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Volume Minimizing Hypersurfaces in Manifolds of
Nonnegative Scalar Curvature

Mingliang Cai

Abstract.

We prove that if a manifold of nonnegative scalar curvature con-
tains a two-sided hypersurface which is locally of least area and ad-
mits no metric of positive scalar curvature, then it splits isometrically
in a neighborhood of the hypersurface.

We report here on joint work with G. Galloway concerning the study
of rigidity of manifolds with nonnegative scalar curvature. Let us first
recall the following theorem of Schoen and Yau.

Theorem 1. Let $(M, g)$ be a smooth $n$ -manifold with positive

scalar curvature, $S>0$ . If $\Sigma$ is a compact immersed two-sided stable
minimal hypersurface in $M$ , then $\Sigma$ admits a metric of positive scalar
curvature.

The above theorem follows from the proof of Theorem 1 in [SY].
If $M$ is merely assumed to have nonnegative scalar curvature, the con-
clusion of the above theorem may not hold. Consider, for example,
$T^{n-1}\times S^{1}$ , where $T^{n-1}$ is an $n-1$ torus. It is known that $T^{n-1}$ does
not admit a metric of positive scalar curvature ([GL], [SY]). However,
in this direction one has the following theorem (cf. [SY], [FCS]).

Theorem 2. Let $(M, g)$ be a smooth $n$ -manifold with nonnega-
tive scalar curvature, $S\geq 0$ . Let $\Sigma$ be a compact manifold which does
not admit a metric of positive scalar curvature. If $\Sigma$ is immersed as $a$

two-sided stable minimal hypersurface in $M$ , then $\Sigma$ is totally geodesic.
Furthermore, the ambient scalar curvature $S$ , the intrinsic scalar cur-
vature $\tilde{S}$ and the Ricci curvature in the normal direction $Ric_{nn}$ along $\Sigma$

all vanish.

We outline here the proof of Theorem 2 for $n$ $>3$ (for $n$ $=3$ , see
[FCS] $)$ . Denote by $\Pi$ the second fundamental form. The minimality and
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stability conditions of $\Sigma$ imply that, for all smooth functions $\phi$ on $\Sigma$ ,

(1) $\int_{\Sigma}|\nabla\phi|^{2}-\int_{\Sigma}(Ric_{nn}+|\square |^{2})\phi^{2}\geq 0$ .

Using the Gauss curvature equation and relating the ambient and intrin-
sic scalar curvatures along $\Sigma$ , one gets the following “rearrangement”

(2) $S=\tilde{S}+2Ric_{nn}+|\Pi|^{2}$ .

Substituting (2) into (1), we have

(3) $\int_{\Sigma}|\nabla\phi|^{2}+\frac{1}{2}\int_{\Sigma}(\tilde{S}-S-|\Pi|^{2})\phi^{2}\geq 0$ .

Since $S\geq 0$ , we conclude that

(4) $-\frac{1}{2}\int_{\Sigma}\tilde{S}|\phi|^{2}\leq\int_{\Sigma}|\nabla\phi|^{2}$

for any smooth function $\phi$ on $\Sigma$ .

Now, consider the operator

$L=\triangle-\frac{n-3}{4(n-2)}\tilde{S}$ .

We claim that all the eigenvalues of $L$ are nonnegative. Suppose the
contrary and let $\phi$ be a nonzero solution of

$ L\phi=-\lambda\phi$

for some $\lambda<0$ . Multiplying the above equation by $\phi$ and integrating,
we obtain

(5) $\frac{2(n-2)}{n-3}\int_{\Sigma}|\nabla\phi|^{2}=-\frac{1}{2}\int_{\Sigma}\tilde{S}\phi^{2}+\frac{2\lambda(n-2)}{n-3}\int_{\Sigma}\phi^{2}<\int_{\Sigma}|\nabla\phi|^{2}$

where the inequality follows from (4). But this is not possible as $2(n-$

$2)/(n-3)>1$ .

Now we show that the first eigenvalue, $\lambda_{0}$ , is zero. We argue again
by contradiction. Suppose the first eigenvalue $\lambda_{0}>0$ and let $u$ be a first
eigenfunction. It is well-known that the first eigenfunctions for operators
of the form of $L$ do not change sign, hence we may assume that $u>0$ .

If we multiply the metric of $\Sigma$ by $u^{4/(n-3)}$ , the scalar curvature of $\Sigma$ is
transformed to

$u^{-\frac{n+1}{n-3}}(\tilde{S}u-\frac{4(n-2)}{n-3}\triangle u)=\frac{4(n-2)}{n-3}u^{-\frac{n+1}{n-3}}\lambda_{0}u>0$ .
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This contradicts our assumption that $\Sigma$ does not admit a metric of
positive scalar curvature.

Inequality (4) together with the equation in (5) implies that the

eigenfunctions corresponding to the eigenvalue 0 must be constants and
that $\tilde{S}=0$ . Substituting $\tilde{S}=0$ and $\phi=1$ into (3), we see that both $S$

and $\Pi$ vanish. Theorem 2 is thus proved.
Theorem 2 may be loosely paraphrased as: if $\Sigma$ does not admit a

metric of positive scalar curvature and if $\Sigma\subset M$ is infinitesimally of least
area, then $M$ infinitesimally splits along $\Sigma$ . The aim of this paper is to
establish a noninflnitesimal version of this result. Our main theorem is
the following

Theorem 3. Let $(M, g)$ be a smooth $n$ -manifold with nonnegative
scalar curvature, $S\geq 0$ . Let $\Sigma$ be a compact manifold which does not
admit a metric of positive scalar curvature. If $\Sigma$ is immersed as a two-
sided hypersurface in $M$ which is locally of least area, then $\Sigma$ has zero
scalar curvature and a neighborhood of $\Sigma$ in $M$ splits isometrically as $a$

product.

By definition, a compact two-sided hypersurface $\Sigma$ in a manifold
$M$ is locally of least area provided in some normal neighborhood $V$ of
$\Sigma$ , $A(\Sigma)\leq A(\Sigma’)$ for all $\Sigma’$ isotopic to $\Sigma$ in $V$ , where $A$ is the area
functional. If the inequality is strict for $\Sigma’\neq\Sigma$ , we say that $\Sigma$ is locally
strictly of least area. Note that “locally of least area” in the theorem
cannot be replaced by “stable minimal”. Take, for example, $S^{2}\times S^{1}$ ,

where $S^{2}$ is a modified sphere with an infinitesimally flattened equator
$E$ . Then $E\times S^{1}$ is a torus which does not admit a metric of positive
curvature and which is stable minimal in $S^{2}\times S^{1}$ .

Theorem 3 was proved in [CG] for $n$ $=3$ . We thank an anony-
mous referee for pointing out to us that ideas there also apply to higher
dimensions.

The idea of the proof of Theorem 3 is as follows. We first show
that $\Sigma$ cannot be locally strictly of least area. If it were, then under a
sufficiently small perturbation of the metric to a metric of (strictly) pos-
itive scalar curvature, $\Sigma$ would be perturbed to a minimal hypersurface
which would admit a metric of positive scalar curvature. But this would
contradict our assumption. We then show that on each side of $\Sigma$ there
is a hypersurface which has the same volume as $\Sigma$ . This implies that a
neighborhood of $\Sigma$ is foliated by local minimizers, which in turn implies
that the neighborhood is a product.

The folowing lemma is proved in [CG] which shows that locally any
metric of nonnegative scalar curvature can be perturbed to a nearby
metric of positive scalar curvature.
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Lemma 1. Suppose $\Sigma$ is a compact two-sided hypersurface in an
$n$ -manifold $(M, g)$ with nonnegative scalar curvature, $S(g)\geq 0$ . Then
there exists a neighborhood $U$ of $\Sigma$ and a sequence of metrics $\{g_{n}\}$ on $U$

such that $g_{n}\rightarrow g$ in $C^{\infty}$ topology on $U$ , and each $g_{n}$ has strictly positive
scalar curvature, $S(g_{n})>0$ .

The next lemma is proved in [CG] for $n$ $=3$ . The arguments there
probably do not extend beyond dimension 7. We adopt here an alterna-
tive approach suggested by the anonymous referee.

Lemma 2. Let $\Sigma$ be as in Theorem 3. $\Sigma$ cannot be locally strictly

of least area.

Proof. Denote by $X$ the set of $C^{\infty}$ sections of the normal bundle
of $\Sigma$ with sufficiently small $C^{1}$ norm. For $u\in X$ , let $H(u)$ be the mean
curvature of $graph_{\Sigma}u$ in normal coordinates. $H$ is a Fredholm operator
and has the linerization

$H’(0)=-\triangle-(|\square |^{2}+Ric_{nn})$ .

