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\S 1. Introduction

In our previous paper [BG] we generalized standard properties of
the group $GL_{n}(k)$ of graded automorphisms of the polynomial ring
$k[x_{1}, \ldots, x_{n}]$ over a field $k$ to the group $gr$ . $aut(k[S_{P}])$ of graded auto-
morphisms of a polytopal $k$-algebra $k[S_{P}]$ associated with a lattice poly-
tope $P$ . The generators of the $k$-algebra $k[S_{P}]$ correspond bijectively to
the lattice points in $P$ , and their relations are the binomials represent-
ing the affine dependencies of the lattice points. (See Bruns, Gubeladze,
and Trung [BGT] for polytopal algebras.) Thus $k[x_{1}, \ldots, x_{n}]$ can be
viewed as the polytopal algebra $k[S_{\triangle_{n-1}}]$ for the unit $(n -1)$ -simplex
$\triangle_{n-1}$ , and the fact that every invertible matrix can be reduced to a
diagonal one by elementary row transformations is then a special case of
our theorem [$BG$ , Theorem 3.2] that every element of $gr$ . $aut(k[S_{P}])$ is
a composition of elementary automorphisms, toric automorphisms, and
affine symmetries of the polytope. (The symmetries are only needed if
$gr$ . $aut(k[S_{P}])$ is not connected.) Polytopal algebras and their normaliza-
tions are special instances of affine semigroup algebras; more generally,
we have described the group of graded automorphisms of an arbitrary
normal affine semigroup algebra [$BG$ , Remark 3.3(c)].

In [BG] an application to toric geometry is a description of the auto-
morphism group of a projective toric variety over an algebraically closed
field of arbitrary characteristic. Our approach avoids the theory of linear
algebraic groups, and for projective toric varieties we have strengthened
the classical theorem of Demazure [De] and its recent generalizations by
Cox [Co] and B\"uhler [Bu].

The main issue of this paper is a generalization from the case of
a single polytope to algebras $k[\square ]$ corresponding to lattice polyhedral

Received November 9, 1999.
2000 AMS Subject Classification: $14J50,14M25,52B20$ .



W. Bruns and J. Gubeladze

complexes $\Pi$ of type as general as possible; these algebras will be called
polyhedral algebras. Thus we are concerned with the graded automor-
phisms of fiber products of polytopal algebras, labeled naturally by lat-
tice polyhedral complexes. In plain terms, the set of monomials of $k[\square ]$

is the union of the set of monomials of the algebras $k[S_{P}]$ where $P$ runs
through the facets of $\Pi$ , and the product of two monomials is their prod-
uct in $k[S_{P}]$ if there exists $P$ with both monomials belonging to $k[S_{P}]$ ,

and zero otherwise. The simplest representatives of such algebras are
Stanley-Reisner rings of simplicial complexes, whose graded automor-
phisms have recently been considered by M\"uller [Mu]. Combinatorial
aspects of algebras defined by polyhedral complexes have been discussed
by Stanley [Sta].

There is a natural hierarchy of lattice polyhedral complexes

{abstract simplicial complexes}\subset

{boundary lattice polyhedral complexes}\subset

{Euclidean lattice polyhedral complexes}\subset

{quasi-Euclidean lattice polyhedral complexes}\subset

{oriented lattice polyhedral complexes}\subset

{general lattice polyhedral complexes},

which appears in the subsequent sections; each of these classes consti-
tutes just a small subclass in the next class, as illustrated by examples.

Boundary lattice complexes are obtained as subcomplexes of the
set of faces of a single lattice polytope, whereas Euclidean complexes
are formed by a collection of lattice polytopes in a Euclidean space $\mathbb{R}^{n}$

whose lattice structures are induced from the lattice $\mathbb{Z}^{n}$ . For a quasi-
Euclidean complex $\Pi$ we relax the last requirement: the lattice providing
the semigroup associated with each face of $\Pi$ may vary among the facets
of the complex. The definition of an oriented lattice polyhedral complex

is more technical; roughly speaking, it permits us to define elementary
automorphisms in terms of so-called column structures.

The group $gr$ . $aut(k[\square ])$ is a linear algebraic group in a natural way.
We will show that the elementary automorphisms together with the toric
automorphisms generate its unity component if $\Pi$ is oriented; if $\Pi$ is even
quasi-Euclidean, then the whole group is generated by elementary auto-
morphisms, diagonal automorphisms and symmetries of the underlying
complex. Here an automorphism $\alpha$ is called diagonal if each monomial
is an eigenvector for $\alpha$ , and the toric automorphisms are the members
of the unity component of the group of diagonal automorphisms (in the



Polyhedral Algebras, Toric Arrangements, and their Groups 3

case of a single polytope this group is always connected). Moreover, un-
der a certain combinatorial condition on the complex, one can provide
a normal form for the representation of a general automorphism. This

is the first main result of the paper (Theorem 5.2).
The combinatorial treatment that was successful in the case of a

single polytope [BG] becomes exceedingly complicated for polyhedral
complexes. Instead we will invoke Borel’s theorem on maximal algebraic
tori and other algebro-geometric arguments.

Polytopal algebras are related to graded normal affine semigroup
algebras in the same way as polyhedral algebras are related to graded
algebras defined by rational polyhedral complexes (Section 2). Analo-
gously to the situation of a single polytope, our arguments apply to
this class of algebras as well, yielding a description of their graded au-
tomorphism groups. An even more general class is constituted by the
algebras described in terms of weak fans (Section 2). They are analogues
of general, non-graded normal affine semigroup rings and are useful in
the description of affine charts for arrangements of projective toric va-
rieties; see Section 6. The analogy is limited, though: neither is the
normalization of a polyhedral algebra combinatorially well-behaved in
general, nor do all algebras given by weak fans come from rational poly-
hedral complexes (i.e. carry a graded structure such that monomials are
homogeneous and of positive degree).

The second main result (Theorem 9.1) concerns the automorphism
group of an arrangement of projective toric varieties, i.e. the Proj of a
polyhedral algebra. Here the situation is more complicated than it was
for projective toric varieties themselves: no longer can one give a nat-

ural one-to-one ’polyhedral interpretation’ of very ample line bundles,
which exists for single polytopes (Teissier [Te]). However, using once
again Borel’s theorem on maximal tori, we show that there are still rea-
sonable polyhedral ’images’ of the spaces of global sections for certain
very ample line bundles. This suffices for the computation of the unity
component of the automorphism group of an arrangement defined by
a quasi-Euclidean complex and of the whole group for an arrangement
defined by a projectively quasi-Euclidean complex $\Pi$ ; such a complex is
distinguished by the fact that every complex projectively equivalent to
$\Pi$ is also quasi-Euclidean. Not all quasi-Euclidean complexes are pro-
jectively quasi-Euclidean, but in Section 8 we describe two natural big
classes of such complexes; one of them includes the simplicial complexes.

In conjunction with [BG] this paper establishes a polyhedral gen-
eralization of classical $K$-theoretical objects–the general linear group
$GL_{n}(k)$ and its elementary subgroup $E_{n}(k)$ . Naturally there arises a
question: is there a further analogy with $K$-theory that might lead to a
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polyhedral $K$-theory? Already for low dimensional $K$-groups this ques-
tion suggests challenging open problems.

Acknowledgement. The second author was supported by the Alexan-
der von Humboldt Foundation, the $MR$ Project (Contract Offer ERB
FMRX CT-97-0107) and by INTAS (93-2618-Ext). Their generous grants
are gratefully acknowledged.

\S 2. Polyhedral complexes and polyhedral algebras

A polytope in a real vector space $\mathbb{R}^{n}$ is the convex hull of finitely
many points. The vertices of a lattice polytope belong to the integral
lattice $\mathbb{Z}^{n}\subset \mathbb{R}^{n}$ .

We recall that for a lattice polytope $P\subset \mathbb{R}^{n}$ the sub-semigroup
$S_{P}\subset \mathbb{Z}^{n+1}$ is by definition generated by $\{(x, 1)|x\in \mathbb{Z}^{n}\cap P\}\subset \mathbb{Z}^{n+1}$ .

For a field $k$ the semigroup algebra $k[S_{P}]$ is called the polytopal algebra
of $P$ over $k$ ([BGT], [BG]).

Definition 2.1. A lattice polyhedral complex $\Pi$ consists of

(a) an abstract (fifinite) polyhedral complex $\square x$ , that is a finite set $X$

of vertices and a system $\square x$ of subsets of $X$ such that $P\cap Q\in\square x$

whenever $P$, $Q\in\square x$ ,

(b) an embedding $P\rightarrow \mathbb{R}^{n_{P}}$ for each $P\in\square x$ such that the image of
$P$ constitutes the vertex set of an $n_{P}$-dimensional lattice polytope
$P^{*}\subset \mathbb{R}^{n_{P}}$ ,

(c) an embedding $\iota_{PQ}$ : $P^{*}\rightarrow Q^{*}$ for each inclusion $P\subset Q$ , $P$, $ Q\in$

$\Pi_{X}$ such that $\iota_{PQ}$ is an isomorphism of $P^{*}$ with a face of $Q^{*}$ as
lattice polytope

Furthermore we require the following compatibility conditions:

(i) $\iota_{QR}o\iota_{PQ}=\iota_{PR}$ for $P$, $Q$ , $R\in\Pi_{X}$ , $P\subset Q\subset R$ ,
(ii) for every element $Q\in\square x$ and each face $F$ of the polytope $Q^{*}$

there is an element $P\in\square x$ such that $P\subset Q$ and $\iota_{PQ}(P^{*})=F$ .

(The condition $dim(P^{*})=n_{P}$ is useful for convenience of notation when
we define projectively equivalent polyhedral complexes in Section 7.)

Let $\Pi$ be a lattice polyhedral complex. For $P\in\square x$ the set of
lattice points of $P^{*}$ will be denoted by $L(P^{*})$ . We want to identify
lattice points $x\in L(P^{*})$ and $y\in L(Q^{*})$ if $\iota_{PQ}(x)=y$ . More precisely,
we introduce the equivalence relation $\sim on$ the disjoint union of the sets
of lattice points $L(P^{*})$ , $P\in\square x$ , that is spanned by the relations $x\sim y$

for all $x$ , $y$ such that there exist $P$, $Q\in\Pi_{X}$ with $x$ $\in L(P^{*})$ , $y\in L(Q^{*})$ ,
$P\subset Q$ , and $\iota_{PQ}(x)=y$ . The set of equivalence classes with respect
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$to\sim is$ denoted by $L(\square )$ and they are called lattice points of $\Pi$ . For
simplicity of notation we will identify $L(P^{*})$ with its image in $L(\square )$ .

Let $k$ be a field and $\Pi$ a lattice polyhedral complex. Then it is
easy to show that there exists a unique $k$ algebra $k[\Pi]$ , satisfying the
following conditions:

(1) $k[\square ]$ is generated by $L(\Pi)$ ;
(2) for any element $P\in\Pi_{X}$ the subalgebra of $k[\square ]$ generated by

$L(P^{*})$ is naturally isomorphic to the polytopal algebra $k[S_{P}*]$ ;

(3) if there exists no $Q\in\square x$ such that $x_{1}$ , $\ldots$ , $x_{s}\in L(\square )$ all belong
to $L(Q^{*})$ , then $x_{1}\cdots x_{S}=0$ .

The algebra $k[\square ]$ will be called the polyhedral algebra of $\Pi$ . Condition
(2) just means that for each $P\in\square x$ the elements of $L(P)\subset L(\square )$

satisfy the binomial relations corresponding to their affine relations as
lattice points in $P^{*}$ . Furthermore these binomial relations together with
the monomial relations in (3) define $K[\square ]$ .

Convention: The polytopes $P^{*}$ will simply be denoted by $P$ and they
will be called faces of $\Pi$ . We will write $ P\prec\Pi$ . Moreover, for $P$, $ Q\in\Pi$ ,
$P\subset Q$ , we indicate by $P\prec Q$ that $P$ is considered as a face of $Q$ via
$\iota_{PQ}$ .

The elements of the semigroups $S_{P}$ , $ P\prec\Pi$ , will be called monomi-
als; elements of the form $\alpha x$ , $\alpha\in k^{*}$ , $x\in S_{P}$ are called terms.

Let $\Pi^{face}$ be the poset (with respect $to\prec$ ) of the faces of $\Pi$ , and $\Pi^{facet}$

the subset consisting of all faces that can be written as an intersection
of facets, i.e. maximal faces, of $\Pi$ . Our conditions imply that we have a
contravariant functor to (commutative) $k$-algebras:

$a1g_{k}face$ : $\Pi^{face}\rightarrow k- ag$

for which
$a1g_{k}(faceP)=k[S_{P}]$

and $a1g_{k}(faceP\prec Q)=$ (the ’face projection’ $k[Q]\rightarrow k[P]$ ).

(’Face projection’ here means the unique $k$-algebra homomorphism un-
der which $L(Q)\backslash L(P)$ is mapped to $O\in k$ and each $x\in L(P)$ to itself.)

The restriction of $a1g_{k}face$ to $\Pi^{facet}$ will be denote by $a1g_{k}facet$ .

The following is the universal characterization of $k[\square ]$ :

$k[\square ]=\varliminf a1g_{k}face=\varliminf a1g_{k}facet$ .

Definition 2.2. (a) A polyhedral subcomplex of the complex

of all faces of some lattice polytope is called a boundary polyhedral
lattice complex.



6 W. Bruns and J. Gubeladze

(b) A lattice polyhedral complex that can be realized as a polyhedral
complex of lattice polytopes (with respect to $\mathbb{Z}^{n}$ ) in some real
vector space $\mathbb{R}^{n}$ is called Euclidean.

(c) A lattice polyhedral complex $\Pi$ , realizable as a polyhedral com-
plex of rational polytopes in some real vector space, is called
quasi-Euclidean.

Proposition 2.3. (a) If $\Pi$ is the lattice polyhedral complex of
all faces of some lattice polytope $P$ (including $P$ itself), then $k[\square ]=$

$k[S_{P}]$ .

(b) If $\Pi$ is a lattice simplicial complex consisting of unit lattice sim-
plices, then $k[\Pi]$ is exactly the Stanley-Reisner ring of $\Pi_{X}$ . Any
Stanley-Reisner ring can be realized in this way.

(c) The inclusions {abstract simplicia complexes}\subset {boundary lat-
tice complexes}\subset {Euclidean complexes}\subset {quasi-Euclidean
complexes} are strict.

(See Bruns and Herzog $[BH$ , Ch.5] for Stanley-Reisner rings.)

Proof. The claims (a) and (b) are obvious, as is the first inclusion
in (c). It is evidently strict. So we only need to construct a Euclidean,
but not boundary, lattice polyhedral complex and a quasi-Euclidean,
but not Euclidean, one.

Consider the polyhedral complexes in Figure 1 where $\Pi_{1}$ consists

$\Pi_{1}$ $\Pi_{2}$

FIGURE 1.

of the 6 two-dimensional facets forming the surface of the lattice unit
cube and one more facet given by a space diagonal, and $\Pi_{2}$ has 6 two-
dimensional facets of which 5 are lattice unit squares and the 6th has
an additional lattice point in its barycenter.

We claim that $\Pi_{1}$ is not a boundary complex. In fact, assume to the
contrary that there exists a lattice polytope $P$ in $\mathbb{R}^{m}$ whose boundary
complex contains $\Pi_{1}$ . Then there is a linear mapping from $\mathbb{R}^{m}$ to $\mathbb{R}$ that
is positive on $\Pi_{1}$ outside the 1-dimensional facet and is 0 on it. Now
observe that the affine hull of $\Pi_{1}$ in $\mathbb{R}^{m}$ is 3-dimensional and that the
2-dimensional facets of $\Pi_{1}$ must form the boundary of a 3-dimensional
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parallelepiped — in $\mathbb{R}^{m}-$ this is an obvious rigidity property of the
boundary complex of the unit 3-cube. The space diagonal, except its
end-points, consists of interior points of $\Xi$ . Hence any linear form posi-
tive on the boundary $of-\cup-$ (except the endpoints of the space diagonal)
must also be positive in the interior of this diagonal–a contradiction.

It is easy to check that, like in the previous case, a Euclidean real-
ization of $\Pi_{2}$ must form the boundary of some lattice parallelepiped. In
particular, the lattice structures of each of the opposite pairs of facets
must be naturally isomorphic. But this is not the case for $\Pi_{2}$ and, hence,
there is no Euclidean realization of $\Pi_{2}$ . (That $\Pi_{2}$ is quasi-Euclidean is
obvious.) Q.E.D.

To a lattice polyhedral complex $\Pi$ one can also associate a semigroup
(commutative, with unity) $S_{\Pi}$ , which is generated by $L(\Pi)$ and one extra
element $\infty$ in such a way that

(1) $S_{P}$ is a sub-semigroup of $S_{\Pi}$ for every face $ P\in\Pi$ ,
(2) $x$ . $\infty=\infty$ . $\infty=\infty$ and $ x_{1}\cdots x_{s}=\infty$ whenever $x_{1}\cdots x_{s}=0$ in

$k[\square ]$ .

Of course, this definition is independent of the field $k$ . The kernel of the
natural surjection $k[S_{\Pi}]\rightarrow k[\square ]$ is the ideal $(\infty)(dim_{k}(\infty)=1)$ . More-
over, $s_{\Pi}$ is mapped isomorphically to the multiplicative sub-semigroup
of $k[\square ]$ generated by $L(\square )$ and 0.

Observe that $k[\square ]$ is equipped with a natural grading:

$ k[\square ]=k\oplus A_{1}\oplus A_{2}\oplus\cdots$ , $A_{1}=kL(\square )$ .

The group of graded $k$-automorphisms of $k[\square ]$ , denoted by $\Gamma_{k}(\square )$ later
on, is called the polyhedral linear group associated with $\Pi$ . Clearly, If $\Pi$

is a lattice polyhedral complex determined by a lattice polytope $P$ , then
$\Gamma_{k}(\square )$ is the polytopal linear group $\Gamma_{k}(P)$ of [BG]. As for polytopal
groups, one observes easily that polyhedral linear groups are affine k-
groups: $\Gamma_{k}(\Pi)$ is a closed subgroup of $GL_{N}(k)$ , $N=\#L(\square )$ , whose
defining equations are derived from the relations between the degree 1
monomials of $k[\Pi]$ by use of an obvious, simple algorithm.

The group of semigroup automorphisms of $S_{\Pi}$ will be denoted by
$\Sigma(\square )$ . It is a finite group embedded into $\Gamma_{k}(\square )$ in a natural way, and
we will identify $\Sigma(\square )$ with its image.

Next we introduce the notion of a rational polyhedral complex. The

corresponding graded algebras are related to polyhedral algebras in the
same way as graded normal affine semigroup rings are related to poly-
topal algebras.

Definition 2.4. A rational polyhedral complex $\Pi_{rat}$ consists of the
following data:
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(a) an abstract polyhedral complex $\square x$ ,
(b) an embedding $P\rightarrow \mathbb{R}^{n_{P}}$ for each $P\in\square x$ such that the image is

the vertex set of a rational polytope $P^{*}$ (with respect to $\mathbb{Q}^{n_{P}}\subset$

$\mathbb{R}^{np})$ whose faces correspond to the sets $\{R\in\square x|R\subset P\}$ so
that if $P\subset Q$ are two elements of $\square x$ , then the polytope $P^{*}$ and
the face $P’$ of $Q^{*}$ corresponding to $P$ are naturally isomorphic as
rational polytope

Furthermore we require that the isomorphism of $P^{*}$ and $P’$ induces a
bijection between the sets of lattice points of $cP^{*}\cap \mathbb{Z}^{n_{P}}$ and $cP’\cap \mathbb{Z}^{n_{Q}}$

for each $c\in \mathbb{N}$ . (Here $cP^{*}$ and $cP’$ denote the $c$-th homothetic images.)

It may happen that the faces of a finite rational polyhedral complex
$\Pi_{rat}$ are actually lattice polytopes, but the subscript $-_{rat}$ emphasizes
that we are considering the rational structure.

For a face $P\in\Pi_{rat}$ we let $C(P)$ denote the finite rational convex
cones in $\mathbb{R}^{n_{P}+1}$ with apex 0 that is spanned by $\{(x, 1)|x\in P\}$ ; moreover,

we let $\hat{S}_{P}$ denote the sub-semigroup $\mathbb{Z}^{n_{P}+1}\cap C(P)\subset \mathbb{Z}^{n_{P}+1}$ . The
algebra $k[\Pi_{rat}]$ is defined as the unique algebra satisfying the following
conditions:

(1) $k[\hat{S}_{P}]$ is a subalgebra of $k[\Pi_{rat}]$ for every face $P\in\Pi_{rat}$ and if
$P\prec Q$ , then $k[\hat{S}_{P}]\subset k[\hat{S}_{Q}]$ in a natural way,

(2) $x_{1}\cdots x_{s}=0$ whenever $x_{i}\in\hat{S}_{P_{i}}$ for some faces $P_{i}\in\Pi_{rat}$ , $ i\in$

$[1, s]$ , and there is no face $R\in\Pi_{rat}$ such that $x_{1}$ , $\ldots$ , $x_{s}\in\hat{S}_{R}$ ,

(3)
$of\Pi_{rat}k[\square rat].=\sum_{P}k[\hat{S}_{P}]$

as $k$-spaces, where $P$ runs through the faces

Here we adopt a convention on terminology and notation similar to that
we have introduced for lattice polyhedral complexes. In particular, we
can speak of a monomial in $k[\Pi_{rat}]$ .

Proposition 2.5. (a) The class of affiffiffine normal semigroup k-
algebras coincides with the class of algebras of type $k[\Pi_{rat}]$ where
$\Pi_{rat}$ is the rational complex (of all faces) of a rational polytope.

(b) For a rational polyhedral complex $\Pi_{rat}$ and $a$ fifield $k$ the algebra
$k[\Pi_{rat}]$ carries a graded structure where all monomials are ho-
mogeneous of positive degree given by the last component of (the
exponent vector of) $x$ in $\mathbb{Z}^{n_{P}+1}$ for $x\in\hat{S}_{P}$ . The group $\Gamma_{k}(\Pi_{rat})$

of graded automorphisms of $k[\Pi_{rat}]$ is an affiffiffine $k$ -group.
(c) In general a lattice polyhedral complex $\Pi$ does not defifine a ra-

tional polyhedral complex in a natural way, $i.e$ . if we pass to the
normalizations { $y\in gp(S_{P})|y^{m}\in S_{P}$ for some $m\in \mathbb{N}$ } of the
$S_{P}$ where $P$ runs through the faces of $\Pi$ , then the new system of
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semigroups may not satisfy the compatibility condition required
in 2.4.

Proof, (a) just says that all affine normal semigroup $k$ algebras
can be equipped with a graded structure such that monomials become
homogeneous elements of positive degree (see $[BH$ , Ch. 6]). (b) is an
obvious analogue of the corresponding observations for lattice polyhedral
complexes.

For (c) consider a 4-dimensional lattice polytope $P\subset \mathbb{R}^{4}$ such that

(1) its lattice points span $\mathbb{Z}^{4}$ (as an additive group),
(2) one of its facets is a 3-simplex $\delta\subset P$ whose vertices are the only

lattice points in $\delta$ , but do not span the whole 3-dimensional affine
sublattice $Affff(\delta)\cap \mathbb{Z}^{4}\subset \mathbb{Z}^{4}$ .

(Aff $(\delta)$ is the affine hull of $\delta$ in $\mathbb{R}^{4}.$ ) The existence of such $P$ is clear:
just take a non-unimodular lattice 3-simplex $\delta$ in $\mathbb{R}^{3}$ whose vertices are
the only lattice points in $\delta$ , and then complete it to a sufficiently big 4-
polytope in the upper halfspace (with respect to an embedding $\mathbb{R}^{3}\rightarrow \mathbb{R}^{4}$

as a coordinate hyperplane).
Now consider the lattice polyhedral complex having just two facets:

$P$ and a unit 4-simplex $\triangle$ (in its own ambient Euclidean space) which
meet along $\delta$ . Then the normalizations of $S_{P}$ and that of $S_{\triangle}$ do not agree
along the cone spanned by $\delta$ . (The complex just considered is quasi-
Euclidean, but not Euclidean. In fact, a Euclidean complex defines a
rational polyhedral complex, since the semigroups of its faces are derived
from the same lattice; the corresponding algebras have been considered
by Stanley [Sta].) Q.E.D.

In our general setting the r\^ole of all normal affine semigroup rings
is played by the algebras determined by weak fans. These algebras are
useful in the description of the affine chart of Proj $(k[\square ])$ (see Section 6).

Definition 2.6. A weak fan $\mathcal{W}F$ consists of the following data:

(a) an abstract polyhedral complex $\square x$ ,
(b) for each $P\in\square x$ a rational strictly convex polyhedral cone $ C_{P}\subset$

$\mathbb{R}^{n_{P}}$ whose extremal rays are labeled by the elements of $P$ in such
a way that the faces of $C_{P}$ correspond to the faces of $P$ .

Furthermore we require that this correspondence induces an isomor-
phism of the lattice structures of $C_{P}$ (with respect to $\mathbb{Z}^{n_{P}}$ ) and that
of the corresponding face of $C_{Q}$ (with respect to $\mathbb{Z}^{n_{Q}}$ ) if $P$, $Q\in\square x$ ,
$P\subset Q$ .

Observe that a rational polyhedral complex $\Pi_{rat}$ defines in a natural
way a weak fan $\mathcal{W}\mathcal{F}(\Pi_{rat})$ : one just considers the cones $C_{P}\subset \mathbb{R}^{n_{P}+1}$ ,
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$P\in\Pi_{rat}$ . Likewise, any (finite) fan $\Phi$ in the sense of toric geometry (for
example, see Fulton [Fu] $)$ gives rise to a weak fan $\mathcal{W}F(\Phi)$ .

To a field $k$ and a weak fan $\mathcal{W}F$ one associates a $k$-algebra $k[\mathcal{W}F]$

by patching the semigroup algebras $k[\mathbb{Z}^{n_{P}}\cap C_{P}]$ along the facets of the
cones $C_{P}$ . Again, one has the equalities (in self-explanatory notation):

$k[\mathcal{W}\mathcal{F}]=\varliminf a1g_{k}face=\varliminf a1g_{k}facet$ .

As mentioned already, any normal affine semigroup ring (without
non-trivial units) can be equipped with a graded structure so that its
monomials become homogeneous and of positive degree. However, not
all algebras of type $k[\mathcal{W}\mathcal{F}]$ carry a graded structure.

Example 2.7. There exists a complete fan $\Phi$ in $\mathbb{R}^{3}$ such that
$\mathcal{W}\mathcal{F}(\Phi)$ is not of type $\mathcal{W}\mathcal{F}(\Pi_{rat})$ for some rational polyhedral complex
$\Pi_{rat}$ , i.e. there is no graded structure on $k[\mathcal{W}F(\Phi)]$ ( $k$ a field) such that
its monomials are homogeneous of positive degree.

First observe that a weak fan $\mathcal{W}F$ is of type $\mathcal{W}F(\Pi_{rat})$ if and only
if $k[\mathcal{W}F]$ carries a graded structure $ k[\mathcal{W}\mathcal{F}]=k\oplus A_{1}\oplus A_{2}\oplus\cdots$ such
that all monomials are homogeneous of positive degree.

Choose 6 rational non-coplanar points in $\mathbb{R}^{3}$ as shown in Figure 2

”

$\grave{\beta}_{1\backslash }\varphi|.\backslash \backslash $

FIGURE 2.

where the top and bottom triangles are in parallel planes and the ’hid-
den’ quadrangles are flat polygons whereas the frontal quadrangle is not
a flat figure. Suppose that $0\in \mathbb{R}^{3}$ lies in the interior of the convex hull of
these 6 points; then the cones with common apex 0 that are spanned by
the 2 triangles and the 3 quadrangles form a complete fan $\Phi$ of rational
cones in $\mathbb{R}^{3}$ . We claim that $\mathcal{W}\mathcal{F}(\Phi)$ is not of type $\mathcal{W}F(\Pi_{rat})$ .

In fact, this could only be the case if all 3 quadrangles were flat.
We leave the proof of this general statement to the reader and content
ourselves with a concrete example. Choose the 6 points as follows:

$u=(1, 1, 1)$ , $w=(-1,1, 1)$ , $y=(0, -1,1)$ ,
$v=(1, 1, 0)$ , $x=(-1,1, 0)$ , $z=(1, -3,0)$ .
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Then we have the binomial relations

$ux=vw$ , $u^{4}z=v^{5}.y^{4}$ , $w^{2}z=xy^{2}$

in $k[\mathcal{W}\mathcal{F}(\Phi)]$ . It is easy to show by hand that one cannot assign positive
degrees to the 6 elements such that these relations become homogeneous.

\S 3. Diagonal and toric automorphisms

Let $\Pi$ be a lattice polyhedral complex. The r\^ole of the embedded
torus of an affine toric variety is played by the subgroup of $\Gamma_{k}(\square )$ whose
elements multiply the monomials $x\in L(\Pi)$ by scalars from $k^{*}$ . This
subgroup is denoted by $D_{k}(\square )$ and its elements are called $di$agonal au-
tomorphisms. It becomes a diagonal subgroup of $GL_{N}(k)$ , $N=\#L(\square )$ ,

in the natural realization of $\Gamma_{k}(\square )$ as an affine subgroup of $GL_{N}(k)$ .

One can give a more explicit description of $D_{k}(\square )$ . Consider the
finitely generated Abelian group

$A(\square )=\mathbb{Z}^{L(\Pi)}/U(\Pi)$

where $\mathbb{Z}^{L(\square )}$ is the free Abelian group generated by the lattice points
in $\Pi$ and $U(\square )$ represents the affine relations between the elements of
$L(\Pi)$ , i.e. $U(\Pi)$ is generated by all linear combinations

$\sum_{x\in L(P)}a_{x}e_{x}$
,

$a_{x}\in \mathbb{Z},\sum_{x\in L(P)}a_{x}x=0$
,

where $P$ runs through the facets of $\Pi$ and $e_{x}$ represents the base ele-
ment corresponding to $x$ . (Here $x$ $\in L(P)$ is to be considered as an
element of $\mathbb{R}^{np+1}$ with last coordinate 1 so that $\sum_{x\in L(P)}a_{x}x=0$ im-

plies $\sum_{x\in L(P)}a_{x}=0.$ )

Let $\gamma\in D_{k}(\square )$ and set $\lambda_{x}=\gamma(x)/x$ for all $x\in L(\Pi)$ . Then it is
clear that $\sum_{x\in L(P)}a_{x}x=0$ implies $\prod_{x\in L(P)}\lambda_{x^{x}}^{a}=1$ , and, conversely,

every choice of $\lambda_{x}\in k^{*}$ , $x\in L(\square )$ , satisfying these relations induces a
diagonal automorphism of $k[\square ]$ . Therefore one has

Lemma 3.1. For every lattice polyhedral complex $\Pi$ and any fifield
$k$

$D_{k}(\square )=Hom_{\mathbb{Z}}(A(\square ), k^{*})$ .

Clearly, $D_{k}(\square )$ contains a distinguished copy of $k^{*}-$ the automor-
phisms which multiply the elements of $L(\Pi)$ by a fixed scalar. When $k^{*}$

is considered as a subgroup of $\Gamma_{k}(\Pi)$ , we always mean the subgroup just
specified.
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In general $A(\Pi)$ is not torsionfree, not even if $\Pi$ is Euclidean. Con-
sider for example the complex $\Pi$ below. It is easy to see that $ A(\square )\approx$

$\mathbb{Z}^{3}\oplus(\mathbb{Z}/(2))$ . Therefore $D_{k}(\Pi)$ is not connected (if char $k\neq 2$ ).

It is well known that the connected component of the diagonalizable
group $D_{k}(\Pi)$ is a torus. We denote it by $\ulcorner F_{k}(\square )$ and call its elements
toric automorphisms. Moreover we set $\Lambda(\square )=A(\square )/(torsion)$ . Then it
is easy to show

Lemma 3.2. $\ulcorner F_{k}(\square )\approx Hom_{\mathbb{Z}}(\Lambda(\Pi), k^{*})\approx Hom_{\mathbb{Z}}(A(\Pi), \mathbb{Z})\otimes k^{*}$ .

Remark 3.3. (a) Let $\Pi$ be a quasi-Euclidean complex, $\Pi\subset \mathbb{R}^{n}$ ,

and $L(\Pi)\subset \mathbb{Z}^{n}$ . Then the elements $x\in L(\square )\subset \mathbb{Z}^{n}$ satisfy all the affine
relations that define $A(\square )$ . Consequently one has an induced $\mathbb{Z}$-linear
map $\Lambda(\Pi)\rightarrow \mathbb{Z}^{n}$ . It is clear that the residue classes $\overline{e}_{x}$ , $x$ $\in L(\square )$ , span a
quasi-Euclidean complex isomorphic to $\Pi$ (in the vector space $\Lambda(\square )\otimes \mathbb{R}$).
This realization is the maximal embedding of $\Pi$ ; every other embedding
into a vector space factors through it.

(b) While $A(\Pi)$ may have torsion if $\Pi$ is quasi-Euclidean, the sub-
group generated by the elements $\overline{e}_{x}$ , $x\in L(P)$ , is torsionfree for every
face $ P\prec\Pi$ . In fact, the map described in part (a) sends this subgroup
isomorphically onto the group $A(P)$ .

For an arbitrary complex this does not necessarily hold; for example,
it fails for the ’M\"obius strip’ $\Pi_{7}$ below (see Example 4.1).

The next lemma describes the subgroup of those elements of $\Gamma_{k}(\square )$

that map monomials to terms.

Lemma 3.4. (a) If $\gamma\in\Gamma_{k}(\Pi)$ maps monomials to terms, then
$\gamma=\delta\circ\sigma$ for some $\delta\in D_{k}(\Pi)$ and $\sigma\in\Sigma(\Pi)$ .

(b) For $\delta\in D_{k}(\square )$ and $\sigma\in\Sigma(\square )$ one has $\sigma^{-1}o\delta\circ\sigma\in D_{k}(\square )$ ;
moreover, the subgroup of $\Gamma_{k}(\square )$ generated by $D_{k}(\square )$ and $\Sigma(\square )$

is their semi-direct product.

Proof, (a) is checked as easily as in the case of a single polytope
treated in [BG, Section 4], and (b) is obvious. Q.E.D.

The next lemma provides a crucial argument.

Lemma 3.5. Suppose $\Pi$ is quasi-Euclidean and $k$ is an infifinite
fifield.
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(a) For any pair of different monomials $x_{1}$ , $x_{2}\in k[\square ]$ there exists
$\tau\in T_{k}(\Pi)$ such that $\tau(x_{1})=a_{1}x_{1}$ and $\tau(x_{2})=a_{2}x_{2}$ for some
distinct elements $a_{1}$ , $a_{2}\in k^{*}$ .

(b) $T_{k}(\Pi)$ is a maximal torus of $\Gamma_{k}(\square )$ .

Proof. We may assume that $\Pi$ consists of rational polytopes in $\mathbb{R}^{n}$ .

By homothetic blowing up we can further assume that all the lattice
points of $\Pi$ have integral coordinates in $\mathbb{R}^{n}$ . Clearly, we have a natural
action of the torus $\mathbb{Z}^{n}\otimes k^{*}=(k^{*})^{n}$ on $k[\Pi]-$ the restriction of the
action on $k[\mathbb{Z}^{n}]$ to the monomials of $k[\square ]$ . This gives rise to an algebraic
homomorphism $\phi$ : $(k^{*})^{n}\rightarrow D_{k}(\square )$ . By reasons of connectivity, $\phi((k^{*})^{n})$

is contained in $\ulcorner F_{k}(\Pi)$ . Now (a) becomes obvious.
Assume there is a torus $T$ $\subset\Gamma_{k}(\square )$ that contains $\ulcorner F_{k}(\square )$ . Then

$\alpha^{-1}o\beta o\alpha(x)=\beta(x)$ for all $\alpha\in\ulcorner F_{k}(\square )$ , $\beta\in T$ and $x\in k[\square ]$ . By running
$\alpha$ through $T_{k}(\square )$ and $x$ through the monomials of $k[\square ]$ , and using (a),
we conclude that $\beta$ must map monomials to terms, i.e. $\beta\in D_{k}(\square ))\triangleleft\Sigma(\square )$

by 3.4. But, since $k$ is infinite, there is no torus in $D_{k}(\Pi)\rangle\triangleleft\Sigma(\Pi)$ strictly
containing the unity component $\ulcorner F_{k}(\square )$ . Hence $T$ $=\ulcorner F_{k}(\square )$ . Q.E.D.

\S 4. Column structures and elementary automorphisms

We recall from [BG] that a non-zero element $v\in \mathbb{Z}^{n}$ is called a
column vector for a lattice polytope $P\subset \mathbb{R}^{n}$ if there exists a facet $F\prec P$

such that $x+v\in P$ for every lattice point $x\in P\backslash F[BG]$ . The pair
$(P, v)$ is a column structure and the facet $F$ its base facet. We use the
notation $P_{v}$ for $F$ . Figure 3 illustrates this notion.

$\Pi_{1}$

FIGURE 3.

Let $(P, v)$ be a column structure. Then for any $x\in S_{P}$ there is a uniquely
determined non-negative integer $ht_{v}(x)$ such that $x+ht_{v}(x)v\in S_{P}$ and
$x+(ht_{v}(x)+1)v\not\in S_{P}$ [$BG$ , Lemma 2.2]. Clearly, if $C(P)$ denotes the
cone in $\mathbb{R}^{n+1}$ spanned by $S_{P}$ and $C(P_{v})$ is its facet corresponding to the
facet $P_{v}\prec P$ then $x+htv(x)v\in C(P)$
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Let $k$ be a field. The element $v\in \mathbb{Z}^{n}$ can be thought of as an element
of the quotient field Q. F. $(k[S_{P}])$ after the identification of $\mathbb{Z}^{n}$ with $\mathbb{Z}^{n}\oplus 0$

$(\subset \mathbb{Z}^{n+1})$ . Choose $\lambda\in k$ . Then the semigroup homomorphism

$S_{P}\rightarrow Q.F.(k[S_{P}])$ , $x\mapsto(1+\lambda v)^{ht_{v}(x)}x$ ,

gives rise to a $k$-algebra homomorphism $ k[S_{P}]\rightarrow$ Q. F. $(k[S_{P}])$ . This
homomorphism is actually a graded automorphism of $k[Sp][BG$ , Section
3]. We denote it by $e_{v}^{\lambda}$ and call it an elementary automorphism of $k[S_{P}]$ .

If $P$ is a unimodular lattice $n$-simplex, then $\Gamma_{k}(P)$ is just $GL_{n+1}(k)$ and
the $e_{v}^{\lambda}$ are exactly the standard elementary matrices [BG, Section 3];
this explains our terminology.

Now we extend these notions to lattice polyhedral complexes $\Pi$ . For
$x\in L(\square )$ we let Supp(x) denote the set off all facets of $\Pi$ that contain
$x-$ the set of supporting facets.

Consider the set of all column structures $(P, v)$ , $ P\prec\Pi$ , satisfying
the condition

$(\neq_{1})$ Supp(x+v)\subset Supp(x)

for every lattice point $x\in P\backslash P_{v}$ . Here the sum $x+v$ is understood
’locally’, i.e. with respect to the column structure $(P, v)$ .

We have the following relation on this set of column structures:
$(P, v)\sim(Q, w)$ if $Q\prec P$ and $w=v$ on $Q$ . Consider the equivalence
relation spanned $by\sim$ . Among the corresponding equivalence classes
$[P, v]$ there are distinguished ones, namely those satisfying the condition:

$(\neq_{2})$ If $(Q, w)\in[P, v]$ and $ R\prec\Pi$ is a face such that $(Q, w)$ restricts
to a column structure on $Q\cap R$ , then there is a column struc-
ture $(R, u)$ satisfying $(\neq_{1})$ and restricting to the same column
structure on $Q\cap R$ .

Observe that $(\neq_{2})$ is equivalent to the condition:

$(\neq_{2}\prime)[P, v]$ induces (i.e. contains) a column structure on at least one
facet and if $(Q, w)\in[P, v]$ is a column structure for some facet
$ Q\prec\Pi$ and $ R\prec\Pi$ is another facet such that $(Q, w)$ restricts to a
column structure on $Q\cap R$ then there is a column structure $(R, u)$

satisfying $(\neq_{1})$ and restricting to the same column structure on
$Q\cap R$ .

A column vector for $\Pi$ is defined as such a distinguished equivalence
class. For a column vector $V$ the pair $(\square , V)$ will be called a column
structure (on $\square $).

We let Col(II) denote the set of column structures on $\Pi$ .

Example 4.1. The Figures 4 and 5 show several polyhedral com-
plexes and their column structures.
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$\Pi_{2}$ $\Pi_{3}$
$\Pi_{4}$

FIGURE 4.

$\Pi_{5}$ $\Pi_{6}$

$\Pi_{7}$

FIGURE 5.

$\circ\Pi_{2}$ and $\Pi_{3}$ have two 2-dimensional facets, $\#Co1(\Pi_{2})=4$ and
$\#Co1(\Pi_{3})=3$ ,

$\circ\Pi_{4}$ is the boundary of the unit lattice cube, $\#Co1(\Pi_{4})=0$ ,
$o\Pi_{5}$ has five 2-dimensional facets four of which are unit squares and
the fifth is a lattice square with a lattice point in its barycenter,
$\#Co1(\Pi_{5})=0$ ,

$o\Pi_{6}$ has five unit squares as facets, as shown in the picture,
$\#Co1(\Pi_{6})=1$ ,

$\blacksquare\Pi_{7}$ is a M\"obius strip consisting of 3 unit squares, $\#Co1(\Pi_{7})=1$ ,
and the only column structure on $\Pi_{7}$ includes 2 ’opposite’ column
structures on 3 edges.

Next we introduce the notion of an oriented polyhedral complex. This
includes the class of quasi-Euclidean polyhedral complexes.

Definition 4.2. A lattice polyhedral complex $\Pi$ is called oriented
if $(P, v)\in V$ and $(P, w)\in V$ imply $v=w$ for any column structure
$(\square , V)$ .

Lemma 4.3. Every quasi-Euclidean lattice polyhedral complex is
oriented, but not conversely.
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Proof. Assume $\Pi$ is a quasi-Euclidean complex realized by a poly-
hedral complex of rational polytopes in $\mathbb{R}^{n}$ , $n\in \mathbb{N}$ . Let $(\square , V)$ be a
column structure and $(P, v)$ , $(P, w)\in V$ . Then there is a finite sequence
of column structures

$(P, v)=(P_{0}, v_{0})$ , $(P_{1}, v_{1})$ , $\ldots$ , $(P_{s}, v_{s})=(P, w)$ ,

where the $P_{i}$ are faces of $\Pi$ such that for each $i\in[1, s-1]$ either $P_{i}$ is
a face of $P_{i+1}$ and $v_{i}=v_{i+1}$ on $P_{i}$ or $P_{\dot{x}+1}$ is a face of $P_{i}$ and $v_{i}=v_{i+1}$

on $P_{i+1}$ . In particular, the $v_{i}$ define the same vector in $\mathbb{R}^{n}$ . Hence all
quasi-Euclidean lattice polyhedral complexes are oriented.

An example of an oriented, but not quasi-Euclidean lattice polyhe-
dral complex is provided by $\Pi_{5}$ above. In fact, easy geometric argu-
ments show that if it were quasi-Euclidean, then the two adjacent edges
of the square with barycenter would have to coincide. (One just uses
that any affine realization of a unit lattice square must be a parallelo-
gram.) Q.E.D.

Let $k$ be a field, $\Pi$ an oriented lattice polyhedral complex and $V$ its
column vector. For any element $\lambda\in k$ we define the map

$e_{V}^{\lambda}$ : $L(\Pi)\rightarrow k[\square ]$

as follows. For $x\in L(\Pi)$ there are two possibilities: either there is a
column structure $(P, v)$ such that $x$ $\in L(P)$ , $ P\prec\Pi$ and $V=[P, v]$ , or
such a column structure does not exist. In the first case we put

$e_{V}^{\lambda}(x)=e_{v}^{\lambda}(x)$ ,

where $e_{v}^{\lambda}$ is the corresponding elementary automorphism of $ k[S_{P}](\subset$

$k[\Pi])$ , and in the second case $x$ is mapped to itself. It follows from the
definitions of a column vector and an oriented complex that this map
is well defined. We claim that it gives rise to a (uniquely determined)
graded $k$-algebra homomorphism of $k[\square ]$ . One only needs to check the
following implication

$\forall x_{1}$ , $\ldots$ , $x_{s}\in L(\Pi)$ $x_{1}\cdots x_{S}=0\Rightarrow e_{V}^{\lambda}(x_{1})\cdots e_{V}^{\lambda}(x_{s})=0$ ;

in fact, $e_{V}(\lambda)$ respects the binomial relations since it restricts to an
automorphism on $k[S_{P}]$ for each $ P\prec\Pi$ . Straightforward arguments
show that condition $(\neq_{1})$ together with

$s$

$\bigcap_{1}Supp(x_{i})=\emptyset$
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implies that none of the monomials in the canonical $k$-linear expansion
of $e_{V}^{\lambda}(x_{i})$ shares a supporting facet with those in the $k$-linear expansion

of $e_{V}^{\lambda}(x_{j})$ for $i\neq j$ . This means that $e_{V}^{\lambda}(x_{1})\cdots e_{V}^{\lambda}(x_{s})=0$ , as claimed.
Next we define a pairing

$D_{k}(\Pi)\times Co1(\Pi)\rightarrow k^{*}$ , $(\delta, V)\mapsto\delta(V)$ ,

for an oriented polyhedral complex $\Pi$ . Choose $\delta\in D_{k}(\Pi)$ , $ V=[P, v]\in$

Col(II), and a face $ P\prec\Pi$ . Then $\delta$ restricts to a toric automorphism

of $k[S_{P}]$ . The latter extends to a toric automorphism of $k[gp(S_{P})]$ . In
particular, the image of $v\in gp(S_{P})$ under this automorphism equals $a_{v}v$

for some $a_{v}\in k^{*}$ . We set $\delta(V)=a_{v}$ . It is easily checked that this is a
well defined mapping. Moreover, we have the equality $(a\cdot\delta)(v)=a(\delta(v))$

for $\delta$ and $v$ as above and $a\in k^{*}(\subset D_{k}(\square ))$ .

Lemma 4.4. Let $(\square , V)$ be a column structure, where $\Pi$ is an

oriented lattice polyhedral complex. Then

(a) $e_{V}^{\lambda}\in\Gamma_{k}(\Pi)$ , and the assignment $\lambda\mapsto e_{V}^{\lambda}$ defifines an embedding

of algebraic groups $A_{k}^{1}\rightarrow\Gamma_{k}(\square )$ ;
(b) the equation

$\delta oe_{V}^{\lambda}o\delta^{-1}=e_{V}^{\delta(V)\lambda}$

holds for all $\delta\in D_{k}(\square )$ and all elementary automorphism $e_{V}^{\lambda}$ of
$k[\square ]$ .

Proof, (a) follows from the analogous fact for a single polytope
[$BG$ , Lemma 3.1] and (b) is immediate from direct calculation. Q.E.D.

Let $E_{k}(\Pi)$ denote the subgroup of $\Gamma_{k}(\Pi)$ , generated by the elemen-
tary automorphisms. By Lemma 4.4(a) $E_{k}(\square )$ is a connected subgroup
of $\Gamma_{k}(\square )$ (see Borel [Bo, Proposition 2.2]). Therefore, we arrive at the
following

Lemma 4.5. $E_{k}(\Pi)$ is a connected affiffiffine $k$ -subgroup of the con-
nected component of unity $\Gamma_{k}(\square )^{0}\subset\Gamma_{k}(\Pi)$ .

Remark 4.6. One can define the notion of a column structure
for a rational polyhedral complex $\Pi_{rat}$ and the appropriate notion of
an elementary automorphism for algebras of type $k[\Pi_{rat}]$ in a natural
way (along the lines of the definition for a single polytope [$BG$ , Remark
3.3(c) $])$ . One just has to work with monomials of arbitrary degrees.
Then all the facts we have observed for lattice polyhedral complexes
remain true in this situation as well. The details are left to the reader.

Remark 4.7. One could introduce the notion of commutative lat-
tice polyhedral complexes which are more general than the oriented ones
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and for which one can still define the notion of an elementary automor-
phism so that the exact analogue of Lemma 4.4(a) is valid. (But we
are not able to prove the analogue of Theorem 5.2 below for them.)
Namely, a lattice polyhedral complex $\Pi$ is called $k$ commutative ( $k$ a
field) if for every column structure $(\square , V)$ and every face $ P\prec\Pi$ the
following implication holds:

$\forall\lambda$ , $\mu\in k$ $((P, v)$ , $(P, w)\in V)\Rightarrow$ ( $e_{v}^{\lambda}$ and $e_{w}^{\mu}$ commute).

If $\Pi$ is $k$-commutative for all fields, then it is called commutative.
We do not know whether $k$-commutative complexes are always com-

mutative.
Observe that the complex $\Pi_{6}$ of Example 4.1 is commutative (easy)

and its only column structure includes 2 column structures on one of the
facets. In particular, $\Pi_{6}$ is not oriented. On the other hand the complex
$\Pi_{7}$ , Example 4.1, is apparently not a $k$-commutative lattice polyhedral
complex for any field $k$ : looking at the edges on which the only global
column structure on $\Pi_{7}$ induces two ’opposite’ column structures we
get non-commutativity since $e_{12}^{1}e_{21}^{1}\neq e_{21}^{1}e_{12}^{1}$ , where $e_{12}^{1}$ and $e_{21}^{1}$ are the
standard elementary matrices in $GL_{2}(k)$ .

\S 5. The main result: affine case

Before we state the first main result let us single out the following
class of polytopes.

Definition 5.1. A polytope $P$ is facet-separated if for every facet
$F\prec P$ there is a facet $G\prec P$ such that $ F\cap G=\emptyset$ .

Typical representatives of non-facet-separated polytopes are pyra-
mids-the polytopes whose vertices all but one live in some affine proper
subspace of the ambient Euclidean space. However, starting from dimen-
sion 4, facet-separated polytopes and pyramids do not exhaust the class
of all polytopes.

Theorem 5.2. Let $k$ be $a$ fifield and $\Pi$ be a lattice polyhedral com-
plex.

(a) If $\Pi$ is oriented and char(/c) $=0$ , then the unity component
$\Gamma_{k}(\Pi)^{0}\subset\Gamma_{k}(\Pi)$ consists precisely of those elements $\gamma\in\Gamma_{k}(\square )$

which admit a representation of type $\gamma=\in\circ\tau$ for $some\in\in E_{k}(\square )$

and $\tau\in\ulcorner F_{k}(\square )$ ; we have $dim\Gamma_{k}(\square )=\#Col(\square )+rank(\Lambda(\square ))$ .

(b) If $\Pi$ is quasi-Euclidean and char(fc) $=0$ , then every element $\gamma\in$

$\Gamma_{k}(\square )$ admits a representation of type $\gamma=\in\circ\delta\circ\sigma$ for some
$\in\in E(\square )$ , $\delta\in D_{k}(\Pi)$ and $\sigma\in\Sigma(\Pi)$ ; furthermore $rF_{k}(\square )$ is $a$

maximal torus of $\Gamma_{k}(\square )$ .
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(c) If all facets of $\Pi$ are facet-separated polytopes then the exact
analogues of (a) and (b) hold for any infifinite fifield $k$ ; moreover,

for any $enumerat\dot{0}on$ Col(II) $=\{V_{1}, \ldots, V_{s}\}$ and every element
$\gamma\in\Gamma_{k}(\square )^{0}$ (under the hypothesis of (a)) and $\gamma\in\Gamma_{k}(\square )$ (under
the hypothesis of (b) $)$ there is a representation

$\gamma=e_{V_{1}}^{\lambda_{1}}\circ\cdots\circ e_{V_{s}}^{\lambda_{s}}\circ\delta\circ\sigma$ ,

where $\lambda_{1}$ , $\ldots$ , $\lambda_{s}\in k$ , $\delta\in D_{k}(\Pi)$ and $\sigma\in\Sigma(\square )$ .

Remark 5.3. The proof we present below yields the same result
for algebras of type $k[\Pi_{rat}]$ where $\Pi_{rat}$ is a rational polyhedral complex
of the appropriate type (see Remark 4.6).

We need some preparation. Throughout this section $k$ is a field and
$\Pi$ is an oriented lattice polyhedral complex.

A convention: for an element $z\in k[\square ]$ let Supp(z) denote the set of
the facets $ P\prec\Pi$ such that $S_{P}$ contains a monomial appearing in the
canonical $k$-linear expansion of $z$ . (This notation is compatible with the
previous one for lattice points).

For any face $ P\in\Pi$ the canonical split epimorphism

$k[\square ]\rightarrow k[S_{P}]$ , $x\mapsto 0$ for $x\in L(\square )\backslash L(P)$ ,

will be denoted by $\pi_{P}$ . Thus $\pi_{P}$ is split by the inclusion $\iota_{P}$ : $ k[S_{P}]\rightarrow$

$k[\square ]$ . Note that

$(\uparrow)$ Supp(z)= $\{P|\pi_{P}(z)\neq 0\}$ .

Lemma 5.4. { $Ker(\pi_{P})|P\prec\Pi$ a facet} is the set of minimal
prime ideals of $k[\square ]$ .

The proof is straightforward.

Lemma 5.5. Let $\gamma\in\Gamma_{k}(\square )$ . Then there is a permutation of the
set of facets $ P\in\Pi$ , say $\rho_{\gamma}$ , such that $\gamma(Ker(\pi_{P}))=Ker(\pi_{\rho_{\gamma}(P)})$ for all

facets $P$ of $\Pi$ . The assignment $\gamma\mapsto\rho_{\gamma}$ defifines a group homomorphism

from $\Gamma_{k}(\square )$ to the permutation group of the set of facets of $\Pi$ . Its kernel
is a closed subgroup of $\Gamma_{k}(\Pi)$ containing $\Gamma_{k}(\Pi)^{0}$ .

Proof The first and second assertion follow immediately from
Lemma 5.4, and that the kernel of the assignment $\gamma\mapsto\rho_{\gamma}$ is a closed
subgroup eventually boils down to the statement that the stabilizer of a
vector subspace is a closed subgroup of a linear algebraic group acting
algebraically on a finite-dimensional vector space. Q.E.D.
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Since $\gamma$ maps $Ker(\pi_{P})$ onto $Ker(\pi_{\gamma_{\rho}(P)})$ , it induces a (unique) iso-

morphism $\gamma_{P}$ fitting into the commutative diagram

$k[\square ]$
$\rightarrow\gamma$

$k[\square ]$

$\pi_{P}\downarrow$ $\downarrow\pi_{\rho_{\gamma}(P)}$

$k[S_{P}]\vec{\gamma_{P}}k[S_{\rho_{\gamma}(P)}]$ .

One obviously has $\gamma_{P}=\pi_{\rho_{\gamma}(P)}\circ\gamma\circ\iota_{P}$ .

More generally, let $P_{1}$ , $\ldots$ , $ P_{s}\prec\Pi$ be facets and $Q=P_{1}\cap\cdots\cap P_{s}$ .

We set
$\rho_{\gamma}(Q)=\rho_{\gamma}(P_{1})\cap\cdots\cap\rho_{\gamma}(P_{s})$ .

As above, $\gamma$ induces an isomorphism $\gamma_{Q}$ fitting into the same commu-
tative diagram as above where we only replace $P$ by $Q$ ; furthermore
$\gamma_{Q}=\pi_{Q}o\gamma o\iota_{Q}$ .

Lemma 5.6. Suppose $\gamma_{P}$ maps monomials to terms for every facet
$ P\prec\Pi$ . Then $\gamma$ does so as well.

Proof Let $z$ be a monomial, Supp(z) $=\{P_{1}, \ldots, P_{s}\}$ , and $Q=$
$P_{1}\cap\cdots\cap P_{s}$ . Then $z\in k[S_{Q}]$ , and therefore $\pi_{Q}(z)\neq 0$ . It follows that
$\pi_{\rho_{\gamma}(Q)}(\gamma(z))\neq 0$ as well. Therefore the canonical $k$-linear expansion of
$\gamma(z)$ must contain a monomial $x$ with Supp(x) $=\{\rho_{\gamma}(P_{1}), \ldots, \rho_{\gamma}(P_{s})\}$ .

By equation $(\dagger)$ above we likewise have Supp(7(z)) $=\{\rho_{\gamma}(P_{1})$ , $\ldots$ ,
$\rho_{\gamma}(P_{s})\}$ . Now the hypothesis implies that $x$ is the only monomial ap-
pearing in the $k$-linear expansion of $\gamma(z)$ . Q.E.D.

We also need several facts from [$BG$ , Lemma 4.1, 4.2, 4.3 and Theo-
rem 3.2(b) $]$ . For the reader’s convenience we collect them in the following
proposition.

Let $P$ be a lattice polytope. As usual, $\overline{S}_{P}$ stands for the normaliza-
tion of the semigroup $S_{P}$ , i.e. $\overline{S}_{P}=\{x$ $\in gp(S_{P})|cx\in S_{P}$ for some $ c\in$

$\mathbb{N}\}$ . Then $k[\overline{S}_{P}]$ is a Noetherian normal domain. For any facet $F\prec P$

one has the monomial height 1 prime ideal

$Div(F)\subset k[\overline{S}_{P}]$

generated by the monomials of $k[\overline{S}_{P}]$ that do not belong to the facet of
the cone $C(\overline{S}_{P})$ corresponding to $F$ .

One more observation: since any graded automorphism of $k[S_{P}]$

extends to a unique graded automorphism and $k[S_{P}]$ and $k[\overline{S}_{P}]$ coincide
in degree 1, the two rings $k[S_{P}]$ and $k[\overline{S}_{P}]$ have the same group $\Gamma_{k}(P)$

of graded automorphisms.
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Proposition 5.7. (a) An automorphism $\gamma\in\Gamma_{k}(P)$ inducing
a permutation of the set { $Div(F)|F\prec P$ a facet} maps mono-
mials to terms.

(b) Let $v_{1}$ , $\ldots$ , $v_{s}$ be column vectors of $P$ with the common base facet
$F=P_{v_{i}}$ , $\lambda_{1}$ , $\ldots$ , $\lambda_{s}\in k$ , and $G\neq F$ another facet. Then

$ e_{v_{1}}^{\lambda_{1}}o\cdots$ $oe_{v_{s}}^{\lambda_{s}}(Div(F))=(1+\lambda_{1}v_{1}+\cdots+\lambda_{s}v_{s})Div(F)$ ,

$e_{v_{1}}^{\lambda_{1}}o\cdots oe_{v_{s}}^{\lambda_{s}}(Div(G))=Div(G)$ .

(c) Let $F\prec P$ be a facet, $\lambda_{1}$ , $\ldots$ , $\lambda_{s}\in k\backslash \{0\}$ and $v_{1}$ , $\ldots$ , $ v_{s}\in$

$gp(S_{P})(\subset Q. F.(k[\overline{S}_{P}]))$ be pairwise different nonconstant Lau-
rent monomials of degree 0. Suppose $(\lambda_{1}v_{1}+\cdots+\lambda_{s}v_{s})Div(F)\subset$

$k[\overline{S}_{P}]$ . Then $v_{1}$ , $\ldots$ , $v_{s}$ are column vectors for $P$ with the com-
mon base facet $F$ .

(d) The connected component of unity $\Gamma_{k}(P)^{0}\subset\Gamma_{k}(P)$ consists of
those graded automorphisms of $k[S_{P}]$ which induce (by extension
to $k[\overline{S}_{P}])$ the identity map on the divisor class group $C1(k[\overline{S}_{P}])$ .

We will also need the following facts.

Lemma 5.8. Let $M$ $\subset \mathbb{Z}^{m}$ be $a$ fifinite system of Laurent mono-
mials of $k[\mathbb{Z}^{m}]$ ( $k$ is $a$ fifield and $m\in \mathbb{N}$ ) and $f$ , $g\in k[\mathbb{Z}^{m}]$ . Assume the
$k$ -subspaces of $k[\mathbb{Z}^{m}]$ generated by $\{xf|x\in M\}$ and $\{xg |x\in M\}$

coincide. Then $f=ag$ for some $a\in k^{*}$ .

Proof. The case $\#(M)=1$ is trivial, and for the general case we
use induction as follows. There is a $\mathbb{Z}$-linear form $\phi$ such that $\phi$ attains
its maximal value on each of the following polytopes in a single point:
the Newton polytopes $N(f)$ , $N(g)$ and the convex hull $P(M)$ of $M$ ; in

$P(M)$ let $\phi(z)$ be the maximum. Then $z$ is a vertex of
$P(M),henceQED$

$z\in M$ , and we can pass to $M\backslash \{z\}$ .

Lemma 5.9. Let $G$ be an algebraic $\mathbb{C}$ group and $X\subset G$ be $a$

Zariski closed subset with $dimX<dim$ G. Then there is an element
$g\in G$ such that none of the powers of $g$ is in $X$ .

Proof. Passing to $G^{0}$ we may assume that $G$ is connected and
therefore irreducible. For any natural number $c$ the algebraic mapping
$pow_{c}$ : $G\rightarrow G$ , $g\mapsto g^{c}$ , is not globally degenerate since it is not de-
generate in a small neighborhood of $1\in G$ (the differential at 1 is the
multiplication by $c$ on the tangent space). In particular, $pow_{c}^{-1}(X)\subset G$

is a Zariski closed subset of dimension strictly less then $dim$ G. (Oth-

erwise we would have $pow_{c}^{-1}(X)=G$ , and $pow_{c}$ would be degenerate
everywhere.) Therefore, $\bigcup_{1}^{\infty}pow_{c}^{-1}(X)\subset G$ is a proper subset. Q.E.D.
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Proof of Theorem 5.2(a). Choose $\gamma\in\Gamma_{k}(\square )^{0}$ . By Lemma 5.5 $\rho_{\gamma}=$

$1_{facet}$ . As seen above, $\gamma$ induces a graded $k$-automorphisms $\gamma_{P}$ : $ k[S_{P}]\rightarrow$

$k[S_{P}]$ for each facet $ P\prec\Pi$ . More generally, for a finite system of facets
$P_{1}$ , $\ldots$ , $ P_{s}\prec\Pi$ there is a graded automorphism $\gamma_{Q}$ : $k[S_{Q}]\rightarrow k[S_{Q}]$ ,
$Q=P_{1}\cap\cdots\cap P_{s}$ induced by $\gamma$ . We let $\overline{\gamma}_{Q}$ denote the unique automorphic
extension of $\gamma_{Q}$ to $k[\overline{S}_{Q}]$ . Clearly, the assignment $\gamma\mapsto\gamma_{Q}$ defines an
algebraic group homomorphism $\Gamma_{k}(\Pi)\rightarrow\Gamma_{k}(Q)$ . In particular, if $\gamma\in$

$\Gamma_{k}(\square )^{0}$ then, by Proposition 5.7(d), the automorphism $\overline{\gamma}_{Q}$ induces the
identity map on $C1(k[\overline{S}_{Q}])$ .

For a pair of faces $ P_{1}\prec P_{2}\prec\Pi$

$\pi_{P_{2}P_{1}}$ : $k[S_{P_{2}}]\rightarrow k[S_{P_{1}}]$ , $L(P_{2})\backslash L(P_{1})\rightarrow 0$ , $x\mapsto x$ for $x$ $\in L(P_{1})$

will denote the ’face’ projection. Further, we let $\overline{S}_{P_{2}P_{1}}$ denote the sub-
semigroup of $\overline{S}_{P_{2}}$ that corresponds to the face $P_{1}\prec P_{2}$ and let $\overline{\pi}_{P_{2}P_{1}}$

denote the corresponding face projection from $k[\overline{S}_{P_{2}}]$ to $k[\overline{S}_{P_{2}P_{1}}]$ . In
particular, $\pi_{P_{2}P_{1}}$ and $\overline{\pi}_{P_{2}P_{1}}$ coincide on $L(P_{2})$ . By Proposition 2.5(c)
the inclusion $\overline{S}_{P_{1}}\subset\overline{S}_{P_{2}P_{1}}$ may be strict.

Step 1. Let $P$ be a face of $\Pi$ , $F$ facet of $P$ and $\gamma\in\Gamma_{k}(\square )^{0}$ . By Lemma
5.7(d) $\overline{\gamma}_{P}$ leaves the class of $Div(F)\subset k[\overline{S}_{P}]$ invariant, i.e.

(1) $\overline{\gamma}_{P}(Div(F))=dDiv(F)$

for some $d\in Q$ . $F.(k[\overline{S}_{P}])$ . Since $\overline{\gamma}_{P}$ is a graded automorphism, $d$ must
be a homogeneous element of degree 0. Moreover, since $Div(F)$ is a
monomial ideal, $d$ is a sum of degree 0 Laurent terms of Q. $F.(k[\overline{S}_{P}])$ .
Say $d=a_{1}\mu_{1}+\cdots+a_{s}\mu_{s}$ , where $a_{1}$ , $\ldots$ , $a_{s}\in k^{*}$ and $\mu_{1}$ , $\ldots$ , $\mu_{s}$ are
pairwise different degree 0 Laurent monomials of $gp(Sp)$ . Assume that
$\mu_{i}\neq 1$ . Then by Proposition 5.7(c) $(P, \mu_{i})$ is a column structure.

We claim that $(P, \mu_{i})$ gives rise to a column vector for $\Pi$ .

First we must show that if $\mu_{i}$ is a column vector for some face $Q\prec P$

and there is a face $ R\prec\Pi$ containing $Q$ , then there is a column structure
on $R$ restricting to the same column structure on $Q$ . By enlarging $Q$ to
the intersection $P\cap R$ we may assume without loss of generality that
$Q=P\cap R$ .

We have a column structure $(Q, \mu_{i})$ with the base facet $Q_{\mu_{i}}$ (of $Q$ ).
There clearly exists a facet $G\prec R$ such that $G\cap Q=Q_{\mu i}$ . Fix any such
a facet $G$ (below it will become clear that $G$ is unique) and consider the
height 1 prime ideal $Div(G)\subset k[\overline{S}_{R}]$ . (Figure 6 illustrates the relation
between $P$ , $Q$ , $Q_{\mu_{i}}$ , $R$ , $F$ , and $G.$ ) By the same reasons as for $P$ one
has

(2) $\overline{\gamma}_{R}(Div(G))=(b_{1}\iota/_{1}+\cdots+b_{t}lJ_{t})Div(G)$
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FIGURE 6.

for uniquely determined pairwise different degree 0 Laurent monomials
$\iota/_{1}$ , $\ldots$ , $l\nearrow t\in gp(S_{Q})$ and $b_{1}$ , $\ldots$ , $b_{t}\in k^{*}$ . We have the following set-
theoretical inclusions:

$Div(Q_{\mu_{i}})\subset\overline{\pi}_{PQ}(Div(F))$ and $Div(Q_{\mu_{i}})\subset\overline{\pi}_{RQ}(Div(G))$ ,

where $Div(Q_{\mu_{i}})$ is the corresponding height 1 prime ideal of $k[\overline{S}_{Q}]$ .

We also know that there is a representation

(3) $\overline{\gamma}_{Q}(Div(Q_{\mu_{i}}))=(c_{1}\kappa_{1}+\cdots+c_{r}\kappa_{r})Div(Q_{\mu_{i}})$ ,

where $\kappa_{1}$ , $\ldots$ , $\kappa_{r}$ are pairwise different degree 0 Laurent monomials from
$gp(S_{Q})$ and $c_{1}$ , $\ldots$ , $c_{r}\in k^{*}$ .

By the construction of $\gamma_{Q}$ and $\gamma_{P}$ we have

$\pi_{PQ}\circ\gamma_{P}=\gamma_{Q}$ and $\pi_{RQ}\circ\gamma_{R}=\gamma_{R}$ .

It is clear that $S_{P}$ coincides with $\overline{S}_{P}$ in degree 1, and similarly this holds
for $S_{R}$ and $S_{Q}$ . Hence the equalities (1), (2) and (3) imply

$\overline{\pi}_{PQ}o\overline{\gamma}_{P}(Div(F)_{1})=(\sum_{j}a_{i_{j}}\mu_{i_{j}})\pi_{PQ}(Div(F)_{1})$

$=(c_{1}\kappa_{1}+\cdots+c_{r}\kappa_{r})Div(Q_{\mu i})_{1}$

$\overline{\pi}_{RQ}\circ\overline{\gamma}_{R}(Div(G)_{1})=(\sum_{l}b_{k_{1}k_{l}}\iota/)\pi_{RQ}(Div(G)_{1})$

$=(c_{1}\kappa_{1}+\cdots+c_{r}\kappa_{r})Div(Q_{\mu_{i}})_{1}$ ,

where $Div(-)_{1}$ refers to the corresponding degree 1 homogeneous com-
ponent, and the summations are considered for

$\mu_{i_{j}}\in gp(S_{Q})\cap\{\mu_{1}, \ldots, \mu_{s}\}$ and $l/_{k_{l}}\in gp(S_{Q})\cap\{I/_{1}, \ldots, lJ_{t}\}$ ;

of course, the first intersection is taken in $gp(S_{P})(\supset gp(S_{Q}))$ and the
second one in $gp(S_{R})(\supset gp(S_{Q}))$ . By Lemma 5.8 we see that in the



24 W. Bruns and J. Gubeladze

representation $\overline{\gamma}_{Q}(Div(G))=(b_{1}\iota/_{1}+\cdots+b_{t}lJ_{t})Div(G)$ one of the $l/_{k}$ is
$\mu_{i}$ .

Next we show that each $\mu_{i}$ satisfies the condition

Supp $(x\mu_{i})\subset Supp(x)$

for every $x\in L(P)\backslash L(F)$ . Assume to the contrary that there are a
point $x\in L(P)\backslash L(F)$ and a facet $T$ $\prec\Pi$ such that $\mu_{i}x\in T$ and $x\not\in T$ .

We have
$z=x(a_{1}\mu_{1}+\cdots+a_{s}\mu_{s})\in\overline{\gamma}_{P}(Div(F))$ .

Since $k[\overline{S}_{P}]$ and $k[S_{P}]$ have the same degree 1 components, $ z\in Div(F)\cap$

$k[S_{P}]$ ; by assumption $T$ $\in$ Supp(7(z)). Let I be the annihilator of
$Ker(\pi_{T})$ ; then I is spanned by the monomials $\mu\in S_{T}$ that do not belong
to $S_{R}$ for any other facet $ R\prec\Pi$ . We have $\gamma(z)\cdot I$ $\neq 0$ . On the other
hand, $z\cdot I$ $=0$ . Thus we get the desired contradiction, because $\gamma(I)=I$ ,

as follows from $\gamma(Ker(\pi_{T}))=Ker(\pi_{T})$ .

Finally, assume $(P, \mu_{i})$ restricts to a column structure on $P\cap R$ for
some $ R\prec\Pi$ . Then we know already that there is a column structure
$(R, \iota/)$ restricting to the same column structure on $P\cap R$ . But what we
have shown is more. Namely,

(4) the column vector $\iota/$ for the face $ R\prec\Pi$ is derived from $\gamma$ exactly
in the same way as $\mu_{i}$ for $P$ .

Thus the above arguments apply to the column structure $(R, \iota/)$ as well,
yielding condition $(\neq_{1})$ for it.

Step 2. We fix an enumeration of the facets of $\Pi$ , say $P_{1}$ , $P_{2}$ , $\ldots$ . For
each facet $ P_{p}\prec\Pi$ we also fix an enumeration of the facets of $P_{p}$ , say
$F_{p1}$ , $F_{p2}$ , $\ldots$ . Consider a total ordering of the pairs $(p, q)$ . Then for each
$(p, q)$ the subgroup

$\Gamma_{pq}=$ { $\gamma\in\Gamma_{k}(\square )|\overline{\gamma}_{P_{r}}(Div(F_{rs}))=Div(F_{rs})$ for all $(r,$ $s)\leq(p$ , $q)$ }
$\subset\Gamma_{k}(\square )$

is (Zariski) closed. In fact, it is the intersection of the stabilizers of
finitely many vector subspaces. By Lemma 5.6 and Proposition 5.7(a)
we have the equality

$D_{k}(\square )=\Gamma_{pq_{\max}}$

where $(p, q)_{\max}$ is the maximal pair. Now we enlarge the set of pairs
$(p, q)$ by one element $(0, 0)$ , declare it as the smallest element of the new
system and set $\Gamma_{00}=\Gamma_{k}(\square )$ . We then have the sequence of affine groups

$(*)$ $D_{k}(\Pi)=\Gamma_{pq_{\max}}\subset\ldots\subset\Gamma_{pq}\subset\ldots\subset\Gamma_{rs}\subset\ldots\subset\Gamma_{00}=\Gamma_{k}(\Pi)$
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for $(p, q)>(r, s)$ .

Claim. If $(p, q)>(r, s)$ are consecutive pairs and $\gamma\in\Gamma_{rs}$ , then
$Eo\gamma c\in\Gamma_{pq}$ for some natural number $c$ and some element $E\in E_{k}(\Pi)$ .

Without loss of generality we can assume (by passing to some power)
that $\gamma\in\Gamma_{k}(\square )^{0}$ .

Recall that we have identified $\Gamma_{k}(P)$ with the corresponding closed
subgroup of $GL_{N}(k)$ , $N=\#L(P)-1$ (see Section 1). There is a finitely
generated subring $\Lambda\subset k$ such that $\gamma$ , $\gamma^{-1}\in GL_{N}(\Lambda)$ . Let $k_{0}$ denote any
residue field of $\Lambda$ . Thus $k_{0}$ is a finite field. Let $\gamma_{0}$ denote the reduction
of $\gamma$ in $GL_{N}(k_{0})$ , a finite group. So there exists a natural number $c$

such that $(\gamma_{0})^{c}$ is the identity map of $k_{0}[\Pi]$ , i.e. the identity matrix of
$GL_{N}(k_{0})$ . We will show that $c$ is the desired number.

First we want to show that if $ P\prec\Pi$ is any facet and $F\prec P$ is a
facet of $P$ , then

$(\overline{\gamma}_{P})^{c}(Div(F))=(1+a_{1}m_{1}+\cdots+a_{n}m_{n})Div(F)$

for some degree zero non-constant monomials $m_{1}$ , $\ldots$ , $m_{n}\in gp(S_{P})$ and
$a_{1}$ , $\ldots$ , $a_{n}\in k^{*}$ . (We do not exclude the case $n=0.$ )

All we need for this assertion is that $((\gamma_{0})_{P})^{c}$ is the identity map of
$k_{0}[P]$ and

$(\overline{\gamma}_{P})^{c}(Div(F))=(\mu_{1}+\cdots+\mu_{n})Div(F)$

for some degree zero Laurent terms $\mu_{1}$ , $\ldots$ , $\mu_{n}\in Q.F.(k|S_{P}])$ (see the
previous step). Now assume to the contrary that none of the $\mu_{i}$ is an
element of $k^{*}$ . Looking at the homogeneous degree 1 component (as we
did in Step 1) we get

$(\gamma_{P})^{c}(Div(F)_{1})=(\mu_{1}+\cdots+\mu_{n})Div(F)_{1}$ .

By Proposition 5.7(c) each of the $\mu_{i}\neq 1$ is a column vector for $P$

with base facet $F$ . The corresponding semigroup homomorphisms $ht_{\mu_{i}}$ :
$S_{P}\rightarrow \mathbb{Z}_{+}$ are all the same. Let $x\in L(P)$ be any point with the maximal
possible value of $ht_{\mu_{i}}(x)$ . Clearly, $x\in Div(F)$ . By our assumption none
of the elements of $(\mu_{1}+\cdots+\mu_{n})Div(F)_{1}$ may involve the monomial $x$ in
its canonical $k$-linear expansion. But this contradicts the condition that
$Div(F)_{1}$ and $(\mu_{1}+\cdots+\mu_{n})Div(F)_{1}$ have the same images in $k_{0}[S_{P}]$ .

In particular we have

$(\overline{\gamma}_{P_{p}})^{c}(Div(F_{pq}))=(1+a_{1}m_{1}+\cdots+a_{n}m_{n})Div(F_{pq})$

for $a_{1}$ , $\ldots$ , $a_{n}$ and $m_{1}$ , $\ldots$ , $m_{n}$ as above. By Step 1 each of the mono-
mials $m_{i}$ defines a column structure on $\Pi$ . Consider the automorphism

$E=e_{V_{1}}^{a_{1}}\circ\cdots\circ e_{V_{n}}^{a_{n}}\in E_{k}(\square )$ ,
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where $V_{1}=[P, m_{1}]$ , $\ldots$ , $V_{n}=[P, m_{n}]$ . By Proposition 5.7(b) we get

$(\overline{E^{-1}\circ\gamma^{c}})_{P_{p}}(Div(F_{pq}))=Div(F_{pq})$ .

Clearly, $(\overline{\gamma^{c}})_{P_{t}}(Div(F_{tu}))=Div(F_{tu})$ for $(t, u)<(p, q)$ . Therefore, by

(4) in Step 1 and 5.7(b) $(\overline{E^{-1}\circ\gamma^{c}})_{P_{r}}$ also leaves $Div(F_{rs})$ untouched for
any pair $(r, s)<(p, q)$ . The claim has been proved.

We record a property of the column structures $V_{i}$ that will be im-
portant below:

(5) $(p, q)$ is the smallest (with respect to $<$ ) among all pairs $(t, u)$

such that $V_{i}$ contains $(P_{t}, v)$ with base facet $F_{tu}$ .

This follows from the construction of $V_{i}$ in Step 1: if $\gamma(Div(F_{tu}))=$

$Div(F_{tu})$ , then $V_{i}$ cannot contain a column vector with base facet $F_{tu}$ .

Step 3. For two subsets $A$ , $B\subset G$ of a group $G$ we let $A$ . $B$ denote the
subset {ab $|a\in A$ , $b\in B$ } $\subset G$ and (AB) the subgroup of $G$ generated
by $A$ and $B$ .

Consider the special case $k=\mathbb{C}$ . Assume $(p, q)>(r, s)$ are consec-
utive pairs. We will show the equality of the two connected groups

$(**)$ $(E_{k}(\square )\Gamma_{rs}^{0})=(E_{k}(\square )\Gamma_{pq}^{0})$ ,

where $-^{0}$ refers to the corresponding unity component. That these
groups are in fact connected follows from Lemma 4.5 and [Bo, Proposi-
tion 2.2].

Consider the partition into right cosets

$\Gamma_{pq}=\Gamma_{pq}^{0}g_{1}\cup\cdots\cup\Gamma_{pq}^{0}g_{t}$
$g_{1}$ , $\ldots$ , $g_{t}\in\Gamma_{pq}$ .

We have
$E_{k}(\square )\cdot\Gamma_{pq}\subset Yg_{1}\cup\cdots\cup Yg_{t}$ ,

where $Y=(E_{k}(\square )\Gamma_{pq}^{0})$ . By Step 2 there is a natural number $c$ for any
$\gamma\in\Gamma_{rs}^{0}$ such that

$\gamma^{c}\in(\Gamma_{rs}^{0}\cap Yg_{1})\cup\cdots\cup(\Gamma_{rs}^{0}\cap Yg_{t})$ .

Omitting some $g_{i}$ if necessary we get a disjoint union $Yg_{1}\cup\cdots\cup Yg_{t}=$

$ Y\cup Yg_{l_{2}}\cup Yg_{l_{3}}\cup\cdots$ of right cosets of $Y$ . By Lemma 5.11

$dim\Gamma_{rs}^{0}=dim(\Gamma_{rs}^{0}\cap Y)\cup(\Gamma_{rs}^{0}\cap Yg_{l_{2}})\cup(\Gamma_{rs}^{0}\cap Yg\iota_{3})\cdots$

Hence, by the irreducibility of $\Gamma_{rs}^{0}$ and the fact that $\Gamma_{rs}^{0}\cap Y\neq\emptyset$ , we arrive
at the inclusion $\Gamma_{rs}^{0}\subset Y$ . Therefore, $(E_{k}(\Pi)\Gamma_{rs}^{0})\subset Y$. The opposite
inclusion is obvious, hence the equality $(**)$ .
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The equality $(**)$ and the sequence $(*)$ in Step 2 imply

$\Gamma_{k}(\Pi)^{0}=(E_{k}(\square )’F_{k}(\Pi))$ .

Now the same equality holds for an arbitrary subfield $k\subset \mathbb{C}$ because
of the following general observations. Since $\Gamma_{\mathbb{C}}(\Pi)$ is defined over $k$ , so is
its unity component $\Gamma_{\mathbb{C}}(\Pi)^{0}$ [Bo, Proposition 1.2]. By the Lemmas 3.2
and 4.4(b) the connected subgroup ( $(E_{\mathbb{C}}(\square )rF_{\mathbb{C}}(\square ))\subset\Gamma_{\mathbb{C}}(\Pi)$ is likewise
defined over $k$ . If the two irreducible affine $k$-varieties were different,
then they would remain so after the scalar extension $k\rightarrow \mathbb{C}$ , which is

not the case.
Consider the case of an arbitrary field $k$ of characteristic 0. If

$\gamma\in\Gamma_{k}(\square )$ , then $\gamma$ is defined over a finitely generated subfield $k_{0}\subset k$ .

Choosing any embedding $k_{0}\rightarrow \mathbb{C}$ we fall in the previous case.
Finally, by Lemma 4.4(b) we have the equality $(E_{k}(\Pi)’F_{k}(\square ))=$

$E_{k}(\Pi)$ . $\ulcorner F_{k}(\square )$ .

Step 4. We have to compute the dimension. As in Step 3 we may as-
sume $k=\mathbb{C}$ . For each facet $ P\prec\Pi$ fix an interior monomial $x\in int(S_{P})$ ,

i.e. a monomial corresponding to an interior point of the cone $C_{P}$ . Let
$(P, v)$ be a column structure defining a column vector $V_{1}$ for $\Pi$ . Assume
Col(II)= $\{V_{1}, V_{2}, \ldots, V_{s}\}$ . Then for arbitrary elements $\lambda_{1}$ , $\lambda_{2}$ , $\ldots$ , $\lambda_{s}\in$

$k^{*}$ the set of monomials appearing in the canonical $k$-linear expansion

of $e_{V_{1}}^{\lambda_{1}}(x)$ is not covered by those appearing in the $k$-linear expansions

of $e_{V_{2}}^{\lambda_{2}}(x)$ , $e_{V_{3}}^{\lambda_{3}}(x)$ and so on (just look at the projection of $x$ through $v$

into the base facet $P_{v}$ ). This shows that we have #Col(\Pi ) linearly in-
dependent tangent vectors at $1\in\Gamma_{k}(\square )$ . Since the tangent vectors cor-
responding to the elements of $rF_{k}(\square )$ clearly belong to a complementary
dimension and $\Gamma_{k}(\Pi)^{0}$ is a smooth variety, by Lemma 3.2 we conclude

$dim\Gamma_{k}(\square )^{0}\geq\#Col(\square )+rank(\Lambda(\Pi))$ .

The opposite inequality is derived as follows. For any pair $(r, s)$ we
let $E_{rs}$ denote the subgroup of $E_{k}(\square )$ generated by elementary automor-
phisms of type $e_{V}^{\lambda}$ where $V=[P_{r}, v]$ and such that $(r, s)$ is the smallest
(with respect to $<$ ) pair for which $F_{rs}$ appears as a base facet of $V$ (in
particular $(P_{r})_{v}=F_{rs})$ . Let $\{V_{1}, \ldots, V_{m}\}$ denote the set of column
vectors for $\Pi$ that contribute to $E_{rs}$ . Essentially the same arguments as
in the proof of Lemma 3.1 in [BG] show that the assignment

$(\lambda_{1}, \ldots, \lambda_{m})\mapsto e_{v_{1}}^{\lambda_{1}}\circ\cdots\circ e_{v_{m}}^{\lambda_{m}}$

establishes the isomorphism of the abelian affine groups $A_{k}^{m}$ and $E_{rs}$ .
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We claim that for all consecutive pairs $(r, s)<(p, q)$ there is an

element $g_{pq}\in\Gamma_{k}(\square )$ such that the subset

$(E_{pq}\cdot\Gamma_{pq}^{0})g_{pq}\subset\Gamma_{k}(\square )$

contains a Zariski open subset of $\Gamma_{rs}^{0}$ . In fact, by the property (5) of the
automorphism $E$ in Step 2, Lemma 5.9 and the irreducibility of $\Gamma_{pq}^{0}$ we
have

$\Gamma_{rs}^{0}\subset\overline{E_{pq}\cdot\Gamma_{pq}}$ ,

where the bar on the right hand side means the Zariski closure (in
$\Gamma_{k}(\square ))$ . Now the claim follows from the facts that $\Gamma_{pq}$ decomposes into

finite number of right cosets of $\Gamma_{pq}^{0}$ and that for each of these cosets,

say $\Gamma_{pq}^{0}g$ , the subset $(E_{pq}\cdot\Gamma_{pq}^{0})g\subset\Gamma_{k}(\Pi)$ is constructible (and, hence,

contains a Zariski open set of its closure). In particular we have the
equality $dim(E_{pq}\cdot\Gamma_{pq}^{0})\geq dim\Gamma_{rs}$ . In view of the sequence $(*)$ of the
groups $\Gamma_{tu}$ we get

$dim\Gamma_{k}(\Pi)\leq dimF_{k}\ulcorner(\Pi)+\Sigma_{(p,q)\neq(0,0)}dimE_{pq}=rank(\Lambda(\square ))+\#Col(\square )$ .

