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\S 1. Biographical Sketch

1926, October 2. Born in Chiba, Japan.

1942, April. Entered the Third High School of Japan located at Kyoto
(Noboru Ito, Katsumi Nomizu, Hidehiko Yamabe were his seniors by
one year and Singo Murakami was in the same class).

1945, April. Entered the University of Tokyo. Majored in mathematics.
(Gaishi Takeuchi, Nagayoshi Iwahori, Tsuneo Tamagawa were friends of
this period.)

1948, April. Entered the Graduate School of Tokyo University. Suzuki’s
supervisor was Shokichi Iyanaga. Kenkichi Iwasawa had a profound
influence on Suzuki.

1948-,51. Received a special graduate fellowship from the Government
of Japan.

1951, April to ’52, January. Held a lecturership at Tokyo University of
Education

1952, January to ’52, May. Held a graduate fellowship at University of
Illinois at Urbana-Champaign.
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1952, May. Received the Doctor of Science Degree from the University
of Tokyoin absentia.

1952. Spent two months in the summer at University of Michigan. R.
Brauer was a professor of Mathematics at Michigan. J. Walter, W. Feit
were graduate students there.

1952, September to ’53, May. Held a post-doctoral fellowship at Univer-
sity of Illinois at Urbana-Champaign.

1952, November. Married to a daughter Naoko of Yasuo Akizuki (then
Professor at Kyoto University).

1953, September to ’55, May. Held a research associateship at University
of Illinois.

1955, September. Promoted to an assistant professor at University of
Illinois.

1956, September to ’57, May. Held a research associateship at Harvard
University.

1958, September. Promoted to an associate professor at University of
Illinois.

1959, September. Promoted to a full professor at University of Illinois.

1960, Discovered a new series of finite simple groups $Sz(q)$ .

1960-,61. Held a visiting appointment at the University of Chicago.

1962. Invited to speak at the International Congress of Mathematicians
in Stockholm.

1962-,63. Held a Guggenheim Fellowship.

1962, September to ’63, May. Held a membership at the Institute for
Advanced Study, Princeton.

1967. Discovered a sporadic simple group Suzuki of order 448,345,497,600.

1968-,69. Held a visiting appointment at the Institute for Advanced
Study, Princeton, $NJ$ .

1970. Invited to speak at the International Congress of Mathematicians
in Nice, France.

1974. Received the Academy Prize from the Japan Academy.

1987. The conference of group theory and combinatorics for the occasion
of Suzuki’s 60th birthday was held in Kyoto, Japan.

1991. Awarded an honorary doctoral degree from the University of Kiel,
Germany.

1997. The conference of group theory and combinatorics for the occasion
of Suzuki’s 70th birthday was held in Tokyo, Japan.
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1998, May 31. Died at the age of 71. (Evariste Galois died on May 31,
1832.)

(A cancer was discovered in his liver early in February, 1998. Left for
Japan. Received the same diagnosis. Stayed in the hospital (February 12
- March 13), at a Guest House of the International Christian University
(March 14- April 17). Back to hospital on April 18.)

June 7: Funeral Service at the International Christian University,
Mitaka, Japan.

September 18: Memorial Service at the University of Illinois, Ur-
bana, Illinois.

\S 2. The early work of Michio Suzuki

Among Suzuki’s earliest research papers are:

[2] On the finite group with a complete partition, 1950.

[5] A characterization of simple groups $LF(2,p)$ , 1951.

[6] On finite groups with cyclic Sylow subgroups for all odd primes, 1955.

In [2], Suzuki investigates the structure of a finite group $G$ having a
partition by its subgroups $H_{i}$ , $i=1$ , $\ldots$ , $n$ :

$n$

$G=i=1\cup H_{i}$ , $H_{i}\cap H_{j}=1$ if $i\neq j$ .

A partition of $G$ is called complete if $H_{i}$ is cyclic for all $i=1$ , $\ldots$ , $n$ .

The research on groups having a complete partition goes back at least

to P. Kontorovich [Sur la representation d’un groupe fini sous la forme
d’une somme directe de sous-groupes, I. Rec. Math. (Mat. Sbornik), 5
(47) (1939), 283-296].

In [2] Suzuki considers groups having a complete partition. Exam-

ples of such groups are $PGL(2, q)$ and $PSL(2, q)$ where $q$ is a power
of a prime. In [2], however, Suzuki determines only nonsimple groups
having a complete partition. It is shown first that if $G$ is a nonsimple,
nonsolvable finite group with a complete partition then a minimal nor-
mal subgroup $N$ of $G$ is of index 2. The proof proceeds by induction
on the order of $G$ , since the complete partitionability carries over to its
subgroups and even to its factor groups as Suzuki shows.

Suzuki next shows that the Sylow 2-subgroups of $G$ are dihedral,
and that for any odd prime $p$ , any two distinct Sylow $p$ subgroups of $G$

have a trivial intersection. He then uses a counting argument to obtain
a configuration in which the group $G$ is a sharply triply transitive per-
mutation group acting on the coset space $G/M$ where $M$ is a suitable
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subgroup of $G$ obtained in the counting argument mentioned above.
Therefore Suzuki is able to use the result of Zassenhaus [Kennzeich-
nung.endlicher linearer Gruppen als Permutationsgruppe, Hamb. Abh.,
11(1936), 17-40], who had classified, among other results, all such per-
mutation groups, hence the theorem:

Theorem. Let $G$ be a nonsimple, nonsolvable fifinite group with $a$

complete partition. Then $G$ is isomorphic to the full linear fractional
group $PGL(2, q)$ where $q$ is a power of an odd prime.

Character theory is not used in [2]. This paper shows that Suzuki
was a young mathematician of foresight. He was able to recognize the
importance of the groups $PSL(2, q)$ and Zassenhaus’ work. The concept
of a group having a partition does not appear to be very important on
its own right, but it should be mentioned that the infinite series of new
simple groups $Sz(q)$ discovered by Suzuki in 1960 does have a partition,
though not a complete partition. Suzuki completes the classification of
all (semi) simple groups with a partition in 1961 [18].

As for the paper [5], let us first observe that the subgroups of the
simple groups $PSL(2,p)$ for a prime $p$ are of the types: (1) metacyclic
groups; (2) the alternating group $A_{4}$ of degree 4; (3) the symmetric
group $S_{4}$ of degree 4; or (4) the alternating group $A_{5}$ of degree 5. In [5],
Suzuki characterizes $PSL(2,p)$ by this property.

Let $G$ be a finite simple group such that all of its subgroups are
of types $(1)-(4)$ mentioned above. Suzuki first shows that $G$ possesses
a complete partition in the sense of the paper [2]. Among all papers
of Suzuki, the theory of exceptional characters first appeared here in
[5]. Using this theory and Brauer’s work on a group whose order is
divisible by a prime to the first power, Suzuki was able to show that $G$

possesses an irreducible character of degree $\frac{1}{2}(p\pm 1)$ for some prime $p$ .

He next applies a result of $H.F$ . Tuan [On groups whose orders contains
a prime number to the first power, Ann. of Math., 45(1944), 110-140]

to complete the characterization of $PSL(2, p)$ .

As he recognized the importance of studying the simple groups
$PSL(2, q)$ , he began doing research on them from various points of view
: in [2] as groups having a partition, in [5] as groups having only a special
set of isomorphism classes of subgroups, etc.

Although the papers [2] or [5] of Suzuki might perhaps not be among
his better works, if they are considered as stand-alone papers, the line
of research in this direction served him well and it culminated in the
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discovery of the simple groups $Sz(q)$ and the classification of all Zassen-
haus groups (which was completed by a joint effort of Zassenhaus, Feit,
Ito and Suzuki).

The paper [6] is also part of Suzuki’s continuing efforts to under-
stand the simple groups $PSL(2,p)$ . Its content is fully explained in the
title. Its introduction begins with ’The purpose of this paper is to de-
termine the structure of some finite groups in which all Sylow subgroups
of odd order are cyclic.The assumption on Sylow subgroups simplifies
the structure of groups considerably, but the structure of 2-Sylow sub-
groups might be too complicated to make any definite statement on the
structure of the groups. In this paper, therefore, we shall make another
assumption on 2-Sylow subgroups, $\cdots$ ’.

In fact, he assumes that the Sylow 2-subgroups of $G$ are either (a) di-
hedral or (b) generalized quaternion. The Sylow 2-subgroups of $SL(2,p)$

are, as is well known, generalized quaternion if $p$ is odd. Suzuki shows
that the group $G$ contains a normal subgroup $G_{1}=Z\times L$ of index at
most 2 such that $L\cong PSL(2,p)$ if (a) holds, and $L\cong SL(2,p)$ if (b)
holds. Moreover, $Z$ is a group of odd order all of whose Sylow sub-
groups are cyclic. Frobenius and Burnside treated groups such that all
of their Sylow subgroups are cyclic and showed that all such groups are
solvable, in fact all such groups are metacyclic. Zassenhaus classified all
solvable groups with the same assumption on Sylow subgroups for odd
primes but with the weaker assumption for the prime 2 that a Sylow
2-subgroups has a cyclic subgroup of index 2.

\S 3. Theory of exceptional characters

’Perhaps the first mathematician of the post war generation who
mastered Brauer’s work in group theory was M. Suzuki. He came to
the United States in the early fifties and he has made many significant
contributions to the theory of simple groups (from W. Feit [$R.D$ . Brauer,
Bull (New Series). Amer. Math. Soc, 1 (1979), 1-20]) ’.

Having begun his research on exceptional characters in [5], Suzuki
wrote a couple of papers on the subject [13], [19], and several papers in
which the theory played a crucial role [6], [8], [9], [10], [17].

In his work on the theory of modular representations, Brauer de-
fined the concept of an exceptional character. Brauer and Suzuki inde-
pendently extended this concept of exceptional characters at about the
same time, around 1950. Although the basic assumption of the theory
can be loosened from the one given below, we will show it in the simplest
but most important setting.



6 K. Harada

We are typically interested in a finite group $G$ having an abelian
subgroup $A$ such that the centralizer of every nonidentity element of
$A$ is contained in $A$ (hence it is equal to $A$ itself and $A$ is a maximal
abelian subgroup of $G$ ). The simple group $PSL(2, q)$ contains a couple
of conjugacy classes of such abelian subgroups. For Suzuki, a motivation
to extend the theory of exceptional characters must have come from his

investigation of the simple group $PSL(2, q)$ . Under this condition on $G$

and on $A$ , the following conditions hold:

(1) $A$ is an abelian $TI$ subgroup of $G$ : i.e. $A\cap A^{g}=A$ or 1 for every
element $g$ of $G$ .

(2) The normalizer $N=N_{G}(A)$ of $A$ in $G$ is a Frobenius group.

Let $l$ $=[N : A]$ and $w=\frac{|A|-1}{l}$ . Then $G$ possesses exactly $w$

conjugacy classes of elements represented by nonidentity elements of $A$ .

The Frobenius group $N$ possesses $l$ irreducible characters of degree
1, all of which contain $A$ in their kernels. In addition to those linear
characters, $N$ possesses $w$ irreducible characters not containing $A$ in
their kernels, and all of them have degree $l$ . Those are all the irreducible
characters of $N$ . Thus $N$ possesses exactly $l+w$ irreducible characters.

We can actually obtain the irreducible characters of $N$ of degree $l$

as follows. Let $\{\psi_{i}, i=1, \ldots, w\}$ be the complete set of representa-
tives of $N$-orbits (by conjugation) consisting of nonidentity irreducible
characters of $A$ and $\Psi_{i}=\psi_{i}^{N}$ be the corresponding induced character
of $\psi_{i}$ to $N$ . By computing the inner product directly, we see that $\Psi_{i}$

is an irreducible character of $N$ for all $i$ . We thus obtain $w$ irreducible
characters of $N$ of degree $l$ . The remaining irreducible characters of $N$

(of degree 1) will appear as constituents of the induced character of the
trivial character of $A$ .

Let $\Psi_{i}^{G}$ , $i=1$ , $\ldots$ , $w$ be the corresponding induced characters to $G$ .

We compute that $\Psi_{i}^{G}(g)=0$ if $g$ is not conjugate to an element of $A\backslash 1$

and $\Psi_{i}^{G}(g)=\Psi_{i}(a)$ if $g$ is conjugate to an element $a$ of $A\backslash 1$ . Thus

$\langle\Psi_{i}^{G}, \Psi_{i}^{G}\rangle_{G}-(\Psi_{i}^{G}(1))^{2}=\langle\Psi_{i}, \Psi_{i}\rangle_{N}-(\Psi_{i}(1))^{2}$ .

Therefore, the norm $||\Psi_{i}^{G}||c$ is almost determined by the norm $||\Psi_{i}||_{N}$ ,

but not completely so since $\Psi_{i}^{G}(1)$ is an unknown number. If we can
find a way to eliminate the ambiguity then it will be nice.

Now assume, in addition to (1) and (2) mentioned above:

(3) $w\geq 2$ .

Consider the generalized character $\Psi_{i}-\Psi_{j}$ , $i\neq j$ , of $N$ . Then we
obtain

$||\Psi_{i}^{G}-\Psi_{j}^{G}||=2$
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since $||\Psi_{i}^{G}-\Psi_{j}^{G}||_{G}=||\Psi_{\dot{0}}-\Psi_{j}||_{N}=2$ holds. Therefore, $\Psi_{i}^{G}-\Psi_{j}^{G}=$

$\epsilon_{ij}(\ominus_{i}.-\Theta_{j})$ where $\Theta_{i}$ , $\Theta_{j}$ are irreducible characters of $G$ and $\epsilon_{ij}=\pm 1$ .

Actually $\epsilon_{ij}$ is independent of $i,j$ and so

$\Psi_{i}^{G}-\Psi_{j}^{G}=\epsilon(\ominus_{i}-\Theta_{j})$ , $\epsilon=\pm 1$ .

This implies that
$\Psi_{i}^{G}=\epsilon\Theta_{i}+\triangle$

where $\triangle$ is a generalized character of $G$ independent of $i=1$ , $\ldots$ , $w$ .

The irreducible $characters\ominus_{i}$ , $i=1$ , $\ldots$ , $w$ obtained above are called
exceptional characters of $G$ associated with A. (W. Feit was able to
extend the exceptional character theory by dropping the condition that
$A$ is abelian. Feit still needed that $A$ is nilpotent and is not isomorphic
to a certain type of $p$-group. A further extension was obtained by D.
Sibley.)

Exceptional characters satisfy the following properties. Let $D$ be
the set of all elements of $G$ not conjugate to any element of $A\backslash 1$ .

(I) $\Theta_{i}(\sigma)=\Theta_{j}(\sigma)$ if $\sigma\in D$ for every pair $i$ , $j$ . In particular all excep-
tional characters $\Theta_{i}$ have the same degree.

(II) The exceptional characters are linearly independent on the conju-
gacy classes $\{C_{1}, \ldots, C_{w}\}$ of $G$ represented by the elements of $A\backslash 1$ : i.e.
if $\sum_{i=1}^{w}a_{i}\Theta_{i}(\sigma)=0$ for all $\sigma\in\bigcup_{i=1}^{w}C_{i}$ , then $a_{i}=0$ for all $i=1$ , $\ldots$ , $w$ .

(III) If $B$ is another abelian subgroup of $G$ not conjugate to $A$ but
satisfying the same property as $A$ does, then the exceptional characters
for $A$ are nonexceptional characters for $B$ .

Therefore if $G$ has many nonconjugate abelian subgroups of the same
property, then the majority of the irreducible characters of $G$ will be
exceptional characters associated with some abelian subgroup $A$ . Using
those irreducible characters, one can obtain strong numerical conditions
on the order of $G$ .

\S 4. The $CA$-paper of Suzuki

Theorem ([8]). Let $G$ be $a$ fifinite simple group such that the cen-
tralizer of every nonidentity element is abelian. Then the order of $G$ is
even.

Let us quote Thompson first:

‘A third strategy (or was it a tactic $?$ ) in OOP (Odd Order Paper)
attempted to build a bridge from Sylow theory to character theory. The
far shore was marked by the granite of Suzuki’s theorem on $CA$-groups,
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flanked by W. Feit, M. Hall, Jr. and $J.G$ . Thompson [Finite groups in
which the centralizer of any non-identity element is nilpotent, Math. Z.,
74(1960), 1-17]. The bridge was built of tamely embedded subsets with
their supporting subgroups and associated $tau(\tau)$ isometry. The near
shore was dotted with the $E$-theorems and the uniqueness theorems.

Suzuki’s $CA$-theorem is marvel of cunning. In order to have a gen-
uinely satisfying proof of the odd order theorem, it is necessary, it seems
to me, not to assume this theorem. Once one accepts this theorem as
a step in a general proof, one seems irresistibly drawn along the path
which was followed. To my colleagues who have grumbled about the
tortuous proofs in the classification of simple groups, I have a ready
answer: find another proof of Suzuki’s theorem (from J.G. Thompson
[Finite Non-Solvable Groups, in Group Theory:essays for Philip Hall,
Academic Press, (1984), 1-12]) ’

Now let $G$ be a finite group such that the centralizer of every non-
identity element is abelian. Let us call such a group $G$ a $CA$ group.
Already in $1920’ s$ , it was known that every $CA$-group is either solvable
or simple (L. Weisner [Groups in which the normalizer of every element
except the identity is abelian, Bull. Amer. Math. Soc, 31(1925), 413-
416]). So let us assume that our $CA$ group $G$ is nonabelian and simple.

Let $g$ be a nonidentity element of $G$ . Then the centralizer $A=C_{G}(g)$

is a proper abelian subgroup of $G$ . Let $1\neq h\in A$ . Then $C_{G}(h)\supset A$ .

The fact that $C_{G}(h)$ is abelian forces the equality $C_{G}(h)=A$ , thus $A$ is
a maximal abelian subgroup of $G$ , and $A$ is a $TI$-set. The rudiments of
group theory also show that $A$ is a Hall subgroup of $G$ , i.e.
$gcd(|G : A|, |A|)=1$ . If the normalizer $N=N_{G}(A)$ is equal to $A$ itself,
then $N_{G}(P)=C_{G}(P)$ for a Sylow $p$ subgroup $P$ of $A$ for some prime
$p$ . Since $P$ is a Sylow $p$-subgroup of $G$ also, Burnside’s theorem implies
that $G$ is nonsimple. Thus $N>A$ and $N$ is a Frobenius group. In order
to apply the exceptional character theory effectively, we need one more

condition : $w\geq 2$ where $w=\frac{|A|-1}{l}$ , $l$ $=[N : A]$ . For this purpose,
we henceforth assume that $G$ is of odd order as this is the case Suzuki
treats. Then $|A|$ and $l$ are both odd, and so $w$ can not be equal to 1.
Hence $w\geq 2$ as desired.

Let $\{A_{i}, i=1, \ldots, n\}$ be a complete set of representatives of the
conjugacy classes of maximal abelian subgroups of $G$ and we put $\prime N_{i}=$

$Nc(Ai)$ . We have shown that $N_{i}>A_{i}$ and $N_{i}$ is a Frobenius group for
all $i$ . Moreover, every element of $G\backslash 1$ has a representative in $\bigcup_{i=1}^{n}A_{i}$ .
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Since each $A_{i}$ is a $TI$-set, we have

$|G|=1+\sum_{i=1}^{n}[G:N_{i}](|A_{i}|-1)$ .

Each $A_{i}$ gives rise to $w_{i}=+(|A_{i}|-1/l_{i})$ (where $l_{i}=[N_{i}$ : $A_{i}]$ )
exceptional characters and so $G$ has $\sum_{i=1}^{n}w_{i}exceptiona1$ characters in
total. On the other hand, $G$ possesses precisely 1 $+\sum_{i=1}^{n}w_{i}$ conju-
gacy classes. Therefore every nonidentity irreducible character of $G$ is
exceptional for some $A_{i}$ . Suzuki puts all of this information together
and starts a counting argument. In three pages, he is able to reach a
contradiction.

This $CA$-paper of Suzuki was received by the editors on December
24, 1954 but was published in 1957. Suzuki knew who was the referee. It
was none other than R. Brauer. Apparently Brauer did not understand
some argument of Suzuki and left it there for a (great) while. Suzuki
submitted a revised version two years later and the paper was published
soon.

’At the time its importance was not fully grasped, either by him
or by others, as it seemed to be simply an elegant exercise in character
theory. However, the result and the methods used had a profound impact
on much succeeding work (W. Feit [Obituary written for Michio Suzuki,
Notices of Amer. Math. Sci., Vol. 46(1999) $])$ . ’

L. Redei [Ein Satz \"uber die endlichen einfachen Gruppen, Acta.
Math., 84(1950), 129-153] considered finite simple groups such that ev-
ery proper subgroup of every maximal subgroup is abelian. He showed
that the alternating group of degree 5 is the only such group of even or-
der. One obtains, as a corollary to the main theorem of this paper, that
there is no such group of odd order. Moreover, Suzuki proved that the
word abelian in Redei’s theorem can be replaced by nilpotent to assert
the same conclusion.

Suzuki uses the assumption that $G$ is of odd order only to assert
$w\geq 2$ and so this method can go farther under a suitable assumption.
In fact, R. Brauer, M. Suzuki, and $G.E$ . Wall, more or less independently
proved:

Theorem. If the centralizer of every element of $a$ fifinite group $G$

is abelian then either $G$ is solvable or $G$ is isomorphic to $PSL(2,2^{n})$ .

In the published form of the Brauer-Suzuki-Wall Theorem [9], how-
ever, it is stated as follows:
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Theorem. Let $G$ be a group of even order which satisfifies the

condition:
(1) $I\acute{f}$ two cyclic subgroups $A$ and $B$ of even order of $G$ have a nontrivial
intersection then there exists a cyclic subgroup $C$ of $G$ that contains both
$A$ and $B$ .

(2) $G=[G, G]$ .

Then $G\cong PSL(2, q)$ for some prime power $q$ .

One of my colleagues, Ronald Solomon, and I studied the latter
theorem but could not conclude that it implies the former. We wrote
a letter of inquiry to $G.E$ . Wall, who replied that they worked fairly
independently with not a great deal of communication between them.
He says also that the BSW paper (published version) was written by
R. Brauer who did not have enough time to weld together three rather
different versions and that the $CA$-groups of even order are not covered
in any obvious way (in the published version), but they are covered in
the ’behind scenes’ BSW versions.

\S 5. Zassenhaus groups

Let $V$ be a 2-dimensional vector space over a field $K$ and let

$A=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)$ $\in GL(V)$

be a $2\times 2$ matrix of nonzero determinant with entries in $K$ . The matrix
$A$ acts on $V$ as a linear transformation and so the image of a line (1
dimensional subspace of $V$ ) is again a line. Since the structure of $GL(V)$
depends only on the dimension of $V$ and the field $K$ , we write $GL(2, K)$

for $GL(V)$ also.
Let $P_{1}(K)$ be the set of all lines of V. $GL(2, K)$ acts on $P_{1}(K)$ . The

scalar matrices $A=\left(\begin{array}{ll}\alpha & 0\\0 & \alpha\end{array}\right)$ are the only matrices that act trivially on

$P_{1}(K)$ . Denote by $Z$ the set of all scalar matrices of $GL(2, K)$ . Then
the factor group $PGL(2, K)=GL(2, K)/Z$ acts on $P_{1}(K)$ faithfully.

If $\{u_{1}, u_{2}\}$ and $\{v_{1}, v_{2}\}$ are any pairs of linearly independent vec-
tors of $V$ , then there is an element $g\in GL(2, K)$ such that $g(u_{1})=$

$v_{1}$ , $g(u_{2})=v_{2}$ . This implies that $PGL(2, K)$ is doubly transitive on
$P_{1}(K)$ since if $[u]$ denotes the line spanned by the vector $u\in V$ , then
$\overline{g}([u_{1}])=[v_{1}],\overline{g}([u_{2}])=[v_{2}]$ where $\overline{g}$ is the image of $g\in GL(2, K)$ in
$PGL(2, K)$ .

Put $SL(2, K)=\{g\in GL(2, K)|\det g=1\}$ and $PSL(2, K)=$

$SL(2, K)/Z\cap SL(2, K)$ . As is easily seen, $PSL(2, K)$ is also doubly
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transitive on $P_{1}(K)$ . Let us consider subgroups of $G=SL(2, K)$ that
leave points of $P_{1}(K)$ invariant. Let $\{[u_{1}], [u_{2}]\}$ be a set of two arbitrary
elements of $P_{1}(K)$ . We want to know the structure of the two point
stabilizer $ G_{\alpha,\beta};\alpha$ , $\beta\in P_{1}(K)$ , $\alpha\neq\beta$ . Since $G$ is doubly transitive, we
may assume $\{\alpha=[(1,0)], \beta=[(0,1)]\}$ and we find

$G_{\alpha,\beta}=\{$ $\left(\begin{array}{ll}\alpha & 0\\0 & \alpha^{-1}\end{array}\right)$ , $\alpha\in K\}$ .

In particular, $G_{\alpha,\beta}$ is cyclic. If in addition, $g\in G_{\alpha,\beta}$ fixes a third point,

then $g=\left(\begin{array}{ll}a & 0\\0 & a\end{array}\right)$ and so every three point stabilizer in $\overline{G}=PSL(2, K)$

is trivial.

Definition. A permutation group $G$ acting on a finite set $\Omega$ is
called a Zassenhaus group, if
(1) $G$ is doubly transitive on $\Omega$ ,
(2) the identity element is the only element of $G$ that leaves three distinct
points of $\Omega$ invariant; and,
(3) $G$ does not have a regular normal subgroup.

Remark. Let $G$ be a permutation group on a finite set $\Omega$ . If a
subgroup $H$ of $G$ acts transitively on $\Omega$ and $|H|=|\Omega|$ , then $H$ is called
a regular subgroup of $G$ .

As shown above, $G=PSL(2, K)$ acting on $P_{1}(K)$ is an example
of a Zassenhaus group if $|K|\geq 4$ . Let $G$ be a Zassenhaus group acting
on $\Omega$ and let $\alpha\in\Omega$ . Then the one point stabilizer $H=G_{cx}$ of $\alpha$ is a
transitive but not regular permutation group on $\Omega\backslash \alpha$ such that a two
point stabilizer of $H$ on $\Omega\backslash \alpha$ is trivial and so $H$ is a Frobenius group. By
Frobenius’ theorem, the identity element and the set of all elements of $H$

that do not leave any letter of $\Omega\backslash \alpha$ invariant forms a normal subgroup
$K$ of $H$ . Let $C=H_{\beta}=G_{\alpha,\beta}$ . Then $H$ is a semi-direct product of $K$

and $C$ .

Zassenhaus was the first person to study a group having the property
described in the definition above. In the paper $[op.cit.]$ , Zassenhaus
determined the structure of $G$ under some additional assumptions (see
below). What Zasssenhaus did was to define an algebraic structure
called a near fifield from the one point stabilizer $H$ of $G$ . He then used
the structure of $G$ to show that the near field is almost a field. He
next constructed a suitable geometry of projective lines over a field and
determined the structure of $G$ .

In the paper [Uber endliche Fastk\"orper, Hamb. Abh., 11(1936),
187-220], Zassenhaus was able to determine all near fields of finite order.
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This implies that he completely determined all sharply doubly transitive
permutation groups.

The complete classification of all Zassenhaus groups was carried out
by a combined effort of H.Zassenhaus, W. Feit, N. Ito, and M. Suzuki.

Theorem (H. Zassenhaus [op.cit.]). Let $G$ be a Zassenhaus group
on $\Omega$ . Suppose that $G$ is triply transitive on $\Omega$ . Then $G\cong PGL(2, q)$ ,

or $PGL^{*}(2, q2)$ .

Here $G=PGL^{*}(2, q^{2})$ is a group which is uniquely defined as fol-
lows. $G$ contains a normal subgroup of index 2 isomorphic to $PSL(2, q2)$

and the Sylow 2-subgroups of $G$ are semi-dihedral.

Theorem (H. Zassenhaus [op.cit.]). Let $G$ be a Zassenhaus group
on $\Omega$ . Suppose $|G|\geq|\Omega|(|\Omega|-1)(|\Omega|-2)/2$ , then $G\cong PGL(2, q)$ ,
$PGL^{*}(2, q^{2})$ , or $PSL(2, q)$ .

Theorem (W. Feit [On a class of doubly transitive permutation
groups, 111. J. Math., $4(1960)$ , 170-186]). Let $G$ be a Zassenhaus group
on $\Omega$ . Then the Frobenius kernel $K$ of $a$ one point stabilizer $H=G_{\alpha}$

is a $p$ -group for some prime $p$ . Furthermore if $K$ is abelian, then $G$ is

contained in $PGL(2, q)$ or $PGL^{*}(2, q2)$ as a normal subgroup of index
at most 2.

With this theorem of Feit, every researcher of the time must have
conjectured that every Zassenhaus group is isomorphic to $PSL(2, q)$ ,
$PGL(2, q)$ or $PGL^{*}(2, q^{2})$ where $q$ is a power of a prime $p$ . N. Ito soon
settled the cases in which the Frobenius kernel $K$ is a $p$-group for an
odd prime $p$ .

Theorem (N. Ito [On a class of doubly transitive permutation
groups, 111. J. Math., $6(1962)$ , 341-352]). Let $G$ be a Zassenhaus group
on a set of $n+1$ letters. If $n$ is odd, then the Frobenius kernel $K$ of
$a$ one point stabilizer $H=G_{\alpha}$ is abelian {and so the structure of $G$ is
determined by Zassenhaus and Feit).

Therefore the Zassenhaus groups on an even number of letters are
now completely classified. Namely, they are isomorphic to

$PSL(2, q)$ , $PGL(2, q)$ or $PGL^{*}(2, q^{2})$ , $q$ odd $>3$ .

Note that if $q=3$ , then $PSL(2,3)$ and $PGL(2,3)$ have a regular n\’ormal

subgroup. I should mention here that the theorems of Feit and Ito
stated above both use the fundamental result proved by Thompson, who
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solved affirmatively the long standing conjecture: the Frobenius kernel
is nilpotent.

We are now left with the case in which $p=2$ or equivalently $|\Omega|=$

$1+2^{n}$ for some $n$ . We, however, need a new section to describe this
case.

\S 6. Suzuki’s simple groups $Sz(2^{n})$

The late ’
$50s$ must have been an exciting period for young (and

old) group theorists, although the competition among them must have
been intense also. In 1955, C. Chevalley [Sur certains groupes simples,
Tohoku J. Math., $7(1955)$ , 14-66] announced the discovery of several
series of new simple groups of finite order. These simple groups are
defined using Lie algebras over the ring of integers. The paper of R.
Steinberg [Variations on a theme of Chevalley, Pacific J. Math., $9(1959)$ ,
875-891] followed, in which he defined several twisted versions of the
Chevalley groups and showed that these twisted groups are also simple
except for a few cases. After these theorems of Chevalley and Steinberg,
no new simple groups were expected to come out from Lie theory.

Suzuki surprised the world by discovering a new series of simple
groups, which were soon identified as groups coming from Lie theory,
though they were not initially defined as such. These are now known
as Suzuki groups $Sz(q)$ where $q(\geq 8)$ is an odd power of 2. $Sz(q)$ is
an example of a Zassenhaus group but it was, according to Suzuki, not
discovered as a Zassenhaus group.

Groups such that the centralizer of every nonidentity element of
$G$ is abelian were all determined by late in the ’

$50s$ . Feit, M. Hall,
and J.G. Thompson [op.cit.] showed, in 1960, that all simple $CN$ groups
(Centralizer-Nilpotent) are of even order. The next problem that Suzuki
decided to treat was the determination of all (simple) $CN$ groups. In
doing so, he discovered a new series of simple groups, which turned out
to be Zassenhaus groups.

Let $F=F_{q}$ be a finite field with $q=2^{2n+1}(n\geq 1)$ elements and
set $r=2^{n+1}$ . We have $r^{2}=2q$ and the mapping

$\theta$ : $\alpha\rightarrow\alpha^{r}$

is an automorphism of $F$ and it satisfies $\theta^{2}=2$ . In other words,

$\alpha^{\theta^{2}}=\alpha^{2}$

, $\alpha\in F$

holds. Moreover, we define, for arbitrary elements $\alpha$ , $\beta$ of $F$ , a 4 $x$ $4$

matrix $(\alpha, \beta)$ and a subset $Q$ as follows:
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$(\alpha, \beta)=\left(\begin{array}{llll}1 & 0 & 0 & 0\\\alpha & 1 & 0 & 0\\\alpha^{1+\theta}+\beta & \alpha^{\theta} & 1 & 0\\\alpha^{2+\theta}+\alpha\beta+\beta^{\theta} & \beta & \alpha & 1\end{array}\right)$ ,

$Q=Q(q)=\{(\alpha, \beta)|\alpha, \beta\in F_{q}\}$ .

Since the product is

$(\alpha, \beta)(\gamma, \delta)=(\alpha+\gamma, \alpha\gamma^{\theta}+\beta+\delta)$ ,

$Q$ is a subgroup of order $q^{2}$ . Let us define, for an element $k$ of the
multiplicative groups $F^{*}$ of the field $F$ , a matrix (k) by:

(k)= $\left(\begin{array}{llll}(_{1} & & & 0\\ & \zeta_{2} & & \\0 & & (_{3} & \zeta_{4}\end{array}\right)$ ,

where
$\zeta_{1}^{\theta}=k^{1+\theta}$ , $\zeta_{2}^{\theta}=k$ , $\zeta_{3}=\zeta_{2}^{-1}$ , $\zeta_{4}=\zeta_{1}^{-1}$ .

If we set
$K=K(q)=\{(k)|k\in F^{*}\}$ ,

then, $K$ is a cyclic group of order $q-1$ and is isomorphic to $F^{*}$ . Since

$(k)^{-1}(\alpha, \beta)(k)=(\alpha k, \beta k^{1+\theta})$ ,

the set theoretical product $QK$ is a subgroup and $Q$ is a normal subgroup
of $QK$ . If $k\neq 1$ , then the conjugation by the matrix (k) does not leave
any element of $Q\backslash 1$ invariant. Let us define another matrix $\tau$ as follows:

$\tau=\left(\begin{array}{llll}0 & & & 1\\ & & 1 & \\1 & 1 & & 0\end{array}\right)$ .

We have $\tau^{2}=1$ and, $(k)^{\tau}=(k)^{-1}$ .

Denote the subgroup of $GL(4, F)$ generated by $Q(q)$ , $K(q)$ , $\tau$ by:

$ Sz(q)=\langle Q(q), K(q), \tau\rangle$ .

The family $Sz(q)$ are called Suzuki’s simple groups and form an infinite
series of new simple groups of finite order. $Sz(q)$ has the following
properties:
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(1) $|Sz(q)|=q^{2}(q-1)(q^{2}+1)$ , $q=2^{2n+1}$ , $n$ $\geq 1$ .
$(1’)|Sz(q)|$ is not divisible by 3.
(2)

$andSz(q)$
has cyclic subgroups $A_{+}$ , $A_{-}$ of order $q\pm r+1$ respectively

$Sz(q)=\bigcup_{g\in G}(Q^{g}\cup K^{g}\cup A_{+}^{g}\cup A_{-}^{g})$

is a union of subgroups of $Sz(q)$ such that any pair of subgroups
have trivial intersection unless they coincide. ( $Sz(q)$ has a parti-
tion.)

(3) If $g$ is an arbitrary nonidentity element of $Sz(q)$ , then the cen-
tralizer of $g$ in $Sz(q)$ is always nilpotent. ( $Sz(q)$ is a $CN$ group.)

(4) The natural action of $Sz(q)$ on its factor space $Sz(q)/QK$ is dou-
bly transitive and the identity of $Sz(q)$ is the only element that
leaves three distinct points of $Sz(q)/QK$ invariant. ( $Sz(q)$ is a
Zassenhaus group.)

Apparently it was a great surprise to many that the order of $Sz(q)$

is not divisible by 3: it was believed that every nonabelian simple group
has order divisible by 6. All the generators { $(\alpha, \beta)$ ,$ $(k),$ \tau$ } of $Sz(q)$

given above leave the bilinear form

$x_{1}y_{4}+x_{2}y_{3}+x_{3}y_{2}+x_{4}y_{1}$

invariant and so $Sz(q)$ is a subgroup of the 4 dimensional symplectic
group $Sp(4, q)=B_{2}(q)$ . The group $B_{2}(q)$ has a special involutory auto-
morphism $\sigma$ only if $q$ is an odd power of 2, and

$Sz(q)=\{g\in B_{2}(q)|g^{\sigma}=g\}$

holds. Therefore, $Sz(q)$ could have been constructed naturally through
Lie theory. It was, however, discovered by Suzuki in a process of clas-
sifying all $CN$-groups (an important step to determine all Zassenhaus
groups), which is independent of Lie theory. W. Feit told me that he,
when he was young, uttered the following words to a famous Lie theorist

“It is better to have a good mathematician than a good theory !”

Although the discovery was purely group theoretic, for classification
purpose, however, $Sz(q)$ can better be accounted for as a simple group
of Lie type and is often denoted by $2B_{2}(q)$ .

Just before Suzuki announced the discovery of a new series of simple
groups, he published a two-part paper:

[11] On characterizations of linear groups, $I$ , $II$ , 1959.

Suzuki published two more papers on the same theme.
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[23] On characterizations of linear groups, III, 1962.

[32] On characterizations of linear groups, $IV$ , 1968.

In [11, Part I], Suzuki proves:

Theorem. Let $G$ be a simple group such that the centralizer of
every involution is abelian. Then $G\cong PSL(2,2^{n})$ .

The assumption Suzuki actually uses is slightly more general so that
he can use induction. The simple group $PSL(2,2^{n})$ does have this prop-
erty. In fact, $PSL(2,2^{n})$ has the property that the centralizer of every
involution is an abelian 2-group. In 1951, $K.A$ . Fowler showed that this
property characterizes $PSL(2,2^{n})$ . There is a generalization of Fowler’s
result by Brauer, Suzuki, and Wall. Suzuki puts the characterization of
$PSL(2,2^{n})$ in its final shape.

Already in 1900, Burnside gave the following characterization of
$PSL(2,2^{n})$ .

Theorem (Burnside). $PSL(2,2^{n})$ is the only simple group of even
order such that the order of every element is either odd or equal to 2.

This result of Burnside had been completely forgotten and was re-
discovered by $K.A$ . Fowler half a century later. It is quite surprising

that Burnside worked on this relatively modern problem, considering
the fact that the line of research did not continue until it was taken up
again much later.

In [11, Part $II$], Suzuki studies the structure of $G=PGL(3, q)$ where
$q=2^{n}$ . $G$ is simple if 3 $/q-1$ . If $3|q-1$ , then $G$ has a normal subgroup
of index 3. For example $PSL(3,4)$ , which has the same order as $A_{8}$ , is
a normal subgroup of index 3 of $PGL(3,4)$ . Every involution of $G$ is
conjugate to

$I$ $=$ $\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\1 & 0 & 1\end{array}\right)$

and the centralizer of I in $G$ has order $q^{3}(q-1)$ . In $PSL(3,4)$ , the
centralizer of I has order $2^{6}$ , hence it is a 2-group.

In this paper, Suzuki shows that $PGL(3, q)$ is characterized by the
structure of $C_{G}(I)$ except for one case when $q=2$ , in which case we ob-
tain $G\cong PGL(3,2)$ or $G\cong A_{6}$ . A similar characterization of $PGL(3, q)$

where $q$ is a power of a prime satisfying $q\equiv-1(mod 3)$ was obtained
by R. Brauer. With the initial work of Brauer and Suzuki’s work that
followed, the characterizations of simple groups by the centralizers of
involutions began in full force and continued until early in the $1970’ s$ .
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$C_{G}(I)$ is isomorphic to the subgroup of $G$ consisting of all matrices
of the form:

$M(\alpha, \beta, \gamma, \delta)=\left(\begin{array}{lll}1 & 0 & 0\\\alpha & \delta & 0\\\beta & \gamma & 1\end{array}\right)$

where $\alpha$ , $\beta$ , $\gamma$ , $\delta\neq 0$ are elements of a finite field $F$ of characteristic 2.
The matrix product shows

$M(\alpha, \beta, \gamma, \delta)M(\alpha’, \beta’, \gamma’, \delta’)=M(\alpha^{*}, \beta^{*}, \gamma^{*}, \delta^{*})$

where

$\alpha^{*}=\alpha+\delta\alpha’$ , $\beta^{*}=\beta+\gamma\alpha’\beta’$ , $\gamma^{*}=\gamma\delta’+\gamma’$ , $\delta^{*}=\delta\delta’$ ,

Suzuki computes the order of the group $G$ in [11, Part I ]. In [11,
Part $II$] he also obtains the order of the group $G$ . Namely $|G|=q^{3}(q-$

$1)(q+1)(q^{3}-1)$ in this case. Here also, he uses the exceptional character
theory. It is shown that there are elementary abelian subgroups $P$ and
$L$ of order $q^{2}$ in a Sylow 2-subgroup $Q$ of G. $P$ and $L$ are not conjugate
in $G$ . Moreover, $G$ acts doubly transitively on the set $\sigma \mathfrak{p}$ consisting of
all conjugates of $P$ and also on the set $\mathcal{L}$ consisting of all conjugates
of $L$ . The normalizer $N_{G}(P)$ of $P$ is of index $q^{2}+q+1$ in $G$ and so
$|\mathfrak{P}|=q^{2}+q+1$ . The same assertion holds for $\mathcal{L}$ . Suzuki calls the
elements of $\mathfrak{P}$ points and the elements of $\mathcal{L}$ lines. An incidence relation
can be defined on the pair $(\mathfrak{P}, \Sigma)$ by saying that $P_{1}\in \mathfrak{P}$ is incident
to $L_{1}\in \mathcal{L}$ if and only if $P_{1}\cap L_{1}\neq 1$ . Suzuki next shows that the
geometry so defined on $(\mathfrak{P}, \mathcal{L})$ is Desarguesian using Gleason’s result.
This completes the characterization.

At the time of writing [11], Suzuki was only a year away from dis-
covering $Sz(q)$ , $q=2^{n}$ . If we compare his notation for $M(\alpha, \beta, \gamma, \delta)$ of
$PGL(3,2^{n})$ and their product, and the corresponding quantities $(\alpha, \beta)$ ,

etc. of $Sz(2^{n})$ which is a subgroup of $PGL(4,2^{n})$ , it appears that Suzuki
had good practice in $PGL(3,2^{n})$ before he discovered his new simple
groups.

\S 7. $ZT$-groups and related classification theorems

Suzuki proved several fundamental classification theorems. I will
make comments on some of them.

[17] Finite groups with nilpotent centralizers, 1961.

Let us call a finite group $G$ a $CN$-group, as Feit-Hall-Thompson
and then Suzuki did, if the centralizer of every nonidentity element of
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$G$ is nilpotent. Let us review some of the results mentioned in the

preceding sections. $K.A$ . Fowler investigated the structure of nonsolvable
groups with the property that the centralizer of every involution is an
abelian 2-group and showed that $PSL(2,2^{n})$ is the only family of simple
groups having the property. Suzuki and Wall independently showed that
$PSL(2,2^{n})$ is the only family of nonsolvable $CA$ groups

Suzuki, in one of his famous papers [8], showed that every simple
$CA$-group is of even order and Feit-Hall-Thompson extended this re-
sult to $CN$-groups: every nonabelian simple $CN$-group is of even order.
Therefore, Suzuki is able to assume that his $CN$-group $G$ is of even or-
der and so $G$ contains an involution. To classify all $CN$-group of even
order, Suzuki gives another definition: a group $G$ is a CIT-group if the
centralizer of every involution is a 2-group.

Suzuki shows that nonsolvable $CN$-groups are CIT-groups and de-
votes his efforts to classify all nonsolvable CIT-groups. The property
that the group $G$ satisfies CIT is obviously hereditary to all subgroups
and even to all sections of $G$ (though a bit of work is necessary to show
it), so by using induction on the order of $G$ one can assume that all
proper subgroups are of known type.

Theorem ([17]). $A$ fifinite group $G$ is a nonabelian simple CIT-
group if and only if $G$ is isomorphic to one of the following groups:
(i) a Zassenhaus group of odd degree (called a $ZT$-group by Suzuki),
(ii) $PSL(2,p)$ where $p$ is a Fermat prime or Mersenne prime,
(iii) $PSL(2,9)$ ,
$(i)$ $PSL(3,4)$ .

Therefore, all CIT-groups will be classified if all Zassenhaus groups
of odd degree are determined. Zassenhaus groups of even degree had
already been classified by Zassenhaus, Feit and Ito. Suzuki himself com-
pletes the classification for the even degree cases. In this paper [17],
Suzuki claims to have shown that if the order of a Zassenhaus group $G$

of odd degree is divisible by 3, then $G$ is isomorphic to $PSL(2,2^{n})$ . As
already remarked in \S 6, Suzuki’s simple group $Sz(2^{n})$ has order not di-
visible by 3. Later Thompson and Glauberman treated simple groups of
order not divisible by 3 and showed that $Sz(q)$ is the only family of sim-
ple groups with this property. Therefore, apart from $Sz(q)$ , all simple
groups have order divisible by 6. Although he writes in the introduction
of this paper [17] that only fragmentary results are known for the gen-
eral Zassenhaus groups of odd degree, he himself finishes the problem
before the paper actually went to press. If we use this result (published
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later), we obtain, as a corollary, that every nonsolvable CIT-group is a
$CN$-group.

Skimming through the paper [17], we can see that all the important
classification results that Suzuki later shows are already presented here
in their preliminary mode. For example,

Theorem. A Zassenhaus group of odd degree is a nonabelian sim-
$ple$ $CIT$-group.

Theorem. A nonsolvable $CN$ group is a $CIT$-group.

Theorem. Let $G$ be a $CIT$-group and $S$ a Sylow 2-group of $G$ .

Assume that Sylow 2-groups of $G$ are independent (i.e. a $TI$ set). Then
we have one of the following:
(i) $S$ is normal,
(ii) $S$ is cyclic,
(iii) $S$ is a generalized quaternion group, or;
(iv) $G$ is a Zassenhaus group of odd degree.

[21] On a class of doubly transitive groups, 1962.

In this paper, the class of finite groups called Zassenhaus groups is
completely determined. Classified also are all simple $CN$-groups. This
paper published in the Annals of Mathematics is one of Suzuki’s major
results. It is memorable to me personally also. As a student at the
University of Tokyo in the middle of $1960s$ , I read this paper in a series
of group theory seminars.

Suzuki acknowledges in the introduction of [21] that G. Higman’s
result on 2-groups is essential for the completion of this work.

Theorem (G. Higman). Let $Q$ be a 2-group which admits a cyclic
group of automorphisms transitive on the set of involutions. Assume that
$Q$ is not abelian and contains $q-1$ involutions. If $q>2$ , then $Q$ satisfifies
the following properties:
(i) $Q$ is of exponent 4, (ii) the order of $Q$ is either $q^{2}$ or $q^{3}$ , and; (iii) if
the order of $Q$ is $q^{2}$ , then $Q$ is isomorphic with one of the groups $S(q;x)$ .

Here the 2-group $S(q;x)$ is defined as follows. Let $F$ be the field
$GF(q)$ of $q$ elements where $q$ is a power of 2 ; $q=2^{n}$ . Let $x$ denote
an automorphism of the field $F$ such that $x\neq 1$ and $\alpha^{1+x}=1$ implies
$\alpha=1$ .
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Consider the matrices over $F$ of the form

$(\alpha, \beta)=\left(\begin{array}{lll}1 & & \\\alpha^{x} & 1 & \\\beta & \alpha & 1\end{array}\right)$ .

The product of two matrices is written as

$(\alpha, \beta)(\gamma, \delta)=(\alpha+\gamma, \alpha\gamma^{x}+\beta+\delta)$ .

Now define
$S(q;x)=\{(\alpha, \beta)|\alpha, \beta\in F\}$ .

Then $S(q;x)$ is a 2-group of order $q^{2}$ . The mapping:

$\psi(\zeta)$ : $(\alpha, \beta)\rightarrow(\zeta\alpha, \zeta^{1+x}\beta)$

is an automorphism of $S(q;x)$ that fixes no nonidentity element of $S(q;x)$

unless $\zeta=1$ . Therefore $S(q;x)$ admits a fixed-point-free automorphism
group $Z$ of order $q-1$ . Since $Z$ is isomorphic to the multiplicative group
of $F$ , $Z$ is cyclic also.

Now assume
(i) $G$ : a Zassenhaus group acting on $\Omega$ such that $|\Omega|=1+N$ with $N$

odd,
(ii) $H=G_{\alpha}$ : the subgroup of $G$ consisting of elements fixing a symbol
$\alpha\in\Omega$ ,
(iii) $Q$ : a Sylow 2-subgroup of $H$ ,
(iv) $K$ : the subgroup consisting of elements fixing two symbols $\alpha$ and
$\beta$ ,
(v) $\tau$ : an involution in $N_{G}(K)$ .

$Q$ is a normal subgroup of $H$ and $H$ is a semi-direct product of $Q$

and $K$ . One can prove that $\tau$ inverts every element of $K$ , and so $K$ is
abelian and hence cyclic.

Suzuki proves:

Proposition. $Q$ contains two elements $\sigma$ and $\rho$ such that $\sigma$ is an
involution, $\sigma$ is a certain power of $\rho$ and:

$\tau\sigma\tau=\rho^{-1}\tau\rho$ ,

$\rho^{-1}(\sigma\tau)\rho=(\sigma\tau)^{2}$ .

Moreover, $\sigma$ and $\rho$ are unique if $H,K$ , and $\tau$ are chosen and fifixed.
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Suzuki calls the identity obtained in the proposition above the struc-
ture identity of $G$ . Firstly the case: $\sigma=\rho$ is treated. By counting the
number of real elements, Suzuki shows that $|G|=N(N+1)(N-1)$ .

Therefore $G$ is a sharply triply transitive permutation group. That
$G\cong PSL(2,2^{n})$ follows from a theorem of Zassenhaus.

Assuming $G\not\cong PSL(2, N)$ , Suzuki continues his counting argument
for real elements. He shows that if $q-1$ is the number of involutions of
$Q$ then $|Q|=q^{2}=N$ and $|G|=q^{2}(q-1)(q^{2}+1)$ . The rest of the paper
is devoted to the proof of the uniqueness of the structure of $G$ and that
$G\cong Sz(q)$ . A very subtle argument involving the structure identity is
necessary to show the required uniqueness.

[24] Two characteristic properties of (ZT)-groups, 1963.

In this paper, Suzuki raised the following question: Suppose a proper
subgroup $H$ of even order of a finite group $G$ contains the centralizer of
every nonidentity element. Then what can we say about the structure
of $G$?

Suzuki shows that if $G$ is not a Frobenius group, then $G$ is a Zassen-
haus group of odd degree and $H$ is either a Sylow 2-subgroup or the
normalizer of a Sylow 2-subgroup of $G$ .

Note that $G$ is a special case of a group having a strongly embedded
subgroup. Suzuki had been faithful to Brauer’s program, and charac-
terized quite a few simple or almost simple groups by the centralizers of
involutions. Suzuki, however, went farther and began to form a concept
of a strongly embedded subgroup, which was to be taken up seriously
by H. Bender soon.

’The name of Michio Suzuki was forever engraved in my mind when
in 1964 Bernd Fischer, who had just become an assistant of Reinhold
Baer at Frankfurt, handed me a paper by Suzuki to be studied and
presented in Baer’s seminar. That paper [23] lies at the intersection of
two main streams of Suzuki’s work:

(1) Characterize the known simple groups by the centralizer of an in-
volution. (2) Determine doubly transitive permutation groups with a
regular fixed point behavior, especially Zassenhaus groups, and Suzuki-
transitive groups (the stabilizer of a point has a normal subgroup regu-
lar on the remaining points). (H. Bender [Obituary written for Michio
Suzuki, Notices of Amer. Math. Soc, Vo1.46(1999) $).$

’

We have come to the paper:

[27] On a class of doubly transitive groups, $II$ , 1964.
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Having put an end to the classification of all Zassenhaus groups,
Suzuki began extending his results to a larger class of simple groups.

He considers:

$(*)G$ is a permutation group on a finite set $\Omega$ and the one point stabilizer
$G_{\alpha}$ , for every $\alpha\in\Omega$ , contains a normal subgroup acting regularly on
the remaining points $\Omega\backslash \alpha$ .

If a group $G$ satisfies the condition $(*)$ (Bender calls such a group a
Suzuki-transitive group), then $G$ is doubly transitive on $\Omega$ . Zassenhaus
groups satisfy the condition. In addition to Zassenhaus groups, there is
another family of groups that satisfy $(*)$ . Let $SU(3, q^{2})$ be the totality
of all unitary matrices of determinant 1 defined over the field $E$ with $q^{2}$

elements. We have $|SU(3, q2)|=q^{3}(q^{2}-1)(q^{3}+1)$ . The group $SU(3, q^{2})$

can also be defined as the set of all matrices of determinant 1 that leave
the following form invariant.

$\psi(\overline{x},\overline{y})=x_{1}y_{3}^{q}+x_{2}y_{2}^{q}+x_{3}y_{1}^{q}$ .

If we define

$J=$ $\left(\begin{array}{lll}0 & 0 & 1\\0 & 1 & 0\\1 & 0 & 0\end{array}\right)$ ,

then
$SU(3, q^{2})=\{A|\overline{A}^{t}JA=J, detA=1\}$ .

The subgroup $Z$ consisting of all scalar matrices of $SU(3, q^{2})$ is a
cyclic group of order $(3, q+1)$ . Define $PSU(3, q^{2})=SU(3, q^{2})/Z$ .

Let $\Omega$ be the set of all points $\overline{x}=[x_{1}, x_{2}, x_{3}]$ on the projective plane
$P^{2}(q^{2})$ such that $\psi(\tilde{x},\overline{x})=0$ . We have $|\Omega|=q^{3}+1$ and $PSU(3, q^{2})$

acts doubly transitively on $\Omega$ . Moreover, the one point stabilizer has a
normal subgroup $Q$ acting regularly on the remaining points.

More precisely, the stabilizer $H=G_{\alpha}$ of $\alpha=[0,0,1]\in\Omega$ in $G=$

$PSU(3, q^{2})$ contains a normal subgroup $Q$ of order $q^{3}$ consisting of the
projective images of the matrices

$\left(\begin{array}{lll}1 & 0 & 0\\b & 1 & 0\\d & -b^{q} & 1\end{array}\right)$ , $b^{1+q}+d+d^{q}=0$ .

$Q$ acts regularly on the remaining points $\Omega\backslash \alpha$ . Equivalently, $G$ is Suzuki-
transitive on the coset space $G/N(Q)$ .

To state the main theorem of [27] we need one more assumption:

$(**)|\Omega|$ is odd and the order of the two point stabilizer $G_{\alpha,\beta}$ is odd
(hence $G_{\alpha,\beta}$ is solvable).
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Suzuki shows that if $G$ satisfies $(*)$ , $(**)$ and $G$ is simple, then $G$

is isomorphic to a $ZT$ group or $PSU(3, q^{2})$ . Nonsimple cases are also
treated by Suzuki. With the completion of this paper [27], Suzuki began
to shift his attention to a general classification theorem. But let me make
a comment on the following first:

[18] On a finite group with a partition, 1961.

Although he published the paper [1] on the lattices of subgroups
of a finite group a little earlier, Suzuki, early in the $1950s$ , began his
mathematical career by investigating finite groups having a partition

[2]. For example, the nonsolvable groups $PGL(2, q)$ , $PSL(2, q)$ admit a
partition. This problem or its solution did not appear to have much
impact on finite group theory itself. Suzuki, however, did not lose his
interest in the subject. The discovery of $Sz(q)$ by himself and the fact
that the Suzuki groups admit a partition must have given him an added
impetus to pursue the subject.

I did not make any comments on this subject in \S 2 and so let us
come back to Suzuki’s first love again. Throughout this paper, the idea
of R. Baer [Partitionen endlicher Gruppen, Math. Z., 75(1961), 333-372]
is used and it is so acknowledged.

Repeating the definition given in \S 2, if a finite group $G$ can be
expressed as a union of subgroups $U_{i}$ with the property $U_{i}\cap U_{j}=1$ if
$i\neq j$ , then we say $G$ admits a partition:

$n$

$G=i=1\cup U_{i}$
, $U_{i}\cap U_{j}=1$ if $i\neq j$ .

In other words, we say $G$ has a partition if every nonidentity element
of $G$ is contained in one and only one subgroup in the collection $\{U_{i}$ , $i=$
$1$ , $\ldots$ , $n\}$ . Of course, we, in principle, exclude the cases in which $G=U_{i}$

or $U_{j}=1$ for some $i,j$ . For example, if $\{U_{i}\}$ is the totality of all maximal
cyclic subgroups of $PSL(2, q)$ , then it gives a partition of $PSL(2, q)$ . The

partition of a group $G$ is not necessarily unique. For example, one can
use the Sylow $p$-subgroups of $PSL(2, q)$ where $q=p^{n}$ for a prime $p$ as
members of the set $\{U_{i}\}$ instead of using cyclic subgroups of the Sylow
$p$ subgroups.

Every subgroup $H$ of $G$ has an induced partition by taking $V_{i}=$

$H\cap U_{i}$ and throwing away some unnecessary $V_{j}$ , provided that $H\not\subset U_{i}$

for any $i$ .

If $\{U_{i}\}$ and $\{W_{i}\}$ are both partitions of $G$ and if for every $j$ , there
is an $i$ such that $W_{j}\subset U_{i}$ , then $\{W_{i}\}$ is called a refifinement of $\{U_{i}\}$ .

If all conjugates of every member of a partition $U_{i}$ are again members
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of $\{U_{i}\}$ , then we say the partition $\{U_{i}\}$ is normal. If a partition $\{U_{i}\}$

admits no nontrivial refinements, then it is called minimal.
Let us see how things unfold.

Lemma. Every partition has a refifinement which is normal.

In fact, every minimal partition is normal. All one has do is to refine
a given partition until it becomes minimal.

Lemma. If a nontrivial partition $\{U_{i}\}$ is normal, then the nor-
malizer $N(U_{i})$ of each component $U_{i}$ is larger than $U_{i}$ unless $G$ is $a$

Frobenius group.

Suppose $N(U_{i})=U_{i}$ and the partition $\{U_{i}\}$ is normal. Then the
permutation representation of $G$ on $\Omega=G/U_{i}$ gives rise to a Frobenius
group.

Lemma. If $N(U_{i})\neq U_{i}$ , then $U_{i}$ is nilpotent.

Let $U=U_{i}$ , $N=N(U)$ and assume $N>U$ . Let $H$ be a subgroup
of $N$ containing $U$ such that $[H : U]=p$ where $p$ is a prime. The
subgroup $H$ admits an inherited partition from $G$ . Thus $H=U\cup(\cup V_{j})$

where $j$ ranges over some index set. Since $U\cap V_{j}=1$ , we have $|V_{j}|=p$

and $H=V_{j}U$ . In other words, every element of $H\backslash U$ is of order $p$ . If
$U$ is a $p$-group then of course it is nilpotent. Suppose not. Then the
subgroup $H_{p}(H)$ generated by the elements of $H$ which do not have order
$p$ is a proper subgroup of $H$ . Hence $U$ is an $H_{p}$-group in the sense of
Hughes-Thompson [The $H_{p}$-problem and the structure of the $H_{p}$ groups
Pacific J. Math., $9(1959)$ , 1097-1102]. Hughes and Thompson proved
that $H_{p}(G)=1$ , $H_{p}(G)=G$ or $[G:H_{p}(G)]=p$ and so $H_{p}(H)=U$ in
our case. Kegel [Die Nilpotenz der $H_{p}$-Gruppen, Math. Z., 75(1961),
373-376] proved that all $H_{p}$-groups are nilpotent. Hence $U$ is nilpotent.

Thus we only need to treat groups having nilpotent partitions, i.e.
all components $U_{i}$ are nilpotent. Baer has shown that if $G$ possesses a
nontrivial nilpotent normal subgroup and a nilpotent partition, then $G$

is solvable.
Let $N$ be the largest nilpotent normal subgroup of $G$ . Suppose first

that $|N|$ is divisible by two distinct primes. Then $N$ must be contained
in one of the components of the partition since every nilpotent group
having a nilpotent partition is a $p$-group. Call the component $U$ that
contains $N$ . Since our partition $\{U_{?}.\}$ is normal, $U=N$ must hold. If no
element of $G\backslash N$ commutes with any nonidentity element of $N\backslash 1$ , then
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$G$ is a Frobenius group and $N$ is the Frobenius kernel. In particular, $N$

is a Hall subgroup of $G$ and the centralizer in $G$ of every nonidentity
element of $N$ is nilpotent. Therefore, if the centralizer of some element
of $N$ is not nilpotent, then some element $x$ of $N\backslash 1$ commutes with an
element of $G\backslash N$ .

Suzuki analyses this case carefully and eventually proves:

Theorem. Let $G$ be a non-solvable group with a nilpotent parti-
tion. If the centralizer of some involution is not nilpotent, then $G$ is
isomorphic with $PGL(2, q)$ , $q$ odd.

Theorem. Let $G$ be a non-solvable group with a nilpotent parti-
tion. If the centralizer of every involution is nilpotent, then $G$ is iso-
morphic with either $PSL(2, q)$ or $Sz(q)$ .

The major portion of this paper is devoted to the proof of the fol-
lowing theorem.

Theorem. If $G$ is a nonsolvable group having a normal nilpotent
partition, then $|G|$ is even.

Had Suzuki used the result of Feit-Thompson (which was not avail-
able when Suzuki wrote this paper), then this 14 pages paper would have
been less than half its length. As in his paper [8], exceptional character
theory is the key tool to prove that $|G|$ is even.

Therefore Suzuki has shown that there is no semi-simple group hav-
ing a partition other than the groups $PGL(2, q)$ , $PSL(2, q)$ or $Sz(q)$ ,

thus fulfilling his ’Jugendtraum’. Let us again come back to the main
stream of simple group theory.

[28] Finite groups of even order in which Sylow 2-subgroups are inde-
pendent, 1964.

Theorem. Suppose that $G$ is a nonabelian simple group satisfying
the property that any two distinct Sylow 2-subgroups have only the iden-
tity element in common. Then $G$ is isomorphic to $PSL(2, q)$ , $PSU(3, q^{2})$

or $Sz(q)$ where $q$ is a power of 2.

[30] Finite groups in which the centralizer of any element of order 2 is
2-closed, 1965.
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Theorem. Let $G$ be $a$ fifinite nonabelian simple group such that the
centralizer of any element of order 2 has a normal Sylow 2-subgroup.
Then $G$ is isomorphic to one of the simple groups $PSL(2,p);p$ a Fer-
mat or Mersenne prime, $PSL(2,9);PSL(2, q)$ , $Sz(q)$ , $PSU(3, q^{2})$ , or
$PSL(3, q)$ , $q$ a power of 2.

The theorems stated above show Suzuki’s path from the permutation
group theoretic results proved in [21] and [27] to general results which
can readily be used for the classification of all simple groups of finite
order. In [28] Suzuki reduces to the case in which the group $G$ satisfies
the condition of Suzuki-transitive groups, and then applies the main
result of [27]. Therefore the characterization method used in [28] was
still via the permutation group theory.

In the bibliography of [30], however, something new, which Suzuki
had never before used, appeared. [D.G. Higman and $J.E$ . McLaugh-
$lin$ , Geometric ABA-groups, Illinois J. Math., $5(1961)$ , 382-397] and [J.
Tits, Theoreme de Bruhat et sous-groupes paraboliques, $C.R$ . Acad. Sci.
Paris, 254(1962), 2910-2912] were the new papers required.

In order to prove the theorem stated above, we can assume that
there is a pair of Sylow 2-subgroups which have a nonidentity element
in common, since otherwise all such simple groups have been treated in

[28]. The rest of the proof of the main theorem of [30] divides into two
cases.
(i) Sylow 2-subgroups have cyclic center,
(ii) Sylow 2-subgroups have noncyclic center.

If the case (i) holds, Suzuki shows that $G$ is isomorphic to $PSL(2,p)$

where $p$ is a Fermat or a Mersenne prime, or $PSL(2,9)$ . If the case
(ii) holds, Suzuki shows that $G$ possesses a Bruhat decomposition with
its Weyl group isomorphic to the symmetric group of degree three and
applies Higman-McLaughlin [op.cit.] to conclude $G\cong PSL(3, q)$ , here
also $q$ is a power of 2.

Suzuki states, in Introduction, that the main theorem of the paper
[30] will give an independent proof of some of the results he obtained
earlier. For example, his classification of the CIT-groups is not used
in [30]. Not used also are the characterizations of $PSL(3,2^{n})$ and of
$PSU(3,2^{n})$ in terms of the centralizer of an involution. Moreover, he
makes a remark that this paper is entirely group theoretic and free from
the theory of characters. It is as though Suzuki is announcing to the
world that he has at last cut himself off from the bondage of character
theory and found a new tool.

In his paper [30], one can see the path in its primitive form, which
the classification of all finite simple groups later followed. Case (ii) lead
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Suzuki to the groups with $BN$-pairs and Case (i) and (the case in which
any pair of Sylow 2-subgroups have only the identity element in common)
lead him to the groups where the prime 2 is more or less isolated (or
2-nonconnected).

This dichotomy was to be followed later for an odd prime $p$ also.
In one case, we have a proper subgroup $H$ of $G$ such that $H$ contains a
Sylow $p$-subgroup of $G$ and all its $p$-local subgroups (the normalizers of
$p$-subgroups). Therefore, $H$ is isolated (with respect to the prime $p$ ) in
the group $G$ . In the other case, there are no such subgroups and so $G$ is
connected through $p$-local subgroups and their intersections. Hence, for
example, some graph or geometry can be associated with $G$ . Bender took
up the case in which the prime 2 is nonconnected. He first classified all
doubly transitive permutation groups in which no involution stabilizes
a point, and then classified all transitive permutation groups in which
every involution stabilizes exactly one point. This latter result had a
far reaching application for the classification of all finite simple groups.
Suppose we are in the latter case and let $H$ be the stabilizer of a point
$\alpha\in\Omega$ and let $t$ be an involution of $H$ . Then every element in $C_{G}(t)$

fixes $\alpha$ and so $C_{G}(t)\subset H$ . In fact, one can show also that the normalizer
of every nontrivial 2-subgroup of $H$ is contained in $H$ . Such a proper
subgroup $H$ was to be called a strongly embedded subgroup. Bender was
able to classify all simple groups having a strongly embedded subgroup.

Although Suzuki must have had his own idea of classifying all finite
simple groups, [30] was to become his last general classification theorem.
The world of finite group theory was changing rapidly. The solvability
of all groups of odd order (Burnside’s Conjecture) was shown to hold by
Feit and Thompson (1963). Janko found new sporadic simple groups,
later named Jankoi, Jankoi, $Janko_{3}$ $(1965, 1968)$ . The simple groups
Conwayi, Conwayi, $Conway_{3}$ and Fischer $Fischer_{2}$ , $Fischer_{3}$ were
to be discovered soon. The signalizer functor method of Gorenstein-
Walter was shaping up. A new generation of young group theorists was
coming of age. Stars and superstars were emerging into the field. The
middle to the late ’

$60s$ (and perhaps to early in the ’ $70s$ ) was the period
of turbulence for finite group theory. This was also the golden era of
group theory.

Suzuki wrote a number of papers whose titles contain the phrase
’Characterization of Linear Groups’. Let us pick up another paper and
discuss it briefly.

[35] Characterization of linear groups, 1969.

This is an expanded and improved version of Suzuki’s one hour
address delivered at one of the AMS meetings in 1967. The purpose is
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to characterize the simple group $PSL(n, q)$ in terms of the centralizer of
an involution.

The theme of this research direction was initiated by Brauer’s ad-
dress at the International Congress of Mathematicians held in 1954. As
for $PSL(n, q)$ , Brauer himself did the characterization when $n$ $=2,3$

and with some restriction on $q$ . A great many papers followed Brauer’s.
Suzuki himself treated a large number of cases in which $q$ is even.

In this paper, Suzuki talks about its history, which is short but quite
readable. He mentions that the following doublets or triplets share the
isomorphic centralizer of an involution.

$(PSL(2,7)$ , $A_{6})$ , $(PSL(3,3)$ , Mathiein), $(A_{4m}, A_{4m+1})$ ,

(Janko2,$ $Jankos), $(A_{12}, A_{13}, S_{6}(2))$ , $(PSL(5,2)$ , Mathieu5, Held).

There are no examples of four or more simple groups that have
isomorphic centralizers of an involution.

In [35], Suzuki proves:

Theorem. The simple group $PSL(m, 2^{n})$ is characterized by the
centralizer of an involution in the center of a Sylow 2-subgroup if $m\geq 6$

or $n$ $>1$ .

The remaining cases not treated in Suzuki’s theorem had already
been taken care of by others and Suzuki himself.

I believe that I have covered most of his contributions to the theory
of finite groups except for his work on subgroup lattices [1], [3], [4] and
[7]. For these papers I have too limited a knowledge to make any reason-
able comments. I do add that Bender cites Suzuki’s work on subgroup
lattices as one of the reasons for the honorary degree he received from
Kiel University, Germany. Skimming through the list of publications of
Suzuki again, I find, however, that there are a few more papers that I
should make comments on.

[12] On finite groups of even order whose 2-Sylow subgroup is a quater-
nion group, 1959.

In this paper, Brauer and Suzuki prove: Let $G$ be a group of finite
even order. If the 2-Sylow group $P$ of $G$ is a quaternion group (ordinary
or generalized), then $G$ is not simple. The proof is (modular) character
theoretic. Groups having a cyclic Sylow 2-subgroup cannot be simple
either as had been known since the turn of the century. Therefore if
$P$ is a Sylow 2-subgroup of a simple group of even order, then $P$ must
contain a Klein’s four group $(\cong Z_{2}\times Z_{2})$ . We say $P$ is of 2-rank at
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least two. There are examples of 2-groups of rank two which can be a
Sylow 2-subgroup of a simple group. The Brauer-Suzuki theorem was
the modern starting point of the classification theorems that dealt with
simple groups having Sylow 2-subgroups of low 2-rank.

[34] A simple group of order 448,345,497,600 (1969).

Suzuki made big news with the discovery of a sporadic simple group
Suzuki of order 448,345,497,600, which was announced in 1967.

Janko’s second group $Janko_{2}$ was constructed by M. Hall using the
idea of transitive extensions of rank 3. Other constructions of rank 3
extensions followed. Sporadic simple groups McLaughlin, Fischeri,

$Fischer_{2}$ , Fischers, and Higman-Sims are examples. Starting from
the simple group of Lie type $H=G_{2}(4)$ , Suzuki constructed a rank 3
transitive extension of $H$ of degree 1782.

[38], [39], [41], [44] Gunron (Japanese), 1977, 1978; Group Theory (trans-
lation of [38], [39] $)$ , 1982, 1986.

Suzuki began writing this book late in the $1960s$ . Aschbacher, who
was at Illinois as a postdoc, says that Suzuki was giving group theory
lectures from a draft of that book. It was nearly a 20 year effort from
the draft until the completion of its translation.

\S 8. Group theory in Japan before Suzuki

Michio Suzuki lists Shokichi Iyanaga as his adviser and says that
Kenkichi Iwasawa also had a profound influence on him. Let me discuss
group theory in Japan before Suzuki briefly.

Let $k$ be a number field and $K/k$ be its absolute class field: i.e. the
Galois group of the abelian extension $K/k$ is isomorphic to the ideal
class group of $k$ . It was conjectured by D.Hilbert that every ideal of
$k$ extends to a principal ideal of $K$ . This is called the Principal Ideal
Theorem. Artin reformulated it into a group theoretical problem (see
below). Furtw\"angler (1930) solved the conjecture affirmatively after a
complicated computation and Iyanaga gave a simple proof (1934). (I
looked at the Furtw\"angler’s proof. It was indeed complicated. Magnus
also published a short proof in 1934. As for the proof of the Princi-
pal Ideal Theorem, see [Artin-Tate, Class Field Theory, Benjamin, Inc.,
1974].)

Theorem (Principal Ideal Theorem). Let $G$ be $a$ (not necessarily
fifinite) group whose commutator subgroup $G’=[G, G]$ is of fifinite index
in $G$ and is fifinitely generated. Then the transfer map $G\rightarrow G’/G’’$ is the
zero map.
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Iwasawa is of course better known for his work in Lie groups, number
theory, etc. But let me mention only the following:

Theorem ([K. Iwasawa, $\dot{U}$ $ber$ die endlicher Gruppen und die Verb\"ande

ihrer Untergruppen, J. Univ. Tokyo, 43(1941), 171-199.]). The maximal
subgroup chains of $a$ fifinite group $G$ all have the same length if and only

if $G$ is supersolvable

A finite group $G$ is supersolvable if it possesses a normal series

$G=G_{0}\supset G_{1}\supset\cdots\supset G_{r}=1$

in which each factor group $G_{i-1}/G_{i}$ is cyclic of prime order. If a finite
group $G$ is supersolvable, it can be shown that any chain of subgroups

$G=H_{0}\supset H_{1}\supset\cdots\supset H_{s}=1$

can be refined by inserting further subgroups:

$H_{i-1}=H_{i-1,0}\supset H_{i-1,1}\supset\cdots\supset H_{i-1,t}=H_{i}$ , $t=t(i)$ , $i=1$ , $\ldots$ , $s$

such that all indices $[H_{i,j} : H_{i,j+1}]$ are primes. This implies that all

maximal chains of subgroups have the same length, which is the total
number of primes, counting repetitions, dividing the order of $G$ . Iwa-
sawa’s Theorem shows that the converse also holds. The converse is of
course nontrivial and the most difficult step is to show that $G$ has a
proper normal subgroup.

A monomial representation of a group $G$ is an induced representation
$\Psi^{G}$ where $\Psi$ is a one-dimensional representation of a subgroup $H$ of $G$ .

All irreducible representations of a nilpotent group are known to be
monomial. The converse is false. We, however, have:

Theorem ([K. Taketa, $\dot{U}$ $ber$ die Gruppen, deren Darstellungen sich
s\"amtlich auf monomiale Gestalt transformieren lassen, Proc. Jap. Imp.
Acad., $6(1930)$ , 31-33]). If every irreducible representation of $a$ fifinite
group $G$ is monomial, then $G$ is solvable.

As seen above, there were some roots of finite group theory in the
prewar Japan. It appears, however, that nobody in Japan was doing se-
rious research on simple groups such as $PSL(2, q)$ . Perhaps some people
were interested in them but it would be fair to say that no important re-
sults came out from their efforts. It is, therefore, quite surprising that in

such an environment, Suzuki took up a hard problem, which eventually
lead him into the heart and the top of simple group theory.

There must have been time for me ask Suzuki personally how and
why he got into the problems concerning $PSL(2, q)$ when nobody else
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in Japan was doing it. But such an opportunity is now lost for good. I
could have asked $Iwasawa,who$ had a great influence on Suzuki, about
it, but he too passed away several months after Suzuki died.

\S 9. Michio Suzuki, my teacher and my mentor

I met Michio Suzuki for the first time in the spring of 1966 when
he visited Japan with his family, then 2 year old Kazuko-chan and his
wife Naoko Suzuki. D.G.Higman of the University of Michigan came to
Japan with the Suzukis also. I was a second year graduate student at
the University of Tokyo. I had decided to do group theory as my special
field of mathematics in the spring of 1964 when I was a college senior.

It was the time when group theory reached its height and the golden
era was continuing. For my decision to do group theory, I was influenced
greatly by the work of Suzuki, especially:

(1) Discovery of the new series of simple groups $Sz(q)$ .

(2) The classification of Zassenhaus groups (Zassenhaus, Feit, Ito, and
Suzuki).
(3) Classification theorems for certain types of simple groups.

Under the supervision of N. Iwahori, $I$ , together with a few other
students, began reading [Curtis-Reiner, Representation Theory of Finite
Groups and Associative Algebras]. I remember that Iwahori, who had
visited the USA a few times, talked enthusiastically about Suzuki’s work,
Thompson’s proof that the Frobenius kernel is nilpotent, the Odd Order
Paper of Feit-Thompson, etc. I soon joined in the group theory seminar
organized under Iwahori. Among the participants were Takeshi Kondo
and Hiroyoshi Yamaki.

I chose Suzuki’s classification of Zassenhaus groups of odd degree
[21] for my seminar presentation. I next chose Thompson’s proof of
the nilpotency of the Frobenius kernel [Normal $p$-complements for finite
groups, Math. Z., 72(1960), 332-354]. I found it impossible to read and
gave up. Soon afterward fortunately, a shorter proof was published [J.G.
Thompson, Normal $p$-complement for finite groups, J. Alg., 1 (1964),
43-46]. Thompson’s new paper was much easier to read than the first
one.

Around 1965, Japan was still in a poor state of affairs economically.
A Xerox copier was delivered to the department of mathematics but
students had to pay all copying cost, which was rather expensive for
them. The expenses to participate in symposiums and conferences had
to be borne by the students. We students tried to be winners under
those conditions, since all Japanese were under the same constraints.
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Besides, those who were students in the $1940s$ and $50s$ would say that
the $60s$ were far better than their times.

After Suzuki’s paper and Thompson’s and a few more papers, T.
Kondo, H. Yamaki, I and others started reading Feit-Thompson’s odd
order paper. Soon the group theory seminar lost most of its members.
Left in the group were Kondo, Yamaki and myself, just three of us. After
30 years, we three still talk about the struggles we had in reading Feit-
Thompson’s paper in the seminar room of the basement of a building of
the University of Tokyo.

R. Baer visited Japan in the fall of 1965 and other foreign group
theorists came to Japan also. H. Wielandt visited Japan at a similar
time. But not too many people in Japan were doing group theory and
not too many students were going into the theory either. It was still a
field of mathematics which did not command too much respect in Japan.
My classmates at the University of Tokyo, Shigeru Iitaka, Takushiro
Shintani, Takuro Shintani, Takushiro Ochiai, Ryoshi Hotta, went into
fields such as algebraic geometry, number theory, differential geometry,
and representation theory. But I took up group theory as my field with
confidence and enthusiasm, and I have not regretted the decision since.

Suzuki’s visit in 1966 to Japan was a very timely event for me. I was
a second year graduate student at the University of Tokyo, and Suzuki
was only 39 years of age and the peak of his career was continuing. He
gave talks for us one after another, all without any compensation. In
fact, he had to spend nearly two hours one way in a train to come from
his home to the university. We, young group theorists, asked him to give
lectures on Bender, Glauberman, Alperin and others. Week after week,
Suzuki did everything we asked for.

At the time of his visit, I was working on a research problem. I
completed it just as Suzuki was leaving for the USA. Much to my surprise
and delight, he suggested that I submit it to the Illinois Journal of
Mathematics. In addition to submitting the paper to him, I wrote him
letters regularly, to which he gave replies regularly. One of his letters,
dated October 23, 1966, contains many unpublished results. At the end
of the letter, he writes that he will find time to write more. Apparently
I had complained to him that the news on group theory would arrive
late in Japan and I wrote him I would like to know them sooner. The
letter cited above was his reply.

It was then customary for a graduate student to seek employment af-
ter earning the master’s degree. I was offered an assistantship at Nagoya
University as I was finishing my master’s degree. One year after I first
met Suzuki and after I had already moved to Nagoya, I received a let-
ter from him in which he said that there would be a special program
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on finite groups and algebraic groups for the academic year 1968-69 at
the Institute for Advanced Study in Princeton, N.J., Suzuki suggested
that I apply for a membership of the Institute. He added in the letter
that he would write a letter of recommendation. This was an incredible
opportunity for me. The Institute at Princeton occupied so high a place
in my mind that I did not quite believe what I was reading in his letter.

I and my wife arrived at the Institute on the 10th of September,
1968. The Suzukis arrived shortly afterward. As soon as he arrived,
he asked me if I knew the game of bridge. I said no. In fact, I had
never heard the word before either. Suzuki then began teaching me and
my wife the game of contract bridge. So instead of Gorenstein’s group
theory book, I had to read Goren’s book on contract bridge. Suzuki and
his wife invited us over to their place usually twice a week to play bridge
until they left for Illinois the next spring.

The following year, Takeshi Kondo came to the Institute also. We
played bridge many nights and sometimes days. At some point, number
theory friends stopped coming to the games. The rumour had it that
Goro Shimura scolded young number theorists who were visiting the
Institute at that time. We group theorists kept playing. If Michio Suzuki
likes the game so much then it must be a good thing to play.

Suzuki invited me to spend a year at the University of Illinois at
Champaign-Urbana after my second year at the Institute. By then
Daniel Gorenstein and I had written quite a few joint papers together
and I had begun thinking that I would like to stay in the USA as long as
possible. Suzuki’s invitation to Illinois guaranteed a third year for me in
the States and soon afterward Gorenstein and Janko secured a perma-
nent position for me at the Ohio State University starting the academic
year of 1971. Over 30 years has passed. It all started from Suzuki’s visit
to Japan in 1966.

For Michio Suzuki, mathematics came first and research was every-
thing. Apparently, however, he watched football games or basketball
games whenever he wanted to have a relaxation. He talked about how
good Jonny Unitas and Wilt Chamberlain were. He liked to read mys-
tery stories. Iwasawa also said to me that he liked to read mysteries.
Suzuki did not appear to like traveling much. Maybe this is not very
precise. He did not mind going out from his home. But apparently,
as soon as he went out, he wanted to come back home as quickly as
possible.

Suzuki did not write too many research papers after 1980, but he
visited Japan quite often. Conferences and symposiums were organized
concurrently with his visits. Suzuki gave talks most of the time. At the
memorial conference held for Suzuki’s 70th birthday in July of 1997, he
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gave a talk on his new research effort. People must have been surprised
to learn of his fresh enthusiasm to do research.

I received a Christmas card from him for the last time in December
of 1997, five months after the conference held in his honor. In the card
he writes ‘I have been learning amstex recently. I can at last print out
as I please. I am having fun since the product is very neat.’ I am still a
beginner in $\ulcorner IEX$ and so apparently he was younger in this respect than
me. Continuing his card, he writes ’Take a good care of yourself and
have a good new year.’

In February of 1998, the sad news of a cancer in his liver was com-
municated to me and to the mathematical community of the world. It
was a shock to me and to all who knew him. The cancer was discovered
early in the month and Suzuki left for Japan immediately. The same
doctor who had found nothing wrong in him in the summer of 1997 gave
the same diagnosis as the Illinois doctor. The Illinois doctor gave Suzuki
three to six months, but the Japanese doctor only two to four months.

As I could not leave for Japan immediately, I wrote several letters
to him. In the following month, March 19, I left for Japan as soon as
I handed the grades to the math office for the courses that I taught in
the winter quarter.

I visited his room, which was a guest room of the International
Christian University at Mitaka, Tokyo, Japan. Hiroshi Suzuki (no rela-
tion) was a faculty member there and had been taking care of Michio
Suzuki and his wife since their arrival in Japan.

$\zeta I$ am happy to be able to see you while I am still well’ were his first
words. With Mrs. Suzuki and Hiroshi, we talked about many things.
Suzuki and I had 30 years of memories together. We would never be able
to stop talking. It was hardly believable that Michio Suzuki had only
a month or so of his life remaining. But when we were talking about
lots of things, I did not think about it. Everything was just as natural.
He spoke a lot, sometimes smiling and I did so also. The thought of
his short remaining life was not on the surface of the conversation. But
when the conversation came to a quiet moment, then I had to think that
this happy moment would end soon, much too soon.

Suzuki’s incomplete 140 page manuscript was sitting on the table.
It was nearly complete and he had been enjoying putting it into the

rIEX format, but the work had to come to an abrupt stop. Mrs. Suzuki
said that Suzuki, many a time, tried, in vain, to continue working on
the paper in the hospital or the guest room. As I saw he might be tired
for the day, I promised to come back and left the place. Suzuki came
to the door of his room. As he bid good-bye, he had a small smile on
his face. The cherry trees were visible from the window of his room.
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Suzuki would be able to see the cherry blossoms once more very soon.
Mrs. Suzuki came down to the front door of the building. She had tears
in her eyes when I said good-bye to her. The whole thing was so totally
unexpected. I promised I would come back again soon.

With some of my friends I visited Suzuki two more times during my
stay of three weeks in Japan. The last one was on April 10. The spring
term had already started at my university in the States. Suzuki looked
a little weaker than when I first saw him three weeks before. After an
hour or so, Suzuki with an apology went back to his bed. I was sorry
that I stayed a little too long till he got tired, but I knew this might be
the last time for me to see him. I left the room. At the bottom of the
stairs, I looked up. Suzuki was there near the top of the stairs. He too
knew that this might be the last time, got out from his bed and said
good-bye to us. Mrs. Suzuki saw me off at the front door of the guest
house. I said I would come back in June, July. She said it would be
hard for him to wait that long. I searched for a word. But none came
out. She was being as cheerful as she could in front of her husband, but
tears began to come down from her eyes and came down profusely. I
looked up towards the window of Suzuki’s room. The cherry blossoms
were changing into tiny green leaves.

Suzuki went back to the hospital on April 18. He was to survive
43 days more. A surprise visitor to the hospital was Helmut Bender.
Prior to his visit, Bender did not say anything to anybody. Bender flew
from Germany and stayed with Suzuki in the hospital for a few days
starting May 18th. Suzuki, with all of his remaining energy, discussed
his new research work with Bender. It must have been a beautiful sight,
Helmut Bender and Michio Suzuki together talking mathematics, just
days before his death.

I had already purchased a plane ticket back to Japan for a June 4th
flight. Michio Suzuki, however, passed away May 31. On the same day,
though 166 years earlier, Evariste Galois died of a gunshot wound from
a duel. The group theory emerged as a respectable field of mathematics
largely through the efforts of Galois, and Suzuki was one of those who
made it flourish.

The funeral service for Michio Suzuki took place on June 7th and it
was a memorable one. Fortunate for the occasion, if it had to happen,
was that there was a conference on class field theory honoring Teiji
Takagi in Tokyo. Among the people who got together for his funeral
were Michio Suzuki’s adviser, Shokichi Iyanaga, and Suzuki’s friends,
Ichiro Satake, Gaishi Takeuchi, Takashi Ono. All of them left Japan in
the $50s$ or early $60s$ and came to the USA, as Suzuki did.
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Longtime friends Noboru Ito and Takeshi Kondo made moving memo-
rial speeches, and I added one too. Ito talked about their friendship
during the war and right after the war. Kondo touched on Suzuki’s
mathematical contributions. Hymns were sung and lines from the Bible
were read. Each and every one of us paid tribute to him with a branch
of yellow rose, Suzuki’s favorite flower.

On September 18th, the memorial service for Michio Suzuki took
place at the Chapel of the University of Illinois. Eiichi Bannai, Ronald
Solomon, and I attended the service from Columbus, Ohio. Walter Feit,
George Glauberman, Henry Leonard, Richard Lyons, Paul Bateman,
Everett Dade, and John Walter were present also. Having sent Eiichi
off to Japan from the Champaign airport the following day, I went to
Suzuki’s home. I looked around with emotion. How many hours did I
spent in this home during the last 30 years ?

In this room, Michio Suzuki and I listened to Bach and Mozart
together. Out from this home, his family and mine went to a McDonald’s
and ate hamburgers. He talked about how bad their Fighting Illini
football team was but how good it once had been, all those things. He
lived in the area, Champaign, Illinois, for nearly 45 years. Mrs. Suzuki
had never driven a car, never needed it since Michio Suzuki did not
mind taking his wife grocery shopping, taking his daughter Kazuko to
her nursery school, elementary school, etc. all the time.

One of my colleagues and a friend for nearly 30 years, Ronald
Solomon posts in his office a letter he received from Suzuki concern-
ing Gorenstein, Lyons and Solomon’s work.

‘Dear Ron,
I would like to congratulate you on the publication of the second

volume of the classification series which I have just glanced through.
It is very well organized and readable. I have an elated feeling that I

$.m.a.y$

. .

$b$

.
$e.$ ,
able to understand the proof of the classification in my life time.

To this letter, Solomon replies: Professor Suzuki, I am sorry we were
too slow. But I suppose you know a better proof by now.
(R. Solomon [Obituary written for Michio Suzuki, Notices of Amer.
Math. Soc, Vol. 46 (1999) $])$

Suzuki kept his enthusiasm for mathematics and warm interest in
the work of his colleagues to the end of his days. He is now gone and
will be missed by his family and by those of us who knew him. But his
name will forever be with us for his pioneering work.
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On the Prime Graph of a Finite Simple Group
An Application of the Method of

Feit-Thompson-Bender-Glauberman

Michio Suzuki

Introduction The theorem alluded to in the subtitle is the Odd
Order Theorem of Feit-Thompson [FT] which states that all finite groups
of odd order are solvable. For the remarkable proof, they invented a rev-
olutionary new method which was influential to the development of finite
group theory in the last 30 odd years. Recently, Bender and Glauber-
man [BG] have published a highly polished proof covering the group
theoretical portion of the proof of the Odd Order Theorem.

By design, their proof is by contradiction. From the start they work
on the hypothetical minimal simple group of odd order and study its
properties. Thus, all the wonderful intermediate results are properties
of the hypothetical group, and hence they may be vacuous. One of the
goals of this paper is to show that this is not so; their method does give
positive results and all the intermediate results are in fact properties of
some real groups.

We consider the prime graph $\Gamma(G)$ of a finite group $G$ . This is the
graph defined as follows. The set of vertices of $\Gamma(G)$ is the set $\pi(G)$ of
the primes dividing the order $|G|$ of G. If $p$ , $q\in\pi(G)$ , we join $p$ and $q$

by an edge in $\Gamma(G)$ if and only if $p\neq q$ and $G$ has an element of order
$pq$ .

The classification of finite simple groups has several interesting con-
sequences on the prime graph of a finite group. The following is one of
them.

Theorem A. Let $\triangle$ be a connected component of the prime graph
$\Gamma(G)$ of $a$ fifinite group $G$ , and let $\varpi$ be the set of primes in $\triangle$ . Assume
that $\triangle\neq\Gamma(G)$ and $ 2\not\in\varpi$ . Then, $\triangle$ is a clique.

Usually, we identify $\triangle$ with $\varpi$ and abuse the terms, saying $\varpi$ is a
connected component of the graph $\Gamma(G)$ . Theorem A has not been stated

Received May 31, 1998.



42 M. Suzuki

in the literature in this form. But, the works of Gruenberg and Kegel
[GK] and Williams [W] together with properties of Frobenius groups
yield Theorem A. The classification of finite simple groups is used in
two separate places of its proof. The first is in the proof of the following
theorem.

Theorem B. Theorem $A$ holds for $a$ fifinite simple group.

The second use of the classification is to prove the following lemma.

Lemma. Let $G$ be $a$ fifinite simple group. Then, $\pi(OutG)$ is con-
tained in the connected component of the prime graph $\Gamma(G)$ that includes
the prime 2.

This is fairly easy to check because Out $G$ for a simple group $G$ is
not too complicated. The checking of Theorem $B$ is more complex.

The purpose of this work is to show that the method of Feit, Thomp-
son, Bender, and Glauberman can be adapted to give a proof of Theorem
$B$ without using the classification of finite simple groups.

Actually, Williams [W] has checked the following result for a finite
simple group.

Theorem C. Let $\triangle$ be a connected component of the prime graph
$\Gamma(G)$ of $a$ fifinite simple group G. Let $\varpi$ be the set of primes in $\triangle$ .

Assume that $\triangle\neq\Gamma(G)$ and $ 2\not\in\varpi$ . Then, $G$ contains a nilpotent Hall
$\varpi$ subgroup $H$ that is isolated in $G$ .

A subgroup $H$ of any group $G$ is called isolated in $G$ if $1\neq H\neq G$

and for every element $x\in H^{\phi}$ , we have

$C_{G}(x)\subseteq H$ .

Theorem $B$ is weaker than Theorem $C$ which may be considered a local
version of the Odd Order Theorem. It would be nice if our method
would be able to prove Theorem C.

Originally, Gruenberg and Roggenkamp [GR] are led to study the
prime graph, in particular its connectivity, through their work on the
decomposition of the augmentation ideal of the integral group ring of a
finite group. Specifically they considered the following three conditions
on a finite group $G$ .

(1) $G$ has an isolated subgroup.
(2) The augmentation ideal decomposes as a right $\mathbb{Z}G$-module.
(3) The prime graph $\Gamma(G)$ is not connected.



On the Prime Graph of a Finite Simple Group 43

Gruenberg and Roggenkamp [GR] proved that $(1)\Rightarrow(2)\Rightarrow(3)$ .

Using Theorem $C$ , Williams [W] was able to prove that $(3)\Rightarrow(1)$ . If $\varpi$

is a connected component of the prime graph $\Gamma(G)$ such that $ 2\not\in\varpi$ and
$\varpi\neq\Gamma(G)$ , it is not necessarily true that $G$ has a Hall $\varpi$ subgroup that
is isolated.

1. The Beginning of the Proof
Let $G$ be a finite group and let $\varpi\subseteq\pi(G)$ be the set of primes of a

connected component $\triangle$ of the prime graph $\Gamma(G)$ . Assume that

$\varpi\neq\pi(G)$ and $ 2\not\in\varpi$ .

These conditions and notation are used throughout this paper. The
starting point of the proof is the following proposition.

Proposition 1. Let $P$ be a nonidentity $\varpi$ -subgroup of G. If
$N_{G}(P)$ is of even order, then $G$ has an abelian Hall $\varpi$ subgroup that
is isolated in $G$ .

Proof. Since $ 2\not\in\varpi$ , $P$ is of odd order. By assumption, there is
an element $t$ of order 2 that normalizes $P$ . Since $\varpi$ is a connected
component and $ 2\not\in\varpi$ , the element $t$ acts regularly on $P$ . This yields
that

$x^{t}=x^{-1}$ for $x\in P$.

Thus, $P$ is abelian. If $x\in P^{\Downarrow}$ , $C_{G}(x)$ is a $\varpi$-group and is normalized
by $t$ . It follows that $A=C_{G}(x)$ is abelian and the element $t$ inverts

every element of $A$ . If $y\in A^{\oint}$ , the same argument proves that $C_{G}(y)$

is abelian. Since $A=C_{G}(x)\subseteq C_{G}(y)$ , we have $C_{G}(y)=A$ . Therefore,
$A$ is an abelian subgroup that is isolated in $G$ . It is known that every
isolated subgroup is a Hall subgroup. Q.E.D.

Therefore, to prove Theorem $B$ , we may assume that every $\varpi$-local
subgroup is of odd order. From now on we use the following notation
and assumptions in addition to the ones already stated.

Let $G$ be a finite simple group. Let

$3V[=$ { $M$ $|M$ is a maximal $\varpi$-local subgroup of $G$ },

define
$M(H)=\{M \in M|H\subseteq M\}$

for any subgroup $H$ of $G$ , and assume that every subgroup $M$ $\in 3\forall$[ is of
odd order.
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The set of subgroups N[ satisfies properties which are similar to the

properties of the set of all maximal subgroups of the hypothetical min-
imal simple group of odd order studied by [FT] and [BG]. We remark
that the situation considered here does occur in real groups. For exam-
ple, if $p$ is a prime such that $p\equiv 3(mod 4)$ , the alternating group $A_{p}$

satisfies the condition for $\varpi=\{p\}$ .

2. The Local Analysis of $M$

We can apply the method of Bender and Glauberman to study the
subgroups in M. The subgroups in $M$ are of odd order; hence, they

are solvable by the Odd Order Theorem. By definition, $M\in M$ is a
$\varpi$-local subgroup. It follows that $F(M)$ , the Fitting subgroup of $M$ , is
a $\varpi$ subgroup. Let $p\in\pi(G)$ and let $P\in Sy\ell_{p}(M)$ . If $P$ is not cyclic,
$P$ contains an elementary abelian $p$ subgroup $A$ of order $p^{2}$ . Then, $A$

normalizes $N=O_{\varpi}(M)$ which is not 1. By a well-known proposition
(Proposition 1. 16 [BG]),

$ N=\langle C_{N}(x)|x\in A^{\mathfrak{p}}\rangle$ .

It follows that $ p\in\varpi$ . Thus, if $M$ is not a $\varpi$-group, $M$ has a cyclic
Sylow $p$-subgroup for every $ p\in\pi(M)\backslash \varpi$ , Thus, $M\in M$ is almost a $\varpi-$

subgroup. However, I call attention to the following point. For $M\in M$ ,
the set $\sigma(M)$ of primes is defined in [BG] as

$\sigma(M)=$ {$p\in\pi(M)|N_{G}(P)\subseteq M$ for some $P\in Sy\ell_{p}(M)$ }

(p.70 [BG]). The important set in our case is

$\sigma_{0}(M)=\sigma(M)\cap\varpi$

and the subgroup we should study is

$M_{\sigma o}=O_{\sigma_{0}(M)}$ .

It is proved that $M_{\sigma_{0}}$ is a Hall $\sigma_{0}(M)$ subgroup of $M$ .

Proposition 2. All the statements of the sections 7-15 of $[BG]$

hold with proper changes in the hypotheses and conclusions.

The types of subgroups in $M$ are defined as in pp.128-129 [BG] with
the following three changes.

(IIiv) should read: $V\neq 1$ and if $V$ is a $\varpi$-group, then

$N_{G}(V)\not\in M$ .
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(IIv) should read: $N_{G}(A)\subseteq M$ for every nonidentity subgroup $A$ of
$M’$ such that $C_{H}(A)\neq 1$ .

(IIIiii) should read: $V$ is an abelian $\varpi$-group and $N_{G}(V)\subseteq M$ .

Then, $M\in M$ is of type $I$ , $II$ , III, $IV$ , or V. We have the following
two theorems which are the goal of the local analysis.

Theorem I. Either evew subgroup in $M$ is of type I or all the
following conditions are true.

(1) $G$ contains a cyclic subgroup $W=W_{1}\times W_{2}$ with the prop-
erty that $N_{G}(W_{0})=W$ for every nonempty subset $W_{0}$ of $W-$
$\{W_{1}, W_{2}\}$ . Also, $W_{i}\neq 1$ for $i=1,2$ .

(2) There are two subgroups $S$ and $T$ in $M$ such that $S$ and $T$ are

of type $II$, $III$, $IV$, or $V$, $S\cap T=W$ , $S$ is not conjugate to $T$ in
$G$ , and either $S$ or $T$ (it may be both) is of type $II$.

(3) Every $M\in M$ is either of type I or conjugate to $S$ or $T$ in $G$ .

There are other conditions which $S$ and $T$ must satisfy. For each
$M\in M$ , two particular subsets $A(M)$ and $A_{0}(M)$ of $M$ are defined (cf.
p. 124 and p.131 [BG] $)$ . The notation $M_{F}$ for each $M\in M$ denotes the
normal nilpotent Hall subgroup of maximal order of $M$ .

Theorem $II$ . For a subgroup $M\in M$ , let $X=A(M)$ or $A_{0}(M)$ ,
and let

$D=\{x\in X^{\#}|C_{G}(x)\not\leqq M\}$ .

Then, $D\subseteq M_{\sigma_{O}},$ $|M(C_{G}(x))|=1$ for all $x\in D$ , and the following
conditions are satisfified.
(Ti) Whenever two elements of $X$ are conjugate in $G$ , they are con-

jugate in $M$ .

(Tii) If $D$ is not empty, there are $\varpi$ subgroups $M_{1}$ , $\ldots,M_{n}$ in $M$ of
type I or $\Pi$ such that with $H_{i}=(M_{i})_{F}$ ,

(a) $(|H_{i}|, |H_{j}|)=1$ for $i\neq j$ ,

(b) $M_{i}=H_{i}(M\cap M_{i})$ and $M\cap H_{i}=1$ ,

(c) $(|H_{i}|, |C_{M}(x)|)=1$ for all $x\in X^{\beta}$ ,

(d) $A_{0}(M_{i})-H_{i}$ is a nonempty $TI$-set in $G$ with normalizer $M_{i}$ ,
and

(e) if $x\in D$ , then there is a conjugate $y$ of $x$ in $D$ and an index $i$

such that

$C_{G}(y)\wedge=C_{H_{i}}(y)C_{M}(y)\subseteq M_{i}$ .

If $y\in D$ with $CG(y)\subseteq M_{i}$ , then $y\in A(M_{i})$ .
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(Tiii) If some $M_{i}$ in (Tii) has type $II$, then $M$ is a $\varpi$ -group and is $a$

Frobenius group with cyclic Frobenius complement, and $M_{F}$ is
not a $TI$-set in $G$ .

3. Application of Character Theory
We can study subgroups of $M$ using character theory as in [FT].

The following are the major steps.

Proposition 3. There is no subgroup $M\in M$ of type $V$.

Proposition 4. Every subgroup $M\in M$ of type I is a Frobenius
group.

This is very powerful. Suppose that $M\in M$ is not a Frobenius
group. Then, any supporting subgroup $M_{i}$ for $M$ in Theorem $II$ is of
type I by ( $T$ in). Then, Proposition 4 yields that $M_{i}$ is a Frobenius
group. However, it is easy to see that Ao(Mi)= $H_{i}$ for a Frobenius
group. This contradicts $(Tii)(d)$ . Therefore, there is no supporting
subgroup. It follows that $X$ is a $TI$-set in $G$ . This gives a very tight
control on the imbedding of any $M$ that is not a Frobenius group. In
particular, we can study the subgroups in $M$ which are of type $II$ , III,
or $IV$ . The final result is the following.

Theorem III. Let $G$ be $a$ fifinite simple group with disconnected
prime graph $\Gamma(G)$ . Let $\varpi$ be a connected component such that $ 2\not\in\varpi$ .

Then, one of the following two cases occurs.

(1) $G$ contains a nilpotent Hall $\varpi$ -subgroup that is isolated in $G$ .

(2) We have $\varpi=\{p, q\}$ for some primes $p$ and $q$ , and $G$ has $a$

self-normalizing cyclic subgroup of order $pq$ .

If the second case occurs, there are many more conditions the primes
$p$ and $q$ must satisfy. It may be possible to eliminate the case (2) with-
out referring to the classification of finite simple groups. In any case,
Theorem III implies Theorem B.

Theorem $IV$ . Let $G$ be $a$ fifinite simple group with disconnected
prime graph $\Gamma(G)$ . Let $\triangle$ be a connected component consisting of odd
primes. Then, $\triangle$ is a clique.

4. Lemmas
For the most part, we will follow the notation and terminology in

[BG]. Exceptions are noted in the body of the paper. As usual, for a
prime $p\in\pi(G)$ , we denote by

$Sy\ell_{p}(G)$
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the set of all Sylow $p$-subgroups of $G$ .

Let $X$ be a group and $Y$ a subgroup of $X$ . As in [BG], a complement
$Z$ of $Y$ in $X$ is defined to be a subgroup $Z$ of $X$ satisfying the two
conditions

$Y\cap Z=1$ and $X=YZ$ .

We have the following well-known lemma.

Lemma. Let $X$ be a group and $Y$ a subgroup ofX. Suppose that $Y$

has a complement $Z$ in X. If $U$ is a subgroup of $X$ such that $Y\subseteq U\subseteq X$ ,
then $Y$ has a complement in $U$ .

Proof. We will show that $U\cap Z$ is a complement of $Y$ in $U$ . Let
$W=U\cap Z$ . Then, clearly $Y\cap W=1$ . We have

$U=X\cap U=YZ\cap U$.

Since $Y\subseteq U$ , the Dedekind law yields that

$YZ\cap U=Y(Z\cap U)=YW$

This proves that $Y$ has a complement $W$ in $U$ . Q.E.D.

Next, we will state five lemmas which are used freely throughout
this paper. Their proofs can be found at the end of the introduction.

Lemma A. If $P\neq 1$ isa $\varpi$ -group, so is $C_{G}(P)$ .

Lemma B. Suppose a noncyclic elementary abelian $p$ group $E$

acts on a subgroup $H\neq 1$ .

(1) If $H$ is a $\varpi$ -group, then $ p\in\varpi$ .

(2) If $ p\in\varpi$ and $H$ is a $p’$ -group, then $H$ is a $\varpi$ -group.

Lemma C. Assume $ 2\not\in\varpi$ . If there exists a $\varpi$ -local subgroup of
even order, then $G$ contains an isolated abelian Hall $\varpi$ -subgroup.

Lemma D. A $w$ -group $\neq 1$ is contained in a $\varpi$ -local subgroup.

Lemma E.

(1) If $M\in M$ and a $pi$ subgroup $K\neq 1$ is normal in $M$ , then
$M=N_{G}(K)$ .

(2) If $M\in M$ , then $N_{G}(M)=M$ .

(3) If $M\in M$ normalizes a $\varpi$ group $H\neq 1$ , then $H\subseteq M$ and
$M=N_{G}(H)$ .
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Furthermore, we will collect here a few fundamental lemmas which
are explicitly stated in the body of the paper. The terminology and
notation are given there, as are the proofs.

Lemma $F$ (See \S 4, page 9). If $M\in M$ and $p\in\pi(M)\cap\varpi’$ , then
$M$ has a cyclic $p$-Sylow subgroup.

Lemma $G$ (See \S 4, page 12). If $M\in M$ , then $M$ is a $\varpi$ -group
except when

(1) $M$ is a Frobenius group such that the Frobenius kernel of $M$ is
a Hall $\varpi$ -subgroup of $M$ , or

(2) $M$ has the following structure: $M/M’$ is a cyclic $\varpi$ -group, $M_{\alpha}=$

$M_{\beta}=M_{\sigma_{O}}\neq 1$ is a nilpotent $\varpi$ -group, and $M’/M_{\beta}$ is a non-
identity cyclic $\varpi’$ -group that is a Hall subgroup of M. Both $M’$

and $M/M_{\beta}$ are Frobenius groups.

In the case (1), the Frobenius kernel of $M$ is $M_{\sigma_{O}}$ and it is either
$M’$ or $M_{\alpha}=M_{\beta}$ .

Lemma $H$ (See \S 6, page 17). Let $M$ $\in M$ . If $\tau_{2}(M)\neq\emptyset$ , then $M$

is a $\varpi$ -group. If $M$ is not a $\varpi$ -group, then $r_{p}(M)\leq 1$ for all $p\not\in\sigma_{0}(M)$ .

We also need some lemmas about the fusion of elements ( $11$ , page
66). Our hypotheses are weaker than those in [BG], and these lemmas
guarantee that the same results still hold.

Lemma I. Let $M\in M$ and let $X$ be an $F$-set ofM. Every element

of $X^{\beta}$ is conjugate to an element of $D^{*}$ in $M$ .

Lemma J.

(1) Every element $g$ of $M_{i}$ is conjugate in $M_{i}$ to an element of the
form $xh=hx$ where $x\in M\cap M_{i}$ and $h\in H_{i}$ .

(2) Suppose that $g$ is an element of $M_{i}$ with $C_{H_{i}}(g)\neq 1$ . Assume
that $g$ is conjugate in $M_{i}$ to an element of the form $hx$ where $ x\in$

$M\cap M_{i}$ and $h\in C_{H_{i}}(x)$ , and at the same time, $g$ is conjugate
to an element of the annex $A(y)$ with $y\in D_{j}$ . Then, $j=i$ and
the element $x$ is conjugate to $y$ in $M_{i}$ . In particular, $x\in D_{i}$

and $g\in A(M_{i})$ .

Finally, we prove Lemmas A through E.

The first three lemmas give a few basic properties of connected com-
ponents of prime graphs.
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Lemma A. Let $G$ be a group and let $\varpi$ be a connected component
(or a union of connected components) of the prime graph $\Gamma(G)$ of G. If
$P\neq 1$ is a $\varpi$ -subgroup of $G$ , then $C_{G}(P)$ is a $\varpi$ -group.

Proof. Let $p\in\pi(P)$ . Then, $ p\in\varpi$ . Take any $q\in\pi(C_{G}(P))$ . We
will show $ q\in\varpi$ . We may assume $q\neq p$ . There are elements $x$ and $y$

such that $x$ is an element of $P$ of order $p$ and $y$ is an element of $C_{G}(P)$

of order $q$ . Since $x$ and $y$ commute, the product $xy$ has order $pq$ . Thus,
$(p, q)$ is an edge of the prime graph $\Gamma(G)$ . This proves that $q$ lies in the
same connected component as the prime $ p\in\varpi$ . Hence, $ q\in\varpi$ . Q.E.D.

Lemma B. Let $G$ be a group and let $\varpi$ be a connected component
(or a union of connected components) of the prime graph $\Gamma(G)$ of G. Let
$p$ be a prime. Suppose that a noncyclic elementary abelian $p$ -subgroup
$E$ normalizes a subgroup $H$ of $G$ .

(1) If $H$ is a $\varpi- group\neq 1$ , then $ p\in\varpi$ .

(2) If $ p\in\varpi$ and $H$ is a $p’$ -group, then $H$ is a $\varpi$ -group.

Proof. By our assumptions, $K=HE$ is a subgroup and $H\triangleleft K$ .

(1) Suppose that $H$ is a $\varpi- group\neq 1$ . If $p\in\pi(H)$ , then $ p\in\varpi$ .

Suppose that $p\not\in\pi(H)$ . Then, $H$ is a $p’$-group. By Proposition 1.16
[BG],

$ H=\langle C_{H}(x)|x\in E^{\beta}\rangle$ .

Since $H\neq 1$ , $P=C_{H}(x)\neq 1$ for some $x\in E^{\beta}$ . Then, $x\in C_{G}(P)$ where
$P\neq 1$ is a $\varpi$-group. By Lemma $A$ , $C_{G}(P)$ is a $\varpi$-group, so in particular,
the order of $x$ is a $\varpi$-number. This proves $ p\in\varpi$ .

(2) Let $q\in\pi(H)$ and $Q\in Sy\ell_{q}(H)$ . Then, $q\neq p$ and $Q$ is a Sylow
$q$-subgroup of $K$ . By the Frattini argument, $K=HN_{K}(Q)$ . Therefore,
a conjugate of $E$ normalizes $Q$ . We may replace $E$ by a conjugate (in
$K)$ and assume that $E$ normalizes $Q$ . Since $Q$ is a $p’$ -group, Proposition
1.16 [BG] yields

$ Q=\langle C_{Q}(x)|x\in E^{\mathfrak{y}}\rangle$ .

Since $\langle x\rangle$ is a $\varpi$-group by assumption, Lemma A implies that $C_{Q}(x)$ is a
$\varpi$-group. Therefore, $ q\in\varpi$ . This proves that $H$ is a $\varpi$-group. Q.E.D.

Lemma C. Let $G$ be a group and $\varpi$ a connected component of
the prime graph $\Gamma(G)$ . Suppose that the prime 2 is not contained in $\varpi$

and that there is a $\varpi$ -local subgroup of even order. Then, $G$ contains an
abelian Hall $\varpi$ -subgroup $A$ that is isolated. Furthermore, any $\varpi$ element
is conjugate to an element of $A$ and the centralizer of any $\varpi$ element is
abelian.
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Proof. By assumption, there is a pair $(H, t)$ of a $\varpi$ subgroup $H$

and an element $t$ of order 2 that normalizes $H$ . We have a lemma: For
any pair $(H, t)$ consisting of a $\varpi$ subgroup $H$ and an element $t$ of order
2 that normalizes $H$ , $t$ inverts every element of $H$ and consequently, $H$

is abelian. This follows from the lemma of Burnside ((1.9) $[SII]$ p. 131).
Note that since $ 2\not\in\varpi$ , $C_{H}(t)=1$ by Lemma A. By a first application

of the above lemma, the element $t$ inverts every element $x$ of $H^{\beta}$ , i.e.
$txt^{-1}=x^{-1}$ . It follows that $t$ normalizes $A=C_{G}(x)$ . By Lemma $A$ , $A$

is a $\varpi$-subgroup of $G$ . Take $y\in A^{\beta}$ . A second application of the lemma
proves that $C_{G}(y)$ is abelian. Since $A$ is abelian, $A\subseteq C_{G}(y)$ . By the

definition of $A$ , $A=C_{G}(x)$ for some $x\in A^{\Downarrow}$ . Thus, the abelian group
$C_{G}(y)$ must coincide with $A$ , i.e. $A$ satisfies the property that if $y\in A^{\beta}$ ,

then $C_{G}(y)=A$ . An easy application of Sylow’s Theorem yields that $A$

is a Hall subgroup of $G$ .

If $A\cap uAu^{-1}\neq 1$ for some $u\in G$ , then take a nonidentity element
$y$ of $A\cap uAu^{-1}$ and consider $C_{G}(y)$ . Then, $A=C_{G}(y)=uAu^{-1}$ . Thus,
$A$ is isolated.

We will show that $\varpi=\pi(A)$ . Suppose that $\varpi\neq\pi(A)$ . Then, there
is a pair of primes $(p, q)$ such that $p\in\pi(A)$ , $q\in\varpi-\pi(A)$ , and $(p, q)$

is an edge of the prime graph $\Gamma(G)$ . Therefore, there are elements $a$ , $b$

such that $a$ is of order $p$ , $b$ is of order $q$ , $a$
$\in A^{Q}$ , and $a$ commutes with

$b$ . It follows that $b\in C_{G}(a)=A$ . This contradicts the choice of $q$ with
$q\not\in\pi(A)$ . We have shown that $A$ is a varpi-Hall subgroup of $G$ that is
isolated.

If $z$ is any $\varpi$ element $\langle z\rangle$ is conjugate to a subgroup of $A$ by a
theorem of Wielandt $[W 1954]$ . The last assertion follows. Q.E.D.

We will also need the following properties of M.

Lemma D. Let $G$ be a group and $\pi$ a set of primes. Any $\pi-$

subgroup $H\neq 1$ is contained in a maximal $\pi$ -local subgroup.

Proof. By definition, $K=N_{G}(H)$ is a $\pi$-local subgroup of $G$ . Let
$M$ be a $\pi$-local subgroup of maximal order that contains $K$ . Then, $M$

is a maximal $\pi$-local subgroup such that $H\subseteq M$ . Q.E.D.

Lemma E.

(1) If $M\in M$ and a $\pi$ subgroup $K\neq 1$ is normal in $M$ , then
$N_{G}(K)=M$ .

(2) If $M\in M$ , then $N_{G}(M)=M$ .

(3) If $M\in M$ normalizes a $\pi$ subgroup $H\neq 1$ of $G$ , then $H\subseteq M$

and $M=N_{G}(H)$ .
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Proof. (1) By assumption, $N_{G}(K)$ is a $\pi$-local subgroup that con-
tains $M$ . Since $M\in M$ , we get $N_{G}(K)=M$ .

(2) Let $K=O_{\pi}(M)$ . Then, $K$ is a $\pi- subgroup\neq 1$ of $G$ . Hence,

$M=N_{G}(K)$ by (1). Since $K$ char $M$ , $N_{G}(M)\subseteq N_{G}(K)$ . Hence,
$N_{G}(M)=M$ .

(3) By assumption, $N_{G}(H)$ is a $\pi$-local subgroup that contains $M$ .

Since $M\in M$ , we have $N_{G}(H)=M$ . Q.E.D.

Chapter I. Local Analysis

We begin the local analysis of the simple groups $G$ that satisfies the
basic assumptions. We need the following notation.

Notation. Let $G$ be a simple group with disconnected prime graph
$\Gamma=\Gamma(G)$ . Let $\varpi$ be a connected component of $\Gamma$ that consists of odd
primes. We fix the following notation:

$M$ $=the$ set of all maximal $\varpi$-local subgroups,

$M(H)=the$ set of $M\in M$ such that $H\subseteq M$ ,

$\mathfrak{U}=the$ set of all proper subgroups $H\subseteq G$ such that $|M(H)|=1$ .

The basic assumptions are

$ 2\not\in\varpi$

and
the set $M$ consists of subgroups of odd order.

Thus, if $M\in M$ , then $M$ is a solvable group of odd order.

The above notation and the basic assumptions are in force through-
out this paper, not just in Chapter I.

Chapter I contains 10 sections and is organized as follows. Section $m$

of this chapter corresponds to Section $m+6$ of [BG]. Lemma (Theorem,
Proposition, or Corollary) $m.k$ of Section $m$ of this paper corresponds to
Lemma (Theorem, Proposition, or Corollary) $(m+6).k$ in [BG]. Proof
may sometimes be obtained from the proof of the corresponding lemma
in [BG] simply by changing the reference to Lemma $n.k$ to Lemma
$(n -6).k$ of this paper when $n$ $>6$ . If this is the case, the proof is
usually omitted by referring to [BG].
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\S 1. The ibansitivity Theorem

Hypothesis 1.1. (1) The group $A$ is a noncyclic subgroup of $G$ with
$O_{\varpi}(A)\neq 1$ , and $\pi=\pi(A)$ .

(2) Whenever $X$ is a $\varpi$-local subgroup of the group $G$ such that
$A\subseteq X$ , we have

$ O_{\pi’}(X)=\langle M_{X}(A;\pi’)\rangle$ .

Let $K=O_{\pi’}(C_{G}(A))$ as in [BG]. Then, $K$ is the set of all $\pi’-$

elements in $C_{G}(A)$ . This is proved as follows. Let $B=O_{\varpi}(A)$ . By
Hypothesis 1.1 (1), $B\neq 1$ . Hence, $C_{G}(A)\subseteq C_{G}(B)\subseteq N_{G}(B)$ . This
implies that $N_{G}(B)=X$ is a $\varpi$-local subgroup that contains $A$ . Let
$x$ be a $\pi’$-element of $C_{G}(A)$ . Then, $\langle x\rangle$ is a $\pi’$-subgroup of $X$ that is
$A$-invariant. By (2), $\langle x\rangle\subseteq O_{\pi’}(X)$ . Therefore,

$\langle x\rangle\subseteq C_{G}(A)\cap O_{\pi’}(X)\subseteq O_{\pi’}(C_{G}(A))=K$ .

Conversely, if $x\in K$ , then $x$ is a $\pi’$-element of $C_{G}(A)$ . Q.E.D.

Lemma 1.1. Assume Hypothesis 1.1. Suppose, for a prime $ q\in$

$\pi’\cap\varpi$ , that $Q_{1}$ , $Q_{2}\in M_{G}^{*}(A;q)$ and that there exists a $\varpi$ -local subgroup
$H$ of $G$ such that

$A\subseteq H$ , $H\cap Q_{1}\neq 1$ , and $H\cap Q_{2}\neq 1$ .

Then, $Q_{2}=Q_{1}^{k}$ for some $k\in K$ .

Proof. We proceed by induction on $|G|_{q}/|Q_{1}\cap Q_{2}|$ . If this number
is 1, then $Q_{1}$ and $Q_{2}$ are Sylow subgroups of $G$ with $|Q_{1}\cap Q_{2}|=|Q_{1}|=$

$|Q_{2}|$ . This implies $Q_{1}=Q_{2}=Q_{1}^{k}$ with $k=1\in K$ . Proceed by

induction. By the basic assumptions, $H$ is a solvable group. Hence, the
$A$-invariant $q$ subgroup $H\cap Q_{1}$ is contained (in $O_{\pi’}(H)$ by Hypothesis
1.1 and so) in an $A$-invariant Sylow $q$ subgroup $R_{1}$ of $O_{\pi’}(H)$ . Similarly,
$H\cap Q_{2}\subseteq R_{2}$ where $R_{2}$ is an $A$-invariant Sylow $q$ subgroup of $O_{\pi’}(H)$ .

By Proposition 1.5 [BG], $R_{1}^{h}=R_{2}$ for some $h\in O_{\pi’}(H)\cap C_{G}(A)$ .

Since $h$ is a $\pi’$-element of $C_{G}(A)$ , the remark after Hypothesis 1.1 yields
$h\in K$ .

Take $Q_{3}\in M_{G}^{*}(A\cdot q))$ such that $R_{2}\subseteq Q_{3}$ . Since $h\in K$ , $ Q_{1}^{h}\in$

$M_{G}(A;q)$ . We have $1\neq(Q_{1}\cap H)^{h}=Q_{1}^{h}\cap H\subseteq R_{1}^{h}=R_{2}\subseteq Q_{3}$ and
$1\neq Q_{2}\cap H\subseteq R_{2}\subseteq Q_{3}$ . Therefore, $1\neq Q_{1}^{h}\cap H\subseteq Q_{1}^{h}\cap Q_{3}$ and
$1\neq Q_{2}\cap H\subseteq Q_{2}\cap Q_{3}$ .

If $Q_{1}\cap Q_{2}=1$ , we are done as in [BG]. Suppose that $ Q=Q_{1}\cap Q_{2}\neq$

$1$ . Since $q$ is assumed to be in $\varpi$ , $N_{G}(Q)$ is a $\varpi$-local subgroup that
contains $A$ and we may assume $H=N_{G}(Q)$ . The proof of Lemma 7.1
[BG] applies now without change. Q.E.D.
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Theorem 1.2. Assume Hypothesis 1.1 and let $ q=\pi’\cap\varpi$ . Suppose
$m(Z(A))\geq 3$ . Then, $K$ acts transitively on $M_{G}^{*}(A;q)$ .

Proof. By hypothesis, $Z(A)$ contains an elementary abelian p-sub-
group $B$ of order $p^{3}$ for some prime $p$ . Since $B$ centralizes $O_{\varpi}(A)$ and
$O_{\varpi}(A)\neq 1$ , we have $ p\in\varpi\cap\pi$ . So, $p\neq q$ . The proof of Theorem 7.2
[BG] yields the result if we apply Lemma 1.1 to the $\varpi$-local subgroup
$N_{G}(\langle z\rangle)$ at the end. Q.E.D.

Theorem 1.3. Assume Hypothesis 1.1 and let $ q\in\pi’\cap\varpi$ . Suppose
$r(Z(A))\geq 2$ and $q\in\pi(C_{G}(A))$ . Then, $K$ acts transitively on $M_{G}^{*}(A;q)$ .

Proof. The proof of Theorem 7.3 [BG] applies here if we use Lemma
1.1 with the $\varpi$-local subgroup $N_{G}(\langle x\rangle)$ for some $x\in B$ with $C_{Q_{1}}(x)\neq 1$ .

Q.E.D.

Theorem 1.4. Assume Hypothesis 1.1 and let $ q\in\pi’\cap\varpi$ . Suppose
that $P$ is a $\pi$ -subgroup of $G$ that contains $A$ as a subnormal subgroup
and that $K$ acts transitively on $M_{G}^{*}(A;q)$ . Then,

(a) $C_{K}(P)=O_{\pi’}(C_{G}(P))$ ,
(b) $O_{\pi’}(C_{G}(P))$ acts transitively on $M_{G}^{*}(P;q)$ ,
(c) $M_{G}^{*}(P\cdot q))\subseteq M_{G}^{*}(A;q)$ , and

(d) for every $Q\in M_{G}^{*}(P;q)$ , we have $P\cap N_{G}(P)’\subseteq N_{G}(Q)’$ and
$N_{G}(P)=O_{\pi’}(C_{G}(P))(N_{G}(P)\cap N_{G}(Q))$ .

Proof. Since $A$ is subnormal in $P$ , we have $O_{\varpi}(A)\subseteq O_{\varpi}(P)$ .

Therefore, $O_{\varpi}(P)\neq 1$ and $P$ is contained in a $\varpi$-local subgroup. Note
that, by the basic assumptions, $|P|$ is odd so $P$ is solvable. The subgroup
$P$ satisfies the condition that is obtained from Hypothesis 1.1 replacing
$A$ by $P$ .

Since $C_{G}(P)\subseteq C_{G}(A)$ , $O_{\pi’}(C_{G}(P))$ is a set of $\pi’$-elements of $C_{G}(A)$ .

Hence, $O_{\pi’}(C_{G}(P))\subseteq K\cap C_{G}(P)=C_{K}(P)$ . On the other hand,
$C_{K}(P)=O_{\pi’}(C_{G}(A))\cap C_{G}(P)\subseteq O_{\pi’}(C_{G}(P))$ . We have proved (a).

To prove the parts (b) and (c) we use induction on $|P:A|$ . Let

$1=P_{0}\triangleleft P_{1}\triangleleft\cdots\triangleleft P_{n-1}\triangleleft P_{n}=P$

be a composition series of $P$ through $A$ . If $A=P_{n-1}$ (or $A=P_{n}$ ), the
proof of Theorem 7.4 [BG] for the case $k>n-2$ yields (b) and (c). If
$A\neq P_{n-1}$ , let $B=P_{n-1}$ . Note that $B$ satisfies the condition obtained
from Hypothesis 1.1 by replacing $A$ by $B$ . The parts (b) and (c) follow
by induction as in [BG].
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In order to prove (d), take any $Q\in M_{G}^{*}(P;q)$ and let $ L=N_{G}(P)\cap$

$N_{G}(Q)$ . If $x\in N_{G}(P)$ , then $Q^{x}\in M_{G}^{*}(P;q)$ . By (b), $Q^{x}=Q^{y}$ for some
$y\in O_{\pi’}(C_{G}(P))$ . Hence, $xy^{-1}\in N_{G}(Q)\cap N_{G}(P)=L$ . Therefore,

$N_{G}(P)=LO_{\pi’}(C_{G}(P))=LC_{K}(P)$ .

Since $O_{\pi’}(C_{G}(P))=C_{K}(P)\triangleleft N_{G}(P)$ , we have $N_{G}(P)=C_{K}(P)L$ .

Note that $N_{G}(P)$ is contained in a $\varpi$-local subgroup, so by the
basic assumptions, $N_{G}(P)$ is solvable of odd order. Lemma 6.5 [BG]
with $(G, K, U, H)$ replaced by $(N_{G}(P), O_{\pi’}(C_{G}(P)),$ $L$ , $P)$ yields $ P\cap$

$N_{G}(P)’=P\cap L’\subseteq L’\subseteq N_{G}(Q)’$ . Q.E.D.

Proposition 1.5. Suppose $ p\in\varpi$ and $A$ is an abelian $p$ -subgroup

of G. Assume that either (1) $A=\{x\in C_{G}(A)|x^{p}=1\}$ and every
$\varpi$ -local subgroup of $G$ has $p$ -length 1, or (2) $A\in SCN_{2}(P)$ for some
$P\in Sy\ell_{p}(G)$ . Then, A satisfifies Hypothesis 1.1.

Proof. We can use the same method as in the proof of Theorem 7.5
[BG]. The proof in [BG] utilizes the centralizer $C_{G}(b)$ of an element $b$ of
order $p$ . This subgroup need not be $\varpi$-local. However, it is contained
in the $\varpi$-local subgroup $N_{G}(\langle b\rangle)$ . Since the index $|N_{G}(\langle b\rangle)$ : $C_{G}(\langle b\rangle)|$

is prime to $p$ , we may replace $C_{G}(b)$ by $N_{G}(\langle b\rangle)$ without affecting the
argument. Q.E.D.

Theorem 1.6 (Transitivity Theorem). Suppose $ p\in\varpi$ , $ A\in$

$SCN_{3}(p)$ , and $ q\in p’\cap\varpi$ . Then, $O_{p’}(C_{G}(A))$ acts transitively on
$M_{G}^{*}(A;q)$ by conjugation.

\S 2. The Fitting Subgroup of a Maximal $\varpi$-Local Subgroup

This section corresponds to Section 8 of [BG]. We begin with the
following remark. Let $H$ be a $\varpi$-local subgroup of $G$ . By the basic
assumptions, $H$ is a solvable group of odd order. Let $F=F(H)$ be the
Fitting subgroup of $H$ . Since $O_{\varpi}(H)\neq 1$ , we have $O_{\varpi}(F)\neq 1$ . This
implies that $\pi(F)\subseteq\varpi$ as $F$ is nilpotent and is the direct product of its
Sylow subgroups.

Theorem 2.1. Suppose $M\in M$ , $p\in\pi(F(M))$ , and $ A_{0}\in$

$\mathcal{E}_{p}^{*}(F(M))$ . Assume that $m(A_{0})\geq 3$ . Let $P\in Sy\ell_{p}(M)$ .

(a) If $F(M)$ is not a $p$ -group, then $C_{F(M)}(A_{0})\in \mathfrak{U}$ .

(b) If $F(M)$ is a $p$ -group, then $P\in Sy\ell_{p}(G)$ and every element of
$SCN_{3}(P)$ is contained in $F(M)$ and belongs to U.
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Proof. (a) Let $F=F(M)$ , $\pi=\pi(F)$ and $A=C_{F}(A_{0})$ . Then
$\pi(A)=\pi$ because $Z(F)\subseteq C_{F}(A_{0})=A\subseteq F$ . Note that for every $ q\in\pi$ ,

$CG(A)\subseteq CV(A0)\subseteq CG(Z(F)g)\subseteq NG(Z(F)q)=M$ .

The last equality comes from Lemma $E(1)$ since $Z(F)_{q}$ is a nonidentity
normal $\varpi$-subgroup of $M$ . The notation $N_{\pi}$ stands for $O_{\pi}(N)$ of a
nilpotent group $N$ as in [BG].

We will show that $C_{G}(A)$ is a $\pi$-subgroup. Suppose that $x$ is a $\pi’-$

element of $C_{G}(A)$ . Let $C=C_{F}(x)$ . By the first paragraph, $x\in M$ .

Since $A\subseteq C$ , $C_{F}(C)\subseteq C_{F}(A)\subseteq C_{F}(A_{0})=A\subseteq C$ . By Proposition
1.10 [BG], $x\in C_{M}(F)=C_{M}(F(M))\subseteq F$ . Since $x$ is a $\pi’$ element with
$\pi=\pi(F)$ , we get $x=1$ . Thus, $C_{G}(A)$ is a $\pi$ subgroup of $M$ .

We prove the following lemma. Let $p$ be any prime, $X$ a solvable
subgroup of $G$ and $P$ a $p$-subgroup of X. Then,

$O_{p’}(N_{G}(P))\cap X\subseteq O_{p’}(X)$ .

Proof. Let $Y=O_{p’}(N_{G}(P))\cap X$ . Then,

$Y=O_{p’}(N_{G}(P))\cap N_{X}(P)\subseteq O_{p’}(N_{X}(P))$ .

Since $P\subseteq X$ , we have $[O_{p’}(N_{X}(P)), P]\subseteq O_{p’}(N_{X}(P))\cap P=1$ . Hence,

$O_{p’}(N_{X}(P))\subseteq O_{p’}(C_{X}(P))$ .

By Proposition 1.15 [BG], $O_{p’}(C_{X}(P))\subseteq O_{p’}(X)$ .

This proves $Y\subseteq O_{p’}(X)$ . Q.E.D.

With this lemma on hand, we verify Hypothesis 1.1 for $A$ . Take an
arbitrary $\varpi$-local subgroup $X$ that contains $A$ and $Y\in JI_{X}(A;\pi’)$ . Take
any $ q\in\pi$ . By the first paragraph of the proof, $C_{Y}(A_{q})\subseteq M$ . Since $Y$

is an $A$-invariant $\pi’$ subgroup

$[C_{Y}(A_{q}), A]\subseteq Y\cap[M, A]=Y\cap F=1$ .

Hence, $C_{Y}(A_{q})\subseteq C_{G}(A)$ . Since $C_{G}(A)$ is a $\pi$-group, we have $C_{Y}(A_{q})=$

$1$ . Thus, by Proposition 1.6 [BG], $Y=C_{Y}(A_{q})[Y, A_{q}]=[Y, A_{q}]$ . By

hypothesis, $|\pi|\geq 2$ . Take $r\neq q$ in $\pi$ . Since $N_{G}(Z(F)_{q})=M$ by Lemma
$E(1)$ , $A_{r}\subseteq F_{r}\subseteq O_{q’}(M)$ : and: $A_{r}\subseteq O_{q’}(N_{G}(Z(F)_{q}))\cap X$ .

Since $Z(F)\subseteq A\subseteq X$ , Lemma implies

(1) $A_{r}\subseteq O_{q’}(X)$ for any $q\neq r$ in $\pi$ .

Since $Y=[Y, A_{r}]$ , we have $Y\subseteq O_{q’}(X)$ for all $ q\in\pi$ . Hence, $ Y\subseteq$

$\bigcap_{q\in\pi}O_{q’}(X)=O_{\pi’}(X)$ . This proves Hypothesis 1.1 for $A$ .
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We will prove that $M_{G}^{*}(A;q)=\{1\}$ for every $ q\in\pi’\cap\varpi$ . Take
$ q\in\pi’\cap\varpi$ . Since $m(Z(A))\geq m(A_{0})\geq 3$ , Theorem 1.2 implies that
$O_{\pi’}(C_{G}(A))$ acts transitively on $M_{G}^{*}(A;q)$ . But, $C_{G}(A)$ is a $\pi$-group,
so $O_{\pi’}(C_{G}(A))=1$ . Thus, $M_{G}^{*}(A;q)=\{Q\}$ for some $q$-subgroup $Q$ of
$G$ . Since $F$ is nilpotent, $A\triangleleft\triangleleft F$ . By Theorem 1.4 (c), $ M_{G}^{*}(F;q)\subseteq$

$M_{G}^{*}(A;q)$ . Therefore, $M_{G}^{*}(F;q)=\{Q\}$ and $M$ normalizes $Q$ . By Lemma
$E(3)$ , $Q\subseteq M$ . Hence, $Q\triangleleft M$ and $Q\subseteq F(M)$ . Since $\pi=\pi(F(M))$

and $q\in\pi’$ , we have $Q=1$ . Thus, $M_{G}^{*}(A;q)=\{1\}$ for $ q\in\pi’\cap\varpi$ .

To prove $A\in \mathfrak{U}$ , take $H\in M(A)$ . Let $D=F(H)$ and $\sigma=\pi(D)$ .
We will prove first $\sigma=\pi$ . Since $A$ normalizes $D$ , the last paragraph
yields $\sigma\subseteq\pi$ . By definition of $D$ , $O_{\sigma’}(H)=1$ . We have

$ O_{\sigma’}(Z(F))\subseteq O_{\sigma’}(A)=\langle A_{r}|r\in\pi\cap\sigma’\rangle$ .

By (1) for $X=H$ , $A_{r}\subseteq O_{q’}(H)$ . Hence

$\langle A_{r}|r\in\pi\cap\sigma’\rangle\subseteq\bigcap_{q\in\sigma}O_{q’}(H)=O_{\sigma’}(H)=1$ .

It follows that $\pi\cap\sigma’$ is empty, i.e. $\pi\subseteq\sigma$ . Thus, $\sigma=\pi$ .

For each $ q\in\pi$ , $O_{q’}(A)=\langle A_{r}|r\neq q\rangle\subseteq O_{q’}(H)$ . So,

(2) $[D_{q}, O_{q’}(A)]\subseteq[D_{q}, O_{q’}(H)]=1$ .

Hence, $D_{q}\subseteq C_{G}(O_{q’}(A))\subseteq N_{G}(O_{q’}(A))=M$ . The last equality is by
Lemma $E$ $(1)$ . This proves $D\subseteq M$ .

The formula (2) implies that $A_{p}$ centralizes $O_{p’}(D)$ . Since $O_{p’}(D)=$

$F(O_{p’}(H))$ , Proposition 1.4 [BG] implies that $A_{p}$ centralizes $O_{p’}(H)$ .

Hence, $O_{p’}(H)\subseteq C_{G}(A_{p})\subseteq M$ by the first paragraph of the proof. By
Lemma $E(1)$ for $H$ , $O_{p’}(H)\subseteq O_{p’}(N_{G}(D_{p}))\cap M$ . Since $D_{p}\subseteq M$ , the
lemma applies to get $O_{p’}(H)\subseteq O_{p’}(M)$ .

We will prove that $O_{p’}(M)\subseteq O_{p’}(H)$ . Since $A_{0}$ is a $p$-subgroup of
$F$ , we have $O_{p’}(F)\subseteq C_{G}(A_{0})=A$ . Thus, $O_{p’}(F)=O_{p’}(A)$ . By (2), $D_{p}$

centralizes $O_{p’}(A)=O_{p’}(F)=F(O_{p’}(M))$ . Proposition 1.4 [BG] shows
that $D_{p}$ centralizes $O_{p’}(M)$ , i.e. $O_{p’}(M)\subseteq C_{G}(D_{p})\subseteq N_{G}(D_{p})=H$ .

The last equality is by Lemma $E(1)$ applied to $H\in M$ . Therefore,

$O_{p’}(M)\subseteq O_{p’}(N_{G}(Z(F)_{p}))\cap H$ .

We have $Z(F)_{p}\subseteq O_{q’}(A)\subseteq C_{G}(D_{q})\subseteq H$ .

The lemma gives us $O_{p’}(M)\subseteq O_{p’}(H)$ . Therefore, $O_{p’}(M)=$

$O_{p’}(H)$ and $M=N_{G}(O_{p’}(M))=N_{G}(O_{p’}(H))=H$ . This proves that
$A\in \mathfrak{U}$ .

(b) The proof of Part (b) of Theorem 8.1 [BG] is applicable. Note
that we must take $ q\in p’\cap\varpi$ to apply the $rransitivity$ Theorem 1.6 and
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that an $A$-invariant $p’$ subgroup is a $\varpi$-subgroup by Lemma $B(2)$ .

Q.E.D.

\S 3. The Uniqueness Theorem

Theorem 3.1. Suppose that $p$ is a prime, $M\in M$ , $B\in \mathcal{E}_{p}(M)$ ,

and $B$ is not cyclic. Assume that (a) $C_{G}(b)\subseteq M$ for all $b\in B^{\Downarrow}or$ (b)
$\langle M_{G}(B;p)\prime\rangle\subseteq M$ . Then, $B\in \mathfrak{U}$ .

Proof. Since $O_{\varpi}(M)\neq 1$ and $B$ normalizes $O_{\varpi}(M)$ , Lemma $B(1)$

implies $ p\in\varpi$ . If $ K\in M_{G}(B;p)\prime$ , Lemma $B(2)$ proves that $K$ is a
$\varpi$-group. In particular, $O_{p’}(M)$ is a $\varpi$-subgroup. It follows that if
$O_{p’}(M)\neq 1$ , then $M=N_{G}(O_{p’}(M))$ by Lemma $E$ $(1)$ . With these
remarks, the proof of Theorem 9.1 [BG] shows the validity of the con-
clusion of Theorem 3.1. Q.E.D.

Corollary 3.2. Suppose that $L\in \mathfrak{U}$ , $K$ is a subgroup of $C_{G}(L)$ ,
and $r(K)\geq 2$ . Then, $K\in \mathfrak{U}$ if one of the following conditions holds:

(a) $r_{p}(K)\geq 2$ for some $ p\in\varpi$ ,
(b) $\pi(L)\cap\varpi$ is nonempty, or
(c) $K$ is contained in some $M\in M$ .

Proof. Let $M(L)=\{H\}$ . Take $B\in \mathcal{E}_{p}^{2}(K)$ for some prime $p$ . If

(a) holds, take $ p\in\varpi$ . If (b) holds, take $ q\in\pi(L)\cap\varpi$ and an element
$x$ of $L$ of order $q$ . The element $x$ centralizes $B$ . Since $ q\in\varpi$ , we have
$ p\in\varpi$ . If (c) holds, $B$ normalizes $O_{\varpi}(M)\neq 1$ . Then, $ p\in\varpi$ by Lemma
$B(1)$ . Thus, we have $ p\in\varpi$ in all cases.

For each $b\in B^{\mathfrak{p}}$ , we have $L\subseteq C_{G}(b)\subseteq N_{G}(\langle b\rangle)$ . Since $ p\in\varpi$ ,
$N_{G}(\langle b\rangle)$ is a $\varpi$-local subgroup. Since $M(L)=\{H\}$ , we have

$C_{G}(b)\subseteq N_{G}(\langle b\rangle)\subseteq H$

for all $b\in B^{\phi}$ . By Theorem 3.1, $B\in \mathfrak{U}$ and $M(B)=\{H\}$ . Since $B\subseteq K$ ,
we have $M(K)=\{H\}$ and $K\in \mathfrak{U}$ . Q.E.D.

Corollary 3.3. Suppose that $ p\in\varpi$ , $A$ is an abelian $p$ subgroup

of $G$ , and $B$ is a noncyclic $p$-subgroup of G. Assume that $A\in \mathfrak{U}$ ,
$m(A)\geq 3$ , and $r_{p}(C_{G}(B))\geq 3$ . Then, $B\in \mathfrak{U}$ .

Proof. Take $B^{*}\in \mathcal{E}_{p}^{3}(C_{G}(B))$ and let $P$ be a Sylow $p$-subgroup of
$G$ that contains $B^{*}$ . Replacing $A$ by a conjugate, if necessary, we can
assume that $A\subseteq P$ . The proof of Corollary 9.3 [BG] shows $B\in \mathfrak{U}$ .

Q.E.D.
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Lemma 3.4. Suppose that $p$ is a prime, $M\in M$ , and $ r_{p}(F(M))\geq$

$3$ . Then, 11 contains every abelian $p$ -subgroup of rank at least three.

Proof. The assumptions imply $ p\in\varpi$ by Lemma $B(1)$ . Lemma
follows from Theorem 2.1 and Corollaries 3.2 and 3.3 as in the proof of
Lemma 9.4 [BG]. Q.E.D.

Lemma 3.5. Suppose $ p\in\varpi$ and $A\in SCN_{3}(p)$ . Then, $A\in \mathfrak{U}$ .

Proof. Since $ p\in\varpi$ , $C_{G}(A)$ is a $\varpi$-group (Lemma A). By Lemma $D$ ,
$M(C_{G}(A))$ is not empty. Let $M$ be an arbitrary element of $M(C_{G}(A))$ ,

and let $F=F(M)$ . We assume that $A\not\in \mathfrak{U}$ . By Lemma 3.4, we have
$r_{p}(F)\leq 2$ .

Choose a prime $q$ as follows: if $r(F)\leq 2$ , let $q$ be the largest primes
in $\pi(M)$ ; if $r(F)\geq 3$ , let $q$ be some prime for which $r_{q}(F)\geq 3$ . If
$r(F)\leq 2$ , Theorem 4.20 (c) [BG] implies $O_{q}(M)\in Sy\ell_{q}(M)$ . In all
cases, $O_{q}(M)\neq 1$ . Then, $ q\in\varpi$ , for if $ q\not\in\varpi$ , $O_{q}(M)$ would centralize
$O_{\varpi}(M)\neq 1$ contradicting Lemma A.

Since $ q\in\varpi$ , we have $M=N_{G}(O_{q}(M))$ by Lemma $E(1)$ . If $ r(F)\leq$

$2$ , then $O_{q}(M)$ is indeed a Sylow $q$-subgroup of $G$ . Thus, $r_{q}(G)\leq 2$ .

Since $r_{p}(G)\geq 3$ , we have $q\neq p$ . If $r(F)\geq 3$ , then $r_{q}(F)\geq 3$ while
$r_{p}(F)\leq 2$ . Thus, $q\neq p$ in all cases.

Let $P$ be a Sylow $p$-subgroup of $N_{G}(A)$ and let $R$ be a subgroup of
$P\cap M$ that contains $A$ . Then $R$ normalizes $O_{q}(M)$ . Take $Q\in M_{G}^{*}(R;q)$

such that $O_{q}(M)\subseteq Q$ . We will prove $Q\subseteq N_{G}(Q)\subseteq M$ .

If $r(F)\geq 3$ , the definition of the prime $q$ implies $r_{q}(F(M))\geq 3$ ,

so Lemma 3.4 applies with $q$ in place of $p$ . Since $O_{q}(M)$ contains an
abelian subgroup of rank at least three, $O_{q}(M)\in \mathfrak{U}$ by Lemma 3.4.
Since $O_{q}(M)\subseteq Q\subseteq N_{G}(Q)$ , we have $N_{G}(Q)\subseteq M$ . On the other hand,
if $r(F)\leq 2$ , then $Q=O_{q}(M)\triangleleft M$ . Hence, the claim holds in all cases.

We will prove next $N_{G}(A)\subseteq M$ and $N_{G}(P)\subseteq M$ .

By definition, $R$ is a $p$-subgroup so $A\triangleleft\triangleleft R$ . By Theorem 1.6,
$O_{p’}(C_{G}(A))$ acts transitively on $M_{G}^{*}(A;q)$ . By Proposition 1.5, $A$ satis-
fies Hypothesis 1.1. By Theorem 1.4, $O_{p’}(C_{G}(R))$ acts transitively on
$M_{G}^{*}(R;q)$ . Note that $C_{G}(R)\subseteq C_{G}(A)\subseteq M$ .

Take $x\in N_{G}(R)$ . Then, $Q^{x}\in M_{G}^{*}(R\cdot q))$ . Hence,

$Q^{x}=Q^{y}$ for some $y\in O_{p’}(C_{G}(R))\subseteq M$ .

We have $xy^{-1}\in N_{G}(Q)\subseteq M$ . This implies that $x=(xy^{-1})y\in M$ .

Thus, $N_{G}(R)\subseteq M$ . By taking $R=A$ , we have $P\subseteq N_{G}(A)\subseteq M$ . By
taking $R=P$ , we have $N_{G}(P)\subseteq M$ .
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Let $P_{0}=[P, N_{G}(P)]$ and $D=O_{p’}(F)$ . Then, $P_{0}\neq 1$ (Theorem 1.18
[BG] $)$ . We will prove that $P_{0}$ centralizes $D$ . Suppose that $P_{0}$ does not
centralize $D$ . By Proposition 1.16 [BG],

$D=\langle C_{D}(B)|B\subseteq\Omega_{1}(A)$ ,$ \Omega_{1}(A)/B$ cyclic).

Take $B\subseteq\Omega_{1}(A)$ such that $\Omega_{1}(A)/B$ is cyclic and $P_{0}$ does not centralize
$C_{D}(B)$ . Since $A\in SCN_{3}(p)$ , $B$ is not cyclic. Since $A\not\in \mathfrak{U}$ , we have
$B\not\in \mathfrak{U}$ . By Theorem 3.1, there exist $y\in B^{\beta}$ and $L\in M$ such that
$C_{G}(y)\subseteq L$ and $C_{G}(y)\not\leqq M$ . Since $C_{G}(A)\subseteq C_{G}(b)\subseteq L$ , we can
apply the preceding argument, with $L$ in place of $M$ , to conclude that
$N_{G}(P)\subseteq L$ . Hence,

$N_{G}(P)\subseteq M\cap L$ and $P_{0}\subseteq(N_{G}(P))’\subseteq(M\cap L)’$ .

Since $D\cap L\triangleleft M\cap L$ , no subgroup of $D\cap L$ lies in U. As $D=O_{p’}(F(M))$ ,
Lemma 3.4 implies that $r(D\cap L)\leq 2$ . Thus, by Corollary 4.19 [BG], $P_{0}$

centralizes every chief factor $U/V$ of $L\cap M$ for which $U\subseteq D\cap L$ . Since
$D\cap L$ is a $p’$-subgroup, Lemma 1.9 [BG] shows that $P_{0}$ centralizes $D\cap L$ .

However, $D\cap L\supseteq D\cap C_{G}(y)\supseteq C_{D}(B)$ and $C_{D}(B)$ is not centralized
by $P_{0}$ . This contradiction shows that $P_{0}$ centralizes $D$ .

We claim that $\{M\}=M(N_{G}(P_{0}))$ . Suppose that $r(F)\geq 3$ . Since
$r_{p}(F)\leq 2$ , we have $r(D)\geq 3$ . By Lemma 3.4 applied to a prime $q$

with $r_{q}(D)\geq 3$ , $D$ contains some subgroup in U. Thus, $D\in \mathfrak{U}$ . Since
$M=N_{G}(D)$ , we have $M(D)=\{M\}$ . We have $D\subseteq C_{G}(P_{0})\subseteq N_{G}(P_{0})$

so $M(N_{G}(P_{0}))=\{M\}$ .

Suppose that $r(F)\leq 2$ . By Theorem 4.20 [BG], $M’\subseteq F$ . We have
shown that $P\subseteq N_{G}(P)\subseteq M$ .

Since $M/F$ is abelian, $FP\triangleleft M$ and $M=O_{p’}(M)N_{M}(P)$ . Since
$P_{0}=[P, N_{G}(P)]\triangleleft N_{G}(P)$ and $O_{p’}(M)$ centralizes $P_{0}$ , we have $P_{0}\triangleleft M$ .

This yields $\{M\}=M(N_{G}(P_{0}))$ .

We will complete the proof as in [BG]. Since $A\not\in \mathfrak{U}$ , it follows
that $\Omega_{1}(A)\not\in \mathfrak{U}$ . By Theorem 3.1, there exists $x\in\Omega_{1}(A)^{\beta}$ such that
$C_{G}(x)\not\leqq M$ . Take $H\in M(C_{G}(x))$ . Then, $C_{G}(A)\subseteq C_{G}(x)\subseteq H$ . Since
$M$ was chosen arbitrary from $M(C_{G}(A))$ , we can apply the previous
argument to $H$ in place of $M$ to conclude

$\{H\}=M(N_{G}(P_{0}))=\{M\}$

that is a contradiction. This completes the proof of Lemma 3.5.
Q.E.D.

Theorem 3.6 (The Uniqueness Theorem). Suppose that $K$ is $a$

subgroup of $G$ with $r(K)\geq 2$ . Assume that $r_{p}(K)\geq 3$ for some $ p\in\varpi$
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or $r_{p}(C_{G}(K))\geq 3$ for some $ p\in\varpi$ . Then, $K\in \mathfrak{U}$ . In particular, if
$A\in \mathcal{E}_{p}^{2}(G)\backslash \mathcal{E}^{*}(G)$ , for some prime $ p\in\varpi$ , then $A\in \mathfrak{U}$ .

Proof. Assume that $r_{p}(K)\geq 3$ for some $ p\in\varpi$ . Take $B\in \mathcal{E}_{p}^{3}(K)$

of order $p^{3}$ . Let $P$ be a Sylow $p$-subgroup of $G$ that contains $B$ . By
Lemma 5.1 [BG], there exists $A\in SCN_{3}(P)$ . Since $ p\in\varpi$ , Lemma 3.5
implies $A\in \mathfrak{U}$ . Since $B$ is abelian, $B\subseteq C_{G}(B)$ . Corollary 3.3 implies
$B\in \mathfrak{U}$ . Therefore, $K\in \mathfrak{U}$ .

Assume that $r_{p}(C_{G}(K))\geq 3$ for some $ p\in\varpi$ . Let $L=C_{G}(K)$ .

Then, the first paragraph of the proof shows $L\in \mathfrak{U}$ . Since $\pi(L)\cap\varpi$ is
nonempty, Corollary 3.2 implies $K\in \mathfrak{U}$ . Q.E.D.

\S 4. The Subgroups $M_{\alpha}$ and $M_{\sigma}$

For each $M\in M$ , we define the sets of primes $\alpha(M)$ , $\beta(M)$ and
$\sigma(M)$ , and the subgroups $M_{\alpha}$ , $M_{\beta}$ , and $M_{\sigma}$ as in [BG], page 70. In
addition, we use the notation

$\sigma_{0}(M)=\sigma(M)\cap\varpi$ and $M_{\sigma_{0}}=O_{\sigma_{0}(M)}(M)$ .

Lemma F. Let $M\in M$ and $p\in\pi(M)$ . If $ p\not\in\varpi$ , then $M$ has $a$

cyclic Sylow $p$ -subgroup.

Proof. By the basic assumptions, $p$ is odd. If a Sylow $p$-subgroup
$S$ of $M$ is not cyclic, then $S$ contains an elementary abelian $p$-subgroup
$E$ that is not cyclic ([S], $II$ page 59, (4.4)). The group $E$ normalizes
$O_{\varpi}(M)$ which is a nonidentity $\varpi$-subgroup. By Lemma $B(1)$ , we have
$ p\in\varpi$ . Q.E.D.

Theorem 4.1. Suppose $M\in M$ , $p\in\sigma(M)$ , and $X$ is a nonempty

subset of $G^{\Downarrow}such$ that $\langle X\rangle$ is a $p$ -subgroup of $G$ .

(a) If $X\subseteq M$ , $g\in G$ , and $X^{g}\subseteq M$ , then $g=cm$ for some
$c\in C_{G}(X)$ and $m\in M$ .

(b) The subgroup $C_{G}(X)$ acts transitively by conjugation on the set

{ $M^{g}|g\in G$ and $X\subseteq M^{g}$ }.
(c) If $X$ is a subgroup of $M$ , then $NG(X)=N_{M}(X)C_{G}(X)$ .

(d) If $X$ is a Sylow $p$ -subgroup of $M$ , then $X\subseteq M^{g}$ implies $g\in M$

(so $M$ is the only conjugate of $M$ that contains $X$ ).
(e) If $X\subseteq M$ , $C_{G}(X)\subseteq M$ , $g\in G$ , and $X\subseteq M^{g}$ , then $M=M^{g}$

and $g\in M$ .

There is only a small difference between our Theorem 4.1 and the
corresponding Theorem 10.1 [BG]. To prove (b), we may replace $X$ by
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$\langle X\rangle$ and assume that $X$ is a nontrivial $p\frac{-}{}subgroup$ of $G$ (as in [BG]).
The argument in [BG] proves the result. Note that in the case when
$r(P)\geq 3$ , we have $ p\in\varpi$ . This justifies the use of the Uniqueness
Theorem on the top of page 72 [BG].

Theorem 4.2. Let $M\in M$ . Then,

(a) $M_{\alpha}$ is a Hall $\alpha(M)$ -subgroup of $M$ and of $G$ ,
(b) $M_{\sigma}$ is a Hall $\sigma(M)$ -subgroup of $M$ and of $G$ ,
(c) $M_{\alpha}\subseteq M_{\sigma_{O}}\subseteq M_{\sigma}\subseteq M’$ ,
(d) $r(M/M_{\alpha})\leq 2$ and $M’/M_{\alpha}$ is nilpotent,
(e) $M_{\sigma_{O}}\neq 1$ , and
(f) $M_{\sigma_{0}}$ is a Hall $\sigma_{0}(M)$ -subgroup of $M$ and of $G$ .

Proof. The proof is the same as that of Theorem 10.2 [BG]. We
will repeat it here because the results are so basic.

The basic assumptions imply that $M$ is a solvable group of odd
order. So, $M$ contains a Hall $\alpha(M)$ -subgroup $M(\alpha)$ . Take $p\in\alpha(M)$

and $P\in Sy\ell_{p}(M(\alpha))$ . By definition of $\alpha(M)$ , $r(P)\geq 3$ . So, by Lemma
$F$ , $ p\in\varpi$ . The Uniqueness Theorem implies $P\in \mathfrak{U}$ . In particular, we
have $N_{G}(P)\subseteq M$ . Thus, $p\in\sigma(M)$ ; in fact, $p\in\sigma_{0}(M)$ . Since $p$ is
arbitrary in $\alpha(M)$ , we have $\alpha(M)\subseteq\sigma_{0}(M)\subseteq\sigma(M)$ . Also, $N_{G}(P)\subseteq M$

implies that $P\in Sy\ell_{p}(G)$ . Thus, $M(\alpha)$ is a Hall $\alpha(M)$ -subgroup of $G$ .

Let $M(\sigma)$ be a Hall $\sigma(M)$ -subgroup of $M$ that contains $M(\alpha)$ . Take
$p\in\sigma(M)$ and $P\in Sy\ell_{p}(M(\sigma))$ . By definition of $\sigma(M)$ , we have
$N_{G}(P)\subseteq M$ so $P\in Sy\ell_{p}(G)$ . Hence, $M(\sigma)$ is a Hall $\sigma(M)$ -subgroup of
$G$ .

By Theorem 1.17 [BG],

$ P\cap G’=\langle$$x^{-1}y|x$ , $y\in P$ and $x$ is conjugate to $y$ in $ G\rangle$

$ P\cap M’=\langle$$x^{-1}y|x$ , $y\in P$ and $x$ is conjugate to $y$ in $ M\rangle$ .

Since $G$ is simple, $P\cap G’=P$ . If $x$ , $y\in P$ and $y=x^{g}$ for some $g\in G$ ,

then Theorem 4.1 (a) yields that $g=cm$ where $c\in C_{G}(x)$ and $m\in M$ .

This implies $x^{g}=x^{m}=y$ . It follows that $P=P\cap G’=P\cap M’\subseteq M’$ .

Since $p$ is arbitrary in $\sigma(M)$ , we have $M(\sigma)\subseteq M’$ .

Consider the group $M/M_{\alpha}$ . Since $M_{\alpha}=O_{\alpha(M)}(M)$ , we have

$M_{\alpha}\subseteq M(\alpha)\subseteq M(\sigma)\subseteq M’$ .

Consider the normal subgroup $F$ of $M$ such that $M_{\alpha}\subseteq F$ and $F/M_{\alpha}=$

$F(M/M_{\alpha})$ . Then, $F/M_{\alpha}$ is nilpotent and it is an $\alpha(M)’$ group The
extension of $F$ over $M_{\alpha}$ splits by the Schur-Zassenhaus Theorem. Hence,



62 M. Suzuki

$F/M_{\alpha}$ is isomorphic to a subgroup of $M$ . Since $F/M_{\alpha}$ is an $\alpha(M)’$-group,
we have $r(F/M_{\alpha})\leq 2$ . By Theorem 4.20 [BG],

$M’/M_{\alpha}=(M/M_{\alpha})’\subseteq F(M/M_{\alpha})=F/M_{\alpha}$ .

This implies that $M’/M_{\alpha}$ is nilpotent. Therefore, any Hall subgroup
of $M’/M_{\alpha}$ is a characteristic subgroup. Since the subgroups $M(\sigma)/M_{\alpha}$

and $M(\alpha)/M_{\alpha}$ are normal subgroups of $M/M_{\alpha}$ , both $M(\sigma)$ and $M(\alpha)$

are normal subgroups of $M$ . It follows that

$M_{\alpha}=M(\alpha)$ and $M_{\sigma}=M(\sigma)$ .

This proves (a) and (b). The last statement (f) is proved in a similar
way. We have also (c) and (d). To prove (e), we may assume $M_{\alpha}=1$ .

Then, $r(M)\leq 2$ . By Theorem 4.20 [BG], $Oq(M)\in Syq(M)$ for the
largest prime $q$ of $\pi(M)$ . This implies $q\in\sigma(M)$ . We need only to note
that $ q\in\varpi$ as $O_{\varpi}(M)\neq 1$ . Q.E.D.

Lemma 4.3. Suppose $M\in M$ , $X?.S$ an $\alpha(M)’$ subgroup of $M$ ,
and $r(C_{M_{\alpha}}(X))\geq 2$ . Then, $C_{M}(X)\in \mathfrak{U}$ .

Lemma 4.4. Suppose $M\in M$ , $p\in\pi(M)$ , and $P\in Sy\ell_{p}(M)$ .

(a) If $p$ divides $|M/M’|$ , then $p\not\in\sigma(M)$ .

(b) Assume $p\not\in\sigma(M)$ and $M_{\alpha}\neq 1$ . Then, there exists $ x\in$

$\Omega_{1}(Z(P))^{Q}$ such that $\{M\}\neq M(C_{G}(x))$ and $C_{M_{\alpha}}(x)$ is a Z-
$gro$up.

(c) Assume $p\not\in\sigma(M)$ and $r_{p}(M)=2$ . Then, $p$ is not ideal and
$\mathcal{E}_{p}^{2}(M)\subseteq \mathcal{E}_{p}^{*}(M)$ .

The proof of Lemma 10.4 [BG] applies here. Note that the assump-
tions of Part (c) imply $ p\in\varpi$ by Lemma F. So, the use of the Uniqueness

Theorem is justified. On the fourth line of the proof of (b) in [BG], $Z$

stands for $\Omega_{1}(Z(P))$ .

Lemma 4.5. Suppose that $M\in M$ , $p\in\sigma(M)’$ , and $X$ is a non-
identity $p$ -subgroup of $G$ with $N_{G}(X)\subseteq M$ . Then, $r_{p}(M)=2$ , $p$ is not

ideal, and $if|X|=p$ , there exists $A\in \mathcal{E}_{p}^{2}(M)$ that contains $X$ .

Proof. The assumptions imply $X\subseteq M$ . Since $\alpha(M)\subseteq\sigma(M)$ , we
have $r_{p}(M)\leq 2$ . Let $P\in Sy\ell_{p}(M)$ that contains $X$ . If $r_{p}(M)=1$ ,
$P$ is cyclic. Then, $X$ is a characteristic subgroup of $P$ . So, we have
$N_{G}(P)\subseteq N_{G}(X)\subseteq M$ . This contradicts the assumption that $ p\not\in$

$\sigma(M)$ . Therefore, $r_{p}(M)=2$ and $p$ is not ideal by Lemma 4.4. If
$X=\Omega_{1}(Z(P))$ , then we have $N_{G}(P)\subseteq N_{G}(X)\subseteq M$ . So, if $|X|=p$ ,
$X\neq\Omega_{1}(Z(P))$ and $X\Omega_{1}(Z(P))\in \mathcal{E}_{p}^{2}(P)$ . Q.E.D.
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Theorem 4.6. Let $M\in M$ . Then, $M$ has $p$ -length one for every
$p\in\pi(M)$ .

We have followed the usage in [BG] so a group $H$ is said to have
$p$-length one for a given prime $p$ if $H/O_{p’,p}(H)$ is a $p’$ group

Corollary 4.7. Suppose that $ p\in\pi(G)\cap\varpi$ and $P\in Sy\ell_{p}(G)$ .

The following propositions hold.

(a) Take $V$ to be any complement of $P$ in $N_{G}(P)$ . Then we have

$P=[P, V]\subseteq N_{G}(P)’$ .

(b) Suppose $r(P)\leq 2$ . Then, either $P$ is abelian or $P$ is the central
product of a nonabelian subgroup $P_{1}$ of order $p^{3}$ and exponent $p$

and a cyclic subgroup $P_{2}$ for which $\Omega_{1}(P_{2})=Z(P_{1})$ .

(c) Suppose $Q\subseteq P$ , $x\in G$ , and $Q^{x}\subseteq P$ . Then, $Q^{x}=Q^{y}$ for some
element $y\in N_{G}(P)$ .

(d) For every subgroup $Q$ of $P$ , the group $N_{P}(Q)$ is a Sylow p-
subgroup of $N_{G}(Q)$ .

(e) Suppose $R$ is a $p$ -subgroup of $G$ and $Q\subseteq P\cap R$ and $Q\triangleleft N_{G}(P)$ .

Then $Q\triangleleft N_{G}(R)$ .

Proof. Since $ p\in\varpi$ , $N_{G}(P)$ is a $\varpi$-local subgroup. Take $ M\in$

$M(N_{G}(P))$ . By Theorem 4.6, $M$ has $p$-length one, so $P\subseteq O_{p’,p}(M)$ .

By the definition of $\sigma(M)$ , we have $p\in\sigma(M)$ . Theorem 4.2 shows that
$P\subseteq M_{\sigma}\subseteq M’$ . The rest of the proof is the same as that of Corollary
10.7 [BG]. Q.E.D.

Lemma 4.8. Let $M\in M$ . Then the following hold.

(a) $M_{\beta}$ is a Hall $\beta(M)$ -subgroup of $M$ and of $G$ .

(b) $M’$ and $M_{\sigma}$ have nilpotent Hall $\beta(M)’$ subgroup.
(c) For each prime $p\in\pi(M)\backslash \beta(M)$ , $M’$ and $M_{\sigma}$ have normal p-

complements and $p$ is the largest prime divisor $of|M/O_{p’}(M)|$ .

Corollary 4.9. Let $M\in M$ .

(a) Suppose that $p$ and $q$ are distinct primes in $\pi(M)\backslash \beta(M)$ and
$X$ is a $q$ -subgroup of M. Assume $X\subseteq M’$ or $p<q$ . Then,

(1) $X$ centralizes a Sylow $p$ subgroup of $M_{\sigma}$ ,

(2) if $p\in\alpha(M)$ and $X\neq 1$ , then $ q\in\varpi$ and $C_{M}(X)\in \mathfrak{U}$ , and
(3) if $X\in Sy\ell_{q}(M’)$ , then $N_{M}(X)’$ contains a Sylow $p$ subgroup of

$M’$ .

(b) If $H\in M\backslash \{M\}$ and $N_{G}(S)\subseteq H\cap M$ for some Sylow subgroup
$S$ of $G$ , then $M=(H\cap M)M_{\beta}$ and $\alpha(M)=\beta(M)$ .
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The proof of Corollary 10.9 [BG] can be used to prove this corollary.
We shall add a few lines to verify the statement (2).

Suppose that $p\in\alpha(M)$ and $X\neq 1$ . By (1), $X$ centralizes a Sylow
$p$-subgroup $P$ of $M_{\alpha}$ . Since $p\in\alpha(M)$ , we have $P\neq 1$ and $r(P)\geq 3$ . By
the Uniqueness Theorem, $P\in \mathfrak{U}$ . Note that $ p\in\varpi$ . Since a nonidentity
$q$-subgroup $X$ centralizes a p–subgroup $P$ , we have $ q\in\varpi$ . Since $ P\subseteq$

$C_{M}(X)$ , $P\in \mathfrak{U}$ implies $C_{M}(X)\in \mathfrak{U}$ .

Lemma G. If $M\in M$ , then $M$ is a $\varpi$ -group except when

(1) $M$ is a Frobenius group such that the Frobenius kernel of $M$ is
a Hall $\varpi$ -subgroup of $M$ , or

(2) $M$ has the following structure: $M/M’$ is a cyclic $\varpi$ -group, $M_{\alpha}=$

$M_{\beta}=M_{\sigma_{0}}$ is a nilpotent $\varpi$ -group, and $M’/M_{\beta}$ is a nonidentity
cyclic $\varpi’$ -group.

In the case (1), the Frobenius kernel is $M_{\sigma_{0}}$ and it is either $M’$ or
$M_{\beta}$ . If it is $M_{\beta}$ , then we have $M_{\alpha}=M_{\beta}$ . In the case (2), both $M’$ and
$M/M_{\beta}$ are Frobenius groups with Frobenius kernels $M_{\beta}$ and $M’/M_{\beta}$ ,

respectively.

Proof. By definition of $\beta(M)$ , we have $M_{\beta}\subseteq M_{\alpha}\subseteq M’$ and $M_{\beta}$

is a $\varpi$-group. By Lemma 4.8, $M’/M_{\beta}$ is nilpotent. Hence, $M’/M_{\beta}$ is
either a $\varpi$-group or a $\varpi’$-group.

Suppose that $M’/M_{\beta}$ is a $\varpi$-group. Then, $M’$ is a $\varpi-$ group. If
$M/M’$ is a $\varpi$-group, so is $M$ . If $M/M’$ is a $\varpi’$-group, then by Lemma
$A$ , $x\in(M’)^{\phi}$ satisfies $C_{G}(x)\subseteq M’$ . This shows that $M$ is a Frobenius
group with Frobenius kernel $M’$ . In this case, $M’$ is nilpotent by a
theorem of Thompson. If $p\in\pi(M’)$ , a Sylow $p$-subgroup $P$ of $M’$ is a
Sylow $p$-subgroup of $M$ and $P\triangleleft M$ . It follows that $N_{G}(P)=M$ and
$p\in\sigma_{0}(M)$ . This proves that $M’=M_{\sigma_{0}}$ .

Suppose that $M’/M_{\beta}$ is a $\varpi’$-group. If $M/M’$ is a $\varpi’$ -group, so
is $M/M_{\beta}$ . We see that $M$ is a Frobenius group with Frobenius kernel
$M_{\beta}$ . In this case, $M_{\alpha}=M_{\beta}$ because $M_{\alpha}$ is a $\varpi$-group, and $M_{\beta}=M_{\sigma_{0}}$

because $M_{\beta}$ is nilpotent.

Finally, assume that $M/M’$ is a $\varpi$-group. Then, $M’$ is a Frobenius
group with $M_{\beta}$ as Frobenius kernel and $M/M_{\beta}$ is a Frobenius group with
Frobenius kernel $M’/M_{\beta}$ . Thus, $M’/M_{\beta}$ is nilpotent (as a Frobenius ker-
nel) and $r(M’/M_{\beta})=1$ (as a Frobenius complement in $M’$ ). It follows
that $M’/M_{\beta}$ is cyclic. The abelian group $M/M’$ satisfies $r(M/M’)=1$
because it is a Frobenius complement in $M/M_{\beta}$ . Thus, $M/M’$ is cyclic,
too. This proves Lemma G. Q.E.D.

Proposition 4.10. Suppose that $p$ and $q$ are distinct primes, $ A\in$
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$\mathcal{E}_{p}^{2}(G)\cap \mathcal{E}_{p}^{*}(G)$ , and $Q\in M_{G}^{*}(A;q)$ . Assume that $ p\in\varpi$ and $ q\in$

$\pi(C_{G}(A))$ . Then for some $P\in Sy\ell_{p}(G)$ that contains $A$ ,

(a) $N_{G}(P)=O_{p’}(C_{G}(P))(N_{G}(P)\cap N_{G}(Q))$ ,

(b) $P\subseteq N_{G}(Q)’$ , and
(c) if $Q$ is cyclic or $\mathcal{E}^{2}(Q)\cap \mathcal{E}^{*}(Q)$ is no empty, then $P$ centralizes

$Q$ .

Proof. Since $ p\in\varpi$ and $q\in\pi(C_{G}(A))$ , we have $ q\in\varpi$ . Since $A$ is a
maximal elementary abelian $p$-subgroup of $G$ , we have $A=\{x\in C_{G}(A)|$

$x^{p}=1\}$ . Hence, by Proposition 1.5, $A$ satisfies Hypothesis 1.1. Since
$m(Z(A))=2$ , Theorem 1.3 yields that $O_{p’}(C_{G}(A))$ acts transitively on
$M_{G}^{*}(A;q)$ . Take $P_{1}\in Sy\ell_{p}(G)$ such that $A\subseteq P_{1}$ . Then, Theorem 1.4
shows

$M_{G}^{*}(P_{1;}q)\subseteq M_{G}^{*}(A;q)$

and for every $Q_{1}\in M_{G}^{*}(P_{1} ; q)$ , we have $P_{1}\cap N_{G}(P_{1})’\subseteq N_{G}(Q_{1})’$ and

$N_{G}(P_{1})=O_{p’}(C_{G}(P_{1}))(N_{G}(P_{1})\cap N_{G}(Q_{1}))$ .

Since both $Q$ and $Q_{1}$ lie in $M_{G}^{*}(A;q)$ , we have $Q_{1}^{x}=Q$ for some $ x\in$

$O_{p’}(C_{G}(A))$ . Let $P=P_{1}^{x}$ . Then, $P$ satisfies (a).

Since $ p\in\varpi$ , Corollary 4.7 shows that $P\subseteq N_{G}(P)’$ . Therefore,

$P=P\cap N_{G}(P)’\subseteq N_{G}(Q)’$ .

This proves (b). To prove (c), note that the hypothesis of (c) im-
plies that $Q$ is narrow. Apply Theorem 5.5 (a) [BG] to the subgroup
$NG(Q)/CG(Q)$ of Aut $Q$ . It follows that $(N_{G}(Q)/C_{G}(Q))’$ is a $q$-group.
Since $P\subseteq N_{G}(Q)’$ , we have $P\subseteq C_{G}(Q)$ . This proves (c). Q.E.D.

Proposition 4.11. Suppose $M\in M$ and $K$ is a $\sigma_{0}(M)’$ -subgroup

of M. Then

(a) if $M$ is a $\varpi$ -group, $K\not\in \mathfrak{U}_{)}$
.

(b) $r(C_{K}(M_{\sigma_{0}}))\leq 1$ ;
(c) $C_{K}(M_{\sigma_{0}})\cap M’$ is a cyclic normal subgroup of $M_{)}$

. and

(d) if $p\in\sigma_{0}(M)’$ , $P\in \mathcal{E}_{p}^{1}(N_{M}(K))$ , $C_{M_{\sigma_{0}}}(P)=1$ , and $K$ is an

abelian $p’$ -group, then $[K, P]$ centralizes $M_{\sigma_{O}}$ and is a cyclic
normal subgroup of $M$ .

Proof. There is a small difference between this and Proposition

10.11 [BG]. If $M$ is a $\varpi$-group, we have $\sigma_{0}(M)=\sigma(M)$ and for every
subgroup $P$ of $M$ , $N_{G}(P)$ is a $\varpi$-local subgroup. The proof of Part (a)
in [BG] is valid in our case.
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To prove (b), suppose $r_{p}(C_{K}(M_{\sigma_{0}}))\geq 2$ for some prime $p$ . Then,

$p\in\pi(K)\subseteq\sigma_{0}(M)’$ .

By Lemma $G$ , $M$ is a $\varpi$-group. Thus, $\sigma_{0}(M)=\sigma(M)$ and Part (a)
implies $K\not\in \mathfrak{U}$ . The argument in the proof of Part (b) of Proposition
10.11 [BG] gives us $p\in\sigma(M)$ . However, $p\in\pi(K)\subseteq\sigma(M)’$ . This
contradiction proves (b).

For (c) and (d), read $\sigma_{0}$ for $\sigma$ in the proof of Proposition 10.11 [BG].
The assertions are proved. Q.E.D.

Lemma 4.12. Suppose $M$ , $H\in M$ and $H$ is not conjugate to $M$

in G. Then,

(a) $M_{\alpha}\cap H_{\sigma}=1$ and $\alpha(M)$ is disjoint from $\sigma(H)$ , and
(b) if $M_{\sigma}$ is nilpotent, then $M_{\sigma}\cap H_{\sigma}=1$ and $\sigma(M)$ is disjoint from

$\sigma(H)$ .

Proof. The proof is similar to the one of Lemma 10.12 [BG].
Suppose that $p\in\sigma_{0}(M)\cap\sigma(H)$ . Then some Sylow $p$-subgroup $S$

of $G$ lies in $M$ and in a conjugate $H^{g}$ of $H$ . Then, $S\in M\cap H^{g}$ and
$M\neq H^{g}$ by assumption. Since $ p\in\varpi$ , the Uniqueness Theorem yields
that $r(S)\leq 2$ . Thus, $p\not\in\alpha(M)$ . This proves (a).

Assume that $M_{\sigma}$ is nilpotent. Suppose $\sigma(M)\cap\sigma(H)$ is not empty.
Take a prime $p$ in $\sigma(M)\cap\sigma(H)$ . As before, some Sylow $p$-subgroup
$P$ lies in $M$ and in some conjugate $H^{x}$ of $H$ . Then, $M\neq H^{x}$ and
$N_{G}(P)\subseteq M\cap H^{x}$ . In particular, $P$ is not normal in $M$ , so $M_{\sigma}$ is not
nilpotent. Q.E.D.

Lemma 4.13. Suppose $ p\in\varpi$ , $A\in 8_{p}^{2}(G)\cap \mathcal{E}_{p}^{*}(G)$ , and $P$ is $a$

nonabelian $p$ -subgroup of $G$ that contains A. Let $Z_{0}=\Omega_{1}(Z(P))$ and
$A_{0}\in\epsilon^{1}(A)$ such that $A_{0}\neq Z_{0}$ . Then,

(a) $Z_{0}\in \mathcal{E}^{1}(A)$ ,
(b) $C_{P}(A)=A_{0}\times Z$ with $Z$ a cyclic subgroup that contains $Z_{0}$ , and
(c) $N_{P}(A)$ acts transitively by conjugation on $\epsilon^{1}(A)\backslash \{Z_{0}\}$ .

Proof. Let $S$ be a Sylow $p$-subgroup that contains $P$ . Since $ p\in\varpi$ ,
we can apply Lemma 4.7 (b) when $r(S)\leq 2$ . The proof of Lemma 10.13
[BG] will prove this lemma. Q.E.D.

Proposition 4.14. Let $M$ $\in M$ , $p\in\beta(M)$ , and $P\in Sy\ell_{p}(M)$ .

(a) The sets $\mathcal{E}_{p}^{2}(P)\cap \mathcal{E}_{p}^{*}(P)$ and $\mathcal{E}_{p}^{2}(G)\cap \mathcal{E}_{p}^{*}(G)$ are empty.

(b) Every $p$ -subgroup $R$ of $G$ such that $r(R)\geq 2$ lies in U.
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(c) If $X$ is a subgroup of $P$ , then $N_{P}(X)\in \mathfrak{U}$ .

(d) For every nonidentity $\beta(M)$ subgroup $Y$ of $M$ , $N_{G}(Y)\subseteq M$ .

Proof, (a) By the definition of $\beta(M)$ , $\mathcal{E}_{p}^{2}(G)\cap \mathcal{E}_{p}^{*}(P)$ is empty for

the Sylow $p$ subgroup $P$ of $M$ . If $A\in \mathcal{E}_{p}^{2}(G)\cap \mathcal{E}_{p}^{*}(G)$ , take a Sylow
$p$ subgroup $Q$ of $G$ such that $A\subseteq Q$ . Then, $Q^{g}=P$ for some $g\in G$ .

Thus, $A^{g}\subseteq Q^{g}=P$ and $A^{g}\in 8_{p}^{2}(P)\cap \mathcal{E}_{p}^{*}(P)$ . This is a contradiction.

(b) We can assume $R\subseteq P$ by choosing a conjugate of $R$ . Take
$A\in \mathcal{E}_{p}^{2}(R)$ . By (a), there is $B\in \mathcal{E}_{p}^{*}(P)$ such that $A\subseteq B$ and $m(B)\geq 3$ .

Since $B\subseteq C_{G}(A)$ , we have $r_{p}(C_{G}(A))\geq 3$ . Since $ p\in\beta(M)\subseteq\varpi$ , the
Uniqueness Theorem yields $A\in \mathfrak{U}$ . Therefore, we have $R\in \mathfrak{U}$ .

(c) Let $Q=N_{P}(X)$ . If $r(Q)\geq 2$ , then $Q\in \mathfrak{U}$ by (b). Suppose that
$r(Q)=1$ . Then, $Q$ is cyclic, $X$ chra $Q$ , and $N_{P}(Q)\subseteq N_{G}(X)=Q$ .

Since $P$ is a $p$-group, this implies $Q=P$ contrary to the assumption
that $p\in\beta(M)$ .

(d) Let $q\in\pi(F(Y))$ and $X=O_{q}(Y)$ . We can assume that $q=p$

and $X\subseteq P$ . Then, by (c), $N_{P}(X)\in \mathfrak{U}$ . Since $N_{G}(X)$ is $\varpi$-local, we
have $N_{G}(X)\subseteq M$ and $N_{G}(Y)\subseteq N_{G}(X)\subseteq M$ .

\S 5. Exceptional Subgroups of $\mathcal{M}$

The following conditions and notation are used throughout this sec-
tion.

Hypothesis 5.1. Suppose $M\in M$ , $p\in\sigma(M)’$ , $A_{0}\in \mathcal{E}_{p}^{1}(M)$ , and

$N_{G}(A_{0})\subseteq M$ .

By Lemma 4.5, $r_{p}(M)=2$ and $A_{0}\subseteq A$ for some $A\in \mathcal{E}_{p}^{2}(M)$ . Let
$P$ be a Sylow $p$-subgroup of $M$ that contains $A$ . Since $r_{p}(M)=2$ for
$p\in\sigma(M)’$ , Lemma $G$ implies that $M$ is a $\varpi$-group. As $p\in\sigma(M)’$ ,
$N_{G}(P)\not\leqq M$ and since $C_{G}(A)\subseteq C_{G}(A_{0})\subseteq N_{G}(A_{0})\subseteq M$ , we have
$A\in \mathcal{E}_{p}^{*}(G)$ .

We will fix the subgroups $A$ and $P$ throughout this section.

Lemma 5.1. Suppose that $g\in G\backslash M$ , $A\subseteq M^{g}$ , $q\in\sigma(M)$ , and
that $Q_{1}$ and $Q_{2}$ are $A$ -invariant Sylow $q$ -subgroups of $M_{\sigma}$ and $M_{\sigma}^{g}$ ,

respectively. Then,

(a) $Q_{1}\cap Q_{2}=1$ , and
(b) if $X\in \mathcal{E}^{1}(A)$ , then $C_{Q_{1}}(X)=1$ or $C_{Q_{2}}(X)=1$ .
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Proof. As remarked at the beginning of this section, Hypothesis
5.1 implies that $M$ is a $\varpi$-group. Thus, if $Q_{1}\cap Q_{2}\neq 1$ , the subgroup
$Q_{1}\cap Q_{2}$ is a tu-group $\neq 1$ . Also, $C_{G}(X)$ is a $\varpi$-group by Lemma A.
Thus, if either (a) or (b) is false, there is a $\varpi$-local subgroup $H$ such
that

$H\cap Q_{1}\neq 1$ and $H\cap Q_{2}\neq 1$ .

(Cf. Lemma D.) By Lemma 1.1, we have $Q_{2}=Q_{1}^{k}$ for some element
$k\in C_{G}(A)$ . The rest of the proof is the same as that of Lemma 11.1
[BG]. Q.E.D.

Corollary 5.2. Suppose $g\in G\backslash M$ and $A\subseteq M^{g}$ . Then,

(a) $M_{\sigma}\cap M^{g}=1$ , and
(b) $M_{\sigma}\cap C_{G}(A_{0}^{g})=1$ .

Theorem 5.3. The group $M_{\sigma}$ is nilpotent.

Corollary 5.4. Suppose $H\in M(A)$ and $M_{\sigma}\cap H_{\sigma}\neq 1$ . Then,
$M=H$ .

Theorem 5.5. The Sylow $p$ -subgroups of $M$ are abelian.

Corollary 5.6. We have

(a) $A=\Omega_{1}(P)$ ,

(b) $C_{M_{\sigma}}(A)=1$ , and
(c) there exist subgroups $A_{1}$ , $A_{2}\in \mathcal{E}_{p}^{1}(A)$ such that $A_{1}\neq A_{2}$ and

$C_{M_{\sigma}}(A_{1})=C_{M_{\sigma}}(A_{2})=1$ .

Theorem 5.7. We have $M_{\sigma}A\triangleleft M$ .

\S 6. The Subgroup $E$

Let $E$ denote a complement of $M_{\sigma}$ in $M$ , which will be fixed for
discussion. We use the notation $\tau_{i}$ and $E_{i}$ as defined in [BG], Section
12.

Lemma 6.1. (a) $E’$ is nilpotent.

(b) $E_{3}\subseteq E’$ and $E_{3}\triangleleft E$ .

(c) If $E_{2}=1$ , the $E_{1}\neq 1$ .

(d) $E_{1}$ and $E_{3}$ are cyclic.
(e) $E=E_{1}E_{2}E_{3}$ , $E_{12}=E_{1}E_{2}$ , $E_{2}E_{3}\triangleleft E$ , and $E_{2}\triangleleft E_{12}$ .

(f) $C_{E_{3}}(E)=1$ .

(g) If $p\in\tau_{2}(M)$ and $A\in \mathcal{E}_{p}^{2}(M)$ , the $A\in \mathcal{E}_{p}^{*}(G)$ and $p\not\in\beta(G)$ .
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Lemma 6.2. Suppose that $M\in M$ , $p$ is a prime, $X$ is a noniden-
tity $p$ -subgroup of $M$ , and $M^{*}\in N[(N_{G}(X))$ . Then,

(a) $p\in\sigma(M^{*})\cup\tau_{2}(M^{*})$ , and
(b) if $p\in\sigma(M)$ and $M\neq M^{*}$ , or if $p\in\tau_{1}(M)\cup\tau_{3}(M)$ , then $M^{*}$

is not conjugate to $M$ in $G$ .

Proof. (a) Suppose that $p\not\in\sigma(M^{*})$ . Then, Lemma 4.5 applied to
$M^{*}$ implies that $r_{p}(M^{*})=2$ . This proves $p\in\tau_{2}(M^{*})$ .

(b) Suppose that $M^{*}$ is conjugate to $M$ . Then, $\sigma(M)=\sigma(M^{*})$

and $\tau_{i}(M)=\tau_{i}(M^{*})$ for $i=1,2,3$ . Therefore, if $p\in\tau_{1}(M)\cup\tau_{3}(M)$ ,
we have a contradiction to (a). Suppose that $p\in\sigma(M)$ . Then, by
Theorem 4.1(b), $M^{*}$ and $M$ are conjugate by an element $x$ of $C_{G}(X)$ :
$M$ $=(M^{*})^{x}$ . Since $C_{G}(X)\subseteq N_{G}(X)\subseteq M^{*}$ , we have $M=M^{*}$ . This
proves (b). Q.E.D.

Remark. If $ p\in\varpi$ , a subgroup $M^{*}$ is available; however, if $ p\in\varpi$

is not assumed, Lemma 6.2 holds only when there is a $\varpi$-local subgroup
that contains $N_{G}(X)$ .

Lemma 6.3. Suppose $M^{*}\in M\backslash \{M\}$ , $p$ is a prime, $ A\in \mathcal{E}_{p}^{2}(M\cap$

$M^{*})$ , and $N_{G}(A_{0})\subseteq M^{*}$ for some $A_{0}\in\epsilon^{1}(A)$ .

(a) If $p\not\in\sigma(M)$ , then A centralizes $M_{\sigma}\cap M^{*}$ .

(b) If $p\in\sigma(M)\backslash \alpha(M)$ , then A centralizes $M_{\alpha}\cap M^{*}$ .

Proposition 6.4. Suppose $M\in M$ , $p$ is a prime and $A\in \mathcal{E}_{p}^{2}(M)$ .

Then,

(a) $C_{G}(A)\subseteq M$ , and
(b) if $M(N_{G}(A_{0}))\neq\{M\}$ for evew $A_{0}\in\epsilon^{1}(A)$ , then $p\in\sigma(M)$ ,

$M_{\alpha}=1$ , and $M_{\sigma}$ is nilpotent.

Proof. By assumption, $r_{p}(M)\geq 2$ so $ p\in\varpi$ . Thus, for every
$X\in\epsilon^{1}(A)$ , $N_{G}(X)$ is a $\varpi$-local subgroup. The proof of Proposition
12.4 [BG] can be adapted to yield the results. However, this is basic so
we repeat the argument.

Suppose that $M(N_{G}(A_{0}))=\{M\}$ for some $A_{0}\in\epsilon^{1}(A)$ . Then,
$C_{G}(A)\subseteq C_{G}(A_{0})\subseteq N_{G}(A_{0})\subseteq M$ . This proves (a) in this case.

For the remainder of proof, we may assume that $M(N_{G}(X))\neq\{M\}$

for every $X\in\epsilon^{1}(A)$ . For a fixed $X\in\epsilon^{1}(A)$ , choose

$M^{*}=M^{*}(X)\in M(N_{G}(X))\backslash \{M\}$ .
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Since $C_{M}(X)\subseteq M\cap M^{*}$ , the Uniqueness Theorem implies

$r(C_{M}(A))\leq r(C_{M}(X))\leq 2$ .

We claim that $p\in\sigma(M)$ . Suppose $p\not\in\sigma(M)$ . Then, Lemma 6.3(a)
implies that $C_{M_{\sigma}}(X)\subseteq M_{\sigma}\cap M^{*}\subseteq C_{M}(A)$ . This holds for every
$X\in\epsilon^{1}(A)$ . By Proposition 1.16 [BG], $ M_{\sigma}=\langle C_{M_{\sigma}}(X)|X\in\epsilon^{1}(A)\rangle$ .

Since $C_{M_{\sigma}}(X)\subseteq C_{M}(A)$ for every $X\in\epsilon^{1}(A)$ , we have $M_{\sigma}\subseteq C_{M}(A)$

which contradicts Proposition 4.11 (b). Thus, we have $p\in\sigma(M)$ .

Let $P$ be a Sylow $p$-subgroup of $M_{\sigma}$ that contains $A$ and let $Z=$

$\Omega_{1}(Z(P))$ . Since $r(C_{M}(A))\leq 2$ , we have $Z\subseteq A$ . Take $X\in\epsilon^{1}(Z)$ .

Then, $P\subseteq C_{M}(X)$ and $r(P)\leq r(C_{M}(X))\leq 2$ . This proves that
$p\in\sigma(M)\backslash \alpha(M)$ . We apply the same argument as before to $M_{\alpha}$ . Again

for any $X\in\epsilon^{1}(A)$ , choose $M^{*}\in M(N_{G}(X))\backslash \{M\}$ . Then, Lemma
6.3 (b) implies that $C_{M_{\alpha}}(X)\subseteq M_{\alpha}\cap M^{*}\subseteq C_{M}(A)$ . It follows that
$M_{\alpha}=\langle C_{M_{\alpha}}(X)|X\in \mathcal{E}^{1}(A)\rangle\subseteq C_{M}(A)$ . This implies $M_{\alpha}=1$ because
$r(C_{M}(A))=2$ . By Theorem 4.2 (d), $M’=M’/M_{\alpha}$ is nilpotent. Since
$M_{\sigma}\subseteq M’)M_{\sigma}$ is nilpotent. This proves (b).

Since $M_{\sigma}$ is nilpotent, we have $P\triangleleft M$ . Hence,

$Z=\Omega_{1}(Z(P))\triangleleft M$ .

Since $Z\subseteq A$ , we have $C_{G}(A)\subseteq C_{G}(Z)\subseteq N_{G}(Z)=M$ . The last equal-
ity comes from Lemma $E(1)$ . This completes the proof of Proposition
6.4. Q.E.D.

We state a corollary of Lemma G.

Lemma H. Let M $\in M$ .

(1) If $\tau_{2}(H)\neq\emptyset$ , then $M$ is a $\varpi$ -group.
(2) If $M$ is not a $\varpi$ -group, then $r_{p}(M)\leq 1$ for all $p\not\in\sigma_{0}(M)$ .

This follows immediately from the structure of subgroups in $M$

which are not $\varpi$-groups given in Lemma G.

