\rightarrow 0$

$||$ $\uparrow 1$ $||$ $\uparrow\iota$ $||$

$H^{1}(E^{(1)})\oplus H^{1}(E^{(2)’})\rightarrow H^{1}(C_{1})\oplus H^{1}(E^{(3)})\rightarrow H^{2}(E_{J})\rightarrow 0$

$\downarrow\iota$ $||$ $||$ $\downarrow\iota$ $||$

$H^{1}(E^{(1)’})\oplus H^{1}(E^{(2)’})\rightarrow H^{1}(C_{1})\oplus H^{1}(C_{2}’)\rightarrow H^{2}(E_{J})\Psi’\rightarrow 0$ .
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So the restrictions of $\Psi$ and $\Psi’$ on $H^{1}(C_{1}, \mathcal{O})$ are the same. Q.E.D.

Proof of Theorem 4.12. Let $(Z, z)$ be an isolated strictly log-cano-
nical singularity of type $(0, 1)$ , $\pi$ : $(X, x)\rightarrow(Z, z)$ the canonical cover
and $G$ the associated cyclic group. Let $f$ : $Y\rightarrow X$ be a $G$-equivariant
good resolution and $E_{J}$ the essential divisor. Then $E_{J}$ is either as in (i)
or (ii) of Theorem 6.8 in Appendix.

Case 1. The case that $E_{J}$ is as in (ii) of Theorem 6.8.
Let $E_{J}=E^{(-)}+E^{(0)}+E^{(+)}$ be the decomposition as in (ii). Then

there is a ruling $p:E^{(0)}\rightarrow C$ over an elliptic curve $C$ . Since each fiber of
$p$ is mapped to a fiber of $p$ by the action of $G$ , $C$ admits the action of $G$

and $p$ becomes a $G$-equivariant morphism. Now by the Mayer-Vietoris
exact sequence:

$H^{1}(E^{(-)}+E^{(0)}, \mathcal{O})\oplus H^{1}(E^{(0)}+E^{(+)}, \mathcal{O})\rightarrow H^{1}(E^{(0)}, \mathcal{O})$

$\rightarrow H^{2}(E_{J}, \mathcal{O})\rightarrow H^{2}(E^{(-)}+E^{(0)}, \mathcal{O})\oplus H^{2}(E^{(0)}+E^{(+)}, \mathcal{O})=0$ ,

one obtains a $G$-equivariant isomorphism $H^{1}(E^{(0)}, \mathcal{O})\simeq H^{2}(E_{J}, \mathcal{O})$ . On
the other hand there is a $G$-equivariant isomorphism $p^{*}$ : $ H^{1}(C, \mathcal{O})\rightarrow$

$H^{1}(E^{(0)}, \mathcal{O})$ . Since the action of $G$ on $H^{1}(C, \mathcal{O})$ is induced from that
on $C$ , the order of the action on $G$ on $H^{1}(C, \mathcal{O})$ is 1, 2, 3, 4, 6 by
Proposition 4.8.

Case 2. The case that $E_{J}$ is as in (i) of Theorem 6.8.
If the intersection curves are all fixed under the action of $G$ , the

generater $g$ of $G$ induces an automorphism of each intersection curve.
Take $C_{i}$ and $E^{(i)}(i=1,2)$ as in 4.13. Then one obtains the commutative
diagram of isomorphisms:

$H^{1}(C_{1})$
$\rightarrow\psi_{1}$

$H^{2}(E_{J})$

$ g|_{C_{1}}^{*}\downarrow$ $\downarrow g^{*}$

$H^{1}(C_{1})$
$\rightarrow\psi_{1}$

$H^{2}(E_{J})$ .

Since $g|_{C_{1}}^{*}$ is of order 1, 2, 3, 4, 6 by Proposition 4.8, so is $g^{*}$ .
If $g(C_{1})=C_{2}$ for $C_{1}\neq C_{2}$ , then under the notation in 4.13 let

$h$ : $C\rightarrow C$ be an automorphism $p_{2}\circ g|_{C_{1}}\circ p_{1}^{-1}$ . By the definition of $h$ ,
we obtain the commutative diagram of isomorphisms:

$H^{1}(C)$
$\rightarrow p_{2}^{*}$

$H^{1}(C_{2})$
$\rightarrow\psi_{2}’$

$H^{2}(E_{J})$

$\downarrow h^{*}$ $ g|_{C_{1}}^{*}\downarrow$ $\downarrow g^{*}$

$H^{1}(C)$
$\rightarrow p_{1}^{*}$

$H^{1}(C_{1})$
$\rightarrow\psi_{1}$

$H^{2}(E_{J})$ ,

where $\psi_{2}’$ is induced from $\psi_{1}$ through $g$ . Here, note that $H^{2}(E_{J}, \mathcal{O})=\mathbb{C}$

by the assumption of the singularity. So one can apply Lemma 4.14, (iii),
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obtaining that $\psi_{2}’=\psi_{2}$ . On the other hand, as $Ker\Psi\circ(p_{1}^{*}\oplus p_{2}^{*})=\triangle$

by Lemma 4.14, (ii), it follows that $\psi_{1}\circ p_{1}^{*}=-\psi_{2}\circ p_{2}^{*}$ . Hence, by the
diagram above, the order of $g^{*}$ is 1, 2, 3, 4, 6 since that of $h^{*}$ is 1, 2, 3,
4, 6 by 4.8. Q.E.D.

Theorem 4.15. For a positive integer $r$ the following are equiva-

lent
(i) $r$ is the index of a 3-dimensional strictly $log$ canonical singularity;
(ii) $\varphi(r)\leq 20$ and $r\neq 60$ , where $\varphi$ is the Euler function.

Proof. First assume (i), then by theorems 4.5, 4.11 and 4.12, it
follows that $\varphi(r)\leq 20$ . If there exists a 3-dimensional strictly log-
canonical singularity $(Z, z)$ of index 60, then by 4.5 and 4.12, $(Z, z)$

must be of type $(0, 2)$ . Let $E$ be the exceptional divisor on the canonical
model of the canonical cover $(X, x)$ , then $E$ is a normal $K3$-surface. Let
$G$ be the corresponding group of the canonical cover, then $G$ acts on
$E$ whose induced action on $H^{2}(E, \mathcal{O}_{E})$ is of order 60. Since this action

is lifted to the minimal resolution $\tilde{E}$ of $E$ , one obtains a $K3$-surface $\tilde{E}$

which admits an automorphism whose action on $H^{2}(\tilde{E}, \mathcal{O}_{\overline{E}})$ is of order
60. However, it is proved by Machida-Oguiso [13] that there is no K3-
surface with such an automorphism.

Next assume (ii), then by [11] and [17], there is a $K3$-surface $E$

with an automorphism $g$ : $E\rightarrow E$ whose order and the order of induced
automorphism on $H^{2}(E, \mathcal{O}_{E})$ are both $r$ . Let $ G=\langle g\rangle$ , $\pi$ : $E\rightarrow E’=$

$E/G$ the quotient map and $\mathcal{L}$ an ample invertible sheaf on $E’$ . Let $Y’$

and $Y$ be the line bundles $Spec\oplus_{m\geq 0}\mathcal{L}^{\otimes m}$ and $Spec\oplus_{m\geq 0}\pi^{*}\mathcal{L}^{\otimes m}$ on
$E’$ and on $E$ , respectively. Then $Y\rightarrow E$ has the zero section $E_{0}$ whose
normal bundle is $\pi^{*}\mathcal{L}^{-1}$ , so there is a contraction $f$ : $(Y, E_{0})\rightarrow(X, x)$

of $E_{0}$ . Since the exceptional divisor $E_{0}$ is a $K3$-surface, the singularity
$(X, x)$ is strictly $\log$-canonical of index 1 and of type $(0, 2)$ by [8]. One
defines an action of $G$ on $(X, x)$ in the following way: Let $\sigma$ be the action
of $G$ on $E$ . On the other hand there is also an action $\tau$ of $G$ on $Y’$ which
is trivial on $E’$ , because $Y’$ admits a canonical action of $\mathbb{C}^{*}$ and $G$ is
considered as a subgroup of $\mathbb{C}^{*}$ . Since $Y$ is the fiber product $E\times_{E’}Y’$ ,

one obtains the action of $G$ on $Y$ which is compatible with $\sigma$ and $\tau$ . It is
clear that this action is free on $Y\backslash E_{0}$ and $E_{0}$ is $G$-invariant. Therefore
one can introduce the action of $G$ on $(X, x)$ . The quotient $(Z, z)=$

$(X, x)/G$ is strictly $\log$-canonical of index $r$ by Corollary 3.6. Q.E.D.

4.16. The boundedness of indices of higher dimensional strictly
$\log$-canonical singularities is also expected to follow from Conjecture 4.7.
On the contrary, if indices of $n$-dimensional strictly $\log$-canonical singu-
larities are bounded, then Conjecture 4.7 holds for $(n-1)$ -dimensional
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Calabi-Yau varieties. Indeed, as in the proof of Theorem 4.15, for ev-
ery Calabi-Yau $(n-1)$-fold $E$ and a finite order automorphism $g$ , one
can construct a strictly $\log$-canonical singularity of index $r$ , where $r$ is
the order of the induced automorphism $g^{*}$ on $H^{n-1}(E, \mathcal{O}_{E})$ . Hence the
boundedness of indices implies Conjecture 4.7.

\S 5. Finite groups which act non-freely in codimension one.

5.1. Terminologies in [10] are used in this section. Here one con-
siders a finite group action on a 2-dimensional strictly $\log$ canonical sin-
gularity. If the action is not free in codimension 1, the index of the
quotient is not bounded.

Example 5.2. Let $\pi$ : $C\rightarrow \mathbb{P}^{1}$ be a double covering from an ellip-
tic curve $C$ . Then $\pi$ is the quotient map by a group $G=\mathbb{Z}/(2)$ . Let $\tilde{Z}_{m}$

and $\tilde{X}_{m}$ be $Spec\oplus_{i\geq 0}\mathcal{O}_{\mathbb{P}^{1}}(mi)$ and $Spec\oplus_{i\geq 0}\pi^{*}\mathcal{O}_{\mathbb{P}^{1}}(mi)$ respectively,

then $\tilde{X}_{m}$ admits the canonical action of $G$ and the induced morphism
$\tilde{\pi}$ : $\tilde{X}_{m}\rightarrow\tilde{Z}_{m}$ is the quotient map. Since the zero sections of $\tilde{X}_{m}$ and
$\tilde{Z}_{m}$ are $G$-invariant, one obtains the quotient map $\pi’$ : $X_{m}\rightarrow Z_{m}$ , where
$X_{m}$ and $Z_{m}$ are the contracted space of zero sections in $\tilde{X}_{m}$ and $\tilde{Z}_{m}$ ,

respectively. Here the singularity of $X_{m}$ is strictly $\log$-canonical of index
1 and the singularity of $Z_{m}$ has the index $m$ if $m$ is odd and $m/2$ if $m$

is even as one sees in Exa mple 4.2, which shows that the indices of the
quotients $\{Z_{m}\}_{m\in N}$ are not bounded.

5.3. Let $(X, x)$ be an $n$-dimensional normal singularity and $G$ a
finite group which acts on $(X, x)$ non-freely in codimension 1. Let $\pi$ :
$(X, x)\rightarrow(Z, z)=(X, x)/G$ be the quotient map, then $\pi$ ramifies at
divisors on $X$ . Let $B_{i}(i=1, \ldots, s)$ be the branch divisors of $\pi$ and $R_{ij}$

$(j=1, \ldots n_{i})$ the ramification divisors over $B_{i}$ . Then the ramification
index of $R_{ij}$ depends only on $i$ , denote it by $e_{i}$ , because the generic
points of $R_{ij}$ ’s $(j=1, \ldots, n_{i})$ are mapped to each other transitively by
the action of $G$ . As for a Weil divisor $D$ on $Z$ the pull-back $\pi^{*}(D)$ by
finite morphism $\pi$ is defined (see for example 1.8 in [2]), one obtains the
formula of $\mathbb{Q}$-divisors:

$K_{X}=\pi^{*}(K_{Z}+\sum_{i=1}^{s}\frac{e_{i}-1}{e_{i}}D_{i})$ .

Lemma 5.4. Under the notation of 5.3, $(X, x)$ is strictly log-
canonical, if and only if the pair $(Z, \sum_{i=1}^{s}(1-1/e_{i})D_{i})$ is $log$ canonical,
non-kit around $z$ .
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Proof. By 3.16 of [10] $(X, \emptyset)$ is $\log$-canonical, non-kit around $x$ ,

if and only if $(Z, \sum_{i=1}^{s}(1-1/e_{i})D_{i})$ is $\log$-canonical, non-kit around
$z$ . Here note that $(X, \emptyset)$ is kit around $x$ , if and only if $(X, x)$ is log-
terminal. Q.E.D.

Lemma 5.5. Let $Z$ be a normal surface and $D$ an effective $\mathbb{Q}-$

divisor on $Z$ such that Supp(D) contains a point $z\in Z$ . If $(Z, D)$ is
$log$-canonical, then $(Z, z)$ is a quotient singularity.

Proof. Let $f$ : $\tilde{Z}\rightarrow Z$ be a resolution of singularities on $Z$ . First
one will prove that $\omega_{Z}=f_{*}\omega$ -around $z$ . Take a positive integer $m$

such that $mD$ is an integral divisor and $\omega_{Z}^{[m]}(mD)$ is trivial around $z$ .

Represent $mD=\sum_{i=1}^{u}r_{i}D_{i}$ , where $D_{i}$ ’s are the irreducible components.

Let $\omega$ be a generator of $\omega_{Z}^{[m]}(mD)$ , then $\iota\nearrow D_{i}(\omega)=-r_{i}<0$ for every $i$ .

Since $(Z, D)$ is $\log$-canonical, one obtains

$K_{\overline{Z}}=f^{*}(K_{Z}+D)+\sum_{j=1}^{v}m_{j}E_{j}-D’$ ,

with $m_{j}\geq-1$ for every $j$ , where $D’$ is the proper transform of $D$ and
$E_{j}$ ’s are the irreducible exceptional curves. Therefore

$\omega_{\overline{Z}}^{m}(-\sum mm_{j}E_{j}+mD’)=f^{*}(\omega_{Z}^{[m]}(mD))$ .

Hence $\iota/_{E_{j}}(\omega)=mm_{j}\geq-m$ for every $j$ . If an element $\theta\in\omega_{Z}$ satisfies
$l\nearrow E_{j}(\theta)<0$ for some $E_{j}$ with $f(E_{j})=\{z\}$ , then $\nu_{E_{j}}(\theta^{m})\leq-m$ . Since
$\theta^{m}\in\omega_{Z}^{[m]}\subset\omega_{Z}^{[m]}(mD)$ , it follows that $\theta^{m}=h\omega$ with $h\in \mathcal{O}_{Z}$ . Then
$-m\leq lJ_{E_{j}}(\omega)\leq\iota/_{E_{j}}(\theta^{m})\leq-m$ , and therefore $\iota/_{E_{j}}(h)=0$ . Hence
$h$ does not vanish at $z$ , from which one may assume that $h$ does not
vanish on $Z$ by deleting $Z$ sufficiently. But this yields a contradiction
$\iota\nearrow D_{i}(\theta^{m})=\iota/_{D_{i}}(\omega)=-r_{i}<0$ . Now one obtains that $\omega_{Z}=f_{*}\omega_{\tilde{Z}}$

around $z$ . Since $Z$ is a normal surface, this equality implies that $(Z, z)$

is a rational singularity, hence a $\mathbb{Q}$-Gorenstein singularity. So one can
represent

$K_{\overline{Z}}=f^{*}K_{Z}\dashv-\sum n_{j}E_{j}$ ,

with $n_{j}=m_{j}+m_{j}’$ , where $f^{*}D=D’+\sum m_{j}’E_{j}$ . By $z\in Supp(D)$

it follows that $m_{j}’>0$ for every $E_{j}$ with $f(E_{j})=\{z\}$ , which yields
that $n_{j}>-1$ for these $j$ . A 2-dimensional $\log$-terminal singularity is a
quotient singularity. Q.E.D.
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Theorem 5.6. Let $(X, x)$ be a 2-dimensional strictly $log$-canonical
singularity and $a$ fifinite group $G$ act on $(X, x)$ non-freely in codimension
1. Then the number of the branch divisors is at most 4 and the com-
bination of the ramifification indices of the quotient map $\pi$ : $(X, x)\rightarrow$

$(X, x)/G$ are (6), $(4, 4)$ , $(3, 3)$ , (3, 3, 3), $(2, 2)$ , (2, 2, 2), (2, 2, 2, 2), $(6, 2)$ ,
$(4, 2)$ , $(3, 2)$ , (6, 3, 2), (4, 4, 2), (4, 2, 2), (3, 3, 2), (3, 2, 2).

Proof Use the notation of 5.3. By Lemma 5.4 $(Z, \sum(1-1/e_{i})D_{i})$ is
$\log$ canonical, not kit and by Lemma 5.5 $(Z, z)$ is a quotient singularity.
Let $\rho$ : $\mathbb{C}^{2}\rightarrow Z$ be the quotient map. Since $\rho$ is \’etale in codimension
1, $K_{\mathbb{C}^{2}}=\rho^{*}K_{Z}$ . Then by Lemma 5.4 $(\mathbb{C}^{2}, \sum(1-1/e_{i})\rho^{*}D_{i})$ is log-
canonical, non-kit. In the following classification theorem of such pairs,
one can see that the number of the branch divisors is at most 4 and the
combination of the values of $e_{i}$ ’s are (6), $(4, 4)$ , $(3, 3)$ , (3, 3, 3), $(2, 2)$ ,
(2, 2, 2), (2, 2, 2, 2), $(6, 2)$ , $(4, 2)$ , $(3, 2)$ , (6, 3, 2), (4, 4, 2), (4, 2, 2),
(3, 3, 2), (3, 2, 2). Q.E.D.

Theorem 5.7. The pair $(\mathbb{C}^{2}, \sum(1-1/e_{i})D_{i})$ is $log$ canonical, non-
kit around 0 if and only if $(e_{i})$ and $(D_{i})$ are as follows up to analytic
isomorphism around 0:

(1.1) $e_{1}=6$ , $D_{1}=(x^{2}+g=0)$ , where $g=\sum_{a+b\geq 3}\alpha_{ab}x^{a}y^{b}$

$(\alpha_{03}\neq 0)$ ;

(1.2) $(e_{1}, e_{2})=(4,4)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{2}+g=0)$ , where
$g=\sum_{2a+b\geq 3}\alpha_{ab}x^{a}y^{b}$ ;

(1.3) $(e_{1}, e_{2})=(3,3)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{3}+g=0)$ , where
$g=\sum_{3a+b\geq 4}\alpha_{ab}x^{a}y^{b}$ ;

(1.4) $(e_{1}, e_{2}, e_{3})=(3,3,3)$ , $D_{1}=(x=0)$ , $D_{2}=(y=0)$ , $D_{3}=$

$(x+y=0)$ ;

(1.5) $(e_{1}, e_{2})=(2,2)$ , $D_{1}=(x^{2}+g=0)$ , $D_{2}=(y^{2}+h=0)$ , where
$g=\sum_{na+b>2n+1}\alpha_{ab}x^{a}y^{b}(\alpha_{02n+1}\neq 0, n\geq 1)$ , $h=\sum_{a+mb\geq 2m+1}\beta_{ab}x^{a}y^{b}$

$(\beta_{2m+1,0}\neq 0, m-\geq 1)$ ;

(1.6) $(e_{1}, e_{2}, e_{3})=(2,2,2)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{2}+g=0)$ ,
$D_{3}=(x+\beta y^{n}+h=0)$ , where $g=\sum_{2a+b\geq 3}\alpha_{ab}x^{a}y^{b}$ ,

$h=\sum_{na+b\geq n+1}\beta_{ab}x^{a}y^{b}(n\geq 2)$ , $\beta\neq 0$ and if $n=2$ , $\beta\neq 1$ ;

(1.7) $(e_{1}, e_{2}, e_{3})=(2,2,2)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{n}+g=0)$ ,
$D_{3}=(y^{2}+h=0)$ , where $g=\sum_{na+b\geq n+1}\alpha_{ab}x^{a}y^{b}(n\geq 1)$ , $h=$

$\sum_{a+mb\geq 2m+1}\beta_{ab}x^{a}y^{b}$ $(\beta_{2m+1,0}\neq 0, m\geq 1)$ ;
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(1.8) $(e_{1}, e_{2}, e_{3}, e_{4})=(2,2,2,2)$ , $D_{i}=(x+\alpha_{i}y+h_{i}=0)$ for $i=$

$1$ , $\ldots$ , 4, where $degh_{i}\geq 2$ and $\alpha_{i}\neq\alpha_{j}(i\neq j)$ ;

(1.8) $(e_{1}, e_{2}, e_{3}, e_{4})=(2,2,2,2)$ , $D_{1}=(x=0)$ , $D_{2}=(y=0)$ ,
$D_{3}=(x+y=0)$ , $D_{4}=(x+\alpha y^{n}+g=0)$ , where $g=\sum_{na+b\geq n+1}\alpha_{ab}x^{a}y^{b}$

$(n\geq 2)$ and $\alpha\neq 0$ ;

(1.10) $(e_{1}, e_{2}, e_{3}, e_{4})=(2,2,2,2)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{n}+g=$

$0)$ , $D_{3}=(y=0)$ , $D_{4}=(y+x^{m}+h=0)$ , where $g=\sum_{na+b\geq n+1}\alpha_{ab}x^{a}y^{b}$

$(n\geq 2)$ , $h=\sum_{a+mb\geq m+1}\beta_{ab}x^{a}y^{b}(m\geq 2)$ ;

(2.1) $(e_{1}, e_{2})=(6,2)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{3}+g=0)$ , where
$g=\sum_{3a+b\geq 4}\alpha_{ab}x^{a}y^{b}$ ;

(2.2) $(e_{1}, e_{2})=(4,2)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{4}+g=0)$ , where
$g=\sum_{4a+b\geq 5}\alpha_{ab}x^{a}y^{b}$ ;

(2.3) $(e_{1}, e_{2})=(3,2)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{6}+g=0)$ , where
$g=\sum_{6a+b\geq 7}\alpha_{ab}x^{a}y^{b}$ ;

(2.4) $(e_{1}, e_{2})=(3,2)$ , $D_{1}=(x=0)$ , $D_{2}=(x^{2}+g=0)$ , where
$g=\sum_{a+b\geq 3}\alpha_{ab}x^{a}y^{b}(\alpha_{03}\neq 0)$ ;

(2.5) $(e_{1}, e_{2})=(2,3)$ , $D_{1}=(x=0)$ , $D_{2}=(y^{2}+g=0)$ , where
$g=\sum_{a+b\geq 3}\alpha_{ab}x^{a}y^{b}(\alpha_{30}\neq 0)$ ;

(2.6) $(e_{1}, e_{2}, e_{3})=(6,3,2)$ , $D_{1}=(x=0)$ , $D_{2}=(y=0)$ , $D_{3}=$

$(x+y=0)$ ;

(2.7) $(e_{1}, e_{2}, e_{3})=(4,4,2)$ , $D_{1}=(x=0)$ , $D_{2}=(y=0)$ , $D_{3}=$

$(x+y=0)$ ;

(2.8) $(e_{1}, e_{2}, e_{3})=(4,2,2)$ , $D_{1}=(x=0)$ , $D_{2}=(y=0)$ , $D_{3}=$

$(x+y^{2}+g=0)$ , where $g=\sum_{2a+b\geq 3}\alpha_{ab}x^{a}y^{b}$ ;

(2.8) $(e_{1}, e_{2}, e_{3})=(3,3,2)$ , $D_{1}=(x=0)$ , $D_{2}=(y=0)$ , $D_{3}=$

$(x+y^{2}+g=0)$ , where $g=\sum_{2a+b\geq 3}\alpha_{ab}x^{a}y^{b}$ ;

(2.10) $(e_{1}, e_{2}, e_{3})=(3,2,2)$ , $D_{1}=(x=0)$ , $D_{2}=(x+y^{3}+g)$ ,
$D_{3}=(y=0)$ , where $g=\sum_{3a+b\geq 4}\alpha_{ab}x^{a}y^{b}$ .

Proof. Denote $\sum D_{i}$ by $D$ . Since $(1-1/e_{i})\geq 1/2$ , $(\mathbb{C}^{2},1/2D)$ is
$\log$-canonical around 0. Therefore $1/2\leq 1cth(\mathbb{C}^{2}, D, 0)$ , where
$1cth(\mathbb{C}^{2}, D, 0)$ is the $\log$-canonical threshold of $(\mathbb{C}^{2}, D)$ around 0. On the
other hand $1cth(\mathbb{C}^{2}, D, 0)\leq 2/mu1t_{0}D$ by 8.10 of [10]. Hence $mu1t_{0}D\leq$

$4$ .
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Case 1. $\#\{e_{i}\}=1$ .

In this case $e=e_{i}\leq 6$ , because $(e-1)/e=1cth(\mathbb{C}^{2}, D, 0)$ and the
right hand side is shown to be $\leq 5/6$ by 8.16 of [10].

Subcase 1.1. $mu1t_{0}D=2$ .

First consider the case that $D$ is analytically irreducible. Let $n$

be the number of successive blowing-ups of $\mathbb{C}^{2}$ at the singular point of
the proper transforms of $D$ to get the resolution of $D$ . Then by two
more blowing-ups at the suitable centers, one obtains a $\log$ resolution of
$(\mathbb{C}^{2}, D)$ . Let $E_{i}(i=1, \ldots, n+2)$ be the exceptional curve of the $i$-th
blowing-up and $m_{i}$ the $\log$-discrepancy of $(\mathbb{C}^{2}, (1-1/e)D)$ at $E_{i}$ , which
means:

$K_{\overline{\mathbb{C}}^{2}}+\frac{e-1}{e}\tilde{D}=f^{*}(K_{\mathbb{C}^{2}}+\frac{e-1}{e}D)+\sum_{i=1}^{n+2}m_{i}E_{i}$ ,

where $f$ : $\tilde{\mathbb{C}}^{2}\rightarrow \mathbb{C}^{2}$ is the $\log$ resolution and $\tilde{D}$ is the proper transform
of $D$ . It follows that $m_{i}=i-(1-1/e)2i$ for $i=1$ , $\ldots$ , $n$ , $m_{n+1}=$

$n+1-(1-1/e)(2n+1)$ and $m_{n+2}=2n+2-(1-1/e)(4n+2)$ .

Therefore if $e=2$ , $(\mathbb{C}^{2}, (1-1/e)D)$ is kit for every $n$ . If $e=3$ , it is
$klt$ for $n=1,2$ and non-log-canoninal for $n\geq 3$ . If $e=4$ and $e=5$ ,
it is kit for $n=1$ and non-log-canonical for $n\geq 2$ . If $e=6$ , it is
non-log-canonical for $n\geq 2$ and $\log$-canonical, non-klt for $n=1$ . Now
one obtains that $(\mathbb{C}^{2}, (1-1/e)D)$ is $\log$-canonical, non-kit, if and only
if $e=6$ and $D$ has a double cusp at 0 which can be resolved by the
blowing-up at 0. By Lemma 5.8 below one obtains the defining equation
of $D$ and this case turns out to be (1.1).

Lemma 5.8. Let $(D, 0)\subset(\mathbb{C}^{2},0)$ be a double cusp defifined by an
equation $f=0$ . Let $n$ be the number of successive blowing-ups of $\mathbb{C}^{2}$ at
the singular point of the proper transforms of $D$ to get the resolution of
D. Then $f=x^{2}+g$ , where $g=\sum_{na+b\geq 2n+1}\alpha_{ab}x^{a}y^{b}$ , $\alpha_{02n+1}\neq 0$ by $a$

suitable coordinate transformation.
Next consider the remaining case that $D$ is the union of two non-

singular curves. Let $n$ be as above, then the successive n-blowing-ups
give a $\log$-resolution. Define $E_{i}$ and $m_{i}(i=1, \ldots, n)$ in the same
way as above. Then $m_{i}=i-(1-1/e)2i$ for $i=1$ , $\ldots$ , $n$ . Therefore
$(\mathbb{C}^{2}, (1-1/e)D)$ is $\log$-canonical, non-kit, if and only if $e=4$ and $n=2$

or $e=3$ and $n=3$ . By Lemma 5.9 below, the former is (1.2) and the
latter is (1.3).

Lemma 5.9. Let $D\subset \mathbb{C}^{2}$ be the union of two non-singular curves
$D_{1}$ and $D_{2}$ defifined by equations $f_{1}=0$ and $f_{2}=0$ . Let $n$ be the
number of successive blowing-ups of $\mathbb{C}^{2}$ at the singular point of the proper
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transforms of $D$ to get the resolution of D. Then $f_{1}=x$ and $f_{2}=$

$x+y^{n}+g$ , where $g=\sum_{na+b\geq n+1}\alpha_{ab}x^{a}y^{b}$ by a suitable coordinate

transformation.

Subcase 1.2. $mu1t_{0}D=3$ .

In this case, $(\mathbb{C}^{2}, (1-1/e)D)$ is $\log$-canonical, non-kit, if and only if
(1.4) or (1.6) holds. It is proved in the same way as in Subcase 1.1, and
the proof is omitted.

Subcase 1.3. $mu1t_{0}D=4$ .

In this case, $(\mathbb{C}^{2}, (1-1/e)D)$ is $\log$-canonical, non-kit, if and only if
(1.5), (1.7), (1.8), (1.9) or (1.10) holds. The proof is omitted.

Case 2. $\#\{e_{i}\}>0$ .

In this case $mu1t_{0}D\leq 3$ . Indeed, if $mu1t_{0}D=4$ , then $1cth(\mathbb{C}^{2}, D, 0)$

$=1/2$ by the inequalities in the beginning of the proof of the theo-
rem. This is a contradiction to the fact that $(\mathbb{C}^{2}, \sum(1-1/e_{i})D_{i})$ is
$\log$-canonical around 0 with $\sum(1-1/e_{i})D_{i}>1/2D$ .

Subcase 2.1. $mu1t_{0}D=2$ .

Since $D$ is reducible, $D$ is the union of two non-singular curves. Let
$n$ , $E_{i}$ and $m_{i}$ be as in Subcase 1.1. Then $m_{i}=i\{1-(e_{1}-1)/e_{1}-$

$(e_{2}-1)/e_{2}\}$ . Therefore $(\mathbb{C}^{2}, \sum(1-1/e_{i})D)$ is $\log$-canonical, non-kit, if
and only if $(n, e_{1}, e_{2})=(3,6,2)$ , (4, 4, 2) or (6, 3, 2). These are the cases
(2.1), (2.2) and (2.3), by Lemma 5.8 and Lemma 5.9.

Subcase 2.2. $mu1t_{0}D=3$ .
One can devide into two cases:
(1) $mu1t_{0}D_{1}=1$ and $mu1t_{0}D_{2}=2$ and
(2) $mu1t_{0}$ $D_{i}=1$ for $i=1,2,3$ .

Under the first case, $(\mathbb{C}^{2}, \sum(1-1/e_{i})D)$ is $\log$-canonical, non-kit, if
and only if (2.4) or (2.5) holds, and under the second case, if and only
if (2.6), (2.7), (2.8), (2.9) or (2.10) holds. The proof is in the same way
as in Subcase 2.1. Q.E.D.

5.10. More generally, 2-dimensional $\log$-canonical pairs are clas-
sified in [15] by the terminology of dual graphs of minimal good resolu-
tions.

\S 6. Appendix : The essential divisors of type (0, 1)

In this section one studies the configurations of the essential divisors
of strictly $\log$-canonical singularities of index 1 and of type $(0, 1)$ . The
configurations of such divisors were studied in [7]. But the proof skipped
some steps and in 1.10, 186, [7] it used a contraction criterion stated
in p.61, \S 4, [20] which has a counter example (Proposition 3, Example,
[3] $)$ . So in this appendix, we give a new proof including complete steps
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for the structure of the essential divisors. As a consequence we obtain a
weaker result than stated in [7], but it is sufficient for our discussion in
the preceding sections of this paper.

Definition 6.1. Let $(X, x)$ be a normal singularity which admits
an action of a group $G$ . A birational proper morphism $g$ : $Y\rightarrow X$ is
called a $G$-equivariant $G\mathbb{Q}$-factorial terminal model of $(X, x)$ , if

(1) $G$ acts on $Y$ and $g$ is $G$-equivariant,
(2) $Y$ has at worst terminal singularities,
(3) every $G$-invariant divisor on $Y$ is a $\mathbb{Q}$-Cartier divisor and
(4) $K_{Y}$ is $nef$ .

If $(X, x)$ is of dimension 3, there exists a $G$-equivariant $G\mathbb{Q}$-factorial
terminal model (relative version of 7.6 [1]).

Some parts of the following lemmas are proved in [7], but for the
reader’s convenience we give here the proofs.

Lemma 6.2. Let $(X, x)$ be a 3-dimensional isolated strictly log-

canonical singularity of index 1 and of type $(0, 1)$ , $f$ : $\tilde{X}\rightarrow X$ a good
resolution and $E_{J}$ the essential divisor on $\tilde{X}$ . Then

(i) $E_{J}$ is not irreducible,
(ii) every intersection curve of $E_{J}$ has positive genus and
(iii) there is no triple point on $E_{J}$ .

Proof. If $E_{J}$ is irreducible, then $H^{2}(E_{J}, \mathcal{O}_{E_{J}})=\mathbb{C}$ consists of
$(0, 2)$-component, which is a contradiction. Take an irreducible com-
ponent $E_{j}$ of $E_{J}$ and put $E_{j}^{\vee}=E_{J}-E_{j}$ . Consider the exact sequence:

$H^{1}(E_{j}, \mathcal{O}_{E_{j}})\oplus H^{1}(E_{j}^{\vee}, \mathcal{O}_{E}j\vee,)\rightarrow H^{1}(E_{j}\cap E_{j}^{\vee}, \mathcal{O})\rightarrow H^{2}(E_{J}, \mathcal{O}_{E_{J}})\rightarrow 0$ ,

induced from the Mayer-Vietoris exact sequence and Proposition 3.8 of
[6]. Since $H^{2}(E_{J}, \mathcal{O}_{E_{J}})$ consists of the $(0, 1)$-component, there is $(0, 1)-$

component in $H^{1}(E_{j}\cap E_{j}^{\vee}, \mathcal{O})$ . Therefore $E_{j}\cap E_{\check{j}}$ contains at least
one curve of positive genus. Note that this holds for an arbitrary good
resolution. Here, if $\ell$ is a rational intersection curve of $E_{J}$ , take the
blowing-up $\sigma$ : $\tilde{X}’\rightarrow\tilde{X}$ with the center $\ell$ . Then the divisor $E_{0}=\sigma^{-1}(\ell)$

is an essential component on $\tilde{X}’$ and the intersection curves of $E_{J}’$ on
$E_{0}$ are all rational, where $E_{J}’$ is the essential divisor on $\tilde{X}’$ . This is a
contradiction to the fact proved above. If there is a triple point $p$ on
$E_{J}$ , take the blowing-up at $p$ . Then one also has an essential component
with only rational double curves on it. Q.E.D.

Lemma 6.3. Let $g:Y\rightarrow X$ be a $G$-equivariant $GQ$ -factorial ter-
minal model of a 3-dimensional isolated strictly $log$-canonical singularity
$(X, x)$ of index 1 and $D$ the reduced inverse image $g^{-1}(x)_{red}$ . Then
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(i) $K_{Y}=-D$ ,
(ii) the singularities of $D$ are normal crossings except for fifinite

points and
(iii) $D$ is Cohen-Macaulay, therefore isolated singularities on $D$ are

normal.

Proof. By the proof of Lemma 7 of [8], $K_{Y}=g^{*}K_{X}-\sum a_{i}D_{i}$ with
$a_{i}>0$ for all irreducible component $D_{i}$ of $D$ . Here by the assumption
on the singularity, the negative discrepancy is-1, which yields (i). Let
$C$ be an irreducible component of 1-dimensional singular locus of $D$ and
$m$ the multiplicity of $D$ at a general point of $C$ . Take the blowing-up
$\sigma$ : $Y’\rightarrow Y$ at the center $C$ and denote the exceptional divisor over $C$

by $D_{0}$ . Then the discrepancy for $ g\circ\sigma$ at $D_{0}$ is l-m, because $Y$ and $C$

are both non-singular at a general point of $C$ . Then by the assumption
on the singularity $(X, x)$ , $m$ must be 2. If the singularity of $D$ is not
ordinary at a general point of $C$ , then, by successive blowing-ups of
$Y$ with suitable curves as centers, one obtains a partial resolution $g’’$ :
$Y’’\rightarrow X$ factored through $g$ with $K_{Y^{JJ}}=-D_{1}’-D_{2}’-D_{3}’-$ (other terms),

where $D_{1}’$ , $D_{2}’$ and $D_{3}’$ are components of $g’’(-1x)_{red}$ and intersect at
a curve $C’$ . By passing through the blowing-up of $Y’’$ with center $C’$ ,
one obtains a good resolution $f$ : $\tilde{X}\rightarrow X$ , which has a discrepancy-2
at one component, a contradiction, (iii) follows from the fact that $D$ is
$\mathbb{Q}$-Cartier and the discussion as in 0.5 of [9]. Then by Serre’s criterion,
isolated singularities of $D$ are normal. Q.E.D.

Definition 6.4. An irreducible component of 1-dimensional sin-
gular locus of $D$ is called a double curve of $D$ . If a double curve is the
intersection of two irreducible components, it is called an intersection
curve.

Proposition 6.5. Let $(X, x)$ be a 3-dimensional isolated stnictly
$log$-canonical singularity of index 1 and of type $(0, 1)$ and $Ga$ fifinite
group acting on $(X, x)$ . Let $g:Y\rightarrow X$ be a $G$ -equivariant $GQ$ -factorial
terminal model of $(X, x)$ and $D$ the reduced inverse image $g^{-1}(x)_{red}$ .
Let $\sigma$ : $D’\rightarrow D$ be the normalization. Then the structure of $D$ is as

follows:
(i) the case $D$ is irreducible then $D\dot{u}$ one of the following:

(i-1) a normal elliptic ruled surface with two simple elliptic sin-
gularities or

(i-2) a normal rational surface with a simple elliptic singularity
or

(i-3) a rational surface with a double curve $C$ such that $\sigma^{-1}(C)$ is
an elliptic curve or
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(i-4) an elliptic ruled surface with a simple elliptic singularity and
a double curve $C$ such that $\sigma^{-1}(C)$ is an elliptic curve or

(i-5) an elliptic ruled surface with two double curves $C_{1}$ and $C_{2}$

such that $\sigma^{-1}(C_{1})$ , $\sigma^{-1}(C_{2})$ are disjoint elliptic curves or
(i-6) an elliptic ruled surface with a double curve $C$ such that

$\sigma^{-1}(C)$ consists of two disjoint elliptic curves;
(ii) the case $D$ is not irreduible then $D$ is one of the following:
(ii-l) a cycle of elliptic ruled surfaces with sections as double

curves or
(ii-2) a chain of surfaces $D=D_{1}+\ldots+D_{s}(s\geq 2)$ with elliptic

intersection curves, where $D_{2}$ , $\ldots$ , $D_{s-1}$ are elliptic ruled surfaces and
each of $D_{1}$ and $D_{s}$ is as follows; rational surface or elliptic ruled surface
with a simple elliptic singularity or elliptic ruled surface with a double
curve $C$ such that $\sigma^{-1}(C)$ is an elliptic curve.

(iii) the singularities of $D’$ are at worst rational double points except

for simple elliptic singularities appeared in (i-1), (i-2), (i-4) and (ii-2).
Moreover, $D’$ is non-singular along $\sigma^{-1}(C)$ , where $C$ is a double curve.

Proof. First of all, note that the singularities on $Y$ are isolated,
because $Y$ has at worst terminal singularities. By (i) of 6.3, the equality
$\omega_{D}=\mathcal{O}_{D}$ holds away from finite points. Since $D$ is Cohen-Macaulay by
6.3, this equality holds whole on $D$ . Therefore

$K_{D’}=-\sigma^{-1}$ (double curves of $D$ ).

Let $\varphi$ : $\tilde{D}\rightarrow D’$ be the minimal resolution, then one obtains

$ K_{\overline{D}}=\varphi^{*}K_{D’}-\triangle$

with $\triangle\geq 0$ , where $\varphi^{*}K_{D’}$ is the numerical pull-back defined in [19].
Now it follows that $-K_{\overline{D}}$ is an effective divisor on each component of
$\tilde{D}$ . Denote an irreducible component of $D$ by $D_{i}$ and the corresponding
component of $D’$ and $\tilde{D}$ by $D_{i}’$ and $\tilde{D}_{i}$ , respectively. Then by [23], a pair
$(\tilde{D}_{i}, \Gamma)\Gamma\in|-K_{\overline{D}_{i}}|$ is one of the following:

(1) $\tilde{D}_{i}$ is a rational surface and $\Gamma$ is an elliptic curve;
(2) $\tilde{D}_{i}$ is a rational surface and $\Gamma$ is a cycle of rational curves;
(3) $\tilde{D}_{i}$ is an elliptic ruled surface and $\Gamma$ is two disjoint sections;

(4) $\tilde{D}_{i}$ is a ruled surface of genus $\geq 2$ and $\Gamma=2C_{0}+rational$ curves,
where $C_{0}$ is a section.

But in our situation, (2) and (4) do not occur. Indeed, assume
$D_{i}$ is a component such that $\tilde{D}_{i}$ and $\Gamma$ are as in (4). Take a good

resolution $f$ : $\tilde{X}\rightarrow Y$ isomorphic on points which are non-singular on



The quotients of $log$-canonical singularities by fifinite groups 155

$D$ and on $Y$ . Let $E_{k}$ be the proper transform of $D_{k}$ on $\tilde{X}$ . Represent
$K_{\tilde{X}}=-\sum_{k}E_{k}$ $+\sum_{F_{j}:f}$ $m_{j}F_{j}$ . Then

(6.5.1)
$K_{E_{i}}=-\sum_{k\neq i}E_{k}|_{E_{i}}+\sum_{F_{j}\cdot f-exceptiona1}m_{j}F_{j}|_{E_{?}}$

.

Here non-empty $F_{j}|_{E_{i}}$ is either corresponding to a double curve of $D$ or
a point on $D$ , while $E_{k}|_{E_{i}}$ corresponds to a double curve of $D$ . Note

that $f|_{E_{i}}$ factors through $\tilde{D}_{i}$ and an irreducible component of $\Gamma$ is either
corresponding to a double curve or a point on $D$ . Therefore

(6.5.2) $K_{E_{i}}=-2C_{0}’+\sum n_{j}e_{j}$ ,

where $C_{0}’$ is the proper transform of $C_{0}$ and $e_{j}$ is either corresponding
to a double curve or a point on $D$ . By the uniqueness of the representa-
tion, (6.5.1) and (6.5.2) coincide, which shows that there is a component
$F_{j}$ with $m_{j}=-2$ , a contradiction to the condition on the singularity
$(X, x)$ . Next if $D_{i}$ is a component such that $\tilde{D}_{i}$ and $\Gamma$ are as in (2).
Then in the same way as above one can prove that there exists an es-
sential component $F_{j}$ which intersects $E_{i}$ at a rational curve, which is a
contradiction to Lemma 6.2.

Now one has only to consider the case (1) or (3). Note that each
component of $\Gamma$ corresponds to either a double curve or a point on $D$ .

First assume that $D$ is irreducible. Consider the case that $\tilde{D}$ and $\Gamma$

are as in (1). If $\Gamma$ corresponds to a double curve, then one obtains (i-3).
If $\Gamma$ corresponds to a point, then one obtains (i-2). Next consider the

case that $\tilde{D}$ and $\Gamma$ are as in (3). If both components of $\Gamma$ correspond to
points, then one obtains (i-1). If both components of $\Gamma$ correspond to
double curves, then one obtains (i-5) and (i-6). If one component of $\Gamma$

corresponds to a double curve and the other to a point, then one obtains
(i-4).

Next assume that $D$ is reducible. Then at least one component of
$\Gamma$ of $\tilde{D}_{i}$ corresponds to a double curve of $D$ . Hence the structure of $D$

is either (ii-l) or (ii-2).
For the statement (iii), take any point $p\in D’$ which is not the

simple elliptic singularity stated in (i-1), (i-2), (i-4) and (ii-2). If $p$ is
not in the curve corresponding to a double curve of $D$ , then $p$ is rational
double, because $K_{\overline{D}}=\varphi^{*}K_{D’}$ around $p$ . Assume $p$ is on the curve
$C’\subset D_{i}’$ corresponding to a double curve of $D$ and $\varphi$ is not isomorphic

at $p$ . As $K_{D_{i}’}=-C’$ around $p$ , it follows that $ K_{\overline{D}_{i}}=-\tilde{C}-\triangle$ , where
$\tilde{C}$ is the proper transform of $C’$ on $\tilde{D}_{i}$ , $\triangle>0$ and $\triangle\cap\tilde{C}\neq\emptyset$ , which
is a contradiction to the configuration of $\Gamma$ . Therefore this point $p$ is
non-singular. Q.E.D.
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In order to prove the structure theorem of the essential part of 3-
dimensional isolated strictly $\log$-canonical singularities of index 1 and of
type 1), one need the following lemmas.

Lemma 6.6. Let $X_{i}(i=1,2)$ be non-singular 3-folds, $E$ an ir-
reducible non-singular divisor with $K_{X_{1}}=-E$ , $C$ a non-singular curve
on E. and $f$ : $X_{2}\rightarrow X_{1}$ a proper birational morphism isomorphic away

from C. Denote the proper transform of $E$ by $E’$ and represent

$K_{X_{2}}=-E’+$ $\sum$ $mj$ $F_{j}$ .

$Fj:f-$ exceptional

Then $m_{j}\geq 0$ for an irreducible component $F_{j}$ with $f(F_{j})=C$ , and
$m_{j}=0$ for such $F_{j}$ with moreover $f(F_{j}\cap E’)=C$ .

Proof. By replacing $X_{1}$ by a small analytic neighbourhood of a
point on $C$ , one obtains a smooth morphism $\pi$ : $X_{1}\rightarrow\triangle\subset \mathbb{C}$ such
that $H_{t}\cap C$ is one point $\{p_{t}\}$ , where $H_{t}=\pi^{-1}(t)$ for $ t\in\triangle$ . Denote
$f^{-1}(H_{t})$ by $\tilde{H}_{t},\tilde{H}_{t}\cap E’$ by $\tilde{e}$ and $H_{t}\cap E$ by $e$ . Then for a general $ t\in\triangle$ ,
$\tilde{H}_{t}$ is irreducible, non-singular and the intersection $\tilde{H}_{t}\cap F_{j}=e_{j}$ is a
reduced curve for $F_{j}$ with $f(F_{j})=C$ . Therefore by $K_{X_{1}}|_{H_{t}}=K_{H_{t}}$ and
$K_{X_{2}}|_{\overline{H}_{t}}=K_{\overline{H}_{t}}$ , it follows that

$K_{H_{t}}=-e$ ,

$K_{\overline{H}_{t}}=-\tilde{e}+\sum_{f(F_{j})=C}m_{j}e_{j}$
.

Here $f|_{\overline{H}_{t}}$ : $\tilde{H}_{t}\rightarrow H_{t}$ is a proper birational morphism between non-sin-
gular surfaces, therefore the composite of blowing-ups at points. Hence
$m_{j}\geq 0$ for all $e_{j}$ and $m_{j}=0$ for $e_{j}$ with $ e_{j}\cap\tilde{e}\neq\emptyset$ . Q.E.D.

Lemma 6.7. Let $X_{i}(i=1,2)$ be non-singular 3-folds, $E_{1}$ and $E_{2}$

irreducible non-singular divisors which cross normally at a curve $C$ and
$K_{X_{1}}=-E_{1}-E_{2}$ . Let $f$ : $X_{2}\rightarrow X_{1}$ be a proper birational morphism
such that $ E_{1}’\cap E_{2}’=\emptyset$ and $E_{1}’+E_{2}’+\sum F_{j}$ is of normal crossings, where
$E_{i}’$ ’s are the proper transforms of $E_{i}$ ’s and $F_{j}$ ’s are exceptional divisors.
Represent

$K_{X_{2}}=-E_{1}’-E_{2}’+\sum m_{j}F_{j}$ .

Then there exist ruled surfaces $F_{1}$ , $\ldots$ , $F_{r}$ over $C$ such that $E_{1}’+F_{1}+$

$\ldots$ $+F_{r}+E_{2}’$ is a chain whose intersection curves are all sections of $F_{j}$ ’s
and $m_{j}=-1$ for $j=1$ , $\ldots$ , $r$ , $m_{j}\geq 0$ for $j\neq 1$ , $\ldots$ , $r$ and $f(F_{j})=C$ .
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Proof. Take the same $\pi$ as in the previous lemma and use the same
notation $H_{t},\tilde{H}_{t}$ , $p_{t}$ , $e_{j}$ . Denote $H_{t}\cap E_{i}$ by $e_{i}$ and $\tilde{H}_{t}\cap E_{i}’$ by $e_{i}’$ . Then
for general $ t\in\triangle$ ,

$K_{H_{t}}=-e_{1}-e_{2}$ ,

$K_{\tilde{H}_{t}}=-e_{1}’-e_{2}’+\sum_{f(F_{j})=C}m_{j}e_{j}$
.

Since $f|_{\tilde{H}_{t}}$ is a composite of blowing-ups at points, there exist $e_{1}$ , $\ldots$ , $e_{r}$

such that $\{e_{1}’, e_{1}, \ldots, e_{r}, e_{2}’\}$ forms a chain of rational curves in some
order and $m_{j}=-1$ for $j=1$ , $\ldots$ , $r$ and $m_{j}\geq 0$ for $j\neq 1$ , $\ldots$ , $r$ such
that $f(F_{j})=C$ . For the assertion on $F_{j}$ ’s $(j=1, \ldots, r)$ , note first
that the general fiber of $F_{j}\rightarrow C$ is a disjoint union of non-singular
rational curves, therefore $F_{j}$ is a ruled surface. Next take $F_{1}$ such that
$ F_{1}\cap E_{1}’\neq\emptyset$ . Then $f|_{F_{1}}$ : $F_{1}\rightarrow C$ is the projection of ruled surface,

because $F_{1}$ intersects $E_{1}’$ at a curve isomorphic to $C$ . Therefore $e_{1}$ is
irreducible. Then take $F_{2}$ such that $ F_{1}\cap F_{2}\neq\emptyset$ . If $F_{1}\cap F_{2}$ is not a
section of $f|_{F_{1}}$ , $e_{1}\cap e_{2}$ consists of more than one point, which contradicts
to that $\{e_{1}’, e_{1}, e_{2}, \ldots\}$ forms a chain. So $f|_{F_{2}}$ : $F_{2}\rightarrow C$ has a section
$F_{1}\cap F_{2}$ , which shows that it is a projection of a ruled surface over $C$

and $e_{2}$ is irreducible. Inductively one obtains the assertion on $F_{j}$ ’s for
$j=1$ , $\ldots$ , $r$ . Q.E.D.

Theorem 6.8. Let $(X, x)$ be a 3-dimensional isolated stnictly log-
canonical singularity of index 1 and of type 1) and $a$ fifinite group $G$ act
on $(X, x)$ . Then either.

(i) there is a $G$ -equivariant good resolution $f$ : $\tilde{X}\rightarrow X$ such that the
essential divisor $E_{J}$ is a cycle $E_{1}+E_{2}+\ldots+E_{s}$ , $(s\geq 2)$ of elliptic ruled
surfaces, where $E_{i}$ and $E_{i+1}$ intersect at a section on each component

for $i=1$ , $\ldots$ , $s(E_{s+1}=E_{1})$ or
(ii) there is a $G$-equivariant good resolution $f$ : $\tilde{X}\rightarrow X$ such that the

essential divisor $E_{J}$ contains a $G$-invariant chain $E^{(0)}=E_{1}+\ldots+E_{s}$

$(s\geq 1)$ of elliptic ruled surfaces, where $E_{i}$ and $E_{i+1}$ intersect at a section
on each component for $i=1$ , $\ldots$ , $s-1$ . There are mutually disjoint
subdivisors $E^{(-)}$ and $E^{(+)}$ of $E_{J}$ such that $E_{J}=E^{(-)}+E^{(0)}+E^{(+)}$ ,
where $E^{(-)}\cap E^{(0)}$ is a section of $E_{1}$ and $E^{(+)}\cap E^{(0)}$ is a section of $E_{s}$ .

Proof. Let $g$ : $Y\rightarrow X$ be a $G$-equivariant $G\mathbb{Q}$-factorial terminal
model of $(X, x)$ and $D$ the reduced inverse image $g^{-1}(x)_{red}$ .

Assume that $D$ is as in (i-1) of Proposition 6.5. Then there are
two simple elliptic singularities $p_{1}$ , $p_{2}$ on $D$ . Take a $G$-equivariant good
resolution $f$ : $\tilde{X}\rightarrow Y$ and denote the proper transform of $D$ by $E$ and
$f$-exceptional divisors by $F_{j}$ ’s. Represent $K_{\tilde{X}}=-E+\sum m_{j}F_{j}$ . Since
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$m_{j}=0$ for $non- f|_{E}$-exceptional curve $F_{j}|_{E}$ by Lemma 6.6, it follows
that

(6.8.1) $K_{E}=$ $\sum$ $mj$ $F_{j}|_{E}$ .

$Fj:f|_{E}-$ exceptional

On the other hand, recall that $K_{\overline{D}}=-C_{1}-C_{2}$ , where $C_{i}$ ’s are the fibers
of the simple elliptic singularities and disjoint sections of the elliptic
ruled surface. Hence denoting the proper transform of $C_{i}$ by $\tilde{C}_{i}$ and the
canonical morphism $E\rightarrow\tilde{D}$ by $\psi$ , one obtains:

(6.8.2)
$K_{E}=-\tilde{C}_{1}-\tilde{C}_{2}+\sum_{e_{j}:\psi-exceptiona1}n_{j}e_{j}$

,

where $n_{j}\geq 0$ because $\psi$ : $E\rightarrow\tilde{D}$ is a composite of blowing-ups at
points.

Noting that an $f|_{E}$-exceptional divisor is either $\tilde{C}_{i}$ or $\psi$-exceptional
compare (6.8.1) and (6.8.2). Then one obtains that there are components
$F_{1}$ and $F_{2}$ such that $F_{i}|_{E}=\tilde{C}_{i}$ with $m_{1}=m_{2}=-1$ and $m_{j}\geq 0$ for
every $F_{j}(j\neq 1,2)$ . Let $E^{(-)}$ be the sum of the essential components in
$f^{-1}(p_{1})$ , $E^{(+)}$ that in $f^{-1}(p_{2})$ . If one puts $E^{(0)}=E$ , then these satisfy
the condition in (ii) of the theore $m$ .

Assume that $D$ is as in (i-2) of Proposition 6.5. In the same way
as above, one obtains that there exists only one essential component $F$

which intersects $E$ . Since the intersection curve $F\cap E$ is $G$-invariant
elliptic curve, one obtains another $G$-equivariant good resolution with
the properties in (ii) of the theorem by compositing the blowing-up at
$F\cap E$ . In this case, the exceptional divisor of the blowing-up becomes
$E^{(0)}$ .

Assume $D$ is as in (i-3) of Proposition 6.5. Let $f$ : $\tilde{X}\rightarrow Y$ be
a $G$-equivariant good resolution passing through the blowing-up at the
double curve $C$ which is $G$-invariant. Denote the proper transform of $D$

on $\tilde{X}$ by $E$ and the elliptic curve on $E$ corresponding to $C$ by $\tilde{C}$ . Then
there exists an $f$-exceptional curve $F_{1}$ such that $F_{1}|_{E}=\tilde{C}$ . Represent
$K_{\overline{X}}=-E+\sum m_{j}F_{j}$ . Then by Lemma6.6, it follows that

(6.8.3) $K_{E}=m_{1}F_{1}|_{E}+$ $\sum$ $m_{j}F_{j}|_{E}$ .
$F_{j}$ : $f|_{E}-$ exceptional

Since $K_{\overline{D}}=-C’$ , where $C’$ is an elliptic curve corresponding to the
double curve $C$ , it follows that

(6.8.4)
$K_{E}=-\tilde{C}+\sum_{e_{j}:\psi-exceptiona1}n_{j}e_{j}$

.
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Here one obtains $n_{j}\geq 0$ , because $\psi$ : $E\rightarrow\tilde{D}$ is a composite of blowing-
ups at points. Noting that an $f|_{E}$ -exceptional curve is $\psi$-exceptional
compare (6.8.3) and (6.8.4). Then it follows that $m_{1}=-1$ and $m_{j}\geq 0$

for $j\neq 1$ such that $ F_{j}|_{E}\neq\emptyset$ . Therefore there exists only one essential
component $F_{1}$ which intersects $E$ and the intersection $F_{1}\cap E$ is G-
equivariant elliptic curve. By taking the blowing-up at $F_{1}\cap E$ , one
obtains $E^{(0)}$ which satisfies the conditions in (ii) of the theorem

Assume that $D$ is as in (i-4) or (i-5) of Proposition 6.5. In the same
way as in (i-1), one obtains that the conditions in (ii) of the theorem
hold by denoting the proper transform of $D$ by $E^{(0)}$ .

Asssume that $D$ is as in (i-6) or (ii-l) of Proposition 6.5. Take

a $G$-equivariant good resolution $f$ : $\tilde{X}\rightarrow Y$ , decompose $D$ into the
irreducible components $D_{1}+\ldots+D_{s}(s\geq 1)$ and denote the proper
transform of $D_{i}$ on $\tilde{X}$ by $E_{i}$ . By Lemma 6.7, the essential divisor $E_{J}$

on $\tilde{X}$ contains a subdivisor $E_{J}’$ with the property in (i) of the theorem.

Represent $E_{J}’=\sum_{i=1}^{s}E_{i}+\sum_{j=1}^{t}F_{j}$ . Let $F$ be an $f$-exceptional divisor
not contained in $E_{J}’$ . Suppose first $ F|_{F_{j}}\neq\emptyset$ for some $j=1$ , $\ldots$ , $t$ .

If $f(F|_{F_{j}})$ is a point, then it is contained in a fiber of the ruling of
$F_{j}$ , therefore it is rational. Then by (ii) of Lemma 6.2, $F$ is not an
essential component. If $f(F|_{F_{j}})$ is a curve, then by Lemma 6.7, $F$ is
not essential. Next suppose that $ F|_{E_{i}}\neq\emptyset$ for some $i=1$ , $\ldots$ , $s$ . If
$F|_{E_{i}}$ is $f|_{E_{i}}$ -exceptional, then it is rational, because the singularities on
the normalization $D_{i}’$ of $D_{i}$ are all rational by (iii) of Proposition 6.5.
Therefore by (ii) of Lemma 6.2, $F$ is not essential. If $F|_{E_{i}}$ is not $f|_{E_{i}^{-}}$

exceptional, then by Lemma 6.6, $F$ is not essential. Now it follows that
$E_{J}=E_{J}’$ by connectedness of the essential divisor.

Assume that $D$ is as in (ii-2) of Proposition 6.5. Decompose $D$ into
irreducible components $D_{1}+\ldots+D_{s}$ . For the case $s=2$ , by taking the
blowing-up at $D_{1}\cap D_{2}$ one can reduce into the case $s=3$ . So one may
assume that $s\geq 3$ . Let $f$ : $\tilde{X}\rightarrow Y$ be a $G$-equivariant good resolution
and $E_{i}$ the proper transform of $D_{i}$ . Then by Lemma 6.7 in the essential
divisor $E_{J}$ on $\tilde{X}$ there exists a chain of elliptic ruled surfaces starting

with $E_{2}$ , including $E_{i}(2<i<s-1)$ and finishing with $E_{s-1}$ such that
the intersection curves are all sections on ruled surfaces. Note that this
chain is $G$-invariant, because $D_{2}+\ldots+D_{s-1}$ is $G$-invariant. In the same
way as in the case (ii-l), one obtains that there are only two essential
components which intersect this chain, and the intersection is sections of
$E_{2}$ and of $E_{s-1}$ . Denote this chain by $E^{(0)}$ and the sum of the essential
components in $f^{-1}(D_{1})$ by $E^{(-)}$ and that in $f^{-1}(D_{s})$ by $E^{(+)}$ . Then
these satisfy the conditions in (ii) of the theorem. Q.E.D.
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Geometry of complex surface singularities

L\^e D{?}ng ’b\’ang

\S Introduction.

In the local study of complex analytic spaces, it is natural to in-
vestigate the behaviour of the tangent spaces near a singular point. In
the general case of equidimensional singularities, after choosing a local
embedding of the singular space into a complex affine space, B. Teissier
and the author have given the structure of the limit of tangent hyper-
planes, i.e. hyperplanes containing a tangent space at a non-singular
point, in terms of a family of cones contained in the tangent cone of the
singularity and called the Aur\’eole of the singularity (see [LT2]).

In the case of surface singularities, the Aur\’eole is given by the tan-
gent cone and a finite number of generatrices of the tangent cone called
the exceptional tangents. Recent works of J. Snoussi showed that these
exceptional tangents coincide with the special generatrices of Gonzalez
and Lejeune ([GL]). His result is based on the fact that, after choosing a
local embedding of the surface into a complex affine space, a hyperplane
is not a limit of tangent hyperplanes if and only if its intersection with
the normal surface singularity is a curve with a Milnor number (in the
sense of Buchweitz and Greuel [BG] $)$ which is minimum. This work en-
hances the interest in the local geometry of complex surface singularities
that we began in [L3] and [LT1].

This paper is essentially a survey of results about the limits of tan-
gent hyperplanes of a normal surface singularity. It gives a geometrical
approach in the study of a normal surface singularity and suggests new
research interests in effective resolutions of normal surface singularities.
In particular, it should lead to effective bounds for the number of nor-
malized blowing-up needed to solve the singularity.
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\S 1. An example.

1.1. Let $f:U\rightarrow C$ be a complex analytic function defined on an open
neighbourhood $U$ of 0 in $C^{3}$ . We assume that $f(0)=0$ and the function
$f$ has an isolated critical point at 0. The function $f$ defines a complex
analytic surface $X$ closed in $U$ . The analytic local ring $\mathcal{O}_{X,,,0}$ of $X$ at 0
is

$\mathcal{O}_{X,,,0}=C\{X, Y, Z\}/(f)$

quotient of the local ring of convergent series $C\{X, Y, Z\}$ at 0 by the
principal ideal generated by $f$ in $C\{X, Y, Z\}$ .

Since we have assumed that 0 is an isolated critical point of $f$ ,
the element $f$ is irreducible in $C\{X, Y, Z\}$ , i.e. the principal ideal (/)
generated by $f$ in the ring $C\{X, Y, Z\}$ is prime. Therefore, the ring $\mathcal{O}_{X,,,0}$

is an integral domain, i.e. it has no zero divisors. Furthermore, since it
is the local ring of a hypersurface whose singularities are in codimension
2, a criterion of J.P. Serre (see [S] ( $IV$ $D$ ) \S 4) implies that the ring $\mathcal{O}_{X,,,0}$

is normal, i.e. it is integrally closed in its field of fractions.
1.2. As B. Teissier did in [T] (Chap. 1), we can associate to the germ
$(X, 0)$ of the surface $X$ at 0 the following invariants.

First, to any hypersurface $V$ with an isolated singularity at the point
0, J. Milnor has associated an integer ([M] \S 7) called the Milnor number
$\mu(V, 0)$ of $V$ at 0. In our case, the Milnor number $\mu(X, 0)$ of the surface
$X$ at 0 is given by the complex dimension of the vector space

$\mathcal{M}_{X,,,0}:=C\{X, Y, Z\}/(\partial f/\partial X, \partial f/\partial Y, \partial f/\partial Z)$

quotient of $C\{X, Y, Z\}$ by the ideal generated by the partial derivatives
of $f$ . Hilbert-R\"uckert Nullstellensatz (see [N] Chap. Ill \S 2 Theorem 2)
implies that the $C$ vector space $\mathcal{M}_{X,,,0}$ is finite dimensional over the field
$C$ if and only if $f$ has an isolated critical point at 0. We have:

Lemma 1.2.1. The Milnor number is a topological invariant of
the hypersurface $X$ at 0, in the sense that, for any hypersurface $Y$ of $C^{3}$

which has a singularity at the point $y$ and for which there is a germ of
homeomorphism of $(C^{3},0)$ onto $(C^{3}, y)$ which sends $(X, 0)$ onto $(Y, y)$ ,
we have that $Y$ has an isolated singularity at 0 and $\mu(X, 0)=\mu(Y, y)$ .

Proof. Actually, the result is true in any dimension, but we give
a proof for hypersurfaces in $C^{3}$ .