Q.E.D.

Proof of Theorem 5.2(b). Suppose $\Pi$ is a quasi-Euclidean lattice
polyhedral complex, char(/c) $=0$ and $\gamma\in\Gamma_{k}(\square )$ . By Lemma 3.5(b)
$T_{k}(\Pi)$ is a maximal torus of $\Gamma_{k}(\square )$ . By Theorem 5.2(a) and Lemma
3.4(a) it suffices to show that there is an element $\alpha\in\Gamma_{k}(\square )^{0}$ such that
$\alpha o\gamma$ maps monomials to terms.

Consider the closed subgroup

$D=\gamma D_{k}(\Pi)\gamma^{-1}\subset\Gamma_{k}(\square )$ .

Its unity component is $D^{0}=\gamma T_{k}(\Pi)\gamma^{-1}$ . In particular, $D^{0}$ is a maximal
torus of $\Gamma_{k}(\Pi)$ . By [Bo, Corollary 11.3(1)] there is an element $\alpha\in$

$\Gamma_{k}(\square )^{0}$ such that $\alpha^{-1^{r}}F_{k}(\square )\alpha=D^{0}$ . We get

(1) $(\alpha o\gamma)^{-1}\ulcorner F_{k}(\Pi)(\alpha o\gamma)=\ulcorner F_{k}(\square )$ .

We claim that $\alpha$ is the desired element.
Assume to the contrary that there is a monomial $x\in k[\Pi]$ such that

in the canonical $k$-linear expansion of $\alpha\circ\gamma(x)$ there occur two distinct
monomials $y_{1}$ , $y_{2}\in k[\square ]$ .

By Lemma 3.5(a) there exist $\tau\in\ulcorner F_{k}(\Pi)$ and two distinct elements
$a_{1}$ , $a_{2}\in k^{*}$ such that $\tau(y_{1})=a_{1}y_{1}$ and $\tau(y_{2})=a_{2}y_{2}$ . Therefore, there
does not exist $a\in k^{*}$ for which $\tau\circ\alpha\circ\gamma(x)=a\cdot(\alpha\circ\gamma(x))$ , or equivalently,
there does not exist $a\in k^{*}$ such that $(\alpha o\gamma)^{-1}\circ\tau o(\alpha o\gamma)(x)=ax$ and
this contradicts (1). Q.E.D.
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Proof of Theorem 5.2(c). Let $P$ be a facet-separated lattice poly-
tope and $F\prec P$ be one of its facets. Suppose $m_{1}$ , $\ldots$ , $m_{s}\in gp(S_{P})$ are
pair-wise different Laurent monomials of degree 0 and $a_{1}$ , $\ldots$ , $a_{s}\in k^{*}$

such that $(a_{1}m_{1}+\cdots+a_{s}m_{s})Div(F)$ is a height 1 prime ideal of $k[\overline{S}_{P}]$

(notation as in Step 1); we claim that either one of the $m_{i}$ is $1\in k$ or

$(a_{1}m_{1}+\cdots+a_{s}m_{s})Div(F)=Div(G)$

for some facet $G\prec P$ .

Indeed, if none of the $m_{i}$ is $1\in k$ then $(a_{1}m_{1}+\cdots+a_{s}m_{s})Div(F)\subset$

$Div(G)$ for any facet $G\prec P$ such that $ F\cap G=\emptyset$ , which exists by
assumption. We get an inclusion of two height 1 prime ideals. Hence
the desired equality.

Note that the lower dimensional faces of a facet-separated polytopes
need not be facet-separated again. Therefore one has to modify Step 1
slightly by working only with the facets of $\Pi$ and condition $(\neq_{2}\prime)$ . The
fact just proved implies that in Step 2 above one can then take $c=1$ .

Thus the restriction to fields of characteristic 0, which entered the proof
only via Lemma 5.9, becomes superfluous, and all the arguments go
through for an arbitrary field. We only need $k$ to be infinite in order to
be able to apply Lemma 3.5.

The existence of the normal forms, claimed in Theorem 5.2(c), fol-
lows immediately since we deal just once with each column vector during
the whole process and since the process can be carried out in an arbitrary
order of the column vectors. Q.E.D.

\S 6. Arrangements of projective toric varieties

In this section we develop some notions similar to those in $[BG$ ,

Section 5], generalized from single polytopes to the new situation of
polyhedral complexes. (For standard facts on toric varieties we refer to
Danilov [Da], Fulton [Fu], Oda [Oda].)

Throughout this section $k$ denotes an algebraically closed field.
A lattice polytope $P\subset \mathbb{R}^{n}$ is called very ample if for every vertex

$v\in P$ the affine semigroup in $\mathbb{Z}^{n}$ , defined by the $dim(P)$ dimensional
cone spanned by $P$ at its corner $v$ and then shifted by $-v$ , is generated
by the set

$\{x -v|x \in \mathbb{Z}^{n}\cap P\}$ .

All normal lattice polytopes (i.e. those for which $k[S_{P}]$ is normal) are
very ample, but not conversely [$BG$ , Example 5.5].

A lattice polyhedral complex is called very ample if all its faces are
very ample. Observe that it would suffice to require very ampleness only
for the facets: the property is inherited by the lower-dimensional faces.
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Suppose $\Pi$ is a very ample lattice polyhedral complex and $ z\in\Pi$

is a vertex. Then we define the associated weak fan $\square (z)$ as follows.
Consider the faces $ P\prec\Pi$ containing $z$ . For any such face we have the
rational polyhedral cone $C(P, z)\subset \mathbb{R}^{n_{P}}$ spanned by $P$ at its vertex $z$

and shifted (in $\mathbb{R}^{n_{P}}$ ) by $-z$ . Due to the very ampleness of $\Pi$ the system
of these cones forms a weak fan in a natural way which we denote by
$\square (z)$ . Therefore, the cones of $\square (z)$ are naturally labeled by the faces
$ P\prec\Pi$ such that $z\in P$ . We will denote them by $\mathcal{W}_{P}^{(z)}$ correspondingly.

Now assume we are given a finite system of vertices $z_{1}$ , $\ldots$ , $ z_{k}\prec\Pi$ .

For each face $ P\prec\Pi$ we define the convex (but not necessarily strictly
convex) rational cone $C(P, z_{1}, \ldots, z_{s})\subset \mathbb{R}^{n_{P}}$ as follows. If $\{z_{1}, \ldots, z_{s}\}$

is not a subset of $P$ , then we put $C(P, z_{1}, \ldots, z_{s})=\{0\}\subset \mathbb{R}^{n_{P}}$ . If
$\{z_{1}, \ldots, z_{s}\}\subset P$ then there are two possibilities –either there is a
supporting halfspace for $P$ (in $\mathbb{R}^{n_{P}}$ ) that contains $\{z_{1}, \ldots, z_{s}\}$ in its
boundary, or such does not exist. In the first case we let $C(P, z_{1}, \ldots, z_{s})$

be the intersection (in $\mathbb{R}^{n_{P}}$ ) of all these supporting halfspaces for $P$ ,

shifted after that by one of $the-z_{i}$ (all these parallel translates coincide).
In the second case we put $C(P, z_{1}, \ldots, z_{n})=\mathbb{R}^{n_{P}}$ .

Observe that if $P\prec Q$ , then $C(P, z_{1}, \ldots, z_{s})$ is a face (in the obvious
sense) of $C(Q, z_{1}, \ldots, z_{s})$ . In particular, we can patch the semigroup
algebras

$k[C(P, z_{1}, \ldots, z_{s})\cap \mathbb{Z}^{n_{P}}]$ , $ P\prec\Pi$ ,

using these ’face identifications’ for all pairs $P\prec Q$ as we did for
weak fans in Section 2. The resulting $k$-algebra will be denoted by
$k[\square (z_{1}, \ldots, z_{n})]$ . It is a common localization of the $k[\square (z_{i})]$ .

In the following we will use the notations $Z_{\Pi}=Proj(k[\Pi])$ and
$Z_{P}=Proj(k[S_{P}])$ for $ P\prec\Pi$ . Thus $Z_{P}$ is a normal projective toric
variety (the normality follows from the very ampleness of $P$ ), and all
normal projective toric varieties arise in this way. For each face $ P\prec\Pi$

we have fixed an embedded torus of $Z_{P}-$ namely, the one that respects
the monomial structure of $S_{P}$ . Let $T(Z_{P})$ denote this torus. Thus
$T(Z_{P})=T_{k}(P)/k^{*}$ . If $ P\prec Q\prec\Pi$ then we have the closed embeddings
$Z_{P}\subset Z_{Q}\subset Z_{\Pi}$ given by the ’face’ projections of the corresponding
homogeneous rings. We get a diagram of toric varieties and a corre-
sponding diagram of their embedded tori,

$D_{\Pi}=\{Z_{P}\subset Z_{Q}|P\prec Q\prec\Pi\}$

and $D_{T}=\{T(Z_{Q})\rightarrow Trest(Z_{P})|P\prec Q\prec\Pi\}$

where ’rest’ denotes the restriction map. We set

$D(Z_{\Pi})=\varliminf D_{T}$ and $T(Z_{P})=D(Z_{\Pi})^{0}$ .
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In general, $D(Z_{\Pi})\neq T(Z_{\Pi})$ , as can be seen as $f11ws$ : if $\Pi’$ is the cone
over $\Pi$ (adding exactly one more lattice point corresponding to a new
variable), then $D(Z_{\Pi’})=D_{k}(\square )$ , and in Section 3 we have given an
complex $\Pi$ with $D_{k}(\Pi)\neq T_{k}(\square )$ .

One has the following easily verified description of $Z_{\Pi}$ (see also $[BG$ ,

Section 5]).

Proposition 6.1. Let $\Pi$ be a very ample lattice polyhedral com-
plex.

(a) The projective variety $Z_{\Pi}\subset \mathbb{P}^{N}$ , $N=\#L(\square )-1,\dot{\iota}s$ obtained
by patching the affiffiffine schemes $Spec(k[\square (z)])$ along their open
subschemes

$Spec(k[\Pi(z, z_{1}, \ldots, z_{s})])\subset Spec(k[\square (z)])$ ,

where $z$ , $z_{1}$ , $\ldots$ , $z_{s}$ are vertices of $\Pi$ .

(b) The irreducible components of $Z_{\Pi}$ are precisely the normal projec-
tive toric varieties $Z_{P}=Proj(k[\overline{S}_{P}])\subset \mathbb{P}^{N_{P}}$ , $N_{P}=\#L(P)-1$ ,

where $P$ runs through the facets of $\Pi$ . Moreover,

$Z_{\Pi}=\lim_{\rightarrow}D_{\Pi}$ .

(c) $D(Z_{\Pi})$ isa diagonalizable group and, hence, $T(z_{\Pi})$ is a torus;
they act algebraically on $Z_{\Pi}$ so that for each face $ P\prec\Pi$ the
action restricts to the original one of $T(Z_{P})$ on $Z_{P}$ .

$D(Z_{\Pi})$ is diagonalizable since it is a subgroup of the product of the
$T(Z_{P})$ , $ P\prec\Pi$ .

Projective varieties of type $Z_{\Pi}$ with $\Pi$ very ample are called ar-
rangements of projective toric varieties and the affine charts, described
in Proposition 6.1 (a), will be called $\square - affiffiffine$ charts.

One easily observes the exact sequence of algebraic groups

0– $(k^{*})^{\pi_{O}(\Pi)}\rightarrow\Gamma_{k}(\square )\rightarrow Apr_{\Pi}ut_{k}(z_{\Pi})$ ,

where $pr_{\Pi}$ is the canonical anti-homomorphism and $\pi_{0}(\Pi)$ refers to the
(number of) connected components of $\Pi$ (viewed as a $CW$ complex in a
natural way).

It is clear that $D_{k}(\square )$ is mapped to $D(Z_{\Pi})$ by $pr_{\Pi}$ . However,
$pr_{\Pi}(D_{k}(\square ))$ is in general smaller than $D(Z_{\Pi})$ ; likewise $pr_{\Pi}(\Gamma_{k}(\square ))$ need
not exhaust $Aut_{k}(Z_{\Pi})$ .

Example 6.2. Let $\Pi$ be the complex of three unit segments form-
ing the boundary of a triangle. Then $Z_{\Pi}$ is an arrangement of three
copies of the projective line $\mathbb{P}_{k}^{1}$ meeting each other pairwise in three
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different points. It follows from Theorem 5.2 and easy observations
that $\Gamma_{k}(\square )=\Gamma_{k}(\square )^{0}=T_{k}(\square )$ . But one has $T_{k}(\square )/k^{*}=(k^{*})^{2}$ and
$D(Z_{\Pi})=(k^{*})^{3}$ .

Next we introduce the notion of projectively equivalent lattice poly-
hedral complexes. Recall that the normal fan $N(P)$ of a polytope $ P\subset$

$\mathbb{R}^{n}$ is defined as the complete fan in the dual space $(\mathbb{R}^{n})^{*}=Hom(\mathbb{R}^{n}, \mathbb{R})$

given by the system of cones

( $\{\phi\in(\mathbb{R}^{n})^{*}|{\rm Max}_{P}(\phi)=F\}$ , $F$ a face of $P$ ).

Two polytopes $P$, $Q\subset \mathbb{R}^{n}$ are called projectively equivalent if $N(P)=$
$N(Q)$ . In other words, $P$ and $Q$ are projectively equivalent if and only
if they have the same dimension, the same combinatorial type, and the
faces of $P$ are parallel translates of the corresponding ones of $Q$ .

Lattice polyhedral complexes $\Pi$ and $\Pi’$ are called projectively equiv-
alent if the following conditions are satisfied:

(a) there is an isomorphism between the underlying abstract polyhe-
dral complexes $\psi$ : $\square x\rightarrow\Pi_{X’}$ , i.e. there is a bijection $\psi$ between
the vertex sets $X$ and $X’$ inducing a bijection of the polyhedral
complexes,

(b) $n_{P}=n_{\psi(P)}$ ,

(c) the lattice polytopes $P^{*}$ and $(\psi(P))^{*}\subset \mathbb{R}^{n_{P}}$ , are projectively
equivalent for all $P\subset\square x$ so that if $F\subset P^{*}$ and $G\subset(\psi(P))^{*}$

correspond each other under this projective equivalence, then
$F=Q^{*}$ and $G=(\psi(Q))^{*}$ for some $Q\subset\square x$ .

(Here we use the same notation as in the definition of a lattice polyhedral
complex in Section 2.) The isomorphism $\psi$ : $\square x\rightarrow\Pi_{X’}$ is called a
projective equivalence.

The next lemma explains the name ’projectively equivalent’.

Lemma 6.3. Let $\Pi$ and $\Pi’$ be projectively equivalent very ample
lattice polyhedral complexes. Then there is a natural isomorphism $ Z_{\Pi}\approx$

$Z_{\Pi’}$ transforming the $\Pi_{-}affiffiffine$ chart into the $\Pi’$ -affiffiffine chart; furthermore
the sets Col(II) and Col(\Pi ’) of column vectors are in natural one-to-one
correspondence.

Proof. The isomorphism $Z_{\Pi}\approx Z_{\Pi’}$ exists due to the tautological
identification of the two affine charts. The claim on column vectors
follows easily from the analogous fact for single polytopes [$BG$ , Section
2]. Q.E.D.

We will need the following standard
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Lemma 6.4. Let $V$ be a $k$ -variety and $G$ a connected $k$ -group
acting algebraically on V. Then $G$ leaves the irreducible components of
$V$ invariant.

Let $\Pi$ be an oriented lattice polyhedral complex. An automorphism
of $Z_{\Pi}$ is called elementary if it is of type $pr_{\Pi}(e_{V}^{\lambda})$ for some elementary
automorphism $e_{V}^{\lambda}\in\Gamma_{k}(\Pi)(\lambda\in k)$ . For a column vector $V\in Co1(\square )$

the assignment
$e_{V}^{\lambda}\mapsto pr_{\Pi}(e_{V}^{\lambda})$ , $\lambda\in k$ ,

defines an algebraic homomorphism $A_{k}^{1}\rightarrow$ Aut $(Z_{\Pi})$ . It follows from the
exact sequence above that this is an injective mapping. The subgroup of
$Aut_{k}(Z_{\Pi})$ generated by the elementary automorphisms will be denoted
by $E(Z_{\Pi})$ . Thus $E(Z_{\Pi})=pr_{\Pi}(E_{k}(\square ))$ is a connected group, spanned by
one-parameter unipotent subgroups forming affine lines in $E(Z_{\Pi})$ .

Lemma 6.5. Let $\Pi$ and $\Pi’$ be two projectively equivalent, ori-
ented, and very ample polyhedral complexes. Then

(a) $E(Z_{\Pi})=E(Z_{\Pi’})$ ;
(b) $\delta\circ\in\circ\delta^{-1}$ is an elementary automorphism for any $\delta\in D(Z_{\Pi})$ and

any elementary automorphism $\in ofZ_{\Pi}$ .

(Here $E(Z_{\square })$ and $E(Z_{\square }!)$ are regarded as subgroups of the same
group $Aut_{k}(Z_{\Pi})$ by virtue of Lemma 6.3.)

Proof, (a) It is enough to show that if $V\in Co1(\square )$ and $V’\in Co1(\Pi’)$

are corresponding column vectors (in the sense of Lemma 6.3) and
$\lambda\in k$ then $e_{V}^{\lambda}\in\Gamma_{k}(\square )$ and $e_{V’}^{\lambda}\in\Gamma_{k}(\Pi’)$ define the same elements
in $Aut/c$ (Zn). In fact, we get two elements from the unity component
$Aut_{k}(Z_{\Pi})^{0}$ and, hence, by Lemma 6.4 they both leave the irreducible
components of $z_{\Pi}$ invariant. Therefore, by Proposition 6.1 (b) the prob-

lem reduces to the special case of single polytopes and here [$BG$ , Lemma
5. 1] applies.

(b) follows from the case of a single polytope, which is covered by
4.4(b), and patching arguments. Q.E.D.

Next we define the finite subgroup $\Sigma(\square )_{Proj}\subset Aut_{k}(Z_{\Pi})$ for a very
ample lattice polyhedral complex, which generalizes the symmetry group
of the normal fan $N(P)$ of a polytope $P$ [$BG$ , Section 5].

For each vertex $ z\prec\Pi$ and each face $ P\prec\Pi$ we have introduced the
corresponding weak fan $\square (z)$ and normal fan $N(P)$ (the latter defined
in the dual space $(\mathbb{R}^{n_{P}})^{*})$ . The cone of $N(P)$ , corresponding to a face
$F\prec P$ , will be denoted by $N_{F}^{(P)}$ .
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For a face $ P\prec\Pi$ and a vertex $z\prec P$ we have

$N_{z}^{(P)}=(\mathcal{W}_{P}^{(z)})^{*}$ ,

where the star on the right hand side denotes the dual cone in $(\mathbb{R}^{n_{P}})^{*}$ .

It follows that if $\mathcal{W}_{P}^{(z)}\in\square (z)$ , $\mathcal{W}_{Q}^{(y)}\in\square (y)(y,$ $ z\prec\Pi$ vertices,
$ z\prec P\prec\Pi$ , $y\prec Q\prec\square )$ and

$\alpha$ : $\mathbb{Z}^{n_{P}}\cap \mathcal{W}_{P}^{(z)}\rightarrow \mathbb{Z}^{n_{Q}}\cap \mathcal{W}_{Q}^{(y)}$

is a semigroup homomorphism, then one has the corresponding naturally
defined semigroup homomorphism

$\alpha^{*}$ : $(\mathbb{Z}^{n_{Q}})^{*}\cap N_{y}^{(Q)}\rightarrow(\mathbb{Z}^{n_{P}})^{*}\cap N_{z}^{(P)}$ ,

and vice versa. Moreover, $\alpha^{**}=\alpha$ and $(\alpha\circ\beta)^{*}=\beta^{*}\circ\alpha^{*}$ . In particular,
isomorphisms are mapped to isomorphisms.

We recall that an isomorphism of complete fans in Euclidean spaces
means a integral linear isomorphism of the ambient spaces transforming
one fan into the other.

We shall say that two weak fans are isomorphic if their underlying
abstract polyhedral complexes are isomorphic and the corresponding
affine semigroups are isomorphic in such a way that the involved iso-
morphisms agree on common ’face’ sub-semigroups.

Now an element of $\Sigma(\Pi)_{Proj}$ by definition is a triple $(\rho, A, B)$ , where

(1) $\rho$ is an automorphism of the abstract polyhedral complex $X_{\Pi}$ ,

(2) $A$ is a set of isomorphisms $\alpha_{P}^{(z)}$ : $\mathbb{Z}^{n_{P}}\cap \mathcal{W}_{P}^{(z)}\rightarrow \mathbb{Z}^{n_{\rho(P)}}\cap \mathcal{W}^{(\rho(z))}$

$\rho(P)$ ’

where $z$ runs through the vertices and $P$ through the faces of $\Pi$

with $z\prec P$ ,

(3) $B$ is a set of isomorphisms $\beta_{z}^{(P)}$ : $(\mathbb{Z}^{n_{\rho(P)}})^{*}\cap N_{\rho(z)}^{(\rho(P))}\rightarrow(\mathbb{Z}^{n_{P}})^{*}\cap$

$N_{z}^{(P)}$ , $z$ and $P$ as above,

so that the following conditions are satisfied:

(4) for each vertex $ z\prec\Pi$ the subset $\{\alpha_{P}^{(z)}|z\prec P\prec\square \}\subset A$ estab-
lishes an isomorphism between the weak fans $\Pi(z)$ and $\Pi(\rho(z))$ ,

(5) for each face $ P\prec\Pi$ the subset { $\beta_{z}^{(P)}|z\prec P$ a vertex $\subset B$

establishes an isomorphism between the normal fans $N(\rho(P))$

and $N(P)$ ,
(6) $B$ $=\{\alpha^{*}|\alpha\in A\}$ .

The group structure of $\Sigma(\Pi)_{Proj}$ is defined by taking the appropri-
ate compositions. It follows readily from Proposition 6.1(a) that we
can consider the finite group $\Sigma(\square )_{Proj}$ as a subgroup of $Aut_{k}(Z_{\Pi})$ in a
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natural way, provided $\Pi$ is very ample–the elements of $\Sigma(\square )_{Proj}$ can
naturally be thought of as automorphisms of the $\Pi$-affine chart on $Z_{\Pi}$ .

Now a straightforward verification shows the following

Lemma 6.6. Let $\Pi$ be a very ample lattice polyhedral complex.

(a) If $\Pi’$ is a very ample lattice polyhedral complex, projectively equiv-

alent to $\Pi$ , then $\Sigma(\Pi)_{Proj}$ and $\Sigma(\Pi’)_{Proj}$ coincide (in the sense of
Lemma 6.3);

(b) Let $\delta\in D(Z_{\Pi})$ , $\sigma\in\Sigma(\square )_{Proj}$ , $and\in\in E(Z_{\Pi})$ ; then $\sigma^{-1}o\delta o\sigma\in$

$D(Z_{\Pi})$ and $\sigma^{-1}\circ\in\circ\sigma\in E(Z_{\Pi})$ ;
(c) $pr_{\Pi}$ embeds $\Sigma(\square )$ into $\Sigma(\Pi)_{Proj}$ .

\S 7. Very ample line bundles on arrangements

In this section we first give an overview of known results ([Oda,
Ch. 2], Teissier [Te] $)$ on very ample line bundles on projective toric
varieties. The generalization to arrangements of toric varieties, discussed
later on, will be needed in the proof of Theorem 9.1.

Let $n$ be a natural number and $P\subset \mathbb{R}^{n}$ be a very ample lattice
$n$-polytope. We let $\prime p$ denote the set of lattice polytopes $Q\subset \mathbb{R}^{n}$ , which
are very ample and projectively equivalent to $P$ . Then $\prime \mathcal{P}$ carries the
following semigroup structure (without unity):

$Q+R=\{q+r|q\in Q, r\in R\}$ , $Q$ , $R\in P$ .

Thus $Q+R$ is the Minkowski sum of $Q$ and $R$ (very ampleness is pre-
served by Minkowski sums). Any element $Q\in P$ defines a normal
projective toric variety $Z_{Q}=Proj(k[\overline{S}_{Q}])$ (Proposition 6.1(b)) and the
very ample line bundle $\mathcal{L}_{Q}$ , the preimage of the structural line bundle
$C)(1)$ under the natural closed embedding

$Z_{Q}\rightarrow \mathbb{P}_{k}^{N}$ , $N=\#L(Q)-1$ .

We shall identify all the $Z_{Q}$ for $Q\in P$ via the natural isomorphism
mentioned in Lemma 6.3.

The torus $(k^{*})^{n}=Hom(\mathbb{Z}^{n}, k^{*})$ operates on all the algebras $K[\overline{S}_{Q}]$ ;
furthermore it can be identified with the embedded torus $T(Z_{P})$ of $Z_{P}$ .

Thus the line bundle $\mathcal{L}_{Q}$ carries an $T(Z_{P})$-equivariant structure, i.e.
an action of the embedded torus $T(Z_{P})$ which is compatible with the
structural projection $\mathcal{L}\rightarrow Z_{P}$ and is fiber-wise linear. (This action is
obtained as the restriction of the action of $T(Z_{P})\subset(k^{*})^{N}$ on $\mathcal{O}(1).)$ Of
course, any such action can be modified by a character $\chi$ of $T(Z_{P})$ , i.e.
one replaces the linear map $\tau_{x}$ : $\mathcal{L}_{x}\rightarrow \mathcal{L}_{\tau(x)}$ by $\chi(\tau)\tau_{x}$ .
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Furthermore, any equivariant $T(Z_{P})$ structure on $\mathcal{L}_{Q}$ induces a cor-
responding action of $T(Z_{P})$ on the canonical algebra

$O(\mathcal{L}_{Q})=\oplus H^{0}(Z_{P}, \mathcal{L}_{Q}^{\otimes i})i\geq 0$ ’

given by $\tau(f)=\tau^{-1}\circ f\circ\tau$ for $\tau\in T(Z_{P})$ and a global section $f$ : $ Z_{P}\rightarrow$

$L_{Q}^{\otimes i}(i\in \mathbb{N})$ . With respect to this action $H^{0}(Z_{P}, \mathcal{L}_{Q}^{\otimes\dot{\iota}})$ decomposes into
a direct sum of one-dimensional representations of $T(Z_{P})$ .

Lemma 7.1. (a) With respect to the equivariant structure in-
duced by the action of $(k^{*})^{n}$ on $k[\overline{S}_{Q}]$ , the characters of $(k^{*})^{n}=$

$T(Z_{P})$ corresponding to the one-dimensional representations of
$T(Z_{P})$ in $H^{0}(Z_{P}, \mathcal{L}_{Q}^{\otimes i})$ are pairwise different; under the identififi-
cation $Hom((k^{*})^{n}, k)=\mathbb{Z}^{n}$ they are the lattice points of the $i$ -th
homothetic blow up $iQ$ of $Q$ .

(b) Any two equivariant structures on $\mathcal{L}_{Q}$ differ by a character of
$T(Z_{P})$ . Thus the decomposition of $H^{0}(Z_{P}, \mathcal{L}_{Q}^{\otimes i})$ is independent

of the equivariant structure, and if one multiplies the equivariant
structure in (a) by $\chi$ , than $Q$ has to be replaced by $ Q-\chi$ .

By letting $k^{*}$ act trivially on $Z_{P}$ we can extend the action of $T(Z_{P})$

to an action of $k^{n+1}=T_{k}(P)=T(Z_{P})\times k^{*}$ on $Z_{P}$ . Moreover, any
$T(Z_{P})$ -equivariant structure on $\mathcal{L}_{Q}$ can be extended to an action of
$T_{k}(P)$ if we let $k^{*}$ act on $\mathcal{L}_{Q}$ by fiber-wise multiplication. This gives
rise to an action of $T_{k}(P)$ on the canonical algebra of $\mathcal{L}_{Q}$ ; of course,
$T_{k}(P)$ also acts naturally on $k[\overline{S}_{Q}]$ .

Lemma 7.2. For the equivariant structure on $\mathcal{L}_{Q}$ induced by the
action of $(k^{*})^{n}$ on $k[\overline{S}_{Q}]$ we have a graded $k$ -algebra isomorphism $O(\mathcal{L}_{Q})$

$\approx k[\overline{S}_{Q}]$ that respects the two $T_{k}(P)$ -actions.

The assignment $Q\mapsto \mathcal{L}_{Q}$ induces a mapping $7^{\supset}\rightarrow Pic(Z_{P})$ which
obviously factors through the quotient $P/\sim where$ $Q\sim R$ if and only
if $R$ is a parallel translate of $Q$ . This equivalence relation defines a
congruence on the semigroup $\prime p$ .

Lemma 7.3. Let VALB $(Z_{P})$ (EVALB $(Z_{P})$ ) denote the sets of
isomorphism classes of (equivariant) very ample line bundles on $Z_{P}$ .

One has a commutative diagram

$7^{\supset}$ $\rightarrow EVALB(Z_{P})$

$\downarrow$ $\downarrow$

$ P/\sim\rightarrow$ VALB $(Z_{P})$
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where the horizontal maps are semigroup isomorphisms and the right
vertical map ‘forgets ’ the equivariant structure.

We can summarize this discussion as follows. For an ample line
bundle $\mathcal{L}$ and a $T(Z_{P})$ -equivariant structure on $\mathcal{L}$ , the decomposition of
the canonical algebra of $\mathcal{L}$ into one-dimensional representations depends
only on $\mathcal{L}$ . Furthermore the representations appearing in $H^{0}(Z_{P}, \mathcal{L})$

can naturally be labeled by the lattice points of $Q$ where $Q\in P$ is
chosen such that $\mathcal{L}\approx \mathcal{L}_{Q}$ . We denote them by $V_{\mathcal{L},x}$ , $x$ $\in L(Q)$ . These

observations will be used in the next definition.
In what follows, the subalgebra of the canonical algebra of a line

bundle $\mathcal{L}$ generated by its global sections will be called the subcanonical
algebra of $\mathcal{L}$ and it will be denoted by Alg $()$ .

Definition 7.4. Let $\mathcal{L}$ be a very ample line bundle on $Z_{P}$ , $\mathcal{L}\approx$

$\mathcal{L}_{Q}$ . A system of global sections $(f_{x})_{x\in L(Q)}\subset H^{0}(Z_{P}, \mathcal{L})$ is called poly-
topal if $f_{x}\in V_{\mathcal{L},x}$ $fr$ all $x$ and there is a $k$-algebra isomorphism between
Alg $()$ and $k[S_{Q}]$ , mapping $f_{x}$ , $x\in L(Q)$ , to $x\in k[S_{Q}]$ .

Roughly speaking, the next lemma says that two polytopal systems

of sections in a line bundle only differ by a toric automorphism of $Z_{P}$ .

Lemma 7.5. Let $\mathcal{L}$ and $\mathcal{L}’$ be very ample line bundles on $Z_{P}$ ,
$\mathcal{L}\approx \mathcal{L}’\approx \mathcal{L}_{Q}$ for some $Q\in P$ . Suppose $(f_{x})_{x\in L(Q)}$ and $(f_{x}’)_{x\in L(Q)}$ are
polytopal systems of global sections. Then there is a unique commutative
diagram with vertical structural projections

$\mathcal{L}’$

$\rightarrow T$
$\mathcal{L}$

$\downarrow$ $\downarrow$

$Z_{P}\vec{\tau}Z_{P}$

such that $T$ is an algebraic fifiber-wise linear map, $\tau\in T(Z_{P})$ and $ T^{-1}\circ$

$f_{x}\circ\tau=f_{x}’$ for all $x\in L(Q)$ .

Proof. Fix $T(Z_{P})$ -equivariant structures on $\mathcal{L}$ and $\mathcal{L}’$ . Observe
that for any commutative diagram of the type considered the mapping
$T$ is automatically equivariant. It follows that $T$ is $T_{k}(P)$ equivariant
for the induced $T_{k}(P)$ structures on $\mathcal{L}$ and $\mathcal{L}’$ as well. It is also clear,

that such a mapping $T$ induces a graded $k$-algebra isomorphism between
the canonical algebras $O(\mathcal{L})$ and $O(\mathcal{L}’)$ which respects the $T_{k}(P)$ actions
-the diagram above is a pull-back diagram with equivariant horizontal
isomorphisms.
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Conversely, if we are given a graded $T_{k}(P)$ -equivariant isomorphism
between the two canonical algebras, then this isomorphism gives rise (by
projectivization) to a commutative diagram of the type considered.

Therefore, in view of Lemma 7.2, Lemma 7.5 is equivalent to the
following obvious claim, which finishes the proof: for a lattice polytope
$Q$ and two systems of degree 1 terms $\alpha_{x}x$ and $\beta_{x}x$ , $\alpha_{x}$ , $\beta_{x}\in k^{*}$ , $ x\in$

$L(Q)$ , satisfying the same relations in $k[\overline{S}_{Q}]$ as the $x\in L(Q)$ , there is a
unique toric automorphism $\tau\in T_{k}(Q)$ transforming one system into the
other. Q.E.D.

For a very ample polyhedral complex $\Pi$ we let $[\square ]$ denote the class
of such lattice polyhedral complexes $\Pi’$ that there exists a projective
equivalence $\psi$ : $\square x\rightarrow\Pi_{X’}$ (see above) and a system of semigroup
isomorphisms $\phi_{P}$ : $S_{P}\rightarrow S_{\psi(P)}$ , $ P\prec\Pi$ , compatible on ’face’ sub-
semigroups.

Let $\Pi$ be a very ample polyhedral complex. The set

{ $[\Pi’]|\Pi’$ a very ample lattice polyhedral complex,

projectively equivalent to $\square $ }
carries a natural semigroup structure (without unity). Assume $[\Pi_{1}]$ and
$[\Pi_{2}]$ belong to it. Then a face of $\Pi_{1}$ and the corresponding face of $\Pi_{2}$

can be realized as projectively equivalent very ample lattice polytopes
in the same Euclidean space. The pairwise Minkowski sums naturally
form a very ample lattice polyhedral complex $\Pi_{3}$ which is projectively

equivalent to $\Pi$ (one uses fixed projective equivalences $\square x\rightarrow\approx\square x_{1}$ ,
$\square x\rightarrow\square \approx x_{2}$ and systems of the corresponding semigroup isomorphisms).
It is clear that the class $[\Pi_{3}]$ is well defined. We put $[\Pi_{1}]+[\Pi_{2}]=[\Pi_{3}]$ .

Assume $\mathcal{L}$ is a very ample line bundle on $Z_{\Pi}$ . For each face $ P\prec\Pi$

the restricted line bundle $\mathcal{L}|_{Z_{P}}$ is very ample on $Z_{P}$ , and we pick a
lattice polytope $Q(\mathcal{L}, P)$ such that $\mathcal{L}|_{Z_{P}}\approx \mathcal{L}_{Q(\mathcal{L},P)}$ . It is clear from the
discussion preceding Lemma 7.5 and the obvious isomorphisms

$\mathcal{L}|_{Z_{P}}\approx(\mathcal{L}|_{Z_{P’}})|_{Z_{P}}$

for any faces $ P\prec P’\prec\Pi$ , that the polytopes $Q(\mathcal{L}, P)$ naturally form a
very ample lattice polyhedral complex, which is projectively equivalent
to $\Pi$ . The class of this complex will be denoted by $\square (\mathcal{L})$ . (Different
choices of the polytopes $Q(\mathcal{L}, P)$ give rise to the same class.) If $\mathcal{L}’$ is
another very ample line bundle on $Z_{\Pi}$ , then $\square (\mathcal{L})+\square (\mathcal{L}’)=\square (\mathcal{L}\otimes \mathcal{L}’)$

(this reduces to the case of single polytopes; see 7.3).
Observe that for any very ample lattice polyhedral complex $\Pi’$ ,

which is projectively equivalent to $\Pi$ , there is a very ample line bun-
dle $\mathcal{L}$ on $Z_{\Pi}$ such that $[\Pi’]=\square (\mathcal{L})$ . In fact, the desired line bundle is
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provided by the restriction of $O(1)$ under the canonical closed embedding
$z_{\Pi}=Z_{\square }\prime\rightarrow \mathbb{P}_{k}^{N}$ , $N=\#L(\Pi’)-1$ .

Definition 7.6. Let $\Pi$ and $\mathcal{L}$ be as above. A system $\overline{f}=\{f_{1}$ , $\ldots$ ,
$f_{s}\}$ of global sections of $\mathcal{L}$ is called polyhedral if it satisfies the following
conditions:

(i) $f_{i}\neq 0$ for all $i$ , and for each face $ P\prec\Pi$ the set of restrictions

{ $f_{i}|_{Z_{P}}|f_{i}\in\overline{f}$ and $f_{i}|z_{P}\neq 0$ }

is a polytopal system of global sections of the line bundle $\mathcal{L}|_{Z_{P}}$

on $Z_{P;}$

(ii) if $f_{i}|_{Z_{P}}\neq 0$ and $f_{i}|_{Z_{Q}}\neq 0$ for faces $P$ and $Q$ of $\Pi$ , then
$f_{i}|_{Z_{P}\cap Z_{Q}}\neq 0$ (in particular $ Z_{P}\cap Z_{Q}\neq\emptyset$ ).

Caution. In general a very ample line bundle on $Z_{\Pi}$ does not have
a polyhedral system of global sections; see Example 9.3(a) below.

Lemma 7.7. Let $\Pi$ be a very ample complex and $\mathcal{L}$ be a very
ample line bundle on $Z_{\Pi}$ possessing a polyhedral system of global sections

$\overline{f}$ .

(a) $\overline{f}$ is a basis of the $k$ -vector space $H^{0}(Z_{\Pi}, \mathcal{L})$ .

(b) Let $\Pi’\in\square (\mathcal{L})$ . Then there is a $k$ -algebra isomorphism $\ominus$ :
Alg $()$ $\rightarrow k[\Pi’]mapp\dot{0}ng$ the elements of $\overline{f}$ to elements of $L(\Pi’)$ .

Moreover, for every face $Q\prec\Pi’$ there is a commutative diagram

Alg(L) $\rightarrow 0-$
$k[\Pi’]$

$rest_{Q}\downarrow$ $\downarrow\pi_{Q}$

$Ag(\mathcal{L}|_{Z_{Q}})\rightarrow k[S_{Q}]$ ,

where $Z_{Q}$ denotes the projective toric subvariety of $Z_{\square }=z_{\Pi’}$

naturally associated to $Q$ , $rest_{Q}$ is the restriction map and, as
usual, $\pi_{Q}$ is the corresponding face-projection.

(c) If another very ample line bundle $\mathcal{L}’$ on $Z_{\Pi}$ also has a polyhedral
system of global sections, then so does $\mathcal{L}\otimes \mathcal{L}’$ .

Proof. We may assume $\Pi=\Pi’$ . The essential point is that the
elements of $\overline{f}$ correspond uniquely to the lattice points $x\in L(\square )$ : if
$f_{i}|_{Z_{P}}$ corresponds to $x\in L(P)$ , $P$ a face of $\Pi$ , then $f_{i}|_{Z_{Q}}$ corresponds
to the same lattice point $x$ for all faces $Q$ with $x\in L(Q)$ , as follows
from condition (i) in the definition above. Condition (ii) implies that
$f_{i}|_{Z_{Q}}=0$ if $x\not\in L(Q)$ .

Now (a) is easily verified, and (b) and (c) follow from the analogous
observations for single polytopes. It is important for (c) that in the case
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of a single polytope $P$ the family $(f_{i}\otimes f_{j}’)$ formed from polytopal systems

of global sections $(f_{i})$ and $(f_{j}’)$ for $\mathcal{L}$ and $\mathcal{L}’$ has a unique extension to

a polytopal system of global sections for $\mathcal{L}\otimes \mathcal{L}’$ . Therefore a patching
argument yields (c) for polyhedral complexes as well. Q.E.D.

The next lemma extends 7.5 to polyhedral complexes.

Lemma 7.8. Let $\mathcal{L}$ and $\mathcal{L}’$ be very ample line bundles on $Z_{\Pi}$ ,
where $\Pi$ is a very ample lattice polyhedral complex. Assume that $\Pi(\mathcal{L})=$

$\Pi(\mathcal{L}’)$ and that $\mathcal{L}$ and $\mathcal{L}’$ both have polyhedral systems of global sections.
Then there is an element $\delta\in D(Z_{\Pi})$ such that $\mathcal{L}’=\delta^{*}(\mathcal{L})$ .

Remark 7.9. It is in general not true that $\mathcal{L}\approx \mathcal{L}’$ under the
assumptions of Lemma 7.8. Moreover, the failure of the analogue of
Lemma 7.3 for line bundles with polyhedral systems of global sections
is measured precisely by the difference between $D(z_{\Pi})$ and the image of
$D_{k}(\square )$ in it. Consider, for instance, the lattice polyhedral complex $\Pi$ of
Example 6.2. Let $\mathcal{L}$ be the very ample line bundle on $Z_{\Pi}$ obtained by
the restriction of $O(1)$ under the standard embedding $Z_{\square }\rightarrow \mathbb{P}_{k}^{3}$ . Now
choose some $\delta\in D(Z_{\Pi})$ and set $\mathcal{L}’=\delta^{*}(\mathcal{L})$ . It is clear that $\square (\mathcal{L})=$

$\square (\mathcal{L}’)=\Pi$ . Moreover, $\mathcal{L}$ has a polyhedral system of global sections and,
hence, so does $\mathcal{L}’$ . But $\mathcal{L}$ and $\mathcal{L}’$ cannot be isomorphic line bundles for
any $\delta$ , for otherwise any element of $D(z_{\Pi})$ would be liftable (via $pr_{\Pi}$ )
to an element of $\Gamma_{k}(\square )$ , which is not the case according to Example 6.2.
Indeed, for a $k$-variety $Z$ and a very ample line bundle $\mathcal{L}$ on it the group
of automorphisms $\alpha\in Aut_{k}(Z)$ , that are liftable to $gr$ . $aut_{k}$ (Alg(L)),
coincides with the group of automorphisms $\beta\in Aut_{k}(Z)$ preserving $\mathcal{L}$

[Ha, II.6].

Proof of Lemma 7.8. Let $\overline{f}=\{f_{1}, f_{2}, \ldots\}$ and $\overline{g}=\{g_{1}, g_{2}, \ldots\}$ be
polyhedral systems of global sections of $\mathcal{L}$ and $\mathcal{L}’$ . Then for any face
$ P\prec\Pi$ the restrictions of the $f_{i}$ and $g_{j}$ form polytopal systems of global
sections of $\mathcal{L}|_{Z_{P}}$ and $\mathcal{L}’|_{Z_{P}}$ . By Lemma 7.3 we have $\mathcal{L}|_{Z_{P}}\approx \mathcal{L}’|_{Z_{P}}$ .

Therefore, by Lemma 7.5 for each $ P\prec\Pi$ there is a unique commutative
diagram

$\mathcal{L}|_{Z_{P}}\rightarrow T_{P}\mathcal{L}’|_{Z_{P}}$

$\downarrow$ $\downarrow$

$Z_{P}$

$\vec{\tau_{P}}$

$Z_{P}$ ,

where $\tau_{P}\in T(Z_{P})$ and $T_{P}$ is an algebraic fiber-wise linear map. The
uniqueness of these squares guarantees that we can patch them to a
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commutative square
$\mathcal{L}$

$\rightarrow D$
$\mathcal{L}’$

$\downarrow$ $\downarrow$

$Z_{\Pi}\vec{\delta}Z_{\Pi}$ ,

where $\delta\in D(Z_{\Pi})$ and $D$ is an algebraic fiber-wise linear map. Hence
the claim. Q.E.D.

\S 8. Projectively quasi-Euclidean complexes

The following class of lattice polyhedral complexes is relevant in the
description of $Aut_{k}(Z_{\Pi})$ .

Definition 8.1. A lattice polyhedral complex $\Pi$ is projectively
quasi-Euclidean if it is quasi-Euclidean and every lattice polyhedral com-
plex projectively equivalent to $\Pi$ is quasi-Euclidean as well.

Below we describe two big classes of projectively quasi-Euclidean
complexes. However the following example shows that not all quasi-
Euclidean complexes are projectively quasi-Euclidean, not even bound-
ary ones.

Example 8.2. Consider the boundary lattice polyhedral complex
in $\mathbb{R}^{3}$ as shown in the figure. It has three trapezoid facets with vertex
sets

$\prime|||$

$\{(1,0,0), (2, 0, 0), (0, 1, 0), (0, 2, 0)\}$ ,

$\{(0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2)\}$ ,

$\{(0,0,1), (0, 0, 2), (1, 0, 0), (2, 0, 0)\}$ . –

”

Now we change the last facet with the trapezoid spanned by $\{(0,0,2),(0$ ,

0,3),(2,0,0),(3,0,0) $\}$ and leave the first two trapezoids untouched. It is
clear that the new system of trapezoids again defines a lattice polyhedral
complex, which is projectively equivalent to the original one. But the
latter complex is not quasi-Euclidean. In fact, if it were so then any
(rational) Euclidean realization would fit into $\mathbb{R}^{3}$ and the two triangles,
spanned respectively by the short and long edges of the trapezoids, would
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be homothetic. This would imply that the ratios of lengths of the two
parallel edges in our trapezoids are all the same. This, of course, is not
the case: we have the ratios $\frac{1}{2}$ , $\frac{1}{2}$ , $\frac{2}{3}$ .

Let $P\subset \mathbb{R}^{n}(n\in \mathbb{N})$ be a (not necessarily lattice) polytope. We shall
say that $P$ is affiffiffine-normal if for any polytope $Q\subset \mathbb{R}^{n}$ that is projec-
tively equivalent to $P$ there exists an affine automorphism $\psi$ : $\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$

such that $\psi$ transforms $P$ into $Q$ and respects faces corresponding to each
other under normal equivalence. Clearly, such an affine automorphism
is uniquely determined if $dim(P)=n$ , and a face of an affine-normal
polytope is affine-normal as well.

Recall that a polytope $P\subset \mathbb{R}^{n_{P}}$ is called a join of two polytopes
$Q\subset \mathbb{R}^{n_{Q}}$ and $R\subset \mathbb{R}^{n_{R}}$ if there are affine embeddings $\phi_{Q}$ : $\mathbb{R}^{n_{Q}}\rightarrow \mathbb{R}^{n_{P}}$

and $\phi_{R}$ : $\mathbb{R}^{n_{R}}\rightarrow \mathbb{R}^{n_{P}}$ such that:

(1) $Im(\phi_{Q})\cap Im(\phi_{R})=\emptyset$ ,

(2) the affine hull of $Im(\phi_{Q})\cup Im(\phi_{R})$ is an $(n_{Q}+n_{R}+1)$ -dimensional
affine subspace of $\mathbb{R}^{n_{P}}$ ,

(3) $P$ is the convex hull of $\phi_{Q}(Q)\cup\phi_{R}(R)$ .

In particular, a join of a polytope $P$ and a point is a pyramid of dimen-
sion $dim(P)+1$ with base $P$ . A join of $Q$ and $R$ is denoted by $J(Q, R)$ .

It is easily observed that a join is unique up to a non-degenerate affine
transformation.

Lemma 8.3. If $P\subset \mathbb{R}^{n_{P}}$ and $Q\subset \mathbb{R}^{n_{Q}}$ are affiffiffine-normal poly-
topes, then so are their product $P\times Q\subset \mathbb{R}^{n_{P}+n_{Q}}$ and any join $J(P, Q)$ .

Proof. Suppose $R\subset \mathbb{R}^{n_{P}+n_{Q}}$ is projectively equivalent to $P\times Q$ .

Without loss of generality we can assume that $R$ is obtained from $P\times Q$

by a parallel translatation of one of the facets –the general case is
obtained by induction over the set of facets. The facets of $P\times Q$ are
of type either $F\times Q$ or $P\times G$ for some facets $F\prec P$ and $G\prec Q$ .

Consider the case $F\times Q$ . Then $R$ must have the type $P’\times Q$ for
some $P’$ projectively equivalent to $P$ . Let $\psi$ : $\mathbb{R}^{n_{P}}\rightarrow \mathbb{R}^{n_{P}}$ be the affine
automorphism transforming $P$ into $P’$ . Then $\psi\times 1$ : $\mathbb{R}^{n_{P}+n_{Q}}\rightarrow \mathbb{R}^{n_{P}+n_{Q}}$

is the desired affine automorphism.
As for joins, it just suffices to observe that if $R$ is projectively equiv-

alent to $J(P, Q)$ then $R=J(P’, Q’)$ for some $P’\subset \mathbb{R}^{n_{P}}$ and $Q’\subset \mathbb{R}^{n_{Q}}$ ,

projectively equivalent to $P$ and $Q$ respectively. Q.E.D.

In particular we see that all simplices, cubes, their joins, or more
generally, joins of products of simplices etc., are affine-normal polytopes.

The incidence graph of a lattice polyhedral complex $\Pi$ is defined as
the graph, whose vertices are labeled by facets of $\Pi$ and in which two
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vertices are connected by an edge if and only if the corresponding facets
share a face.

Proposition 8.4. A quasi-Euclidean lattice polyhedral complex is

projectively quasi-Euclidean in either of the cases:

(a) the facets of $\Pi$ are affiffiffine-normal polytopes,
(b) the incidence graph of $\Pi$ is a tree.

Proof (a) Let $\Pi$ be realized as a complex of rational polytopes in
$\mathbb{R}^{n}$ for some $n\in \mathbb{N}$ . Assume $\Pi’$ is a lattice polyhedral complex projec-
tively equivalent $\Pi$ . Then each face $ P\prec\Pi$ is projectively equivalent to
the corresponding face $P’\prec\Pi’$ (they both are polytopes in $\mathbb{R}^{n_{P}}$ ). Let

{ $\psi_{P}$ : $\mathbb{R}^{n_{P}}\rightarrow \mathbb{R}^{n_{P}}|P\prec\Pi$ a face}

be the corresponding system of affine automorphisms transforming faces
of $\Pi’$ into those of $\Pi$ . Since these maps are unique (as pointed out above),
they are compatible on common faces. Therefore we can patch them to

get a global bijective transformation

$\Psi$ : $\Pi\rightarrow\Pi’$

as $CW$-complexes, which is face-wise affine. Observe that we are done
once we know that $\Psi^{-1}(L(\Pi’))$ consists of rational points of $\mathbb{R}^{n}$ . But
this follows readily from the facts that the vertices of $\Pi$ are rational and
that the $\psi_{P}$ preserve barycentric coordinates.

For (b) one has an even stronger result-all lattice polyhedral com-
plexes whose incidence graphs are trees are Euclidean. In fact, we can
construct the Euclidean realization adding facets step by step and, at

each step, sufficiently many new dimensions. Q.E.D.

In particular all simplicial complexes are projectively quasi-Euclidean.

\S 9. The main result: projective case

Theorem 9.1. Let $k$ be an algebraically closed fifield and $\Pi$ be $a$

very ample lattice polyhedral complex.

(a) If char(/c) $=0$ and $\Pi$ is quasi-Euclidean, then the unity compo-
nent $Aut_{k}(Z_{\Pi})^{0}\subset Aut_{k}(Z_{\Pi})$ consists precisely of those elements
$\alpha\in Aut_{k}(Z_{\Pi})^{0}$ that admit a representation $\alpha=\in\circ\tau$ for some
$\in\in E(Z_{\square })$ and $\tau\in T(Z_{\square })$ .

(b) If char(/c) $=0$ and $\Pi$ is projectively quasi-Euclidean, then every
element $\alpha\in Aut_{k}(Z_{\square })$ admits a $ representation\in\circ\delta\circ\sigma$ for some
$\in\in E(Z_{\Pi})$ , $\delta\in D(Z_{\Pi})$ and $\sigma\in\Sigma(\square )_{Proj}$ .
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(c) If all facets of $\Pi$ are facet-separated polytopes, then the exact ana-
logues of (a) and (b) hold $\dot{\iota}n$ arbitrary characteristic; moreover,
the elements of Autk(Zn) have a normal form analogous to that
in Theorem 5.2(c).

Before setting out for the proof we formulate one more auxiliary
result.

Lemma 9.2. Let $P\subset \mathbb{R}^{n}$ be a very ample lattice polytope and $\mathcal{L}$

be a very ample line bundle on $Z_{P}$ . Then $\alpha^{*}(\mathcal{L})\approx \mathcal{L}$ for every element
$\alpha\in Aut_{k}(Z_{P})^{0}$ .

Proof. It follows from Lemma 5.2 and Theorem 5.3 of [BG] that
the natural antihomomorphism $gr$ . $aut_{k}(Ag(\mathcal{L}))^{0}\rightarrow Aut_{k}(Z_{P})^{0}$ is sur-
jective. But an automorphism liftable to $gr.aut_{k}$ (Alg(L)) preserves $\mathcal{L}$

as an element of Pic(Zp). Q.E.D.

Proof of Theorem 9.1. (a) Let $\mathcal{L}$ be the very ample line bundle on
$Z_{\Pi}$ obtained by the restriction of $O(1)$ under the canonical embedding

$Z_{\Pi}\rightarrow \mathbb{P}_{k}^{N}$ , $N=\#L(\square )-1$ .

Let $\alpha\in Aut_{k}(Z_{\Pi})^{0}$ . By Proposition 6.1(b) and Lemma 6.4 $\alpha$ restricts
to an element of $Aut_{k}(Z_{P})$ for each facet $ P\prec\Pi$ . It is clear that $\alpha|z_{P}\in$

$Aut_{k}(Z_{P})^{0}$ . By Lemma 9.2 we have an isomorphism

(1) $\mathcal{L}|_{Z_{P}}\approx\alpha^{*}(\mathcal{L})|_{Z_{P}}$

of very ample line bundles on $Z_{P}$ . By Lemma 7.3, $\square (\mathcal{L})=\Pi(\alpha^{*}(\mathcal{L}))$ .

Assume we have shown that $\alpha^{*}(\mathcal{L})$ has a polyhedral system of global
sections. Then Lemma 7.8 yields $\delta\in D(Z_{\Pi})$ with $\alpha^{*}(\mathcal{L})=\delta^{*}(\mathcal{L})$ . In
particular, the element $\alpha\circ\delta^{-1}\in Aut_{k}(Z_{\Pi})$ leaves the line bundle $\mathcal{L}$

invariant. But then (as mentioned in Remark 7.9) the image of the
canonical anti-homomorphism

$\Gamma_{k}(\Pi)=gr.aut(Ag(\mathcal{L}))\rightarrow Apr_{\Pi}ut_{k}(Z_{\Pi})$

contains $\alpha\circ\delta^{-1}$ ; in fact Alg $()$ $=k[\square ]$ by definition. So Theorem 5.2(b)
applies:

$\alpha=\sigma o\delta’o\in o\delta$

for some $\delta’\in D(Z_{\Pi}),$ $\in\in E(Z_{\square })$ and $\sigma\in\Sigma(\square )_{Proj}$ (of course, we use
that $D_{k}(\square )$ maps to $D(Z_{\Pi})$ and $\Sigma(\square )$ to $\Sigma(\Pi)_{Proj})$ . Next, Lemma 6.5(b)
implies that

$E(Z_{\Pi})\cdot D(Z_{\Pi})=(E(Z_{\Pi})D(Z_{\Pi}))$

and $E(Z_{\Pi})\cdot T(Z_{\Pi})=(E(Z_{\Pi})T(Z_{\Pi}))$ .
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(See Step 3 in the proof of Theorem 5.2 for this notation.) Using that
$Aut_{k}(Z_{\Pi})^{0}$ has finite index in $Aut_{k}(Z_{\Pi})$ and $(E(Z_{\Pi})T(Z_{\Pi}))$ has finite

index in $(E(Z_{\Pi})D(Z_{\Pi}))$ , we easily conclude that the connected subgroup
$(E(Z_{\Pi})T(Z_{\Pi}))\subset Aut_{k}(Z_{\Pi})^{0}$ has finite index and, hence, coincides with
$Aut_{k}(Z_{\Pi})^{0}$ . Using the equality $E(Z_{\Pi})\cdot T(Z_{\Pi})=(E(Z_{\Pi})T(Z_{\Pi}))$ once
more, we are done.

So everything amounts to showing that $\alpha^{*}(\mathcal{L})$ has a polyhedral sys-
tem of global sections. (Observe that so far we did not use the quasi-
Euclideaness of $\square .$ ) We solve this problem by first fixing polytopal global
sections of $\alpha^{*}(\mathcal{L})|_{Z_{P}}$ for each facet $P$ of $\Pi$ , and then correcting these
systems so that they agree on the intersections $Z_{P}\cap Z_{Q}$ . It is here where
we need the quasi-Euclideaness of $\Pi-$ we will make use of Borel’s the-
orem on maximal tori in the very same way as in the proof of Theorem
5.2(b).

For the facets $ P\prec\Pi$ we let $\overline{f}_{P}$ be arbitrary polytopal systems
of global sections of $\alpha^{*}(\mathcal{L})|z_{P}$ . Fix a disjoint system of lattice poly-

topes $\hat{P}$ isomorphic to the $P$ . By (1) we can think of the elements

of $\overline{f}_{P}$ as lattice points of the polytopes $\hat{P}$ . Let $P$, $ Q\prec\Pi$ be facets
and $\{x_{1}, \ldots, x_{s}\}=L(P)\cap L(Q)$ . Suppose $\{x_{P1}, \ldots, x_{Ps}\}\subset\overline{f}_{P}$ and
$\{x_{Q1}, \ldots, x_{Qs}\}\subset\overline{f}_{Q}$ are the corresponding elements. By Lemma 7.7(b)
(applied to the special case of a single polytope) these two systems re-
strict to polytopal systems of the same line bundle $\alpha^{*}(\mathcal{L})|_{Z_{P\cap Q}}$ on $Z_{P\cap Q}$ .

We will denote them by $\{x_{PQ1}, \ldots, x_{PQs}\}$ and $\{x_{QP1}, \ldots, x_{QPs}\}$ . In
particular, there is a unique toric automorphism $\tau_{PQ}\in T_{k}(P\cap Q)$ trans-
forming $\{x_{PQ1}, \ldots, x_{PQs}\}$ into $\{x_{QP1}, \ldots, x_{QPs}\}$ (by the natural ac-
tion).

By the same token we get a system of elements $\tau_{PQ}\in T_{k}(P\cap Q)$

for all facets $P$, $ Q\prec\Pi$ , satisfying the conditions

$\tau_{PQ}=\tau_{QP}^{-1}$ and $\tau_{PQ}=\tau_{PR}\circ\tau_{RQ}$

on $P\cap Q$ and $P\cap Q\cap R$ respectively. The system $\tau_{PQ}$ will be called the
twisted structure corresponding to the family $\overline{f}_{P}$ , and it will be denoted

by $\mathcal{T}$ .

For any system of toric automorphisms $\{\tau_{P}\in T_{k}(P)|$ $ P\prec\Pi$

a facet} we get a new family of polytopal global sections of the $\alpha^{*}(\mathcal{L})|_{Z_{P}}$

$-$ we just apply these toric automorphisms to the $\overline{f}_{P}$ correspondingly.
Therefore, we obtain a new twisted structure. Our goal is to show that
there is such a family { $\tau_{P}\in T_{k}(P)|P\prec\Pi$ a facet} that the resulting
twisted structure totally consists of the identity automorphisms. To
this end we consider the subcanonical algebra Alg(\mbox{\boldmath $\alpha$}*(L)). First of all
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we have the $k$-algebra isomorphism

(2) $k[\square ]=Ag(\mathcal{L})\rightarrow A\alpha^{*}g(\alpha^{*}(\mathcal{L}))$ .

Consider a point $x\in L(\Pi)$ and the corresponding set of lattice points

$\{x_{P}\in L(\hat{P})|P\in Supp(x)\}$ .

(’Supp’ has the same meaning as in Section 4.) By Lemma 7.7(b) (ap-
plied to the special situation of a single polytope) each of the $x_{P}$ restricts
to the zero global section of $\mathcal{L}|_{Z_{P\cap R}}$ whenever $R\not\in Supp(x)$ . On the other
hand it follows from the observations above that for $P$, $Q\in Supp(x)$

there is a uniquely determined element $c_{QP}^{(x)}\in k^{*}$ such that $c_{QP}^{(x)}x_{QP}=$

$x_{PQ}$ , where $x_{PQ}$ denotes the restriction of $x_{P}$ to $Z_{P\cap Q}$ and similarly

for $x_{QP}$ . Therefore, we can patch the sections $c_{QP}^{(x)}x_{Q}$ , $P$, $Q\in Supp(x)$ ,

which are defined on $Z_{Q}$ , and extend them by 0 on $Z_{R}$ for $R\not\in Supp(x)$

to obtain a global section of $\alpha^{*}(\mathcal{L})$ .

It follows that the quotient algebra

$k[\square , \mathcal{T}]=k[S_{\hat{P}_{1}}]\times_{k}\cdots\times_{k}k[S_{\hat{P}_{r}}]/(\{c_{QP}^{(x)}x_{Q}-x_{P}|P, Q\in Supp(x)\})$

maps naturally to Alg(\mbox{\boldmath $\alpha$}*(L)) as a graded algebra, where $\{P_{1}, \ldots, P_{r}\}$

is the set off all facets of $\Pi$ (and the $x_{P}$ are identified with the corre-
sponding elements in the fiber product over $k$ ). The isomorphism (2)
and Hilbert function arguments show that this mapping is actually a
graded $k$-algebra isomorphism. The twisted structure $\{\tau_{PQ}|$ $P$, $ Q\prec$

$\Pi$ facets, $ P\cap Q\neq\emptyset$ } is, of course, encoded in the scalars $c_{QP}^{(x)}-$ one has

$\tau_{PQ}=1$ if and only if $c_{QP}^{(x)}=1$ for all $x$ $\in L(P)\cap L(Q)$ . We will in the

following identify Alg(\mbox{\boldmath $\alpha$}*(L)) with $k[\square , I]$ .

The algebra $k[\Pi, \mathcal{T}]$ can be thought of as a ’twisted’ polyhedral alge-
bra built up of the same polytopal ’facet’ algebras as $k[\Pi]$ , but the iden-
tifications along common faces are carried out according to the twisted
structure $\mathcal{T}$ . The residue class in $k[\square , \mathcal{T}]$ of a term of $k[S_{\hat{P}_{i}}]$ , $i\in[1, r]$ ,

will be called a twisted term. (There is no appropriate notion of a twisted
monomial.)

Let $S_{\mathcal{T}}$ denote the multiplicative semigroup consisting of the twisted
terms and 0, and $S$ the corresponding one formed by ordinary terms and
0 (the latter live in $k[\square ]$ ). One observes easily that there is a natural
isomorphism

$\Psi$ : $S_{I}/k^{*}\rightarrow S\approx/k^{*}\approx s_{\Pi}$ .

Now we define the action of $T_{k}(\square )$ on $k[\square , \mathcal{T}]$ by first setting

$\tau(z)=\frac{\tau(z’)}{z},z$ , $z\in S_{\mathcal{T}}$ , $z’\in S$ , $\Psi([z])=[z’]$ ,
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and then extending it to the whole algebra $k[\square , \mathcal{T}]$ by $k$-linearity. The
crucial point is that this action is well-defined. Since $\Pi$ is quasi-Euclidean,
by Lemma 3.5(a) we get an (evidently algebraic) embedding of affine
groups

$T_{k}(\Pi)\rightarrow gr$ . $aut_{k}(k[\square , \mathcal{T}])$ .

Let $T_{1}$ denote the image of $T_{k}(\Pi)$ . But we have yet another embedding
of the same torus into $gr$ . $aut_{k}(k[\square , I])$ , namely

$T_{k}(\square )\rightarrow gr.aut_{k}(k[\square , \mathcal{T}])$ , $\tau\mapsto\alpha^{*}o\tau o(\alpha^{*})^{-1}$ .

Let $T_{2}$ be the image of the second embedding. By Lemma 3.5(b) we
know that $T_{2}$ is a maximal torus. Hence $T_{1}$ is maximal as well, and
the two tori are conjugate in $gr$ . $aut_{k}(k[\square , \mathcal{T}])$ ([Bo, Corollary 11.3(1)]).
Suppose that $\beta^{-1}\circ T_{1}\circ\beta=T_{2}$ for some $\beta\in gr.aut_{k}(k[\Pi, \mathcal{T}])$ . Then

$(\beta o\alpha^{*})^{-1}T_{1}(\beta\circ\alpha^{*})=T_{k}(\square )$ .

Using Lemma 3.5(a) and the very same arguments as in the proof of
Theorem 5.2(b), one concludes that the isomorphism

$\beta o\alpha^{*}$ : $k[\square ]\rightarrow k\approx[\square , \mathcal{T}]$

maps terms to terms. In particular, for each facet $ P\prec\Pi$ we get two
polytopal systems of global sections of the line bundle $\alpha^{*}(\mathcal{L})|_{Z_{P}}$ , namely
$\beta\circ\alpha^{*}(L(P))$ and $\overline{f}_{P}$ . Then there must exist an element $\tau_{P}\in T_{k}(P)$

transforming $\overline{f}_{P}$ into $\beta\circ\alpha^{*}(L(P))$ . A straightforward verification shows

that this is the desired family of toric automorphisms.

(b) Let $\Pi$ and $k$ be as in the theorem. We again start with the very
ample line bundle $\mathcal{L}$ on $Z_{\Pi}$ obtained by restriction of $O(1)$ under the
closed embedding $Z_{\Pi}\rightarrow \mathbb{P}_{k}^{N}$ , $N=\#L(\square )-1$ . Choose $\alpha\in Aut_{k}(Z_{\Pi})$ .

Since $\Pi$ is a projectively quasi-Euclidean complex and any representa-

tive of $\square (\alpha^{*}(\mathcal{L}))$ is projectively equivalent to $\Pi$ we see that $\square (\alpha^{*}(\mathcal{L}))$

consists of quasi-Euclidean lattice polyhedral complexes. Now the same
arguments as in the proof of (a) show that the very ample line bundle
$\alpha^{*}(\mathcal{L})$ has a polyhedral system of global sections (though we may have
$\square (\alpha^{*}(\mathcal{L}))\neq\square (\mathcal{L})$ now). Consider $\Pi_{1}\in\square (\alpha^{*}(\mathcal{L}))$ . Then Lemma 7.8
shows that there is an element $\delta_{1}\in D(Z_{\Pi})$ with

$\delta_{1}^{*}(\mathcal{L}_{1})=\alpha^{*}(\mathcal{L})$

for the line bundle $\mathcal{L}_{1}$ on $Z_{\Pi}$ obtained by the restriction of $O(1)$ under
the closed embedding

$Z_{\Pi}=Z_{\Pi_{1}}\rightarrow \mathbb{P}_{k}^{N_{1}}$ , $N_{1}=\#L(\Pi_{1})-1$ .
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(We identify $Z_{\Pi}$ and $Z_{\Pi_{1}}$ via Lemma 6.3.) By Lemma 7.3 we have
$\Pi(\mathcal{L}_{1})=\Pi(\alpha^{*}(\mathcal{L}))$ . Now we carry out the same process for $\Pi_{1}$ and $\mathcal{L}_{1}$

as we did for $\Pi$ and $\mathcal{L}$ , and so on. We will get a sequence of projectively
equivalent very ample lattice polyhedral complexes $\Pi_{0}=\Pi$ , $\Pi_{1}$ , $\Pi_{2}$ , $\ldots$

such that the very ample line bundles $\mathcal{L}_{i}$ on $Z_{\Pi}$ , obtained by restrictions
of the $\mathcal{O}(1)$ under the closed embeddings $Z_{\Pi}=Z_{\Pi_{i}}\rightarrow \mathbb{P}_{k}^{N_{i}}$ , $N_{i}=$

$\#L(\Pi_{i})-1$ , satisfy the following conditions for $i\geq 0$ :

(1) $\alpha^{*}(\mathcal{L}_{i})$ has a polyhedral system of global sections,
(2) $\Pi_{i}\in\square (\mathcal{L}_{i})$ ,

(3) $\square (\mathcal{L}_{i+1})=\square (\alpha^{*}(\mathcal{L}_{i}))$ ,

(4) $\#L(\Pi_{i})=\#L(\square )$ , $i\geq 0$ ,

Equation (4) holds because

$\#L(\Pi_{i+1})=dim_{k}H^{0}(Z_{\Pi}, \mathcal{L}_{i+1})$

$=dim_{k}H^{0}(Z_{\square }, \alpha^{*}(\mathcal{L}_{i}))=dim_{k}H^{0}(Z_{\Pi}, \mathcal{L}_{i})=\#L(\Pi_{i})$ .

Easy inductive arguments guarantee that the number of the classes $[\Pi’]$

such that $\Pi’$ is projectively equivalent to $\Pi$ and $\#L(\Pi’)=\#L(\square )$ is

fifinite. Therefore, by the conditions (2), (3), and (4) there exist natural
numbers $p$ and $q$ such that

$\Pi(\mathcal{L}_{i+qj})=\square (\mathcal{L}_{i})$

for all $i\geq p$ and all $j\geq 0$ . Consider the very ample line bundle

$\hat{\mathcal{L}}=\mathcal{L}_{p}\otimes\cdots\otimes \mathcal{L}_{p+q-1}$ ,

which has a polyhedral system of global sections by Lemma 7.7(c). We
fix a complex $\hat{\Pi}\in\Pi(\hat{\mathcal{L}})$ .

By Lemma 7.7(c) and condition (1) above the line bundle

$\alpha^{*}(\hat{\mathcal{L}})=\alpha^{*}(\mathcal{L}_{p})\otimes\cdots\otimes\alpha^{*}(\mathcal{L}_{p+q-1})$

has a polyhedral system of global sections as well, and we have the
equalities

$\square (\alpha^{*}(\hat{\mathcal{L}}))=\square (\mathcal{L}_{p})+\cdots+\Pi(\mathcal{L}_{p+q-1})=\square (\hat{\mathcal{L}})$ .

So by Lemma 7.8 there exists $\delta\in D(Z_{\Pi^{-}})$ such that $(\alpha\circ\delta)^{*}(\hat{\mathcal{L}})=\hat{\mathcal{L}}$ . In
this situation the automorphism $\alpha o\delta\in Aut_{k}(Z_{\Pi}\wedge)$ is in the image of the
canonical anti-homomorphism

$\Gamma_{k}(\hat{\Pi})=gr.aut(Ag(\hat{\mathcal{L}}))\rightarrow Aprut_{k}(Z_{\Pi}\wedge)$ .
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Since $\Pi$ is a projectively quasi-Euclidean complex and $\hat{\Pi}$ is projectively
equivalent to $\Pi$ , we can apply Theorem 5.2(b) to obtain the equality

$\alpha o\delta=\sigma o\delta’o\in$

for some $\sigma\in pr(\Sigma(\hat{\square }))\subset\Sigma(\hat{\Pi})_{Proj}=\Sigma(\Pi)_{Proj}$ (Lemma 6.6(a),(c)),
$\delta’\in pr(D_{k}(\hat{\square }))\subset D(Z_{\Pi}),$ $\in\in E(Z_{\Pi}\wedge)=E(Z_{\Pi})$ (Lemma 6.5(a)). Now
the Lemmas 6.5(b) and 6.6(b) complete the proof.

(c) It is clear that the arguments presented above apply to part (c)
as well, once one has observed that a polytope projectively equivalent
to a facet-separated polytope is itself facet separated. Q.E.D.

Example 9.3. In the previous proof a ’twisted’ structure was de-
rived from $\alpha^{*}(\mathcal{L})$ , and then ’untwisted’ to a polyhedral system of global
sections of $\alpha^{*}(\mathcal{L})$ . In general a twisted structure cannot be untwisted:
(a) it may happen that a line bundle $\mathcal{L}$ on $Z_{\Pi}$ does not have a poly-
hedral system of global sections; at least in the quasi-Euclidean case
Alg $()$ and $k[\square ]$ are then not isomorphic as graded algebras, as can be
shown by arguments similar to those in the proof of 5.2(b); (b) if we
define a ’twisted polyhedral algebra’ abstractly for a given polyhedral
complex $\Pi$ , it may even happen that Proj $(k[\square ])$ is not isomorphic to
Proj $(k[\square , I])$ :

(a) The polyhedral complex $\Pi_{1}$ in Figure 7 consists of 4 polygons: a
$2\times 1$ rectangle as the bottom and three trapezoids. (The two triangles
are open.) Let $\mathcal{T}$ denote the ’abstract’ twisted structure indicated in

$\Pi_{1}$ $\Pi_{2}$

FIGURE 7.

the figure. Then it is easy to see that the second Veronese algebras of
$k[\square ]$ and $k[\square , \mathcal{T}]$ coincide. Therefore they define the same projective
varieties, namely $z_{\Pi}$ . However, the very ample line bundle coming from
$k[\square , \mathcal{T}]$ does not have a polyhedral system of sections.
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(b) The polyhedral complex $\Pi_{2}$ consists of 3 unit squares forming
a triangular box without bottom and lid. In this case $k[\Pi]$ and $k[\Pi, \mathcal{T}]$

even define different projective varieties.
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Algebraic Shifting and Spectral Sequences

Art M. Duval

Abstract.

There is a canonical spectral sequence associated to any filtration
of simplicial complexes. Algebraically shifting a finite filtration of
simplicial complexes produces a new filtration of shifted complexes.

We prove that certain sums of the dimensions of the limit terms
of the spectral sequence of a filtration weakly decrease by algebraically
shift $ing$ the filtration. A key step is the combinatorial interpretation
of the dimensions of the limit terms of the spectral sequence of a

filtration consisting of near-cones.

\S 1. Introduction

The key step of Bj\"orner and Kalai’s characterization [BK] of f-
vectors and Betti numbers of simplicial complexes was that algebraically
shifting a simplicial complex $K$ produces a new complex $\triangle(K)$ whose
homology Betti numbers are the same as those of $K$ , $i.e.$ ,

(1) $\beta^{q}(K)=\beta^{q}(\triangle(K))$ .

But the Betti numbers of $\triangle(K)$ are much easier to compute, because
$\triangle(K)$ is shifted and hence a near-cone.

Relative homology is a little less straightforward. First note that
if $L\subseteq K$ are a pair of simplicial complexes, then $\triangle(L)\subseteq\triangle(K)$ [Ka2,
Theorem 2.2]. The equality (1) above becomes merely an inequality for
relative homology,

$\beta^{q}(K, L)\leq\beta^{q}(\triangle(K), \triangle(L))$ ;

in other words, relative Betti numbers (weakly) increase in each dimen-
sion [Du2] (see also [R6], where a more general result, on generic initial
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2000 AMS Subject Classification: Primary $55T05$ ; Secondary $05A20$ ,

05E99, 52B05, 55N99.
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ideals and Gr\"obner bases, was subsequently proved). As with the Betti
numbers of a single near-cone, the relative Betti numbers of a pair of
near-cones are easy to compute.

We now examine what happens when a finite filtration

(2) $\mathcal{K}:\emptyset=K_{0}\subseteq K_{1}\subseteq\cdots\subseteq K_{m}=K$

of a simplicial complex $K$ is algebraically shifted, $i.e.$ , when each sub-
complex in the filtration is algebraically shifted, giving a new filtration

$\triangle(\mathcal{K}):\emptyset=\triangle(K_{0})\subseteq\triangle(K_{1})\subseteq\cdots\subseteq\triangle(K_{m})=\triangle(K)$ .

In particular, we will be concerned with a cohomology spectral sequence
of this filtration whose limit terms $E_{\infty}^{1}$ , $\ldots$ , $E_{\infty}^{m}$ filter the cohomology
$\overline{H}^{*}(K, k)$ of $K$ over a field $k$ . That is, $dimE_{\infty}^{1}+\cdots+dimE_{\infty}^{m}=$

$\beta^{*}(K)=\overline{H}^{*}(K, k)$ ; we can think of $E_{\infty}^{s}$ as providing the contribu-
tion of $K_{s}\backslash K_{s-1}$ to the cohomology of $K$ . Our main result (Theorem
6.1) is that the quantity $dimE_{\infty}^{1}+\cdots+dimE_{\infty}^{p}$ (weakly) decreases, and
hence $dimE_{\infty}^{p+1}+\cdots+dimE_{\infty}^{m}$ (weakly) increases, by applying alge-
braic shifting. In some sense then, algebraic shifting moves more of the
cohomology to later in the filtration of $K$ . Relative homology is just the
$n$ $=2,p=1$ case, as $E_{\infty}^{2}=\overline{H}^{*}(K_{2}, K_{1})$ for the filtration $\emptyset\subseteq K_{1}\subseteq K_{2}$ .

As with Betti numbers and relative Betti numbers, the quantity
$dimE_{\infty}^{1}+\cdots+dimE_{\infty}^{p}$ is easy to compute for near-cones, and this is
an important step of the proof.

Section 2 reviews the necessary background for simplicial complexes,
including the exterior face ring, in which all our subsequent calcula-
tions take place. In Section 3, we first construct the spectral sequence
corresponding to $\mathcal{K}$ , and then use elementary manipulations to replace
$dimE_{\infty}^{1}+\cdots+dimE_{\infty}^{p}$ by an expression not using spectral sequences.
Then in Section 4 we interpret this expression combinatorially for near-
cones; this combinatorial interpretation resembles and complements the
combinatorial interpretations of the Betti numbers of a near-cone and
the relative Betti numbers of a pair of near-cones. In Section 5, we
briefly review algebraic shifting, and then modify arguments from [Du2]
to prove the key inequality. Section 6 proves Theorem 6.1, which merely
consists of tying together the results of the previous three sections.

\S 2. Simplicial complexes

For any subset $S$ of a simplicial complex $K$ , let $S_{q}$ denote the set of q-
dimensional faces of $S$ . In particular, $K_{q}$ is the set of $q$ dimensional faces
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of $K$ itself; context should distinguish between $K_{q}$ , for the $q$-dimensional
faces of $K$ , and $K_{s}$ , for a member of the filtration (2).

Let $k$ be a field, fixed throughout the paper. The $qth$ Betti number

of a simplicial complex $K$ is $\beta^{q}=\beta^{q}(K)=dim_{k}\overline{H}^{q}(K)$ , where $\overline{H}^{q}(K)$ is
the $qth$ reduced cohomology group of $K-$(with respect to $k$ ). Recall that

over a field $k$ , $dim_{k}\overline{H}^{q}(K;k)=dim_{k}H_{q}(K;k)$ , so that Betti numbers
measure reduced homology as well as reduced cohomology.

Definition. Let $K$ be a $(d-1)$ -dimensional simplicial complex on
vertex set $[n]$ $:=\{1, \ldots, n\}$ . Let $V=\{e_{1}, \ldots, e_{n}\}$ , and let $\Lambda(kV)$ denote
the exterior algebra of the vector space $kV$ ; it has a $k$-vector space basis
consisting of all the monomials $e_{S}:=e_{i_{O}}\wedge\cdots\wedge e_{i_{q}}$ , where $S=\{i_{0}<$

$\ldots$ $<i_{q}\}\subseteq[n]$ (and $e_{\emptyset}=1$ ). Note that $\Lambda(kV)=\oplus_{q=-1}^{n-1}\Lambda^{q+1}(kV)$ is a

graded $k$-algebra, and that $\Lambda^{q+1}(kV)$ has basis $\{e_{S}: |S|=q+1\}$ . Let
$(I_{K})_{q}$ be the subspace of $\Lambda^{q+1}(kV)$ generated by the basis {es: $|S|=$

$q+1$ , $S\not\in K\}$ . Then $I_{K}:=\oplus_{q=-1}^{d-1}(I_{K})_{q}$ is the homogeneous graded ideal

of $\Lambda(kV)$ generated by {es$ $:$ S\not\in K$ }. Let $\Lambda^{q}[K]:=\Lambda^{q+1}(kV)/(I_{K})_{q}$ .

Then the graded quotient algebra $\Lambda[K]:=\oplus_{q=-1}^{d-1}\Lambda^{q}[K]=\Lambda(kV)/I_{K}$ is
called the exterior face ring of $K$ (over $k$ ).

The exterior face ring is the exterior algebra analogue to the Stanley-
Reisner face ring of a simplicial complex [St]. For $x\in kV$ , let $\overline{x}$ denote
the image of $x$ in $\Lambda[K]$ . For $S\subseteq K$ , let

$\overline{S}=span\{\overline{e}_{F} : F\in S\}$ .

As with $I$ $=I_{K}$ above, $I_{q}$ will denote the $q$-dimensional part of any

homogeneous graded subspace I contained in $\Lambda[K]$ .

It is not hard to verify (or see equation (3) below) that the usual
coboundary operator $\delta:\Lambda^{q}[K]\rightarrow\Lambda^{q+1}[K]$ used to compute cohomology

may be given by $\delta:\overline{x}\mapsto\overline{f}\wedge\overline{x}$ , where $f=e_{1}+\cdots+e_{n}$ . However, it will be
necessary (see Section 5) to use a more “generic” coboundary operator,

which will not change cohomology. Let $\hat{k}=k(\alpha_{11}, \alpha_{12}, \ldots, \alpha_{nn})$ be the
field extension over $k$ by $n^{2}$ transcendentals, $\{\alpha_{ij}\}_{1\leq i,j\leq n}$ , algebraically

independent over $k$ . We will consider $\Lambda[K]$ as being over $\hat{k}$ instead of $k$

from now on. We are, in effect, simply adjoining these $\alpha_{ij}$ ’s to our field
of coefficients.

For now, we will only need the first $n$ transcendentals, $\alpha_{11}$ , $\ldots$ , $\alpha_{1n}$ .

Let $f_{1}=\alpha_{11}e_{1}+\cdots+\alpha_{1n}e_{n}$ . Then define the weighted coboundary
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operator $\delta:\Lambda[K]\rightarrow\Lambda[K]$ by $\delta:\overline{x}\mapsto\overline{f_{1}}\wedge\overline{x}$ , so

(3)
$\delta(\overline{e}_{S})=\overline{f_{1}}\wedge\overline{e}_{S}=\sum_{j=1}^{n}\alpha_{1j}\overline{e}_{j}\wedge\overline{e}_{S}=S\cup\{j\}\in K\sum_{j\not\in S}\pm\alpha_{1j}\overline{e}_{S\cup\{j\}}$

(hence the name weighted coboundary operator). Betti numbers may be
computed using this $\delta$ , $i.e.$ , $\beta^{q}(K)=dim_{k}(ker\delta)_{q}/(im\delta)_{q}[BK$ , pp. 289-
290].

\S 3. Spectral sequences

The filtration (2) in Section 1 naturally gives rise to a filtration of
ideals in $\Lambda[K]$ , as follows. For $0\leq s\leq m$ , define

$Q^{s}=K\backslash K_{s}$

so the ideals $\overline{Q}^{s}$ form a filtration

(4) $\Lambda[K]=\overline{Q}^{0}\supseteq\cdots\supseteq\overline{Q}^{m}=\overline{0}=I_{K}$ .

By e.g. [Sp, p. 493], there is a convergent spectral sequence $E_{r}$ corre-
sponding to this filtration. By this we mean that there is a sequence of
pairs $\{(E_{r}, d_{r})\}_{r\geq 1}$ , where: $E_{r}$ is a bigraded vector space over a field $k$ ;
$d_{r}$ is a differential on $E_{r}$ of bidegree $(r, 1-r)_{-}(sod_{r}: ^{E_{r}^{s,t}}\rightarrow E_{r}^{s+r,t-r+1})$ ;
$H(Er):=(ker d_{r}/im d_{r})\cong E_{r+1}$ ; $E_{1}^{s,t}\cong H^{s+t}(K_{s}\backslash K_{s-1})$ ; and $E_{\infty}$ is

associated to a filtration on $H^{*}(K)$ , in that $ E_{(x)}^{s,t}\cong ker(H^{s+t}(K)\rightarrow$

$H^{s+t}(K_{s+1}))/ker(H^{s+t}(K)\rightarrow H^{s+t}(K_{s}))$ . For every $E_{r}^{s,t}$ expression in

this section, the “total degree” $s+t$ is fixed, at say $q$ , so we will suppress
the “complementary degree” $t$ , and write $E_{r}^{s}$ to mean $E_{r}^{s,q-s}(s$ is called
the “filtered degree”). Similarly, every subspace of $\Lambda[K]$ is understood
to be just the $q$-dimensional component, and so we will write I to mean
$I_{q}$ . For further details on spectral sequences of filtrations, see, e.g., [Sp,
Section 9.1].

It is straightforward to verify that

$E_{r}^{s}=\frac{Z_{r}^{s-1}}{Z_{r-1}^{s}+\delta Z_{r-1}^{s-r}}=\frac{Z_{r}^{s-1}+\overline{Q}^{s}}{\delta Z_{r-1}^{s-r}+\overline{Q}^{s}}$

and $ d_{r}=\delta$ form a spectral sequence corresponding to the filtration (4)
as described above, where

$Z_{r}^{s}=\{c\in\overline{Q}^{s} : \delta c\in\overline{Q}^{s+r}\}$ .
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(The verification is analagous to that for the homology spectral sequence
of a filtration [Sp, pp. 469-470].) Then, letting $ r\rightarrow\infty$ ,

$E_{\infty}^{s}=\frac{Z_{\infty}^{s-1}}{Z_{\infty}^{s}+(im\delta\cap\overline{Q}^{s-1})}$

$(5)$ $=\frac{Z_{\infty}^{s-1}+\overline{Q}^{s}}{(im\delta\cap\overline{Q}^{s-1})+\overline{Q}^{s}}$ ,

where

$ Z_{\infty}^{s}=\{c\in\overline{Q}^{s}: \delta c=\overline{0}\}=\overline{Q}^{s}\cap ker\delta$ .