Since both $\Pi$ and $Ric_{nn}$ vanish by Theorem 2, $ H’(0)=-\triangle$ and hence
the cokernel, as well as the kernel, of $H’(0)$ consists of constant func-
tions on $\Sigma$ . Denote by $p$ the projection from $C^{\infty}(\Sigma)$ to $Y$ , where
$Y=\{u|\int_{\Sigma}u=0\}$ . The composition $poH$ is then a submersion from $X$

to $Y$ (some shrinkage of the domain may be necessary) and $(p\circ H)^{-1}(0)$

is a one-dimensional submanifold of $X$ whose graphs constitute a family

of constant mean curvature hypersurfaces. The area functional $A_{g}$ re-
stricted to this submanifold has a strict minimum at the zero. Let $\tilde{g}$ be
a small pertubation of $g$ with positive scalar curvature, $\tilde{S}>0$ , and let
$\tilde{H}$ be the corresponding mean curvature operator. The existence of $\tilde{g}$ is
guaranteed by Lemma 1. When the perturbation is sufficiently small,
$(p\circ\tilde{H})^{-1}(0)$ will be a one-dimensional submanifold whose graphs will
be a family of constant mean curvature hypersurfaces in the metric $\tilde{g}$ ,

and the area function $A$ -has a local minimum in it close to 0. We first
show that this local minimum is a minimal hypersurface.

To this end, let $u(t)$ be a parametrization of $(p\circ H)^{-1}(0)$ with

$u(0)=0$ . Since $u’(0)$ is in the kernel of $poH’(0)$ , $u’(0)$ is a (non-

zero) constant function. Without loss of generality, we assume $u’(0)$ is

a positive constant. We then parametrize $(po\tilde{H})^{-1}(0)$ by $\tilde{u}(t)$ in such

a way that $\tilde{u}(t)$ is close to $u(t),\tilde{u}(0)$ is the local minimum of $A_{\overline{g}}\circ\tilde{u}$ and
$\tilde{u}’(0)$ is a positive function.

For simplicity, denote $A_{\overline{g}}\circ\tilde{u}$ by $\tilde{A},\tilde{u}’(0)$ by $\phi$ and the graph corre-

sponding to $\tilde{u}(0)$ by $\tilde{\Sigma}$ .
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Since 0 is an extremum of $\tilde{A},\tilde{A}’(0)=0$ . On the other hand, the
first variational formula shows that

$\tilde{A}’(0)=\int_{-}\Sigma\tilde{H}(0)\phi$ ,

where $\tilde{H}(0)$ is the mean curvature of $\tilde{\Sigma}$ . Since $\tilde{H}(0)$ is constant and
$\phi$ is positive, the above shows that $\tilde{H}(0)=0$ , i.e., $\tilde{\Sigma}$ is an minimal

hypersurface. Now we show that $\tilde{\Sigma}$ admits a metric of positive scalar
curvature, contradicting our assumption on $\Sigma$ as $\tilde{\Sigma}$ is diffeomorphic to

Since $(p\circ\tilde{H}\circ\tilde{u})’(0)=0$ , we have

(6) $-\triangle\phi\sim-(\Pi^{2}\sim+Ri\tilde{c}_{nn})\phi=c$ ,

where $c$ is in the kernel of $p$ and hence is a constant. We claim that
$c\geq 0$ . In fact, since $\tilde{A}’’(0)\geq 0$ and

$\overline{A}’’(0)=\int_{-}\Sigma(-\triangle\phi\sim-(\Pi^{2}\sim+Ri\tilde{c}_{nn})\phi)\phi$ ,

it follows that $\int\Sigma- c\phi\geq 0$ . This together with $\phi>0$ implies that $c\geq 0$ .

Applying the “rearrangement” to (6), we get

$-\triangle\phi\sim+\frac{1}{2}(s^{\approx}-\tilde{S}-\Pi^{2})\emptyset=c\geq 0$ ,

where
$ Sis\approx$

the intrinsic scalar curvature of $\tilde{\Sigma}$ .

Similar to the proof of Theorem 2, we now multiply the metric on
$\tilde{\Sigma}$ by $\phi^{2/(n-2)}$ , the scalar curvature of the new conformed metric is then
equal to

$\phi^{-\frac{n}{n-2}}(-2\triangle\phi\sim+S\phi\approx+\frac{n-1}{n-2}\frac{|\nabla\phi|^{2}}{\phi})$

$=\phi^{-\frac{n}{n-2}}(2c+(\tilde{S}+\Pi^{2})\emptyset+\frac{n-1}{n-2}\frac{|\nabla\phi|^{2}}{\phi})$ .

Since $c\geq 0$ , $\phi>0$ and $\tilde{S}>0$ , the above is positive. This is a contradic-
tion and Lemma 2 is thus proved. $\square $

Remark 1. It is clear from the proof that Lemma 2 holds for
manifolds with $C^{2,\alpha}$ metrics, a fact which will be used later.

Remark 2. Since $u(0)=0$ and $u’(0)$ is a positive constant, we know
that $u(t)$ and $t$ have the same sign when $t$ is sufficiently small. This shows
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that when a constant mean curvature hypersurface is sufficiently close
to $\Sigma$ , it lies to one side of $\Sigma$ and does not intersect with $\Sigma$ unless it
coincides with $\Sigma$ .

We are now in a position to prove Theorem 3.
For simplicity, we assume that $\Sigma$ is embedded. The general case can

be reduced to this one by working in the normal bundle of $\Sigma$ .

We denote by $\mathcal{F}$ the collection of minimal hypersurfaces which are
$C^{1}$ close to $\Sigma$ and have the same volume as $\Sigma$ . Lemma 2 implies that
each element in $\mathcal{F}$ is an accumulation point in $\mathcal{F}$ . In fact, we can show
that each element is a two-sided accumulation point. To see this, let us
look at one of the two components of $ M\backslash \Sigma$ , say $U$ . Taking two copies of
$U$ and gluing them along $\partial U=\Sigma$ , we get a new manifold, $N$ . Since $\Sigma$

is totally geodesic, the induced metric on $N$ is of class $C^{2,1}$ . Moreover,
$\Sigma$ is locally of least area in the new metric. Applying Lemma 2 (see also
Remark 1) to $N$ , we obtain a sequence of mutually distinct hypersurfaces
$\Sigma_{n}$ in $N$ such that $\Sigma_{n}$ has the same volume as $\Sigma$ and $\Sigma_{n}\rightarrow\Sigma$ . It follows
from Remark 2 that when $n$ is sufficiently large, $\Sigma_{n}$ lies to one side of $\Sigma$

and does not intersect with $\Sigma$ . This shows that $U$ contains a sequence
of hypersurfaces in $\mathcal{F}$ that is convergent to $\Sigma$ . Since the choice of $U$ is
arbitrary, we conclude that $\Sigma$ is a two-sided accumulation point in $\mathcal{F}$ .

The argument certainly applies to every element in $\mathcal{F}$ .

We now show that when $|t|$ is sufficiently small, $graph_{\Sigma}u(t)$ is an
element in $\mathcal{F}$ , where $u(t)$ is as in the proof of Lemma 2. To do this, let
us fix a point $x_{0}$ in $\Sigma$ and consider $r(t)=\exp_{x_{0}}u(t)N$ , where $N$ is the
normal vector to $\Sigma$ . Since every element in $\mathcal{F}$ is a two-sided accumulation
point, a continuity argument shows that for each $t$ there is an element
$\Sigma_{t}$ in $\mathcal{F}$ passing through $r(t)$ . Note that $(poH)^{-1}(0)$ consists of all
constant mean curvature hypersurfaces that are close to $\Sigma$ and that $\Sigma_{t}$

is a minimal hypersurface, hence, there is $t’$ such that $\Sigma_{t}=graph_{\Sigma}$ $u(t’)$ .

Clearly, $t’$ is uniquely determined, and thus we get a map $t\mapsto t’$ . It is
easy to see that this map is continuous and $0\mapsto 0$ . This implies that
at least when $|t|$ is sufficiently small, $graph_{\Sigma}u(t)$ is a minimizer for the
area functional. It then follows from the proof of Lemma 2 that $u(t)$ is
a constant section for each $t$ . We thus have obtained a smooth foliation
of a neighborhood of $\Sigma$ by totally geodesic hypersurfaces which are level
surfaces of the distance function to $\Sigma$ . A standard argument shows that
the neighborhood is a product of $\Sigma$ with an interval. This completes the
proof of Theorem 3.

Remark 3. It would be interesting to extend Theorem 3 to non-
compact hypersurfaces. In dimension 3, Fischer-Colbrie and Schoen
([FCS]) proved that a complete stable minimal surface in an orientable
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3-manifold with nonnegative scalar curvature must be conformal to the
complex plane or the cylinder $A$ . In the latter case one can show that
$A$ is flat and totally geodesic (See [FCS] and [CM]). It seems reasonable
to conjecture that if the cylinder $A$ is actually area minimizing (in a
suitable sense), then $M$ is a product, (cf. Remark 4 in [CG]).

We would like to express our gratitude to a referee for valuable
suggestions. We would also like to thank Bill Minicozzi for some helpful
discussions.

References

[CG] M. Cai and G. J. Galloway, Rigidity of $3$ -manifolds of nonnegative
scalar curvature, Comm. Anal. Geom., 8 (2000), 565-573.

[CM] T. H. Colding and W. P. Minicozzi, Estimates for parametric elliptic
integrals, preprint (1999).

[FCS] D. Fischer-Colbrie and R. Schoen, The structure of complete stable
minimal surfaces in $3$ -manifolds of nonnegative scalar curvature,

Comm. Pure Appl. Math., 33 (1980), 199-211.
[GL] M. Gromov and H. B. Lawson, Jr., The classification of simply con-

nected manifolds of positive scalar curvature, Ann. of Math., 111
(1980), 423-434.