Theorem 6.5. Suppose $M\in M$ and $\tau_{2}(M)\neq\emptyset$ . Let $p\in\tau_{2}(M)$

and $A\in \mathcal{E}_{p}^{2}(M)$ . Then, $M$ is a $\varpi$ -group and the following hold:

(a) $M_{\sigma}$ is nilpotent,
(b) $M$ has abelian Sylow $p$ subgroups and evew Sylow $p$ -subgroup $P$

of $M$ such that $A\subseteq P$ satisfifies $\Omega_{1}(P)=A$ and $N_{G}(P)\not\leqq M$ ,

(c) $M_{\sigma}A\triangleleft M$ ,
(d) $C_{M_{\sigma}}(A)=1$ ,
(e) $M_{\sigma}\cap M^{*}=1$ for every $M^{*}\in M(A)\backslash \{M\}$ , and
(f) there exists $A_{1}\in \mathcal{E}^{1}(A)$ such that $C_{M_{\sigma}}(A_{1})=1$ .
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Proof. Since $\tau_{2}(M)\neq\emptyset$ , $M$ is a $\varpi$-group by Lemma H. Hence,
for any $X\in\epsilon^{1}(A)$ , $N_{G}(X)$ is a $\varpi$-local subgroup. Since $p\not\in\sigma(M)$ ,
Proposition 6.4 (b) implies that $M(N_{G}(A_{0}))=\{M\}$ for some $ A_{0}\in$

$\epsilon^{1}(A)$ . Thus, we have Hypothesis 5.1 for $A_{0}$ and $M$ . The results of
Section 5 prove Theorem 6.5 except (e).

To prove (e), take $M^{*}\in M(A)\backslash \{M\}$ . If $N_{G}(A_{0})\subseteq M^{*}$ for some
$A_{0}\in\epsilon^{1}(A)$ , Lemma 6.3 (a) shows that $A$ centralizes $M_{\sigma}\cap M^{*}$ . On
the other hand, $C_{M_{\sigma}}(A)=1$ by (d). This proves $M_{\sigma}\cap M^{*}=1$ . If
$N_{G}(X)\not\leqq M^{*}$ for every $X\in\epsilon^{1}(A)$ , the hypothesis of Proposition 6.4 (b)
is satisfied for $M^{*}$ . Hence, we have $p\in\sigma(M^{*})$ and $M_{\sigma}^{*}$ is nilpotent.
It follows that $A\subseteq O_{p}(M^{*})$ and $[M_{\sigma}\cap M^{*}, A]\subseteq M_{\sigma}\cap O_{p}(M^{*})=1$

because $p\not\in\sigma(M)$ . So, $M_{\sigma}\cap M^{*}\subseteq C_{M_{\sigma}}(A)=1$ . Q.E.D.

Corollary 6.6. Suppose $M\in M$ and $\tau_{2}(M)\neq\emptyset$ . Let $p\in\tau_{2}(M)$

and $A\in \mathcal{E}_{p}^{2}(E)$ . Then,

(a) $A\triangleleft E$ and $\mathcal{E}_{p}^{1}(E)=\mathcal{E}^{1}(A)$ ,

(b) $C_{G}(A)\subseteq N_{M}(A)=E$ and $N_{G}(A)\not\leqq M$ ,

(c) $M(C_{G}(X))=\{M\}$ for each $X\in\epsilon^{1}(A)$ such that $C_{M_{\sigma}}(X)\neq 1$ ,

(d) $C_{M_{\sigma}}(x)=1$ for each $x\in E_{3}^{\Downarrow}$ ,

(e) $C_{M_{\sigma}}(x)=1$ for each $x\in C_{E_{1}}(A)^{\phi}$ , and
(f) if $M^{*}\in M$ is not conjugate to $M$ , then $M_{\sigma}\cap M_{\sigma}^{*}=1$ and

$\sigma(M^{*})$ is disjoint from $\sigma(M)$ .

Proof. As before, Lemma $H$ implies that $M$ is a $\varpi$-group. Since $E$

is a complement of $M_{\sigma}$ , Theorem 6.5 (c) implies $A\triangleleft E$ . If $X\in \mathcal{E}_{p}^{1}(E)$ ,

then $AX$ is a $p$-subgroup of $E$ . Let $P$ be a Sylow $p$-subgroup of $E$

such that $AX\underline{\subseteq}P$ . By Theorem 6.5 (b), we have $\Omega_{1}(P)=A$ . Since
$X\subseteq\Omega_{1}(P)$ , $X\subseteq A$ . This proves $\mathcal{E}_{p}^{1}(E)=\epsilon^{1}(A)$ . This proves (a).

We have $C_{G}(A)\subseteq M$ by Proposition 6.4 (a). Thus, $ C_{G}(A)\subseteq$

$N_{M}(A)$ . By (e), $E\subseteq N_{M}(A)$ . It follows from the Dedekind law that

$N_{M}(A)=N_{M}(A)\cap M_{\sigma}E=N_{M_{\sigma}}(A)E$ .

We have $[N_{M_{\sigma}}(A), A]\subseteq M_{\sigma}\cap A=1$ , so $N_{M_{\sigma}}(A)\subseteq C_{M_{\sigma}}(A)=1$ by
Theorem 6.5 (d). This proves that $N_{M}(A)=E$ . If $P$ is any Sylow
$p$-subgroup of $M$ that contains $A$ , then $A=\Omega_{1}(P)$ by Theorem 6.5 (b).
Hence, $N_{G}(P)\subseteq N_{G}(A)$ . Since $N_{G}(P)\not\leqq M$ by Theorem 6.5 (b), we
have $N_{G}(A)\not\leqq M$ . This proves (b).

Suppose $C_{M_{\sigma}}(X)\neq 1$ and $N[(C_{G}(X))\neq\{M\}$ for some $X\in \mathcal{E}^{1}(A)$ .

Take $M^{*}$ such that $C_{G}(X)\subseteq M^{*}\neq M$ . Since $A\subseteq C_{G}(X)$ , Theorem
6.5 (e) implies that $M_{\sigma}\cap M^{*}=1$ . Hence,

$C_{M_{\sigma}}(X)\subseteq M_{\sigma}\cap C_{G}(X)\subseteq M_{\sigma}\cap M^{*}=1$ .



72 M. Suzuki

This contradiction proves (c).
For (d) and (e), we may assume that $\langle x\rangle=X$ is a $q$-group for some

prime $q\in\tau_{1}(M)\cup\tau_{3}(M)$ . As remarked at the beginning of the proof,
$ q\in\varpi$ so we can take $M^{*}\in M(N_{G}(X))$ . By Lemma 6.2, $M^{*}$ is not
conjugate to $M$ . In particular, $M^{*}\neq M$ . Since $A$ and $E_{3}$ are normal
subgroups of $E$ with $A\cap E_{3}=1$ , $A$ centralizes $E_{3}$ . Thus, $A\underline{\subseteq}C_{G}(X)\underline{\subseteq}$

$M^{*}$ in all cases. By Theorem 6.5 (e), we have $M_{\sigma}\cap M^{*}=1$ . Therefore,

$C_{M_{\sigma}}(X)\underline{\subseteq}M_{\sigma}\cap C_{G}(X)\underline{\subseteq}M_{\sigma}\cap M^{*}=1$ .

This proves (d) and (e).
Since $M_{\sigma}$ is nilpotent (cf. Theorem 6.5 (a)), Lemma 4.12 (b) yields

(f). Q.E.D.

Theorem 6.7. Suppose that $M\in M$ , $p\in\tau_{2}(M)$ , $A\in \mathcal{E}_{p}^{2}(E)$ , and

assume that $G$ has nonabelian Sylow $p$ -subgroups. Then,

(a) $\tau_{2}(M)=\{p\}$ ,
(b) $A_{0}=C_{A}(M_{\sigma})$ has order $p$ and satisfifies $F(M)=M_{\sigma}\times A_{0}$ ,

(c) every $X\in \mathcal{E}_{p}^{1}(E)\backslash \{A_{0}\}$ satisfifies $C_{M_{\sigma}}(X)=1$ and $C_{G}(X)\not\leqq M$ ,

(d) $A_{0}$ has a complement $E_{0}$ in $E$ , and

(e) $\pi(C_{E_{0}}(x))\underline{\subseteq}\tau_{1}(M)$ $/or$ every $x\in M_{\sigma}^{\Downarrow}$ .

Proof. The assumptions of this theorem imply that $M$ is a $\varpi$-group
(by Lemma $H$). The argument of the proof of Theorem 12.7 [BG] proves
the assertions. We paraphrase a few points in the argument.

The subgroup $A_{0}$ was defined as an element of $\epsilon^{1}(A)$ such that
$C_{M_{\sigma}}(A_{0})\neq 1$ . It is proved to be the unique element with $ C_{M_{\sigma}}(A_{0})\neq$

$1$ . We have $A_{0}=C_{A}(M_{\sigma})$ . Since $A\triangleleft E$ by Corollary 6.6 (a), $E$

normalizes $A_{0}$ . Note that $M_{\sigma}\triangleleft M$ . Clearly, $M_{\sigma}$ normalizes $A_{0}$ , so
$M=M_{\sigma}E$ normalizes $A_{0}$ . Thus, $A_{0}\triangleleft M$ and $A_{0}$ is a part of the
Fitting subgroup $F(M)$ . Apply Lemma 6.2 taking each $q\in\pi(F(M))$

and $X=O_{q}(M)$ . Then, $M\in M(N_{G}(X))$ and $q\in\sigma(M)\cup\tau_{2}(M)$ . This
proves that $\pi(F(M))=\sigma(M)\cup\{p\}$ as $M_{\sigma}$ is nilpotent (Theorem 6.5 (a))
and $\tau_{2}(M)=\{p\}$ by (a). Q.E.D.

Lemma 6.8. Suppose that $M$ $\in M$ , $p\in\tau_{2}(M)$ , $A\in \mathcal{E}_{p}^{2}(E)$ , and
$S$ isa Sylow $p$ -subgroup of $G$ that contains A. Assume that $S$ is abelian.
Then,

(a) $E_{2}$ is an abelian normal subgroup of $E$ ,

(b) $E_{2}$ is a Hall $\tau_{2}(M)$ subgroup of $G$ ,
(c) $S\underline{\subseteq}N_{G}(S)’\underline{\subseteq}F(E)\underline{\subseteq}C_{G}(S)\underline{\subseteq}E$ and $S=O_{p}(E)$ ,

(d) $N_{G}(A)=N_{G}(S)=N_{G}(E_{2})=N_{G}(E_{2}E_{3})=N_{G}(F(E))\not\leqq M$ ,



On the Pnme Graph of a Finite Simple Group 73

(e) every $X\in \mathcal{E}^{1}(E_{1})$ for which $C_{M_{\sigma}}(X)=1$ lies in $Z(E)$ , and
(f) we have $CS(X)\triangleleft NG(S)$ and $[S, X]\triangleleft N_{G}(S)$ for every sub-

group $X$ of $N_{G}(S)$ .

Proof. As before, the assumptions imply that $M$ is a $\varpi$-group. By
Theorem 6.7 (a), each $p\in\tau_{2}(M)$ satisfies the assumption that $G$ has
abelian Sylow $p$-subgroups. Since $S\underline{\subseteq}C_{G}(A)\underline{\subseteq}E$ by Corollary 6.6 (b),
$E_{2}$ is a Hall $\tau_{2}(M)$ -subgroup of $G$ . This proves (b).

By Corollary 6.6 (a), we have $E\underline{\subseteq}N_{G}(A)$ .

Clearly, $A\underline{\subseteq}O_{p}(N_{G}(A))\underline{\subseteq}S$ . Hence, $A$ is contained in the center
of $F(N_{G}(A))$ . Thus,

$F(N_{G}(A))\underline{\subseteq}C_{G}(A)\underline{\subseteq}E\underline{\subseteq}N_{G}(A)$ .

This proves two properties. One is $F(N_{G}(A))\underline{\subseteq}F(C_{G}(A))\underline{\subseteq}F(E)$ ,
and the other property is $r(F(N_{G}(A)))\leq r(E)\leq 2$ . By Theorem 4.20
[BG], we have $N_{G}(A)’\underline{\subseteq}F(N_{G}(A))$ . It follows that $E\triangleleft N_{G}(A)$ , so
$F(E)\underline{\subseteq}F(N_{G}(A))$ . We have $F(N_{G}(A))=F(C_{G}(A))=F(E)$ . By
Theorem 6.5 (b), we have $A=\Omega_{1}(S)$ , so $N_{G}(S)\underline{\subseteq}N_{G}(A)$ . Moreover,
Corollary 4.7 (a) shows $S\underline{\subseteq}N_{G}(S)’$ . It follows that

$S\underline{\subseteq}N_{G}(S)’\underline{\subseteq}N_{G}(A)’\underline{\subseteq}F(N_{G}(A))=F(E)$ .

This implies that $S=O_{p}(E)$ and $F(E)\underline{\subseteq}C_{G}(S)\underline{\subseteq}C_{G}(A)\underline{\subseteq}E$ . We
have proved (c). As remarked earlier, $S=O_{p}(E)$ for every $p\in\tau_{2}(M)$ .

This implies $E_{2}\triangleleft E$ and (a) holds.
Let $K=E_{2}E_{3}$ . Then, $E_{3}\triangleleft E$ by Lemma 6.1 (a). Since $E_{2}\triangleleft E$

and $E_{2}\cap E_{3}=1$ , we have $K=E_{2}E_{3}=E_{2}\times E_{3}$ . Since $E_{3}$ is cyclic by
Lemma 6.1 (d) and $E_{2}$ is abelian, $K$ is a Hall subgroup of $F(E)$ . Each
subgroup in the series

$A\underline{\subseteq}S\underline{\subseteq}E_{2}\underline{\subseteq}E_{2}E_{3}\underline{\subseteq}F(E)$

is characteristic in its successor. Since $F(E)=F(N_{G}(A))$ , we have (d).
By (d), $K\triangleleft N_{G}(K)=N_{G}(S)$ . Also, $N_{G}(S)’\underline{\subseteq}F(E)\underline{\subseteq}C_{G}(K)$

by (c). Let $X\in \mathcal{E}^{1}(E_{1})$ be a subgroup such that $C_{M_{\sigma}}(X)=1$ . Then,
$N_{G}(S)’X\triangleleft N_{G}(S)$ and $N_{G}(S)’\underline{\subseteq}C_{G}(K)$ . Consider $Y=[K, X]$ . Then,
it is a subgroup of $K$ and

$Y=[K, X]=[K, N_{G}(S)’X]\triangleleft N_{G}(S)$ .

Thus, $N_{G}(Y)\supseteq N_{G}(S)$ so we have $N_{G}(Y)\not\leqq M$ . On the other hand,
Proposition 4.11 (d) applies to $X$ and shows that $Y=[K, X]\triangleleft M$ . If
$Y\neq 1$ , then $Y$ is a nonidentity normal $\varpi$-subgroup of $M$ . This would
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imply $N_{G}(Y)=M$ by Lemma $E$ $(1)$ . However, we have shown that
$N_{G}(Y)\not\leqq M$ . This contradiction proves $[K, X]=1$ . Since $E=E_{1}K$

and $E_{1}$ is cyclic (Lemma 6.1), we have $X\underline{\subseteq}Z(E)$ . This proves (e).
To prove (f), note that for any subgroup $X$ of $N_{G}(S)$ ,

$C_{G}(S)X\triangleleft N_{G}(S)$

because $N_{G}(S)’\underline{\subseteq}C_{G}(S)$ by (c). Then, $ C_{S}(X)=C_{S}(C_{G}(S)X)\triangleleft$

$N_{G}(S)$ and $[S, X]=[S, C_{G}(S)X]\triangleleft N_{G}(S)$ . Q.E.D.

Corollary 6.9. Suppose $M\in M$ , $p\in\tau_{2}(M)$ , $A\in \mathcal{E}_{p}^{2}(E)$ , $ q\in$

$\tau_{1}(M)$ , $Q\in \mathcal{E}_{q}^{1}(E)$ , $C_{M_{\sigma}}(Q)=1$ , and $[A, Q]\neq 1$ . Let $A_{0}=[A, Q]$ and
$A_{1}=C_{A}(Q)$ . Then, $G$ has nonabelian Sylow $p$ -subgroups. We have

(a) $A_{0}\in \mathcal{E}^{1}(A)$ and $A_{0}=C_{A}(M_{\sigma})\triangleleft M$ ,
(b) $A_{0}$ is not conjugate to $A_{1}$ in $G$ , and

(c) $A_{1}\in\epsilon^{1}(A)$ and $C_{G}(A_{1})\not\leqq M$ .

Proof. If $G$ has abelian Sylow $p$-subgroups, Lemma 6.8 (e) implies
either $C_{M_{\sigma}}(Q)\neq 1$ or $[A, Q]=1$ . Thus, $G$ has nonabelian Sylow p-
subgroups.

Since $A$ is abelian, we have $A=A_{0}\times A_{1}$ by Proposition 1.6 [BG].
Proposition 4.11 (d) with $(p, P, K)$ replaced by $(q, Q, A)$ yields that $A_{0}=$

$[A, Q]\neq 1$ is a cyclic normal subgroup of $M$ . It follows that $A_{0}\underline{\subseteq}$

$C_{A}(M_{\sigma})$ . Theorem 6.7 (b) yields (a).

This implies that $A_{1}\in\epsilon^{1}(A)$ . Then, Theorem 6.7 (c) proves (c).
Since $r_{q}(M)=1$ and $Q$ does not centralize $A_{0}$ , $C_{G}(A_{0})$ is a $q’$-group.
Therefore, (b) holds. Q.E.D.

Corollary 6.10. Let $M\in M$ .

(a) Every nilpotent $\sigma(M)’$ -subgroup of $M$ is abelian.
(b) The groups $E_{2}$ and $E’$ are abelian.
(c) Suppose $p\in\tau_{2}(M)$ and $A\in \mathcal{E}_{p}^{2}(E)$ . Then, $E_{2}E_{3}\underline{\subseteq}C_{E}(A)\triangleleft E$

and $\pi(E/C_{E}(A))\underline{\subseteq}\tau_{1}(M)$ .

(d) Suppose $p\in\sigma(M)$ and $P$ is a noncyclic $p$ -subgroup ofM. Then,
$N_{G}(P)\underline{\subseteq}M$ .

(e) Suppose $ x\in M\#$ , $\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(M)$ , and $C_{M_{\sigma}}(x)\neq 1$ . Then,
$M(C_{G}(x))=\{M\}$ .

Proof. We will paraphrase the proof of Part (e); the remainder is
straightforward (cf. the proof of Corollary 12.10 [BG]).

The group $M$ contains an abelian Hall $\tau_{2}(M)$ subgroup $E_{2}$ (Theo-
rems 6.7 (a) and 6.5 (b), and Lemma 6.8 (a) $)$ . This implies that any
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$\tau_{2}(M)$ -subgroup of $M$ is conjugate to a subgroup of $E_{2}$ . Since $\langle x\rangle$ is a
$\tau_{2}(M)$ subgroup of $M$ , $\langle x\rangle$ is conjugate to a subgroup of $E_{2}$ in $M$ . Thus,
we may assume that $x\in E_{2}$ .

We have $\tau_{2}(M)\neq\emptyset$ . By Lemma $H$ , $M$ is a $\varpi$-group. So, $C_{G}(x)$

is contained in a $\varpi$-local subgroup and contains $A\in \mathcal{E}_{p}^{2}(E)$ for some
$p\in\tau_{2}(M)$ . If $C_{G}(x)\underline{\subseteq}M^{*}\in M(C_{G}(x))\backslash \{M\}$ , Theorem 6.5 (e) yields
that $C_{M_{\sigma}}(x)\underline{\subseteq}M_{\sigma}\cap N^{*}=1$ . This proves (d). Q.E.D.

Lemma 6.11. Suppose $M\in M$ , $p\in\tau_{2}(M)$ , $A\in \mathcal{E}_{p}^{2}(E)$ , and

$M^{*}\in M(N_{G}(A))$ . Then,

(a) $\tau_{2}(M)\underline{\subseteq}\sigma(M^{*})\backslash \beta(M^{*})$ ,
(b) $\pi(E/C_{E}(A))\underline{\subseteq}\tau_{1}(M^{*})\cup\tau_{2}(M^{*})$ , and
(c) if $q\in\pi(E/C_{E}(A))\cap\pi(C_{E}(A))$ , then $q\in\tau_{2}(M^{*})$ , some Sylow

$p$ -subgroup of $G$ is normal in $M^{*}$ , and $M^{*}$ contains an abelian
Sylow $q$ subgroup of $G$ .

Proof. As before $M$ is a $\varpi$-group. The proof of (a) and (b) is
similar to the corresponding proof of Lemma 12.11 [BG]. We paraphrase
the proof of Part (c).

Let $q\in\pi(E/C_{E}(A))\cap\pi(C_{E}(A))$ and $Q\in Sy\ell_{q}(E)$ . Corollary
6.10 (c) yields $q\in\tau_{1}(M)$ . It follows that $Q$ is cyclic. Since $A\triangleleft E$

by Corollary 6.6 (a), we have $C_{E}(A)\triangleleft E$ . Hence, $Q\cap C_{E}(A)$ is a
Sylow $q$ subgroup of $C_{E}(A)$ . Thus, we have $Q_{0}=\Omega_{1}(Q)\underline{\subseteq}C_{E}(A)$ and
$Q_{0}\neq Q$ .

By Corollary 6.6 (b), $C_{G}(A)\underline{\subseteq}E$ so $C_{G}(A)$ has a cyclic Sylow
$q$-subgroup. The Frattini argument yields

$N_{G}(A)=C_{G}(A)(N_{\dot{G}}(A)\cap N_{G}(Q_{0}))$ .

Take $M^{**}\in M(N_{G}(Q_{0}))$ . Since $Q_{0}\underline{\subseteq}C_{E}(A)$ , we have $A\underline{\subseteq}N_{G}(Q_{0})$ .

Proposition 6.4 applied to $M^{**}$ yields that $C_{G}(A)\underline{\subseteq}M^{**}$ . The above
displayed formula shows $N_{G}(A)\underline{\subseteq}M^{**}$ . By (b) and Lemma 6.2 (a)
both applied to $A$ and $M^{**}$ , the prime $q$ lies in $\sigma(M^{**})\cup\tau_{2}(M^{**})$ and
in $\tau_{1}(M^{**})\cup\tau_{2}(M^{**})$ . Therefore, $q\in\tau_{2}(M^{**})$ . The part (a) applied to
$M^{*}$ and then to $M^{**}$ shows that $p\in\sigma(M^{*})$ and $p\in\sigma(M^{**})$ . Since $ q\in$

$\tau_{2}(M^{**})$ , we can apply Corollary 6.6 for $M^{**}$ . The part (f) implies that
$M^{*}$ is conjugate to $M^{**};$ otherwise we would have $\sigma(M^{*})\cap\sigma(M^{**})=\emptyset$ .

Since $A\underline{\subseteq}M^{*}\cap M^{**}$ , Theorem 4.1 (b) shows that $M^{**}$ is conjugate to
$M^{*}$ by an element of $C_{G}(A)$ . But, $C_{G}(A)\underline{\subseteq}M^{**}$ so we have $M^{**}=M^{*}$ .

Thus, $q\in\tau_{2}(M^{*})$ .

It follows from Theorem 6.5 (a) that $(M^{*})_{\sigma}$ is nilpotent. Since
$p\in\sigma(M^{*})\backslash \beta(M^{*})$ by (a), $O_{p}(M^{*})$ is a Sylow $p$-subgroup of $M^{*}$ and
of $G$ . This proves the second statement.
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Since $q\in\tau_{2}(M^{*})$ , Theorem 6.5 (b) applied to $M^{*}$ yields that $M^{*}$ has
abelian Sylow $q$-subgroups. Note that $Q_{0}\triangleleft Q$ so $Q\underline{\subseteq}M^{**}=M^{*}$ . Let
$E^{*}$ be a complement of $(M^{*})_{\sigma}$ in $M^{*}$ that contains $Q$ . Let $S$ be a Sylow
$q$-subgroup of $E^{*}$ that contains $Q$ . We will show that $S\in Sy\ell_{q}(G)$ .

Suppose that $G$ has nonabelian Sylow $q$-subgroups. Theorem 6.7
applied to $M^{*}$ yields the following. Among the elements of $\mathcal{E}^{1}(S)$ , there
is a unique subgroup $X_{0}$ such that $C_{M_{\sigma}^{*}}(X_{0})\neq 1$ (Theorem 6.7 (c)).

This subgroup $X_{0}$ has a complement $E_{0}$ in $E^{*}$ (Part (d)). We have
$A\underline{\subseteq}M_{\sigma}^{*}\cap C_{G}(Q_{0})$ . Therefore, we must have $X_{0}=Q_{0}$ . Since $Q_{0}$ has
a complement $E_{0}$ in $E^{*}$ , the Dedekind law shows that $E_{0}\cap Q$ must be
a complement of $Q_{0}$ in $Q$ . Since $Q\neq Q_{0}$ and $Q$ is cyclic, $Q_{0}$ has no
complement in $Q$ . This is a contradiction. Thus, $G$ has abelian Sylow
$q$-subgroups. By Lemma 6.8 (b), we have $S\in Sy\ell_{q}(G)$ . This completes
the proof. Q.E.D.

Theorem 6.12. Suppose $M\in M$ and $C_{M_{\sigma_{0}}}(e)=1$ for each

$(\tau_{1}(M)\cup\tau_{3}(M))$ -element $ e\in E\#$ . Then,

(a) $E$ contains an abelian normal subgroup $A_{0}$ such that $C_{E}(x)\underline{\subseteq}$

$A_{0}$ for every $x\in(M_{\sigma_{0}})^{\beta}$ , and
(b) $E$ contains a subgroup $E_{0}$ of the same exponent as $E$ such that

$E_{0}M_{\sigma_{0}}$ is a Frobenius group with Frobenius kernel $M_{\sigma_{O}}$ .

Proof. If $E_{2}=1$ , then $E=E_{1}E_{3}$ acts regularly on $M_{\sigma_{0}}$ . Therefore,
with $A_{0}=1$ and $E_{0}=E$ , (a) and (b) hold.

Assume that $\tau_{2}(M)$ is not empty. Then, by Lemma $H$ , $M$ is a $\varpi-$

group. Take $p\in\tau_{2}(M)$ . If $G$ has nonabelian Sylow $p$-subgroups, then
Theorem 6.7 provides subgroups $A_{0}$ and $E_{0}$ as required. Note that (c)

implies that $C_{M_{\sigma}}(x)=1$ for every $p$-element $x$ of $E_{0}^{\phi}$ . Thus, we can
assume the hypotheses, notation and conclusions of Lemma 6.8.

By assumptions, $C_{E}(x)$ is a $\tau_{2}(M)$ -group for every $x\in M_{\sigma}^{\Downarrow}$ . By
Lemma 6.8 (a) and (b), $E$ contains an abelian normal Hall $\tau_{2}(M)-$

subgroup $E_{2}$ . Hence) we have $C_{E}(x)\underline{\subseteq}E_{2}$ for every $x\in M_{\sigma}^{\oint}$ . Thus,
$A_{0}=E_{2}$ satisfies (a).

For each $p\in\tau_{2}(M)$ , we have a normal abelian subgroup $S$ of rank
two such that $S$ is a Sylow $p$-subgroup of $E$ and of $G$ (Lemma 6.8 (a)
and (b) $)$ . We will prove that for each $p\in\tau_{2}(M)$ there is a cyclic normal
subgroup $Z=Z_{p}$ of $E$ having the same exponent as $S$ and satisfying

the condition $C_{M_{\sigma}}(z)=1$ for every $ z\in z\#$ .

We remark that the last centralizer condition is equivalent to

$C_{M_{\sigma}}(\Omega_{1}(Z))=1$ .
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and this condition is automatically satisfied if $Z$ is a nonidentity cyclic
subgroup of $S$ such that $\Omega_{1}(Z)\triangleleft N_{G}(S)$ . The first claim is trivial. To
prove the second, suppose that $C_{M_{\sigma}}(\Omega_{1}(Z))\neq 1$ . Corollary 6.6 (c) for
$X=\Omega_{1}(Z)$ yields $M(C_{G}(X))=\{M\}$ . Since $\Omega_{1}(Z)\triangleleft N_{G}(S)$ , we have

$N_{G}(S)\underline{\subseteq}N_{G}(\Omega_{1}(Z))\underline{\subseteq}M$ .

This contradicts Lemma 6.8 (d).
Assume that $C_{E}(S)=E$ . Since $S$ is abelian of rank 2, $S=Y\times Z$ for

some cyclic subgroups $Y$ and $Z$ . We choose the notation $|Y|\leq|Z|$ . If
$|Y|<|Z|$ , $\Omega_{1}(Z)$ is characteristic in $S$ . Then, $\Omega_{1}(Z)\triangleleft N_{G}(S)$ so $Z=Z_{p}$

satisfies the required property. (Since $C_{E}(S)=E$ , any subgroup of $S$ is
normal in $E.$ ) If $|Y|=|Z|$ , we can take a factor $Z$ in such a way that
$\Omega_{1}(Z)$ is equal to any given $A_{1}\in\epsilon^{1}(S)$ and, by Theorem 6.5 (f), at
least one such $A_{1}$ satisfies $C_{M_{\sigma}}(A_{1})=1$ . This completes the proof in
the case $C_{E}(S)=E$ .

Assume that $C_{E}(S)\neq E$ . Take $q\in\pi(E/C_{E}(S))$ and let $ Q_{1}\in$

$Sy\ell_{q}(E)$ and $Q\in Sy\ell_{q}(N_{G}(S))$ such that $Q_{1}\underline{\subseteq}Q$ . The definition of $q$

implies $C_{S}(Q_{1})\neq S$ . Let $A=\Omega_{1}(S)$ . Then, $A\in \mathcal{E}^{2}(S)$ . By Proposition
1.6 [BG], $Q_{1}$ does not centralize $A$ . Therefore, by Corollary 6.10 (c),
$q\in\tau_{1}(M)$ and $Q_{1}$ is cyclic. Since $C_{S}(Q_{1})\neq S$ and $C_{G}\underline{\subseteq}E$ , we have

$Q_{0}=C_{Q}(S)\neq\subseteq Q_{1}$ .

Suppose that $Q/Q_{0}$ acts regularly on $S$ . Then, Proposition 3.9 [BG]
shows that $Q/Q_{0}$ is cyclic. Hence, $\Omega_{1}(Q/Q_{0})\underline{\subseteq}Q_{1}/Q_{0}$ and $\Omega_{1}(Q)\underline{\subseteq}Q_{1}$ .

Since $Q_{1}$ is cyclic, $\Omega_{1}(Q)\underline{\subseteq}Q_{1}$ implies that $Q$ is cyclic, too. Thus,
$r_{q}(N_{G}(S))=1$ . On the other hand, since $q\in\tau_{1}(M)$ , the assumption of
this theorem implies that $C_{M_{\sigma}}(\Omega_{1}(Q_{1}))=1$ . Hence, by Lemma 6.8 (e),
$\Omega_{1}(Q_{1})$ lies in $Z(E)$ so $\Omega_{1}(Q_{1})$ centralizes $A$ .

If $M^{*}\in M(N_{G}(A))$ , $S\underline{\subseteq}N_{G}(A)\underline{\subseteq}M^{*}$ . So, $S$ is a Sylow p-
subgroup of $M^{*}$ . $Now,Lemma6.11$ $(c)$ yields $q\in\tau_{2}(M^{*})$ , $S\triangleleft M^{*}$ ,

and $M^{*}$ contains an abelian Sylow $q$-subgroup of $G$ . This implies that
$r_{q}(N_{G}(S))\geq 2$ . This contradiction proves that $Q/Q_{0}$ does not act
regularly on $S$ . Therefore, $1\neq C_{S}(X)\neq S$ for some subgroup $X$ of $Q$ .
By Proposition 1.6 (d) [BG], we have $S=S_{0}\times S_{1}$ where $S_{0}=C_{S}(X)$

and $S_{1}=[S, X]$ . Since $r(S)=2$ , both $S_{0}$ and $S_{1}$ are cyclic. By Lemma
6.8 (f), both $S_{0}$ and $S_{1}$ are normal in $N_{G}(S)$ . Define $Z=S_{0}$ if $|S_{0}|\geq|S_{1}|$

and $Z=S_{1}$ if $|S_{0}|<|S_{1}|$ . Then, $Z$ has the required properties.
Define $E_{0}$ to be the product of $E_{1}E_{3}$ and $\prod Z_{p}$ for all $p\in\tau_{2}(M)$ .

Then, $E_{0}$ satisfies the requirements of (b). Q.E.D.

Theorem 6.13. Let $ p\in\varpi$ .

of $G$ lies in U.
Then, every nonabelian $p$ subgroup
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Proof. The proof of Theorem 12.13 [BG] works. We just add some
details. Let $ p\in\varpi$ and let $P$ be a nonabelian $p$-subgroup of maximal
order that lies in two distinct subgroups $M$ and $M^{*}$ of M. Then, by
Corollary 6.10, $N_{G}(P)\underline{\subseteq}M\cap M^{*}$ . It follows that $P\in Sy\ell_{p}(G)$ and
$r(P)=2$ . By Corollary 4.7 (b), $P$ contains a nonabelian subgroup $Q$

of order $p^{3}$ and of exponent $p$ and $Z(Q)=\Omega_{1}(Z(P))$ . Let $Z=Z(Q)$
and $K=C_{M_{\sigma}}(Z)$ . It is proved that $K\underline{\subseteq}M^{*}$ . By Corollary 4.9 (b),
$M=(M\cap M^{*})M_{\alpha}$ . This implies that $M_{\alpha}\neq 1$ . Similarly, we have
$(M^{*})_{\alpha}\neq 1$ .

Apply Lemma 6.5 (b) with $(K, U, H, G)$ replaced by $(M_{\alpha},$ $ M\cap$

$M^{*}$ , $Z$ , $M)$ to conclude $N_{M}(Z)=C_{M_{\alpha}}(Z)(N_{M}(Z)\cap M^{*})\underline{\subseteq}M^{*}$ . It
follows that

$M(N_{G}(Z))\neq\{M\}$ ;

otherwise, we would have $N_{G}(Z)=N_{M}(Z)\underline{\subseteq}M\cap M^{*}$ .

Take any $A\in \mathcal{E}_{p}^{2}(Q)$ and apply Proposition 6.4 (b) to $M$ , and then
$M^{*}$ . Since $M_{\alpha}\neq 1$ , the hypothesis of Proposition 6.4 (b) does not hold.

Thus, there is a subgroup $A_{0}\in\epsilon^{1}(A)$ such that $M(N_{G}(A_{0}))=\{M\}$ .

Since $Z$ does not satisfy this condition, we have $A_{0}\neq Z$ . Similarly, there
is a subgroup $A_{0}^{*}\in\epsilon^{1}(A)\backslash \{Z\}$ which satisfies $M(N_{G}(A_{0}^{*}))=\{M^{*}\}$ .

By the property of the group $Q$ , $A_{0}^{*}$ is conjugate to $A_{0}$ in $Q$ . This
would imply that $M(N_{G}(A_{0}^{*}))$ would be conjugate to $M(N_{G}(A_{0}))$ by
an element of $Q\underline{\subseteq}M\cap M^{*}$ , so $M^{*}=M$ . This contradiction proves
Theorem 6.13. Q.E.D.

Corollary 6.14. Suppose $M\in M$ , $p\in\sigma(M)$ , $X\in \mathcal{E}_{p}^{1}(M)$ , and

$P\in Sy\ell_{p}(M_{\sigma})$ . Assume that $p\in\beta(M)$ or $X\underline{\subseteq}M_{\sigma}’$ . Then, $ p\in\varpi$ and

$M(C_{G}(X))=M(P)=\{M\}$ .

Proof. We may assume that $X$ is a subgroup of $P$ . First, we prove
a lemma: under the assumptions of Corollary 6.14, if $p\not\in\beta(M)$ , then

we have $X\underline{\subseteq}P’$ . If $p\not\in\beta(M)$ , the assumption implies that $X\underline{\subseteq}M_{\sigma}’$ .

The group $M_{\sigma}/M_{\beta}$ is nilpotent by Lemma 4.8 (b). Since $P\cap M_{\beta}=1$ ,

we have $X\underline{\subseteq}M_{\sigma}’\cap P=P’$ proving the lemma.
This lemma implies that if $p\not\in\beta(M)$ , $P$ is nonabelian; in particular,

$P$ is not cyclic so $r(P)\geq 2$ . Thus, $ p\in\varpi$ by Lemma F. If $p\in\beta(M)$ , we
have $ p\in\varpi$ . This proves $ p\in\varpi$ in all cases.

Suppose that $r(C_{P}(X))\geq 3$ . By the Uniqueness Theorem, we have
$C_{P}(X)\in \mathfrak{U}$ . Since $C_{P}(X)=C_{G}(X)\cap P$ , both $C_{G}(X)$ and $P$ lie in U.
Then, we have

$M(C_{G}(X))=M(P)=\{M\}$ .

Suppose that $r(C_{P}(X))\leq 2$ . If $r(P)\geq 3$ , $P$ is narrow by Corollary
5.4 [BG]; so $p\not\in\beta(M)$ . By the lemma, we have $X\underline{\subseteq}P’$ . On the other
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hand, if $p$ is narrow and $r(C_{P}(X))\leq 2$ for some $X\in\epsilon^{1}(P)$ , Theorem
5.3 (d) shows $X\cap P’=1$ . This contradicts $X\underline{\subseteq}P’$ . Hence, $r(P)\leq 2$

and $p\not\in\beta(M)$ . The lemma yields that $P$ is nonabelian.
By Corollary 4.7 (b), $P$ is the central product and satisfies $P’\underline{\subseteq}$

$Z(P)$ . We have $P\underline{\subseteq}C_{M}(X)$ because $X\underline{\subseteq}P’$ . Since $P$ is nonabelian,
$P\in \mathfrak{U}$ by Theorem 6.13. This implies that $CG(X)\in \mathfrak{U}$ and completes
the proof. Q.E.D.

Proposition 6.15. Suppose $M\in M$ , $q\in\sigma(M)$ , $X$ is a noniden-
tity $q$ -subgroup of $M$ , and $M^{*}\in M(N_{G}(X))\backslash \{M\}$ . Let $S$ be a Sylow
$q$ -subgroup of $M\cap M^{*}$ that contains X. Then, $S$ , $M$ , and $M^{*}$ satisfy
the following conditions.

(a) $M^{*}$ is not conjugate to $M$ in $G$ .

(b) $N_{G}(S)\underline{\subseteq}M$ .

(c) $S$ is a Sylow $q$ -subgroup of $M^{*}$ .

(d) If $q\in\sigma(M^{*})$ , then (1) $M^{*}=(M\cap M^{*})M_{\beta}^{*}$ , (2) $\tau_{1}(M^{*})\underline{\subseteq}$

$\tau_{1}(M)\cup\alpha(M)$ , and (3) $M_{\beta}=M_{\alpha}\neq 1$ .

(e) If $q\not\in\sigma(M^{*})$ , then (1) $q\in\tau_{2}(M^{*})$ , (2) $\pi(M)\cap\sigma(M^{*})\underline{\subseteq}\beta(M^{*})$ ,
and (3) $M\cap M^{*}$ is a complement to $M_{\sigma}^{*}$ in $M^{*}$ .

Proof. The assertions follow as in the proof of Proposition 12.15
[BG]; we will paraphrase the proof of (e).

Suppose that $q\not\in\sigma(M^{*})$ . By Lemma 6.2 (a) applied to $g$ , we
have $q\in\tau_{2}(M^{*})$ . Lemma $H$ shows that $M^{*}$ is a $\varpi$-group. Since
$S\in Sy\ell_{q}(M^{*})$ by (c), Theorem 6.5 proves $A=\Omega_{1}(S)\in \mathcal{E}^{2}(S)$ .

Let $E^{*}$ be a complement of $M_{\sigma}^{*}$ in $M^{*}$ that contains $A$ . By Theorem
6.5 (e) and Corollary 6.6 (a) with $(p, M)$ replaced by $(q, M^{*})$ , $M_{\sigma}^{*}\cap M=$

$1$ and $A\triangleleft E^{*}$ . By Corollary 6.10 (d), we have $N_{G}(A)\underline{\subseteq}M$ . This implies
that $E^{*}\underline{\subseteq}N_{G}(A)\underline{\subseteq}$ $M$ . Thus,

$M\cap M^{*}=M\cap M_{\sigma}^{*}E^{*}=(M\cap M_{\sigma}^{*})E^{*}=E^{*}$ .

This proves (3).
Suppose that $p\in\pi(M)\cap\sigma(M^{*})$ and $p\not\in\beta(M^{*})$ . By Corollary

6.6 (b) applied to $M^{*}$ , we have $C_{G}(A)\underline{\subseteq}E^{*}$ . Since $p\in\sigma(M^{*})$ , the
group $C_{G}(A)$ is a $p’$-group.

By (a), $M$ is not conjugate to $M^{*}$ . Therefore, Corollary 6.6 (f)
applied to $M^{*}$ and $q$ proves that $\sigma(M^{*})$ is disjoint from $\sigma(M)$ . This
implies first $p\neq q$ because $p\in\sigma(M^{*})$ and $q\in\sigma(M)$ , and secondly
$p\not\in\beta(M)$ as $\beta(M)\underline{\subseteq}\sigma(M)$ . By (1), $q\in\tau_{2}(M^{*})$ so $q\not\in\beta(G)$ by
Lemma 6.1 (g) with $p$ replaced by $q$ . We can apply Corollary 4.9 to
$M^{*}$ . If $p<q$ , the $q$-subgroup $A$ of $M^{*}$ centralizes a Sylow $p$-subgroup of
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$M_{\sigma}^{*}$ . Since $p\in\sigma(M^{*})$ , $C_{G}(A)$ has order divisible by $p$ . This contradicts
the earlier statement that $C_{G}(A)$ is a $p’$-group. Thus, we have $q<p$ .

We apply Corollary 4.9 to $M$ interchanging $p$ and $q$ . We conclude that
a Sylow $p$-subgroup $P$ of $M$ centralizes a Sylow $q$-subgroup $Q$ of $M_{\sigma}$ .

Since $p\in\pi(G)$ , we have $P\neq 1$ . We may replace $Q$ and $P$ by conjugates
and suppose that $A\underline{\subseteq}Q$ . We get a contradiction that

$ 1\neq P\underline{\subseteq}C_{G}(A)Q.E.D\cdot$

.This completes the proof of (e).

Corollary 6.16. Let $M\in M$ and $E$ a complement of $M_{\sigma}$ in $M$ .

Suppose that $Y$ is a $\sigma(M)$ -subgroup of $G$ such that $O_{\varpi}(Y)\neq 1$ . Then,
$Y$ is conjugate to a subgroup of $M_{\sigma}$ and for every $p\in\pi(E)\cap\beta(G)’$ and

evew $H\in M(Y)$ not conjugate to $M$ in $G$ ,

(a) $r_{p}(N_{H}(Y))\leq 1$ , and
(b) if $p\in\tau_{1}(M)$ , then $p\not\in\pi(N_{H}(Y)’)$ .

Proof With the extra condition that $O_{\varpi}(Y)\neq 1Y$ is contained
in a $\varpi$-local subgroup, so it is solvable. We can take a nonidentity
characteristic $q$-subgroup $X$ of $Y$ for some prime $q\in\sigma_{0}(M)$ . Since $M$

contains a Sylow $q$-subgroup of $G$ , we may replace $Y$ by some conjugate
if necessry, and assume that $X\underline{\subseteq}M_{\sigma}$ .

First we prove the following lemma as part of the proof of (a). Let
$H\in M(Y)$ . If $H$ is not conjugate to $M$ in $G$ , then for any prime
$p\in\pi(E)\cap\beta(G)’$ , we have $r_{p}(H\cap M)\leq 1$ .

Suppose $r_{p}(H\cap M)\geq 2$ and take $A\in \mathcal{E}_{p}^{2}(H\cap M)$ . Then $p\in\tau_{2}(M)$

and by Theorem 6.5 (e) we have $M_{\sigma}\cap H=1$ in contradiction to

$1\neq X\underline{\subseteq}M_{\sigma}\cap H$ .

This proves the lemma.
To prove Corollary 6.16, we assume first that $N_{G}(X)\underline{\subseteq}M$ . In this

case we have $Y\underline{\subseteq}N_{G}(X)\underline{\subseteq}M$ . Since $M/M_{\sigma}$ is a $\sigma(M)’$-group and
$Y$ is a $\sigma(M)$ -group, we have $Y\underline{\subseteq}M_{\sigma}$ . Let $p\in\pi(E)\cap\beta(G)’$ and let
$H\in M(Y)$ such that $H$ is not conjugate to $M$ in $G$ . By the lemma,
$r_{p}(H\cap M)\leq 1$ . Since $N_{H}(Y)\underline{\subseteq}N_{G}(Y)\underline{\subseteq}N_{G}(X)\underline{\subseteq}M$ , we have
$N_{H}(Y)\underline{\subseteq}H\cap M$ . This implies $r_{p}(N_{H}(Y))\leq r_{p}(H\cap M)\leq 1$ . If
$p\in\tau_{1}(M)$ , $M’$ is a $p’$-group (by definition of $\tau_{1}(M)$ ). Then, (b) holds
because $N_{H}(Y)’\underline{\subseteq}(H\cap M)’\underline{\subseteq}M’$ .

In the remainder of the proof we assume that $N_{G}(X)\not\leqq M$ . Since
$X$ is a $\varpi$-group, there is $M^{*}\in M(N_{G}(X))$ . Since $N_{G}(X)\not\leqq M_{)}$ we
have $M^{*}\neq M$ . By Proposition 6.15, $M^{*}$ is not conjugate to $M$ in $G$ ,
$q\in\sigma(M^{*})\cup\tau_{2}(M^{*})$ , and if $q\in\tau_{2}(M^{*})$ , then $\pi(M)\cap\sigma(M^{*})\underline{\subseteq}\beta(M^{*})$ .

Moreover, if $K$ is defined to be $M_{\beta}^{*}$ or $M_{\sigma}^{*}$ according as $q\in\sigma(M^{*})$ or
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$q\in\tau_{2}(M^{*})$ , then $M^{*}=(M\cap M^{*})K$ . We claim that $K$ is a $\sigma(M)’$ group.
If $q\in\sigma(M^{*})$ , $K=M_{\beta}^{*}\underline{\subseteq}M_{\alpha}^{*}$ and by Lemma 4.12 (a), $\alpha(M^{*})$ is disjoint

from $\sigma(M)$ . If $q\in\tau_{2}(M^{*})$ , we have $K=M_{\sigma}^{*}$ and $\sigma(M^{*})\cap\sigma(M)=\emptyset$ by
Corollary 6.6 (f) with $M$ replaced by $M^{*}$ . Thus, $K$ is a $\sigma(M)’-$ group.

Since $Y\underline{\subseteq}N_{G}(X)$ , the $\sigma(M)$ group $Y$ is contained in $ M^{*}=(M\cap$

$M^{*})K$ . Since $K$ is a normal $\sigma(M)’$-group, the Schur-Zassenhaus The-
orem shows that $Y$ is conjugate to a subgroup of $M\cap M^{*}$ . Since $Y$

is a $\sigma(M)$ -group, $Y$ is contained in $M_{\sigma}\cap M^{*}$ which is a normal Hall
$\sigma(M)$ subgroup of $M\cap M^{*}$ . This proves the first assertion of Corollary
6.16.

Take $p\in\pi(E)\cap\beta(G)’$ and $H\in M(Y)$ that is not conjugate to $M$ in
$G$ . We claim that $K$ is a $p’$-group. This is clear if $K=(M^{*})_{\beta}$ because
$p\not\in\beta(G)$ . On the other hand, if $K=(M^{*})_{\sigma}$ , we have $q\in\tau_{2}(M^{*})$ so $p$

cannot divide $|(M^{*})_{\sigma}|$ because $\pi(M)\cap\sigma(M^{*})\underline{\subseteq}\beta(M^{*})$ and $p\not\in\beta(M^{*})$ .

Thus, $K$ is a $p’$ group. Since $N_{H}(Y)\underline{\subseteq}N_{G}(Y)\underline{\subseteq}M^{*}$ and $M^{*}$ is not
conjugate to $M$ in $G$ , we may assume $H=M^{*}$ . In this case, we have
$H=(H\cap M)K$ . Since $K$ is a $p’$-group, $H\cap M$ contains a Sylow p-
subgroup of $H$ . The lemma at the beginning of the proof shows that
$r_{p}(H\cap M)\leq 1$ . Thus, we have $r_{p}(N_{H}(Y))\leq r_{p}(H)\leq 1$ . This proves
(a).

If $p\in\tau_{1}(M)$ , then $p\not\in\pi(M’)$ . It follows that $(H\cap M)’$ is a $p’$ group.
Clearly, we have $N_{H}(Y)’\underline{\subseteq}H’\underline{\subseteq}(H\cap M)’K$ . Therefore, $N_{H}(Y)’$ is a
$p’$-group. Q.E.D.

Lemma 6.17. Let $M\in M$ and $E$ a complement of $M_{\sigma}$ in $M$ .

Then, we have $C_{M_{\sigma}}(E)\underline{\subseteq}(M_{\sigma})’$ , $[M_{\sigma}, E]=M_{\sigma}$ , and for every $ g\in$

$G\backslash M$ , the group $M_{\sigma}\cap M^{g}$ is a cyclic $\beta(M)’$ -group intersecting $(M_{\sigma})’$

trivially.

Lemma 6.18. Suppose $M\in M$ , $p\in\tau_{1}(M)$ , $P\in \mathcal{E}_{p}^{1}(M)$ , $q\in p’$ ,

and $Q$ is a nonidentity $P$ -invariant $q$ -subgroup of $M$ such that $C_{Q}(P)=$

$1$ and $M(N_{G}(Q))\neq\{M\}$ .

(a) If $M_{\alpha}\neq 1$ and $q\not\in\alpha(M)$ , then $C_{M_{\alpha}}(P)\neq 1$ and $C_{M_{\alpha}}(PQ)=1$ .

(b) If $Q\in Sy\ell_{q}(M)$ , then $\alpha(M)=\beta(M)$ and we have the situation

of (a).

Proof. We will rewrite the first paragraph of the proof of Lemma
12.18 [BG] ,$\cdot$ the remainder of the proof can be adapted directly.

Suppose that $M_{\alpha}\neq 1$ and $q\not\in\alpha(M)$ . We will prove that

$r(C_{M_{\alpha}}(Q))\leq 1$ .
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Suppose that $r(C_{M_{\alpha}}(Q))\geq 2$ . Then, $C_{M_{\alpha}}(Q)$ is a $\varpi$ group so by
Lemma $A$ , $Q$ is a $\varpi$-group. Lemma 4.3 with $X$ replaced by $Q$ yields
that $C_{M}(Q)\in \mathfrak{U}$ . Since $ q\in\varpi$ , $M(N_{G}(Q))$ is not empty and, by as-
sumption, contains $H\in M$ different from $M$ . Thus,

$C_{M}(Q)\underline{\subseteq}N_{G}(Q)\underline{\subseteq}H\neq M$ ,

so $C_{M}(Q)\not\in \mathfrak{U}$ . This contradiction proves $r(C_{M_{\alpha}}(Q))\leq 1$ .

We prove $r(C_{M_{\alpha}}(P))\leq 1$ . Suppose that $r(C_{M_{\alpha}}(P))\geq 2$ . The same
argument as above yields that $ p\in\varpi$ and $C_{M}(P)\in \mathfrak{U}$ . Since $p\in\tau_{1}(M)$ ,
$P$ is contained in a cyclic Sylow $p$-subgroup $S$ of $M$ . Since $p\not\in\sigma(M)$ ,

we have $N_{G}(S)\not\leqq M$ Thus, $N_{G}(S)\underline{\subseteq}N_{G}(P)\not\leqq M$ .

We can find $H\in M(N_{G}(P))$ because $ p\in\varpi$ . Then, $H\neq M$ and

$C_{M}(P)\underline{\subseteq}N_{G}(P)\underline{\subseteq}H\neq M$ .

Thus, $C_{M}(P)\not\in \mathfrak{U}$ . This proves $r(C_{M_{\alpha}}(P))\leq 1$ . Q.E.D.

Lemma 6.19. Let $M\in M$ and $E$ a complement of $M_{\sigma}$ in $M$ .

Then, the group $E’$ centralizes a Hall $\beta(M)’$ -subgroup of $M_{\sigma}$ .

\S 7. Prime Action

This section corresponds Section 13 of [BG]. Troughout this section,
$s$ subgroup $M\in M$ and a complement $E$ of $M_{\sigma}$ in $M$ will be fixed.

Lemma 7.1. Suppose that $M^{*}\in M$ , $p\in\pi(E)\cap\pi(M^{*})$ , $ p\not\in$

$\tau_{1}(M^{*})$ , $[M_{\sigma}\cap M^{*}, M\cap M^{*}]\neq 1$ , and $M^{*}$ is not conjugate to $M$ in $G$ .

Then,

(a) every $p$ -subgroup of $M\cap M^{*}$ centralizes $M_{\sigma}\cap M^{*}$ ,
(b) $p\not\in\tau_{2}(M^{*})$ , and
(c) if $p\in\varpi\cap\tau_{1}(M)$ , then $p\in\beta(G)$ .

$Proo/$. Since $[M_{\sigma}\cap M^{*}, M\cap M^{*}]\underline{\subseteq}M_{\sigma}\cap(M^{*})’$ , there is $ q\in\sigma(M)\cap$

$\pi((M^{*})’)$ . Then, $q\neq p$ because $p\in\pi(E)$ . Let $Y$ be a Sylow $q$-subgroup
of $(M^{*})’$ . By Lemma 4.8, $(M^{*})’/(M^{*})_{\beta}$ is nilpotent so $(M^{*})_{\beta}Y\triangleleft M^{*}$ .

The Frattini argument yields $M^{*}=(M^{*})_{\beta}N_{M^{*}}(Y)$ .

In order to prove (b), suppose $p\in\tau_{2}(M^{*})$ . Then, $r_{p}(N_{M^{*}}(Y))=2$

because $N_{M^{*}}(Y)$ covers $M^{*}/(M^{*})_{\beta}$ . Moreover, $M^{*}$ is a $\varpi$ group by

Lemma H. It follows that $ q\in\varpi$ . Lemma 6.1 (g) yields that $p\not\in\beta(G)$ .

Corollary 6.16 (a) can be applied to get $r_{p}(N_{M^{*}}(Y))\leq 1$ . This contra-
diction proves (b).

To prove (c), suppose that $p\in\beta(G)’$ . By (b) and the assumptions,
$p\in\sigma(M^{*})\cup\tau_{3}(M^{*})$ . Therefore, $p\in\pi((M^{*})’)$ . We have $(M^{*})’=$
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$(M^{*})_{\beta}(N_{M^{*}}(Y))’$ . Hence, $N_{M^{*}}(Y)’$ contains a $p$-subgroup $P\neq 1$ . We
will show that this is a contradiction. Let $S$ be a Sylow $p$-subgroup
of $(M^{*})’$ . Since $(M^{*})’/(M^{*})_{\beta}$ is nilpotent, $(M^{*})_{\beta}S\triangleleft M^{*}$ and $P\underline{\subseteq}$

$(M^{*})_{\beta}S$ . We claim that $ q\in\varpi$ . If $q\in\beta(M^{*})$ , this is trivial. If $ q\not\in$

$\beta(M^{*})$ , $(M^{*})_{\beta}S$ is a $q’$ -group. Recall that $p\neq q$ . Now, $[Y, P]\underline{\subseteq}Y\cap$

$(M^{*})_{\beta}S=1$ because $P\underline{\subseteq}N_{G}(Y)$ and $P\underline{\subseteq}(M^{*})_{\beta}S$ . Since $P\neq 1$ is a
$p$-group and $ p\in\varpi$ , we have $ q\in\varpi$ . We can apply Corollary 6.16 (b)
which yields that if $p\in\tau_{1}(M)$ , then $p\not\in\pi(N_{M^{*}}(Y))$ . This contradiction
proves (c).

The statement (a) follows as in [BG]. Q.E.D.

Corollary 7.2. Suppose that $p\in\tau_{1}(M)\cup\tau_{3}(M)$ , $P$ is a noniden-
tity $p$ -subgroup of $M$ , and $M^{*}\in M(N_{G}(P))$ . Then,

(a) every $p$ -subgroup of $M\cap M^{*}$ centralizes $M_{\sigma}\cap M^{*}$ ,

(b) every $\tau_{1}(M^{*})’$ -subgroup of $E\cap M^{*}$ centralizes $M_{\sigma}\cap M^{*}$ , and
(c) if $[M_{\sigma}\cap M^{*}, M\cap M^{*}]\neq 1$ , then $p\in\sigma(M^{*})$ and in the case

$p\in\varpi\cap\tau_{1}(M)$ , we even have $p\in\beta(M^{*})$ .

Corollary 7.3. The following statements hold.

(a) Let $P\in Sy\ell_{p}(E)$ for some $ p\in\pi(E)\cap\varpi$ . Assume that $P$ is
cyclic. Then, $P$ acts in a prime manner on $M_{\sigma}$ .

(b) If $\varpi\cap\tau_{3}(M)\neq\emptyset$ , $E_{3}$ acts in a prime manner on $M_{\sigma}$ .

Proof. Let $P_{1}=\Omega_{1}(P)$ . If $x\in P^{Q}$ , then $P_{1}\underline{\subseteq}\langle x\rangle\underline{\subseteq}P$ . By

assumption, $p\in\tau_{1}(M)\cup\tau_{3}(M)$ . Therefore, we have $N_{G}(P)\not\leqq M$ Since
$ p\in\varpi$ , there exists $M^{*}\in M(N_{G}(P))$ . We have $P\underline{\subseteq}M\cap M^{*}$ . By
Corollary 7.2 (a), $P$ centralizes $M_{\sigma}\cap M^{*}$ . Thus,

$M_{\sigma}\cap M^{*}\underline{\subseteq}C_{M_{\sigma}}(P)\underline{\subseteq}C_{M_{\sigma}}(x)\underline{\subseteq}C_{M_{\sigma}}(P_{1})$ .

On the other hand, $C_{M_{\sigma}}(P_{1})\underline{\subseteq}N_{G}(P_{1})\underline{\subseteq}M^{*}$ , so $C_{M_{\sigma}}(P_{1})\underline{\subseteq}M_{\sigma}\cap M^{*}$ .

It follows that $C_{M_{\sigma}}(x)=M_{\sigma}\cap M^{*}$ for every $ x\in P\#$ . This proves (a).
The proof of (b) is similar. Take $X\in\epsilon^{1}(E_{3})$ with $ p\in\varpi$ and

$M^{*}\in M(N_{G}(X))$ . We have $E_{3}\underline{\subseteq}E’$ by Lemma 6.1 (b). Since $E\underline{\subseteq}$

$N_{G}(X)\underline{\subseteq}M^{*}$ , $E_{3}$ is a subgroup of $(M^{*})’$ ; in particular, $E_{3}$ is a $\tau_{1}(M^{*})’-$

subgroup. If $x\in E_{3}^{Q}$ satisfies $ X\underline{\subseteq}\langle x\rangle$ , then we have

$C_{M_{\sigma}}(E_{3})=C_{M_{\sigma}}(x)=C_{M_{\sigma}}(X)=M_{\sigma}\cap M^{*}$ .

If $ p\in\varpi$ for one prime $p$ in $\tau_{3}(M_{3})$ , then $\tau_{3}(M)\underline{\subseteq}\varpi$ . Hence, for any

element $x\in E_{3}^{\beta}$ , we have $C_{M_{\sigma}}(x)=C_{M_{\sigma}}(E_{3})$ . This proves (b).
Q.E.D.
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Theorem 7.4. Suppose that $ p\in\varpi$ , $p\in\tau_{1}(M)$ , $P\in\epsilon^{1}(E)$ ,
$r\in\pi(E)$ , and $R\in \mathcal{E}_{r}^{1}(C_{E}(P))$ . Then, $C_{M_{\sigma}}(P)\underline{\subseteq}C_{M_{\sigma}}(R)$ .

Proof. By assumption, we have $RP=R\times P$ so $ r\in\varpi$ . Since $ p\in$

$\tau_{1}(M)$ , we have $N_{G}(P)\not\leqq M$ . We can take $M^{*}\in M(N_{G}(P))$ because
$N_{G}(P)$ is a $\varpi$-local subgroup. By Lemma 6.2, $p\in\sigma(M^{*})\cup\tau_{2}(M^{*})$

(by (a)) and $M^{*}$ is not conjugate to $M$ in $G$ (by (b)), In particular,
$M^{*}\neq M$ .

By Corollary 7.2 (a), $P$ centralizes $M_{\sigma}\cap M^{*}$ . as in the proof of
Corollary 7.3, we have $C_{M_{\sigma}}(P)=M_{\sigma}\cap M^{*}$ . This implies that $M_{\sigma}\cap M^{*}$

is a $\varpi$-group by Lemma A. Since $R\underline{\subseteq}M\cap M^{*}$ , the $\sigma(M)’$-group $PR$

normalizes $M_{\sigma}\cap M^{*}$ . Therefore, for each $q\in\pi(M_{\sigma}\cap M^{*})$ , there is a
$PR$-invariant Sylow $q$-subgroup $S$ of $M_{\sigma}\cap M^{*}$ . Then, $S\not\in \mathfrak{U}$ so $S$ is
abelian by Theorem 6.13. Note that $ q\in\varpi$ .

We have to show that $R$ centralizes $S$ . We will derive a contradiction
by assuming that $R$ does not centralize $S$ . Let $Q=[S, R]$ and assume
that $Q\neq 1$ . Then, $S=Q\times C_{S}(R)$ and $C_{Q}(R)=1$ (because $S$ is
abelian). Since $S\underline{\subseteq}M_{\sigma}\cap M^{*}$ ,

$Q=[S, R]\underline{\subseteq}[M_{\sigma}\cap M^{*}, M\cap M^{*}]\neq 1$ .

By Corollary 7.2, we obtain $p\in\beta(M^{*})$ from (c) and $r\in\tau_{1}(M^{*})$ from
(b).

We check that all the assumptions of Lemma 6.18 (a), except the
one about $M(N_{G}(Q))$ , are satisfied for $(M^{*}, r, R, q, Q)$ in place of
$(M,p, P, q, Q)$ . But, since $p\in\beta(M^{*})$ , one of the conclusions is vio-
lated, i.e. $P\underline{\subseteq}C_{M_{\alpha}^{*}}(RQ)\neq 1$ . It follows that $M(N_{G}(Q))=\{M^{*}\}$ .

By Lemma 6.2 (a), we have $q\in\sigma(M^{*})\cup\tau_{2}(M^{*})$ . We can apply
Proposition 6.15 for $Q=X$ . If $q\in\tau_{2}(M^{*})$ , Part (e) applies so $M\cap M^{*}$

is a complement of $(M^{*})_{\sigma}$ in $M^{*}$ . However, this is not true because

$P\underline{\subseteq}(M^{*})_{\sigma}\cap M=(M^{*})_{\sigma}\cap(M\cap M^{*})\neq 1$ .

It follows that $q\in\sigma(M^{*})$ . Hence, by Proposition 6.15 (d), we have

$r\in\pi(E)\cap(\tau_{1}(M)\cup\alpha(M))=\tau_{1}(M)$

and $M_{\alpha}\neq 1$ . Since $q\in\sigma(M^{*}))$ Lemma 4.12 (a) yields $q\not\in\alpha(M)$ .

Thus, if $R$ does not centralize $S$ , we have $q\not\in\alpha(M)$ . It follows that
$C_{M_{\alpha}}(P)\underline{\subseteq}C_{M_{\alpha}}(R)$ and $r\in\tau_{1}(M)$ . We can interchange $p$ and $r$ to get
$C_{M_{\alpha}}(R)\underline{\subseteq}C_{M_{\alpha}}(P)$ . Then, $C=C_{M_{\alpha}}(P)=C_{M_{\alpha}}(R)$ , so

$C=C_{M_{\alpha}}(P)=C_{M_{\sigma}}(P)\cap M_{\alpha}=M_{\alpha}\cap M^{*}$
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because $C_{M_{\sigma}}(P)=M_{\sigma}\cap M^{*}$ . The group $S$ normalizes $C$ . Hence,

$[C, R, S]=[S, C, R]=1$ .

By the Three Subgroup Theorem we have $[R, S, C]=1$ . Thus, $Q=$

$[R, S]$ centralizes $C$ . It follows that $C=C_{M_{\alpha}}(R)=C_{M_{\alpha}}(RQ)$ . On the
other hand, Lemma 6.18 (a) for $M$ , $r$ , $R$ , $q$ and $Q$ in place of $M$ , $p$ , $P$ , $q$

and $Q$ yields $C_{M_{\alpha}}(R)\neq C_{M_{\alpha}}(RQ)$ . This contradiction proves Theorem
7.4. Q.E.D.

Theorem 7.5. Suppose that $\varpi\cap\tau_{1}(M)\neq\emptyset$ . Then, $E_{1}$ acts in $a$

prime manner on $M_{\sigma}$ .

Proof. Since $E_{1}$ is cyclic, the assumption yields that $E_{1}$ is a $\varpi-$

group. For each $p\in\tau_{1}(M)$ , let $P\in\epsilon^{1}(E_{1})$ . By Theorem 7.4, the group
$C=C_{M_{\sigma}}(P)$ does not depend on $p$ . If $P_{1}$ is any $p$-subgroup of $E_{1}$ , we
have $C_{M_{\sigma}}(P_{1})=C$ by Corollary 7.3 (a). It follows that

$C_{M_{\sigma}}(X)=CQ.E.D$

.for any subgroup $X$ of $E_{1}$ .

Lemma 7.6. Suppose 1 $\neq P\underline{\subseteq}E_{1}$ , $q\in\sigma(M)$ , and $ X\in$

$\mathcal{E}_{q}^{1}(C_{M_{\sigma}}(P))$ . Let $S\in Sy\ell_{q}(M_{\sigma})$ . Assume either $P=E_{1}$ or $\varpi\cap\tau_{1}(M)\neq$

$\emptyset$ . Then, $ q\in\varpi$ and $M(C_{G}(X))=M(S)=\{M\}$ .

Proof. If $q\in\beta(M)$ or $X\underline{\subseteq}(M_{\sigma})’$ , Corollary 6.14 yields the conclu-
sion of the lemma. We will derive a contradiction by assuming $q\not\in\beta(M)$

and $X\not\leqq(M_{\sigma})’$ . If $\varpi\cap\tau_{1}(M)\neq\emptyset$ , $E_{1}$ acts in a prime manner on $M_{\sigma}$

by Theorem 7.5. Therefore, we may assume that $P=E_{1}$ .

Since $q\not\in\beta(M)$ , by Lemma 6.19, $E’$ centralizes some Sylow q-
subgroup of $M_{\sigma}$ . The group $E$ is a $\sigma(M)’$-group that normalizes a
$\sigma(M)$ -subgroup $C_{M_{\sigma}}(E’)$ . Hence, $E$ normalizes some Sylow $q$-subgroup
of $C_{M_{\sigma}}(E’)$ . We may replace $S$ by a conjugate without affecting the con-
clusion. Thus, we may assume that $S$ is normalized by $E$ and centralized
by $E’$ .

The group $SE_{1}\underline{\subseteq}$ SE is a Hall $\{q, \tau_{1}(M)\}$-subgroup of $M$ . There-
fore, the subgroup $XE_{1}$ of $M$ is conjugate to a subgroup of $SE_{1}$ . Thus,
for some $x\in M$ , $(XE_{1})^{x}=X^{x}E_{1}^{x}\underline{\subseteq}SE_{1}$ Then, $E_{1}^{x}$ and $E_{1}$ are Hall
subgroups of $SE_{1}$ , so they are conjugate in $SE_{1}$ . We may assume that
$E_{1}^{x}=E_{1}$ . Since $XE_{1}=X\times E_{1}$ , we have $X^{x}\underline{\subseteq}C_{M}(E_{1}^{x})=C_{M}(E_{1})$ .

Also, we have $X^{x}\underline{\subseteq}S$ because $S$ is a normal Sylow $q$ subgroup of $SE_{1}$ .

It follows that $X^{x}\in \mathcal{E}_{q}^{1}(C_{M_{\sigma}}(P))$ and $X^{x}\underline{\subseteq}S$ . By replacing $X$ and $S$

by conjugates, we may assume that

$X\underline{\subseteq}S\underline{\subseteq}C_{M_{\sigma}}(E’)$ .
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By Lemma 6.17, $C_{M_{\sigma}}(E)\underline{\subseteq}(M_{\sigma})’$ . Since $X\not\leqq(M_{\sigma})’$ , $X$ does not
centralize $E$ , but does centralize $E_{1}$ and $E’$ . It follows that $E\neq E_{1}E’$ .

Since $E_{3}\underline{\subseteq}E’$ and $E=E_{1}E_{2}E_{3}$ by Lemma 6.1, we have $E_{2}\neq 1$ . By
Lemma $H$ , $M$ is a $\varpi$-group.

Take $p\in\tau_{2}(M)$ and $A\in \mathcal{E}_{p}^{2}(E)$ . We have $A\triangleleft E$ by Corollary

6.6 (a) and $C_{M_{\sigma}}(A)=1$ by Theorem 6.5 (d). Since $A$ is abelian, $A=$

$A_{0}\times[A, E_{1}]$ with $A_{0}=C_{A}(E_{1})$ . Since $[A, E_{1}]\underline{\subseteq}E’$ , $[A, E_{1}]$ centralizes
$X$ . Furthermore, Theorem 7.4 shows that $A_{0}$ centralizes $X$ . Thus,
$X\underline{\subseteq}C_{M_{\sigma}}(A)$ and $C_{M_{\sigma}}(A)\neq 1$ . This contradicts Theorem 6.5 (d).

Q.E.D.

Lemma 7.7. Suppose that $E_{1}\neq 1$ , $E_{3}\neq 1$ , and that $E_{1}$ does not
act regularly on $E_{3}$ . Then, we have one of the following two cases.

(1) We have $\tau_{3}(M)\cap\varpi=\emptyset$ , $M$ is a Frobenius group with Frobenius
kernel $M_{\alpha}=M_{\beta}=M_{\sigma_{O}}$ , $M_{\alpha}$ isa $\varpi$ -group, and $M/M_{\alpha}$ is $a$

$\varpi’$ -group.
(2) We have $\tau_{3}(M)\cap\varpi\neq\emptyset$ , $M$ is a $\varpi$ -group and the group $E_{1}E_{3}$

acts in a prime manner on $M_{\sigma}$ .

Proof. By assumption, there exist primes $p$ and $r$ such that $ P\in$

$\epsilon^{1}(E_{1})$ centralizes $R\in \mathcal{E}_{r}^{1}(E_{3})$ . These primes $p$ and $r$ lie in the same
connected component of the prime graph of $G$ .

Suppose that $\tau_{3}(M)\cap\varpi=\emptyset$ . Then, $M$ is not a $\varpi-$ group. By
Lemma $G$ , we have (1).

Suppose that $\tau_{3}(M)\cap\varpi\neq\emptyset$ . Since $E_{3}$ is cyclic by Lemma 6.1 (d),

we have $\tau_{3}(M)=\pi(E_{3})\underline{\subseteq}\varpi$ . Since $M’/M_{\beta}$ is nilpotent by Lemma 4.8
and $\tau_{3}(M)\underline{\subseteq}\pi(M’/M_{\beta})by$ Lemma 6.1 (b), the group $M’/M_{\beta}$ is a $\varpi-$

group. The remark at the beginning of the proof shows $\tau_{1}(M)\cap\varpi\neq\emptyset$ .

Since $\tau_{1}(M)\underline{\subseteq}\pi(M/M’)$ , $M/M’$ is a $\varpi$-group. This proves that $M$ is a
$\varpi$-group.

The remainder of the proof is similar to that of Lemma 13.7 [BG].
Since $M$ is a $\varpi$-group, we can apply Corollary 7.3 and Theorems 7.4
and 7.5. We assume

$C_{M_{\sigma}}(P)\neq C_{M_{\sigma}}(R)$

and we will obtain a contradiction. We have $1\neq R\underline{\subseteq}E_{3}$ and $ C_{M_{\sigma}}(R)\neq$

$1$ . If $\tau_{2}(M)\neq\emptyset$ , Corollary 6.6 (d) would yield $C_{M_{\sigma}}(R)=1$ . Therefore,
$\tau_{2}(M)=\emptyset$ and $E=E_{1}E_{3}$ . Since $R$ char $E_{3}\triangleleft E$ by Lemma 6.1, we
have $R\triangleleft E$ . We can take $M^{*}\in M(N_{G}(R))$ since $N_{G}(R)$ is a $\varpi-$ local
subgroup. We have $N_{G}(R)\not\leqq M$ so $M^{*}\neq M$ . By our hypothesis,

$1\neq[C_{M\sigma}(R))P]\underline{\subseteq}[M_{\sigma}\cap M^{*}, E_{1}]$ .
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If $C=C_{E_{1}}(M_{\sigma}\cap M^{*})$ , the above displayed formula yields $C\neq E_{1}$ .

On the other hand, $C$ centralizes $M_{\sigma}\cap M^{*}$ . Since $E_{1}$ acts in a prime
manner on $M_{\sigma}$ by Theorem 7.5, we have $C=1$ , Corollary 7.2 with $p$ and
$P$ replaced by $r$ and $R$ yields $\pi(E_{1})\underline{\subseteq}\tau_{1}(M^{*})$ from (b) and $r\in\sigma(M^{*})$

from (c). Thus, $E_{1}$ is contained in a Hall $\tau_{1}(M^{*})$ -subgroup $(E^{*})_{1}$ of $M^{*}$

and $1\neq P\underline{\subseteq}C_{E_{\sigma}^{*}}(R)$ where $R\underline{\subseteq}(M^{*})_{\sigma}$ . Since $\tau_{1}(M^{*})\cap\varpi\neq\emptyset$ , $E_{1}^{*}$ acts

in a prime manner on $(M^{*})_{\sigma}$ by Theorem 7.5. Therefore, $E_{1}^{*}$ centralizes
$R$ . Since $E_{1}\underline{\subseteq}E_{1}^{*}$ , $R$ centralizes $E_{1}$ . It follows that $R\underline{\subseteq}C_{E_{3}}(E)$ because
$R\underline{\subseteq}E_{3}$ and $E=E_{1}E_{3}$ . Recall that $E_{3}$ is cyclic. However, $C_{E_{3}}(E)=1$

by Lemma 6.1 (f). This proves Lemma 7.7. Q.E.D.

Lemma 7.8. The following confifiguration is impossible:

(1) $M$ , $M^{*}\underline{\subseteq}M$ and $M^{*}$ is not conjugate to $M$ in $G$ ,

(2) $p\in\tau_{1}(M)\cap\tau_{1}(M^{*})$ and $P\in \mathcal{E}^{1}(M\cap M^{*})$ ,
(3) $Q$ and $Q^{*}$ are $P$ -invariant Sylow subgroups (possibly for different

primes) of $M\cap M^{*}$ ,
(4) $C_{Q}(P)=1$ and $C_{Q^{*}}(P)=1$ , and
(5) $N_{G}(Q)\underline{\subseteq}M^{*}$ and $N_{G}(Q^{*})\underline{\subseteq}M$ .

Proof Assume this configuration. It follows from (3) and (5) that
$Q$ is a nonidentity Sylow $q$-subgroup for some prime $q$ different from
$p$ and $Q^{*}$ is a Sylow subgroup of $M^{*}$ . By Lemma 6.18 (b), we have
$\alpha(M)=\beta(M)$ , $M_{\zeta f}\neq 1$ , and $q\not\in\alpha(M)$ . Furthermore, by (a) of the
same lemma, $C_{M_{\alpha}}(P)\neq 1$ and $C_{M_{\alpha}}(PQ)=1$ . Since $C_{M_{\alpha}}(P)\neq 1$ and
$\alpha(M)\underline{\subseteq}\varpi$ , we have $ p\in\varpi$ by Lemma A.

Proposition 1.6 [BG] yields that $Q=C_{Q}(P)[Q, P]$ . By (4),

$Q=[Q, P]\underline{\subseteq}M’\cap(M^{*})’$ .

Theorem 4.2 (d) shows that $M’/M_{\alpha}$ is nilpotent. It follows that $ M_{\alpha}Q\triangleleft$

$M$ and the Frattini argument yields $M=M_{\alpha}N_{M}(Q)$ .

This implies that $N_{M}(Q)$ contains a Hall $\alpha(M)’$-subgroup $K$ of $M$ .

Since $q\not\in\alpha(M)$ and $p\in\tau_{1}(M)$ , $PQ$ is an $\alpha(M)’$-subgroup of $N_{M}(Q)$ .

We may choose $K$ so that $PQ\underline{\subseteq}K$ . Note that we have

$M=M_{\alpha}K$ , $M_{\alpha}\cap K=1$ , and $PQ\underline{\subseteq}K\underline{\subseteq}N_{M}(Q)$ .

We claim that $C_{M}(P)=C_{M_{\alpha}}(P)C_{K}(P)$ . Take an element of $C_{M}(P)$

and write it $xy$ with $x\in M_{\alpha}$ and $y\in K$ . This is a unique expression of
this sort. For any $z\in P$ ,

$xy=z^{-1}(xy)z=(z^{-1}xz)(z^{-1}yz)$ .
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Since $z^{-1}xz\in M_{\alpha}\triangleleft M$ and $z^{-1}yz\in K$ , we have $z^{-1}xz=x$ and
$z^{-1}yz=y$ . This proves $C_{M}(P)\underline{\subseteq}C_{M_{\alpha}}(P)C_{K}(P)$ . The reverse contain-
ment is obvious. This proves the claim.

Let $H$ be a Hall $(\beta(M)\cup\beta(M^{*}))$ subgroup of $C_{G}(P)$ . Recall that
$ p\in\varpi$ , so $C_{G}(P)$ is contained in a $\varpi$-local subgroup and it is solvable.
Take any $s\in\pi(F(H))$ and $t\in\pi F(C_{M_{\beta}}(P)))$ . By symmetry between
$M$ and $M^{*}$ , we may fix notation and can assume $s$ $\in\beta(M)$ . We may
choose $H$ so that $C_{M_{\beta}}(P)\underline{\subseteq}H$ . Let $X=O_{s}(H)$ and $Y=O_{t}(C_{M_{\beta}}(P))$ .

We will show that $H\underline{\subseteq}M$ .

Since $s$ $\in\beta(M)$ , $M$ contains a Sylow $s$-subgroup of $G$ . Hence, some
conjugate $M^{g}$ with $g\in G$ contains $X$ . By Proposition 4.14 (d), applied
to $M^{g}$ and $X$ , we have $M^{g}\supseteq N_{G}(X)\supseteq H\supseteq Y$ .

The same argument applied to $M$ and $Y$ yields $ M\supseteq N_{G}(Y)\supseteq$

$C_{G}(Y)$ . Since $Y\underline{\subseteq}M\cap M^{g}$ , it follows from Theorem 4.1 (b) that
$M^{g}=M^{h}$ for some element $h\in C_{G}(Y)\underline{\subseteq}M$ . Thus, $M=M^{g}\supseteq H$ .

Take $r\in\beta(M^{*})\cap\pi(H)$ . By Lemma 4.12 (a), $r\not\in\sigma(M)$ . Note
that $M^{*}$ is not conjugate to $M$ by (1). Moreover, since $H\underline{\subseteq}M$ , $ r\in$

$\pi(C_{M}(P))$ . Since $C_{M}(P)=C_{M_{\alpha}}(P)C_{K}(P)$ , $K\underline{\subseteq}N_{M}(Q)$ , and $ r\not\in$

$\alpha(M)\underline{\subseteq}\sigma(M)$ , we have $r\in\pi(C_{K}(P))$ . Therefore, there is a subgroup
$R\in \mathcal{E}_{r}^{1}(N_{M}(Q)\cap C_{G}(P))$ . Then, $R\underline{\subseteq}N_{G}(Q)\underline{\subseteq}M^{*}$ and $r\in\beta(M^{*})$ .

Proposition 4.14 (d) applied to $R\underline{\subseteq}M^{*}$ yields $N_{G}(R)\underline{\subseteq}M^{*}$ .

The subgroup $PR=P\times R$ is a $\sigma(M)’$-subgroup of $M$ . Hence, $PR$ is
conjugate to a subgroup of $E$ in $M$ . Since $ p\in\varpi$ , we can apply Theorem
7.4 to obtain

$1\neq X\underline{\subseteq}C_{M_{\sigma}}(P)\underline{\subseteq}C_{M_{\sigma}}(R)\underline{\subseteq}M^{*}$ .

We claim that $[X, Q]=1$ . We have $X\underline{\subseteq}M_{\alpha}\cap M^{*}$ and $M_{\alpha}\cap M^{*}$ is
a $Q$-invariant $q’$-subgroup because $q\not\in\alpha(M)$ . Therefore, $[X, Q]$ is a $q’-$

group. We have $Q\underline{\subseteq}(M^{*})’$ and $(M^{*})’/(M^{*})_{\alpha}$ is nilpotent by Theorem
4.2 (d). Hence, $(M^{*})_{\alpha}Q\triangleleft M^{*}$ .

It follows that $[X, Q]\underline{\subseteq}[X, (M^{*})_{\alpha}Q]\underline{\subseteq}(M^{*})_{\alpha}Q$ . Since $[X, Q]$ is
a $q’$-group, we have $[X, Q]\underline{\subseteq}(M^{*})_{\alpha}$ . On the other hand, $X\underline{\subseteq}M_{\beta}$

because $s\in\beta(M)$ . Therefore, $[X, Q]\underline{\subseteq}[M_{\beta}, Q]\underline{\subseteq}M_{\beta}\underline{\subseteq}M_{\alpha}$ . Lemma
4.12 yields $M_{\alpha}\cap(M^{*})_{\alpha}=1$ . Thus, we have $[X, Q]=1$ .

Since $X\underline{\subseteq}H\underline{\subseteq}C_{M_{\alpha}}(P)$ , we have $1\neq X\underline{\subseteq}C_{M_{\alpha}}(PQ)$ . This
contradicts the fact that $C_{M_{\alpha}}(PQ)=1$ . Q.E.D.

Theorem 7.9. Suppose $M$ , $M^{*}\in M$ and $M^{*}$ is not conjugate to
$M$ in G. Then, $\sigma(M)$ is disjoint from $\sigma(M^{*})$ .

Theorem 7.10. Suppose that some $P\in \mathcal{E}^{1}(E)$ does not centralize
$E_{3}$ . Then, $\tau_{1}(M)\underline{\subseteq}\varpi$ and the following hold.

(a) $E_{1}$ acts regularly on $E_{3}$ .
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(b) $E_{3}$ acts regularly on $M_{\sigma_{0}}$ .

(c) $C_{M_{\sigma_{O}}}(P)\neq 1$ .

Proof. We remark that the assumption implies $E_{3}\neq 1$ . Suppose
$\tau_{1}(M)\cap\varpi=\emptyset$ . Then, by Lemma $G$ , $M$ is a Frobenius group. The
Frobenius kernel is either $M’$ or $M_{\alpha}$ . In the first case, we have $M’=M_{\sigma}$

and $E_{3}=1$ . On the other hand, if the Frobenius kernel is $M_{\alpha}$ , the group
$E$ is a subgroup of a Frobenius complement. Hence, by the structure of
a Frobenius complement, every subgroup of prime order in $E$ is normal
in $E$ . In particular, $P$ centralizes $E_{3}$ . Thus, we have $\tau_{1}(M)\cap\varpi\neq\emptyset$ . In
this case, we have $\tau_{1}(M)\underline{\subseteq}\varpi$ because $E_{1}$ is cyclic.

Suppose that $\tau_{1}(M)\underline{\subseteq}\varpi$ but $M$ is not a $\varpi$-group. Then, Lemma
$G$ yields that $M/M’$ is a $\varpi$-group, $M’/M_{\alpha}$ is a $\varpi’$ group and $M_{\alpha}$ is a
$\varpi$ group. Since $E_{3}\underline{\subseteq}E’\underline{\subseteq}M’$ by Lemma 6.1 (b), $E_{3}$ is a $\varpi’$ group.
Since $E_{1}$ is a $\varpi$ group $(\tau_{1}(M)\underline{\subseteq}\varpi)$ , we have (a).

Lemma $G$ yields $M_{\alpha}=M_{\sigma_{O}}$ . Hence, $M_{\sigma_{0}}$ is a $\varpi$-group and we have
(b). The Frobenius group $PE_{3}$ acts on $M_{\alpha}$ with $C_{M_{\alpha}}(E_{3})=1$ . Theorem
3.10 [BG] yields that $C_{M_{\alpha}}(P)\neq 1$ . This proves (c).

If $M$ is a $\varpi$-group, the proof of Theorem 13.10 [BG] shows the
validity of (a), (b) and (c). Q.E.D.

Corollary 7.11. Suppose $E_{3}\neq 1$ and $E_{3}$ does not act regularly
on $M_{\sigma_{O}}$ . Then, $M$ is a $\varpi$ group with $\tau_{2}(M)=\emptyset$ . We have (a) $E_{1}\neq 1$ ,

(b) $E=E_{1}E_{3}$ , (c) $E$ acts in a prime manner on $M_{\sigma}$ , and (d) every
$X\in\epsilon^{1}(E)$ is normal in $E$ .

Proof. If $\tau_{2}(M)\neq\emptyset$ , Corollary 6.6 (d) yields that $E_{3}$ acts regularly
on $M_{\sigma}$ . This is false, so we have $\tau_{2}(M)=\emptyset$ . Lemma 6.1 yields (a) and
(b). It follows from Theorem 7.10 (b) that every $P\in\epsilon^{1}(E_{1})$ centralizes
$E_{3}$ . This implies (d) because $E=E_{1}E_{3}$ and $E_{1}$ is cyclic.

By assumption some nonidentity element of $E_{3}$ centralizes a $\varpi-$

subgroup. Therefore, $\tau_{3}(M)\cap\varpi\neq\emptyset$ by Lemma A. By Lemma 7.7 (2),
$M$ is a $\varpi$-group and (c) holds. Q.E.D.

Lemma 7.12. Suppose $p\in\tau_{1}(M)$ , $P\in \mathcal{E}^{1}(E)$ , $q\in\tau_{2}(M)$ , $ A\in$

$\mathcal{E}_{p}^{2}(E)$ , and $C_{A}(P)\neq 1$ . Then, $C_{M_{\sigma}}(P)=1$ .

Proof. Since $\tau_{2}(M)\neq\emptyset$ , $M$ is a $\varpi$-group by Lemma H. The proof
of Lemma 13.12 [BG] may be adapted to this case. Q.E.D.

Lemma 7.13. Suppose that $p\in\tau_{1}(M)\cup\tau_{3}(M)$ , $P\in\epsilon^{1}(E)$ , and
$C_{M_{\sigma}}(P)\neq 1$ . Then, for every $M^{*}\in M(N_{G}(P))$ , we have $p\in\sigma(M^{*})$ .

Proof. Once $p\in\tau_{2}(M^{*})$ is assumed, $M^{*}$ is a $\varpi$-group by Lemma
H. The proof of Lemma 13.13 [BG] works. Q.E.D.
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\S 8. Subgroups of Type $\mathcal{P}$ and Counting Arguments Prime Ac-
tion

Warning. We will use the notation of [BG] with one major change.
Let $\kappa(M)$ be the set of primes $p\in\tau_{1}(M)\cup\tau_{3}(M)$ such that

$C_{M_{\sigma_{0}}}(P)\neq 1$ for some $P\in \mathcal{E}_{p}^{1}(M)$ .

This definition makes $\kappa(M)\underline{\subseteq}\varpi$ . Since we never use the set defined
to be $\kappa(M)$ in [BG], we use the same notation for a different meaning.
We divide the set $M$ into three parts $M_{\mathcal{F}}$ , $M_{T_{1}}$ , and $M_{T_{2}}$ just as in [BG].
However, the set $\kappa(M)$ is used in the sense defined above.

The notion of $\sigma$ -decomposition and of $\sigma$ -length of an element must
also be modified: we replace $\sigma(M)$ used in their definitions in [BG] by
$\sigma_{0}(M)$ . For example, we define

$M_{\sigma}(g)=\{M\in M|g\in M_{\sigma_{0}}\}$ .

However, we use the same notation as that of [BG]. Note that our def-
inition coincides with theirs if $g$ is a $\varpi$ element As in [BG], we have
$\ell_{\sigma}(g)=1$ for a $\varpi$ element $g\in G$ if and only if $M_{\sigma}(g)$ is not empty.

Lemma 8.1. Suppose that $M\in M\backslash M_{P_{1}}$ . Take any $p\in\pi(M)\backslash $

$\{\sigma(M), \kappa(M)\}$ , let $S\in Sy\ell_{p}(M)$ and let $A=\Omega_{1}(S)$ . Then, $|A|\leq p^{2}$ ,
$C_{M_{\sigma_{0}}}(A)=1$ , and $M_{\sigma_{0}}$ is nilpotent.

Proof. We have $\pi(M)\backslash \sigma(M)=\tau_{1}(M)\cup\tau_{2}(M)\cup\tau_{3}(M)$ . If $ p\in$

$\tau_{2}(M)$ , $M$ is a $\varpi$-group by Lemma H. Lemma 8.1 follows from (b), (d)
and (a) of Theorem 6.5.

If $p\in\tau_{1}(M)\cup\tau_{3}(M)$ , we have $r_{p}(M)\leq 1$ so $|A|=p$ . Since
$p\not\in\kappa(M)$ , $C_{M_{\sigma_{0}}}(A)=1$ and this implies that $M_{\sigma_{0}}$ is nilpotent by

Thompson’s Theorem 3.7 [BG]. Q.E.D.

Proposition 8.2. Suppose $M$ $\in M_{\mathfrak{R}}$ . Let $K$ be a Hall $\kappa(M)-$

subgroup of $M$ and defifine $K^{*}=C_{M_{\sigma}}(K)$ . Then, $K^{*}\underline{\subseteq}M_{\sigma_{0}}$ and the
following hold.

(a) The group $K$ acts in a prime manner on $M_{\sigma}$ , and acts regularly
on some abelian Hall $(\kappa(M)\cup\sigma_{0}(M))’$ subgroup $U$ of $M$ .

(b) For every $X\in\epsilon^{1}(K)$ ,
(1) $N_{M}(X)=N_{M}(K)=K\times K^{*}$ , and
(2) $X\underline{\subseteq}(M^{*})_{\sigma}$ for each $M^{*}\in M(N_{G}(X))$ . In particular,

we have $N_{G}(X)\not\leqq M$ .

(c) $K^{*}\neq 1$ and every $X\in\epsilon^{1}(K^{*})$ satisfifies $M(C_{G}(X))=\{M\}$ .
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(d) Every $g\in G\backslash M$ satisfifies $K^{*}\cap M^{g}=1$ and every $ g\in M\backslash (K\times$

$K^{*})$ satisfifies $K\cap K^{g}=1$ .

(e) For every prime $p\in\pi(K^{*})$ and every $S\in Sy\ell_{p}(M_{\sigma_{0}})$ ,

$M(S)=\{M\}$ and $S\not\leqq K^{*}$ .

(f) Every $\sigma_{0}(M)$ -subgroup $Y$ of $G$ satisfying $Y\cap K^{*}\neq 1$ lies in
$M_{\sigma_{O}}$ .

(g) If $M\in M_{\mathfrak{R}_{2}}$ , the $\sigma_{0}(M)=\beta(M)$ , $K$ has prime order, and
$M_{\sigma_{0}}$ is a nilpotent $TI$-subgroup of $G$ .

Proof. Although the proof of Proposition 14.2 [BG] is applicable,
we include some details.

We prove (a) and (b1). Take a complement $E$ of $M_{\sigma}$ that contains
$K$ . Suppose that

$\kappa(M)\cap\tau_{3}(M)\neq\emptyset$ .

Then, $E_{3}\neq 1$ and $E_{3}$ does not act regularly on $M_{\sigma_{O}}$ . By Corollary 7.11,
$M$ is a $\varpi-$group $E_{1}\neq 1$ , $E=E_{1}E_{3}$ , $E$ acts in a prime manner on $M_{\sigma}$ ,

and every $X\in\epsilon^{1}(E)$ is normal in $E$ . Since $E=E_{1}E_{3}$ acts in a prime
manner on $M_{\sigma}$ , we have $\kappa(M)=\pi(E)$ . Therefore, $K=E$ and $K$ acts in
a prime manner on $M_{\sigma}$ . In this case, $\pi(M)=\sigma(M)\cup\kappa(M)$ . So, $U=1$

satisfies (a). If $X\in\epsilon^{1}(K)$ , we have $X\triangleleft E$ . It follows from $M=M_{\sigma}E$

that
$N_{M}(X)=N_{M_{\sigma}}(X)E=C_{M_{\sigma}}(X)E$ .

Since $K$ acts in a prime manner on $M_{\sigma}$ , we have $C_{M_{\sigma}}(X)=C_{M_{\sigma}}(K)=$

$K^{*}$ . Thus, $N_{M}(X)=K\times K^{*}$ . Therefore, (a) and (b) hold in the case
$\kappa(M)\cap\tau_{3}(M)\neq\emptyset$ .

Suppose that $\kappa(M)\cap\tau_{3}(M)=\emptyset$ . Then, $\kappa(M)\underline{\subseteq}\tau_{1}(M)$ and $\varpi\cap$

$\tau_{1}(M)\neq\emptyset$ . Theorem 7.5 shows that $E_{1}$ acts in a prime manner on $M_{\sigma}$ .

Thus, $\kappa(M)=\tau_{1}(M)$ and we may choose $K=E_{1}$ . To prove (a), we need
to find $U$ . Suppose that $M$ is not a $\varpi$-group. Since $\tau_{1}(M)=\kappa(M)\underline{\subseteq}\varpi$ ,
$M$ is a group of type (2) in Lemma G. Then, we have

$\pi(M)\backslash \{\kappa(M), \sigma_{0}(M)\}=\pi(M)\cap\varpi’$ .

There is an $E_{1}$ -invariant complement $U$ of $M_{\alpha}$ in $M’$ . Since $U\cong M’/M_{\beta}$

is cyclic, $U$ satisfies (a).
Assume that $M$ is a $\varpi$-group. Then, $\sigma_{0}(M)=\sigma(M)$ and

$\pi(M)\backslash \{\kappa(M), \sigma_{0}(M)\}=\tau_{2}(M)\cup\tau_{3}(M)$ .

We will show that $U=E_{2}E_{3}$ satisfies (a). Since $K=E_{1}$ , $U$ is K-
invariant. Assume $E_{2}\neq 1$ . If $E_{1}$ does not act regularly on $E_{2}$ , some
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$P\in\epsilon^{1}(E_{1})$ satisfies $C_{A}(P)\neq 1$ for some $A\in \mathcal{E}^{2}(E_{2})$ . Lemma 7.12
yields $C_{M_{\sigma}}(P)=1$ contrary to the fact that $K=E_{1}$ acts in a prime
manner on $M_{\sigma}$ . Thus, $E_{1}$ acts regularly on $E_{2}$ . If $E_{1}$ does not act
regularly on $E_{3}$ , some $P\in\epsilon^{1}(E_{1})$ centralizes some $R\in\epsilon^{1}(E_{3})$ . Since
$M$ is assumed to be a $\varpi$-group, Theorem 7.4 yields that

$1\neq C_{M_{\sigma}}(P)\underline{\subseteq}C_{M_{\sigma}}(R)$ .

This would imply $\tau_{3}(M)\cap\kappa(M)\neq\emptyset$ in contradiction to the hypothesis
of this case. Thus, $E_{1}\neq 1$ acts regularly on $E_{2}E_{3}$ . It follows from
Theorem 3.7 [BG] that $E_{2}E_{3}$ is nilpotent. By Corollary 6.10 (a), $E_{2}E_{3}$

is abelian. This proves (a).
It follows from the structure of the group $M$ discussed in the proof

of (a) that every $X\in\epsilon^{1}(K)$ is normal in $K$ , $M$ is the semidirect product
of $M_{\sigma_{O}}$ and $UK$ , and $N_{UK}(X)=K$ . We have

$N_{M}(X)=N_{M_{\sigma_{0}}}(X)K=C_{M_{\sigma_{0}}}(X)K=C_{M_{\sigma_{O}}}(K)K=K^{*}\times K$ .

This proves (b1).
Lemma 7.13 yields the first part of (b2). We have $M\not\in M(N_{G}(X))$ ,

since $X\underline{\subseteq}E_{1}$ . This proves (b2).
The parts (c), (d), (e) and (f) are proved as in the proof of Propo-

sition 14.2 [BG]. For (f), recall that $M_{\sigma_{0}}$ is a normal Hall subgroup of
$M_{\sigma}$ . Hence, $M_{\sigma_{0}}$ contains all $\sigma_{0}(M)$ subgroup of $M_{\sigma}$ .

For the proof of (g), suppose that $U\neq 1$ . Then, (a) implies that
$KU$ is a Frobenius group with Frobenius kernel $U$ . Suppose that $M$ is
not a $\varpi$-group. Then, by Lemma $G$ , $U$ is a $\varpi’$ group so $M_{\sigma_{0}}U$ is a
Frobenius group with Frobenius kernel $M_{\sigma_{O}}$ . Hence, $C_{M_{\sigma}}(U)=1$ and
$M_{\sigma_{O}}$ is nilpotent. Thus, the nonidentity Frobenius group $KU$ acts on a
nilpotent group $M_{\sigma_{0}}$ and $K$ acts in a prime manner on $M_{\sigma_{0}}$ . It follows
from Theorem 3.10 [BG] that $K$ has prime order. By Lemma $G$ , we
have $M_{\beta}=M_{\sigma_{0}}$ . Lemma 6.17 shows that for every $g\in G\backslash M$ , the
$group^{J}M_{\sigma_{O}}\cap M^{g}$ is a $\beta(M)’$ group Since $M_{\sigma_{0}}=M_{\beta}$ , $M_{\sigma_{0}}\cap M^{g}$ is a
$\beta(M)$ -group. This proves that $M_{\sigma_{0}}\cap M^{g}=1$ for every $g\in G\backslash M$ . Thus,
$M_{\sigma_{0}}$ is a $TI$ subgroup of $G$ .

Suppose finally that $M$ is a $\varpi$-group In this case, we have $U=E_{2}E_{3}$ .

Lemma 8.1 shows that $C_{M_{\sigma}}(U)=1$ and $M_{\sigma}$ is nilpotent. Since $K$ acts
in a prime manner on $M_{\sigma}$ by (a), Lemma 3.10 [BG] yields that $K$ has
prime order. We have $U=[U, K]\underline{\subseteq}E’$ . By Lemma 6.19, $U$ centralizes a
Hall $\beta(M)’$ subgroup of $M_{\sigma}$ . Since $C_{M_{\sigma}}(U)=1$ , a Hall $\beta(M)’$ subgroup
equals 1. Therefore, $M_{\beta}=M_{\sigma}$ and $\beta(M)=\sigma(M)$ . Lemma 6.17 implies
that $M_{\sigma_{0}}\cap M^{g}=1$ for every $g\in G\backslash M$ . This completes the proof of
Proposition 8.2. Q.E.D.
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Corollary 8.3. Suppose $M\in M$ , $x\in M_{\sigma_{0}}^{Q}$ , and $x’$ is a noniden-
tity $\sigma(M)’$ -element of $C_{M}(x)$ . Then, either

(1) $\pi(\langle x’\rangle)\underline{\subseteq}\kappa(M)$ and $C_{G}(x)\underline{\subseteq}M$ , or
(2) $\pi(\langle x’\rangle)\underline{\subseteq}\tau_{2}(M)$ , $\ell_{\sigma}(x’)=1$ , and $M(C_{G}(x’))=\{M\}$ .

Theorem 8.4. Suppose that $x$ is a $\varpi$ -element of $G^{Q}$ such that
$M_{\sigma}(x)$ is not empty. Then, $C_{G}(x)$ has a normal Hall subgroup $R(x)$

that acts sharply transitively on $M_{\sigma}(x)$ by conjugation. Furthermore, if
$|M_{\sigma}(x)|>1$ , then $C_{G}(x)$ lies in a unique subgroup $N=N(x)\in M$ and

for every $M\in M_{\sigma}(x)$ ,

(a) $R(x)=C_{N_{\sigma}}(x)\neq 1$ ,
(b) $C_{G}(x)=C_{M}(x)R(x)$ ,
(c) $\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(N)\underline{\subseteq}\sigma_{0}(M)$ ,
(d) $\pi(M)\cap\sigma(N)\underline{\subseteq}\beta(N)$ ,
(e) $M\cap N$ is a complement of $N_{\sigma}$ in $N$ , and
(f) $N$ is a $\varpi$ -group in $M_{\mathcal{F}}\cup M\varphi_{2}$ .

Proof. The proof of Theorem 14.4 [BG] may be modified with some
changes to yield this theorem. We will present the details here. If
$|M_{\sigma}(x)|=1$ , we can let $R(x)=1$ and finish the proof. So, we will
assume $|M_{\sigma}(x)|>1$ in the remainder of proof.

Since $x$ is a $\varpi$-element with $M_{\sigma}(x)\neq\emptyset$ , we can take $M\in M_{\sigma}(x)$ ,
$q\in\pi(\langle x\rangle)$ , $X\in \mathcal{E}_{q}^{1}(\langle x\rangle)$ , and $N\in M(N_{G}(X))$ . Note that $M_{\sigma}(x)\underline{\subseteq}$

$M_{\sigma}(X)$ and
$C_{G}(x)\underline{\subseteq}N_{G}(\langle x\rangle)\underline{\subseteq}N_{G}(X)\underline{\subseteq}N$ .

We will show that $M_{\sigma}(X)$ consists of conjugates of $M$ and that
$C_{G}(X)$ acts transitively on $M_{\sigma}(X)$ by conjugation. Let $L\in M_{\sigma}(X)$ .

Then, $X\underline{\subseteq}M_{\sigma}\cap L_{\sigma}$ . Theorem 7.9 yields that $L$ is conjugate to $M$ .

Since $q\in\sigma(M)$ and $X$ is a $q$-group, Theorem 4.1 (b) yields that $C_{G}(X)$

acts transitively on $M_{\sigma}(X)$ . In particular, $C_{G}(X)\not\leqq M$ and $N\neq M$ .

Since $N\neq M$ , Proposition 6.15 (a) applies to $N$ and yields that $N$

is not conjugate to $M$ . Then, by Theorem 7.9, $\sigma(N)$ is disjoint from
$\sigma(M)$ . It follows that $q\not\in\sigma(N)$ . Proposition 6.15 (e) now yields that
$q\in\tau_{2}(N)$ and the conditions (d) and (e) of this theorem hold. Since
$q\in\tau_{2}(N)$ , $\tau_{2}(N)$ is not empty. Therefore, $N\not\in Jy[_{\varphi_{1}}$ and $N$ is a $\varpi$-group
by Lemma H. This proves (f).

We will prove that $R(x)$ acts sharply transitively on $M_{\sigma}(x)$ . We
have shown that if $L\in M_{\sigma}(x)$ , then $L=M^{u}$ with $u\in C_{G}(X)\underline{\subseteq}N$ .

Since $N=(M\cap N)N_{\sigma}$ by (e), we may choose $u\in N_{\sigma}$ . Then,

$(x^{-1}ux)^{-1}M(x^{-1}ux)=M^{ux}=L^{x}=L=M^{u}$ .
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However, if $M^{u}=M^{v}$ for $u$ , $v\in N_{\sigma}$ , then $uv^{-1}\in N_{G}(M)\cap N_{\sigma}$ . Since
$N_{G}(M)=M$ by Lemma $E$ , we have $uv^{-1}\in M\cap N_{\sigma}=1$ by (e). We
apply this twice. First, the displayed formula yields that if $L=M^{u}$

with $u\in N_{\sigma}$ , then $u\in R(x)$ . Thus, $R(x)$ acts transitively on $M_{\sigma}(x)$ .

Secondly, $M^{u}=M$ with $u\in R(x)$ implies $u=1$ . Thus, $R(x)$ is sharply
transitive. Since $|fv[_{\sigma}(x)|>1$ , we have (a). Since $R(x)\underline{\subseteq}C_{G}(x)$ and
$R(x)$ is transitive on $M_{\sigma}(x)$ , we have

$C_{G}(x)=(C_{G}(x)\cap N_{G}(M))R(x)=C_{M}(x)R(x)$ .

This proves (b).
We prove next $M(C_{G}(x))=\{N\}$ . Since $R(x)\neq 1$ , there is an

element $y\in N_{\sigma_{0}}^{\beta}$ such that $y\in C_{G}(x)$ . Apply Corollary 8.3 to $(N, y, x)$

in place of $(M, x, x’)$ . Since $x$ is a $\sigma(M)$ element it is a $\sigma(N)’$ element
Since $q\in\pi(\langle x\rangle)\cap\tau_{2}(N)$ , we have the second case of Corollary 8.3. Thus,
$\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(N)$ and $M(C_{G}(x))=\{N\}$ .

It remains to prove (c). We have just proved $\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(N)$ . Take
$p\in\tau_{2}(N)$ . By (e) and Corollary 6.6 (a), there is $A\in \mathcal{E}_{p}^{2}(M\cap N)$ such

that $A\triangleleft M\cap N$ . Then, $x\in N_{M_{\sigma}}(A)$ . Since $r_{p}(M)\geq 2$ , we have
$p\in\sigma(M)\cup\tau_{2}(M)$ . If $p\in\tau_{2}(M)$ , $N_{M_{\sigma}}(A)=C_{M_{\sigma}}(A)=1$ by Corollary
6.5 (d). This contradiction proves $p\in\sigma(M)$ . In fact, $p\in\sigma_{0}(M)$ because
$N$ is a $\varpi$-group by (f). Q.E.D.

We will use the notation $\overline{M}$ to mean

{ $xx’|x\in M_{\sigma o}^{\beta}$ and $x’\in R(x)$ }.

This is slightly different from the usage in [BG].

Lemma 8.5. The following hold.

(a) If $x$ and $y$ are distinct $\varpi$ -elements of $G^{\mathfrak{g}}$ of $\sigma$ -length one, then
$ xR(x)\cap yR(y)=\emptyset$ .

(b) If $M_{1}$ and $M_{2}$ are elements of $M$ not conjugate in $G$ , then $\overline{M}_{1}\cap$

$ M_{2}=\emptyset$ .

(c) If $M\in M$ , then $|G_{G}(\overline{M})|=(|M_{\sigma_{0}}|-1)|G:M|$ .

Proof (a) Suppose that $g=xx’$ with $\ell_{\sigma}(x)=1$ and $x’\in R(x)$ lies
in $yR(y)$ and $x\neq y$ . Write $g=yy’$ with $y’\in R(y)$ . Since $y$ is a $\sigma$-factor
of the element $g$ , we have $y=x’$ , so $x’\neq 1$ . Therefore, $|M_{\sigma}(x)|>1$ .

Take $M\in M(C_{G}(y))$ . Then, $y’=x\in M_{\sigma}$ and $M\in M_{\sigma}(x)$ . Take
$N\in M(C_{G}(x))$ . Then, $x’=y\in N_{\sigma}\cap M$ which is 1 by Theorem 8.4 (e).
This contradicts $y\neq 1$ .

The parts (b) and (c) follow as in the proof of Lemma 14.4 [BG].
Q.E.D.
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Lemma 8.6. Each nonidentity $\varpi$ -element $g$ satisfifies exactly one

of the following two conditions:

(1) $g=xx’$ with $\ell_{\sigma}(x)=1$ and $x’\in R(x)$ , or
(2) $g=yy’$ with $\ell_{\sigma}(y)=1$ and $y’$ is a nonidentity $\kappa(M)$ -element of

$C_{M}(y)$ for some $M\in M_{\sigma}(y)$ .

Proof. Suppose that both (1) and (2) hold for some $\varpi$-element $ g\neq$

$1$ . We will derive a contradiction. Take $N\in M(C_{G}(x))$ and $L\in M_{\sigma}(x)$ .

Since $y$ is a $\sigma$-factor of $g$ , we have $y=x$ or $y=x’$ . Suppose $y=x$ . We
may choose $L=M$ . Since $y=x$ , we have $x’=y’\neq 1$ . By Theorem 8.4,
$|M_{\sigma}(x)|=|R(x)|>1$ and. by Part (e),

$x’=y’\in N_{\sigma}\cap M=1$ .

This contradicts $y’\neq 1$ . Suppose next $y=x’$ . Then, we have $y’=x$ and
it is a $\kappa(M)$ -element and at the same time a $\tau_{2}(N)$ -element by Theorem
8.4 (c). Since $1\neq y=x’\in M_{\sigma}\cap N_{\sigma}$ , $N$ is conjugate to $M$ by Theorem

7.9. Therefore, we have $\tau_{2}(N)=\tau_{2}(M)$ Since $\kappa(M)\cap\tau_{2}(M)=\emptyset$ , we
have a contradiction $y’=1$ .

We will prove that either (1) or (2) holds for every $g$ . Suppose that
no decomposition of type (1) or (2) is possible and we will derive a
contradiction. We have $\ell_{\sigma}(g)>1$ since the choice of $x=g$ and $x’=1$

provides (1) if $\ell_{\sigma}(g)=1$ . Let $x$ be a $\sigma$-factor of $g$ with $\ell_{\sigma}(x)=1$ ,

and write $g=xx’$ . We prove a lemma: under the hypothesis of this
paragraph, no subgroup $M\in M_{\sigma}(x)$ contains $g$ .

Suppose $g\in M$ . Then, $x’\in M$ and $x’\neq 1$ because $\ell_{\sigma}(g)>1$ .

Since $x$ is a $\sigma$-factor of the element $g$ , $x’$ is a $\sigma(M)’$-element but not
a $\kappa(M)$ -element because $g=xx’$ does not satisfy (2). Therefore, we

must have the case (2) of Corollary 8.3. Thus, we have $\ell_{\sigma}(x’)=1$ and
$M(C_{G}(x’))=\{M\}$ . It follows that

$x\in M_{\sigma}\cap C_{G}(x’)=R(x’)$ .

This implies that $g=xx’$ is a decomposition of type (1) with $(x’, x)$ in
place of $(x, x’)$ . This is a contradiction and proves the lemma.

Let $x$ be a $\sigma$-factor of the element $g$ with $\ell_{\sigma}(x)=1$ and write
$g=xx’$ . Then, $x$ is a power of $g$ . Take $M\in M_{\sigma}(x)$ and $N\in M(C_{G}(x))$ .

Then, $g\in C_{G}(x)\underline{\subseteq}N$ . By the lemma, none of the $\sigma$-factor of $g$ of
$\sigma$-length one lies in $N_{\sigma}$ . It follows that $g$ is a $\sigma(N)’$-element of $N$ . We
have $x=x^{g}\in M\cap M^{g}$ and $g\not\in M$ (by the lemma). Thus, $|M_{\sigma}(x)|>1$

and, by Theorem 8.4 (e), $M\cap N$ is a complement of $N_{\sigma}$ in $N$ . Since $g$ is

a $\sigma(N)’$-element, $g\in(M\cap N)^{u}$ for some element $u\in N$ . Thus, $g\in M^{u}$ .

Since $x$ is a power of $g$ , we have $x\in M^{u}$ . However, $x$ is a $\sigma(M)$ -element.
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Since $\sigma(M)=\sigma(M^{u})$ , we have $x\in M_{\sigma}^{u}$ . This contradicts the Lemma.
Q.E.D.

Theorem 8.7. Suppose $M\in M_{J)}$ and $K$ is a Hall $\kappa(M)$ subgroup

of M. Let $K^{*}=C_{M_{\sigma}}(K)$ , $k=|K|$ , $k^{*}=|K^{*}|$ , $Z=K\times K^{*}$ , and
$\hat{Z}=Z\backslash (K\cup K^{*})$ . Then, for some other $M^{*}\in M_{\mathfrak{R}}$ that is not conjugate
to $M$ , we have

(a) $M(C_{G}(X))=\{M^{*}\}$ for every $X\in \mathcal{E}^{1}(K)$ ,
(b) $K^{*}$ is a Hall $\kappa(M^{*})$ -subgroup of $M^{*}$ and a Hall $\sigma_{0}(M)$ subgroup

of $M^{*}$ ,
(c) $K=C_{M_{\sigma}^{*}}(K^{*})$ and $\kappa(M)=\tau_{1}(M)$ ,

(d) $Z$ is cyclic and for every $ x\in K\#$ and $y\in(K^{*})^{\phi}$ ,

$M\cap M^{*}=Z=C_{M}(x)=C_{M}*(y)=C_{G}(xy)$ ,

(e) $\hat{Z}$ is a $TI$-subset of $G$ with $N_{G}(\hat{Z})=Z,\hat{Z}\cap M^{g}$ empty for all
$g\in G\backslash M$ , and

$|G_{G}(\hat{Z})|=(1-\frac{1}{k}-\frac{1}{k^{*}}+\frac{1}{kk^{*}})|G|>\frac{1}{2}|G|$ ,

(f) $M$ or $M^{*}$ lies in $M\varphi_{2}$ and, accordingly, $K$ or $K^{*}$ has prime
order,

(g) every $H\in M_{iP}$ is conjugate to $M$ or $M^{*}$ in $G$ , and
(h) $M’$ is a complement of $K$ in $M$ and $M’=M_{\sigma_{0}}U$ where $U$ is

the subgroup defifined in Proposition 8.2 (a).

Proof. Although the proof of Theorem 14.7 [BG] is adequate to
cover this theorem, we will paraphrase their proof of this miraculous
theorem. By the hypothesis, $M$ $\in M\varphi$ . Thus, $\kappa(M)$ is not empty and
$K\neq 1$ .

We begin the proof with the following lemma which is not really nec-
essary. If $X\in \mathcal{E}^{1}(K)$ , then $N_{G}(X)\in \mathfrak{U}$ . Suppose $H$ , $L\in M(N_{G}(X))$ .
By Proposition 8.2 (b2), $X\underline{\subseteq}H_{\sigma}\cap L_{\sigma}$ . It follows from Theorem 7.9
that $L=H^{g}$ for some $g\in G$ . Since $C_{G}(X)\underline{\subseteq}N_{G}(X)\underline{\subseteq}H$ , Theorem
4.1 (e) with $H$ in place of $M$ yields $L=H^{g}=H$ . This completes the
proof of the lemma.

Let $M_{1}$ , $M_{2}$ , $\ldots$ , $M_{n}$ be the distinct subgroups in $M$ that contain
$N_{G}(X)$ for some $X\in\epsilon^{1}(K)$ . For each $i$ , take $X_{i}\in \mathcal{E}^{1}(K)$ such that
$M_{i}\in M(N_{G}(X_{i}))$ . By Proposition 8.2 (b), we have $\pi(X_{i})\underline{\subseteq}\sigma_{0}(M_{i})$ and

$Z=K\times K^{*}\underline{\subseteq}N_{G}(X_{i})\underline{\subseteq}M_{i}$ .
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Since $\pi(X_{i})\underline{\subseteq}\pi(K)=\kappa(M)\underline{\subseteq}\sigma(M)’$ , none of $M_{i}$ is conjugate to $M$ in
$G$ . Therefore, by Theorem 7.9, $\sigma(M)$ is disjoint from $\sigma(M_{i})$ . Thus, $K^{*}$

is a $\sigma(M_{i})’$-subgroup of $M_{i}$ .

Take $X^{*}\in\epsilon^{1}(K^{*})$ . By Proposition 8.2 (c), $M(C_{G}(X^{*}))=\{M\}$ .

Apply Corollary 8.3 to $M_{i}\in M$ , $x\in X_{i}^{Q}$ , and $x’\in X^{*Q}$ . All the
assumptions of Corollary 8.3 are satisfied. Since $M(C_{G}(X^{*}))\neq\{M_{i}\}$ ,
we have the first case: $\pi(X^{*})\underline{\subseteq}\kappa(M_{i})$ . We can take $X^{*}$ arbitrary in
$\epsilon^{1}(K^{*})$ , so $\pi(K^{*})\underline{\subseteq}\kappa(M_{i})$ .

Let $K_{i}$ be a Hall $\kappa(M_{i})$ -subgroup of $M_{i}$ that contains $X^{*}$ , and define
$K_{i}^{*}=C_{M_{i\sigma}}(K_{i})$ . Recall that $K_{i}$ is a $Z$-group and that, by Proposition

8.2 (b1) for $M_{i}$ , every subgroup in $\mathcal{E}^{1}(K_{i})$ is normal in $K_{i}$ . We claim that
$K^{*}\underline{\subseteq}K_{i}$ . This is proved as follows. Since $K^{*}$ is a $\kappa(M_{i})$ -subgroup of a
solvable group $M_{i}$ , $K^{*}\underline{\subseteq}(K_{i})^{g}$ for some $g\in M_{i}$ . Then, $X^{*}$ and $X^{*g}$ are
normal subgroups of the same prime order in the $Z$-group $(K_{i})^{g}$ . Hence,
we have $X^{*}=(X^{*})^{g}$ . Thus, $g\in N_{M_{i}}(X^{*})=N_{M_{i}}(K_{i})$ by Proposition
8.2 (b1) for $M_{i}$ . This implies $K^{*}\underline{\subseteq}(K_{i})^{g}=K_{i}$ .

Since $X^{*}\underline{\subseteq}K^{*}$ and $K\underline{\subseteq}M_{i}$ , we have

$K\underline{\subseteq}C_{M_{i}}(X^{*})\underline{\subseteq}N_{M_{i}}(X^{*})=K_{i}\times K_{i}^{*}$ .

Therefore, $K\times K^{*}\underline{\subseteq}K_{i}\times K_{i}^{*}$ . Similarly, with $M_{i}$ , $K_{i}$ , $X^{*};$ $M$ , $K$ , and
$X_{i}$ in place of $M$ , $K$ , $X_{i}$ ; $M_{i)}K_{i}$ , and $X^{*}$ , we have $K_{i}\times K_{i}^{*}\underline{\subseteq}K\times K^{*}$ .
We need to check a few relations: $X^{*}\underline{\subseteq}K_{i}$ , $M\in M(N_{G}(X^{*}))$ and

$X_{i}\underline{\subseteq}K$ where $X_{i}\in\epsilon^{1}(K_{i}^{*})$ .

We check the last one. We have $X_{i}\underline{\subseteq}K\underline{\subseteq}K_{i}\times K_{i}^{*}$ , $\pi(X_{i})\underline{\subseteq}\sigma_{0}(M_{i})$ ,

and $K_{i}^{*}$ is a Hall $\sigma_{0}(M_{i})$ -subgroup of $K_{i}\times K_{i}^{*}$ . Therefore, $X_{i}\underline{\subseteq}\epsilon^{1}(K_{i}^{*})$ .

It follows that $K\times K^{*}=K_{i}\times K_{i}^{*}$ for each $i$ . Let $M_{0}=M$ , $K_{0}=K$ ,

and $K_{0}^{*}=K^{*}$ . Take $X_{0}^{*}\in\epsilon^{1}(K^{*})$ . Then, by Proposition 8.2 (c),
$M(C_{G}(X_{0}^{*}))=\{M_{0}\}$ . For each $X_{i}^{*}\in\epsilon^{1}(K_{i}^{*})$ we have $M(C_{G}(X_{i}^{*}))=$

$\{M_{i}\}$ . It follows that $K_{i}^{*}\cap K_{j}^{*}=1$ if $i\neq j$ . Otherwise, we would have

$\{M_{i}\}=M(C_{G}(X))=\{M_{j}\}$ for $X\in \mathcal{E}^{1}(K_{i}^{*}\cap K_{j}^{*})$ .

We claim that $Z=K_{0}^{*}\times K_{1}^{*}\times\cdots\times K_{n}^{*}$ . Let $Z_{0}$ be the subgroup
of $Z$ generated by the subgroups $K_{i}^{*}$ . For each $i$ , we have $Z=K_{i}\times K_{i}^{*}$

where $K_{i}^{*}$ is a $\sigma(M_{i})$-group and $K_{i}$ is a $\sigma(M_{i})’$-group. Therefore, $K_{i}^{*}$ is a
normal Hall subgroup of $Z$ . If $i\neq j$ , we have shown $K_{i}^{*}\cap K_{j}^{*}=1(?. \neq j)$ .

Then, $K_{i}^{*}$ and $K_{j}^{*}$ with $i\neq j$ have relatively prime orders and centralize

each other. It follows that

$Z_{0}=K_{0}^{*}\times K_{1}^{*}\times\cdots\times K_{n}^{*}$ .

We will show that $Z=Z_{0}$ . First, we prove that every $X\in \mathcal{E}^{1}(Z)$ is
contained in some $K_{i}^{*}$ . Since $Z=K_{0}\times K_{0}^{*}$ and $(|K_{0}|, |K_{0}^{*}|)=1$ , either
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$X\underline{\subseteq}K_{0}^{*}$ or $X\underline{\subseteq}K_{0}$ . Suppose $X\underline{\subseteq}K_{0}=K$ . It follows from the
definition of the subgroups $M_{i}$ that

$M(N_{G}(X))=\{M_{i}\}$

for some $i$ (cf. the lemma at the beginning of the proof). By Proposition
8.2 (b1) for $M_{i}$ , we have $X\underline{\subseteq}(M_{i})_{\sigma}$ . Since $K_{i}^{*}$ is the normal Hall $\sigma(M_{i})-$

subgroup of $Z$ , we have $X\underline{\subseteq}K_{i}^{*}$ . Take any element $x\in Z$ of order $p^{e}$

where $p$ is a prime. Let $X\in \mathcal{E}^{1}(\langle x\rangle)$ . Then, $X\underline{\subseteq}K_{i}^{*}$ for some $i$ . Hence,
$p\in\pi(K_{i}^{*})$ and $\langle x\rangle$ is a $\sigma(M_{i})$-subgroup. This implies $x\in K_{i}^{*}$ as before.

Finally, let $y$ be an arbitrary element of $Z$ of order $n$ . If $n$ $=\prod p_{i}^{e_{i}}$ is
the canonical decomposition of the integer $n$ into the product of powers
of distinct primes $p_{1}$ , $\ldots,p_{m}$ , we have $y=x_{1}\ldots x_{m}$ where $x_{i}$ is a power
of the element $y$ and the order of $x_{i}$ is $p_{i}^{e_{\dot{t}}}$ . Then, $x_{i}\in Z$ so each $x_{i}$ lies
in $Z_{0}$ and we have $Z=Z_{0}$ .

The subgroups $K_{i}^{*}$ are distinct and each is a normal Hall subgroup
of $Z$ . It follows that the groups $M_{i}$ are pairwise not conjugate in $G$ .

By Theorem 7.9, $\sigma(M_{i})$ is disjoint from $\sigma(M_{j})$ if $j\neq i$ . Since $K_{j}^{*}$ is

a $\sigma(M_{j})$ -group, $K_{j}^{*}$ is a $\sigma(M_{i})’$-group for $j\neq i$ . Therefore, we have
$K_{j}^{*}\underline{\subseteq}K_{i}$ for $j\neq i$ , so if we let $W=\prod_{j\neq i}K_{j}^{*}$ , $W\underline{\subseteq}K_{i}$ . The groups $K_{i}$

and $W$ are complements of $K_{i}^{*}$ in $Z$ . This implies $K_{i}=W$ .

For every element $z\in Z$ , the factorization $z=\prod z_{i}$ with $z_{i}\in K_{i}^{*}$ is
the $\sigma$ decomposition of $z$ .

Define $T=Z\backslash \{K_{0}^{*}, K_{1}^{*}, \ldots, K_{n}^{*}\}$ . Note that $z\in Z$ is in $T$ if and

only if $z=yy’$ with $y\in K_{i}^{*\#}$ and $y’\in K_{i}^{\beta}$ for some index $i$ . In this
case, $y’$ is a nonidentity $\kappa(M_{i})$ element of $C_{M_{i}}(y)$ with $\ell_{\sigma}(y)=1$ . Thus,

we have the case (2) of Lemma 8.6. It follows that $ T\cap H=\emptyset$ for any

$H\in M$ . Thus, $G_{G}(T)\cap G_{G}(\overline{M_{i}})=\emptyset$ for each $i$ . Since $M_{i}$ are not
conjugate to each other, Lemma 8.5 yields

$G_{G}(\overline{M_{i}})\cap G_{G}(\overline{M}_{j})=\emptyset$ if $i\neq j$ .

We will prove that $T$ is a $TI$-subset of $G$ with $N_{G}(T)=Z$ . Suppose

that $t\in T$ , $g\in G$ , and $t^{g}\in Z$ . Write $t=yy’=y’y$ with $y\in K_{i}^{*\#}$

and $y’\in K_{i}^{Q}$ for some $i$ . Then, $y^{g}$ and $(y’)^{g}$ are powers of $t^{g}$ . Hence,
$y^{g}\in K_{i}^{*}\cap(M_{i})^{g}$ . By Proposition 8.2 (d) for $M_{i}$ , we have $g\in M_{i}$ . Then,
$y^{\prime g}\in K_{i}\cap(K_{i})^{g}$ . The same proposition yields that $g\in Z$ . This proves
that $T$ is a $TI$-subset of $G$ with $N_{G}(T)=Z$ .

We count the number of elements in $G_{G}(T)$ . With $z=|Z|$ , $k_{i}=|K_{i}|$ ,
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and $k_{i}^{*}=|K_{i}^{*}|$
) we have

$|G_{G}(T)|=|T||G:N_{G}(T)|$

$=(z-1-\sum_{\dot{x}}^{n}(k_{i}^{*}-1))|G:Z|$

$=(1+\frac{n}{z}-\sum_{i=0}^{n}\frac{1}{k_{i}})|G|$ .

Suppose that all the subgroups $M_{i}$ lie in $\varphi_{1}$ . Then $M_{i}=M_{i\sigma_{0}}K_{i}$ so
$|M_{i}|=|M_{i\sigma_{0}}||K_{i}|$ . By Lemma 8.5,

$|G_{G}(\overline{M_{i}})|=(|M_{i\sigma_{0}}|-1)|G:M_{i}|$

$=(\frac{1}{k_{i}}-\frac{1}{|M_{i}|})|G|\geq(\frac{1}{k_{i}}-\frac{1}{2z})|G|$ .

The last inequality comes from $z_{\neq}\subseteq M_{i}$ . Since the sets $G_{G}(T)$ , $G_{G}(\overline{M}_{0})$ ,

$\ldots$ , $G_{G}(\overline{M}_{n})$ are pairwise disjoint,

$|G^{\Downarrow}|\geq|G_{G}(T)|+\sum_{i=0}^{n}|G_{G}(\overline{M_{i}})|$

$\geq((1+\frac{n}{z}-\sum_{i=0}^{n}\frac{1}{k_{i}})+\sum_{i=0}^{n}(\frac{1}{k_{i}}-\frac{1}{2z}))|G|$

$>|G|$

and this contradiction proves that some $M_{i}$ is of type $9_{2}^{)}$ .

If $M_{i}$ is of type $\varphi_{2}$ , Proposition 8.2 (g) yields that $K_{i}$ is of prime
order and $M_{i\sigma_{0}}$ is nilpotent. Therefore, $K_{i}=K_{j}^{*}$ for $j\neq i$ and we have
$n$ $=1$ .

Since $K_{i}^{*}\underline{\subseteq}M_{i\sigma_{O}}$ , $K_{i}^{*}$ is nilpotent. Furthermore,

$Z=K_{i}\times K_{i}^{*}=K_{j}\times K_{j}^{*}$ ,

$K_{j}=K_{i}^{*}$ , $K_{i}=K_{j}^{*}$ and $r(K_{i}^{*})=1$ . It follows that the nilpotent group
$K_{i}$ is cyclic. Since $K_{i}$ is of prime order, $Z=K_{i}\times K_{i}^{*}$ is cyclic. This
proves the first statement of (d).

Since $n$ $=1$ , we have $T$ $=\hat{Z}$ . Suppose $g\in G\backslash M$ and $ T\cap M^{g}\neq\emptyset$ .

Take $uv\in T\cap M^{g}$ with $u\in K^{\beta}$ and $v\in K^{*\#}$ . Then, any power of $uv$

lies in $M^{g}$ so in particular, $v\in K^{*\#}\cap M^{g}$ . This contradicts Proposition
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8.2 (d). We have

$|G_{G}(T)|=(1-\frac{1}{k}-\frac{1}{k^{*}}+\frac{1}{kk^{*}})|G|$

$=(1-\frac{1}{k})(1-\frac{1}{k^{*}})|G|\geq\frac{8}{15}|G|>\frac{1}{2}|G|$

because $k$ and $k^{*}$ are odd integers $\geq 3$ and $k\neq k^{*}$ . This proves (e).
With $M^{*}=M_{1}$ , we have proved (f). We will prove (g). Suppose

that $H\in M_{J)}$ . Let $L$ be a Hall $\kappa(H)$ -subgroup of $H$ , $L^{*}=C_{H_{\sigma}}(L)$ , and
$S=L\times L^{*}\backslash \{L, L^{*}\}$ . We have $|G_{G}(T)|>|G|/2$ and $|G_{G}(S)|>|G|/2$ .

It follows that $G_{G}(T)\cap G_{G}(S)\neq\emptyset$ .

Replacing $M$ and $H$ by conjugates, we may assume that $T\cap S$ is
not empty. Then, $L^{*}\cap K_{i}^{*}\neq 1$ for some $i$ . If $Y\in\epsilon^{1}(L^{*}\cap K_{i}^{*})$ then
Proposition 8.2 (c) yields $\{H\}=M(C_{G}(Y))=\{M_{i}\}$ . This proves (g).

We will prove $(a)i$ If $X\in\epsilon^{1}(K)$ , then $X\in\epsilon^{1}(K_{1}^{*})$ because $K_{1}^{*}=$

$K$ . Proposition 8.2 (c) yields $M(C_{G}(X))=\{M_{1}\}=\{M^{*}\}$ .

Since $K^{*}=K_{1}$ , $K^{*}$ is a Hall $\kappa(M^{*})$ subgroup of $M^{*}$ . This is the
first statement of (b). Clearly, $K^{*}$ is a $\sigma_{0}(M)$ subgroup of $M^{*}$ . Let $H$

be a Hall $\sigma_{0}(M)$ -subgroup of $M^{*}$ that contains $K^{*}$ . The subgroup $H$ is
a $\sigma_{0}(M)$ -subgroup such that $H\cap K^{*}\neq 1$ . By Proposition 8.2 (f), we
have $H\underline{\subseteq}M_{\sigma_{0}}$ . Hence, $[H, K]\underline{\subseteq}[M_{\sigma_{0}}, K]\underline{\subseteq}M_{\sigma_{0}}$ . On the other hand,
$H\underline{\subseteq}M^{*}$ and $K=K_{1}^{*}\underline{\subseteq}(M^{*})_{\sigma}$ . It follows that

$[H, K]\underline{\subseteq}[M^{*}, (M^{*})_{\sigma}]\underline{\subseteq}(M^{*})_{\sigma}$ ,

and $[H, K]\underline{\subseteq}M_{\sigma_{0}}\cap(M^{*})_{\sigma}$ . But, $M$ is not conjugate to $M^{*}$ , so by
Theorem 7.9, $[H, K]=1$ . Therefore, $H\underline{\subseteq}C_{M_{\sigma}}(K)=K^{*}$ . This proves
$H=K^{*}$ . Thus, (b) holds.

To prove (c) and (h), let $U$ be the subgroup defined in Proposi-
tion 8.2 (a). Since $K$ acts regularly on $U$ , we have $U=[U, K]\underline{\subseteq}M’$ .

Since $M_{\sigma_{O}}\underline{\subseteq}M’$ , $M_{\sigma_{O}}U\underline{\subseteq}M’$ . On the other hand, $M_{\sigma_{O}}U$ is a normal
subgroup of $M$ with $M/M_{\sigma_{0}}\cong K$ . Since $K$ is cyclic by the first part
of (d) which we have proved, $M_{\sigma_{O}}U$ contains $M’$ . Therefore, we have
$M_{\sigma_{0}}U=M’$ and $K$ is a complement of $M’$ in $M$ . This proves (h).

Moreover, $K$ is a cyclic Hall subgroup of $M$ such that $\pi(K)\cap$

$\pi(M’)=\emptyset$ . By defintion, we have

$\kappa(K)=\pi(K)=\tau_{1}(M)$ .

Since $K=K_{1}^{*}$ and $K^{*}=K_{1}$ , we have $K=C_{M-\sigma^{*}}(K^{*})$ . This proves
(c).

It remains to prove the second part of (d). By (b), $K^{*}$ is a Hall
$\sigma_{0}(M)$ subgroup of $M^{*}$ . Therefore, $K^{*}=M_{\sigma_{0}}\cap M^{*}$ . It follows that
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$K^{*}=M_{\sigma_{0}}\cap M^{*}\triangleleft M\cap M^{*}$ and, by Proposition 8.2 (b1),

$M\cap M^{*}\underline{\subseteq}N_{M^{*}}(K^{*})=K\times K^{*}$ .

Since $K\times K^{*}\underline{\subseteq}M\cap M^{*}$ , we have $M\cap M^{*}=K\times K^{*}=Z$ .

If $x\in K^{Q}$ and $y\in K^{*\#}$ , (a) yields $C_{G}(x)\underline{\subseteq}M^{*}$ so $C_{M}(x)\underline{\subseteq}$

$M\cap M^{*}=Z$ . Since $Z$ is cyclic by the first part of (d), we have

$C_{M}(x)=Z$ .

Similarly, $C_{M^{*}}(y)=Z$ . Moreover, $C_{G}(xy)=C_{G}(x)\cap C_{G}(y)\underline{\subseteq}M\cap M^{*}$ .

This implies $C_{G}(xy)=Z$ and completes the proof of (d). Q.E.D.

Remark. From now on, we reserve the notation $M^{*}$ or $K^{*}$ to denote
the subgroups given in Theorem 8.7 for the subgroup $M$ in $M_{T}$ .

Corollary 8.8. The subgroups in $M_{J_{1}^{)}}$ , if any, are all conjugate
in $G$ and, if $M_{T}$ is not empty, then $M_{P}$ contains exactly two conjugacy
classes of subgroups.

Corollary 8.9. Choose a system of representatives $M_{1}$ , $M_{2}$ , $\ldots$ ,
$M_{n}\in M$ from each conjugacy class of subgroups of M.

(a) If $M_{T}$ is empty, then the set of $\varpi$ -elements of $G^{Q}$ is the disjoint

$uni$on of the sets $G_{G}(\overline{M_{i}})$ for $i=1,2$ , $\ldots$ , $n$ .

(b) If My is not empty, the set of $\varpi$ -elements of $G^{\mathfrak{p}}$ is the disjoint

union of $G_{G}(\hat{Z})$ and the sets $G_{G}(\overline{M}_{i})$ for $i=1,2$ , $\ldots$ , $n$ with $\hat{Z}$

as in Theorem 8.7.

Corollary 8.10. For every $\varpi$ -element $g\in G$ we have $\ell_{\sigma}(g)\leq 2$ .

Lemma 8.11. Suppose that $M\in M_{\mathcal{F}}$ , $E$ is a complement of $M_{\sigma}$

in $M$ , $q\in\pi(E)$ , and $Q\in \mathcal{E}_{q}^{1}(E)$ . Assume that $Q\not\leqq F(E)$ . Then, $M$

is a $\varpi$ -group with $\tau_{2}(M)\neq\emptyset$ . Take $p\in\tau_{2}(M)$ , $A\in \mathcal{E}_{p}^{2}(E)$ and $ H\in$

$M(N_{G}(A))$ . Then, $A_{0}=[E, Q]=C_{A}(M_{\sigma})\in \mathcal{E}_{p}^{1}(A)andE=A_{0}C_{E}(Q)$ .

Moreover, either

(1) $q\in\tau_{2}(H)$ and $M(C_{G}(Q))=\{H\}$ , or
(2) $q\in\kappa(H)$ and $H\in M_{iP_{1}}$ .

Proof. Suppose $\tau_{2}(M)=\emptyset$ . Then, $M$ is a Frobenius group and $E$

is a Frobenius complement. From the structure of Frobenius comple-
ment, we get $Q\underline{\subseteq}F(E)$ . This contradicts the assumption $Q\not\leqq F(E)$ .
Therefore, $\tau_{2}(M)\neq\emptyset$ and, by Lemma $H$ , $M$ is a $\varpi$-group.
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Let $p\in\tau_{2}(M)$ and take $A\in \mathcal{E}_{p}^{2}(E)$ . By Corollary 6.6 (a), we have
$A\triangleleft E$ and $\mathcal{E}_{p}^{1}(E)=\mathcal{E}_{p}^{1}(A)$ . Since $Q\not\leqq F(E)$ , we have $q\not\in\tau_{2}(M)$ .

By Lemma 6.1, $E_{3}$ is a cyclic normal Hall $\tau_{3}(M)$ -subgroup of $E$ . Thus,
$q\not\in\tau_{3}(M)$ . Therefore, we have $q\in\tau_{1}(M)$ .

Let $S$ be a Sylow $p$-subgroup of $G$ that contains $A$ . Suppose that
$S$ is abelian. Since $q\in\tau_{1}(M)$ and $M$ is a Frobenius group, we can
apply Lemma 6.8 (e) to conclude that $Q$ lies in $Z(E)\underline{\subseteq}F(E)$ . This
contradiction proves that $S$ is nonabalian.

By Theorem 6.7 (b), $A_{0}=C_{A}(M_{\sigma})$ has order $p$ and satisfies $F(M)=$
$M_{\sigma}\times A_{0}$ . Let $K=[E, Q]$ . Then, $K\underline{\subseteq}E’$ and $E’$ is abelian by Corollary
6.10 (b). It follows that $K$ is an abelian $q’$-group. Therefore, because
$KQ\triangleleft E$ , the Frattini argument yields $E=KN_{E}(Q)$ . Since $[Q, N_{E}(Q)]$

is a $q’$-subgroup of $Q$ , we have $N_{E}(Q)=C_{E}(Q)$ and $E=KC_{E}(Q)$ . This
implies $K=[E, Q]=[K, Q]$ . Now, Proposition 4.11 (d) with $q$ and $Q$

in place of $p$ and $P$ yields that $[K, Q]=K$ is a cyclic normal subgroup
of $M$ that centralizes $M_{\sigma i}$ It follows that $K\underline{\subseteq}F(M)\cap E=A_{0}$ . We
have $K\neq 1$ because $Q\not\leqq Z(E)$ . Therefore, we have $K=A_{0}$ .

Take $H\in M(N_{G}(A))$ . Since $A=[A, Q]\times C_{A}(Q)$ and $[A, Q]=A_{0}$ ,

we have $C_{A}(Q)\in\epsilon^{1}(A)$ . Lemma 6.11 yields that $p\in\sigma_{0}(H)\backslash \beta(H)$ and
$q\in\tau_{1}(H)\cup\tau_{2}(H)$ . Recall that $p\in\tau_{2}(M)$ and $ p\in\varpi$ .

Suppose $q\in\tau_{2}(H)$ . Since $C_{A}(Q)\neq 1$ and $A\underline{\subseteq}H_{\sigma_{0}}$ , Corollary
6.10 (e) for $H$ and $Q$ in place of $M$ and $\langle x\rangle$ yields $M(C_{G}(Q))=\{H\}$ .

This is the case (1).

If $q\in\tau_{1}(H)$ , $C_{A}(Q)\neq 1$ and $A\underline{\subseteq}H_{\sigma_{0}}$ imply $q\in\kappa(H)$ . Since
$q\in\sigma_{0}(H)$ , we have $\sigma_{0}(H)\neq\beta(H)$ . Proposition 8.2 (g) for $H$ yields
that $H\in M\varphi_{1}$ . Thus, we have the case (2). Q.E.D.

Corollary 8.12. Suppose $M\in \mathfrak{m}_{\varphi_{2}}$ . Let $K$ , $M^{*}$ , and $K^{*}$ be as
in Theorem 8.7 and $U$ as in Proposition 8.2 (a). Suppose $r\in\pi(U)$ and
$R\in Sy\ell_{r}(U)$ .

(a) If $M$ is not a $\varpi$ -group, there is no $H\in M(N_{G}(R))$ and $H\neq M$ .

(b) If $M$ is a $\varpi$ group, $M(N_{G}(R))$ is not empty. For any $ H\in$

$M(N_{G}(R))$ , $H$ is a $\varpi$ -group in My such that $U\underline{\subseteq}H_{\sigma}$ , $ M\cap$

$H=UK$ , $N_{H}(U)\not\leqq M$ , $K\underline{\subseteq}F(H\cap M^{*})$ , and $H\cap M^{*}$ is $a$

complement of $H_{\sigma}$ in $H$ .

Proof. Suppose that $N\in M_{P_{2}}$ . Then, $U\neq 1$ and there exists
$r\in\pi(U)$ . Let $H\in M(N_{G}(R))$ and $H\neq M$ . We will prove that $H$ is
not conjugate to $M$ or $M^{*}$ .

Suppose that $H=M^{g}$ for some $g\in G$ . Then, $R\in Sy\ell_{r}(H)$ . Since
$N_{G}(R)\underline{\subseteq}H$ , we have $r\in\sigma(H)$ . Since $C_{G}(R)\underline{\subseteq}N_{G}(R)\underline{\subseteq}H$ , Theorem
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4.1 (e) with $R$ and $H$ in place of $X$ and $M$ yields $H=M^{g}=M$ . Thus,
$H$ is not conjugate to $M$ in $G$ .

Suppose $H=(M^{*})^{g}$ for some $g\in G$ . Then, $K\underline{\subseteq}(M^{*})^{g}=H$ .

Proposition 8.2 (d) with $M$ and $K^{*}$ replaced by $M^{*}$ and $K$ (cf. The-
orem 8.7 (b) and (c) $)$ yields $g\in M^{*}$ . Thus, $H=(M^{*})^{g}=M^{*}$ . The
nonabelian group $KU$ is contained in $M\cap H$ . However, $H=M^{*}$ so
$M\cap H=M\cap M^{*}$ that is cyclic by Theorem 8.7 (d). Hence, $H$ is not
conjugate to $M^{*}$ either.

To prove (a), suppose that there is a subgroup $H\neq M$ such that

$H\in M(N_{G}(R))$ .

Then, $H$ is not conjugate to $M$ or $M^{*}$ . By Theorem 8.7 (g), we have
$H\in M_{\mathcal{F}}$ . By assumption, $M$ is not a $\varpi$-group. Hence, by Lemma $G$ ,
$U$ is a $\varpi’$ -group. It follows that $H$ is not a $\varpi$-group. Lemma $G$ yields
that $H$ is a Frobenius group with Frobenius kernel that is a $\varpi$-group.
In particular, $H$ is $\varpi$-closed. However, $UK\underline{\subseteq}H$ and the subgroup $UK$

is not $\varpi$-closed. This contradiction proves (a).
To prove (b), take $H\in M(N_{G}(R))$ . Since $M$ is a $\varpi$-group, we have

$r\not\in\sigma(M)$ so $N_{G}(R)\not\leqq M$ . It follows that $H\neq M$ . The first part of the

proof shows that $H$ is not conjugate to $M$ or $M^{*}$ . By Theorem 8.7 (g),
we have $H\in M_{\mathcal{F}}$ .

Since $M\in M_{T_{2}}$ , we have $U\neq 1$ . Proposition 8.2 (g) implies that
$K$ has prime order, say $q$ . Note that $ q\in\varpi$ because $M$ is a $\varpi$-group.
We will prove that $H$ is a $\varpi$-group. If $H$ is not a $\varpi$-group, Lemma $G$

implies that $H$ is a Frobenius group and the Frobenius kernel of $H$ is
a Hall $\varpi$-subgroup. Since $UK$ is a $\varpi$ subgroup of $H$ , $UK$ is contained
in the Frobenius kernel of $H$ . Since $UK$ is not nilpotent, we have a
contradiction. Thus, $H$ is a $\varpi$-group.

Since $H$ is not conjugate to $M^{*}$ , Theorem 7.9 implies that $\sigma(M^{*})$

is disjoint from $\sigma(H)$ . By Theorem 8.7 (c), we have $q=|K|\in\sigma(M^{*})$ .

Hence, $q\not\in\sigma(H)$ . It follows that $K$ lies in some complement $D$ of $H_{\sigma}$

in $H$ . We will prove that $K\underline{\subseteq}F(D)$ .

Suppose $K\not\leqq F(D)$ . By Lemma 8.11 with (H) $D$ , $K)$ in place of
$(M, E, Q)$ , there is a subgroup $L\in M$ such that either $q\in\tau_{2}(L)$ and
$M(C_{G}(K))=\{L\}$ , or $q\in\kappa(L)$ and $L\in M_{T_{1}}$ . If $L\in M_{T_{1}}$ , then $L$

must be conjugate to $M$ or $M^{*}$ by Theorem 8.7 (g). Note that $L$ is
not conjugate to $M^{*}$ because $q\in\sigma(M^{*})$ . Hence, $L$ is conjugate to $M$ .

This contradicts the assumption that $M\in M_{T_{2}}$ . Therefore, we have
$M(C_{G}(K))=\{L\}$ . However, Theorem 8.7 (a) yields $C_{G}(K)\underline{\subseteq}M^{*}$ .

This is a contradiction as $M^{*}\neq L$ . Thus, we have $K\underline{\subseteq}F(D)$ .

It follows that $K$ is subnormal in $D$ . We claim that this implies
$D\underline{\subseteq}M^{*}$ . We will prove that if $K\underline{\subseteq}L\underline{\subseteq}M^{*}$ , then $N_{G}(L)\underline{\subseteq}M^{*}$ . If
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$g\in N_{G}(L)$ , then $K\underline{\subseteq}L=L^{g}\underline{\subseteq}(M^{*})^{g}$ . Then, Proposition 8.2 (d) with
$(M, K^{*})$ replaced by $(M^{*}, K)$ yields $g\in M^{*}$ . By obvious induction, if
$K$ is subnormal in $D$ , then $D\underline{\subseteq}M^{*}$ .

The subgroup $U$ is a $q’$-group satisfying $U=[U, K]$ . Since

$K\underline{\subseteq}O_{q}(D)H_{\sigma}\triangleleft H$ ,

we get
$U=[U, K]\underline{\subseteq}U\cap O_{q}(D)H_{\sigma}\underline{\subseteq}H_{\sigma}$ .

We will prove next $M\cap H=UK$ . Clearly, $UK\underline{\subseteq}M\cap H$ . Since
$UK$ is a complement of $M_{\sigma}$ in $M$ , we have $M\cap H=XUK$ where
$X=M_{\sigma}\cap H\triangleleft M\cap H$ . Then, since $U\underline{\subseteq}H_{\sigma}$ ,

$[X, U]\underline{\subseteq}M_{\sigma}\cap H_{\sigma}=1$

because $M$ is not conjugate to $H$ (by Theorem 7.9). On the other hand,
Lemma 8.1 with $M$ and $p\in\pi(U)$ yields that $C_{M_{\sigma}}(U)=1$ . Thus, $X=1$
and we have $M\cap H=UK$ .

By Lemma 8.1 with $H$ and $q$ in place of $M$ and $p$ yields that $H_{\sigma}$ is
nilpotent. Since $M\cap H=UK$ and $U\underline{\subseteq}H_{\sigma}$ , we have $M\cap H_{\sigma}=U$ . Thus,
if $U$ is a proper subgroup of $H_{\sigma}$ , then $N_{H}(U)\not\leqq M$ by a fundamental
property of nilpotent groups. On the other hand, if $U=H_{\sigma}$ , $N_{H}(U)=$

$H$ and certainly $N_{H}(U)\not\leqq M$ .

It remains to show that $D=H\cap M^{*}$ . We have seen that $D\underline{\subseteq}$

$H\cap M^{*}$ . Suppose that $H\cap M^{*}\neq D$ . Then, $H_{\sigma}\cap M^{*}\neq 1$ . Since
$K\underline{\subseteq}(M^{*})_{\sigma}$ ,

$[H_{\sigma}\cap M^{*}, K]\underline{\subseteq}H_{\sigma}\cap(M^{*})_{\sigma}=1$ .

It follows from the definition of the set My that $H\in M_{\mathcal{F}}$ implies $ q\in$

$\tau_{2}(H)$ . Then, Theorem 6.5 (e) for $H$ yields $H_{\sigma}\cap M^{*}=1$ contradicting
the earlier inequality. This proves $D=H\cap M^{*}$ . Q.E.D.

Lemma 8.13. Assume that $x$ is a $\varpi$ -element such that $|M_{\sigma}(x)|>$

$1$ . Let $N=N(x)$ be as in Theorem 8.4 and $M\in M_{\sigma}(x)$ .

(a) If $\sigma(N)\cap\pi(M)\neq\emptyset$ , then $M\in M_{\mathcal{F}}$ and $\tau_{2}(M)=\emptyset$ . In this
case, $M$ is a Frobenius group with Frobenius kernel $M_{\sigma_{0}}$ .

(b) If $y\in(M_{\sigma_{0}})^{\Downarrow}and$ $C_{G}(y)\not\leqq M$ , then $|M_{\sigma}(y)|>1$ and $N(y)$ is

defifined. If $N(y)^{g}=N$ for some $g\in G$ , then $N(y)^{m}=N$ for
some $m\in M$ .

Proof, (a) By Theorem 8.4 (f), $N$ is a $\varpi$ group in $M_{\mathcal{F}}\cup M_{P_{2}}$ .
Take $q\in\sigma(N)\cap\pi(M)$ , $Q\in \mathcal{E}_{q}^{1}(M)$ , and $H\in M(N_{G}(Q))$ . Since $\sigma(M)$
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is disjoint from $\sigma(N)$ , $q\not\in\sigma(M)$ so $Q$ lies in some complement $E$ of $M_{\sigma}$

in $M$ . By Theorem 8.4 (d),

$q\in\sigma(N)\cap\pi(M)\underline{\subseteq}\beta(N)\underline{\subseteq}\beta(G)$ .

Therefore, $N$ contains a Sylow $q$-subgroup of $G$ . By Sylow’s Theorem,
$Q\underline{\subseteq}N^{g}$ for some $g\in G$ . Corollary 6.14 with $N^{g}$ , $g$ , and $Q$ in place
of $M$ , $p$ , and $X$ yields $M(C_{G}(Q))=\{N^{g}\}$ . Note that $q\in\beta(N^{g})$ . It
follows that $H=N^{g}$ . By Lemma 6.1 (g) and Theorem 8.4 (c),

$\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(N)\underline{\subseteq}\sigma_{0}(M)\backslash \beta(M)$ .

In particular, $\sigma_{0}(M)\neq\beta(M)$ . Hence, Proposition 8.2 (g) yields $ M\not\in$

$M_{P_{2}}$ . Suppose that $M\in M_{P_{1}}$ . Then, $\pi(M)=\sigma(M)\cup\kappa(M)$ . Since
$q\not\in\sigma(M)$ , we have $q\in\kappa(M)$ . There is a subgroup $M^{*}\in M$ with
properties stated in Theorem 8.7. We may take a Hall $\kappa(M)$ -subgroup
of $M$ that contains $Q$ . Define $Q^{*}=C_{M_{\sigma}}(Q)$ . Then, $Q^{*}\underline{\subseteq}M_{\sigma_{0}}$ and by
Proposition 8.2 (b1) and Theorem 8.7 (b), $Q^{*}$ is a Hall $\sigma_{0}(M)$ -subgroup
and a Hall $\kappa(M^{*})$ -subgroup of $M^{*}$ . It follows that $M_{\sigma_{0}}\cap M^{*}=Q^{*}and$

$\sigma_{0}(M)\cap\pi(M^{*})=\kappa(M^{*})$ . On the other hand, Theorem 8.7 (a) yields

$M(C_{G}(Q))=\{M^{*}\}$ .

Therefore, $M^{*}=N^{g}$ and $\pi(M^{*})=\pi(N)$ . Since $x\in M_{\sigma_{0}}\cap N$ ,

$\pi(\langle x\rangle)\underline{\subseteq}\sigma_{0}(M)\cap\pi(N)$ .

By Theorem 8.4 (c), $\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(N)\not\leqq\kappa(N)$ . Since $M^{*}=N^{g}$ , we have
$\kappa(N)=\kappa(M^{*})$ and $\sigma_{0}(M)\cap\pi(N)\not\leqq\kappa(M^{*})$ . This contradiction proves
that $M\not\in M_{J)}$ . Thus, $M\in M_{\mathcal{F}}$ .

Suppose that $\tau_{2}(M)$ is not empty. Take any $p\in\tau_{2}(M)$ . By Lemma
6.1 (g), $p\not\in\beta(G)$ . Theorem 8.4 yields

$\pi(M)\cap\sigma(N)\underline{\subseteq}\beta(N)$ and $\tau_{2}(N)\underline{\subseteq}\sigma_{0}(M)$ .

Therefore, $p\not\in\sigma(N)\cup\tau_{2}(N)$ . It follows that $r_{p}(N)\leq 1$ . The rest of
proof is as in [BG]. Q.E.D.

\S 9. The Subgroup $M_{F}$

Let $M\in M$ . We will choose a Hall $\kappa(M)$ -subgroup $K$ and a comple-
ment $U$ of $KM_{\sigma_{O}}$ in $M$ that is $K$-invariant. If $M\in M_{ff}$ , the subgroup
$U$ is defined in Proposition 8.2 (a). If $M\in M_{\mathcal{F}}$ , $k=1$ and $U$ can be any
complement of $M_{\sigma o}$ in $M$ . We will choose one and fix it throughout the
discussion. In addition) $M_{F}$ denotes the largest normal nilpotent Hall
subgroup of $M$ . The notation is fixed in the rest of this paper. The
subgroup $UK$ is a complement of $M_{\sigma_{O}}$ in $M$ .
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Lemma 9.1. The following conditions hold.

(a) $UM_{\sigma_{O}}\triangleleft M=KUM_{\sigma_{0}}$ , $K$ is cyclic, $M_{\sigma_{0}}\underline{\subseteq}M’$ , and $M’/M_{\sigma_{O}}$

is abelian.
$(b\backslash )$ If $K\neq 1$ , then $M’=UM_{\sigma_{0}}$ and $U$ is abelian.
(c) If $X$ is a nonidentity subgroup of $U$ such that $C_{M_{\sigma_{0}}}(X)\neq 1$ ,

then

$J\vee S(C_{G}(X))=\{M\}$

and $X$ is a cyclic $\tau_{2}(M)$ subgroup.

(d) The group $\langle C_{U}(x)|x\in(M_{\sigma_{0}})^{Q}\rangle$ is abelian.
(e) If $U\neq 1$ , then $U$ contains a subgroup $U_{0}$ of the same exponent as

$U$ such that $U_{0}M_{\sigma_{0}}$ is a Frobenius group with Frobenius kernel
$M_{\sigma_{0}}$ .

Proof. Since $U$ is $K$-invariant, $UM_{\sigma_{0}}\triangleleft M$ . If $K\neq 1$ , Theorem
8.7 (d) implies that $K$ is cyclic. By Theorem 4.2 (c),

$M_{\alpha}\underline{\subseteq}M_{\sigma_{0}}\underline{\subseteq}M_{\sigma}\underline{\subseteq}M’$ .

Part (d) of the same theorem implies that $M’/M_{\sigma_{0}}$ is nilpotent. By the
definition of the sets $\tau_{i}(M)$ , Theorem 6.5 (b), and Lemma $F$ , the group
$M’/M_{\sigma_{0}}$ has abelian Sylow subgroups. Therefore, $M’/M_{\sigma_{0}}$ is abelian.
This proves (a).

If $K\neq 1_{)}$ we have $U=[U, K]\underline{\subseteq}M’$ . Then, $M’=UM_{\sigma_{0}}$ and
$U\cong M’/M_{\sigma_{0}}$ . Hence, $U$ is abelian and we have (b).

To prove (c), take nonidentity elements $x’$ and $x$ such that

$x’\in X$ and $x\in C_{M_{\sigma_{0}}}(X)^{\phi}$ .

Since $x’\in U^{\phi}$ , $\pi(\langle x’\rangle)\not\leqq\kappa(M)$ . By Corollary 8.3, we have $\pi(\langle x’\rangle)\underline{\subseteq}$

$\tau_{2}(M)$ and $M(C_{G}(x’))=\{M\}$ . It follows that $X$ is an abelian $\tau_{2}(M)-$

subgroup. If $r_{p}(X)>1$ for some prime $p$ , take $A\in \mathcal{E}_{p}^{2}(X)$ . Theorem

6.5 (d) yields $C_{M_{\sigma}}(A)=1$ . Then,

$C_{M_{\sigma_{0}}}(X)\underline{\subseteq}C_{M_{\sigma}}(A)=1$

contrary to the hypothesis. Therefore, $r_{p}(X)\leq 1$ for all primes and
$X$ is cyclic. Taking the element $x’$ to be a generator of $X$ , we have
$M(C_{G}(X))=\{M\}$ .

If $K\neq 1$ , $U$ is abelian by (b). In this case) (d) is trivial. Suppose
that $K=1$ . In this case, $U$ is a complement of $M_{\sigma_{0}}$ . Let $V=U\cap M_{\sigma}$ .

Then, $V$ is a complement of $M_{\sigma_{O}}$ in $M_{\sigma}$ , and $V$ is a Hall $\sigma(M)$ subgroup
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of $U$ such that $V\triangleleft U$ . There is a complement $E$ of $V$ in $U$ . It follows
that $E$ is a complement of $M_{\sigma}$ in $M$ .

If $\sigma_{0}(M)=\sigma(M)$ , we have $U=E$ and Theorem 6.12 yields (d) and
(e). If $\sigma_{0}(M)\neq\sigma(M)$ , $V$ is a nontrivial $\varpi’$-group that acts regularly
on $M_{\sigma_{0}}$ . By Lemma $H_{)}\tau_{2}(M)=\emptyset$ . Since $K=1$ , the group $E$ acts
regularly on $M_{\sigma_{0}}$ . It follows that $U=EV$ acts regularly on $M_{\sigma_{O}}$ . Thus,
$U=U_{0}$ satisfies (e), while the subgroup defined in (d) is 1.

It remains to prove (e) in the case $K\neq 1$ . If $M$ is not a $\varpi$ group $U$

is a $\varpi’$-group by Lemma G. It follows that $U_{0}=U$ satisfies (e). Suppose
that $M$ is a $\varpi$ group Then, $M_{\sigma_{0}}=M_{\sigma}$ and $\kappa(M)=\tau_{1}(M)$ by Theorem
8.7 (c). We may assume that $U=E_{2}E_{3}$ .

Since $\kappa(M)=\tau_{1}(M)$ , $E_{3}$ acts regularly on $M_{\sigma}$ . The group $E_{2}$ is
an abelian group of rank 2. We use the same argument as that of the
proof of Theorem 6.12. Take $p\in\tau_{2}(M)$ and $S\in Sy\ell_{p}(E_{2})$ . If $G$ has
nonabelian Sylow $p$-subgroups, then Theorem 6.7 provides a subgroup
$S_{0}$ of the same exponent as $S$ that acts regularly on $M_{\sigma}$ . Furthermore)

we have $E_{2}=S$ (by Theorem 6.7 (a)). So, $U_{0}=S_{0}E_{3}$ satisfies the
condition (e). We can assume that $S$ is a Sylow $p$-subgroup of $G$ for
every $p\in\tau_{2}(M)$ . We write $S=Y\times Z$ for some cyclic subgroups with
$|Y|\leq|Z|$ . If $|Y|<|Z|$ , then $C_{M_{\sigma}}(\Omega_{1}(Z))=1$ (cf. the proof of Theorem
6.12). If $|Y|=|Z|$ , we can choose $Z$ to satisfy the same condition. Then)

the product $U_{0}$ of all those cyclic factors and $E_{3}$ satisfies the condition
(e). Q.E.D.

Theorem 9.2. For evew $M\in M$ , we have

$1\neq M_{F}\underline{\subseteq}M_{\sigma_{0}}\underline{\subseteq}M_{\sigma}\underline{\subseteq}M’$ .

Suppose $M_{F}\neq M_{\sigma_{O}}$ , and let $p=|K|$ , $K^{*}=C_{M_{\sigma}}(K)$ , and $q=|K^{*}|$ .

Then,

(a) $M\in M_{T_{1}}$ and $M_{\sigma}=M’$ ,

(b) $p$ and $q$ are primes and $q\in\pi(M_{F})\cap\beta(M)$ ,

(c) $M$ has a normal Sylow $q$ -subgroup $Q$ , so $K^{*}\underline{\subseteq}Q$ ,

(d) a complement $D$ of $Q$ in $M’$ is nilpotent,
(e) $Q_{0}=C_{Q}(D)\triangleleft M$ ,

(f) $\overline{Q}=Q/Q_{0}$ is a minimal normal subgroup of $M/Q_{0}$ and is ele-
mentary abelian of order $q^{p}$ , and

(g) $M’’=(M_{\sigma})’\underline{\subseteq}F(M)=QC_{M}(Q)=C_{M}(\overline{Q})=C_{M_{\sigma}}(\overline{K^{*}})\underline{\subseteq}$

$M_{\sigma}$ .

Proof. This theorem has assumptions slightly different from those
of Theorem 15.2 [BG]. However, the proof is almost identical. Since $M$
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is a $\varpi$-local subgroup, $O_{\varpi}(M)\neq 1$ . Therefore, the Fitting subgroup
$F(M)$ of $M$ is a $\varpi$-group. It follows that $M_{F}\underline{\subseteq}M_{\sigma o}$ . Since $M_{\sigma_{0}}\neq 1$

by Theorem 4.2 (e), we have $M_{F}\neq 1$ if $M_{F}=M_{\sigma_{0}}$ . Therefore, we may
assume $M_{F}\neq M_{\sigma_{0}}$ . Lemma 8.1 yields that $M\in M_{P_{1}}$ , i.e. $K\neq 1$ and
$M=KM_{\sigma}$ . Then, $M/M_{\sigma}\cong K$ . Since $K$ is cyclic by Theorem 8.7 (d),
we have $M’\underline{\subseteq}M_{\sigma}$ . Therefore, $M_{\sigma}=M’$ and (a) is proved.

We can continue the proof along the line adapted from the proof of
Theorem 15.2 [BG]. Q.E.D.

Corollary 9.3. Suppose $H$ is a Hall subgroup of $M_{\sigma}$ such that
$\pi(H)\cap\varpi\neq\emptyset$ . Then,

(a) $C_{M}(H)=C_{M_{\sigma_{O}}}(H)X$ with $X$ a cyclic $\tau_{2}(M)$ subgroup, and

(b) if $H$ is a $\varpi$ -group, any two elements of $H$ conjugate in $G$ are
already conjugate in $N_{M}(H)$ .

Proof. Since $H$ contains a nontdentity $\varpi$ subgroup, $C_{M}(H)$ is a $\varpi-$

group by Lemma A. If $x\neq 1$ is a $\kappa(M)$ -element, $C_{M_{\sigma}}(x)$ is conjugate to
$K^{*}$ and does not contain any Hall subgroup of $M_{\sigma}$ by Proposition 8.2 (d).
It follows that $C_{M}(H)=C_{M_{\sigma_{O}}}(H)X$ where $X$ is a $(\sigma_{0}(M)\cup\kappa(M))’-$

subgroup. By Lemma 9.1, $X$ is conjugate to a subgroup of $U$ and, since
$C_{M_{\sigma_{0}}}(X)\neq 1$ , $X$ is a cyclic $\tau_{2}(M)$ subgroup,

Suppose that $x$ , $y\in H$ , $g\in G$ , and $x=y^{g}$ . Then, $x\in M\cap M^{g}$

and $M=M^{gc}$ for some element $c\in C_{G}(x)$ by Theorem 8.4. Then
$m=gc\in M$ by Lemma $E(2)$ and $x=y^{m}$ . This proves (b) in the case
$H\triangleleft M$ .

Suppose the $H$ is not normal in $M$ . Then $M_{F}\neq M_{\sigma_{O}}$ and we can
use Theorem 9.2 as in the proof of Corollary 15.3 [BG] to finish the
proof. Q.E.D.

Corollary 9.4. Suppose that $H$ is a nonidentity nilpotent Hall
subgroup of G. If $H$ is a $\varpi$ -group, then there is a subgroup $M\in M$ such
that $H\underline{\subseteq}M_{\sigma_{0}}$ .

Proof. Let $S$ be a nonidentity Sylow subgroup of $H$ and let $ M\in$

$M(N_{G}(S))$ . Then, we have $S\underline{\subseteq}M_{\sigma_{O}}$ . By Corollary 9.3 (a), $C_{M}(S)=$

$C_{M_{\sigma_{0}}}X$ where $X$ is a cyclic $\tau_{2}(M)$ -subgroup of $M$ . If $p\in\tau_{2}(M)$ , Sylow
$p$-subgroups of $M$ are not cyclic. Hence, $X$ contains no Sylow subgroup
of $G$ . A nilpotent Hall subgroup $H$ is written $H=S\times L$ where $L$ is
a product of Sylow subgroups of $G$ . Since $H\underline{\subseteq}N_{G}(S)\underline{\subseteq}M$ , we have
$L\underline{\subseteq}C_{M}(S)$ . It follows that $L\underline{\subseteq}C_{M_{\sigma_{0}}}(S)$ because $X$ is a $\sigma_{0}(M)’-$

subgroup that contains no Sylow subgroup of $G$ . This proves that $H=$

$S\times L\underline{\subseteq}M_{\sigma_{0}}$ . Q.E.D.
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Corollary 9.5. Let $H=M_{F}$ and $Y=O_{\sigma_{0}(M)^{J}}(F(M))$ . Then,

(a) $Y$ is a cyclic $\tau_{2}(M)$ -subgroup of $F(M)$ ,
(b) $M^{JJ}\underline{\subseteq}F(M)=C_{M}(H)H=F(M_{\sigma_{0}})\times Y=F(M_{\sigma})\times Y$ ,
(c) $H\underline{\subseteq}M’$ and $M’/H$ is nilpotent, and
(d) if $K\neq 1$ , then $F(M)\underline{\subseteq}M’$ .

Proof. (a) We have $H\underline{\subseteq}F(M)\underline{\subseteq}HCM\{H$ ). By Corollary 9.3 (a),
a Hall $\sigma_{0}(M)’$-subgroup of $C_{M}(H)$ is a cyclic $\tau_{2}(M)$ -subgroup This
implies (a).

(b) Clearly, we have $F(M)=F(M_{\sigma_{O}})\times Y=F(M_{\sigma})\times Y$ . Suppose
$H=M_{\sigma_{0}}$ . Then, $M’’\underline{\subseteq}M_{\sigma_{0}}$ by Lemma 9.1 (a). $ThuS_{)}$

$M’’\underline{\subseteq}F(M)=H\times Y\underline{\subseteq}HC_{M}(H)=M_{\sigma_{0}}\times X\triangleleft M$

where $X$ is a cyclic $\tau_{2}(M)$ -group by Corollary 9.3 (a). Since $H=M_{\sigma_{0}}$ ,
$M_{\sigma_{0}}\times X$ is a nilpotent normal subgroup of $M$ . Hence, $M_{\sigma_{0}}\times X\underline{\subseteq}F(M)$ .

Thus, $HC_{M}(H)=F(M)$ in this case. Suppose $H\neq M_{\sigma_{0}}$ . By Theorem
9.2, $M$ has a normal Sylow $q$-subgroup $Q$ such that $Q\underline{\subseteq}H$ and

$M’’\underline{\subseteq}F(M)=F(M_{\sigma_{0}})\times Y\underline{\subseteq}HC_{M}(H)\underline{\subseteq}HC_{M}(Q)\underline{\subseteq}QC_{M}(Q)=F(M)$ .

Theorem 9.2 (g) yields the first containment and the last equality.
(c) If $H=M_{\sigma o)}$ Theorem 4.2 (c) and (d) yield the conclusions. If

$H\neq M_{\sigma_{0}}$ , Theorem 9.2 yields that $M’=M_{\sigma}$ contains $H$ and $M’/H$ is
nilpotent (Part (d)).

(d) If $K\neq 1$ , $M’$ is a complement of $K$ in $M$ by Theorem 8.7 (h).
Thus, $M/M’$ is a $\kappa(M)$ -group. By (c), we have $H\underline{\subseteq}M_{\sigma}\underline{\subseteq}M’$ . By
Corollary 9.3, $C_{M}(H)\underline{\subseteq}M_{\sigma}X$ where $X$ is a $\tau_{2}(M)$ -group. It follows
that $F(M)=HC_{M}(H)\underline{\subseteq}M’$ . Q.E.D.

Corollary 9.6. Suppose $M\in \mathfrak{m}_{\varphi}$ . Then, $K^{*}=C_{M_{\sigma}}(K)$ is $a$

nonidentity cyclic subgroup of $M_{F}$ and $M’’$ . Furthermore, $M_{F}$ is not
cyclic.

Proof. By definition, $K$ is a $\varpi$-group. Therefore, $K^{*}\underline{\subseteq}M_{\sigma_{0}}$ . If
$M_{F}=M_{\sigma_{0}}$ , certainly $K^{*}\underline{\subseteq}M_{F}$ . If $M_{F}\neq M_{\sigma_{0}}$ , Theorem 9.2 yields
that $K^{*}\underline{\subseteq}Q$ for some $Q\underline{\subseteq}Sy\ell_{q}(M)$ . Since $Q\triangleleft M$ , we have $Q\underline{\subseteq}M_{F}$ .

Thus, $K^{*}\underline{\subseteq}M_{F}$ in all cases.
Since $M\in M_{T}$ , we have $K\neq 1$ . Theorem 8.7 (h) yields that $M’$ is

a complement of $K$ . Thus, $M’$ is a normal Hall $\kappa(M)’$-subgroup of $M$ .

By Lemma 6.3 [BG], $K^{*}\underline{\subseteq}C_{M’}(K)\underline{\subseteq}M’’$ .

By Proposition 8.2 (c) and Theorem 8.7 (d), $K^{*}\neq 1$ and $K^{*}$ is
cyclic. Finally, we will prove that $M_{F}$ is not cyclic. If $M_{F}$ is cyclic,
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Theorem 9.2 yields that $M_{\sigma_{O}}=M_{F}$ because $Q$ in Theorem 9.2 is non-
cyclic (by (f)). Then, $F(M)=M_{F}\times Y$ is cyclic by Corollary 9.5 (a)
and (b). This implies $M’’=1$ which contradicts $K^{*}\underline{\subseteq}M’’$ . Hence, $M_{F}$

is not cyclic. Q.E.D.

Theorem 9.7. Suppose that $F(M)$ is not a $TI$-subset of G. Let
$H=M_{F}$ and defifine

$X=F(M)\cap F(M)^{g}\neq 1$ for some $g\in G\backslash M$ .

Let $E$ , $E_{1}$ , $E_{2}$ and $E_{3}$ be as in Section 6. Then,

(a) $M$ $\in M_{\mathcal{F}}\cup M_{T_{1}}$ and $H=M_{\sigma_{0}}$ ;
(b) $X\underline{\subseteq}H$ , $X$ is cyclic, and $H$ is a $\beta(M)’$ -group;
(c) $M’\underline{\subseteq}F(M)=M_{\sigma_{0}}$ timesY where $Y$ is as in Corollary 9.5;
(d) $E_{3}=1$ , $E_{2}\triangleleft E=E_{1}E_{2}$ , and $E_{1}$ is cyclic; and
(e) one of the following conditions holds:

(1) $M\in M_{\mathcal{F}}$ and $H$ is abelian of rank 2,
(2) $|X|=p$ is a prime in $\sigma_{0}(M)\backslash \beta(M)$ , $O_{p}(H)$ is not

abelian, $O_{p’}(H)$ is cyclic, and the exponent of $M/H$

divides $q-1$ for every $q\in\pi(H)$ , or
(3) $|X|=p$ is a prime in $\sigma_{0}(M)\backslash \beta(M)$ , $O_{p’}(H)$ is cyclic,

$O_{p}(H)$ has order $p^{3}$ and exponent $p$ and is not abelian,
$M\in M_{P_{1}}$ , and $|M/H|$ divides $p+1$ .

Proof. We remark first that $F(M)$ is a $\varpi$-group so any prime in
$\pi(X)$ lies in $\varpi$ . Take $p\in\pi(X)$ and $X_{1}\in \mathcal{E}_{p}^{1}(X)$ . We will show that
$O_{p}(M)$ is not cyclic. If $O_{p}(M)$ were cyclic, $X_{1}$ would be the unique

subgroup of order $p$ in $F(M)$ as well as in $F(M)^{g}$ . This would imply
$M=N_{G}(X_{1})=M^{g}$ so $g\in M$ . Thus, $O_{p}(M)$ is not cyclic. Corollary
9.5 (a) yields that $p\in\sigma_{0}(M)$ . Since $p$ is arbitrary in $\pi(X)$ , we have
$\pi(X)\underline{\subseteq}\sigma_{0}(M)$ . Hence, $X\underline{\subseteq}M_{\sigma_{O}}\cap M^{g}$ . By Lemma 6.17, $X$ is a cyclic
$\beta(M)’$-subgroup. In particular, $\sigma_{0}(M)\neq\beta(M)$ and by Proposition
8.2 (g), we have $M\not\in M_{T_{2}}$ . Thus, the first part of (a) is proved.

Since $X_{1}\underline{\subseteq}M\cap M^{g}$ , Theorem 4.1 yields $C_{G}(X_{1})\not\leqq M$ . This implies
that $C_{H}(X_{1})\not\in \mathfrak{U}$ where $H=M_{F}$ . Since $\langle H, X_{1}\rangle\underline{\subseteq}F(M)$ , $O_{p’}(H)$

centralizes $X_{1}$ . Theorem 6.13 and the Uniqueness Theorem yield that
every Sylow subgroup of $O_{p’}(H)$ , and hence $O_{p’}(H)$ itself, is abelian of
rank\leq 2. Let $P=O_{p}(H)$ . Then, $X_{1}\underline{\subseteq}P$ and $C_{P}(X_{1})$ is abelian
of rank $\leq 2$ . Therefore, $H$ is a $\beta(M)’$-group. If $H\neq M_{\sigma_{O}}$ , Theorem
9.2 (b) and (c) yield that a Sylow $q$ subgroup $Q$ is normal in $M$ and
$q\in\pi(M_{F})\cap\beta(M)$ . This contradiction proves that $H=M_{\sigma_{0}}$ . Thus, (a)
holds.
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If $M$ is a $\varpi$-group, certainly $M_{\sigma}=M_{\sigma_{0}}$ . If $M$ is not a $\varpi$-group,
$M$ is not a group of type (2) in Lemma $G$ because a group of type (2)
satisfies $\sigma_{0}(M)=\beta(M)$ . Similarly, if $M$ is a group of type (1) in Lemma
$G$ , we have $M’=M_{\sigma}=M_{F}$ . Thus, we have $M_{\sigma}=M_{\sigma_{0}}$ even if $M$ is
not $s\varpi$-group. Since $M_{\sigma_{0}}=H$ , $M_{\sigma}$ is a nilpotent $\beta(M)’$-subgroup of
$M$ . By Lemma 6.19, the group $E’$ centralizes $M_{\sigma}$ . Since $E’$ is nilpotent
by Lemma 6.1 (a), we have

$M’=M_{\sigma}E’=M_{\sigma}\times E’\underline{\subseteq}F(M)=M_{\sigma_{0}}\times Y$

where $Y$ is a cyclic $\tau_{2}(M)$ -subgroup (by Corollary 9.5). Hence, $E’$ is a
$\tau_{2}(M)$ -group. Since $E_{3}\underline{\subseteq}E’$ , we have $E_{3}=1$ . This proves (c) and (d).

The last part (e) can be proved by adapting the proof of the corre-
sponding part of Theorem 15.7 [BG]. Q.E.D.

Theorem 9.8. Suppose that we have the situation of Corollary
8.12 and assume that $M$ is a $\varpi$ -group. Thus, $M\in M_{T_{2}}$ , $K$ , $M^{*}$ , and $K^{*}$

are as in Theorem 8.7 and $U$ is as in Proposition 8.2 (a). Suppose that
$R\in Sy\ell_{r}(U)$ for some $r\in\pi(U)$ and $H\in M(N_{G}(R))$ . Furthermore,
suppose that $\tau_{2}(H)$ is not empty. Then, for $|K|=q$ , $q$ is the unique
prime in $\tau_{2}(M)$ and $\tau_{2}(M)$ is empty.

Proof. By Corollary 8.12, $H$ is a $\varpi$-group such that

$U\underline{\subseteq}H_{\sigma}$ , $M\cap H=UK$ , $K\underline{\subseteq}F(H\cap M^{*})$ ,

and $H\cap M^{*}$ is a complement of $H_{\sigma}$ in $H$ . By Theorem 8.2 (g), $q=|K|$

is a prime. Let $D=H\cap M^{*}$ . Then, $D$ is a complement of $H_{\sigma}$ in $H$ by
Corollary 8.12 (b).

By assumption, $\tau_{2}(H)$ is not empty so we can choose $A\in \mathcal{E}^{2}(D)$ .

Corollary 6.6 (a) yields $A\underline{\subseteq}F(D)$ . Since $K\underline{\subseteq}F(D)$ , $[A, K]=1$ if $A$ is
not a $q$-group. If $A$ is a $q$-group, Theorem 6.5 (b) implies that $K\underline{\subseteq}A$

so $[A, K]=1$ trivially. If $A\underline{\subseteq}M_{\sigma}^{*}$ , then $\pi(A)\underline{\subseteq}\tau_{2}(M^{*})$ . Theorem
6.5 (d) for $M^{*}$ yields $C_{M_{\sigma}^{*}}(A)=1$ . This contradicts $[A, K]=1$ because
$K\underline{\subseteq}M_{\sigma}^{*}$ . Hence, we have $A\underline{\subseteq}M_{\sigma}^{*}$ .

We claim that $F(M^{*})$ contains $A$ as well as a Sylow $q$-subgroup $Q$

of $M^{*}$ . If $(M^{*})_{F}=(M^{*})_{\sigma_{O}}$ , this is certainly true because $(M^{*})_{\sigma_{O}}\underline{\subseteq}$

$F(M^{*})$ . On the other hand, if $(M^{*})_{F}\neq(M^{*})_{\sigma_{O}}$ , $F(M^{*})$ contains a
Sylow $q$-subgroup $Q$ of $M^{*}$ by Theorem 9.2 (c). $A1so_{)}$ the part (g) of

the same theorem quoted above yields that $F(M^{*})=C_{M_{\sigma}^{*}}(\overline{K})$ which
contains $A$ . This proves the claim.

We prove next that $q\not\in\beta(G)$ . If $A$ is a $q$-group, Lemma 6.1 (g)
implies $q\not\in\beta(G)$ . If $A$ is not a $q$-group, then we have $[Q, A]=1$ because
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both $Q$ and $A$ are subgroups of a nilpotent group $F(M^{*})$ . Since $A\not\in \mathfrak{U}$ ,

we have $Q\not\in \mathfrak{U}$ by Corollary 3.2 (a). This proves $q\not\in\beta(G)$ .

Theorem 9.2 (b) yields $(M^{*})_{F}=(M^{*})_{\sigma_{0}}$ . Since $\sigma_{0}(M^{*})\neq\beta(M^{*})$ ,
$M^{*}\in M_{T_{1}}$ by Proposition 8.2 (g). Therefore, we have $M^{*}=(M^{*})_{\sigma_{O}}K^{*}$ .

By Lemma 6.17,
$K=C_{M_{\sigma_{O}}^{*}}(K^{*})\underline{\subseteq}(M^{*})_{\sigma_{O}}’$ .

Since $(M^{*})\sigma_{0}=(M^{*})_{F}$ is nilpotent, $K\underline{\subseteq}Q’$ . Hence, $Q$ is nonabelian
and, by Theorem 6.13, $Q\in \mathfrak{U}$ . Since $A\not\in \mathfrak{U}$ , Lemma 3.2 yields that
$[Q, A]\neq 1$ . Therefore, $A$ is a $q$-group. Since $Q$ is nonabelian, we have
$\tau_{2}(H)=\{q\}$ by Theorem 6.7 (a).

The remaining statements are proved as in [BG]. Q.E.D.

Corollary 9.9. Let $x\in M_{\sigma_{O}}^{\phi}$ and $N\in M(C_{G}(x))$ . Assume that
$C_{G}(x)\not\leqq M$ and $N\not\in M_{\mathcal{F}}$ . Take $r\in\pi(\langle x\rangle)$ and $X\in \mathcal{E}_{r}^{1}(\langle x\rangle)$ . Then,
both $M$ and $N$ are $\varpi$ -groups. Furthermore, for a suitable choice of $a$

complement $E$ of $M_{\sigma}$ in $M$ ,

(a) $M\in M_{\mathcal{F}}$ and $N\in M_{J_{2}^{)}}$ ,
(b) $E$ is cyclic and $M$ is a Frobenius group with Frobenius kernel

$M_{\sigma}$ , and
(c) $r\in\tau_{2}(N)$ , $N_{E}(X)\underline{\subseteq}E\cap N$ and $|E\cap N|=|N/N’|$ .

Proof. Take $y\in C_{G}(x)\backslash M$ . Then, $M$ , $M^{y}\in M_{\sigma}(x)$ and $ M\neq$

$M^{y}$ . Hence, we are in the situation of Theorem 8.4 with $|M_{\sigma}(x)|>1$ .

Therefore,

$C_{N_{\sigma}}(x)\neq 1$ , $M(C_{G}(x))=\{N\}$ , $r\in\tau_{2}(N)\cap\sigma_{0}(M)$ ,

$N$ is a $\varpi$ group in $M_{\mathcal{F}}\cup M_{P_{2}}$ , and $M\cap N$ is a complement of $N_{\sigma}$ in $N$ .

By assumption, we have $N\in M\varphi_{2}$ .

Let $K_{1}$ be a Hall $\kappa(N)$-subgroup of $N$ . Since $M\cap N$ is a complement
of $N_{\sigma}$ in $N$ , we can take $K_{1}\underline{\subseteq}M\cap N$ . By Proposition 8.2 (g) and (a),
$|K_{1}|$ is a prime and there is an abelian complement $U_{1}$ of $K_{1}$ in $M\cap N$

for which $C_{U_{1}}(K_{1})=1$ and $U_{1}\triangleleft M\cap N$ .

Let $R\in Sy\ell_{r}(M\cap N)$ . Then, $R\underline{\subseteq}U_{1}$ and $R\in Sy\ell_{r}(N)$ . Since

$r\in\tau_{2}(N)\underline{\subseteq}\sigma_{0}(M)$ ,

$R$ is not cyclic and, by Corollary 6.10 (d), $N_{G}(R)\underline{\subseteq}M$ . Corollary
8.12 (b) with $N$ , $K_{1}$ , $U_{1}$ , and $M$ in place of $M$ , $K$ , $U$ , and $H$ yields that
$M$ is a $\varpi$-group in My with $M\cap N=U_{1}K_{1}$ . This proves (a).

By Lemma 8.1, $M_{\sigma_{O}}$ is nilpotent. Since $R\underline{\subseteq}U_{1}\underline{\subseteq}M$ and $r\in\sigma(M)$ ,
we have $R\underline{\subseteq}M_{\sigma}$ . The group $RK_{1}$ is not nilpotent. Therefore, $K_{1}\not\leqq M_{\sigma}$ .
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Since $|K_{1}|$ is a prime, we have $K_{1}\cap M_{\sigma}=1$ . We choose $E$ to satisfy
$K_{1}\underline{\subseteq}E$ . Theorem 9.8 with $N$ and $M$ in place of $M$ and $H$ implies
that if $\tau_{2}(M)$ is not empty, then $\tau_{2}(N)$ is empty. However, $\tau_{2}(N)$ is not
empty, so $\tau_{2}(M)$ must be empty, i.e. $E_{2}=1$ for $M$ . The element $x$ is
contained in $M_{\sigma}$ and $C_{G}(x)\not\leqq M$ . Since $M_{\sigma}$ is nilpotent, $F(M)$ is not
a $TI$-subset of $G$ . By Theorem 9.7 (d), we have $E_{3}=1$ . It follows that
$E=E_{1}$ and it is cyclic. Since $M\in M_{\mathcal{F}}$ , $\kappa(M)$ is empty. This implies
that $E$ acts regularly on $M_{\sigma}=M_{\sigma_{0}}$ . Thus, $M$ is a Frobenius group with
Frobenius kernel $M_{\sigma}$ .

We have shown that $r\in\tau_{2}(N)$ . Since $C_{G}(x)\underline{\subseteq}N_{G}(X))$ we have
$N_{G}(X)\underline{\subseteq}N$ . Therefore, $N_{E}(X)\underline{\subseteq}E\cap N$ . The choice of $E$ implies

$K_{1}\underline{\subseteq}E\cap N\underline{\subseteq}M\cap N=U_{1}K_{1}$ .

Since $C_{U_{1}}(K_{1})=1$ , we have $K_{1}=C_{E\cap N}(K_{1})$ . This implies $K_{1}=E\cap N$

because $E$ is cyclic. It follows from Theorem 8.7 (h) that $|E\cap N|=$

$|K_{1}|=|N/N’|$ . Q.E.D.

\S 10. The Main Results

Theorem A. Let $M\in M$ . Then, the following conditions are

satisfified by $M$ .

(1) $M$ has a unique normal Hall $\sigma_{0}(M)$ -subgroup $M_{\sigma_{0}}$ which is also
a Hall $\sigma_{0}(M)$ -subgroup of $G$ .

(2) $M$ has a cyclic Hall $\kappa(M)$ -subgroup $K$ .

(3) $KM_{\sigma_{O}}$ has a $K$ -invariant complement $U$ in $M$ , $i.e$ .

$UM_{\sigma_{0}}\triangleleft M=KUM_{\sigma_{0}}$ and $U\triangleleft UK$ .

(4) $C_{U}(k)=1$ for every $k\in K^{\beta}$ .
(5) $K^{*}=C_{M_{\sigma_{0}}}(K)\neq 1$ and if $K\neq 1$ , then $C_{M}(k)=K\times K^{*}$ for

every $k\in K^{\phi}$ .

(6) $1\neq M_{F}\underline{\subseteq}M_{\sigma_{0}}\underline{\subseteq}M’\subseteq M$ and $M’/M_{F}$ is nilpotent.
(7) $M’’\underline{\subseteq}F(M)=C_{M}(M_{F})M_{F}$ and if $K\neq 1$ , then $F(M)\underline{\subseteq}M’$ .

(8) If $M_{F}\neq M_{\sigma_{0}}$ , then $U=1$ , $F(M)$ is a $TI$-subgroup in $G$ , and
$K$ has prime order.

Proof. The group $M_{\sigma_{0}}$ is defined as $O_{\sigma_{0}(M)}(M)$ . Hence, $M_{\sigma_{0}}\triangleleft M$ .

Theorem 4.2 (f) yields (1); a normal Hall subgroup is unique. If $\kappa(M)$

is empty) $K=1$ and the conditions (2), (3), (4) and (5) are trivially
satisfied. If $\kappa(M)$ is not empty, $M\in M_{J)}$ . Then, Proposition 8.2 (a)
implies the conditions (3) and (4), and Proposition 8.2 (c) yields $K^{*}\neq 1_{)}$.
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while Theorem 8.7 (d) yields (2) and the second part of the condition
(5).

Theorem 9.2 proves the first part of (6). If $M_{F}=M_{\sigma_{0}}$ , Theorem
4.2 (c) and (d) imply the second part of (6). If $M_{F}\neq M_{\sigma_{0}}$ , Theorem
9.2 (d) yields the result. The condition (7) has been proved in Corol-
lary 9.5 (b) and (d). Theorem 9.2 (a) and (b) yield the first and third
conditions of (8), respectively, while Theorem 9.7 (a) implies the second
condition. Q.E.D.

To state further results, we need the following notation:

$\overline{M}_{\sigma}=\{a \in M|C_{M_{\sigma_{0}}}(a)\neq 1\}$ .

Note that this definition is slightly different from that in [BG]. We

also define $A(M)$ and $A_{0}(M)$ as in [BG]; however, we use the set $M_{\sigma}$

defined above in the definition of the sets $A(M)$ and $A_{0}(M)$ . Thus, the
sets $A(M)$ and $A_{0}(M)$ are different from the sets in [BG] even though

they are denoted by the same notation. In particular, $\overline{M}_{\sigma}$ consists of
$\varpi$-elements.

If $M\in M$ is not a $\varpi$-group, we can determine these sets from Lemma
G. The result is contained in the following table:

Type $K$ $U$ $M_{\sigma_{0}}$

$\overline{M}_{\sigma}$

$A(M)$ $A_{0}(M)$

(1) 1 a $Z$-group $M_{\sigma_{0}}$ $M_{\sigma_{O}}$ $M_{\sigma_{0}}$ $M_{\sigma_{0}}$

(2) $\neq 1$ cyclic $M_{\sigma_{O}}$ $M_{\sigma_{0}}\cup G_{M}(Z)$ $M_{\sigma_{0}}$
$M_{\sigma_{0}}\cup G_{M}(\hat{Z})$

Theorem B. Let $M\in M$ . The following conditions are satisfified
by $M$ .

(1) Every Sylow subgroup of $U$ is abelian of rank at most 2.

(2) $\langle U\cap\overline{M}_{\sigma}\rangle$ is abelian.
(3) $U$ has a subgroup $U_{0}$ that has the same exponent as $U$ and sat-

isfifies $U_{0}\cap\overline{M}_{\sigma}=1$ .

(4) $M(C_{G}(X))=\{M\}$ for every nonidentity subgroup $X$ of $U$ such
that $C_{M_{\sigma_{0}}}(X)\neq 1$ .