Lemma 3.1. For the spectral sequence defined above,

$dimE_{\infty}^{1,q-1}+\cdots+dimE_{\infty}^{p,q-p}=dim\frac{(ker\delta+\overline{Q}^{p})_{q}}{(im\delta+\overline{Q}^{p})_{q}}$ .

Proof. Recall that the total degree $s+t$ of every $E_{r}^{s,t}$ is fixed at $q$ ,

as is the dimension of every subspace of $\Lambda[K]$ , and so we suppress the
$g$ ’s in the proof.

By equation (5),

$E_{\infty}^{s}=\frac{(ker\delta\cap\overline{Q}^{s-1})+\overline{Q}^{s}}{(im\delta\cap\overline{Q}^{s-1})+\overline{Q}^{s}}$

$(6)$ $=\frac{(ker\delta+\overline{Q}^{s})\cap\overline{Q}^{s-1}}{(im\delta+\overline{Q}^{s})\cap\overline{Q}^{s-1}}$ .

The result now follows by an easy induction on $p$ . For $p=1$ , by equation
(6),

$E_{\infty}^{1}=\frac{(ker\delta+\overline{Q}^{1})\cap\overline{Q}^{0}}{(im\delta+\overline{Q}^{1})\cap\overline{Q}^{0}}=\frac{ker\delta+\overline{Q}^{1}}{im\delta+\overline{Q}^{1}}$ .
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If $p>1$ , then

$dimE_{\infty}^{1}+\cdots+dimE_{\infty}^{p}=(1)(dimE_{\infty}^{1}+\cdots+dimE_{\infty}^{p-1})+dimE_{\infty}^{p}$

$=(2)dim\frac{ker\delta+\overline{Q}^{p-1}}{im\delta+\overline{Q}^{p-1}}$

$+dim\underline{(ker\delta+\overline{Q}^{p})\cap\overline{Q}^{p-1}}--$

$(im\delta+Q^{p})\cap Q^{p-1}$

$=(3)dim\frac{(ker\delta+\overline{Q}^{p})+\overline{Q}^{p-1}}{(im\delta+\overline{Q}^{p})+\overline{Q}^{p-1}}$

$+dim\frac{(ker\delta+\overline{Q}^{p})\cap\overline{Q}^{p-1}}{(im\delta+\overline{Q}^{p})\cap\overline{Q}^{p-1}}$

$ker\delta+\overline{Q}^{p}$

$=(4)dim\overline{im\delta+\overline{Q}^{p}}$ .

Equality=(2) above is by induction and equation (6), equality $=(3)$ fol-

lows from $\overline{Q}^{p}\subseteq\overline{Q}^{p-1}$ , and equality $=(4)$ is a routine exercise in linear
algebra (or see [Du2, Lemma 5.1]). Q.E.D.

\S 4. Near-cones

Let $v$ be a vertex of a simplicial complex $K$ . Let

$de1_{K}v=de1v:=\{F\in K:v\cup F\not\in K\}$

be the deletion of $v$ (in $K$ ), let

$1k_{K}v=1kv:=\{F\in K:v\not\in F, v\cup\cdot F\in K\}$

be the link of $v$ (in $K$ ), and let the star of $v$ (in $K$ ) be

$v*1kv$ $=\{F\in K:v\cup F\in K\}$

the cone over $1kv$ . Then $K$ may be partitioned

$ K=(v*1kv)\cup\cdot$ delv.

The link and star of $v$ are subcomplexes of $K$ .

We will say $K$ is a near-cone with apex $v$ if every face $F$ in $de1_{K}$ $v$

has its entire boundary $\{F\backslash w:w\in F\}$ contained in $v*1k_{K}$ $v$ . In this
case, every face of $de1_{K}v$ is a facet ( $i.e.$ , is maximal in $K$ ), since $v*1kv$ is
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a subcomplex. If we contract the subcomplex $v*1kv$ to $v$ , what remains
is a sphere for every face in delv; therefore

(7) $\beta^{q}(K)=\#\{F\in de1_{K} v:dimF=q\}$

when $K$ is a near-cone with apex $v$ [$BK$ , Theorem 4.3].

Lemma 4.1. If $K$ is a near-cone with apex $v$ , then $\delta(1kv)=$

$\{\delta\overline{e}_{F}: F\in 1kv\}$ is a basis for $im\delta$ .

Proof. The members of $\delta(1kv)$ are linearly independent because if
$F\in 1kv$ then $\delta\overline{e}_{F}$ has nontrivial support on $\overline{e}_{v\cup F}.$ , but if $G\in 1kv$ and
$G\neq F$ , then $\delta\overline{e}_{G}$ has no support on $\overline{e}_{v\cup F}.$ . Thus for each member of
$\delta(1kv)$ there is a face on which it alone has nontrivial support; linear
independence follows immediately.

On the other hand, we will show that if $G\not\in 1kv$ , then $\delta\overline{e}_{G}$ is in the
span of $\delta(1kv)$ . If $G\in de1v$ , then $\delta\overline{e}_{G}=0$ , since $G$ is a facet. The only
possibility remaining is that $G=v\cup\cdot F$ for $F\in 1kv$ . In that case

$\delta\overline{e}_{F}=\pm\alpha_{1v}\overline{e}_{G}+F\cup\cdot w\in K\sum_{w\neq v}\pm\alpha_{1w}\overline{e}_{F\cup w}$

.

so

$0=\delta^{2}\overline{e}_{F}=\pm\alpha_{1v}\delta\overline{e}_{G}+F\cup w\in K\sum_{w\neq v}\pm\alpha_{1w}\delta\overline{e}_{F\cup w}$

,

and so

$\delta\overline{e}_{G}=F\cup\cdot w\in K\sum_{w\neq v}\pm(\frac{\alpha_{1w}}{\alpha_{1v}})\delta(F\cup\cdot w)$

.

Now, if $v\cup\cdot(F\cup\cdot w)\not\in K$ , then $F\cup\cdot w\in de1v$ , so $F\cup\cdot w$ is a facet and so
$\delta\overline{e}_{F\cup w}.=0$ . But if $v\cup\cdot(F\cup\cdot w)\in K$ , then $F\cup\cdot w\in 1kv$ , so $\delta\overline{e}_{F\cup w}.\in\delta(1kv)$ .

Thus $\delta\overline{e}_{G}$ is in the span of $\delta(1kv)$ . Q.E.D.

Lemma 4.2. If $K$ is a near-cone with apex $v$ , then

$ker\delta=\overline{D}+im\delta$ ,

where $D=de1_{K}v$ .

Proof. Since every face in $D=de1_{K}v$ is a facet, $\overline{D}\subseteq ker\delta$ , so
$\overline{D}+im\delta\subseteq ker\delta$ .

By equation (7),

$dim(ker\delta)-dim(im\delta)=\beta^{*}(K)=|delv|=dim\overline{D}$ .
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Thus

$dim(\overline{D}+im\delta)=dim\overline{D}+dim(im\delta)-dim(\overline{D}\cap im\delta)$

$=dim(ker\delta)-dim(\overline{D}\cap im\delta)$ .

So now it only remains to show that

(8) $\overline{D}\cap im\delta=0$ .

To this end, recall from the proof of Lemma 4.1 that each $\delta\overline{e}_{F}$ in
$\delta(1kv)$ is the unique element of $\delta(1kv)$ with nonzero support on $\overline{e}_{v\cup F}.$ ,

but now note further that $v\cup\cdot F\not\in de1v$ . Thus any nonzero element

of $im\delta=\delta\overline{(1k}v$ ) has nontrivial support outside delv, which establishes
equation (8), and hence the lemma. Q.E.D.

Lemma 4.3. If $K=L\cup\cdot Q$ is a partition of the faces of a near-
cone $K$ into two disjoint subsets, then

$dim\frac{(ker\delta+\overline{Q})_{q}}{(im\delta+\overline{Q})_{q}}=\#\{F\in L_{q}: v\not\in F, v\cup\cdot F\not\in K\}$ .

Proof. Again let $D=de1_{K}$ $v$ . Then

$ker\delta+\overline{Q}$ $\overline{D}+im\delta+\overline{Q}$

$\overline{im\delta+\overline{Q}}=\overline{im\delta+\overline{Q}}$

by Lemma 4.2

$\cong\frac{\overline{D}}{\overline{D}\cap(im\delta+\overline{Q})}$

$=\frac{\overline{D}}{\overline{D}\cap\overline{Q}}$ by equation (8)

$=\frac{\overline{D}}{D\overline{\cap}Q}$ .

Thus,

$dim\frac{(ker\delta+\overline{Q})_{q}}{(im\delta+\overline{Q})_{q}}=|D_{q}|-|(D\cap Q)_{q}|$

$=|de1_{K}v\cap L_{q}|$

$=\#\{F\in L_{q}: v\not\in F, v\cup\cdot F\not\in K\}$ .

Q.E.D.
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\S 5. Algebraic shifting

Algebraic shifting transforms a simplicial complex into a shifted sim-
plicial complex with many of the same algebraic properties of the orig-
inal complex. Algebraic shifting was introduced by Kalai in [Kal]; our
exposition is summarized from [BK] and included for completeness.

Definition. If $R=\{r_{0}<\cdots<r_{q}\}$ and $S=\{s_{0}<\cdots<s_{q}\}$ are
$(q+1)$ -subsets of $[n]=\{1, \ldots, n\}$ , then:

$\blacksquare R\leq_{P}S$ under the standard partial order if $r_{i}\leq s_{i}$ for all $i$ ; and
$oR<_{L}S$ under the lexicographic order if there is a $j$ such that

$r_{j}<s_{j}$ and $r_{i}=s_{i}$ for $i<j$ .

Lexicographic order is a total order which refines the partial order.

Definition. A collection $C$ of $(q+1)$ -subsets of $[n]$ is shifted if
$R\leq_{P}S$ and $S\in C$ together imply that $R$ $\in C$ . A simplicial complex $\triangle$

is shifted if the set of $q$-dimensional faces of $\triangle$ is shifted for every $q$ .

It is not hard to see that shifted simplicial complexes are near-cones
with apex 1.

Recall (see Section 2) that $\{\alpha_{ij}\}_{1\leq i,j\leq n}$ are $n^{2}$ transcendentals ad-
joined to our field of coefficients.

Definition (Kalai). For $1\leq i\leq n$ , let

$f_{i}=\sum_{j=1}^{n}\alpha_{ij}e_{j}$ ,

so $\{f_{1}, \ldots, f_{n}\}$ forms a “generic” basis of $\hat{k}$V. (Note this is consistent
with our definition of $f_{1}$ in Section 2.) Define $f_{S}.--f_{i_{0}}\wedge\cdots\wedge f_{i_{q}}$ for
$S=\{i_{0}<\cdots<i_{q}\}$ (and set $f_{\emptyset}=1$ ). Let

$\triangle(K, k):=\{S\subseteq[n]:\overline{f}_{S}\not\in span\{\overline{f}_{R}:R<_{L}S\}\}$

be the algebraically shifted complex obtained from $K$ ; we will write $\triangle(K)$

instead of $\triangle(K, k)$ when the field is understood to be $k$ . In other words,
the $(q+1)$ -subsets of $\triangle(K)$ can be chosen by listing all the $(q+1)$ -subsets

of $[n]$ in lexicographic order and omitting those that are in the span of
earlier subsets on the list, modulo $I_{K}$ and with respect to the $f$-basis.

The algebraically shifted complex $\triangle(K)$ is (as its name suggests)
shifted, and is independent of the numbering of the vertices of $K[BK$ ,

Theorem 3. 1].

Recall from Section 1 that if $L\subseteq K$ is a pair of simplicial com-
plexes, then $\triangle(L)\subseteq\triangle(K)$ . Thus for $Q=K\backslash L$ , we may define $\triangle(Q)=$

$\triangle(K)\backslash \triangle(L)$ .
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Lemma 5.1. Let $L\subseteq K$ be a pair of simplicial complexes and
$Q=K\backslash L$ . Then

$dim\frac{(ker\delta+\overline{Q})_{q}}{(im\delta+\overline{Q})_{q}}\geq\#\{F\in\triangle(L)_{q}: 1\not\in F, 1\cup\cdot F\not\in\triangle(K)\}$ .

Proof. This is implicit in the proof of [Du2, Theorem 5.2]. As it is
not stated there explicitly, we reproduce here some of the details. From
[Du2, Lemma 4.4]

$dim(im\delta\cap\overline{Q})_{q+1}\leq\#\{F\in\triangle(K)_{q}: 1\not\in F, 1\cup\cdot F\in\triangle(Q)\}$ ,

and from [Du2, Lemma 4.5]

$dim(\delta\overline{Q})_{q+1}\geq\#\{F\in\triangle(Q)_{q}: 1\not\in F, 1\cup\cdot F\in\triangle(Q)\}$ .

Then, since $L=K\backslash Q$ ,

$dim\frac{(im\delta\cap\overline{Q})_{q+1}}{(\delta\overline{Q})_{q+1}}\leq\#\{F\in\triangle(L)_{q}: 1\not\in F, 1\cup\cdot F\in\triangle(Q)\}$ .

By equations (1) and (7), respectively,

$\beta^{q}(L)=\beta^{q}(\triangle(L))=\#\{F\in\triangle(L)_{q}: 1\not\in F, 1\cup\cdot F\not\in\triangle(L)\}$ .

But, with the notation $\delta^{-1}\overline{Q}:=\{\overline{x}\in\Lambda[K]:\delta\overline{x}\in\overline{Q}\}$ , we also have

$\beta^{q}(L)=dim\underline{(\delta^{-1}\overline{Q})_{q}}-$

by [Dul, Lemma 3.3]
$(im\delta+Q)_{q}$

$=dim\underline{(\delta^{-1}\overline{Q})_{q}}-+dim\underline{(ker\delta+\overline{Q})_{q}}-$

$(ker\delta+Q)_{q}$ $(im\delta+Q)_{q}$

$=dim\frac{(im\delta\cap\overline{Q})_{q+1}}{(\delta\overline{Q})_{q+1}}+dim\frac{(ker\delta+\overline{Q})_{q}}{(im\delta+\overline{Q})_{q}}$ by [Dul, Lemma 3.6],

and
$sodim\underline{(ker\delta+\overline{Q})_{q}}-=\beta^{q}(L)-dim\underline{(im\delta\bigcap_{-}\overline{Q})_{q+1}}$

$(im\delta+Q)_{q}$ $(\delta Q)_{q+1}$

$\geq\#\{F\in\triangle(L)_{q}: 1\not\in F, 1\cup\cdot F\not\in\triangle(L)\}$

$-\#\{F\in\triangle(L)_{q}: 1\not\in F, 1\cup\cdot F\in\triangle(Q)\}$

$=\#\{F\in\triangle(L)_{q}: 1\not\in F, 1\cup\cdot F\not\in\triangle(K)\}$ .

Q.E.D.
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\S 6. Proof of Main Theorem

Given a filtration $\mathcal{K}$ of a simplicial complex $K$ , let $E_{r}^{s,t}$ refer to the
terms of the corresponding spectral sequence given in Section 3, and let

$e^{s}’{}^{t}(\mathcal{K})=dimE_{\infty}^{s}’{}^{t}(\mathcal{K})$ .

Theorem 6.1. For all $p$ , $q$ ,

$e^{1,q-1}(\mathcal{K})+\cdots+e^{p,q-p}(\mathcal{K})\geq e^{1,q-1}(\triangle(\mathcal{K}))+\cdots+e^{p,q-p}(\triangle(\mathcal{K}))$ .

Proof. For $0\leq s\leq m$ , let $\Sigma^{s}=\triangle(K)\backslash \triangle(K_{s})$ , so

$\Lambda[\triangle(K)]=\overline{\Sigma}^{0}\supseteq\overline{\Sigma}^{1}\supseteq\cdots\supseteq\overline{\Sigma}^{m}=I_{\triangle(K)}$

is the filtration of ideals of $\Lambda[\triangle(K)]$ corresponding to the filtration $\triangle(\mathcal{K})$ .

By Lemmas 3.1 and 5.1,

$e^{1,q-1}(\mathcal{K})+\cdots+e^{p,q-p}(\mathcal{K})=dim\frac{(ker\delta_{K}+\overline{Q}^{p})_{q}}{(im\delta_{K}+\overline{Q}^{p})_{q}}$

$\geq\#\{F\in\triangle(K_{p})_{q}: 1\not\in F, 1\cup\cdot F\not\in\triangle(K)\}$ .

On the other hand, because $\triangle(K)$ is shifted and hence a near-cone,
Lemmas 3.1 and 4.3 give

$e^{1,q-1}(\triangle(\mathcal{K}))+\cdots+e^{p,q-p}(\triangle(\mathcal{K}))=dim\frac{(ker\delta_{\triangle(K)}+\overline{\Sigma}^{p})_{q}}{(im\delta_{\triangle(K)}+\overline{\Sigma}p)_{q}}$

$=\#\{F\in\triangle(K_{p})_{q}: 1\not\in F, 1\cup\cdot F\not\in\triangle(K)\}$ .

Q.E.D.

Note that $e^{1,q-1}(\mathcal{K})+\cdots+e^{m,q-m}(\mathcal{K})=\beta^{q}(K)$ , which, by equation

(1) is unchanged under algebraic shifting. Thus, Theorem 6.1 says that
algebraic shifting puts less of the fixed sum of the $e^{s,q-s}$ ’s into the ear-
lier part of the filtration, and hence puts more into the later part. In
particular,

$e^{p+1,q-p-1}(\mathcal{K})+\cdots+e^{m,q-m}(\mathcal{K})$

$\leq e^{p+1,q-p-1}(\triangle(\mathcal{K}))+\cdots+e^{m,q-m}(\triangle(\mathcal{K}))$ .

Acknowledgements. Eric Babson initially suggested this prob-
lem to me, and helped me immeasurably with spectral sequences. Tim
Chow’s informal lecture notes “ You could have invented spectral se-
quences” were also invaluable.
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Coordinate Subspace Arrangements and Monomial
Ideals

Vesselin Gasharov, Irena Peeva and Volkmar Welker

Abstract.

We relate the $(co)homological$ properties of real coordinate sub-
space arrangements and of monomial ideals.

\S 1. Introduction

In [PRW] we describe the cohomological properties of a real diag-
onal subspace arrangement via a minimal free resolution over a certain
quotient of a polynomial ring by a monomial ideal. Here we relate the
$(co)homological$ properties of two objects: square-free monomial ideals
and real coordinate subspace arrangements. The interest in studying
such arrangements comes from the facts that they provide examples
of arbitrary torsion in the cohomology of the complement of the ar-
rangement [Bj] and the complements provide examples of manifolds with
properties similar to toric varieties [DJ], and toric varieties as quotients
(see for example [BCo]). A comparison of our formula [GPW, The-
orem 2.1] for monomial ideals with the Goresky-MacPherson Formula
[$GM$ , III.1.5. Theorem $A$ ] for the cohomology of the complement of a
subspace arrangement leads to Theorem 3.1. This result states that the
$i$-dimensional cohomology of the complement of a real coordinate sub-
space arrangement is computed by the Betti numbers in the $i$-strand in
the minimal free resolution of a certain square-free monomial ideal. In
Corollaries 3.3 and 3.4 we show how this reveals an equivalence of re-
sults, which on the one hand were proved for subspace arrangements by
Bj\"orner [Bj] and on the other hand were recently proved for monomial
ideals by Eagon-Reiner and Terai [ER, Te]: Very recently Terai obtained

Received September 1, 2000.
2000 AMS Subject Classification: $13D02$ .



66 V. Gasharov, I. Peeva and V. Welker

a formula which expresses the regularity of a square-free monomial ideal
in terms of the projective dimension of another monomial ideal and
which immediately implies that the regularity of a monomial ideal is
bounded by its arithmetic degree; Corollary 3.3 shows that Terai’s for-
mula is equivalent to Bj\"orner’s result [Bj, Theorem 11.2.1(ii)].

Motivated by our work Babson-Chan [BCh] proved that the coho-
mology algebra of the complement of the complexification of a coordinate
subspace arrangement is isomorphic to the $Tor$-algebra of a monomial
ideal, see Theorem 3.6.

Acknowledgments. Many thanks go to Vic Reiner for the dis-
cussions. Irena Peeva was partially supported by NSF, and Volkmar
Welker was supported by Deutsche Forschungsgemeinschaft (DFG).

\S 2. Multigraded Betti numbers

In this section we recall how to obtain the multigraded Betti num-
bers of a monomial ideal using the $lcm$-lattice. Consider the polynomial
ring $S=k[x_{1}, \ldots, x_{n}]$ over a field $k$ as $N^{n}$-graded by letting $deg(x_{i})$ be
the $i^{th}$ standard basis vector in $R^{n}$ . Let I be a monomial ideal minimally
generated by monomials $m_{1}$ , $\ldots$ , $m_{d}$ . The ideal I and the minimal free
resolution of $S/I$ over $S$ are $N^{n}$ -graded. Therefore we have $N^{n}$-graded
Betti numbers

$b_{i,3C^{\alpha}}(S/I)=dim_{k}Tor_{i,\alpha}^{S}(S/I, k)$

for $i\geq 0$ , $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in N^{n}$ and $x^{\alpha}=x_{1}^{\alpha_{1}}\cdots x_{7l}^{\alpha_{n}}$ . The $lcm$ lattice
$L_{I}$ of I is the partially ordered set on the set of least common multiples
$1cm(B)$ of all subsets $B\subseteq\{m_{1}, \ldots, m_{r}\}$ ordered by divisibility. Clearly,
$L_{I}$ is a lattice (i.e., infima and suprema exist) with $1=lcm(\emptyset)$ as its
minimal element and $1cm(m_{1}, \ldots, m_{r})$ as its maximal element. Taylor’s
resolution (cf. [Ei, p. 439]) shows that $b_{i,m}(S/I)=0$ if $m\not\in L_{I}$ .

Let $L$ be a lattice with minimal element $\hat{0}$ and $p\in L$ . We write
$(\hat{0},p)_{L}$ for the open interval $\{q\in L|\hat{0}<q<p\}$ in $L$ . In particular, for
$m\in L_{I}$ we denote by $(\hat{0}, m)_{L_{I}}$ the open lower interval in $L_{I}$ below $m$ .

Theorem 2.1([GPW, Theorem 2.1]). For $i\geq 1$ and $m\in L_{I}$ we
have

$b_{i,m}(S/I)=dim\overline{H}_{i-2}((\hat{0}, m)_{L_{I}}$ ; $k$).
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We present a short application of the above result. We apply The-
orem 2.1 to a class of specific monomial ideals similar to those studied
in [BH, Section 6]. If I is square-free, then $L_{I}$ can be identified with
a join-sublattice of the Boolean lattice on an $n$-element set generated
by the supports of the monomials generating $I$ . Let $M_{n,\ell}$ be the mono-
mial ideal generated by the monomials with support $[i, i+\ell-1]$ for
$i=1$ , $\ldots$ , $n-\ell+1$ . Then $L_{M_{n,\ell}}$ is isomorphic to the interval gen-
erated sublattice of the Boolean lattice generated by $[i, i+\ell-1]$ for
$i=1$ , $\ldots$ , $n-\ell+1$ . By Bj\"orner-Wachs [$BW$ , Corollary 8.4] we get

$\triangle(L_{M_{n,\ell}}^{o})\simeq\{$

$S^{2n/(\ell+1)-2}$ if $n\equiv 0(mod \ell+1)$

$S^{2(n+1)/(\ell+1)-3}’$
, if $n\equiv-1(mod \ell+1)$

$pt.$ , otherwise.

If $m\in L_{M_{n,\ell}}$ , then the support set of $m$ is the disjoint union of
intervals $A_{i}=[j_{i}, l_{i}]$ , $i=1$ , $\ldots$ , $r$ with $l_{i}+2\leq j_{i+1}$ . For $n_{i}=l_{i}-j_{i}+1$

we then have $(\hat{0}, m)_{L_{M_{n,\ell}}}\cong(L_{n_{1},\ell}\times\cdots\times L_{n_{q},\ell})^{o}$ . Set

$p=2+\sum_{n_{i}\equiv 0mod\ell+1}(2n/(\ell+1)-2)$

$+\sum_{n_{i}\equiv-1mod\ell+1}(2(n+1)/(\ell+1)-2)+2(\ell-1)$
.

We conclude that $b_{i,m}(S/M_{n,\ell})=0$ if and only if there exists a $j$ such
that $n_{j}\not\equiv 0,$ -1 $(mod \ell+1)$ or $i\neq p$ ; otherwise $b_{i,m}=1$ .

Proposition 2.2. $Lei$ $m=x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}$ be a monomial in $L_{I}$ . For
$m’=x_{1}^{\beta_{1}}\cdots x_{n}^{\beta_{n}}$ strictly dividing $m$ we define $ s(m’)=\{i|\alpha_{i}=\beta_{i}\}\subseteq$

$[n]$ . Let $T(m)$ be the poset of subsets of $[n]$ obtained from $(\hat{0}, m)_{L_{I}}$ by
applying the map $s$ . Then
(a) $(\underline{\hat{0}}, m)_{L_{I}}$ and $T(m)$ are homotopy equivalent.

(b) $H_{i}((\hat{0}, m)_{L_{I}}$ ; $k$ ) $=0$ for $i>n-2$ .

(c) Suppose that there exists a minimal monomial generator $g$ of I such

that for each $1\leq i\leq n$ we have that $x_{i}^{p}$ divides $g$ implies that $x_{i}^{p+1}$

divides $m$ . Then $\overline{H}_{\dot{0}}$ $((\hat{0}, m)_{L_{I}}$ ; $k$ ) $=0$ for $i\geq 0$ .

In view of Theorem 2.1, we see that Proposition 2.2(b) gives a com-
binatorial proof of Hilbert’s Syzygy Theorem for monomial ideals (cf.
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[Ei, Corollary 19.7] $)$ , and Proposition 2.2(c) is an analogue to [BPS,
Theorem 3.2].

Proof. Let $A\in T(m)$ be a set. Then the lower fiber $ s^{-1}(\{B\in$

$T(m)|B\subseteq A\})$ has the $lcm$ of all minimal generators $m’$ of I with
$s(m’)\subseteq A$ as its maximal element. In particular, the lower fiber is
contractible. Applying Quillen’s Fiber Lemma [Bj, Theorem 10.5] we
conclude that $(\hat{0}, m)_{L_{I}}$ and $T(m)$ are homotopy equivalent. This proves
(a).

The claim (b) holds since the order complex $\triangle(T(m))$ has dimension
$\leq n-2$ . Finally, note that under the assumption of (c), $T(m)$ has the
empty set $\emptyset=s(g)$ as its least element and therefore is contractible. $\square $

\S 3. (Co)homology of real coordinate subspace arrangements
and square-free monomial ideals

In this section we relate the $(co)homological$ properties of real coor-
dinate subspace arrangements and of square-free monomial ideals.

Let $\triangle$ be a simplicial complex on the vertex set $[n]$ and $F(\triangle)$ the set
of facets (i.e., maximal faces) of $\triangle$ . Fix an orthonormal basis $e_{1}$ , $\ldots$ , $e_{n}$

of $R^{n}$ . The real coordinate subspace arrangement defined by $\triangle$ is

$\mathcal{K}_{\triangle}=\{span(e_{j}|j\in\sigma)|\sigma\in F(\triangle)\}$ .

The union $\mathcal{V}_{\triangle}=$ $\cup$ $span(e_{j}|j\in\sigma)$ is a real algebraic variety. We
$\sigma\in F(\triangle)$

denote by $\hat{\mathcal{V}}_{\triangle}$ the one-point compactification of $\mathcal{V}_{\triangle}$ inside the unit n-
sphere (which is the one-point compactification of $R^{n}$ ) and by $\lambda\Lambda_{\triangle}=$

$R^{n}\backslash \mathcal{K}_{\triangle}$ the set-theoretic complement of the arrangement in $R^{n}$ . Fur-
thermore, we denote by $\mathcal{L}_{\triangle}$ the intersection lattice of the arrangement
$\mathcal{K}_{\triangle}$ ; it consists of all intersections $\{\bigcap_{V\in B}V|B\subseteq \mathcal{K}_{\triangle}\}$ ordered by
reversed inclusion. In particular, the intersection corresponding to $B$ $=$

$\mathcal{K}_{\triangle}$ serves as the maximal element and the intersection corresponding
to $B$ $=\emptyset$ is regarded as $R^{n}$ and serves as the minimal element in $\mathcal{L}_{\triangle}$ .

On the other hand consider the polynomial ring $S=k[x_{1}, \ldots, x_{n}]$

over a field $k$ . Let I be a monomial ideal minimally generated by mono-
mials $m_{1}$ , $\ldots$ , $m_{d}$ . The role of the intersection lattice is played by the
$lcm$ lattice $L_{I}$ with elements the least common multiples of $m_{1}$ , $\ldots$ , $m_{d}$

ordered by divisibility. We define the total degree of $x_{i}$ by tdeg(xj)=1

for 1 $\leq i\leq n$ . The $N$-graded Betti numbers lead to bigraded Betti
numbers $b_{i,j}(S/I)=dim_{k}Tor_{i,j}^{S}(S/I, k)=\sum_{m\in L_{I}}tdeg(m)=jb_{i,m}(S/I)$ . The
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total Betti numbers are defined by $b_{i}(S/I)=\sum_{j\geq 0}b_{i,j}(S/I)$ for $i\geq 0$ .

The complexity of the resolution is measured by its length $pd(S/I)=$

$\max\{i|b_{\dot{x}}(S/I)\neq 0\}$ and also by the invariant $reg(S/I)=\max\{j-$

$i|b_{i,j}(S/I)\neq 0\}$ , called the regularity.
Let $\triangle^{v}=\{A|[n]\backslash A\not\in\triangle\}$ be the Alexander dual complex of $\triangle$ .

The Stanley-Reisner ideal of $\triangle^{\vee}$ is

$ I_{\triangle}\vee$ $=$
$(\{\frac{x_{1}x_{n}}{x_{j_{1}}x_{j_{p}}}\cdots\cdots|\{j_{1}\ldots, j_{p}\}\in\triangle\})$

$=$ ({monomial $t|gcd$ ( $t$ , $t’)\neq 1$ for each monomial $t’\in I_{\triangle}\}$ ).

Note that we have

$I_{\triangle}\vee=$ ( $\{x_{j_{1}}\cdots x_{j_{p}}|x_{j_{1}}=\cdots=x_{j_{p}}=0$ defines a subspace in $\mathcal{K}_{\triangle}\}$ ).

Theorem 3.1. Let $\triangle$ be a simplicial complex on the vertex set
$[n]$ , $\mathcal{K}_{\triangle}$ the real coordinate subspace arrangement defined by $\triangle$ , and $ I_{\triangle}\vee$

the Stanley-Reisner monomial ideal associated to $\triangle^{\vee}$ . We have

$dim\overline{H}_{n-1-\dot{x}}(\hat{\mathcal{V}}_{\triangle;}k)=dim\overline{H}^{i}(\mathcal{M}_{\triangle;}k)=\sum_{j\geq 0}b_{j,i+j}(S/I_{\triangle}\vee)$ for $i\geq 0$ ,

$\max\{j|\overline{H}^{j}(\mathcal{M}_{\triangle;}k)\neq 0\}=reg(S/I_{\triangle}\vee)$ .

Thus $dim\overline{H}^{i}(\Lambda 4_{\triangle;}k)$ picks up the cohomology of the $i$-strand in
the minimal free resolution of $ S/I_{\triangle}\vee$ . Therefore, the dimensions of the
cohomology groups can be computed in concrete examples by the com-
puter algebra system Macaulay 2 [GS] by computing the bigraded Betti
numbers of $S/IAV$ and then applying Theorem 3.1. Also, Theorem 3.1

yields $dim\overline{H}^{*}(\lambda\Lambda_{\triangle;}k)$ for some special types of arrangements when ex-
plicit formulas for the Betti numbers of the corresponding monomial
ideals are known; for example, a result of Bayer-Peeva-Sturmfels gives
the Betti numbers for polarizations of generic monomial ideals and a
result of Aramova-Herzog-Hibi provides the Betti numbers for weakly
stable arrangements.

Proof of Theorem 3.1. For a lattice $L$ with minimal element $\hat{0}$

we write $L_{>\hat{0}}$ for the poset obtained from $L$ by removing the minimal

element $\hat{0}$ .

The equalities $dim\overline{H}_{n-1-i}(\hat{\mathcal{V}}_{\triangle;}k)=dim\overline{H}^{i}(A4_{\triangle;}k)$ are well known
and are proved by Alexander duality. Applying a formula of Goresky-
MacPherson [$GM$ , III. 1.5. Theorem $A$ ] to the intersection lattice $\mathcal{L}_{\triangle}$ of



70 V. Gasharov, I. Peeva and V. Welker

$\mathcal{K}_{\triangle}$ we get

$dim\overline{H}^{i}(\mathcal{M}_{\triangle;}k)=$ $\sum$ $dim\overline{H}_{codim(m)-2-i}((\hat{0}, m)_{\mathcal{L}_{\triangle}}$ ; $k$ ).
$m\in(\mathcal{L}_{\triangle})_{>\hat{0}}$

Note that $\mathcal{L}_{\triangle}$ is the lattice of all non-empty intersections of facets of
$\triangle$ ordered by reversed inclusion and enlarged by an additional minimal
element $\hat{0}$ and maximal element $\hat{1}$ . By Proposition 2.3, the facets of
$\triangle$ correspond bijectively to the minimal monomial generators of $ I_{\triangle}\vee$ .

Furthermore, if $\sigma_{1}$ , $\ldots$ , $\sigma_{r}$ are facets of $\triangle$ , then we identify

(3.2)
$1\leq i\leq r\cap\sigma_{i}\in \mathcal{L}_{\triangle}$

– $lcm(\frac{x_{1}x_{n}}{x_{\sigma_{i}}}\cdots|1\leq i\leq r)\in L_{I_{\triangle}}\vee\cdot$

Thus $\mathcal{L}_{\triangle}$ coincides with the $lcm$ lattice $L_{I_{\triangle}}\vee of$ the monomial ideal $ I_{\triangle}\vee$ .

Also, (3.2) yields that

$codim$
$( _{1\leq}\bigcap_{i\leq r}\mathcal{K}_{\sigma_{i}})=n-|$

$\cap$ $\sigma_{i}|$

$=|supp(1cm(\frac{x_{1}x_{n}}{x_{\sigma_{i}}}1\leq i\leq r\cdots|1\leq i\leq r))|$ .

Therefore, $dim\overline{H}_{codim(m)-2-i}$ $((\hat{0}, m)c_{\triangle}$ ; $k$ ) $=\overline{H}_{tdeg(m)-2-i}((\hat{0}, m)_{L_{I_{\triangle}}}\vee$ ;
$k)$ , where $m$ is considered as an element in $(\mathcal{L}_{\triangle})_{>\hat{0}}$ on the left-hand
side of the formula and $m$ is considered as an element in $(L_{I_{\triangle}}\vee)_{>\hat{0}}$ on
the $\underline{ri}ght$-hand side of the formula. By Theorem 2.1 there are equalities
$dimH_{j-2}((\hat{0}, m)_{L_{T_{\triangle}}}\vee;k)=b_{j,m}(S/I_{\triangle}\vee)$ for $j\geq 1$ ; also note that $b_{0,m}=$

$0$ for $m\in(L_{I_{\triangle}}\vee)_{>\hat{0}}$ . Combining this with the Goresky-MacPherson
formula above we obtain the equalities

$dim\overline{H}^{i}(\lambda 4_{\triangle;}k)=m\in(L_{I_{\triangle}})_{>\overline{o}}\sum_{\vee}b_{tdeg(m)-i,m}(S/I_{\triangle}\vee)$

for $i\geq 0$ . Taylor’s (possibly non-minimal) resolution of $S/I_{\triangle}\vee(cf$ . [Ei,
p. 439]) implies that $b_{i,m}(S/I_{\triangle}\vee)=0$ if $ m\not\in L_{I_{\triangle}}\vee\cdot$ Therefore,

$m\in(L_{I_{\triangle}})_{>\hat{o}}\sum_{\vee}b_{tdeg(m)-i,m}(S/I_{\triangle}\vee)=\sum_{j\geq 0}b_{j,i+j}(S/I_{\triangle}\vee)$
.

Thus $dim\overline{H}^{i}(\Lambda 4_{\triangle;}k)=\sum_{j\geq 0}b_{j,i+j}(S/I_{\triangle}\vee)$ as desired. The statement
about the regularity of $S/I_{\triangle}\vee fo11ows$ immediately. $\square $

The proof of Theorem 3.1 is based on an identification of the in-
tersection lattice of an arrangement with the $lcm$-lattice of a mono-
mial ideal, and then comparison of Theorem 2.1 with the Goresky-
MacPherson Formula. The important point is that the codimension
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of an element in the intersection lattice equals the total degree of this
element in the $lcm$-lattice. Such a construction can be also built for
arrangements other than the real coordinate subspace arrangements.

$Corolla\underline{r}y3.3$ . The following two properties are equivalent:

(a) $\min\{i|H_{i}(\hat{\mathcal{V}}_{\triangle;}k)\neq 0\}=depth(S/I_{\triangle})$ ;

(b) $pd(S/I_{\triangle})-1=reg(S/I_{\triangle}\vee)$ .

Property (a) is proved to hold by Bj\"orner [Bj, Theorem 11.2.1(ii)].
Property (b) is proved by Terai [Te].

Proof. On the one hand we have the following equalities:

$reg(S/I_{\triangle}\vee)$ $=$ $\max\{i|\overline{H}^{i}(\Lambda 4_{\triangle;}k)\neq 0\}$

$=$ $\max\{i|\overline{H}_{n-1-i}(\hat{\mathcal{V}}_{\triangle;}k)\neq 0\}$

$=$ $ n-1-\min$ $\{j|\overline{H}_{j}(\hat{\mathcal{V}}_{\triangle;}k)\neq 0\}$ .

On the other hand, the Auslander-Buchsbaum equality implies that

$pd(S/I_{\triangle}\vee)-1=n-1-$ depth(S/I\triangle ).

Therefore, (a) and (b) are equivalent. $\square $

A particular case of Corollary 3.3 says that the following two prop-
erties are equivalent:

(a) $\triangle$ is Cohen-Macaulay if and only if $dim\overline{H}_{i}(\hat{\mathcal{V}}_{\triangle;}k)=0$ for all $ i\leq$

$dim(\triangle)$ ;
(b) $\triangle$ is Cohen-Macaulay if and only if the minimal free resolution of
$/Av$ is linear.

Property (a) is proved to hold by Bj\"orner [Bj, Theorem 11.2.2].
Property (b) is proved to hold by Eagon and Reiner [ER]; it provides a
topological characterization of the linearity of a monomial resolution.

$Corollar\underline{y}3.4$ . The following two properties are equivalent:

(a) $\max\{i|H_{i}(\hat{\mathcal{V}}_{\triangle;}k)\neq 0\}=dim(S/I_{\triangle})$ ;

(b) $\min$ { $i|b_{j,j+i}\neq 0$ for some $j$ } is the $\min?.mal$ degree of a minimal
monomial generator of $7AV$ minus one.

Property (a) holds by Bj\"orner [Bj, Theorem 11.2.1 (i)]. It is easy to
check that Property (b) holds.

Proof. On the one hand, we have the following equalities:

$\min$ { $i|b_{j,j+i}\neq 0$ for some $j$ } $=$

$=$

$\min\{i|\overline{H}^{i}(\Lambda 4_{\triangle;}k)\neq 0\}$

$\min\{i|\overline{H}_{n-1-i}(\hat{\mathcal{V}}_{\triangle;}k)\neq 0\}$

$ n-1-\max$ $\{j|\overline{H}_{j}(\hat{\mathcal{V}}_{\triangle;}k)\neq 0\}$ .
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On the other hand we have that

$\min$ { degree of a minimal monomial generator of $ I_{\triangle}\vee$ } $-1$

$=$ $ n-\max$ { $|\sigma||\sigma$ is a facet of $\triangle$ } $-1$

$=$ n–l-dim(S/I\triangle ).

Therefore, (a) and (b) are equivalent. $\square $

Remark 3.5 (Complexification). Fix a standard basis $f_{1}$ , $\ldots$ , $f_{n}$

of $C^{n}$ . The complexification of $\mathcal{K}_{\triangle}$ is the complex coordinate subspace
arrangement

$\mathcal{K}_{\triangle}\otimes C=\{span(f_{j}|j\in\sigma)|\sigma\in F(\triangle)\}$ .

Denote $\mathcal{M}_{\triangle}\otimes C=C^{n}\backslash (\mathcal{K}_{\triangle}\otimes C)$ . The algebraic analogue of this
complexification is the ring $S.2=k[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}]$ and the ideal
$I_{\triangle}^{2}.\vee=(x_{i_{1}}\cdots x_{i_{s}}y_{i_{1}}\cdots y_{i_{\epsilon}}|x_{i_{1}}\cdots x_{i_{s}}$ is a minimal monomial generator
of $ I_{\triangle}\vee$ ) Theorem 3.1 shows that

$\overline{H}^{i}(\lambda 4_{\triangle}\otimes C;k)\cong\oplus Tor_{j,i+j}^{S^{2}}j\geq 0.(S.2/I_{\triangle}^{2}.\vee, k)$
.

The ideal $I_{\triangle}^{2}.\vee can$ be depolarized by setting $x_{i}=y_{i}$ for $1\leq i\leq n$ ; in
this way, one obtains a version of the above formula over the ring $S$ .

Motivated by our work, Babson and Chan proved the following result:

Theorem 3.6 ([BCh]). The rings $\overline{H}(\lambda 4_{\triangle}*\otimes C;k)$ and
$Tor_{**}^{S^{2}},\cdot(S.2/I_{\triangle^{v}}^{2}., k)$ are isomorphic if the characteristic of $k$ is not 2.

This theorem shows that in the case of a complex coordinate sub-
space arrangement, the Koszul complex computing $Tor_{**}^{S},(S/I, k)$ pro-
vides a much simpler model for the cohomology ring than the models in
[DP] and [Yu].

An analogue of Theorem 3.6 is not valid for the structure of the
cohomology algebra of the complement of a real coordinate subspace

arrangement. Despite the isomorphism of vector spaces $\overline{H}^{i}(\lambda n_{\triangle} ; k)\cong$

$\oplus_{j\geq 0}Tor_{j,i+j}^{S}(S/I_{\triangle}\vee, k)$ given by Theorem 3.1, in general the algebras
$H^{*}(\lambda 4_{\triangle;}k)$ and $Tor_{**}^{S},(S/I_{\triangle}\vee, k)$ are not isomorphic. This is easily seen

when $I_{\triangle}\vee=(x_{1}, \ldots, x_{n})$ ; in this case $Tor_{**}^{S},(S/I_{\triangle}\vee, k)$ is an exterior

algebra, while $H^{*}(\mathcal{M}_{\triangle;}k)$ is an algebra generated by commuting idem-
potents.
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Corollary 3.7. Suppose that $\triangle$ has $d$ facets. Then

$\sum_{i\geq 0}dim\overline{H}^{?}.(\lambda\Lambda_{\triangle;}k)=\sum_{i\geq 0}b_{i}(S/I_{\triangle}\vee)\leq\sum_{i\geq 0}c_{i}(n, d)$
,

where $c_{i}(n, d)$ is the maximum number of $i$ -dimensional faces of an n-

dimensional polytope having $d$ vertices.

There are explicit formulas for $c_{?}.(n, d)$ (see e.g. [Zi, Corollary 8.28])
and the cyclic $n$ polytope $C(n, d)$ with $d$ vertices achieves the numbers
$c_{i}(n, d)$ .

Proof. Theorem 3.1 implies that the equality in Corollary 3.7 holds.
The inequality follows from [BPS, Theorem 6.3]. $\square $
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Generic Initial Ideals and Graded Betti Numbers

J\"urgen Herzog

\S Introduction

The purpose of this article is to give the algebraic background of the
shifting theory developed by Kalai [26], [27]. The reader who is inter-
ested in the combinatorial aspects of the theory should consult Kalai’s
survey paper [26] and his article in this volume.

In the present article we are mainly interested in the behaviour of
graded Betti numbers under the operation of algebraic shifting. Alge-
braic shifting is intimately related to the theory of generic initial ideals.
In Section 1 we recall some of the basic facts of this theory. The next
section is devoted to the study of stable and strongly stable ideals since
generic initial ideals are of this kind, provided the base field is of char-
acteristic 0. In Section 3 we describe the Betti numbers of stable and
squarefree stable ideals, and in Section 4 the Cartan complex which pro-
vides the graded minimal free resolution of the residue class field of the
exterior algebra. For the theory of squarefree monomial ideals, which is
significant for combinatorial applications, it is necessary to study graded
ideals, graded modules and their resolutions over the exterior algebra.
In Section 5 we explain how the graded Betti numbers of squarefree
monomial ideals over the exterior and symmetric algebra are related.
The following two sections are devoted to the proof of a theorem on ex-
tremal Betti numbers by Bayer, Charalambous and S. Popescu [12], as
well as to the corresponding theorem in the squarefree case by Aramova
and the author [4]. In Section 8 we describe various shifting operators
and apply the homological theory of the previous sections. Symmetric
algebraic shifting and a theorem of Bj\"orner and Kalai [15] are applied
in Section 9 in order to deduce a theorem on superextremal Betti num-
bers. In the final section extremality properties of lexsegment ideals are
briefly sketched.

Received May 15, 2000.



76 J. Herzog

Not all proofs could be included. But in most cases an outline of
the proofs or precise references to the original papers are given.

Several unsolved problems and conjectures are included. The author
hopes that this survey inspires the readers to study and solve some of
the open problems.

\S 1. Generic initial ideals

Most of the content of this section can be found in the book of
Eisenbud [16] or the lecture notes by M. Green [20]. We will therefore
omit almost all of the proofs.

Let $K$ be an infinite field, and $S=K[x_{1}, \ldots, x_{n}]$ the polynomial
ring over $K$ . The set of monomials of degree $d$ in $S$ will be denoted by
$M_{d}$ .

We will fix a term order $<satisfying$ $x_{1}>x_{2}>\ldots>x_{n}$ . Let $I$ $\subset S$

be an ideal. Then we denote by $in_{<}(I)$ (or simply by in(/)) the initial
ideal of $I$ , that is, the ideal which is generated by all initial terms of $I$ .

Let $GL(n)$ denote the general linear group with coefficients in $K$ .

Any $\varphi=(a_{ij})\in GL(n)$ induces an automorphism of the graded K-
algebra $S$ , again denoted by $\varphi$ , namely

$\varphi(f(x_{1}, \ldots, x_{n}))=f(\sum_{i=1}^{n}a_{i1}x_{i}, \ldots, \sum_{i=1}^{n}a_{in}x_{i})$ for all $f\in S$ .

One basic fact in the theory of generic initial ideals is the following

Theorem 1.1 (Galligo, Bayer and Stillman). Let $I$
$\subset$ $S$ be $a$

graded ideal. Then there is a nonempty Zariski open set $U\subseteq GL(n)$

such that in(\varphi (I)) does not depend on $\varphi\in U$ . Moreover, $U$ meets non
trivially the Borel subgroup of $GL(n)$ consisting of all upper triangular
invertible matrices.

For $\varphi\in U$ the monomial ideal in(\varphi (I)) is called the generic initial
ideal of $I$ , and will be denoted Gin(/).

For the details of the proof of Theorem 1.1 we refer to [16, Theo-
rem 15.18]. Each homogeneous component $Gin(I)_{d}$ of Gin(/) may be
computed as follows: consider a transcendental field extension $L/K$ ,
where $L$ has the transcendental basis $\{a_{ij} : i, j=1, \ldots, n, i\leq j\}$ . Let
$S’=L[x_{1}, \ldots, x_{n}]$ , $I’=\varphi(I)S’$ where $\varphi(x_{j})=\sum_{i=1}^{j}a_{ij}x_{i}$ for $j$ , $\ldots$ , $n$ .
Choose an $L$ basis $f_{1}$ , $\ldots$ , $f_{m}$ of $I_{d}’$ . Each of the $f_{i}$ is a linear combination
of monomials $u\in M_{d}$ whose coefficients are (homogeneous) polynomials
in $K[a_{ij} : i, j=1, \ldots, n]$ (of degree $d$), say, $f_{i}=\sum_{u\in M_{d}}c_{iu}u$ . Now form
the $m\times|M_{d}|$ -matrix $C=(c_{iu})$ where the columns are ordered according
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to the given term order, and view $C$ as a matrix with coefficients in $L$ .

Notice that $C$ has rank $m$ since the polynomials $f_{1}$ , $\ldots$ , $f_{m}$ are linearly
independent over $L$ . For $i=1$ , $\ldots$ , $m$ , let $u_{i}$ be the largest monomial
such that $c_{iu_{i}}\neq 0$ ; then $u_{i}=in(f_{i})$ .

After elementary row operations (which amounts to choose another
$L$-basis of $I_{d}’$ ), we may assume that $u_{1}>u_{2}>\ldots>u_{m}$ . Then Gin(/)d=

$Ku_{1}+\ldots+Ku_{m}$ .

We order the $m$-tuples $(v_{1}, \ldots, v_{m})$ of monomials of $M_{d}$ lexicograph-
ically. This means that $(v_{1}, \ldots, v_{m})>(w_{1}, \ldots, w_{m})$ if for some $i$ one
has $v_{j}=w_{j}$ for $j<i$ , and $v_{i}>w_{i}$ . Then our discussion shows that
$Gin(I)_{d}$ is the span of largest $m$-tupel $(u_{1}, \ldots, u_{m})$ of monomials such
that $\det(c_{iu_{i}})_{i=1}$ , , $m\neq 0$ .

Another basic result on generic ideals is

Theorem 1.2 (Galligo, Bayer-Stillman). Let $I$ $\subset S$ be a graded
ideal. Then Gin(/) is Borel fifixed, that is, $\varphi(Gin(I))=Gin(I)$ for all $\varphi$

which belong to the Borel group of invertible upper triangular matrices.

Generic initial ideals behave especially well when one uses the re-
verse lexicographic order. We will discuss this in Section 4. Let $u$ , $ v\in$

$M_{d}$ , $u=x_{1}^{a_{1}}\cdots x_{n}^{a_{n}}$ and $v=x_{1}^{b_{1}}\cdots x_{n}^{b_{n}}$ . Then $u>v$ in reverse lexico-
graphic order, if $degu>degv$ or $degu=degv$ and for some $i$ one has
$a_{j}=b_{j}$ for $j>i$ , and $a_{i}<b_{i}$ .

The following example demonstrates the difference between the lex-
icographic and the reverse lexicographic order. We order the monomials
in three variables of degree 2 first lexicographically, and then reverse
lexicographically:

(1) $x_{1}^{2}>x_{1}x_{2}>x_{1}x_{3}>x_{2}^{2}>x_{2}x_{3}>x_{3}^{2}$

(2) $x_{1}^{2}>x_{1}x_{2}>x_{2}^{2}>x_{1}x_{3}>x_{2}x_{3}>x_{3}^{2}$

The nice behaviour of the reverse lexicographic order is a conse-
quence of the easy to prove

Property 1.3. $Let<be$ the reverse lexicographic order. If $f\in S$

is a homogeneous polynomial with $in_{<}(f)\in(x_{i}, \ldots, x_{n})$ for some $i$ , then
$f\in(x_{i}, \ldots, x_{r\iota})$ .

This property immediately implies (cf. [16, Proposition 15.12])

Proposition 1.4. Let $I$ $\subset S$ be a graded ideal. Then with respect
to the reverse lexicographic order one has

(a) $in(I)+x_{n}S=in(I+x_{n}S)$ ;
(b) in(J) : $x_{n}=in(I:x_{n})$ .

A monomial $u\in S$ , $u=x_{1}^{a_{1}}$ $x_{2}^{a_{2}}\cdots x_{n}^{a_{n}}$ is called squarefree, if $a_{i}\leq 1$

for $i=1$ , $\ldots$ , $n$ , and a monomial ideal in $S$ is called squarefree if it is
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generated by squarefree monomials. In combinatorial contexts, square-
free monomial ideals are interesting since they appear as the defining
ideals of Stanley-Reisner rings. Unfortunately Gin(/) of a squarefree
monomial ideal I is never squarefree, unless I is generated by a subset
of the variables. Thus for combinatorial applications one has to find an
analogue of the operation Gin which yields a squarefree monomial ideal.
The most natural way to define such an operation, is to work in the
exterior algebra instead of the symmetric algebra.

Let $V$ be an $n$-dimensional $K$-vector space with basis $e_{1}\ldots e_{n}$ . The
exterior algebra $E=\Lambda.(V)$ is a finite dimensional graded $K$ algebra.

The $ith$ graded component $\wedge^{i}(V)$ has the $K$ basis

$e_{j_{1}}\wedge e_{j_{2}}\wedge\cdots\wedge e_{j_{\dot{x}}}$ with $j_{1}<j_{2}<\ldots<j_{i}$ .

Let $[n]=\{1, \ldots, n\}$ ; for a subset $\sigma\subset[n]$ , $\sigma=\{j_{1}<j_{2}<\ldots<$

$j_{i}\}$ , we set $e_{\sigma}=e_{j_{1}}\wedge e_{j_{2}}\wedge\cdots\wedge e_{j_{i}}$ . The elements $e_{\sigma}$ are called the
monomials of $E$ . Term orders, initial terms and initial ideals are defined
as in the polynomial ring. For example, the lexicographic or the reverse
lexicographic order is defined by restriction to squarefree monomials.

In the following example we list all monomials in 4 variables of degree
2 in the exterior algebra in lexicographic and reverse lexicographic order:

(1) $e_{1}\wedge e_{2}>e_{1}\wedge e_{3}>e_{1}\wedge e_{4}>e_{2}\wedge e_{3}>e_{2}\wedge e_{4}>e_{3}\wedge e_{4}$ .

(2) $e_{1}\wedge e_{2}>e_{1}\wedge e_{3}>e_{2}\wedge e_{3}>e_{1}\wedge e_{4}>e_{2}\wedge e_{4}>e_{3}\wedge e_{4}$ .

In the exterior algebra the generic initial ideal Gin(/) of a graded
ideal $I$ $\subset E$ is defined similarly as in the case of the polynomial ring.
In other words, Gin(/) $=in(\varphi(I))$ where $\varphi$ is a linear automorphism of
$E$ . Of course, Gin(/) is a monomial ideal in $E$ (which is automatically
squarefree). The analogues of the theorems of Galligo, Bayer and Still-
man, as well as Proposition 1.4, hold and are proved similarly in the
exterior case. We refer the reader to [6] about some general facts on
Gr\"obner basis theory in exterior algebras.

\S 2. Special monomial ideals

Let $p$ be a prime number, and $k$ and $l$ be non-negative integers with
$p$-adic expansion $k=\sum_{i}k_{ip}^{i}$ and $l$ $=\sum_{i}\iota_{ip}^{i}$ . We set $k\leq_{p}l$ if $k_{i}\leq l_{i}$

for all $i$ . In order to have a consistent notation, we also set $k\leq 0l$ if
$k\leq l$ (in the usual sense).

Definition 2.1. Let $p$ be a prime number, or $p=0$ . A monomial
ideal $I$ $\subset S$ is $p$-Borel, if the following condition holds: for each monomial
$u\in I$ , $u=\prod_{i}x_{i}^{\mu_{i}}$ , one has $(x_{i}/x_{j})^{\iota/}u\in I$ for all $i,j$ with $1\leq i<j\leq n$

and all $lJ\leq_{p}\mu_{j}$ .
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The significance of $p$-Borel ideals follows from

Proposition 2.2. Suppose char $K=p\geq 0$ , and let $I$ $\subset S$ be $a$

monomial ideal. Then I is Borel-fifixed if and only if I is $p$ -Borel.

For the proof of Proposition 2.2 we refer to [16, Theorem 15.23].
For $p>0$ , the $p$-Borel ideals have a rather complicated combinato-

rial structure. The reader who is interested in more details about such
ideals may consult [31], [3] and [23]. In these notes we will concentrate
on 0-Borel ideals, which henceforth will be called strongly stable ideals.

For a monomial $u\in S$ we set $ m(u)=\max${ $i:x_{i}$ divides $u$ }.
Definition 2.3. A subset $B\subset S$ of monomials is called strongly

stable, if $x_{i}(u/x_{j})\in B$ for all $u\in B$ , all $x_{j}$ that divides $u$ , and all $i<j$ .

The set $B$ is called stable, if $x_{i}(u/x_{m(u)})\in B$ for all $u\in B$ , and all
$i<m(u)$ .

It follows from Definition 2.1 that a strongly stable ideal is a mono-
mial ideal I for which the set of monomials in I is a strongly stable
monomial set. If the set of monomials in I is a stable set, then I is
called a stable monomial ideal. Stable monomial ideals were introduced
by Eliahou and Kervaire [17].

Examples 2.4. (a) Let $u_{1}$ , $\ldots$ , $u_{m}$ be monomials. There is a
unique smallest strongly stable ideal I with $u_{j}\in I$ for $j=1$ , $\ldots$ , $m$ .

The monomials $u_{1}$ , $\ldots$ , $u_{m}$ are called Borel generators of $I$ , and we write
$I$ $=\langle u_{1}, \ldots, u_{m}\rangle$ . I is called principal Borel if $I$ $=\langle u\rangle$ for some mono-
mial $u$ . For example the ideal

$I$ $=(x_{1}^{2}, x_{1}x_{2}, x_{1}x_{3}, x_{1}x_{4}, x_{2}^{2}, x_{2}x_{3}, x_{2}x_{4})$

is principal Borel with Borel generator $x_{2}x_{4}$ .

(b) A set $L$ of monomials is called a lexsegment, if for all $u\in L$ and
all $v\geq_{lex}u$ with $degv=deg$ it, it follows that $v\in L$ . An monomial ideal
$I$ $\subset S$ is called a lexsegment ideal if the set monomials in I a lexsegment.
It is obvious that lexsegment ideals are strongly stable.

(c) Replacing in (b) everywhere the word ’ $lex$ ’ by ’revlex’, one ob-
tains the definition of a revlexsegment and a revlexsegment ideal. It is
obvious that revlexsegment ideals are strongly stable.

Remark 2.5. (a) Let I be a monomial ideal. We denote by $G(I)$

the unique minimal set of monomial generators of $I$ . It is easily seen
that I is strongly stable, if for all monomial generators $u$ of I one has
$(x_{i}/x_{j})u\in I$ for all $x_{j}$ that divide $u$ , and all $i<j$ .

Let $N\subset M_{d}$ . The set $\{x_{i}u:u\in N, i=1, \ldots, n\}\subset M_{d}$ is called the
shadow of $N$ , and is denoted Shad(iV). The simple proof of the following
lemma is left to the reader.
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Lemma 2.6. Let $N\subset M_{d}$ . If $N$ is $a$ (strongly) stable set (resp. $a$

lexsegment), then Shad(TV) is $a$ (strongly) stable set (resp. a lexsegment).

Notice that the shadow of a revlexsegment is in general not a
revlexsegment. For example consider the revlexsegment $\{x_{1}^{2}\}$ in $K[x_{1},$ $x_{2}$ ,
$x_{3}]$ . Then $x_{1}^{2}x_{3}$ is in the shadow of this set, but $x_{2}^{3}$ is not.

Let $N\subset M_{d}$ . Then there is a unique lexsegment, denoted $N^{lex}$ such
that $|N^{lex}|=|N|$ . The following important result holds

Theorem 2.7. For any subset $N\subset M_{d}$ one has $|Shad(N^{lex})|\leq$

$|$ Shad(5)|. In other words, lexsegments have the smallest possible shad-
ow.

Before we indicate the proof of Theorem 2.7 we note the following
consequence

Corollary 2.8. Let $I$ $\subset S$ be graded ideal. Then there exists $a$

unique lexsegment ideal, denoted $I^{lex}\subset S$ , such that $S/I$ and $S/I^{lex}$

have the same Hilbert function.

Proof. Since $S/I$ and $S/in(/)$ have the same Hilbert function, we
may replace I by in(/), and hence may assume that I is a mono-
mial ideal. Let $I_{d}$ be spanned by the set of monomials $N_{d}$ , and $I_{d}^{lex}$

the subspace of $S_{d}$ spanned by $N_{d}^{lex}$ . We set $I^{lex}=\oplus_{d\geq 0}I_{d}^{lex}$ , and

only need to show that $I^{lex}$ is an ideal. In other words, we have to
show that $\{x_{1}, \ldots, x_{n}\}I_{d}^{lex}\subset I_{d+1}^{lex}$ for all $d$ . By Theorem 2.7 we have

$|Shad(N_{d}^{lex})|\leq|Shad(N_{d})|\leq|N_{d+1}|=|N_{d+1}^{lex}|$ . Since $Shad(N_{d}^{lex})$ and
$N_{d+1}^{lex}$ are both lexsegments, this inequality implies

$Shad(N_{d}^{lex})\subset N_{d+1}^{lex}Q.E.D.$
’

as desired.

For the proof of Theorem 2.7 we have to introduce some notation:
let $B\subset M_{d}$ be a set of monomials. We let $m_{i}(B)$ be the number of
$u\in B$ with $m(u)=i$ , and set $m\leq i(B)=\sum_{j=1}^{i}m_{j}(B)$ .

Lemma 2.9. Let $B\subset M_{d}$ be a stable set of monomials. Then

(a) $m_{i}$ (Shad(B))= $m\leq i(B)$ ;
(b) $|$ $Shad(B)|=\sum_{i=1}^{n}m\leq i(B)$ .

Proof. (b) is of course a consequence of (a). For the proof of (a)
we note that the map

$\varphi:\{u\in B:m(u)\leq i\}\rightarrow\{u\in Shad(B):m(u)=i\}$ , $u\mapsto ux_{i}$

is a bijection. In fact, $\varphi$ is clearly injective. To see that $\varphi$ is surjective,
we let $v\in Shad(B)$ with $m(v)=i$ . Since $v\in Shad(B)$ , there exists
$w\in B$ with $v=x_{j}w$ for some $j\leq i$ . It follows that $m(w)\leq i$ . If $j=i$ ,
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then we are done. Otherwise, $j<i$ and $m(w)=i$ . Hence, since $B$ is

stable it follows that $u=(x_{j}/x_{i})w\in B$ . The assertion follows, since

$v=ux_{i}$ . Q.E.D.

Now Theorem 2.7 follows immediately from Lemma 2.9 and the next
theorem which is due to Bayer [10]. We will give below the proof of the
similar theorem in the squarefree case.

Theorem 2.10. Let $L\subset M_{d}$ be a lexsegment, and $B\subset M_{d}$ be $a$

stable set of monomials with $|L|\leq|B|$ . Then $m\leq i(L)\leq m\leq i(B)$ for
$i=1$ , $\ldots$ , $n$ .

The length of the shadow of a lexsegment can be computed. Let $i$

be a positive integer. Then $a\in \mathbb{N}$ has a unique expansion

$a=\left(\begin{array}{l}a_{i}\\i\end{array}\right)$ $+$ $\left(\begin{array}{l}a_{i-1}\\i-1\end{array}\right)$ $+\cdots+$ $\left(\begin{array}{l}a_{j}\\j\end{array}\right)$

with $a_{i}>a_{i-1}>\cdots>a_{j}\geq j\geq 1$ ; see [14] or [21].
We define

$a^{\langle i\rangle}=\left(\begin{array}{l}a_{i}+1\\i+1\end{array}\right)$ $+$ $\left(\begin{array}{l}a_{i-1}+1\\i\end{array}\right)$ $+\cdots+$ $\left(\begin{array}{ll}a_{j} & +1\\j & +1\end{array}\right)$ ,

and

$a^{(i)}=\left(\begin{array}{l}a_{i}\\i+1\end{array}\right)$ $+$ $\left(\begin{array}{l}a_{i-1}\\i\end{array}\right)$ $+\cdots+$ $\left(\begin{array}{ll} & a_{j}\\j & +1\end{array}\right)$ .

Lemma 2.11. Let $L\subset M_{d}$ be a lexsegment with $a=|M_{d}\backslash L|$ .

Then

$|M_{d+1}\backslash Shad(L)|=a^{\langle d\rangle}$ .

For the proof of this lemma we refer the reader to [14, Prop.4.2.8].
As a consequence of Corollary 2.8 and Lemma 2.11 we now obtain

Theorem 2.12 (Macaulay). Let $h:\mathbb{N}\rightarrow \mathbb{N}$ be a numerical func-
tion. The following conditions are equivalent:

(a) $h$ is the Hilbert function of a standard graded $K$ -algebra;

(b) $h(0)=1$ , and $h(d+1)\leq h(d)^{\langle d\rangle}$ for all $d\geq 0$ .

We close this section with a discussion of the analogue theorems in

the squarefree case. Let $B\subset E$ be a set of monomials in the exterior
algebra. Then $B$ is called {strongly) stable if $B$ satisfies conditions ana-
logue to those of Definition 2.3. Thus, for example, $B$ is stable, if for all
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monomials $u\in B$ , $u=e_{i_{1}}\wedge e_{i_{2}}\wedge\ldots\wedge e_{i_{j}}$ with $i_{1}<i_{2}<\ldots i_{j}$ it follows
that $e_{i}\wedge e_{i_{1}}\wedge\ldots\wedge e_{i_{j-1}}\in B$ for all $i<i_{j}$ and $i\not\in\{i_{1}, \ldots, i_{j}\}$ .

Let $u=x_{i_{1}}x_{i_{2}}\ldots x_{i_{j}}\in S$ be a squarefree monomial. Then we call
$e_{i_{1}}\wedge e_{i_{2}}\wedge\ldots\wedge e_{i_{j}}$ the monomial in $E$ corresponding to $u$ . Let $I$ $\subset S$

be squarefree monomial ideal, $B\subset I$ the set of squarefree monomials
in $I$ , and $B’$ be the corresponding set of monomials in $E$ . Notice that
the $K$-subspace $J$ of $E$ spanned by $B’$ is an ideal in $E$ . We call it the
monomial ideal in $E$ corresponding to $I$ , and I is called a squarefree
(strongly) stable monomial ideal, resp. a squarefree lexsegment ideal, if
$J$ is a (strongly) stable resp. lexsegment ideal in $E$ .

Corresponding to Proposition 2.2 one has

Proposition 2.13. A Borel-fifixed ideal $J\subset E$ is strongly stable.
In particular, the generic initial ideal of any graded ideal in $E$ is strongly
stable.

For the shadow of a stable set of monomials in $E$ one has

Lemma 2.14. Let $B\subset E_{d}$ be a strongly stable set of monomials.

Then Shad $( )$ $?.S$ again stable and $|$ Shad(B)l $=\sum_{i=1}^{n-1}m\leq i(B)$ .

We leave the proof of Lemma 2.14 to the reader.
We now prove the squarefree version of Bayer’s Theorem 2.10.

Theorem 2.15. Let $L\subset E_{d}$ be a lexsegment of monomials, and
$B\subset E_{d}$ a stable set of monomials with $|L|\leq|B|$ . Then $ m\leq i(L)\leq$

$m\leq i(B)$ for $i=1$ , $\ldots$ , $n$ .

For the proof of the theorem we need some preparation. Let $d<n$

and write $N_{d}$ for the set of all (squarefree) monomials of degree $d$ in
$E$ . If $N\subset N_{d}$ we denote by $\min(N)$ the smallest monomial $u\in N$

(with respect to the lexicographic order). Furthermore we define a map
$\alpha:N_{d}\rightarrow N_{d}$ by setting $\alpha(u)=u$ , if $n\not\in supp(w)$ , and $\alpha(u)=(e_{j}\wedge u)/e_{n}$

if $n\in supp(w)$ , where $j$ is the largest integer $<n$ which does not belong
to $supp(w)$ , Here $supp(u)$ is the set of elements $i\in[n]$ such that $e_{i}|u$ .

Lemma 2.16. With the notation introduced we have:

(a) The map $\alpha:N_{d}\rightarrow N_{d}$ is order preserving, that is, for $u$ , $u’\in N_{d}$ ,
$u\leq_{lex}u’$ , one has $\alpha(u)\leq\iota_{ex}\alpha(u’)$ .

(b) Let $B=B’+B’’\wedge e_{n}$ be a strongly stable set of monomials of
degree $d$ , where $B’$ and $B’’$ are sets of monomials in the elements
$e_{1}$ , $e_{2}$ , $\ldots$ , $e_{n-1}$ . Then $\alpha(\min(B))=\min(G(B’))$ .

Proof (a) Let $u$ and $u’$ be two monomials of degree $d$ with $u\leq_{lex}u’$

and $m(u)=m(u’)=n$ , say $u=e_{i_{1}}\wedge\cdots\wedge e_{i_{d-1}}\wedge e_{n}$ and $ u’=e_{i_{1}’}\wedge$

$\ldots\wedge e_{i_{d-1}’}\wedge e_{n}$ with $1\leq i_{1}<i_{2}<\cdots<i_{d-1}<n$ and $1\leq i_{1}’<i_{2}’<$



Genenc Initial Ideals and Graded Betti Numbers 83

$\ldots$ $<i_{d-1}’<n$ . Then there exists an integer $t$ with $1\leq t\leq d-1$ such
that $i_{1}=i_{1}’$ , $\ldots$ , $i_{t-1}=i_{t-1}’$ and $i_{t}>i_{t}’$ . Let $j$ be the largest integer
$<d$ which is not in $supp(u)$ , and define $j’$ similarly for $u’$ . Since $i_{t}>i_{t}’$ ,

there is at least one ’gap’ in the sequence $i_{t}’$ , $\ldots$ , $i_{d-1}’$ , $n$ . Thus $j’>i_{t}’$ .

Hence if $j\geq i_{t}$ , then the first indices of the factors of $\alpha(u)$ and $\alpha(u’)$

in which they differ are again $i_{t}$ and $i_{t}’$ , and the inequality is preserved.
On the other hand, if $j<i_{t}$ , then we must have

$u=e_{i_{1}}\wedge\cdots\wedge e_{i_{t-1}}\wedge e_{n-d+t}\wedge e_{n-d+t+1}\wedge\cdots\wedge e_{n-1}\wedge e_{n}$ ,

and $j=i_{t}-1=n-d+t-1$ since $i_{t-1}=i_{t-1}’<i_{t}’<i_{t}$ . That is, the
factors ‘after’ $e_{i_{t-1}}$ have the highest possible indices. It is then obvious
that $\alpha(u)\leq\iota_{ex}\alpha(u’)$ as desired. By the similar way one treats the case
$m(u’)<m(u)=n$ , while if $m(u)<m(u’)=n$ one has $\alpha(u)=u\leq\iota_{ex}$

$u’\leq\iota_{ex}\alpha(u’)$ .

(b) It follows from the above result (a) that $\alpha(\min(B))\leq\iota_{ex}\alpha(\min$

$(B’))=\min(B’)$ since $\min(B)\leq\iota_{ex}\min(B’)$ . On the other hand, since
$B$ is strongly stable, $\alpha(\min(B))\in B’$ , which implies the reverse inequal-
ity. Q.E.D.

Proof of Theorem 2.15. We proceed by induction on $n$ , the number
of variables. The inequality $m\leq n(L)\leq m\leq n(B)$ is just our hypothesis.
In order to prove it for $i<n$ , we write $L=L’+L’’\wedge e_{n}$ and $B=$
$B’+B^{\prime/}\wedge e_{n}$ with $L’$ , $L’’$ , $B’$ and $B’’$ sets of monomials in $e_{1}$ , $e_{2}$ , $\ldots$ , $e_{n-1}$ .

It is clear that $L’$ is lexsegment, and that $B’$ is strongly stable. Hence if
we show that $|L’|\leq|B’|$ , we may apply our induction hypothesis, and
the assertion follows immediately.

It may be assumed that $B’$ and $B^{JJ}$ are lexsegments. In fact, let $B^{*}$

(resp. $B^{**}$ ) be the lexsegments in $e_{1}$ , $e_{2}$ , $\ldots$ , $e_{n-1}$ of degree $d$ (resp. $d-1$ )

such that $|B^{*}|=|B’|$ (resp. $|B^{**}|=|B’’|$ ) and set $\tilde{B}=B^{*}+B^{**}\wedge e_{n}$ .

Then it is not hard to see that $\tilde{B}$ is again strongly stable.
Now we are in the following situation: $L=L’+L’’\wedge e_{n}$ is lexsegment,

and $B=B’+B’’\wedge e_{n}$ strongly stable as before, but in addition $B’$ and $B’’$

are lexsegments. Assuming $|L|\leq|B|$ , we want to show that $|L’|\leq|B’|$ .

Thanks to Lemma 2.16 we have

$\min(B’)=\alpha(\min(B))\leq\iota_{ex}\alpha(\min(L))=\min(L’)$ .

Since $L’$ and $B’$ are lexsegments, the required inequality follows. Q.E.D.

As a consequence one obtains similarly as in Corollary 2.8 that for
any graded ideal $J\subset E$ there exists a unique lexsegment ideal $J^{lex}\subset E$

such that $E/J$ and $E/J^{lex}$ have the same Hilbert function. Detailed
proofs of these statements can be found in [6].
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Corollary 2.17. Let $I$ $\subset S$ be a squarefree monomial ideal. Then
there exists a unique squarefree lexsegment ideal, denoted $I^{sqlex}$ such that
$S/I$ and $S/I^{sqlex}$ have the same Hilbert function.

Proof. Let $J$ be the corresponding ideal of I in $E$ , $B’$ the set of
monomials of $J^{lex}$ , and $B$ the set of squarefree monomials in $S$ corre-
sponding to $B’$ . The ideal $L\subset S$ spanned by $B$ is clearly a squarefree
lexsegment ideal. It follows from the next lemma that $S/I$ and $S/L$ have
the same Hilbert function. Q.E.D.

Lemma 2.18. Let $I$ $\subset S$ be a squarefree monomial ideal, and
$J\subset E$ the corresponding monomial ideal in E. Let $H_{E/J}(t)=\sum_{i=0}^{n}a_{i}t^{i}$

be the Hilbert function of $E/J$ . Then the Hilbert function of $S/I$ is given
by

$H_{S/I}(t)=\sum_{i=0}^{n}a_{i}\frac{t^{i}}{(1-t)^{i}}$ .

This lemma implies in particular that the Hilbert function of $E/J$

and that of $S/I$ determine each other. A proof of this simple result can
be found for example in [14, Theorem 5.1.7].

The exterior version of Lemma 2.11 is the following (cf. [6, Theorem
4.2])

Lemma 2.19. Let $L\subset EM_{d}$ be a lexsegment of monomials, where
$EM_{d}$ denotes the set of monomials of degree $d$ in E. Suppose that $a=$

$|EM_{d}\backslash L|$ . Then

$|EM_{d}\backslash Shad(L)|=a^{(d)}$ .

As in the case of the polynomial rings one now deduces (cf. [6,
Theorem 4. 1])

Theorem 2.20 (Kruskal-Katona). Let $(h_{1}, \ldots, h_{n})$ be a sequence

of integers. Then the following conditions are equivalent:

(a) $1+\sum_{d=1}^{n}h_{d}t^{d}$ is the Hilbert series of a graded $K$ -algebra $E/J$ ;

(b) $0\leq h_{d+1}\leq h_{d}^{(d)}$ for all $i$ with $o\leq d<n$ .

\S 3. Graded Betti numbers of initial ideals

Let $M$ be a finitely generated graded $S$-module. Then $M$ has a
graded free $S$-resolution of the form

$\ldots\rightarrow\oplus_{j}S(-j)^{\beta_{ij}}\rightarrow\ldots\rightarrow\oplus_{j}S(-j)^{\beta_{1j}}\rightarrow\oplus_{j}S(-j)^{\beta_{0j}}\rightarrow M\rightarrow 0$ .
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The numbers $\beta_{ij}$ are called the graded Betti numbers of $M$ . Note that the
$Tor$-groups $Tor_{i}(K, M)$ are finitely generated, graded $K$-vector spaces,
and that

$\beta_{ij}(M)=dim_{K}Tor_{i}(K, M)_{j}$ for all $i$ , $j$ .

The following basic result holds:

Theorem 3.1. Let $I$ $\subset S$ be a graded ideal. Then for any term
order<one has

$\beta_{ij}(S/I)\leq\beta_{ij}(S/in_{<}(I))$ for all $i$ , $j$ .

Proof Let $\tilde{S}$ be the $K[t]$ -algebra $S[t]$ , where $t$ is an indeterminate

of degree 0. By [16, Theorem 15.17] there exists a graded ideal $\tilde{I}\subset\tilde{S}$

such that the $K[t]$ -algebra $\tilde{S}/\tilde{I}$ is free $K[t]$ -module (and thus flat over
$K[t])$ , and such that

(1) $(\tilde{S}/\tilde{I})/t(\tilde{S}/\tilde{I})\cong S/in(I)$ ,

and

(2) $(\tilde{S}/\tilde{I})_{t}\cong(S/I)\otimes_{K}K[t, t^{-1}]$ ,

as graded $K$-algebras.
Let F. be the minimal graded free $\tilde{S}$-resolution of $\tilde{S}/\tilde{I}$ . Then (1)

implies that $F./tF$. is a graded minimal free $S$-resolution of $S/I$ , so

that $\beta_{ij}(\tilde{S}/\tilde{I})=\beta_{ij}(S/in(I))$ for all $i$ and $j$ , and (2) implies that $(F.)_{t}$

is a graded (not necessarily minimal) free $S\otimes_{K}K[t, t^{-1}]$ resolution of
$(S/I)\otimes_{K}K[t, t^{-1}]$ . Thus,

$\beta_{ij}(S/I)=\beta_{ij}((S/I)\otimes_{K}K[t, t^{-1}])\leq\beta_{ij}(\tilde{S}/\tilde{I})Q.E.D’$

.as desired.

Let $M$ be a finitely generated graded $S$-module. The regularity of
$M$ is defined to be the number $reg(M)=\max\{j-i:\beta_{\dot{0}j}(M)\neq 0\}$ . As
an immediate consequence of Theorem 3.1 we have

Corollary 3.2. Let $I$ $\subset S$ be a graded ideal. Then for any term
order<one has:

(a) proj $dimS/I\leq projdimS/in_{<}(I)$ .

(b) depth $S/I\geq depthS/in_{<}(I)$ .

(c) If $S/in_{<}(I)$ is Cohen-Macaulay (Gorenstein), then so is $S/I$ .

(d) $regS/I\leq regS/in_{<}(I)$ .

We shall see in the next section that all inequalities of Corollary

3.2 become equalities, if $in_{<}(I)$ is replaced by Gin(J) with respect to
the reverse lexicographic order. Since by Proposition 2.2, at least in
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characteristic 0, the generic initial ideal is strongly stable, it is of interest
to compute the graded Betti numbers of stable ideals. Eliahou and
Kervaire described explicitly the resolution of such ideals. Here we are
only interested in its graded Betti numbers, so that we only need to
compute the graded $K$-vector spaces $Tor_{i}(K, S/I)$ .

Let $K$ . $(x; S/I)$ be the Koszul complex of $S/I$ with respect to $x_{1}$ , $\ldots$ ,
$x_{n}$ . We denote by H. $(x;S/I)$ the Koszul homology. Since there is a
graded isomorphism $Tor.(K, S/I)\cong H.(x;S/I)$ , we may as well com-
pute H. $(x;S/I)$ in order to determine the graded Betti numbers. Re-
call that $K_{i}(x_{1}, \ldots, x_{n})=K.(x;S/I)$ is a free S/I- module with ba-
sis $e_{\sigma}$ , $\sigma\subset\{1, \ldots, n\}$ , $|\sigma|=i$ , where $e_{\sigma}=e_{j_{1}}\wedge e_{j_{2}}\wedge\ldots\wedge e_{j_{i}}$ for
$\sigma=\{j_{1}, \ldots,j_{i}\}$ , $j_{1}<j_{2}<\ldots<j_{?}.$ . The differential $\partial$ of K. is given by
$\partial(e_{\sigma})=\sum_{t\in\sigma}(-1)^{\alpha(\sigma,t)}x_{t}e_{\sigma\backslash t}$ . Here $\alpha(\sigma, t)=|\{r\in\sigma:r<t\}|$ .

For a monomial ideal I we denote by $G(I)$ the unique set of mono-
mial generators of $I$ . We let $\in:S\rightarrow S/I$ be the canonical epimorphism,
and set $u’=u/x_{m(u)}$ for all $u\in G(I)$ .

Theorem 3.3. Let $I$ $\subset S$ be a stable ideal. For all $j=1$ , $\ldots$ , $n$

and $i>0$ , the Koszul homology $H_{i}(x_{j}, \ldots, x_{n})$ is annihilated by $\mathfrak{m}=$

$(x_{1}, \ldots, x_{n})$ . In other words, all these homology modules are $K$ -vector
spaces. A basis of $H_{i}(x_{j}, \ldots, x_{n})$ is given by the homology classes of the
cycles

$\in(u’)e_{\sigma}\wedge e_{m(u)}$ , $u\in G(I)$ , $|\sigma|=i-1,j\leq\min(\sigma)$ , $\max(\sigma)<m(u)$ .

Proof. We proceed by induction on $n-j$ . For $j=n$ , we only
have to consider $H_{1}(x_{n})$ which is obviously minimally generated by the
homology classes of the elements $\in(u’)e_{n}$ with $u\in G(I)$ such that $m(u)=$
$n$ . Since by the definition of stable ideals $x_{i}u’\in I$ for all $i$ , we see that
$H_{1}(x_{n})$ is a $k$-vector space.

Now assume that $j<n$ , and that the assertion is proved for $j+$

$1$ . Then $x_{j}H_{i}(x_{j+1}, \ldots, x_{n})=0$ for all $i>0$ , so that the long exact
sequence (cf. [14, Cor.1.6.13])

$\ldots\rightarrow H_{i}x_{j}(x_{j+1}, \ldots, x_{n})\rightarrow H_{i}(x_{j}, \ldots, x_{n})\rightarrow H_{i-1}(x_{j+1}, \ldots, x_{n})$

$\rightarrow H_{i-1}x_{j}(x_{j+1}, \ldots, x_{n})\rightarrow H_{i-1}(x_{j}, \ldots, x_{n})\rightarrow\cdots$

splits into the exact sequences

(3) $0\rightarrow H_{1}(x_{j+1}, \ldots, x_{n})\rightarrow H_{1}(x_{j}\ldots, x_{n})\rightarrow S_{j}/I_{j}\rightarrow S_{j}x_{j}/I_{j}$

and

(4) $0\rightarrow H_{i}(x_{j+1}, \ldots, x_{n})\rightarrow H_{i}(x_{j}, \ldots, x_{n})$

$\rightarrow H_{i-1}(x_{j+1}, \ldots, x_{n})\rightarrow 0$ .
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for $i>0$ . Here $S_{j}$ is the polynomial ring $K[x_{1}, \ldots, x_{j}]$ , $I_{j}$ the ideal in
$S_{j}$ generated by the monomials $u\in G(I)$ which are not divisible by any
$x_{i}$ with $i>j$ , in other words, $I_{j}=I\cap S_{j}$ .

In sequence (3), $Kerx_{j}$ is minimally generated by the residues of
the monomials $u’$ with $u\in G(I)$ and $m(u)=j$ . Note that the sets
$\{u\in G(I):m(u)=j\}$ and $\{u\in G(I_{j}):m(u)=j\}$ are equal, and that
$I_{j}$ is a stable ideal in $S_{j}$ . Therefore $Kerx_{j}$ is a $K$-vector space.

We now consider the short exact sequence

(5) $0\rightarrow H_{1}(x_{j+1}, \ldots, x_{n})\rightarrow H_{1}(x_{j}, \ldots, x_{n})\rightarrow Kerx_{j}\rightarrow 0$ .

It is clear that the elements $\in(u’)e_{j}$ , $u’\in G(I)$ , $m(u)=j$ are cycles
in $K_{1}(x_{j}, \ldots, x_{n})$ such that $\delta([\in(u’)e_{j}])=u’+I_{j}$ . Therefore, by (5)
and our induction hypothesis, it follows that the set $S$ $=\{[\in(u’)e_{i}]:u\in$

$G(I)$ , $m(u)=i\geq j\}$ generates $H_{1}(x_{j}, \ldots, x_{n})$ . Since I is a stable ideal
we see that $x_{j}[\in(u’)e_{i}]=0$ for all $j=1$ , $\ldots$ , $n$ and all $[\in(u’)e_{i}]\in S$ .

In other words, $H_{1}(x_{j}, \ldots, x_{n})$ is a $K$-vector space. Finally, since the
number of elements of $S$ equals $dim_{k}H_{1}(x_{j+1}, \ldots, x_{n})+dim$ $Ker$ Xj, we
conclude that $S$ is a basis of $H_{1}(x_{j}, \ldots, x_{n})$ .

In order to prove our assertion for $i>1$ we consider the exact se-
quences (4). By induction hypothesis the homology module $H_{i-1}(x_{j+1}$ ,
$\ldots$ , $x_{n})$ is a $K$-vector space with basis

$[\in(u’)e_{\sigma}\wedge e_{m(u)}]$ , $u\in G(I)$ , $|\sigma|=i-2$ , $j+1\leq\min(\sigma)$ , $\max(\sigma)<m(u)$ .