We need a topological interpretation of the Milnor number. In the
case of isolated singularities, following J. Milnor [M] (Corollary 2.9), one
can prove that there is $\epsilon_{0}>0$ , such that, for any $\epsilon$ , $\epsilon_{0}>\epsilon>0$ , the real
sphere $S_{\epsilon}(0)$ (boundary of the open ball $B_{\epsilon}(0)$ ) of $C^{3}$ centered at 0 with
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radius $\epsilon$ is transverse to the hypersurface $X:=\{f=0\}$ . Let us fix $\epsilon$ ,
$\epsilon_{0}>\epsilon>0$ . By the openness of the transversality, there is $\eta(\epsilon)>0$ ,
such that for any $t\in C$ , $0<|t|<\eta(\epsilon)$ , the hypersurface $\{f=t\}$

intersects $S_{\epsilon}(0)$ transversally. So, the space $\{f=t\}\cap B_{\epsilon_{0}}(0)$ is a smooth
manifold of real dimension 4. In [M] (Theorem 5.11 and Theorem 6.5),
it is proven that the homotopy type of $\{f=t\}\cap B_{\epsilon o}(0)$ is the one of a
bouquet of $\mu(X, 0)2$-spheres, i.e. a space union of $\mu(X, 0)2$-spheres with
one point in common. The space $\{f=t\}\cap B_{\epsilon_{0}}(0)$ is called a Milnor
fiber of $X$ at 0. On the other hand, Ehresmann Lemma (see e.g. [D]
20.8 Probl\‘eme 4) implies that, for any $\eta$ , $0<\eta<\eta(\epsilon)$ , the function $f$

induces a locally trivial smooth fibration of $f^{-1}(\delta D_{\eta})\cap B_{\epsilon}(0)$ onto $\delta D_{\eta}$ ,

where $\delta D_{\eta}$ is the circle of $C$ centered at 0 with radius $\eta$ . In [L2], we
show that the homotopy class of this fibration is a topological invariant
of the hypersurface $X$ at 0. We call this fibration the Milnor fibration
of $X$ at 0.

Now let $Y$ be a complex analytic surface closed in an open neighbor-
hood $V$ of $y\in Y$ in $C^{3}$ . Assume that we have a homeomorphism $\varphi$ of a
neighborhood $U_{1}$ of 0 in $U$ onto $V_{1}ofy$ in $V$ , such that $\varphi(X\cap U_{1})=Y\cap V_{1}$

and $\varphi(0)=y$ . First, we prove that $Y$ has an isolated singularity at $y$ .
Let $x$ be a non-singular point of $X\cap U_{1}$ . The homeomorphism $\varphi$ induces
a germ of homeomorphism of the germ $(X, x)$ onto $(Y, \varphi(x))$ . To prove
that $Y$ has an isolated singularity at $y$ , it is enough to show that the
point $\varphi(x)$ is non-singular on Y. This fact is a consequence of a The-
orem of A’Campo ([AC] Th\’eor\‘eme 3) which states that the Lefschetz
number of the monodromy of a Milnor fibration is not zero if and only
if the hypersurface is non-singular. In fact, it is easy to see that the
Milnor fibration of $X$ at a non-singular point $x$ is trivial and its fiber
is contractible. Therefore the Milnor fibration of $Y$ at $\varphi(x)$ , which is
homotopically isomorphic to the Milnor fibration of $X$ at $x$ , has con-
tractible fibers and is trivial ([M] Lemma 2.13). By A’Campo’s theorem
this implies that $Y$ is not singular at $\varphi(x)$ . On the other hand, since the
Milnor fibers of $X$ at 0 and $Y$ at $y$ have the same homotopy type, their
Milnor numbers are equal.

We put

$\mu^{3}(X, 0):=\mu(X, 0)$ .

Secondly, one can prove that there is an open Zariski dense subset
$\Omega_{2}$ of the space $\check{P}^{2}$

of complex hyperplanes through 0 in $C^{3}$ such that,
for any $H\in\Omega_{2}$ , the Milnor number $\mu(H\cap X, 0)$ does not depend on $H$ .

Then, for $H\in\Omega_{2}$ ,

$\mu^{(2)}(X, 0):=\mu(X\cap H, 0)$ .
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Third, we consider the multiplicity $m(X, 0)$ of $X$ at 0:

$\mu^{(1)}(X, 0):=m(X\cap H, 0)$ .

As it is easily seen for hypersurfaces, there is an open dense Zariski
subset $\Omega_{1}$ of the space $P^{2}$ of complex lines through 0 in $C^{3}$ , such that,
for any $\ell\in\Omega_{1}$ , the Milnor number $\mu(X\cap\ell, 0)$ is finite and does not
depend on $\ell$ . But in this case, $ X\cap\ell$ is a zero dimensional hypersurface
in $\ell$ , so that $\mu(X\cap\ell, 0)+1$ is nothing but the multiplicity of $X$ at 0.

Let
$ f=f_{m}+f_{m+1}+\ldots$

be the Taylor expansion of $f$ at 0, where $f_{k}$ is a homogeneous polynomial
of degree $k$ and $m$ is the multiplicity of $f$ at 0. It is known that, for a
hypersurface $X$ , the multiplicity of the function $f$ defining $X$ equals the
multiplicity at 0 of $X$ , i.e. the multiplicity of the local ring $\mathcal{O}_{X,,,0}$ (see
[S] $VA)$ \S 2).

Then, it is easy to show that one can choose

$\Omega_{1}=P^{2}-Proj|C_{X,,,0}|$

where $Proj|C_{X,,,0}|$ is the projective curve associated to the reduced tan-
gent cone of $X$ at 0.

B. Teissier showed in [T] (Chap. 1 \S 2), that the 3-uple

$\mu^{*}(X, 0)=(\mu^{(3)}(X, 0),$ $\mu^{(2)}(X, 0)$ , $\mu^{(1)}(X, 0))$

is an analytic invariant of the germ of hypersurface $(X, 0)$ , i.e. if the
local rings $\mathcal{O}_{X,,,0}$ and $\mathcal{O}_{X’,,,0}$ of two 2-dimensional hypersurfaces $X$ and
$X^{/}$ at 0 are isomorphic, then, we have

$\mu^{*}(X, 0)=\mu^{*}(X^{/}, 0)$ .

Notice that, since $\mu^{(3)}(X, 0)$ is a topological invariant of $(X, 0)$ , it is
obviously an analytic invariant of the germ of hypersurface $(X, 0)$ .

Recall that a hyperplane $H$ is a limit of tangent hyperplanes of the
hypersurface $X$ at 0, if there is a sequence $x_{n}$ of non singular points of
$X$ which converges to 0 such that the sequence of tangent hyperplanes
$T_{X,,,x_{n}}$ converges to $H$ . Now, in [T] (Consequence of Proposition 2.9 of
Chap. 1, see also [HL] Th\’eor\‘eme 2.2), B. Teissier proves:

Theorem 1.2.2. Let $X$ , 0 be a germ of complex hypersurface in
$C^{n+1},0$ with an isolated singularity at 0. Let $H$ be a complex hyperplane
through 0. Then, the hyperplane is not a limit of tangent hyperplanes to
$X$ at 0 if and only if $X\cap H$ has an isolated singularity and $\mu(X\cap H, 0)$

is minimal.
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The preceding theorem allows us to define the open Zariski set $\Omega_{2}$

considered above as the complement in
$\check{P}^{2}$

of the set of limits of tangent
hyperplanes to $X$ at 0. In the case of complex surfaces $X$ in $C^{3}$ having
an isolated singularity at 0, this shows that a complex plane $H$ of $C^{3}$

through 0 is not a limit of tangent hyperplanes to $X$ at 0 if and only if
$X\cap H$ has an isolated singularity at 0 and $\mu(X\cap H, 0)=\mu^{(2)}(X, 0)$ .

Proposition 1.2.3. Let $H$ be a complex plane of $C^{3}$ through 0 so
that $\mu(X\cap H, 0)=\mu^{(2)}(X, 0)$ . The multiplicity of $X\cap H$ at 0 equals the
multiplicity $\mu^{(1)}(X, 0)$ of $X$ at 0.

Proof. To prove this fact, it is enough to apply a result of the author
in [LI] (see also [LR] \S 3), showing that, in an analytic family of plane
curves having an isolated singularity at 0 with their Milnor numbers
at 0 constant, the topology of these plane curves at 0 and, hence, their
multiplicity at 0, do not vary. We obtain the assertion of our proposition
by considering the analytic family of plane sections parametrized by the
set $\Omega_{2}$ of general planes of $C^{3}$ through 0. Q.E.D.

Remark 1.2.4. In fact, a remarkable result of B. Teissier shows
that, for any germ of complex hypersurface $X$ , 0 in $C^{n+1}$ with an isolated
singularity, if the Milnor number $\mu(X\cap H, 0)$ is minimal, for any general
flag

$\{0\}\subset H_{1}\subset\ldots\subset H_{n}\subset C^{n+1}=H_{n+1}$

in which the Milnor number $\mu(X\cap H_{i})$ is minimal among $i$-dimensional
sections of $X$ at 0, we have

$\mu^{*}(X\cap H, 0)=(\mu(X\cap H_{n}, 0),$
$\ldots$ , $\mu(X\cap H_{1},0))$ .

1.3. In the case of complex analytic surfaces, we can summarize the
results of the preceding section by:

Proposition 1.3.1. Let $X$ , 0 be a germ of complex analytic sur-

face in $C^{3}$ with an isolated singularity at 0. A plane $H$ of $C^{3}$ through 0
is not a limit of tangent planes to $X$ at 0 if and only if we have

$\mu(X\cap H, 0)=\mu^{(2)}(X, 0)$ ,

in which case, the plane $H$ is not contain in the tangent cone $C_{X,,,0}$ of
$X$ at 0.

Using this result, J.P.G. Henry and the author prove in [HL] (Th\’eo-
r\‘eme 3.8):
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Theorem 1.3.2. Let $X$ , 0 be a germ of complex analytic surface
in $C^{3}$ . There are a finite number of complex generatrices of the tangent
cone $C_{X,,,0}$ of $X$ at 0, such that the set of limits of tangent planes $\mathcal{T}_{X,,,0}$

to $X$ at 0 is the union of the set of limits of tangent planes to $C_{X,,,0}$ at 0
and the pencils of planes $\mathcal{L}_{i}(1\leq i\leq k)$ through these generatrices:

$T_{X,,,0}=Proj|C_{X,,,0}|\vee\cup \mathcal{L}_{1}\cup\ldots\cup \mathcal{L}_{k}$ .

We call these generatrices the exceptional tangents of $X$ at 0.
There are several ways to find the exceptional tangents of a complex

analytic surface $X$ at 0. One of the most useful ways is:

Proposition 1.3.3. Let $\Omega$ be the set of finite projections of $X$ , 0
into $C^{2},0$ induced by linear projections of $C^{3}$ onto $C^{2}$ with a local degree
equal to the multiplicity $m(X, 0)$ at 0. Let $ p\in\Omega$ and $\Gamma(p)$ be the critical
curve of $p$ . The set of exceptional tangents of $X$ at 0 is the set of tangents
of $\Gamma(p)$ which do not depend on $ p\in\Omega$ .

We shall give below generalizations of these Propositions in the case
of normal surfaces.

\S 2. Tangents on Normal surfaces.

In all this paragraph, we shall consider a normal surface singularity
$(X, x)$ (this means that the local ring $\mathcal{O}_{X,,,x}$ of the germ is an integral
domain and is integrally closed in its field of fractions). The criterion
of Serre already used above shows that a surface singularity is normal
if and only if it is isolated and its local ring is Cohen-Macaulay. We
choose a representative $X$ of of the germ $(X, x)$ such that $X-\{x\}$ is

non-singular and $X$ is closed in an open neighbourhood of $x$ in $C^{N}$ .

2.1. In [GL] (D\’efinition 2.1) G. Gonzalez and M. Lejeune-Jalabert
gave a definition of a general hyperplane section of $X$ at $x$ .

Definition 2.1.1. Let $\sigma:\overline{X}_{1}\rightarrow X$ be the normalized blowing-up
of the maximal ideal $M$ which defines $x$ on $X$ . Let $H$ be a hyperplane
of $C^{N}$ through $x$ . We say that $H$ is a general hyperplane for $X$ at $x$ (or
$X\cap H$ is a general hyperplane section), if the strict transform of $X\cap H$ by
$\sigma$ does not go through the singular points of $\overline{X}_{1}$ , intersects transversally
in $\overline{X}_{1}$ the reduced exceptional divisor $\overline{E}$ of $\overline{X}_{1}$ and does not contain any
non-singular point of $\overline{E}$ where the restriction of the normalisation of the
blowing-up of $X$ at $x$ is critical.

Remark 2.1.2. Let $e:X_{1}\rightarrow X$ be the blowing-up of $X$ at $x$ , call
$E$ the exceptional divisor of $X_{1}$ . Call $n$ the normalisation

$n:\overline{X}_{1}\rightarrow X_{1}$
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of $X_{1}$ . Then, $X\cap H$ is a general hyperplane section if and only if
strict transform of $X\cap H$ by $e$ does not contain the images by $n$ of the
singular points of $\overline{X}_{1}$ and the ramification points of the map from $\overline{E}$ to
$E$ induced by $n$ , and the hyperplane Proj(H) intersects $Proj|C_{X,,,x}|$ at
non-singular points transversally in $Proj(C^{N})=P^{N-1}$ .

In [GL] (2) G. Gonzalez and M. Lejeune-Jalabert called special
generatrices the generatrices of the tangent cone $C_{X,,,x}$ which corre-
spond to the images by $n$ of the singular points of $\overline{X}_{1}$ and the ramifica-
tion points of the map from $\overline{E}$ to $E$ induced by $n$ .

Now, recall that a hyperplane $H$ is a tangent hyperplane at a non-
singular point $y$ of $X$ , if it contains the tangent plane $T_{X,,,y}$ . Then the
hyperplane $H$ is a limit of tangent hyperplanes of the surface $X$ at $x$ , if
there is a sequence $x_{n}$ of non singular points of $X$ which converges to
$x$ and a sequence of complex hyperplanes $H_{n}$ tangent to $X$ at $x_{n}$ such
that $H_{n}$ converges to $H$ .

Of course, the set of limits of tangent hyperplanes of $X$ at $x$ is

algebraic. In fact, one considers the closure $C(X)$ in $X\times\check{P}^{N-1}$ of the
set of points $(y, H)$ , where $y$ is a non-singular point of $X$ and $H$ is a
hyperplane tangent to $X$ at $y$ . Using a classical result of Remmert (see
[RS] Satz 13), one can prove that $C(X)$ is a complex analytic space.
The projection onto $X$ induces a morphism

$\kappa:C(X)\rightarrow X$

which is analytic and proper. A result of Chow ([C], see [GR] Chapter
9 \S 5) implies that the fiber of $\kappa$ over $x$ which is analytic and closed

in $\check{P}^{N-1}$ is actually algebraic. The space $C(X)$ is called the conormal
space of $X$ in $C^{N}$ .

In his thesis, Jawad Snoussi proved:

Theorem 2.1.3. A hyperplane $H$ of $C^{N}$ is general for $X$ at $x$ if
and only if it is not a limit of tangent hyperplanes.

In view of Teissier’s theorem 1.2.2, J. Snoussi proves:

Theorem 2.1.4. A hyperplane $H$ of $C^{N}$ is general for $X$ at $x$ if
and only if the number of points in $H\cap Proj|C_{X,,,x}|$ equals the degree of
$Proj|C_{X,x}|$ and the generalized Milnor number of Buchweitz and Greuel

of the curve $H\cap X$ at $x$ is minimal

In [BG] R. Buchweitz and G.-M. Greuel have defined a generalized Mil-
nor number for any reduced curve. Namely let $C$ be a reduced curve
and $O$ be a point of $C$ . Denote the local ring of $C$ at $O$ by $\mathcal{O}_{C,,,O}$ and let
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$\overline{\mathcal{O}}_{C,O}$ be its normalisation. Define $\delta(C, O)$ to be the dimension of the
complex vector space $\overline{\mathcal{O}}_{C,,,O}/\mathcal{O}_{C,,,O}$

$\delta(C, O):=dim_{C}\overline{\mathcal{O}}_{C,O}/\mathcal{O}_{C,,,O}$ .

Then, the generalized Milnor number of $C$ at $O$ is

$\mu(C, O):=2\delta(C, O)-r(C, O)+1$

where $r(C, O)$ is the number of analytic branches of $C$ at $O$ .

In [M] (Theorem 10.5), J. Milnor proved this relation between the
Milnor number and $\delta(C, O)$ , when $C$ , $O$ is the germ of a reduced plane
curve.

A topological interpretation of the Milnor number for a curve (see
[BG] $)$ on a normal surface singularity defined by one equation is the
following. We may assume that the singularity is locally embedded in
some non-singular space $C^{N}$ and that the curve is given by $\varphi=0$ , where
$\varphi$ is a holomorphic function defined in a neighbourhood of the singularity
in $C^{N}$ . Then, there is $\epsilon_{0}>0$ , such that, for any $\epsilon$ , $\epsilon_{0}>\epsilon>0$ , there is
$\eta_{\epsilon}>0$ , such that, for any complex number $t$ , $\eta_{\epsilon}>|t|>0$ , the Milnor
number of the curve singularity is equal to the first Betti number of the
Riemann surface $B_{\epsilon}(0)\cap\{\varphi=t\}$ , where $B_{\epsilon}(0)$ is the open ball of $C^{N}$

centered at 0 with radius $\epsilon$ .
The key points to prove 2.1.3 and 2.1.4 are results of R. Buchweitz and
G.-M. Greuel who show the semi-continuity of their generalized Milnor
number in analytic families of curves and the equiresolution of analytic
families with generalized Milnor number constant when these families
are non-singular outside a section (see [BG]).
2.2. An important consequence of Snoussi’s result (compare with Theo-
rem 1.3.2) is:

Theorem 2.2.1. Let $(X, x)$ be a germ of normal complex analytic

surface in $C^{N}$ . The set of limits of tangent hyperplanes $\prime H_{X,,,x}$ to $X$ at
$x$ is the union of the set of limits of tangent hyperplanes to the tangent
cone $C_{X,,,x}$ of $X$ at $x$ and the linear systems $\mathcal{L}_{i}(1\leq i\leq k)$ of hyperplanes
through the special generatrices of $C_{X,,,x}$ :

$\prime\mu_{X,,,x}=Proj|C_{X,,,x}|\vee\cup \mathcal{L}_{1}\cup\ldots\cup \mathcal{L}_{k}$ .

As a consequence, following the terminology already used in [LT1] (1.3.2),
it will be more convenient to call the special generatrices of $C_{X,,,x}$ the
exceptional tangents of (X,$ $x).
In fact, J. Snoussi also obtains the description of the set of limits of
tangent spaces to $X$ at $x$ .
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Theorem 2.2.2. Let $(X, x)$ be a germ of normal complex analytic

surface in $C^{N}$ . The set of limits of tangent spaces to $\mathcal{T}_{X,,,x}$ to $X$ at $x$

is the union of the set of limits of tangent spaces to the tangent cone
$C_{X,,,x}$ at its vertex and of 1-dimensional subspaces $\mathcal{G}_{i}(1\leq i\leq k)$ of the
grassmanian space $G(2, N)$ of 2-planes in $C^{N}$ through $x$ which contain
the exceptional tangents $\ell_{i}(1\leq i\leq k)$ .

Note that the set of limits of tangent spaces to $X$ at $x$ is algebraic. This
was predictable since it is the fiber of the Nash modification

$l/:\tilde{X}\rightarrow X$

where $\tilde{X}$ is the closure in $X\times G(2, N)$ of the set of points $(y, T_{X,,,y})$ ,

where $y$ is a non-singular point of $X$ and $T_{X,,,y}$ is the tangent space to $X$

at $y$ , and $iJ$ is induced by the projection onto $X$ . A theorem of Remmert
(see [RS] Satz 13) implies that $\tilde{X}$ is an analytic space.
2.3. From the results of [LT2], we can generalize the result of 1.3.3.
Namely, we have:

Theorem 2.3.1. Let $\Omega$ be the set of finite projections of $(X, 0)$

into $(C^{2}, O)$ induced by linear projections of $C^{N}$ onto $C^{2}$ and which
have a local degree equal to $m(X, x)$ at $x$ . Let $ p\in\Omega$ and $\Gamma(p)$ be the
critical curve of $p$ . The set of exceptional tangents of $X$ at $x$ is the set

of tangent lines of $\Gamma(p)$ which do not depend on $ p\in\Omega$ .

Proof. We shall adapt the proof of [LT2] (Th\’eor\‘eme 2.1.1) to the
case of dimension 2.
Consider the blowing-up

$e’$ : $EC(X)\rightarrow C(X)$

of the analytic subspace $\kappa^{-1}(x)$ in the conormal space $C(X)$ of $X$ . Of
course, it factors through the blowing-up

$e:X_{1}\rightarrow X$

of the point $x$ in $X$ . We have the following commutative diagram

$X\times\check{P}^{N-1}\times P^{N-1}$
$\supset$ $EC(X)$

$\rightarrow e’$

$C(X)$ $\subset$

$X\times\check{P}^{N-1}$

$\downarrow\kappa^{/}$ $\downarrow\kappa$

$X\times P^{N-1}$ $\supset$ $X_{1}$
$\rightarrow e$

$X$

We may consider that $E_{1}:=(e^{/}\circ\kappa)^{-1}(x)=(\kappa’\circ e)^{-1}(x)$ is embedded in
$\check{P}^{N-1}\times P^{N-1}$ . The spaces $D:=e^{-1}(x)$ and $D_{1}:=\kappa^{-1}(x)$ are contained
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in $\check{P}^{N-1}$ and $P^{N-1}$ respectively. Let $E_{1}(\alpha)$ , $\alpha\in A$ , be the irreducible
components of $E_{1}$ . Let $D_{1}(\alpha)$ and $D(\alpha)$ be the images of $E_{1}(\alpha)$ by $\kappa’$

and $e’$ . We have (see [LT2] Th\’eor\‘eme 2.1.1)

Lemma 2.3.2. For each $\alpha\in A$ , the variety $D(\alpha)$ is the dual of
$D_{1}(\alpha)$ and the correspondence is given by $E_{1}(\alpha)$ .

Proof. In fact, this is a consequence of a lemma of Whitney (see
[L3] $)$ which states that, for any $(H, \ell)\in E_{1}$ , we have

$\ell\subset H$ .

The dimension of the components of $E_{1}$ is $N-2$ . If $D_{1}(\alpha)$ has dimension
0, $E_{1}(\alpha)$ is isomorphic to $D(\alpha)$ and consists of all the hyperplanes which
contain the point $\{D_{1}(\alpha)\}$ . If $D_{1}(\alpha)$ has dimension 1, it is a component
of the Projective set associated to the tangent cone and at a general
point $l_{1}$ of $D_{1}(\alpha)$ , the points $(H, l_{1})$ in $\kappa^{-1}(l_{1})$ consists of hyperplanes
containing the tangent plane to the tangent cone $|C_{X,,,x}|$ along the line
$l_{1}$ (see [L3] (Th\’eor\‘eme 1.2.1)). Then, the image of $E_{1}(\alpha)$ by $e’$ is the
closure of the set of hyperplanes which contain the tangent planes at non-
singular points of the component $D_{1}(\alpha)$ of $Proj(|C_{X,,,x}|)$ which contains
$l_{1}$ . By definition $E_{1}(\alpha)$ is the correspondence variety of $D_{1}(\alpha)$ and its
dual variety $e^{/}(E_{1}(\alpha)$ .

Now, we can prove Theorem 2.3.1. Let $D(A)$ be the projective subvariety

of $\check{P}^{N-1}$ which consists of the hyperplanes through $x$ which contain
a codimension 2 space $A$ through $x$ . Then, $D(A)$ is isomorphic to a
projective space of dimension 1. Let $p$ be the projection on $C^{2}$ induced
by the linear projection $p_{A}$ of $C^{N}$ onto $C^{2}$ with Kernel $A$ . When $A$

is sufficiently general, say if $A$ belongs to an open Zariski subset $\Omega’$

of the Grassmannian manifold of codimension 2 projective subspaces
in $P^{N-1}$ , the projection $p_{A}$ restricted to $(X, x)$ has local degree equal
to the multiplicity $m(X, x)$ , so $ p_{A}\in\Omega$ . With $p_{2}$ being the map from

$EC(X)$ into $\check{P}^{N-1}$

, we observe that the subspace $p_{2}^{-1}(D(A))$ of $EC(X)$
is non-empty, if $m(X, x)\geq 2$ , so it is a curve. It is easy to show that
the curve $\Gamma(p)$ is

$\Gamma(p)=e\circ\kappa^{/}(p_{2}^{-1}(D(A))$ .

Therefore the curve $\kappa^{/}(p_{2}^{-1}(D(A))$ is the strict transform of $\Gamma(p)$ by
$e$ and it intersects the exceptional divisor at points which correspond
to the tangents of $\Gamma(p)$ at $x$ . Since $D(A)$ has dimension 1 it meets
the set of hyperplanes $E(\alpha):=e^{/}(E_{1}(\alpha))$ which contain $D_{1}(\alpha)$ when
$D_{1}(\alpha)$ has dimension 0. Therefore $\kappa^{/}(p_{2}^{-1}(D(A))$ contain the sets $D_{1}(\alpha)$

of dimension 0. The other points of $\kappa^{/}(p_{2}^{-1}(D(A))$ contained in the
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exceptional divisor of $e$ are in the dual of the intersections of $D(A)$ and
the sets $D(\alpha)$ dual to the components of $Proj(|C_{X,,,x}|)$ . Since $|C_{X,,,x}|$ is a
cone, these points are the generatrices of $|C_{X,,,x}|$ which are the closure of
the components of the critical locus of the restriction to the non-singular
part of $|C_{X,,,x}|$ of the linear projection $p_{A}$ . These latter generatrices
depend on the projection $p_{A}$ .

Hence, this shows that the tangent lines in the tangent cone of $\Gamma(p)$

consist of lines of $|C_{X,,,x}|$ which depend on $ p\in\Omega$ and of the exceptional
tangents which do not depend on $ p\in\Omega$ .

\S 3. Resolutions of Normal surfaces.

3.1. Let $(X, x)$ be a normal complex surface singularity. We choose a
representative $X$ of $(X, x)$ such that $X-\{x\}$ is non-singular.

Definition 3.1.1. We say that a complex analytic map $\pi:Z\rightarrow X$

is a resolution of singularity of $(X, x)$ , if

i) the space $Z$ is non-singular;
$ii)$ the map $\pi$ is proper;

$iii)$ the map $\pi$ induces an isomorphism of $Z-\pi^{-1}(x)$ onto $X-\{x\}$

and $Z-\pi^{-1}(x)$ is dense in $Z$ .

An important result by R. Walker and O. Zariski ([W] and [Z] $VI$ \S 21)
is:

Theorem 3.1.2. Any normal surface singularity has a resolution
obtained by composing a finite number of compositions of a point blowing-
up and a normalisation.

In [BPV] (III \S 6), one can find a more geometrical construction of a
resolution of a normal complex surface singularity (due to Jung [J], see
[Hi] $)$ by using the embedded resolution of the discriminant of a finite
projection of the singularity onto a 2-dimensional complex plane.

Remark 3.1.3. Notice that there are many resolutions of the sin-
gularity $(X, x)$ . For instance, the identity is a resolution of the non-
singular germ $(C^{2},0)$ and the blowing-up of the point 0 in $(C^{2},0)$ is also
a resolution.

We shall see below that all resolutions are obtained from one of them.
3.2. Given a resolution $\pi$ of the complex analytic normal surface sin-
gularity $(X, x)$ , most of the topological information of $(X, x)$ is obtained
from the geometry of the space $\pi^{-1}(x)$ . In fact, we have first:

Theorem 3.2.1 (Main theorem of Zariski). Let $\pi$ be a resolution

of a complex analytic normal surface singularity. The space $\pi^{-1}(x)$ is
connected.
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One may find proof of this result in [H] (Chap. Ill, Corollary 11.4). The
main argument comes from the fact that, since $(X, x)$ is a normal sin-
gularity, there are regular neighbourhoods $U$ of $x$ in $X$ whose boundary
$\partial U$ (called the local link of $X$ at $x$ ) is a connected 3-manifold.

Theorem 3.2.1 shows that, if $\pi$ is a resolution of a complex analytic
normal surface singularity the fiber is either a point or a connected curve.
It is a point only if the surface is non-singular and $\pi$ is the identity, as
a consequence of the following theorem of D. Mumford (see [Mu])

Theorem 3.2.2. The local link of a normal surface singularity
$(X, x)$ is simply connected if and only if $X$ is non-singular at the point
$x$ .

Therefore, if the normal surface singularity $(X, x)$ is really singular, for
any resolution $\pi$ of $(X, x)$ , the fiber $\pi^{-1}(x)$ is a connected curve.
There is another important theorem of D. Mumford ([Mu], see \S 1) which
characterizes the fiber $\pi^{-1}(x)$ (the exceptional fiber of $\pi$ ) of a reso-
lution $\pi:Z\rightarrow X$ of $(X, x)$ , when it is a curve. Let $E_{1}$ , $\ldots$ , $E_{k}$ be the
irreducible components of $\pi^{-1}(x)$ .

Theorem 3.2.3. The intersection matrix $(E_{i}.E_{j})_{1\leq i,j\leq k}$ is defi-
nite negative.

This fact allows us to associate some important combinatorial invariants
to a resolution $\pi$ of $(X, x)$ . For instance, there is a theorem of Zariski
(see [A] Proposition 2) which states

Theorem 3.2.4. Let I be negative definite bilinear form on a free
abelian group $G$ generated by $e_{1}$ , $\ldots$ , $e_{k}$ , there are elements $z\neq 0$

$z=\sum_{1}^{k}m_{i}e_{i}$

of this group such that
$I(z, e_{i})\leq 0$

for any $i$ , $1\leq i\leq k$ . Furthermore, these elements make a semi-group
$E^{+}(I)$ which has a smallest element $z_{0}=\sum_{1}^{k}a_{i}e_{i}$ , such that $a_{i}\geq 1$ , for
any $i$ , $1\leq i\leq k$ . We shall call $z_{0}$ the fundamental element of $I$ .

Definition 3.2.5. The fundamental element of the intersection
form I on the free abelian group generated by the components of a
resolution $\pi$ of a complex normal surface is called the fundamental
cycle of this resolution. The semi-group $E^{+}(I)$ is called the Lipman
semi-group of the resolution $\pi$ and is also denoted by $E^{+}(\pi)$ .
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An important remark is that, given a resolution $\pi:Z\rightarrow X$ of $(X, x)$ ,

any function $\varphi\in \mathcal{O}_{X,,,x}$ defines a divisor $(\varphi\circ\pi)$ on $Z$ and the compact
part of this divisor is an element of $E^{+}(\pi)$ . For example, in a resolution
$\pi$ for which the inverse image $\pi^{*}M_{X,,,x}$ of the maximal ideal $M_{X,,,x}$ of
$\mathcal{O}_{X,,,x}$ is invertible, the maximal cycle of the resolution is given by the
compact part of the divisor given by a general element of $M_{X,,,x}$ (see [Y]).

In [Li] (18), J. Lipman proved that the semi-group $E^{+}(\pi)$ of a
resolution $\pi$ of a rational singularity is given by the general elements of
ideals I of $\mathcal{O}_{X,x}$ whose inverse images $\pi^{*}I$ are invertible.
3.3. It is useful to recall the notion of minimal resolution.

Definition 3.3.1. A resolution of a surface singularity $(X, x)$ is
called minimal if its exceptional divisor does not contained a non-
singular rational curve of self-intersection -1. Such a curve is called
an exceptional curve of the first kind.

The basic theorem about surface resolutions is (see [La] Chapter 5):

Theorem 3.3.2. Minimal resolutions of a surface singularity $(X, x)$

are isomorphic, $i.e$ . if $X$ is a representative of $(X, x)$ such that $X-\{x\}$ is
non-singular, $\pi_{1}$ : $Z_{1}\rightarrow X$ and $\pi_{2}$ : $Z_{2}\rightarrow X$ are two minimal resolutions

of $(X, x)$ , there is an isomorphism $\varphi:Z_{1}\rightarrow Z_{2}$ , such that $\pi_{2}\circ\varphi=\pi_{1}$ .

A consequence is the factorization theorem:

Corollary 3.3.3. Let $\pi:Z\rightarrow X$ be a resolution of the surface
singularity $(X, x)$ and $\pi_{0}$ : $Z_{0}\rightarrow X$ be a minimal resolution of the surface
singularity $(X, x)$ . There is a unique holomorphic map $\psi:Z\rightarrow Z_{0}$ , such
that $\pi=\pi_{0}\circ\psi$ , and $\psi$ is the composition of a finite sequence of point
blowing-ups.

\S 4. General sections and Tjurina-Spivakovsky components.

4.1. Given a resolution $\pi:Z\rightarrow X$ of a normal surface singularity
$(X, x)$ , let $E_{1}$ , $\ldots$ , $E_{k}$ be the components of the exceptional divisor
$\pi^{-1}(x)$ of $\pi$ . We consider a cycle $a$ in the Lipman semi-group $E^{+}$ of
$\pi$ , so, for $1\leq i\leq k$ , we have $a.E_{i}\leq 0$ . The Tjurina-Spivakovsky
components of $a$ (compare with [Sp] Chap. Ill, Definition 3.1) are the
maximal connected curves contained in the exceptional divisor $\pi^{-1}(x)$

whose components are components $E_{i}$ such that $a.E_{i}=0$ . Therefore, the
components of $\pi^{-1}(x)$ which are not contained in a Tjurina-Spivakovsky
component of $a$ are the components $E_{j}$ of $\pi^{-1}(x)$ such that $a.E_{j}<0$ .

Consider an ideal I of the local ring $\mathcal{O}_{X,,,x}$ such that $I\mathcal{O}_{Z}$ is locally
invertible. Following Lipman (see [Li] 18), the ideal $I\mathcal{O}_{Z}$ defines an
element $a_{I}$ in the semi-group $E^{+}$ . One can check that $a_{I}$ is the compact
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part of the divisor on $Z$ defined by a general element of the ideal $I$ . The
following lemma shows the interest of Tjurina-Spivakovsky components:

Lemma 4.1.1. Let $\pi:Z\rightarrow X$ be a resolution of a normal surface
singularity $(X, x)$ such that the maximal ideal $M$ of $\mathcal{O}_{X,,,x}$ defines a locally

invertible ideal $M\mathcal{O}_{Z}$ . Let $q:Z\rightarrow\overline{X_{1}}$ be the factorisation of $\pi$ through
the normalized blowing-up $\overline{e}:\overline{X_{1}}\rightarrow X$ of the point $\{x\}$ in X. The
connected curves of the exceptional divisor of $\pi$ which are mapped by $q$

to the singular points of $\overline{X}_{1}$ are Tjurina-Spivakovsky components of the
cycle defined by $M\mathcal{O}_{Z}$ .

Proof. Since $M\mathcal{O}_{Z}$ is locally invertible, the resolution $\pi$ factorizes
through the blowing-up of $M$ , i.e. the blowing-up of the point $\{x\}$ in
$X$ . Since $Z$ is non-singular, it is also normal, so this factorisation lifts
to the normalized blowing-up of the point $\{x\}$ in $X$ .

$Z$

$X$

Let $l$ be a general element of the maximal ideal. As we have noticed
above, the cycle defined by $M$ on $Z$ coincide with the compact part of
the divisor defined by $l$ on $Z$ . One can see that the components $E_{i}$

of the exceptional divisor of $\pi$ which are not in a Tjurina-Spivakovsky
component, i.e. such that $a_{M}.E_{i}<0$ , are the components of the ex-
ceptional divisor which are intersected by the strict transform of the
general element $l$ . These components are in fact the strict transforms
by $\pi$ of the components of the projective set associated to the tan-
gent cone of $X$ at $x$ . So, the images by the map $q$ of the components
contained in a Tjurina-Spivakovsky component of $a_{M}$ must be points.
Therefore $q$ is obtained by contracting the Tjurina-Spivakovsky com-
ponents of $a_{M}$ . Since $q$ is a resolution of the singularities of $\overline{X_{1}}$ , the
images of the Tjurina-Spivakovsky components of $a_{M}$ contain the singu-
lar points of $\overline{X_{1}}$ . If $Z$ is an arbitrary resolution of $(X, x)$ , it is possible
that, by contracting a Tjurina-Spivakovsky component of $a_{M}$ , one ob-
tains a non-singular point. However, if $\pi$ is the minimal resolution of
$(X, x)$ in which $\pi^{*}M$ is invertible, the Tjurina-Spivakovsky components
of $a_{M}$ all contract in a singular point of $X_{1}$ . This fact is consequence
of the observation that in such resolution none of the components in a
Tjurina-Spivakovsky component of $a_{M}$ is a curve of the first kind (see
3.3.3).

Remark 4.1.2. In [Tj], G. Tjurina found that, in the case of a
rational singularity (X,$ $x), the Tjurina-Spivakovsky components of the
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fundamental cycle of the minimal resolution of $(X, x)$ contract into the
singular points of the blowing-up of $X$ at $\{x\}$ . The reason is that, for
any resolution $\pi$ of a rational singularity, the inverse image $\pi^{*}M$ of the
maximal ideal of $x$ in $X$ is invertible and that the blowing-up $X_{1}$ of the
point $x$ in $X$ is already normal.

M. Spivakovsky extended the notion of Tjurina-Spivakovsky compo-
nents to any cycle in the Lipman semi-group of a resolution of a rational
singularity (see [Sp] Chap. Ill, Definition 3.1).

We have naturally generalized the definition of Spivakovsky to res-
olutions of general normal surface singularities, but unlike the case of
rational singularities, the Lipman semi-group of a resolution $\pi$ might be
different from the semi-group of ideals I of the local ring $\mathcal{O}_{X,,,x}$ whose
lifting $\pi^{*}I$ is invertible on $Z$ .

Recall that J. Snoussi proved that the exceptional tangents of a
normal surface singularity are the special generatrices of Gonzalez and
Lejeune (see above in 2.1.2). So the result of Lemma 4.1.1 says that
the images of the singular points of $X_{1}$ under normalisation are excep-
tional tangents. On the other hand, images of the singular points of the
exceptional set of the normalized blowing-up under normalisation give
also special generatrices, these images are also exceptional tangents. In
particular, singular generatices of tangent cones of rational singularities
are exceptional tangents, so that Snoussi gives a positive answer to a
question of M. Spivakovsky in [Sp] (Chap. Ill, Remark 3.12).

An interesting corollary is the following:

Proposition 4.1.3. If a normal surface singularity has no excep-
tional tangent, the normalized blowing-up of its singular point is non-
singular.

In [LT2], we proved that an isolated singularity of surface which
has a reduced tangent cone and which has no exceptional tangent is
equisingular to its tangent cone. In the case of germs of hypersurface in
$C^{3}$ , we proved that if there are no exceptional tangents, the tangent cone
is reduced. Of course, in these two cases, the normalized blowing-up of
the singular point is non-singular, since the blowing-up of the singular
point is already non-singular.
4.2. Examples. In general the inverse image of the maximal ideal
by a resolution of a normal surface singularity might not be invertible
(see [Y]). For example, consider the minimal resolution of the hypersur-
face $x^{2}+y^{3}+z^{6}=0$ (see [GL]). One can show that the exceptional
divisor of the minimal resolution is a non-singular elliptic curve of self
intersection -1. In order to obtain a resolution in which the inverse
image of the maximal ideal is invertible, we need to blow-up a point
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in this elliptic curve. In this new resolution where the inverse of the
maximal ideal is invertible the Tjurina-Spivakovsky component of the
maximal cycle is the elliptic curve. This elliptic curve contracts to a
singularity whose minimal resolution has an exceptional divisor whose
unique component is this elliptic curve with self-intersection -2. It is
easy to show that there is only one exceptional tangent in this example.

Another interesting example is the hypersurface $x^{2}+y^{4}+z^{4}=0$ .

For this case, in the minimal resolution the inverse image of the maximal
ideal is an elliptic curve with self-intersection-2. In fact, the normalized
blowing-up of the singular point is non-singular. However, we have 4
exceptional tangents which correspond to the ramification points of the
projection of the elliptic curve on the non-singular rational curve which
is the projective curve associated to the tangent cone of the singularity.

The two preceding examples are simple elliptic singularities in the
sense of K. Saito (see [Sa]). The singularity of $x^{2}+y^{3}+z^{6}=0$ is simple

elliptic of type $\tilde{E}_{8}$ and the singularity of $x^{2}+y^{4}+z^{4}=0$ is of type $\overline{E}_{7}$ .

It is interesting to see that the blowing-up of $x^{2}+y^{3}+z^{6}=0$ is normal
and contains one singularity which is equisingular to $x^{2}+y^{4}+z^{4}=0$ ,
but not analytically isomorphic to it. In fact, using the deformation of
$\tilde{E}_{8}$ type singularities given in Satz 1.9 of [Sa], one can find a deformation
of $x^{2}+y^{3}+z^{6}=0$ which gives $x^{2}+y^{4}+z^{4}=0$ in its blowing-up.
4.3. A natural question is to decide if, in terms of limits of tangent
hyperplanes or in terms of limits of tangent spaces, the singularities of
the normalized blowing-up are simpler than the given one.

Another interesting problem related to the preceding question is to
find an effective bound on the number of normalized blowing-up neces-
sary to solve a normal surface singularity. The description given above is
a first step in an attempt to understand the geometry of the normalized
blowing-up.

It is interesting to notice that the geometry involved in a normalized
blowing-up is similar to the one used by M. Spivakovsky in [Sp] to re-
solve a normal surface singularity by a finite composition of normalized
Nash modifications. In some sense, these two processes of resolutions
are dual. The problem of giving an effective bound on the number of
normalized Nash modifications needed to solve a normal surface singu-
larity is also not solved. In [Sp], M. Spivakovsky gives a detailed study
of the complexity of the resolution graph of the minimal resolution of a
minimal rational singularity and the behaviour of this complexity after
a normalized Nash modification. This is the key step to obtain the reso-
lution of normal surface singularities by composition of a finite number
of normalized Nash modifications.
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Since rational surface singularities are absolutely isolated (see [Tj]),
the complexity of the resolution graph of the minimal resolution de-
creases strictly after each blowing-up. However, it is not trivial to get a
bound of the number of point blowing-ups needed in order to reach a res-
olution from the local ring of the singularity without having to calculate
the resolution graph of the minimal resolution.
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A Chern-Weil theory for Milnor classes

Daniel Lehmann

Abstract.

Dans un travail ant\’erieur ([BLSS]), en collaboration avec Bras-
selet, Suwa et Seade, nous avons present\’e une th\’eorie des classes
de Milnor pour les ensembles analytiques complexes $V$ qui sont lo-
calement des intersections compl\‘etes dans une vari\’et\’e holomorphe
ambiante $M$ sans singularit\’e. Le principe consistait \‘a comparer,
dans l’homologie $H_{2*}(V)$ , deux th\’eories des classes de Chern de $V$ ,

les classes de Schwartz-MacPherson $c_{*}^{SMP}(V)$ et les classes virtuelles
$c_{*}^{vir}(V)$ (encore appel\’ees de Fulton-Johnson): ces deux th\’eories sont
\’egales lorsque $V$ est lisse, et coincident alors avec l’image des classes
de Chern usuelles par la dualit\’e de Poincar\’e. Dans le cas g\’en\’eral, leur
diff\’erence se “localise” pr\‘es de la partie singuli\‘ere $S$ de $V$ : il existe un
\’el\’ement $\mu_{*}(V, S)\in H_{2*}(S)$ , d\’efini naturellement, dont l’image dans
$H_{2*}(V)$ est \’egale \‘a $(-1)^{n}[c_{*}^{Vir}(V)-c_{*}^{SMP}(V)]$ . En outre, si $(S_{\alpha})_{\alpha}$

d\’esigne la famille des composantes connexes de $S$ , la composante
$\mu o(V, S_{\alpha})$ de $\mu o(V, S)$ sur $H_{0}(S_{\alpha})$ est \’egale au nombre de Milnor de
$S_{\alpha}$ dans tous les cas o\‘u celui-ci a d\’ej\‘a \’et\’e d\’efini.

Dans [BLSS], nous utilisions \‘a la fois des m\’ethodes de Topologie
et de G\’eom\’etrie diff\’erentielle. Nous proposons ici une version de pure
G\’eom\’etrie diff\’erentielle.

AMS classification: $57R$ .
Keywords: Singular varieties, Schwartz-MacPherson and virtual classes,
Milnor classes and numbers.

\S 1. Introduction

In a joint work with J.P. Brasselet, J. Seade and T. Suwa, we pre-
sented in [BLSS] a theory of Milnor classes for singular compact subva-
rieties $V$ which are locally complete intersections in an analytic complex
manifold $M$ . The principle was to compare, in the homology $H_{2*}(V)$ of
$V$ , two different theories for Chern classes of $V$ , namely the Schwartz-
MacPherson classes $c_{*}^{SMP}(V)$ and the virtual classes $c_{*}^{Vir}(V)$ , both of
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them coinciding with the Poincar\’e dual of usual Chern classes $c^{n-*}(V)$ in
cohomology, when $V$ is non-singular of complex dimension $n$ . The differ-
ence $c_{*}^{Vir}(V)-c_{*}^{SMP}(V)$ of these two Chern classes is in fact localized near
the singular part $S$ of $V$ , i.e. there exists a well defined element $\mu_{*}(V, S)$

in $H_{2*}(S)$ , whose image in $H_{2*}(V)$ is equal to $(-1)^{n}[c_{*}^{Vir}(V)-c_{*}^{SMP}(V)]$ .

Furthermore, denoting by $(S_{\alpha})_{\alpha}$ the family of connected components of
$S$ , the component $\mu 0(V, S_{\alpha})$ of $\mu_{0}(V, S)$ on $H_{0}(S_{\alpha})$ is equal to the Milnor
number of $S_{\alpha}$ any time this one has already been defined (i.e. for $S_{\alpha}$

being an isolated point by Milnor ([Mi]) in case of hypersurfaces and
Hamm ([H]) in any codimension, and for $V$ being a hypersurface with
general compact $S_{\alpha}$ by Parusinski ([P]) $)$ . Notice also that such a theory
for Milnor classes has been suggested by Yokura ([Y]), and given for
complex hypersurfaces by Aluffi ([A2]) and $Parusi\acute{n}ski$-Pragacz ([PP3]).

Both methods of topology and differential geometry were mixed in
[BLSS]. In this paper, we wish to present the theory from a unified point
of view, only in differential geometry. [This implies in particular that we
use real coefficients in cohomology and homology, in fact as in [BLSS]
while the theory with integral coefficients could have been defined there].

Most of the ideas in this paper are already in [BLSS], to which we
refer also for examples. The main novelty is the explicit and system-
atical use of the $\check{C}ech$-de Rham complex with three kinds of open sets:
the “ambiant” open set $\tilde{U}_{A}=M-V$ , a tubular neighborhood $\tilde{U}_{0}$ of
the regular part $V_{0}$ of $V$ , and regular neighborhoods $\tilde{U}_{\alpha}$ of the $S_{\alpha}$ ’s.
In fact, because it may happen that the differential forms that we are
going to consider have the required properties only near some skeleton
of a convenient cellular structure of $M$ , we preferably use the image by
integration of this $\check{C}ech$-de Rham complex into the cellular cochains (see
[Le] $)$ . Furthermore, at least in a first step, instead of comparing the two
theories of SMP and virtual classes in the homology $H_{2*}(V)$ , it seems to
us more natural to work in $H^{2(m-*)}(M, M-V)$ where $2m=dim\mathbb{R}M$

(as originally in fact for SMP classes in [MHS]), Alexander duality
$A$ : $H^{2(m-*)}(M, M-V)\rightarrow H_{2*}(V)$ being an isomorphism when $V$ is
compact. There are two reasons for this: first it makes sense even if $V$ or
$S$ is not compact, and secondly we do it implicitely in any case, because
of the factorization $ P_{V}=A\circ\tau$ at the chain and cochain level for $V$ and
$S$ compact, where $P_{V}$ : $H^{2n-*}(V)\rightarrow H_{*}(V)$ denotes the Poincar\’e ho-
momorphism $(2n =dim\mathbb{R}V)$ , and $\tau$ : $H^{2n-*}(V)\rightarrow H^{2m-*}(M, M -V)$

the Thom-Gysin homomorphism (see [Br]). It turns out that this Thom-
Gysin homomorphism is very easy to write down and compute in our
framework, $V$ being not necessarily compact.

Therefore, the organisation of the paper is the following: we describe
in section 2 the geometrical situation that we are going to study. Main
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tools, such as the integration over suitable subcomplexes of the $\check{C}$ech-
de Rham complex, or the Chern-Weil theory, are recalled in section 3.
Section 4 is devoted to the computation of the Thom-Gysin homomor-
phism using differential geometry, section 5 to that of virtual classes,
and section 6 to that of SMP classes. The Milnor classes are defined in
section 7, using only radial frame fields such as in [Scl] for the original
definition of SMP classes. In section 8, finally, we sketch a transcription
of the point of view adopted in [BLSS], using more general frame fields.

I thank J.P. Brasselet, J. Seade and T. Suwa, and their institu-
tion (Laboratoire de Math\’ematiques CNRS de Marseille-Luminy, De-
partment of Mathematics of the University of Mexico in Cuernavaca,
Department of Mathematics of the University of Hokkaido in Sapporo)
for their hospitality, and the various discussions that we had together
during the preparation of [BLSS]. Particular indebtness is due to J.P.
Brasselet and T. Suwa, who helped me to correct a mistake in the proofs
of a previous version.

\S 2. Locally complete intersections.

Let $E\rightarrow M$ be a holomorphic vector bundle of rank $k$ on acomplex
manifold $M$ of complex dimension $m=n+k$ . Let $s$ be a holomorphic
section of $E$ , and $V$ be the zero set of $s$ . If we assume furthermore $s$

to be generically transverse to the zero section, the section $s$ is then
automatically regular, and the components of $s$ with respect to a local
trivialization generate the ideal of (local) holomorphic functions vanish-
ing on $V$ (after [T]). Thus, $V$ is a locally complete intersection in
$M$ . The restriction of $E$ to the regular part $V_{0}$ of $V$ may be canonically
identified with the normal bundle of $V_{0}$ in $M$ . Thus $E|_{V}$ is an extension
to all of $V$ of this normal bundle. We still call it normal bundle to
$V$ as in the non singular case. The bundle $E|V$ depends only on $V$ and
not on $(E, s)$ .

The natural projection $\pi_{0}$ : $TM|_{V_{0}}\rightarrow E|_{V_{0}}$ may be extended as a
(smooth) projection $\pi$ : $TM|_{\overline{U}_{0}}\rightarrow E|_{\overline{U}_{0}}$ (no more unique but it does not

matter) on any tubular neighborhood $\tilde{U}_{0}$ of $V_{0}$ , the kernel $H$ of $\pi$ being

a smooth bundle on $\tilde{U}_{0}$ extending $TV_{0}$ .

Let $\Sigma$ be an analytic subset of $V$ containing the singular part of $V$ .

After Lojasiewicz, there exists a smooth triangulation (K) of $M$ adapted
to $V$ and $\Sigma$ , (i.e. having $V$ and $\Sigma$ as subcomplexes). Denote respectively
by $(K’)$ and $(K’’ )$ the first and the second barycentric subdivision of $K$ ,

and by (D) a smooth cellular structure dual to $(K’’ )$ .

Denoting by $(S_{\alpha})_{\alpha}$ the set of connected components of $\Sigma$ , we shall
make the following assumption: each $S_{\alpha}$ is either included in the regular
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part $V_{0}$ of $V$ or is a connected component of the singular part Sing(V),
but none of them intersects simultaneously $V_{0}$ and Sing(V). In fact,
once fixed the homological dimension *in which we wish to compute
$\mu_{*}(V, S)$ it is sufficient to assume that the intersection $S_{\alpha}\cap(D)^{2(m-*)}$ of
$S_{\alpha}$ with the $2(m-*)$ skeleton of (D) does not intersect simultaneously
$V_{0}$ and Sing(V).

Let $\tilde{U}_{A}=M-V$ (the index $‘‘ A$” meaning “ambiant”). Let $\tilde{U}_{\alpha}$ be
the interior of the link of $S_{\alpha}$ for $(K’)$ , and $\tilde{U}_{1}=\bigcup_{\alpha}\tilde{U}_{\alpha}$ . From now on,

choose for tubular neighborhood $\overline{U}_{0}$ of $V_{0}$ the interior of the link of $V_{0}$

for $(K’)$ . Then, $\tilde{\mathcal{U}}=(\tilde{U}_{A},\tilde{U}_{0},\tilde{U}_{1})$ is a covering of $M$ by open sets, such

that $\tilde{U}_{\alpha}$ is a regular neighborhood of $S_{\alpha},\tilde{U}_{0}$ is a tubular neighborhood
of $V_{0}$ , and $U(V)=\tilde{U}_{0}\cup\tilde{U}_{1}$ is a regular neighborhood of $V$ , which is

covered by $\mathcal{U}=(\tilde{U}_{0},\tilde{U}_{1})$ . Furthermore, $\overline{U}_{\alpha}\cap\tilde{U}_{\beta}=\emptyset$ for $\alpha\neq\beta$ .

We have $V_{0}=\tilde{U}_{0}\cap V$ . Let $U_{\alpha}=\tilde{U}_{\alpha}\cap V$ and $U_{1}=\tilde{U}_{1}\cap V$ .
We define now a honeycomb system of cells $(\tilde{R}_{A},\tilde{R}_{0},\tilde{R}_{1}=\bigcup_{\alpha}\tilde{R}_{\alpha})$

(see the definition in [Le]) adapted to the open covering $\tilde{\mathcal{U}}$ of $M$ , in the
following way:
Let $\tilde{R}_{A}$ be the union of the $(K’’ )$-simplices which do not intersect $V$ .

Let $\tilde{R}_{0}$ be the union of the $(K’’ )$-simplices which intersect $V_{0}$ but not $\Sigma$ .

Let $\tilde{R}_{\alpha}$ be the union of the $(K’’ )$-simplices which intersect $S_{\alpha}$ .

As usually, we denote by $\tilde{R}_{A0},\tilde{R}_{A1}=\bigcup_{\alpha}\tilde{R}_{A\alpha},\tilde{R}_{01}=\bigcup_{\alpha}\tilde{R}_{0\alpha}$ ,

and $\tilde{R}_{A01}=\bigcup_{\alpha}\tilde{R}_{A0\alpha}$ the intersections of the above honeycombs, with
suitable orientations. In fact, we shall often omit the tilde any time
that the given set does not intersect $V$ (i.e. when $A$ does not occur
in the indices). If it does, the omission of the tilde means that we
take the intersection with $V$ : for instance, $R_{A}=\tilde{R}_{A}$ , $R_{A0}=\tilde{R}_{A0}$ and
$R_{A\alpha}=\tilde{R}_{A\alpha}$ , while $R_{0}=\tilde{R}_{0}\cap V$ , $R_{\alpha}=\tilde{R}_{\alpha}\cap V$ and $ R_{0\alpha}=\tilde{R}_{0\alpha}\cap V\ldots$

We also write $\tilde{R}=\tilde{R}_{0}\cup\tilde{R}_{1}$ , with $\partial\tilde{R}=\tilde{R}_{A0}\cup\tilde{R}_{A1}$ . Let $b\tilde{R}=$

$\partial\tilde{R}\cup\tilde{R}_{01}=\tilde{R}_{A0}\cup\tilde{R}_{A1}\cup\tilde{R}_{01}$ .

For any $(K’’ )$ subcomplex $X$ of $M$ , we denote by $\mathcal{T}_{D}(X)$ the union
of the (D) cells intersecting $X$ . If $Y$ is a subcomplex of $X$ , $\mathcal{T}_{D}(X-Y)$

denotes the union of the (D) cells intersecting $X$ but not $Y$ .
For instance:

$\mathcal{T}_{D}(V)$ has $V$ for deformation retract,
$\mathcal{T}_{D}(\Sigma)$ (resp. $\mathcal{T}_{D}(S_{\alpha})$ ) has $\Sigma$ (resp. $S_{\alpha}$ ) for deformation retract,
$\mathcal{T}_{D}(M-V)$ is a deformation retract of $M-V$ ,
$\mathcal{T}_{D}(M-\Sigma)$ is a deformation retract of $ M-\Sigma$ ,
$\mathcal{T}_{D}(V-\Sigma)$ has the homotopy type of $ V-\Sigma$ ,

and $\mathcal{T}_{D}(b\tilde{R})$ has $b\tilde{R}$ for deformation retract.
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We shall respectively denote by $C_{D}^{*}(M)$ , $C_{D}^{*}(V)$ , $C_{D}^{*}(\Sigma),C_{D}^{*}(M-V)$ ,
$C_{D}^{*}(M-\Sigma)$ and $C_{D}^{*}(V-\Sigma)$ the complexes of cellular cochains with coef-
ficients in $\mathbb{C}$ for (D)-cells respectively in $M$ , $\mathcal{T}_{D}(V)$ , $\mathcal{T}_{D}(\Sigma)$ , $\mathcal{T}_{D}(M-V)$ ,
$\mathcal{T}_{D}(M-\Sigma)$ , and $\mathcal{T}_{D}(V-\Sigma)$ . The corresponding cohomology algebras are
respectively canonically isomorphic to $H^{*}(M)$ , $H^{*}(V)$ , $H^{*}(\Sigma),H^{*}(M-V)$ ,
$H^{*}(M-\Sigma)$ and $H^{*}(V-\Sigma)$ .

Denote also respectively by $C_{D}^{*}(M, M-V)$ , $C_{D}^{*}(M, M-\Sigma)$ and
$C_{D}^{*}(V, V-\Sigma)$ the kernels of the surjections $C_{D}^{*}(M)\rightarrow C_{D}^{*}(M-V)$ ,
$C_{D}^{*}(M)\rightarrow C_{D}^{*}(M-\Sigma)$ and
$C_{D}^{*}(V)\rightarrow C_{D}^{*}(V-\Sigma)$ . Their cohomology are respectively canonically
isomorphic to $H^{*}(M, M-V)$ , $H^{*}(M, M-\Sigma)$ and $H^{*}(V, V-\Sigma)$ .

Notice that $V$ , (resp. $\partial R_{A}$ , $\partial\tilde{R}_{0}$ and $\partial\tilde{R}_{\alpha}$ ) is a subcomplex of $(K’’ )$ .

Thus, (D)-cells of dimension $j$ are transversal to them, and intersect
them therefore in dimension $j-2k$ (resp. $2m-1$ ).
Frame fields and radial frame fields

Let $r$ be an integer $(1 \leq r\leq n)$ . We set $p=n-r+1$ , and

$q=p+k=m-r+1$ . We shall denote by $\tilde{F}^{(r)}=(\tilde{F}^{(r-1)},\tilde{v}_{r})$ a field
of smooth non singular $r$ frames tangent to $M$ near $\mathcal{T}_{D}(b\tilde{R})\cap(D)^{2q}$ ,

( $F\sim(r-1)$ denoting the $r-1$ frame generated by the $r-1$ first vectors, and
$\tilde{v}_{r}$ denoting the last vector field of the frame), and having the following
properties:
(i) Its restriction $F^{(r)}=(F^{(r-1)}, v_{r})$ to $V_{0}$ is tangent to $V_{0}$ . More
generally $\tilde{F}^{(r)}$ remains in $H$ over $\mathcal{T}_{D}(\partial\tilde{R}_{0})\cap(D)^{2q}$ .

(ii) A smooth non singular extension of $\tilde{F}^{(r-1)}$ is given in $\mathcal{T}_{D}(\tilde{R}_{0})\cap(D)^{2q}$ ,

still in $H$ .
After usual obstruction theory, there always exists such frame fields:

in fact, $b\tilde{R}$ is a deformation retract of $\mathcal{T}_{D}(b\tilde{R})$ , and $b\tilde{R}\cap(D)^{2q}$ is $2q-1$

dimensional.
Among all frame fields having the above properties, there are in

particular after [MHS] radial frame fields, denoted by $\tilde{F}_{0}^{(r)}$ in the sequel.
(For a precise definition of a radial frame field, see [MHS] or [BS]). Notice
that the properties (i) (ii) are far from characterizing the frame fields
which are radial. For instance, in the case $r=1$ , if $\tilde{v}_{1}$ is radial, it is
possible to choose the honeycombs such that $\tilde{v}_{1}$ be transversal to $bR$ .
After [MHS] all radial frame fields are homotopic.
Particular connections:

We shall call $s$ connection every connection $\nabla^{s,E}$ on $E$ over $M$ ,

which is $s$ trivial $(\nabla^{s,E}s=0)$ off $\mathcal{T}_{D}(V)$ and in particular over $\partial R_{A}$ .

For any frame field $\tilde{F}^{(r)}$ satisfying the properties (i) and (ii) above,

we shall call $\underline{\tilde{F}^{(r)}}$connectionevery connection $\nabla_{F}^{M}$ on $TM$ over $M$ ,

preserving the subbundle $H$ of $TM$ over $\mathcal{T}_{D}(\tilde{R}_{0})$ , which is $\tilde{F}^{(r)}$ trivial
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over $\mathcal{T}_{D}(b\tilde{R})\cap(D)^{2q}$ , the induced connection $\nabla^{H}$ over $H$ being $\tilde{F}^{(r-1)}$

trivial over $\mathcal{T}_{D}(\tilde{R}_{0})\cap(D)^{2q}$ . Notice that the connection $\nabla_{F}^{M}$ , while
having particular properties only over some subspace of $M$ , has been
extended over all of $M$ .

Lemma 1. There always exists a pair of connections $(\nabla_{F}^{M}, \nabla^{s,E})f$

compatible with the projection $\pi$ : $TM\rightarrow E$ over $\mathcal{T}_{D}(\tilde{R}_{0})$ , where $\nabla_{F}^{M}$ is

an $\tilde{F}^{(r)}$ connection, and $\nabla^{s,E}$ an $s$ connection.

Such a pair will be called a compatible $(\tilde{F}^{(r)}, $s) pair.

$Proo/$. Obvious, using partition of unity. Q.E.D.

\S 3. Backgrounds and notations

A) Recall that the $\check{C}$ech de Rham complex $CDR^{*}(\tilde{\mathcal{U}})$ is the differ-
ential graded algebra of elements

$\omega=(\omega_{A0}\omega_{A}$
$\omega_{A01}\omega_{A1}==\omega_{0,\{}$

,

$\omega_{A0\alpha})\omega_{A\alpha})$

$\omega_{01}\omega_{1}==\{_{\omega_{0\alpha}}^{\omega_{\alpha})}))$ ,

(where $\omega_{A}$ , $\omega_{0}$ , $\omega_{\alpha}$ , $\omega_{A0}$ , $\omega_{A\alpha}$ , $\omega_{0\alpha}$ , $\omega_{A0\alpha}$ denote respectively de Rham
forms on the open sets $\tilde{U}_{A},\tilde{U}_{0},\tilde{U}_{\alpha},\tilde{U}_{A0}=\tilde{U}_{A}\cap\tilde{U}_{0}$ , $U_{A\alpha}=\tilde{U}_{A}\cap\tilde{U}_{\alpha}$ ,
$\tilde{U}_{0\alpha}=\tilde{U}_{0}\cap\tilde{U}_{\alpha},\tilde{U}_{A0\alpha}=\tilde{U}_{A}\cap\tilde{U}_{0}\cap\tilde{U}_{\alpha}$ , and the parenthesis denote families
of forms indexed by $\alpha$),
with the differential

$D\omega=\left(\begin{array}{lll}d\omega_{A} & d\omega_{0} & (d\omega_{\alpha})\\-d\omega_{A0}+\omega_{O}-\omega_{A} & (-d\omega_{A\alpha}+\omega_{\alpha}-\omega_{A}) & (-d\omega o_{\alpha}+\omega_{\alpha}-\omega_{0})\\ & (d\omega_{A0\alpha}+\omega_{0\alpha}-\omega_{A\alpha}+\omega_{A0}) & \end{array}\right)$ .