[SY] R. Schoen and S.-T. Yau, On the structure of manifolds with positive

scalar curvature, Manuscripta Math., 28 (1979), 159-183.

Department of Mathematics
University of Miami
Coral Gables, FL 33124
U. S. A.
mcai@math.miami.edu



 



Advanced Studies in Pure Mathematics 34, 2002
Minimal Surfaces, Geometric Analysis and Symplectic Geometry

pp. 9-14

The Gaussian Image of Mean Curvature One
Surfaces in $\mathbb{H}^{3}$ of Finite Total Curvature

Pascal Collin, Laurent Hauswirth and Harold Rosenberg

Abstract.

The hyperbolic Gauss map $G$ of a complete constant mean cur-
vature one surface $M$ in hyperbolic 3-space, is a holomorphic map

from $M$ to the Riemann sphere. When $M$ has finite total curvature,
we prove $G$ can miss at most three points unless $G$ is constant. We
also prove that if $M$ is a properly embedded mean curvature one sur-
face of finite topology, then $G$ is surjective unless $M$ is a horosphere

or catenoid cousin.

We consider complete surfaces $M$ in hyperbolic 3-space $\mathbb{H}^{3}$ with
mean curvature one and of finite total curvature. For a point $q\in M$ , the
Gauss map $G$ sends $q$ to the point at infinity obtained as the positive

limit of the geodesic of $\mathbb{H}^{3}$ starting at $q$ and having $\vec{H}(q)$ (the mean
curvature vector of $M$ at $q$ ) as its tangent at $q$ . Bryant has shown that $G$

is meromorphic on $M$ and $M$ admits a parametrization by meromorphic

data analogous to the Weierstrass representation of minimal surfaces in

Euclidean 3-space $\mathbb{R}^{3}[1]$ , [4].
Yu [6] has shown that $G$ can omit at most 4 points of the sphere at

infinity $S_{\infty}$ , unless $M$ is a horosphere and $G$ is constant. For complete

minimal surfaces in $\mathbb{R}^{3}$ of finite total curvature, Osserman had shown
that the Gauss map omits at most 3 points of the sphere, unless $M$ is a
plane. In this paper we establish a result of this type in $\mathbb{H}^{3}$ .

The conformal type of a complete surface of mean curvature one with
finite total curvature in $\mathbb{H}^{3}$ is finite, i.e., $M$ is conformally a compact
Riemann surface $\overline{M}$ with a finite number of points removed (called the
punctures), but $G$ does not necessarily extend meromorphically to the
punctures. $M$ is called regular when $G$ does extend meromorphically to
the punctures.

Our first result is then:

2000 Mathematics Subject Classification. Primary $53A10$ ; Secondary

53A35.
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Theorem 1. Let $M$ be a complete surface immersed in $\mathbb{H}^{3}$ with
mean curvature one and of finite total curvature. Then $G$ can omit at
most 3 points unless $G$ is constant and $M$ is a horosphere.

Proof. If $G$ is not regular, then $G$ has an essential singularity at
a puncture $p_{0}$ . By Picard’s theorem, $G$ can omit at most two values in
a neighborhood of this puncture. Thus in the following we can assume
that $G$ is meromorphic on $\overline{M}$ , i.e., $M$ is regular.

Let $(g, \omega)$ be local Weierstrass data of the minimal cousin of $M$ in
$\mathbb{R}^{3}$ (cf. [1], [4] for the details). The induced metric on $M$ is given by
$ds=(1+|g|^{2})|\omega|$ , and the holomorphic quadratic differential

$Q=\omega dg$

is globally defined on $M$ and meromorphic at each puncture of $M$ , with
a pole at each puncture which is at worst of order 2. Since $dG$ is
meromorphic on $\overline{M}$ (the conformal compactification of $M$ ), the 1-form
$\omega^{\neq}=-Q/dG$ is meromorphic on $\overline{M}$ ; in a local conformal coordinate,
$\omega^{\neq}=-(g’(z)/G’(z))\omega(z)$ .

The Schwarzian quadratic differentials of $g$ , $G$ and $Q$ are related on
$\overline{M}([1], [4])$ :

(1) $S(g)-S(G)=2Q$ ,

where $S(g)(z)=((g’’/g’)’-(1/2)(g’’/g’)^{2})dz^{2}$ . Writing $g(z)=a_{0}+$

$z^{k}(a_{1}+a_{2}z+\ldots)$ , a calculation shows that $S(g)$ has at worst a pole of
order 2 at $z$ and the coefficient of $dz^{2}/z^{2}$ is $(1-k^{2})/2$ .

Since $Q$ is holomorphic on $M$ , it follows from (1) that the branch
points and non-simple poles of $g$ and $G$ on $M$ coincide with each other
and each of them has the same multiplicity (the branching order of $g$ at
$z$ is defined to be $k-1=b_{g}(z))$ . In particular, $\omega^{\#}$ has no poles on $M$ .

We next observe that the zeros of $\omega^{\neq}$ on $M$ are the poles of $G$ on
$M$ , and a pole of $G$ of order $k$ is a zero of $\omega^{\neq}$ of order $2k$ . First, suppose
that $z\in M$ is a pole of $G$ of order $k$ . Then $k\geq 1$ and $z$ may, or may
not, be a pole of $g$ . If it is a pole of $g$ , then $z$ is a pole of $g$ of order $k$ (by
the Schwarzian derivative relation) and then is a zero of $\omega$ of order $2k$ .

Hence the order of a zero of $\omega^{\not\simeq\neq}$ is of twice the order of the pole of $G$ . If $z$

is not a pole of $g$ , then it is not a zero of $\omega$ but a zero of $g’$ of order $k-1$

and a pole of $G’$ of order $k+1$ . Consequently $\omega^{\neq}$ also has a zero whose

order is twice the order of the pole of $G$ . An analogous computation, in
the case that $G$ has no poles, implies that $\omega^{\neq\neq}$ is holomorphic and not
zero.

Let $p_{1}$ , $\ldots,p_{r}$ be the punctures, so $\overline{M}=M\cup\{p_{1}, \ldots,p_{r}\}$ . After an

isometry of $\mathbb{H}^{3}$ , we can suppose that $G$ has only simple poles on $M$ and
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has no zeros or poles at the punctures. The metric

$ds^{\neq}=(1+|G|^{2})|\omega^{\#}|$

is complete on $\overline{M}$ , so $\omega^{\neq}$ has a pole at each puncture [5]. The order of
the pole of $\omega^{\#}$ at $p_{j}$ is given by

$P_{p_{j}}(\omega^{\#})=\lambda_{Q}(p_{j})+b_{G}(p_{j})$ ,

where $Q(z)=(\gamma/(z-p_{j})^{\lambda_{Q}(p_{j})}+\cdots)dz^{2}$ is the Laurent expansion of $Q$

at $p_{j}$ . Then the total order of the poles of $\omega^{\neq}$ is

(2) $P(\omega^{\#})=\sum_{j=1}^{r}\lambda_{Q}(p_{j})+\sum_{j=1}^{T}b_{G}(p_{j})$ .

By Riemann’s relation for $\omega^{\#}$ on $\overline{M}$ , we have

(3) $P(\omega^{\#})-2N=2-2s$ ,

where $N$ is the degree of $G$ (so $2N$ is the order of zeros of $\omega^{\neq}$ , since $G$

has $N$ simple poles on $M$ ) and $s$ is the genus of $M$ .

Let $q_{1}$ , $\ldots$ , $q_{k}$ be the points of $S_{\infty}$ omitted by $G$ , so that
$G^{-1}\{q_{1}, \ldots, q_{k}\}\subset\{p_{1}, \ldots, p_{r}\}$ (we write $G$ also for the meromorphic ex-

tension of $G$ to $\overline{M}$). Then we have

(4) $kN\leq\sum_{j=1}^{r}(1+b_{G}(p_{j}))\leq r+b$ ,

where $b$ is the total branching order of $G$ . Here $1+b_{G}(p_{j})$ is the total
number of times that $G$ takes its value at $p_{j}$ , counted with multiplicity.

Riemann’s relation applied to the 1-form $dG$ on $\overline{M}$ yields:

(5) $2N-b=2-2s$ .

Now by Lemma 3 of [5], we have at each puncture $p_{j}$ :

$\lambda_{Q}(p_{j})+b_{G}(p_{j})\geq 2$ .

Then equation (2) gives:

(6) $P(\omega^{\#})\geq 2r$ .

This last inequality together with the equations (3) and (5) yields:

$P(\omega^{\#})=4N-b\geq 2r$ .
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Then the equation (4) implies:

(7) $4N-kN\geq r\geq 1$ ,

and $k$ is at most 3. $\square $

Theorem 2. Let $M$ be a properly embedded surface in $\mathbb{H}^{3}$ with
mean curvature one and of finite topology. If $M$ is not a horosphere nor
a catenoid cousin, then the Gauss map $G$ of $M$ is surjective.