(5) The set $A(M)\backslash M_{\sigma_{O}}$ is either empty or a $TI$-subset of $G$ with
normalizer $M$ .

Proof It follows from the definition of the subgroup $U$ (at the
beginning of Section 9) that $\pi(U)=\pi(M)\backslash \{\kappa(M), \sigma_{0}(M)\}$ . Take
$p\in\pi(U)$ and $S\in Sy\ell_{p}(U)$ . If $p\in\tau_{1}(M)\cup\tau_{3}(M)$ , then $S$ is cyclic
by the definition of the sets $\tau_{i}(M)$ . If $p\in\tau_{2}(M)$ , $S$ is abelian of rank 2
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by Theorem 6.5 (b). Finally, if $p\in\sigma(M)\backslash \sigma_{0}(M)$ , $S$ is cyclic by Lemma
F. This proves (1).

Lemma 9.1 (d), (e) and (c) imply the conditions (2), (3) and (4),
respectively. Suppose that the set $B=A(M)\backslash M_{\sigma_{0}}$ is not empty. The
table before Theorem $B$ shows that $M$ is a $\varpi$ group. Since $U$ is a Hall
subgroup of $M_{\sigma_{0}}U$ , every element $g$ of $M_{\sigma_{0}}U$ can be written uniquely
as a product of a $\sigma_{0}(M)$ element $x$ and a $\pi(U)$ element $v$ such that

$g=xv=vx$ . We say that $v$ is the $\pi(U)$ -component of the element $g$ .

It is a power of $g$ , and $v$ is conjugate to an element of $U$ in $M$ by the
Schur-Zassenhaus Theorem.

Suppose that $g\in B$ . Then, $g\not\in M_{\sigma_{0}}$ so the $\pi(U)$ -component $v$ is
not the identity. Also, $g\in B$ implies $C_{M_{\sigma_{0}}}(g)\neq 1$ . It follows that
$C_{M\sigma_{O}}(v)\neq 1$ . If $v$ is conjugate to an element $u$ of $U$ in $M$ , we have
$v=u^{y}$ for some $y\in M$ and $u\neq 1$ . Then, Theorem $B(4)$ yields that
$M(C_{G}(u))=\{M\}$ because $u\neq 1$ and $C_{M_{\sigma_{0}}}(u)\neq 1$ . Since $v=u^{y}$ with
$y\in M$ , we have $M(C_{G}(v))=\{M\}$ . Thus, $g\in B$ implies $M(C_{G}(v))=$

$\{M\}$ for the $\pi(U)$ -component of $g$ . Therefore, if $g\in B\cap B^{h}$ for some
$h\in G$ , then

$\{M\}=M(C_{G}(v))=\{M^{h}\}$ .

This implies $M$ $=M^{h}$ and $h\in M$ . This proves (5). Q.E.D.

Theorem C. Let $M\in M_{P}$ so $K\neq 1$ . The following conditions
hold.

(1) $U$ is abelian. If $M$ is a $\varpi$ -group, $N_{G}(U)\not\leqq M$ . If $\sigma(M)\neq$

$\sigma_{0}(M)$ , then $N_{G}(U)\underline{\subseteq}M$ .

(2) $K^{*}$ is cyclic, $1\neq K^{*}\subseteq M_{F}$ , but $M_{F}$ is not cyclic.
(3) $M’=UM_{\sigma_{0}}$ and $K^{*}\underline{\subseteq}M’’$ .

(4) There exists a unique subgroup $M^{*}\in M_{T}$ such that $K=C_{M_{\sigma}^{*}}(K^{*})$

and $K^{*}$ is a Hall $\kappa(M^{*})$ subgroup of $M^{*}$ .

(5) $M(C_{G}(X))=\{M\}$ and $M(C_{G}(Y))=\{M^{*}\}$ for all subgroups
$X\underline{\subseteq}K^{*}$ and $Y\underline{\subseteq}K$ of prime order.

(6) $M\cap M^{*}=Z=K\times K^{*}$ and $Z$ is cyclic.
(7) $M$ or $M^{*}$ is of type $\varphi_{2}$ and every subgroup $H\in M_{T}$ is conjugate

to $M$ or $M^{*}$ in $G$ .

(8) $\hat{Z}$ is a $TI$-subset of $G$ with $N_{G}(\hat{Z})=Z$ .

(9) $G_{M}(\hat{Z})$ is equal to $A_{0}(M)\backslash A(M)$ and is a $TI$-subset of $G$ with
normalizer $M$ .

(10) If $U\neq 1$ , then $K$ has prime order and $F(M)$ isa $TI$-subset of
$G$ that contains $M_{\sigma_{0}}$ .

(11) If $U=1$ , then $K^{*}$ has prime order.
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Proof. Proposition 8.2 (a) shows that $U$ is abelian. The second
statement of (1) follows from Corollary 8.12 (b), while the last one is
obvious from the definitions.

Proposition 8.2 (c) implies the second condition of (2) and the first
one in (5). Corollary 9.6 proves the remaining conditions of (2) and the
last condition of (3). The most of the other conditions $(3)-(9)$ follow
from Theorem 8.7. Thus, the first condition of (3) follows from the part
(h), (4) from the parts (b) and (c), the uniqueness of $M^{*}$ and the second
part of (5) from (a), the condition (6) from (d), the condition (7) from
(f) and (g), the conditions (8) and the second part of (9) from (e) and
the first part of (9) follows from the definitions.

Consider the conditions (10). The first one follows from Proposition
8.2 (g). Since $U\neq 1$ , we have $M\in M_{P_{2}}$ . Theorem 9.7 (a) now yields
that $F(M)$ is a $TI$-subset of $G$ . Then, $M_{\sigma_{0}}=M_{F}$ so $M_{\sigma_{O}}\underline{\subseteq}F(M)$ by
Theorem 9.2 (a).

The assumption $U=1$ of (11) implies that $M\in M_{P_{1}}$ . By Theorem
8.7 (f), $M^{*}\in M_{P_{2}}$ and $K^{*}$ has prime order. Q.E.D.

Theorem D. Let $M\in M$ . The following conditions are satisfified
by $M$ .

(1) Whenever two elements of $M_{\sigma_{0}}$ are conjugate in $G$ , they are
conjugate in $M$ .

(2) For every $g\in G\backslash M$ , the group $M_{\sigma}\cap M^{g}=M_{\sigma}\cap(M_{\sigma})^{g}$ is
cyclic.

(3) For every $x\in(M_{\sigma o})^{\phi}$ , $C_{M}(x)$ is a Hall subgroup of $C_{G}(x)$ and
has a normal complement $R(x)$ in $C_{G}(x)$ that acts sharply tran-
sitively by conjugation on the set $\{M^{g}|g\in G, x\in M^{g}\}$ .

(4) If $x\in(M_{\sigma_{O}})^{\beta}$ and $C_{G}(x)\not\leqq M$ , then $M(C_{G}(x))=\{N\}$ for some
$\varpi$ group $N=N(x)\in M$ such that $R(x)=C_{N_{\sigma}}(x)$ , $N_{\sigma o}=N_{F}$ ,
$x\in A(N)\backslash N_{\sigma_{0}}$ , $N\in M_{\mathcal{F}}\cup M_{P_{2}}$ , and $M\cap N$ is a complement

of $N_{\sigma}$ in N. If $N\in M_{T_{2}}$ , then $M$ is a $\varpi$ group in $M_{\mathcal{F}}$ that is $a$

Frobenius group with cyclic Frobenius complement and Frobenius
kernel $M_{\sigma}=M_{F}$ . Furthermore, $M_{F}$ is not a $TI$-subset in $G$ .

Proof. Corollary 9.3 (b) with $H$ replaced by $M_{\sigma_{0}}$ yields the condi-
tion (1), while Lemma 6.17 implies (2).

The assumptions of (3) and (4) imply that $M_{\sigma}(x)$ is not empty.
Therefore, Theorem 8.4 yields (3) and the most parts of (4). In par-
ticular, $N\not\in M_{\mathcal{P}_{1}}$ . Then, Theorem 9.2 (a) applied to $N$ proves that
$N_{\sigma_{0}}=N_{F}$ . We have $\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(N)$ . Since $N\not\in M_{T_{1}}$ , either $N=N_{\sigma_{O}}U$

or $N_{\sigma_{0}}U$ is a normal complement of $K$ where $U$ and $K$ are defined as
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a Hall $(\sigma_{0}(N), \kappa(N))’$-subgroup and a Hall $\kappa(N)$ subgroup of $N$ , re-
spectively. Recall that if $K\neq 1$ , $K$ is a Hall $\tau_{1}(N)$ subgroup of $N$ by
Theorem 8.7 (c). Thus, $\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(N)$ implies that $x\in N_{\sigma_{O}}U$ . This
proves that $x\in A(N)\backslash N_{\sigma_{0}}$ .

If $N\in M_{P_{2}}$ , Corollary 9.9 yields that $M\in M_{\mathcal{F}}$ and $M$ is a Frobenius
group with Frobenius kernel $M_{\sigma_{0}}$ . We have $M_{\sigma_{O}}=M_{F}$ by Theorem
9.2 (a). Since $C_{G}(x)\not\leqq M$ and $x\in M_{\sigma_{0}}=M_{F}$ . $M_{F}$ is not a $TI$-subset
of $G$ . Q.E.D.

Theorem E. For each $ x\in(M_{\sigma_{O}})\#$ , let $R(x)$ be as in Theorem $D$ .

Defifine
$\overline{M}=\{xR(x)|x\in(M_{\sigma_{0}})^{\phi}\}$ .

Then,

(1) $|G_{G}(\overline{M})|=(|M_{\sigma_{0}}|-1)|G:M|$ .

Let $M_{1}$ , $\ldots$ , $M_{n}$ be a set of subgroups in $M$ such that every subgroup of
$M$ is conjugate in $G$ to exactly one of the $M_{i}$ . Then,

(2) $\varpi$ is the disjoint union of the sets $\sigma_{0}(M_{i})$ .

(3) Let $\overline{G}$ be the union of the sets $G_{G}(\overline{M_{i}})$ . Then, $\overline{G}$ is the disjoint

union of the sets $G_{G}(\overline{M_{i}})$ .

If $M_{T}$ is empty, $\overline{G}$ is the set of the nonidentity $\varpi$ -elements of G. If $M_{J)}$

is not empty and $M\in M_{P}$ , then the set of nonidentity $\varpi$ -elements of $G$

is the disjoint union of $\overline{G}$ and $G_{G}(\hat{Z})$ where $\overline{Z}$ is as defifined in Theorem
8.7.

Proof. If $ p\in\varpi$ , take $P\in Sy\ell_{p}(G)$ and $M\in M(N_{G}(P))$ . We have
$p\in\sigma_{0}(M)$ . If $H\in M$ is not conjugate to $M$ , $\sigma(H)$ is disjoint from
$\sigma(M)$ by Theorem 7.9. Thus, $\varpi$ is the disjoint union of the sets $\sigma_{0}(M_{i})$ .

The remaining assertions of this theorem follow from Lemma 8.5
and Corollary 8.9. Q.E.D.

We define the type of a subgroup as in [BG] pp.128-129 with the
following three changes.

We change (IIiv), (IIv) and (IIIiii) to read

(Iliv) $V\neq 1$ and, if $V$ is a $\varpi$ group $N_{G}(V)\not\leqq M$ .

(IIv) $N_{G}(A)\underline{\subseteq}M$ for every nonidentity subgroup $A$ of $M’$ such that
$C_{H}(A)\neq 1$ .

(IIIiii) $V$ is an abelian $\varpi$-group and $N_{G}(V)\underline{\subseteq}M$ .

Proposition 10.1. Let $M$ be an element of M.

(a) $M\in M_{\mathcal{F}}$ if and only if $M$ is of type $I$.
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(b) $M\in M_{P_{2}}$ if and only if $M$ is of type $II$.

(c) $M\in M_{T_{1}}$ and $M_{F}\neq M_{\sigma_{O}}$ if and only if $M$ is of type $III$ or $IV$.

(d) $M\in M_{P_{1}}$ and $M_{F}=M_{\sigma_{0}}$ if and only if $M$ is of type $V$.

(e) $M’=M_{\sigma_{0}}U$ if and only if $M$ is not of type $I$.

(f) $M_{F}=M_{\sigma_{0}}$ if and only if $M$ is of type $I$, $II$, or $V$.

Proof, (a) Suppose that $M\in M_{\mathcal{F}}$ . This means that $K=1$ and
$U\neq 1$ in the notation of this section. As in [BG], let $H$ denote $M_{F}$ .

Since $U\neq 1$ , Theorem A (8) yields that $M_{\sigma_{0}}=M_{F}=H$ . Thus, $U$ is a
complement of $H$ in $M$ . We have $H\neq M$ because $U\neq 1$ . By Theorem
A (6), $H\neq 1$ so we have the condition (Ii). The conditions (Iii), (liii)
and (liv) are Theorem $B(2),(3)$ and (1), respectively. We need to prove
(1v). Suppose that $H$ is not a $TI$-subset of $G$ . Then, $F(M)$ is not a
$TI$-subset of $G$ . Since $M$ $\in M_{\mathcal{F}}$ , the case (3) of Theorem 9.7 (e) does
not occur. Suppose that neither (a) nor (b) hold in (1v). Then, we
have the case (2) of Theorem 9.7 (e). Then, for every $q\in\pi(H)$ , either
$q\in\sigma_{0}(M)\backslash \beta(M)$ , or $M$ has a cyclic Sylow $q$-subgroup. Thus, $q\in\pi^{*}$ .

Furthermore, the exponent of $M/H$ divides $q-1$ . Since $O_{p’}(H)$ is cyclic
for one prime $p\in\pi(H)$ , $M$ satisfies the condition (1v). Therefore, every
subgroup in $M_{\mathcal{F}}$ is of type I.

Conversely, suppose that $M$ is of type I. Suppose that $\kappa(M)\neq\emptyset$ .

Let $K$ be a Hall $\kappa(M)$ -subgroup of $M$ and $K^{*}=C_{M_{\sigma}}(K)$ . Then, by
Theorem $C(2)$ , $K^{*}=C_{H}(K)\neq 1$ . We will prove that $C_{H}(K)=1$

contrary to the above inequality.
Since $K\cap H\underline{\subseteq}K\cap M_{\sigma_{0}}=1$ , there is a complement $E$ of $H$ in $M$

that contains $K$ . Since $K$ is a cyclic Hall subgroup of $M$ by Theorem
A (2), (liii) implies that $K$ acts regularly on $H$ by conjugation. Thus,
$C_{H}(K)=1$ . This contradiction proves that every subgroup of type I
lies in $M_{\mathcal{F}}$ .

(b) Suppose that $M\in M_{P}$ , i.e. $K\neq 1$ . By Theorem $C(3)$ , $M’=$

$UM_{\sigma_{0}}$ , so $M’$ is a normal complement of $K$ . Hence, $M’$ is a Hall $\kappa(M)’-$

subgroup of $M$ . It contains $H$ because $H\underline{\subseteq}M_{\sigma_{O}}\underline{\subseteq}M’$ by Theorem
A (6). Thus, $M$ satisfies (T1).

Define $W_{1}=K$ , $W_{2}=K^{*}$ , and let $V$ be a $K$-invariant complement
of $H$ in $M’$ . If $M_{\sigma_{0}}=H$ , then choose $V=U$ . By Theorem A (6),
$V(\cong M’/H)$ is nilpotent. This proves the condition (T2) for $M$ . The
group $H$ is not cyclic by Theorem $C(2)$ . The remaining parts of (T3)
follow from Theorem A (7). Since $K^{*}\underline{\subseteq}M_{\sigma_{0}}\underline{\subseteq}M’$ , we have

$KK^{*}\cap M’=(K\cap M’)K^{*}=K^{*}$ .

This, together with Theorem A (5), implies (T4); while Theorem $C(8)$

yields (T5).
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Suppose that $A_{0}$ and $A_{1}$ are subgroups of prime order in $V$ such
that

$(A_{0})^{g}=A_{1}$ , $g\in G\backslash M$ , $C_{H}(A_{0})\neq 1$ , and $C_{H}(A_{1})\neq 1$ .

If $H=M_{\sigma_{0}}$ , then $V=U$ . Hence, by Theorem $B(4)$ , we have

$\{M\}=M(C_{G}(A_{1}))=M(C_{G}(A_{0}))^{g}=\{M^{g}\}$ .

This would imply $g\in M$ by Lemma E. Therefore, we have $H\neq M_{\sigma_{O}}$ .

Theorem A (8) yields $U=1$ and

$A_{i}\underline{\subseteq}V\underline{\subseteq}M’=UM_{\sigma_{0}}=M_{\sigma_{0}}$ .

By Theorem $D(1)$ , $A_{0}$ and $A_{1}$ are conjugate in $M$ . This proves that $M$

satisfies (T6).
Assume that $M\in M_{J_{2}^{)}}$ . Then, $K\neq 1$ and $U\neq 1$ . Theorem A (8)

yields $M_{\sigma_{0}}=H$ so $V=U$ . We will check the conditions in (T7) for
$M\in M_{P_{2}}$ . By Theorem $C(10)$ , $W_{1}=K$ has prime order and $F(M)$ is
a $TI$-subset in $G$ . Since $F(M)=C_{M}(H)H$ by Theorem A (7), we have
$(T7)(ii)$ . Theorem $C(1)$ , together with Theorem $B(1)$ , yields that $U$ is
abelian of rank $\leq 2$ . This is (IIiii).

Since $M\in \mathfrak{m}_{\varphi_{2}}$ , we have $V=U\neq 1$ . Suppose that $U$ is a $\varpi$-group.
Then, $M$ is a $\varpi$-group and Theorem $C(1)$ yields $N_{G}(U)\not\leqq M$ . This

proves (IIiv).
To prove (IIv), let $A$ be a nonidentity subgroup of $M’$ such that

$C_{H}(A)\neq 1$ . Since $M’=HU$ , we have $A=XY$ where $X=A\cap H$ is
a normal Hall subgroup of $A$ and $Y$ is a complement of $X$ in $A$ . Then,
$N_{G}(A)\underline{\subseteq}N_{G}(X)$ . If $X\neq 1$ , we have $N_{G}(X)\underline{\subseteq}M$ because $F(M)$ is
a $TI$-subset of $G$ . In this case, $N_{G}(A)\underline{\subseteq}M$ . Suppose $X=1$ . Then
$A=Y$ is a $\sigma_{0}(M)’$-group and it is conjugate to a subgroup of $U$ in $M$ .

We may assume, by replacing $A$ by a conjugate in $M$ if necessary, that
$A\underline{\subseteq}U$ . Since $C_{H}(A)\neq 1$ , Theorem $B(4)$ yields that $M(C_{G}(A))=\{M\}$ .

Therefore, $N_{G}(A)\underline{\subseteq}M$ . This proves (IIv). Thus, a group in $M_{J_{2}^{)}}$ is of
type $II$ .

Assume that $M\in M_{T_{1}}$ , i.e. $K\neq 1$ but $U=1$ . In this case, we
have $V\underline{\subseteq}M’=M_{\sigma_{0}}$ . Therefore, $V$ is a $\varpi$-group. Suppose that $V\neq 1$ .

Recall that $V$ is defined as a complement of $H$ in $M’$ . Thus, in this case,
we have $H\neq M_{\sigma_{O}}$ . Hence, by Theorem A (8), conditions (i) and (ii) of
(T7) hold. Since $V$ is a Hall subgroup, $V$ contains a Sylow $p$ subgroup
$P$ of $G$ . Since $P\underline{\subseteq}V\underline{\subseteq}M_{\sigma_{O}}$ , we have $p\in\sigma_{0}(M)$ and $N_{G}(P)\underline{\subseteq}M$ . By
(T2), $V$ is nilpotent. Hence,

$N_{G}(V)\underline{\subseteq}N_{G}(P)\underline{\subseteq}M$ .
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Thus, $M\in M\varphi_{1}$ with $V\neq 1$ is of type III or $IV$ according as $V$ is abelian
or not.

Finally, suppose that $M\in M_{P_{1}}$ and $V=1$ . In this case, we have
$H=M_{\sigma_{O}}=M’$ . Suppose that $H$ is not a $TI$-subset of $G$ . Then, $F(M)$

is not a $TI$-subset of $G$ . Theorem 9.7 (e) implies that $M$ satisfies one of
the three conditions. Since $M\in M_{T_{1}}$ , the first condition does not hold.
Hence, $M$ is of type V.

Suppose that $M$ is a group of type $II$ , III, $IV$ , or V. Then, $M’$ is a
Hall subgroup of $M$ with a cyclic complement $W_{1}$ by (T1) and (T2). The
group $W_{1}$ is a cyclic Hall subgroup of $M$ such that $C_{H}(W_{1})=W_{2}\neq 1$ .

This implies $\pi(W_{1})\underline{\subseteq}\kappa(M)$ . Thus, $\kappa(M)\neq\emptyset$ and $M\in M_{T}$ . The group
$M$ has a series of characteristic subgroups $H\underline{\subseteq}M_{\sigma_{O}}\underline{\subseteq}M’$ . The type
of $M$ is determined by the properties of this series. The type is $V$ if
and only if $H=M’$ . The type is $IV$ if and only if the group $M’/H$ is
nonabelian.

For the remaining types, $M’/H$ is abelian. The type is III if and
only if $M’/H$ is an abelian $\varpi$ group and $N_{G}(V)\underline{\subseteq}M$ . Thus, the type
of a group in $\mathfrak{m}_{\varphi}$ is uniquely defined. Therefore, the statements (b),
(c), and (d) hold. The other parts of Proposition 10.1 are proved as in
[BG]. Q.E.D.

Theorem I. Let $H$ be a nilpotent Hall subgroup of G. Suppose
that $H$ is a $\varpi$ -group. Then, two elements of $H$ are conjugate in $G$ if
and only if they are conjugate in $N_{G}(H)$ .

Either every subgroup in $M$ is of type I or all of the following con-
ditions are true.

(a) $G$ contains a cyclic subgroup $W=W_{1}\times W_{2}$ with the prop-
erty that $N_{G}(W_{0})=W$ for $ eve\eta$ nonempty subset $W_{0}$ of $W\backslash $

$\{W_{1}, W_{2}\}$ . Also, $W_{i}\neq 1$ for $i=1,2$ .

(b) There are two subgroups $S$ and $T$ in $M$ not of type I such that

$S=W_{1}S’$ , $T$ $=W_{2}T’$ , $S’\cap W_{1}=T’\cap W_{2}=1$ and $S\cap T=W$.

(c) $M\in J\vee l$ is either of type I or conjugate to $S$ or $T$ .
(d) $S$ or $T$ is of type $II$.

(e) Both $S$ and $T$ are of type $II$, $III$, $IV$, or $V$.

(f) The group $S$ is not conjugate to $T$ in $G$ .

Proof. Let $H$ be a nilpotent Hall subgroup of $G$ , and assume that
$H$ is a $\varpi$-group. In order to prove the first statement, we may assume
$H\neq 1$ . By Corollary 9.4, there is a subgroup $M\in M$ such that $H\underline{\subseteq}$

$M_{\sigma_{0}}$ . We will show that $N_{G}(H)\underline{\subseteq}M$ . Take a prime $p\in\pi(H)$ and
$P\in Sy\ell_{p}(H)$ . Since $H$ is a Hall subgroup of $G$ , we have $P\in Sy\ell_{p}(G)$ .



On the Prime Graph of a Finite Simple Group 121

It follows from the definition of $\sigma_{0}(M)$ that $N_{G}(P)\underline{\subseteq}M$ . Since $H$ is
nilpotent, $N_{G}(H)\underline{\subseteq}N_{G}(P)$ so $N_{G}(H)\underline{\subseteq}M$ as claimed.

Corollary 9.3 (b) implies that any two elements of $H$ which are
conjugate in $G$ are already conjugate in $N_{M}(H)$ . Since $N_{G}(H)\underline{\subseteq}M$ ,
we have $N_{M}(H)=N_{G}(H)$ and the first statement is proved.

Suppose that there is a subgroup $M\in M$ not of type I. Then, $ M\in$

$M_{T}$ by Proposition 10.1 (a). Let $M$ $=S$ , $M^{*}=T$ , $K=W_{1}$ , and $K^{*}=$

$W_{2}$ . The group $M$ satisfies the conditions $(T1)-(T6)$ by Proposition
10.1 (a). These conditions imply that $W_{1}$ and $W_{2}$ are nonidentity cyclic
subgroups of relatively prime orders. Condition (T4) yields

$W=W_{1}W_{2}=W_{1}\times W_{2}$ .

Hence, $W$ is cyclic. Condition (T5) yields the first condition (a) of
Theorem I. By Theorems $C(4))C(6)$ , and $C(7)$ , together with (T1)
and (T2), $S$ and $T$ satisfy the conditions (b), (c) and (d). The last two
conditions follow from Proposition 10.1 and Theorem 8.7. Q.E.D.

We state here the definition of the sets $A(M)$ and $A_{0}(M)$ for each
$M$ $\in M$ . Let $H=M_{F}$ .

If $M$ is of type $I$ , then

$A(M)=A_{0}(M)=x\in H\#\cup C_{M}(x)$
.

If $M$ is of type $II$ ,

$A(M)=x\in H\#\cup C_{M’}(x)$
;

while if $M$ is of type III, $IV$ , or $V$ ,

$A(M)=M’$ .

If $M$ is not of type $I$ , then

$A_{0}(M)=A(M)\cup G_{M}(\overline{W})$ .

Theorem $II$ . For a subgroup $M\in M$ , let $X=A(M)$ or $X=$

$A_{0}(M)$ , and let
$D=\{x\in X^{\phi}|C_{G}(x)\not\leqq M\}$ .

Then, $D\underline{\subseteq}M_{\sigma_{O}}$ , $|M(C_{G}(x))|=1$ for all $x\in D$ , and the following
conditions are satisfified.
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(Fi) Whenever elements of $X$ are conjugate in $G$ , they are conjugate
in $M$ .

{ $Fii)$ If $D$ is not empty, then there are $\varpi$ subgroups $M_{1}$ , $\ldots$ , $M_{n}$ of
$M$ of type I or $\Pi$ such that with $H_{i}=(M_{i})_{F}$ ,

(a) $(|H_{i}|, |H_{j}|)=1$ for $i\neq j$ ,
(b) $M_{i}=H_{i}(M\cap M_{i})$ and $M\cap H_{i}=1$ ,

(c) $(|H_{i}|, |C_{M}(x)|)=1$ for all $x\in X^{\beta}$ ,

(d) $A_{0}(M_{i})\backslash H_{i}$ is a nonempty $TI$-subset of $G$ with normalizer $M_{i}$ ,

and
(e) if $x\in D$ , then there isa conjugate $y$ of $x$ in $D$ and an index $i$

such that $C_{G}(y)=C_{H_{i}}(y)C_{M}(y)\underline{\subseteq}M_{i}$ . If $y\in D$ with $C_{G}(y)\underline{\subseteq}$

$M_{i}$ , then $y\in A(M_{i})$ .

(Fiii) If some $M_{i}$ in (Fii) has type $II$, then $M$ isa $\varpi$ group and is

a Frobenius group with cyclic Frobenius complement, and $M_{F}$ is not $a$

$TI$ subset in $G$ .

Proof. For any $M\in M$ , $A_{0}(M)$ is a disjoint union of the sets

$M_{\sigma_{0}}$ , $A(M)\backslash M_{\sigma_{0}}$ , and $A_{0}(M)\backslash A(M)$ .

The order of an element of $M_{\sigma_{0}}$ involves only primes in $\sigma_{0}(M)$ , the order
of an element of $A(M)\backslash M_{\sigma_{0}}$ involves no prime of $\kappa(M)$ and some prime
in $\pi(U)$ which is disjoint from $\sigma_{0}(M)$ , and the order of an element of
$A_{0}(M)\backslash A(M)$ involves a prime of $\kappa(M)$ . Thus, an element of any of
these sets is not conjugate to an element of one of the other two sets.
By Theorems $B(5)$ and $C(9)$ , the latter two sets are $TI$-subsets of $G$

with normalizer $M$ if not empty. Therefore, we have $D\underline{\subseteq}M_{\sigma_{O}}$ . Thus,
if $x\in D$ , then $x$ is a $\varpi$ element with $M$ $\in M_{\sigma}(x)$ . In fact, we have
$|M_{\sigma}(x)|>1$ because $C_{G}(x)\not\leqq M$ . Theorem 8.4 yields $|M(C_{G}(x))|=1$ .

It follows from the definition of the set $X$ that $X\backslash M_{\sigma_{O}}$ is either
empty or a $TI$-subset of $G$ with normalizer $M$ as remarked earlier.
Therefore, Theorem $D(1)$ implies (Fi).

Assume that $D$ is not empty. For each $x\in D$ , let $N(x)$ be the
element of $M(C_{G}(x))$ . By Theorem $D(4)$ , $N(x)$ is a $\varpi$-group of type
I or $II$ . Let $A$ be the collection of all such subgroups $N(x)$ and let
$\{M_{1}, \ldots, M_{n}\}$ be a subset of $A$ such that each $N\in A$ is conjugate in
$G$ to exactly one $M_{i}$ . The last condition (Fiii) follows from Theorem
$D(4)$ .

We will prove (Fii). Take some $M_{i}$ . Theorem $D(4)$ yields that
$(M_{i})_{\sigma_{0}}=H_{i}$ and $M\cap M_{i}$ is a complement of $H_{i}$ in $M_{i}$ . This proves (b).
By Theorem $E$ $(2)$ , the sets $\sigma(M_{i})$ are pairwise disjoint which implies
(a).
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By Theorem $D(4)$ , $x\in A(M_{i})\backslash H_{i}$ . $ThuS_{)}$ $A(Mi)\backslash H_{i}$ is a nonempty
$TI$-subset of $G$ with normalizer $M_{i}$ (by Theorem $B(5)$ ). If $ A_{0}(M_{i})\neq$

$A(M)$ , then $A_{0}(M_{i})\backslash A(M)$ is also a $TI$-subset (by Theorem $C(9)$ ) and
does not fuse to $A(M)$ . This proves that $A_{0}(M_{i})\backslash H_{i}$ is a nonempty
$TI$-subset of $G$ with normalizer $M_{i}$ .

To prove (e), let $x\in D$ . Then, the subgroup $N(x)$ is conjugate to
$M_{i}$ for some $i$ , so $N(x)^{g}=M_{i}$ for some $g\in G$ . By Lemma 8.13 (b),
we may take $g\in M$ . Then, $y=x^{g}\in D$ and $N(x)=M_{i}$ . By Theorem
8.4 (b), we have

$C_{G}(y)=C_{H_{i}}(y)C_{M}(y)\underline{\subseteq}M_{i}$ .

If $M_{i}$ is of type $I$ , certainly $y\in A(M_{i})$ . Suppose that $M_{i}$ is of type $II$ .

Theorem 8.4 (c) yields $\pi(\langle y\rangle)\underline{\subseteq}\tau_{2}(M_{i})$ . Since $M_{i}$ is of type $II$ , Theorem
8.7 (h) and (c) yield $y\in(M_{i})’$ . Hence, $y\in A(M_{i})$ in this case, too.

It remains to prove (c). Suppose $x\in X^{Q}$ and $(|H_{i}|, |C_{M}(x)|)\neq 1$ for
some $i$ . Then, $\pi(M)\cap\sigma_{0}(M_{i})$ is not empty. By Lemma 8.13 (a), $M$ is
a Frobenius group with Frobenius kernel $M_{\sigma_{0}}$ . Hence,

$A_{0}(M)=M_{\sigma_{O}}=X$ and $C_{M}(x)\underline{\subseteq}M_{\sigma_{0}}$ .

It follows that $\sigma_{0}(M)\cap\sigma_{0}(M_{i})$ is not empty. By Theorem $E(2)$ , $M$ is
conjugate to $M_{i}$ in $G$ . However, this is a contradiction because $\tau_{2}(M)=$

$\emptyset$ by Lemma 8.13 (a), while $\tau_{2}(M_{i})\neq\emptyset$ by Theorem 8.4 (c). Q.E.D.

Chapter II. Application of Character Theory

We continue to study the structure and embedding of the subgroups
in $M$ and use the notation introduced in Chapter I. We will follow most
of the terms and notation of [BG] and [FT]; however, I follow the practice
of denoting elements of groups by the lower case letters and subsets by
the capitals. For a group $H$ , let

Irr (H)

denote the set of all irreducible characters of the group $H$ over the field
$\mathbb{C}$ of complex numbers. If $X$ is a subset of $H$ ,

$I(X)$

denotes the set of virtual characters which vanish outside $X$ . The subset
of $I(X)$ consisting of those virtual characters which take zero at the
identity will be important and denoted by

$I_{0}(X)$ .
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Sometimes, the set of complex valued class functions which vanish out-
side $X$ will be considered; it is denoted by $C(X)$ . The subset of those
class functions taking value zero at the identity is denoted $C_{0}(X)$ .

When $H$ is a subgroup of a group $G$ , the induction $\varphi^{G}$ and the
restriction $\theta_{H}$ of class functions are defined as usual. If the groups
involved are clear from the context, the notation $\varphi^{*}$ for the induction
may be used.

Our starting point is Theorems I and $II$ of Section 10, Chapter I.
Theorem I asserts that every subgroup $M\in M$ is of type $I$ , $II$ , III, $IV$ ,

or V. The definition of groups of each type is stated in [BG] but we
have made three changes in Section 10, Chapter $I$ ; we will be using the
modified definition in Chapter $II$ . Theorem $II$ concerns the embedding
of the subgroups of M. We say that a subset $X$ of $M$ is an $F$-set (or sat-
isfies Feit-Thompson-Sibley-Bender-Glauberman conditions) if $M$ and
$X$ satisfy the conditions (Fi), (Fii) and (Fiii) of Theorem $II$ . Theorem
$II$ simply says that both $X=A(M)$ and $X=A_{0}(M)$ are $F$-sets of $M$ .

In [BG], it is suggested to call $A(M)$ and $A_{0}(M)$ tamely imbedded sub-
sets. I choose a different term because there is another tamely imbedded
subset in [FT] and I have added two conditions to (Fii).

The set of subgroups $\{H_{1}, H_{2}, \ldots, H_{n}\}$ in (Fii) is called the set of
supporting subgroups of the $F$-set $X$ . Sometimes we abuse the term and
may call subgroups $\{M_{1}, \ldots, M_{n}\}$ are also supporting subgroups.

If $X$ is an $F$-set of $M$ , we will use the following notation throughout
Chapter $II$ . Let $D$ be the set defined by

$D=\{x\in X^{\phi}|C_{G}(x)\not\leqq M\}$ .

If $D$ is empty, $X$ is a $TI$-subset of $M$ . If $X$ is either $A(M)$ or $A_{0}(M)$ ,

and if $D$ is not empty, then Theorem $II$ yields that $D\underline{\subseteq}M_{\sigma_{0}}$ . Therefore,
the set $D$ does not depend on whether $X=A(M)$ or $X=A_{0}(M)$ . The
following notation is used.

$D_{0}=\{x\in X|C_{G}(x)\underline{\subseteq}M\}$

and for $i>0$ ,
$D_{i}=\{x\in D|C_{G}(x)\underline{\subseteq}M_{i}\}$

where $M_{i}$ is one of the supporting subgroups of the set $X$ . We have
abused the notation already. It is convenient to define

$H_{0}=\{1\}$ , $M_{0}=M$ , and $D^{*}=\bigcup_{i=0}^{n}D_{i}$ .

As in [FT], we define for $i\geq 0$ and $x\in D_{i}$

$A_{x}=A(x)=\{hx|hx=xh, h\in H_{i}\}$ .
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Note that each $A(x)$ consists of nonidentity elements. We call a subset
of the form $A(x)$ for some $x\in D^{*}$ an annex. For an $F$-set $X$ of $M$ , we
call the set of elements of $G$ which are conjugate to an element of some
annex $A(x)$ for $x\in D^{*}$ the territory of $X$ . Sometimes, we abuse the
term and call it the territory of $M$ . A class function $\theta$ on $G$ is called
well-behaved if $\theta$ takes a constant value on each annex. The well behaved
class functions will play an important role in the following discussion.

\S 11. Preparation from Character Theory

First we paraphrase the proof of Lemma 4.5 [FT] because it is basic
to our work. Afterwards, we define the basic character correspondence
$\tau$ and prove its properties. This part corresponds to Section 9 of [FT].

For convenience, we state Lemma 4.5 [FT]:

Lemma. Let $H$ be a normal subgroup of the group $X$ and let $\theta$ be
an irreducible character of H. Suppose $X$ contains a normal subgroup
$X_{0}$ such that the inertia group $I(\theta)\underline{\subseteq}X_{0}$ and such that $X_{0}/H$ is abelian.
Then $\theta^{*}$ is a sum of irreducible characters of $X$ which have the same
degree and occur with the same multiplicity in $\theta^{*}$ . This common degree
is a multiple $of|X$ : $I(\theta)|$ . If furthermore $H$ is a Hall subgroup of $X_{0}$ ,

then $\theta^{*}$ is a sum of $|I(\theta)$ : $H|$ distinct irreducible characters of degree
$|X$ : $I(\theta)|\theta(1)$ .

We need a lemma.

Lemma. Let $M$ be a group, $H\triangleleft M$ , $\theta\in Irr(H)$ , and let $I$ $=I(\theta)$

be the inertia group of $\theta$ in M. If $\theta^{I}=\sum a_{i}\lambda_{i}$ where $a_{i}$ are positive
integers and $\lambda_{i}$ are distinct irreducible characters of the group $I$ , then
$\lambda_{i}^{M}$ are distinct irreducible characters of $M$ and

$\theta^{M}=\sum a_{i}\lambda_{i}^{M}$ .

By the reciprocity theorem, $(\lambda_{i})_{H}$ contains the character $\theta$ with
exact multiplicity $a_{i}$ . Since $H\triangleleft I$ , $(\lambda_{i})_{H}$ is a sum of the conjugates of
$\theta$ . It follows from the definition of the inertia group that $\theta$ is the only
conjugate of $\theta$ in $I$ . Thus, we have

$(\lambda_{i})_{H}=a_{i}\theta$ ;

in particular, $\lambda_{i}(1)=a_{i}\theta(1)$ .
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Let $\xi$ be an irreducible component of $\lambda_{i}^{M}$ . Then, $\xi_{I}$ involves $\lambda_{i}$ .

Hence) $\xi_{H}$ contains $ a_{i}\theta$ . Since $H\triangleleft M$ , $\xi_{H}$ contains all the $|M$ : $I|$

conjugates of $\theta$ with the same multiplicity. It follows that

$\xi(1)\geq a_{i}|M$ : $I|\theta(1)=|M$ : $I|\lambda_{i}(1)=\lambda_{i}^{M}(1)$ .

Since $\xi$ is an irreducible component of $\lambda_{i}^{M}$ , we have $\lambda_{i}^{M}=\xi$ , i.e. $\lambda_{i}^{M}$ is

irreducible. The preceding proof yields that $(\lambda_{i}^{M})_{H}$ involves $\theta$ exactly
$a_{i}$ times. This implies that the character $(\lambda_{i}^{M})_{I}$ does not involve $\lambda_{j}$ for

any $j\neq i$ . Thus, $\lambda_{i}^{M}\neq\lambda_{j}^{M}$ for $i\neq j$ . This proves the lemma. Q.E.D.

Hypotheses of Lemma 4.5 [FT] are $H\triangleleft X$ , $\theta\in Irr(H)$ , $I$ $=I(\theta)$ , the
inertia group of $\theta$ in $X$ , and $I/H$ is abelian. By the preceding lemma,
we need only to prove the assertion for $I$ .

Let $\lambda$ be an irreducible component of $\theta^{I}$ and let $\{\mu_{1}, \ldots, \mu_{m}\}$ be
the set of all irreducible characters of $I/H$ . Since $I/H$ is abelian) $\mu_{i}$ are
linear and $\{\mu_{1}, \ldots, \mu_{m}\}$ is a multiplicative group of order $m=|I/H|$ .

Suppose that we take notation $\lambda\mu_{i}=\lambda$ if and only if $1\leq i\leq n$ . For
every $j$ , $(\lambda\mu_{j})\mu_{i}=(\lambda\mu_{j})$ for $i=1,2$ , $\ldots$ , $n$ .

We have $(\theta^{I})_{H}=m\theta$ so $\lambda_{H}=a\theta$ for some positive integer $a$ . Then,

$\lambda(1_{H})^{I}=(\lambda_{H})^{I}=a\lambda^{I}$ .

Since $(1_{H})^{I}=\sum\mu_{j}$ , the irreducible components of $\theta^{I}$ are characters of

the form $\lambda\mu_{j}$ . This proves that all the irreducible components of $\theta^{I}$ are
of the same degree. Also, the equality

$\lambda(\sum\mu_{j})=a\theta^{I}$

yields that $\theta^{I}$ contains each irreducible component $\lambda\mu_{j}$ with the same
multiplicity, say $b$ . This proves the first assertion of Lemma 4.5 [FT].
We remark that $n$ $=ab$ .

The second part of the lemma asserts that if in addition $H$ is a Hall
subgroup of the inertia group $I$ , then $\theta^{X}$ is a sum of exactly $|I$ : $H|$

distinct irreducible characters of degree $|X$ : $I|\theta(1)$ . By the lemma, it
suffices to prove the case $X=I$ .

We can take an abelian complement $A$ of $H$ in I because $H$ is a
Hall subgroup of I and $I/H$ is abelian. We will show by induction that

if $H\underline{\subseteq}K\underline{\subseteq}I$ , $\theta^{K}$ is a sum of exactly $|K$ : $H|$ distinct irreducible
characters of degree $\theta(1)$ . The first part of Lemma yields that

$\theta^{K}=b(\lambda_{1}+\cdots+\lambda_{s})$
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where $\lambda_{1}$ , $\ldots$ , $\lambda_{s}$ are distinct irreducible characters of degree $a\theta(1)$ .

Suppose that $|K$ : $H|=p$ is a prime. By definition of the induced
character, we have

$(\theta^{K})_{H}=p\theta$ .

Then, the orthogonality relations yield

$b^{2}s=(\theta^{K}, \theta^{K})=(\theta, (\theta^{K})_{H})=p(\theta, \theta)=p$ .

Since $p$ is a prime, we have $b=1$ and $s=p$ . Thus, $n$ $=n_{K}=1$ .

Suppose that $H\underline{\subseteq}K\underline{\subseteq}L\underline{\subseteq}$ I and $|L$ : $K|=q$ is a prime. Suppose

that $n_{K}=1$ . Take an irreducible component $\lambda$ of $\theta^{K}$ and let $\{\mu_{1}, \ldots, \mu_{s}\}$

be the set of irreducible characters of the abelian group $K/H$ . Since
$n_{K}=1$ , the characters $\lambda\mu_{i}$ are distinct. Therefore,

$\theta^{K}=\sum\lambda\mu_{i}$ .

We claim that $L\underline{\subseteq}I(\lambda)$ . If $x\in L$ , $(\theta^{K})^{x}=(\theta^{x})^{K}=\theta^{K}$ because
$x\in L\underline{\subseteq}I$ . Thus, $\lambda^{x}$ is an irreducible component of $\theta^{K}$ , i.e. $\lambda^{x}=\lambda\mu_{i}$

for some $i$ . We need to show that $\mu_{i}$ is the principal character of $K/H$ .

We may assume that $x\in K\cap A$ . If $\mu_{i}$ is nonprincipal, there is an element
$y\in K\cap A$ such that $\mu_{i}(y)\neq 1$ and the order of $y$ is a power of some
prime $r$ . Lemma 4.2 [FT] implies

$\lambda(y)\equiv\lambda(1)$ $(mod \tau)$

where $\tau$ is a prime ideal dividing $r$ in the ring of integers of a number
field. Since $n_{K}=1$ , we have $\lambda(1)=\theta(1)$ . Also, $\lambda(1)$ divides the order
$|H|$ . The group $H$ is a Hall subgroup of I so $r$ does not divide $\lambda(1)$ .

It follows from the above congruence that $\lambda(y)\neq 0$ . Since $A$ is abelian
and $x$ , $y\in A$ , we have

$\lambda(y)=\lambda^{x}(y)=\lambda(y)\mu_{i}(y)$ .

Therefore, $\mu_{i}(y)=1$ because $\lambda(y)\neq 0$ . This contradiction proves that
$\lambda^{x}=\lambda$ and $L\underline{\subseteq}I(\lambda)$ .

By the result proved earlier, the induced character $\lambda^{L}$ is a sum of
$|L$ : $K|$ distinct irreducible characters. This holds for any irreducible

component of $\theta^{K}$ . Thus, $\theta^{L}$ is a sum of exactly $|L$ : $H|$ distinct irre-
ducible characters of degree $\theta(1)$ . In particular, $n_{L}=1$ . This completes
the proof of Lemma 4.5 [FT]. Q.E.D.

We need some lemmas about the fusion of elements.
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Lemma I. Let $M\in M$ and let $X$ be an $F$-set ofM. Every element

of $X^{\phi}$ is conjugate to an element of $D^{*}$ in $M$ .

Proof. Let $x\in X^{\beta}$ . If $x\in D_{0}$ , the assertion is trivial. If $x\not\in D_{0}$ ,

we have $x\in D$ . By (Fii, $e$), there is a conjugate $y$ of $x$ such that $y\in D_{i}$ .

Since $x$ and $y$ are two elements of $X$ which are conjugate, (Fi) yields
that they are conjugate in $M$ . Q.E.D.

Lemma J. (a) Every element $g$ of $M_{i}$ is conjugate in $M_{i}$ to an
element of the form $xh=hx$ where $x\in M\cap M_{i}$ and $h\in H_{i}$ .

(b) Suppose that $g$ is an element of $M_{i}$ with $C_{H_{i}}(g)\neq 1$ . Assume
that $g$ is conjugate in $M_{i}$ to an element of the form $hx$ where $x\in M\cap M_{i}$

and $h\in C_{H_{i}}(x)$ , and at the same time $g$ is conjugate to an element of
the annex $A(y)$ with $y\in D_{j}$ . Then, $j=i$ and the element $x$ is conjugate

to $y$ in $M_{i}$ . In particular, $x\in D_{i}$ and $g\in A(M_{i})$ .

Proof. (a) If $i=0$ , $M_{i}=M$ and (a) holds trivially. Assume $i>0$ .

The subgroup $H_{i}$ is a normal Hall subgroup of $M_{i}$ with complement
$M\cap M_{i}$ by (Fii, $b$). Let $g=uv=vu$ be the decomposition of the

element $g$ into the product of a $\pi(H_{i})$ -element $u$ and a $\pi(H_{i})’$-element
$v$ . Since $H_{i}$ is nilpotent, we can apply the Schur-Zassenhaus Theorem
to the subgroup $\langle H_{i}, g\rangle$ . Then) $\langle v\rangle$ is conjugate in $M_{i}$ to a subgroup of
$M\cap M_{i}$ . It follows that $g$ is conjugate in $M_{i}$ to an element of the form
$hx$ where $x\in M\cap M_{i}$ and $h\in C_{H_{i}}(x)$ .

(b) Suppose that $C_{H_{i}}(g)\neq 1$ and that $g$ is conjugate to an element
$ky$ of $A(y)$ with $y\in D_{j}$ and $k\in C_{H_{j}}(y)$ . The first assumption implies

that $i>0$ . We will prove that $j>0$ . If $j=0$ , we have $C_{G}(y)\underline{\subseteq}M$ . It
follows that

$C_{G}(ky)\underline{\subseteq}C_{G}(y)\underline{\subseteq}M$ .

Since $C_{H_{i}}(g)\neq 1$ for some $i>0$ , $(|C_{G}(g)|, |H_{i}|)\neq 1$ . We have $|C_{G}(g)|=$

$|C_{G}(ky)|$ because $g$ is conjugate to $ky$ . Therefore,

$(|C_{G}(y)|, |H_{i}|)\neq 1$ .

This contradicts $(Fii,c)$ as $|C_{G}(y)|=|C_{M}(y)|$ . Hence, we have $j>0$ .

It follows that $C_{G}(y)\underline{\subseteq}M_{j}$ and $C_{G}(y)=C_{H_{j}}(y)C_{M}(y)$ . Suppose

that $j\neq i$ . Then, by (Fii) (a) and (c), $|C_{G}(y)|$ is prime to $|H_{i}|$ . This is
a contradiction because

$|C_{G}(g)|=|C_{G}(ky)|$ and $C_{G}(ky)\underline{\subseteq}C_{G}(y)$ .

Therefore, we have $j=i$ . Since $y\in X^{\oint}$ , the order of $y$ is prime to $|H_{i}|$

by $(Fiic))$ . Hence, $y$ is the $\pi(H_{i})’$-part of the element $ky$ . Similarly, the
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element $x$ is the $\pi(H_{i})’$-part of $hx$ . Since $hx$ is conjugate to $ky$ , the
element $x$ is conjugate to $y$ in $G$ . By $(Fii,e)$ , the element $y$ is in $A(M_{i})$ .

Since $hx$ is conjugate to $g$ in $M_{i}$ and $C_{H_{i}}(g)\neq 1$ , we have $C_{H_{i}}(x)\neq 1$ .

If $M_{i}$ is of type $I$ , then $x\in A(M_{i})$ . If $M_{i}$ is of type $II$ , $(M_{i})’$ is a Hall
subgroup of $M_{i}$ by (T1), and $y\in A(M_{i})\underline{\subseteq}(M_{i})’$ . Since $x$ is conjugate
to $y$ in $G$ , we have

$|\langle x\rangle|=|\langle y\rangle|$ .

Hence, $x\in(M_{i})’$ and $x\in A(M_{i})$ . Clearly, $y\neq 1$ so $y\not\in H_{i}$ . Since $H_{i}$

is a Hall subgroup of $M_{i}$ , we have $x\not\in H_{i}$ . Thus, $x$ and $y$ are elements
of $A_{0}(M_{i})\backslash H_{i}$ that is a $TI$-subset in $G$ with normalizer $M_{i}$ . Since $x$ is
conjugate to $y$ , they are conjugate in $M_{i}$ . It follows that

$C_{G}(x)\underline{\subseteq}M_{i}$ and $x\in D_{i}$ .

By $(Fii,e)$ , $hx\in A(M_{i})$ . Since $g$ is conjugate to $hx$ in $M_{i)}$ we have
$g\in A(M_{i})$ . Q.E.D.

We will define the fundamental mapping $\tau$ .

Definition K. Let M $\in M$ and let X be an $F$-set of M. For

$\alpha\in I_{0}(X)$ and $1\leq i\leq n$ ,

define
$\alpha_{i}=\alpha_{M\cap M_{i}}$ .

Let $\alpha_{i1}$ be the virtual character of $M_{i}/H_{i}$ that is the lift of $\alpha_{i}$ and
let $\alpha_{i2}$ be the virtual character of $M_{i}$ induced by $\alpha_{i}$ . We define

$\alpha^{\tau}=\alpha^{G}+\sum_{i=1}^{n}(\alpha_{i1}-\alpha_{i2})^{G}$ .

Thus, $\alpha^{\tau}$ is a virtual character of the group $G$ that vanishes at the
identity.

Lemma L. (a) If $g\in G$ is not conjugate to any element of $X^{\phi}$ in
$G$ , then $\alpha^{G}(g)=0$ . If $g\in X^{\beta}$ , then

$\alpha^{G}(g)=|C_{G}(g)$ : $C_{M}(g)|\alpha(g)$ .

(b) Let $i$ be one of the integers between 1 and $n$ . If $g\in G$ is not conjugate

to any element $x$ of $M_{i}$ with $C_{H_{i}}(x)\neq 1$ , then $(\alpha_{i1}-\alpha_{i2})^{G}(g)=0$ .

Proof, (a) The first statement is obvious from the definition of

induced characters. Suppose $a\in X^{\Downarrow}$ . By definition,

$\alpha^{G}(g)=\sum\alpha_{0}(x_{i}^{-1}gx_{i})$
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where $\alpha_{0}$ is the function that agrees with $\alpha$ on $M$ but vanishes outside
$M$ , and the sum is over a system $\{x_{i}\}$ of the representatives of the cosets

of $M$ . We need to count the number of $x_{i}$ such that $x_{i}^{-1}gx_{i}\in X^{\phi}$ . If
$x^{-1}gx\in X$ , (Fi) yields

$x^{-1}gx=m^{-1}gm$

for some $m\in M$ . Hence, $xm^{-1}=c\in C_{G}(g)$ . We choose $c$ as a

representative of the coset $xM$ . Then, $\alpha_{0}(x_{i}^{-1}gx_{i})=\alpha(g)$ . This yields
the result.

(b) If $x\in M_{i}$ is not conjugate to any element of $M\cap M_{i}$ , then it
follows from the definition of the induced character that $\alpha_{i2}(x)=0$ . We
may take the set $H_{i}$ as a set of representatives from the cosets of $M\cap M_{i}$ .

If $x\in M\cap M_{i}$ and $h\in H_{i}$ ,

$h^{-1}xh\in M\cap M_{i}$

implies $[x, h]=x^{-1}h^{-1}xh\in(M\cap M_{i})\cap H_{i}=1$ . Hence, if $x\in M\cap M_{i}$ ,
then

$\alpha_{i2}(x)=|C_{H_{i}}(x)|\alpha_{i}(x)$ .

Thus, $(\alpha_{i1}-\alpha_{i2})(x)=0$ if $x\in M_{i}$ satisfies $C_{H_{i}}(x)=1$ . This, together
with Lemma $J(a)$ , proves (b). Q.E.D.

The following lemmas correspond to the lemmas in Section 9 of [FT].

Lemma 11.1. Let $M\in M$ and $X$ an $F$ set of M. For $\alpha\in I_{0}(X)$ ,
let $\alpha^{\tau}$ be defifined as in Defifinition K. Then, $\alpha^{\tau}(g)=0$ if $g$ is not conjugate
to an element of $A(x)$ for any $x\in D^{*}$ . If $g\in A(x)$ for $x\in D^{*}$ , then

$\alpha^{\tau}(g)=\alpha(x)$ .

In the other words, if $\alpha\in I_{0}(X)$ , the support of the function $\alpha^{\tau}$ is
contained in the territory of $X$ , and the function $\alpha^{\tau}$ is well-behaved.

Proof. Suppose that $\alpha^{\tau}(g)\neq 0$ . Then, clearly, $g$ must be conjugate

to some element of $M$ , $M_{1}$ , $\ldots$ , or $M_{n}$ . In order to have $\alpha^{G}(g)\neq 0$ or
$\alpha_{i2}^{G}(g)\neq 0$ , the element $g$ must be conjugate to an element of $X^{\Downarrow}$ . By
Lemma $J$ , if $g\in M_{i}$ for $i>0$ , $g$ is conjugate to an element of the form
$hx$ such that $x\in M\cap M_{i}$ and $h\in C_{H_{i}}(x)$ . In order to have $\alpha_{i1}^{G}(g)\neq 0$ ,

$g$ must be conjugate to an element $ky$ such that $y\in X^{\Downarrow}$ and $k$ is a
$\pi(H_{i})$ -element commuting with $y$ .

Every element of $X^{Q}$ is conjugate to an element of $D^{*}$ by Lemma I.
It follows that if $g$ is not conjugate to an element of $A(x)$ for any $x\in D^{*}$ ,
$\alpha^{\tau}(g)=0$ . This proves the first part.



On the Pnme Graph of a Finite Simple Group 131

Suppose that the element $g\in G$ is not conjugate to an element $x$

of $M_{i}$ with $C_{H_{i}}(x)\neq 1$ for any $i>0$ . Then, by Lemma $L(b)$ , $\sum(\alpha_{i1}-$

$\alpha_{i2})^{G}(g)=0$ . Hence, we have

$\alpha^{\tau}(g)=\alpha^{G}(g)$ .

If $g$ is not conjugate to any element of $X^{\oint}$ then $\alpha^{G}(g)=0$ . Suppose that
$g$ is conjugate to an element $x\in X^{\beta}$ . If $x$ is conjugate to an element $y$ of
$D_{i}$ for some $i>0$ , then $CG(V)\underline{\subseteq}M_{i}$ and $C_{H_{t}}(y)\neq 1$ . This contradicts
the hypothesis. By Lemma $I$ , $g$ is conjugate to an element $u$ of $D_{0}$ .

Then,
$\alpha^{\tau}(g)=\alpha^{G}(u)=\alpha(u)$

by Lemma $L(a)$ .

Suppose that $g\in M_{i}$ and $C_{H_{i}}(g)\neq 1$ . By Lemma $J(a)$ , we may
assume $g=hx$ with $x\in M\cap M_{i}$ and $h\in C_{H_{i}}(x)$ . We may also assume
that $\alpha^{\tau}(g)\neq 0$ . By the first paragraph of the proof, $g$ is conjugate to
an element of $A(y)$ for some $y\in D_{j}$ $(j\geq 0)$ . By Lemma $J(b)$ , $j=i$

and $x\in D_{i}$ . Since $x$ is a power of $g$ ,

$C_{G}(g)\underline{\subseteq}C_{G}(x)\underline{\subseteq}M_{i}$ .

The conditions (Fii) (e), (a) and (c) yield that for $j\neq i$ ,

$(|C_{G}(x)|, |H_{j}|)=1$ .

Since $C_{G}(g)\underline{\subseteq}C_{G}(x)$ , $g$ is not conjugate to any element $u$ of $M_{j}$ with
$C_{H_{j}}(u)\neq 1$ and $j\neq i$ . It follows from Lemma $L$ that

$\alpha^{\tau}(g)=\alpha^{G}(g)+(\alpha_{i1}-\alpha_{i2})^{G}(g)$ .

Suppose that $h\neq 1$ in $g=hx$ . Then, $\pi(\langle g\rangle)\cap\pi(H_{i})\neq\emptyset$ . Hence,

by (Fii, $c$ ), $g$ is not conjugate to any element of $X^{\oint}$ . Lemma $L$ yields
$\alpha^{G}(g)=0$ . Also, no conjugate of $g$ lies in $M\cap M_{i}$ because $M\cap M_{i}$ is a
$\pi(H_{i})’$-subgroup. Thus, $\alpha_{i2}^{G}(g)=0$ . If $g_{1}=v^{-1}gv$ , $v\in G$ , and $g_{1}\in M_{i}$ ,
then Lemma $J(b)$ yields $g_{1}\in A(M_{i})$ . Therefore, by $(Fii,d)$ , we have
$v\in M_{i}$ . This proves

$\alpha^{\tau}(g)=\alpha_{i1}^{G}(g)=\alpha_{i1}(x)$ .

Suppose that $h=1$ in $g=hx$ . All conjugates of $g$ are contained in
$A(M_{i})\backslash H_{i}$ . By (Fii, $d$ ),

$(\alpha_{i1}-\alpha_{i2})^{G}(g)=(\alpha_{i1}-\alpha_{i2})(x)$ .
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Since $x\in M\cap M_{i}$ , we have $\alpha_{i1}(x)=\alpha(x)$ and

$\alpha_{i2}(x)=|C_{H_{i}}(x)|\alpha(x)$ .

By (Fii, $e$), we have $|C_{H_{i}}(x)|=|C_{G}(x)$ : $C_{M}(x)|$ . Therefore, $\alpha^{\tau}(g)=$

$\alpha(x)$ by Lemma L. Q.E.D.

Lemma 11.2. Let $M\in M$ and $X$ an $F$-set of M. For $\alpha\in I_{0}(X)$ ,

let $\alpha^{\tau}$ be defifined as in Defifinition K. Then, for $x\in A(M_{i})$ ,

$\alpha^{\tau}(x)=\alpha_{i1}(x)$ .

Furthermore, $(\alpha^{\tau})_{M_{i}}$ is a linear combination of characters of $M_{i}/H_{i}$ . If
$M_{i}$ is of type $II$, elements of $(M\cap M_{i})\backslash (M_{i})’$ are not contained in $X$

and for $y\in M_{i}\backslash (M_{i})’$

$\alpha^{\tau}(y)=0=\alpha_{i1}(y)$ .

Proof. By Lemma $J_{)}$ an element $x$ of $M_{i}$ is conjugate in $M_{i}$ to an
element of the form $hu$ with $u\in M\cap M_{i}$ and $h\in C_{H_{i}}(u)$ . Suppose
$x\in A(M_{i})$ . Then $C_{H_{i}}(x)\neq 1$ . Suppose that $x$ is conjugate to an
element of $A(y)$ for some $y\in D_{j}$ $(j\geq 0)$ . By Lemma $J(b))u\in D_{i}$ .

Hence, by Lemma 11.1)

$\alpha^{\tau}(x)=\alpha(u)=\alpha_{i1}(hu)=\alpha_{i1}(x)$

because $x$ is conjugate to $hu$ in $M_{i}$ . On the other hand, if $x$ is not

conjugate to any element of $A(y)$ for $y\in D^{*}$ , then $u\not\in X^{\phi}$ and $\alpha^{\tau}(x)=0$

by Lemma 11.1. Thus,

$\alpha^{\tau}(x)=0=\alpha_{i1}(hu)=\alpha_{i1}(x)$

because $\alpha_{i1}(hu)=\alpha_{i}(u)=\alpha(u)=0$ .

Suppose that $M_{i}$ is of type $II$ and $\alpha^{\tau}(y)\neq 0$ for some $y\in M_{i}\backslash (M_{i})’$ .

Since $M_{i}$ is of type $II$ , $\kappa(M_{\dot{\iota}})=\{q\}$ and $q\in\pi(\langle y\rangle)$ for some prime $q$

and $C_{H_{i}}(y)\neq 1$ . The element $y$ is conjugate to an element of the form
$hu$ with $u\in M\cap M_{i}$ and $h\in C_{H_{i}}(u)$ . By Lemma 11.1, the assumptions
of Lemma $J(b)$ are satisfied. Thus, we have $u\in D_{i}$ and $y\in A(M_{i})$ by
Lemma J. This is a contradiction because $A(M_{i})\underline{\subseteq}(M_{i})’$ in the group
$M_{i}$ of type $II$ . Therefore, $\alpha^{\tau}(y)=0$ for $y\in M_{i}\backslash (M_{\dot{x}})’$ .

Since $M_{i}$ is of type $II$ , $M\cap M_{i}$ is a Frobenius group. Thus, if $y$ is an
element of $M\cap M_{i}$ outside $(M_{i})’$ , the order of $y$ is $q$ and $(|C_{G}(y)|, |H_{i}|)\neq$

$1$ . Suppose that $y\in X^{\phi}$ . Then, $y$ must be conjugate to an element $ z\in$

$D_{i}$ . It follows that $z\in A(M_{\dot{\iota}})$ by (Fii, $e$ ). Since $M_{i}$ is of type $II$ , $A(M_{i})\underline{\subseteq}$
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$(M_{i})’$ and $(M_{i})’$ is a Hall subgroup of $M_{i}$ . This is a contradiction because
both $z$ and $y$ have the same order. This proves

$\alpha_{i1}(y)=\alpha(y)=0$ .

It remains to prove that $(\alpha^{\tau})_{M_{i}}$ is a linear combination of characters
of $M_{i}/H_{i}$ . Let $\theta$ be any irreducible character of $M_{i}$ which does not have
$H_{i}$ in its kernel. By Lemma 4.3 [FT], $\theta$ vanishes on those elements $x$ of
$M_{i}$ such that $C_{H_{i}}(x)=1$ . Compute $((\alpha^{\tau})_{M_{i}}, \theta)$ .

Suppose that $M_{i}$ is of type I. Then, $\theta$ vanishes off $A(M_{i})$ and $(\alpha^{\tau})_{M_{i}}$

agrees with $\alpha_{i1}$ on $A(M_{i})$ . Hence,

$((\alpha^{\tau})_{M_{i}}, \theta)=(\alpha_{i1}, \theta)=0$ .

This proves the assertion. If $M_{i}$ is of type $II$ , then both $(\alpha^{\tau})_{M_{i}}$ and $\alpha_{i1}$

vanish outside $(M_{i})’$ . On $(M_{i})’$ , $\theta$ vanishes off $A(M_{i})$ and $(\alpha^{\tau})_{M_{i}}=\alpha_{i1}$

on $A(M_{i})$ . Therefore, we have

$((\alpha^{\tau})_{M_{i}}, \theta)=(\alpha_{i1}, \theta)=0$ .

Lemma 11.3. Let $M$ $\in M$ and $X$ an $F$-set of M. For $\alpha\in I_{0}(X)$ ,
let $\alpha^{\tau}$ be defifined as in Defifinition K. Then,

$(\alpha^{\tau}, 1_{G})_{G}=(\alpha, 1_{M})_{M}$

where $1_{G}$ and $1_{M}$ are the principal characters of $G$ and $M$ , respectively.

Lemma 11.4. Let $M\in M$ and $X$ an $F$-set of M. Let $\ominus bea$

virtual character of $G$ that is well-behaved. If $\alpha$ , $\beta\in I_{0}(X)$ , then

$(\alpha^{\tau}, \ominus)_{G}=(\alpha, \Theta_{M})_{M}$ , $(\alpha^{\tau}, \beta^{\tau})_{G}=(\alpha\beta))_{M}$ .

Lemma 11.5. Let $M\in M$ and $X$ an $F$-set of M. Let $\ominus bea$

class function of $G$ that is well-behaved. Let $G_{0}$ be the territory of the
set X. Then, we have

$\frac{1}{|G|}\sum_{x\in G_{0}}\Theta(x)=\frac{1}{|M|}\sum_{x\in X\#}\ominus(x)$ .

The proof of each of the above three lemmas is similar to the cor-
responding proof of Lemmas 9.3, 9.4, and 9.5 in [FT]. We mention here
that the assumption $of\ominus being$ well-behaved is essential in the proof.
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\S 12. Coherent Set of Characters

Let $M\in M$ and let $X$ be an $F$-set of $M$ . In the preceding section,
we defined a mapping from $I_{0}(X)$ to the set of virtual characters of the
group $G$ . We will denote this mapping $\tau=\tau_{M}$ in the remainder of
this paper. Its main property is stated in Lemma 11.4: the mapping $\tau$

is an isometry on $I_{0}(X)$ . It is useful to extend the domain of $\tau$ so as
to include some characters. For this purpose, the concept of coherent
subsets has emerged; its definition is in Section 10 of [FT]. For the
purpose of reference we state the definition.

If@ is a set of virtual characters, we denote by $I_{0}$ (@) the set of linear
combinations of elements of @ with integer coefficients which take the
value zero at the identity.

Definition. A set @ of virtual characters of $M$ is said to be co-
herent if and only if

(1) $I_{0}$ $(@)\neq$ $\{0\}$ and $I_{0}(@)\underline{\subseteq}I_{0}(X)$ , and
(2) It is possible to extend $\tau$ form $I_{0}$ (@) to a linear isometry mapping

@ into the set of virtual characters of $G$ .

When @ is a coherent set, an extension of $\tau$ to $I(@)$ will be denoted
by the same letter $\tau$ . The following lemma which corresponds to Lemma
10.4 of [FT] illustrates the usefulness of the concept of coherency and
suggests a tight connection between $\lambda$ and $\lambda^{\tau}$ when $\lambda^{\tau}$ is defined.

Lemma 12.1. Let $M\in M$ and let $X$ be an $F$-set of M. Let $a$ be
the least common multiple of all the orders of elements in X. Suppose
that @ is a coherent set of virtual characters of $M$ such that @ contains

at least two irreducible characters. If $\lambda$ is an irreducible character in
@, then the values assumed by $\lambda^{\tau}$ are contained in the fifield $\mathbb{Q}_{a}$ of the
primitive $ath$ roots of unity.

Proof. Let $n$ $=|G|$ and $\sigma\in Ga1(\mathbb{Q}_{n}/\mathbb{Q}_{a})$ . By assumption) @ con-
tains another irreducible character $\mu$ . Then,

$\mu(1)\lambda-\lambda(1)\mu\in I_{0}$ (@)

and the values assumed by $(\mu(1)\lambda-\lambda(1)\mu)^{\tau}$ lie in $\mathbb{Q}_{a}$ by Lemma 11.1.
Therefore,

$\sigma(\mu(1)\lambda^{\tau}-\lambda(1)\mu^{\tau})=\mu(1)\lambda^{\tau}-\lambda(1)\mu^{\tau}$ .

Since @ is coherent, $\lambda^{\tau}$ and $\mu^{\tau}$ are either irreducible characters or the
negatives of irreducible characters of $G$ . The same statement holds for
$\sigma(\lambda^{\tau})$ and $\sigma(\mu^{\tau})$ . It follows that $\sigma(\lambda^{\tau})=\lambda^{\tau}$ for all $\sigma\in Ga1(\mathbb{Q}_{n}/\mathbb{Q}_{a})$ .

Thus, the values assumed by $\lambda^{\tau}$ lie in $\mathbb{Q}_{a}$ . Q.E.D.
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It follows easily from the definition that a subset $T$ of a coherent set
@ is coherent provided $I_{0}(T)\neq 0$ . It is more difficult to decide whether or
not the union of two or more coherent sets is coherent. One of the useful
necessary conditions is Theorem 10.1 [FT]. We will state the theorem
for the purpose of reference and refer the proof as well as the definition
of a subcoherent set to the original paper [FT]. The following set of
conditions and definitions is used.

Hypothesis12.2. (i) Let $M\in M$ and let $X$ be an $F$ set of $M$ .

(ii) For $1\leq i\leq k$ , $@_{i}=\{\lambda_{is}|1\leq s\leq n_{i}\}\underline{\subseteq}I(X)$ .

(iii) $@=\cup@_{i}$ consists of pairwise orthogonal characters.
(iv) For any $i$ $(1 \leq i\leq k)$ , $s_{i}$ is coherent with isomrtry $\tau_{i}$ , $s_{i}$

is partitioned into sets $@_{ij}$ such that each $s_{ij}$ either consists

of irreducible characters of the same degree and $|@_{ij}|\geq 2$ or
$(@_{ij}, \tau_{ij})$ is subcoherent in @ where $\tau_{ij}$ is the restriction of $\tau_{i}$ on
$s_{ij}$ .

(v) For $1\leq i\leq k$ , $1\leq s\leq n_{i}$ , there exist integers $\ell_{is}$ such that

$1=\ell_{11}\leq\ell_{21}\leq\cdots\leq\ell_{k1}$ ,

$\lambda_{is}(1)=\ell_{is}\lambda_{11}(1)$ , and $\ell_{i1}|\ell_{is}$ .

(vi) $\lambda_{11}$ is an irreducible character of $M$ .

(vii) For any integer $m$ with $1<m\leq k$ ,

$\sum_{i=1}^{m-1}\sum_{s=1}^{n_{i}}\frac{\ell_{is}^{2}}{||\lambda_{is}||^{2}}>2\ell_{m1}$ .

Theorem 12.3. Suppose that Hypothesis 12.2 is satisfified. Then,
@ is coherent.

The isometry on @ is an extension of $\tau_{i}$ and is essentially unique (cf.
Theorem 10.1 [FT] $)$ . The most important condition is the inequality
(vii); we refer it as “the inequality”of Hypothesis 12.2.

For applications in this paper it is convenient to have a specialized
set of conditions adapted to our case. To state the results we need
further definitions.

Let @ be a set of pairwise orthogonal characters. Define an equiva-
lence relation on @ by the condition that two characters in @ are equiv-
alent if and only if they have the same degree and the same weight. For
any normal subgroup $A$ , let $S(A)$ be the subset of @ consisting of those
characters which are equivalent to some character in @ that has $A$ in its
kernel.

Consider the following set of conditions.
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Hypothesis 12.4. (i) Let $M\in M$ and let $X=A(M)$ .

(ii) Let $H$ be a nilpotent normal subgroup of $M$ such that

$M_{F}\underline{\subseteq}H\underline{\subseteq}X$ .

Define $K=M$ if $M$ is of type $I$ ; otherwise, let $K=M’$ .

(iii) @ is a set of characters of $M$ which are induced by nonprincipal
irreducible characters of $K$ , each of which vanishes outside $X$ .

Assume that $I_{0}$ (@)\neq 0 and @ consists of pairwise orthogonal
characters.

(iv) There exista an integer $d$ such that $d|M$ : $K|$ divides $\lambda(1)$ for
every $\lambda\in@$ . Furthermore, @ contains an irreducible character
of degree $d|M$ : $K|$ .

(v) Define an equivalence relation as before. Then, eqch equivalence
class of @ is either subcoherent in @, or consists of irreducible
characters and contains at least two characters.

Theorem 12.5. Suppose that Hypothesis 12.4 is satisfified. Let $H_{1}$

be a normal subgroup of $M$ such that $H_{1}\underline{\subseteq}H$ and

$|H:H_{1}|>4d^{2}|M$ : $K|^{2}+1$ .

If $@(H_{1})$ is coherent and contains an irreducible character of degree
$d|M$ : $K|$ , then @ is coherent.

This is Theorem 11.1 [FT] of page 817 which is proved under more
complex conditions. Actually, we need to consider the case when the
group $M/H$ is a Frobenius group with Frobenius kernel $K/H$ and @ is
the set of all irreducible characters of $M/H$ that do not contain $K/H$

in their kernel. In this case we will state the following result.

Lemma 12.6. Let $M$ be of type $III$ or $IV$ and let @o be the set

of all irreducible characters of $M/H$ that do not contain $K/H$ in their
kernel. Then, @o is coherent except possibly if $K/H$ is a nonabelian
$p$ -group for some prime $p$ and

$|(K/H)$ : $(K/H)’|\leq 4|M$ : $K|^{2}+1$ .

In this case, we have $(K/H)’=\Phi(K/H)$ .

This is Lemma 11.2 [FT].

Lemma 12.7. Let $M\in M$ , $H\triangleleft M$ , $H_{1}\underline{\subseteq}H$ , $e=|M$ : $H|$ , and
$h=|H$ : $H_{1}|$ . Let @ be the set of characters of $M$ which are induced by
nonprincipal irreducible characters of H. Suppose that $H$ is an $F$ set of
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$M$ and @ is coherent. Assume further that $H_{1}\triangleleft M$ , $H/H_{1}$ is abelian,
$M/H_{1}$ is a Frobenius group with Frobenius kernel $H/H_{1}$ , and

$|H$ : $H_{1}|>(|M:H|+1)|M:H|+1$ .

Let $\zeta=(1_{H})^{M}$ and let $\lambda$ be an irreducible character of $M/H_{1}$ with degree
$e$ . Then, $\{@, \zeta\}$ is coherent if we defifine

$\zeta^{\tau}=(\zeta-\lambda)^{\tau}+\lambda^{\tau}$ .

Proof. Since $M/H_{1}$ is a Frobenius group with Frobenius kernel
$H/H_{1}$ , there are irreducible characters of degree $|M$ : $H|=e$ . In fact,
there are $n$ $=(h-1)/e$ such characters. Let $\lambda_{1}=\lambda$ , $\lambda_{2}$ , $\ldots$ , $\lambda_{n}$ be those
characters. Then, $\lambda_{i}-\lambda_{j}\in I_{0}(H)$ . Thus, $\{\lambda_{i}^{\tau}\}$ are defined; they are
virtual characters of $G$ with weight one and satisfy

$(\lambda_{i}-\lambda_{j})^{\tau}=\lambda_{i}^{\tau}-\lambda_{j}^{\tau}$ .

Since $\alpha=\zeta-\lambda\in I_{0}(H)$ , Lemma 11.4 yields $||\alpha^{\tau}||^{2}=e+1$ ,

$(\alpha^{\tau}, (\lambda_{i}-\lambda_{j})^{\tau})=0$

and $(\alpha^{\tau}, (\lambda-\lambda_{i})^{\tau})=-1$ if $2\leq i$ , $j\leq n$ . Write

$\alpha^{\tau}=\Delta-\lambda^{\tau}$ .

Then, if $a_{i}=(\Delta, \lambda_{i}^{\tau}))$ then $a_{1}=a_{i}$ for all $i$ and

$\Delta=1_{G}+\sum a_{i}\lambda_{i}^{\tau}+\Delta_{1}$

where $(\Delta_{1},1_{G})=(\Delta_{1)}\lambda_{i}^{\tau})=0$ . It follows that

$1+(a_{1}-1)^{2}+(n-1)a_{1}^{2}+||\Delta_{1}||^{2}=||\alpha||^{2}=e+1$ .

If $a_{1}\neq 0$ , then we have $n$ $-1\leq e$ . This contradicts the assumption.
Thus, $\Delta$ does not involve any $\lambda_{i}^{\tau}$ . Hence, we have

$||\Delta||^{2}=e=||\zeta||^{2}$ .

Let $\sigma$ be any character of @. We want to prove $(\Delta\sigma^{\tau}))=0$ . By

definition, $\sigma=\mu^{M}$ for some nonprincipal irreducible character $\mu$ of $H$ .
Since $H\triangleleft M$ , we have $(\zeta, \sigma)=0$ . Suppose that $(\Delta, \sigma^{\tau})\neq 0$ . Then,
$\sigma\neq\lambda_{i}$ . Choose $\lambda_{2}\neq\lambda$ and consider

$\beta=\mu(1)\lambda_{2}-\sigma$ .
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Then, $\beta\in I_{0}(H)$ and Lemma 11.4 yields $(\alpha^{\tau}, \beta^{\tau})=(\alpha, \beta)=0$ because
$\lambda_{2}\neq\lambda$ and $(\zeta, \sigma)=0$ . Since @ is coherent,

$\beta^{\tau}=\mu(1)\lambda_{2}^{\tau}-\sigma^{\tau}$

and $(\lambda_{1}^{\tau}, \sigma^{\tau})=0$ . Then,

$0=(\alpha^{\tau}, \beta^{\tau})=(\Delta-\lambda^{\tau}, \mu(1)\lambda_{2}^{\tau}-\sigma^{\tau})=-(\Delta, \sigma^{\tau})\neq 0$ .

This contradiction proves $(\Delta, \sigma^{\tau})=0$ for every $\sigma\in@$ . Since $||\Delta||^{2}-||\zeta||^{2}$ ,

the set $\{@, \zeta\}$ is coherent if we define $\zeta^{\tau}=\Delta$ . Q.E.D.

\S 13. The Self Normalizing Cyclic Subgroup

Suppose that there is a subgroup in $M$ that is not of type I. Then,
by Theorem $I$ , there is a cyclic subgroup $W=W_{1}\times W_{2}$ such that
$W_{i}\neq 1$ for $i=1,2$ and $N_{G}(W_{0})=W$ for any nonempty subset $W_{0}$ of
$\overline{W}=W\backslash \{W_{1}, W_{2}\}$ . Consequences of the existence of such a subgroup
are very important. They are discussed in Section 13 of [FT]. We will
briefly review them and introduce the notation.

Let $\omega_{10}$ and $\omega_{01}$ be faithful irreducible characters of $W/W_{2}$ and
$W/W_{1}$ , respectively. Define

$\omega_{ij}=\omega_{10}^{i}\omega_{01}^{j}$

for $0\leq i<w_{1}=|W_{1}|$ and $0\leq j<w_{2}=|W_{2}|$ . Thus, $\omega_{00}$ is the principal
character of $W$ . The following lemma is the key to applications and
serves as introduction of the family of virtual characters $\{\eta_{ij}\}$ of $G$ .

Lemma 13.1. The set $\overline{W}$ isa $TI$-subset with normalizer $W$ in $G$

{in fact, in any subgroup that contains $W$ ). There exists an orthonormal
set $\{\eta_{ij}\}$ of virtual characters of $G$ such that for $0\leq i<w_{1}$ and $0\leq j<$

$w_{2}$ , the value assumed by $\eta_{ij}$ , $\eta_{i0}$ , $\eta_{0j}$ lie in $\mathbb{Q}_{w}$ , $\mathbb{Q}_{w_{1}}$ , $\mathbb{Q}_{w_{2}}$ , respectively.

We have $\eta_{00}=1_{G}$ , $\eta_{ij}(x)=\omega_{ij}(x)$ for $x\in\overline{W}$ , and

$(\omega_{00}-\omega_{i0}-\omega_{0j}+\omega_{ij})^{G}=1_{G}-\eta_{i0}-\eta_{0j}+\eta_{ij}$

for $1\leq i<w_{1}$ and $1\leq j<w_{2}$ . In particular, the right side of the

above equality is a virtual character that vanishes outside $G_{G}(\overline{W})$ . Fur-
thermore, every irreducible character of $G$ distinct from $\{\pm\eta_{ij}\}$ vanishes

on $\overline{W}$ .

The proof is in Lemma 13.1 [FT]. The set $\{\eta_{ij}\}$ is orthonormal.
Therefore, either $\eta_{ij}$ or $-\eta_{ij}$ is an irreducible character of $G$ and they
are distinct.
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Lemma 13.2. Suppose that a virtual character $\alpha=\sum a_{ij}\omega_{ij}$ of
$W$ vanishes on W. Then, for all $s$ and $t$ , we have

$a_{00}-a_{s0}-a_{0t}+a_{st}=0$ .

If in addition $\alpha=\beta_{1}+\beta_{2}$ with $||\beta_{1}||^{2}=||\beta_{2}||^{2}=2$ , then $\alpha=0$ .

Proof. The first part is proved as in the proof of Lemma 13.2 [FT].
The second half follows by case-by-case analysis. Q.E.D.

Theorem I yields that the subgroup $W$ is contained in two subgroups
$S$ and $T$ of $M$ such that neither $S$ nor $T$ is of type $I$ ,

$S\cap T=W$, $S’W_{1}=S$ , $T’W_{2}=T$ ,

and $S’\cap W_{1}=T’\cap W_{2}=1$ . We can apply Lemma 13.1 to $S$ and
$T$ . Thus, each subgroup has a family of orthonormal virtual characters
corresponding to the family $\{\omega_{ij}\}$ . The following lemma serves to define
the notation.

Lemma 13.3. Let $M=S$ and let $H=M_{F}$ . Suppose that $M$ is
not of type I. Then, $W_{2}\underline{\subseteq}H\underline{\subseteq}M’$ and $W\backslash W_{2}$ is a $TI$-subset of $M$ .

There is a complement $V$ of $H$ in $M’$ that is normalized by $W_{1}$ . The
group $VW_{1}$ isa Frobenius group with Frobenius kernel V. The group $V$

is nilpotent; if $M$ is of type $II$, $V$ is abelian.

Proof. All the conditions follow from the conditions $(T1)-(T7)$ in

the definition of groups not of type I in [BG], page 128. Thus, (T1)
yields $H\underline{\subseteq}M’$ , while (T4) yields $W_{2}\underline{\subseteq}H$ and $C_{M’}(x)=W_{2}$ for all
$x\in W_{1}^{\#}$ . It follows that $C_{M}(x)=W$ if $x\in W\backslash W_{2}$ . Therefore, $W\backslash W_{2}$

is a $TI$-subset of $M$ with normalizer $W$ . The remaining conditions also
follow from $(T1)-(T7)$ . Q.E.D.

Lemma 13.4. Let $M\in M$ be not of type I. Use the notation
in Lemma 13.3. Then, $M$ has a family of irreducible characters $\mu_{ij}$

$(0\leq i<w_{1},0\leq j<w_{2})$ such that for some $\epsilon_{j}=\pm 1$

$\mu_{ij}(x)=\epsilon i_{j}\omega_{ij}(x)$

for all $ x\in$ W. The family of virtual characters $\{\xi jj\mu_{ij}\}$ is the one
corresponding to $\{\omega_{ij}\}$ in Lemma 13.1. For each $k$ , $(\mu_{ik})_{M’}=(\mu_{jk})_{M’}$

and $\mu_{k}$ defifined by $\mu_{k}=(\mu_{ik})_{M’}$ is an irreducible character of $M’$ . Defifine
$\xi_{k}=\sum_{i}\mu ik$ . Then

$\xi_{k}=(\mu_{k})^{M}=\sum_{i}\mu_{ik}$ .
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Proof By Lemma 13.1, there is a family of irreducible characters
$\{\mu_{ij}\}$ such that $\pm\mu_{ij}(x)=\omega_{ij}(x)$ for all $x\in\overline{W}$ . Set $q=|W_{1}|$ . Then,
$M$ has exactly $q$ linear characters because $M/M’\cong W_{1}$ . Let $\zeta$ be the
linear character such that $\zeta_{W}=\omega_{10}$ . Then, $\{\zeta^{i}\}$ $(0\leq i<w_{1})$ is the

set of linear characters of $M$ and $(\zeta^{i})_{W}=\omega_{i0}$ . Let $\epsilon_{j}=\pm 1$ so that

$\mu_{0j}(x)=\epsilon_{j}\omega_{0j}(x)$

for $x\in\overline{W}$ . Since $\zeta^{i}$ is a linear character, $\zeta^{i}\mu_{0j}$ is an irreducible character

of $M$ . Consider the restriction of $\zeta^{i}\mu 0j$ on $\overline{W}$

. We have for $x\in\overline{W}$

$\zeta^{i}\mu_{0j}(x)=\zeta^{i}(x)\mu_{0j}(x)=\epsilon_{j}\omega_{i0}(x)\omega_{0j}(x)=\epsilon_{j}\omega_{ij}(x)$ .

Since the characters $\omega_{ij}$ are distinct on $\overline{W}$ , Lemma 13.1 yields

$\zeta^{i}\mu_{0j}=\mu_{ij}$ .

Thus, $\mu_{ij}(x)=\epsilon_{j}\omega_{ij}(x)$ for $x\in\overline{W}$ . This proves that $\{\epsilon_{j}\mu_{ij}\}$ is the fam-
ily corresponding to $\{\omega_{ij}\}$ in $M$ . Clearly, $\mu_{k}=(\mu_{ik})_{M’}$ is independent
of $i$ . By the tensor product formula, we have

$\xi_{k}=(\mu_{k})^{M}=\mu_{0k}\otimes(1_{M’})^{M}=\sum_{i}\mu ik$ .

Since $(\xi_{k})_{M}=q\mu_{k}$ , the orthogonality relations yield

$q=(\xi_{k)}\xi_{k})=(\mu_{k}^{M}, \xi_{k})=(\mu_{k}, q\mu_{k})_{M}=q||\mu_{k}||^{2}$ .

Therefore, $\mu_{k}$ is an irreducible character of $M’$ . Q.E.D.

The set $W\backslash W_{2}$ is a $TI$-subset of $M$ by Lemma 13.3. For each $k$

$(0\leq k<w_{2}))$ the set $\{\omega_{ik}|0\leq i<w_{1}\}$ is coherent and the characters
$\{\omega_{ik}^{\tau}\}$ are $\{\epsilon_{k}\mu_{ik}\}$ (cf. Lemma 13.3 of [FT]).

Lemma 13.5. Let $M\in M$ be not of type I and use the notation
in Lemma 13.3. Then, an irreducible character of $M’$ induces either an
irreducible character of $M$ or one of the characters $\xi_{j}(0\leq j<w_{2})$ .

The proof of Lemma 13.7 of [FT] gives the result.

Lemma 13.6. Let $M$ and $\{\mu_{ij}|0\leq i<w_{1},0\leq j<w_{2}\}$ be
as in Lemma 13.4. Suppose that for some $i$ , $j$ , $k$ with $0\leq i<w_{1}$ ,
$1\leq j$ , $k<w_{2}$ , we have $\mu_{ij}(1)=\mu_{ik}(1)$ . Then, $\mu_{ij}-\mu_{ik}\in I_{0}(A_{0}(M))$

and
$(\mu_{ij}-\mu_{ik})^{\tau}=\pm(\eta_{ij}-\eta_{ik})$
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where $\eta_{ij}$ , $\eta ik$ are virtual characters of $G$ defifined in Lemma 13.1.

Proof. The factor group $M/H$ is isomorphic to the group $VW_{1}$

which is a Frobenius groupwith Frobenius kernelV. By 3.16 of [FT],
every nonprincipal irreducible character of $M’/H$ induces an irreducible
character of $M$ . Therefore, Lemma 13.5 yields that $\mu_{ij}$ with positive $j$

does not contain $H$ in its kernel. By Lemma 4.3 [FT], these $\mu_{ij}$ vanish on
$M’\backslash A(M)$ . Thus, if $j$ , $k>0$ and $\mu_{ij}(1)=\mu_{ik}(1)$ , then for $X=A_{0}(M)$ ,

$\mu_{ij}-\mu ik\in I_{0}(X)$ .

Since $\tau$ is an isometry on $I_{0}(X)$ , $(\mu_{ij}-\mu_{ik})^{\tau}$ is the difference of two
irreducible characters.

We have $\overline{W}\underline{\subseteq}X$ . If $x\in\overline{W}$ , then $C_{G}(x)=W\underline{\subseteq}$ $M$ . $ThuS_{)}x$ is not
conjugate to any element in $A(y)$ for $y\in D_{t}$ with $t$ $>0$ . Hence, Lemma
11. 1 yields that

$(\mu_{ij}-\mu_{ik})^{\tau}(x)=(\mu_{ij}-\mu_{ik})(x)$

for $x\in\overline{W}$ . It follows that $(\mu_{ij}-\mu_{ik})^{\tau}$ is the difference of two characters

of the form $\pm\eta_{st}$ . Since $\eta_{ij}(x)=\omega_{ij}(x)$ for $x\in\overline{W}$ , Lemma 13.2 yields
that $(\mu_{ij}-\mu_{ik})^{\tau}=\pm(\eta_{ij}-\eta_{ik})$ . Q.E.D.

Lemma 13.7. Let $M$ , $\{\mu_{ij}\}$ , $and\xi_{k}$ be as in Lemma 13.4. Choose
$k$ with $1\leq k<w_{2}$ . Let $@_{1}=\{\xi_{j}|1\leq j<w_{2}, \xi_{j}(1)=\xi_{k}(1)\}$ . Then, $@_{1}$

is coherent and
$\xi_{j}^{\tau}=\epsilon\sum_{i}\eta_{ij}$

for some $\epsilon=\pm 1$ . Furthermore, if @ is the set of characters of $M$ which
are induced by the nonprincipal irreducible characters of $M’$ that vanish
outside $A(M)$ , then $(@_{1}, \tau)$ is subcoherent in @.

The proofs of Lemmas 13.9 and 13.10 in [FT] can be adapted to
a proof of the above lemma by changing the references suitably (and
correcting a misprint).

Lemma 13.8. Let $M\in M$ be of type $II$ or $III$, $H=M_{F}$ , and
$q=|W_{1}|$ . For positive integers $r$ and $s$ with $r>1$ , let $A(r, s)$ be the set

of nonprincipal irreducible characters $\alpha$ of $H$ such that $|I(\alpha)$ : $H|=qr$

and $\alpha(1)=s$ . Let $B(r, s)$ be the set of characters of $M$ induced from the

irreducible components of $\alpha^{M’}$ with $\alpha\in A(r, s)$ . Then, $B(r, s)$ consists

of characters of the same degree and $B(r, s)$ is coherent.

Proof. Since $M$ is of type $II$ or III, the factor group $M’/H$ is abelian
and $H$ is a Hall subgroup of $M$ . We can apply Lemma 4.5 of [FT]. If
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$\alpha\in A(r, s)$ , then the inertia index of $\alpha$ in $M’$ is $r$ . So, by Lemma 4.5 of

[FT], $\alpha^{M’}$ is a sum of exactly $r$ distinct irreducible characters $\theta_{1}$ , $\ldots$ , $\theta_{r}$

of $M’$ of degree $|M’$ : $H|s/r$ .

Lemma 13.5 yields that elements of $B(r, s)$ are irreducible characters
or one of the characters $\xi_{j}$ . Let $@_{1}$ be the set of irreducible characters in
$B(r, s)$ and let $@_{2}$ be the set of $\xi_{j}$ which are in $B(r, s)$ . The characters of
$B(r, s)$ have the same degree. By Lemma 4.3 [FT], they vanish outside

$A(M)$ . If $\beta\in@_{i}$ for $i=1,2$ , then the complex conjugate $\overline{\beta}\in@_{i}$ . Thus,
$ I_{0}(@_{i})\neq\emptyset$ . It follows that each subset $@_{i}$ is coherent. We want to
prove that the union $@_{1}\cup@_{2}$ is coherent. Since $s_{1}$ consists of irreducible
characters of the same degree and $@_{2}$ is subcoherent (by Lemma 13.7),
Theorem 12.3 yields that $s_{1}\cup@_{2}$ is coherent provided the inequality of
Hypothesis 12.2 is satisfied. The condition becomes $|@_{1}|>2$ in this
case. We need to examine the set of irreducible components $\{\theta_{i}\}$ of
$\alpha^{M’}$ By assumption $|I(\alpha)$ : $H|=qr$ with $r>1$ . We may assume that
$Q=W_{1}\underline{\subseteq}I(\alpha)$ because $Q$ is a Hall subgroup of $M$ (by (T1)). Then,
$I(\alpha)\cap VW_{1}=RQ$ where $R=V\cap I(\alpha)$ is contained in the inertia group
I of $\alpha$ in $M’$ and $|R|=r$ .

From the proof of Lemma 4.5 [FT] at the beginning of Section 11 of
this paper, we have

$\alpha^{I}=\gamma_{1}+\gamma_{2}+\cdots+\gamma_{r}$

where $\gamma_{i}$ are irreducible characters of $I$ . Since $\alpha$ is $Q$-invariant, $Q$ per-
mutes these characters $\{\gamma_{i}\}$ . Since $r\equiv 1(mod q)$ , one of them, say
$\gamma_{1)}$ is $Q$-invariant. We can write $\gamma_{i}=\gamma_{1}\mu_{i}$ where $\mu_{1},$ $\ldots$ , $\mu_{r}$ are the
set of linear characters of $I/H$ and $\mu_{1}$ is the principal character. Since
$I/H\cong R$ , $Q$ acts on the set of nonprincipal characters $\{\mu_{2}, \ldots, \mu_{r}\}$ with-

out fixed points. Thus, if the notation is such that $\gamma_{i}^{M’}=\theta_{i}$ , then $\theta_{1}$ is
$Q$-invariant and all the other $\theta_{i}$ for $i>1$ induce irreducible characters
of $B(r, s)$ . Therefore, each $\alpha\in A(r, s)$ contributes one character of $@_{2}$

and $(r-1)/q$ characters of $@_{1}$ . Since $r>1$ is odd, we have $(r-1)/q\geq 2$ .

If $\alpha\in A(r, s)$ , then $\overline{\alpha}\in A(r, s)$ and $\overline{\alpha}$ is not conjugate to $\alpha$ in $M$ . It
follows that $|@_{1}|\geq 4$ . This proves that $B(r, s)$ is coherent. Q.E.D.

\S 14. Further Properties of Coherent Sets

In this section, we use the following notation. Let $M$ $\in M$ and let
$X$ be an $F$-set of $M$ . Let $H$ be one of the supporting subgroups for the
set $X$ with $N=N_{G}(H)\in f\ovalbox{\tt\small REJECT}$[. Thus, $H$ is $N_{F}$ , i.e. the largest normal
nilpotent Hall subgroup of $N$ . Define $N_{0}$ as follows. If $N$ is of type $I$ ,
let $N_{0}=N$ , while if $N$ is not of type $I$ , then $N_{0}=N’$ . It follows from
the definition that $A(N)\underline{\subseteq}N_{0}$ .
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The following two lemmas correspond to Lemmas 10.2 and 10.3 of
[FT].

Lemma 14.1. Let $M$ , $X$ , $H$ , $N$ and $N_{0}$ be as above. For each
nonprincipal irreducible character $\alpha$ of $H$ , let $S(\alpha)$ be the set of ir-

reducible characters of $N_{0}$ which are involved in $\alpha^{N_{0}}$ , and let $T(\alpha)$

be the set of the virtual characters of $G$ of the form $(\theta_{1}-\theta_{2})^{G}$ with
$\theta_{1}$ , $\theta_{2}\in S(\alpha)$ . If $\Theta$ is a virtual character of $G$ which is orthogonal to
the elements of $T(\alpha)$ for all $\alpha\neq 1_{H}$ , then $\Theta$ is constant on the cosets of
$H$ which lie in $N_{0}\backslash H$ .

Proof. The subgroup $H$ is a Hall subgroup of $N$ by definition of
groups of type I or $II$ . If $N$ is of type $I$ , then $N$ satisfies the assumptions
of Lemma 4.5 [FT]. If $N$ is of type $II$ , then $N_{0}=N’$ and $N_{0}/H$ is abelian

by (Iliii). Lemma 4.5 [FT] is applicable to $N_{0}$ . In all cases, $\alpha^{N_{0}}$ is a
sum of irreducible characters of the same degree with multiplicity one.

Fix a nonprincipal irreducible character $\alpha$ of $H$ . If $\theta_{1}$ , $\theta_{2}\in A(\alpha)$ .

$(\ominus_{N_{O}}, \theta_{1}-\theta_{2})=(\ominus, (\theta_{1}-\theta_{2})^{G})=0$ .

Thus, $\ominus_{N_{0}}$ contains each $\theta\in S(\alpha)$ with the same multiplicity. Since the
sum of all $\theta\in S(\alpha)$ is $\alpha^{N_{O}}$ , we have

$\ominus_{N_{O}}=\ominus_{1}+\beta^{N_{0}}$

where $\Theta_{1}$ is a virtual character of the group $N_{0}/H$ and $\beta$ is a virtual

character of $H$ . Since $\beta^{N_{O}}$ vanishes outside $H$ , $\ominus_{N_{0}}$ is constant on the
cosets of $H$ lying in $N_{0}\backslash H$ . Q.E.D.

Lemma 14.2. Suppose that $M$ , $X$ , $H$ and $N_{0}$ are as in Lemma
14.1. Let @ be a coherent subset of $I(X)$ that contains at least two
irreducible characters. For any $\lambda\in@$ , $\lambda^{\tau}$ is constant on the cosets of $H$

that lie in $N_{0}\backslash H$ .

Proof. Take any nonprincipal irreducible character $\alpha$ of $H$ and let
$S(\alpha)$ be the set of irreducible characters of $N_{0}$ defined in Lemma 14.1.
We will show that for $\theta_{1}$ , $\theta_{2}\in S(\alpha)$

$((\lambda^{\tau})_{N_{0}}, \theta_{1}-\theta_{2})=0$ .

Assume that this does not hold. Let $\lambda_{1},\lambda_{2}\in@$ be distinct irreducible
characters. Then

$\beta=\lambda_{1}(1)\lambda-\lambda(1)\lambda_{1}\in I_{0}(X)$ .
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By Lemma 11.2, $(\beta^{\tau})_{N}$ is a linear combination of characters of $N/H$ .

Hence,
$((\beta^{\tau})_{N_{0}}, \theta_{1}-\theta_{2})=0$ .

It follows that
$((\lambda_{1}^{\tau})_{N_{0}}, \theta_{1}-\theta_{2})\neq 0$ .

Similarly, we have $((\lambda_{2}^{\tau})_{N_{0}}, \theta_{1}-\theta_{2})\neq 0$ .

Suppose that $N$ is of type I so $N_{0}=N$ . By Lemma 4.3 of [FT],
$\theta_{i}\in S(\alpha)$ vanishes outside $A(N)$ . Since $\theta_{1}$ and $\theta_{2}$ are equal on $H$ , $\theta_{1}-\theta_{2}$

vanishes outside $A(N)\backslash H$ . Since $N$ is of type $I$ , $A(N)=A_{0}(N)$ and
$(Fii,d)$ yields that $A_{0}(N)\backslash H$ is a $TI$-subset of $G$ with normalizer $N$ .

Hence, $(\theta_{1}-\theta_{2})^{G}=\Theta_{1}-\Theta_{2}where\ominus_{i}$ are irreducible characters of $G$ .

We have
$(\lambda_{i}^{\tau}, (\theta_{1}-\theta_{2})^{G})=((\lambda_{i}^{\tau})_{N}, \theta_{1}-\theta_{2})\neq 0$ .

It follows that the irreducible $character\pm\lambda_{i}^{\tau}$ is either $\Theta_{1}or\ominus_{2}$ . We may
assume that $\lambda_{i}^{\tau}=\epsilon\Theta_{i}$ for $\epsilon=1$ or-1. It is crucial that

$\lambda_{1}(1)\lambda_{2}^{\tau}-\lambda_{2}(1)\lambda_{1}^{\tau}$

vanishes at the identity so both $\lambda_{1}^{\tau}$ and $\lambda_{2}^{\tau}$ are irreducible characters or
both of them are not. Then, $\lambda_{1}(1)=\lambda_{2}(1)$ and

$\lambda_{1}-\lambda_{2}\in I_{0}(X)$ .

By Lemma 11.2, $((\lambda_{1}-\lambda_{2})^{\tau})_{N}$ is orthogonal to $\theta_{1}-\theta_{2}$ . Thus,

$0=((\lambda_{1}^{\tau}-\lambda_{2}^{\tau})_{N}, \theta_{1}-\theta_{2})$

$=(\lambda_{1}^{\tau}-\lambda_{2}^{\tau}, (\theta_{1}-\theta_{2})^{G})$

$=(\epsilon(\ominus_{1}-\ominus_{2}), (\ominus_{1}-\Theta_{2})=2\epsilon$ .

This contradiction yields that $\lambda^{\tau}$ is orthogonal to every element in $T(\alpha)$

for any $\alpha\neq 1_{H}$ . By Lemma 14.1, $\lambda^{\tau}$ is constant on a coset of $H$ that
lies in $N\backslash H$ .

Assume that $N$ is a group of type $II$ . Suppose that

$((\lambda^{\tau})_{N_{0}}, \theta_{1}-\theta_{2})\neq 0$

for some $\theta_{1}$ , $\theta_{2}\in S(\alpha)$ . Then, $\theta_{1}^{N}$ and $\theta_{2}^{N}$ are distinct characters of $N$ .

If they are irreducible, then the previous argument can be applied here.
In this case, $\theta_{1}^{N}$ and $\theta_{2}^{N}$ vanish outside $A_{0}(N)\backslash H$ , and $A_{0}(N)\backslash H$ is
a $TI$-subset in $G$ by $(Fii,d)$ . Hence, $(\theta_{1}-\theta_{2})^{G}$ is a difference of two
irreducible characters. We obtain a contradiction as before.
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Suppose that $\theta_{1}^{N}$ is not irreducible. In this case, we are in the
situation of Lemma 13.8. The set $A(N)$ is an $F$-set of $N$ . Let $\sigma=\tau_{N}$

be the isometry associated with $N$ . Then, by Lemma 13.8, the set
$S(\alpha)\cup S(\overline{\alpha})$ is coherent with respect to the isometry $\sigma$ and for some $j$ .

We have

$(\theta_{1}^{N})^{\sigma}=\epsilon\sum_{i}\eta_{ij}$

where $\{\eta_{ij}\}$ is the family of characters defined in Lemma 13.1. Thus,

$(\theta_{1}^{N})^{\sigma}-(\theta_{2}^{N})^{\sigma}=\epsilon\sum_{i}\eta_{ij}-\ominus_{2}$

where $\{\Theta_{i}\}$ is the family of virtual characters $\{\theta_{i}^{N}|i>1\}$ .

Since $N$ is of type $II$ , Theorem $II$ (Fiii) yields that $M$ is a Frobenius
group and $X=M_{F}$ . Let $q=|M$ : $M’|$ . By Lemma 11.2, elements of $N$

of order $q$ are not contained in $X$ . Since $X=M_{F}$ is a Hall subgroup of
$M$ , no element of $X$ has order $q$ . Lemma 12.1 yields that $\lambda_{1}^{\tau}$ as well as
$\lambda_{2}^{\tau}$ is $q$-rational.

The virtual character $\theta_{1}-\theta_{2}$ vanishes outside $A(N)\backslash H$ . If $ g\in$

$A(N)\backslash H$ is conjugate to an element of the form $hx$ where $x\in N\cap M$

and $h\in C_{H_{i}}(x)$ , then Lemma $J(b)$ yields that $x\in D_{i}$ . By Theorem $II$ ,
we have $N=M(C_{G}(x))$ . Since $g$ is conjugate in $N$ to an element having
this property, $C_{G}(g)\underline{\subseteq}N$ . In other words, no suppoting subgroup

contributes any to $(\theta_{1}^{N}-\theta_{2}^{N})^{\sigma}(g)$ . It follows that

$(\theta_{1}-\theta_{2})^{G}=(\theta_{1}^{N}-\theta_{2}^{N})^{\sigma}=\epsilon\sum_{i}\eta_{ij}-\Theta_{2}$

for some $j$ . We have shown that $\lambda_{i}^{\tau}$ is not equal $to\pm\ominus_{k}$ . Since both $\lambda_{1}^{\tau}$

and $\lambda_{2}^{\tau}$ are not orthogonal to $(\theta_{1}-\theta_{2})^{G}$ , both $\lambda_{1}^{\tau}$ and $\theta_{2}^{\tau}$ are one $of\pm\eta_{ij}$ .

However, at most one of the $characters\pm\eta_{ij}$ is $q$-rational for a given $j$ .

This contradiction proves that $\lambda^{\tau}$ is constant on the cosets of $H$ that lie
in $N_{0}\backslash H$ . Q.E.D.

Lemma 14.3. Let $M$ $\in M$ , $X$ an $F$-set of $M$ , and let @ be $a$

coherent subset of $I(X)$ . If@ contains at least two irreducible characters,
every $\lambda\in@$ satisfifies the property that $\lambda^{\tau}$ is constant on the set of the

form $A(x)$ for every $x\in D^{*}$ .

Proof. The sets $A(x)$ and $D^{*}$ are defined at the beginning of Chap-
ter $II$ . If $x\in D_{0}$ , then $C_{G}(x)\underline{\subseteq}M$ . In this case, $A(x)=\{x\}$ and
the assertion is trivial. Suppose that $x\in D_{i}$ for some $i>0$ . Then,
$C_{G}(x)\underline{\subseteq}M_{i}$ for some supporting subgroup $M_{i}$ . By $(Fii, e)$ , we have
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$x\in A(M_{i})$ . It follows from the definition of the subgroup $(M_{i})_{0}$ at the
beginning of this section that $A(M_{i})\underline{\subseteq}(M_{i})_{0}$ . Since $A(x)$ is contained
in a coset of $H_{i}$ in $(M_{i})_{0}\backslash H_{i}$ , Lemma 14.2 yields that $\lambda^{\tau}$ is constant on
the set $A(x)$ . Q.E.D.

For any virtual character $\lambda$ , the set of irreducible characters $\rho$ such
that $(\lambda, \rho)\neq 0$ is called the support of $\lambda$ .

The following lemma corresponds Lemma 10.5 of [FT].

Lemma 14.4. Let $X$ be an $F$ set of $M\in M$ . Let @ be a coherent
set consisting of characters of $I(X)$ with disjoint supports and let $\Theta$ be
a virtual character of $M$ that is well behaved. Suppose that there is $a$

virtual character $\theta$ of $M$ such that for every $\alpha\in I_{0}$ (@),

$(\alpha^{\tau}, \ominus)=(\alpha, \theta)$ .

Then, there is a pair $(r, \beta)$ of a rational number $r$ and a virtual character
$\beta$ of $M$ such that $\beta$ is orthogonal to every element of @ and

$\Theta(g)=\theta(g)+r\beta(g)$ for $g\in X^{\Downarrow}$ .

Suppose that $\Theta_{1}$ is a well behaved virtual character of $G$ that is

orthogonal to every element of $@^{\tau}$ , then there is a pair $(r_{1}, \beta_{1})$ of $a$

rational number $r_{1}$ and a virtual character $\beta_{1}$ of $M$ such that $\beta_{1}$ is
orthogonal to every element of @ and $\Theta_{1}(g)=r_{1}\beta_{1}(g)$ for $g\in X^{\oint}$ .

Suppose that @ contains at least two irreducible characters of $M$ .

Then, for any $\lambda\in@$ , there is a pair $(s, \gamma)$ of a rational number $s$ and $a$

virtual character $\gamma$ of $M$ , depending on $\lambda$ , such that $\gamma$ is orthogonal to
every element of @ and

$\lambda^{\tau}(g)=\lambda(g)+s\gamma(g)$ for $g\in X^{\mathfrak{y}}$ .

Proof. Since @ is coherent, $I_{0}$ (@)\neq 0. Therefore, @ contains at least
two characters. Let $\lambda$ , $\mu\in@$ . Then, $\alpha=\lambda(1)\mu-\mu(1)\lambda$ is an element of
$I_{0}(X)$ . $Since\ominus is$ well behaved, Lemma 11.4 yields

$(\alpha^{\tau}, \Theta)=(\alpha, \Theta_{M})$ .

By assumption, there exists a virtual character $\theta$ such that $(\alpha, \Theta_{M}-\theta)=$

$0$ . For each $\sigma\in@$ , let $\theta(\sigma)$ be the portion of $\Theta_{M}-\theta$ on the support of
$\sigma$ . Thus,

$\ominus_{M}-\theta=\sum_{\sigma\in@}\theta(\sigma)+\Delta_{1}$
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where $\Delta_{1}$ is a linear combination of irreducible characters not involved
in any $\sigma\in@$ . Since

$0=(\alpha, \ominus_{M}-\theta)=(\lambda(1)\mu-\mu(1)\lambda, \ominus_{M}-\theta)$ ,

the orthogonality relations yield

$\mu(1)(\lambda, \theta(\lambda))=\lambda(1)(\mu, \theta(\mu))$ .

Thus, for a rational number $s$ ,

$(\lambda, \theta(\lambda))=s\lambda(1)$ for every $\lambda\in@$ .

Let $\rho(\sigma)$ be the portion of the regular representation $\rho$ on the sup-
port of $\sigma\in@$ . If $\sigma=\sum_{i}a_{i}\xi_{i}$ is the decomposition of $\sigma$ into the sum of
irreducible characters $\xi_{i}$ , then $\rho(\sigma)=\sum_{i}\xi_{i}(1)\xi_{i}$ . Hence,

$(\sigma, \rho(\sigma))=\sum_{i}a_{i}\xi_{i}(1)=\sigma(1)$
.

Let $\rho=\sum_{\sigma}\rho(\sigma)+\Delta_{2}$ . Then, $\Delta_{2}$ is a linear combination of irreducible
characters not involved in any $\sigma\in@$ . Set $s$ $=m/n$ with integers $m$ , $n$

and define

$r=1/n$ and
$\beta=\sum_{\sigma\in@}(n\theta(\sigma)-m\rho(\sigma))-m\Delta_{2}+n\Delta_{1}$

.

Then, for $x\in X^{\phi}$ ,

$r\beta(x)=(\sum\theta(\sigma)+\Delta_{1})(x)-s\rho(x)=\Theta_{M}(x)-\theta(x)$ .

We compute $(\sigma, \beta)$ . Since the supports of elements of @ are disjoint, we
have

$(\sigma, \beta)=n(\sigma, \theta(\sigma))-m(\sigma, \rho(\sigma))=0$ .

This proves the first part.
For the second part) $\theta_{1}=0$ satisfies the assumption of the first part

for $\Theta_{1}$ since $(\alpha^{\tau}, \Theta)=0$ for every $\alpha\in I_{0}(X)$ . For the third part, Lemma
11.4 yields $with\ominus=\lambda^{\tau}$ ,

$(\alpha^{\tau}, \Theta)=(\alpha^{\tau}, \lambda^{\tau})=(\alpha, \lambda)$

for all $\alpha\in I_{0}(X)$ . The first part applies. Q.E.D.
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\S 15. Characters of Subgroups of Type I

Let $M\in M$ be a subgroup of type I. Let $H=M_{F}$ , $X=A(M)$ , and
let @ be the set of irreducible characters of $M$ that do not have $H$ in
their kernel. Let $E$ be a complement of $H$ in $M$ . By (Iiii), $E$ contains a
subgroup $E_{0}$ of the same exponent as $E$ such that $HE_{0}$ is a Frobenius
group with Frobenius kernel $H$ . With the notation introduced here we
prove the following lemma.

Lemma 15.1. Let $M\in M$ be a subgroupof type I. Then the set
@ defifined above satisfifies Hypothesis 12.4 with $H=M_{F}$ , $K=M$ and
$d=|E_{0}|$ .

Proof. If $\lambda\in@$ , Lemma 4.3 of [FT] yields that $\lambda$ vanishes outside
$X$ . If $\lambda\in@$ , then the complex conjugate character $\overline{\lambda}$ is different from
$\lambda$ and $\overline{\lambda}\in@$ . Thus, $I_{0}(@)\neq 0$ and @ satisfies (iii) of Hypothesis 12.4.
Since @ consists of irreducible characters, @ satisfies (v).

The definition of groups of type I implies that elements of $ A(M)\cap$

$E$ are $\tau_{2}$ -elements in the notation of \S 6. Therefore, $E=AB$ with
$(|A|, |B|)=1$ such that $A$ is abelian and $B$ is a $Z$-group (cf. Hypothesis
28.1 [FT] $)$ . In fact, $E=E_{1}E_{2}E_{3}$ , $E_{2}$ is abelian, and $E_{1}$ and $E_{3}$ are cyclic
groups of relatively prime order by Lemmas 6.1 and 6.8, and Theorem
6.7. We may take $A=E_{2}$ and $B=E_{1}E_{3}$ . Since $E_{0}$ has the same expo-
nent as $E$ , the order of $B$ divides $|E_{0}|$ . Conjugacy of Hall subgroups in
a solvable group yields that we may assume $B\underline{\subseteq}E_{0}$ . Furthermore, we
may assume that $A$ contains a Hall $\pi(A)$ subgroup of $E_{0}$ .

Since $HE_{0}$ is a Frobenius group with Frobenius kernel $H$ , no element
of $E_{0}$ stabilizes any nonprincipal irreducible character of $H$ . Thus, for
any $\lambda\in@$ , the number of conjugate characters $|M$ : $I(\lambda)|$ is divisible
by $|E_{0}|$ . By (Hi), the normal closure of $I(\lambda)/H$ is abelian. Therfore)

Lemma 4.5 [FT] yields that $\lambda^{M}$ is a sum of irreducible characters of
degree $|M$ : $I(\lambda)|\lambda(1)$ . $ThuS_{)}d=|E_{0}|$ divides $\lambda(1)$ for every $\lambda\in@$ .

It remains to prove that @ contains an irreducible character of degree
exactly $d=|E_{0}|$ . This is proved as in Lemma 28.1 of [FT]. Let $E=AB$
as above. Since $H$ is nilpotent, $H/\Phi(H)$ is elementary abelian. Let
$L$ be a maximal $A$-invariant subgroup such that $\Phi\underline{\subseteq}L\subseteq H$ , and let
$A_{1}=C_{A}(H/L)$ . Then, $A$ acts on $H/L$ irreducibly and $A/A_{1}$ is cyclic.
Since $E_{0}$ has the same exponent as $E$ and $E_{0}\cap A_{1}=1$ , $|A/A_{1}|$ is equal to
the exponent of $A$ . This implies that $E_{0}A_{1}=E$ . Let $\lambda$ be a nonprincipal
linear character of $H/L$ . Then, $HA_{1}=I(\lambda)$ . Therefore, Lemma 4.5 [FT]

yields that $\lambda^{M}$ is a sum of irreducible characters of degree exactly equal
to $|E_{0}|=d$ . Q.E.D.
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Remark. At the final stage of proof, Lemma 4.5 [FT] yields that
$\lambda^{M}$ is a sum of exactly $|A_{1}|$ irreducible characters. We have

$|A_{1}|=|E:E_{0}|$ .

Thus, $M$ has at least $2|E$ : $E_{0}|$ irreducible characters of degree $d$ .

Theorem 15.2. Let $M\in M$ be a group of type I and let@ be as in
Lemma 15.1. If $H/\Phi(H)$ is not a chief factor of $M$ , then @ is coherent.
The assumption on $H$ is satisfified if $Z(E)$ contains an element $x$ such
that $C_{H}(x)\not\leqq H’$ and $C_{H}(x)\neq H$ .

Proof. Let $d=|E_{0}|$ . Since $E_{0}$ acts regularly on $H$ , each chief factor
of $M$ in $H$ has order at least $2d+1$ It follows that $|H$ : $H’|>4d^{2}+1$ .

By Theorem 12.5, @ is coherent if $@(H’)$ is coherent.
Let $@_{1}$ , $\ldots$ , $@_{k}$ be the equivalence classes of characters in $@(H’)$ . Each

$@_{i}$ is a set of irreducible characters of the same degree. If $\lambda\in s_{i}$ , then
$\overline{\lambda}\in@_{i}$ . Thus, $|@_{i}|\geq 2$ . Hence, by Lemma 10.1 [FT], each $@_{i}$ is coherent.
Let $n_{i}=|@_{i}|$ and let $d\ell_{i}$ be the common degree of the characters of $@_{i}$ .

We may choose the notation so that

$\ell_{1}=1<\ell_{2}<\cdots<\ell_{k}$ .

Lemma 4.5 [FT] yields that for any nonprincipal linear character $\alpha$ , the
irreducible component of $\alpha^{M}$ has degree $|M$ : $I(\alpha)|$ . Since $d=|E_{0}|$ , we
get $\ell_{i}\leq|E:E_{0}|$ .

If $@(H’)$ is not coherent, Theorem 12.3 yields that the inequality of
Hypothesis 12.2 is violated, i.e. we have

$\sum_{i=1}^{m-1}n_{i}\ell_{i}^{2}\leq 2\ell_{m}\leq 2|E:E_{0}|$

for some $m$ .

We define $\overline{H}=H/\Phi(H)$ and use the bar convention. By assumption,

we have a normal subgroup $H_{1}$ of $H$ such that $\overline{H_{1}}$ is a nontrivial proper
$E$-invariant subgroup. Since $(|E|, |H|)=1$ , there is a complementof $\overline{H_{1}}$

in $\overline{H}$ . Thus, there is an E- invariant subgroup $H_{2}$ such that $H_{1}H_{2}=H$

and $H_{1}\cap H_{2}=\Phi(H)$ . Then, $H_{2}$ is a normal subgroup of $M$ . We
have remarked that there are at least $2|E$ : $E_{0}|$ irreducible characters of
degree $d$ having $H_{1}$ in their kernel and at least $2|E$ : $E_{0}|$ irreducible ones
of degree $d$ having $H_{2}$ in their kernel. It follows that $4|E$ : $E_{0}|\leq n_{1}$ .

This contradicts the earlier inequality. Therefore, @ is coherent.
Suppose that $Z(E)$ contains an element $x$ such that $C_{H}(x)\not\leqq H’$

and $C_{H}(x)\neq H$ . Let $\overline{C}=C_{\overline{H}}(x)$ . Then, $\overline{H}=\overline{C}\times[\overline{H}, x]$ . If $\overline{C}=\overline{H}$ ,



150 M. Suzuki

then $C_{H}(x)\Phi(H)=H$ . This implies $C_{H}(x)=H$ . Therefore, $\overline{C}\neq\overline{H}$ .

If $\overline{C}=1$ , then $C_{H}(x)(x)\underline{\subseteq}\Phi(H)$ . This is impossible as $CH(x)H$
’

corresponds to a direct factor of $H/H’$ . Since $x\in Z(E)$ , $\overline{C}$ is M-

invariant. Hence, $\overline{H}=H/\Phi(H)$ is not a chief factor of $M$ and the first
part of Theorem 15.2 yields that @ is coherent. Q.E.D.

\S 16. Characters of Subgroups of Type III and IV

The following notation is used as in \S 29 [FT]. Let $S=S’Q^{*}$ be
a subgroup of type $II$ , III, or $IV$ where $q=|Q^{*}|$ is a prime and $Q^{*}$

corresponds to the subgroup $W_{1}$ in the definition of the groups of type
$II$ , III, or $IV$ . Let $H=S_{F}$ and let $V$ be a $Q^{*}$ -invariant complement of
$H$ in $S$ . We have a subgroup $T$ not of type I paired with $S$ in Theorem
I.

Let $\pi(H)=\{p_{1}, \ldots,p_{t}\}$ and for 1 $\leq i\leq t$ , let $P_{i}\in Sy\ell_{p_{i}}(H)$ ,

$C_{i}=C_{V}(P_{i})$ , and $C=\bigcap_{i=1}^{t}C_{\dot{x}}$ . Let $|H|=h$ , $|V|=v$ , $|Q^{*}|=q$ ,
$|C_{i}|=c_{i}(1\leq i\leq t)$ , and $|C|=c$ .

Let @o be the set of characters of $S$ which are induced by non-
principal irreducible characters of $S’/H$ and @ the set of characters of
$S$ induced by irreducible characters of $S’$ that do not have $H$ in their
kernel.

Theorem 16.1. (a) If $S$ is of type $III$, then @o\cup @ is coherent
except possibly if $H$ is abelian with $|H|=p^{q}$ for some prime $p$ , $VQ^{*}$

acts irreducibly on $H$ , and $C=1$ . (b) If $S$ is of type $IV$, then @o\cup @ is
coherent except possibly if $H$ is abelian with $|H|=p^{q}$ for some prime $p$ ,
$VQ^{*}$ acts irreducibly on $H$ , $C=V’$ , and @o is not coherent.

This is Theorem 29.1 [FT]. We paraphrase a part of their proof.
Throughout this section we assume that $S$ is of type III or $IV$ . By

Theorem $I$ , $T$ is of type $II$ . Therefore $W_{2}$ is of prime order. Let $p=|W_{2}|$

and write $p=p_{1}$ , $P=P_{1}$ , and $P^{*}=W_{2}$ . Since $S$ is of type III or $IV$ ,
we have $S’’\underline{\subseteq}F(S)=HC_{S}(H)=HC\underline{\subseteq}S’$ by (T3).

We will prove Theorem 16.1 in 6 steps.

Lemma 16.2. Hypothesis 12.4 is satisfified for $S$ , $F(S)$ , and @o\cup @

in place of $M$ , $H$ , and @, respectively, with $d=1$ .

Proof By the definition of groups of type III or $IV$ , $H\underline{\subseteq}F(S)$ ,
$F(S)\neq S’$ , and $S/H$ is a Frobenius group with Frobenius kernel $S’/H$ .

Thus, @o contains an irreducible character of degree $q=|S:S’|$ . Every
character of @o\cup @ is induced by an irreducible character of $S’$ . So,
the degree is a multiple of $q$ . Thus, (iv) of Hypothesis 12.4 is satisfied.
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By Lemmas 13.5 and 13.7, each equivalence class of @o $\cup@$ is either
subcoherent or consists of irreducible characters. An equivalence class
contains $\lambda$ as well as $\overline{\lambda}$ . Thus, the condition (v) is satisfied. Q.E.D.

Lemma 16.3. Let $F=F(S)$ and let $@(F’)$ be the subset of@o\cup @

consisting of those characters which are equivalent to some character in

@o $\cup@$ that has $F’$ in its kernel. If $@(F’)$ is coherent, then @o\cup @ is
coherent.

Proof. Since $W_{2}\underline{\subseteq}P$ , $V$ does not centralize $P$ . Then, the Frobe-
nius group $VQ^{*}$ acts nontrivially on $P/\Phi(P)$ . This implies $|P:\Phi(P)|\geq$

$p^{q}$ . Thus,

$|F:F’|\geq|P:\Phi(P)|\geq p^{q}>4q2+1$

by (5.9) of [FT]. Theorem 12.5 yields Lemma 16.3. Q.E.D.

Lemma 16.4. If $@(F’)$ is not coherent, then $S’’=F$ .

Proof. By Corollary 9.6, $W_{2}$ is a subgroup of $S’’$ . It follows that
$S/S^{JJ}$ is a Frobenius group with Frobenius kernel $S’/S’’$ . The proof of
Lemma 29.3 [FT] proves Lemma 16.4. Q.E.D.

Lemma 16.5. If $@(F’)$ is not coherent, then $H=P$ , $P’=\Phi(P)$ ,
$|P:P’|=p^{q}$ , $P^{*}\cap\Phi(P)=1$ , and $C=V’$ . Furthermore, $VQ^{*}$ acts
irreducibly on $P$ .

Proof. The proof is the same as that of Lemma 29.4 [FT]. Since
$|P:\Phi(P)|=p^{q}$ and $V$ does not act trivially, $VQ^{*}$ acts irreducibly on
$P/\Phi(P)$ . Q.E.D.

Lemma 16.6. If $@(F’)$ is not coherent, then $P$ is an elementary
abelian $p$ -group of order $p^{q}$ .

Proof. See the proof of Lemma 29.5 [FT]. I will paraphrase the
part of the proof concerning the linear characters $s_{i}$ of $V$ modulo $p$ .

For $u$ , $v\in V$ , we have Si(uv)\equiv si(u)si(v)(mod$ p$). Thus, $s_{i}$ are
indeed linear characters modulo $p$ . None of these characters is trivial
because $C_{P/P’}(V)=1$ . If we take the notation that a generator $w$ of
$Q^{*}$ shifts the one-dimensional $V$-modules downwards $i\rightarrow i-1$ , then

$s_{i+1}(v)\equiv s_{i}(w^{-1}vw)$ for all $v\in V$.

If $s_{i}s_{j}=1$ for some $i<j=i+k$ , then for $x=w^{k}$ , $s_{j}(v)=s_{i}(x^{-1}vx)$

so $1=s_{i}(v)s_{j}(v)=s_{i}(vx^{-1}vx)$ for all $v$ . We claim that the mapping
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defined by $\theta$ : $v\rightarrow vx^{-1}vx$ induces an injection on the group $V/V’$ .

Suppose that $\theta(v)\equiv\theta(u)(mod V’)$ . Then,

$x^{-1}vu^{-1}x\equiv v^{-1}u\equiv uv^{-1}[v^{-1}, u]\equiv(vu^{-1})^{-1}$

modulo $V’$ . Since the group $VQ^{*}/V’$ has odd order, this happens only
when $vu^{-1}\equiv 1(mod V’)$ . $ThuS_{)}\theta$ induces an injection on a finite set.
Therefore, $\theta$ induces a surjective map. Then, for every $v\in V$ , there are
elements $u\in V$ and $z\in V’$ such that $v=\theta(u)z$ . Since $s_{i}(z)=1$ , we
have $s_{i}(v)=s_{i}(\theta(u))=1$ . This contradicts the statement that $s_{i}$ is not
trivial. Thus, $s_{i}s_{j}\neq 1$ for any ?., $j$ with $1\leq i,j\leq q$ .

The remaining proof is given in [FT]. Q.E.D.

Lemma 16.7. If $@(F’)$ is not coherent and $C\neq 1$ , then @o is not
coherent.

Proof. This is a paraphrase of the proof of Lemma 29.6 [FT]. As-
sume that @o is coherent. Note that $S/H$ is a Frobenius group with
Frobenius kernel $S’/H$ that is a nonabelian group of order $v$ . Thus, @o
is the set of all irreducible characters of $S/H$ that do not have $S’$ in their
kernel.

Let $@_{1}=@0$ and let $s_{2}$ , $\ldots$ , $s_{k}$ be the equivalence classes of $S(JP/)$ $-@_{0}$

such that every character of $@_{m}$ has degree $l_{m}q$ for $m\geq 2$ and $ l_{2}\leq l_{3}\leq$

$\ldots$ $\leq l_{k}$ . By assumption, $@(F’)$ is not coherent. We check the validity

of Hypothesis 12.2. If $\lambda\in s_{i}$ , then $\overline{\lambda}\in@_{i}$ . Now, Lemmas 13.5 and
13.7 yield the condition (iv). Since @o contains an irreducible character
of degree $d$ , all conditions of Hypothesis 12.2 except the inequality are
satisfied. Since $@(F’)$ is not coherent, the inequality must be violated. If
$\lambda\in@_{m}$ for $m\geq 2$ , then $\lambda$ is equivalent to a constituent $\mu$ of a character
induced by a linear character of $F$ and $\lambda(1)=\mu(1)$ . Since $V’=C$ by
Lemma 6.5 and $F=HC$ , the degree $l_{m}q$ of $\mu$ satisfies $l_{m}\leq v/c$ .

Consider the contribution to the left side of the inequality from

@o $\cdot$ A character $\lambda_{1s}$ of @o is irreducible of degree $l_{1s}q$ . Since $S/H$ is a
Frobenius groupwith Frobenius $kerne1S’/H$ , @o is the set of irreducible
characters of $S/H$ that do not have $S’$ in their kernel. There are exactly
$q$ other characters of degree 1. $ThuS_{)}$

$\sum(l_{1s}q)^{2}+q=qv$ , or $\sum_{s}\frac{l_{1s}^{2}}{||\lambda_{1s}||^{2}}=\frac{v-1}{q}$ .

Thus, we obtain $v-1\leq 2l_{m}q\leq 2qu/c$ . Since $1<c<u$ and $c\equiv 1$

$(mod 2q)$ , we get a contradiction. Q.E.D.
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Suppose that $S$ is of type III or $IV$ . If@o\cup @ is not coherent, $@(F’)$ is
not coherent by Lemma 16.3. Then, by Lemmas 16.5 and 16.6, $H=P$
is elementary abelian of order $p^{q}$ and $VQ^{*}$ acts irreducibly on $P$ . If $S$

is of type III, then $V$ is abelian so $C=V’=1$ by Lemma 16.5. If $S$ is
of type $IV$ , then $C=V’$ and @o is not coherent by Lemma 16.7. This
proves Theorem 16.1. Q.E.D.

\S 17. Characters of Subgroups of Type II, III and IV

We will use the notation introduced at the beginning of \S 16. In
addition, we denote $a=\exp V/V’$ .

In the first part of this section, we assume that

(1) $S$ is a subgroup of type $II$ , III, or $IV$ ,
(2) @ is not coherent if $S$ is of type III or $IV$ , and
(3) $V/V’$ has exponent $a$ .

In this section, we denote by $S(A)$ the set of characters in @ which
have $A$ in their kernel. This usage is different from the one used in \S 16.
We follow the argument of \S 30 [FT].

Lemma 17.1. The degree of every character in @ is divisible by
$aq$ .

Proof. Every character in @ is a constituent of a character of $S$

induced by a nonprincipal character $\theta$ of $H$ . Let $V_{1}=V\cap I(\theta)$ and let
$b=|V:V_{1}|$ . If $S$ is of type $II$ or III, $V$ is abelian by (IIiii) or (IIIiii).
By Lemma 4.5 [FT], it suffices to show that $a$ divides $b$ .

The group $V_{1}$ centralizes a section of $H$ . Then, $V_{1}\underline{\subseteq}A(S)$ as shown

in the proof of Lemma 30.1 [FT]. Consider $V^{b}$ and suppose that $V^{b}\neq 1$ .

Then, $V^{b}\underline{\subseteq}V_{1}\underline{\subseteq}A(S)$ . If $S$ is of type $II$ , the modified (llv) yields
$N_{G}(V^{b})\underline{\subseteq}S$ . Since $V^{b}$ char $V$ , we get $N_{G}(V)\underline{\subseteq}N_{G}(V^{b})\underline{\subseteq}S$ in

contradiction to (lliv). If $S$ is of type III, $V^{b}\neq 1$ is a normal subgroup
of the Frobenius group $VQ^{*}$ . Since @ is not coherent, Theorem 16.1
yields that $VQ^{*}$ acts irreducibly on $H$ . Then, the abelian group $V^{b}\neq 1$

acts semisimply and one component is trivial as $V^{b}\underline{\subseteq}V_{1}$ . It follows that
$V^{b}$ acts trivially on $H$ . Therefore, $V^{b}\underline{\subseteq}C$ , contradicting Theorem 16.1.

Suppose that $S$ is of type $IV$ . Then, Theorem 16.1 yields that @o is
not coherent. By Lemma 12.6, $V(\cong S’/H)$ is a nonabelian $r$ group for

some prime $r$ and $V’=\Phi(V)$ . In this case $V/V’$ is an elementary abelian
$r$-group, so $a=r$ . Since $VQ^{*}$ acts irreducibly on $H$ , we have $C_{H}(V)=1$ .

It follows that $V$ does not stabilize any nonprincipal character of $H$ .

Hence, the degree of a character in @ is divisible by $r$ . This proves
Lemma 17.1. Q.E.D.
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Lemma 17.2. For $1\leq i\leq t$ , $|P_{i}$ : $\Phi(P_{i})|=p_{i^{q}}$ , $VQ^{*}$ acts on
$P_{i}/\Phi(P_{i})$ irreducibly, and $V/C_{i}$ has exponent $a$ .

The proof of Lemma 30.2 [FT] applies.

Lemma 17.3. For $1\leq i\leq t$ , either $a|(p_{i}-1)$ or $a$ $|(p_{i^{q}}-1)$

and $(a,p_{i}-1)=1$ . In the second case, $V/C_{i}$ is a cyclic group of order
$a$ and acts irreducibly on $P_{i}/\Phi(P_{i})$ .

Cf. Lemma 30.3 [FT].
We prove two (known) properties of finite abelian $p$-groups for some

prime $p$ .

Lemma O. (1) Let $A$ be $a$ fifinite abelian $p$ -group such that $\Phi(A)$

is a maximal characteristic subgroup of A. Then, $A$ is a direct product

of cyclic groups of the same order.
(2) Suppose that an abelian group $U$ acts on $a$ fifinite abelian $p$ group

A. Assume that the exponent of $U$ divides $p-1$ . Then, $A$ is a direct
product of $U$ -invariant cyclic subgroups.

Lemma 17.4. Suppose $(a,p_{i}-1)=1$ for some $i$ , $1\leq i\leq t$ . Let
$H_{1}=P_{i}’\square _{j\neq i}P_{j}$ . Then, $|H:H_{1}|=|P_{i}$ : $P_{i}’|=p^{qm_{i}}$ for some integer $m_{i}$ .

Furthermore, $@(H_{1})$ contains at least

$\frac{1}{q}\{\frac{(p_{i}^{qm_{i}}-1)c_{i}}{a}-(p_{i}^{m_{i}}-1)\}$

irreducible characters of degree $aq$ and at least $p_{i}^{m_{i}}-1$ characters of
weight $q$ and degree $aq$ .

Proof. I will paraphrase the proof of Lemma 30.4 [FT]. Lemma
17.3 yields that $V/C_{i}$ is cyclic. Suppose that $S$ is of type $IV$ . Then, by
Theorem 16.1, @o is $nt$ coherent. We showed in the proof of Lemma
17.1 that $V’=\Phi(V)=C=C_{i}$ . Then, $V/\Phi(V)$ is cyclic. Hence, $V$

is cyclic. This is a contradiction because $V$ is nonabelian for type $IV$ .

Therefore, $S$ is of type $II$ or III, and $V$ is abelian. Lemma 17.3 yields
that $V$ acts irreducibly on $P_{i}/\Phi(P_{i})$ . It follows from Lemma $M$ that
$H/H_{1}(\cong P_{i}/P_{i}’)$ is a direct product of $q$ cyclic groups of order $p_{i}^{m_{i}}$ . On
each chief factor in $H/H_{1}$ , $Q^{*}$ centralizes a subgroup of order $p_{i}$ . Since
$C_{H}(Q^{*})$ is cyclic by Theorem $C(2)$ , we have $|C_{H/H’}(Q^{*})|=p_{i}^{m_{i}}$ .

The group $HC_{i}/H_{1}$ is the direct product of $H/H_{1}$ and $H_{1}C_{i}/H_{1}$ .

Both factors are abelian. Since $V/C_{i}$ acts regularly on $H/H_{1}$ , every lin-
ear character $\alpha$ of $HC_{i}/H_{1}$ that does not have $H/H_{1}$ in its kernel has
exactly $a=|V:C_{i}|$ conjugates. Hence, $\alpha$ induces an irreducible char-
acter of degree $a$ . There are at least $(p_{i}^{m_{i}q}-1)c_{i}/a$ distinct irreducible
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characters of degree $a$ . Among them, precisely $p_{i}^{m_{i}}-1$ are $Q^{*}$ invariant.
The assertions of Lemma 17.4 follow from Lemma 13.5. Q.E.D.

Lemma 17.5. Suppose that $a|(p_{i}-1)$ for some $i$ with $1\leq i\leq t$ .

Let $H_{1}$ be as in Lemma 17.4. Then, $|H:H_{1}|=|P_{i}$ : $P_{i}’|=p_{i}^{m_{i}q}$ for some
integer $m_{i}$ and $@(H_{1})$ contains at least

$\underline{(p_{i}^{m_{i}}-1)}\frac{v}{av’}$

irreducible characters of degree $aq$ where $|V’|=v’$ .

Proof. The Frattini factor group of $H/H_{1}$ is isomorphic to $P_{i}/\Phi(P_{i})$ .

By Lemma 17.2, $VQ^{*}$ acts irreducibly on $P_{i}/\Phi(P_{i})$ . Since $a$ $|(p_{i}-$

$1)$ , $H/H_{1}$ is a direct product of $V$-invariant cyclic groups of the same
order. There are $V$-invariant subgroups $K_{1}$ and $K_{2}$ such that $H/K_{2}$

is a cyclic group of order $p^{m_{i}}$ , $K_{1}K_{2}=H$ , and $K_{1}\cap K_{2}=H_{1}$ . Let
$V_{1}=C_{V}(H/K_{2})$ . Then, $V/V_{1}$ is a subgroup of Aut $(H/K_{2})$ . Hence,
$V/V_{1}$ is cyclic, so $|V:V_{1}|\leq a$ .

Consider the factor group $L=HV_{1}/K_{2}V’$ . Since $V_{1}\supseteq V’$ and $V_{1}$

centralizes $H/K_{2}$ , $L$ is abelian. Let $c_{\lrcorner}$ be the set of linear characters of $L$

which do not contain $H$ in their kernel. If $\lambda\in L$ , $\lambda$ induces an irreducible
character $\theta$ of degree $|V:V_{1}|$ in @. By Lemma 17.1, $|V:V_{1}|\geq a$ . Hence,

$|V:V_{1}|=a$ . Suppose that $\theta^{S}=\lambda^{S}$ is not irreducible or for $\lambda$ , $\mu\in L$ ,

they induce the same irreducible character of @. In the first case, $\lambda$ is
$Q^{*}$ -invariant, so $ H\cap ker\lambda$ is $Q^{*}$ -invariant. In the second case, $\lambda$ and $\mu$

are $Q^{*}$ -conjugate so $ H\cap ker\lambda$ and $ H\cap ker\mu$ are $Q^{*}$ -conjugate. However,
$ H\cap ker\lambda$ and $ H\cap ker\mu$ have the same index and both contain $K_{2}$ . Since
$H/K_{2}$ is a cyclic group of order $p_{i}^{m_{i}}$ , there is a unique subgroup of each
index. It follows that $ H\cap ker\lambda$ is $Q^{*}-$ invariant. Since every subgroup
of $H$ that contains $K_{2}$ is $V$-invariant, $H$ contains a subgroup of index
$p_{i}$ that is $VQ^{*}$ -invariant. This contradicts Lemma 17.2.

We have $|L|=l=(p^{m_{i}}-1)v/av’$ and the characters of $\mathcal{L}_{I}$ produce
exactly $l/a$ distinct irreducible characters of degree $aq$ in $@(H_{1})$ .

Q.E.D.

Lemma 17.6. If@(H’) contains no irreducible character of degree
$aq$ , then $t=1$ , $P_{1}’=\Phi(P_{1})$ , $a=u=(p_{1}-q1)/(p_{1}-1)$ , and $c=c_{1}=1$ .

Furthermore, $@(H’)$ is coherent and $S$ is not of type $IV$.

Proof. See the proof of Lemma 30.6 [FT]. We note that in the
following equation $a=(p_{i^{q}}-1)/(p_{i}-1)$ , $p_{i}$ is determined by $a$ . This
remark yields $t=1$ . Since $c=1$ , $V’=C=1$ , and $S$ is not of type
$IV$ . Since $@(H’)$ contains all the characters of degree $aq$ and weight $g$ ,
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$@(H’)$ consists of characters $\xi_{j}$ , $0\leq j<p$ . By Lemma 13.7, $@(H’)$ is
coherent. Q.E.D.

In the remainder of this section we assume that

(2)’ @ is not coherent

in place of the condition (2). Note that $S’’\underline{\subseteq}F(S)=HC\underline{\subseteq}S’$ by
Theorem A (7). Define $F=F(S)$ .

Lemma 17.7. If $@(H’)$ is not coherent, then $H=P_{1}$ , $C_{1}=1$ ,

$a=(p-1)/2$ , $p=p_{1}$ , $v\neq a$ , and $\Phi(P_{1})=P_{1}’$ . The degree of every
character in $@(H’)$ is either $aq$ or $vq/c$ , and $@(H’)$ contains exactly $2v/a$

irreducible characters of degree $aq$ . Furthermore, $S$ is not of type $IV$.

Proof The proof of Lemma 30.7 [FT] shows that if $@(F’)$ is not
coherent, the degree of any character in $@(F’)$ is either $aq$ or $uq$ where

$u=v/c$ , and the other conditions in Lemma 17.7 are satisfied. If $S$ is
of type $II$ or III, then $V$ is abelian. Hence, $F’=H’$ because $F=H\times C$

with $C$ abelian. Thus, the result is proved if $S$ is of type $II$ or III.
It remains to show that if $S(H’)$ is not coherent, then $S$ is not of type

$IV$ . Suppose that $S$ is of type $IV$ . Since $@(H’)$ is not coherent, @o\cup @ is not
coherent. Theorem 16.1 (b) yields that $H=P$ is elementary abelian,
$VQ^{*}$ acts irreducibly on $P$ , and @o is not coherent. Since $S/H\cong VQ^{*}$

is a Frobenius group, Lemma 12.6 implies that $V$ is an $r$-group for
some prime $r$ and $V’=\Phi(V)$ . It follows that $V/V’$ is an elementary
abelian group of order $r^{n}$ . Thus, the exponent of $V/V’$ is $r$ ; we have

$r=a$ . We claim that $n$ $\leq 2$ . Suppose that $n$ $>2$ . Since $H=P$
is elementary abelian, so is $F/C$ . Let $\theta_{1}$ and $\theta_{2}$ be linear characters
of $F/C$ with exactly $a$ conjugates in $S’$ , so each induces an irreducible
character of degree $a$ . Suppose that $\theta_{1}\theta_{2}$ is not the principal character.
Then, $I(\theta_{1}\theta_{2})\supseteq I(\theta_{1})\cap I(\theta_{2})$ . Since both $I(\theta_{1})$ and $I(\theta_{2})$ have index $r$ ,

the index of $I(\theta_{1}\theta_{2})$ in $S’$ is at most $r^{2}$ . Since the index of the inertia
group of a nonprincipal character is either $r$ or $r^{n}$ , $|S’$ : $I(\theta_{1}\theta_{2})|=r$ .

Thus, the set of linear characters with at most $r$ conjugates forms a
$VQ^{*}$ -invariant subgroup of the character group of $F/C$ . Since $VQ^{*}$ acts
irreducibly on $F/C$ , every nonprincipal character of $F/C$ has exactly
$r$ conjugates. It follows from the permutation lemma that the number
of orbits on the character group by the action of $V$ is the same as the
number of orbits on $P^{\phi}$ . Since each orbit has at least $r$ elements, every
element of $P^{\beta}$ has exactly $r$ conjugates. Take an element $x\neq 1$ in
$P^{*}$ . Then, $C_{V}(x)=X$ is a maximal subgroup of $V$ . Since $x$ is $Q^{*}-$

invariant, so is $X$ . Hence, $C_{P}(X)$ is $VQ^{*}$ -invariant. Since $VQ^{*}$ acts
on $P$ irreducibly, we have $C_{P}(X)=P$ . This contradicts Theorem 16.1



On the Pnme Graph of a Finite Simple Group 157

because $C=C_{V}(P)=V’$ . Therefore, we have $n$ $\leq 2$ . If $n$ $=1$ , $V/\Phi(V)$

is cyclic. This implies that $V$ is cyclic. This contradicts the definition
of a group of type $IV$ (IVHi). If $n$ $=2$ , Lemma 11.3 [FT] yields that @o
is coherent. This final contradiction shows that $S$ is not of type $IV$ if
$@(H’)$ is not coherent. Q.E.D.

Lemma 17.8. The family $@(H’)$ is coherent.

Proof. Suppose that $@(H’)$ is not coherent. Lemma 17.7 yields that
$H=P_{1}$ , $C_{1}=1$ , $a=(p-1)/2$ , $p=p_{1}$ , $v\neq a$ , $P_{1}’=\Phi(P_{1})$ , and $S$ is of
type $II$ or III. The last condition implies that the subgroup $V$ is abelian.
Let $@_{1}$ be the set of irreducible characters in $@(H’)$ of degree $aq$ . By
Lemma 17.7, the degree of every character in $@(H’)$ is either $aq$ or $vq$ ,
and $|@_{1}|=2v/a$ . We will prove some properties of characters of $P=P_{1}$

having exactly $a$ conjugates. Note that there is such a character because
$@_{1}\neq\emptyset$ .

We prove a lemma. Let $\theta$ be a nonprincipal character of $P/P’$ with
exactly a conjugates. Then, $V_{1}=V\cap I(\theta)$ contains no $Q^{*}$ -invariant
subgroup different from 1.

Proof. Suppose $1\neq U\underline{\subseteq}V_{1}$ and $U$ is $Q^{*}$ -invariant. Then, $V_{1}$

$centralizesP/ker$ $\theta$ . Since $V$ is a $p’$ group $C_{P/P’}(V)\neq 1$ . Hence,
$C_{P/P’}(U)\neq 1_{)}$ and it is a direct factor of $P/P’$ because $U$ is a $p’-$

group. Since $U$ is $Q^{*}$ -invariant and $V$ is abelian, $C_{P/P’}(U)$ is $VQ^{*}-$

invariant. By Lemma 17.2, $VQ^{*}$ acts irreducibly on $P/\Phi(P)$ . It follows
that $C_{P/P’}(U)=P/P’$ , and hence $U\underline{\subseteq}C_{V}(P)=C_{1}=1$ . This contra-
diction proves the lemma. Q.E.D.

We claim that there is a pair of characters $\theta_{1}$ and $\theta_{2}$ of $P/P’$ having
exactly $a$ conjugates such that $\theta_{1}\theta_{2}$ has $v$ conjugates. Suppose that this
does not hold. Then, the characters having at most $a$ conjugates form a
subgroup of the character group of $P/P’$ that is $VQ^{*}$ -invariant Then,
Lemma 17.2 yields that every character of $P/P’$ has at most $a$ conju-
gates. This gives a contradiction as follows. There is a $Q^{*}$ -invariant
nonprincipal character $\theta$ of $P/P’$ . Then, $I(\theta)\cap V$ is $Q^{*}$ -invariant con-
tradicting the lemma.

Choose a pair of characters $\theta_{1}$ and $\theta_{2}$ each having exactly $a$ conju-
gates such that $\theta_{1}\theta_{2}$ has $v$ conjugates. Then, $|S’$ : $I(\theta_{i})|=a$ for $i=1,2$ ,

and $I(\theta_{1})\cap I(\theta_{2})=P$ . Thus, $v$ divides $a^{2}$ ; in particular, $v\leq a^{2}$ . We
will prove that $r(V)\leq 2$ . Take an arbitrary prime $r\in\pi(V)$ . We will
show that $V$ has a Sylow $r$-subgroup generated by at most two elements.
Let $x$ be an element of order $a$ in $V$ , and let $w$ be a generator of $Q^{*}$ .

If $\langle x\rangle\cap\langle x\rangle^{w}$ is an $r’$ group $\langle x, x^{w}\rangle$ contains a Sylow $r$ subgroup of $V$
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that is generated by two elements. Suppose that $\langle x\rangle\cap\langle x\rangle^{w}$ contains a
subgroup $R$ of order $r$ . Then, $R$ is the unique subgroup of order $r$ in
$\langle x\rangle$ as well as in $\langle x\rangle^{w}$ . Thus, $R$ is $Q^{*}$ -invariant. By the lemma, $I(\theta_{i})$

does not contain $R$ . Let $V_{i}=I(\theta_{i})\cap V$ . Then, $V_{1}\cap V_{2}=1$ . Since
$V_{i}\cap R=1_{)}V/V_{i}$ has a cyclic Sylow $r$-subgroup. The Second Isomor-
phism Theorem yields that $V_{1}$ also has a cyclic Sylow $r$-subgroup. Thus,
a Sylow $r$-subgroup of $V$ is generated by at most two elements. Since
$V$ is abelian, we have $r(V)\leq 2$ . If $r(V)=1$ , $V$ would be cyclic. Then,

$a=v$ , contrary to $a\neq v$ . Thus, $r(V)=2$ .

We prove that if $\theta$ has exactly $a$ conjugates, then $V_{1}=I(\theta)\cap V$ is
cyclic and $V_{1}\cap V_{1}^{w}=1$ for any $w\in Q^{*}$ . If $V_{1}$ is not cyclic, $V_{1}$ contains
an elementary abelian group $E$ of order $r^{2}$ for some $r\in\pi(V)$ . Since
$r(V)=2$ , $E$ is a characteristic subgroup of $V$ . Thus, $E$ is $Q^{*}$ -invariant,
contradicting the lemma. Therefore, $V_{1}$ is cyclic. If $V_{1}\cap V_{1}^{w}\neq 1$ for
some $w\neq 1$ in $Q^{*}$ , then take a subgroup $R$ of prime order in $V_{1}\cap V_{1}^{w}$ .

Since $V_{1}$ is cyclic, $R$ is the unique subgroup of its order. The same holds
for $V_{1}^{w}$ . Then, $R$ is a $Q^{*}$ -invariant subgroup of $V_{1}$ . The lemma yields
that this is not possible. Thus, $V_{1}\cap V_{1}^{w}=1$ .

The proof of Lemma 30.8 [FT] can be carried over. The $Q^{*}$ -invariant
nonprincipal characters of $P$ have exactly $v$ conjugates as seen from
the third paragraph of the present proof. Thus, $@(H’)$ contains $p-1$

characters of weight $q$ and of degree $qv$ .

Let $\lambda$ be an irreducible character of degree $aq$ in $s_{1}$ . Then Lemma 4.5
[FT] yields that $\lambda$ is induced by a linear character of some subgroup $U$ of

index $a$ in $S’$ . Define $\alpha=1_{U}^{S}-\lambda$ . Since $U\triangleleft S’$ (as $S’/H\cong V$ is abelian),
$1_{U}^{S’}$ is the regular representation of the group $S’/U$ . Since $U=I(\theta)$ for
some nonprincipal character $\theta$ with exactly $a$ conjugates, $U\cap U^{w}=H$

for all $w\in Q^{*Q}$ . If $|U:H|=b$ , then $U/H\cong V_{1}=I(\theta)\cap V$ is cyclic.

Thus, $UUW/H$ is the set $S_{b}/H$ of elements of order dividing $b$ . It follows
that $S$ is $Q^{*}$ -invariant. If a linear character $\xi$ of $S’$ has $U$ in its kernel,
$ker\xi^{w}\supseteq U^{w}$ . Thus, $\xi^{w}$ has $U$ in the kernel if and only if $ker\xi\supseteq S_{b}$ .

Therefore, we can compute $(1_{U})^{S}$ . It is the sum of $\rho_{3/S’)}$ irreducible

characters induced by nonprincipal characters of $S’/S_{b}$ with multiplicity
$q$ and $(a -a/b)$ other irreducible characters with multiplicity 1. Thus, it

follows that $||\alpha||^{2}=q+q^{2}((a/b)-1)/q+a-(a/b)+1=a+1+(q-1)a/b$ .

The remaining portion of the proof is the same as that of Lemma
30.8 [FT]. Q.E.D.

Lemma 17.9. $S$ is of type $II$.

Lemma 17.10. If contains an irreducible character of degree $aq$ ,

then Hypothesis 12.4 is satisfified with $M=S$ , $X=A(S)$ , $H=S_{F}=P$ ,
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and $d=a$ .

Lemma 17.11. If @ contains an irreducible character of degree
$aq$ , then $|H:H’|\leq 4a^{2}q^{2}+1$ .

Proof. We need only to check that the present $@(H’)$ is the same
as $@(H’)$ in Theorem 12.5. Suppose that $\lambda\in@(H’)$ in the sense of
Theorem 12.5. Then, $\lambda$ has the same degree as the character $\mu$ in @
that has $H’$ in the kernel. By the definition of @, $\lambda$ is induced by an
irreducible character $\lambda_{1}$ of $S’$ . Similarly, $\mu$ is induced by an irreducible
character $\mu_{1}$ of $S’$ . Since $ H’\underline{\subseteq}ker\mu$ , the restriction of $\mu_{1}$ on $H$ is a
direct sum of irreducible characters of degree 1. Since $S’/H$ is abelian,
Lemma 4.5 [FT] yields that $\mu_{1}(1)$ is prime to $|H|$ . Note that $H$ is a Hall
subgroup of $S$ . Since $\lambda_{1}(1)=\mu_{1}(1)$ , the degree of $\lambda_{1}$ is prime to $|H|$ .

Therefore, the irreducible constituents of the restriction of $\lambda_{1}$ to $H$ are
linear. It follows that $ H’\underline{\subseteq}ker\lambda$ . Now, Theorem 12.5 yields Lemma
17.11 because @ is not coherent. Q.E.D.

Lemma 17.12. For $1\leq i\leq t$ , $(a,p_{i}-1)=1$ and $P_{i}V/C_{i}$ is $a$

Frobenius group.

Lemma 17.13. The group $H$ is a nonabelian 3-group with $H’=$

$\Phi(H)$ . There is an irreducible character of degree $aq$ in @ and $a$
$<3^{q/2}$ .

Proof. By Lemma 17.8, $H’\neq 1$ so $H$ is nonabelian. Choose the
notation that $P_{1}’\neq 1$ . Let

$P_{1}=P_{11}\supset P_{12}\supset\cdots\supset P_{1n}=P’\supset P_{1}n+1=P_{0}$

be a part of a chief series of $S$ . Then, $P_{1}/P_{o}$ is a nilpotent group of class
2. Lemma 17.9 yields that $S$ is of type $II$ . Hence, by (IIv), $C_{H}(V)=1$ .

It follows from Theorem 3.10 [BG] that $Q^{*}$ centralizes some nonidentity
in each chief factor. Since $C_{H}(Q^{*})$ is cyclic, $P_{1}/P_{0}$ has exponent $p^{n}$ .

The mapping $y\rightarrow y^{p^{n-1}}$ induces a $V$-homomorphism of $P_{1}/\Phi(P_{1})$ into
$P_{1}’/P_{0}$ . Therefore, the minimal polynomial of the generator $x$ of $U/C_{1}$

on $P_{1}/\Phi(P_{1})$ is the same as that on $P_{1}’/P_{0}$ . By Lemma 6.2 [FT], we have

$q>3$ and $a<3^{q/2}$ .

If@ contains no irreducible character of degree $ag$ , Lemma 17.6 yields
$H=P_{1}$ and $a=(p_{1^{q}}-1)/(p_{1}-1)$ . Hence,

$3^{q-1}\leq p_{1}^{q-1}<a<3^{q/2}$ .

This contradiction proves that there is an irreducible character of degree
$aq$ in @.
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Let $|P_{1}$ : $P_{1}’|=p_{1^{mq}}$ . Then, by Lemma 17.11,

$p_{1}^{mq}\Pi_{i>1}p_{i}q\leq|H:H’|\leq 4a^{2}q^{2}+1<4\cdot 3^{q2}q+1$ .

By (5.9) [FT], we have $m=1$ , $t=1$ , and $p_{1^{q}}<4\cdot 3^{q}q^{2}+1$ . Thus, $p_{1}$

is small. Eventually, we have $p_{1}=3$ (cf. page 960 [FT]). Hence, $H$ is a
3-group because $t$ $=1$ . Since $m=1$ , we have $\Phi(H)=H’$ . Q.E.D.

Theorem 17.14. Let $S$ be a subgroup of type $II$, $III$, or $IV$. Let
$a$ be the exponent of the group $V/V’$ , and let $T$ be the element of $M$

paired with $S$ in Theorem I. Then, the family @ of characters is coherent
except possibly if $S$ is of type $II$, $H$ is a nonabelian 3-group, $HV/C$ is $a$

Frobenius group with Frobenius kernel $HC/C$ , $a<3^{q/2}$ , $|H:H’|=3^{q}$ ,

and $T$ is of type $V$.

\S 18. Characters of Subgroups of Type $V$

In this section let $T$ $=T’W_{2}$ be a subgroup of type V. Let $S$ be the
subgroup in $M$ which satisfies the conditions of Theorem I. By (d), $S$ is
of type $II$ . We use the notation introduced at the beginning of \S 16.

Let $\mathcal{T}$ be the set of all characters of $T$ which are induced by nonprin-
cipal irreducible characters of $T’$ . For $0\leq i\leq q-1,0\leq j\leq w_{2}-1$ , let
$\eta_{ij}$ be the generalized characters of $G$ associated with $\omega_{ij}$ of $W$ and let
$l\nearrow ij$ be the characters of $T$ defined in Lemma 13.4. By Lemma 13.5, $T’$

has exactly $q$ irreducible characters which induce characters of weight
$w_{2}$ . Denote them $\iota/0=1_{T’},$ $l/_{1}$ , $\ldots$ , $l/_{q-1}$ . Then, $\zeta_{i}=lJ_{i^{T}}$ has weight $w_{2}$ .

Since $q$ is a prime, the characters $l/_{1}$ , $\ldots$ , $\iota/_{q-1}$ are algebraically conju-
gate. Therefore, $\iota/_{i}(1)=l/_{1}(1)$ for $1\leq i\leq q-1$ .

We prove a lemma.

Lemma P. If $\lambda$ is an irreducible character of $T$ , then $\lambda^{\tau}$ is defifined
and $\lambda^{\tau}$ is not equal $to\pm\eta_{st}$ for any $s$ and $t$ .

Proof If $\lambda\in T$ , then $\overline{\lambda}$ is an irreducible character in $T$ and $\overline{\lambda}\neq\lambda$ .

Then, $\{\lambda, \overline{\lambda}\}$ is coherent and $\lambda^{\tau}$ is (not uniquely) defined by $(\lambda-\overline{\lambda})^{\tau}=$

$\lambda^{\tau}-\overline{\lambda}^{\tau}$ Suppose that $\lambda^{\tau}=\pm\eta_{st}$ . Then, for an element $x\in\overline{W}$ , we have

$\lambda^{\tau}(x)=\pm\eta_{st}(x)=\pm\omega_{st}(x)$ .

Since $\lambda$ vanishes on $\overline{W}$

, $\lambda^{\tau}-\overline{\lambda}^{\tau}=(\lambda-\overline{\lambda})^{\tau}$ vanishes on $x$ . Thus, we

get that $\overline{\lambda}^{\tau}(x)=\pm\omega_{st}(x)\neq 0$ . By Lemma 13.1, $\overline{\lambda}^{\tau}$ is one $of\pm\eta_{ij}$ ; in

fact, $\omega_{st}(x)=\omega_{ij}(x)$ on $x\in W$ implies that $\overline{\lambda}^{\tau}=\pm\eta_{st}=\lambda^{\tau}$ . This

contradicts the inequality $\lambda\neq\overline{\lambda}$ . Q.E.D.
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Lemma 18.1. The family $@(H’)$ contains an irreducible character

of $S$ except possibly if $w_{2}$ is a prime and $S’=HV$ is a Frobenius group
with Frobenius kernel $H$ .

Proof. We can apply Lemma 17.6. If@(H’) contains no irreducible
character, then $H=P_{1}$ is a $p_{1}$ group $H’=\Phi(H)$ , $v=a=(p_{1^{q}}-$

$1)/(p_{1}-1)$ and $c_{1}=c=1$ . Suppose that $H$ is nonabelian. Choose a
chief factor $P_{1}’/P_{0}$ of $S$ . Then, $P_{1}’/P_{0}\underline{\subseteq}Z(P_{1}/P_{0})$ and it is an elementary
abelian. As in the proof of Lemma 17.13, Lemma 6.2 [FT] yields $a<$

$3^{q/2}$ . Since $a=(p_{1^{q}}-1)/(p_{1}-1)$ , we have a contradiction $3^{q-1}<3^{q/2}$ .

Therefore, $H$ is abelian. It follows from $H’=\Phi(H)$ that $H$ is elementary
abelian. On each chief factor in $H$ , $Q^{*}$ has a nontrivial centralizer. Since
$C_{H}(Q^{*})=W_{2}$ is cyclic, $w_{2}=|W_{2}|$ is a prime and $VQ^{*}$ acts irreducibly
on $H$ . Thus, $HV$ is a Frobenius group with Frobenius kernel $H$ .

Q.E.D.

Lemma 18.2. Let $a_{ij}=((\iota/_{1}(1)\zeta_{0}-\zeta_{i})^{\tau}, \eta_{0j})$ . Then $a_{ij}\neq 0$ for
$1\leq i\leq q-1$ , $0\leq j\leq w_{2}-1$ .

Proof. Let $M\in M$ be a supporting subgroup of $T$ and let $N=M_{F}$ .

By (Fiii), $M$ is a group of type I. Let $E=M\cap T$ . Then $(Fii)(b)$ yields
that $E$ is a complement of $N$ in $M$ . We prove the following lemma.

The elements of $A(M)$ are $\pi(W_{2})’$ elements

Proof. Since $T$ is of type $V$ , we have $A(T)=T’$ . Take an element
$x\neq 1$ of $C_{T’}(W_{2})=Q^{*}$ . Then, by (Fn)(c), we have $(|N|, |C_{T}(x)|)=1$ .

It follows that $(|N|, |W_{2}|)=1$ . Suppose that there is an element of
$A(M)$ of order $r$ for some prime $r$ in $\pi(W_{2})$ . Since $N$ is an $r’$ group
there is a subgroup $R$ of order $r$ in $E$ with $C_{N}(R)\neq 1$ . By replacing
$M$ by conjugate, we may assume $R\underline{\subseteq}W_{2}$ because $W_{2}$ is a cyclic Hall
subgroup of $T$ . By Theorem 8.7 (d), $N_{T}(R)=Q^{*}\times W_{2}$ and it is cyclic.
By Lemma 6.1 (d) and Theorem 6.5 (b), $E$ has abelian Sylow subgroups.
It follows that $E$ has cyclic Sylow $r$-subgroups. Then, $r\in\tau_{1}(M)\cup\tau_{3}(M)$ .

Since $M$ is a $\varpi$ subgroup by (Fm), $C_{N}(R)\neq 1$ implies that $r\in\kappa(M)$ .

This contradicts Proposition 10.1 (a). Q.E.D.

We claim that $\ominus=\eta_{0j}$ satisfies the property that $\Theta$ is constant
on the cosets of $N$ which lie in $M-N$ . By Lemma 14.1, we need to
check that $\Theta$ is orthogonal to the elements of $T(\alpha)$ for every nonprincipal
irreducible character $\alpha$ of $N$ . Take $\theta_{1}$ , $\theta_{2}\in S(\alpha)$ . Since $M$ is of type
$I$ , $\theta_{i}$ are irreducible characters of $M$ which vanish outside $A(M)$ and
$\theta_{1}=\theta_{2}$ on $N$ by Lemmas 4.3 and 4.5 [FT]. Thus, $\theta_{1}-\theta_{2}$ vanishes outside

$A(M)-N$ . Since $M$ is of type $I$ , $A(M)=A_{0}(M)$ and $A(M)-N$ is a
$TI$-set of $G$ with normalizer $M$ by (Fii) (d).
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Thus, $(\theta_{1}-\theta_{2})^{G}$ is the difference of two irreducible characters of
$G$ . Suppose that $(\Theta, (\theta_{1}-\theta_{2})^{G})\neq 0$ . Then, $\ominus=\eta_{0j}$ is involved in
$\Psi=(\theta_{1}-\theta_{2})^{G}$ . The virtual character $\Psi$ vanishes outside $G_{G}(A(M))$ .

Since elements of $A(M)$ are $\pi(W_{2})’-$ elements by the lemma, there is

a Galois automorphism of $\mathbb{Q}_{|G|}$ that leaves $(\theta_{1}-\theta_{2})^{G}$ invariant but

moves $\eta_{0j}$ to $\eta 0k$ with $k\neq j$ . Then, $\eta 0k$ is involved in $\Psi$ with the
same multiplicity. This is a contradiction because $\Psi$ is the difference of
two characters. Hence, $\eta_{0j}$ is constant on the sets of the form $A(x)$ for
$x\in D^{*}$ .

Lemma 11.4 yields now

$(l/_{1}(1)\zeta_{0}-\zeta_{i}, (\eta_{0j})_{T})=((\nu_{1}(1)\zeta_{0}-\zeta_{i})^{\tau}, \eta_{0j})=a_{ij}$ .

The rest of the proof is the same as that of Lemma 31.2 [FT]. Q.E.D.

From now on, the lemmas of this section will be proved under the
assumption that $\mathcal{T}$ is not coherent, and we will derive a contradiction
from this hypothesis.

By Corollary 9.6, we have $Q^{*}\underline{\subseteq}T’’$ . Then, $T/T’’$ is a Frobenius
group with Frobenius kernel $T’/T’’$ . We check that Hypothesis 12.4 is
satisfied for $S$ , $S’$ , $T$ in place of $M$ , $H$ , @ with $d=1$ . Since $T/T’’$ is a
Frobenius group, there is an irreducible character of degree $w_{2}=|T:T’|$ .

The last condition of Hypothesis 12.4 holds by Lemmas 13.5 and 13.7. If
$H_{1}=T’’$ , then $@(H_{1})$ in Theorem 12.5 is the set of irreducible characters
of $T/T’’$ which do not have $T’/T’’$ in their kernel. Since $T’/T’’$ is abelian,
this family is coherent. Then, Theorem 12.5 yields that $T$ is coherent if

$|T’$ : $T’’|>4|T:T’|^{2}+1$ .

Since we are assuming that $\mathcal{T}$ is not coherent, we have

$|T’$ : $T’’|\leq 4w_{2}^{2}+1$ .

This implies that $W_{2}$ acts on $T’/T’’$ irreducibly. It follows that $T’=Q$

is a $q$-group for the prime $q=|Q^{*}|$ . Define

$|Q:Q’|=q^{b}$ and $|T:Q|=w_{2}=e$ .

Lemma 18.3. Suppose that $\mathcal{T}$ is not coherent and $|Q:Q’|=q^{b}$

with $b=2c$ an even number. Then, $|T:Q|=e$ is not a power of any
prime.

Proof. This is Lemma 31.3 [FT]. We will paraphrase a part of their
proof. Suppose that $e=p^{h}$ for some prime $p$ . Since $T$ is not coherent,
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Lemma 11.5 [FT] yields that $q^{c}+1=2p^{h}$ , $q^{C}$ is the degree of any nonlin-
ear irreducible characters of $Q/[Q, Q’]$ , and if $Q_{1}$ is a normal subgroup of
$T$ such that $Q_{1}\underline{\subseteq}Q’$ and $Q_{1}\neq Q’$ , then $T/Q_{1}$ is not a Frobenius group.
Note that $Q’/[Q, Q’]$ is contained in the center of $Q/[Q, Q’]$ . Therefore,
Lemma 4.1 [FT] yields that the degree of any irreducible character of
$Q/[Q, Q’]$ is at most $q^{c}$ .

Since $U’$ is not coherent, $Q$ is nonabelian. So, $Q’\neq 1$ . Let $Q_{1}$

be a normal subgroup of $T$ such that $Q_{1}\underline{\subseteq}Q’$ and $Q’/Q_{1}$ is a chief
factor of $T$ . Then, $[Q, Q’]\underline{\subseteq}Q_{1}$ . Since $Q_{1}\neq Q’$ , the group $T/Q_{1}$ is
not a Frobenius group. Then, some nonidentity element of $W_{2}$ has a
nontrivial centralizer in $Q_{1}$ . By Proposition 8.2, $W_{2}$ acts in a prime
manner on $Q$ . Thus, we have $Q^{*}\not\leqq Q_{1}$ . Since $[Q, Q’]\underline{\subseteq}Q_{1}$ , $Q^{*}Q_{1}$

is a normal subgroup of $Q$ . Clearly, $W_{2}$ normalizes $Q^{*}Q_{1}$ . Therefore,
$Q^{*}Q_{1}$ is a normal subgroup of $T$ . Since $Q’/Q_{1}$ is a chief factor of $T$ ,
we have $Q^{*}Q_{1}=Q’$ . Then, $|Q’$ : $Q_{1}|=|Q^{*}|=q$ . Any nonlinear
irreducible representation of $Q/Q_{1}$ has degree $q^{c}$ because $Q_{1}\supseteq[Q, Q’]$ ,
and it represents the subgroup $Q’/Q_{1}$ (in the center of $Q/Q_{1}$ ) by scalar
matrices. Since each coset of $Q_{1}$ in $Q’$ contains an element of $Q^{*}$ , any
nonlinear irreducible character of $Q/Q_{1}$ is $W_{2}$ -invariant. Thus, there are
$q-1$ nonlinear irreducible characters $\nu_{1}$ , $\ldots$ , $\nu_{q-1}$ that induce reducible

characters of $T$ . Let $\zeta_{i}=lJ_{i^{T}}$ for $1\leq i\leq q-1$ . These characters are
algebraically conjugate.

Since $|Q$ : $Q’|=q^{b}$ with $b=2c$ , $T$ contains $(q^{b}-1)/e=2(q^{c}-1)$

irreducible characters of degree $e$ . Let $\{\lambda_{i}\}$ be these irreducible char-
acters of degree $e$ . Since $Q=A(T)$ , $\{\lambda_{i}\}$ is coherent. Thus, the set of
virtual characters $\{\lambda_{i}^{\tau}\}$ of weight one is defined by Lemma 10.1 [FT].
None of these $\lambda_{i}^{\tau}$ is equal $to\pm\eta_{st}$ .

Define $\alpha=\zeta_{0}-\lambda_{1}$ and $\beta=q^{c}\lambda_{1}-\zeta_{1}$ . Consider the decomposition
of $\alpha^{\tau}$ and $\beta^{\tau}$ as in the proof of Lemma 31.3 [FT]. Then,

$\beta^{\tau}=q^{c}\lambda_{1}^{\tau}-x\sum_{i}\lambda_{i}^{\tau}+\Delta$

for some integer $x$ and $(\lambda_{i}^{\tau}, \Delta)=0$ for all $i$ . If we write

$\Delta=\sum a_{ij}\eta_{ij}+\Delta_{0}$

where $\Delta_{0}$ does not involve any $\eta_{ij}$ , Lemma 13.2 yields

$a_{00}-a_{i0}-a_{0j}+a_{ij}=0$

because $\beta^{\tau}$ vanishes on $\overline{W}$ . By Lemma 11.3, $(\beta^{\tau}, 1_{G})=(\beta, 1_{T})=0$ so
$a_{00}=0$ .
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The set $\{\zeta_{s}\}$ , 1 $\leq s\leq q-1$ , is coherent by Lemma 13.7 with
$\zeta_{s}^{\tau}=\epsilon\sum_{j}\eta_{sj}$ . Then, by Lemma 11.4,

$(\Delta, \zeta_{s}^{\tau}-\zeta_{1}^{\tau})=(\beta^{\tau}, \zeta_{s}^{\tau}-\zeta_{1}^{\tau})=(\beta, \zeta_{s}-\zeta_{1})=e$ .

It follows that $a_{s0}-a_{10}=\pm 1$ with the sign independent of $s$ . With
$a=a_{20}$ , we have
(18.1)

$(a\pm 1)^{2}+(q-2)a^{2}+\sum_{j}a_{0j^{2}}+\sum_{j}\{(a\pm 1+a_{0j})^{2}+(q-2)(a+a_{0j})^{2}\}\leq||\Delta||^{2}$
.

Let $k$ be the contribution from the third term. Since each pair of complex

conjugate characters contributes an even integer to the sum, $k$ is even.
The terms in the last sum and the first two terms contribute at least
one, so

$k+e\leq||\Delta||^{2}$ .

By definition, $(q^{c}\zeta_{0}-\zeta_{1})^{\tau}=q^{c}\alpha^{\tau}+\beta^{\tau}$ . Lemma 18.2 implies that for
any value of $j(1\leq j\leq e-1)$

$(\alpha^{\tau}, \eta_{oj})\neq 0$ or $(\beta^{\tau}, \eta_{0j})\neq 0$ .

Since $||\beta^{\tau}||^{2}=q^{2c}+e$ by Lemma 11.4, we have

$(q^{c}-x)^{2}+x^{2}(2q^{c}-3)+k+e\leq q^{2c}+e_{)}$ $x^{2}(q^{c}-1)-xq^{c}\leq 0$ .

Therefore, $0\leq x\leq q^{c}/(q^{c}-1)<2$ . $ThuS_{)}x=0$ or $x=1$ . Suppose

that $x\neq 0$ . Then) $x=1$ and $||\Delta||^{2}=e+2$ . It follows that $k\leq 2$ . If
$k=0$ , we get a contradiction as in [FT]. Assume that $k=2$ . Then,
$a_{0r}=a_{0s}=\pm 1$ for exactly two $r$ , $s$ and the remaining $a_{0j}$ are zero. The
values taken by $\beta^{\tau}$ are in the field $\mathbb{Q}_{|Q|}$ by Lemma 11.1) while the values
taken by $\eta_{0j}$ are in the field $\mathbb{Q}_{e}$ by Lemma 13.1. Then, $\eta_{0r}$ has at least
$p-1$ algebraic conjugates $\eta_{0j}$ with $a_{0j}=a_{0r}$ . It follows that $p-1=2$ .

Thus, $p=3$ and $q\neq 3$ .

Since $||\Delta||^{2}=e+2=e+k$ , the contribution from each term of the
last sum in (18.1) is exactly one. Since $q-2>1$ , we have $a+a_{0j}=0$

for each $j$ with $1\leq j\leq e-1$ . Since the first two terms of (18.1) also
contribute 1, we have $a=0$ . This contradicts $a_{0r}=a_{0s}=\pm 1$ .

Therefore, $x=0$ and we have

$\beta^{\tau}=q^{c}\lambda_{1}^{\tau}+\Delta$

with $||\Delta||^{2}=e$ . It follows that $k=0$ and $a_{0j}=0$ for $1\leq j\leq e-1$ .

Then) (18. 1) reads

$e((a\pm 1)^{2}+(q-2)a^{2})\leq e$ .
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Hence, $a=0$ or $a\pm 1=0$ and $q=3$ . If $a=0$ , then $a_{ij}=0$ for all $i\geq 2$

and $a_{1j}=a_{10}=\pm 1$ . Thus,

$\beta^{\tau}=q^{c}\lambda_{1}^{\tau}\pm\zeta_{1}^{\tau}$ .

If $a\pm 1=0$ and $q=3$ , $a_{10}=0$ and $a_{20}=\pm 1$ . Hence, $a_{1j}=0$ and
$a_{2j}=a_{20}=\pm 1$ . Thus, $\beta^{\tau}=q^{c}\lambda_{1}^{\tau}\pm\zeta_{2}^{\tau}$ . Since $q=3$ , we have only two
characters $\zeta_{1}$ and $\zeta_{2}$ . We see that the union of characters $\{\lambda_{i}\}$ and $\{\zeta_{s}\}$

is coherent. This set is precisely $T(Q_{1})$ , the set of characters of $T$ which
are induced by characters of $Q/Q_{1}$ . Thus, $T(Q_{1})$ is coherent. The index
$|Q:Q_{1}|$ is $q^{2c+1}$ and $q^{2c+1}>4e^{2}+1$ because $e=(q^{c}+1)/2\geq 2$ .

We check that Hypothesis 12.4 is satisfied with $d=1$ . We wish
to apply Theorem 12.5. The only point we need to worry about is
the definition of $T(Q_{1})$ . Thus, suppose that $\mu$ is a character of $T$ that
is equivalent to $\tau\in T$ that has $Q_{1}$ in its kernel. Then, $\tau$ is either an
irreducible character of degree $e$ or a character of degree $q^{c}$ and of weight
$e$ . Our set $T(Q_{1})$ contains all the irreducible characters of degree $e$ and
all the reducible ones of degree $q^{c}e$ because there are only $q-1$ such
characters. Thus, $\mu\in T(Q_{1})$ . Theorem 12.5 yields that $T$ is coherent,
contrary to the assumption. Q.E.D.

Lemma 18.4. The family @ for the group $S$ is coherent.

This follows from Theorem 17.14, Lemma 18.3, and Lemma 11.6
[FT] as shown in [FT]. Q.E.D.

We use the following notation. Let

$ 1=q^{fo}<q^{f1}<\cdots$

be the set of degrees of irreducible characters of $Q$ and

$\iota/_{1}(1)=q^{fn}$ .

Since $Q^{*}\underline{\subseteq}Q’$ by Theorem $C(3)$ , the principal character of $Q$ is the
only linear character of $Q$ that is $W_{2}$-invariant. Thus, $\nu_{1}(1)>1$ , i.e.
$n$ $>0$ . For $0\leq i\leq n-1$ , let $\lambda_{i}$ be an irreducible character of $T$ with
$\lambda_{i}(1)=eq^{f_{i}}$ . Let $@_{i}$ be the set of irreducible characters of $T$ which

are induced by irreducible characters of $Q$ with degree $q^{f_{i}}$ . Define $j_{s}$

inductively as follows. Let $j_{0}=0$ . Define $j_{S}$ to be the largest integer
not exceeding $n+1$ such that

$T_{s-1}=\cup@_{i}i=j_{s-1}j_{s}-1$
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is coherent. Let $Q_{0}$ be the normal closure of $Q^{*}$ in $T$ . Let

$1=q^{g_{0}}<q^{g_{1}}<\cdots<q^{g_{m}}$

be all the degrees of irreducible characters of $Q/Q_{0}$ . For any $j$ with
$0\leq j\leq m$ , let $\theta_{j}$ be an irreducible character of $T/Q_{0}$ of degree $eq^{g_{j}}$ .

Since $T/Q_{0}$ is a Frobenius group, any nonprincipal irreducible character
of $Q/Q_{0}$ induces an irreducible character of $T/Q_{0}$ . Define

$\alpha=\zeta_{0}-\lambda_{0}$ ,

$\beta_{i}=q^{fi^{-f_{i-1}}}\lambda_{i-1}-\lambda_{i}$ $(1\leq i\leq n-1)$ ,

$\gamma_{j}=q^{g_{j}-g_{j-1}}\theta_{j-1}-\theta_{j}$ $(1\leq j\leq m)$ .

Lemma 18.5. With the notation introduced above, we have

$(\beta_{i}^{\tau}, \eta_{0t})=0$ for $0\leq t\leq e-1,1\leq i\leq n-1$

$(\gamma_{j^{\mathcal{T}}}, \eta_{0t})=0$ for $0\leq t\leq e-1$ , $1\leq j\leq m$ .

Furthermore, if $e$ is a prime, then one of the following possibilities
occurs:

$\alpha^{\tau}=1_{G}-\lambda_{0}^{\tau}+\sum_{t=1}^{e-1}\eta_{0t}$ ,

$\alpha^{\tau}=1_{G}+\overline{\lambda}_{0}^{\tau}+\sum_{t=1}^{e-1}\eta_{0t}$ and $2e+1=|Q:Q’|$ ,

$\alpha^{\tau}=1_{G}+\sum_{s=1}^{q-1}\eta_{s0}+\Gamma$

with $(\Gamma, \eta_{st})=0$ for $0\leq s\leq q-1$ , $0\leq t\leq e-1$ .

Proof Write

$\alpha^{\tau}=\Gamma_{00}+\Delta_{00}$ , $\beta_{i}^{\tau}=\Gamma_{i0}+\Delta_{i0}$ , $\gamma_{j^{\mathcal{T}}}=\Gamma_{0j}+\Delta_{0j}$

where $\Delta_{ij}$ is a linear combination of the generalized characters $\eta_{st}$ and
$\Gamma_{ij}$ is orthogonal to each of these $\eta_{st}$ . Since $\alpha^{\tau}$ , $\beta_{i)}^{\tau}$ and $\gamma_{j^{\mathcal{T}}}$ vanish on
$\overline{W}$ , Lemma 13.2 yields that $\Delta_{ij}=\sum a_{st}\eta_{st}$ with $a_{st}$ (depending on $i$

and $j$ ) satisfying
$a_{00}-a_{s0}-a_{0t}+a_{st}=0$

for all $s$ and $t$ . For $1\leq s\leq q-1$ , $(\zeta_{s}-\zeta_{1})^{\tau}$ is orthogonal to $\alpha^{\tau}$ , $\beta^{\tau}$ ,

and $\gamma^{\tau}$ . Since $\zeta_{s}^{\tau}=\epsilon\sum_{j}\eta_{sj}$ for $s>1$ , we have

$a_{s0}=a_{10}$ for $1\leq s\leq q-1$ .
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Consider $\beta_{i}$ . Suppose that $\lambda_{i-1}\in \mathcal{T}_{s}$ and write

$\beta_{i}^{\tau}=\Delta+\Delta_{1}$

where $\Delta_{1}\in I(T_{s}^{\tau})$ and $\Delta$ is orthogonal to $I(\mathcal{T}_{s^{\mathcal{T}}})$ . The Lemma at the
beginning of Section 18 yields $\{\pm\eta_{st}\}\cap T_{s}^{\tau}=\emptyset$ . Thus, $\Delta_{i0}$ is a partial
sum of $\Delta$ . By Theorem 12.1 [FT],

$||\Delta||^{2}\leq e+1$ .

Since $(\beta_{i}^{\tau}, (\lambda_{i}-\overline{\lambda}_{i})^{\tau})\neq 0$ , $\beta_{i^{\mathcal{T}}}$ involves either $\lambda_{i}^{\tau}$ or $\overline{\lambda}_{i}^{\tau}$ If $\lambda_{i}\in U_{s}’$ ,

the coherence of $T_{s}$ yields that $\Delta=0$ . If $\lambda_{i}\not\in T_{s}$ , then $\lambda_{i}^{\tau}$ (or $\overline{\lambda}_{i}^{\tau}$ ) is
involved in $\Delta$ . Since $\lambda_{i}^{\tau}\neq\pm\eta_{st}$ , we have

$||\Delta_{i0}||^{2}\leq e$ .

We can prove $a=0$ as in Lemma 31.5 [FT]. Hence,

$\Delta_{i0}=\sum_{t=1}^{e-1}a_{0t}\sum_{s=0}^{q-1}\eta_{st}$ .

By Lemma 11.1, the virtual characters of $I_{0}(\mathcal{T})^{\tau}$ take nonzero values
only at $q$-singular elements. On the other hand, the virtual characters of
$I_{0}(@)^{\tau}$ vanish on $q$-singular elements by Lemma 11.1 and (Fii) (c). Thus,
$I_{0}(\mathcal{T})^{\tau}$ is orthogonal to $I_{0}(@)^{\tau}$ . Since @ is coherent by Lemma 18.4, we
have $(\xi_{k}(1)\xi_{r}^{\tau}-\xi_{r}(1)\xi_{k^{\tau}}, \Delta_{i0})=(\xi_{k}(1)\xi_{r}^{\tau}-\xi_{r}(1)\xi_{k^{\mathcal{T}}}, \beta_{i}^{\tau})=0$ . On the
other hand, $(\xi_{k^{\mathcal{T}}}, \Delta_{i0})=\pm a_{0k}q$ . Hence,

$\xi_{k}(1)a_{0r}=\xi_{r}(1)a_{0k}$ .

Suppose that $a_{0t}\neq 0$ for some $t$ . Then, $a_{0k}\neq 0$ for all $k$ . Hence,
$||\Delta_{i0}||^{2}\geq q(e-1)$ . This contradicts $||\Delta_{i0}||^{2}\leq e$ . Therefore, $\Delta_{i0}=0$ .

The case for $\gamma_{j}$ is similar.
The remainder of the proof is the same as the proof of Lemma 31.5

[FT]. Q.E.D.

We continue to use the notation introduced just before Lemma 18.5.

Lemma 18.6. With the notation of the preceding lemma, let $\lambda=$

$\lambda_{n-1}$ and $\beta=q^{f_{n}-fn-1}\lambda-\zeta_{1}$ . Then $(\beta^{\tau}, \eta_{0t})=0$ for $0\leq t\leq e-1$ .

Proof. Let $U_{b}’$ be the coherent set that contains $@_{n-1}$ . If $\zeta_{1}\in T_{b}$ ,

then $\beta^{\tau}\in I(T_{b}^{\tau})$ and $(\beta^{\tau}, \eta_{0t})=0$ . If $\zeta_{1}\not\in T_{b}$ , we apply Theorem 12.1
[FT]. The proof is the same as that of Lemma 31.6 [FT]. Q.E.D.
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Theorem 18.7. The set $\mathcal{T}$ is coherent.

Proof. Suppose that $\mathcal{T}$ is not coherent and use the notation intro-
duced in Lemmas 18.5 and 18.6. In particular, $\alpha$ , $\beta_{i}$ , $\gamma_{j}$ , $\lambda_{i}$ , and $\theta_{j}$

have the same meaning as in Lemmas 18.5 and 18.6. We may choose
the notation $\lambda_{0}=\theta_{0}$ . We have

$(q^{fn}\zeta_{0}-\zeta_{1})^{\tau}=q^{fn}\alpha^{\tau}+\sum_{i}q^{f_{n}-f_{i}}\beta_{i}^{\tau}$
.

By Lemma 18.2, $((q^{fn}\zeta_{0}-\zeta_{1})^{\tau}, \eta_{0j})\neq 0$ . Since Lemmas 18.5 and 18.6
yield $(\beta_{i}^{\tau}, \eta_{0t})=0$ for all $i$ with $1\leq i\leq n$ , we have $(\alpha^{\tau}, \eta_{0t})\neq 0$ for $ 0\leq$

$t\leq e-1$ . Thus, if $(\alpha^{\tau}, \eta_{0t})=a_{t}$ , then $a_{t}\neq 0$ and $\sum a_{t^{2}}\leq||\alpha^{\tau}||^{2}=e+1$ .

Therefore, $a_{t}=1$ or -1, and $\alpha^{\tau}$ involves exactly one more irreducible
character with multiplicity 1 or-1. Since

$(\alpha^{\tau}, (\lambda_{0}-\overline{\lambda}_{0})^{\tau})=-1$ ,

the extra character is either $\pm\lambda_{0}^{\tau}$ or $\pm\overline{\lambda}_{0}^{\tau}$ In the latter case, we have
$|Q$ : $Q’|=2e+1$ and there are exactly 2 irreducible characters of $T$ with
degree $e$ . We may choose the notation that

(18.2) $\alpha^{\tau}=1_{G}-\lambda_{0}^{\tau}+\sum a_{t}\eta_{0t}$ ( $a_{t}=1$ or –1).

Lemma 18.5 yields $(\gamma_{s^{\mathcal{T}}}, \eta_{0t})=0$ for $1\leq s\leq m$ , $0\leq t\leq e-1$ . Since

$(q^{g_{j}}\theta_{0}-\theta_{j})^{\tau}=\sum_{s=1}^{j}q^{g_{j}-g_{s}}\gamma_{s}$ ,

we have
$((q^{9j}\theta_{0}-\theta_{j})^{\tau}, \alpha^{\tau})=((q^{g_{j}}\theta_{0}-\theta_{j})^{\tau}, -\lambda_{0}^{\tau})$ .

The left side is equal to $(q^{g_{j}}\theta_{0}-\theta_{j}, \alpha)=-q^{g_{j}}$ by Lemma 11.4 (and

the choice $\theta_{0}=\lambda_{0}$ ). Since $||(q^{g_{j}}\theta_{0}-\theta_{j})^{\tau}||^{2}=q^{2g_{j}}+1$ and $((q^{g_{j}}\theta_{0}-$

$\theta_{j})^{\tau}$ , $(\theta_{j}-\overline{\theta}_{j})^{\tau})=-1$ , we have

(18.3) $(q^{g_{j}}\theta_{0}-\theta_{j})^{\tau}=q^{g_{j}}\theta_{0}^{\tau}-\theta_{j}^{\tau}$ .

If there are only two irreducible characters of degree $eq^{g_{j}}$ , there is an am-
biguity in the definition of $\theta_{j}^{\tau}$ . But, we can take a consistent notation.
Let $Q_{0}$ be the normal closure of $Q^{*}$ in $T$ as defined before Lemma 18.5.
Let $\mathcal{T}(Q_{0})$ be the set of irreducible characters of $T$ having the degrees
$eq^{g_{j}}$ with $0\leq j\leq m$ . Then, (18.3) implies that $\mathcal{T}(Q_{0})$ is coherent.
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Consider $(q^{fn}\lambda_{0}-\zeta_{1})^{\tau}=\sum_{i=1}^{n}q^{f_{n}-f_{i}}\beta_{i}$ . By (18.2) together with
Lemmas 18.5 and 18.6,

$((q^{fn}\lambda_{0}-\zeta_{1})^{\tau}, \alpha^{\tau})=((q^{fn}\lambda_{0}-\zeta_{1})^{\tau}, -\lambda_{0}^{\tau})$ .

Lemma 11.4 yields that the left side is equal to $-q^{2fn}$ . Since $||(q^{fn}\lambda_{0}-$

$\zeta_{1})^{\tau}||^{2}=q^{2fn}+e$ , we have

$(q^{fn}\lambda_{0}-\zeta_{1})^{\tau}=q^{fn}\lambda_{0}^{\tau}+\Delta$

with $||\Delta||^{2}=e$ . The set $\{\zeta_{s}\}$ of virtual characters $\zeta_{s}$ is subcoherent
by Lemma 13.7. Hence, the definition of subcoherent set yields that
$\Delta=\pm\zeta_{s}^{\tau}$ . In fact, $\Delta=-\zeta_{1}^{\tau}$ except possibly when $q-1=2$ . In the
exceptional case, there are exactly two virtual characters of weight $e$ .

We can choose the notation

(18.4) $(q^{fn}\lambda_{0}-\zeta_{1})^{\tau}=q^{fn}\lambda_{0}^{\tau}-\zeta_{1}^{\tau}$ .