This differential is a derivation

$ D(\omega\vee\eta)=D\omega\vee\eta+(-1)^{dim\omega}\omega\vee D\eta$

for the following product (which is not graded commutative):

$\left(\begin{array}{lll}\omega_{A} & \omega_{O} & (\omega_{\alpha})\\\omega_{A0} & (\omega_{A\alpha}) & (\omega o_{\alpha})\\ & (\omega_{A0\alpha}) & \end{array}\right)$ $\vee$ $\left(\begin{array}{lll}\eta_{A} & \eta_{0} & (\eta_{\alpha})\\\eta_{A0} & (\eta_{A\alpha}) & (\eta_{0\alpha})\\ & (\eta_{A0\alpha}) & \end{array}\right)=$

$((-1)^{p}\omega_{A}\wedge\eta_{A}o+\omega_{A0}\wedge\eta_{0}\omega_{A}\wedge\eta_{A}(\omega_{A}\wedge\eta_{A}o_{\alpha}$ $((-1)^{p}\omega_{A^{\wedge\eta_{A\alpha}+\omega_{A\alpha}\wedge\eta_{\alpha}) _{((-1)^{p}\omega o\wedge\eta_{0\alpha}+\omega o_{\alpha}\wedge\eta_{\alpha})):}^{(\omega_{\alpha}\wedge\eta_{\alpha})}}}+(-1)^{p-1}\omega o\wedge\eta o\omega_{A0}\wedge\eta_{0\alpha}+\omega_{A0\alpha}\wedge\eta_{\alpha})$
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The cohomology algebra of $CDR^{*}(\tilde{\mathcal{U}})$ is naturally isomorphic to
the de Rham cohomology of $M$ (with complex coefficients), while the

differential subalgebras $CDR^{*}(\tilde{\mathcal{U}}, M-V)$ (resp. $CDR^{*}$ $(\tilde{\mathcal{U}}, M -\Sigma)$ ,

resp. $CDR^{*}(\tilde{\mathcal{U}},\tilde{U}_{A}\cup(\bigcup_{\alpha}\tilde{U}_{\alpha}))$ of elements $\omega$ such that $\omega_{A}=0$ (resp.
$\omega_{A}=0$ , $\omega_{0}=0$ , and $\omega_{A0}=0$), (resp. $\omega_{A}=0$ , $\omega_{0}=0$ , and $\omega_{A0}=0$ )
provide respectively the relative cohomology $H^{*}(M, M-V)$ ,
$H^{*}$ $(M, M -\Sigma)$ and $H^{*}(M,\tilde{U}_{A}\cup(\bigcup_{\alpha}\tilde{U}_{\alpha}))$ with complex coefficients. We
shall write [0] instead of 0 when we wish to insist that some $\omega$ is taken

in the subalgebra $CDR^{*}(\tilde{\mathcal{U}}, M-V)$ , $CDR^{*}(\tilde{\mathcal{U}}, M-\Sigma)$ or
$CDR^{*}(\tilde{\mathcal{U}},\tilde{U}_{A}\cup\tilde{U}_{1})$ , and not in $CDR^{*}(\tilde{\mathcal{U}})$ itself, writing respectively such
elements

( $\omega_{A0}[0]$

$(\omega_{A0\alpha})(\omega_{A\alpha})\omega_{0}$

$(\omega_{0\alpha})$ )
$(\omega_{\alpha})$

, $([[0]0]$ $(\omega_{A0\alpha})(\omega_{A\alpha})[0]$ $(\omega_{0\alpha}))(\omega_{\alpha})$

or

( $\omega_{A0}[0]$

$(\omega_{A0\alpha})\omega_{0}[0]$

$(\omega_{0\alpha})$ )
$[0]$

.

Since the honeycombs $R_{A},\tilde{R}_{0}$ , and $\tilde{R}_{\alpha}$ are subcomplexes of $(K’’ )$ ,

the cells of (D) are transversal to these honeycombs, so that we may

integrate elements $\omega\in CDR^{j}(\tilde{\mathcal{U}})$ along $j$ cells $\gamma$ of (D) (cf. [Le]): recall
that $\int_{\gamma}\omega$ is equal to

$\int_{\gamma\cap R_{A}}\omega_{A}+\int_{\gamma\cap\tilde{R}_{0}}\omega_{0}+\int_{\gamma\cap}R_{A0}\omega_{A0}$

$+\sum_{\alpha}[\int_{\gamma\cap\overline{R}_{\alpha}}\omega_{\alpha}+\int_{\gamma\cap R_{A\alpha}}\omega_{A\alpha}+\int_{\gamma\cap\overline{R}_{0\alpha}}\omega_{0\alpha}+\int_{\gamma\cap R_{A0\alpha}}\omega_{A0\alpha}]$

with suitable orientations of the domains $R_{A}\cdots R_{A0}\cdots R_{A0\alpha}$ .
The integration defines therefore a morphism from $CDR^{*}(\tilde{\mathcal{U}})$ into

the cellular cochains $C_{(D)}^{*}(M)$ , which commutes with the differentials

and induces an algebra isomorphism in cohomology (see [Le]). We shall
denote by

$((\omega_{A0}\omega_{A}$
$(\omega_{A0\alpha})(\omega_{A\alpha})\omega_{0}$

$(\omega_{0\alpha}))(\omega_{\alpha}))$
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the image of

( $\omega_{A0}\omega_{A}$

$(\omega_{A0\alpha})(\omega_{A\alpha})\omega_{0}$

$(\omega_{0\alpha})$ )
$(\omega_{\alpha})$

in $C_{(D)}^{*}(M)$ .

Similarly

(( $\omega_{A0}[0]$

$(\omega_{A0\alpha})(\omega_{A\alpha})\omega_{0}$

$(\omega_{0\alpha})$ )
$(\omega_{\alpha})$

), $($( $[[0]0]$

$(\omega_{A0\alpha})(\omega_{A\alpha})[0]$ $(\omega_{0\alpha})$ )$(\omega_{\alpha}))$

or

$((\omega_{A0}[0]$
$(\omega_{A0\alpha})\omega_{0}[0]$

$(\omega_{0\alpha}))[0])$

will denote elements in $C_{(D)}^{j}(M, M-V)$ , in $C_{(D)}^{j}(M, M-\Sigma)$ or in

$C_{(D)}^{j}(M, \mathcal{T}_{D}(M-V)\cup \mathcal{T}_{D}(\Sigma))$ .

The notation

$(([[0]0]$ $(\omega_{A0\alpha)}(\omega_{A\alpha})[0]$ $(\omega_{0\alpha}))(\omega_{\alpha}))+($( $\omega_{A0}^{/}[0]$

$(\omega_{A0\alpha}’)\omega_{0}^{J}[0]$ $(\omega_{0\alpha}^{/})$ )$[0])$

will denote in fact the sum

(( $00]$

$(\omega_{A0\alpha})(\omega_{A\alpha})0$
$(\omega_{0\alpha})$ )
$(\omega_{\alpha})$

) $+($( $\omega_{A0}^{/}[0]$

$(\omega_{A0\alpha}^{/})\omega_{0}^{/}0$ $(\omega_{0\alpha}^{/})$ )$0)$

of the images in $C_{(D)}^{*}(M, M-V)$ .

The $\check{C}ech$-de Rham complex $CDR^{*}(\mathcal{U})$ is the differential graded
algebra of elements

$\omega=(\omega_{0}, \omega_{1}=(\omega_{\alpha}),$ $\omega_{01}=(\omega_{0\alpha}))$

(where $\omega_{0}$ , $\omega_{\alpha}$ , $\omega_{0\alpha}$ denote respectively de Rham forms on the open sets
$\tilde{U}_{0},\tilde{U}_{\alpha},\tilde{U}_{0\alpha}$ , and the parenthesis denote families of forms indexed by
$\alpha)$ , with the differential

$D\omega=$ $(d\omega_{0} , (d\omega_{\alpha})$ , $(-d\omega_{0\alpha}+\omega_{\alpha}-\omega_{0}))$ ,
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which is a derivation with respect to the (non graded commutative)
product

$(\omega_{0}, (\omega_{\alpha})$ , $(\omega_{0\alpha}))$ . $(\eta 0 , (\eta_{\alpha}),$ $(\eta_{0\alpha}))$

$=$ $(\omega_{0}\wedge\eta 0, (\omega_{\alpha}\wedge\eta_{\alpha})$ , $((-1)^{p}\omega_{0}\wedge\eta_{0\alpha}+\omega_{0\alpha}\wedge\eta_{\alpha}))$ .

The cohomology algebra of $CDR^{*}(\mathcal{U})$ is naturally isomorphic to the
de Rham cohomology of $V$ (with complex coefficients), while the differen-
tial subalgebra $CDR^{*}(\mathcal{U}, V-\Sigma)$ of elements $\omega$ such that $\omega_{0}=0$ provide
the relative cohomology $H^{*}(V, V-\Sigma)$ . We shall write $([0], (\omega_{\alpha}), (\omega_{0\alpha}))$

the elements of $CDR^{*}(\mathcal{U},V-\Sigma)$ , and $(\omega_{A}, [0], (\omega_{O\alpha}))$ those $ofCDR^{*}(\mathcal{U},\Sigma)$ .

We may integrate elements $\omega\in CDR^{j}(\mathcal{U})$ along $j$ cells $\gamma$ of $\mathcal{T}_{D}(V)$ ,
and define $\int_{\gamma}\omega$ as being equal to

$\int_{\gamma\cap R_{0}}\omega_{0}+\sum_{\alpha}[\int_{\gamma\cap R_{\alpha}}\omega_{\alpha}+\int_{\gamma\cap R_{0\alpha}}\omega_{0\alpha}]$ .

The integration defines therefore a morphism from $CDR^{*}(\mathcal{U})$ into the cel-
lular cochains $C_{(D)}^{*}(V)$ on $V$ with complex coefficients, which commutes

with the differentials and induces an algebra isomorphism in cohomo-
logy. We shall denote by $((\omega_{0}, (\omega_{\alpha})$ , $(\omega_{0\alpha})))$ the image of $(\omega_{0}, (\omega_{\alpha}),$ $(\omega_{0\alpha}))$

in $C_{(D)}^{*}(V)$ .

Similarly $(([0], (\omega_{\alpha}), (\omega_{0\alpha})))$ will denote elements in $C_{(D)}^{j}(V, V-\Sigma)$ ,

and $((\omega_{0}, [0], (\omega_{0\alpha})))$ elements in $C_{(D)}^{j}(V, \Sigma)$ .

The notation $(([0], (\omega_{\alpha}), (\omega_{0\alpha})))+K\omega_{0}’$ , [0], $(\omega_{0\alpha}’)))$ will denote in fact

the sum $K^{0}$ , $(\omega_{\alpha})$ , $(\omega_{0\alpha})\lambda+((\omega_{0}’, 0, (\omega_{0\alpha}’)))$ in $C_{(D)}^{j}(V)$ .

Remark. When $\omega$ and $\gamma$ are $j$ dimensional, $\int_{\gamma}\omega$ depends only on

the behaviour of $\omega$ near the $j$ skeleton $(D)^{j}$ of (D), ( $i.e$ the behaviour
of $\omega_{A}$ near $R_{A}\cap(D)^{j}$ , etc....). Thus, it is sufficient that

$\omega=(\omega_{A0}\omega_{A}$
$(\omega_{A0\alpha})(\omega_{A\alpha})\omega_{0}$

$(\omega 0_{\alpha})$ )
$(\omega_{\alpha})$

be defined near $(D)^{j}$ , for

$K\omega\gamma=((\omega_{A0}\omega_{A}$
$(\omega_{A0\alpha})(\omega_{A\alpha})\omega_{0}$

$(\omega_{0\alpha}))(\omega_{\alpha}))$

to make sense. However, be careful to the fact that, in this case, the
Stokes formula $d((\omega))=((D\omega))$ does not hold any more necessarily.
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A similar remark holds for $((\omega_{0}, (\omega_{\alpha})$ , $(\omega_{0\alpha})))$ .

B) In general, for a Chern polynomial $\varphi$ (i.e., a polynomial of the
Chern classes), and a connection $\nabla$ on a complex $C^{\infty}$ vector bundle,
$C\rightarrow X$ , we denote by $\varphi(\nabla)$ the cocycle on the base which is the image of
$\varphi$ by the Chern-Weil homomorphism asoociated to $\nabla$ . Thus it is a closed
form whose cohomology class in the de Rham cohomology is the (real)
characteristic class $\varphi(C)$ of the bundle associated to $\varphi$ . In particular,
the class of $c^{i}(\nabla)$ is the real $i^{th}$ Chern class of $A$ . If $(\nabla_{0}, \nabla_{1}, \ldots, \nabla_{r})$ is a
family of $r+1$ connections on a same vector bundle $C$ , $\varphi(\nabla_{0}, \nabla_{1}, \ldots, \nabla_{r})$

will denote more generally the Bott difference operator ([B]), so that

$d\varphi(\nabla_{0}, \nabla_{1}, \ldots, \nabla_{r})=\sum_{i=0}^{r}(-1)^{i}\varphi(\nabla_{0}, \nabla_{1}, \ldots,\hat{\nabla}_{i}, \cdots, \nabla_{r})$ .

In particular, for $r=1$ , $d\varphi(\nabla_{0}, \nabla_{1})=\varphi(\nabla_{1})-\varphi(\nabla_{0})$ .

Denoting by $c^{i}$ and by $c^{\prime j}$ the Chern classes of some smooth complex
bundles $C$ and $C^{J}$ , of ranks $n+q$ and $q$ respectively, over a same manifold
$X$ , recall that the $h$-th Chern class $c^{\prime\prime h}=c^{h}([C-C’])$ of the virtual
bundle $[C-C’]\in KU(X)$ is a polynomial with respect to the $c^{i}$ ’s and

the $c^{\prime j}$ ’s, defined as the coefficient $oft^{h}$ in the expansion of the expression
$(1+\sum_{i}t^{i}c^{i})\cdot(1+\sum_{j}t^{j}c^{Jj})^{-1}$ . This polynomial may be written as a
finite sum

$c^{\prime\prime h}=\sum_{\ell}\varphi\ell(c^{1}, \ldots, c^{n+q})\cdot\psi_{\ell}(c^{\prime 1}, \ldots, c^{\prime q})$
,

for some polynomials $\varphi_{\ell}$ and $\psi_{\ell}$ .

Let $\nabla$ and $\nabla’$ be connections on $C$ and $C’$ respectively. Denoting
by $\nabla$

. the pair $(\nabla, \nabla’)$ , we set

$c^{h}(\nabla.)=\sum_{\ell}\varphi\ell(\nabla)\wedge\psi_{\ell}(\nabla’)$
.

Then $c^{h}(\nabla.)$ is a closed $2h$-form on $X$ which defines the class $c^{h}([C-C’])$ .

If $\nabla i=(\nabla_{1}, \nabla_{1}’)$ and $\nabla_{2}$

.
$=(\nabla_{2}, \nabla_{2}’)$ are two such pairs, we set

$c^{h}(\nabla i, \nabla_{2}.)=\sum_{\ell}(\psi_{\ell}(\nabla_{1}’)\cdot\varphi\ell(\nabla_{1}, \nabla_{2})+\psi_{\ell}(\nabla_{1}’, \nabla_{2}’)\cdot\varphi_{\ell}(\nabla_{2}))$
.

Then we have:
$dc^{h}(\nabla i, \nabla_{2}.)=c^{h}(\nabla_{2}.)-c^{h}(\nabla i)$ .
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If $\nabla i=(\nabla_{1}, \nabla_{1}’)$ , $\nabla_{2}$

.
$=(\nabla_{2}, \nabla_{2}’)$ and $\nabla_{3}$

.
$=(\nabla_{3}, \nabla_{3}’)$ are three such

pairs, we denote by $c^{h}(\nabla i, \nabla_{\dot{2}}, \nabla_{3}.)$ the form

$\sum_{\ell}(\psi_{\ell}(\nabla_{1}’)\cdot\varphi\ell(\nabla_{1}, \nabla_{2}, \nabla_{3})$

$+\psi_{\ell}(\nabla_{1}’, \nabla_{2}’)\cdot\varphi_{\ell}(\nabla_{2}, \nabla_{3})+\psi_{\ell}(\nabla_{1}’, \nabla_{2}’, \nabla_{3}’)\cdot\varphi_{\ell}(\nabla_{3}))$ .

Then we have

$dc^{h}(\nabla i, \nabla_{2}., \nabla_{3}.)=c^{h}(\nabla_{2}., \nabla_{3}.)-c^{h}(\nabla i, \nabla_{3}.)+c^{h}(\nabla i, \nabla_{2}.)$ .

\S 4. Thom-Gysin homomorphism

The complex $CDR^{*}(\mathcal{U})$ is a quotient of $CDR^{*}(\tilde{\mathcal{U}})$ , and we already
observed in [Le] that the cup product

$CDR^{*}(\tilde{\mathcal{U}}, M-V)\vee[ker:CDR^{*}(\tilde{\mathcal{U}})\rightarrow CDR^{*}(\mathcal{U})]$

is identically zero, defining therefore a multiplication

$CDR^{*}(\tilde{\mathcal{U}}, M-V)\times CDR^{*}(\mathcal{U})\rightarrow-CDR^{*}(\tilde{\mathcal{U}}, M-V)$ ,

which induces the product $H^{*}(M, M-V)\times H^{*}(V)\rightarrow H^{*}(M, M-V)$ .

Similarly, we get multiplications

$CDR^{*}(\tilde{\mathcal{U}}, M-V)\times CDR^{*}(\mathcal{U}, V-\Sigma)\rightarrow-CDR^{*}(\tilde{\mathcal{U}}, M -\Sigma)$ ,

and $ CDR^{*}(\tilde{\mathcal{U}}, M-V)\times$
$ CDR^{*}(\mathcal{U}, \cup U_{\alpha})\alpha\rightarrow CDR^{*}(\vee\overline{\mathcal{U}},\tilde{U}_{A}\cup(\cup\tilde{U}_{\alpha}))\alpha$ ’

inducing respectively the products $H^{*}(M, M-V)$ $\times H^{*}(V, V-\Sigma)\rightarrow$

$H^{*}(M, M-\Sigma)$ , and $H^{*}(M, M-V)\times H^{*}(V, \Sigma)\rightarrow H^{*}(M, M -\tilde{R}_{0})$ .

For $V=s^{-1}(0)$ as in section 2, the data of the section $s$ , non van-
ishing on $M-V$ , defines a natural lift $c^{k}(E, s)$ of the Chern class $c^{k}(E)$

by the morphism $H^{2k}(M, M-V)\rightarrow H^{2k}(M)$ . It is proved in [Su2]
that $c^{k}(E, s)$ corresponds to the fundamental class $[V]$ by the Alexan-
der duality. Therefore, the cup product by the so-called “Thom class”
$c^{k}(E, s)$ induces in cohomology the Thom-Gysin morphism $\tau$ such that
$A\circ\tau=P_{V}$ .

Let $\nabla^{E}$ be any $C^{\infty}$ connection on $E$ , and $\nabla^{\prime E}$ any $s$ trivial con-
nection on $E|_{M-V}$ ( $s$ trivial means : $\nabla^{\prime^{E}}s=0$ ). Then the Thom class
$c^{k}(E, s)$ of $E$ is represented by the cocycle

$\{$

[0] $c^{k}(\nabla_{E})$

$c^{k}(\nabla^{\prime^{E}}, \nabla_{E})$ $(c^{k}(\nabla^{\prime^{E}}, \nabla_{E}))$

0

$(c^{k}(\nabla_{E}))0)\in CDR^{*}(\tilde{\mathcal{U}}, M-V)$ ,
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and the Thom Gysin morphism is induced by the map
$\tau$ : $CDR^{*}(\mathcal{U})\rightarrow CDR^{*}(\tilde{\mathcal{U}}, M-V)$ such that

$\tau(\eta_{0}, (\eta_{\alpha}),$ $(\eta_{0\alpha}))$

$=$ $(c^{k}(\nabla^{\prime^{E}},\nabla^{E})\wedge\eta_{0}[0]$ $(-c^{k}(\nabla^{E}’,,\nabla^{E}(c^{k}(\nabla^{E},\nabla^{E}c^{k}(\nabla^{E})\wedge\eta_{0})\wedge\eta_{\alpha}))\wedge\eta_{0\alpha})$ $(c^{k}(\nabla^{E})\wedge\eta_{0\alpha))}(c^{k}(\nabla^{E})\wedge\eta_{\alpha})$ .

This Thom-Gysin morphism may then be refined by the maps

$\mathcal{T}\Sigma$ : $CDR^{*}(\mathcal{U}, V-\Sigma)\rightarrow CDR^{*}(\tilde{\mathcal{U}}, M-\Sigma)$

and $\tau_{0}$ :
$ CDR^{*}(\mathcal{U}, (\cup U_{\alpha}))\alpha\rightarrow CDR^{*}(\tilde{\mathcal{U}}, U_{A}\cup(\cup\tilde{U}_{\alpha}))\alpha$ ’

respectively defined by the formulas

$\mathcal{T}\Sigma([0], (\eta_{\alpha}), (\eta_{0\alpha}))$

$=$ $([[0]0]$ $(-c^{k}(\nabla^{\prime E},\nabla^{E}(c^{k}(\nabla^{\prime^{E}},\nabla^{E})\wedge\eta_{\alpha}) [0](c^{k}(\nabla^{E})\wedge\eta_{0\alpha})))\wedge\eta_{0\alpha)}(c^{k}(\nabla^{E})\wedge\eta_{\alpha})$ ,

and

$\tau_{0}(\eta_{0}, [0], (\eta_{0\alpha}))$

$=$ ( $c^{k}(\nabla^{\prime^{E}},\nabla^{E})[0]\wedge\eta 0$

$(-c^{k}(\nabla^{E}’,\nabla^{E})\wedge\eta_{0\alpha})c^{k}(\nabla^{E})\wedge\eta_{0}[0]$

$(c^{k}(\nabla^{E})\wedge[0]\eta_{0\alpha})$).
These maps do not depend in cohomology on the choices of $\nabla^{E}$ and

$\nabla^{\prime^{E}}$ . In fact, if $\nabla_{1}^{E}$ and $\nabla_{2}^{E}$ denote two connections on $E$ , then

$(^{[0]}c^{k}(\nabla^{\prime^{E}}, \nabla_{2}^{E})$
$(c^{k}(\nabla^{E}’,\nabla_{2}^{E}))c^{k}(\nabla_{2}^{E})0$

$(c^{k}(\nabla_{2}^{E}))0)$

$-(^{[0]}c^{k}(\nabla^{\prime^{E}}, \nabla_{1}^{E})$
$(c^{k}(\nabla^{E}’,\nabla_{1}^{E}))c^{k}(\nabla_{1}^{E})0$

$(c^{k}(\nabla_{1}^{E}))0)$

$=$ $D$ ( $c^{k}(\nabla^{\prime^{E}},\nabla_{1}^{E}, \nabla_{2}^{E})[0]$

$(c^{k}(\nabla^{E}’,\nabla_{1}^{E},\nabla_{2}^{E}))c^{k}(\nabla_{1}^{E}, \nabla_{2}^{E})0$

$(c^{k}(\nabla_{1}^{E}, \nabla_{2}^{E}))0$),
i.e. is a coboundary in $CDR^{*}(\tilde{\mathcal{U}}, M-V)$ .
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Similarly, if $\nabla_{1}^{;E}$ and $\nabla_{2}^{\prime^{E}}$ denote two connections on $E|_{M-V}$ , both
preserving $s$ , then

$(c^{k}(\nabla_{2}^{\prime^{E}}, \nabla^{E})[0]$
$(c^{k}(\nabla_{2,0}^{E}’, ’\nabla^{E}))c^{k}(\nabla^{E})$

$(c^{k}(\nabla^{E}))0)$

$-(c^{k}(\nabla_{1}^{\prime^{E}}, \nabla^{E})[0]$
$(c^{k}(\nabla_{1,0}^{E}’, ’\nabla^{E}))c^{k}(\nabla^{E})$

$(c^{k}(\nabla^{E}))0)$

$=$ $D$ ( $c^{k}(\nabla_{12}^{\prime^{E,E}},[0]\nabla, \nabla^{E})$

$(c^{k}(\nabla_{1}^{\prime E}, _{0}\nabla_{2}^{\prime E}, \nabla^{E})))0$ $0)0$ ,

(because $c^{k}(\nabla_{1}’, \nabla_{2}’)EE=0$ , since $\nabla_{1}^{\prime E}$ and $\nabla_{2}^{\prime E}$ axe both preserving the

same $s$ ): we still get a coboundary in $CDR^{*}(\tilde{\mathcal{U}}, M -V)$ .

Remark. If we take for $\nabla^{E}$ a $s$ connection, then $c^{k}(\nabla^{\prime^{E}}, \nabla^{E})=0$

off $\mathcal{T}_{D}(V)$ , and in particular over $R_{A0}$ and $R_{A\alpha}$ .

\S 5. Virtual classes

They are characteristic classes of the virtual tangent bundle $TV=$

$[TM-E]|_{V}$ in $KU(V)$ . Let $\nabla$
.

$=(\nabla^{M}, \nabla^{E})$ be a pair of connections $\nabla^{M}$

on $TM$ and $\nabla^{E}$ on $E$ . Then the $p^{th}$ Chern class $c_{vir}^{p}(V)$ of the above
virtual $TV$ may be represented, in the Chern-Weil theory by the de
Rham form $c^{p}(\nabla.)=[c(\nabla^{M})/c(\nabla^{E})]_{p}$ on $U(V)=\tilde{U}_{0}\cup\tilde{U}_{1}$ , (where $[\ldots]_{p}$

denotes the homogeneous component of dimension $2p$), or equivalently
by the element $(c^{p}(\nabla.), (c^{p}(\nabla.))$ , 0) in $CDR^{2p}(\mathcal{U})$ . It does not depend

on $\nabla$
. since, for two choices $\nabla$

. and $\overline{\nabla}$ . of the pair of connections, we
have: $c^{p}(\overline{\nabla}.)-c^{p}(\nabla.)=dc^{p}(\nabla.,\overline{\nabla}.)$ .

Let $\tilde{F}_{0}^{(r)}$ be a radial frame field. Let $\nabla_{F_{o}}^{M}$ be any $\tilde{F}_{0}^{(r)}$ connection

on $TM$ , and denote by $\nabla^{H}$ the induced connection on $H$ over $\tilde{R}_{0}$ . Set
$\nabla_{\dot{F}_{o}}=(\nabla_{F_{o}}^{M}, \nabla^{E})$ , and define

$Vir_{0}^{p}=((c^{p}(\nabla_{F_{o}}.), [0], 0))$ and $Vir_{\Sigma}^{p}=K[0]$ , $c^{p}(\nabla_{F_{o}}.)$ , 0)).

Proposition 1. (i) $Vir_{0}^{p}$ and $Vir_{\Sigma}^{p}$ are relative cocycles modulo
$\mathcal{T}_{D}(\Sigma)$ and $\mathcal{T}_{D}(R_{0})$ respectively.

(ii) Their cohomology class $ c_{0,,,vir}^{p}(V,\tilde{F}_{o}^{(r)})\in H^{2p}(\mathcal{T}_{D}(V), \mathcal{T}_{D}(\Sigma))\cong$

$H^{2p}(V, \Sigma)_{f}$ and $c_{\Sigma,,,vir}^{p}(V,\tilde{F}_{o}^{(r)})\in H^{2p}(\mathcal{T}_{D}(V), \mathcal{T}_{D}(R_{0}))\cong H^{2p}(V, V-\Sigma)$ .

[Notice that ( $c^{p}(\nabla_{\dot{F}_{o}})$ , [0], 0) and ([0], $c^{p}(\nabla_{\dot{F}_{o}})$ , 0) might not be cocycles!]
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For any $2p$ dimensional (D)-cell $\sigma$ in $\mathcal{T}_{D}(V)$ , $\langle Vir_{\Sigma}^{p}, \sigma\rangle$ is equal to
$\int_{\overline{R}_{1}}c^{p}(\nabla_{\dot{F}_{o}})$ .

If $\sigma$ is in $\mathcal{T}_{D}(R_{0})$ , then $\tilde{R}_{1}\cap\sigma$ is empty or is in $\mathcal{T}_{D}(\tilde{R}_{01})\cap(D)^{2p}$ where
$c^{p}(\nabla_{\dot{F}_{o}})=c^{p}(\nabla^{H})=0$ . Thus, $\langle Vir_{\Sigma}^{p}, \sigma\rangle=0$ , which proves that $Vir_{\Sigma}^{p}$

vanishes on $\mathcal{T}_{D}(R_{0})$ . Similarly, $Vir_{0}^{p}$ vanishes on $\mathcal{T}_{D}(\Sigma)$ .

On the other hand, for any $2p+1$ dimensional (D)-cell $\tau$ , $\langle dVir_{\Sigma}^{p}, \tau\rangle$

$=\langle Vir_{\Sigma}^{p}, \partial\tau\rangle$ is equal to $\int_{\overline{R}_{1}}c^{p}(\nabla_{\dot{F}_{0}})$ , that is $\int_{\overline{R}_{0’ 1},\cap\tau}c^{p}(\nabla_{\dot{F}_{0}})$ after

Stokes formula. If $\tilde{R}_{01}\cap\tau$ is not empty, it is included in $\mathcal{T}_{D}(\tilde{R}_{01})\cap(D)^{2p}$ ,

where $c^{p}(\nabla_{\dot{F}_{o}})=0$ : thus $Vir_{\Sigma}^{p}$ is a cocycle. A similar proof works for
$Vir_{0}^{p}$ .

For two different $\tilde{F}_{0}^{(r)}$ connections $\nabla i,F_{o}$ and $\nabla_{2,,,F_{o}}.$ , we have:

$(([0], c^{p}(\nabla_{2,,,F_{o}}.), 0))-(([0], c^{p}(\nabla i,F_{o}), 0))=d(([0], 0, c^{p}(\nabla_{1,,,F_{o}}, \nabla_{2,,,F_{o}))}$ ,

since $c^{p}(\nabla_{1,,,F_{o}}, \nabla_{2,,,F_{o}})=0$ near $\mathcal{T}_{D}R_{01}\cap(D)^{2q}$ , both connections $\nabla_{1,,,F_{o}}$

and $\nabla_{2,,,F_{o}}$ preserving there a same $\tilde{F}_{0}^{(r)}$ . Since two radial frame fields
are always homotopic, these classes do not depend neither of the choice
of the radial frame field, as far as it is radial.

After section 4, if we assume furthermore that $\nabla^{s,E}$ is a $s$ connection,
this decomposition has for image by the Thom-Gysin homomorphism

(( $00]$

$c^{k}(\nabla^{s,E})c^{p}(\nabla_{\dot{F}_{o}})[0]0$
$[0]0))+($( $[0][0]$

$[0]00$

$(c^{k}(\nabla^{s,E})0c^{p}(\nabla_{\dot{F}_{o}}))$ )$)$ .

\S 6. SMP classes

Let $r$ , $p$ and $q$ be as above.

Proposition 2. Let $\nabla_{F_{o}}^{M}$ denote some $\tilde{F}_{0}^{(r)}$ connection on $TM$ ,

for $a$ radial frame field $\tilde{F}_{0}^{(r)}$ .
(i) Then

$SMP^{2q}=((^{[0]}0$ $c^{q}(\nabla_{F_{o}}^{M})00$

$(c^{q}(\nabla_{F_{o}}^{M}))0$ )
$\backslash $

),
is a cocycle in $C^{2q}(M, \mathcal{T}_{D}(R_{A}))$ .
(ii) Its cohomology class is well defined in

$H^{2q}(M, \mathcal{T}_{D}(R_{A}))\cong H^{2q}(M, M-V)$ .

(iii) This cohomology class $c_{SMP}^{2q}(V)$ is equal to the image in the coho-
mology with real coefficients of the SMP class defined in [MHS] and [BS]
with integral coefficients.
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In fact, for any $2q(D)$ -cell $\sigma$ , we have:
$\langle SMP^{2q}, \sigma\rangle=\int_{\overline{R},\cap\sigma},c^{q}(\nabla_{F_{o}}^{M})$ .

For $\sigma$ in $\mathcal{T}_{D}(R_{A})$ , we get $\langle SMP^{2q}, \sigma\rangle=0$ because $c^{q}(\nabla_{F_{o}}^{M})=0$ if $\sigma$

intersects $\partial R_{A}$ , and $\tilde{R}\cap\sigma=\emptyset$ if it doesn’t. Thus $SMP^{2q}$ is a relative
cochain modulo $\mathcal{T}_{D}(R_{A})$ . On the other hand, for any $2q+1$ dimensional
(D)-cell $\tau$ , $\langle dSMP^{2q}, \tau\rangle$ is equal to $\int_{\overline{R},\cap\partial\tau},c^{q}(\nabla_{F_{o}}^{M})$ . If $\tau$ intersects $\partial\tilde{R}$ ,

then $c^{q}(\nabla_{F_{o}}^{M})=0$ . If not, then $\tilde{R}\cap\partial\tau=\partial\tau$ and $\int_{\overline{R},\cap\partial\tau},c^{q}(\nabla_{F_{o}}^{M})=0$

after Stokes formula. Thus $dSMP^{2q}=0$ , and we get part (i) of the
proposition.

For tvvo different $\tilde{F}_{0}^{(r)}$ connections $\nabla_{1,,,F_{o}}^{M}$ and $\nabla_{2,,,F_{o}}^{M}$ , we have:

(( $00]$

$c^{q}(\nabla_{2,,,F_{o}}^{M})00$

$(c^{q}(\nabla_{2,,,F_{o}}^{M}))0$ )) $-($( $0$
$c^{q}(\nabla_{1,F_{o}}^{M})00$

$(c^{q}(\nabla_{1,,,F_{o}}^{M}))0$)$)$
$=d$ (( $00]$

$c^{q}(\nabla_{1,,,F_{o0}}^{M}, \nabla_{2,,,F_{o}}^{M})0$

$(c^{q}(\nabla_{1,,,F_{o}}^{M}, \nabla_{2,,,F_{o}}^{M}))0$ )),
since $c^{p}(\nabla_{1,,,F_{o}}^{M}, \nabla_{2,,,F_{o}}^{M})=0$ near $\mathcal{T}_{D}(\partial\tilde{R})\cap(D)^{2q}$ , both connections $\nabla_{1,,,F_{o}}^{M}$

and $\nabla_{2,,,F_{o}}^{M}$ preserving there a same $\tilde{F}_{0}^{(r)}$ . Two radial frame fields being
always homotopic, these classes do not depend neither on the choice of
the frame field, as far as it is radial, hence part (ii) of the proposition.

Part (iii) results that the above definition is just a differential geo-
metric transcription of the definition given in [MHS] and [BS].

Remarks, (i) For the moment, as far that we wish only define
$c_{SMP}^{2q}(V)$ , we do not need the covering $\tilde{\mathcal{U}}$ with 3 open sets $M$ $-V,\tilde{U}_{0}$ and
$\tilde{U}_{1}$ : we could as well work with the 2 open sets $M$ $-V$ and $\tilde{U}_{0}\cup\tilde{U}_{1}$ . But
we shall need it soon, when decomposing $c_{SMP}^{2q}(V)$ into the contributions
$c_{\Sigma,,,SMP}^{2q}(V)$ and $c_{0,,,SMP}^{2q}(V)$ of the regular and the singular part of $V$ .

(ii) Notice that

$(c^{q}(\nabla_{F_{o}}^{M}, \nabla^{M})[0]$
$(c^{q}(\nabla_{F\mathring{0}}^{M},\nabla^{M}))c^{q}(\nabla^{M})$

$(c^{q}(\nabla^{M}))0)$

might not be a cocycle, because $c^{q}(\nabla_{F_{o}}^{M})$ vanishes only over
$\mathcal{T}_{D}(\partial R_{A})\cap(D)^{2q}$ , and may be not on all of $U_{A0}$ and $U_{A\alpha}$ .

(iii) The SMP class is an obstruction for the radial frame field $\tilde{F}_{0}^{(r)}$

to be extended to all of $U(V)\cap(D)^{2q}$ . In fact, if such an extension exists,
then $c^{q}(\nabla_{F_{o}}^{M})=0$ on all of the above domain, so that the previous cocycle
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is equal to

$d$ (( $00]$

$c^{q}(\nabla_{F\mathring{0}}^{M}, \nabla^{M})0$

$(c^{q}(\nabla_{F}^{M}, \nabla^{M}))\mathring{0}$ )).
In the definition above of the SMP class, we used only that $\nabla_{F_{o}}^{M}$

preserves $\tilde{F}_{0}^{(r)}$ over $\mathcal{T}_{D}(\partial R_{A})\cap(D)^{2q}$ . If we remember that it is still

true over $\mathcal{T}_{D}(\tilde{R}_{01}\cap(D)^{2q}$ , the above cocycle providing $c_{SMP}^{q}(V)$ may be
decomposed into

(( $00]$

$c^{q}(\nabla_{F_{o}}^{M})[0]0$

$[0]0$ )) $+($( $[0][0]$

$[0]00$

$(c^{q}(\nabla_{F_{o}}^{M}))0$ )$)$ ,

which are still relative cocycles respectively in $C^{2q}(M, \mathcal{T}_{D}(\tilde{R}_{A}\cup\tilde{R}_{1})$ and
$C^{2q}(M, \mathcal{T}_{D}(\tilde{R}_{A}\cup\tilde{R}_{0})$ , whose relative cohomology classes, respectively

denoted by $c_{0,,,SMP}^{q}(V,\overline{F}_{o}^{(r)})$ and $c_{\Sigma,,,SMP}^{q}(V,\tilde{F}_{o}^{(r)})$ in $H^{2q}(M, \mathcal{T}_{D}(\tilde{R}_{A}\cup\tilde{R}_{1})$

and $H^{2q}(M, \mathcal{T}_{D}(\tilde{R}_{A}\cup\tilde{R}_{0})\cong H^{2q}(M, M-\Sigma)$ still do not depend on the
choices of the various connections (similar proof).

\S 7. Milnor classes

Lemma 2. The relative cohomology classes $\tau_{0}(c_{0,,,vir}^{p}(V,\tilde{F}_{o}^{(r)}))$ and
$c_{0,SMP}^{q}(V,\tilde{F}_{o}^{(r)})$ are equal in $H^{2q}(M, \mathcal{T}_{D}(R_{A}\cup\bigcup_{\alpha}\tilde{R}_{\alpha})$ .

Proof. Choose a compatible $(\tilde{F}_{0}^{(r)}, s)$ pair $(\nabla_{F_{o}}^{M}, \nabla^{s,E})$ of connec-

tions, and let $\nabla^{H}$ be the connection induced by $\nabla_{F_{o}}^{M}$ on $H$ over $\tilde{R}_{0}$ .

(( $0$ $c^{k}(\nabla^{s,E})c^{p}(\nabla_{F_{o}}.)[0]0$ $[0]0))=($( $00]$

$c^{q}(\nabla_{F_{o}}^{M})[0]0$

$[0]0$)$)$ .

In fact, $c^{q}(\nabla_{F_{o}}^{M})=c^{k}(\nabla^{s,E})\wedge c^{p}(\nabla_{\dot{F}_{o}})+\sum_{j>0}[c^{k-j}(\nabla^{s,E})\wedge c^{p+j}(\nabla_{\dot{F}_{o}})]$ .

But $c^{p+j}(\nabla_{F_{o}}.)=0$ over $\mathcal{T}_{D}(\tilde{R}_{0})\cap(D)^{2q}$ , since it is equal to $c^{p+j}(\nabla^{H})$

(because of the compatibility of $(\nabla^{H}, \nabla_{F_{o}}^{M}, \nabla^{s,E})$ with the exact se-

quence), and since $c^{p+j}(\nabla^{H})=0$ over $\mathcal{T}_{D}(\tilde{R}_{0})\cap(D)^{2q}$ for $j>0$ (because
$\nabla^{H}$ preserves there the $r-1$ frame $\tilde{F}^{(r-1)}$ ). Q.E.D.

We deduce the
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Theorem, (i) The cohomology class
$\mathcal{T}\Sigma(c_{\Sigma,,,vir}^{p}(V,\tilde{F}_{o}^{(r)}))-c_{\Sigma,,,SMP}^{q}(V,\tilde{F}_{O}^{(r)})$ of the cocycle

$(([[0]0]$
$[0]00$ $(c^{k}(\nabla^{s,E})\wedge c^{p}(\nabla_{\dot{F}_{o}})-c^{q}(\nabla_{F_{o}}^{M}))0))$

is well defined in $H^{2q}(M, M-\Sigma)$ , $ie$ . does no depend on the choice of
the $(\tilde{F}_{0}^{(r)}, s)$ pair $(\nabla_{F_{o}}^{M}, \nabla^{s,E})$ of connections.
(ii) It is $a$ “localization ” of $\tau(c_{vir}^{p}(V,\tilde{F}_{o}^{(r)}))-c_{SMP}^{q}(V,\tilde{F}_{o}^{(r)})$ , which means:

$\tau(c_{vir}^{p}(V,\tilde{F}_{o}^{(r)}))-c_{SMP}^{q}(V,\tilde{F}_{o}^{(r)})=\beta[\mathcal{T}\Sigma(c_{\Sigma,,,vir}^{p}(V,\tilde{F}_{o}^{(r)}))-c_{\Sigma,,,SMP}^{q}(V,\tilde{F}_{o}^{(r)})]$ ,

where $\beta$ : $H^{2q}(M, M-\Sigma)\rightarrow H^{2q}(M, M-V)$ denotes the natural map.
(iii) The $\alpha$ component $\mu^{q}(V, S_{\alpha})$ of
$(-1)^{n}[\mathcal{T}\Sigma(c_{\Sigma,,,vir}^{p}(V,\tilde{F}_{o}^{(r)}))-c_{\Sigma,,,SMP}^{q}(V,\tilde{F}_{o}^{(r)})]$ in $H^{2q}(M, M-S_{\alpha})$ , defined
by the cocycle

$(-1)^{n}($( $[0][0]$

$[0]00$

$(c^{k}(\nabla^{s,E})\wedge c^{p}(\nabla_{F_{o}}.)-c^{q}(\nabla_{F_{o}}^{M}))_{\alpha}0$)$)$ ,

corresponds by Alexander duality to the homological Milnor class
$\mu_{m-q}(V, S_{\alpha})\in H_{2(m-q)}(S_{\alpha})$ defined in [BLSS].

Proof. The parts (i) and (ii) have already been proved, part (ii)
resulting from Lemma 2. On the other hand, the image of

$(([[0]0]$
$[0]00$ $(c^{k}(\nabla^{s,E})o^{c^{p}(\nabla_{\dot{F}_{o}}))_{\alpha}}))$

by Alexander duality $A$ : $H^{2q}(M, M-S_{\alpha})\rightarrow H_{2(m-q}(S_{\alpha})$ is still equal

to the image of $Kc^{p}(\nabla_{F_{o}}.)$ , [0], 0)) by the Poincar\’e morphism
$P_{V}$ : $H^{2p}(V, V-S_{\alpha})\rightarrow H_{2(m-q}(S_{\alpha})$ : this is exactly the definition given

in [BLSS] for the virtual index $Vir(\tilde{F}_{0}^{(r)}, S_{\alpha})$ of $\tilde{F}_{0}^{(r)}$ at $S_{\alpha}$ . Similarly,

$(-1)^{n}($( $[[0]0]$

$[0]00$

$(c^{q}(\nabla_{F_{o}}^{M}))_{\alpha}0$)$)$
has for image by $A$ the Schwartz index $Sch(\tilde{F}_{0}^{(r)}, S_{\alpha})$ of $\tilde{F}_{0}^{(r)}$ at $S_{\alpha}$ . Thus,
$A(\mu^{q}(V, S_{\alpha})=(-1)^{n}(Vir(\tilde{F}_{0}^{(r)}, S_{\alpha})-Sch(\tilde{F}_{0}^{(r)}, S_{\alpha})$ : this corresponds to
the definition of the homological Milnor class $\mu_{2(m-q)}(V, S_{\alpha})$ given in
[BLSS]. Q.E.D.
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Remarks. 1) The Milnor class $\mu^{q}(V, S_{\alpha})$ vanishes for any $\alpha$ such
that $S_{\alpha}\cap(D)^{2q}$ is included in $V_{0}$ : in fact, for such $\alpha$ ’s, the definition
of $H$ over $\tilde{R}_{0}$ may be extended to $\tilde{R}_{\alpha}$ , so that we can add $\tilde{R}_{\alpha}$ to $\tilde{R}_{0}$ in
Lemma 2.

Therefore, $\mu^{q}(V)$ arises in fact from a well defined element of
$H^{2q}$ ($M$ , $M-$ Sing(V)).

2) For $r=1$ , it results from the theorem that the Milnor number
of $V$ at $S_{\alpha}$ , such as defined in [BLSS] (the usual Milnor number if $S_{\alpha}$

is an isolated point ([M], [H]), or such as defined in [P] when $V$ is an
hypersurface in $M$ ), is given by:

$\mu_{0}(V, S_{\alpha})=\int_{\overline{R}_{\alpha}}[c^{k}(\nabla^{s,E})\wedge c^{n}(\nabla_{F_{o}}.)-c^{m}(\nabla_{F_{o}}^{M})]$ .

\S 8. Virtual and Schwartz indices

Let more generally $\tilde{F}^{(r)}$ be a frame field satisfying properties (i) and
(ii) of the end of section 2, but not necessarily radial.

Replacing the $(\tilde{F}_{0}^{(r)}, s)$ pair of connections $(\nabla_{F_{o}}^{M}, \nabla^{s,E})$ by a $(\tilde{F}^{(r)}, s)$

pair $(\nabla_{F}^{M}, \nabla^{s,E})$ , we can even take the same $\nabla^{s,E}$ in both pairs. Then
everything works in the same way as in section 5, for the definitions of
$c_{0,,,vir}^{p}(V,\tilde{F}^{(r)}))$ and $c_{\Sigma,,,vir}^{p}(V,\tilde{F}^{(r)}))$ . We get the following decomposition

of $\tau c_{vir}^{p}(V)$ :

$\tau_{0}(c_{0,,,vir}^{p}(V,\tilde{F}^{(r)}))=((^{[0]}0$
$c^{k}(\nabla^{s,E})[0]0c^{p}(\nabla_{F}. )$

$[0\rceil 0))$

and $\tau_{\Sigma}(c_{\Sigma,,,vir}^{p}(V,\tilde{F}^{(r)}))=(([[0]0]$ $[0]00$ $(c^{k}(\nabla^{s,E})0c^{p}(\nabla_{\dot{F}}))))$ .

However, as we already mentionned, we would not get the SMP

classes if we just replace $\tilde{F}_{0}^{(r)}$ by $\tilde{F}^{(r)}$ in sections 6 and 7. Thus, we still

define $c_{0,,,SMP}^{p}(V,\tilde{F}^{(r)}))$ by the similar procedure:

$c_{0,,,SMP}^{p}(V,\tilde{F}^{(r)}))=((^{[0]}0$
$c^{q}(\nabla_{F}^{M})[0]0$

$[0]0))$ .

Therefore, we still have, as in Lemma 2 (similar proof):

$c_{0,,,vir}^{p}(V,\tilde{F}^{(r)}))=c_{0,,,SMP}^{p}(V,\tilde{F}^{(r)}))$ .
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But, now, as a transcription of what we did in [BLSS], we define

$c_{\Sigma,,,SMP}^{p}(V,\tilde{F}^{(r)}))=c_{\Sigma,SMP}^{p}(V,\tilde{F}_{0}^{(r)})+\tau_{\Sigma}[(c_{\Sigma,,,vir}^{p}(V,\tilde{F}^{(r)})-c_{\Sigma,,,vir}^{p}(V,\tilde{F}_{0}^{(r)})]$ .

More precisely, we define the “difference” of the two frames, as the

cohomology class $\delta^{p}(\tilde{F}_{0}^{(r)},\tilde{F}^{(r)})$ of $((0,0, (c^{p}(\nabla_{\dot{F}_{o}}, \nabla_{F}.))))\in H^{2p}(V)$ .

Since $((c^{p}(\nabla_{\dot{F}})-c^{p}(\nabla_{\dot{F}_{o}}), [0], -c^{p}(\nabla_{\dot{F}_{O}}, \nabla_{\dot{F}})))=D((c^{p}(\nabla_{\dot{F}_{0}}, \nabla_{\dot{F}}),$ $[0]$ , 0)),

then $[(c_{0,,,vir}^{p}(V,\tilde{F}^{(r)})-c_{0,,,vir}^{p}(V,\tilde{F}_{0}^{(r)})]$ and $((0, [0], (c^{p}(\nabla_{\dot{F}_{o}}, \nabla_{\dot{F}}))))$ are

equal in $H^{2p}(V, \Sigma)$ .

Similarly $[(c_{\Sigma,,,vir}^{p}(V,\tilde{F}^{(r)})-c_{\Sigma,,,vir}^{p}(V,\tilde{F}_{0}^{(r)})]$ and $(([0], 0, (-c^{p}(\nabla_{\dot{F}_{o}}, \nabla_{\dot{F}}))))$

are equal in $H^{2p}(V, V-\Sigma)$ .

By the Thom-Gysin homomorphism, we get:

$\tau\delta^{p}(\tilde{F}_{0}^{(r)},\tilde{F}^{(r)})=($( $0$ $000$ $c^{k}(\nabla s,E)\wedge c^{p}(\nabla_{\dot{F}_{o}}, \nabla_{F}.)$)$0)$ ,

whose cohomology class is defined as well in $H^{2q}(M, \mathcal{T}_{D}(R_{A}\cup\bigcup_{\alpha}\overline{R}_{\alpha})$

as in $H^{2q}(M, M -\Sigma)$ . Thus, we get:

$c_{\Sigma,,,SMP}^{q}(V,\tilde{F}^{(r)})=($( $00]$

$000$

$-c^{k}(\nabla s,Ec^{q}(\nabla_{F_{o}}^{M}))\wedge c^{p}(\nabla_{F_{o}}., \nabla_{\dot{F}})$)$)$ .

Of course, we have done what we needed for still guetting

$\mu^{q}(V)=(-1)^{n}[c_{\Sigma,,,vir}^{q}(V,\tilde{F}^{(r)})-c_{\Sigma,SMP}^{q}(V,\tilde{F}^{(r)})]$ ,

which does not depend on the frame field $\tilde{F}^{(r)}$ . In particular, we have:

$\mu^{q}(V, S_{\alpha})=(-1)^{n}(([[0]0]$ $[0]00$ $(c^{k}(\nabla^{s,E})\wedge c^{p}(\nabla_{\dot{F}}).-c^{q}(.\nabla_{F_{o}}^{M}))_{\alpha}(c^{k}(\nabla^{s,E})\wedge c^{p}(\nabla_{F_{o}},\nabla_{F}))_{\alpha))}$ .

On the other hand, as for $\tilde{F}_{0}^{(r)}$ , $c_{SMP}^{q}(V)$ is still equal to the sum
of the images of $c_{0,,,SMP}^{q}(V,\tilde{F}^{(r)})$ and $c_{\Sigma,,,SMP}^{q}(V,\tilde{F}^{(r)})$ in $H^{2q}(M, M-V)$ .

This is an obvious corollary of the generalization of Lemma 2 to $\tilde{F}^{(r)}$ .

The virtual index (resp. the Schwartz index) of $\tilde{F}^{(r)}$ at $S_{\alpha}$ such
as defined in [BLSS] is nothing else but the image by the Alexander
duality of the $\alpha$ component $c_{S_{\alpha},,,vir}^{q}(V,\tilde{F}^{(r)})$ (resp. $c_{S_{\alpha},,,SMP}^{q}(V,\tilde{F}^{(r)})$ ) of

$c_{\Sigma,,,vir}^{q}(V,\tilde{F}^{(r)})$ (resp. $c_{\Sigma,,,SMP}^{q}(V,\tilde{F}^{(r)})$ ).



200 D. Lehmann

References

[A1] P. Aluffi, Singular schemes of hypersurfaces, Duke Math. J. 80 (1995),
325-351.

[A2] P. Aluffi, Chern classes for singular hypersurfaces, preprint.
[B] R. Bott, Lectures on characteristic classes and foliations, Lectures on

Algebraic and Differential Topology, Lecture Notes in Mathematics
279, Springer-Verlag, New York, Heidelberg, Berlin (1972), 1-94.

[Br] J.-P. Brasselet, D\’efinition combinatoire des homomorphismes de Poin-
car\’e, Alexander et Thom pour une pseudo-vari\’et\’e, Caract\’eristique

d’Euler-Poincar\’e, Ast\’erisque 82-83, Soci\’et\’e Math\’ematique de Pran-
ce, (1981), 71-91.

[BLSS] J.-P. Brasselet, D. Lehmann, J. Seade and T. Suwa, Milnor classes of
local complete intersections, Hokkaido University preprints series,

413 (1998).
[BS] J.-P. Brasselet et M.-H. Schwartz, Sur les classes de Chern d’un

ensemble analytique complexe, Caract\’eristique d’Euler-Poincar\’e,
Ast\’erisque 82-83, Soci\’et\’e Math\’ematique de France, (1981), 93-147.

[H] H. Hamm, Lokale topologische Eigenschaften komplexer Rdume, Math.
Ann. 191 (1971), 235-252.

[Le] D. Lehmann, Vari\’et\’es stratifi\’ees $C^{\infty}$ : Int\’egrationde $\check{C}ech$-de Rham et
th\’eorie de Chern-Weil, Geometry and Topology of Submanifolds II,
Proc. Conf., May 30-June 3, 1988, Avignon, FFance, World Scien-
tific, Singapore, (1990), 205-248.

[LSS] D. Lehmann, M. Soares and T. Suwa, On the index of a holomorphic
vector field tangent to a singular variety, Bol. Soc. Bras. Mat. 26
(1995), 183-199.

[LS] D. Lehmann and T. Suwa, Residues of holomorphic vector fields rel-
ative to singular invariant subvarieties, J. Differential Geom. 42
(1995), 165-192.

[Lol] E. Looijenga, Isolated Singular Points on Complete Intersections, Lon-
don Mathematical Society Lecture Note Series 77, Cambridge Univ.
Press, Cambridge, London, New York, New Rochelle, Melbourne,

Sydney, 1984.
[Ma] R. MacPherson, Chern classes for singular algebraic varieties, Ann.

of Math. 100 (1974), 423-432.
[Mi] J. Milnor, Singular Points of Complex Hypersurfaces, Annales of

Mathematics Studies 61, Princeton University Press, Princeton,
1968.

[P] A. Parusli iski, A generalization of the Milnor number, Math. Ann.
281 (1988), 247-254.

[PP1] A. Parusli iski and P. Pragacz, A formula for the Euler characteristic

of singular hypersurfaces, J. Algebraic Geom. 4 (1995), 337-351.
[PP2] A. Parusiiiski and P. Pragacz, Characteristic numbers of degeneracy

loci, Contemp. Math. 123 (1991), 189-198.



A Chern Weil theory for Milnor classes 201

[PP3] A. Parusiriski and P. Pragacz, Characteristic classes of hypersurfaces
and characteristic cycles, preprint.

[Scl] M.-H. Schwartz, Classes caract\’eristiques d\’efinies par une stratifica-
tion d’une vari\’et\’e analytique complexe, C.R. Acad. Sci. Paris, 260
(1965), 3262-3264, 3535-3537.

[Sc2] M.-H. Schwartz, Champs radiaux sur une stratification analytique
complexe, ’bavaux en cours 39, Hermann, Paris, 1991.

[Sc3] M.-H. Schwartz, Classes obstructrices des ensembles analytiques, to
appear in Travaux en cours, Hermann, Paris.

[Sul] T. Suwa, Classes de Chern des intersections compl\‘etes locales,

C.R. Acad. Sci. Paris, 324 (1996), 67-70.
[Su2] T. Suwa, Dual class of a subvariety, preprint.

[T] A.K. Tsikh, Weakly holomorphic functions on complete intersections,

and their holomorphic extension, Math USSR Sbornik, 61 (1988),

421-436.
[Y] S. Yokura, On a Milnor class.

D\’epartement des Sciences Math\’ematiques
Universit\’e de Montpellier $\Pi$

34095 Montpellier Cedex 5
France
CNRS UPRESA 5030
lehmann@darboux.math, univ-montp2.fr



 



Advanced Studies in Pure Mathematics29, 2000
Singularities-Sapporo 1998
pp. 203-220

The Milnor fiber as a virtual motive

Frangois Loeser

In this text, which correponds to our talk at the Conference “Sin-
gularities in Geometry and Topology” held in Sapporo in July 1998, we
present our results, obtained in collaboration with Jan Denef, on the
virtual motive associated to the Milnor fiber.

\S 1. Introduction

1.1. Let $X$ be a smooth and connected complex algebraic variety
and consider $f$ : $X\rightarrow C$ a non constant morphism. For any singular
point $x$ of $f^{-1}(0)$ , the Milnor fiber at $x$ is defined as

$F_{x}:=B(x, \epsilon)\cap f^{-1}(t)$ ,

for $0<|t|<<\epsilon<<1$ , with $B(x, \epsilon)$ the open ball of radius $\epsilon$ centered
at $x$ . There is some abuse of notation here, since, strictly speaking, $F_{x}$

depends on the choice of $\epsilon$ and $t$ , but all the invariants we shall consider
will not.

Maybe the most natural invariants of the Milnor fiber to look at
first are the Betti numbers

$b_{i}(F_{x}):=rkH^{i}(F_{x}, C)$ .

In fact, these numbers are in general very difficult to compute as soon
as the singularity of $f=0$ at $x$ is not isolated. Much more easy to
determine is the Euler characteristic

$\chi(F_{x}):=\sum_{i}(-1)^{i}b_{i}(F_{x})$
.

When $X$ is of dimension $n$ and the singularity of $f=0$ at $x$ is isolated,
$\chi(F_{x})=1+(-1)^{n-1}b_{n-1}(F_{x})$ , and $b_{n-1}(F_{x})$ is nothing else but the
Milnor number.

Received September 23, 1998
Revised March 2, 1999
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1.2. Of course, the information given by this Euler characteristic
is quite weak. An already better invariant may be obtained by taking in
account the natural monodromy action on the cohomology of $F_{x}$ . The
action of the monodromy operator $M$ gives a canonical decomposition

(1.2.1)
$H^{i}(F_{x}, C)=\lambda\in C^{\times}\oplus H^{i}(F_{x}, C)_{\lambda}$

,

with $H^{i}(F_{x}, C)_{\lambda}$ the part where the eigenvalues of $M$ are equal to $\lambda$ .

Hence one can refine the invariant $\chi(F_{x})$ by defining

$\chi(F_{x})_{\lambda}:=\sum_{i}(-1)^{i}rkH^{i}(F_{x}, C)_{\lambda}$
.

By A’Campo’s formula [1] (in fact a direct consequence of the commu-
tation of the nearby cycle functor with the direct image with proper
support functor [22] $)$ , the following simple formula for $\chi(F_{x})_{\lambda}$ in terms
of a resolution of $f=0$ holds:

$\chi(F_{x})_{\lambda}=\sum_{\lambda^{m}=1}\chi(S_{m}\cap\pi^{-1}(x))$
.

Here the notation is the following: we are given a resolution $\pi$ : $\tilde{X}\rightarrow Xof$

$f=0,\tilde{X}$ is smooth, $\pi$ is proper and birational, the preimage $E$ of the
singular locus of $f^{-1}(0)$ is a divisor with (strict) normal crossings, and
$\pi$ is an isomorphism onto its image outside $E$ , and $S_{m}$ denotes the open
subvariety of $E$ where $\pi^{-1}(f^{-1}(0))$ is locally given by $z^{m}=0$ , $z$ being
a local coordinate.

Since the cohomology groups $H^{i}(F_{x}, C)$ carry a natural mixed Hodge
structure [19] [21] [12] [13] [14], one can consider generalized Hodge num-
bers

$e^{p,q}:=\sum(-1)^{i}h^{p,q}H^{i}(F_{x}, C)$

and
$e_{\lambda}^{p,q}:=\sum(-1)^{i}h^{p,q}H^{i}(F_{x}, C)_{\lambda}$ .

In fact the data of the $e_{\lambda}^{p,q}$ ’s is equivalent to that of the Hodge spectrum
defined in [19] [21] [20] [14]. (For an analogue of A’Campo’s formula for
the Hodge spectrum see Remark 4.2.2.)

The commun feature for all these invariants is that they all may
be defined as some kind of Euler characteristics. The main object of
this paper is to provide, in some sense, universal invariants of Euler
characteristic type for the Milnor fiber.
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\S 2. Universal Euler characteristics and motives

2.1. Universal Euler characteristics

Invariants of Euler characteristic type take usually their values in a
ring and satisfy relations of the type $F(A\cup B)=F(A)+F(B)-F(A\cap B)$

and $F(AxB)=F(A)F(B)$ . Consider now Sch, the category of reduced
and separated schemes of finite type over $C$ (i.e. varieties) and define
the abelian group $K_{0}$ (Sch) as the quotient of the free abelian group
generated by symbols $[S]$ , $S$ in Sch, by the relations

$[S]=[S’]$ ,

for $S’$ isomorphic to $S$ and

$[S]=[S’]+[S\backslash S’]$ ,

for $S’$ closed in $S$ . There is a natural product on $K_{0}$ (Sch) such that

$[S][S’]=[S\times S’]$ ,

which provides $K_{0}$ (Sch) with a ring structure. To any constructible
subset $W$ of a variety $S$ one can naturally associate an element $[W]$ in
$K_{0}$ (Sch) such that

$[W\cup W’]=[W]+[W’]-[W\cap W’]$

(just write $W$ as the disjoint union of a finite family of varieties $S_{i}$ and
set $[W]=\sum[S_{i}]$ ; this is independent of the choice of the $S_{i}$ ’s). Clearly
$S\mapsto[S]$ is the “universal Euler characteristic” of algebraic varieties.

2.2. Motives

In our situation we are interested in keeping track of the monodromy
action, in particular we want to have some analogue of the eigenvalue
decomposition (1.2.1). This is in fact one of the reasons why motives en-
ter in the picture: if a finite group $G$ acts on a smooth projective variety
$X$ , there is a direct sum decomposition $h(X)=\oplus h(X)_{\alpha}$ of the motive
$h(X)$ associated to $X$ , with $\alpha$ running over the set of irreducible charac-
ters of $G$ . The notion of motives being maybe not so familiar to people in
singularity theory (though they are in fact easy to define, natural, and,
we hope to convince the reader, useful), we shall give now some basic
definitions (a good recent reference is [18]). Let $\mathcal{V}$ denote the category of
smooth and projective $C$-schemes. For an object $X$ in $\mathcal{V}$ and an integer
$d$ , $Z^{d}(X)$ denotes the free abelian group generated by irreducible subva-
rieties of $X$ of codimension $d$ . We define the rational Chow group $A^{d}(X)$
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as the quotient of $Z^{d}(X)\otimes Q$ modulo rational equivalence. For $X$ and $Y$

in $\mathcal{V}$ , we denote by $Corr^{r}(X, Y)$ the group of correspondences of degree $r$

from $X$ to $Y$ . If $X$ is purely $d$-dimensional, $Corr^{r}(X, Y)=A^{d+r}(XxY)$ ,

and if $X=\square X_{i}$ , $Corr^{r}(X, Y)=\oplus Corr^{r}(X_{i}, Y)$ . The category Mot of
$C$-motives may be defined as follows (cf. [18]). Objects of Mot are
triples $(X,p, n)$ where $X$ is in $\mathcal{V}$ , $p$ is an idempotent (i.e. $p^{2}=p$ ) in
$Corr\ovalbox{\tt\small REJECT}$

motives, then

$Hom_{Mot}((X,p, n), (Y, q, m))=q$Corrr(X,$ Y$ ) $p$ .

Composition of morphisms is given by composition of correspondences.
The category Mot is additive, $Q$-linear, and pseudo-abelian. There is a
natural tensor product on Mot, defined on objects by

$(X,p, n)\otimes(Y, q, m)=(X\times Y,p\otimes q, n+m)$ .

We denote by $h$ the functor $h$ : $\mathcal{V}^{O}\rightarrow$ Mot which sends an object
$X$ to $h(X)=(X, id, 0)$ and a morphism $f$ : $Y\rightarrow X$ to its graph in
$Corr\ovalbox{\tt\small REJECT}$

the unit motive $1=h(Spec C)$ is the identity for the product. We denote
by $L$ the Lefschetz motive $L=(SpecC, id, -1)$ . One can prove there is
a canonical isomorphism

$h(P^{1})\simeq 1\oplus L$ ,

so, in some sense, $L$ corresponds to $H^{2}(P^{1})$ . We denote by
$\vee$

the invo-
lution $\vee:Mot^{O}\rightarrow Mot$ , defined on objects by $(X,p, n)^{\vee}=(X,{}^{t}p, d-n)$

if $X$ is purely $d$-dimensional, and as the transpose of correspondences
on morphisms. For $X$ in $\mathcal{V}$ purely of dimension $d$ , $h(X)^{\vee}=h(X)\otimes L^{-d}$

(Poincar\’e duality). For any field $E$ containing $Q$ one defines similarly
the category $Mot\otimes E$ of motives with coefficients in $E$ , by replacing the
Chow groups A. by $A$

.
$\otimes_{Q}E$ .

Since algebraic correspondences naturally act on cohomology, any
cohomology theory on the category $\mathcal{V}$ factors through Mot and $Mot\otimes E$ ,
for $E$ an extension of $Q$ , hence motives have canonical Betti and Hodge
realizations.

Consider $K_{0}$ (Mot), the Grothendieck group of the pseudo-abelian
category Mot. It is the abelian group associated to the monoid of iso-
morphism classes of motives with respect $to\oplus$ . The tensor product on
Mot induces a natural ring structure on $K_{0}$ (Mot). One defines similarly
the ring $K_{0}(Mot\otimes E)$ for $E$ an extension of Q. Of particular interest to
us will be the case when $E$ is the extension $Q(\mu_{\infty})$ of $Q$ generated by all
roots of unity in C. To simplify notation we set $A:=K_{0}(Mot\otimes Q(\mu_{\infty}))$ .
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Realization functors on Mot induce realization morphisms on the
level on Grothendieck groups. In particular, we shall consider the Hodge
realization morphism

$H:A\rightarrow K_{0}(MHS_{C})$ ,

with $K_{0}(MHS_{C})$ the Grothendieck group of the abelian category of com-
plex mixed Hodge structures.

By the following result of Gillet and Soul\’e [9] and Guill\’en and
Navarro Aznar [10] one can assign to any algebraic variety a natural
Euler characteristic (with proper suppports) with value into the ring
$K_{0}$ (Mot) of virtual motives.

Theorem 2.2.1. There exists a unique morphism of rings

$\chi_{c}$ : $K_{0}(Sch)\rightarrow K_{0}$ (Mot)

such that $\chi_{c}([X])=[h(X)]$ for $X$ projective and smooth.