Proof. We know that $M$ has finite total curvature and each end of
$M$ is regular [2]; also each end is asymptotic to an end of a horosphere or
an end of a catenoid cousin. We also proved in [2] that the asymptotic
boundary of an end is precisely the limiting value of $G$ at the puncture.
We can suppose $M$ has at least two ends, since if $M$ had only one end,
the asymptotic boundary of $M$ would be one point and $M$ would be a

horosphere [2].
We claim that each end of $M$ is asymptotic to a catenoid cousin

end. Suppose this were not true. Let $E$ be an end of $M$ asymptotic to a

horosphere end. We work in the upper half-space model of $\mathbb{H}^{3}$ , $\{x_{3}>0\}$ ,

and assume $E$ is asymptotic to a horosphere $x_{3}=c>0$ . In particular,
the mean curvature vector of $E$ points up outside of some compact set
of $E$ . There are no ends of $M$ above $E$ . Indeed, their mean curvature
vector would also point up (each such end is asymptotic to a horizontal
horosphere or a catenoid cousin end whose limiting normal points ver-
tically up) and $M$ separates $\mathbb{H}^{3}$ into two connected components, so no
such end is above $E$ .

Then for $\xi j$ $>0$ , the part $A$ of $M$ above $c+\in is$ compact. At the
highest point of $A$ (if $A$ were not empty) the mean curvature vector of $M$

points down. But this highest point can be joined by an arc in $\mathbb{H}^{3}\backslash M$ ,
to a point of $E$ where the mean curvature vector points up. Thus $M$ is

completely below $x_{3}=c$ .

$Let\in>0$ , and let $C$ be a small circle in the plane $x_{3}=c-\in so$

that $C$ is above $M$ . Just as in the proof of the half-space theorem for
properly immersed minimal surfaces in $\mathbb{R}^{3}[3]$ , one can take a family of
catenoid cousin ends $C(\lambda)$ , $\partial C(1)=C$ with $C(1)$ above $M$ , and $C(\lambda)$

converges to the plane $x_{3}=c-\in as\lambda\rightarrow 0$ . Then some $C(\lambda)$ would
touch $M$ at a point $q\in M$ , and the maximum principle would yield
$M$ equals this catenoid cousin. Thus each end of $M$ is asymptotic to a
catenoid cousin.

Next, observe that $G$ is injective on the set of punctures; two distinct
ends can not be asymptotic to the same point at infinity. This follows
from the fact that each end is asymptotic to a catenoid cousin end and
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we know the direction of the mean curvature vector along the end. When
$M$ is embedded, $M$ separates $\mathbb{H}^{3}$ and the mean curvature vector points
into one of the components of the complement. Thus two ends can not
be asymptotic to the same point at infinity.

Now, suppose that $G$ is not surjective and omits a point $q$ . Then
there is exactly one catenoid cousin type end $E$ of $M$ asymptotic to $q$ .

Let $p\in\overline{M}$ be the puncture of $E$ such that $G(p)=q$ . We know $G$ has

local degree one at $p$ . There is no other point $p’\in\overline{M}$ sent to $q$ by $G$ .

For $p’$ can not be a puncture of $M$ , since $G$ is injective on the punctures,
and $p’$ can not be a point of $M$ because $q$ is a value omitted. Hence the
degree $N$ of $G$ on $\overline{M}$ is one.

We use the same notation as in Theorem 1. At each puncture $p_{j}$ of
$M$ , $\omega^{\#}$ has a pole exactly of order 2. So, by equation (3), we have

$2r-2=2-2s$ and $r+s=2$ .

Then $M$ is the catenoid cousin $(r=2)$ and Theorem 2 is proved. $\square $
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Behavior of Eigenfunctions

near the Ideal Boundary of Hyperbolic Space

Harold Donnelly

Abstract.

The spectrum of the Laplacian on hyperbolic space is a proper

subset of the positive reals. We study eigenfunctions, defined on the

complements of compact sets, whose eigenvalues lie below the bot-
tom of the spectrum. Such eigenfunctions may arise by perturbing
the metric on compact subsets of the space. One divides the eigen-
functions by normalizing factors, so that the quotients have analytic

boundary values on the ideal boundary at infinity. The renormalized
eigenfunctions are approximated by special polynomials, in nontan-
gential approach regions to the ideal boundary.

\S 1. Introduction

In [6] and [7], the authors studied asymptotic behavior of eigenfunc-
tions, near infinity, for the Schr\"odinger operator $-\sum_{i=1}^{n}\partial^{2}/\partial x_{i}^{2}+V$

in $R^{n}$ . Let $\psi\in L^{2}(R^{n})$ be a square integrable eigenfunction, of the
Schr\"odinger operator, with eigenvalue $\lambda<0$ . If $V$ decays rapidly, then

a multiple, $\hat{\psi}(r, \theta)=\psi(r, \theta)/h(r)$ , was shown to have analytic boundary

values $A(\theta)$ on the sphere $S^{n-1}$ , compactifying $R^{n}$ at infinity. A de-

tailed estimate was given for the asymptotic behavior of $\hat{\psi}$ near a zero
of $A$ . The two dimensional case was treated in [7], where applications
were given to the structure of the nodal set of $\psi$ . If $n$ $>2$ , no such
development seems feasible, as discussed in [6].

The present work gives analogous results for eigenfunctions of the
Laplacian $\triangle$ on hyperbolic space $H^{n}$ . One assumes that $\triangle\phi=\lambda\phi$ , with
$\lambda<$ $(n -1)^{2}/4$ outside some compact subset. This reflects the fact

[4], that the essential spectrum of $\triangle$ is now [ $(n -1)^{2}/4$ , $\infty)$ . The case
$n$ $=2$ was described in [3]. Here we proceed to generalize that work to
arbitrary dimension $n$ .

2000 Mathematics Subject Classification. Primary $58G25$ .



16 H. Donnelly

\S 2. Boundary values at infinity

Let $H$ be the simply connected, complete, hyperbolic space of di-
mension $n$ $\geq 2$ . That is, $H$ has the Poincar\’e metric of constant curvature
-1. Fixing $p\in H$ , the exponential map $\exp$ : $T_{p}H\rightarrow H$ is a diffeomor-
phism. We endow this manifold $H$ with the corresponding geodesic polar
coordinates. The metric is then given by

$(ds)^{2}$ $=$ $(dr)^{2}+g^{2}(r)(d\theta)^{2}$ ,
$g(r)$ $=$ $\sinh r$ .

Suppose that $r_{0}>0$ and set $H(r_{0})=\{x\in H|r(x)>r_{0}\}$ . We
consider eigenfunctions $\phi\in L^{2}(H(r_{0}))$ of the Laplacian $\triangle$ , associated
to the given Riemannian metric. Thus, one has $\triangle\phi=\lambda\phi$ . Our concern
is with the behavior of $\phi$ as $ r\rightarrow\infty$ . Thus, we feel free to choose $r_{0}$

sufficiently large. The eigenfunction $\phi$ need not satisfy any constraints
on the compact boundary of $H(r_{0})$ , where $r(x)=r_{0}$ .

It seems natural to employ separation of variables. The spherical
harmonics $Y_{k,j}(\theta)$ , for $k\geq 0$ and $1\leq j\leq q(k)$ , form a complete orthonor-
mal basis for $L^{2}(S^{n-1})$ . Each $Y_{k,j}(\theta)$ belongs to a $q(k)$ -dimensional
eigenspace of the spherical Laplacian, with corresponding eigenvalue $\lambda_{k}$ .

One may expand

$\phi(r, \theta)=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}\phi_{k,j}(r)Y_{k,j}(\theta)$ .

A computation using the local defining formula for $\triangle$ gives

$\triangle\phi=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}\triangle_{k}\phi_{k,j}(r)Y_{k,j}(\theta)$ ,

where

$\triangle_{k}\phi_{k,j}=-\phi_{k,j}’’-(n-1)\frac{g’}{g}\phi_{k,j}’+\lambda_{kg}^{-2}\phi_{k,j}$ .

Here the’ denotes differentiation in $r$ . Thus $\phi_{k,j}\in L^{2}$ $((r_{0}, \infty)$ , $g^{n-1}(r)dr)$ .

So $\triangle$ is decomposed as a direct sum of the operators $\triangle_{k}$ , with multi-
plicity $q(k)$ .

Now $\triangle_{k}$ is unitarily equivalent to $D_{k}=g^{(n-1)/2}\triangle_{k}g^{(1-n)/2}$ acting

on $L^{2}$
$((r_{0}, \infty)$ , $dr)$ . A calculation yields

$ D_{k}\psi=-\psi’’+[\gamma(r)+\lambda_{kg}^{-2}]\psi$ .
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Here $\gamma(r)=((n-1)/2)f^{JJ}+((n-1)/2)^{2}(f’)^{2}$ , with $g=e^{f}$ . In particular
$\gamma(r)=(\underline{(}n-1)/2)^{2}+0(e^{-2r})$ .

Set $\phi_{k,j}=g^{(n-1)/2}\phi_{k,j}$ . Since $\triangle\phi=\lambda\phi$ , one has the corresponding

equation $D_{k}\overline{\phi}_{k,j}=\lambda\overline{\phi}_{k,j}$ . Therefore

(2.1) $-\overline{\phi}_{k,j}\prime\prime+[\gamma(r)-\lambda+\lambda_{kg}^{-2}]\overline{\phi}_{k,j}=0$ .

The potential term $\gamma(r)-\lambda+\lambda_{kg}^{-2}$ decays rapidly to $((n-1)/2)^{2}-\lambda$ .