Let $Q_{1}$ be a normal subgroup of $T$ such that $Q_{1}\underline{\subseteq}Q_{0}$ and $Q_{0}/Q_{1}$

is a chief factor of $T$ . It follows from the definition of $Q_{0}$ that $Q^{*}\not\leqq Q_{1}$ .

Then, $Q^{*}Q_{1}$ is a normal subgroup of $T$ and $Q^{*}Q_{1}=Q_{0}$ (cf. the second
paragraph of the proof of Lemma 18.3). Thus, $|Q_{0}$ : $Q_{1}|=q$ .

Since $T’$ is not coherent and $T(Q_{0})$ is coherent, Theorem 12.5 yields
that

$|Q:Q_{0}|\leq 4e^{2}+1$ .

Hence, $Q/Q_{0}$ has no proper $W_{2}$ -invariant subgroup. Since $T/Q_{0}$ is a
Frobenius group, this implies that $\Phi(Q)\underline{\subseteq}Q_{0}$ . On the other hand,
$Q^{*}\underline{\subseteq}Q’$ by Theorem $C(3)$ . Therefore, $Q_{0}\underline{\subseteq}Q’$ . $ThuS_{)}\Phi(Q)=Q_{0}=$

$Q’$ . The subgroup $Q_{1}$ satisfies $|Q_{0}$ : $Q_{1}|=q$ . Hence, $Z(Q/Q_{1})=Q_{0}/Q_{1}$

and $Q/Q_{1}$ is an extraspecial $q$-group. Thus, $|Q$ : $Q’|=q^{2c}$ for some
integer $c$ . Define

$\mathcal{T}(Q_{1})=T(Q_{0})\cup\{\zeta_{i}|1\leq i\leq q-1\}$ .

Then, $T(Q_{1})$ consists of all characters in $ff’$ having the same weight and
degree as some character in $T$ which has $Q_{1}$ in its kernel. By (18.4),
$T(Q_{1})$ is coherent. Since $J’$ is not coherent, Theorem 12.5 yields

$q^{2c+1}=|Q:Q_{1}|\leq 4e^{2}+1$ .

By Theorem 2.5 [BG], $e$ divides $q^{c}+1$ or $q^{c}-1$ . Since $e$ is odd, we have
$2e\leq q^{c}+1$ . Then,

$q^{2c+1}\leq 4e^{2}+1\leq(q^{c}+1)^{2}+1<2q^{2c}$ .

This contradiction proves Theorem 18.7. Q.E.D.
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Corollary 18.8. $\alpha^{\tau}=1_{G}-\lambda_{0}^{\tau}+\sum_{t=1}^{e-1}\eta_{0t}$ .

Proof. Let $a_{t}=(\alpha^{\tau}, \eta_{0t})$ . Since $T$ is coherent by Theorem 18.7, we
have

(18.5) $(\nu_{1}(1)\zeta_{0}-\zeta_{1})^{\tau}=\nu_{1}(1)\alpha^{\tau}+(\nu_{1}(1)\lambda_{0}-\zeta_{1})^{\tau}$

$=\nu_{1}(1)\alpha^{\tau}+\nu_{1}(1)\lambda_{0}^{\tau}-\zeta_{1}^{\tau}$ .

By the Lemma at the beginning of this section, $(\lambda_{0}^{\tau}, \eta_{0t})=0$ . Also,
$(\zeta_{1}^{\tau}, \eta_{0t})=0$ . This follows from Lemma 13.1 if $q>3$ because $\zeta_{1}^{\tau}=$

$\pm\sum_{j}\eta_{1j}$ . If $q=3$ , $\zeta_{1}^{\tau}$ is not uniquely determined; however, $\zeta_{1}^{\tau}$ is either

$\pm\sum_{j}\eta_{1j}$ or $\pm\sum_{j}\eta_{2j}$ . Thus, we have $(\zeta_{1}^{\tau}, \eta_{0t})=0$ . Lemma 18.2 and

(18.5) yield
$0\neq((\nu_{1}(1)\zeta_{0}-\zeta_{1})^{\tau}, \eta_{0t})=I/_{1}(1)a_{t}$ .

Since $|T|>2$ , $\alpha^{\tau}$ involves $-\lambda_{0}^{\tau}$ . Since $\lambda_{0}^{\tau}$ is not one $of\pm\eta_{st}$ , we have

$\alpha^{\tau}=1_{G}-\lambda_{0}^{\tau}+\sum a_{t}\eta_{0t}$ .

It follows from $||\alpha^{\tau}||^{2}=e+1$ that $a_{t}=1$ or -1 for each $t$ . By Lemma

13.1, $\lambda_{0}^{\tau}$ vanishes on $W$ . The same holds for $\alpha^{\tau}$ . By Lemmas 13.1 and
13.2, we have $a_{t}=1$ for $0\leq t\leq e-1$ . Q.E.D.

Corollary 18.9. The group $S’$ is a Frobenius group and the num-
$berw_{2}$ is prime.

Proof. Suppose that Corollary 18.9 is false. By Lemma 31.1, $@(H’)$

contains an irreducible character $\theta$ . Consider the group $S/H’$ . Let
$E=Q^{*}V$ be a complement of $H$ in $S$ . Since $S$ is of type $II$ , $E$ is a
Frobenius group with Frobenius kernel $V$ and $C_{H}(V)=1$ (cf. (IIiv) and
the modified (IIv) $)$ . By Theorem 3.10 [BG], $Q^{*}$ centralizes a nonidentity
element of $H/H’$ . Thus, $@(H’)$ contains one of the reducible characters.
Hence, we can take $\xi_{i}\in@(H’)$ . Note that $@(H’)$ is coherent. This
is clear if @ is coherent. If @ is not coherent, Lemma 17.8 yields that
$@(H’)$ is coherent. Hence, $@(H’)$ is coherent always. If we define $\beta=$

$\theta(1)\xi_{1}-\xi_{1}(1)\theta$ , $\beta\in I_{0}(@(H’))$ and $\beta^{\tau}=\theta(1)\xi_{1}^{\tau}-\xi_{1}(1)\theta^{\tau}$ .

Let $\alpha$ be the element of $I_{0}(\mathcal{T})$ defined in Corollary 18.8. We prove
that $\alpha^{\tau}$ is orthogonal to $\beta^{\tau}$ . By Lemma 11.1) $\alpha^{\tau}$ vanishes on elements

not conjugate to an element of $A(x)$ for any $x\in T^{\prime\#}$ . Suppose that
$g=xy=yx\in A(x)$ and $\alpha^{\tau}(g)\neq 0$ . We claim that $\beta^{\tau}(g)=0$ . Suppose
$\beta^{\tau}(g)\neq 0$ . By Lemma 11.1 applied to $S$ , $g$ is conjugate to an element of
$S$ or one of the supporting subgroups of $S$ . Since $T$ is of type $V$ , $T$ is not
conjugate to any supporting subgroup by (Fii). If $M$ is a supporting
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subgroup of $S$ , then $\sigma(M)\cap\sigma(T)=\sigma(S)\cap\sigma(T)=\emptyset$ by Theorem 7.9.
Since $g=xy$ is conjugate to an element of $S$ or a supporting subgroup,
the element $x$ is conjugate to an element of $S$ . Since $\beta^{\tau}(g)\neq 0$ , $x$ is
conjugate to an element of $A(S)-H$ . It follows that $(|C_{G}(x)|, |H|)\neq 1$ .

This implies that $S$ is conjugate to a supporting subgroup of $T$ . Let
$S^{h}$ be a conjugate of $S$ that contains $C_{G}(x)$ . Then, by (F22), $S^{h}\cap T$

is a complement of $H^{h}$ that contains $C_{T}(x)$ . Since $x$ is conjugate to
an element of $A(S)$ , the order of $x$ is prime to $q$ . On the other hand,
$Q^{*}\underline{\subseteq}C_{T}(x)$ because $T’$ is nilpotent. This contradicts the structure of
$S^{h}\cap T$ being a Frobenius group with Frobenius complement of order
$q$ . Thus, $(\alpha^{\tau}, \beta^{\tau})=0$ . In fact, the above argument proves that any
element of $I_{0}(T)$ is orthogonal to every element of $I_{0}$ (@). We compute
$(\alpha^{\tau}, \beta^{\tau})$ using Corollary 18.8. We have

$(\alpha^{\tau}, \beta^{\tau})=(1_{G}-\lambda_{0}^{\tau}+\sum\eta_{0t}, \theta(1)\xi_{1}^{\tau}-\xi_{1}(1)\theta^{\tau})$ .

Note that $\lambda_{0}^{\tau}\neq\theta^{\tau}$ . This follows from $((\lambda_{0}-\overline{\lambda}_{0})^{\tau}, (\theta-\overline{\theta})^{\tau})=0$ . Since
$\xi_{1}^{\tau}=\epsilon\sum_{i}\eta_{i1}(or\pm\sum_{i}\eta_{i2}))$ we have

$(\alpha^{\tau}, \beta^{\tau})=(\sum\eta_{0t}, \theta(1)\epsilon\sum\eta_{i1})=\epsilon\theta(1)$ .

This contradicts $(\alpha^{\tau}, \beta^{\tau})=0$ . Q.E.D.

Theorem 18.10. No element of $M$ is of type $V$.

Proof. We will paraphrase the proof of Theorem 32.1 [FT]. Suppose
that $M$ contains a subgroup $T$ of type V. For $M=T$ , we use the notation
introduced at the beginning of Chapter $II$ . Thus, $D^{*}$ and $A(x)$ for $x\in D^{*}$

have the same meaning as defined there. We denote by $S$ the subgroup
of type $II$ defined in Theorem I. The subgroup $H=S_{F}$ is a $TI$ set by

(T7). In addition, the following notation is used: $T=T’W_{2}$ , $S=S’Q^{*}$ ,
$W=Q^{*}\times W_{2}$ , $|W_{2}|=w_{2}=e$ , $|Q^{*}|=q$ and $|S’$ : $H|=v$ . Let $T$ be the
set of characters of $T$ introduced at the beginning of this section. Then,
by Theorem 18.7, $T$ is coherent. Let

$y*=\{T, \zeta_{0}\}$ .

Corollary 18.8 yields that $y*is$ coherent if we define

$\zeta_{0^{\mathcal{T}}}=1_{G}+\sum\eta_{0t}e-1$

.

$t=1$
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The family $T^{*}$ consists of irreducible characters of $T$ and $q$ reducible
characters $\zeta_{0}$ , $\zeta_{1}$ , $\ldots$ , $\zeta_{q-1}$ of weight $e$ . There are irreducible characters
$\nu_{ij}$ of $T$ such that

$\xi_{i}=\sum_{j=0}^{e-1}\nu_{ij}$ with $(\nu_{ij})_{T’}=(\nu_{i0})_{T’}$ .

There is an irreducible character $\lambda$ of degree $e$ in $U’$ . Lemma 14.4 applied
with $T$ and $\mathcal{T}^{*}$ in place of $M$ and @ yields

$\lambda^{\tau}(x)=\lambda(x)+s\gamma(x)$ for $x\in T^{\prime\#}$

where $\gamma$ is orthogonal to every element of $\mathcal{T}^{*}$ . Since the irreducible
characters of $T$ are $\{\nu_{ij}\}$ and the characters in $\mathcal{T}$ , we have

$\gamma=\sum a_{ij}\nu_{ij}$ .

Since $(\gamma, \zeta_{i})=0$ for $0\leq i\leq q-1$ , we have $\sum_{j}a_{ij}=0$ for $0\leq i\leq q-1$ .

It follows that

$\gamma_{T’}=\sum_{i,,,j}a_{ij}(\nu_{ij})_{T’}=\sum_{i}(\sum_{j}a_{ij})(\nu_{i0})_{T’}=0$ .

This proves that $\lambda^{\tau}(x)=\lambda(x)$ for $x\in T^{\prime\#}$ . By Lemma 14.3, $\lambda^{\tau}$ is
constant on the set of the form $A(x)$ for $x\in D^{*}$ . Hence, Lemma 11.5
yields

(18.6) $\frac{1}{|G|}\sum_{x\in G_{1}}|\lambda^{\tau}(x)|^{2}=\frac{1}{|T|}\sum_{x\in T^{l\#}}|\lambda(x)|^{2}=1-\frac{e}{|T|},$ .

Let $G_{1}$ be the set of elements of $G$ which are conjugate to some element
of $A(x)$ for $x\in D^{*}$ . By Lemma 11.5 $with\ominus replaced$ by $1_{G}$ , we have

$\frac{|G_{1}|}{|G|}=\frac{1}{e}(1-\frac{1}{|T|},)$ .

Define $G_{2}=G_{G}(\overline{W})$ . By Theorem 8.7 (e),

$\frac{|G_{2}|}{|G|}=1-\frac{1}{e}-\frac{1}{q}+\frac{1}{eq}$ .
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Let $G_{3}$ be the set of elements of $G$ which are conjugate to some elements
of $H^{\Downarrow}$ . Since $H$ is a $TI$-set, we have

$\frac{|G_{3}|}{|G|}=\frac{1}{qv|H|}(|H|-1)$ .

These sets $G_{1)}G_{2}$ , and $G_{3}$ are disjoint. Let $G_{0}$ be the complement of
the union $G_{1}\cup G_{2}\cup G_{3}$ . Then,

$\frac{|G_{0}|}{|G|}=1-\frac{1}{e}(1-\frac{1}{|T|},)-(1-\frac{1}{e}-\frac{1}{q}+\frac{1}{eq})-\frac{1}{qv}+\frac{1}{qv|H|}$

(18.7)

$>\frac{1}{q}-\frac{1}{eq}-\frac{1}{qv}\geq\frac{1}{3q}$

because $e\geq 3$ and $v\geq 3$ . By (18.6), we have

$\frac{1}{|G|}\sum_{x\in G_{0}}|\lambda^{\tau}(x)|^{2}\leq 1-(1-\frac{e}{|T|},)=\frac{e}{|T|},\cdot$

By Corollary 18.9, $e$ is a prime and $S’$ is a Frobenius group. Hence)

$\eta_{01}$ , $\ldots$ , $\eta_{0e-1}$ are algebraically conjugate characters with values in $\mathbb{Q}_{e}$ .

Since $S’$ is a Frobenius group, every element whose order is divisible by
$e$ lies in $G_{2}\cup G_{3}$ . Thus, $\eta_{0t}$ take the same integral value on $G_{0}$ . Since
$(\zeta_{0}-\lambda)^{\tau}$ vanishes off $G_{1}$ ,

$\lambda^{\tau}(x)=1+(q-1)\eta_{01}(x)$ for $x\in G_{0}$ .

In particular, $\lambda^{\tau}(x)$ is an odd integer so

$|\lambda^{\tau}(x)|^{2}\geq 1$ for $x\in G_{0}$ .

Thus,

$\frac{|G_{0}|}{|G|}\leq\frac{1}{|G|}\sum_{x\in G_{0}}|\lambda^{\tau}(x)|^{2}\leq\frac{e}{|T|},$ .

Therefore, $|T’|<3qe$ by (18.7). Theorem $C(3)$ implies $Q^{*}\underline{\subseteq}T’’$ . Hence,
we get $|T’$ : $T’’|<3e$ . Since $T/T’’$ is a Frobenius group, $|T’$ : $T’’|\geq 2e+1$ .

Thus,

$|T’’|(2e+1)\leq|T’|<3qe$ , $q\leq|T’’|<3eq/(2e+1)<2q$ .

It follows that $|T’’|=q$ and $W_{2}$ acts irreducibly on $T’/T’’$ . This implies

that $T’$ is an extraspecial $q$ group. If $|T’/T’’|=q^{2c}$ , then Theorem 2.5
[BG] yields that $e$ divides $q^{c}+1$ or $q^{c}-1$ . Hence, $e\leq(q^{c}+1)/2$ and

$q^{2c}=|T’$ : $T’’|<3e\leq 3(q^{c}+1)/2\leq 2qc$ .
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This contradiction proves Theorem 18.10.

Corollary 18.11. Let $S$ be a subgroup of type $II$, $III$, or $IV$ in M.
Then, the family @ is coherent.

This follows from Theorems 17.14 and 18.10.

\S 19. Subgroups of Type I

We remark that a subgroup $M\in M$ of type I is a Frobenius group
if and only if $\tau_{2}(M)$ is empty. This is easy to see. If $\tau_{2}(M)=\emptyset$ , then
the complement $E$ in (liii) is a $Z$-group and the only subgroup of $E$

with the same exponent as $E$ is $E$ . Thus, $E_{0}=E$ and by $(Iii\dot{\iota})$ , $M$

is a Frobenius group. Suppose conversely that $M$ is a Frobenius group.
Then, $H=M_{F}$ is the nilpotent normal subgroup of maximal order in $M$ .

Then, $H$ is the Frobenius kernel of the Frobenius group $M$ . It follows
from the property of a Frobenius complement that all Sylow subgroups
of $M/H$ are cyclic. This implies $\tau_{2}(M)=\emptyset$ (cf. the notation of \S 6).

Theorem 19.1. Every subgroup of type I isa Frobenius group.

The proof is by contradiction. Suppose that $M$ has a subgroup of
type I that is not a Frobenius group. The following notation will be
used. Let $\rho$ be the set of primes defined as follows: $ p_{i}\in\rho$ if and only
if $M$ has a subgroup $M_{i}$ of type I such that $p_{i}\in\tau_{2}(M_{i})$ . By Lemma
$H$ , the groups $M_{i}$ are $\varpi$-groups; in particular, $ p_{i}\in\varpi$ . (The set $\rho$ is
denoted $\sigma$ in [FT]

$)$

. I have chosen this notation because $\sigma$ has a different
meaning in [BG] and we have been using $\sigma$ in the sense of [BG].) The
smallest prime in $\rho$ will be denoted $p=p_{k}$ . Let $M=M_{k}$ , $K=M_{F}$ ,
$P_{0}\in Sy\ell_{p}(M)$ , $P\in Sy\ell_{p}(G)$ such that $P_{0}\underline{\subseteq}P$ , $A=\Omega_{1}(P_{0})$ , and

$L\in M(N_{G}(A))$ .

If $L$ is of type $I$ , let $U=L_{F}$ and choose a complement $E$ of $U$ in $L$ . If $L$

is not of type $I$ , then $L$ is of type $II$ , III, or $IV$ by Theorem 18.10. In this
case, let $H=L_{F}$ , $u$ a complement of $H$ in $L’$ , and $W_{1}$ a complement
of $L’$ in $L$ with $W_{1}\underline{\subseteq}N_{L}(U)$ . The order $|W_{1}|$ is a prime by (T7). Note
the particular usage of the symbol U.

Let $L$ be the set of characters of $L$ defined as follows: If $L$ is of type
$I$ , $L$ is the set of all irreducible characters of $L$ which do not have $U$ in
their kernel. If $L$ is of type $II$ , III, or $IV$ , then $c_{\lrcorner}$ is the set of characters
of $L$ each of which is induced by a nonprincipal irreducible character of
$L’$ that vanishes outside $A(L)$ . Thus, if $L$ is of type $I$ , $L$ is the set of
characters studied in \S 15. If $L$ is of type III or $IV$ , then $L$ corresponds
to the set @o\cup @ in \S 16.
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Lemma 19.2. The subgroup $L$ is not of type $ II\cdot$, it is either $a$

Frobenius group with cyclic Frobenius complement or of type $III$ or $IV$.

There is no subset of $L$ that isa $TI$-set of $G$ and contains A. The group
$P$ is either an abelian group of rank 2 or the center $Z(P)$ is cyclic, and
we can take $P\underline{\subseteq}$ U. Furthermore, $L$ is the unique subgroup of $M$ that
contains $N_{G}(A)$ .

Proof Since $p\in\tau_{2}(M)$ , $A\in \mathcal{E}_{p}^{2}(M)$ and $P_{0}$ is an abelian group

of rank 2 by Theorem 6.5 (b). We have $C_{G}(A)\underline{\subseteq}M$ by Proposition
6.4 (a). It follows that either $P=P_{0}$ or $Z(P)$ is cyclic.

By Lemma 6.2 applied with $A$ and $L$ in place of $X$ and $M^{*}$ , we have
that $p\in\sigma(L)\cup\tau_{2}(L)$ . If $p\in\tau_{2}(L)$ , Theorem 6.5 (b) applied with $L$ in
place of $M$ yields $N_{G}(A)\not\leqq L$ , contradicting the definition of $L$ . Thus,
$p\in\sigma(L)$ and $A\underline{\subseteq}L_{\sigma}$ . In fact, $p\in\sigma_{0}(L)$ as $ p\in\varpi$ .

We have $A\in \mathcal{E}_{p}^{2}(M)$ by Theorem 6.5 (b). Since $A$ normalizes $K$ ,

some element $a\neq 1$ of $A$ commutes with some element $y\neq 1$ of $K$ by
Proposition 1.16 [BG]. But, $K\cap L=1$ by Theorem 6.5 (e). Thus, $A$ is
not contained in any subset of $L$ that is a $TI$-set in $G$ .

Suppose that $L$ is of type $II$ . Then, by Theorem 9.7 (a) with $L$ in
place of $M$ , $L_{\sigma}=H\underline{\subseteq}F(L)$ and $F(L)$ is a $TI$-set of $G$ . Since $A\underline{\subseteq}L_{\sigma)}$

this contradicts what we proved in the preceding paragraph. Thus, $L$ is
not of type $II$ .

If $L$ is of type III or $IV$ , $F(L)$ is a $TI$-set in $G$ by (T7). Therefore)

$A\not\leqq F(L)$ but $A\underline{\subseteq}L_{\sigma}=L’$ . Thus, $p\in\pi(U)$ . Since $U$ is a Hall subgroup
of $L_{\sigma}$ , $U$ contains a Sylow $p$-subgroup of $G$ . We can choose $P\underline{\subseteq}$ U.

Suppose that $L$ is of type I. Then, $L_{\sigma_{O}}=U$ . Since $U$ is a Hall
subgroup of $G_{)}$ we have $P\underline{\subseteq}$ U. In fact, since $U$ is nilpotent, $P$ is
a normal subgroup of $L$ . We will prove that $L$ is a Frobenius group.
Suppose that $L$ is not a Frobenius group. Then, $\tau_{2}(L)$ is not empty.
Let $q\in\tau_{2}(L)$ and take $Q\in \mathcal{E}_{q}^{2}(L)$ . Then, $ q\in\rho$ . It follows that

$p<q$ . By Theorem 6.5 (d), we have $C_{U}(Q)=1$ . Thus, $Q$ acts on
$\Omega_{1}(Z(P))$ nontrivially. Since $r(Z(P))\leq 2$ , we have $q<p$ , contradicting
the minimal nature of $p$ . This proves that $L$ is a Frobenius group.

The subgroup $E$ is a Frobenius complement of $L$ . Hence, $E$ acts
on $\Omega_{1}(Z(P))$ faithfully. If $Z(P)$ is cyclic, $E$ is abelian. If $P$ is abelian,
$\Omega_{1}(P)=A$ . Theorem 2.6 [BG] yields that $E$ is abelian. A Frobenius
complement is cyclic if it is abelian. Therefore, $E$ is cyclic.

It remains to prove that $M(N_{G}(A))=\{L\}$ . Suppose that $P$ is
nonabelian. Choose a subgroup $P_{1}$ such that $P_{0}\underline{\subseteq}P_{1}\underline{\subseteq}P$ with $|P_{1}$ :
$P_{0}|=p$ . Since $C_{G}(A)\underline{\subseteq}M$ by Proposition 6.4 (a), $P_{1}$ is nonabelian.
We have $P_{1}\underline{\subseteq}N_{G}(A)$ as $A=\Omega_{1}(P_{0})$ . By Theorem 6.13, $P_{1}\in \mathfrak{U}$ .

Hence, $N_{G}(A)\in \mathfrak{U}$ . Assume that $P$ is abelian. Then, $P_{0}=P$ and
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$N_{G}(P)\underline{\subseteq}N_{G}(A)$ . Suppose that $L_{0}\in M(N_{G}(A))$ . Then, $ p\in\sigma(L_{0})\cap$

$\sigma(L)$ . Theorem 7.9 yields that $L_{0}$ is conjugate to $L:L_{0}=g^{-1}Lg$ for
some $g\in G$ . Then, $P$, $g^{-1}Pg\in Sy\ell_{p}(L_{0})$ ; hence, $P=h^{-1-1}gPgh$ for

some $h\in L_{0}$ . Thus, $L_{0}=x^{-1}Lx$ with $x=gh\in N_{G}(P)\underline{\subseteq}N_{G}(A)\underline{\subseteq}L$ .
Therefore, $L_{0}=L$ . This proves the uniqueness of $L$ . Q.E.D.

Lemma 19.3. There exists an irreducible character $\lambda\in L$ that
does not have $P$ in its kernel such that $\lambda(1)$ divides $p-1$ or $p+1$ . The
group $L/L’$ is a cyclic group of order $e$ with $e$ dividing $p-1$ or $p+1$ .

Proof. Suppose that $L$ is of type III or $IV$ . Then, $L/H$ is a Frobe-
nius group with Frobenius kernel isomorphic to U. Since $P\underline{\subseteq}U$ , $L/H$

has an irreducible character $\lambda$ of degree $w_{1}$ that does not have $P$ in its
kernel. Since $L/H$ is a Frobenius group, $W_{1}$ acts faithfully on $\Omega_{1}(Z(P))$ .

It follows that $w_{1}|p^{2}-1$ . Since $w_{1}$ is a prime by (T7), $\lambda(1)=w_{1}$ divides
$p-1$ or $p+1$ .

Suppose that $L$ is of type I. Then, by Lemma 19.2, $L$ is a Frobenius
group with Frobenius kernel $u$ and Frobenius complement $E$ that is
cyclic. Thus, there is an irreducible character $\lambda$ of $L$ of degree $e=|E|$

that does not have $P$ in its kernel. We need to prove that $e$ divides
either $p-1$ or $p+1$ . As before, $E$ acts faithfully on $\Omega_{1}(Z(P))$ . Thus, if
$Z(P)$ is cyclic, $e$ divides $p-1$ . If $P$ is abelian, $e|p^{2}-1$ . Suppose that
$e$ has prime divisors $q_{1}$ and $q_{2}$ such that

$q_{1}|p-1$ and $q_{2}|p+1$ .

We will derive a contradiction. Let $Q_{i}$ be a subgroup of $E$ of order $q_{i}$ .

Then, $Q_{2}$ acts regularly on $\mathcal{E}_{p}^{1}(A)$ , while $Q_{1}$ has at least two fixed points

on $\mathcal{E}_{p}^{1}(A)$ . Since $Q_{1}Q_{2}$ is abelian, $Q_{2}$ moves a $Q_{1}$ -invariant subgroup
to a $Q_{1}$ -invariant subgroup. Thus, there are at least 3 $Q_{1}$ -invariant
subgroups of order $p$ in $A$ . It follows that $Q_{1}$ acts on $A$ as a scalar, i.e. $Q_{1}$

does not centralize $A$ but every subgroup of order $p$ in $A$ is $Q_{1}$ -invariant.
By Proposition 6.4 (b), there is $A_{0}\in\epsilon^{1}(A)$ such that $N_{G}(A_{0})\underline{\subseteq}M$ .
This implies that $Q_{1}\underline{\subseteq}M$ . Then, $Q_{1}\underline{\subseteq}N_{M}(A)$ . By Corollary 6.6 (b),
$C=N_{M}(A)$ is a complement of $K$ in $M$ . The structure of $M$ as a group
of type I yields that there is a subgroup $C_{0}$ of $C$ with the same exponent
as $C$ such that $C_{0}$ is a Frobenius complement of the Frobenius group
$KC_{0}$ . We are in the situation that $P=P_{0}$ is abelian. Then, Lemma
6.8 (a) yields that $q_{1}\not\in\tau_{2}(M)$ so $C$ has a cyclic Sylow $q_{1}$ -subgroup. We
may take $C_{0}$ such that $Q_{1}\underline{\subseteq}C_{0}$ . Then, $AQ_{1}\cap C_{0}$ has order $pq_{1}$ and it
is not cyclic. This contradicts the structure of a Frobenius complement.
Thus, we have $e|p-1$ or $e|p+1$ . Q.E.D.
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Lemma 19.4. The family $\mathcal{L}_{\lrcorner}$ is coherent. Let $\lambda$ be the character

defifined in Lemma 19.3. Then, $\lambda^{\tau}(x)=\lambda(x)$ for $ x\in A(L)\#$ .

Proof. Let $e=|L:L’|$ . We prove that the set $L$ of characters is
coherent. Suppose that $L$ is of type I. By Lemma 19.2, $L$ is a Frobenius
group with Frobenius kernel $u$ and $L/U$ is a cyclic group of order $e$ . By
(Iv) for the group of type $I$ , $L$ satisfies one of the three conditions (a),
(b), or (c) (cf. [BG], p.128). Since $P\underline{\subseteq}U$ , $U$ is not a $TI$-set of $L$ . Thus,
the condition (a) does not nold. If $L$ satisfies (b), $U$ is abelian and $L$

is coherent. If $L$ satisfies (c), then the exponent of $L/U$ divides $p-1$ .

Hence, $e$ divides $p-1$ and

$|U:U’|\geq p^{2}>4e^{2}+1$ .

Since $\mathcal{L}_{\lrcorner}(U’)$ is coherent, Theorem 12.5 yields that $L$ is coherent.
Suppose that $L$ is of type III or $IV$ . Then, $L/H$ is a Frobenius group

with Frobenius kernel $UH/H$ $\cong u$ . If $r_{\lrcorner}(H)$ is not coherent, Lemma 12.6
yields that $U$ is a nonabelian $p$ group with

$|U:U’|\leq 4e^{2}+1$ .

Thus, $P=U$ is nonabelian. By Lemma 19.2, the center of $P$ is cyclic.
Then, Lemma 19.3 yields $e|p-1$ . This is a contradiction because

$p^{2}\leq|U:U’|\leq(p-1)^{2}+1<p^{2}$ .

It follows that $L(H)$ is coherent. By Theorem 16.1 (b), $L$ is coherent if
$L$ is of type $IV$ .

Suppose that $L$ is of type III and $L$ is not coherent. Then, $L/H$ is a
Frobenius group with abelian Frobenius kernel which is isomorphic to $U$ .

Let $L_{0}$ be the set of characters of $L$ which are induced by nonprincipal
irreducible characters of $L’/H$ . Then, $L_{0}$ is coherent and $|L_{0}|=(u-$

$1)/e$ . If $L_{1}=L-L_{0}$ , then by Corollary 18.11, $L_{1}$ is coherent. Since
we assumed that $L$ is not coherent, Theorem 16.1 (a) yields that $H$ is
an elementary abelian group of order $r^{e}$ for some prime $r_{)}C_{U}(H)=1$ ,

and $UW_{1}$ acts irreducibly on $H$ . Since $A\underline{\subseteq}\mathcal{E}_{p}^{2}(U)$ , some nonidentity
element of $A$ lies in the inertia group of a nonprincipal linear character of
$H$ . As we can see from the proof of Lemma 13.8, there is an irreducible
character $\mu\in L_{1}$ of degree de with $d\leq(u/p)$ where $u=|U|$ . Let $\lambda$

be a character of $L_{0}$ . Then, $\lambda$ is an irreducible character of degree $e$ .

Consider
$\alpha=\xi_{0}-\lambda$ and $\beta=d\lambda-\mu$ ,

where $\xi_{0}=(1_{L’})^{L}$ . If $\lambda_{1}$ , $\lambda_{2}\in L_{0}$ are distinct from $\lambda$ ,

$(\beta^{\tau}, (\lambda_{1}-\lambda_{2})^{\tau})=0$ and $(\beta^{\tau}, (\lambda-\lambda_{2})^{\tau})=d$
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by Lemma 11.4. Therefore, we have

(19.1)
$\beta^{\tau}=d\lambda^{\tau}-x\sum_{\iota/\in L_{0}}\nu^{\tau}-\mu^{\tau}+\Delta_{1}$

where $(\Delta_{1}, \nu^{\tau})=0$ for every $\nu\in L_{0}$ . Lemma 11.4 yields

$||\beta^{\tau}||^{2}=||\beta||^{2}=d^{2}+1$ .

Hence, we have $(d-x)^{2}+x^{2}(((u-1)/e)-1)+1\leq d^{2}+1$ , or

(19.2) $x^{2}(u-1)/e\leq 2dx$ .

By Lemma 19.3, $e$ divides $p-1$ or $p+1$ . If $2e\neq p+1$ , then $2e\leq p-1$ .

It follows from (19.2) that

$0\leq x\leq 2ed/(u-1)\leq(p-1)d/(u-1)<1$

because $pd\leq u$ and $d>1$ . The above inequality yields $x=0$ and $L$ is
coherent. Therefore, we have $2e=p+1$ . Since $2ed/(u-1)<2$ , we have
$x=1$ .

Consider $\alpha^{\tau}=(\xi_{0}-\lambda)^{\tau}$ . If we define $\alpha^{\tau}=1_{G}+\Delta-\lambda^{\tau}$ , then
$(\Delta, \nu^{\tau})=0$ for every $\nu\in L_{0}$ , and $||\Delta||^{2}=e-1$ (cf. the proof of Lemma
12.7). We will show that

$\Delta=\sum_{i=1}^{e-1}\eta_{i0}$ .

There is a long detour. The set $L_{1}$ contains $|W_{2}|=r$ reducible
characters $\xi_{1}$ , $\ldots$ , $\xi_{r-1}$ . We will show that $\xi_{k}(1)=ue$ for $k>0$ . Let $\theta$ be
an irreducible character of minimal degree in $L_{1}$ with $\theta(1)=d_{1}e$ . Then,
$\theta_{H}$ contains a nonprincipal linear character $\eta$ of $H$ and $I(\eta)\cap U\neq 1$ .

Take a prime $q\in\pi(I(\eta)\cap U)$ . Since $U$ is abelian and $A\underline{\subseteq}u$ , we have
$U\underline{\subseteq}C_{G}(A)\underline{\subseteq}M$ by Proposition 6.4 (a). In fact, $U$ is contained in
the complement $N_{M}(A)$ of $K$ in $M$ (Corollary 6.6 (b)). Suppose that
$q\neq p$ . If $q\in\tau_{2}(M)$ , then $q>p$ by the minimal choice of $p$ in the set
$\rho$ . If $q\not\in\tau_{2}(M)$ , then $U$ has a cyclic Sylow $q$-subgroup. Since $W_{1}$ acts
regularly on $U$ , we have $q\equiv 1(mod e)$ . Since $e=(p+1)/2$ , we have
$q\geq p+2$ . If $\beta_{1}=d_{1}\lambda-\theta$ ,

$\beta_{1}^{\tau}=d_{1}\lambda^{\tau}-x_{1}\sum\nu^{\tau}-\theta^{\tau}+\Delta_{2}$

with $x_{1}^{2}(u-1)\leq 2ed_{1}x_{1}$ . Since $d_{1}\leq u/q$ , the inequality $x_{1}\neq 0$ yields
$q(u-1)\leq(p+1)u$ . Since $q\geq p+2$ ,

$\underline{p+2}<\underline{u}$

$p+1-u$ $-1$
.
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This implies $p+1\geq u-1\geq p^{2}-1$ . This contradiction proves that
$x_{1}=0$ and $L$ is coherent. Thus,

$\pi(I(\eta)\cap U)=\{p\}$ .

If $|I(\eta)\cap U|>p$ , then we have an irreducible character of degree $d_{2}e$

with $d_{2}\leq u/p^{2}$ . Then, a similar argument yields

$p(u-1)\leq(p+1)u/p<2u$ .

This is impossible. Thus, the degree of an irreducible character in $L_{1}$

is either $ue/p$ or $ue$ . For a nonprincipal linear character $\eta$ of $H$ , the
index $|I(\eta)$ : $H|$ cannot be equal to $pe$ because $W_{1}$ does not normalize
any subgroup of order $p$ as $|W_{1}|=e=(p+1)/2$ . Hence, the degree
$\xi_{k}(1)$ of the reducible character $\xi_{k}(k>0)$ is $ue$ .

As remarked before, $H$ is an abelian $r$-group for some prime $r$ . We
will show that $r\geq 2e$ . We have seen that there is a subgroup $B$ of order
$p$ in $A$ such that $C_{H}(B)\neq 1$ . Let $H_{1}=C_{H}(B)$ . Then, $H=H_{1}\times H_{2}$

with $H_{2}=[H, B]$ by Proposition 1.6 [EG]. Since $U$ normalizes $B$ , $U$

acts on $H_{1}$ and $H_{2}$ . If $\eta$ is a nonprincipal linear character of $H/H_{2}$ ,
then $I(\eta)\cap U=B$ as we have shown. It follows that the group $U/B$

acts regularly on $H_{1}$ . This implies that $U/B$ is cyclic. Hence, $U=B\times C$

with $C$ being cyclic. We will show that $C$ can be chosen in such a way
that $C$ acts regularly on $H$ .

The group $UW_{1}$ acts on $H$ irreducibly by Theorem 16.1 (a). Since
$N_{H}(A)=C_{H}(A)$ is $W_{1}$ -invariant, we have

$N_{L}(A)\cap H=N_{H}(A)=1$ .

Note that $C_{U}(H)=1$ by Theorem 16.1(a). It follows that $N_{G}(A)=$

$N_{L}(A)=UW_{1}$ . Since $U\underline{\subseteq}C_{G}(A)\underline{\subseteq}M$ but $N_{G}(A)\not\leqq M$ , we have
$M\cap L=U$ . The elementary abelian group $A$ acts on $K$ . Therefore,
$C_{K}(A_{1})\neq 1$ for some $A_{1}\in\epsilon^{1}(A)$ . Since $C_{K}(A_{1})\not\leqq L$ , $M$ is one of the
supporting subgroups of the $F$-set $A(L)=L’$ . By (Fii), $C_{G}(A_{1})\underline{\subseteq}M$ .

Since $H\cap M=H\cap U=1$ , we have

$C_{H}(A_{1})=1$ .

We can take $C\supseteq A_{1}$ . Then, for any subgroup $C_{1}$ of prime order in $C$ ,
$C_{H}(C_{1})=1$ . Therefore, $C$ acts regularly on $H$ . It follows that $r^{e}\equiv 1$

$(mod u/p)$ . If $|H_{1}|=r^{m}$ , then $m<e$ and $r^{m}\equiv 1(mod u/p)$ . Since $e$

is a prime, we have $r\equiv 1(mod u/p)$ . The prime $p$ divides $u/p$ . This
implies

$r-1\geq p$ or $r\geq p+1=2e$ .
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Lemma 13.4 yields that $\xi_{k}=\sum\mu ik$ where $\{\mu_{ik}\}$ is the set of irre-
ducible characters associated with the selfnormahzing cyclic subgroup
$W=W_{1}\times W_{2}$ . By the definition of the characters $\mu ik$ , there is a
sign $\epsilon$ that is independent of $i$ such that $\mu ik(x)=\epsilon\omega_{ik}(x)$ for all $ x\in$

$W-W_{2}$ . We claim that $\epsilon=1$ . Consider the restriction $(\mu_{0k})_{W_{1}}$ . Then,

$(\mu_{0k})_{W_{1}}-\epsilon 1_{W_{1}}$ vanishes on $W_{1}^{\Downarrow}$ , so it is a multiple of the regular repre-
sentation of $W_{1}$ . Therefore, $\mu 0k(1)\equiv\epsilon(mod e)$ . Since $\mu 0k(1)=u$ , we
have $\epsilon=1$ .

The group $W_{2}$ is of order $r$ . Since $r$ is a prime, the characters
$\mu_{i1}$ , $\mu_{i2}$ , $\ldots$ , $\mu_{ir-1}$ are $r$-conjugate; so are $\eta_{i1}$ , $\ldots$ , $\eta_{ir-1}$ . Recall the defi-
nition of $\Delta$ . It is defined

$(\xi_{0}-\lambda)^{\tau}=1_{G}+\Delta-\lambda^{\tau}$ .

The weight of $\Delta$ is $e-1$ and $(1_{G}, \Delta)=(\nu^{\tau}, \Delta)=0$ for every $\nu\in L_{0}$ .

We claim that $\Delta$ is $r$-rational and $(\Delta, \eta_{ik})=0$ if $k>0$ . Let $\nu$ be an
irreducible character of $L_{0}$ different from $\lambda$ . Then, $\alpha^{\tau}$ as well as $(\lambda-\nu)^{\tau}$

are $r$-rational by Lemma 11.1. The proof of Lemma 12.1 shows that $\lambda^{\tau}$

is $r$-rational. Therefore, $\Delta$ is $r$-rational. Suppose that $(\Delta, \eta_{ik})=a_{k}\neq 0$

for some $i$ and $k>0$ . Since $\eta_{i1}$ , $\ldots$ , $\eta_{ir-1}$ are $r$-conjugate, we have
$(\Delta, \eta_{it})=a_{k}\neq 0$ for every $t>0$ . Thus, $\Delta$ involves $a_{k}\sum_{t}\eta_{it}$ and

$||\Delta||^{2}\geq r-1$ .

Since $r-1\geq 2e-1$ , we have a contradiction that

$e-1=||\Delta||^{2}\geq 2e-1$ .

Thus, $(\Delta, \eta_{ik})=0$ if $k>0$ .

Finally, we will prove that $\Delta=\sum_{i}\eta_{i0}$ . For a fixed $k>0$ , consider

$\gamma_{i}=\mu_{i0}-\mu_{ik}+\Sigma_{0}$

where $\Sigma_{0}$ is the sum of irreducible characters of $L_{0}$ . There are $(u-1)/e$

characters of degree $e$ in $L_{0}$ and for $x\in W_{1}^{\Downarrow}$ ,

$\mu_{ik}(x)=\omega_{ik}(x)=\omega_{i0}(x)=\mu_{i0}(x)$ .

Since $\mu_{ik}(1)=u$ and $\mu_{i0}(1)=1$ , we have $\gamma_{i}\in I_{0}(A_{0}(L))$ . Since

$(\gamma 0-\gamma_{i})^{\tau}=(1L-\mu_{0k}-\mu_{i}0+\mu_{ik})^{\tau}=1_{G}-\eta_{0k}-\eta_{\dot{\iota}}0+\eta ik$ ,

we have $\gamma_{i^{\mathcal{T}}}=\eta_{i0}-\eta_{ik}+\Gamma$ where $\Gamma$ is independent of $i$ . We will compute
$(\gamma_{0^{\mathcal{T}}}, \alpha^{\tau})$ using Lemma 11.4. Here, $\alpha=\xi_{0}-\lambda$ , so $\alpha^{\tau}=1_{G}+\Delta-\lambda^{\tau}$ .

Since $\xi_{0}=\sum_{i}\mu_{i0}$ , we have

$(\gamma_{0^{\mathcal{T}}}, \alpha^{\tau})=(\gamma_{0}, \alpha)=0$ .
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Similarly, $(\gamma_{i^{\mathcal{T}}}, \alpha^{\tau})=(\gamma_{i}, \alpha)=0$ . Thus, if $i>0$ ,

$0=(\gamma_{0^{\mathcal{T}}}, \alpha^{\tau})=1+(\Gamma, \Delta)-(\Gamma, \lambda^{\tau})$

$=(\gamma_{i^{\mathcal{T}}}, \alpha^{\tau})=(\eta_{i0}, \Delta)+(\Gamma\Delta))-(\Gamma, \lambda^{\tau})$ .

Therefore, $(\eta_{i0}, \Delta)=1$ . We have used the lemma that $\lambda^{\tau}\neq\pm\eta_{st}$ for
any $s$ and $t$ . We have

(19.3) $\Delta=\sum_{i=0}^{e-1}\eta_{i0}$ .

Clearly, $\Delta$ is a real-valued character. By the definition of $\beta$ , we have
$\overline{\beta}=d\overline{\lambda}-\overline{\mu}$ . Then,

$\beta-\overline{\beta}=d(\lambda-\overline{\lambda})-(\mu-\overline{\mu})$ .

Since $\beta-\overline{\beta}$ , $\lambda-\overline{\lambda}$ , and $\mu-\overline{\mu}\in I_{0}(A(L))$ , we have

$(\beta-\overline{\beta})^{\tau}=d(\lambda-\overline{\lambda})^{\tau}-(\mu-\overline{\mu})^{\tau}=d(\lambda^{\tau}-\overline{\lambda}^{\tau})-(\mu^{\tau}-\overline{\mu}^{\tau})$ .

On the other hand, we can compute $(\beta-\overline{\beta})^{\tau}=\beta^{\tau}-\overline{\beta}^{\tau}$ using (19.1).
Since $\sum\nu^{\tau}$ is real, we have

$\beta^{\tau}-\overline{\beta}^{\tau}=d(\lambda^{\tau}-\overline{\lambda}^{\tau})-(\mu^{\tau}-\overline{\mu}^{\tau})+\Delta_{1}-\overline{\Delta}_{1}$ .

Therefore, $\Delta_{1}=\overline{\Delta}_{1}$ is a real-valued virtual character. It follows from
(19.3) that $(\Delta, \Delta_{1})$ is an even integer. We will contradict this by showing
$(\Delta\Delta_{1}))=-1$ .

Compute $(\alpha^{\tau}, \beta^{\tau})$ in two ways. Lemma 11.4 yields

$(\alpha^{\tau}, \beta^{\tau})=(\alpha, \beta)=-d$ .

By (19.1), we have

$(\alpha^{\tau}, \beta^{\tau})=(\Delta, \Delta_{1})-(d-1)=(\Delta, \Delta_{1})-d+1$ .

Thus, $(\Delta, \Delta_{1})=-1$ . This contradiction proves that $L$ is coherent in all
cases.

We can apply Lemma 12.7 for $M$ , $H$ , $H_{1}$ , $h$ and @ replaced by $L$ , $L’$ ,
$L’’$ , $p^{2}$ and $L$ . Since $P\underline{\subseteq}U$ and $U$ is nilpotent, we have $|L’$ : $L’’|\geq p^{2}$ .

By Lemma 19.3, $e\leq(p+1)/2$ . This implies $p^{2}-1>e(e+1)$ . If we
define $\Delta$ by $(\xi_{0}-\lambda)^{\tau}=1_{G}+\Delta-\lambda^{\tau}$ and

$\xi 0^{\mathcal{T}}=1+\Delta$ ,
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the set $\{L, \xi_{0}\}$ is coherent by Lemma 12.7.

For $ x\in A(L)\#$ , Lemma 14.4 yields that

$\lambda^{\tau}(x)=\lambda(x)+s\gamma(x)$

where $s$ is a rational number and $\gamma$ is a virtual character that is or-
thogonal to every element of $L^{*}=\{L, \xi_{0}\}$ . If $L$ is of type $I$ , $L$ consists
of all nonlinear irreducible characters of $L$ . Thus, $\gamma=\sum a_{i}\lambda_{i}$ where
$\lambda_{i}$ are linear characters of $L/L’$ . Since $\xi_{0}=\sum\lambda_{i}$ , $(\gamma, \xi_{0})=0$ means
$\sum a_{i}=0$ . Thus, for an element $x$ of $L’$ , we have $\gamma(x)=0$ . This proves
$\lambda^{\tau}(x)=\lambda(x)$ in this case.

If $L$ is not of type $I$ , then $L^{*}$ consists of irreducible characters in-
duced by characters of $L’$ and $\xi_{k}$ for $0\leq k\leq w_{2}-1$ . Thus, $\gamma=\sum a_{st}\mu_{st}$

with $(\gamma, \xi_{k})=0$ for all $k$ . Then, for each $k$ , $\sum_{s}a_{sk}=0$ . Since
$(\mu_{sk})_{L’}=(\mu_{tk})_{L’}$ by Lemma 13.4, $\gamma(x)=0$ for $x\in L’$ . This proves

that $\lambda^{\tau}(x)=\lambda(x)$ for $x\in A(L)^{\beta}$ . Q.E.D.

The next lemma is stated in [FT], p. 980, without proof.

Lemma P. Let $M$ , $L\in M$ . If $M$ and $L$ are not conjugate, no
subgroup of $M$ can serve as a supporting subgroup of $A(M)$ and at the
same time of $A(L)$ .

Proof. Suppose that $N\in M$ is a supporting subgroup of $A(M)$ .

Then, there is an element $x\in A(M)$ such that $C_{G}(x)\not\leqq M$ and $C_{G}(x)\underline{\subseteq}$

$N$ . By Theorem $II$ , $x\in M_{\sigma_{0}}^{\phi}$ and $M\cap N$ is a complement of $N_{\sigma}$ in $N$ . By
Theorem 8.4, $\pi(\langle x\rangle)\underline{\subseteq}\tau_{2}(N)$ . Similarly, if $N$ is a supporting subgroup

of $A(L)$ , there is an element $y\in L_{\sigma o}^{\#}$ such that $C_{G}(y)\not\leqq L$ , $C_{G}(y)\underline{\subseteq}N$ ,
$\pi(\langle y\rangle)\underline{\subseteq}\tau_{2}(N)$ , and $L\cap N$ is a complement of $N_{\sigma}$ in $N$ . Since $N_{\sigma}$ is
a Hall normal subgroup of $N$ , $L\cap N$ is conjugate to $M\cap N$ in $N$ . Let
$M\cap N=(L\cap N)^{g}$ for $g\in N$ and let $x’=y^{g}$ . Then, $x$ , $x’\in M\cap N$ .

Take $p\in\tau_{2}(N)$ and suppose that $G$ has a nonabelian Sylow p-
subgroup. Then, by Theorem 6.7 (a), $\tau_{2}(N)=\{p\}$ . Therefore, both
$x$ and $y$ are $p$-elements and $\sigma(M)\cap\sigma(L)\neq\emptyset$ . Since $M$ is not conju-
gate to $L$ , this contradicts Theorem 7.9. Hence, $G$ has an abelian Sylow
subgroup for every prime in $\tau_{2}(N)$ . By Lemma 6.8 (a), a Hall $\tau_{2}(N)-$

subgroup $E_{2}$ of $M\cap N$ is a normal abelian subgroup of $M\cap N$ . Since
$x$ , $x’\in E_{2}$ , they commute. The element $x’$ is a $\sigma_{0}(L)$ -element. Hence,
$x’$ is a $\sigma(M)’$-element by Theorem 7.9. By Corollary 8.3, we have ei-
ther (1) $\pi(\langle x’\rangle)\underline{\subseteq}\kappa(M)$ and $C_{G}(x)\underline{\subseteq}M$ , or (2) $\pi(\langle x’\rangle)\underline{\subseteq}\tau_{2}(M)$ and
$M(C_{G}(x’))=\{M\}$ . Since $C_{G}(x)\not\leqq M$ and $C_{G}(x’)\underline{\subseteq}N$ , neither case
holds. This contradiction proves Lemma P. Q.E.D.
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Lemma Q. For each $M\in M$ , let $G_{0}(M)$ be the territory of $M$ .

Let $L\in M$ and assume that $L$ is not conjugate to M. Then,

$ G_{0}(M)\cap G_{0}(L)=\emptyset$

unless either $M$ is conjugate to a supporting subgroup for $A(L)$ or $L$ is

conjugate to a supporting subgroup for $A(M)$ .

Proof. The elements of $A(x)$ are of the form $hx$ where $h\in C_{H}(x)$

and the order of $x$ is prime to the order of $h$ . The subgroup $H$ is a
supporting subgroup for $A(M)$ ; thus, $H=H_{i}=(M_{i})_{\sigma}=(M_{i})_{F}$ for
some $M_{i}\in M$ . Suppose that $ G_{0}(M)\cap G_{0}(L)\neq\emptyset$ and

$g^{-1}(hx)g=ky$

where $k$ is an element of a supporting subgroup $K$ of $A(L)$ and $ky=yk$

for some $y\in A(L)$ .

Suppose that $h\neq 1$ . Then, $C_{G}(x)\not\leqq M$ and $C_{G}(x)\underline{\subseteq}M_{i}$ . By

Theorem $II$ , this implies $x\in M_{\sigma_{0}}^{\phi}$ and $y\in N_{\sigma}^{\beta}$ . Note that any sup-

porting subgroup is a $\varpi$-group. If $k\neq 1$ , we have $y\in L_{\sigma_{O}}^{\beta}$ . Since
$\pi(\langle y\rangle)\underline{\subseteq}\pi(\langle h\rangle)\cup\pi(\langle x\rangle)$ ,

$\sigma(L)\cap\sigma(M_{i})\neq\emptyset$ or $\sigma(L)\cap\sigma(M)\neq\emptyset$ .

By Theorem 7.9, $L$ is conjugate to $M_{i}$ that is a supporting subgroup for
$A(M)$ . Suppose that $k=1$ . If $\pi(\langle y\rangle)\cap\sigma(L)\neq\emptyset$ , then the preceding
argument shows that $L$ is conjugate to $M_{i}$ . Assume that $\pi(\langle y\rangle)\cap\sigma(L)=$

$\emptyset$ . Then, $y$ is an $\sigma(L)’$-element of $A(L)$ . Theorem $II$ yields that $C_{G}(y)\underline{\subseteq}$

$L$ . Since $g^{-1}(hx)g=y)$ we have

$C_{G}(y)\underline{\subseteq}C_{G}(g^{-1}xg)=g^{-1}C_{G}(x)g\underline{\subseteq}(M_{i})^{g}$ .

By the definition of $A(L)$ , $y$ commutes with an element $z$ of $L_{\sigma}^{\beta}$ . Since

$y$ is a $\varpi$-element, we have $z\in L_{\sigma o}^{Q}$ . Corollary 8.3 yields that either
$\pi(\langle y\rangle)\underline{\subseteq}\kappa(L)$ or $M(C_{G}(y))=\{L\}$ . The definition of $A(L)$ yields that
nonidentity elements of Hall $\kappa(L)$ -subgroups are excluded from $A(L)$ .

Thus, the first possibility does not occur.
Therefore, we have $M(C_{G}(y))=\{L\}$ . It follows from $C_{G}(y)\underline{\subseteq}(M_{i})^{g}$

that $L=M_{i}^{g}$ .

If $k\neq 1$ , a similar proof shows that $M$ is conjugate to a sup-
porting subgroup for $A(L)$ . Suppose that $h=1=k$ . Suppose that
$\pi(\langle x\rangle)\underline{\subseteq}\sigma_{0}(M)$ . Then, $C_{G}(x)$ is contained in either $M$ or a conjugate
of a supporting subgroup. Since $L$ is not conjugate to $M$ , Theorem 7.9
yields that $\pi(\langle y\rangle)\cap\sigma(L)=\emptyset$ . The argument of the preceding paragraph
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proves that $M(C_{G}(y))=\{L\}$ . Since $y$ is conjugate to $x$ , we conclude
that $L$ is conjugate to a supporting subgroup of $A(M)$ .

Suppose that $\pi(\langle x\rangle)\not\leqq\sigma_{0}(M)$ . Note that $x$ centralizes some non-
identity element of $M_{F}$ . Since $M_{F}$ is a $\varpi$ group, $x$ is a $\varpi$ element Since
$\pi(\langle x\rangle)\not\leqq\sigma_{0}(M)$ , there is a Hall subgroup $\langle x’\rangle$ of $\langle x\rangle$ such that $x’$ is a
$\sigma(M)’$ element and $x’$ commutes with an element $u$ of $M_{\sigma_{0}}^{\phi}$ . As before,
Corollary 8.3 yields that $M(C_{G}(x’))=\{M\}$ . Since $x^{g}=y$ , the element
$(x’)^{g}=y’$ is a power of $y$ . Thus, $y’\in A(L)$ . It follows that $C_{G}(y’)$ is
contained in either $L$ or a conjugate of a supporting subgroup of $A(L)$ .

Since
$M(C_{G}(y’))=M(C_{G}(x’))^{g}=\{M^{g}\}$ ,

$M$ is conjugate to a supporting subgroup for $A(L)$ . Q.E.D.

Lemma 19.5. Let $\lambda$ be the irreducible character in $L$ defifined in
Lemma 19.3. Then, $\lambda^{\tau}$ is conformal relative to $A(M)$ and

$\frac{1}{|M|}\sum_{x\in K\#}|\lambda^{\tau}(x)|^{2}<\frac{\lambda(1)^{2}}{|L|}$ .

Proof. We will prove that $\lambda^{\tau}$ is conformal relative to $M$ . Let $N$

be a supporting subgroup of $A(M)$ . Since $M$ is of type I but not a
Frobenius group, Theorem $II$ yields that $N$ is of type I. Let $\Theta=\lambda^{\tau}$ .

By Lemma 14.1, it suffices to check that $\Theta$ is orthogonal to every
virtual character of the form $(\theta_{1}-\theta_{2})^{G}$ with $\theta_{1}$ , $\theta_{2}\in S(\alpha)$ for $\alpha\neq 1_{H}$ ,
$\alpha\in Irr(H)$ . For the notation, see Lemma 14.1. Since $N$ is of type $I$ ,
$\theta_{1}$ and $\theta_{2}$ are irreducible characters of $N$ and $\theta_{1}-\theta_{2}$ vanishes outside
$A(N)-H$ . By (Fii) (d), $A(N)-H$ is a $TI$-set. This implies that $(\theta_{1}-\theta_{2})^{G}$

is a difference of two irreducible characters of $G$ . Let

$(\theta_{1}-\theta_{2})^{G}=\Theta_{1}-\Theta_{2}$ .

If $\lambda^{\tau}=\ominus is$ not orthogonal to $(\theta_{1}-\theta_{2})^{G}$ , then $\Theta$ must be either $\Theta_{1}$ or
$\Theta_{2}$ . The virtual character $\Theta_{1}-\ominus_{2}$ vanishes outside the territory $G_{0}(N)$

of $N$ . Lemma 19.2 yields that $L$ is either a Frobenius group or of type III
or $IV$ . Thus, by (Fii) (d) or (Fiii), $L$ is not conjugate to any supporting
subgroup for $A(N)$ . Since $N$ is not a Frobenius group by $(Fii)(d)$ , $N$ is
not conjugate to $L$ . By definition, $N$ is a supporting subgroup for $A(M)$ .

Hence, by Lemma $P$ , $N$ is not conjugate to any supporting subgroup for
$A(L)$ . By Lemma $Q$ , the territory of $L$ is disjoint from that of $N$ . Since
$L$ is coherent by Lemma 19.4, $\Theta-\overline{\Theta}$ vanishes outside of $G_{0}(L)$ . Then,
we have

$((\theta_{1}-\theta_{2})^{G}, \ominus-\overline{\Theta})=0$
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because $ G_{0}(N)\cap G_{0}(L)=\emptyset$ . Thus, $(\theta_{1}-\theta_{2})^{G}$ contains $\ominus and\overline{\Theta}$ with

the same multiplicity. Since $\Theta\neq\overline{\ominus}$ , this is a contradiction and proves
that $\lambda^{\tau}$ is conformal relative to $M$ .

We can apply Lemmas 12.5 and 12.6 $to\ominus(x)=|\lambda^{\tau}(x)|^{2}$ . Let $G_{1}(M)$

be the proper territory of $M$ . Then) $G_{1}(M)$ is the set of elements of $G$

which are conjugate to some element of $A(x)$ with $x\in K^{\beta}$ . Since $L$ is
not conjugate to $M$ , $\sigma(L)\cap\sigma(M)=\emptyset$ by Theorem 7.9. It follows that
$G_{1}(M)$ is disjoint from $G_{0}(L)$ . Lemma 12.6 yields

$\frac{1}{|M|}\sum_{x\in K^{Q}}|\lambda^{\tau}(x)|^{2}=\frac{1}{|G|}\sum_{x\in G_{1}(M)}|\lambda^{\tau}(x)|^{2}$ .

Since $ G_{1}(M)\cap G_{0}(L)=\emptyset$ , the orthogonality relation yields

$\frac{1}{|G|}\sum_{x\in G_{1}(M)}|\lambda^{\tau}(x)|^{2}<1-\frac{1}{|G|}\sum_{x\in G_{0}(L)}|\lambda^{\tau}(x)|^{2}$
.

Then, Lemmas 12.5 and 19.4 yield

$\frac{1}{|M|}\sum_{x\in K\#}|\lambda^{\tau}(x)|^{2}<1-\frac{1}{|L|}\sum_{x\in(L’)^{\mathfrak{g}}}|\lambda(x)|^{2}$ .

The right side is equal to $\lambda(1)^{2}/|L|$ because $\lambda$ vanishes outside $L’$ .

Q.E.D.

Lemma 19.6. Let $F=M\cap L$ . Then, $F$ is a complement of $K$

in M. There is an element $z$ of $A\cap Z(F)^{\mathfrak{y}}$ such that $C_{K}(z)\not\leqq K’$ .

Proof. We have $A\underline{\subseteq}M\cap L$ and some nonidentity element of $A$

has a nontrivial centralizer in $K$ . Thus, $M$ is a supporting subgroup for
$A(L)$ . By (Fii), $M\cap L=F$ is a complement of $K$ in $M$ .

Since $M$ is of type $I$ , $F$ contains a subgroup $F_{0}$ of the same exponent
as $F$ that acts regularly on $K$ . It follows that any subgroup of 8 $(F_{0})$ lies
in the center $Z(F_{0})$ . Therefore, there is no Frobenius group that contains
$A$ . Note that $A$ is the set of elements of order $p$ in $F$ by Corollary 6.6 (a)

and Theorem 6.5 (b).
If $L$ is of type $I$ , $L$ is a Frobenius group by Lemma 19.2. Since

$F$ is not a Frobenius group as shown in the preceding paragraph, we
have $F\underline{\subseteq}U$ . Therefore, $F$ is nilpotent. By (liv) for $M$ , every Sylow
subgroup of $F$ is abelian. Hence, $F$ is abelian. The group $A\in \mathcal{E}_{p}^{2}(F)$

acts on $K/K’$ . By Proposition 1.16 [BG], there is an element $z\in A^{\Downarrow}$

such that $C_{K/K’}(z)\neq 1$ . Proposition 1.5 [BG] shows that $C_{K}(z)\not\leqq K’$ .

This proves Lemma 19.6 if $L$ is of type I.
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Suppose that $L$ is of type III or $IV$ . We may assume $P\underline{\subseteq}U$ . If
$F\not\leqq L’$ , we may choose $W_{1}\underline{\subseteq}F$ . Then, $\langle A, W_{1}\rangle$ is a Frobenius group
in $F$ . This does not occur. Therefore, $F\underline{\subseteq}L’$ . Let $F_{1}=F\cap H$ . Then,
$F_{1}$ is a normal subgroup of $F$ . We may assume that $F=F_{1}(F\cap U)$ by
replacing $U$ by a conjugate if necessary. Since $U$ is nilpotent by (T2),
$F\cap U$ is abelian. The subgroup $A$ lies in $F\cap U$ and $A\triangleleft F$ by Corollary
6.6 (a). Therefore, $[F_{1}, A]=1$ and $A\underline{\subseteq}Z(F)$ . Then, Lemma 19.6 holds
as before. Q.E.D.

Lemma 19.7. Le $M$ $6e$ the set of all irreducible characters of $M$

which do not have $K$ in their kernel. Let $\lambda$ be the character defifined in

Lemma 19.3. If $M$ is coherent, then $\lambda^{\tau}$ is constant on $K^{\Downarrow}$ .

Proof Let $a$ be the least common multiple of the orders of all the
elements of $A(L)$ . By Lemma 19.2, we have $A(L)=L’=L_{\sigma}$ . Since
$M$ is not conjugate to $L$ , Theorem 7.9 yields that $\sigma(L)\cap\sigma(M)=\emptyset$ .

Thus, $(a, |K|)=1$ . Since $L$ is coherent by Lemma 19.4, we can apply
Lemma 12.1 to conclude that the values taken by $\lambda^{\tau}$ lie in the field $\mathbb{Q}_{a}$ .

Lemma 19.5 yields that $\lambda^{\tau}$ is conformal relative to $A(M)$ . Assume that
$M$ is coherent. We will show that $\lambda^{\tau}$ is orthogonal to every element of
$M^{\tau}$ . Let $\alpha$ be a character of M. Then, $\alpha_{K}$ is not rational as $\overline{\alpha}_{K}\neq\alpha_{K}$ .

Since $(a, |K|)=1$ , there is a Galois automorphism that sends $\alpha_{K}$ to $\overline{\alpha}_{K}$

and induces the identity on $\mathbb{Q}_{a}$ . This yields that $\lambda^{\tau}\neq\alpha^{\tau}$ . Lemma 14.4
yields that there is a pair $(r, \beta)$ of a rational number $r$ and a virtual
character $\beta$ of $M$ such that $\beta$ is orthogonal to every element of $M$ and
$\lambda^{\tau}(x)=r\beta(x)$ for $x\in A(M)^{\mathfrak{y}}$ . Then, $\beta$ is a linear combination of

irreducible characters of $M/K$ . Thus, $\lambda^{\tau}(x)=r\beta(x)$ for $x\in K^{\mathfrak{y}}$ and $\lambda^{\tau}$

is constant on $K^{Q}$ . Q.E.D.

Proof of Theorem 19.1. For some element $x$ of $A^{\beta}$ , $C_{K}(x)\neq 1$ .

Take $y\in C_{K}(x)^{Q}$ . Since $M$ is a supporting subgroup for $A(L)$ , Lemma
14.3 yields that $\lambda^{\tau}$ is conformal relative to $A(L)$ . Thus, $\lambda^{\tau}$ is constant
on the annex $A(x)$ . It follows that

$\lambda^{\tau}(xy)=\lambda^{\tau}(x)=\lambda(x)$ .

The last equality comes from Lemma 19.4. Let $\mathbb{Q}_{0}$ be the field of prim-
itive $|G|th$ roots of unity and let $\mathfrak{P}$ be the prime ideal dividing $p$ in the
ring of integers in $\mathbb{Q}_{0}$ . By Lemma 4.2 [FT], we have

$\lambda^{\tau}(y)\equiv\lambda^{\tau}(xy)=\lambda(x)\equiv\lambda(1)$ $(mod \mathfrak{P})$ .

The values taken by $\lambda^{\tau}$ lie in $\mathbb{Q}_{a}$ where $a$ is the exponent of $L’$ . Therefore,
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$\lambda^{\tau}(y)$ is a rational number, so we have

$\lambda^{\tau}(y)\equiv\lambda(1)$ $(mod p)$ .

By Lemma 19.3, $\lambda(1)$ divides $p+1$ or $p-1$ . This yields that $\lambda(1)\leq$

$(p+1)/2$ and

(19.4) $|\lambda^{\tau}(y)|\geq p-\lambda(1)\geq\lambda(1)-1$ .

This inequality holds whenever $y\neq 1$ commutes with an element
$x\in A^{\phi}$ . As before, let $F$ be a complement of $K$ in $M$ . Lemma 19.6
yields that there is an element $z\in A^{\mathfrak{y}}\cap Z(F)$ such that $C_{K}(z)\not\leqq K’$ . If

$C_{K}(z)=K$ , then (19.4) holds for every $y\in K^{\beta}$ . If $C_{K}(z)\neq K$ , then
Theorem 15.2 yields that $M$ is coherent. By Lemma 19.7, $\lambda^{\tau}$ is constant
on $K^{\phi}$ . Since (19.4) holds for at least one element of $K^{\Downarrow}$ , it holds for

every $y\in K^{\phi}$ because $\lambda^{\tau}$ is constant on $K^{\phi}$ .

Let $e=\lambda(1)$ . Then, Lemma 19.5 yields that

$\frac{1}{|M|}(|K|-1)(e-1)^{2}\leq\frac{1}{|M|}\sum_{x\in K\#}|\lambda^{\tau}(x)|^{2}<\frac{e^{2}}{|L|}$ .

Since $|M|=|K||M\cap L|$
) we have

$\frac{(|K|-1)}{|K|}(\frac{e-1}{e})^{2}<\frac{|M\cap L|}{|L|}\leq\frac{1}{3}$ .

Since $(e-1)/e\geq 2/3$ , $|K|<4$ and $|K|=3$ . The subgroup $K$ is a
Hall subgroup of $G$ with $|N_{G}(K)|$ odd. Then, $G$ is not simple. This
contradicts the assumption. Thus, Theorem 19.1 holds. Q.E.D.

Theorem 19.8. If there $\dot{\iota}s$ no subgroup of type $II$, then $G$ contains
a nilpotent Hall $\varpi$ -subgroup that is isolated.

Proof. By Theorem $I$ , all $M\in M$ are of type I. By Theorem 19.1,
they are Frobenius groups. It follows from $(Fii)(d)$ that no supporting
subgroup of type I is a Frobenius group. Thus, if $M\in M$ , there is no
supporting subgroup for $A(M)$ . Therefore, if $H=M_{F}$ , then $H=M_{\sigma_{0}}$

and) for every $x\in H^{Q}$ , $C_{G}(x)\underline{\subseteq}M$ . Since $M$ is a Frobenius group) we
have $C_{G}(x)\underline{\subseteq}H$ .

Take a prime $ p\in\varpi$ , $P\in Sy\ell_{p}(G)$ , and $M\in M(N_{G}(P))$ . Then, $M$

is of type I. Therefore, $M$ is a Frobenius group with Frobenius kernel
$H=M_{\sigma_{0}}=M_{F}$ and $P\underline{\subseteq}H$ . Thus, $H$ is a nilpotent $\varpi$-subgroup having

the property that $C_{G}(x)\underline{\subseteq}H$ for every $x\in H^{\phi}$ . We will show that $H$ is
a Hall $\varpi$-subgroup of $G$ that is isolated.
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Take a prime $q$ in $\varpi$ and suppose that $pq$ is an edge of the prime
graph of C. Then, there is a pair $(x, y)$ of elements $x$ and $y$ such that
$x\in P^{\mathfrak{y}}$ and $y$ is an element of $C_{G}(x)^{\beta}$ of order $q$ . Let $Q\in Sy\ell_{q}(G)$ such

that $y\in Q$ and let $ z\in Z(Q)\#$ . Then, starting from $x\in P^{\phi}$ we have
in succession $y\in H$ , $z\in H$ , and $Q\underline{\subseteq}H$ . Repeating this argument,
we conclude that if $ r\in\varpi$ , then $H$ contains a Sylow $r$-subgroup of $G$ .

Therefore, $H$ is a Hall $\varpi$-subgroup of $G$ . It is nilpotent and isolated.
Q.E.D.

\S 20. The Pair of Subgroups $S$ and $T$

In this section, we will assume that there is a subgroup in $M$ that is
not of type I. Theorem I yields that there is a pair of subgroups $S$ and $T$

which satisfy the conditions $(a)-(e)$ of Theorem I. By Theorem 18.10,
each of them is of type $II$ , III, or $IV$ . Throughout this section, we follow
the notation of Section 34 of [FT]. Thus, $p$ and $q$ are distinct primes in
$\varpi$ such that

$W=P^{*}Q^{*}$ , $S=S’Q^{*}$ , $T=T’P^{*}$ , $|P^{*}|=p$ , and $|Q^{*}|=q$ .

Let $P\in Sy\ell_{p}(S)$ and $Q\in Sy\ell_{q}(T)$ . By Theorem $C(2)$ , $P^{*}\underline{\subseteq}S_{F}$ .

Therefore, $P\underline{\subseteq}S_{F}$ and $P$ is a normal subgroup of $S$ . It follows that
$P^{*}\underline{\subseteq}P$ . Similarly, $Q^{*}\underline{\subseteq}Q\triangleleft T$ .

Let $U$ be a $Q^{*}$ -invariant complement of $P$ in $S’$ . Then, $UQ^{*}$ is a
complement of $P$ in $S$ . Let

$C=C_{t\downarrow}(P)$ .

Then, $C\triangleleft U$ . Since $P^{*}\underline{\subseteq}P$ , we have $P^{*}\cap U=1$ . Proposition 8.2 (b)
yields that $Q^{*}$ acts regularly on U. Thus, the group $UQ^{*}$ is a Frobenius
group with Frobenius kernel U. Then, the prime $q$ does not divide the
order of U. Thus,

$Q^{*}\in Sy\ell_{q}(S)$ .

Also, $u$ is nilpotent. Since $C\underline{\subseteq}U$ , $C$ is nilpotent; so is $PC=P\times C$ . It
follows that $PC\underline{\subseteq}F(S)$ . Clearly, we have $F(S)=P\times(F(S)\cap U)\underline{\subseteq}PC$ .

Therefore,

$F(S)=P\times C=PC$ .

By (T3), $S^{JJ}\underline{\subseteq}F(S)\underline{\subseteq}S’$ . It follows that $S’/PC$ $\cong U/C$ is abelian.
Similarly, let $V$ be a $P^{*}$ -invariant complement of $Q$ in $S’$ . Then,

$VP^{*}$ is a complement of $Q$ in $T$ and $VP^{*}$ is a Frobenius group with
Frobenius kernel $V$ . Also, $P^{*}\in Sy\ell_{p}(T)$ . Let

$D=C_{V}(Q)$ .
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Then, $D\triangleleft V$ , $QD=F(T)$ and $T’/QD$ $\cong V/D$ is abelian. Note that
$A(S)$ is a $TI$-set of $G$ with normalizer $S$ . This is proved as follows. If
$A(S)$ is not a $TI$-set, there is an element $x\in A(S)^{Q}$ such that $C_{G}(x)\not\leqq S$ .

Then, $C_{G}(x)$ is contained in a conjugate of a supporting subgroup $M_{i}$

by $(Fii)(e)$ . Since $S$ is not of type $I$ , $M_{i}$ is of type I by (Fiii). Then,
by Theorem 19.1, $M_{i}$ is a Frobenius group. But, none of the supporting
subgroups can be a Frobenius group by (Fii) (d). Thus, $A(S)$ is a $TI$ set
of $G$ .

Similarly, $A(T)$ is a $TI$-set.
Let @ be the set of characters of $S$ which are induced by irreducible

characters of $S’$ not having $P$ in their kernel. Since $P\underline{\subseteq}S_{F}$ , this set @
is a part of the set of characters considered in \S 16 for subgroups of type
$II$ , III, or $IV$ . Hence, Corollary 18.11 yields that the set @ defined here
is coherent. Let $\mathcal{T}$ be the set of characters of $T$ induced by irreducible
characters of $T’$ which do not have $Q$ in their kernel. Then, $T$ is also
coherent.

Let $\eta_{ij}$ be the virtual characters of weight 1 associated with the
self-normalizing cyclic group $W=P^{*}Q^{*}$ . We use the notation of \S 13
and

$\eta_{ij}(x)=\omega_{ij}(x)$ for $x\in\overline{W}$

.

Let $\mu_{ij}$ be the set of irreducible characters of $S$ defined in Lemma 13.4.

Then, $\mu_{ij}(x)=\epsilon_{j}\omega_{ij}(x)$ for $x\in\overline{W}$ with $\epsilon_{j}=1$ or-1. Let

$\xi_{k}=\sum_{i=0}^{q-1}\mu_{ik}$ .

Similarly, let $\nu_{ij}$ be the set of irreducible characters of $T$ defined

in Lemma 13.4. Thus, $\nu_{ij}(x)=\pm\omega_{ij}(x)$ for $x\in\overline{W}$ , where the sign is
independent of $j$ . Let

$\zeta_{i}=\sum_{j=0}^{p-1}\nu_{ij}$ .

By Lemma 13.5, characters of @ (or $\mathcal{T}$) are either irreducible or one of
the characters $\xi_{j}(0\leq j\leq p-1)$ (or $\zeta_{i}(0\leq i\leq q-1)$ ).

We use the following notation:

$|C|=c$ , $|D|=d$ , $|U:C|=u$ , $|V:D|=v$ , and $|G|=g$ .

For the following lemmas in this section, we maintain the symmetry
between $S$ and $T$ . So, the results proved for $S$ hold for $T$ as well.
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Lemma 20.1. There is a normal subgroup $P_{0}$ of $S$ such that $P_{0}\underline{\subseteq}$

$P$ , $P/P_{0}$ is an elementary abelian group of order $p^{q}$ , and the group $UQ^{*}$

acts irreducibly on $P/P_{0}$ . Either $U/C$ is a cyclic group with $u$ dividing
$(p^{q}-1)/(p-1)$ that acts irreducibly and regularly on $P/P_{0}$ , or $U/C$

is a product of at most $q-1$ cyclic groups with $u$ dividing $(p-1)^{q-1}$ .

For 1 $\leq j\leq p-1$ , $\xi_{j}$ is induced by a linear character of $PC$ and
$\xi_{j}(1)=uq$ . Either PU is a Frobenius group with Frobenius kernel $P$

such that $|P|=p^{q}$ and $u=(p^{q}-1)/(p-1)$ , or @ contains an irreducible
character of degree $uq$ that is induced by a linear character of $PC$ .

This is Lemma 34.1 [FT]. Some additional remarks included in
Lemma 20.1 are really proved there. Q.E.D.

Lemma 20.2. Either PU is a Frobenius group with Frobenius ker-
$nel$ $P$ with $|P|=p^{q}$ and $u=(p^{q}-1)/(p-1)$ , or $QV$ is a Frobenius
group with Frobenius kernel $Q$ with $|Q|=q^{p}$ and $v=(q^{p}-1)/(q-1)$ .

Proof This is Lemma 34.2 [FT]. We paraphrase their proof. Sup-
pose that the result is false. Then, Lemma 20.1 yields that @ contains an
irreducible character $\lambda$ of degree $uq$ that is induced by a linear character
of $PC$ and $\mathcal{T}$ contains an irreducible character $\theta$ of degree $vp$ that is
induced by a linear character of $QD$ . Define

$\alpha=\lambda-\xi_{1}$ and $\beta=\theta-\zeta_{1}$ .

Then, $\alpha^{\tau}$ takes nonzero values only on conjugates of $(PC)^{\mathfrak{y}}$ . Since $PC=$

$F(S)$ , $\alpha^{\tau}$ is nonzero only at $\sigma(S)$ -elements. Similarly, $\beta^{\tau}$ is nonzero only
at $\sigma(T)$-elements. Since $S$ is not conjugate to $T$ , Theorem 7.9 yields that
$\sigma(S)\cap\sigma(T)=\emptyset$ ; hence, $(\alpha^{\tau}, \beta^{\tau})=0$ . Similarly,

$((\lambda-\overline{\lambda})^{\tau}, (\beta-\overline{\beta})^{\tau})=0$ .

This implies $\lambda^{\tau}\neq\theta^{\tau}$ since $\lambda\neq\overline{\lambda}$ .

By Lemma 13.7, $\xi_{1}^{\tau}=\pm\sum_{i=0}^{q-1}\eta_{i1}$ and $\zeta_{1}^{\tau}=\pm\sum_{j}\eta_{1j}$ . By Lemma
$O$ , we have $\lambda^{\tau}\neq\pm\eta_{st}\neq\theta^{\tau}$ . Thus,

$(\alpha^{\tau}, \beta^{\tau})=(\lambda^{\tau}-\xi_{1}^{\tau}, \theta^{\tau}-\zeta_{1}^{\tau})=(\pm\sum_{i}\eta_{i1}, \pm\sum_{j}\eta_{1j})=\pm 1$
.

This contradicts $(\alpha^{\tau}, \beta^{\tau})=0$ . Q.E.D.

Lemma 20.3. For $1\leq j\leq p-1$ ,

$\sum_{x\in(PC)\#}|\eta_{0j}(x)|^{2}\geq uc|P|-u^{2}$
.
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Proof. We paraphrase the proof of Lemma 34.3 [FT]. The set of
irreducible characters of $S$ consists of $\{\mu_{ij}\}$ , $0\leq i\leq q-1,0\leq j\leq p-1$ ,
the set Irr@ of irreducible characters in @, and the set Irr $(S/P)$ . By
Lemma 13.7, $\xi_{t}^{\tau}=\epsilon_{t}\sum_{i}\eta_{it}$ . Write the restriction $(\eta_{0t})_{S}$ as a linear
combination of irreducible characters of $S$ as follows:

(20.1)
$(\eta_{0t})_{S}=\epsilon\mu_{0t}+\sum_{s,,,t>0}c_{st}\mu_{st}+\sum_{\lambda\in Irr}$

$ a_{\lambda}\lambda+\Delta$

where $\epsilon=\epsilon_{j}$ and $\Delta$ is a character of $S/P$ . Since @ is coherent, Lemmas
$M$ and 11.4 yield

(20.2) $(\alpha^{\tau}, \eta_{0j})=(\alpha, (\eta_{0j})_{S})$

for every $\alpha\in I_{0}$ (@). Take $j$ and $k$ with $1\leq j$ , $k\leq p-1$ and let $\alpha=\xi_{j}-\xi_{k}$ .

Note that $\xi_{j}(1)=uq=\xi_{k}(1)$ , so $\alpha\in I_{0}$ (@). Then, (20.1) and (20.2)
yield

$\sum_{s=0}^{q-1}c_{sj}=\sum_{s=0}^{q-1}c_{sk}$

including $k=t$ . For each $k$ , $(\mu_{ik})_{S’}$ is independent of $i$ by Lemma 13.4
and $(\mu_{ik})_{S’}=\psi_{k}$ is an irreducible character of degree $u$ of $S’$ . Then, we
have

$(\sum_{s,,,t>0}c_{st}\mu_{st})_{S’}=a\sum_{k=1}^{p-1}\psi_{k}(1)\psi_{k}$

with $a\psi_{k}(1)=au=\sum_{s=0}^{q-1}c_{sk}$ . Thus, $a$ is a rational number such that
au is an integer. If Irr@ is not empty, take $\lambda\in Irr@$ . Then, $\lambda(1)$ is
divisible by $q$ because $\lambda$ is induced by an irreducible character $\theta$ of $S’$ .

Let $\alpha=\theta(1)\xi_{k}-u\lambda$ . Since $\xi_{k}(1)=uq$ , we have $\alpha\in I_{0}$ (@). Then, (20.1)
and (20.2), together with Lemma $N$ , yield

$\theta(1)\sum_{s=0}^{q-1}c_{sk}=ua_{\lambda}$ or $a_{\lambda}=a\theta(1)$ .

Therefore,

$(\sum_{\lambda}a_{\lambda}\lambda)s^{J}=a\sum_{\lambda}\theta(1)(\theta_{1}+\cdots+\theta_{q})$

where $\theta_{1))}\ldots\theta_{q}$ are components of $\lambda_{S’}$ . It follows that

$(\sum_{s,,,t>0}c_{st}\mu_{st}+\sum_{\lambda}a_{\lambda}\lambda)s\prime=a\rho_{1}$
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where $\rho_{1}$ is the portion of the regular representation of $S’$ on the set
of irreducible characters which do not have $P$ in their kernel. Let $\rho$ be
the regular representation of $S’$ and write $\rho=\rho_{1}+\rho_{2}$ . Then, $\rho_{2}$ is the
regular representation of $S’/P$ . If $x$ is a nonidentity element of $S’$ , then

$0=\rho(x)=\rho_{1}(x)+\rho_{2}(x)$ .

Let $\beta=-a\rho_{2}+\Delta_{S’}$ . Then, $\beta$ is a linear combination of irreducible
characters of $S’/P$ with rational coefficients. It follows that for $x\in(S’)^{Q}$ ,

$\eta_{0t}(x)=\epsilon\psi_{t}(x)+\beta(x)$ .

Since $\rho_{2}(1)=|S’/P|=cu$ , $\beta(1)=-acu+\Delta_{S’}(1)$ is an integer because
$\Delta_{S’}$ is a character and au is an integer. The remainder of the proof is
the same as the proof of Lemma 34.3 [FT]. We have

$\sum_{x\in(PC)\#}|\eta_{0t}(x)|^{2}=\sum(\epsilon\psi_{t}(x)+\beta(x))(\epsilon\overline{\psi}_{t}(x)+\overline{\beta}(x))$

$=\sum|\psi_{t}(x)|^{2}+\epsilon\sum(\psi_{t}(x)\overline{\beta}(x)$

$+\overline{\psi}_{t}(x)\beta(x))+\sum|\beta(x)|^{2}$ .

Since $\psi_{t}$ is an irreducible character that vanishes outside $PC$ , the first
term is $uc|P|-u^{2}$ . Since $\beta$ is a sum of irreducible characters of $S’/P$ ,

the second sum is equal to $-2\epsilon u\beta(1)$ . The values of $\beta$ are constant on
each coset of $P$ . Thus, the third sum is

$|P|\sum_{x\in U}|\beta(x)|^{2}-\beta(1)^{2}$
.

Lemma 20.1 yields that $u$ divides either $(p^{q}-1)/(p-1)$ or $(p-1)^{q-1}$ ,
and $|P|\geq p^{q}$ . Hence, we have

$|P|\geq 2u+1$

and $|P|\beta(1)^{2}-\beta(1)^{2}-2eu\beta(1)\geq 2u(\beta(1)^{2}-\epsilon\beta(1))\geq 0$ because $\beta(1)$

is an integer. This proves Lemma 20.3. Q.E.D.

Lemma 20.4. For $1\leq?,\cdot\leq q-1$ ,

$\sum_{x\in PC-C}|\eta_{i0}(x)|^{2}\geq(|P|-1)c$
.
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Proof. We use the same method as in the proof of Lemma 20.3.
Since $\eta_{i0}$ is orthogonal to every character of $@^{\tau}$ , we have

$(\eta_{i0})_{S’}=a\rho_{1}+\gamma$

where au is an integer) $\rho_{1}$ is the portion of the regular representation $\rho$

with $\rho-\rho_{1}$ the regular representation of $S’/P$ , and $\gamma$ is a character of
$S’/P$ . Then, $\rho_{1}$ vanishes outside $P$ , $\rho_{1}$ takes the value $-uc$ on $P-1$ , and

$\rho_{1}(1)=(|P|-1)uc$ . Let $\delta=(\eta_{i0})_{\iota\downarrow}$ and $y\in P^{*\#}$ . Since $\gamma$ is a character
of $S’/P$ , $(\eta_{i0})_{S’}$ takes a constant value on each coset of $P$ except at the
identity. Thus,

(20.3)

$\sum_{x\in PC-C}|\eta_{i0}(x)|^{2}=(|P|-1)(\sum_{x\in U\#}|\delta(x)|^{2}+|\eta_{i0}(y)|^{2})$

$=(|P|-1)(c||\delta||^{2}-|\delta(1)|^{2}+|\eta_{i0}(y)|^{2})$ .

Clearly, $||\delta||^{2}$ is a nonzero integer. Let $z\in Q^{*\#}$ , and let $\mathfrak{Q}$ be a prime
ideal dividing $q$ in the ring of algebraic integers of $\mathbb{Q}_{pq}$ . Then, $\eta_{i0}(y)\equiv$

$\eta_{i0}(yz)=\omega_{i0}(yz)\equiv\omega_{i0}(y)=1(mod \mathfrak{Q})$ . Thus, the left side of (20.3) is
positive. It suffices to show that $|\delta(1)|^{2}-|\eta_{i0}(y)|^{2}$ is an integral multiple
of $c$ . We have

$\eta_{i0}(y)=a\rho_{1}(y)+\gamma(y)=-auc+\gamma(1)$ ,

$\delta(1)=a\rho_{1}(1)+\gamma(1)=a(|P|-1)uc+\gamma(1)$ .

Hence,

$|\delta(1)|^{2}-|\eta_{i0}(y)|^{2}=(a(|P|-2)uc+2\gamma(1))a|P|uc$ .

Since au is an integer, this is an integral multiple of $c$ . Q.E.D.

Lemma 20.5. Suppose that @ contains an irreducible character $\lambda$

of degree $uq$ which is induced by a character of $PC$ . Then,

$\sum_{x\in(PC)^{\beta}}|\lambda^{\tau}(x)|^{2}>uqc|P|-(uq)^{2}-2uq^{2}$
.

Proof. We have

$(\lambda^{\tau})_{S’}=\lambda_{S’}+a\rho_{1}+\alpha$
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where au is an integer, $\rho_{1}$ is the portion of the regular representation $\rho$

of $S’$ , $\rho=\rho_{1}+\rho_{2}$ with $\rho_{2}$ the regular representation of $S’/P$ , and $\alpha$ is
a character of $S’/P$ . Let

$\beta=-a\rho_{2}+\alpha$ .

Then for $x\in(S’)^{\phi}$ , $\lambda^{\tau}(x)=\lambda(x)+\beta(x)$ . The value of $\beta(x)$ is constant
on each coset of $P$ except at the identity. The proof of Lemma 34.5 [FT]
may be applied. We have

(20.4)

$\sum_{x\in(PC)\#}|\lambda^{\tau}(x)|^{2}=\sum(\lambda(x)+\beta(x))(\overline{\lambda}(x)+\overline{\beta}(x))$

$=\sum|\lambda(x)|^{2}+\sum(\lambda(x)\overline{\beta}(x)+\beta(x)\overline{\lambda}(x))+\sum|\beta(x)|^{2}$ .

Since $\lambda\in Irr$ $S$ with $\lambda(1)=uq$ , the first sum is $uqc|P|-(uq)^{2}$ . None of
the irreducible components of $\lambda_{S’}$ has $P$ in its kernel. Hence, the second
sum is $-2\lambda(1)\beta(1)$ . Since $\beta$ is constant on each coset of $P$ ,

$\sum|\beta(x)|^{2}=|P|\sum_{x\in U}|\beta(x)|^{2}-|\beta(1)|^{2}$
.

Suppose $|\beta(1)|<q$ . Then, $2\lambda(1)|\beta(1)|<2uq^{2}$ . The result follows from
(20.4). On the other hand, if $|\beta(1)|\geq q$ , then $ 2\lambda(1)|\beta(1)|\leq 2u|\beta(1)|^{2}\leq$

$(|P|-1)|\beta(1)|^{2}$ . The result follows from (20.4) again. Q.E.D.

Lemma 20.6. Let $G_{0}$ be the set of elements of $G$ which are not

conjugate to any element of $PC$ , $Q$ , or W. Suppose that @ contains an
irreducible character $\lambda$ of degree $uq$ . Defifine

$A_{1}=\{x\in G_{0}|\lambda^{\tau}(x)\neq 0\}$ ,

$A_{2}=\{x\in G_{0}|\eta_{10}(x)\neq 0\}$ , and

$A_{3}=$ { $x\in G_{0}|\eta_{01}(x)\neq 0$ and $\eta_{01}(x)\equiv 0(mod (q-1))$ }.

Then, $G_{0}=A_{1}\cup A_{2}\cup A_{3}$ .

Lemma 20.7. The following statements hold.

(i) If $q\geq 5$ , then $P$ is an elementary abelian group of order $p^{q}$ and
$u/c>9p^{q-1}/20q$ .

(ii) If $p$ , $q\geq 5$ , then $c=1$ and $u>(13/20)p^{q-1}/q$ .

$(ii\dot{0})$ If $p=3$ and $c\neq 1$ , then $u=121$ , $q=5$ , and $c=11$ .

$(i)$ If $q=3$ , then $c=1$ or $c=7$ . Furthermore $u>(p^{2}+p+1)/13$ .
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(v) If $q=3$ , then $P$ is an elementary abelian $p$ -group and $|P|=p^{q}$

or $p=7$ , $c=1$ , and $|P|=7^{4}$ .

(vi) If $q=3$ and $c=7$ , then $u>(p^{2}+p+1)/2$ .

Lemma 20.8. If $q\geq 5$ , then $PU/C$ is a Frobenius group and we
also have that $u$ divides $(p^{q}-1)/(p-1)$ .

Lemma 20.9. If $p$ , $q\geq 5$ , then $c=1$ , $|P|=p^{q}$ , and either $u=$

$(p^{q}-1)/(p-1)$ or $p\equiv 1(mod q)$ and $uq=(p^{q}-1)/(p-1)$ .

These lemmas are proved as in [FT], \S 34. In the proof the references
to Lemma $34.n$ $[FT]$ should be to Lemma $20.n$ of this paper.

\S 21. Four Propositions

We continue to use the notation introduced at the beginning of \S 20.
Thus, $S$ and $T$ are subgroups in $M$ , and $p$ and $q$ are distinct primes such
that $|W|=pq$ . The purpose of this section is to prove that $c=d=1$ ,
$|P|=p^{q}$ , $|Q|=q^{p}$ , PU is a Frobenius group, and $QV$ is a Frobenius
group.

Suppose that both $p$ and $q$ are greater than 3. Then, Lemma 20.7 (i)
and (ii) yield that $P$ is an elementary abelian group of order $p^{q}$ and
$c=1$ . By symmetry, $Q$ is an elementary abelian group of order $q^{p}$

and $d=1$ . By Lemma 20.8, PU is a Frobenius group and $u$ divides
$(p^{q}-1)/(p-1)$ . By symmetry, $QV$ is a Frobenius group. Thus, the
result holds if $p$ , $q\geq 5$ . We may assume that $q=3$ from now on. We
prove four propositions.

Proposition 21.1. If $q=3$ , then $c=1$ .

Proof. Suppose that $q=3$ and $c\neq 1$ . By Lemma 20.7 (iv) and
(vi), we have $c=7$ and

$u>(p^{2}+p+1)/2$ .

By Lemma 20.1, $u$ divides either $p^{2}+p+1$ or $(p-1)^{2}$ . It follows from
the inequality that $u=p^{2}+p+1$ . Lemma 20.7 (v) yields that $P$ is an
elementary abelian group of order $p^{3}$ . Then, by Lemma 20.1, $U/C$ is a
cyclic group that acts irreducibly and regularly on $P$ . Hence, the group
$S’/C$ is a Frobenius group with Frobenius kernel $PC/C$ . The group $PC$

is nilpotent; so is U. Since $U/C$ is cyclic, $u$ is abelian. Since $ p\in\varpi$ , we
have $ 7\in\varpi$ and $u$ is a $\varpi$-group. Therefore, $S$ is a $\varpi$-group of type $II$ or
III.
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Suppose that $S$ is of type $II$ . Then, $S_{\sigma}=S_{F}$ (Proposition 10.1);
it is either $P$ or $PC$ . Suppose that $S_{\sigma}=PC$ . Then, $(u, 7)=1$ . Let
$U=C\times R$ with a 7’-group $R$ and let $M\in M(N_{G}(R))$ . Then) by (Iliv),
$N_{G}(R)\not\leqq S$ . Hence, $M$ is not conjugate to $S$ . Since $UQ^{*}\underline{\subseteq}M_{)}M$ is
not $q$-closed. Hence, $M$ is not conjugate to $T$ either. By Theorem $I$ ,
$M$ is of type I. Then, by Theorem 19.1, $M$ is a Frobenius group with
Frobenius kernel $M_{\sigma}$ . It follows that $U\underline{\subseteq}M_{\sigma}\cap S_{\sigma}$ . This contradicts
Theorem 7.9. Therefore) we have $S_{\sigma}=P$ .

Let $M\in M(N_{G}(U))$ . As before, $M$ is a Frobenius group with
Frobenius kernel $M_{\sigma}$ . Let $H=M_{\sigma}$ . Then, $M=N_{G}(H)$ and $Q^{*}\underline{\subseteq}M$ .

It follows from the structure of a Frobenius complement that $|M$ : $H|=3$

or $3p$ . By (IIv), $N_{G}(C)\underline{\subseteq}S$ . Then, $C_{G}(C)$ is of rank at most 2.
Therefore, $H$ contains a characteristic subgroup of order 7 or $7^{2}$ . Thus,
if $|M:H|=3p$ , then $p$ divides 7-1 or $(7^{2}-1)(7^{2}-7)$ . This is impossible
as $p\neq 3,7$ . Hence, we have $|M:H|=3$ .

Let $M$ be the set of irreducible characters of $M$ that do not have $H$

in their kernel. Since $M$ is a Frobenius group with $H$ as the Frobenius
kernel, $M$ is the set of nonlinear irreducible characters of $M$ . If $M$ is not
coherent, then $H$ is a nonabelian group of prime power order (a power

of 7) such that $|H:H’|\leq 4|M:H|^{2}+1=37$ . This implies that $H$ is
cyclic and $H\underline{\subseteq}N_{G}(C)\underline{\subseteq}S$ . This is not the case. Hence, $M$ is coherent.
Let $\theta$ be the character of $M$ induced by the principal character of $H$ .

Then, by Lemma 12.7, $M^{*}=M\cup\{\theta\}$ is coherent. We can determine $\theta^{\tau}$

as follows. Take an irreducible character $\lambda$ of $M$ with $\lambda(1)=3$ . Then,
$(\theta-\lambda)^{\tau}$ vanishes outside the territory $G_{0}(M)$ . We check that $S$ and
some of its conjugates are the only supporting subgroups for $A(M)$ . We
remarked that no group of type I can be a supporting subgroup because
it is a Frobenius group. A similar reasoning applies to the group $T$

because $QV$ is a Frobenius group by Lemma 20.2. Thus, the territory
$G_{0}(M)$ consists of elements conjugate to some element of $H^{\mathfrak{p}}$ or PC-P.

In particular, $(\theta-\lambda)^{\tau}$ vanishes on $W$ . Therefore, by Lemma 13.1, we
have

$(\theta^{\tau}-\lambda^{\tau}, \eta 00-\eta_{i0}-\eta_{0j}+\eta_{ij})=0$ .

It follows that $\theta^{\tau}$ is a virtual character of weight 3 that involves $\eta 00$ and
one of $\eta_{i0}$ , $\eta_{0j}$ , or $\eta_{ij}$ . Clearly, $\theta^{\tau}$ is rational. Since $\eta_{0j}$ or $\eta_{ij}(j\neq 0)$

has $p-1$ algebraic conjugates, $\theta^{\tau}$ does not involve $\eta_{0j}$ or $\eta_{ij}$ . Hence,
$\theta^{\tau}=1+\eta_{10}+\eta_{20}$ .

Let $\lambda\in M$ be the irreducible character of degree 3 as above. We
claim that $\lambda^{\tau}(x)=\lambda(x)$ for $x\in H^{Q}$ . Note that $\lambda^{\tau}$ is well-behaved
relative to $A(M)$ by Lemma 14.3. Then, by Lemma 14.4, there is a
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virtual character $\gamma$ of $M$ such that $\gamma$ is orthogonal to every $\mu\in M^{*}$ and

$\lambda^{\tau}(x)=\lambda(x)+r\gamma(x)$ $(x\in H^{\phi})$

with some rational number $r$ . If $\mu$ is a nonlinear irreducible character of
$M_{)}$ then $\mu\in M^{*}$ . Hence, $(\gamma, \mu)=0$ by the property of $\gamma$ . Thus, $\gamma$ does
not involve $\mu$ . Hence, $\gamma$ is a sum of linear characters. Then, $(\gamma, \theta)=0$

implies that $\gamma$ vanishes on $H^{\phi}$ . Hence, $\lambda^{\tau}(x)=\lambda(x)$ for $x\in H^{\oint}$ .

Let $G_{0}=G_{0}(M)$ . Then, Lemma 11.5 applied to $|\lambda^{\tau}(x)|^{2}$ and $1_{G}$

yield (with $h=|H|$ )

$\frac{1}{g}\sum_{x\in G_{0}}|\lambda^{\tau}(x)|^{2}=\frac{1}{|M|}\sum_{x\in H\#}|\lambda^{\tau}(x)|^{2}=\frac{1}{|M|}\sum_{x\in H\#}|\lambda(x)|^{2}=1-\frac{3}{h}$ ,

$\frac{1}{g}|G_{0}|=\frac{1}{|M|}\sum_{x\in H\#}1=\frac{h-1}{3h}$ .

Let $G_{1}$ be the set of elements of $G-G_{0}$ which are not conjugate to

any element of $\overline{W}$ , $P^{Q}$ , or $Q^{\mathfrak{g}}$ . On $G_{1}$ , $(\theta-\lambda)^{\tau}$ vanishes. The virtual
characters $\eta_{10}$ and $\eta_{20}$ are 3-conjugate. Therefore, they take the same
value on $G_{1}$ . Thus,

$1+2\eta_{10}(x)-\lambda^{\tau}(x)=0$

for $x\in G_{1}$ . This implies that $\lambda^{\tau}(x)\neq 0$ on $G_{1}$ . Hence,

$\frac{3}{h}\geq\frac{1}{g}\sum_{x\in G_{1}}|\lambda^{\tau}(x)|^{2}\geq\frac{1}{g}|G_{1}|$

$\geq 1-\frac{h-1}{3h}-(1-\frac{1}{p}-\frac{1}{q}+\frac{1}{pq})-\frac{|P|-1}{|S|}-\frac{|Q|-1}{|T|}$ ,

$\frac{8}{3h}+\frac{1}{3cu}+\frac{1}{pv}\geq\frac{2}{3p}+\frac{1}{|S|}+\frac{1}{|T|}>\frac{2}{3p}$ .

We have $u=p^{2}+p+1\geq 3p$ , $v=(3^{p}-1)/2\geq 63$ , and $h\geq cu$ . Hence,
the left side of the above inequality is at most $(8+1+1)/63p=10/63p<$
$1/6p$ . This is a contradiction.

Suppose that $S$ is of type III. Then, $S’=S_{\sigma}=A(S)$ . Since there is
no supporting subgroup for $A(S)$ , $S_{\sigma}$ is a $TI$-set of $G$ with normalizer $S$ .

Let $@_{1}=@_{0}\cup@$ in the notation of \S 16. Then, $@_{1}$ is the set of characters
of $S$ which are induced by nonprincipal irreducible characters of $S’$ . Let
$\xi_{0}$ be the character of $S$ induced by the principal character of $S’$ . By
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Theorem 16.1 (a), $@_{1}$ is coherent. As before, $@_{2}=@_{1}\cup\{\xi_{0}\}$ is coherent
and

$\xi 0^{\mathcal{T}}=1+\eta_{10}+\eta_{20}$ .

Let $\lambda$ be an irreducible character of degree 3 lying in @o $\cdot$ By Lemma 13.5,
the characters of $@_{2}$ are either irreducible or one of $\xi_{j}$ for $0\leq j\leq p-1$ .

Then, any virtual character of $S$ that is orthogonal to all $\mu\in s_{2}$ vanishes
on $(S’)^{\beta}$ . It follows from Lemma 14.4 that $\lambda^{\tau}(x)=\lambda(x)$ for $x\in(S’)^{\phi}$ .

Let $G_{0}$ be the set of elements of $G$ which are conjugate to some element
of $(S’)^{Q}$ . Since $S’$ is a $TI$-set in $G$ , we have

$\frac{1}{g}\sum_{x\in G_{O}}|\lambda^{\tau}(x)|^{2}=\frac{1}{|S|}\sum_{x\in(S’)^{\psi}}|\lambda^{\tau}(x)|^{2}=\frac{1}{|S|}\sum|\lambda(x)|^{2}=1-\frac{3}{|S|}$,

and $|G_{0}|/g=(|S’|-1)/|S|$ . Let $G_{1}$ be the set of elements of $G-G_{0}$

which are not conjugate to any element of $\overline{W}$ or $Q^{Q}$ . Since $(\xi_{0}-\lambda)^{\tau}$

vanishes on $G_{1}$ and $\eta_{10}=\eta_{20}$ on $G_{1}$ , we see that $\lambda^{\tau}$ does not vanish on
$G_{1}$ . Thus,

$\frac{3}{|S|},\geq\frac{1}{g}\sum_{x\in G_{1}}|\lambda^{\tau}(x)|^{2}\geq\frac{1}{g}|G_{1}|\geq 1-(1-\frac{1}{p}-\frac{1}{q}+\frac{1}{pq})-\frac{|S’|-1}{|S|}-\frac{|T’|-1}{|T|}$ .

Hence,

$\frac{3}{|S|},+\frac{1}{p|V|}\geq\frac{2}{3p}+\frac{1}{|S|}+\frac{1}{|T|}>\frac{2}{3p}$ .

This is a contradiction. Q.E.D.

Proposition 21.2. Suppose that $q=3$ . Then $d=1$ .

Proof. Suppose that $q=3$ and $d\neq 1$ . Then, by Lemma 20.7 (iii)
with $q$ , $c$ , and $S$ replaced by $p$ , $d$ , and $T$ , we have $p=5$ , $d=11$ , and
$v=121=(11)^{2}$ . Since $v=(3^{5}-1)/2$ , $V/D$ is cyclic by Lemma 20.1. It
follows that $V$ is abelian. Thus, $T$ is of type $II$ or III.

Suppose that $T$ is of type III. Let $\backslash $? be the set of characters of
$T$ which are induced by nonprincipal irreducible characters of $T’$ . By
Theorem 16.1, $\backslash $? is coherent. Let $\zeta_{0}$ be the character induced by the
principal character of $T’$ . By Lemma 12.7, $V^{*}=\backslash 7\cup\{\zeta_{0}\}$ is coherent.
We will see what $\zeta o^{\tau}$ is. Let $\lambda\in\backslash $? be a character of degree $p$ and let

$\alpha=\zeta_{0}-\lambda$ .

We use the same method as in the proof of Lemma 19.4. The characters
$\nu_{ij}$ associated to the cyclic subgroup $W$ satisfy $\nu_{ij}(1)=v$ for $i>0$
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(Lemma 20.1). Since $v\equiv 1(mod p)$ , all signs attached to $\nu_{ij}$ are 1. For
a fixed $i\neq 0$ , let

$\gamma_{j}=\nu_{0j}-\nu_{ij}+\delta$ $(0\leq j\leq 4)$

where $\delta$ is a sum of characters of degree $p$ in $V$ such that $\delta(1)=v-1$ .

For example, let $\delta$ be the sum of distinct characters of degree 5 which
have $QD$ in their kernel. (There are exactly $(v-1)/5$ such characters.)
We have $\gamma_{j}\in I_{0}(A_{0}(T))$ . $ThuS_{)}$ $\gamma_{j^{\mathcal{T}}}$ are defined. Since

$(\gamma_{0}-\gamma_{j})^{\tau}=\eta 00-\eta_{i0}-\eta_{0j}+\eta_{ij}$ ,

we have $\gamma_{j^{\mathcal{T}}}=\eta_{0j}-\eta_{ij}+\Delta$ with $\Delta$ independent of $j$ . For each $j$ with
$0\leq j\leq 4$ , $(\gamma_{j^{\mathcal{T}}}, \zeta o^{\tau})=(\gamma_{j}, \zeta_{0})=1$ . We have

$5=\sum_{j}(\eta_{0j}, \zeta o^{\tau})+(\sum_{j}\eta_{ij}, \zeta o^{\tau})+5(\Delta, \zeta o^{\tau})$
.

Since $\zeta_{i}^{\tau}=\pm\sum_{j}\eta_{ij}$ and $(\zeta_{i)}^{\tau}\zeta_{0}^{\tau})=0$ , we get

$5=1+\sum_{j>o}(\eta_{0j}, \zeta o^{\tau})+5(\Delta, \zeta o^{\tau})$
.

Therefore, $(\eta_{0j}, \zeta o^{\tau})\neq 0$ $fr$ some $j>0$ . The characters $\eta_{01}$ , $\ldots$ , $\eta_{04}$

are $p$-conjugate, while $\zeta o^{\tau}$ is $p$-rational. Hence, $(\eta_{0j}, \zeta o^{\tau})$ is independent
of $j$ . Since $\zeta o^{\tau}$ is of weight 5, we have $\zeta 0^{\tau}=1_{G}\pm\sum_{j>0}\eta_{0j}$ . Since
$(\gamma_{j^{\mathcal{T}}}, \zeta o^{\tau})=1$ ,

$\zeta 0^{\tau}=1_{G}+\sum_{j>0}\eta_{0j}$
.

Since $V^{*}$ consists of all the characters of $T$ which are induced by
irreducible characters of $T’$ , Lemma 14.4 yields that

$\lambda^{\tau}(x)=\lambda(x)$ for $x\in(T’)^{\beta}$ .

Since there is no supporting subgroup, $A(T)=T’$ is a $TI$ set of $G$ . Let
$G_{0}$ be the set of elements of $G$ which are conjugate to some element of
$(T’)^{\Downarrow}$ . Then,

$\frac{1}{g}\sum_{x\in G_{0}}|\lambda^{\tau}(x)|^{2}=\frac{1}{|T|}\sum_{x\in(T’)\#}|\lambda^{\tau}(x)|^{2}$

$=\frac{1}{|T|}\sum_{x\in(T’)\#}|\lambda(x)|^{2}=1-\frac{5}{|T|}$,
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because $\lambda$ vanishes on $T$ $-T’$ . We have $|G_{0}|/g=(|T’|-1)/|T|$ . Let $G_{1}$

be the set of elements of $G-G_{0}$ which are not conjugate to any element

of $\overline{W}$ or $P^{\beta}$ . Then if $y\in G_{1}$ , then $\alpha^{\tau}(y)=0$ and $\eta_{01}(y)=\eta_{0j}(y)$ for all
$j>0$ . It follows that

$1+4\eta_{01}(y)-\lambda^{\tau}(y)=0$ .

This implies $\lambda^{\tau}(y)\neq 0$ . Then,

$\frac{5}{|T|},\geq\frac{1}{g}\sum_{x\in G_{1}}|\lambda^{\tau}(x)|^{2}\geq\frac{1}{g}|G_{1}|$

$\geq 1-\frac{|G_{0}|}{g}-(1-\frac{1}{p}-\frac{1}{q}+\frac{1}{pq})-\frac{|P|-1}{|S|}$ .

Thus,

$\frac{5}{|T|},+\frac{1}{3u}\geq\frac{4}{15}+\frac{1}{|S|}+\frac{1}{|T|}>\frac{4}{15}$ .

This is not the case. Therefore, $T$ is not of type III.
Suppose that $T$ is of type $II$ . In this case, $ 11\in\varpi$ so $T$ is a $\varpi$ group

Take $M\in M(N_{G}(V))$ . Since $M$ contains $VP^{*}$ which is not $p$-closed, $M$

is not conjugate to $P$ . The prime 11 lies in $\sigma(T)’$ . In fact, $D$ centralizes
$Q$ ; hence, $N_{G}(D)\underline{\subseteq}T$ by (IIw), Since $N_{G}(V)\not\leqq T$ by (IIiv), $V$ is not
cyclic. $ThuS_{)}11\in\tau_{2}(T)\cap\sigma(M)$ by Lemma 6.11. It follows that $M$ is not
conjugate to $S$ . By Theorem $I$ , $M$ is of type I. Hence, by Theorem 19.1,
$M$ is a Frobenius group with Frobenius kernel $M_{\sigma}$ . Let $H=M_{\sigma}$ . Then,
$M=N_{G}(H)$ . Since $N_{G}(D)\underline{\subseteq}T$ , we have $N_{H}(D)=T\cap H=V$ . It
follows that $|H|$ is a power of the prime 11 and $Z(H)$ is cyclic. Therefore,

$|M/H|=e$ divides $11-1=10$ . Since $P^{*}$ is contained in $N_{G}(V)$ , we
have $e=5$ .

Let $V$ be the set of irreducible characters of $M$ which do not have
$H$ in their kernel. If $V$ is not coherent) then $|H:H’|\leq 4e^{2}+1=101$ .

This implies that $H$ is cyclic. Therefore, $V$ is coherent. Let $\zeta_{0}$ be the
character of $M$ induced by the principal character of $H$ . As before,
$V^{*}=V\cup\{\zeta_{0}\}$ is coherent. Let $\lambda$ be an irreducible character of $M$ of
degree 5, and let

$\alpha=\zeta_{0}-\lambda$ .

Then) $\alpha\in I_{0}(A(M))$ and $\alpha$ vanishes on the conjugates of $\overline{W}$

. (The
group $T$ is a supporting subgroup of $A(M)$ . But, the territory of $A(M)$

does not intersect with $\overline{W}.$ ) It follows that

$(\alpha^{\tau}, \eta_{00}-\eta_{i0}-\eta_{0j}+\eta_{ij})=0$ .
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Since $\lambda^{\tau}\neq\pm\eta_{st}$ for any $s$ , $t$ by Lemma $N$ , we have

$(\zeta o^{\tau}, \eta_{00}-\eta_{i0}-\eta_{0j}+\eta_{ij})=0$ .

Since $\alpha^{\tau}=\zeta o^{\tau}-\lambda^{\tau}$ involves the principal character of $G$ , $(\zeta_{0}^{\tau}, \eta 0o)=$

$1$ . We will show that $(\zeta o^{\tau}, \eta_{0j})\neq 0$ . Suppose that $(\zeta o^{\tau}, \eta_{0j})=0$ . If
$(\zeta_{0}^{\tau}, \eta_{ij})\neq 0$ , then

$\zeta 0^{\mathcal{T}}=1_{G}+a\sum_{j>0}\eta_{ij}$

because $\eta_{ij}$ for $1\leq j\leq 4$ are $p$-conjugate. Then,

$5=||\zeta o^{\tau}||^{2}=1+4a^{2}$ .

On the other hand, we have $(\zeta o^{\tau}, \zeta_{i}^{\tau})=(\zeta_{0}, \zeta_{i})=0$ for $i>0$ . Since
$\zeta_{i}^{\tau}=\pm\sum_{j}\eta_{ij}$ , $(\zeta o^{\tau}, \zeta_{i}^{\tau})=\pm 4a$ . This is a contradiction. Hence,
$(\zeta_{0}^{\tau}, \eta_{ij})=0$ for $i,j>0$ . Then, $(\zeta_{0}^{\tau}, \zeta_{i}^{\tau})=0$ implies $(\zeta o^{\tau}, \eta_{i0})=0$ .

This contradiction finally proves $(\zeta o^{\tau}, \eta_{0j})\neq 0$ . Then,

$\zeta 0^{\tau}=1+\sum_{j>0}\eta_{0j}$
.

Lemma 14.4 yields that

$\lambda^{\tau}(x)=\lambda(x)$ for $x\in H^{\phi}$ .

By Lemma 14.3, $\lambda^{\tau}$ is well-behaved relative to $A(M)$ . Hence, we
can apply Lemma 11.5. Let $G_{0}$ be the territory of $A(M)$ . Then,

$\frac{1}{g}\sum_{x\in G_{O}}|\lambda^{\tau}(x)|^{2}=\frac{1}{|M|}\sum_{x\in H\#}|\lambda^{\tau}(x)|^{2}=\frac{1}{|M|}\sum_{x\in M\#}|\lambda(x)|^{2}=1-\frac{e}{|H|}$ .

And

$\frac{1}{g}|G_{0}|=\frac{1}{g}\sum_{x\in G_{0}}1=\frac{1}{|M|}\sum_{x\in H\#}1=\frac{|H|-1}{|M|}$ .

Let $G_{1}$ be the set of elements of $G-G_{0}$ which are not conjugate to any

element of $\overline{W}$ , $P^{\phi}$ , or $Q^{\beta}$ . Then) $\alpha^{\tau}(x)=0$ for $x\in G_{1}$ . Also, we have
$\eta_{01}(x)=\eta_{0j}(x)$ for $j>0$ and $x\in G_{1}$ . It follows that

$1+4\eta_{01}(x)-\lambda^{\tau}(x)=0$ for $x\in G_{1}$ .
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This implies that $\lambda^{\tau}(x)\neq 0$ on $G_{1}$ . Therefore, we have

$\frac{e}{|H|}\geq\frac{1}{g}\sum_{x\in G_{1}}|\alpha(x)|^{2}\geq\frac{1}{g}|G_{1}|$

$\geq 1-\frac{|H|-1}{|M|}-(1-\frac{1}{p}-\frac{1}{q}+\frac{1}{pq})-\frac{|P|-1}{|S|}-\frac{|Q|-1}{|T|}$ ,

$\frac{e}{|H|}+\frac{1}{3u}+\frac{1}{5\cdot 11^{3}}\geq\frac{4}{15}+\frac{1}{|M|}+\frac{1}{|S|}+\frac{1}{|T|}>\frac{4}{15}$ .

Since $u=31$ and $|H|\geq 11^{3}$ , this is a contradiction. Q.E.D.

Proposition 21.3. Suppose that $q=3$ . Then, $P$ is an elementary
abelian group of order $p^{3}$ .

Proof. Suppose that Proposition 21.3 fails. Then, by Lemma 20.7
(v), we have $p=7$ and $|P|=p^{4}$ . The group $P$ is elementary abelian.

The group $U$ is abelian and its order $u$ divides either $(p^{3}-1)/(p-1)$ or
$(p-1)^{q-1}$ . Since $p=7$ and $(u, 6)=1$ , Lemma 20.1 yields that $U$ is a
cyclic group of order dividing $p^{2}+p+1=57=3\cdot 19$ . Since $(u, 3)=1$ ,
we must have $u=19$ .

Lemma 20.1 yields a normal subgroup $P_{0}$ such that $UQ^{*}$ acts ir-
reducibly on $P/P_{0}$ . Then, $|P_{0}|=7$ and $U$ centralizes $P_{0}$ . There is a
subgroup $P_{1}$ of order $p^{3}$ such that $UQ^{*}$ acts irreducibly on $P_{1}$ . Then,

$P=P_{0}\times P_{1}$

and $P_{0}=C_{P}(U)$ . Since $C_{P}(U)\neq 1$ , $S$ is not of type $II$ . Therefore, $S$ is
of type III. Since there is no supporting subgroup, $S’=A(S)$ is a $TI$-set.

Let $\mathfrak{U}$ be the set of characters of $S$ which are induced by nonprincipal
irreducible characters of $S’$ . By Theorem 16.1 (a), $\mathfrak{U}$ is coherent. Let
$\xi_{0}$ be the character of $S$ that is induced by the principal character of
$S’$ . Then, by Lemma 12.7, $\mathfrak{U}^{*}=\mathfrak{U}\cup\{\xi_{0}\}$ is coherent. Let $\lambda$ be an
irreducible character of degree 3 lying in $\mathfrak{U}$ , and let

$\alpha=\xi_{0}-\lambda$ .

Then, $\alpha^{\tau}$ vanishes on any conjugate of $\overline{W}$ . It follows that

$(\alpha^{\tau}, 1_{G}-\eta_{i0}-\eta_{0j}+\eta_{ij})=0$ for $i,j>0$ .

By Lemma $N$ , $\lambda^{\tau}$ is orthogonal to every $\eta_{st}$ . Hence,

$(\xi_{0^{\mathcal{T}}}, 1_{G}-\eta_{i0}-\eta_{0j}+\eta_{ij})=0$ .
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The virtual characters $\eta_{0j}(1\leq j\leq 6)$ are $p$-conjugate, while $\xi o^{\tau}$ is
$p$-rational. Since $||\xi_{0^{\mathcal{T}}}||^{2}=3$ , $\xi_{0^{\mathcal{T}}}$ does not involve $\eta_{0j}$ . By the same
reasoning) $\xi o^{\tau}$ does not involve $\eta_{ij}$ . It follows that

$\xi 0^{\mathcal{T}}=1_{G}+\eta_{10}+\eta_{20}$ .

We can argue as in the previous propositions. We have

$\lambda^{\tau}(x)=\lambda(x)$ for $x\in(S’)^{\beta}$ .

Let $G_{0}$ be the set of elements of $G$ which are conjugate to some element
of $(S’)^{\mathfrak{p}}$ . Since $S’$ is a $TI$-set,

$\frac{1}{g}\sum_{x\in G_{0}}|\lambda^{\tau}(x)|^{2}=\frac{1}{|S|}\sum_{x\in(S’)\#}|\lambda^{\tau}(x)|^{2}$

$=\frac{1}{|S|}$ $\sum$ $|\lambda(x)|^{2}=1-\frac{3}{|S|}$,
$x\in(S’)^{\phi}$

because $\lambda$ vanishes on $S-S’$ . Similarly,

$|G_{0}|/g=(|S’|-1)/|S|$ .

Let $G_{1}$ be the set of elements of $G-G_{0}$ which are not conjugate to any

element of $\overline{W}$ or $Q^{\beta}$ . Then, $\alpha^{\tau}$ vanishes on $G_{1}$ , and $\eta_{10}(y)=\eta_{20}(y)$ for
$y\in G_{1}$ . Thus,

$1+2\eta_{10}(y)-\lambda^{\tau}(y)=0$ for $y\in G_{1}$ .

This implies $\lambda^{\tau}(y)\neq 0$ for $y\in G_{1}$ . Then,

$\frac{3}{|S|},\geq\frac{1}{g}\sum_{x\in G_{1}}|\lambda^{\tau}(x)|^{2}\geq\frac{1}{g}|G_{1}|$

$\geq 1-\frac{|S’|-1}{|S|}-(1-\frac{1}{p}-\frac{1}{q}+\frac{1}{pq})-\frac{|Q|-1}{|T|}$ .

Then,

$\frac{3}{|S|},+\frac{1}{7\cdot v}\geq\frac{1}{p}-\frac{1}{pq}+\frac{1}{|S|}+\frac{1}{|T|}>\frac{2}{21}$ .

Since $|S’|=7^{4}\cdot 19$ and $v=1093$ , this is a contradiction. Q.E.D.



204 M. Suzuki

Proposition 21.4. Suppose that $q=3$ . Then, $U$ is a cyclic group

of order dividing $p^{2}+p+1$ that acts on $P$ irreducibly and regularly. The
group PU is a Frobenius group. The group $Q$ is also an elementary
abelian group of order $3^{p}$ and $QV$ is a Frobenius group with Frobenius
kernel Q. The group $V$ is a cyclic group of order dividing $(3^{p}-1)/2$ .

Proof. Since $q=3$ , we have $p\geq 5$ . By Lemma 20.7 (i) with $q$ and
$P$ replaced by $p$ and $Q$ , $Q$ is an elementary abelian group of order $3^{p}$ .

By Proposition 21.2, we have $d=1$ and $D=1$ . Lemma 20.8 with $q$

and $P$ replaced by $p$ and $Q$ yields that $QV$ is a Frobenius group with
Frobenius kernel $Q$ and $v=|V|$ divides $(3^{p}-1)/2$ . By Lemma 20.1 for
$T_{)}V$ is a cyclic group.

Suppose that Proposition 21.4 fails. Then, by Lemma 20.1, the
group $U$ is a product of at most 2 cyclic groups and $u$ divides $[(p-1)/2]^{2}$ .

Since $U$ is abelian, $S$ is either of type $II$ or type III.
Suppose that $S$ is of type III. Let $\mathfrak{U}$ be the set of characters of $S$

which are induced by nonprincipal irreducible characters of $S’$ . If $\mathfrak{U}$ is
coherent, we can apply the same argument as the one in the proof of
Proposition 21.3. At the end, we get

$\frac{3}{|S|},+\frac{|Q|}{|T|}\geq\frac{2}{3p}$ .

Since $|S’|=p^{3}u>15p$ and $|T|=v|Q|$ with

$v=(3^{p}-1)/2\geq 5p$ ,

we have a contradiction

$\frac{2}{5p}>\frac{3}{|S|},+\frac{|Q|}{|T|}\geq\frac{2}{3p}$ .

We will prove that $U$ is coherent. Since $U\cong S’/P$ is abelian, $\mathfrak{U}$

contains $(u-1)/3$ irreducible characters of degree 3. By assumption,
$U$ is an abelian group of exponent dividing $(p-1)/2$ . Therefore, there
is a $U$-invariant subgroup $P_{1}$ of $P$ with index $|P$ : $P_{1}|=p$ . Then,
$U/C_{U}(P/P_{1})$ is cyclic. Since $C_{U}(P/P_{1})$ is contained in the inertia group
of any linear character of $P/P_{1}$ , there is a linear character $\theta$ of $P$ such
that $|S’$ : $I(\theta)|\leq\exp U\leq(p-1)/2$ . It follows that there is an irreducible
character $\mu$ of $\mathfrak{U}$ having the degree $3d$ with $1<d\leq(p-1)/2$ (cf. \S 11,
the proof of Lemma 4.5 [FT] $)$ . Let $\lambda$ be an irreducible character of degree
3 lying in U. Let

$\alpha=\xi-\lambda$ and $\beta=d\lambda-\mu$
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where $\xi$ is the character of $S$ induced by the principal character of $S’$ .
Then, $\alpha$ , $\beta\in I_{0}(A(S))$ and $\alpha^{\tau}$ , $\beta^{\tau}$ are defined. Since $S$ is of type III,
we have $A(S)=S’$ . Then, for characters $\nu$ , $\nu’$ of degree 3 in $\mathfrak{U}$ ,

$(\beta^{\tau}, (\nu-\nu’)^{\tau})=0$

if $\nu\neq\lambda\neq \mathcal{U}_{)}’$
. while $(\beta^{\tau}, (\nu-\lambda)^{\tau})=-d$ . It follows that

$\beta^{\tau}=d\lambda^{\tau}-x\sum\nu^{\tau}-\mu^{\tau}+\Delta$

for some integer $x$ where the sum is over all irreducible characters $\nu$

of degree 3. If $x=0$ , $\mathfrak{U}$ is coherent. Suppose that $x\neq 0$ . We have
$||\beta^{\tau}||^{2}=d^{2}+1$ . It follows from this

(21.1) $x^{2}(u-1)/3\leq 2dx$ .

Note that $\mathfrak{U}$ contains exactly $(u-1)/3$ irreducible characters of degree
3. The above inequality implies $x>0$ . Lemma 20.7(iv) yields $u>$

$(p^{2}+p+1)/13$ . Since $d\leq(p-1)/2$ , (21.1) yields $p\leq 37$ . By Lemma
20.1, $u$ divides $(p-1)^{2}/4$ . Thus,

$\frac{p^{2}+p+1}{13}<u\leq\frac{(p-1)^{2}}{4}$ .

If $p-1$ is divisible by 4 or 3, we can replace $(p-1)^{2}/4$ by $(p-1)^{2}/16$

to get a contradiction. Thus, $p\equiv-1(mod 12)$ and $p=11$ or 23. If
$p=23$ , $u$ divides $11^{2}$ . If $u=11$ , then $u\not\equiv 1(mod 3)$ . This contradicts
the fact that $UQ^{*}$ is a Frobenius group. Thus, $u=121$ and (21.1) yields
$x<1$ . Therefore, we have $p=11$ , $u=25$ , $d=5$ , and (21.1) yields

$0<x<2$ . Hence, $x=1$ and

$\beta^{\tau}=d\lambda^{\tau}-\sum\nu^{\tau}-\mu^{\tau}+\Delta$ .

As before, $\Delta$ is a real-valued virtual character such that $(1_{G}, \Delta)=$

$(\nu^{\tau}, \Delta)=0$ for every $\nu\in \mathfrak{U}$ with $\nu(1)=3$ . We check that

$\alpha^{\tau}=1_{G}+\eta_{10}+\eta_{20}-\lambda^{\tau}$ .

Since $\overline{\eta_{20}}=\eta_{10}$ , $(\alpha^{\tau}, \Delta)$ is an even integer. But, $(\alpha^{\tau}, \beta^{\tau})=(\alpha, \beta)=-d$

by Lemma 11.4. Thus, we have

$(\alpha^{\tau}, \beta^{\tau})=-(d-1)+(\alpha^{\tau}, \Delta)$

which implies $(\alpha^{\tau}, \Delta)=-1$ . This contradiction proves that $\mathfrak{U}$ is coher-
ent. Thus, Proposition 21.4 is proved if $S$ is of type III.
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Suppose that $S$ is of type $II$ . Let $M\in M(N_{G}(U))$ . Then, $M$ is
not conjugate to $S$ or $T$ . Therefore, by Theorem $I$ , $M$ is of type I. By
Theorem 19.1, $M$ is a Frobenius group with Frobenius kernel $M_{\sigma}$ . We
have

$U\underline{\subseteq}M_{\sigma}$ .

The group $Q^{*}$ is contained in $M$ . Hence, $|M:M_{\sigma}|=3$ or $3p$ .

By Lemma 20.1, $u$ divides $(p-1)^{2}/4$ . As before, $p-1$ is not divisible
by 4 or 3. Hence, if $u\neq(p-1)^{2}/4$ , then

$\frac{p^{2}+p+1}{13}<u\leq\frac{(p-1)^{2}}{20}$

which is a contradiction. It follows that $u=(p-1)^{2}/4$ and $u$ is the
direct product of two cyclic groups of order $(p-1)/2$ . Thus, all Sylow
subgroups of $u$ are abelian of rank 2. Hence, we have $\pi(U)=\tau_{2}(S)$ .

Take $r\in\pi(U)$ and let $A\in \mathcal{E}_{p}^{2}(U)$ . Then, for some $B\in\epsilon^{1}(A)$ , $ C_{P}(B)\neq$

$1$ by Proposition 1.16 [BG]. For $B$ , $C_{G}(B)\underline{\subseteq}S$ by (IIv). This implies
that

$Z(M_{\sigma})\underline{\subseteq}S\cap M_{\sigma}=u$ .

Since $M_{\sigma}$ is nilpotent, $\pi(Z(M_{\sigma}))=\pi(M_{\sigma})$ . Thus,

$\pi(U)\underline{\subseteq}\pi(M_{\sigma})=\pi(Z(M_{\sigma}))\underline{\subseteq}\pi(U)$ .

Therefore, $\pi(U)=\pi(M_{\sigma})$ . Suppose that $|\pi(U)|>1$ or some Sylow
subgroup of $U$ is a Sylow subgroup of $G$ . Then, by Theorem 6.7, $G$ has
abelian Sylow $r$-subgroups for each $r\in\pi(U)$ . By Lemma 6.8(b), $u$ is a
Hall $\tau_{2}(S)$-subgroup of $G$ . It follows that $U=M_{\sigma}$ . Since $N_{G}(U)\not\leqq S$ ,

we have $|M:M_{\sigma}|=3p$ . Since $M$ is a Frobenius group,

$|A|\equiv 1$ $(mod 3p)$

for each $A\in \mathcal{E}^{2}(U)$ . Since $u=|U|=(p-1)^{2}/4$ , we have $U=A$ and
$u\equiv 1(mod 3p)$ . (If $A\neq U$ , $|U|\geq(3p+1)^{2}$ which is impossible.) Thus,

$(p-1)^{2}-4=12kp$

for some integer $k$ . Hence, $p$ divides 3. This contradicts the assumption

$p>q=3$ . Therefore, $\pi(U)=\{r\}$ for a single prime $r$ and $G$ has a
nonabelian Sylow $r$-subgroup. It follows from the structure of $S$ that
$P=S_{\sigma}$ . Then, Theorem 6.7 yields that $C=C_{A}(P)$ has order $p$ . This
contradicts Proposition 21.2. Q.E.D.
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Theorem. Let $G$ be $a$ fifinite simple group and let $\varpi$ be a connected
component of the prime graph $\Gamma(G)$ such that $ 2\not\in\pi$ . Then, we have one

of the two cases:

(1) $G$ contains a nilpotent Hall $\varpi$ -subgroup $H$ that is isolated in $G$ ,

or
(2) $\varpi=\{p, q\}$ and there is a self-normalizing cyclic group $W$ of

order $pq$ .
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A characterization of ${}^{2}E_{6}(2)$

Michael Aschbacher

\S 1. Introduction

This paper is part of a program to provide a uniform, self-contained
treatment of part of the foundations of the theory of the sporadic finite
simple groups. More precisely our eventual aim is to provide complete
proofs of the existence and uniqueness of the twenty-six sporadic groups
and to derive the basic structure of each sporadic. The two books [SG]
and $[3T]$ make a beginning on that program.

In this paper we provide a uniqueness proof for the group $2E_{6}(2)$ .

Of course $2E_{6}(2)$ is a group of Lie type, not a sporadic group, but in
order to treat the Monster and the Baby Monster, one first needs to
treat $2E_{6}(2)$ . Thus this paper begins that part of the program dealing
with the large sporadics.

Suzuki was one of the pioneers in identifying finite groups from in-
formation on subgroup structure. His characterization of $L_{3}(2^{r\iota})$ in [S]
identifies those groups by producing a $BN$-pair. That approach is not so
different from the one adopted in our program. Indeed in the work of S.
Smith and the author on quasithin groups, the groups $L_{3}(2^{n})$ , $n$ even,
can not quite be handled using our standard methods, so we appropriate
a clever counting argument of Suzuki’s from [S] to fill the gap. Hope-
fully Suzuki would regard this paper as continuing a tradition which he
pioneered.

Define a finite group $G$ to be of type $2E_{6}(2)$ if $G$ possesses an invo-
lution $z$ such that $F^{*}(C_{G}(z))=O_{2}(C_{G}(z))$ is extraspecial of width 10,
$C_{G}(z)/O_{2}(C_{G}(z))\cong U_{6}(2)$ , and $z$ not weakly closed in $O_{2}(C_{G}(z))$ with
respect to $G$ .

Define $G$ to be of type $Z_{2}/2E_{6}(2)$ if $G$ possesses an involution $z$ such
that $F^{*}(C_{G}(z))=O_{2}(C_{G}(z))$ is extraspecial of width 10 and $C_{G}(z)$ has
a subgroup $H$ of index 2 such that $H/O_{2}(C_{G}(z))\cong U_{6}(2)$ , and $z$ is not
weakly closed in $O_{2}(C_{G}(z))$ with respect to $G$ .

This work was partially supported by NSF-9622843
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Our main theorems are:

Theorem 1. Each group of type $2E_{6}(2)$ is isomorphic to $2E_{6}(2)$ .

Theorem 2. If $G$ is of type $Z_{2}/2E_{6}(2)$ then $F^{*}(G)$ is of index 2
in $G$ and $F^{*}(G)\cong 2E_{6}(2)$ .

Theorems 1 and 2 are proved in sections 8 and 9, respectively, where
they appear as Theorems 8.7 and 9.1. Many lemmas are included in the
paper which are not used in the proof of the main theorems. They will
be used later in the program and appear here because it is convenient to
provide an exposition of related results in one place. Similarly the proof
of the following two lemmas will appear in later papers in this series for
the same reason, as will the proof of the third part of lemma 5.8.

(1.1) Let $\Gamma$ be a building of type $F_{4}$ and $\triangle$ the collinearity graph of
$\Gamma$ . Then $\triangle$ is simply connected.

(1.2) Let $G$ be a group and $V$ a faithful finite dimensional $F_{2}G-$

module. Assume $u\in V^{\not\simeq\neq}such$ that the full group $T$ of transvections on
$V$ with center $u$ is contained in G. Let $ U=\langle u^{G}\rangle$ and $ L=\langle T^{G}\rangle$ . Then
AutL(U)=GL(U).

\S 2. Presentations for modules

In this section $\Omega$ is a graph with vertex set $\Omega$ and $\Omega(x)$ denotes the
set of vertices adjacent to a vertex $x$ of $\Omega$ . Assume $G$ is a group of
automorphism of $\Omega$ transitive on the vertices of the graph and let $V$ be
the permutation module for $G$ on $\Omega$ over $F_{2}$ . Thus $\Omega$ is a basis for the
$F_{2}$ -space $V$ and $G\leq GL(V)$ is transitive on the basis $\Omega$ .

Define a bilinear form $\beta$ on $V$ by

$\beta(x, y)=0$ if and only if $y\in\Omega(x)\cup\{x\}$ for $x$ , $ y\in\Omega$ .

As the relation defining the graph $\Omega$ is symmetric, the bilinear form $\beta$

is symmetric.
Let $R=Rad(\beta)$ be the radical of the bilinear form $\beta$ ; that is

$R=$ { $ v\in V:\beta$ ( $u$ , $v)=0$ for all $u\in V$ }.

Finally let $\overline{V}=V/R$ and write $\overline{\beta}$ for the bilinear form induced by $\beta$ on
$\overline{V}$ . That is

$\overline{\beta}(\overline{v},\overline{u})=\beta(u, v)$
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which is well defined as $R$ is the radical of $\beta$ . Further as $R$ is the radical
of $\beta$ , the induced form $\overline{\beta}$ is nondegenerate, so $\overline{\beta}$ is a symplectic form on
$\overline{V}$ . As $G$ is a group of automorphisms of the graph $\Omega$ , $G$ preserves the
form $\beta$ , and hence also the induced form $\overline{\beta}$ . We summarize all this as:

(2.1) $(\overline{V},\overline{\beta})$ is a symplectic space over $F_{2}$ and $G\leq Sp(\overline{V})$ is a group

of isometries of this symplectic space transitive on the generating set $\overline{\Omega}$

of $\overline{V}$ .

(2.2) Assume $U$ is an $F_{2}G$ -module and $\rho$ : $\Omega\rightarrow U$ is a map such
that $ U=\langle\rho(\Omega)\rangle$ and $\rho$ : $\Omega\rightarrow\rho(\Omega)$ is an equivalence of $G$ -sets. Assume

further that $\gamma$ is a symplectic form on $U$ with

$\beta(x, y)=\gamma(\rho(x), \rho(y))$ for all $x$ , $ y\in\Omega$ .

Then $\rho$ extends to an $F_{2}G$ isometry $\overline{\rho}$ : $(\overline{V},\overline{\beta})\rightarrow(U, \gamma)$ .

Proof As $ U=\langle\rho(\Omega)\rangle$ , the map $\rho$ extends to a surjective $F_{2}G-$

homomorphism $\rho$ : $V\rightarrow U$ . Let $v\in V$ ; then $v=\sum_{y\in S(v)}y$ , where

$S(v)$ is the support of $v$ with respect to the basis $\Omega$ . Further for $ x\in\Omega$ ,
$\beta(v, x)=|\Gamma(x)\cap S(v)|mod 2$ , where $\Gamma(x)=\Omega-x^{\perp}$ . Now $\rho(v)=$

$\sum_{y\in S(v)}\rho(y)$ and

$\gamma(\rho(v), \rho(x))=$ $\sum\gamma(\rho(y), \rho(x))=|\Gamma(x)\cap S(v)|$ $mod 2=\beta(v, x)$

$y\in S(v)$

as $\beta(x, y)=\gamma(\rho(x), \rho(y))$ for all $x$ , $ y\in\Omega$ . Therefore $v\in R$ if and only
if $\beta(v, x)=0$ for all $ x\in\Omega$ if and only if $\gamma(\rho(v), \rho(x))=0$ for all $ x\in\Omega$

if and only if $\rho(v)\in U^{\perp}=0$ , since $ U=\langle\rho(\Omega)\rangle$ . Therefore $R=ker(\rho)$ ,

so $\rho$ induces the isometry $\overline{\rho}:(\overline{V},\overline{\beta})\rightarrow(U, \gamma)$ . Q.E.D.

(2.2) Assume $(U, q)$ and $(W, Q)$ are orthogonal spaces over $F_{2}$ with
$G$ irreducible on $U$ , $G\leq O(U, q)$ , and $G\leq O(W, Q)$ . Let $\gamma$ and $\alpha$ be the
bilinear forms of $q$ and $Q$ , respectively, and assume $\rho$ : $(U, \gamma)\rightarrow(W, \alpha)$

is an $F_{2}G$ isometry Then $\rho$ : $(U, q)\rightarrow(W, Q)$ is also a $F_{2}G$ isometry

Proof As $G$ is irreducible on $U$ , there is at most one quadratic form
on $U$ preserved by $G$ with bilinear form $\gamma$ . (cf. 4.9 in [A]; the argument
is easy.) Therefore $q$ is that unique form. Similarly as $\rho$ : $U\rightarrow W$ is an
equivalence of $F_{2}G$-representations, $G$ is irreducible on $W$ , so $Q$ is the
unique quadratic form on $W$ preserved by $G$ with bilinear form $\alpha$ , so
that $\rho$ is also an isometry of the corresponding orthogonal spaces.

Q.E.D.
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(2.4) Assume $(U, q)$ and $(W, Q)$ are orthogonal spaces over $F_{2}$ with
$G$ irreducible on $U$ , $G\leq O(U, q)$ , and $G\leq O(W, Q)$ . Assume further
that $u\in U$ , $w\in W$ , with $G_{u}=G_{w}$ , $ U=\langle uG\rangle$ , $ W=\langle wG\rangle$ , and
$\gamma(u, ug)=\alpha(w, wg)$ for all $g\in G$ , where $\gamma$ and $\alpha$ are the bilinear forms
of $q$ and $Q$ , respectively. Then there exists an $F_{2}G$ isometry $\rho$ : $(U, q)\rightarrow$

$(W, Q)$ with $\rho(u)=w$ .

Proof As $G_{u}=G_{w}$ , the map $\rho$ : $uG\rightarrow wG$ defined by $\rho(ug)=wg$

is a well defined equivalence of permutation representations. Now take
$\Omega_{U}$ to be the graph on $uG$ with $\Omega_{U}(u)=\Omega_{U}\cap u^{\perp}$ . As $\gamma(u, ug)=$

$\alpha(w, wg)$ , $\rho$ defines a $G$-equivariant isomorphism of $\Omega_{U}$ with the cor-
responding graph $\Omega_{W}$ on $wG$ . Now apply 2.2 to get $F_{2}G$-sometries
$\rho_{U}$ : $(U, q)\rightarrow(\overline{V}_{U},\overline{q})$ and $\rho_{W}$ : $(W, Q)\rightarrow(\overline{V}_{W},\overline{Q})$ , where $\overline{V}_{U}$ and $\overline{V}_{W}$

are modules of the graphs $\Omega_{U}$ and $\Omega_{W}$ , respectively, and $\overline{q}$ and $\overline{Q}$ are
the transfer of the forms $q$ and $Q$ via $\rho_{U}$ and $\rho_{W}$ . As $\rho$ : $\Omega_{U}\rightarrow\Omega_{W}$ is
a $G$-isomorphism, $\rho$ induces an $F_{2}G$ isometry $\overline{\rho}$ : $(\overline{V}_{U},\overline{\beta}_{U})\rightarrow(\overline{V}_{W},\overline{\beta}_{W})$ ,

and hence also an $F_{2}G$ isometry $\overline{\rho}$ : $(\overline{V}_{U},\overline{q})\rightarrow(\overline{V}_{W},\overline{Q})$ by 2.3. Then

the composition $\rho_{W}^{-1}\circ\overline{\rho}\circ\rho_{U}$ agrees with $\rho$ on $uG$ and is the required
extension. Q.E.D.

\S 3. Some central extensions

We adopt the notation of section 33 of [FGT] and section 23 of $[3T]$

in discussing central extensions. In particular if $G$ is a perfect finite
group then Cov(G) is the universal covering group of $G$ and Schur(G)
is the Schur multiplier of $G$ . In particular Schur(G) $\leq Z(Cov(G))$ with
Cov(G)/Schur(G)\cong G. In addition if $p$ is a prime define

Cov(G)= $Cov(G)/O^{p}$ (Schur(G))\Phi ( $O_{p}$ (Schur(G)))

and

Schur(G)= $Schur(G)/O^{p}$ (Schur(G))\Phi ( $O_{p}$ (Schur(G)))

That is $Cov_{p}(G)$ is the largest perfect central extension of an elementary
abelian $p$-subgroup by $G$ .

Let $H$ be the class of finite groups $H$ such that $F^{*}(H)$ is an ex-
traspecial 2-group and $H/O_{2}(H))$ is irreducible on $F^{*}(H)/Z(F^{*}(H))$ .

Our notational convention will be to write $Q=F^{*}(H),\tilde{H}=H/Z(Q)$ ,

and $H^{*}=H/Q$ . We recall from section 8 of [SG] that the commutator
map and power map define a nondegenerate bilinear form and quadratic

form on $\tilde{Q}$ preserved by $H^{*}$ . By Exercise 8.5 in [FGT], Out(Q) $=O(\tilde{Q})$

is the isometry group of this quadratic form.



A characterization of $2E_{6}(2)$ 213

(3.1) Let $H_{i}\in H$ , $i=1,2$ , with $Q_{1}\cong Q_{2}$ and assume $\tilde{Q}_{i}$ is abso-

lutely irreducible as an $F_{2}H_{i}^{*}$ -module. Then $\tilde{H}_{1}\cong\tilde{H}_{2}$ if and only if the
induced representations of $H_{i}^{*}$ on $\tilde{Q}_{i}$ are quasiequivalent for $i=1,2$ .

Proof. Identifying $Q_{1}$ and $Q_{2}$ via our isomorphism, we may take

$Q_{1}=Q_{2}=Q$ . Then $identi\mathfrak{h}^{\gamma}ing\tilde{H}_{i}$ with $Aut_{H_{i}}(Q)$ , we have $\tilde{H}_{i}\leq$

Aut(Q)=A and $H_{i}^{*}\leq A/\tilde{Q}=Out(Q)\cong O(\tilde{Q})$ .

The representations of $H_{1}^{*}$ and $H_{2}^{*}$ on $\tilde{Q}$ are quasiequivalent if and

only if $H_{1}^{*}$ and $H_{2}^{*}$ are conjugate in $GL(\tilde{Q})$ . Further as $\tilde{Q}$ is an absolutely

irreducible $F_{2}H_{i}^{*}$ -module, the quadratic form on $\tilde{Q}$ is the unique one

preserved by $\tilde{H}_{i}$ , (cf. 4.9 in [A]), so $H_{1}^{*}$ is conjugate to $H_{2}^{*}$ in $GL(\tilde{Q})$ if

and only if the groups are conjugate in $O(\tilde{Q})$ . Thus the representations

are quasiequivalent if and only if $\tilde{H}_{1}$ is conjugate to $\tilde{H}_{2}$ in $A$ , establishing
the lemma. Q.E.D.

(3.2) Let $H\in \mathcal{H}$ be perfect and let $\hat{H}=Cov_{2}(H),\hat{Q}=O_{2}(\hat{H})$ , and
$P=[\hat{Q},\hat{H}]$ . Then

(1) $\hat{H}/P\cong Cov_{2}(H^{*})$ and $\hat{Q}/P\cong Schur_{2}(H^{*})$ .

(2) $P\cong Q\times H^{1}(H^{*},\tilde{Q})$ .

(3) If $H_{1}$ is a perfect central extension of $\tilde{H}$ then the representation

of Aut $(H_{1})$ on $H_{1}$ by conjugation factors through Aut $(\hat{H})$ .

(4) $D=C_{Aut(\hat{H})}(P/Z(P))$ is elementary abelian and centralizes

$P/\Phi(P)$ , and $D/Aut_{P}(\hat{H})$ acts faithfully as the full group of transvec-
tions on $Z(P)$ with center $\Phi(P)$ .

(5) $D/Aut_{P}(\hat{H})$ is regular on the complements to $\Phi(P)$ in $Z(P)$ , so

if $U$ is such a complement then Aut $(\hat{H})=DN_{Aut(\hat{H})}(U)$ with $Aut_{P}(\hat{H})=$

$N_{D}(U)$ .

(6) If $H_{0}\in H$ with $F^{*}(H_{0})\cong F^{*}(H)$ then $H_{0}/Z(H_{0})\cong H/Z(H)$

if and only if $H_{0}\cong\hat{H}/V$ for some complement $V$ to $\Phi(P)$ in $Z(\hat{H})$

containing $U$ .

Proof. This is an extension of 8.17 in [SG], where the result is

essentially proved under the extra hypotheses that $H^{1}(H^{*},\tilde{Q})=0$ and
$H^{*}$ is absolutely irreducible on $\tilde{Q}$ . Much of the same proof works. In

particular if $\rho$ : $\hat{H}\rightarrow H$ is the universal covering of $H$ and $\hat{Z}=ker(\rho)$

then $\hat{Q}=\rho^{-1}(Q)$ is of class 2 with center $Z=\rho^{-1}(Z(Q))$ , $Z=Z(\hat{H})$ ,

and $|Z$ : $\hat{Z}|=2$ . As $\hat{Z}=Shur_{2}(H),\hat{Z}$ is elementary abelian. Arguing
as in the proof of 8.17 of [SG], $\Phi(P)$ is elementary abelian, so as $Z=$

$\Phi(P)\hat{Z}$ , $Z$ is elementary abelian. Similarly the proof of 8.17 in [SG]
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shows that (1) holds. Part (3) follows from the universal property of $\rho$ ;
cf. 33.7 and 33.8 in [FGT].

Let $x\in\hat{Q}$ with $ x\rho$ of order 4 in $Q$ . Then $x^{2}\in Z=Z(\hat{H})$ , so
$(x^{g})^{2}=x^{2}$ for all $g\in\hat{H}$ . But as $H^{*}$ is irreducible on $\tilde{Q},\tilde{Q}=\langle\tilde{x}^{H^{*}}\rangle$ ,

so $\hat{Q}=\langle x^{\hat{H}},\hat{Z}\rangle$ and then as $\Phi(Q)=\langle x^{2}\rho\rangle$ , $\Phi(\hat{Q})=\langle x^{2}\rangle$ is of order 2.

Therefore $\hat{Q}\cong Q\times E_{2^{m}}$ as $Z$ is elementary abelian. Then as $\hat{Q}=P\hat{Z}$ ,
$\Phi(\hat{Q})=\Phi(P)$ and $P\cong Q\times E_{2^{n}}$ .

As $H^{*}\leq O(\tilde{Q}),\tilde{Q}$ is self dual as an $H^{*}$ -module. Therefore as
$P=[P,\hat{H}]$ and $H^{*}\cong\hat{H}/\hat{Q}=\hat{H}/C_{\hat{H}}(P/\Phi(P))$ with $P/Z(P)\cong\tilde{Q}$

self dual as an $H^{*}$ -module, $n\leq dim_{F_{2}}(H^{1}(H^{*},\tilde{Q}))=k$ . (cf. 17.12 in
[FGT].) So (2) will be established once we show $n\geq k$ .

Let $A=Aut(\hat{H})$ and $D=C_{A}(P/Z(P))$ . Then $[\hat{H}, D]\leq C_{\hat{H}}(P/Z(P$

$))=\hat{Q}$ , so as $\hat{Q}/Z$ is of exponent 2, so is $D$ . Suppose $d\in D-\hat{Q}/Z$

and let $\tilde{P}=\hat{P}/\Phi(P)$ , and form the product $ E=\tilde{P}\langle d\rangle$ . As $d$ centralizes
$\hat{H}/\hat{Q}$ and $\hat{H}/P$ is perfect, $d$ centralizes $\hat{H}/P$ , so $\hat{H}$ acts on $E$ . Claim
$E$ is abelian. If not, as $\overline{P}$ is abelian, $C_{\overline{P}}(d)=Z(E)$ is $\hat{H}$ invariant, so

as $H^{*}$ is irreducible on $\tilde{Q}=\tilde{P}/\tilde{Z}(P)$ and $\tilde{P}=[\tilde{P},\hat{H}]$ , either $ Z(E)\leq$

$\tilde{Z}(P)$ or $\tilde{P}=Z(E)$ , with the latter impossible as $E$ is nonabelian. So
$C_{\overline{P}}(d)\leq\tilde{Z}(P)$ . Let $x\in P-Z(P)$ , $ U=\langle[x, d]\rangle$ , and $\overline{E}=E/\tilde{U}$ . Then
$\overline{x}\in C_{\overline{P}}(d)-\overline{Z}(P)$ , so the argument above shows $\overline{E}$ is abelian, and hence
$\tilde{U}=[\tilde{P}, d]$ . Therefore $|\tilde{P}$ : $C_{\overline{P}}(d)|=|\tilde{U}|=2$ , so as $C_{\overline{P}}(d)\leq\tilde{Z}(P),\tilde{Q}$ is
of order 2, a contradiction.

We have shown that $E$ is abelian and hence that $D$ centralizes
$P/\Phi(P)$ . On the other hand $[C_{A}(P),\hat{H}]\leq C_{\hat{H}}(P)=Z$ , so as $\hat{H}$ is

perfect, $C_{A}(P)=1$ . Thus $D$ is faithful on $P$ . But $P=P_{0}Z(P)$ with
$P_{0}\cong Q$ and as $D$ centralizes $P/\Phi(P)$ , $D$ centralizes $P_{0}/\Phi(P_{0})$ . Hence
as $Inn(P_{0})=C_{Aut(P_{0})}(P_{0}/\Phi(P_{0}))$ , $D/Inn(P)$ is faithful on $Z(P)$ . That

is $D/Inn(P)$ acts faithfully as a group of transvections on $Z(P)$ with
center $\Phi(P)$ . So to complete the proof of (2) and (4), it remains to show
$m(D/Inn(P))\geq k$ .

Let $W$ be the largest $F_{2}H^{*}$ -module with $C_{W}(H^{*})=0$ and $V=$

$[W, H^{*}]\cong\tilde{Q}$ .(cf. section 17 in [FGT].) Let $x\mapsto\dot{x}$ be an $H^{*}$ -isomorphism

of $\tilde{Q}$ with $V$ . The representation of $H^{*}$ on $W$ induces a representation
$\pi$ : $\tilde{H}\rightarrow GL(W)$ of $\tilde{H}$ on $W$ . Form the semidirect product $G=\tilde{H}W$

of $W$ by $\tilde{H}$ with respect to the representation $\pi$ and let $V_{0}=\{x\dot{x}$ : $ x\in$

$\tilde{Q}\}\leq G$ . As $\tilde{Q}$ centralizes $W$ , $V_{0}$ is a normal subgroup of $G$ and in $G/V_{0}$ ,
$x\in\tilde{Q}$ is identified with $\dot{x}$ , so $G/V_{0}$ has normal subgroups $\tilde{H}V_{0}/V_{0}\cong\tilde{H}$

and $WV_{0}/V_{0}\cong W$ with $(\tilde{H}V_{0}/V_{0})\cap(WV_{0}/V_{0})=\tilde{Q}V_{0}/V_{0}\cong\tilde{Q}$ . Hence
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$W$ induces a faithful group of automorphism on $\tilde{H}$ centralizing $\tilde{Q}$ and
by part (3), $W$ factors through $D$ , so $m(D/Inn(P))\geq m(W/V)=k$ ,

completing the proof of (2) and (4).
Notice that (4) implies (5). Finally (5) and the argument in the

penultimate paragraph of the proof of 8.17 in [SG] establishes (6).
Q.E.D.

(3.3) Let $H\in H$ be perfect with $Schur_{2}(H^{*})=1$ . Then each
$H_{0}\in H$ with $F^{*}(H_{0})\cong F^{*}(H)$ and $H_{0}/Z(F^{*}(H_{0}))\cong H/Z(F^{*}(H))$

is isomorphic to $H$ .

Proof. Adopt the notation of 3.2. As $Schur_{2}(H^{*})=1$ , $P=\hat{Q}$ by

3.2.1. Then by 3.2.6, $H\cong\hat{H}/U\cong H_{0}$ for some fixed complement $U$ to
$\Phi(P)$ in $Z(P)$ . Q.E.D.

\S 4. Large extraspecial $2$-subgroups

In this section we assume the following hypotheses:

Hypothesis 4.1. G is a finite group, z is an involution in G, H $=C_{G}(z)$ ,
and Q $=F^{*}(H)$ is an extraspecial 2-group.

In addition we adopt the following notational conventions: Let $\tilde{H}=$

$ H/\langle z\rangle$ and $H^{*}=H/Q$ . From section 8 in [SG], $\tilde{Q}$ has the structure of
an orthogonal space over $F_{2}$ when we identify $F_{2}$ with $\{1, z\}$ and take
$q(\tilde{u})=u^{2}$ and $(\tilde{u},\tilde{v})=[u, v]$ for $u$ , $v\in Q$ . Of course $H^{*}$ is embedded

into $O(\tilde{Q})$ via its action by conjugation.
The width of an extraspecial 2-group $Q$ is the integer $w$ such that

$|Q|=2^{2w+1}$ .

Example 4.2. Let $w$ be a positive integer and $L$ a finite group. A pair
$(G, z)$ satisfies Hypothesis $H(w, L)$ if $(G, z)$ satisfies Hypothesis 4.1 with
$Q$ of width $w$ , $H^{*}\cong L$ , and $z$ not weakly closed in $Q$ with respect to
$G$ . In [SG] the Monster and Baby Monster are constructed as groups
satisfying Hypotheses $H(12, Co_{1})$ and $\prime\mu(11, Co_{2})$ , respectively.

(4.3) Assume no element of $H$ induces a transvection on $\tilde{Q}$ , and let
$x$ be an involution in $Q$ with $x\not\in z^{G}$ and $T\in Syl_{2}(C_{H}(x))$ . Then

(1) $\langle x, z\rangle=Z(T)=C_{G}(C_{Q}(x))$ , $z$ is weakly closed in $Z(T)$ with
respect to $G$ , and $T\in Syl_{2}(C_{G}(x))$ .
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(2) $x^{G}\cap Q=x^{H}$ .

Proof. Let $ X=\langle z, x\rangle$ . Then $Z(T)^{*}\leq C_{H}(C_{Q}(x))^{*}=Y^{*}$ , and $Y^{*}$

centralizes the hyperplane $C_{Q}(x))$ of $\tilde{Q}$ , so as no element of $H$ induces

a transvection on $\tilde{Q}$ , $Y\leq Q$ . Then as $X=Z(C_{Q}(x))$ , $X=Y=Z(T)$ .

As $xz\in x^{Q}$ , $z$ is weakly closed in $X$ with respect to $G$ . Hence $ T\in$

$Syl_{2}(C_{G}(x))$ , establishing (1).

Let $x^{g}\in Q$ and $S\in Syl_{2}(C_{H}(x^{g}))$ . Then by (1), $T$ , $S^{g^{-1}}$ are Sylow

in $C_{G}(x)$ , so there is $c\in C_{G}(x)$ with $T^{c}=S^{g^{-1}}$ Then $z^{cg}=z$ as $z$ is

weakly closed in $Z(S)$ , so $h=cg\in H$ with $Z(T)^{h}=Z(S)$ , and hence

replacing $h$ by $kh$ with $k\in Q-C_{Q}(x)$ if necessary, $x^{h}=x^{g}$ , establishing
(2). Q.E.D.

In the remainder of this section we assume the following hypothesis:

Hypothesis 4.4. Hypothesis 4.1 holds with $z$ not weakly closed in $Q$

with respect to $G$ . In addition $T\in Syl_{2}(H)$ and $J(T^{*})\cong E_{2^{w-1}}$ , where
$w>2$ is the width of $Q$ .

We adopt the following notational conventions: Let $g\in G-H$ with
$s=z^{g}\in Q$ , $E=Q\cap Q^{g}$ , and $R=(Q^{g}\cap H)(Q\cap H^{g})\leq T$ .

Remark. Note that by Hypothesis 4.1, hypotheses $(L1)-(L3)$ of section 8
of [SG] are satisfied by $Q$ . Further as $w\geq 2$ and $z$ is not weakly closed in
$Q$ with respect to $G$ , the hypotheses of 8.7.3 in [SG] are satisfied, so by
that result, $Q$ is a large extraspecial subgroup of $G$ , as defined in section
8 of [SG]. In particular we can appeal to the lemmas in that section.

(4.5) (1) $E\cong E_{2^{w+1}}$ .

(2) $C_{H^{*}}(\tilde{s})=N_{H^{*}}(R^{*})$ .

(3) $R^{*}=J(T^{*})$ .

(4) Let $ X_{2}=\langle Q, Q^{g}\rangle$ and $ V=\langle z, s\rangle$ . Then $P_{2}=’ N_{G}(V)=$

$X_{2}C_{H}(V)$ with $R=C_{X_{2}}(V)$ , $P_{2}/R=X_{2}/R\times C_{G}(V)/R$ , $X_{2}/R\cong S_{3}$ ,
and $C_{G}(V)/R$ $\cong N_{H^{*}}(R^{*})/R^{*}$ .

(5) $E/V\leq Z_{2}(R)$ is centralized by $X_{2}$ and is isomorphic to the dual

of $R^{*}$ as a module for $C_{G}(V)/R$ .

(6) $R/E\cong E_{2^{2w-2}}$ is the tensor product of the natural module for
$X_{2}/R$ and the module $R^{*}$ for $C_{G}(V)/R$ . In particular $C_{Q}(s)/E$ is iso-
morphic to $R^{*}$ as a $C_{H}(V)$ -module.

(7) $R^{*}$ induces the full group of transvections with center $\tilde{s}$ on $\tilde{E}$

and the full group of transvections with axis $C_{Q}(s)/E$ on $Q/E$ .
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(8) If $N_{H^{*}}(R^{*})$ is irreducible on $R^{*}$ then $N_{H^{*}}(E)=C_{H^{*}}(\tilde{s})$ and $H^{*}$

is absolutely irreducible on $\tilde{Q}$ .

Proof. By 8.15 in [SG], $m_{2}(E)=m+1$ with $m\leq w$ and $R^{*}$ is
elementary abelian of rank $2w-m-1$ . Let $R\leq T\in Syl_{2}(H)$ . By
Hypothesis 4.4, $J(T^{*})\cong E_{2^{w-1}}$ , so $2w-m-1=m(R^{*})\leq m(T^{*})=$

$w-1$ , and hence $w\leq m$ . We conclude $m=w$ and $R^{*}=J(T^{*})$ . In
particular (1) and (3) hold.

Next by (1) and 8.15 in [SG], (4) and (5) hold, and $R/E$ is the tensor
product of the natural module for $X_{2}/R\cong L_{2}(2)$ with the $C_{G}(V)/R-$

module isomorphic to $R^{*}$ , $E/V$ is dual to $R^{*}$ as a $C_{G}(V)/R$ module

and $R^{*}$ induces the full group of transvections on $\tilde{E}$ with center $\tilde{s}$ . Then

as $Q/E$ is dual to $\tilde{E}$ as a $N_{H^{*}}(E)$ module $R^{*}$ induces the full group of
transvections with axis $CQ(S)/E$ on $Q/E$ , establishing (7).

For $e\in E$ , $[RQ,\tilde{e}]\leq\langle\tilde{s}\rangle$ and for $q\in C_{Q}(s)-E$ , $[RQ,\tilde{q}]\leq\tilde{E}$ .

Finally for $u\in Q-C_{Q}(s)$ , $C_{Q}(s)\leq[RQ, u]E$ , so $qe\in[RQ, u]$ for
some $e\in E$ . Then $[RQ, qe]\leq[RQ, u]$ and as $RQ$ centralizes $E/V$ ,
$m([RQ,\tilde{q}\tilde{e}])\geq m([RQ,\tilde{q}])-1$ , so

$m([RQ,\tilde{u}])\geq w-1+m([RQ,\tilde{q}])-1>m([RQ,\tilde{q}])$ .

Therefore $m([RQ,\tilde{u}])\geq m([RQ,\tilde{y}])$ for all $y\in R\cap Q$ , so $R\cap Q\underline{\triangleleft}N_{H}(RQ)$ .

Hence $V=Z(R\cap Q)\underline{\triangleleft}N_{H}(RQ)$ , so $N_{H}(RQ)=QC_{H}(s)$ . This completes
the proof of (2).

Finally assume $N_{H^{*}}(R^{*})$ is irreducible on $R^{*}$ . Then by $(4)-(7)$ ,
$C_{H}(V)/R\cong N_{H^{*}}(R^{*})/R^{*}$ has chief series

$0<\tilde{V}<\tilde{E}<C_{Q}(t)/\langle z\rangle<Q$

and the stabilizers in $H^{*}$ of each of the nontrivial members of this
series, other than $\tilde{E}$ , also stabilizes $V$ . Further as $F^{*}(H)=Q$ and
$1\neq R^{*}\underline{\triangleleft}N_{H^{*}}(R^{*})=C_{H^{*}}(\tilde{V})$ , $C_{H^{*}}(\tilde{V})$ is proper in $H^{*}$ , so either $H^{*}$

is irreducible on $\tilde{Q}$ or $C_{H^{*}}(\tilde{s})<N_{H^{*}}(E)$ . Indeed in the former case

as $\tilde{V}$ is of order 2 and $C_{GL(\overline{Q})}(H^{*})$ -invariant, the representation is even

absolutely irreducible.
So we may assume $C_{H^{*}}(\tilde{s})<N_{H^{*}}(E)$ , and it remains to derive a

contradiction. Then $N_{H^{*}}(E)$ is irreducible on $\tilde{E}$ , so by 1.2, $N_{H^{*}}(E)$

induces $GL(\tilde{E})$ on $\tilde{E}$ . Further as $R^{*}$ is faithful on $\tilde{E}$ and normal in

$N_{H^{*}}(V)=C_{H^{*}}(\tilde{s})$ and $R^{*}=J(T^{*})$ , $N_{H^{*}}(E)$ is faithful on $\tilde{E}$ . Then as
$E_{2^{w-1}}\cong R^{*}=J(T^{*})$ while $N_{H^{*}}(E)\cong GL(\tilde{E})\cong GL_{w}(2)$ , it follows that
$w\leq 2$ , contrary to Hypothesis 4.4. Namely $m_{2}(GL_{w}(2))>w-1$ for
$w>3$ and $J(T^{*})=T^{*}\cong D_{8}$ when $N_{H^{*}}(E)\cong GL_{3}(2)$ . Q.E.D.
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(4.6) If $C_{R^{*}}(N_{H^{*}}(R^{*})=1$ then
(1) $\langle\tilde{s}\rangle=C_{\overline{Q}}(N_{H^{*}}(R^{*}))$ , and

(2) $z^{G}\cap Q=\{z\}\cup s^{H}$ .

Proof. By 4.5.2 and 4.5.6, $CQ(S)/E$ is isomorphic to $R^{*}$ as a $N_{H^{*}}$

$(R^{*})$-module, while by hypothesis, $C_{R^{*}}(N_{H}*(R^{*}))=1$ , so $N_{H^{*}}(R^{*})$ has
no fixed points on $C_{Q}(s)/E$ . Hence (1) follows from 4.5.2 and 4.5.7.

Let $y\in G-H$ and $t=z^{y}\in Q$ . By (1), 4.5.3, and symmetry between
$s$ and $t$ , $\langle\tilde{t}\rangle=C_{\overline{Q}}(N_{H^{*}}(J(S^{*})))$ for some $S^{*}\in Syl_{2}(H^{*})$ . Then by

Sylow’s Theorem, $J(S^{*})$ is $H^{*}$ -conjugate to $J(T^{*})$ , so $t$ is $H$-conjugate
to $s$ . Q.E.D.

(4.7) Assume $R^{*}=C_{H^{*}}(R^{*})$ . Then

(1) No element of $H^{*}$ induces a transvection on $\tilde{Q}$ .

(2) If in addition $C_{R^{*}}(N_{H^{*}}(R^{*}))=1$ , then $x^{G}\cap Q=x^{H}$ for each

involution $x\in Q$ with $x\not\in\{z\}\cup s^{H}$ .

Proof. Part (2) follows from (1), 4.3, and 4.6. If $h^{*}\in H^{*}$ induces

a transvection on $\tilde{Q}$ then $h^{*}$ is an involution, to we may take $h\in T$ . By
4.5.5, $E/V$ is dual to $R^{*}\cong C_{Q}(s)/E$ as a $T^{*}$ -module and $C_{Q}(s)/E$

is isomorphic to $R^{*}$ by 4.5.6, so if $[R^{*}, h^{*}]\neq 1$ then $ m([\tilde{Q}, h^{*}])\geq$

$2m([R^{*}, h^{*}])>1$ , a contradiction. Hence $h^{*}\in C_{H^{*}}(R^{*})=R^{*}$ . Then by

4.5.7, $m([\tilde{Q}, h^{*}])>1$ . Q.E.D.

(4.8) Assume $H^{*}$ is irreducible on $\tilde{Q}$ . Then

(1) The regular orbits of $R^{*}$ on $\tilde{Q}/\langle\tilde{s}\rangle$ are those in $\tilde{Q}/\langle\tilde{s}\rangle-C_{Q}(s)/\langle\tilde{s}\rangle$ .

(2) If $(G_{1}, z_{1})$ satisfies Hypothesis $7\{(w, H^{*})$ and $C_{R^{*}}(N_{H^{*}}(R^{*}))=1$

then $\tilde{H}_{1}\cong\tilde{H}$ .

Proof. Let $ V=\langle s, z\rangle$ and $\overline{Q}=Q/V$ . By 4.5.7, $R^{*}$ induces the
group of transvections with axis $CQ(S)/E$ on $Q/E$ , so all orbits of $R^{*}$ on
$\overline{Q}-\overline{C_{Q}(s)}$ are regular. Hence to prove (1) it suffices to show $C_{R^{*}}(\overline{u})\neq 1$

for each $u\in C_{Q}(s)$ . If $u\in E$ this follows from 4.5.7, so assume $ u\in$

$CQ(S)-E$ with $C_{R^{*}}(\overline{u})=1$ . Then $m([R^{*},\overline{u}])=m(R^{*})=w-1=m(\overline{E})$ ,

while by 4.5.7, $[R, u]\leq E$ , so $[R^{*},\overline{u}]=\overline{E}$ . By symmetry between $z$ and
$s$ , we may assume there is $v\in Q^{g}\cap H-E$ with $[v, Q\cap H9]V=E$ . But

as $v^{*}$ induces an involutory automorphism on $\tilde{Q}$ , $[\tilde{Q}, v^{*}]\leq C_{\overline{Q}}(v^{*})$ , so

$v^{*}$ centralizes $\tilde{E}$ , contrary to 4.5.7. This completes the proof of (1).
Let $K^{*}=N_{H^{*}}(R^{*})$ and $\Omega$ the graph on $H^{*}/K^{*}$ with $K^{*}$ adjacent

to $K^{*}h^{*}$ if $K^{*}h^{*}R^{*}$ is not a regular orbit for $R^{*}$ . Let $\beta$ be the bilinear

form on $\tilde{Q}$ . By (1), $\beta(\tilde{s},\tilde{s}^{h})=0$ if and only if $K^{*}h^{*}\in\Omega(K^{*})$ .
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Assume the hypotheses of (2) and let $\gamma$ be the bilinear form on $\tilde{Q}_{1}$ .

Then there is an isomorphism $H^{*}\cong H_{1}^{*}$ which induces a representation

of $H^{*}$ on $\tilde{Q}_{1}$ . By 4.5.2, $K^{*}=C_{H^{*}}(\tilde{s}_{1})$ for some $s_{1}=z_{1}^{g_{1}}\in Q_{1}$ and by

(1) applied to $G_{1}$ , $\gamma(\tilde{s}_{1},\tilde{s}_{1}^{h})=0$ if and only if $K^{*}h^{*}\in\Omega(K^{*})$ . Therefore

by 2.4, the representations of $H^{*}$ on $\tilde{Q}$ and $\tilde{Q}_{1}$ are equivalent and $\tilde{Q}$

is isometric to $\tilde{Q}_{1}$ . As $\tilde{Q}$ and $\tilde{Q}_{1}$ are isometric, $Q\cong Q_{1}$ . As $H^{*}$ is

irreducible on $\tilde{Q}$ and $ C_{\overline{Q}}(K^{*})=\langle\tilde{s}\rangle$ is 1-dimensional by 4.6.1, $\tilde{Q}$ is an

absolutely irreducible $F_{2}H^{*}$ -module. Hence by 3.1, $\tilde{H}\cong\tilde{H}_{1}$ . Q.E.D.

(4.9) Assume $N_{H^{*}}(R^{*})$ is irreducible on $R^{*}$ and $(G_{1}, z_{1})$ satisfies
Hypothesis $H(w, H^{*})$ . Then $\tilde{H}_{1}\cong\tilde{H}$ .

Proof. As $N_{H^{*}}(R^{*})$ is irreducible on $R^{*}$ , $H^{*}$ is irreducible on $\tilde{Q}$ by
4.5.8, and $C_{R^{*}}(N_{H^{*}}(R^{*}))=1$ . Hence the lemma follows from 4.8.2.

Q.E.D.

\S 5. $Sp_{6}(2)$ and $U_{6}(2)$

(5.1) Let $V$ be a $2m$ -dimensional symplectic space over a perfect

field $F$ of characteristic 2 and $G=Sp(V)$ . The the conjugacy classes

of involutions of $G$ are $a_{k}$ , $b_{k}$ , and $c_{k}$ , $1\leq k\leq m$ , where for $d=a$ , $b$ , $c$

and $t\in d_{k}$ , $m([V, t])=k$ , $k$ is odd if and only if $d=b$ , and $ V(t)=\{v\in$

$V$ : $(v, v^{t})=0\}=V$ if $d=a$ , while $V(t)$ is a hyperplane of $V$ if $d=b$
or $c$ .

Proof. This is contained in section 7 of [ASe], but we repeat the
proof here for completeness. Let $t$ be an involution in $G$ . For $u$ , $v\in V$ ,
$(v, u^{t})=(u, v^{t})$ , so the map $v\mapsto(v, v^{t})$ is a linear map from $V$ into $F$

with kernel $V(t)$ . In particular $dim(V/V(t))\leq 1$ .

Suppose $V=V(t)$ . Pick $y_{1}\in V-C_{V}(t)$ , $x_{1}\in(y_{1}^{t})^{\perp}-y_{1}^{\perp}$ , and

let $ V_{1}=\langle y_{1}, y_{1}^{t}, x_{1}, x_{1}^{t}\rangle$ . Multiplying $x_{1}$ by a suitable scalar, we may
take $(y_{1}, x_{1})=1$ . Then $\{y_{1}, x_{1}, y_{1}^{t}, x_{1}^{t}\}$ is a hyperbolic basis for $V_{1}$ . (cf.

section 19 in [FGT] $)$ In particular $V_{1}$ is nondegenerate so $V=V_{1}\oplus V_{1}^{\perp}$ ,

and proceeding by induction on $m$ ,

$V=V_{1}\perp\cdots V_{r}\perp W$

where $W\leq C_{V}(t)$ and $V_{i}$ has a hyperbolic basis $\{y_{i}, x_{i}, y_{i}^{t}, x_{i}^{t}\}$ . Notice
$[V, t]$ has basis $\{y_{i}+y_{i}^{t}, x_{i}+x_{i}^{t} : 1\leq i\leq r\}$ , so $dim([V, t])=2r$ and $G$ is

transitive on the set $a_{2r}$ of involutions $t$ with $V=V(t)$ and $dim([V, t])=$

$2r$ by Witt’s Lemma.
So assume $V\neq V(t)$ . Then $V(t)$ is a hyperplane of $V$ , so $V(t)=V_{0}^{\perp}$

for the point $V_{0}=V(t)^{\perp}$ . Pick $u\in V-V(t)$ , $a\in F$ with $a^{2}=(u, u^{t})^{-1}$ ,
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and let $x_{1}=au$ . Then $\{x_{1}, x_{1}^{t}\}$ is a hyperbolic basis for $ V_{1}=\langle x_{1}, x_{1}^{t}\rangle$

and $V=V_{1}\oplus V_{1}^{\perp}$ . Continuing in this fashion we write

$V=V_{1}\perp\cdots\perp V_{s}\perp W$

where $V_{i}$ has hyperbolic basis $\{x_{i}, x_{\dot{\iota}}^{t}\}$ and $W\leq V(t)$ . Then $ V_{0}=\langle v_{0}\rangle$ ,

where $v_{0}=\sum_{i=1}^{s}x_{i}+x_{i}^{t}$ . If $s$ is odd let $x=\sum_{i=1}^{s}x_{i}$ and observe $\{x, x^{t}\}$

is a hyperbolic basis for $ U=\langle x, x^{t}\rangle$ with $U^{\perp}=V(t)\cap x^{\perp}\leq V(t)$ , so by

the $a_{2r}$ case, the restriction of $t$ to $U^{\perp}$ is of type $a_{2r}$ and $G$ is transitive
on the set $b_{2r+1}$ of involutions $t$ with $m([V, t])=2r+1$ .

Finally if $s$ is even let $x=x_{s}$ and $y=\sum_{i<s}x_{i}$ . Then $\{x, x^{t}, y, y^{t}\}$ is

a hyperbolic basis for $ U=\langle x, x^{t}, y, y^{t}\rangle$ with $V_{0}\leq U$ , so again $U^{\perp}\leq V(t)$

and by the $a_{2r}$ case, $G$ is transitive on the set $c_{2r}$ of involutions with
$V\neq V(t)$ and $m([V, t])=2r$ . Q.E.D.

As an immediate corollary to 5.1 we have:

(5.2) $Sp_{6}(2)$ has four classes $b_{1}$ , $a_{2}$ , $c_{2}$ , and $b_{3}$ of involutions.

(5.3) Let $G=Sp_{6}(2)$ . Then $Schur_{2}(G)\cong Z_{2}$ and involutions of
type $b_{1}$ and $c_{2}$ in $G$ lift to elements of order 4 in $Cov_{2}(G)$ .

Proof The centralizer of an involution in $Co_{3}$ is a covering of
$Sp_{6}(2)$ over $Z_{2}$ , so it remains to show $|Schur_{2}(G)|\leq 2$ and to estab-
lish the statement about lifts of involutions. Let $b$ be a transvection in
$G$ , $H=C_{G}(b)$ , and $A=O_{2}(H)$ . Then $b$ is of type $b_{1}$ and $A$ is the core
of the permutation module for the Levi factor $L\cong S_{6}$ for $H$ , with each
coset of $\langle b\rangle$ in $A$ containing one involution of type $a_{2}$ and one of type $c_{2}$ .

Let $\hat{G}$ be a covering of $G$ over a center $ Z=\langle z\rangle$ of order 2 and for
$B\leq G$ write $\hat{B}$ for the preimage of $B$ in $\hat{G}$ . From the representation of
$L$ on $A$ , either $\Phi(\hat{A})=1$ or $\hat{A}\cong Z_{4}*2^{1+4}$ . Assume the former. Then as
$H^{1}(L, A/\langle b\rangle)\cong Z_{2},\hat{A}$ splits over $Z$ . Further all involutions in $L$ are of

type $b_{1}$ , $a_{2}$ , or $c_{2}$ , and hence lift to involutions as $\Phi(\hat{A})=1$ . Therefore
$\hat{L}=Z\times\hat{L}_{0}$ and then $\hat{H}=\hat{L}_{0}[\hat{A},\hat{L}_{0}]\times Z$ splits over $Z$ . But then as $H$

contains a Sylow 2-subgroup of $G,\hat{G}$ splits over $Z$ , a contradiction.

So $\hat{A}=Z_{4}*2^{1+4}$ and in particular $\langle\hat{b}\rangle=\langle\beta\rangle$ so that involutions
of type $b_{1}$ lift to element of order 4. Next $G$ has a parabolic $P$ with
$P/O_{2}(P)\cong L_{3}(2)$ and possessing a $P$-submodule $R$ of $O_{2}(P)$ which
is the natural module for $P/O_{2}(P)$ with each involution in $R$ of type

$a_{2}$ . As $P$ is transitive on $R^{\neq}$ , $\Phi(\hat{R})=1$ , so elements of type $a_{2}$ lift to
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involutions. Thus if $\sigma\in\hat{A}$ is the lift of an involution of type $a_{2}$ then $\sigma$

is an involution, so the lift $ z\sigma$ of an involution of type $c_{2}$ is of order 4.

Now let $\tilde{G}=Cov_{2}(G)$ . Then $\hat{G}=\tilde{G}/U$ for some hyperplane $U$ of
$V=Z(\tilde{G})$ . Further if $\alpha\in\tilde{G}$ with $\alpha$ of type $b_{1}$ then $\alpha^{2}\in V-U$ . But

if $U\neq 1$ there is a hyperplane $W$ of $V$ with $\alpha^{2}\in W$ , so that $\tilde{G}/W$

is a covering of $G$ over $Z_{2}$ in which transvections lift to involutions, a
contradiction. Q.E.D.

(5.4) Up to isomorphism the spin module for $Sp_{6}(2)$ is the unique
8-dimensional irreducible $F_{2}Sp_{6}(2)$ module.

Proof. Let $G=Sp_{6}(2)$ and $0\neq M$ an irreducible $F_{2}G$ module. As
$F_{2}$ is a splitting field for $G$ , $M$ $=M(\lambda)$ for some restricted dominant
weight $\lambda\neq 0$ . Next the Weyl group $W$ for $G$ is of type $C_{3}$ , so the orbit
$\lambda W$ of $\lambda$ under $W$ is of length $|W$ : $W_{\lambda}|$ where $W_{\lambda}$ is the parabolic
stabilizing $\lambda$ , so either $|\lambda W|>8$ or $\lambda=\lambda_{1}$ or $\lambda_{3}$ and $|\lambda W|=6$ or
8, respectively, where $\lambda_{i}$ is the $ith$ fundamental dominant weight. As
$M(\lambda_{1})$ is the natural module of dimension 6 and $M(\lambda_{3})$ the spin module
of dimension 8, the lemma follows. Q.E.D.

(5.5) Let $G\cong U_{6}(2)$ and $V$ an absolutely irreducible 20-dimensional
$F_{2}G$ -module such that $G_{v}\cong L_{3}(4)/E_{2^{9}}$ for some $v\in V$ . Let $M$ $=$

$V\otimes_{F_{2}}F_{4}$ regarded as a $F_{4}G$ -module. Then $M$ $=\wedge^{3}(N)$ , where $N$ is

the natural module of dimension 6 for the covering $\hat{G}\cong SU_{6}(2)$ of $G$ .

In particular the $F_{2}G$ module $V$ is determined up to equivalence.

Proof. As $V$ is an absolutely irreducible $F_{2}G$ module of dimension

20, $M$ is an irreducible $F_{4}G$-module of dimension 20. Next $\hat{G}\leq S\leq$

$withC_{S}(\sigma)=\hat{G}then\sigma actsonMtooGL(M)withS\cong SL_{6}(4)andif\sigma isthe$

.
$graph- ffieldautomorphismofSAsvisffixedbythemaxima1$

parabolic $G_{v}$ of $G$ , $v$ is a high weight vector for $M$ as an $F_{4}S$ module

so $F_{4}v$ is stabilized by a parabolic $P$ of $S$ containing $\hat{G}_{v}$ and invariant
under $\sigma$ . It follows that $P$ is the parabolic of $S$ corresponding to the
middle node of the Dynkin diagram of $S$ . Thus if $\lambda$ is the high weight
vector of $M$ and $W$ is the Weyl group of $S$ then $W_{\lambda}$ is the parabolic
of $W$ corresponding to the middle node, so $W_{\lambda}\cong S_{3}\times S_{3}$ and $\lambda W$ is
of length $|W$ : $W_{\lambda}|=20$ . Hence as $20=dim_{F_{4}}(M)$ , $\lambda$ is the unique
dominant weight of $M$ , so $\lambda=\lambda_{3}$ is the third fundamental dominant
weight for $S$ and $M$ $=M(\lambda_{3})$ is the corresponding high weight module.

Hence $M$ $=\wedge^{3}(N)$ . Q.E.D.

In the next three lemmas in this section let $G\cong U_{6}(2)$ , $V$ , $M$ , $S$ , and
$N$ be as in Lemma 5.5. We discover in section 7 that a module satisfying
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the hypothesis of $V$ admits the structure of an orthogonal space over $F_{2}$

preserved by $G$ , so as $V$ is determined up to equivalence, $V$ has that
structure and $G\leq O(V)$ .

(5.6) Let $G_{0}=G_{1}\times G_{2}$ be the stabilizer in $G$ of a nondegenerate

2-dimensional subspace of the natural module $N$ for $\hat{G}$ , with $G_{1}\cong U_{2}(2)$

and $G_{2}\cong U_{4}(2)$ . Then as an orthogonal space over $F_{2}$ , $ V=(V_{1}\oplus$

$V_{2})\perp V_{3}$ , where $V_{1}$ and $V_{2}$ are copies of the $O_{6}^{-}(2)$ module for $G_{2}$ , $V_{1}=$

$[V, j]$ for some involution $j\in G_{1}$ , and $V_{3}$ is isomorphic to the $U_{4}(2)-$

module for $G_{2}$ .

Proof. Let $G_{0}$ be the stabilizer of a nondegenerate 2-subspace $N_{0}$

of $N$ . Pick an orthonormal basis $\{x_{1}, \ldots, x_{6}\}$ for $N$ with $x_{1}$ , $x_{2}\in N_{0}$ .

By 5.5 we may regard $M$ as $\wedge^{3}(N)$ . Let $M_{3}$ be the subspace of $M$

spanned by $m_{i}=x_{1}\wedge x_{2}\wedge x_{i}$ , $3\leq i\leq 6$ . Then $G_{1}$ centralizes $M_{3}$

and the map $m_{i}\mapsto x_{i}$ induces an isomorphism of $M_{3}$ with $N_{0}^{\perp}$ as an
$F_{4}G_{2}$ module so $M_{3}$ is the natural module for $G_{2}\cong U_{4}(2)$ .

Next we can choose $j$ to interchange $x_{1}$ and $x_{2}$ , so $[M, j]=M_{1}$ is
spanned by $m_{r,s}=(x_{1}+x_{2})\wedge x_{r}\Lambda x_{s}$ , $3\leq r<s\leq 6$ , and the map

$m_{r,s}\mapsto x_{r}\wedge x_{s}$ is an isomorphism of $M_{1}$ with $\wedge^{2}(N_{0}^{\perp})$ as an $F_{4}G_{2^{-}}$

module. Therefore as $\wedge^{2}(N_{0}^{\perp})$ is the $O_{6}^{-}(2)$ module for $G_{2}$ tensored
up to $F_{4}$ , $M_{1}$ is that module. Similarly $ G_{1}=\langle j, i\rangle$ for $i$ a conjugate
of $j$ and $M_{2}=[M, i]$ is isomorphic to $M_{1}$ as an $F_{4}G_{2}$ module and
$M=M_{1}\oplus M_{2}\oplus M_{3}$ . Recall $G=C_{S}(\sigma)$ with $\sigma$ acting on $M_{i}$ , so $M_{i}=$

$V_{i}\otimes_{F_{2}}F_{4}$ for some $F_{2}G_{0}$-submodule $V_{i}$ of $V$ satisfying the conclusions
of this lemma. Q.E.D.

(5.7) Let $z$ be a long root element of $G$ , $L\cong U_{4}(2)$ a Levi factor of
$C_{G}(z)$ , and $W$ a $F_{2}G$ module with $C_{W}(G)=0$ and $[W, G]=V$ . Then
$W=W_{1}\oplus W_{2}\oplus W_{3}$ as a $F_{2}L$ module with $W_{i}\leq V$ of dimension 6 for
$i=1,2$ , $V_{3}=V\cap W$ of dimension 8, and $C_{W}(L)=0$ .

Proof. First $K=C_{G}(L)\cong S_{3}$ with $KL$ the stabilizer in $G$ of
a nondegenerate 2-subspace $N_{0}$ of $N$ . Thus by the previous lemma,
$V=V_{1}\oplus V_{2}\oplus V_{3}$ with $V_{1}+V_{2}=[V, K]$ , $dim(V_{1})=dim(V_{2})=6$ ,
and $V_{3}=C_{V}(K)$ of dimension 8. Let $Y$ be of order 3 in $K$ . Then
$V_{1}+V_{2}=[W, K]$ . Let $W_{3}=C_{V}(Y)$ . Then $V_{3}=V\cap W_{3}$ and it remains
to show $C_{W}(L)=0$ . Assume not and let $U$ be a point in $C_{W}(L)$ .

Replacing $W$ by $V+U$ we may assume $V$ is a hyperplane of $W$ . Now
$C_{W}(L)=C_{W_{3}}(L)=C_{W}(LK)=U$ .

Let $E_{27}\cong E\leq L$ and $A=EY$ . Then $A=J(T)$ for $T\in Syl_{3}(G)$

and $NG(A)/A$ $\cong S_{6}$ . As $V_{3}$ is the $U_{4}(2)$ module for $L$ , $V_{3}=[V_{3}, E]$ ,
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so as $V_{1}+V_{2}=[W, Y]$ , $V=[W, A]$ and $U=C_{W}(A)$ . Therefore $X=$

$\langle N_{G}(A), LK\rangle$ centralizes $U$ , so to derive a contradiction, it remains to
prove $X=G$ .

Now $X$ is a group generated by the class $D=z^{X}$ of 3-transpositions.
Further as $C_{G}(z)$ is a maximal parabolic of $G$ with $L$ irreducible on
$ O_{2}(C_{G}(z))/\langle z\rangle$ , $C_{X}(z)=\langle z\rangle\times L$ . By Exercise 3.3 in $[3T]$ , $ O_{3}(X)\leq$

$Z(X)\geq O_{2}(X)$ . Let $B=N_{G}(A)$ ; then $ B=\langle C_{B}(z), C_{B}(d)\rangle$ for $ d\in$

$z^{B}-K$ , so $ X=\langle L, B\rangle=\langle C_{X}(z), C_{B}(d)\rangle$ , and hence the commuting
graph on $D$ is connected. Therefore by 9.4.4 in $[3T]$ , $X$ is primitive
on $D$ . Then by Theorem 9.5.4, $X$ is rank 3 on $D$ , and hence $C_{X}(z)$ is
maximal in $X$ , contradicting $C_{X}(z)<KL$ . This completes the proof of
the lemma. Q.E.D.

(5.8) (1) $dim_{F_{2}}H^{1}(G, V)=2$ .

(2) Let $L\cong U_{4}(2)$ and $U$ the natural module for $L$ regarded as an
$S$ -dimensional $F_{2}$ module Then $dim_{F_{2}}H^{1}(L, U)=2$ .

(3) Let $D$ be the largest $F_{2}G$ -module such that $D=[D, G]$ and
$D/C_{D}(G)=V$ , $G_{v}$ a $L_{3}(4)/E_{2^{9}}$ parabolic of $G$ , and $E/CD(G)$ the 10-
dimensional $G_{v}$ -submodule of V. Then $C_{D}(G)\leq[E, G_{v}]$ .