Remark that $\chi_{c}([A^{1}])=L$ . Prom now on we shall also denote by $L$

the element $[A^{1}]$ in $K_{0}$ (Sch).
Let $G$ be a abelian finite group (in fact the assumption that $G$ is

abelian is irrelevant). Let $X$ be an algebraic variety over $C$ endowed with
a $G$-action. We say $X$ is a $G$ variety if the $G$-orbit of any closed point
in $X$ is contained in an affine open scheme (this condition is always
satisfied when $X$ is quasi-projective). One defines in the usual way
isomorphisms and closed immersions of $G$-varieties and so one may define
a ring $K_{0}$ (Sch, $G$), the Grothendieck ring of $G$-varieties over $k$ , similarly
as we defined $K_{0}$ (Sch).

For any character $\alpha$ of $G$ , let us denote by $p_{\alpha}$ the corresponding
idempotent in $Q(\mu_{\infty})[G]$ . Let $X$ be a smooth projective variety on
which $G$ acts. There is a natural ring morphism $\mu$ Prom $Q(\mu_{\infty})[G]$ to
the ring of correspondences on $X$ with coefficients in $Q(\mu_{\infty})$ sending a
group element $g$ onto the graph of multiplication by $g$ . Let us denote by
$h(X, \alpha)$ the motive $(X, \mu(p_{\alpha}),$ $0)$ in $Mot\otimes Q(\mu_{\infty})$ .

The following equivariant analogue of Theorem 2.2.1 is proved in
[6].

Theorem 2.2.2. For any character $\alpha$ of $G$ , there exists a unique
morphism of rings

$\chi_{c}(_{-}, \alpha)$ : $K_{0}(Sch, G)\rightarrow A$

such that $\chi_{c}([X], \alpha)=[h(X, \alpha)]$ for $X$ projective and smooth with G-
action.
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2.3. An example: Fermat Hypersurfaces and Jacobi mo-
tives

An important and classical example of varieties with group action
giving rise to interesting motives are Fermat hypersurfaces. These mo-
tives will also occur naturally in our motivic analogue of the Thom-
Sebastiani formula (Theorem 5.4.2). For $n\geq 1$ , we consider the affine
Fermat variety $F_{d}^{n}$ defined by the equation $x_{1}^{d}+\cdots+x_{n}^{d}=1$ in $A^{n}$ . The
action of $\mu_{d}$ , the group of $d$-th roots of unity, on each coordinate induces
a natural action of the group $\mu_{d}^{n}$ on $F_{d}^{n}$ . Hence, for $\alpha_{1}$ , $\ldots$ , $\alpha_{n}$ characters
of $\mu_{d}$ , one defines the Jacobi motive $J(\alpha_{1}, \ldots, \alpha_{n})$ as the element

$J(\alpha_{1}, \ldots, \alpha_{n}):=\chi_{c}(F_{d}^{n}, (\alpha_{1}, \ldots, \alpha_{n}))$

in $A$ . It is clear that $J(\alpha_{1}, \ldots, \alpha_{n})$ is symmetric in the $\alpha_{i}$ ’s. In fact, as is
quite clasical, one can recover from $J(\alpha_{1}, \ldots, \alpha_{n})$ the usual Jacobi sums
(via \’etale realization using the Galois action) and the Beta function (via
the period pairing for the Hodge realization) (cf., $e.g.$ , [2]).

The following identities which are analogues of classical identities
for Jacobi sums and Beta functions are proved in [8].

Proposition 2.3.1. (1) We have $J(1,1)=L$ .
(2) We have $J(1, \alpha)=0$ if $\alpha\neq 1$ .
(3) If $\alpha\neq 1$ , $J(\alpha, \alpha^{-1})=-1$ .

(4) We have

$ J(\alpha_{1}, \alpha_{2})[J(\alpha_{1}\alpha_{2}, \alpha_{3})-\epsilon]=J(\alpha_{1}, \alpha_{2}, \alpha_{3})-\delta$ ,

with $\epsilon=\delta=0$ if $\alpha_{1}\alpha_{2}\neq 1$ , $\epsilon=1$ , $\delta=(L-1)$ , if $\alpha_{1}\alpha_{2}=1$ and
$\alpha_{1}\neq 1$ , and $\epsilon=1$ , $\delta=L$ , if $\alpha_{1}=\alpha_{2}=1$ .

\S 3. An interlude: Motivic Igusa Zeta functions

3.1. Let $p$ be a prime number and let $K$ be a finite extension of
$Q_{p}$ . Let $R$ be the valuation ring of $K$ , $P$ the maximal ideal of $R$ , and
$\overline{K}=R/P$ the residue field of $K$ . Let $q$ denote the cardinality of $\overline{K}$ ,
so $\overline{K}\simeq F_{q}$ . For $z$ in $K$ , let $ordz$ denote the valuation of $z$ , and set
$|z|=q^{-ordz}$ . Let $f$ be a non constant element of $K[x_{1}, \ldots, x_{m}]$ . The
$p$-adic Igusa local zeta function $Z(s)$ associated to $f$ (relative to the
trivial multiplicative character) is defined as the $p$-adic integral

(3.1.1) $Z(s)=\int_{R^{m}}|f(x)|^{s}|dx|$ ,
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for $s\in C$ , $Re(s)>0$ , where $|dx|$ denotes the Haar measure on $K^{m}$

normalized in such of way that $R^{m}$ is of volume 1. For $n$ in $N$ , set
$Z_{n}=\{x\in R^{m}|ordf(x)=n\}$ . We may express $Z(s)$ as a series

(3.1.2)
$Z(s)=\sum_{n\geq 0}vol(Z_{n})q^{-ns}$

.

Now, if we denote by $X_{n}$ the image of $Z_{n}$ in $(R/P^{n+1})^{m}$ , we may rewrite
the series as

(3.1.3)
$Z(s)=\sum_{n\geq 0}$

card $(X_{n})q^{-ns-(n+1)m}$

since $vol(Z_{n})=card(X_{n})q^{-(n+1)m}$ .

3.2. Now let $X$ be a smooth and connected complex algebraic
variety and consider $f$ : $X\rightarrow C$ a non constant morphism. We denote
by $\mathcal{L}(X)$ the space of formal arcs on $X$ : there is a natural bijection
between the space of $C$-points of $\mathcal{L}(X)$ , $\mathcal{L}(X)(C)$ , and $X(C[[t]])$ . There
is a natural structure of $C$-scheme on $\mathcal{L}(X)$ , but we shall always consider
$\mathcal{L}(X)$ with its reduced structure. Similarly, for $n\geq 0$ , we can consider
the space $\mathcal{L}_{n}(X)$ of arcs modulo $t^{n+1}$ : a $C$-point of $\mathcal{L}_{n}(X)$ corresponds
to a $C[t]/t^{n+1}C[t]$ -point on $X$ . The space $\mathcal{L}_{n}(X)$ may be endowed with
a natural structure of $C$-scheme of finite type, and there is a natural
morphism

$\pi_{n}$ : $\mathcal{L}(X)\rightarrow \mathcal{L}_{n}(X)$

given by truncation. In this setting $\mathcal{L}(A^{m})$ and $\mathcal{L}_{n}(A^{m})$ may be consid-
ered as analogues of $R^{m}$ and $(R/P^{n+1})^{m}$ . Pursuing this analogy further,
one considers the reduced subscheme $Z_{n}$ of $\mathcal{L}(A_{k}^{m})$ whose points are the
series $\varphi$ such that $ord_{t}f(\varphi)=n$ and the image $X_{n}$ of $Z_{n}$ in $\mathcal{L}_{n}(A_{k}^{m})$ ,

which has a natural structure of variety over C. More generally, for $W$

closed in $X$ , we shall denote by $Z_{W,n}$ the closed subscheme of $Z_{n}$ whose
points are arcs $\varphi$ with $\varphi(0)$ in $W$ and by $X_{W,n}$ its image in $\mathcal{L}_{n}(A_{k}^{m})$ .

A natural analogue of the right-hand side of (3.1.3), which is a series
in $Z[p^{-1}][[p^{-s}]]$ , is the following series in $K_{0}(Sch_{k})[L^{-1}][[L^{-s}]]$

(3.2.1)
$Z_{geom}(s)=\sum_{n\geq 0}[X_{n}]L^{-ns-(n+1)m}$

.

Here $L^{-s}$ is just the name for a formal variable which could as well be
written $T=L^{-s}$ .

3.3. More generally, $p$-adic Igusa local zeta functions involve mul-
tiplicative characters. Let $\pi$ be a fixed uniformizing parameter of $R$ and
set $ac(z)=z\pi^{-ordz}$ for $z$ in $K$ . For any character $\alpha$ : $R^{\times}\rightarrow C^{\times}$ (i.e.
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a group morphism with finite image), one defines the $p$-adic Igusa local
zeta function $Z(s, \alpha)$ as the integral

(3.3.1) $Z(s, \alpha)=\int_{R^{m}}\alpha(ac(f(x)))|f(x)|^{s}|dx|$ ,

for $s\in C$ , $Re(s)>0$ (see [11], [4]). To extend definition (3.2.1) to the
more general situation involving characters, we shall use motives in the
following way.

We fix an integer $d\geq 1$ . Let $g$ : $W\rightarrow C^{\times}$ be a morphism of C-
varieties. For any character $\alpha$ of $\mu_{d}$ , one may define an element $[W]_{g,\alpha}$

of $K_{0}(Mot_{k}\otimes Q)$ as follows.
The morphism $[d]$ : $C^{\times}\rightarrow C^{\times}$ given by $x\mapsto x^{d}$ is a Galois covering

with Galois group $\mu_{d}$ . We consider the fiber product

$\overline{W}_{g,d}\downarrow\rightarrow$
$W\downarrow g$

$C^{\times}$
$\rightarrow[d]C^{\times}$

.

The scheme $\overline{W}_{g,d}$ is endowed with an action of $\mu_{d}$ , so we can define

$[W]_{g,\alpha}:=\chi_{c}(\overline{W}_{g,d}, \alpha)$ .

In our setting we can consider the morphism $f_{n}$ : $X_{n}\rightarrow C^{\times}$ whose
value at a series $\varphi$ is the coefficient of order $n$ of $f(\varphi)$ . When $d$ divides
$d’$ we have a canonical surjective morphism of groups $\mu_{d’}\rightarrow\mu_{d}$ given by
$x\mapsto x^{d’/d}$ which dualizes to a injective morphism of character groups
$\hat{\mu}_{d}\rightarrow\hat{\mu}_{d’}$ . We set $\hat{\mu}:=\lim_{\rightarrow}\hat{\mu}_{d}$ . We shall identify $\hat{\mu}_{d}$ with the subgroup

of elements of order dividing $d$ in $\hat{\mu}$ .

Now let $\alpha$ be in $\hat{\mu}$ an element of order $d$ . Viewing $\alpha$ as a character
of $\mu_{d}$ , we may now define the series

(3.3.2)
$Z_{mot}(s, \alpha)=\sum_{n\geq 0}[X_{n}]_{f_{n},\alpha}L^{-ns-(n+1)m}$

in $K_{0}(Mot_{k}\otimes Q)[[L^{-s}]]$ . More generally, for $W$ a closed subvariety of $X$ ,

one defines similarly a series $Z_{mot,,,W}(s, \alpha)$ by replacing in the previous
definition $X_{n}$ by the variety $ X_{W,n},\cdot$

3.4. Rationality and formula on a resolution

Let $D$ be the divisor defined by $f=0$ in $X$ . Let $(Y, h)$ be a res-
olution of $f$ . By this, we mean that $Y$ is a smooth and connected
$k$-scheme of finite type, $h$ : $Y\rightarrow X$ is proper, that the restriction
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$h$ : $Y\backslash h^{-1}(D)\rightarrow X\backslash D$ is an isomorphism, and that $(h^{-1}(D))_{red}$

has only normal crossings as a subscheme of $Y$ . Let $E_{i}$ , $i\in J$ , be the
irreducible (smooth) components of $(h^{-1}(D))_{red}$ . For each $i\in J$ , denote
by $N_{i}$ the multiplicity of $E_{i}$ in the divisor of $f\circ h$ on $Y$ , and by $\iota/_{i}-1$

the multiplicity of $E_{i}$ in the divisor of $h^{*}dx$ , where $dx$ is a local non
vanishing volume form, i.e. a local generator of the sheaf of differential
forms of maximal degree. For $i\in J$ and $I$ $\subset J$ , we consider the schemes
$E_{i}^{O}:=E_{i}\backslash \bigcup_{j\neq i}E_{j}$ , $E_{I}:=\bigcap_{i\in I}E_{i}$ , and $E_{I}^{O}:=E_{I}\backslash \bigcup_{j\in J\backslash I}E_{j}$ . When
$I$ $=\emptyset$ , we have $E_{\emptyset}=Y$ .

Now denote by $J_{d}$ the set of $I$ $\subset J$ such that $d|N_{i}$ for all $i$ in I and
by $U_{d}$ the union of the $E_{I}^{O}$ ’s, with I in $J_{d}$ . Let $Z$ be locally closed in $U_{d}$ .

For any character $\alpha$ of $\mu_{d}(k)$ of order $d$ , we will construct an element
$[Z]_{f\alpha}$, in $K_{0}(Mot_{k}\otimes Q)$ as follows. If on $Z$ we may write $f\circ h=uv^{d}$

with $u$ non vanishing on $Z$ , we set $[Z_{f\alpha},]=[Z]_{u,,,\alpha}$ . In general, one covers
$Z$ by a finite set of $Z_{r}$ ’s for which the previous condition holds, and we
set

$[Z_{f,\alpha}]=\sum_{r}[(Z_{r})_{f\alpha},]-\sum_{r_{1}\neq r_{2}}[(Z_{r_{1}}\cap Z_{r_{2}})_{f\alpha},]+\cdots$

One can check this definition does not depend of any choice.
We can now state the following result which is proved in [6]:

Theorem 3.4.1. For any element $\alpha$ of $\hat{\mu}$ of order $d$ ,

(3.4.1) $Z_{mot,,,W}(s, \alpha)$ $=$
$L^{-m}\sum_{I\in J_{d}}[(E_{I}^{O}\cap h^{-1}(W))_{f,\alpha}]$

.
$\prod_{i\in I}\frac{(L-1)L^{-N_{i}s-\nu_{i}}}{1-L^{-N_{i}s-\nu_{i}}}$

in $A[[L^{-s}]]$ .

In particular it follows that $Z_{mot,,,W}(s, \alpha)$ is a rational series in $L^{-s}$ .

It also follows that if the order of the character $\alpha$ does not divide any
of the $N_{i}$ ’s, then $Z_{mot,W}(s, \alpha)$ is identically zero (hence only of finite
number of the functions $Z_{mot,,,W}(s, \alpha)$ are not identically zero).

The proof of Theorem 3.4.1 is based on the following geometric
lemma which is a special case of Lemma 3.4 in [7].

Let $X$ , $Y$ and $F$ be algebraic varieties over $C$ , and let $A$ , resp. $B$ , be
a constructible subset of $X$ , resp. $Y$ . We say that a map $\pi$ : $A\rightarrow B$ is
piecewise trivial fibration with fiber $F$ , if there exists a finite partition of
$B$ in subsets $S$ which are locally closed in $Y$ such that $\pi^{-1}(S)$ is locally
closed in $X$ and isomorphic to $S\times F$ , with $\pi$ corresponding under the
isomorphism to the projection $S\times F\rightarrow S$ . We say that the map $\pi$ is a
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piecewise trivial fibration over some constructible subset $C$ of $B$ , if the
restriction of $\pi$ to $\pi^{-1}(C)$ is a piecewise trivial fibration.

Lemma 3.4.2. Let $X$ and $Y$ be connected smooth schemes over
$C$ and let $h$ : $Y\rightarrow X$ be a birational morphism. For $e$ in $N$ , let $\triangle_{e}$ be
the reduced subscheme of $\mathcal{L}(Y)$ defined by

$\triangle_{e}:=\{\varphi\in Y(C[[t]])|ord_{t}\det J_{\varphi}=e\}$ ,

where $J_{\varphi}$ is the jacobian of $h$ at $\varphi$ . For $n$ in $N$ , let $h_{n*}$ : $\mathcal{L}_{n}(Y)\rightarrow \mathcal{L}_{n}(X)$

be the morphism induced by $h$ , and let $\Delta_{e,,,n}$ be the image of $\Delta_{e}$ in $\mathcal{L}_{n}(Y)$ .

If $n\geq 2e$ , the following holds.

a) The set $\Delta_{e,,,n}$ is a union of fibers of $h_{n*}$ .
b) The restriction of $h_{n*}$ to $\triangle_{e,,,n}$ is a piecewise trivial fibration with

ffiber $A^{e}$ onto its image.

Remark 3.4.3. These motivic Igusa functions specialize, by consid-
ering the $trace$ of the Probenius on their \’etale realization, in the $p$-adic
case with good reduction, to the usual $p$-adic Igusa local zeta functions.
They also specialize, by considering Euler characteristic of their Betti
realization, to the topological zeta functions $Z_{top}(s)$ introduced in [5],
which were, heuristically, obtained as a limit as $q$ goes to 1 of $p$-adic
Igusa local zeta functions. We refer to [6] for details.

\S 4. The virtual motive attached to the Milnor fiber

4.1. Since $Z_{mot,,,W}(s, \alpha)$ is an $A$-linear combination of rational se-
ries of the form $L^{-Ns-n}/(1-L^{-Ns-n})$ , with $N$ and $n$ in $N\backslash \{0\}$ , one
can consider its limit as $ s\rightarrow-\infty$ , by defining

$\lim_{s\rightarrow-\infty}\frac{L^{-Ns-n}}{1-L^{-Ns-n}}=-1$ .

One easily checks that one obtains in this way a well defined element

$\lim_{s\rightarrow-\infty}Z_{mot,,,W}(s, \alpha)$

in $A$ . It follows from Theorem 3.4.1 that we have the following expression
for $\lim_{s\rightarrow-\infty}Z_{mot,,,W}(s, \alpha)$ in terms of a resolution of $f=0$ :

(4.1.1)
$\lim_{s\rightarrow-\infty}Z_{mot,,,W}(s, \alpha)=L^{-m}\sum_{I\in J_{d}}[(E_{I}^{O}\cap h^{-1}(W))_{f,\alpha}](1-L)^{|I|}$

.

Note that it is not a priori clear that the right hand side of (4.1.1) is
independent of the resolution, but it follows from the fact that the lefli
hand side is canonical.
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4.2. We assume from now on that $W$ is contained in $f^{-1}(0)$ . In
that case, it follows from (4.1.1) that $\lim_{s\rightarrow-\infty}Z_{mot,,,W}(s, \alpha)$ is divisible
by 1-L, so we may define

$S_{\alpha,,,W,f}^{\psi}:=\underline{L^{m}}$
$\lim Z_{mot,,,W}(s, \alpha)$ .

$1-L$ $ s\rightarrow-\infty$

Strictly speaking $S_{\alpha,,,W,f}^{\psi}$ is only defined up to $(L-1)$-torsion in $A$ , but

this is not a serious problem, since $(L-1)$-torsion is killed by realization
functors. (In fact we do not know whether there exists or not any non
trivial $(L-1)$-torsion element in $A.$ )

By the following result, proved in [6], the Hodge realization of
$S_{\alpha,,,\{x\},f}^{\psi}$ is equal to the virtual Hodge structure defined by the Milnor

fiber at $x$ for the eigenvalue $\alpha(e^{2\pi i/d})$ . Hence it is very natural to con-
sider $S_{\alpha,,,\{x\},f}^{\psi}$ as the virtual motive associated to the Milnor fiber at $x$

for the eigenvalue $\alpha(e^{2\pi i/d})$ .

Theorem 4.2.1. Let $x$ be a point of $f^{-1}(0)$ . Denote by
$[H^{i}(F_{x}, C)_{\alpha(e^{2\pi i/d})}]$ the class in $K_{0}(MHS_{C})$ of $H^{i}(F_{x}, C)_{\alpha(e^{2\pi i/d})}$ with
its canonical Hodge structure. The equality

$H(S_{\alpha,,,\{x\},f}^{\psi})=\sum_{i}(-1)^{i}[H^{i}(F_{x}, C)_{\alpha(e^{2\pi i/d})}]$

holds in $K_{0}(MHS_{C})$ .

Remark 4.2.2. As a consequence of (4.1.1) and Theorem 4.2.1, one
deduces an analogue of A’Campo’s formula for the Hodge spectrum.

\S 5. Exponential integrals and a motivic Thom-Sebastiani The-
orem

5.1. We begin by reviewing exponential integrals in the $p$-adic case,
so we use again the notations of 3.1.

Let $f\in R[x_{1}, \ldots, x_{m}]$ be a non constant polynomial. Let $\Phi$ : $ R^{m}\rightarrow$

$C$ be a locally constant function with compact support. Let $\alpha$ be a
character of $R^{\times}$ . For $i$ in $N$ , we set

$Z_{\Phi,,,f,i}(\alpha):=\int_{\{x\in R^{m}|ordf(x)=i\}}\Phi(x)\alpha(acf(x))|dx|$ .

We denote by $\Psi$ the standard additive character on $K$ , defined by

$z\mapsto\Psi(z)=\exp(2i\pi R_{K/Q_{\rho}}z)$ .
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For $i$ in $N$ , we consider the exponential integral

(5.1.1) $E_{\Phi,,,f,i}:=\int_{R^{m}}\Phi(x)\Psi(\pi^{-(i+1)}f(x))|dx|$ .

For $\alpha$ a character of $R^{\times}$ , the conductor of $\alpha$ , $c(\alpha)$ , is defined as the
smallest $c\geq 1$ such that $\alpha$ is trivial on $1+P^{c}$ , and one associates to $\alpha$

the Gauss sum

$g(\alpha)=q^{1-c(\alpha)}\sum_{)^{\times}v\in(R/P^{c(\alpha)}}\alpha(v)\Psi(v/\pi^{c(\alpha)})$
.

The following result is a consequence of \S 1 of [4].

Proposition 5.1.1. For any $i$ in $N$ ,

(5.1.2) $E_{\Phi,f,i}$, $=$ $\int_{\{x\in R^{m}|ordf(x)>i\}}\Phi(x)|dx|$

$+(q-1)^{-1}\sum_{\alpha}g(\alpha^{-1})Z_{\Phi,fi-c(\alpha)+1},,(\alpha)$ .

Here $i-c(\alpha)+1\geq 0$ . If moreover the critical locus of $f$ in Supp $\Phi$ is
contained in $f^{-1}(0)$ , then, for all except a finite number of characters

$\alpha$ , the integrals $Z_{\Phi,fj},,(\alpha)$ are zero for all $j$ .

Using Theorem 3.3 of [4], one deduces from Proposition 5.1.1 that,
assuming that $\Phi$ is residual, i.e. that Supp $\Phi$ is contained in $R^{m}$ and that
$\Phi(x)$ depends only on $x$ modulo $P$ , that the critical locus of $f$ in Supp $\Phi$

is contained in $f^{-1}(0)$ and that the divisor $f=0$ has good reduction (in
the sense that the conditions in Theorem 3.3 of [4] are satisfied), then

(5.1.3) $E_{\Phi,fi},$, $=$ $\int_{\{x\in R^{m}|ordf(x)>i\}}\Phi(x)|dx|$

$+(q-1)^{-1}$
$\sum_{c(\alpha)=1}g(\alpha^{-1})Z_{\Phi,,f^{i}},(\alpha)\circ,\cdot$

5.2. Exponential integrals

Let $X$ be a smooth connected variety over $C$ of dimension $m$ and
let $f$ : $X\rightarrow C$ be a morphism. If one is looking for a motivic ana-
logue of $p$-adic exponential integrals, a hint is given by formula (5.1.3)
which expresses p–adic exponential integrals as linear combinations of
$p$-adic integrals involving multiplicative characters with Gauss sums as
coefficients. Though Gauss sums are not motivic themeselves, they are
related to Jacobi sums by the familiar relation

(5.2.1) $g(\alpha)g(\beta)=g(\alpha\beta)j(\alpha, \beta)$ ,
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when $\alpha$ , $\beta$ and $\alpha\beta$ are not equal to 1 and have conductor 1, with

$j(\alpha, \beta)=\sum_{x\in\overline{K}\backslash \{0,1\}}\alpha(x)\beta(1-x)$
.

But the Jacobi sums $j(\alpha, \beta)$ are motivic, being equal to the $trace$ of
the Frobenius on the \’etale realization of a Jacobi motive, hence we may
follow the idea, introduced by Greg Anderson in [2], of enlarging the
world ofmotives by adding Gauss sums motives related to Jacobi motives
by a relation similar to 5.2.1. More precisely, one considers the free A-
module $U$ with basis $G_{\alpha}$ , $\alpha$ in $\hat{\mu}(k)$ . We define an $A$-algebra structure
on $U$ by putting the following relations:

(5.2.2) $G_{1}=-1$

(5.2.3) $G_{\alpha}G_{\alpha^{-1}}=L$ for $\alpha\neq 1$

(5.2.4) $G_{\alpha_{1}}G_{\alpha_{2}}=J(\alpha_{1}, \alpha_{2})G_{\alpha_{1}\alpha_{2}}$ for $\alpha_{1}$ , $\alpha_{2}$ , $\alpha_{1}\alpha_{2}\neq 1$ .

It follows from Proposition 2.3.1 that $U$ is a commutative and associative
algebra.

For $m$ in $Z$ , let $F^{m}A$ denote the subgroup of $A$ generated by $h(S, f, i)$ ,

with i–dim $S\geq m$ . This gives a filtration on the ring $A$ ; we denote
by $\hat{A}$ the completion of $A$ with respect to this filtration and we set
$\hat{U}:=U\otimes_{A}\hat{A}$ . We shall also consider the subring $A_{1oc}$ of $\hat{A}$ generated by

the image of $A$ in $\hat{A}$ and the series $(1-L^{-n})^{-1}$ , $n\in N\backslash \{0\}$ . We denote

by $U_{1oc}$ the tensor product $U\otimes_{A}A_{1oc}$ , which is naturally a subring of $\hat{U}$ .

Let $W$ be a closed subvariety of $f^{-1}(0)$ . We define, for $i\geq 0$ , the
motivic analogue $E_{i,,,W,f^{mot}}$, of $E_{\Phi,,,fi}$, as the series

(5.2.5) $E_{i,W,fmot},:=\sum_{n>i}\frac{\chi_{c([X_{W,n}])}’}{L^{(n+1)m}}+\sum_{\alpha\in\hat{\mu}(k)}\frac{1}{L-1}G_{\alpha^{-1}}\frac{[X_{W,i}]_{f\alpha}i}{L^{(i+1)m}}$

,

in $\hat{U.}$ Remark that, since only a finite number of the functions $Z_{mot,W}(s,\alpha)$

are non zero, the second sum in (5.2.5) is finite. Furthermore, one can
deduce from Theorem 3.4.1 that $E_{i,,,W,fmot}$, belongs in fact to the ring
$U_{1oc}$ . In [8] the definition of $E_{i,,,W,fmot}$, is extended to the case where $X$

is no longer smooth.
Now the standard multiplicativity property of exponential integrals

is no longer trivial. In fact the following result is one of the main results
in [8]:

Theorem 5.2.1. Let $X$ and $X’$ be irreducible complex algebraic
varieties over $C$ , let $f$ : $X\rightarrow C$ and $f’$ : $X’\rightarrow C$ be morphisms of
$C- var\dot{u}$eties. Denote by $f\oplus f’$ : $X\times X’\rightarrow C$ the morphism $(x, x’)\mapsto$
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$f(x)+f’(x’)$ . Let $W$ (resp. $W’$ ) be a reduced subvariety of $f^{-1}(0)$ (resp.
$f^{\prime-1}(0))$ . For every $i\geq 0$ ,

(5.2.6) $E_{i,,,f\oplus f’,W\times W’,mot}=E_{i,,,f,W,mot}\cdot E_{i,,,f’,W’,mot}$ .

5.3. An algebraic lemma on power expansions of rational
functions

Denote by $B$ the ring $U_{1oc}$ . We consider the ring of Laurent polyno-
mials $B[T, T^{-1}]$ and its localisation $B[T, T^{-1}]_{rat}$ obtained by inverting
the multiplicative family generated by the polynomials 1 $-L^{a}T^{b}$ , $a$ , $b$

in $Z$ , $b\neq 0$ . Remark that, in this definition, we could restrict to $b>0$

or to $b<0$ . Hence, by expanding denominators into formal series, there
are canonical embeddings of rings

$\exp_{T}$ : $B[T, T^{-1}]_{rat}$ – $B[T^{-1}, T]]$

and
$\exp_{T^{-1}}$ : $B[T, T^{-1}]_{rat}-B[[T^{-1}, T]$ .

Here $B[T^{-1}, T]]$ (resp. $B[[T^{-1},$ $T]$ ) denotes the ring of series $\sum_{i\in Z}a_{i}T^{i}$

with $a_{i}=0$ for $i<<0$ (resp. $i>>0$ ). By taking the difference $\exp_{T}-$

$\exp_{\tau-1}$ of the two expansions one obtains an embedding

$\tau$ : $B[T, T^{-1}]_{rat}/B[T, T^{-1}]-B[[T^{-1}, T]]$ ,

where $B[[T^{-1}, T]]$ is the group of formal Laurent series with coefficients
in $B$ .

Let $\varphi=\sum_{i\in Z}a_{i}T^{i}$ and $\psi=\sum_{i\in Z}b_{i}T^{i}$ be series in $B[[T^{-1}, T]]$ . We
define their Hadamard product as the series

$\varphi*\psi:=\sum_{i\in Z}a_{i}b_{i}T^{i}$
.

A basic elementary result (see Proposition 5.1.1 of [8] for a proof)
states that if two series $\varphi$ and $\psi$ in $B[[T^{-1}, T]]$ belong to the image of $\tau$ ,
then their Hadamard product $\varphi*\psi$ is also in the image of $\tau$ . It follows in
particular that the intersection of $B[[T]]$ with the image of $\exp_{T}$ , which
we shall denote by $B[[T]]_{rat}$ , is stable under Hadamard product.

Let $\varphi=\exp_{T}(P)$ be in $B[[T]]_{rat}$ . We denote by $\lambda(\varphi)$ the constant
term in the expansion of $\exp_{\tau-1}(P)$ .

We shall need the following lemma, whose proof is completely ele-
mentary (see Proposition 5.1.2 of [8] for the proof).

Funny Lemma 5.3.1. Let $\varphi$ and $\psi$ be series in $TB[[T]]_{rat}$ . Then

$\lambda(\varphi*\psi)=-\lambda(\varphi)$ . $\lambda(\psi)$ .
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5.4. A motivic stationary phase formula

Now we consider the Poincar\’e series

$E_{W,f}(T):=\sum_{i>0}E_{i,,,W,f,mot}T^{i}$
.

Note that $E_{W,f},(T)$ has no constant term. One may deduce from Theo-
rem 3.4.1 that the series $E_{W,f},(T)$ belongs in fact to $U_{1oc}[[T]]_{rat}$ .

We shall now consider $S_{\alpha,,,W,f}^{\psi}$ as an element of $A_{1oc}$ (note there is

no $(L-1)$-torsion in $A_{1oc}$ ), and we define $S_{\alpha,W,f}^{\phi}=S_{\alpha,,,W,f}^{\psi}$ for $\alpha\neq 1$ ,

and $S_{\alpha,,,W,f}^{\phi}=S_{\alpha,,,W,f}^{\psi}-\chi_{c}([W])$ , for $\alpha=1$ , in $A_{1oc}$ . Remark that,

since $S_{\alpha,W,f}^{\psi}$ corresponds to motivic Euler characteristic of nearby cycles,

$S_{\alpha,,,W,f}^{\phi}$ corresponds to motivic Euler characteristic of vanishing cycles.
One easily gets the following formula, which may be viewed as a

motivic analogue of the stationary phase formula:

Motivic stationary phase formula 5.4.1. The following rela-
tion holds in $A_{1oc}$ :

$\lambda(E_{W,f}(T))=-L^{-m}\sum_{\alpha\in\hat{\mu}(k)}G_{\alpha^{-1}}S_{\alpha,,,W,f}^{\phi}$
.

The following Motivic Thom-Sebastiani Theorem follows directly
from the motivic analogue stationary phase formula and the Funny
Lemma 5.3.1.

Theorem 5.4.2. Let $X$ and $X’$ be smooth and connected algebra-
ic varieties over $C$ of pure dimension $m$ and $m’$ . Let $f$ : $X\rightarrow A_{k}^{1}$ and
$f’$ : $X’\rightarrow A_{k}^{1}$ be morphisms of $k$ -varieties. Let $W$ (resp. $W’$ ) be $a$

reduced subscheme of $f^{-1}(0)$ (resp. $f^{\prime-1}(0)$ ). Then

(5.4.1)
$\sum_{\alpha}G_{\alpha^{-1}}S_{\alpha,,,W\times W’,f\oplus f’}^{\phi}$

$=$
$(\sum_{\alpha}G_{\alpha^{-1}}S_{\alpha,,,W,f}^{\phi})\cdot(\sum_{\alpha}G_{\alpha^{-1}}S_{\alpha,,,W’,f’}^{\phi})$ .

One can observe that the appearance in the Thom-Sebastiani for-
mula of vanishing cycles instead of nearby cycles is explained here by
the Funny Lemma 5.3.1 which is only valid for series without constant
terms!

5.5. We now explain how one can deduce from Theorem 5.4.2 a
Thom-Sebastiani Theorem for the Hodge spectrum.
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Since a $C$-Hodge structure of weight $n$ is just a finite dimensional
bigraded vector space $V=\oplus_{p+q=n}V^{p,q}$ , or, equivalently, a finite di-

mensional vector space $V$ with decreasing filtrations F. and $\overline{F}$ such
that $V=F^{p}\oplus\overline{F}^{q}$ when $p+q=n+1$ , one can define similarly a rational
$C$-Hodge structure of weight $n$ , by allowing $p$ and $q$ to belong to $Q$ but
still requiring $p+q\in Z$ .

We denote by $K_{0}(RMHS_{C})$ the Grothendieck group of the abelian
category of rational $C$-Hodge structures. For $d\geq 1$ , there is an embed-
ding of $\hat{\mu}_{d}(C)$ in $Q/Z$ given by $\alpha\mapsto a$ with $\alpha(e^{2\pi i/d})=e^{2\pi ia}$ . This gives
an isomorphism $\hat{\mu}(C)\simeq Q/Z$ . We denote by $\gamma$ the section $Q/Z\rightarrow[0,1)$ .

The morphism $H$ : $A\rightarrow K_{0}(MHS_{C})$ may be extended to a mor-
phism $H$ : $U\rightarrow K_{0}(RMHS_{C})$ as follows. For $p$ and $q$ in $Q$ with $p+q$ in
$Z$ , we denote by $H^{p,q}$ the class of the rank 1 vector space with bigrading
$(p, q)$ . We set $H(G_{1})=-1$ and $H(G_{\alpha})=-H^{1-\gamma(\alpha),\gamma(\alpha)}$ for $\alpha\neq 1$ .

This is compatible with the relations 5.2.2-5.2.4 since, by a standard
calculation,

$H(J_{\alpha_{1},,,\alpha_{2}})=-H^{1-(\gamma(\alpha_{1})+\gamma(\alpha_{2})-\gamma(\alpha_{1}+\alpha_{2})),\gamma(\alpha_{1})+\gamma(\alpha_{2})-\gamma(\alpha_{1}+\alpha_{2})}$ ,

when $\alpha_{1}\neq 1$ , $\alpha_{2}\neq 1$ and $\alpha_{1}\alpha_{2}\neq 1$ .

By using a weight argument one can prove that $H$ : $A\rightarrow K_{0}(MHS_{C})$

is zero on the kernel of the morphism $A\rightarrow\hat{A}$ . Hence $H$ vanishes also on
the kernel of the morphism $U\rightarrow\hat{U}$ , and we can extend it to the image
of this morphism.

Assume now $X$ is smooth and let $x$ be a closed point of $f^{-1}(0)$ . We
shall denote by Sp(/, x) the Hodge spectrum as defined in [19] and [14]
(which differs from that of [20] by multiplication by $t$ ).

By applying $H$ to both sides of (5.4.1), when $X$ and $X’$ are smooth
and $W$ and $W’$ are points one obtains the following Thom-Sebastiani
Theorem for the Hodge spectrum, which $wa\epsilon$ first proved by A. Varchenko
in [21] when $f$ and $f’$ have isolated singularities (see also [17]), the gen-
eral case being due to M. Saito [20], [15], [19] $)$ .

Theorem 5.5.1. Let $X$ and $X’$ be smooth and connected complex
algebraic varieties. Let $f$ : $X\rightarrow A_{C}^{1}$ and $f’$ : $X’\rightarrow A_{C}^{1}$ be morphisms of
algebraic varieties. Let $x$ and $x’$ be closed points in $f^{-1}(0)$ and $f^{\prime-1}(0)$ .
Then

$Sp(f\oplus f’, (x, x’))=Sp(f, x)$ . $Sp(f’, x’)$ .
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Elementary topology of stratified mappings

Isao Nakai

Dedicated to Professor Takuo Fukuda on his sixtieth birthday

Let $T$ be a triangulation of a manifold $N$ and $T^{1}$ the first barycentric
subdivision of $T$ . Stiefel [29] conjectured that the union of $i$-simplices
of $T^{1}$ is a (possibly infinite) $\mathbb{Z}_{2}$-cycle, which is the Poincar\’e dual of the
$(n-i)$-th Stiefel-Whitney class of $N(n=dimN)$ . This was proved by
Whitney (see [36]), but his proof was not published. Later a proof was
sketched by Cheeger [4] and a complete proof was given by Halperin
and Toledo [11]. Sullivan showed (Corollary 2 in [30]) that this can
be generalized to define a Stiefel-Whitney homology class of singular
spaces with the local mod 2 Euler characteristic condition (Eu) (for the
definition, see \S 2) such as real algebraic varieties. Sullivan defined that
a mapping $f$ : $N\rightarrow P$ is semi-triangulable if the extended mapping
cylinder

(M) $M_{f}=N\times[0,1]\bigcup_{(x,1)\sim(f(x),1)}P\times[1,2]$

is triangulable, and he proved the formula

$f_{*}W_{*}(N)=W_{*}(P)$

for such $f$ on the condition that all fibers of $f$ have odd Euler charac-
teristics.

This was immediately generalized by Grothendieck and Deligne for
real algebraic mappings and semialgebraic constructible functions (semi-
algebraic stratifications with weight in $\mathbb{Z}_{2}$ ). Namely, given a semi-
algebraic constructible function $h$ on a real algebraic variety $X$ (with
the local $mod 2$ Euler characteristic condition (Eu) defined as in \S 2),
a total Stiefel-Whitney homology class $W_{*}(h)\in H_{*}(X;\mathbb{Z}_{2})$ was defined
and the following properties were proved (see cf. [19]):
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The author thanks Brasselet for pointing the relation of this work with

the bivariant theory and Yokura for valuable comment on the history of Stiefel
homology classes.
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(1) $f_{*}W_{*}(h)=W_{*}(f_{*}h)$ for triangulated mappings $f$ : $X\rightarrow Y$ , where
$f_{*}h$ is the direct image of $h$ (for the definition, see \S 2),

(2) $W_{*}(h+k)=W_{*}(h)+W_{*}(k)$ ,

(3) $ W_{*}(1_{X})=W_{0}(1_{X})+W_{1}(1_{X})+\cdots$ is the Poincar\’e dual of the
total Stiefel-Whitney class $W^{*}(X)$ if $X$ is a manifold.

The local $mod 2$ Euler characteristic condition was not referred in
the paper [19]. The condition was stated by Pulton and MacPherson for
triangulated constructible functions in the paper [6], where they gener-
alized the idea for families of fibers of triangulated mappings in their
bivariant theory. Recently Fu and McCrory [5] proved the above prop-
erties for proper real analytic mappings and subanalytic constructible
functions without using the mapping cylinder method. The homology
class $W_{*}(h)$ with these properties was shown to be unique (cf. [6]) by
using Thom’s representation theorem of $\mathbb{Z}_{2}$ -cycles by images of triangu-
lated maps of manifolds in [31].

Deligne and Grothendieck conjectured the existence of an integral
homology class in the complex algebraic category with similar properties.
It was proved by MacPherson [20]. Namely he defined the so-called
Chern-Schwartz-MacPherson class $C_{*}(h)\in H_{*}(X;Z)$ with the following
properties for a complex algebraic constructible function $h$ on $X$ .

$(1^{/})f_{*}C_{*}(h)=C_{*}(f_{*}h)$ for a proper complex algebraic map $f$ ,
$(2^{J})C_{*}(h+k)=C_{*}(h)+C_{*}(k)$ ,
$(3^{J})C_{*}(1_{X})=C_{0}(1_{X})+C_{1}(1_{X})+\cdots$ is the Poincar\’e dual of the

total Chern class $C^{*}(X)$ if $X$ is smooth.

In proving these properties, MacPherson showed the direct image $f_{*}1_{X}$

of the characteristic function of $X$ by an $f$ : $X\rightarrow Y$ decomposes natu-
rally into a sum

$f_{*}1_{X}=\Sigma a_{i}Eu(V_{i})$

with reduced subvarieties $V_{i}$ of $P$ , where $Eu(V_{i})$ denotes the local Euler
obstruction of $V_{i}$ (see [20] for the definition.) And he proved the image
$f_{*}C_{*}(X)$ is equal to the weighted sum of the Chern-Mather classes of
those $V_{i}$ (the Poincar\’e duals of Chern classes of the tautological bundles
of Nash blow $ups$ of $V_{i}$ projected to Y.) These subvarieties $V_{i}$ are nothing
but the projections to $Y$ of the irreducible components of the Nash
blow up of the complex mappig cylinder $M_{f}$ of $f$ : $X\rightarrow Y$ at $Y\times 1$ .

(The coefficient $a_{i}$ is determined by the multiplicity of the irreducible
component and the Euler characteristic of the fiber of the projection.)
Recently Kwiecinski [17] generalized the theory for the complex analytic
category. It is remarkable that in a different vein this had been studied
by Schwartz $[2, 27]$ .



Elementary topology of stratifified mappings 223

In these generalizations, either triangulability or analyticity of map-
pings was assumed. Now we recall some results on the stratification
of mappings. By Thom-Mather theory [21], generic proper $C^{\infty}$ -smooth
mappings can be canonically stratified, and the canonical stratifications
are $A_{f}$ -regular. By the theory of subanalytic sets, all proper subanalytic
mappings (the graphs are subanalytic) can be also stratified [13]. Before
the notion of subanalytic sets was introduced by Hironaka, Sullivan [30]
had already suggested that all proper real analytic mappings are semi-
triangulable and all proper stratified mappings are also. This seems
to be true, but the author does not know any satisfactory reference.
The various regularity conditions of the mapping cylinder of stratified
mappings were discussed by many authors $(c.f. [3], [14])$ . Cappell and
Shaneson suggested, in [3], that the natural stratification of the mapping
cylinder of a smooth stratified mapping is not necessarily topologically
tame.

In this paper we introduce a new regularity condition, $B_{f}$ regularity
condition of stratified mappings in \S 1. We prove that Whitney-regular
and $B_{f}$ -regular proper stratified mappings are semi-triangulable (Propo-
sition 2.2). Shiota [28] proved that proper $A_{f}$-regular stratified map-
pings are triangulable and hence semi-triangulable. We apply to those
$A_{f}$ -regular or $B_{f}$ -regular mappings a weighted version of the mapping
cylinder method due to Sullivan in \S 3 (Theorems 2.3, 2.4). Secondly we
apply Theorem 2.4 to some special mappings (Morin mapping) in \S 5.

The author proved in the paper [23] that for a (locally) subanalytic
constructible function $h$ on a $C^{\infty}$ -manifold $N$ , a generic proper smooth
mapping $f$ : $N\rightarrow P$ admits a canonical $A_{f}$ -regular, Whitney-regular
and $B_{f}$ -regular stratification compatible with $h$ . This result tells that
the direct image of a subanalytic constructible function by a generic
proper smooth mapping is constructible. If $h$ satisfies the local $mod 2$

Euler characteristic condition (Eu), the direct image satisfies also the
condition and the above formula (1) holds (Theorem 2.4).

\S 1. Extended Mapping cylinder and the $B_{f}$-regularity.

A stratifification $\Sigma$ of a subset $K$ of a manifold $N$ is a set of mutually
disjoint locally compact and locally finite submanifolds of $N$ such that

$\bigcup_{X\in\Sigma}X=K$ . The stratification $\Sigma$ is Whitney-regular if the following

condition holds: By using local coordinates assume $N=\mathbb{R}^{n}$ , or $N$ is
embedded into an $\mathbb{R}^{r}$ . Let $X$ , $ Y\in\Sigma$ , and let $x_{i}\in X$ , $y_{i}\in Y$ be sequences
convergent to a $y\in Y$ . Assume that the line $\overline{x_{i}y_{i}}$ and the tangent space
$T_{x_{i}}X$ are convergent to a line $\ell$ and a subspace $T$ respectively in the
Grassmann manifolds of lines and $dimX$-planes. Then $\ell\subset T$ holds.
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This condition is independent of the choice of the local coordinates or
the embedding, hence well defined.

A stratifification of a mapping $f$ : $N\rightarrow P$ is a pair of stratifications
$(\Sigma_{N}, \Sigma_{P})$ of the source and target such that $f$ restricts on each $X\in\Sigma_{N}$

to a submersion to a $Y\in\Sigma_{P}$ .

The stratification $\Sigma_{N}$ (or $f$ ) is $A_{f}$ -regular at $a$ $y\in N$ if the following
condition holds: Assume a sequence $x_{i}\in X$ , $X\in\Sigma_{N}$ , is convergent to
$y\in Y$, $Y\in\Sigma_{N}$ and $kerd(f|X)_{x_{i}}$ is convergent to a subspace $K\subset T_{y}N$ .

Then $kerd(f|Y)_{y}\subset K$ holds. We say $f$ is $A_{f}$ -regular at a subset $A\subset N$

if $f$ is $A_{f}$ -regular at every $y\in A$ , and we say simply $f$ is $A_{f}$ -regular if
$A=N$ . Roughly stating, $f$ is $A_{f}$ -regular if and only if the fibers are
almost parallel to each other (see cf. [21]). If $(\Sigma_{N}, \Sigma_{P})$ is Whitney-
regular and the restrictions of $f$ to the closures of the strata of $\Sigma_{N}$

are proper, the fibers $f^{-1}(y)$ are locally topologically trivial over each
stratum of $\Sigma_{P}$ by Thom’s isotopy theorem $[21, 33]$ , and furthermore if
$\Sigma_{N}$ is $A_{f}$ -regular $f$ is locally topologically trivial as a mapping along
the strata of $\Sigma_{P}$ .

Here we introduce a new regularity condition of stratified mappings.

Definition. A stratum $X\in\Sigma_{N}$ is $B_{f}$ -regular over a stratum $ Y\in$

$\Sigma_{P}$ at a $y\in Y$ if the following condition holds: Assume $P=\mathbb{R}^{p}$ by using
local coordinates. Let $x_{i}\in X$ be a sequence convergent to an $x\in N$

such that $f(x)=y$ , and let $y_{i}\in Y$ be a sequence convergent to $y\in Y$ .

Assume that the line $\overline{f(x_{i})y_{i}}$ is convergent to a line $\ell$ . Then there exists
a sequence $v_{i}\in T_{x_{i}}X$ such that $||v_{i}||\rightarrow 0$ and

$\frac{df(v_{i})-(y_{i}-f(x_{i}))}{\min\{||df(v_{i})||,||y_{i}-f(x_{i})||\}}\rightarrow 0$

as $ i\rightarrow\infty$ . We say the stratification $(\Sigma_{N}, \Sigma_{P})$ (or the mapping $f$ ) is
$B_{f}$ -regular over $Y$ if all strata of $\Sigma_{N}$ are $B_{f}$ -regular over $Y$ at every
point of $Y$ , the stratification is $B_{f}$ -regular at a union $K$ of the strata of
$\Sigma_{P}$ if it is $B_{f}$ -regular over all strata in $K$ , and $B_{f}$ -regular if $K=P$ .

It is easily seen that the $B_{f}$ regularity of $f$ implies the Whitney-
regularity of the restriction of $\Sigma_{P}$ to the image of $f$ .

Remark. Let $(X, \Sigma)$ be a smooth complex analytic Whitney-
regular stratified space, and $\pi$ : $(\tilde{X},\tilde{\pi})\rightarrow(X, \pi)$ a strict transforma-
tion with a nonsingular closed center $ Y\in\Sigma$ . In general $\pi$ does not
admit an $A_{\pi}$-regular stratification as it is not flat. (It is well known that
non flat mappings of complex analytic varieties are not triangulable.)

On the other hald the pair of $\Sigma$ and its strict transform $\tilde{\Sigma}$ admits a
refinement, which is $B_{\pi}$-regular at $Y$ by Theorem 1.3.
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The extended mapping cylinder of $f$ : $N\rightarrow P$ is the topological space
defined by (M) in the beginning of the paper. To define a differentiate
structure on this space, assume $N$ and $P$ are embedded in $\mathbb{R}^{r}$ and $\mathbb{R}^{s}$ .
Then the extended mapping cylinder is homeomorphic to the subset of
$\mathbb{R}^{r}\times \mathbb{R}^{s}\times \mathbb{R}$ consisting of

$((1-t)x, tf(x),t)$ , $x\in N$ , $t\in[0,1]$ ,
$(0, y, t)$ , $y\in P$, $t\in[1,2]$ .

We denote this subset also by $M_{f}$ . When $f$ admits a stratification
$(\Sigma_{N}, \Sigma_{P})$ , the extended mapping cylinder $M_{f}$ decomposes naturally into
the union of the strata of $\Sigma_{N}\times 0\times 0,0\times\Sigma_{P}\times 1,0\times\Sigma_{P}\times(1,2)$ , $\Sigma_{P}\times 2$ ,

and

$\{((1-t)x, tf(x),t)|x\in X,t\in(0,1)\}$ , $X\in\Sigma_{N}$ .

Denote this decomposition by $\Sigma M_{f}$ . For a union $K\subset N$ of some strata
of $\Sigma_{N}$ , denote by $M_{f|K}$ the extended mapping cylinder of the restriction
$f$ : $K\rightarrow P$ , and by $\Sigma M_{f|K}$ its natural decomposition.

The next lemma is easily seen.

Lemma 1.1. Assume the restriction of $f$ to $K$ is proper. Then
the extended mapping cylinder $M_{f|K}$ is locally compact and the decom-
position $\Sigma M_{f|K}$ is a locally fifinite (but not necessarily Whitney-regular)

stratifification. And if the embeddings of $N$ , $P$ into $\mathbb{R}^{r}$ , $\mathbb{R}^{s}$ are proper, the
extended mapping cylinder $M_{f|K}$ is closed in $\mathbb{R}^{r}\times \mathbb{R}^{s}\times \mathbb{R}$ .

Proposition 1.2. Assume the restriction of $f$ to $K$ is proper.
Then the stratifification $\Sigma M_{f|K}$ is Whitney-regular over a stratum 0 $\times$

$Y\times 1$ ata $y_{0}=(0, y, 1)$ $(y\in Y, Y\in\Sigma_{P})$ if and only if the restriction
$f$ : $K\rightarrow P$ is $B_{f}$ -regular over $Y$ at $y$ .

Proof. First we prove the“if ” part. Assume the $B_{f}$-regularity.
Let

$F(x,t)=((1-t)x, tf(x),t):N\times[0,1]\rightarrow \mathbb{R}^{r}\times \mathbb{R}^{s}\times \mathbb{R}$ .

Let $X\in\Sigma_{N}$ be a stratum in $K$ . It suffices to prove the Whitney-
regularity of the stratum $F(X\times(0,1))$ over $O\times Y\times 1$ at $y_{0}$ . Let $x_{i}\in X$ ,
$y_{i}\in Y$ and $\overline{x}_{i}=F(x_{i}, t_{i}),\overline{y}_{i}=(0, y_{i}, 1)\rightarrow y_{0}$ . Assume the tangent
space $T_{i}=T_{\overline{x}_{i}}F(X\times(0,1))$ and the line $\ell_{i}$ passing through $\overline{x}_{i},\overline{y}_{i}$ are
convergent respectively to a subspace $T$ of dimension $dimX+1$ and a
line $\ell$ . We show that $\ell\subset T$ . Clearly $T_{i}$ is spanned by the vector

(i) $dF_{(x_{i},t_{i})}(\frac{\partial}{\partial t})=(-x_{i}, f(x_{i}),$ $1)$
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and the subspace

(ii) $dF_{(x_{t},t_{t})}(T_{x_{i}}X\times 0)=\{((1-t_{i})v, t_{i}df_{x_{2}}(v), 0)|v\in T_{x}X\}$

and $\ell_{i}$ is spanned by the vector

$(-x_{i}$ , $f(x_{i})+\frac{y_{i}-f((x_{i})}{1-i}$ , $1)=(-x_{i}, f(x_{i}),$ $1)+(0$ , $\frac{y_{i}-f((x_{i})}{1-i}$ , $0)$ .

Since $f|K$ is proper, passing to a subsequence, we may assume $x_{i}$ is
convergent to an $x\in\overline{X}\cap f^{-1}(y)$ . Clearly $(-x_{i}, f(x_{i}),$ $1)\rightarrow(-x, y, 1)$ .

Since $\ell_{i}\rightarrow\ell$ , $w_{i}=(y_{i}-f(x_{i}))/(1-t_{i})$ is convergent to a vector $w\in \mathbb{R}^{s}$ or
it is divergent but its linear span is convergent to the line $\ell$ in $0\times \mathbb{R}^{s}\times 0$ .

If $w_{i}$ is convergent to 0, then $\ell\subset T$ holds. So assume $w$ $\neq 0$ or $w_{i}$ is
divergent. By the $B_{f}$-regularity of the restriction $f|K$ over $Y$ at $y$ ,
there exists a sequence $t_{i}(1-t_{i})v_{i}\in T_{x_{i}}X$ such that $t_{i}(1-t_{i})||v_{i}||\rightarrow 0$

and

$\frac{df_{x_{i}}(t_{i}(1-t_{i})v_{i})-(y_{i}-f(x_{i}))}{\min\{||df_{x_{i}}(t_{i}(1-t_{i})v_{i})||,||y_{i}-f(x_{i})||\}}\rightarrow 0$ ,

from which it follows

$\frac{t_{i}df_{x_{i}}(v_{i})-w_{i}}{\min\{||t_{i}df_{x_{i}}(v_{i})||,||w_{i}||\}}\rightarrow 0$ .

Since $t_{i}\rightarrow 1$ and $t_{i}(1-t_{i})||v_{i}||\rightarrow 0$ , it follows $(1-t_{i})||v_{i}||\rightarrow 0$ and by
the above convergence the line generated by the vector

$((1-t_{i})v_{i}, t_{i}df_{x_{i}}(v_{i})$ , $0)\in dF_{(x_{i},t_{i})}(T_{x_{i}}X\times 0)$

is convergent to that of $(0, w, 0)$ or the line $\ell\subset 0\times \mathbb{R}^{s}\times 0$ . Therefore
$\ell\subset Tmod (-x, y, 1)$ . Since $(-x, y, 1)$ is contained in the limit $T$ , it
follows $\ell\subset T$ .

Next consider the “only if” part. So conversely assume $ F(X\times$

$(0,1))$ is Whitney-regular over 0 $\times Y\times 1$ at $y_{0}$ . Let $x_{i}\in X\rightarrow x$ ,

$y_{i}\in Y\rightarrow y=f(x)$ and assume the line $\overline{f(x_{i})y_{i}}$ is convergent a line
$L\subset \mathbb{R}^{s}$ . Let $1-t_{i}=||y_{i}-f(x_{i})||$ . then $w_{i}=(y_{i}-f(x_{i}))/(1-t_{i})$

is convergent to a unit vector $w$ $\in \mathbb{R}^{s}$ generating $L$ . Recall that the
distance of a line and a linear subspace is defined by the norm of the
difference of a unit vector in the line and its orthogonal projection of to
the subspace. By the Whitney-regularity, the distance $d(T_{i}, \ell_{i})$ of the
tangent space $T_{i}$ at $\overline{x}_{i}=F(x_{i}, t_{i})$ and the line $\ell_{i}$ passing through $\overline{x}_{i}$

and $\overline{y}_{i}=(0, y_{i}, 0)$ tends to 0 as $ i\rightarrow\infty$ , (since if the distance is not
convergent, then there is a subsequence $T_{a_{j}}$ convergent to a subspace
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$T$ such that $d(T_{a_{j}}, \ell_{a_{j}})\rightarrow\epsilon\neq 0$ by the compactness of Grassmann
manifolds and the boundedness of the distance of subspaces). Since
$(0, w, 0)$ , $(-x, y, 1)$ are linearly independent and $(-x_{i}, f(x_{i}),$ $1)\in T_{i}$ , the
distance of the subspace in (ii) and the line generated by $w_{i}$ tends to 0
as $ i\rightarrow\infty$ . Define a tangent vector $v_{i}$ of $X$ at $x_{i}$ so that

$((1-t_{i})v_{i}, t_{i}df_{x_{i}}(v_{i})$ , 0)

is the orthogonal projection of $(0, w_{i}, 0)$ to the subspace in (ii). Then
$(1-t_{i})||v_{i}||\rightarrow 0$ and

$||t_{i}df_{x_{i}}(v_{i})-w_{i}||\rightarrow 0$ .

Since $t_{i}\rightarrow 1$ ,

$\frac{df_{x_{i}}((1-t_{i})v_{i})-(y_{i}-f(x_{i}))}{\min\{||df_{x_{i}}((1-t_{i})v_{i})||,||y_{i}-f(x_{i})||\}}\rightarrow 0$ .

Therefore $X$ is $B_{f}$ -regular over $Y$ at $y$ . This completes the proof of
Proposition 1.2. Q.E.D.

Theorem 1.3. All complex analytic or subanalytic proper map-
pings admit Whitney-regular and $B_{f}$ -regular stratififications.

Proof. A Whitney-regular stratification of an analytic or subana-
lytic mapping is constructed by the induction on the codimension of the
strata in the target space. Namely assuming that there exist a closed
(complex analytic or subanalytic) subset $K\subset P$ of dimension $i$ and a
Whitney-regular and $B_{f}$ -regular stratification $(\Sigma_{N}, \Sigma_{P})$ of the restric-
tion $f_{K}$ : $N-f^{-1}(K)\rightarrow P-K$ , we construct a (possibly disconnected)

stratum $Y$ of dimension $i$ in $K$ and a stratification of $f^{-1}(Y)$ such that
$K-Y$ is of dimension $\leq i-1$ , $\Sigma_{N}$ , $\Sigma_{P}$ are Whitney-regular over the strata
of $f^{-1}(Y)$ and $Y$ respectively and the restriction $f$ : $f^{-1}(Y)\rightarrow Y$ is a
stratified submersion. To construct a $B_{f}$-regular stratification, delete
from the stratum $Y$ the closure of the set of those $y\in Y$ such that
the extension $\Sigma M_{f\kappa}$ is not Whitney-regular over $O\times Y\times 1$ at $(0, y, 1)$ .

Then go to the next step to define a stratum of dimension $\leq i-1$ in the
complement $K-Y$ . By the construction, the resulting stratification is
$B_{f}$ -regular. Q.E.D.

Remark. By Thom-Mather theory [21], a generic $C^{\infty}$ -smooth
mapping $f$ admits a canonical $A_{f}$-regular and Whitney-regular strat-
ification. All map germs $f_{x}$ of such an $f$ at $x$ admit versal unfoldings
$F_{x}$ , which are smoothly conjugate with polynomial map germs. Versal
unfoldings admit good representatives such that their restrictions to the
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singular point sets are proper and finite-to-one. The mapping cylinder
of such good representatives admit canonical $B_{F_{J}}$ -regular stratifications
refining the Thom-Mather canonical stratifications of $F_{x}$ by Proposi-
tion 1.2 and the theory of semialgebraic sets. It is seen that the germs
at $f(x)$ of such $B_{F_{x}}$ -regular stratifications of the target are determined
by the germs $f_{x}$ choosing sufficiently small domains of definition for
good representatives of $F_{x}$ . Imposing a generic condition on $f$ , we may
assume the natural inclusions of the germs $f_{x}$ into their versal unfold-
ings $F_{x}$ are transverse to the canonical $B_{F_{x}}$ -regular stratifications. By
the transverse pull back define the stratifications of the germs $f_{x}$ . By
genericity we may assume also the stratifications of the targets of those
germs are in general position. By their transverse refinement, define a
germ of stratification at each point in the target space. Those germs
are characterized by the restriction of $f$ to the singular point set $\Sigma(f)$ ,

which is proper and finite-to-one by genericity. Now by an argument
similar to the construction of the canonical stratification of a generic
smooth mapping in [21], it is seen that those germs glue together to
form a stratification $\Sigma_{P}$ of $P$ . Similarly define the stratification $\Sigma_{N}$

of the source $N$ by gluing the germs of stratifications defined by the
intersection refinements of the $B_{fx}$ -regular stratifications of the germs
$f_{x}$ induced from that of $F_{x}$ and the pull back of $\Sigma_{P}$ by $f_{x}$ . Then the
resulting stratification $(\Sigma_{N}, \Sigma_{P})$ is $B_{f}$ -regular and a refinement of the
canonical stratification due to Mather.

\S 2. A generalization of Sullivan’s result

FFom now on in this section manifolds and mappings are $C^{2}$ smooth
unless otherwise stated. Most statements dealing with constructible
functions in this section remain valid if $\mathbb{Z}_{2}$ is changed to $\mathbb{Z}$ .

A $\mathbb{Z}_{2}$ -valued function $h$ on $N$ is a constructible function if there
exists a Whitney-regular stratification $\Sigma$ of $N$ such that the level sets of
$h$ are unions of some strata of $\Sigma$ . Then we say $\Sigma$ is compatible with $h$ .

Write $h$ in two ways with $\mathbb{Z}_{2}$-coefficients $n_{X}$ , $m_{X}$ as follows:

$h=\sum_{X\in\Sigma}mx1_{X}=\sum_{X\in\Sigma}n_{X}1_{\overline{X}}$ ,

where $1_{X}$ , 1 -denote the characteristic functions of the stratum $X$ of $\Sigma$

and its closure, respectively. The integration of $h$ over $N$ is defined by

$\chi(h)=\int_{N}h=\sum_{X\in\Sigma}mx\chi(\overline{X}, \partial X)=\sum_{X\in\Sigma}nx\chi(\overline{X})\in \mathbb{Z}_{2}$ .
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Here $\chi$ stands for the $mod 2$ Euler characteristic define by the infinite
homology, and $\chi(\overline{X}, \partial X)=\chi(\overline{X})-\chi(\partial X)$ is equal to the Euler charac-
teristic $\chi(X)$ of $X$ .

It is not difficult to see that the integration is independent of the
stratification $\Sigma$ compatible with $h$ . Assume a mapping $f$ : $N\rightarrow P$

admits a Whitney-regular stratification $(\Sigma_{N}, \Sigma_{P})$ such that $\Sigma_{N}$ is com-
patible with $h$ . The direct image $f_{*}h$ of $h$ is then defined by

$f_{*}h(y)=\int_{N}h\cdot 1_{f^{-1}(y)}$ ,

where the integrand is constructible as $f$ restricts to a submersion on
each stratum in $N$ to some stratum in $P$ . By Thom’s isotopy theorem
$[21, 33]$ , $f$ is locally topologically trivial over the strata of $\Sigma_{P}$ and the
direct image $f_{*}h$ is a constructible function constant on the strata of
$\Sigma_{P}$ . In general the direct image is not necessarily constructible even for
$C^{\infty}$ -smooth mappings $f$ .

In the real analytic case, if the restriction of $f$ to the support of
$h$ is proper, the direct image $f_{*}h$ is constructible by the stratification
theory of subanalytic sets. Let $g$ : $P\rightarrow Q$ be a real analytic mapping
and assume the restriction of $g$ to the support of $f_{*}h$ is proper. Then
the direct image $g_{*}f_{*}h$ is also constructible and we obtain the following
functoriality

$(g\circ f)_{*}h=g_{*}f_{*}h$ .

In the smooth case this holds when the composite $(f, g)$ admits a triple of
Whitney-regular stratifications $(\Sigma_{N}, \Sigma_{P}, \Sigma_{Q})$ such that $f$ , $g$ are stratified
mappings and $\Sigma_{N}$ is compatible with $h$ . This is the case when $g$ is generic
with respect to the stratification of $f$ compatible with $h$ and $f_{*}h[23]$ .

Now assume $N$ and $P$ are compact, $f_{*}h$ is constructible and let $g$ be
a mapping of $P$ to a point. The composite $(f,g)$ is naturally stratified
by the stratification of $f$ compatible with the $h$ , $f_{*}h$ and the trivial
stratification of the target of $g$ , and then the direct image $(g\circ f)_{*}h$ is
nothing but the constant function which asigns the integration of $h$ over
$N$ to the point. In particular we obtain the following well known result
$(c.f. [15, 34])$ .

Corollary 2.1. Let $N$, $P$ be compact and let $f$ : $(N, \Sigma_{N})\rightarrow(P, \Sigma_{P})$

be a Whitney-regular stratifified mapping. Let $h$ : $N\rightarrow \mathbb{Z}_{2}$ be a con-
structible function constant on each stratum of $\Sigma_{N}$ . Then

$\int_{N}h=\int_{P}f_{*}h$ .
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Remark. The statement holds also for non compact N, P if the
restriction of $f$ to the support of $h$ is proper and the integration is finite.