Given such a homology class, consider the element $\in(u’)e_{j}\wedge e_{\sigma}\wedge e_{m(u)}$ .

It is clear that this element is a cycle in $K_{i}(x_{j}, \ldots, x_{n})$ , and that

$\delta([\in(u’)e_{j}\wedge e_{\sigma}\wedge e_{m(u)}]=\pm[\in(u’)e_{\sigma}\wedge e_{m(u)}]$ .

Thus from the exact sequence (4) and our induction hypothesis it fol-
lows that the homology classes of the cycles described in the theorem
generate $H_{i}(x_{j}, \ldots, x_{n})$ . Again the stability of the ideal I implies that
$\mathfrak{m}$ annihilates all these homology classes, so that $H_{i}(x_{j}, \ldots, x_{n})$ is a K-
vector space. Finally, just as for $i=1$ , a dimension argument shows
that these homology classes form a basis of $H_{i}(x_{j}, \ldots, x_{n})$ . Q.E.D.

Let I be a monomial ideal. We denote by $G(I)_{j}$ the set of monomial
generators of degree $j$ . The following result of Eliahou and Kervaire [17]
follows immediately from Theorem 3.3.

Corollary 3.4. Let $I$ $\subset S$ be a stable ideal. Then

(a) $\beta_{ii+j}(I)=\sum_{u\in G(I)_{j}}(^{m(u_{i})-1})$ ;

(b) proj $dimS/I=\max\{m(u):u\in G(I)\}$ ;
(c) $reg(I)=\max\{deg(u):u\in G(I)\}$ .
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With similar methods one can compute the graded Betti numbers
of a squarefree stable ideal. For a monomial $u\in S$ we let $supp(u)=$

{ $i:x_{i}$ divides $u$ }.

Theorem 3.5. Let $I$ $\subset S$ be a squarefree stable ideal. Then for
every $i>0$ , a basis of the homology classes of $H_{?}.(x_{1}, x_{2}, \ldots, x_{n})$ is given
by the homology classes of the cycles

$u’e_{\sigma}\wedge e_{m(u)}$ , $u\in G(I)$ , $|\sigma|=i-1$ , $\max(\sigma)<m(u)$ , $\sigma\cap supp(u)=\emptyset$ .

Proof A minimal free $S$-resolution of $S/I$ is multigraded; in other
words, the differentials are homogeneous homomorphisms and, for each
$i$ , we have $F_{i}=\oplus_{j}S(-a_{ij})$ with $a_{ij}\in \mathbb{Z}^{n}$ . Moreover, by virtue of [24,

Theorem (5.1) $]$ , all shifts $a_{?j}$
. are squarefree, i.e., $a_{ij}\in \mathbb{Z}^{n}$ is of the form

$\sum_{t\in\tau}\in_{t}$ , where $\tau$ is a subset of $\{1, 2, \ldots, n\}$ , and $where\in_{1},$ $\in_{2}$ , $\ldots,$
$\in_{n}$

is the canonical basis of $\mathbb{Z}^{n}$ . Thus it follows that $H_{?}.(x_{1}, x_{2}, \ldots, x_{n})$ is

multigraded $K$-vector space with $H_{i}(x_{1}, x_{2}, \ldots, x_{7l})_{a}=0$ , if $a\in \mathbb{Z}^{n}$

is not squarefree. Hence, if we want to compute the homology mod-
ule $H_{i}(x_{1}, x_{2}, \ldots, x_{n})$ , it suffices to consider its squarefree multigraded
components.

For each $0<j<n$ , there is an exact sequence whose graded part
for each $a\in \mathbb{Z}^{n}$ yields the long exact sequence of vector spaces

$\ldots\rightarrow H_{i}(x_{j}x_{j+1}, \ldots, x_{n})_{a}\rightarrow H_{?}.(x_{j}, \ldots, x_{n})_{a}\rightarrow H_{i-1}(x_{j+1}, \ldots, x_{n})_{a-\in_{j}}$

$\rightarrow H_{i-1}x_{j}(x_{j+1}, \ldots, x_{n})_{a}\rightarrow H_{i-1}(x_{j}, \ldots, x_{n})_{a}\rightarrow\cdots$

We now show the following more precise result: For all $i>0$ , all
$0<j\leq n$ and all squarefree $a\in \mathbb{Z}^{n}$ , $H_{i}(x_{j}, \ldots, x_{n})_{a}$ is generated by
the homology classes of the cycles

$u’e_{\sigma}\wedge e_{m(u)}$ , $\ldots u\in G(I)$ , $\ldots$
$|\sigma|=i-1$

with

$j\leq\min(\sigma)$ , $\max(\sigma)<m(u)$ , $\sigma\cap supp(u)=\emptyset$ and $\sigma\cup supp(u)=a$ .

The proof is achieved by induction on $n-j$ . The assertion is obvious
for $j=n$ . We now suppose that $j<n$ . For such $j$ , but $i=1$ , the
assertion is again obvious. Hence we assume in addition that $i>1$ . We
first claim that

$H_{i-1}(x_{j+1}, \ldots, x_{n})_{a-\in_{j}}\rightarrow H_{i-1}(x_{j}x_{j+1}, \ldots, x_{n})_{a}$

is the zero map. Since $a\in \mathbb{Z}^{n}$ is squarefree, the components of $a$ are
either 0 or 1. If the $j$-th component of $a$ is 0, then $a-\in_{j}$ has a negative
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component; hence $H_{i-1}(x_{j+1}, \ldots, x_{n})_{a-\in_{j}}=0$ . Thus we may assume
the $j$-th component of $a$ is 1. Then $a-\in_{j}$ is squarefree and, by induction
hypothesis, $H_{i-1}(x_{j+1}, \ldots, x_{n})_{a-\in_{j}}$ is generated by the homology classes
of cycles of the form $u’e_{\sigma}\wedge e_{m(u)}$ with $j\not\in supp(u)$ . Such an element is
mapped to the homology class of $u’x_{j}e_{\sigma}\wedge e_{m(u)}$ in $H_{i-1}(x_{j+1}, \ldots, x_{n})_{a}$ .

However, since I is stable, we have $u’x_{j}=0$ as desired.
From these observations we deduce that we have short exact se-

quences

$0\rightarrow H_{i}(x_{j+1}, \ldots, x_{n})_{a}\rightarrow H_{i}(x_{j}, \ldots, x_{n})_{a}$

$\rightarrow H_{i-1}(x_{j+1}, \ldots, x_{n})_{a-\in_{j}}\rightarrow 0$

for all $i>1$ . The first map $H_{i}(x_{j+1}, \ldots, x_{n})_{a}\rightarrow H_{i}(x_{j}, \ldots, x_{n})_{a}$

of the above exact sequence is simply induced by the natural inclu-
sion map of the corresponding Koszul complexes, while the second map
$H_{i}(x_{j}, \ldots, x_{n})_{a}\rightarrow H_{i-1}(x_{j+1}, \ldots, x_{n})_{a-\in_{j}}$ is a connecting homomor-
phism. Given the homology class of a cycle $z=u’e_{\sigma}\wedge e_{m(u)}$ in $H_{\dot{0}-1}(x_{j+1}$ ,

$\ldots$ , $x_{n})_{a-\in_{j}}$ , it is easy to see that, up to a sign, the homology class of
the cycle $u’e_{j}\wedge e_{\sigma}\wedge e_{m(u)}$ in $H_{i}(x_{j}, \ldots, x_{n})_{a}$ is mapped to $[z]$ . This
guarantees all of our assertions as required. Q.E.D.

Corollary 3.6. Let $I$ $\subset S$ be a squarefree stable ideal. Then

(a) $\beta_{i?+j}.(I)=\sum_{u\in G(I)_{j}}(^{m(u_{i})-j})$ ;

(b) proj $dimS/I=\max\{m(u)-deg(u)+1:u\in G(I)\}$ ;
(c) $reg(I)=\max\{deg(u):u\in G(I)\}$ .

Remark 3.7. It follows immediately from Corollary 3.4(a) and
Corollary 3.6(a) that a (squarefree) stable ideal which is generated in

one degree, has a linear resolution. Very recently R\"omer has shown
(unpublished) that among all (squarefree) ideals with linear resolution
the ideals generated by (squarefree) revlexsegments have minimal Betti
numbers.

\S 4. The Cartan complex

Let $\Lambda 4_{l}$ (resp. $\mathcal{M}_{r}$ ) denote the category of finitely generated graded
left (right) $E$-modules, and $\Lambda 4$ the category of finitely generated graded
left and right $E$-modules, satisfying $ax$ $=(-1)^{degadegx}xa$ for all homo-
geneous elements $a\in E$ and $x\in M$ . For example, any graded ideal
$I$ $\subset E$ belongs to $\mathcal{M}$ .

A module $M$ $\in \mathcal{M}_{l}$ has a minimal, graded free $E$ resolution (as a
left $E$-module), which is always infinite, unless $M$ is free. The ijth Betti
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number $\beta_{ij}(M)$ is the $K$-dimension of $Tor_{?}^{E}$. $(K, M)_{j}$ . These dimensions
may be computed by using the graded free $E$-resolution of the residue
class field $K$ . This resolution is called the Cartan complex. We will
briefly describe this complex.

Let $v=v_{1}$ , $\cdots$ , $v_{m}$ be a sequence of elements of degree 1 in $E$ . The
Cartan complex C. $(v;E)$ of the sequence $v$ with values in $E$ is defined
as the complex whose $i$-chains $C_{i}(v;E)$ are the elements of degree $i$ of
the free divided power algebra C. $(v;E)=E\langle x_{1}, \ldots, x_{m}\rangle$ . Recall that
$C.(v;E)$ is the polynomial ring over $E$ in the set of variables

$x_{i}^{(j)}$ , $i=1$ , $\ldots$ , $m$ , $j=1,2$ , $\ldots$

modulo the relations

$x_{i}^{(j)}x_{i}^{(k)}=\frac{(j+k)!}{j!k!}x_{i}^{(j+k)}$ .

We set $x_{i}^{(0)}=1$ and $x_{i}^{(1)}=x_{i}$ for $i=1$ , $\ldots$ , $m$ . The algebra $C.(v;E)$

is a free $E$-module with basis $x^{(a)}=x_{1}^{(a_{1})}x_{2}^{(a_{2})}\ldots x_{m}^{(a_{m})}$ , $a\in \mathbb{N}^{m}$ . We
say that $x^{(a)}$ has degree $i$ if $|a|=i$ where $|a|=a_{1}+\ldots+a_{m}$ . Thus
$C_{i}(v;E)=\oplus_{|a|=i}Ex^{(a)}$ .

The $E$-linear differential on C. $(v;E)$ is defined as follows: for $x^{(a)}=$

$x_{1}^{(a_{1})}\cdots x_{m}^{(a_{m})}$ we set

$\partial(x^{(a)})=\sum_{a_{i}>0}v_{i}x_{1}^{(a_{1})}\cdots x_{i}^{(a_{i}-1)}\cdots x_{m}^{(a_{m})}$
.

It is easily verified that $\partial\circ\partial=0$ , so that (C. $(v;E)$ ,$ \partial$ ) is indeed a
complex. Moreover, $\partial$ is an $E$-derivation, that is, $\partial$ is $E$-linear and

$\partial(g_{1}g_{2})=g_{1}\partial(g_{2})+\partial(g_{1})g_{2}$

for any two homogeneous elements $g_{1}$ and $g_{2}$ in $C.(v;E)$ .

These rules imply that the cycles $Z.(v;E)$ of $C.(v;E)$ form a di-
vided power algebra, and that the boundaries B. $(v;E)$ form an ideal in

Z. $(v;E)$ , so that the homology H. $(v;E)$ of $C.(v;E)$ inherits a natural
structure of a divided power algebra. Let $M$ be left $E$-module; then
$C.(v;M)=C.(v;E)\otimes_{E}M$ is called the Cartan complex of $M$ with
respect to the sequence $v$ . The homology of C. $(v;M)$ will be denoted
by H. $(v;M)$ . Note that H. $(v;M)$ has a natural left $H.(v;E)$-module
structure.

For each $j=1$ , $\ldots$ , $m-1$ there exists an exact sequence of complexes

0–C. $(v_{1}, \ldots, v_{j} ; M)\rightarrow$ C
$\iota$

. $(v_{1}, \ldots, v_{j+1} ; M)$
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$\rightarrow$ C
$\tau$

. $(v_{1}, \ldots, v_{j+1} ; M)(-1)\rightarrow 0$ ,

where $\iota$ is a natural inclusion map, and where $\tau$ is given by

$\tau(g_{0}+g_{1}x_{j+1}+\cdots+g_{k}x_{j+1}^{(k)})=g_{1}+g_{2}x_{j+1}+\cdots+g_{k}x_{j+1}^{(k-1)}$ ,

with $g_{i}\in C_{k-i}(v_{1}, \ldots, v_{j} ; M)$ .

From this exact sequence one obtains immediately the following long
exact sequences for the Cartan homology.

Proposition 4.1. Let $M\in \mathcal{M}_{l}$ ; then for all $j=1$ , $\ldots$ , $m-1$

there exists a long exact sequence of graded left $E$ -modules

$\ldots$ $\rightarrow H_{i}(v_{1}, \ldots, v_{j}; M)\rightarrow H_{i}\alpha_{i}(v_{1}, \ldots, v_{j+1} ; M)$

$\rightarrow H_{i-1}\beta_{i}(v_{1}, \ldots, v_{j+1} _{;} M)(-1)\delta_{i-1}\rightarrow H_{i-1}(v_{1}, \ldots, v_{j} _{;} M)$

$\rightarrow H_{i-1}(v_{1}, \ldots, v_{j+1} ; M)\rightarrow\cdots$

Here $\alpha_{i}$ is induced by the inclusion map $\iota$ , $\beta_{i}$ by $\tau$ , and $\delta_{?-1}$. is the
connecting homomorphism, which acts as follows: if $z=g_{0}+g_{1}x_{j+1}+$

$(i-1)$

$\ldots+g_{i-1}x_{j+1}$ isa cycle in $C_{i-1}(l_{1}, \ldots, \iota_{j+1} $;$ ^{M)}$ , then $\delta_{i-1}([z])=$

$[g_{0}v_{j+1}]$ .

Let $e_{1}$ , $\ldots$ , $e_{n}$ be a $K$-basis of $E_{1}$ . Using Proposition 4.1 it follows
easily by induction on $i$ that $C.(e_{1}, \ldots, e_{i}; E)$ is acyclic for $i=1$ , $\ldots$ , $n$ .

In particular, $C.(e_{1}, \ldots, e_{n}; E)$ is a minimal, graded free $E$-resolution
of $K$ .

Corollary 4.2. Let $ M\in \mathcal{M}\iota$ . Then

(a) for all $i\geq 0$ there are graded isomorphisms $Tor_{\dot{x}}^{E}(K, M)\cong H_{i}(e_{1}$ ,
$\ldots$ , $e_{n}$ ; $M$ ) of $K$ -vector spaces;

(b) for all $i\geq 0$ one has $\beta_{ii}(K)=\left(\begin{array}{l}n-1+i\\i\end{array}\right)$ and $\beta_{ij}(K)=0$ for $j\neq i$ ;

(c) $reg(M)\leq\max\{j:M_{j}\neq 0\}$ .

Proof The statements (a) and (b) are clear by the discussions pre-
ceding this corollary. Since $C_{i}(e_{1}, \ldots, e_{n}; E)\cong\oplus E(-i)$ , it follows

from (a) that $Tor_{i}^{E}(K, M)$ is a subquotient $of\oplus M(-i)$ . This implies
(c). Q.E.D.

For any finitely generated left $E$-module $M$ , the Cartan cohomology
with respect to the sequence $v=v_{1}$ , $\ldots$ , $v_{m}$ is defined to be the homol-
ogy of the cocomplex C. $(v;M)=Hom_{E}(C.(v;E), M)$ . Explicitly, we
have

C. $(v;M)$ : $ 0\partial^{0}\rightarrow C^{0}(M)\rightarrow C^{1}\partial^{1}(M)\rightarrow\ldots$ ,
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where the cochains C. $(v;M)$ and the cochain maps $\partial$

. can be described
as follows: the elements of $C^{i}(v;M)$ may be identified with all homoge-
neous polynomials $\sum_{a}m_{a}y^{a}$ of degree $i$ in the variables $y_{1}$ , $\ldots$ , $y_{m}$ with
coefficients $m_{a}\in M$ , and where as usual for $a\in \mathbb{N}^{n}$ , $y^{a}$ denotes the
monomial $y_{1}^{a_{1}}y_{2}^{a_{2}}\ldots y_{n}^{a_{n}}$ . The element $m_{a}y^{a}\in C.(v;M)$ is defined by
the mapping property

$m_{a}y^{a}(x^{(b)})=\{$
$m_{a}$ for $b=a$ ,

0 for $b\neq a$ .

After this identification the cochain maps are simply multiplication by
the element $y_{v}=\sum_{i=1}^{n}v_{i}y_{i}$ . In other words, we have

$\partial^{i}$ : $C^{i}(v;M)\rightarrow C^{i+1}(v;M)$ , $f\mapsto y_{v}f$ .

In particular we see that C. $(v;E)$ may be identified with the polynomial
ring $E[y_{1}, \ldots, y_{m}]$ , and that C. $(v;M)$ is a finitely generated C. $(v;E)-$

module. It is obvious that cocycles and coboundaries of C. $(v;M)$ are
$E[y_{1}, \ldots, y_{m}]$ -submodules of C. $(v;M)$ . As $E[y_{1}, \ldots, y_{m}]$ is Noether-
ian, it follows that the Cartan cohomology H. $(v;M)$ of $M$ is a finitely
generated (graded) $E[y_{1}, \ldots, y_{m}]$ module.

We set $M^{*}=Hom_{E}(M, E)$ . Cartan homology and cohomology are
related as follows:

Proposition 4.3. Let $M\in \mathcal{M}$ . Then

$H_{i}(v;M)^{*}\cong H^{i}(v;M^{*})$ for all $i$ .

Proof. Since $E$ is injective, the functor $(-)^{*}$ commutes with ho-
mology and we obtain

$H_{i}(v;M)^{*}\cong H^{i}(Hom_{E}(C_{i}(v;M), E))$

$\cong H^{i}(Hom_{E}(C_{i}(v;E), M^{*})\cong H^{i}(v;M^{*})$ . Q.E.D.

Proposition 4.4. Let $M\in \mathcal{M}_{l}$ . Then for all $j=1$ , $\ldots$ , $m-1$
$t/iere$ exists a long exact sequence of graded left $E$ -modules

$\ldots$ $\rightarrow H^{i-1}(v_{1}, \ldots, v_{j+1} ; M)\rightarrow H^{i-1}(v_{1}, \ldots, v_{j} ; M)$

$\rightarrow H^{i-1}(v_{1}, \ldots, v_{j+1} ; _{M)(-1)\rightarrow H^{i}(v_{1}}y_{j+1}, \ldots, v_{j+1} ; M)$

$\rightarrow H^{i}(v_{1}, \ldots, v_{j} ; M)\rightarrow\cdots$ .

Proof. It is immediate that such a sequence exists. We only show
that the map

$H^{i-1}(v_{1}, \ldots, v_{j+1} ; M)(-1)\rightarrow H^{i}(v_{1}, \ldots, v_{j+1} ; M)$
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is indeed multiplication by $y_{j+1}$ . We show this on the level of cochains.
In order to simplify notation we set $C_{i}=C_{i}(v_{1}, \ldots, v_{j+1} ; E)$ for all $i$ ,

and let

$\gamma:Hom_{E}(C_{i-1}, M)\rightarrow Hom_{E}(C_{i}, M)$

be the map induced by $\tau:C_{i}\rightarrow C_{i-1}$ , where

$\tau(x^{(b)})=\{$

$x_{1}^{(b_{1})}\cdots x_{j+1}^{(b_{j+1}-1)}$ if $b_{j+1}>0$ ,

0 otherwise.

Our assertion is that $\gamma$ is multiplication by $y_{j+1}$ .

For all $x^{(b)}\in C_{i}$ we have $\gamma(my^{a})(x^{(b)})=my^{a}(\tau(x^{(b)}))$ . This implies
that

$\gamma(my^{a})(x^{(b)})=\{$

$m$ if $(b_{1}, \ldots, b_{j+1})=(a_{1}, \ldots, a_{j+1}+1)$ ,

0 otherwise.

Hence we see that $\gamma(my^{a})=my^{a}y_{j+1}$ , as desired. Q.E.D.

\S 5. Simplicial cohomology

Besides Cartan cohomology, there is another natural cohomology
attached to any graded $E$-module: let $v\in E$ be a homogeneous element
of degree 1, and let $ M\in \mathcal{M}\iota$ . Since $v^{2}=0$ , we obtain a finite complex
of finitely generated $K$-vector spaces

$(M, v)$ : $\cdots\rightarrow M_{i-1}\rightarrow M_{i}l_{v}\rightarrow M_{i+1}l_{v}\rightarrow\cdots$

where $l_{v}$ denotes left multiplication by $v$ . We denote the $ith$ cohomology
of this complex by $H^{i}(M, v)$ . Notice that H. $(M, v)=\oplus_{i}H^{i}(M, v)$ is
again an object in $\mathcal{M}_{l}$ . Indeed,

H. $(M, v)=\frac{0.Mv}{vM}.$ ,

where 0 $:_{M}v=\{a\in M: va=0\}$ .

It is clear that a short exact sequence

$0\rightarrow U\rightarrow M\rightarrow N\rightarrow 0$ ,

of finitely generated graded $E$-modules induces the long exact cohomol-
ogy sequence

$\ldots$ $\rightarrow H^{i}(U, v)\rightarrow H^{i}(M, v)\rightarrow H^{i}(N, v)\rightarrow H^{i+1}(U, v)\rightarrow\cdots$
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Definition 5.1. Let $M\in \mathcal{M}_{l}$ . An element $v\in E_{1}$ is called
generic for $M$ if $dim_{K}H^{i}(M, v)\leq dim_{K}H^{i}(M, u)$ for all $i$ and all
$u\in E_{1}$ .

The property of being generic for $M$ is an open condition, that is,
there exists a non-empty Zariski open subset $G\subset E_{1}$ , such that $v\in E_{1}$

is generic if and only if $v\in G$ .

Let $\triangle$ be simplicial complex on the vertex set $[n]=\{1, \ldots, n\}$ .

One denotes by $I_{\triangle}\subset S$ the squarefree monomial ideal generated by all
monomials $x_{i_{1}}\cdots x_{i_{k}}$ such that $\{i_{1}, \ldots, i_{k}\}\not\in\triangle$ . The $K$ algebra $K[\triangle]=$

$S/I_{\triangle}$ is called the Stanley-Reisner ring of $\triangle$ . Detailed information about
this well studied ring can be found in [33], [14] and [21].

We denote by $J_{\triangle}$ the monomial ideal in $E$ corresponding to $I_{\triangle}$ . The
$K$ algebra $K\{\triangle\}=E/J_{\triangle}$ is called the exterior face ring of $\triangle$ . This
algebra was first studied in a systematic way by Kalai [26] in connection
with algebraic shifting. Notice that the Hilbert series of $K\{\triangle\}$ is given
by

$H_{K\{\triangle\}}(t)=\sum_{i\geq 0}f_{i-1}t^{i}$
,

where $f_{i}$ is the number of $i$-dimensional faces of $\triangle$ .

Lemma 5.2. Let $\triangle$ be a simplicial complex, and $v\in E_{1}$ a generic
element for $K\{\triangle\}$ . Then for all $i$ we have

$H^{i}(K\{\triangle\}, v)\cong\tilde{H}^{i-1}(\triangle;K)$ .

Proof Let $e=\sum_{i}^{n}e_{i}$ . It follows immediately from the defini-

tion of simplicial cohomology that $\tilde{H}^{i-1}(\triangle;K)\cong H^{i}(K\{\triangle\}, e)$ . Thus
it remains to be shown that $e$ is generic for $K\{\triangle\}$ . Let $\overline{K}$ be an al-
gebraic closure of $K$ . Then $H^{i}(K\{\triangle\}, v)\otimes_{K}\overline{K}\cong H^{i}(\overline{K}\{\triangle\})$ , and
$\tilde{H}^{i-1}(\triangle;K)\otimes_{K}\overline{K}\cong\tilde{H}^{i-1}(\triangle;\overline{K})$ . Thus we may as well assume that
$K$ is algebraically closed. The set $L$ of elements $v=\sum_{i}^{n}a_{i}e_{i}\in E_{1}$

with $\prod_{i}^{n}a_{i}\neq 0$ is open. Moreover, the complexes $(K\{\triangle\}, v)$ and
$(K\{\triangle\}, e)$ are isomorphic for all $v\in L$ . In fact, the isomorphism of
complexes is induced by the algebra automorphism $\varphi:K\{\triangle\}\rightarrow K\{\triangle\}$

with $\varphi(e_{i})=a_{i}e_{i}$ for $i=1$ , $\ldots$ , $n$ . Let $G\subset E_{1}$ be the subset of generic
elements for $K\{\triangle\}$ . Since $K$ is algebraically closed and since $L$ and $G$

are non-empty open subsets of the irreducible space $E_{1}$ , their intersec-
tion is non-empty. Let $v$ be an element of this intersection. Then $v$

is general, and $dim_{K}H^{i}(K\{\triangle\}, v)=dim_{K}H^{i}(K\{\triangle\}, e)$ for all $i$ . This
proves the assertion. Q.E.D.
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For the rest of the section we discuss the following question: Let $I$ $\subset$

$S$ be a squarefree monomial ideal, $J\subset E$ the corresponding monomial
ideal in the exterior algebra. Is there a relation between the $S$-resolution
of I and the $E$-resolution of $J$? We will show that this is indeed the
case. In order to describe this relation it is convenient to consider the
attached simplicial complexes.

Both algebras, $K[\triangle]$ as well as $K\{\triangle\}$ , are $\mathbb{Z}^{n}$ -graded, and hence
have $\mathbb{Z}^{n}$-graded resolutions. A formula for the $\mathbb{Z}^{n}$ -graded Betti num-
bers $\beta_{ia}(K[\triangle])$ is given by Hochster [24] in terms of reduced simplicial
homology.

Let $a\in \mathbb{Z}^{n}$ . We set $supp(a)=\{i\in[n]:a_{i}\neq 0\}$ and $|a|=\sum_{i}a_{i}$ .

The element $a\in \mathbb{Z}^{n}$ is called squarefree, if $a_{i}\in\{0,1\}$ for $i=1$ , $\ldots$ , $n$ .

Let $\sigma\subset[n]$ . The restriction of $\triangle$ to $\sigma$ is the simplicial complex
$\triangle_{\sigma}=\{\tau\in\triangle:\tau\subset\sigma\}$ .

Theorem 5.3. Let $\triangle$ be a simplicial complex with vertex set $[n]$ ,

and $a\in \mathbb{N}^{n}$ . Then for all $i\geq 0$ , we have

(a) $\beta_{ia}^{S}(K[\triangle])=0$ , if $a$ is not squarefree;

(b) $\beta_{ia}^{S}(K[\triangle])=dim_{K}\tilde{H}_{|a|-i-1}(\triangle_{\sup p(a)} ; ^{K})$ , if $a$ is squarefree.

For the proof we refer to Hochster’s original paper [24], or to [14].
There is asimilar kind of formula for the $\mathbb{Z}^{n}$-graded Betti numbers

of $K\{\triangle\}$ given in [6].

Theorem 5.4. Let $\triangle$ be a simplicial complex with vertex set $[n]$ ,

and $a\in \mathbb{Z}^{n}$ . Then for all $i\geq 0$ , we have

$\beta_{ia}^{E}(K\{\triangle\})=dim\tilde{H}^{|a|-i-1}(\triangle_{\sup p(a);}K)$ .

Proof. Set $\alpha=supp(a)$ , and let $\tilde{C}(\triangle_{\alpha})$ be the augmented oriented

chain complex of $\triangle_{\alpha}$ . The module $C_{i}$ of $i$-chains of $\tilde{C}(\triangle_{\alpha})$ is the free
$Z$-module with basis $\sigma\in\triangle_{\alpha}$ , $|\sigma|=i+1$ . Thus the module of $i$-cochains
$C^{i}(K)$ is a $K$-vector space with basis $\sigma^{*}$ , $\sigma\in\triangle_{\alpha}$ , $|\sigma|=i+1$ where
$\sigma^{*}:$ $C_{i}\rightarrow K$ is the $\mathbb{Z}$-linear map with $\sigma^{*}(\tau)=0$ for $\tau\neq\sigma$ and $\sigma^{*}(\tau)=1$

for $\tau=\sigma$ .

On the other hand, $Tor^{E}(K\{\triangle\}, K)_{a}$ may be identified with the
homology of the $ath$ graded piece $C(e_{1}, \ldots, e_{n}; K\{\triangle\})_{a}$ of the Cartan
complex. In degree $i$ this complex has the following $K$ basis

$e_{\sigma}x^{(a_{\sigma})}$ , $\sigma\in\triangle_{\alpha}$ , $|a_{\sigma}|=i$ .

Here $a_{\sigma}=(a_{1}^{; },\ldots, a_{n}’)$ where $a_{j}’=a_{j}$ for $ j\not\in\sigma$ and $a_{j}’=a_{j}-1$ for
$ j\in\sigma$ .
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We define a $K$ linear map

$\varphi_{i}$ : $C_{i}(e_{1}, \ldots, e_{n}; K\{\triangle\})_{a}\rightarrow C^{d-i-1}(K)$

by setting $\varphi_{i}(e_{\sigma}x^{(a_{\sigma})})=\sigma^{*}$ . One easily checks that $\varphi$ is an isomorphism
of complexes. Q.E.D.

A comparison of the formulas in Theorem 5.3 and Theorem 5.4 leads
to

Corollary 5.5. Let $\triangle$ be a simplicial complex with vertex set $[n]$ .

Then

$\sum_{i}\sum_{a\in \mathbb{N}^{n}}\beta_{ia}^{E}(K\{\triangle\})t^{i}s^{a}=\sum_{i}\sum_{a\in \mathbb{N}^{n}}\beta_{ia}^{S}(K[\triangle])\frac{t^{i}s^{a}}{\prod_{j\in\sup pa}(1-ts_{j})}$ .

There is actually an explicit construction for the $E$-resolution of
$K\{\triangle\}$ in terms of the $S$-resolution of $K[\triangle]$ . This construction is de-
scribed in [9].

\S 6. Regularity and extremal Betti numbers

In this section we present the theorem of Bayer, Charalambous and
S. Popescu [12] which asserts that the extremal Betti numbers of a
graded ideal and its generic ideal coincide.

Throughout this section we assume that the base field $K$ is infinite.
Let $M$ be a finitely generated graded $S$-module. A Betti number of $M$

is called extremal if $\beta_{ii+j}=0$ for all $(i, j)\neq(k, m)$ with $i\geq k$ and
$j\geq m$ . The corollary of the next theorem provides a characterization
of extremal Betti numbers in terms of annihilators of almost regular
sequences.

An element $x\in S_{1}$ is called almost $M$ -regular, if the colon module
0 $:_{M}x=\{c\in M:xc=0\}$ is of finite length. The set of almost M-
regular elements is a nonempty open subset of $S_{1}$ . Indeed, $M/H_{\mathfrak{m}}^{0}(M)$

is a module of positive depth, so that the Zariski open set $S$ $\subset S_{1}$ of
regular elements of $M/H_{\mathfrak{m}}^{0}(M)$ in $S_{1}$ is not empty. For any element
$x\in S$ we have that 0 $:_{M}x$ is a finite length module.

Let $1=l_{1}$ , $\ldots$ , $l_{m}$ be a sequence of linear forms in $S$ . In order to
simplify notation we set $M\langle j\rangle=M/(l_{1}, \ldots, l_{j})M$ , and for $i\geq 1$ we let
$H_{i}(j)$ be the $ith$ Koszul homology $H_{i}(l_{1}, \ldots, l_{j} ; M)$ of $M$ with respect
to the sequence $l_{1}$ , $\ldots$ , $l_{j}$ . We further set $H_{i}(0)=0$ for $i>0$ and for
$j\geq 1$ we let $H_{0}(j-1)$ be the colon ideal 0 $:_{M_{\langle j-1\rangle}}l_{j}$ . Observe that, in

our notation, $H_{0}(j)$ is not the 0th Koszul homology.
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The sequence $1=l_{1}$ , $\ldots$ , $l_{m}$ is called an almost regular $M$ sequence
if for all $j=1$ , $\ldots$ , $m$ , the linear form $l_{j}$ is almost $M_{\langle j-1\rangle}$ regular If all
permutations of the sequence 1 are almost $M$-regular, then we call 1 an
unconditioned almost regular $M$ sequence.

Suppose $1=l_{1}$ , $\ldots$ , $l_{m}$ is almost $M$-regular, then all $H_{i}(j)$ are mod-
ules of finite length and since $M$ is a graded $S$-module, all $H_{i}(j)$ are
naturally graded. Now suppose in addition that 1 is a basis of $S_{1}$ . Then
there are graded isomorphisms $H_{i}(n)_{j}\cong Tor_{i}(K, M)_{j}$ for all $i$ and $j$ .

In particular, the graded ijth Betti numbers $\beta_{?j}$
. of $M$ coincide with

$dim_{K}H_{i}(n)_{j}$ .

Let $N$ be an Artinian graded module. We set $ s(N)=\max\{s:N_{s}\neq$

$0\}$ if $N\neq 0$ and $ s(0)=-\infty$ . Now we introduce the following numbers
attached to $M$ and the basis $1=l_{1}$ , $\ldots$ , $l_{n}$ . We set

$r_{j}=\max\{s(H_{i}(j))-i:i\geq 1\}$ and $s_{j}=s(H_{0}(j-1))$ for $j=1$ , $\ldots$ , $n$ ,

and put $r_{0}=0$ . We observe that $reg(M)=\max\{r_{n}, s(M/\mathfrak{m}M)\}$ .

Theorem 6.1. Suppose that the basis $1=l_{1}$ , $\ldots$ , $l_{n}$ of $S_{1}$ is an
almost regular $M$ -sequence. Then

(a) $r_{j}=\max\{s_{1}, \ldots, s_{j}\}$ for $j=1$ , $\ldots$ , $n$ . In particular, $ r_{1}\leq r_{2}\leq$

$\ldots$
$\leq r_{n}$ .

(b) Let $J$ $=\{j_{1}, \ldots,j_{l}\}$ , $1\leq j_{1}<j_{2}<\ldots<j\iota\leq n$ , be the set of
elements $j\in[n]$ such that $r_{j}-r_{j-1}\neq 0$ . Then for all $t$ with
$1\leq t\leq l$ and all $j$ with $j_{t}\leq j$ we have

(i) $H_{i}(j)_{i+s}=0$ for $s>r_{j_{t-1}}$ and $i>j-j_{t}+1$ ;
(ii) $H_{j-j_{t}+1}(j)_{j-j_{t}+1+r_{j_{t}}}\cong H_{0}(j_{t}-1)_{r_{j_{t}}}$ ;

(iii) $H_{j-j_{t}+1}(j)_{j-j_{t}+1+s}$ is isomorphic to a submodule of $H_{0}(j_{t}-$

$1)_{s}$ for all $s>r_{j_{t-1}}$ ;
(iv) $H_{0}(j-i)_{r_{j_{t}}}$ is isomorphic to a factor module of $H_{i}(j)_{i+r_{j_{t}}}$

for all $i$ with $i>j-j_{t+1}+1$ .

For the proof of this theorem we refer to [4].

Corollary 6.2. Let the numbers $j_{t}$ be defifined as in Theorem 6.1,
and set $k_{t}=n-j_{t}+1$ and $m_{t}=r_{j_{t}}$ . Then

(a) the Betti number $\beta_{?i+j}$. of $M$ is extremal if and only if

$(i, j)\in\{(k_{t}, m_{t}):t=1, \ldots, l\}$ .

Moreover, $\beta_{k_{t},k_{t}+m_{t}}=dim_{K}(0 : l_{j_{t}})_{s_{j_{t}}}$ for $t=1$ , $\ldots$ , $l$ ,

(b) for all $t=1$ , $\ldots$ , $l$ we have
(1) $\beta_{k_{t},k_{t}+s}\leq dim_{K}(0:l_{j_{t}})_{s}$ for all $s>m_{t-1}$ ,
(2) $\beta_{i,i+m_{t}}\geq dim_{K}(0:l_{n-i+1})_{m_{t}}$ for all $i>k_{t+1}$ .
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Now we are ready to prove the main theorem of this section.

Theorem 6.3 (Bayer-Charalambous-S. Popescu). Let $I$ $\subset S$ be $a$

graded ideal, and let Gin(/) be the generic initial ideal of I with respect
to the reverse lexicographic order. Then for any two integers $i$ , $j\in \mathbb{N}$

one has

(a) the ijth Betti number of $S/I$ is extremal if and only if the ijth
Betti number of $S/Gin(I)$ is extremal

(b) the corresponding extremal Betti numbers of $S/I$ and $S/Gin(/)$

are equal.

Proof. After a generic choice of coordinates we may assume that
Gin(J)=in(/), and since the condition of being an almost regular se-
quence is an open condition, we may as well assume that $x_{n}$ , $\ldots$ , $x_{1}$

is an almost regular $S/I$-sequence. Since Gin(/) is Borel fixed it fol-
lows for example from [16, Corollary 15.25] that $x_{n}$ , $\ldots$ , $x_{1}$ is an almost
regular $S/Gin(I)$ -sequence, too. Set $R\langle j\rangle=(S/I)/(x_{n}, \ldots, x_{j})(S/I)$

and $\overline{R}\langle j\rangle=(S/Gin(I))/(x_{n}, \ldots, x_{j})(S/Gin(I))$ , then it follows that
0 $:_{R\langle n-i+1\rangle}x_{n-i}$ as well as 0 $:_{\overline{R}\langle n-i+1\rangle}x_{n-i}$ have finite length for all
$i$ . Now since the chosen term order is reverse lexicographic it follows
from Proposition 1.4 that 0 $:_{R\langle n-i+1\rangle}x_{n-i}$ and 0 $:_{\overline{R}\langle n-i+1\rangle}x_{n-i}$ have
the same Hilbert function. In particular,

$s(0:_{R\langle r\iota-i+1\rangle}x_{n-i})=s(0:_{\overline{R}\langle n-i+1\rangle}x_{n-i})$ for all $i$ .

Thus Corollary 6.2(a) concludes the proof. Q.E.D.

Corollary 6.4. Let $I$ $\subset S$ be a graded ideal, Gin(J) the generic
initial ideal of I with respect to the reverse lexicographic order. Then

(a) (Bayer-Stillman) $reg(J)=reg(Gin(/))$ ;
(b) proj $dimS/I=projdimS/Gin(J)$
(c) $S/I$ is Cohen-Macaulay, if and only if $S/Gin(/)$ is Cohen-

Macaulay.

\S 7. Extremal Betti numbers for squarefree monomial ideals

Let $\triangle$ be a simplicial complex, and $J_{\triangle}\subset E$ the Stanley-Reisner
ideal of $\triangle$ in the exterior algebra. The exterior algebraic shifted complex
of $\triangle$ is the simplicial complex $\triangle^{e}$ with

$J_{\triangle^{e}}=Gin(J_{\triangle})$ .

We will study algebraic shifting more systematically in the next section.
Here we are interested in the comparison of the graded Betti numbers
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of $I_{\triangle}\subset S$ with those of $I_{\triangle^{e}}$ . Though it is not yet known whether or
not the graded Betti numbers increase when passing from $I_{\triangle}$ to $I_{\triangle^{e}}$ , it
can be shown (see [4]) that $I_{\triangle}$ and $I_{\triangle^{e}}$ have the same extremal Betti
numbers. In fact one has

Theorem 7.1. Let $\triangle$ be a simplicial complex. Then for any two
integers $i,j\in \mathbb{N}$ one has

(a) the ijth Betti number of $S/I_{\triangle}$ is extremal if and only if the ijth
Betti number of $S/I_{\triangle^{e}}$ is extremal

(b) the corresponding extremal Betti numbers of $S/I_{\triangle}$ and $S/I_{\triangle^{e}}$ are
equal

We will describe the main steps of the proof. For simplicity we set
$J=J_{\triangle}I=I_{\triangle}$ . Set $P_{j}(t)=\sum_{i\geq 0}\beta_{ii+j}^{E}(E/J)t^{i}$ , then Corollary 5.5
yields

$P_{j}(t)=\sum_{i\geq 0}(\sum_{k=0}^{i} \left(\begin{array}{ll}i+j & -1\\j+k & -1\end{array}\right)\beta_{kk+j}^{S})t^{i}$ .

Setting $k(j)=\max\{k:\beta_{kk+j}^{S}(S/I)\neq 0\}$ , we see that

$P_{j}(t)=\frac{\sum_{k=0}^{k(j)}\beta_{kk+j}^{S}(S/I)t^{k}(1-t)^{k(j)-k}+R(t)(1-t)^{k(j)+j}}{(1-t)^{k(j)+j}}$ ,

with a certain polynomial $R(t)$ .

We set $d_{j}(E/J)=k(j)+j$ and $e_{j}(E/J)=\beta_{k(j),k(j)+j}^{S}(S/I)$ .

Corollary 7.2. The following conditions are equivalent:

(a) $\beta_{ii+j}^{S}(S/I)$ is an extremal Betti number of $S/I$ ;
(b) $i=k(j)$ , and $d_{j’}(E/J)-d_{j}(E/J)<j’-j$ for all $j’>j$ .

For the further discussion we need (see [4, Corollary 4.6]) a different
interpretation of the numbers $d_{j}$ and $e_{j}$ .

Proposition 7.3. Let $M\in \mathcal{M}$ , and let $v_{1}$ , $\ldots$ , $v_{n}$ be a generic
basis of $E_{1}$ . Then the natural maps

$H_{i}(v_{1}, \ldots, v_{j+1} ; M)\rightarrow H_{i}\beta_{i}(v_{1}, \ldots, v_{j+1} ; M)$

of Cartan homology attached with the sequence $v_{1}$ , $\ldots$ , $v_{n}$ (cf. Proposi-
tion 4.1) are surjective for all $j=0$ , $\ldots$ , $n-1$ and all $j>>0$ .

We now fix $M\in \mathcal{M}$ and a sequence $v=v_{1}$ , $\ldots$ , $v_{n}$ in $E_{1}$ . Sim-
ilarly as in Section 1 we set $M\langle j-1\rangle=M/(v_{1}, \ldots, v_{j-1})M$ and put
$H_{i}(j)=H_{i}(v_{1}, \ldots, v_{j} ; M)$ for $i>0$ and $H_{0}(j)=H.(M\langle j-1\rangle, v_{j})$ for
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$j=1$ , $\ldots$ , $n$ . Furthermore we set $H_{i}(0)=0$ for all $i$ . Notice that $H_{0}(j)$

is not the 0th Cartan homology of $M$ with respect to $v_{1}$ , $\ldots$ , $v_{j}$ , but is
the cohomology of $ M\langle j-1\rangle$ with respect to $v_{j}$ as defined in Section 5.
From Proposition 4.1 we obtain immediately the following long exact
sequence of graded $E$ modules

(6) $H_{2}(j)\rightarrow H_{1}(j)(-1)\rightarrow H_{1}(j-1)\rightarrow H_{1}(j)\rightarrow H_{0}(j)(-1)\rightarrow 0$

$\ldots$ $\rightarrow H_{i}(j-1)\rightarrow H_{i}(j)\rightarrow H_{i-1}(j)(-1)\rightarrow H_{i-1}(j-1)\rightarrow\cdots$ .

We fix an integer $j$ . By Proposition 7.3 there exists an integer $i_{0}$

such that for all $i\geq i_{0}$ and all $k=1$ , $\ldots$ , $n$ the sequences

(7) $0\rightarrow H_{i+1}(k-1)_{(?+1)+j}.\rightarrow H_{i+1}(k)_{(i+1)+j}\rightarrow H_{i}(k)_{i+j}\rightarrow 0$

are exact.
Set $h_{i}^{k}=dim_{K}H_{i}(k)_{i+j}$ , and $c_{k}=h_{i_{0}}^{k}$ for $k=1$ , $\ldots$ , $n$ . The exact

sequences (7) yield the equations

(8) $h_{i+1}^{k}=h_{i+1}^{k-1}+h_{i}^{k}$

for all $i\geq i_{0}$ , and $k=1$ , $\ldots$ , $n$ . It follows from (8) that

$h_{i_{0}+i}^{n}=\left(\begin{array}{ll}i+ & n-2\\n-1 & \end{array}\right)$ $c_{1}+$ $\left(\begin{array}{ll} & i\\n & -3\end{array}\right)$ $c_{2}+\cdots+$ $\left(\begin{array}{l}i\\1\end{array}\right)$ $c_{n-1}+c_{n}for$ alli $\geq 0$ .

Since $\beta_{ii+j}^{E}(M)=h_{i}^{n}$ for all $i$ , we see that

$\sum_{i\geq 0}\beta_{ii+j}^{E}(M)=t^{i_{0}+1}\sum_{i=1}^{n}\frac{c_{i}}{(1-t)^{n-i+1}}+Q(t)$ ,

where $Q(t)$ is a polynomial. Thus we obtain:

Proposition 7.4. Let $d_{j}$ and $e_{j}$ be defifined as above. Then

$d_{j}(E/J)=n+1-\min\{i:c_{i}\neq 0\}$ and $e_{j}(E/J)=c_{n-d_{j}+1}$ .

In order to relate the invariants $d_{j}$ and $e_{j}$ to the generalized simpli-
cial homology modules $H_{0}(k)$ we need the following

Lemma 7.5. Let 1 $\leq l\leq n$ and $j$ be integers. The following
conditions are equivalent:

(a) (1) $H_{0}(k)_{j}=0$ for $k<l$ , and $H_{0}(l)_{j}\neq 0$

(2) $H_{0}(k)_{j’}=0$ for all $j’>j$ and all $k\leq l+j-j’$ .
(b) For all $i\geq 0$ we have

(1) $H_{i}(k)_{i+j}=0$ for $k<l$ , and $H_{i}(l)_{i+j}\neq 0$

(2) $H_{i}(k)_{i+j’}=0$ for all $j’>j$ and all $k\leq l+j-j’$ .
(c) Condition (b) is satisfified for some $i$ .
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Moreover, if the equivalent conditions hold, then $H_{i}(l)_{i+j}\cong H_{0}(l)_{j}$ for
all $i\geq 0$ .

Proof In our proof we will use the following exact sequence

(9) $H_{i}(k-1)_{i+j’}\rightarrow H_{i}(k)_{i+j’}\rightarrow H_{i-1}(k)_{(i-1)+j’}$

$\rightarrow H_{i-1}(k-1)_{(i-1)+(j’+1)}$

$(a)\Rightarrow(b)$ : We prove (b) by induction on $i$ . For $i=0$ , there is nothing
to show. So now let $i>0$ and assume that (1) and (2) hold for $i-1$ .

By (9) we have the exact sequence

$H_{i}(l)_{i+j}\rightarrow H_{i-1}(l)(i-1)+j\rightarrow H_{i-1}(l-1)(i-1)+(j+1)$ .

Since $l$ $-1\leq l+j-(j+1)$ , we have $H_{i-1}(l-1)_{(i-1)+(j+1)}=0$ by
induction hypothesis. Also by induction hypothesis, $H_{i-1}(l)_{(i-1)+j}\neq 0$ ;
therefore, $H_{i}(l)_{i+j}\neq 0$ .

Now let $k<l$ . Then (9) yields the exact sequence

$H_{\dot{x}}(k-1)_{i+j}\rightarrow H_{i}(k)_{i+j}\rightarrow H_{i-1}(k)_{(i-1)+j}$ .

By induction hypothesis we have $H_{i-1}(k)_{(i-1)+j}=0$ . Now by induction
on $k$ we may assume that $H_{i}(k-1)_{i+j}=0$ . Therefore, $H_{i}(k)_{i+j}=0$ ,

and this shows (1).
In order to prove $(b)(2)$ , we let $j’>j$ and $k\leq l+(j-j’)$ , and

consider the exact sequence

$H_{i}(k-1)_{i+j’}\rightarrow H_{i}(k)_{i+j’}\rightarrow H_{i-1}(k-1)_{(i-1)+j’}$ ,

from which the assertion follows by induction on $i$ and $k$ .
$(c)\Rightarrow(a)$ : We show that if the conditions (1) and (2) hold for $i>0$ ,

then they also hold for $i-1$ . Therefore backwards induction yields the
desired conclusion.

We begin with the proof of (2) for $i-1$ by induction on $k$ . For
$k=0$ , there is nothing to show. Now let $j’>j$ , and $0<k\leq l+(j-j’)$ ,

and consider the exact sequence

$H_{i}(k)_{i+j’}\rightarrow H_{i-1}(k)_{(i-1)+j’}\rightarrow H_{i-1}(k-1)_{(i-1)+(j’+1)}$ .

Since $k-1\leq l+j-(j’+1)$ it follows by our induction hypothesis that
$H_{i-1}(k-1)_{(i-1)+(j’+1)}=0$ . On the other hand, by assumption we have
$H_{i}(k)_{i+j’}=0$ , and hence $H_{i-1}(k)_{(i-1)+j’}=0$ .

In order to prove (1) for $i-1$ we consider the exact sequence

$H_{i}(l-1)_{i+j}\rightarrow H_{i}(l)_{i+j}\rightarrow H_{i-1}(l)_{(i-1)+j}\rightarrow H_{i-1}(l-1)_{(i-1)+(j+1)}$ .
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Since $l$ $-1\leq l+j-(j+1)$ , we know from (2) (which we have already
shown for $i-1$ ) that $H_{i-1}(l-1)_{(i-1)+(j+1)}=0$ . By our assumption we
have $H_{i}(l-1)_{i+j}=0$ , and hence

$H_{i-1}(l)_{(i-1)+j}\cong H_{\dot{0}}(l)_{i+j}\neq 0$ .

That $H_{i-1}(k)_{(i-1)+j}=0$ for $k<l$ is proved similarly. This concludes
the proof of the implication $(c)\Rightarrow(a)$ .

In the proof of this implication we have just seen that $ H_{i}(l)_{i+j}\cong$

$H_{i-1}(l)_{(\dot{0}-1)+j}$ . By induction hypothesis we may assume that
$H_{i-1}(l)_{(i-1)+j}\cong H_{0}(l)_{j}$ , and hence $H_{i}(l)_{i+j}\cong H_{0}(l)_{j}$ , as desired.

Q.E.D.

A pair of numbers $(/, j)$ satisfying the equivalent conditions of Lemma
7.5 will be a called a distinguished pair (for $M$ ).

Now we may characterize the extremal Betti numbers of $S/I$ as
follows:

Corollary 7.6. The Betti number $\beta_{ii+j}(S/I)$ is extremal if and
only if $(n+1-i-j,j)$ is a distinguished pair. Moreover, if the equivalent

conditions of Lemma 7.5 hold, then $\beta_{ii+j}(S/I)=dim_{K}H_{0}(n+1-i-j)_{j}$ .

Proof. We know from Corollary 7.2 that $\beta_{?i+j}.(S/I)$ is an extremal
Betti number if and only if $d_{j’}(E/J)-d_{j}(E/J)<j’-j$ for all $j’>j$ .

By Proposition 7.4 this condition is equivalent to

$\min\{k:H_{i_{0}}(k)_{io+j’}\neq 0\}>l+(j-j’)$ ,

where $l$ $=\min\{k:H_{i_{O}}(k)_{i_{O}+j}\neq 0\}$ . This in turn is equivalent to

$H_{i_{0}}(k)_{i_{0}+j’}=0$ for $k\leq l+(j-j’)$ ,

which means that $(Z, j)$ is a distinguished pair.
From Corollary 7.2 and Proposition 7.4 it follows that $l$ $=n+1-i-j$ .

Finally, Corollary 7.2, Proposition 7.4 and Lemma 7.5 imply that

$\beta_{??+j}..(S/I)=e_{j}(S/I)=c\iota=dim_{K}H_{0}(l)_{j}$ .

Q.E.D.

We we are ready for

Proof of Theorem 7.1. After a generic change of bases we may as-
sume, that in(J) $=Gin(J)$ , and that $e_{n}$ , $\ldots$ , $e_{1}$ is a generic basis for
$E/J$ , and since in(J) is Borel fixed it follows easily that $e_{n}$ , $\ldots$ , $e_{1}$ is
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a generic basis for $E/in(J)$ , too. We let $H_{0}(k)=H((E/J)/(e_{n},$ $\ldots$ ,

$e_{n-k+1}$ , $e_{n-k})(E/J)$ , $e_{n-k})$ . The corresponding homology modules for
$E/in(J)$ will be denoted by $H_{0}^{e}(k)$ . It follows from the exterior ana-
logue of Proposition 1.4 that for all $k=1$ , $\ldots$ , $n$ the homology modules
$H_{0}(k)$ and $H_{0}^{e}(k)$ have the same Hilbert function. Since the Hilbert
functions of these modules determine uniquely the distinguished pairs
$(l, j)$ , all assertions of the theorem follow from Corollary 7.6. Q.E.D.

\S 8. Shifting operations

In this section we study shifting operations. They assign to each
simplicial complex a shifted simplicial complex which shares basic prop-
erties with the original simplicial complex but is combinatorially simpler.

Let $\triangle$ be a simplicial complex on the vertex set $[n]$ .

Definition 8.1. The simplicial complex $\triangle$ is shifted, if $I_{\triangle}$ is strong-
ly stable. In other words, $\triangle$ is shifted if it satisfies the following property:
if $\sigma\in\triangle$ , $ i\in\sigma$ and $j>i$ , then $(\sigma\backslash \{i\})\cup\{j\}\in\triangle$ .

Following Kalai [27] we define a shifting operation by list of proper-
ties.

Definition 8.2. A map which assigns to each simplicial complex
$\triangle$ on the vertex set $[n]$ a simplicial complex Shift on the same vertex
set $[n]$ is called a shifting operation, if it satisfies the following conditions:

$(S_{1})$ Shift $(\triangle)$ is shifted;
$(S_{2})$ Shift(A) $=\triangle$ , if $\triangle$ itself is shifted;
$(S_{3})$ the simplicial complexes $\triangle$ and Shift $(\triangle)$ have the same $f$-vector;
$(S_{4})$ if $\Gamma$ is a subcomplex of $\triangle$ , then Shift $(\Gamma)\subset Shift(\triangle)$ .

Shifting operations were first considered by Erd\"os, Ko, and Rado
(see [1]), while algebraic shifting was introduced by Kalai [26], [27]. In
this section we will present and compare the most important shifting
operations.

Let us begin with

Combinatorial shifting: In the combinatorics of finite sets one consid-
ers the following operation (cf. [1]): Let $A$ be a collection of subsets of
$[n]$ . For given integers $1\leq i<j\leq n$ , and for all $\sigma\in A$ one defines:

$S_{ij}(\sigma)=\{$

$(\sigma\backslash \{j\})\cup\{i\}$ , if $ j\in\sigma$ , $ i\not\in\sigma$ , $(\sigma\backslash \{j\})\cup\{i\}\not\in A$ ,

$\sigma$ , otherwise.

For $1\leq i<j\leq n$ and $a\in K$ we define an elementary automorphism
$\varphi_{ij}^{a}$ : $V\rightarrow V$ as follows: $\varphi_{ij}^{a}(e_{k})=e_{k}$ if $k\neq j$ , and $\varphi_{ij}^{a}(e_{j})=ae_{i}+e_{j}$ .
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The following fact is easily checked

Lemma 8.3. Let $J\subset E$ be a monomial ideal, and let $a\in K$ ,
$a\neq 0$ . Then $in(\varphi_{ij}^{a}(J))$ has the $K$ -basis $\{e_{3_{ij}(\sigma)} : \sigma\in A\}$ , where $A=$

$\{\sigma\subset[n]:e_{\sigma}\in J\}$ .

It follows in particular that the ideal $in(\varphi_{ij}^{a}(J))$ does not depend

on the choice of $a$ . If $\triangle$ is a simplicial complex then $Shift_{\dot{\iota}j}(\triangle)$ is the
simplicial complex defined by

$J_{Shift_{ij}(\triangle)}=in(\varphi_{ij}^{a}(J_{\triangle}))$ .

Lemma 8.4. The operator $Shift_{ij}$ satisfifies the conditions $(S_{2})$ ,
$(S_{3})$ and $(S_{4})$ .

Proof. Suppose $\triangle$ is shifted, then $I_{\triangle}$ squarefree strongly stable,
and so $J_{\triangle}\subset E$ is strongly stable. By Lemma 8.3, $in(\varphi_{ij}^{a}(J_{\triangle}))$ has

the $K$-basis $\{e_{S_{ij}(\sigma)} : \sigma\in A\}$ . As $J_{\triangle}$ is strongly stable it follows that
$e_{S_{ij}(\sigma)}\in J_{\triangle}$ for all $e_{\sigma}\in J_{\triangle}$ . This proves $(S_{2})$ .

For the proof of $(S_{3})$ we note that $J_{\triangle}$ and $in(\varphi_{ij}^{a}(J_{\triangle}))$ have the same
Hilbert function. Condition $(S_{4})$ follows from Lemma 8.3. Q.E.D.

Simple examples show that $(S_{1})$ is in general not satisfied for $Shift_{ij}$ .

We will see however that a suitable sequence of these operators yield a
shifted simplicial complex.

For a monomial $u\in E$ of degree $d$ , $u=e_{j_{1}}\wedge\cdots\wedge e_{j_{d}}$ , we set
$c_{d}(u)=\sum_{k=1}^{d}j_{k}$ . Moreover, if $J\subset E$ is a monomial ideal, we set
$c_{d}(J)=\sum c_{d}(u)$ where the sum is taken over all monomials of degree $d$

in $J$ .

The following result was shown in [5]

Proposition 8.5. Let $\triangle$ be a simplicial complex. Then

(a) $c_{d}(J_{Shift_{ij}(\triangle)})\leq c_{d}(J_{\triangle})$ for all $d$ ;
(b) if $\triangle$ is not shifted, then there exist $i$ and $j$ with $i<j$ such that

$c_{d}(J_{Shift_{ij}(\triangle)})<c_{d}(J_{\triangle})$ for some $d$ .

Proof. Assertion (a) follows from the fact that $c_{d}(e_{S_{ij}(\sigma)})\leq c_{d}(e_{\sigma})$

for all monomials of degree $d$ .

Suppose now that $J_{\triangle}$ is not strongly stable. Then there exists a
squarefree monomial $e_{\sigma}\in J_{\triangle}$ (of degree $d$ ) and integers $i$ and $j$ with
$i<j$ such that $e_{S_{ij}(\sigma)}\not\in J_{\triangle}$ . Since $c_{d}(e_{S_{ij}(\sigma)})<c_{d}(e_{\sigma})$ , it follows that
$c_{d}(J_{Shift_{ij}(\triangle)})<c_{d}(J_{\triangle})$ , as desired. Q.E.D.

Corollary 8.6. Let $\triangle$ be a simplicial complex. Then there exists
a sequence of pairs of integers $(i_{1},j_{1})$ , $\ldots$ , $(i_{r},j_{r})$ with $i_{k}<j_{k}$ for $k=$
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1, . . . ’
$r$ such that

$Shift_{i_{r}j_{r}}(Shift_{i_{r-1}j_{r-1}}(\ldots(Shift_{i_{1}j_{1}}(\triangle)\ldots)))$

is shifted.

Any simplicial complex which is obtained from $\triangle$ by a sequence
of operations as described in Corollary 8.6 will be denoted by $\triangle^{c}$ . It
follows from our discussions that $\triangle\mapsto\triangle^{c}$ is a shifting operator. We call
this operator combinatorial shifting. Combinatorial shifting is not very
natural. In fact, $\triangle$ is not even uniquely defined. The only advantage of
this operator is that it is easily computable.

Conjecture 8.7. For all simplicial complexes $\triangle$ on the vertex set
$[n]$ and all integer $k$ and $l$ with 1 $\leq k<l\leq n$ one has $\beta_{ij}(I_{\triangle})\leq$

$\beta_{ij}(I_{Shift_{kl}(\triangle)})$ for all $i$ and $j$ . In particular, $\beta_{ij}(I_{\triangle})\leq\beta_{ij}(I_{\triangle^{c}})$ for all $i$

and $j$ .

It is only known that $\beta_{0j}(I_{\triangle})\leq\beta_{0j}(I_{Shift_{kl}(\triangle)})$ for all $j$ .

Exterior algebraic shifting: Let $\triangle$ be simpicial complex, $J_{\triangle}\subset E$ its
Stanley-Reisner ideal in the exterior algebra. Recall from Section 7 that
the exterior algebraic shifted complex $\triangle^{e}$ of $\triangle$ is defined by the equation
$J_{\triangle^{e}}=Gin(J_{\triangle})$ .

Proposition 8.8. Exterior algebraic shifting is in fact a shifting
operator, that is, it satisfifies the conditions $(S_{1})-(S_{4})$ .

Proof. Condition $(S_{1})$ follows from Proposition 2.13, and $(S_{3})$ and
$(S_{4})$ follow as for combinatorial shifting. In order to prove $(S_{2})$ we no-
tice that for any strongly stable ideal $J\subset E$ and any invertible upper
triangular matrix $\varphi$ one has $\varphi(J)=J$ . The assertion is clear for el-
ementary upper triangular matrices, as well as for invertible diagonal
matrices. Since these matrices generate all invertible upper triangular
matrices, we get the desired conclusion. Therefore, if $J\subset E$ is strongly
stable, then Gin( $=in(\varphi(J))=in(J)=J$ . Q.E.D.

Conjecture 8.9. Let $\triangle$ be simplicial complex. Then

$\beta_{ij}(I_{\triangle})\leq\beta_{ij}(I_{\triangle^{e}})$ .

Note that a result similar to Theorem 3.1 holds for ideals in the
exterior algebra, so that in particular one has $\beta_{ij}(J)\leq\beta_{ij}(Gin^{E}(J))$ for
all $i$ and $j$ . Unfortunately this does not imply the conjecture, even if
one uses Corollary 5.5.

As a consequence of the fact that $I_{\triangle}$ and $I_{\triangle^{e}}$ have the same extremal
Betti numbers we now derive further properties of exterior algebraic
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shifting which were discovered first (with different methods) by Kalai
[26].

Proposition 8.10 (Kalai). For all $i$ one has

$\tilde{H}^{i}(\triangle;K)\cong\tilde{H}^{i}(\triangle^{e}; K)$ .

Proof. Hochster’s formulas (cf. Theorem 5.3) imply that

(10) $\beta_{in}(K[\triangle])=dim_{K}\tilde{H}_{n-i-1}(\triangle;K)$ for all $i$ ,

and $\beta_{ij}(K[\triangle])=0$ for all $i$ and all $j>n$ . In particular we see that the
Betti numbers $\beta_{in}(K[\triangle])$ are extremal. Thus $\beta_{in}(K[\triangle])=\beta_{in}(K[\triangle^{e}])$ ,

by Theorem 7.1. Since $K$ is a field it follows that $\tilde{H}_{n-i-1}(\triangle;K)=$

$\tilde{H}^{n-i-1}(\triangle).K)$ for all $i$ , and the assertion follows. Q.E.D.

Remark 8.11. Let $J\subset E$ be a graded ideal. Using the exte-
rior version of Proposition 1.4 one easily shows that $dim_{K}H^{i}(E/J)=$

$dim_{K}H^{i}(E/Gin(J))$ for all $i$ , where Gin(J) is the generic initial ideal
of $J$ with respect to the reverse lexicographic order, and where $H.(M)$

denotes generalized cohomology of a graded $E$-module, as defined in Sec-
tion 5. Note that this observation yields another proof of Proposition
8.10.

The Alexander dual of the simplicial complex $\triangle$ (on the vertex set
$[n])$ is the simplicial complex

$\triangle*=\{\sigma\subset[n]:[n]\backslash \sigma\not\in\triangle\}$ .

We shall need the following result ([18])

Theorem 8.12 (Eagon-Reiner). Let $\triangle$ be a simplicial complex.
Then the following conditions are equivalent:

(a) $I_{\triangle}$ has a linear resolution;
(b) the dual simplicial complex $\triangle*is$ Cohen-Macaulay over $K$ .

Theorem 8.13 (Kalai). The following conditions are equivalent:

(a) $\triangle$ is Cohen-Macaulay over $K$ ;
(b) $\triangle^{e}$ is Cohen-Macaulay over $K$ ;
(c) $\triangle^{e}$ is pure.

Proof. We observe the simple fact (see for example [22, Lemma
1.1]) that $(\triangle*)^{e}=(\triangle^{e})^{*}$ .

(a)=(b): By Theorem 8.12, $\triangle$ is Cohen-Macaulay over $K$ if and
only if $I_{\triangle}*has$ linear resolution. Since, by Theorem 7.1, the regularity
of $K[\triangle*]$ and $K[(\triangle*)^{e}]$ is the same, it follows that $K[\triangle*]$ has a linear
resolution if and only if $K[(\triangle*)^{e}]=K[(\triangle^{e})^{*}]$ has a linear resolution.
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This in turn, again by Theorem 8.12, is the case if and only if $\triangle^{e}$ is
Cohen-Macaulay over $K$ .

The implication $(b)\Rightarrow(c)$ is true for any simplicial complex.
$(c)\Rightarrow(b)$ : Since the maximal faces of $\triangle^{e}$ correspond to the minimal

non-faces of $(\triangle^{e})^{*}$ , the purity of $\triangle^{e}$ implies that the minimal generators
of the defining ideal of $(\triangle^{e})^{*}$ all have the same degree. As $(\triangle^{e})^{*}=$

$(\triangle*)^{e}$ , we see that $(\triangle^{e})^{*}$ is shifted, and hence its defining ideal is strongly
stable. The resolution of a strongly stable ideal which is generated in
one degree is linear, as follows from Corollary 3.4. This concludes the
proof. Q.E.D.

Theorem 7.1 which says that extremal Betti numbers are preserved
under exterior algebraic shifting can be translated into a theorem about
the behaviour of links under shifting. Recall that the link of a face $\sigma\in\triangle$

is the simplicial complex

$1k_{\triangle}(\sigma)=$ { $\tau\in\triangle:\tau\cap\sigma=\emptyset$ and $\tau\cup\sigma\in\triangle$ }.

For the translation one needs the formula (see [18])

$\tilde{H}_{i-2}(1k\triangle*(\sigma);K)\cong\tilde{H}^{|T|-i-1}(\triangle\tau;K)$ for all $i$ and $\sigma\in\triangle*$ ,

where $ T=[n]\backslash \sigma$ . This is a slight generalization of the so-called Alexan-
der duality formula:

$\tilde{H}_{i-2}(\triangle*;K)\cong\tilde{H}^{n-i-1}(\triangle;K)$ for all $i$ .

The numbers $\tilde{\beta}_{i}(\Gamma)=dim_{K}\tilde{H}_{i}(\Gamma;K)$ are called the reduced Betti num-
bers (with values in $K$ ) of the simplicial complex $\Gamma$ . Now we get

Theorem 8.14. Let $i$ and $j$ be non-negative integers. Suppose
$\tilde{\beta}_{l}(1k_{\triangle}(\sigma))=0$ for all faces $\sigma$ with $|\sigma|<j$ , and all $l$ with $i\leq l\leq i+t$ ,

where $t=j-|\sigma|$ . Then $\sum_{\sigma,|\sigma|=j}\tilde{\beta}_{\dot{\iota}}(1k_{\triangle}\sigma)$ is preserved under exterior

algebraic shifting.

Symmetric algebraic shifting: Let $I$ $\subset S=K[x_{1}, \ldots, x_{n}]$ be a squarefree
ideal, where $K$ is field of characteristic 0. We let Gin(7) be the generic
initial ideal of I with respect to the reverse lexicographic term order.
We know from Proposition 2.2 that Gin(7) is a strongly stable ideal in
$S$ . But of course it is no longer squarefree.

We will transform Gin(7) into a squarefree monomial ideal by ap-
plying a certain operator: for a monomial $u\in S$ , $u=x_{i_{1}}x_{i_{2}}\cdots x_{i_{j}}\cdots x_{i_{d}}$

with $i_{1}\leq i_{2}\leq\cdots\leq i_{j}\leq\cdots\leq i_{d}$ , we set

$u^{\sigma}=x_{i_{1}}x_{i_{2}+1}\cdots x_{i_{j}+(j-1)}\cdots x_{i_{d}+(d-1)}$ .
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It then follows immediately

(11) $m(u^{\sigma})-degu^{\sigma}=m(u)-1$ .

If $L$ is a monomial ideal with $G(L)=\{u_{1}, \ldots, u_{s}\}$ , then we write $L^{\sigma}$

for the squarefree monomial ideal generated by $u_{1}^{\sigma}$ , $\ldots$ , $u_{s}^{\sigma}$ in $K[x_{1},$
$\ldots$ ,

$x_{m}]$ , where $m=\max\{m(u)+degu-1: u\in G(L)\}$ .

Let $\triangle$ be a simplicial complex on the vertex set $[n]$ . The symmetric

algebraic shifted complex of $\triangle$ is defined to be the simplicial complex $\triangle^{s}$

with

$I_{\triangle^{s}}=(Gin(I_{\triangle}))^{\sigma}$ .

The definition of symmetric algebraic shifting presented here is formally
different from that of Kalai [27]. However it is an easy exercise to see
that both notions coincide.

A priori it is not clear from the definition of symmetric algebraic
shifting that $\triangle^{s}$ has the same vertex set $[n]$ . The next lemma shows
that this indeed is the case.

Lemma 8.15. IfI is a squarefree monomial ideal of $S=K[x_{1},$ $\ldots$

, $x_{n}]$ , then $m(u)+degu\leq n+1$ for all $u\in G(Gin(I))$ .

Proof. Recall from Examples 2.4 that the graded Betti numbers of
a strongly stable ideal I are given by Eliahou-Kervaire :

(12) $\beta_{i,i+j}(I)=\sum_{u\in G(I)_{j}}(^{m(u_{i})-1})$

for all $i$ and $j$ .

Since Gin(/) is strongly stable, formula (12) implies that $\max\{m(u)+$

$degu-1:u\in G(Gin(I))\}$ is the highest shift in the resolution of Gin(/).
The monomial ideal I being squarefree, Hochster’s formula (see Theo-
rem 5.3) guarantees that the highest shift in the resolution of I is less
than or equal to $n$ . Since the Betti numbers with highest shift in the
resolution of I are extremal it follows from Theorem 6.3 that the highest
shift in the resolution of I and that of Gin(/) coincide (see also [22]).
This yields the desired inequalities. Q.E.D.

We want to point out that we defined symmetric algebraic shifting
only in a polynomial rings whose base field is of characteristic 0, because
otherwise we do not know if Gin(/) is strongly stable. It may be possible
that symmetric algebraic shifting can be defined in any characteristic,
provided the following question can be answered affirmatively.

Problem 8.16. Let $I$ $\subset S=K[x_{1}, \ldots, x_{n}]$ be a squarefree mono-
mial ideal. Is it true that Gin(/) is strongly stable in any characteristic?
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More generally one may even ask whether Gin(/) of a monomial ideal is
strongly stable, if the characteristic of the field is larger than all expo-
nents appearing in the monomial generators of $I$ .

On the other hand, if I is squarefree and char $K>n$ , then Gin(/)
is strongly stable. In fact, the highest degree of a generator of Gin(/) is
less than or equal to $reg(Gin(I))$ , and $reg$ Gin(/) $=reg$ I by Corollary
6.4. Since $reg(/)\leq n$ by Theorem 5.3, we conclude that the highest
degree of a generator of Gin(/) is $\leq n$ . Hence the assertion follows from
Proposition 2.2.

Note that condition $(S_{1})$ is satisfied since we have

Lemma 8.17. Let I be a strongly stable ideal with $G(I)=\{u_{1}$ , $\ldots$

, $u_{s}\}$ . Then the squarefree monomial ideal $I^{\sigma}$ is squarefree strongly stable
with $G(I^{\sigma})=\{u_{1}^{\sigma}, \ldots, u_{s}^{\sigma}\}$ .

Proof Suppose that, for some $u\in G(I)$ , we have $u^{\sigma}\not\in G(I^{\sigma})$ . Let
$u=x_{i_{1}}\cdots x_{i_{d}}$ with $i_{1}\leq\cdots\leq i_{d}$ . Then, for some proper subset $N$ of
$\{1, 2, \ldots, d\}$ and for some $1\leq q\leq s$ , we have $u_{q}^{\sigma}=\prod_{j\in N}x_{i_{j}+(j-1)}$ .

Hence $u_{q}=\prod_{j\in N}x_{i_{j}+h_{j}}$ , where $h_{j}$ is the number of integers $1\leq k<j$

with $k\not\in N$ . Since I is strongly stable, $\prod_{j\in N}x_{i_{j}}$ must belong to $I$ . This

contradicts $u\in G(I)$ . Thus we have $G(I^{\sigma})=\{u_{1}^{\sigma}, \ldots, u_{s}^{\sigma}\}$ .

Next, to see why $I^{\sigma}$ is squarefree strongly stable, let $ u=x_{i_{1}}\cdots x_{i_{d}}\in$

$G(I)$ and consider the monomial $(x_{b}u^{\sigma})/x_{i_{\alpha}+(a-1)}$ with $b\not\in supp(u^{\sigma})$

and $b<i_{a}+(a-1)$ . Let $i_{p}+(p-1)<b<i_{p+1}+p$ for some $p<a$ and
set

$v=(\prod_{j=1}^{p}x_{i_{j}})x_{b-p}(\prod_{j=p+1}^{a-1}x_{i_{j}-1})(\prod_{j=a+1}^{d}x_{i_{j}})$ .

Then, since $b-p<i_{p+1}\leq i_{a}$ and since I is strongly stable, the monomial
$v$ belongs to $I$ . Note that $v^{\sigma}=(x_{b}u^{\sigma})/x_{i_{a}+(a-1)}$ . Say, $v=x_{\ell_{1}}\cdots x\ell_{d}$

with $\ell_{1}\leq\cdots\leq\ell_{d}$ . Again, since I is strongly stable, it follows that
$w=x_{\ell_{1}}\cdots x\ell_{c}\in G(I)$ for some $c\leq d$ . Since $w^{\sigma}$ divides $v^{\sigma}$ , we have
$(x_{b}u^{\sigma})/x_{i_{a}+(a-1)}\in I^{\sigma}$ , as desired. Q.E.D.

The operator $I$ $\mapsto I^{\sigma}$ behaves well with respect to graded Betti
numbers.

Lemma 8.18. If I is a strongly stable monomial ideal, then
$\beta_{ii+j}(I)=\beta_{ii+j}(I^{\sigma})$ for all $i$ and $j$ .

Proof The result follows from (11), Corollary 3.4(a) and Corollary
3.6(a). Q.E.D.
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Next we indicate the proof of condition $(S_{2})$ for symmetric algebraic
shifting.

Theorem 8.19. Let $I$ $\subset S$ be a squarefree strongly stable ideal of
S. Then $I^{s}=I$ .

For the proof we introduce the operation $\tau$ which is inverse to $\sigma$ :
For a squarefree monomial $u=x_{i_{1}}x_{i_{2}}\cdots x_{i_{j}}\cdots x_{i_{d}}$ with $?_{1}.<i_{2}<\cdots<$

$i_{j}<\cdots<i_{d}$ , we set

$u^{\tau}=x_{i_{1}}x_{i_{2}-1}\cdots x_{i_{j}-(j-1)}\cdots x_{i_{d}-(d-1)}$ .

If $I$ $\subset S$ is a squarefree monomial ideal with $G(I)=\{u_{1}, \ldots, u_{s}\}$ , then
we write $I^{\tau}$ for the monomial ideal generated by $u_{1}^{\tau}$ , $\ldots$ , $u_{s}^{\tau}$ in $S$ .

Similarly to Lemma 8.17, we show:

Lemma 8.20. Let I be a squarefree strongly stable ideal with $G(I)$

$=\{u_{1}, \ldots, u_{s}\}$ . Then the ideal $I^{\tau}$ is strongly stable with $G(I^{\tau})=$

$\{u_{1}^{\tau}, \ldots, u_{s}^{\tau}\}$ .

Proof Assume that for some $u\in G(I)$ , we have $u^{\tau}\not\in G(I^{\tau})$ .

Let $u=x_{i_{1}}\cdots x_{i_{d}}$ with $i_{1}<\cdots<i_{d}$ . Then for some proper subset
$\{j_{1}, \ldots, j_{t}\}$ of $\{1, 2, \ldots, d\}$ , where $j_{1}<\cdots<j_{t)}$ and for some $1\leq q\leq s$ ,

we have $u_{q}^{\tau}=\prod_{k=1}^{t}x_{i_{j_{k}}-(j_{k}-1)}$ . Hence $u_{q}=\prod_{k=1}^{t}x_{i_{j_{k}}-(j_{k}-k)}$ . Since
$i_{k}\leq i_{j_{k}}-(j_{k}-k)$ for $1\leq k\leq t$ and I is squarefree strongly stable, we
get $x_{i_{1}}\cdots x_{i_{t}}\in I$ which contradicts $u\in G(I)$ .

Now, we show that $I^{\tau}$ is strongly stable. Let $u=x_{i_{1}}\cdots x_{i_{d}}\in G(I)$

with $i_{1}<\cdots<i_{d}$ , and consider the monomial $v=(x_{b}u^{\tau})/x_{i_{k}-(k-1)}$

with $b<i_{k}-(k-1)$ . Let $i_{p}-(p-1)\leq b<i_{p+1}-p$ for some $p<k$ .

Then

$v^{\sigma}=(\prod_{j=1}^{p}x_{i_{j}})x_{b+p}(\prod_{j=p+1}^{k-1}x_{?_{j}+1}.)(\prod_{j=k+1}^{d}x_{i_{j}})$ .

Since $b+p<i_{p+1}$ and $i_{j}+1\leq i_{j+1}$ for $p+1\leq j\leq k-1$ , and since I is
squarefree strongly stable, we obtain that $v^{\sigma}\in I$ . Say, $v^{\sigma}=x_{\ell_{1}}\cdots x_{\ell_{d}}$

with $\ell_{1}<\cdots<\ell_{d}$ . Again, since I is squarefree strongly stable, it follows
that $w=x_{\ell_{1}}\cdots x_{\ell_{c}}\in G(I)$ for some $c\leq d$ . Since $w^{\tau}$ divides

$(v^{\sigma})^{\tau}=vQ.E.D.$
’

we have $v\in I^{\tau}$ .

The proof of Theorem 8.19 is based on the following lemma. We
refer the reader to the original paper [7] for the somewhat tedious proof
of the lemma.

Lemma 8.21. Let $I$ $\subset S$ be a squarefree strongly stable ideal gen-
erated in degree $d$ . Let $G(I)=\{u_{1}, \ldots, u_{s}\}$ where $u_{1}>u_{2}>\ldots>u_{s}$ .
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Let $g=(a_{ij})_{1\leq i,j\leq n}$ be a generic upper triangular matrix acting on $S$ by
$g(x_{i})=\sum_{j=1}^{i}a_{ji}x_{j}$ for $1\leq i\leq n$ . Let $c_{kj}$ denote the coefficient of $u_{j}^{\tau}$

in the polynomial $g(u_{k})$ for $1\leq k$ , $j\leq s$ . Then the determinant of the
matrix $(c_{kj})_{1\leq k,j\leq s}$ is different from zero.

Proof of Theorem 8.19. Since the ideal I is squarefree strongly sta-
$ble)$ I is componentwise linear [5]. Therefore by [8, Theorem 1.1], for the
graded Betti numbers of I and Gin(I) it holds: $\beta_{ii+j}(I)=\beta_{ii+j}$ (Gin(I))
for all $i$ and $j$ . On the other hand, the ideal Gin(I) being strongly sta-
ble, it follows from Lemma 8.18 that $\beta_{ii+j}$ (Gin(I)) $=\beta_{ii+j}$ ((Gin(I))\sigma )

Thus, we obtain the equalities

(13) $\beta_{i,i+j}(I)=\beta_{i,i+j}((Gin(I))^{\sigma})$ for all $i,j$ ,

which imply that I and (Gin(I))\sigma have the same Hilbert function. Hence
it is enough to prove that $I$ $\subseteq(Gin(I))^{\sigma}$ . By Lemma 8.17 and Lemma
8.20 this inclusion is equivalent to $I^{\tau}\subseteq Gin(I)$ . So, we will show that
$u^{\tau}\in Gin(I)$ for every $u\in G(I)$ .

We denote by $\langle u\rangle$ the smallest squarefree strongly stable ideal con-
taining $u$ . Since $I$

$=\sum_{u\in G(I)}\langle u\rangle$ , and Gin $(\langle u\rangle)$ $\subseteq Gin(I)$ for every

$u\in G(I)$ , it is enough to show that the claim is true for squarefree Borel
principal ideals. So, we may assume that $I$ $=\langle u\rangle$ . Set $d=degu$ .

Let $G(I)=\{u_{1}, \ldots, u_{s}\}$ where $u_{1}>u_{2}>\cdots>u_{s}$ . Then $u_{s}=$

$u$ . We may assume that the claim is true for all $u_{k}$ , $1\leq k\leq s-1$ .

Then $(u_{1}^{\tau}, u_{2}^{\tau}, \ldots, u_{s-1}^{\tau})\subset Gin(I)$ , and since $I^{\tau}$ and Gin(I) have the
same number of minimal monomial generators, one has $G(Gin(I))=$
$\{u_{1}^{\tau}, u_{2}^{\tau}, \ldots, u_{s-1}^{\tau}, v\}$ , where $v$ isamonomial of degree $d$ . We have to
prove that $v=u^{\tau}$ .

Assume $v>u^{\tau}$ . We will see that this is impossible. First, we show
that $m(v)=m(u^{\tau})$ . It follows from formula Corollary 3.6(a) that

$\beta_{ii+d}((Gin(I))^{\sigma})=\sum_{j=1}^{s-1}$ $\left(\begin{array}{ll}m(u_{j})- & d\\i & \end{array}\right)$ $+$ $\left(\begin{array}{ll}m(v^{\sigma})- & d\\i & \end{array}\right)$ ;

$\beta_{ii+d}(I)=\sum_{j=1}^{s-1}$ $\left(\begin{array}{ll}m(u_{j})- & d\\i & \end{array}\right)$ $+$ $\left(\begin{array}{ll}m(u)- & d\\i & \end{array}\right)$ .

Therefore, according to (13), we obtain $(^{m(v_{i}^{\sigma})-d})=(^{m(u_{i})-d})$ which
implies $m(v^{\sigma})=m(u)$ , so that $m(v)=m(u^{\tau})$ .

We fix the following notation: $u=x_{s_{1}}\cdots x_{s_{d}}$ where $s_{1}<\cdots<s_{d}$ ,
and $v=x_{j_{1}}\cdots x_{j_{d}}$ where $j_{1}\leq\cdots\leq j_{d}$ . Since $v>u^{\tau}$ , there exits a $k$

such that $j_{i}=s_{i}-(i-1)$ for $k+1\leq i\leq d$ and $j_{k}<s_{k}-(k-1)$ . As
$j_{d}=m(v)=m(u^{\tau})=s_{d}-(d-1)$ , one has $k<d$ . If $j_{i}+(i-1)\leq s_{i}$
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for $1\leq i\leq k$ , then $I$ $=\langle u\rangle$ being squarefree strongly stable, one obtains
that $v^{\sigma}\in I$ which implies $v^{\sigma}=u_{t}$ for some $1\leq t\leq s-1$ and the
contradiction $v=u_{t}^{\tau}$ . Thus, there exits an $\ell$ , $1\leq\ell<k$ , such that
$j_{\ell}+(\ell-1)>s_{\ell}$ . Then $j_{\ell}\leq j_{k}<s_{k}-(k-1)\leq s_{d}-(d-1)=m(v)$ ,
therefore $x_{j_{\ell}}v/x_{m(v)}\in Gin(I)$ , because Gin(/) is strongly stable. Since
$x_{j_{\ell}}v/x_{m(v)}>v$ , we get $x_{j_{\ell}}v/x_{m(v)}=u_{t}^{\tau}$ for some $1\leq t\leq s-1$ . Say
$u_{t}=x_{t_{1}}\cdots x_{t_{d}}$ where $t_{1}<\cdots<t_{d}$ . As $I$ $=\langle u\rangle$ is a squarefree Borel
principal ideal, we have $t_{i}\leq s_{i}$ for $ 1\leq i\leq$

.
$d$ , therefore $ t_{i}-(i-1)\leq$

$s_{i}-(i-1)$ for $1\leq i\leq d$ . This contradicts $J\ell>s_{\ell}-(\ell-1)$ .

Hence, $v\leq u^{\tau}$ . Now, we apply Lemma 8.21 using same notation.
We have Gin(J) $=in(g(I))$ and $u_{j}^{\tau}\in Gin(I)$ for $1\leq j\leq s-1$ . Since the
rank of the matrix $(c_{kj})_{1\leq k,j\leq s}$ is maximal, it follows that $v\geq u^{\tau}$ , and
so $v=u^{\tau}$ . Q.E.D.