The hypothesis $\overline{\phi}_{k,j}\in L^{2}$ $((r_{0}, \infty)$ , $dr)$ and the method of asymptotic

integrations [5, pp. 370-384] give

Lemma 2.2. The equation (2.1) has square integrable solutions on
$(r_{0}, \infty)$ if and only if $ E=(n-1)^{2}/4-\lambda$ is positive. When $E>0$ , there
is $a$ one-dimensional space of square integrable solutions. Moreover, any
non-zero $L^{2}$ solution satisfies, for $r$ large,

$\overline{\phi}_{k,j}\sim b_{k,j}e^{-\sqrt{E}r}$ , $\overline{\phi}_{k,j}\prime\sim-\sqrt{E}b_{k,j}e^{-\sqrt{E}r}$ .

$Here\sim means$ that the ratio approaches one as $ r\rightarrow\infty$ . The constant
$b_{k,j}$ is not zero.

Assume $E>0$ , and let $\overline{h}_{k}$ be a solution of (2.1). Suppose $\overline{h}_{k}$ lies
inside the one-dimensional space of square integrable solutions, as spec-
ified in Lemma 2.2. If $\overline{h}_{k}(r_{1})>0$ for some $r_{1}>r_{0}$ , then $\overline{h}_{k}(r)>0$

for all $r\geq r_{1}$ . Otherwise, let $r_{2}>r_{1}$ be the first zero of $\overline{h}_{k}$ . Clearly,
$\overline{h}_{k}’(r_{2})\leq 0$ . By the uniqueness theorem, for second order ordinary dif-

ferential equations, this forces $\overline{h}_{k}’(r_{2})<0$ . Since $\overline{h}_{k}\in L^{2}((r_{0}, \infty),$ $dr)$ ,

the function $\overline{h}_{k}$ must have a negative minimum $r_{3}>r_{2}$ . However, if
$r_{0}$ is sufficiently large, then the potential term $\gamma(r)-\lambda+\lambda_{kg}^{-2}>0$

for all $r\geq r_{0}$ . Consequently, solutions to (2.1) cannot have negative

local interior minimums. This contradiction shows that $\overline{h}_{k}(r)>0$ for
all $r\geq r_{1}$ .

Now we fix $r_{1}>r_{0}$ . Define $\overline{h}_{k}\in L^{2}$ $((r_{0}, \infty)$ , $dr)$ by requiring $\overline{h}_{k}$ to

satisfy (2.1) and the normalization $\overline{h}_{k}(r_{1})=1$ . The remarks above show

that this defines $\overline{h}_{k}$ uniquely. Moreover $\overline{\phi}_{k,j}(r)=\overline{\phi}_{k,j}(r_{1})\overline{h}_{k}(r)$ , since

both $\overline{\phi}_{k,j}$ and $\overline{h}_{k}$ lie in the one-dimensional space of solutions, specified

by Lemma 2.2. If $\overline{\phi}=\phi g^{(n-1)/2}$ , we may write

(2.3) $\overline{\phi}(r, \theta)=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}\overline{\phi}_{k,j}(r_{1})\overline{h}_{k}(r)Y_{k,j}(\theta)$ .

The function $\phi(r, \theta)$ is analytic because $(\triangle-\lambda)\phi=0$ and the elliptic
operator $\triangle-\lambda$ has analytic coefficients [8, p. 178]. By Proposition 4.5
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of the appendix, we may write

(2.4) $|\overline{\phi}_{k,j}(r_{1})|\leq c_{1}e^{-c_{2}\sqrt{\lambda_{k}}}$

for positive constants $c_{1}$ and $c_{2}$ . Recall that the eigenvalues of the spher-

ical Laplacian satisfy $\lambda_{k}=0(k^{2})$ .

It is also necessary to control the dependence of the $\overline{h}_{k}$ upon $k$ . This
is provided by

Lemma 2.5. For all $k$ , one has $0<\overline{h}_{k}(r)\leq\overline{h}_{0}(r)$ , whenever
$r\geq r_{1}$ .

Proof. We have already shown that $\overline{h}_{k}(r)>0$ . The difference
$a_{k}=\overline{h}_{0}-\overline{h}_{k}$ satisfies, since $\lambda_{0}=0$ ,

$-a_{k}’’+[\gamma(r)-\lambda]a_{k}-\lambda_{kg}^{-2}\overline{h}_{k}=0$ ,

$\overline{a}_{k}(r_{1})=0$ .

If $a_{k}$ is ever negative, then, since $a_{k}\in L^{2}$ $((r_{0}, \infty)$ , $dr)$ , the function
$a_{k}$ must have a negative minimum. At such a local minimum, the dif-
ferential equation for $a_{k}$ cannot hold. This contradiction proves the
lemma. $\square $

One now has the necessary preparations to study the asymptotic

behavior of eigenfunctions. Set $\hat{\phi}(r, \theta)=\overline{\phi}(r, \theta)\overline{h}_{0}^{-1}(r)$ , or equivalently,
$\hat{\phi}(r, \theta)=g^{(n-1)/2}(r)\phi(r, \theta)\overline{h}_{0}^{-1}(r)$ . The central result of this section is

Theorem 2.6. As $ r\rightarrow\infty$ , one has $\hat{\phi}(r, \theta)\rightarrow A(\theta)$ , uniformly in
$\theta$ . The function $A(\theta)$ is real analytic.

Proof. By (2.4) and Lemma 2.5, we have $|\overline{\phi}_{k,j}(r)|=|\overline{\phi}_{k,j}(r_{1})|\overline{h}_{k}(r)$

$\leq c_{1}e^{-c_{2}\sqrt{\lambda_{k}}}\overline{h}_{0}(r)$ . Now

$\hat{\phi}(r, \theta)=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}\overline{\phi}_{k,j}(r)\overline{h}_{0}^{-1}(r)Y_{k,j}(\theta)$ .

Lemma 2.2 guarantees that $A_{k,j}=\lim_{r\rightarrow\infty}\overline{\phi}_{k,j}\overline{h}_{0}^{-1}$ exists. The given

bound on the functions $\overline{\phi}_{k,j}$ allows one to interchange the limit in $r$

with the infinite sum in $j$ . Note that $||Y_{k,j}||_{2}=1$ , and thus $||Y_{k,j}||_{\infty}\leq$

$c_{3}\lambda_{k}^{(n-2)/4}$ , by standard elliptic theory. Moreover, the multiplicity $q(k)=$

$0(\lambda_{k}^{(n-2)/2})$ . $\square $
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Thus, one has

$A(\theta)=\lim_{r\rightarrow\infty}\hat{\phi}(r, \theta)=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}A_{k,j}Y_{k,j}(\theta)$ .

The estimate $|A_{k,j}|\leq c_{1}e^{-c_{2}\sqrt{\lambda_{k}}}$ and Proposition 4.2 show that $A$ is real
analytic.

If $\phi_{k,j}$ is not identically zero, Lemma 2.2 guarantees that $A_{k,j}\neq 0$ .

In particular, $A(\theta)$ is not the zero function. We also have the expected

Corollary 2.7. For any $\ell$ , $\lim_{r\rightarrow\infty}\nabla_{\theta}^{\ell}\hat{\phi}(r, \theta)=\nabla_{\theta}^{\ell}A$ , where $\nabla_{\theta}$

denotes the covariant derivative of $S^{n-1}$ with its standard metric.

Proof. The rapid decay $|\overline{\phi}_{k,j}(r)|\overline{h}_{0}^{-1}(r)\leq c_{1}e^{-c_{2}\sqrt{\lambda}}k$ , and standard
elliptic estimates for the derivatives of eigenfunctions, allow one to write

$\nabla_{\theta}^{\ell}\hat{\phi}(r, \theta)=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}\overline{\phi}_{k,j}(r)\overline{h}_{0}^{-1}(r)\nabla_{\theta}^{\ell}Y_{k,j}(\theta)$ .

For the same reasons, one may interchange the sum in $j$ and the limit
in $r$ , to get

$\infty q(k)$

$\lim_{r\rightarrow\infty}\nabla_{\theta}^{\ell}\hat{\phi}(r, \theta)=\sum_{k=0}\sum_{j=1}A_{k,j}\nabla_{\theta}^{\ell}Y_{k,j}(\theta)=\nabla_{\theta}^{\ell}A$
.

$\square $

It is also useful to estimate the rate of convergence in Corollary 2.7.
In this direction, there are constants $B_{\ell}$ , so that

Proposition 2.8. For $r>r_{1}$ , $|\nabla_{\theta}^{\ell}A-\nabla_{\theta}^{\ell}\hat{\phi}(r, \theta)|\leq B_{\ell}e^{-2r}$ .