Let $\Sigma$ be a Whitney-regular stratification of $N$ compatible with $h$ .

By the Whitney-regularity, a sphere $S_{p}\subset N$ of codimension 1 centered
at a $p\in X$ , $ X\in\Sigma$ with a sufficiently small radius (in a Riemannian
metric) is transverse to $\Sigma$ . By Thom’s isotopy theorem the germ of $\Sigma$

at $p$ is homeomorphic to the cone of $\Sigma\cap S_{p}$ .

The following condition was first stated by Fulton and MacPherson
[6] for triangulated constructible functions.

Definition. The local mod 2 Euler characteristic condition of $h$

at a stratum X of $\Sigma$ is

$(Eu_{X})$ $\int_{S_{p}}h\equiv 0$ $mod 2$ $(p\in X)$ .

This condition is independent of the choice of $p\in X$ , and equivalent to
the condition

$\int_{L}h\equiv 0$ $mod 2$

for the link $L$ of $ X\in\Sigma$ . We say that Condition (Eu) holds if Condition
(Eux) holds for all strata $ X\in\Sigma$ .

It is known that Whitney-regular stratified sets are triangulable
$[8, 16]$ . So we may present $h$ as a sum of characteristic functions of
(closed) simplices of a triangulation $T$ compatible with $h$ ,

$h=\sum_{X\in T}n_{X}1_{X}$ .

Denote the union of all $j$-simplices of the first barycentric subdivision
of a simplex $X\in T$ by $W_{j}(X)$ . The following definition is seen in the
paper by Fulton and MacPherson [6].

Definition. Let

$W_{j}(h):=\sum_{X\in T}n_{X}W_{j}(X)$ .

By Lemma 3.2, if $h$ satisfies Condition (Eu), then this is an infinite
$\mathbb{Z}_{2}$-cycle of dimension $j$ . The $\mathbb{Z}_{2}$-homology class defined by this cycle
is called the Stiefel-Whitney homology class of $h$ and denoted also by
$W_{j}(h)\in H_{j}(N;\mathbb{Z}_{2})$ . The total Stiefel-Whitney homology class of $h$ is

$ W_{*}(h)=W_{0}(h)+W_{1}(h)+\cdots$
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Let $k$ be another constructible function on $N$ and $\Sigma^{J}$ a Whitney-
regular stratification compatible with $k$ . If $\Sigma$ and $\Sigma’$ are transverse, the
intersection refinement $\Sigma\cap\Sigma^{/}$ is Whitney-regular, compatible with $h+k$ ,

and $h+k$ satisfies Condition (Eu). In this situation

$W_{*}(h+k)=W_{*}(h)+W_{*}(k)$

holds. However in general the theory of Stiefel-Whitney homology class
for smooth constructible functions does not fit the categorical frame-
works such as in [6].

Definition. For a function $h$ on $N$ , the natural extension $h_{f}$ on
$M_{f}$ is defined by: $h_{f}(x, t)=h(x)$ for $(x, t)\in N\times[0,1)$ and $h_{f}(y, t)=$

$f_{*}h(y)$ for $(y, t)\in P\times[1,2]$ .

Proposition 2.2. Assume the restriction of a stratifified mapping
$f$ to the support of $h$ is proper and $B_{f}$ -regular at the support of $f_{*}h$ .
Then the extended mapping cylinder $M_{f|\sup ph}$ admits a triangulation
compatible with $h_{f}$ .

Proof It is known that a Whitney-regular stratified closed subset
of a smooth manifold admits a triangulation such that all strata are
unions of simplices $[8, 16]$ . Assume $N$ , $P$ are properly embedded respec-
tively in some Euclidean spaces $\mathbb{R}^{r}$ , $\mathbb{R}^{s}$ . By Lemma 1.1 and Proposition
1.2, the extended mapping cylinder $M_{f|\sup ph}$ is a closed Whitney-regular
stratified subset of $\mathbb{R}^{r}\times \mathbb{R}^{s}\times \mathbb{R}$ . Thus it admits a triangulation. Q.E.D.

Theorem 2.3. Let $f$ : $N\rightarrow P$ be a continuous mapping and $ha$

$\mathbb{Z}_{2}$ -valued function on N. Assume the restriction of $f$ to the support of $h$

is proper and the extended mapping cylinder $M_{f|\sup ph}$ of the restriction
admits a triangulation compatible with $h_{f}$ , and $h_{f}$ satisfifies Condition
(Eu) in the interior $M_{f}-(N\times 0\cup P\times 2)$ . Then $h$ and $f_{*}h$ on $P$ satisfy
Condition (Eu), and

$(*)$ $f_{*}W_{*}(h)=W_{*}(f_{*}h)$ .

Let $f$ : $(N, \Sigma_{N})\rightarrow(P, \Sigma_{P})$ be a proper stratified mapping and $h$ a
constructible function constant on each strata of $\Sigma_{N}$ . It is not difficult
to see that if $h$ satisfies Condition (Eu), then the direct image $f_{*}h$ also
satisfies Condition (Eu). (This was proved in $[5, 6]$ for triangulated
mappings, and in [34] for some more general mappings.)

The above theorem is proved in the next section. The next theorem
is a generalization of the formula due to Sullivan, Fulton, MacPherson
and McCrory [5, 6, 30].



232 I. Nakai

Theorem 2.4. Let $f$ : $(N, \Sigma_{N})\rightarrow(P, \Sigma_{P})$ be a Whitney-regular

stratifified mapping, and let $h$ be $a\mathbb{Z}_{2}$ -valued constructible function on $N$

such that $\Sigma_{N}$ is compatible with $h$ . Assume $h$ satisfifies Condition (Eu),
the restriction of $f$ to the support of $h$ is proper, and $\Sigma_{N}$ is $A_{f}$ -regular
at the support of $h$ or $\Sigma_{P}$ is $B_{f}$ -regular at the support of $f_{*}h$ , then the
above formula $(*)$ holds.

Proof First assume $\Sigma_{N}|supph$ is $A_{f}$ -regular. Then by the result
of Shiota [28], the restriction of $f$ to $supph$ admits a triangulation $(S, T)$

refining $(\Sigma_{N}, \Sigma_{P})$ . It follows that the extended mapping cylinder of the
restriction admits a triangulation compatible with $h_{f}$ . Secondly assume
$\Sigma_{P}$ is $B_{f}$-regular at the support of $f_{*}h$ . Then the extended mapping
cylinder of the restriction of $f$ to the support of $h$ admits a triangulation
compatible with $h_{f}$ by Proposition 2.2. In both cases, the formula $(*)$

holds by Theorem 2.3. Q.E.D.

\S 3. Mapping cylinder method and the proof of Theorem 2.3.

Proposition 3.1. Assume the restriction of $f$ to the support of
$h$ is proper, $h$ satisfifies Condition (Eu) and $f$ is $B_{f}$ -regular at the $\sup-$

port of $f_{*}h$ . Then $h_{f}$ satisfifies Condition (Eu) at the complement of the
boundaries $N\times 0$ , $P\times 2\subset M_{f}$ , and $h_{f}$ satisfifies Condition (Eu) at $a$

stratum $X$ on the boundaries if and only if $h_{f}$ is zero on $X$ .

Proof Clearly Condition (Eu) holds off the boundaries and $O\times P\times$

$1$ . First we prove the condition at a $(0, y, 1)\in 0\times P\times 1$ . Assume $N$ ,
$P$ are properly embedded into $\mathbb{R}^{r}$ , $\mathbb{R}^{s}$ respectively. By Lemma 1.1 the
mapping cylinder $M_{f|\sup ph}$ is closed, and by Proposition 1.2 the natural
stratification $\Sigma M_{f|\sup ph}$ is Whitney-regular. A transverse intersection
of a sphere of codimension 1 in $\mathbb{R}^{r}\times \mathbb{R}^{s}\times \mathbb{R}$ centered at $(0, y, 1)$ and the
stratification $\Sigma M_{f|\sup ph}$ is (transversely) isotopic to

$S=f^{-1}(B_{y})\times 0\times 0\cup(f^{-1}(S_{y})\times 0\times(0,1])$

$\bigcup_{f}(0\times S_{y}\times[1,2))\cup 0\times B_{y}\times 2$ ,

where $B_{y}$ is a closed ball in $P$ centered at $y$ , $S_{y}$ is the boundary of
the ball transverse to $\Sigma_{P}$ , and $\bigcup_{f}$ denotes the identifying space by the
restriction $f$ : $f^{-1}(S_{y})\times 0\times 1\rightarrow 0\times S_{y}\times 1$ . By Thom’s isotopy theorem,
the integration of $h_{f}$ over the intersection is equal to

$\int_{S}h_{f}$ $=$ $\int_{f^{-1}(B_{y})}h+\int_{f^{-1}(S_{y})x0x(0,1)}h$

$+\int_{S_{y}}f_{*}h+\int_{0\times S_{y}\times(1,2)}f_{*}h+\int_{B_{y}}f_{*}h$ .
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Since $\int_{f^{-1}(S_{y})}h\equiv 0$ and $\int_{S_{y}}f_{*}h\equiv 0mod 2$ as the direct image satisfies

Condition (Eu) ([6]),

$\equiv$ $\int_{f^{-1}(B_{y})}h+\int_{B_{y}}f_{*}h$

and by Corollary 2.1

$\equiv$ 0 $mod 2$ .

Next we consider Condition $(Eu_{X\times 0\times 0})$ for an $X\in\Sigma_{N}$ . Let $B_{x}$ be
a small ball in $N$ centered at an $x\in X$ such that the boundary $S_{x}$ is
transverse to $\Sigma_{N}$ . An intersection of the stratification $\Sigma M_{f|\sup ph}$ with
a small transverse sphere of codimension 1 in $\mathbb{R}^{r}\times \mathbb{R}^{s}\times \mathbb{R}$ centered at
$(x, 0, 0)$ is homeomorphic to the stratified set

$S=S_{x}\times 0\cup S_{x}\times(0,1)\cup B_{x}\times 1\subset N\times[0,1]$ .

By Thom’s isotopy theorem, the integration of $h_{f}$ over the transverse
sphere is equal to

$\int_{S}h_{f}=\int_{S_{x}}h+\int_{S_{x}\times(0,1)}h+\int_{B_{x}}h\equiv h(x)$ $mod 2$ .

This tells that Condition $(Eu_{X\times 0\times 0})$ holds if and only if $h=0$ on $X$ . A
similar argument holds for the strata in $O\times P\times 2$ . Q.E.D.

Lemma 3.2. Let $T$ be a triangulation of the extended mapping
cylinder $M_{f}$ compatible with $h_{f}$ . The coefficient in $\partial W_{j}(h)$ of $a(j-1)-$
simplex $\Sigma=(\tau_{0}\subset\tau_{1}\subset\cdots\subset X)$ of the fifirst barycentric subdivision of
a simplex $X\in T$ {with the barycenter of $X$ as a vertex of $\Sigma$ ) is 0 if and
only if Condition $(Eu_{X})$ of $h$ holds.

Proof. Write $h_{f}=\sum_{X\in T}n_{X}1_{\overline{X}}$ . Let $Y$ be a simplex of $T$ of dimen-

sion\geq $j$ . Then

$\partial W_{j}(Y)=W_{j-1}(\partial Y)=W_{j-1}(1_{\partial Y})=W_{j-1}(\sum_{Z\in T,Z\subset\partial Y}1_{\overline{Z}})$ ,

which is the $(j-1)$-th skeleton of the first barycentric subdivision of the
boundary $\partial Y$ . This formula tells that the coefficient of $\Sigma$ in $\partial W_{j}(Y)$

is 1 $(mod 2)$ if and only if $X\subset\partial Y$ . Therefore the coefficient of $\Sigma$

in $\partial W_{j}(h_{f})$ is the number (with weight $n_{Y}$ ) of those closed simplices
$Y\in T$ containing $X$ in their boundaries. This number is nothing but
the integration of $h_{f}$ over the link of the stratum $X$ . Q.E.D.
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Now we prove Theorem 2.3. It is easily seen that Condition (Eu)
of $h_{f}$ on the interior of $M_{f|\sup ph}$ implies the condition of $h$ , $f_{*}h$ . By
Proposition 2.2, the extended mapping cylinder $M_{f|\sup ph}$ admits a tri-
angulation $T$ compatible with $h_{f}$ , and all simplices of the first barycen-
tric subdivision of $T$ are of the form $\Sigma$ in Lemma 3.2. By Proposition
3.1 and Lemma 3.2, we obtain the boundary formula

$\partial W_{j}(h_{f})=W_{j-1}(h)+W_{j-1}(f_{*}h)$ ,

from which follows the formula $(*)$ of Theorem 2.3.

\S 4. Canonical decomposition of the direct image.

It would be worth to apply the theory to the following elementary
case. Let $f$ : $(N^{n}, \Sigma_{N})\rightarrow(P^{p}, \Sigma_{P})$ , $n=p$ , be a proper and finite-to-one
stratified mapping of manifolds. The local $mod 2$ mapping degree $D_{1oc}$ is
locally constant on the strata of $\Sigma_{N}$ by Thom’s isotopy theorem, hence
it is a constructible function on $N$ . By definition

$(**)$ $f_{*}D_{1oc}=D1_{P}$ ,

$D$ being the $mod 2$ mapping degree of $f$ .

Proposition 4.1. Let $f$ be a proper and fifinite-to-one stratifified
mapping of manifolds. The local mapping degree $D_{1oc}$ satisfifies Condition
(Eu).

Proof Let $f(X)\subset Y$ , $X\in\Sigma_{N}$ , $Y\in\Sigma_{P}$ . Let $K$ denote the link of
$Y$ . Then $f^{-1}(K)$ is the link of $X$ . By Corollary 2.1,

$\int_{f^{-1}(K)}D_{1oc}=\int_{K}f_{*}D_{1oc}=\int_{K}D\cdot 1_{P}=0$ .

Q.E.D.

Since $f$ is finite-to-one, $f$ is $A_{f}$-regular, and by the proposition and
Theorem 2.4, we obtain

Proposition 4.2. Let $f$ : $(N^{n}, \Sigma_{N})\rightarrow(P^{n}, \Sigma_{P})$ be a proper and

fifinite-to-one Whitney-regular stratifified mapping. Then

$f_{*}W_{*}(D_{1oc})=DW_{*}(P)$ ,

where $D$ is the mod 2 mapping degree of $f$ .
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We generalize this in Theorem 4.7 for smooth Thom-Mather strati-
fied mappings $f$ : $N^{n}\rightarrow P^{p}$ with $n\geq p$ .

Now let $f$ : $N^{n}\rightarrow P^{p}$ , $n\geq p$ , be a complex analytic mapping
with isolated singularities. The local Milnor fiber $f^{-1}(y^{/})$ of a germ of
a complex analytic mapping $f$ : $N\rightarrow P$ at a singular point $x\in N$ is
homotopic to the bouquet of $\mu$ spheres $S^{n-p}$ , all of which vanish as $y’$

tends to $y=f(x)[12, 22]$ . In other words, Euler characteristic of the
fiber decreases $(-1)^{n-p}\mu$ from that of a generic local fiber when $y^{J}=y$ .

It is known that the Milnor number $\mu$ of the germ $f_{x}$ is algebraically
determined by the finite jet of $f$ at $x$ . So $\mu=\mu(x)$ is a complex analytic
constructible function on $N$ . The difference of Euler characteristic of
a (global) singular fiber $f^{-1}(y)$ and that of a non singular fiber is the
sum of the Milnor number $(-1)^{n-p}\mu(x)$ at all singular points $x$ of the
singular fiber. Therefore we obtain the following generalization of the
formula by Yomdin [38].

Proposition 4.3. Assume $f$ : $N\rightarrow P$ is a proper complex ana-
lytic mapping with isolated singularities. Then

$f_{*}(1_{N}+(-1)^{n-p}\mu)=D1_{P}$ ,

where $D$ is the Euler characteristic of a generic fifiber of $f$ and $\mu$ is Milnor
number.

Remark. $D_{1oc}=\mu+1$ in the case when $n=p$ and $f$ is complex
analytic. The $mod 2$ Milnor number $\mu$ is defined for generic $C^{\infty}$ smooth
map germs later in this section, and it is seen that $D_{1oc}$ has the same
parity as $\mu+1$ .

Mather [21] proved a generic proper $C^{\infty}$ -smooth mapping admits a
canonical Whitney-regular and $A_{f}$ -regular stratification. (It is known
the complement of the set of those generic mappings has positive codi-
mension in the proper mapping space with Whitney topology.) For
those generic mappings $f$ , germs at all $x\in N$ are conjugate with poly-
nomial map germs by local continuous coordinate change of the source
and target, and the singularities of the fibers are isolated. The $mod$

$2$ Milnor number $\mu(x)$ of the germ of $f$ at $x$ is well defined: $\mu(x)=$

$\chi(f^{-1}f(x^{/})\cap B_{\epsilon})-1$ with a small ball $B_{\epsilon}$ centered at $x$ such that the
boundary is transverse to the fiber passing through $x$ and an $x’$ suffi-
ciently close to $x$ such that $f^{-1}f(x^{/})$ is also transverse to the boundary.
We call those generic mappings smooth Thom-Mather stratifified map-
pings.

Remark. In the following we present the various results on smooth
Thom-Mather stratified mappings. The condition of being a smooth
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Thom-Mather stratified mapping seems to be too strong for those state-
ments. However we postpone to state those results in optimal manner,
since their proofs are more technical.

Proposition 4.4. Let $f$ be a proper smooth Thom-Mather strati-

fified mapping. Then

$(***)$ $f_{*}(1_{N}+\mu)\equiv D1_{P}$ $mod 2$ ,

where $D$ is the mod 2 Euler characteristic of a generic fifiber of $f$ .

Proof By Corollary 2.1

$f_{*}(1_{N}+\mu)(y)$ $=$ $\int_{f^{-1}(y)}(1_{N}+\mu)$

$=$ $\int_{f^{-1}(y)}1_{N}+\int_{f^{-1}(y)}\mu$

$=$
$\chi(f^{-1}(y))+\sum_{x\in Singf^{-1}(y)}\mu(x)$

since $f^{-1}(y)$ is locally contractible at all singular points $x$

$\equiv$ $D$ $mod 2$ .

Q.E.D.

Proposition 4.5. Let $f$ be a proper smooth Thom-Mather strati-

fified mapping. Then $ 1+\mu$ satisfifies Condition (Eu).

Proof This follows from Proposition 4.6. Here we give a direct
proof by integrating $ 1+\mu$ on a small traisverse sphere of codimension
1. Let $D^{O}$ be a small open ball centered at $f(x)$ such that the boundary
$S^{/}=\partial D^{o}$ is transverse to $\Sigma_{P}$ . Then $f$ is transverse to $S’$ hence $f^{-1}(S’)$

is smooth and transverse to $\Sigma_{N}$ . Let $D$ be a small closed ball centered
at $x$ . Since $f$ has isolated singularities, we may assume the boundary
$S=\partial D$ is transverse to the fibers over $D’$ . The integration of $ 1+\mu$ on
a transverse sphere of codimension 1 centered at $x$ is equal to

$\int_{f^{-1}(\overline{D}^{o})\cap S}(1+\mu)+\int_{f^{-1}(S’)\cap D}(1+\mu)$ .

Since $f^{-1}(\overline{D}^{o})\cap S$ is a fiber bundle over the link $K=f^{-1}f(x)\cap S$ with
the fiber $\overline{D}^{o}$ and $\mu=0$ on the fiber bundle, we see the first term is

$\int_{K}(\int_{\overline{D}^{o}}1)=\int_{K}1$ .
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Since the germ of $f$ at $x$ is topologically conjugate with a polynomial map
germ, the link $K$ has even Euler characteristic by a result of Sullivan [30].
Therefore the first term is 0 $mod 2$ . By Corollary 2.1 and Proposition
4.4, the second term is

$\int_{S’}d’\equiv 0$ $mod 2$ ,

where $d^{/}$ is the $mod 2$ Euler characteristic of a generic fiber of the re-
striction $f$ : $f^{-1}(S’)\cap D\rightarrow S’$ . This completes the proof. Q.E.D.

Let $M_{1}\subset N$ be the support of $\mu$ , and define $M_{i}\subset M_{i-1}$ , $i=2,3$ , $\ldots$

inductively by the support of the restriction of $\mu-i+1$ to $M_{i-1}$ . By
definition, $M_{i}$ is closed and

$\mu=\sum 1_{M_{i}}$

in the complex analytic case, and

$(****)$ $\mu\equiv\sum 1_{M_{i}}$ $mod 2$

in the smooth case. For polynomial map germs $f$ , all $M_{i}$ are algebraic
[38], hence their characteristic functions satisfy Condition (Eu). By a re-
sult of Wall [35], the $mod 2$ Milnor number is invariant under topological
conjugacy of map germs. Therefore all germs of smooth Thom-Mather
stratified mappings possess the same properties. We proved

Proposition 4.6. Condition (Eu) of $1_{M_{i}}$ holds for proper smooth
Thom-Mather stratifified mappings.

By Proposition 4.4 and Proposition 4.6, we obtain

Proposition 4.7. For a proper smooth Thom-Mather stratifified map-
ping $f$ : $N\rightarrow P$ ,

$f_{*}W_{*}(N)+f_{*}W_{*}(\mu)=f_{*}W_{*}(N)+\sum_{1\leq i}f_{*}W_{*}(M_{i})=DW_{*}(P)$
.

Thom [32] proved that for a generic and proper $f$ : $N\rightarrow P$ , the
critical point set $\Sigma(f)$ carries a $\mathbb{Z}_{2}$-fundamental class, and its Poincar\’e

dual can be written in a polynomial of the Stiefel-Whitney (cohomology)
classes of the difference bundle $TN-f^{*}TP$ : the virtual tangent bundle
of the fibers of $f$ . The polynomial was explicitly calculated by Porteous
(see $c.f$. [7]). Passing to the target space via Gysin homomorphism $f_{!}$ ,
we obtain the following relation

$f_{!}W^{n-p+1}(N)+f_{!}(Dua1[\Sigma(f)])=DW^{1}(P)$ ,
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where $W^{*}$ stands for the Stiefel-Whitney cohomology class (for the proof,
see [24] $)$ . This formula is the dimension $(p-1)$ part of the formula in

Theorem 4.7, as $M_{1}=\Sigma(f)$ for a generic $f$ . Thom showed also, for a
singularity type $I$ (of the contact equivalence relation in [21]), the set of
the closure of the set $\Sigma^{I}(f)$ of those $x\in N$ where the germ of $f$ is contact
equivalent to I carries a $\mathbb{Z}_{2}$-fundamental class. And its Poincar\’e dual
is written in a polynomial of Stiefel-Whitney classes of the difference
bundle. The polynomial is called Thom polynomial, but it is explicitly
calculated only for very special singularity types.

\S 5. The canonical stratification of Morin mappings.

Let $p\leq n$ . We say a $C^{\infty}$ -smooth mapping $f$ : $N^{n}\rightarrow P^{p}$ is a Morin
mapping if the following two conditions hold:
(1) $f$ is locally equivalent to the following normal form $A_{k}$ (or Thom-

Boardman
$\Sigma^{n-p+1,1,,1}k-\ldots 1$

singularity [1, 21, 32] $)$ for some $k=1$ , $\ldots,p$ :

$(f_{u}(x, y)$ , $u)=(x^{k+1}+Q(y)+\sum_{i=1}^{k-1}u_{i}x^{i},$ $u_{1}$ , $\ldots$ , $u_{p-1})$ : $\mathbb{R}^{n}\rightarrow \mathbb{R}^{p}$ ,

$x\in \mathbb{R}$ , $y\in \mathbb{R}^{n-p}$ , $Q(y)$ being a non degenerate quadratic form of
$y$ . Here two map germs $f_{i}$ : $(N_{i}, x_{i})\rightarrow(P_{i}, y_{i})$ , $i=1,2$ are equivalent
if there exist germs of $C^{\infty}$ -diffeomorphisms $\phi$ : $(N_{1}, x_{1})\rightarrow(N_{2}, x_{2})$ ,
$\psi$ : $(P_{1}, y_{1})\rightarrow(P_{2}, y_{2})$ such that $f_{2}\circ\phi=\psi\circ f_{1}$ holds.
(2) Let $A_{k}(f)$ denote the set of those $x\in N$ where the germ of $f$

is equivalent to the above normal form. (By the above normal form,
$A_{k}(f)$ is smooth of dimension $p-k.$ ) The restrictions of $f$ to $A_{k}(f)$ , $k=$
$1$ , $\ldots,p$ , are multi transverse: the germs of $f|A_{k}(f)$ , $k=1$ , $\ldots,p$ at all
finite point sets of $N$ are in general position in $P$ .

Denote by $\Sigma_{f}$ the stratification of $N$ consisting of $A_{1}(f)$ , $A_{2}(f)$ , $\ldots$ ,
$A_{p}(f)$ and their complement $N-\Sigma(f)$ .

In the complex analytic case we define Morin mappings in a similar
manner. (See [1, 37] for alternative definitions.)

The canonical stratifification $f_{*}\Sigma_{f}$ (denoted $\Sigma_{P}$ ) of the discriminant
of a Morin mapping $f$ is defined as follows. A stratum of $f_{*}\Sigma_{f}$ consists
of those $y$ such that the fiber $f^{-1}(y)$ has a singularity type

$A_{k_{1}}+A_{k_{2}}+\cdots+A_{k_{\ell}}$ ,

which is smooth of codimension $k_{1}+\cdots+k_{\beta}\leq p$ in $P$ . The canonical

stratifification $\Sigma_{f}\cap f^{-1}f_{*}\Sigma_{f}(=\Sigma_{N})$ of the source space $N$ is defined by
the intersection refinement of $\Sigma_{f}$ and $f^{-1}f_{*}\Sigma_{f}$ . By the normal form of
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Morin singularity it is seen that if $f$ is multi transverse with respect to
$\Sigma_{f}$ , then

$f$ : $(N, \Sigma_{f}\cap f^{-1}f_{*}\Sigma_{f})\rightarrow(P, f_{*}\Sigma_{f})$

is an $A_{f}$ -regular and Whitney-regular stratified mapping. The closure
of the critical set $A_{k}(f)$ is also a smooth submanifold of $N$ of dimension
$p-k$ . Let $1_{\overline{A}_{k}}$ denote the characteristic function of the closure.

The following proposition is a spacial case of $(****)$ and can be
verified by using the local normal form of Morin singularities.

Proposition 5.1. Let $f$ : $N^{n}\rightarrow P^{p}$ , $p\leq n$ , be a proper Morin
mapping. Then

$\mu=\sum_{k=1}^{p}1_{\overline{A}_{k}}$

in the complex analytic case, and

$\mu\equiv\sum_{k=1}^{p}1_{\overline{A}_{k}}$ $mod 2$

in the smooth case.

\S 6. Application to Morin mappings.

For complex analytic mappings, we obtain the following generaliza-
tion of a result of Levine [18] by the properties of the Chern-Schwartz-
MacPherson class and Proposition 5.1.

Theorem 6.1. Let $f$ : $N^{n}\rightarrow P^{p}$ , $p\leq n$ , be a proper complex
analytic Morin mapping. Then

$f_{*}C_{*}(N)+(-1)^{n-p}\{f_{*}C_{*}(\overline{A}_{1}(f))+\cdots+f_{*}C_{*}(\overline{A}_{p}(f))\}=DC_{*}(P)$ .

In the paper [24] the author proved

Proposition 6.2. Let $f$ be as above. Then

Eu(D(/))= $ f_{*}\mu$ ,

where $D(f)$ denotes the discriminant (critical value set) of $f$ .

FFom this formula and the definition of the total Chern-Schwartz-
MacPherson class of $ f_{*}\mu$ as in the introduction, we obtain the following
interpretation of the formula in Proposition 4.4.
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Theorem 6.3. Let $f$ : $N^{n}\rightarrow P^{p}$ , $p\leq n$ , be a proper complex
analytic Morin mapping. Then

$f_{*}C_{*}(N)+(-1)^{n-p}C_{M}(D(f))=DC_{*}(P)$ ,

where $C_{M}$ stands for the Chern-Mather class.

From Theorem 6.1 and Theorem 6.3 it follows

Theorem 6.4. Let $f$ be as above. Then

$\frac{Dua1(C_{M}(D(f)))}{C^{*}(P)}=\frac{f_{!}C^{*}(\overline{A}_{1}(f))}{C^{*}(P)}+\cdots+\frac{f_{!}C^{*}(\overline{A}_{p}(f))}{C^{*}(P)}$ ,

where $C^{*}$ stands for the total Chern class.

The lefli hand side of the above equality is nothing but the total
Chern class of the“normal bundle” of the Nash blow up of the dis-
criminant set $D(f)$ . Since the discriminant is of codimension one, the
“normal bundle” is a rank one vector bundle over the Nash blow up.
Therefore we obtain

Proposition 6.5. Let $f$ be as above. Then

$\frac{Dua1(C_{M}(D(f)))}{C^{*}(P)}=Dua1(D(f))+C^{1}(N(f))$ ,

where $C^{1}(N(f))$ denotes the fifirst Chern class of the “normal bundle ” of
the Nash blow up of the discriminant.

This tells certain formulas of the discriminant and the image of the
cusp point set $f(\overline{A}_{1}(f))$ as in the end of \S 4, and also

Theorem 6.6. For a proper complex analytic Morin mapping $f$

the cohomology class

$\frac{f_{!}C^{*}(\overline{A}_{1}(f))}{C^{*}(P)}+\cdots+\frac{f_{!}C^{*}(\overline{A}_{p}(f))}{C^{*}(P)}$

vanishes in dimension $\geq 3$ .

This can be generalized to complex analytic mappings with arbitrary
generic singularities as follows. If a proper mapping $f$ : $N^{n}\rightarrow P^{p}$ has
only generic singularities of corank $\leq c$ , then the cohomology class

$\sum_{1\leq i}\frac{Dua1(f_{*}C_{*}(M_{i}(f)))}{C^{*}(P)}$
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vanishes in certain dimensions depending on $c$ . Full account of the gen-
eral theory will appear elsewhere.

In the real smooth case we obtain from Theorem 2.4 and Proposition
5.1, the following theorem.

Theorem 6.7. Let $f$ : $N^{n}\rightarrow P^{p}$ , $p\leq n$ , be a proper smooth
Morin mapping. Then

$f_{*}W_{*}(N)+\{f_{*}W_{*}(\overline{A}_{1}(f))+\cdots+f_{*}W_{*}(\overline{A}_{p}(f))\}=DW_{*}(P)$ ,

where $W_{*}$ denotes the total Stiefel-Whitney homology class: Poincar\’e

dual of the Stiefel-Whitney cohomology class.

This theorem was proved by the author in [24] with purely geometric
argument based on the definition of Thom-Boardman singularities.

By the dimension $(p-i)$ part of the formula in the theorem, we
obtain

Corollary 6.8. Let $f$ : $N^{n}\rightarrow P^{p}$ , $p\leq n$ , be a proper smooth
Morin mapping. Then

$f_{*}W_{p-i}(N)+f_{*}W_{p-i}(\overline{A}_{1}(f))+\cdots+f_{*}W_{p-i}(\overline{A}_{i-1}(f))+f_{*}[\overline{A}_{i}(f)]$

$=DW_{p-i}(P)$ .

In the real case the $mod 2$ reductions of Theorem 6.4, Proposition
6.5 and Theorem 6.6 seem to remain valid, while the notion of Nash blow
up is not defined yet for constructible functions as well as triangulated
subsets.
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Geometry of cuspidal sextics and their dual curves

Mutsuo Oka

\S 1. Introduction

Let $C$ be a given irreducible plane curve of degree $n$ defined by
$f(x, y)=0$ where $f(x, y)$ is an irreducible polynomial. $C$ is called a
torus curve of type $(p, q)$ if $p$ , $q|n$ and $f(x, y)$ is written as $f(x, y)=$

$f_{n/p}(x, y)^{p}+f_{n/q}(x, y)^{q}$ for some polynomials $f_{n/p}$ , $f_{n/q}$ of degree $n/p$

and $n/q$ respectively. This terminology is due to Kulikov, [K2]. Torus
curves have been studied by many authors ([Z], [O1] , [K2], [D] , [T]).

In the process of studying Zariski pairs in the moduli of plane
curves of degree 6 with 3 cusps of type $y^{4}-x^{3}=0$ , we have ob-
served that there exist two irreducible components $N_{3,,,1}/PSL(3, C)$ and
$N_{3,,,2}/PSL(3, C)$ which corresponds to torus curves and non-torus curves
respectively (Lemma 25). Their dual curves are sextics with six cusps
and three nodes. Starting from this observation, we study the moduli
space of sextic with 6 cusps and 3 nodes which we denote by $\mathcal{M}$ and
the moduli of their dual curves. It turns out that A4 has a beautiful
symmetry. The “regular part” (=Pl\"ucker curves) of $\mathcal{M}$ is stable by the
dual curve operation and the moduli of 3 $(3,4)$ cuspidal sextics $N_{3}$ is
on the “boundary” of $\mathcal{M}$ in a nice way (Theorem 18). By the dual op-
eration, this moduli is isomorphic to a “singular” stratum $\mathcal{M}_{3}$ of $\mathcal{M}$ ,

which consists of 6 cuspidal 3 nodal sextics with 3 flexes of order 2. The
moduli space $\mathcal{M}$ is a disjoint union of torus curves and non-torus curves.
The generic Alexander polynomial $\triangle c(t)$ of $P^{2}-C$ is determined by
the type of $C$ . Namely if $C$ is a torus curve, $\triangle c(t)=t^{2}-t+1$ and
$\pi_{1}(P^{2}-C)=Z_{2}*Z_{3}$ , while for non-torus curve $C$ , $\triangle c(t)=1$ . Moreover
we show that the dual curve $C^{*}$ is a torus curve if and only if $C$ is $a$

torus curve. This is striking, as it implies also that the topology of the
complement is preserved by the dual operation for a torus curve in $\mathcal{M}$ .
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This paper is composed as follows. In section 2, we study dual curves
and their singularities. We show a simple lemma which enable us to com-
pute the defining polynomials of the dual curves explicitly (Lemma 4)
and then we introduce a stratification, which is called flflex stratifification,
in the local moduli space of a germ of singularity. This stratification
enjoys the following property. The defect of a singularity to the number
of flexes is constant on each stratum and the image of a stratum by the
dual map is again a stratum. Thus the topological structure of the dual
singularity is also constant along a stratum (Theorem 14).

In section 3, we study the moduli space $\mathcal{M}$ and other modu$\underline{1i}$spaces
which appear on the canonical stratification of the “closure” $\mathcal{M}$ of $\mathcal{M}$

(Theorem 18). In section 4, we compute the moduli space of sextics
with 3 $(3,4)$ -cusps. In sections 5 and 6, we compute the fundamental
groups of the complements of 3 $(3,4)$ -cuspidal sextics of torus type and
non-torus type. In section 7, we give a new Zariski triple of plane curves
of degree 12 with 12 $(3,4)$ -cusps, as an application of Theorem 18.

\S 2. Dual curves

In this section, we first recall some basic properties of the dual
curves. For general references, refer to [W1], [B-K] and [N]. We will
also present several new results on dual curves which will be used in
later sections (Lemma 4, Theorem 14).

Let $C$ be an irreducible plane curve in $P^{2}$ and let $F(X, Y, Z)=0$ be
an irreducible polynomial which defines $C$ and let $f(x, y)=F(x, y, 1)$ .

Here $X$ , $Y$, $Z$ are homogeneous coordinates and $(x, y)$ are affine coordi-
nates given by $x=X/Z$ , $y=Y/Z$ . At a simple point $ P=(\alpha, \beta)\in C\cap$

$C^{2}$ , the tangent line $T_{P}C$ is given by $\frac{\partial f}{\partial x}(\alpha, \beta)(x-\alpha)+\frac{\partial f}{\partial y}(\alpha, \beta)(y-\alpha)=$

$0$ .

Let $P^{*2}$ be the dual projective space with homogeneous coordinates
$U$, $V$, $W$ . The dual curve $C^{*}$ of $C$ is the closure of the image of the
mapping $P\mapsto T_{P}C$ for the regular points $P\in C$ . More explicitly it is
given by $(X, Y, Z)\mapsto(U, V, W)$ where $U=F_{X}$ , $V=F_{Y}$ and $W=F_{Z}$ .

Thus a defining homogeneous polynomial of $C^{*}$ , denoted by $G(U, V, W)$ ,

can be obtained by eliminating $X$ , $Y$, $Z$ from the above equalities and
$F(X, Y, Z)=0$ .

Let $\phi$ : $\tilde{C}\rightarrow C$ be a normalization of $C$ and let $t$ be the (local)

coordinate of $\tilde{C}$ . Let $(x(t), y(t))$ be the affine parameterization of $C$ .

Then the tangent line is given by $y-y(t)=\frac{y’(t)}{x’(t)}(x-x(t))$ . Thus the

dual curve is parameterized in homogeneous coordinates as follows:

(1) $U(t)=y’(t)$ , $V(t)=-x’(t)$ , $W(t)=x’(t)y(t)-x(t)y’(t)$
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Applying (1) to $C^{*}$ again, we see easily that the dual curve operation
enjoys the reciprocity law $C^{**}=C$ and thus $C$ and $C^{*}$ are birationally
equivalent.

2.1. Action of the automorphism

The group $G:=PSL(3, C)$ acts on $P^{2}$ from the right side as: $P^{2}\times$

$G\rightarrow P^{2}$ , $((X, Y, Z), A)\mapsto(X, Y, Z)A$ . Let $A\in G$ and we denote by
$\varphi_{A}$ the automorphism induced by the right multiplication. Then the im-
age $\varphi_{A}(C)$ of the curve is defined by the polynomial $\varphi_{A}^{*}-1F(X, Y, Z)=$

$F((X, Y, Z)A^{-1})$ . Put $C^{A}:=\varphi_{A}(C)$ . The following is easy to be proved.

Lemma 2. We have $(C^{A})^{*}=(C^{*})^{{}^{t}A^{-1}}$ Thus if $C^{*}$ is defifined by
$G(U, V, W)=0$ , $(C^{A})^{*}$ is defifined by $\varphi_{{}^{t}A}^{*}G(U, V, W)=G((U, V, W)^{t}A)$ .
In particular, if $C^{*}$ is a torus curve, $(C^{A})^{*}$ is a torus curve for any
$A\in PSL(3, C)$ .

2.2. Class formula

Assume that $C$ is an irreducible curve of degree $n$ with $k$ singularities
$P_{i}$ for $i=1$ , $\ldots$ , $k$ . Let $m_{i}$ be the multiplicity, let $\mu_{i}$ be the Milnor
number and let $r_{i}$ be the number of irreducible components of $C$ at $P_{i}$

respectively and let $g$ be the genus of the normalization $\tilde{C}$ . The degree
$n^{*}$ of the dual curve is called the class number of $C$ and $n^{*}$ is given by
the formula:

(3) $n^{*}=2(g-1+n)-\sum_{i=1}^{k}(m_{i}-r_{i})=n(n-1)-\sum_{i=1}^{k}(\mu_{i}+m_{i}-1)$

The second equality follows from the (modified) Pl\"ucker formula:
$2-2g=3n-n^{2}+\sum_{i=1}^{k}(\mu_{i}+r_{i}-1)$ .

2.3. Defining polynomial of the dual curve.

Let $F(X, Y, Z)$ , $f(x, y)$ and $C$ be as before. Let $G(U, V, W)$ be
the defining homogeneous polynomial of $C^{*}$ and let $g(u, v)$ be the affine
equation, given by $g(u, v)=G(u, v, 1)$ . $G$ is given by eliminating $X$ , $Y$, $Z$

from $F(X, Y, Z)$ and $F_{X}-U$ , $F_{Y}-V$, $F_{Z}-W$ . However this elimina-
tion involves a tremendous computation. We prefer the following simple

formula.

Lemma 4. Assume that the line $Z=0$ cuts $C$ transversely. Let
$P_{i}=(\alpha_{i}, \beta_{i})$ , $i=1$ , $\ldots$ , $k$ be the singular points of $C$ and let $\mu_{i}$ be
the Milnor number and let $m_{i}$ be the multiplicity of $C$ at $P_{i}$ . Put
$f_{1}(x_{1},p, y_{1}):=f(x_{1}-py_{1}, y_{1})$ and let $h(x_{1},p):=\triangle_{y_{1}}(f_{1})$ be the dis-
criminant polynomial of $f_{1}$ with respect to $y_{1}$ . Then $h(x_{1},p)$ is a poly-
nomial of degree $n(n-1)$ . Put $\tilde{g}(u, v)=h(-1/u, v/u)u^{n(n-1)}$ . Then
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$\tilde{g}(u, v)$ can be written as $\tilde{g}(u, v)=g(u, v)L(u, v)$ where $L$ is given by
$L(u, v)=\prod_{i=1}^{k}(\alpha_{i}u+\beta_{i}v+1)^{\mu_{i}+m_{i}-1}$ and the polynomial $g(u, v)$ is
a defifining polynomial of the dual curve in the affine coordinates $u=$

$U/W$, $v=V/W$ .

Remark 1. This formula also holds without the genericity as-
sumption of the line at infifinity with a slight modifification $\tilde{g}(u, v)=$

$h(-1/u, v/u)u^{deg(h)}$ . The defifining polynomial $g(u, v)$ is obtained by th-
rowing away all the multiple factors from $\tilde{g}(u, v)$ . Therefore for the
determination of $g$ , we only need an elimination of one variable. Thus
the computation is very easy.

Proof. Let $f^{*}(u, v)$ be the defining polynomial of the dual curve.
Consider $p$ as a fixed constant. (We consider $p$ as a variable later.) First
observe that $h(a,p)=0$ with $a\neq-(\alpha_{i}+p\beta_{i})$ , $i=1$ , $\ldots$ , $k$ , if and only if
$x+py-a=0$ is tangent to $C$ . Thus $(-1/a, -p/a)\in C^{*}$ when $h(a,p)=$

$0$ . Thus $g(u, v)=0$ defines $C^{*}$ as a set. By a standard argument of
discriminant, $deg_{x_{1}}h(x_{1},p)=n(n-1)$ and the solutions of $h(x_{1},p)=0$

in $x_{1}$ are all simple except $x_{1}=\alpha_{i}+\beta_{i}p$ , while the contribution from the
singular point $P_{i}$ is given by $(x_{1}-(\alpha_{i}+\beta_{i}p))^{t^{y_{t}}}$ where $l\nearrow i$ is the intersection
multiplicity of $C$ and $\frac{\partial f1}{\partial y_{1}}=0$ at $P_{i}$ , considering $p$ as a constant (see for

example, [O5] $)$ . Furthermore we have the equality: $\iota/_{i}=\mu_{i}+m_{i}-1$

by [Le] for a generic $p$ . We need to show $degh(x_{1},p)=n(n-1)$ as a
polynomial of two variables $x_{1},p$ .

Step 1. Assume that $C$ is a smooth curve. Then it is well-known that
$f^{*}(u, v)$ is an irreducible polynomial of degree $n(n-1)$ . Let $h^{*}(x_{1},p):=$

$f^{*}(-1/x_{1}, -p/x_{1})x_{1}^{n(n-1)}$ . Then $h^{*}$ is also an irreducible polynomial
of degree $n(n-1)$ and by the above consideration, $h^{*}(x_{1},p)$ divides
$h(x_{1},p)$ . So we conclude that $h(x_{1},p)=h^{*}(x_{1},p)$ up to a multiplication
of a constant.
Step 2. Our case. Let $f_{t}(x, y)=f(x, y)-t$ . Then for $t\neq 0$ , sufficiently
small, $C_{t}:=\{f_{t}(x, y)=0\}$ is a smooth curve of degree $n$ . Let $h_{t}(x_{1},p)$

be the discriminant polynomial of $f_{t}(x_{1}-py, y)$ in $y$ . Then $h_{t}(x_{1},p)$ has
degree $n(n-1)$ as a polynomial of $x_{1},p$ . Thus as $h_{0}=h$ , $degh(x_{1},p)\leq$

$n(n-1)$ . As we have already seen that $deg_{x_{1}}h(x_{1},p)=n(n-1)$ , we
conclude that $degh(x_{1},p)=n(n-1)$ . Q.E.D.

2.4. Flex points

Let $C$ be an irreducible plane curve of degree $n$ defined by a homoge-
neous polynomial $F(X, Y, Z)=0$ and put $f(x, y)=F(x, y, 1)$ as before.
A regular point $P\in C$ is called a flflex of order $r$ if the intersection mul-
tiplicity $I(C, T_{P}C;P)$ of $C$ and the tangent line $T_{P}C$ at $P$ is $r+2$ . We
simply say a flex in the sense of a flex of order 1. It is well-known that
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flex points are defined by $H(X, Y, Z)=0$ on $C$ where $H(X, Y, Z)$ is the
Hessian of $F$ which is a homogeneous polynomial of degree $3(n-2)$ .

Using the Euler equality $nF=XF_{X}+YF_{Y}+ZFz$ , we can easily ob-
tain $Z^{2}H\equiv-(n-1)^{2}(F_{X,,,X}F_{Y}^{2}-2F_{X,,,Y}F_{Y}F_{X}+F_{Y,Y},F_{X}^{2})$ modulo (F).
We consider the polynomial $\mathcal{F}(f):=f_{x,,,x}f_{y}^{2}-2f_{x,,,y}f_{y}f_{x}+f_{y,y}f_{x}^{2}$ (see
also \S 5, [O5] $)$ and let $J$ be the plane curve defined by $\mathcal{F}(f)(x, y)=0$ .

Note that $deg\mathcal{F}(f)=3n-4$ . We define the flflex defect at $P$ of $C$ by
the intersection multiplicity $I(C, H;P)$ of $C$ and $H$ at $P$ and we denote
this integer by $\delta(P;f)$ or $\delta(P;C)$ . By the above equality, the flex defect
$\delta(P;f)$ is equal to the intersection number $I(C, J;P)$ for $P\in C\cap C^{2}$ .

Let $P_{1}$ , $\ldots$ , $P_{k}$ be the singular points of $C$ . Thus we have

Proposition 5. The number of flflexes $i(C)$ , counted with the mul-

tiplicity, is given by $3(n-2)n-\sum_{i=1}^{k}\delta(P_{i;}C)$ .

Remark 2. $T/ie$ multiplicity of a flex point is counted by the flex
defect, which turns out to be equal with the order by Corollary 9.

2.5. Flex defect formula and flex stratification

Let $\sigma$ be an equivalence class of an isolated plane curve singularity
germ. Here two germs $(C, O)$ and $(C’, O)$ at the origin are equivalent if
they are joined by an equisingular family (i.e., $\mu$-constant family). We
define the generic flflex defect of $\sigma$ by $\min\{\delta(f;O);f\in\sigma\}$ and we denote
the generic flex defect by $\overline{\delta}(\sigma)$ . Let $f(x, y)$ be a polynomial and let $C(f)$

be the plane curve $\{f(x, y)=0\}$ . We say that $f(x, y)$ or $C(f)$ is generic
(at $O$ ) in $\sigma$ if $(C(f), O)\in\sigma$ and $\delta(O;f)=\overline{\delta}(\sigma)$ .

Let $\prime p$ $=\{(m_{1}, n_{1}), \ldots, (m_{\ell}, n_{\ell})\}$ be a given set of Puiseux pairs
and let $\sigma(P)$ be the equivalent class of the irreducible curve singular-
ity having $\prime\rho$ as Puiseux pairs. Assume that $(C, O)\in\sigma(P)$ is defined
by $f(x, y)=0$ and $y=0$ is the tangential direction. Then $y$ can be
expanded in a Puiseux series as $y=\varphi(x^{1/N})$ ,

(6) $\varphi(x^{1/N})=\sum_{i=s}^{k_{0}}a_{i}x^{i}+h_{1}(x^{1/N_{1}})+\cdots+h_{\ell}(x^{1/N_{\ell}})$ ,

$N_{j}:=n_{1}\cdots n_{j}$ , $N=N_{\ell}$

where $h_{j}(x^{1/N_{j}})=c_{j}x^{m_{j}/N_{j}}+\sum_{m_{j}<k<m_{j+1}/n_{j+1}}c_{j,k}x^{k/N_{j}}$ and $c_{1}$ , $c_{2}$ ,

$\ldots$ , $c_{\ell}\neq 0$ , $k_{0}:=[m_{1}/n_{1}]$ , $gcd(n_{i}, m_{i})=1$ and $m_{i}>m_{i-1}n_{i}$ . Note that
$a_{1}=0$ by the assumption on the tangent direction. Let $S$ $=\{j;a_{i}\neq$

$0,j\geq 2\}$ . We call the order $s$ of $\varphi(x)$ in $x$ the Puiseux order of $f$ and we
denote it by Puiseux $ord(/)$ . Note that $sN=I(C, y=0;O)$ where $y=0$

is the tangential direction. Thus the Puiseux order does not depend on
the choice of linear coordinates.
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Let $s=Puiseux$ order(/). By the definition, $s=\min\{j\in S\}$ if
$ S\neq\emptyset$ and $s=m_{1}/n_{1}$ if $ S=\emptyset$ . As a function of $x$ , $\varphi$ is well-defined in

the region, say $-\pi\leq\arg(x)<\pi$ , when a branch $x^{1/N}$ is fixed. We fix
a branch of $x^{1/N}$ hereafter. We consider the canonical stratification of
$\sigma(P)$ given by $\{\sigma(P;2)\ldots, \sigma(P;[m_{1}/n_{1}]), \sigma(P;m_{1}/n_{1})\}$ where

$\sigma(P;s)=$ { $(C(f),$ $O)\in\sigma(P)$ ; Puiseux order(f) $=s$ }.

We call this stratification the flflex stratifification of $\sigma(P)$ .

Theorem 7. Assume that $f(x, y)\in\sigma(P;s)$ . Then we Aave

(8) $\delta(O;f)=(s-2)n_{1}\cdots n_{\ell}+\sum_{j=1}^{\ell}3(n_{j}-1)m_{j}(n_{j+1}\cdots n_{\ell})^{2}$

and $f$ is generic if and only if $s\leq 2$ , namely if either $s=2$ or $m_{1}/n_{1}\leq 2$

and $s=m_{1}/n_{1}$ .

The formula (8) seems to be equivalent to Satz 2, p. 780, [B-K].

Proof. Put $\omega=\exp(2\pi\sqrt{-1}/N)$ and consider functions of $x^{1/N}$

defined by $\varphi_{j}(x^{1/N}):=\varphi(x^{1/N}\omega^{j})$ for $j=0$ , $\ldots$ , $N-1$ . Note $\varphi_{0}=\varphi$ .

The defining function $f(x, y)$ is given by the product $f(x, y)=Ug$ where
$U$ is a unit and $g(x, y)=(y-\varphi_{0}(x^{1/N}))\cdots(y-\varphi_{N-1}(x^{1/N}))$ . The
intersection number $I(C, J;O)$ is given as $va1_{t}\mathcal{F}(f)(x(t), y(t))$ , using the
parameterization $x^{1/N}=t$ (so $x(t)=t^{N}$ ) and $y(t)=\varphi_{0}(t)$ . First it is
easy to show:

Assertion 1. $\mathcal{F}(f)(x(t), y(t))=U^{3}\mathcal{F}(g)(x(t), y(t))$ and $vah(\mathcal{F}(f)$

$(x(t), y(t)))$ is equal to $vah(\mathcal{F}(g)(x(t), y(t)))$ .

Composing the parameterization mapping $t\mapsto\psi(t):=(x(t), y(t))$ ,

we have:

$g_{x,,,x}g_{y}^{2}(\psi(t))=(2\sum_{j=1}^{N-1}\mathring{\frac{\partial\varphi}{\partial x}}\frac{\partial\varphi_{j}}{\partial x}\prod_{k\neq 0,j}(\varphi_{0}-\varphi_{k})$

$-\mathring{\frac{\partial^{2}\varphi}{\partial x^{2}}}\prod_{j=1}^{N-1}(\varphi_{0}-\varphi_{j}))\times(\prod_{j=1}^{N-1}(\varphi_{0}-\varphi_{j}))^{2}(\psi(t))$

$-2g_{x,,,y}g_{x}g_{y}(\psi(t))=2(\sum_{j=1}^{N-1}\mathring{\frac{\partial\varphi}{\partial x}}\prod_{k\neq 0,j}(\varphi_{0}-\varphi_{k})$

$+\sum_{j=1}^{N-1}\frac{\partial\varphi_{j}}{\partial x}\prod_{k\neq 0,j}(\varphi_{0}-\varphi_{k}))\times(-\mathring{\frac{\partial\varphi}{\partial x}})(\prod_{j=1}^{N-1}(\varphi_{0}-\varphi_{j}))^{2}(\psi(t))$

$g_{y,y}g_{x}^{2}=(2\sum_{j=1}^{N-1}\prod_{k\neq 0,j}(\varphi_{0}-\varphi_{k}))(\mathring{\frac{\partial\varphi}{\partial x}})^{2}(\prod_{j=1}^{N-1}(\varphi_{0}-\varphi_{j}))^{2}(\psi(t))$

Thus by an easy computation we get $\mathcal{F}(f)(x(t), y(t))=-U^{3}(\psi(t))\mathring{\frac{\partial^{2}\varphi}{\partial x^{2}}}$

$(x(t))\prod_{i=1}^{N-1}(\varphi_{0}(x(t))-\varphi_{i}(x(t))^{3}$ . As the number of $\{0<k<N;k\equiv$

$0(N_{j-1})\}$ is $ n_{j}\cdots$ $n\ell-1$ , the assertion follows from the equalities $va1_{t}\mathring{\frac{\partial^{2}\varphi}{\partial x^{2}}}$
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$(x(t))=(s-2)N$ and $va1_{t}(\varphi_{0}-\varphi_{k})(x(t))=m_{j}N/N_{j}$ , if $k\equiv 0(N_{j-1})$

and $k\not\equiv 0(N_{j})$ . Q.E.D.

Corollary 9. For flflex point $P$ of order $k$ , we have $\ell=0$ and
$s=k+2$ . Thus $\delta(P;f)=k$ .

We can generalize Theorem 7 to reducible singularities. To avoid
the complexity of notations, we do this only for the class of singularity
which is equivalent to the Brieskorn singularity $B_{p,q}$ : $y^{p}-x^{q}=0$ with
$2\leq p\leq q$ at the origin. We denote this equivalence class by $\beta_{p,q}$ . Put
$r=gcd(p, q)$ and write $p=rn_{1}$ and $q=rm_{1}$ . Then each irreducible
component has the unique Puiseux pair $\{(m_{1}, n_{1})\}$ . Take a function
germ $f(x, y)$ which defines such a singularity at the origin. As the reso-
lution complexity of a Brieskorn singularity is one ( [L-O]), after a linear
change of coordinates, we may assume that $f(x, y)=f_{1}(x, y)\cdots f_{r}(x, y)$

where $f_{j}(x, y)=(y-\sum_{2\leq i<[q/p]}a_{i}x^{i})^{n_{1}}+c_{j,m_{1}}x^{m_{1}}+$ (higher terms)

where $a_{i}$ , $2\leq i<[q/p]$ , are independent of $j$ and $c_{1,,,m_{1}}$ , $\ldots$ , $c_{r,m_{1}}$ are
mutually distinct non-zero complex numbers. In particular, the Puiseux
orders of $f_{j},j=1$ , $\ldots$ , $r$ , are the same. Let $\sigma(\beta_{p,q}; s)$ be the set of
$f\in\beta_{p,q}$ whose irreducible components have the Puiseux order $s$ .

Theorem 10. Assume that $p<q$ and $f\in\sigma(\beta_{p,q}; s)$ . Then the

flflex defect and the generic flflex defect are given as follows.

$\delta(O;f)=3pq-3q+(s-2)p$ , $\overline{\delta}(\beta_{p,q})=\{$

$3pq-3q$ , $q>2p$

$3pq-2(p+q)$ , $q\leq 2p$

Proof. Let $y=\varphi_{j}(x^{1/n_{1}})$ be the Puiseux expansion of $y$ in $x$

for $f_{j}(x, y)=0$ . By the assumption, it is written as $\varphi_{j}(x^{1/n_{1}})=$

$\sum_{s\leq i<[q/p]}a_{i}x^{i}+\sum_{k=m_{1}}^{\infty}c_{j,k}x^{k/n_{1}}$ where $(c_{1,,,m_{1}})^{n_{1}}$ , $\ldots$ , $(c_{r,,,m_{1}})^{n_{1}}$ are mu-

tually distinct complex numbers. Let us consider $\varphi_{j,k}(x^{1/n_{1}})=\varphi_{j}$

$(x^{1/n_{1}}\omega^{k})$ with $\omega=\exp(2\pi\sqrt{-1}/n_{1})$ . Then $f_{j}(x, y)$ is given by the
product $(y-\varphi_{j,0})\cdots(y-\varphi_{j,n_{1}-1})$ . Denote the $i$-th branch $f_{i}(x, y)=0$

by $C_{i}$ . To compute the intersection number $I(C_{1}, J;O)$ , we consider
the parameterization $x(t)=t^{n_{1}}$ and $y(t)=\varphi_{1}(t)$ . Then by the same
computation as in the proof of Theorem 7, we obtain $\mathcal{F}(f)(x(t), y(t))=$

$-\mathring{\frac{\partial^{2}\varphi_{1}}{\partial x^{2}’}}(x(t), y(t))\prod_{(i,k)\neq(1,0)}(\varphi_{1,,,0}-\varphi_{i,,,k})(x(t))^{3}$ . Therefore we obtain

the formula

(11) $I(C_{1}, J;O)$

$=va1_{t}(\mathcal{F}(f)(x(t), y(t)))=3rn_{1}m_{1}-3m_{1}+(s-2)n_{1}$
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The other intersection numbers $I(C_{j}, J;O),j=2$ , $\ldots$ , $r$ , are the same.
Thus as $\delta(O;C)$ is the sum $I(C_{1}, J;O)+\cdots+I(C_{r}, J;O)$ , the assertion
follows immediately. Q.E.D.

Now we consider the case $p=q$ . Then $r=p$ and we may assume that
$f_{j}(x, y)=y-\sum_{k=1}^{\infty}c_{j,k}x^{k}$ where $\{c_{1,,,1}, \ldots, c_{p,1}\}$ are mutually distinct
complex numbers. Put $S_{i}=\{j;j\geq 2, c_{i,,,j}\neq 0\}$ . We assume that $ S_{i}\neq\emptyset$

for each $i=1$ , $\ldots,p$ . (Otherwise, $C$ contains a line and it is contained
in $J.$ ) Put $s_{i}$ be the minimum of $S_{i}$ . Unlike the previous cases, $\delta(O;f)$

is not bounded.

Corollary 12. Assume that $(C, O)\in\beta_{p,p+1}$ , $i.e.$ , a cusp singular-
ity of type $(p,p+1)$ at the origin. Then $\delta(O;C)=\overline{\delta}(\beta_{p,p+1})=3p^{2}-p-2$ .
For $A_{2p-1}=\beta_{2,,,2p}$ , we have $\overline{\delta}(A_{2p-1})=6p$ for $p=1,2$ and $8p-4$ for
$p\geq 3$ .

By a similar computation, we have

Theorem 13. The flflex defect of the singularity $(C(f), O)\in\beta_{p,p}$

is given by $\delta(O;f)=3p^{2}-3p+\sum_{i=1}^{p}(s_{i}-2)$ and $\overline{\delta}(\beta_{p,p})=3p-23p$ .

Let $\sigma_{i}$ , $i=1$ , $\ldots$ , $k$ , be equivalence classes of plane curve singularity
and let $\Sigma=\{\sigma_{1}, \ldots, \sigma_{k}\}$ . Consider the set of plane curves $\mathcal{M}(n;\Sigma)$ of
degree $n$ with $k$ singularities which are equivalent to $\sigma_{i}$ , $i=1$ , $\ldots$ , $k$ .

Take a curve $C\in \mathcal{M}(n;\Sigma)$ and let $P_{1}$ , $\ldots$ , $P_{k}$ be the singular points of
C. $C$ is called generic in $\mathcal{M}(n;\Sigma)$ if the following conditions $(1),(2),(3)$

are satisfied.
(1) $(C, P_{i})$ is a generic in $\sigma_{i}$ and the tangent lines at $P_{i}$ intersect $C$

transversely except at $P_{i}$ . (2) The flexes are of order one. (3) The
multi-tangent lines are ordinary $bi$-tangent lines.

A Pl\"ucker curve is a generic curve in the case that $\Sigma$ contains only
nodes or cusps. The set of generic curves is an open subset of $\mathcal{M}(n;\Sigma)$

but it might be empty. See Example 17.

2.6. Dual singularity

Let $P\in C$ and $P^{*}$ be the corresponding point of $C^{*}$ . As is well-
known, $P$ is a $(k-1, k)$-cusp if and only if $P^{*}$ is a flex of order $k-2$ . If
$P$ is a generic node, $P^{*}$ consists of two tangent points with a $bi$ tangent
line. We study the correspondence for other singularities. Take a point
$O\in C$ and let $C_{1}$ , $\ldots$ , $C_{k}$ be the local irreducible components at $O$ and
let $\ell_{1}$ , $\ldots$ , $\ell_{r}$ be the corresponding tangent line at $O$ . Then the dual
image $C_{i}^{*}$ of $C_{i}$ passes through $\ell_{i}\in P^{*2}$ for $i=1$ , $\ldots$ , $k$ . In the case of
$C$ being irreducible at $O$ , we simply denote $\ell_{1}$ by $O^{*}$ . We call the germ
$(C_{i}^{*}, \ell_{i})$ the dual singularity of the germ of $(C_{i}, O)$ .

(1) Irreducible case. Let $P$ $=\{(m_{1}, n_{1}), \ldots, (m_{\ell}, n_{\ell})\}$ and let $N_{j}=$

$n_{1}\cdots n_{j}(N=N_{\ell})$ and assume that $(C, O)\in\sigma(P;s)$ is an irreducible
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germ at $O$ defined by $f(x, y)=0$ whose Puiseux series is given by
$\varphi(x^{1/N})=\sum_{i\mathring{\geq}2}^{k}c_{0,,,i}x^{i}+h_{1}(x^{1/N_{1}})+\cdots+h_{\ell}(x^{1/N_{\ell}})$ where $k_{0}<m_{1}/n_{1}$

and $h_{j}(x^{1/N}’)=\sum_{m_{j}\leq k<m_{j+}1/n;+1}c_{j,k}x^{k/N_{j}}$ , $c_{1,,,m_{1}}$ , $c_{2,,,m_{2}}$ , $\ldots$ , $c_{\ell,,,m\ell}\neq 0$ .

Let $s$ be the Puiseux order. Let $S=\{j;c_{i,0}\neq 0,j\geq 2\}$ . The dual
singularity is described by the following. The case $\ell=0$ with $s\geq 3$ (a

flex of order $s-2$ ) is also contained in the argument.

Theorem 14. (Local Duality) Let $\sigma(P;s)^{*}:=\{(C^{*}, O^{*});(C, O)$

$\in\sigma(P;s)\}$ . Then the dual operation gives a well-defifined mapping on the
set of the strata of the flflex stratifification. More precisely,

(1) Assume that $ S\neq\emptyset$ . Then $\sigma(P;2)^{*}=\sigma(P, 2)$ and $\sigma(P;s)^{*}=$

$\sigma(P^{+}; \frac{s}{s-1})$ if $s>2$ where $p+:=\{(s, s-1), (m_{1}, n_{1}), \ldots, (m\ell, n\ell)\}$ . The

fifirst equality says that the dual $map*gives$ an involution on $\sigma(P;2)$ .
(2) Assume that $ S=\emptyset$ . Then $s=m_{1}/n_{1}$ and $\sigma(P;\frac{m_{1}}{n_{1}})^{*}=\sigma(P^{*};$

$\frac{m_{1}}{m_{1}-n_{1}})$ , if $m_{1}-n_{1}>1$ and $\sigma(P;\frac{m_{1}}{n_{1}})^{*}=\sigma(p- ; m_{1})$ , if $m_{1}=n_{1}+1$ ,

where $P^{*}:=\{(m_{1}, m_{1}-n_{1}), (m_{2}, n_{2}), \ldots, (m\ell, n\ell)\}$ and $P^{-}:=\{(m_{2}, n_{2})$ ,

$\ldots$ , $(m_{\ell}, n\ell)\}$ .

There is a related result by Wall [W2]. The cases $\ell=0$ , $s\geq 3$ or
$\ell=1$ and $m_{1}=n_{1}+1$ are special cases of (1) and (2) respectively. It
follows from (2) that a cusp of type $(k, k+1)$ and a flex of order $k-1$

corresponds each other by the dual operation.