For symmetric algebraic shifting we can prove the inequality of
graded Betti numbers which we conjecture for exterior algebraic shifting.

Theorem 8.22. Let $\triangle$ be a simplicial complex. Then

$\beta_{ii+j}(I_{\triangle})\leq\beta_{ii+j}(I_{\triangle^{s}})$ for all $i$ and $j$ .

Proof. The desired inequalities follow from Theorem 3.1 and Lemma
8.18. Q.E.D.

Theorem 8.22 leads us to conjecture the following inequalities:

Conjecture 8.23. Let $\triangle$ be a simplicial complex. Then for all $i$

and $j$ one has

$\beta_{ii+j}(I_{\triangle^{s}})\leq\beta_{ii+j}(I_{\triangle^{e}})\leq\beta_{ii+j}(I_{\triangle^{c}})$ .

In virtue of Theorem 8.22 the conjecture implies the yet open in-
equalities

$\beta_{ii+j}(I_{\triangle})\leq\beta_{ii+j}(I_{\triangle^{e}})$

for all $i$ and $j$ . One should expect that there is direct proof of this
inequality, avoiding a comparison with the symmmetric shifted ideal.
The next result shows that the extremal Betti numbers of the symmetric
algebraic shifted ideals behave as expected.

Theorem 8.24. Let $\triangle$ be a simplicial complex. Then for all $i$ and
$j$

(a) the following conditions are equivalent:
(i) the ijth Betti number of $I_{\triangle}$ is extremal,
(ii) the ijth Betti number of $I_{\triangle^{s}}$ is extremal.
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(b) the corresponding extremal Betti numbers of $I_{\triangle}$ and $I_{\triangle^{s}}$ are equal.

Proof. The corresponding statements for I and $Gin^{S}(I)$ are proved

in Theorem 6.3. Hence, since $\beta_{ij}(Gin^{S}(I_{\triangle}))=\beta_{ij}(I_{\triangle^{s}})$ by Lemma 8.18,
we obtain the assertions for $I_{\triangle}$ and $I_{\triangle^{s}}$ , too. Q.E.D.

The invariance of the extremal Betti numbers for combinatorial
shifting is unknown. To prove it, it would suffice to show that $I_{\triangle}$ and
$I_{Shift_{ij}(\triangle)}$ have the same extremal Betti numbers.

As in the case of exterior algebraic shifting we get from Theorem
8.24

Corollary 8.25. Let $K$ be $a$ fifield of characteristic 0. Then

$\tilde{H}_{i}(\triangle;K)\cong\tilde{H}_{i}(\triangle^{s}; K)$ for all $i$ .

The usefulness of Proposition 8.10 and Corollary 8.25 is partially
explained by the fact that $\tilde{H}.(\triangle^{e}; K)$ and $\tilde{H}.(\triangle^{s}; K)$ can be computed
combinatorially in a simple way. In fact, as noted in [27] (in a different
terminology), one has

Lemma 8.26. Let $\triangle$ be a simplicial complex on the vertex set $[n]$

such that $I_{\triangle}$ is squarefree strongly stable. Then

$dim_{K}\tilde{H}_{i}(\triangle;K)$ $=$ $|\{u\in G(I_{\triangle})_{i+2} : m(u)=n\}|$

$=$ $|\{\sigma\in\triangle:dim\sigma=i, \sigma\cup\{n\}\not\in\triangle\}|$ .

Proof. The first equation follows from (10) and Corollary 3.6, while
the second equation follows trivially from the definitions. Q.E.D.

\S 9. Superextremal Betti numbers

As an application of Theorem 8.24 we prove a non-squarefree version
of a theorem of Bj\"orner and Kalai [15]. We first give a more algebraic
proof of their theorem, which applies to any graded ideal in the exterior
algebra, and not just to monomial ideals, but nevertheless follows closely
the arguments of the original proof of Bj\"orner and Kalai.

So let $J\subset E$ be a graded ideal. We set $f_{i-1}=dim_{K}(E/J)_{i}$ for
all $?$

.
$\geq 0$ , and call $f=(f_{0}, f_{1}, \ldots)$ the $f$-vector of $E/J$ . As in Section

we denote by $H^{i}(E/J)$ the generalized simplicial cohomology of $E/J$ .

We let $\beta_{i-1}=dim_{K}H^{i}((E/J))$ , and call $\beta=(\beta_{-1}, \beta_{0}, \beta_{1}\ldots)$ the Betti
sequence of $E/J$ . Jn case $J=J_{\triangle}$ for some simplicial complex $\triangle$ , the $\beta_{i}$

are the ordinary Betti numbers of $\triangle$ .

A pair of sequences $(f, \beta)\in \mathbb{N}_{0}^{\infty}$ is called compatible if there exists
a graded $K$-algebra $E/J$ such that $f$ is the $f$ sequence and $\beta$ the Betti
sequence of $E/J$ .
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Theorem 9.1 (Bj\"orner and Kalai). Let $K$ be $a$ fifield. The follow-
ing conditions are equivalent:

(a) The pair of sequences $(f, \beta)$ is compatible.

(b) Set $\chi_{i}=(-1)^{i}\sum_{j=-1}^{i}(-1)^{j}(f_{j}-\beta_{j})$ for all $i$ . Then

(i) $\chi_{-1}=1$ and $\chi_{i}\geq 0$ for all $i$ ,

(ii) $\beta_{i}\leq\chi_{i-1}^{(i)}-\chi_{i}$ for all $i$ .

Proof, $(a)\Rightarrow(b)$ : The $f$-vectors of $E/J$ and $E/Gin(J)$ coincide,
since they have the same Hilbert function. By Remark 8.11 we have
$H^{i}(E/J)\cong H^{i}(E/Gin(J))$ for all $i$ . Hence also the Betti sequences of
$E/J$ and $E/Gin(J)$ coincide. Thus we may replace $J$ by Gin(J), and
hence may as well assume that $J$ is strongly stable.

Let $J’$ be the ideal generated by all $u\in G(J)$ with $m(u)<n$ and
all monomials $u\in E$ such that $u\wedge e_{n}\in G(J)$ . Then $J’$ is again strongly
stable and $E_{1}J’\subset J$ . By Lemma 8.26, the last property implies that

$dim_{K}(J’/J)_{i}=|\{u\in G(J)_{i+1} : m(u)=n\}|=\beta_{i-1}(E/J)$ .

It follows that $dim_{K}(E/J’)_{i}=f_{i-1}-\beta_{i-1}$ for all $i$ . Now we notice that
$e_{n}$ is regular on $E/J’$ , in the sense that the complex

$E/J’\rightarrow Ee_{n}/J’e_{n}\rightarrow E/J’$

is exact. Therefore, for each $i$ we obtain an exact sequence of $K$-vector
spaces

(14) $\rightarrow(E/J’)_{i-1}\rightarrow(E/J’)_{i}\rightarrow(E/J’)_{i+1}\rightarrow(E/(J’+e_{n}E))_{i+1}\rightarrow 0$ ,

and hence $\chi_{i}=dim_{K}(E/(J’+e_{n}E))_{i+1}$ .

Next we observe that $J’/J\cong(J’+e_{n}E)/(J+e_{n}E)$ and $E_{1}(J’+$

$e_{n}E)\subset J+enE$ , so that together with the Kruskal-Katona theorem (cf.
Section 10) we obtain

$\chi_{i}+\beta_{i}$ $=$ $dim_{K}E_{i+1}-dim_{K}(J+e_{n}E)_{i+1}$

$\leq$ $dim_{K}E_{i+1}-dim_{K}E_{1}(J’+e_{n}E)_{i}\leq\chi_{i-1}^{(i)}$ ,

as required.
$(b)\Rightarrow(a)$ : The hypotheses imply that $\chi_{i}\leq\chi_{i-1}^{(i)}$ and $\chi_{i}+\beta_{i}\leq$

$(\chi_{i-1}+\beta_{i-1})^{(i)}$ . Thus the Kruskal-Katona theorem yields an inte-
ger $m$ , and lexsegment ideals $L\subset N$ in the exterior algebra $E’=$

$ K\langle e_{1}, \ldots, e_{m-1}\rangle$ such that $dim_{K}(E/N)_{i+1}=\chi_{i}$ and $dim_{K}(E/L)_{i+1}=$

$\chi_{i}+\beta_{i}$ that for all $i$ .

Now let $ J\subset E=K\langle e_{1}, \ldots, e_{m}\rangle$ be the ideal generated by the
elements in $G(L)$ and all elements $u\wedge e_{m}$ with $u\in G(N)$ . Moreover we
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set $J’=NE$ . Then $J’/J\cong N/L$ , and so

(15) $dim_{K}(E/J)_{i+1}$ $=$ $dim_{K}(N/L)_{i+1}+dim_{K}(E/J’)_{i+1}$

$=$ $\beta_{i}+dim_{K}(E/J’)_{i+1}$ .

On the other hand, $e_{m}$ is regular on $E/J’$ , and so (14) yields

(16) $dim_{K}(E/(J’+e_{m}E))_{i+1}=(-1)^{i+1}\sum_{j=0}^{i+1}(-1)^{j}dim_{K}(E/J’)_{j}$

for all $i$ . Thus, since $E/(J’+e_{m}E)\cong E’/N$ , it follows from (16) that

$dim_{K}(E/J’)_{i+1}=dim_{K}(E’/N)_{i+1}+dim_{K}(E’/N)_{i}=\chi_{i}+\chi_{i-1}$

$=f_{i}-\beta_{i}$ .

This together with (15) implies that $dim_{K}(E/J)_{i+1}=f_{i}$ .

Finally it is clear from the construction of $J$ that $|\{u\in G(J)_{i+2}$ :

$m(u)=m\}|$ equals $dim_{K}(N/L)_{i+1}$ which is $\beta_{?}.$ . Thus, by Lemma 8.26,
the assertion follows. Q.E.D.

The Bj\"orner-Kalai Theorem can be translated into a theorem on
super extremal Betti numbers. Let $I$ $\subset S$ be a graded ideal. We let $m$

be the maximal integer $j$ such that $\beta_{ij}(S/I)\neq 0$ for some $i$ . In other
words, $m$ is the largest shift in the graded minimal free $S$-resolution
of $S/I$ . It is clear that $\beta_{im}(S/I)$ is an extremal Betti number for all $i$

with $\beta_{im}(S/I)\neq 0$ , and that there is at least one such $i$ . These Betti
numbers are distinguished by the fact that they are positioned on the
diagonal $\{(i, m-i):i=0, \ldots, m\}$ on the Betti diagram, and that all
Betti numbers on the right lower side of the diagonal are zero. The
ring $S/I$ may of course have other extremal Betti numbers, not sitting
on this diagonal. We call the Betti numbers $\beta_{im}$ , $i=0$ , $\ldots$ , $m$ , super
extremal, regardless whether they are zero or not, and ask the question
which sequences of numbers $(b_{0}, b_{1}, \ldots, b_{m})$ appear as sequences of super
extremal Betti numbers for graded rings with given Hilbert function.

Before answering the question we have to encode the Hilbert func-

tion $H_{S/I}(t)$ of $S/I$ in a suitable way. Using the additivity of the Hilbert
function, the graded minimal free resolution of $S/I$ yields the following
formula:

$ H_{S/I}(t)=\frac{a_{0}+a_{1}t+a_{2}t^{2}++a_{m}t^{m}}{(1-t)^{n}}\cdots$

with $a_{i}\in \mathbb{Z}$ ; see for example [14]. It follows that

$(1-t)^{n-m}H_{S/I}(t)=\frac{a_{0}+a_{1}t+a_{2}t^{2}++a_{m}t^{m}}{(1-t)^{m}}\cdots$ .
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Notice that $n-m$ may take positive or negative values. At any
rate, the rational function $(1-t)^{n-m}H_{S/I}(t)$ has degree $\leq 0$ . One easily
verifies that there is a unique expansion

$(1-t)^{n-m}H_{S/I}(t)=\sum_{i=0}^{m}f_{i-1}\frac{t^{i}}{(1-t)^{i}}$

with $f_{i}\in \mathbb{Z}$ . It is clear that $f_{-1}=1$ , and we shall see later that all
$f_{i}\geq 0$ . We call $f=(f_{-1}, f_{0}, f_{1}, \ldots, f_{m-1})$ the $f$ -vector of $S/I$ . Given
the highest shift in the resolution, the $f$-vector of $S/I$ determines the
Hilbert function of $S/I$ , and vice versa.

We set $b_{i}=\beta_{m-i-1,m}$ and call $b=(b_{-1}, \ldots, b_{m-1}.)$ the super ex-

tremal sequence of $S/I$ . Finally we set $\chi_{i}=(-1)^{i}\sum_{j=-1}^{x}(-1)^{j}(f_{j}-b_{j})$

for $i=-1,0\ldots.$ , $m-1$ . The Bj\"orner-Kalai theorem has the following
counterpart.

Theorem 9.2. Let $K$ be $a$ fifield of characteristic 0. Let $f=$

$(f_{-1}, f_{0}, \ldots, f_{m-1})$ and $b=(b_{-1}, b_{0}, \ldots, b_{m-1})$ be sequences of non-
negative integers. The following conditions are equivalent:

(a) there exists a homogeneous $K$ -algebra $S/I$ such that $f$ is the f-
vector, and $b$ the super extremal sequence of $S/I$ ;

(b) (i) $\chi_{-1}=1$ and $\chi_{i}\geq 0$ for all $i$ ,

(ii) $b_{i}\leq\chi_{i-1}^{(i)}-\chi_{i}$ for all $i$ .

Proof, $(a)\Rightarrow(b)$ Since the extremal Betti numbers are preserved

when we pass from I to $Gin^{S}(I)$ , it follows that I and $Gin^{S}(I)$ have
the same highest shift $m$ , and hence the same $b$-vector. Since $S/I$ and
$S/Gin^{S}(I)$ have the same Hilbert function, it also follows that the f-
vectors of $S/I$ and $S/Gin^{S}(I)$ coincide. Thus, since char(K) $=0$ , we
may assume that I is a strongly stable monomial ideal.

The ideal $I^{\sigma}$ is defined in $S’=K[x_{1}, \ldots, x_{m}]$ and $\beta_{ii+j}(I)$ $=$

$\beta_{ii+j}(I^{\sigma})$ by 8.18. This implies that

$H_{S’/I^{\sigma}}(t)=(1-t)^{n-m}H_{S/I}(t)$ .

Hence, if we let $\triangle$ be the simplicial complex with $I_{\triangle}=I^{\sigma}$ , then $\triangle$ and
$S/I$ have the same $f$-vector, and one has $b_{i}=dim_{K}\tilde{H}_{i}(\triangle;K)$ ; see (5.3).
Therefore, the conclusion follows from Bj\"orner-Kalai Theorem.

$(b)\Rightarrow(a)$ : Given an f- and $b$-sequence satisfying conditions (b),
there exists by 9.1 an integer $m$ and a simplicial complex $\triangle$ on the
vertex set $[m]$ whose $f$-vector is $f$ and whose $\beta$-sequence is $b$ . Then
$K[x_{1}, \ldots, x_{m}]/I_{\triangle}$ is a homogeneous $K$-algebra satisfying (a). Q.E.D.
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\S 10. Extremality properties of Lexsegment ideals

Let $I$ $\subset S$ be a graded ideal. Then $\beta_{ij}(I)\leq\beta_{ij}$ (Gin(I)) for all
$i$ and $j$ , by Theorem 3.1. Moreover it follows from Theorem 2.7 that
$\beta_{0j}$ (Gin(I)) $\leq\beta_{0j}(Gin(I)^{lex})$ for all $j$ . Since $I^{lex}=Gin(I)^{lex}$ we con-
clude that

$\beta_{0j}(I)\leq\beta_{0j}(I^{lex})$ for all $j$ .

Similar reasonings show that for all graded ideals $J\subset E$ one has

$\beta_{0j}(J)\leq\beta_{0j}(J^{lex})$ for all $j$ .

The question is whether such inequalities are valid also for the higher
graded Betti numbers. In case of the polynomial ring this is known.

Theorem 10.1 (Bigatti, Hulett, Pardue). Let $I$ $\subset S$ be a graded
ideal. Then

$\beta_{ij}(I)\leq\beta_{ij}(I^{lex})$ for all $i$ and $j$ .

Bigatti [13] and Hulett [25] proved this theorem independently for
base fields of characteristic 0. A proof in arbitrary characteristic was
later given by Pardue [31] using some polarization trick.

In the exterior case we have (cf. [6, Theorem 4.4])

Theorem 10.2. Let $J\subset E$ be a graded ideal. Then

$\beta_{ij}(J)\leq\beta_{ij}(J^{lex})$ for all $i$ and $j$ .

Conjecture 10.3. Let I $\subset$ S be a squarefree monomial ideal.
Then

$\beta_{ij}(I)\leq\beta_{ij}(I^{sqlex})$ for all $i$ and $j$ .

Theorem 10.4. Conjecture 10.3 is true if char $K=0$ .

Proof. By Theorem 8.22 we have $\beta_{ij}(I)\leq\beta_{ij}$ (Gin(I)\sigma ). Now we
use the result (see [5, Theorem 4.4]) that for any squarefree strongly
stable ideal $L$ one has $\beta_{ij}(L)\leq\beta_{ij}(L^{lex})$ . Applying this result to $L=$

Gin(I)\sigma and observing that $I^{lex}=(Gin(I))^{\sigma})^{lex}$ , we get the desired
inequalities. Q.E.D.

Theorem 10.4 was used by E. Sbarra to prove in his thesis [32] part
(a) of the following theorem, while for part (b) he uses the polarization
argument of Pardue. Let $M$ be a graded $S$-module, and $\mathfrak{m}$ the graded
maximal ideal of $S$ . Then $H_{m}$

.
(M) denotes the local cohomology of $M$ .

Recall that $H_{\mathfrak{m}}$

.
(M) is naturally graded.
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Theorem 10.5. Let $S=K[x_{1}, \ldots, x_{n}]$ .

(a) If $I$ $\subset S$ is a squarefree monomial ideal, and char $K=0$ , then

$dim_{K}$ $H_{\mathfrak{m}}^{?}$

.
$(S/I)_{j}\leq dim_{K}H_{\mathfrak{m}}^{i}(S/I^{sqlex})_{j}$ for all $i$ and $j$ .

(b) If $I$ $\subset S$ is a graded ideal, then

$dim_{K}H_{\mathfrak{m}}^{i}(S/I)_{j}\leq dim_{K}H_{\mathfrak{m}}^{i}(S/I^{lex})_{j}$ for all $i$ and $j$ .

in any characteristic.
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Certain Moduli of Algebraic $G$-vector Bundles over
Affine $G$-varieties

Kayo Masuda

Abstract.

Let $G$ be a reductive complex algebraic group and $P$ a complex
$G$-module with algebraic quotient of dimension $\geq 1$ . We construct a
map from a certain moduli space of algebraic $G$-vector bundles over $P$

to a $\mathbb{C}$-module possibly of infinite dimension, which is an isomorphism

under some conditions. We also show non-triviality of moduli of
algebraic $G$ vector bundles over a $G$-stable affine hypersurface of some
type. In particular, we show that the moduli space of algebraic G-
vector bundles over a $G$-stable affine quadric with fixpoints and one-
dimensional quotient contains $\mathbb{C}^{p}$ .

\S Introduction and results

Let $G$ be a reductive algebraic group defined over the ground field $\mathbb{C}$

of complex numbers. One of the most important problems in the theory
of algebraic group action is to understand algebraic $G$-actions on affine
space $A^{n}$ . The following problem is fundamental;

Linearization Problem
Is every action of $G$ on $A^{n}$ linearizable, i.e., conjugate to a linear

action under polynomial automorphisms of $A^{n}$ ?

In 1989, Schwarz [23] presented the first examples of non-linearizable
actions on affine space. In fact, he first showed that there exist non-
trivial algebraic $G$-vector bundles over $G$-modules, and the non-lineari
zable actions appear on the total spaces of non-trivial algebraic $G$-vector
bundles he found. An algebraic $G$-vector bundle $E$ over an affine G-
variety $X$ is an algebraic vector bundle $p$ : $E\rightarrow X$ together with a
$G$-action on $E$ such that $p$ is $G$-equivariant and the action on the fibers
is linear. By definition, every fiber over the fixpoint locus $X^{G}$ is a G-
module. An algebraic $G$-vector bundle is called trivial if it is isomorphic
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to a $G$-vector bundle of the form $X\times Q\rightarrow X$ for a $G$-module $Q$ . When
the base space is a $G$-module, if forgetting the $G$-action, the total space
$E$ is an affine space by the affirmative solution to the Serre Conjecture
by Quillen [22] and Suslin [25]. So, the $G$-action on the total space
of a non-trivial $G$-vector bundle over a $G$-module is a candidate for a
non-linearizable action on affine space. In fact, there are some criteria
for the $G$-action on $E$ being non-linearizable ([1], [7], [18]). So far, all
known examples of non-linearizable action are obtained from non-trivial
algebraic $G$-vector bundles. For an abelian $G$ , at this point, there are no
counterexamples to the Linearization Problem; for, by Masuda-Moser-
Petrie [19], every $G$-vector bundle over a $G$-module is trivial when $G$

is abelian. The key point of their proof is to show that one can reduce
triviality of a $G$-vector bundle over a $G$-module $P$ to triviality of a vector
bundle over the algebraic quotient space $P//G(=the$ spectrum of the
ring of $G$-invariant polynomials on $P$ ). Since $G$ is abelian, $P//G$ is a
normal affine toric variety, and triviality of a vector bundle over a normal
affine toric variety was obtained by Gubeladze [5]. We refer to Kraft [10]
for recent topics in affine algebraic geometry and algebraic group action
related to the Linearization Problem.

In this article, we study algebraic $G$-vector bundles over affine G-
varieties $X$ , especially in the case that $X$ is a $G$-module. Throughout
this article, we assume that $X$ is irreducible and smooth and that $X^{G}$

is non-empty. We denote by $VEC_{G}(X, Q)$ the set of equivariant iso-
morphism classes of algebraic $G$-vector bundles over $X$ such that ev-
ery fiber over $X^{G}$ is isomorphic to a $G$-module $Q$ . The isomorphism
class of a $G$-vector bundle $E\rightarrow X$ is denoted by $[E]$ . Suppose that
the base space is a $G$-module $P$ . In this case, we have some infor-
mation on $VEC_{G}(P, Q)([1], [2], [23], [11], [6], [18], [20])$ . By Bass-
Haboush [1], every $G$-vector bundle over $P$ is stably trivial, i.e., there
exists a $G$-module $S$ such that a Whitney sum $E\oplus(P\times S)$ is trivial.
For an abelian $G$ , VECG $(P, Q)$ is trivial, i.e., a trivial set consisting
of the trivial class $[P\times Q]$ by Masuda-Moser-Petrie [19]. For a non-
abelian $G$ , if the dimension of $P//G$ is at most one, VECG $(P, Q)$ is
well-understood. When $dimP//G=0$ , VECG $(P, Q)$ is trivial ([2], [12]).
When $dimP//G=1$ , however, VECG $(P, Q)$ can be non-trivial. Schwarz
([23], cf. Kraft-Schwarz [11]) showed that $VEC_{G}(P, Q)$ is isomorphic to
an additive group $\mathbb{C}^{p}$ for a nonnegative integer $p$ , and the non-trivial
$G$-vector bundles found by Schwarz led to the first examples of non-
linearizable actions on affine space, as is already mensioned above. The
result of Schwarz extends to the case where the base space is a (not neces-
sarily irreducible) $G$-stable affine cone $X$ with one-dimensional quotient,
namely, it holds that $VEC_{G}(X, Q)\cong \mathbb{C}^{p}$ for some $p([21], [15])$ . However,
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when $dimP//G\geq 2$ , $VEC_{G}(P, Q)$ is not finite-dimensional any more. In
fact, $VEC_{G}(P\oplus \mathbb{C}^{m}, Q)$ for a $G$-module $P$ with one-dimensional quotient
and a trivial $G$-module $\mathbb{C}^{m}$ is isomorphic to the $p$ times direct product
of a polynomial ring $\mathbb{C}[y_{1}, \cdots, y_{m}]$ where $p$ is a nonnegative integer such
that VECG $(P, Q)\cong \mathbb{C}^{p}[16]$ . Furthermore, Mederer [21] presented exam-
ples of $VEC_{G}(P, Q)$ which contains an uncountably-infinite dimensional
space for a finite group $G$ . Using Mederer’s result, it is shown that
$VEC_{G}(P, Q)$ can contain an uncountably-infinite dimensional space also
for a connected group $G[17]$ . However, $VEC_{G}(X, Q)$ is not yet classified
even when $X$ is a $G$-module $P$ with $dimP//G\geq 2$ except some special
cases ([6], cf. [20]) and the cases mensioned above.

We denote by $\mathcal{O}(X)$ the $\mathbb{C}$-algebra of regular functions on $X$ and by
$\mathcal{O}(X)^{G}$ the subalgebra of $G$-invariants of $\mathcal{O}(X)$ . By the finiteness theo-
rem of Hilbert, $\mathcal{O}(X)^{G}$ is finitely generated and the algebraic quotient
space $X//G$ is defined to be $Spec\mathcal{O}(X)^{G}$ . Let $\pi_{X}$ : $X\rightarrow X//G$ be the
algebraic quotient map, that is, the morphism induced by the inclusion
$\mathcal{O}(X)^{G}c_{->}\mathcal{O}(X)$ . Since $X$ is irreducible, $X//G$ is an irreducible affine
variety (cf. [8]). By Luna’s slice theorem [12], there is a finite strat-
ification of $X//G=\bigcup_{i}V_{i}$ into locally closed subvarieties $V_{i}$ such that
$\pi_{X}|_{\pi_{X}^{-1}(V_{\dot{t}})}$ : $\pi_{X}^{-1}(V_{\dot{z}})\rightarrow V_{i}$ is a $G$-fiber bundle (in the \’etale topology)

and the isotropy groups of closed orbits in $\pi_{X}^{-1}(V_{i})$ are all conjugate to a
fixed reductive subgroup $H_{i}$ . The unique open dense stratum of $X//G$ ,
which we denote by $U$ , is called the principal stratum and the corre-
sponding isotropy group, which we denote by $H$ , is called a principal
isotropy group. The principal isotropy group $H$ is the minimal group
among $H_{\dot{x}}$ up to conjugation. Suppose that $dimX//G\geq 1$ . We denote by
$VEC_{G}(X, Q)_{0}$ the subset of $VEC_{G}(X, Q)$ consisting of elements which

are trivial over $\pi_{X}^{-1}(U)$ and $\pi_{X}^{-1}(V)$ with fiber $Q$ where $V:=X//G-U$ .

Though we do not know how to compute $VEC_{G}(X, Q)$ , it is not difficult
to analyse $VEC_{G}(X, Q)_{0}$ since every $[E]\in VEC_{G}(X, Q)_{0}$ is determined
by a transition function with respect to two trivializations of $E$ . In the
case that $X$ is a (not necessarily irreducible) $G$-stable affine cone with
$dimX//G=1$ , in particular, a $G$-module with one-dimensional quotient,
$VEC_{G}(X\times A^{m}, Q)$ and $VEC_{G}(X\times A^{m}, Q)_{0}$ coincide and we can com-
pute $VEC_{G}(X\times A^{m}, Q)_{0}$ by analysing transition functions ([11], [16]).
We assume that the ideal of $V$ is principal; for, if $[E]\in VEC_{G}(X, Q)$ is
trivial over $\pi_{X}^{-1}(U)$ such that $\pi_{X}^{-1}(V)$ is of codimension $\geq 2$ , then $E$ is
trivial. Our first result is a classification of $VEC_{G}(P, Q)_{0}$ for a $G$-module
$P$ with $dimP//G\geq 2$ .

Theorem 1. Let $P$ be a $G$ -module such that $dimP//G\geq 2$ and
the ideal of the complement of the principal stratum in $P//G$ is principal.
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Let $Q$ be a $G$ -module. Then there exists a map

$\Psi_{P,Q}$ : $VEC_{G}(P, Q)_{0}\rightarrow C_{P}(Q)$ .

Here $C_{P}(Q)$ is $a\mathbb{C}$ -module possibly of infinite dimension (cf. Lemma
2.3). If $Q$ is multiplicity free with respect to a principal isotropy group of
$P$ and if $P$ has generically closed orbits, then $\Psi_{P,Q}$ is an isomorphism.

Here, a $G$-module $Q$ is called “multiplicity free with respect to a re-
ductive subgroup $H$” if every irreducible $H$-module appears in $Q$ , viewed
as an $H$-module, with multiplicity at most one, and we say “ $P$ has
generically closed orbits” if every fiber of the quotient map $\pi_{P}$ over the
principal stratum consists of a closed orbit.

For any $G$-module $P$ with one-dimensional quotient and any $Q$ ,
$\Psi_{P\oplus \mathbb{C}^{m},Q}$ in Theorem 1 is an isomorphism onto $C_{P\oplus \mathbb{C}^{m}}(Q)\cong(\mathbb{C}[y_{1},$ $\cdots$ ,
$y_{m}])^{p}$ , which coincides with the isomorphism obtained in [16].

Next, we investigate $VEC_{G}(X, Q)_{0}$ for an affine quadric $X$ . An
affine quadric of dimension $N$ is an affine hypersurface $X:=\{(x_{0},$ $\cdots$

$x_{N})\in A^{N+1}|\sum_{i=0}^{N}x_{i}^{2}=1\}$ . We suppose that $G$ is connected and acts
on an affine quadric $X$ in such a way that the kernel of the action is
finite. Suppose also that $X^{G}$ is not empty and $dimX//G=1$ . Then
by Doebeli ([3], [4]), $X$ is $G$-isomorphic to an affine quadric $X_{P}:=$

$\{(x, v)\in P\oplus \mathbb{C}|u(x)+v^{2}=1\}$ , where $P$ is an orthogonal $G$-module
with $P//G\cong A^{1}$ and $u(x)\in \mathcal{O}(P)^{G}$ is an invariant quadratic form
generating $\mathcal{O}(P)^{G}$ . The $G$ action on $X_{P}$ is the one induced by the linear
action on $P$ . This time, however, the situation is rather different from
that in the case of $G$-modules. The fixpoint locus $X_{P}^{G}$ consists of two
points $\{(O, \pm 1)\}$ where $O$ is the origin of $P$ , whereas the fixpoint locus
of a $G$-module is an affine space, hence connected. Though $X_{P}//G$

is isomorphic to $A^{1}=Spec\mathbb{C}[v]$ , $V$ of $X_{P}//G$ consists of two points
$\{v=\pm 1\}$ , hence $V$ of $X_{P}//G$ is disconnected. For a $G$-module, $V$

is connected since $V$ is defined by invariant homogeneous polynomials.
Thus we cannot apply methods in case of $G$-modules directly to a case
of an affine quadric. While, note that $X$ is viewed as a $G\times(\mathbb{Z}/2\mathbb{Z})-$

variety, where $\mathbb{Z}/2\mathbb{Z}$ acts on $X\cong X_{P}\subset P\oplus \mathbb{C}$ via a (non-trivial) linear
action on $\mathbb{C}$ . Then $X/(\mathbb{Z}/2\mathbb{Z})\cong P$ as a $G$-variety. It is easy to see
that the quotient map $\pi_{\mathbb{Z}_{2}}$ : $X\rightarrow X/(\mathbb{Z}/2\mathbb{Z})\cong P$ induces an injection
$\pi_{\mathbb{Z}_{2}}^{*}$ : $VEC_{G}(P, Q)\rightarrow VEC_{G}(X, Q)$ (cf. [9]). Since $VEC_{G}(P, Q)\cong \mathbb{C}^{p}$

by the result of Schwarz, $VEC_{G}(X, Q)$ contains a space isomorphic to
$\mathbb{C}^{p}$ . We generalize this and obtain the following result.

Theorem 2. Let $P$ be a $G$ -module with $dimP//G\geq 1$ . For $ f\in$

$\mathcal{O}(P)^{G}$ and an integer $d\geq 2$ , let $X_{P}(f, d)$ be a $G$ -stable hypersur-

face $\{(x, v)\in P\oplus \mathbb{C}|f(x)+v^{d}=1\}$ . Then, the quotient map
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$\pi_{\mathbb{Z}_{d}}$ : $X_{P}(f, d)\rightarrow X_{P}(f, d)/(\mathbb{Z}/d\mathbb{Z})\cong P$ induces an injection for any
$G$ -module $Q$

$\pi_{\mathbb{Z}_{d}}^{*}$ : $VEC_{G}(P, Q)\rightarrow VEC_{G}(X_{P}(f, d),$ $Q)$ .

Hence, if $\Psi_{P,Q}$ in Theorem 1 is a surjection onto a non-trivial $C_{P}(Q)$ ,

the $VEC_{G}(X_{P}(f, d)$ , $Q)$ is non-trivial, too.

This article consists of three parts. In section 1, we investigate
$VEC_{G}(X, Q)_{0}$ for an irreducible smooth affine $G$-variety $X$ by analysing
transition functions of $G$-vector bundles. We have in mind as an $X$ a G-
module. Our technique is based on the one established by Kraft-Schwarz
[11]. Using the results obtained in section 1, we prove Theorem 1 in sec-
tion 2. We compute $VEC_{G}(P, Q)_{0}$ explicitly in examples. In section 3,
we ingestigate $VEC_{G}(X, Q)_{0}$ in the case where $V$ is not connected, in
particular, in the case where $X$ is a $G$-stable affine hypersurface repre-
sented by an affine quadric with fixpoints and one-dimensional quotient.

The author expresses her gratitude to Professor M. Brion for sug-
gesting to observe algebraic $G$-vector bundles over affine quadrics. She
thanks also M. Miyanishi for his encouragement.

\S 1. General results

Let $G$ be a reductive algebraic group and $X$ an irreducible smooth
affine $G$-variety. We assume that the dimension of $Y:=X//G$ is greater
than 0 and the ideal of $V=Y-U$ is principal, where $U$ is the principal
stratum of $Y$ . Let $f\in \mathcal{O}(Y)=\mathcal{O}(X)^{G}$ be a generator of the ideal of $V$ .

We assume also that $X^{G}$ is non-empty, connected and $X^{H}$ is irreducible
where $H$ is a principal isotropy group of $X$ . The object we have in
mind as an $X$ is a $G$-module. We will investigate $VEC_{G}(X, Q)_{0}$ for a
$G$-module $Q$ .

Lemma 1.1. Let $[E]\in VEC_{G}(X, Q)_{0}$ . Then $E$ is trivial over
$X_{h}:=\{x\in X|h(x)\neq 0\}$ where $h$ is an element of $\mathcal{O}(Y)$ such that
$h-1$ is contained in the ideal (/).

Proof Since $E|_{\pi_{X}^{-1}(V)}$ is, by the assumption, isomorphic to a trivial

bundle, it follows from the Equivariant Nakayama Lemma [2] that the
trivialization $E|_{\pi_{\overline{x}^{1}}(V)}\rightarrow\pi_{X}^{-1}(V)\times Q$ extends to a trivialization over a

$G$-stable open neighborhood $\tilde{U}$ of $\pi_{X}^{-1}(V)$ . Let $\tilde{V}$ be the complement of
$\tilde{U}$ in $X$ . Since $\tilde{V}$ is a $G$-stable closed set, $\pi_{X}(\tilde{V})$ is closed in $Y[8]$ . Note



170 K. Masuda

that $ V\cap\pi_{X}(\tilde{V})=\emptyset$ since $\pi_{X}^{-1}(V)\cap\tilde{V}=\emptyset$ . Let $\tilde{\wedge j}\subset \mathcal{O}(Y)$ be the ideal

which defines $\pi_{X}(\tilde{V})$ . Then $(f)+\tilde{J}\ni 1$ since $ V\cap\pi_{X}(\tilde{V})=\emptyset$ . Hence
there exists an $h\in\tilde{J}$ such that $h-1\in(f)$ . Since $Y_{h}\subset Y-\pi_{X}(\tilde{V})$ , $X_{h}=$

$\pi_{X}^{-1}(Y_{h})\subset\pi_{X}^{-1}(Y-\pi_{X}(\tilde{V}))\subset\tilde{U}$ . Thus $E$ is trivial over $X_{h}$ . Q.E.D.

We define an affine scheme $\tilde{Y}=Spec\tilde{A}$ by

$\tilde{A}=\{h_{1}/h_{2}|h_{1}, h_{2}\in \mathcal{O}(Y), h_{2}-1\in(f)\}$ .

Set $\tilde{Y}_{f}:=Y_{f}\times_{Y}\tilde{Y},\tilde{X}:=\tilde{Y}\times_{Y}X$ and $\tilde{X}_{f}:=\tilde{Y}_{f}\times_{Y}X$ . The group
of morphisms from $X$ to $M$ $:=GL(Q)$ is denoted by Mor $(X, M)$ or
$M(X)$ . The group $G$ acts on $M$ by conjugation via the represen-
tation $\rho$ : $G\rightarrow GL(Q)$ . The action of $G$ on $M(X)$ is defined by
$(g. \mu)(x)=\rho(g)\mu(g^{-1}x)\rho(g)^{-1}$ for $g$ $\in G$ , $x\in X$ , $\mu\in M(X)$ . We
denote the group of $G$-invariants of $M(X)$ by Mor $(X, M)^{G}$ or $M(X)^{G}$ .

Let $[E]\in VECG(X, Q)_{0}$ . Then by the definition of $VEC_{G}(X, Q)_{0}$ , $E$

has a trivialization over $\pi_{X}^{-1}(U)=X_{f}$ , and by Lemma 1.1 $E$ has a triv-
ialization also over an open neighborhood of $\pi_{X}^{-1}(V)$ , i.e., $X_{h}$ for some
$h\in \mathcal{O}(Y)$ such that $h-1\in(f)$ . Hence, assigning to $[E]$ the transi-
tion function with respect to the trivializations $E|_{X_{f}}\cong X_{f}\times Q$ and
$E|_{X_{h}}\cong X_{h}\times Q$ , we have a bijection to a double coset (cf. [15, 3.4])

VECG $(X, Q)_{0}\cong M(X_{f})^{G}\backslash M(\tilde{X}_{f})^{G}/M(\tilde{X})^{G}$ .

Since $X^{H}$ is irreducible, the inclusion $X^{H}c_{-\rangle}X$ induces an isomor-
phism $X^{H}//N(H)\rightarrow\sim X//G$ where $N(H)$ is the normalizer of $H$ in $G$

$[14]$ . Set $W:=N(H)/H$ . When we consider $X^{H}$ as a $W$-variety, we de-
note it by $B$ . Note that the principal isotropy group of $B$ is trivial. Let
$\beta$ : $M(X)^{G}\rightarrow L(B)^{W}$ be the restriction map where $L:=GL(Q)^{H}$ . We
say $X$ has generically closed orbits if $\pi_{X}^{-1}(\xi)$ for any $\xi\in Y_{f}$ consists of a
closed orbit, i.e. $\pi_{X}^{-1}(\xi)\cong G/H$ . When $X$ has generically closed orbits,
$GX_{f}^{H}=X_{f}$ . Hence $M(X_{f})^{G}=Mor(GX_{f}^{H}, GL(Q))^{G}\cong L(B_{f})^{W}$ , i.e., $\beta$

is an isomorphsim over $Y_{f}$ . The group homomorphism $\beta$ induces a map

$VEC_{G}(X, Q)_{0}$ $\cong$ $M(X_{f})^{G}\backslash M(\tilde{X}_{f})^{G}/M(\tilde{X})^{G}$

(1) $\rightarrow$ $L(B_{f})^{W}\backslash L(\tilde{B}_{f})^{W}/\beta(M(\tilde{X})^{G})$ ,

which is an isomorphism when $X$ has generically closed orbits.
We decompose $Q$ as an $H$-module

$Q\cong\oplus_{i=1}^{q}n_{i}Q_{i}$

where $Q_{i}$ are pairwise non-isomorphic irreducible $H$-modules and $n_{i}$ is
the multiplicity of $Q_{i}$ . We call $Q$ multiplicity free with respect to $H$ if
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$n_{i}=1$ for all $i$ . It follows from Schur’s lemma that

$L=GL(Q)^{H}\cong\prod_{i=1}^{q}GL_{n_{i}}$ .

Let $T$ be the center of $L$ . Then $T$ is $W$-stable and $T\cong(\mathbb{C}^{*})^{q}$ . When
$Q$ is multiplicity free with respect to $H$ , $L=T$ . Look at the action
of $W$ on $T$ . Note that $g\in N(H)$ permutes the $H$-isotypic components
$n_{i}Q_{i}(i=1, \cdots, q)$ . Since $w\in W$ acts on $L$ by conjugation by $\rho(g)$

where $g\in N(H)$ is a representative of $w$ , $W$ acts on $T\cong(\mathbb{C}^{*})^{q}$ by
permuting $\mathbb{C}^{*}s$ . Hence $W$ acts on $T$ as a subgroup of the symmetric
group $S_{q}$ via a continuous homomorphism from $W$ to $S_{q}$ . Thus the
connected component $W_{0}$ of $W$ containing the identity acts trivially
on $T$ and the action of $W$ on $T$ reduces to the action of $W/W_{0}$ . The
determinant map on each factor $GL_{n_{i}}$ of $L$ induces a homomorphism of
groups; $\tau$ : $L(B)^{W}\rightarrow T(B)^{W}$ . The homomorphism $\tau$ induces a map

(2) $L(B_{f})^{W}\backslash L(\tilde{B}_{f})^{W}/\beta(M(\tilde{X})^{G})\rightarrow T(\tilde{B}_{f})^{W}/(T(B_{f})^{W}(\tau\circ\beta)M(\tilde{X})^{G})$ .

By (1) and (2), we have

Lemma 1.2. There exists a map

$\psi_{X,Q}$ : $VEC_{G}(X, Q)_{0}\rightarrow T(\tilde{B}_{f})^{W}/(T(B_{f})^{W}(\tau\circ\beta)M(\tilde{X})^{G})$ .

If $Q$ is multiplicity free with respect to $H$ and $X$ has generically closed
orbits, then $\psi_{X,Q}$ is an isomorphism.

Remarks. 1. For $t$ $\in \mathcal{O}(Y)$ , let $VEC_{G}(X, Q;t)$ be the subset
of $VEC_{G}(X, Q)$ consisting of elements $[E]$ such that $E$ is trivial over
$\pi_{X}^{-1}(Y_{t})$ and its complement. Then one obtains, in a similar way to the
above, a map from $VEC_{G}(X, Q;t)$ to a quotient group.

2. When $H$ is trivial, $M=L$ and the target residue group in

lemma 1.2 is $\mathcal{O}(\tilde{Y}_{f})^{*}/\mathcal{O}(Y_{f})^{*}\tau(M(\tilde{X})^{G})$ , where $\mathcal{O}(\tilde{Y}_{f})^{*}$ (resp. $\mathcal{O}(Y_{f})^{*}$ )

denotes the group of invertible elements in $\mathcal{O}(\tilde{Y}_{f})$ (resp. $\mathcal{O}(Y_{f})$ ). If
$Q$ contains a trivial $G$-module, then $\tau=\det$ : $M(\tilde{X})^{G}\rightarrow \mathcal{O}(\tilde{Y})^{*}$

is surjective. Furthermore, if Pic $Y=(0)$ , then the residue group
$\mathcal{O}(\tilde{Y}_{f})^{*}/\mathcal{O}(Y_{f})^{*}\tau(M(\tilde{X})^{G})$ becomes trivial (cf. proof of Lemma 1.3).

Thus when $H$ is trivial and Pic $Y=(0)$ (e.g. $X$ is a $G$-module with a
trivial principal isotropy group), $\psi_{X,Q}$ becomes trivial if $Q$ contains a
trivial $G$-module.

We will analyse the target residue group in Lemma 1.2. We pose
the following conditions:
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(I) $V$ is connected and $\mathcal{O}(\pi_{B}^{-1}(V))^{*}=\mathbb{C}^{*}$ .

(II) The restriction $\mathcal{O}(\pi_{B}^{-1}(V))^{*}\rightarrow \mathcal{O}(X^{G})^{*}$ is an isomorphism.

It follows from the conditions (I) and (II) that the restriction of $\pi_{B}^{-1}(V)$

onto $X^{G}$ induces an isomorphism $T(\pi_{B}^{-1}(V))^{W}\cong T^{W}(X^{G})\cong T^{W}$ . Set

$T(\tilde{B})_{1}$ $:=$ $\{\mu\in T(\tilde{B})|\mu|_{\pi_{B}^{-1}(V)}=I\}$

$T(\tilde{B})_{1}^{W}$ $:=$ $T(\tilde{B})_{1}\cap T(\tilde{B})^{W}$

where I is the constant map to the identity element of $T$ . Note that
$T(\tilde{B})=T(\tilde{B})_{1}T(\pi_{B}^{-1}(V))=T(\tilde{B})_{1}T$ .

Lemma 1.3. Suppose that the conditions (I) and (II) are satisfied.
If Pic $B=(0)$ and $\mathcal{O}(B)^{*}=\mathbb{C}^{*}$ , then

$T(\tilde{B}_{f})^{W}=T(B_{f})^{W}T(\tilde{B})_{1}^{W}$ .

Proof. We first claim that $T(\tilde{B}_{f})=T(B_{f})T(\tilde{B})_{1}$ . Since $T(\tilde{B})=$

$T(\tilde{B})_{1}T$ , it suffices to prove $T(\tilde{B}_{f})=T(B_{f})T(\tilde{B})$ . Note that every

element of $T(\tilde{B}_{f})$ is considered as a transition function of a Whitney
sum of line bundles over $B$ with respect to trivializations over $B_{f}$ and
an open neighborhood of $\pi_{B}^{-1}(V)$ . Since Pic $B=(0)$ , every line bundle

over $B$ is trivial. This implies that $T(\tilde{B}_{f})=T(B_{f})T(\tilde{B})$ . Let $\mu\in$

$T(\tilde{B}_{f})^{W}$ . Write $\mu=\dot{\mu}\tilde{\mu}$ with $\dot{\mu}\in T(B_{f})$ and $\tilde{\mu}\in T(\tilde{B})_{1}$ . Note that
$T(B_{f})\cap T(\tilde{B})_{1}=T(B)_{1}=\{I\}$ since $\mathcal{O}(B)^{*}=\mathbb{C}^{*}$ . Since $\mu$ is W-

invariant, we have $\dot{\mu}^{-1}(w\cdot\dot{\mu})=\tilde{\mu}(w\cdot\tilde{\mu})^{-1}\in T(B_{f})\cap T(\tilde{B})_{1}=\{I\}$ for
every $w\in W$ . Hence $\dot{\mu}$ and $\tilde{\mu}$ are $W$-invariant, and the assertion is thus
verified. Q.E.D.

Set
$M(\tilde{X})_{1}^{G}:=\{\mu\in M(\tilde{X})^{G}|\mu|_{X^{G}}=I\}$ .

Note that $(\tau\circ\beta)(M(\tilde{X})_{1}^{G})\subset T(\tilde{B})_{1}^{W}$ under the conditions (I) and (II).

Lemma 1.4. Suppose that the assumptions in Lemma 1.3 are sat-

isfied. If there exists a $G$ -equivariant morphism $r$ : $X\rightarrow X^{G}$ such that
$r\circ i=id$ where $i$ : $X^{G}c_{-\rangle}X$ is the inclusion, then there exists an
isomorphism

$T(\tilde{B}_{f})^{W}/(T(B_{f})^{W}(\tau\circ\beta)M(\tilde{X})^{G})\cong T(\tilde{B})_{1}^{W}/(\tau\circ\beta)(M(\tilde{X})_{1}^{G})$ .

Proof. We claim that $(\tau\circ\beta)M(\tilde{X})^{G}\subset(\tau\circ\beta)(M(\tilde{X})_{1}^{G})T^{W}$ . In

fact, let $\mu\in M(\tilde{X})^{G}$ and $\mu_{0}:=\mu|_{X^{G}}\in M^{G}(X^{G})$ . Then $(\tau\circ\beta)\mu_{0}\in$

$T^{W}(X^{G})\cong T^{W}$ . Let $p$ : $M^{G}(X^{G})\rightarrow M(X)^{G}$ be the group homomor-
phism induced by $r$ . Then $\tilde{\mu}:=p(\mu_{0})\in M(X)^{G}$ satisfies $\tilde{\mu}|_{X^{G}}=\mu_{0}$ .
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Since $\mathcal{O}(B)^{*}=\mathbb{C}^{*}$ , $(\tau\circ\beta)\tilde{\mu}\in T^{W}$ . The claim follows from that $\mu=\mu_{1}\tilde{\mu}$

where $\mu_{1}=\mu\tilde{\mu}^{-1}\in M(\tilde{X})_{1}^{G}$ . Since $(\tau\circ\beta)M(\tilde{X})^{G}\subset(\tau\circ\beta)(M(\tilde{X})_{1}^{G})T^{W}$

and $T(B_{f})^{W}\cap T(\tilde{B})_{1}^{W}=T(B)_{1}^{W}=\{I\}$ , we obtain by Lemma 1.3 the
desired isomorphism. Q.E.D.

We proceed to analyse the residue group $T(\tilde{B})_{1}^{W}/(\tau\circ\beta)(M(\tilde{X})_{1}^{G})$ .

Let $\hat{Y}$ be the completion of $Y$ along $V$ and let $\hat{B}=\hat{Y}\times_{Y}B$ and
$\hat{X}=\hat{Y}\times_{Y}X$ . Note that an element of $M(\hat{X})^{G}$ (resp. $T(\hat{B})^{W}$ ) is
considered as an invertible matrix (resp. an invertible diagonal matrix)

with entries in $\mathcal{O}(\hat{X})$ (resp. $\mathcal{O}(\hat{B})$ ) invariant under the $G$-action (resp.

the $W$-action). For $r\geq 1$ , we define

$T(\hat{B})_{r}^{W}$ $:=$ $\{\mu\in T(\hat{B})^{W}|\mu=I mod b^{r}\mathcal{O}(\hat{B})\}$

$M(\hat{X})_{r}^{G}$ $:=$ $\{\mu\in M(\hat{X})^{G}|\mu=I mod \alpha^{r}\mathcal{O}(\hat{X})\}$ ,

where $\alpha\subset \mathcal{O}(X)$ denotes the ideal of $X^{G}\subset X$ and $b$ $\subset \mathcal{O}(B)$ denotes

the ideal of $\pi_{B}^{-1}(V)$ , i.e. $b$ $=\sqrt{(f)}$ . We define $L(\hat{B})_{r}^{W}$ , similarly. Then
there exists a canonical map

$T(\tilde{B})_{1}^{W}/(\tau o\beta)(M(\tilde{X})_{1}^{G})\rightarrow T(\hat{B})_{1}^{W}/(\tau o\beta)(M(\hat{X})_{1}^{G})$ .

We will show that this canonical map is a surjection when $X$ has gener-
ically closed orbits. First, we prove

Lemma 1.5. For every $r\geq 1$ ,

$T(\hat{B})_{1}^{W}=T(\tilde{B})_{1}^{W}T(\hat{B})_{r}^{W}$ .

Proof. It is clear that $T(\hat{B})_{1}^{W}\supset T(\tilde{B})_{1}^{W}T(\hat{B})_{r}^{W}$ . We show the

opposite inclusion. Let $\mu=(\mu_{1}(x), \ldots, \mu_{q}(x))\in T(\hat{B})_{1}^{W}$ where $\mu_{i}(x)\in$

$\mathcal{O}(\hat{B})$ and $\mu_{i}=1mod b\mathcal{O}(\hat{B})$ . Recall that $W$ acts on $T\cong(\mathbb{C}^{*})^{q}$ by
permuting $\mathbb{C}^{*}s$ . Since the identity component $W_{0}$ acts trivially on $T$ ,
$\mu_{i}(x)\in \mathcal{O}(\hat{B})^{W_{0}}$ for $1\leq i\leq q$ . Let $\overline{\mu}_{i}(x)\in \mathcal{O}(B)^{W_{0}}$ be a function such

that $\mu_{i}(x)=\overline{\mu}_{i}(x)mod b^{r}\mathcal{O}(\hat{B})$ . Since $\mu_{i}=1mod b\mathcal{O}(\hat{B}),\overline{\mu}_{i}=1$

$mod b$ . Define $\overline{\mu}:=(\overline{\mu}_{1}(x), \ldots,\overline{\mu}_{q}(x))$ and $\tilde{\mu}:=\prod_{w\in W/W_{0}}w\cdot\overline{\mu}$ . Then

$\tilde{\mu}\in T(\tilde{B})_{1}^{W}$ and $\tilde{\mu}^{-1}\mu\in T(\hat{B})_{r}^{W}$ . Q.E.D.

Let $\mathfrak{m}$ , (and $t$ be the Lie algebras of $M$ , $L$ and $T$ , respectively. Then
$\mathfrak{m}=End$ $Q$ , [ $=End(Q)^{H}\cong\oplus_{i=1}^{q}M_{n_{i}}$ and $t$ $\cong \mathbb{C}^{q}$ where $M_{n_{i}}$ denotes
an $(n_{i}\times n_{i})$ matrix Let $\beta_{*}$ : $\mathfrak{m}(X)^{G}\rightarrow \mathfrak{l}(B)^{W}$ be the homomorphism
of $\mathcal{O}(Y)$ -modules induced by the restriction of $X$ onto $B$ . Similarly, let
$\tau_{*}$ : $\mathfrak{l}(B)^{W}\rightarrow t(B)^{W}$ be the homomorphism induced by the $trace$ map
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on each $M_{n_{i}}$ of $t$ $\cong\oplus_{i=1}^{q}M_{n_{i}}$ . Note that

$t(B)^{W}\cong(\mathcal{O}(B)\otimes_{\mathbb{C}}t)^{W}$ , $((B)^{W}\cong(\mathcal{O}(B)\otimes_{\mathbb{C}}1)^{W}$

and $\mathfrak{m}(X)^{G}\cong(\mathcal{O}(X)\otimes_{\mathbb{C}}\mathfrak{m})^{G}$ ,

which are all finitely generated modules over $\mathcal{O}(Y)$ (cf. [8, $II$ , 3.2]). For
a positive integer $r$ , we define

$t(B)_{r}^{W}$ $:=(b^{r}\otimes_{\mathbb{C}}\mathfrak{t})^{W}$ ,

$\mathfrak{l}(B)_{r}^{W}$ $:=(b^{r}\otimes_{\mathbb{C}}t)^{W}$ ,

$\mathfrak{m}(X)_{r}^{G}$ $:=(\alpha^{r}\otimes_{\mathbb{C}}\mathfrak{m})^{G}$ ,

which are also finitely generated modules over $\mathcal{O}(Y)$ . We define $t(\hat{B})_{r}^{W}$ ,
( $(\hat{B})_{r}^{W}$ and $\mathfrak{m}(\hat{X})_{r}^{G}$ , similarly. The exponentials $\exp$ : [ $\rightarrow L$ and $\exp$ :
$\mathfrak{m}\rightarrow M$ induce isomorphisms (with inverse $\log$ ) [ $(\hat{B})_{r}^{W}\rightarrow\sim L(\hat{B})_{r}^{W}$ and
$\mathfrak{m}(\hat{X})_{r}^{G}\rightarrow M\sim(\hat{X})_{r}^{G}$ (Here, the latter exponential series converges in the
$\alpha$-adic topology).

Lemma 1.6. Suppose that $X$ has generically closed orbits. Then
there exists an integer $r_{0}$ such that $\beta_{*}\mathfrak{m}(X)_{1}^{G}\supset\downarrow(B)_{r}^{W}$ and $\beta(M(\hat{X})_{1}^{G})\supset$

$L(\hat{B})_{r}^{W}$ for all $r\geq r_{0}$ .

Proof. Let $\{C_{i}\}$ and $\{A_{j}\}$ be generating systems of $1(B)_{1}^{W}$ and
$\mathfrak{m}(X)_{1}^{G}$ over $\mathcal{O}(Y)$ , respectively. Since $X$ has generically closed orbits,
$\beta_{*}$ : $\mathfrak{m}(X_{f})^{G}\rightarrow 1(B_{f})^{W}$ is an isomorphism. Thus $C_{i}$ is written as
$C_{i}=\beta_{*}(\sum_{j}c_{ij}A_{j})$ where $c_{ij}\in \mathcal{O}(Y)_{f}$ . Let $e_{ij}\geq 0$ be the minimal

integer such that $f^{e_{ij}}c_{ij}\in \mathcal{O}(Y)$ and $d$ be the minimal integer such
that $b^{d}\subseteq(f)$ . Put $e:=\max_{i,j}\{e_{ij}\}$ and $r_{0}:=de+1$ . Then for
$r\geq r_{0}$ , any element of $t(B)_{r}^{W}$ is of the form $f^{e}C$ where $C\in 1(B)_{1}^{W}$ .

Since $C=\sum_{i}c_{i}C_{i}$ for $c_{i}\in \mathcal{O}(Y)$ and $f^{e}c_{ij}\in \mathcal{O}(Y)$ for every $i$ , $j$ , so
$f^{e}C\in\beta_{*}\mathfrak{m}(X)_{1}^{G}$ . Hence $\beta_{*}\mathfrak{m}(X)_{1}^{G}\supset \mathfrak{l}(B)_{r}^{W}$ . The second inclusion

follows from $\beta_{*}\mathfrak{m}(\hat{X})_{1}^{G}\supset t(\hat{B})_{r}^{W}$ via the exponential maps. Q.E.D.

Remark. In order to prove Lemma 1.6, it is sufficient to hold that
$\beta_{*}$ : $\mathfrak{m}(X_{f})^{G}\rightarrow 1(B_{f})^{W}$ is surjective.

Since $\tau_{*}$ : $\mathfrak{l}(\hat{B})_{r}^{W}\rightarrow t(\hat{B})_{r}^{W}$ is the $trace$ map, $\tau_{*}$ is surjective. Hence,

via the exponential maps, $T(\hat{B})_{r}^{W}=\tau(L(\hat{B})_{r}^{W})$ . Under the assumption

in Lemma 1.6, $T(\hat{B})_{r}^{W}=\tau(L(\hat{B})_{r}^{W})\subset(\tau\circ\beta)(M(\hat{X})_{1}^{G})$ for a sufficiently
large $r$ . By this together with Lemma 1.5, we obtain

Lemma 1.7. Suppose that $X$ has generically closed orbits. Then
the canonical map

$T(\tilde{B})_{1}^{W}/(\tau o\beta)(M(\tilde{X})_{1}^{G})\rightarrow T(\hat{B})_{1}^{W}/(\tau o\beta)(M(\hat{X})_{1}^{G})$
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is a surjection. Furthermore, if $Q$ is multiplicity free with respect to $H$ ,

then $L(\tilde{B})_{1}^{W}/\beta(M(\tilde{X})_{1}^{G})\rightarrow L(\hat{B})_{1}^{W}/\beta(M(\hat{X})_{1}^{G})$ is an isomorphism.

Proof. The first assertion is clear from the above statement. As
for the second assertion, it suffices to show that the canonical map is
injective. We will show that $\beta(M(\hat{X})_{1}^{G})\cap L(\tilde{B})_{1}^{W}\subset\beta(M(\tilde{X})_{1}^{G})$ . Let $\hat{D}\in$

$M(\hat{X})_{1}^{G}$ and $\beta(\hat{D})\in\beta(M(\hat{X})_{1}^{G})\cap L(\tilde{B})_{1}^{W}$ . We regard $\hat{D}$ as an element of
$\mathfrak{m}(\hat{X})^{G}$ and show that $\hat{D}\in \mathfrak{m}(\tilde{X})^{G}$ . Since $\beta(\hat{D})\in L(\tilde{B})_{1}^{W}$ is translated

as $\beta_{*}(\hat{D})\in t(\tilde{B})^{W}$ , it follows from Lemma 1.6 that $f^{r}\beta_{*}(\hat{D})=\beta_{*}(\tilde{D})$

for a sufficiently large $r$ and $\tilde{D}\in \mathfrak{m}(\tilde{X})^{G}$ . Since $X$ has generically closed
orbits, $\beta_{*}$ : $\mathfrak{m}(X_{f})^{G}\rightarrow((B_{f})^{W}$ is an isomorphism, so, $\beta_{*}$ : $\mathfrak{m}(X)^{G}\rightarrow$

( $(B)^{W}$ is an injection. Hence $\beta_{*}$ : $\mathfrak{m}(\hat{X})^{G}\rightarrow[(\hat{B})^{W}$ is also an injection.

Thus $f^{r}\hat{D}=\tilde{D}$ . This implies that $\hat{D}\in \mathfrak{m}(\tilde{X})^{G}$ . Hence $\hat{D}\in M(\tilde{X})_{1}^{G}$ and
the assertion follows. Q.E.D.

The logarithmic map induces an isomorphism

$T(\hat{B})_{1}^{W}/(\tau o\beta)(M(\hat{X})_{1}^{G})\cong t(\hat{B})_{1}^{W}/\tau_{*}\beta_{*}\mathfrak{m}(\hat{X})_{1}^{G}$ .

We set
$C_{X}(Q):=t(\hat{B})_{1}^{W}/\tau_{*}\beta_{*}\mathfrak{m}(\hat{X})_{1}^{G}$ .

When $Q$ is multiplicity free with respect to $H$ , $C_{X}(Q)=t(\hat{B})_{1}^{W}/\beta_{*}\mathfrak{m}(\hat{X})_{1}^{G}$ .

By the results obtained so far, we have

Theorem 1.8. There exists a map

$T(\tilde{B})_{1}^{W}/(\tau o\beta)(M(\tilde{X})_{1}^{G})\rightarrow t(\hat{B})_{1}^{W}/\tau_{*}\beta_{*}\mathfrak{m}(\hat{X})_{1}^{G}=C_{X}(Q)$ ,

which is an isomorphism when $Q$ is multiplicity free with respect to $H$

and $X$ has generically closed orbits.

\S 2. $G$-vector bundles over $G$-modules

In this section, we consider the case where the base space $X$ is a
$G$-module $P$ and give a proof of Theorem 1 in the introduction. Let $P$

be a $G$-module such that $Y=P//G$ is of dimension $\geq 1$ and the ideal
of $V=Y-U$ is principal. Note that the ideal of $V$ is generated by an
invariant homogeneous polynomial $f\in \mathcal{O}(P)^{G}$ and that $V$ is connected.
Let $H$ be a principal isotropy group of $P$ and let $B=P^{H}$ .

Lemma 2.1. (1) Pic $B=(0)$ and $\mathcal{O}(B)^{*}=\mathcal{O}(P^{G})^{*}=\mathbb{C}^{*}$ .

(2) $\pi_{B}^{-1}(V)$ is a connected affine cone and $\mathcal{O}(\pi_{B}^{-1}(V))^{*}=\mathbb{C}^{*}$ .
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Proof. (1) The assertion follows from the fact that $B$ and $P^{G}$ are
affine spaces.

(2) One easily sees that $\pi_{B}^{-1}(V)$ is a connected affine cone. Indeed,
$\pi_{B}^{-1}(V)$ is a union of irreducible reduced affine cones $\bigcup_{j}SpecR^{(j)}$ passing

through the origin. Each affine cone $SpecR^{(j)}$ has a positively graded

integral domain $R^{(j)}=\oplus_{k\geq 0}R_{k}^{(j)}$ as the coordinate ring such that $R_{0}^{(j)}=$

$\mathbb{C}$ . Since $(R^{(j)})^{*}=\mathbb{C}^{*}$ for each $j$ , the standard argument in commutative
algebras shows that $\mathcal{O}(\pi_{B}^{-1}(V))^{*}=\mathbb{C}^{*}$ . Q.E.D.

The projection $p$ : $P\rightarrow P^{G}$ is $G$-equivariant and has the property
$p\circ i=id$ for the inclusion $i$ : $ P^{G}\subseteq-\rangle$ $P$ . By this fact and the results
obtained so far, we obtain a map $\Psi_{P,Q}$ for a $G$-module $Q$ ;

$VEC_{G}(P, Q)_{0}$
$\psi_{P,Q}\rightarrow$

$T(\tilde{B}_{f})^{W}/(T(B_{f})^{W}(\tau\circ\beta)M(\tilde{P})^{G})$ (Lemma 1.2)

$\cong$ $T(\tilde{B})_{1}^{W}/(\tau o\beta)(M(\tilde{P})_{1}^{G})$ (Lemmas 1.4, 2.1)

$\rightarrow$ $t(\hat{B})_{1}^{W}/\tau_{*}\beta_{*}\mathfrak{m}(\hat{P})_{1}^{G}=C_{P}(Q)$ (Theorem 1.8).

Hence we have

Theorem 2.2. Let $P$ be a $G$ -module as above and let $Q$ be a G-
module. There is a map

$\Psi_{P,Q}$ : $VEC_{G}(P, Q)_{0}\rightarrow C_{P}(Q)$

which is an isomorphism when $Q$ is multiplicity free with respect to $H$

and $P$ has generically closed orbits.

Remarks. 1. Let $P$ be any $G$-module and let $t$ be a $G$-invariant
homogeneous polynomial on $P$ . We use the notation in the remark of
Lemma 1.2. By the construction similar to the above, one obtains a map

$\Psi_{P,Q}(t)$ : $VEC_{G}(P, Q;t)\rightarrow t(\hat{B})_{1}^{W}/\tau_{*}\beta_{*}\mathfrak{m}(\hat{P})_{1}^{G}=:C_{P,t}(Q)$

where the completion is (t)-adic completion. One can show that $\Psi_{PQ}\rangle$ $(t)$

is surjective for any $G$-module $Q$ if one takes $t\in \mathcal{O}(Y)$ so that $Y_{t}$ is

contained in the principal stratum of $\overline{GP^{H}}$ (cf. [15, 1.1], [2, 6.5]).
2. When $H$ is trivial and $Q$ contains a trivial $G$-module, $\psi_{P,Q}$ is

trivial (remark of Lemma 1.2), hence $\Psi_{P,Q}$ is also trivial.

This completes the proof of Theorem 1 in the introduction except
the statement on $C_{P}(Q)$ . Note that Theorem 1 holds also in the case

$dimP//G=1$ . When $dimP//G=1$ , it is known that $P//G\cong A^{1}$

and $VECG(P\oplus \mathbb{C}^{m}, Q)=VEC_{G}(P\oplus \mathbb{C}^{m}, Q)_{0}$ for $m\geq 0([11], [16])$ .

Suppose that $dimP//G=1$ . Then $C_{P}(Q)$ is a finite $\mathbb{C}$-module by the
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formula (3) below (cf. Lemma 2.3) and $C_{P\oplus \mathbb{C}^{m}}(Q)\cong(\mathbb{C}[y_{1}, \cdots, y_{m}])^{p}$

by easy calculation. By comparing $\Psi_{P\oplus \mathbb{C}^{m},Q}$ with the isomorphism
$VECG(P\oplus \mathbb{C}^{m}, Q)\rightarrow\sim(\mathbb{C}[y_{1}, \cdots, y_{m}])^{p}$ given in [16] (cf. [11]), one sees
that $\Psi_{P\oplus \mathbb{C}^{m},Q}$ for $m\geq 0$ is an isomorphism for any $P$ and $Q$ .

Now, we look at $C_{P}(Q)$ more closely. A $G$-module $P$ is called cofree
if $\mathcal{O}(P)$ is a free module over $\mathcal{O}(P)^{G}$ . It is known that cofree modules are
coregular, i.e., $P//G$ is isomorphic to affine space (cf. [24]). Furthermore,
if $P^{H}$ is a cofree $N(H)$ -module, then $P$ is a cofree $G$-module [24]. We
suppose that $B$ is a cofree $W$-module and make some obeservation on
$C_{P}(Q)$ . Then, $\mathcal{O}(Y)$ is isomorphic to a polynomial ring and $\mathfrak{m}(P)^{G}$ and
$t(B)^{W}$ are finite free modules over $\mathcal{O}(Y)$ . Since $b$ is principal, $t(B)_{1}^{W}$ is
also a finite free module over $\mathcal{O}(Y)$ . The rank of $t(B)_{1}^{W}$ is the same as the
rank of $t(B)^{W}$ , which is equal to $q=dimt[24]$ . Note that $\mathcal{O}(Y)$ , $\mathfrak{m}(P)^{G}$

and $t(B)^{W}$ inherit a grading on $\mathcal{O}(P)$ . Since $\alpha$ and $b$ are homogeneous
ideals, $\mathfrak{m}(P)_{1}^{G}$ and $t(B)_{1}^{W}$ are also graded. Let $\{A_{i;}1\leq i\leq\ell\}$ be a
homogeneous generating system of $\mathfrak{m}(P)_{1}^{G}$ over $\mathcal{O}(Y)$ and let $\{C_{i;}1\leq$

$i\leq q\}$ be a homogeneous basis of $t(B)_{1}^{W}$ over $\mathcal{O}(Y)$ . Then

$\tau_{*}\beta_{*}A_{i}=\sum_{j=1}^{q}a_{ij}C_{j}$ for $a_{ij}\in \mathcal{O}(Y)$ .

Noting that $t(\hat{B})_{1}^{W}=t(B)_{1}^{W}\otimes_{\mathcal{O}(Y)}\mathcal{O}(\hat{Y})$ and $\mathfrak{m}(\hat{P})_{1}^{G}=\mathfrak{m}(P)_{1}^{G}\otimes_{\mathcal{O}(Y)}$

$\mathcal{O}(\hat{Y})$ ,

(3) $C_{P}(Q)\cong\oplus_{j=1}^{q}\mathcal{O}(\hat{Y})/\hat{\alpha_{j}}$

where $\hat{\alpha_{j}}=\alpha_{j}\mathcal{O}(\hat{Y})$ and $\alpha_{j}$ is the ideal in $\mathcal{O}(Y)$ generated by { $a_{ij}$ ; $ 1\leq$

$i\leq l\}$ . Let $e_{j}=degC_{j}$ and $a_{i}=deg$ $A_{i}$ . Since $\tau_{*}$ and $\beta_{*}$ preserve the
grading, $dega_{ij}=a_{i}-e_{j}$ if $a_{ij}\neq 0$ . The following is easily proved.

Lemma 2.3. Suppose that $B$ is cofree. If there is some $j$ such that
$a_{i}>e_{j}$ for any $i$ , then $C_{P}(Q)$ is non-trivial. If there exists some $j$ such
that $ht\alpha_{j}<dimY$ , then $C_{P}(Q)$ is an infinite dimensional $\mathbb{C}$ -module.

Remark. The module $C_{P}(Q)$ can be of infinite dimension, but of
countably-infinite dimension.

This completes the proof of Theorem 1. By Theorem 2.2 and Lemma
2.3, we have

Corollary 2.4. Suppose that $\Psi_{P,Q}$ in Theorem 2.2 is surjective
and $B$ is cofree. If $a_{i}>e_{j}$ for some $j$ and any $i$ , then $VEC_{G}(P, Q)_{0}$

is non-trivial. If there exists some $j$ such that $ht\alpha_{j}<dimy$ , then
$VEC_{G}(P, Q)_{0}$ contains an infinite dimensional space.
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We give a couple of examples.

Example 2.1. Let $G=SL_{n}(n\geq 2)$ and let $P$ be the Lie algebra
$\epsilon \mathfrak{l}_{n}$ with adjoint action. We denote a maximal torus of $G$ by $T_{n}$ and
its Lie algebra by $t_{n}$ . Then the principal isotropy group of $g(_{n}$ is $T_{n}$

and $B=(g(_{n})^{T_{n}}=t_{n}.$ $W=N(T_{n})/T_{n}$ is the Weyl group which is
isomorphic to $S_{n}$ . The algebraic quotient space $Y$ is $\epsilon \mathfrak{l}_{n}//G\cong t_{n}//W\cong$

$A^{n-1}$ and $V$ is of codimension one. Hence the ideal of $V$ is generated
by a single homogeneous polynomial $f\in \mathcal{O}(Y)\cong \mathbb{C}[t_{1}, \cdots, t_{n-1}]$ . Since
the general fiber of the quotient map of $g(_{n}$ is isomorphic to $G/T_{n}$ , $\epsilon \mathfrak{l}_{n}$

has generically closed orbits. Let $\varphi_{1}$ be the standard representation
space of $G$ and $\varphi_{1}^{m}(m\geq 1)$ be the symmetric tensor product $S^{m}(\varphi_{1})$ .

Let $Q=\varphi_{1}^{m}$ . Then $Q$ is multiplicity free with respect to $T_{n}$ . Hence

$L=T\cong(\mathbb{C}^{*})^{q}$ for $q=dimQ=\left(\begin{array}{l}n+m-1\\m\end{array}\right)$ .

Consider the case $n=2$ . Then $G=SL_{2}$ and the quotient map
is given by the determinant map $t$ : $P=\epsilon 1_{2}\rightarrow\epsilon t_{2}//G\cong A^{1}$ . Hence
$\mathcal{O}(Y)=\mathbb{C}[t]$ and $t$ is, as an element of $\mathcal{O}(B)^{W}$ , written as $t=x^{2}$ with
a coordinate $x$ on $B=t_{2}\cong \mathbb{C}$ . Note that $T_{2}\cong \mathbb{C}^{*}$ and $W\cong \mathbb{Z}/2\mathbb{Z}$ . The
stratification of $\epsilon 1_{2}//G=A^{1}$ consists of two strata, {0} and $A^{1}-\{0\}$ .

Hence $V=\{0\}$ and $f=t$ . Let $R_{m}$ be the $SL_{2}$ -module of binary forms
of degree $m$ . Then $P=g[_{2}\cong R_{2}$ and $Q\cong R_{m}$ . As a $T_{2}=\mathbb{C}^{*}$ -module,
$Q=\oplus_{l=0}^{m}Q_{m-2l}$ where $Q_{m-2l}$ is an irreducible $T_{2}$ -module with weight
$m-2l$ . As a $G$-module, $\mathfrak{m}=EndR_{m}\cong(R_{m})^{*}\otimes R_{m}\cong\oplus_{l=0}^{m}R_{2l}$ . Hence,

$\mathfrak{m}(\epsilon 1_{2})^{G}\cong\oplus_{l=0}^{m}(\mathcal{O}(R_{2})\otimes R_{2l})^{G}=\oplus_{t=0}^{m}M_{l}$

and

$\mathfrak{l}(t_{2})^{W}\cong\oplus_{l=0}^{m}(\mathcal{O}(t_{2})\otimes R_{2l}^{T_{2}})^{W}=\oplus_{l=0}^{m}N_{l}$

where $M_{l}:=(\mathcal{O}(R_{2})\otimes R_{2l})^{G}$ and $N_{l}:=(\mathcal{O}(t_{2})\otimes R_{2l}^{T_{2}})^{W}$ . The modules
$M_{l}$ and $N_{l}$ are free over $\mathcal{O}(Y)=\mathbb{C}[t]$ of rank one. In fact, since $ M_{l}\cong$

Mor $(R_{2}, R_{2l})^{G}$ , the homogeneous generator $A_{l}$ of $M_{l}$ is given by the $l$-th

power map and the homogeneous generator $C_{l}$ of $N_{l}=(\mathbb{C}[x]\otimes R_{2l}^{T_{2}})^{W}$

is given by 1 $\otimes e_{l}$ for $l$ even, $x\otimes e_{l}$ for $l$ odd, where $ e\iota$ is a base of
$R_{2l}^{T_{2}}\cong \mathbb{C}$ . Hence $\mathfrak{m}(\epsilon(_{2})^{G}$ and $1(t_{2})^{W}$ are free modules over $\mathbb{C}[t]$ of rank
$m+1$ . Note that $degA_{l}=l$ and $degC_{l}$ is 0 for $l$ even, 1 for $l$ odd.
Since $\mathbb{C}[t]$ is a principal ideal domain, $\mathfrak{m}(\epsilon 1_{2})_{1}^{G}$ is also free over $\mathbb{C}[t]$ . A
homogeneous basis of $\mathfrak{m}(\epsilon 1_{2})_{1}^{G}$ over $\mathbb{C}[t]$ is $\{tA_{0}, A_{l;}l =1,2, \cdots, m\}$ since
$\epsilon t_{2}^{G}=\{O\}$ . Since $b$ $=\sqrt{(t)}=(x)$ , a homogeneous basis of $t(t_{2})_{1}^{W}$ over
$\mathbb{C}[t]$ is $\{tC_{0}, tC_{2l}, C_{2l-1;}l =1, \cdots, m/2\}$ for $m$ even, $\{tC_{2l}$ , $C_{2l+1;}l$ $=$
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0, 1, $\cdots$ , $[m/2]\}$ for $m$ odd. Here, $[a]$ denotes the largest integer not-
exceeding $a$ . Since $\beta_{*}(A_{l})=t^{[l/2]}C_{l}$ ,

$C_{\epsilon 1_{2}}(\varphi_{1}^{m})\cong \mathfrak{l}(\mathfrak{t}_{2})_{1}^{W}/\beta_{*}\mathfrak{m}(\epsilon \mathfrak{l}_{2})_{1}^{G}\cong \mathbb{C}^{p}$

where $p=\sum_{l=1}^{m}[(l-1)/2]=[(m-1)^{2}/4]$ . Since it follows from $ g(_{2}//G\cong$

$A^{1}$ that $VEC_{G}(\epsilon(_{2}, \varphi_{1}^{m})=VEC_{G}(\epsilon \mathfrak{l}_{2}, \varphi_{1}^{m})_{0}$ , we have by Theorem 2.2

Proposition 2.5 ([23]). Let $G=SL_{2}$ . Then

$VEC_{G}(\epsilon t_{2}, \varphi_{1}m)\cong \mathbb{C}^{p}$ for $p=[(m-1)^{2}/4]$ .

Next, consider the case that $n\geq 3$ . As a $G$-module,

$\mathfrak{m}=End\varphi_{1}m\cong(\varphi_{1}^{m})^{*}\otimes\varphi_{1}^{m}\cong\oplus_{l=0}^{m}\epsilon\iota_{n}^{l}$

where $\epsilon t_{n}^{l}$ is the irreducible component of tlle highest weight in $S^{l}(\epsilon t_{n})$ .

Hence
$\mathfrak{m}(\epsilon 1_{n})^{G}\cong\oplus_{l=0}^{m}(\mathcal{O}(\epsilon[_{n})\otimes\epsilon I_{n}^{l})^{G}=\oplus_{l=0}^{m}M_{l}$

where $M_{l}:=(\mathcal{O}(\epsilon 1_{n})\otimes g(_{n}^{l})^{G}$ . Similarly,

$1(t_{n})^{W}\cong\oplus_{l=0}^{m}(\mathcal{O}(t_{n})\otimes(g(_{7l}^{l})^{T_{n}})^{W}=\oplus_{l=0}^{m}N_{l}$

where $N_{l}:=(\mathcal{O}(t_{n})\otimes(\epsilon\downarrow_{n}^{l})^{T_{n}})^{W}$ . It is known that $t_{n}$ is cofree (cf. [24]).
Thus $M_{l}$ and $N_{l}$ , Hence $\mathfrak{m}(\epsilon(_{n})^{G}$ and [ $(t_{n})^{W}$ , are finite free modules over
$\mathcal{O}(Y)$ . Since $\mathcal{O}(\epsilon t_{n})\cong\oplus_{d\geq 0}S^{d}(\epsilon 1_{n})$ , $M_{l}\cong\oplus_{d\geq 0}(S^{d}(\epsilon I_{n})\otimes\epsilon\iota_{n}^{l})^{G}$ . Hence
every homogeneous generator of $M_{l}$ has degree $\geq l$ . The homomorphism
$\beta_{*}$ : $\mathfrak{m}(\epsilon 1_{n})^{G}\rightarrow t(t_{n})^{W}$ maps $M_{l}$ to $N_{l}$ . Set $M(1)_{l}:=(\alpha\otimes g(_{n}^{l})^{G}$ and
$ N(1)_{l}:=(b\otimes$ $(\epsilon\left(\begin{array}{l}l\\7l\end{array}\right))^{W}$ . Then $\mathfrak{m}(\epsilon \mathfrak{l}_{n})_{1}^{G}=\oplus_{l=0}^{m}M(1)_{l}$ and $1(t_{n})_{1}^{W}=$

$\oplus_{l=0}^{m}N(1)_{l}$ . The homomorphism $\beta_{*}$ maps $M(1)_{l}$ to $N(1)_{l}$ . Let $\{A_{i}\}$ be
a homogeneous generating system of $M(1)_{m}$ over $\mathcal{O}(Y)$ and $\{C_{i}\}$ be a
homogenous basis of $N(1)_{m}$ over $\mathcal{O}(Y)$ . Then $\beta_{*}(A_{i})=\sum_{j}a_{ij}C_{j}$ for
$a_{ij}\in \mathcal{O}(Y)$ . Since $degA_{i}\geq m$ for all $i$ and $degC_{j}<|W|+degf[8,$ $II$ ,
3.6], $dega_{ij}>0$ if $m$ is sufficiently large. Hence $N(1)_{m}/\beta_{*}(M(1)_{m})$ is
non-trivial for $m>>0$ . We have by Theorem 2.2;

Proposition 2.6 (cf. [6]). Let $n\geq 3$ and $G=SL_{n}$ . For $m\geq 1$ ,
VECG $(s[n, \varphi_{1}^{m})_{0}\cong C_{\epsilon 1_{n}}(\varphi_{1}^{m})$ . In particular, VECG $(s[n, \varphi_{1}^{m})_{0}$ is non-
trivial for a sufficiently large $m$ .

Remark. In order to show that $C_{\epsilon \mathfrak{l}_{n}}(\varphi_{1}^{m})$ contains an infinite
dimensional module for $n\geq 3$ , we need to prove that the height of the
ideal $\alpha_{j}$ generated by $a_{ij}\in \mathcal{O}(Y)$ (cf. Lemma 2.3) is smaller than $n-1$ .
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However, to calculate generators of $N(1)_{l}$ and $M(1)_{l}$ by hand is a hard
job.

Next is a new example of $VEC_{G}(P, Q)_{0}$ containg an infinite dimen-
sional space.

Example 2.2. Let $P=P_{1}\oplus P_{2}$ and $G=G_{1}\times G_{2}$ where $P_{i}$

is a $G_{i}$-module with one-dimensional quotient for $i=1,2$ . Then $P$ is
a $G$-module with trivial $G_{i}$-actions on $P_{j}$ for $\dot{?}\neq j$ and $P//G\cong A^{2}$ .

A principal isotropy group $H$ of $P$ is $H_{1}\times H_{2}$ where $H_{i}$ is a princi-
pal isotropy group of $P_{i}$ . The complement of the principal stratum
in $P//G\cong A^{2}$ is a union of two lines. Let $Q_{i}$ $(i=1, 2)$ be a $G_{i^{-}}$

module. By the statement below Theorem 2.2, there are isomorphisms
$VEC_{G_{i}}(P_{i}, Q_{i})\cong C_{P_{i}}(Q_{i})\cong \mathbb{C}^{pi}$ for $i=1,2$ . Let $Q=Q_{1}\oplus Q_{2}$ . Then
$Q$ is multiplicity free with respect to $H$ when $Q_{i}$ is multiplicity free
with respect to $H_{i}$ for $i=1,2$ and $dim(Q_{1}^{H_{1}}\oplus Q_{2}^{H_{2}})\leq 1$ . In this case,
$C_{P}(Q)$ is easily computed and isomorphic to $\mathbb{C}[u_{1}]^{p_{2}}\oplus \mathbb{C}[u_{2}]^{p_{1}}$ where
$\mathcal{O}(P_{1})^{G_{1}}=\mathbb{C}[u_{1}]$ and $\mathcal{O}(P_{2})^{G_{2}}=\mathbb{C}[u_{2}]$ . By Theorem 2.2, we have with
the above notation

Theorem 2.7. Suppose that $Q_{i}$ is multiplicity free with respect to
$H_{i}$ for $i=1,2$ and $dim(Q_{1}^{H_{1}}\oplus Q_{2}^{H_{2}})\leq 1$ . Then there is a map

$VEC_{G}(P_{1}\oplus P_{2}, Q_{1}\oplus Q_{2})_{0}\rightarrow \mathbb{C}[u_{1}]^{p_{2}}\oplus \mathbb{C}[u_{2}]^{p_{1}}$ ,

which is an isomorphism when $P_{\dot{0}}$ has generically closed orbits for $i=$

$1,2$ .

Remark. One can show that the map in Theorem 2.7 is surjective

for any $Q$ and any $P_{i}$ by using the fact that $Z_{f}=GP_{f}^{H}$ for $Z:=\overline{GP^{H}}$

when $\mathcal{O}(P)^{G}=\mathbb{C}[f]$ (cf. [15, 1.1], the remark of Theorem 2.2).

Apply Theorem 2.7 to the case where $G=SL_{2}\times SL_{2}$ , $P=\epsilon \mathfrak{l}_{2}\oplus\epsilon 1_{2}$ ,
and $Q=\varphi_{1}^{m}\oplus\varphi_{1}^{n}$ . Since $\epsilon \mathfrak{l}_{2}$ has generically closed orbits and $\varphi_{1}^{m}$ is
multiplicity free with respect to a principal isotropy group of $\epsilon \mathfrak{i}_{2}$ for
$m\geq 1$ , we have

Theorem 2.8. Let $G=SL_{2}\times SL_{2}$ . Then

$VEC_{G}(\epsilon 1_{2}\oplus\epsilon t_{2}, \varphi_{1}m\oplus\varphi_{1}^{n})_{0}\cong \mathbb{C}[u_{1}]^{p(n)}\oplus \mathbb{C}[u_{2}]^{p(m)}$ .