Proof By 5.7, $dim_{F_{2}}H^{1}(G, V)\leq dim_{F_{2}}H^{1}(L, U)$ . Further we
find in a later paper in this series that $dim_{F_{2}}H^{1}(G, V)\geq 2$ and that (3)
holds, so it remains to show $dim_{F_{2}}H^{1}(L, U)\leq 2$ . Let $W$ be the largest
$F_{2}L$-module with $[W, L]=U$ and $C_{W}(L)=0$ . (cf. 17.11 of [FGT])
As $U$ is a $F_{4}L$-module, so is $W$ by the universal property of $W$ , and it
remains to show $dim_{F_{4}}(W/U)\leq 1$ . Let $S\in Syl_{3}(L)$ . Then $ A=J(S)\cong$

$E_{27}$ and $Z=Z(S)$ is of order 3 with $O_{3}(C_{L}(Z))=P\cong 3^{1+2}$ and
$CG(Z)/P$ $\cong SL_{2}(3)$ . Now $U=[U, A]$ so $W=U\oplus C_{W}(A)$ and $N_{L}(A)$

centralizes $C_{W}(A)$ . On the other hand $C_{U}(Z)$ is a point centralized

by $O^{3}(C_{L}(Z))$ , so the involution $t$ inverting $P/Z$ acts on $S$ and hence
centralizes $C_{W}(A)$ and then also $C_{W}(Z)=C_{U}(Z)+C_{W}(A)$ . Then if
$x$ is of order 4 in $C_{L}(Z)$ with $x^{2}=t$ , $x$ induces a $F_{4}$-transvection on
$C_{W}(Z)$ with center $C_{U}(Z)$ , so if $dim_{F_{4}}(W/U)>1$ , then the hyperplanes
$C_{W}(Z\langle x\rangle)$ and $C_{W}(A)$ of $C_{W}(Z)$ intersect nontrivial, so $C_{W}(X)\neq 0$ ,
where $ X=\langle N_{L}(A), x\rangle$ . Finally as $N_{L}(A)$ is a maximal parabolic of
$L\cong PSp_{4}(3)$ and $x\not\in N_{L}(A)$ , $X=L$ , contradicting $C_{W}(L)=0$ .

Q.E.D.

(5.9) Let $V$ be a 6-dimensional unitary space over $F_{4}$ and $\triangle$ the
graph on the totally singular 3-subspaces of $V$ with distinct $x$ , $ y\in\triangle$

adjacent if $x\cap y\neq 0$ . Then $Aut(\triangle)=P\Gamma(V)\cong Aut(U_{6}(2))$ is the group

of projective semilinear unitary maps on $V$ .
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Proof. Let $G=P\Gamma(V)$ and $A=Aut(\triangle)$ , so that $G\leq A$ . For
$ x\in\triangle$ , $G_{x}=LR$ , where $R\cong E_{2^{9}}$ is the radical of $G_{x}$ and $L$ is a
Levi factor isomorphic to $PGL_{3}(4)$ extended by a field automorphism.
Further $\triangle(x)=\triangle_{1}(x)\cup\triangle_{2}(x)$ where

$\triangle_{i}(x)=\{y\in\triangle : dim(x\cap y)=i\}$

with $|\triangle_{1}(x)|=336$ and $|\triangle_{2}(x)|=42$ . Also $\triangle-x^{\perp}=\Gamma(x)$ is of order
512 with $R$ regular on $\Gamma(x)$ and $L=G_{x,z}$ for suitable $z\in\Gamma(x)$ .

For $y\in\triangle(x)$ , let

$\theta(y)=\{u\in\triangle(x) : x\cap y=x\cap u\}$

and let $\theta=\{\theta(y) : y\in\triangle(x)\}$ and $\theta_{i}=\{\theta(y) : y\in\triangle_{i}(x)\}$ . Notice
$u\in\triangle(x, z)$ if and only if $u=(u\cap x)+(u\cap z)$ with $u\cap z=(u\cap x)^{\perp}\cap z$ ,
so $|\triangle(x, z)\cap T|=1$ for each $ T\in\theta$ . Thus if $m_{i}=|\triangle(y)\cap\Gamma(x)|$ for
$y\in\triangle_{i}(x)$ , then

$m_{i}$
. $|\triangle_{i}(x)|=512\cdot 21$

so $m_{1}=2^{5}$ and $m_{2}=2^{8}$ . Therefore $A_{x}$ acts on $\triangle_{i}(x)$ for $i=1,2$ . Also
for $y\in\triangle_{2}(x)$ , 21 . $|\theta(y)|=|\triangle_{2}(x)|=42$ , so $\theta(y)$ is of order 2.

As $R$ is regular on $\Gamma(x)$ , $A_{x}=RA_{x,z}$ . Now for $u\in\triangle_{1}(x, z)$ and
$v\in\triangle_{2}(x, z)$ , $u\in\triangle(v)$ if and only if $u\cap x\leq v\cap x$ , so $\triangle(x, z)$ has the
structure of the projective plane $\pi$ on $x$ , and that structure is preserved
by $A_{x,z}$ . Let $B$ be the kernel of the action of $A_{x,z}$ on $\triangle(x, z)$ . As
$Aut(\pi)\cong L$ and $L$ is faithful on $\triangle(x, z)$ , $A_{x,z}=LB$ . Further for $T\in\theta_{2}$ ,
$|\triangle(x, z)\cap T|=1$ and $|T|=2$ , so $B$ fixes both points of $T$ . Therefore
$B$ is trivial on $\triangle_{2}(x)$ . However as $L$ is irreducible on $R$ , $L$ is maximal
in $G_{x}=LR$ , so as $R$ is regular on $\Gamma(x)$ , $G_{x}$ is primitive on $\Gamma(x)$ , and
hence for $z\neq w\in\Gamma(x)$ , $\triangle_{2}(x, z)\neq\triangle_{2}(x, w)$ . Therefore as $B$ is trivial
on $\triangle_{2}(x)$ , $B$ is also trivial on $\Gamma(x)$ . Hence $B$ fixes $\triangle(x, w)\cap T$ for each
$T\in\theta_{1}$ , so $B$ is trivial on $\triangle_{1}(x)$ , and therefore $B=1$ .

We have shown $A_{x,z}=LB=L$ , so $A_{x}=RA_{x,z}=RL=G_{x}$ . Then
as $G$ is transitive on $\triangle$ , $A=GA_{x}=G$ , completing the proof. Q.E.D.

\S 6. Groups of type ${}^{2}E_{6}(2)$

Define a group $G$ to be of type $2E_{6}(2)$ if $G$ possesses an involution
$z$ such that $(G, z)$ satisfies Hypothesis $H(10, U_{6}(2))$ , in the language
of Example 4.2. Throughout this short section, assume $G$ is of type
$2E_{6}(2)$ and let $z$ be an involution in $G$ such that $H=C_{G}(z)$ and $Q=$

$F^{*}(H)$ satisfy our hypotheses. Therefore Hypothesis 4.1 is satisfied, and
indeed in a moment we see that Hypothesis 4.4 is also satisfied. Thus
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we adopt the notation of section 4, except that we write $t=z^{g}$ for
our distinguished element of $z^{G}\cap Q-\{z\}$ . In particular $H=C_{G}(z)$

satisfies $Q=F^{*}(H)\cong 2^{1+20}$ , $H^{*}=H/Q\cong U_{6}(2)$ , and $z$ is not weakly
closed in $Q$ with respect to $G$ . Recall also that $E=Q\cap Q^{g}$ and $R=$

$(Q^{g}\cap H)(Q\cap H^{g})$ .

(6.1) (1) $E\cong E_{2^{11}}$ .

(2) $N_{H^{*}}(E)=C_{H^{*}}(\tilde{t})=N_{H^{*}}(R^{*})$ is the parabolic of $H^{*}$ which is
the split extension of $R^{*}\cong E_{2^{9}}$ by $L_{3}(4)$ with $R^{*}$ the Todd module for
$L_{3}(4)$ .

(3) $R^{*}=J(T^{*})$ for $T\in Syl_{2}(H)$ .

(4) Let $ X_{2}=\langle Q, Q^{g}\rangle$ and $ V=\langle z, t\rangle$ . Then $P_{2}=N_{G}(V)=$

$X_{2}C_{H}(V)$ with
$R=O_{2}(P_{2})=C_{X_{2}}(V)$ ,

$P_{2}/R=X_{2}/R\times C_{G}(V)/R$ , $X_{2}/R\cong S_{3}$ , and $CG(V)/R$ $\cong L_{3}(4)$ .

(5) $E/V=Z_{2}(R)$ is centralized by $X_{2}$ and is the dual of the Todd
module for $C_{G}(V)/R$ .

(6) $R/E\cong E_{2^{18}}$ is the tensor product of the natural module for
$X_{2}/R$ and the Todd module for $C_{G}(V)/R$ .

(7) $H^{*}$ is absolutely irreducible on $\tilde{Q}$ .

Proof. Let $R\leq T\in Syl_{2}(H)$ . By 23.4 in $[3T]$ , $J(T^{*})\cong E_{2^{9}}$ , so
Hypothesis 4.4 is satisfied. Indeed $N_{H^{*}}(J^{*})$ is the parabolic of $ H^{*}\cong$

$U_{6}(2)$ which is the split extension of $J(T^{*})$ by $L_{3}(4)$ with $J(T^{*})$ the
Todd module. Therefore the lemma follows from 4.5. Q.E.D.

(6.2) $\tilde{Q}\otimes_{F_{2}}F_{4}$ is isomorphic as a $F_{4}H^{*}$ module to $\wedge^{3}(N)$ , where
$N$ is the natural module of dimension 6 for the covering $\hat{H}^{*}\cong SU_{6}(2)$

of $H^{*}$ . In particular the representation of $H^{*}$ on $\tilde{Q}$ is determined up to
equivalence.

Proof. By 6.1.7, $\tilde{Q}$ is an absolutely irreducible $F_{2}H^{*}$ module of
dimension 20, while by 6.1.2, $H_{\tilde{t}}^{*}\cong L_{3}(4)/E_{2^{9}}$ . So as $H^{*}\cong U_{6}(2)$ , the

lemma follows from 5.5. Q.E.D.

\S 7. ${}^{2}E_{6}(2)$

In this section $G=2E_{6}(2)$ and $z$ is a long root involution in $G$ . It
is well known that:

(7.1) The group $G$ is of type $2E_{6}(2)$ with $z2$ -central in $G$ .
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Thus we adopt the notation of section 6. In particular $H=C_{G}(z)$ ,

$Q=O_{2}(H)$ , and $T\in Syl_{2}(H)$ with $R\leq T$ . Let $\triangle=z^{G}$ , and let
$P_{1}=H$ , $P_{2}$ , $P_{3}$ , $P_{4}$ be the four maximal parabolics of $G$ containing $T$

ordered so that we have the diagram

$\mapsto-12\mapsto\leftarrow 034$

For $J\subseteq\{1, 2, 3, 4\}$ let $L_{J}$ be the standard Levi factor in the parabolic
$P_{J}=\bigcap_{j\in J}P_{j}$ and $R_{J}=O_{2}(P_{J})$ the unipotent radical of $P_{J}$ . In partic-

ular $R=R_{2}$ . Let $W$ be the Weyl group of $G$ .

(7.2) $H$ has the following 5 orbits on $\triangle$ :

(1) $\triangle^{0}(z)=\{z\}$ .

(2) $\triangle^{1}(z)=Q\cap\triangle-\{z\}$ .

(3) $\triangle_{1}^{2}(z)=\triangle\cap H-Q$ .

(4) $\triangle_{2}^{2}(z)=\{d\in\triangle : [z, d]\in\triangle\}$ .

(5) $\triangle^{3}(z)=\{d\in\triangle : |zd|=3\}$ .

Proof. We sketch the proof in section 12 of [ASe] for completeness.
The subgroup $W_{1}=W\cap P_{1}$ has 5 orbits on $W/W_{1}$ so $H=P_{1}$ has
5 orbits on $ G/H\cong\triangle$ ; cf. Exercise 14.6.1 in [FGT]. Now $z=U_{cx}(1)$ ,

where $\alpha$ is the highest root in the root system $\Phi$ determining $T$ . There
is a long root $\beta\neq\alpha$ with $t=U_{\beta}(1)\in Q$ ; then $t\in\triangle^{1}(z)$ . Similarly
there is a long root $\gamma$ such that $U_{\gamma}(1)\in L_{1}$ , long roots $\epsilon_{i}$ , $i=1,2$ with
$U_{\epsilon_{i}}(1)\in L_{1}$ , and $h\in H$ with $t^{h}\in C_{Q}(t)$ , so that

$[t, t^{h}]=z$ and $|U_{\epsilon_{1}}(1)U_{\epsilon_{2}}(1)|=3$

so $U_{\gamma}(1)\in\triangle_{1}^{2}(z)$ and $\triangle_{2}^{2}(z)\neq\emptyset\neq\triangle^{3}(z)$ . Q.E.D.

(7.3) (1) $L_{1}\cong U_{6}(2)$ is a complement to $Q$ in $H$ .

(2) $L_{1}$ has 3 classes of involutions with representatives $j_{1}$ , $j_{2}$ , $j_{3}$ ,

where $j_{i}$ is the product of $i$ transvections in $U_{6}(2)$ . In particular $j_{1}$ is $a$

long root involution of $L_{1}$ and $j_{2}$ is a short root involution.
(3) $A=J(T\cap L_{1})\cong E_{2^{9}}$ is the unipotent radical of the parabolic

$P_{2}\cap L_{1}$ of $L_{1}$ , $P_{2}\cap L_{1}=L_{1,2}A$ with $L_{12}\cong L_{3}(4)$ , and $A$ is the 9-
dimensional Todd module for $L_{1,2}$ .

(4) All involutions in $L_{1}$ are fused into $A$ and if $a\in A\cap j_{3}^{L_{1}}$ then
$C_{L_{1,2}}(a)\cong U_{3}(2)$ .

Proof. As $L_{1}$ is the standard Levi factor for $P_{1}$ , $L_{1}$ is a complement
to $R_{1}=Q$ in $P_{1}=H$ . By 7.1, $L_{1}\cong U_{6}(2)$ . Then 23.2 in $[3T]$ implies
(2), 6.1 implies (3), and 23.3, and 22.2 in $[3T]$ imply (4). Q.E.D.



A characterization of $2E_{6}(2)$ 227

(7.4) (1) $dim([\tilde{Q}, j_{i}])=6,8,10$ for $i=1,2,3$ , respectively.
(2) $Q$ is transitive on the involutions in $j_{3}Q$ .

Proof. Let $M$ $=N_{L_{1}}(L_{1,4})$ . Then $M$ is the stabilizer in $L_{1}$ of a
nondegenerate 2-dimensional subspace of the natural module for $ L_{1}\cong$

$U_{6}(2)$ , so by 5.6, $M=M_{1}\times M_{2}$ with $M_{2}=L_{1,4}\cong U_{4}(2)$ and $M_{1}=$

$C_{L_{1}}(M_{2})\cong L_{2}(2)$ with $j_{1}\in M_{1}$ . Further (again by 5.6) as an orthogonal

space over $F_{2},\tilde{Q}=(\tilde{Q}_{1}\oplus\tilde{Q}_{2})\perp\tilde{Q}_{3}$ , where $\tilde{Q}_{1}$ and $\tilde{Q}_{2}$ are copies of the
$O_{6}^{-}(2)$ module for $M_{2},\tilde{Q}_{1}=[\tilde{Q},j_{1}]$ , and $\tilde{Q}_{3}$ is isomorphic to the $U_{4}(2)-$

module for $M_{2}$ . Thus $6=dim(\tilde{Q}_{1})=dim([\tilde{Q},j_{1}])$ . Next we can take

$j_{2}=ab$ , where $a$ , $b$ are $L_{1}$ conjugates of $j_{1}$ in $M_{2}$ , so $dim([\tilde{Q}_{3}, j_{2}])=4$

and $dim([\tilde{Q}_{i},j_{2}])=2$ for $i=1,2$ , and hence $dim([\tilde{Q},j_{2}])=8$ . Finally
we can take $j_{3}=j_{1}j_{2}$ . Then $j_{3}$ interchanges two of the three $M_{2^{-}}$

irreducibles on $\tilde{Q}_{1}\oplus\tilde{Q}_{2}$ , so $dim([\tilde{Q}_{1}\oplus\tilde{Q}_{2}, j_{3}])=6$ and $dim([\tilde{Q}_{3}, j_{3}])=$

$dim([\tilde{Q}_{3}, j_{2}])=4$ . That is (1) holds.

As $dim([\tilde{Q}_{3}, j_{3}])=10=dim(\tilde{Q})/2$ , $C_{\overline{Q}}(j_{3})=[\tilde{Q},j_{3}]$ , so $\tilde{Q}$ is tran-

sitive on the involutions in $\tilde{j}_{3}\tilde{Q}$ ; cf. Exercise 2.8.1 in [SG]. Hence all
involutions in $j_{3}Q$ are conjugate to $j_{3}$ or $j_{3}z$ . Next we have a symplectic

form $\alpha$ on $\tilde{Q}_{2}$ defined by $\alpha(\tilde{u},\tilde{v})=(\tilde{u},\tilde{v}j_{1})$ and there exists $\tilde{u}\in\tilde{Q}_{2}$ with
$\alpha(\tilde{u},\tilde{u}j_{2})\neq 0$ as $j_{2}$ is of type $c_{2}$ in $M_{2}$ and $\tilde{Q}_{2}$ is the $O_{6}^{-}(2)$ module
for $M_{2}$ . Therefore $(\tilde{u},\tilde{u}j_{3})=(\tilde{u},\tilde{u}j_{2}j_{1})=\alpha(\tilde{u},\tilde{u}j_{2})\neq 0$ , and hence
$\tilde{u}+\tilde{u}j_{3}\in C_{\overline{Q}}(j_{3})$ is nonsingular, so $j_{3}^{u}=j_{3}z$ , establishing (2). Q.E.D.

(7.5) (1) $ j_{1}\in\triangle$ is a long root involution so $j_{1}\in z^{G}$ and $H=$
$C_{G}(z)\cong C_{G}(j_{1})$ .

(2) $j_{2}$ is a short root involution, there is $x\in j_{2}^{G}\cap Q\cap Z(R_{4})$ ,

and $C_{G}(x)\leq P_{4}$ , $C_{G}(x)=R_{4}C_{L_{4}}(x)$ , where $C_{P_{4}}(x)\cong Sp_{6}(2)$ is the

stabilizer in $L_{4}\cong\Omega_{8}^{-}(2)$ of $x$ regarded as a nonsingular point of the 8-
dimensional orthogonal space $Z(R_{4})$ for $L_{4}$ , with $Q\cap Z(R_{4})$ the subspace
orthogonal to $z$ .

(3) There is $y\in j_{3}^{G}\cap Q\cap Q^{g}$ for $g\in P_{2}-H$ , $C_{G}(y)\leq P_{2}$ with
$|R_{2}$ : $C_{R_{2}}(y)|=4$ and $C_{L_{2}}(y)\cong L_{2}(2)\times U_{3}(2)$ .

(4) $z$ , $t=z^{g}$ , $x$ , $y$ are representatives for the orbits of $H$ on in-

volutions of $Q$ , with $C_{L_{1}}(\tilde{t})\cong L_{3}(4)/E_{2^{9}}$ , $C_{L_{1}}(\tilde{x})\cong Sp_{4}(2)/2^{9}$ , and
$C_{L_{1}}(\tilde{y})\cong U_{3}(2)/2^{8}$ .

Proof. First $j_{1}$ is a long root involution of $L_{1}$ by 7.3.2, so $ j_{1}\in\triangle$

and (1) holds.
Similarly by 7.3.2, $j_{2}$ is a short root involution of $L_{1}$ and hence of $G$ .

Let $Z_{4}=Z(R_{4})$ ; it is well known (cf. [CKS]) that $Z_{4}$ is the natural mod-

ule for $L_{4}\cong\Omega_{8}^{-}(2)$ with long root involutions in $Z_{4}$ the singular points
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and short root involutions in $Z_{4}$ the nonsingular points. Further $Q\cap Z_{4}$

is the subspace of $Z_{4}$ orthogonal to $z$ . So if $x\in Q\cap Z_{4}$ is a short root
involution then $C_{L_{4}}(x)\cong Sp_{6}(2)$ . Now $C_{G}(x)\leq P$ for some parabolic
$P$ by Borel-Tits; cf. 47.8.2 in [FGT]. But the only parabolics of $G$ con-
taining subgroups of the form $C_{L_{4}}(x)R_{4}=Sp_{6}(2)/2^{24}$ are conjugates of
$P_{4}$ , so $P=P_{4}^{h}$ for some $h\in G$ . Then $O_{2}(P)=O_{2}(C_{P_{4}}(x))=R_{4}$ , so
$P=P_{4}$ and (2) is established.

Let $g\in P_{2}-H$ , $t=z^{g}$ , and $E=Q\cap Q^{g}$ . By 7.3, $A=J(T\cap L_{1})=$

$R_{1,2}\cap L_{1}\cong E_{2^{9}}$ contains a conjugate of $j_{3}$ . Further from 6.1.6, $L_{1,2}$ has
three irreducibles on $R_{2}/E$ , all fused under $P_{2}$ , so $AE/E$ is one of those
irreducibles and $(Q\cap R_{2})/E$ is another, and $A$ is fused to $A^{w}\leq Q\cap R_{2}$

under $P_{2}$ . Next $A^{w}$ and $[E, L_{1,2}]$ are dual irreducibles for $L_{1,2}$ and there

is $l$ $\in N_{L_{1}}(L_{1,2})$ inducing a graph automorphism on $L_{1,2}$ , so $A^{wl}=$

$[E, L_{1,2}]$ , and hence there is $y\in j_{3}^{G}\cap E$ . Next $C_{P_{2}}(y)=C_{L_{2}}(y)C_{R_{2}}(y)$

with $C_{L_{2}}(y)=L_{2,3,4}\times C_{L_{1,2}}(y)$ and by 7.3.4 and 6.1.5, $C_{L_{1,2}}(y)\cong U_{3}(2)$

with $C_{A}(y)$ a hyperplane of $A$ and $|R_{2}$ : $C_{R_{2}}(y)|=4$ . Thus to complete
the proof of (3) it remains to show $C_{G}(y)\leq P_{2}$ . Again by Borel-Tits,
$C_{G}(y)\leq P$ for some parabolic $P$ of $G$ and by 4.3, $z$ is weakly closed in
the center of a Sylow 2-subgroup of $C_{G}(y)$ , so $P\cap H$ is a parabolic of
$G$ . Then $C_{H}(y)\leq P\cap H$ .

Let $B=C_{A}(y)$ . Observe first that $ C_{\overline{Q}}(B)=\langle\tilde{t},\tilde{y}\rangle$ . For $C_{L_{1,2}}(y)$ is

irreducible on the hyperplane $[Q/E, B]$ of $Q/E$ and as $L_{1,2}$ is irreducible

on $A$ , $B$ contains a conjugate $b$ of $j3$ . By 7.4.1, $C_{\overline{Q}}(b)E/E=[\tilde{Q}, b]E/E$ $\leq$

$[Q/E, B]$ , so as $C_{L_{1,2}}(y)$ is irreducible on $[Q/E, B]$ , so $C_{\overline{Q}}(B)\leq E$ , and

then by 4.5.7 completes the proof of the observation.
Next as $|R_{2}$ : $C_{R_{2}}(y)|=4$ , $R_{2}$ is transitive on $\langle z, t, y\rangle-\langle z, t\rangle$ , so $\tilde{t}$

is weakly closed in $ C_{\overline{Q}}(B)=\langle\tilde{t},\tilde{y}\rangle$ , and therefore $N_{L_{1}}(S)\leq L_{1}\cap P_{2}=$

$N_{L_{1}}(A)$ , for each 2-subgroup $S$ of $L_{1}$ containing $B$ . Hence $P_{2}\cap P\cap L_{1}$

contains a Sylow 2-subgroup of $P\cap L_{1}$ , so as $A=J(T\cap L_{1})$ , $A\leq P\cap H$ .

Then as $A=O_{2}(A(C_{L_{1}}(y)\cap N_{L_{1}}(A)))$ and $C_{L_{1}}(y)$ is irreducible on $B$ ,
$B\leq O_{2}(P\cap L_{1})\leq A$ , so that $P\cap L_{1}=P_{2}\cap L_{1}$ and then $P\cap H=P_{1,2}$ .

Therefore $P_{2}=\langle P_{1,2}, P_{2,3,4}\rangle\leq P$ , so $P=P_{2}$ and (3) holds.

Now $|L_{1}|=2^{15}\cdot 3^{6}\cdot 5\cdot 7\cdot 11$ and $|C_{H^{*}}(\tilde{y})|=2^{11}\cdot 3^{2}$ , so $|\tilde{y}^{H}|=$

$2^{4}\cdot 3^{4}\cdot 5\cdot 7\cdot 11$ . Similarly $|C_{H}(\tilde{t})|=2^{15}\cdot 3^{2}\cdot 5\cdot 7$ , so $|\tilde{t}^{H}|=3^{4}\cdot 11$ . Finally

$C_{H}(x)=C_{P_{4}}(z)\cap C_{P_{4}}(x)=R_{4}C_{L_{4}}(\langle z, x\rangle)$

with $C_{L_{4}}(\langle z, x\rangle)\cong Sp_{4}(2)/2^{5}$ , so $|C_{H}(x)|=2^{33}\cdot 3^{2}\cdot 5$ . Then as $|C_{Q}(x)|=$

$2^{20}$ , $|C_{L_{1}}(\tilde{x})|=2^{13}\cdot 3^{2}\cdot 5$ , so $|\tilde{x}^{H}|=2^{2}\cdot 3^{4}\cdot 7\cdot 11$ . Now the sum of the
lengths of these three orbits is

$3^{4}\cdot 11$ $\cdot(1+2^{2}\cdot 7+2^{4}\cdot 5\cdot 7)=3^{4}\cdot 11\cdot 588=3^{4}\cdot 11\cdot 19\cdot 31=(2^{9}+1)(2^{10}-1)$ .
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But $(2^{9}+1)(2^{10}-1)$ is the number of singular points in a 20-dimensional
orthogonal space of maximal Witt index over $F_{2}$ , so (4) is established.

Q.E.D.

(7.6) $Q$ is regular on $\triangle^{3}(z)$ and for $d\in\triangle^{3}(z)$ , $C_{G}(\langle z, d\rangle)$ is conju-
gate under $Q$ to $L_{1}$ .

Proof. By 7.2, we may take $z=U_{\alpha}(1)$ and $d=U_{-\alpha}(1)$ . Then
$C_{G}(\langle z, d\rangle)=H\cap H^{w0}=P_{1}\cap P_{1}^{wo}=L_{1}$ , where $w_{0}$ is the long word in
$W$ , as $\alpha W_{0}=-\alpha$ , so $z^{w_{0}}=d$ . Thus as $L_{1}$ is a complement to $Q$ , $Q$ is
regular on $\triangle^{3}(z)$ . Q.E.D.

(7.7) $j_{1},j_{2}$ , and $j_{3}$ are representatives for the three conjugacy classes

of involutions in $G$ .

Proof. We first observe that if $j$ is an involution in $G$ then $ z^{i}\in$

$\triangle^{3}(z)$ for some $i\in j^{G}$ . This is Lemma 12.2 in [ASe], but we sketch a
proof for completeness. Without loss, $j\in H$ . By 7.5, each involution
in $Q$ is fused into $L_{2}$ , so we may assume $j\not\in Q$ . Let $H^{*}=H/Q$ . It is

easy to check that $|k^{*}k^{*j}|=3$ for some root involution $k\in L_{1}$ , so by
7.2, $k^{j}\in\triangle^{3}(k)$ , completing the proof of the observation.

So each involution in $G$ is fused to $s\in L_{1}\cup L_{1}z$ , so $s$ is fused to $j_{i}$

or $j_{i}z$ . Finally $zj_{i}$ centralizes a conjugate of $\langle z, d\rangle$ in $L_{1}$ unless $i=3$ , so
it remains to observe that $zj_{3}$ is conjugate to $j_{3}$ by 7.4.2.

We have shown each involution in $G$ is conjugate to $j_{i}$ for $i=1,2$ , or
3. But by 7.5.4 and 4.7.2, these involutions are not fused in $G$ . Q.E.D.

(7.8) Let $g\in P_{2}-H$ , $t=z^{g}$ , and $E=Q\cap Q^{g}$ . Then

(1) For $h\in P_{1,3,4}-P_{2}$ , $t^{h}\in E$ .

(2) $U_{3}=Q\cap Q^{g}\cap Q^{gh}\cong E_{2^{7}}$ .

(3) Let $ V_{3}=\langle z, t, t^{h}\rangle$ . Then $C_{H}(V_{3})/O_{2}(C_{H}(V_{3}))\cong L_{2}(4)$ has chief
series

$0<\tilde{V}<\tilde{V}_{3}<\tilde{U}_{3}<\tilde{E}$

on $\tilde{E}$ with $E/U_{3}$ the $\Omega_{4}^{-}(2)$ -module and $U_{3}/V_{3}$ the $L_{2}(4)$ -module. Further
$C_{H}(V_{3})$ has four $L_{2}(4)$ -sections and three $\Omega_{4}^{-}(2)$ -sections on $R_{3}$ .

Proof. First by 7.5.2, $Z_{4}=Z(R_{4})$ is the orthogonal space for
$L_{4}\cong\Omega_{8}^{-}(2)$ with $Q\cap Z_{4}$ the hyperplane orthogonal to $z$ . Further the
parabolic $P_{3,4}$ is the stabilizer in $P_{4}$ of the totally singular 3-subspace
$ V_{3}=\langle z, t, t^{h}\rangle$ . Thus $t^{h}\in E$ and indeed $V_{3}=Z(P_{3})$ with $C_{H}(V_{3})=$

$L_{1,2,3}R_{3}$ and $L_{1,2,3}\cong L_{2}(4)$ has chief series on $\tilde{E}$ has described in (3),
except we have not shown that $U_{3}=E_{3}$ , where $E_{3}$ is the penultimate
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term in the series. But as $U_{3}$ is $C_{H}(V_{3})$ -invariant, $U_{3}=E_{3}$ or $V_{3}$ , and
the latter is impossible as $U_{3}\cap Z_{4}$ is of dimension 5.

Finally the chief sections can be retrieved as follows. Let $A=R_{2}\cap L_{1}$

be as in 7.3. The nontrivial chief sections of $L_{1,2,3}$ on $R_{4}$ are those in
$(R_{1,2,3}\cap L_{1})/A$ , $A$ , $E/V$ , and $C_{Q}(t)/E$ , and by 6.1, $A$ is isomorphic to
$C_{Q}(t)/E$ and to the dual of $E/V$ as an $L_{1,2,3}$ module, Finally $(R_{1,2,3}\cap$

$L_{1})/A$ is the $L_{2}(4)$ -module, while $A$ has one $L_{2}(4)$ chief section and one
$\Omega_{4}^{-}(2)$ -chief section. Q.E.D.

(7.9) Let $\triangle$ be the graph with vertex $z^{G}$ and $z$ adjacent to $t$ if $ z\neq$

$t\in Q$ . Then $\triangle$ is simply connected.

Proof. This follows from 1.1, since the building for $G$ is of type $F_{4}$

and $\triangle$ is the collinearity graph of the building. Q.E.D.

(7.10) (1) $G$ has an involutory outer automorphism $\sigma$ with $ C_{G}(\sigma)\cong$

$F_{4}(2)$ , and we may choose $\sigma$ so that:
(2) $C_{L_{1}}(\sigma)\cong Sp_{6}(2)$ and $C_{Q}(\sigma)=D_{1}D_{2}$ where $ D_{1}\cap D_{2}=\langle z\rangle$ ,

$[D_{1}, D_{2}]=1,\tilde{D}_{1}=[\tilde{Q}, \sigma]$ , $D_{1}$ is isomorphic to the stabilizer of a non-
singular point in an 8-dimensional orthogonal space over $F_{2}$ as a $C_{L_{1}}(\sigma)-$

module, with singular points in $j_{2}^{G}$ , and $D_{2}\cong 2^{1+8}$ with $C_{Q}(\sigma)/D_{1}$ the
spin module for $C_{L_{1}}(\sigma)$ .

(3) $C_{L_{2}}(\sigma)\cong S_{3}\times L_{3}(2)$ and $\sigma$ centralizes $Z(R_{2})$ .

(4) For $S\in Syl_{2}(C_{G}(\sigma))$ , $Z(S)=Z(S)\cap Q\cong E_{4}$ .

(5) $\sigma$ and $\sigma z$ are representatives for the orbits of $G$ on involutions
in $\sigma G$ and $C_{G}(\sigma z)=C_{H}(\sigma)$ .

(6) Let $Y$ be a diagonal group of outer automorphisms of $G$ of order
3. Then $C_{G}(Y)$ is of even order and if all involutions in $C_{G}(Y)$ are in
$j_{3}^{G}$ then $N_{Aut(G)}(Y)/Y\cong Aut(U_{3}(8))$ .

Proof. This is well known; indeed $\sigma$ is a graph-field automorphism
of $G$ . See for example section 4 of [CKS] for parts $(1)-(5)$ . Part (6) can
be retrieved from the Springer-Steinberg theory of semisimple elements
of finite groups of Lie type. Q.E.D.

(7.11) (1) $|Schur_{2}(G)|=4$ .

(2) The outer automorphism group of $G$ is faithful on $Schur_{2}(G)$ .

Proof. Let $\hat{G}=Cov_{2}(G)$ and $Z=Z(\hat{G})$ . For $Y\leq G$ , write $\hat{Y}$ for

the preimage of $Y$ in $\hat{G}$ .

As $T\leq H,\hat{H}$ is a covering of $H$ , and hence an image of $Cov_{2}(H)$ ,

described in 3.2. In particular $\hat{Q}\cong Q\times Z$ by 3.2, so $[\hat{Q},\hat{E}]=\Phi(\hat{Q})\cong Z_{2}$ .

Then as $\hat{X}_{2}=\langle\hat{Q},\hat{Q}^{g}\rangle$ , $[\hat{X}_{2},\hat{E}]=\Phi(\hat{Q})\Phi(\hat{Q})^{g}\cong E_{4}$ .
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Next $L_{2}=L_{234}\times L_{12}$ with $L_{234}=X\cap L_{2}\cong S_{3}$ and $L_{12}\cong L_{3}(4)$ . Let
$\hat{Y}$ be of order 3 in $\hat{L}_{234}$ . Then $\hat{V}_{Y}=[\hat{V}_{2},\hat{Y}]=[\hat{X}_{2},\hat{E}]$ is a complement

to $Z$ in $\hat{V}_{2}$ and $[\hat{R}_{2},\hat{E}]=\hat{V}_{Y}$ as $R_{2}=O_{2}(X_{2})$ . Therefore $\hat{R}_{2}$ centralizes
$\hat{E}/\hat{V}_{Y}$ , so setting $\hat{E}_{Y}=[\hat{E},\hat{P}_{2}]$ , it follows that $\hat{E}_{Y}=[\hat{E},\hat{L}_{1,2}]\hat{V}_{Y}$ .

Next $\hat{E}/\hat{V}_{2}\cong E/V$ is quasiequivalent to the Todd module for $L_{12}$

by 6.1.5. Therefore

$|(\hat{V}_{2}\cap\hat{E}_{Y})/\hat{V}_{Y}|\leq|H^{1}(L_{12}, E/V)|=4$

with the last equality following from 23.6 in $[3T]$ . Hence $U=Z\cap\hat{E}_{Y}$ is of
order at most 4 and as Out(G) induces a group of outer automorphisms
on $L_{12}$ , Out(G) is faithful on $U$ if $U\neq 1$ by 23.6 in $[3T]$ . So it remains
to show $U=Z$ , since we will find in a later paper in this series that
$Schur_{2}(G)\neq 1$ .

Let $ G^{*}=\hat{G}/U,\cdot$ it remains to show $Z^{*}=1$ . Now $R_{2}=[R_{2}, Y]$ so
$\hat{R}_{2}^{*}/\hat{E}_{Y}^{*}=[\hat{R}_{2}^{*}/\hat{E}_{Y}^{*},\hat{Y}^{*}]\times Z^{*}$ . Therefore $\hat{P}_{2}^{*}/[\hat{R}_{2}^{*},\hat{Y}^{*}]\cong\hat{L}_{234}^{*}\times\hat{L}_{12}^{*}$ with
$\hat{L}_{12}^{*}$ quasisimple with center $Z^{*}$ . Next $Q\leq L_{234}R$ by 6.1, so $Q\cong\hat{Q}^{*}$

and $\hat{H}^{*}/\hat{Q}^{*}$ is quasi simple with center $Z^{*}$ . Indeed

$\hat{R}_{2}^{*}\hat{Q}^{*}/\hat{Q}^{*}=[\hat{R}_{2}^{*},\hat{Y}^{*}]\hat{Q}^{*}/\hat{Q}^{*}\times Z^{*}$

so by 23.5.5 in $[3T]$ , $Z^{*}=1$ , completing the proof. Q.E.D.

(7.12) Assume $M(22)\cong M\leq G$ such that the set $D$ of 3-
transpositions of $M$ is contained in $\triangle$ . Then $ C_{D}(a)\neq\emptyset$ for each $ a\in\triangle$ ,
and indeed $M$ has the following four orbits, $\triangle_{i}$ , $1\leq i\leq 4$ , on $\triangle$ :

(1) $\triangle_{1}=D$ of order 3, 510.
(2) $\triangle_{2}=\{a\in\triangle : C_{D}(a)\subseteq O_{2}(C_{G}(a))\}$ of order 142, 155, with

$C_{M}(a)\cong M_{22}/E_{2^{10}}$ and $C_{D}(a)$ of order 22 generating $O_{2}(C_{M}(a))$ .

(3) $\triangle s=\{a\in\triangle-D : |D\cap O_{2}(C_{G}(a))|=1\}$ of order 3, 127, 410,
with $C_{M}(a)\cong L_{3}(4)/E_{2^{10}}$ and $C_{D}(a)$ of order 22 generating $O_{2}(C_{M}(a))$ .

(4) $\triangle_{4}=\{a\in\triangle : D\cap O_{2}(C_{G}(a))=\emptyset\}$ of order 694, 980, with
$C_{M}(a)=\langle C_{D}(a)\rangle\cong Sp_{6}(2)/E_{64}$ .

Proof. First $\triangle_{1}=D$ is an orbit of $M$ on $\triangle$ of length 3, 510 by 16.7
in $[3T]$ .

As $ D\subseteq\triangle$ , we may take $z\in D$ . Then $K=C_{M}(d)$ is quasisimple
with $K/\langle d\rangle\cong U_{6}(2)$ , so $H=KQ$ with $ K\cap Q=\langle z\rangle$ . Claim

(5) $K$ has the following six orbits on $\triangle\cap H$ :
(i) $\{z\}$ .

(ii) $D_{z}=H\cap D-\{z\}$ .
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(iii) $\triangle_{i}(z)$ , $i=1,2$ with $\triangle_{1}(z)\cup\triangle_{2}(z)=\triangle(z)=\triangle\cap Q-\{z\}$ ,

$\triangle_{2}(z)=\{za:a\in\triangle_{1}(z)\}$ ,

and $C_{K}(a)\cong L_{3}(4)/E_{2^{10}}$ for $a\in\triangle(z)$ .

(iv) $\triangle_{3}(z)$ with $C_{K}(a)\cong A_{5}/E_{16}/E_{2^{10}}$ for $a\in\triangle s(z)$ .

(v) $\triangle_{4}(z)$ with $C_{K}(a)\cong Sp_{4}(2)/2^{1+8}/Z_{2}$ for $a\in\triangle_{4}(z)$ .

Namely by 7.2, $H$ has three orbits on $\triangle\cap H:\{z\}$ , $\triangle(z)=H\cap Q-\{z\}$ ,

and $\triangle_{1}^{2}(z)=H\cap\triangle-Q$ . As $H=KQ$ with $ K\cap Q=\langle z\rangle$ , $K$ has two
orbits $\triangle_{i}(z)$ , $i=1,2$ on $\triangle(z)$ , with $\triangle_{2}(z)=\{za : a\in\triangle_{1}(z)\}$ , and by
6.1.2 and 23.5 in $[3T]$ , $C_{K}(a)\cong L_{3}(4)/E_{2^{10}}$ for $a\in\triangle(z)$ .

Next let $b\in D_{z}$ . Then $b\in\triangle_{1}^{2}(z)$ and each member of $\triangle_{1}^{2}(z)$ is
$K$-conjugate to $bu$ for some $u\in[Q, b]$ . Now $[\tilde{Q}, b]$ is the natural module

for $C_{K}(b)/O_{2}(C_{K}(b))\cong\Omega_{6}^{-}(2)$ with $O_{2}(C_{K}(b))\cong 2^{1+8}/Z_{2}$ , (cf. 7.3 and
the proof of 7.4) so $K$ has two orbits $\triangle s(z)$ and $\triangle_{4}(z)$ on $\triangle_{1}^{2}(z)-D_{z}$ ,

with representatives $bu$ and $bv$ , where $u$ , $v\in[\tilde{Q}, b]$ with $\tilde{u}$ a singular

point of the orthogonal space $[\tilde{Q}, b]$ and $\tilde{v}$ a nonsingular point. Then
$C_{K}(bu)=C_{K}(b)\cap C_{K}(u)\cong A_{5}/E_{16}/2^{1+8}/Z_{2}$ and $ C_{K}(bv)=C_{K}(b)\cap$

$C_{K}(v)\cong Sp_{4}(2)/2^{1+8}/Z_{2}$ . Indeed $C_{K}(u)$ is the parabolic $ N_{K}(T\cap D)\cong$

$L_{3}(4)/E_{2^{10}}$ with $ O_{2}(C_{K}(u))=\langle T\cap D\rangle$ , so $C_{K}(bu)\cong A_{5}/E_{16}/E_{2^{10}}$ ,
completing the proof of the claim.

Let $z^{\perp}=\{z\}\cup D_{z}$ . If $a\in\triangle(z)$ or $\triangle_{3}(z)$ then $z^{\perp}\cap C_{G}(a)=T\cap D$

is of order 22 and hence is of the form $S\cap D$ for some $S\in Syl_{2}(M)$ ,
with $A=\langle S\cap D\rangle\cong E_{2^{10}}$ . Further if $a\in\triangle(z)$ then by 6.1, $C_{K}(a)$

has 3 irreducibles on $(Q\cap H_{a})(Q_{a}\cap H)/(Q\cap Q_{a})$ , and one of them is
$A(Q\cap Q_{a})/(Q\cap Q_{a})$ , so $A(Q\cap Q_{a})=Q_{a}\cap H$ or $Q_{az}\cap H$ . In the first case,
$A\leq Q_{a}$ . Therefore for each $b\in A\cap D$ , $a\in\triangle(b)$ , so $A\cap D=b^{\perp}\cap C_{G}(a)$

and $C_{M}(\langle a, b\rangle)$ acts 2-transitively as $L_{3}(4)$ on $A\cap D-\{b\}$ . Therefore
$N_{M}(A)\leq C_{M}(a)$ with $N_{M}(A)/A$ $\cong M_{22}$ by 25.7 in $[3T]$ . As $A\cap D$ is a
connected component of $C_{D}(a)$ , it follows (cf. 24.3 in $[3T]$ and its proof)
that $A\cap D=C_{D}(a)$ , so that $N_{M}(a)=C_{M}(a)$ . That is $a\in\triangle_{2}$ .

In the second case, $za\in\triangle_{2}$ and $ A\cap Q_{a}=\langle z\rangle$ , so for $b\in A\cap D-\{z\}$ ,
$b\not\in Q_{a}$ , and hence $a\not\in Q_{b}$ , so $a\in\triangle_{i}(b)$ for $i=3$ or 4. As $ C_{K}(\langle a, b\rangle)\cong$

$A_{5}/E_{16}/E_{2^{10}}$ , and $C_{M}(\langle a, b\rangle)$ contains no such subgroup if $a\in\triangle_{4}(b)$ ,

we conclude $a\in\triangle_{3}(b)$ . Therefore $S\cap D=b^{\perp}\cap C_{G}(a)$ for each $b\in S\cap D$ ,
so as above, $S\cap D=C_{D}(a)$ and $\{z\}=D\cap Q_{a}$ . Hence $CK(a)=CK(a)$
and $a\in\triangle_{3}$ in this case.

So $\triangle_{2}$ and $\triangle_{3}$ are the orbits of $M$ on $\triangle-D$ consisting of elements
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$a$ with $ D\cap Q_{a}\neq\emptyset$ . This leaves

$\triangle_{4}\prime=\{a\in\triangle : C_{D}(a)\neq\emptyset=D\cap Q_{a}\}=d\in D\cup\triangle_{4}(d)$

as an orbit under $M$ .

Pick $a\in\triangle_{4}(z)$ and let $D(a)=C_{D}(a)$ . Then $D(a)$ is a set of
3-transpositions of $ M_{a}=\langle D(a)\rangle$ . Now $C_{K}(a)\cong Sp_{4}(2)/2^{2+8}$ and
$ C_{K}(a)=\langle z^{\perp}\cap D(a)\rangle$ . Indeed for each $b\in D(a)$ , $a\in\triangle_{4}(b)$ as $ a\not\in$

$\triangle_{3}\cup\triangle_{4}$ , so by 8.2.2 in $[3T]$ , $M_{a}$ is transitive on $D(a)$ . Then by a Frattini
argument, $C_{M}(a)=M_{a}C_{K}(a)=M_{a}$ . Also in the language of $[3T]$ , $V_{z}=$

$\{z, d\}$ , where $d$ is the unique member of $D\cap aQ$ , so by 9.2 in $[3T]$ , $\{z, d\}=$

$z^{O_{2}(M_{a})}$ , so $[z, O_{2}(M_{a})]=\langle zd\rangle\leq Z(O_{2}(M_{a}))$ . Therefore $ U=\langle(zd)^{M_{a}}\rangle$

is elementary abelian and $z$ induces a transvection on $U$ . Let $\overline{M}_{a}=$

$M_{a}/U$ . As $O_{2}(C_{K}(a))/\langle zd\rangle\cong 2^{1+8}$ and $ O_{2}(C_{K}(a))/\langle z, d\rangle$ is the sum of
two 4-dimensional irreducibles for $C_{K}(a)$ , $m(C_{U}(z))=5$ , $m(U)=6$ , and
$C_{\overline{M}_{a}}(\overline{z})\cong C_{K}(a)/C_{U}(z)\cong Sp_{4}(2)/E_{32}$ . As $O_{2}(C_{\overline{M}_{a}}(\overline{z}))\not\leq Z(C_{\overline{M}_{a}}(\overline{z}))$ ,
$O_{3}(\overline{M}_{a})\leq Z(\overline{M}_{a})$ by Exercise 3.2 in $[3T]$ , while as $[z, O_{2}(M_{a})]\leq U$ ,
$O_{2}(\overline{M}_{a})\leq Z(\overline{M}_{a})$ . Then by Theorem $Q$ in section 14 of $[3T],\overline{M}_{a}\cong$

$Sp_{6}(2)$ .
To complete the proof we calculate the order of $O$ $=\triangle_{2}$ , $\triangle_{3}$ and $\triangle_{4}^{J}$

via $|\mathcal{O}|=|M$ : $C_{M}(a)|$ , for $a\in O$ , and determine they are as indicated
in the statement of the lemma. Then we calculate that

$|\triangle_{1}|+|\triangle_{2}|+|\triangle_{3}|+|\triangle_{4}\prime|=3,968,055=|\triangle|$

so $\triangle_{4}^{J}=\triangle_{4}$ and the proof of the lemma is complete. Q.E.D.

(7.13) Let $\hat{H}=Cov_{2}(H)$ , $\rho$ : $\hat{H}\rightarrow H$ the universal covering, $V=$

$ker(\rho),\hat{Q}=O_{2}(\hat{H})$ and $P=[\hat{Q},\hat{H}]$ . Let $H_{+}$ be a group with $ Q_{+}\cong$

$F^{*}(H_{+})\cong Q$ and $H_{+}/Z(H_{+})\cong\tilde{H}$ . Then

(1) $\hat{H}=\hat{L}P$ with $P\cap\hat{L}=1,\hat{L}\cong Cov_{2}(L_{1})$ and $\rho(\hat{L})=L_{1}$ .

(2) $P\cong E_{4}\times Q$ , $Z(\hat{L})\cong E_{4},\hat{Q}=Z(\hat{L})\times P$ and $ Z(\hat{H})=Z(\hat{L})\times$

$Z(P)$ .

(3) $Z(\hat{L})\leq V$ and $V=[\tau, Z(\hat{H})]$ is a complement to $\Phi(P)$ for some

automorphism $\tau$ of order 3 inducing an outer automorphism on $\hat{L}$

.

(4) $H_{+}\cong H$ if and only if $H_{+}$ possesses a complement $L_{+}$ to $Q_{+}$

such that $ E_{+}/\langle t_{+}\rangle$ splits over $\langle z_{+}, t_{+}\rangle/\langle t_{+}\rangle$ as a $J_{+}$ -module, where $x_{+}$

is the image of $x=z$ , $t$ , $E$ under the isomorphism $Q\cong Q_{+}$ , and $J_{+}=$

$C_{L}+(t_{+})$ .

(5) If $H_{+}=Cc_{+}(z_{+})$ for some group $G_{+}$ of type $2E_{6}(2)$ and $H_{+}$

splits over $Q_{+}$ then $H_{+}\cong H$ .
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Proof. By 6.2, $\tilde{Q}\otimes_{F_{2}}F_{4}\cong\wedge^{3}(N)$ as a $F_{4}L_{1}$ -module. Then by

5.8, $H^{1}(L_{1},\tilde{Q})\cong E_{4}$ . By 23.7 in $[3T]$ , $Schur_{2}(L_{1})\cong E_{4}$ . Therefore (1)

and (2) follow from 3.2.

Let $D=C_{Aut(\hat{H})}(P/\Phi(P))$ and $\hat{H}D$ the semidirect product of $\hat{H}$

by $D$ . By 3.2, $V$ is a complement to $\Phi(P)$ in $Z(\hat{H})$ and $ D/Inn(P)\cong$

$H^{1}(L_{1},\tilde{Q})\cong E_{4}$ is regular on complements to $\Phi(P)$ in $Z(P)$ . Indeed by

3.2.6, $H_{+}\cong\hat{H}/V_{+}$ for some complement $V_{+}$ to $\Phi(P)$ in $Z(\hat{H})$ .

As $\tilde{Q}\otimes_{F_{2}}F_{4}\cong\wedge^{3}(N)$ and the representation of $L_{1}$ on $\wedge^{3}(N)$

extends to $ PGU_{6}(2)=L_{1}\langle\tau\rangle$ for some $\tau$ of order 3, the representation

of $L_{1}$ on $\tilde{Q}$ extends to $ L_{1}\langle\tau\rangle$ . Thus $\tau$ is an automorphism of $\hat{H}$ by

3.2.3, so as $\tau$ is faithful on $Schur_{2}(L_{1})$ and $H^{1}(L_{1},\tilde{Q})$ , $\tau$ is faithful on
$Z(\hat{H})/Z(P)$ and $Z(P)/\Phi(P)$ . As some outer automorphism of $G$ of
order 3 acts on $Q$ and $L_{1}$ and induces an outer automorphism of $L_{1}$ , we

may take $\tau$ to act on $\hat{L}$ , $\tau$ induces an outer automorphism on $\hat{L}$ , and
$V=[Z(\hat{H}), \tau]$ is the unique $\tau$-invariant complement to $\Phi(P)$ , so that
(3) holds.

Notice that $D$ is transitive on the complements to $\hat{Q}/Z(\hat{H})$ in
$\hat{H}/Z(\hat{H})$ .

Let $L_{+}=\hat{L}V_{+}/V_{+}$ be the image of $\hat{L}$ in $H_{+}$ . We next prove

(6) Under the hypothesis of (5), we can pick $L_{+}$ with $O_{2}(J_{+})\leq Q_{t}+=$

$O_{2}(C_{G}+(t_{+}))$ .

To simplify notation we argue in $G$ . Now $J$ has three 9-dimensional
irreducibles on $O_{2}(J)Q/E:C_{Q}(t)/E$ , $(Q_{t}\cap H)/E$ , and $(Q_{tz}\cap H)/E$ , so
as $O_{2}(J)E/E$ is one of these irreducibles, conjugating $L_{+}$ by an element
of $Q-C_{Q}(t)$ if necessary, we may take $O_{2}(J)E=Q_{t}\cap H$ , establishing
(6). We also prove

(7) Under the hypothesis of (5), there is a complement $I_{+}$ to $O_{2}(J_{+})$ in
$J_{+}$ such that $E_{+}$ splits over $\langle z_{+}, t_{+}\rangle$ as an $I_{+}$ -module.

First if $G_{+}=G$ then $I$ $=L_{12}$ works as $L_{12}$ acts on the complement
$C_{E}(L_{234})$ to $\langle z, t\rangle$ in $E$ . Moreover $\tilde{Q}$ is a semisimple $L_{12}$ -module and
$L_{12}=N_{L_{1}}([\tilde{E}, L_{12}])$ .

In the general case $\tilde{H}_{+}\cong\tilde{H}$ (cf. 8.1) so the preimage $I_{+}$ in $L_{+}$

of the image of $\tilde{L}_{12}$ in $\tilde{H}_{+}$ under this isomorphism acts semisimply on
$\tilde{Q}_{+}$ as $L_{12}$ is semisimple on $\tilde{Q}$ . In particular $C_{Q}+(I_{+})\cong D_{8}$ . Similarly
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as the image $F$ of $[E_{+}, I_{+}]$ in $\tilde{Q}_{t}+is$ a simple $I_{+}$ -module, and as $\tilde{H}_{t}+$

is isomorphic to $\tilde{H}_{t}$ , $I_{+}Q_{t}+=N_{H_{t}}+(F)$ and then $\tilde{Q}_{t}+is$ a semisimple

$I_{+}$ module and $C_{Q_{t}}+(I_{+})\cong D_{8}$ . Therefore $\langle C_{Q_{+}}(I_{+}), C_{Q_{t}}+(I_{+})\rangle$ con-

tains an element $X_{+}$ of order 3 such that $C_{E}+(X_{+})$ is an $I_{+}$ -invariant
complement to $\langle z_{+}, t_{+}\rangle$ in $E_{+}$ , completing the proof of (7).

Observe next that

(8) $L_{+}$ is a complement to $Q_{+}$ in $H_{+}$ if and only if $Z(\hat{L})\leq V_{+}$ .

We also claim

(9) If $L_{+}$ is a complement to $Q_{+}$ then $V_{+}=V$ if and only if the fol-
lowing splitting property holds: $ E_{+}/\langle t_{+}\rangle$ splits over $ E_{+}/\langle z_{+}, t_{+}\rangle$ as a
$J_{+}$ -module.

If $V_{+}=V$ this follows from (6) and (7). Namely by (6), we may
choose $L_{1}$ so that $O_{2}(J)\leq Q_{t}$ , where $J=C_{L_{1}}(t)$ . Therefore $O_{2}(J)$

centralizes $ E/\langle t\rangle$ as $E\leq Q_{t}$ . Further by (7), $E$ splits over $\langle z, t\rangle$ as an
$I$-module, so as $J=O_{2}(J)I$ , we have the splitting property.

Notice this argument only depended upon the hypothesis of (5).
Thus (9) will imply (5), since under the hypothesis of (5), as $D$ is transi-

tive on complements to $\hat{Q}/Z(\hat{Q})$ , we may assume the complement to $Q_{+}$

is the image of $\hat{L}$ . Thus, as we just observed, $H_{+}$ has the splitting prop-
erty, so $H\cong H_{+}$ by (9). Similarly (8) and (9) imply (4), so it remains to

assume the splitting property and show $V_{+}=V$ . Let $\hat{E}=\rho-1(E)\cap P$

and $\hat{J}=\rho^{-1}(C_{L_{1}}(t))$ . We show $Z(P)\leq[\hat{E},\hat{J}]\Phi(P)$ , so that as $H_{+}$ has
the splitting property,

$V_{+}\cap Z(P)=[\hat{E},\hat{J}]=V\cap Z(P)$

and then

$V_{+}=Z(\hat{L})+(V_{+}\cap Z(P)=Z(\hat{L})+(V\cap Z(P)=V$

as desired.
Now $P/\Phi(P)$ is the largest module $M=[M, L_{1}]$ for $L_{1}$ such that

$M/C_{M}(L_{1})\cong\tilde{Q}$ . Further $J=C_{L_{1}}(\tilde{t})$ and $\tilde{E}$ is the unique 10-

dimensional $L_{1}$ -submodule of $P/Z(P)$ , so $Z(P)\leq[\hat{E}/\Phi(P), J]$ by 5.8.3,
completing the proof of the lemma. Q.E.D.
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(7.14) Let $\check{G}$ be the extension of $G$ by the graph-field automorphism
$\sigma$ of 7.10 and $\check{H}=C_{\check{G}}(z)$ . Assume $\check{H}_{1}$ is a group with $F^{*}(\check{H}_{1})=Q_{1}\cong Q$

and with a subgroup $H_{1}$ of index 2 containing $Q_{1}$ such that $ H_{1}/Z(H_{1})\cong$

$\tilde{H}$ . then $\check{H}/\langle z\rangle\cong\check{H}_{1}/Z(H_{1})$ .

Proof. As $F^{*}(\check{H}_{1})=Q_{1}$ and $H_{1}$ is of index 2 in $\check{H}_{1}$ with $H_{1}/Z(H_{1})$

$\cong\tilde{H}$ , $F^{*}(\check{H}_{1}/Q_{1})=H_{1}/Q_{1}\cong H^{*}\cong U_{6}(2)$ . Therefore as $ out(U_{6}(2))\cong$

$S_{3},\check{H}_{1}/Q_{1}\cong\check{H}/Q$ . As $H_{1}/Z(H_{1})\cong\tilde{H}$ , the representation of $H_{1}/Q_{1}$

on $\tilde{Q}_{1}=Q_{1}/Z(Q_{1})$ is quasiequivalent to that of $H^{*}$ on $\tilde{Q}$ by 3.1. By

6.1.7, $H^{*}$ is absolutely irreducible on $\tilde{Q}$ , so $N_{GL(\tilde{Q}}(H^{*})\cong Aut(U_{6}(2))$ ,

and hence as $\check{H}_{1}/Q_{1}\cong\check{H}/Q$ , the representation of $\check{H}_{1}/Q_{1}$ on $\tilde{Q}_{1}$ is

quasiequivalent to that of $\check{H}/Q$ on $\tilde{Q}$ , so 3.1 completes the proof of the
lemma. Q.E.D.

(7.15) (1) For $p\neq 2$ or 11, $p$ prime, and $P\in Syl_{p}(G)$ , $C_{G}(P)\leq P$

and if $p=3$ then $N_{G}(P)$ is $a\{2,3\}$ -group.
(2) If $Y\leq G$ is of order 11 then $C_{G}(Y)\cong Z_{11}\times S_{3}$ .

(3) If $Y\leq G$ is of order 7 then $C_{G}(Y)=Y\times E(C_{G}(Y))$ with
$E(C_{G}(Y))\cong L_{3}(2)$ or $L_{3}(4)$ .

(4) If $Y\leq G$ is of order 5 then $C_{G}(Y)\cong Z_{5}\times A_{5}$ .

(5) If $Y$ is a 3-central subgroup of $G$ of order 3 then $C_{G}(Y)$ is $a$

$\{2,3\}$ -group.

(6) If $S\in Syl_{3}(G)$ then $J(S)\cong E_{3^{5}}$ and $N_{G}(J(S))/J(S)\cong O_{6}^{-}(2)$ .

Proof. This is well known and follows from the Springer-Steinberg
theory of semisimple elements of finite groups of Lie type. Q.E.D.

(7.16) If $M\leq G$ is of odd order then $|M|<10^{5}$ .

Proof. Let $F=F(M)$ . As $M$ is of odd order, $M$ is solvable,
so $C_{M}(F)\leq F$ . ( $cf$ 31.10 in [FGT]) Let $p$ be a prime divisor of $|F|$

and $P=O_{p}(M)$ . If $p\neq 3$ or 11 and $P\in Syl_{p}(G)$ , then by 7.15.1,
$O^{p}(F)\leq C_{G}(P)\leq P$ , so $P=F$ . Thus $|M|\leq n_{p}|P|$ , where $n_{p}$ is
the maximal order of a subgroup $X$ of $GL(P/\Phi(P))$ of odd order with
$O_{p}(X)=1$ . In each case $n_{p}|P|<10^{5}$ .

Further if $p=11$ then $F\leq O^{2}(C_{G}(P))\cong Z_{33}$ by 7.15.2, so

$|M|\leq|F|\cdot|O(Aut(Z_{11}))|\leq 33\cdot 5<10^{5}$

Similar arguments work if $P$ is of order 5 or 7, using 7.15.3 and 7.15.4.
Therefore we may assume $F=O_{3}(M)$ . Now if $P\in Syl_{3}(FC_{G}(F))$

then by a Frattini argument, $M\leq N_{G}(F)=C_{G}(F)(N_{G}(P)\cap N_{G}(F)$ ,
so as $C_{M}(F)\leq F$ , $N_{G}(P)\cap N_{G}(F)$ contains a subgroup $M_{0}$ of odd
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order with $|M_{0}|\geq|M|$ . Hence replacing $M$ by $M_{0}$ if necessary, we may
assume $P=F$ . In particular taking $F\leq S\in Syl_{3}(G)$ , $Z=Z(S)\leq F$ .

Let $ U=\langle Z^{M}\rangle$ , so that $Z\cong E_{3^{n}}$ for some $n$ . Then $C_{M}(U)\leq C_{M}(Z)$ ,

and $C_{M}(Z)$ is a 3-group by 7.15.5. Therefore $C_{M}(U)\leq O_{3}(M)=F$ .
Hence $|M|\leq|F|N_{n}$ , where $N_{n}$ is the maximal order of a subgroup $X$ of
odd order in $GL_{n}(3)$ with $O_{3}(X)=1$ .

By 7.15.6, $n\leq 5$ , so $|M|_{3’}$ divides 5 $\cdot 11\cdot 13$ . Indeed if 11 divides
$|M|$ then $n=5$ , so $U=J(S)$ for $S\in Syl_{3}(G)$ by 7.15.6, whereas by the
last remark in 7.15.6, 11 does not divide the order of $N_{G}(J(S))$ . So 11
does not divide the order of $M$ . Further by 7.15.4, $G$ has no subgroup
of order 13 $\cdot 5$ , so by Hall’s Theorem, (cf. 18.5 in [FGT]) $|M|_{3’}=1,5$ ,

or 13. But $|G|_{3}=3^{9}$ and $3^{9}$ . $5<10^{5}>3^{8}\cdot 13$ , so we are left with the
case $|M|=3^{9}\cdot 13$ .

By 7.15.1, if $Y$ is of order 13 in $M$ then $C_{F}(Y)=1$ and $|N_{M}(Y)|=1$

or 3. Therefore $|F|=3^{3k}$ for some $k$ and hence $F\in Syl_{3}(G)$ , contra-
dicting 7.15.1. Q.E.D.

\S 8. Groups of type ${}^{2}E_{6}(2)$ are isomorphic to ${}^{2}E_{6}(2)$

In this section we assume the hypotheses and notation of section 6.
In particular $G$ is of type $2E_{6}(2)$ , $z$ is a 2-central involution in $G$ , $H=$
$C_{G}(z)$ , etc. Further let $G_{0}=2E_{6}(2)$ and $z_{0}$ a long root involution of $G_{0}$ .

By 7.1, $G_{0}$ is of type $2E_{6}(2)$ with $z_{0}2$-central in $G_{0}$ . Let $H_{0}=C_{G_{0}}(z_{0})$ ,
$Q_{0}=O_{2}(H_{0})$ , etc.

(8.1) $\tilde{H}\cong H_{0}/\langle z_{0}\rangle$ .

Proof. First $Q_{0}\cong Q$ , so we may identify the two groups. Further

by 6.2, the representation of $H_{0}^{*}$ on $\tilde{Q}_{0}$ is quasiequivalent to that of $H^{*}$

on $\tilde{Q}$ , so $\tilde{H}\cong\tilde{H}_{0}$ by 3.1. Q.E.D.

By 8.1, $\tilde{H}_{0}\cong\tilde{H}$ , so by 7.8 there is $h\in H-C_{H}(\tilde{t})$ with $t^{h}\in E$ .

Let $k=gh$ , $ V_{3}=\langle z, t, z^{k}\rangle$ , $U_{3}=Q\cap Q^{g}\cap Q^{k}$ , $ X_{3}=\langle Q, Q^{g}, Q^{k}\rangle$ ,
$R_{3}=C_{X_{3}}(V_{3})$ ,

$S_{3}=(Q\cap Q^{g})(Q\cap Q^{k})(Q^{g}\cap Q^{k})$ ,

and $P_{3}=N_{G}(V_{3})$ . By 8.16 in [SG],

$R_{3}=C_{Q}(V_{3})C_{Q^{g}}(V_{3})C_{Q^{k}}(V_{3})=O_{2}(X_{3})$ ,

$X_{3}/R_{3}=GL(V_{3})\cong L_{3}(2)$ , $[X_{3}, U_{3}]\leq V_{3}$ , $\Phi(U_{3})=1$ , $P_{3}=X_{3}C_{H}(V_{3})$ ,

and $P_{3}/R_{3}=X_{3}/R_{3}\times C_{H}(V_{3})/R_{3}$ .
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By 7.8, $C_{H}(V_{3})/R_{3}\cong A_{5}$ , so $P_{3}/R_{3}\cong L_{3}(2)\times A_{5}$ . Again by 7.8,
$m(U_{3})=6$ , so by 8.16 in [SG], $S_{3}/U_{3}$ is the sum of 4 copies of the dual $V_{3}^{*}$

of $V_{3}$ as an $X_{3}/R_{3}$ module and $R_{3}/S_{3}$ is the sum of 4 copies of $V_{3}$ as an
$X_{3}/R_{3}$ module By 7.8, $C_{H}(V_{3})$ has chief series $0<\tilde{V}<\tilde{V}_{3}<\tilde{U}_{3}<\tilde{E}$

on $\tilde{E}$ with $E/U_{3}$ the $\Omega_{4}^{-}(2)$ module and $U_{3}/V_{3}$ the $L_{2}(4)$ module for
$C_{H}(V_{3})$ . Finally by 7.8, $C_{H}(V_{3})$ has four $L_{2}(4)$ -sections and three $\Omega_{4}^{-}(2)-$

sections on $R_{3}$ . We summarize all this as:

(8.2) (1) $P_{3}/R_{3}=X_{3}/R_{3}\times C_{H}(V_{3})/R_{3}$ with $X_{3}/R_{3}\cong L_{3}(2)$ and
$C_{H}(V_{3})/R_{3}\cong A_{5}$ .

(2) $R_{3}$ has chief series

$0<V_{3}<U_{3}<S_{3}<R_{3}$

with $V_{3}$ the natural module for $X_{3}/R_{3}$ , $[X_{3}, U_{3}]\leq V_{3}$ and $U_{3}/V_{3}$ is the
$L_{2}(4)$ module for $C_{H}(V_{3})/R_{3}$ , $S_{3}/U_{3}$ is the tensor product of the dual

of $V_{3}$ as an $X_{3}/R_{3}$ -module with the $\Omega_{4}^{-}(2)$ module for $C_{H}(V_{3})/R_{3}$ , and
$R_{3}/S_{3}$ is the tensor product of $V_{3}$ as an $X_{3}/R_{3}$ -module with the $L_{2}(4)-$

module for $C_{H}(V_{3})/R_{3}$ .

(8.3) There exists $s\in z^{G}$ with $sz$ of order 3, $C_{G}(\langle s, z\rangle)\cong U_{6}(2)$ ,
and $N_{G}(\langle sz\rangle)=\langle s, z\rangle\times C_{G}(\langle s, z\rangle)$ .

Proof Let $ X_{2}=\langle Q, Q^{g}\rangle$ . Then $X_{2}\leq X_{3}$ so there is $x$ of order
3 in $X_{2}$ fused to $y\in X_{3}\cap H$ . Notice $y^{*}$ is inverted by a transvection

in $H^{*}$ as $\tilde{H}_{0}\cong\tilde{H}$ and the remark holds in $H_{0}^{*}$ since $y$ is inverted by
some conjugate $c\in Q^{g}$ of $z$ in $H_{0}$ and $c^{*}$ is a transvection in $H_{0}^{*}$ by
7.2 and 7.3.2. Therefore $C_{Q}(y)\cong D_{8}^{4}$ and $C_{H}(y)/C_{Q}(y)\langle y\rangle\cong U_{4}(2)$ .

Let $T_{y}\in Syl_{2}(C_{H}(y))$ ; then $\langle z\rangle=Z(T_{y})$ and $T_{y}$ is of order $2^{15}$ . As
$\langle z\rangle=Z(T_{y})$ , $T_{y}\in Syl_{2}(C_{G}(y))$ .

Next let $T_{x}\in Syl_{2}(C_{P_{2}}(x))$ . From the structure of $P_{2}$ described in
6.1,

$C_{P_{2}}(x)/\langle x\rangle\cong L_{3}(4)/E_{2^{9}}$

with $O_{2}(C_{P_{2}}(x))$ quasiequivalent to the Todd module for $C_{P_{2}}(x)/O_{2}(C_{P_{2}}$

$(x))\langle x\rangle$ . In particular $T_{x}$ is of order $2^{15}$ and hence as $x$ and $y$ are conju-
gate, the previous paragraph says that $T_{x}\in Syl_{2}(C_{G}(x))$ and $Z(T_{x})$ is
generated by a conjugate of $z$ . Now the hypotheses of Theorem 30.1 in
$[3T]$ are satisfied, so by that Theorem, $C_{G}(x)/\langle x\rangle\cong C_{G}(y)/\langle y\rangle\cong U_{6}(2)$ .

Next $x$ is inverted by an involution $u\in Q$ with $[C_{P_{2}}(x), u]=$

$\langle x\rangle$ , so $u$ induces an automorphism of $C_{G}(x)/\langle x\rangle\cong U_{6}(2)$ centralizing
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the parabolic $ C_{P_{2}}(x)/\langle x\rangle$ , and hence centralizing $ C_{G}(x)/\langle x\rangle$ . Therefore
$N_{G}(\langle x\rangle)=\langle x, u\rangle\times E(C_{G}(x))$ with $E(C_{G}(x))\cong U_{6}(2)$ .

Finally $u\in Q$ centralizes a $L_{3}(4)$-section of $H$ , so as $\tilde{H}\cong\tilde{H}_{0},7.5$

says that $u\in t^{H}\subseteq z^{G}$ . Hence there exists $s\in z^{G}$ with $\langle s, z\rangle$ conjugate
to $\langle u, x\rangle$ , completing the proof. Q.E.D.

(8.4) $H\cong H_{0}$ .

Proof. By 8.3 there is $s\in z^{G}$ with $C_{G}(\langle s, z\rangle)$ a complement to $Q$

in $H$ . Hence 7.13.5 completes the proof. Q.E.D.

By 8.4 there is an isomorphism $\alpha$ : $H\rightarrow H_{0}$ . Let $ t_{0}=t\alpha$ , $t_{0}=t^{go}$ ,
$ h_{0}=h\alpha$ where $k=gh$ , $ V_{3}^{0}=V_{3}\alpha$ , and $P_{3}^{0}=N_{G_{0}}(V_{3}^{0})$ .

(8.5) There exist an isomorphism $\zeta$ : $P_{3}\rightarrow P_{3}^{0}$ such that $\alpha=\zeta$ on
$H\cap P_{3}$ .

Proof. We appeal to 21.12 in $[3T]$ . The $P_{3}$ -chief series required in

that lemma is:

$1<V_{3}<U_{3}<S_{3}<R_{3}$

and by 8.2, the image of this series under $\alpha$ is the corresponding series
in $R_{3}^{0}$ . Namely by definition, $ V_{3}^{0}=V_{3}\alpha$ . Also as $ t_{0}=t\alpha$ , $ V_{0}=V\alpha$ and

then as $E/V=C_{Q/V}(O_{2}(C_{H}(\tilde{V})))$ ,

$(Q\cap Q^{g})\alpha=E\alpha=E_{0}=Q_{0}\cap Q_{0}^{g0}$ .

Therefore $U_{3}\alpha=(E\cap E^{h})\alpha=E_{0}\cap E_{0}^{h_{0}}=U_{3}^{0}$ .

Next $(Q\cap H^{g})/E$ , $(Q^{g}\cap H)/E$ , and $(Q^{gu}\cap H)/E$ , $u\in Q-C_{Q}(t)$ ,

are the three $C_{H}(\tilde{t})$ -invariant subspaces of $O_{2}(C_{H}(\tilde{t}))/E$ , with $Q^{g}\cap H$

distinguished by $\Phi(Q^{g}\cap H)=\langle t\rangle$ , so $(Q^{g}\cap H)\alpha=Q_{0}^{g0}\cap H_{0}$ . Then

$(Q^{g}\cap Q^{gh})\alpha=Q_{0}^{go}\cap H_{0}\cap Q_{0}^{g_{0}h_{0}}\cap H_{0}=Q_{0}^{g0}\cap Q_{0}^{g0h_{0}}$ ,

so
$S_{3}\alpha=(Q\cap Q^{g})((Q\cap Q^{gh})(Q^{g}\cap Q^{gh})\alpha=S_{3}^{0}$ .

Finally $R_{3}=O_{2}(C_{H}(V_{3}))$ , so $R_{3}\alpha=R_{3}^{0}$ .

Next 8.2 says that hypotheses (2), (3), (5) and (6) of 21.12 in $[3T]$

are satisfied. To check hypothesis (4) of that lemma, use Remark 21.9
and Lemma 21.13 of $[3T]$ . Now 21.12 in $[3T]$ supplies the extension
$\zeta$ : $P_{3}\rightarrow P_{3}^{0}$ of $\alpha$ : $P_{3}\cap H\rightarrow P_{3}^{0}\cap H_{0}$ . Q.E.D.
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(8.6) $ G=\langle H, P_{3}\rangle$ .

Proof. Let $ K=\langle H, P_{3}\rangle$ and assume that $K\neq G$ . Then by in-

duction on the order of $G$ , $K\cong 2E_{6}(2)$ . By 7.7, $K$ has 3 classes of
involutions with representatives $j_{i}$ , $1\leq i\leq 3$ , while by 7.5, each class is
fused into $Q$ under $K$ . By 4.7.2,

$z^{G}\cap Q=\{z\}\cup t^{H}=z^{K}\cap Q$ ,

so $z^{G}\cap K=z^{K}$ . Hence as also $C_{G}(z)=H\leq K$ , 7.3 in [SG] says $K$ is
the unique point of $G/K$ fixed by $z$ . We show $K$ is strongly embedded
in $G$ ; then 7.6 in [SG] contradicts the fact that $K$ has more than one
class of involutions.

To show $K$ is strongly embedded in $G$ it remains to show $ C_{G}(j)\leq$

$K$ for each involution $j\in K$ . So assume $Y=C_{G}(j)\not\leq K$ for some
involution $j\in K$ and let $ Y^{*}=Y/\langle j\rangle$ . We have seen $j\neq j_{1}=z$ . Ifj $=j_{2}$ ,
then from 7.5, we may take $j\in Z_{4}=Z(P_{4})$ with $R_{4}\leq C_{K}(j)\leq P_{4}$ and
$C_{K}(j)/R_{4}\cong Sp_{6}(2)$ . By 7.4 in [SG], $C_{K}(j)$ controls 2-fusion in $C_{K}(j)$ ,
so $Z_{4}^{*}$ is a strongly closed abelian subgroup of $C_{K}(j)^{*}$ in $Y^{*}$ . From 7.5,
$Z_{4}$ has the structure of an 8-dimensional orthogonal space over $F_{2}$ with
$z^{G}\cap Z_{4}$ the singular points and $j^{G}\cap Z_{4}$ the nonsingular points. The
subspace $U_{4}$ of this orthogonal space orthogonal to $j$ is $C_{K}(j)$ invariant.

Pick $u\in Y-K$ to be fused to an element of $z^{G}\cap Z_{4}-U_{4}$ under
$Y$ . As $C_{K}(j)$ controls 2-fusion in $C_{K}(j)$ , $z^{*}$ and $u^{*}$ are not conjugate
in $Y^{*}$ , so $z^{*}u^{*}$ has even order. Let $i^{*}$ be the involution in $\langle z^{*}u^{*}\rangle$ . Then
$i^{*}\in C_{Y^{*}}(z^{*})\leq C_{K}(j)^{*}$ and $z^{*}i^{*}$ is fused to $z^{*}$ or $u^{*}$ , and hence is in $Z_{4}^{*}$ ,
so $i^{*}\in Z_{4}^{*}$ . Then as $C_{Y^{*}}(i^{*})\not\leq C_{K}(j)^{*}$ , it follows that $\langle i,j\rangle=J$ contains
no conjugate of $z$ , so $J$ is a definite line in $Z_{4}$ . Then $R_{4}\leq C_{K}(J)\leq P_{4}$

with $C_{K}(J)/R_{4}\cong\Omega_{6}^{+}(2)$ and $X=C_{G}(J)\not\leq K$ .

Let $X’=X/J$ . Again $C_{K}(J)’$ controls 2-fusion in $C_{K}(J)’$ , so $Z_{4}’$

is a strongly closed abelian subgroup of $C_{K}(J)’$ in $X’$ . This time there
are two $X’$-classes of involutions $z’$ and $v’$ in $Z_{4}’$ corresponding to the
singular and nonsingular points of the orthogonal space $Z_{4}’$ . As both $zJ$

and $vJ$ contain a member of $z^{G}$ , both $z’$ and $v’$ fix a unique point of
$X’/C_{K}(J)’$ . But now the argument of the previous paragraph applied
to $u\in X-K$ fused under $Y$ to $v$ supplies a contradiction.

So $C_{G}(j_{2})\leq K$ and $j=j_{3}$ . By 7.5 we may take $j\in E$ and
$C_{K}(j)\leq P_{2}$ . Then $V^{*}$ and $E^{*}$ are strongly closed abelian subgroups
of $C_{K}(j)^{*}$ and we argue as above on $u\in Y-K$ fused under $Y$ to a
conjugate of $z$ in $E-V$ to obtain a contradiction and complete the
proof. Q.E.D.

Theorem 8.7. Each group of type $2E_{6}(2)$ is isomorphic to $2E_{6}(2)$ .
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Proof. We must show $G$ is isomorphic to $G_{0}$ . We use the machinery
of Section 37 of [SG] to do so. In particular we construct uniqueness
systems $\mathcal{U}$ and $\mathcal{U}_{0}$ for $G$ and $G_{0}$ .

Let $\triangle$ be the graph with vertex set $z^{G}$ and $\triangle(z)=t^{H}$ . Then $G$ is
an edge and vertex transitive group of automorphisms. Define $\triangle 0$ for
$G_{0}$ similarly. By 7.9, $\triangle 0$ is simply connected.

Let $\theta$ be the complete graph with vertex set $z^{P_{3}}$ . Then $\theta$ is a sub-
graph of $\triangle$ and $P_{3}$ is vertex and edge transitive on $\theta$ . Define $\theta_{0}$ for $G_{0}$

similarly. As $C_{H}(t)$ is transitive on $t^{H}\cap E-V$ , $G$ has two orbits on
triangles of $\triangle$ , so each triangle in $\triangle$ is fused under $G_{0}$ into $\theta$ .

Let $\mathcal{U}=(G, \triangle, P_{3}, \theta)$ and $\mathcal{U}_{0}=(G_{0}, P_{3}^{0}, \triangle_{0}, \theta_{0})$ . As $G_{0}$ is simple,
$\triangle 0$ is simply connected, and each triangle in $\triangle 0$ is fused into $\theta_{0}$ , so to
show $G\cong G_{0}$ it suffices by Exercise 13.1 in [SG] to show that $\mathcal{U}$ and $\mathcal{U}_{0}$

are equivalent uniqueness systems.
It is trivial that $\mathcal{U}$ and $\mathcal{U}_{0}$ are uniqueness systems, given 8.6. The

maps $\alpha$ , $\zeta$ define a similarity of $\mathcal{U}$ and $\mathcal{U}_{0}$ in the sense of section 37 of
[SG]. To complete the proof we appeal to Exercise 13.3.3 in [SG]. For
this we need geometries $\Gamma$ and $\Gamma_{0}$ for $G$ and $G_{0}$ respectively. Define
$\Gamma=\Gamma(G, F)$ to be the coset geometry of $\mathcal{F}=(H, P_{2}, P_{3})$ and define
$\Gamma_{0}$ similarly. Hypothesis $(\Gamma 0)$ of section 38 of [SG] can be seen to be
satisfied by $\Gamma$ and $\Gamma_{0}$ by checking the conditions at the top of page 205
of [SG]. Observe $\Gamma$ is isomorphic to the geometry with point set $z^{G}$ , line
set $V^{G}$ , and plane set $V_{3}^{G}$ , with incidence defined by inclusion. A similar
remark holds for $\Gamma_{0}$ . Thus $\triangle$ and $\triangle 0$ are isomorphic to the collinearity
graphs of $\Gamma$ and $\Gamma_{0}$ , respectively, via the map $z^{x}\mapsto Hx$ . Using these
isomorphisms, Hypotheses $(\Gamma i)$ , $1\leq i\leq 5$ , of section 38 of [SG] are easy
to check as are the remaining conditions of Exercise 13.3.3 of [SG].

Q.E.D.

\S 9. Groups of type $Z_{2}/2E_{6}(2)$

Define a group $\hat{G}$ to be of type $Z_{2}/2E_{6}(2)$ if $\hat{G}$ possesses an involution
$z$ such that $\hat{H}=C_{\hat{G}}(z)$ satisfies $Q=F^{*}(\hat{H})\cong 2^{1+20}$ and $\hat{H}$ has a

subgroup $H$ of index 2 with $H/Q\cong U_{6}(2)$ , and $z$ is not weakly closed

in $Q$ with respect to $\hat{G}$ .

Throughout this section assume $\hat{G}$ is of type $Z_{2}/2E_{6}(2)$ and let $z$

be an involution in $\hat{G}$ such that $\hat{H}=C_{\hat{G}}(z)$ and $Q=F^{*}(\hat{H})$ satisfy our

hypotheses. We will show that $\hat{G}$ has a subgroup $G$ of index 2 such that
$H=C_{G}(z)$ . Hence $G$ is of type $2E_{6}(2)$ and hence by Theorem 8.7:

Theorem 9.1. If $\hat{G}$ is of type $Z_{2}/2E_{6}(2)$ then $F^{*}(\hat{G})$ is of index
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2 in $\hat{G}$ and isomorphic to $2E_{6}(2)$ .

Much of the initial analysis is the same as that for groups of type
$2E_{6}(2)$ , so rather than repeat all details we only indicate where more
needs to be said. Adopt the notation of section 6. In particular let
$t=z^{g}\in Q-\{z\}$ and $E=Q\cap Q^{g}$ . We observe first that

(9.2) (1) $\hat{H}/\hat{Q}$ is the extension of $H^{*}\cong U_{6}(2)$ by an involutory
outer automorphism $\tau$ .

(2) Lemma 6.1 holds in $\hat{G}$ with $N_{\hat{H}}(R^{*})$ the split extension of $ R^{*}\cong$

$E_{2^{9}}$ by $L_{3}(4)$ extended by a field automorphism. This time $\hat{P}_{2}=N_{\hat{G}}(V)$

$=XC_{\hat{H}}(V)$ with

$R=O_{2}(N_{\hat{G}}(V))=C_{X}(V)$ ,

$\hat{P}_{2}/R=X/R\times C_{\hat{G}}(V)/R$ , $X/R\cong S_{3}$ , and $C_{\hat{G}}(V)/R$ the extension of
$L_{3}(4)$ by a field automorphism.

Proof. As $F^{*}(\hat{H})=Q$ and $H$ is of index 2 in $\hat{H}$ , $ F^{*}(\hat{H}/Q)=H^{*}\cong$

$U_{6}(2)$ and hence (1) holds. The proof of Lemma 6.1 then goes through

virtually unchanged once we observe that if $R\leq\hat{T}\in Syl_{2}(\hat{H})$ and
$T=\hat{T}\cap H$ , then $J(\hat{T}/Q)=J(T^{*})\cong E_{2^{9}}$ . This follows from the fact that
$N_{H^{*}}(J(T^{*}))$ is the parabolic described in 6.1.2 and $N_{\hat{H}/Q}(J(T^{*}))$ is the

split extension of $J(T^{*})$ by $L_{3}(4)$ extended by a field automorphism $\tau$ .

Then as $m(J(T^{*})/C_{J(T^{*})}(\tau))=3$ while $C_{J(T^{*})}(\tau)$ is not centralized by a

complement $L_{3}(2)$ in $N_{H^{*}}(J(T^{*}))\cap C_{H^{*}}(\tau)$ , we conclude $J(T^{*})=J(\hat{T})$

as claimed. Q.E.D.

Now with the analogue of 6.1 established, Lemma 6.2 also holds

in $\hat{G}$ since its proof goes through verbatim. Similarly the analogue of

Lemma 8.1 holds. Indeed if we let $\hat{G}_{0}$ be the extension of $G_{0}=2E_{6}(2)$

by the graph-field automorphism $\sigma$ of Lemma 7.10, then $\hat{G}_{0}$ is of type
$Z_{2}/2E_{6}(2)$ with $\hat{H}_{0}=H_{0}\langle\sigma\rangle$ . By 8.1, $\tilde{H}_{0}\cong\tilde{H}$ , and hence by 7.14, we

have an isomorphism $\varphi$ : $\hat{H}_{0}/\langle z_{0}\rangle\rightarrow\hat{H}/\langle z\rangle$ . Let $\tilde{L}_{0}$ be then image in
$\tilde{H}_{0}$ of a $\sigma$-invariant Levi factor of $H_{0}$ and $\tilde{L}=\varphi(\tilde{L}_{0})$ . Finally let $u\in\hat{H}$

with $\tilde{u}=\varphi(\sigma)$ . Then by 7.10:

(9.3) (1) $C_{H}(u)/C_{Q}(u)\cong Sp_{6}(2)$ , $C_{Q}(u)=D_{1}D_{2}$ where $D_{1}\cap D_{2}=$

$\langle z\rangle,\tilde{D}_{1}$ is the natural module for $C_{H}(u)/C_{Q}(u)$ , and $C_{Q}(u)/D_{1}$ is the
spin module.
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(9.4) $u$ is an involution.

Proof. As $\tilde{u}$ is an involution, $u^{2}=1$ or $z$ , so it remains to show
$u^{2}\neq z$ . To see this we consider the local subgroup $\hat{P}_{2}$ of 9.2. Let $\overline{P}_{2}=$

$\hat{P}_{2}/V$ . The isomorphism $\varphi$ induces an isomorphism $\varphi$ : $ N_{\hat{H}_{0}}(V_{0})/V_{0}\rightarrow$

$N_{\hat{H}}(V)/V$ which extends to an isomorphism $\psi$ : $\overline{P}_{2,0}=P_{2,0}/V_{0}\rightarrow\overline{P}_{2}$

by 21.12 in $[3T]$ and 9.2. Hence by 7.10, $\overline{u}$ centralizes a subgroup $\overline{I}\cong S_{3}$

faithful on $V$ . Then $I$ $\cong S_{4}$ and $\langle u\rangle V\underline{\triangleleft}I\langle u\rangle$ , so it follows that $u^{2}\neq z$ ,
and hence indeed $u$ is an involution. Q.E.D.

(9.5) (1) All involutions in $H$ are fused under $\hat{G}$ into $Q$ .

Proof. Let $j\in H$ be an involution. We wish to show $ j^{\hat{G}}\cap Q\neq\emptyset$ ,

so we may assume $j^{*}\neq 1$ . Then by 7.7 and as $\varphi$ : $\tilde{H}_{0}\rightarrow\tilde{H}$ is an
isomorphism, we may take $j^{*}\in R^{*}$ and $j^{*}$ of type $j_{1}$ , $j_{2}$ or $j_{3}$ . Then by
7.4, $m([j,\tilde{Q}])=6,8,10$ in the respective case. Further by 7.4.2, if $j^{*}$ is
of type $j_{3}$ then $Q$ is transitive on the involutions in $jQ$ , so as $Q^{g}\cap H$

contains an involution in $jQ$ , each involution $j$ with $j^{*}$ of type $j_{3}$ is fused

into $Q$ under $\hat{G}$ .

In the remaining cases if $i\in jQ$ is an involution then $i=jx$ for

some $\tilde{x}\in C_{\overline{Q}}(j)$ and if $\tilde{x}\in[j,\tilde{Q}]$ then $i$ is fused to $j$ or $jz$ under $Q$ .

From the proof of 7.4 and recalling that $\tilde{H}\cong\tilde{H}_{0},\tilde{L}$ contains a subgroup
$\tilde{M}=\tilde{M}_{1}\times\tilde{M}_{2}$ with $\tilde{M}_{1}\cong S_{3},\tilde{M}_{2}\cong U_{4}(2)$ , and $\tilde{Q}=(\tilde{Q}_{1}\oplus\tilde{Q}_{2})\perp\tilde{Q}_{3}$

corresponding to the decomposition described in the proof of 7.4.
Suppose $j^{*}$ is of type $j_{1}$ . Then as we saw during the proof of 7.4, we

may choose $\tilde{j}\in\tilde{M}_{1}$ , so that $\tilde{M}_{2}\leq C_{\overline{L}}(j),\tilde{Q}_{1}=[\tilde{Q}, j]$ , $C_{\overline{Q}}(j)=\tilde{Q}_{1}\oplus\tilde{Q}_{3}$ ,

and $C_{\overline{Q}}(j)=[C_{\overline{Q}}(j), M_{2}]$ . Then as $C_{\overline{L}}(j)=O^{2}(C_{\overline{L}}(j))$ , also $C_{\overline{H}}(j)=$

$O^{2}(C_{\overline{H}}(j))$ , and hence $ C_{\overline{H}}(j)=C_{H}(j)/\langle z\rangle$ . Thus if $jx$ is an involution

then $x$ is an involution, so as $\tilde{M}_{2}$ is transitive on singular vectors of $\tilde{Q}_{3}$ ,

each involution in $jQ$ is conjugate under $C_{H}(j)$ to $j$ , $jz$ , $jx$ , or $jxz$ ,

for some fixed $\tilde{x}\in\tilde{Q}_{3}$ singular. Then as we may choose $x\in E$ and
$j\in Q^{g}\cap H$ , each involution $j\in H$ with $j^{*}$ of type $j_{1}$ is fused into $Q$

under $\hat{G}$ .

Finally the case $j^{*}$ of type $j_{2}$ is quite similar. Namely from the proof

of 7.4, we may take $\tilde{j}\in\tilde{M}_{2}$ and $C_{\overline{Q}}(j)=[\tilde{Q}, j]\oplus\tilde{Q}_{4}$ with $\tilde{Q}_{4}\leq\tilde{Q}_{1}\oplus\tilde{Q}_{2}$ a

nondegenerate 4-dimensional space of $sign+1$ and a Sylow 3-subgroup of
$C_{L}(j)$ is transitive on the singular vectors of $\tilde{Q}_{4}$ and one such is contained
in $E$ . So we can repeat the argument of the previous paragraph.

Q.E.D.

(9.6) $ u^{\hat{G}}\cap H=\emptyset$ .
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Proof. Assume otherwise. Then by 9.5, $ u^{\hat{G}}\cap Q\neq\emptyset$ . Suppose first

that $u=z^{y}$ for some $y\in\hat{G}$ . Then as $H^{*}$ has no $Sp_{6}(2)$ -sections in
parabolics, $z\in C_{Q}(u)=[C_{Q}(u), C_{H}(u)]\leq Q^{y}$ , so $u\in Q$ , a contradic-
tion.

Therefore $u\not\in z^{\hat{G}}$ . Let $S\in Syl_{2}(C_{\hat{H}}(u))$ and $S\leq T_{1}\in Syl_{2}(C_{\hat{G}}(u))$ .

By 4.3, $ Z(T_{1})=\langle z^{y}, u\rangle$ with $u\in Q^{y}$ . Then $Z(T_{1})\leq C_{T_{1}}(z)\leq S$ , so
$Z(T_{1})\leq Z(S)=\langle z, a, u\rangle\cong E_{8}$ with $\langle z, a\rangle\leq Q$ by 7.10.4. In particular
$ 1\neq Z(T_{1})\cap\langle z, a\rangle$ .

Suppose $z^{y}\in Q$ . Then $u\in Q^{y}\cap\hat{H}\leq H$ , a contradiction. Therefore
$uz^{y}\in Q$ . Next $uz^{y}\in u^{Q^{y}}$ and $u^{\hat{G}}\neq z^{\hat{G}}$ , so $uz^{y}\neq z$ . Now $\tilde{a}\in[\tilde{Q}, u]$ , so
$ua$ or $uaz\in u^{Q}$ , and without loss $ua\in u^{Q}$ . Thus $ua\neq z^{y}$ , so $uz^{y}\neq a$ .

This leaves $uz^{y}=az$ , so $z^{y}=uaz\in(uz)^{Q}$ . Thus $uz\in z^{\hat{G}}$ , so we have
a contradiction by symmetry between $u$ and $uz$ . Q.E.D.

We are now in a position to complete the proof of Theorem 9.1. By

9.6 and a standard transfer argument such as 37.4 in [FGT], $\hat{G}$ has a
subgroup $G$ of index 2 with $u\not\in G$ . Then as $H$ is the unique subgroup

of $\hat{H}$ of index 2, $H=G\cap\hat{H}$ . Therefore $G$ is of type $2E_{6}(2)$ , so Theorem
8.7 completes the proof of Theorem 9.1.

References

[A] M. Aschbacher, On the maximal subgroups of the finite classical
groups, Invent. Math., 76 (1984), 469-514.

[FGT] M. Aschbacher, “Finite Group Theory” , Cambridge University Press,
Cambridge, 1986.

[SG] M. Aschbacher, “Sporadic Groups”, Cambridge University Press,
Cambridge, 1994.

[3T] M. Aschbacher, “3-Transposition Groups”, Cambridge University
Press, Cambridge, 1997.

[ASe] M. Aschbacher and G. Seitz, Involutions in Chevalley groups over
fields of even order, Nagoya Math. J., 63 (1976), 1-91.

[CKS] C. Curtis, W. Kantor and G. Seitz, The $2$-transitive permutation
representations of the finite Chevalley groups, Trans. Amer. Math.
Sci., 218 (1976), 1-59.

[S] M. Suzuki, Finite groups in which the centralizer of any element of
order 2 is 2-closed, Ann. Math., 82 (1965), 191-212.

California Institute of Technology
Pasadena, CA 91125
U. S. A.



Advanced Studies in Pure Mathematics 32, 2001
Groups and Combinatorics–in memory of Michio Suzuki

pp. 245-254

Some Results on Modular Forms
–Subgroups of the Modular Group

Whose Ring of Modular Forms
is a Polynomial Ring

Eiichi Bannai, Masao Koike, Akihiro Munemasa
and Jiro Sekiguchi

\S 1. Introduction

This paper is the first of the sequel of papers on the joint work
of these authors on modular forms. We consider the problem of de-
termining finite index subgroups of the modular group $SL(2, \mathbb{Z})$ whose
ring of modular forms is isomorphic to a polynomial ring. First, in this
paper, we consider this question for modular forms of integral weights.
In subsequent papers, we will consider the problem for modular forms
of half-integral weights, and more generally, of $1/l$-integral weights. It
turns out that the case of $l$ $=5$ is particularly interesting in connec-
tion with the classical work of F. Klein [9], as well as its analogy with
the other two cases of $l$ $=1$ and $l$ $=2$ , which are related to ternary
and binary self-dual codes, respectively. In this first paper, we explain
our overall motivation, and we prove the results only for the integral
weight case. We remark that some preliminary announcements of some
of the results given in the present paper have been made in two unofficial
publications [2] and [17] written in Japanese.

\S 2. Statement of Results

Let $\Gamma$ be a finite index subgroup of $SL(2, \mathbb{Z})$ . We denote by $X\hslash(\Gamma)$

the ring of modular forms of integral weights on the group $\Gamma$ . It is well
known that

(1) $\mathfrak{M}(SL(2, \mathbb{Z}))=\mathbb{C}[E_{4}, E_{6}]$ ,
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where $E_{4}$ and $E_{6}$ are the Eisenstein series of weights 4 and 6, respec-
tively. Since $E_{4}$ and $E_{6}$ are algebraically independent, $\mathfrak{M}(SL(2, \mathbb{Z}))$ is
isomorphic to the polynomial ring in two variables. There are proper
subgroups $\Gamma$ of $SL(2, \mathbb{Z})$ whose rings of modular forms of integral weights
are isomorphic to polynomial rings. Note that, if a subgroup $\Gamma$ has this
property, then its ring of modular forms of integral weights is isomor-
phic to the polynomial ring in two variables. It is the purpose of the
present paper to give a classification of such subgroups up to conjugacy
in $SL(2, \mathbb{Z})$ .

Theorem 1. Let $\mathfrak{M}(\Gamma)$ be the ring of modular forms on a finite
index subgroup $\Gamma$ of the modular group $SL(2, \mathbb{Z})$ . Suppose that $\mathfrak{M}(\Gamma)=$

$\mathbb{C}[\phi_{1}, \phi_{2}]$ where $\phi_{1}$ and $\phi_{2}$ are algebraically independent modular forms of
integral weights. Then $\Gamma$ is conjugate in $SL(2, \mathbb{Z})$ to one of the seventeen
subgroups listed in Table1.

Table 1. List of Subgroups

In Table 1, The column labeled as (
$‘ wt’’$ gives the weights of the

modular forms $\phi_{1}$ , $\phi_{2}$ in Theorem 1. The parameters $\mu$ , $\iota/_{2}$ , $\iota/s$ , $\iota/_{\infty}$ , $u$ , $v$

will be defined in Section 3. The intersection of all conjugates of $\Gamma$ in
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$SL(2, \mathbb{Z})$ is denoted by $C(\Gamma)$ , so that the index in $SL(2, \mathbb{Z})$ of $C(\Gamma)$ is
the order of the permutation group induced by the action of $SL(2, \mathbb{Z})$

on $SL(2, \mathbb{Z})/\Gamma$ . The columns labeled as “index” give the indices of $\Gamma$

and $C(\Gamma)$ in $SL(2, \mathbb{Z})$ . The elements $\sigma_{0}$ , $\sigma_{1}$ , $\sigma_{2}$ appearing in case (e)
will be defined in Section 4, where we give a proof of Theorem 1. In
Section 5, we show that for each of the seventeen subgroups $\Gamma$ , the ring
of modular forms of integral weights on $\Gamma$ is indeed the polynomial ring
in two modular forms.

\S 3. Preliminaries

We assume that the reader is familiar with basic concepts of modular
forms of integral weights on finite index subgroups of $SL(2, \mathbb{Z})$ , as they

are available in [13] and [16]. For $\Gamma\subset SL(2, \mathbb{Z})$ , let us set $\overline{\Gamma}=\Gamma$ .

$\{\pm 1\}/\{\pm 1\}\subset PSL(2, \mathbb{Z})$ . The following parameters of a finite index
subgroup $\Gamma$ of $SL(2, \mathbb{Z})$ are commonly used:

$\mu=|$ PSL (2,$ \mathbb{Z})$ : $\overline{\Gamma}|$ ,

$\iota/_{2}=$ the number of inequivalent elliptic points of order 2,

$I/_{3}=$ the number of inequivalent elliptic points of order 3,

$\nu_{\infty}=$ the number of inequivalent cusps,

$g=$ the genus of $\Gamma$

$=1+\frac{\mu}{12}-\frac{\nu_{2}}{4}-\frac{\nu_{3}}{3}-\frac{\nu_{\infty}}{2}$ .

Furthermore, if $-1\not\in\Gamma$ , then we distinguish two types of cusps, called
regular and irregular. Namely, suppose that $x$ is a cusp of $\Gamma$ , $\sigma(x)=\infty$ ,
$\sigma\in SL(2, \mathbb{Z})$ . Then we have $\sigma\Gamma_{x}\sigma^{-1}=\langle\psi^{h}\rangle$ or $\langle-\psi^{h}\rangle$ for some positive

integer $h$ , where
$\psi=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ .

In the former case the cusp $x$ is called regular, otherwise it is called
irregular. Let us denote by $u$ (resp. $v$ ) the number of inequivalent regular
(resp. irregular) cusps. Then, obviously $l/_{\infty}=u+v$ holds. Let $\mathfrak{M}_{k}(\Gamma)$

denote the space of modular form of weight $k$ on $\Gamma$ . Then $dim\mathfrak{M}_{k}(\Gamma)$

$(k\geq 2)$ can be calculated by using just the above parameters. Namely,
we have

$dim\mathfrak{M}_{2}(\Gamma)=\{$

$g+I/\infty-1$ if $l/_{\infty}>0$ ,

$g$ if $\iota\nearrow\infty=0$ ,

and

$dim9\mathfrak{n}_{k}(\Gamma)=(k-1)(g-1)+l/_{2}[\frac{k}{4}]+\nu_{3}[\frac{k}{3}]+\frac{k}{2}\iota/_{\infty}$ ,
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if $k$ is even and $k\geq 4$ ,

$dim\mathfrak{M}_{k}(\Gamma)=(k-1)(g-1)+\nu_{2}[\frac{k}{4}]+\iota/_{3}[\frac{k}{3}]+\frac{k}{2}u+\frac{k-1}{2}v$ ,

if $k$ is odd, $k\geq 3$ , and $-1\not\in\Gamma$ . If $-1\in\Gamma$ , then $\mathfrak{M}_{k}(\Gamma)=0$ for odd $k$ .

Note that the formula for $dim9\mathfrak{n}_{1}(\Gamma)$ is not known in general.
To conclude this section, we explain the notation used to describe the

subgroups in Table 1. Recall the standard notation for certain subgroups
of $SL(2, \mathbb{Z})$ :

$\Gamma(N)=\{$ $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL(2, \mathbb{Z})|a\equiv d\equiv 1b\equiv c\equiv 0$ $(mod N)(mod N)\}$ ,

$\Gamma_{0}(N)=\{$ $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL(2, \mathbb{Z})|c\equiv 0$ $(mod N)\}$ ,

$\Gamma_{1}(N)=\{$ $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL(2, \mathbb{Z})|a\equiv dc\equiv 0\equiv 1(mod N)(mod N)\}$ ,

The groups No. 6-11 are pairwise conjugate in $GL(2, \mathbb{Q})$ . The elements
$\sigma_{0}$ , $\sigma_{1}$ , $\sigma_{2}$ are defined by

$\sigma_{0}=\left(\begin{array}{ll}1 & 0\\0 & 2\end{array}\right)$ , $\sigma_{1}=\sigma_{0}\psi\phi\sigma_{0}^{-1}$ , $\sigma_{2}=\sigma_{0}\psi\sigma_{0}^{-1}$ , where $\phi=\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ .

The group No. 16 is conjugate in $GL(2, \mathbb{Q})$ to the group No. 13:

(2) $\Gamma_{0}(8)\cap\Gamma_{1}(4)=\sigma_{0}(\Gamma_{1}(4)\cap\Gamma(2))\sigma_{0}^{-1}$ .

Also, the group No. 17 is conjugate in $GL(2, \mathbb{Q})$ to the group No. 12:

(3) $\Gamma_{0}(9)\cap\Gamma_{1}(3)=\left(\begin{array}{ll}1 & 0\\0 & 3\end{array}\right)$ $\Gamma(3)$
$\left(\begin{array}{ll}1 & 0\\0 & 3\end{array}\right)$

\S 4. Proof of Theorem 1

Suppose that $\mathfrak{M}(\Gamma)=\mathbb{C}[\phi_{1}, \phi_{2}]$ , where $\phi_{1}$ , $\phi_{2}$ are algebraically in-
dependent modular forms of weight $a_{1}$ , $a_{2}$ , respectively, on $\Gamma$ . Then we
have, as formal power series,

(4) $\Phi(\Gamma):=\sum_{k=0}^{\infty}dim\mathfrak{M}_{k}(\Gamma)\cdot t^{k}=\frac{1}{(1-t^{a_{1}})(1-t^{a_{2}})}$ .

Without loss of generality we may assume $a_{1}\leq a_{2}$ . Since $o\mathfrak{n}(\Gamma)\supset$

$\mathfrak{M}(SL(2, \mathbb{Z}))$ , (1) implies $a_{1}\leq 4$ and $a_{2}\leq 6$ .
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First consider the case where $-1\not\in\Gamma$ . For fixed $a_{1}$ , $a_{2}$ , comparing
the coefficients in (4), we obtain a system of linear equations with un-
knowns $g$ , $\nu_{2}$ , $\nu_{3}$ , $u$ , $v$ . Taking the conditions $\mu>0$ , $\nu_{2}\geq 0$ , $\nu_{3}\geq 0$ into
account, the list of solutions consists of the cases $(d)-(f)$ in Table 1 and
the case

(g) $(a_{1}, a_{2}, g, \mu, \nu_{2}, \nu_{3}, u, v)=(1,4,0,3,1, 0,2,0)$ .

In order to classify subgroups $\Gamma$ of $SL(2, \mathbb{Z})$ of given parameters, we
use a modification of the technique used in Millington [12]. If we put $\lambda=$

$\phi^{-1}\psi$ , then $SL(2, \mathbb{Z})$ has a presentation $\langle\phi, \lambda |\phi^{4}=\lambda^{3}=1, [\lambda, \phi^{2}]=1\rangle$ .

Let $\Gamma$ be a finite index subgroup of $SL(2, \mathbb{Z})$ , $ X=SL(2, \mathbb{Z})/\Gamma$ , $\overline{X}=$

$SL(2, \mathbb{Z})/\langle\Gamma, -1\rangle$ . Then $SL(2, \mathbb{Z})$ acts on $X$ , $\overline{X}$ , and we have $|\overline{X}|=\mu$ .

Lemma 2. $\phi$ fixes $\nu_{2}$ elements $of\overline{X}$ , $\lambda$ fixes $\nu_{3}$ elements of $\overline{X}$ , and
$\psi$ has $\nu_{\infty}$ cycles on $\overline{X}$ . $ If-1\not\in\Gamma$ , then a cusp $x$ is regular if and only

if $\langle\psi\rangle$ has two orbits on $\langle\psi, -1\rangle$ \sigma \Gamma /\Gamma , where $\sigma(x)=\infty$ , $\sigma\in SL(2, \mathbb{Z})$ .

In particular, $\psi$ has $2u+v$ cycles on $X$ .

Proof The statement on the action on $\overline{X}$ has been proved in [12].
As for the regularity of a cusp $x$ , it suffices to prove that $x$ is irregular
if and only if $\langle\psi\rangle$ acts transitively on $\langle\psi, -1\rangle$ \sigma \Gamma /\Gamma . The latter condition
is equivalent to the existence of a positive integer $h$ satisfying $\psi^{h}\sigma\Gamma=$

$-\sigma\Gamma$ . This implies $-\psi^{h}\in\sigma\Gamma_{x}\sigma^{-1}$ , hence the cusp $x$ is irregular. The
proof of the converse is similar. Q.E.D.

We now describe how to obtain the list of subgroups in the cases
$(d)-(f)$ , and how to prove the nonexistence of a subgroup in the case (g).

First, we enumerate all subgroups $\overline{\Gamma}$ of index $\mu$ in PSL $(2, \mathbb{Z})$ . This can
be done by GAP [6], using the command LowIndexSubgroupsFpGroup, if

one defines PSL $(2, \mathbb{Z})$ as $\langle\overline{\emptyset}, \overline{\lambda}|\overline{\phi}^{2}=\overline{\lambda}^{3}=1\rangle$ . Since $\overline{X}$ can be identified

naturally with PSL $(2, \mathbb{Z})/\overline{\Gamma}$ , the parameters $\nu_{2}$ , $\iota/_{3}$ and $\nu_{\infty}$ make sense
for $\overline{\Gamma}$ . Thus we can extract only those subgroups $\overline{\Gamma}$ of index $\mu$ having
the parameters $\nu_{2}$ , $\nu_{3}$ , $\nu_{\infty}$ as prescribed in the cases $(d)-(g)$ .

The next step is to find subgroups $\Gamma$ of index $ 2\mu$ in $SL(2, \mathbb{Z})$ whose
images are one of the $\overline{\Gamma}$ found in the previous step. We need to check
whether $\Gamma$ satisfies the condition on the parameters $u$ , $v$ described in
Lemma 2. This step can also be done easily by GAP, and we obtain the
subgroups No. 5-17. We remark that the six subgroups in the case (f)
appeared in [3].

Next consider the case where $-1\in\Gamma$ . The method is similar to the
previous case, and the computation is far simpler. Comparing the coef-
ficients in (4), we see that the list of possible parameters is as described
in the cases $(a)-(c)$ in Table 1. Then we enumerate all subgroups $\overline{\Gamma}$ of
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index $\mu$ in PSL $(2, \mathbb{Z})$ having the parameters as in $(a)-(c)$ . The subgroup
$\Gamma$ is the full inverse image of $\overline{\Gamma}$ in $SL(2, \mathbb{Z})$ .

\S 5. Generators of the rings of modular forms

In this section, we show that for each of the seventeen subgroups $\Gamma$ in
Table 1, its ring of modular forms is isomorphic to a polynomial ring. We
have seen that this is the case for $SL(2, \mathbb{Z})$ . Indeed, for the cases $(a)-(c)$

in Table 1, since the weights are even, it is sufficient to check (4) using
the dimension formula; it follows from (4) that there exist algebraic
independent modular forms of weight $a_{1}$ , $a_{2}$ . To be more precise, let
$\theta_{3}(\tau)$ , $\theta_{2}(\tau)$ be Jacobi’s theta functions. It is well known and easy to
see that $\mathfrak{M}(\Gamma(2))=\mathbb{C}[\theta_{3}(2\tau)^{4}, \theta_{2}(2\tau)^{4}]$ and that $\Gamma_{0}(4)=\sigma_{0}\Gamma(2)\sigma_{0}^{-1}$ .

So, we have the assertions for the groups No. 3 and No. 4. As for
cases (b) and (d), more explicit information can be found in [11, p.52,
Corollary] for $\Gamma_{0}(2)$ , [11, p.53, Theorem 2] for $\Gamma_{1}(3)$ . We note that the
notation of subgroups in [11] is different from ours. The groups No. 6-
11 are pairwise conjugate in $GL(2, \mathbb{Q})$ , so it suffices to give generators
for No. 6 only. The result for the group No. 6 is given in [8, p.186] as
$\mathfrak{M}(\sigma_{0}^{-1}\Gamma_{1}(4)\sigma_{0})=\mathbb{C}[\theta_{3}(2\tau)^{2}, \theta_{2}(2\tau)^{4}]$ .

Let $\Gamma$ be one of the subgroups No. 12-17. Suppose that there exist
modular forms $\phi_{1}$ , $\phi_{2}$ of weight 1 on $\Gamma$ such that the leading terms of

their Fourier expansion with respect to $q=e^{2\pi\dot{0}\tau}$ are 1, $g$ , respectively.
Considering the leading terms of $\phi_{1}^{n}$ , $\phi_{1}^{n-1}\phi_{2}$ , $\ldots$ , $\phi_{2}^{n}$ , we can prove that
$\phi_{1}^{n}$ , $\phi_{1}^{n-1}\phi_{2}$ , $\ldots$ , $\phi_{2}^{n}$ are linearly independent. Hence $\phi_{1}$ , $\phi_{2}$ are alge-
braically independent. Since $dim\mathfrak{M}_{2}(\Gamma)=3$ , we have $dim\mathfrak{M}_{1}(\Gamma)\leq 2$ .

Therefore, to prove the claim, we have only to find modular forms $\phi_{1}$ , $\phi_{2}$

of weight 1 on $\Gamma$ such that the leading terms of their Fourier expansion
are 1, $g$ , respectively. This means that, we only need to find two linearly
independent modular forms of weight 1 on $\Gamma$ .

Let $N$ be a positive integer, $\chi$ a primitive Dirichlet character $mod$

$N$ such that $\chi(-1)=-1$ . Then the Eisenstein series

$E_{\chi}(\tau)=\frac{1}{2}L(0, \chi)+\sum_{n=1}^{\infty}(\sum_{d|r\iota,d>0}\chi(d))q^{n}$

is a modular form of type $(1, \chi)$ on $\Gamma_{0}(N)$ (see Hecke [7]).
The subgroup No. 12, 17. For the group $\Gamma(3)$ , the result is well

known (see [5, Theorem 5.4]). Namely, $\mathfrak{M}(\Gamma(3))=\mathbb{C}[\varphi_{1}, \varphi_{2}]$ with

(5)
$\varphi_{1}=\sum_{(x,y)\in \mathbb{Z}^{2}}q^{x^{2}-xy+y^{2}}$

,
$\varphi_{2}=q^{\frac{1}{3}}\sum_{(x,y)\in \mathbb{Z}^{2}}q^{x^{2}-xy+y^{2}+x-y}$

.
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Interestingly enough, this fact was known in connection with the weight
enumerators of ternary self-dual codes. For a future use, we remark
that $SL(2, \mathbb{Z})$ acts on the 2-dimensional space spanned by $\varphi_{1}$ , $\varphi_{2}$ as the
unitary reflection group (No. 4 in [15])

$\langle\frac{1}{i\sqrt{3}} \left(\begin{array}{ll}1 & 2\\1 & -1\end{array}\right), \left(\begin{array}{ll}1 & 0\\0 & e^{\frac{2\pi i}{3}}\end{array}\right)\rangle\cong SL(2, \mathbb{Z}/3\mathbb{Z})\cong SL(2, \mathbb{Z})/\Gamma(3)$ .

The ring of polynomial invariants of this group is the polynomial ring
in $f$ , $g$ , where

$f(x, y)=x^{4}+8xy^{3}$ , $g(x, y)=x^{6}-20x^{3}y^{3}-8y^{6}$ .

Moreover, $f(\varphi_{1}, \varphi_{2})=E_{4}$ and $g(\varphi_{1}, \varphi_{2})=E_{6}$ hold. The ring of invari-
ants $\mathbb{C}[f, g]$ contains the ring of weight enumerators of ternary self-dual
codes (see [4]). In view of (3), the ring $\mathfrak{M}(\Gamma_{0}(9)\cap\Gamma_{1}(3))$ is generated by
$\varphi_{1}(3\tau)$ , $\varphi_{2}(3\tau)$ . However, we also give different generators of this ring
as follows.

Let $\chi_{1}$ be the non-trivial Dirichlet character $mod 3$ . Then the Eisen-
stein series $E_{\chi_{1}}(\tau)$ is a modular form of type $(1, \chi_{1})$ on $\Gamma_{0}(3)$ . This im-
plies that $E_{\chi_{1}}(\tau)$ and $E_{\chi_{1}}(3\tau)$ are linearly independent modular forms
of type $(1, \chi_{1})$ on $\Gamma_{0}(9)$ . Hence they are modular forms of weight 1 on
$\Gamma_{0}(9)\cap\Gamma_{1}(3)$ .

Let $\eta(\tau)$ be the Dedekind $eta$-function. Then it is shown in [10] that
$\eta(9\tau)^{3}/\eta(3\tau)$ and $\eta(\tau)^{3}/\eta(3\tau)$ also are modular forms of type $(1, \chi_{1})$ on
$\Gamma_{0}(9)$ . The relations between these forms are:

$\eta(9\tau)^{3}/\eta(3\tau)=E_{\chi_{1}}(\tau)-E_{\chi_{1}}(3\tau)$ ,

$\eta(\tau)^{3}/\eta(3\tau)=-3(E_{\chi_{1}}(\tau)-3E_{\chi_{1}}(3\tau))$ .

Moreover, we have

$\varphi_{1}(3\tau)=6E_{X1}(\tau)$ ,

$\varphi_{2}(3\tau)=E_{\chi_{1}}(\tau)-E_{X1}(3\tau)$ .

The subgroups No. 13, 16. Let $\chi_{2}$ be the non-trivial Dirichlet
character $mod 4$ . Then the Eisenstein series $E_{\chi_{2}}(\tau)$ is a modular form
of type $(1, \chi_{2})$ on $\Gamma_{0}(4)$ . This implies that $E_{X2}(\tau)$ and $E_{X2}(2\tau)$ are
linearly independent modular forms of type $(1, \chi_{2})$ on $\Gamma_{0}(8)$ . Hence they
are modular forms of weight 1 on the subgroup No. 16: $\Gamma_{0}(8)\cap\Gamma_{1}(4)$ .

Alternatively, it is shown in [10] that $\eta(8\tau)^{4}/\eta(4\tau)^{2}$ and $\eta(\tau)^{4}/\eta(2\tau)^{2}$

also are modular forms of type $(1, \chi_{2})$ on $\Gamma_{0}(8)$ . The relations between
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these forms are:

$\eta(8\tau)^{4}/\eta(4\tau)^{2}=E_{X2}(\tau)-E_{X2}(2\tau)$ ,

$\eta(\tau)^{4}/\eta(2\tau)^{2}=-4(E_{\chi_{2}}(\tau)-2E_{\chi_{2}}(2\tau))$ .

Note that $\mathfrak{M}(\Gamma_{1}(4)\cap\Gamma(2))=\mathbb{C}[\theta_{3}(\tau)^{2}, \theta_{4}(\tau)^{2}]$ (see [8, p.186]) follows
from (2). More explicitly, we have

$\theta_{3}(2\tau)^{2}=4E_{X2}(\tau)$ ,

$\theta_{4}(2\tau)^{2}=-4(E_{X2}(\tau)-2E_{\chi_{2}}(2\tau))$ .

The subgroup No. 14. Let $\chi_{3}$ be the Dirichlet character $mod 5$

such that $\chi_{3}(2)=\sqrt{-1}$ . Then the Eisenstein series $E_{Xs}(\tau)$ and $E_{\overline{\chi_{3}}}(\tau)$

are modular forms of type $(1, \chi_{3})$ , $(1, \overline{\chi_{3}})$ , respectively on $\Gamma_{0}(5)$ . Hence
they are linearly independent modular forms of weight 1 on $\Gamma_{1}(5)$ .

The subgroup No. 15. Recall that $E_{X1}(\tau)$ is a modular form
of type $(1, \chi_{1})$ on $\Gamma_{0}(3)$ , where $\chi_{1}$ is the non-trivial Dirichlet character
$mod 3$ . This implies that $E_{\chi_{1}}(\tau)$ and $E_{\chi_{1}}(2\tau)$ are linearly independent
modular forms of type $(1, \chi_{1})$ on $\Gamma_{0}(6)$ . Hence they are modular forms
of weight 1 on $\Gamma_{1}(6)$ . It is shown in [10] that $\eta(\tau)\eta(6\tau)^{6}/\eta(2\tau)^{2}\eta(3\tau)^{3}$

and $\eta(6\tau)\eta(\tau)^{6}/\eta(3\tau)^{2}\eta(2\tau)^{3}$ also are modular forms of type $(1, \chi_{1})$ on
$\Gamma_{0}(6)$ . The relations between these forms are:

$\eta(\tau)\eta(6\tau)^{6}/\eta(2\tau)^{2}\eta(3\tau)^{3}=E_{\chi_{1}}(\tau)-E_{X1}(2\tau)$ ,

$\eta(6\tau)\eta(\tau)^{6}/\eta(3\tau)^{2}\eta(2\tau)^{3}=-6(E_{\chi_{1}}(\tau)-2E_{X1}(2\tau))$ .

\S 6. Concluding remarks

We note that the classification of the subgroups $\Gamma\subset SL(2, \mathbb{Z})$ whose
ring of modular forms is isomorphic to a polynomial ring is regarded as
an analogue of the classification of the finite unitary reflection groups of
dimension 2. We expect that higher dimensional analogue for this is the
classification of the subgroups in the Siegel modular groups whose ring
of Siegel modular forms is isomorphic to a polynomial ring. There are
many possible generalizations of the ideas and the motivations presented
in this paper. We will discuss some of the generalizations in subsequent
papers, we briefly mention some of them below.

(1) Classify discrete subgroups of $SL(2, \mathbb{R})$ , not necessarily contained
in $SL(2, \mathbb{Z})$ , whose ring of modular forms is isomorphic to a poly-
nomial ring.

(2) Classify subgroups of $SL(2, \mathbb{Z})$ whose ring of modular forms of
half-integral weights is isomorphic to a polynomial ring.
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Furthermore, we can consider a similar problem for $1/l$-integral weights
(see Rankin [14] for the definition of modular forms of fractional weights).
In general, if the ring of modular forms of $1/l$-integral weights on $\Gamma$ is
isomorphic to the polynomial ring generated by two modular forms of
weight $1/l$ , then we see that $\Gamma$ must be a subgroup of index 24/ in
$SL(2, \mathbb{Z})$ . A recent work of A. Sebbar on the classification of genus
zero congruence subgroups with no elliptic points implies that they are
noncongruence subgroups except for finitely many exceptions. The com-
plete classifications of such subgroups of index 24/ seems very difficult
in general. In the case $l$ $=2$ , using the method described in Section 4,
we can see that there are 191 possible such subgroups $\Gamma$ of index 48 in
$SL(2, \mathbb{Z})$ up to the conjugacy. Some of them are congruence subgroups
and others are noncongruence subgroups. We expect that many of them,
hopefully all of them, satisfy the property mentioned in (2). Note that
some results on modular forms on noncongruence subgroups are given
in [1].

As we remarked in Section 1, the case $l$ $=5$ is interesting, and this
will be treated in a subsequent paper. We also mention that, partly
motivated by our present research, T. Ibukiyama is recently developing
a theory of modular forms of fractional weights from a more general
viewpoint, which will be published in due course.
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Steiner systems and Mathieu groups revisited

Helmut Bender

These notes about an old topic of Witt (Abh. Hbg. 1938) describe a
further approach to the relevant existence and isomorphism theorems for
Steiner systems. Some standard information about the automorphism
groups is obtained along the way. Actually, I wish to proceed by group
theoretic arguments as much as possible. Besides Sylow’s Theorem,
including

$|G:N_{G}(P)|\equiv 1(p)$ for $P\in Syl_{p}(G)$ ,

and the most obvious properties of the 2-dimensional linear groups over
$GF(11)$ and $GF(9)$ , they mainly require some formalities around tran-

sitive action of a group $G$ on a set $\Omega$ , above all

$|\Omega|=|G:G_{\alpha}|$ for $\alpha\in\Omega$ .

I also mention the ” Frattini arguments, “Witt’s Lemma” , and the con-
cept of a Frobenius group:

The first gives $G=HG_{\alpha}=G_{\alpha}H$ for any transitive subgroup $H$ ,

the second states that the normalizer $N_{G}(X)$ of a subgroup (or subset)
$X\subseteq G_{\alpha}$ is transitive on the set $\Omega_{X}$ of fixed points if (and only if) $X$

is “very weakly closed” in $G_{\alpha}$ , that is all $G$-conjugates $X^{g}\subseteq G_{\alpha}$ are
already conjugate to $X$ in $G_{\alpha}$ . The standard $X$ besides $X=G_{\alpha}$ is a
Sylow subgroup of $G_{\alpha}$ . Trivially, Witt’s Lemma implies the analogous
result for $n$-fold transitive groups.

Thirdly, to say that $G$ is a Frobenius group on $\Omega$ , means that $ 1\neq$

$G_{\alpha}\neq G$ and $G_{\alpha\beta}=1$ for all $\beta\neq\alpha$ . We ignore Frobenius’ famous
theorem and assume also that $G_{\alpha}$ has a complement $K$ in $G$ . Then
$K$ is regular on $\Omega$ , is the set of all elements of $G$ not conjugate to an
element $\neq 1$ of $G_{\alpha}$ , and is called the Frobenius kernel of $G$ . Accordingly,
an abstract Frobenius group is a semi-direct product $G=KA$ (with $K$

normal) such that the above holds for a suitable ” $G$-set” $\Omega$ and with
$A=G_{\alpha}$ , or equivalently no element of $K$ commutes with an element

Received September 22, 1999.
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outside, or equivalently no element of $A$ commutes with an element
outside.

For other treatments of our topic see L\"uneburgs paper (J. Alg. 1968)
related to Witt’s, Aschbacher’s book ” Sporadic Groups” , and the bibli-
ography in the ” Atlas”.

This paper is dedicated to the memory of Michio Suzuki. In 1964
I had to study one of his papers (characterizing linear groups) as a
participant of Reinhold Baer’s seminar at Frankfurt university, under the
supervision of Baer’s assistant Bernd Fischer. It was my third seminar
already, but the first time that I found the mathematics confronting me
attractive. Reading Suzuki’s papers then became the main occupation
for the rest of my student life.

Suzuki was a pioneer of modern group theory which culminated in
the classification of the finite simple groups, and he contributed crucially
to quite a few rather different main topics. To describe his role for the
classification I like to compare the Sylow 2-subgroups of a finite group
with fortresses in an area to be forced under one’s complete control. In
order to exert such a control, our fortresses must be strong and must have
good lines of communications (good coherence in more group theoretic
language). Thus, Suzuki laid much of the basis for a powerful 2-local
structure theory.

Pioneers will be followed by others, more convenient ways will be
constructed, and after a while their foot steps are not so apparent any
more. This does however not apply to the bulk of Suzuki’s work, on
certain types of permutation groups and related topics, which in its
depth and beauty will forever remain a jewel in the field of finite groups.

\S 1. Steiner systems

1.1. Lemma. Let $\Omega$ be $a$ fifinite set, $0\leq t\leq k\leq v=|\Omega|$ , and $B$ $a$

set of $k$ -subsets of $\Omega$ . Then, with

$B(X)=\{B\in B|X\subseteq B\}$ and $b(t, k, v)=\left(\begin{array}{l}v\\t\end{array}\right)/\left(\begin{array}{l}k\\t\end{array}\right)$ ,

the following conditions (a), (b), (c) are equivalent:
(a) $|B(X)|=1$ for all $t$ -subsets $ X\subseteq\Omega$ ,

(b) $|B|=b(t, k, v)$ and $|B(X)|\leq 1$ for all $t$ -subsets $ X\subseteq\Omega$ ,

(c) $|B|=b(t, k, v)$ and $|B(X)|\geq 1$ for all $t$ -subsets $ X\subseteq\Omega$ .

Proof. There are $\left(\begin{array}{l}v\\t\end{array}\right)$ $t$-subsets $X$ of $\Omega$ , and each $B\in B$ contains
$\left(\begin{array}{l}k\\t\end{array}\right)$ such subsets $X$ . Thus the number of pairs $(X, B)$ with $X\subseteq B$ equals

both $|B|$ . $\left(\begin{array}{l}k\\t\end{array}\right)$ and $\sum_{X}|B(X)|$ , and this sum has $\left(\begin{array}{l}v\\t\end{array}\right)$ summands. Q.E.D.
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1.2. Definition. In the situation of Lemma 1.1, with one (hence
each) of (a), (b), (c) valid, $B$ is a Steiner system of type $(t, k, v)$ , or just
$(t, k)$ , on $\Omega$ .

We write $B$ $\in S(t, k, v, \Omega)$ and drop $\Omega$ or $v$ whenever suitable.
The sets $B\in B$ are called blocks, sometimes lines, and the elements

$\alpha\in\Omega$ points. The block containing a $t$-set $X$ is denoted by $\langle X\rangle$ . A
collinear subset of $\Omega$ is contained in some block.

An isomorphism from $B$ onto another Steiner system $\hat{B}$ with point

set $\hat{\Omega}$ is a bijective mapping $\varphi$ from $\Omega$ onto $\hat{\Omega}$ such that $B\varphi=\hat{B}$ .

1.3. Thus the automorphism group of $B$ $\in S(t, k, v, \Omega)$ is the stabi-
lizer of $B$ in the symmetric group $Sym(\Omega)$ . The number of conjugates
of $B$ under $Sym(\Omega)$ is $v!/|Aut(B)|$ . All $(t, k, v)$ -systems are isomorphic
if and only if all $B$ are conjugate under $Sym(\Omega)$ .

1.4. For $B$ $\in S(t, k, v, \Omega)$ and $ J\subseteq\Omega$ , with $j=|J|\leq t$ , the set

$B((J))=\{B\backslash J|B\in B(J)\}$

is a $(t-j, k-j, v-j)$ system on $\Omega\backslash J$ . In particular,

$|B(J)|=|B((J))|=b(t-j, k-j, v-j)$ .

From $b(t, k, v)=\frac{v}{k}\cdot b(t-1, k-1, v-1)$ (for $t>0$ ) we get the following

table. There is no continuation to the right because neither 2 . 66 $\cdot\frac{13}{7}$

nor 23 $\cdot 11$ $\cdot 3\cdot\frac{25}{9}$ is an integer.

$(t, k, v)$ : (1, 2, 8) (2, 3, 9) (3, 4, 10) (4, 5, 11) (5, 6, 12)

$b(t, k, v)$ : 4 12 30 66 2 $\cdot 66$

$(t, k, v)$ : (1, 4, 20) (2, 5, 21) (3, 6, 22) (4, 7, 23) (5, 8, 24)

$b(t, k, v)$ : 5 21 77 23 $\cdot 11$ 23 $\cdot 11$ $\cdot 3$

1.5. For $\alpha\in\Omega$ call $ B,\hat{B}\in S(t, k, v, \Omega)\alpha$-equivalent if $B(\alpha)=$

$\hat{B}(\alpha)$ . We also say that $B$ and $\hat{B}$ agree on $\alpha$ . Clearly, the number of
$\alpha$-equivalence classes is at most $|S(t-1, k-1, \Omega\backslash \{\alpha\})|$ (assume $t\geq 1$ ).

So with $\ell(t, k, v)$ the maximal length of an $\alpha$-equivalence class (where
now $\alpha$ ranges over $\Omega$ , and $\ell(t, k, v)=0$ if $S(t, k, v)$ is empty), we have

$|S(t, k, \Omega)|\leq\ell(t, k, v)\cdot|S(t-1, k-1, \Omega\backslash \{\alpha\})|$ .

As an example, we consider the case $(t, k, v)=(5,6,12)$ and prove

$\ell(5,6,12)\leq 1$ .
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This means that any $\alpha$-equivalent $B,\hat{B}\in S(t, k, v, \Omega)$ are actually equal.

Assume $B$ $\neq\hat{B}$ , say some $B\in\hat{B}$ does not belong to $B$ . Then $\alpha\not\in B$ ,

and each 5-set $X\subseteq B$ lies in a unique block $X\cup\{\beta\}$ of $B$ (not in $\hat{B}$).
These (six) points $\beta=\beta(X)$ are pairwise distinct and distinct from $\alpha$ .

Thus $\Omega\geq|B|+6+1=13$ , a contradiction. It is also true, though less
obvious, that $\ell(5,8,24)\leq 1$ .

1.6. The Trivial Isomorphism Theorem. For $1\leq t\leq k\leq v$

assume some $B$ $\in S(t, k, v)$ exists. Write $g$ for $|Aut(B)|$ . Then all $B$ are
isomorphic, with $g=g’v/n$ , provided

(i) all $B’\in S(t-1, k-1, v-1)$ are isomorphic, with $|Aut(B’)|=g’$ ,

and
(ii) $n$ is an integer such that $\ell(t, k, v)<2n$ and $gn$ divides $g’v$ for

all $B$ .

Proof. We apply 1.3 and 1.5. Fix $B$ with point set $\Omega$ for a moment.
Write $g’v=gnq$ . Then the $Sym(\Omega)$ -orbit containing $B$ has length

$\frac{v!}{g}=\frac{nqv^{I}}{gv},\cdot=\frac{nq(v-1)!}{g’}$ .

With $q$ minimal and $r$ the number of all orbits it follows that

$r\frac{nq(v-1)!}{g’}\leq|S(t, k, \Omega)|<2n\frac{(v-1)!}{g’}$

and hence $rnq<2n$ , thus $r=q=1$ . Q.E.D.

1.7. The IPivial Induction Lemma. Assume $2\leq t\leq k\leq|\Omega|$ .

(a) For each $\alpha\in\Omega$ let $B_{\alpha}\in S(t$ –1,$ $k–1,$ \Omega\backslash \{\alpha\})$ , and assume
$B_{\alpha}((\beta))=B_{\beta}((\alpha))$ for all points $\beta\neq\alpha$ . Then

$B$ $=$ { $B\subseteq\Omega|B\backslash \{\alpha\}\in B_{\alpha}$ for some $\alpha\in B$ }

is a Steiner system of type $(t, k)$ on $\Omega$ .

(b) Assume (a group) $G$ acts on $\Omega$ , for each $\alpha\in\Omega$ there is a unique
$G_{\alpha}$ -invariant $B_{\alpha}\in S(t-1, k-1, \Omega\backslash \{\alpha\})$ , and for any two distinct points
$\alpha$ , $\beta\in\Omega$ there is a unique $G_{\alpha\beta}$ -invariant $B_{\alpha\beta}\in S(t-2, k-2, \Omega\backslash \{\alpha, \beta\})$ ,
or, more generally, $B_{\alpha}((\beta))=B_{\beta}((\alpha))$ .

Then there is a unique $G$ -invariant $B$ $\in S(t, k, \Omega)$ .

Proof. The point about the condition $B_{\alpha}((\beta))=B_{\beta}((\alpha))$ in (a) is
that $B\backslash \{\alpha\}\in B_{\alpha}$ holds not only for some, but for every element $\alpha$

of a given $B\in B$ : Assume it holds for $\alpha$ and let $\alpha\neq\beta\in B$ . Then
$D=(B\backslash \{\alpha\})\backslash \{\beta\}$ lies in $B_{\alpha}((\beta))=B_{\beta}((\alpha))$ , that is $B\backslash \{\beta\}=D\cup\{\alpha\}$

lies in $B_{\beta}$ .
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To prove (a), hence (b), we have to show that a unique $B\in B$

contains a given $t$-subset $ X\subseteq\Omega$ . Existence: Choose $\alpha\in X$ , $ U\in$

$B_{\alpha}(X\backslash \{\alpha\})$ , and let $B=\{\alpha\}\cup U$ . Uniqueness: If $X\subseteq A\in B$ , then, by
the first paragraph, $A\backslash \{\alpha\}$ is also a block in $B_{\alpha}$ which contains

$X\backslash \{\alpha\}Q.E.D.$
’

hence is equal to $U$ .

1.8. Lemma. Assume $G$ is a Frobenius group on a 9-set $\Omega$ , and

the Frobenius kernel of $G$ is elementary abelian (of order 9).

(a) There exists a unique $G$ -invariant $B$ $\in S(2,3, \Omega)$ .

(b) For each $\alpha\in\Omega$ , $B((\alpha))$ consists of the four orbits of length 2
under the subgroup of order 2 in $G_{\alpha}$ .

Proof. First we consider any $G$-invariant $B$ $\in S(2,3, \Omega)$ . A sub-
group $T$ of order 2 has one fixed point $\alpha$ and four orbits $X$ of length 2 in
$\Omega$ . For each $X$ , the block $\langle X\rangle$ is $T$-invariant and hence equals $X\cup\{\alpha\}$ .

This proves (b), hence gives uniqueness in (a).
For existence we apply 1.7(a). For each $\alpha\in\Omega$ let $B_{\alpha}$ be the set

of all $T$-orbits of length 2, where $T$ is the subgroup of order 2 in $G_{\alpha}$ .

For $\alpha\neq\beta\in\Omega$ let $D\simeq S_{3}$ be the subgroup generated by $T$ and the
analogous subgroup of order 2 in $G_{\beta}$ . Then $\beta D$ is a $D$-invariant 3-subset
of $\Omega$ , hence contains a fixed point of $T$ , that is $\alpha$ . Now the third point
$\gamma$ in $\alpha D=\beta D$ satisfies $B_{\alpha}((\beta))=\{\gamma\}=B_{\beta}((\alpha))$ . Q.E.D.

1.9. Corollary (by 1.7(b)). Le $G$ be a transitive group of order
9 $\cdot 4\cdot 10$ or 9 $\cdot 8\cdot 10$ on $a$ 10-se $\Omega$ . For $\alpha\in\Omega$ , assume $G_{\alpha}$ to be $a$

Frobenius group on $\Omega\backslash \{\alpha\}$ .

Then $G$ leaves a unique $B$ $\in S(3,4, \Omega)$ invariant.

1.10. Theorem. Let $t\geq 2$ , $v=t+7$ , $k=t+1$ , and $G$ a sharply
$t- transit\dot{\iota}ve$ group on a $v$ -set $\Omega$ .

Then $t\leq 5$ and $G$ leaves a unique $B$ $\in S(t, k, \Omega)$ invariant. All

blocks are conjugate, and a $k$ -subset $B$ isa block if and only if $G_{B}\simeq S_{k}$ .

Proof. The unique $B$ comes from 1.8(a) for $t=2$ , from 1.9 for
$t=3$ , then from 1.7(b) for $t=4,5,6$ , $\ldots$ . By 1.4, $S(t, k, v)$ is empty for
$t\geq 6$ .

We have $|G|=v$ . $(v-1)\cdots(v-(t-1))$ and $|G_{B}|\leq k!$ because $G_{B}$

is faithful on $B$ . Thus

$|B^{G}|=|G:G_{B}|\geq\frac{|G|}{k!}=b(t, k, v)$

whence $G_{B}\simeq S_{k}$ means $|B^{G}|=b(t, k, v)$ , hence $B^{G}\in S(t, k, \Omega)$ by
Lemma 1.1 because each $t$-subset of $\Omega$ is conjugate to a subset of $B$ .

Q.E.D.
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1.11. Lemma. Some $G$ as in 1.9 is isomorphic to $A_{6}$ , and then
any subgroup $H\simeq A_{5}$ is transitive.

Conversely, If $H\simeq A_{5}$ acts transitively on $a$ 10-set $\Omega$ , then there
exists a unique $H$ -invariant $B$ $\in S(3,4, \Omega)$ and for each $\alpha\in\Omega$ , $B((\alpha))$

is the only $H_{\alpha}$ -invariant $(2,3)$ -system on $\Omega\backslash \{\alpha\}$ .

Proof. Let $\Lambda$ be any 6-set, $G=Alt(\Lambda)$ , and $\Omega$ the set of all sets
$\{X, Y\}$ , where $X$ and $Y$ are disjoint 3-subsets of $\Lambda$ . Then $|\Omega|=10$ ,
$|G|=6!/2=9\cdot 4\cdot 10$ , and no element order 5, 3, or 2 in $G$ fixes 1, 2, or
3 points in $\Omega$ , respectively. Thus $G$ and $\Omega$ are as in 1.9.

Then any subgroup $H$ of order 60 is transitive because any stabilizer
$|H_{\alpha}|(\alpha\in\Omega)$ , a subgroup of the Frobenius group $G_{\alpha}$ of order 9 $\cdot 4$ , has
order at most 6.

All transitive $H$-sets of length 10 are isomorphic because all sub-
groups of order 6 in $H$ are conjugate. As for uniqueness of $B((\alpha))$ ,
hence of $B$ , any such (2,3,9)-system consists of the 103-sets invariant
under a subgroup of order 2 in $H_{\alpha}\simeq S_{3}$ , and the two additional orbits
under the subgroup of order 3. Q.E.D.

1.12. In analogy with $\ell(t, k, v)=\ell_{1}(t, k, v)$ defined in 1.5 we can
define $\ell_{p}(t, k, v)$ for each integer $p\geq 1$ as the maximal length of a J-
equivalence class in $S(t, k, v, \Omega)$ , where $J$ ranges over all $p$-subsets of $\Omega$ ,
and $J$ equivalence means $\alpha$-equivalence for all $\alpha\in J$ .

In other words, $\ell_{p}(t, k, v)\leq m$ means that not more than $m(t, k, v)-$

systems $B$ on $\Omega$ can“agree” on $p$ points, in case $m=1$ that any $B$ is
completely determined by any $p1$ -residues $B((\alpha))$ .

Obviously, the argument in 1.5 for $\ell(5,6,12)\leq 1$ also gives $\ell_{2}(4,5,11)$

$\leq 1$ and $\ell_{3}(3,4,10)\leq 1$ . In section 3 the latter will be improved to
$\ell_{2}(3,4,10)\leq 1$ (actually to the stronger condition $(^{*})(3,4,10)$ introduced
below).

The condition $\ell_{2}(t, k, v)\leq 1$ is very convenient when we wish to get
information on $\ell(t, k, v)$ :

(a) To prove $\ell(t, k, v)\leq m$ it suffices to show that if $B((\alpha))$ is given,
there are at most $m$ possibilities for any second 1-residue $B((\beta))$ .

More formally, with $\ell’(t, k, v)$ the maximal number of $\beta$ equivalence
classes inside an $\alpha$-equivalence class (in any case $\leq\ell$ ( $t$ , $k$ , $v$ )),

$\ell_{2}((t, k, v)\leq 1$ implies $\ell(t, k, v)=\ell’(t, k, v)$ .

Below we also prove that for any $p\geq 1$ ,
(b) $\ell_{2}(t, k, v)\leq 1$ implies $\ell_{p}(t+1, k+1, v+1)\leq\ell_{p}(t, k, v)$ .

This suffices for the small cases (3,4,10), (4,5,11), and (5,6,12). For
the large cases (3,6,22), (4,7,23), and (5,8,24) a finer distinction appears
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to be appropriate. The following condition $(^{*})$ lies between $\ell(t, k, v)\leq 1$

and $\ell_{2}(t, k, v)\leq 1$ . For the small cases, when $k=t+1$ , it means
that two distinct $(t, k, v)$ systems on $\Omega$ which agree on a point $\alpha$ (are $\alpha-$

equivalent), have only those blocks in common which contain $\alpha$ , indeed
a much stronger statement than $\ell_{2}(t, k)v)\leq 1$ .

$(^{*})$ Whenever distinct $B_{1}$ , $B_{2}\in S(t, k, v, \Omega)$ agree on a point $\alpha\in\Omega$ ,

then $|B_{1}\cap B_{2}|\leq t$ for all $B_{1}\in B_{1}$ and $B_{2}\in B_{2}$ not containing $\alpha$ .

We assume $2<t<k<v$ and prove the following results.
(c) The above condition $(^{*})$ is equivalent to the following condition
$(^{**})$ Whenever $B_{1}$ , $B_{2}\in S(t, k, v, \Omega)$ agree on a point $\alpha\in\Omega$ , and

$B_{1}$ , $B_{2}$ are blocks in $B_{1}$ , $B_{2}$ , respectively, which do not contain $\alpha$ and
satisfy $|B_{1}\cap B_{2}|>t$ , then $B_{1}(\beta)=B_{2}(\beta)$ for all $\beta\in B_{1}\cap B_{2}$ .

(d) $(^{*})$ implies the analogous condition $(^{*})(t+1, k+1, v+1)$ .

Proof of (b): We rather assume $\ell_{2}(t-1, k-1, v-1)\leq 1$ and show
that $m=\ell_{p}(t, k, v)$ is $\leq\ell_{p}(t-1, k-1, v-1)$ .

Let $B_{1}$ , $\ldots$ , $B_{m}\in S(t, k, v, \Omega)$ be $J$-equivalent and pairwise distinct,
with $J$ a $p$-subset of $\Omega$ . For $\beta\in\Omega\backslash J$ the $(t-1, k-1, v-1)$ systems
$B_{i}((\beta))$ are $J$-equivalent. To show they are pairwise distinct (whence
$m\leq\ell_{p}(t-1, k-1, v-1))$ assume $B_{1}(\beta)=B_{2}(\beta)$ . For each further
point $\gamma\in\Omega\backslash J$ , the $(t-1, k-1, v-1)$ systems $B_{1}((\gamma))$ and $B_{2}((\gamma))$

agree on $\beta$ and each of the $p\geq 1$ points $\alpha\in J$ , hence are equal because
$\ell_{2}(t-1, k-1, v-1)\leq 1$ . It follows that $B_{1}=B_{2}$ , a contradiction.

Proof of (c): Trivially, $(^{*})$ implies $(^{**})$ . So assume $(^{**})$ and let $B_{1}$ ,
$B_{2}$ contradict $(^{*})$ . Then $|B_{1}\cap B_{2}|>t$ and $(^{**})$ implies $B_{1}(\beta)=B_{2}(\beta)$

for all $\beta\in B_{1}\cap B_{2}$ . There exists $\gamma\in\Omega$ such that $B_{1}(\gamma)\neq B_{2}(\gamma)$ , because
$B_{1}\neq B_{2}$ . Fix $\beta$ . There exists $B\in B_{1}(\beta, \gamma)\backslash B_{1}(\alpha, \beta, \gamma)$ because $t>2$

and $v>k$ . Then $B\in B_{2}$ , and we can apply $(^{**})$ with $B$ in place of $B_{1}$

and $B_{2}$ to get $B_{1}(\gamma)=B_{2}(\gamma)$ , a contradiction.

Proof of (d): It suffices to derive $(^{**})$ from $(^{*})(t-1, k-1, v-1)$ .

Assume the hypothesis of $(^{**})$ . For each $\beta\in B_{1}\cap B_{2}$ apply $(^{*})(t-1,$ $k-$

$1$ , $v-1)$ to $B_{i}((\beta))$ to get $B_{1}((\beta))=B_{2}((\beta))$ .

Finally we combine most of the above to get

(e) $(^{**})(t, k, v)$ plus $\ell’(t, k, v)\leq m$ implies $(^{*})(t+i, k+i, v+i)$

and $\ell(t+i, k+i, v+i)\leq m$ for all $i\geq 0$ .

\S 2. AfRne planes of order 3 and 4

2.1. Let $L\in B\in S(2, k, v, \Omega)$ and $\alpha\in\Omega\backslash L$ . By 1.4 there are
$b(1)k-1$ , $v-1)=v-1/k-1$ blocks through $\alpha$ , and $k$ of them meet $B$ .

By definition, $B$ is an affine plane (of order $k$ ) if (for all $L$ and $\alpha$ )
exactly one block through $\alpha$ does not meet $L$ (is parallel to $L$ ). So this
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means $v-1/k-1=k+1$ , hence also $v=k^{2}$ . In case of an affine plane,

blocks will henceforth also be called lines, and parallelism of lines is an
equivalence relation on $B$ .

Also by definition, $B$ is a projective plane (of order $k-1$ ) if any two
blocks intersect non-trivially, that is $v-1/k-1=k$ . This also means
that the set $B^{L}$ of all the sets $B\backslash B\cap L$ , where $L\neq B\in B$ , is an affine
plane of order $k-1$ on $\Omega\backslash L$ .

2.2. If $B$ in 2.1 is an affine plane, any two non-parallel lines $H=$

$\{a_{11}, \ldots, a_{1k}\}$ and $V=\{a_{11}, \ldots, a_{k1}\}$ yield a $k\times k$ matrix $A=(a_{ij})$

whose rows and columns are the parallels of $H$ and $V$ respectively. Just
define $a_{ij}$ to be the unique point on the parallel of $H$ through $a_{i1}$ , and
the parallel of $V$ through $a_{1j}$ Any further line contains exactly one
point from each row and each column.

2.3. Assume $k=3$ in 2.2, that is $B$ $\in S(2,3,9, \Omega)$ , and write $ij$ for
$a_{ij}$ . Quite obviously, the additional $b(2,3,9)-(3+3)=6$ lines are the
two diagonals 112233, 132231, and the four triangles

$\left(\begin{array}{lll}11 & & \\ & 32 & 23\end{array}\right)\left(\begin{array}{lll} & & 13\\21 & 32 & \end{array}\right)\left(\begin{array}{lll} & 12 & \\31 & & 23\end{array}\right)\left(\begin{array}{lll} & 12 & \\21 & & 33\end{array}\right)$

So if another $\hat{B}\in S(2,3,9)$ is analogously represented by a matrix
$\hat{A}=(\hat{a}_{ij})$ , then the mapping $a_{ij}\rightarrow\hat{a}_{ij}$ is an isomorphism from $B$ onto
$\hat{B}$ .

It follows that all $B$ ’s are isomorphic, with $Aut(B)$ sharply transitive
on the set of triples $(a, b, x)$ of non-collinear points (each $(a, b, x)$ equals
(11, 12, 21) for some unique $A$ ).

Thus $Aut(B)$ has order 9 $\cdot 8\cdot 6$ , is doubly transitive on the points, and
the stabilizer of two points $a$ , $b$ fixes the third point on the line through
$a$ and $b$ , and is sharply transitive on the remaining 6 points.

2.4. If $k=4$ in 2.2, that is $B$ $\in S(2,4,16)$ , the lines are not de-
termined by the matrix $A=(a_{ij})=(ij)$ . The line through 11 and 22
might be the diagonal 11223344 or the set 11223443. Interchanging
the last two points in the sequence $V$ however, results in interchanging
the last two rows of the matrix. The diagonal of the new matrix is a
line if and only if the diagonal of $A$ is not.

So for a quadruple $(a, b, c, x)$ of pairwise distinct non-collinear points,
with $a$ , $b$ , $c$ collinear, there is a unique matrix $A$ with $(a, b, c, x)=(11,12$ ,
13, 21) and the diagonal 11223344 a line.

We show that such a” regular” quadruple determines $B$ via its ma-
trix. The only point sets containing exactly one point from each row,
each column, and the diagonal, are
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11233442 13223441 12243341 12233144
11243243 14223143 14213342 13213244

and all these sets must be lines because each point (on the diagonal) lies
on exactly $v-1/k-1=5$ lines. Now there are only $b(2,5,21)-(4+$

$4+1+8)=3$ lines left, and the only candidates are 12213443, 1324
3142, and 14233241.

So in analogy with 2.3 all $B$ ’s are isomorphic, with $Aut(B)$ sharply
transitive on regular quadruples, hence of order 16 $\cdot 15$ $\cdot 2\cdot 12$ .

\S 3. Steiner systems of type (3,4,10), (4,5,11) and (5,6,12)

3.1. Let $B$ $\in S(3,4,10, \Omega)$ . Choose a block $\{a’, a, b, c\}$ and a further
point $x$ . Apply 2.3 to the (2,3,9)-systems $B((a’))$ and $B((a))$ with the
non-collinear triples $(a, b, x)$ and $(a’, b, x)$ . We get matrices

$A=$ $\left(\begin{array}{lll}a & b & c\\x & y & z\\u & & w\end{array}\right)$ $A’=\left(\begin{array}{lll}a’ & b & c\\x & y’ & z’\\u & v, & w’\end{array}\right)$

such that the blocks through $a’$ , without $a’$ , are the rows, columns,
diagonals, and the four triangles of the matrix $A$ , likewise for $a$ and $A’$ .

Given $A$ , that is $B(a’)$ , $A’$ is one of

$\left(\begin{array}{lll}a’ & b & c\\x & w & v\\u & & y\end{array}\right)$ $\left(\begin{array}{lll}a’ & b & c\\x & & y\\u & w & z\end{array}\right)$ $\left(\begin{array}{lll}a’ & b & c\\x & & w\\u & y & v\end{array}\right)$

because $\{y, w\}$ and $\{y’, w’\}$ are equal or disjoint ($a’ayw$ and $aa’y’w’$ are
blocks),
$w’\neq w$ ( $a’ bxw$ and abxw’ are blocks),
$v’\neq v$ ( $a’xvc$ and $axv’ c$ are blocks), and
$\{y’, v’\}\neq\{y, v\}$ ($a’byv$ and $aby’ v$ ’ are blocks).

Accordingly, the fourth point in $ B=\langle a, b, x\rangle$ is $w’=y$ , $z$ , or $v$ .

So if $B$ is also a block in another $\hat{B}\in S(3,4, \Omega)$ with $\hat{B}(a’)=B(a’)$ ,

then the matrix $A’(\hat{B})$ analogous to $A’=A’(B)$ (again with respect to
$(a’, a, b, c, x))$ is equal to $A’$ (because one of the three above), and this

means $\hat{B}(a)=B(a)$ .

3.2. Lemma, (a) Condition 1.12(**)(3, 4, 10) holds.
(b) We have $\ell’(3,4,10)\leq 3$ .

(c) We have $\ell(3,4,10)\leq 3$ .
(d) We have $\ell(4,5,11)\leq 3$ .

(e) We have $\ell(5,6,12)\leq 1$ .
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Proof. (a) Write $B$ and $\hat{B}$ for $B_{1}$ and $B_{2}$ , respectively, and $B$ for
$B_{1}$ and $B_{2}=B_{1}$ . For $\beta\in B$ we have to verify $B(\beta)=\hat{B}(\beta)$ . Apply 3.1
with $ a’=\alpha$ , $ a=\beta$ , and $b$ , $x\in B$ .

(b) In 3.1 we have seen that for arbitrary points $a’\neq a$ , once $B(a’)$

is given, there are at most three possibilities for $B(a)$

Now (c) and (d) follow from 1.12(e), and (e) has been proved in
1.5. Q.E.D.

3.3. Lemma. For $B$ as in 3.1, the stabilizer of three points in

$G=Aut(B)$ has at most order 2. In particular, $|G|$ divides 10 . 9 $\cdot 8\cdot 2$ .

Proof. Otherwise 2.3 shows that $\Omega_{X}\in B$ for some subgroup $X$ of
order 3. For each of the four $\alpha\in\Omega_{X}$ there are two more $X$-invariant
$B\in B(\alpha)$ because $|B(\alpha)|=b(2,3,9)=12$ . However, there are only two
$X$-orbits of length 3 in $\Omega$ . Q.E.D.

3.4. Theorem. All $B$ $\in S(3,4,10)$ are isomorphic, with $Aut(B)$

of order 10 $\cdot 9\cdot 8\cdot 2$ , triply transitive on the points, and isomorphic to
$P\Gamma L_{2}(9)$ .

Proof. By 2.3 all $B’\in S(2,3,9)$ are isomorphic, with $g’=Aut(B’)=$
$9\cdot 8\cdot 6$ . Thus 3.2(c) and 3.3 allow to apply 1.6 with $n=3$ .

The group $P\Gamma L_{2}(9)$ acts faithfully on a 10-set, and we can apply 1.9
to the (sharply 3-transitive) normal subgroup $PGL_{2}(9)$ of index 2 (also
to the normal subgroup $L_{2}(9)=PSL_{2}(9)$ of index 4). Q.E.D.

3.5. Corollary (by 1.11). The alternating group $A_{6}$ is isomorphic
to $L_{2}(9)$ .

3.6. Theorem. All $B$ $\in S(4,5,11)$ are isomorphic, with $Aut(B)$

of order 11 $\cdot 10$ . 9 $\cdot 8$ and sharply 4-transitive on the points.

Proof. Let $B$ $\in S(4,5,11, \Omega)$ . First we show that the stabilizer
$X$ of four points is trivial, so that in particular $g=|Aut(B)|$ divides
11 $\cdot 10$ $\cdot 9\cdot 8$ . Otherwise $|X|=2$ by 3.3, and $|\Omega_{X}|=5$ by 2.3. Let $J$ be
an $X$-orbit of length 2. Again by 2.3, $X$ fixes only 3 points of $B((J))$ , a
contradiction.

Now 3.2(d) and 3.4 allow to apply 1.6 with $g’=10$ . 9 $\cdot 8$ . 2 and
$n=2$ . Q.E.D.

3.7. Theorem. All $B$ $\in S(5,6,12)$ are isomorphic, with $Aut(B)$

of order 12 $\cdot 11\cdot 10$ . 9 . 8 and sharply 5-transitive on the points.

Proof. 3.2(e) and 3.6 allow to apply 1.6 with $n$ $=1$ . Q.E.D.
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Existence of a (5,6,12)-system (hence of a (4,5,11)-system) will be
proved in 3.9 below. Then $M_{12}$ (and $M_{11}$ ) will denote the automorphism
group of such a Steiner system.

3.8. Lemma. Let $L$ be a group”of type $L_{2}(11)’’$ , in the sense that
$L$ has order 11 $\cdot 5\cdot 12$ and a non-normal subgroup $E$ of order 11.

(a) $N_{L}(E)$ has order 11 $\cdot 5$ .

(b) $L$ acts transitively on some 12-set $\Omega$ such that $N_{L}(E)=L_{\alpha}$ for
some $\alpha\in\Omega$ .

(c) A subgroup $D\subseteq L_{\alpha}$ of order 5 fifixes only one additional point
$\beta\in\Omega$ .

(d) $ N_{L}(D)=D\langle t\rangle$ with $t\not\in C_{L}(D)$ an involution.
(e) Any 11’-subgroup containing $D$ lies in $N_{L}(D)$ or is isomorphic

to $A_{5}$ .

Proof. By Sylow’s Theorem, $|L$ : $N_{L}(E)|\equiv 1$ modulo 11. This
yields (a), hence (b). $D$ is not normal in $L$ because otherwise $L/D$ were
a Frobenius group of order 11 $\cdot 12$ . Thus $ED$ is a Frobenius group on
$\Omega\backslash \{\alpha\}$ . This implies (c) and $|N_{L}(D)|=10$ . If an involution $t$ would
centralize $D$ , $ C_{L}(t)/\langle t\rangle$ were a Frobenius group of order 5 $\cdot 6$ . Finally, a

subgroup of order 60 is simple by (d). Q.E.D.

3.9. Theorem. In the situation of 3.8, $L$ leaves some $B$ $\in S(5,6, \Omega)$

invariant. In particular, $M_{12}$ has $a$ (point-) transitive subgroup isomor-
phic to $L$ .

Proof. No element of order 2 or 3 fixes a point. So $t$ interchanges
the two fixed points of $D$ , as well as the two orbits $X_{1}$ , $X_{2}$ of length 5.
Furthermore, each 5-set $ X\subseteq\Omega$ with $L_{X}\neq 1$ is conjugate to $X_{1}$ (and
$X_{2})$ and satisfies $|L_{X}|=5$ . Hence there are $|L|/5=11\cdot 12$ such 5-sets
$X$ and each other 5-set $ X’\subseteq\Omega$ has $|L|=11\cdot 12$ $\cdot 5$ conjugates. Since

the latter number equals $\left(\begin{array}{l}12\\5\end{array}\right)-11$ $\cdot 12$ , all $X’$ are conjugate.
The (global) stabilizer of any of the two 6-sets $B_{i}=X_{i}\cup\{\alpha\}$ is $D$

because $L$ has no subgroup of order 5 $\cdot 6$ . It follows that the $L$-invariant
sets $B_{i}=B_{i}^{G}$ are disjoint and have 11 $\cdot 12=b(5,6,12)$ elements.

We verify that $B_{1}$ or $B_{2}$ is as required. Define $f_{i}=B_{i}(X)$ and
$f_{i}’=B_{i}(X’)$ with $X$ and $X’$ as above. Then the number of pairs $(Z, B)$

with $B\in B_{i}$ and $Z$ a 5-subset of $B$ , equals both 11 $\cdot 12$ $\cdot f_{i}+11\cdot 12\cdot 5f_{i}’$

and 11 $\cdot 12\cdot 6$ . It follows that $f_{i}+5f_{i}’=6$ . However, $f_{1}+f_{2}\leq 7$ because
a 5-subset of $\Omega$ lies in only seven 6-subsets. Thus $f_{i}’\neq 0$ for some $i$ , and
then $f_{i}=f_{i}’=1$ .

By the way, if $L=L_{2}(11)$ and $\Omega$ is a $PGL_{2}(11)$ -set, then both $B_{i}$ are
conjugate under $PGL_{2}(11)$ , hence are (5,6,12)-systems on $\Omega$ . Q.E.D.
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3.10. Assume the notation of 3.8 and 3.9 with $ L\subseteq G=Aut(B)\simeq$

$M_{12}$ . Let $H=G_{\alpha}\simeq M_{11}$ . Then

(a) $NK(E)=NK(E)=ED$ ,

(b) $N_{G}(D)$ has order 5 $\cdot 8$ ,

(c) $N_{H}(D)$ is a Frobenius group of order 5 $\cdot 4$ fixing two blocks in $B$ ,
(d) the groups $L$ , $H$ , and $G$ are simple,
(e) $L$ has a subgroup isomorphic to $A_{5}$ ,
(f) $L$ acts transitively on some 11-set $\Lambda$ , and then leaves a unique

$(4,5)$ -system on $\Lambda$ invariant,
(g) $M_{11}\simeq H$ has a subgroup isomorphic to $L$ ,

(h) $H$ acts transitively on some 12-set $\triangle$ , and then leaves a unique
$(5,6)$ -system on $\triangle$ invariant.

Proof, (a) follows from $|G|=12\cdot 11$ $\cdot 10$ $\cdot 9\cdot 8$ , $|G:N_{G}(E)|\equiv 1(11)$ ,

and $C_{G}(E)=E$ (whence $|N_{G}(E)$ : $E|$ divides 10). The same argument
proves (b) and (c) because no $S$ ’-element $\neq 1$ of $C_{G}(D)$ fixes the two D-
orbits of length 5, and $D$ fixes exactly one of the $b(4,5,11)=66$ blocks
in $B(\alpha)$ .

For (d) note that a proper normal subgroup $K$ of the group $X$ in
question satisfies $N_{K}(E)=K\cap ED=1$ if $E\not\leq K$ , and $X=N_{X}(E)K=$
$DK$ (by the Frattini argument) if $E\subseteq K$ . The second case contradicts
$N_{X}(D)\neq C_{X}(D)$ . In the first case, $|K|-1$ is divisible by 11, but
$|K|$ is not equal to 12. Define $(X_{0}, X_{1}, X_{2}, X_{3})=(ED, L, H, G)$ and
let $X=X_{i+1}$ with $i=0$ or $X_{i}$ simple. Then $K\cap X_{i}=1$ , hence
$|K|\leq|X$ : $X_{i}|=12$ , that is $|K|=1$ .

(e) Since $|G$ : $L|=12\cdot 12=144$ , $G$ acts transitively on some 144-set
$\Lambda$ such that $G_{\lambda}=L$ for some $\lambda\in\Lambda$ . Since $N_{G}(E)\subseteq L$ , $\lambda$ is the only
fixed point of $E$ , by Witt’s Lemma. So if (e) is false, 3.8(e) implies that
the length of any other $L$-orbit is divisible by 11 $\cdot 5$ or 11 $\cdot 6$ , contrary to
2 . $66<143$ and 3 $\cdot 55>143$ .

(f) Existence comes from (e) because $|L|=60\cdot 11$ . Conversely, for
any $\Lambda$ , a one-point-stabilizer $A=L_{\lambda}$ is isomorphic to $A_{5}$ by 3.8(e). A
Sylow 2-or 5-subgroup $S$ of $A$ satisfies $N_{L}(S)\subseteq A$ , hence fixes no second
point in $\Lambda$ , by Witt’s Lemma. Thus $A$ is transitive on $\Lambda\backslash \{\lambda\}$ , and the
second part of 1.11 allows to apply 1.7(b).

(g) follows from (f) and implies existence in (h). Conversely, for any
$\triangle$ , a one-point-stabilizer $H_{\delta}$ is of type $L_{2}(11)$ and (trivially) transitive
on the 11-set $\triangle\backslash \{\delta\}$ . Thus

(f) and the fact (from 1.11) that $A$ in the proof of (f) leaves a unique
$(3,4)$ -system on $\Lambda\backslash \{\lambda\}$ invariant, allow to apply 1.7(b) again. Q.E.D.
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Remarks, (i) By 3.10(b) (c), $NG(D)/D$ is the direct product of the
cyclic groups $NH(D)/D$ and $C_{G}(D)/D$ of order 4 and 2. Thus $N_{G}(D)$

has only two Frobenius subgroups of order 5 $\cdot 4$ . Since $ H=\langle E, N_{H}(D)\rangle$ ,

it follows that all transitive $subgroups\simeq M_{11}$ are conjugate in $G$ , that is
those not conjugate to $H$ . Similarly, because $N_{G}(D)$ has only two non-
abelian subgroups of order 10, $G$ has exactly two classes of subgroups
of type $L_{2}(11)$ , and $H$ has only one. In particular, all groups of type
$L_{2}(11)$ are isomorphic. Conjugacy of transitive $subgroups\simeq M_{11}$ will
also follow from 4.5 and 4.7.

(ii) Our existence proof for $S(5,6,12)$ is a slight variation (avoid-
ing explicit calculations) of what Carmichael suggests in section 115 of
his book“Groups of Finite Order” (1937). He suggests an analogous
procedure for $S(5,8,24)$ , based on the transitive action of $L_{2}(23)$ on 24
points. We will follow a different line in 4.11. It gives the inclusion of
$Aut(M_{12})$ in $M_{24}$ as a by-result, and has the inclusion of $L_{2}(23)$ as a
consequence.

(iii) From 1.10 and the isomorphism theorems of this section one
easily obtains all sharply $t$-transitive finite permutation groups for $t\geq 4$ .

Proceeding by induction on $t$ , one only has to show that in case $t=4$

the degree $v$ equals 4, 6, or 11.
(iv) As indicated in 1.12, 1.12 $(a)(b)$ suffices for this section. Indeed,

it suffices to have $\ell_{2}(3,4,10)\leq 1$ in place of 3.2(a). Here is a direct
proof for $\ell_{2}(3,4,10)\leq 1$ : It suffices to show (in 3.1) that $B(a’)$ and $B(a)$

determine $B(\gamma)$ for any third point $\gamma$ , say $\gamma=b$ . Let

$A’’=\left(\begin{array}{lll}a’ & & c\\x & y’’ & z,\prime\\ u’’ & v,\prime & w’’\end{array}\right)$

be the matrix describing $B((b))$ relative to the non-collinear triple
$(a’, a, x)$ . Then

$u^{JJ}=fourth$ point on the block through $a’$ , $x$ , $b(=w)$ ,
$w’’=fourth$ point on the block through $a$ , $x$ , $b(=w’)$ ,
$z’’=fourth$ point on the block through $a$ , $u’’$ , $b$ ,
$y’’=fourth$ point on the block through $a’$ , $w’’$ , $b$ , and
$v’’=fourth$ point on the block through $a$ , $y^{JJ}$ , $b$ .

(v) In accordance with the three possibilities for the matrix $A’$ in
3.1, there are three types of non-collinear quadruples. Each type oc-
curs, and (hence) $Aut(B)$ permutes the quadruples of each type sharply
transitively.
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\S 4. The automorphism group of $M_{12}$

$G^{*}=Aut(M_{12})$ has a normal subgroup $G=Inn(M_{12})\simeq M_{12}$ and
acts transitively on a set $\Omega^{*}$ such that $M_{11}\simeq G_{\alpha}^{*}\subseteq G$ for some $\alpha\in\Omega^{*}$

and there exists a $G$-invariant (5,6,12)-system $B$ on the $G$-orbit $\Omega=\alpha^{G}$

’

of length 12.
The set of subgroups $H\simeq M_{11}$ in $G$ is denoted by H. By 3.10(h)

some $H$ is transitive on $\Omega$ , that is not conjugate to $G_{1}=G_{\alpha}$ .

4.1. For $j=1,2,3,4$ the stabilizer $G_{j}$ of $j$ points $\alpha$ , $\beta$ , $\ldots$ is sharply
$(5-j)$ -transitive on the set $\Omega_{j}$ of the remaining points.

The global stabilizer $N_{j}$ of $\Omega^{j}=\{\alpha, \beta, \ldots\}$ is equal to $N_{G}(G_{j})$ , and
$N_{j}/G_{j}$ is sharply $j$ transitive on $\Omega^{j}$ , hence isomorphic to $S_{j}$ .

Acting faithfully on $B_{j}=B((\Omega^{j}))\in S(5-j, 6-j, 12-j, \Omega_{j})$ , and
having the right order) $N_{j}$ induces the full automorphism group on $B_{j}$

for $j\leq 3$ .

In particular, $N_{2}$ is isomorphic to $P\Gamma L_{2}(9)$ (by 3.4).

4.2. Corollary, (a) $G_{3}$ is a Frobenius group of order 9 $\cdot 8$ .

(b) $Q=G_{4}$ has order 8 and contains only one involution.
(c) $NG\{Q$ ) $/Q$ $\simeq S_{4}$ and $N_{G_{1}}(Q)/Q\simeq S_{3}$ .

(d) $G_{2}$ has a normal subgroup $G_{2}’\simeq L_{2}(9)\simeq A_{6}$ of index 2.

4.3. Lemma, (a) $G_{2}$ is not isomorphic to $S_{6}$ .

(b) If $G_{1}$ acts transitively on some 11-set, then $G_{2}$ fifixes a point and
(hence) $G_{1}$ is sharply 4-transitive.

Proof. (a) $Q$ contains only one involution and has index 2 in some
Sylow 2-subgroup of $G_{2}$ , whereas $S_{6}$ has an elementary subgroup of order
8.

(b) Otherwise $G_{2}’$ has an orbit $X$ of length 6 and five orbits of length
1 ( $L_{2}(9)$ cannot act transitively on 11, 9, 8, 7, 5, 4, 3, or 2 points). This
contradicts (a) because $X$ is $G_{2}$ -invariant. Q.E.D.

4.4. Corollary (of 4.3(b) and 1.10). If $G$ acts transitively on $a$

$12$ set $\Omega’$ , with $G_{\alpha’}\in H$ for $\alpha’\in\Omega’$ , then $G$ is sharply 5-transitive
and leaves a unique $B’\in S(5,6, \Omega’)$ invariant.

$G$ is block-transitive, and a set $B$ of six points is a block if and only

if $G_{B}\simeq S_{6}$ .

4.5. Theorem. $Aut(G)$ is transitive on $\prime\mu$ .

Proof. For each $H\in H$ there exist $\Omega’$ and $\alpha’$ as in 4.4 such that
$H=G_{\alpha’}$ . Since $B’$ is isomorphic to $B$ , there exists a monomorphism
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from $G$ into $M=Aut(B)$ which maps $G_{\alpha’}$ into $M_{\alpha}$ . Apply this also to
$B$ and $\alpha$ in place of $B’$ and $\alpha’$ , and recall that $M\simeq M_{12}\simeq G$ . Q.E.D.

4.6. Lemma. For $E\underline{\subseteq}G$ of order 11, $C_{G^{*}}(E)=E$ .

Proof. By 3.10, $C_{G}(E)=E$ and $N_{G}(E)=ED$ with $D$ of order 5.
Assume $E\subseteq V=C_{G^{*}}(E)$ . Choose $d\neq 1$ in $D$ . Then the $|V$ : $C_{V}(d)|$ set
$[V, d]$ of commutators $[v, d]=v^{-1}d^{-1}vd$ with $v\in V$ lies in $C_{G}(E)=E$ .

It follows that $U=C_{V}(d)=C_{V}(D)$ is not trivial. By 3.10, $C_{G}(D)$ is
cyclic of order 10, hence lies in $K=C_{G}(U)$ .

By Sylow’s Theorem, $|X$ : $Y|\equiv 1$ modulo 11 for all subgroups
$X\supseteq Y\supseteq ED$ of G. So $|K$ : $ED|$ equals 12 or 12 $\cdot 12$ because $|G:ED|=$
$12\cdot 12\cdot 12$ . In the first case $K$ is of type $L_{2}(11)$ , contrary to 3.8(d).

Hence $|K$ : $ED|=12\cdot 12$ and $|[G, u]|=|G:C_{G}(u)|=|G:K|=12$

for each $u\neq 1$ in $U$ . Since $[G, u]$ is invariant under $C_{G}(u)$ , hence under
$ED$ , the 11 non-identity elements in $[G, u]$ are conjugate under $E$ , and
one of them is centralized by $D$ . Thus all the commutators $[g, u]$ with
$g\in G$ and $u\in U$ lie in $K$ . However, the subgroup $[G, U]$ generated by
them is normal in $G$ , contrary to simplicity of $G\simeq M_{12}$ . Q.E.D.

4.7. Theorem. We have $|G^{*}$ : $G|=2$ , $N_{G^{*}}(G_{1})\subseteq G$ , and $G^{*}$ is
transitive on $H$ .

Proof. Since $|N_{G}(E)$ : $E|=5$ and $G^{*}=N_{G^{*}}(E)G$ by the Frattini
argument, this follows from 4.5 and 4.6 because $G$ is not transitive on
$\prime H$ . Q.E.D.

4.8. Corollary, (a) There is exactly one $G$ -orbit $\Omega’\neq\Omega$ in $\Omega^{*}$ .

(b) For (each) $f\in G^{*}\backslash G$ and $B’$ as in 4.4 we have $\Omega’=\Omega^{f}$ and
$B’=gf$ .

(c) Furthermore, $G_{1}^{f}$ is transitive on $\Omega$ , and (hence) $G_{1}^{f}\cap G_{1}$ is of
type $L_{2}(11)$ .

4.9. Lemma. Each 4-subset of $\Omega$ $is/ixed$ elementwise by exactly
one involution in G. The set $J$ of these involutions has (therefore) $\left(\begin{array}{l}12\\4\end{array}\right)$

elements and is invariant under $G^{*}$ (whence $|\Omega_{t}’|=4$ for each $t\in J$).

Proof. $Q=G_{4}$ has only one involution by 4.2(b). Let $Q\simeq P\underline{\subseteq}G$ .

Then the involution $t$ in $P$ is trivial on each $P$-orbit of length $<|P|=8$ .

Thus one $P$-orbit has length 8, and the remaining four points in $\Omega$ are
fixed by $t$ . Q.E.D.

4.10. Lemma. For each block $B\in B$ ,

(a) $C=\Omega\backslash B\in B$ and $L=G_{B}=G_{C}\simeq S_{6}$ ,
(b) $L$ has a unique orbit $F=F(B)$ of length 2 in $\Omega^{*}(itliesin\Omega’)$ ,
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(c) $F=F(A)$ with $A\in B$ implies $A\in\{B, C\}$ ,
(d) $t\in G_{F}$ with $\Omega_{t}$ not empty implies $t\in L$ ,
(e) $|(A\cup F(A))\cap(B\cup F)|\geq 5$ implies $A=B$ ,
(f) $|\Omega_{t}^{*}\cap(B\cup F)|\leq 4$ for $t\in J$ , $J$ as in 4.9, and
(g) $|\Omega_{s}\cap\Omega_{t}|\leq 2$ for distinct $s$ , $t\in J$ fifixing $F$

elementwise.

Proof. The last assertion of 4.4 yields (a). The subgroup $M=$
$G_{2}’\simeq L_{2}(9)\simeq A_{6}$ of $G_{2}\underline{\subseteq}G_{1}$ does not fix two points in $\Omega’$ because
otherwise $M^{f}(f\in G^{*}\backslash G)$ were conjugate to $M$ in $G$ , contrary to
4.8(c). Hence $\Omega’$ has two $M$-orbits of length 6, say $U$ and $V=\Omega’\backslash U$ .

Since $M$ has order $6!/2$ and index 4 in $N=N_{2}=N_{G}(M)$ , it follows that
$U$ and $V$ are interchanged by $N$ and fixed by some subgroup $S\simeq S_{6}$

of index 2 ( $G_{U}$ is faithful on $U$ ). Then $U$ is a block in the unique G-
invariant $B’\in S(5,6, \Omega’)$ , hence conjugate to $B$ by some $f\in G^{*}\backslash G$ , and
this completes the proof of (b) because $S=G_{U}$ leaves $\{\alpha, \beta\}$ invariant
and is distinct from $G_{2}$ by 4.3(a).

The subgroup $L_{0}\simeq A_{6}$ of $L$ is the unique subgroup of index 4 in
$G_{F}\simeq N_{2}$ , and the only $L_{0}$-orbits in $\Omega$ are $B$ and $C$ . This yields (c),
and for (d) note that $t$ cannot interchange $B$ and $C$ .

Let $Y=A\cap B$ in (e). The case $|Y|\geq 5$ is trivial, also the case
$|Y|=3$ because then $F=F(A)$ . Assume $|Y|=4$ . There still exists
$x\in F\cap F(A)$ . By 4.9, a unique involution $t\in G$ fixes $Y$ elementwise.
Since $L$ induces $Sym(B)$ on $B$ , $t$ lies in $L$ , but (as a transposition on $B$ )
not in $L_{0}$ . Hence $\{x, x^{t}\}$ equals $F$ and by symmetry also $F(A)$ .

Let $Y=\Omega_{t}\cap B$ in (f). If $|Y|=4$ , then as above $t$ does not fix a
point in $F$ . If $|Y|=3$ and $t$ fixes $F$ elementwise, then $t\in L_{0}$ by (d), a
contradiction because $Y\underline{\subseteq}B_{t}$ implies $t$ is a transposition on $B$ .

Let $Y=\Omega_{s}\cap\Omega_{t}$ in (g) and assume $|Y|=3$ . Again $s$ and $t$ lie in
$L_{0}$ , and $\langle s, t\rangle$ is dihedral of order 6 by 4.2(a). Action on $B$ and $C$ shows
that $|B\cap Y|\neq 2,3$ and $|C\cap Y|\neq 2,3$ , a contradiction. Q.E.D.

4.11. Theorem. $G^{*}=Aut(M_{12})$ leaves a Steiner system $B^{*}$ of
type (5, 8, 24) on $\Omega^{*}$ invariant, namely $B^{*}=B_{1}\cup B_{2}$ where $B_{1}$ is the set

of all 8-sets $B\cup F(B)$ , with $B\in B\cup B’$ and $F(B)$ defifined by 4.10(b)
and $B_{2}$ is the set of all 8-sets $\Omega_{t}^{*}$ , with $t\in J$ , $J$ as in 4.9.

Proof. From $|B_{1}|=|B|+|B’|=2\cdot b(5,6,12)=4\cdot 66$ and $|B_{2}|=|J|=$

$\left(\begin{array}{l}12\\4\end{array}\right)=11\cdot 5\cdot 9$ we get $|B^{*}|=|B_{1}|+|B_{2}|=11\cdot 3\cdot(8+15)=b(5,8,24)$ . So by
1.1 it suffices to verify $|\mathcal{B}^{*}(X)|\leq 1$ for each 5-set $ X\underline{\subseteq}\Omega$ . Without loss,
$|X\cap\Omega|\geq 3$ . Thus 4.10(b) $(f)(g)$ does the job. Note that the condition
about $F$ in (g) means no loss of generality because $G$ is doubly transitive
on $\Omega’$ . Q.E.D.
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4.12. Corollary. Assume (what will be shown in 8.2) that $M$ $=$

$Aut(B^{*})$ has order 24 $\cdot 23\cdot 22\cdot 21$ $\cdot 20\cdot 48$ . Then $M$ has a subgroup
isomorphic to $L_{2}(23)$ , and all these subgroups are conjugate.

Proof. Regard $G^{*}$ as a subgroup of $M$ . A subgroup $L\simeq L_{2}(23)$

of $S=Sym(\Omega^{*})$ is generated by a subgroup $P$ of order 23, a subgroup
$E\underline{\subseteq}N_{S}(P)$ of order 11, and an involution $t\in N_{L}(E)$ . Let $P\underline{\subseteq}M$ . Then
$|N_{M}(P)|=23\cdot 11$ and (hence) $E\underline{\subseteq}M$ because $|M$ : $N_{M}(P)|\equiv 1(23)$ and
$|N_{S}(P)$ : $PE|=2$ . Let $E\underline{\subseteq}G$ . Then 4.6 yields an involution $f\in G^{*}\backslash G$

which inverts $E$ (recall that $|N_{G}(E)|=11\cdot 5$ ). Interchanging $\Omega$ and $\Omega’$ ,
$f$ is fixed-point-free on $\Omega^{*}=\Omega\cup\Omega’$ . However, because $|\Omega_{E}^{*}|=2$ , the
elements of Et are the only fixed-point-free involutions of $S$ which invert
$E$ (the product of any two such involutions $x$ , $y$ centralizes $E$ , is inverted
by $x$ and $y$ , and leaves the two fixed points of $E$ and the two orbits of
length 11 invariant). Q.E.D.

\S 5. Steiner systems of type (2,5,21)

5.1. Assume $B$ $\in S(2,5,21, \Omega)$ and $L\in B$ . By 2.1, $B$ is a projective
plane of order 4. For each line $X$ of the affine plane $B^{L}$ of order 4 defined
in 2.1 there is a unique point $p=p(X)$ in $L$ such that $X\cup\{p\}\in B$ , and
a line $Y$ is parallel to $X$ if and only if $p(X)=p(Y)$ .

Thus each isomorphism from $B^{L}$ on a similar affine plane $\hat{B}^{\hat{L}}$ extends
uniquely to an isomorphism from $B$ on $\hat{B}$ . Since $B$ has 21 blocks, and
by 2.4 there are 16 $\cdot 15$ $\cdot 24$ isomorphisms between any two affine planes
of order 4, it follows that all projective planes of order 4 are isomorphic
and $Aut(B)$ has order 21 $\cdot 16\cdot 15$ $\cdot 24$ .

5.2. More precisely, $G=Aut(B)$ is block-transitive and the block
stabilizer $G_{L}$ is sharply transitive on the set of regular quadruples
$(a, b, C_{)}x)$ of $B^{L}$ in the sense of 2.4.

So if a subgroup $T\neq 1$ of $G_{L}$ fixes a block $B\neq L$ elementwise, then
$\Omega_{T}\underline{\subseteq}L\cup B$ and hence $B$ is unique.

5.3. Assume a subgroup $T\underline{\subseteq}G$ of order 2 fixes a block $B$ element-
wise. Then $T$ fixes no additional point $\alpha$ .

Proof. Otherwise a second point $\beta\in\Omega\backslash B$ is fixed by $T$ because
$|\Omega\backslash B|=16$ is even. By 5.2, $\beta$ lies in each of the five blocks $ L=\langle\alpha, \lambda\rangle$

$(\lambda\in B)$ , a contradiction. Q.E.D.

5.4. Using the description of $B^{L}$ by a $4\times 4$-matrix $A=(ij)$ in 2.4,
based on a regular quadruple $(a, b, c, x)=(11,12,13, 21)$ , we get the
following list of blocks:
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$H_{1}$ : 11121314 $h$ $V_{1}$ : 11213141 $v$ $L$ : $hvuts$
$H_{2}$ : 21222324 $h$ $V_{2}$ : 12223242 $v$

$H_{3}$ : 31323334 $h$ $V_{3}$ : 13233343 $v$

$H_{4}$ : 41424344 $h$ $V_{4}$ : 14243444 $v$

$U_{1}$ : 11223344 $u$ $T_{1}$ : 11233442 $t$ $S_{1}$ : 11243243 $s$

$U_{2}$ : 12213443 $u$ $T_{2}$ : 12243341 $t$ $S_{2}$ : 12233144 $s$

$U_{3}$ : 13243142 $u$ $T_{3}$ : 13213244 $t$ $S_{3}$ : 13223441 $s$

$U_{4}$ : 14233241 $u$ $T_{4}$ : 14223143 $t$ $S_{4}$ : 14213342 $s$

\S 6. Steiner systems of type (3,6,22)

Although a little less straightforward, this section is totally analo-
gous to the first part of section 3.

6.1. Let $B$ $\in S(3,6,22, \Omega)$ . We begin with a sequence (call it regular)

$q=(a’, L, a, b, c, x)$

such that $a’\in L\in B$ and $a$ , $b$ , $c$ , $x$ are non-collinear points outside $L$ ,

with $a’$ , $a$ , $b$ , $c$ however collinear.
Existence of $q$ is quite obvious. Actually, for any four non-collinear

points $a’$ , $a$ , $b$ , $x$ there exists a block $L\in B(a’)$ containing none of them,
because

$|B(a’)|=21>5+5+5=|B(a’a)|+|B(a’, b)|+|B(a’, x)|$ ;

then choose the fifth point $c$ in $\langle a’, a, b\rangle$ outside $L$ .

We apply 5.4 to $B((a’))\in S(2,5,21)$ and get a matrix

$A=\left(\begin{array}{llll}11 & 12 & 13 & 14\\21 & 22 & 23 & 24\\31 & 32 & 33 & 34\\41 & 42 & 43 & 44\end{array}\right)$ $=\left(\begin{array}{llll}a & b & & 14\\x & 22 & 23 & 24\\31 & 32 & 33 & 34\\41 & 42 & 43 & 44\end{array}\right)$

and points $h$ , $v$ , $u$ , $t$ , $s\in L$ such that the blocks in $B(a’)$ are given by the
list in 5.4 (add $a’$ everywhere). The blocks $H_{1}$ , $V_{1}$ , $U_{1}$ , $T_{1}$ , $S_{1}$ constitute
$B(a, a’)$ and are also denoted by $H$ , $V$, $U$, $T$ , $S$ . Note that

$H=ha’$ $a$ $bc14$ and $V=va’$ a $x3141$ .

It follows that the sequence $q’=(a, L’, a’, b, c, x)$ with $ L’=\langle a, h, v\rangle$ is
regular too. It yields an analogous description of $B(a)$ involving a matrix
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$A’=\left(\begin{array}{llll}11’ & 12’ & 13’ & 14’\\21’ & 22’ & 23’ & 24’\\31’ & 32’ & 33’ & 34’\\41, & 42, & 43, & 44,\end{array}\right)$ $=\left(\begin{array}{llll}a’ & 12 & 13 & 14\\21 & 22, & 23’ & 24,\\31’ & 32’ & 33’ & 34’\\41’ & 42’ & 43, & 44’\end{array}\right)$

and points $h’$ , $v’$ , $u’$ , $t’$ , $s’\in L’$ . We have $h’=h$ , $v’=v$ , and 31 $41=$

$31’41’$ .

The fact that $q’’$ equals $q$ constitutes a useful symmetry in our sit-
uation.

6.2. Since $B(a)a’)$ also consists of $H’=H$ , $V’=V$ , $U’$ , $T’$ and $S’$ ,
it follows that

$\{U, T, S\}=\{U’, T’, S’\}$

and that $X_{i}’\neq Y_{j}$ for any two letters $X$ , $Y$ among $H$ , $V$, $U$, $T$ , $S$ and any
two numbers $i,j$ among 1, 2, 3, 4 not both 1.

6.3. Since $L’\cap L=hv=h’v’$
) each of $u’$ , $t’$ , $s’$ equals some $\dot{x}j$

$(i, j\in\{2,3,4\})$ . No two of them lie in the same row or column of the
matrix $A$ .

Otherwise the block $H_{i}$ or $V_{j}$ corresponding to that row or column
would have three points in common with $L’$ , namely those two plus $h$ or
$v$ .

6.4. Lemma. We have $31’=31$ and $41’=41$ .

Proof. Assume this key result is false, that is $31’=41$ and $41’=31$ .

Then $U_{4}’\cap T_{4}=1431$ , $U_{3}’\cap S_{3}=1341$ , and $S_{2}’\cap T_{2}=1241$ . This
implies

$u’\neq 22,43,34$ and $s’\neq 24,33$

as well as $t\neq 23’$ , $32’$ , $44’$ and $s\neq 42’$ , hence, by symmetry,

$t’\neq 23,32,44$ and $s’\neq 42$ .

The remaining possibilities for $u’$ , $t’$ , and $s’$ are listed in the three
tables below. They contain also the corresponding values for $U’$ , $T’$ ,
and $S’$ which follow from 6.2. The addition $[t’]$ for example to the
value $u’=32$ means that in this case a look at $t’$ immediately yields a
contradiction: Indeed, the values 24 and 43 for $t’$ violate $U’\neq T’$ , and
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the remaining values 22, 33, 34, 42 violate 6.3.

$u’$ : $33[s’]$ $44[t’]$ $23[t’]$ $42[s’]$ $24[s’]$ $32[t’]$

U’ : U U T T S S

t’ : 22 33 34 42 24 43
T’ : U U T T S S

$s’$ : 22 44 23 34 32 43
S’ : U U T T S S

Q.E.D.

6.5. Lemma. We have $U’=U$, $T’=T$ , and $S’=S$ , that is

$u’22’33’44’=u223344$ , $t’23’34’24’=t233424$ ,

and $s’24’32’43’=s243243$ .

Proof. This is now very easy. From $U_{2}’\cap U_{2}=1221$ , $U_{3}’\cap U_{3}=$

$1331$ , and $U_{4}’\cap U_{4}=1441$ it follows that $u’$ is distinct from 34, 43,
24, 42, 23, and 32, hence equal to 22, 33, or 44. This implies $U’=U$

by 6.2, and the same argument, now exploiting the intersections $T_{i}’\cap T_{i}$

$(i=2,3)4)$ , yields $T’=T$ . Q.E.D.

6.6. Obviously, only three possibilities for $(u’, t’, s’)$ are compatible with
6.3 and 6.5, and analogously for $(u, t, s)$ :

$u’$ $t’$ $s’$

22 34 43 22’ 34’ 43’
33 42 24 33’ 42’ 24’
44 23 32 44’ 23’ 32’

Moreover, $u’=nn$ implies $u=nn’$ :

To prove this addition, assume first the case $u’=22$ . Then $U_{4}’\cap T_{4}=$

$14$ $22$ and hence $t\neq 23’$ . Also, $U_{3}’\cap S_{3}=1322$ and hence $s\neq 24’$ . Thus
the second table leaves only the case $(u, t, s)=(22’, 34’, 43’)$ .

By symmetry, $u=22’$ implies $u’=22$ . So to complete the proof it
suffices to verify $s\neq 32’$ in case $u’=33$ , and this follows from $U_{4}’\cap S_{4}=$

$1433$ .

6.7. Theorem. The matrix $A’=(ij’)$ is one of the following:

$\left(\begin{array}{llll}11 & 12 & 13 & 14\\21 & & 42 & 32\\31 & 24 & 44 & t\\41 & 23 & & 33\end{array}\right)$ $($

11 12
21 44
31 43
41

$323413$ $222314s)$ $\left(\begin{array}{llll}11 & 12 & 13 & 14\\21 & 33 & & 43\\31 & & 22 & 42\\41 & 34 & 24 & u\end{array}\right)$
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Proof. Apply 6.4, 6.5, 6.6, and the fact that $ij’\neq ij$ for all $i$ , $ j\in$

$\{2,3,4\}$ (otherwise $H_{i}=\langle h$ , il, $ij\rangle=H_{i}’$ ). Q.E.D.

6.8. Corollary. In accordance with the three cases of 6.7,

$\langle a, b, x\rangle\backslash \{a, b, x\}=U_{2}’\backslash \{11,12,21\}=\{34’, 43’, u’\}$

equals one of the pairwise disjoint sets $ts22,233233$ , and 422444.

6.9. Corollary. If $B_{2}\in S(3,6, \Omega)$ satisfifies $B_{2}(a’)=B(a’)$ and
$B_{1}\cap B_{2}\supset\{a, b, x\}$ for some $B_{2}\in B_{2}$ and $B_{1}\in B$ , then $B_{2}(a)=B(a)$ .