Proof. Put $N_{j}=n_{1}\cdots n_{j}$ , $ N^{(j)}=n_{j}\cdots n\ell$ and $N=N_{\ell}$ . Putting
$x^{1/N}=t$ , we can parameterize $C$ as $x(t)=t^{N}$ and $y(t)=\varphi(t)=\sum_{j}b_{j}t^{j}$

where the coefficients are given by $b_{k}=c_{j,k/N(j+1)}$ , if $m_{j}\leq k/N^{(j+1)}<$

$m_{j+1}/n_{j+1}$ and $ k/N^{(j+1)}\in$ Z. Otherwise $b_{k}=0$ . By (1), we can

parameterize $C^{*}$ as $u(t)=-\sum_{j}\frac{jb_{j}}{N}t^{j-N}$ , $w(t)=\sum_{j}(_{N}\angle-1)b_{j}t^{j}$ where
$(u, w)$ is the affine coordinates defined by $u=U/V$, $w=W/V$ . Note
that $va1_{t}u(t)=(s-1)N$ . We take a change of parameter $\tau$ so that $u(\tau)=$

$\tau^{(s-1)N}$ . Write $t=\tau\sum_{k=0}^{\infty}\lambda(k)\tau^{k}$ . The coefficients $\lambda(0)$ , $\lambda(1)$ , $\lambda(2)$ , $\ldots$

are inductively determined from the equality $u(t(\tau))=\tau^{(s-1)N}$ after
fixing $\lambda(0)$ which satisfies $\lambda(0)^{(s-1)N}=-1/sb_{sN}$ .

Assertion 2. For $p<m_{k}N^{(k+1)}-sN$ , $\lambda(p)=0$ if $p\not\equiv 0$ modulo
$N^{(k)}$ . The fifirst non-trivial coefficient $\lambda(p)$ with $p\not\equiv 0(N^{(k)})$ is $\lambda(m_{k}$

$N^{(k+1)}-sN)$ and it is given by

(15) $\lambda(m_{k}N^{(k+1)}-sN)=-\frac{m_{k}N^{(k+1)}}{s(s-1)N^{2}}\frac{b_{m_{k}N^{(k+1)}}}{b_{sN}}\lambda(0)^{m_{k}N^{(k+1)}-sN+1}$

Proof. Assume that we have shown $\lambda(p)=0$ for $p\not\equiv 0$ modulo $N^{(k)}$

and $p<p’$ for some $p’\leq m_{k}N^{(k+1)}-sN$ . Consider the equality:
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(PC) : $\tau^{(s-1)N}=-\sum_{j\geq sN}\frac{jb_{j}}{N}\tau^{j-N}(\sum_{q}\lambda(q)\tau^{q})^{j-N}$ . We compare the

coefficients of $\tau^{p’+sN-N}$ . Assume first that $p’\not\equiv 0(N^{(k)})$ and $p’<$

$m_{k}N^{(k+1)}-sN$ . Then the term $\tau^{p’+sN-N}$ in the right side comes only
from the first term $(j=sN)$ of the summation and the coefficient is
$-s(s-1)Nb_{sN}\lambda(0)^{sN-N-1}\lambda(p’)$ . Thus $\lambda(p’)=0$ . By an induction, we
get $\lambda(p)=0$ for $p<m_{k}N^{(k+1)}-sN$ with $p\not\equiv 0$ modulo $N^{(k)}$ .

Now we consider the cffie $p’=m_{k}N^{(k+1)}-sN$. The term $\tau^{m_{k}N^{(k+1)}-N}$

in the right side summation comes from $j=sN$ and $j=m_{k}N^{(k+1)}$ .

Comparing the coefficient of $\tau^{m_{k}N^{(k+1)}-N}$ in (PC), we have

$-s(s-1)Nb_{sN}\lambda(0)^{sN-N-1}\lambda(m_{k}N^{(k+1)}-sN)$

$-\frac{m_{k}N^{(k+1)}}{N}b_{m_{k}N^{(k+1)}}\lambda(0)^{m_{k}N^{(k+1)}-N}=0$

and the assertion follows from this equality. Q.E.D.
The other coefficients $\lambda(j)$ ’s are complicated but they are not im-

portant. To determine the Puiseux pairs of the dual curve, we write
$w(\tau)=\sum_{j}d(j)\tau^{j}$ . Then by a similar argument,

Assertion 3. (1) The coefficient $d(j)$ vanishes for any $j<sN$
and $d(sN)=(s-1)b_{sN}\lambda(0)^{sN}$ .
(2) The coefficient $d(j)$ for $j\not\equiv 0(N^{(k)})$ vanishes for $j<m_{k}N^{(k+1)}$ and
the fifirst non-vanishing coefficient $d(j)$ with $j\not\equiv 0(N^{(k)})$ is $d(m_{k}N^{(k+1)})$ ,

which is given by $d(m_{k}N^{(k+1)})=-b_{m_{k}N^{(k+1)}}\lambda(0)^{m_{k}N^{(k+1)}}$

Proof. As $w(t)=\sum_{j}(\frac{j}{N}-1)b_{j}t^{j}$ , the first assertion of (2) follows
immediately from Assertion 2. The second equality follows from

$d(m_{j}N^{(j+1)})$ $=$ $(\frac{sN}{N}-1)b_{sN}\lambda(0)^{sN-1}sN\lambda(m_{j}N^{(j+1)}-sN)$

$+(\frac{m_{j}N^{(j+1)}}{N}-1)b_{m_{j}N^{(j+1)}}\lambda(0)^{m_{j}N^{(j+1)}}$

$=$ $-b_{m_{j}N^{(j+1)}}\lambda(0)^{m_{j}N^{(j+1)}}$ Q.E.D.

Assume that $S$ $\neq\emptyset$ . Assume first that $s=2$ . Then $u=\tau^{N}$ and
$(C^{*}, O^{*})\in\sigma(P;2)$ . If $s>2$ , $u(\tau)=\tau^{(s-1)N}$ and the assertion follows

from $\frac{m_{j}N^{(j+1)}}{(s-1)N}=\frac{m_{j}}{(s-1)n_{1}n_{j}}\cdots$ . Assume that $S$ $=\emptyset$ and $s=m_{1}/n_{1}$ . Then

$u(\tau)=\tau^{(m_{1}-n_{1})N^{(2)}}$ and $gcd(m_{1}-n_{1}, n_{1})=1$ . Thus the assertion
follows. This completes the proof.
(2) Reducible case. A similar assertion can be proved for reducible
curve germs. We do this for Brieskorn singularities. Let us consider a
germ of a Brieskorn singularity $(C, O)\in\beta_{p,q}$ defined by a polynomial
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$f(x, y)$ with the tangential direction $y=0$ . Let $r=gcd(p, q)$ and write
$p=rn_{1}$ and $q=rm_{1}$ . Let $f=f_{1}\cdots f_{r}$ be the factorization and let $C_{j}$

be the irreducible component of $C$ defined by $f_{j}(x, y)=0$ . Recall that
the Puiseux expansions of $f_{j}(x, y)$ in $x$ for $i=1$ , $\ldots$ , $r$ are the same up
to the term $x^{m_{1}/n_{1}}$ .

Theorem 16. (Local Duality-bis) Assume that $p<q$ and $(C, O)$

$\in\sigma(\beta_{p,q}; s)$ . Then $s=q/p$ and $(C^{*}, O^{*})\in\sigma(\beta_{q-p,q}; \frac{q}{q-p})$ if $q\leq 2p$ . If
$2p<q$ and $s=2$ , then $(C^{*}, O^{*})\in\sigma(\beta_{p,q} ; 2)$ . If $2p<q$ and $s>2$ ,
$(C^{*}, O^{*})=\bigcup_{i=1}^{r}(C_{i}^{*}, O^{*})$ and $(C_{i}^{*}, O^{*})\in\sigma(P^{+}; \frac{s}{s-1})$ with $p+=\{(s,$ $s-$

$1)$ , $(m_{1}, n_{1})\}$ . The Puiseux expansions of $C_{i}^{*}$ in $u^{1/(s-1)n_{1}}$ , $i=1$ , $\ldots$ , $r$

coincide up to the term $u^{m_{1}/(s-1)n_{1}}$ .

Proof Assume first that $m_{1}>2n_{1}$ . Then $C_{j}$ is defined by a poly-

nomial $f_{j}(x, y)$ of the form $f_{j}(x, y)=(y-\sum_{i=s}^{k_{o}}a_{i}x^{i})^{n_{1}}-c_{j}^{n_{1}}x^{m_{1}}+$

(higher terms) where $k_{0}=[m_{1}/n_{1}]$ , $a_{s}\neq 0$ and $s\geq 2$ . Here $a_{s}$ , $\ldots$ , $a_{k_{0}}$

are independent of $j$ . In the proof of Theorem 14, we have shown
that $(C_{j}^{*}, O^{*})\in\sigma(P^{+}; \frac{s}{s-1})$ with $p+=\{(s, s-1), (m_{1}, n_{1})\}$ and $C_{j}^{*}$

is parameterized as $u(t)=\tau^{(s-1)n_{1}}$ and $w(t)=\sum_{s\leq i<m_{1}/n_{1}}d(i)\tau^{in_{1}}+$

$\sum_{i=m_{1}}^{\infty}d(j, i)\tau^{i}$ . Thus the assertion follows from the observation $ d(s)\neq$

$0$ and $d(s)$ , $\ldots$ , $d(k_{0})$ are independent of $j$ and $d(j, m_{1})=c_{j}\times\lambda(0)^{m_{1}}$ . In
particular, this implies that if $s=2$ , $(C_{j}^{*}, O^{*})\in\sigma(\beta_{m_{1},n_{1}} ; 2)$ and $C_{j}^{*}$ is

defined by a polynomial of the type $g_{j}(u, w)=(w-\sum_{2\leq i<m_{1}/n_{1}}d(i)u^{i})^{n_{1}}$

$-d(j, m_{1})^{n_{1}}\omega^{A}u^{m_{1}}+$ (higher terms) where $\omega=\exp(2\pi\sqrt{-1}/n_{1})$ and
$A=n_{1}(n_{1}-1)m_{1}/2$ . Thus the assertion follows immediately. The case
$m_{1}\leq 2n_{1}$ can be treated similarly. Q.E.D.

Example 17. Let us consider a rational curve $C=\{f(x, y)=0\}$

of degree 6 where $f(x, y)=(x^{2}+y^{3})^{23}-4yx^{3}$ . In the affine coordinate
$(u, v)=(Z/X, Y/X)$ , $C$ is defifined by $(u+v^{3})^{2}-4v^{3}=0$ . Thus $C$ is $a$

Jung transform of the rational curve $u^{2}-4v^{3}=0$ (See Example $(6. \theta)$ ,

[O4] $)$ . $C$ has two singularities. One $(2, 3)$ cusp at $P:=(1,0,0)$ and one
irreducible singularity of Puiseux pairs $\{(3,2), (9, 2)\}$ at $Q:=(0,0,1)$ .
By Theorem 7, the flflex defect at $Q$ is 61 and the Milnor number is 18.
Thus the dual curve should have three cusps and 3 nodes if $C$ is generic
in the moduli. The dual curve is given by $C^{*}=\{g(x, y)=0\}$ where
$g(x, y)=16y^{6}+27y^{3}+540y^{3}x-216y^{3}x^{2}+729x+2187x^{2}+2187x^{3}+729x^{4}$ .
Thus $C^{*}$ is a rational curve of degree 6 and it has three cusps and one
singularity at $Q^{*}:=(1,0,0)$ of Milnor number 8 which is in the moduli
$\sigma(\{(9,2)\};3)$ by Theorem 14- The discriminant of $g$ in $y$ is given by
$cx^{2}(x+1)^{6}(8x-1)^{9}$ , $c\neq 0$ and $C^{*}$ has a $\beta_{3,,3}$ singularity at (-1, 0, 1).
$C$ is not generic as $C^{*}$ does not have three nodes but a $\beta_{3,,,3}$ . The reason
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is, $C$ has a $tri$-tangent line $x=-1$ . In fact, by computing the moduli
space explicitly, we can show that there does not exist any generic curve
in the moduli of $C$ but every member has a $tri$-tangent line.

\S 3. Moduli of certain sextics and their dual

In this section, we consider various moduli spaces of sextics. Unless
otherwise stated, $n$ , $n^{*},g$ are the degree, the class number and the genus
of the curve in discussion respectively.

3.1. Moduli space $\mathcal{M}$ $:=\mathcal{M}(6;\Sigma)$ .
Let $\Sigma=\{3\beta_{2,,,2},6\beta_{2,,,3}\}$ and consider the moduli space $\mathcal{M}$ $:=\mathcal{M}(6;\Sigma)$

of sextics with 6 cusps and 3 nodes. Let us denote the subset of $\mathcal{M}$ whose
curves are generic (i.e., Pl\"ucker) by $\mathcal{M}’$ . It is easy to see that $g(C)=1$

for any $C\in \mathcal{M}$ by the modified Pl\"ucker formula. By the class formula
(3), the dual curves $C^{*}$ has degree 6. By Theorem 10 and Proposition
5, the dual curve $C^{*}$ has also 6 cusps for $C\in \mathcal{M}’$ . As $g(C^{*})=1$ , they
have 3 nodes. Thus we have the self-duality: $\mathcal{M}’*=\mathcal{M}’$ . However
$\mathcal{M}^{*}\neq \mathcal{M}$ . The reason is that there exists an interesting degeneration in
this moduli as we will see below. First, the number of flexes on $C\in \mathcal{M}$

is 6 counting the multiplicity by Proposition 5. Thus the possible types
of flexes are (0) 6 flexes of order 1, (i) 4 flexes of order 1 and one flex
of order 2, (ii) 2 flexes of order 1 and 2 flexes of order 2, (iii) 3 flexes of
order 2 and (iv) 3 flexes of order 1 and one flex of order 3. There do not
exist other types as the dual curve has genus 1 and the sum of Milnor
numbers of the singular points of $C^{*}$ is less than or equal to 18 by the
modified Pl\"ucker formula. The moduli space with these flex types are
difficult to study directly. So we consider their dual moduli spaces.
(1) Let $\Sigma_{1}=\{2\beta_{2,,,2},4\beta_{2,,,3}, \beta_{3,,,4}\}$ and let $N_{1}:=\mathcal{M}(6;\Sigma_{1})$ . The genus of a
curve in $N_{1}$ is 1 and the class number is 6. Thus we have the inclusion:
$N_{1}’*\subset \mathcal{M}$ . Here we denote by $N_{1}’$ the submoduli of $N_{1}$ which consists
of the generic curves. A curve $C\in N_{1}’*is$ not a Pl\"ucker curve but it
has 4 flexes of order 1 and a flex of order 2. We put $\mathcal{M}_{1}:=N_{1}^{J^{*}}$ By
reciprocity law, $C\in \mathcal{M}$ is in $\mathcal{M}_{1}$ if and only if $C$ has 4 flexes of order
1, one flex of order 2 and two $bi$-tangents.
(2) Let $\Sigma_{2}=\{\beta_{2,,,2},2\beta_{2,,,3},2\beta_{3,4}\}$ and $N_{2}:=\mathcal{M}(6;\Sigma_{2})$ . For $C\in N_{2}$ , the
genus $g(C)=1$ and $n^{*}=6$ . The generic dual $N_{2}’*consists$ of curves $C$

with 6 cusps and 3 nodes and 2 flexes of order 1 and 2 flexes of order 2.
We denote this dual image $N_{2}^{J^{*}}$ by $\mathcal{M}_{2}$ .

(3) Let $\Sigma_{3}=\{3\beta_{3,,,4}\}$ and let $N_{3}:=\mathcal{M}(6;\Sigma_{3})$ . We see that $g(C)=1$ for
any $C\in N_{3}$ and the generic dual $N_{3}’*is$ again 6 cuspidal 3 nodal sextics
with 3 flexes of order 2. The moduli of such curves is denoted by $\mathcal{M}_{3}$ .
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(4) Finally let $\Sigma_{4}=\{\beta_{4,,,5},3\beta_{2,,,3}\}$ and let $N_{4}=\mathcal{M}(6;\Sigma_{4})$ . We see that
$g=1$ , $n^{*}=6$ and the generic dual $N_{3}’*is$ again 6 cuspidal 3 nodal
sextics with 3 ordinary flexes and one flex of order 3. Put $\mathcal{M}_{4}:=N_{4}^{J^{*}}$ .

Let $\mathcal{T}$ be the moduli space of $(2,3)$-torus curves of degree 6 and
of type $(2,3)$ . The respective submoduli of torus type $\mathcal{M}\cap T$ , $\mathcal{M}_{i}\cap \mathcal{T}$

and $N_{i}\cap I$ are denoted simply by $\mathcal{M}_{torus}$ , $\mathcal{M}_{i,,,torus},N_{i,,,torus}$ respectively.
Non-torus moduli are denoted as $\mathcal{M}_{gen}$ , $\mathcal{M}_{i,,,gen},N_{i,gen}$ respectively. The
main result about the structure of the moduli spaces $\mathcal{M}$ is:

Theorem 18. 1. The union $\overline{\mathcal{M}}:=\mathcal{M}’\bigcup_{i=1}^{4}\mathcal{M}_{i}\bigcup_{i=1}^{4}N_{i}’$ is in-
variant by the $dua\underline{l}$operation. Namely the dual operation $C\mapsto C^{*}$ gives

an involution on $\mathcal{M}$ . Furthermore the dual operation $preserves*$ curves

of torus type and non-torus type. Namely $\mathcal{M}_{\alpha}’*=\mathcal{M}_{\alpha}’$ , $N_{i,,,\alpha}’$ $=\mathcal{M}_{i,,,\alpha}$

and $\mathcal{M}_{i,,,\alpha}*=N_{i,,,\alpha}’$ for $i=1$ , $\ldots$ , 4 and $\alpha=torus$ or gen.

2. $(Stratiffication)\mathcal{M}_{torus}=\mathcal{M}_{torus}’\bigcup_{i=1}^{3}\mathcal{M}_{i,torus}$ and $\mathcal{M}_{gen}=\mathcal{M}_{gen}’\bigcup_{i=1}^{4}$

Thus $\mathcal{M}_{4}=\mathcal{M}_{4,,,gen}$ and $N_{4}=N_{4,,,gen}$ .
$\mathcal{M}_{torus}\mathcal{M}_{i,gen},’.$

, $\mathcal{M}_{i,,,torus},N_{i,,,torus}$ , $i=1,2,3$ and $N_{3,,,gen}$

The moduli spaces
are irreducible. For

the moduli of the curves of torus type, we have the adherence relation:

$\overline{\mathcal{M}_{torus}’}\supset\overline{\mathcal{M}_{1,torus}}\supset\overline{\mathcal{M}_{2,torus}}\supset \mathcal{M}_{3}$

, torus ,

$\overline{\mathcal{M}_{torus}’}\supset\overline{N_{1,torus}’}\supset\overline{N_{2,torus}’}\supset N_{3}’$

, torus

3. (Alexander polynomial) For $C\in\overline{\mathcal{M}}_{torus}$ , the Alexander $poly\underline{no}mial$

$\triangle c(t)$ is given by $t^{2}-t+1([Li1],[D])$ . For non-torus curve $C\in \mathcal{M}_{gen}$ ,

it is given by 1.

4 $\cdot$ (Fundamental $\underline{gr}oups$ ) $\pi_{1}(P^{2}-C)\cong Z_{2}*Z_{3}$ or $\pi_{1}(P^{2}-C)\cong Z_{6}$

according to $C\in \mathcal{M}_{torus}$ or $C\in \mathcal{M}_{3,,,gen}$ respectively.

Remark 3. We do no know if the other moduli spaces of non-
torus type are irreducible. If this is the case, the adherence relations and
the commutativity of the fundamental group holds for other non-torus
type sextics $\mathcal{M}_{i,,,gen},N_{i,gen}$ , $i=1,2,3$ . The moduli space $N_{4}$ seems to be
irreducible.

3.2. Alexander polynomial

Let $C$ be an irreducible plane curve of degree $n$ and $L_{\infty}$ be the line
at infinity. We assume that $L_{\infty}$ intersects $C$ transversely. We consider
the Alexander polynomial $\triangle c(t)$ with respect to $L_{\infty}$ and we call it the
generic Alexander polynomial. It has integral coefficients. For the defi-
nition of the Alexander polynomial, we refer to [Li2]. We recall several
basic properties of $\triangle c(t)$ .
(1) $\triangle c(t)$ divides the Alexander polynomial at infinity $(t^{n}-1)^{n-2}(t-1)$
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and also the product of the local Alexander polynomials at singular
points of $C$ ([Li2] and [Lil]).

Let $p$ : $Y\rightarrow P^{2}$ be the embedded resolution of the singularity of
$C\cup L_{\infty}$ . Let $q_{m}$ : $X_{m}\rightarrow P^{2}$ be the $m$-cyclic covering branched along
$C\cup L_{\infty}$ and let $p_{m}$ : $Z_{m}\rightarrow Y$ be the desingularization of the pull-
back of $q_{m}$ by $p$ . Let $\Lambda:=Q[t, t^{-1}]$ . Then $H_{1}$ ( $X_{\infty}$ ; Q) is a $\Lambda$-module
where $t$ acts as the Deck transformation. Thus there are polynomials
$\lambda_{1}(t)$ , $\ldots$ , $\lambda_{k}(t)$ with $\lambda_{i}|\lambda_{i+1}$ , $i=1$ , $\ldots$ , $k-1$ , such that $H_{1}$ ( $X_{\infty}$ ; Q) is

isomorphic to the direct sum $\sum_{i=1}^{k}\Lambda/(\lambda_{i})$ and $\triangle c(t)=\lambda_{1}(t)\cdots\lambda_{k}(t)$ .

(2) The first Betti number $b_{1}(Z_{m})$ of $Z_{m}$ is equal to the sum $\sum_{i=1}^{k}\alpha_{i}$

where $\alpha_{i}$ is the the number of different $m$-th roots of unity in the roots
of $\lambda_{i}(t)=0$ ([Li2]).
(3) $\triangle c(t)$ is a cyclotomic polynomial and $\triangle c(1)=\pm 1$ (see for example,
[R] $)$ .

Consider the case $m=n$ and we write $Z:=Z_{n}$ for simplicity.
Combining these properties, the determination of the Alexander poly-
nomial is reduced to the calculation of the first Betti number of $Z$ , or
equivalently to the calculation of the irregularity of $Z$ .

For the calculation of the irregularity $q(Z)$ , the method by Esnault
([E]) and Artal ([A1]) is convenient. Let us recall it. Let $P_{1}$ , $\ldots$ , $P_{\iota/}$ be
the singular points of $C$ . Let $L^{(k)}$ be the divisor on $Y$ introduced in

[E]. Then $b_{1}(Z)=2q(Z)=2\sum_{k=0}^{n-1}dimH^{1}(Y;\mathcal{O}(L^{(k)}))$ by [E] and
$H^{1}(Y;\mathcal{O}(L^{(k)}))$ can be identified by the cokernel of the natural ho-
momorphism $\sigma_{k-3,k}$ : $H^{0}(P^{2}; _{\mathcal{O}}(k-3))\rightarrow\sum_{P_{i}}\mathcal{O}_{P^{2},,,P_{i}}/I_{P_{i},,,k,n}$ where
$I_{P_{\dot{f}},,,k,n}$ is an ideal described as follows ([A1]). Let $E_{i,,,1}$ , $\ldots$ , $E_{i,,,\ell_{i}}$ be the
exceptional divisors over $P_{i}$ and let $m_{i,,,j}$ be the multiplicity of $p^{*}f$ along
$E_{i,,,j}$ . Let $K=-3L+\sum_{i,,,j}k_{i,,,j}E_{i,,,j}$ be a canonical divisor, where $L$ is
a generic line, not passing through any of $P_{1}$ , $\ldots$ , $P_{l/}$ . Then the ideal
$I_{P_{i},,,k,n}$ is generated by the function germs $g$ such that the pull-back $p^{*}g$

vanishes along $E_{i,,,j}$ at least with the multiplicity $-k_{i,j}+[km_{i,,,j}/n]$ .

Now we are ready to compute the Betti number of $Z_{6}$ for the sec-
tics in $\overline{\mathcal{M}}$ . For the computation, we use canonical toric modifications at
singular points ([06]). Assume that the singularity $P_{i}$ is non-degenerate
and the restriction of $p$ : $Y\rightarrow P^{2}$ to a neighbourhood of $P_{i}$ is a toric
modification. Let $\Sigma_{i}^{*}$ be a regualr fan subdividing the dual Newton di-
agram $\Gamma^{*}(f;P_{i})$ at $P_{i}$ which is used to construct the toric modification
and let $P_{i,,,j}={}^{t}(a_{i,,,j}, b_{i,,,j})$ , $j=1$ , $\ldots$ , $\ell_{i}$ be the primitive covectors which

generate 1-dimensional cones and let $\hat{E}(P_{i,,,j})$ be the corresponding ex-

ceptional divisor. Then using the equality $\frac{dx}{x}\wedge\frac{dy}{y}=\frac{dx_{\sigma}}{x_{\sigma}}\wedge\frac{dy_{\sigma}}{y_{\sigma}}$ , we have

a simple formula: $K=-3L+\sum_{i,,,j}(a_{i,,,j}+b_{i,j}-1)\hat{E}(P_{i,,,j})$ . Here $(x_{\sigma}, y_{\sigma})$
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are the toric coordinates of the coordinate chart $C_{\sigma}^{2}$ and $\hat{E}(P_{i,,,j})$ is the
exceptional divisor corresponding to $P_{i,,,j}$ . Refer to Chapter III, in [O6]
for detail.

(a) For a cusp, $y^{2}-x^{3}+$ (higher terms) $=0$ , the exceptional di-
visors correspond to covectors $Q_{1}={}^{t}(1,1)$ , $Q_{2}={}^{t}(2,3)$ , $Q_{3}={}^{t}(1,2)$ .

We have $K=-3L+\hat{E}(Q_{1})+4\hat{E}(Q_{2})+2\hat{E}(Q_{3})$ and $(p^{*}f)=C’+$

$2\hat{E}(Q_{1})+6\hat{E}(Q_{2})+3\hat{E}(Q_{3})$ (locally at each $P_{i}$ ). Here $C’$ is the strict
transform of $C$ . Recall the equivalence: a curve $C\in \mathcal{M}’$ is of torus
type if and only if six cusps are on a conic (see [D]). Let $C\in \mathcal{M}$ and
let $P_{1}$ , $\ldots$ , $P_{6}$ be the cusps. The nodes have nothing to do with the
Alexander polynomial. The non-trivial case is $H^{1}(Y;\mathcal{O}(L^{(5)}))$ . The

kernel of $\sigma_{2,,,5}$ : $H^{0}(P^{2}; ^{\mathcal{O}}(2))\rightarrow\sum_{i=1}^{6}\mathcal{O}_{P^{2},,,P_{i}}/I_{P_{i},,,5,6}$ consists of conies

passing through $P_{1}$ , $\ldots$ , $P_{6}$ . Thus $dimKer(\sigma_{2,,,5})=1$ or 0 and therefore
$b_{1}(Z_{6})=2$ or 0 depending on whether $C$ is of torus type or not. By (1),
this also implies $\triangle c(t)=(t^{2}-t+1)^{\alpha}$ , $\alpha\geq 1$ , or 1 respectively.

(b) Now we consider $(3,4)$ cusp, $y^{3}-x^{4}+$ (higher terms) $=0$ . We
have four exceptional divisors, corresponding to $Q_{1}={}^{t}(1,1)$ , $Q_{2}=$

${}^{t}(3,4)$ , $Q_{3}={}^{t}(2,3)$ , $Q_{4}={}^{t}(1,2)$ . $K=-3L+\hat{E}(Q_{1})+6\hat{E}(Q_{2})+$

$4\hat{E}(Q_{3})+2\hat{E}(Q_{4})$ and $(p^{*}f)=C’+3\hat{E}(Q_{1})+12\hat{E}(Q_{2})+8\hat{E}(Q_{3})+$

$4\hat{E}(Q_{4})$ .

Let $C\in N_{3}$ be a sextic with 3 $(3,4)$ -cusps. The non-trivial case
is again $\sigma_{2,,,5}$ : $H^{0}(P^{2}; ^{\mathcal{O}}(2))\rightarrow\sum_{i=1}^{3}\mathcal{O}_{P^{2},,,P_{i}}/I_{P_{i},,,5,6}$ . Locally $I_{P_{i},,,5,6}$ is

generated by function germs $g(x, y)$ such that either it has no linear
term in a coordinate centered at $P_{i}$ or the conic $g=0$ is tangent to the
tangent cone of $C$ at $P_{i}$ . Thus $dim\mathcal{O}_{P^{2},,,P_{i}}/I_{P_{i},,,5,6}=2$ . $q$ is in the kernel

of $\sigma_{2,,,5}$ if and only if the conic $q=0$ passes through $P_{1}$ , $P_{2}$ , $P_{3}$ and is
tangent to (the tangent cones of) $C$ at $P_{i}$ , $i=1,2,3$ . Thus $b_{1}(Z_{6})=2$

$(\triangle c(t)=(t^{2}-t+1)^{\beta}, \beta\geq 1)$ if and only if $C$ is of torus type (cf.

Corollary 24). Otherwise $b_{1}(Z_{6})=0$ . To show $\alpha=\beta=1$ , we need a
little more discussion but in our case, this follows immediately from the
assertion on the fundamental group (see \S 5) and the Fox calculus. The
computation of $b_{1}(Z_{6})$ for curves in $N_{1},N_{2}$ are similar.

(c) We consider a $(4,5)$ cusp, $y^{4}-x^{5}+$ (higher terms) $=0$ . We need
5 exceptional divisors, corresponding to the covectors $Q_{1}={}^{t}(1,1)$ , $Q_{2}=$

${}^{t}(4,5)$ , $Q_{3}={}^{t}(3,4)$ , $Q_{4}={}^{t}(2,3)$ and $Q_{5}={}^{t}(1,2)$ . The canonical divisor

is locally given by $K=\hat{E}(Q_{1})+8\hat{E}(Q_{2})+6\hat{E}(Q_{3})+4\hat{E}(Q_{4})+2\hat{E}(Q_{5})$

and $(p^{*}f)=C’+4\hat{E}(Q_{1})+20\hat{E}(Q_{2})+15\hat{E}(Q_{3})+10\hat{E}(Q_{4})+5\hat{E}(Q_{5})$ .
Now we compute the Alexander polynomial of $C\in N_{4}$ . Thus $C$ has

a $(4,5)$ -cusp singularity at $P_{1}$ and 3 $(2,3)$ cusps at $P_{2}$ , $P_{3}$ , $P_{4}$ . Observe
first that any two of $P_{i}$ , $i=2,3,4$ can not be colinear with $P_{1}$ by the
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Bezout theorem. Again we only need to compute $Ker(\sigma_{2,,,5})$ . We can see
easily that $I_{P_{1},,,5,6}$ is generated by the functions without any linear term
at $P_{1}$ and $I_{P_{f},,,5,6}$ is generated by functions vanishing at $P_{i}$ for $i=2,3,4$ .

Thus the dimension of the target is also 6. A conic $q=0$ is in the kernel
of $\sigma_{2,,,5}$ if $q=0$ has multiplicity 2 at $P_{1}$ and passes through $P_{2}$ , $P_{3}$ , $P_{4}$ .

This is impossible. Thus $\triangle c(t)$ is trivial. See also Proposition 27. We
thank to Anatoly Libgober for communicating us that the computation
can be also made using quasiadjunction formula as in [Lil].

3.3. Moduli space $\mathcal{M}$

We first compute the moduli space $\mathcal{M}_{torus}=\mathcal{M}\cap I$ where $\mathcal{M}=$

$\mathcal{M}(6;6\beta_{2,,,3}+3\beta_{2,,,2})$ . We start from the expression $f(x, y)=f_{2}(x, y)^{3}+$

$f_{3}(x, y)^{2}$ where
$f_{2}(x, y)=y^{2}+y(a_{1,,,0}+a_{1,,,1}x)+a_{0,,,0}+a_{0,,,1}x+a_{0,,,2}x^{2}$ and
$f_{3}(x, y)=b_{s,,,0y}^{3}+y^{2}(b_{2,,,0}+b_{2,,,1}x)+y(b_{1,,,0}+b_{1,,,1}x+b_{1,,,2}x^{2})+b_{0,,,0}+$

$b_{0,1}x+b_{0,,,2}x^{2}+b_{0,,,3}x^{3}$

First we may assume that the nodes are at $O=(0,0)$ , $A=(1,1)$ , $B=$
$(1, -1)$ by the action of PSL $(3, C)$ . The submoduli of $\mathcal{M}_{torus}$ consist-

ing of curves with three nodes at $O$ , $A$ , $B$ is denoted by $\mathcal{M}_{torus}^{\#}$ . As
PSL(3, C) orbit of $\mathcal{M}_{torus}^{\#}$ is $\mathcal{M}$ , it is enough to see the irreducibil-
ity of $\mathcal{M}_{torus}^{\#}$ . Introducing the variables $t_{0}$ , $t_{1}$ , $t_{2}$ such that $f_{2}(O)=$

$-t_{0}^{2}$ , $f_{2}(A)=-t_{1}^{2}$ and $f_{2}(B)=-t_{2}^{2}$ , we can explicitly solve the equa-

tions $f(Q)=\frac{\partial}{\partial}fx(Q)=\lrcorner\partial\partial y(Q)=0$ , $Q=O$ , $A$ , $B$ as they are linear

conditions. We can solve these equations, one by one so that the moduli
has 6 free parameters $a_{1,,,0}$ , $a_{0,,,2}$ , $b_{2,,,1}$ , $t_{0}$ , $t_{1}$ , $t_{2}$ and the other coefficients
are uniquely determined as follows.

$a_{0,,,0}$ $=$ $-t_{0}^{2}$ ,

$a_{0,,,1}$ $=$ $-1-\frac{1}{2}t_{1}^{2}-\frac{1}{2}t_{2}^{2}+t_{0}^{2}-a_{0,2}$ ,

$a_{1,,,1}$ $=$ $-a_{1,,,0}-\frac{1}{2}t_{1}^{2}+\frac{1}{2}t_{2}^{2}$ ,

$b_{0,0}$ $=$ $t_{0}^{3}$

$b_{0,,,1}b_{1,,,0}$ $==$ $-\frac{}{2}t_{0}a_{1,,,0}-\frac{3}{32}t_{0}(-1,-\frac{1}{2}t_{1}-\frac{1}{2}t_{2}+t_{0}-a_{0,,,2})$

,

$b_{0,,,2}$ $=$ $b_{2,,,1}+\frac{3}{2}t_{2}-3t_{0}+\frac{3}{2}t_{1}-\frac{3}{2}t_{0}a_{1,,,0}+\frac{15}{16}t_{1}^{3}-3t_{0}a_{0,2}$

$-\frac{\frac{9}{43}}{2}t_{0}(-a_{1},’-\frac{1}{2}t_{1}^{2}+\frac{1}{2}t_{2}^{2})+-t_{0}t_{1}^{2}+\frac{3}{4,0}t_{1}t_{0}^{2}+\frac{3}{4}t_{1}a_{0,,,2}+\frac{\frac{3}{43}t}{16}t_{2}-\frac{+3}{16}t_{1}t_{2}1a_{1,,,0}\frac{3}{2}t_{1}(-a_{1,,,0}-\frac{1}{2}t_{1}^{2}+\frac{1}{2}t_{2}^{2})$

$-\frac{3}{4}t_{0}t_{2}^{2}+\frac{3}{4}t_{2}t_{0}^{2}+\frac{3}{4}t_{2}a_{0,,,2}+\frac{3}{4}t_{2}a_{1,,,0}+\frac{9}{16}t_{2}t_{1}^{2}$ ,
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$b_{0,,,3}$ $=$ $\frac{1}{8}t_{2}^{2}-\frac{3}{8}t_{1}t_{2}^{2}+\frac{3}{4}t_{0}t_{2}^{2}-\frac{3}{4}t_{2}t_{0}^{2}-\frac{3}{4}t_{2}a_{0,,,2}-\frac{3}{4}t_{2}a_{1,,,0}$

$-\frac{3}{4}t_{2}-\frac{3}{4}t_{1}t_{0}^{2}-\frac{3}{4}t_{1}a_{0,,,2}+\frac{3}{4}t_{1}a_{1,,,0}+\frac{3}{2}t_{0}a_{0,,,2}$

$+\frac{1}{2}t_{0}^{3}-\frac{3}{8}t_{2}t_{1}^{2}+\frac{1}{8}t_{1}^{3}-\frac{3}{4}t_{1}-b_{2,,,1}+\frac{3}{4}t_{0}t_{1}^{2}+\frac{3}{2}t_{0}$ ,

$b_{1,,,1}$ $=$ $-\frac{3}{4}t_{2}+\frac{3}{4}t_{1}+\frac{3}{2}t_{0}a_{1,,,0}+\frac{3}{8}t_{1}^{3}-\frac{3}{4}t_{0}t_{1}^{2}+\frac{3}{4}t_{1}t_{0}^{2}$

$+\frac{3}{4}t_{1}a_{0,,,2}-\frac{3}{4}t_{1}a_{1,,,0}-\frac{3}{2}t_{0}(-a_{1,,,0}-\frac{1}{2}t_{1}^{2}+\frac{1}{2}t_{2}^{2})-\frac{3}{8}t_{2}^{3}+\frac{3}{8}t_{1}t_{2}^{2}$

$+\frac{3}{4}t_{0}t_{2}^{2}-\frac{3}{4}t_{2}t_{0}^{2}-\frac{3}{4}t_{2}a_{0,,,2}-\frac{3}{4}t_{2}a_{1,,,0}-\frac{3}{8}t_{2}t_{1}^{2}$ ,

$b_{1,,,2}$ $=$ $-\frac{9}{16}t_{1}^{3}+\frac{3}{4}t_{0}t_{1}^{2}-\frac{3}{4}t_{1}t_{0}^{2}-\frac{3}{4}t_{1}a_{0,,,2}-\frac{3}{4}t_{1}a_{1,,,0}$

$-\frac{3}{2}t_{1}(-a_{1,,,0}-\frac{1}{2}t_{1}^{2}+\frac{1}{2}t_{2}^{2})+\frac{3}{2}t_{0}(-a_{1,,,0}-\frac{1}{2}t_{1}^{2}+\frac{1}{2}t_{2}^{2})-\frac{3}{16}t_{2}^{3}$

$+\frac{9}{16}t_{1}t_{2}^{2}-\frac{3}{4}t_{0}t_{2}^{2}+\frac{3}{4}t_{2}t_{0}^{2}+\frac{3}{4}t_{2}a_{0,,,2}+\frac{3}{4}t_{2}a_{1,,,0}+\frac{3}{16}t_{2}t_{1}^{2}$ ,

$b_{2,,,0}$ $=$ $\frac{3}{16}t_{2}^{3}-\frac{3}{16}t_{1}t_{2}^{2}-\frac{3}{16}t_{2}t_{1}^{2}-\frac{3}{4}t_{2}+\frac{3}{16}t_{1}^{3}-\frac{3}{4}t_{1}-b_{2,,,1}$ ,

$b_{3,,,0}$ $=$ $\frac{1}{16}t_{2}^{3}-\frac{3}{16}t_{1}t_{2}^{2}+\frac{3}{16}t_{2}t_{1}^{2}+\frac{3}{4}t_{2}-\frac{1}{16}t_{1}^{3}-\frac{3}{4}t_{1}$

Thus the moduli space $\mathcal{M}_{torus}^{\#}$ is a Zariski-open subset of $C^{6}$ and this

proves the irreducibility of the moduli $\mathcal{M}_{torus}^{\#}$ and $\mathcal{M}_{torus}$ .

Remark 4. Let $\mathcal{M}_{torus,,,col}$ be the submoduli space of $\mathcal{M}_{torus}$ for
which three nodes are colinear. $\mathcal{M}_{torus,,,col}$ is $a$ codimention one sub-
variety of $\mathcal{M}_{torus}$ and $\mathcal{M}_{torus}-\mathcal{M}_{torus,col}$ is Zariski dense in $\mathcal{M}$ . To

see this, fifirst we consider the submoduli $\mathcal{M}_{torus,,,col}^{\#}$ whose curves have

theree nodes on $O$ and $D:=(1,0)$ and $E=(0,1)$ . They are defifined
by $h(x, y)=0$ where $h(x, y)=h_{2}(x, y)^{3}-h_{3}(x, y)^{2}$ and $h_{2}(x, y):=$

$y^{2}+(A_{10}+A_{11}x)y+T_{0}^{2}+3T_{0}^{2}x^{2}$ and $h_{3}(x, y):=B_{soy}^{3}+y^{2}(B_{20}+$

$B_{21}x)+y(\frac{3}{2}T_{0}A_{10}-3xT_{0}A_{11}-\frac{9}{2}T_{0}A_{10}x^{2})+T_{0}^{3}-9T_{0}^{3}x^{2}$ .

For a given generic curve $C_{0}\in \mathcal{M}_{torus,,,col}^{\neq\neq}$ , we can explicitly fifind
a family of curves $C_{s}:=\{f(x, y, s)=0\}$ in $\mathcal{M}$ such that three nodes

of $C_{s}$ are at $D$ , $E$ and $O_{s}:=(0, s)$ . We omit the explicit polynomial
equation as it is long and the computation is boring. Instead we give an
example, $f:=f_{2}^{3}-f_{3}^{2}$ where $f_{2}:=1+y^{2}-s^{2}+3x^{2}+\frac{2}{9}syx+s^{2}x^{2}$ and
$f_{3}=2y^{3}+6y^{2}+3s^{2}-2yx^{2}s^{2}+1-9x^{2}+y^{2}x-\frac{2}{3}syx-3s^{2}x^{2}+9yx^{2}s-$

$9ys-4ys2+2ys^{2}$ .

3.4. Moduli spaces $N_{i,torus}$ and the degeneration

We consider the moduli spaces $N_{1,,,torus}$ , $N_{2,,,torus}$ and $N_{3,,,torus}$ . Let
$O=(0,0)$ , $A=(1,1)$ , $B=(1, -1)$ be as above. We compute the sub-

moduli spaces $N_{1,,,torus}^{\#},N_{2,,,torus}^{\#},N_{3,,,torus}^{\#}$ .

(1) Moduli space $N_{1,tor\prime us}$ . Consider first $N_{1,,,torus}^{\#}$ , the moduli of

torus sextics $f_{2}(x, y)^{3}+f_{3}(x, y)^{2}=0$ with a $(3,4)$ -cusp singularity at
$O$ and 2 nodes at $A$ , $B$ and four ordinary cusps. As the sum of the
intersection multiplicity of $f_{2}=f_{3}=0$ is 6, it is necessary that $f_{2}(O)=$
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0 and four other cusps are also on the conic $f_{2}(x, y)=0$ . The condition
for $O$ to be a $(3,4)$ -cusp is given by the following four linear equations:
$f_{2}(O)=f_{3}(O)=\frac{\partial f_{3}}{\partial x}(O)=\frac{\partial fs}{\partial y}(O)=0$ .

Proposition 19. The above $(3,4)$-cusp condition is the same as
the limit of the node condition at $O$ for $t_{0}\rightarrow 0:f(O)=\frac{\partial f}{\partial x}(O)=$

$\frac{\partial f}{\partial y}(O)=0$ .

Proof In fact, using $f_{2}(O)=-t_{0}^{2}$ and $f_{3}(O)=t_{0}^{3}$ , we have $\frac{\partial f}{\partial x}(O)=$

$t_{0}^{3}(3t_{0_{\partial x}}^{\partial_{2}}\perp(O)+2_{\partial x}^{\partial_{3}}\perp(O))$ . Thus the limit for $t_{0}\rightarrow 0$ gives $\frac{\partial f_{3}}{\partial x}(O)=0$ .

The same argument applies for $\frac{\partial f3}{\partial y}(O)$ . Q.E.D.

Therefore the moduli is given by substituting $t_{0}=0$ in $\mathcal{M}$ and
it has 5 free parameters $a_{1,,,0}$ , $a_{0,,,2}$ , $b_{2,,,1}$ , $t_{1}$ , $t_{2}$ where $f_{2}(A)=-t_{1}^{2}$ and
$f_{2}(B)=-t_{2}^{2}$ . We see that $N_{1,torus}^{\#}$ and (thus $N_{1,,,torus}$ also) is irre-

ducible. Geometrically this implies the following. Let $f_{t}(x, y)$ be the
family given by fixing generic $a_{1,,,0}$ , $a_{0,,,2}$ , $b_{2,,,1}$ , $t_{1}$ , $t_{2}$ and $t_{0}=t$ in the mod-
uli space $\mathcal{M}_{torus}$ . Then the conic $f_{2,,,t}(x, y)=0$ approches to the node
at $O$ when $t\rightarrow 0$ . Actually one can see by a direct computation that
there are two cusps among six cusps on a conic which approach to $O$ so
that they produce a $(3,4)$ cusps on $C_{0}=\{f_{0}=0\}$ .

(2) Moduli space $N_{2,Cor\tau zs}$ . Now we consider the moduli space
$N_{2,,,torus}^{\#}$ . The curves in this moduli have 2 $(3,4)$ -cusps at $A$ and $B$ (and 2
other cusps) on the conic $f_{2}(x, y)=0$ and a node at $O$ . By Proposition
19, the conditions at $A$ , $B$ are replaced by $t_{1}=t_{2}=0$ in $\mathcal{M}$ . Thus
it has 4 free parameters $a_{1,,,0}$ , $a_{2,,,0}$ , $b_{2,,,1}$ , $t_{0}$ where $f_{2}(O)=-t_{0}^{2}$ . and the
moduli space coincides again to the one which is obtained by substituting
$t_{1}=t_{2}=0$ in the moduli space $\mathcal{M}_{torus}^{\#}$ . Thus we see that $N_{2,,,torus}^{\not\simeq\neq}$ and
$N_{2,,,torus}$ are irreducible.

(3) Moduli space $N_{3,toru\epsilon}$ . Finally the moduli space $N_{3,,,torus}^{\#}$

with three $(3,4)$ -cusps are given by $\mathcal{M}\cap\{t_{0}=t_{1}=t_{2}=0\}$ . The
corresponding polynomials are given by $f=f_{2}^{3}+f_{3}^{2}$ where $f_{2}=y^{2}+$

$y(a_{1,,,0}-a_{1,,,0}x)+(-1-a_{0,,,2})x+a_{0,,,2}x^{2}$ and $f_{3}=b_{2,,,1}(y^{2}-x^{2})(x-1)$ . This

is equal to the subspace of $\mathcal{M}_{torus}^{\#}$ given by $\mathcal{M}_{torus}^{\#}\cap\{t_{0}=t_{1}=t_{2}=0\}$ .

We have shown in the above argument that $N_{i,,,torus}$ is on the bound-
ary of $\mathcal{M}_{torus}$ . By the same argument, we can see that $\overline{N_{i,torus}}$ $\supset$

$N_{i+1,torus}$ for $i=1,2$ . This proves the stratification assertion in Theo-
rem 18. The fact $ N_{4,,,torus}=\emptyset$ will be proved in 4.2.

3.5. Proof of $(\overline{M}_{toru\epsilon})^{*}=\overline{\mathcal{M}}_{t_{or\prime}us}$ .
A polynomial $f(x, y)$ is called even in $y$ if $f(x, y)=f(x, -y)$ for

any $(x, y)$ . To prove the assertion, it is enough to show that there is
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a $C_{0}\in \mathcal{M}_{torus}’$ such that $C_{0}^{*}\in \mathcal{M}_{torus}’$ . In fact, assuming this for a

moment and taking $C\in\overline{\mathcal{M}}_{torus}$ , we can connect $C$ and $C_{0}$ by a piecewise
analytic path $C_{\tau(t)}$ , $0\leq t\leq 1$ such that $C_{\tau(0)}=C_{0}$ , $C_{\tau(1)}=C$ and
$C_{\tau(t)}\in \mathcal{M}_{torus}’$ for any $t<1$ . For $0\leq t<1$ , the topology of the

complements $C^{2}-C_{\tau(t)}$ , $t<1$ and $C^{2}-C_{\tau(t)}^{*}$ is independent of $t$ as
they are locally $\mu$-constant family at every singular point. Thus they
have the same topology and therefore they have the same Alexander
polynomial. In particular, they are torus curves. By Lemma 4, the
polynomial $g_{t}(u, v)$ which defines the dual curves $C_{\tau(t)}^{*}$ can be assumed

to be analytic in $t$ at $t=1$ . Thus this implies that $g_{1}(u, v)$ is also
a torus curve. By the reciprocity law, this implies that the dual of a

non-torus sextic in $\overline{\mathcal{M}}$ is again a non-torus curve. Now we prove the
existence of $C_{0}$ . In fact, we can take any torus curve $C$ defined by an
even polynomial $f(x, y)\in \mathcal{M}_{torus}’$ . Even curves are given by putting
$a_{1,,,0}=0$ and $t_{2}=t_{1}$ in the moduli parameters. It is easy to see that the
dual curve $C^{*}$ is also even. Thus it has six cusps which are symmetric
with respect to the $y$-axis and generically these 6 cusps are not on the
$x$-axis. Thus there exists a conic which passes through these 6 points.
Now by [D], $C^{*}$ is a torus curve. Or more directly, we can give $C_{0}$ as
the following curve. Q.E.D.

Example 20. For example, we take an even polynomial $f=f_{2}^{3}+$

$f_{3}^{2}$ where $f_{2}(x, y)=y^{2}-1-2x+x^{2}$ and $f_{3}(x, y)=1+y^{2}(-\frac{5}{2}+x)+$

$g(x3x-,$$y’=\frac{1}{2,)}x^{2}-x^{3}.ThedualcurveisdefifinedbyLemma4bythepolynomial484x^{6}+720y^{2}x^{4}+357y^{4}x^{2}+59y^{6}+2068x^{5}+962y^{2}x^{3}-24y^{4}x-$

$761x^{4}+11516y^{2}x^{2}-1486y^{4}-14078x^{3}+14620y^{2}x-24661x^{2}+12699y^{2}-$

$21924x$ $-$ 6728. Now the torus decomposition is obtained as follows:
$g(x, y)=59g_{2}(x, y)^{3}-\frac{1}{3481}g_{3}(x, y)^{2}$ where $g_{2}(x, y)=y^{2}+\frac{241}{59}+\frac{86}{59}x+$

$\frac{122}{59}x^{2}$ an $gs(x, y)=-6117-7463x-4639x^{2}+362x^{3}+2773y^{2}+177y^{2}x$ .

\S 4. Moduli space of three cuspidal sextics of type (3,4)

In this section, we study the moduli space $N_{3}$ of plane curves of
degree 6 with 3 $(3, 4)$ cusps which are not necessarily of torus type. To
study the moduli of sextics with 3 $(3,4)$ -cusps, we may assume hereafter
that the cusps are on $O=(0,0)$ , $A=(1,1)$ and $B=(1, -1)$ .

Lemma 21. Let $Q$ be the set of smooth conies which pass through
$O$ , $A$ , $B$ and let $\pi$ : $Q$

$\rightarrow P^{1}\times P^{1}\times P^{1}$ be the mapping defifined by
$\pi(Q)=(T_{O}Q, T_{A}Q, T_{B}Q)$ , $Q\in Q$ . Here $T_{P}Q$ is the tangent line of $Q$

at P. Then $\pi$ is an embedding and the image $\pi(Q)$ is characterized as

follows. Let $\alpha$ , $\beta$ , $\gamma\in P^{1}$ be the respective tangent directions of $Q$ at $O$ , $A$
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and B. Then we can write $\beta=(b, 1)$ , $\gamma=(c, 1)$ and $\alpha=(a_{1}, a_{2})$ and
they satisfy the equality: $(b+c)a-(2-b+c)=0$ (respectively $b+c=0$)

if $a_{2}\neq 0$ with $a:=a_{1}/a_{2}$ (resp. if $a_{2}=0$). The corresponding conic is

defifined by $q(x, y)=y^{2}+y(c+b)(1-x)+(-2-c+b)x+(1+c-b)x^{2}$ .

Lemma 22. Assume that $C=\{(x, y)\in C^{2}; r(x, y)=0\}$ be $a$

reduced plane curve of degree 3 which has singularities at $O$ , $A$ , B. Then
$C$ is the union of 3 lines $(x-1)(y^{2}-x^{2})=0$ .

The proofs of Lemma 21 and Lemma 22 are elementary and omitted.

Lemma 23. Assume that $C_{1}=\{(x, y)\in C^{2}; f(x, y)=0\}$ a germ

of a smooth curve at the origin. Let $C_{2}=\{(x, y)\in C;g(x, y)=0\}$

be another germ of a curve at the origin. Let $d$ be the multiplicity of
$g$ at the origin and let $g_{d}(x, y)$ be the homogeneous part of $g$ of degree
$d$ , which defifines the tangent cone of $C_{2}$ . Let $p$ , $q$ be positive integers
such that $p<dq$ . Consider the germ of a plane curve $ C=\{(x, y)\in$

$C^{2}$ ; $f(x, y)^{p}-g(x, y)^{q}=0\}$ . Assume that each irreducible component of
$g_{d}(x, y)=0$ intersects $C_{1}$ transversely at the origin. Then $(C, O)\in\beta_{p,dq}$

and the tangential direction at the origin coincides with that of $f=0$ .

Proof. Changing local coordinates if necessary, we may assume that
$f(x, y)=y$ and $g_{d}(x, y)=\sum_{i=0}^{d}a_{i}y^{i}x^{d-i}$ . The assumption implies that
$a_{0}\neq 0$ . Thus $f^{p}(x, y)=y^{p}$ and $g^{q}(x, y)=g_{d}(x, y)^{q}+R$ where order $\geq$

$dq+1$ . Thus we can write $f(x, y)^{p}-g(x, y)^{q}=y^{p}-a_{0}^{q}x^{dq}+R’(x, y)$ where
the order of $R’(x, y)$ with respect to the weight $wt(x)=p$ and $wt(y)=dq$

is strictly larger than $pqd$ . Thus the assertion follows. Q.E.D.

Corollary 24. Let $C=\{(x, y)\in C^{2};f(x, y)=0\}$ be a reduced
sextic with 3 $(3,4)$-cusps at $O$ , $A$ , B. The following conditions are equiv-
alent.
(1) $f(x, y)$ is written as $c_{1}x^{2}(y^{2}-x^{2})^{2}+c_{2}q(x, y)^{3}$ for non-zero $c_{1}$ , $ c_{2}\in$

$C^{*}$ and the conic $q(x, y)=0$ is smooth and passes through $O$ , $A$ , $B$ .

(2) There exists a conic $q(x, y)=0$ which passes throuh $O$ , $A$ , $B$ such that
the respective tangent line of the conic is equal to that of $C$ at $O$ , $A$ , $B$ .

(3) $C$ is a torus curve of type $(2, 3)$ .

Proof. The implication (2) $\Rightarrow(3)$ follows from Degtyarev [D] or
Tokunaga [T]. Q.E.D.

4.1. Moduli space $N_{3}$ .
Now we compute the moduli space $N_{3}^{\#}$ of sextics with 3 $(3,4)$ -cusps

at $O$ , $A$ , $B$ . Assume that $C\in N_{3}^{\#}$ . By Bezout theorem, the tangent

cone at $O$ is not $y\pm x=0$ . The stabilizer $H^{\neq}$ of $N_{3}^{\#}$ in PSL(3, C)
has dimensioin two. Thus under the action of $H^{\neq}$ , we may assume also
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that the tangent cone of $C$ at $O\iota s$ given by $x=0$ . So we compute

the submoduli $N_{3}^{\#\#}$ of $N_{3}^{\#}$ whose tangent cone at $O$ is $x=0$ . Let
$H^{\neq\neq}$ be the stabilizer of $N_{3}^{\#\#}$ . It has dimension one. We start from
the expression $f(x, y)=\sum_{i+j<6}a_{i,,,j}y^{i}x^{j}$ . We can normalize the coef-
ficient $a_{6,,,0}=1$ and we have $2\overline{7}$ coefficients. The multiplicities of $f$ at
$O$ , $A$ , $B$ are 3 by the assumption. Thus at each of these three points,
the partial derivatives of order $\leq 2$ must vanish. This gives $3\times 6=18$

linear relations and we can eliminate 18 coefficients and we have still
9 coefficients left. For the other computation, we consider the projec-
tion $\pi$ : $\mathcal{M}\rightarrow P^{1}\times P^{1}\times P^{1}$ which is defined by the tangent cone
directions at $o$ , $A$ , $B$ . We fix $(\alpha, \beta, \gamma)\in P^{1}\times P^{1}\times P^{1}$ and we study
the fiber $\pi^{-1}(\alpha, \beta, \gamma)$ . First we observe that $\beta$ , $\gamma\neq(1,0)$ , i.e., $\beta$ and
$\gamma$ are transverse to the vertical line $x=1$ by Bezout theorem. Thus
we can put $\beta=(b, 1)$ , $\gamma=(c, 1)$ . By the assumption, $\alpha=(1,0)$ . Let
$h_{3}(f)(Q)(u, v)$ be the following homogeneous polynomial of degree 3:
$\frac{1}{6}\frac{\partial^{3}f}{\partial x^{3}}(Q)u^{3}+\frac{1}{2}\frac{\partial^{3}f}{\partial x^{2}\partial y}(Q)u^{2}v+\frac{1}{2}\frac{\partial^{3}f}{\partial x\partial y^{2}}(Q)uv^{2}+\frac{1}{6}\frac{\partial^{3}f}{\partial y^{3}}(Q)v^{3}$ .

The condition for $O$ , $A$ , $B$ to be $(3,4)$ -cusps with the above tangent
cones is $h_{3}(f)(A)=c_{A}(v-bu)^{3}$ , $h_{3}(f)(B)=c_{B}(v-cu)^{3}$ and $h_{3}(f)(O)=$

$c_{O}u^{3}$ for some non-zero constants $c_{A}$ , $c_{B}$ , $c_{O}\in C^{*}$ . By an easy compu-
tation, we have $c_{A}=8$ , $c_{B}=-8$ . Solving $h_{3}(f)(A)=8(v-bx)^{3}$ ,
$h_{3}(f)(B)=-8(v-cu)^{3}$ and $h_{3}(f)(O)=c_{O}u^{3}$ , we can eliminate the

remaining coefficients so that the moduli space $N_{3}^{\#\#}$ is given by

$N_{3}^{\#\#}:=\pi^{-1}(\{((1,0),$ $(b, 1)$ , $(c, 1))\in P^{1}\times P^{1}\times P^{1}$ ;

$(b+c)(b^{2}-3b-bc+3+3c+c^{2})=0\})$

The other coefficients are given by

$a_{5,,,0}$ $=$ $3(b+c)$ , $a_{5,,,1}=-3(b+c)$ ,

$a_{4,,,0}$ $=$ $-1+a_{0,,,6}-6(b^{2}+c^{2})-4(b^{3}-c^{3})+3(b-c)$ ,

$a_{4,,,1}$ $=$ $-4-2a_{0,,,6}+12(b^{2}+c^{2})+3(c-b)-8(b^{3}-c^{3})$ ,

$a_{4,,,2}$ $=$ $2+a_{0,,,6}-6(b^{2}+c^{2}),$ $+4(b^{3}-c^{3})$ ,

$a_{3,1}$ $=$ $-12(b+c)+6(b^{2}-c^{2})$ , $a_{3,,,2}=18(b+c)-12(b^{2}-c^{2})$ ,

$a_{3,3}$ $=$ $-6(b+c)+6(b^{2}-c^{2})$ ,

$a_{2,,,2}$ $=$ $14-18(b-c)+18(b^{2}+c^{2})-8(b^{3}-c^{3})-2a_{0,6}$ ,

$a_{2,,,3}$ $=$ $-16+4a_{0,6}-36(b^{2}+c^{2})+30(b-c)+16(b^{3}-c^{3})$ ,

$a_{2,,,4}$ $=$ $5+8(c^{3}-b^{3})+18(b^{2}+c^{2})+12(c-b)-2a_{0,,,6}$ ,

$a_{1,2}$ $=$ $12(b+c)+12(c^{2}-b^{2})+4(b^{3}+c^{3})$ ,

$a_{1,,,3}$ $=$ $-24(b+c)+30(c^{2}-b^{2})-12(b^{3}+c^{3})$ ,
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$a_{1,,,4}$ $=$ $15(b+c)-24(b^{2}-c^{2})+12(b^{3}+c^{3})$ ,

$a_{1,,,5}$
$=$ $-3(b+c)+6(b^{2}-6c^{2})-4(b^{3}+c^{3})$ ,

$a_{0,,,3}$
$=$ $-8-4(c^{3}-b^{3})-12(b^{2}+c^{2})+12(b-c)$ ,

$a_{0,,,4}$ $=$ $11+a_{0,,,6}+24(b^{2}+c^{2})+21(c-b)+8(c^{3}-b^{3})$ ,

$a_{0,,,5}$
$=$ $-4-2a_{0,,,6}-12(b^{2}+c^{2})-9(c-b)-4(c^{3}-b^{3})$

where $a_{0,,,6}$ is a free parameter. The quotient of the moduli $N_{3}^{\#\#}/H^{\neq\neq}$

has two irreducible components, given by the respective quotients of
$N_{3,,,1}^{\#\#}:=\pi^{-1}(\{b+c=0\})$ and $N_{3,,,2}^{\#\#}:=\pi^{-1}(\{b^{2}-3b-bc+3+3c+c^{2}=$

$0\})$ . Therefore the quotient of moduli space $N_{3}/PSL(3;C)$ has also 2
irreducible components $N_{3,,,1}/PSL(3;C)$ and $N_{3,,,2}/PSL(3;C)$ .

Remark 5. The moduli space $N_{3,,,2}^{\#\#}$ consists of two irreducible

components $L_{\pm}:=\pi^{-1}(\{(a_{0,,,6}, b, c);c-(b-3)/2\pm(b-1)\sqrt{3}I/2\})$ . How-
ever taking a $\psi\in H^{\neq\neq}such$ that $\psi(O)=A,\psi(A)=O$ and $\psi(B)=B$ ,

we can easily see that $\psi(L_{+})=L_{-}$ , $\psi(L_{-})=L_{+}$ and thus $N_{3,,,2}^{\#\#}/H^{\neq\neq}$

is irreducible.

Lemma 25. The component $N_{3,,,1}^{\#}$ coincides with the submoduli of
sextics of torus type $C\in N_{3,torus}$ which has 3 $(3,4)$ cusps at $O$ , $A$ , $B$ .
$N_{3,,,2}^{\#}$ coincides with $N_{3,,,gen}^{\#}$ defifined in the section 3.

Proof. The assertion follows from Lemma 21 and Corollary 24. In
fact, for $f$ corresponding to the above parameters and $c=-b$ , the
torus decomposition is given by $f(x, y)=f_{2}(x, y)^{3}+kf_{3}(x, y)^{2}$ where
$f_{2}(x, y)=y^{2}+(2b-2)x+(1-2b)x^{2}$ , $f_{3}(x, y)=(y^{2}-x^{2})(x-1)$ and
$k=6b-1+8b^{3}-12b^{2}+a_{0,,,6}$ .

4.2. Moduli space $N_{4}$ .
We consider the moduli space of sextics with one $(4,5)$ -cusp at the

origin and 3 $(2,3)$ -cusps. First we will show that $ N_{4,,,torus}=\emptyset$ . In fact,
assume that there exists a sextic $f(x, y)=f_{2}(x, y)^{3}+f_{3}(x, y)^{2}=0$ in $N_{4}$ .

It can be easily observed that $O$ must be on the conic $f_{2}(x, y)=0$ . As
the multiplicity of $f$ at $O$ is 4, $f_{3}$ has multiplicity at least 2 at the origin
and thus $f_{2}$ also has multiplicity 2 at $O$ . Thus $f_{2}(x, y)^{3}$ has multiplicity
6 at $O$ and $O$ can not be a $(4,5)$-cusp.

By Bezout theorem, any two of 3 cusps and the origin can not be
colinear. Therefore by the action of PSL $(3, C)$ , we can assume that the
locus of 3 cusps are either $A=(1,1)$ , $B=(1, -1)$ and $C=(1,0)$ if they
are colinear or $A=(1,1)$ , $C=(1,0)$ and $C’=(0,1)$ . The moduli space
$N_{4}$ seems to be irreducible but we only give examples $iIi$ this paper.
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Example 26. 1. Let $C_{0}=\{f(x, y)=0\}$ where
$f(x, y):=y^{6}-6y^{5}+6y^{5}x+16y^{444}-22yx+4yx^{2}-32y^{3}x+68y^{3}x^{2}-$

$36y^{3}x^{3}+24yx-2258yx23+35y^{2}x^{4}-8yx^{3}+18yx^{4}-10yx^{5}+x^{4}-2x^{5}+x^{6}$ .
$C_{0}$ has $a(4,5)$ -cusp singularity at the origin and 3 $(2, 3)$ cusps at $A=$

$(1, 1)$ , $B=(1, -1)$ and $C=(1,0)$ .
2. Let $C_{1}\in N_{4}$ be defifined by $f(x, y)=0$ where
$f(x, y)=y^{6}+y^{4}-2y^{5}-2x^{5}+6yx-510yx-45yx42+4yx-34yx32+$

$12y^{3}x^{3}+6y^{222}x-4yx^{3}-5y^{2}x^{4}+4yx^{3}-10yx^{4}+6yx^{5}+4I^{5}yx-4I^{4}yx-$

$8Iyx42+12I^{3}yx^{2}-12I^{2}yx^{3}+8Iyx24+4Iyx^{4}-4Iyx^{5}+x^{6}+x^{4}$ where
$I$ $=\sqrt{-1}$ . Then $C_{1}$ has three cusps at $A$ , $C$ , $C’$ .

We can check that the dual curve has 6 cusps and 3 nodes in both
examples. We assert that

Proposition 27. For any $C$ in the irreducible component of $N_{4}$

containing $C_{1}$ , $\pi_{1}(P^{2}-C)\cong Z_{6}$ .