Here $p(n)=[(n-1)^{2}/4]$ and either $m$ or $n$ is odd.
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\S 3. $G$-vector bundles over $G\times(\mathbb{Z}/d\mathbb{Z})$-varieties

In this section, we consider in the case that $V$ is not connected.
Such a case occurs when $X$ is a $G$-stable affine quadric with fixpoints
and one-dimensional quotient. As is remarked in the introduction, when
$G$ is connected, such an affine quadric $X$ is $G$-isomorphic to an affine
quadric

$X_{P}=\{(x, v)\in P\oplus \mathbb{C}|u(x)+v^{2}=1\}$

where $P$ is an orthogonal $G$-module with $P//G\cong A^{1}$ and $u(x)$ is an
invariant quadratic form on $P$ such that $\mathcal{O}(P)^{G}=\mathbb{C}[u]$ . Recall that $X_{P}$

is viewed as a $G\times(\mathbb{Z}/2\mathbb{Z})$ -variety. We generalize this situation. Let $P$

be anew a $G$-module as in section 2, i.e., $P$ is a $G$-module such that
$dimP//G\geq 1$ and the ideal of the complement of the principal stratum
in $P//G$ is generated by a homogeneous polynomial $f\in \mathcal{O}(P)^{G}$ . For
$d\geq 2$ , define a $G$-stable hypersurface $X_{P}(d)$ as follows;

$X_{P}(d):=\{(x, v)\in P\oplus \mathbb{C}|f(x)+v^{d}=1\}$ .

Then the fixpoint locus $X_{P}(d)^{G}$ consists of $d$ connected components.
The complement $V$ of the principal stratum in $X_{P}(d)//G$ has $d$ con-
nected components and each connected component of $\pi_{X_{P}(d)}^{-1}(V)$ con-

tains one connected component of $X_{P}(d)^{G}$ . A principal isotropy group
$H$ of $X_{P}(d)$ is a principal isotropy group of $P$ . As in the case of
affine quadrics, $X_{P}(d)$ has a $\mathbb{Z}/d\mathbb{Z}$-action induced by a (non-trivial)
linear action of $\mathbb{Z}/d\mathbb{Z}$ on $\mathbb{C}$ . Hence $X_{P}(d)$ is viewed as a $G\times(\mathbb{Z}/d\mathbb{Z})-$

variety. Then $X_{P}(d)/(\mathbb{Z}/d\mathbb{Z})$ is $G$-isomorphic to $P$ . Let $\pi_{\mathbb{Z}_{d}}$ : $ X_{P}(d)\rightarrow$

$X_{P}(d)/(\mathbb{Z}/d\mathbb{Z})\cong P$ be the quotient by $\mathbb{Z}/d\mathbb{Z}$ . Let $[E]\in VEC_{G}(P, Q)$ for
a $G$-module $Q$ . Then $\pi_{\mathbb{Z}_{d}}^{*}E$ is a $G\times(\mathbb{Z}/d\mathbb{Z})$ -vector bundle over $X_{P}(d)$ .
Viewing $\pi_{\mathbb{Z}_{d}}^{*}E$ as a $G$-vector bundle, we obtain a map

$\pi_{\mathbb{Z}_{d}}^{*}$ : $VEC_{G}(P, Q)\rightarrow VEC_{G}(X_{P}(d), Q)$ .

Since $E\cong\pi_{\mathbb{Z}_{d}}^{*}E/(\mathbb{Z}/d\mathbb{Z})[9]$ , we have

Lemma 3.1. The map $\pi_{\mathbb{Z}_{d}}^{*}$ is injective.

Note that $\pi_{\mathbb{Z}_{d}}^{*}$ maps $VEC_{G}(P, Q)_{0}$ to $VEC_{G}(X_{P}(d), Q)_{0}$ . By Lemma
3.1 and Theorem 2.2, we obtain

Theorem 3.2. The map $\pi_{\mathbb{Z}_{d}}^{*}$ induces an injection

$VEC_{G}(P, Q)_{0}\rightarrow VEC_{G}(X_{P}(d), Q)_{0}$ .

Hence, if $\Psi_{P,Q}$ in Theorem 2.2 is a surjection onto a non-trivial $C_{P}(Q)$ ,

the $VEC_{G}(X_{P}(d), Q)_{0}$ is non-trivial.
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If we take as an $f$ in the definition of $X_{P}(d)$ any $G$-invariant poly-
nomial on $P$ , then we obtain Theorem 2 in the introduction.

Remark. Theorem 3.2 is generalized as follows. Let $P_{i}$ $($ $i=1,2$
$)$ be a $G_{i}$ -module such that $dimP_{1}//G_{1}\geq 1$ and $dimP_{2}//G_{2}=1$ . Let
$t$ be a homogeneous generator of $\mathcal{O}(P_{2})^{G_{2}}$ . For $f\in \mathcal{O}(P_{1})^{G_{1}}$ , define a
$G_{1}\times G_{2}$ -stable hypersurface $X(f)$ as follows:

$X(f):=\{(x_{1}, x_{2})\in P_{1}\oplus P_{2}|f(x_{1})+t(x_{2})=1\}$ .

Then the quotient map $\pi_{G_{2}}$ : $X(f)\rightarrow X(f)//G_{2}\cong P_{1}$ induces an
injection for a $G_{1}$ -module $Q$

$\pi_{G_{2}}^{*}$ : $VEC_{G_{I}}(P_{I}, Q)\rightarrow VEC_{G_{1}}(X(f), Q)$ .

Recall that $VEC_{G}(P, Q)_{0}=VEC_{G}(P, Q)\cong \mathbb{C}^{p}$ when $P$ has one-
dimensional quotient. Hence we have by Theorem 3.2

Corollary 3.3. Suppose that $X_{P}$ is a $G$ -stable affine quadric de-

fined as above. Then VECG $(Xp, Q)_{0}$ contains a space isomorphic to $\mathbb{C}^{p}$

where $p$ isa nonnegative integer such that $VEC_{G}(P, Q)\cong \mathbb{C}^{p}$ .

We give a couple of examples.

Example 3.1. Let $G=SL_{2}$ . We use the same notation as in
Example 2.1. Let $P=\epsilon 1_{2}$ and $Q=\varphi_{1}^{m}$ for $m\geq 1$ . Then $\mathcal{O}(\epsilon t_{2})^{G}=\mathbb{C}[t]$

with an invariant polynomial $t$ of degree 2 and $VEC_{G}(\epsilon \mathfrak{l}_{2}, \varphi_{1}^{m})\cong \mathbb{C}^{p}$ for
$p=[\frac{(m-1)^{2}}{4}]$ . Let $X$ be a $G$-stable affine quadric $\{(x, v)\in\epsilon \mathfrak{l}_{2}\oplus \mathbb{C}|$

$t+v^{2}=1\}$ . Then by Corollary 3.3,

Proposition 3.4. With the above notation, $VEC_{G}(X, \varphi_{1}^{m})_{0}$ con-

tains $\mathbb{C}^{p}$ for $p=[\frac{(m-1)^{2}}{4}]$ .

Remark. It is known that $VEC_{G}(\epsilon I_{2}\oplus \mathbb{C}, \varphi_{1}^{m})_{0}\cong \mathbb{C}[v]^{p}$ by [16].

Example 3.2. Let $G=G_{1}\times G_{2}$ , $P=P_{1}\oplus P_{2}$ , and $Q=Q_{1}\oplus Q_{2}$

as in Example 2.2. Let $\mathcal{O}(P_{1})^{G_{1}}=\mathbb{C}[u_{1}]$ and $\mathcal{O}(P_{2})^{G_{2}}=\mathbb{C}[u_{2}]$ where $u_{i}$

is a $G_{i}$ -invariant homogeneous polynomial on $P_{i}$ . Then $P//G\cong A^{2}=$

$Spec\mathbb{C}[u_{1}, u_{2}]$ and the complement of the principal stratum is defined
by $u_{1}u_{2}=0$ . We define for $d\geq 2$

$X_{d}:=\{(x_{1}, x_{2}, v)\in P_{1}\oplus P_{2}\oplus \mathbb{C}|u_{1}(x_{1})u_{2}(x_{2})+v^{d}=1\}$ .

Then by the remark of Theorem 2.7 and Theorem 3.2,
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Proposition 3.5. Under the notation and the assumptions in The-
orem 2.1, $VEC_{G}(X_{d}, Q_{1}\oplus Q_{2})_{0}$ contains an infinite dimensional space

if $p_{1}+p_{2}>0$ .

Example 3.3. Let $G=SL_{3}$ and $P=\epsilon I_{3}$ with adjoint action.
Then $P//G\cong A^{2}$ and the complement of the principal stratum in $P//G$

is defined by an invariant homogeneous polynomial $f$ of degree 6. For
$d\geq 2$ , define

$X_{d}=\{(x, v)\in g(_{3}\oplus \mathbb{C}|f+v^{d}=1\}$ .

It is known that $VEC_{G}(\epsilon \mathfrak{l}_{3}, \epsilon \mathfrak{l}_{3})_{0}$ contains a space isomorphic to $\Omega_{\mathbb{C}}^{1}$

which is the module of K\"ahler differentials of $\mathbb{C}$ over $\mathbb{Q}[17]$ . Hence we
have by Theorem 3.2

Proposition 3.6. $VEC_{G}(X_{d}, g(_{3})_{0}$ contains an uncountably-infi-
nite dimensional space.
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Completely Parametrized $A_{*}^{1}$-fibrations on the Affine
Plane

Masayoshi Miyanishi

\S 0. Introduction

Let $k$ be an algebraically closed field of characteristic zero, which we
fix as the ground field. In the present article we consider $A_{*}^{1}$ -fibrations
on the affine plane $A^{2}$ , where $A_{*}^{1}$ denotes the affine line $A^{1}$ with one
point deleted. Let $X$ be a smooth affine surface with Pic $(X)=(0)$

and $\Gamma(X, \mathcal{O}_{X})^{*}=k^{*}$ . Let $\rho$ : $X\rightarrow B$ be an $A_{*}^{1}$ -fibration, where $B$ is
a smooth algebraic curve. Then $\rho$ is untwisted because Pic $(X)=(0)$

and $B$ is isomorphic to $A^{1}$ or $P^{1}$ because $\Gamma(X, \mathcal{O}_{X})^{*}=k^{*}$ . We call
$\rho$ a completely (resp. incompletely) parametrized $A_{*}^{1}$ fibration if $B$ is
isomorphic to $P^{1}$ (resp. $A^{1}$ ). See [6], [8] for the definitions and relevant
results. If $X$ is the affine plane and $\rho$ is incompletely parametrized,
then there exists an irreducible polynomial $f\in\Gamma(X, \mathcal{O}_{X})$ such that the
fibration $\rho$ is given as $\{F_{\lambda}\}_{\lambda\in k}$ , where $F_{\lambda}$ is a curve defined by $ f=\lambda$ .

Hence $f$ is a generically rational polynomial with two places at infinity,
and such polynomials are classified by H. Saito [10] (see [7]). On the
other hand, there exist no references where the completely parametrized
$A_{*}^{1}$ -fibrations on $A^{2}$ are explicitly classified. The fibers of the given $A_{*}^{1}-$

fibration form a pencil of affine plane curves parametrized by $P^{1}$ . So,
the classification is made by giving the defining equation of a general
member of the pencil.

For this purpose, we make use of a description of $A^{2}$ as a homology
plane with $A_{*}^{1}$ fibration over $P^{1}$ as given in [6], [8]. Our results show

that the pencil is given in the form

$\Lambda=\{(yx^{r+1}-p(x))^{\mu 1}+\lambda x^{\mu o}=0;\lambda\in P^{1}\}$ ,

where $p(x)\in k[x]$ , $degp(x)\leq r$ and $p(0)\neq 0$ .

Received February 7, 2000.
2000 AMS Subject Classification: Primary $14R25,14D06$ , Secondary

14R10.
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\S 1. $A_{*}^{1}$ -fibrations

Let $X$ be a $Q$-homology plane with an untwisted $A_{*}^{1}$ fibration $\rho$ :
$X\rightarrow B$ , where $B$ is isomorphic to $P^{1}$ . Then every fiber but one is
isomorphic to $A_{*}^{1}$ if taken with the reduced structure and the excepted
fiber is isomorphic to $A^{1}$ . There exists a smooth projective surface $V$

with a $P^{1}$ fibration $p$ : $V\rightarrow B$ such that $X$ is a Zariski open set of
$V$ , the boundary divisor $D:=V-X$ is a divisor with simple normal
crossings and $p$ gives rise to the $A_{*}^{1}$ -fibration if restricted onto $X$ . Since
$\rho$ is untwisted, there exist two cross-sections $H_{1}$ and $H_{2}$ of $p$ , which are
the loci of two points of the general fibers of $\rho$ lying at infinity. Since the
boundary divisor $D$ has a tree as the dual graph, $H_{1}$ and $H_{2}$ meet each
other at most in one point. If $H_{1}$ and $H_{2}$ meet each other, we blow up
the point of intersection and its infinitely near points so that the proper
transforms of $H_{1}$ and $H_{2}$ get separated from each other. Furthermore,
if we assume that the embedding $X\leftarrow\succ V$ is minimal in the sense that
$D$ contains no (-1) curves which are the fiber components of the $P^{1}-$

fibration $p$ and that any contraction of such a (-1) curve makes the
images of $H_{1}$ and $H_{2}$ meet each other, then it is known (cf. [6], [8]) that
$\rho$ : $X\rightarrow B$ is obtained in the following fashion.

There exists a Hirzebruch surface $F_{a}$ with a minimal section $M_{1}$

and a section $M_{2}$ with $(M_{1}\cdot M_{2})=0$ , and there exists a sequence of
blowing-ups $\sigma$ : $V\rightarrow F_{a}$ such that $H_{1}$ and $H_{2}$ are the proper transforms
of $M_{1}$ and $M_{2}$ , respectively, and that $(H_{1}^{2})=(M_{1}^{2})=-a$ . Hence the
blowing-ups $\sigma$ starts with the blowing-ups of the points lying on $M_{2}$

and no points of $M_{1}$ are blown-up. The fibration $p$ : $V\rightarrow B$ is obtained
from the $P^{1}$ fibration on $F_{a}$ . Let $\mu A$ be a fiber of $\rho$ with $A\cong A_{*}^{1}$ and
possibly $\mu>1$ and let $\overline{A}$ be the closure of $A$ in $V$ . Then the fiber of $p$

containing $\overline{A}$ has a linear chain as the dual graph:

-1

RO\cdots .. $\infty$ \cdots .. $\mapsto 0$

$H_{2}$
$\overline{A}$

$H_{1}$

On the other hand, if $\mu A$ is a fiber of $\rho$ with $A\cong A^{1}$ , the dual graph of
the fiber containing $\overline{A}$ , $H_{1}$ and $H_{2}$ looks like
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$H_{2}$

$o\backslash G$ $\overline{A}$

$\infty$ $\cdots$ . . $\infty$
$o/-1$

-2 -2 -1

$H_{1}$ $r$

Let $\mu A$ be a singular fiber of $\rho$ , i.e., either $\mu>1$ or $A\cong A^{1}$ . Let
$\overline{A}$ be the closure of $A$ in $V$ . Then $\mu$ is the multiplicity of $\overline{A}$ in the fiber
$p^{-1}(\rho(A))$ . Let $\delta$ be the contribution of $\overline{A}$ in the total transform $\sigma^{*}(M_{2})$ .

It is known (cf. [6], [8]) that $ 0\leq\delta<\mu$ and $\delta>0$ if $A\cong A_{*}^{1}$ . We begin
with recalling the following structure theorem (cf. [6], [8]).

Lemma 1.1. Let $X$ be a $Q$ -homology plane with an $A_{*}^{1}$ -fifibration
$\rho$ : $X\rightarrow B$ . Suppose $B\cong P^{1}$ and $\rho$ is untwisted. Let $\mu_{0}A_{0}$ , $\ldots$ , $\mu_{n}A_{n}$ be
all singular fifibers with respective multiplicities $\mu_{0}$ , $\ldots$ , $\mu_{n}$ , where $A_{0}\cong A^{1}$

and $A_{i}\cong A_{*}^{1}$ for $1\leq i\leq n$ . Then we have the following assertions:

(1) $\overline{\kappa}(X)=1,0$ $ or-\infty$ if and only if

$(n-1)-\sum_{i=1}^{n}\frac{1}{\mu_{i}}>0,$ $=0$ or $<0$ , respectively.

(2) $H_{1}(X;Z)$ is a torsion group of order equal to

$|\mu_{0}\cdots\mu_{n}a-\sum_{i=0}^{n}\mu_{0}\cdots\hat{\mu_{i}}\cdots\mu_{n}\delta_{i}|$ .

(3) There are no homology planes $X$ with $\overline{\kappa}(X)=0$ and an untwisted
$A_{*}^{1}$ -fifibration $\rho$ : $X\rightarrow B\cong P^{1}$ .

When $X$ is isomorphic to $A^{2}$ in Lemma 1.1, we can specify the data
more precisely.

Lemma 1.2. With the notations of Lemma 1.1, the following as-
sertions hold:

(1) A smooth affine surface $X$ is isomorphic to $A^{2}$ if and only if
$\overline{\kappa}(X)=-\infty$ , Pic $(X)=(0)$ and $\Gamma(X, O_{X})=k^{*}$ . In particular, $a$

$Q$ -homology plane $X$ is isomorphic to $A^{2}$ if and only if $\overline{\kappa}(X)=$

$-\infty$ and $H_{1}(X;Z)=(0)$ .

(2) $n=0$ or 1.
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(3) If $n=0$ then either $a=1$ , $\mu_{0}=\delta_{0}+1$ or $a=0$ , $\delta_{0}=1$ .

(4) If $n=1$ then either

$a=1$ , $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=\pm 1$

or

$a=0$ , $\mu_{0}=\delta_{1}=1$ , $\delta_{0}=0$ .

(5) If $a=n=1$ and $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=\pm 1$ , the pair $(\delta_{0}, \delta_{1})$ is
uniquely determined by the pair $(\mu 0, \mu_{1})$ . Furthermore, if $\mu_{0}\mu_{1}-$

$\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=1$ , then the pair $(\delta_{0}’, \delta_{1}’)$ with $\delta_{i}’=\mu_{i}-\delta_{i}(i=0,1)$

satisfifies $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}’-\mu_{0}\delta_{1}’=-1$ , and vice versa.

Proof (1) We refer to [6].
(2) Note that $\mu_{0}\geq 1$ and $\mu_{i}\geq 2$ for $1\leq i\leq n$ . Since $\overline{\kappa}(X)=-\infty$ ,

it follows that

$n-1-\frac{n}{2}\leq(n-1)-\sum_{i=1}^{n}\frac{1}{\mu_{i}}<0$ .

Hence $n=0$ or 1.
(3) Since $H_{1}(X;Z)=0$ , we have

$|H_{1}(X;Z)|=|\mu_{0}\cdots\mu_{n}a-\sum_{i=0}^{n}\mu_{0}\cdots\hat{\mu_{i}}\cdots\mu_{n}\delta_{i}|=1$ .

If $n=0$ then this formula reads $\mu_{0}a-\delta_{0}=\pm 1$ , where $\mu_{0}>\delta_{0}$ . Suppose
$a\geq 2$ . Then we have

$(a-2)\mu_{0}+(\mu_{0}-\delta_{0})+\mu_{0}\neq\pm 1$ .

Hence $a=0$ or 1. If $a=1$ then $\mu_{0}=\delta_{0}+1$ . If $a=0$ then $\delta_{0}=1$ .

(4) If $n=1$ then

$a\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=\pm 1$ .

Suppose $a\geq 2$ . Then we have

$(a-2)\mu_{0}\mu_{1}+\mu_{1}(\mu_{0}-\delta_{0})+\mu 0(\mu_{1}-\delta_{1})\neq\pm 1$ .

Hence $a=0$ or 1. If $a=1$ then we have

$\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=\pm 1$ .

If $a=0$ then $\mu_{1}\delta_{0}+\mu_{0}\delta_{1}=1$ . Since $\mu_{1}\geq 2$ , it follows that $\delta_{0}=0$ .

Then $\mu_{0}=\delta_{1}=1$ .
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(5) Suppose that $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=1$ and $\mu_{0}\mu_{1}-\mu_{1}\gamma_{0}-\mu_{0}\gamma_{1}=1$

for the pairs $(\gamma_{0}, \gamma_{1})$ and $(\delta_{0}, \delta_{1})$ with $\mu_{i}>\gamma_{i}$ , $\mu_{i}>\delta_{i}(i=0,1)$ . Then

$\mu 1$ ( $\gamma 0$
$-\delta_{0}$ ) $=\mu 0(\delta_{1}-\gamma 1)$ .

Since $gcd(\mu_{0}, \mu_{1})=1$ , it follows that $\gamma_{0}=\delta_{0}+m\mu_{0}$ and $\delta_{1}=\gamma_{1}+m\mu_{0}$

for some integer $m$ . If $m>0$ , then $\gamma_{0}\geq\mu 0$ , which is a contradiction. If
$m<0$ we obtain a contradiction in a similar fashion. So, $m=0$ . The
rest is straightforward. Q.E.D.

Given a pair $(\mu, \delta)$ of positive integers $\mu$ , $\delta$ with $\mu>\delta$ and $gcd(\mu, \delta)=$

$1$ , we define integers $\alpha_{1}$ , $\alpha_{2}$ , $\ldots$ , $\alpha_{s}$ by expanding $\mu/\delta$ in a form of con-
tinued fraction

$\frac{\mu}{\delta}=\alpha_{1}-$

1

1

$\alpha_{1}-$

1
$\alpha_{3}-$

. . . $-\frac{1}{\alpha_{s}}$

where $\alpha_{i}\geq 2$ for $1\leq i\leq s$ . We denote this fractional expansion by
$\mu/\delta=[\alpha_{1}, \ldots, \alpha_{s}]$ .

Given such a pair $(\mu, \delta)$ , the geometric meaning of fractional expan-
sion of $\mu/\delta$ in the setting leading to Lemma 1.1 is given in th following
Lemma 1.3 which is well-known (cf. [9] and [4, pp. 75-78]).

Lemma 1.3. Let $(\mu, \delta)$ be a pair of positive integers such that
$\mu>\delta$ and $gcd(\mu, \delta)=1$ . Let $\mu A$ be a multiple fifiber of $\rho$ : $X\rightarrow B$

with the contribution $\delta$ of $\overline{A}$ in $\sigma^{*}(M_{2})$ . Let $\mu/\delta=[\alpha_{1}, \ldots, \alpha_{s}]$ and
$\mu/(\mu-\delta)=[\alpha_{1}’, \ldots, \alpha_{s’}’]$ be the fractional expansions. Then the fifiber
$p^{*}(\rho(A))$ has the following dual graph:

-1 $-\alpha_{1}’$ $-\alpha_{s’}’$ -1 $-\alpha_{s}$ $-\alpha_{1}$ -1

$\ovalbox{\tt\small REJECT}\cdots\cdots\ovalbox{\tt\small REJECT}\cdots\cdots\ovalbox{\tt\small REJECT}$

$H_{2}$ $A_{1}’$ $A_{s’}’$
$\overline{A}$

$A_{a}$ $A_{1}$ $H_{1}$

where $(H_{1}^{2})=(H_{2}^{2})=-1$ if $n=a=1$ .

The next result will clarify the geometric meaning of the condition
$\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=\pm 1$ .

Lemma 1.4. Let $(\mu_{0}, \delta_{0})$ and $(\mu_{1}, \delta_{1})$ be pairs as in Lemma 1.2
satisfying the condition $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=\pm 1$ . Suppose that $\delta_{0}>0$

and $\delta_{1}>0$ . Let $\mu_{1}/\delta_{1}=[\alpha_{1}, \ldots, \alpha_{s}]$ and $\mu_{0}/\delta_{0}=[\beta_{1}, \ldots, \beta_{t}]$ be the
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fractional expansions. Let $E$ be a union of smooth rational curves with
simple normal crossings on a smooth projective surface whose dual graph
is given as below:

$-\beta_{t}$ $-\beta_{2}$ $-\beta_{1}$ -1 $-\alpha_{1}$ $-\alpha_{2}$ $-\alpha_{s}$

– $\cdots\cdots$ $\ovalbox{\tt\small REJECT}\cdots\cdots-$

$B_{t}$ $B_{2}$ $B_{1}$ $H_{1}$ $A_{1}$ $A_{2}$ $A_{s}$

Then the following assertions hold.

(1) Suppose $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=1$ . Then $E$ is contractible to $a$

smooth point.
(2) Suppose $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=-1$ . Then $E$ contracts to a union of

two smooth rational curves with one of the following dual graphes:

0 $-\delta$ $-\delta$ 0

$--o$ $\cdots(1)$ , or $\ldots(2)$

$G’$ $G’$

where $G’$ denotes the proper transform of the component $G$ in the

fifiber $p^{*}(\rho(\mu_{0}A_{0}))$ and $(G^{\prime^{2}})=\delta-1$ (resp. $(G^{\prime 2})=-1$ ) in the
case (1) (resp. (2)).

Proof. First of all, we shall show that either $\alpha_{1}=2$ or $\beta_{1}=2$ .

Write the condition $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=\pm 1$ as

$(\frac{\mu_{0}}{\delta_{0}}-1)(\frac{\mu_{1}}{\delta_{1}}-1)=1\pm\frac{1}{\delta_{0}\delta_{1}}$ .

Suppose $\alpha_{1}\geq 3$ and $\beta_{1}\geq 3$ . Write $\mu_{1}=\alpha_{1}\delta_{1}-\delta_{1}’$ and $\mu_{0}=\beta_{1}\delta_{0}-\delta_{0}’$

with $0\leq\delta_{1}’<\delta_{1}$ and $0\leq\delta_{0}’<\delta_{0}$ . Then we have

$(\frac{\mu_{0}}{\delta_{0}}-1)(\frac{\mu_{1}}{\delta_{1}}-1)$ $=$ $(\beta_{1}-1-\frac{\delta_{0}’}{\delta_{0}})(\alpha_{1}-1-\frac{\delta_{1}’}{\delta_{1}})$

$\geq$ $(\beta_{1}-2+\frac{1}{\delta_{0}})(\alpha_{1}-2+\frac{1}{\delta_{1}})$

$\geq$ $(1+\frac{1}{\delta_{0}})(1+\frac{1}{\delta_{1}})>(1+\frac{1}{\delta_{0}\delta_{1}})$

which is a contradiction.
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(1) We shall prove the first assertion. Suppose $\beta_{1}=2$ . Write
$\mu_{0}=2\delta_{0}-\delta_{0}’$ with $0\leq\delta_{0}’<\delta_{0}$ . Suppose further that $t=1$ , i.e.,
$\mu_{0}=2$ , $\delta_{0}=1$ , $\delta_{0}’=0$ . Then $\mu_{1}=2\delta_{1}+1$ and the dual graph becomes

-2 -1 -3 -2 -2

\ldots \ldots --o

$B_{1}$ $H_{1}$ $A_{1}$ $A_{2}$ $A_{\delta_{1}-1}$

Hence it contracts to a smooth point. Suppose that $t\geq 2$ . Let $\mu_{0}’=$

$\delta_{0}$ , $\mu_{1}’=\mu_{1}-\delta_{1}$ and $\delta_{1}’=\delta_{1}$ . Then the pairs $(\mu_{0}’, \delta_{0}’)$ and $(\mu_{1}’, \delta_{1}’)$ satisfy

$\mu_{0}’\mu_{1}’-\mu_{1}’\delta_{0}’-\mu_{0}’\delta_{1}’=1$ .

If $\alpha_{1}=2$ we can argue in a similar fashion. Hence we are done by
induction. The first assertion is verified.

(2) Next we shall verify the second assertion. Suppose $\beta_{1}=2$ and
$t=1$ . Then $\mu_{1}=2\delta_{1}-1$ and $\mu_{1}/\delta_{1}=[2, \delta_{1}]$ . Hence $E$ contracts to a
union of smooth rational curves with the dual graph:

0 $-\delta_{1}$

$G$

where $\delta_{1}\geq 2$ . Note that $\delta_{1}\neq 1$ . If $\alpha_{1}=2$ and $s=1$ , we have a

similar conclusion as above with the second dual graph in the statement.
Suppose that $\alpha_{1}=\beta_{1}=2$ , $s\geq 2$ and $t\geq 2$ . We shall show that this case
does not occur. Write $\mu_{i}=2\delta_{i}-\delta_{i}’$ with $\delta_{i}’\geq 1$ for $?$

.
$=0,1$ . Then the

condition $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=-1$ reads as $\delta_{1}\delta_{0}’+\delta_{0}\delta_{1}’=\delta_{0}’\delta_{1}’+1$ . This
is a contradiction since $\delta_{0}>\delta_{0}’$ and $\delta_{1}>\delta_{1}’$ . So, $\alpha_{1}\geq 3$ if $\beta_{1}=2$ , $s\geq 2$

and $t$ $\geq 2$ . As in the proof of the assertion (1), let $\mu_{0}’=\delta_{0}$ , $\mu_{1}’=\mu_{1}-\delta_{1}$

and $\delta_{1}’=\delta_{1}$ . Then the pairs $(\mu_{0}’, \delta_{0}’)$ and $(\mu_{1}’, \delta_{1}’)$ satisfy

$\mu_{0}’\mu_{1}’-\mu_{1}’\delta_{0}’-\mu_{0}’\delta_{1}’=-1$ .

Hence we are done by induction.
In the graph, call the component with self-intersection number 0

(resp. $-\delta$ ) $L$ (resp. $S$ ). In view of Lemma 1.2, if $E$ contracts to a union of
two rational curves $L+S$ , the linear chain $E’$ contracts to a smooth point,
where $E’$ has the following dual graph with $\mu_{0}/(\mu_{0}-\delta_{0})=[\beta_{1}’, \ldots, \beta_{t}’,]$

and $\mu_{1}/(\mu_{1}-\delta_{1})=[\alpha_{1}’, \ldots, \alpha_{s’}’]$ .
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$-\beta_{t}’$ , $-\beta_{2}’$ $-\beta_{1}’$ -1 $-\alpha_{1}’$ $-\alpha_{2}’$ $-\alpha_{s}’$ ,

– $\cdots\cdots$ $\ldots\ldots-$

$B_{t}’$ , $B_{2}’$ $B_{1}’$ $H_{2}$ $A_{1}’$ $A_{2}’$ $A_{s}’$ ,

Let $W$ be the surface obtained from $V$ by the contractions of $E$ and
$E’$ as described above. Then $W$ has a $P^{1}$ -fibration $p’$ : $W\rightarrow P^{1}$ given
by the pencil $|L|$ and $S$ is a cross-section of $p’$ . In the first case, the count
of the Picard number of $W$ shows that $G’$ is a cross-section of $p’$ with
$(G^{\prime 2})=\delta-1$ . In the second case, the count of the Picard number shows

again that $(G^{\prime 2})=-1$ and $p’$ has a unique singular fiber which contains
$G’$ and $\overline{A}$ as the terminal (-1) components and the (-2) components in
between (see the dual graph of the fiber $p^{-1}(\rho(\mu_{0}A_{0}))$ ). Q.E.D.

Consider the case where $\mu_{0}=1$ and $\delta_{0}=0$ .

Lemma 1.5. Suppose $\mu_{0}=1$ and $\delta_{0}=0$ . Then $\delta_{1}=1$ if $a=0$
and $\mu_{1}=\delta_{1}+1$ if $a=1$ . Let $\mu_{1}/\delta_{1}=[\alpha_{1}, \ldots, \alpha_{s}]$ be the fractional
expansion. Let $E$ be a union of smooth rational curves on a smooth
projective surface $V$ with the dual graph:

-1 $-\alpha_{1}$ $-\alpha_{2}$ $-\alpha_{s}$

$\ldots$ $\ldots-$

$H_{1}$ $A_{1}$ $A_{2}$ $A_{s}$

Then either $E$ contracts to a smooth point (case $a=1$ ) or $E$ is a union

of two smooth rational curves with the dual graph (case $a=0$ ) :

0 $-\mu_{1}$

Proof If $a=0$ then $(H_{1}^{2})=0$ , $s=1$ and $(A_{1}^{2})=-\mu_{1}$ . If $a=1$ ,
then $[\alpha_{1}, \ldots, \alpha_{s}]=[2, \ldots, 2]$ . It is clear that $E$ contracts to a smooth
point. Q.E.D.
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\S 2. Explicit equations

First of all, consider the case $n=1$ . We only consider the case
$a=1$ and $\delta_{0}\neq 0$ . The case $a=0$ and $\delta_{0}=0$ can be treated in a
similar fashion. Furthermore, we assume that $\mu_{0}\mu_{1}-\mu_{1}\delta_{0}-\mu_{0}\delta_{1}=-1$ .

The $P^{1}$ -fibration $p$ : $V\rightarrow P^{1}$ , which extends the given $A_{*}^{1}$ -fibration
$\rho$ : $X\rightarrow P^{1}$ , has two degenerate fibers $S_{0}$ and $S_{1}$ and two sections $H_{1}$

and $H_{2}$ . We assume that $S_{0}\cap X=\mu_{0}A$ and $S_{1}\cap X=\mu_{1}B$ , where
$A\cong A^{1}$ and $B\cong A_{*}^{1}$ . Let $E$ (resp. $E’$ ) be the connected component of

$ D-G\cup$ {the side linear chain between $G$ and $\overline{A}$ }

which contains $H_{1}$ (resp. $H_{2}$ ) (see the notations at the beginning of
the section 1). By Lemma 1.4, $E$ (resp. $E’$ ) contracts to a union of two
curves of the form (1) or (2) (resp. a smooth point). Suppose first that $E$

contracts to a union of two curves of the form (1). By the contaction of
$E$ and $E’$ , we obtain a smooth projective surface $W$ with the boundary
divisor $\triangle$ such that $ W-\triangle$ is isomorphic to $X$ and $\triangle$ has the following
configuration (Figure 1):

$\delta-$

(Figure 1.)

where $\overline{A}$ (resp. $\overline{B}$) denotes, by abuse of notations, the image of $\overline{A}$ (resp.
$\overline{B})$ under the contraction.

We blow up the intersection point $G\cap L$ and its infinitely near points
to produce a configuration with the following dual graph (Figure 2):
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. $o$.
.– $\cdot$

.– $\cdot$

.– $\cdot$ . .
. $\cdot$

. $\cdot$

$\overline{B}$

. . . .
...... .

-1 .
$\cdot.-\cdot.2$

-2 -1
. . . . . $-\delta$

. . .

$G$

$.\cdots-\cdot\cdot\mapsto\mapsto\frac{o}{A}\cdots$

. .

$-\cdot.]$

$G’$

$-(r+2)$ -1 -2 -2 -3 -2 -2 -1

$r$ $\delta-2$

(Figure 2.)

In the configuration, all curves but $\overline{A}$ , $\overline{B}$ and $L_{\infty}$ are contracted to
two points, say $P$ and $Q$ , on the image of $L_{\infty}$ (which we denote by the
same symbol $L_{\infty}$ ). In fact, the obtained surface is the projective plane
$P^{2}$ and $P^{2}-L_{\infty}$ is isomorphic to $X$ . The image $\overline{B}$ of $\overline{B}$ is a curve of
degree $r+2$ having a cuspidal singularity at $P$ of multiplicity $r+1$ and
passing through $Q$ smoothly, and the image $\overline{A}$ of $\overline{A}$ is a line meeting $\overline{B}$

at $P$ with order of contact $r+2$ .

Choose a system of homogeneous coordinates $(X, Y, Z)$ on $P^{2}$ so

that $L_{\infty}$ and $\overline{A}$ are defined by $Z=0$ and $X=0$ , respectively. Then $\overline{B}$

is defined by an equation

$YX^{r+1}-P(X, Z)=0$ ,

where

$P(X, Z)=a_{1}X^{r+1}Z+a_{2}X^{r}Z^{2}+\cdots+a_{r+2}Z^{r+2}$

with $a_{\Gamma+2}\neq 0$ . We may assume $a_{1}=0$ by replacing $Y$ by $Y-a_{1}Z$ .

Let $\Lambda$ be the pencil on $P^{2}$ consisting of the closures of fibers of the
given $A_{*}^{1}$ -fibration $\rho$ : $X\rightarrow P^{1}$ . Since $\mu_{1}B$ is a multiple fiber, we have

$\Lambda=\{(YX^{r+1}-P(X, Z))^{\mu_{1}}+\lambda X^{\mu o}Z^{\mu_{1}(r+1)+\mu_{1}-\mu_{0}}=0;\lambda\in P^{1}\}\cdots(1)$

where we consider

$(YX^{r+1}-P(X, Z))^{\mu_{1}}Z^{\mu_{0}-\mu_{1}(r+2)}+\lambda X^{\mu_{O}}=0$
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instead of the given equation if $\mu_{0}>\mu_{1}(r+2)$ .

Suppose next that $E$ contracts to a union of two curves of the form
(2). Then, with the above notation, $\triangle$ has the following configuration
(Figure 3):

(Figure 3.)

We consider two cases according as $-\delta+r+1\geq 0$ or $-\delta+r+1<0$ .

Suppose first $-\delta+r+1\geq 0$ . Then we obtain the following dual graph
after a suitable blowing-up of the above configuration (Figure 4):

. $o$. . .
. $\cdot$

. $\cdot$

$\overline{B}..$

. . .. .
. . .. .

. . . .
-1 .

$\cdot.-\cdot 2$ -2 -1 ...
. ...

$G$

$-(r+2)$ -1 -2 -2 -1

$-\delta+r+1$

(Figure 4.)
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Again, all curves but $\overline{A},\overline{B}$ and $L_{\infty}$ are contracted to two points, say $P$

and $Q$ , on the image of $L_{\infty}$ . The surface obtained by this contraction
is $P^{2}$ and $L_{\infty}$ is the line at infinity, i.e., $P^{2}-L_{\infty}\cong X$ . The image $\overline{B}$

of $\overline{B}$ is a curve of degree $r+2$ having a cuspidal $singurar\underline{it}y$ at $P$ of

multiplicity $r+1$ and passing through $Q$ , and the image $A$ of $\overline{A}$ is a
line meeting $B$ at $P$ with order of contact $r+2$ . Then we reach to the
expression (1) of the pencil $\Lambda$ . Consider next the case $-\delta+r+1<0$ .

Then we blow up the intersection point $L\cap\overline{B}$ and its $(\delta-r-2)$ infinitely

near points lying on the curve $\overline{B}$ (Figure 4):

. $\cdot$

. $o..$

.
. $\cdot$

. $\cdot$

$\overline{B}..$

. . ...... . . . ..

-1 . $\cdot.-\cdot 2$ -2 -1 .. ....

$G$

$-\delta$ -1 -2 -2 -1

$\delta-r-2$

(Figure 5.)

Then all curves but $\overline{A}$ , $\overline{B}$ and $L_{\infty}$ are contracted to two points on the
image of $L_{\infty}$ , and the surface obtained by this contraction is $P^{2}$ with
$L_{\infty}$ as a line at infinity. The same argument as in the previous cases
gives the expression (1) of the pencil $\Lambda$ .

Consider the case $\mu_{0}=1$ and $\delta_{0}=0$ . Turning the configuration
upside down if necessary, we have only to consider the case $a=0$ , $\mu_{0}=$

$\delta_{1}=1$ and $\delta_{0}=0$ . Then one can easily show that we have the same
configuration as in Figure 1 with $\delta=\mu_{1}$ after a suitable contraction of
the components of $D$ . So, we have the same expression of $\Lambda$ as given in
(1).

Consider finally the case $n=0$ . The case $a=1$ and $\mu_{0}=\delta_{0}+1$

is obtained from the case $a=0$ and $\delta=1$ by turning the graph upside
down, i.e., changing the roles of $H_{1}$ and $H_{2}$ . So, we treat only the case
$a=0$ and $\delta_{0}=1$ . Then we have the form (2) in the case $n=1$ . So, the
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argument is a complete repetition in the case $n=1$ with the form (2).
We have thus the same expression as (1) with $\mu_{1}=1$ .

Hence we obtain the following result.

Theorem 2.1. Let $\rho$ : $X\rightarrow P^{1}$ be an $A_{*}^{1}$ -fifibration parametrized
by $P^{1}$ . Then, with the above notations, the pencil associated to $\rho$ is given
as follows:

$\Lambda=\{(yx^{r+1}-p(x))^{\mu 1}+\lambda x^{\mu_{0}}=0$ ; $\lambda\in P^{1}\}$ ,

where $p(x)\in k[x]$ , $degp(x)\leq r$ and $p(0)\neq 0$ . Furthermore, we under-
stand that $\mu_{1}=1$ then there is no multiple fifiber whose reduced form is
isomorphic to $A_{*}^{1}$ .

\S 3. Complements to the previous results

(I) Let $C$ be an irreducible curve of $A^{2}$ and let $X$ be anew the com-
plement $A^{2}-C$ . In Aoki [1], it is observed whether or not $X$ has an
\’etale non-finite endomorphism which is not an automorphism. In the
case where $X$ has an $A_{*}^{1}$ fibration $\rho$ : $X\rightarrow B$ and $\rho$ extends to an $A_{*}^{1}-$

fibration $\overline{\rho}:A^{2}\rightarrow\overline{B}$ , i.e., a general fiber of $\rho$ is closed in $A^{2}$ , the case
$\overline{B}\cong P^{1}$ is missing in the observation. We shall consider here this case
by applying Theorem 2.1. Note then that $C$ is a fiber of $\overline{\rho}$ taken with
the reduced structure. We consider the following three cases separately:

(1) $C$ is a multiple fiber $\mu_{0}A_{0}$ , where $A_{0}\cong A^{1}$ .

(2) $C$ is a multiple fiber $\mu_{1}A_{1}$ , where $A_{1}\cong A_{*}^{1}$ .

(3) $C$ is a general fiber of $\rho$ .

In the case (1), $X$ has logarithmic Kodaira dimension $\overline{\kappa}(X)=-\infty$ and
this case is treated in [1]. In the case (2), it follows from Theorem 2.1 and
the arguments leading to its proof that $C$ is defined by an equation of
the form $yx^{r+1}-p(x)=0$ , where $p(x)\in k[x]$ , $degp(x)\leq r$ and $p(0)\neq 0$ .

The polynomial $yx^{r+1}-p(x)$ is then a generically rational polynomial,
and this case is also treated in [1]. So, consider the case (3). By the
arguments in [6] to prove the first assertion of Lemma 1.1, we know that

$\overline{\kappa}(X)=1$ (resp. 0) if and only if $n-\sum_{i=1}^{n}\frac{1}{n_{i}}>0$ (resp. $=0$),

where $n=0,1$ . If $n=1$ (resp. 0) then $\overline{\kappa}(X)=1$ (resp. 0). If
$n=0$ (hence $\mu_{1}=1$ ) then the general fiber $C$ is defined by $f=0$ with
$f=yx^{r+1}-p(x)+x^{\mu o}$ , and $f$ is a generically rational polynomial. So
we may assume that $n=1$ . Hence $\overline{\kappa}(X)=1$ .
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Let $\alpha$ : $X_{1}\rightarrow X_{2}$ be an \’etale endomorphism, where we denote the
source (resp. target) $X$ by $X_{1}$ (resp. $X_{2}$ ). Accordingly, we denote
by $\rho_{i}$ : $X_{i}\rightarrow B_{i}(i=1,2)$ the same $A_{*}^{1}$ -fibration $\rho$ : $X\rightarrow B$ , where
$B_{1}\cong B_{2}\cong A^{1}$ . By [1, Lemma 3.2], there exists an endomorphism
$\beta$ : $B_{1}\rightarrow B_{2}$ such that $\rho_{2}$

. $\alpha=\beta\cdot\rho_{2}$ .

We shall show that $\beta$ is the $identit\underline{y}automor\underline{p}hism$ . In $fa\underline{ct}$ , $\beta$

extends to an endomorphism $\overline{\beta}$ : $\overline{B}_{1}\rightarrow B_{2}$ , where $B_{i}\cong P^{1}$ and $B_{i}=$

$B_{i}\cup\{P\}$ for $i=1,2$ with $P:=\overline{\rho}(C)$ . It is clear that $\overline{\beta}^{-1}(P\underline{)}=P$ . Let
$P_{i}:=\overline{\rho}(A_{i})$ for $i=0,1$ . By [3, Lemma 3.1], it follows that $\beta(P_{i})=P_{i}$

for $i=0,1$ because $gcd(\mu_{0}, \mu_{1})=1$ . Note that $\overline{\beta}$ is unramified at $P_{0}$

and $P_{1}$ . By the same lemma, it follows that if $\overline{\beta}(Q)=P_{i}(i=0,1)$

for $Q\neq\underline{P}_{i}$ , then the ramification index of $\overline{\beta}$ at $Q$ equals to $\mu_{i}$ . Let
$ d:=deg\beta$ . Suppose that $r$ (resp. $s$ ) points of $\overline{B}_{1}$ other than $P_{1}$ (resp.
$P_{0})$ are mapped to $P_{1}$ (resp. $P_{0}$ ) under $\overline{\beta}$ . By the Riemann-Hurwitz
theorem, we have

-2 $=$ $-2d+(d-1)+r(\mu_{1}-1)+s(\mu_{0}-1)$

$=$ $d-r-s$ $-3$

where $d=\mu_{1}r+1=\mu_{0}s+1$ . Hence we obtain

$d=r+s+1=\mu_{1}r+1=\mu_{0}s+1$ . (1)

If $d\neq 1$ then $r>0$ and $s>0$ . It is then easy to derive a contradiction
from (1) because $gcd(\mu_{0}, \mu_{1})=1$ . Hence $d=1$ . Since $\beta$ is an automor-
phism of $P^{1}$ fixing three points $P$, $P_{0}$ , $P_{1}$ , it follows that $\beta$ is the identity
automorphism.

Since $\alpha$ satisfies now $\rho\cdot\alpha=\rho$ , the \’etale endomorphism $\alpha$ induces an
endomorphism $\alpha_{K}$ : $X_{1,,,K}\rightarrow X_{2,,,K}$ of the generic fiber $X_{K}$ of $\rho$ , where
$K$ is the function field of $B$ . Since $\rho$ is an untwisted $A_{*}^{1}$ -fibration, we
know that $X_{K}=SpecK[u, u^{-1}]$ . Hence $\alpha_{K}^{*}(u)=au^{\pm n}$ with $a\in K^{*}$ and
$ n=deg\alpha$ . Let $G$ be the group of the $n$-th roots of unity in $k$ . Then $G$

acts on $X_{1,,,K}$ and $X_{2,,,K}$ is the quotient curve $X_{1,,,K}/G$ . Hence the function

field $k(X_{1})$ is a Galois extension of $k(X_{2})$ with Galois group $G$ . Let $\overline{X}_{2}$

(resp. $W$ ) be the normalization of $X_{2}(\underline{r}esp. A^{2})$ in $k(X_{1})$ , where $X_{2}$ is

the open set $A^{2}-C$ of $A^{2}$ , and let $\iota/:X_{2}\rightarrow X_{2}$ (resp. $\hat{l/}:W\rightarrow A^{2}$ ) be

the normalization morphism. By [5, Lemma 5], $lJ$ : $X_{2}\rightarrow X_{2}$ is an \’etale

Galois covering $wit\underline{h}$ group $G$ with $X_{2}$ containing $X_{1}$ as an open set, the
composite $\rho_{2}\cdot\nu$ : $X_{2}\rightarrow B$ is an $A_{*}^{1}$ -fibration such that $\rho_{2}$

. $\iota/|_{X_{1}}=\rho_{1}$ ,

and $(\rho_{2}\cdot\iota/)^{-1}(P_{0})$ with $P_{0}=\rho(A_{0})$ is a disjoint union of $n$ copies of

the affine lines $gA_{0}(g\in G)$ so that $\overline{X}_{2}-X_{1}=\square _{g\in G,g\neq 1}gA_{0}$ , where
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$A_{0}\cong A^{1}$ . The surface $W$ is a normal affine surface with a $G$-action, and
$A^{2}$ is the quotient surface $W\underline{/}G$ . Furthermore, $\overline{X}_{2}$ is a Zariski open set

of $W$ . Note that $\overline{\rho}\cdot\hat{\nu}$ : $W\rightarrow B$ is an $A_{*}^{1}$ -fibration. Let $Z=(\overline{\rho}\cdot\hat{\nu})^{-1}(P)$ ,

where $P=\overline{\rho}(C)$ . Then $\hat{\nu}$ induces a finite morphism $\overline{\nu}$ : $Z\rightarrow C$ . Since

the $A_{*}^{1}$ -fibration $\overline{\rho}$ . $\hat{\nu}$ : $W\rightarrow\overline{B}$ is extended to a $P^{1}$ -fibration with two
cross-sections at infinity and since every irreducible component of $Z$ has
at least two places at infinity (for otherwise it cannot dominate $C$ which
is isomorphic to $A_{*}^{1}$ ), it follows that

(1) $Z$ is irreducible,
(2) $W$ has no singular points along $Z$ ,
(3) $Z$ is isomorphic to $A_{*}^{1}$ .

In fact, let $V$ be a completion of $W$ such that $V$ is smooth along $V-W$ ,

the complement $V-W$ supports a divisor with simple normal crossings

and the $A_{*}^{1}$ -fibration $\overline{\rho}$ . $\hat{\nu}$ extends to a $P^{1}$ -fibration $q$ : $V\rightarrow\overline{B}$ . If
$Z$ is reducible, the fiber $q^{-1}(P)$ must contain a loop of the irreducible
components because each irreducible component of $Z$ has at least two
places at infinity. So, $Z$ is irreducible. We may assume that $q^{-1}(P)$

contains no (-1) curves lying in $V-W$ . If $W$ has singular points on $Z$ ,

the proper transform $\hat{Z}$ of $Z$ by a minimal resolution of singularities of
$W$ is a unique (-1) curve in the fiber meeting three or more components
of the fiber. This is a contradiction. So, $W$ is smooth along $W$ . Now it

is clear that $Z$ is isomorphic to $A_{*}^{1}$ . This implies that $\hat{\nu}$ : $W\rightarrow A^{2}$ is an
\’etale finite Galois covering. Hence $\hat{\nu}$ is an isomorphism. In particular,
$\alpha$ : $X_{1}\rightarrow X_{2}$ is an automorphism. Thus we obtain the following:

Theorem 3.1. Let $C$ be an irreducible curve in $A^{2}:=Speck[x, y]$

defifined by

$(yx^{r+1}-p(x))^{\mu_{1}}+\lambda x^{\mu o}=0$ ,

where $\mu_{0}\geq 1$ , $\mu_{1}>1$ and $\lambda\neq 0$ and let $X:=A^{2}$ –C. Then $\overline{\kappa}(X)=1$

and every \’etale endomorphism of $X$ is an automorphism.

(II) In [2], we considered an automorphism of infinite order of $A^{2}$ which
stabilizes an irreducible curve $C$ . In [2, Lemma 1.4], the case where the

curve $C$ has a defining equation

$f:=(yx^{r+1}-p(x))^{\mu 1}+\lambda x^{\mu o}=0$ ,

is missing. We shall complete the result by treating here the missing
case. If $\mu_{1}=1$ , i.e., $n=0$ , then $f$ is a generically rational polynomial,
and this case is treated in [2], So, we assume that $\mu_{1}>1$ . As in the proof
of Theorem 3.1, $\overline{\kappa}(X)=1$ and any automorphism $\alpha$ of $X$ preserves the
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$A_{*}^{1}$ -fibration $\rho$ , i.e., $\rho$
.

$\alpha=\rho$ . Then $\alpha^{-1}(A_{0})=A_{0}$ and $\alpha^{-1}(A_{1})=A_{1}$ .

Namely, we have $\alpha(x)=cx$ and $\alpha(yx^{r+1}+p(x))=d(yx^{r+1}+p(x))$

with $c$ , $d\in k^{*}$ . Here note that $A_{0}$ (resp. $A_{1}$ ) is defined by $x=0$ (resp.
$yx^{r+1}+p(x)=0)$ . Since $p(0)\neq 0$ , it follows that $d=1$ . Then we have

$\alpha(y)=c^{-(r+1)}y+\frac{p(x)-p(cx)}{c^{r+1}x^{r+1}}$ .

Hence $p(x)=p(cx)$ , and $c$ is an $m$-th root of unity for some $m$ with

$0<m<r+1$ because $degp(x)\leq r$ . So, we obtain the following:

Theorem 3.2. Let $C$ be an irreducible curve in $A^{2}:=Speck[x, y]$

defifined by

$(yx^{r+1}-p(x))^{\mu_{1}}+\lambda x^{\mu_{0}}=0$ ,

where $\mu_{0}\geq 1$ , $\mu_{1}>1$ and $\lambda\neq 0$ and let $X:=A^{2}$ –C. Then every
automorphism of $A^{2}$ which stabilizes the curve $C$ is of fifinite order.
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The Zarankiewicz Problem via Chow Forms

Marko Petkov ek, James Pommersheim and Irena Swanson

The well-known Zarankiewicz problem [Za] is to determine the least
positive integer $Z(m, n, r, s)$ such that each $m\times n0- 1$ matrix containing
$Z(m, n, r, s)$ ones has an $r\times s$ submatrix consisting entirely of ones. In
graph-theoretic language, this is equivalent to finding the least positive
integer $Z(m, n, r, s)$ such that each bipartite graph on $m$ black vertices
and $n$ white vertices with $Z(m, n, r, s)$ edges has a complete bipartite
subgraph on $r$ black vertices and $s$ white vertices.

A complete solution of the Zarankiewicz problem has not been given.
While exact values of $Z(m, n, r, s)$ are known for certain infinite subsets
of $m$ , $n$ , $r$ and $s$ , only asymptotic bounds are known in the general case;
for example, see $\check{C}$ ul\’ik $[\check{C}]$ , F\"uredi [F], Guy [G], Hartmann, Mycielski
and Ryll-Nardzewski [HMR], Hylt\’en-Cavallius [HC], Irving [I], K\"ov\’ari,
S\’os and Tur\’an [KST], M\"ors [M], Reiman [Re], Roman [Ro], Zn\’am [Zn].
Even the case $r=s=2$ has not been answered in general. Here we
quote some known facts about this case: Hartmann, Mycielski and Ryll-
Nardzewski [HMR] proved the asymptotic bounds

$c_{1}n^{4/3}<Z(n, n, 2,2)<c_{2}n^{3/2}$

for some constants $c_{1}\cong\frac{3}{4}$ and $c_{2}\cong 2$ . K\"ov\’ari, S\’os and Tur\’an [KST]
proved that

$Z(n, n, 2,2)\leq 2n+n^{3/2},\lim_{n\rightarrow\infty}n^{-3/2}Z(m, n, 2,2)=1$ .

Moreover, when $p$ is a prime integer, [KST] proved that $Z(p^{2}+p,p^{2},2,2)$

$=p^{2}(p+1)+1$ . Hylt\’en-Cavallius [HC] proved that $Z(m, n, 2,2)\leq\frac{n}{2}+$

$\sqrt{nm(m-1)+\frac{n^{2}}{4}}+1.\check{C}$ul\’ik $[\check{C}]$ proved that for $n\geq\left(\begin{array}{l}m\\2\end{array}\right)$ ,

$Z(m, n, 2,2)=\left(\begin{array}{l}m\\2\end{array}\right)$ $+n+1$ .
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Reiman [Re] showed the same equality for infinitely many other $m$ and
$n$ , and he also established a connection between finding $Z(m, n, 2,2)$

and the existence of projective planes of given orders. This last existence
question is still wide open, and hence Reiman’s work provides convincing
evidence that finding $Z(m, n, 2,2)$ for all $m$ and $n$ is a highly non-trivial
problem. Guy [G] calculated $Z(m, n, 2,2)$ for many small values of $m$

and $n$ . Further asymptotic and exact values were established in [Ro],
[F].

This paper is an analysis of the $r=s=2$ case of Zarankiewicz
problem from the point of view of commutative algebra. Our motiva-
tion came from the complexity theory of permanental ideals of generic
matrices. This brought forth a new connection between combinatorics,
computational algebra, commutative algebra, and algebraic geometry
involving not only permanental ideals, but also complexity of parame-
ters and Chow forms. We describe these connections in the first two
sections of this paper. In the final section, we also exhibit a connection
with hypergraphs and three dimensional matrices. However, with these
new connections we have not been able to shed any new light on the
Zarankiewicz problem; we have simply found several reformulations.

\S 1. Permanental ideals and balanced matrices

We begin by introducing permanental ideals, parameters, and com-
plexity of parameters via Chow forms. We present the Chow form for the
permanental ideals, and rephrase the question of computing $Z(m, n, 2,2)$

in terms of the complexity of parameter ideals and their Chow forms.
Let $F$ be a field, and let $X_{ij}$ be indeterminates over $F$ , where $i=$

$1$ , $\ldots$ , $m$ and $j=1$ , $\ldots$ , $n$ , with $m$ , $n\geq 2$ . Let $X$ be the $m\times n$ matrix
whose $ij$-th entry is $X_{ij}$ . The matrix $X$ is the so-called generic $m\times n$

matrix. Let $P$ be the ideal in the polynomial ring $F[X_{ij}|i, j]$ generated
by all 2 $\times 2$ subpermanents of $X$ . Specifically,

$P=$ $(X_{ij}X_{i’j’}+X_{i’j}X_{ij’}|i<i’\leq m, j<j’\leq n)$ .

Note that the permanent is like the determinant but with all minus signs
replaced by plus signs. The ideal $P$ is called the $2\times 2$ permanental ideal
of $X$ .

Permanental ideals have not been studied a great deal. This is
partly because that they do not seem to describe geometric properties,
and partly because permanents are very difficult to compute. One can
calculate the determinant of an $n\times n$ matrix in $O(n^{3})$ steps, but for
a permanent, many more steps are needed. Calculating the permanent
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is in fact a $\#P$-complete problem (see for example [$V$ , Valiant], $[B$ ,

B\"urgisser]).
One measure of the complexity of an ideal is the sparsity or non-

sparsity of a system of parameters modulo it. Not surprisingly, the
parameters modulo the $2\times 2$ permanental ideal are not sparse. The goal
is to determine this complexity more precisely.

Definition 1. For an element $\sum_{ij}c_{ij}X_{ij}$ to be a parameter mod-
ulo an ideal $I$ , it is necessary and sufficient that it avoids all the minimal
primes of $I$ . A system of parameters modulo I is a sequence of elements
$a_{1}$ , $\ldots$ , $a_{d}$ , where $d$ is the dimension of the ring modulo $I$ , such that for
all $i=1$ , $\ldots$ , $d$ , $a_{\dot{x}}$ is a parameter modulo the ideal $I+(a_{1}, \ldots, a_{i-1})$ .

A parameter is said to be sparse if most of the $c_{ij}$ are zero. The
complexity of a parameter is defined to be the number of nonzero $c_{ij}$ .

The complexity of I is then defined to be the smallest possible sum of
all the complexities of the parameters in a system of parameters, as we
vary the systems.

When $m=n=2$ , the permanental $2\times 2$ ideal $P$ is a prime ideal, so
that any one of the four $X_{ij}$ variables is a parameter. In this case the
complexity of a single parameter is 1.

When $2=m<n$ , Laubenbacher and Swanson [LS] showed that

an element $\sum_{ij}c_{ij}X_{ij}$ is a parameter modulo the permanental ideal $P$

exactly when for each row $i$ , at least one $c_{ij}$ is nonzero, and for each
2 $\times 2$ matrix of $X$ , at least one of the corresponding $c_{ij}$ is nonzero.
Thus, one can see easily that the complexity of a parameter modulo the
2 $\times 2$ permanental ideal of a 2 $\times n$ generic matrix is exactly $n-1$ .

Furthermore, when $m$ , $n\geq 3$ , again according to [LS], for $\sum_{ij}c_{ij}X_{ij}$

to be a parameter modulo the permanental ideal $P$ , it is necessary that
for each $i$ , some $c_{ij}$ is nonzero, similarly that for each $j$ , some $c_{ij}$ is

nonzero, and lastly that for all $i<i’\leq m$ , $j<j’\leq n$ , at least one of
$c_{ij}$ , $c_{ij’}$ , $c_{i’j}$ , $c_{i’j’}$ is nonzero.

We say that a 0-1 matrix is balanced if every 2 $\times 2$ submatrix (not
necessarily contiguous) contains at least one unit element, and we let
$f(m, n)$ be the minimal number of ones in a balanced $m\times n$ matrix.
Note that

$f(m, n)=mn-Z(m, n, 2,2)+1$

where $Z(m, n, r, s)$ is the Zarankiewicz number.
It turns out that $f(m, n)$ equals the smallest possible complexity of

a single parameter, as we prove below. It is clear from above that in the
case $2=m\leq n$ , both of these numbers are $n-1$ , and similarly when
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$2=n\leq m$ , both of these numbers are $m-1$ . In the sequel, we will
assume (without loss of generality) that $3\leq m$ , $n$ .

We first need a lemma:

Lemma 1. Let $m$ , $n\geq 3$ , and let $A$ be a balanced $m\times n$ matrix
with $f_{A}$ ones. Then there exists a balanced $m\times n$ matrix $B$ with exactly
$f_{A}$ ones such that every row and every column of $B$ contains at least
one nonzero entry.

Proof. Suppose that one of the rows or columns of $A$ is zero.
Without loss of generality we may assume that the first row of $A$ is zero.
As $A$ is balanced, each of the rows 2, 3, . . . , $m$ must have at least $n-1$

ones. Thus after possibly permuting the rows and columns of $A$ , the
first three rows are of the form

$\left\{\begin{array}{lllll}0 & 0 & \cdots & 0 & 0\\0 & 1 & \cdots & 1 & 1\\* & 1 & \cdots & 1 & **\end{array}\right\}$ .

Here, $*,$ $**are$ either 1 or 0, but they are not both 0 since $A$ is balanced.
Let $B$ be obtained from $A$ by switching the $(1, 1)$ and $(2, 2)$ entries.
Then $B$ is still balanced with $f_{A}$ ones, and every row, every column of
$B$ has at least one 1. Q.E.D.

Now we can show the connection between the complexity of param-
eters and $f(m, n)$ :

Proposition 1. Whenever $2\leq m$ , $n$ , $f(m, n)$ equals the minimal
possible complexity of a parameter modulo $P$ .

Proof. By the earlier discussion, we may take $3\leq m\leq n$ without
loss of generality. For each parameter $\sum_{ij}c_{ij}X_{ij}$ , we form the balanced

matrix $A$ whose $(i, j)$ entry equals 0 if $c_{ij}=0$ and equals 1 otherwise.
Notice that the balanced matrix $A$ constructed in this way has the addi-
tional property that every row and every column of $A$ contains a nonzero
entry. Conversely, given a balanced matrix $A$ , we first use Lemma 1 to
convert it (non-uniquely) into a balanced matrix $B$ such that every row
and every column of $B$ contains a nonzero entry, we then construct a pa-
rameter $\sum c_{ij}X_{ij}$ modulo the $2\times 2$ permanental ideal by setting $c_{ij}$ to be
the $ij$ entry of $B$ . This element is indeed a parameter by [LS]. Q.E.D.

Thus finding $f(m, n)$ , the minimal number of ones in $A$ , is the
same as finding the sparsest possible parameter for the polynomial ring
modulo the permanental ideal. Hence all the values and bounds on
$Z(m, n, 2,2)$ listed at the beginning of the paper apply also for $mn+1$

minus the smallest possible complexity of a parameter. Clearly, no pa-
rameter is sparse.
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\S 2. Chow forms

There is another way to analyze the complexity of ideals, due to
Eisenbud and Sturmfels [ES]:

Theorem 1 ([ES, Theorem 2.7]). The complexity of an ideal
I equals the least number of variables appearing in any initial monomial

of the Chow form of the ring modulo $I$ (under any monomial $order\iota ng$).

Some helpful references for Chow forms are [Sh], [ES], [GS].
Of course, calculating the complexity of an ideal is much more than

calculating the complexity of a single parameter. However, the com-
plexity of the ideal divided by the number of parameters gives an upper
bound on the complexity of a parameter, and so by the previous section
this is a step towards computing $Z(m, n, 2,2)$ . Thus, the problem is first
to calculate the Chow form of the ring modulo $P$ , and secondly, to find
a monomial ordering on the variables under which the initial monomial
of the Chow form involves the fewest number of variables.

In general, the computation of Chow forms is difficult, in techni-
cal terms even $NP$-hard (see [ES] for discussion). Even in the case of
determinantal ideals, which tend to be much better behaved than per-
manental ideals, the Chow forms are difficult to compute. Glassbrenner
and Smith [GS] analyzed the complexity of determinantal ideals by us-
ing the theorem of Eisenbud and Sturmfels quoted above. For the ideal
of 2 $\times 2$ minors of a generic $m\times n$ matrix, Glassbrenner and Smith
[GS] determined that the parameter complexity is exactly $mn$ . As the
number of parameters in a parameter system for this ideal is $m+n-1$ ,

this implies that we can choose the first parameter with at most $\frac{mn}{m+n-1}$

non-zero coefficients $c_{ij}$ . However, as the determinantal ideal is prime,
we may choose the first parameter to be any one of the variables, and
hence the smallest possible complexity of a parameter is exactly 1. In
contrast, the results on the Zarankiewicz problem quoted earlier show
that for the 2 $\times 2$ permanental ideal the complexity of a parameter is
much larger.

Even though the complexity of the permanental Chow form and
the complexity of permanental parameters are much larger than the
corresponding complexities for determinants, here is at least one algebro-
geometric problem that turns out to be easier for permanents than for
determinants: namely, the computation of Chow forms.

The Chow form of an ideal is the product of the Chow forms of its
minimal primes. In addition, the Chow form of the ideal I plus an ideal
generated by variables is simply the Chow form of $I$ . Putting these facts
together, we get:
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Proposition 2 (see [Sh]). The Chow form of the permanental
ideal $P$ is the product of the Chow forms of all the ideals $J_{ii’jj’}$ , with
$i<i’\leq m,j<j’\leq n$ , where $J_{ii’jj’}=(X_{ij}X_{i’j’}+X_{i’j}X_{ij’})$ [generated
by a $2\times 2$ permanent of $X$ ).

The calculation of the Chow form of a principal ideal is straightfor-
ward (see for example [Sh]). In particular, to define the Chow form of
$X_{ij}X_{i’j’}+X_{i’j}X_{ij’}$ , we first introduce 12 new variables $C_{lkp}$ , $l$ varying
from 1 to the dimension of the polynomial ring in the four given variables
modulo the quadric (which is 3), and $kp$ varying over the subscripts of
the variables $X$ above. Let $M_{ii’jj’}$ be the 3 $\times 4$ generic matrix with
indeterminates $C_{lkp}$ each of whose rows contains the variables with the
same first subscript and whose columns have the matching rest of the
subscripts. Explicitly,

$M_{ii’jj’}=$ $\left\{\begin{array}{llll}C_{1ij} & C_{1i’j} & C_{1ij’} & C_{1i’j’}\\C_{2ij} & C_{2i’j} & C_{2ij’} & C_{2i’j’}\\C_{3ij} & C_{3i},j & C_{3ij}, & C_{3ij},,\end{array}\right\}$ .

The Chow form of $X_{ij}X_{i’j’}+X_{i’j}X_{ij’}$ is given by

$R_{ii’jj’}=\triangle_{ij}\triangle_{i’j’}+\triangle_{i’j}\triangle_{ij’}$ ,

where $\triangle_{kp}$ is the determinant of the submatrix of $M_{ii’jj’}$ after removing
the column corresponding to $kp$ . We thus have:

Theorem 2. The Chow form of $P$ is $\prod_{i,i’,j,j’}R_{ii’jj’}$ .

One can verify that each $R_{ii’jj’}$ is a linear combination of 66 distinct
monomials of degree 6. Hence the Chow form is the product of $\left(\begin{array}{l}m\\2\end{array}\right)\left(\begin{array}{l}n\\2\end{array}\right)$

factors, each of which is a linear combination of 66 monomials of degree
6. Thus while the Chow form is relatively easy to get at, its expansion
is far from computationally trivial.

By the Eisenbud-Sturmfels result (Theorem 1), we now have:

Theorem 3. The parameter complexity of the ideal $P$ equals the
minimal number of distinct variables $C_{lkp}$ appearing in any monomial
in the expansion of the Chow form of $P$ .

This new formulation raises more questions than answers:

Question 1. What monomials appear in the expansion of the Chow

form of P? Is there a combinatorial representation of these monomials?

Question 2. What is the smallest possible number of distinct vari-
ables $C_{lkp}$ such that a monomial appearing in the Chow form of P is $a$
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power product of exactly these variables? Also, what is the smallest possi-
ble number of distinct variables $C_{1kp}$ such that a monomial appearing in
the Chow form of $P$ isa power product of these variables and variables
$C_{2k’p’}$ , $C_{3k’p’}$ ?

By Theorem 3) the answer to the first part of Question 2 is exactly
the complexity of the ideal $P$ . Furthermore, this number divided by 3
is an upper bound on the complexity of one parameter modulo $P$ , and
hence also an upper bound on $f(m, n)$ .

A further question is then:

Question 3. Does this upper bound on $mn+1-f(m, $n) give $a$

new lower bound on the Zarankiewicz number $Z(m, $n,$ $2,2)?

\S 3. Zarankiewicz problem in three dimensions and hyper-
graphs

It turns out that the monomials appearing in the Chow form of $P$

are related to a certain three-dimensional Zarankiewicz problem. We
now discuss this connection.

We will call a $3\times m\times n0- 1$ matrix balanced if (a) it contains no zero
submatrix of size $2\times 2\times 1,2\times 1\times 2$ , or 1 $\times 2\times 2$ , and (b) none of the
$mn$ columns $\{A_{1,\dot{\iota},j}, A_{2,i,j}, A_{3,i,j}\}$ consists entirely of zeros. We define
$g(m, n)$ to be the minimum number of ones in any balanced matrix of
size $3\times m\times n$ .

Just as the (2-dimensional) Zarankiewicz problem can be phrased in
the language of graph theory, so the above condition (a) can be expressed
in terms of hypergraphs. Here we are looking for the minimum number
of edges in the complete tripartite 3-graph $K_{3,m,n}$ with the property that
the complement does not contain the tripartite 3-graph $K_{2,2,1}$ . Condi-
tion (b) seems perhaps a little less natural. It is interesting to note,
however, that condition (b) is similar to the extra condition that arose
in our combinatorial interpretation of the (2-dimensional) Zarankiewicz
problem: namely, that each column of the matrix should contain at least
one 1. Lemma 1 showed that this extra condition was, in fact, redun-
dant. However, this does not appear to follow easily in the 3-dimensional
case.

For any monomial $\gamma$ in the variables $C_{lkp}(l$ $=1\ldots 3$ , $k=1\ldots m$ ,
$p=1\ldots n)$ , we can form a $3\times m\times n0- 1$ matrix, where a 1 in position
$(l, k,p)$ indicates that $\gamma$ is divisible by $C_{lkp}$ . We then have the following:

Theorem 4. Any monomial that appears in the expansion of the
Chow form of $P$ determines a balanced $ 3\times m\times$ $n$ submatrix. Hence, the
parameter complexity of the ideal $P$ is greater than or equal to $g(m, n)$ .
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Manifestly, a $3\times m\times n$ matrix is balanced if and only if every $3\times 2\times 2$

submatrix of it is balanced. Thus, to prove the theorem, it is enough to
prove the following lemma.

Lemma 2. Any monomial appearing in the expansion of $R_{ii’jj’}=$

$\triangle_{ij}\triangle_{i’j’}+\triangle_{i’j}\triangle_{ij’}$ determines a 3 $\times 2\times 2$ balanced submatrix of the
matrix $(C_{lkp})$ .

Proof For condition (a), there are three things to check. First
consider the case of a 1 $\times 2\times 2$ submatrix. Without loss of generality,
such a matrix corresponds to the four monomials $C_{1ij}$ , $C_{1i’j}$ , $C_{1ij’}$ , $C_{1i’j’}$ .

Clearly, each of the four determinants $\triangle$ above will involve one of these
monomials. Now consider a $2\times 1\times 2$ submatrix. Without loss of gener-
ality, such a matrix corresponds to the four monomials $C_{1ij}$ , $C_{2ij}$ , $C_{1ij’}$ ,
$C_{2ij’}$ . Any term in $\triangle_{i’j’}$ or in $\triangle_{i’j}$ contains one of these four monomials.
Thus any term of $R_{ii’jj’}$ will contain one of these four, as well. The case
of $2\times 2\times 1$ submatrices is similar.

To verify condition (b), we consider the monomials $C_{1ij}$ , $C_{2ij}$ , $C_{3ij}$ .

Clearly, any term in $\triangle_{i’j}$ , $\triangle_{ij’}$ , or $\triangle_{i’j’}$ contains one of these three
monomials. Thus any term of $R_{ii’jj’}$ will also contain at least one of the
three monomials above. Hence, condition (b) is satisfied. Q.E.D.

Given the inequality of Theorem 4, one might wonder if the com-
plexity of ideal $P$ is actually equal to $g(m, n)$ . Indeed, the following
converse of Lemma 2 is true. Given any $3\times 2\times 2$ balanced matrix $M$ ,

there is a monomial occurring in the expansion of $\triangle_{ij}\triangle_{i’j’}+\triangle_{i’j}\triangle_{ij’}$ all
of whose variables correspond to 1’ $s$ in M. (One can check this, for ex-
ample, by a tedious examination of cases.) Suppose that $A$ is a balanced
$3\times m\times n$ matrix. It would follow from the converse of Lemma 2 that one

of the $66(_{2}^{m})(_{2}^{n})$ terms in the expansion of the Chow form of $P$ consists
entirely of variables corresponding to 1’ $s$ in $A$ . Thus if no monomial in
this expansion cancels out entirely, then the parameter complexity of $P$

is exactly $g(m, n)$ . Unfortunately, it is not clear to us whether or not
such cancelation can occur.

In any case, each of the three $1\times m\times n$ submatrices of the $3\times m\times n$

balanced matrix is a balanced $m\times n$ matrix. Thus $g(m, n)\geq 3f(m, n)$ .

This finally expands on the last question:

Question 4. Is $mn+1-\frac{1}{3}g(m, n)$ a new lower bound on the
Zarankiewicz number $Z(m, n, 2,2)$ ?
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Notes on the Topology of Hyperplane Arrangements
and Braid Groups

Claudio Procesi

Introduction.
We will be concerned with the following problem. Let $V$ be an

$n-$dimensional vector space over R. Denote its complexification $V_{C}=$

$V+iV$ .

Consider furthermore a finite family $\prime\mu:=H_{I}:=\{H_{i}\}_{i\in I}$ of real
hyperplanes in $V$ which for simplicity we assume all passing through the
origin. The set of given hyperplanes and all their intersections form a
finite set of subspaces of $V$ partially ordered by inclusion.

We shall restrict to the case in which $\bigcap_{i}H_{i}=0$ (such an arrangement
is called essential) in fact this is not a serious restriction.

We shall denote by

$L(H):=\{\bigcap_{i\in T}H_{i}|T\subset I\}$ .

this finite set of subspaces (closed under intersection), which will be
referred to as the real arrangement

The complexification of all these subspaces is the corresponding
complex arrangement in $V_{C}$ . Our main concern will be the study of

the topology of the complement in $V_{C}$ of the union $\bigcup_{i\in I}(H_{i})_{C}$ .

Let us denote by $A:=V_{C}-\bigcup_{i\in I}(H_{i})_{C}$ this open set.

Of particular interest is the case in which $V$ is a Euclidean space and
the $H_{i}$ are the reflection hyperplanes of a finite reflection group [Bou].

These groups have been classified by Coxeter, the finite reflection
group $W$ acts freely on $A$ and we can form the covering

$A$ $\rightarrow A/W$.

Received July 3, 2000.
Partially supported by M. U. R. S. T. 40%.
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Among these reflection groups there is the type $A_{n}$ wich is the group
$S_{n+1}$ of permutations of the coordinates of $R^{n+1}$ (the reflection hyper-
planes are the ones of equations $x_{i}-x_{j}=0$ ). In this case $A/S_{n+1}$ can
be identified to the space of monic polinomials of degree $n$ with dis-
tinct roots. The homotopy groups of $A$ , $A/W$ have been determined
by Brieskorn [Br] and in the case $A_{n}$ we have the classical Artin braid
group $B_{n}$ . Moreover it has been proved by Deligne [De] that $A$ , $A/W$

are both $K(\pi, 1)$ spaces.

Salvetti [SI] has described a very explicit finite $CW$ complex homo-
topically equivalent to $A$ resp. $A/W$ and, with the use of this complex
many cohomology computations for these groups can be performed (cf.
also [B-Z] $)$ .

De Concini and Salvetti have used these methods also to compute
the cohomology of finite reflection groups. In these notes we explain
some of these topics.

These notes are a first draft of a project which may never see the
light and I make them available in the hope that they may be useful.
Nothing new is here just maybe some improvements in the notations
and presentation.

A the moment, even if the Salvetti complex is very explicit there is
no real simplification available in the proof of Deligne and this topic is
not included. The main open problems are related to the genus of the
fibration given by the action of the reflection group on the regular part
and we refer to [DS2] for details.

Note added in proof. The following paper in fact is very relevant:
C. C. Squier, The homological algebra of Artin groups, Math. Scand.,
75 (1995), 5-43.

\S 1. Real arrangements

We start our analysis from real arrangements, we give some basic
definitions.

With the notations of the introduction we fix a finite family $H$ $:=$

$H_{I}:=\{H_{i}\}_{i\in I}$ of real hyperplanes in $V$ and denote by $L(\mathcal{H}):=\{\bigcap_{i\in T}H_{i}|$

$T$ $\subset I\}$ the associated real arrangement (i.e. the set of all possible
intersections of the $H_{i}$ ).

Definition. The connected components of $V-\bigcup_{i}H_{i}$ are called
chambers of the arrangement.

Clearly the chambers are connected convex open sets of $V$ .
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Given any subspace $W\in L(H)$ of the arrangement the set of hyper-
planes in the arrangement which do not contain $W$ cuts on $W$ a family
$\prime H|_{W}$ of hyperplanes and the induced arrangent in $W$ is a subset of $L(H)$ .

The chambers of all the induced arrangements in all the subspaces in
$L(H)$ are called faces, 1 the set of all faces will be denoted by $F(\mathcal{H})$ .

Lemma 1.1. The faces form a partition of $V$ .

The proof is by easy induction.

Let us choose for each $i\in I$ an explicit linear equation $\alpha_{i}=0$ for
the hyperplane $H_{i}$ .

Given a chamber $F$ , by connectedness each $\alpha_{i}$ has a definite sign $(+$

$or-)$ on the points of $F$ and conversely if on 2 points $p$ , $q$ in $A=V-\bigcup_{i}H_{i}$

the funcions $\alpha_{i}$ have the same sign then this happens on the entire
segment $tp+(1-t)q$ , $0\leq t\leq 1$ which connects $p$ , $q$ in $A$ .

Thus a chamber determines and is determined by a sequence of signs
(of course not all sequences occur).

For a face in general some of the $\alpha_{i}$ are also 0 and thus we see that
more generally a face determines and it is determined by a sequence of
$signs+,$ -, 0 indexed by $I$ .

This remark has an immediate implication. If we consider the ar-
rangement $L(H_{J})$ associated to a subset $J\subset I$ of the given set of hy-
perplanes we have:

Proposition 1.2. Each face of the arrangement $L(H_{J})\dot{\iota}s$ a union

of faces of the arrangement $L(H)$ .

Lemma 1.3. The closure of a face $F$ is a union of faces.

Proof. We prove this statement by induction on the dimension of
the face and thus we may assume that the face is a chamber.

If $p\in\overline{F}$ is a point then $\alpha_{i}(p)$ is either 0 or it has the same sign of
$\alpha_{i}(q)$ for $q\in F$ .

In particular we see that the half closed segment $tp+(1-t)q$ , $ 0\leq$

$t$ $<1$ is entirely contained in the chamber $F$ .

Let $F_{1}$ be the face in which $p$ is contained and $r\in F_{1}$ since the
sequence of signs for $r$ coincides with that of $p$ we see that also the half
closed segment $tr+(1-t)q$ , $0\leq t<1$ is entirely contained in the

chamber $F$ and thus $r\in\overline{F}$ . $\square $

$x$ In the french literature one distinguishes between faces as the codimen-
sion 1 faces and facettes for the others.
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We have thus defined a partial order on the set of faces and we shall
denote by $\mathcal{F}$ the partially ordered set of faces, the usual convention is
$F_{1}\leq F_{2}$ if and only if $F_{2}\subset\overline{F}_{1}$ . Thus the chambers are the minimal
faces.

\S 2. Fans

The fundamental combinatorial object is the nerve of the poset $\mathcal{F}$

i.e. the simplicial complex whose vertices are in 1-1 correspondence with
the faces and whose simplices correspond to totally ordered subsets of
faces.

Let us axiomatize this construction. Let us call a cone any subset
$A\subset V$ such that $v\in A$ , $a>0,$ $\Rightarrow av\in A$ .

Definition. A polyhedral fan2 $F$ $:=\{F_{i}\}_{i\in I}$ is a finite family of
convex cones, called the strata such that:

1)0 is a stratum.
2) The closure of a stratum is a union of strata.
3) $V=\bigcup_{i\in I}F_{i}$ is a decomposition (i.e. disjoint union) of $V$ .

By definition then the set of strata is a poset by setting $F_{1}\leq F_{2}$ if
and only if $F_{2}\subset\overline{F}_{1}$ ( $F_{2}$ is contained in the closure $\overline{F}_{1}$ of $F_{1}.$ )

Thus the set of faces of a hyperplane arrangement is a polyhedral
fan, we will see another important example when we treat complex ar-
rangements. Let us fix a polyhedral fan, before proceding let us remark
some simple facts.

a) If we intersect a line $l$ with the strata of a fan, it becomes de-
composed as disjoint union of convex strata, such that the closure of
a stratum is a union of strata. Then these strata are open segments
(possibly infinite) and their extremal points.

b) If $W\subset V$ is a subspace the family $W\cap F_{i}$ of non empty intersec-
tions is a polyhedral fan in $W$ .

c) A polyhedral fan in the line $R$ is necessarily the decomposition
$R^{-}$ , 0, $R^{+}$ .

d) A polyhedral fan in $R^{2}$ is given by a finite set of half lines $r_{i}$

and the connected components of their complement. Notice that such
components are convex if and only if the angle between two successive
lines il $\leq\pi$ .

$2the$ definition we use is slightly more general that the one usually intro-
duced in the theory of torus embeddings.
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Part d) needs a proof. Consider a stratum $S$ which is not a half
line. $S$ is a convex cone containing two linearly independent vectors $a$ , $b$ .

Consider the intersection of $S$ with the line through $a$ , $b$ it is a convex
set $A$ in this line which by the previous codiscussion is open, then it is
easy to conclude the proof.

The main construction is a geometric realization of this poset in $V$

but in fact this is a consequence of the construction of a simplicial fan,
which is a pseudobaricentric subdivision of the given fan.

For this let us select in each stratum $F$ , different from the stratum
reduced to 0, a vector $v_{F}$ .

There is a totally elementary but essential Lemma associated to this
construction.

Lemma 2.1. Given a vector $v\in F$ in a stratum $F$ there exists,

a unique vector $w\in\partial F$ in the boundary of $F$ , and a unique positive
numeber $a>0$ such that:

$v=av_{F}+w$ .

Proof. If $v$ is a multiple $av_{F}$ of $v_{F}$ then $a>0$ and $w=0$ .
Otherwise we work in the 2-dimensional plane $\pi$ spanned by $v$ , $v_{F}$ in
which the intersection $ F\cap\pi$ appears as an open convex angle limited by
two half lines which are in $\partial F$ , then in this 2 dimensional picture the
statement is clear. $\square $

Theorem 2.2. 1) Given a simplex $S:=F_{1}<F_{2}<\cdots<F_{k}<0$

the vectors $v_{1}:=v_{F_{1}}$ , $v_{2}:=v_{F_{2}}$ , $\ldots v_{k}:=v_{F_{k}}$ are linearly independent.
2) Let $C_{S}:=\{\sum a_{i}v_{i}, a_{i}>0\}$ the corresponding open simplicial

cone. Then $V-O$ is the disjoint union on the cones $C_{S}$ .

3) Each stratum $F$ is the union of the cones $C_{S}$ where the first
element of $S$ is $F$ .

proof. We claim that all these statements are immediatete conse-
quences of the previous Lemma. In fact let us take a vector $v\in V-0$

then $v\in F_{1}$ where $F_{1}$ is a non 0 stratum uniquely determined.

By the previous Lemma $v=a_{1}v_{F_{1}}+w_{1}$ . If $w_{1}=0$ we stop otherwise
$w_{1}\in F_{2}\neq 0$ , $w_{1}=a_{2}v_{F_{2}}+w_{2}$ , $a_{2}>0$ with $F_{1}<F_{2}$ . Continuing in

this way we see that each point has a unque expression of the form

$v=\sum a_{i}v_{F_{i}}$ , $a_{i}>0$ , $F_{1}<F_{2}<\cdots<F_{k}<0$ .

$\square $
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Let us now consider, for each combinatorial simplex $S:=F_{1}<F_{2}<$

$\ldots<F_{k}$ the geometrical simplex

$|S|:=v_{F_{1}}*v_{F_{2}}*\cdots*v_{F_{k}}$

convex envelope (or join) of the $(independent^{3})$ vertices $v_{F_{i}}$ (we now
allow also the stratum 0).