Proof. Set $\hat{\phi}_{k,j}=\overline{\phi}_{k,j}\overline{h}_{0}^{-1}$ , the coefficient of $Y_{k,j}(\theta)$ in the spherical

harmonic expansion for $\hat{\phi}$ . Then $\hat{\phi}_{k,j}’=[\overline{\phi}_{k,j}^{J}\overline{h}_{0}-\overline{\phi}_{k,j}\overline{h}_{0}’]\overline{h}_{0}^{-2}$ Define

$w_{k,j}=\overline{h}_{0}^{2}\hat{\phi}_{k,\underline{j}}’=\overline{\phi}_{k,j}’\overline{h}_{0}-\overline{\phi}_{k,j}\overline{h}_{0}^{J}$ . By equation (2.1), we deduce that

$w_{k,j}’=\bigwedge_{kg\phi_{k,j}\overline{h}_{0}}^{-2}$ . $\square $

Now the functions $\overline{\phi}_{k,j}$ and $\overline{h}_{0}$ are both of order $e^{-\sqrt{E}r}$ , according

to Lemma 2.2. Moreover, $g^{-2}=0(e^{-2r})$ . So we may integrate up to

infinity, yielding

$w_{k,j}(x)=-\int_{x}^{\infty}\lambda_{kg}^{-2}(y)\overline{\phi}_{k,j}(y)\overline{h}_{0}(y)dy$ .
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Note that $\lim_{x\rightarrow\infty}w_{k,j}(x)=0$ , by Lemma 2.2.
Recalling the definition of $w_{k,j}$ gives

$\hat{\phi}_{k,j}’(x)=-\overline{h_{0}}2(x)\int_{x}^{\infty}\lambda_{kg}^{-2}(y)\overline{\phi}_{k,j}(y)\overline{h}_{0}(y)dy$ .

By Lemma 2.5, $|\overline{\phi}_{k,j}(y)|=|\overline{\phi}_{k,j}(r_{1})\overline{h}_{k}(y)|\leq\overline{\phi}_{k,j}(r_{1})\overline{h}_{0}(y)$ . So

$|\hat{\phi}_{k,j}’(x)|\leq\overline{h}_{0}^{-2}(x)\int_{x}^{\infty}\lambda_{kg}^{-2}(y)\overline{h}_{0}^{2}(y)dy|\overline{\phi}_{k,j}(r_{1})|$ .

Using Lemma 2.2, $\overline{h}_{0}(y)\sim\overline{b}_{0}e^{-\sqrt{E}r}$ . Thus one has

$|\hat{\phi}_{k,j}’(x)|\leq c_{4}\int_{x}^{\infty}\lambda_{kg}^{-2}(y)dy|\overline{\phi}_{k,j}(r_{1})|$ .

Now from (2.4)

$|\hat{\phi}_{k,j}’(x)|\leq c_{5}\int_{x}^{\infty}g^{-2}(y)dye^{-c_{6}\sqrt{\lambda_{k}}}$ .

By definition $g(y)=\sinh y$ . Therefore

(2.9) $|\hat{\phi}_{k,j}’(x)|\leq c_{7}e^{-c_{6}\sqrt{\lambda_{k}}}e^{-2x}$ .

The estimate (2.9) is quite appropriate for our present purpose. In

fact

(2.10) $\nabla_{\theta}^{\ell}A(\theta)-\nabla_{\theta}^{\ell}\hat{\phi}(r, \theta)=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}(A_{k,j}-\hat{\phi}_{k,j}(r))\nabla_{\theta}^{\ell}Y_{k,j}(\theta)$ .

Since $A_{k,j}=\lim_{r\rightarrow\infty}\hat{\phi}_{k,j}(r)$ , we have

$A_{k,j}-\hat{\phi}_{k,j}(r)=\int_{r}^{\infty}\hat{\phi}_{k,j}’(x)dx$ .

The estimate (2.9) guarantees that the integral converges and also yields

$|A_{k,j}-\hat{\phi}_{k,j}(r)|\leq c_{8}e^{-c_{6}\sqrt{\lambda_{k}}}e^{-2r}$ .

Returning to (2.10), one finds that

$|\nabla_{\theta}^{p}A-\nabla_{\theta}^{\ell}\hat{\phi}(r, \theta)|\leq\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}c_{8}e^{-c_{6}\sqrt{\lambda_{k}}}|\nabla_{\theta}^{\ell}Y_{k,j}(\theta)|e^{-2r}$ .

Proposition 2.8 follows easily.
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\S 3. Asymptotic estimate

We proceed to obtain more detailed information concerning the con-
vergence of $\hat{\phi}(r, \theta)$ to $A(\theta)$ as $ r\rightarrow\infty$ . The first step is to derive a basic

integral equation satisfied by $\hat{\phi}(r, \theta)$ . This leads to an iterative scheme

for developing $\hat{\phi}(r, \theta)$ in terms of $A(\theta)$ . Near the zeroes of $A,\hat{\phi}$ may be

approximated by certain polynomials. The order of these polynomials
coincides with the order of vanishing of $A$ .

Recall that $\overline{\phi}(r, \theta)=\phi(r, \theta)g^{(n-1)/2}(r)$ and $\phi$ is an eigenfunction of

the hyperbolic Laplacian with eigenvalue $\lambda$ . It follows that $\overline{\phi}$ satisfies
the partial differential equation

(3.1) $-\frac{\partial^{2}\overline{\phi}}{\partial r^{2}}+(\gamma(r)-\lambda)\overline{\phi}+g^{-2}\triangle_{\theta}\overline{\phi}=0$ .

Here $\triangle_{\theta}$ is the Laplacian on $S^{n-1}$ . In fact, (3.1) follows by summing the
equations (2.1). Alternatively, one derives (3.1) directly from the local
coordinate formula for the Laplacian $\triangle$ .

The basic idea is to convert the partial differential equation for $\overline{\phi}$

into an integral equation for $\hat{\phi}(r, \theta)=\overline{\phi}(r, \theta)/\overline{h}_{0}(r)$ . We may write

Proposition 3.2. If $s>r>r_{0}$ , then

$\hat{\phi}(s, \theta)=\hat{\phi}(r, \theta)-\int_{r}^{s}\overline{h}_{0}^{-2}(x)\int_{x}^{\infty}\overline{h}_{0}^{2}(y)g^{-2}(y)\triangle_{\theta}\hat{\phi}(y, \theta)dydx$ .

Proof. One has $\partial\hat{\phi}/\partial r=\partial/\partial r(\overline{\phi}\overline{h}_{0}^{-1})=(\partial\overline{\phi}/\partial r)\overline{h}_{0}-\overline{\phi}(\partial\overline{h}_{0}/\partial r)\overline{h}_{0}^{-2}$

Set $H=\overline{h}_{0}^{2}\partial\hat{\phi}/\partial r=(\partial\overline{\phi}/\partial r)\overline{h}_{0}-\overline{\phi}(\partial\overline{h}_{0}/\partial r)$ . Then, using equations

(2.1) and (3.1), we find $\partial H/\partial r=\overline{h}_{0}\partial^{2}\overline{\phi}/\partial r^{2}-\overline{\phi}\partial^{2}\overline{h}_{0}/\partial r^{2}=g^{-2}\triangle_{\theta}\overline{\phi}\overline{h}_{0}$ .

So $\partial H/\partial r=g^{-2}\overline{h}_{0}^{2}\triangle_{\theta}\hat{\phi}$ . $\square $

By Proposition 2.8, $|\triangle_{\theta}\hat{\phi}|$ is uniformly bounded in both $r$ and $\theta$ .

Also, $g^{-2}=0(e^{-2r})$ and $\overline{h}_{0}=0(e^{-\sqrt{E}r})$ , from Lemma 2.2. So we may
integrate up to infinity, yielding

$H(x)=-\int_{x}^{\infty}\overline{h}_{0}^{2}(y)g^{-2}(y)\triangle_{\theta}\hat{\phi}(y, \theta)dy$ .

Note that $H=(\partial\overline{\phi}/\partial r)\overline{h}_{0}-\overline{\phi}(\partial\overline{h}_{0}/\partial r)$ approaches zero as $ r\rightarrow\infty$ . In

fact, both $\overline{\phi}$ and $\overline{h}_{0}$ are of order $e^{-\sqrt{E}r}$ , by Lemma 2.2 and Theorem
2.6. Equations (2.1) and (3.1) may be integrated to verify that $\partial\overline{\phi}/\partial r$

and $\partial\overline{h}_{0}/\partial r$ are bounded.
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The definition of $H$ now yields

$\frac{\partial\hat{\phi}}{\partial r}(x, \theta)=-\overline{h}_{0}^{-2}(x)\int_{x}^{\infty}\overline{h}_{0}^{2}(y)g^{-2}(y)\triangle_{\theta}\hat{\phi}(y, \theta)dy$ .

Proposition 3.2 follows by integrating this equation between $r$ and $s$ .

We now let $ s\rightarrow\infty$ in Proposition 3.2. Note that $\overline{h}_{0}(r)\sim\overline{b}_{0}e^{-\sqrt{E}r}$

from Lemma 2.2. Moreover, the function $g^{-2}(r)=0(e^{-2r})$ and $|\triangle_{\theta}\hat{\phi}|$

is bounded by Proposition 2.8. By Theorem 2.6 and the dominated
convergence theorem,

$A(\theta)=\hat{\phi}(r, \theta)-\int_{7}^{\infty}\overline{h}_{0}^{-2}(x)\int_{x}^{\infty}\overline{h}_{0}^{2}(y)g^{-2}(y)\triangle_{\theta}\hat{\phi}(y, \theta)dydx$ .