Proof. We show that $\pi_{1}(P^{2}-C_{1}\cup\{x=0\})\cong Z$ , using a pencil lines
through $O$ where $C_{1}$ is in 2 of Example 26. Identifying $P^{2}-\{x=0\}$ with
$C^{2}$ , the generic pencil line intersect the affine curve $C_{1}\cap C2$ at two points
and therefore $\pi_{1}(P^{2}-C_{1}\cup\{x=0\})$ is generated by two generators. Thus
it is enought to show the existence of a pencil line which is tangent to $C$ .

This can be done by taking $y=2/7x$ or $y=(-3+4i)/5x$ respectively.
Now the surjectivity $\pi_{1}(P^{2}-C_{1}\cup\{x=0\}\rightarrow\pi_{1}(P^{2}-C_{1})$ proves the
commutativity of $\pi_{1}(P^{2}-C_{1})$ . Q.E.D.

We thank to Artal Bartolo for the suggestion of this choice of the
pencil.

\S 5. Fundamental group of torus curves

In this section, we prove that

Theorem 28. $\pi_{1}(P^{2}-C)\cong Z_{2}*Z_{3}$ and $\pi_{1}(C^{2}-C)\cong B_{3}$ for $a$

generic $C\in N_{3,,,1}$ .

Here $B_{3}$ is the braid group of three strings. This theorem implies
the next stronger assertion.

Theorem 29. $\pi_{1}(P^{2}-C)\cong Z_{2}*Z_{3}$ and $\pi_{1}(C^{2}-C)\cong B_{3}$ for
any $C\in \mathcal{M}_{torus}’,N_{i,,,torus}’$ and $\mathcal{M}_{i,torus}$ for $i=1,2,3$ .

Proof. This can be proved by a direct computation. Here is another
proof. Take $C\in \mathcal{M}_{torus}’$ for example. Then we can take a family
$C_{t}$ so that $C_{0}=C$ and $C_{t}$ is a 6 cuspidal sextic (without nodes) for
$t\neq 0$ . We can also find another family $D_{t}$ such that $D_{1}=C$ and
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Fig. 1. Graph of $g=0$

$D_{0}\in N_{3,,,1}$ and $D_{t}\in \mathcal{M}_{torus}’$ for $t\neq 0$ . By a standard argument,

we have surjective homomorphisms $\psi_{1}$ : $\pi_{1}(P^{2}-D_{0})\rightarrow\pi_{1}(P^{2}-C)$

and $\psi_{2}$ : $\pi_{1}(P^{2}-C)\rightarrow\pi_{1}(P^{2}-C_{1})$ which are isomorphisms on the
first homology groups. Thus they induce surjections on the commutator
groups. On the other hand, we know that $\pi_{1}(P^{2}-C_{1})\cong Z_{2}*Z_{3}$ and
the commutator group $D(Z_{2}*Z_{3})$ is a free group $F(2)$ of rank two
$([Z],[O1])$ . Thus we obtain a surjective homomorphism $\psi_{2}\circ\psi_{1}$ : $F(2)=$
$D(\pi_{1}(P^{2}-D_{0}))\rightarrow F(2)=D(\pi_{1}(P^{2}-C_{1}))$ . This implies that the
kernel of $\psi_{2}\circ\psi_{1}$ is trivial by Theorem 2.13, [M-K-S]. Thus $\psi_{1}$ , $\psi_{2}$ are
isomorphisms. Q.E.D.

Proof of Theorem 28. For the proof, we take the following sextic
curve $C_{1}:=\{(x, y)\in C^{2}; f(x.y)=0\}\in N_{3,,,1}$ where $f(x, y)=f_{2}(x, y)^{3}+$

$\frac{103}{2}f_{3}(x, y)^{2}$ and $f_{2}(x, y)=y^{2}+x^{2}-2x$ and $f_{3}(x, y)=(x-1)(x^{2}-y^{2})$ .

Our curve $C_{1}$ is even in $y$ . Let us consider a polynomial $g(x, y)$ defined
by $g(x, y):=f(x, \sqrt{y})$ . Then $C_{1}$ is obtained by the double covering
branched along $y=0$ of the curve $g(x, y)=0$ and the singular fiber
for $g(x, y)=0$ with respect to the pencil $\{x=\eta;\eta\in C\}$ is defined by
the roots of $\triangle_{y}(g)=-42436x^{3}(130x-103)(x-1)^{8}=0$ . The graph
of the real curve $C(g):=\{g(x, y)=0\}$ is given in Figure 1. It has
two compact components in its real graph. By Lemma 2.2 of [O5] and
by the equality $g(x, 0)=1/2\cdot x^{3}(-16+127x-218x^{2}+105x^{3})$ , we get
$\triangle_{y}(f)(x)=cx^{9}(-16+127x-218x^{2}+105x^{3})(130x-103)^{2}(x-1)^{16}$ ,

with some constant $c\in C^{*}$ . Let $p:C^{2}\rightarrow C$ be the first projection and
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Fig. 2. Generators $(x=\beta_{3}-\epsilon)$

we consider the pencil given by $L_{\eta}=p^{-1}(\eta)$ as usual. We have chosen
$f$ so that the singular pencil lines are all real and given by $\beta_{0}<\cdots<\beta_{5}$

where $\beta_{0}=0$ , $\beta_{1}=0.173\cdots$ , $\beta_{2}=0.792\cdots$ , $\beta_{3}=103/130$ , $\beta_{4}=1$ ,
$\beta_{5}=1.110\cdots$ . Here $\beta_{i}$ , $i=1,2,5$ are non-zero roots of $g(x, 0)=0$

and the corresponding line $x=\beta_{i}$ is simply tangent to $C$ at $(\beta_{i}, 0)$

for $i=1,2,5$ . Hereafter $\epsilon$ is assumed to be a sufficiently small positive
number. We use the notation $\{\sigma, \tau\}:=\sigma\tau\sigma\tau^{-1}\sigma^{-1}\tau^{-1}$ . Thus $\{\sigma, \tau\}=e$

is equivalent to $\sigma\tau\sigma=\tau\sigma\tau$ where $e$ is the unit. We often use the
equivalence: $\{\sigma, \tau\}=e\Leftrightarrow\{\sigma, \sigma\tau\sigma^{-1}\}=e\Leftarrow\Rightarrow\{\sigma, \sigma^{-1}\tau\sigma\}=e$ . We
compute the fundamental group $\pi_{1}(C^{2}-C_{1})$ by Zariski’s pencil method.
We first take generators $\rho$ , $\xi_{1}$ , $\xi_{2}$ , $\rho’$ , $\xi_{1}’$ , $\xi_{2}’$ of $\pi_{1}(L_{\beta_{3}-\in}-L_{\beta_{3}-\epsilon}\cap C_{1})$ as
in Figure 2. In the following figures, for simplicity of drawing pictures,
we denote a small lasso oriented counterclockwise by a path ending by
a bullet – $\circ$ as in $[O5]$ . As the monodromy relation at $x=\beta s$ ,
we get tangent relations $\xi_{1}=\xi_{2}$ , $\xi_{1}’=\xi_{2}’$ . At $x=\beta_{2}$ , we also get a
tangent relation $\xi_{1}=\xi_{1}’$ . Thus we can put $\xi:=\xi_{1}=\xi_{2}=\xi_{1}’=\xi_{2}’$ . The
generators are reduced to $\xi$ , $\rho$ , $\rho’$ . For further computation, we ffeely use
the relations which have been obtained. Figure 3 shows the situation
of our generators at $ x=\beta_{4}-\epsilon$ . We get the monodromy relations at
$x=\beta_{4}:\xi=(\xi^{2}\rho)(\xi\rho\xi^{-1})(\xi^{2}\rho)^{-1}$ and $\xi\rho\xi^{-1}=(\xi^{2}\rho)\xi(\xi^{2}\rho)^{-1}$ at $(1, 1)$

and $\xi=(\rho’\xi^{2})(\xi^{-1}\rho’\xi)(\rho’\xi^{2})^{-1}$ and $\xi^{-1}\rho’\xi=(\rho’\xi^{2})\xi(\rho’\xi^{2})^{-1}$ at(1, -1)
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Fig. 3. $ x=\beta_{4}-\epsilon$

which reduce to:

(30) $\{\xi, \rho\}=e$ , $\{\xi, \rho’\}=e$

At $x=\beta_{5}$ we get a tangent relation: $(\xi^{2}\rho)\xi(\xi^{2}\rho)^{-1}=(\rho’\xi^{2})^{-1}\xi(\rho’\xi^{2})$

which reduces to

(31) $\xi\rho\xi^{-1}=\xi^{-1}\rho’\xi$

Put $\hat{\rho}=\xi\rho\xi^{-1}$ . Then we can take $\xi,\hat{\rho}$ as new generators. The relation
(30) gives the relation $\{\xi,\hat{\rho}\}=e$ . We can see that the monodromy
relation at $x=\beta_{0}$ is derived from the above relations. Thus we have
shown that

(32) $\pi_{1}(C^{2}-C_{1})=\langle\xi,\hat{\rho};\xi\hat{\rho}\xi=\hat{\rho}\xi\hat{\rho}\rangle\cong B_{3}$

The fundamental group $\pi_{1}(P^{2}-C_{1})$ is obtained by adding the rela-
tion $\rho’\xi^{4}\rho=e$ which is equivalent to $(\xi\hat{\rho}\xi)^{2}=e$ . Thus this group is
isomorphic to $Z_{2}*Z_{3}$ . See [O3] for the proof.

\S 6. Non-torus sextic with three $(3,4)$-cusps

In this section, we will show that the fundamental groups $\pi_{1}(C^{2}-C)$

and $\pi_{1}(P^{2}-C)$ are isomorphic to cyclic groups $Z$ and $Z_{6}$ respectively
for a generic member $C$ of $N_{3,2}$ . The main difficulty is that, it seems,
there does not exist a generic curve in $N_{3,,,2}$ which is defined over real
numbers for which the singular points are real and the singular fibers
are all real. Thus we have to admit some singular points which are not
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Fig. 4. Graph of $C_{2}$

real points or some non-real singular fibers. We take the following curve
$C_{2}$ defined by

$f(x, y)=y^{6}+y^{4}(18-30x+9x^{2})$

$+y^{3}(3\sqrt{3}I-9\sqrt{3}Ix+9\sqrt{3}Ix^{2}-3\sqrt{3}Ix^{3})$

$+y^{2}(9x-51x^{2}+63x^{3}-18x^{4})$

$+y(-3\sqrt{3}Ix^{2}+9\sqrt{3}Ix^{3}-9\sqrt{3}Ix^{4}+3\sqrt{3}Ix^{5})-x^{3}+9x^{4}-9x^{5}$

where $I$ $=\sqrt{-1}$ . We can easily see that $C_{2}\in N_{3,,,2}$ . By the construction,
$C_{2}$ has three $(3,4)$ -cusps at $O$ , $A$ , $B$ . Now we change the affine coor-
dinates by $(x, y)\mapsto(x, yI)$ , to make the defining polynomial to have
real coefficients. Thus in the new coordinates, $C_{2}$ has three cusps at
$O$ , $A’$ , $B’$ where $A’=(1, I)$ , $B’=(1, -I)$ and the defining polynomial
$F(x, y)$ is a real polynomial given by $F(x, y)=f(x, yI)$ . The discrim-
inant of $F(x, y)$ in $y$ , $\triangle_{y}(F)(x)$ , which describes the singular fibers is
given by $cx^{8}(9463x^{6}+135838x^{5}-1346423x^{4}+3270132x^{3}-2370951x^{2}+$

$364014x+22599)(x-1)^{16}$ with some $c\neq 0$ . The singular pencil lines
are on the real line and correspond to $x=\eta_{i}$ , $i=1$ , $\ldots$ , 8, where
$\eta_{1}<\eta_{2}<\eta_{3}<\eta_{4}<\eta_{5}<\eta_{6}<\eta_{7}<\eta_{8}$ and $\eta_{1}=$ -21.678 $\cdots$ ,

$\eta_{2}=$ -0.468 $\cdots$ , $\eta_{3}=0$ , $\eta_{4}=0.287\cdots\eta_{5}=0.872\cdots$ , $\eta_{6}=1$ ,
$\eta_{7}=2.580\cdots$ and $\eta_{8}=3.629\cdots$ . The real graph is given as in Figure 4.



272 M. Oka

$\blacksquare$

Fig. 5. Generators of $\pi_{1}(C^{2}-C_{2})$

We observe that in the real graph of $F$ , there is a small oval passing
through the origin and 4 non-compact components. (One branch is far
left outside of the figure.) The singular fibers $x=\eta_{1}$ , $\eta_{2}$ , $\eta_{4}$ , $\eta_{5}$ , $\eta_{7}$ , $\eta_{8}$ are
tangent to $C_{2}$ in the real graph. The lines $x=\eta_{2}$ , $\eta_{4}$ are tangent to the
oval. The singular fiber $x=\eta_{3}$ passes through a cusps at the origin and
$x=\eta_{6}$ passes through two cusps at $A’$ , $B’$ . By an easy computation, the
principal part of the defining polynomial at three cusps $O$ , $A’$ , $B’$ (with
respect to the coordinates centered at the singular points) are given by
$(\sqrt{3}y-x)^{3}+16x^{4}=0$ at $O$ , $-8(2x+yI)^{3}+(54-6\sqrt{3}I)x^{4}=0$ at $A’$

and $8(2x-yI)^{3}+(54+6\sqrt{3}I)x^{4}=0$ at $B’$ . First we take generators
$\alpha$ , $\beta$ , $\gamma$ , $\rho$ , $\xi$ , $\nu$ in the fiber $ x=\eta_{3}+\epsilon=\epsilon$ as in Figure 5.

The monodromy relations at $x=\eta_{2}$ , $\eta_{4}$ are tangential relations and
they are given by
(R1) : $\beta=\xi$ , $\beta=\gamma$ . Eliminating the generators $\gamma$ , $\xi$ using (R1), the
monodromy relation at $x=\eta_{3}$ is given by $\beta(\beta\rho\beta)=(\beta\rho\beta)\rho$ , $\rho(\beta\rho\beta)=$

$(\beta\rho\beta)\xi$ which reduces to the cusp relation: (R2) : $\beta\rho\beta=\rho\beta\rho$ . To read
the monodromy relations at $x=\eta_{5}$ and $\eta_{6}$ , we need to know how the
six roots $y_{1}(x)$ , $\cdots$ , $y_{6}(x)$ of $F(x, y)=0$ in $y$ move when $x$ moves on the
real axis from $ x=\eta_{4}+\epsilon\rightarrow\eta_{5}-\epsilon$ and then on the circle $|x-\eta_{5}|=\epsilon$

clockwise to $ x=\eta_{5}+\epsilon$ and then on the real line from $ x=\eta_{5}+\epsilon$ to
$ x=\eta_{6}-\epsilon$ . Here we have chosen $y_{i}(x)$ to be continuous on $x$ so that

1. the imaginary $partss(\propto y_{1}(x)),$ $\propto s(y_{2}(x))$ are positive and $y_{3}(x)=$

$\overline{y_{1}}(x)$ and $y_{4}(x)=\overline{y_{2}}(x)$ on $\eta_{4}+\epsilon\leq x\leq\eta_{5}-\epsilon$ and $\eta_{5}+\epsilon\leq x\leq$

$\eta_{6}-\epsilon$ . We assume $that\propto s(y_{1}(\eta_{4}+\epsilon))<\propto s(y_{2}(\eta_{4}+\epsilon))$ .
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Fig. 6. Generators in $ x=\eta_{5}+\epsilon$

2. $y_{5}(x)$ and $y_{6}(x)$ are real and $y_{5}(x)<y_{6}(x)$ for $\eta_{4}+\epsilon\leq x\leq\eta_{5}-\epsilon$

and
$3$ . $\propto s(y_{5}(x))>0$ and $y_{6}(x)=\overline{y_{5}}(x)$ for $\eta_{5}+\epsilon\leq x\leq\eta_{6}-\epsilon$ .

The most delicate part of the argument is the determination of the braid
of these six roots $y_{j}(x),j=1$ , $\ldots$ , 6 over $\eta_{4}+\epsilon\leq x\leq\eta_{5}-\epsilon$ and over
$\eta_{5}+\epsilon\leq x\leq\eta_{6}-\epsilon$ . We claim that

Assertion 4. The ordering by the real part on non-real solutions
is preserved on $\eta_{4}+\epsilon\leq x\leq\eta_{5}-\epsilon$ and $\eta_{5}+\epsilon\leq x\leq\eta_{6}-\epsilon$ . Namely we
have

(33) $\Re(y_{1}(x))<\Re(y_{2}(x))$ , $\eta_{4}+\epsilon\leq x\leq\eta_{5}-\epsilon$

(34) $\Re(y_{1}(x))<\Re(y_{5}(x))<\Re(y_{2}(x))$ , $\eta_{5}+\epsilon\leq x\leq\eta_{6}-\epsilon$

We assume this for a while. Then braids over the intervals $(\eta_{4}+$

$\epsilon$ , $\eta_{5}-\epsilon)$ and $(\eta_{5}+\epsilon, \eta_{6}-\epsilon)$ are uniquely determined. Thus in the fiber
of $ x=\eta_{5}+\epsilon$ , the generators are deformed as in Figure 6. Then the
monodromy relation at $x=\eta_{5}$ is given by
(33) : $\rho^{-1}\nu\rho=\beta\alpha\beta^{-1}$ . Now we have to read the monodromy relations
at $x=\eta_{6}(=1)$ . Thus we start from the fiber $ x=\eta_{5}+\epsilon$ as in Figure
6. The local equation of our curve at $A’$ , $B’$ are given by the equations
$-8(2x+yI)^{3}+(54-6\sqrt{3}I)x^{4}$ and $-8(2x-yI)^{3}+(54+6\sqrt{3}I)x^{4}$ . Thus
the topological behaviors of three roots $y_{1}$ , $y_{2}$ , $y_{5}$ or $y_{3}$ , $y_{4}$ , $y_{6}$ over the
circle $|x-\eta_{6}|=\epsilon$ look like satellites going arround the earth $(=\pm 2xI)$ .

The generators are deformed as in Figure 7 on the fiber $ x=\eta_{6}-\epsilon$ and
the monodromy relations are given by $\theta(\rho\beta\theta)=(\rho\beta\theta)\beta$ , $\beta(\rho\beta\theta)=$
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$(\rho\beta\theta)\rho$ at $A’$ and $(\alpha^{-1}\beta\alpha)(\tau\sigma\alpha^{-1}\beta\alpha)=(\tau\sigma\alpha^{-1}\beta\alpha)\sigma$ , $\sigma(\tau\sigma\alpha^{-1}\beta\alpha)=$

$(\tau\sigma\alpha^{-1}\beta\alpha)\tau$ , at $B’$ . As $\theta=\beta^{-1}\rho^{-1}\nu\rho\beta=\alpha$ by (R3), $\sigma=\alpha$ and
$\tau=(\nu\rho\beta)^{-1}\nu\beta\nu^{-1}(\nu\rho\beta)=\beta^{-1}\rho^{-1}\beta\rho\beta=\rho$ by (R2), the above relations
reduces to:

(35) $\alpha(\rho\beta\alpha)=(\rho\beta\alpha)\beta$ , $\beta(\rho\beta\alpha)=(\rho\beta\alpha)\rho$

(36) $(\alpha^{-1}\beta\alpha)(\rho\beta\alpha)=(\rho\beta\alpha)\alpha$ , $\alpha(\rho\beta\alpha)=(\rho\beta\alpha)\rho$

The second relation of (35) reduces to $\rho\alpha=\alpha\rho$ by (R2). By the last
relation, the first relation of (35) reduces to the braid type relation:
$\alpha\beta\alpha=\beta\alpha\beta$ . As $\alpha(\rho\beta\alpha)=\rho\alpha\beta\alpha=\rho\beta\alpha\beta$ , we get from (36) that $\beta=\rho$ .

Thus $\beta\alpha=\alpha\beta$ by (35). Combining the last braid relation, we get
$\alpha=\beta$ . By (R3), we obtain the relation $\nu=\alpha$ . Therefore $\pi_{1}(C^{2}-C)$ is
generated by a single generator $\alpha$ and thus $\pi_{1}(C^{2}-C)\cong Z$ and therefore
$\pi_{1}(P^{2}-C)\cong Z_{6}$ . Q.E.D.
Appendix. Outline of the proof of Assertion 4 $\cdot$ The following proof
is essentially due to Maple. We consider the polynomial $h(x, u, v):=$

$F(x, u+vl)$ for $x$ , $u$ , $v$ real and let $F_{e}(x, u, v)$ and $F_{o}(x, u, v)$ be the real
and the imaginary part of $h(x, u, v)$ respectively. They are given by

$F_{e}(x, u, v):=v^{6}+b_{4}v^{4}+b_{2}v^{2}+b_{0}$ ,
(37)

$F_{o}(x, u, v):=d_{5}v^{5}+d_{3}v^{3}+d_{1}v$
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where the coefficients are polynomials of $x$ , $u$ . We omit their explicit
forms.

Suppose that there exists an $x_{0}\in(\eta_{4}+\epsilon, \eta_{5}-\epsilon)\cup(\eta_{5}+\epsilon, \eta_{6}-\epsilon)$ so
that either $\Re(y_{1}(x_{0}))=\Re(y_{2}(x_{0}))$ or $\Re(y_{2}(x_{0}))=\Re(ys(x_{0}))$ . We may
assume $\Re(y_{1}(x_{0}))=\Re(y_{2}(x_{0}))$ for example and put $u_{0}=\Re(y_{1}(x_{0}))\in R$ .

This implies that the equation $h(x_{0}, u_{0}, v)$ for $v$ has four real solu-
tions $\pm\propto s(y_{1}(x_{0}))$ , $\pm\propto s(y_{2}(x_{0}))$ . Therefore the equation $F_{e}(x_{0}, u_{0}, v)=$

$F_{o}(x_{0}, u_{0}, v)=0$ has four real solutions. As $\triangle_{y}(F)(x)=0$ has no solu-
tions on the intervals $(\eta_{4}+\epsilon, \eta_{5}-\epsilon)\cup(\eta_{5}+\epsilon, \eta_{6}-\epsilon)$ , $v$ can not be 0. Thus
putting $F_{o}’(x, u, v)=F_{o}(x, u, v)/v$ , $F_{e}(x_{0}, u_{0}, v)=F_{o}’(x_{0}, u_{0}, v)=0$ has
four real solutions $\pm\propto s(y_{1}(x_{0})),$ $\pm\propto s(y_{2}(x_{0}))$ . As $F_{o}’(x_{0}, u_{0}, v)$ has degree
4 in $v$ , this implies that $F_{o}’(x_{0}, u_{0}, v)$ divides $F_{e}(x_{0}, u_{0}, v)$ . Thus the re-
mainder $R(x, u, v)$ of $F_{e}$ by $F_{o}’$ as a polynomial of $v$ must be identically
zero for $x=x_{0}$ , $u=u_{0}$ . Put $R=c_{2}v^{2}+c_{0}$ . $c_{2}$ and $c_{0}$ are polynomials of
$x$ , $u$ . Thus $(x_{0}, u_{0})$ is a common real solution of $c_{2}=c_{0}=0$ . Let $S(x)$

be the resultant of $c_{2}$ , $c_{0}$ as polynomials of $u$ . We do not give the explicit
forms of $c_{0}(x, u)$ , $c_{2}(x, u)$ , $S(x)$ here but $S(x)$ is a polynomial of degree
48 and $(x-1)$ has the multiplicity 27. Note that $S(x_{0})=0$ is a necessary
condition to have a real partner $u_{0}$ so that $c_{2}(x_{0}, u_{0})=c_{0}(x_{0}, u_{0})=0$

but it is not a sufficient condition as the possible partner $u_{0}$ might be
not real. Similarly even if we have a real solution $(x_{0}, u_{0})\in R^{2}$ of
$c_{2}=c_{0}=0$ , the four roots of $F_{o}’(x_{0}, u_{0}, v)=0$ might not be real num-
bers. Anyway Maple gives the unique real solution on the interval $(0, 1)$ :
$ x_{0}=.29572934753\cdots$ . We check the solutions of $F(x_{0}, y)=0$ . We see
that this does satisfy our requirement. Q.E.D.

\S 7. Application

In our previuos paper, we have constructed a Zariski’s triple for
plane curves of degree 12 with 27 cusps. In this section, we construct a
new example of Zariski’s triple $\{F_{1}, F_{2}, F_{3}\}$ . They have degree 12 and
12 $(3,4)$ cusps.

(1) Let $F_{1}$ be a torus curve of type $(3,4)$ defined by $f_{3}(x, y)^{4}+$

$f_{4}(x, y)^{3}=0$ where $f_{3}$ and $f_{4}$ are generic polynomials of degree 3 and
4 respectively. The Alexander polynomial $\triangle_{F_{1}}(t)$ is given by $(t^{2}-t+$

$1)(t^{4}-t^{2}+1)$ . The fundamental groups are given by

$\pi_{1}(C^{2}-F_{1})\cong\langle\rho_{1}$ , $\rho_{2}$ , $\rho_{3}$ ; $\rho_{1}(\rho_{3}\rho_{2}\rho_{1})=(\rho_{3}\rho_{2}\rho_{1})\rho_{2}$ ,

$\rho 2$
$(\beta 3\rho 2\theta 1)=(\rho 3\beta 2\rho 1)\rho s\rangle$

and $\pi_{1}(P^{2}-F_{1})\cong Z_{3}*Z_{4}$ by [01].
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(2) Let $F_{2}$ be a generic cyclic $(2,2)$ -covering $C_{2,,,2}(C_{1})$ where $C_{1}$ is a
torus sextic of type $(2,3)$ with three $(3,4)$ -cusps which is, for example,
defined by $f(x, y)$ used in the proof of Theorem 28. Then $F_{2}$ is defined
by $f((x-a)^{2}+a, (y-b)^{2}+b)$ for generic $a$ , $b$ . The Alexander polynomial
$\triangle_{F_{2}}(t)$ is given by $t^{2}-t+1$ by Theorem 3.4 of [O4]. The fundamental
group $\pi_{1}(C^{2}-F_{2})$ is isomorphic to the braid group $B_{3}$ and $\pi_{1}(P^{2}-F_{2})$

is a central extention of $Z_{2}*Z_{3}$ by $Z_{2}$ ( Theorem 3.4, [04]).
(3) Let $F_{3}$ be a generic cyclic $(2,2)$ -covering of non-torus three $(3,4)$ -

cuspidal sextic $C_{2}$ , constructed in Section 4. The fundamental groups
$\pi_{1}(C^{2}-F_{3})$ and $\pi_{1}(P^{2}-F_{3})$ are isomorphic to cyclic groups $Z$ , $Z_{12}$

respectively.
Thus there are at least three connected components in the moduli

of 12 $(3,4)$ -cuspidal plane curves of degree 12.
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Characteristic classes of coherent sheaves on
singular varieties

Tatsuo Suwa

Dedicated to Professor Takuo Fukuda on his sixtieth birthday

For a compact singular variety $V$ , there are several definitions of
Chern classes, the Mather class, the Schwartz-MacPherson class, the
Fulton-Johnson class and so forth ([BrSc], [F], [FJ], [M], [Scl], see also
[A1], [BLSS], [PP] and [Y] for recent developements). They are in the
homology of $V$ and, if $V$ is non-singular, they all reduce to the Poincar\’e

dual of the Chern class $c^{*}(TV)$ of the tangent bundle $TV$ of $V$ . On
the other hand, for a coherent sheaf $\mathcal{F}$ on $V$ , the (cohomology) Chern
character $ch^{*}(\mathcal{F})$ or the Chern class $c^{*}(\mathcal{F})$ makes sense if either $V$ is
non-singular or $\mathcal{F}$ is locally free. In this article, we propose a definition
of the homology Chern character $ch_{*}(\mathcal{F})$ or the Chern class $c_{*}(\mathcal{F})$ for a
coherent sheaf $\mathcal{F}$ on a possibly singular variety $V$ . In this direction, the
homology Chern character or the Chern class is defined in [Sc2] (see also
[K] $)$ using the Nash type modification of $V$ relative to the linear space
associated to the coherent sheaf $\mathcal{F}$ . Also, the homology Todd class $\tau(\mathcal{F})$

is introduced in [BFM] to describe their Riemann-Roch theorem. Our
class is closely related to the latter.

The variety $V$ we consider in this article is a local complete inter-
section defined by a section of a holomorphic vector bundle over the
ambient complex manifold $M$ . If $\mathcal{F}$ is a locally free sheaf on $V$ , then
the class $ch_{*}(\mathcal{F})$ coincides with the image of $ch^{*}(\mathcal{F})$ by the Poincar\’e

homomorphism $H_{*}(V)\rightarrow H^{*}(V)$ . This fact follows from the Riemann-
Roch theorem for the embedding of $V$ into $M$ , which we prove at the
level of $\check{C}ech$-de Rham cocycles. We also compute the Chern character
and the Chern class of the tangent sheaf of $V$ when $V$ has only isolated
singularities.

In section 1, we discuss characteristic cocycles in the $\check{C}ech$-de Rham
complex and define local Chern classes and characters in the $\check{C}ech$-de
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Rham cohomology. We prove a lemma which gives an explicit relation
between the cocycle for the product of two symmetric series and the
product of cocycles for these series (Lemma 1.5, also Proposition 1.6),
which is fundamental in the proof of the Riemann-Roch theorem at the
cocycle level. In section 2, we describe the Thom class of the variety $V$

in $M$ as above and, in section 3, we prove the Riemann-Roch theorem
mentioned above (Theorem 3.1, Corollaries 3.4 and 3.5). In section 4,
we introduce the homology Chern character for a coherent sheaf on $V$

(Definition 4.1). For this definition, we only need that $V$ be a local com-
plete intersection. Finally in section 5, we compute the Chern character
and the Chern class of the tangent sheaf of $V$ (Theorem 5.1).

I would like to thank J.-P. Brasselet and D. Lehmann for helpful
conversations.

\S 1. Local Chern classes and characters in the $\check{C}ech$-de Rham
cohomology

As to the theory of characteristic classes, we use the Chern-Weil
theory modified to fit in the framework of $\check{C}ech$-de Rham cohomology.
For the Chern-Weil theory of characteristic classes of vector bundles, we
refer to [BB], [Bo] and [MS]. For the background on the $\check{C}ech$-de Rham
cohomology, we refer to [BT], The integration and characteristic classes
in this cohomology theory are first studied in [Le1-4]. See also [Su2]
for these material. They are also briefly summarized in the section 1 of
[Su3] and we freely use the notation and facts there, except we indicate
cohomology Chern classes by superscripts in this article.
(A) Characteristic forms

Let $M$ be a $C^{\infty}$ manifold of dimension $m$ and let $(T_{\mathbb{R}}^{\vee}M)^{c}$ be the
complexified cotangent bundle of $M$ . For a $C^{\infty}$ complex vector bundle
$E$ over $M$ , we denote by $A^{p}(E)$ the vector space of sections of the bundle
$\Lambda^{p}(T_{\mathbb{R}}^{\vee}M)^{c}\otimes E$ on $M$ . Recall that a connection $\nabla$ for $E$ is a linear map
$A^{0}(E)\rightarrow A^{1}(E)$ satisfying the Leibniz rule. Let $K$ be the curvature of
$\nabla$ , which is an element in $A^{2}$ (End(E)). We set $A=(\sqrt{-1}/2\pi)K$ and
define

$c^{*}(\nabla)=\det(I+A)$ ,

(1.1) $ch^{*}(\nabla)=tr(e^{A})$ ,

$td(\nabla)=\det(\frac{A}{I-e^{-A}})$ .

Note that $I$ $-e^{-A}$ is divisible by $A$ and the result is invertible so that

$td^{-1}(\nabla)=\det(\frac{I-e^{-A}}{A})$
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also makes sense. If we denote by $c^{i}(\nabla)$ the homogeneous piece in $c^{*}(\nabla)$

of degree $i$ in the entries of $A$ , it is a closed $2i$-form on $M$ and its class
$[c^{i}(\nabla)]$ in the de Rham cohomology $H^{2i}(M;\mathbb{C})$ is the $i$-th Chern class
$c^{i}(E)$ of $E$ . The class of $c^{*}(\nabla)$ in $H^{*}(M;\mathbb{C})$ is the total (cohomology)
Chern class $c^{*}(E)$ of $E$ . If we set $s^{i}(\nabla)=tr(A^{i})$ , then it is a closed
$2i$-form on $M$ . Denoting by $r$ the rank of $E$ , we have

$c^{*}(\nabla)=1+\sum_{i=1}^{r}c^{i}(\nabla)$ and $ch^{*}(\nabla)=r+\sum_{i\geq 1}\frac{s^{i}(\nabla)}{i^{I}}.\cdot$

The forms $c^{i}=c^{i}(\nabla)$ and $s^{i}=s^{i}(\nabla)$ are related by Newton’s formula :

(1.2) $s^{i}-c^{1}s^{i-1}+c^{2}s^{i-2}-\cdots+(-1)^{i}ic^{i}=0$ , $i\geq 1$ .

The class of $ch^{*}(\nabla)$ in $H^{*}(M;\mathbb{C})$ is the (cohomology) Chern character
$ch^{*}(E)$ of $E$ . Each homogeneous piece of $td(\nabla)$ is also closed and the
class of $td(\nabla)$ in $H^{*}(M;\mathbb{C})$ is the Todd class $td(E)$ of $E$ . Note that the
constant term in $td(\nabla)$ is 1 and that $td(\nabla)$ can be expressed as a series
(in fact a polynomial) in $c^{i}(\nabla)$ . We have the following fundamental
formula [$HL$ , III, Corollary 5.4] :

(1.3) $\sum_{i=0}^{r}(-1)^{i}ch^{*}(\Lambda^{i}\nabla^{\vee})=td^{-1}(\nabla)\cdot c^{r}(\nabla)$ ,

where $\nabla^{\vee}$ denotes the connection for $E^{\vee}$ dual to $\nabla$ and $\Lambda^{i}\nabla^{\vee}$ the con-
nection for $\Lambda^{i}E^{\vee}$ induced by $\nabla^{\vee}$ . Here we set $\Lambda^{0}E^{\vee}=M\times \mathbb{C}$ (the

trivial line bundle) and $\Lambda^{0}\nabla^{\vee}=d$ . See, e.g., [$H$ , Theorem 10.1.1] for
the above formula in cohomology.

Let $\xi=\sum_{i=0}^{q}(-1)^{i}E_{i}$ be a virtual bundle and $\nabla$
.

$=(\nabla^{(q)}, \ldots, \nabla^{(0)})$

a family of connections, each $\nabla^{(i)}$ being a connection for $E_{i}$ . We set

$c^{*}(\nabla.)=\prod_{i=0}^{q}c^{*}(\nabla^{(i)})^{\epsilon(i)}$ and $ch^{*}(\nabla.)=\sum_{i=0}^{q}(-1)^{i}ch^{*}(\nabla^{(i)})$ ,

where $\epsilon(i)=(-1)^{i}$ . If we denote by $c^{i}=c^{i}(\nabla.)$ and $s^{i}/i!=s^{i}(\nabla.)/i!$

the homogeneous pieces of degree $2i$ in $c^{*}(\nabla.)$ and $ch^{*}(\nabla.)$ , respectively,
they are again related by (1.2). More generally, if $\varphi=\varphi(c^{1}, c^{2}, \ldots)$ is
a series in $c^{i}$ (we call such a series a symmetric series), we set $\varphi(\nabla.)=$

$\varphi(c^{1}(\nabla.), c^{2}(\nabla.)$ , $\ldots)$ . Then it is a closed form and its class $\varphi(\xi)$ in
the cohomology ring $H^{*}(M;\mathbb{C})$ is the characteristic class of $\xi$ with re-
spect to $\varphi$ . Suppose further that we have two families of connections
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$\nabla_{\dot{\iota\nearrow}}=(\nabla_{\iota}^{(q)},, \ldots, \nabla_{\iota}^{(0)},)$ , $\iota/=0,1$ , for $\xi$ . Then, we have a form $\varphi(\nabla_{\dot{0}}, \nabla i)$

alternating in $(\nabla_{\dot{0}}, \nabla i)$ such that

(1.4) $d\varphi(\nabla_{0}., \nabla i)=\varphi(\nabla i)-\varphi(\nabla_{\dot{0}})$ ,

which shows that the class $\varphi(\xi)$ does not depend on the choice of family
of connections. We recall the construction of $\varphi(\nabla_{0}., \nabla i)$ for later use
([Bo, p.65], [Su2, Ch.II, (8.2)]). Thus, for each $i=0$ , $\ldots$ , $q$ , we consider
the vector bundle $E_{i}\times \mathbb{R}\rightarrow M\times \mathbb{R}$ and let $\tilde{\nabla}^{(i)}$ be the connection for

it given by $\tilde{\nabla}^{(i)}=(1-t)\nabla_{0}^{(i)}+t\nabla_{1}^{(i)}$ . We set $\tilde{\nabla}$ . $=(\tilde{\nabla}^{(q)}, \ldots,\tilde{\nabla}^{(0)})$ .

Denoting by $\pi_{*}$ the integration along the fibers of the projection $\pi$ :
$M\times[0,1]\rightarrow M$ , we define $\varphi(\nabla_{\dot{0}}, \nabla i)=\pi_{*}\varphi(\tilde{\nabla}.)$ . Note that the “higher
difference forms” for more than two families of connections are con-
structed similarly.

Now we prove a lemma which will be used in the next paragraph to
describe explicitly the difference between the cocycle for the product of
two symmetric series and the product of cocycles for these series. Note
that $\varphi\psi(\nabla.)=\varphi(\nabla.)\cdot\psi(\nabla.)$ , for symmetric series $\varphi$ and $\psi$ and a family
of connections $\nabla.$ .

Lemma 1.5. In the above situation, for two symmetric series $\varphi$

and $\psi$ , we have

$\varphi\psi(\nabla_{\dot{0}}, \nabla i)=\varphi(\nabla_{\dot{0}})\cdot\psi(\nabla_{\dot{0}}, \nabla i)+\varphi(\nabla_{\dot{0}}, \nabla i)$ . $\psi(\nabla i)-d\tau_{01}$ ,

where
$\tau_{01}=\pi_{*}(\varphi(\pi^{*}\nabla_{\dot{0}},\tilde{\nabla}.)\cdot d\psi(\pi^{*}\nabla i,\tilde{\nabla}.))$ .

Proof. By definition, the leffi hand side is equal to $\pi_{*}(\varphi(\tilde{\nabla}.)\cdot\psi(\tilde{\nabla}.))$

and the sum of the first two terms in the right hand side is equal to

$\pi_{*}(\varphi(\pi^{*}\nabla_{\dot{0}})\cdot\psi(\tilde{\nabla}.)+\varphi(\tilde{\nabla}.)\cdot\psi(\pi^{*}\nabla i))$ .

We have

$\varphi(\tilde{\nabla}.)$ . $\psi(\tilde{\nabla}.)-(\varphi(\pi^{*}\nabla_{\dot{0}})\cdot\psi(\tilde{\nabla}.)+\varphi(\tilde{\nabla}.)\cdot\psi(\pi^{*}\nabla i))$

$=d\varphi(\pi^{*}\nabla_{\dot{0}},\tilde{\nabla}.)\cdot d\psi(\pi^{*}\nabla i,\tilde{\nabla}.)-\pi^{*}(\varphi(\nabla_{\dot{0}})\cdot\psi(\nabla i))$ .

If we denote by $i$ the embedding of the boundary {0, 1} of $[0, 1]$ into
$[0, 1]$ and by $\partial\pi$ the restriction of $\pi$ to {0, 1}, the lemma follows from
the identities $\pi_{*}\circ\pi^{*}=0$ ,

$\pi_{*}\circ d+d\circ\pi_{*}=(\partial\pi)_{*}\circ i^{*}$
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[Bo, (3.10) Theorem] and

$(\partial\pi)_{*}\circ i^{*}(\varphi(\pi^{*}\nabla_{\dot{0}},\tilde{\nabla}.)\cdot d\psi(\pi^{*}\nabla i,\tilde{\nabla}.))$

$=\varphi(\nabla_{0}., \nabla i)\cdot d\psi(\nabla i, \nabla i)-\varphi(\nabla_{\dot{0}}, \nabla_{0}.)$ . $d\psi(\nabla i, \nabla_{0}.)=0$ .

Q.E.D.

(B) Characteristic cocycles in the $\check{C}$ech-de Rham complex
Let $M$ be as above. For an open covering $\mathcal{U}$ of $M$ , we denote by

$(A^{*}(\mathcal{U}), D)$ the $\check{C}ech$-de Rham complex associated to $\mathcal{U}$ [Su2, $Ch.II,3$ ].
The complex defines the $\check{C}ech$-de Rham cohomology $H^{*}(A^{*}(\mathcal{U}))$ , which
is canonically isomorphic with the de Rham cohomology $H^{*}(M;\mathbb{C})$ . We
recall this cohomology when $\mathcal{U}$ consists of two open sets $U_{0}$ and $U_{1}$ (the
“Mayer-Vietoris situation”). In this case, a cochain $\sigma$ in $A^{p}(\mathcal{U})$ is written
as

$\sigma=(\sigma_{0}, \sigma_{1}, \sigma_{01})$ ,

where $\sigma_{0}$ and $\sigma_{1}$ are $r$-forms on $U_{0}$ and $U_{1}$ , respectively, and $\sigma_{01}$ is an
$(r-1)$-form on $U_{01}=U_{0}\cap U_{1}$ , and the differential $D$ : $A^{p}(\mathcal{U})\rightarrow A^{p+1}(\mathcal{U})$

is given by
$D\sigma=(d\sigma_{0}, d\sigma_{1}, \sigma_{1}-\sigma_{0}-d\sigma_{01})$ .

The $\check{C}ech$-de Rham cohomology is also equipped with the cup product,
which is defined on the cochain level by assigning to $\sigma$ in $A^{p}(\mathcal{U})$ and $\tau$

in $A^{q}(\mathcal{U})$ the cochain $\sigma\cdot\tau$ in $A^{p+q}(\mathcal{U})$ given by

$\sigma\cdot\tau=(\sigma_{0}\cdot\tau_{0}, \sigma_{1}\cdot\tau_{1}, (-1)^{p}\sigma_{0}\cdot\tau_{01}+\sigma_{01}\cdot\tau_{1})$ ,

where the product is the exterior product. The cup product is compat-
ible with the usual one in $H^{*}(M;\mathbb{C})$ .

If $\xi=\sum_{i=0}^{q}(-1)^{i}E_{i}$ is a virtual bundle, we take a family of con-

nections $\nabla_{l}.,$
$=(\nabla_{\iota}^{(q)},, \ldots, \nabla_{\nu}^{(0)})$ for $\xi$ on each $U_{l/}$ , $lJ$ $=0,1$ , and for the

collection $\nabla_{\star}$

.
$=(\nabla_{0}., \nabla i)$ and a symmetric series $\varphi$ , we define the cochain

$\varphi(\nabla_{\star}.)$ in $A^{*}(\mathcal{U})$ by

$\varphi(\nabla_{\star}.)=(\varphi(\nabla_{\dot{0}}), \varphi(\nabla i),$ $\varphi(\nabla_{\dot{0}}, \nabla i))$ .

Then by (1.4), $\varphi(\nabla_{\star}.)$ is a cocycle and defines a class $[\varphi(\nabla_{\star}.)]$ in $H^{*}(A^{*}(\mathcal{U}))$ .
It does not depend on the choice of the collection of families of con-
nections $\nabla_{\star}$

. and corresponds to the class $\varphi(\xi)$ under the isomorphism
$H^{*}(A^{*}(\mathcal{U}))\simeq H^{*}(M;\mathbb{C})$ .

From Lemma 1.5, we have the following :

Proposition 1.6. For two symmetric series $\varphi$ and $\psi$ , we have, in
$A^{*}(\mathcal{U})$ ,

$\varphi\psi(\nabla_{\star}.)=\varphi(\nabla_{\star}.)\cdot\psi(\nabla_{\star}.)+D\tau$ ,
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where $\tau=(0,0, \tau_{01})$ with $\tau_{01}$ a form on $U_{01}$ as given in Lemma 1.5.

In the sequel, we use the above formula only for a collection $\nabla_{\star}=$

$(\nabla_{0}, \nabla_{1})$ of connections for a single vector bundle.
(C) Localization

In this paper, we consider the following two types of localizations :
(I) localization of the top Chern class of a vector bundle by a non-
vanishing section,

and
(II) localization of the Chern classes of a virtual bundle by exactness.

To describe these, let $M$ be as above and let $V$ be a closed set in
$M$ . Letting $U_{0}=M\backslash V$ and $U_{1}$ a neighborhood of $V$ in $M$ , we consider
the covering $\mathcal{U}=\{U_{0}, U_{1}\}$ of $M$ . We set

$A^{p}(\mathcal{U}, U_{0})=\{\sigma\in A^{p}(\mathcal{U})|\sigma_{0}=0\}$ .

Then $A^{*}(\mathcal{U}, U_{0})$ is a subcomplex of $A^{*}(\mathcal{U})$ and the cohomology it defines
is canonically isomorphic with the relative cohomology $H^{*}(M, M\backslash V;\mathbb{C})$ .

Note that the cup product of a cochain in $A^{*}(\mathcal{U})$ and a cochain in
$A^{*}(\mathcal{U}, U_{0})$ is in $A^{*}(\mathcal{U}, U_{0})$ and this induces a natural $H^{*}(M;\mathbb{C})$ -module
structure on $H^{*}(M, M\backslash V;\mathbb{C})$ .

Remark 1.7. In the situation of Proposition 1.6, if $\psi(\nabla_{\star}.)$ is in
$A^{*}(\mathcal{U}, U_{0})$ , i.e., if $\psi(\nabla_{\dot{0}})=0$ , then so is $\varphi\psi(\nabla_{\star}.)$ , since $\varphi\psi(\nabla_{\dot{0}})=$

$\varphi(\nabla_{0}.)\cdot\psi(\nabla_{0}.)$ . The proposition shows that the class $\varphi\psi(\xi)$ coincides
with $\varphi(\xi)$ . $\psi(\xi)$ in $H^{*}(M, M\backslash V;\mathbb{C})$ , since $\tau$ is also in $A^{*}(\mathcal{U}, U_{0})$ .

We start with the type (I). Thus let $E$ be a vector bundle of rank
$r$ over $M$ and $s$ a non-vanishing section of $E$ on $U_{0}$ . We say that a
connection $\nabla$ for $E$ is $s$-trivial if $\nabla s=0$ . Recall that, for an $s$-trivial
connection $\nabla$ , we have $c^{r}(\nabla)=0$ [Su2, Ch.II, Proposition 9.1]. Let $\nabla_{0}$

be an $s$-trivial connection for $E$ on $U_{0}$ and $\nabla_{1}$ an arbitrary connection
for $E$ on $U_{1}$ . The top Chern class $c^{r}(E)$ of $E$ is represented by the
cocycle

$c^{r}(\nabla_{\star})=(c^{r}(\nabla_{0}), c^{r}(\nabla_{1}),$ $c^{r}(\nabla_{0}, \nabla_{1}))$

in $A^{2r}(\mathcal{U})$ . Since $\nabla_{0}$ is $s$-trivial, we have $c^{r}(\nabla_{0})=0$ and $c^{r}(\nabla_{\star})$ is in
fact in $A^{2r}(\mathcal{U}, U_{0})$ . Thus it defines a class in $H^{2r}(M, M\backslash V;\mathbb{C})$ , which
we denote by $c^{r}(E, s)$ . It is sent to the class $c^{r}(E)$ by the canonical
homomorphism

$j^{*}$ : $H^{2r}(M, M\backslash V;\mathbb{C})\rightarrow H^{2r}(M;\mathbb{C})$ .

It does not depend on the choice of the $s$-trivial connection $\nabla_{0}$ or on the
choice of the connection $\nabla_{1}$ . We call $c^{r}(E, s)$ the localization of $c^{r}(E)$

with respect to the section $s$ .
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For the type (II), let

(1.8) $0\rightarrow E_{q}\rightarrow h_{q}\ldots\rightarrow E_{0}h_{1}\rightarrow 0$

be a complex of $C^{\infty}$ complex vector bundles over $M$ which is exact on
$U_{0}$ . Then we will see below that, for each $i>0$ , there is a canoni-
cal localization $c_{V}^{i}(\xi)$ in $H^{2i}(M, M\backslash V;\mathbb{C})$ of the Chern class $c^{i}(\xi)$ in
$H^{2i}(M;\mathbb{C})$ of the virtual bundle $\xi=\sum_{i=0}^{q}(-1)^{i}E_{i}$ .

Following [BB], we say that a family of connections
$\nabla$
. $=(\nabla^{(q)}, \ldots, \nabla^{(0)})$ for $\xi$ is compatible with the sequence (1.8) if, for

each $i=1$ , $\ldots$ , $q$ , the following diagram is commutative :

$A^{0}(E_{i})$
$\rightarrow\nabla^{(i)}$

$A^{1}(E_{i})$

$ h_{i}\downarrow$ $\downarrow 1\otimes h_{i}$

$A^{0}(E_{i-1})\rightarrow\nabla^{(x-1)}A^{1}(E_{i-1})$ .

Note that for a given exact sequence, there is always a family $\nabla$
. of

connections compatible with the sequence. We have the following “van-
ishing theorem” [$BB$ , Lemma (4.22)] :

Lemma 1.9. If $\nabla_{\dot{0}}$ is a family of connections on $U_{0}$ compatible
with (1.8), then, for each $i>0$ ,

$c^{i}(\nabla_{0}.)=0$ .

In fact, the above holds for a finite number of families of connections
$\nabla_{\dot{0}}$ , $\ldots$ , $\nabla_{\dot{p},,0}$ on $U_{0}$ compatible with (1.8), i.e., $c^{i}(\nabla_{\dot{0}}, \ldots, \nabla_{\dot{p}})=0$ .

Thus, for a symmetric series $\varphi$ without constant term, we also have
$\varphi(\nabla_{\dot{0}}, \ldots, \nabla_{p,0}.)=0$ .

Let $\nabla_{\dot{0}}$ be a family of connections compatible with (1.8) on $U_{0}$ and
$\nabla i$ an arbitrary family of connections for $\xi=\sum_{i=0}^{q}(-1)^{i}E_{i}$ on $U_{1}$ . Then
the class $c^{i}(\xi)$ is represented by the cocycle

$c^{i}(\nabla_{\star}.)=(c^{i}(\nabla_{\dot{0}}), c^{i}(\nabla i),$ $c^{i}(\nabla_{\dot{0}}, \nabla i))$

in $A^{2i}(\mathcal{U})$ . By Lemma 1.9, we have $c^{i}(\nabla_{\dot{0}})=0$ and thus the cocycle
is in $A^{2i}(\mathcal{U}, U_{0})$ and it defines a class $c_{V}^{i}(\xi)$ in $H^{2i}(M, M\backslash V;\mathbb{C})$ . It is
sent to $c^{i}(\xi)$ by the canonical homomorphism $j^{*}$ . It is not difficult to
see that the class $c_{V}^{i}(\xi)$ does not depend on the choice of the family of
connections $\nabla_{\dot{0}}$ compatible with (1.8) or on the choice of the family of
connections $\nabla i$ .
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If $\varphi$ is a symmetric series without constant term, we may also define
the localized class $\varphi_{V}(\xi)$ of $\varphi(\xi)$ . In particular, noting that the alternat-
ing sum of the ranks of $E_{i}$ is zero, if $ M\backslash V\neq\emptyset$ , we have the localized
Chern character $ch_{V}^{*}(\xi)$ in the relative cohomology $H^{*}(M, M\backslash V;\mathbb{C})$ ,
which is sent to $ch^{*}(\xi)$ by the homomorphism $j^{*}$ . It is the class of the
cocycle

$ch^{*}(\nabla_{\star}.)=(0, ch^{*}(\nabla i),$ $ch^{*}(\nabla_{\dot{0}}, \nabla i))$

in $A^{*}(\mathcal{U}, U_{0})$ .

Let $E$ be another vector bundle over $M$ and $\nabla$ a connection for $E$

on $M$ . Then its Chern character $ch^{*}(E)$ is the class of the cocycle

$ch^{*}(\nabla)=(ch^{*}(\nabla), ch^{*}(\nabla),$ $0)$

in $A^{*}(\mathcal{U})$ . The complex

$0-E\otimes E_{q}\rightarrow\cdots\rightarrow E\otimes E_{0}\rightarrow 0$

is exact on $U_{0}$ and the family $\nabla\otimes\nabla_{\dot{0}}=(\nabla\otimes\nabla_{0}^{(q)}, \ldots, \nabla\otimes\nabla_{0}^{(0)})$

of connections is compatible with the above sequence on $U_{0}$ . We set
$E\otimes\xi=\sum_{i=0}^{q}(-1)^{i}E\otimes E_{i}$ and let $\nabla\otimes\nabla i$ denote the family
$(\nabla\otimes\nabla_{1}^{(q)}, \ldots, \nabla\otimes\nabla_{1}^{(0)})$ . Then $ch^{*}(E\otimes\xi)$ is the class of the cocycle

$ch^{*}(\nabla\otimes\nabla_{\star}.)=(0, ch^{*}(\nabla\otimes\nabla i),$ $ch^{*}(\nabla\otimes\nabla_{\dot{0}}, \nabla\otimes\nabla i))$ .

We have

$ch^{*}(\nabla\otimes\nabla i)=ch^{*}(\nabla)\cdot ch^{*}(\nabla i)$ ,

$ch^{*}(\nabla\otimes\nabla_{\dot{0}}, \nabla\otimes\nabla i)=ch^{*}(\nabla)\cdot ch^{*}(\nabla_{\dot{0}}, \nabla i)$ .

Hence, recalling the definition of the cup product, we have

(1.10) $ch^{*}(\nabla\otimes\nabla_{\star}.)=ch^{*}(\nabla)\cdot ch^{*}(\nabla_{\star}.)$ .

in $A^{*}(\mathcal{U}, U_{0})$ . In particular, we have

$ch_{V}^{*}(E\otimes\xi)=ch^{*}(E)\cdot ch_{V}^{*}(\xi)$ .

Remark 1.11. The local Chern characters defined as above have all
the necessary properties and should coincide with the ones in [I]. Hence
they are in the cohomology $H^{*}(M, M\backslash V;\mathbb{Q})$ with $\mathbb{Q}$ coefficients. Also,
the local Chern classes above are in the image of $ H^{*}(M, M\backslash V;\mathbb{Z})\rightarrow$

$H^{*}(M, M\backslash V;\mathbb{C})$ . See also [BFM] for local Chern characters.
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Now let $M$ be a complex manifold and denote by $\mathcal{O}_{M}$ and $A_{M}$ ,

respectively, the sheaves of germs of holomorphic functions and of real
analytic functions on $M$ . If $U$ is a relatively compact open set in $M$ and
if $S$ is a coherent $\mathcal{O}_{U}$ -module, there is a complex of real analytic vector
bundles on $U$ as (1.8) such that at the sheaf level

(1.12) 0– $A_{U}(E_{q})\rightarrow\cdots\rightarrow A_{U}(E_{0})\rightarrow A_{U}\otimes_{\mathcal{O}_{U}}S\rightarrow 0$

is exact [AH1]. We call such a sequence a resolution of $S$ by vector bun-
dles. We define the Chern character $ch^{*}(S)$ of $S$ by $ch^{*}(S)=ch^{*}(\xi)$ ,
$\xi=\sum_{i=0}^{q}(-1)^{i}E_{i}$ . Then it does not depend on the choice of the resolu-
tion. If we denote by $V$ the support of $S$ , then it is an analytic set in $U$

and on $U\backslash V$ , the sequence (1.8) is exact. Thus we have the localized
Chern character $ch_{V}^{*}(S)$ in $H^{*}(U, U\backslash V;\mathbb{C})$ . If $E$ is a vector bundle over
$U$ , the characteristic classes of $E\otimes S$ are those of $ E\otimes\xi$ . Hence, from
(1.10), we have

(1.13) $ch_{V}^{*}(E\otimes S)=ch^{*}(E)\cdot ch_{V}^{*}(S)$ .

Note that the above equality also holds if we replace $E$ by a virtual
bundle over $U$ .

\S 2. Thom class

Let $M$ be a complex manifold of dimension $n+k$ and $V$ a compact
analytic subvariety (reduced analytic subspace) of pure dimension $n$ in
$M$ . We denote by $i$ the embedding $Vc\rightarrow M$ . If $V=\bigcup_{\alpha=1}^{\ell}V_{\alpha}$ is the

irreducible decomposition of $V$ , we set $[V]=\sum_{\alpha=1}^{\ell}[V_{\alpha}]$ in $H_{n}(V;\mathbb{C})$ .

We define the Thom homomorphism $ T:H^{p}(V;\mathbb{C})\rightarrow$

$H^{p+2k}(M, M\backslash V;\mathbb{C})$ by $T=A^{-1}\circ P$ so that we have the commutative
diagram

$H^{p}(V;\mathbb{C})$ $\rightarrow TH^{p+2k}(M, M\backslash V;\mathbb{C})$

$\downarrow P$ $t\downarrow A$

$H_{2n-p}(V;\mathbb{C})\rightarrow=$ $H_{2n-p}(V;\mathbb{C})$ ,

where $A$ and $P$ denote, respectively, the Alexander isomorphism and the
Pioncar\’e homomorphism [Su2, Ch.VI, 4]. Recall that $P$ is given by the
cap product with the class $[V]$ . For the class [1] in $H^{0}(V;\mathbb{C})$ , we denote
$T([1])$ in $H^{2k}(M, M\backslash V;\mathbb{C})$ by $\Psi_{V}$ , and call it the Thom class of $V$ in
$M$ .

Remark 2.1. In [Br], these homomorphisms are defined in coho-
mology with $\mathbb{Z}$ coefficients by a combinatorial method. See [Ab] for a
related work.
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Let $U$ be a regular neighborhood of $V$ in $M$ with continuous re-
traction $\rho$ : $U\rightarrow V$ . We have, by excision, $ H^{*}(M, M\backslash V;\mathbb{C})\simeq$

$H^{*}(U, U\backslash V;\mathbb{C})$ . Note that for $\sigma$ in $H^{*}(U;\mathbb{C})$ and $\tau$ in $H^{*}(U, U\backslash V;\mathbb{C})$ ,
we have

$A(\sigma\cdot\tau)=i^{*}\sigma\wedge A(\tau)$ .

Hence the Thom homomorphism $T$ is given, for a class $\alpha$ in $H^{p}(V;\mathbb{C})$ ,
by

(2.2) $T(\alpha)=\rho^{*}(\alpha)\cdot\Psi_{V}$ .

We define the Gysin homomorphism $i_{*}$ : $H^{p}(V;\mathbb{C})\rightarrow H^{p+2k}(M;\mathbb{C})$ by
$i_{*}=j^{*}\circ T$ . Note that, if $M$ is compact, we have the commutative
diagram

$H^{p}(V;\mathbb{C})$
$\rightarrow TH^{p+2k}(M, M\backslash V;\mathbb{C})\rightarrow j^{*}H^{p+2k}(M;\mathbb{C})$

$\downarrow P_{V}$ $t\downarrow A$ $\iota\downarrow P_{M}$

$H_{2n-p}(V;\mathbb{C}).\rightarrow=$ $H_{2n-p}(V;\mathbb{C})$ $\rightarrow i_{*}H_{2n-p}(M;\mathbb{C})$ .

In this and the subsequent sections, we consider the following two
cases :
(i) $V$ is non-singular,
(ii) $V$ is a local complete intersection defined by a section (see Definition
2.3 below).

First, suppose $V$ is non-singular and let $p:N_{V}\rightarrow V$ be the normal
bundle of $V$ in $M$ . In this case, $P$ and $T$ are isomorphisms. We may take
as $U$ above a tubular neighborhood so that $\rho$ is $C^{\infty}$ . Then $\rho$ : $U\rightarrow V$

is isomorphic with $p:W\rightarrow V$ for a neighborhood $W$ of the zero section
in $N_{V}$ , which we identify with $V$ . The bundle $\rho^{*}N_{V}$ is also isomorphic
with $p^{*}N_{V}$ . Thus we have an isomorphism

$H^{*}(M, M\backslash V;\mathbb{C})\simeq H^{*}(N_{V}, N_{V}\backslash V;\mathbb{C})$ .

The Thom class $\Psi_{V}$ of $V$ corresponds to the Thom class $\Psi_{N_{V}}$ of the
bundle $N_{V}$ under this isomorphism and the Thom homomorphism cor-
responds to the Thom isomorphism

$T_{N_{V}}$ : $H^{p}(V;\mathbb{C})\rightarrow H^{p+2k}(\sim N_{V}, N_{V}\backslash V;\mathbb{C})$ .

Note that, if we denote by $s_{\triangle}$ the diagonal section of the bundle $p^{*}N_{V}$

over $N_{V}$ , its zero set is $V$ and we have [Su2, Ch.III, Theorem 4.4]

$\Psi_{N_{V}}=c^{k}(p^{*}N_{V}, s_{\triangle})$ .
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Second, recall that a subvariety $V$ of codimension $k$ in $M$ is a local
complete intersection (abbreviated as LCI) in $M$ if the ideal sheaf $I_{V}$ in
$\mathcal{O}_{M}$ of functions vanishing on $V$ is locally generated by $k$ functions. In
this case, the normal sheaf $N_{V}=\prime Homo_{V}(I_{V}/I_{V}^{2}, \mathcal{O}_{V})$ is a locally free
$\mathcal{O}_{V}$ -module, $\mathcal{O}_{V}=\mathcal{O}_{M}/I_{V}$ . We denote by $N_{V}$ the associated vector
bundle.

Definition 2.3. We say that a subvariety $V$ of codimension $k$ in
$M$ is an $LCI$ defined by a section if there exist a holomorphic vector
bundle $N$ of rank $k$ over $M$ and a holomorphic section $s$ of $N$ such that
the local components of $s$ generate $I_{V}$ .

Thus a subvariety $V$ in $M$ is an LCI defined by a section if and only
if there exist a holomorphic vector bundle $N$ over $M$ and a holomorphic
section $s$ of $N$ such that $(^{*})s$ is regular [$F$ , B.3] and the analytic subspace
defined by $s$ is reduced and is equal to $V$ . Furthermore, the condition $(^{*})$

is equivalent to saying that $s$ is generically transverse to the zero section
and $V$ is the zero set of $s$ ([T], [Lo, 1.6], see also [Su3, Remark 4.10.3]).
In this case, we have $N_{V}=N|_{V}$ . Note that an LCI defined by a section
is a “strong” local complete intersection in the sense of [LS]. Note also
that for any hypersurface $(k=1)V$ in $M$ , there is a natural line bundle
$N$ such that $V$ is an LCI defined by a section of $N$ .

We recall the following theorem, which is proved in [Su2]. See $[F$ ,
14.1] for the algebraic case.

Theorem 2.4. Let $V$ be a compact $LCI$ defined by a section $s$ of
a bundle $N$ over M. Then the localization $c^{k}(N, s)$ in $H^{2k}(M, M\backslash V;\mathbb{C})$

of $c^{k}(N)$ with respect to $s$ corresponds to $[V]$ under the Alexander duality
$H^{2k}(M, M\backslash V;\mathbb{C})\rightarrow H_{2n}(\sim V;\mathbb{C})$ .

Thus, if $V$ is an LCI defined by a section, Theorem 2.4 shows that

(2.5) $\Psi_{V}=c^{k}(N, s)$ .

\S 3. Riemann-Roch theorem for embeddings

Let $V$ be a compact subvariety in a complex manifold $M$ , which
is either of type (i) or (ii) in the previous section. Let $U$ be a regular
neighborhood of $V$ in $M$ with a continuous retraction $\rho:U\rightarrow V$ . In the
case (ii), suppose $V$ is defined by a section $s$ of a vector bundle $N$ over
$M$ . In the case(i), $(M, V)$ is $C^{\infty}$ diffeomorphic with $(N_{V}, V)$ and, in

the latter, $V$ is defined by the diagonal section $s_{\triangle}$ of the bundle $p^{*}N_{V}$

over $N_{V}$ . In what follows we write $N_{V}$ by $M$ anew and set $N=p^{*}N_{V}$

and $s=s_{\triangle}$ . Thus in either case we may express the Thom class $\Psi_{V}$ as
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(2.5). In the case (i), we may take as $U$ a tubular neighborhood and we
may assume that $\rho$ is the restriction of $p$ to $U$ .