Corollary 2.3. The simpleces $|S|$ form a simplicial subdivision
on a combinatorial ball $B_{\mathcal{F}}$ with boundary $\Pi$ the union of simpleces
$|S|$ , $S:=F_{1}<F_{2}<\cdots<F_{k}<0$ not containing the vertex 0.

The map $j$ : $R^{+}\times\Pi\rightarrow$ $V-O$ , $j(a, v):=av$ is a homeomorphism.

Proof. We have seen that the cones $C_{S}$ decompose $V-0$ on the
other hand clearly the closure $\overline{C}_{3}$ of the cone $C_{S}$ is the union:

$\overline{C}_{S}=\bigcup_{T\subset}sC_{T}$

this implies that the simplices of $\Pi$ form a simplicial complex.

For the second part it is clearly enough to show that $j$ is bijective,
for this we construct the inverse. Given a point $v\in V-0$ we have that
$v$ is uniquely of the form:

$v=\{\sum a_{i}v_{i}, a_{i}>0\}\in C_{S}$

we set $a=\sum_{i}a_{i}$ and $w:=\frac{v}{a}$ then $ w\in\Pi$ and $j^{-1}(v)=(a, w)$ . $\square $

\S 3. Subspace arrangements

Let us consider again a polyhedral fan $\mathcal{F}=\{F_{i}\}_{i\in I}$ and consider
a closed subset $X\subset V$ with $X=\bigcup_{i\in J}F_{i}$ a union of strata. Let $A:=$

$V-X=\bigcup_{i\not\in J}F_{i}$ also a union of strata.

Denote $ass$ before by $\Pi$ the simplicial realization of the complex of
non 0 strata in $F$ and let $\square x$ , $\Pi_{X}^{\perp}$ be the two full subcomplexes of $\Pi$

with the vertices in $X$ and in $A$ respectively.

From the last corollary it follows that the homeomorphism $j^{-1}$ :
$ V-0\rightarrow R^{+}\times\Pi$ map $X-O$ , $A$ respectively to $R^{+}\times\Pi_{X}$ , $R^{+}\times(\square -\Pi_{X})$ .

By standard facts $\Pi_{X}^{\perp}$ is a deformation retract of $\square -\square x$ and thus
we obtain:

Theorem 3.1. The open set $A=V-X$ has the same homotopy
type as $\Pi_{X}^{\perp}$ .

$3in$ the sense of affine geometry
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Let us see the implication of this discussion to the topology of
subspace arrangements. If we consider an arrangement of subspaces
$W:=\{W_{j}\}$ contained in $L(H)$ we have that:

(1) The union $V_{W}:=\cup W_{j}$ of the subspaces $W_{j}$ , is a union of faces.
(2) The intersection of $V_{W}$ with $\Pi$ is the full subcomplex $\Pi_{W}$ with

vertices the vertices $v_{F}$ , $F\subset V_{W}$ or $v_{F}\in V_{W}$ .

(3) Under the homeomorohism $j$ the open set $V-V_{W}$ corresponds
to

$R^{+}\times(\Pi-\square w)$ .

Thus consider the orthogonal subcomplex to $\Pi_{W}$ i.e. the full sub-
complex $\Pi_{W}^{\perp}$ having the vertices $v_{F}\not\in V_{W}$ .

We obtain:

Corollary 3.2. The open set $V-V_{W}$ has the same homotopy type
as $\Pi_{W}^{\perp}$ .

Since we will need it in a moment let us see what happens for non
essential arrangements. Assume thus that the intersection $\cap H_{i}=A$ is
a linear subspace of codimension $m$ .

Fix a linear complement $B$ to $A$ so that $V=A\oplus B$ then the hyper-
planes $H_{i}$ intersect $B$ in an essential arrangement $L_{B}(H)$ . The faces of
$L(H)$ can be identified with $A\times G$ with $G$ face of $L_{B}(H)$ .

Then the open set $V-\bigcup_{i}H_{i}$ is homeomorphic to $A\times(B-\bigcup_{i}(B\cap H_{i})$ .

Thus again $V-\bigcup_{i}H_{i}$ has the same homotopy type as the polyhedron
$\Pi$ associated to the induced arrangement on $B$ .

Proposition 3.3. If $A=\bigcap_{i}H_{i}$ is a subspace of codimension $m$

the geometric realization of the poset of faces of the arrangement is $a$

combinatorial $m-$ ball.

Before passing to complex arrangements it is useful to analyze a
cellular structure of the polyhedrons $\Pi$ , $\Pi_{W}$ , $\Pi_{W}^{\perp}$ .

For this we need a little more notations. Given a face $F$ let us define
by $\langle F\rangle$ the linear span of $F$ (we know that $\langle F\rangle\in L(H)$ and that $F$ is a
chamber of $\langle F\rangle)$ .

Consider furthermore the set of indeces $J_{F}$ : $\{i\in I|F\subset H_{i}\}$ .

$H_{J_{F}}:=\{H_{i}|F\subset H_{i}\}$ .

This is typically a non essential arrangement and $\langle F\rangle=\bigcap_{i\in J_{F}}H_{i}$ .
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We have seen that $\Pi$ is a combinatorial sphere and its join with 0,
$B_{F}=\Pi*0$ a ball. More generally if $F$ is a face consider the poset $\mathcal{L}_{F}$

of all faces $G$ such that $F\geq G$ i.e. such that $F\subset\overline{G}$ .

We claim that:

Lemma 3.4. As a poset $\mathcal{L}_{F}$ is isomorphic to the poset of faces of
the configuration $H_{J_{F}}$ of hyperplanes containing $F$ .

Proof. Take a face $G\in \mathcal{L}_{F}$ , from Proposition 1 we know that it is
contained in a unique face of the subarrangement $L(H_{J_{F}})$ .

Conversely take one such face $G$ which we know (always by the same
proposition) is a union of faces in $F(H)$ .

These faces differ only for the signs of the equations $\alpha_{i}$ which do
not vanish on $F$ . Since $F\subset\overline{G}$ we must have that $F\subset\overline{F}^{/}$ where $F^{/}\subset G$

is a face in $F(H)$ . This face is unique since on this face the signs of the
equations $\alpha_{i}$ which do not vanish on $F$ must have the same sign as on
F. $\square $

From the previous proposition we get:

Corollary 3.5. The nerve of the poset $\mathcal{L}_{F}$ is a triangulation of $a$

combinatorial ball $B_{F}$ of dimension the codimension of $F$ .

This fact has an important implication:

Theorem 3.6. The boundary of $B_{F}$ is the union of the $B_{G}$ with
$G<F$.

$\partial B_{F}=\bigcup_{G<F}B_{G}$ .

The balls $B_{F}$ as $F$ varies on all faces of the hyperplane arrangement
give a cellular decomposition of the ball $B_{\mathcal{H}}$ .

For any given subspace arrangement $W$ (of the hyperplane arrange-
ment) the polyhedron $\Pi_{W}^{\perp}$ is a sub cell complex given by the balls $B_{F}$ as
$F$ varies on the faces $F$ of the arrangement which are not contained in

the union of the subspaces.

We will refer to $B_{F}$ as the cell dual to $F$ .

Product of arrangements. Before we pass to complex arrange-
ments let us treat briefly a simple general construction. Civen two vector
spaces $V_{1}$ , $V_{2}$ and in each an arrangement of hyperplanes $H^{1}$ , $\mathcal{H}^{2}$ we can
define the product arrangement $H^{1}\times H^{2}$ in $V_{1}\times V_{2}$ in the obvious way.

$H^{1}\times H^{2}:=\{H\times V_{2}, V_{1}\times K|H\in H_{1}, K\in \mathcal{H}_{2}\}$ .
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One easily sees that the faces of this arrangemens are just products:

$F(H^{1}\times H^{2})=\{F_{1}\times F_{2}|F_{1}\in F(H^{1}), F_{2}\in F(H^{2})\}$

as poset we have that $F(7\{^{1}\times H^{2})$ is the product $F(H^{1}),$ $\times F(H^{2})$ of the
two posets with the product order $(a, b)\leq(c, d)$ if and only if $a\leq c$ , $ b\leq$

$d$ .

\S 4. Complex arrangements

It is now the time to look at complex arrangements, i.e. arrange-
ments of hyperplanes given by real equations in complex space, or the
complexification of a real arrangement $\prime H$ in $V$ .

Of course the idea is to treat such arrangements as subspace ar-
rangements in a real space. More precisely in $V_{C}=V+iV=V\times V$ the
complex hyperplane of equation $\alpha_{k}(v+iw)=0$ is the real codimension

2 subspace $\tilde{H}_{k}:=H_{k}+iH_{k}$ (where $H_{k}=\{v\in V|\alpha_{k}(v)=0\}$ ).

Therefore the subspaces $\tilde{H}_{k}$ are part of the hyperplane arrangement
associated to the real hyperplanes $H_{k}+iV$, $V+iHj$ , in the notations of
the previous paragraph this is in fact $\mathcal{H}\times \mathcal{H}$ . One can therefore apply
the previous theory to this hyperplane arrangement. There is on the
other hand a much more efficient way to procede due to Salvetti and we
describe this.

Given a face $A$ of the hyperplane arrangement $H$ consider the hy-
perplane arrangement $H_{A}$ generated by the hyperplanes containing $A$

we consider the set

$CF(H)$ $:=\{(A, B)|A\in F(H), B\in F(\mathcal{H}_{A})\}$

of pairs $(A, B)$ where $A$ is a face in the original hyperplane arrangement
$\prime\mu$ while $B$ is a face of the subarrangement $\mathcal{H}_{A}$ .

Proposition 4.1. 1) The sets $A\times B=A+iB$ , $(A, B)\in CF(H)$

decompose $V_{C}=V+iV$

2) The closure $\overline{A+iB}$ is a union of strata $A_{k}+iB_{k}$ , $(A_{k}, B_{k})\in$

$CF(H)$ .

Proof. 1) We have a decomposition $V+iV=\bigcup_{A\in F(\mathcal{H})}A+iV$ and
then a decomposition $A+iV=\bigcup_{B\in F(\mathcal{H}_{A})}A+iB$ .

2) We have for the closure $\overline{A+iB}=\overline{A}+i\overline{B}=\overline{A}\times\overline{B}$ and $\overline{A}=\cup A_{k}$

is a union of faces in $F(H)$ while $\overline{B}=\cup B_{h}$ is a union of faces in $F(H_{A})$ .

Thus $\overline{A}\times\overline{B}=\bigcup_{k,h}A_{k}\times B_{h}$ now the decomposition of $V$ into faces for
$F(H_{A_{k}})$ is a refinement of the decomposition of $V$ into faces for $F(H_{A})$ ,
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since $A_{k}$ is in the closure of $A$ and so the set of hyperplanes containing
$A_{k}$ contains the set of hyperplanes containing A. $\square $

Therefore in a natural way the set of pairs $CF(7i)$ is also a par-
tially ordered set and we are going (as in \S 1) to represent its nerve as a
simplicial complex.

Remark that also the strata $A\times B$ , $(A, B)\in CF(H)$ are convex
cones (open in their closure). Thus

Theorem 4.2. The set of strata $A\times B$ , $(A, B)\in CF(\mathcal{H})$ is $a$

polyhedral fan.

We have to understand now how the open set $A$ complement of the
complex hyperplane arrangement, appears in this picture.

Proposition 4.3. $A$ is the union of the faces $A+iB$ , $(A, B)\in$

$CF(H)$ with $B$ open.

Proof A vector $a+ib$ is in $A$ if and only if $b$ is not contained
in any of the hyperplanes of $\mathcal{H}$ in which $a$ is contained. This describes
exactly the union of the strata in $CF(H)$ described by the proposition.

$\square $

Let us thus set

$\mathcal{F}_{C}:=$ { $A+iB|$ $(A, B)\in CF(\mathcal{H})$ with $B$ open.

This is a poset and, if we fix a vertex in each stratum of $F_{C}$ and
construct the corresponding simplicial complex $\Pi_{C}$ we have, by Theorem
3.1.

Theorem 4.4. The complement $A$ of the complex hyperplane ar-
rangement has the same homotopy type as that of the simplicial complex
$\Pi_{C}$ geometric realization of $F_{C}$ .

We want to describe now the natural cellular structure of the poset
$\mathcal{F}_{C}$ .

Fix a face $(A, B)\in \mathcal{F}_{C}$ . We want to consider the poset of all faces
$(C, D)\leq(A, B)$ .

By definition $(C, D)\leq(A, B)$ means $A\subset\overline{C}$ , $B\subset\overline{D}$ . Since $B$ , $D$

are open sets this condition is in fact equivalent to:

$A\subset\overline{C}$ , $B\subset D$



Notes on the Topology of Hyperplane Arrangements and Braid Groups 223

thus $D$ is the unique chamber of the configuration of hyperplanes through
$C$ which contains $B$ . In other words, given $(A, B)\in F_{C}$ , the subposet

$\mathcal{F}(A, B):=\{(C, D)\in F_{C}|(C, D)\leq(A, B)\}$

of $F_{C}$ formed by all faces $(C, D)\leq(A, B)$ is isomorphic to the poset $L_{A}$

of all faces $C$ of the hyperplane arrangement with $C\leq A$ . By Corollary
3.2 the nerve of the poset $F(A, B)$ is a triangulation of a combinatorial
disk $\triangle(A, B)$ of dimension the codimension of $A$ .

By construction the boundary of this ball is also a union of balls
relative to pairs $(C, D)<(A, B)$ and thus:

Corollary 4.5. We have a cell complex structure on the polyhedron
$\Pi$ in which the cells $\triangle(A, B)$ of dimension $k$ are indexed by elements
$(A, B)\in F_{C}$ with $A$ of codimension $k$ .

The boundary of $\triangle(A, B)$ is

$\partial(\triangle(A, B))=\cup(A’,B’)<(A,B)\triangle(A’, B’)$ .

\S 5. Reflection arrangements

We consider now an $n-$dimensional Euclidean space $V$ and the ar-
rangement of reflection hyperplanes of a finite Coxeter group $W$ . By
this we mean that $W$ is a finite group generated $bty$ reflections with
respect to some hyperplanes $H_{i}$ and the arrangement is formed by these
$H_{i}$ and also all their transforms under the group $W$ .

We plan to describe the various polyhedra considered, for real and
complex arrangements, in this case and in a $W$ equivariant way.

We start from the real polyhedron.

We assume that the only fixed vector is 0.

Fix for every $H_{i}$ in the arrangement an orthogonal vector $\alpha_{i}$ so that
$H_{\dot{0}}:=\{v\in V|(\alpha_{i}, v)=0\}$ .

The $e1ements\pm\alpha_{i}$ play the same role as the roots of a root system.
Fixing a vector $v$ outside all hyperplanes $H_{i}$ determines positive roots
and a fundamental chamber.

From the theory of these groups one can choose $n-$ independent
reflection hyperplanes $H_{i}$ , $i=1$ , $\ldots$ , $n$ which are the walls of a chamber
$C$ which conventionally we will call the fundamental chamber.

$H_{i}:=\{v\in V|(\alpha_{i}, v)=0\}$ the elements $\alpha_{i}$ correspond for root
systemes to simple roots.
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Thus the chamber $C$ is a simplicial cone

$C:=\{\sum_{i=1}^{n}a_{i}u_{i}|a_{i}>0\}$

$(\alpha_{i}, u_{j})=\delta_{i}^{j}$ .

The wall $H_{i}$ is spanned by the $u_{j}$ , $j\neq i$ , the group $W$ is generated
by the reflections $s_{i}$ relative to the walls $H_{i}$ .

The closure $\overline{C}:=\{\sum_{i=1}^{n}a_{i}u_{i}|a_{i}\geq 0\}$ of $C$ is a fundamental domain
for the action of $W$ .

The stabilizer of a face $F$ of $C$ acts trivially on the face and it
is generated by the simple reflections $s_{i}$ relative to the walls $H_{i}$ with
$F\subset H_{i}$ .

$F$ is determined by a subset $J\subset I:=\{1, \ldots, n\}$ we will denote it
by $F_{J}$ and we denote by $W_{J}$ the subgroup generated by the $s_{i}$ , $i\in J$ .
$W_{J}$ is also a reflection group which may also be realized as a reflection
group on the subspace $\langle F\rangle^{\perp}$ orthogonal to the span of the face $F$ . The
fixed vectors of $W_{J}$ form the span $\langle F\rangle$ of the face $F$ .

Consider now a vector $v_{0}\in C$ in the open chamber. By what we
have said the orbit $Wv_{0}$ gives rise to a point in each chambers and it is
in 1-1 correspondence with $W$ .

Denote by $v_{w}:=wv_{0}$ , $w\in W$ . Let $\triangle$ be the convex hull of the
points $v_{w}$ . Then it is also true that the $v_{w}$ span $V$ and hence $\triangle$ is a
convex polyhedral ball of dimension $n$ . Clearly $\triangle$ is stable under $W$ and
since its extremal points are among the points $Wv_{0}$ it follows that all
these points are extremal.

For any face $F_{J}$ of $C$ let us set

$v_{J}:=\frac{1}{|W_{J}|}\sum_{w\in W_{J}}wv_{0}$

the baricenter of the orbit of $v_{0}$ under $W_{J}$ .

Lemma 5.1. We have that $v_{J}\in F$ and $v_{J}$ is the orthogonal
projection of $v_{0}$ to the span $\langle F\rangle$ of the face $F$ .

Proof. $v_{J}$ is fixed by $W_{J}$ hence it is in $\langle F\rangle$ , if we decompose
$v_{0}=u+z$ , $ u\in\langle F\rangle$ , $z\in\langle F\rangle^{\perp}$ we have that $\sum_{w\in W_{J}}wz=0$ and hence
the claim $u=v_{J}$ .

We still have to prove that $v_{J}\in F$ . By induction it is enough to do
it when $F$ is a codimension 1 face of $C$ . If $H_{\dot{x}}$ is the wall through $F$ and
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$s_{i}$ the corresponding simple reflection $v_{F}=1/2(v_{0}+s_{i}v_{0})$ and $H_{i}$ is the
only wall separating the two chambers $C$ , $s_{i}(C)$ thus the signs $(\alpha_{j}, w)$

for $j\neq i$ do not change crossing this wall and we see that $(\alpha_{j}, v_{F})>0$

for $j\neq i$ and so $v_{F}\in F$ . $\square $

Every other face $F^{/}$ is uniquely $W$ equivalent to a face $F_{J}$ and if
$F^{/}=wF_{J}$ the element $w$ lies in a coset $wW_{J}$ and so

$v_{F’}:=wv_{J}$

is well defined.

We have thus defined, for all faces $F$ of the refection arrangement a
vector $v_{F}$ characterized by the following properties:

1) If $F=wG$ then $v_{F}=wv_{G}$ .

2) If $F\subset\overline{G}$ then $v_{F}$ is the orthogonal projection of $v_{G}$ to $\langle F\rangle$ .

We can now consider the simplicial complex $\Pi$ associated to the
vertices $v_{F}$ and simpleces induced from the poset structure of the faces.
We have that:

Theorem 5.2. $\Pi$ is a triangulation of the ball $\triangle$ convex hull of
the points $v_{w}$ .

Proof. By construction all the vertices of this polyhedron are
contained in $\triangle$ and so $\Pi$ triangulates some polyhedron contained in $\triangle$

but now the faces of $\triangle$ are balls of the same type for smaller reflection
systems for which the coincidence is by induction and this proves the
claim. $\square $

Remark 5.3. With the notations of \S 3 notice that, the cell dual
to a face $F$ is the convex envelope of the orbit under the reflection group
generated by the hyperplanes through $F$ of a point $v_{w}$ in a chamber of
which $F$ is a face. Let us pass now to the complexified picture and to
the open set $A$ .

From \S 4 we know that this is stratified by the set

$F_{C}:=$ { $A+iB|$ ( $A$ , $B)\in CF(\mathcal{H})$ with $B$ open}.

Here $A$ is a face of the reflection arrangement while $B$ by the descrip-
tion of \S 4 is a chamber of the reflection arrangement generated by the
hyperplanes containg $A$ .

Proposition 5.4. There exists a unique $J\subset I$ and a unique
$w\in W$ such that

$w(A, B):=(wA, wB)=(F_{J}, wB)$ , $C\subset wB$ .
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Proof. Since $\overline{C}$ is a fundamental domain there exists a $J\subset I$ and a
$w\in W$ such that $w(A)=F_{J}$ , the set of elements $\{w’\in W|w’(A)=F_{J}\}$

is the coset $W_{J}w$ .

The chamber $wB$ is one of the chambers of the reflection arrange-
ment generated by the hyperplanes containg $F_{J}$ and $W_{J}$ acts simply
transitively on these chambers, of which one and only one contains $C$

the statement follows. $\square $

We have now to choose judiciously the points $v_{(A,B)}$ , $(A, B)\in$

$CF(H)$ so that the resulting polyhedron is $W$ stable. Since there is
a unique $w\in W$ with $wA=F_{J}$ , $wB\supset C$ we define

$v_{(A,B)}:=w(v_{J}+iv_{0})$ .

We obtain that:

Theorem 5.5. The simplicial complex $\square c$ with vertices $v_{(A,B)}:=$

$w(v_{J}+iv_{0})$ and simplices induced by the poset structure of $CF(H)$ is
$W$ stable moreover the homotopy equivalence between $A$ and $\square c$ is $W$

equivariant.

Proof. The homeomorphism $j$ is clearly $W$ equivariant, but if we
have a polyhedro $\Pi$ a full subpolyhedron $\square x$ and its orthogonal $\Pi_{X}^{\perp}$

the deformation from $\square -\square x$ to $\Pi_{X}^{\perp}$ is canonical along the rays joining
a point in $\Pi_{X}$ and in $\Pi_{X}^{\perp}$ so if we have a simplicial action of a group
preserving these two polyhedra also the deformation is equivariant. $\square $

We can finally use all this to analyze the homotopy type of $A/W$ .

From what we have seen this is homotopically equivalent to $\square c/W$ .

We have seen (last corollary of \S 4) that $\square c$ has a cellular structure in

which the cells $\triangle(A, B)$ of dimension $k$ are indexed by elements $(A, B)\in$

$\mathcal{F}_{C}$ with $A$ of codimension $k$ .

Given a set $J\subset I$ with $k$ elements we have in particular the $k$ cell

$C_{J}$ : $\triangle(F_{J}, B)$ , $C\subset B$ .

By the previous Proposition each cell is $W$ equivalent to one and only one
of the cells $C_{J}$ . Therefore we deduce that the space $\square c/W$ is obtained
in some way attaching these cells.

The simplest way to describe these attachments is the following.

Consider the $n$ cell $\triangle(0, C)$ which is the simplicial complex with
vertices $v_{F}+iv_{0}$ as $F$ runs through the faces of the real arrangement
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and is isomorphic (also as simplicial complex) to the ball $\triangle$ of the real
picture by projection to the real part. The cells $C_{J}$ are contained in
$\triangle(0, C)$ and thus under projection

$\pi$ : $\triangle(0, C)\rightarrow\square c/W$

is surjective. A face $\triangle(F, D)$ , $C\subset D$ is identifyed to a unique face $C_{J}$

by the element $w\in W$ with $wF=F_{J}$ , $C\subset wD$ .

$D_{J}:=wD$ is the unique face of the arrangement generated by $F_{J}$

and containg $C$ . Since we have already that $C\subset D$ we must have also
$wC\subset D_{J}$ .

Lemma 5.6. The unique element $w_{0}\in W$ such that $w_{0}F=$

$F_{J}$ , $w_{0}D=D_{J}$ where $D$ is the unique face of the arrangement generated
by $F$ and containg $C$ is the shortest element in the coset $W_{J}w$ .

Proof. The set of elements $w|wF=F_{J}$ is the coset $W_{J}w_{0}$ . We
claim that the shortest element on the coset is characterized by the fact
that $l(s_{i}w_{0})=l(w_{0})+1$ for all $i\in J$ and this in turn is equivalent to
$w_{0}^{-1}(\alpha_{i})>0$ for all the roots $\alpha_{i}$ associated to the hyprplanes $H_{i}$ , $i\in J$ .

Now $C:=\{v|(\alpha_{i}, v)=\alpha_{i}(v)>0, \forall i\in I\}$ while $D_{J}:=\{v|\alpha_{i}(v)>$

$0$ , $\forall i\in J\}$ and thus since $w_{0}C\subset D_{J}$ we have for $i\in J$ that:

$v\in C$ , $(w_{0}^{-1}\alpha_{i}, v)=(\alpha_{i}, w_{0}v)>0$ .

$\square $

So we have the

Theorem 5.7. The space $\square c/W$ which is of homotopy type of
$A/W$ is obtained brom the ball $\triangle$ identifying each face $F$ with the face
$C_{J}$ in its $W$ orbit, using the shortest element $w$ in the coset $W_{J}w$ for
which $W_{J}wF=C_{J}$ .

Let us draw some interesting consequence of this.

First of all we deduce immediately Brieskorn presentation by gener-
ators and relations of the generalized braid group.

The homotopy group of $\square c/W$ is computed by just considering the
1 and 2 cells, the 1 cells give a bouquet of circles, corresponding to the 1
faces joining $v_{0}$ to $s_{i}v_{0}$ , we denote by $T_{i}$ the corresponding loop oriented
from $v_{0}$ to $s_{i}v_{0}$ . Thus the $T_{i}$ are generators for the homotopy group.
The 2 cells give the relations. Given 2 nodes $i,j$ of the Dynkin diagram
we deduce a relation between $T_{i}$ , $T_{j}$ and it easily seen to be:

$T_{i}T_{j}=T_{j}T_{i}$ , $T_{i}T_{j}T_{i}=T_{j}T_{i}T_{j}$ , $T_{i}T_{j}T_{i}T_{j}=T_{j}T_{i}T_{j}T_{i}$ ,
$T_{i}T_{j}T_{i}T_{j}T_{i}T_{j}=T_{j}T_{i}T_{j}T_{i}T_{j}T_{i}$ ,
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according if the two nodes are joined by 0, 1, 2, 3 edges.

First of all let us look at the 1-dimensional cells which are of the
ones of vertices $ws_{i}v_{0}$ , $wv_{0}$ . If $l(ws_{i})=l(w)+1$ then $w^{-1}$ is the element
of shortest length identifying the 1-cell with $s_{i}v_{0}$ , $v_{0}$ . The generator $T_{i}$

is by definition the loop associated to the oriented edge $v_{0}$ , $s_{i}v_{0}$ . Thus
the lift of $T_{i}$ from the point $wv_{0}$ goes to the point $ws_{i}v_{0}$ along this edge.

Next consider the universal covering space $\pi$ : $\tilde{\Pi}\rightarrow\Pi\rightarrow\Pi/W$ of
$\square c/W$ and of $\Pi$ . Lifting the cellular structure of $\Pi$ we have a paving of
$\tilde{\Pi}$ by cells which are permuted by the group of deck transformations.

We fix a cell $C$ of amaximal dimension mapping to $\triangle(0, C)$ and
a base point $p_{0}$ in $C$ mapping to $v_{0}$ . Thus we identify the group of
deck transformations with the generalized braid group $B$ using this base
point.

Under the homeomorphism of $C$ to $\triangle(0, C)$ the vertices $wv_{0}$ are in
the orbit of $p_{0}$ under the group of deck transformations

$wv_{0}=\pi(T_{w}p_{0})$

and this defines a canonical lift $T_{w}$ of $w$ .

If $w=s_{i_{l}}$ $s_{i_{2}}\ldots s_{i_{k}}$ is a reduced expression the we claim that

$T_{w}=T_{i_{1}}T_{i_{2}}\ldots T_{i_{k}}$ .

In fact there is a path from $v_{0}$ to $wv_{0}$ given by the edges $[s_{i_{k}}v_{0}, v_{0}]$ ,
$[s_{\dot{\iota}_{1}}s_{i_{2}}\ldots s_{i_{k}}v_{0}, s_{i_{2}}\ldots s_{i_{k}}v_{0}]$ which maps in $\Pi/W$ to a path giving the
element $T_{i_{l}}T_{i_{2}}\ldots T_{i_{k}}$ of the homotopy group.

Next we identify in $C$ the copies of the $C_{J}$ which we denote by the

same symbols.

We have to fix an orientation for the cells $C_{J}$ this can be done by
ordering the vertices and then orienting the cells $C_{J}$ so that if $ K\subset$

$J$, $|K|=k-1$ is obtained removing the $h^{th}$ element of $J$ the oriented
cell $C_{K}$ appears in the boundary of $C_{J}$ with the sign $\epsilon_{K,J}:=(-1)^{h}$ .

We have thus:

Theorem 5.8. 1) The cells in $\tilde{\Pi}$ are simply transitive orbits of
the cells $C_{J}$ .

2) Denoting by $C_{k}(\tilde{\square })$ the group of $k-$ dimensional cells, under the
action of $B$ this is a free $Z[B]$ module with basis the cells $C_{J}$ , $|J|=k$ .

3) The boundary of the cell $C_{J}$ is the sum

$K\subset J$,

$\sum_{|K|=k-1}\epsilon_{K,J}(\sum_{w\in W_{J}/W_{K}}(-1)^{l(w)}T_{w})C_{K}$
.
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Where $T_{w}$ denotes the canonical lift of the element of shortest length $w$

in the coset.

Proof. The statements 1), 2) follow from the construction as for
0) and 3) we have to note that each cell $F$ which in $\triangle(0, C)$ is in the
orbit of $C_{J}$ under $W$ in $\tilde{\Pi}$ is exactly $F=T_{w}C_{J}$ (under the group of
deck transformations) this is easily verified by considering the minimal
path from $wv_{0}$ to $v_{0}$ followed by the two segments joining $wv_{0}$ , $v_{0}$ to
the centers of the respective cells. The sign $(-1)^{l(w)}$ depends of the fact
that the reflections $s_{i}$ reverse the orientation of the fundamental cell. $\square $

\S 6. Reflection groups

In [DS2] the authors generalize the previous analysis as follows.
Start from the real reflection representation $V$ and consider instead of
the complexification, the space $V^{m}$ for all $m$ . On $V^{m}$ the reflection
group $W$ acts and it acts freely on the open subspace $U^{m}$ obtained by
removing the subspaces $H^{m}$ for each reflection hyperplane.

One has naturally a set of inclusions $ U^{m}\subset U^{m+1}\ldots$ and a space
$U^{\infty}$ which by a simple dimension argument is contractible and hence
$B_{W}:=U^{\infty}/W$ is a classifying space for $W$ .

The same method used for the complexification allows to stratify
in a $W$ equivariant way the space $V^{m}$ by products $F_{1}\times F_{2}\times\cdots\times F_{m}$

where inductively:
$F_{1}$ is a face of the reflection arrangement and $Fi+1$ is a face of the

subarrangement generated by the hyperplanes which contain $F_{i}$ . In this
way one has a fan and $U^{m}$ is a union of the strata $F_{1}\times F_{2}\times\cdots\times F_{m}$

with $F_{m}$ open. Then a similar analysis gives a cellular structure on $B_{W}$ .

We refer to the original paper for details.
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Some Geometric Methods in Commutative Algebra

Vasudevan Srinivas

In this series of lectures, I will discuss three examples of techniques
of algebraic geometry which have applications to commutative algebra.
The examples chosen are those which pertain most closely to my own
research interests.

\S 1. Hilbert functions, regularity and Uniform Artin-Rees

In this Section we describe results giving explicit, effective bounds
for the Hilbert functions and postulation number of a Cohen-Macaulay
module $M$ of given dimension $d$ and multiplicity $e$ over a Noetherian
local ring $(A, \mathfrak{m})$ , with respect to a given $\mathfrak{m}$-primary ideal $I$ . We also
discuss related results bounding the Castelnuovo-Mumford regularity of
the associated graded module of $M$ with respect to I in terms of Hilbert
coefficients, assuming only that $M$ has positive depth; this leads to a new
proof of the Uniform Artin-Rees theorem of Duncan and $O$ ’Carroll, and
other results. The geometric technique used here is the cohomological
study of the blow up of the ideal $I$ , using in particular Grothendieck’s
formal function theorem.

1.1. The finiteness theorem for Hilbert functions

Recall that if $(A, \mathfrak{m})$ is a Noetherian local ring, $M$ a finite $A$ module
and $I$ $\subset \mathfrak{m}$ an ideal of $A$ such that $M/IM$ has finite length, the Hilbert

function (or more properly, the Hilbert-Samuel function) of $M$ with
respect to I is the numerical function

$H_{I}(M)(n)=\ell(M/I^{n}M)$ , $\forall n\geq 0$ ,

where we use the symbol $\ell$ to denote the length of a module (which has
a finite composition series). Then there exists a corresponding Hilbert
polynomial
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$P_{I}(M)(x)=e_{0}(I, M)$ $\left(\begin{array}{l}x+d-1\\d\end{array}\right)$ $+e_{1}(I, M)$ $\left(\begin{array}{l}x+d-2\\d-1\end{array}\right)$ $+\cdots+e_{d}(I, M)$ ,

where $e_{0}(I, M)>0$ is the multiplicity of $M$ with respect to $I$ , $ e_{j}(I, M)\in$

$\mathbb{Z}$ for all $0\leq i\leq d=dimM$ , and such that for some non-negative integer
$n_{0}(I, M)$ ,

$H_{I}(M)(n)=P_{I}(M)(n)\forall n\geq n_{0}(I, M)$ .

The integers $e_{j}(I, M)$ are called the Hilbert coefficients, and $n_{0}(I, M)$ is
called a postulation number, of $M$ with respect to $I$ .

The first result we state is the following Finiteness Theorem, taken
from the paper [44] of V. Trivedi. The special case when $M=A$ is a
Cohen-Macaulay local ring, and $I$ $=\mathfrak{m}$ is the maximal ideal, was treated
earlier in a paper of Trivedi and myself [39].

Theorem 1.1 (Finiteness Theorem). Let $(A, \mathfrak{m})$ , $I$ , $M$ be as above,
where $M$ is a Cohen-Macaulay module. Let $e=e_{0}(I, M)$ . Then

(i) $|e_{j}(I, M)|\leq(9e^{5})^{j!}$ for $j\geq 1$ , and

(ii) $n_{0}(I, M)=3^{d!-1}e^{3(d-1)!-1}$ is a postulation number for $M$ with
respect to $I$ .

Corollary 1.2. For fifixed positive integers $d$ , $e$ there are only
fifinitely many numerical functions which can arise as the Hilbert func-
tion $H_{I}(M)(n)$ of a Cohen-Macaulay module $M$ of dimension $d$ over
a Noetherian local ring, which has multiplicity $e$ with respect to some
appropriate ideal I of that local ring. In particular, only fifinitely many
numerical functions $H$ : $\mathbb{Z}\geq 0\rightarrow \mathbb{Z}_{\geq 0}$ can arise as the Hilbert function of
a Cohen-Macaulay local ring of a given dimension and multiplicity.

Remark 1.3. [44] contains some references to the earlier results
in the direction of Theorem 1.1, which essentially pertain to very special
situations, or to the coefficients $e_{1}(I, M)$ and $e_{2}(I, M)$ . See [45] for an
extension of Theorem 1.1 to the case of generalized Cohen-Macaulay
modules.

Remark 1.4. Kleiman has shown (see [11, Exp.XIII]) that only
finitely many polynomials can occur as the Hilbert polynomial of an
integral projective scheme, of a given dimension, embedding dimension
and degree, over a field. He gives an example to show that this is false
for Cohen-Macaulay schemes. On the other hand, in [41], examples are
given of infinitely many polynomials which occur as Hilbert polynomials
of complete, local integral domains, of a fixed dimension and multiplicity,
which are quotients of a fixed regular local ring. The examples given are
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of quotients of dimension 2 and multiplicity 4 of a power series ring in
6 variables over a field.

We now outline a proof of the Finiteness Theorem in the special case
$M=A$ , $I$ $=\mathfrak{m}$ , which contains most of the features of the general case.
To simplify notation, we write $e_{j}(M)$ , $n_{0}(M)$ , etc. to mean $e_{j}(\mathfrak{m}, M)$ ,
$n_{0}(\mathfrak{m}, M)$ , etc., for any finite $A$-module $M$ .

One input is a cohomological formula for the difference between
the Hilbert function and Hilbert polynomial, obtained by Johnston and
Verma (see [17], and [44], Theorem 1), generalizing “classical” results of
Serre. This can be expressed in two equivalent ways, involving graded
local cohomology of the Rees algebra, or coherent sheaf cohomology on
a blow-up. We state their result in the latter form, since that is what is
useful for us later.

Theorem 1.5. Let $(A, \mathfrak{m})$ be Noetherian local of dimension $d$ and
depth>0, and let

$R=n\geq 0\oplus \mathfrak{m}^{n}$
,

$R_{+}=n>0\oplus \mathfrak{m}^{n}$

be the $\mathfrak{m}$ -adic {graded) Rees algebra of $A$ and its irrelevant graded ideal,
respectively. Let $\pi$ : $X=ProjR\rightarrow Spec$ $A$ be the blow-up of the maximal
ideal of $A$ .

(a) If $d\geq 2$ and depth $\geq 2$ , then

$P_{\mathfrak{m}}(A)(n)-H_{\mathfrak{m}}(A)(n)=\sum_{i=1}^{d-1}(-1)^{\dot{\iota}-1}\ell(H^{i}(X, O_{X}(n)))$ .

In particular, taking $n=0$ , we get

(1.1) $e_{d}(A)=\sum_{i=1}^{d-1}(-1)^{i-1}\ell(H^{i}(X, O_{X}))$ .

(b) (Northcott) If $d=1$ , then

$e_{1}(A)=-\ell(\frac{H^{0}(X,O_{X})}{A})$ .

Remark 1.6. Note that if $\pi$ : $X\rightarrow Spec$ $A$ is the blow-up of
the maximal ideal, then $\pi$ induces an isomorphism $ X-\pi^{-1}(\mathfrak{m})\rightarrow$

$SpecA-\{\mathfrak{m}\}$ . Hence for any coherent sheaf $\mathcal{F}$ on $X$ and any $j>0$ ,

the cohomology $A$-module $H^{j}(X, \mathcal{F})$ , which is a finite $A$-module, has
support contained in $\{\mathfrak{m}\}$ ; in particular, it has finite length. Hence the



234 V. Srinivas

formulas in (a) of the above Theorem are meaningful. A similar com-
ment applies to (b).

Remark 1.7. [17] contains a somewhat more general result, valid
for any $\mathfrak{m}$-primary ideal, formulated in terms of graded local cohomol-
ogy of the Rees algebra $R(I)=\oplus_{n\geq 0}I^{n}$ with respect to its irrelevant
graded ideal $R_{+}(I)$ , where the depth hypotheses on $A$ are not needed.
The above formulation results from the standard relation between sheaf
cohomology on $X$ and graded local cohomology of the Rees algebra.
This is further generalized in [44] to the case of Hilbert functions of A-
modules, and is also expressed cohomologically as above on the blow-up
$X=ProjR(I)$ . The formula in [17] has a sign error, corrected in [44].

Next, we recall the notion of Castelnuovo-Mumford regularity of a
coherent sheaf $\mathcal{F}$ on the projective space $\mathbb{P}_{A}^{N}$ over a Noetherian ring
$A$ : we say that $\mathcal{F}$ is $m$ -regular if $H^{\dot{x}}(\mathbb{P}_{A}^{N}, \mathcal{F}(m-i))=0$ for all $i>0$ .

This is closely related to the notion of Castelnuovo-Mumford regular-
ity, in the sense of commutative algebra (see [7]), for the graded module
$\oplus_{n\in \mathbb{Z}}H^{0}(\mathbb{P}_{A}^{N}, \mathcal{F}(n))$ over the polynomial algebra $A[X_{0}, \ldots, X_{N}]$ (the ho-
mogeneous coordinate ring of $\mathbb{P}_{A}^{N}$ ). We now recall some of the standard
properties of regularity (see [27]).

Proposition 1.8. (i) Let $A$ be a Noetherian ring, and let $\mathcal{F}$ be an
$m$ -regular coherent sheaf on $\mathbb{P}_{A}^{N}=ProjA[X_{0}, \ldots, X_{N}]$ . Then:

(a) the graded $A[X_{0}, \ldots, X_{N}]$ module

$\Gamma_{*}(\mathcal{F})=n\in \mathbb{Z}\oplus H^{0}(\mathbb{P}_{A}^{N}, \mathcal{F}(n))$

is generated by its homogeneous elements of degrees $\leq m$ , and the

sheaf $\mathcal{F}(n)?.s$ generated (as an $O_{\mathbb{P}_{A}^{N}}$ -module) by its global sections,

for all $n\geq m$ ,
(b) $H^{i}(\mathbb{P}_{A}^{N}, \mathcal{F}(j))=0$ for all $i>0$ and $i+j\geq m$ .

(ii) If $0-\mathcal{F}’\rightarrow \mathcal{F}\rightarrow \mathcal{F}^{JJ}\rightarrow 0$ is an exact sequence of coherent sheaves
on $\mathbb{P}_{A}^{N}$ , for a Noetherian ring $A$ , then:

(a) if $\mathcal{F}’$ and $\mathcal{F}’’$ are $m$ -regular, then $\mathcal{F}$ is $m$ -regular,
(b) if $\mathcal{F}$ and $\mathcal{F}’’$ are $m$ -regular, then $\mathcal{F}’$ is also $m$ -regular precisely

when $H^{0}(\mathbb{P}_{A}^{N}, \mathcal{F}(m-1))\rightarrow H^{0}(\mathbb{P}_{A}^{N}, \mathcal{F}’’(m-1))$ is surjective.

We also need a technical lemma of Mumford (see [27]). Recall that

$\chi(\mathcal{F})=\sum_{i\geq 0}(-1)^{i}\ell(H^{i}(X, \mathcal{F}))$



Geometric Methods in Commutative Algebra 235

denotes the Euler characteristic of a coherent sheaf $\mathcal{F}$ on a Noetherian
scheme $X$ , such that all the cohomology modules of $\mathcal{F}$ have finite length,
and only finitely many are non-zero (for example, this holds for any
coherent $\mathcal{F}$ if $X$ is proper over an Artinian ring). Recall also that if
$0\rightarrow \mathcal{F}’\rightarrow \mathcal{F}\rightarrow \mathcal{F}^{JJ}\rightarrow 0$ is an exact sequence of such coherent sheaves,
then the long exact sequence of cohomology implies easily that $\chi(\mathcal{F})=$

$\chi(\mathcal{F}’)+\chi(\mathcal{F}’’)$ . Hence, if $\mathcal{F}$ has a finite filtration $\{F^{i}\mathcal{F}\}$ by coherent
subsheaves, then

$\chi(\mathcal{F})=\chi(gr_{F}\mathcal{F})=\sum_{i}\chi(F^{i}\mathcal{F}/F^{i+1}\mathcal{F})$
.

Lemma 1.9 (Mumford). Let $k$ be $a$ fifield, and let $E\subset \mathbb{P}_{k}^{N}$ be $a$

closed subscheme of dimension $>0$ , with Hilbert polynomial $P_{E}$ (thus
$P_{E}(n)=\chi(O_{E}(n))$ for all $n$ $\in \mathbb{Z}$). Let $F=E\cap H$ be the intersection
witha hyperplane $H\subset \mathbb{P}_{k}^{N}$ such that the associated complex of sheaves

$0-O_{E}(-1)\rightarrow O_{E}\rightarrow O_{F}\rightarrow 0$

is exact ( $i.e.$ , the linear polynomial defifining $H$ is a non zero-divisor on
$O_{E})$ . Suppose that the ideal sheaf $I_{F}$ of $F$ in $H=\mathbb{P}_{k}^{N-1}$ is $m’$ -regular,
where $m’\geq 1$ . Then the following properties hold:

(i) $P_{E}(m’-1)=\chi(O_{E}(m’-1))\geq 0$ ,

(ii) the ideal sheaf $I_{E}$ of $E$ in $\mathbb{P}_{k}^{N}$ is $m$ -regular, with $m=m’+$
$P_{E}(m’-1)$ ,

(iii) $O_{E}$ is $(m’-1)$ -regular.

Now suppose $(A, \mathfrak{m})$ is a Cohen-Macaulay local ring of dimension
$d\geq 1$ , with infinite residue field $k$ (which we may assume without loss of
generality). We outline the procedure which leads to an inductive proof
of the Finitness Theorem.

Let

$X=ProjR=Projn\geq 0\oplus \mathfrak{m}^{n}$

be the blow-up of the maximal ideal, and

$E=Projn\geq 0\oplus \mathfrak{m}^{n}/\mathfrak{m}^{n+1}$

the exceptional divisor. If $\ell(\mathfrak{m}/\mathfrak{m}^{2})=N+1$ , then we can realize
the Rees $A$ algebra $R$ as a graded quotient of a polynomial algebra
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$A[X_{0}, \ldots, X_{N}]$ . Hence $X$ is realized as a closed subscheme of $\mathbb{P}_{A}^{N}$ , such
that we have a commutative diagram of closed immersions of $A$-schemes

$X$ $\subseteq-\rangle$ $\mathbb{P}_{A}^{N}$

$\uparrow$ $\uparrow$

$X\cap \mathbb{P}_{k}^{N}=E$ $c_{-\rangle}$ $\mathbb{P}_{k}^{N}$

(here $\mathbb{P}_{k}^{N}$ is regarded as the fibre over the maximal ideal of $\pi$ : $\mathbb{P}_{A}^{N}\rightarrow$

$SpecA)$ . The tautological line bundle (invertible sheaf) $O_{\mathbb{P}_{A}^{N}}(1)$ restricts

on $X$ to $O_{X}(1)$ , which is naturally identified with the ideal sheaf $I_{E,X}$

of $E$ in $X$ :

$O_{\mathbb{P}_{A}^{N}}(1)\otimes O_{X}=O_{X}(1)=\mathfrak{m}O_{X}=I_{E,X}\subset O_{X}$ .

The Rees ring $R=\oplus \mathfrak{m}^{n}$ is identified with the homogeneous coordinate
ring of $X\subset \mathbb{P}_{A}^{N}$ , and the natural restriction map $ H^{0}(\mathbb{P}_{A}^{N}, O_{\mathbb{P}_{A}^{N}}(n))\rightarrow$

$H^{0}(X, O_{X}(n))$ induces an inclusion $\mathfrak{m}^{n}c-tH^{0}(X, O_{X}(n))$ for all $n$ $\geq 0$ ,
which is an isomorphism provided $H^{1}(\mathbb{P}_{A}^{N},I_{X}(n))=0$ , where $I_{X}$ is the
ideal sheaf of $X$ in $\mathbb{P}_{A}^{N}$ .

Let $m=m(I_{E})$ be the smallest integer $\geq 1$ such that the ideal sheaf
$I_{E}\subset O_{\mathbb{P}_{k}^{N}}$ of $E$ in $\mathbb{P}_{A}^{N}$ is $m$-regular. Our next goal will be to bound (in

terms of $e_{0}(A)$ and $d$ ) the following quantities:

(i) $|e_{j}(A)|$ for $1\leq j\leq d-1$ ,

(ii) $m$ ,

(iii) $dim_{k}H^{j}(O_{E}(r))$ for $j\geq 1$ , $r\geq 0$ ,
(the bound sought is to be independent of $r$ ),

(iv) $dim_{k}H^{0}(O_{E}(r))$ for $r\geq 0$ ,
(with a bound allowed to depend on $r$ ),

(v) $|e_{d}(A)|$ .

We have written these expressions in the above order because the proof
of each bound will use the existence of the preceeding bounds. The
bounds in (i) and (v) combine to give the finiteness theorem for Hilbert
polynomials. We will later show (lemma 1.12 below) how the bound in
(ii) yields a bound for the postulation number as well.

First consider the case $d=1$ . The bound (i) is vacuous. For (ii),
one proves directly that $m\leq e-1$ , with $e=e_{0}(A)$ . This is just the
statement (applied to the scheme $E\subset \mathbb{P}_{k}^{N}$ ) that the ideal sheaf of a set
of $e$ points (or more generally, of a 0-dimensional subscheme of length
$e)$ in projective space over a field is $e$-regular. By Proposition 1.8(ii)(b),
this is equivalent to the assertion that the natural restriction map

$f$ : $H^{0}(\mathbb{P}_{k}^{N}, O_{\mathbb{P}_{k}^{N}}(e-1))\rightarrow H^{0}(E, O_{E}(e-1))$
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is surjective, which can be easily proved. Since $dimE=0$ , the bound
(iii) is also vacuous. For (iv), note that $dimH^{0}(E, O_{E}(r))=e=e_{0}(A)$

for all $r\in \mathbb{Z}$ , again since $E$ is 0-dimensional. For (v), the above surjectiv-
ity of $f$ , together with Nakayama’s lemma, implies that there is a surjec-
tion (and hence an isomorphism) of $A$-modules $\mathfrak{m}^{e-1}\rightarrow H^{0}(X,$ $O_{X}(e-$

$1))=\mathfrak{m}^{e-1}H^{0}(X, O_{X})$ . This bounds the length of the quotient A-
module $H^{0}(X, O_{X})/A$ , which bounds $|e_{1}(A)|$ by Theorem 1.5(b) (North-

cott’s formula). Note that, for the case $d=1$ , we have simultaneously
bounded the postulation number by $e-1$ .

Henceforth we assume $d=dimA>1$ , and establish bounds $(i)-(v)$

by induction on $d$ .

Choose a “general” element $x\in \mathfrak{m}-\mathfrak{m}^{2}$ . Then $x$ is a non zero-
divisor on $A$ , and its image $\overline{x}\in \mathfrak{m}/\mathfrak{m}^{2}$ is a homogeneous superficial
element in the graded ring $\oplus_{n\geq 0}\mathfrak{m}^{n}/\mathfrak{m}^{7\iota+1}(i.e.,$ $\overline{x}$ is a non zero-divisor

in high enough degrees). Let $\overline{A}=A/xA$ , $\overline{\mathfrak{m}}=\mathfrak{m}\overline{A}$ , so that $\overline{A}$ is a
Cohen-Macaulay local ring of dimension $d-1$ . Let $Y=Proj\overline{R}$ with
$\overline{R}=\oplus\overline{\mathfrak{m}}^{n}$ the corresponding blow up, and with exceptional divisor $ F\subset$

$Y$ . Then $F\subset E$ is a hyperplane intersection of $E\subset \mathbb{P}_{k}^{N}$ defined by the
homogenous linear equation $\overline{x}=0$ .

One has the following easy lemma, proved via Artin-Rees, using that
$x$ is a non zero-divisor on $A$ as well as a superficial element.

Lemma 1.10. The Hilbert polynomial of $\overline{A}$ is $P_{\overline{A}}(t)=P_{A}(t)-$

$P_{A}(t-1)$ . In particular, $e_{j}(\overline{A})=e_{j}(A)$ for $j<d$ .

By induction on $d=dimA$ , we may thus assume given bounds (in
terms of $e=e_{0}(A)$ and $d$ ) on the following quantities: $|e_{1}(A)|$ , $\ldots$ ,
$|e_{d-1}(A)|$ , $m’=m(I_{F})$ (the smallest integer $m’\geq 1$ such that $I_{F}$ is
$m’$-regular on $H=\mathbb{P}_{k}^{N-1}$ ), $dim_{k}H^{j}(O_{F}(r))$ for $j>0$ , $r\geq 0$ (bound

independent of $r$ ), and $dim_{k}H^{0}(O_{F}(r))$ for $r\geq 0$ (bound depending on
$r)$ . In particular, we are already given the desired bound (i) for the ring
$A$ .

We next observe that the Hilbert polynomial of $O_{E}$ satisfies

$P_{E}(n)=\chi(O_{E}(n))=P_{A}(n+1)-P_{A}(n)=\sum_{j=0}^{d-1}e_{j}(A)$ $\left(\begin{array}{ll}n+d-j & -1\\d-j & -1\end{array}\right)$ ,

since we have the corresponding formula for the underlying Hilbert func-
tions, at least for all sufficiently large $n$ (the homogeneous coordinate
ring of $E\subset \mathbb{P}_{k}^{N}$ coincides, in large enough degrees, with the graded ring
$\oplus_{n\geq 0}\mathfrak{m}^{n}/\mathfrak{m}^{n+1})$ . Now Mumford’s lemma (lemma 1.9), combined with

the known bound (i) above, and the bound (ii) for the ring $A$ , implies
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that $I_{E}$ is $m$-regular for some quantity $m\geq 1$ bounded in terms of $e_{0}(A)$

and $d$ . This gives the desired bound (ii) for the ring $A$ .

The exact sequences of sheaves for all $r\geq 0$

(1.2) $0-O_{E}(r)\rightarrow O_{E}(r+1)\rightarrow O_{F}(r+1)\rightarrow 0$

yield exact sequences of finte dimensional $k$-vector spaces

$\ldots\rightarrow H^{j-1}(F, O_{F}(r+1))\rightarrow H^{j}(E, O_{E}(r))\rightarrow H^{j}(E, O_{E}(r+1))\rightarrow\cdots$

which imply, for $j\geq 1$ , $r\geq 0$ ,

$dim_{k}H^{j}(E, O_{E}(r))$

$\leq dim_{k}H^{j-1}(F, O_{F}(1))+\cdots+dim_{k}H^{j}(F, O_{F}(m’-j-1))$

since $O_{E}$ is $m’-1$-regular, by lemma 1.9(iii) (as $I_{F}$ is $m’$-regular), and
since $H^{j}(E, O_{E}(r))=0$ for all $j>0$ for sufficiently large $r$ , by Serre
vanishing (see [13], III Thm. 5.2). This gives the desired bound (iii) for
the ring $A$ .

For the bound (iv), first note that by the definition of Euler charac-
teristic of a sheaf, we have

$dim_{k}H^{0}(E, O_{E})\leq\chi(O_{E})+\sum_{0\leq j\leq(d-2)/2}dim_{k}H^{2j+1}(E, O_{E})$
.

But $\chi(O_{E})=P_{A}(1)-P_{A}(0)=e_{0}(A)+\cdots+e_{d-1}(A)$ , so the bound
(iv) for $r=0$ ( $i.e.$ , for $dim_{k}H^{0}$ ( $E$ , $O_{E}$ )) is deduced from the bound (iii)
already obtained. For $r\geq 1$ , we use the exact sequences (obtained from
the sheaf exact sequence (1.2) $)$

$ 0-H^{0}(E, O_{E}(r-1))\rightarrow H^{0}(E, O_{E}(r))\rightarrow H^{0}(F, O_{F}(r))\rightarrow\cdots$

which implies the inequality

$dim_{k}H^{0}(E, O_{E}(r))\leq dim_{k}H^{0}(E, O_{E})+\sum_{j=1}^{r}dim_{k}H^{0}(F, O_{F}(j))$ .

The right side is bounded, by the bound (iv) for the ring $A$ , and the
bound for $r=0$ already obtained.

Finally, we are left with the bound (v), for the absolute value of the
constant term $e_{d}(A)$ of the Hilbert polynomial. This is really the heart
of the matter, in a way. The following lemma gives the desired bound.

Lemma 1.11. We have inequalities

- $\sum_{j=0}^{m’-3}\chi(O_{E}(j))\leq e_{d}(A)\leq\sum_{j=0}^{m’-3}[dim_{k}H^{0}(E, O_{E}(j))-\chi(O_{E}(j))]$ .
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Proof From Theorem 1.5(a), we have the formula (1.1)

$e_{d}(A)=\sum_{i=1}^{d-1}(-1)^{i-1}\ell(H^{i}(X, O_{X}))$ .

From the Formal Function Theorem (see [13], III, 11), we have isomor-
phisms for $i>0$ , and any $r\in \mathbb{Z}$ ,

(1.3) $H^{i}(X, O_{X}(r))\cong 1_{\frac{im}{n}}H^{i}(X^{(n)}, O_{X^{(n)}}(r))$ ,

where $X^{(n)}\subset X$ is the closed subscheme with ideal sheaf $\mathfrak{m}^{n}O_{X}=$

$O_{X}(n)$ (in particular, $X^{(1)}=E$). We have exact sheaf sequences

$0\rightarrow O_{E}(n)\rightarrow O_{X^{(n+1)}}\rightarrow O_{X^{(n)}}\rightarrow 0$

which, since $O_{E}$ is $m’-1$-regular (by lemma 1.9), imply that

$H^{i}(O_{X^{(n+1)}})\cong H^{i}(O_{X^{(n)}})\forall n\geq m’-i-1$ .

Hence, taking $r=0$ in the formula (1.3), we deduce from the formula
(1.1) that

$e_{d}$
$=\sum_{i=1}^{d-1}(-1)^{i-1}\ell(H^{i}(X^{(n)}, O_{X^{(n)}}))$ $\forall n\geq m’-2$

$=\ell(H^{0}(X^{(n)}, O_{X^{(n)}}))-\chi(O_{X^{(n)}})$ .

But $O_{X^{(n)}}$ is filtered by the sheaves $O_{E}(j)$ , $0\leq j\leq n-1$ , and so

$\chi(O_{X^{(n)}})=\sum_{j=0}^{n-1}\chi(O_{E}(j))$ ,

and

$0\leq\ell(H^{0}(X^{(n)}, O_{X^{(n)}}))\leq\sum_{j=0}^{n-1}dim_{k}H^{0}(E, O_{E}(j))$ .

This implies the inequalities stated in the lemma. Q.E.D.

We now discuss the bound on the postulation number.

Lemma 1.12. With the above notation, if $m\geq 1$ is an integer
such that $I_{E}\subset O_{\mathbb{P}_{k}^{N}}$ is $m$ -regular and $O_{E}$ is $(m-1)$ -regular on $\mathbb{P}_{k}^{N}$ ,

then $m-1$ is a postulation number for the Hilbert function of $A$ .
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Proof. Since $O_{E}$ is $(m-1)$ -regular on $\mathbb{P}_{k}^{N}$ , the Formal Function
Theorem (formula (1.3)) implies that $O_{X}$ is $(m-1)$ -regular on $\mathbb{P}_{A}^{N}$ .

Hence the graded $R$-module $\oplus_{n\geq 0}H^{0}(X, O_{X}(n))$ is generated by its ho-
mogeneous elements of degrees $\leq m-1$ . Thus $H^{0}(X, O_{X}(n+1))=$

$\mathfrak{m}H^{0}(X, O_{X}(n))$ if $n\geq m-1$ . From the exact sheaf sequence

0 $-O_{X}(n+1)\rightarrow O_{X}(n)\rightarrow O_{E}(n)\rightarrow 0$ ,

we get an exact sequence (defining the map $\gamma_{n}$ )

$0-H^{0}(X, O_{X}(n+1))\rightarrow H^{0}(X, O_{X}(n))\rightarrow H^{0}\gamma_{n}(E, O_{E}(n))$

so that

(1.4) $image\gamma_{n}=H^{0}(X, O_{X}(n))\otimes A/\mathfrak{m}\forall n\geq m-1$ .

Now in the diagram (defining maps $\alpha_{n}$ , $\beta_{n}$ , $\rho_{n}$ )

$H^{0}(\mathbb{P}_{A}^{N}, O_{\mathbb{P}_{A}^{N}}(n))$

$\rightarrow\alpha_{n}$

$H^{0}(X, O_{X}(n))$

$\rho_{n}\downarrow$ $\downarrow\gamma_{n}$

$H^{0}(\mathbb{P}_{k}^{N}, O_{\mathbb{P}_{k}^{N}}(n))$

$\rightarrow\beta_{n}$

$H^{0}(E, O_{E}(n))$

we have that $\rho_{n}$ is surjective for all $n\geq 0$ , while $\beta_{n}$ is surjective for
$n\geq m-1$ , since $I_{E}\subset O_{\mathbb{P}_{k}^{N}}$ is $m$-regular. Hence $\gamma_{n}$ is surjective, and

so by the formula (1.4) and Nakayama’s lemma, $\alpha_{n}$ is surjective for
$n$ $\geq m-1$ . But the image of $\alpha_{n}$ is $\mathfrak{m}^{n}\subset H^{0}(X, O_{X}(n))$ . Hence $m-1$

is a postulation number for the local ring $A$ . Q.E.D.

1.2. The Regularity Number and applications

Next, we discuss the regularity number of a module $M$ over $(A, \mathfrak{m})$

with respect to an ideal I such that $M/IM$ has finite length. Let $d=$

$dimM$ , and let $e_{j}(I, M)$ , $0\leq j\leq d$ denote the Hilbert coefficients of $M$

with respect to $I$ . Inductively define

$m_{1}=$ $e_{0}(I, M)$

$m_{i}=$ $m_{i-1}+e_{0}(I, m)$ $\left(\begin{array}{l}m_{i-1}+i-2\\i-1\end{array}\right)$ $+e_{1}(I, M)$ $\left(\begin{array}{l}m_{i-1}+i-3\\i-2\end{array}\right)$ $+\cdots$

$+e_{i-1}(I, M)$ , for $2\leq i\leq d$ .

Note that $m_{d}$ is a polynomial with rational coefficients in $e_{j}(I, M)$ , $ 0\leq$

$j\leq d-1$ . In particular, it is independent of $e_{d}(I, M)$ , the constant
coefficient of the Hilbert polynomial of $M$ (this is a crucial point in the
inductive proof of Theorem 1.1). The integer $m(I, M)=m_{d}(I, M)$ is
called the regularity number of $M$ with respect to $I$ .
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This terminology is introduced in [44], because of its relation to
Castelnuovo-Mumford regularity of a certain sheaf; we comment more
on this later. Its relevance to us is due to the following result (see [44],
Theorem 2 and Corollary 2).

Theorem 1.13. (a) Let $M$ be $a$ fifinite module over a Noetherian
local ring $(A, \mathfrak{m})$ , with depth $(M)>0$ , and let $I$ $\subset \mathfrak{m}$ be an ideal in $A$

such that $M/IM$ has fifinite length. Then $m(I, M)-1$ is a postulation
number for $M$ with repect to $I$ , $i.e.$ , we have an equality between values

of the Hilbert function and Hilbert polynomial

$H_{I}(M)(n)=P_{I}(M)(n)$

for all $n$ $\geq m(I, M)-1$ .

(b) Let $(A, \mathfrak{m})$ be a Noetherian local ring of dimension $d$ and depth
$>0$ . Let $I$ $\subset \mathfrak{m}$ be an $\mathfrak{m}$-primary ideal, and $J\subset I$ a reduction ideal of
I. Then the reduction number $r_{J}(I)$ is at most the regularity number
$m(I, A)$ , $i.e.$ , we have the reduction formula

$J^{n}I^{m}=I^{n+m}\forall n\geq 0$ ,

where $m=m(I, A)$ .

Remark 1.14. We comment further on the regularity number
$m(I, M)$ . Let $X=ProjR(I)$ be the blow-up of the ideal $I$ . Then
the graded “Rees module” $M(I)=\oplus_{n\geq 0}I^{n}M$ yields a coherent sheaf $\mathcal{F}$

on $X$ , and hence (by choosing a set of $N+1$ generators of $I$ , and thus an
embedding $Xc-$, $\mathbb{P}_{A}^{N}$ ) also on $\mathbb{P}_{A}^{N}$ . This sheaf is generated by its global
sections, since $M(I)$ is generated by its homogeneous elements of degree
0; hence we can find an exact sequence of coherent $O_{\mathbb{P}_{A}^{N}}$ -modules

$0\rightarrow \mathcal{K}\rightarrow O_{\mathbb{P}_{A}^{N}}^{\oplus r}\rightarrow \mathcal{F}\rightarrow 0$ .

It is shown in [44] that $\mathcal{K}$ is $m(I, M)$ regular on $\mathbb{P}_{A}^{N}$ ; this in turn con-
trols the regularity of various other related sheaves. Note that this first
syzygy sheaf $\mathcal{K}$ is the analogue for $A$-modules $M$ of the ideal sheaf of
the projective scheme $X$ .

Remark 1.15. The fact that there is a connection between regu-
larity and the reduction number was noted earlier by $rbung[46]$ . That
this implies a connection also with Hilbert coefficients seems to be the
new observation in [44].

The last related result we discuss in this Section is the following
“explicit” form of the Artin-Rees lemma, due to Trivedi, taken from
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[44]. If $N\subset M$ are finitely generated modules over a Noetherian ring
$R$ , and I any ideal of $R$ , an Artin-Rees number of $(M, N)$ with respect
to I is a positive integer $n_{0}$ such that we have the Artin-Rees formula

$I^{n+n_{O}}M\cap N=I^{n}(I^{n_{0}}M\cap N)\forall n\geq 0$

(the choice of the terminology “Artin-Rees number”, introduced in [44],
is self-explanatory).

Proposition 1.16. Let $(A, \mathfrak{m})$ be Noetherian local, $N\subset M$ fifinite
$A$ -modules such that $M/N$ has positive depth and dimension $d$ . Then the
regularity number $m(\mathfrak{m}, M/N)$ is also an Artin-Rees number for $(M, N)$

with respect to the maximal ideal $\mathfrak{m}$ .

Remark 1.17. We do not discuss the proof here; however, one of
the points made by the latter part of [44] is that there is a relationship
between the Artin-Rees number and Castelnuovo-Mumford regularity.
The “standard” proof of the Artin-Rees lemma reduces to the state-
ment that $n_{0}$ is an Artin-Rees number if a certain graded module is
generated by its elements of degrees $\leq n_{0}$ . On the other hand, Propo-
sition 1.8 yields a statement that a certain graded module is generated
by its homogeneous elements of bounded degree. In a sense, this is the
explanation for the above mentioned relationship.

Using Proposition 1.16, and the technique of normally flat stratifi-
cations, a new proof (see [44], Theorem 4) is obtained of the following
Uniform Artin-Rees Theorem of Duncan and O’Carroll (see [6] for the
original proof).

Theorem 1.18 (Uniform Artin-Rees). Let $A$ be an excellent (or
even $J2$ ) ring, and $N\subset M$ fifinitely generated $A$ -modules. Then there is
an $n_{0}\geq 0$ such that for any maximal ideal $\mathfrak{m}\subset A$ , we have

$\mathfrak{m}^{n+n_{0}}M\cap N=\mathfrak{m}^{n}(\mathfrak{m}^{n_{0}}M\cap N)\forall n\geq 0$ .

The idea of the new proof is the following: results from the the-
ory of normal flatness imply that, since $A$ is a J2 ring, there are only
finitely many numerical functions occuring as Hilbert functions of lo-
calizations $(M/N)_{\wp}$ with respect to prime ideals $\wp$ of $A$ . Hence there
is a uniform bound on all the Hilbert coefficients of these localizations
$(M/N)_{\wp}$ , and hence also of the corresponding regularity numbers. Now
Proposition 1.16 implies that there is a uniform bound on Artin-Rees
numbers for the localizations $(M_{\wp}, N_{\wp})$ with respect to the correspond-
ing maximal ideals $\wp A_{\wp}$ . For maximal ideals $\mathfrak{m}$ , an Artin-Rees number
for $(M_{\mathfrak{m}}, N_{\mathfrak{m}})$ with respect to $\mathfrak{m}A_{\mathfrak{m}}$ is automatically also an Artin-Rees
number for $(M, N)$ with respect to $\mathfrak{m}$ .
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If $M/N$ is Cohen-Macaulay, then combining the Finiteness Theo-
rem 1.1 with Proposition 1.16 yields the following result.

Corollary 1.19. Let $A$ be Noetherian, $N\subset M$ fifinitely generated
modules such that $(M/N)_{\mathfrak{m}}$ is Cohen-Macaulay for each maximal ideal
$\mathfrak{m}\subset A$ . Then

$\sup_{\mathfrak{m}}\{3^{d!-1}e(\mathfrak{m}, (M/N)_{\mathfrak{m}})^{3(d-1)!-1}\}$

is an Artin-Rees number for $(M, N)$ with respect to all maximal ideals
$\mathfrak{m}$ .

This has the following application to graded rings (see [44], Corol-
lary 5):

Corollary 1.20. Let $(A, \mathfrak{m})$ be a Cohen-Macaulay local ring of
dimension $d$ and $I$ $\subset A$ an ideal generated by an $A$ -sequence $f_{1}$ , $\ldots$ , $f_{r}$

of length $r$ . Let $e=e_{0}(\mathfrak{m}, A/I)$ be the $\mathfrak{m}$ -adic multiplicity of $A/I$ , and
set

$N=\max\{3^{(d-r)!}e^{3(d-r-1)^{1}-1}, (d-r)!e+2\}$ .

Let $J$ be the ideal generated by $f_{1}+g_{1}$ , $\ldots$ , $f_{r}+g_{r}$ , where $g_{1}$ , $\ldots$ , $ g_{r}\in$

$\mathfrak{m}^{N}$ are arbitrarily chosen elements. Then the $\mathfrak{m}$ -adic associated graded
rings (and hence the Hilbert functions) of $A/I$ and $A/J$ are canonically
isomorphic.

\S 2. Chern Classes and Zero Cycles

In this Section, we discuss how the theory of Chern classes with
values in the Chow ring, combined with results on 0-cycles, yields sev-
eral counterexamples which are of interest in algebra. For simplicity,
we will work only with varieties over an algebraically closed field $k$ , and
eventually restrict to the case $k=\mathbb{C}$ , the complex number field. How-
ever, unlike the convention in [13], we will use the term “variety” even
when referring to unions of irreducible varieties, and explicitly mention
irreducibility when needed.

2.1. The Chow ring and Chern classes

First, we recall the definition of the graded Chow ring $CH^{*}(X)=$

$\oplus_{p\geq 0}CH^{p}(X)$ of a non-singular variety $X$ over an algebraically closed

field $k$ (see Fulton’s book [8] for more details; see also Bloch [1]). The
graded components $CH^{p}(X)$ generalize the more familiar notion of the
divisor class group, which is just the group $CH^{1}(X)$ .
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If $Z\subset X$ is irreducible, let $O_{Z,X}$ be the local ring of $Z$ on $X$

( $i.e.$ , the local ring of the generic point of $Z$ , in the terminology of
Hartshorne’s book [13] $)$ . The codimension of $Z$ in $X$ , denoted $codim_{X}Z$ ,

is the dimension of the local ring $O_{Z,X}$ . Now let

$Z^{p}(X)=Free$ abelian group on irreducible subvarieties of $X$ of codi-
mension $p$

$=Group$ of algebraic cycles on $X$ of codimension $p$ .

For an irreducible subvariety $Z\subset X$ , let $[Z]$ denote its class in $Z^{p}(X)$

(where $p=codi$– $Z$ ).
Let $Y\subset X$ be irreducible of codimension $p-1$ , and let $k(Y)^{*}$ denote

the multiplicative group of non-zero rational functions on $Y(k(Y)$ , which
is the field of rational functions on $Y$ , is the residue field of $O_{Y,X}$ ).
For each irreducible divisor $Z\subset Y$ , we have a homomorphism $ord_{Z}$ :
$k(Y)^{*}\rightarrow \mathbb{Z}$ , given by

$ord_{Z}(f)=\ell(O_{Z,Y}/aO_{Z,Y})-\ell(O_{Z,Y}/bO_{Z,Y})$ ,

for any expression of $f$ as a ratio $f=a/b$ with $a$ , $b\in O_{Z,Y}\backslash \{0\}$ . Here
$\ell(M)$ denotes the length of an Artinian module $M$ .

For $f\in k(Y)^{*}$ , let $(f)_{Y}$ denote the divisor of $f$ on $Y$ , defined by

$(f)_{Y}=\sum_{Z\subset Y}ord_{Z}(f)\cdot[Z]$
,

where $Z$ runs over all irreducible divisors in $Y$ ; the sum has only finitely
many non-zero terms, and is hence well-defined. Clearly we may also
view $(f)_{Y}$ as an element of $Z^{p}(X)$ .

Let $R^{p}(X)\subset Z^{p}(X)$ be the subgroup generated by cycles $(f)_{Y}$ as
$(Y, f)$ ranges over all irreducible subvarieties $Y$ of $X$ of codimension $p-1$ ,

and all $f\in k(Y)^{*}$ . We refer to elements of $R^{p}(X)$ as cycles rationally
equivalent to 0 on $X$ . The p–th Chow group of $X$ is defined to be

$CH^{p}(X)=\frac{Z^{p}(X)}{R^{p}(X)}$

$=group$ of rational equivalence classes of codimension $p$-cycles on $X$ .

We will abuse notation and also use $[Z]$ to denote the class of an irre-
ducible subvariety $Z$ in $CHP(X)$ .

The graded abelian group

$CH^{*}(X)=0\leq p\leq dimX\oplus CH^{p}(X)$



Geometric Methods in Commutative Algebra 245

can be given the structure of a commutative (graded) ring via the inter-
section product. This product is characterized by the following property
–if $Y\subset X$ , $Z\subset X$ are irreducible of codimensions $p$ , $q$ respectively,

and $Y\cap Z=\bigcup_{i}W_{i}$ , where each $W_{i}\subset X$ is irreducible of codimension
$p+q$ (we then say $Y$ and $Z$ intersect properly in $X$ ), then the intersection
product of the classes $[Y]$ and $[Z]$ is

$[Y]\cdot[Z]=\sum_{i}I(Y, Z;W_{i})[W_{i}]$

where $I(Y, Z;W_{i})$ is the intersection multiplicity of $Y$ and $Z$ along $W_{i}$ ,

defined by Serre’s formula

$I(Y, Z;W_{i})=\sum_{j\geq 0}(-1)^{j}\ell(Tor_{j}^{\mathcal{O}_{W_{j},X}}(O_{W_{j},Y}, O_{W_{j},Z}))$ .

One of the important results proved in the book [8] is that the above
procedure does give rise to a well-defined ring structure on $CH^{*}(X)$ .

The Chow ring is an algebraic analogue for the even cohomology
ring

$n$

$\oplus H^{2i}(X, \mathbb{Z})i=0$

defined in algebraic topology. To illustrate this, we note the following
’cohomology-like’ properties, proved in Fulton’s book [8]. Here, we fol-
low the convention of [13], and use the term “vector bundle on $X$ ” to

mean ”(coherent) locally free sheaf of $O_{X}$ -modules”, and use the term
“geometric vector bundle on $X’’$ , as in [13] $II$ Ex. 5.18, to mean a
Zariski locally trivial algebraic fiber bundle $V\rightarrow X$ whose fibres are
affine spaces, with linear transition functions. With this convention, we
can also identify vector bundles on an affine variety $X=Spec$ $A$ with
finitely generated projective $A$-modules; as in [13], we use the notation
$\overline{M}$ to denote the coherent sheaf corresponding to a finitely generated
$A$-module $M$ .
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Theorem 2.1 (Properties of the Chow ring and Chern classes).

(1) $X\mapsto\oplus_{p}CH^{p}(X)$ is a contravariant functor from the category of
smooth varieties over $k$ to graded rings. If $X=\square _{i}X_{i}$ , where $X_{i}$

are the irreducible $(=connected)$ components, then $CH^{*}(X)=$

$\prod_{i}CH^{*}(X_{i})$ . If $X$ is irreducible, then $CH^{0}(X)=\mathbb{Z}$ generated
by the class $[X]$ .

(2) If $X$ is irreducible and projective (or more generally, proper) over
$k$ and $d=dimX$ , there is a well defifined degree homomorphism
$deg:CH^{d}(X)\rightarrow \mathbb{Z}$ given by $deg(\sum_{i}n_{i}[x_{i}])=\sum_{i}n_{i}$ . This allows
one to defifine intersection numbers of cycles of complementary di-
mension, in a purely algebraic way, which agree with those defifined
via topology when $k=\mathbb{C}$ (see (7) below).

(3) If $f$ : $X\rightarrow Y$ is a proper morphism of smooth varieties, there are
“Gysin” (or “push-forward $’’$ ) maps $f_{*}$ : $CH^{p}(X)\rightarrow CH^{p+r}(Y)$

for all $p$ , where $r=dim$Y-dim $X$ ; here if$p+r<0$ , we defifine $f_{*}$

to be 0; the induced map $CH^{*}(X)\rightarrow CH^{*}(Y)$ is $CH^{*}(Y)$ -linear
(projection formula); where $CH^{*}(X)$ is regarded as a $CH^{*}(Y)-$

module via the (contravariant) ring homomorphism $f^{*}$ : $CH^{*}(Y)$

$\rightarrow CH^{*}(X)$ . If $f$ : $Xc->Y$ is the inclusion of a closed subvariety,
then $f_{*}$ is induced by the natural inclusions $Z^{p}(X)c_{->}Z^{p+r}(Y)$ .

(4) $f^{*}$ : $CH^{*}(X)\rightarrow\cong CH^{*}(V)$ for any geometric vector bundle $f$ :
$V\rightarrow X$ (homotopy invariance). In particular, $CH^{*}(X\times A^{n})=$

$CH^{*}(X)$ , and $CH^{*}(A^{n})=\mathbb{Z}$ .

(5) If $V$ is a vector bundle ( $i.e.$ , locally free sheaf) of rank $r$ on $X$ ,
then there are Chern classes $c_{p}(V)\in CH^{p}(X)$ , such that

(a) $c_{0}(V)=1$ ,
(b) $c_{p}(V)=0$ for $p>r$ , and
(c) for any exact sequence of vector bundles

$0-V_{1}\rightarrow V_{2}\rightarrow V_{3}\rightarrow 0$

we have $c(V_{2})=c(V_{1})c(V_{3})$ , where $c(V_{i})=\sum_{p}c_{p}(V_{i})$ are
the corresponding total Chern classes,

(d) $c_{p}(V^{\vee})=(-1)^{p}c_{p}(V)$ , where $V^{\vee}$ is the dual vector bundle.
Moreover, we also have the following properties.

(6) If $f$ : $F(V)=Proj$ $S(V)\rightarrow X$ is the projective bundle associ-
ated to a vector bundle of rank $r$ (where $S(V)$ is the symmetric
algebra of the sheaf $V$ over $O_{X}$ ), then $CH^{*}(\mathbb{P}(V))$ is a $CH^{*}(X)-$

algebra generated by $\xi=c_{1}(O_{\mathbb{P}(V)}(1))$ , the fifirst Chern class of
the tautological line bundle, which is subject to the relation

$\xi^{r}-c_{1}(V)\xi^{r-1}+\cdots+(-1)^{r}c_{n}(V)=0$ ;
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in particular, $CH^{*}(\mathbb{P}(V))$ is a free $CH^{*}(X)$ -module with basis
1, $\xi$ , $\xi^{2}$ , $\ldots$ , $\xi^{r-1}$ .

(7) If $k=\mathbb{C}$ , there are cycle class homomorphisms $ CH^{p}(X)\rightarrow$

$H^{2p}(X, \mathbb{Z})$ such that the intersection product corresponds to the
cup product in cohomology, and for a vector bundle $E$ , the cycle
class of $c_{p}(E)$ is the topological $p$ -th Chern class of $E$ .

(8) The fifirst Chern class determines an isomorphism $c_{1}$ : $PicX\rightarrow$

$CH^{1}(X)$ from the Picard group of line bundles on $X$ to the

fifirst Chow group ( $i.e.$ , the divisor class group) of $X$ , such that
$c_{1}(O_{X}(D))=[D]\in CH^{1}(X)$ for any divisor $D$ on X. For an
arbitrary vector bundle $V$ , of rank $n$ , we have $c_{1}(V)=c_{1}(\det V)$ ,

where $\det V=\wedge^{n}V$ .

(9) If $f$ : $X\rightarrow Y$ is a morphism between non-singular varieties, $V$

a vector bundle on $Y$ , then the Chern classes of the pull-back
vector bundle $f^{*}V$ on $X$ are given by $c(f^{*}V)=f^{*}c(V)$ , where
on the right, $f^{*}$ is the ring homomorphism $CH^{*}(Y)\rightarrow CH^{*}(X)$

(functoriality of Chern classes). In particular, taking $Y=point$ ,
we see that $c(O_{X})=1\in CH^{*}(X)$ .

(10) If $i$ : $ Yc-\rangle$ $X$ is the inclusion of an irreducible smooth subvariety

of codimension $r$ in a smooth variety, with normal bundle $N$ $=$

$(I_{Y}/I_{Y}^{2})^{\vee}$ (where $I_{Y}\subset O_{X}$ is the ideal sheaf of $Y$ in $X$ ), then
$N$ is a vector bundle on $Y$ of rank $r$ with top Chern class

$c_{r}(N)=i^{*}\circ i_{*}[Y]$ ,

where $[Y]\in CH^{0}(Y)=\mathbb{Z}$ is the generator (self-intersection for-
mula)

Remark 2.2. If $X=Spec$ $A$ is affine, we will also sometimes write
$CH^{*}(A)$ in place of $CH^{*}(X)$ ; similarly, by the Chern classes $c_{i}(P\underline{)}$ of

a finitely generated projective $A$-module $P$ , we mean $c_{i}(\overline{P})$ where $P$ is
the associated vector bundle on $X$ .

We remark that the total Chern class of a vector bundle on a

smooth variety $X$ is a unit in the Chow ring $CH^{*}(X)$ , since it is of
the form 1 $+$ (nilpotent element). Thus the assignment $V\mapsto c(V)$

gives a homomorphism of groups from the Grothendieck group $K_{0}(X)$

of vector bundles (locally free sheaves) on $X$ to the multiplicative group
of those units in the graded ring $CH^{*}(X)$ , which are expressible as
$1+$ (higher degree terms).

On a non-singular variety $X$ , every coherent sheaf has a resolution by
locally free sheaves (vector bundles) of finite rank, and the Grothendieck
group $K_{0}(X)$ of vector bundles coincides with the Grothendieck group of
coherent sheaves. There is a finite decreasing filtration $\{F^{p}K_{0}(X)\}_{p\geq 0}$
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on $K_{0}(X)$ , where $F^{p}K_{0}(X)$ is the subgroup generated by classes of
sheaves supported in codimension $\geq p$ . Further, $F^{p}K_{0}(X)/F^{p+1}K_{0}(X)$

is generated, as an abelian group, by the classes $O_{Z}$ for irreducible sub-
varieties $Z\subset X$ of codimension $p-$ for example, if $X=Spec$ $A$ is affine,
we can see this using the fact that any finitely generated $A$-module $M$

has a finite filtration whose quotients are of the form $ A/\wp$ for prime
ideals $\wp$ , such that the minimal primes in $supp(M)$ all occur, and their
multiplicities in the filtration are independent of the choice of filtration.
Thus, we have a natural surjection $Z^{p}(X)\rightarrow F^{p}K_{0}(X)/F^{p+1}K_{0}(X)$ .

Now we can state the following result, sometimes called the Riemann-
Roch theorem without denominators (see the book [8] for a proof).

Theorem 2.3. Let $X$ be a non-singular variety.

(a) If $x\in F^{p}K_{0}(X)$ , then $c_{i}(x)=0$ for $i<p$ , and $c_{p}$ : $ F^{p}K_{0}(X)\rightarrow$

$CH^{p}(X)$ is a group homomorphism.
Let $\overline{c_{p}}$ : $F^{p}K_{0}(X)/F^{p+1}K_{0}(X)\rightarrow CH^{p}(X)$ be the induced homo-
morphism.

(b) The natural surjection $Z^{p}(X)\rightarrow F^{p}K_{0}(X)/F^{p+1}K_{0}(X)$ factors
through rational equivalence, yielding a map $\psi_{p}$ : $ CH^{p}(X)\rightarrow$

$F^{p}K_{0}(X)/F^{p+1}K_{0}(X)$ .

(c) The compositions $\overline{c_{p}}\circ\psi_{p}$ and $\psi_{p}\circ\overline{c_{p}}$ both equal multiplication by
the integer $(-1)^{p-1}(p-1)!$ . In particular, both $\overline{c_{p}}$ and $\psi_{p}$ are
$isomorphisms\otimes \mathbb{Q}$ .

In particular, if $Z\subset X$ is an irreducible subvariety of codimension $p$ ,

then $c_{i}([O_{Z}])=0$ for $i<p$ , and $ c_{p}([O_{Z}])=(-1)^{p-1}(p-1)![Z]\in$

$CH^{p}(X)$ .

Remark 2.4. If $X=Spec$ $A$ is affine, any element $\alpha\in K_{0}(X)$ can
be expressed as a difference $\alpha=[P]-[A^{\oplus m}]$ for some finitely generated
projective $A$-module $P$ and some positive integer $m$ . Hence the total
Chern class $c(\alpha)$ coincides with $c(P)$ . The above theorem now implies
that for any element $a\in CH^{p}(X)$ , there is a finitely generated projective
$A$ module $P$ with $c_{p}(P)=(p-1)!a$ . By the Bass stability theorem, which
implies that any projective $A$-module of rank $>d=dim$ $A$ has a free
direct summand of positive rank, we can find a projective $A$-module $P$

with rank $P$ $\leq d$ and $c_{p}(P)=(p-1)!a$ .

Incidentally, this statement cannot be improved, in general: for any
$p>2$ , there are examples of affine non-singular varieties $X$ and ele-
ments $a\in CH^{p}(X)$ such that $ ma\in$ image $c_{p}$ for some integer $ m\Leftarrow\succ$

$(p-1)!|m$ . For examples of Mohan Kumar and Nori, see [42], \S 17.
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2.2. An example of a graded ring

We now discuss our first application of these constructions to com-
mutative algebra, due to N. Mohan Kumar (unpublished). Let $k=\overline{k}$ .