Let $T$ denote the integral-differential operator defined by

$Tf(r, \theta)=\int_{7}^{\infty}\overline{h}_{0}^{-2}(x)\int_{x}^{\infty}\overline{h}_{0}^{2}(y)g^{-2}(y)\triangle_{\theta}f(y, \theta)dydx$ .

The domain of $T$ consists of functions where $|\triangle_{\theta}f|$ is bounded, uniformly
in $y$ and $\theta$ .

We may write
$\hat{\phi}(r, \theta)=A(\theta)+T\hat{\phi}(r, \theta)$ .

Substituting $\hat{\phi}=A+T\hat{\phi}$ in the right hand side gives

$\hat{\phi}=A+TA+T^{2}\hat{\phi}$ .

Iterating any finite number of times yields, for any positive integer $m$ ,

$\hat{\phi}=\sum_{j=0}^{m}T^{j}A+T^{m}(\hat{\phi}-A)$ .

Proposition 2.8 and the dominated convergence theorem guarantee that
we always remain within the domain of $T$ .

An elementary calculation using Proposition 2.8 yields

$T^{m}(\hat{\phi}-A)=0(e^{-2(m+1)_{7}})$ .

For this computation we use the familiar estimates $\overline{h}_{0}(r)\sim\overline{b}_{0}e^{-\sqrt{E}r}$ and
$g(r)=0(e^{-2r})$ , as noted repeatedly above.

So, with arbitrary $m$ , we have

(3.3) $\hat{\phi}(r, \theta)=\sum_{j=0}^{m}T^{j}A(r, \theta)+0(e^{-2(m+1)r})$ .
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The function $A(\theta)$ is analytic and therefore has zeroes of finite order.

We use (3.3) to investigate the behavior of $\hat{\phi}$ near an $m$ ’th order zero
of $A$ . Choosing a coordinate system centered at this zero, we have
$A(\theta)=A_{m}(\theta)+0(|\theta|^{m+1})$ , where $A_{m}$ is a non-zero polynomial of order
$m$ . We may denote $A_{m}(\theta)=\sum_{|L|=m}a_{L}\theta^{L}+0(|\theta|^{m+1})$ . Here $L=$

$(\ell_{1}, \ell_{2}, \ldots, \ell_{n-1})$ is a multi-index of total length $|L|=\ell_{1}+\ell_{2}+\cdots+$

$\ell_{n-1}$ , with each $\ell_{i}$ being a non-negative integer, and furthermore $\theta^{L}=$

$\theta_{1}^{\ell_{1}}\theta_{2}^{\ell_{2}}\cdots\theta_{n-1}^{\ell_{n-1}}$ .

To compute the spherical Laplacian $\triangle_{\theta}$ , it is convenient to employ
normal coordinates for the standard metric on $S^{n-1}$ . A result of Cartan
[1] gives $g_{ij}=\delta_{ij}+0(|\theta|^{2})$ , and thus

$\triangle_{\theta}=-\sum_{i=1}^{n-1}\frac{\partial^{2}}{\partial\theta_{i}^{2}}+\sum_{i,j=1}^{n-1}a_{ij^{\frac{\partial^{2}}{\partial\theta_{i}\partial\theta_{j}}}}+\sum_{i=1}^{n-1}b_{x}\frac{\partial}{\partial\theta_{\dot{x}}}$ ,

where $a_{ij}=0(|\theta|^{2})$ and $b_{i}=0(|\theta|)$ .

To isolate the dominant contributions for the asymptotic expansion

of $\hat{\phi}$ , it is convenient to define $\overline{\triangle}_{\theta}=-\sum_{i=1}^{n-1}\partial^{2}/\partial\theta_{i}^{2}$ . There is a corre-

sponding integral-differential operator $\overline{T}f=\sum_{i=1}^{n-1}\overline{T}_{i}f$ , where

$\overline{T}_{x}f=-\int_{r}^{\infty}\overline{h}_{0}^{-2}(x)\int_{x}^{\infty}\overline{h}_{0}^{2}(y)g^{-2}(y)\frac{\partial^{2}f}{\partial\theta_{i}^{2}}(y, \theta)dydx$ .

Our asymptotic estimate of $\hat{\phi}(r, \theta)$ will be valid in the region $H_{c}=$

$\{(r, \theta)||\theta|<ce^{-r}, r>r_{2}\}$ , for any given $c>0$ and $r_{2}>r_{0}$ , large
enough. Suppose that $B$ is an analytic function of $\theta$ satisfying $B(\theta)=$

$0(|\theta|^{p})$ for some $p$ . If $j\geq 0$ , then the definition of $T$ and Lemma 2.2 give
$T^{j}B=0(e^{-pr})$ in $H_{c}$ . The point is that each application of $T$ involves
at most two $\theta$-derivatives, but the double integration in $r$ contributes a

factor $e^{-27}$ . Similarly, one may bound $\overline{T}^{j}B=0(e^{-pr})$ . Since $\triangle_{\theta}-\overline{\triangle}_{\theta}=$

$\Sigma a_{ij}\partial^{2}/\partial\theta_{i}\partial\theta_{j}+\Sigma b_{i}\partial/\partial\theta_{i}$ , with $a_{ij}=0(|\theta|^{2})$ and $b_{i}=0(|\theta|)$ , we see that
$(T-\overline{T})^{j}B=0(e^{-(p+2j)r})$ . Combining these observations with formula
(3.3), where $m$ is the order of vanishing of $A$ , yields

$\hat{\phi}=\sum_{j=0}^{m}\overline{T}^{j}A_{m}+0(e^{-(m+1)r})$ .

Since $A_{m}$ is a polynomial of total order $m$ , in $\theta$ , and each $\overline{T}_{i}$ involves
two derivatives in $\theta_{i}$ , we have
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$\hat{\phi}$

$=$ $\sum_{j=0}^{\infty}\overline{T}^{j}A_{m}+0(e^{-(m+1)r})$

$=$ $\sum_{j=0}^{\infty}(\sum_{i=1}^{n-1}\overline{T}_{i})^{j}A_{m}+0(e^{-(m+1)r})$

$=$ $\sum_{j=0}^{\infty}$ $\sum_{j_{1}+j_{2}++j_{n-1}=j}\frac{j!}{j_{1}!j_{2}!j_{n-1}!}\cdots$

$\times\overline{T}_{1}^{j_{1}}\overline{T}_{2}^{j_{2}}\cdots\overline{T}_{n-1}^{j_{n-1}}A_{m}+0(e^{-(m+1)r})$ .

Thus

(3.4) $\hat{\phi}$

$=$ $\sum_{|L|=m}a_{L}\sum_{j=0}^{\infty}\cdots\sum_{j_{1}+j_{2}++j_{n-1}=j}\frac{j!}{j_{1}!j_{2}!j_{n-1}!}\cdots$

$\times(\overline{T}_{1}^{j_{1}}\theta_{1}^{\ell_{1}})(\overline{T}_{2}^{j_{2}}\theta_{2}^{\ell_{2}})\cdots(\overline{T}_{n-1}^{j_{n-1}}\theta_{n-1}^{\ell_{n-1}})+0(e^{-(m+1)r})$ .

It remains to evaluate the individual expressions $\overline{T}_{i}^{j_{i}}\theta_{i}^{\ell_{i}}$ , for fixed $i$ .

For this purpose, we need the following improvement of Lemma 2.2:

Lemma 3.5. $\overline{h}_{0}(r)=\overline{b}_{0}e^{-\sqrt{E}r}+0(e^{-(\sqrt{E}+2)r})$ .

Proof. Lemma 2.2 gives $\overline{h}_{0}(r)\sim\overline{b}_{0}e^{-\sqrt{E}r}$ . Consider the ratio
$u(r)=\overline{h}_{0}(r)/e^{-\sqrt{E}r}=\overline{h}_{0}(r)e^{\sqrt{E}r}$ . Then $u’=(\overline{h}_{0}’+\sqrt{E}\overline{h}_{0})e^{\sqrt{E}r}$ .

Set $w(r)=u’(r)e^{-2\sqrt{E}r}=e^{-\sqrt{E}r}(\overline{h}_{0}’+\sqrt{E}\overline{h}_{0})$ . Differentiating this

gives the formula $w’=(\overline{h}_{0}’’-E\overline{h}_{0})e^{-\sqrt{E}r}=(-E+\gamma-\lambda)\overline{h}_{0}e^{-\sqrt{E}r}=$

$(\gamma-(n-1)^{2}/4)\overline{h}_{0}e^{-\sqrt{E}r}$ . Here we used equation (2.1), with $k=$

$0$ , and the definition $E=$ $(n -1)^{2}/4-\lambda$ . Integrating up to infin-

ity yields $w(x)=-\int_{x}^{\infty}(\gamma(y)-(n-1)^{2}/4)\overline{h}_{0}(y)e^{-\sqrt{E}y}dy$ . Note that

$w\rightarrow 0$ as $ r\rightarrow\infty$ , since $w(r)=(\overline{h}_{0}’+\sqrt{E}\overline{h}_{0})e^{-\sqrt{E}r}=0(e^{-2\sqrt{E}r})$ , by

Lemma 2.2. Moreover, the definition of $w$ gives $u’(x)=w(x)e^{2\sqrt{E}x}=$

$-e^{2\sqrt{E}x}\int_{x}^{\infty}(\gamma(y)-(n-1)^{2}/4)\overline{h}_{0}(y)e^{-\sqrt{E}y}dy$ . Integrating up to infinity
yields

$u(r)-\overline{b}_{0}=\int_{r}^{\infty}e^{2\sqrt{E}x}\int_{x}^{\infty}(\gamma(y)-\frac{(n-1)^{2}}{4})\overline{h}_{0}(y)e^{-\sqrt{E}y}dydx$ .