Proof. Apply all the above to $B_{2}$ in place of $B$ , relative to the same
regular sequence $(a’, L, a, b, c, x)$ , hence the same matrix $A$ . Again, the
matrix $A_{2}’$ analogous to $A’$ is one of the three in 6.7, and the non-disjoint
sets $B_{1}\backslash \{a, b, x\}$ and $B_{2}\backslash \{a, b, x\}$ are among the three sets listed in 6.8,
hence are equal. This means $A_{2}’=A’$ , that is $B_{2}(a)=B(a)$ . Q.E.D.

6.11. Lemma. (a) Condition 1.12 $(**)(3,6,22)$ holds.
(b) We have $\ell’(3,6,22)\leq 3$ .

Proof. (a) Write $B$ for $B_{1}$ , $a’$ for $\alpha$ , and $a$ for $\beta\in B_{1}\cap B_{2}$ . Choose
further points $b$ and $x$ in $B_{1}\cap B_{2}$ . Then $a’$ , $a$ , $b$ , $x$ are not collinear
because $a’\not\in B_{i}$ . Thus $q$ as in 3.1 exists, and we can apply 6.9.

(b) Recall that any two points can play the role of $a’$ and $a$ in 3.1.
Thus (b) means that in 3.1, once $B(a’)$ is given, that is $A$ is given,
there are at most three possibilities for $B(a)$ , that is for $A’$ . Now apply
6.7. Q.E.D.

6.11. Lemma. Let $W$ be the pointwise stabilizer in $G=Aut(B)$

of a block B. Then $W_{\alpha}=1$ for all $\alpha\in\Omega\backslash B$ . In particular, $|W|$ divides
16, the order of any three-point-stabilizer divides 16 $\cdot 6$ , and (hence) $|G|$

divides 22 $\cdot 21$ $\cdot 20\cdot 16\cdot 6$ .

Proof. Assume $T\underline{\subseteq}W_{\alpha}$ has prime order $p$ . The 152-sets $X$ of the
6-set $B$ yield 15 $T$-invariant blocks $\langle X, \alpha\rangle$ . Only two of them may lie
in $\Omega_{T}$ , by 5.2 applied to $B((\alpha))$ . Thus $\Omega$ has 13 $T$-orbits of length $p$ , a
contradiction. Q.E.D.

6.12. Theorem. All Steiner systems of type (3, 6, 22) are isomor-
phic, and their automorphism group has order 22 $\cdot 21$ $\cdot 20\cdot 16$ $\cdot 6$ .

Proof. Recall from 5.1 that Steiner systems of type (2,5,21) are
isomorphic and have $g’=21$ . 20 $\cdot 16$ . 6 $\cdot 3$ automorphisms. By 6.10 and
1.12(e) we have $\ell(3,6,22)\leq 3$ . This together with 6.11 allows to apply
1.6 with $n=3$ . Q.E.D.



276 H. Bender

6.14. Corollary. (a) $G=Aut(B)$ is 3-transitive on $\Omega$ , and the
stabilizer of three points has order 16 $\cdot 6$ .

(b) $G$ is block-transitive, and the stabilizer $H=G_{B}$ of a block $B$ is 3-
transitive $(actually6-transitiveby(c))$ on $B$ , and has order $6\cdot 5\cdot 4\cdot 16\cdot 6=$

$6!\cdot 16$ .

(c) $W$ as in 6.11 has order 16, and $H/W$ is isomorphic to $S_{6}$ .

(d) A subgroup $D\underline{\subseteq}H$ of order 5 fifixes exactly two points and two
(disjoint) blocks.

(e) $D$ satisfifies $C_{H}(D)=1$ , $|N_{H}(D)|=5\cdot 4$ , $|N_{G}(D)|=5\cdot 8$ ,
the involution $s$ in $C_{G}(D)$ interchanges the two $D$ -invariant points and
blocks, and $s$ has (therefore) no fifixed-point.

(f) $W$ is elementary abelian, sharply transitive on $\Omega\backslash B$ , and equal
to $C_{G}(W)$ .

(g) If $E\underline{\subseteq}G$ has order 11, then $N_{G}(E)$ is a Frobenius group of order
11 $\cdot 10$ transitive on $\Omega$ .

For (g) note that $|C_{G}(E)$ : $E|\leq 2$ , $|G$ : $N_{G}(E)|\equiv 1(11)$ , and in
case $s\in C_{G}(E)$ also $|C_{G}(s)$ : $N_{G}(E)|\equiv 1\equiv|G:C_{G}(s)|$ modulo 11 $\cdot 5$ .

6.14. Corollary. $G=Aut(B)$ has a subgroup isomorphic to $PGL_{2}(11)$ ,

and all these subgroups are conjugate.

Proof. Analogous to 4.12. A subgroup $L\simeq PGL_{2}(11)$ of $S=$

$Sym(\Omega)$ is generated by a transitive Frobenius subgroup $F$ of order
11 $\cdot 10$ , and an involution $t$ which inverts a subgroup $D^{*}\underline{\subseteq}F$ of order
10 and fixes the two $D^{*}$ -orbits of length 10 as well as the two remaining
points.

By 6.13(g), $F$ is conjugate in $S$ to a subgroup of $G$ . Let $F\underline{\subseteq}G$ . By
6.13(e), $G$ contains an involution like $t$ . Obviously, the product of any
two such involutions in $S$ lies in $D^{*}$ . Q.E.D.

\S 7. The Isomorphism Theorem for $S(4,7,23)$

7.1. Let $B\in B\in S(4,7,23, \Omega)$ and $G=Aut(B)$ . First we show that
the order of the stabilizer of any four points (without loss in $B$ ) divides
16 $\cdot 3$ , and (hence) $|G|$ divides 23 . 22 $\cdot 21$ . 20 $\cdot 16\cdot 3$ .

By 6.11, that order $k$ divides 16 $\cdot 6$ . So if the assertion is false, then
some subgroup $T\underline{\subseteq}G_{B}$ of order 2 fixes a 5-set $X\underline{\subseteq}B$ elementwise,
and also some $\alpha$ in the 16-set $\Omega\backslash B$ . This contradicts 5.3, applied to
$B((B\backslash X))$ .

7.2. Theorem. All Steiner systems of type (4, 7, 23) are isomor-
phic and their automorphism group has order 23 $\cdot 22\cdot 21$ . 20 $\cdot 16\cdot 3$ .
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Proof. We have $\ell(4,7,23)\leq 3$ by 6.10 and 1.12(e). This together
with 7.1 allows to apply 1.6 with $n$ $=2$ . Q.E.D.

7.3. Corollary (by 6.13). (a) $G$ is 4-transitive on $\Omega$ , and the sta-
bilizer of four points has order 16 $\cdot 3$ .

(b) $G$ is block-transitive, and the stabilizer $H=G_{B}$ of a block $B$ is
4-transitive {actually 5-transitive by (c) $)$ on $B$ of order 7 . 6 . 5 . 4 $\cdot 16$ $\cdot 3=$

$16$ $\cdot 7!/2$ .

(c) The pointwise stabilizer $W$ of $B$ is sharply transitive on $\Omega\backslash B$ ,
and $H/W$ is isomorphic to A7.

(d) $W$ equals $C_{G}(W)$ and is elementary abelian of order 16.

\S 8. The Isomorphism Theorem for $S(5,8,24)$

8.1. Lemma. We have $\ell(5,8,24)\leq 1$ .

Proof. Let $\Omega$ be a 24-set, $\alpha\in\Omega$ , $B’\in S(4,7, \Omega\backslash \{\alpha\})$ , and

$\{B_{1}, B_{2}, \ldots, B_{m}\}=\{B \in S(5,8, \Omega)|B((\alpha))=B’\}$ .

The claim is $m\leq 1$ . By 6.10 and 1.12(e) we have $\ell(5,8,24)\leq 3$ , that is
$m\leq 3$ . Thus each $B_{i}$ is fixed by any subgroup $D\underline{\subseteq}Sym(\Omega)$ of order 5
which fixes $\alpha$ and $B’$ . Such a $D$ exists because $|Aut(B’)|$ is divisible by
5 (Theorem 7.2).

Since $|B’|=b(4,7,23)=23\cdot 11\equiv 3(5)$ and $|\Omega_{D}|=4$ , some $D$-orbit
$ X\underline{\subseteq}\Omega$ of length 5 is not contained in a block of $B’$ . The block $B_{i}\in B_{i}$

which contains $X$ is $D$-invariant, and hence contains 3 fixed points of
$D$ . This implies $|B_{i}\cap B_{j}|>5$ for all $i$ , $j$ , hence $B_{i}=B_{j}$ because
$(t, k, v)=(5,8,24)$ satisfies 1.12 $(^{*})$ , again by 6.10 and 1.12(e). Q.E.D.

8.2. Theorem. All Steiner systems of type (5, 8, 24) are isomor-
phic and their automorphism group has order 24 $\cdot 23\cdot 22\cdot 21$ $\cdot 20\cdot 16$ $\cdot 3$ .

Proof. By 8.1 and 7.2, 1.6 applies with $n=1$ . Q.E.D.

Remark. $S(5,8,24)$ is not empty by 4.11. From 8.2 and 7.3 the
corollary analogous to 7.3, with $A_{8}\simeq H/W$ in place of A7, follows
immediately. Faithful action on $W$ shows that $A_{8}$ is isomorphic to $L_{4}(2)$ .
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Rationally Determined Group Modules

Everett C. Dade

Abstract.

Green’s correspondence of group modules finds its simplest ex-
pression when a finite multiplicative group $G$ has a trivial intersec-

tion Sylow $p$-subgroup $P$ , for some prime $p$ . Then it is between all
isomorphism classes of projective-free $RG$ lattices $L$ and all isomor-
phism classes of projective-free $RN$-lattices $K$ , where $R$ is a suitable
valuation ring and $N$ is the normalizer of $P$ in $G$ . In that case we
show in Theorem 3.2 below that the $RG$-lattice $L$ is determined by
its associated lattices over the residue field and field of fractions of
$R$ if and only if $K$ has this same property. By Theorem 3.7 some
important $RG$ lattices $L$ have this property of being “rationally de-

termined.” So it would be worthwhile to see if the $RN$ lattices with
this property (and perhaps with other properties preserved by this

Green correspondence) could be classified.

\S 1. Projective-Free Lattices

Let $S$ be any principal ideal domain. As usual, an $S$ -order $O$ is just
an associative $S$-algebra with identity element $1=1_{O}$ such that $O$ is
free of finite rank when considered as an $S$-module. When we speak of
an $O$-lattice $L$ we mean a unitary right $O$-module such that $L$ is also free
of finite rank as an $S$-module. Of course, a homomorphism $\phi:L\rightarrow K$ of
$O$-lattices is just a homomorphism between $O$ modules $L$ and $K$ which
are $O$-lattices. We write any such $\phi$ on the left, so that it sends any
$l$ $\in L$ to $\phi(l)\in K$ .

In the special case where the principal ideal domain $S$ is a field, an
$S$-order is just a finite-dimensional associative $S$-algebra $O$ with identity
element. Furthermore, an $O$-lattice is just a unitary right $O$-module $L$

which is finite-dimensional as a vector space over S.
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Throughout this note we fix a finite group $G$ and a prime $p$ . We
also fix $R$ , $p$ , $F$ and $\overline{F}$ satisfying

(1.1) $R$ is a local principal ideal domain ( $i.e.$ , a real discrete valuation
ring) with unique maximal ideal $p$ , such that the field of fractions $F$ of
$R$ is a splitting field of characteristic zero for every subgroup of $G$ , and
the residue class field $\overline{F}=R/p$ of $R$ has characteristic $p$ .

Notice that each of $R$ , $F$ and $\overline{F}$ is a principal ideal domain $S$ , to which
all the above definitions apply. Furthermore, the group algebra $SH$ over
$S$ of any subgroup $H$ of $G$ is an $S$-order. The following result says that
$SH$-lattices have the Krull-Schmidt property.

Proposition 1.2. Suppose that $S$ is either $F$ , $\overline{F}$ or $R$ , and that
$H$ is any subgroup of G. Then any $SH$ -lattice $L$ is isomorphic to a finite
direct sum $L_{1}\oplus\cdots\oplus L_{l}$ of indecomposable $SH$ -lattice $L_{i}$ . Furthermore,
this direct sum is uniquely determined to within order and isomorphisms
by the $SH$ -lattice $L$ , $i.e.$ , if $L$ is also isomorphic to a finite direct sum
$K_{1}\oplus\cdots\oplus K_{k}$ of indecomposable $SH$ -lattice $K_{i}$ , then $k=l$ and there
is some permutation $\pi$ of 1, 2, . . . ’

$k$ such that $K_{i}$ is $SH$ isomorphic to
$L_{\pi(i)}$ for $i=1,2$ , $\ldots$ , $k$ .

Proof When $S$ is a field $F$ or $\overline{F}$ , this is the usual Krull-Schmidt
Theorem for the finite-dimensional $S$-algebra $SH$ . When $S$ is $R$ , its field
of fractions $F$ is a splitting field of characteristic zero for the finite group
$H$ by (1.1). So $FH$ is a split, semi-simple algebra of finite dimension over
F. Since $RH$ is an $R$-order spanning $FH$ over $F$ , the basic hypotheses
[1, 4.1] and [1, 4.2] of [1, \S 4] are satisfied by $D=RH$ . The proposition
for $S=R$ now holds by [1, 4.7]. Q.E.D.

In the situation of the preceding proposition we follow Green [2] in
saying that an $SH$-lattice $K$ divides an $SH$-lattice $L$ if $L$ is isomorphic
to the direct sum $K\oplus M$ of $K$ and some $SH$-lattice M. We say that
$L$ is projective-free if the only projective $SH$-lattice $P$ dividing $L$ is
$P=0$ . The Krull-Schmidt property implies that any $SH$-lattice $L$ is
isomorphic to a direct sum $L_{pf}\oplus L_{pr}$ of a projective-free $SH$-lattice $L_{pf}$

and a projective $SH$-lattice $L_{pr}$ , either or both of which could be zero.
Furthermore, these conditions determine both $L_{pf}$ and $L_{pr}$ to within
$SH$-isomorphisms. We call $L_{pf}$ and $L_{pr}$ the projective-free part and the
projective part, respectively, of L.

If $L$ is an $RH$-lattice, then we denote by $\overline{L}$ its residual $\overline{F}H$-lattice

$\overline{L}=L/(pL)$ .
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We write $\eta_{L}$ for the natural epimorphism of $L$ onto its factor $RH$-module
$\overline{L}$ . When $L$ is the regular $RH$ lattice $RH$ , its residual $\overline{F}H$-lattice $\overline{L}$ can
be identified with $\overline{F}H$ . In that case $\eta_{L}$ is the natural epimorphism $\eta_{RH}$

of $RH$ onto $\overline{F}H$ as $R$-algebras.
Our hypotheses (1.1) allow us to lift projective lattices.

Lemma 1.3. If $Q$ is a projective $\overline{F}H$ -lattice, for some subgroup
$H$ of $G$ , then there is some projective $RH$ lattice $P$ whose residual $\overline{F}H-$

lattice $\overline{P}$ is isomorphic to Q.

Proof. The completion $R^{*}$ of $R$ is a local principal ideal domain
with unique maximal ideal $p^{*}=pR^{*}$ . Since $F$ is a splitting field of
characteristic zero for $H$ (see (1.1)), Heller’s Theorem [4, 2.5] tells us
that the map sending any $RH$ lattice $L$ to its completion $L^{*}$ induces a
bijection of the isomorphism classes of $RH$-lattices onto those of $R^{*}H-$

lattices. Clearly any free $R^{*}H$-lattice is the completion of a free HH-
lattice. Because completion preserves direct sums, we conclude that any
projective $R^{*}H$-lattice (i.e., any direct summand of a free $R^{*}H$-lattice)
is the completion of some projective $RH$ lattice.

We may identify $\overline{F}=R/p$ with the residue class field $R^{*}/p^{*}$ of
$R^{*}$ . Since $R^{*}$ is complete, there is some projective $R^{*}H$ lattice $p*$

such that $p*/p^{*}P^{*}$ is isomorphic to the projective $\overline{F}H$ lattice Q. As
we saw above, $p*is$ isomorphic to the completion of some projective
$RH$-lattice P. Then $\overline{P}=P/pP$ is isomorphic to both $p*/p^{*}P^{*}$ and $Q$

as an $\overline{F}H$-lattice. Q.E.D.

Once we can lift projective $\overline{F}H$-lattices to projective $RH$-lattice,
all the standard results about $p$-adic lattices become available. As an
example we have the following lemma from [5].

Lemma 1.4. Suppose that $H$ is a subgroup of $G$ , that $L$ is an
$RH$ -lattice, and that $Q$ is a projective $\overline{F}H$ -lattice dividing $\overline{L}$ . Then
there is some projective $RH$ lattice $P$ such that $\overline{P}$ is $\overline{F}H$ isomorphic to
Q. Furthermore, any such $P$ divides L.

Proof. Lemma 1.3 gives us some projective $RH$ lattice $P$ whose
residual $\overline{F}H$-lattice $\overline{P}$ is isomorphic to Q. Once we know that such a $P$

exists, the rest of the proof of [5, Lemma 1] can be followed almost word
for word to prove the rest of the present lemma. Q.E.D.

The preceding lemma allows us to characterize both projective and
projective-free $RH$-lattices by their residuals.

Proposition 1.5. Let $H$ be any subgroup of $G$ , and $L$ be any RH-
lattice. Then $L$ is projective or projective-free if and only if its residual
$\overline{F}H$ -lattice $\overline{L}$ is respectively projective or projective-free.
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Proof. If the finitely-generated $RH$-module $L$ is projective, then
it divides the direct sum $(RH)^{n}$ of $n$ copies of the regular $RH$-module
$RH$ , for some integer $n>0$ . It follows that $\overline{L}$ divides the direct sum
$(\overline{F}H)^{n}$ of $n$ copies of $\overline{F}H$ . So $\overline{L}$ is a projective $\overline{F}H$-lattice.

Conversely, if $\overline{L}$ is $\overline{F}H$-projective, then Lemma 1.4 with $Q=\overline{L}$

gives us some projective $RH$ lattice $P$ dividing $L$ such that $\overline{P}$ is $\overline{F}H-$

isomorphic to $\overline{L}$ . This can only happen when $L\simeq P$ is projective. Thus
$L$ is projective if and only if $\overline{L}$ is projective.

If some non-zero projective $RH$ lattice $P$ divides $L$ , then its residual
$\overline{F}H$-lattice $\overline{P}$ is non-zero and divides L. We saw above that $\overline{P}$ is projec-
tive. Hence $\overline{L}$ is not projective-free whenever $L$ is not projective-free.

Conversely, suppose that some non-zero projective $\overline{F}H$ lattice $Q$

divides $\overline{L}$ . Then Lemma 1.4 gives us some projective $RH$ lattice $P$

dividing $L$ such that $\overline{P}\simeq Q\neq 0$ . Evidently $P$ is not zero. Thus $L$ is
not projective-free if and only if $\overline{L}$ is not projective-free. Q.E.D.

Another consequence of Lemma 1.4 is the standard correspondence
between projective $RH$-lattices and projective $\overline{F}H$-lattices.

Proposition 1.6. If $H$ is a subgroup of $G$ , then there is $a$ one to
one correspondence between all isomorphism classes of indecomposable
projective $RH$ -lattices $P$ and all isomorphism classes of indecomposable
projective $\overline{F}H$ -lattices Q. Here the isomorphism class of $P$ corresponds
to that of $Q$ if and only if $\overline{P}$ is $\overline{F}H$ isomorphic to Q.

Proof. Any projective $RH$ lattice $P$ has a projective residual $\overline{F}H-$

lattice $\overline{P}$ by Proposition 1.5. Any projective $\overline{F}H$ lattice $Q$ is isomorphic
to such a residual $\overline{P}$ by Lemma 1.3. If $P_{0}$ is also a projective $RH$ lattice
then any isomorphism $P\simeq P_{0}$ of $RH$-lattices induces an isomorphism
$\overline{P}\simeq\overline{P_{0}}$ of residual $\overline{F}H$-lattices. So we only need show that $P$ is KH-
isomorphic to $P_{0}$ whenever $\overline{P}$ is $\overline{F}H$ isomorphic to $\overline{P_{0}}$ . But in that case
Lemma 1.4, with $P_{0}$ and $\overline{P_{0}}$ in place of $L$ and $Q$ , respectively, implies
that $P$ divides $P_{0}$ . Since $\overline{P}$ is isomorphic to $\overline{P_{0}}$ , this can only happen
when $P$ is isomorphic to $P_{0}$ . Q.E.D.

\S 2. Green Correspondents

Let $S$ be either $R$ or F. Then any integer $n$ relatively prime to the
characteristic $p$ of $\overline{F}=R/p$ has an image $n1_{S}$ which is a unit of S.
This and the Krull-Schmidt property are enough to imply all of Green’s
theory in [2] and [3] for $SH$-lattices.

$We’ re$ going to apply his theory when $G$ has subgroups $P$ and $N$

satisfying
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(2.1) $P$ is a Sylow $p$ -subgroup of $G$ , and $N$ is its normalizer $N_{G}(P)$

in G. Furthermore, the intersection $P\cap P^{\sigma}$ of $P$ with its conjugate
$ P^{\sigma}=\sigma^{-1}P\sigma$ by any $\sigma\in G-N$ is the trivial subgroup 1 of $G$ .

Of course this last condition just says that $P$ is a tnvial intersection
subgroup of $G$ . Green’s correspondence in this case simplifies to

Proposition 2.2. If (2.1) holds and $S$ is either $R$ or $\overline{F}$ , then
there is $a$ one to one correspondence between all isomorphism classes of
projective-free $SG$ -lattices $L$ and all isomorphism classes of projective-
free $SN- la\hslash ices$ K. Here the isomorphism class of $L$ corresponds to that

of $K$ if and only if $L$ is isomorphic to the projective-free part $(K^{G})_{pf}$

of the $SG$ -lattice $K^{G}$ induced by K. This happens if and only if $K$

is isomorphic to the projective-free part $(L_{N})_{pf}$ of the $SN- la\hslash ice$ $L_{N}$

restricted from L.

Proof Because $SH$-lattices have the Krull-Schmidt property, for
any subgroup $H$ of $G$ , we may apply all the arguments in [3] to our
present situation. Following the notation of that paper as closely as
possible, we denote by $a(H)$ the Green ring for the $SH$-lattices. So $a(H)$

is generated as an additive group by the Green symbols (U), one for each
$SH$-lattice $U$ , subject only to the relations that (U) $=(U’)$ whenever
$U$ and $U’$ are isomorphic SHSiMattices, and that $(U)+(U’)=(U\oplus U’)$

for any $SG$-lattices $U$ and $U’$ . (Multiplication in $a(H)$ is irrelevant to
our purposes.) The Krull-Schmidt property implies that $a(H)$ is a free
additive group with one basis element (U) for each isomorphism class
of indecomposable $SH$-lattices U. Those (U) in this basis for which
$U$ is projective-free form a basis for an additive subgroup $a_{pf}(H)$ of
$a(H)$ . Those for which $U$ is projective form a basis for another additive
subgroup $a_{pr}(H)$ . Furthermore, $a(H)$ is the direct sum

(2.3) $a(H)=a_{pf}(H)\oplus a_{pr}(H)$

of these two subgroups.
As the subgroups $D$ and $H$ of $G$ used in [3] we take the present $P$

and $N$ , respectively. Then $H=N$ contains the normalizer $N_{G}(D)=N$

of $D=P$ , as required on page 75 of [3]. The index $[G:D]$ of the Sylow
$p$-subgroup $D=P$ is relatively prime to $p$ . Hence its image $[G : D]1_{S}$

is a unit of S. As in [2, Theorem 2], this implies that any $SG$-lattice is
$D$-projective. So the additive subgroup $a_{D}(G)$ , generated by the (L) for
$D$ projective $SG$-lattices $L$ , is all of $a(G)$ . Similarly, $a(N)$ is equal to its
subgroup $a_{D}(N)$ .

Because $D=P$ is a trivial intersection subgroup of $G$ , the family
$X=X(D, H)$ of all intersections $D^{\sigma}\cap D$ with $\sigma\in G-H=G-N$
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just consists of the trivial subgroup 1 of $G$ . Hence the additive sub-
group $ax(G)=\sum_{D’\in X}a_{D’}(G)$ of $a(G)$ is just the additive subgroup
$a_{1}(G)$ generated by the (P), where $P$ runs over the 1-projective SG-
lattices. Since the 1-projective $SG$-lattices are just the projective ones,
we conclude that $a_{X}(G)=a_{pr}(G)$ . This and (2.3) imply that

$a_{D}(G)/a_{X}(G)=a(G)/a_{pr}(G)\simeq a_{pf}(G)$

as additive groups. Similarly

$a_{D}(N)/a_{X}(N)=a(N)/a_{pr}(N)\simeq a_{pf}(N)$ .

In view of these natural isomorphisms, [3, Theorem 1] implies the present
proposition. Q.E.D.

When $S$ is either $R$ or $\overline{F}$ , we say that a projective-free $SG$ lattice
$L$ is an $SG$ -Green correspondent of a projective-free $SN$ lattice $K$ (or
that $K$ is an $SN$ -Green correspondent of L) if the isomorphism classes
of $L$ and $K$ correspond in the above proposition.

Proposition 2.4. Let a projective-free $RN$ lattice $K$ be an RN-
Green correspondent of a projective-free $RG$ -lattice L. Then both the
residual $\overline{F}N$ lattice $\overline{K}$ of $K$ and the residual $\overline{F}G$ lattice $\overline{L}$ of $L$ are
projective-free. Furthermore, $\overline{K}$ is an $\overline{F}N$ -Green correspondent of $\overline{L}$ .

Proof. Proposition 1.5 implies that both $\overline{K}$ and $\overline{L}$ are projective-
free. The isomorphism $L_{N}\simeq(L_{N})_{pf}\oplus(L_{N})_{pr}$ of $RN$-lattices induces
an isomorphism

$\overline{L_{N}}\simeq\overline{(L_{N})_{pf}}\oplus\overline{(L_{N})_{pr}}$

of the $\overline{F}N$-residuals of those lattices. By Proposition 1.5 the $\overline{F}N$-lattices
$\overline{(L_{N})_{pf}}$ and $\overline{(L_{N})_{pr}}$ are respectively projective-free and projective. Hence

they are respectively isomorphic to the projective free part $(\overline{L_{N}})_{pf}$ and
projective part $(\overline{L_{N}})_{pr}$ of $\overline{L_{N}}$ .

Since $K$ is an $RN$ Green correspondent of $L$ , it is $RN$ isomorphic
to $(L_{N})_{pf}$ . So $\overline{K}$ is $\overline{F}N$ isomorphic to $\overline{(L_{N})_{pf}}\simeq(\overline{L_{N}})_{pf}$ . But $\overline{L_{N}}$ is
equal to the restriction $\overline{L}_{N}$ of $\overline{L}$ to an $\overline{F}N$-lattice. Hence $\overline{K}\simeq(\overline{L}_{N})_{pf}$

is an $\overline{F}N$-Green correspondent of L. Q.E.D.

\S 3. Rationally Determined Lattices

Any $RH$-lattice $L$ , for any subgroup $H$ of $G$ , extends to an FH-
lattice $FL\simeq F\otimes_{R}L$ , determined to within isomorphisms by the fact
that any basis for the free module $L$ over $R$ is also a basis for the vector
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space $FL$ over F. Thus any $RH$-lattice $L$ determines both an $\overline{F}H-$

lattice $\overline{L}=L/(pL)$ and an $FH$-lattice $FL$ . Since $\overline{F}$ and $F$ are the two
((domains of rationality” associated with $R$ , it is reasonable to make the

Definition 3.1. An $RH$-lattice $L$ is rationally determined if it is

determined to within isomorphisms by its associated $\overline{F}H$-lattice $\overline{L}$ and
$FH$-lattice $FL$ , i.e., if $L$ is $RH$ isomorphic to any $RH$-lattice $K$ such
that $\overline{L}$ is $\overline{F}H$ isomorphic to $\overline{K}$ and $FL$ is $FH$ isomorphic to $FK$ .

The main observation of this note is

Theorem 3.2. Suppose that (1.1) and (2.1) hold, that $K$ is $a$

projective-free $RN$ -lattice, and that $L$ is an $RG$ -Green correspondent of
K. Then the projective-free $RG$ -lattice $L$ is rationally determined if and
only if the $RN$ -lattice $K$ is rationally determined.

Proof Assume that $L$ is rationally determined. We must show
that $K$ is rationally determined. In view of Definition 3.1 it suffices to
prove that $K$ is $RN$ isomorphic to $K_{0}$ whenever $K_{0}$ is an $RN$-lattice
whose residual $\overline{F}N$-lattice $\overline{K_{0}}$ is isomorphic to $\overline{K}$ , and whose associated
$FN$-lattice $FK_{0}$ is isomorphic to $FK$ .

The projective-free $RN$-lattice $K$ has a projective-free residual $\overline{F}N-$

lattice $\overline{K}$ by Proposition 1.5. The isomorphic $\overline{F}N$-lattice $\overline{K_{0}}$ is also
projective-free. So Proposition 1.5 implies that $K_{0}$ is a projective-free
$RN$-lattice. Hence some projective-free $RG$-lattice $L_{0}$ is a Green cor-
respondent of $K_{0}$ . Since the Green correspondence is the bijection of
isomorphism classes in Proposition 2.2, we can prove that $K$ is RN-
isomorphic to $K_{0}$ by showing that $L$ is $RG$ isomorphic to $L_{0}$ . Because
$L$ is rationally determined, it will suffice to show that $\overline{L}$ is $\overline{F}G$ isomorphic
to $\overline{L_{0}}$ , and that $FL$ is $FG$ isomorphic to $FL_{0}$ .

The isomorphic $\overline{F}N$-lattices $\overline{K}\simeq\overline{K_{0}}$ induce isomorphic $\overline{F}G$-lattice
$\overline{K}^{G}\simeq\overline{K_{0}}^{G}$ . Hence we have $\overline{F}G$ isomorphisms

(3.3) $(\overline{K}^{G})_{pf}\simeq(\overline{K_{0}}^{G})_{pf}$ and $(\overline{K}^{G})_{pr}\simeq(\overline{K_{0}}^{G})_{pr}$ .

By definition $(\overline{K}^{G})_{pf}$ and $(\overline{K_{0}}^{G})_{pf}$ are $\overline{F}G$-Green correspondents of $\overline{K}$

and $\overline{K_{0}}$ , respectively. So Proposition 2.4 tells us that $(\overline{K}^{G})_{pf}$ is $\overline{F}G-$

isomorphic to the residual $\overline{L}$ of the Green correspondent $L$ of K. Simi-

larly $(\overline{K_{0}}^{G})_{pf}$ is $\overline{F}G$ isomorphic to $\overline{L_{0}}$ . Therefore the first isomorphism

in (3.3) implies that $\overline{L}$ is $\overline{F}G$ isomorphic to $\overline{L_{0}}$ .

Evidently
$\overline{K}^{G}$

is $\overline{F}G$ isomorphic to the residual $\overline{K^{G}}$ of the RG-
lattice $K^{G}$ induced by K. As in the proof of Proposition 2.4, this im-

plies that $(\overline{K}^{G})_{pr}$ is $\overline{F}G$ isomorphic to the residual $\overline{(K^{G})_{pr}}$ of $(K^{G})_{pr}$ .
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Similarly $(\overline{K_{0}}^{G})_{pr}$ is $\overline{F}G$-isomorphic to the residual $\overline{(K_{0}^{G})_{pr}}$ of $(K_{0}^{G})_{pr}$ .

So the second isomorphism in (3.3) implies that the projective RG-
lattices $(K^{G})_{pr}$ and $(K_{0}^{G})_{pr}$ have isomorphic $\overline{F}G$-residuals. By Proposi-
tion 1.6 this forces $(K^{G})_{pr}$ to be $RG$ isomorphic to $(K_{0}^{G})_{pr}$ . It follows
that $F(K^{G})_{pr}$ is $FG$ isomorphic to $F(K_{0}^{G})_{pr}$ .

The isomorphism $FK\simeq FK_{0}$ of $FN$-lattices induces isomorphisms
$F(K^{G})\simeq(FK)^{G}\simeq(FK_{0})^{G}\simeq F(K_{0}^{G})$ of $FG$ lattices Since $K^{G}$ and
$K_{0}^{G}$ are $RG$ isomorphic to $(K^{G})_{pf}\oplus(K^{G})_{pr}$ and $(K_{0}^{G})_{pf}\oplus(K_{0}^{G})_{pr}$ , re-
spectively, this gives us $FG$ isomorphisms

$F(K^{G})_{pf}\oplus F(K^{G})_{pr}\simeq F(K^{G})\simeq F(K_{0}^{G})\simeq F(K_{0}^{G})_{pf}\oplus F(K_{0}^{G})_{pr}$ .

We saw above that $F(K^{G})_{pr}\simeq F(K_{0}^{G})_{pr}$ as $FG$-lattices. So the Krull-
Schmidt property for $FG$-lattices implies that $FL\simeq F(K^{G})_{pf}$ is FG-
isomorphic to $FL_{0}\simeq F(K_{0}^{G})_{pf}$ .

We have now shown that $\overline{L}$ is $\overline{F}G$ isomorphic to $\overline{L_{0}}$ , and that $FL$ is
$FG$ isomorphic to $FL_{0}$ . As we remarked above, this is enough to imply
that $K$ is rationally determined whenever $L$ is. A similar argument,
using restriction of lattices from $G$ to $N$ instead of induction from $N$ to
$G$ , shows that the converse statement also holds. Q.E.D.

Surprisingly enough, for any subgroup $H$ of $G$ there are some impor-

tant rationally determined $RH$-lattices. After embedding an arbitrary
$RH$-lattice $L$ in an $FH$-lattice $FL$ , we can multiply it by any central
idempotent $e$ in $FH$ , obtaining an $RH$-sublattice Le spanning the FH-
submodule $(FL)e=F$ (Le) of $FL$ .

Proposition 3.4. Suppose that $H$ is a subgroup of $G$ , that $P$ is $a$

projective $RH$ -lattice, and that $e$ is a central idempotent of $FH$ . Then
the $RH$ -lattice $L=Pe$ is rationally determined.

Proof. Let $K$ be any $RH$-lattice such that $\overline{K}$ is $\overline{F}H$ isomorphic to
$\overline{L}$ and $FK$ is $FH$-isomorphic to $FL$ . We must prove that $K$ is HH-
isomorphic to L.

Right multiplication by $e$ is an $RH$ epimorphism $\rho$ of $P$ onto $L=$

Pe. If we follow $\rho$ by the natural epimorphism $\eta_{L}$ of $L$ onto $\overline{L}=L/(pL)$ ,

and by some $\overline{F}H$-isomorphism $\overline{\iota}$ of $\overline{L}$ onto $\overline{K}$ , we obtain a homomorphism
$\overline{\iota}\circ\eta_{L}\circ\rho:P\rightarrow\overline{K}$ of $RH$-modules. We also have the natural epimorphism
$\eta_{K}$ of $K$ onto $\overline{K}=K/(pK)$ as $RH$-modules. Because $P$ is a projective
$RH$-module, there is some homomorphism $\theta:P\rightarrow K$ of $RH$ lattices
such that

(3.5) $\eta_{K}\circ\theta=\overline{\iota}o\eta_{L}o\rho:P\rightarrow\overline{K}$ .
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The $RH$ homomorphism $\theta:P\rightarrow K$ extends by $F$-linearity to an
$HH$-homomorphism $\theta^{F}$ : $FP\rightarrow FK$ . This last homomorphism com-
mutes with multiplication by the central idempotent $e$ of $FH$ . So it

restricts to an $RH$ homomorphism $\iota=(\theta^{F})_{L}$ of $L=Pe$ into Ke. But
right multiplication by the idempotent $e$ is the identity on both $L=Pe$

and $FL=FPe$ . Hence it is the identity on both the $FH$-lattice $FK$ iso-
morphic to $FL$ , and on the $RH$-sublattice $K$ of $FK$ . We conclude that
$\iota$ is an $RH$-homomorphism of $L$ into $K=Ke$ . Since the epimorphism
$\rho$ in the equation (3.5) is just multiplication by $e$ , that equation implies

that

$\overline{\iota}o\eta_{L}=\eta_{K}o\iota:L\rightarrow\overline{K}$ .

Thus $\iota:L\rightarrow K$ is a homomorphism of $RH$-lattices inducing the isomor-
phism $\overline{\iota}:\overline{L}\rightarrow\overline{K}$ of $\overline{F}H$ lattices. Hence $\iota$ is an $RH$ isomorphism of $L$

onto K. Q.E.D.

The $RH$-lattice $Pe$ in the preceding proposition is projective-free in

the most important case.

Proposition 3.6. Suppose that $H$ isa subgroup of $G$ , that $P$ is an
indecomposable projective $RH$ -latti ce, and that $e$ is a central idempotent

of $FH$ . Then the $RH$ -lattice $Pe$ is either equal to $P$ or projective-free.

Proof. Assume that $Pe$ is not projective-free. We must show that

it is equal to $P$ , i.e., that right multiplication by $e$ is the identity on P.

Since right multiplication by the idempotent $e$ is certainly the identity
on Pe, it will suffice to show that $P$ is $RH$ isomorphism to Pe.

Because $Pe$ is not projective-free, it is divisible by some non-zero
projective $RH$-lattice Q. So there is some $RH$ epimorphism $\pi$ of $Pe$

onto Q. Right multiplication by $e$ is an $RH$ epimorphism $\rho$ of $P$ onto
Pe. Hence the composite map $\pi\circ\rho:P\rightarrow Q$ is an epimorphism of HH-
lattices. Since $Q$ is $RH$-projective, there is some $RH$-monomorphism
$\mu:Q\rightarrow P$ such that $\pi o\rho\circ\mu$ is the identity map of $Q$ onto itself. In
particular, the non-zero $RH$-lattice $Q$ divides the indecomposable HH-
lattice P. This can only happen when $\pi\circ\rho$ is an isomorphism of $P$

onto $Q$ , with $\mu$ as its inverse. But then the epimorphism $\rho$ must be an
$RH$-isomorphism of $P$ onto Pe. As we remarked above, this is enough
to prove the proposition. Q.E.D.

Putting the preceding results together, we obtain

Theorem 3.7. Suppose that (1.1) and (2.1) hold, that $P$ is an
indecomposable projective $RG$ -lattice, and that $e$ is a central idempotent

of $FG$ such that $Pe\neq P$ . Then the $RG$ -lattice $Pe$ is projective-free,
and its $RN$ -Green correspondents are rationally determined.



288 E. C. Dade

Proof. The $RG$-lattice $Pe$ is projective-free by Proposition 3.6, and
is rationally determined by Proposition 3.4. So its $RN$-Green correspon-
dents are rationally determined by Theorem 3.2. Q.E.D.
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On the Lattice of all Subgroups

of a Finite Noncyclic Simple Group

Walter Feit and M.A. Shahabi

In some of his earliest work Suzuki studied the lattice $L(G)$ of all
subgroups of a group $G$ . Amongst other results he showed that if $G$

is a finite noncyclic simple group and $L(H)\approx L(G\times G)$ then $ H\approx$

$G\times G$ [ $2$ , Theorem 19, p.53]. (Here of $course\approx denotes$ either a lattice
isomorphism or a group isomorphism as appropriate.) In particular this
implies that if $G$ and $H$ are finite simple groups with $ L(G\times G)\approx$

$L(H\times H)$ then $G\approx H$ . (The case that $G$ is cyclic of prime order is
clear.) If $G$ is cyclic of prime order then $L(G)$ has just 2 elements so
that $L(G)\approx L(H)$ implies only that $H$ is cyclic of some prime order and
so need not be isomorphic to $G$ . However this leaves open the natural
question of whether a finite noncyclic simple group is characterized by
its lattice of subgroups. The purpose of this note is to show that by
using the classification of the finite simple groups and further results
from [2] that this is the case. More precisely:

Theorem. Let $G$ and $H$ be finite noncyclic simple groups. Then
$G\approx H$ if and only if $L(G)\approx L(H)$ .

It is clear that if $G\approx H$ then $L(G)\approx L(H)$ . The proof of the
converse needs some deep results. If $G$ is a finite group and $p$ is a
prime let $n_{p}(G)$ denote the number of elements of order $p$ in $G$ . Then
$G$ contains exactly $n_{p}(G)/(p-1)$ subgroups of order $p$ . The following
will be needed:

(I) [2, Theorem 15, p.51] If $G$ is a finite noncyclic simple group
and $H$ is a finite group with $L(G)\approx L(H)$ then $H$ is a finite
noncyclic simple group of the same order as $G$ .

(II) [2, Theorem 8, p.45] Let $G$ be a finite noncyclic simple group
and let $p$ be a prime. If $\varphi$ is a lattice isomorphism of $L(G)$
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onto $L(H)$ then $\varphi$ maps every subgroup of $G$ of order $p$ onto $a$

subgroup of $H$ of order $p$ . In particular $n_{p}(G)=n_{p}(H)$ .

(Ill) [A consequence of the classification of the finite simple groups]
The only pairs of nonisomorphic simple groups of the same order
are the following:

(i) $A_{8}$ , $PSL_{3}(4)$

(ii) $PSp_{2m}(q)$ , $SO_{2m+1}(q)$ for $m>2$ and $q$ an odd prime
power.

Proof of the Theorem. Suppose that $L(G)\approx L(H)$ . By (I) Gand
$H$ have the same order and so must be one of the pairs in (III). In
Case (i) the character tables in the ATLAS imply that $n_{5}(PSL_{3}(4))=$

$3n_{5}(A_{8})\neq 0$ and so by (II) these groups do not have isomorphic sub-
group lattices. In Case (ii) $n_{2}(PSp_{2m}(q))\neq n_{2}((SO_{2m+1}(q))$ by[1,
Lemma 2.5] and once again these groups do not have isomorphic sub-
group lattices.

Added in Proof. Roland Schmidt has informed us that while
the result of this paper has not appeared in a Journal, it is in his book
“Subgroup Lattices of Groups” p. 439.
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Generation Theorems

for Finite Groups

Paul Flavell

\S 1. Introduction

This article is a survey of the author’s work on generation theorems for
finite groups. The starting point is:

Theorem A (J. G. Thompson 1968). A finite group is soluble if
and only if every two elements generate a soluble subgroup.

Thompson obtained this result as a corollary of his classification of the
minimal simple groups [12]. A direct proof has been obtained by the
author [3]. A natural question to ask is:

what happens if we keep one of the generators $ffixed^{p}$.

For a finite group $G$ we define

$so1(G)$

to be the largest normal soluble subgroup of $G$ .

Conjecture B. Let $x$ be an element of the finite group G. Then

$x\in so1(G)$ if and only if $\langle x, y\rangle$ is soluble for all $y\in G$ .

The author has not yet been able to prove this conjecture. However,
much progress has been made and will be described in what follows.

In order to illustrate one of obstacles to proving Conjecture $B$ , we
present a small but crucial part of the author’s proof of Theorem A.
Henceforth, the word group will mean finite group.

Lemma 1.1 (D. Goldschmidt [2]). Let $z$ be a $p$-element of the sol-
uble group H. Then

$O_{p’}(C_{H}(z))\leq O_{p’}(H)$ .
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Lemma 1.2 (M. B. Powell [1]). Let $d$ be a $p’$ -element of the group
G. If $dg$ is a $p’$ -element for all $p’$ elements $g\in G$ then $d\in O_{p’}(G)$ .

Lemma 1.3. Let $G$ be a group in which every two elements gen-
erate a soluble subgroup. Let $z$ be a $p$-element of G. Then

$O_{p’}(C_{G}(z))\leq O_{p’}(G)$ .

Proof Choose $d\in O_{p’}(C_{G}(z))$ , let $g$ be a $p’$-element of $G$ and set
$ H=\langle dz, g\rangle$ . Since $d$ and $z$ are commuting elements with coprime orders,
we have $d$ , $z\in H$ . By hypothesis, $H$ is soluble so using Goldschmidt’ $s$

Lemma we obtain

$d\in O_{p’}(C_{G}(z))\cap H\leq O_{p’}(C_{H}(z))\leq O_{p’}(H)$ .

Then as $g$ is a $p’$-element we see that $dg$ is a $p’$ -element. Powell’s Lemma
forces $d\in O_{p’}(G)$ . Q.E.D.

Consequently, if $G$ is a minimal counterexample to Theorem A then
we have

$O_{p’}(C_{G}(z))=1$

for every $p$-element $z$ . This argument cannot be applied to the situation
in Conjecture B. Thus we have:

Problem 1. Obtain a generalization of Lemma 1.3 that is appli-
cable to Conjecture B.

\S 2. A characterisation of $p$-soluble groups

As a first step towards proving Conjecture $B$ , the author has estab-
lished the following:

Theorem $C([4])$ . Let $P$ be a Sylow $p$-subgroup of the group $G$ .

Then $G$ is $p$ -soluble if and only if $\langle P, g\rangle$ is $p$ -soluble for all $g\in G$ .

We present an outline of the proof. The following elementary result,
which is a precursor of the Goldschmidt Lemma, is the starting point.

Lemma 2.1. Let $P$ be a Sylow $p$ -subgroup of the $p$ soluble group
G. If $D$ is a $p’$ -subgroup of $G$ that is normalized by $P$ then $D\leq O_{p’}(G)$ .

In particular, if $d\in G$ then

$d\in O_{p’}(G)$ if and only if $\langle d^{P}\rangle$ is a $p’$ subgroup.
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Suppose now that $G$ is a minimal counterexample to Theorem C.
For each $Q\in Sy1_{p}(G)$ define

$\Lambda(Q)=$ { $ d\in G|\langle d^{Q}\rangle$ is a $p’$-subgroup}.

Define a graph $\Gamma$ whose vertices are the Sylow $p$-subgroups of $G$ and join
two distinct vertices $Q$ and $R$ by an edge if and only if

$Q\cap R\neq 1$ , $N_{Q}(Q\cap R)\in Sy1_{p}(N_{G}(Q\cap R))$

and there exists $n$ $\in N_{G}(Q\cap R)$ such that $Q^{n}=R$ .

Firstly it is shown that if $\{Q, R\}$ is an edge of $\Gamma$ then $\Lambda(Q)=\Lambda(R)$ .

A connectivity argument is applied to prove that $\Lambda(Q)$ is independent
of $Q$ . It is then shown that $\Lambda(Q)$ is a subgroup and hence a normal
subgroup of $G$ . Thus

$\Lambda(P)=O_{p’}(G)$ .

However, $G$ is simple since it is a minimal counterexample to Theorem $C$ ,

so $\Lambda(P)=O_{p’}(G)=1$ .

Now let $g\in G$ and set $ H=\langle P, g\rangle$ . Then $O_{p’}(H)\leq\Lambda(P)=1$ so as
$H$ is $p$-soluble we have $Z(P)\leq C_{H}(O_{p}(H))\leq Z(O_{p}(H))$ . Then $Z(P)$

commutes with $Z(P)^{g}$ and it follows that

$Z(P)\leq O_{p}(G)$ ,

contrary to the simplicity of $G$ .

This argument, when the details are examined, appears to be a
generalization of Lemma 1.3. Unfortunately there is one case where it

is inapplicable. If $P$ is cyclic of order $p$ then the graph $\Gamma$ has no edges,
so connectivity arguments are useless. This case is more difficult. A
transfer argument is used to obtain a contradiction.

\S 3. The normal closure of a Sylow subgroup

The next step is to replace $p$ -soluble by soluble.

Conjecture D. Let $P$ be a Sylow $p$ -subgroup of the group $G$ .

Then

$P\leq so1(G)$ if and only if $\langle P, g\rangle$ is soluble for all $g\in G$ .

This is much more difficult. Of course, a soluble group is $p$-soluble so us-
ing Theorem $C$ it follows that a minimal counterexample to conjecture $D$

satisfies:
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Hypothesis 3. 1.

(1) $P$ is a Sylow $p$ -subgroup of the group $G$ .

(2) $\langle P, g\rangle$ is soluble for all $g\in G$ .

(3) $G=KP$ where $K\underline{\triangleleft}G$ is a $p’$ -subgroup and $|P|=p$ .

(4) $K$ is a non abelian characteristically simple group and $K=$
$[K, P]$ .

(5) If $H$ is a proper $P$ -invariant subgroup of $K$ then $[H, P]$ is soluble.

Thus we have a problem involving coprime action and so the sub-
group $C_{K}(P)$ plays a prominent role. We immediately hit upon a fun-
damental difficulty: since $[C_{K}(P), P]=1$ , the fact that $G$ is a minimal
counterexample to Conjecture $D$ tells us nothing about $C_{K}(P)$ . Since
$K=[K, P]$ , we are trying to show that Hypothesis 3.1 implies that $K$ ,

and hence $C_{K}(P)$ is soluble. So:

Problem 2. Why cannot $C_{K}(P)$ be simple $.p$

As a final comment we note that the case where a Sylow $p$-subgroup
is cyclic is the difficult case in the proof of Theorem C. Moreover, in the
final configuration of the author’s proof of Theorem A one has a group $G$

in which the Sylow $p$-subgroups are cyclic for all $p>3$ . Consequently it
seems probable that in any proof of Conjecture $B$ that the configuration
described in Hypothesis 3.1, with $ P=\langle x\rangle$ , will be the most difficult
case.

\S 4. Signalizer functors

Throughout this section we assume Hypothesis 3.1. Fix a prime
divisor $q$ of $|C_{K}(P)|$ . A good starting point is to analyze the subgroups
$C_{K}(z)$ for $q$-elements $1\neq z\in C_{K}(P)$ . These are proper $P$-invariant
subgroups of $K$ so we know that $[C_{K}(z), P]$ is soluble. By analogy with
Lemma 3.1, we would like to limit the structure of $O_{q’}(C_{K}(z))$ .

We begin with the following extension of Goldschmidt’s Lemma to
groups that admit a coprime operator group.

Lemma 4.1. Let $G=PH$ be a group with $P\in Sy1_{p}(G)$ and
$H=O_{p’}(G)$ . Suppose that $[H, P]$ is soluble. Let $q$ be a prime and let $z$

be a $q$ -element of $C_{H}(P)$ . Then

$(O_{q’}(C_{H}(z))\cap O_{q’}(C_{H}(P)))[O_{q’}(C_{H}(z)), P]\leq O_{q’}(H)$ .

Note that it is easy to construct examples in which $ O_{q’}(C_{H}(z))\not\leq$

$O_{q’}(H)$ .
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Returning now to Hypothesis 3.1, for each $q$-element $1\neq z\in C_{K}(P)$

define

$\theta(z)=(O_{q’}(C_{K}(z))\cap O_{q’}(C_{K}(P)))[O_{q’}(C_{K}(z)), P)]$ .

Just as in the proof of Lemma 1.3, we would like to be able to argue
that $\theta(z)\leq O_{q’}(K)$ and hence deduce that $\theta(z)=1$ . Unfortunately
there does not appear to be an easy extension of Powell’s Lemma that
will suffice.

We turn to ideas from Signalizer Functor Theory. In broad terms
the idea is as follows:

(a) Start with some collection $C$ of subgroups of the group $G$ that
ought to be contained in a proper normal subgroup of $G$ .

(b) Show that the members of $C$ intersect the proper subgroups of $G$

as they ought to’.
(c) Using (b), show that $\langle C\rangle$ is a proper subgroup and use a connec-

tivity argument to force $C\underline{\triangleleft}G$ .

This idea was used in the proof of Theorem C. It is also a basic tool in
the classification of simple groups, see [11].

In the situation at hand, $C$ is the collection of subgroups $\theta(z)$ as $z$

ranges over the $q$-elements of $C_{K}(P)$ . Turning to (b), let $1\neq z\in C_{K}(P)$

be a $q$-element and let $M$ be a proper $P$-invariant subgroup of $K$ that
contains $z$ . We want to show that

$\theta(z)\cap M\leq O_{q’}(M)$ .

This amounts to showing that $D\leq O_{q’}(M)$ where

$D=[O_{q’}(C_{H}(z)), P]\cap M$ .

Now $D=[D, P]C_{D}(P)$ and by Lemma 4.1 we have $[D, P]\leq O_{q’}(M)$ .

However, we still have $C_{D}(P)$ to consider. This lead the author to make
the following discovery:

Theorem $E([5])$ . Let $P$ be a group of prime order $p>2$ that
acts as a group of automorphisms on the soluble $p’$ group H. Then

$ C_{[H,P]}(P)=\langle C_{[h,P]}(P)|h\in H\rangle$ .

The restriction that $p\neq 2$ is essential. Indeed if $p=2$ then since
any pair of involutions generate a dihedral group we have $C_{[h,P]}(P)=1$

for all $h\in H$ .

Using Theorem $E$ and additional arguments, the author has estab-
lished the following:



296 P. Flavell

Theorem $F([6])$ . Assume Hypothesis 3.1 and that $p>2$ . Let $z$

be a $q$ -element of $C_{K}(P)$ and let $M$ be a proper $P$ -invariant subgroup of
K. Then

$\theta(z)\cap M\leq O_{q’}(M)$ .

Note that we do not require $z$ to be contained in $M$ . An illustration
of how Theorem $E$ is used will be given later. At the time of writing, it
has not been possible to show that $\theta(z)\leq O_{q’}(K)$ . However we have at
least a partial solution to Problem 1.

\S 5. A characterisation of $F_{2}(G)$

Although it has not been possible to complete the program outlined
in the previous section, the author feels that Theorem $E$ will play a
fundamental role in any proof of Conjecture $B$ or D. Indeed the proof of
the following special case of Conjecture $B$ uses Theorem E. Recall that
$F_{2}(G)$ is the inverse image of $F(G/F(G))$ in $G$ .

Theorem $G([7])$ . Let $G$ be a group and $x\in G$ . Then

$x\in F_{2}(G)$ if and only if $x\in F_{2}(\langle x, y\rangle)$ for all $y\in G$ .

Later we shall see how Theorems $E$ and $G$ can be used to solve
Problem 2.

\S 6. A conjecture on coprime action

Conjecture H. Let $P$ be a group of prime order $p>2$ that acts
as a group of automorphisms on the $p’$ -group H. Then

$ C_{[H,P]}(P)=\langle C_{[h,P]}(P)|h\in H\rangle$ .

Theorem $E$ shows this conjecture to be true when $H$ is soluble. If proved,
Conjecture $H$ would have implications for Conjecture B. To see why,
suppose that $G$ is a minimal counterexample to Conjecture $B$ and set
$P=\langle x\rangle\cong Z_{p}$ . Assume further that $G$ satisfies Hypothesis 3.1 and that
$p>2$ . As we have remarked earlier, this could be the most difficult case
in any proof of Conjecture B.

Now let $k\in K$ and consider $[k, P]$ . Using Sylow’s Theorem we may
suppose that $k\in[k, P]$ . Let $c\in C_{K}(P)$ . Then

$ k\in[k, P]\leq\langle P, P^{k}\rangle=\langle P, P^{ck}\rangle\leq\langle P, ck\rangle$ .
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By hypothesis, $\langle P, ck\rangle$ is soluble. As $ k\in\langle P, ck\rangle$ we deduce that $\langle[k, P], c\rangle$

is soluble. Consequently $\langle C_{[k,P]}(P), c\rangle$ is soluble for all $c\in C_{K}(P)$ and
then the minimality of $G$ forces $C_{[k,P]}(P)\leq so1(C_{K}(P))$ . Recall that
$K=[K, P]$ . Then the truth of Conjecture $H$ would imply that $C_{K}(P)$

is soluble.
Next we give an interpretation of Conjecture H. We have

$H=C_{H}(P)[H, P]$

so there is a natural epimorphism

$H\rightarrow C_{H}(P)/(C_{H}(P)\cap[H, P])$ .

Set

$D=\langle C_{[h,P]}(P)|h\in H\rangle\underline{\triangleleft}C_{H}(P)$ .

Define a map

$\delta$ : $H\rightarrow C_{H}(P)/D$

as follows: let $h\in H$ . By Sylow’s Theorem there exists $k\in[h, P]$ such
that $P^{h}=P^{k}$ . Thus we can write

$h=ck$

with $k\in[h, P]$ and $c\in C_{H}(P)$ . Define

$\delta(h)=Dc$ .

It is easily verified that $\delta$ is well defined.
If Conjecture $H$ is true then $\delta$ is a homomorphism and it coincides

with the natural epimorphism $H\rightarrow C_{H}(P)/(C_{H}(P)\cap[H, P])$ . Con-
versely, if $\delta$ is a homomorphism then Conjecture $H$ is true.

\S 7. Large $2$-generated soluble subgroups

When attempting to prove Conjecture $B$ , it seems inevitable that
one has to consider modules for a soluble group in which some critical

element has a large fixed point subspace. Such modules arose in the
proofs of Theorems $E$ and $F$ , a contradiction being obtained by show-
ing that such a module could not exist. There was other information
available so it was not necessary to delve too deeply into the structure
of modules for soluble groups.

After many false starts, the author has been able to extend these
arguments and put them in a more general setting. The following theory
emerged.
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Theorem I ([8]). Let $G$ be a soluble group, let $P$ be a subgroup

of $G$ with prime order $p>3$ such that $ G=\langle P^{G}\rangle$ . Suppose that $V$ is
a faithful irreducible $G$ -module over a field of non zero characteristic.
Then

$dimC_{V}(P)<\frac{1}{2}dimV$

This result appears to be highly non trivial.
Next, let $G$ be a group and $P$ a subgroup of $G$ with prime order

$p>3$ . Define

$\Sigma_{G}(P)=$ { $A\leq G|$ $A$ is soluble and $A=\langle P$, $ P^{a}\rangle$ for some $a\in A$ }.

This set is partially ordered by inclusion and we let

$\Sigma_{G}^{*}(P)$

denote the set of maximal elements of $\Sigma_{G}(P)$ .

Using Theorem I it is possible to establish the following fundamental
property of members of $\Sigma_{G}^{*}(P)$ .

Theorem $J([8])$ . Let $G$ be a group and $P$ a subgroup of $G$ with
prime order $p>3$ . Let $A\in\Sigma_{G}^{*}(P)$ . Then

$F(A)V$

is nilpotent for every nilpotent subgroup $V$ that is normalized by $A$ .

Corollary $K([8])$ . If $G$ is soluble then $\pi(F(A))\subseteq\pi(F(G))$ .

Thus the members of $\Sigma_{G}^{*}(P)$ exert global control over the structure of a
soluble group. In fact, one can go much further:

Corollary $L([9])$ . Let $G$ be a soluble group, $P$ a subgroup of $G$

with prime order $p>3$ and suppose that $ G=\langle P^{G}\rangle$ . Then there exists
$g\in G$ such that $\langle P, P^{g}\rangle$ has the same Fitting height as $G$ and $ g\in$

$\langle P, P^{g}\rangle$ .
$t$

For a group $G$ and a subgroup $P$ of prime order $p>3$ we let

$\Sigma_{G}^{f}(P)$

be the set of members of $\Sigma_{G}(P)$ with maximal Fitting height. If $G$ is
soluble we define

$\psi(G)$

to be the smallest normal subgroup of $G$ such that $G/\psi(G)$ has Fitting
height less than that of $G$ . If $G\neq 1$ then $1\neq\psi(G)\leq F(G)$ .
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Corollary $M$ $([9])$ . Let $G$ be a soluble group and $P$ a subgroup of
$G$ with prime order $p>3$ . If $A\in\Sigma_{G}^{f}(P)$ then

$\psi(A)\leq F(G)$ .

Thus, just by examining the members of $\Sigma_{G}(P)$ , one can write down
a subnormal nilpotent subgroup of $G$ . This suggests an obvious strategy
for proving Conjecture $B$ , one which involves aiming directly at the Fit-
ting subgroup. The following result provides evidence that this strategy
could work and also shows that the theory developed so far is effective
in proving generation theorems.

Theorem N. Let $C$ be a conjugacy class of the group $G$ and $\sup-$

pose that the members of $C$ have order prime to 6. Then $\langle C\rangle$ is soluble

if and only if every four members of $C$ generate a soluble subgroup.

Proof. Let $x\in C$ . We may suppose that $x$ has prime order $p>$

$3$ . Set $ P=\langle x\rangle$ and choose $A\in\Sigma_{G}^{f}(P)$ . Let $g\in G$ and set $H=$
$\langle A, A^{g}\rangle$ . By hypothesis, $H$ is soluble. Now $A$ and $A^{g}$ are members

of $\Sigma_{H}^{f}(P)$ so Corollary $M$ implies that $\langle\psi(A), \psi(A)^{g}\rangle$ is nilpotent. The
Baer-Suzuki Theorem implies that $\psi(A)\leq F(G)$ . Now apply induction
to $G/F(G)$ . Q.E.D.

The results I-M are invalid without the hypothesis that $p>3$ . How-
ever it should be a routine matter to extend the theory so that the hy-

pothesis prime to 6 in Theorem $N$ can be removed, provided that four
is replaced by some larger number.

This theory can also be used to solve Problem 2, at least if $p>3$ .

Theorem O. Assume Hypothesis 3.1 and that $p>3$ . Then

$F_{2}(C_{K}(P))\neq 1$ .

Proof. By Theorem $G$ there exists $g\in G$ such that $P\not\leq F_{2}(\langle P, g\rangle)$ .

Set $ H=\langle P, g\rangle$ and $H_{0}=\langle P^{H}\rangle\underline{\triangleleft}H$ , so that $H_{0}$ has Fitting height

at least 3. Now $P$ is a Sylow subgroup of $H_{0}$ so we have $ H_{0}=\langle P^{H_{0}}\rangle$ .

Corollary $L$ implies that the members of $\Sigma_{H_{0}}^{f}(P)$ and hence the members

of $\Sigma_{G}^{f}(P)$ have Fitting height at least 3.

Choose $ A\in$ $\Sigma_{G}^{f}(P)$ . Let $\psi_{2}(A)$ denote the inverse image of
$\psi(A/\psi(A))$ in $A$ . Then $\psi_{2}(A)$ has Fitting height 2. As $ A=\langle P^{A}\rangle$

we have $P\cap\psi_{2}(A)=1$ so then $\psi_{2}(A)\leq K$ .
Let $c\in C_{K}(P)$ , choose $a\in A$ such that $ A=\langle P, P^{a}\rangle$ , and set $L=$

$\langle A, c\rangle$ . Now $ a\in A=\langle P, P^{a}\rangle=\langle P, P^{ca}\rangle\leq\langle P, ca\rangle$ whence $ L=\langle P, ca\rangle$

and $L$ is soluble. Let $L_{0}=\langle P^{L}\rangle\underline{\triangleleft}L$ . Then $ A\leq L_{0}=\langle P^{L_{O}}\rangle$ and
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Corollary $L$ implies that $A$ has the same Fitting height as $L_{0}$ . It follows
that $\psi_{2}(A)\leq\psi_{2}(L_{0})$ whence $\psi_{2}(A)\leq F_{2}(L)$ . We deduce that

$C_{\psi_{2}(A)}(P)\leq F_{2}(\langle C_{\psi_{2}(A)}(P), c\rangle)$

for all $c\in C_{K}(P)$ . Theorem $G$ implies that

$C_{\psi_{2}(A)}(P)\leq F_{2}(C_{K}(P))$ .

Since $\psi_{2}(A)$ has Fitting height 2 we have $C_{\psi_{2}(A)}(P)\neq 1$ . This completes
the proof of Theorem O. Q.E.D.
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Non-Abelian Representations of Geometries

A. A. Ivanov

Abstract.

Let $\mathcal{G}$ be a geometry in which the elements of one type are called

points and the elements of some other type are called lines. Suppose
that every line is incident to exactly $p+1$ points where $p$ is a prime
number. A (non-abelian) representation of $\mathcal{G}$ is a pair $(R, \psi)$ , where
$R$ is a group and $\psi$ is a mapping of the set of points of $\mathcal{G}$ into the set

of subgroups of order $p$ in $R$ such that $R$ is generated by the image
of $\psi$ and whenever $\{x_{\infty}, x0, \ldots, x_{p-}1\}$ is the set of points incident to
a line, the subgroups $\psi(x_{\infty})$ , $\psi(x_{0})$ , $\ldots$ , $\psi(x_{p-1})$ are pairwise different

and generate in $R$ a subgroup of order $p^{2}$ . In this article we discuss

representations of some classical and sporadic geometries and their
applications to certain problems in algebraic combinatorics and group
theory.

\S 1. Abelian representations

Our terminology concerning diagram geometries is mostly standard
[Pas94], $[Iv99a]$ . The types of elements on a diagram increase rightward
from 1 to the rank of geometry. The elements of type 1, 2 and 3 are
called points, lines and planes, respectively. Many important geometries
are naturally defined as collections of subspaces in a finite dimensional
vector space $V$ so that the type of a subspace equals to its dimension
and two subspaces are incident if one of them contains the other one (in
this case we say that the incidence is via inclusion). For the projective
geometry of $V$ we take all the proper subspaces and for a polar space
we take the subspaces which are totally singular with respect to a fixed
non-degenerate symplectic, orthogonal or unitary form $f$ on $V$ . These
constructions can be generalized as follows (we consider vector spaces
over prime fields since they are sufficient to cover our main examples).

Construction A. Let $V$ be an $n$ dimensional $GF(p)$ space where
$p$ is a prime, let $G$ be a subgroup of $GL(V)\cong GLn(p)$ and $U$ be a
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subspace of dimension $m$ in $V$ such that the stabilizer of $U$ in $G$ induces
on $U$ an action which contains $SL(U)\cong SLm(p)$ . Let $0<U_{1}<\ldots.<$

$U_{m-1}<U_{m}=U$ be a maximal flag in $U$ . Define $\mathcal{G}_{A}(V, G)$ to be an
incidence system whose elements of type $i$ are the images of $U_{i}$ under
$G$ , $1\leq i\leq m$ ; the incidence is via inclusion.

Under some non-degeneracy assumptions $\mathcal{G}_{A}(V, G)$ is a geometry
which belongs to the diagram

$X_{m}$ :
$pp\mapsto 0$

$\cdots$ $\overline{p}x\frac{X}{p}o$

where the rightmost edge indicates the rank 2 geometry formed by the
images of $U_{m-1}$ and $U_{m}=U$ under that stabilizer of $U_{m-2}$ in $G$ . Fur-
thermore, $G$ induces on $\mathcal{G}_{A}(V, G)$ a flag-transitive action. Notice that
the structure of $\mathcal{G}_{A}(V, G)$ depends on $U$ but not on the maximal flag in
$U$ .

In these terms the projective geometry of $V$ can be obtained as
$\mathcal{G}_{A}(V, GL(V))$ for a hyperplane $U$ in $V$ while the polar space associated
with a form $f$ as $\mathcal{G}_{A}(V, G)$ where $G$ is the subgroup in $GL(V)$ which pre-
serves $f$ up to scalar multiplication and $U$ is a maximal totally isotropic
subspace in $V$ with respect to $f$ . Some sporadic geometries can also be
obtained by Construction A. Recall $[Iv99a]$ that Petersen geometries of
rank $m$ have the following diagram ( $m$ nodes)

$P_{m}$ : $\mapsto 022$
$\ldots$ $\mapsto 02\tilde{2}1P$

where the rightmost edge indicates the geometry of edges and vertices
of the Petersen graph with the natural incidence relation; and tilde ge-
ometries of rank $m$ have the following diagram ( $m$ nodes)

$T_{m}$ :
$\leftarrow 022$

$\ldots$ $\mapsto 022\sim$

where the rightmost edge indicates the triple cover of the generalized
quadrangle of order $(2, 2)$ associated with the non-split extension 3 .

$Sp_{4}(2)\cong 3\cdot Sym_{6}$ .

If $\overline{C}_{11}$ is the irreducible (11-dimensional) Todd module for the Math-
ieu group $Mat_{24}$ then there is a 3-dimensional subspace $U$ in $\overline{C}_{11}$ such
that $\mathcal{G}(Mat_{24}):=\mathcal{G}_{A}(\overline{C}_{11}, Mat_{24})$ is a tilde geometry of rank 3. Con-
sider the Mathieu group $Mat_{22}$ as a subgroup in $Mat_{24}$ . Then under
a suitable choice of $U$ the geometry $\mathcal{G}(Mat_{22}):=\mathcal{G}_{A}(\overline{C}_{11}, Mat_{22})$ is a
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Petersen geometry of rank 3 and by the construction it is a subgeom-
etry in $\mathcal{G}(Mat_{24})$ . Let $V_{12}$ be the natural module for $SU_{6}(2)$ (consid-
ered as a 12-dimensional $GF(2)$ -module). Then the non-split exten-
sion 3 . $Mat_{22}$ is embedded into $SU_{6}(2)$ and hence $V_{12}$ is a module for
this extension. There is a 3-dimensional subspace $U$ in $V_{12}$ such that
$\mathcal{G}(3\cdot Mat_{22}):=\mathcal{G}_{A}(V_{12},3\cdot Mat_{22})$ is a Petersen geometry of rank 3 which
is the universal (triple) cover of $\mathcal{G}(Mat_{22})$ .

If $\overline{\Lambda}_{24}$ is the Leech lattice taken modulo 2 (a 24-dimensional $GF(2)-$

space) then there is a 4-dimensional subspace $Uin\overline{\Lambda}_{24}$ such that $\mathcal{G}(Co_{1}):=$

$\mathcal{G}_{A}(\overline{\Lambda}_{24}, Co_{1})$ is a tilde geometry of rank 4, containing $\mathcal{G}(Mat_{24})$ as a
residue. The second Conway group $Co_{2}$ is the stabilizer in $Co_{1}$ of a
vector $\overline{\lambda}$ in $\overline{\Lambda}_{24}$ . Let $\overline{\Lambda}_{23}$ be the orthogonal complement of $\overline{\lambda}$ in $\overline{\Lambda}_{24}$ with
respect to the unique non-zero orthogonal form preserved by $Co_{1}$ . Then
under a suitable choice of $U$ and $\overline{\lambda}$ the geometry $\mathcal{G}(Co_{2}):=\mathcal{G}_{A}(\overline{\Lambda}_{23}, Co_{2})$

is a Petersen geometry of rank 4 containing $\mathcal{G}(Mat_{22})$ as a residue. By
the construction $\mathcal{G}(Co_{2})$ is a subgeometry in $\mathcal{G}(Co_{1})$ .

It is natural to ask which geometries with diagrams $X_{m}$ can be
obtained by Construction A. This question leads the following.

Definition 1.1. Let $\mathcal{G}$ be a geometry in which the elements of one
type are called points and the elements of some other type are called
lines. Suppose that every line is incident to exactly $p+1$ points where
$p$ is a prime number. An abelian representation of $\mathcal{G}$ is a pair $(V, \psi)$ ,

where $V$ is a vector space over $GF(p)$ and $\psi$ is a mapping of the set of
points of $\mathcal{G}$ into the set of 1-dimensional subspaces in $V$ , such that $V$ is
generated by the image of $\psi$ and whenever $\{x_{\infty}, x_{0}, \ldots, x_{p-1}\}$ is the set
of points incident to a line $l$ , the subspaces $\psi(x_{\infty})$ , $\psi(x_{0})$ , $\ldots$ , $\psi(x_{p-1})$ are
pairwise different and generate in $V$ a 2-dimensional subspace denoted
by $\psi(l)$ .

An abelian representation $(V, \psi)$ is said to be faithful if $\psi$ is injec-
tive. If $H$ is an automorphism group of $\mathcal{G}$ then the representation $(V, \psi)$

as above is $H$-admissible if there is a subgroup $G$ of $GL(V)$ and a ho-
momorphism $\chi$ of $G$ onto $H$ such that $\psi(u)^{g}=\psi(u^{\chi(g)})$ for every point
$u$ and every $g\in G$ . The following result is quite obvious.

Lemma 1.2. Let $\mathcal{G}$ be a rank $m$ geometry with diagram $X_{m}$ and
let $H$ be a flag-transitive automorphism group of $\mathcal{G}$ . Suppose that there is
an isomorphism $\varphi$ of $\mathcal{G}$ onto $\mathcal{G}_{A}(V, G)$ which commutes with the action of
$G$ and that the action of $G$ induced on $\mathcal{G}$ via the isomorphism $\varphi$ coincides
with H. Let $\psi$ be the restriction of $\varphi$ to the point-set of $\mathcal{G}$ . Then $(V, \psi)$

is a faithful $H$ -admissible abelian representation of $\mathcal{G}$ and for an element
$u\in \mathcal{G}$ the subspace $\varphi(u)$ is generated by the 1-spaces $\varphi(x)$ taken for all
the points $x$ incident to $u$ .
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Thus a possible way to decide whether or not a geometry $\mathcal{G}$ can
be obtained by Construction A is to study the abelian representations
of $\mathcal{G}$ . Abelian representations of various geometries were intensively
studied for a long time [Ti74], [RSm89], [Yos92] and [Sh93] (sometimes
under different names like embeddings). Let us mention just one of the
numerous applications of such representations.

Let $\mathcal{G}$ be a geometry with diagram $X_{m}$ , $m\geq 3$ . Then the points
and lines incident to a plane $z$ form a projective plane $\Pi_{z}$ of order $p$ .

Let $G$ be a flag-transitive automorphism group of $\mathcal{G}$ and suppose that
the stabilizer of a plane $z$ in $G$ induces on the residual projective plane
$\Pi_{z}$ an action containing $L_{3}(p)$ and that the stabilizer of a line $l$ in $G$

induces on the set of points incident to $l$ an action containing $L_{2}(p)$ . Let
$x$ be a point and $\mathcal{G}_{x}$ be the residue of $x$ in $\mathcal{G}$ whose points and lines are
the lines and planes in $\mathcal{G}$ incident to $x$ .

Lemma 1.3. In the above terms let $G(x)$ be the stabilizer of $x$ in
$G$ , $L$ be the kernel of the action of $G(x)$ on the set of lines incident to $x$

and $K$ be the kernel of the action of $L$ on the set of points collinear to $x$ .

Suppose that $O_{p}(L)\neq K$ . Then $O_{p}(L)/K$ is an elementary abelian p-
group and $(V^{*}, \psi)$ is $a$ abelian faithful $G(x)/L$ -admissible representation

of $\mathcal{G}_{x}$ where $V^{*}$ is the module dual to $O_{p}(L)/K$ and if $y$ is a line incident
to $x$ then $\psi(y)$ is the action induced by $O_{p}(L)$ on the set of points incident
to $y$ .

Proof. Let $l$ be a line incident to $x$ . Then $G(l)\cap G(x)$ induces on the
set of points incident to $l$ a Frobenius group $F$ of order $p(p-1)/\in where$

$\xi j$ is 1 or 2. Then $O_{p}(F)$ is of order $p$ and it is contained in every proper
normal subgroup of $F$ . Since $O_{p}(L)\neq K$ and $G(x)$ acts transitively on
the set of points in $\mathcal{G}_{x}$ , we conclude that $O_{p}(L)$ induces on the set of
points incident to $l$ the group $O_{p}(F)$ of order $p$ . Hence $O_{p}(L)/K$ is an
elementary abelian p–group and $l$ corresponds to its pointwise stabilizer
which is of index $p$ in $O_{p}(L)/K$ . Let $z$ be a plane incident to $x$ and $M$

be the action induced on $\Pi_{z}$ by $G(x)\cap G(z)$ . Then $O_{p}(M)$ is of order
$p^{2}$ and $M/OP(M)$ acts on $O_{p}(M)$ irreducibly. By the above $O_{p}(L)$ is
normal in $G(x)\cap G(z)$ , this action coincides with $O_{p}(M)$ and the result
follows. Q.E.D.

The above lemma can be used to decide whether or not a given
geometry with diagram $X_{m-1}$ can appear as a point residue in a flag-
transitive geometry with diagram $X_{m}$ .
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\S 2. Non-abelian representations

Petersen and tilde geometries of “large” sporadic simple groups, $J_{4}$ ,
$BM$ and $M$ do not possess abelian representations [ISh90], $[ISh94a]$ .

Using this fact and Lemma 1.3 it was shown that these geometries do
not appear as residues in Petersen and tilde geometries of higher ranks.
The latter result was of a crucial importance for completing the clas-
sification of the flag-transitive Petersen and tilde geometries $[ISh94b]$ .

By Lemma 1.2 the geometries $\mathcal{G}(J_{4})$ , $\mathcal{G}(BM)$ and $\mathcal{G}(M)$ can not be ob-
tained by Construction $A$ , but in fact they can be obtained by a similar
construction [ISh89].

Construction B. Let $R$ be a group, $G$ be a subgroup in the
automorphism group of $R$ and $U$ be an elementary abelian subgroup
of order $p^{m}$ in $R$ where $p$ is a prime number, such that the stabi-
lizer of $U$ in $G$ induces on $U$ an action which contains $SXm(p)$ . Let
$0<U_{1}<\ldots<U_{m-1}<U_{m}=U$ be a maximal flag in $U$ . Define
$\mathcal{G}_{B}(R, G)$ to be an incidence system of rank $m$ whose elements of type $i$

are the images of $U_{i}$ under $G$ ; the incidence is via inclusion.

Again under some non-degeneracy assumptions $\mathcal{G}_{B}(R, G)$ is a geom-
etry with diagram $X_{m}$ . For a suitable choice of subgroups $U$ of order
$2^{4},2^{5}$ and $2^{5}$ , respectively, we have $\mathcal{G}(J_{4})=\mathcal{G}_{B}(J_{4}, J_{4})$ , $\mathcal{G}(BM)=$

$\mathcal{G}_{B}$ $(2 . BM, BM)$ , $\mathcal{G}(M)=\mathcal{G}_{B}(M, M)$ . Furthermore, 2 . $BM$ can be
identified with a subgroup in the Monster $M$ so that in the last two
cases the subgroup $U$ can be taken to be the same, which shows that
$\mathcal{G}(BM)$ is a subgeometry in $\mathcal{G}(M)$ . Construction $B$ leads to the following

Definition 2.1. In terms of Definition 1.1 a pair $(R, \psi)$ is a rep-
resentation of $\mathcal{G}$ if $R$ is a group and $\psi$ is a mapping of the set of points

of $\mathcal{G}$ into the set of subgroups of order $p$ in $R$ such that $R$ is generated
by the image of $\psi$ and whenever $\{x_{\infty}, x_{0}, \ldots, x_{p-1}\}$ is the set of points
incident to a line $l$ , the subgroups $\psi(x_{\infty})$ , $\psi(x_{0})$ , $\ldots$ , $\psi(x_{p-1})$ are pairwise
different and generate in $R$ a subgroup of order $p^{2}$ denoted by $\psi(l)$ .

In order to distinguish the representations in the above definition
from the abelian representations we sometimes call the former ones non-

abelian representations. Since the group $R$ might or might not be abelian
the correct term would probably be non-necessarily abelian representa-
tions. The notions of faithful and $H$inadmissible representations can be
defined analogously to the abelian case. It is easy to see that a statement
analogous to Lemma 1.2 holds where $\mathcal{G}_{A}(V, G)$ is changed to $\mathcal{G}_{B}(R, G)$

and $(V, \psi)$ is changed to $(R, \psi)$ .

If $(R, \psi)$ and $(R’, \psi’)$ are representations of a geometry $\mathcal{G}$ and $\varphi$ :
$R’\rightarrow R$ is a homomorphism such that $\psi(x)=\varphi(\psi’(x))$ for every point
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$x$ , then $\varphi$ is said to be a morphism of representations. For a represen-
tation $(R, \psi)$ there is a universal representation $(R_{U}, \psi_{U})$ possessing a
morphism $\varphi_{U}$ onto $(R, \psi)$ such that whenever a representation $(R’, \psi’)$

possesses a morphism $\varphi$ onto $(R, \psi)$ there is a morphism $\varphi’$ of $(R_{U}, \psi_{U})$

onto $(R’, \psi’)$ such that $\varphi_{U}$ is the composition of $\varphi’$ and $\varphi$ . The group
$R_{U}$ can be defined in terms of generators and relations as follows. For
every point $x$ choose a generator $r(x)$ of the subgroup $\psi(x)$ . Then the
generators of $R_{U}$ are elements $u(x)$ of order $p$ taken for all points $x$ . If
$\{x_{\infty}, x_{0}, \ldots, x_{p-1}\}$ are the points incident to a line $l$ , then for $1\leq i\leq p-1$

we have $r(x_{i})=r(x_{\infty})^{a(i)}r(x_{0})^{b(i)}$ for some $1\leq a(i)$ , $b(i)\leq p-1$ . Then
the relations of $R_{U}$ associated with the line $l$ are

$[u(x_{\infty}), u(x_{0})]=1$ , $u(x_{i})=u(x_{\infty})^{a(i)}u(x_{0})^{b(i)}$ , $1\leq i\leq p-1$ ,

where the $a(i)$ and $b(i)$ are as above. The mapping $\psi_{U}$ sends $x$ onto
the subgroup generated by $u(x)$ and $\varphi_{U}$ : $u(x)\mapsto r(x)$ for every point
$x$ . In general the universal representation $(R_{U}, \psi_{U})$ depends on the
particular choice of $(R, \psi)$ although in some circumstances the universal
representation is unique. This is the case, for instance, when $p=2$ (in
this case $a(1)=b(1)=1$ and the relations are uniquely determined).

Another uniqueness situation is described in the following.

Lemma 2.2. Suppose that $H$ is an automorphism group of $\mathcal{G}$ such
that for every line $l$ the stabilizer of $l$ in $H$ induces on the set of points
incident to $l$ an action containing $L_{2}(p)$ . Then all $H$ -admissible repre-
sentations of $\mathcal{G}$ have isomorphic universal representations.

Proof Let $(R, \psi)$ be an $H$-admissible representation and $G$ be the
corresponding automorphism group of $R$ which possesses a homomor-
phism onto $H$ . Let $\{x_{\infty}, x_{0}, \ldots, x_{p-1}\}$ be the set of points incident to a
line $l$ , $W=\psi(l)$ and $F$ be the action induced on $W$ by its stabilizer in
$G$ . Then $W$ can be considered as a 2-dimensional $GF(p)$ -space and by
the hypothesis $F$ contains $SL(W)\cong SL_{2}(p)$ . Let $W_{0}$ be a 1-subspace in
$W$ , $F_{0}$ be its stabilizer in $F$ and $W_{1}$ be the $GF(p)$ -module of dimension
$p+1$ for $F$ induced from the module $W_{0}$ of $F_{0}$ . Then the result follows
from the following fact which is well known and easy to check: $W_{1}$ has
a unique submodule of codimension 2. Q.E.D.

If $(R, \psi)$ is an abelian representation then the corresponding univer-
sal abelian representation is a pair $(V_{U}, \psi_{U}^{a})$ where $V_{U}$ is the quotient of
$R_{U}$ over the commutator subgroup of $R_{U}$ and $\psi_{U}^{a}$ is the composition of
$\psi_{U}$ and the natural homomorphism of $R_{U}$ onto $V_{U}$ .

By Lemma 1.2 and the analogous statement for the non-abelian case
Constructions A and $B$ produce geometries together with their represen-
tations. It was shown in [RSm89], [ISh89], [Sm92], $[ISh94a]$ , [IPS96] and
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[ISh97] that the representations associated with the above constructions
of $\mathcal{G}(Mat_{22})$ , $\mathcal{G}(Mat_{24})$ , $\mathcal{G}(Co_{2})$ , $\mathcal{G}(Co_{1})$ , $\mathcal{G}(J_{4})$ , $\mathcal{G}(BM)$ and $\mathcal{G}(M)$ are
universal (among the non-abelian representations). If $\chi$ : $\tilde{\mathcal{G}}\rightarrow \mathcal{G}$ is a cov-
ering of geometries and $(R, \psi)$ is a representation of $\mathcal{G}$ then $(R, \psi\chi)$ is a
representation of $\tilde{\mathcal{G}}$ . In particular $\mathcal{G}(3 . Mat_{22})$ possesses a (non-faithful)
representation in $\overline{C}_{11}$ . It can be shown that $\mathcal{G}(3 . Mat_{22})$ possesses a
representation in the direct product of $\overline{C}_{11}$ and the extraspecial group
$2_{+}^{1+12}$ (a central extension of $V_{12}$ ). It is not known whether or not this
representation is universal.

Some further examples of geometries and their representation can
be obtained by the following

Construction C. Let $\mathcal{G}_{A}(W, H)$ be a geometry obtained by Con-
struction A via a subgroup $U$ of order $p^{m}$ . Let $R$ be a group, $G$ be
a subgroup in the automorphism group of $R$ and $V$ be a subgroup
in $R$ . Suppose that there are isomorphisms $\varphi_{1}$ : $W\rightarrow V$ and $\varphi_{2}$ :
$H\rightarrow N_{G}(V)/C_{G}(V)$ such that $\varphi_{1}(w^{h})=\varphi_{1}(w)^{\varphi_{2}(h)}$ for all $w\in W$ and
$h\in H$ . Suppose also that for $1\leq i\leq m$ every subgroup contained in $V$

and conjugate to $\varphi_{1}(U_{i})$ in $G$ is conjugate to $\varphi_{1}(U_{i})$ in $N_{G}(V)$ . Define
$\mathcal{G}_{C}(R, V, H)$ to be an incidence system whose elements of type $m+1$ are
the images of $V$ under $G$ and for $1\leq i\leq m$ the elements of type $i$ are
the images of $\varphi_{1}(U_{i})$ under $G$ ; the incidence is via inclusion.

Again under some non-degeneracy conditions $\mathcal{G}c(R, V, H)$ is a geom-
etry of rank $m+1$ in which the residue of $V$ is isomorphic to $\mathcal{G}_{A}(W, H)$ .

Let $Fi_{24}$ be the largest Fischer 3-transposition group. The commu-
tator subgroup $Fi_{24}’$ of $Fi_{24}$ contains a subgroup $V$ which is isomorphic
to $\overline{C}_{11}$ as a module for $Mat_{24}\cong N_{Fi_{24}}(V)/C_{Fi_{24}}(V)$ . Thus $\mathcal{G}(Mat_{24})$ can
be realized in $V$ by Construction A. The geometry $\mathcal{G}_{C}(Fi_{24}’,2^{11}, Mat_{24})$

(for $G=Fi_{24}$ ) is the minimal 2-local parabolic geometry $\mathcal{G}_{2}(Fi_{24}’)$ of
$Fi_{24}’$ as in [RSt84] with the diagram

$\mapsto\mapsto 0222\sim$

By the construction $\mathcal{G}_{2}(Fi_{24}’)$ possesses a representation in $Fi_{24}’$ . The
following obvious result can be used to show that this representation is
not universal.

Lemma 2.3. Let $\mathcal{G}$ be a geometry with $p+1$ points on a line and
suppose that $(R, \psi)$ is a representation of $\mathcal{G}$ . Let $\tilde{R}$ be a perfect central

extension of $R$ whose kernel has order coprime to $p$ . Then $(\tilde{R},\tilde{\psi})$ is $a$

representation of $\mathcal{G}$ , where $\tilde{\psi}(x)$ is the unique Sylow $p$ subgroup in the
preimage of $\psi(x)$ in $\tilde{R}$ .
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By the above lemma $\mathcal{G}_{2}(Fi_{24}’)$ possesses a representation in the ex-
tension 3 . $Fi_{24}’$ of $Fi_{24}’$ by its Schur multiplier. Alternatively we could
obtain $\mathcal{G}_{2}(Fi_{24}’)$ by Construction $C$ starting with $R=3$ . $Fi_{24}’$ . This
representation was shown in [Rch99] to be universal.

The Monster group $M$ contains a subgroup $V$ of order $3^{8}$ which
is the natural module for $N_{M}(V)/C_{M}(V)\cong\Omega_{8}^{-}(3).2$ so that the polar
space of the latter group can be realized in $V$ by Construction A. The
geometry $\mathcal{G}(M, 3^{8}, \Omega_{8}^{-}(3).2)$ is the $c$-extended dual polar space $\mathcal{G}(M)$

[RSt84] with the diagram

$\overline{3}31\mapsto\frac{c^{*}}{9}o$

Let $\mu$ be a subgroup of order 3 in $V$ which is non-singular with respect
to the $N_{M}(V)$ -invariant quadratic form on $V$ . Then $N_{M}(\mu)\cong 3$ . $Fi_{24}$ ,
$V=\mu\oplus W$ and $W$ is the natural module for $NM(W)/V$ $\cong\Omega_{7}(3).2$ .

Then $\mathcal{G}_{C}(3 . Fi_{24}’,3^{7}, \Omega_{7}(3).2)$ is a subgeometry in $\mathcal{G}(M)$ which is the
$c$-extended dual polar space $\mathcal{G}_{3}(Fi_{24}’)$ with the diagram

$\mapsto\mapsto\mapsto 03331c^{*}$

By the construction $\mathcal{G}(M)$ and $\mathcal{G}_{3}(Fi_{24}’)$ possess representations in $M$

and 3 $\cdot Fi_{24}’$ , respectively. It was realized in [BIP99] that these repre-
sentations are not universal and the observation can be generalized as
follows

Lemma 2.4. Let $\mathcal{G}$ be a geometry with $p+1$ points on a line. Let
$(R, \psi)$ be a representation of $\mathcal{G}$ and for a point $x$ let $r(x)$ be a generator

of $\psi(x)$ . Let $\tilde{\psi}$ be the mapping from the point set of $\mathcal{G}$ into the set of
subgroups in the direct product $R^{p-1}=\{(r_{1}, r_{2}, \ldots, r_{p-1})|r_{i}\in R\}$ of
$p-1$ copies of $R$ defined by

$\tilde{\psi}(x)=\langle(r(x), r(x)^{2}, \ldots, r(x)^{p-1})\rangle$

and $\tilde{R}$ be the subgroup in $R^{p-1}$ generated by the image of $\tilde{\psi}$ . Then $(\tilde{R},\tilde{\psi})$

is a representation of $\mathcal{G}$ .

Proof. If $A$ is an abelian group, then for every positive integer $n$ the
mapping defined by $a\mapsto a^{n}$ for every $a\in A$ is an automorphism of $A$ .

This means that whenever $X$ is a set of points such that $[r(x), r(y)]=1$

for all $x$ , $y$ $\in X$ , the subgroup in $\tilde{R}$ generated by $\{\tilde{\psi}(x)|x\in X\}$ is
isomorphic to the subgroup in $R$ generated by $\{\psi(x)|x\in X\}$ . Now
the result follows by taking $X$ to be the set of points incident to a
line. Q.E.D.
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Let $K$ be the smallest normal subgroup of $R$ such that for every
$2\leq n\leq p-1$ the mapping $r(x)\mapsto r(x)^{n}$ for every point $x$ induces
an automorphism of $R/K$ . Then one can show that $\tilde{R}$ is isomorphic
to the direct product of $p-1$ copies of $K$ extended by $R/K$ . This
shows that $\mathcal{G}(M)$ and $\mathcal{G}_{3}(Fi_{24}’)$ possess representations in $M\times M$ and
3 . $Fi_{24}’\times 3\cdot Fi_{24}’$ , respectively. We conjecture that these representations
are universal.

\S 3. Machinery

In this section we discuss some available technique for calculating
universal representations of geometries.

Let $\mathcal{G}$ be a geometry of rank $m$ with $p+1$ points per a line, $(R, \psi)$

be a representation of $\mathcal{G}$ and $r(x)$ be a generator of $\psi(x)$ . Let $\Gamma=\Gamma(\mathcal{G})$

be the collinearity graph of $\mathcal{G}$ which is a graph on the set of points of
$\mathcal{G}$ , where two points are adjacent if they are incident to a common line.
For a point $x$ let $\Gamma_{i}(x)$ be the set of points at distance $i$ from $x$ in F.
Let $R_{i}(x)$ be the subgroup in $R$ generated by the subgroups $\psi(y)$ taken
for all points $y$ which are at distance at most $i$ from $x$ in F. Let $\triangle_{i}$ be
the graph on $\Gamma_{i}(x)$ in which two points are adjacent if they are incident
to a common line, which is also incident to a point in $\Gamma_{i-1}(x)$ .

Lemma 3.1. Suppose that $y$ and $z$ are in the same connected com-
ponent of $\triangle_{i}$ . Then $R_{i-1}(x)\psi(y)=R_{i-1}(x)\psi(z)$ .

The above lemma is useful for bounding the orders of the factors
$R_{i}(x)/R_{i-1}(x)$ in the case of abelian representations. The first of these
factors is of a particular importance (in both abelian and non-abelian
cases).

Lemma 3.2. Suppose that $m\geq 3$ , $\mathcal{G}$ belongs to a string diagram
and that the points and lines incident to a plane form a projective plane

of order $p$ . Let $\tilde{\psi}$ : $l$ $\rightarrow\psi(l)/\psi(x)$ where $l$ is a line incident to $x$ . Then
$(R_{1}(x)/\psi(x),\tilde{\psi})$ is a representation of the residue of $x$ in $\mathcal{G}$ .

Lemma 3.3. Suppose that $p=2$ and $R$ is abelian. Let $(x_{0},$ $x_{1}$ ,
$\ldots 7$

$x_{k}=x_{0})$ be a cycle in $\Gamma$ and for $0\leq i\leq k-1$ let $\{x_{i}, x_{i+1}, y_{i}\}$ be the
points incident to a line, then $\Pi_{j=0}^{k-1}r(y_{j})=1$ .

Recall that a geometric hyperplane in $\mathcal{G}$ is a proper subset $S$ of points
such that for every line $l$ either all the points incident to $l$ are contained
in $S$ or $l$ is incident to exactly one point in $S$ . Notice that whenever $P$

is a subgroup of index $p$ in $R$ the set $S=\{x|\psi(x)\in P\}$ is a geometric
hyperplane.
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Lemma 3.4. Suppose that $p=2$ and that $\mathcal{G}$ contains a geometric

hyperplane $S$ such that the subgroups $\psi(x)$ taken for all $x\in S$ generate
the whole R. Let $T$ be a group of order 2 generated by an element $t$ . Let

$\hat{\psi}$ be a mapping of the set of points into the set of subgroups in the direct
product of $R$ and $T$ which sends $x$ to $\langle(r(x), t^{\alpha})\rangle$ where $\alpha=0$ if $x\in S$

and $\alpha=1$ otherwise. Then $(R\times T,\hat{\psi})$ is a representation of $\mathcal{G}$ .

The following result is a slight generalization of Lemma 2.2 in [IPS96].

Lemma 3.5. In the case $p=2$ suppose that for every point $x$

there are two subsets $A(x)$ and $B(x)$ of points such that

(i) if $y\in A(x)$ then $[r(x), r(y)]=1$ ;
(ii) the graph on $B(x)$ in which two points are adjacent if there is

a line incident to those points as well as to a point in $A(x)$ , is
connected;

(iii) if $z\in B(x)$ then $x\in B(z)$ and the graph on the set of points in
which $x$ is adjacent to the points in $B(x)$ , is connected.

Then the subgroup generated by the commutators $[r(x), r(z)]$ taken for
every point $x$ and every $z\in B(x)$ is of order at most 2 and contained in
the centre of R. In particular, if $A(x)\cup B(x)$ is the whole set of points
for every point $x$ , then the commutator subgroup of $R$ has order at most
2.

An important situation covered by Lemma 3.5 is when for every
point $x$ the set of points $y$ such that $r(x)$ and $r(y)$ commute, form a
geometric hyperplane $A(x)$ and the subgraph in the collinearity graph
induced by the complement $B(x)$ of the hyperplane is connected. In a
certain sense the next lemma deals with the opposite situation.

Lemma 3.6. In the case $p=2$ suppose that $\mathcal{G}$ contains a geomet-
ric hyperplane $S$ such that the subgraph in $\Gamma$ induced by the complement

of $S$ has at least two connected components $T_{1}$ and $T_{2}$ . Then the uni-

versal representation group $R_{U}$ of $\mathcal{G}$ is infinite.

Proof. For a point $x$ let $u(x)$ denote the corresponding generator of
$R_{U}$ . Let $ D=\langle a_{1}, a_{2}|a_{1}^{2}=a_{2}^{2}=1\rangle$ be the infinite dihedral group. Let $\chi$

be the mapping which sends $u(x)$ onto $a_{i}$ if $x\in T_{i}$ , $i=1$ or 2 and onto
the identity element of $D$ otherwise. Then it is clear that $\chi$ induces a
surjective homomorphism of $R_{U}$ onto $D$ and the result follows. Q.E.D.

It was checked by $D.V$ . Pasechnik (private communication) that the
tilde geometry $\mathcal{G}(3 . Sp_{4}(2))$ of rank 2 contains a geometric hyperplane
with disconnected complement and by the above lemma the universal
representation group of $\mathcal{G}(3 . Sp_{4}(2))$ is infinite.
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For a group $G$ containing a Klein four group let $I(G)$ be a rank
2 geometry, whose points are the involutions in $G$ , whose lines are the
Klein four subgroups in $G$ and the incidence is via inclusion. By the
construction $I(G)$ possesses a representation in $G$ . The following result
(Proposition 4.5 in [IPS96]), checked by $D.V$ . Pasechnik on a computer,
marked a breakthrough in our understanding of the non-abelian repre-
sentations.

Lemma 3.7. The universal representation group of $I(Alt_{7})$ is 3 .

$Alt_{7}$ .

It follows immediately from Lemma 2.3 that 3 $\cdot Alt_{7}$ is a represen-
tation group of $I(Alt_{7})$ , but the universality fact is highly non-trivial.
It would be interesting to learn more about representations of the ge-
ometries $I(G)$ for other non-abelian simple groups $G$ . The universal
representation group of $I(Mat_{22})$ is 3 . $Mat_{22}$ [IPS96] and of $I(U_{4}(3))$

is $3^{2}\cdot U_{4}(3)$ [Rch99].

The calculation of universal representations can be reduced to study-
ing of covering of certain Cayley graphs. Suppose that $(R, \psi)$ is faithful,
let $Q$ be the set of all non-identity elements contained in the subgroups
$\psi(x)$ taken for all points $x$ and $let-\cup-be$ the Cayley graph of $R$ with re-
spect to the set $Q$ of generators. $Let---U$ be the similar graph associated
with the universal representation $(R_{U}, \psi_{U})$ . Since $(R_{U}, \psi_{U})$ must also
be faithful, the valency of $both-\cup-and$ $---U$ is $p-1$ times the number of
points in $\mathcal{G}$ . This means that the homomorphism of $R_{U}$ onto $R$ induces
a covering $\varphi:---U\rightarrow\cup--$ . Furthermore, for the every line $l$ the covering
$\varphi$ induces an isomorphism of the $subgraph---U(l)in---U$ induced by the
elements in $\psi_{U}(l)$ onto the analogous subgraph $\cup--(l)$ in—(both $---U(l)$

$and---(l)$ are complete graphs on $p^{2}$ vertices.) This gives the following.

Lemma 3.8. Suppose that $(R, \psi)$ is faithful. Let $C_{0}$ be the set

of triangles in — which are contained in the subgraphs induced by the
elements in $\psi(l)$ taken for all lines $l$ and let $C$ be the set of images of
the triangles in $C_{0}$ under R. If the cycles in $C$ generate the fundamental
group $of_{\cup}^{-}-$ then the representation $(R, \psi)$ is universal.

For our last statement assume that every element of $\mathcal{G}$ can be iden-
tified with the set of points incident to this element so that the incidence
is via inclusion. For an element $e$ of $\mathcal{G}$ let $\psi(e)$ denote the subgroup in $R$

generated by the subgroups $\psi(x)$ taken for all points $x$ incident to $e$ . We
say that $(R, \psi)$ is separable if $\psi(e)\neq\psi(f)$ whenever $e\neq f$ . The separa-
bility particularly implies that $(R, \psi)$ is faithful. Define $A(\mathcal{G}, R)$ to be
the incidence system of rank $m+1$ whose elements of type 1 are the ele-
ments of $R$ (right cosets of the identity subgroup) and for $2\leq i\leq m+1$
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the elements of type $i$ are all the right cosets of the subgroups $\psi(e)$ for
all elements $e$ of type $i-1$ in $\mathcal{G}$ ; the incidence is via inclusion. The
following result is a generalization of Lemma 1.1 in [Iv98].

Lemma 3.9. In the above terms suppose that $(R, \psi)$ is separable.
Then

(i) $A(\mathcal{G}, R)$ is a geometry in which the residue of an element of type
1 is isomorphic to $\mathcal{G}$ and the elements of type 1 and 2 incident to
an element of type 3 form the affine plane of order $p$ ;

(ii) if $G$ is a flag-transitive automorphism group of $\mathcal{G}$ then the semidi-
rect product $R:G$ acts flag-transitively on $A(\mathcal{G}, R)$ ;

(iii) if $(R’, \psi’)$ is another representation of $\mathcal{G}$ and $\chi$ : $R’\rightarrow R$ is
a morphism of representations, then $\chi$ induces a 2-covering of
$A(\mathcal{G}, R’)$ onto $A(\mathcal{G}, R)$ .

Notice that the Cayley $graph-\cup-$ introduced in the paragraph before
Lemma 3.8 is the collinearity graph of $A(\mathcal{G}, R)$ . The case $p=2$ is of
a particular interest since the affine plane of order 2 is isomorphic to
the $c$-geometry of 1- and 2-element subsets of a set of size 4. Thus the
representations of Petersen and tilde geometries provide $c$-extensions of
these geometries [SWOI]. Similarly representations of the dual polar
spaces with 3 points on a line (associated with $Sp_{2n}(2)$ and $U_{2n}(2)$ ) give
their $c$-extensions. Notice that the universal representations of these
dual polar spaces are known only for $n$ $=2$ and 3. It was conjectured by
$A.E$ . Brouwer that the dimension of the universal abelian representation
of the dual polar space associated with $Sp_{2n}(2)$ is

$1+\left\{\begin{array}{l}n\\1\end{array}\right\}+\left\{\begin{array}{l}n\\2\end{array}\right\}=(2^{n}+1)(2^{n-1}+1)/3$ .

Recently this conjecture was proved in [LiOO] using some earlier results
and methods from [BI97], $[McC00]$ and independently in [BBOO] by a
different method.

In some cases (compare Theorem 2 (iii) in [Iv98]) one can show that
$A(\mathcal{G}, R_{U})$ is the universal 2-cover of $A(\mathcal{G}, R)$ and this reduces calculation
of the universal representation to the question about 2-simple connect-
edness. For example the universality of the representation of $\mathcal{G}(M)$ in $M$

established in [IPS96] is equivalent to the 2-simple connectedness of the
corresponding $c$-extension of $\mathcal{G}(M)$ . The latter result has been used in
$[Iv99a]$ to obtain a new proof identifying $Y_{555}$ with the Bimonster $Mt2$ .
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$3$-transposition automorphism groups of VOA

Masaaki Kitazume and Masahiko Miyamoto

Abstract.

We will consider some vertex operator algebras (VOAs) whose
automorphism groups are generated by 3-transpositions. Our main
examples are some code VOAs. We will classify the structures of
the automorphism groups of the code VOAs. We give explicit con-
structions of such code VOAs, and determine the full automorphism
groups for some cases.

\S 1. Introduction

A vertex operator algebra $V$ is an infinite dimensional $\mathbb{Z}$-graded
algebra, but it has sometimes a finite full automorphism group and a
vertex operator subalgebra offers automorphisms of $V$ , see [M1]. In
this paper, we will treat the case where $dimV_{0}=1$ and $V_{1}=0$ . In
this case, $V_{2}$ is a commutative (nonassociative) algebra with a symmet-

ric invariant bilinear form $\langle*, *\rangle$ given by $\langle v, u\rangle 1=v_{3}u$ for $u$ , $v\in V_{2}$ .

This is called a Griess algebra in [M1]. Our purpose in this paper is to

study several vertex operator algebras which have 3-transposition auto-
morphism groups. A 3-transposition group is a group generated by a
conjugacy class of involutions such that the product of two involutions
in this class has the order less than or equal to 3. First examples are
the code VOAs $M_{C}$ which are constructed from even linear binary codes
$C$ in [M2]. If $C$ has no codewords of weight 2, then $dim(M_{C})_{0}=1$

and $(M_{C})_{1}=0$ and so $(M_{C})_{2}$ is a Griess algebra. In this case, the full
automorphism group of $M_{C}$ is finite [M4] and the automorphism group
of $M_{C}$ has a normal subgroup which is a 3-transposition group. We will
classify such 3-transposition groups $G$ and construct code VOAs with
automorphism groups $G$ . Other examples are the Weyl groups of the
root lattices of simply laced finite dimensional Lie algebras, which are
also 3-transposition groups. Actually, for every root lattice, we will con-
struct a VOA whose automorphism group contains a semidirect product

Received May 31, 1999.
Revised June 22, 2000.
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of the Weyl group and some 2-group. Our most interesting example is
a VOA constructed from the $E_{8}$-lattice. This VOA also has a structure
of a code VOA. We will show its full automorphism group is isomorphic
to $O^{+}(10,2)$ , which contains properly the semidirect product mentioned
above. We note that this result is already shown by R. Griess [G].

The essential tool is a rational conformal vector with central charge
$\frac{1}{2}$ . Here a rational conformal vector $e$ is an element in $V_{2}$ such that
$\tilde{L}(n)=e_{n+1}$ satisfies Virasoro algebra relations:

$[\tilde{L}(m),\tilde{L}(n)]=(m-n)\tilde{L}(m+n)+\delta_{m+n,0}\frac{m^{3}-m}{24}1_{V}$

with central charge $\frac{1}{2}$ and $\{e_{r\iota}\}$ generates a rational Virasoro VOA
$L(\frac{1}{2},0)$ over the vacuum 1, where $Y(e, z)=\sum_{n\in \mathbb{Z}}e_{n}z^{-n-1}$ is a ver-
tex operator of $e$ .

\S 2. Griess Algebras

Let $V=\oplus_{n=0}^{\infty}V_{n}$ be a vertex operator algebra (VOA) with the
vacuum $1\in V_{0}$ and the Virasoro element $w$ $\in V_{2}$ . In this paper, we
assume that $V$ is a VOA over the real field $\mathbb{R}$ and has a positive definite
invariant bilinear form $\langle\cdot, \cdot\rangle$ . For example, a lattice VOA or a code VOA
satisfies these conditions.

We further assume the following conditions:

$dim(V_{0})=1$ (i.e. $ V_{0}=\langle 1\rangle$ ), $dim(V_{1})=0$ .

Then by [Li], the invariant bilinear form is uniquely determined up to
scalar multiplication, and we may assume

$\langle u, v\rangle 1=u_{3}v$

for every $u$ , $v\in V_{2}$ . Moreover we can define a binary symmetric product
$u\times v$ on $V_{2}$ by

$u\times v:=u_{1}v$ .

The triple $(V_{2}, \times, \langle\cdot, \cdot\rangle)$ is called a Griess algebra.
In [M1], the following theorems has been proved.

Theorem 2.1. The following two conditions are equivalent to each
other.

(1) $\frac{1}{2}e\in V_{2}$ is an idempotent $(i.e. e\times e=2e)$ with $\langle e, e\rangle=\frac{1}{4}$

(2) $e$ is a rational conformal vector with central charge $\frac{1}{2}$ , that is,

the sub $VOA$ Vir(e) generated by $e$ is isomorphic to $L(\frac{1}{2},0)$ .
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Then $V$ splits into the direct sum of irreducible Vir(e)-submodules,
which is isomorphic to $L(\frac{1}{2},0)$ , $L(\frac{1}{2}, \frac{1}{2})$ or $L(\frac{1}{2}, \frac{1}{16})$ . If there exist no

Vir(e)-submodules isomorphic to $L(\frac{1}{2}, \frac{1}{16})$ , then we say that $e$ is of type
2. An idempotent which is not of type 2 is called of type 1.

Theorem 2.2. (1) For an idempotent $e$ of type 1, define an en-
domorphism $\tau_{e}$ on $V$ by

$\tau_{e}=id$ on submodules isomorphic to $L(\frac{1}{2},0)$ or $L(\frac{1}{2}, \frac{1}{2})$

$\tau_{e}=-id$ on submodules isomorphic to $L(\frac{1}{2}, \frac{1}{16})$ .

Then $\tau_{e}$ is $a$ automorphism of the $VOAV$ , and $\tau_{e}^{2}=id_{V}$ .

(2) For an idempotent $e$ of type 2, define an endomorphism $\sigma_{e}$ on
$V$ by

$\sigma_{e}=id$ on submodules isomorphic to $L(\frac{1}{2},0)$

$\sigma_{e}=-id$ on submodules isomorphic to $L(\frac{1}{2}, \frac{1}{2})$ .

Then $\sigma_{e}$ is $a$ automorphism of the $VOAV$ , and $\sigma_{e}^{2}=id_{V}$ .

Theorem 2.3. If $e$ , $f(e\neq f)$ are conformal vectors of type 2, then
one of the following holds.

(1) $\langle e, f\rangle=0$ and $(\sigma_{e}\sigma_{f})^{2}=1$

(2) $\langle e, f\rangle=\frac{1}{32}$ and $(\sigma_{e}\sigma_{f})^{3}=1$

\S 3. Code Vertex Operator Algebras

Let $C$ be a binary even code of length $n$ . We further assume that
the minimal weight of $C$ is four. Let $M_{C}$ be the code VOA defined in

[M2], that is,

$M_{C}=c\in C\oplus M_{c}$

and $M_{c}(c=(c_{1}, c_{2}, \ldots, c_{n})\in C)$ consists of all linear combinations of
the form $u_{1}\otimes u_{2}\otimes\ldots\otimes u_{n}\otimes e^{c}(u_{i}\in L(\frac{1}{2}, \frac{c_{i}}{2}))$ , where $c_{i}$ are regarded

as integers 0, 1, and $e^{c}$ is a symbol with $e^{c}e^{c’}=(-1)^{\langle c,c’\rangle}e^{c’}e^{c}$ . The
degree of $u_{1}\otimes u_{2}\otimes\ldots\otimes u_{n}\otimes e^{c}$ is the sum of the degrees of $u_{i}$ and
$\frac{1}{2}\langle c, c\rangle$ and so the degrees of elements in $M_{C}$ are integers since $C$ is an

even code. The element $\hat{1}=1\otimes 1\otimes\ldots\otimes 1\otimes e^{0}$ is the vacuum of $M_{C}$ .

Set $\hat{w}^{i}=1\otimes 1\otimes\ldots\otimes w\otimes\ldots\otimes 1\otimes e^{0}$ ( $w$ is on the $i$-th component)
and define $\hat{w}=\hat{w}^{1}+\ldots+\hat{w}^{n}$ . Then $\hat{w}$ is the Virasoro element of $M_{C}$ .
The following Lemmas and Theorem are proved in [M2]. In particular,
$(M_{C})_{2}$ becomes a Griess algebra by Lemma 3.1.

Lemma 3.1 ([M2]). (1) $M_{C}$ has an invariant bilinear form.
(2) $dim(M_{C})_{0}=1$ and $(M_{C})_{1}=\{0\}$ .
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Lemma 3.2 ([M2]). (1) $\hat{w}^{i}$ isa conformal vector of type 2.
(2) Let $H$ be $a[8,4,4]$ -Hamming subcode of $C$ with $supp(H)=$

$\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}, i_{8}\}$ . Then for any $\alpha\in F_{2}^{n}$ ,

$e=e_{\alpha,H}:=\frac{1}{8}(\hat{w}^{i_{1}}+\ldots+\hat{w}^{i_{8}})+\frac{1}{8}$ $\sum$ $(-1)^{(\alpha,\beta)}u_{\beta}$

$\beta\in C$ , $|\beta|=4$

is a conformal vector of $(M_{C})_{2}$ .

(3) If $suppH\subset C^{\perp}$ , then $e_{\alpha,H}$ is of type 2.

Remark 3.3. If $\alpha$ equals to $\alpha’$ modulo $H^{\perp}$ , we have $e_{\alpha}=e_{\alpha’}$ .

Hence there exist $2^{4}$ elements $e_{\alpha,H}$ for each H.

Theorem 3.4 ([M2]). Let $D_{C}$ be the set of involutions $\sigma_{e}$ such
that $e$ is a conformal vector of type 2. and let $K_{C}$ be the subgroup of
Aut $(M_{C})$ generated by $D_{C}$ . Then $D_{C}$ isa set of 3-transpositions of $K_{C}$ .

Lemma 3.5. Let $X=\{\sigma_{1}, \ldots, \sigma_{n}\}$ , where $\sigma_{i}=\sigma_{\hat{w}^{i}}$ for $i=1$ , $\ldots$ , $n$ .

Let $e$ be a conformal vector of type 2 and assume $\sigma_{e}\not\in X$ . Then
$|C_{X}(\sigma_{e})|=n-8$ .

Proof. By the equations: $\frac{1}{4}=\langle e, e\rangle=\langle w, e\rangle=\langle\hat{w}^{1}+\ldots+\hat{w}^{n}, e\rangle$

and Theorem 2.3, there are exactly eight $\hat{w}^{i}$ , say $\hat{w}^{1}$ , $\ldots,\hat{w}^{8}$ , such that
$\langle\hat{w}^{i}, e\rangle=\frac{1}{32}$ for $i=1$ , $\ldots$ , 8 and $\langle\hat{w}^{i}, e\rangle=0$ for $i=9$ , $\ldots$ , $n$ . Q.E.D.

Corollary 3.6. The maximal number of mutually commuting el-
ements of $D_{C}$ is equal to the length $n$ of the code $C$ .

Let $G$ be a 3-transposition group generated by $D$ . We will describe a
3-transposition group by the graph whose vertices are the elements of $D$

and edges are defined by :

$\{a, b\}$ is an $edge\Leftrightarrow a\neq b$ , $(ab)^{2}=1$ .

We will denote this graph by $\Gamma(G)$ or $\Gamma(D)$ . The graph $\Gamma(G)$ is connected
if and only if $D$ is a single conjugacy class of $G$ .

If $O_{2}(G)\neq 1$ , then $\overline{D}=DO_{2}(G)/O_{2}(G)$ is a set of 3-transpositions
of $\overline{G}=G/O_{2}(G)$ , and the number of the elements of $dO_{2}(G)\cap D$ is
a power of 2 for any $d\in D$ . If $\Gamma(G)$ is connected, then this number
( $=2^{k}$ , say) does not depend on the choice of $d\in D$ . Then we write
$\Gamma(G)=O_{2}^{(2^{k})}\cdot\Gamma(\overline{G})$ . The set $dO_{2}(G)\cap D$ consists of mutually commuting
elements, and $e\in dO_{2}(G)\cap D$ if and only if $C_{D}(d)=C_{D}(e)$ .

If any two elements of $D$ do not commute, then $G’=O_{3}(G)$ and
$|D|$ is some power of 3. If $|D|=3^{t}$ then we write $\Gamma(G)=\Gamma(H_{t})$ . Notice
that $\Gamma(S_{3})=\Gamma(H_{1})$ .

Now we will state the main result of this section. Here we denote by
$O^{+}(2n, 2)$ the group generated by symplectic transvections preserving
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a given quadratic form with Witt index $n$ . The group $O^{+}(2n, 2)$ is a
3-transposition group and contains a simple subgroup $\Omega^{+}(2n, 2)$ with
its index 2.

Theorem 3.7. Let $K_{C}$ be the subgroup of Aut $(M_{C})$ generated by
$D_{C}$ , and $E$ be a subset of $D_{C}$ such that $\Gamma(E)$ is a connected component

of $\Gamma(D_{C})$ . Then $\Gamma(E)$ is isomorphic to one of the following.

$\overline{\frac{\Gamma(E)|E|\ell}{(i)\Gamma(O^{+}(10,2))49616}}$

(ii) $\Gamma(Sp(8,2))$ 255 15

(iii) $o_{2}^{(2)}$ . $\Gamma(O^{+}(8,2))$ 240 16

(iv) $o_{2}^{(2)}$ . $\Gamma(Sp(6,2))$ 126 14

(v) $o_{2}^{(4)}$ . $\Gamma(S_{2m})$ $(m>1)$ $4m(2m-1)$ $4m$

$\underline{(vi)O_{2}^{(8)}\cdot\Gamma(H_{k})(k>1)8\times 3^{k}8}$

Here $\ell$ is the maximal number of mutually commuting elements of $E$ .

Proof. Set $ H=\langle E\rangle$ and let $Y$ be a maximal set of mutually com-
muting element of $E$ , that is, $Y$ is the intersection of $E$ and a Sylow
2-subgroup of $H$ . By Lemma 3.5, $|Y\backslash C_{Y}(\tau)|=8$ for each $\tau\in E\backslash Y$ ,

since each element of $E$ commutes with $D_{C}\backslash E$ ,

Let $\overline{H}=H/O_{2}(H),\overline{E}=EO_{2}(H)/O_{2}(H),\overline{Y}=YO_{2}(H)/O_{2}(H)$ .

Then $\Gamma(H)=O_{2}^{(2^{k})}\cdot\Gamma(\overline{H})$ for some $k$ and $\Gamma(\overline{H})$ is also connected.
Moreover $\overline{H}$ satisfies that $|\overline{Y}\backslash C_{\overline{Y}}(\tau)|=\frac{8}{2^{k}}$ for each $\tau\in\overline{E}\backslash \overline{Y}$ . In
particular, $k=0,1$ , 2 or 3.

Suppose $O_{3}(\overline{H})\not\subset Z(\overline{H})$ . Let $\tau\in\overline{Y}$ and $\tau’\in\tau\in\overline{E}\backslash \{\tau\}$ . Then
$\overline{Y}\backslash C_{\overline{Y}}(\tau’)=\{\tau\}$ and so $k=3$ . Hence if $\overline{Y}=\{\tau_{1}, \ldots, \tau_{s}\}$ for some $s$ ,

then $\overline{E}=(\tau_{1}O_{3}(\overline{H})\cap\overline{E})\cup\ldots\cup(\tau_{s}O_{3}(\overline{H})\cap\overline{E})$ . Since $\Gamma(\overline{H})$ is connected,
we have $s=1$ Hence $\Gamma(\overline{H})=\Gamma(H_{t})$ for some $t$ . By the same argument
if $k=3$ then $\Gamma(\overline{H})=\Gamma(H_{t})$ for some $t$ .

Now we may assume $O_{3}(\overline{H})\subset Z(\overline{H})\supset O_{2}(\overline{H})$ . Then we can use
the list of Fischer’s classification [Fi], and it is easily verified that $\Gamma(\overline{H})$

is one of the following

$(k=0)$ $\Gamma(O^{+}(10,2))$ , $\Gamma(Sp(8,2))$

$(k=1)$ $\Gamma(O^{+}(8,2))$ , $\Gamma(Sp(6,2))$

$(k=2)$ $\Gamma(S_{2m})(m>2)$ .

The proof of Theorem is completed. Q.E.D.

Remark 3.8. (1) The main parts of the groups of the cases (iii), (iv)
are the Weyl groups $W(E_{8})$ , $W(E_{7})$ respectively. Under such a view-

point, the main parts of the groups of (v) are the Weyl groups $W(D_{2m})$

$(m=2for(vi))$ . $(i.e. O_{2}^{(4)}\cdot \Gamma(S_{2m})\cong O_{2}^{(2)}\cdot\Gamma(W(D_{2m})))$
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(2) $o_{2}^{(4)}$ . $\Gamma(S_{4})$ is also written as $o_{2}^{(8)}$ . $\Gamma(H_{1})$ .

(3) We do not know any examples of (vi) of Theorem.

In general, we can not determine the center $Z(K_{C})$ from the graph
$\Gamma(K_{C})$ . Under some assumption, we can prove $Z(K_{C})=\{id\}$ .

Lemma 3.9. If $C$ is spanned by the elements of weight 4, then
$M_{C}$ is generated by $(M_{C})_{2}$ as a $VOA$ .

Proof. Since $L(\frac{1}{2},0)$ is generated by its Virasoro element as a VOA,
$M_{0}(O\in C)$ is generated by the vectors $\hat{w}^{i}$ . Since $L(\frac{1}{2}, \frac{1}{2})$ is generated

by its highest weight vector as an $L(\frac{1}{2},0)$ -module, $M_{c}(c\in C, wt(c)=4)$

is generated by the element of degree 2 as an $M_{0}$-module. The assertion
of Lemma is easily deduced from the fact $M_{c}M_{c’}\subset M_{c+c’}$ and $ M_{c}M_{c’}\neq$

$\{0\}$ for $c$ , $c’\in C$ . Q.E.D.

Lemma 3.10. (1) If $M_{C}$ is generated by $(M_{C})_{2}$ as a $VOA$ , then
we have $Z(K_{C})=\{id\}$ .

(2) Furthermore if $(M_{C})_{2}$ is spanned by the conformal vectors $e_{\alpha,H}$ ,
then Aut $(M_{C})$ is a subgroup of $Aut(K_{C})$

Proof. (1) is trivial. Let $\phi\in C_{Aut(M_{C})}(K_{C})$ . Then $\phi$ commutes
with all the element of $D_{C}$ , and thus $\phi$ stabilize all the vectors $e_{\alpha,H}$ .

By the assumption of (2), $\phi$ acts trivially on $M_{C}$ and we have $\phi$ is
the identity. Since $K_{C}$ is a normal subgroup of Aut(Mc), Lemma is
proved. Q.E.D.

\S 4. Weyl groups

Let $L$ be a root lattice of type $X_{n}$ with root system $\Phi$ , where $X$

be one of $A$ , $D$ , $E$ , and $n=6,7,8$ if $X=E$ . Let $V_{\sqrt{2}L}$ be the VOA

constructed from $\sqrt{2}L$ as in [FLM]. Since there are no roots in $\sqrt{2}L$ ,
$(V_{\sqrt{2}L})_{1}=\mathbb{C}\otimes L$ . Let $\theta$ be an automorphism induced from -1 on $L$

and $V(X_{n})=(V_{\sqrt{2}L})^{\theta}$ the fixed point space of $\theta$ . We will show that
Aut $(V(X_{n}))$ contains a semidirect product of the Weyl group $W(X_{n})$

and some 2-group.
By the construction, $V(X_{n})_{2}$ is spanned by the vectors $v(-1)v(-1)1$

and $e^{\sqrt{2}x}+e^{-\sqrt{2}x}$ for $v\in L$ and $ x\in\Phi$ . The former are identified with
the vectors of the symmetric tensor $S^{2}(\mathbb{R}\otimes L)$ . In particular,

Lemma 4.1. dim $V(X_{n})_{2}=\frac{n(n+1)}{2}+\frac{1}{2}|\Phi|$ .

For example, $dimV(E_{8})_{2}=36+120=156$ , and $dimV(D_{n})_{2}=$

$\frac{n(n+1)}{2}+n(n-1)=\frac{1}{2}(3n^{2}-n)$ .
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Let $ x\in\Phi$ , then $\sqrt{2}x$ has a squared length 4 and so

$e(x)^{i}=\frac{1}{8}x(-1)x(-1)1-(-1)^{i}\frac{1}{4}(e^{\sqrt{2}x}+e^{-\sqrt{2}x})$ $(\#)$

are conformal vectors with central charge $\frac{1}{2}$ for $i=1,2$ . Since $V_{\sqrt{2}L}$

has a positive definite invariant bilinear form, $e(x)^{1}$ and $e(x)^{2}$ are both
rational conformal vectors. As we showed in [M3],

$x(-1)\in L(\frac{1}{2}, \frac{1}{2})\otimes L(\frac{1}{2}, \frac{1}{2})$

and

$e^{y}\in(L(\frac{1}{2},0)\oplus L(\frac{1}{2}, \frac{1}{2}))\otimes(L(\frac{1}{2},0)\oplus L(\frac{1}{2}, \frac{1}{2}))$

as $\langle e(x)^{1}, e(x)^{2}\rangle$ -modules for $y\in L$ with $\langle y, x\rangle\in 2\mathbb{Z}$ . Therefore, we have
proved the following result.

Lemma 4.2. All conformal vectors $e(x)^{i}$ defined by roots in $L$ as
in $(\neq)$ are of type 2.

Let $D$ be the set of all $\sigma_{e(x)^{i}}$ for $i=1,2$ and each root $ x\in\Phi$ . By
Lemma 4.2 and Theorem 2.3, $D$ is a set of 3-transpositions.

By direct calculations, we have:

Theorem 4.3. Let $x$ and $y$ be distinct two roots. If $\langle x, y\rangle=0$ ,
then $\langle e(x)^{i}, e(y)^{i}\rangle=0$ and $(\sigma_{e(x)^{i}}\sigma_{e(y)^{i}})^{2}=1$ for $i,j=1,2$ . If $\langle x, y\rangle=$

$\pm 1$ , then $\langle e(x)^{i}, e(y)^{i}\rangle=\frac{1}{32}$ and $(\sigma_{e(x)^{i}}\sigma_{e(y)^{i}})^{3}=1$ for $i,j=1,2$ .

Notice that there exist two involutions $\sigma_{e(x)^{1}}$ , $\sigma_{e(x)^{2}}$
$fr$ each root $x$ .

Hence the set $\{\sigma_{e(x)^{1}}, \sigma_{e(x)^{2}}\}$ is a nontrivial block of imprimitivity of the
action of the group $\langle D\rangle$ on $D$ by conjugation. iFrom a general theory of
3-transposition groups, all the products $\sigma_{e(x)^{1}}\sigma_{e(x)^{2}}$ generate the normal
subgroup $O_{2}(\langle D\rangle)$ . Hence the group $\langle D\rangle$ is a semidirect product of the

Weyl group $W(X_{n})$ and $O_{2}(\langle D\rangle)$ , that is, $\Gamma(\langle D\rangle)\cong O_{2}^{(2)}\cdot\Gamma(W(X_{n}))$ .

By [M5], we have the following Proposition.

Proposition 4.4. The $VOAV(E_{8})$ is isomorphic to the code $VOA$

$V_{C}$ , where $C$ is the 2nd order Reed-Muller code $RM(4,2)$ of length 16.

Proof. We use the notation in Section 5 of [M5]. Let $\{x^{1}, \ldots, x^{8}\}$ be
an orthonormal basis of an 8-dimensional Euclidean space. Set $L(1)=$

$\langle x^{i} : i=1, \ldots, 8\rangle$ and $E_{8}(4)$ be the lattice spanned by

$\frac{\frac{1}{\not\in}}{22}(-x^{1}+x^{2}\ldots-x^{3}x^{i}(i=1,, 8)(x^{1}-x^{3}-x^{5}-, -x^{4})-x^{7}x^{7})\dotplus x^{2},$ ,
$\frac{}{2}\frac{1}{\not\in}(x^{1}(x^{1}+-x^{3}x^{2}+-x^{6}x^{5}+-x^{8}x^{6}))+-x^{5}x^{3},$

’
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which is isomorphic to the root lattice of type $E_{8}$ . Then the lattice VOA
$V_{E_{8}(4)}$ contains the following 16 mutually orthogonal conformal vectors
of type 1 :

$e^{2i-j}=\frac{1}{4}x^{i}(-1)^{2}1-(-1)^{j}\frac{1}{4}(e^{2x^{\dot{x}}}+e^{-2x^{i}})(i=1, \ldots, 8, j=1,0)$ .

Let $ P(4)=\langle\tau_{e^{i}} : i=1, \ldots, 16\rangle$ and $L(4)=E_{8}(4)\cap L(1)$ . Then $L(4)$ is
isomorphic to $\sqrt{2}E_{8}$ and $(V_{E_{8}(4)})^{P(4)}$ coincides with $V_{L(4)}$ .

Let $V$ be a VOA constructed by the orbifold construction from
$V_{E_{8}(4)}$ . Then $V$ is isomorphic to $V_{E_{8}(4)}$ . Let $ P=\langle\tau_{e^{i}} : i=1, \ldots, 16\rangle$ .

(Here we use the same symbols $\tau_{e^{i}}$ . Notice that $P\subset Aut(V)$ , and
$P(4)\subset Aut(V_{E_{8}(4)}).)$ Then $V^{P}$ is also constructed by the orbifold con-

struction from $(V_{E_{8}(4)})^{P(4)}$ , and $V^{P}$ is isomorphic to $M_{C}$ by Proposi-

tion 5.1 of [M5]. Clearly $V^{P}$ contains $((V_{E_{8}(4)})^{P(4)})^{\theta}=(V_{L(4)})^{\theta}$ , which
is isomorphic to $V(E_{8})$ . By Lemma 4.1 we have $dimV(E_{8})_{2}=156$ ,

and we will show that $dim(M_{C})_{2}=156$ in Section 5. Hence we have
$(((V_{E_{8}(4)})^{P(4)})^{\theta})_{2}=(V^{P})_{2}$ and thus $V(E_{8})$ is isomorphic to $M_{C}$ by
Lemma 3.9. Q.E.D.

Similarly the following isomorphism can be proved.

$V(E_{7})\cong M_{C’’}$ , $V(D_{2m})\cong M_{C_{m}}$ ,

where $m$ is a integer and $C’$ and $C_{m}$ will be defined in the next section.

\S 5. Examples

In this section, we will give some examples and consider the full
automorphism groups. The notation of (1) will be used in $(2)-(4)$ .

(1) $M_{C}\cong V(E_{8})$ : Let $\Omega$ be the set of all the vectors of the 4-
dimensional vector space $V$ over the two element field $F_{2}$ , that is, a
point of $\Omega$ is a vector of $V$ . We regard the power set $P(\Omega)$ of $\Omega$ (i.e. the
set of all the subsets of $\Omega$ ) as a vector space over $F_{2}$ by defining the sum
$X+Y$ as their symmetric difference $(X\cup Y)\backslash (X\cap Y)$ for $X$ , $ Y\subset\Omega$ .

We define the code $C\subset P(\Omega)$ as the subspace spanned by all the
2-dimensional affine subspaces of $V$ . Then $C$ is a [16, 11, 4]-code and
is known as the extended Hamming code of length 16 or the 2nd order
Reed-Muller code $RM(4,2)$ of length 16.

A codeword of minimal weight of $C$ corresponds with a 2-dimensional

affine subspace of $V$ . Hence $C$ contains $140(=\frac{(16-1)(16-2)}{(4-1)(4-2)}\times 4)$ vectors

of weight 4, and thus $dim(M_{C})_{2}=156$ .

Let $W$ be a 3-dimensional affine subspace of $V$ , and $H_{W}$ be a sub-
code of $C$ spanned by all the 2-dimensional affine subspaces of $W$ .
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Then it is easy to see that $H_{W}$ is a [8,4,4]-Hamming subcode of $C$ ,

and $suppH_{W}\subset C^{\perp}$ . Since the number of the 3-dimensional affine sub-

spaces of $V$ is $30(=\frac{(16-1)(16-2)(16-4)}{(8-1)(8-2)(8-4)}\times 2)$ , we can obtain $480(=30\times 2^{4})$

involutions defined by a conformal vector $e_{\alpha,H_{W}}$ for some $W$ . Hence
the set $D_{C}$ contains at least 496 elements. By Theorem 3.7, we have
$|D_{C}|=496$ and $\Gamma(K_{C})\cong\Gamma(O^{+}(10,2))$ . By Lemmas 3.9, 3.10 and the
fact $|Out(\Omega^{+}(10,2))|=2$ , we have $K_{C}=Aut(M_{C})\cong O^{+}(10,2)$ .

We note that this result is already obtained by R. L. Griess ([G]).
(2) Let 0 be the zero vector of $V$ , and set $\Omega’=\Omega\backslash \{0\}$ . We define

the code $C’\subset P(\Omega’)$ as the subspace spanned by all the 2-dimensional
affine subspaces $W$ of $V$ satisfying $O\not\in W$ . Then $C’$ is a [14, 10, 4]-code

By a similar calculations as in (1), we have that $dim(M_{C’})_{2}=15+$

$\frac{(16-1)(16-2)}{(4-1)(4-2)}\times 3=120$ , $|D_{C’}|=15+\frac{(16-1)(16-2)(16-4)}{(8-1)(8-2)(8-4)}\times 2^{4}=255$ , and
$\Gamma(K_{C’})\cong\Gamma(Sp(8,2))$ . By Lemma 3.10 and the fact $|Out(Sp(8,2))|=1$ ,

we have $K_{C}=Aut(M_{C})\cong Sp(8,2)$ .

(3) $M_{C’’}\cong V(E_{7})$ : Let $U$ be a one-dimensional subspace of $V$ ,

and set $\Omega’’=\Omega\backslash U$ . We define the code $C’’\subset P(\Omega’’)$ as the subspace
spanned by all the 2-dimensional affine subspaces $W$ of $V$ satisfying
$ U\cap W=\emptyset$ . Then $C’’$ is a [14, 7, 4]-code. There exist seven 2-(resp.
3-) dimensional linear subspaces containing $U$ . Hence $dim(M_{C^{lJ}})_{2}=$

$14+7\times 3+28\times 2=91$ and $|D_{C^{1J}}|=14+7\times 2^{4}=126$ . Moreover we

have $\Gamma(K_{C^{Jl}})\cong O_{2}^{(2)}\cdot\Gamma(Sp(6,2))$ .

(4) $M_{C_{m}}\cong V(D_{2m})$ : For an integer $m>1$ , we define a $[4m,$ $3m-$

$2,4]$ code $C_{m}$ by the following generating matrix

$\left(\begin{array}{llllll}11 & 1 & 100000000 & \cdots & 000000 & 00\\001111000000 & \cdots & \cdots & \cdots & 00000000 & \\\cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\ 000000000000 & \cdots & \cdots & \cdots & \cdots & 00001111\\101010100000 & \cdots & \cdots & \cdots & \cdots & 00000000\\000000000000 \cdots & \cdots\cdots & \cdots\cdots & \cdots\cdots & \cdots\cdots & \cdots 10101010\end{array}\right)$ .

Then $dim(M_{C_{m}})_{2}=6m^{2}-m$ , $|D_{C_{m}}|=8m^{2}-4m$ , and $\Gamma(K_{C_{m}})\cong$

$O_{2}^{(4)}$ . $\Gamma(S_{2m})$ .

(5) Let $r$ be a integer greater than 1. Let $V_{i}$ , $\Omega_{i}$ , $C_{i}\subset P(\Omega_{i})$ be a
copy of $V$, $\Omega$ , $C$ of (1) respectively for $i=1$ , $\ldots$ , $r$ . We fix a 1-dimensional
subspace $U_{i}$ of $V_{i}$ for each $i$ .

Set $\tilde{C}=C_{1}\oplus C_{2}\oplus\ldots\oplus C_{r},\tilde{V}_{i}=\{0\}\oplus\ldots\oplus\{0\}\oplus V_{i}\oplus\{0\}\oplus\ldots\oplus\{0\}$ ,
$\tilde{U}_{i}=\{0\}\oplus\ldots\oplus\{O\}\oplus U_{i}\oplus\{0\}\oplus\ldots\oplus\{0\}$ , and $\tilde{U_{ij}}=\tilde{U}_{i}\cup\tilde{U}_{j}$ for $i\neq j$ .

Then the weight of $\tilde{U_{ij}}$ is 4. Let $C(r)$ be a code of length $16r$ spanned

by $\tilde{C}$ and all $\tilde{U_{ij}}$ for $i\neq j$ .
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Let $\tilde{W}_{i}$ be a 3-dimensional affine subspace of $\tilde{V}_{i}$ , and $H(\tilde{W}_{i})$ be a

subcode of $C(r)$ spanned by all the 2-dimensional affine subspaces of $\tilde{W}_{i}$ .

Then the condition $suppH(\tilde{W}_{i})\subset C(r)^{\perp}$ holds if and only if $\tilde{W}_{i}$ contains
$\tilde{U}_{i}+a$ for any $a\in\tilde{W}_{i}$ . The number of $\tilde{W}_{i}$ satisfying this condition is
$14(=\frac{(16-2)(16-4)}{(8-2)(8-4)}\times 2)$ for each $i$ . It is easy to see that $|D_{C(r)}|=240r$

and $\Gamma(K_{C(r)})\cong\{O_{2}^{(2)}\cdot\Gamma(O^{+}(8,2))\}^{r}$ . We note that this VOA does not
satisfy the assumption of Lemma 3.10(2).
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The calculation of the character of Moonshine VOA

Takeshi Kondo

\S 1. Introduction

In Miyamoto [M3], [M6] and Dong-Griess-H\"ohn [DGH], they de-

scribed the structure of the Moonshine VOA $\gamma\#$ by using two binary
codes $D^{\mathfrak{h}}$ , $ s\#$ and Ising models $L(\frac{1}{2},0)$ , $L(\frac{1}{2}, \frac{1}{2})$ , $L(\frac{1}{2}, \frac{1}{16})$ .

The purpose of this note is to calculate the character of $V^{\mathfrak{h}}$ and
the Tho mpson series of two involutions of Monster Aut $(V^{\mathfrak{h}})(2A,$ 2B-
involutions of Monster) explicitly by following the descriptions of $V^{\mathfrak{h}}$ in
[M3] , [M6] and [DGH]. As is well known (cf. [CN]), these are equal to

$j(z)-744$ , $(\frac{\eta(z)}{\eta(2z)})^{24}+2^{12}(\frac{\eta(2z)}{\eta(z)})^{24}+24$ , $(\frac{\eta(z)}{\eta(2z)})^{24}+24$

respectively, where $j(z)$ is the well known elliptic modular function and
$\eta(z)$ is Dedekind’s $\eta$-function. Also see a remark at the end of \S 4 for the
calculations of Thompson series for some other elements. Finally, in \S 5,
we will mention a little bit about VOA of ” Reed M\"uller type”.

\S 2. Ising models

2.1. Virasoro Algebra

An infinite dimensional Lie algebra Vir having a basis $\{L(m)(m\in$

$Z)$ , $c\}$ is called Virasoro algebra if they satisfies

$[L(m), c]=0$ , $[L(m), L(n)]=(m-n)L(m+n)+\frac{m^{3}-m}{12}\delta_{m+n,0}c$ .

Let $L(c, h)$ be an irreducible module of Vir with central charge
$c(\in C)$ and highest weight $h(\in C)$ . Namely, there exists a vector $ v\in$
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$L(c, h)$ such that $L(n)v$ $=0(n>0)$ , $L(0)v=hv$ , $cv=cv$ and $L(c, h)$

is spanned by $L(-n_{1})L(-n_{2})\cdots L(-n_{r})v(n_{1}\geq n_{2}\geq\cdots\geq n_{r}>0)$ .

As is easily seen from the commutator relations between the $L(n)$ ,
$L(-n_{1})L(-n_{2})\cdots L(-n_{r})v$ is an eigen vector of $L(0)$ with an eigen value
$h+n_{1}+n_{2}+\cdots+n_{r}$ and so $L(c, h)$ is a direct sum of eigenspaces $V_{h+n}$

of $L(0)$ with eigen value $h+n(0\leq n\in Z):L(c, h)=\oplus_{n\geq 0}V_{h+n}$ .

Now define a $q$-series

$ch(L(c, h))=\sum_{n\geq 0}(dimV_{h+n})q^{h+n}$
.

This series is called the character of $L(c, h)$ . More generally, for a graded
space $U=\oplus_{n\in Q}U_{n}$ , a $q$-series $ch(U)=\sum_{n\in Q}(dimU_{n})q^{n}$ is called the

character of a graded space U.
An important thing is that, if $h=0$ , $L(c, 0)$ has a structure of

VOA. Such VOA is called Virasoro VOA and is the most fundamental
example of VOA.

In the following, we will consider the case $c=\frac{1}{2}$ .

2.2. Ising models

2.2.1. Irreducible modules of $L(\frac{1}{2},0)$ . As for modules of VOA $L(\frac{1}{2},0)$ ,

the following is known:
(2.1) Any modules of VOA $L(\frac{1}{2},0)$ is completely reducible and

VOA $L(\frac{1}{2},0)$ has just three irreducible modules $L(\frac{1}{2},0)$ , $L(\frac{1}{2},\frac{1}{2})$ , $L(\frac{1}{2},\frac{1}{16})$ .

(cf. [DMZ])
Let $T_{n}$ be the tensor product $L(\frac{1}{2},0)\otimes\cdots\otimes L(\frac{1}{2},0)$ of $n$ copies of

$L(\frac{1}{2},0)$ . Then, by a general theory of VOA,
$(2,2)$ $T_{n}$ has $VOA$ -structure and any module of $T_{n}$ is completely

reducible. Also, $T_{n}$ has just $3^{n}$ Irreducible modules

$L(h_{1},h_{2},\cdots, h_{n})=L(\frac{1}{2}, h_{1})\otimes L(\frac{1}{2}, h_{2})\otimes\cdots\otimes L(\frac{1}{2}, h_{n})$ ( $h_{i}=0$ , $\frac{1}{2}$ or $\frac{1}{16}$ )

2.2.2. Characters of $L(\frac{1}{2}, h)$ . As for the characters of $L(\frac{1}{2}, h)(h=$

$0$ , $\frac{1}{2}$ or $\frac{1}{16}$ ), the followings are known: Let

$q_{+}=\prod_{n=0}^{\infty}(1+q^{n+\frac{1}{2}})$ , $q-=\prod_{n=0}^{\infty}(1-q^{n+\frac{1}{2}})$ , $q_{0}=\prod_{n=1}^{\infty}(1+q^{n})$ .

Then we have
$ch(L(\frac{1}{2},0))=\frac{1}{2}(q_{+}+q-)$ , $ch(L(\frac{1}{2}, \frac{1}{2}))=\frac{1}{2}(q_{+}-q-)$ , $ch(L(\frac{1}{2}, \frac{1}{16}))=$

$q^{\frac{1}{16}}q_{0}$ .
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The characters of $L(h_{1}, h_{2}, \cdots, h_{n})=\otimes^{n}L(\frac{1}{2}, h_{i})$ is

$ch(L(h_{1}, h_{2}, \cdots, h_{n}))=\prod_{i=1}^{n}ch(L(\frac{1}{2}, h_{i}))$ .

Let $\eta(z)=q^{\frac{1}{24}}\prod_{n=1}^{\infty}(1-q^{n})(q=exp(2\pi iz))$ be Dedekind’s $\eta$ function.
Then it is clear that

$q_{0}=q^{-\frac{1}{24}}\frac{\eta(2z)}{\eta(z)}$ , $q+q_{-}=q^{\frac{1}{24}}\frac{\eta(z)}{\eta(2z)}$ , $q_{0}q_{+}q_{-}=1$ .

Also we have

$16q^{\frac{1}{2}}q_{0}^{8}=q_{+}^{8}-q_{-}^{8}$ (Jacobi).

Furthermore, for the calculations of the character of some VOA, it
is convenient to note

$j(z)^{\frac{1}{3}}=2^{8}(\frac{\eta(2z)}{\eta(z)})16+(\frac{\eta(z)}{\eta(2z)})^{8}$ ,

where $j(z)$ is the well known elliptic modular function.
2.2.3. Fusion rules. Let $\Lambda_{n}$ be the set of all irreducible modules of

$T_{n}=\otimes^{n}L(\frac{1}{2},0):\Lambda_{n}=$ { $L(h_{1},$ $h_{2}$ , $\cdots$ , $h_{n})|h_{i}=0$ , $\frac{1}{2}$ or $\frac{1}{16}$ }.
Let a binary word $\delta=(\delta_{1}, \delta_{2}, \cdots, \delta_{n})\in F_{2}^{n}$ of length $n$ act on $\Lambda_{n}$ as
$follows:ForF_{2}^{n}\ni\delta=(\delta_{1}, \cdots, \delta_{n})$

$L(h_{1}, h_{2}, \cdots, h_{n})\rightarrow L(h_{1}+\frac{\delta_{1}}{2}, h_{2}+\frac{\delta_{2}}{2}, \cdots, h_{n}+\frac{\delta_{n}}{2})$ .

Here the sum” $h_{i}+\frac{\delta_{i}}{2},$

,
is defined as follows:

$\frac{1}{2}+0=\frac{1}{2}$ , $\frac{1}{2}+\frac{1}{2}=0$ , $\frac{1}{16}+0=\frac{1}{16}$ , $\frac{1}{16}+\frac{1}{2}=\frac{1}{16}$

These come from well known fusion rules of Ising models which are the
most important in the theory of Framed VOA described in the next
section. Note that every orbit of the action of $F_{2}^{n}$ on $\Lambda_{n}$ is the set of
$L(h_{1}, h_{2}, \cdots, h_{n})$ which have $h_{i}=\frac{1}{16}$ in the same position.

\S 3. Framed $VOA$

We will consider a simple VOA $V=\oplus_{n=0}^{\infty}V_{n}$ satisfying the following
conditions:

(3.1) $dimV_{0}=1$ , $i.e$ . $V_{0}=<1>where1$ is the vacuum of $V$ ,
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(3.2) $V$ contains $T_{n}=\otimes^{n}L(\frac{1}{2},0)$ as a sub $VOA$ which has Virasoro
element in common.
Recently VOA of this type is called Framed VOA. Viewing $V$ as a $T_{n^{-}}$

module, the complete reducibility $(2,2)$ of $T_{n}$ yields the decomposition

$V\simeq\oplus_{(h_{1},h_{2},h_{n})}\ldots,a_{(h_{1},h_{2},,h_{n})}\cdots L(h_{1}, h_{2}, \cdots, h_{n})$ (as $T_{n}$-module)

where the $ a_{(h_{1},h_{2},,h_{n})}\cdots$ express multiplicity. This decomposition yields
an isomorphism as graded space by the condition (3.2) and so we have

$ch(V)=\sum_{n=0}^{\infty}(dimV_{n})q^{n}=$ $\sum$ $a_{(h_{1},h_{2},\cdot\cdot,h_{n})}ch(L(h_{1}, h_{2}, \cdots, h_{n}))$ .

$(h_{1},h_{2},\cdots,h_{n})$

Thus , if we know the multiplicities $ a_{(h_{1},h_{2},,h_{n})}\cdots$ , the character of $V$ can
be written down immediately by using the characters of Ising models.
Note that $h_{1}+h_{2}+\cdots+h_{n}$ is a nonnegative integer, because the weights
of VOA are integers.

Now Miyamoto [M3], [M6] and Dong-Griess-H\"ohn [DGH] showed
that the above decomposition of $V$ has a “2-structure” described in
terms of two binary even codes $S$ and $D$ which will be explained in the
following. However we will mention just the results and the proofs of
the statements will be omitted. For the proofs, we refer the readers to
[M1], [M4], [M6] (or [DGH]) together with [DM].

3.1. Code $S$

For $h=(h_{1}, h_{2}, \cdots, h_{n})$ ( $h_{i}=0$ , $\frac{1}{2}$ or $\frac{1}{16}$ ), we assign a binary word
$\tilde{h}=(h_{1}’, h_{2}’, \cdots, h_{n}’)\in F_{2}^{n}$ as follows:

$h_{i}’=\{$
1 if $h_{i}=\frac{1}{16}$

0 if $h_{i}=0$ or $\frac{1}{2}$ .

Thus a word $\tilde{h}$ shows positions in which the $h_{i}=\frac{1}{16}$ appear. Let

$S=\{\tilde{h}|a_{h}=a_{(h_{1},h_{2},\cdot\cdot,h_{n})}\neq 0\}$ .

Then we have
(3.1.1) $S$ is a linear code.
(3.1.2) $S\ni\alpha\Rightarrow 8|wt(\alpha)$ , i.e. the weight of every word of $S$ is

divisible by 8.
(3.1.3) $\tilde{h}=\tilde{h}’\Rightarrow a_{h}=a_{h’}$ , i.e. the multiplicities $a(h_{1}, h_{2}, \cdots, h_{n})$

of two $L(h_{1}, h_{2}, \cdots, h_{n})$ coincide if $\frac{1}{16}$ appear in the same positions.

Therefore, gathering the $L(h_{1}, h_{2}, \cdots, h_{n})$ with $\frac{1}{16}$ in the same positions,
we get the decomposition.

(3,1,4) $V^{\alpha}=a_{\alpha}(\oplus_{\overline{h}=\alpha}L(h_{1}, h_{2}, \cdots, h_{n}))$ , $V=\oplus_{\alpha\in S}V^{\alpha}$ .
We will call this decomposition $T_{n}$ decomposition of V.
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3.2. Code $D$

In this subsection, we will consider the $L(h_{1}, h_{2}, \cdots, h_{n})$ with $\tilde{h}=0$ .

Thus we have $h_{i}=0$ or $\frac{1}{2}$ . For $h=(h_{1}, h_{2}, \cdots, h_{n})$ with $\tilde{h}=0$ , assign

a binary word $(2h_{1},2h_{2}, \cdots, 2h_{n})\in F_{2}^{n}$ and set

$D=$ { ( $2h_{1},2h_{2}$ , $\cdots$ , $2h_{n}$ ) $|\tilde{h}=0$ and $a_{h}\neq 0$ }.

Then we have
(3,3,1) $D$ is an even linear code and $D^{\perp}\supset S$ ,

(3.2.2) $\tilde{h}=0\Rightarrow a_{h}=1$ .

Let

$V^{0}=\oplus_{\overline{h}=0}L(h_{1}, h_{2}, \cdots, h_{n})=\oplus_{\delta\in D}L(\frac{\delta_{1}}{2}, \frac{\delta_{2}}{2}. \cdots, \frac{\delta_{n}}{2})$

where $\delta=(\delta_{1}.\delta_{2}, \cdots, \delta_{n})$ .

Then we have
(3.2.3) $V^{0}$ is a subVOA of $V$ and the $V^{\alpha}(\alpha\in S)$ are irreducible

modules of $V^{0}$ .

3.3. The structure of $V^{\alpha}$

$V^{0}$ defined above is what is called Code VOA in a series ofMiyamoto’s
papers [M2], [M4], [M5] and [M6]. In view of Miyamoto [M4], the mul-
tiplicities $a_{\alpha}(\alpha\in S)$ are described as follows by using $D$ , $S$ , $\alpha$ :

For $\alpha\in S$ , set $D_{\alpha}=$ { $\delta\in D|$ supp(6)supp(\mbox{\boldmath $\alpha$})}.

(3,3,1) Let $H_{\alpha}$ be a maximal selforthogonal subcode of $D_{\alpha}$ . Then
$a_{\alpha}=[D_{\alpha} : H_{\alpha}]$ .

Now consider the decomposition $V^{\alpha}=a_{\alpha}(\oplus_{\overline{h}=\alpha}L(h_{1}, h_{2}, \cdots, h_{n}))$ .

Then what is the set of the $L(h_{1}, h_{2}, \cdots, h_{n})$ which appears in the
righthandside/.?

In order to examine this set, recall the action of $F_{2}^{n}$ on $\Lambda_{n}$ defined
in 2.2.3. For $\alpha\in S$ , we put

$\Lambda_{n}(\alpha)=\{L(h_{1}, h_{2}, \cdots, h_{n})|\tilde{h}=\alpha\}$

and consider the action of $D$ on $\Lambda_{n}(\alpha)$ . Then we have that
the set of $\{L(h_{1}, h_{2}, \cdots, h_{n})\}$ which appear in the above decomposi-

tion of $V^{\alpha}$ is equal to an orbit (with integral weight) of the action of $D$

on $\Lambda_{n}(\alpha)$ .

Note that $D_{\alpha}$ is one-point stabilizer of this action of $D$ on $\Lambda_{n}(\alpha)$ .

Therefore,

the number of orbits of the action of $D$ on $\Lambda_{n}(\alpha)=\frac{2^{n-wt(\alpha)}}{[D\cdot D_{\alpha}]}.\cdot$
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Thus we see that the decomposition of a Framed VOA as $T_{n}$-module

$V\simeq\oplus_{(h_{1},h_{2},,h_{n})}\ldots a_{(h_{1},h_{2}}$ , $\cdot,h_{n})L(h_{1}, h_{2}, \cdots, h_{n})$ (as $T_{n}$-module)

can be completely described by two binary codes $D$ , $S$ and the choice of
an orbit of the action of $D$ on $\Lambda_{n}(\alpha)$ for each $\alpha\in S$ .

Remark. Now we are naturally led to a problem:
When two binary codes $D$ , $S$ satisfying (3, 1, 2) and (3, 2, 1) are given,

can we construct a $VOA$ by choosing suitably an orbit [with integral
weight) of the action of $D$ on $\Lambda_{n}(\alpha)$ for each $\alpha\in S$?

In [M5], [M6], Miyamoto showed that, under suitable conditions for
$D$ , $S$ , Framed VOA can be constructed (for some such examples, see \S 5
of this note) and, in particular, starting from two special binary codes
$D^{\mathfrak{h}}$ , $ s\#$ which are described in the next section, Moonshine VOA can be
reconstructed.

\S 4. Moonshine VOA

Dong-Mason-Zhu [DMZ] showed that Moonshine VOA $\gamma\#$ con-
structed by Frenkel-Lepowsky-Meurman [FLM] satisfies the conditions
(3.1), (3.2) in the beginning of the previous section for $n$ $=48$ , and then
Miyamoto [M3] and Dong-Greiss-H\"ohn [DGH] determined two codes
$D$ , $S$ . In this section, these codes $D^{\mathfrak{h}}$ , $S^{\mathfrak{h}}$ for $V^{\mathfrak{h}}$ will be described and
the character of $\gamma\#$ will be calculated by using $D^{\mathfrak{h}}$ , $S^{\mathfrak{h}}$ . Also Thompson
series for two involutions of Aut $(V^{\mathfrak{h}})$ will be calculated.

4.1. Codes $D^{\natural}$ , $S^{\natural}$

Firstly we define two binary codes $D^{\neq}$ , $S^{\neq}$ of length 16. Let $ s\#$

be a binary code generated by the following five words of length 16:
$(1^{16})$ , $(1^{8}0^{8})$ , $((1^{4}0^{4})^{2})$ , $((1^{2}0^{2})^{4})$ , $((1.0)^{8})$

In coding theory, $ s\not\simeq\neq$ is known to be the 1st order Reed-M\"uller code
$RM(4,1)$ of length 16. Let $D^{\neq}=(S^{\neq})^{\perp}=(orthogonal$ complement of
$S^{\not\simeq\neq})$ . $D^{\neq\neq}$ is known to be the 2nd order Reed-M\"uller code $RM(4,2)$ .

The code $S^{\mathfrak{h}}$ is defined to be the set of words of length 48 which put
three words of $ S\#$ in order as follows:

$(\sigma, \sigma, \sigma)$ , $(\sigma, \sigma,\overline{\sigma})$ , $(\sigma,\overline{\sigma}, \sigma)$ , $(\overline{\sigma}, \sigma, \sigma)\sigma\in S^{\#},\overline{\sigma}=\sigma+(1^{16})$

$S^{\mathfrak{h}}$ is a (48, 7, 16)-binary code and its weight enumerator is

$x^{48}+3x^{32}y^{16}+120x^{24}y^{24}+3x^{16}y^{32}+y^{48}$ .
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Finally let $D^{\mathfrak{h}}=(S^{\mathfrak{h}})^{\perp}$ . Then $ D\#$ is a (48, 41, 4)-binary code and when
a word of $ D\#$ is written in the shape like $(\rho_{1}, \rho_{2}, \rho_{3})(\rho_{i}\in F_{2}^{16})$ , we have

$D^{\mathfrak{h}}\ni(\rho_{1}, \rho_{2}, \rho_{3})(\rho_{i}\in F_{2}^{16})$

(4.1.1)
$=\rho_{i}$ is an even word and $\rho_{1}+\rho_{2}+\rho_{3}\equiv 0$ mod $D^{\neq\neq}$ .

These $ D\#$ , $S^{\mathfrak{h}}$ are codes for Moonshine VOA $V^{\mathfrak{h}}$ .

4.2. $T_{48}$-decomposition of $V^{\natural}$

The following table gives some datas which are necessary for the
description of $T_{48}$ -decomposition (3.1.4) of $V^{\mathfrak{h}}$ :

$ wt(\alpha)\#$ of $\alpha$ $|D_{\alpha}\#|$ $\#$ of orbits multi., $a_{\alpha}$

I 0 1 1 $2^{7}$ 1
$II$ 16 3 $|D^{\not\simeq\neq}|=|H_{8}|^{2}\cdot 2^{3}$ 4 $2^{3}$

$III$ 24 120 $|H_{8}|^{3}\cdot 2^{6}$ 2 $2^{6}$

$IV$ 32 3 $|D^{\neq}|^{2}\cdot 2^{4}=|H_{8}|^{4}\cdot 2^{10}$ 2 $2^{10}$

$V$ 48 1 $|D\#|=|H_{8}|^{6}\cdot 2^{17}$ 1 $2^{17}$

What the 1st and 2nd column of this table mean is clear. The
most important column is the 3rd one which gives the order of $ D_{\alpha}\#$

together with the structure of $D_{\alpha}^{\mathfrak{h}}$ for each $\alpha\in g\#$ . For example,
$|D^{\neq\neq}|=|H_{8}|^{2}\cdot 2^{3}$ in the 2nd row means that $(D\#)_{\alpha}\simeq D^{\neq\neq}$ and $(D^{\mathfrak{h}})_{\alpha}$

contains a direct sum of two copies of Hamming code $H_{8}$ as a maxi-
mal selforthogonal subcode which has the index $2^{3}$ in $(D^{\mathfrak{h}})_{\alpha}$ . This can
be easily from 4.1, (4.1.1). The 4th column gives the number of orbits

of the action of $D^{\mathfrak{h}}$ on $\Lambda_{48}(\alpha)(=\frac{2^{n-wt(\alpha)}}{[D\#.(D\#)_{\alpha}]}.)$ . The 5th column is the

multiplicities $(=[(D^{\mathfrak{h}})_{\alpha} : H_{\alpha}])$ appearing in irreducible module $(V^{\mathfrak{h}})^{\alpha}$ in
$T_{48}$ -decomposition (3.1.4) of $V^{\mathfrak{h}}$ (cf. (3.3.1)).

Now, for the description of $T_{48}$-decomposition of $V^{\mathfrak{h}}$ , it remains to
choose an orbit of the action of $D^{\mathfrak{h}}$ on $\Lambda_{48}(\alpha)$ for each $\alpha\in S^{\mathfrak{h}}$ . Consider
the 2nd row, for example. The number of orbits is 4. As is easily
seen, the representatives of each orbit (say, for $\alpha=(1^{16},0^{16},0^{16})$ ) are
$L((\frac{1}{16})^{16},0^{16},0^{16})$ , $L((\frac{1}{16})^{16},0^{16}, \frac{1}{2}0^{15})$ , $L((\frac{1}{16})^{16}, \frac{1}{2}0^{15},0^{16})$ , and
$L((\frac{1}{16})^{16}, \frac{1}{2}0^{15}, \frac{1}{2}0^{15})$ .

The 2nd and the 3rd one is improper, because they have half-integral
weight. The 1st one is also improper, because it has weight 1 but the
Moonshine VOA $V^{\mathfrak{h}}$ has no vector of weight 1. Thus we must choose
the last one as a representative. This orbit is the set of $a\square $ $L((\frac{1}{16})^{16}, *, *)$

such that $\frac{1}{2}$ appear odd times in each part of $two*$ .

For other rows of the above table, the orbit is uniquely determined by
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” integral condition” of weight. Thus we have

$wt(\alpha)$ a representative of orbit

I 0 $L(0^{48})$

$II$ 16 $L((\frac{1}{16})^{16}(\frac{1}{2}0^{15})(\frac{1}{2}0^{15}))$

$III$ 24 $L((\frac{1}{16})^{24}(\frac{1}{2}0^{23}))$

$IV$ 32 $L((\frac{1}{16})^{32}0^{16})$

$V$ 48 $L((\frac{1}{16})^{48})$

4.3. The calculation of the the character

Firstly let us remark about the character of Code VOA.
Let $D$ be a binary even code and $M_{D}$ be a code VOA for $D$ :

$M_{D}=\oplus_{\delta\in D}L(\frac{\delta_{1}}{2}, \frac{\delta_{2}}{2}, \cdots, \frac{\delta_{n}}{2})(\delta=(\delta_{1}, \delta_{2}, \cdots, \delta_{n}))$ .

Let $W_{D}(x, y)=\sum_{\delta\in D}x^{n-wt(\delta)}y^{wt(\delta)}$ (the weight enumerator of $D$ ).
Then the character of $M_{D}$ is expressed as follows:

$ch(M_{D})=W_{D}(ch(L(\frac{1}{2},0)),$ $ch(L(\frac{1}{2}, \frac{1}{2}))$

Using formulas of $ch(L(\frac{1}{2},0))$ , and $ch(L(\frac{1}{2}, \frac{1}{2}))$ mentioned in 2.2.2 and
MacWilliam’s identity in coding theory, we have

$ch(M_{D})=\frac{1}{|D^{\perp}|}W_{D^{\perp}}(q_{+}, q-)$ .

Let us begin the calculation of the character of $V^{\mathfrak{h}}$ :

$V^{\mathfrak{h}}=\oplus_{\alpha\in S^{\mathfrak{h}}}(V^{\mathfrak{y}})^{\alpha}$ .

For that purpose, let us calculate $ch((V^{\mathfrak{h}})^{\alpha})$ since we know the $T_{48^{-}}$

decomposition of $(V^{\mathfrak{h}})^{\alpha}$ in 4.2.

Case I where $ S^{\mathfrak{h}}\ni\alpha$ is of Type $I$ , i.e. $\alpha=(0^{48})$ :
In this case, $(V^{\mathfrak{h}})^{\alpha}\simeq M_{D\#}$ (code VOA) and so

$ch((V^{\mathfrak{h}})^{\alpha})=\frac{1}{2^{7}}(q_{+}^{48}+3q_{+}^{32}q_{-}^{16}+120q_{+}24q_{-}24+3q_{+}^{16}q_{-}^{32}+q_{-}^{48})$ .

Using a formula $q_{0}q+q_{-}=1$ and Jacobi’s formula $16q^{\frac{1}{2}}q_{0}^{8}=q_{+}^{8}-q_{-}^{8}$ , we
get

$ch((V\#)^{\alpha})=2^{17}q^{3}q_{0}^{48}+3\cdot 2^{10224}qq_{0}+(q_{+}q-)^{24}+24q=Q_{I}$ .
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Here we put the righthandside as $Q_{I}$ .

Case $II$ where $ S^{\mathfrak{h}}\ni\alpha$ is of Type $II$ , i.e. $\alpha=(1^{16}0^{16}0^{16})$ , $(0^{16}1^{16}0^{16})$

or $(0^{16}0^{16}1^{16})$ .

For simplicity of notations, let

$X=ch(L(\frac{1}{2},0))$ , $Y=ch(L(\frac{1}{2}, \frac{1}{2}))$ , $Z=ch(L(\frac{1}{2}, \frac{1}{16}))$ .

Then we have

$ch((V^{\#})^{\alpha})$ $=$ $2^{3}Z^{16}(\sum_{i=1}^{8}$ $\left(\begin{array}{l}16\\2i-1\end{array}\right)$ $X^{16-(2i-1)}Y^{2i-1})^{2}$

$=$ $2^{3}\cdot\frac{1}{4}((X+Y)^{16}-(X-Y)^{16})^{2}Z^{16}$ .

Transforming this in the same way as Case $I$ , we get

$ch((V^{\mathfrak{h}})^{\alpha})=2^{3}(2^{143}qq_{0}^{48}+2^{8}q^{2}q_{0}^{24})=Q_{II}$ .

Calculating $ch((V^{\mathfrak{h}})^{\alpha})$ for $\alpha$ of Type $III$ , $IV$, $V$ similarly, we get

$ch((V\#)^{\alpha})=2^{6}(2^{11348}qq_{0}+3\cdot 2^{3}q^{2}q_{0}^{24})=Q_{III}$ for $\alpha$ of Type $III$,
$ch((V^{\mathfrak{h}})^{\alpha})=2^{10}(2^{7348}qq_{0}+q^{2}q_{0}^{24})$ $=Q_{IV}$ for $\alpha$ of Type $IV$,
$ch((V^{\mathfrak{h}})^{\alpha})=2^{17348}qq_{0}$ $=Q_{V}$ for $\alpha$ of Type $V$.

Thus we have

$ch(V^{\mathfrak{h}})$ $=$
$\sum_{\alpha\in S\#}ch((V^{\mathfrak{h}})^{\alpha})$

$=$ $Q_{I}+3\cdot Q_{II}+120\cdot Q_{III}+3\cdot Q_{IV}+Q_{V}$

$=$ $2^{24348}qq_{0}+3\cdot 2^{16}q^{2}q_{0}^{24}+(q+q-)^{24}+24q$

$=q(2^{24}(\frac{\eta(2z)}{\eta(z)})^{48}+3\cdot 2^{16}(\frac{\eta(2z)}{\eta(z)})^{24}+(\frac{\eta(z)}{\eta(2z)})^{24}+24)$ .

Finally, using $j(z)^{\frac{1}{3}}=2^{8}(\frac{\eta(2z)}{\eta(z)})^{16}+(\frac{\eta(z)}{\eta(2z)})^{8}$ , we get

$\frac{1}{q}ch(V^{\#})=j(z)-744$ .

4.4. Thompson series of some involutions of $Aut(V^{\natural})$

For $\tau\in Aut(V^{\mathfrak{h}})$ (Monster),

$T_{\tau}(q)=\frac{1}{q}\sum_{n=0}^{\infty}Tr(\tau|(V^{\mathfrak{h}})_{n})q^{n}$
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is called Thompson series of $\tau$ . We will calculate Thompson series of
some involutions of $Aut(V^{\mathfrak{h}})$ .

For each $i(1\leq i\leq 48)$ , we define a linear transformation of $V^{\mathfrak{h}}$ as
follows:

$\tau_{i}|(V\#)^{\alpha}=\epsilon(i, \alpha)Id_{(V\#)^{\alpha}}$ , $\epsilon(i, \alpha)=\{$

-1 $i\in supp(\alpha)$

1 $i\not\in supp(\alpha)$

Then $\tau_{i}$ is an automorphism (as VOA) of $V^{\mathfrak{h}}$ (cf. [M1]). In the fol-
lowing, we will calculate Thompson series of $\tau_{1}\in Aut(V\#)$ ( $2A$-involution)
and $\tau_{1}\tau_{2}\in Aut(V^{\mathfrak{h}})$ ( $2B$-involution). For each $\alpha\in S^{\mathfrak{h}}$ , let

$\epsilon_{\alpha}=\{$

-1 $1\in supp(\alpha)$

1 $1\not\in supp(\alpha)$ .

Then we have $qT_{\tau_{1}}(q)=\sum_{\alpha\in S\#}\epsilon_{\alpha}ch((V^{\mathfrak{h}})^{\alpha})$ which is equal to

$Q_{I}+(-1+1+1)Q_{II}+(1-1-1)Q_{IV}-Q_{V}+(\sum_{\alpha:TypeIII}\epsilon_{\alpha})Q_{III}$ .

But since the number of $\alpha$ of Type $III$ with $1\in supp(\alpha)$ is equal to the
number of $\alpha$ of Type $III$ with $1\not\in supp(\alpha)$ , the last term is canceled
and so we get

$qT_{\tau_{1}}(q)=Q_{I}+Q_{II}-Q_{IV}-Q_{V}=2^{12224}qq_{0}+(q+q-)^{24}+24q$

$=q(2^{12}(\frac{\eta(2z)}{\eta(z)})^{24}+(\frac{\eta(z)}{\eta(2z)})^{24}+24)$ .

Thus Thompson series $T_{\tau_{1}}(q)$ is equal to a modular function correspond-
ing to $2A$-involution of Monster (cf. [CN]). Next, let

$\epsilon_{\alpha}’=\{$

1 1, $2\in supp(\alpha)$ or 1, $2\not\in supp(\alpha)$

-1 otherwise.

Then the Thompson series $qT_{\tau_{1}\tau_{2}}(q)=\sum_{\alpha\in S^{\mathfrak{h}}}\epsilon_{\alpha}’ch((V^{\mathfrak{h}})^{\alpha})$ is equal to

$Q_{I}+(1+1+1)Q_{II}+(1+1+1)Q_{IV}+Q_{V}+(\sum_{\alpha.TypeIII}\epsilon_{\alpha}’)Q_{III}$ .
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But since there exist 56 $\alpha$ of Type $III$ with $\epsilon_{\alpha}’=1$ and 64 $\alpha$ of Type $III$

with $\epsilon_{\alpha}’=-1$ , we get

$qT_{\tau_{1}\tau_{2}}(q)=Q_{I}+3\cdot Q_{II}+3\cdot Q_{IV}+Q_{V}-8\cdot Q_{III}$

$=(q_{+}q-)^{24}+24q=q((\frac{\eta(z)}{\eta(2z)})^{24}+24)$ .

Thus Thompson series $T_{\tau_{1}\tau_{2}}(q)$ is equal to a modular function corre-
sponding to $2B$-involution of Monster (cf. [CN]).

Remark. For some $\tau\in Aut(V^{\mathfrak{h}})$ which come from $Aut(D\#)$ , it is
possible to calculate Thompson series $T_{\tau}(q)$ explicitly. In fact, Miyamoto
[M6] has done it for such 3-element of $Aut(V^{\mathfrak{h}})$ (which corresponds to
$3C$-element of Monster and $T_{\tau}(q)=j(3z)^{\frac{1}{3}}.)$ Also Sakuma [S], one of
Miyamoto’s graduate students, has written down $T_{\tau}(z)$ in terms of the
characters of Ising models for such 5-element and 7-element which should

be $(\frac{\eta(z)}{\eta(5z)})^{6}+6$ and $(\frac{\eta(z)}{\eta(7z)})^{4}+49\cdot(\frac{\eta(7z)}{\eta(z)})^{4}+4$ respectively, although it

is a little bit unsatisfactory for these identifications.

\S 5. VOA of Reed M\"uller type

For $m\geq 4$ , let
$S(m)=RM(m, 1)$ (1st order Reed M\"uller code of length $2^{m}$ )
$D(m)=S(m)^{\perp}=RM(m, m-2)((m-2)$ -th order Reed M\"uller

code of length $2^{m}$ )
(Note that $S(4)$ , $D(4)$ is nothing but $ s\#$ , $D^{\neq}$ respectively in 4.1). It is
easy to see that

(5.1) $D(m)$ , $S(m)$ satisfy the conditions (3.1.2), (3.2.1)
$(5,2)$ Orbit of the action of $D(m)$ on $\Lambda_{2^{m}}(\alpha)$ for each $\alpha\in S(m)$ is

uniquely determined under integral condition of weight.
Furthermore, in view of Miyamoto’s theory [M5], [M6], there exists VOA
for $D(m)$ , $S(m)$ . We denote it by $V(m)$ .

Remark. $V(m)$ can be constructed as VOA over the real num-
ber field with a positive definite invariant form and then, if $m\geq 6$ ,

$Aut(V(m))$ is a finite group (cf. [M6]). For $m=4,5$ , we see $V(4)=E_{8^{-}}$

Lattice VOA and $V(5)=E_{16}$ -Lattice VOA. As for the character of

$V(m)$ , we can easily see that $q^{-\frac{2^{m-1}}{24}}ch(V(m))$ is equal to $j(z)^{\frac{1}{3}}$ , $j(z)^{\frac{2}{3}}$

and $j(z)^{\frac{1}{3}}(j(z)-992)$ for $m=3,4$ and 5 respectively.
More generally, it seems very likely

$q^{-\frac{2^{m-1}}{24}}ch(V(m))=j(z)^{\mu}3$ (a polynomial of $j(z)$ )($\mu=1$ or 2).
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But the author has not yet checked it.
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A Remark on the Loewy Structure
for the Three Dimensional Projective Special

Unitary Groups in Characteristic 3

Shigeo Koshitani1 and Naoko Kunugi

\S 1. Introduction and Notation

The purpose of this note is to give an alternative and easier proof
of a recent result by K. Hicks [6, Theorem 1.1], which was on the Loewy
and socle structure of the projective indecomposable modules in the
principal 3-block of the projective special unitary group $PSU_{3}(q^{2})=$

$U_{3}(q)$ for a power $q$ of a prime satisfying $q\equiv 2$ or 5 $(mod 9)$ over an
algebraically closed field of characteristic 3. In her paper K. Hicks used
so-called Auslander-Reiten theory on representations of artin algebras
(see [1]). Actually, in her paper [6], the key tool was a result, which was
due to K. Erdmann [4] and S. Kawata [8] on Auslander-Reiten quivers
of type $A_{\infty}$ for group algebras of finite groups. On the other hand, our
proof does not need the Auslander-Reiten theory (except a result due
to P. Webb [15] $)$ but just well-known results on modular representation

theory of finite groups.
We use the following notation and terminology. Throughout this

paper, $k$ is always an algebraically closed field of characterictic $p>$
$0$ , and $G$ is always a finite group. For an element $g$ $\in G$ we denote

by $|g|$ the order of $g$ . For a power $q$ of a prime, $F_{q}$ is the field of $q$

elements, and we use the notation $GLn(g)$ , $SLn(g)$ , PGLn(g), PGUn(g),

PSUn(g) for a positive integer $n$ in a standard fashion (see [7]). We
denote by $C_{n}$ the cyclic group of order $n$ for a positive integer $n$ . Let $A$

be a finite-dimensional $k$-algebra. Then, $A^{\times}$ denotes the set of all units
(invertible elements) in $A$ , and $J(A)$ denotes the Jacobson radical of
$A$ . In this paper modules mean always finitely generated right modules,

unless stated otherwise. Let $M$ be an $A$-module. We denote by Soc(M)
and $P(M)$ the socle of $M$ and the projective cover of $M$ , respectively.

1 This work was partially supported by the JSPS (Japan Society for Pro-

motion of Science).
Received March 3, 1999.
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Let $J=J(kG)$ . Then, we write $j(M)$ for the Loewy length of $M$ , that
is, $j(M)$ is the least positive integer $j$ such that $M\cdot J^{j}=0$ . Then, for
each $i=1$ , $\cdots,j(M)$ , we can define the $i$-th Loewy layer $L_{i}(M)$ and $i$-th
socle Soci(M) of $M$ , namely, $L_{i}(M)=M\cdot J^{i-1}/M\cdot J^{i}$ and the $i$-th socle
of $M$ is defined inductively by SocO(M)= $M$ and $Soc_{i}(M)/Soc_{i-1}(M)$

$=Soc(M/Soci_{-}1(M))$ for $i=1,2$ , $\cdots$ , $j(M)$ . Let $M^{*}=Hom/C(M, k)$ be
the dual of $M$ , which can be considered as a right $kG$-module as well
via $(\phi\cdot g)(m)=\phi(mg^{-1})$ for any $m\in M$ , $g\in G$ and $\phi\in Hom/C(M, k)$ .

Then, $M^{*}$ is called the (fc-)dual of $M$ . We say that $M$ is self-dual if
$M$ $\cong M^{*}$ as right $kG$-modules.

From now on, let assume that $A$ is a block ideal of the group algebra
$kG$ . Then, we write $hrr(A)$ and $IBr(A)$ respectively for the set of all
irreducible ordinary characters of $G$ in $A$ and the set of all irreducible
Brauer characters of $G$ in $A$ (note that sometimes we mean by $IBr(A)$

the set of all non-isomorphic simple $kG$-modules in $A$ ). We write $k(A)$

and $\ell(A)$ respectively for the numbers of all elements in the sets Irr(A)
and $IBr(A)$ . For simple $kG$-modules $S$ and $T$ , $c(S, T)=c_{S,T}$ denotes
the Cartan invariant with respect to $S$ and $T$ . We denote by $k_{G}$ the
trivial $kG$-module. For other notation and terminology we follow the
books of Landrock [12] and Nagao-Tsushima [13].

\S 1. $PSU_{3}(q^{2})$

In this section we give some remarks on $PSU_{3}(q^{2})$ . First of all,
we can define the 3-dimensional special unitary group $SU_{3}(q^{2})$ over the
finite field $F_{q^{2}}$ of $q^{2}$ elements for a power $q$ of a prime such that

$SU_{3}(q^{2})=\{X\in SL_{3}(q^{2})|X\cdot{}^{t}\overline{X}=I_{3}\}$

where $I_{3}$ is the unit matrix of size 3 $\times 3,{}^{t}Y$ is the transposed matrix

of a matrix $Y$ and $\overline{Y}$ is the image of a matrix $Y$ by the Frobenius map
$F_{q^{2}}\rightarrow F_{q^{2}}$ with $\alpha\mapsto\alpha^{q}$ , namely, $\overline{Y}=(y_{ij^{q}})_{i,j}$ if $Y=(y_{ij})_{i,j}$ and
$y_{ij}\in F_{q^{2}}$ , since there exists a normal orthogonal basis with respect to
$f$ , where $f$ is a non-degenerate Hermite form over a 3-dimensional $F_{q^{2-}}$

vector space which defines $SU_{3}(q^{2})$ (see [7, $II10.4$ Satz]). Throughout
this paper, we assume that a power $q$ of a prime satisfies a condition

(2.1) $q\equiv 2$ or 5 $(mod 9)$ .

Since the multiplicative group $F_{q^{2}}^{\times}$ is a cyclic group of order $q^{2}-1$ ,

let $\sigma$ be a generator of it, namely, $F_{q^{2}}^{\times}=\langle\sigma\rangle$ and we fix $\sigma$ . Then, let
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$\omega=\sigma^{(q^{2}-1)/3}$ and we fix $\omega$ (note that $q^{2}-1$ is divisible by 3 from (2.1)).
Now, we can define

(2.2) $G=PSU_{3}(q^{2})=SU_{3}(q^{2})/Z$

where $Z$ is the center of $SU_{3}(q^{2})$ and $Z=\{\omega^{i}\cdot I_{3}\in SL_{3}(q^{2})|i=0,1,2\}$

so that $Z\cong C_{3}$ . Throughout this paper we write elements of $G$ and
$PGL_{3}(q^{2})$ just in forms of $(3\times 3)$ -matrices. Let

(2.3) $\beta=$ $\left(\begin{array}{lll}1 & 0 & 0\\0 & \omega & 0\\0 & 0 & \omega\end{array}\right)$ $\in PGL_{3}(q^{2})$ .

Then, $\beta\in\overline{G}-G$ and $|\beta|=3$ where $\overline{G}=PGU_{3}(q^{2})$ . As in [14], let

(2.4) $st’=(q-1)(q^{2}-q+1)/3$ .

Notation. In the rest of this paper, we assume that $k$ is an al-
gebraically closed field of characteristic 3 and that $q$ is a power of a

prime satisfying (2.1), and we use the notation $G$ , $G$ , $\beta$ and $st’$ as in
(2.2)-(2.4).

\S 2. Decomposition matrix and Cartan matrix for $G$

In this section we list the decomposition matrix and the Cartan

matrix for $G$ for a prime 3. Here we use the notation $k$ , $G,\overline{G}$ , $\beta$ and $st’$

as in \S 2. We denote by $A$ the principal block of $kG$ .

(3.1) Lemma, (i) The decomposition matrix and the Cartan ma-
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trix of the principal block $A$ of $G$ for a prime 3 are
$S(0)$ $S(1)$ $S(2)$ $S(3)$ $S$

$\chi_{1}$

(1)
$\chi_{st’}$

(2)
$\chi_{st’}$

(3)
$\chi_{st’}$

$\chi_{q^{2}-q}$

$\chi q3$

1 . . . .

1. . . .

1. . . .

1. . . .

1. . . .

1 1 1 1 2

$P(0)$ $P(1)$ $P(2)$ $P(3)$ $P(S)$

$S(0)$

$S(1)$

$S(2)$

$S(3)$

$S$

2 1 1 1 2
1 2 1 1 2
1 1 2 1 2
1 1 1 2 2
2 2 2 2 5

where $S(0)=k_{G}$ , the subindices of $\chi$ ’s above mean the degrees, $S(0)$ ,
$S(1)$ , $S(2)$ , $S(3)$ and $S$ are all simple $kG$ -modules in $A$ , and $P(i)=$

$P(S(i))$ for $i=0,1$ , 2, 3.
(ii) All simple $kG$ -modules in $A$ are self-dual, and the element

$\beta\in\overline{G}$ of order 3 acts on Irr(A) $=\{\chi_{1}, \chi_{st’}^{(1)}, \chi_{st’}^{(2)}, \chi_{st’}^{(3)}, \chi_{q^{2}-q}, \chi_{q^{3}}\}$ such
that

$\chi_{1}^{\beta}=\chi_{1}$ ,

$(\chi_{st’}^{(1)})^{\beta}=\chi_{st’}^{(2)}$ , $(\chi_{st’}^{(2)})^{\beta}=\chi_{st’}^{(3)}$ , $(\chi_{st’}^{(3)})^{\beta}=\chi_{st’}^{(1)}$ ,

$(\chi_{q^{2}-q})^{\beta}=\chi_{q^{2}-q}$ , $(\chi_{q^{3}})^{\beta}=\chi_{q^{3}}$ .

Proof (i) The assertion is obtained by the result of Geek [5,
pp.571-573, Theorem 4.5], and a standard argument (see [3, Lemmas
66.1 and 64.3(1) $])$ .

(ii) We get the self-dualities by (3.1), (i) and [5, Table 3.1, p.569]. It
follows from [14, Table 2, p.492], [5, p.569, p.571] and [9, Tafel $I$ , p.141]

that $(\chi_{st}^{(i)},)^{\beta}=\chi_{st}^{(i+1)}$, for $i=0,1,2$ , where the index $i$ is considered

modulo 3. The rest in (ii) is easy. Q.E.D.

Notation. In the rest of this paper, we use the notation $\chi_{i}$ , $\chi_{i}$ ,
(j)

$k_{G}$ , $S(i)$ , $S$ as in (3.1).
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\S 3. Projectives in the principal $3$-block of $G$

In this section we investigate the Loewy and socle series of projective
indecomposable $kG$-modules in the principal block $A$ of $kG$ . We use
the notation $S(0)=k_{G}$ , $S(1)$ , $S(2)$ , $S(3)$ and $S$ which means all non-
isomorphic simple $kG$-modules in the principal block $A$ of $kG$ as in (3.1).

(4.1) Theorem. The Loewy and socle series of the projective indecom-
posable $kG$ -modules are

$S(i)$ $S$

$S$ $S(0)$ $S(1)S(2)$ $S(3)$

$P(S(i))=$ $S(j)$ $S(k’)$ $S(\ell)$ $P(S)=$ $S$ $S$ $S$

$S(i)S$

$S(0)$
$S(1)S(2)S$

$S(3)$

where $\{i,j, k’, \ell\}=\{0,1, 2, 3\}$ and $S(0)=k_{G}$ .

Proof. Let $J=J(kG)$ and $A=B_{0}(kG)$ , the principal block of $kG$ .

Let $S(0)=k_{G}$ , $S(4)=S$ and $P(i)=P(S(i))$ for each $i=0,1$ , 2, 3, 4.
We write $c(i,j)$ for $c(S(i), S(j))$ for each $i$ , $j$ . By (3.1) (i), we know that
$k(A)-\ell(A)=1$ . Hence it follows from a result of Brandt [2, Theorem
$B]$ that

(0) $Ext_{kG}^{1}(S(i), S(i))=0$ for all $i=0,1$ , 2, 3, 4.

We get from (3.1)(ii) that $S(0)$ and $S(1)$ are both self-dual and that

$c(0,1)=1$ . Hence, if $Ext_{kG}^{1}(S(0), S(1))\neq 0$ , then the self-duality implies
that $S(1)$ is a direct summand of the heart $H(P(0))=P(0)\cdot J/Soc(P(0))$

of $P(0)$ , which means that $H(P(0))$ is decomposable by the Cartan
matrix in (3.1) (i), contradicting a result of Webb [15, Theorem $E$ ].

Therefore, $Ext_{kG}^{1}(S(0), S(1))=0$ . Hence, by using the automor-

phism $\beta$ of $kG$ in (3.1)(ii), we have $Ext_{kG}^{1}(S(0), S(i))=0$ for all $i=$

$1$ , 2, 3.

Similarly, if we assume that $dim_{k}[Ext_{kG}^{1}(S(0), S(4))]=2$ , then it
follows from the self-duality and the Cartan matrix for $A$ in (3.1 )
that the heart $H(P(0))$ is decomposable, contradicting [15, Theorem $E$].

Therefore, the self-duality says that $P(0)/P(0)\cdot J^{2}$ and $Soc_{2}(P(0))$

are both uniserial with

$L_{2}(P(0))\cong S(4)\cong Soc_{2}(P(0))/Soc_{1}(P(0))$ .

Hence, by the Cartan matrix in (3.1) (i), there left only $S(1)$ , $S(2)$ , $S(3)$

with multiplicity one in the composition factors of $P(0)$ , respectively,
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whose positions in the Loewy series of $P(0)$ are not determined. So,
the automorphism $\beta$ in (3.1) (ii) implies that $S(1)\oplus S(2)\oplus S(3)c_{->}$

$L_{3}(P(0))$ , completing the Loewy structure of $P(0)$ . Hence, by the self-
dualities, we get that the Loewy and socle series of $P(0)$ has the form

Now, it follows from a result of Landrock [11, Theorem $E$ ] and (1)
that $S(0)c_{-\rangle}L_{3}(P(i))$ for all $i=1,2,3$ , $S(0)c_{-\rangle}L_{2}(P(4))$ and $ S(0)\subseteq-\rangle$

$L_{4}(P(4))$ . Moreover, (1) implies that $S(4)c_{-\rangle}L_{2}(P(i))$ for $i=1,2,3$

and $S(4)c_{-\succ}L_{3}(P(4))$ .

Next, we want to claim that there exists some $i\geq 4$ such that
$S(4)c_{-\rangle}L_{i}(P(1))$ , $S(4)c-$, $L_{i}(P(2))$ and $S(4)<-\rangle L_{i}(P(3))$ . By (1),
$P(1)$ has a uniserial submodule $U$ with $L_{1}(U)\cong S(0)$ , $L_{2}(U)\cong S(4)$

and $L_{3}(U)=UJ^{2}\cong S(1)$ . On the other hand, $c(1,0)=1$ from (3.1)(i).
Moreover, we have already got $S(0)c_{-f}L_{3}(P(1))$ . Therefore, by [10,
(l.l)Lemma], $S(4)\epsilon-$, $L_{i}(P(1))$ for some $i\geq 4$ . Thus, this holds for
$P(2)$ and $P(3)$ as well by using the automorphism $\beta$ in (3.1) (ii).

Therefore, we know so far the Loewy series of $P(1)$ , $\cdots$ , $P(4)$ have
at least the following form.

for $j=1,2,3$ .

Assume that $Ext_{kG}^{1}(S(1), S(2))\neq 0$ and $Ext_{kG}^{1}(S(1), S(3))\neq 0$ . Let
$H=P(1)\cdot J/Soc(P(1))$ be the heart of $P(1)$ . Since $c(1,2)=c(1,3)=1$

by (3.2)(i), the assumption and the self-duality of $S(0)$ , $\cdots$ , $S(4)$ in
(3.1)(ii) imply that $S(2)$ and $S(3)$ are both direct summands of $H$ .

Hence, it follows from (2) and the Cartan matrix for $A$ in (3.1) (i) that
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the Loewy and socle series of $P(1)$ have the form

Thus, again (1.3) shows that $S(1)c-*L_{4}(P(4))$ , so that $S(i)c->L_{4}(P(4))$

for all $i=1,2,3$ by using $\beta$ . Hence $P(4)$ has Loewy series

and there left only two $S(4)$ ’s form the Cartan matrix in (3.1) (i). Since
$Ext_{kG}^{1}(S(4), S(4))=0$ by (0), the only possibility for the Loewy series
of $P(4)$ is that

Now, from the Loewy structure of $P(1)$ above, we know, by using the
automorphism $\beta$ again, that $P(4)$ has uniserial submodules $U_{1}$ , $U_{2}$ , $U_{3}$

of composition length 4 such that

Hence, we can consider a submodule $X$ of $P(4)$ defined by $X=U_{1}+$

$U_{2}+U_{3}$ . By (1), we have $dim_{k}[Ext_{kG}^{1}(S(0), S(4))]=1$ , which means
that the multiplicity of $S(0)$ in Soc2 $(X)/Soci(X)$ is at most one. Hence,
$Soc_{2}(X)/Soc_{1}(X)\cong S(0)$ . Thus, since $dim_{k}[Ext_{kG}^{1}(S(4), S(0))]=1$ , we
get that the multiplicity of $S(4)$ in Soc3 $(X)/Soc2(X)$ is at most one
Therefore, $Soc_{3}(X)/Soc_{2}(X)\cong S(4)$ . Hence, $X$ has Loewy and socle
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structure

So that, by (1.1) again, we know that the $S(1)$ in $L_{1}(X)$ comes from
that in $L_{2}(P(4))$ . Similar thing holds for $S(2)$ and $S(3)$ as well. Namely,
it follows that $P(4)/X$ has Loewy series

This shows $dim_{k}[Ext_{kG}^{1}(S(0), S(4))]\geq 2$ , contradicting (1).

Next, assume that $Ext_{kG}^{1}(S(1), S(2))\neq 0$ and $Ext_{kG}^{1}(S(1), S(3))$

$=$ 0. Then, by applying $\beta^{2}$ to $Ext_{kG}^{1}(S(1), S(2))$ , we get that
$Ext_{kG}^{1}(S(3), S(1))\neq 0$ , so that it follows $Ext_{kG}^{1}(S(1), S(3))\neq 0$ by the
self-dualities, a contradiction. Similarly, we get a contradiction in the

case that $Ext_{kG}^{1}(S(1), S(2))=0$ and $Ext_{kG}^{1}(S(1), S(3))\neq 0$ by using
$\beta^{2}$ in (3.2)(ii).

Therefore, it holds that $Ext_{kG}^{1}(S(1), S(2))=Ext_{kG}^{1}(S(1), S(3))=0$ .