We give an example of a 3-dimensional graded integral domain $A=$

$\oplus_{n\geq 0}A_{n}$ , with the following properties:

1. $A$ is generated by $A_{1}$ as an $A_{0}$ algebra, where $A_{0}$ is a regular
affine $k$-algebra of dimension 1,

2. the “irrelevant graded prime ideal” $P=\oplus_{n>0}A_{n}$ is the radical
of an ideal generated by 2 elements,

3. $P$ cannot be expressed as the radical of an ideal generated by 2
homogeneous elements.

For the example, take $A_{0}$ to be affine coordinate ring of a non-
singular curve $C\subset A_{k}^{3}$ such that the canonical module $\omega_{A_{O}}=\Omega_{A_{0}/k}$ is
a non-torsion element of the divisor class group of $A_{0}$ (this implies $k$ is
not the algebraic closure of a finite field). In fact, if we choose $A_{0}$ to
be a non-singular affine $k$-algebra of dimension 1 such that $\omega_{A_{O}}$ is non-
torsion in the class group, then $C=SpecA_{0}$ can be realized as a curve
embedded in $A_{k}^{3}$ , by more or less standard arguments (see [13], $IV$ , or
[36], for example).

Let $R=k[x, y, z]$ denote the polynomial algebra, and let $\varphi$ : $R\rightarrow A_{0}$

be the surjection corresponding to $C\zeta-$, $A_{k}^{3}$ . Let $I$ $=ker\varphi$ be the ideal
of $C$ . Then $I/I^{2}$ is a projective $A_{0}$ -module of rank 2; we let

$A=S(I/I^{2})=n\geq 0\oplus S^{n}(I/I^{2})$

be its symmetric algebra over $A_{0}$ . We claim this graded ring $A$ has the
properties stated above.

Consider the exact sequence of projective $A_{0}$ module

(2.1) 0– $I/I^{2}\rightarrow\Omega_{R/k}\psi\otimes A_{0}\overline{\varphi}\rightarrow\omega_{A_{0}}\rightarrow 0$

with $\overline{\varphi}$ induced by $\varphi$ , and $\psi$ by the derivation $d$ : $R\rightarrow\Omega_{R/k}$ . Let $h$ :
$\Omega_{R/k}\otimes A_{0}\rightarrow I/I^{2}$ be a splitting of $\psi$ . Use $h$ to define a homomorphism
of $k$-algebras

$\Phi$ : $R\rightarrow A$ ,

by setting

$\Phi(t)=\phi(t)+h(dt)\in A_{0}\oplus A_{1}=A_{0}\oplus I/I^{2}$

for $t=x$ , $y$ , $z$ ; this uniquely specifies a $k$-algebra homomorphism $\Phi$ de-
fined on the polynomial algebra $R$ .
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Clearly $\Phi(I)\subset P=\oplus_{n>0}A_{n}$ , the irrelevant graded ideal, and one

verifies that $\Phi$ induces isomorphisms $R/I\rightarrow A/P$ and $I/I^{2}\rightarrow P/P^{2}$ ,

and in fact an isomorphism between the $I$-adic completion of $R$ and the
$P$-adic completion of $A$ .

Since $C\subset A_{k}^{3}$ is a non-singular curve, it is a set-theoretic complete
intersection, from a result of Ferrand and Szpiro (see [43], for example).

If $a$ , $b\in I$ with $\sqrt{(a,b)}=I$ , then clearly we have $\sqrt{(\Phi(a),\Phi(b))}=P\cap Q$ ,

for some (radical) ideal $Q$ with $P+Q=A$ . We can correspondingly

write $(\Phi(a), \Phi(b))=J\cap J’$ with $\sqrt{J}=P$ , $\sqrt{J’}=Q$ . Then $ J/J^{2}\cong$

$(A/J)^{\oplus 2}$ . This implies (by an old argument of Serre) that $Ext_{A}^{1}(J, A)\cong$

$Ext_{A}^{2}(A/J, A)\cong A/J$ is free of rank 1, and any generator determines an
extension

$0\rightarrow A\rightarrow V\rightarrow J\rightarrow 0$

where $V$ is a projective $A$-module of rank 2, and such that the induced
surjection $V\otimes A/J$ $\rightarrow J/J^{2}\cong(A/J)^{\oplus 2}$ is an isomorphism.

We claim the projective module $V$ is necessarily of the form $V=$

$V_{0}\otimes_{A_{0}}A$ ; this implies $V_{0}=V\otimes_{A}A/P\cong J/PJ\cong(A/P)^{\oplus 2}$ is free, so
that $V$ is a free $A$-module, and $J$ is generated by 2 elements. To prove
the claim, note that $I/I^{2}$ is a direct summand of a free $A/I=A_{0}$-module
of finite rank; hence there is an affine $A$-algebra $A’\cong A_{0}[x_{1}, \ldots, x_{n}]$ ,

which is a polynomial algebra over $A_{0}$ , such that $A$ is an algebra retract
of $A’$ . Now it suffices to observe that any finitely generated projective
$A’$-module is of the form $M\otimes_{A_{0}}A’$ , for some projective $A_{0}$-module $M$ ;
this is the main result of [19] (see also [20]).

On the other hand, we claim that it is impossible to find two homo-
geneous elements $x$ , $y\in P$ with $\sqrt{(x,y)}=P$ . Indeed, let $X=ProjA$ ,

and $\pi$ : $X\rightarrow C=SpecA_{0}$ be the natural morphism. Then $X=\mathbb{P}\underline{(V}$)

is the $\mathbb{P}^{1_{-}}$bundle over $C$ associated to the locally free sheaf $V=I/I^{2}$

(the sheaf determined by the projective $A_{0}$ -module $I/I^{2}$ ). Let $\xi=$

$c_{1}(O_{X}(1))\in CH^{1}(X)$ be the 1st Chern class of the tautological line
bundle $O_{X}(1)$ . Then by Theorem 2.1 and (2.1) above, $CH^{*}(X)$ is a free
$CH^{*}(C)$ -module with basis 1, $\xi$ , and $\xi$ satisfies the monic relation

$\xi^{2}-c_{1}(V)\xi+c_{2}(V)=0$ .

Since $dimC=1$ , $CH^{i}(C)=0$ for $i>1$ , and so this relation reduces to

$\xi^{2}=c_{1}(V)\xi$ .

From the exact sequence (2.1), we have a relation in $CH^{*}(C)$

$1=c(O_{C})^{3}=c(O_{C}^{\oplus 3})=c(\Omega_{A^{3}/k}\otimes O_{C})=c(V)\cdot c(\omega_{C})$ .
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Hence $c_{1}(V)=-c_{1}(\omega_{C})$ , which by the choice of $C$ is a non-torsion
element of $CH^{1}(C)$ (which is the divisor class group of $A_{0}$ ). Thus $\xi^{2}\in$

$CH^{2}(X)$ is a non-torsion element of $CH^{2}(X)$ .
If homogeneous elements $x$ , $y\in P$ exist, say of degrees $r$ and $s$

respectively, such that $\sqrt{(x,y)}=P$ , then we may regard $x$ , $y$ as de-
termining global sections of the sheaves $O_{X}(r)$ and $O_{X}(s)$ respectively,
which have no common zeroes on $X$ . Let $D_{x}\subset X$ , $D_{y}\subset X$ be the
divisors of zeroes of $x\in\Gamma(X, O_{X}(r))$ and $y\in\Gamma(X, O_{X}(s))$ respectively.
Then we have equations in $CH^{1}(X)$

$[D_{x}]=c_{1}(O_{X}(r))=rc_{1}(O_{X}(1))=r\xi$ ,
$[D_{y}]=c_{1}(O_{X}(s))=sc_{1}(O_{X}(1))=s\xi$ .

But $ D_{x}\cap D_{y}=\emptyset$ . Hence in $CH^{2}(X)$ , we have a relation

$0=[D_{x}]\cdot[D_{y}]=rs\xi^{2}$ ,

contradicting that $\xi^{2}\in CH^{2}(X)$ is a non-torsion element.

Remark 2.5. The construction of the homomorphism from the
polynomial ring $R$ to the graded ring $A$ is an algebraic analogue of
the exponential map in Riemannian geometry, which identifies a tubular
neighbourhood of a smooth submanifold of a Riemannian manifold with
the normal bundle of the submanifold (see [24, Theorem 11.1], for ex-
ample). The exponential map is usually constructed using geodesies on
the ambient manifold; here we use the global structure of affine space,
where “geodesies” are lines, to make a similar construction algebraically.
This idea appears in a paper[3] of Boratynski, who uses it to argue that
a smooth subvariety of $A^{n}$ is a set-theoretic complete intersection if and
only if the zero section of its normal bundle is a set-theoretic complete
intersection in the total space of the normal bundle.

2.3. Zero cycles on non-singular proper and affine varieties

In this section, we discuss results of Mumford and Roitman, which
give criteria for the non-triviality of $CH^{d}(X)$ where $X$ is a non-singular
variety over $\mathbb{C}$ of dimension $d\geq 2$ , which is either proper, or affine.

If $X$ is non-singular and irreducible, and $dimX=d$ , then $Z^{d}(X)$

is just the free abelian group on the (closed) points of $X$ . Elements of
$Z^{d}(X)$ are called zero cycles on $X$ (since they are linear combinations of
irreducible subvarieties of dimension 0). In the presentation $CH^{d}(X)=$

$Z^{d}(X)/R^{d}(X)$ , the group $R^{d}(X)$ of relations is generated by divisors of
rational functions on irreducible curves in $X$ .

The main non-triviality result for zero cycles is the following result,
called the infifinite dimensionality theorem for 0-cycles. It was originally



252 V. Srinivas

proved (without $\otimes \mathbb{Q}$ ) by Mumford [26], for surfaces, and extended to
higher dimensions by Roitman [32]; the statement $with\otimes \mathbb{Q}$ follows from
[33].

Theorem 2.6 (Mumford, Roitman). Let $X$ be an irreducible,
proper, non-singular variety of dimension $d$ over $\mathbb{C}$ . Suppose $X\sup-$

ports a non-zero regular $q$ -form $(i.e., \Gamma(X, \Omega_{X/\mathbb{C}}^{q})\neq 0)$ , for some $q>0$ .

Then for any closed algebraic subvariety $Y\subset X$ with $dimY<q$ , we
have $CH^{d}(X\backslash Y)\otimes \mathbb{Q}\neq 0$ .

Corollary 2.7. Let $X$ be an irreducible, proper, non-singular va-
riety of dimension $d$ over $\mathbb{C}$ , such that $\Gamma(X, \omega_{X})\neq 0$ . Then for any

affine open subset $V\subset X$ , we have $CH^{d}(V)\otimes \mathbb{Q}\neq 0$ .

The corollary results from the identification of $\omega_{X}$ with the sheaf
$\Omega_{X/\mathbb{C}}^{d}$ of $d$-forms.

Bloch [1] gave another proof of the above result, using the action of
algebraic correspondences on the \’etale cohomology, and generalized the
result to arbitrary characteristics. In [37] and [38], Bloch’s argument
(for the case of characteristic 0) is recast in the language of differentials,
extending it as well to certain singular varieties. One way of stating the
infinite dimensionality results of [37] and [38], in the smooth case, is the
following. The statement is technical, but it will be needed below when
discussing M. Nori’s construction of indecomposable projective modules.

We recall the notion of a $k$-generic point of an irreducible variety; we
do this in a generality sufficient for our purposes. If $X_{0}$ is an irreducible
$k$-variety, where $k\subset \mathbb{C}$ is a countable algebraically closed subfield, a
point $x\in X=(X_{0})_{\mathbb{C}}$ determines an irreducible subvariety $Z\subset X$ ,

called the $k$-closure of $X$ , which is the smallest subvariety of $X$ which is
defined over $k$ ( $i.e.$ , of the form $(Z_{0})_{\mathbb{C}}$ for some subvariety $Z_{0}\subset X_{0}$ ) and
contains the chosen point $x$ . We call $x$ a $k$ -generic point if its $k$-closure
is $X$ itself.

In the case $X_{0}$ (and thus also $X$ ) is affine, say $X_{0}=SpecA$ , and
$X=SpecA_{\mathbb{C}}$ with $A_{\mathbb{C}}=A\otimes_{k}\mathbb{C}$ , then a point $x\in X$ corresponds
to a maximal ideal $\mathfrak{m}_{x}\subset A_{\mathbb{C}}$ . Let $\wp_{x}=A\cap \mathfrak{m}_{x}$ , which is a prime
ideal of $A$ , not necessarily maximal. Then, in the earlier notation, $\wp_{x}$

determines an irreducible subvariety $Z_{0}\subset X_{0}$ . The $k$-closure $Z\subset X$

of $x$ is the subvariety determined by the prime ideal $\wp_{x}A_{\mathbb{C}}$ (since $k$ is
algebraically closed, $\wp_{x}A_{\mathbb{C}}$ is a prime ideal). In particular, $x$ is a k-
generic point $\Leftrightarrow\wp_{x}=0$ . In this case, $x$ determines an inclusion
A $e_{-*}A_{\mathbb{C}}/\mathfrak{m}_{x}=\mathbb{C}(x)\cong \mathbb{C}$ . This in turn gives an inclusion $i_{x}$ : $ K\epsilon-\rangle$ $\mathbb{C}$

of the quotient field $K$ of $A$ ( $i.e.$ , of the function field $k(X_{0})$ ) into the
complex numbers.
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In general, even if $X$ is not affine, if we are given a $k$-generic point
$x\in X$ , we can replace $X$ by any affine open subset defined over $k$ , which
will (because $x$ is $k$-generic) automatically contain $x$ ; one verifies easily
that the corresponding inclusion $ K\subseteq-\rangle$ $\mathbb{C}$ does not depend on the choice
of this open subset. Thus we obtain an inclusion $i_{x}$ : $ K\subseteq-\rangle$ $\mathbb{C}$ of the
function field $K=k(X_{0})$ into $\mathbb{C}$ , associated to any $k$-generic point of $X$ .

It is easy to see that the procedure is reversible: any inclusion of
$k$-algebras $i$ : $ Kc-\rangle$ $\mathbb{C}$ determines a unique $k$-generic point of $X$ . Indeed,
choose an affine open subset $SpecA=U_{0}\subset X_{0}$ , so that $K$ is the
quotient field of $A$ . The induced inclusion $A$ $c_{-*}\mathbb{C}$ induces a surjection
of $\mathbb{C}$-algebras $A_{\mathbb{C}}\rightarrow \mathbb{C}$ , whose kernel is a maximal ideal, giving the
desired $k$-generic point.

Suppose now that $X_{0}$ is proper over $k$ , and so $X$ is proper over $\mathbb{C}$

(e.g., $X$ is projective). Let $dim$ $X_{0}=dimX=d$ . Then by the Serre
duality theorem, the sheaf cohomology group $H^{d}(X, O_{X})$ is the dual
$\mathbb{C}$-vector space to

$\Gamma(X, \Omega_{X/\mathbb{C}}^{d})=\Gamma(X, \omega_{X})=\Gamma(X_{0}, \omega_{X_{O}})\otimes_{k}\mathbb{C}$ .

Hence we may identify $H^{d}(X, O_{X})\otimes_{\mathbb{C}}\Omega_{\mathbb{C}/k}^{d}$ with

$Hom_{\mathbb{C}}(\Gamma(X, \omega_{X})$ , $\Omega_{\mathbb{C}/k}^{d})=Hom_{k}(\Gamma(X_{0}, \omega_{X_{0}}),$ $\Omega_{\mathbb{C}/k}^{d})$ .

Note that a $k$-generic point $x$ determines, via the inclusion $i_{x}$ : $Kc->\mathbb{C}$ ,

a $k$-linear inclusion $\Omega_{K/k}^{n}\epsilon->\Omega_{\mathbb{C}/k}^{n}$ , and hence, via the obvious inclusion

$\Gamma(X_{0}, \omega_{X_{O}})=\Gamma(X_{0}, \Omega_{X_{0}/k}^{n})c_{-\rangle}\Omega_{K/k}^{n}$ ,

a canonical element

$di_{x}\in Hom_{k}(\Gamma(X_{0}, \omega_{X_{0}})$ , $\Omega_{\mathbb{C}/k}^{d})=H^{d}(X, O_{X})\otimes_{\mathbb{C}}\Omega_{\mathbb{C}/k}^{d}$ .

Theorem 2.8. Let $k\subset \mathbb{C}$ be a countable algebraically closed sub-
fifield, and $X_{0}$ an irreducible non-singular proper $k$ -variety of dimension
$d$ , with $\Gamma(X_{0}, \omega_{X_{0}})\neq 0$ . Let $U_{0}\subset X_{0}$ be any Zariski open subset. Let
$X=(X_{0})_{\mathbb{C}}$ , $U=(U_{0})_{\mathbb{C}}$ be the corresponding complex varieties. Then
there is a homomorphism of graded rings

$CH^{*}(U)\rightarrow p\geq 0\oplus H^{p}(X, O_{X})\otimes_{\mathbb{C}}\Omega_{\mathbb{C}/k}^{p}$
,

with the following properties.

(i) If $x\in U$ is a point, which is not $k$ -generic, then the image in
$H^{d}(X, O_{X})\otimes\Omega_{\mathbb{C}/k}^{d}$ of $[x]\in CH^{d}(U)$ is zero.
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(ii) If $x\in U$ is a $k$ -generic point, then the image in $ H^{d}(X, O_{X})\otimes$

$\Omega_{\mathbb{C}/k}^{d}$ of $[x]\in CH^{d}(U)$ is (up to sign) the canonical element $di_{x}$

described above.

As stated earlier, the above more explicit form of the infinite dimen-
sionality theorem follows from results proved in [37] and [38].

2.4. Some computations with Chern classes

We now study the following two problems, which turn out to have
some similarities. We will show how, in each case, the problem reduces to
finding an example for which the Chern classes of the cotangent bundle
( $i.e.$ , the sheaf of K\"ahler differentials) have appropriate properties. We
will then see, in Example 2.12, how to construct examples with these
properties. The discussion is based on the article [2] of Bloch, Murthy
and Szpiro.

Problem 2.9. Find examples of $n$-dimensional, non-singular affine
algebras $A$ over (say) the complex number field $\mathbb{C}$ , for each $n$ $\geq 1$ , such
that $A$ cannot be generated by $2n$ elements as a $\mathbb{C}$-algebra, or such that
the module of K\"ahler differentials cannot be generated by $2n-1$ ele-
ments $da_{1}$ , $\ldots$ , $da_{2n-1}$ (in contrast, it is a “classical” result that such an
algebra $A$ can always be generated by $2n+1$ elements, and its K\"ahler dif-
ferentials can always be generated by $2n$ exact 1-forms; see, for example,
[36] $)$ .

Problem 2.10. Find examples of prime ideals I of height $<N$

in a polynomial ring $\mathbb{C}[x_{1}, \ldots, x_{N}]$ such that $\mathbb{C}[x_{1}, \ldots, x_{N}]/I$ is regu-
lar, but I cannot be generated by $N-1$ elements (the Eisenbud-Evans
conjectures, proved by Sathaye [34] and Mohan Kumar [25], imply that
such an ideal I can always be generated by $N$ elements).

First we discuss Problem 2.9. Suppose $A$ is an affine smooth $\mathbb{C}-$

algebra which is an integral domain of dimension $n$ . Assume $X=SpecA$
can be generated by $2n$ elements, $i.e.$ , that there is a surjection $f$ :
$\mathbb{C}[x_{1}, \ldots, x_{2n}]\rightarrow A$ from a polynomial ring. Let $I$ $=kerf$ . If $i$ : $Xc_{-\rangle}$

$A_{\mathbb{C}}^{2n}$ is the embedding corresponding to the surjection $f$ , then the normal

bundle to $i$ is the sheaf $V^{\vee}$ , where $V=I\overline{/I}^{2}$ .

From the self-intersection formula, and the formula for the Chern
class of the dual of a vector bundle, we see that

(2.2) $(-1)^{n}c_{n}(V)=c_{n}(V^{\vee})=i^{*}i_{*}[X]=0$ ,

since $CH^{n}(A_{\mathbb{C}}^{2n})=0$ .

On the other hand, suppose $j$ : $Xc_{-\succ}Y$ is any embedding as a
closed subvariety of a non-singular affine variety $Y$ whose cotangent
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bundle ( $i.e.$ , sheaf of K\"ahler differentials) $\Omega_{Y/\mathbb{C}}$ is a trivial bundle. For

example, we could take $Y=A_{\mathbb{C}}^{2n}$ , and $j=i$ , but below we will consider
a different example as well.

Let $W$ be the conormal bundle of $X$ in $Y$ (if $Y=SpecB$ , and

$J=kerj^{*}$ : $B\rightarrow A$ , then $W=J/J^{2}$ ). We then have an exact sequence
of vector bundles on $X$

$0\rightarrow W\rightarrow j^{*}\Omega_{Y/\mathbb{C}}\rightarrow\Omega_{X/\mathbb{C}}^{1}\rightarrow 0$ .

Since $\Omega_{Y/\mathbb{C}}$ is a trivial vector bundle, we get that

(2.3) $c(W)=c(\Omega_{X/\mathbb{C}})^{-1}\in CH^{*}(X)$ .

Note that this expression for $c(W)$ , and hence the resulting formula
for $c_{n}(W)$ as a polynomial in the Chern classes of $\Omega_{X/\mathbb{C}}$ , is in fact in-

dependent of the embedding $j$ . In particular, from (2.2), we see that
$c_{n}(W)=0$ for any such embedding $j$ : $Xc->Y$ .

Remark 2.11. In fact, the stability and cancellation theorems of
Bass imply that in the above situation, the vector bundle $W$ itself is, up
to isomorphism, independent of $j$ , and is thus an invariant of the variety
$X$ . We call it the stable normal bundle of $X$ ; this is similar to the case
of embeddings of smooth manifolds into Euclidean spaces. We will not
need this fact in our computations below.

Returning to our discussion, we see that to find a $\mathbb{C}$-algebra $A$ with
$dimA=n$ , and which cannot be generated by $2n$ elements as a $\mathbb{C}-$

algebra, it suffices to produce an embedding $j$ : $X\subseteq-*Y$ of $X=SpecA$
into a smooth variety $Y$ of dimension $2n$ , such that

(i) $\Omega_{Y/\mathbb{C}}$ is a trivial bundle, and
(ii) if $W$ is the conormal bundle of $j$ , then $c_{n}(W)\neq 0$ ; in fact

it suffices to produce such an embedding such that $ j_{*}c_{n}(W)\in$

$CH^{2n}(Y)$ is non-zero.

We see easily that the same example $X=Spec$ $A$ will have the
property that $\Omega_{A/\mathbb{C}}$ is not generated by $2n-1$ elements; in fact if $P=$
$ker(f : A^{\oplus 2n-1}\rightarrow\Omega_{A/\mathbb{C}})$ $fr$ some surjection $f$ , then $\overline{P}$ is a vector bundle

of rank $n-1$ , so that $c_{n}(\overline{P})=0$ , while on the other hand, the exact
sequence

0– $P\rightarrow A^{\oplus 2n-1}\rightarrow f\Omega_{A/\mathbb{C}}\rightarrow 0$

implies that

$c(\overline{P})=c(\Omega_{X/\mathbb{C}})^{-1}$ ,
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so that we would have

$0=c_{n}(\overline{P})=c_{n}(W)\neq 0$ ,

a contradiction.
Next we discuss the Problem 2.10 of finding an example of a “non-

trivial” prime ideal $I$ $\subset \mathbb{C}[x_{1}, \ldots, x_{N}]$ in a polynomial ring such that
the quotient ring $A=\mathbb{C}[x_{1}, \ldots, x_{N}]/I$ is smooth of dimension $>0$ ,

while I cannot be generated by $N-1$ elements (by the Eisenbud-Evans
conjectures, proved by Sathaye and Mohan Kumar, I can always be
generated by $N$ elements).

Suppose I can be generated by $N-1$ elements, and $dimA/I=n>$
$0$ . Then $I/I^{2}\oplus Q=A^{N-1}$ for some projective $A$ module $Q$ of rank
$n-1$ ; hence

$(I/I^{2}\oplus Q\oplus A)\cong A^{\oplus N}\cong(I/I^{2}\oplus\Omega_{A/\mathbb{C}})$ .

Hence we have an equality between total Chern classes

$c(\Omega_{X/\mathbb{C}})=c(\overline{Q})$ ,

and in particular, $c_{n}(\Omega_{X/\mathbb{C}})=0$ .

So if $X=Spec$ $A$ is such that $c_{n}(\Omega_{X/\mathbb{C}})\in CH^{n}(X)$ is non-zero, then

for any embedding $X\epsilon_{-\rangle}A_{\mathbb{C}}^{N}$ , the corresponding prime ideal I cannot
be generated by $N-1$ elements.

Example 2.12. We now show how to construct an example of an
$n$-dimensional affine variety $X=Spec$ $A$ over $\mathbb{C}$ , for any $n$ $\geq 1$ , such
that, for some embedding $ Xc-\rangle$ $Y=SpecB$ with $dimY=2n$ , and ideal
$I$ $\subset B$ , the projective module $P=I/I^{2}$ has the following properties:

(i) $c_{n}(P)\neq 0$ in $CH^{n}(X)\otimes \mathbb{Q}$ ,
(ii) if $c(P)\in CH^{*}(X)$ is the total Chern class, then $c(P)^{-1}$ has a

non-torsion component in $CH^{n}(X)\otimes \mathbb{Q}$ .

Then, by the discussion earlier, the affine ring $A$ will have the properties
that

(a) $A$ cannot be generated by $2n$ elements as a $\mathbb{C}$-algebra,
(b) $\Omega_{A/\mathbb{C}}$ is not generated by $2n-1$ elements,
(c) for any way of writing $A=\mathbb{C}[x_{1}, \ldots, x_{N}]/J$ as a quotient of a

polynomial ring (with $N$ necessarily at least $2n+1$ ), the ideal $J$

requires $N$ generators (use the formula (2.3)).

The technique is that given in [2]. Let $E$ be an elliptic curve $(i.e.$ ,
a non-singular, projective plane cubic curve over $\mathbb{C}$), for example,

$E=Proj\mathbb{C}[x, y, z]/(x^{3}+y^{3}+z^{3})$ .
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Let $E^{2n}=E\times\cdots\times E$ , the product of $2n$ copies of $E$ . Let $Y=$
$SpecB\subset E^{2n}$ be any affine open subset. By the Mumford-Roitman
infinite dimensionality theorem (Theorem 2.6 above), $CH^{2n}(Y)\otimes \mathbb{Q}\neq 0$ .

Also, since $Y\subset E^{2n}$ , clearly the $2n$-fold intersection product

$CH^{1}(Y)^{\otimes 2n}\rightarrow CH^{2n}(Y)$

is surjective. Hence we can find an element $\alpha\in CH^{1}(Y)$ with $\alpha^{2n}\neq 0$ in
$CH^{2n}(Y)\otimes \mathbb{Q}$ . Let $P$ be the projective $B$-module of rank 1 corresponding
to $\alpha$ . Since $Y$ is affine, by Bertini’s theorem, we can find elements
$a_{1}$ , $\ldots$ , $a_{n}\in P$ such that the corresponding divisors $H_{i}=\{a_{i}=0\}\subset Y$

are non-singular, and intersect transversally; take $X=H_{1}\cap\cdots\cap H_{n}$ .

Then $X=Spec$ $A$ is non-singular of dimension $n$ , and the ideal $I$ $\subset B$

of $X\subset Y$ is such that $I/I^{2}\cong(P\otimes_{B}A)^{\oplus n}$ . Thus, if $j$ : $Xc_{-\rangle}Y$ is the
inclusion, then we have a formula between total Chern classes

$c(I/I^{2})=j^{*}c(P)^{n}=(1+j^{*}c_{1}(P))^{n}=(1+j^{*}\alpha)^{n}$ .

Hence

$c_{n}(I/I^{2})=j^{*}(\alpha)^{n}$ ,

and so by the projection formula,

$j_{*}c_{n}(I/I^{2})=j_{*}(1)\alpha^{n}=\alpha^{2n}$ ,

since

$j_{*}(1)=[V]=[H_{1}]\cdot[H_{2}]\cdots\cdots\cdot[H_{n}]=\alpha^{n}\in CH^{n}(Y)$ ,

as $X$ is the complete intersection of divisors $H_{i}$ , each corresponding to
the class $\alpha\in CH^{1}(Y)$ . By construction, $j_{*}c_{n}(I/I^{2})\neq 0$ in $ CH^{2n}(Y)\otimes$

$\mathbb{Q}$ , and so we have that $c_{n}(I/I^{2})\neq 0$ in $CH^{n}(X)\otimes \mathbb{Q}$ , as desired.
Similarly

$c(I/I^{2})^{-1}=(1+j^{*}\alpha)^{-n}$

has a non-zero component of degree $n$ , which is a non-zero integral mul-
tiple of $j^{*}\alpha^{n}$ .

Remark 2.13. The existence of $n$-dimensional non-singular affine
varieties $X$ which do not admit closed embeddings into affine $2n$ space
is in contrast to the situation of differentiate manifolds–the “hard
embedding theorem” of Whitney states that any smooth $n$-manifold has
a smooth embedding in the Euclidean space $\mathbb{R}^{2n}$ .
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2.5. Indecomposable projective modules

Now we discuss M. Nori’s (unpublished) construction of indecom-
posable projective modules of rank $d$ over any affine $\mathbb{C}$-algebra $A_{\mathbb{C}}$ of
dimension $d$ , such that $U=Spec$ Ac is an open subset of a non-singular
projective (or proper) $\mathbb{C}$-variety $X$ with $H^{0}(X, \omega_{X})=H^{0}(X, \Omega_{X/\mathbb{C}}^{d})\neq 0$ .

The idea is as follows. Fix a countable, algebraically closed subfield
$k\subset \mathbb{C}$ such that $X$ and $U$ are defined over $k$ ; in particular, we are given
an affine $k$-subalgebra $A\subset A_{\mathbb{C}}$ such that $A_{\mathbb{C}}=A\otimes_{k}\mathbb{C}$ . We also have a
$k$-variety $X_{0}$ containing $U_{0}=Spec$ $A$ as an affine open subset, such that
$X=(X_{0})_{\mathbb{C}}$ .

Let $K_{n}$ be the function field of $X_{0}^{n}=X_{0}X_{k}\cdots\times_{k}X_{0}$ (equivalently,
$K_{n}$ is the quotient field of $A^{\otimes n}=A\otimes_{k}\cdots\otimes_{k}A$ ). We have $n$ induced
embeddings $\varphi_{i}$ : $Kc_{-\rangle}K_{n}$ , where $K=K_{1}$ is the quotient field of $A$ ,
given by $\varphi_{i}(a)=1\otimes\cdots\otimes 1\otimes a\otimes 1\otimes\cdots\otimes 1$ with $a$ in the $i$-th position.

Choose an embedding $K_{n}\epsilon_{-\succ}\mathbb{C}$ as a $k$-subalgebra. The inclusions
$\varphi_{i}$ then determine $n$ inclusions $ Kc-\rangle$ $\mathbb{C}$ , or equivalently, $k$-generic points
$x_{1}$ , $\ldots$ , $x_{n}\in X$ (in algebraic geometry, these are called “

$n$ independent
generic points of $X’’$ ). Let $\mathfrak{m}_{i}$ be the maximal ideal of $A_{\mathbb{C}}$ determined
by $x_{i}$ , and let $I$

$=\bigcap_{i=1}^{n}\mathfrak{m}_{i}$ . Clearly I is a local complete intersection
ideal of height $d$ in the $d$-dimensional regular ring $A_{\mathbb{C}}$ . Thus we can find
a projective resolution of $I$

0– $P\rightarrow F_{d-1}\rightarrow\cdots\rightarrow F_{1}\rightarrow I\rightarrow 0$ ,

where $F_{i}$ are free. By construction, $c(P)=c(A/I)^{(-1)^{d}}$ . By theorem 2.3,
we have

$c(A/I)=1+(-1)^{d-1}(d-1)!(\sum_{i=1}^{n}[x_{i}])\in CH^{*}(X)$ .

Hence $c_{i}(P)=0$ for $i<d$ , while $c_{d}(P)$ is a non-zero integral multiple
of the class $\sum_{i}[x_{i}]\in CH^{d}(U)$ . This class is non-zero, from theorem 2.8
(we will get a stronger conclusion below). Hence rank $P\geq d$ .

By Bass’ stability theorem, if rank $P=d+r$ , we may write $P=$

$Q\oplus A^{\oplus r}$ , where $Q$ is projective of rank $d$ . Then $P$ and $Q$ have the same
Chern classes. So we can find a projective module $Q$ of rank $d$ with
$c(Q)=1+m(\sum_{i}[x_{i}])\in CH^{*}(U)$ , for some non-zero integer $m$ .

Suppose $Q=Q_{1}\oplus Q_{2}$ with rank $Q_{1}=p$ , rank $Q_{2}=d-p$ , and
$1\leq p<d$ (thus $d>1$ ). Then in $CH^{*}(U)\otimes \mathbb{Q}$ , the class $\sum_{i}[x_{i}]$ is
expressible as

$\sum_{i}[x_{i}]=\alpha\cdot\beta$
, $\alpha\in CH^{p}(U)\otimes \mathbb{Q}$ , $\beta\in CH^{d-p}(U)\otimes \mathbb{Q}$ .
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Using the homomorphism of graded rings of Theorem 2.8,

$CH^{*}(U)\otimes \mathbb{Q}\rightarrow j\geq 0\oplus H^{j}(X, O_{X})\otimes_{\mathbb{C}}\Omega_{\mathbb{C}/k}^{j}$
,

we see that the element

$\xi=\sum_{i=1}^{n}d?_{x_{i}}.\in H^{d}(X, O_{X})\otimes\Omega_{\mathbb{C}/k}^{d}$

is expressible as a product

$\xi=\sum_{i=1}^{n}di_{x_{i}}=\alpha\cdot\beta$ , $\alpha\in H^{p}(X, O_{X})\otimes_{\mathbb{C}}\Omega_{\mathbb{C}/k}^{p}$ ,

$\beta\in H^{d-p}(X, O_{X})\otimes_{\mathbb{C}}\Omega_{\mathbb{C}/k}^{d-p}$ .

Let $L$ be the algebraic closure of $K_{n}$ in $\mathbb{C}$ . The graded ring

$d$ $d$

$\oplus H^{j}j=0$
( $X$ , $O_{X}$ )

$\otimes \mathbb{C}\Omega_{\mathbb{C}/k}^{j}=\oplus j=0H^{j}(X_{0},$

$O_{X_{0}})\otimes_{k}\Omega_{\mathbb{C}/k}^{j}$

has a graded subring

$d$

$\oplus H^{j}j=0$
( $X_{0}$ , $O_{X_{O}}$ ) $\otimes_{k}\Omega_{L/k}^{j}$

which contains the above element $\xi$ . We claim that $\xi$ is then expressible
as a product $\alpha$ . $\beta$ of homogeneous elements of degrees $p$ , $d-p$ with
$\alpha$ , $\beta$ lying in this subring. Indeed, since $\mathbb{C}$ is the direct limit of its
subrings $B$ which are finitely generated $L- suba\underline{l}gebras$ , we can find such

a subring $B$ , and homogeneous elements $\overline{\alpha}$ , $\beta$of- degrees $p$ , $d-p$ in
$\oplus_{j=0}^{d}H^{j}(X_{0}, O_{X_{O}})\otimes_{k}\Omega_{B/k}^{j}$ such that $\xi=\overline{\alpha}$ . $\beta$ . Choosing a maximal

ideal in $B$ , we can find an $L$-algebra homomorphism $B\rightarrow L$ , giving rise
to a graded ring homomorphism

$d$ $d$

$f$ :
$\oplus j=0H^{j}$

( $X_{0}$ , $O_{X_{O}}$ )
$\otimes_{k}\Omega_{B/k}^{j}\rightarrow\oplus j=0H^{j}(X_{0},$

$O_{X_{0}})\otimes_{k}\Omega_{L/k}^{j}$ .

Then $\xi=f(\overline{\alpha})$ . $f(\overline{\beta})$ holds in $\oplus_{j=0}^{d}H^{j}(X_{0}, O_{X_{0}})\otimes_{k}\Omega_{L/k}^{j}$ itself.

Now

$n$

$\Omega_{L/k}^{1}=\Omega_{K_{n}/k}^{1}\otimes_{K_{n}}L=\oplus\Omega_{K/k}^{1}j=1\otimes_{K}L$
,
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where the $j$-th summand corresponds to the $j$-th inclusion $K\epsilon-tK_{n}$ .

We may write this as

$\Omega_{L/k}^{1}=\Omega_{K/k}^{1}\otimes_{K}W$,

where $W\cong L^{\oplus n}$ is an $n$-dimensional $L$-vector space with a distinguished
basis. Then there are natural surjections

$r$

$\Omega_{L/k}^{r}=\wedge(\Omega_{K/k}^{1}L\otimes_{K}W)\rightarrow\Omega_{K/k}^{r}\otimes_{K}S^{r}(W)$
,

where $S^{r}(W)$ is the $r$-th symmetric power of $W$ as an $L$-vector space.
In particular, since $\Omega_{K/k}^{d}$ is 1-dimensional over $K$ , we get a surjection

$\Omega_{L/k}^{d}\rightarrow S^{d}(W)$ . This determines the component of degree $d$ of a graded

ring homomorphism

$d$ $d$

$\Phi$ :
$\oplus j=0H^{j}$

( $X_{0}$ , $O_{X_{0}}$ )
$\otimes_{k}\Omega_{L/k}^{j}\rightarrow\oplus j=0H^{j}(X_{0},$

$O_{X_{0}})\otimes_{k}\Omega_{K/k}^{j}\otimes_{K}S^{j}(W)$ .

As in the discussion preceeding Theorem 2.8, by Serre duality on $X_{0}$ ,

the natural inclusion $H^{0}(X_{0}, \Omega_{X_{0}/k}^{d})C_{-}\rangle\Omega_{K/k}^{d}$ determines a canonical

element $\theta\in H^{d}(X_{0}, O_{X_{0}})\otimes_{k}\Omega_{K/k}^{d}$ . Identifying the symmetric algebra

$S.(W)=S.(L^{\oplus n})$ with the polynomial algebra $L[t_{1}, \ldots, t_{n}]$ , we have
that $\Phi(\xi)=\theta$ . $(t_{1}^{d}+\cdots+t_{n}^{d})$ . Hence, in the graded ring

$d$

$\oplus H^{j}j=0$
( $X_{0}$ , $O_{X_{O}}$ ) $\otimes_{k}\Omega_{K/k}^{j}\otimes_{K}S^{j}(W)$ ,

the element $\theta\cdot(t_{1}^{d}+\cdots+t_{n}^{d})$ is expressible as a product of homogeneous
elements $\alpha$ , $\beta$ of degrees $p$ and $d-p$ . Hence, by expressing

$\alpha\in H^{p}(X_{0}, O_{X_{0}})\otimes_{k}\Omega_{K/k}^{p}\otimes_{K}S^{p}(W)$ ,

$\beta\in H^{d-p}(X_{0}, O_{X_{0}})\otimes_{k}\Omega_{K/k}^{d-p}\otimes_{K}S^{d-p}(W)$

in terms of $K$-bases of $H^{p}(X_{0}, O_{X_{0}})\otimes_{k}\Omega_{K/k}^{p}$ and $H^{d-p}(X_{0}, O_{X_{0}})\otimes_{k}$

$\Omega_{K/k}^{d-p}$ , we deduce that in the polynomial ring $S.(W)=L[t_{1, }\ldots, t_{n}]$ , the

“Fermat polynomial” $t_{1}^{d}+\cdots+t_{n}^{d}$ is expressible as a sum of pairwise
products of homogeneous polynomials

$t_{1}^{d}+\cdots+t_{n}^{d}=\sum_{m=1}^{N}a_{m}(t_{1}, \ldots, t_{n})b_{m}(t_{1}, \ldots, t_{n})$
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with

$N=\left(\begin{array}{l}d\\p\end{array}\right)\left(\begin{array}{l}d\\d-p\end{array}\right)$ $(dim_{k}H^{p}(X_{0}, O_{X_{O}}))(dim_{k}H^{d-p}(X_{0}, O_{X_{O}}))$ .

If $n$ $>2N$ , the system of homogeneous polynomial equations $a_{1}=b_{1}=$

$\ldots=a_{N}=b_{N}=0$ defines a non-empty subset of the projective variety
$t_{1}^{d}+\cdots+t_{n}^{d}=0$ in $\mathbb{P}_{L}^{n-1}$ , along which this Fermat hypersurface is clearly
singular–and this is a contradiction!

\S 3. Variants of the Noether-Lefschetz Theorem

We discuss techniques from topology and Hodge theory, namely the
monodromy theory of Lefschetz pencils, and Deligne’s mixed Hodge
structures, which lead to the construction of unique factorization do-
mains, and to the construction of algebraic local rings over $\mathbb{C}$ of dimen-
sion 2 with a prescribed normal singularity, and minimal divisor class
group (a cyclic group, generated by the class of the canonical module).
As an example, we mention the following result: any ring of the form
$\mathbb{C}[x, y, z]/(z^{2}+xy+f(x, y, z))$ , with $f$ a “general” polynomial of degree
$\geq 5$ and vanishing at (0, 0, 0) to order 4, is a UFD.

3.1. Background and results

If $A$ is a (Noetherian) normal local ring, $\hat{A}$ its completion, then the

map on divisor class groups $C\ell(A)\rightarrow C\ell(\hat{A})$ is injective. This leads to
a natural question.

Question 3.1. Given $\hat{A}$, what are the possibilities for the subgroup
$C\ell(A)c_{-t}C\ell(\hat{A})$ ?

We will restrict attention here to the case when $A$ has the coefficient
field $\mathbb{C}$ , the complex numbers; we will assume henceforth that all local
rings under consideration have coefficient fifield $\mathbb{C}$ , unless explicitly noted
otherwise.

There is one case when the question is trivially answered: when
$C\ell(\hat{A})=0$ , or equivalently, $\hat{A}$ is a UFD. We recall some “classical”
results along these lines (see [4], [22], [10], [14]).

Theorem 3.2 (Brieskorn, Lipman). Let $\hat{A}$ be a complete

non-regular $UFD$ with $dim\hat{A}=2$ . Then $\hat{A}\cong \mathbb{C}[[x, y, z]]/(x^{2}+y^{3}+z^{5})$ .

Theorem 3.3 (Grothendieck). Let $\hat{A}=R/(x_{1}, \ldots, x_{n})$ where $R$

is a power series ring over $\mathbb{C}$ , such that (i) $dimA\geq 4$ , (ii) $x_{1}$ , $\ldots$ , $x_{n}$

is a regular sequence in $R$ , (iii) $\hat{A}_{\wp}$ is a $UFD$ for all primes $\wp$ of $\hat{A}$ of
height\leq 3. Then $\hat{A}$ is a $UFD$ .
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Theorem 3.4 (Hartshorne, Ogus)\wedge$\cdot$ Let $(\hat{A}, \mathfrak{m})$ be a complete local

ring with $dim\hat{A}=d\geq 3$ , such that (i) $A$ has an isolated singularity, (ii)
$dim_{\mathbb{C}}\mathfrak{m}/\mathfrak{m}^{2}\leq 2d-3$ , (iii) depth $\hat{A}\geq 3$ . Then $\hat{A}$ is a $UFD$ .

In a related vein, one can ask the following.

Question 3.5. Given $\hat{A}$, when does there exist a Noetherian local

ring A with completion $\hat{A}$, such that A is a UFD?

One has the following result in this direction [15] (see also [16]).

Theorem 3.6 (R. C. Heitmann). Let $R$ be a complete local ring
over $\mathbb{C}$ of depth $\geq 2$ . Then there exists a local $UFD$ $A$ with completion
$\hat{A}=R$ .

However, the UFD constructed by Heitmann is very far from being
“geometric”. For example, suppose $dimR=2$ , and $R$ is normal but
not Gorenstein. Then the corresponding ring $A$ cannot have a dualizing
module, from an old result of Murthy [28], which states that a Cohen-
Macaulay UFD with a dualizing module is Gorenstein. Thus Heitmann’s
ring $A$ is not a quotient of a regular local ring, for example.

So we will restrict attention, in Question 3.1, to local rings $A$ which
are essentially of finite type over $\mathbb{C}(i.e.$ , are localizations of finitely
generated $\mathbb{C}$-algebras). We will refer to such local rings $A$ as geometric.
By Murthy’s theorem [28] mentioned above, Question 3.5 can have a

positive answer for geometric $A$ , in dimension 2, only if $\hat{A}$ is Gorenstein.
So we are finally led to the following modification of Question 3.5.

Question 3.7. Let $R$ be a normal local ring. Does there exist $a$

geometric local ring $A$ with completion $\hat{A}\cong R$ , such that $C\ell(A)$ is the
cyclic group generated by $\omega_{A}$ ?

Remark 3.8. Here $\omega_{A}$ is the dualizing module for $A$ in the sense
of [13], III, 7 –if $X$ is any irreducible projective variety with a point
$x\in X$ such that $A=O_{X,x}$ , then $\omega_{A}$ is the stalk at $x$ of the dualizing
sheaf $\omega_{X}$ , as defined in [13]; $\omega_{A}$ is in fact independent of the choice of
$X$ . As in the definition of $\omega x$ in [13], one can characterize $\omega_{A}$ by a
suitable dualizing property (phrased in terms of local cohomology), or
as a suitable cohomology module of a dualizing complex for $A$ .

The discussion above has been centered around making the divisor
class group as small as possible. We give an example addressing the
question as to how large the class group can be. This suggests that
Question 3.7 is probably the only reasonable “general” question one can
ask in the direction of Question 3.1.
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Example 3.9. If $\hat{A}=\mathbb{C}[[x, y, z]]/(x^{2}+y^{3}+z^{7})$ , then image
$(C\ell(A)c_{-*}C\ell(\hat{A}))$ is always a finitely generated subgroup, while $C\ell(\hat{A})$

$=\mathbb{C}$ . Without going into details, the reason for this is as follows. The

local Picard variety of the singularity defined by $Spec\hat{A}(i.e.$ , the Picard

variety of a minimal resolution of singularities of $SpecA$) has connected
component of the identity equal to the additive group $\mathbb{C}(=\mathbb{G}_{a})$ , which
is affine; on the other hand, if $A=O_{X,x}$ is the local ring of a point $x\in X$

on a projective complex algebraic variety $X$ , and if $Y\rightarrow X$ is a resolution
of singularities, then $C\ell(A)$ can be realized as a quotient of the Picard
group Pic(Y) of $Y$ . The subgroup $Pic\ovalbox{\tt\small REJECT}$

riety, with finitely generated quotient group $NS(Y)=Pic(Y)/Pic^{0}(Y)$

(the Neron-Severi group of the projective non-singular surface $Y$ ). Now
we note that any homomorphism from an abelian variety to $\mathbb{G}_{a}$ is zero.
Presumably the finitely generated subgroup $C\ell(A)\subset C\ell(\hat{A})$ can be
of arbitrary rank, as we vary the geometric subrings $A$ . Incidentally,
$\mathbb{C}[x, y, z]/(x^{2}+y^{3}+z^{7})$ is a UFD, from results of Samuel.

We now state two results in the direction of Question 3.7 which are
the main focus of our discussion. These are taken from the papers [29]
and [30], respectively.

Theorem 3.10 $(Parameswaran+Srinivas)$ . Question 3.5 (and
hence also Quesion 3.7) has a positive answer for isolated complete in-

tersection singularities.

Theorem 3.11 ($Parameswaran+van$ Straten). Question 3.7 has
a positive answer for an arbitrary normal surface singularity.

The proofs of Theorems 3.10 (in [29]) and 3.11 (in [30]) are motivated
by the “classical” proof, essentially due to Lefschetz, of the Noether-
Lefschetz Theorem. We next recall this statement, in two equivalent

forms.
Theorem 3.12 (Noether-Lefschetz Theorem).

(a) (Algebraic Version): Let $F(x, y, z, w)\in \mathbb{C}[x, y, z, w]$ be $a$ “gen-
eral” homogeneous polynomial of degree $\geq$ 4. Then
$\mathbb{C}[x, y, z, w]/(F)$ is a $UFD$ .

(b) (Geometric Version): Let $F(x, y, z, w)\in \mathbb{C}[x, y, z, w]$ be $a$ “gen-
eral” homogeneous polynomial of degree $\geq 4$ , and let $X\subset \mathbb{P}_{\mathbb{C}}^{3}$

be the corresponding surface. Then Pic(X) $=\mathbb{Z}$ generated by
the class of the tautological line bundle $O_{X}(1)$ . Equivalently, the
restriction map $Pic(\mathbb{P}_{\mathbb{C}}^{3})\rightarrow$ Pic(X) is an isomorphism.

The equivalence of the two versions follows from the projective nor-

mality of $X$ , and the formula for the divisor class group of the affine
cone over a projectively normal variety (see [13] $II$ Ex. 6.3).
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3.2. Outline of the proof of the Noether-Lefschetz Theo-
rem

The idea of the proof of the Noether-Lefschetz Theorem is to view
the surface $X$ as a general member in a 1-parameter family of such
hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{3}$ . Now one uses the monodromy theory of Lefschetz
pencils to show that $Pic(\mathbb{P}_{\mathbb{C}}^{3})\rightarrow$ Pic(X) is an isomorphism, when $d=$

$degX\geq 4$ .

We outline this below, suppressing many technical details, but trying
to indicate the main points of the argument (see [18], [21] and [12] for
more details).

Remark 3.13. Later, we will comment on how this proof can be
modified to prove Theorem 3.10 for hypersurface singularities of dimen-
sion 2. The proof of the general case of Theorem 3.10 is similar in

dimension 2, but with some additional technical difficulties in dealing
with complete intersections instead of hypersurfaces; the higher dimen-
sional case of Theorem 3.10 in fact turns out to be simpler than the
2-dimensional case (for example, in dimensions $\geq 4$ , it follows at once
from Theorem 3.3). The proof of Theorem 3.11 has the ingredients of
the proof for hypersurface case, together with additional inputs from sin-
gularity theory, like a finite determinacy theorem of Pellikaan [31] and
classification results of Siersma [35] on “line singularities” (singularities
with 1-dimensional singular locus).

First, since the polynomial $F$ is “general”, Bertini’s theorem implies
that $X\subset \mathbb{P}_{\mathbb{C}}^{3}$ is a non-singular hypersurface. From the exact sequence
of cohomology associated to the exact sheaf sequence

$0\rightarrow O_{\mathbb{P}^{3}}(-d).\rightarrow O_{\mathbb{P}^{3}}F\rightarrow O_{X}\rightarrow 0$ .

we get $H^{1}(X, O_{X})=0$ and (since $d\geq 4$ ) $H^{2}(X, O_{X})\neq 0$ .

Now on an arbitrary proper $\mathbb{C}$-variety $T$ , with associated analytic
space $T_{an}$ (which is a compact complex analytic space), the exponential
sheaf sequence (with $\exp(f)=e^{2\pi if}$ )

$0-\mathbb{Z}_{T_{an}}\rightarrow O_{T_{an}}\rightarrow O_{T_{an}}^{*}\exp\rightarrow 0$

gives an exact sequence in cohomology

0– $\frac{H^{1}(T_{an},O_{T_{an}})}{H^{1}(T_{an},\mathbb{Z})}\rightarrow Pic(T_{an})\rightarrow H^{2}(T_{an}, \mathbb{Z})\rightarrow H^{2}(T_{an}, O_{T_{an}})$

where $Pic(T_{an})$ is the group of isomorphism classes of analytic line bun-
dles on $T_{an}$ . By Serre’s GAGA, the canonical map Pic(T) $\rightarrow Pic(Tan)$ ,
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obtained by regarding algebraic line bundles as analytic ones, is an iso-
morphism. GAGA also implies that for any coherent algebraic sheaf $\mathcal{F}$

on $T$ , with associated analytic sheaf $\mathcal{F}_{an}$ , the canonical maps $ H^{i}(T, \mathcal{F})\rightarrow$

$H^{i}(T_{an}, \mathcal{F}_{an})$ are isomorphisms of $\mathbb{C}$-vector spaces. Hence, if $H^{1}(T, O_{T})$

$=0$ , we get an induced exact sequence

$ 0\rightarrow$ Pic(T) $-H^{2}(T_{an}, \mathbb{Z})\rightarrow H^{2}(T, O_{T})$ .

This sequence is clearly also functorial in $T$ .

Applying these remarks to the inclusion $i$ : $Xe_{-*}\mathbb{P}_{\mathbb{C}}^{3}$ , since $H^{i}(\mathbb{P}_{\mathbb{C}}^{3}$ ,
$O_{\mathbb{P}_{\mathbb{C}}^{3}})=0$ , $i=1,2$ we obtain a commutative diagram with exact bottom
row

$Pic(\mathbb{P}_{\mathbb{C}}^{3})\downarrow\rightarrow\cong$
$ H^{2}((\mathbb{P}_{\mathbb{C}}^{3})_{an}, \mathbb{Z})\downarrow$

$ 0\rightarrow$ Pic(X)– $H^{2}(X_{an}, \mathbb{Z})$ $\rightarrow H^{2}(X, O_{X})$ .

So we are reduced to proving that

$H^{2}((\mathbb{P}_{\mathbb{C}}^{3})_{an}, \mathbb{Z})\rightarrow H^{2}(X_{an}, \mathbb{Z})\rightarrow H^{2}(X, O_{X})$

is exact.
Since $X$ is non-singular, Hodge Theory (in fact, the Hodge decom-

position $H^{2}(X_{an}, \mathbb{C})=H^{2,0}\oplus H^{1,1}\oplus H^{0,2})$ implies that the natural
map

$H^{2}(X_{an}, \mathbb{Z})\otimes \mathbb{C}=H^{2}(X_{an}, \mathbb{C})\rightarrow H^{2}(X_{an}, O_{X_{an}})=H^{2}(X, O_{X})$

is surjective (it is the projection onto the summand $H^{0,2}$ ). Hence

Pic(X)= $ker(H^{2}(X_{an}, \mathbb{Z})\rightarrow H^{2}(X, O_{X}))$

is a proper subgroup of $H^{2}(X_{an}, \mathbb{Z})$ , with torsion-free quotient.
To simplify notation, we now omit the subscript an. We can con-

sider a general 1-parameter family of such hypersurfaces $\{X_{t}\}_{t\in \mathbb{P}_{\mathbb{C}}^{1}}$ , cor-

responding to a 2-dimensional $\mathbb{C}$-vector subspace $V_{0}$ of the vector space
$V_{d}$ of homogeneous polynomials of degree $d$ . Let $B\subset \mathbb{P}_{\mathbb{C}}^{3}$ be the non-
singular complete intersection curve defined by $F_{1}=F_{2}=0$ , for any
basis $\{F_{1}, F_{2}\}$ of $V_{0}$ (by Bertini’s theorem, $B$ is a non-singular complete
intersection, since $V_{0}\subset V_{d}$ is general). (The family of hypersurfaces
$\{X_{t}\}_{t\in \mathbb{P}_{\mathbb{C}}^{1}}$ is usually called a pencil, and

$B=\bigcap_{t\in \mathbb{P}_{\mathbb{C}}^{1}}X_{t}$
is called the base

locus).
One shows that, since the subspace $V_{0}\subset V_{d}$ is general, $\{X_{t}\}_{t\in \mathbb{P}_{\mathbb{C}}^{1}}$

forms a Lefschetz pencil, which means the following.
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(a) If $\overline{\mathbb{P}}=\{(x, t)\in \mathbb{P}_{\mathbb{C}}^{3}\times \mathbb{P}_{\mathbb{C}}^{1}|x\in X_{t}\}$ , then $\overline{\mathbb{P}}\rightarrow \mathbb{P}_{\mathbb{C}}^{3}$ is a bi-
rational proper morphism between non-singular projective vari-
eties, which is the blow-up of $\mathbb{P}_{\mathbb{C}}^{3}$ along the base locus (the smooth
curve $B)_{-}$.

(b) Let $f$ : $\mathbb{P}\rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ be induced by the projection $\mathbb{P}_{\mathbb{C}}^{3}\times \mathbb{P}_{\mathbb{C}}^{1}\rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ .

Then all fibers of $f$ are irreducible, and for a finite set of (closed)
points $\triangle\subset \mathbb{P}_{\mathbb{C}}^{1}$ , we have that

(i) $X_{t}$ is non-singular for $ t\not\in\triangle$ , and
(ii) for any $ t\in\triangle$ , there is a unique singular point $x_{t}\in X_{t}$ , at

which $X_{t}$ has an ordinary double point singularity ( $i.e.$ , the

complete local ring $\hat{O}_{X_{t},x_{t}}$ is isomorphic to $\mathbb{C}[[x, y, z]]/(z^{2}-$

$xy))$ .

Remark 3.14. A Lefschetz pencil is the complex algebraic ana-
logue of a Morse function in the theory of compact differentiate mani-
folds.

Now $f$ : $\overline{\mathbb{P}}\backslash f^{-1}(\triangle)\rightarrow \mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ is a smooth proper morphism. This
implies the underlying map of $C^{\infty}$ manifolds is a locally trivial $C^{\infty}$ fiber
bundle (Ehresmann fibration theorem; see, for example, [18] for further
discussion of this point). This fiber bundle structure implies that all
fibers of $f$ over $\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ are diffeomorphic, and have isomorphic singular
cohomology groups. In fact, if $t_{1}$ , $t_{2}$ are any two points of $\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ , the
choice of a path (continuous image of the unit interval [0, $1]\subset \mathbb{R}$ ) joining
$t_{1}$ and $t_{2}$ determines an isomorphism $H^{*}(X_{t_{1}}, \mathbb{Z})\rightarrow H^{*}(X_{t_{2}}, \mathbb{Z})$ between
singular cohomologies; further, this isomorphism in fact depends only
on the homotopy class of this path (keeping the end points fixed). In
particular, taking $t_{2}=t_{1}=t_{0}$ , for a chosen base point $ t_{0}\in \mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ , we
obtain the monodromy representation

$\rho$ : $\pi_{1}(\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle, t_{0})\rightarrow Aut(H^{*}(X_{t_{O}}, \mathbb{Z}))$

of the fundamental group of $\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ (based at $t_{0}$ ) into the group of graded
ring automorphisms of the cohomology of the fiber.

The Leray spectral sequence for $f$ : $\overline{\mathbb{P}}\rightarrow \mathbb{P}^{1}$ , together with the fact
that the fibers $X_{t}$ over points $ t\in\triangle$ have only ordinary double points,
is used to show that

image $(H^{2}(\overline{\mathbb{P}}, \mathbb{Z})\rightarrow H^{2}(X_{t_{0}}, \mathbb{Z}))=$

{elements of $H^{2}$ ( $X_{t_{O}}$ , $\mathbb{Z}$ ) fixed under the monodromy action}

(this is the “easy” part of what is often called local Lefschetz theory). A
similar spectral sequence argument, applied to cohomology with finite
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coefficients, also implies that $coker(H^{2}(\underline{\overline{\mathbb{P}}}, \mathbb{Z})\rightarrow H^{2}(X_{t_{O}}, \mathbb{Z}))$ is torsion-

free–in fact one shows that image $H^{2}(\mathbb{P}, \mathbb{Z})\triangle-\rangle H^{2}(X_{t_{0}}, \mathbb{Z}))$ is a direct
summand of $H^{2}(X_{t_{0}}, \mathbb{Z})$ ; but the universal coefficient theorem in topol-
ogy implies that $H^{2}(X_{t_{O}}, \mathbb{Z})$ is a torsion-free abelian group, since $X_{t_{0}}$ is
a smooth hypersurface in $\mathbb{P}_{\mathbb{C}}^{3}$ . hence simply connected.

On the other hand, one has

$Pic(\overline{\mathbb{P}})\cong Pic(\mathbb{P}_{\mathbb{C}}^{3})\oplus \mathbb{Z}[E]\cong H^{2}(\overline{\mathbb{P}}, \mathbb{Z})$ ,

where $E$ is the exceptional divisor, and $E\cap X_{t_{O}}=B$ , with $O_{X}(B)=$

$O_{X}(d)$ . Hence

image $(H^{2}(\overline{\mathbb{P}}, \mathbb{Z})\rightarrow H^{2}(X_{t_{0}}, \mathbb{Z}))=image(H^{2}(\mathbb{P}_{\mathbb{C}}^{3}, \mathbb{Z})\rightarrow H^{2}(X_{t_{0}}, \mathbb{Z}))$

$=\mathbb{Z}[O_{X_{t_{0}}}(1)]$ ,

and we are reduced to proving that

$ker(H^{2}(X_{t_{O}}, \mathbb{Z})\rightarrow H^{2}(X_{t_{O}}, O_{X_{t_{0}}}))=$

{elements of $H^{2}$ ( $X_{t_{O}}$ , $\mathbb{Z}$ ) fixed under the monodromy action}.

Since $coker(H^{2}(\overline{\mathbb{P}}, \mathbb{Z})\rightarrow H^{2}(X_{t_{0}}, \mathbb{Z}))$ is torsion-free, we further reduce
to proving that

$ker(H^{2}(X_{t_{O}}, \mathbb{Q})\rightarrow H^{2}(X_{t_{O}}, O_{X_{t_{O}}}))=$

{elements of $H^{2}$ ( $X_{t_{0}}$ , $\mathbb{Q}$ ) fixed under the monodromy action}.

Suppose we allow the base point $ t_{0}\in \mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ to vary, and consider
the corresponding variations in $H^{2}(X_{t_{O}}, \mathbb{C})$ and $H^{2}(X_{t_{O}}, O_{X_{t_{O}}})$ . In other

words, we consider the sheaves $R^{2}f_{*}\mathbb{Z}$ and $R^{2}f_{*}O$-restricted to $\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ .

These sheaves are respectively a local system, and a holomorphic vector
bundle. Hence, if we fix an element of $H^{2}(X_{t_{O}}, \mathbb{Z})$ , $i.e.$ , an element of
the stalk $(R^{2}f_{*}\mathbb{Z})_{t_{0}}$ , it determines a well-defined section of $R^{2}f_{*}\mathbb{Z}$ in
any open disc $D$ around $t_{0}$ in the Riemann surface $\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ ; the image
of this section in $R^{2}f_{*}O_{\overline{\mathbb{P}}}|_{D}$ is a section of a holomorphic vector bundle
on $D$ , $i.e.$ , after choosing a local trivialization of this vector bundle, the
section becomes a vector-valued holomorphic function on $D$ . Using the
fact that a holomorphic function on a domain in $\mathbb{C}$ has a discrete set of
zeroes, one sees that the kernel of the sheaf map $R^{2}f_{*}\mathbb{Z}\rightarrow R^{2}f_{*}O_{\overline{\mathbb{P}}}$ on
$\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle$ is a local sub-system of $R^{2}f_{*}\mathbb{Z}|_{\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle}$ .

In more concrete language, this means that for a sufficiently general
choice of base point $t_{0}$ , the subspace

$ker(H^{2}(X_{t_{0}}, \mathbb{Q})\rightarrow H^{2}(X_{t_{0}}, O_{X_{t_{O}}}))$
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is at least a $\pi_{1}(\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle, t_{0})$ -submodule (here “general” means “in the
complement of a countable subset”). This submodule clearly contains
the image of $H^{2}(\mathbb{P}_{\mathbb{C}}^{3}, \mathbb{Q})$ . Hence it suffices to show that the quotient

$\mathring{\frac{H^{2}(X_{t},\mathbb{Q})}{imageH^{2}(\mathbb{P}_{\mathbb{C}}^{3},\mathbb{Q})}}$

is a simple $\pi_{1}(\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle, t_{0})$-module. This is a purely topological statement,
which is proved by more carefully analyzing the monodromy represen-
tation.

Since $(\mathbb{P}_{\mathbb{C}}^{1})_{an}$ is the Riemann sphere $S^{2}$ , it is simply connected. We
may assume after reindexing that $\triangle\subset \mathbb{C}=\mathbb{P}_{\mathbb{C}}^{1}\backslash \{\infty\}$ . The fundamental
group $\pi_{1}(\mathbb{P}_{\mathbb{C}}^{1}\backslash \triangle, t_{0})$ is then generated by the classes of suitably chosen
loops $\gamma_{t}$ based at $t_{0}$ , indexed by elements $ t\in\triangle$ , which are pairwise non-
intersecting (except at $t_{0}$ ). Here $\gamma_{t}$ is a simple closed loop in $\mathbb{C}$ , going
once around $t$ , and with winding number 0 with respect to the other
points of $\triangle$ . To simplify notation, we will henceforth denote $\pi_{1}(\mathbb{P}_{\mathbb{C}}^{1}\backslash $

$\triangle$ , $t_{0})$ by just $\pi_{1}$ .

Recall that the topological intersection number $(a, b)$ of two elements
$a$ , $b\in H^{2}(X_{t_{0}}, \mathbb{Z})$ is defined using the non-degenerate, symmetric bilinear
intersection pairing (Poincar\’e duality pairing)

$H^{2}(X_{t_{0}}, \mathbb{Z})\otimes H^{2}(X_{t_{0}}, \mathbb{Z})\rightarrow H^{4}(X_{t_{0}}, \mathbb{Z})=\mathbb{Z}$ .

We thus have intersection quadratic forms on $H^{2}(X_{t_{O}}, \mathbb{Q})$ and $H^{2}(X_{t_{0}}, \mathbb{R})$ .

The Hodge index theorem implies that, since $X_{t}$ is a non-singular projec-
tive surface, the intersection form on $H^{2}(X_{t_{O}}, \mathbb{R})$ has signature ( $1,$ $-1,$ -1,

$\ldots,$
-1). This means, for example, that on the orthogonal complement

of $\mathbb{R}[O_{X_{t_{0}}}(1)]$ for the intersection product, the intersection form is nega-

tive defifinite, since $[O_{X_{t_{0}}}(1)]$ has positive self-intersection $d$ (equal to the

degree of $X_{t_{O}}$ in $\mathbb{P}_{\mathbb{C}}^{3}$ ). In fact the Hodge theoretic proof of the index the-
orem amounts to directly proving this negative definiteness statement
(a particular case of the Hodge-Riemann bilinear relations; see [9]).

Using the condition that the singular fibers $X_{t}$ of $f$ are irreducible
with 1 ordinary double point, Lefschetz associates to each $\gamma_{t}$ an element
$\delta_{t}\in H^{2}(X_{t_{0}}, \mathbb{Z})$ , called a vanishing cycle, and describes the monodromy
action of the corresponding element $\rho(\gamma_{t})$ on $H^{2}(X_{t_{0}}, \mathbb{Q})$ via the Picard-

Lefschetz formula
$\rho(\gamma_{t})(a)=a+(a, \delta_{t})\delta_{t}\forall a\in H^{2}(X_{t_{0}}, \mathbb{Q})$ ,

where $(a, \delta_{t})\in \mathbb{Z}$ is the intersection number of $a$ with $\delta_{t}$ (see [12], [18],
[21] for details). Further, one has a self-intersection formula

$(\delta_{t}, \delta_{t})=-2$ .
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Another step in the proof of the Theorem is a lemma (
$‘‘$

conjugacy
of the vanishing cycles”) that all the classes $\rho(\gamma_{t})$ , $ t\in\triangle$ , are con-
tained in the same conjugacy class in the monodromy image group
$\rho(\pi_{1})\subset Aut(H^{2}(X_{t_{O}}, \mathbb{Z}))$ . This is deduced using standard homotopy
arguments from a “global” geometric fact, that in the (dual) projective
space parametrizing the set of all hypersurfaces of degree $d$ in $\mathbb{P}_{\mathbb{C}}^{3}$ , the
subvariety parametrizing singular hypersurfaces (called the discriminant
locus) is irreducible (see [18] for more details of this argument).

Next, one observes that the subspace of $H^{2}(X_{t_{0}}, \mathbb{Q})$ of elements
invariant under $\rho(\pi_{1})$ is the orthogonal complement of the span of the
vanishing cycles $\delta_{t}$ , for the non-degenerate intersection pairing. This
is clear, because any element of $H^{2}(X_{t_{O}}, \mathbb{Q})$ which is orthogonal to all
the $\delta_{t}$ must, by the Picard-Lefschetz formula, be invariant under all the
$\rho(\gamma_{t})$ , and hence under all of $\pi_{1}$ .

Note that since $[O_{X_{t_{O}}}(1)]\in imageH^{2}(\mathbb{P}_{\mathbb{C}}^{3}, \mathbb{Q})$ is $\pi_{1}$ -invariant, it is
orthogonal to all $\delta_{t}$ . Hence the intersection form is negative defifinite on
the span of the $\delta_{t}$ . This implies that $H^{2}(X_{t_{0}}, \mathbb{Q})$ is the orthogonal direct
sum of its $\pi_{1}$ submodule

image $H^{2}(\mathbb{P}_{\mathbb{C}}^{3}, \mathbb{Q})=H^{2}(X_{t_{O}}, \mathbb{Q})^{\pi_{1}}$

(the subspace of $\pi_{1}$ -invariants) and

$V=\sum_{t\in\triangle}\mathbb{Q}\delta_{t}$

(this direct sum decomposition is the only “easy” case of the so-called
“Hard Lefschetz theorem”). Since image $H^{2}(\mathbb{P}_{\mathbb{C}}^{3}, \mathbb{Q})\neq 0$ is a proper
subspace of $H^{2}(X_{t_{0}}, \mathbb{Q})$ as noted earlier, $V\neq 0$ .

In the light of this, the proof has been reduced to the following
assertion.

Claim 3.15. $V\subset H^{2}(X_{t_{0}}, \mathbb{Q})$ is a non-trivial simple $\pi_{1}$ submodule

of $H^{2}(X_{t_{O}}, \mathbb{Q})$ .

Indeed, since any two elements $\rho(\gamma_{t_{1}})$ , $\rho(\gamma_{t_{2}})\in\rho(\pi_{1})$ are conjugate,
we deduce (using the Picard-Lefschetz formula) that the corresponding
vanishing cycles $\delta_{t_{1}}$ , $\delta_{t_{2}}$ are in the same $\rho(\pi_{1})$ -orbit. Hence any $\pi_{1^{-}}$

submodule of $V$ containing some $\delta_{t}$ must be all of V. Now if $a\in V$ is
a non-zero element, then negative definiteness of the intersection form
yields $(a, a)<0$ , which implies $(a, \delta_{t})\neq 0$ for some $ t\in\triangle$ . This in turn

implies $a-\rho(\gamma_{t})(a)$ is a non-zero multiple of $\delta_{t}$ , $i.e.$ , the $\pi_{1}$ submodule
generated by $\mathbb{Q}a$ contains $\delta_{t}$ .
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3.3. Some elements of the proofs of Theorem 3.10 and
Theorem 3.11

We now discuss how the Lefschetz pencil technique can be used to
obtain Theorem 3.10 (in dimension 2) and 3.11.

Theorem 3.10, in dimension 2, is proved in the following stronger
form (there is a similar strengthening in dimension 3, and in dimensions $\geq$

$4$ , it follows from Grothendieck’s Theorem 3.3).

Theorem 3.16. Let $f_{i}(x_{1}, \ldots, x_{n})\in \mathbb{C}[x_{1}, \ldots, x_{n}]$ , $1\leq i\leq n-2$

be polynomials vanishing at the origin $P=(0,0, \ldots, 0)$ such that

$\mathbb{C}[[x_{1}, \ldots, x_{n}]]/(f_{1}, \ldots, f_{n-2})$

has an isolated complete intersection singularity. Then there exist inte-
gers $d_{0}>r_{0}>0$ such that if

$r\geq r_{0}$ , $d\geq\sup\{d_{0}, r+1, degf_{j}\forall j\}$

and

$V_{r,d}=$ {polynomials of degree $\leq d$ vanishing to order $\geq r$ at $P$ },

then for “general” $g_{1}$ , $\ldots$ , $g_{n-2}\in V_{r,d}$ , we have:

(i) $A=\mathbb{C}[x_{1}, \ldots, x_{n}]/(f_{1}+g_{1}, \ldots, f_{n-2}+g_{n-2})$ isa $UFD$ , with

$\hat{A}\cong \mathbb{C}[[x_{1}, \ldots, x_{n}]]/(f_{1}, \ldots, f_{n-2})$ ,

(ii) if $F_{\dot{x}}$ , $G_{i}$ are homogenous of degree $d$ in $X_{0}$ , $\ldots$ , $X_{n}$ such that

$F_{i}(1, x_{1}, \ldots, x_{n})=f_{i}$ , $G_{i}(1, x_{1}, \ldots, x_{n})=g_{i}$ , $1\leq i\leq n-2$ ,

then

$\mathbb{C}[X_{0}, \ldots, X_{n}]/(F_{1}+G_{1}, \ldots, F_{n-2}+G_{n-2})$

is a 3-dimensional graded $UFD$ ,
(iii) with notation as in (ii), the projective variety

$X=Proj\mathbb{C}[X_{0}, \ldots, X_{n}]/(F_{1}+G_{1}, \ldots, F_{n-2}+G_{n-2})$

satisfifies a Noether-Lefschetz theorem: the natural map $ C\ell(\mathbb{P}_{\mathbb{C}}^{n})\rightarrow$

$C\ell(X)$ is an isomorphism.

Remark 3.17. In the above result, “general” means “in the com-
plement of a countable union of hypersurfaces” (in the affine space
$(V_{r,d})^{n-2})$ .
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Remark 3.18. To summarize the theorem in a less technical way,
if we perturb the polynomials $f_{i}$ defining an isolated complete intersec-
tion singularity, by adding “general” polynomials $g_{i}$ vanishing to high
enough order (depending on the singularity), then we obtain an algebraic
local UFD from the perturbed equations $f_{1}+g_{1}=\cdots=f_{n-2}+g_{n-2}=0$ ,

which has the same completion, $i.e.$ , has the same singularity.

In order to prove this, one considers $S=(V_{r,d})^{n-2}=V_{r,d}\times\cdots\times V_{r,d}$ ,

the affine space parametrizing ordered $(n-2)$ -tuples $(g_{1}, \ldots, g_{n-2})$ . For
$s\in S$ , let

$X_{s}=\{F_{1}+G_{1}=\cdots=F_{n-2}+G_{n-2}=0\}\subset \mathbb{P}_{\mathbb{C}}^{n}$

be the corresponding projective subscheme. Let $L\subset S$ be a “general”
line ( $i.e.$ , $L\cong A_{\mathbb{C}}^{1}$ is an affine linear 1-dimensional subspace of $S$ ), and
set

$X_{L}=\{(x, s)\in \mathbb{P}_{\mathbb{C}}^{n}\times L|x\in X_{s}\}$ .

We would like to “do Lefschetz theory” for the “pencil” $f$ : $X_{L}\rightarrow L$ .

This requires several modifications of the earlier argument. First of
all, the general subscheme $X_{s}$ , $s\in L$ , will be an irreducible, complete
intersection surface, which has $\{P\}$ as its singular locus; further, one can
ensure that every $X_{s}$ is irreducible, and has at most one other singular
point which is an ordinary double point. This resembles the conditions
of a Lefschetz pencil, but $\{P\}\times L\subset X_{L}$ is still part of the singular
locus.

Next, we need to construct a “simultaneous resolution of singular-
ities” for the family $X_{L}\rightarrow L$ along the above curve $\{P\}\times L$ of singu-
larities. Using a Hilbert scheme argument, this is reduced in [29] to the
following problem on Hilbert functions in local algebra:

given a complete intersection quotient $A$

$\mathbb{C}[[x_{1}, \ldots, x_{n}]]/(f_{1}, \ldots, f_{n-2})$ of a power series ring
$R=\mathbb{C}[[x_{1}, \ldots, x_{n}]]$ , with an isolated singularity, and an
$\mathfrak{m}$-primary ideal $J\subset \mathfrak{m}=(x_{1}, \ldots, x_{n})\subset R$ , show that
there exists $r>0$ such that is an equality between Hilbert
functions

$\ell(R/J^{m}+(f_{1}, \ldots, f_{n-2}))$

$=\ell(R/J^{m}+(f_{1}+g_{1}, \ldots, f_{n-2}+g_{n-2}))$ $\forall m\geq 0$ ,

for an arbitrary choice of $g_{1}$ , $\ldots$ , $g_{n-2}\in \mathfrak{m}^{r}$ .

In fact there is a result of Mather [23] which implies that, for some $r>0$ ,

and for each choice of $g_{j}\in \mathfrak{m}^{r}$ , $1\leq j\leq n-2$ , there is an automorphism
$\sigma$ of the power series ring $R$ such that $\sigma\equiv identity(mod J)$ , and there
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is an equality between ideals $\sigma(f_{1}, \ldots, f_{r})=(f_{1}+g_{1}, \ldots, f_{r}+g_{r})$ . This
implies a positve answer to above problem.

Remark 3.19. The above question on Hilbert functions led nat-
urally to the papers [40], [39], and thus ultimately to Theorem 1.1!

Let $Y_{L}\rightarrow X_{L}$ be the resulting “simultaneous resolution of singular-
ities”, so that $Y_{L}\rightarrow L$ does look more like a Lefschetz pencil (all fibers
are irreducible, all but finitely many non-singular, and singular fibers
have only 1 ordinary double point).

Now much of the argument is similar to the case of the Noether-
Lefschetz theorem. One first uses the fact that if $s\in L$ is general, so
that $X_{s}$ is a surface with a unique singularity $P$ , then

$C\ell(X_{s})=Pic(X_{s}\backslash \{P\})=Pic(Y_{s}\backslash E)$ ,

where $Y_{s}\rightarrow X_{s}$ is the above resolution of singularities (obtained from
$Y_{L}\rightarrow X_{L})$ , with exceptional set $E$ . Using Mather’s result cited above,
one can arrange that the exceptional set $E\subset Y_{s}$ is in fact independent
of $\underline{s\in}L$ , in the following sense– $Y_{L}$ is obtained as a closed subvariety

of $\mathbb{P}_{\mathbb{C}}^{n}\times L$ for some blow-up $\overline{\mathbb{P}_{\mathbb{C}}^{n}}\rightarrow \mathbb{P}_{\mathbb{C}}^{n}$ , such that the exceptional set for
$Y_{L}\rightarrow X_{L}$ has the form $E\times L$ for some subvariety $E\subset\overline{\mathbb{P}_{\mathbb{C}}^{n}}$ .

If $E_{1}$ , $\ldots$ , $E_{r}$ are the irreducible components of $E$ , then since $Y_{s}$ is
a non-singular surface, one computes that

$Pic(Y_{s}\backslash E)=Pic(Y_{s})/$ {subgroup generated by the classes $[O_{Y_{s}}(E_{i})]$ }.

Thus the Theorem is equivalent to that statement that $Pic(Y_{s})$ is gen-
erated by the classes of $O_{Y_{s}}(E_{i})$ and the pull-back of $O_{\mathbb{P}^{n}}(1)$ .

Now suppose, for simplicity, that $n=3$ , $i.e.$ , we are still dealing
with hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{3}$ . One can then realize $Y_{L}$ as an open subset of
the blow-up $\overline{Y_{L}}\rightarrow \mathbb{P}_{\mathbb{C}}^{3}$ along the union of a suitable complete intersection
curve $B$ , and a subscheme of finite length supported at $P(Y_{L}$ itself is
not compact, since it is proper over $L=A_{\mathbb{C}}^{1}$ ). Hodge theory and the
exponential sheaf sequence reduce one to proving, after some further
analysis of the geometry, that

image $(H^{2}(\overline{Y_{L}}, \mathbb{Q})\rightarrow H^{2}(Y_{s}, \mathbb{Q}))=ker(H^{2}(Y_{s}, \mathbb{Q})\rightarrow H^{2}(Y_{s}, O_{Y_{s}}))$ .

Using the theory of vanishing cycles, etc. one ends up showing that

image $(H^{2}(Y_{L}, \mathbb{Q})\rightarrow H^{2}(Y_{s}, \mathbb{Q}))=ker(H^{2}(Y_{s}, \mathbb{Q})\rightarrow H^{2}(Y_{s}, O_{Y_{s}}))$ .

To conclude, one appeals to the following result of Deligne, proved in [5]
using his theory of mixed Hodge structures.
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Theorem 3.20 (Deligne). Let $Z$ be a non-singular proper $\mathbb{C}-$

variety, $Y\subset Z$ a non-singular closed subvariety, and $U\subset Z$ a Zariski
open subset containing Y. Then

image $(H^{*}(Z, \mathbb{Q})\rightarrow H^{*}(Y, \mathbb{Q}))=image$ $(H^{*}(U, \mathbb{Q})\rightarrow H^{*}(Y, \mathbb{Q}))$ .

Remark 3.21. The application of Deligne’s result, in
“monodromy” situations as above, is usually called the theorem of the

fifixed part (see [5] for more discussion) –it says that if $f$ : $U\rightarrow L$ is
a smooth proper morphism between non-singular varieties, $Z$ a non-
singular complete variety containing $U$ as a Zariski open set, and $Y$ a
fiber of $f$ , then the subspace of $\pi_{1}(L)$ -invariant elements of $H^{*}(Y, \mathbb{Q})$

is the image of the composite restriction map $ H^{*}(Z, \mathbb{Q})\rightarrow H^{*}(U, \mathbb{Q})\rightarrow$

$H^{*}(Y, \mathbb{Q})$ . The special case of this result, when $Z=U$ and $L$ are proper,
is due to Griffiths.

We now make some further remarks on the proofs of the general
case of Theorem 3.16, and of Theorem 3.11.

For Theorem 3.16, if $n$ $\geq 4$ , then in our above set-up, the variety $Y_{L}$ ,
which has dimension 3, cannot be realized as an open subset of a blow-up
of the ambient projective space $\mathbb{P}_{\mathbb{C}}^{n}$ . So, in addition to the “pencil” $ Y_{L}\rightarrow$

$L$ , one needs to also consider the “total family” of varieties parametrized
by $S$ itself, and (for example) compare the Leray spectral sequences for
these two, etc. There is a “bad subvariety” $\triangle(S)\subset S$ , parametrizing
the fibers with additional singularities (apart from the chosen one $P$),
such that the singular fibers of $Y_{L}\rightarrow L$ lie over the points of $\triangle=$

$L\cap\triangle(S)$ . Additional results needed at this stage are that $\triangle(S)$ is an
irreducible divisor, and that (since $L\subset S$ is general) the natural map
on fundamental groups $\pi_{1}(L\backslash \triangle)\rightarrow\pi_{1}(S\backslash \triangle(S))$ is surjective (a result
of Zariski).

Finally, as before, one will end up proving that the subspace of
$\pi_{1}(L\backslash \triangle)$ -invariant elements in $H^{2}(Y_{t}, \mathbb{Z})$ coincides with the subgroup
generated by the cohomology classes of the exceptional divisors $E_{i}$ , and
the pull-back of $O_{\mathbb{P}_{\mathbb{C}}^{n}}(1)$ . This will give the desired conclusion.

The strategy in proving Theorem 3.11 is a bit different. One first
chooses some algebraic “model” for the surface singularity, $i.e.$ , one finds
an irreducible normal projective surface $X\subset \mathbb{P}_{\mathbb{C}}^{n}$ together with a point
$x\in X$ such that $O_{X,x}$ has the given completion, and $X\backslash \{x\}$ is non-
singular. Then choose a generic linear projection $\mathbb{P}_{\mathbb{C}}^{n}\backslash H\rightarrow \mathbb{P}_{\mathbb{C}}^{3}$ , which
restricts to a finite, birational morphism $X\rightarrow Y$ onto a non-normal
surface $Y\in \mathbb{P}_{\mathbb{C}}^{3}$ , with $X$ as its normalization. Finally, one analyzes the
(usually 1-dimensional) singular locus $Z=Y_{sing}$ of $Y$ ; for example, one
shows that at a “general” point of $Z$ , the surface $Y$ has complete local
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rings isomorphic to $\mathbb{C}[[x, y, z]]/(xy)(i.e.,$ $Y$ has an “ordinary double
curve singularity” at such points).

Applying the singularity theory results of Pellikaan and Siersma
cited earlier, one considers deformations $\{(Y_{t}, Z_{t})\}_{t}$ in $\mathbb{P}_{\mathbb{C}}^{3}$ of the pair
$(Y, Z)$ . Taking “simultaneous normalizations” gives rise to correspond-
ing deformations $\{(X_{t}, x_{t})\}_{t}$ of $(X, x)$ , such that each of the complete

local rings $\hat{O}_{X_{t},x_{t}}$ is isomorphic to $\hat{O}_{X,x}$ (this is a consequence of the sin-
gularity theory inputs). Again one arrives at a sort of Noether-Lefschetz
situation, with one difference: the inverse image in $X_{t}$ under the normal-
ization map $X_{t}\rightarrow Y_{t}$ of the singular locus $Z_{t}\subset Y_{t}$ (which is only a Weil
divisor on $Y_{t}$ ) is a “new” divisor class, which does not come from a line
bundle on $\mathbb{P}_{\mathbb{C}}^{3}$ . In fact, adjunction theory ( $i.e.$ , “Grothendieck duality
for the finite morphism $X_{t}\rightarrow Y_{t}$

” ; see for example [13]111 Ex. 6.10 and
Ex. 7.2) implies that this divisor represents the canonical (Weil) divisor
class of $X_{t}$ , upto a twist by some $O_{X_{t}}(n)$ . This gives the generator of
the cyclic class group $C\ell(O_{X_{t},x_{t}})$ for a sufficiently general choice of the
parameter $t$ .
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