Let $U_{0}=M\backslash V$ and $U_{1}$ a neighborhood of $V$ as before. Also, let $\nabla_{0}$

be an $s$-trivial connection for $N$ on $U_{0}$ and $\nabla_{1}$ an arbitrary connection
for $N$ on $U_{1}$ . We consider the vector bundle $N\times \mathbb{R}$ over $U_{01}\times \mathbb{R}$ and let $\tilde{\nabla}$

be the connection for it given by $\tilde{\nabla}=(1-t)\nabla_{0}+t\nabla_{1}$ . Let $\Lambda.\nabla_{\check{\nu}}$ denote
the family of connections $(\Lambda^{k}\nabla_{\check{\nu}}, \ldots, \Lambda^{0}\nabla_{\nu}^{\vee})$ on $U_{\nu}$ , for $\iota/=0,1$ . Also
denote by $\Lambda.\tilde{\nabla}^{\vee}$ the family $(\Lambda^{k}\tilde{\nabla}^{\vee}, \ldots, \Lambda^{0}\tilde{\nabla}^{\vee})$ . Let $\pi$ : $U_{01}\times[0,1]\rightarrow U_{01}$

be the projection. Recall that, in $A^{*}(\mathcal{U})$ ,

$ch^{*}(\Lambda.\nabla_{\star}^{\vee})=(ch^{*}(\Lambda.\nabla_{0}^{\vee}), ch^{*}(\Lambda.\nabla_{\check{1}}),$ $ch^{*}(\Lambda.\nabla_{\check{0}}, \Lambda.\nabla_{1}^{\vee}))$

whose class in $H^{*}(M;\mathbb{C})$ is $ch^{*}(\lambda_{N}\vee)$ , $\lambda_{N}\vee=\sum_{i=0}^{k}(-1)^{i}\Lambda^{i}N^{\vee}$ .

Theorem 3.1. The cocycle $ch^{*}(\Lambda.\nabla_{\star}^{\vee})$ is in $A^{*}(\mathcal{U}, U_{0})$ and is given
by

$ch^{*}(\Lambda.\nabla_{\star}^{\vee})=td^{-1}(\nabla_{\star})\cdot c^{k}(\nabla_{\star})+D\tau$ ,

where $\tau=(0,0, \tau_{01})$ , $\tau_{01}=\pi_{*}(td^{-1}(\pi^{*}\nabla_{0},\tilde{\nabla})\cdot dc^{k}(\pi^{*}\nabla_{1},\tilde{\nabla}))$ .

Proof. By (1.3), we have

$ch^{*}(\Lambda.\nabla_{\check{0}})=td^{-1}(\nabla_{0})\cdot c^{k}(\nabla_{0})=0$ ,

$ch^{*}(\Lambda.\nabla_{1}^{\vee})=td^{-1}(\nabla_{1})\cdot c^{k}(\nabla_{1})$ ,

$ch^{*}(\Lambda.\nabla_{\check{0}}, \Lambda.\nabla_{1}^{\vee})=\pi_{*}ch^{*}(\Lambda.\tilde{\nabla}^{\vee})$

$=\pi_{*}(td^{-1}(\tilde{\nabla})\cdot c^{k}(\tilde{\nabla}))=(td^{-1}\cdot c^{k})(\nabla_{0}, \nabla_{1})$ .

Hence we see that

$ch^{*}(\Lambda.\nabla_{\star}^{\vee})=(td^{-1}\cdot c^{k})(\nabla_{\star})$

and the theorem follows from Proposition 1.6 (see also Remark 1.7).
Q.E.D.

Note that $\tau=0$ when $k=1$ .

Remark 3.2. Consider the Koszul complex associated to $s$ [$F$ , B.3]:

(3.3) $0\rightarrow\Lambda^{k}N^{\vee}\rightarrow\cdots\rightarrow\Lambda^{1}N^{\vee}$
–

$\Lambda^{0}N^{\vee}\rightarrow 0$ ,

which is exact on $U_{0}=M\backslash V$ . It is not difficult to see that the fam-
ily $\Lambda.\nabla_{0}^{\vee}$ is compatible with the sequence (3.3) on $U_{0}$ . The fact that
$ch^{*}(\Lambda.\nabla_{0}^{\vee})=0$ also follows from this (cf. Lemma 1.9).
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Let $\mathcal{F}$ be a coherent $\mathcal{O}_{V}$ -module. The direct image $i_{!}\mathcal{F}$ is a coherent
$\mathcal{O}_{M}$ odule, which is simply $\mathcal{F}$ extended by zero on $M\backslash V$ , and thus
we have the localized Chern character $ch_{V}^{*}(i_{!}\mathcal{F})$ in $H^{*}(M, M\backslash V;\mathbb{C})$ .

In the case (i), we take a resolution of $\mathcal{F}$ of the form (1.12) on $V$ .

Then we have $ch^{*}(\mathcal{F})=ch^{*}(\xi)$ , $\xi=\sum_{i=0}^{q}(-1)^{i}E_{i}$ . Let $\nabla^{(i)}$ be a con-
nection for $E_{i}$ , $i=0$ , $\ldots$ , $q$ , and denote by $\nabla^{F}$ the family of connections
$(\rho^{*}\nabla^{(0)}, \ldots, \rho^{*}\nabla^{(q)})$ , for the virtual bundle $\rho^{*}\xi$ over $U$ .

In the case (ii), we assume that $\mathcal{F}$ is locally free and thus $\mathcal{F}$ $=\mathcal{O}_{V}(F)$

for some vector bundle $F$ over $V$ . Since the classification of continuous
vector bundles and that of $C^{\infty}$ vector bundles coincide over paracompact
manifolds, we may assume that $\rho^{*}F$ is a $C^{\infty}$ vector bundle and let $\nabla^{F}$

be a connection for $\rho^{*}F$ on $U$ .

In either case, let $ch^{*}(\nabla_{\star}^{F})$ denote the cocycle

$ch^{*}(\nabla_{\star}^{F})=(ch^{*}(\nabla^{F}), ch^{*}(\nabla^{\mathcal{F}}),$ $0)$

in $A^{*}(\mathcal{U})|_{U}$ , whose class in $H^{*}(U;\mathbb{C})$ is $\rho^{*}ch^{*}(\mathcal{F})$ .

Corollary 3.4. In the above situation, we have

$ch^{*}(\nabla_{\star}^{F})\cdot ch^{*}(\Lambda.\nabla_{\star}^{\vee})=ch^{*}(\nabla_{\star}^{F})\cdot td^{-1}(\nabla_{\star})\cdot c^{k}(\nabla_{\star})+D(ch^{*}(\nabla_{\star}^{F})\cdot\tau)$

in $A^{*}(\mathcal{U}, U_{0})|_{U}$ .

Corollary 3.5. Let $V$ be a compact subvariety in $M$ and $\mathcal{F}$

$a$

coherent $\mathcal{O}_{V}$ -module. We have the following formulas in either one of
the cases:
(i) $V$ is non-singular,
(ii) $V$ is an $LCI$ defined by a section and $\mathcal{F}$ is locally free.

$ch_{V}^{*}(i_{!}\mathcal{F})$ $=$ $T(ch^{*}(\mathcal{F})\cdot td^{-1}(N_{V}))$ in $H^{*}(M, M\backslash V;\mathbb{C})$ ,

$ch^{*}(i_{!}\mathcal{F})$ $=$ $i_{*}(ch^{*}(\mathcal{F})\cdot td^{-1}(N_{V}))$ in $H^{*}(M;\mathbb{C})$ .

Proof. The Koszul complex (3.3) gives a locally free resolution of
$i_{!}\mathcal{O}_{V}$ :

$0\rightarrow \mathcal{O}_{M}(\Lambda^{k}N^{\vee})\rightarrow\cdots\rightarrow \mathcal{O}_{M}(\Lambda^{0}N^{\vee})\rightarrow i_{!}\mathcal{O}_{V}\rightarrow 0$ .

If we compute the local class $ch_{V}^{*}(i_{!}\mathcal{O}_{V})$ using this resolution, we see
that it is represented by $ch^{*}(\Lambda.\nabla_{\star}^{\vee})$ . We have, by (1.13),

$ch_{V}^{*}(i_{!}\mathcal{F})$

$=\{$

$ch^{*}(\rho^{*}\xi\otimes i_{!}O_{V})=ch^{*}(\rho^{*}\xi)\cdot ch_{V}^{*}(i_{!}\mathcal{O}_{V})$ , in the case (i)

$ch^{*}(\rho^{*}F\otimes i_{!}\mathcal{O}_{V})=ch^{*}(\rho^{*}F)$ . $ch_{V}^{*}(i_{!}\mathcal{O}_{V})$ , in the case (ii).
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Recall that either $ch^{*}(\rho^{*}\xi)$ or $ch^{*}(\rho^{*}F)$ is represented by $ch^{*}(\nabla_{\star}^{F})$ . Re-
calling also that $N|_{U}\simeq\rho^{*}N_{V}$ and $c^{k}(N, s)=\Psi_{V}$ (the Thom class), by
Corollary 3.4, we get

$ch_{V}^{*}(i_{!}\mathcal{F})=\rho^{*}(ch^{*}(\mathcal{F})\cdot td^{-1}(N_{V}))\cdot\Psi_{V}$ .

By (2.2), we get the first formula. The second follows from the first.
Q.E.D.

Remarks 3.6. 1. The equalities in Corollary 3.5 hold in cohomology
with $\mathbb{Q}$ coefficients (cf. Remarks 1.11 and 2.1).
2. In the case $V$ is non-singular, the formulas are proved in [AH2]. If,
furthermore, $V$ is algebraic, the second formula in Corollary 3.5 is a
special case of the Grothendieck-Riemann-Roch theorem [BoSe].
3. In [I], a similar formula is proved for the Thom class of a vector
bundle. Namely, let $p$ : $E\rightarrow X$ be a complex vector bundle of rank $r$

over a topological space $X$ . Then, in our natation,

$ch_{X}^{*}(\lambda_{E^{\vee}})=p^{*}td^{-1}(E)$ . $\Psi_{E}$ ,

where $\lambda_{E}\vee=\sum_{i=0}^{r}(-1)^{i}\Lambda^{i*}pE^{\vee}$ and $\Psi_{E}$ denotes the Thom class of $E$ .

When $X$ is a $C^{\infty}$ manifold, this formula can be proved at the level of
$\check{C}ech$-de Rham cocycles as above; in the situation of Theorem 3.1, simply
let $M$ $=E$ , $V=X$ (identified with the zero section of $E$ ), $N=p^{*}E$

and $s=s_{\triangle}$ and note that $\Psi_{E}=c^{r}(p^{*}E, s_{\triangle})$ .

4. In the algebraic category, the formulas are proved for a locally free
$\mathcal{O}_{V}$ -module on an LCI by analyzing the graph construction in [BFM, 3.
Proposition]. Note that their general Riemann-Roch theorem does not
directly imply the formulas.
5. These formulas are also proved at the level of differential forms and
currents in [HL]. See also [Bi].

\S 4. Homology Chern characters and classes

Let $V$ be a subvariety of pure codimension $k$ in a complex manifold
$M$ . Suppose that $V$ is an LCI. Thus the ideal sheaf $I_{V}$ of functions
vanishing on $V$ is locally generated by $k$ functions and the normal sheaf
$N_{V}=\prime Homo_{V}(I_{V}/I_{V}^{2}, \mathcal{O}_{V})$ is locally free. We denote by $N_{V}$ the asso-
ciated vector bundle and let $\tau_{V}=TM|_{V}-N_{V}$ be the virtual tangent
bundle of $V$ . Note that it does not depend on the embedding $i$ : $Vc\rightarrow M$ .

Definition 4.1. For a coherent $\mathcal{O}_{V}$ -module $\mathcal{F}$ , we define the ho-
mology Chern character $ch_{*}(\mathcal{F})$ by

$ch_{*}(\mathcal{F})=tdN_{V}\wedge A(ch_{V}^{*}(i_{!}\mathcal{F}))$ .
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Remarks 4-2. 1. If $V$ is an LCI defined by a section of a vector
bundle $N$ over $M$ , we may write

$ch_{*}(\mathcal{F})=A(tdN\cdot ch_{V}^{*}(i_{!}\mathcal{F}))$ .

2. The above definition is related to the (homology) Todd class $\tau(\mathcal{F})$ of
$\mathcal{F}$ in [BFM] by

$ch_{*}(\mathcal{F})=(td^{-1}\tau_{V})\wedge\tau(\mathcal{F})$ .

In [BFM], $\tau(\mathcal{F})$ is defined using an embedding of $V$ , but it is shown that
$\tau(\mathcal{F})$ is independent of the embedding for a projective variety $V$ . Thus
$ch_{*}(\mathcal{F})$ is also independent of the embedding in this case.

The following directly follows from the definition.

Proposition 4.3. (1) For an exact sequence of coherent $\mathcal{O}_{V}$ -mod-
ules

0– $\mathcal{F}_{q}\rightarrow\cdots\rightarrow \mathcal{F}_{0}\rightarrow 0$ ,

we have

$\sum_{i=0}^{q}(-1)^{i}ch_{*}(\mathcal{F}_{i})=0$ .

(2) For a vector bundle $E$ over $V$ and a coherent $\mathcal{O}_{V}$ -module $\mathcal{F}$ ,

$ch_{*}(E\otimes \mathcal{F})=ch^{*}(E)\wedge ch_{*}(\mathcal{F})$ .

The following is a direct consequence of Corollary 3.5.

Proposition 4.4. Suppose either $V$ is non-singular or $V$ is de-

fined by a section and $\mathcal{F}$ is locally free. Then we have

$ch_{*}(\mathcal{F})=ch^{*}(\mathcal{F})\wedge[V]$ .

In particular, for the structure sheaf $\mathcal{O}_{V}$ ,

$ch_{*}(\mathcal{O}_{V})=[V]$ .

If $ch_{*}(\mathcal{F})$ is in the image of the Poincar\’e homomorphism $ H^{*}(V)\rightarrow$

$H_{*}(V)$ , we may define the homology Chern class $c_{*}(\mathcal{F})$ via Newton’s
formula. Namely, suppose

$ch_{*}(\mathcal{F})=\sigma^{*}\wedge[V]$ ,

for some $\sigma^{*}$ in $H^{*}(V)$ and write $\sigma^{*}=\sum_{i\geq 0}\sigma^{i}/i!$ with $\sigma^{i}$ in $H^{2i}(V)$ .

Then we define $\gamma^{*}=1+\sum_{i\geq 1}\gamma^{i}$ with $\gamma^{i}$ in $H^{2i}(V)$ by

$\sigma^{i}-\gamma^{1}\sigma^{i-1}+\gamma^{2}\sigma^{i-2}-\cdots+(-1)^{i}i\gamma^{i}=0$ , $i\geq 1$ .
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If we define the homology Chern class $c_{*}(\mathcal{F})$ of $\mathcal{F}$ by

$c_{*}(\mathcal{F})=\gamma^{*}\wedge[V]$ ,

then it is not difficult to check that the definition does not depend on
the choice of $\sigma^{*}$ .

Example 4.5. Suppose either $V$ is non-singular or $V$ is defined
by a section and $\mathcal{F}$ is locally free. Then, from Proposition 4.4,

$c_{*}(\mathcal{F})=c^{*}(\mathcal{F})\wedge[V]$ .

In particular,
$c_{*}(\mathcal{O}_{V})=[V]$ .

\S 5. Characteristic classes of the tangent sheaf

Let $V$ be an LCI defined by a section of a vector bundle $N$ over a
complex manifold $M$ . Denoting by $\Omega_{M}$ and $\Omega_{V}$ the sheaves of holomor-
phic 1-forms on $M$ and $V$ , respectively, we have the exact sequence

$0\rightarrow I_{V}/I_{V}^{2}\rightarrow\Omega_{M}\otimes o_{M}\mathcal{O}_{V}\rightarrow\Omega_{V}\rightarrow 0$ .

Let $\Theta_{M}=\mathcal{O}_{M}(TM)$ be the tangent sheaf of $M$ . We define the tangent
sheaf $\ominus_{V}$ of $V$ by $O-_{V}=\prime\mu omo_{V}(\Omega_{V}, \mathcal{O}_{V})$ , which is independent of
the embedding $V\leftrightarrow M$ . $bom$ the above sequence, we have the exact
sequence

$0\rightarrow\Theta_{V}\rightarrow\Theta_{M}\otimes o_{M}\mathcal{O}_{V}\rightarrow N_{V}\rightarrow \mathcal{E}xt_{O_{V}}^{1}(\Omega_{V}, \mathcal{O}_{V})\rightarrow 0$ .

Setting $\mathcal{E}=\mathcal{E}xt_{\mathcal{O}_{V}}^{1}(\Omega_{V}, \mathcal{O}_{V})$ , we get, from Propositions 4.3 and 4.4,

$ch_{*}(\Theta_{V})=ch^{*}(\tau_{V})\wedge[V]+ch_{*}(\mathcal{E})$ .

If $p$ is an isolated singular point of $V$ , by the Riemann-Roch theorem
for the embedding $pc_{-\rangle}M$ , we have $ch_{*}(\mathcal{E})=\tau(V,p)[p]$ , where $\tau(V,p)=$

$dim\mathcal{E}xt_{O_{V}}^{1}(\Omega_{V}, \mathcal{O}_{V})_{p}$ is the Tjurina number of $V$ at $p$ . Thus we have
the following :

Theorem 5.1. Let $V$ be an $LCI$ of dimension $n(\geq 1)$ defined by
a section with isolated singularities $p_{1}$ , $\ldots,p_{s}$ . For the tangent sheaf $O-_{V}$

of $V$ , we have

$ch_{*}(\Theta_{V})=ch^{*}(\tau_{V})\wedge[V]+\sum_{i=1}^{s}\tau(V,p_{i})[p_{i}]$ ,

$c_{*}(\Theta_{V})=c^{*}(\tau_{V})\wedge[V]+(-1)^{n+1}(n-1)!\sum_{i=1}^{s}\tau(V,p_{i})[p_{i}]$ .
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Note that the class $c^{*}(\tau_{V})\wedge[V]$ coincides with the canonical class
of [ $F$ , Example 4.2.6], [FJ] in this case.

Let $(V,p)$ be an isolated complete intersection singularity. If it ad-
mits a good $\mathbb{C}^{*}$ -action in the sense of [Loo, $9.B$ ], $\tau(V,p)=\mu(V,p)$ , the
Milnor number of $V$ at $p$ ( $[G,$ $3$ . Satz], [Loo, (9.10) Proposition]). On the
other hand, for a variety as in Theorem 5.1, the Schwartz-MacPherson
class $c_{*}(V)$ of $V$ is given by [Sul]

$c_{*}(V)=c^{*}(\tau_{V})\wedge[V]+(-1)^{n+1}\sum_{i=1}^{s}\mu(V,p_{i})[p_{i}]$ .

Hence we have

Corollary 5.2. Let $V$ be as in Theorem 5.1 with $n=1\langle jr2$ . If
$V$ admits a good $\mathbb{C}^{*}$ -action near each singular point $p_{i}$ , then

$c_{*}(\Theta_{V})=c_{*}(V)$ .

Remark 5.3. It would be an interesting problem to compare the
class $ch_{*}(\mathcal{F})$ with the homology Chern character of $\mathcal{F}$ as defined in
[Sc2].
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Local types of singularities of plane curves
and

the topology of their complements

Hiro-o Tokunaga1

\S Introduction

Let $B$ be a reduced plane curve in $P^{2}=P_{C}^{2}$ . After Zariski’s famous
article [37], there have been many results on the topology of $P^{2}\backslash B(see$

References of [8], for example). The main purpose of this article is to
survey some of recent progress on the topology of $P^{2}\backslash B$ with a special
emphasis on the case of $degB=6$ , including a new example of a Zariski
pair. Throughout this article, our fundamental question is the following:

Problem 0.1. What one can say about the topology of $P^{2}\backslash B$

just from the data of local types of singularities of $B$ ?

Hereafter we simply say the confifiguration of singularities in the place
of the data of local topological types of singularities.

As Problem 0.1 seems to be rather vague, we consider more specific
problem:

Problem 0.2. Under what condition on the configuration of sin-
$gularities$

?

of B, can one determine the (non-) commutativity of $\pi_{1}(P^{2}\backslash B)$

Even Problem 0.2 is still by no means easy. To know how subtle
this problem is, let us recall Zariski’s famous example:

Example 0.3 (Zariski [37], [38]). Let $(B_{1}, B_{2})$ be a pair of sex-
tic curves with 6 cusps such that
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(i) there exists a conic, $C$ , passing through the 6 cusps for $B_{1}$ , while
(ii) there exists no such conic as in (i) for $B_{2}$ .

For these sextic curves, $\pi_{1}(P^{2}\backslash B_{1})\not\cong\pi_{1}(P^{2}\backslash B_{2})$ .

Remark 04 $\cdot$ More precisely, $\pi_{1}(P^{2}\backslash B_{1})\cong Z/2Z*Z/3Z$ . For
$B_{2}$ , Oka found an explicit example such that $\pi_{1}(P^{2}\backslash B_{2})\cong Z/6Z$ in
[22]. It is, however, still unknown whether $\pi_{1}(P^{2}\backslash B_{2})\cong z/6Z$ always
holds for any sextic curve of second type.

As Zariski’s example shows, in general, just the configuration of
singularities is not enough to determine whether $\pi_{1}(P^{2}\backslash B)$ is abelian
or non-abelian. Nevertheless, under some particular conditions, we are
able to determine it. Let us begin with the cases when $\pi_{1}(P^{2}\backslash B)$ is
abelian. The first statement is

Theorem 0.5 (Deligne-Fulton [7], [12]). If $B$ has only nodes,
then $\pi_{1}(P^{2}\backslash B)$ is abelian.

After this statement, Nori generalized it for irreducible plane curves
having only nodes and cusps.

Theorem 0.6 (Nori, [15]). Suppose that $B$ is an irreducible curve

of degree $d$ and has only nodes and cusps. Let $a$ and $b$ be the numbers of
nodes and cusps, respectively. If $2a+6b<d^{2}$ , then $\pi_{1}(P^{2}\backslash B)$ is abelian.

Note that Example 0.3 shows that the inequality in Theorem 0.6 is
sharp. Shimada recently gave another kind of statement as follows:

Theorem 0.7 (Shimada [28]). Under the same notations and
assumption as in Theorem 0.6, if $2a\geq d^{2}-5d+8$ , then $\pi_{1}(P^{2}\backslash B)$ is
abelian.

All of these statements assure that $\pi_{1}(P^{2}\backslash B)$ is abelian. Although
there are many results on reduced plane curves whose complements have
non-abelian fundamental groups (see References of [8], for example),
most of them are given by explicit equations; and the defining equations
give much more information on curves than just the configuration of
singularities does. Our main concern in this article is:

(i) To find some condition on the configuration of singularities which
assures that $\pi_{1}(P^{2}\backslash B)$ is non-abelian.

(ii) To look into how good the given condition in (i) is.

To state our result, let us introduce some notation as follows:
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(a) For $x\in Sing(B)$ , we denote its Milnor number by $\mu_{x}$ . We define
the total Milnor number of $B$ by

$\mu_{B}=\sum_{x\in Sing(B)}\mu_{x}$
.

(b) Let $p$ be an odd prime. For $B$ , we define a non-negative integer
$l_{p}$ as follows:

If $p=3$ , $l_{3}=the$ number of singularities of type $A_{3k-1}(k\geq 1)$ and
$E_{6}$ .

If $p\geq 5$ , $l_{p}=the$ number of singularities of type $A_{pk-1}(k\geq 1)$ .

Now we are in position to state our result.

Theorem 0.8. Let $B$ be a reduced plane curve of even degree with
at most simple singularities. Suppose that there exists an odd prime $p$

such that

$l_{p}+\mu_{B}>d^{2}-3d+3$ .

Then $\pi_{1}(P^{2}\backslash B)$ is non-abelian.

A straightforward, but interesting corollary to Theorem 0.8 is:

Corollary 0.9. Let $B$ be a plane curve of even degree with only
nodes and cusps. Let $a$ and $b$ be the number of nodes and cusps, respec-
tively. If $a+3b>d^{2}-3d+3$ , then $\pi_{1}(P^{2}\backslash B)$ is non-abelian.

Note that Corollary 0.9 gives a nice contrast to Theorem 0.6. In fact,
the inequality Corollary 0.9 is equivalent to $2a+6b>2d^{2}-6d+6$ ; and
the left hand side is the same as that of the inequality in Theorem 0.6.
We give examples of plane curves satisfying the conditions in Theorem
0.8 in \S 3.

Now our next question is:

Question 0.10. Is the inequality in Theorem 0.8 best possible /?

As we see in \S 2, our proof for Theorem 0.8 is based on the existence
of non-abelian Galois covering branched along $B$ . Hence the inequality
does not seem to be sharp. Nevertheless, it is best possible when $d=6$ .
In fact, Oka proved the following result in [23].

Theorem 0.11 (Oka [23]). There exists a pair of irreducible sex-
tic curves $(B_{1}, B_{2})$ satisfying the following conditions:

(i) The confifiguration of singularities of $B_{1}$ and $B_{2}$ are the same;

and they are either $3E_{6}$ or $3A_{1}+6A_{2}$ .
(ii) $\pi_{1}(P^{2}\backslash B_{1})\cong z/2Z*Z/3Z$ , while $\pi_{1}(P^{2}\backslash B_{2})\cong z/6Z$ .
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A pair of plane curves as in Example 0.3 and Theorem 0.9 is called
a Zariski pair, precise definition of which is as follows:

Definition 0.12 (cf. [1]). A pair of irreducible plane curves of
the same degree, $(B_{1}, B_{2})$ , is called a Zariski pair if (i) the configura-
tion of singularities of $B_{1}$ and $B_{2}$ are the same, and (ii) $P^{2}\backslash B_{1}$ is not
homeomorphic to $P^{2}\backslash B_{2}$ .

As we see in \S 4, there are several examples for Zariski pairs of sextic
curves satisfying the equality $l_{3}+\mu_{B}=d^{2}-3d+3$ (Theorem 4.1). All of
these are possible candidates showing that the inequality in Theorem 0.8
is sharp. It might be interesting to determine the fundamental groups
of the complements of such curves.

This article consists of five sections. In \S 1, we give a summary on
Galois coverings. In \S 2, we explain how we prove Theorem 0.8. \S 3 and

\S 4 are devoted to examples. In \S 5, we give a method to obtain sextic
curves with the desired properties.

Notations and conventions

Throughout this article, the ground field is always the complex num-
ber field $C$ . We always understand (unless otherwise explicitly stated)
by variety (resp. surface) a smooth projective variety (resp. surface)

defined over $C$ . We denote the rational function field of $X$ by $C(X)$ .

Let $X$ be a normal variety, and let $Y$ be a variety. Let $\pi$ : $X\rightarrow Y$

be a finite morphism from $X$ to Y. We define the branch locus of $f$ ,
which we denote by $\triangle(X/Y)$ or $\triangle(f)$ , as follows:

$\triangle(X/Y)=\{y\in Y|\beta(\pi^{-1}(y))<deg\pi\}$ .

For a divisor $D$ on $Y$ , $\pi^{-1}(D)$ denotes the set-theoretic inverse image
of $D$ , while $\pi^{*}(D)$ denotes the ordinary pullback. Also, Supp $D$ means
the supporting set of $D$ .

Let $\pi$ : $X\rightarrow Y$ be a $D_{2p}$ covering of Y. Morphisms, $\beta_{1}$ and $\beta_{2}$ , and
the variety $D(X/Y)$ always mean those defined in \S 1.

Let $W$ be a finite double covering of a surface $\Sigma$ . The “ canonical
resolution” of $W$ always means the resolution given by Horikawa in [13].

Let $S$ be an elliptic surface over $B$ . We call $S$ minimal if the fibration
is relatively minimal. In this paper, we always assume that an elliptic
surface is minimal. For singular fibers of an elliptic surface, we use the
notation of Kodaira [14], and for its configuration, we use the notation
as in [25].

Let $D_{1}$ , $D_{2}$ be divisors.
$D_{1}\sim D_{2}$ : linear equivalence of divisors.
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$D_{1}\approx D_{2}$ : algebraic equivalence of divisors.
$D_{1}\approx_{Q}D_{2}$ : $Q$ algebraic equivalence of divisors.
For simple singularities of a plane curve, we use the same notation

as that in [2].

\S 1. Preliminaries

1. Galois coverings of algebraic varieties
Let $Y$ be a normal projective variety, and let $X$ be a normal variety

with a finite morphism $\pi$ : $X\rightarrow Y$ . Then $C(X)$ is a finite extension of
$C(Y)$ .

Definition 1.1. We call $\pi$ : $X\rightarrow Y$ a Galois covering if $C(X)$ is
a Galois extension of $C(Y)$ .

Remark 1.2. Let $X^{/}$ be the $C(X)$-normalization of Y. Then $ X\cong$

$X^{J}$ over $Y$ by the uniqueness for the $C(X)$-normalization of Y.

The following proposition is fundamental in connecting branched
coverings with $\pi_{1}(Y\backslash B)$ . For its proof, see [30].

Proposition 1.3. Let $Y$ be a variety, $X$ be a normal variety with
$a$ fifinite morphism $\pi$ : $X\rightarrow Y$ , and let $B$ be the branch locus of $\pi$ . If
$C(X)$ is a Galois extension of $C(Y)$ with the Galois group, $G$ , then there
exists a surjective homomorphism $\pi_{1}(Y\backslash B)\rightarrow G$ .

Corollary 1.4. Let $Y$ be a variety, and let $B$ be a reduced divisor
on Y. If there exists a Galois covering $\pi$ : $X\rightarrow Y$ branched along $B$

with non-abelian Galois group, then $\pi_{1}(Y\backslash B)$ is non-abelian.

2. $D_{2p}$ coverings
Let $p$ be an odd prime. Let $\pi$ : $X\rightarrow Y$ be a Galois covering. We

call $X$ a $D_{2p}$ covering if $Ga1(C(X)/C(Y))$ is a dihedral group of order
$2p$ . In this subsection, we give a summary on $D_{2p}$ coverings. For details,
see [29] and [33].

Let $\pi$ : $X\rightarrow Y$ be a $D_{2p}$ covering of a variety Y. Put $D_{2p}=$

$\langle\sigma, \tau|\sigma^{2}=\tau^{p}=(\sigma\tau)^{2}=1\rangle$ . The invariant subfield, $C(X)^{\tau}$ , of $C(X)$ is a
quadratic extension of $C(Y)$ . Let $D(X/Y)$ be the $C(X)^{\tau}$-normalization
of Y. Then $D(X/Y)$ is a double covering of $Y$ satisfying the following
commutative diagram:
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where $\beta_{1}$ : $D(X/Y)\rightarrow Y$ is a double covering of $Y$ and $\beta_{2}$ : $ X\rightarrow$

$D(X/Y)$ is a $p$-fold cyclic covering of $D(X/Y)$ .

With these notation, we have the following result in constructing a
$D_{2p}$ covering of Y.

Proposition 1.5. Let $f$ : $Z\rightarrow Y$ be a smooth fifinite double cover-
ing of a smooth projective variety Y. Let $\sigma$ be the involution determined
by the covering transformation of $f$ . Suppose that there exist three ef-
fective divisors $D_{1}$ , $D_{2}$ , and $D_{3}$ on $Z$ satisfying the following conditions:

(i) $D_{1}$ is positive. $D_{1}$ and $\sigma^{*}D_{1}$ have no common component.

(ii) If $D_{1}=\sum_{i}a_{i}D_{i}^{(1)}$ denotes the decomposition into irreducible
components, then $0<a_{i}\leq(p-1)/2$ for every $i$ .

(iii) $D_{1}+pD_{2}\sim\sigma^{*}D_{1}+pD_{3}$ .
Then there exists a $D_{2p}$ covering, $X$ , of $Y$ such that (i) $Z=D(X/Y)$

and (ii) $\triangle(X/Y)=\triangle(Z/Y)\cup f(Supp(D_{1}))$ .

We modify Proposition 1.5 slightly so that it is rather convenient for
our purpose. Let $B$ be as in Theorem 0.8. Let $f’$ : $Z^{/}\rightarrow P^{2}$ be a double
covering with $\triangle(f^{J})=B$ . Since $B$ has at most simple singularities, $Z’$

has at most rational double points. Let $\mu$ : $Z\rightarrow Z^{/}$ be the canonical
resolution of $Z^{J}$ (see [2] III, \S 7 or [13] \S 2 for its definition). By the
definition, we have the following diagram:

where $q$ is a sequence of blowing-ups and $f$ is a double covering branched
along the proper transform of $B$ and (possibly empty) some irreducible
component of the exceptional divisor of $q$ . We put $\tilde{f}=q\circ f$ . Then:

Proposition 1.6. Let $f$ : $ Z\rightarrow\Sigma$ be as above, and let $\sigma$ be the
covering transformation. Suppose that there exists a pair of a positive
divisor $D$ and a line bundle $\mathcal{L}$ satisfying the condition as follows:

(i) If we let $D=\sum_{i}a_{i}D_{i}$ be the irreducible decomposition, then
$gcd(\{a_{i}\},p)=1$ ; and $D$ and $\sigma^{*}D$ have no common component.

(ii) $D-\sigma^{*}D\sim p\mathcal{L}$ .

Then there exists a $p$-cyclic covering $g$ : $S\rightarrow Z$ such that
(i) $\triangle(g)\subset Supp(D+\sigma^{*}D)$ and
(ii) the composition $f\circ g$ gives rise to a $D_{2p}$ covering of $\Sigma$ .

For a proof, see [33] Proposition 1.1.

Corollary 1.7. With the same notation as in Proposition 1.6, if
Supp(D+\sigma *D) is contained in the supporting set of the exceptional
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divisor of $\mu$ , then there exists a $D_{2p}$ covering, $S^{J}$ , of $P^{2}$ branched along
$B$ .

Proof. Let $S^{J}$ be the Stein factorization of $q\circ f$ ; and we denote
the induced morphism by $\pi$ : $S^{J}\rightarrow P^{2}$ . Since $C(S^{J})\cong C(S)$ and
$C(P^{2})\cong C(\Sigma)$ , $\pi$ is a $D_{2p}$ covering of $P^{2}$ . Hence it is enough to show
$\triangle(\pi)=B$ . By the assumption in the construction of $S$ , the branch locus
of fog is contained in the supporting set of the proper transform, $\overline{B}$ , of
$B$ and the exceptional divisor of $\mu$ . As the the image of the exceptional
set of $q$ is a subset of Sing(B), we have our statement. Q.E.D.

\S 2. A sketch of a proof of Theorem 0.8

We keep the same notation as those in \S 1. The goal of this section
is to show the following theorem.

Theorem 2.1. Let $B$ be as Theorem 0.8. Suppose that there exists
an odd prime $p$ such that

$l_{p}+\mu_{B}>d^{2}-3d+3$ .

Then there exists a $D_{2p}$ covering branched along $B$ .

Note that Theorem 0.8 easily follows from Theorem 2.1 and Corol-
lary 1.4. To prove Theorem 2.1, it is enough to show that the inequality
assures the existence of a pair of a divisor and a line bundle, $(D, \mathcal{L})$ , on
$Z$ satisfying the conditions in Proposition 1.6 and Corollary 1.7. The
rest of this section is devoted to it.

Let $NS(Z)$ be the N\’eron-Severi group of $Z$ . As $\pi_{1}(P^{2})=\{1\}$ and $B$

has at most simple singularities, by [3], [4] and [6], $\pi_{1}(Z)=\{1\}$ . Hence
$H^{2}(Z, Z)$ is a unimodular lattice with respect to the intersection pairing.
In particular, $NS(Z)=Pic(Z)$ and it is a sublattice of $H^{2}(Z, Z)$ . Let
$T$ be the subgroup of $NS(Z)$ generated by the pull-back of a line of $P^{2}$

and irreducible components of the exceptional divisor of $\mu$ . As we can
easily see, $T$ has a direct decomposition

$T=ZL\oplus x\in Sing(B)\oplus T_{x}$
,

where $L$ is the pull-back of a line of $P^{2}$ and $T_{x}$ is the subgroup of $NS(Z)$
generated by irreducible components of the exceptional divisor arising

from the singularity $f^{\prime^{-1}}(x)$ . Note that the direct decomposition as
above is orthogonal with respect to the intersection pairing.

Suppose that the effective divisor $D$ as in Corollary 1.7 exists. Then
this implies that $NS(Z)/T$ has a $p$-torsion. In constructing $D_{2p}$ cover-
ings, what is important is that the converse of this holds.
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Theorem 2.2. If $NS(Z)/T$ has a $p$-torsion, then there exists an

effective divisor $D$ and a line bundle on $\mathcal{L}$ satisfying the conditions in
Proposition 1.6 and Corollary 1.7.

We give here a rough explanation. For details, see [33].
Let $T^{\beta}=$ { $D\in NS(Z)|nD$ $\in T$ for some $n\in N$ } and let $T^{\vee}=$

$Hom_{Z}(T, Z)$ . Then:
(i) $T^{\perp\perp}=T^{\Downarrow}$ and $T^{\Downarrow}/T\cong(NS(Z)/T)_{tor}$ . Here for a subgroup, $M$ ,

of $H^{2}(Z, Z)$ , we denote its orthogonal complement with respect to the
intersection pairing by $M^{\perp}$ .

(ii) By using intersection pairing, one can identify $ T\#$ with a sub-
group of $T^{\vee}$ . Hence $T^{A}/T\subset T^{\vee}/T\cong z/2Z\oplus\oplus_{x\in Sing(B)}T_{x}^{\vee}/T_{x}$ . Also,
as $T^{\vee}\otimes Q=T\otimes Q$ , we can use a $Q$ divisor in $T_{x}\otimes Q$ as a representative
for an element in $T^{\vee}/T$ . For example, if the singularity $x$ is of $A_{n}$ type,
then $T^{\vee}/T\cong Z/nZ$ and we can choose a representative of a generater
of $T^{\vee}/T$ as follows:

$\frac{1}{n+1}D_{x}$ ,

where if $n$ is even,

$D_{x}=n(-O_{1}-\Theta_{n})+(n-1)(\Theta_{2}-\ominus_{n-1})+\cdots+\frac{n}{2}(\Theta_{n/2}-\Theta_{n/2+1})$ ,

and if $n$ is odd,

$ D_{x}=n(\ominus_{1}-\Theta_{n})+(n-1)(\Theta_{2}-\Theta_{n-1})+\cdots$

$+$ $\frac{n-1}{2}(\Theta_{(n-1)/2}-\Theta_{(n+3)/2})+\frac{n+1}{2}\Theta_{(n+1)/2}$ ,

where $\Theta_{i}$ ’s are irreducible components of the exceptional divisor labeled
in such way that $\Theta_{i}O-_{i+1}=1(1\leq i\leq n-1)$ . Note that $\sigma^{*}\Theta_{i}=\Theta_{n+1-i}$

with respect to the covering transformation of $f$ .

Let $\mathcal{L}^{J}$ be any element of $NS(Z)$ that gives rise to a $p$-torsion element,
$\alpha$ , in $NS(Z)/T$ . Then we may assume that $\mathcal{L}^{J}\in T^{Q}$ ; and we have

$\alpha=(\alpha_{L}, (\alpha_{x})_{x\in Sing(B)})$ , $\alpha_{L}\in Z/2Z$ , $\alpha_{x}\in T_{x}^{\vee}/T_{x}$ .

Since $p|\beta(T_{x}^{\vee}/T_{x})$ if and only if either $x$ is of type $A_{pk-1}$ or $x$ is of
type $E_{6}$ and $p=3$ , we may assume that $\alpha_{x}=0$ for other type of
singularities. For $x$ with type $A_{pk-1}$ , by (ii) as above, we may assume
that $\alpha_{x}=i/pD_{x}$ mod$ T$ for some $0<i<p$ . By the above explicit
formula, we can show $\alpha_{x}=1/p(D’-\sigma^{*}D^{J})mod T$ , where $D^{/}$ is an
effective divisor satisfying the condition (i) in Proposition 2.1. For $x$ with
type $E_{6}$ , the situation is similar (see [30] or [33]). Thus, by replacing
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$\mathcal{L}^{J}$ if necessary, we can see there exists an effective divisor $D$ and a line
bundle $\mathcal{L}$ on $Z$ satisfying the conditions in Proposition 1.6 and Corollary
1.7.

We now go on to show that the inequality in Theorem 0.8 implies
the existence of $p$-torsion.

Lemma 2.3. Let $b_{i}(Z)$ be the $i$ -th Betti number of Z. Then we
have

$b_{2}(Z)=d^{2}-3d+4$ .

Proof. The statement easily follows from Lemma 6, [13] and the
Noether formula.

In the following, we make use of some Nikulin theory ([21]). This
argument is a modification of Miranda-Persson’s in \S 4, [18]. A similar
argument is also found in [35].

Suppose that there exists no $p$-torsion in $T^{\perp\perp}/T$ . Then

$S_{p}(T^{\vee}/T)\cong S_{p}((T^{\perp\perp})^{\vee}/T^{\perp\perp})$ ,

where $S_{p}(G)$ denote the $p$-Sylow group of $G$ . On the other hand, by
Proposition 1.2 in [11], we have

$(T^{\perp})^{\vee}/T^{\perp}\cong(T^{\perp\perp})^{\vee}/T^{\perp\perp}$ .

Hence the number of generators, $l_{1}$ , of $S_{p}(G_{T}\perp\perp)\leq rankT^{\perp}=b_{2}(Z)-$

rank $T$ $=d^{2}-3d+4-(\mu_{B}+1)$ . On the other hand, by the assumption we
have $l_{1}\geq l_{p}>d^{2}-3d+3-\mu_{B}$ . This leads us to a contradiction. Q.E.D.

\S 3. Examples

In this section, we give some examples of plane curves satisfying the
inequality in Theorem 0.8. Since $\pi_{1}(P^{2}\backslash B)$ is always abelian for conies,
we start with the case of $degB=4$ .

Example 3.1. $degB=4$ . In this case, $d^{2}-3d+3=7$ .
(i) Let $B$ be a quartic curve with $3A_{2}$ singularities. Then $\mu_{B}=6$ ,

$l_{3}=3$ . Hence the inequality in Theorem 0.8 is satisfied. This implies
that $\pi_{1}(P^{2}\backslash B)$ is non-abelian.

As it is well-known, $\pi_{1}(P^{2}\backslash B)$ is a finite non-abelian group of order
12. In fact, $\pi_{1}(P^{2}\backslash B)\cong B_{3}(P^{1})$ (see [37] or [8])

(ii) Let $B$ be a quartic curve having two irreducible components;
one is a cuspidal cubic, $C$ , and the other is a tangent line, $l$ , at an
inflection point of $C$ . In this case, the singularities of $B$ are of type $A_{5}$

and $A_{2}$ . Hence $\mu_{B}=7$ , $l_{3}=2$ . Hence the inequality in Theorem 0.8
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is satisfied; and $\pi_{1}(P^{2}\backslash B)$ is non-abelian. In [19], one can find more
detailed description.

We now go on to the case of $degB=6$ .

Example 3.2. $degB=6$ . In this case, $d^{2}-3d+3=21$ . There
exists a sextic curve $B$ for every case in the following table. In each
case, the inequality in Theorem 0.8 is satisfied. Hence $\pi_{1}(P^{2}\backslash B)$ is
non-abelian. types of singularities of $B$

$\mu B$
$l3$

1 $6A_{2}+4A_{1}$ 16 6
2 $3E_{6}+A_{1}$ 19 3
3 $2E_{6}+2A_{2}+2A_{1}$ 18 4
4 $E_{6}+4A_{2}+3A_{1}$ 17 5
5 $E_{6}+A_{5}+4A_{2}$ 19 6
6 $E_{6}+A_{11}+A_{2}$ 19 3
7 $E_{6}+A_{8}+A_{3}+A_{2}$ 19 3
8 $E_{6}+A_{8}+2A_{2}+A_{1}$ 19 4
9 $E_{6}+A_{5}+A_{4}+2A_{2}$ 19 3
10 $D_{5}+A_{8}+3A_{2}$ 19 4
11 $E_{6}+A_{5}+A_{3}+2A_{2}+A_{1}$ 19 4
12 $E_{6}+2A_{5}+A_{3}$ 19 3
13 $D_{5}+2A_{5}+2A_{2}$ 19 4
14 $D_{4}+3A_{5}$ 19 3
15 $D_{4}+A_{11}+2A_{2}$ 19 3
16 $3A_{5}+4A_{1}$ 19 3

What is problem here is the existence of curves as above. We here
explain it for No. 1, 2 and 15. For the others, we give a sketch how we
show it in \S 5. Also, for those with $\mu_{B}=19$ , one can check it in [36]

No. 1: $6A_{2}+4A_{1}$ . One obtains such a sextic curve as a generic
plane section of the discriminant variety, Disc $(H^{0}(P^{1}, \mathcal{O}(4))$ , $\mathcal{O}(4))$ (see
[10] for details).

No. 2, 16: $3E_{6}+A_{1}$ and $3A_{5}+4A_{1}$ . These two cases are closely
related to each other. Let $C$ be a nodal cubic curve and let $l_{1}$ , $l_{2}$ , and $l_{3}$

be three tangent lines at three inflection points of $C(C$ has exactly three
inflection points). A sextic curve for No. 16 is given by $C+l_{1}+l_{2}+l_{3}$ .
Next, consider a Cremona transformation given by these three tangent
lines. Then the image of $C$ gives a sextic curve for No. 2.

Remark 3.3. By Proposition 5.6 in [34] and [23], one can see that
sextic curves for No. 1 -10 are irreducible torus curves of type $(2, 3)$

(see [23] for torus curves). It might be interesting to study them sys-
tematically as in [23].
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Remark 3.4. The author does not know any single example of $B$

with $degB\geq 8$ satisfying the inequality in Theorem 0.8. The condition
may be too strong for curves of higher degree. In fact, in [26], Sakai
proved:

Theorem 3.5 (Sakai). Let $b$ be the number of cusps. Then

$b\leq\frac{5}{16}d^{2}-\frac{3}{8}d$ .

Suppose that $B$ has only cusps. Then Sakai’s inequality implies that
there is no $B$ with $3b>d^{2}-3d+3$ if $d\geq 29$ . Hence our inequality is too
strong for curves of higher degree. This is something one can expect,
since Theorem 0.8 comes from Theorem 2.1, which gives very rough
information on $\pi_{1}(P^{2}\backslash B)$ . Nevertheless, as we see in next section, the
inequality in Theorem 0.8 is very nice estimate for sextic curves when
$p=3$ .

\S 4. 4 Some sextic curves with $l_{3}+\mu_{B}=21$

We look into what happens for sextic curves when the equality $l_{3}+$

$\mu_{B}=21$ holds. For such cases, as we have already seen Theorem 0.9, we
are not able to determine whether $\pi_{1}(P^{2}\backslash B)$ is abelian or not. In this
section, we give other examples of Zariski pairs with equality $l_{3}+\mu_{B}=$

$21$ . More precisely, we give two kinds of sextic curves, $B_{1}$ and $B_{2}$ , such
that (i) both of them have the same configuration of singularities, (ii)
$B_{1}$ is the branch locus for some $D_{6}$ covering, while $B_{2}$ can never be.
This means that $D_{6}$ is a homomorphic image of $\pi_{1}(P^{2}\backslash B_{1})$ , while there
is no homomorphism from $\pi_{1}(P^{2}\backslash B_{2})$ to $D_{6}$ . Now we give a list for the
configurations of singularities.

Theorem 4.1. For each case in the following table, there exists $a$

pair of irreducible sextic curves $(B_{1}, B_{2})$ with the properties (i) and (ii)
as above.

Confifiguration of singularities of $B$

1 $E_{6}+A_{8}+A_{2}+2A_{1}$

2 $E_{6}+A_{5}+2A_{2}+2A_{1}$

3 $E_{6}+4A_{2}+2A_{1}$

4 $2E_{6}+A_{5}+A_{1}$

5 $2E_{6}+2A_{2}+A_{1}$

Configuration of singularities of $B$

1 $E_{6}+A_{8}+A_{2}+2A_{1}$

2 $E_{6}+A_{5}+2A_{2}+2A_{1}$

3 $E_{6}+4A_{2}+2A_{1}$

4 $2E_{6}+A_{5}+A_{1}$

5 $2E_{6}+2A_{2}+A_{1}$

Remark 4-2. (i) Note that No 2 is not contained in the examples
in [31] and [32]. We show that the example does exist in \S 5.

(ii) For all cases, one of geometric differences between $B_{1}$ and $B_{2}$

is the existence of a conic, $C$ , as in Example 0.3. Namely, for $B_{1}$ there
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exists a conic, $C$ , with properties (i) $C\cap B_{1}\subset Sing(B_{1})$ ; and the type of
singularities in $C\cap B_{1}$ are either $A_{3k-1}$ or $E_{6}$ , and (ii) the intersection
multiplicity at $A_{3k-1}$ (resp. $E_{6}$ ) is $2k$ (resp. 4), while there exists no
such conic for $B_{2}$ . In [9], Degtyarev conjectured that there exist exact
one rigid isotopy class for a sextic curve having the configuration of
singularities No 1, 2 and 4 in Theorem 4.1. Our examples show that his
conjecture is false for these cases.

\S 5. Existence of sextic curves

The main purpose of this section is to explain how one gets sextic
curves with the prescribed properties as in \S 3 and \S 4. The method that
we explain here is the one in [31] and [32].

Let $\varphi$ : $\mathcal{E}\rightarrow P^{1}$ be an elliptic $K3$ surface with a section $s_{0}$ , i.e.,

a Jacobian elliptic $K3$ surface. It is well-known that such surfaces are
always obtained in the following way(cf. [17]):

Let $F_{4}$ be the Hirzebruch surface of degree 4, i.e., $F_{4}=P(\mathcal{O}_{P^{1}}\oplus$

$\mathcal{O}_{P^{1}}(4))$ . Let $\triangle 0$ and $\triangle_{\infty}$ be the negative and positive section, respec-
tively. Let $T$ be a reduced divisor on $F_{4}$ such that (i) $T\sim 3\triangle_{\infty}$ and
(ii) $T$ has at most simple singularities. As $\triangle 0+T\sim 3\triangle_{\infty}\sim 4\triangle 0+12f$ ,

where $f$ denotes the class of a fiber $F_{4}\rightarrow P^{1}$ , there exists a double cov-
ering, $\mathcal{E}^{/}$ , of $F_{4}$ branched along $\triangle 0+T$ . Let $\mu$ : $\mathcal{E}\rightarrow \mathcal{E}’$ be the canonical
resolution, which satisfies the following diagram:

$\mathcal{E}’$

$\underline{\mu}$

$\mathcal{E}$

$F_{4}\downarrow$

–
$\Sigma\downarrow$

,

where $\Sigma\rightarrow F_{4}$ is a composition of blowing-ups so that the branch locus
of $\mathcal{E}\rightarrow\Sigma$ is smooth. Then $\mathcal{E}$ is a $K3$ surface with a Jacobian elliptic
fibration induced by the ruling $F_{4}\rightarrow P^{1}$ ; and its section $s_{0}$ comes from
$\triangle 0$ .

We can also explain the above construction in another way as fol-
lows:

Since $\varphi$ : $\mathcal{E}\rightarrow P^{1}$ is a Jacobian elliptic fibration, the generic fiber
of $\varphi$ is an elliptic curve, $\mathcal{E}_{C(P^{1})}$ , over $C(P^{1})$ ( $s_{0}$ gives a reference point).
Considering $s_{0}$ as the zero, we can equip $\mathcal{E}_{C(P^{1})}$ with additive group
structure. Let $\sigma$ denote the inverse morphism with respect to the group
law on $\mathcal{E}_{C(P^{1})}$ . It induces a fiber preserving involution on $\mathcal{E}$ , which we
also denote by $\sigma$ . Consider the quotient surface $\mathcal{E}/\langle\sigma\rangle$ . $\mathcal{E}/\langle\sigma\rangle$ is nothing
but $\Sigma$ in the above diagram, and it is not minimal in general. Blowing
down (-1) curves contained in fibers not meeting $\triangle 0$ in an appropriate
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order, we have $F_{4}$ . Let $MW(\mathcal{E})$ be the Mordell-Weil group of $\mathcal{E}$ , i.e., the
group of sections of $\varphi$ . Now we can easily see:

Lemma 5.1. (i) $\triangle 0+T$ is the image of the locus of 2-torsions,
$T_{2}(\mathcal{E})$ , with respect to the group law.

(ii) $T$ is irreducible if and only if the Mordell-Weil group, $MW(\mathcal{E})$ ,
has no 2-torsion point.

We now consider when one can blow down $\Sigma(=\mathcal{E}/\langle\sigma\rangle)$ to $P^{2}$ , not
to $F_{4}$ , in such a way that the image of $T_{2}(\mathcal{E})$ is a sextic curve. There
are several ways to do it ([24]), and we here explain one of them.

Lemma 5.2. If $\varphi$ : $\mathcal{E}\rightarrow P^{1}$ has a singular fifiber of type $I_{n}(n\geq 6)$ ,
then one can blow down $\Sigma$ to $P^{2}$ ; and the image of $T_{2}(\mathcal{E})$ is a sextic curve
with an $E_{6}$ singularity.

Proof. The action of $\sigma$ on an $I_{n}$ fiber is as follows (cf. [5], [20]):
Label irreducible components of an $I_{n}$ fiber in such a way that

$\Theta_{0}\Theta_{1}=\cdots=\Theta_{n-1}\ominus_{0}=1$ , $\Theta_{0}s_{0}=1$ .

$n$ : odd

$n$ : even
(Figure 1)

Then $\sigma^{*}\Theta_{i}=\Theta_{n-i}$ and $\sigma^{*}\Theta_{0}=\Theta_{0}$ . Hence the image of an $I_{n}$ fiber
in $\Sigma$ is a tree of $([n/2]+1)P^{1}$ ’s, $E_{i}(i=0, \ldots, [n/2])$ , such that

$E_{i}E_{i+1}=1$ , $(0\leq i\leq[\frac{n}{2}]-1)$ , $E_{0}\overline{s}_{0}=1$ ,

where $\overline{s}_{0}$ is the image of $s_{0}$ , and

$E_{0}^{2}=E_{[n/2]}^{2}=-1$ , $E_{i}^{2}=-2$ , $1\leq i\leq[\frac{n}{2}]-1$ .
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In blowing down $\Sigma$ to $F_{4}$ , we first blow down $E_{[n/2]}$ , then $E_{[n/2]-1}$ ,
$E_{[n/2]-1}$ and so on. In order to blow down $\Sigma$ to $P^{2}$ , we do it in a
different way. Namely, we first blow down $E_{0}$ , then $E_{1}$ and $E_{2}$ in this
order. Then $\overline{s}_{0}$ becomes a (-1) curve; and one can blow down it to
a point, $x$ . Then we blow down $E_{[n/2]}$ , $ E_{[n/2]-1},\ldots$ , $E_{4}$ in this order.
Blowing down (-1) curves in the other fibers in the same way as we
do in blowing down $\Sigma$ to $F_{4}$ , we have $P^{2}$ . Since (i) the image of $T_{2}(\mathcal{E})$

has an $E_{6}$ singularity at $x$ , (ii) the image of a general fiber for elliptic
fibration is a line through $x$ , we infer that the image of $T_{2}(\mathcal{E})$ is a sextic
curve, $B_{\mathcal{E}}$ , with an $E_{6}$ singularity. Q.E.D.

Remark 5.3. In a similar manner, one can also blow down $\Sigma$ to
$P^{2}$ if $\varphi$ has $3I_{2}$ (resp. $I_{4}$ and $I_{2}$ ) singular fibers. In this case, the
corresponding triple point is $D_{4}$ (resp. $D_{5}$ ).

Corollary 5.4. $B_{\mathcal{E}}$ is irreducible if and only if $MW(\mathcal{E})$ has no
2-torsion point.

Definition 5.5. We call the singular fibers as in Lemma 5.2 and
Corollary 5.3 the preferred fifibers.

As one can easily see from its construction $B_{\mathcal{E}}$ , the type of a singu-
larity of $B_{\mathcal{E}}$ other than $E_{6}$ , $D_{4}$ and $D_{5}$ as in Lemma 5.2 and Remark
5.3 has something to do with that of the corresponding singular fiber of
$\varphi$ . We give a table for its correspondence (cf. [17]):

Lemma 5.6. The relation between the type of a non-preferred sin-
gular fifiber of $\varphi$ and that of the corresponding singularity of $B_{\mathcal{E}}$ is as
follows;

With the argument so far, the existence of the sextic curves as in
Example 3-15 is reduce to that of Jacobian elliptic $K3$ surfaces with the
prescribed configuration of singular fibers. Here we give a table for that.

Lemma 5.7. A sextic curve with singularities as in one of the left
column exists if a Jacobian elliptic $K3$ surface with the confifiguration of
singular fifibers in the same row of the right column exists.
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3 $2E_{6}+2A_{2}+2A_{1}$ $I_{6}$ , $IV^{*}$ , $2I_{3}$ , $2I_{2}$

4 $E_{6}+4A_{2}+3A_{1}$ $I_{6}$ , $4I_{3}$ , $3I_{2}$

5 $E_{6}+A_{5}+4A_{2}$ $2I_{6}$ , $4I_{3}$

$\theta$ $E_{6}+A_{11}+A_{2}$ $I_{6}$ , $I_{12}$ , $I_{3}$ , $3I_{1}$

7 $E_{6}+A_{8}+A_{3}+A_{2}$ $I_{6}$ , I9, $I_{4}$ , $I_{3}$ , $2I_{1}$

8 $E_{6}+A_{8}+2A_{2}+A_{1}$ $I_{6}$ , I9, $2I_{3}$ , $I_{2}$ , $I_{1}$

9 $E_{6}+A_{5}+A_{4}+2A_{2}$ $2I_{6}$ , $I_{5}$ , $2I_{3}$ , $I_{1}$

10 $D_{5}+A_{8}+3A_{2}$ $I_{4}$ , $I_{2}$ , $I_{9}$ , $3I_{3}$

11 $E_{6}+A_{5}+A_{3}+2A_{2}+A_{1}$ $2I_{6}$ , $I_{4}$ , $2I_{3}$ , $I_{2}$

12 $E_{6}+2A_{5}+A_{3}$ $3I_{6}$ , $I_{4}$ , $2I_{1}$

13 $D_{5}+2A_{5}+2A_{2}$ $I_{2}$ , $I_{4}$ , $2I_{6}$ , $2I_{3}$

14 $D_{4}+3A_{5}$ $3I_{2}$ , $3I_{6}$

15 $D_{4}+A_{11}+2A_{2}$ $3I_{2}$ , $I_{12}$ , $2I_{3}$

For No. 4 -15, such elliptic K3 surfaces exist by [18]. For No. 3,
one obtains it in the same way as in Lemma 4.2, [32]. Hence, by Lemma
5.7, there exist sextic curves for No. 3- 15 in Example 3.2.

Now we go on to Theorem 4.1. An easy but key lemma to obtain a
pair of sextic curves having the same configuration of singularities is as
follows:

Lemma 5.8. Let $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$ be Jacobian elliptic $K3$ surfaces such
that

(i) the confifigurations of non semi-stable singular fifibers of $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$

are the same, and
(ii) the confifigurations of semi-stable singular fifibers $of\mathcal{E}_{1}$ is $I_{6}$ , $ I_{n_{1}},\ldots$ ,

$I_{n_{s}}(n_{i}\geq 2)$ , $rI_{1}$ , while that of $\mathcal{E}_{2}$ is I7, $I_{n_{1}},\ldots,I_{n_{s}}(n_{i}\geq 2)$ , $(r-1)I_{1}$ .
Then the confifiguration of singularities of $B_{\mathcal{E}_{1}}$ is the same as that of

$B_{\mathcal{E}_{2}}$ .

Proof. FFom Lemmas 5.2 and 5.6, the statement follows. Q.E.D.

Corollary 5.9. Let $\varphi_{1}$ : $\mathcal{E}_{1}\rightarrow P^{1}$ and $\varphi_{2}$ : $\mathcal{E}_{2}\rightarrow P^{1}$ be elliptic
$K3$ surfaces having the confifigurations of singular fifibers as in the table
below. Then the confifigurations of singularities of $B_{\mathcal{E}_{1}}$ and $B_{\mathcal{E}_{2}}$ are the
right column in the table.

Singular fibers of $\mathcal{E}_{1}$ Singular fibers of $\mathcal{E}_{2}$ Singularities of $B\epsilon_{i}(i=1,2)$

1 $I_{6}$ , $I_{9}$ , $I_{3},2I_{2},2I_{1}$ $I_{7}$ , $I_{9}$ , Is, $2I_{2}$ , $I_{1}$ $E_{6}+A_{8}+A_{2}+2A_{1}$

2 $2I_{6},2I3,2I_{2},2I_{1}$ I7, $I_{6},2I_{3},2I_{2}$ , $I_{1}$ $E_{6}+A_{5}+2A_{2}+2A_{1}$

$435$ $I_{6},IV^{*},2I_{3},I_{2},2I_{1}2I_{6},IV^{*},I_{2},2I_{1}I_{6},4I_{3},2I_{2},2I_{1}$ $I_{7},IV^{*},2I_{3},I_{2},I_{1}I_{7},4I_{3},2I_{2},I_{1}I_{7},IV^{*},I_{2},I_{1}$ $E_{6}+4A_{2}+2A_{1}2E_{6}+2A_{2}+A_{1}2E_{6}+A_{5}+A_{1}$

Singular fibers of $\mathcal{E}_{1}$ Singular fibers of $\mathcal{E}_{2}$ Singularities of $B\epsilon_{i}$ $(i=1, 2)$

1 $I_{6}$ , $I_{9}$ , $I_{3}$ , $2I_{2}$ , $2I_{1}$ $I_{7}$ , I9, $I_{3}$ , $2I_{2}$ , $I_{1}$ $E_{6}+A_{8}+A_{2}+2A_{1}$

2 $2I6$ , $2I3$ , $2I_{2}$ , $2I_{1}$ $I_{7}$ , $I_{6}$ , $2I_{3}$ , $2I_{2}$ , $I_{1}$ $E_{6}+A_{5}+2A_{2}+2A_{1}$

3 $I_{6}$ , $4Is$ , $2I_{2}$ , $2I_{1}$ $I_{7}$ , $4I_{3}$ , $2I_{2}$ , $I_{1}$ $E_{6}+4A_{2}+2A_{1}$

4 $2I_{6}$ , $IV^{*}$ , $I_{2}$ , $2I_{1}$ I7, $IV^{*}$ , $I_{2}$ , $I_{1}$ $2E_{6}+A_{5}+A_{1}$

5 $I_{6}$ , $IV^{*}$ , $2I_{3}$ , $I_{2}$ , $2I1$ $ I\tau$ , $IV^{*}$ , $2I_{3}$ , $I_{2}$ , $I_{1}$ $2E_{6}+2A_{2}+A_{1}$

In order to prove Theorem 4.1, the following is crucial.



314 H. Tokunaga

Proposition 5.10. Let $B_{\mathcal{E}_{1}}$ and $B_{\mathcal{E}_{2}}$ as in Corollary 5.9. There
exists a $D_{6}$ covering branched along $B_{\mathcal{E}_{i}}$ if and only if $MW(\mathcal{E}_{i})$ has $a$

$3$ -torsion.

We give here an idea for our proof. Let $T_{\varphi_{i}}$ be the subgroup of
$NS(\mathcal{E}_{i})$ generated by the zero section, a general fiber and irreducible com-
ponents of singular fibers not meeting the zero section. Then $ MW(\mathcal{E}_{i})\cong$

$NS(\mathcal{E}_{i})/T_{\varphi}$ by [27]. Hence this indicates our proof is done in a similar
way to that of Theorem 2.1. For details, see [31], [32].

Now Theorem 4.1 easily follows from the below:

Proposition 5.11. For each case in Corollary 5.9, there exist el-
liptic surfaces $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$ satisfying the following properties:

(i) $MW(\mathcal{E}_{i})$ has no 2-torsion. In particular, $B_{\mathcal{E}_{t}}$ is irreducible.
(ii) $MW(\mathcal{E}_{2})$ has no 3-torsion.
(iii) $MW(\mathcal{E}_{1})$ has a 3-torsion.

Proof. For all the statements except those for No. 2, one can find
their proof in [31] and [32]. Hence we give a proof for No. 2 only. By
[18], there exists $\mathcal{E}_{2}$ and it satisfies (i) and (ii) by Lemma 1.7 in [32].
For $\mathcal{E}_{1}$ , we construct it in the following way: Let $\psi$ : $Y\rightarrow P^{1}$ be a
rational elliptic surface with singular fibers $3I_{3}$ , $I_{2}$ , $I_{1}$ . Let $v_{1}$ and $v_{2}$

be points of $P^{1}$ such that $\psi^{-1}(v_{i})(i=1,2)$ are $I_{3}$ fibers. Let $g$ be a
degree 2 map from $P^{1}$ to $P^{1}$ branched at $v_{1}$ and $v_{2}$ . Consider an elliptic
$K3$ surface, $\mathcal{E}_{1}$ , obtained as the pull-back surface of $Y$ by $g$ , i.e., the
relatively minimal smooth model of the fiber product $Y\times_{g}P^{1}$ . Then:

Claim. $MW(\mathcal{E}_{1})$ has (i) a 3-torsion, and (ii) no 2-torsion.

Proof of Claim. Since $MW(Y)$ has a 3-torsion (see [25], for exam-
ple), so does $MW(\mathcal{E}_{1})$ . Since the covering transformation of $g$ commutes
with the inverse morphism, $\sigma$ , $T_{2}(\mathcal{E}_{1})$ is a double covering of $T_{2}(Y)$ , and
it is branched at two points on $T_{2}(Y)$ . Hence $T_{2}(\mathcal{E}_{1})$ is irreducible. In
particular, $MW(\mathcal{E}_{1})$ has no 2-torsion by Corollary 5.4. Q.E.D.

Thus we have $\mathcal{E}_{1}$ with the desired properties.

Acknowledgment: The author expresses gratitude to the referee for
$his/her$ comments about the first version of this article.
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