Then, (2) and the Cartan matrix in (3.1) (i) imply that $L_{2}(P(1))\cong S(4)$ ,
so that $P(1)$ has Loewy series of the form

(3) and there left $S(2)$ , $S(3)$ .

.

$S(1)$

Next, we want to claim $L_{3}(P(1))\not\cong S(0)$ . Assume $ L_{3}(P(1))\cong$

$S(0)$ . Since $Ext_{kG}^{1}(S(0), S(2))=Ext_{kG}^{1}(S(0), S(3))=0$ by (1), it
follows from (3) that $L_{4}(P(1))\cong S(4)$ , which implies from (3) that
$Ext_{kG}^{1}(S(2), S(1))\neq 0$ , so that $Ext_{kG}^{1}(S(1), S(2))\neq 0$ by the self-
dualities. This is a contradiction. Thus, $L_{3}(P(1))\not\cong S(0)$ .

Suppose that $L_{3}(P(1))\cong S(0)\oplus S(2)$ . Since $Ext_{kG}^{1}(S(3), S(1))=0$
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by the self-dualities, we get by (3) that $P(1)$ has Loewy series of the form

Let $V=[P(1)\cdot J^{3}]^{*}$ . Then, by the self-dualities, $V$ is a uniserial kG-
module of composition length three with $L_{1}(V)\cong S(1)$ , $L_{2}(V)\cong S(4)$ ,
$L_{3}(V)=VJ^{2}\cong S(3)$ , which means that $S(3)c_{-\rangle}L_{3}(P(1))$ , contradict-
ing the Loewy structure of $P(1)$ above. Hence, $L_{3}(P(1))\not\cong S(0)\oplus S(2)$ .

Similarly, we obtain that $L_{3}(P(1))\not\cong S(0)\oplus S(3)$ . Therefore, it fol-
lows that $L_{3}(P(1))\cong S(0)\oplus S(2)\oplus S(3)$ by (3), so that we completely
know the Loewy structure of $P(1)$ . Thus, we get the Loewy and socle
structure of $P(1)$ , $P(2)$ and $P(3)$ as in the statement by making use of
$\beta$ . Hence, again by (1.3) and the Cartan matrix in (3.1)(i), $P(4)$ has
Loewy series of the form

and there left only two $S(4)$ ’s. Since $Ext_{kG}^{1}(S(4), S(4))=0$ by (0), we
finally get the complete Loewy series of $P(4)$ as in the statement. This
finishes the proof of the theorem. Q.E.D.
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The Essentials of Monstrous Moonshine

John McKay

This is a fast introduction to Monstrous Moonshine.

All our functions expanded at $\tau=i\infty$ have the form:

$(*)$
$f(\tau)=\frac{1}{q}+\sum_{k\geq 0}a_{k}q^{k}$ , $q=e^{2i\pi\tau}$ , $s^{\propto}(\tau)>0$ , $a_{k}\in \mathbb{C}$ .

We further assume that $a_{0}=0$ (standard form) for convenience, and
that $a_{k}\in \mathbb{Q}$ (to ensure trivial Galois action). For replicable functions
there is a reasonable conjecture that the $a_{k}$ are algebraic integers-this,
too, we assume. We find that the coefficients of classical modular func-
tions known to Jacobi, Fricke, and Klein, are related to the characters
of $M$ , the Monster simple sporadic group, in that, to each conjugacy
class of cyclic subgroups $\langle g\rangle$ , of $M$ , there is such a function, $j_{g}$ with

coefficient of $q^{k}=Trace(H_{k}(g))$ for some representation, $H_{k}$ , (the $k^{th}$

Head representation) of M.
In November 1978 I wrote to John Thompson that $196884=1+$

196883, relating the coefficient of $q$ in the elliptic modular function, $j(\tau)$ ,
to the degree of the smallest faithful complex representation of M. Little
was then known to me of the degrees of irreducible characters of $M[but$ I
did have access to those of $E_{8}(\mathbb{C})$ and related an initial sequence of them
to the $q$-coefficients of the cube root of $j$ . This was quickly disposed of
by Viptor Kac [Kac], see also [Lep].

There are 194 conjugacy classes of $M$ , 172 classes of cyclic subgroups,
and 171 distinct functions $j_{g}$ . This, and more, is to be found in Conway-
Norton [CN]. All these functions are genus zero in that this is the genus

of the compactified Riemann surface $\overline{G_{f}\backslash H}$ where $G_{f}$ is the discrete
invariance group of $f$ , acting on the upper half-plane, $H$ .

Research supported by the Natural Sciences and Engineering Research
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By axiomatizing the properties of these functions, we arrive at the
notion of a replicable function, as one which behaves well under a gen-
eralized Hecke operator. These are now under scrutiny. My hope is that
their properties will yield an intrinsic description of M.

We study replicable functions, which generalize a degenerate family
called by me the “modular fictions”, namely $f(\tau)=1/q+cq$ . Cummins
$[CuN]$ has proved these are the unique replicable finite Laurent series,
$(\forall k\geq k_{0}, a_{k}=0)$ . A further useful property to impose is that the

replication power map (defined later): $f\rightarrow f^{(n)}$ , is periodic, namely
$\forall n\geq 1$ , $f^{(gcd(n,k))}=f^{(n)}$ . When this is so, the modular fictions reduce
to three cases, $1/q$ , $1/q+q$ , $1/q-q$ , corresponding to $exp$ , $cos$ , and
$\sin$ respectively. An amusing consequence of their replicability is that
$\sin(2kt)$ is not a polynomial in $\sin(t)$ , whereas $\cos(2kt)$ is a polynomial in
$\cos(t)$ . This follows from a study of the modular equation [Sil], [Mar] for
$f$ , with formal coefficients $[McK]$ . The modular fictions play no further
part in what follows.

Replicable functions are generalizations of the prototype, $j(\tau)$ , the
elliptic modular function which is characterized by its form and the
property under the action of Hecke operators [Serre]:

$\forall n\geq 1$ ,
$nT_{n}(j(\tau))=0^{ad_{-}^{-}n}\sum_{\leq b<d}j(\frac{a\tau+b}{d})=P_{r\iota,j}(j(\tau))$

,

where $T_{n}$ denotes the standard Hecke operator, and $P_{n,j}=P_{n}$ is the
Faber [Fab], [Cur] polynomial of degree $n$ . The notation is to remind
one that the coefficients of the Faber polynomial come from its argument.

One characterization of these polynomials is that

$P_{n,f}(f)-\frac{1}{q^{7L}}\in q\mathbb{C}[[q]]$ .

We find

$P_{1,f}(f)=f$ ,

$P_{2,f}(f)=f^{2}-2a_{1}$ ,

$P_{3,f}(f)=f^{3}-3a_{1}f-3a_{2}$ ,

$P_{4,f}(f)=f^{4}-4a_{1}f^{2}-4a_{2}f+2a_{1}^{2}-4a_{3}$ .

More generally:

$P_{n,f}(f)=\det(fI-A_{n})$
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where

$A_{n}=\left(\begin{array}{lllllll} & a_{0} & 1 & & 0 & & \\ & 2a_{1} & a_{0} & 1 & & & \\ & \vdots & \vdots & \vdots & & & \\(n & -2)a_{n-3} & a_{n-4} & a_{n-5} & \cdots & 1 & \\(n & -1)a_{n-2} & a_{n-3} & a_{n-4} & \cdots & a_{0} & 1\\ & na_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{1} & a_{0}\end{array}\right)$ .

This is related to expressing the power sums in terms of elementary
symmetric functions. Truncating $f$ and replacing $q$ by $1/x$ , we derive:
$F(x)=x^{m}+a_{0}x^{m-1}+\cdots+a_{m-1}$ , $m\geq n$ , and we may identify the $\{e_{k}\}$

with the elementary symmetric functions of the roots of $F(x)$ . Note that
the power sum $s_{n}\in \mathbb{Z}[a_{0}, \ldots, a_{n-1}]$ .

Expanding $P_{n,f}(f(\tau))$ in powers of $g$ , the Grunsky [G] coefficients,
$h_{m,n}$ , are defined by

$P_{n,f}(f(\tau))=\frac{1}{q^{n}}+n\sum_{m\geq 1}h_{m,n}qm$ .

We generalize $j$ to a family of replicable functions (of standard form),
$f^{(k)}$ , $k\geq 1$ , for which

$0^{ad-n}\sum_{\leq\overline{b}<d}f^{(a)}(\frac{a\tau+b}{d})=P_{n,f}(f(\tau))$
.

This yields a new Hecke operator, $\hat{T}_{n}$ with $h_{m,n}$ as the coefficient of $q^{m}$

in $\hat{T}_{n}(f)$ . It is Grunsky’s law of symmetry that $h_{m,n}=h_{n,m}$ .

We now have an inductive definition of the important “replication

power map” taking $f$ to $f^{(n)}$ , since $f^{(n)}(n\tau)=P_{n,f}(f)-\sum^{J}$ where
$\sum’$ omits the single term with $a=n$ . This imposes the condition that
the right side is a series in $q^{n}$ . We take the principal branch to define
$f^{(n)}(\tau)$ . The replication power map $f$ to $f^{(n)}$ , $f$ replicable, restricts on
Monstrous Moonshine functions to the map induced on them by taking
$g\in MI$ to $g^{n}$ . Norton [N], in an important paper, defines the generating
functions for the Faber polynomials and the $h_{m,n}$ , unaware of the work
of Faber [Fab] and Grunsky [G] preceding him. He gives a definition of
replicability equivalent to the above, [ACMS], namely (paraphrased):

Definition. A function is replicable if $gcd(m, n)=gcd(r, s)$ and
$1cm(m, n)=1cm(r, s)$ implies $h_{m,n}=h_{r,s}$ .
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[This suggests seeking an interpretation of the $\{h_{m,n}\}$ in terms of
double coset representatives.]

Norton also proves his basis theorem:

Theorem. The twelve coefficients $a_{k}$ ,

$k\in\{1, 2, 3, 4, 5, 7, 8, 9, 11, 17, 19, 23\}$ ,

determine a replicable function.

This remarkable result is useful for computing with replicable func-
tions.

Newton’s relations, which derive from the form of $f$ , between the $a_{k}$

and the Faber polynomials, together with Norton’s defining properties
of the $\{h_{m,n}\}$ , show that replicable functions correspond to $K$ points on
a variety. Norton has proved that $K$ lies in a composite of quadratic
extensions of $\mathbb{Q}$ .

The Newton relations are equivalent to the generating function iden-
tity:

$q(f(q)-f(p))=\exp(-\sum_{n\geq 1}P_{n,f}(f(p))q^{n})$
,

with $p=\exp(2\pi i\sigma)$ etc., where we abuse notation using $f(p)$ and $f(q)$

instead of $f(\sigma)$ , $f(\tau)$ .

There is an outstanding conjecture of Norton $[CuG]$ , $[CuN]$ :

Conjecture 1.2. A function $f=q^{-1}+\sum_{i\geq 1}a_{i}q^{i}$ with rational

integer coefficients is replicable if and only if either $f$ is a modular fiction
or $?.t$ is the Hauptmodul for a group $G\subset PGL_{2}(\mathbb{Q})^{>0}$ satisfying
1. G has genus zero,

2. G contains a finite index $\Gamma_{0}(N)$ ,

3. G contains z $\mapsto z+k$ if and only if k $\in \mathbb{Z}$ .

Our model is Dedekind’s (1877) [Ded] construction of $j(\tau)$ in terms
of its Schwarz differential equation.

We define the Schwarz derivative $\{f, \tau\}$ to be 2 $(f’’/f’)’-(f’’/f’)^{2}$ ,

where differentiation is with respect to $\tau$ . When $f$ is a modular form,
$\{f, \tau\}$ increases the weight by 4 and preserves the invariance properties,

thus when $f$ is a Hauptmodul, we have $\{f, \tau\}+R(f)f^{;2}=0$ with $R(f)=$

$N(f)/[D(f)]^{2}$ , the differential resolvent, and $ f’=df/d\tau$ of weight 2.
When expressed in partial fractions, we see $R(f)$ gives ramification data
and also the critical points of $f$ (namely those values of $f$ for which
$f’(\tau)=0)$ .
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From Dedekind (with normalization

$1728j(\tau)=1/q+744+196884q+\cdots)$

we find $R(j)=\frac{1-\frac{1}{2^{2}}}{(j-1)^{2}}+\frac{1-\frac{1}{3^{2}}}{j^{2}}-\frac{1-\frac{1}{2^{2}}-\frac{1}{s^{2}}}{j(j-1)}$ , with ramification multiplicity

2 at $j(\exp(\pi i/2))=1$ , and 3 at $j(\exp(\pi i/3))=0$ .

To each $f$ , there is a corresponding conformal invariance group, $G_{f}$

acting on $H$ . From $R(f)$ we can find the critical points in $7i$ , and the
ramification gives the angles between bounding circular arcs intersecting
at a critical point. A fundamental domain can be constructed $anA$ once
edges are identified, a presentation found for the group generated by
hyperbolic reflections in the bounding circular arcs in $\mathcal{H}$ . The Schwarz
derivative takes us from $f$ to $G_{f}$ .

Over 600 Hauptmoduls, $f$ , as above, are now known, some of which
appear in [FMN]. For each, $R(f)$ has been computed. The Galois group
of $D$ is of “dihedral type”, in that it has a unique cyclic subgroup of
index 2. This provides an ordering of the critical points for Ohyama’s
construction of dynamical systems [Ohyl]. With a little more work, we
should obtain a dynamical system of differential equations for each $f$ , as
shown by Ohyama [Ohyl] and exemplified by the Halphen system. This
system was first studied in 1881 [Hal], and is a reduction of the self-dual
Yang-Mills equations. For us, it is derived from the $\Gamma(4)$ -Hauptmodul,

namely $f=(\eta(\tau)/\eta(4\tau))^{8}$ This has a triangular fundamental domain

with angles (0, 0, 0) at cusps $(0, 1, \infty)$ . It is remarkable that we have
$\{f, \tau\}+E_{4}(2\tau)=0$ , where $E_{4}(\tau)$ is the Eisenstein series of weight 4:

$E_{4}(\tau)=1+240\sum_{n\geq 1}\sigma_{3}(n)q^{n}$
.

In a further paper [Ohy2] the function $f=(\eta(\tau)/\eta(9\tau))^{3}$ appears and

we find it satisfies the Schwarz equation above with $E_{4}(2\tau)$ replaced by
$E_{4}(3\tau)$ .

Any function of the form $(*)$ satisfies

$\frac{df}{dq}+\frac{1}{q^{2}}$ $\exp(-v^{t}Hv)=0$ ,

where $v^{t}=(q, q^{2}, q^{3}, \ldots)$ , and $H$ is the semi-infinite matrix of Grunsky
coefficients.

To each Hauptmodul there are two differential objects:

(1) A Schwarz equation, and
(2) a dynamical system.
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There is also a pseudo-differential operator (roughly-treating the
functions as Laplace transforms) which has not yet been studied.

A purpose of this approach is to learn more about analytic aspects
associated with the Monster in the hope of better understanding the

relation between the simple Lie groups and the sporadic simple groups.

Witten’s ideas suggest there may be a finite-dimensional spin man-
ifold with M[ acting on its loop space. A discussion of this is found in
the book [Hir].
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On the vertices of modules in the

Auslander–Reiten quiver III

Tetsuro Okuyama and Katsuhiro Uno

\S 0. Introduction

Let $kG$ be the group algebra of a finite group $G$ over a field $k$ of
characteristic $p$ , where $p$ is a prime. We denote the stable Auslander-
Reiten quiver ($AR$ quiver for short) of $kG$ by $\Gamma_{s}(kG)$ . For the definition
of an $AR$ quiver, see [B]. It is known that each connected component $\Gamma$ of
$\Gamma_{s}(kG)$ has the uniquely determined tree class $\mathcal{T}$ . The $AR$ component
$\Gamma$ is isomorphic as graphs to $ZI/\pi$ , where $Z\mathcal{T}$ is the graph obtained
in a standard way from countably many copies of the tree $\mathcal{T}$ and $\pi$ is
a certain subgroup of $Aut(Z\mathcal{T})$ . Since the important paper by Webb
[W] was published, many results concerning the tree classes have been
obtained. (See [Be], [E3], [E4], [ES] and [01].) In the present paper,
assuming that $k$ is a perfect field, we determine all the tree classes, not
the possibilities of them, completely. The following should be the final
result in this nature.

Theorem A. Let $k$ be a perfect fifield. Then the tree class of $a$

connected component of $\Gamma_{s}(kG)$ is one of the following: $A_{n},\tilde{A}_{1,2}$ , $A_{\infty}$ ,
$\tilde{B}_{3}$ , $B_{\infty}$ , $D_{\infty}$ , or $A_{\infty}^{\infty}$ . Moreover, each of the above in fact occurs. Fur-
thermore, the following hold. Here $D$ is a defect group of the block to
which the modules in $\Gamma$ belong.

(i) $B_{\infty}$ occurs only when $D$ is dihedral.
(ii) $D_{\infty}$ occurs only when $D$ is semidihedral. ([E3], [E4])
(iii) $A_{\infty}^{\infty}$ occurs only when $D$ is dihedral or semidihedral. ([E3], [E4])

(iv) $\tilde{A}_{1,2}$ or $\tilde{B}_{3}$ occurs only when $D$ is a four group. ([Be], [ES])

For the notation of the tree classes, we follow 2.30 of [B]. In partic-
ular,

$\tilde{A}_{1,2}$ : . $(2,2)\rightarrow\cdot$

, $\tilde{B}_{3}$ : . $(1,2)\rightarrow$ . $\rightarrow\cdot(2,1)\rightarrow.$

, $B_{\infty}:$ . $(1,2)\rightarrow$ . $\rightarrow\cdot\rightarrow\cdots$ .

Received May 27, 1999.
Revised June 16, 2000.
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Remark 1. Each of the possibilities in Theorem A occurs in the
following case.

(i) $A_{n}$ occurs if and only if $D$ is cyclic. See [B].

(ii) $\tilde{A}_{1,2}$ occurs for a four group with $p=2$ . See p. 180 of [B].

(iii) $\tilde{B}_{3}$ occurs for the alternating group on 4 letters with $p=2$ if $k$

does not contain a cube root of unity. See p. 195 of [B].
(iv) An example of a $B_{\infty}$ -component is given in Section 4.
(v) $A_{\infty}^{\infty}$ occurs for dihedral groups of order greater than 4 with $p=2$ .

(vi) $D_{\infty}$ occurs for semidihedral groups with $p=2$ .

Furthermore, the following are known.
(vii) If the tree class is $A_{\infty}^{\infty}$ , then we have $\Gamma\cong ZA_{\infty}^{\infty}$ unless $D$ is a

four group. (See [ES].)

(viii) If $k$ is algebraically closed, then one of $A_{n},\tilde{A}_{1,2}$ , $A_{\infty}$ , $D_{\infty}$ , or
$A_{\infty}^{\infty}$ must occur. (See p. 160 of [B].)

(ix) If the modules in $\Gamma$ are periodic, then its tree class is $A_{\infty}$ .

(2.31.11 of [B])

Since $B_{\infty}$ appears when we have a certain involutive automorphism
of an $A_{\infty}^{\infty}$ component, the block is tame in this case, too. However, it
seems that no example of a $B_{\infty}$ -component has been known so far, and
this is the reason why we give an example here. From the results known

so far, $A_{r\iota}$ is the only finite Dynkin tree class and $\tilde{A}_{1,2}$ and $\tilde{B}_{3}$ are only
Euclidean tree classes. The rest are infinite Dynkin tree classes, and
only $A_{\infty}$ , $D_{\infty}$ , $A_{\infty}^{\infty}$ , $B_{\infty}$ and $C_{\infty}$ are possible. (See [B].) Hence, in order
to prove Theorem $A$ , it suffices to give an example of a $B_{\infty}$ component
and prove that $C_{\infty}$ does not occur. In fact, we prove the following.

Theorem 1. Let $k$ be a perfect fifield. Then the following hold.
(i) As a tree class of a component of $\Gamma_{s}(kG)$ , $C_{\infty}$ does not occur.
(ii) If $B_{\infty}$ occurs, then a defect group $D$ of the block to which the

modules in $\Gamma$ belong is dihedral of order at least 8.

On the vertices of modules, beginning with the result for $p$ groups
in [E2], there are several developments [U2], [OU2] which were obtained
by using the generalization of Green correspondence due to Kawata [K1]
and the results on vertices of modules in the Auslander-Reiten sequences
[U1], [OU1]. In this paper, we have the following, which would be also
the final result for non-periodic components.

Theorem B. Let $k$ be a perfect fifield, and let $\Gamma$ be a connected
component of $\Gamma_{s}(kG)$ . Suppose that it is not a tube. Then one of the
following holds.

(i) All the modules in $\Gamma$ have vertices in common.
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(ii) We can take $ T:X_{1}-X_{2}-X_{3}-\cdots-X_{n}-\ldots$ in $\Gamma$ with $\Gamma\cong ZT$

and $ vx(X_{1})<vx(X_{2})=vx(X_{3})=vx(X_{4})=\cdots=vx(X_{n})=\ldots$ .

(iii) $p=2$ , $\Gamma=ZA_{\infty}^{\infty}$ , and only two distinct vertices $P$ and $Q$ occur,
with $|P:Q|=2$ . Moreover, one of the following holds.

(iiia) $Q$ is a dihedral group of order greater than 4, and the modules
with vertex $Q$ lie in a subquiver $\Gamma_{Q}$ such that both $\Gamma_{Q}$ and $\Gamma\backslash \Gamma_{Q}$ are
isomorphic to $ZA_{\infty}$ as graphs.

(iiib) $Q$ is a Kleinian four group and $P$ is a dihedral group of order
8, and the modules with vertex $Q$ lie in two or four adjacent $\tau$ -orbits.

Moreover, each of the above possibiliti es in fact occurs.

Remark 2. The above (i) and (ii) occur in many cases, (iiia) occurs
for a dihedral 2-group. See (3.3) of [E1], (iiib) occurs for a dihedral
group $D_{8}$ of order 8 and the symmetric group $S_{4}$ on 4 letters. The
group algebra $kD_{8}$ has an $AR$ component satisfying (iiib) above with
two adjacent $\tau$-orbits of modules having four group as vertex, and $kS_{4}$

has an $AR$ component satisfying (iiib) above with four adjacent $\tau$-orbits
of modules having four group as vertex. See also [E1] and V.3 of [E2].

Most parts of Theorem $B$ have been proved in [OU2]. More precisely,
it has been shown there that there are only three possibilities (i), (ii)
and (iii), of which (i) and (iii) are exactly the same as in Theorem $B$

above. However, the part (ii) of the main theorem in [OU2] asserts that
there are three possibilities, namely,

(iia) $ vx(X_{1})<vx(X_{2})=vx(X_{3})=vx(X_{4})=\cdots=vx(X_{n})=\ldots$ ,

(iib) $ vx(X_{1})<vx(X_{2})=vx(X_{3})<vx(X_{4})=\cdots=vx(X_{n})=\ldots$ ,
(iic) $ vx(X_{1})=vx(X_{2})<vx(X_{3})=vx(X_{4})=\cdots=vx(X_{n})=\ldots$ .

Thus, in order to prove Theorem $B$ , it suffices to show that (iib)
and (iic) above do not occur. More precisely, it suffices to prove the
following.

Theorem 2. In the situation of Theorem $B$ , suppose that $\Gamma\cong$

$ZA_{\infty}$ . Then (i) or (ii) of Theorem $B$ holds.

The purpose of this paper is of course to prove Theorems 1 and
2. For the both theorems, semidihedral groups play an important role.
Thus, after giving some preliminary results in Section 1, we consider
modules over dihedral and semidihedral groups in Section 2. The theo-
rems are proved in Section 3. Notation is standard. See [F] and [NT].
The Auslander-Reiten translate is denoted by $\tau$ . For symmetric alge-
bras, $\tau$ is the composite $\Omega^{2}$ of two Heller translates. For a non-projective
indecomposable module $M$ , the $AR$ sequence terminating at $M$ is de-
noted by $A(M)$ .



358 T. Okuyama and K. Uno

\S 1. Preliminaries

In this section, we first consider automorphisms of an $AR$ component
$\Gamma$ of $\Gamma_{s}(kG)$ . The following is well known.

Lemma 1.1. Let $\sigma$ be an automorphism of the graph $\Gamma$ which
commutes with $\tau$ . Suppose that $\sigma$ has fifinite order.

(i) If $\Gamma\cong ZA_{\infty}$ , then $\sigma$ is trivial.
(ii) If $\Gamma\cong ZD_{\infty}$ , then $\sigma$ is trivial or interchanges the two modules

in the end with the same predecessor.
(iii) If $\Gamma\cong ZA_{\infty}^{\infty}$ , then $\sigma$ is trivial or a reflection with respect to $a$

certain $\tau$ -orbit.

Let $k’$ be a finite Galois extension of $k$ . Assume that every inde-
composable direct summand of $M\otimes_{k}k’$ for $ M\in\Gamma$ is absolutely inde-
composable. The proof of the following can be found in 2.33.3 of [B].

Lemma 1.2. In the situation above, direct summands of $M\otimes_{k}k’$

for $ M\in\Gamma$ belong to $a$ fifinite set of connected components $\Gamma_{1}$ , $\cdots$ , $\Gamma_{m}$ of
$\Gamma_{s}(k’G)$ and $Gal(kf/k)$ acts transitively among the $\Gamma_{i}$ ’s. In particular,
$\Gamma_{i}$ ’s are isomorphic to each other.

Assume that $\Gamma$ has tree class $B_{\infty}$ or $C_{\infty}$ . In view of Remark 1 (viii),
we have another tree class for components of $\Gamma_{s}(k’G)$ . When tensoring
$\Gamma$ with $k’$ , we get the following tree classes.

Lemma 1.3. In the situation of Lemma 1.2, the following hold.
(i) If $\Gamma\cong ZB_{\infty}$ , then $\Gamma_{i}\cong ZA_{\infty}^{\infty}$ for each $i$ , and some element in

$Gal\{k’/k$ ) stabilizes $\Gamma_{i}$ and gives a reflection with respect to a certain
$\tau$ -orbit.

(ii) If $\Gamma\cong ZC_{\infty}$ , then $\Gamma_{i}\cong ZD_{\infty}$ for each $i$ , and some element in
$Gal\{k’/k$ ) stabilizes $\Gamma_{i}$ and interchanges its two ends.

In [U2] the relationship between the tree classes of components of
$\Gamma_{s}(kG)$ and $\Gamma_{s}(kN)$ for a normal subgroup $N$ of $G$ is investigated.
There it is assumed that $k$ is an algebraically closed field. However,
those assertions hold in more general situation. One of the impor-
tant and crucial points in the argument is to introduce two indices
$a(M)$ and $b(M)$ for an indecomposable $N$-projective $kG$-module $M$ .

They are defined by $a(M)=dim_{k}eE_{G}(V^{G})/eJ(E_{G}(V^{G}))$ and $b(M)=$

$dim_{k}eE_{G}(V^{G})/eL_{G}(V^{G})$ , where $V$ is an indecomposable $N$-source of
$M$ , $E_{G}(V^{G})=End_{kG}(V^{G})$ , $L_{G}(V^{G})=J(E_{N}(V))E_{G}(V^{G})$ , and $e$ is the

idempotent of $E_{G}(V^{G})$ with $eV^{G}=M$ . However, we use only the fact
that the multiplicities of direct summands can be described in terms of
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them. Thus, if $E_{N}(V)/J(E_{N}(V))\cong k$ , then the same conclusions hold.
On the other hand, if $k$ is a perfect field, then a $kG$-module $M$ is abso-
lutely indecomposable if and only if $End_{kG}(M)/J(End_{kG}(M))\cong k$ by

VII.6.9 of [HB]. Thus modifying the results in sections 2, 3 and 4 of [U2]
in such a way, we can summarize them as follows.

Lemma 1.4. Let $N$ be a normal subgroup of $G$ and $\Lambda$ a connected
component of $\Gamma_{s}(kN)$ . Suppose that $k$ is a perfect fifield, all the modules
in $\Lambda$ are $G$ -invariant absolutely indecomposable, and that all the arrows
in $\Lambda$ are multiplicity free. Let $V$ be in $\Lambda$ and $M$ an indecomposable
direct summand of $V^{G}$ . Let $\Gamma$ be the connected component of $\Gamma_{s}(kG)$

containing M. Then one of the following holds.

(i) All the modules in $\Gamma$ are $N$ projective and $\Gamma\cong\Lambda$ .

(ii) $\Gamma$ is isomorphic to $ZA_{\infty}$ or a tube, that is $ZA_{\infty}/\langle\tau^{n}\rangle$ .

Proof As remarked above, the arguments in sections 2, 3 and 4
in [U2] can be still applied. In particular, if the modules in $A(M)$ are
$N$-projective, then the conclusions of 3.5, 3.7, 3.8 and 3.9 of [U2] yield
(i). If some direct summand of modules in $A(M)$ is not $N$-projective,
then the arguments in 4.1 and 4.2 of [U2] almost give (ii). Here we
say“almost” because in the proof of 4.2 of [U2], only the $D_{\infty}$ case is
excluded in order to conclude that the tree class of $\Gamma$ is $A_{\infty}$ . This works
since we assume there that $k$ is algebraically closed. However, in the
present situation, we have to exclude also the case of $B_{\infty}$ , since this is
the only remaining case where $A(M)$ has an indecomposable (modulo
projectives) middle term. Assume that $M$ lies at the end of an $AR$

component with tree class $B_{\infty}$ . Then we have $AR$ sequences

$A(M)$ : $O\rightarrow\tau M\rightarrow X\oplus F\rightarrow M\rightarrow 0$ , and

$A(X)$ : $0\rightarrow\tau X\rightarrow Y\oplus 2\tau M\oplus F’\rightarrow X\rightarrow 0$ ,

where $X$ and $Y$ are non-projective indecomposable $kG$ modules and $F$

and $F’$ are projective or zero. Note that we are considering the case
where $X$ is not $N$ projective Hence $A(X)_{N}$ splits and we have $ Y_{N}\oplus$

$2b(M)\tau V\cong X_{N}\oplus\tau X_{N}$ modulo projectives. On the other hand, con-
sidering $A(M)_{N}$ , 2.6 of [U2] implies that $X_{N}\cong a(M)A4(V)\oplus(b(M)-$

$a(M))(V\oplus\tau V)$ modulo projectives, where $\lambda\Lambda(V)$ is the middle term
of $A(V)$ . Since $\Lambda 4(V)$ and $\mathcal{M}(\tau V)$ do not have $\tau V$ as a direct sum-
mand and since modules in a $B_{\infty}$ -component are not periodic, we have
$2b(M)\leq 2(b(M)-a(M))$ . But this gives $a(M)\leq 0$ , a contradiction.

Q.E.D.
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\S 2. Modules over dihedral and semidihedral group algebras

We first consider a semidihedral group $G$ of order $2^{n}$ . Here $n\geq 4$ .

For a filed $k$ of characteristic 2, the group algebra $kG$ is tame and $\Gamma_{s}(kG)$

has non-periodic components of type only of $A_{\infty}^{\infty}$ and $D_{\infty}$ . (See [E3].)
Let $A$ be a $k$-algebra generated by two elements $a$ and $b$ with the relations

$a^{3}=b^{2}=a^{2}-b(ab)^{2^{n-2}-1}=0$ .

In [BD], Bondarenko and Drozd claim the following. Since we can not
find a literature which describes an explicit isomorphism, we give it here.

Lemma 2.1. Let $k$ be a perfect fifield of characteristic 2 and $Ga$

semidihedral group of order $2^{n}$ , where $n\geq 4$ . Then we have a $k$ algebra
isomorphism $kG/sockG$ $\cong A$ .

Proof. Write $ G=\langle x, y|x^{2^{n-1}}=y^{2}=1, yxy=x^{-1+2^{n-2}}\rangle$ , and
define $u$ in $kG$ by

$u=x^{2^{n-2}-2}+x^{2^{n-2}-3}+\cdots+x^{2}+x+1=(x-1)^{2^{n-2}-1}+x^{2^{n-2}-1}$ .

Then, $u^{2^{n-2}}=x^{2^{n-2}}$ , $(x-1)u=x^{2^{n-2}-1}-1=yxy-1$ , and

(1) $u-1=(x-1)^{2^{n-2}-1}+x^{2^{n-2}-1}+1=(x-1)^{2^{n-2}-1}+(x-1)u$ .

We also have

(2) $(uy-1)(x-1)=u(yxy-1)y-(x-1)$

$=u(x-1)uy+(x-1)=(x-1)(u^{2}y-1)$ .

Let

$\alpha=(uy-1)+(x-1)^{2^{n-1}-3}(y-1)$ , $\beta=y-1$ , and
$\hat{G}=\sum_{g\in G}g$

.

Then, $\beta^{2}=0$ . Moreover, $\alpha^{2}=(x-1)^{2^{n-1}-2}(y-1)$ , since we have

(3) $(uy-1)^{2}=(x-1)^{2^{n-1}-1}$ ,

(4) $(uy-1)(x-1)^{2^{n-1}-3}(y-1)=\hat{G}$ ,

(5) $(x-1)^{2^{n-1}-3}(y-1)(uy-1)$

$=\hat{G}+(x-1)^{2^{n-1}-1}+(x-1)^{2^{n-1}-2}(y-1)$ ,

(6) $((x-1)^{2^{n-1}-3}(y-1))^{2}=0$ .
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(6) is easy to show. For (3), note that $(uy)^{2}$ is equal to

$u(yuy)=u((yxy-1)^{2^{n-2}-1}+x)=u((x-1)^{2^{n-2}-1}u^{2^{n-2}-1}+x)$

$=(x-1)^{2^{n-2}-1}u^{2^{n-2}}+ux$

$=(x-1)^{2^{n-2}-1}x^{2^{n-2}}+(x-1)^{2^{n-2}-1}x+x^{2^{n-2}}$

$=(x-1)^{2^{n-1}-1}+1$ .

The left hand side of (4) is equal to $(x-1)^{2^{n-1}-4}(uy-1)(x-1)(y-1)$

as $(x-1)^{2^{n-1}-4}$ is central in $kG$ . Then (4) can be seen by using (2). (5)
is proved by using (1) and the following. (We use also (3) above.)

$(y-1)(uy-1)=(uy-1)(y-1)+(yuy-u)$

$=(u-1)(y-1)+(1-u^{2})u^{-1}+(x-1)^{2^{n-1}}$

From $\alpha^{2}=(x-1)^{2^{n-1}-2}(y-1)$ , we also obtain $\alpha^{3}=\hat{G}$ .

Finally, we claim that $\beta(\alpha\beta)^{2^{n-2}-1}=\alpha^{2}+\hat{G}$ . Note first that $\alpha\beta$

equals to $(uy-1)(y-1)=(u-1)(y-1)$ . Thus,

$\beta(\alpha\beta)=(y-1)(u-1)(y-1)=(yuy-u)(y-1)$

$=(u^{-1}-u)(y-1)+\hat{G}=(u^{2}-1)u^{-1}(y-1)+\hat{G}$ ,

and by using induction, we obtain

$\beta(\alpha\beta)^{2^{n-2}-1}=(u^{2}-1)^{2^{n-2}-1}u^{-2^{n-2}+1}(y-1)$ .

Now by (1) we have

$\beta(\alpha\beta)^{2^{n-2}-1}=(x-1)^{2^{n-1}-2}u^{-2^{n-2}+1}(y-1)=(x-1)^{2^{n-1}-2}x(y-1)$

$=(x-1)^{2^{n-1}-2}(y-1)+\hat{G}=\alpha^{2}+\hat{G}$ .

Since $\alpha\equiv uy-1\equiv(u-1)+(y-1)\equiv(x-1)+(y-1)$ modulo
$(J(kG))^{2}$ , the two elements $\alpha$ and $\beta$ generate $kG$ . Note also that sockG

is generated by $\hat{G}$ over $k$ . Define a map $\varphi$ : $A\rightarrow kG/sockG$ by $\varphi(a)=$

$\alpha+sockG$ and $\varphi(b)=\beta+sockG$ . Then, the above computations show
that $\varphi$ is a well defined $k$-algebra isomorphism. Q.E.D.

If $|k|\geq 3$ , Crawley-Boevey gives a description of indecomposable A-
modules in [CB]. Thus it gives a classification of indecomposable modules
over semidihedral group algebras. We now give the following remark.
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Lemma 2.2. Let $k$ be a perfect fifield of characteristic 2 and $Ga$

semidihedral group of order $2^{n}$ , where $n\geq 4$ . Then all the non-periodic
indecomposable $kG$ -modules are absolutely indecomposable.

Proof Since $k$ is perfect, by VII.6.9 of [HB], it suffices to prove
that $M\otimes_{k}k’$ is indecomposable for any indecomposable $kG$ module $M$

and any extension $k’$ of $k$ . In the classification of indecomposable kG-
modules in [CB], it is required that $k$ has at least 3 elements. However, if
this is the case, then the classification is exactly the same in all the cases.
Hence, if $|k|\geq 3$ , the assertion holds. Now suppose that $k=GF(2)$ .

Let $k_{1}=GF(2^{2})$ , $k_{2}=GF(2^{3})$ and $k_{3}=GF(2^{6})$ . Let $M$ be an
indecomposable $kG$ module. Let

$M\otimes_{k}k_{1}=M_{1}\oplus\cdots\oplus M_{r}$ and $M\otimes_{k}k_{2}=M_{1}’\oplus\cdots\oplus M_{s}’$

be decompositions of $M\otimes_{k}k_{1}$ and $M\otimes_{k}k_{2}$ into direct sums of indecom-
posable $k_{1}G$ modules and $k_{2}G$-modules, respectively. Then $M_{1}$ , $\ldots$ , $M_{r}$

are $Gal(k_{1}/k)$-conjugates and $M_{1}’$ , $\ldots$ , $M_{s}’$ are $Gal(k_{2}/k)$ -conjugates.
Here $r$ is 1 or 2 and $s$ is 1 or 3, since $Gal(ki/k)$ and $Gal(k2/k)$ are cyclic
of order 2 and 3, respectively. However, we know that $M_{i}$ ’s and $M_{j}’$ ’s

are absolutely indecomposable, and thus

$(M_{1}\otimes_{k_{1}}k_{3})\oplus\cdots\oplus(M_{r}\otimes_{k_{1}}k_{3})$ and $(M_{1}’\otimes_{k_{2}}k_{3})\oplus\cdots\oplus(M_{s}’\otimes_{k_{2}}k_{3})$

are both indecomposable direct sum decompositions of $M\otimes_{k}k_{3}$ . Hence,
we have $r=s=1$ . Therefore, $M\otimes_{k}k_{1}$ is indecomposable, and it yields
that $M$ is absolutely indecomposable. Q.E.D.

Remark 2.3. The assertions in Lemma 2.2 can be proved also in
the case where $G$ is a dihedral 2-group, by using the classification of
indecomposable $kG$ modules

The following is a key result in this paper.

Proposition 2.4. Let $k$ be a perfect fifield, $G$ a dihedral or semidi-
hedral 2-group, and $\sigma$ an automorphism of $G$ sending each involution
in $G$ into its $G$ -conjugate. Then every non-periodic indecomposable kG-
module is $\sigma$ -invariant. In particular, every non-periodic indecomposable
module over a semidihedral group is invariant under any automorphism

of the group.

Proof By Lemma 2.2 and Remark 2.3, we may assume that $k$

is algebraically closed. Let $M$ be a non-periodic indecomposable kG-
module. If $G$ is a four group, the result holds clearly. We assume that
$|G|>4$ . Thus $M$ lies in a component isomorphic to $ZA_{\infty}^{\infty}$ or $ZD_{\infty}$ .
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Consider first the case where $M$ has at least two predecessors in the $AR$

component. Take an indecomposable $kG$ module $X$ and an irreducible
map $f$ : $X\rightarrow M$ . Suppose that $f$ is surjective. If this is not the case, we
take its dual. Let $U$ be the kernel of $f$ . We use the argument in 3.2 of
[E4]. There exists a shifted subgroup $H$ of order 2 such that $U_{H}$ is not

projective. Let $V=k_{H}^{G}$ , the module induced from the trivial module of
$H$ . It is concluded that $dimV\leq|G|/2\leq dimU’$ , where $U’$ is $U$ or $\Omega U$ .

Moreover, it is shown that there is no monomorphism from $U’$ to $V$ or
$U’\cong V$ . Furthermore, in Case 1 ( $\ell.- 5$ on p.155 of [E4]) a contradiction
is derived when it is assumed that there is no monomorphism from $U’$

to $V$ . Consequently, $U\cong V$ holds and we have $|G|/2=dimV=dimF$ .

Notice that $kH$ is a subalgebra of $kN$ for some elementary abelian
subgroup $N$ of order 4 in $G$ . Any such an $N$ is generated by the central
involution and a non-central involution of $G$ . Thus from the assumption
on $\sigma$ , there exists $g\in G$ such that $H^{\sigma}=H^{g}$ . Hence $V$ is $\sigma$-invariant. Let
$h_{1}$ : $V\rightarrow V^{\sigma}$ be an isomorphism. Consider the following commutative

diagram. Here, by 1.1 of [E4], either $h_{1}$ or $h_{1}^{-1}$ lifts to a map between
$X$ and $X^{\sigma}$ , and we may assume that $h_{1}$ does.

$ 0\rightarrow$ $V\rightarrow gX$ $\rightarrow fM$ $\rightarrow 0$

$ h_{1}\downarrow$ $ h_{2}\downarrow$ $ h_{3}\downarrow$

$0\rightarrow V^{\sigma}\rightarrow g^{\sigma}X^{\sigma}\rightarrow f^{\sigma}M^{\sigma}\rightarrow 0$

Since $\sigma$ has finite order and since $X$ and $M$ are indecomposable, $h_{3}$ must
be an isomorphism by Fitting’s lemma.

Next consider the case where $M$ lies at the end of a $D_{\infty}$ component.
There are indecomposable modules $X$ , $Y$ , $Z$ and irreducible maps $f$ :
$X\rightarrow M$ , $f’$ : $X\rightarrow Y$ and $f’’$ : $X\rightarrow Z$ , where $M$ and $Y$ have only
one predecessor. We already know that $X$ and $Z$ are $\sigma$-invariant by
the above. Thus $M^{\sigma}$ is either $M$ or $Y$ . We prove that $M^{\sigma}\cong M$ by
showing that $dimM\neq dimF$ . By applying the argument in the first

paragraph to the map $f’’$ : $X\rightarrow Z$ , we have $|G|/2\equiv dimX-dimZ$

$mod |G|$ . Moreover, considering $A(M)$ and $A(\tau^{-1}X)$ , we have $dimX\equiv$

$2dimMmod |G|$ and $2dimX\equiv dimM+dimY+dimZmod |G|$ . Hence
$dimM-dimY\equiv|G|/2mod |G|$ . Therefore, we have $dimM\neq dimY$ as
desired. Q.E.D.

\S 3. Proof of Theorems

We prove Theorem 2 first.
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Proof of Theorem 2. By the very final remark in [OU2], we may
assume that $p=2$ , and $G$ is a 2-group. Moreover, it suffices to consider
the case where $ vx(X_{1})=vx(X_{2})<vx(X_{3})=vx(X_{4})=\ldots$ in the
notation of the theorem. If this is the case, then by Theorem $B$ of [E2],
$G$ has a normal subgroup $H$ with $|G$ : $H|=2$ and $\Gamma_{s}(kH)$ has an $AR$

component $\ominus isomorphic$ to $ZD_{\infty}$ . Furthermore, the two ends in $\Theta$

are $G$-conjugate. Now, by Theorem 4 of [E4], $H$ must be semidihedral.
However, this is impossible by Proposition 2.4. Q.E.D.

Proof of Theorem 1. Let $\overline{k}$ be the algebraic closure of $k$ . Suppose
that $\Gamma_{s}(kG)$ has an $AR$ component $\Gamma$ isomorphic to either $ZB_{\infty}$ or $ZC_{\infty}$ .

Let $D$ be a defect group of the block of $G$ to which the modules in $\Gamma$

belong. By Theorem $B$ , all the modules have the same vertex $Q$ . Let $M$

be in $\Gamma$ . Let $\Gamma_{1}$ , $\cdots$ , $\Gamma_{r}$ be connected components of $\Gamma_{s}(\overline{k}G)$ containing

indecomposable direct summands of $M\otimes_{k}\overline{k}$ . All the modules in $\Gamma_{i}$ have
also vertex $Q$ by III.4.14 of [F], and they belong to blocks whose defect

group is $D$ by III.9.10 of [F]. Now by Lemma 1.2, $\Gamma_{i}$ ’s are $Gal(\overline{k}/k)$

conjugate, and by Lemma 1.3, $\Gamma_{i}\cong ZA_{\infty}^{\infty}$ if $\Gamma\cong ZB_{\infty}$ , and $\Gamma_{i}\cong ZD_{\infty}$

if $\Gamma\cong ZC_{\infty}$ . Hence $D$ is either dihedral or semidihedral. ([E4]) We will
show that $\Gamma\cong ZB_{\infty}$ and $D$ is dihedral. The proof consists of several
lemmas.

Lemma 3.1. We may assume that $Q$ is normal in G. Moreover,
$Q$ is dihedral or semidihedral and we have $|D$ : $Q|\leq 2$ .

Proof. By [K1] there is a quiver monomorphism from $\Gamma$ to a com-
ponent of $\Gamma_{s}(kN_{G}(Q))$ which preserves vertices. In particular, $M$ is
mapped to its Green correspondent. Since $ZB_{\infty}$ and $ZC_{\infty}$ can not be
a proper subquiver of any $AR$ component of the stable $AR$ quiver, the
image of the monomorphism must be a connected component. More-
over, the Green correspondent of $M$ lies in a block of $N_{G}(Q)$ whose
defect group is also dihedral or semidihedral. Hence, it follows from the
same argument as in the second paragraph of 4.2 in [E4] (p.158) that
the $kN_{G}(Q)$ -modules in the image lie in a block whose defect group is
$D$ . Thus, we may assume that $Q$ is normal in $G$ . The last statement
holds since $Q$ is a non-cyclic normal subgroup of $D$ . Q.E.D.

Let $V$ be a $Q$-source of $M$ and $\Theta$ the $AR$ component of $\Gamma_{s}(kQ)$

containing $V$ . Let $N$ be the set of elements in $G$ those which induce
automorphisms of $Q$ by conjugation sending each involution in $Q$ into
its $Q$-conjugate.

Lemma 3.2. It follows that $Q$ is a dihedral group of order at least
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8, $\Theta\cong ZA_{\infty}^{\infty}$ , $\ominus isG$ -invariant, and that any element in $G\backslash N$ induces
a reflection on $\Theta$ .

Proof. Recall that all the modules in $\Gamma$ are $Q$-projective. If $Q$ is
a four group, then $kQ$ has two $\tau$-orbits of non-periodic indecomposable
modules. Thus $\Gamma$ has only finitely many $\tau$-orbits, a contradiction. Thus
$Q$ is not a four group. By Lemma 3.1, we have $|G:N|\leq 2$ , and $G=N$
if $Q$ is semidihedral. Recall that every module in $\Theta$ is $N$-invariant by
Proposition 2.4. Thus, if $G=N$ , then it would follow from Lemma 1.4
that $\Gamma\cong\ominus or\Gamma$ has tree class $A_{\infty}$ , a contradiction. Hence $G\neq N$ ,
and in particular, $Q$ must be dihedral of order at least 8. This implies
also that $\ominus\cong ZA_{\infty}^{\infty}$ . ([E3]) Moreover, if all the modules in $\ominus are$ G-
invariant, or if $N=I_{G}(\Theta)$ , the inertia group $of\ominus inG$ , then Lemma
1.4 and [K2] derive a contradiction similarly. Thus, $\Theta$ is $G$-invariant but
some modules in $\Theta$ are not $G$-invariant. This means that every element
in $G\backslash N$ induces a reflection $on\ominus by$ Lemma 1.1. Q.E.D.

Let $H=QC_{G}(Q)$ . Then $H$ is a normal subgroup of $G$ contained in
$N$ . Let $X$ be an indecomposable $kH$-module such that $M$ is isomorphic
to a direct summand of $X^{G}$ and that the source of $X$ is $V$ , and let $\Lambda$ be
a connected component of $\Gamma_{s}(kH)$ containing $X$ . Moreover, let $b$ be a
block of $kH$ containing $X$ .

Lemma 3.3. It follows that $\Lambda\cong\Theta\cong ZA_{\infty}^{\infty}$ . Moreover, $ b\cong$

$kQ\otimes_{k}A$ , where $A$ is the full matrix ring over some fifinite extension fifield
of $k$ . In particular, $Q$ is a defect group of $b$ . Furthermore, we may
assume that $b$ is $G$ -invariant.

Proof. Again by Lemma 1.4, $\Lambda\cong\ominus\cong ZA_{\infty}^{\infty}$ and all the modules
in $\Lambda$ are $Q$-projective. The results follow from the argument in the proof
of 4.1 of [E4]. The last statement holds by [K2]. Q.E.D.

We fix an isomorphism $b\cong kQ\otimes_{k}$ $A$ in Lemma 3.3 and identify
these two algebras. Let $S$ be the unique (up to isomorphisms) simple
$A$-module. Then, since $b$ is $G$-invariant, so is $S$ . Moreover, by Lemma
3.3, there is an equivalence between $mod kQ$ and modb, by which a kQ-

module $U$ corresponds to $U\otimes_{k}S$ . Let $A\otimes_{k}\overline{k}=\oplus_{i}A_{i}$ be the decompo-

sition into a direct sum of simple algebras over $\overline{k}$ . Accordingly, we have
$S\otimes_{k}\overline{k}=\oplus_{i}S_{i}$ and $b\otimes_{k}\overline{k}\cong\overline{k}Q\otimes_{\overline{k}}(A\otimes_{k}\overline{k})=\oplus_{i}(\overline{k}Q\otimes_{\overline{k}}A_{i})$ , where $S_{i}$

is a simple $A_{i}$ -module. For each $i$ , let $b_{i}=\overline{k}Q\otimes_{\overline{k}}A_{i}$ . Then $b_{i}$ is a block

of $\overline{k}H$ and its defect group is $Q$ by III. 9.10 of [F]. Moreover, there is

also an equivalence between $mod \overline{k}Q$ and mod6, by which a $\overline{k}Q$ module
$W$ corresponds to $W\otimes_{\overline{k}}S_{i}$ . Let $U$ be a $kQ$-module and suppose that
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the $b$-module $U\otimes_{k}S$ lies in $\Lambda$ . Since $U$ is not periodic, $U\otimes_{k}\overline{k}$ is inde-
composable by Remark 2.3. Hence tensoring the modules in $\Lambda$ with $\overline{k}$ ,
the $AR$ component $\Lambda$ decomposes into a disjoint union $\bigcup_{i}\Lambda_{i}$ . Here $\Lambda_{i}$

is an $AR$ component of $\Gamma_{s}(\overline{k}H)$ and isomorphic to $ZA_{\infty}^{\infty}$ by Lemma 3.3.

Write $X\otimes_{k}\overline{k}=\oplus_{i}X_{i}$ , where $X_{i}$ is the direct summand belonging to $b_{i}$ .

Then $X_{i}$ lies in $\Lambda_{i}$ . There is an indecomposable direct summand $M_{1}$ of
$M\otimes_{k}\overline{k}$ such that $M_{1}\cong X_{1}^{G}$ . Without loss of generality, we may assume
that $M_{1}$ lies in $\Gamma_{1}$ .

Lemma 3.4. It follows that $D=Q$ , and the conclusions in The-
orem 1 hold.

Proof. Suppose that $D\neq Q$ . Considering all the possibilities for $Q$

and $D$ , it follows that $G=DN$ and $D\cap N=Q$ . Since $G/H$ is a 2-group,
by V.5.15 and V.5.16 of [NT], we may assume that $DH$ is the inertia
group $I_{G}(b_{1})$ of $b_{1}$ in $G$ . In particular, $DH=I_{G}(\Lambda_{1})$ . Without loss
of generality, we may assume that $V$ is $D$-invariant, that is, an element
of $DH\backslash H$ induces a reflection on $\ominus with$ respect to the $\tau$-orbit of $V$ .

Then, $X_{1}$ is $D$-invariant from the above argument. In fact, we have
$I_{G}(X_{1})=DH$ . Now by 2.5 of [U2], the middle term of $A(M_{1})$ has a
direct summand whose vertex is $D$ , a contradiction. Therefore, $Q=D$ .

Finally, we recall that, if a defect group is dihedral, then $D_{\infty}$ does not
occur. Thus $\Gamma_{i}\cong ZA_{\infty}^{\infty}$ and we can conclude that $\Gamma\cong ZB_{\infty}$ by Lemma
1.3. Q.E.D.

\S 4. Examples

The following gives an example of a group $G$ such that $\Gamma_{s}(kG)$ has
a component isomorphic to $ZB_{\infty}$ . It is due to the first author ([O2]).

Let $k$ be a perfect field of characteristic 2 which does not contain
a cube root of unity. Let $n$ be an integer with $n\geq 3$ and $G$ a group
generated by $x$ , $y$ , $z$ and $t$ with relations $x^{2}=y^{2}=z^{3}=t^{2}=1$ and

$(xy)^{2^{n-1}}=1$ , $xz=zx$ , $yz=zy$ , $tx=yt$ , $ty=xt$ , $tz=z^{2}t$ .

Then $|G|=2^{n+1}3$ and $G$ has normal subgroups $ D=\langle x, y\rangle$ and $ C=\langle z\rangle$

with $D\cap C=\{1\}$ . Note that $D$ is a dihedral group of order $2^{7l}$ and $C$ is a
cyclic group of order 3. Let $H=D\times C$ . Then $G$ is a semidirect product
of $H$ and $\langle t\rangle$ . Let $\sigma$ be a Galois automorphism such that $\sigma$ interchanges
the two cube roots of unity. Since $k$ does not contain a cube root of unity,
$kC$ has the unique (up to isomorphisms) simple module $T$ of dimension
2. It is $G$-invariant, and since $G/C$ is a 2-group, $T$ can be extended to a
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simple $kG$-module $S$ . Moreover, it follows that $T\otimes\overline{k}=T_{1}\oplus T_{2}$ , where $T_{1}$

and $T_{2}$ are non-isomorphic simple $\overline{k}C$ modules with $T_{1}^{\sigma}=T_{2}$ . However,
$S\otimes\overline{k}$ is a simple $\overline{k}G$-module, since $T_{1}^{t}=T_{2}$ and $(S\otimes\overline{k})_{C}\cong T_{1}\oplus T_{2}$ .

Let $X=(x-1)\overline{k}D/s\overline{k}D$ and $Y=(y-1)\overline{k}D/s\overline{k}D$ , where $s$ is
the sum of all the elements in $D$ . Then $X$ and $Y$ are non-projective

indecomposable $\overline{k}D$-modules and we have $X^{t}=Y$ and $Y^{t}=X$ , but
$X$ and $Y$ are invariant under the Galois actions. (See Remark 2.3.)

It is known that $X$ and $Y$ lie in the same connected component of
$\Gamma_{s}(\overline{k}D)$ which is isomorphic to $ZA_{\infty}^{\infty}$ . (See [W] or [E2].) Now $X\otimes_{\overline{k}}T_{1}$ ,

$Y\otimes_{\overline{k}}T_{1}$ , $X\otimes_{\overline{k}}T_{2}$ and $Y\otimes_{\overline{k}}T_{2}$ are non-isomorphic indecomposable $\overline{k}H-$

modules, and we have $(X\otimes_{\overline{k}}T_{1})^{t}=Y\otimes_{\overline{k}}T_{2}$ , $(Y\otimes_{\overline{k}}T_{1})^{t}=X\otimes_{\overline{k}}T_{2}$ ,
$(X\otimes_{\overline{k}}T_{1})^{\sigma}=X\otimes_{\overline{k}}T_{2}$ and $(Y\otimes_{\overline{k}}T_{1})^{\sigma}=Y\otimes_{\overline{k}}T_{2}$ . Of course, $X\otimes_{\overline{k}}T_{1}$ and
$Y\otimes_{\overline{k}}T_{1}$ lie in the same $AR$ component $\Theta_{1}$ , and $X\otimes_{\overline{k}}T_{2}$ and $Y\otimes_{\overline{k}}T_{2}$ lie in

the same $AR$ component $\Theta_{2}$ . Both $\Theta_{1}$ and $\Theta_{2}$ are isomorphic to $ZA_{\infty}^{\infty}$ .

Let $Z_{1}=(X\otimes_{\overline{k}}T_{1})^{G}=(Y\otimes_{\overline{k}}T_{2})^{G}$ and $Z_{2}=(X\otimes_{\overline{k}}T_{2})^{G}=(Y\otimes_{\overline{k}}T_{1})^{G}$ .

Then $Z_{1}$ and $Z_{2}$ are non-isomorphic indecomposable $\overline{k}G$ modules, and
we have $Z_{1}^{\sigma}=Z_{2}$ . Moreover, we $have\ominus_{1}^{t}=\Theta_{2}$ and $Z_{1}$ and $Z_{2}$ lie in the
same $AR$ component $\Gamma$ isomorphic to $ZA_{\infty}^{\infty}$ .

Finally, we recall that $\Omega(\overline{k})\otimes_{\overline{k}}T_{i}$ lies in $\Theta_{i}$ for $i=1,2$ . Here $\Omega(\overline{k})$

is the Heller translate of the trivial $\overline{k}D$-module $\overline{k}$ , i.e., the kernel of

the projective cover of $\overline{k}$ . We have $(\Omega(\overline{k})\otimes_{\overline{k}}T_{1})^{t}=\Omega(\overline{k})\otimes_{\overline{k}}T_{2}$ and
$(\Omega(\overline{k})\otimes_{\overline{k}}T_{1})^{\sigma}=\Omega(\overline{k})\otimes_{\overline{k}}T_{2}$ . Therefore $(\Omega(\overline{k})\otimes_{\overline{k}}T_{1})^{G}$ lies in $\Gamma$ and is
$\sigma$ invariant Since $Z_{1}^{\sigma}=Z_{2}$ and since $Z_{1}$ and $Z_{2}$ lie in $\Gamma$ , from Lemmas
1.1, 1.2 and 1.3, it follows that the tree class of the $AR$ component
containing $\Omega(S)$ must be $B_{\infty}$ .
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Representations of finite Chevalley groups

Toshiaki Shoji

\S 1. Introduction

This note is a $brie\dot{f}$ exposition of the representation theory of finite
Chevalley groups. The main problem we are concerned here is the classi-
fication of irreducible ordinary representations of such groups, and giving
a general algorithm of computing character tables. Lusztig succeeded, in
$1980’ s$ , in classifying all the irreducible representations of finite reductive
groups $G(F_{q})$ and in determining their degrees ([LI]). So the remaining
problem is the determination of character values. In order to approach
this problem from a general point of view, Lusztig founded the theory of
character sheaves ([L2]), and showed that certain class functions arising
from character sheaves are computable, and form a basis of the space
of class functions of $G(F_{q})$ . Under these circumstances he proposed a
conjecture connecting such class functions with irreducible characters.
Lusztig’s conjecture provides us a general algorithm of computing ir-
reducible characters. In the case where the center of $G$ is connected,
Lusztig’s conjecture was solved by the author, by using the theory of
Shintani descent developed by Shintani, Kawanaka and Asai, (see e.g.,
[K] $)$ .

In this note, we review the classification of irreducible characters.
We formulate Lusztig’s conjecture, and summarize related results in the

case where the center is connected. In the case of disconnected center,
Lusztig’s conjecture is not yet established. We discuss this case, in
connection with recent results on Shintani descent, the Mackey formula
and generalized Gelfand-Graev representations.

\S 2. The classification of irreducible representations

Let $G$ be a connected reductive algebraic group defined over $F_{q}$ , a
finite field of $q$ elements with $chF_{q}=p$ . We denote by $F$ : $G\rightarrow G$

Received May 27, 1999.
Revised May 10, 2000.
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the corresponding Frobenius map on $G$ . The finite group $G(F_{q})$ of $F_{q^{-}}$

rational points in $G$ coincides with the subgroup $G^{F}$ of fixed points by
$F$ in $G$ . Let $\overline{Q}_{l}$ be the algebraic closure of the $l$-adic number field Qj,

for $l$ $\neq p$ . Then $\overline{Q}_{l}\simeq C$ , and we consider the representations of $G^{F}$

over $\overline{Q}_{l}$ so that the $l$-adic cohomology theory can be applied. We are
interested in the following problem.

Problem. Classify all the irreducible representations of $G^{F}$ , and give
a general algorithm of computing irreducible characters.

The fundamental tool for the classification is the virtual $G^{F}$ -module
$R_{T}^{G}(\theta)$ introduced by Deligne and Lusztig in 1976. For a pair $(T, \theta)$ ,

where $T$ is an $F$-stable maximal torus of $G$ and $\theta$ is a linear character
of $T^{F}$ , $R_{T}^{G}(\theta)$ is constructed as an alternating sum of certain $l$-adic
cohomology groups on which $G^{F}$ acts naturally. Let $G_{uni}^{F}$ be the set of
unipotent elements in $G^{F}$ . We define a function $Q_{T}^{G}$ : $G_{uni}^{F}\rightarrow\overline{Q}_{l}$ by

$Q_{T}^{G}(u)=Tr(u, R_{T}^{G}(\theta))$ .

$Q_{T}^{G}$ is called the Green function of $G^{F}$ , which does not depend on the
choice of $\theta$ . The computation of character values of $R_{T}^{G}(\theta)$ is reduced,
by a simple character formula, to the determination of Green functions
of various reductive subgroups of $G$ . More generally, one can define a
virtual $G^{F}$-module $R_{L\subset P}^{G}(\pi)$ for a representation $\pi$ of $L^{F}$ , where $L$ is an
$F$-stable Levi subgroup of (not necessarily $F$-stable) parabolic subgroup
$P$ of $G$ . The assignment $\pi\mapsto R_{L\subset P}^{G}(\pi)$ is extended to the Lusztig

induction $R_{L\subset P}^{G}$ from virtual $L^{F}$ -modules to virtual $G^{F}$ -modules.

In what follows, we denote by $\hat{G}^{F}$ the set of irreducible characters
of $G^{F}$ . The first step for the classification is the partition of $\hat{G}^{F}$ into
certain subsets. Let $G^{*}$ be the dual group of $G$ , i.e., $G^{*}$ is a connected
reductive group over $F_{q}$ , with Frobenius map $F$ , and its root system
is dual to the original one. For each $F$-stable maximal torus $T$ in $G$ ,

there corresponds an $F$-stable maximal torus $T^{*}$ in $G^{*}$ which is dual to
$T$ , (unique up to $G^{*F}$ -conjugate). Then the set of pairs $(T, \theta)$ (up to
$G^{F}$-conjugate) is in bijection with the set of pairs $(T^{*}, s)$ for $s$

$\in T^{*F}$

(up to $G^{*F}$-conjugate ). For each $F$-stable semisimple class $\{s\}$ in $G^{*}$ ,

we define a subset of $\hat{G}^{F}$ by

$\mathcal{E}(G^{F}, \{s\})=(T_{1},\theta_{1})\cup\{\rho\in\hat{G}^{F}|\langle\rho, R_{T_{1}}^{G}(\theta_{1})\rangle_{G^{F}}\neq 0\}$
,

where $(T_{1}, \theta_{1})$ runs over all the pairs such that $(T_{1}, \theta_{1})$ corresponds to
$(T_{1}^{*}, s_{1})$ with $s_{1}\in T_{1}^{*F}\cap\{s\}$ under the above correspondence. In the case
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where the center of $G$ is connected, the set $\{s\}^{F}$ consists of a single $G^{*F}-$

class, and we may choose $s_{1}=s$ . Moreover in this case, the centralizer
$Z_{G^{*}}(s)$ of $s$ is connected.

Lusztig has proved the following result.

Theorem 2.1 (Lusztig [LI]). Assume that the center of $G$ is con-
nected. Then

(i) $\hat{G}^{F}$ is partitioned as $\hat{G}^{F}=\square _{\{s\}}\mathcal{E}(G^{F}, \{s\})$ , where $\{s\}$ runs over

all semisimple classes in $G^{*F}$ .

(ii) There exists a natural bijection $\mathcal{E}(G^{F}, \{s\})\simeq \mathcal{E}(Z_{G^{*}}(s)^{*}, \{1\})$ .

An irreducible character $\rho$ is called a unipotent character if $\rho$ belongs
to the set $\mathcal{E}(G^{F}, \{1\})$ , i.e., if $\langle\rho, R_{T}^{G}(1)\rangle_{G^{F}}\neq 0$ for some $T$ . In view of (ii)

in the theorem, the classification of $\hat{G}^{F}$ is reduced to that of unipotent
characters whenever the center of $G$ is connected.

\bullet The classification of unipotent characters.

In order to explain the parameterization of unipotent characters due
to Lusztig, we prepare some notation. Let $T_{0}$ be an $F$-stable maximal
torus contained in an $F$-stable Borel subgroup $B$ of $G$ . Such a pair
$(B, T_{0})$ is unique up to $G^{F}$-conjugate. Let $W=N_{G}(T_{0})/T_{0}$ be the
Weyl group of $G$ , on which $F$ acts naturally. We assume, for simplicity,
that $F$ acts trivially on $W$ , i.e., $G^{F}$ is of split type (or $G^{F}$ is a finite
Chevalley group). Then the $G^{F}$ -conjugacy classes of $F$-stable maximal
tori in $G$ are in one to one correspondence with the conjugacy classes
in $W$ . We denote by $T_{w}$ an $F$-stable maximal torus corresponding to
$w\in W$ . The torus $T_{0}$ coincides with $T_{w}$ with $w=1$ , and in this case we

have $R_{T_{O}}^{G}(1)=Ind_{B^{F}}^{G^{F}}1$ . It is known that

$End_{G^{F}}(Ind_{B^{F}}^{G^{F}}1)\simeq H_{q}(W)\simeq\overline{Q}_{l}[W]$ ,

where $H_{q}(W)$ is the Iwahori-Hecke algebra of $W$ with parameter $q$ .

Hence $Ind_{B^{F}}^{G^{F}}1$ is decomposed, as $H_{q}(W)\times G^{F}$ -module,

$Ind_{B^{F}}^{G^{F}}1\simeq E\in W^{\wedge}\oplus V_{E}\otimes\rho_{E}$ ,

where $V_{E}$ is an irreducible character of $H_{q}(W)$ and $\rho_{E}$ the corresponding
irreducible character of $G^{F}$ . In particular, we obtain (a part of) unipo-
tent characters $\{\rho_{E}|E\in W^{\wedge}\}$ parametrized by the set of irreducible
characters of $W$ . We now define, for $E\in W^{\wedge}$ ,

$R_{E}=|W|^{-1}\sum_{w\in W}E(w)R_{T_{w}}^{G}(1)\in \mathcal{V}_{G}$
.
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Here $\mathcal{V}_{G}$ denotes the $\overline{Q}_{l}$ -space of class functions of $G^{F}$ endowed with the
usual inner product. Now it follows from the orthogonality relations for
$R_{T}^{G}(\theta)$ that $\{R_{E}|E\in W^{\wedge}\}$ gives rise to an orthonormal system in $\mathcal{V}_{G}$ .

According to Lusztig, the set $\mathcal{E}(G^{F}, \{1\})$ is parametrized by a set
$X(W)$ , which is completely described in terms of the data coming from
two sided cells of $H_{q}(W)$ . In particular, the parameterization depends
only on the Coxeter diagram of $W$ , and independent of $p$ . He also
showed the existence of a certain non-degenerate pairing $\{, \}$ : $ X(W)\times$

$X(W)\rightarrow\overline{Q}_{l}$ . We express the unipotent character corresponding to
$x\in X(W)$ by $\rho_{x}$ . By the previous argument, there exists an injection
$W^{\wedge}\epsilon_{-\rangle}X(W)$ via $E\mapsto x_{E}$ with $\rho_{x_{E}}=\rho_{E}$ . The following formula gives
the decomposition of $R_{E}$ into irreducible characters of $G^{F}$ .

$R_{E}=\sum_{y\in X(W)}\{y, x_{E}\}\rho_{y}$
.

Note that in certain $E\in W^{\wedge}$ for type E7 or $E_{8}$ (exceptional charac-
ters of $W$), some modification is needed for the above formula. We also
note that except the above case, unipotent characters are characterized
by the multiplicities for various $R_{E}$ . This is the leading principle of the
parameterization by Lusztig.

Now the above decomposition of $R_{E}$ suggests to define formally a
class function $R_{x}$ on $G^{F}$ for any $x\in X(W)$ by

$R_{x}=\sum_{y\in X(W)}\{y, x\}\rho_{y}$
.

Then the orthogonality property holds also for such $R_{x}$ , and we see that
$\{R_{x}|x\in X(W)\}$ gives rise to an orthonormal basis of the subspace of
$\mathcal{V}_{G}$ generated by unipotent characters.

Remark 2.2. (i) More generally, the set $\mathcal{E}(G^{F}, \{s\})$ is described in a
similar way (cf. (ii) of Theorem 2.1), and we get the total parameter
set $X(G^{F})$ for $G^{F}$ . Then one can define functions $R_{x}$ for $x\in X(G^{F})$

similar to the previous case. The set $\{R_{x}|x\in X(G^{F})\}$ gives rise to
an orthonormal basis of $\mathcal{V}_{G}$ , and $R_{x}$ ’s are called almost characters of
$G^{F}$ .

(ii) In the case where the center of $G$ is disconnected, the classi-

fication of $\hat{G}^{F}$ is done by reducing it to the case of connected center.
However, the construction of almost characters in this case is not so
clear.
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\S 3. Character sheaves and Lusztig’s conjecture

Character sheaves are certain $G$-equivariant simple perverse sheaves
on $G$ . In general, for an $F$-stable perverse sheaf $K$ on $G$ , by fixing
an isomorphism $\varphi_{K}$ : $F^{*}K\sim\rightarrow K$ , one can associate to $K$ a characteristic
function $\chi_{K,\varphi_{K}}$ . If $K$ is $G$-equivariant (with respect to the adjoint action
of $G$ ), $\chi_{K,\varphi_{K}}$ turns out to be a class function on $G^{F}$ . In this way, a lot
of useful class functions of $G^{F}$ are produced from the geometric setting,
though they are not virtual characters in general.

Before stating Lusztig’s results on character sheaves, we prepare
some notation. A prime $p=chF_{q}$ is called almost good for $G$ if $p$

satisfies the following conditions;

$\{$

$p\neq 2,3$ if $G$ has factors of type E7, $F_{4}$ , $G_{2}$ ,

$p\neq 3$ if $G$ has a factor of type $E_{6}$ ,

$p\neq 2,3,5$ if $G$ has a factor of type $E_{8}$ ,

and no conditions for factors of classical type. We denote by $(\hat{G})^{F}$ the set

of $F$-stable character sheaves on G. (Do not confuse this with $\hat{G}^{F}.$ ) For

each $A\in(\hat{G})^{F}$ , we choose $\varphi_{A}$ : $F^{*}A\sim\rightarrow A$ , and consider the characteristic
function $\chi_{A,\varphi_{A}}$ on $G^{F}$ . Note that since $A$ is simple, $\varphi_{A}$ is unique up to
scalar multiple.

Theorem 3.1 (Lusztig [L2]). Assume that $p$ is almost good for $G$ .

Then

(i) Under a certain choice of $\varphi_{A}$ , $\{\chi_{A,\varphi A}|A\in(\hat{G})^{F}\}$ gives rise to
an orthonormal basis of $\mathcal{V}_{G}$ .

(ii) There exists a general algorithm of computing $\chi_{A,\varphi A}$ .

Based on his results, Lusztig proposed the following conjecture.

Conjecture 3.2 (Lusztig). There exists a natural parameterization
$X(G^{F})\simeq(\hat{G})^{F}$ , (which we denote by $x\leftarrow\rightarrow A_{x}$ , and write as $\varphi_{A_{x}}=$

$\varphi_{x}$ : $F^{*}A_{x}\sim\rightarrow A_{x}$ ), such that

$\chi_{A_{x},\varphi_{x}}=c_{x}R_{x}$ $(c_{x}\in\overline{Q}_{l}^{*})$ .

Lusztig’s conjecture asserts that characteristic functions $\chi_{A,\varphi_{A}}$ co-
incide with almost characters up to scalar. Since we know the decompo-
sition of almost characters into irreducible characters (especially in the
case of connected center), Lusztig’s conjecture provides us an algorithm
of computing irreducible characters once we know the scalar constants
$c_{x}$ .

The following result gives a partial answer to Lusztig’s conjecture.
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Theorem 3.3 ([S2]). Assume that the center of $G$ is connected,
and assume that $p$ is almost good. Then Lusztig ’s conjecture holds for
$G^{F}$ .

Remark 3.4. Here we give a remark on the computation of $\chi_{A,\varphi_{A}}$ . In
the theory of character sheaves, there is a notion of cuspidal character
sheaves, and induction from them. For example, the constant sheaf $\overline{Q}_{l}$

gives, up to shift, a cuspidal character sheaf $A_{0}$ on a maximal torus
$T_{0}$ , and the induction $K=ind_{B}^{G}A_{0}$ is a semisimple perverse sheaf on $G$ ,

whose simple factors are character sheaves $A_{E}$ parametrized by $E\in W^{\wedge}$ .

One can choose an isomorphism $\varphi_{w}$ : $F^{*}K\sim\rightarrow K$ for each $w\in W^{\wedge}$ , and
we have

$\chi_{K,\varphi_{w}}=\sum_{E\in W^{\wedge}}E(w)\chi_{A_{E},\varphi A_{E}}$
.

Thus the computation of $\chi_{A_{E}}$ is reduced to that of $\chi_{K,\varphi_{w}}$
$fr$ various

$w$ . Lusztig defined a Green function $\tilde{Q}_{T_{w}}^{G}$ associated to the character
sheaves, and showed that the computation of $\chi_{K,\varphi_{w}}$ is reduced to that
of Green functions. More generally, arbitrary $\chi_{A,\varphi_{A}}$ are computed by
making use of generalized Green functions. He showed that there is a
simple algorithm of computing generalized Green functions.

In [L4], Lusztig proved that $\tilde{Q}_{T}^{G}$ coincides with $Q_{T}^{G}$ when $q$ is large
enough (for any $p$). This result was extended in [S2] for arbitrary $q$ .

Concerning the Lusztig’s conjecture, Lusztig has proved the follow-
ing result for arbitrary $G$ , under some restrictions on $p$ and $q$ .

Theorem 3.5 (Lusztig [L6]). Let $G$ be an arbitrary reductive
group. Assume that $p$ and $q$ are large enough. Then for each cuspidal
character sheaf $A_{x}$ , the formula in the conjecture holds.

Note that if the decomposition of the Lusztig induction $R_{L\subset P}^{G}$ is
known, the above result implies the conjecture (for $p>>0$ , $q>>0$ ).
However such a decomposition is known, at present, only for the case of
connected center (see, e.g., [SI]).

Once Lusztig’s conjecture is established (for example, in the case
of connected center), the next step is the determination of scalars $c_{x}$

appearing in the conjecture. In this direction, Lusztig has proved the
following.

Theorem 3.6 (Lusztig [L3]). Let $G=SO_{2n+1}$ and assume that
$p$ is odd. Then for almost characters $R_{x}$ which do not vanish on $G_{uni}^{F}$ ,
the scalars $c_{x}$ are determined.

He also announced that similar results hold for other groups under
some restriction on $q$ .
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We can determine the scalar $c_{x}$ in some special cases. In the follow-
ing, $R_{x}$ is called a unipotent almost character if it is a linear combination
of unipotent characters.

Theorem 3.7 ([S3]). Assume that $G^{F}$ is a Chevalley group of
classical type with connected center. Assume further that $p$ is odd. Then
the scalar $c_{x}$ is determined for a unipotent almost character $R_{x}$ .

This can be generalized to the case of exceptional groups.

Theorem 3.8 (L\"ubeck, Shinoda). Assume that $G^{F}$ is an excep-
tional group of adjoint type. Assume further that $p$ is good. Then the
scalar $c_{x}$ is determined for a unipotent almost character $R_{x}$ .

Remark 3.9. The above results provide an algorithm of computing unipo-
tent characters. In fact, L\"ubeck “computed” all the character values of
unipotent characters for $F_{4}$ and $E_{6}$ by making use of the computer al-
gebra system CHEVIE ([GPH]). His program will work also for E7
and $E_{8}$ . However in applying Lusztig’s algorithm in practice, still there
remains an ambiguity in choosing rational unipotent classes in a given
geometric unipotent class. In order to justify L\"ubeck’s computation, we
need to determine some parameters related to the choice of representa-
tives.

\S 4. The case of disconnected center

In the case where the center of $G$ is disconnected, the main prob-

lem is the proof of Lusztig’s conjecture. For this we need to know the
decomposition of the Lusztig induction $R_{L\subset P}^{G}$ . In the case of connected
center, this decomposition was achieved by making use of the theory of
Shintani descent ([SI]), which is a theory connecting characters of $G^{F}$

and $F$-stable characters of $G^{F^{m}}$ for some power $F^{m}$ . This theory was
also used in verifying Lusztig’s conjecture in [S2]. Hence it is expected
that it plays an important role also for the case of disconnected cen-
ter. The typical example for such a group is $G^{F}=SLn(Fq)$ , and the
Shintani descent for this group was described in [S4].

In the remainder of this section we assume that $G$ is an arbitrary
reductive group.

\bullet The Mackey formula

Another approach for getting the information on the Lusztig induc-
tion is the following Mackey formula for Lusztig induction which is an
analogue of the usual Mackey formula of finite groups. We define a lin-
ear $map*R_{L\subset P}^{G}$ : $\mathcal{V}_{G}\rightarrow \mathcal{V}_{L}$ , called the Lusztig restriction, as the adjoint
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functor of the Lusztig induction $R_{L\subset P}^{G}$ . Let $M$ be an $F$-stable Levi
subgroup of another parabolic subgroup $Q$ of $G$ . Put

$\mathcal{E}(L, M)=$ { $x\in G|L\cap xM$ contains a maximal torus of $G$ }.

The Mackey formula is formulated as follows.

$*R_{L\subset P}^{G}\circ R_{M\subset Q}^{G}=\sum_{x\in L^{F}\backslash \mathcal{E}(L,M)^{F}/M^{F}}R_{L\cap^{x}M\subset L\cap^{x}Q}^{L*}oR_{L\cap^{x}M\subset P\cap^{x}M}^{x_{M}}$
.

It is not yet known whether the Mackey formula holds in a full generality.
It has been verified in the special case where (a) $P$ and $Q$ are $F$-stable
parabolic subgroups, or (b) $L$ or $M$ is a maximal torus of $G$ . We note
here that the Mackey formula implies that the Lusztig induction $R_{L\subset P}^{G}$

depends only on $L$ and not on $P$ .

Recently C. Bonnaf\’e proved the following result.

Theorem 4.1 (Bonnaf\’e [B1]). Assume that $q$ is large enough (but
no assumption on $p$). Then the Mackey formula holds for any $F$ -stable
Levi subgroups $L$ and $M$ .

He also showed in [B2] that if $G$ is of type $A_{n}$ , then the Mackey
formula holds without restriction on $q$ .

\bullet Generalized Gelfand-Graev representations.

The concept of generalized Gelfand-Graev representations (by ab-
breviation GGGR) was introduced by Kawanaka, by generalizing the
usual Gelfand-Graev representations. In the case of disconnected center,
contrast to the case of connected center, Deligne-Lusztig theory does not
give enough information for describing irreducible characters, and it is
expected that GGGR provide us additional informations. In fact, in the
case of $SL_{n}(F_{q})$ , GGGR allows us to parameterize irreducible characters
in a more precise way than Lusztig’s one. Now to each unipotent element
$u\in G^{F}$ , one can associate an $F$-stable parabolic subgroup $P$ with unipo-
tent radical $U_{P}$ , together with a certain irreducible representation $\Lambda_{u}$ of
$U_{P}^{F}$ . Then $\Gamma_{u}=Ind_{U_{P}^{F}}^{G^{F}}\Lambda_{u}$ depends only on the $G^{F}$-conjugacy class of $u$ ,

and is called the generalized Gelfand-Graev representation of $G^{F}$

associated to the class of $u$ . Note that if $u$ is a regular unipotent element,
then $\Gamma_{u}$ coincides with the usual Gelfand-Graev representations.

Kawanaka decomposed $\Gamma_{u}$ into irreducible characters in the case of
$GL_{n}$ for arbitrary $p$ and $q$ , and also treated the exceptional groups of
adjoint type (see, e.g., [K]). On the other hand, under the assumption
that $p$ and $q$ are large enough, Lusztig described the decomposition of
$\Gamma_{u}$ in terms of various $\chi_{A,\varphi_{A}}$ . Using this, he showed the following result.
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Theorem 4.2 (Lusztig [L5]). Assume that $p$ and $q$ are large enough.

Then for any $\rho\in\hat{G}^{F}$ , there exists a unique unipotent class $C$ in $G$ such
that $\sum_{g\in C^{F}}\rho(g)\neq 0$ , and having maximal dimension among the classes
with this property.

The class $C$ attached to $\rho$ is called the unipotent support of
$\rho$ . Recently, M. Geek succeeded in removing the assumption on $q$ of
Lusztig’s result in the case where $p$ is good, and then extended it with
G. Malle to the case where $p$ is bad.

Theorem 4.3 (Geek [G], Geck-Malle [GM]). The statement of The-
orem 4.2 holds without any restrictions on $p$ and $q$ .

We close this note by stating the following result, which discusses
the Lusztig restriction of Gelfand-Graev characters.

Theorem 4.4 (Digne-Lehrer-Michel [DLM]). Assume that $p$ is good
and that $q$ is large enough. Let $\Gamma_{u}$ be the Gelfand-Graev character of $G^{F}$

associated to a regular unipotent element $u\in G^{F}$ . Let $L$ be an $F$ -stable
Levi subgroup of $a$ (not necessarily $F$ -stable) parabolic subgroup $P$ of $G$ .

Then there exists a regular unipotent element $v\in L^{F}$ such that

$*R_{L\subset P}^{G}(\Gamma_{u})=\epsilon_{G}\epsilon_{L}\Gamma_{L,v}$ ,

where $\Gamma_{L,v}$ is the Gelfand -Graev character of $L^{F}$ associated to $v$ , and
$\in c$ (resp. $\in_{L}$ ) is the split rank of $G$ (resp. $L$).

Note that in the case of disconnected center, the theorem implies
that a rational regular unipotent class in $G^{F}$ determines a rational reg-
ular unipotent class in each $F$-stable Levi subgroup $L$ . However, the
explicit correspondence is not yet known.
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The Shape of the Classification
of the Finite Simple Groups

Ronald Solomon

This is a general survey of the Classification of the Finite Simple
Groups with particular emphasis on the current project of Gorenstein,
Lyons and Solomon (GLS) directed towards the revision of a substantial
segment of the Classification proof.

There are two principal strategies at present directed towards a Clas-
sification proof. The one employed in the first successful proof and also,
with certain modifications, in the GLS proof, I shall refer to as the
Semisimple Approach to the Classification. The other, which has been
the object of considerable activity recently, I shall refer to as the Unipo-
tent Approach to the Classification. Each has its advantages and its
drawbacks and neither is, at present, completely independent of the
other. In unison they provide a complete proof of the Classification
Theorem. A question at present is the natural domain for each of these
methods. Of course the future may bring entirely new and wonderful
approaches to the subject.

The modern history of the Classification began around 1950 when
several mathematicians–notably Brauer, Suzuki and Wall–began to
investigate simple groups of even order satisfying certain local condi-
tions. This work eventually congealed into the Brauer-Suzuki-Wall The-
orem [BSW] characterizing the two-dimensional projective special linear
groups over finite fields. Brauer in particular championed the strategy
of characterizing finite simple groups of even order by the centralizer of
an involution. Suzuki, on the other hand, established the nonexistence
of finite simple $CA$-groups of odd order [SI]. (A group $G$ is a $CA$ group
if the centralizer of every nonidentity element of $G$ is abelian.) This
result was the inspiration for the Feit-Thompson Theorem proving the
nonexistence of nonabelian finite simple groups of odd order.

Meanwhile Suzuki pursued the classification of transitive permuta-
tion groups of odd degree in which the stabilizer of a point has a regular
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normal subgroup and a cyclic complement of odd order [S2]. This formed
the foundation for the later classification by Bender of finite groups $G$

with a strongly 2-embedded subgroup M. ( $M$ is a strongly $p$-embedded
subgroup of $G$ if $M$ is a proper subgroup of $G$ of order divisible by $p$

such that $M\cap M^{g}$ has order prime to $p$ for all $g\in G-M.$ )

We remark that the Odd Order Theorem [FT] of Feit and Thomp-
son can be regarded as a strong embedding result as well. Indeed the
Feit-Thompson Theorem together with the Suzuki-Bender Theorem [B2]
establish the following result.

Theorem. Let $G$ be $a$ fifinite simple group and let $p$ be the smallest
prime divisor of $|G|$ . If $G$ has a strongly $p$ -embedded subgroup, then
$p=2$ and $G$ is isomorphic to $SL(2,2^{\tau\iota})$ , $Sz(2^{2n-1})$ or $PSU(3,2^{7l})$ for
some $n$ $\geq 2$ .

Clearly this is a corollary of the Feit-Thompson and Suzuki-Bender
Theorems. As remarked in [So], the Feit-Thompson Theorem is an easy
consequence of the above theorem, although this observation does not
seem to afford a route to a new proof of the Feit-Thompson Theorem.

The Feit-Thompson and Suzuki-Bender Theorems form the two
principal Background Results underlying the GLS proof of the Classifi-
cation Theorem. (Also in the background is the theory of linear algebraic
groups, the determination of the Schur multipliers of the finite simple
groups, and the existence, uniqueness and local structure of the sporadic
simple groups. And in the “foreground” , i.e. essential to the complete
proof but not included in the GLS series, is the forthcoming proof of the
Quasithin Theorem by Aschbacher and Smith.)

Chapter I. Semisimple Approach

When Brauer did specific characterizations of finite simple groups by
the centralizer of an involution, the groups were almost always classical
groups defined over fields of odd characteristic. (Of course $M_{11}$ also
arose, having an isomorphic involution centralizer to $PSL(3,3).)$ This
focus continued in the work of Brauer’s students, Fong, Wong and Harris,
who (along with Phan) systematically pursued the characterization of
the finite simple groups of Lie type over fields of odd characteristic via
the centralizer of an involution during the $1960’ s$ .

Of course, when the characteristic is odd, an involution is a semisim-
ple (indeed split semisimple) element of the Lie type group $G$ . Thus it is
reasonable to expect (and indeed is true) that the characterization the-
orems established in particular by Wong and Phan can be generalized
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to characterizations of finite simple groups of Lie type in any character-
istic via the centralizer of a semisimple element of prime order, or more
precisely via the centralizer of a suitable element $x$ of prime order con-
tained either in the split maximal torus of $G$ or in a “half-split”maximal
torus, i.e. a torus which splits in a quadratic extension of the field of
definition of $G$ . Such a characterization over fields of characteristic 2
was accomplished by Gilman and Griess in [GG].

In order to convert this fact into a strategy for the classification, it
is useful first to give a definition of a semisimple element for an abstract
group, not simply for a group with a preferred linear representation. As
our attention will focus on centralizers of such elements, it is natural that
the definition should reflect a fundamental property of their centralizers.
In the context of a semisimple linear algebraic group $G$ , it is well-known
that the centralizer $C$ of a semisimple element is a reductive group, i.e.
the product of a semisimple group and a torus (which is central in $C$ if $G$

is simply connected). Extending the work of Fitting, Bender in 1970 [B1]
defined the appropriate subgroups of a finite group needed to formulate
the analogous structural hypotheses. We recall some definitions.

Definition. A finite group $K$ is quasisimple if $K=[K, K]$ and
$K/Z(K)$ is a nonabelian simple group. A finite group $E$ is semisimple
if $E$ is the commuting product of certain quasisimple subgroups, called
its components.

Definition. Let $H$ be a finite group. The join of all normal nilpo-
tent subgroups of $H$ is called the Fitting subgroup of $H$ , $F(H)$ . It is the
unique maximal normal nilpotent subgroup of $H$ . Similarly the join of
all normal semisimple subgroups of $H$ is denoted $E(H)$ . It is the unique
maximal normal semisimple subgroup of $H$ . Moreover $E(H)$ and $F(H)$

commute with each other. Their commuting product is called the gen-
eralized Fitting subgroup of $H$ , $F^{*}(H)$ .

We can now identify a characteristic property of the centralizers of
many semisimple elements in linear groups and make this a definition in
an arbitrary finite group.

Definition. Let $G$ be a finite group. We call an element $x$ of $G$

semisimple if $E(C_{G}(x))\neq 1$ .

We remark that if $G$ is a classical linear group, then for every unipo-
tent element $y$ of $G$ , $E(C_{G}(y))=1$ , as a corollary of the Borel-Tits
Theorem. On the other hand typically many of the semisimple (in the
linear group sense) elements of $G$ will also be semisimple in the above
sense. However not all will be because for certain linear semisimple
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elements $x$ , $C_{G}(x)$ will be a torus. In an extreme case like $SL(2, q)$ ,

no noncentral linear semisimple element will be semisimple in the sense
of the above definition. This reflects a fundamental limitation on the
semisimple approach: it does not work for

$\zeta$

“very small”simple groups.
(A good replacement for the term ((very small”is quasithin, as we shall
see below.)

The first goal of the semisimple approach to the Classification is to
search for a semisimple element $x$ such that $E(C_{G}(x))$ has a component
$K$ of maximum possible order. This corresponds in the context of lin-
ear groups to the search for a semisimple element with an eigenspace of
maximum possible dimension. When chosen judiciously this component
$K$ will be a slightly smaller version of the target group $G$ . Moreover
by making a similar choice of a semisimple element $y$ inside $K-Z(K)$ ,

one can find a second large component, $L$ , of $E(C_{G}(y))$ such that $K$

and $L$ generate $G$ . Indeed it is possible not only to find generators for
$G$ but also to infer sufficient relations to characterize $G$ via theorems of
Coxeter, Steinberg or Curtis and Tits. This strategy was implemented
for semisimple involutions by Aschbacher in his Classical Involution Pa-
per [A2] and for semisimple elements of odd prime order by Gilman and
Griess [GG].

However there is an important reason to modify this strategy
slightly. It is extremely important to control the embedding of such
subgroups as $C_{K}(y)$ in $C_{G}(y)$ . More specifically it is desirable to know
that

$E(C_{K}(y))\leq E(C_{G}(y))$ .

It is not however possible to achieve an a priori proof of this fact because
of the following type of example:

Let $H=SL(V)$ with $V$ a 6-dimensional vector space over the finite
field $F$ of odd order $q$ . Let $G=VH$ be the semidirect product with
the natural action of $H$ on $V$ . Let $x$ be an involution in $H$ with a
4-dimensional -1-eigenspace. Then $E(C_{G}(x))=K\cong SL(4, q)$ . Next
let $y$ be an involution in $K$ with a 2-dimensional 1-eigenspace on $V$ ,
contained in the -1-eigenspace for $x$ . Then $E(C_{K}(y))=L_{1}*L_{2}$ with
$L_{i}\cong SL_{2}(q)$ acting on the $(-1)^{i}$-eigenspace for $y$ on $V$ . We can easily
compute that $L_{1}\leq E(C_{G}(y))$ but $L_{2}\not\leq E(C_{G}(y))$ .

Of course in the example $G$ is far from being a finite simple group.
However it is precisely the problem of detecting from local information
that such a $G$ is not simple which constitutes one of the major chapters of
the Classification proof. (A local subgroup of a group $G$ is the normalizer
of a non-identity $p$-subgroup of $G$ . Local information is information
about the structure of the local subgroups of $G.$ )
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Gorenstein and Walter [GW] discovered an important “gravitational
principle”, called $L$-Balance concerning a subgroup closely related to
$E(H)$ .

Definition. Let $p$ be a prime and $H$ a $p$-local subgroup of $G$ .

The $p$-layer of $H$ , $L_{p’}(H)$ is the smallest normal subgroup of $H$ covering
$E(H/O_{p’}(H))$ , where $O_{p’}(H)$ denotes the largest normal subgroup of $H$

of order relatively prime to $p$ .

The $L$-Balance Theorem. Let $G$ be $a$ fifinite group all of whose
proper simple sections satisfy the (weak) Schreier Conjecture. Let $p$ be
a prime and let $x$ and $y$ be commuting elements of $G$ of order $p$ . Let $L_{x}$

and $L_{y}$ denote the $p$ -layers of $C_{G}(x)$ and $C_{G}(y)$ respectively. Then

$L_{p’}(C_{L_{x}}(y))\leq L_{y}$ .

In the vernacular, the $L$-Balance Theorem asserts that the $p$-layer
of a $p$-local subgroup of $G$ always sinks into the $p$-layer of $G$ . Hence
it is a kind of gravitational (or non-buoyancy) principle. The proof of
the $L$-Balance Theorem depends on a weak version of the following old
conjecture.

Schreier’s Conjecture. Let S be a fifinite simple group. Then
$Aut(S)/S$ is a solvable group.

Schreier’s Conjecture is a fairly easy corollary of the Classification
Theorem. No independent proof is known. I shall not bother to state
the weak version of the Schreier Conjecture here but I note that it was
proved when $p=2$ by Glauberman as a corollary of his $Z^{*}$ Theorem
[G1]. Thus for $p=2$ the hypothesis on proper simple sections of $G$ may
be omitted. In the context of an inductive proof of the Classification
Theorem, proper simple sections always satisfy the Schreier Conjecture
and so the $L$-Balance Theorem may be used for all primes $p$ .

Notice that the $L$-Balance Theorem provides a correct analogue of
the wished-for property of Bender’s subgroup $E(H)$ . Inspired by this,
we reformulate our semisimple strategy in the following language:

Definition. Let $G$ be a finite group and $p$ a prime. A $p$-element
$x$ of $G$ is said to be weakly semisimple if $L_{p’}(C_{G}(x))\neq 1$ .

Of course every semisimple element of prime power order is weakly
semisimple. The converse statement is false in general as is easily seen,
for instance, by modifying the example above slightly. Take $G^{*}=VH^{*}$

where $H^{*}=SL^{\pm}(V)$ , the group of linear transformations of determinant
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$\pm 1$ . Then an involution $t$ with a l-dimensional-l-eigenspace is weakly
semisimple but not semisimple. However the converse statement is true
(and deep) for finite simple groups. For the prime $p=2$ it was first
formulated by Thompson, who called it the $B$-Conjecture. Its proof for
$p=2$ forms a major chapter in the proof of the Classification Theorem
and weak analogues of it for all primes $p$ also play a pivotal role in the
work of Gorenstein and Lyons [GL] on the classification of simple groups
of characteristic 2-type (roughly speaking, groups in which no involution
is semisimple). As a corollary of the Classification Theorem, we obtain
the full $B$-Theorem.

$B$-Theorem. Let G be a fifinite simple group. For all primes p,
every weakly semisimple $p$-element of G is semisimple.

We can now formulate a somewhat over-simplified version of the
Semisimple Strategy for the Classification of Finite Simple Groups based
on the Feit-Thompson and Suzuki-Bender Theorems.

Step 1. Find a prime $p$ for which $G$ has a weakly semisimple of
prime order $p$ . Choose $p=2$ , if possible.

Step 2. Establish the $B_{p}$ -Theorem for $G$ , $i.e$ . that every weakly
semisimple $p$ -element of $G$ is semisimple.

Step 3. Among all semisimple $p$ -elements of $G$ choose one, $x$ , with
some component $K$ of $E(C_{G}(x))$ as large as possible.

Now the Component Theorem comes into play. This theorem was
established first by Aschbacher [A1], extending an earlier result of Powell
and Thwaites [PT]. It was reproved shortly thereafter by Gilman [Gi].
For a minimal counterexample to the Classification Theorem, analogues
were established for all primes $p$ by GLS [GLS2].

Component Theorem. Let $G$ be $a$ fifinite simple group and $xa$

semisimple element of $G$ of prime order $p$ chosen with some component
$K$ of $E(C_{G}(x))$ as large as possible. Suppose that the $p$ -rank of $K$ is
greater than 1. Then $K$ does not commute with any $G$ -conjugate of $K$ .

Moreover a Sylow $p$ -subgroup of $C_{G}(K)$ is either cyclic or of maximal
class (with $p=2$ in the latter case).

A typical example to imagine is $G=SL(V)$ and $x$ a diagonal ele-
ment with one eigenspace $W$ of codimension 1 or 2. Then $SL(W)$ will
be the unique large component of $E(C_{G}(x))$ and its centralizer will have
cyclic Sylow $p$-subgroups for odd $p$ and a cyclic or quaternion Sylow
2-subgroup. A slightly different example arises when $G=A_{n}$ and $x$ is
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a product of two transpositions. Then the Sylow 2-subgroup of the cen-
tralizer of the large component (isomorphic to $A_{n-4}$ ) is a Klein 4-group.

The point is that the Component Theorem assures us that the cen-
tralizer of $x$ is almost precisely determined, the possibilities for $K$ being
afforded by the induction hypothesis. This permits us to proceed to the
final step.

Step 4. Identify $G$ , given the approximate structure of $C_{G}(x)$ , via
the methodology developed by Brauer, Fong, Wong, Phan and Harris.

This constitutes the Semisimple Strategy for the Classification of
Finite Simple Groups, modulo one serious problem and one difficult
theorem which I have swept under the rug. The difficult theorem is
the Strongly $p\frac{-}{}Embedded$ Theorem, the analogue for odd primes of the
Suzuki-Bender Theorem.

Strongly $p$-Embedded Theorem. Let $G$ be $a$ fifinite simple group
and $p$ a prime such that $G$ has $p$ -rank at least 3. If $M$ is a strongly p-
embedded subgroup of $G$ , then $G$ is $a$ fifinite simple group of Lie type of
Lie rank 1 and $M$ is a Borel subgroup of $G$ .

For odd primes $p$ , this theorem is proved only as a corollary of
the Classification Theorem. However a weak version of this theorem is
required for the Classification proof, in particular for the proof of the B-
Theorem. A sufficient theorem was established by Aschbacher [A3] and
a slightly more general variant has been established recently by Stroth.
Both proofs are quite long and difficult, and even the statements of the
theorems established are long and obscure.

Let’s move on from the difficult theorem to the serious problem:

What if $G$ does not contain any weakly semisimple elements of prime
order?

The answer to this question is: $G$ is quasithin.

Definition. Let $G$ be a finite simple group. We say that $G$ is
quasithin if either $G$ has 2-rank at most 2 or every 2-local subgroup of
$G$ has $p$-rank at most 2 for every odd prime $p$ .

In the usual definition of quasithin, $G$ is assumed to be of charac-
teristic 2-type (or even type) and to have 2-rank at least 3. We use the
extended definition here for expository purposes.

Klinger-Mason Theorem. Let G be a fifinite simple group with
no weakly semisimple elements. Then G is quasithin.
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The proof relies on an easier version of some of the signalizer func-
tor analysis used in the proof the the $B$-Theorem. The principal new
ingredient is a lovely and elementary argument of John Thompson in
[T2], which was later elaborated slightly in [KM] and has henceforth
been known as the Klinger-Mason Method. Thompson’s argument es-
tablishes easily under the given hypotheses that either $G$ is quasithin or
$G$ contains an involution $x$ such that $F^{*}(C_{G}(x))$ is a 2-group of sym-
plectic type (indeed extraspecial) and $C_{G}(x)$ has $p$-rank at most 2 for
all primes greater than 3. Indeed with the extra help of the Thompson-
Bender Signalizer Lemma, it is possible to rule out the extraspecial case
as well. (See [GLSI; 23.3; \S 24].)

The occurrence of extraspecial 2-groups in the Klinger-Mason ar-
gument reflects the proximity of many of the larger sporadic simple
groups such as the sporadic Suzuki group, the Conway groups, the Fis-
cher groups, the Harada group, the Thompson group, the Baby Monster
and the Monster, as well as certain small classical linear groups. Al-
though these groups do not satisfy the hypotheses of the Klinger-Mason
Theorem, they are quite close. Indeed with slightly weakened hypothe-
ses, Gorenstein and Lyons proved an analogous result whose conclusion is
roughly that either $G$ is quasithin or $G$ is one of the large sporadic groups
mentioned above or a small classical linear group. The full classification
of simple groups containing an involution $x$ such that $F^{*}(C_{G}(x))$ is a
2-group of symplectic type was accomplished in the mid $1970’ s$ largely
through the efforts of Timmesfeld [Ti] and was rightly recognized by
many as bringing down the final curtain on the search for sporadic sim-
ple groups.

I find the resulting Trichotomy Theorem, implicit in the work of
Gorenstein and Lyons, to be one of the more elegant justifications for
the Semisimple Approach to the Classification.

$rbichotomy$ Theorem. Let $G$ be a finite simple group. Then one

of the following holds:

(1) There is a prime $p$ such that $G$ has $p$ -rank at least 3 and $G$

contains generic weakly semisimple elements of order $p$ ; or
(2) $G$ is quasithin; or
(3) $G$ is on $a$ (short) fifinite list including $A_{12}$ , eleven sporadic simple

groups and several small classical groups defifined over $F_{2}$ or $F_{3}$ .

In the statement above, the term generic reflects a restriction on the
allowable components in the centralizers of the semisimple elements of
order $p$ . In particular the centralizer of a generic semisimple element
of order $p$ must have a component which is not a group of Lie type in
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characteristic $p$ . For $p=2$ or 3, most sporadic components are likewise
not allowed.

Chapter II. Unipotent Approach

The Semisimple Approach to the Classification runs aground on the
rocks of the Quasithin Problem. The Classification proof is rescued
at this juncture by the Unipotent Approach, which evolved from the
methods developed by Thompson in his classification of simple groups
all of whose local subgroups are solvable [T1]. (Clearly such a group
has no non-identity weakly semisimple element.) In brief the Unipotent
Approach, instead of studying semisimple elements, seeks to identify the
characteristic of the finite simple group $G$ by finding a prime $p$ for which
$G$ has a rich supply of $p$-local subgroups of “parabolic type”.

Definition. Let $G$ be a finite group and $p$ a prime. We say that
a $p$-local subgroup $H$ of $G$ is of parabolic type if $H$ contains a Sylow
$p$-subgroup of $G$ and $F^{*}(H)$ is a $p$-group.

Definition. Let $G$ be a finite group and $p$ a prime. We say that $G$

is of characteristic $p$ -type if every $p$-local overgroup of a Sylow $p$ subgroup
of $G$ is of parabolic type. $G$ is of connected characteristic $p$ type if $G$ is
of characteristic $p$-type and $G$ is generated by the overgroups of a fixed
Sylow $p$ subgroup $P$ of $G$ .

When $G$ has no semisimple involutions one is close to knowing that
$G$ is of connected characteristic 2-type. The final ingredient is provided
by “pushing-up theorems”established in the mid $1970’ s$ by Baumann,
Glauberman, Niles, Aschbacher and others, which establish that either
$G$ is of connected characteristic 2-type or $G$ has a strongly 2-embedded
subgroup.

Once $G$ is known to be of connected characteristic $p$-type, the Unipo-
tent Strategy in brief is to study, in the spirit of Tits, the coset geometry
determined by the $p$-local subgroups of parabolic type and to recognize
this geometry as that of a split $BN$-pair of rank at least 2. (Of course
there are exceptions arising from the sporadic simple groups of charac-
teristic $p$-type.) As noted above, many of the ideas for this approach
originate in Thompson’s $N$-group paper, whose main theorem may be
paraphrased as:

$N$-Group Theorem. Let $G$ be a non-abelian simple group all of
whose local subgroups are solvable. Assume that $G$ has 2-rank at least 3
and $G$ does not have a strongly 2-embedded subgroup. Then $G\cong 2F_{4}(2)’$ ,
$i.e$ . $G$ is the Tits group.
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The idea of identifying simple groups of characteristic 2-type as split
$BN$-pairs was initiated in the late 1960’s by Suzuki [S3] and his students.
This approach was temporarily sidetracked by the Gorenstein Program
for the Classification announced in the early 1970’s, which featured the
Semisimple Approach. It was however pursued in the context of qu-
asithin groups and uniqueness groups by Aschbacher, Gomi [Gm] and
others. Later Goldschmidt developed a variant Amalgam Method [Go]
aimed at a new proof of the $N$-Group Theorem, which was eventually
obtained by Stellmacher.

In the Semisimple Approach to the Classification, the Unipotent
Method is required to treat the Quasithin Problem and the Strongly p-
Embedded 2-Local Problem. The latter appears in published work of As-
chbacher and the former is currently being completed by Aschbacher and
Smith. There is however a program underway, spearheaded by Meier-
frankenfeld, Stellmacher and Stroth, to apply the Unipotent Method to
all groups of connected characteristic $p$-type (possibly using a slightly
different definition than the one given above).

As a strategy aimed at a complete proof of the Classification The-
orem, the Unipotent Strategy collides with obstacles at two ends. One
obstacle is the Strongly $p$-Embedded Subgroup Problem. At present
the Unipotent Strategy presupposes that $G$ is generated by the $p$-local
subgroups containing a fixed Sylow p–subgroup $P$ . Except when $p=2$ ,

there is no known approach to the case when $P$ is contained in a unique
maximal subgroup $M$ of $G$ . In particular this problem includes (and can
probably be reduced to) the case when $M$ is a strongly $p$-embedded sub-
group of $G$ . This is of course similar to the Strongly $p$ Embedded 2-Local
Problem confronted by the Semisimple Approach and solved in that con-
text by Aschbacher and later by Stroth using unipotent methodology.
Conceivably a Unipotent Proof of the Classification could be structured
in such a way that a solution of a similar nature would be possible.

A hybrid strategy which assigns to the Unipotent Approach pre-
cisely the task of classifying finite simple groups of characteristic 2-type
would rely only on the Strongly Embedded Theorem of Suzuki-Bender.
From my perspective this hybrid strategy is attractive inasmuch as it
bypasses the morass of complicated definitions and difficult theorems re-
lated to groups with a strongly (or almost strongly) $p$-embedded 2-local
subgroup. Of course a revolutionary new classification of groups with a
strongly $p$-embedded subgroup would change the landscape for both the
Semisimple and Unipotent Strategies, ironically improving the cases for
each of them.

It is impossible to conjecture a flowchart for a Unipotent Approach
to the entire Classification Theorem without an answer to the following
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question:

What if the simple group $G$ is not of characteristic $p$-type for any
prime $p$?

In this case of course $G$ would be full of semisimple elements and the
Semisimple Approach would be effective. The problem is that we are
missing an analogue of the Klinger-Mason Reduction which would tell us
that the residual semisimple problem was “bounded” in some good sense.
For example one would like a comparatively short proof of a theorem of
the following type.

Theorem. Let $G$ be $a$ fifinite simple group of 2-rank at least 3 which
is not of characteristic $p$ -type for any prime $p$ . Then for some involution
$t$ of $G$ , there is a component $K$ of $E(C_{G}(t))$ such that $K/Z(K)$ is an
alternating group.

Indeed the only simple groups with no characteristic are alternating
groups and $J_{1}$ . If one could give a proof of this fact of comparable
length and elegance to the Klinger-Mason argument which rounds off
the Semisimple Analysis, then there would be a strong argument for
preferring the Unipotent Approach to the Classification proof. Even
without it, there is great value in pursuing the Unipotent Analysis to its
logical conclusions. If successful, it will bring to satisfying completion
Michio Suzuki’s program for the classification of finite simple groups of
characteristic 2-type via the unipotent methods he helped to pioneer.
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$2F$-modules with quadratic offender
for the finite simple groups

Gernot Stroth

Abstract.

There is a long running project due to U. Meierfrankenfeld and

the author to investigate the so called small modules for the finite
simple groups. These modules show up in the amalgam method which
recently became important for the revision of parts of the classifica-
tion of the finite simple groups. A small module either is a quadratic
module or a module on which an elementary abelian group acts such

that the codimension of the centralizer is small compared with its or-
der. In this paper we determine all irreducible modules $V$ over $GF(2)$

for the finite simple groups $G$ such that $|V$ : $C_{V}(A)|\leq|A|^{2}$ for some
nontrivial elementary abelian subgroup $A$ of $G$ where in addition we
have $[V, A, A]=1$ .

In this paper we are going to determine the irreducible faithful 2F-
modules for the finite quasisimple groups. Here we just concern about
$2F$-modules over $GF(2)$ . A module $V$ is called $2F$-module for $G$ , if
there is a nontrivial elementary abelian subgroup $A$ in $G$ such that
$|V/C_{V}(A)|\leq|A|^{2}$ . The group $A$ then will be called an offending sub-
group or an offender. The offender is called quadratic if $[V, A, A]=1$ .

More precisely we prove

Theorem Let $G$ be a quasisimple group and $V$ be an irreducible

faithful $2F$ -module in characteristic two for $G$ with a quadratic offender.
Then one of the following holds

(i) $G/Z(G)\cong A_{n}$ and one of the following is true
(a) $V$ is the natural module
(b) $n\leq 8$ and $|V|=16$

(c) $n=6$ , $|Z(G)|=3$ and $|V|=64$

(d) $n=9$ and $|V|=2^{8}$ is the spin module.
(ii) $G\cong 3M_{22}$ or $3U_{4}(3)$ and $V$ is the 12-dimensional $SU_{6}(2)-$module.

Received June 19, 1999.
Revised January 26, 2001.
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(iii) $G/Z(G)=G(q)$ is a group of Lie type, $q=2^{t}$ , and one of the
following is true

(a) $G(q)\cong L_{n}(q)$ , $Sp(2n, q)’$ , $\Omega^{\pm}(2n, q)$ or $U_{n}(q)$ and $V$ is the
natural or dual module.

(b) $G(q)\cong L_{n}(q)$ and $V$ is the exterior square of the natural
or dual module

(c) $G(q)\cong L_{6}(q)$ , or $U_{6}(q)$ and $V$ is the exterior cube of the
natural module.

(d) $G(q)\cong Sp(6, q)$ , $Sp(8, q)$ or $Sp(10, q)$ and $V$ is the spin
module

(e) $G(q)\cong\Omega^{\pm}(8, q)$ , $\Omega^{\pm}(10, q)$ or $\Omega^{+}(12, q)$ and $V$ is the half
spin module

(f) $G(q)\cong E_{6}(q)$ and $V=V(\lambda_{1})$ or $V(\lambda_{6})$ .

(g) $G(q)\cong E_{7}(q)$ and $V=V(\lambda_{7})$ .

(h) $G(q)\cong F_{4}(q)$ and $V=V(\lambda_{1})$ or $V(\lambda_{4})$ .

(i) $G(q)\cong G_{2}(q)’$ and $V$ is the natural module.
(j) $G(q)\cong Sz(q)$ and $V$ is the natural module.

The proof of the theorem will depend on two main results. First of all
we will use the classification of $F$-modules. This can be found in an un-
published paper $[MeiStr3]$ due to U. Meierfrankenfeld and the author. A
preprint can be found on the homepage (http://coxeter.mathematik.uni-
halle. $de:8080/\sim stroth/rep_{-}htm1$ ). But there is also a classification in the
literature. The $F$-modules for the sporadic groups, alternating groups
and groups of Lie type in odd characteristic have been classified by M.
Aschbacher [Asch]. The $F$-modules for the groups of Lie type in char-
acteristic two have been classified by B. Cooperstein [Coop] and in an
unpublished paper by B. Cooperstein and G. Mason [CM].

We further will use the classification of quadratic modules in
[MeiStrl], $[MeiStr2]$ and [Str] to end up with a very short list of modules
and so it is easy to detect the $2F$-modules.

In fact there are still some open question. The module $V(\lambda_{1})$ for
$E_{6}(q)$ is a $2F$-module. But we do not know whether it allows a quadratic
offender. If not then the cases (iii) (f) $-(h)$ will not show up. Further
the paper just considers irreducible modules. So for general module one
has to have an overview over the possible offenders, one has to study
extensions of the modules above $and/or$ of irreducible $2F$-modules by
trivial modules. This all has not been done so far but would be very
useful for applications.

The main reason for the classification of these modules comes from
the application in the so called amalgam method. This method basically
provides us with $2F$-modules with quadratic offender for the groups
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involved, provided the parameter $b$ is not 1. So we will use the results in
this paper in the revision of the classification of the finite simple groups
of characteristic two type.

The notations will be standard. Concerning the representations of
the groups of Lie type we follow [Stei] and will use these results freely.
In what follows $G$ will always be a quasisimple group. A Chevalley
group or a group of Lie type will always mean a central factor of the
corresponding universal Chevalley group.

By the restriction given by the editors that we do not have more than
10 pages for the paper we had to drop all proofs. The interested reader
may download a version containing proofs from the authors homepage.

\S 1. Preliminaries

For convenience of the reader we first state the main result of
$[MeiStr3]$ .

Theorem 1.1. Let $E(G)=F^{*}(G)$ be a quasisimple group and $V$

be an irreducible faithful $F$ -module in characteristic two for G. Then
one of the following holds

(i) $E(G)/Z(E(G))\cong A_{n}$ and one of the following is true
$(\alpha)V$ is the natural module
$(\beta)n\leq 8$ and $|V|=16$

$(\gamma)n=6$ , $|Z(E(G))|=3$ and $|V|=64$

(ii) $E(G)/Z(E(G))=G(q)$ is a group of Lie type, $q=2^{t}$ , and one

of the following is true
$(\alpha)G(q)\cong L_{n}(q)$ , $Sp(2n, q)$ , $\Omega^{\pm}(2n, q)$ or $U_{n}(q)$ and $V$ is the

natural or dual module.
$(\beta)G(q)\cong L_{n}(q)$ and $V$ is the exterior square of the natural

or dual module
$(\gamma)G(q)\cong Sp(6, q)$ and $V$ is the spin module
$(\delta)G(q)\cong\Omega^{+}(8, q)$ or $\Omega^{+}(10, q)$ and $V$ is the half spin module
$(\epsilon)G(q)\cong G_{2}(q)$ and $V$ is the natural module.

Lemma 1.2. Let $q=2^{n}$ , $G$ be quasisimple with $G/Z(G)=L_{2}(q)$

and $V$ be a faithful module in characteristic two. Then for any involution
$a\in G$ we have $|V$ : $C_{V}(a)|\geq q$ . If $G/Z(G)=Sz(q)$ or $U_{3}(q)$ , then for
any involution a we get $|V$ : $C_{V}(a)|\geq q^{2}$ .

Lemma 1.3. Let $q=2^{n}$ , $G$ be quasisimple with $G/Z(G)=Sz(q)$

or $U_{3}(q)$ and $V$ be an irreducible faithful $2F-$module for $G$ with quadratic

offender A. Then $V$ is the natural module.
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The next five lemmas are more or less well known results on the
representations of groups of Lie type. We will use them freely in the
sequel.

Proposition 1.4. Let $G=G(q)$ be a group of Lie type and $V$ be
an irreducible module over $GF(q)$ . Then

$V=V_{1}^{\sigma_{1}}\otimes\cdots\otimes V_{l}^{\sigma_{l}}$

where the $V_{i}$ are basic irreducible $GF(q)G-$modules and the $\sigma_{i}$ are fifield-
automorphisms. Further distinct $l-$tuples $(V_{1}, \ldots V_{l})$ , $(V_{1}’, \ldots, V_{l}’)$ give
nonisomorphic $GF(q)G-$modules.

Proof. [Stei, Th 41 and 43] Q.E.D.

Lemma 1.5. Let $G=G(q)$ be a Chevalley group then $GF(q)$ is $a$

splitting fifield for any irreducible module.

Proof. [Stei, (7.5)] Q.E.D.

Lemma 1.6. Let $G/Z(G)=G(q)$ be a Chevalley group and $V$ an

absolutely irreducible $KG$ -module for some $K\subseteq G\overline{F(}q$ ), where $G\overline{F(}q$)
is the algebraic closure of $GF(q)$ . Let $\{\sigma_{1}, \ldots\sigma_{r}\}=Gal_{GF(p)}(K)$ . Let
$GF(p)(\chi)$ be the fifield of defifinition, or splitting fifield for V. Then $K=$

$GF(p)(\chi)$ iff $V^{\sigma_{1}}$ , $\ldots$ , $V^{\sigma_{\Gamma}}$ are pairwise nonisomorphic $KG-$modules.

We like to consider representations of twisted Chevalley groups as
well. Here we fix notation as follows. We have $\sigma G(q)\leq G(q^{\sigma})$ , where
$G(q^{\sigma})$ is the corresponding untwisted group, $G\neq F_{4}(q)$ or $B_{2}(q)$ . Now
following [Stei, chapter 9] we see that any basic module for $G(q^{\sigma})$ reduced
to $\sigma G(q)$ remains irreducible. Moreover by [Stei, 9.3] all irreducible
modules are given by the tensor product theorem. Further by [Stei, 7.5]
$GF(q^{\sigma})$ is a splitting field.

It remains the cases $G=F_{4}(q)$ or $B_{2}(q)$ . Then there is a duality
between the long and short roots. Just take all weights which vanish
on all long roots. We call these modules restricted to $\sigma G(q)$ the basic
modules. Then again the tensor product theorem holds. If the rank is $\ell$

we now get $q^{p/2}$ modules. By [Stei, 12.2] $GF(q)$ is the field of definition
for all these modules.

Proposition 1.7. Let $G=A_{\ell}(q)$ , $D_{\ell}(q)$ , $E_{6}(q)$ or $D_{4}(q)$ and $V$

be a basic module with high weight $\lambda$ for $aG$ . Then the following holds

for $\gamma$ the diagram automorphism

(1) If $\lambda\neq\gamma(\lambda)$ . Then $GF(q^{\sigma})$ is the fifield of defifinition for $V$ .

(2) If $\lambda=\gamma(\lambda)$ then $GF(q)$ is the fifield of defifinition for $V$ .
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Lemma 1.8. Let $G=G(q)$ , $q=p^{f}$ , be a Chevalley group and
$V$ be an irreducible module in characteristic $p$ over the splitting fifield.
Let $P$ be a parabolic and $V_{P}=C_{V}(O_{p}(P))$ . Then $V_{P}$ is an irreducible
$P-$ module.

Proof. This is [Sm]. Q.E.D.

Definition 1.9. Let $V$ be a faithful $GF(p)$ -module for $G$ . For
$\epsilon\in lR$ define $P_{\epsilon}(G, V)$ to be the set of all non-identity $p$-subgroups $X$

of $G$ such that $|X|^{\epsilon}|C_{V}(X)|\geq|Y|^{\epsilon}|C_{V}(Y)|$ for all $Y\leq X$ (including
$Y=1)$ .

If $V$ is a $2F$-module with quadratic offender there is always some
quadratic offender in $P_{2}(G, V)$ .

Lemma 1.10. Let $V$ be a $2F$ module or $F-$module for $G$ with
quadratic offender and $V_{1}$ be an invariant subspace. Then $V_{1}$ isa trivial
subspace for all quadratic offenders or $V_{1}$ is a $2F$ module $F-$module
respectively, with quadratic offender too.

Lemma 1.11. Let $V$ be a $GF(p)$ module for $G$ .

(a) Let $A$ , $B\in P_{\epsilon}(G, V)$ be with $|C_{V}(A)||A|^{\epsilon}=|C_{V}(B)||B|^{\epsilon}$ be $\max-$

imal. If $\langle A, B\rangle$ is a $p$ -group then $AB\in P_{\epsilon}(G, V)$ and $|C_{V}$ (AB)IIABI $\epsilon=$

$|C_{V}(A)||A|^{\epsilon}$ .

(b) Let $A\in P_{\epsilon}(G, V)$ , $A\leq O_{p}(G)$ . If $|C_{V}(A)||A|^{\epsilon}$ is maximal
among all such $A$ , then $\langle A^{G}\rangle$ is $a$ (maybe nonabelian) $\epsilon-$offender on $V$ ,
$i.e$ . $|V$ : $C_{V}(\langle A^{G}\rangle)|\leq|\langle A^{G}\rangle|^{\epsilon}$ .

Lemma 1.12. Let $V$ be a $GF(2)-$module for $G$ with quadratically
acting elementary abelian 2-subgroup A. Let $g\in G$ and $a\in A$ with
$a^{g}=az$ . Then also $\langle z, C_{A}(g)\rangle$ acts quadratically.

Let $W$ be a Weyl group with root system $\Phi$ and fundamental roots
$\Pi$ . We assume throughout this section that the Dynkin diagram on $\Pi$

is connected. Let $l$ $=|\square |$ , $I$ $=\{1, 2, \ldots l\}$ and $\Pi=\{\alpha_{1}, \alpha_{2}, \ldots\alpha_{l}\}$ where
we choose the labeling as follows:

1231-21-I1

$--o$ $\cdots$ $\mapsto-o$

$\underline{1}\underline{2}3\circ$
$\cdots$

$l\underline{-2l}-1l\mapsto 0$

$\underline{1}\underline{2}3\circ$
$\cdots$

$l\underline{-3l}-2$ $ l1\circ$
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$\mapsto-12$ 3 5 6

123567
– $--o$

1235678
– $-o$

1234
$-\mapsto-o$

$\Leftrightarrow 012$

For the remainder of this paper we fix notation according to the
labeling of the diagrams above. Let $G$ be a group of Lie type. We fix a
Sylow 2-subgroup $S$ , $B=N_{G}(S)$ , the Borel subgroup, and let $P_{1}$ , $\ldots P_{\ell}$

be the minimal parabolics containing $B$ . Further for $i\in I$ we denote
by $ G_{i}=\langle P_{j}|j\in I\backslash \{i\}\rangle$ . These are the maximal parabolics of $G$ .

Then $G_{i}/B_{G_{i}}$ is a group of Lie type belonging to the diagram for $I\backslash \{i\}$ ,

where $B_{G_{i}}$ is the largest normal subgroup of $G_{i}$ contained in $B$ . We
assume the reader to be familiar with the structure of the $G_{i}$ at least
those which belong to a connected diagram.

Let now $G$ be as before. Set $K_{i}=O_{2}(P_{i})$ , $i\in I$ . Let $V$ be an
irreducible module for $G$ over $GF(q)$ . Then $V$ is uniquely determined

by the action of $P_{i}$ on $C_{V}(K_{i})$ . If $V=V(\lambda)$ , $\lambda=\sum_{i=1}^{\ell}a_{i}\lambda_{i}$ , this means
that whenever $P_{i}$ acts nontrivially on $C_{V}(K_{i})$ , we get $a_{i}\neq 0$ otherwise
$a_{i}=0$ . If all $C_{V}(K_{i})$ are trivial up to one, which is the natural module,
then $V=V(\lambda)$ for some fundamental weight $\lambda$ .

Most modules occurring in this paper, will be fundamental modules.
We will get them via [Str], i.e. by showing that they are strong quadratic.
Here a module $V$ for $G=G(q)$ is called strong quadratic if there is a
group $A$ acting quadratically on $V$ , intersects a root subgroup of $G$

nontrivially but is not contained in that root subgroup.

Lemma 1.13. Let $q=2^{n}$ , $G$ be quasisimple with $G/Z(G)=$
$L_{n}(q)$ or $U_{n}(q)$ and $V=V(\lambda_{1}+\lambda_{n-1})$ . Assume $A\leq G$ with $[V, A, A]=$

$1$ . Then $|A|\leq q$ .
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Lemma 1.14. Let $V$ , $W$ be a faithful $GF(q)$ -modules and $A$ be
quadratic on $X=V\otimes W$ . Then $|A|\leq q$ .

Lemma 1.15. Let $X=V\otimes W$ , be a faithful $GF(q)$ -modules.
Suppose $X$ to be irreducible. If $X$ is a $2F-$module with quadratic of-
fender, then $G\cong L_{2}(q)$ and $X=V\otimes V^{\sigma}$ , $V$ the natural module and $\sigma$

some fifield automorphism of $GF(q)$ .

Lemma 1.16. Let $G$ be quasisimple with $G/Z(G)=G(q)$ be of
Lie type of rank at least two.

a) Let $A\leq G$ , $|A|\leq q$ and $V$ be an irreducible module with $|V$ :
$C_{V}(A)|\leq|A|^{2}$ and A quadratic, then $V$ is strong quadratic.

b) Let $R$ be a root group in $G$ with $|[V, R]|\leq q^{2}$ for some irreducible
module $V$ , then $G/Z(G)\cong L_{n}(q)$ , $U_{n}(q)$ , $\Omega^{\pm}(2n, q)$ , $Sp(2n, q)$ and $V$ is
the natural module, or $G\cong G_{2}(q)$ and $V$ is the 6-dimensional module.

Lemma 1.17. Let $G$ be quasisimple with $G/Z(G)\cong L_{n}(q)$ , $n\geq 5$ ,

let $V=V(\lambda_{2})$ and $A$ be an offender as $F$ module. Then $|A|=q^{n-1}=$

$|V:C_{V}(A)|$ .

\S 2. $2F$-modules for Lie type groups in even characteristic

Throughout this chapter we will assume that $G$ is a quasisimple
group with $G/Z(G)$ a group of Lie type over a field with $q=2^{n}$ elements,
including $G(2)’$ and $A_{6}$ . We additionally assume that $G’\not\cong 3\cdot A_{6}$ , as this
will be handled in the last chapter together with the alternating groups.
As $G$ will act faithfully on a $GF(2)-$module, $G$ will always be a factor
of the universal group.

Further $V$ is an $2F$ module and $A\in P_{2}(G, V)$ is a quadratic offend-
ing subgroup. If $G_{i}$ is a maximal parabolic in $G$ we set $Q_{i}=O_{2}(G_{i})$ .

If $V$ is an irreducible $GF(2)-$module for $G$ . Then $V\otimes GF(q)$ is a
direct sum of algebraic conjugates of some irreducible $GF(q)-$module
$M$ . If $V\otimes GF(q)$ is an algebraic conjugate of a fundamental module
for a weight $\lambda$ we also write $V=V(\lambda)$ . In fact as we usually will have
strong quadratic modules, which then by [Str] are defined over $GF(q)$ ,

we usually just have to handle $GF(q)$ -modules.

Lemma 2.1. Let $G/Z(G)=G(q)$ be classical or $F_{4}(q)$ and $V=$

$V(\lambda_{2})$ be a $2F$ -module with quadratic offender A. Then $V$ is an $F-$

module too.

Lemma 2.2. Let $G/Z(G)=G(q)$ and $V$ be an irreducible faithful
$2F-$module with quadratic offender. If $C_{V}(Q_{i})=C_{V}(Z(S))$ for some $i$ ,
then $V=V(\lambda_{i})$ or $G/Z(G)\cong L_{2}(q)$ and $V=X\otimes X^{\sigma}$ for some fifield
automorphism $\sigma$ , $X$ the natural module.
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Lemma 2.3. Let $G/Z(G)=G(q)\not\cong L_{n}(q)$ be classical and $V$ be
an irreducible faithful $2F-$module with quadratic offender $A\leq Q_{1}$ . Then
the pair $(G, V)$ is one of the theorem.

Lemma 2.4. Let $G/Z(G)=G(q)$ be of rank at most two and $V$

be an irreducible faithful $2F-$module with quadratic offender A. Then
$G/Z(G)\cong L_{2}(q)$ , $L_{3}(q)$ , $Sp(4, q)$ , $U_{4}(q)$ , $U_{5}(q)$ , $\Omega^{-}(6, q)$ or $G_{2}(q)$ and
$V$ is the natural module, or $G\cong L_{2}(q)$ and $V$ is a tensor product.

Lemma 2.5. Let $G/Z(G)=G(q)\not\cong L_{n}(q)$ be classical of rank at
least three and $V=V(\lambda_{n})$ be a $2F$ -module with quadratic offender $A$ .

Then $(G, V)$ is one of the theorem.

Lemma 2.6. Let $G\cong\Omega^{-}(2n, q)$ , $n>3$ , and $V$ be an irreducible

faithful $2F-$module with quadratic offender A. Then $V\cong V(\lambda_{1})$ , or

$n=4,5$ and $V\cong V(\lambda_{n})$ .

Lemma 2.7. Let $G\cong Sp(2n, q)$ , $n\leq 6$ , and $V\cong V(\lambda_{1}+\lambda_{n})$ .

Then $V$ is not a $2F-$module with quadratic offender.
Proposition 2.8. Let $G/Z(G)=G(q)$ be classical and $V$ be an

irreducible faithful $2F$ -module with quadratic offender A. Then one of
the following holds

(i) $G(q)\cong L_{n}(q)$ , $V\cong V(\lambda_{1})$ , $V(\lambda_{2})$ , $V(\lambda_{n-2})$ , $V(\lambda_{n-1})$ .

(ii) $G(q)\cong Sp(2n, q)$ , $\Omega^{\pm}(2n, q)$ , or $U_{n}(q)$ and $V\cong V(\lambda_{1})$ .

(iii) $G(q)\cong L_{6}(q)$ , or $U_{6}(q)$ and $V\cong V(\lambda_{3})$ .

(iv) $G(q)\cong Sp(2n, q)$ , $n=3,4,5$ , and $V$ is the spin module.
(v) $G(q)\cong\Omega^{\pm}(2n, q)$ , $n=4,5$ , or $\Omega^{+}(12, q)$ and $V$ is the half spin

module.
(vi) $G(q)\cong L_{2}(q^{2})$ and $V\cong V_{1}^{\sigma}\otimes V_{1}$ , where $V_{1}$ is the natural module

and $\sigma$ the fifield automorphism of order two.

Proposition 2.9. Let $G/Z(G)=E_{n}(q)$ , $n=6,7,8$ , and $V$ be an
irreducible faithful $2F-$module with quadratic offender A. Then $n=6$

and $V\cong V(\lambda_{1})$ or $V(\lambda_{6})$ , or $n=7$ and $V\cong V(\lambda_{7})$ .

Lemma 2.10. If $V$ is an irreducible faithful $2F-$module with qua-
dratic offender $A$ for the group $G\cong F_{4}(q)$ , then $V\cong V(\lambda_{1})$ or $V(\lambda_{4})$ .

Lemma 2.11. The group $G/Z(G)\cong 2E_{6}(q)$ does not possess $a$

$2F-$module with quadratic offender.

So we have shown

Proposition 2.12. Let $G/Z(G)=G(q)$ be of Lie type, $V$ be an ir-
reducible faithful $2F-$module over $GF(2)$ with quadratic offending group.
Then one of the following holds
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(i) $G(q)\cong L_{n}(q)$ , $V\cong V(\lambda_{1})$ , $V(\lambda_{2})$ , $V(\lambda_{n-2})$ , $V(\lambda_{n-1})$ .

(ii) $G(q)\cong Sp(2n, q)$ , $\Omega^{\pm}(2n, q)$ or $U_{n}(q)$ and $V\cong V(\lambda_{1})$ .

(iii) $G(q)\cong L_{6}(q)$ or $U_{6}(q)$ and $V\cong V(\lambda_{3})$ .

(iv) $G(q)\cong Sp(2n, q)$ , $n=3,4,5$ , and $V$ is the spin module.
(v) $G(q)\cong\Omega^{\pm}(2n, q)$ , $n=4,5$ , or $\Omega^{+}(12, q)$ and $V$ is the half spin

module.
(vi) $G(q)\cong L_{2}(q^{2})$ and $V\cong V_{1}^{\sigma}\otimes V_{1}$ , where $V_{1}$ is the natural module

and $\sigma$ the fifield automorphism of order two.
(vii) $G(q)\cong E_{6}(q)$ and $V\cong V(\lambda_{1})$ or $V(\lambda_{6})$ .

(viii) $G(q)\cong E_{7}(q)$ and $V\cong V(\lambda_{7})$ .

(ix) $G(q)\cong F_{4}(q)$ and $V\cong V(\lambda_{1})$ or $V(\lambda_{4})$ .

\S 3. $2F$-modules for alternating, sporadic and Lie type groups
in odd characteristic

Throughout this chapter we will assume that $G$ is a perfect central
extension of an alternating group, a sporadic group or a group of Lie
type over a field of odd characteristic, which is not a group of Lie type
over a field of characteristic 2 too. Further $V$ is a $2F$-module over $GF(2)$

and $A\in P_{2}(G, V)$ an offending subgroup which acts quadratically.

Lemma 3.1. Let $G=A_{n}$ or $G=3A_{m}$ , $m=6,7$ , and $V$ be an
irreducible faithful $2F-$module over $GF(2)$ with quadratic offender $A$ ,
then either $V$ is the permutation module or

(i) $G\cong A_{8}\cong L_{4}(2)$ and $V$ is the natural $L_{4}(2)$ -module.
(ii) $G\cong A_{7}$ and $V$ is as in (i).
(iii) $G\cong 3A_{6}$ and $|V|=2^{6}$ .

(iv) $G\cong A_{5}\cong L_{2}(4)$ and $V$ is the natural $L_{2}(4)$ -module.
(v) $G\cong A_{9}$ and $V$ is the eight dimensional spin module.

Lemma 3.2. Let $G/Z(G)$ be sporadic and $V$ be an irreducible

faithful $2F$ -module with quadratic offender A. Then $G\cong 3M_{22}$ and $V$

is the 12-dimensional module coming from the embedding into $SU_{6}(2)$ .

Lemma 3.3. Let $V$ be an irreducible faithful $2F$ -module with qua-
dratic offender A. If $G$ is some covering group of a group of Lie type
in odd characteristic then it is a group of Lie type in even characteristic
too, or $G\cong 3\cdot U_{4}(3)$ and $V$ is the 12-dimensional module, coming from
the embedding into $SU_{6}(2)$ .
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On the structure of special rank one groups

Franz Georg Timmesfeld

\S 1. Introduction

A group $X$ generated by two different nilpotent subgroups $A$ and $B$

satisfying:

$(*)$ For each $a\in A^{\neq}$ there exists a $b\in B^{\neq}$ satisfying $A^{b}=B^{a}$ and vice
versa

is called a rank one group. The conjugates of $A$ (and $B$ ) are called
the unipotent subgroup of the rank one group $X$ and the conjugates of
$H=N_{X}(A)\cap N_{X}(B)$ will be called the diagonal subgroups. If $A$ is
abelian $X$ is called a rank one group with abelian unipotent subgroups,
abbreviated AUS. Moreover, if for each $a\in A^{\neq}$ and $b\in B^{\not\simeq\neq}$ which
satisfy $(*)$ above, also

$(**)$ $a^{b}=b^{-a}(=(b^{-1})^{a})$

holds, $X$ is called a special rank one group.

Rank one groups with abelian unipotent subgroups played a fundamental
role in the theory of “abstract root subgroups” [Til]. Indeed by (3.18) (3)
and (4.15) of [Til] all rank one $\Sigma$-subgroups occurring in a group gener-
ated by a class $\Sigma$ of abstract root subgroups of “higher rank” are special.
A theory of arbitrary rank one groups was developed in \S 2 of [Ti2]. In
both papers one is not able to say very much about the structure of rank
one groups, but one has to live with properties of such groups.

By Proposition (2.1) of [Ti2] the following are equivalent:

(i) $ X=\langle A, B\rangle$ is a rank one group.

Received March 15, 1999.
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(ii) The group $Y$ is doubly transitive on a set $\Omega$ with $|\Omega|\geq 3$ , such
that for some $\alpha\in\Omega$ , $Y_{cx}$ contains a nilpotent normal subgroup
$A=A_{\alpha}$ which is regular on $\Omega\backslash \{\alpha\}$ and $ X=\langle A^{g}|g\in Y\rangle$ .

Namely if $ X=\langle A, B\rangle$ is a rank one group one may set $\Omega=A^{X}$ and
$Y=X$ . Then it is easy to see that $Y$ satisfies (ii). The reverse direction
is also immediate. This shows that the notion of rank one groups and
groups with a split $BN$-pair of rank one are equivalent. (Since $N_{X}(A)=$

$AH$ , $A\cap H=1$ , $X$ has a split $BN$-pair of rank one!)

Moreover, if $ X=\langle A, B\rangle$ is a rank one group, for given $a\in A^{\neq}$ the ele-
ment $b\in B^{\neq\neq}$ satisfying $A^{b}=B^{a}$ is by (2.2) of [Ti2] uniquely determined
and so will be called $b(a)$ . Further, if for given $b\in B^{\neq}$ we call $a(b)$ the
unique element of $A^{\neq\neq}$ satisfying $B^{a(b)}=A^{b}$ , then the maps

$a\rightarrow b(a)$ , $b\rightarrow a(b)$

are bijections of $A^{\not\simeq\neq}$ onto $B^{\neq}$ resp. $B^{\neq}\rightarrow A^{\not\simeq\neq}$ . If we denote by $\chi$

both maps, then $\chi$ is a bijection of $A^{\not\simeq\neq}$ onto $B^{\neq}$ , $B^{\neq}$ onto $A^{\neq}$ satisfying
$\chi^{2}=id$ and

$A^{\chi(a)}=B^{a}$ , $A^{b}=b^{\chi(b)}$ for all $a\in A^{\#}$ , $b\in B^{\neq\neq}$ .

With this notation we can formulate the main results of this note:

Theorem 1. Let X $=\langle A, $B\rangle be a special rank one group with A US.
Then the following hold:

(a) Either
(i) $A$ is an elementary abelian $p$ -group for some prime $p$ .

or (ii) $A$ is torsionfree and divisible.
(b) For all $a\in A^{\neq}and$ $b\in B^{\neq}we$ have

$a^{1/n}=\chi(\chi(a)^{n})$ , $b^{1/n}=\chi(\chi(b)^{n})$

where in case (i) $n\in 1N$ with $(p, n)=1$ , while in (ii) $n\in]N$ is
arbitrary.

{Here $a^{1/r\iota}$ denotes the unique $\overline{a}\in A$ with $\overline{a}^{n}=a!$ )

Theorem 2. Let X $=\langle A, $B\rangle be a special rank with A US. Then one of
the following holds:

(a) If $A$ is an elementary abelian $p$ group, then $\langle a,b(a)\rangle\simeq(P)SL_{2}(p)$

for each $a\in A^{\neq\neq}(and$ of course also $\langle b, a(b)\rangle\simeq(P)SL_{2}(p)$ , $ b\in$

$B^{\neq}!)$
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(b) If $A$ is torsionfree and divisible, $a\in A^{\not\simeq\neq}and$ $b=\chi(a)\in B^{\neq}set$

$A(a)$ $=$ $\{a^{m/n}|m, n\in \mathbb{Z}, n\neq 0, a^{0}=1\}$

$B(b)$ $=$ $\{b^{m/n}|m, n\in \mathbb{Z}, n\neq 0, b^{0}=1\}$

( $a^{m/n}$ is well-defined by $a^{m/n}=(a^{1/n})^{m}$ and Theorem 1). TAen
$A(a)\simeq(Q, +)\simeq B(b)$ and $ X(a)=\langle A(a), B(b)\rangle$ is a factor group

of the universal perfect central extension of $SL_{2}(Q)$ .

Here $(P)SL_{2}$ denotes any center factor group of $SL_{2}$ . It will be shown in

\S 2 that the universal perfect central extension of $SL_{2}(k)$ , $k$ a field with
$|k|>4$ and $|k|\neq 9$ , is a special rank one group with AUS. So in some
sense, theorem 2 is the best possible. On the other hand, as the large
list of examples in \S 2 shows, it seems unlikely that one can determine
the exact structure (isomorphism type) of arbitrary special rank one
groups with AUS, also there are some results in this direction under
additional hypotheses, (i.e. $A$ acts quadratically on some $\mathbb{Z}X$-module,
see Theorem 1 of [Ti3] $)$ . Since arbitrary rank one groups occur in many
situations in group theory, for example as classical groups of Witt-index
1, see [Ti2, (2.15)], or as a subgroup generated by two opposite root-
subgroups on a Moufang building, see [Ti2, (2.12)], and since there is
a connection between arbitrary rank one groups and special rank one
groups with AUS (i.e. conditions under which $\langle Z(A), Z(B)\rangle$ is special
[Ti2, (2.9)] $)$ , I believe that any result on the structure of special rank
one groups is of interest.

\S 2. Examples and known properties of rank one groups

In this section we discuss certain examples of special rank one groups
and state, for the convenience of the reader, basic properties which will
be needed for the proof of theorem 1 and 2. These results are, with
exception of (2.3), contained in \S 2 of [Til] and [Ti2].

(2.1) Example ([Til, (2.2)]). Let R be a ring with one element 1 and
L $\subseteq R$ satisfying:

(1) $1\in L$ and $L$ is an additive subgroup of $R$ .

(2) All elements of $L^{*}$ are units of $R$ and $L^{*}$ is closed under inverses.
(3) If $t$ , $c\in L$ , then $tct\in L$ .
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Let $A=$ $\{\left(\begin{array}{ll}1 & \\c & 1\end{array}\right)|c\in L\}$ , $B=$ $\{\left(1 & c1\right)|c\in L\}$ and $ X=\langle A, B\rangle$

(considered as subgroup of $GL_{2}(R)!$ ). Then $X$ is a special rank one
group with AUS. Further, if $|L|>3$ , then $X$ is quasisimple. Abusing
notation we call this group $SL_{2}(L)$ .

A concrete example is given by: $R$ a division ring, $\sigma$ an antiautomor-
phism and $L=\{c\in R|c=c^{\sigma}\}$ .

(2.2) Example ([Ti3]). Let $K$ be a division ring or a Cayley division
algebra, $V=K^{2}$ and $X=SL_{2}(K)$ be the subgroup of Aut (V) generated
by the maps $a(t)$ , $b(t)$ , $t\in K$ that act on $V$ as follows:

$(c, d)^{a(t)}=(c+dt, d)$ ; $(c, d)^{b(t)}=(c, ct+d)$ .

Then $X$ is a special rank one group with AUS with unipotent subgroups
$A=\{a(t)|t\in K\}$ and $B=\{b(t)|t\in K\}$ . Further, if $|K|>3$ , then $X$

is quasisimple.
(If $L\subseteq K$ satisfying (1) - (3) of (2.1) one obtains similar examples as in
(2.1). These will be contained in a forthcoming book of the author on
“Abstract root subgroups”.)

(2.3) Example. Let $k$ be a field with $|k|>4$ and $|k|\neq 9$ and let $X$

be the universal perfect central extension of $SL_{2}(k)$ in the sense of [St].
Then, by theorem 10 of [St], $X$ is the group generated by symbols

$a(t)$ , $b(t);t\in k$

subject to the relations:

(A) $a(t)a(\tau)=a(t+\tau)$ , $b(t)b(\tau)=b(t+\tau);t$ , $\tau\in k$ .

(B) $a(u)^{n(t)}=b(-t^{-2}u);u\in k$ and $t\in k^{*}$

where $n(t)=a(-t)b(t^{-1})a(-t)$ .

( $n(t)$ is defined slightly different as in \S 6 of [St]. This is necessary since
we conjugate in the usual group-theoretic fashion, i.e. $x^{y}=y^{-1}xy.$ )

Now it is easy to see that the relations (A) $+(B)$ are equivalent to (A)
$+(B’)$ , where

$(B’)a(u)^{b(t^{-1})}=b(-t^{-2}u)^{a(t)}$ ; $u\in k$ , $t\in k^{*}$ .

If now $t\in k^{*}$ is fixed, then $k=\{-t^{-2}u|u\in k\}$ , whence

$A^{b(t^{-1})}=B^{a(t)}$ for $A=\{a(u)\}$ , $B=\{b(u)\}$ .

Further

$a(t)^{b(t^{-1})}=b(-t^{-1})^{a(t)}=(b(t^{-1}))^{-a(t)}$ .
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Hence, setting $b(a(t)):=b(t^{-1})$ , it follows that $X$ is a special
rank one group with AUS.

Notice that if $|k|=\infty$ usually $X$ is different from $SL_{2}(k)$ , see \S 7 of [St].

For the rest of this section we assume that $ X=\langle A, B\rangle$ is a special rank
one group with AUS. We state some properties of such an $X$ , which will
be needed for the proof of theorem 1 and 2.

(2.4) Let $\Omega=A^{X}$ . Then $ X=\langle C, D\rangle=\langle C, d\rangle$ for all $ C\neq D\in\Omega$ and
$d\in D^{\not\simeq\neq}$ . Further $N_{C}(D)=1$ .

(2.5) For $a\in A^{\neq\neq}$ and $b\in B^{\neq}$ one has

$\chi(a^{-1})=\chi(a)^{-1}$ , $\chi(b^{-1})=\chi(b)^{-1}$ .

(2.6) Let $N\underline{\triangleleft}X$ . Then either $N\leq Z(X)$ or $X=NA$ . Especially $X$ is
quasisimple if $X=X’$ . Moreover, $X$ is not nilpotent.

These results are contained in \S 2 of [Til]. Notice that, together with
theorem 2, (2.6) implies that $X$ is quasisimple, except when $p\leq 3$ in
case (a) (i) of theorem 1. Now by (2.10) and (2.12) of [Til] we have

(2.7) One of the following holds:

(a) $X\simeq SL_{2}(2)$ or $X\simeq(P)SL_{2}(3)$ .

(b) $X=X’A$ , $X’$ quasisimple and $|[A, H]|>3$ .

Actually I believe that either case (a) of (2.7) holds or $X$ is quasisimple.
A proof of this would simplify the known simplicity proofs for classical
and Lie-type groups, which are not defined over $GF(2)$ or $GF(3)$ . (See
Theorem (3.17) of [Til]!)

\S 3. Proof of theorem 1

Assume in this section that $ X=\langle A, B\rangle$ is a special rank one group
with AUS with unipotent subgroups $A$ and $B$ . For each $ n\in$ ]$N$ let
$A_{n}=\{a\in A|a^{n}=1\}$ and $A^{n}=\{a^{n}|a\in A\}$ and similarly $B_{n}$ , $B^{n}$ .

If for some $a\in A^{\neq}$ there exists a unique $\overline{a}\in A^{\not\simeq\neq}$ with $\overline{a}^{n}=a$ we write
$\overline{a}=a^{1/n}$ and similarly for $b\in B^{\neq}$ . We first show:

(3.1) Suppose there exists an $a\in A$ with $a^{2}\neq 1$ . Then the following
hold:

(a) $A_{2}=1$ and $A=A^{2}$ .
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(b) For each $a\in A^{\neq\neq}$ and $b\in B^{\neq}$ we have

$a^{1/2}=\chi(\chi(a)^{2})$ , $b^{1/2}=\chi(\chi(b)^{2})$ .

( $\chi$ as defined in the introduction. Notice that $A$ and $B$ are conjugate in
$X$ , so (a) also holds for $B!$ )

Proof. It suffices to prove (b) only for $a\in A^{\not\simeq\neq}$ , since then it holds
by symmetry also for $b\in B^{\neq\neq}$ .

Pick $a\in A^{\not\simeq\neq}$ with $a^{2}\neq 1$ and set $b=\chi(a)$ . Then, as $a^{b}=b^{-a}$ we
have $o(b)=o(b^{-1})=o(a)\neq 2$ . Hence there exists a unique $\overline{a}\in A$ with
$A^{b^{2}}=B^{\overline{a}}$ . This implies $b^{2}=\chi(\overline{a})$ and, since $X$ is special,

$\overline{a}^{b^{2}}=(b^{2})^{-\overline{a}}$ .

Further by (2.5)

$b^{-2}=(b^{2})^{-1}=\chi(\overline{a})^{-1}=\chi(\overline{a}^{-1})$

so that $B^{\overline{a}^{-1}}=A^{b^{-2}}$ . Now

$B^{\overline{a}}$

$=$ $(A^{b})^{b}=B^{ab}=B^{a^{b}}=B^{(b^{-1})^{a}}=B^{a^{-1}b^{-1}a}$

$=$
$A^{b^{-1}b^{-1}a}=A^{b^{-2}a}=B^{\overline{a}^{-1}a}$ ,

since by (2.5) $b^{-1}=\chi(a^{-1})$ . We obtain $B^{\overline{a}^{2}a^{-1}}=B$ . Hence $\overline{a}^{2}a^{-1}\in$

$N_{A}(B)$ and thus $\overline{a}^{2}=a$ by (2.4). Since $\overline{a}=\chi(b^{2})$ (as $\chi^{2}=id!$ ) we
obtain the equation:

$(*)$ $a=\chi(\chi(a)^{2})^{2}$ for each $a\in A^{\neq\neq}$ with $a^{2}\neq 1$ .

Now $(*)$ shows that each element of $A$ with $a^{2}\neq 1$ is a square in $A$ .

This implies $A=A_{2}\cup A^{2}$ . Since no group is the union of two proper
subgroups this implies $A=A^{2}$ .

Suppose $\overline{a}\in A^{\neq\neq}$ has even order. If $o(\overline{a})\neq 2$ , then there exists by $(*)$ an
$\overline{a}\in A$ with $\overline{a}^{2}=\overline{a}$ and $\overline{a}=\chi(\chi(\overline{a}^{2}))$ . Since the elements $a$ and $\chi(a)^{-1}$

are conjugate in $X$ by definition of $\chi$ , this implies

$o(\overline{a})=o(\chi(\overline{a}^{2}))=o(\overline{a})^{2}$ ,

which obviously contradicts $\overline{a}^{2}=\overline{a}$ .
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This shows that each element of even order in $A^{\not\simeq\neq}$ has order 2. But as
$A^{2}=A$ , this implies that there exists no element of order 2 in $A$ , whence
$A_{2}=1$ which proves (a).

Now (a) and $(*)$ imply that $\hat{a}=\chi(\chi(a)^{2})$ is the unique element of $A$

with $\hat{a}^{2}=a$ . Hence by definition $\hat{a}=a^{1/2}=\chi(\chi(a)^{2})$ , which proves
(3.1). Q.E.D.

Next we show

(3.2) Suppose $A$ is an elementary abelian $q$-group for some prime $q$ .

Then we have for all $m\in 1N$ with $(m, q)=1$ and for all $a\in A^{\neq}$ , $b\in B^{\neq\neq}:$

$a^{1/m}=\chi(\chi(a)^{m})$ , $b^{1/m}=\chi(\chi(b)^{m})$ .

Proof. We first show, that it suffices to prove (3.2) for $m\leq q-1$ .

Namely let $m=n$ . $q+r$ , $r\leq q-1$ . Then, since $A$ and $B$ are elementary
abelian $q$-groups, we have $\chi(a)^{m}=\chi(a)^{r}$ and if $\chi(\chi(a)^{r})^{r}=a$ , then
also $\chi(\chi(a)^{m})^{m}=a$ . Hence (3.2) holds for $m$ if it holds for $r$ .

We now prove (3.2) for $m\leq q-1$ by induction on $m$ , the induction
assumption $m=2$ being (3.1). So suppose that (3.2) holds for $n<m$ .

Pick $a\in A^{\not\simeq\neq}$ and let $\overline{a}=\chi(\chi(a)^{m})$ . Then we have with $b=\chi(a)$ :

$B^{\overline{a}}=A^{b^{m}}=A^{b^{m-1}b}=B^{\chi(b^{m-1})b}=B^{a^{1/m-1}b}=B^{(a^{1/\mathfrak{m}-1})^{b}}$

since (3.2) holds for $m-1$ .

Now, as $a^{ba^{-1}}=b^{-1}$ , we have $(a^{1/m-1})^{ba^{-1}}=(b^{-1})^{1/m-1}$ , whence
$(a^{1/m-1})^{b}=((b^{-1})^{1/m-1})^{a}$ . this implies

$B^{\overline{a}}$

$=$
$B^{(a^{1/m-1})^{b}}=B^{((b^{-1})^{1/m-1})^{a}}$ $=B^{a^{-1}(b^{-1})^{1/m}}$

$=$
$A^{b^{-1}(b^{-1})^{1/m}}$ $=A^{(b^{-m})^{1/m}}$

by (2.5) and since

$b^{-1}(b^{-1})^{1/m-1}=(b^{-1)^{1+1/m-1}}=(b^{-1})^{m/m-1}=(b^{-m})^{1/m-1}$ .

Now, since $\overline{a}=\chi(b^{m})$ , (2.5) implies

$\overline{a}^{-1}=\chi(b^{m})^{-1}=\chi(b^{-m})$

and thus applying $\chi$ to this equation $b^{-m}=\chi(\overline{a}^{-1})$ . We obtain:

$(b^{-m})^{1/m-1}=\chi(\overline{a}^{-1})^{1/m-1}=\chi((\overline{a}^{-1})^{m-1})$
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by induction assumption and since $\chi^{2}=id$ . Substituting this in the
above equation, we obtain

$B^{\overline{a}a^{-1}}=A^{(b^{-m})^{1/m-1}}=A^{\chi((\overline{a}^{-1})^{m-1})}=B^{(\overline{a}^{-1})^{m-1}}$

and thus $B^{\overline{a}^{m}a^{-1}}=B$ . Hence $\overline{a}^{m}a^{-1}\in N_{A}(B)=\{1\}$ by (2.4) and
$\overline{a}^{m}=a$ . This implies $\overline{a}=a^{1/m}$ , which proves (3.2) by definition of
$\overline{a}$ . Q.E.D.

(3.2) shows that Theorem 1 holds if $A$ is an elementary abelian $q$-group
for some prime $q$ . So we assume from now on that this is not the case.
We show next:

(3.3) Let $p$ be a prime and $a\in A$ with $a^{p}\neq 1$ . Then the following holds:

(i) $A_{p}=1$ and $A=A^{p}$ , $B_{p}=1$ and $B=B^{p}$ .

(ii) For each $a\in A^{\not\simeq\neq}$ and $b\in B^{\neq}$ we have:

$a^{1/p}=\chi(\chi(a)^{p})$ , $b^{1/p}=\chi(\chi(b)^{p})$ .

Proof. If $p=2(3.3)$ is (3.1). Proceeding by induction assume that
$p$ is the smallest prime for which (3.3) is false. Then it holds for all
primes $q<p$ . In particular, we obtain:

(1) If $q<p$ is a prime, then $q/o(a)$ for all $a\in A$ .

Indeed if $q|o(a)$ for some $a\in A$ then some power of $a$ has order $q$ . But
then $A=A_{q}$ , since we assume (3.3) holds for $q$ . This contradicts the
assumption we made for the rest of section 3.

From (1) we obtain

(2) If $n\leq p-1$ then the following hold:
(i) $A_{n}=1$ and $A=A^{n}$ .

(ii) $a^{1/n}=\chi(\chi(a)^{n})$ , $b^{1/n}=\chi(\chi(b)^{n})$ for all $a\in A^{\neq\neq}$ and $ b\in$

$B^{\not\simeq\neq}$ .

Indeed (2) holds for each prime $q|n$ . Hence immediately $A=A^{n}$ and
$A_{n}=1$ . To prove (ii) let $n=q$ . $r$ , $(q, r)=1$ and $q>1$ , $r>1$ and,
proceeding by induction, we may assume that (ii) holds for $q$ and $r$ .

Pick $a\in A^{\neq\neq}$ and let $a_{1}=a^{1/r}$ , $a_{2}=a_{1}^{1/q}$ . Then

$a_{2}^{n}=a_{2}^{qr}=a_{1}^{r}=a$ .

Further, by induction assumption:

$a_{1}=\chi(\chi(a)^{r})$ and $a_{2}=a_{1}^{1/q}=\chi(\chi(a_{1})^{q})$ .
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This implies

$a^{1/n}$
$=$ $a_{1}^{1/q}=\chi(\chi(a_{1})^{q})=\chi(\chi(a^{1/r})^{q})$

$=$ $\chi((\chi(a)^{r})^{q})=\chi(\chi(a)^{rq})=\chi(\chi(a)^{n})$

since $\chi^{2}=id$ .

We now lead the existence of $p$ to a contradiction. Let $a\in A$ with
$a^{p}\neq 1$ . Then by $(2)(ii)a^{p-1}\neq 1$ and $a^{1/p-1}=\chi(\chi(a)^{p-1})$ . Now we
argue as in the proof of (3.2). Let $\overline{a}=\chi(\chi(a)^{p})$ . (Since $a$ and $\chi(a)^{-1}$

are conjugate, also $\chi(a)^{p}\neq 1!)$ Then we have for $b=\chi(a)$ :

$B^{\overline{a}}$

$=$
$A^{b^{p}}=A^{b^{p-1}b}=B^{a^{1/p-1}b}=B^{(a^{1/p-1})^{b}}$

$=$
$B^{(b^{-1/p-1})^{a}}$ $=B^{a^{-1}b^{-1/p}}$ $=A^{b^{-1}b^{-1/p}}$

$=$
$A^{(b^{-1})^{p/p}}$ $=A^{(b^{-p})^{1/p}}$

Hence $B^{\overline{a}a^{-1}}=A^{(b^{-p})^{1/p-1}}$ Now arguing as in (3.2) $\overline{a}=\chi(b^{p})$ implies
by (2.4)

$\overline{a}^{-1}=\chi(b^{p})^{-1}=\chi(b^{-p})$

and so, since $\chi^{2}=id$

$\chi(\overline{a}^{-1})=b^{-p}$ .

Now by (2) (ii) applied to $\chi(\overline{a}^{-1})$ we obtain:

$(b^{-p})^{1/p-1}=\chi(\overline{a}^{-1})^{1/p-1}=\chi((\overline{a}^{-1})^{p-1})$ .

Substituting this in the above equation we get

$B^{\overline{a}a^{-1}}=A^{\chi((\overline{a}^{-1})^{p-1})}=B^{(\overline{a}^{-1})^{p-1}}$

Hence $B^{\overline{a}^{p}a^{-1}}=B$ and $\overline{a}^{p}=a$ by (2.4). This shows that we have:

$(*)$ $\chi(\chi(a)^{p})^{p}=a$ for all $a\in A^{\#}$ with $a^{p}\neq 1$ .

Next we show, as in the proof of (3.1), that if $p|o(a)$ for some $a\in A^{\not\simeq\neq}$ ,

then $o(a)=p$ . Namely if $o(a)\neq p$ then $(*)$ holds for $a$ . But since $a$

and $\chi(a)^{-1}$ are conjugate we have $o(a)=o(\chi(a))$ and thus by the same
argument

$o(\chi(\chi(a)^{p})=o(\chi(a)^{p})=\frac{o(a)}{p}$ ,
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which obviously contradicts $(*)$ . This shows that each $a\in A^{\neq}$ with
$o(a)\neq p$ satisfies $(o(a),p)=1$ and thus is a $p$-power. Hence $A=A_{p}\cup A^{p}$

and so as in (3.1) $A=A^{p}$ . If now $\overline{a}\in A$ has order $p$ , then because of
$A=A^{p}$ we know that $\overline{a}$ is a $p$-th power. But this is impossible since
each element whose order is divisible by $p$ has order $p$ . Thus $A_{p}=1$

and (3.3)(i) holds. But then $a^{1/p}$ exists for each $a\in A^{\neq\neq}$ and $(*)$ implies
$a^{1/p}=\chi(\chi(a)^{p})$ which proves (3.3). Q.E.D.

Now (3.3) implies that $A_{p}=1$ and $A=A^{p}$ for each prime $p$ . Namely
if $A_{p}\neq 1$ , then $A=A_{p}$ by (3.3) contradicting our assumption. This
shows that $A$ is torsionfree and divisible by each prime $p$ , whence it is
divisible. Now it follows from (3.3)(ii) with the same argument as in the
proof of $(2)(ii)$ that

$a^{1/n}=\chi(\chi(a)^{n})$ for each $a\in A^{\not\simeq\neq}$ and $n\in 1N$ .

Hence Theorem 1 holds. Q.E.D.

\S 4. Proof of theorem 2.

Pick $a\in A^{\neq}$ and set $b=\chi(a)$ . If $A$ is an elementary abelian $p$-group,
set

$A_{0}=\{a^{m}|m\leq p\}$ and $B_{0}=\{b^{m}|m\leq p\}$

while in case $A$ is torsionfree and divisible set $A_{0}=\{a^{m/n}|m$ , $ n\in$

$\mathbb{Z}$ , $n\neq 0\}$ with the convention $a^{0}=1$ and similarly $B_{0}$ . We treat both
cases (a) and (b) of theorem 2 together, with the convention that, if $A$ is
an elementary abelian $p$-group, all exponents $m$ , $n$ , $\ell$ , $k$ occurring in the
proof are elements of $\mathbb{Z}_{p}$ . Then by definition of $(\overline{a})^{1/n}$ , $\overline{a}\in A^{\not\simeq\neq}$ we have

$(a^{m})^{1/n}=a^{m/n}=(a^{1/n})^{m}$ , $n\neq 0$ .

Hence
$(a^{\ell/m}\cdot a^{k/n})^{mn}=a^{\ell n}\cdot a^{km}=a^{\ell n+kn}$

for $m\neq 0\neq n$ and thus:

$a^{\ell/m}\cdot a^{k/n}=(a^{\ell n+kn})^{1/mn}=a^{\frac{\ell n+kn}{mn}}=a^{\ell/m+k/n}$ .

This implies that the map $\sigma$ : $l/m\rightarrow a^{\ell/m}$ is an isomorphism of $(Q, +)$

(resp. ( $\mathbb{Z}_{p},$ $+$ )) onto $A_{0}$ . We next show that:

$(*)$ $\chi(a^{m/n})=b^{n/m}$ for all $n\neq 0\neq m$ .
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Now to prove $(*)$ it suffices to show that:

$\chi(\overline{a}^{m})=\chi(\overline{a})^{1/m}$

$(+)$ for all $\overline{a}\in A^{\neq\neq}$ and $m\neq 0$ .
$\chi(\overline{a}^{1/m})=\chi(\overline{a})^{m}$

Indeed if these equations hold, then

$\chi(a^{m/n})$ $=$ $\chi((a^{1/n})^{m})=\chi(a^{1/n})^{1/m}=(\chi(a)^{n})^{1/m}$

$=$ $\chi(a)^{n/m}=b^{n/m}$ .

Now, as $\chi^{2}=id$ , the second equation in $(+)$ is a consequence of part
(b) of theorem 1. Let $\overline{b}=\chi(\overline{a})$ . Then also by theorem 1

$\chi(\overline{a})^{1/m}=\overline{b}^{1/m}=\chi(\chi(\overline{b})^{m})=\chi(\overline{a}^{m})$ .

Hence $(*)$ holds, which shows that $\chi$ induces a bijection of $A_{0}^{\#}$ onto
$B_{0}^{\#}$ (and also $B_{0}^{\#}$ onto $A_{0}^{\#}$ ). Now for $\lambda=m/n$ , $n\neq 0$ set $a(\lambda)=$

$a^{m/n}$ and $b(\lambda)=b^{m/n}$ . Then the group $ X_{0}=\langle A_{0}, B_{0}\rangle$ is generated by
elements $a(\lambda)$ , $b(\lambda)$ where $\lambda\in q$ (resp. $\lambda\in \mathbb{Z}_{p}$ ). Further, since $\sigma$ is
an isomorphism, the relations (A) of (2.3) are satisfied. Hence to prove
theorem 2, it suffices to show that also the relations $(B’)$ are satisfied.

(We may assume $p>3$ , since otherwise $A_{0}^{\#}=\{a, a^{-1}\}$ , $B_{0}^{\#}=\{b, b^{-1}\}$ ,

whence $\{A_{0}\}\cup B_{0}^{A_{0}}$ is $X_{0}$-invariant.)

Now $(*)$ can be expressed as:

$(**)$ $\chi(a(\lambda))=b(\lambda^{-1})$ , $\lambda\in\Phi^{*}$ resp. $\mathbb{Z}_{p}^{*}$ .

Hence we have

$a(\lambda)^{b(\lambda^{-1})}=a(\lambda)^{\chi(a(\lambda))}=b(\lambda^{-1})^{-a(\lambda)}$ for all $\lambda\neq 0$ .

Now let $\lambda=n/m$ and $\mu=r/s$ with $n\neq 0\neq m$ and $r\neq 0\neq s$ . Then
$a(\lambda)=a(\mu)^{sn/rm}$ . Hence we obtain:

$a(\lambda)^{b(\mu^{-1})}$ $=$ $(a(\mu)^{sn/rm})^{b(\mu^{-1})}=(b(\mu^{-1})^{-a(\mu)})^{sn/rm}$

$=$ $(b(-\mu^{-1})^{sn/rm})^{a(\mu)}=((b^{-1})^{s^{2}n/r^{2}m})^{a(\mu)}$

$=$ $b(-\frac{\lambda}{\mu^{2}})^{a(\mu)}$ ,

Since as shown in the proof of (3.2) we have for all $\overline{a}\in A^{\neq}:$

$(\overline{a}^{m/n})^{b(\overline{a})}=(\overline{a}^{b(\overline{a})})^{m/n}$ , $m\neq 0\neq n$ .
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This shows that the relations $(B’)$ are also satisfied which proves theorem
2. Q.E.D.
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Principal blocks with extra-special

defect groups of order 27

Yoko Usami

\S 1. Introduction

Let $G$ be a finite group and $p$ be a prime number. Let $b$ be a p-
block of $G$ , $P$ be a defect group of $b$ and $k(b)$ (respectively, $l(b)$ ) be
the number of irreducible ordinary characters (respectively, irreducible
Brauer characters) in $b$ . Suppose that

two blocks $b$ and $b’$ of fifinite groups $G$ and $G’$ respectively,
(1) have the common defect group $P$ and their Brauer cate-

gories BrbiP(G) and $Br_{b’,p}(G’)$ are equivalent.

(See [FH] for Brauer categories.) When we consider only principal p-
blocks, their defect groups are Sylow $p$-subgroups and having the same
Brauer category is equivalent to having the same $p$-local structure. See
the definition in section 4 in [R] : Finite groups $G$ and $H$ have the
same $p$-local structure if they have a common Sylow $p$-subgroup $P$ such
that whenever $Q_{1}$ and $Q_{2}$ are subgroups of $P$ and $f$ : $Q_{1}\rightarrow Q_{2}$ is an
isomorphism, then there is an element $g\in G$ such that $f(x)=x^{g}$ for all
$x\in Q_{1}$ if and only if there is an element $h\in H$ such that $f(x)=x^{h}$ for
all $x\in Q_{1}$ .

Under condition (1) there is a question whether we have

(2) $k(b)=k(b’)$ and $l(b)=l(b’)$

or not. We have a following conjecture.

Conjecture 1. When b and $b’$ are principal blocks satisfying con-
dition (1), the equalities in (2) hold.

When $P$ is an abelian group, it is known that a block $b$ of $G$ and its
Brauer correspondent $Br_{P}(b)$ in $N_{G}(P)$ have the same Brauer category
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(Proposition 4.21 in [AB]), and Brou\’e conjectured that they are derived
equivalent (respectively, isotypic). See Conjecture 6.1 and Question 6.2
in [Br2]. Note that each of these conjectures implies that we have

(3) $k(b)=k(Br_{P}(b))$ and $l(b)=l(Br_{P}(b))$

for any block $b$ with abelian defect group $P$ . As is stated in [Br2] Brou\’e’s

conjectures above do not necessarily hold when $P$ is not an abelian
group. The principal 2-block $b$ of any one of Suzuki groups $Sz(q)$ and its
Brauer correspondent have the same Brauer category (actually, fusion
of $P$ is controlled by its normalizer, since Sylow 2-subgroups are $T.I$ .

sets), but they are not derived equivalent nor isotypic ; nevertheless (3)
holds for them (cf. Consequences 5 and 7 in [A]). Here we have to add
one more remark. M. Kiyota pointed out that a semidirect product of
an elementary abelian 3-group $Z_{3}\times Z_{3}$ of order 9 by a quaternion group
of order 8 whose unique involution acts on $Z_{3}\times Z_{3}$ trivially, has only two
3-blocks (i.e. the principal block $b_{0}$ and the other block $b_{1}$ ) and their
Brauer categories are equivalent to each other but we have $l(b_{0})\neq l(b_{1})$ .

In this paper we fix $P$ as an extra-special group of order 27 and
of exponent 3, and consider principal 3-blocks $b$ having $P$ as a de-
fect group and check Conjecture 1. Note that in this case having the
same Brauer category implies having the same inertial quotient $E(=$

$N_{G}(P)/PC_{G}(P)$ here) and the same fusion of $P$ . At any rate, using the
classification of finite simple groups, we determine $k(b)$ , $l(b)$ and $k_{0}(b)$

completely and proves that Conjecture 1 is true for such blocks, and
consequently we prove that Dade’s conjecture of ordinary form holds for
$b$ . (Here $k_{0}(b)$ is the number of irreducible ordinary characters in $b$ of
height zero.)

When the author visited l’Universit\’e Paris 7, Lluis Puig suggested
an idea of using his construction of characters as functions on local
pointed elements which can be found in Corollary 4.4, Theorem 5.2 and
Theorem 5.6 in [P]. The author uses his idea to prove Theorem 1 below.

In the following we denote a cyclic group of order $m$ by $Z_{m}$ , a
quaternion group of order 8 by $Q_{8}$ , a dihedral group of order 8 by $D_{8}$

and a semidihedral group of order 16 by $SD_{16}$ respectively.

Theorem 1. Let $b$ be the principal 3-block of $a$ fifinite group $G$ with
an extra-special defect group $P$ of order 27 and of exponent 3. Let $E$

be the inertial quotient of $b(i.e. E=N_{G}(P)/PC_{G}(P))$ and let $u$ be $a$

non-trivial element in $Z(P)$ . Then we have the following.

(1) When $N_{G}(P)\subseteq C_{G}(Z(P))$ , fusion of $P$ in $G$ is controlled by
$N_{G}(P)$ and one of the following holds :
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(i) If $E=1$ , then $b$ is 3-nilpotent, $k(b)=11$ , $k_{0}(b)=9$ and
$l(b)=1$ .

(ii) If $E\cong Z_{2}$ , then $k(b)=10$ , $k_{0}(b)=6$ and $l(b)=2$ . ( In this
case $E$ acts on $P/Z(P)$ fifixed-point-freely. )

(iii) If $E\cong Z_{4}$ , then $k(b)=14$ , $k_{0}(b)=6$ and $l(b)=4$ .

(iv) If $E\cong Q_{8}$ , then $k(b)=16$ , $k_{0}(b)=6$ and $l(b)=5$ .

(2) When $N_{G}(P)\not\in C_{G}(Z(P))$ , $E$ is isomorphic with either $Z_{2}$ , $ Z_{2}\times$

$Z_{2}$ , $Z_{8}$ , $D_{8}$ or $SD_{16}$ and we have an estimate of $k(b)$ as below
according to $E$ and the number of conjugacy classes of elements

of order 3. When $E\cong Z_{2}$ , $E$ does not act on $P/Z(P)$ fifixed-point-
freely. In each case $k(b)-l(b)$ takes a constant value. When
$E\cong Z_{8}$ , each case is further divided into two subcases according
to fusion of a basic set of $C_{G}(u)$ in the extended centralizer
$C_{G}^{*}(u)$ ($=\{g\in G|u^{g}=u$ or $u^{-1}\}$ ). The subcase where each
element of a basic set of $C_{G}(u)$ is fifixed by $C_{G}^{*}(u)$ corresponds
to subcase 1. Otherwise it is subcase 2.

(i) Suppose that $E\cong Z_{2}$ .
$(i)-(1)$ If fusion of $P$ is controlled by $N_{G}(P)$ , then $P-\{1\}$

consists of 6 classes and $k(b)-l(b)=8$ and $k(b)=$

$10$ .
$(i)-(2)$ Otherwise, $P-\{1\}$ consists of 5 classes and $k(b)-$

$l(b)=7$ and $9\leq k(b)\leq 11$ .

(ii) Suppose that $E\cong Z_{2}\times Z_{2}$ . Then one of the following holds.
$(ii)-(1)$ If fusion of $P$ is controlled by $N_{G}(P)$ , then $P-\{1\}$

consists of 4 classes and $k(b)-l(b)=7$ and $k(b)=11$ .

$(ii)-(2)P-\{1\}$ consists of 3 classes, $k(b)-l(b)=5$ and
$8\leq k(b)\leq 11$ .

$(ii)-(3)P-\{1\}$ consists of 3 classes, $k(b)-l(b)=6$ and
$10\leq k(b)\leq 12$ .

$(ii)-(4)P-\{1\}$ consists of 2 classes, $k(b)-l(b)=4$ and
$7\leq k(b)\leq 12$ .

$(ii)-(5)P-\{1\}$ consists of 2 classes, $k(b)-l(b)=3$ and
$6\leq k(b)\leq 11$ .

$(ii)-(6)P-\{1\}$ consists of 1 class, $k(b)-l(b)=2$ and $ 5\leq$

$k(b)\leq 18$ .

(iii) Suppose that $E\cong Z_{8}$ .
$(iii)-(1)$ If fusion of $P$ is controlled by $N_{G}(P)$ , then $P-\{1\}$

consists of 2 classes and $k(b)-l(b)=5$ . In subcase
1, $8\leq k(b)\leq 14$ . In subcase 2, $8\leq k(b)\leq 12$ .

$(iii)-(2)$ Otherwise, $P-\{1\}$ consists of 1 class and $k(b)-$

$l(b)=4$ . In subcase 1, $8\leq k(b)\leq 18$ . In subcase
2, $7\leq k(b)\leq 15$ .
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(iv) Suppose that $E\cong D_{8}$ . Then one of the following holds.
$(iv)-(1)$ If fusion of $P$ is controlled by $N_{G}(P)$ , then $P-\{1\}$

consists of 3 classes, $k(b)-l(b)=8$ and $k(b)=13$ .

$(iv)-(2)P-\{1\}$ consists of 2 classes, $k(b)-l(b)=6$ and
$9\leq k(b)\leq 13$ .

$(iv)-(3)P-\{1\}$ consists of 1 class, $k(b)-l(b)=4$ and $ 7\leq$

$k(b)\leq 15$ .

(v) Suppose that $E\cong SD_{16}$ .

$(v)-(1)$ If fusion of $P$ is controlled by $N_{G}(P)$ , then $P-\{1\}$

consists of 2 classes, $k(b)-l(b)=7$ and $ 10\leq k(b)\leq$

$15$ .

$(v)-(2)$ Otherwise, $P-\{1\}$ consists of 1 class, $k(b)-l(b)=5$

and $7\leq k(b)\leq 14$ .

Using the classification of finite simple groups we obtain the follow-
ing theorem. As is well known, we can assume that $O_{p’}(G)=1$ when we
treat the principal $p$-block of $G$ .

Theorem 2. (Using the classifification of fifinite simple groups.) Let
$G$ be $a$ fifinite group with $O_{3’}(G)=1$ having an extra-special Sylow 3-
subgroup $P$ of order 27 and of exponent 3. Let $M$ be a minimal normal
subgroup of G. Then one of the following holds :

(i) $M$ $\cong Z_{3}$ and $Z(P)$ is a normal subgroup of $G$ and fusion of
$P$ in $G$ is controlled by $N_{G}(P)$ . As for the principal3-block
$b$ , $k(b)$ and $l(b)$ are uniquely determined according to its inertial
quotient.

(ii) $M$ $\cong Z_{3}\times Z_{3}$ and $G/M$ is embedded in $GL(2,3)$ . In particular,
$G$ is 3-solvable.

(iii) $M\cong PSL(3, q)$ where $q\equiv 4,7(mod 9)$ . Furthermore we have

$PGL(3, q)\subseteq G\subseteq Aut(PSL(3, q))$

(iv) $M\cong PSU(3, q^{2})$ where $q\equiv 2,5(mod 9)$ . Furthermore we have

$PGU(3, q^{2})\subseteq G\subseteq Aut(PSU(3, q2))$ .

(v) $M\cong M_{24}$ , $Ru$ or $J_{4}$ . Furthermore $G=M$ .

(vi) $M$ $\cong PSL(3,3)$ , $PSU(3,3^{2})$ , $2F_{4}(2)’$ , $M_{12}$ , $J_{2}$ or He. Further-
more $G=M$ or $Aut(M)$ .

(vii) $M$ $\cong G_{2}(q)$ where $q\equiv 2,4,5,7(mod 9)$ . Furthermore $M$ $\subseteq G\subseteq$

$Aut(M)$ .

(viii) $M\cong^{2}F_{4}(q)$ where $2^{2m+1}=q\equiv 2,5(mod 9)$ . Furthermore $M$ $\subseteq$

$G\subseteq Aut(M)$ .
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The number $k(b)$ in case of $N_{G}(P)\subseteq C_{G}(Z(P))$ (see Theorem 1 (2))
is uniquely determined by $E$ as follows: If $E\cong Z_{2}$ (respectively $ Z_{2}\times$

$Z_{2}$ , $Z_{8}$ , $D_{8}$ and $SD_{16}$ ), then $k(b)=10$ (respectively, 11, 13, 13 and 14).
When $N_{G}(P)\ovalbox{\tt\small REJECT} C_{G}(Z(P))$ , we have always $k_{0}(b)=9$ . Furthermore,
Dade ’s conjecture of ordinary $fo7m$ holds for $b$ in any case. The above
groups in (ii) through (viii) fall into the cases described in Theorem 1
(2) as follows. The numbers in the statements below correspond to those
in Theorem 1 (2). The semidirect product of $Z_{3}\times Z_{3}$ by $SL(2,3)$ , some
groups in (iii) above and $PGU(3, q^{2})$ . (odd order) with $q\equiv 2,5(mod 9)$

satisfy $(i)-(2)$ . The semidirect product of $Z_{3}\times Z_{3}$ by $GL(2,3)$ , all the re-
maining groups in (iii) above and $PGU(3, q2)$ . (even order) with $q\equiv 2,5$

$(mod 9)$ satisfy $(ii)-(2)$ . $PSL(3,3)$ and $M_{12}$ satisfy $(ii)-(5)$ . $PSU(3,3^{2})$

and $J_{2}$ satisfy $(iii)-(1)$ . $M_{24}$ , $Aut(M_{12})$ , $Aut(PSL(3,3))$ , He and
$Aut(He)$ satisfy $(iv)-(2)$ . $2F_{4}’(2)$ satisfifies $(iv)-(3)$ . $Aut(PSU(3,3^{2}))$ ,
$Aut(J_{2})$ and all the groups in (vii) above satisfy $(v)-(1)$ . $Ru$ , $J_{4}$ and all
the groups in (viii) above satisfy $(v)-(2)$ .

\S 2. Remarks on Theorem 1

(1) After the author obtained Theorem 1, Masao Kiyota told the
author that several years ago he already determined $k(b)$ , $k_{0}(b)$ and $l(b)$

for principal blocks $b$ when $N_{G}(P)\subseteq C_{G}(Z(P))$ by Brauer and Olsson’s
method using the orthogonality relation between columns of generalized
decomposition matrix.

(2) Outline of the proof is as follows. First, list up all possible
Brou\’e’s (or Alperin’s) conjugation families for 6-subpairs (with an aid
of 3-strongly embedded subgroups) in order to determine fusion of $ f\succ$

subpairs in $G$ ([Brl, $CP]$ ). This work means that we list up all possible
Brauer categories as in [CP]. Note that when $b$ is a principal $p$-block,
$b$-subpairs are equivalent to $p$-subgroups. Second, collect information
about blocks $b_{Q}$ such that

$(1, b)\not\leqq(Q, b_{Q})\subseteq(P, e)$ ,

where $(P, e)$ is a fixed maximal 6-subpair. Third, construct a $Z$-basis
of generalized characters in $b$ which vanish on 3-regular elements. Here
we apply L.Puig’s Theorem 5.6 in [P], where he gave some equivalent
conditions of a function on local pointed elements to be a generalized
character. Fourthly, determine the decomposition of each character in
the above $Z$-basis into irreducible characters in order to know $k(b)$ . It
is known that any irreducible character in $b$ appears in some generalized
character in this $Z$-basis. In order to determine these decompositions the
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author used a computer and also checked the elementary divisors of Car-
tan matrices by a computer. Unfortunately, when $N_{G}(P)\not\leqq C_{G}(Z(P))$ ,
we can not determine $k(b)$ uniquely. There are huge number of possible
decompositions. But, as for $k(b)$ , it seems that we can get almost the
same estimate of $k(b)$ as this by hand.

(3) When $E$ is of order 2, either $G$ has a normal subgroup of index 3,
or $G$ is a 3-solvable group of 3-length 1 by $S.D$ . Smith and $A.P$ . Tyrer’s
theorem in [ST].

\S 3. Remarks on Theorem 2

(1) Using the strong assumption that $Z(P)\triangleleft G$ , $k(b)$ in (i) is deter-
mined. Here we already use the classification of finite simple groups to
determine the number of irreducible ordinary characters in the principal
3-block with an elementary abelian defect group of order 9 and with the
cyclic inertial quotient of order 8.

(2) If $G$ is a 3-solvable group with $O_{3’}(G)=1$ and has an extra-
special Sylow 3-subgroup of order 27 and of exponent 3, then $G$ is com-
pletely determined, that is, either the semidirect product of $P$ and a
group $E$ isomorphic with 1, $Z_{2}$ , $Z_{2}\times Z_{2}$ , $Z_{4}$ , $Q_{8}$ , $D_{8}$ , or $SD_{16}$ or
the semidirect product of $Z_{3}\times Z_{3}$ by $SL(2,3)$ or $GL(2,3)$ (with faithful
actions), (cf. Proposition 53.4 in [Ka] or [Ko]).

(3) It is not easy to choose the irreducible characters in $b$ among
all irreducible characters in $G$ when $G$ belongs to one of infinite series
in (iii), (iv), (vii) and (viii). Fortunately, any nonprincipal 3-block of a
simple group in these infinite series has some proper subgroup of $P$ as a
defect group. So using the estimate of $k(b)$ in Theorem 1 and the known
facts on the number of irreducible ordinary characters in other 3-blocks
and some more information about $b$ itself, we determine $k(b)$ effectively
in these cases. The author thanks Ken-ichi Shinoda and Meinolf Geek
for information about $2F_{4}(q)$ .

(4) In order to prove Dade’s conjecture in this case, we consider the
set of $G$-conjugacy classes of radical 3-chains as the disjoint union of two
subsets, one of which consists of classes of chains whose final subgroups
are defect groups of the principal blocks of the normalizers of the chains
and the other consists of the rest. There is a bijection from the former
subset to the latter given by the Brauer correspondence between the
corresponding principal blocks, sending a class of chains of length $m$

into that of length $m-1$ . Then by cancellation we get the conclusion
(cf. 2.3 in [U1]).
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\S 4. Perfect isometries and Morita equivalences

Having the same $p$-local structure does not always guarantee a de-
rived category equivalence between the principal $p$-blocks (see counter
examples in \S 1). But the author thinks that we can still expect some-
thing. Recall Brou\’e’s theorem :

Theorem 3 (Brou\’e, Theorem3.1 [Br2]). If two blocks are derived
category equivalent, then there is a perfect isometry between these blocks.

In view of this theorem, we can expect a derived equivalence between
blocks if there exists a perfect isometry between them, although it is not
proved that they are equivalent. In any case, it is meaningful to check
whether a perfect isometry exists, as the first step towards checking
the existence of a derived equivalence. The author and her student
M.Nakabayashi did it in the following cases, (cf. Theorem 2 and [N]).

Proposition 4. The groups in (i) (respectively (ii), (iii), (iv), (v),
(vi) and (vii) $)$ below have the same 3-local structure and there is a perfect
isometry between the principal3-blocks of any two of them.

(i) $PSU(3,3^{2})$ , $J_{2}$ .

(ii) $PSL(3,3)$ , $M_{12}$ .

(iii) $M_{24}$ , He, $Aut(He)$ .

(iv) $Aut(M_{12})$ , $Aut(PSL(3,3))$ .

(v) $Ru$ , $J_{4}$ .

(vi) the semidirect product of $Z_{3}\times Z_{3}$ by $SL(2,3)$ , $PGU(3, q^{2})$ with
$q\equiv 2,5(mod 9)$ , $PGL(3, q)$ with $q\equiv 4,7(mod 9)$ .

(vii) $G_{2}(q)$ with $q$ a power of 2 and $q\equiv 2,4,5,7(mod 9)$ .

Proposition 5. The groups in (i)’ (respectively (ii)’, (iii)’, (iv),
(v)’ and $(vi)’)$ have the same 3-local structure, but there is no perfect
isometry between their principal 3-blocks which sends the trivial charac-
ter to the trivial character. Here $P$ is the extra-special group of order 27
and of exponent 3.

$(i)’$ the semidirect product of $P$ by $Z_{8}$ , $PSU(3,3^{2})$ ,
(ii)’ $M_{24}$ , $Aut(M_{12})$

(iii), Ru, $2F_{4}(2)$

$(iv)’G_{2}(2)$ , $Aut(J_{2})$

(v)’ $Aut(J_{2})$ , the semidirect product of $P$ by $SD_{16}$ with the faithful
action

(vi)’ $G_{2}(4)$ , the semidirect product of $P$ by $SD_{16}$ with the faithful
action.

On the other hand, there are Koshitani and Kunugi’s results on the
principal 3-blocks of $PSU(3, q^{2})$ and $PSL(3, q)$ with elementary abelian
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defect groups of order 9 ([KK], [Ku]). Based on them we have got the
following theorem.

Theorem 6 (N. Kunugi and Y. Usami [KU], [U2]). The principal
3-blocks of all the groups in (i) (respectively (ii), (iii) and (iv)) below are
Morita equivalent.

(i) $PGU(3, q^{2})$ defifined over the fifinite fifield $GF(q^{2})$ satisfying $q\equiv 2,5$

$(mod 9)$ .

(ii) $PGL(3, q)$ satisfying $q\equiv 4,7(mod 9)$ .

(iii) $SU(3, q^{2})$ defifined over the fifinite fifield $GF(q^{2})$ satisfying $q\equiv 2,5$

$(mod 9)$ .

(iv) $SL(3, q)$ satisfying $q\equiv 4,7(mod 9)$ .

Moreover, let $q$ be a power of 2 and satisfying $q\equiv 2$ or 5 $(mod 9)$ .

Then the author and M.Nakabayashi have almost finished proving that
the principal 3-blocks of $G_{2}(q)$ and $G_{2}(2)$ are Morita equivalent to each
other.

For the characters of groups in Theorem 2, see the following:

1. $J.H$ . Conway, $R.T$ . Curtis, $S.P$ . Norton, R.A. Parker and
R.A. Wilson, Atlas of Finite Groups, Clarendon Press, (1985)
Oxford.

2. B. Chang, The conjugate classes of Chevalley groups of type
$(G_{2})$ , J. Algebra, 9 (1968), 190-211.

3. B. Chang and R. Ree, The characters of $G_{2}(q)$ , Symposia Math-
ematica XIII, Instituto Nazionale de Alta Mathematica, (1974),
395-413.

4. V. Ennola, On the characters of the finite unitary groups, Ann.
Acad. Sci. Fenn., 323 (1963), 1-34.

5. H. Enomoto, The conjugacy classes of Chevalley groups of type
$(G_{2})$ over finite fields of characteristic 2 or 3, J. Fac. Sci. Univ.
Tokyo Sect. I Math., 16 (1970), 497-512.

6. H. Enomoto and H. Yamada, The characters of $G_{2}(2^{n})$ , Japan.
J. Math., 12 (1986), 325-377.

7. K. Shinoda, The conjugacy classes of the finite Ree groups of
type $(F_{4})$ , J. Fac. Sci. Univ. Tokyo Sect. $IA$ Math., 22 (1975),
1-15.

8. G. Malle, Die unipotenten Charaktere von $2F_{4}(q^{2})$ , Comm. in
Algebra, 18(7) (1990), 2361-2381.

9. R. Steinberg, The representation of $GL(3, q)$ , $GL(4, q)$ , $PGL(3, q)$

and $PGL(4, q)$ , Canadian J. Math., 3 (1951), 225-235.
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Bases of Chambers of Linear Coxeter Groups

John H. Walter

\S 1. Introduct ion

Let $V$ be a vector space over the real numbers $\mathbb{R}$ . The subgroups of
$GL(V)$ that are generated by reflections are called reflection groups. We
study in this paper those reflection groups from which a polyhedral cone
may be constructed and which lead to a chamber system in $V$. Using
a result of J. Tits [5], it follows that these groups are obtained from
representations of Coxeter groups. So they are called linear Coxeter
groups. From this point of view, these groups were also extensively
studied by $E.B$ . Vinberg [6] in the case where they have a finite number
of canonical generators. We extend this theory in order to investigate the

reflection subgroups of a linear Coxeter group. We make no restriction
on the number of generators or on the dimension of $V$. Our object is
to present this subject using the concrete geometric methods that are
associated with the chamber systems in a real vector space.

We apply these results to give a proof that a reflection subgroup of
a linear Coxeter group is again a linear Coxeter group. This generalizes
the result that asserts that a reflection subgroup of a Coxeter group is
a Coxeter group which was independently proved by M. Dyer [3] and
$V.V$ . Deodhar [2]. Our results also characterize a base for the reflection
subgroup, which will be useful in a sequel to this paper.

\S 2. Linear Coxeter Groups

2.1. Polyhedral Cones

Let $V$ be a vector space over $\mathbb{R}$ , and denote its dual by $V^{\vee}$ . Let
$T$ be a subset of $V$. We are interested in reflection groups that act on
$T$ . Commonly the choice for $T$ will be $V$ itself, but in dealing with
reflection subgroups, it is useful to choose $T$ to be the convex set that

Received June 21, 1999.
Revised February 8, 2001.
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is left invariant by the associated linear Coxeter group, namely, its Tits
cone.

Let $\Lambda^{\vee}$ be a subset of $V^{\vee}$ and set

(1) $C(\Lambda^{\vee})=$ { $v\in T|\lambda^{\vee}(v)\geq 0$ for all $\lambda^{\vee}\in\Lambda^{\vee}$ },

(2) $C(\Lambda^{\vee})^{o}=$ { $v\in T|\lambda^{\vee}(v)>0$ for all $\lambda^{\vee}\in\Lambda^{\vee}$ }.

For $\lambda^{\vee}\in V^{\vee}$ , respectively set $ D_{\lambda}\vee$ and $D_{\lambda^{\vee}}^{o}$ to be the half-spaces
$C(\{\lambda^{\vee}\})$ and $C(\{\lambda^{\vee}\})^{o}$ . Then

(3)
$ C(\Lambda^{\vee})=\lambda^{\vee}\in\Lambda^{\vee}\cap D_{\lambda}\vee$

and
$C(\Lambda^{\vee})^{o}=\lambda^{\vee}\in\Lambda^{\vee}\cap D_{\mathring{\lambda}^{\vee}}$

.

Likewise set $H_{\lambda}\vee=\lambda^{\vee-1}(0)$ for $\lambda^{\vee}\in V^{\vee}$ . Then $H_{\lambda}\vee is$ the hyperplane
in $V$ which is the envelope for $ D_{\lambda}\vee$ . A convex subset $C(\Lambda^{\vee})$ of $V$ given
in (3) is said to be a polyhedral cone in $T$ if $ C(\Lambda^{\vee})^{o}\neq\emptyset$ . If $|\Lambda^{\vee}|=2$ , it
is sometimes called a dihedral cone.

Definition 2.1. Let $\Pi^{\vee}\subseteq V^{\vee}$ . For $\alpha^{\vee}\in\Pi^{\vee}$ , set $F_{\alpha}\vee(\Pi^{\vee})=$

$H_{\alpha}\vee\cap C(\Pi^{\vee})=H_{\alpha}\vee\cap C(\Pi^{\vee}\backslash \{\alpha^{\vee}\})$ and $F_{\alpha^{\vee}}^{o}(\Pi^{\vee})=H_{\alpha}\vee\cap C(\Pi^{\vee}\backslash $

$\{\alpha^{\vee}\})^{o}$ . Given $\Lambda^{\vee}\subseteq V^{\vee}$ , a subset $\Pi^{\vee}$ is said to be a base for $C(\Lambda^{\vee})$

if $C(\Pi^{\vee})=C(\Lambda^{\vee})$ , and $ F_{\alpha^{\vee}}^{o}(\Pi^{\vee})\neq\emptyset$ for all $\alpha^{\vee}\in\Pi^{\vee}$ . In this case,
$F_{\alpha}v(\Pi^{\vee})$ is said to be a face of $C(\Pi^{\vee})$ . We say that $\Pi^{\vee}$ is a base if it is
a base for $C(\Pi^{\vee})$ .

Clearly if $\Pi^{\vee}$ is a base, it is a base for $C(\Lambda^{\vee})$ for any $\Lambda^{\vee}\supseteq\Pi^{\vee}$ such
that $C(\Lambda^{\vee})\supseteq C(\Pi^{\vee})$ . If $\Pi^{\vee}$ is a base for $C(\Lambda^{\vee})$ , then the hyperplanes
$H_{\alpha}\vee with\alpha^{\vee}\in\Pi^{\vee}$ are called the walls of $C(\Lambda^{\vee})$ . Note that having
$ F_{\alpha^{\vee}}^{o}(\Pi^{\vee})\neq\emptyset$ is equivalent to having $C(\Pi^{\vee})\supset C(\Pi^{\vee}\backslash \{\alpha^{\vee}\})$ . Thus if
$\Pi^{\vee}$ is a minimal subset of $\Lambda^{\vee}$ such that $C(\Pi^{\vee})=C(\Lambda^{\vee})$ , it is a base for
$C(\Lambda^{\vee})$ .

2.2. Reflection Groups

Denote the pairing $V^{\vee}\times V\rightarrow \mathbb{R}$ given by $(\lambda^{\vee}, x)\mapsto\langle\lambda^{\vee}, x\rangle=$

$\lambda^{\vee}(x)$ . A reflection $r\in GL(V)$ is determined by two elements $\alpha_{r}\in V$

and $\alpha_{\check{r}}\in V^{\vee}$ with

(4) $\langle\alpha_{r}^{\vee}, \alpha_{r}\rangle=2$

so that

(5) $r:x\rightarrow x-\langle\alpha_{\check{r}}, x\rangle\alpha_{r}$ .

The vectors $\alpha_{r}^{\vee}$ and $\alpha_{r}$ respectively are said to be a coroot and $roo$

of $r$ . Hence $H_{r}=\alpha_{r}^{\vee-1}(0)$ is the fixed hyperplane of $r$ and $R\alpha_{r}$ is its
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complementary eigenspace. When $\alpha_{\check{r}}$ and $\alpha_{r}$ satisfy (4), they are said
to be paired to $r$ . Thus $(c\alpha_{r}^{\vee}, c^{-1}\alpha_{r})$ , $c\neq 0$ , are the coroots and roots
that are paired to $r$ .

Given a set $S$ of reflections, $W(S)$ will designate the reflection group
given by $ W(S)=\langle s|s\in S\rangle$ . Designate by $w^{\vee}$ the transformation of
$V$ which is contragredient to $w\in GL(V)$ . Associated with $W(S)$ is the
contragredient group $W(S)^{\vee}=\{w^{\vee}|w\in W(S)\}$ , which acts on $V^{\vee}$ . If
$r$ is given by (5), then $r^{\vee}$ : $x^{\vee}\rightarrow x^{\vee}-\langle x^{\vee}, \alpha_{r}\rangle\alpha_{r}^{\vee}$ . Because $\langle\alpha_{r}^{\vee}, x\rangle=0$

implies $\langle w^{\vee}\alpha_{r}^{\vee}, wx\rangle=0$ , it follows that $wH_{\alpha_{\check{r}}}=H_{w^{\vee}\alpha_{\check{r}}}$ .

Set $H$ $(W(S))=$ { $H_{r}|r$ is a reflection in $W(S)$ }.

Definition 2.2. Let $T$ be a subset of $V$, and $\Pi^{\vee}=\{\alpha_{i}^{\vee}\in V^{\vee}|i\in I\}$ .

Take $C(\Pi^{\vee})$ to be a polyhedral cone in $T$ . Let $S=S(\Pi^{\vee})$ be a set of
reflections $s_{i}$ , $i\in I$ , where for each $i\in I$ , $\alpha_{i}^{\vee}$ is a coroot of $s_{i}$ . Assume
that $T$ is $W(S(\Pi^{\vee}))$ invariant Then $C(\Pi^{\vee})$ is said to be a chamber of
$W(S(\Pi^{\vee}))$ for the action of $W(S(\Pi^{\vee}))$ on $T$ if

(6) $ wH_{\alpha_{\check{i}}}\cap C(\Pi^{\vee})^{o}=\emptyset$

for all $w\in W(S(\Pi^{\vee}))$ and $\alpha_{i}^{\vee}\in\Pi^{\vee}$ .

Set $\gamma\{(W(S);\Pi^{\ovalbox{\tt\small REJECT}})=\{H_{\beta}\vee|\beta^{\vee}\in W(S)^{\vee}\Pi^{\vee}\}$ . As $wH_{\alpha_{\check{i}}}=H_{w^{\vee}\alpha_{i}^{\vee}}$ ,

(6) is equivalent to having $ H_{\beta}\vee\cap C(\Pi)^{o}=\emptyset$ for all $H_{\beta}\vee\in \mathcal{H}(W(S), \Pi^{\vee})$ .

Definition 2.3. If $C(\Pi^{\vee})$ is a chamber such that $wC(\Pi^{\vee})=C(\Pi^{\vee})$

implies $w=1$ , then $C(\Pi^{\vee})$ is said to be a regular chamber for the action
of $W(S(\Pi^{\vee}))$ on $T$ and $W(S(\Pi^{\vee}))$ is said to be a linear Coxeter $group^{1}$ .

The translates $wC(\Pi^{\vee})$ of $C(\Pi^{\vee})$ , $w\in W(S)$ , will also be called
chambers of $W(S(\square ))$ , and we set $C$ $(W(S))$ to be the set of chambers
of $W(S)$ . When considering a given reflection group $W(S(\Pi^{\vee}))$ acting
on a set $T$ , it will be understood that the chambers in $C$ $(W(S))$ are
chambers for the action on $T$ . The set $C(W(S))$ is sometimes called the

chamber system for $W(S)$ . When $C(\Pi^{\vee})$ is a regular chamber, then

(7) $ wC(\Pi^{\vee})^{o}\cap C(\Pi^{\vee})^{o}=\emptyset$

for every $w\in W(S(\Pi^{\vee}))\backslash \{1\}$ , in which case $C(\Pi^{\vee})^{o}$ is a fundamen-
tal domain for the action of $W(S(\Pi^{\vee}))$ on the subset $T(W(S(\Pi^{\vee})))=$

$\bigcup_{w\in W(S)}wC(\Pi^{\vee})$ .

Proposition 2.1. Let $\Pi^{\vee}=\{\alpha_{i}^{\vee}|i\in I\}\subseteq V^{\vee}$ . Take $S(\Pi^{\vee})$ to be
a set of reflections $s_{i}$ with coroots $\alpha_{\check{i}}$ , $i\in I$ , and let $T$ be a $W(S(\Pi^{\vee}))-$

invariant subset of $V$ A polyhedral cone $C(\Pi^{\vee})$ is a chamber for the

Linear Coxeter groups were defined as such by E.B.Vinberg [6].
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action of $W(S(\Pi^{\ovalbox{\tt\small REJECT}}))$ on $T$ if and only if for all $w\in W(S(\Pi^{\vee}))$ , either
$ wC(\Pi^{\vee})^{o}\cap C(\Pi^{\vee})^{o}=\emptyset$ or $wC(\Pi^{\vee})^{o}=C(\Pi^{\vee})^{o}$ . If it is a regular cham-
ber, then $ H_{r}\cap wC(\square )^{o}=\emptyset$ for all $H_{r}\in H(W(S))$ and $w\in W(S(\Pi^{\vee}))$ .

Proof Assume that $C(\Pi^{\vee})$ is a chamber so that $wH_{\alpha_{i}}\vee\cap C(\Pi^{\vee})^{o}=$

$\emptyset$ for all $i\in I$ and $w\in W(S(\Pi^{\ovalbox{\tt\small REJECT}}))$ . So either $w^{\vee}\alpha_{\check{i}}(C(\Pi^{\vee})^{o})>0$ or
$w^{\vee}\alpha_{\check{i}}(C(\Pi^{\vee})^{o})<0$ for $i\in I$ . If $w^{\vee}\alpha_{\check{i}}(C(\Pi^{\vee})^{o})>0$ for all $i\in I$ ,
then $wC(\Pi^{\vee})^{o}=C(w^{\vee}\Pi^{\vee})^{o}\supseteq C(\Pi^{\vee})^{o}$ . But also $w^{\vee}\alpha_{\check{i}}(x)=\alpha_{\check{i}}(wx)$

for $x\in V$ ; then $\alpha_{\check{i}}(wC(\Pi^{\vee})^{o})>0$ for all $i\in I$ . Hence $ C(\Pi^{\ovalbox{\tt\small REJECT}})^{o}\supseteq$

$C(w^{\vee}\Pi^{\ovalbox{\tt\small REJECT}})^{o}=wC(\Pi^{\ovalbox{\tt\small REJECT}})^{o}$ . Thus $C(\Pi^{\ovalbox{\tt\small REJECT}})^{o}=wC(\Pi^{\ovalbox{\tt\small REJECT}})^{o}$ . On the other hand,
$ifw^{\vee}\alpha_{i}^{\vee}(C(\Pi^{\vee})^{o})<0$ for some $i\in I$ , then $ wC(\square ^{\vee})^{o}\cap C(\Pi^{\vee})^{o}\subseteq-D_{\alpha_{i}^{\vee}}^{o}\cap$

$ D_{\alpha_{i}^{\vee}}^{o}=\emptyset$ .

Conversely, assume that $ wC(\Pi^{\vee})^{o}\cap C(\Pi^{\ovalbox{\tt\small REJECT}})^{o}=\emptyset$ or $wC(\Pi^{\ovalbox{\tt\small REJECT}})^{o}=$

$C(\Pi^{\ovalbox{\tt\small REJECT}})^{o}$ . Then in first instance, $ wH_{\alpha_{i}}\vee\cap C(\Pi^{\ovalbox{\tt\small REJECT}})^{o}=\emptyset$ for $i\in I$ . In the

second instance, $wH_{\alpha_{i}}\vee intersects$ only the envelope $C(\Pi^{\vee})\backslash C(\Pi^{\vee})^{o}$ of
$C(\Pi^{\vee})$ , and again $ wH_{\alpha_{i}}\vee\cap C(\Pi^{\vee})^{o}=\emptyset$ for $i\in I$ .

Finally consider that $C(\Pi^{\vee})$ is a regular chamber. Suppose that $ H_{r}\cap$

$ wC(\Pi^{\vee})^{o}\neq\emptyset$ for some reflection $r\in W(S(\Pi^{\ovalbox{\tt\small REJECT}}))$

.
and $w\in W(S(\Pi^{\vee}))$ .

Then $rwC(\Pi^{\ovalbox{\tt\small REJECT}})=wC(\Pi^{\vee})$ . But then the regularity of $C(\Pi^{\ovalbox{\tt\small REJECT}})$ implies
that $w^{-1}rw=1$ and so $r=1$ . Hence $ H_{r}\cap C(\Pi^{\vee})^{o}=\emptyset$ . Q.E.D.

Take $\Pi^{\vee}=\{\alpha_{i}^{\vee}|i\in I\}\subseteq V^{\vee}$ , and let $S(\Pi^{\vee})$ be a set of reflections
$s_{i}$ , $i\in I$ , in $GL(V)$ each with coroot $\alpha_{i}^{\vee}$ in $\Pi^{\vee}$ . Suppose that $C(\Pi^{\vee})$

is a polyhedral cone. Let $\Sigma^{\vee}(W(S(\Pi^{\ovalbox{\tt\small REJECT}})))$ be the set of coroots of the
reflections in $W(S(\Pi^{\vee}))$ . To each $\alpha^{\vee}\in\Sigma^{\ovalbox{\tt\small REJECT}}(W(S(\Pi^{\ovalbox{\tt\small REJECT}})))$ such that $ H_{\alpha}\vee\cap$

$C(\Pi^{\vee})^{o}=\emptyset_{)}$ either $\alpha^{\vee}(C(\Pi^{\vee})^{o})>0$ or $\alpha^{\vee}(C(\Pi^{\vee})^{o})<0$ . Let

(8) $\Sigma^{\vee+}(W(S(\Pi^{\ovalbox{\tt\small REJECT}})))=\{\alpha^{\vee}\in\Sigma^{\ovalbox{\tt\small REJECT}}(W(S(\Pi^{\vee})))|\alpha^{\vee}(C(\Pi^{\vee})^{o})>0\}$ .

The elements of $\Sigma^{\vee+}(W(S(\Pi^{\vee})))$ will be said to be positive with respect
to $C(\Pi^{\ovalbox{\tt\small REJECT}})$ . Because $\Pi^{\ovalbox{\tt\small REJECT}}\subseteq\Sigma^{\vee+}(W(S(\Pi^{\vee})))$ , the following proposition
follows from Proposition 2.1.

Proposition 2.2. A polyhedral cone $C(\Pi^{\ovalbox{\tt\small REJECT}})$ with base $\Pi^{\ovalbox{\tt\small REJECT}}$ is a reg-
ular chamber if and only if

(9)
$C(\Pi^{\ovalbox{\tt\small REJECT}})=\alpha^{\vee}\in\Sigma\vee+(W(S(\square \vee)))\cap D_{\alpha^{\vee}}$

.

To each $\beta^{\vee}\in W(S(\Pi^{\vee}))^{\vee}\Pi^{\vee}$ , $s_{\beta}\vee=s_{w}\bigvee_{\alpha}\vee=ws_{\alpha}\vee w^{-1}$ is in
$W(\Pi^{\vee}))$ . So for all $ H_{\beta}\vee$ such that $\beta^{\vee}$ $\in$ $W(S(\Pi^{\ovalbox{\tt\small REJECT}}))^{\vee}\Pi^{\ovalbox{\tt\small REJECT}}$ and
$ H_{\beta}\vee\cap C(\Pi^{\vee})^{o}=\emptyset$ , either $\beta^{\vee}(C(\Pi^{\vee})^{o})>0$ or $s_{\beta}\vee\beta^{\vee}(C(\Pi^{\vee}))>0$ .

Set $\Sigma^{\ovalbox{\tt\small REJECT}}(\Pi^{\ovalbox{\tt\small REJECT}})$ $=$ $\{\beta^{\vee}\in\Sigma^{\ovalbox{\tt\small REJECT}}(W(S(\Pi^{\ovalbox{\tt\small REJECT}})))|H_{\beta}\vee\cap C(\Pi^{\vee})^{o}=\emptyset\}$ and set
$\Sigma^{\vee+}(\Pi^{\vee})=\Sigma^{\vee}(\Pi^{\vee})\cap\Sigma^{\vee+}(W(S(\Pi^{\ovalbox{\tt\small REJECT}})))$ . Then $C(\Pi^{\ovalbox{\tt\small REJECT}})$ is a chamber of



Bases of Chambers of Linear Coxeter Groups 427

$W(S(\Pi^{\vee}))$ if and only if $\Sigma^{\vee}(\Pi^{\vee})=W(S(\Pi^{\vee}))\Pi^{\vee}$ . This is equivalent to
having $D_{\beta}\vee\supseteq C(\Pi^{\vee})$ for $\beta^{\vee}\in\Sigma^{\vee+}(\Pi^{\vee})$ . But $\Pi^{\vee}\subseteq\Sigma^{\vee}(\Pi^{\vee})$ ; so the
following proposition follows.

Proposition 2.3. A polyhedral cone $C(\Pi^{\ovalbox{\tt\small REJECT}})$ with base $\Pi^{\ovalbox{\tt\small REJECT}}$ is a cham-
ber for $W(S(\Pi^{\vee}))$ if and only if

(10)
$C(\Pi^{\vee})=\beta^{\vee}\in\Sigma\vee+(\Pi^{\vee})\cap D_{\beta^{\vee}}$

.

2.3. Dihedral Groups

The argument which we present is directed towards the utilization of
Theorem 3.1 which establishes that $(W(S(\square ^{\vee}), S(\Pi^{\ovalbox{\tt\small REJECT}}))$ is a Coxeter sys-
tem if each $C(\Pi_{\check{ij}})$ is a regular chamber, $\Pi_{\check{\iota j}}$ being any pair contained in
$\Pi^{\ovalbox{\tt\small REJECT}}$ . Thus the case where $W(S(\Pi^{\vee}))$ is a dihedral group requires special
attention. 2

Theorem 2.4. Let $S=\{r, s\}$ where $r$ and $s$ are reflections in
$GL(V)$ . Respectively, let $\alpha^{\vee}$ , $\alpha$ and $\beta^{\vee}$ , $\beta$ be coroot and root pairs for $r$

and $s$ . Let $\Pi^{\vee}=\{\alpha^{\vee}, \beta^{\vee}\}$ , and let $C(\Pi^{\vee})$ be the dihedral cone given by
$C(\Pi^{\vee})=D_{\alpha}\vee\cap D_{\beta}\vee\cap T$ where $T$ is a $W(S)$ -invariant subset of $V$ and
$S=S(\Pi^{\vee})$ . The following conditions on the roots and coroots of $r$ and
$s$ are necessary and sufficient for $C(\Pi^{\vee})$ to be a chamber for the action

of $W(S)$ on $T$ .

(11) $\langle\alpha^{\vee}, \beta\rangle\leq 0$ and $\langle\beta^{\vee}, \alpha\rangle\leq 0$ ,

(12) $\langle\alpha^{\vee}, \beta\rangle=0$ if and only if $\langle\beta^{\vee}, \alpha\rangle=0$ ,

(13) $\langle\alpha^{\vee}, \beta\rangle\langle\beta^{\vee}, \alpha\rangle=4\cos^{2}\frac{\pi}{n}$ ,

$\check{\alpha}n\in \mathbb{Z}\backslash \{0\}$ , when $\langle\alpha^{\vee}, \beta\rangle\langle\beta^{\vee}, \alpha\rangle\leq 4$ . Furthermore, $W(S(\Pi^{\ovalbox{\tt\small REJECT}}))$ is

finite if and only if(13) holds. If $C(\Pi^{\vee})$ is a chamber, then it is $a$

regular chamber.

Proof. Since $D_{\alpha}\vee\cap D_{\beta}\vee is$ a chamber for the action of $W(S(\Pi^{\ovalbox{\tt\small REJECT}}))$

on $V$ if and only if $D_{\alpha}v\cap D_{\beta}\vee\cap T$ is also a chamber for the action
of $W(S(\Pi^{\vee}))$ on $T$ , we take $T=V$ Thus $ C(\Pi^{\ovalbox{\tt\small REJECT}})=D_{\alpha}\vee\cap D_{\beta}\vee$ . Let
$ V_{0}=H_{\alpha}\vee\cap H_{\beta}\vee$ . Then $V_{0}$ is the fixed subspace for the action of $W(S)$

on $V$, and $V_{o}\subseteq C(\Pi^{\vee})$ . Clearly $W(S)$ acts faithfully on $V/V_{0}$ and
$C(\Pi^{\vee})/V_{0}$ is a chamber of $W(S)$ on $V/V_{0}$ if and only if $C(\Pi^{\vee})$ is a
chamber on $V$. Without loss of generality, we may assume that $V_{0}=0$ .

Then $dimV=2$ , and $C(\Pi^{\ovalbox{\tt\small REJECT}})$ is bounded by the half lines $ K_{\alpha}\vee=H_{\alpha}\vee\cap$

This result clarifies a result stated by Vinberg [6].
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$C(\Pi^{\vee})$ and $K_{\beta}\vee=H_{\beta}\vee\cap C(\Pi^{\vee})$ . Set $C_{s}(\Pi^{\vee})=C(\Pi^{\vee})\cup sC(\Pi^{\vee})$ . Since
$ C(\Pi^{\vee})\cap sC(\Pi^{\vee})=K_{\beta}\vee$ , $C_{s}(\Pi^{\vee})$ is the sector in $V$ that is bounded by
$ K_{\alpha}\vee$ and $ sK_{\alpha}\vee$ .

Consider first that $C(\Pi^{\ovalbox{\tt\small REJECT}})$ is a chamber and that $\langle\alpha^{\vee}, \beta\rangle\geq 0$ . Let
$\mathbb{R}^{+}$ be the set of positive real numbers. Then (4) implies that $\mathbb{R}^{+}\beta\subseteq$

$C(\Pi^{\vee})$ . Hence $-\mathbb{R}^{+}\beta=s\mathbb{R}^{+}\beta\subseteq sC(\Pi^{\vee})$ . Because $C_{s}(\Pi^{\vee})$ contains
$\mathbb{R}\beta=\mathbb{R}^{+}\beta\cup-\mathbb{R}^{+}\beta$ , the angle $\theta_{s}$ from $ K_{\alpha}\vee tosK_{\alpha}\vee satisfies\theta_{s}\geq\pi$ .

But $ sH_{\alpha^{\vee}}\cap C(\Pi^{\vee})^{o}=\emptyset$ ; so $ H_{\alpha^{\vee}}\cap sC(\Pi^{\vee})^{o}=\emptyset$ . Therefore $\theta_{s}=\pi$ . Hence
$ H_{\alpha}\vee\supseteq \mathbb{R}\beta$ , which is equivalent to $\langle\alpha^{\vee}, \beta\rangle=0$ . Because $H_{\alpha}\vee is$ a wall of
$C_{s}(\Pi^{\vee})$ , $V=C_{s}(\square ^{\vee})\cup sC_{s}(\Pi^{\vee})=C(\Pi^{\ovalbox{\tt\small REJECT}})\cup sC(\Pi^{\ovalbox{\tt\small REJECT}})\cup rC(\Pi^{\vee})\cup rsC(\Pi^{\vee})$ .

Consequently $W(S)$ is a fours group; so $rs=sr$ . This implies $\mathbb{R}\alpha\subseteq H_{\beta}\vee$ ;
thus $\langle\beta^{\vee}, \alpha\rangle=0$ . Likewise $\langle\alpha^{\vee}, \beta\rangle=0$ is a consequence of $\langle\beta^{\vee}, \alpha\rangle\geq 0$ .

This establishes (11) and (12). The condition (13) is established at the
end of this argument.

Now consider that (11), (12) and (13) hold. If $\langle\alpha^{\vee}, \beta\rangle=\langle\beta^{\vee}, \alpha\rangle=0$ ,
then $W(S)$ must be a fours group, in which case, $C(\Pi^{\vee})$ is a regular
chamber. So consider that $\langle\alpha^{\vee}, \beta\rangle<0$ and $\langle\beta^{\vee}, \alpha\rangle<0$ . Replace the

pair $\beta^{\vee}$ , $\beta$ by the pair $c\beta^{\vee}$ , $ c^{-1}\beta$ where $c^{2}=\frac{\langle\alpha^{\vee},\beta\rangle}{\langle\beta^{\vee},\alpha\rangle}$ . Then $\langle\alpha^{\vee}, \beta\rangle=$

$\langle\beta^{\vee}, \alpha\rangle$ , and $C(\Pi^{\ovalbox{\tt\small REJECT}})$ remains unchanged along with $\langle\alpha^{\vee}, \beta\rangle\langle\beta^{\vee}, \alpha\rangle$ . Let
$\phi$ : $V^{\vee}\rightarrow V$ be the correlation that is defined by $\phi$ : $\alpha^{\vee}\mapsto\alpha and$

$\phi$ : $\beta^{\vee}\mapsto\beta$ . Let $f$ : $V\times V\rightarrow \mathbb{R}$ be the bilinear form that is given by
setting $ f(x, y)=\langle\phi^{-1}(x), y\rangle$ . Then $f$ is $W(S)$ -invariant and symmetric.
Also $\langle\alpha^{\vee}, \beta\rangle=f(\alpha, \beta)$ . By (4), $f(\alpha, \alpha)=f(\beta, \beta)=2$ ; set $a=f(\alpha, \beta)$ .

The discriminant of $f$ is $ 4-a^{2}=4-\langle\alpha^{\vee}, \beta\rangle\langle\beta^{\vee}, \alpha\rangle$ . So $f$ is indefinite,
degenerate or positive definite according as $a^{2}>4$ , $a^{2}=4$ , or $a^{2}<4$ .

Let $u=sr$ , and set $ U=\langle u\rangle$ . Since $|W(S)|>4$ , $u^{2}\neq 1$ . The discriminant
of the characteristic polynomial of $u$ is $a^{2}(4-a^{2})$ . So $u$ has 2, 1, or 0
eigenspaces according as $f$ is indefinite, degenerate or positive definite.
In the first two cases, $u$ has real eigenvalues; so $|u|=\infty$ . Then $u$ and $u^{2}$

have the same eigenspaces. These must be the isotropic lines of $f$ .

When $\langle\alpha^{\vee}, \beta\rangle\langle\beta^{\vee}, \alpha\rangle>4$ , $f$ is indefinite, its isotropic lines di-
vide $V$ into four sectors $V_{1}$ , $V_{2}$ , $V_{3}$ , $V_{4}$ , which are permuted by the group
$W(S)/U$. These lines are interchanged by $r$ and $s$ ; hence they are the
eigenspaces for $u$ . As $ C_{s}(\Pi^{\vee})\cap sC_{s}(\Pi^{\vee})=uK_{\alpha}\vee=tK_{\alpha}\vee$ , $C_{s}(\Pi^{\vee})$ is
contained in one of these sectors, say, $V_{1}$ . It follows then that $V_{1}=$

$\bigcup_{n=-\infty}^{n=\infty}u^{n}C_{s}(\Pi^{\vee})$ and that $U$ acts regularly on $\{u^{r\iota}C_{s}(\Pi^{\vee})|n\in \mathbb{Z}\}$ .

From this, it follows that $W(S)$ acts regularly on $\{wC(\Pi^{\vee})|w\in W(S)\}$ .

Therefore $C(\Pi^{\vee})$ is a regular chamber.
The situation is similar when $\langle\alpha^{\vee}, \beta\rangle\langle\beta^{\vee}, \alpha\rangle=4$ and $f$ is degener-

ate. The difference is that in this case there two sectors $V_{1}$ and $V_{2}$ which
are separated by the unique isotropic line. This forces $\mathbb{R}\alpha=\mathbb{R}\beta$ .
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Next suppose that $\langle\alpha^{\vee}, \beta\rangle\langle\beta^{\vee}, \alpha\rangle<4$ , in which case $f$ is positive
definite and $W(S)$ is finite. Then $f$ gives rise to a scalar product3 where
$ a=\alpha$ . $\beta=2\cos\theta$ and $\theta$ is the angle between the half lines $\mathbb{R}^{+}\alpha$ and
$\mathbb{R}^{+}\beta$ . The difference $\theta_{0}=\square -\theta$ is the angle between the half lines $ K_{\alpha}\vee$

and $K_{\beta}\vee and$ hence $\theta_{0}$ is the angle of the sector $C(\Pi^{\vee})$ . So $2\theta_{0}$ is the
angle of the sector $C_{s}(\Pi^{\ovalbox{\tt\small REJECT}})$ , which is also the angle of the rotation $u$ . Let
$n$ be the least positive integer such that $ C_{s}(\Pi^{\vee})\cap u^{n}C_{s}(\Pi^{\vee})\neq\emptyset$ . Then
$C_{s}(\Pi^{\vee})$ is a chamber for $U$ if and only if $ 2\theta n=2\pi$ . This is equivalent
to having $\langle\alpha^{\vee}, \beta\rangle\langle\beta^{\vee}, \alpha\rangle=f(\alpha, \beta)^{2}=a^{2}=4\cos^{2}\frac{\pi}{7l}$ where $n\in \mathbb{Z}\backslash \{0\}$ .

Clearly $C_{s}(\Pi^{\vee})$ is a chamber for $U$ if and only if $C(\Pi^{\vee})$ is a chamber for
$W(S)$ . This proves that $C(\Pi^{\ovalbox{\tt\small REJECT}})$ is a chamber as well as showing that (13)
is a consequence of $C(\Pi^{\vee})$ being a chamber. Since $|C(W(S))|=|W(S)|$ ,
$C(\Pi^{\vee})$ is also regular.

Finally, note that is finite if and only if $u$ has no real eigenvalues,
which is equivalent to (13) Also we have shown that (12), (11) and (13)
imply that $C(\Pi^{\vee})$ is regular and that these conditions are implied when
$C(\Pi^{\vee})$ is a chamber, in which case it must be regular. Q.E.D.

\S 3. Characterizations

3.1. Characterization of Linear Coxeter groups

The next result is due to J. Tits [5]. This argument was developed
from his result which establishes the contragredient representation of a
Coxeter group ( $c/$. Bourbaki [1, $V$ , 4.4] or Humphreys [4, p. 126]).

Theorem 3.1. Let $S$ be a set of reflections $s_{i}$ , $i\in I$ , in $GL(V)$

and let $\alpha_{i}^{\vee}$ , $\alpha_{i}$ be a paired coroot and root of $s_{i}$ . Set $\Pi^{\vee}=\{\dot{\alpha}_{i}^{\vee}|i\in I\}$ and
$\Pi=\{\alpha_{i}|i\in I\}$ . Let $T$ be a $W(S)$ -invariant subset of V. Suppose that
$C(\Pi^{\vee})$ is a chamber for the action of $W(S(\Pi^{\vee}))$ on $T$ such that $C(\Pi_{ij}^{\vee})$

is a regular chamber for $W(S(\Pi_{ij}))$ for each pair $\Pi_{\iota j}^{\vee}=\{\alpha_{i}^{\vee}, \alpha_{j}^{\vee}\}\subseteq\Pi^{\vee}$

Then $(W(S), S)$ is a Coxeter system, and $W(S)$ is a linear Coxeter
group acting on $T$ .

Proof. The proof of Theorem 3.1 as we have stated it is obtained
from Tits [5, Lemme 1]. Tits’ argument is centered about the proof of
the following statement4 :

3 cf. Bourbaki $[1, V, \S 2.3]$ .

Actually by replacing $w$ by $sw,the$ second statement becomes a conse-
quence of the first; so the argument is directed to proving the first statement.
Also Tits’ statement does not require that $s$ be a reflection.
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(P) Let $w\in W(S)$ . Then, given $s\in S$ with coroot $\alpha_{\check{s}}$ , either
$wC(\Pi^{\vee})\subseteq sD_{\alpha_{\check{s}}}$ and $\ell(sw)=\ell(w)-1$ or $wC(\Pi^{\vee})\subseteq D_{\alpha_{\check{s}}}$ and $\ell(sw)=$

$\ell(w)+1$ .

where $\ell(w)$ is the number of factors from $S$ in a shortest expression of $w$

as a product of elements of $S$ . The argument is by induction on $\ell(w)$ . As-
suming that (P) holds for each dihedral group $W(S(\Pi_{ij}^{\vee}))$ , $i,j\in I$ , Tits

argues by induction on $\ell(w)$ that (P) holds for $W(S)$ . Either Lemma
1 of $[1, V, \S 4.5]$ or the description of the action of $W(S(\Pi_{ij}^{\vee}))$ on its

chambers given in Theorem 2.4 can be used to establish (P) for the sub-
groups $W(S(\Pi_{ij}^{\vee}))$ . The condition (P) for the group $W(S)$ immediately
implies the regularity of its chambers in the following way. Suppose that
$w(C(\Pi^{\vee})=C(\Pi^{\vee})$ for some $w\in W(S)$ . Then $wC(\Pi^{\vee})\subseteq D_{\alpha_{i}}\vee for$ all
$i\in I$ . So by (P), $\ell(s_{\alpha_{j}}\vee w)=\ell(w)+1$ for all $s_{\alpha_{j}^{\vee}}\in S$ . But this fails when

$w\neq 1$ since there exist $\alpha_{\check{j}}\in\Pi^{\vee}$ such that $\ell(s_{\alpha_{j}^{\vee}}w)<\ell(w)$ . Because

$W(S)$ can be regarded as a Coxeter group acting on the chamber sys-
tem $C(W(S))$ the above argument also shows that this action is effective.
Hence $(W(S), S)$ is a Coxeter system. Q.E.D.

Let $S=\{s_{i}|i\in I\}$ be a set of reflections of a reflection group $W$.

Let $\alpha_{\check{i}}$ and $\alpha_{i}$ respectively be paired coroots and roots for $s_{i}$ , $i\in I$ . Set
$\Pi^{\vee}=\{\alpha_{i}^{\vee}|i\in I\}$ and $\Pi=\{\alpha_{i}|i\in I\}$ . We say that the sets $\Pi^{\vee}$ and $\Pi$

have the Cartan property if every pair $(\alpha_{\check{i}}, \alpha_{j})$ , $i,j\in I$ , $i\neq j$ , satisfies
the conditions (11), (12) and (13) of Theorem 2.4. A direct application
of Theorem 3.1 and Theorem 2.4 gives the following corollary.

Corollary 3.2. Let $S$ be a set of reflections $s_{i}$ , $i\in I$ , in $GL(V)$

and let $\alpha_{i}^{\vee}$ , $\alpha_{i}$ be a coroot and root of $s_{i}$ . Set $\Pi^{\vee}=\{\alpha_{i}^{\vee}|i\in I\}$ and
$\Pi=\{\alpha_{i}|i\in I\}$ . Suppose that $C(\Pi^{\vee})$ is a polyhedral cone in a $W(S)-$

invariant subset $T$ of V. If $C(\Pi^{\vee})$ is a chamber for the action of $W(S)$
on $T$ and if $\Pi^{\ovalbox{\tt\small REJECT}}$ and $\Pi$ have the Cartan property, then $W(S)$ is a linear
Coxeter group.

Theorem 3.3. Let $S$ be a set of reflections $s_{i}$ , $i\in I$ , in $GL(V)$

and let $\alpha_{\check{i}}$ and $\alpha_{i}$ , respectively, be a paired coroot and root of $r_{i}$ . Set
$\Pi^{\vee}=\{\alpha_{i}^{\vee}|i\in I\}$ and $\Pi=\{\alpha_{i}|i\in I\}$ so that $S=S(\Pi^{\vee})$ . Let $C(\Pi^{\vee})$

be a chamber for the action of $W(S)$ on a $W(S)$ -invariant subset $T$ , and
let $\Pi^{\vee}$ be a base for $C(\Pi^{\ovalbox{\tt\small REJECT}})$ . Then the sets $\Pi^{\ovalbox{\tt\small REJECT}}$ and $\Pi$ have the Cartan
property, and $W(S(\Pi^{\ovalbox{\tt\small REJECT}}))$ is a linear Coxeter group acting on $T$ .

Proof For each pair $\Pi_{ij}^{\vee}=\{\alpha_{i}^{\vee}, \alpha_{j}^{\vee}\}\subseteq\Pi^{\vee}$ , we argue that $C(\Pi_{ij}^{\vee})$ is

a chamber for $W(S(\Pi_{ij}^{\vee}))$ . By (10), $C(\Pi^{\vee})=\cap\{D_{\alpha}\vee|\alpha^{\vee}\in\Sigma^{\vee+}(\Pi^{\ovalbox{\tt\small REJECT}})\}$ .

It is required to show that $ H_{\alpha}\vee\cap C(\Pi_{\dot{x}j}^{\vee})^{o}=\emptyset$ for $\alpha^{\vee}\in\Sigma^{\vee+}(\Pi_{ij}^{\ovalbox{\tt\small REJECT}})$ .

So suppose that for some $\alpha^{\vee}\in\Sigma^{\vee+}(\Pi_{ij}^{\ovalbox{\tt\small REJECT}})$ , $ H_{\alpha}\vee\cap C(\Pi_{ij}^{\vee})^{o}\neq\emptyset$ . Now
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$C(\Pi^{\vee})\subseteq C(\{\alpha_{k}^{\vee}, \alpha\})$ where $k=i$ or $j$ . For definiteness, suppose $k=i$ .

Let $V_{0}=H_{\alpha_{i}}\vee\cap H_{\alpha_{j}^{\vee}};$ then $H_{\alpha}\vee\supseteq V_{0}$ and $H_{\alpha_{j}^{\vee}}\cap C(\{\alpha^{\vee}, \alpha_{i}^{\vee}\})=V_{0}$ . Hence
$ H_{\alpha_{j}}\vee\cap C(\Pi^{\vee})^{o}=\emptyset$ inasmuch as $C(\Pi^{\ovalbox{\tt\small REJECT}})^{o}\subseteq C(\{\alpha^{\vee}, \alpha_{\check{k}}\})$ . In particular,

this implies that $ F_{\alpha_{j}^{\vee}}^{o}(\Pi^{\vee})\cap C(\Pi^{\vee})=\emptyset$ . But $\Pi^{\vee}$ is a base; so we have

a contradiction. Therefore, $C(\Pi_{\check{ij}})$ is a chamber for $W(S(\Pi_{\check{ij}}))$ . By
Theorem 2.4, it is a regular chamber and $\Pi_{\check{ij}}$ and $\Pi_{ij}=\{\alpha_{i}, \alpha_{j}\}$ have
the Cartan property. Thus also $\Pi^{\ovalbox{\tt\small REJECT}}$ and $\Pi$ have the Cartan property.
Corollary 3.2 implies that $W(S(\Pi^{\vee}))$ is a linear Coxeter group. Q.E.D.

3.2. The Tits Cone

In this section, all linear Coxeter groups will be regarded as acting
on $V$. We consider a linear Coxeter group $W(S)$ where $S$ is the set
of reflections $S=\{s_{i}|i\in I\}$ , and $C(\Pi^{\vee})$ is a regular chamber such
that $\Pi^{\vee}=\{\alpha_{\check{i}}|i\in I\}$ , $\alpha_{\check{i}}$ being a coroot of $s_{i}$ . For $\emptyset\subset J\subseteq I$ , set
$V_{J}=\bigcap_{j\in J}H_{a_{j}^{\vee}};$ then $V_{\emptyset}=V$ and $\Pi_{\emptyset}^{\vee}=\emptyset$ . Set $F_{J}=C(\Pi^{\ovalbox{\tt\small REJECT}})\cap V_{J}$ and

(14) $F_{J}^{o}(\Pi^{\vee})=C(\square \backslash \Pi_{\check{J}})^{o}\cap V_{J}$

where $\emptyset\subseteq J\subseteq I$ . The subset $F_{J}^{o}(\Pi^{\vee})$ is called a facet of $C(\Pi^{\vee})$ provided
that it is nonempty. Then $C(\Pi^{\vee})=\bigcup_{\emptyset\subseteq J\subseteq I}F_{J}^{o}(\Pi^{\vee})$ . The subspace $V_{j}$

is said to be the support of $F_{J}(\Pi^{\vee})$ and $F_{J}^{o}(\Pi^{\vee})$ . The subgroup $W_{J}=$

$\langle s_{j}|j\in J\rangle$ is called a parabolic subgroup of $W(S)$ . Set $\Pi_{\check{J}}=\{\alpha_{\check{j}}\in$

$\Pi^{\vee}|j\in J\}$ . Theorem 3.1 implies that $W_{J}$ is a linear Coxeter group
for which $C(\Pi_{\check{J}})$ is a chamber. Since $W_{J}$ leaves fixed $V_{J}$ , it also leaves
fixed $F_{J}(\Pi^{\vee})$ . If $\emptyset\subseteq J\subset K\subseteq I$ , then $V_{J}\supseteq V_{K}$ . Let $J^{*}$ be the subset
of I such that $H_{\alpha_{j}^{\vee}}\supseteq V_{J}forj\in J^{*}$ . Then $J^{*}$ is the maximal subset of $I$

such that $V_{J^{*}}=V_{J}$ . Hence $\alpha_{\check{j}}(F_{J}^{o}(\Pi^{\vee}))=0$ for all $j\in J^{*}$ . So $F_{J}^{o}(\Pi^{\vee})=$

$V_{J}\cap C(\Pi^{\vee}\backslash \Pi_{J}^{\vee})^{o}=V_{J^{*}}\cap C(\Pi^{\vee}\backslash \Pi_{\check{J}^{*}})^{o}=F_{J^{*}}^{o}(\Pi^{\vee})$ . Let $\mathcal{M}$ $(\Pi^{\vee})$ be the
set of such maximal subsets $J^{*}$ of $I$ . Thus the set $\mathcal{F}$ $(C(\Pi^{\vee}))$ of facets
contained in $C(\Pi^{\ovalbox{\tt\small REJECT}})$ is given by $\mathcal{F}$

$(C(\Pi^{\ovalbox{\tt\small REJECT}}))=\{F_{J}^{o}(\Pi^{\vee})|J\in \mathcal{M}(\Pi^{\vee})\}$ .
It is clear that the facets in $\mathcal{F}(C(\Pi^{\vee}))$ are mutually disjoint and that

$C(\Pi^{\vee})=Set\cup\{F_{J}^{o}(\Pi^{\vee})|F_{j}(\Pi^{\vee})\in \mathcal{F}(C(\Pi^{\vee}))\}$
.

(15) $T(W(S))=$ $\cup$ $wC(\Pi^{\vee})$ .

$w\in W(S)$

Denote the complement of the envelope of the convex hull of $T(W(S))$
by $T(W(S))^{o}$ . The set $T(W(S))$ is convex. Consequently $T(W(S))$ is
called a Tits cone. For $w\in W(S)$ and $\emptyset\subset J\subseteq I$ , $wF_{J}^{o}(\Pi^{\vee})$ is a facet
of $wC(\Pi^{\ovalbox{\tt\small REJECT}})$ with support $wV_{J}$ . The corresponding parabolic subgroup is
$wW_{J}w^{-1}$ . Designate $\mathcal{F}(W(S))$ to be the set of facets of the chambers
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of $W(S)$ . By (15),

(16) $T(W(S))=\cup \mathcal{F}(W(S))$ .

Standard arguments5 give the next two propositions and, together
with (16), show that two chambers in $C$ $(W(S))$ can intersect only in a
common facet and that the decomposition (16) is a partition of $T(W(S))$ .

Proposition 3.4. Let $F_{J}^{o}(\Pi^{\vee})$ , $F_{\mathring{K}}(\Pi)\in \mathcal{F}(C(\Pi^{\vee}))$ and take $ w\in$

$W(S)$ . Then if $ F_{J}^{o}(\Pi^{\vee})\cap wF_{\mathring{K}}(\Pi^{\vee})\neq\emptyset$ , $J=K$ and $w$ $\in W_{J}$ . In partic-
ular, for $wF_{J}^{o}(\Pi^{\vee})\in \mathcal{F}(W(S))$ ,

$wW_{J}w^{-1}=\{u\in W(S)|uwF_{J}^{o}(\Pi^{\vee})=wF_{J}^{o}(\Pi^{\vee})\}$ .

Proposition 3.5. $T(W(S))$ is convex.

Proposition 3.6. Let $W(S)$ be any linear Coxeter group acting
on V. Let $C(\Pi^{\vee})$ be a chamber for $W(S)$ with a base $\Pi^{\vee}$ . Then $W(S)$

is finite if and only if $-C(\Pi^{\vee})\subseteq T(W(S))$ and thus if and only if
$T(W(S))=V$.

Proof The convex hull of $C(\Pi^{\ovalbox{\tt\small REJECT}})\cup-C(\Pi^{\vee})$ is $V$. So $T(W(S))=$
$V$ if and only if $-C(\Pi^{\ovalbox{\tt\small REJECT}})\subseteq T(W(S))$ . Let $\Pi^{\ovalbox{\tt\small REJECT}}=\{\alpha_{\check{i}}|i\in I\}$ where
$S=\{s_{i}|i\in I\}$ and $\alpha_{i}^{\vee}$ is a coroot of $s_{i}$ . It is well-known6 that a linear
Coxeter group $W(S)$ with a finite set $S$ of generating reflections is finite
if and only if $-C(\Pi^{\vee})\subseteq T(W(S))$ . Of course, if $W(S)$ is finite, then $S$

is finite. Therefore, it remains to show that if $-C(\Pi^{\ovalbox{\tt\small REJECT}})$ is a chamber for
$W(S)$ , then $S$ is finite. So assume that there exists $w_{0}\in W(S)$ such that
$w_{0}C(\Pi^{\vee})=-C(\Pi^{\vee})$ . Then $w_{0}C(\Pi^{\vee})\subseteq s_{i}D_{\alpha_{i}}\vee=-D_{\alpha_{i}}\vee for$ all $i\in I$ .

However, by (P) of 3.1, this occurs only if $s_{i}$ appears in a reduced
expression of $w_{0}$ as a product of reflections in $S$ . Since $\ell(w)<\infty$ , this
implies that $S$ is finite. Q.E.D.

If $W_{J}$ is finite, then $F_{J}^{o}(\Pi^{\vee})$ is said to have finite type. Set
$\mathcal{E}(W(S))$ to be the subset of $\mathcal{F}(W(S))$ consisting of facets of finite
type. Clearly $\mathcal{E}(W(S))$ is $W(S)$ -invariant. Finally set

(17) $E(W(S))=\cup \mathcal{E}(W(S))$

5 cf. $[1, V, \S 4.6]$ . This argument is an induction based on the mutual
disjointness of the facets in $\mathcal{F}(C(\Pi^{\vee}))$ .

6 cf. [1, Ex. 2, p.130]. This exercise pertains to the present situation
since (P) of \S 3.1 is available.
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Define the star of a facet $wF_{j}^{o}(\Pi^{\vee})$ to be the subset

$stwF_{J}^{o}(\Pi^{\vee})=\{uF_{\mathring{K}}(\Pi^{\vee})\in \mathcal{F}(W(S))|uF_{K}(\Pi^{\vee})\supseteq wF_{J}^{o}(\Pi^{\vee})\}$

of $\mathcal{F}(W(S))$ . It is clear that $uC(\Pi^{\vee})=uF_{\emptyset}^{o}(\Pi^{\vee})\supseteq uF_{K}(\Pi^{\vee})$ . Therefore
the facets in $stwF_{J}^{o}(\Pi^{\vee})$ are those that are contained in a chamber
$uC(\Pi^{\vee})=C(u^{\vee}\Pi^{\vee})$ for which $u^{\vee}\Pi^{\vee}\supseteq w^{\vee}\Pi_{J}^{\vee}$ . Set

(18) $C$ $(wF_{J}^{o}(\Pi^{\vee}))=\{C\in C(W(S))|C^{o}\in stwF_{J}^{o}(\Pi^{\vee})\}$ .

Each chamber $C\in C(wF_{J}^{o}(\Pi^{\vee}))$ has the form $C=uwC(\Pi^{\ovalbox{\tt\small REJECT}})$ for some
$u\in W(S)$ . In particular, we may take $u=1$ since clearly $wC(\Pi^{\vee})$

is in $C$ $(wF_{J}^{o}(\Pi^{\vee}))$ . Any two chambers $v_{1}wC(\Pi^{\ovalbox{\tt\small REJECT}})$ and $v_{2}wC(\Pi^{\ovalbox{\tt\small REJECT}})$ in
$C$ $(wF_{J}^{o}(\Pi^{\vee}))$ intersect in $F_{12}=v_{1}wC(\Pi^{\ovalbox{\tt\small REJECT}})\cap v_{2}wC(\Pi^{\ovalbox{\tt\small REJECT}})$ where $ F_{12}^{o}\in$

$stwF_{J}^{o}(\Pi^{\vee})$ . For $wF_{J}^{o}(\Pi^{\vee})\in \mathcal{F}(W(S))$ , set

(19) $N(wF_{J}^{o}(\Pi^{\vee}))=\cup C(wF_{J}^{o}(\Pi^{\vee}))$ .

Theorem 3.7. Let $F^{o}=F_{J}^{o}(\Pi^{\vee})\in \mathcal{F}(W(S))$ where $\Pi^{\vee}=\{\alpha_{i}^{\vee}|$

$i\in I\}$ , and let $uC(\Pi^{\vee})=C(u^{\vee}\Pi^{\vee})\in C(F^{o})$ where $u\in W(S)$ , Set $J_{u}=$

$\{j\in I|u^{\vee}\alpha_{j}^{\vee}(F^{o})=0\}$ and $K_{u}=I\backslash J_{u}=\{j\in I|u^{\vee}\alpha_{k}^{\vee}(F^{o})>0\}$ .

Set $\Gamma^{\vee}=\cup\{u^{\vee}\Pi_{K_{u}}^{\vee}|C(u^{\vee}\Pi^{\vee})\in C(F^{o})\}$ . Then the following holds.
(i) $uC(\Pi_{J_{u}}^{\vee})\in C(W_{J})$ . Then $C’\in C(W_{J})$ , then $ C’\cap C(\Gamma^{\vee})\in$

$C(F^{o})$ , and $C(\mathcal{F}^{o})=\{uC(\Pi^{\vee})|u\in W_{J}\}$ .

(ii) $N(F^{o})=C(\Gamma^{\vee})\subseteq T(W_{J})$ , and $\Gamma^{\vee}$ is a base for the polyhedral
cone $C(\Gamma^{\vee})$ where $\Gamma^{\vee}=\cup\{(u^{\vee}\Pi_{\check{K}_{u}})|u\in W_{J}\}$ .

(iii) $F^{o}\subseteq N(F^{o})^{o}$ if and only if $F^{o}\in \mathcal{E}(W(S))$ .

Proof, (i) The hyperplanes $H_{u^{\vee}\alpha_{j}^{\vee}}$ , $\alpha_{\check{j}}\in\Pi_{\check{J}_{u}}$ are hyperplanes of

reflections $r_{u^{\vee}\alpha_{j}^{\vee}}\in W_{J}$ . Clearly $uC(\Pi_{\check{J}_{u}})$ is a polyhedral cone. It is

a chamber for $W_{J}$ , for otherwise there would exist $H_{r}\in H(W_{J})$ such
that $ H_{r}\cap uC(\Pi_{J_{u}}^{\vee})^{o}\neq\emptyset$ in contradiction to $ H_{r}\cap uC(\Pi^{\vee})^{o}=\emptyset$ . On the
other hand, if $C’\in C(W_{J})$ . Then $C’\supseteq V_{J}\supseteq F^{o}$ ; hence it contains a
chamber $C_{1}\in C(F^{o})$ . Since the chambers in $C(F^{o})$ belong to distinct
chambers of the stabilizer of $F^{o}$ , which is $W_{J}$ , $C’$ contains only one
chamber of $W(S)$ . This forces $C’\cap C(\Gamma^{\vee})\in C(F^{o})$ . Clearly $ C(\Pi^{\vee})\in$

$C(F^{o})$ ; so $\Pi^{\vee}=\Pi_{J_{1}}^{\vee}\cup\Pi_{K_{1}}^{\vee}$ and $C(\mathcal{F}^{o})=\{uC(\Pi^{\vee})|u\in W_{J}\}$ inasmuch

as $C$ $(W_{J})=\{uC(\Pi_{J_{1}}^{\vee})|u\in W_{J}\}$ .

(ii) Now $\Gamma^{\vee}=\cup\{(u^{\vee}\square _{\check{K}_{u}})|uC(\Pi^{\ovalbox{\tt\small REJECT}})\supseteq F^{o}\}$ . But because $ F^{o}\not\leqq$

$H_{u^{\vee}\alpha_{k}^{\vee}}$ for $u^{\vee}\alpha\vee\in\Gamma^{\vee}$ , $F^{o}\subseteq D_{u^{\vee}\alpha^{\vee}}^{o}$ . But then $uC(\Pi^{\vee})\subseteq D_{u^{\vee}\alpha^{\vee}}^{o}$ for
$uC(\Pi^{\ovalbox{\tt\small REJECT}})\in C(F^{o})$ . Thus $N(F^{o})\subseteq C(\Gamma^{o})$ . However, $T(W(S))\subseteq T(W_{J})$

and the set $C$ $(W_{J})$ partitions $T(W_{J})$ . Then the set $\{C’\cap C(\Gamma^{o})|C’\in$

$C$ $(W_{J})\}$ partitions $C(\Gamma^{o})$ into the set $C(F^{o})$ . Thus $N(F^{o})=C(\Gamma^{o})$ .
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Now $\bigcup_{u}\bigvee_{\alpha_{k}^{\vee}\in\Gamma^{vv\vee}}F_{u\alpha_{k}}^{o}(\Gamma^{\vee})$ is the envelope $B(\Gamma^{\vee})$ of $C(\Gamma^{\vee})$ , and each

$F_{u^{\vee}\alpha_{k}^{\vee}}^{o}(\Gamma^{\vee})$ contains the face $F_{u^{\vee}\alpha_{k}^{\vee}}^{o}(uC(\Pi^{\vee})$ of $uC(\Pi^{\vee})\in stF^{o}$ . Conse-

quently $ F_{u^{\vee}\alpha_{k}^{\vee}}^{o}(\Gamma^{\vee})\neq\emptyset$ ; so for each $u^{\vee}\alpha_{k}^{\vee}\in\Gamma^{\vee}$ , $F_{u^{\vee}\alpha_{k}^{\vee}}^{o}(\Gamma^{\vee})$ is a face of
$C(\Gamma^{\vee})$ , and thus $\Gamma^{\vee}$ is a base.

(iii) Because $F^{o}\subseteq V_{J}$ , it is contained in the Tits cone $T(W_{J})$ of $W_{J}$ .

But $F^{o}\subseteq T(W_{J})^{o}$ if and only if $T(W_{J})=V$. It follows from Proposition
3.6 that $T(W_{J})=V$ if and only if $W_{J}$ is finite, in which case $ F^{o}\in$

$\mathcal{E}(W(S))$ . So it remains to show that $F^{o}\subseteq N(F^{o})^{o}$ if and only if
$T(W_{J})=V$. Now $T(W_{J})\supseteq T(W(S))$ . So $F^{o}\not\leqq T(W_{J})^{o}$ is equivalent to
both $T(W_{J})\neq V$ and $F^{o}\not\leqq N(F^{o})^{o}$ . On the other hand, $F^{o}\subseteq T(W_{J})^{o}$

is equivalent to $T(W_{J})=V$ and thus to having the envelope of $C(\Gamma^{\vee})$

being contained in the walls $ H_{\gamma}\vee$ , $\gamma\in\Gamma^{\vee}$ , of $C(\Gamma^{o})$ . But $u^{\vee}\alpha_{k}^{\vee}(F^{o})>0$

for all $u^{\vee}\alpha_{k}^{\vee}\in\Gamma^{\vee}$ . This means that $F^{o}\not\leqq C(\Gamma^{\vee})^{o}=N(F^{o})^{o}$ . Q.E.D.

Corollary 3.8. Let $W(S)$ be a linear Coxeter group acting on
$V$, and let $T(W(S))^{o}$ be the interior of its Tits cone $T(W(S))$ . Then
$E(W(S))=T(W(S))^{o}$ .

Proof. By virtue of Theorem 3.7, it follows that $F^{o}\subseteq N(F^{o})^{o}=$

$C(\Gamma^{\vee})^{o}$ if and only $F^{o}\in \mathcal{E}(W(S))$ where $\Gamma^{\vee}$ is defined by (3.7). But
$C(\Gamma^{\vee})^{o}\subseteq T(W(S))$ . So $F^{o}\subseteq T(W(S))^{o}$ if $F^{o}\in \mathcal{E}(W(S))$ . On the
other hand, if $F^{o}\not\leqq T(W(S))^{o}$ , then $F^{o}\not\geq E(W(S))$ , and it follows
that $F^{o}\not\leqq T(wW_{J}w^{-1})^{o}$ where $wW_{J}w^{-1}$ is the subgroup of $W(S)$ that
fixes $F^{o}$ . As we argued in Theorem 3.7, this implies that $W_{J}$ is infinite
and so $F^{o}\not\in \mathcal{E}(W(S))$ . Then $F^{o}\not\leqq E(W(S))$ , and by (16), $T(W(S))^{o}=$

$E(W(S))$ . Q.E.D.

3.3. Reflection Subgroups

A Coxeter group is given by a Coxeter system $(W(S), S)$ , which
specifies its presentation, and $W(S)$ may always be represented as a lin-
ear Coxeter group7 by means of the contragredient representation. The
involutions in $W(S)$ that correspond to the reflections in this representa-
tion are those that belong to the set $R$ of the conjugates of the elements
of $S$ . Independently by M. Dyer [3] and $V.V$ . Deodhar [2] showed that
a subgroup of a Coxeter group that is generated by these involutions
is again a Coxeter group. Also J. Tits has noted that Theorem 3.1 is
applicable to this problem. Here we offer a direct proof that a reflec-
tion subgroup of a linear Coxeter group is a linear Coxeter group. This
immediately implies that it is a Coxeter group. The importance of a
direct proof lies in the geometrical insight which it provides, which is

$7cf$. Bourbaki [1].
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useful when investigating particular reflection subgroups which can be
identified by an explicit construction of the base of a chamber.

In this section, we work with a given linear Coxeter group $W=$
$W(S)$ and a reflection subgroup $W_{0}$ . We take $T=E(W)$ to be the
underlying set $T$ that is used to define the chambers of $W$ and $W_{0}$ by
means of (1).

Theorem 3.9. Let $W$ be a linear Coxeter group acting on $V$ with
a regular chamber $C(\Pi^{\vee})$ that has a base $\Pi^{\ovalbox{\tt\small REJECT}}$ . Let $W_{0}$ be a reflection
subgroup of $W$ that is generated by a set of reflections. Then $W_{0}$ is $a$

linear Coxeter group with a chamber $C(\Pi_{0}^{\vee})$ that contains $C(\Pi^{\vee})$ .

Proof. Set

(20) $C_{0}=(_{\gamma^{\vee}\in}n_{\Sigma_{O}^{+}}D_{\gamma}\vee)\cap E(W)$ .

It follows from Corollary 3.8 that $E(W)=T(W)^{o}$ ; so $ C(\Pi^{\vee})^{o}\neq\emptyset$ .

Because $C_{0}\supseteq C(\Pi^{\ovalbox{\tt\small REJECT}})^{o}$ , it follows from (10) that $C_{0}$ is a chamber for $W_{0}$ .

By virtue of Theorem 3.3, it remains to show that $C_{0}$ has a base. Let
$\Pi_{0}^{\vee}$ be the subset of $\Sigma_{0}^{\vee+}$ consisting of those coroots $\gamma^{\vee}$ such that $ H_{\gamma}\vee$

is a wall of a chamber $w_{\gamma}\vee C(\Pi^{\vee})$ of $W$ that is contained in $C_{0}$ ; then
$\gamma^{\vee}=w_{\gamma^{\vee}}\alpha_{i}^{\vee}$ for some $\alpha_{\check{i}}\in\Pi^{\ovalbox{\tt\small REJECT}}$ and

$ F_{\gamma^{\vee}}^{o}(\Pi_{\check{0}})=H_{\gamma^{\vee}}\cap C(\Pi_{0}\backslash \{\gamma^{\vee}\})^{o}\supseteq H_{\gamma^{\vee}}\cap C(w_{\gamma^{\vee}}\Pi^{\ovalbox{\tt\small REJECT}}\backslash \{w_{\gamma^{\vee}}\alpha_{i}^{\vee}\})^{o}\neq\emptyset$ .

Therefore $\Pi_{\check{0}}$ is a base. By virtue of (20), $C(\Pi_{\check{0}})\supseteq C_{0}$ .

So it suffices to show that $C_{0}\supseteq C(\Pi_{0}^{\vee})$ . Let $B_{0}$ be the envelope
$C_{0}\backslash C_{0}^{o}$ of $C_{0}$ . By virtue of Theorem 3.4, $B_{0}=\cup\{wF_{J}^{o}(\square )\in \mathcal{F}(W)|$

$wF_{J}^{o}(\square )\subseteq B_{0}\}$ . Take $wF_{J}^{o}(\Pi^{\vee})\in \mathcal{F}(W)$ where $wF_{J}^{o}(\Pi^{\vee})\subseteq B_{0}$ . Then
by Theorem 3.7, $N(wF_{J}^{o}(\Pi^{\vee}))$ is polyhedral cone, and as $T(W)=$
$E(W)$ , $wF^{o}(\Pi^{\vee})\subseteq N(wF^{o}(\Pi^{\vee}))^{o}$ . So as $wF_{J}^{o}(\Pi^{\vee})\subseteq B_{0}$ , $ C_{0}\cap$

$ N(wF_{J}^{o}(\Pi^{\vee}))^{o}\neq\emptyset$ . Hence $C_{0}\cap N(wF_{J}^{o}(\Pi^{\vee}))$ is a polyhedral cone $C(\Lambda_{\check{0}})$

where $\Lambda_{0}^{\vee}\subseteq\Sigma^{\vee}$ .

As $wF_{J}^{o}(\Pi^{\vee})\subseteq B_{0}$ , it follows from Theorem 3.7 that $ wF_{J}^{o}(\Pi^{\vee})\not\leqq$

$C(\Lambda_{0}^{\vee})^{o}$ . This means that $wF_{J}^{o}(\Pi^{\vee})$ is contained in the envelope of
$C(\Lambda_{0}^{\vee})$ . Because $wF_{J}^{o}(\Pi^{\vee})\in \mathcal{E}(W(S))$ , the parabolic subgroup $wW_{J}w^{-1}$

is finite. Therefore $\Lambda_{\check{0}}$ is finite and $C(\Lambda_{\check{0}})$ has a base $\Pi^{\ovalbox{\tt\small REJECT}}(wF_{J}^{o}(\Pi^{\vee}))$ .

Let $\Pi_{0}^{\vee}(wF_{J}^{o}(\Pi^{\vee}))$ denote the subset of $\Pi^{\vee}(wF_{J}^{o}(\Pi^{\vee}))$ which consists
of those $\gamma^{\vee}\in\Sigma_{0}^{\vee+}$ such that $H_{\gamma}\vee\supseteq wF_{J}^{o}(\Pi^{\vee})$ . Then $\Pi_{0}^{\vee}(wF_{J}^{o}(\Pi^{\vee}))\subseteq$

$\Sigma_{0}^{\vee}$ , and $C_{0}\cap N(wF_{J}^{o}(\Pi^{\vee}))=C(\Pi_{0}^{\vee}(wF_{J}^{o}(\Pi^{\vee})))\cap N(wF_{J}^{o}(\Pi^{\vee}))$ . Since
$ H_{\gamma}\vee\cap N(wF_{J}^{o}(\Pi^{\vee}))^{o}\neq\emptyset$ for $\gamma^{\vee}\in\square _{\check{0}}(wF_{J}^{o}(\Pi^{\vee}))$ , it follows that
$\Pi_{0}^{\vee}(wF_{J}^{o}(\Pi^{\vee}))\subseteq\Pi_{0}^{\vee}$ . Set $\Pi_{1}^{\vee}=\bigcup_{wF_{J}^{o}(\square )\subseteq B_{O}}\vee\Pi_{0}^{\vee}(wF_{J}^{o}(\Pi^{\vee}))$ . Then $\Pi_{1}^{\vee}\subseteq$
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$\Pi_{\check{0}}$ and $C(\Pi_{\check{1}})\supseteq C(\Pi_{0}^{\vee})$ . By virtue of Corollary 3.2 and Theorem 3.3,
$\Pi_{1}^{\vee}$ inherits the Cartan property from $\Pi_{0}^{\vee}$ . Therefore $\Pi_{\check{1}}$ is a base for the
polyhedral cone $C(\Pi_{\check{1}})$ , and $C(\Pi_{1}^{\vee})=\bigcap_{wF_{J}^{o}(\Pi\vee}{}_{)\subseteq B_{0}}C(\square ^{\vee}(wF_{J}^{o}(\Pi^{\vee})))$ .

Since $B_{0}=\cup\{wF_{J}^{o}(\Pi)|wF_{J}^{o}(\Pi)\subseteq B_{0}\}$ , $B_{0}$ is contained in the enve-
lope of $C(\Pi_{\check{1}})$ . Since $C_{0}$ is the convex hull of $B_{0}$ , we now have $ C_{0}\supseteq$

$C(\Pi_{1}^{\vee})\supseteq C(\Pi_{0}^{\vee})$ . Q.E.D.
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The Isaacs character correspondence and isotypies
between blocks of finite groups

Atumi Watanabe

\S 1. Introduction

Let $S$ and $G$ be finite groups such that $S$ acts on $G$ via automor-
phism and $(|S|, |G|)=1$ . It is well known that in this situation there
is a natural bijection $\pi(G, S)$ from the set $Irr_{S}(G)$ of $S$-invariant irre-
ducible characters of $G$ onto the set $Irr(C_{G}(S))$ of irreducible characters
of $C_{G}(S)$ . When $S$ is solvable, this is obtained by G. Glauberman and
when $|G|$ is odd this is obtained by I. M. Isaacs. Moreover it is shown
in [Wol] that when $S$ is solvable and $|G|$ is odd these are equal. Let $p$

be a prime. In [Wa] we showed that the Glauberman character corre-
spondence gives an isotypy between an $S$-invariant $p$-block $B$ of $G$ and a
$p$-block of $C_{G}(S)$ if a defect group of $B$ is centralized by $S$ . In [H] H. Ho-
rimoto proved that the Isaacs character correspondence gives a perfect
isometry between an $S$-invariant $p$-block $B$ of $G$ and a $p$-block of $C_{G}(S)$

under the same assumption as in the Glauberman correspondence case
(see Theorem 3.2 for the detail). The purpose of this paper is to show
that the perfect isometry is an isotypy (Theorem 3.6).

Let $(\mathcal{K}, \mathcal{R}, F)$ be a $p$-modular system such that $\mathcal{K}$ is algebraically
closed. Here we state the definition of isotypies between blocks, where
a block means a $p$-block. Let $B$ be a block of $G$ with defect group
$D$ and $(D, B_{D})$ be a maximal $B$-subpair of $G$ . We denote by $Br_{B}(G)$

the Brauer category of $B$ . $Br_{B}(G)$ is the category whose objects are B-
subpairs of $G$ and whose morphisms are defined in the following way: For
$B$ subpairs $(Q, b)$ and $(R, b’)$ Mor((Q, $b$), $(R,$ $b’)$ ) is the set of all cosets
$gC_{G}(Q)$ of $G$ such that $g(Q, b)\subseteq(R, b’)$ (see [B-O], \S 1). We denote
by $Br_{B,D}(G)$ the full subcategory of $Br_{B}(G)$ whose objects are the B-
subpairs $(Q, b)$ such that $(Q, b)\subseteq(D, B_{D})$ . We note that for any $Q\leq D$

there exists a unique block $b$ such that $(Q, b)\subseteq(D, B_{D})$ , and we set $b=$
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$B_{Q}$ . Let $CF(G, \mathcal{K})$ be the $\mathcal{K}$-vector space of $\mathcal{K}$-valued class functions on
$G$ and let $CF(G, B, \mathcal{K})$ be the subspace of $CF(G, \mathcal{K})$ of class functions $\alpha$

such that $\alpha$ is a $\mathcal{K}$-linear combination of %’s in Irr(i3). Let $CF_{p’}(G, B, \mathcal{K})$

be the subspace of $CF(G, B, \mathcal{K})$ of class functions vanishing on the p-
singular elements of $G$ . Let $(x, b)$ be a $B$-Brauer element of G. The
decomposition map

$d_{G}^{(x,b)}$ : $CF(G, B, \mathcal{K})\rightarrow CF_{p’}(C_{G}(x), b, \mathcal{K})$

is defined by $d_{G}^{(x,b)}(\alpha)(y)=\alpha(xye_{b})$ for any $p’$ element $y$ of $C_{G}(x)$ ,

where $e_{b}$ is the block idempotents of $\mathcal{R}C_{G}(x)$ corresponding to $b$ . Fi-
nally let $H$ be a second finite group and $B’$ be a block of $H$ with $D$

as a defect group. Let $(D, B_{D}’)$ be a maximal $B’$-subpair of $H$ and for
any subgroup $Q$ of $D$ let $(Q, B_{Q}’)$ be the $B’$-subpair of $H$ such that
$(Q, B_{Q}’)\subseteq(D, B_{D}’)$ .

Definition $([B, 4.6])$ . With the above notations $(G, B)$ and $(H, B’)$

are isotypic if the following conditions hold :

(i) The inclusion of $D$ into $G$ and $H$ induces an equivalence of the
Brauer categories $Br_{B,D}(G)$ and $Br_{B’,D}(H)$ .

(ii) There exists a family of perfect isometries

$\{R^{Q} : \mathcal{R}_{\mathcal{K}}(C_{G}(Q), B_{Q})\rightarrow \mathcal{R}_{\mathcal{K}}(C_{H}(Q), B_{Q}’)\}_{\{Q(cyclic)\leq D\}}$

such that for any $x$ $\in D$

$(*)$
$d_{H}^{(x,B_{\langle x\rangle}’)}\circ R^{\langle 1\rangle}=(R^{\langle x\rangle})_{p’}\circ d_{G}^{(x,B_{\langle x\rangle})}$ ,

where $(R^{\langle x\rangle})_{p’}$ is the $\mathcal{K}$-linear map from $CF_{p’}(C_{G}(x), B_{\langle x\rangle}, \mathcal{K})$

onto $CF_{p’}(C_{H}(x), B_{\langle x\rangle}’, \mathcal{K})$ induced by $R^{\langle x\rangle}$ and we regard $R^{\langle 1\rangle}$

as a $\mathcal{K}$-linear map from $CF(G, B, \mathcal{K})$ onto $CF(H, B’, \mathcal{K})$ . In the
above $R^{\langle 1\rangle}$ is called an isotypy between $B$ and $B’$ , and
$(R^{Q})_{\{Q(cyclic)\leq D\}}$ is called the local system of $R^{\langle 1\rangle}$ . See $[B, \S 1]$

for the definition of perfect isometries between blocks.

\S 2. Isaacs character correspondence

In this section we recall the definition of the Isaacs correspondence
and state some results in [I1], [Wol, 2] which are used in the next section.
Let $G$ be a finite group. For normal subgroups $L\leq K$ of $G$ such that
$K/L$ is abelian, and for $G$-invariant irreducible characters $\theta$ of $K$ and $\phi$

of $L$ , if $\theta$ is fully ramified with respect to $K/L$ and $\phi$ is an irreducible
constituent of $\theta_{L}$ , then $(G, K, L, \theta, \phi)$ is called a character five.
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Theorem 2.1 ( $[II$ , Theorem 2.1; Corollary 6.4]). Let $(G, K, L, \theta, \phi)$

be a character five. Assume that either $|G$ : $K|$ or $|K$ : $L|$ is odd. Let
$\Psi^{(K/L)}$ be the character of $G/K$ defined with respect to the $form<<,$ $>>_{\phi}$

on $K/L$ , and view $\Psi^{(K/L)}$ as a character of G. Then there exists $a$

conjugacy class $\mathcal{U}$ of subgroups $U\leq G$ such that

(a) $(\Psi^{(K/L)}(x))^{2}=\pm|C_{K/L}(x)|$ for $x\in G$ ;
(b) $UK=G$ and $U\cap K=L$ ;
(c) $U^{a}$ is $G$ -conjugate to $U$ for all $a\in Aut(G)$ such that $K^{a}=K$ ,

$L^{a}=L$ and $\phi^{a}=\phi$ ;
(d) the equation $\chi_{U}=(\Psi^{(K/L)})_{U}\xi$ , for $\chi\in Irr(G|\theta)$ and $\xi\in Irr(U|\phi)$

defines $a$ 1-1 correspondence between these sets of characters, and
(e) if $|G$ : $K|$ is odd, $\chi\in Irr(G|\theta)$ and $\xi\in Irr(U|\phi)$ , then $\chi_{U}=$

$(\Psi^{(K/L)})_{U}\xi$ if and only if $(\chi_{U}, \xi)$ is odd.

For the definition of $\Psi^{(K/L)}$ in the above, see [II], page 619, Theorem
6.3 and the above of Theorem 9.1. $\Psi^{(K/L)}$ is determined by the form
$<<,$ $>>_{\phi}$ on $K/L$ and the action of $G/K$ on $K/L$ .

Hypothesis 2.2. Let $S$ act on $G$ via automorphism such that
$(|S|, |G|)=1$ . Let $C=C_{G}(S)$ and let $\Gamma$ be the semi-direct product $GS$ .

Lemma 2.3 ([Il, Corollary 10.7]; [Wol, Corollary 4.3]). Assume
Hypothesis 2.2 with $|G|$ odd. Let $[G, S]’C\leq H\leq G$ such that $H$ is S-
invariant. Then there exists a bijection $\sigma(G, H, S)$ : $Irr_{S}(G)\rightarrow Irr_{S}(H)$

such that for $\chi\in Irr_{S}(G)$ , $\sigma(G, H, S)(\chi)$ is the unique $S$ -invariant irre-

ducible character $\alpha$ of $H$ with $(\chi_{H}, \alpha)$ odd.

Definition $([II, \S 10 ])$ . Assume Hypothesis 2.2 with $|G|$ odd. If
$C<G$ , then let

$G=G_{0}>G_{1}>G_{2}>G_{3}>\cdots>G_{n}=C$

by $G_{i+1}=[G_{i}, S]’C$ , for $i\geq 0$ . The Isaacs character correspondence
$\pi(G, S)$ : Irrs $(G)\rightarrow Irr(G)$ is the composition map

$\sigma(G_{n-1}, C, S)\sigma(G_{n-2}, G_{n-1}, S)\cdots\sigma(G_{2}, G_{1}, S)\sigma(G, G_{1}, S)$

if $C<G$ , otherwise $\pi(G, S)$ is the identity map.

The following lemmas play big roles in this paper.

Lemma 2.4 ([Wol, Theorem 4.6]). Assume Hypothesis 2.2 with $|G|$

odd. Let $K=[G, S]$ , $L=K’$ , and $U=LC$ . Assume that $U\leq H\leq G$

is $S$ invariant. Let $\chi\in Irrs(G)$ and $\psi=\sigma(G, H, S)(\chi)$ . Then

(a) $\sigma(G, U, S)(\chi)=\sigma(H, U, S)(\psi)$ , and
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(b) $\pi(G, S)(\chi)=\pi(H, S)(\psi)$ .

Lemma 2.5 ([Wo2, Lemma 2.5]). Assume Hypothesis 2.2 and $ N\triangleleft\Gamma$

and $N\leq G$ . Let $\chi\in Irr_{S}(G)$ , $\theta\in Irr_{S}(N)$ , $T=T_{G}(\theta)$ the inertial
subgroup of $\theta$ in $G$ , $\mu=\pi(G, S)(\chi)$ , and $iJ$ $=\pi(N, S)(\theta)$ . Then

(a) $(\chi_{N}, \theta)\neq 0$ if and only if $(\mu Nnc, \iota/)\neq 0$ ,
(b) $T\cap C=T_{C}(l/)$ and $\pi(G, S)(\psi^{G})=(\pi(T, S)(\psi))^{C}$ for $\psi\in Irr_{S}(T|\theta)$ .

Lemma 2.6 ([Wol, Lemma 4.9]). Assume Hypothesis 2.2 with $|G|$

odd. Let $U$ be a normal subgroup of $S$ and $H=C_{G}(U)$ . Then $\pi(G, U)$

maps Irrs(G) onto Irrs(G) and $\pi(G, S)=\pi(H, S/U)\pi(G, U)$ .

\S 3. Isotypies obtained from Isaacs character correspondences

Since the Isaacs character correspondence is defined in the case $|G|$

is odd, we set the following hypothesis. Then $G$ is solvable by the Feit-
Thompson’s theorem.

Hypothesis 3.1. Let $S$ and $G$ be finite groups such that $S$ acts on
$G$ , $(|S|, |G|)=1$ and that $|G|$ is odd. Put $C=C_{G}(S)$ .

Theorem 3.2 ( $[H$ , Theorem 1, (a)]). Under the above hypothesis,
let $B$ be an $S$ -invariant block of $G$ such that a defect group $D$ of $B$ is
centralized by S. Then there exists a block $b$ of $C$ such that Irr(6) $=$

$\{\pi(G, S)(\chi)|\chi\in Irr(B)\}$ and $\pi(G, S)$ gives a perfect isometry $R$ between
$B$ and $b$ . Moreover $D$ is a defect group of $b$ .

In the above theorem the assumption for $B$ implies that $\chi\in Irr(B)$ is
$S$-invariant by [Wa, Proposition 1]. We call $b$ the Isaacs correspondent

of $B$ . We will show that the perfect isometry $R$ in the above theorem
is an isotypy.

Lemma 3.3. Let $(G, K, L, \theta, \phi)$ be a character five such that $K$ is

a $p’$ group and $|G|$ is odd. Let $\Psi^{(K/L)}$ be the character of $G/K$ defined
with respect to the $form<<,$ $>>_{\phi}$ on $K/L$ . Let $Q$ be a $p$ subgroup of $C$ ,
$\theta^{*}=\pi(K, Q)(\theta)$ and $\phi^{*}=\pi(L, Q)(\phi)$ . Then the following hold.

(i) $(C_{G}(Q), C_{K}(Q),$ $C_{L}(Q)$ , $\theta^{*}$ , $\phi^{*})$ is a character five.
(ii) Suppose that $Q$ is a cyclic group generated by $x$ and let

$\Psi^{(C_{PC}(x)/C_{L}(x))}$ be the character of $C_{G}(x)/C_{K}(x)$ defined with re-
spect to the $form<<,$ $>>_{\phi^{*}}$ on $C_{K}(x)/C_{L}(x)$ . If $K/L$ is a $q$ group

for a prime $q$ , then there exists a sign $\epsilon_{x}=\pm 1$ such that

$\Psi^{(K/L)}(x\rho)=\epsilon_{x}\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)$

for all $\rho\in C_{G}(x)_{p’}$ .
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Proof, (i) Since $\theta$ is $G$-invariant, by [12, Theorem 13.14] and [Wol,
Theorem 5.1] $\theta^{*}$ the unique constituent of $\theta_{C_{K}(Q)}$ such that $p$ does not
divide $(\theta_{C_{K}(Q)}, \theta^{*})$ . Therefore $\theta^{*}$ is $C_{G}(Q)$ -invariant. Similarly $\phi^{*}$ is
$C_{G}(Q)$ -invariant. Since $\theta$ is a unique constituent of $\phi^{K}$ as $\phi$ is fully
ramified with respect to $K/L$ , $\theta^{*}$ is a unique constituent of $(\phi^{*})^{C_{K}(Q)}$

by Lemma 2.5. Hence $(C_{G}(Q), C_{K}(Q)$ , $C_{L}(Q)$ , $\theta^{*}$ , $\phi^{*})$ is a character five.
Here we show $<<,$ $>>_{\phi}=<<,$ $>>_{\phi^{*}}$ on $CK\{Q$ ) $/CL(Q)$ without the assump-
tion $\phi$ is fully ramified with respect to $K/L$ , where $CK(Q)/CL(Q)$ is

identified with a subgroup of $K/L$ . Let $y\in C_{K}(Q)$ and $\hat{\phi}$ be an exten-

sion of $\phi$ to $\langle L, y\rangle$ . We can show that $\hat{\phi}$ is $Q$-invariant by a theorem of

Glauberman([I2, Lemma 13.8]). Then $\pi(\langle L, y\rangle, Q)(\hat{\phi})$ is an extension of
$\phi^{*}$ to $\langle C_{L}(Q), y\rangle$ by Lemma 2.5 because $\langle C_{L}(Q), y\rangle/C_{L}(Q)$ is cyclic. For
$z\in C_{K}(Q)$ let $(\hat{\phi})^{z}=\lambda\hat{\phi}$ where $\lambda$ is a linear character of $\langle L, y\rangle$ so that
$ L\subseteq Ker\lambda$ . Then we see easily $\pi(\langle L, y\rangle, Q)((\hat{\phi})^{z})=\pi(\langle L, y\rangle, Q)(\lambda\hat{\phi})=$

$\lambda\pi(\langle L, y\rangle, Q)(\hat{\phi})$ where $\lambda$ is regarded as a character of $\langle C_{L}(Q), y\rangle$ . So we

have $(\pi(\langle L, y\rangle, Q)(\hat{\phi}))^{z}=\pi(\langle L, y\rangle, Q)((\hat{\phi})^{z})=\lambda\pi(\langle L, y\rangle, Q)(\hat{\phi})$ . Hence
$<<y$ , $z>>_{\phi}=\lambda(y)=<<y$ , $z>>_{\phi^{*}}$ .

(ii) Let $E=K/L$ , $E_{1}=C_{E}(x)$ and $E_{2}=[E, x]$ . Then $ E=E_{1}\times$

$E_{2}$ . Since $E_{1}=C_{K}(x)L/L$ , $E_{1}$ and $CK(x)/CL(x)$ are $C_{G}(x)/C_{K}(x)-$

isomorphic when $CG(X)/CK(X)$ acts on them. Suppose that $1<E_{1}<E$ .

Then by the algorithm for computation of $\Psi^{(E)}$ ,

$\Psi^{(E)}(x\rho)=\Psi^{(E_{1})}(x\rho)\Psi^{(E_{2})}(x\rho)$

for all $\rho\in C_{G}(x)_{p’}$ . Since $C_{E_{2}}(x\rho)$ is the identity group, by [ $II$ , Corollary

6.4], $\Psi^{(E_{2})}(x\rho)=\pm 1$ and hence we have $\Psi^{(E_{2})}(x\rho)=\Psi^{(E_{2})}(x)$ for $\rho\in$

$C_{G}(x)_{p’}$ because $ x\rho$ is a 2’-element. On the other hand since
$<<,$ $>>_{\phi}=<<,$ $>>_{\phi^{*}}$ on $E_{1}\cong C_{K}(x)/C_{L}(x)$ , by [ $II$ , Theorem 6.3] and by

the algorithm for computation of $\Psi^{(E)}$ we have $\Psi^{(E_{1})}=\Psi^{(C_{K}(x)/C_{L}(x))}$

as characters of $C_{G}(x)/C_{K}(x)$ . Moreover $x\in Ker\Psi^{(C_{K}(x)/C_{L}(x))}$ by [12,
Corollary 6.4] because $x$ is a 2’-element. So if we put $\epsilon_{x}=\Psi^{(E_{2})}(x)$ , we
have $\Psi^{(E)}(x\rho)=\epsilon_{x}\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)$ for all $\rho\in C_{G}(x)_{p’}$ . Next suppose
that $E_{1}=E$ . Then we have $\Psi^{(E)}(x\rho)=\Psi^{(E)}(\rho)=\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)$

for all $\rho\in C_{G}(x)_{p’}$ by the same argument as in the above. So we may
assume $E_{1}$ is the identity group. Then by [$II$ , Corollary 6.4] again,
$\Psi^{(E)}(x\rho)=\Psi^{(E)}(x)=\pm 1$ for all $\rho\in C_{G}(x)_{p’}$ . On the other hand
$\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)=1$ for all $\rho\in C_{G}(x)_{p’}$ . So if we put $\epsilon_{x}=\Psi^{(E)}(x)$ ,

then we have $\Psi^{(E)}(x\rho)=\epsilon_{x}\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)$ for all $\rho\in C_{G}(x)_{p’}$ . This
completes the proof of (ii). Q.E.D.

Lemma 3.4. Assume Hypothesis 3.1. Let $B$ be an $S$ -invariant
block of $G$ such that a defect group $D$ of $B$ is centralized by $S$ and let
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$b$ be the Isaacs correspondent of B. Let $(Q, B_{Q})$ be an $S$ -invariant B-
subpair of $G$ such that $Q\subseteq D$ and a defect group of $B_{Q}$ is centralized by
$S$ and let $b_{Q}$ be the Isaacs correspondent of $B_{Q}$ . Then $b_{Q}$ is associated
with $b$ in the sense of Brauer.

Proof. We prove by induction on $|G|$ . Let $K=O_{p’}(G)$ and $\zeta^{*}$

be an irreducible character of $C_{K}(S)$ covered by $b$ . We may assume
that $\zeta^{*}$ is $Q$-invariant because $Q$ is contained in a defect group $D$ of $b$ .

Let $\zeta\in Irr_{S}(K)$ have the Isaacs correspondent $\zeta^{*}$ , and let $H=T_{G}(\zeta)$ ,
$T_{G}(\zeta)$ is the stabilizer of $\zeta$ in $G$ . Then $B$ covers $\zeta$ by Lemma 2.5 and
$H$ is $S$-invariant. By Lemma 2.5 again, $Q\leq T_{C}(\zeta^{*})=H\cap C$ , i.e., $\zeta$

is $SQ$-invariant. Let $\zeta_{1}=\pi(K, Q)(\zeta)$ and $\zeta_{2}=\pi(C_{K}(Q), S)(\zeta_{1})$ . Then
we have $\zeta_{2}=\pi(K, SQ)(\zeta)=\pi(C_{K}(S), Q)(\zeta^{*})$ by Lemma 2.6. And
$T_{C_{G}(Q)}(\zeta_{1})=H\cap C_{G}(Q)$ and $T_{C_{C}(Q)}(\zeta_{2})=H\cap C_{G}(Q)\cap C_{C}(Q)=$

$C\cap H\cap C_{G}(Q)$ . Moreover by the assumption, $B_{Q}$ covers $\zeta_{1}$ because
$B$ covers $\zeta$ . Hence $b_{Q}$ covers $\zeta_{2}$ by Lemma 2.5 since $b_{Q}$ is the Isaacs

correspondent $B_{Q}$ . Let $\tilde{b}_{Q}$ be a block of $C\cap H\cap C_{G}(Q)$ such that $\tilde{b}_{Q}$ is the

Clifford correspondent of $b_{Q}$ and similarly let $\tilde{B}_{Q}$ be a block of $H\cap C_{G}(Q)$

such that $\tilde{B}_{Q}$ is the Clifford correspondent of $B_{Q}$ . Since $\zeta$ and hence $\zeta_{1}$

is $S$-invariant and $B_{Q}$ is $S$-invariant, $\tilde{B}_{Q}$ is $S$-invariant. Let $\tilde{B}=(\tilde{B}_{Q})^{H}$ .

Then $\tilde{B}$ covers $\zeta$ and we have $\tilde{B}^{G}=((\tilde{B}_{Q})^{C_{G}(Q)})^{G}=B$ . Hence $B$ is the

Clifford correspondent of $\tilde{B}$ . Moreover since $\zeta$ , and $B$ is $S$-invariant, $\tilde{B}$ is
$S$-invariant. Here we show that a defect group of $\tilde{B}$ is centralized by S. $S$

acts on the defect groups of $\tilde{B}$

. By a theorem of Glauberman there exists
a defect group $\tilde{D}$ of $\tilde{B}$ which is $S$-invariant. So when $S$ acts on the defect
groups of $B$ , $D$ and $\tilde{D}$ are fixed elements. So $D$ are $\tilde{D}$ are $C$-conjugate by
a theorem of Glauberman. So $\tilde{D}$ is centralized by $S$ . Similarly a defect
group of $\tilde{B}_{Q}$ is centralized by $S$ . By Lemma 2.5 and the assumption, $\tilde{b}_{Q}$

is the Isaacs correspondent of $\overline{B}_{Q}$ . Now let $\tilde{b}$ be the Isaacs correspondent

of $\tilde{B}.\tilde{b}$ covers $\zeta^{*}$ by Lemma 2.5. Here assume $H<G$ . By the induction
hypothesis $\tilde{b}_{Q}$ is associated with $\tilde{b}$

. On the other hand since $b$ is the

Isaacs correspondent $B$ , $b$ is the Clifford correspondent of $\tilde{b}$ . These

imply $(b_{Q})^{C}=(\tilde{b}_{Q})^{C}=((\tilde{b}_{Q})^{H\cap C})^{C}=(\tilde{b})^{C}=b$ . Thus we assume $\zeta$ is
$G$-invariant. Hence $B$ is of maximum defect and $D$ is a Sylow $p$-subgroup
of $G$ because $G$ is solvable. Now we can show that a $p$-complement of $G$

is $S$-invariant by using a theorem of Glauberman. So $[G, S]$ is a $p’$ group
Hence $G=KC$ . From this $K\cap C$ is the maximal normal $p’$-subgroup of
$C$ . Since $\zeta^{*}$ is $C$-invariant, $b$ is the unique $p$-block of $C$ which covers $\zeta^{*}$ .

Now $(b_{Q})^{C}$ covers $\zeta^{*}$ because $b_{Q}$ covers $\zeta_{2}$ and $\zeta_{2}=\pi(C_{K}(S), Q)(\zeta^{*})$ .

So $b=(b_{Q})^{C}$ . This completes the proof. Q.E.D.



Isaacs character correspondence and isotypies 443

Under Hypothesis 3.1 let $B$ be an $S$-invariant block of $G$ with the
Isaacs correspondent $b$ . Let $D$ be a common defect group of $B$ and $b$

and $(D, B_{D})$ be an $S$-invariant maximal $B$-subpair. Let $(Q, B_{Q})$ be a
$B$-subpair contained in $(D, B_{D})$ . Then $B_{Q}$ is $S$-invariant and a defect
group of $B_{Q}$ is centralized by $S$ as we proved in [Wa, \S 3]. We prove it
again for the self-containedness. Let $(Q, B_{Q})d$ $(R, B_{R})$ be $B$-subpairs
contained in $(D, B_{D})$ . If $B_{R}$ is $S$-invariant, then $B_{Q}$ is $S$-invariant. So
we can show that $B_{Q}$ is $S$-invariant by the induction on $|D$ : $Q|$ . Next
we show that a defect group of $B_{Q}$ is centralized by $S$ for any $Q\leq D$ . In
fact we show that a defect group of $(B_{Q})^{T}$ is centralized by $S$ where $T$

is the inertial group of $B_{Q}$ in $N_{G}(Q)$ . Let $U$ be a defect group of $(B_{Q})^{T}$ .

Since $(B_{Q})^{T}$ is associated with $B$ , $Q^{v}\leq U^{v}\leq D$ for some $v\in G$ . So we

have $C_{\Gamma}(Q)\geq S^{v^{-1}}$ and $C_{\Gamma}(Q)\geq S$ . Since $C_{\Gamma}(Q)=SC_{G}(Q)$ , by the
Schur-Zassenhaus theorem there exists an element $u\in C_{G}(Q)$ such that
$S^{v^{-1}}=S^{u}$ . Then $v^{-1}u^{-1}\in C$ . Hence we have $U^{u^{-1}}\leq D^{v^{-1}u^{-1}}\subseteq C$ .
Thus $U^{u^{-1}}$ is a defect group of $(B_{Q})^{T}$ centralized by $S$ . Now let $b_{Q}$ be
the Isaacs correspondent of $B_{Q}$ . By Lemma 3.4 $(Q, b_{Q})$ is a $b$-subpair of
$C$ .

Proposition 3.5. With the above notations we have the following.

(i) $(D, b_{D})$ is a maximal $b$-subpair of $C$ and $(Q, b_{Q})\subseteq(D, b_{D})$ for
any $Q\leq D$ .

(ii) The Brauer categories $Br_{B,D}(G)$ and $Br_{b,D}(C)$ are equivalent.

Proof (i) By Lemma 3.4 and Theorem 3.2, it is evident that
$(D, b_{D})$ is a maximal $b$-subpair of $C$ . We prove the latter of (i) by
the induction on $|D$ : $Q|$ . Assume $Q\triangleleft R\leq D$ and $(R, b_{R})\subseteq(D, b_{D})$ .

Then $(B_{R})^{RC_{G}(Q)}=B_{Q}$ and $R$ fixes $B_{Q}$ . So we see that $R$ stabi-
lizes $b_{Q}$ because the map $\pi(C_{G}(Q), S)$ is an $N_{C}(Q)$ -map. Now $B_{Q}$ as
a block of $RC_{G}(Q)$ is $S$-invariant and a defect group of $B_{Q}$ is central-
ized by $S$ as we saw in the above. So by Lemma 2.5, $b_{Q}$ as a block of
$RC_{C}(Q)$ is the Isaacs correspondent of $B_{Q}$ . Hence by Lemma 3.4, we
have $(b_{R})^{RC_{C}(Q)}=b_{Q}$ and hence $(Q, b_{Q})\subseteq(R, b_{R})\subseteq(D, b_{D})$ .

(ii) Let $Q\leq D$ and let $(Q, B_{Q})^{x}\subseteq(D, B_{D})$ for $x\in G$ . Then
$(B_{Q})^{x}=B_{Q^{x}}$ . Since $Q^{x}\leq D\leq C$ , we can show $x\in C_{G}(Q)C$ by the
Schur-Zassenhaus theorem. So we may assume $x\in C$ . Then $(b_{Q})^{x}$ is the
Isaacs correspondent of $(B_{Q})^{x}$ and hence we have $(b_{Q})^{x}=b_{Q^{x}}$ . Con-
versely if $(Q, b_{Q})^{y}\leq(D, b_{D})$ for $y\in C$ then we have $(b_{Q})^{y}=b_{Qv}$ , Hence
$(B_{Q})^{y}=B_{Q^{y}}$ because $(b_{Q})^{y}$ is the Isaacs correspondent of $(B_{Q})^{y}$ . This
implies that $Br_{B,D}(G)$ and $Br_{b,D}(C)$ are equivalent. This completes
the proof of the proposition. Q.E.D.
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With the notations in the just above of Proposition 3.5, let $R^{Q}$

be the perfect isometry from $\mathcal{R}_{\mathcal{K}}(C_{G}(Q), B_{Q})$ onto $\mathcal{R}_{\mathcal{K}}(C_{C}(Q), b_{Q})$ for
$Q\leq D$ and let $R=R^{\langle 1\rangle}$ . We are now in a position to prove our main
theorem.

Theorem 3.6. Assume Hypothesis 3.1 and let $B$ be an $S$ -invariant
block of $G$ such that a defect group $D$ of $B$ is centralized by $S$ and $b$ be
the Isaacs correspondent of B. Then $R$ is an isotypy between $B$ and $b$

with local system $(\pm R^{Q})_{\{Q(cyc1ic)\leq D\}}$ , where $R^{Q}$ is as in the just above.

Proof. We prove by induction on $|G|$ . Since the Brauer categories
$Br_{B,D}(G)$ and $Br_{b,D}(C)$ are equivalent by Proposition 3.5, it suffices to
prove

(1) $\pm(R^{\langle x\rangle})_{p’}\circ d_{G}^{(x,B_{x})}=d_{C}^{(x,b_{x})}\circ R$

for any $x\in D$ , where $B_{x}=B_{\langle x\rangle}$ and $b_{x}=b_{\langle x\rangle}$ . Let $H$ be a normal
$p’$-subgroup of $G$ and let $\zeta$ be an $S$-invariant irreducible character of $H$

covered by $B$ . We put $\pi(H, S)(\zeta)=\zeta^{*}$ . By Lemma 2.5, $b$ covers $\zeta^{*}$ .

Let $T=T_{G}(\zeta)$ and $\tilde{B}$ be a block of $T$ such that $\tilde{B}$ covers $\zeta$ and that $\tilde{B}$

corresponds to $B$ by the Clifford theorem (then we say $that\tilde{B}$ and $B$ are

Clifford induction equivalent.) From the argument in the proof of Lemma

3.4, $\tilde{B}$ is $S$-invariant and a defect group of $\tilde{B}$ is centralized by $S$ . Let $\tilde{b}$ be
the Isaacs correspondent of $\tilde{B}$ . By Lemma 2.5 $T_{C}(\zeta^{*})=T\cap C=C_{T}(S)$

and $\tilde{b}$ covers $\zeta^{*}$ . Moreover we see $\tilde{b}$ and $b$ are Clifford induction equivalent
by Lemma 2.5 again because $b$ is the Isaacs correspondent of $B$ . Let
$\tilde{D}$ be a defect group of $\tilde{b}$ . Then $\tilde{D}$ is a defect group of $B$ . Since $\tilde{D}$

and $D$ are $S$-invariant, they are conjugate by an element of $C$ by a
theorem of Glauberman. So we may assume $\tilde{D}=D$ . In fact let $g\in C$ .
$(D^{g}, (B_{D})^{g})$ is an $S$-invariant maximal $B$-subpair of $G$ with $D^{g}\subseteq C$ and
$(Q^{g}, (B_{Q})^{g})\subseteq(D^{g}, (B_{D})^{g})$ for any $Q\leq D$ . On the other hand by the
definition of Isaacs correspondence, $(b_{Q})^{g}$ is the Isaacs correspondent of
$(B_{Q})^{g}$ , and $(R^{Q})^{g}$ is the perfect isometry from $\mathcal{R}_{\mathcal{K}}(C_{G}(Q^{g}), (B_{Q})^{g})$ onto
$\mathcal{R}_{\mathcal{K}}(C_{C}(Q^{g}), (b_{Q})^{g})$ . Moreover we can see that (1) holds for $(x, B_{x})$ if

and only if (1) holds for $(x, B_{x})^{g}$ , that is, $\pm((R^{\langle x\rangle})^{g})_{p’}\circ d_{G}^{(x^{9},(B_{x})^{g})}=$

$d_{C}^{(x^{g},(b_{x})^{g})}$ $\circ R$ for all $x\in D$ . Thus we may assume $\tilde{D}=D$ .

Let $(D,\tilde{B}_{D})$ be an $S$-invariant maximal $\tilde{B}$-subpair of $T$ . By [F-
$H]$ , $p$ 3471, Remark, $(\tilde{B}_{D})^{C_{G}(D)}$ is defined and it is Clifford induction

equivalent to $\tilde{B}_{D}$ . And $(\tilde{B}_{D})^{C_{G}(D)}$ is $S$-invariant because $\tilde{B}_{D}$ is S-
invariant. Hence $(\tilde{B}_{D})^{C_{G}(D)}$ and $B_{D}$ are $N_{C}(D)$ -conjugate by a theo-

rem of Glauberman. So we may assume $(\tilde{B}_{D})^{C_{G}(D)}=B_{D}$ if necessary
by replacing $\zeta$ with $N_{C}(C)$ -conjugate of it. Now let $Q\leq D$ and $\zeta_{1}=$
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$\pi(H, Q)(\zeta)$ . Then $T_{C_{G}(Q)}(\zeta_{1})=T\cap C_{G}(Q)$ . Let $\zeta_{2}=\pi(C_{H}(Q), S)(\zeta_{1})$ .

By Lemma 2.6 we have $\zeta_{2}=\pi(C_{H}(S), Q)(\zeta^{*})$ , and hence we have also
$T_{C_{C}(Q)}(\zeta_{2})=T\cap C\cap C_{G}(Q)$ . Let $(Q,\tilde{B}_{Q})\subseteq(D,\tilde{B}_{D})$ and $\tilde{b}_{Q}$ be the

Isaacs correspondent of $\tilde{B}_{Q}$ . Then $\tilde{B}_{Q}$ covers $\zeta_{1}$ , and $\tilde{b}_{Q}$ covers $\zeta_{2}$ by

Lemma 2.5. Therefore $(\tilde{B}_{Q})^{C_{G}(Q)}$ is defined and this is Clifford induc-

tion equivalent to $\tilde{B}_{Q}$ . By [F-H], $p$ 3471, Remark, $(Q, (\tilde{B}_{Q})^{C_{G}(Q)})\subseteq$

$(D, (\tilde{B}_{D})^{C_{G}(D)})=(D, B_{D})$ because $(Q,\tilde{B}_{Q})\subseteq(D,\tilde{B}_{D})$ , and hence we

have $B_{Q}=(\tilde{B}_{Q})^{C_{G}(Q)}$ . So Lemma 2.5 implies $b_{Q}=(\tilde{b}_{Q})^{C_{C}(Q)}$ , that is,
$\tilde{b}_{Q}$ and $b_{Q}$ are Clifford induction equivalent. Here we assume $T<G$ . By

the induction hypothesis (1) holds for $\tilde{B}$ . On the other hand $\overline{B}$ and $B$

are isotypic by the induction of characters, similarly $\tilde{b}$ and $b$ are also iso-
typic by [F-H], $p$ 3471, Remark. So combining these facts with Lemma
3.5 we can see that (1) holds for $B$ . Hence we may assume $T=G$ . In
particular we may assume that $B$ is of maximum defect and hence a
Sylow $p$-subgroup of $G$ is centralized by $S$ .

Let $K=[G, S]$ and $\theta$ be an $S$-invariant irreducible character of $K$

covered by $B$ . By a theorem of Glauberman we have $G=CK$ and we
have also $C\cap K\subseteq K’$ . From the above arguments $K$ is a $p’$ group and
$\theta$ is $G$-invariant. Moreover we may assume $C<G$ . Let $\Gamma=SG$ the
semi direct product of $G$ by $S$ , $K/L$ be a chief factor group of $\Gamma$ and
$X=LC$ . Then $G=XK$ , $X\cap K=L$ and $X<G$ . Besides a Sylow
$p$-subgroup of $X$ also is centralized by $S$ . So the Isaacs correspondence
gives a bijection between $B1_{S}(X)$ and B1(G) by Theorem 3.2. Let $B_{X}$ be
an $S$-invariant block of $X$ with Isaacs correspondent $b$ . We note $D$ is a
defect group of $B_{X}$ . On the other hand, since $X\supseteq CK’$ , by Lemma 3.4,
there exists a perfect isometry $R’$ from $\mathcal{R}_{\mathcal{K}}(G, B)$ onto $\mathcal{R}_{\mathcal{K}}(X, B_{X})$ such
that for $\chi\in Irr(B)R’(\chi)$ is the unique $S$-invariant irreducible character
$\alpha$ of $X$ with $(\alpha, \chi x)$ odd. Moreover $R$ is the composition of $R’$ and
the perfect isometry from $\mathcal{R}_{\mathcal{K}}(X, B_{X})$ onto $\mathcal{R}_{K}(C, b)$ . Now let $Q\leq D$ .
$C_{X}(Q)$ is $S$-invariant and a Sylow $p$-subgroup of $N_{X}(Q)$ , and hence that
of $C_{X}(Q)$ is centralized by $S$ from the Schur-Zassenhaus theorem. More-
over $C_{X}(Q)=C_{C}(Q)[C_{X}(Q), S]=C_{C}(Q)C_{L}(Q)\geq C_{C}(Q)[C_{G}(Q), S]’$ .

Let $B_{Q}’$ be an $S$-invariant block of $C_{X}(Q)$ with Isaacs correspondent $b_{Q}$ .

By the same reason as in the above there exists a perfect isometry $R^{\prime Q}$

from $\mathcal{R}_{\mathcal{K}}(C_{G}(Q), B_{Q})$ onto $\mathcal{R}_{\mathcal{K}}(C_{X}(Q), B_{Q}’)$ such that for $\mu\in Irr(B_{Q})$ ,
$R^{\prime Q}(\mu)$ is the unique $S$-invariant irreducible character $\beta$ of $C_{X}(Q)$ with

$(\beta, \mu_{C_{X}(Q)})$ odd. And $R^{Q}$ is the composition of $R^{\prime Q}$ and the perfect
isometry from $\mathcal{R}_{\mathcal{K}}(C_{X}(Q), B_{Q}’)$ onto $\mathcal{R}_{\mathcal{K}}(C_{C}(Q), b_{Q})$ . Since a Sylow p-

subgroup of $X$ is centralized by $S$ and $b=(b_{Q})^{C}$ , $(B_{Q}’)^{X}$ has $b$ as the

Isaacs correspondent by Lemma 3.4. So we have $(B_{Q}’)^{X}=B_{X}$ . Let
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( $Q$ ,$ $b) be a $B_{X}$ -subpair contained in $(D, B_{D}’)$ . Since $(Q, b_{Q})\subseteq(D, b_{D})$

by Proposition 3.5, $b$ has $b_{Q}$ as the Isaacs correspondent. So $b=B_{Q}’$ .

Thus by the induction hypothesis for $X$ and $B_{X}$ , it suffices to show

(2) $\pm(R^{\prime\langle x\rangle})_{p’}\circ d_{G}^{(x,B_{x})}=d_{X}^{(x,B_{x}’)}oR’$

for all $x\in D$ where $B_{x}’=B_{\langle x\rangle}’$ ,

Now let $\phi$ be an $S$-invariant irreducible character of $L$ covered by
$B_{X}$ . Then it is clear $\phi$ is a constituent of $\theta_{L}$ . Moreover since $\theta$ is G-
invariant and $K/L$ is abelian, $T_{K}(\phi)$ is normal in $\Gamma$ . Hence $T_{K}(\phi)=L$ or
$T_{K}(\phi)=K$ because $K/L$ is a chief factor of $\Gamma$ . We assume $T_{K}(\phi)=L$

for a while. At first we show $X=T_{G}(\phi)$ as follows. Since $\theta$ is G-
invariant, we have $G=T_{G}(\phi)K$ and $T_{G}(\phi)\cap K=L$ . Since $T_{G}(\phi)$ is
$S$ invariant, we have $T_{G}(\phi)=T_{C}(\phi)[T_{G}(\phi), S]\leq XT_{K}(\phi)=X$ . The
fact that $|T_{G}(\phi)|=|X|$ implies $X=T_{G}(\phi)$ . From this $\xi\leftrightarrow\xi^{G}$ defines
a one-to-one correspondence between $Irr(X|\phi)$ and $Irr(G|\theta)$ preserving
the actions of $S$ on them. Therefore in particular $B_{X}$ and $B$ are Clifford
induction equivalent and $ R’(\xi^{G})=\xi$ for $\xi\in Irr(B_{X})$ . Let $Q\leq D$ ,
$\theta^{*}=\pi(K, Q)(\theta)$ and $\phi^{*}=\pi(L, Q)(\phi)$ . Then $B_{Q}$ covers $\theta^{*}$ and $B_{Q}’$

covers $\phi^{*}$ . Besides $\theta^{*}$ is $C_{G}(Q)$ -invariant and $T_{C_{K}(Q)}(\phi^{*})=C_{L}(Q)$ .

Since $C_{G}(Q)=C_{X}(Q)C_{K}(Q)$ , from the same argument as for $B_{X}$ and
$B$ , $B_{Q}’$ and $B_{Q}$ are Clifford induction equivalent and $ R^{;Q}(\eta^{C_{G}(Q)})=\eta$

for $\eta\in Irr(B_{Q}’)$ . So we have $(R^{;\langle x\rangle})_{p’}\circ d_{G}^{(x,B_{x})}=d_{X}^{(x,B_{x}’)}oR’$ from [F-H],
$p$ 3471, Remark since $(Q, B_{Q}’)\subseteq(D, B_{D}’)$ for any $Q\leq D$ . Thus (2)
holds.

Next suppose $T_{K}(\phi)=K$ . Then $G=T_{G}(\phi)$ and $T_{C_{K}(Q)}(\phi^{*})=$

$C_{K}(Q)$ for any $Q\leq D$ . Since $K^{\perp}=\{c\in K|<<c, y>>_{\phi}=1\forall y\in K\}$

is normal in $\Gamma$ by [$II$ , Lemma 2.1], $K^{\perp}=K$ or $K^{\perp}=L$ . At first we
discuss the case $K^{\perp}=K$ . Then $\phi$ is extendible to $K$ , by [$II$ , Theorem
2.7]. Moreover $B_{X}$ and $B$ are isomorphic by [ $II$ , Lemma 10.5] and
$R’(\chi)=\chi_{X}$ for $\chi\in Irr(B)$ . In the proof of Lemma 3.3, (i) we proved
that<, $>>_{\phi}=<<,$ $>>_{\phi^{*}}$ on $C_{K}(Q)/C_{L}(Q)\subseteq K/L$ . So $ C_{K}(Q)^{\perp}=\{c\in$

$C_{K}(Q)|<<c$ , $y>>_{\phi}=1\forall y\in C_{K}(Q)\}=C_{K}(Q)$ . Hence by [$II$ , Theorem
2.7] again, $\phi^{*}$ is extendible to $C_{K}(Q)$ . Since $C_{G}(Q)=C_{X}(Q)C_{K}(Q)$ and
$C_{L}(Q)=C_{X}(Q)\cap C_{K}(Q)$ , by applying [ $II$ , Theorem 10.5] for $C_{G}(Q)$

and $B_{Q}$ , we see $B_{Q}$ and $B_{Q}’$ are isomorphic, and $R^{rQ}(\gamma)=\gamma_{C_{X}(Q)}$ for
$\gamma\in Irr(B_{Q})$ . On the other hand $(Q, B_{Q}’)\subseteq(D, B_{D}’)$ for any $Q\leq D$

and by Proposition 3.5 the inclusion of $D$ into $G$ and $X$ induces an
equivalence of the Brauer categories $Br_{B,D}(G)$ and $Br_{B_{X},D}(X)$ . The
proof of Proposition 3.5, (ii) implies also that for any $x$ , $y\in D$ , B-
Brauer pairs $(x, B_{x})$ and $(y, B_{y})$ are $G$-conjugate if and only if $(x, B_{x}’)$
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and $(y, B_{y}’)$ are $C$-conjugate. Moreover if $x\in D$ and $b$ is a block of
$C_{G}(x)$ associated with $B$ , then $(x, b)$ is $C$-conjugate to $(y, B_{y})$ for some

$y\in D$ . So we can see that, $(R^{\prime\langle x\rangle})_{p’}\circ d_{G}^{(x,B_{x})}=d_{X}^{(x,B_{x}’)}oR’$ for all $x\in D$ .

Thus (2) holds for all $x\in D$ .

Thus our proof is reduced to the case $K^{\perp}=L$ . Then $(G, K, L, \theta, \phi)$

is a character five by [$II$ , Theorem 2.7]. This time we will use Theorem
2.1 for this character five. Since $K=[G, S]$ and $S$ fixes $\phi$ , we can see
$X\in \mathcal{U}$ in Theorem 2.1. In fact an $S$ invariant member of $\mathcal{U}$ coincides
with $X$ . By Theorem 2.1, (d) and (e), we have

(3) $\chi_{X}=(\Psi^{(K/L)})xR’(\chi)$

for $\chi\in Irr(B)$ . Then we say that $B$ and $B_{X}$ are fully ramified equivalent
with respect to $(G, K, L, \theta, \phi)$ . Let $Q\leq D$ , $\theta^{*}=\pi(K, Q)(\theta)$ and $\phi^{*}=$

$\pi(L, Q)(\phi)$ . By lemma 3.3, (i), $(C_{G}(Q), C_{K}(Q),$ $C_{L}(Q)$ , $\theta^{*}$ , $\phi^{*})$ is an S-
invariant character five. So by [$H$ , Proposition 4, (a)], the equation

(4) $\psi_{C_{X}(Q)}=(\Psi^{(C_{K}(Q)/C_{L}(Q))})_{C_{X}(Q)}\psi’$

for $\psi\in IBr(C_{G}(Q)|\theta^{*})$ and $\psi’\in IBr(C_{X}(Q)|\phi^{*})$ defines a 1-1 corre-
spondence between these sets. Since $B_{Q}$ covers $\theta^{*}$ and $B_{Q}’$ covers $\phi^{*}$ ,

and $B_{Q}$ and $B_{Q}’$ have the same Isaacs correspondent $b_{Q}$ , by Theorem

2.1, (d) and (e), we see that $B_{Q}$ and $B_{Q}’$ are fully ramified equivalent

with respect to $(C_{G}(Q), C_{K}(Q)$ , $C_{L}(Q)$ , $\theta^{*}$ , $\phi^{*})$ . We note $\varphi’=R^{Q}\prime(\varphi)$

for $\varphi\in IBr(B_{Q})$ . Now let $x\in D$ and let $\chi\in Irr(B)$ and $\xi=R’(\chi)$ .

Putting $ Q=\langle x\rangle$ from (4) we have

$\chi(x\rho)=\sum_{\psi\in IBr(C_{G}(x)|\theta^{*})}d_{\chi\psi}^{x}\psi(\rho)=\sum_{\psi}d_{\chi\psi}^{x}\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)\psi’(\rho)$

for $\rho\in C_{X}(x)_{p}$ , where $d_{\chi\psi}^{x}$ is the generalized decomposition number.

Recalling that $K/L$ is a chief factor of $\Gamma$ and hence $K/L$ is a $q$-group for
a prime number $g$ , we have the following from (3) and Lemma $3.3_{2}(ii)$

$\chi(x\rho)$ $=$ $\Psi^{(K/L)}(x\rho)\xi(x\rho)$

$=$
$\epsilon_{x}\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)\sum_{\psi\in IBr(C_{G}(x)|\theta^{*})}d_{\xi\psi’}^{x}\psi’(\rho)$

$=$
$\sum_{\psi}\epsilon_{x}\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)d_{\xi\psi’}^{x}\psi’(\rho)$

,
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where $\epsilon_{x}=\pm 1$ . From this and the fact $\Psi^{(C_{K}(x)/C_{L}(x))}(\rho)\neq 0$ by Theo-
rem 2.1, (a), we have

$\sum_{\varphi\in IBr(B_{x})}d_{\chi\varphi}^{x}R^{;\langle x\rangle}(\varphi)(\rho)=\epsilon_{x}\sum_{l/\in IBr(B_{\acute{x}})}d_{\xi\iota/}^{x}l/(\rho)$

for all $\rho\in C_{X}(x)_{p},$ . Thus we have $(R^{\prime\langle x\rangle})_{p’}\circ d_{G}^{(x,B_{x})}=\epsilon_{x}d_{X}^{(x,B_{x}’)}\circ R’$ .

This completes the proof of the theorem. Q.E.D.
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Either 71 : 35 or $L_{2}(71)$ is a maximal subgroup
of the Monster

Hiroyoshi Yamaki

\S 1. Introduction

Let M[ be the Monster simple group. Then

$|MI|=2^{46}.3^{20}.5^{9}.7^{6}.11^{2}.13^{3}.17.19.23.29.31.41.47.59.71$ .

By [2] 71 : 35 is the normalizer of a Sylow 71-subgroup and 59 : 29 is
the normalizer of a Sylow 59-subgroup of M $[$ .

The purpose of this note is to prove:

Theorem 1. Either 71 : 35 or $L_{2}(71)$ is a maximal subgroup of
$\beta M$ .

Theorem 2. Either 59 : 29 or $L_{2}(59)$ is a maximal subgroup of
$\beta M$ .

Remark. 71 : 35 is a maximal subgroup of $L_{2}(71)$ and 59 : 29 is a
maximal subgroup of $L_{2}(59)$ . However we do not know whether $L_{2}(71)$

or $L_{2}(59)$ is involved in $\beta M$ or not (See [6]). Since $|L_{2}(71)|=72.71.35$ and
$|L_{2}(59)|=60.59.29$ , these are surprisingly small groups in comparison
with $MI$ .

Theorems 1 and 2 are closely related to the prime graphs of finite
groups. Let $G$ be a finite group and $\Gamma(G)$ the prime graph of G. $\Gamma(G)$

is the graph such that the vertex set is the set of prime divisors of $|G|$ ,
and two distinct vertices $p$ and $r$ are joined by an edge if and only if
there exists an element of order $pr$ in G. Let $n(\Gamma(G))$ be the number of
connected components of $\Gamma(G)$ . It has been proved that $n(\Gamma(G))\leq 6$ in
[7], [4], [5].
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\S 2. The proof of Theorems

We will give a proof of Theorem 1. Theorem 2 can be proved by the
same way just replacing 71 by 59.

Lemma 1. The 11-signalizer of $\beta M$ is trivial.

Proof. The list of maximal $p$-local subgroups of $\beta M$ in[2] is complete
if one adds $7^{2}$ : $SL(2,7)$ which is missing (See [6]). The result follows
immediately. Q.E.D.

Lemma 2. $L_{2}(71)$ is the only possible finite simple group involved
in M[ whose order is divisible by 71.

Proof. Lemma 2 can be proved using the classification of the prime
graph components of finite simple groups in [7], [5], [4] since {71} is a
connected component of the prime graph of a simple group involved in
$\beta M$ whose order is divisible by 71. Q.E.D.

Next important lemma was essentially proved by Gruenberg and
Kegel (See [7]) before the classification of finite simple groups. Applying
the classification of finite simple groups we have:

Lemma 3. Let $G$ be a finite group with $n(\Gamma(G))\geq 2$ . Then one

of the following holds.

1. $G$ is a Frobenius group or a 2-Frobenius group.
2. $G$ has a chain of normal subgroups $G\triangleright L\triangleright N\triangleright 1$ such that $N$

and $G/L$ are nilpotent $\pi$ -groups and $L/N$ is a non abelian simple
group where $\pi$ is the connected component of $\Gamma(G)$ containing 2.

Proof. See [1]. Q.E.D.

As is well known $\Gamma(M[)$ has four connected components (See [3],
[7] $)$ and {71} is a connected component of $\Gamma(MI)$ . Let $G$ be a maximal
subgroup of $\beta M$ whose order is divisible by 71. It follows that $n(\Gamma(G))\geq 2$

and {71} is a connected component of $\Gamma(G)$ . We can apply Lemma 3.
Suppose that $G$ is a Frobenius group. Then the Frobenius kernel is

of order 71 and $G$ is contained in 71 : 35.
Suppose that $G$ is a 2-Frobenius group. Then $G$ has a chain of

normal subgroups: $G\triangleright H\triangleright K\triangleright 1$ such that $H$ is a Frobenius group with
kernel $K$ and $G/K$ is also a Frobenius group with kernel $H/K$ . It follows
that $|K|=71$ . Since 71 : 35 is the normalizer of a Sylow 71-subgroup in
$\beta M$ , $G/K$ cannot be a Frobenius group, a contradiction.

Suppose that $G$ has a chain of normal subgroups $G\triangleright L\triangleright N\triangleright 1$ such
that $N$ and $G/L$ are nilpotent $\pi$-groups and $L/N$ is a non-abelian simple
group where $\pi$ is the connected component of $\Gamma(G)$ containing 2. Since
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$\pi$ does not contain 71, $(L : N)$ is divisible by 71. Lemma 1 yields $N=1$ .

It follows from Lemma 2 that $L$ is $L_{2}(71)$ and $G=L$ or $G=PGL(2,71)$ .

Since $MI$ does not contain 71 : 70, we have $G=L=L_{2}(71)$ . The proof
of Theorem 1 is complete.

Remark. The argument breaks down for the prime divisors of $|MI|$

less than 59 (See [2], [6]).

We have actually proved:

Theorem 3. Let $G$ be a maximal subgroup of $\beta M$ whose order is
divisible by 71. Then $G$ is isomorphic to 71 : 35 or $L_{2}(71)$ .

Theorem 4. Let $G$ be a maximal subgroup of $MI$ whose order is

divisible by 59. Then $G$ is isomorphic to 59 : 29 or $L_{2}(59)$ .
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Radical subgroups of the sporadic simple group of
Suzuki

Satoshi Yoshiara

Abstract.

For the sporadic Suzuki simple group, the radical $p$-subgroups
for $p=2$ and 3 are classified and the simplicial complex of their
chains is shown to be homotopically equivalent to a $p$-local geome-
try. Further investigation of the related complexes for $p=2$ gives a
counterexample to Conjecture 1 in [4].

\S 1. Introduction and Notation

In this note, the poset $Bp\{Suz$ ) of radical $p$-subgroups of the sporadic
simple group of Suzuki, denoted $Suz$ , is determined up to conjugacy for
$p=2$ and 3. Then we have a homotopy equivalence equivariant with
group action between the simplicial complex $\triangle(B_{p}^{ce7\iota}(Suz))$ of chains of
centric radical $p$-subgroups of $Suz$ and a $p$-local geometry of $Suz$ . The
latter is a well known complex of dimension 2: for $p=2$ one of the
remarkable examples of geometries which are almost buildings (GABs)
arising from sporadic simple groups ([8] and \S 4); and for $p=3$ the
truncation at points of a flag-transitive extended generalized quadrangle
(EGQs) which appears as the residue of the extended dual polar space
of the Monster ([6] and \S 5). Further examination leads the author to
modify the conjecture given in [4, \S 4, Conjecture 1].

To give precise expositions, recall the following terminologies for a
finite group $G$ and a prime $p$ : a nontrivial $p$-subgroup $P$ of $G$ is called
radical (resp. centric), if $O_{p}(N_{G}(P))=P$ (resp. every $p$-element of
$C_{G}(P)$ lies in $Z(P))$ . The poset of nontrivial $p$-subgroups of $G$ with re-
spect to inclusion is denoted $S_{p}(G)$ . We use $B_{p}(G)$ , $B_{p}^{con}(G)$ and $B_{p}^{cen}(G)$

to denote the subposets of $S_{p}(G)$ consisting of radical $p$-subgroups, rad-
ical $p$ subgroups $P$ with $p$-constrained normalizer $N=N_{G}(P)$ (that

Received March 26, 1999.
Revised May 18, 2000.
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is, $C_{\overline{N}}(O_{p}(\overline{N}))\leq O_{p}(\overline{N})$ with $\overline{N}=N/O_{p’}(N))$ and centric radical p-
subgroups, respectively. For a poset $X$ , the order complex, denoted
$\triangle(X)$ , is the simplicial complex with $X$ as the set of vertices and the
chains of elements of $X$ as the simplices.

The inclusion gives a $G$-homotopy equivalence of $\triangle(B_{p}(G))$ with
$\triangle(S_{p}(G))$ (e.g. [2, 6.6.1]) and $B_{p}(G)\supseteq B_{p}^{con}(G)\supseteq B_{p}^{cen}(G)$ for every
$G$ and $p[4, \S 4]$ . If $G$ is a finite group of Lie type in characteristic $p$ ,

then $B_{p}(G)=B_{p}^{con}(G)=B_{p}^{cen}(G)$ and $\triangle(B_{p}(G))$ coincides with the

barycentric subdivision of the building of $G$ (e.g. [2, 6.6.1]). In [4],
we verified analogues of these facts for some sporadic simple groups: if
$B_{p}(G)=B_{p}^{con}(G)=B_{p}^{cen}(G)$ then $\triangle(B_{p}(G))$ is $G$-homotopically equiv-
alent to a complex $\triangle$ , which is one of $p$-local geometries of $G$ .

While buildings are defined in a unified way for groups of Lie type,
there is no canonical definition of $p$-local geometry for sporadic $G$ . It
just means a $G$-simplicial complex in which some stabilizers of vertices
are $p$-local subgroups. Some sporadic has no or more than one such
complexes constructed in $adhoc$ manner, though, in general, there is
the best one among them in the sense that it satisfies some local axioms
similar to those for buildings.

Partially motivated by searching for a unified definition of “the best”
$p$-local geometry of a sporadic simple group $G$ , we gave the following
conjecture [4, \S 4, Conjecture 1] as a generalization of the observations
in [4]: for sporadic $G$ having a $p$-local geometry $\triangle$ , $B_{p}^{cen}(G)=B_{p}^{con}(G)$

and $\triangle(B_{p}^{cen}(G))$ (or $\triangle(B_{p}^{con}(G))$ ) is $G$-homotopically equivalent to $\triangle$ .

However, further investigation of $B2\{Suz$ ) reveals that the former
part of the above conjecture (and hence also Conjecture 2 in [4]) is false:
in fact, $B_{2}^{con}(Suz)$ consists of $B_{2}^{cen}(Suz)$ and two conjugacy classes;
moreover, the GAB of $Suz$ is not even homotopically equivalent to
$\triangle(B_{2}^{con}(Suz))$ , while it is to $\triangle(B_{2}^{cen}(Suz))$ . Thus the above conjecture
should be modified as follows by ignoring the former part.

Conjecture: For sporadic $G$ , $\triangle(B_{p}^{cen}(G))$ is $G$-homotopically
equivalent to a certain $p$-local geometry $\triangle$ .

The modified conjecture seems to hold for every finite simple group
and every prime, if we take as $\triangle$ a variant of the best $p$-local geometry
in the sense above. Thus the author dares to propose the following as a
uniform definition of $p$-local geometries:

For a finite group $G$ and a prime divisor $p$ of its order,
a $G$ simplicial complex $\triangle$ is called a $p$ -local geometry, if
(a) it is $G$-homotopically equivalent to $\triangle(B_{p}^{cen}(G))$ , and
(b) no proper subcomplex of $\triangle$ satisfies the condition
(a).
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\S 2. Maximal $2$-local subgroups of $Suz$

We follow the notation in \S 1 as well as the standard terminologies
on group theory (e.g. [1] and [5]). Throughout the note, set $G:=Suz$ .

We only consider the primes $p=2$ and 3, as $|G|_{p}\leq p^{2}$ for other primes.
There are two classes $2A$ and $2B$ of involutions of $G$ . The product

of commuting distinct two $2A$ involutions is a $2A$-involution [5, Table
III]. Thus every maximal 2-local subgroup is contained in the normalizer
of a $2A$ or $2B$-pure elementary abelian subgroup. It is shown in [5] that
the normalizer of a $2A$-pure elementary abelian subgroup is conjugate
to a subgroup of one of the following three groups.

$C_{G}(z)\cong 2_{-}^{1+6}\cdot U_{4}(2)$ ( $z$ , a $2A$-involution)
$N_{G}(F_{2})\cong 2^{2+8}$ : $(A_{5}\times S_{3})$ ( $F_{2}$ , a $2A$-pure $2^{2}$ group
$N_{G}(F_{3})\cong 2^{4+6}$ : $(3 \cdot A_{6})$ ( $F_{3}$ , a $2A$-pure $2^{4}$ group

In [7], it is shown that a $2B$-pure elementary abelian subgroup is of order
at most 4, and that its normalizer is conjugate to a subgroup of $N_{G}(F_{2})$

or one of the following two groups:

$N_{G}(F_{4})\cong(A_{4}\times L_{3}(4)).2$ ( $F_{4}$ , a $2B$-pure $2^{2}$ group
$N_{G}(F_{5})\cong(E_{4}\times 3^{2} : Q_{8}).S_{3}$ ( $F_{5}$ , a $2B$-pure $2^{2}$ group

Details of the structure $N_{G}(F_{i})(i=4,5)$ are given below with the latter
classification, because they are not contained in [5] but required later.

The centralizer of a $2B$ involution $u$ has a subgroup $\langle u, v\rangle\times L$ of
index 2, where $\langle u, v\rangle$ is a $2B$-pure $2^{2}$ subgroup and $ C_{G}(u)^{\infty}=L\cong$

$L_{3}(4)[5,2.5]$ . Every element of order 3 of $L$ is a $3C$ element as it
commutes with the $2B$ involution $u$ [ $5$ , Table $V$]. For a $3C$ element $x$

of $L$ , $C_{G}(x)=C_{G}(M)=M\times A$ , where $M$ is a $3C$-pure $3^{2}$ subgroup
containing $x$ and $A\cong A_{6}$ . As $\langle u, v\rangle\leq C_{G}(x)$ , $\langle u, v\rangle\leq A$ .

Let $D:=\langle u, v, t\rangle\cong D_{8}$ be a Sylow 2-subgroup of $A$ containing
$\langle u, v\rangle$ . We may take $t^{2}=1$ , $v^{t}=uv$ , $ Z(D)=\langle u\rangle$ . Two $2^{2}$ subgroups
$ F_{4}:=\langle u, v\rangle$ and $ F_{5}:=\langle u, t\rangle$ of $D$ are $2B$-pure, as they commute with
the $3C$-element $x$ . The normalizers in $A\cong A_{6}$ of $F_{i}(i=4,5)$ are $S_{4}$ : we
denote $ N_{A}(F_{4})=F_{4}\langle x, t\rangle$ and $ N_{A}(F_{5})=F_{5}\langle y, v\rangle$ with $x$ and $y$ elements
of order 3 inverted by $t$ and $v$ , respectively. Thus $N_{G}(F_{i})$ is a nontrivial
split extension of $C_{G}(F_{i})$ by $S_{3}(i=4,5)$ . In particular, $ O_{2}(N_{G}(F_{i}))\leq$

$C_{G}(F_{i})(i=4,5)$ . We have $(C_{G}(u)\geq)C_{G}(F_{4})=F_{4}\times L\cong 2^{2}\times L_{3}(4)$ .

Thus $O_{2}(N_{G}(F_{4}))=F_{4}\in B_{2}(G)$ . However, $N_{G}(F_{4})$ is not 2-constrained
nor centric, because of $L\cong L_{3}(4)$ .

To determine the structure of $C_{G}(F_{5})$ , we examine the action of $t$

on $L$ . As $M$ is a 3-subgroup of $C_{G}(u)$ , it lies in $L$ , and so it is a Sylow 3-
subgroup of $L\cong L_{3}(4)$ . Since $[t, v]\neq 1$ , we have $ C_{G}(u)=(\langle u, v\rangle\times L)\langle t\rangle$ .

As $|C_{G}(g)|_{2}=2^{2}$ for an element $g$ of order 7 of $L$ , the involution $t$ does
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not centralize $L$ . Thus $t$ induces a unitary automorphism of $L\cong L_{3}(4)$ ,

as $CL(t)\geq M$ $\cong 3^{2}$ . Then $C_{L}(t)=MQ\cong U_{3}(2^{2})$ with $Q\cong Q_{8}$ acting
fixed point freely on $M$ . Inside $C_{G}(u)$ , we have $C_{G}(F_{5})=F_{5}\times(M.Q)$ .
Then $O_{2}(N_{G}(F_{5}))=F_{5}\in B_{2}(G)$ , which is not 2-centric because of $Q$ .

The normalizer $N_{G}(F_{5})$ is solvable, and so 2-constrained.
The complement $\langle x, t\rangle\cong S_{3}$ acts on $L$ with a non-normal subgroup

$\langle t\rangle$ inducing a unitary automorphism. Thus its normal subgroup $\langle x\rangle$

centralizes $L$ . Then $ N_{G}(F_{4})=(F_{4}\langle x\rangle\times L)\langle t\rangle$ , where $F_{4}\langle x\rangle\cong A_{4}$ .

The quotient group $\overline{N_{G}(F_{5})}=N_{G}(F_{5}\underline{)/F_{5}}$ is a direct product of
$\overline{M.Q}\cong 3^{2}Q_{8}$ with $\overline{\langle y,t\rangle}\cong S_{3}$ , because $\langle y, t\rangle$ acts on $\overline{M.Q}$ , while $t$

centralizes M. $Q$ . However, $N_{G}(F_{5})$ is not a direct product of $(F_{5}\times M.Q)$

with $\langle y, t\rangle$ as we see below. The group $Q\cong Q_{8}$ acts on $ A=C_{G}(M)’\cong$

$A_{6}$ , while it centralizes a Sylow 2-subgroup $\langle u, t, v\rangle$ of $A$ . Note $[Q, A]\neq$

$1$ : because $Q\in C_{G}(A)$ would imply that a Sylow 2-subgroup of the
centralizer of an element of order 5 of $A$ (which is a $5A$ element by
[5, Table $V$] $)$ is $Q_{8}$ , while $G$ has a subgroup $A_{5}\times A_{6}$ and a Sylow 2-
subgroup of $A_{6}$ is $D_{8}$ . Thus $[Q : C_{Q}(A)]=2$ and $Q/C_{Q}(A)$ corresponds
to an odd permutation of $S_{6}$ . Then $MC_{Q}(A)$ is normal in $N_{G}(F_{5})$ , and
$N_{G}(F_{5})/MC_{Q}(A)$ is a split extension by $\langle y, v\rangle\cong S_{3}$ of its permutation

module $F_{2}^{3}$ .

The involution of $C_{Q}(A)\cong 4$ centralizes a $5A$-element of $A$ , and so
it lies in the class $2A$ [ $5$ , Table $V$]. As $(Q\leq)L\cong L_{3}(4)$ has a single class
of involutions, every involution of $L$ lies in the class $2A$ . Involutions of
$N_{G}(F_{4})\backslash (F_{4}\langle x\rangle\times L)$ are conjugate to $t$ , and those of $(F_{4}\langle x\rangle\times L)\backslash L$ are
conjugate to $u$ or $ul$ with $l$ an involution of $L$ . They are $2B$ involutions,

as the product of commuting distinct $2A$-involutions lies in $2A$ . Hence
$L$ is a subgroup of $N_{G}(F_{4})$ generated by $2A$ involutions,

Lemma 1. If $E$ is a $2B$ -pure elementary abelian subgroup of
$G$ , then $N_{G}(E)$ is contained in $N_{G}(F_{i})(i=4,5)$ or $N_{G}(F_{2})$ up to
conjugacy.

Proof. Let $u$ be the above $2B$ involution of $F_{i}(i=4,5)$ . We may
assume $u\in E$ and $|E|=4$ , and hence $ E\leq C_{G}(u)=(F_{4}\times L)\langle t\rangle$ .

If $E\leq F_{4}\times L$ , then $E=F_{4}$ or $ E=\langle u, gl\rangle$ for an involution $l$ $\in L$

and $g\in F_{4}$ . In the latter case, the subgroup of $C_{G}(E)$ generated by
$2A$ involution is $C_{L}(l)$ , a Sylow 2-subgroup of $L$ , and thus $Z(CL(1)$ is
conjugate to $F_{2}[5,2.5]$ . Then $N_{G}(E)\leq N_{G}(F_{2})$ up to conjugacy.

Note that if $git$ with $g\in F_{4}$ , $l$ $\in L$ is an involution, then $1=(glt)^{2}=$

gl.tgt.tlt= $gg^{t}.ll^{t}\in F_{4}\times L$ , and hence $ g\in\langle u\rangle$ and $lt$ is an involution
in $Lt$ . Since $Aut(L_{3}(4))\backslash L_{3}(4)$ has a single class of involutions, $git$ is
conjugate to $gt$ under $L$ . Thus if $E\not\leq F_{4}\times L$ , then $E=\langle u, t\rangle=F_{5}$ up
to conjugacy. Q.E.D.
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\S 3. Radical $2$-subgroups of $Suz$

We freely use the notation in \S 2. We also set $U_{i}:=O_{2}(N_{G}(F_{i}))$

$(i=1, \ldots, 5)$ , where $ F_{1}=\langle z\rangle$ . Then
$U_{1}\cong 2_{-}^{1+6}$ , $U_{2}\cong 2^{2+8}$ , $U_{3}\cong 2^{4+6}$ , $U_{4}=F_{4}\cong 2^{2}$ and
$U_{5}=F_{5}\cong 2^{2}$ ;

and they are radical 2-subgroups of $G$ , as we remarked. No two of them
are conjugate in view of their normalizers. From the discussions of \S 2,
we may take $F_{1}\leq F_{2}\leq F_{3}$ and $\langle F_{4}, F_{5}\rangle=F_{4}F_{5}\cong D_{8}$ .

Proposition 2. There are exactly 10 classes of radical 2-subgroups
of $G$ with the following representatives:

$R$ $ R\cong$ $Z(R)$ $N_{G}(R)$

$U_{5}$
$2^{2}$ $2^{2}$

$(U_{5}\times 3^{2} : Q_{8}):S_{3}$

$U_{4}$
$2^{2}$ $2^{2}$

$(U_{4} : 3\times L_{3}(4)).2$

$U_{45}$ $D_{8}$ 2 $U_{4}.2\times 3^{2}$ : $Q_{8}$

$U_{3}$ $2^{4+6}$ $2^{4}$
$U_{3}$ : $(3 \cdot A_{6})$

$U_{2}$ $2^{2+8}$ $2^{2}$
$U_{2}$ : $(A_{5}\times S_{3})$

$U_{23}$ $2^{2}[2^{8}2^{2}]$
$2^{2}$

$U_{2}(2^{2} : 3\times S_{3})=U_{3}(3.S_{4})$

$U_{1}$
$2_{-}^{1+6}$ 2 $U_{1}\cdot U_{4}(2)$

$U_{12}$ $2^{2}[2^{8}.2^{2}]$ 2 $U_{1}\cdot 2^{4}A_{5}=U_{2}$ : $(A_{5}\times 2)$

$U_{13}$ $2^{3}[2.2^{6}.2^{2}]$ 2 $U_{1}\cdot 2_{+}^{1+4}(3\times S_{3})=U_{3}$ : $(3\times S_{4})$

$U_{123}$ Sylow 2 $U_{123}.3$

Furthermore, we may take $U_{45}=U_{4}U_{5}$ with $ N_{G}(U_{45})=N_{G}(U_{4})\cap$

$N_{G}(U_{5})$ , $U_{ij}=U_{i}U_{j}(i,j\in\{1,2,3\})$ with $N_{G}(U_{ij})=N_{G}(U_{i})\cap N_{G}(U_{j})$ ,
and $U_{123}=U_{1}U_{2}U_{3}$ with $N_{G}(U_{123})=\bigcap_{i=1}^{3}N_{G}(U_{i})$ .

In particular, $B_{2}^{cen}(G)$ consists of 7 conjugacy classes of $ U_{X}(\emptyset\neq X\subseteq$

$\{1, 2, 3\})$ ; while $B_{2}^{con}(G)$ consists of those classes together with 2 further
classes of $U_{5}$ and $U_{45}$ .

Proof Let $U$ be any radical 2-subgroup of $G$ . If $N_{G}(U)\leq N_{G}(F_{5})$

but $U\neq F_{5}=U_{5}$ , then $U/U_{5}\in B_{2}(N_{G}(F_{5})/F_{5})$ by [4, 1.9]. We saw
$N_{G}(F_{5})/F_{5}\cong(3^{2}Q_{8})\times S_{3}$ in \S 2. By Lemma [3, 3.2] $B_{2}((3^{2}Q_{8})\times S_{3})$

consists of three conjugacy classes with representatives $Q_{8}$ in the first
direct factor, 2 in the second direct factor, and $Q_{8}\times 2$ . In the first
and the last cases, we may take $U=U_{5}\times Q$ and $ U=(U_{5}\times Q)\langle v\rangle$

respectively. Then the central involution of $Q$ is a unique $2A$ involution
of $U$ , because $L\cap U=Q$ and $2A$ involution of $N_{G}(F_{5})$ lie in $L$ . Hence
up to conjugacy $N_{G}(U)\leq C_{G}(z)$ . In the second case, $U=U_{5}\langle v\rangle\cong D_{8}$

with center $\langle u\rangle$ , and hence $N_{G}(U)\leq C_{G}(u)\leq N_{G}(U_{4})$ .

Assume $N_{G}(U)\leq N_{G}(U_{4})$ but $U\neq U_{4}$ . Then $U/U_{4}$ is a radical
2-subgroup of $N_{G}(U_{4})/U_{4}\cong(Z_{3}\times L_{3}(4)).2$ . If $U\cap L\neq 1$ , $N_{G}(U)$
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$(\leq N_{G}(U_{4})\leq N_{G}(L))$ normalizes a $2A$-pure subgroup $\Omega_{1}(Z(U\cap L))\neq 1$ .

If $U\cap L=1$ , we may take $ U=U_{4}\langle t\rangle$ , and hence $ U=U_{4}\langle t\rangle=\langle F_{4}, F_{5}\rangle\cong$

$D_{8}$ . Conversely, the normalizer of $ U_{45}:=\langle F_{4}, F_{5}\rangle$ lies in the centralizer
of a $2B$ involution $u$ of $Z(U_{45})$ . Inside $ C_{G}(u)=(U_{4}\times L)\langle t\rangle$ , we see
$C_{G}(U_{45})=\langle u\rangle\times C_{L}(t)$ and $N_{G}(U_{45})=U_{45}\times C_{L}(t)\cong D_{8}\times(3^{2} : Q_{8})$ ,

and hence $U_{45}$ is a radical subgroup but not centric. The normalizer
$N_{G}(U_{45})$ is solvable and so 2-constrained.

Assume now that $N_{G}(U)\leq N_{G}(U_{3})$ but $U\neq U_{3}$ . Then $ U/U_{3}\in$

$B_{2}(N_{G}(U_{3})/U_{3})=B_{2}(3A_{6})$ . The action of $ N_{G}(U_{3})/O_{2,3}(N_{G}(U_{3}))\cong$

$A_{6}$ on $Z(U_{3})=F_{3}\cong 2^{4}$ is equivalent to the restriction to $Sp_{4}(2)’$ of
the action of $Sp_{4}(2)\cong S_{6}$ on its natural module. Then the subspace
$C_{F_{3}}(U)=Z(U)$ fixed by a unipotent radical $U/U_{3}$ is a totally isotropic
1 or 2-subspace. In the former case, $N_{G}(U)\leq C_{G}(z)$ up to conjugacy.
In the latter case, $Z(U)$ is conjugate to $F_{2}$ by [5, 2.4], and thus $ N_{G}(U)\leq$

$N_{G}(U_{2})$ up to conjugacy.
Assume that $N_{G}(U)\leq N_{G}(U_{2})$ . As $B_{2}(N_{G}(U_{2})/U_{2})=B_{2}(A_{5}\times S_{3})$ ,

$U/U_{2}$ is one of the following by [3, 3.2]: the trivial group, a $2^{2}$ subgroup
of $A_{5},2$ of $S_{3}$ , or $2^{2}\times 2$ . In the latter two cases, as $S_{3}$ is faithful on
$Z(U_{2})=F_{2}\cong 2^{2}$ , $U$ contains an involution which flips two involutions
in $F_{2}$ . Thus $Z(U)$ has a unique involution, and $N_{G}(U)\leq C_{G}(z)$ up to
conjugacy. In the second case, $Z(U)=F_{2}$ and $N_{G}(U)\leq N_{G}(F_{2})$ . Then
$N_{G}(U)/U_{2}\cong A_{4}\times S_{3}$ and $O_{2}(N_{G}(U))=U\in B_{2}(G)$ . Hence we have
one new radical group $U_{23}(\leq C_{G}(F_{2})\cong 2^{2+8} : A_{5})$ with $U_{23}/U_{2}\cong 2^{2}$ .

In fact $ U_{23}=\langle U_{2}, U_{3}\rangle$ .

Finally assume that $N_{G}(U)\leq C_{G}(z)$ but $U\neq U_{1}$ . Since $U_{1}$ is an ex-
traspecial group, $ Z(U)=Z(U_{1})=\langle z\rangle$ for every $U/U_{1}\in B_{2}(C_{G}(z)/U_{1})$ .

Then $N_{G}(U)\leq C_{G}(z)$ and $U\in B_{2}(G)$ . As $C_{G}(z)/U_{1}\cong\Omega_{6}^{-}(2)$ is of Lie
rank 2, including $U_{1}$ , there are exactly 4 classes of radical 2-subgroups
of $G$ with centers conjugate to $\langle z\rangle$ . The subgroups $U_{1}$ , $U_{1}U_{2}$ , $U_{1}U_{3}$ and
$U_{1}U_{2}U_{3}$ are their representatives, because the images of the last three
in $C_{G}(z)/U_{1}$ are the unipotent radicals fixing a singular 1, 2-subspaces
and its flag, respectively, of the natural module $ U_{1}/\langle z\rangle$ for $\Omega_{6}^{-}(2)$ .

We obtained 10 classes of radical subgroups. No two of them are
conjugate, in view of their structures. The normalizers and generators of
representatives are calculated inside maximal 2-locals containing them.

Q.E.D.

\S 4. Homotopy equivalence for $p=2$

Let $\mathcal{F}$ be the poset of the conjugates of $F_{i}(i=1,2,3)$ with respect
to inclusion $\leq$ . The order complex $\triangle(\mathcal{F}^{\vee})$ is called the GAB of $G=Suz$
(which is the most famous 2-local geometry of $G$ , and so is denoted by
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$\mathcal{L}_{2}(G)$ later). This looks different from that given in [8, Def.6.2] (denoted
$(\mathcal{G}, I)$ there), but using the flag-transitivity of $\mathcal{G}$ it is immediate to verify
that the following map gives an isomorphism of $(\mathcal{G}, I)$ with $(F, \leq):\tau$ :
$\mathcal{G}\ni x\mapsto Z(O_{2}(K_{x}))\in \mathcal{F}$ , where $K_{x}$ denotes the kernel of the action of
the stabilizer of $x$ in $G$ on the residue at $x$ . More precisely, $\tau$ sends a
’point’, ’line’ or ’cross’ [8, \S 6] to a conjugate of $F_{1}$ , $F_{2}$ or $F_{3}$ , respectively,
and a flag is mapped to a chain.

In the following, we sometimes identify $\mathcal{G}$ with $\mathcal{F}$ via the map $\tau$ ,

and use terms, points, lines and crosses. For each nonempty subset $X$

of {1, 2, 3}, $F_{X}:=\{F_{i}|i\in X\}$ is a flag of type $X$ , because we take
$F_{1}<F_{2}<F_{3}$ . We may verify that the stabilizer of $F_{X}$ in $G$ is $N_{G}(U_{X})$

and that $U_{X}$ is the $O_{2}$ -part of the kernel of the action of $N_{G}(U_{X})$ on
the residue of the flag $F_{X}$ .

Recall that the barycentric subdivision $\triangle\sim$ of a simplicial complex
$\triangle$ is a complex with the simplices of $\triangle$ as its vertices and the chain
$(\sigma_{1}\subset\sigma_{2}\subset\ldots\subset\sigma_{n})$ of simplices of $\triangle$ as the simplices. The geometric

realization of $\triangle$ and its barycentric subdivision $\triangle\sim$ are the same. In
particular, they are homotopically equivalent.

From the above remarks and Proposition 2, we have:

Proposition 3. The order complex $\triangle(B_{2}^{cen}(G))$ of the poset of
centric radical 2-subgroups of $G$ is isomorphic to the barycentric sub-
division of the GAB $\mathcal{L}_{2}(G)$ of G. Consequently $\triangle(B_{2}^{cen}(G))$ is G-
homotopically equivalent to the 2-local geometry $\mathcal{L}_{2}(G)$ .

Since $B_{2}^{cen}(G)$ is a proper subset of $B^{con}(G)$ (Proposition 2), the
former part of Conjecture 1 in [4] (see also introduction) does not hold,

but from Proposition 3 the latter part holds for $\triangle(B_{2}^{cen}(G))$ . To examine
the homotopy equivalence of $\triangle(B_{2}^{con}(G))$ with the 2-local geometry of
$G$ , we calculate their Euler characteristics.

A radical subgroup conjugate to $U_{X}$ ( $X\subseteq\{1$ , 2, 3} or $X\subseteq\{4,5\}$ )

is called to be of type $X$ . The sequence of types of terms in a chain is
called the type of that chain. We have $U_{X}<U_{Y}$ for $X\subset Y\subseteq\{1, 2, 3\}$

or $X\subset Y\subseteq\{4,5\}$ by Proposition 2. Furthermore,

Lemma 4. Up to conjugacy the following inclusions hold:

$U_{4}<U_{2}$ and $U_{4}<U_{3}$ , but $U_{4}\not\leq U_{1}$ ;
$U_{5}\not\leq U_{i}$ for every $i=1,2,3$ ;
$U_{5}<U_{13}$ but $U_{5}\not\leq U_{12}$ and $U_{5}\not\leq U_{23}$ ;
$U_{45}\not\leq U_{X}$ for every proper subset $X$ of {1, 2, 3}.

Proof. The group $C_{G}(U_{1})/U_{1}\cong O_{6}^{-}(2)\cong SU_{4}(2)$ has two classes
of involutions, called $2A$ and $2B$ (see e.g.[1]). In the natural unitary
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module $GF(4)^{4}$ for $SU_{4}(2)$ , the subspace fixed by a $2A$ (resp. $2B$ ) $-$

involution of $SU_{4}(2)$ is of dimension 3 (resp. 2). It is straightforward
to verify that there are exactly two conjugacy classes of $2B$-pure $2^{2}-$

subgroups: a representative of one class fixes 1 isotropic point $p$ and 3
isotropic lines though $p$ ; that of the other class fixes 5 isotropic points $p_{i}$

$(=1, \ldots, 5)$ on an isotropic line $l_{1}$ and 5 isotropic lines $l_{i}(i=1, \ldots, 5)$ ,

where $l_{2}$ and $l_{3}$ (resp. $l_{4}$ and $l_{5}$ ) though $p_{2}$ (resp. $p_{3}$ ).
We may assume that $ F_{1}=\langle z\rangle$ with a $2A$ involution of $ C_{Q}(A)\leq$

$L\cong L_{3}(4)$ (with notation in Section 2) centralized by $U_{45}\cong D_{8}$ . Then
$U_{Y}$ lies in $C_{G}(F_{1})$ for every $Y\subseteq\{4,5\}$ . Now $O_{2}(C_{G}(F_{1}))=U_{1}\cong 2_{-}^{1+6}$

contains $F_{2}>Z(U_{1})=F_{1}$ , and hence every involution of $U_{1}$ is a 2A-
involution. In particular, $2B$-pure $2^{2}$-subgroups $U_{i}(i=4,5)$ and so $U_{45}$

of $G$ intersect trivially with $U_{1}$ , and each of them is isomorphic to its
image in $C_{G}(F_{1})/U_{1}\cong SU_{4}(2)$ . For a $2B$ involution $u\in Z(U_{45})$ , we
may verify that its image in $C_{G}(F_{1})/F_{1}$ does not centralize a subgroup
of order 9, and hence it is a $2B$ involution of $SU_{4}(2)$ . Thus the images
$\overline{U_{i}}(i=4,5)$ are $2B$-pure $2^{2}$ -subgroups of $SU_{4}(2)$ .

Since $C_{G}(U_{5})$ does not contain a $2A$-pure $2^{2}$ -subgroup (see Section
2), $U_{5}$ is not contained in $U_{2}$ , $U_{3}$ nor $U_{23}$ up to conjugacy. On the other
hand, from the explicit shapes of $U_{2}$ and $U_{3}(e.$ $g$ . see $W_{2}$ and $W_{3}$ in
[8, \S 3,4] $)$ , there is a $2B$-pure $2^{2}$ -subgroup contained in both of them.
In view of $C_{G}(u)$ , this should be $U_{5}$ . Since the sets of isotropic points
and lines correspond respectively to the ’crosses’ and ’lines’ incident to
the ’point’ $F_{1}[8, \S 6]$ , the image $\overline{U_{5}}\leq U_{2}/F_{1}$ corresponds to a $2B$-pure
subgroup of $SU_{4}(2)$ fixing 5 points and 5 lines. On the other hand, the
image $\overline{U_{4}}$ corresponds to a $2B$-pure subgroup of $SU_{4}(2)$ fixing 1 point
and 3 lines. Interpreting these informations in terms of inclusions of the
corresponding stabilizers (subgroups of type $X$ with $1\in X\subseteq\{1$ ,

$Q$

$2.’ 3\}$
)

$E.D.$

’

we conclude the above inclusions.

Proposition 5. (1) The Euler characteristic of $B_{2}(G)$ (that is,
the alternating sum of numbers of $m$ -chains for $m$ $=$

$-1$ , $\ldots$ , 3) is $2^{13}.514507=2^{13}\cdot 7\cdot 31$ . 2371.
(2) The Euler characteristic of $\triangle(B_{2}^{con}(G))$ is $-2^{11}.823.1229$ , while

that of $\triangle(B_{2}^{cen}(G))$ (or $\mathcal{L}_{2}(G)$ ) is $2^{10}.4091$ . Thus $\triangle(B_{2}^{con}(G))$ is
not homotopically equivalent to the 2-local geometry $\mathcal{L}_{2}(G)$ .

Proof. From the above lemma, the possible types of chains are: Se-
quences of properly increasing nonempty subsets of {1, 2, 3}; 45, $(4, 45)$ ,

$(5, 45)$ , $(45, 123)$ , (4, 45, 123), (5, 45, 123); 5, $(5, 13)$ , $(5, 123)$ ; (5, 13, 123); 4,

$(4, 2)$ , $(4, 3)$ , $(4, 12)$ , $(4, 23)$ , $(4, 123)$ , (4, 2, 12), (4, 2, 23), (4, 2, 123), (4, 3, 23),

(4, 3, 13), (4, 3, 123); (4, 2, 12, 123), (4, 2, 23, 123), (4, 3, 13, 123), (4, 3, 23, 123).

Denote by $n(X_{1}, \ldots, X_{m})$ the number of chains of type $(X_{1}, \ldots, X_{m})$ .
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Let $\chi$ be the Euler characteristic of $\triangle(B_{2}^{cen}(G))$ , that is, the alternating
sum of $n(X_{1}, \ldots, X_{m})$ ’s with sign $(-1)^{m-1}$ for all nonempty sequences
$X_{1}\subset\cdots\subset X_{m}\subseteq\{1,2,3\}$ together with the additional term-l. More-
over, let $\chi(4)$ (resp. $\chi(5)$ ) be the alternating sum of the numbers of
chains of type containing 4 (resp. 5) but not 45, and $\chi(45)$ be the
alternating sum of the numbers of type containing a term of type 45:

Note that for $m>1$ , $n(X_{1}, \ldots, X_{m})$ equals $n(X_{1}, \ldots, X_{m-1})$ times
the number of subgroups of type $X_{m}$ containing $U_{X_{m-1}}$ . The latter
number is easy to find if $X_{m-1}\subset\{1, 2, 3\}$ , because the 2-local geom-
etry $\mathcal{L}_{2}(G)$ has orders 2, 2 and 4. Then it is straightforward to ver-
ify: $\chi=2^{10}.4091$ , $\chi(5)=n(5)(1-9-9.3+9.3)=(-8)|G|/|N_{G}(F_{5})|=$
$-2^{10}.3^{4}.5^{2}.7.11.13$ and $\chi(45)=n(45)(1-1-1-9+9+9)=8|G|/|N_{G}(U_{45})|=$
$2^{10}.3^{5}.5^{2}.7.11.13$ . As for $\chi(4)$ , the above remark yields the sums of terms

$n(4,2, \ldots)=n(4,2)(1 -3-5+15-15-15)=(-8)n(4,2)$ , $-n(4,12)$ $+$

$n$ (4, 12, 123)=4n $(4, 12),$ $-n(4,23)+n(4,23,123)=2n(4,23)$ , and $-n(4, 13)+$

$n$ (4, 13, 123)=2n $(4, 13)$ .

To determine the numbers $n(4,2)$ etc., we need the following facts
(the proofs are omitted, as they are straightforward): there are ex-
actly 9 $2A$-involutions in $C_{G}(F_{5})$ : there are exactly 21 $\times 2$ crosses
(subgroups conjugate to $F_{3}$ ) in $L\cong L_{3}(4)$ : there are two classes of
lines (subgroups conjugate to $F_{2}$ ) in $L$ , each line $l$ of a class of length
3.5.7 is contained in exactly 5 crosses $\pi$ with $U_{4}\leq U_{l,\pi}$ , and each
line $m$ of the other class of length $2^{2}.3.5.7$ is contained in exactly one
cross $\mu$ with $U_{4}\leq U_{m,\mu}$ , where for example $U_{m,\pi}$ denotes the ker-
nel of the action of the stabilizer of a flag $(m, \pi)$ on the set of three
points incident with $(m, \pi)$ . From these facts and the substructure

of the residue at a point $F_{1}$ fixed by $\overline{U_{i}}(i=4,5)$ (see the proof of
the previous lemma), we have: $n(4,2)/n(4)=3.5.7$ , $n(4,12)/n(4)=$

$3^{2}.5.7$ , $n(4,23)/n(4)=3.5.7\times 5+2^{2}.3.5.7\times 1$ , $n(4,13)/n(4)=3^{2}.5.7\times 2$ ,

$n(4,123)/n(4)=3^{2}.5.7\times(5+4)$ . As $n(4)=[G : N_{G}(F_{4})]$ , we then
calculate $\chi(4)=n(4)(1-3^{4}.5.7+2.3^{4}.5.7-8.3.5.7+8.3^{2}.5.7-2^{5}.3.7)=$

$2^{10}.3^{4}.5.11.13$ . This yields the Euler characteristic of $\triangle(B_{2}(G))$ , because
it is $\chi+\chi(4)+\chi(5)+\chi(45)$ . Moreover, the Euler characteristic of
$\triangle(B_{2}^{con}(G))$ is given by $\chi+\chi(5)+\chi’(45)$ , where $\chi’(45)$ is the alternat-
ing sum of numbers of chains of type containing 45 but not 5, so it is

$n(45)(1-1+9-9)=0$ . Q.E.D.

\S 5. Radical $3$-subgroups of $G$

There are three classes of elements of order 3 in $G$ . It follows from
[5, 2.2, 2.3] that a maximal 3-local subgroup of $G$ is conjugate to one of
the following four groups:
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$ N_{G}(T_{1})\cong$ 3 $\cdot U_{4}(3).2$ , where $T_{1}$ is generated by a $3A$-element,
and there is an involution inverting $T_{1}$ which induces
a field automorphism on $C_{G}(T_{1})/T_{1}\cong U_{4}(3)$ .

$ N_{G}(T_{2})\cong$ $3^{2+4}$ : 2 $(A_{4}\times 2^{2}).2$ , where $T_{2}$ is a $3^{2}$ subgroup with
two (resp. two) cyclic subgroups of type $3A$ (resp. $3B$ ).

$ N_{G}(T_{3})\cong$
$3^{5}$ : $M_{11}$ , where $T_{3}\cong 3^{5}$ consists of 11 (resp. 110)
cyclic subgroups of type $3A$ (resp. $3B$ ).

$ N_{G}(T_{4})\cong$ $(3^{2} : 4\times A_{6}).2$ , where $T_{4}$ is a $3C$-pure $3^{2}$ -subgroup.

Note that with notation in Section 2, $T_{4}=M$ and $(M:C_{Q}(A))\times A$

is a subgroup of $N_{G}(F_{4})$ isomorphic to $3^{2}$ : $4\times A_{6}$ . As the involutions of
$C_{Q}(A)$ lie in the class $2A$ , elements of order 3 of $A$ are $3A$ or $3B$ elements
As the product of commuting distinct two $3A$-elements is either a $3A$

or $3B$-element [5, Table III], every $3A$-element of $N_{G}(F_{4})$ lies in $A$ . We
also note that every $3^{2}$ -subgroup generated by $3A$-elements is conjugate
to $T_{2}$ . Thus we may assume $T_{1}<T_{2}<T_{3}$ .

We set $V_{\dot{x}}:=O_{3}(N_{G}(T_{i}))(i=1, \ldots, 4)$ . Then $T_{1}=V_{1}\cong 3$ , $ V_{2}\cong$

$3^{2+4}$ , $T_{3}=V_{3}\cong 3^{5}$ and $T_{4}=V_{4}\cong 3^{2}$ , $T_{\dot{x}}=Z(V_{i})$ and $N_{G}(T_{i})=N_{G}(V_{i})$

for $i=1$ , $\ldots$ , 4. Clearly, $V_{i}$ is a radical 3-subgroup for every $i=1$ , $\ldots$ , 4.

Proposition 6. There are exactly 5 classes of radical 3-subgroups
of $G$ with representatives $V_{i}(i=1, \ldots, 4)$ and a Sylow 3-subgroup $S$ .

In particular, $B_{3}^{cen}(G)=B_{3}^{con}(G)$ consists of 3 classes of subgroups $V_{i}$

$(i=2,3)$ and $S$ .

Proof. Let $V$ be any radical 3-subgroup of $G$ . If $N_{G}(V)\leq N_{G}(T_{4})$

but $V\neq T_{4}$ , it follows from [4, Lemma 1.9] that $V/T$ is a radical 3-
subgroup of $N_{G}(T_{4})/T_{4}\cong(4\times A_{6}).2$ , which implies that $V/T\cong 3^{2}$ .

Then we have $V=T_{4}\times T$ , where $T$ is a Sylow 3-subgroup of the $A_{6^{-}}$

subgroup $A=C_{G}(T_{4})’$ . It follows from the previous remarks that $T\cong 3^{2}$

is the subgroup of $V$ generated by $3A$-elements in $V$ . Thus $ N_{G}(V)\leq$

$N_{G}(T)$ and $T$ is conjugate to $T_{2}$ . Then up to conjugacy $ N_{G}(V)\leq$

$N_{G}(T_{2})$ . But then $V\cong 3^{4}$ would contain $O_{3}(N_{G}(T_{2}))=V_{2}\cong 3^{2+4}$ by
[4, Lemma 1.9], which is a contradiction.

Assume that $N_{G}(V)\leq N_{G}(T_{i})$ but $V\neq V_{i}$ for $i=2$ or 3. Observe
that the radical 3-subgroups of $N_{G}(T_{2})/V_{2}\cong 2(A_{4}\times 2^{2}).2$ are Sylow 3-
subgroups, and similarly those of $N_{G}(T_{3})/V_{3}\cong M_{11}$ . Thus $V$ is a Sylow
3-subgroup of $G$ in these cases.

Finally, consider the case $N_{G}(V)\leq N_{G}(T_{1})$ but $V\neq T_{1}$ . Then $V/T_{1}$

is a radical 3-subgroup of $N_{G}(T_{1})/T_{1}\cong U_{4}(3).2$ . Thus $V/T_{1}$ is the unipo-
tent radical of the stabilizer of an isotropic point, line or a flag of the 3-
dimensional unitary projective space over $GF(9)$ . In the last case, $V$ is a
Sylow 3-subgroup of $G$ . Then $(N_{G}(T_{2})\cap N_{G}(T_{1}))/T_{1}\cong 3^{1+4}2.(A_{4}\times 2).2$

(resp. $(N_{G}(T_{3})\cap N_{G}(T_{1}))/T_{1}\cong 3^{4}$ : $M_{10}$ ) is a parabolic subgroup of
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$U_{4}(3).2$ ( $U_{4}(3)$ extended by a field automorphism) corresponding to an
isotropic point (resp. line) with unipotent radical $T_{2}/T_{1}\cong 3^{1+4}$ (resp.
$T_{3}/T_{1}\cong 3^{4})$ . Thus in the former two cases, $V$ is conjugate to $T_{2}$ or
$T_{3}$ . Q.E.D.

The EGQ $\mathcal{L}_{3}(G)$ of $G=Suz$ (which is a 3-local geometry) is usually
defined as the order complex of the poset $\mathcal{T}$ , the union of the conjugates
of $T_{i}(i=1,2,3)$ under $G$ . Let $\mathcal{T}’$ be the subposet of $\mathcal{T}$ of conjugates of
$T_{2}$ and $T_{3}$ . Then $\triangle(\mathcal{T}’)$ is the truncation of $\mathcal{L}_{3}(G)$ at the ’points’.

Proposition 7. The complex $\triangle(B_{3}^{cen}(G))$ is $G$ -homotopically
equivalent to the truncation of the $EGQ\mathcal{L}_{3}(G)$ at the conjugates of $T_{1}$ .

Proof. Let 72 be the union of $B_{3}^{cen}(G)$ (consisting of conjugates of
$V_{2}$ , $V_{3}=T_{3}$ and Sylow 3-subgroups) with the conjugates of $T_{2}=Z(V_{2})$ .

As a $3^{2}$ -subgroup of $M_{11}\cong N_{G}(T_{3})/T_{3}$ fixes exactly two of 11 subgroups
of type $3A$ of $T_{3}$ , we may take $T_{2}=Z(S)$ with $S$ a Sylow 3-subgroup of
$G$ containing $T_{3}$ .

We examine the subposet $P_{>T_{2}}:=\{X\in P|T_{2}<X\}$ . Observe that
$V_{2}$ has exactly two subgroups of type $3A$ , which lie in $Z(V_{2})=T_{2}$ . Thus
if $T_{2}\leq V_{2}^{g}$ for $g\in G$ , then the subgroup $T_{2}^{g}$ generated by $3A$-elements
of $V_{2}^{g}$ coincides with $T_{2}$ , and hence $g\in N_{G}(T_{2})=N_{G}(V_{2})$ . As $T_{3}$ is
generated by all $3A$-elements in $S$ , we have $T_{2}<S^{g}$ iff $T_{2}<T_{3}^{g}$ for
$g\in G$ . The 5-transitivity of $N_{G}(T_{3})/T_{3}\cong M_{11}$ on the 11 subgroups of

$T_{3}$ of type $3A$ implies that $T_{2}<T_{3}^{g}$ iff $T_{2}^{g^{-1}}=T_{2}^{h}$ for some $h\in N_{G}(T_{3})$ ,

and thus $T_{3}^{g}=T_{3}^{k}$ for $k=hg\in N_{G}(T_{2})$ . Hence $P_{>T_{2}}$ consists of $S^{k}$ ,
$T_{3}^{k}(k\in N_{G}(T_{2}))$ together with $V_{2}$ . For $k\in N_{G}(T_{2})=N_{G}(V_{2})$ , there

is no inclusion relation between $V_{2}$ and $T_{3}^{k}$ ; $S^{k}$ contains $V_{2}$ , as $S>V_{2}$ ;
while $S^{k}$ is the unique conjugate of $S$ containing $T_{3}^{k}$ . Thus the complex
$\triangle(p_{>T_{2}})$ is contractible to $V_{2}$ . Then it follows from Theorem of Bouc [2,
6.6.5] that the inclusion of $B_{3}^{cen}(G)$ to $7^{\supset}$ gives a $G$-homotopy equivalence

between their order complexes.
We will verify that the inclusion of $\mathcal{T}’$ into $\prime p$ is also a $G$-homotopy

equivalence of $\triangle(\mathcal{T}’)$ with $\triangle(P)$ by the same theorem. The subposet
$P_{<V_{2}}=\{X\in P|X<V_{2}\}$ consists of a single element $T_{2}$ and so is
contractible. The subposet $P_{<S}=\{X\in P|X<S\}$ consists of $T_{3}$

(the unique subgroup generated by 11 subgroups of type $3A$ in $S$), the
$\left(\begin{array}{l}11\\2\end{array}\right)$ conjugates of $T_{2}$ under $N_{G}(T_{3})$ , and $V_{2}$ . (We see $V_{2}$ is the unique
conjugate of $V_{2}$ contained in $S$ as follows. Assume $S\geq V_{2}^{g}$ for some
$g\in G$ . Then $V_{2}^{g}\underline{\triangleleft}S$ as $[S:V_{2}^{g}]=3$ , and then $S$ acts on the set of two
subgroups of $V_{2}^{g}$ of type $3A$ . Then the Sylow 3-subgroup $S$ centralizes
$T_{2}^{g}$ generated by those subgroups, and thus $T_{2}=Z(S)$ coincides with
$T_{2}^{g}$ . Then $g\in N_{G}(T_{2})=N_{G}(V_{2})$ and $V_{2}^{g}=V_{2}.$ ) We may collapse
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$\triangle(P_{<S})$ to the 1-simplex with vertices $T_{2}$ , $T_{3}$ by simultaneously deleting
$T_{2}^{g}$ and $(T_{2}^{g}, T_{3})$ for all $g\in N_{G}(T_{3})$ with $T_{2}^{g}\neq T_{2}$ as well as $V_{2}$ and
$(T_{2}, V_{2})$ . Thus $\triangle(P_{<S})$ is contractible. Q.E.D.

Remark. Using similar methods to those in Section 3, the Euler
characteristic of $\triangle(B_{3}(G))$ (resp. $\triangle(B_{3}^{cen}(G))$ and $\triangle(\mathcal{L}_{3}(G))$ ) is calcu-
lated to $-3^{6}.67843$ (resp. $-3^{5}.38587$ and $3^{5}.41.733$ ).
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$|(A, G)|(III)$

Tomoyuki Yoshida

\S 1. Introduction

For a finite group $G$ , its Frobenius number $h_{n}^{cyc}$ is the number of
solutions of the equation $x^{n}=1$ in $G$ and a Sylow number $s_{n}^{cyc}$ is the
number of cyclic subgroups of $G$ of order $n$ . These numbers are named
after Frobenius theorem and Sylow’s theorem ([Yo 96]). The classical
Frobenius theorem states that $h_{n}^{cyc}$ is divisible by the greatest common
divisor of $n$ and $|G|$ . The following transition formula holds:

(1)
$h_{n}^{cyc}=\sum_{r|n}\varphi(r)s_{r}^{cyc}$

, $(n\geq 1)$ ,

where $\varphi$ denotes the Euler function.
Now define the zeta functions of Sylow and Frobenius types by

$S_{G}^{cyc}(z)$ $:=$ $\sum_{n=1}^{\infty}\frac{\varphi(n)s_{7b}^{cyc}}{n^{z}}=\sum_{g\in G}|g|^{-z}$ ,

$H_{G}^{cyc}(z)$ $:=$ $\sum_{r\iota=1}^{\infty}\frac{h_{r\iota}^{cyc}}{n^{z}}$ .

Then the transition formula can be presented by the transition identity

between these functions as follows:

(2) $H_{G}^{cyc}(z)=\zeta(z)S_{G}^{cyc}(z)$ ,

where the transition function $\zeta(z)$ is Riemann’s zeta function. Another
expression of the transition formula (1) is given by the following cyclo-
tomic identity:

(3) $\prod_{n=1}^{\infty}(\frac{1}{1-t^{7L}})^{\Downarrow\{g\in G||g|=n\}/n}=\exp(\sum_{n=1}^{\infty}\frac{h_{n}^{cyc}}{n}t^{n})$ .
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Here we note that the number $h_{n}^{cyc}$ equals the number of group
homomorphisms from a cyclic group $C_{n}$ of order $n$ to the group $G$ :

$h_{n}^{cyc}=h(C_{n}, G):=|Hom(C_{n}, G)|$ .

The purpose of this paper is to generalize the above formulas (1), (2) to
more general classes of groups

The most of notation and terminology in this paper are standard
(cf. [Su 82]). The symbol $\Omega_{1}(A)$ for a group $A$ denotes the subgroup
generated by elements of prime order; $C_{n}$ denotes a cyclic group of order
$n;C_{p}^{r}$ denotes an elementary abelian $p$-group of order $p^{r}$ .

\S 2. Frobenius numbers and Sylow numbers.

For any finite groups $A$ and $B$ , put

$h(A, B)$ $:=$ $|Hom(A, B)|$ ,

$q(A, B)$ $:=$ $\#\{A_{1}\underline{\triangleleft}A|A/A_{1}\cong B\}$ ,

$s(A, B)$ $:=$ $Q\{A_{1}\subseteq B|A_{1}\cong A\}$ .

We call $h(A, B)$ (resp. $s$ ( $A$ , $B$ )) a Frobenius (resp. Sylow) number. The
following lemma easily follows from the homomorphism theorem:

Lemma 2.1 (Transition formula). For any finite groups $A$ and $G$ ,

$h(A, G)$ $=$
$\sum_{B}’\#\{A_{1}\underline{\triangleleft}A|A/A_{1}\cong B\}\cdot|AutB|\cdot s(B, G)$

$=$
$\sum_{A_{1}\underline{\triangleleft}A}|Aut(A/A_{1})|\cdot s(A/A_{1}, G)$

.

where $B$ runs over all isomorphism classes of finite groups.

Now, let $\mu$ (resp. $\mu_{A}^{n}$ ) be the M\"obius function of the lattice of
subgroups (resp. normal subgroups) of a finite group $A$ .

Lemma 2.2. Assume that $A$ is a finite nilpotent group with $B\leq C\leq A$ .
$A_{(p)}$ , $B_{(p)}$ , $C_{(p)}$ denote the Sylow $p$ subgroups of $A$ , $B$ , $C$ , respectively.

(i) $\mu_{A}^{n}(B, C)=\mu_{A/B}^{n}(1, C/B)$ .

(ii) $\mu(B, C)=\prod\mu(B_{(p)}, C_{(p)})$ , $\mu_{A}^{n}(1, B)=\prod\mu_{A_{(p)}}^{n}(1, B_{(p)})$ .

(iii) If
$\mu_{A}^{n}(1, B)\neq p0$ , then $B$ is a subgroup of

$\Omega_{1}p(Z(A))$
.

(iv) When $C$ is a $p$ -group,

$\mu(B, C)=\{$

$(-1)^{r}p^{(_{2}^{r})}$ if $B\underline{\triangleleft}C$ and $C/B\cong C_{p}^{r}$

0 else.
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(v) When $A$ is a $p$ -group,

$\mu_{A}^{n}(1, B)=\{$

$\mu(1, B)=(-1)^{r}p^{(_{2}^{r})}$ if $C_{p}^{r}\cong B\leq\Omega_{1}(Z(A))$

0 if $B\not\subset\Omega_{1}(Z(A))$ .

PROOF. Refer to [St 97, Section 3.9, 10].

Proposition 2.3 (Inversion formula). For any finite group $A$ and $G$ ,

(4) $s(A, G)=\frac{1}{|Aut(A)|}\sum_{B\underline{\triangleleft}A}\mu_{A}^{n}(1, B)h(A/B, G)$ .

Proof. Submitting the identity (Lemma 2.1)

$h(A/B, G)=\sum_{C}’q(A/B, C)|Aut(C)|s(C, G)$

to the right hand side of (4), we have

RHS $=$
$\frac{1}{|Aut(A)|}\sum_{B\underline{\triangleleft}A}\mu_{A}^{n}(1, B)\sum_{C}\prime q(A/B, $C) $|Aut(C)|s(C, $G)

$=$ $\frac{1}{|Aut(A)|}\sum_{c}\prime(\sum_{B\underline{\triangleleft}A}\mu_{A}^{n}(1, B)q(A/B, C))|Aut(C)|s(C, G)$ .

The inner summation is equal to

$\sum_{B\underline{\triangleleft}A}\cdots$

$=$
$\sum_{B\underline{\triangleleft}A}\mu_{A}^{n}(1, B)\cdot\#\{B_{1}/B\underline{\triangleleft}A/B|A/B_{1}\cong C\}$

$=$

$:A/B_{1}\cong c\sum_{B_{1}\underline{\triangleleft}ABB_{1}}.\sum_{B_{\frac{\triangleleft}{\subseteq}}A}\mu_{A}^{n}(1, B)$

$=$
$\sum_{B_{1}\underline{\triangleleft}A}$

$\delta(1, B_{1})=\{$

1 if $A\cong C$

0 else.
: $A/B_{1}\cong C$

Hence the right hand side of (4) is equal to $s(A, G)$ . Q.E.D.

Corollary 2.4 (Inversion formula for nilpotent groups). For any finite
nilpotent group $A$ and for any finite group $G$ ,

(5) $s(A, G)=\frac{1}{|Aut(A)|}\sum_{B\leq\Omega_{1}(Z(A))}\mu(1, B)h(A/B, G)$ .
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\S 3. Zeta functions of Sylow type.

Let $A$ be a family of finite groups closed under isomorphisms and
quotient groups. Furthermore, let $w$ : $\mathbb{N}\rightarrow R$ be a mapping to a
commutative complete topological ring $R$ containing the rational number
field $\mathbb{Q}$ . Then the zeta function of Sylow type of the finite group $G$ with
respect to $A$ and $w$ is defined by

$S(A, w, G):=\sum_{A\in A/\underline{\simeq}}\prime s(A, G)w(|A|)=\cdot.\sum_{A\in AA\leq G}\prime w(|A|)$

.

Note that $A$ can be replaced by the finite (up to isomorphism) family
consisting of those members of $A$ which are involved in the group $G$ .

Theorem 3.1 (Transition formula). Assume that the family $A$ consists

of some nilpotent groups. Then the following holds:

(6) $S(A, w, G)=\sum_{C,B}\prime\frac{\mu(1,B)w(|B|\cdot|C|)|Ext(C,B\cdot A)|}{|Aut(B)|\cdot|Aut(C)|\cdot|Hom(C,B)|},h(C, G)$ ,

where $C$ (resp. $B$ ) runs over a complete set of representatives of $ A/\cong$

(resp. abelian groups such that $B=\Omega_{1}(B)$ ). Furthermore, $Ext(C, B;A)$

denotes the set of equivalence classes of central extensions:

$Ext(C, B;A)=\{1\rightarrow B\rightarrow A(\in A)\rightarrow C\rightarrow 1(c.e.)\}/\cong$ .

Proof First, by the inversion formula,

$S(A, w, G)=\sum_{A\in A}\prime s(A, G)w(|A|)$

$=\sum_{A\in A}\prime\sum_{B\leq Z(A)}\mu(1, B)h(A/B, G)\frac{w(|A|)}{|Aut(A)|}$

$=\sum_{A\in A}\prime\sum_{C\in A}\prime.\sum_{A/B\cong CB\leq Z(A)}\mu(1, B)h(A/B, G)\frac{w(|A|)}{|Aut(A)|}$

$=\sum_{A\in A}\prime\sum_{C\in A}\prime\sum_{B\cdot abe1}.\prime\sum_{>BA\rightarrow C(c.e.)}\frac{\mu(1,B)h(C,G)w(|A|)}{|Aut(A)||Aut(B)||Aut(C)|}$ ,

where the most inner summation is taken over all central extensions:

$1\rightarrow B\rightarrow A(\in A)\rightarrow C\rightarrow 1$ .
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The equivalence of two such central extensions is defined by

$(1\rightarrow B\varphi\rightarrow A\psi\rightarrow C\rightarrow 1)\sim(1\rightarrow B\varphi’\rightarrow A\psi’\rightarrow C\rightarrow 1)$

$=\exists\alpha\in Aut(A)s.t$ . $\alpha\circ\varphi=\varphi’$ , $\psi=\psi’\circ\alpha$ .

By extension theory of groups, the number of such central extensions
equivalent to a given $B\mapsto A\rightarrow C$ is equal to

$\frac{|Aut(A)|}{|Hom(C,B)|}$ .

Thus

$S(A, w, G)$

$=\sum_{A\in A}\prime\sum_{C\in A}\prime\sum_{B\cdot abe1}.\prime\sum_{>[BA\rightarrow C(ce)]}\frac{\mu(1,B)h(C,G)w(|A|)}{|Hom(C,B)||Aut(B)||Aut(C)|}$

$=\sum_{A\in A}\prime\sum_{C\in A}\prime\sum_{B\cdot abe1}.\prime\sum_{[B\rightarrow A\rightarrow C(c.e.)]}\frac{\mu(1,B)h(C,G)w(|B|\cdot|C|)}{|Hom(C,B)||Aut(B)||Aut(C)|}$

$=\sum_{C,B}\prime\frac{\mu(1,B)w(|B|\cdot|C|)|Ext(C,B,A)|}{|Aut(B)||Aut(C)||Hom(C,B)|}.h(C, G)$ .

Remark. For the class of finite nilpotent groups, (6) does not converge.

Applying Theorem 3.1 to the family $C$ of cyclic groups, we have the
formula (1) in Introduction. In this case,

$|Ext(C_{n}, C_{m}; C)|=\varphi(m)\varphi(n)gcd(m, n)/\varphi(mn)$ .

Next, applying Theorem 3.1 to the family $A_{p}$ of abelian $p$-groups,
we have the transition formula as follows:

(7) $\frac{H_{G}^{A_{p}}(x)}{S_{G}^{A_{p}}(x)}=\prod_{m=1}^{\infty}(1-p^{-m}x)^{-1}$ ,

where

$H_{G}^{A_{p}}(x)$ $:=$ $\sum\infty\sum’\frac{h(A,G)}{|Aut(A)|}x^{n}$ ,
$n=0|A|=p^{n}$

$S_{G}^{A_{p}}(x)$
$:=$

$\sum_{n\geq 0}\sum_{|A|=p^{n}}\prime s(A, G)x^{n}$
.
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This funny identity with $G=1$ , $x=1$ implies P.Hall’s strange formula:

(8) $\sum_{A}\prime\frac{1}{|Aut(A)|}=\sum_{A}\prime\frac{1}{|A|}$ ,

where $A$ runs over all classes of abelian $p$-groups([Yo 92]).

\S 4. Partition identities.

Let $\mathcal{E}_{p}$ be the family of all elementary abelian $p$-groups. As is well-
known, the following hold:

$|Ext(C_{p}^{s}, C_{p}^{r}; \mathcal{E}_{p})|=1$ ,

$\beta\{B\subseteq C_{p}^{n}||B|=p^{r}\}=\left\{\begin{array}{l}n\\r\end{array}\right\}$ $p:=\frac{[p]_{n}}{[p]_{r}[p]_{n-r}}$ ,

$[p]_{n}=(p-1)(p^{2}-1)\cdots(p^{n}-1)$ ,

$|Aut(C_{p}^{n})|=|GL(n,p)|=p^{(_{2}^{n})}[p]_{n}$ ,

$\mu(1, C_{p}^{r})=(-1)^{r}p^{(_{2}^{r})}$ .

Thus Lemma 2.1 and Proposition 2.3 have the following forms:

(9) $h(C_{p}^{n}, G)$ $=$ $\sum_{r=0}^{n}$
$\left\{\begin{array}{l}n\\r\end{array}\right\}$

$p$

. $|GL(r,p)|s(C_{p}^{r}, G)$ ,

(10) $s(C_{p}^{n}, G)$ $=$ $\frac{1}{|GL(n,p)|}\sum_{r=0}^{7L}(-1)^{r}p^{(_{2}^{r})}$ $\left\{\begin{array}{l}n\\r\end{array}\right\}$

$ph(C_{p}^{n-r}, G)$
.

We take the weight function $w$ of the form $w(p^{n})=f(n)x^{n}$ , so that by
Theorem 3.1, we have

$S_{G,f}^{E_{p}}(x)$ $:=$
$\sum_{n\geq 0}s(C_{p}^{n}, G)f(n)x^{n}$

$=$ $\sum_{r,s\geq 0}\frac{(-1)^{r}p^{(_{2}^{r})}f(r+s)h(C_{p}^{s},G)}{|GL(r,p)|\cdot|GL(s,p)|\cdot p^{rs}}x^{r+s}$

(11) $=$ $\sum_{n=0}^{\infty}(\sum_{r=0}^{\infty}\frac{f(r+n)}{[p]_{r}}(-p^{-n}x)^{r})\frac{h(C_{p}^{n},G)}{|GL(n,p)|}x^{n}$ .
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Case $f(n)=1$ . In this case, (11) gives

$S_{G,1}^{E_{p}}(x)$ $=$
$\sum_{n\geq 0}s(C_{p}^{n}, G)x^{n}$

$=$ $\sum_{n=0}^{\infty}(\sum_{r=0}^{\infty}\frac{1}{[p]_{r}}(-p^{-n}x)^{r})\frac{h(C_{p}^{n},G)}{|GL(n,p)|}x^{n}$

(12) $=$ $\prod_{r=1}^{\infty}(1-p^{-r}x)\cdot\sum_{n=0}^{\infty}(\prod_{r=1}^{n}(1-p^{-r}x)^{-1})\frac{h(C_{p}^{n},G)}{|GL(n,p)|}x^{n}$ .

Here we used the $q$-binomial theorem:

(13) $\sum_{r=0}^{\infty}\frac{1}{[p]_{r}}(-p^{-n}x)^{r}=\prod_{r=1}^{\infty}(1-p^{-n-r}x)$ .

Even if the group $G$ is trivial, (12) gives a non-trivial formula called
Cauchy’s identity (1893) and then Euler’s one:

(14) $\prod_{r=1}^{\infty}(1-p^{-r}x)^{-1}$ $=$ $\sum_{n=0}^{\infty}(\prod_{i=1}^{n}(1-p^{-i}x)^{-1})\frac{x^{n}}{|GL(n,p)|}$ ,

(15) $\prod_{r=1}^{\infty}(1-p^{-r})^{-1}$ $=$ $\sum_{n=0}^{\infty}(\prod_{i=1}^{n}(p^{i}-1)^{-2})p^{n}$ .

Case $f(n)=p^{(_{2}^{n})}$ . In this case, (11) gives

$S_{G,f}^{E_{p}}(x)$ $:=$
$\sum_{n\geq 0}s(C_{p}^{n}, G)p^{(_{2}^{n})}x^{n}$

$=$ $\sum_{n=0}^{\infty}(\sum_{r=0}^{\infty}\frac{p^{(_{2}^{n})+(_{2}^{r})}}{[p]_{r}}(-x)^{r})\frac{h(C_{p}^{n},G)}{|GL(n,p)|}x^{n}$ ,

$=$ $(\sum_{r=0}^{\infty}\frac{p^{(_{2}^{r})}}{[p]_{r}}(-x)^{r})\cdot(\sum_{n=0}^{\infty}\frac{h(C_{p}^{n},G)}{[p]_{n}}x^{n})$ ,

(16) $=$ $\prod_{r=1}^{\infty}(1+p^{-r}x)^{-1}\cdot(\sum_{n=0}^{\infty}\frac{h(C_{p}^{n},G)}{1p]_{n}}x^{n})$ .

Here we used the $q$-binomial theorem. Hence, we conclude that

(17) $\frac{H_{G,f}^{E_{p}}(x)}{S_{G,f}^{E_{p}}(x)}=\prod_{r=1}^{\infty}(1+p^{-r}x)$ ,
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where

$H_{G,f}^{E_{p}}(x):=\sum_{n=0}^{\infty}\frac{h(C_{p}^{n},G)}{[p]_{n}}x^{n}$ . $(|x|<p)$ .

Remark. As rational functions over the complete $p$-adic number field,
we have

(18) $\frac{H_{G,f}^{E_{p}}(x)}{S_{G,f}^{E_{p}}(x)}=\prod_{r=0}^{\infty}(1+p^{r}x)^{-1}$ .

A special value of $S_{G,f}^{E_{p}}(x)$ is related with the Euler characteristic
$\chi(S_{p}(G))$ of the poset of non-trivial $p$-subgroups:

(19)
$\chi(S_{p}(G)):=\sum_{A,B\neq 1}\mu(A, B)=-\sum_{B\neq 1}\mu(1, B)$

,

where $A$ , $B$ run over all nontrivial $p$-subgroups and $\mu$ is the M\"obius

function of the subgroup lattice of $G$ . Thus Lemma 2.2(iv) implies the
following:

Lemma 4.1. Under the above notation, the following holds:

(20) $S_{G,f}^{E_{p}}(-1)=1-\chi(S_{p}(G))$ .

For $n\geq 0$ , we define the numbers $\chi_{n}’$ ’s by

$\chi_{n}’:=\sum_{r=0}^{n}(-1)^{r}p^{(_{2}^{r})}s(C_{p}^{r}, G)$ .

Then 1 $-\chi_{n}’$ is equal to the Euler characteristic of the poset of p-
subgroups of $G$ of order at most $p^{n}$ . By the inversion formula (10),
we have

(21) $[p]_{n}\chi_{n}’=\sum_{r=0}^{n}(-1)^{n-r}p\left(\begin{array}{l}r+1\\2\end{array}\right)\left\{\begin{array}{l}n\\r\end{array}\right\}$

$ph_{n-r}$
.

Consider the following generating series associated to the series $\{\chi_{n}’\}_{n\geq 0}$ :

$X_{G}(t):=\sum_{n=0}^{\infty}\chi_{n}’(-t)^{n}$ .
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Then we have

$X_{G}(t)$ $=$ $\sum_{n=0}^{\infty}\sum_{r=0}^{n}(-1)^{r}p^{(_{2}^{r})}s(C_{p}^{r}, G)(-t)^{n}$

$=$ $(1+t)^{-1}\sum_{r=0}^{\infty}p^{(_{2}^{r})}s(C_{p}^{r}, G)t^{r}$

$=$ $(1+t)^{-1}S_{G,f}^{E_{p}}(t)$ .

Thus the transition identity (16) gives

(22) $X_{G}(t)=\prod_{n=0}^{\infty}(1+p^{-n}t)^{-1}\cdot H_{G,f}^{E_{p}}(t)$ .

Similarly, if we view $X_{G}(t)$ and $H_{G,f}^{E_{p}}(t)$ as $p$-adic power series (18), we
have

(23) $X_{G}(t)=\prod_{n=1}^{\infty}(1+p^{n}t)\cdot H_{G,f}^{E_{p}}(t)$ .

These formula gives a transition formula between $\{h_{n}\}$ and $\{\chi_{n}’\}$ :

(24) $h_{n}=\sum_{r=0}^{n}(-1)^{r}p^{n-r}$ $\left\{\begin{array}{l}n\\r\end{array}\right\}$

$p\chi_{r}’$
.

By (21) and (24), if $p^{n}$ divides $|G|$ , then

(25) $\chi_{n}’\equiv 0$ $(mod p^{n})$ $\Leftrightarrow$ $h_{n}\equiv 0$ $(mod p^{n})$ .

The right hand side of this statement is valid by [Yo 93]. Thus we again
have Brown’s cohomological Sylow theorem ([Yo 96]):

(26) $\chi(S_{p}(G))\equiv 1$ $(mod |G|_{p})$ .
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