Now $\gamma(y)-(n-1)^{2}/4=0(e^{-2y})$ . The integral then converges by Lemma

2.2. A calculation gives $u(r)-\overline{b}_{0}=0(e^{-2r})$ . Lemma 3.5 follows after

multiplying by $e^{-\sqrt{E}r}$ . $\square $
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Suppose $\ell=\ell_{i}\geq 2$ is any integer. Clearly

$\overline{T}_{i}\theta_{i}^{\ell}=(-\int_{r}^{\infty}\overline{h}_{0}^{-2}(x)\int_{x}^{\infty}\overline{h}_{0}^{2}(y)g^{-2}(y)dydx)\ell(\ell-1)\theta_{i}^{\ell-2}$ .

Using Lemma 3.5 and the elementary estimate $g(r)=e^{r}(1+0(e^{-2r}))/2$

implies

$\overline{T}_{i}\theta_{i}^{\ell}(r, \theta)=-\ell(\ell-1)(\sqrt{E}+1)^{-1}\theta_{i}^{\ell-2}e^{-2r}(1+0(e^{-2r}))$ .

An argument by mathematical induction gives

Lemma 3.6. For $k\leq[\ell/2]$ , the greatest integer in $\ell/2$ ,

$\overline{T}_{i}^{k}\theta_{i}^{\ell}(r, \theta)=\frac{(-1)^{k}}{k!}\prod_{s=1}^{k}(\sqrt{E}+s)^{-1}\frac{\ell!}{(\ell-2k)!}\theta_{i}^{\ell-2k}e^{-2kr}(1+0(e^{-2r}))$ .

If $k>[\ell/2]$ , then $\overline{T}_{i}^{k}\theta_{i}^{\ell}=0$ .

Proof. Suppose the required formula has been established for a
given value $k-1$ with $k\leq[\ell/2]$ . Then

$\overline{T}_{i}^{k}\theta_{i}^{\ell}(r, \theta)=\overline{T}_{i}(\overline{T}_{i}^{k-1}\theta_{i}^{\ell})(r, \theta)=\frac{(-1)^{k-1}}{(k-1)!}\prod_{s=1}^{k-1}(\sqrt{E}+s)^{-1}$

$\times\frac{\ell!}{(\ell-2k+2)!}(\int_{r}^{\infty}-\overline{h}_{0}^{-2}(x)\int_{x}^{\infty}\overline{h}_{0}^{2}(y)g^{-2}(y)e^{-2(k-1)y}$

$\times(1+0(e^{-2y}))dydx)(\ell-2k+2)(\ell-2k+1)\theta_{i}^{\ell-2k}$ .

Using Lemma 3.5 and $g(r)=(1/2)e^{r}(1+0(e^{-2r}))$ yields

$\overline{T}_{i}^{k}\theta_{i}^{\ell}(r, \theta)$

$=$ $\frac{(-1)^{k}}{(k-1)!}\prod_{s=1}^{k-1}(\sqrt{E}+s)^{-1}\frac{\ell!}{(\ell-2k)!}\theta_{i}^{\ell-2k}$

$\times\int_{r}^{\infty}e^{2\sqrt{E}x}(1+0(e^{-2x}))\int_{x}^{\infty}e^{-2\sqrt{E}y}$

$\times 4e^{-2y-2(k-1)y}e(1+0(e^{-2y}))dydx$ .

The integral is easily calculated, which completes the induction. $\square $
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Define polynomials of $x=(x_{1}, x_{2}, \ldots, x_{n-1})$ by

$P_{L}(x)$

$=\sum_{0\leq j\leq(1/2)|L|}j_{1}+j_{2}++j_{n-1}=j\sum_{2j_{i}\leq\ell_{\dot{x}}}\frac{(-1)^{j}j!}{(\ell_{1}-2j_{1})!(\ell_{2}-2j_{2})!(\ell_{n-1}-2j_{n-1})^{I}}\cdots$.

$\times\frac{\ell_{1}!\ell_{2}!\ell_{n-1^{I}}}{((j_{1})!(j_{2})!(j_{n-1})^{I})^{2}}\ldots\ldots\cdot.\prod_{s_{1}=1}^{j_{1}}(\sqrt{E}+s_{1})^{-1}$

$\ldots j_{71}\prod_{s_{n-1}=1}^{-1}(\sqrt{E}+s_{n-1})^{-1}\prod_{i=1}^{n-1}(x_{i})^{\ell_{i}-2j_{i}}$ .

Combining (3.4) and Lemma 3.6 gives our main result.

Theorem 3.7. In the region $H_{c}=\{(r, \theta)||\theta|<ce^{-r}, r>r_{2}\}$ ,

for any given $c>0$ , one has

$\hat{\phi}(r, \theta)=e^{-mr}\sum a_{L}P_{L}(e^{r}\theta)+0(e^{-(m+1)r})$ .

$|L|=m$

In the case of the hyperbolic plane, $n$ $=2$ , Theorem 3.7 was proved
in [3]. There one had a single polynomial $P_{m}(x)$ , with $m$ distinct real

zeroes. This led to a detailed analysis of the nodal structure of $\hat{\phi}$ , near
$\theta=0$ , and as $ r\rightarrow\infty$ . For $n$ $>2$ , a similar discussion does not appear
feasible. The difficulty lies in the complicated structure of the zero
set of polynomials of several variables and the related instability of the
zero set under perturbation. Analogous problems arose in the earlier
investigations [6] of Schr\"odinger operators in $R^{n}$ , $n$ $>2$ .

\S 4. Appendix–Analyticity and expansion in spherical har-
monics

Let $S^{m}$ denote the standard round $m$-dimensional sphere. The
spherical harmonics $Y_{k,j}(\theta)$ , for $k\geq 0$ and 1 $\leq j\leq q(k)$ , form a
complete orthonormal basis for $L^{2}(S^{m})$ . Each $Y_{k,j}(\theta)$ is obtained by
restriction, to $S^{m}\subset R^{m+1}$ , of a homogeneous harmonic polynomial of
degree $k$ . The dimension of the space of degree $k$ harmonic polynomi-
als is $q(k)=0(k^{rr\iota-1})$ . Moreover, the spherical harmonics $Y_{k,j}(\theta)$ are
eigenfunctions of the spherical Laplacian, with corresponding eigenvalue
$\lambda_{k}=0(k^{2})$ . The reader may consult [1] for detailed proofs of these
elementary results.

Each $f\in L^{2}(S^{m})$ has a generalized Fourier series, with coefficients
$a_{k,j}=\int_{S^{m}}f(\theta)Y_{k,j}(\theta)$ . If $f\in C^{\infty}(S^{m})$ , then $a_{k,j}=0(\lambda_{k}^{-\ell})$ for any $\ell$ ,
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according to partial integration. Moreover, one has a uniformly conver-
gent expansion, as a consequence of standard elliptic theory,

(4.1) $f(\theta)=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}a_{k,j}Y_{k,j}(\theta)$ .

This expansion may be repeatedly differentiated, term by term, to yield
the expansion of any higher order derivative of $f$ .

The purpose of this appendix is to correlate the analyticity of $f$

with the exponential decay of the $a_{k,j}$ , in their dependence upon $k$ .

This result is implicit in the much more elaborate developments of [6].
However, it seems worthwhile to present a simple elementary proof. We
begin with

Proposition 4.2. If $|a_{k,j}|\leq c_{1}e^{-c_{2}k}$ , then the series of (4.1)
converges to a real analytic function $f$ .

Proof. Since we normalized $||Y_{k,j}||_{2}=1$ , one has
$||Y_{k,j}||_{\infty}\leq c_{3}k^{(m-1)/2}$ by standard elliptic theory. The decay hypothesis,
about $a_{k,j}$ , allows the extension of $f$ to a function

(4.3) $u(r, \theta)=\sum_{k=0}^{\infty}r^{k}\sum_{j=1}^{q(k)}a_{k,j}Y_{k,j}(\theta)$

on some neighborhood of the closure of the unit ball $B^{m+1}$ in $R^{m+1}$ .

Since $u$ is the uniform limit of harmonic functions, $u$ is harmonic. The

standard Laplacian $\triangle$ of $R^{n}$ is analytic hypoelliptic and thus $u$ is ana-
lytic. It follows that the restriction $f$ of $u$ , to $S^{m}$ , is also analytic. $\square $

For the converse to Proposition 4.2, it is convenient to employ

Lemma 4.4. Let $u$ be a solution of the Dirichlet problem on
$B=B^{m+1}$ , with analytic boundary data $f$ . Then $u$ extends to $a$

harmonic function on a neighborhood of the closure $\overline{B}$ .

Proof. The Cauchy-Kovalevskya theorem provides a harmonic ex-
tension $h$ of $f$ to a neighborhood of $S^{m}\subset R^{m+1}$ . Let $\chi$ be a smooth
cut-off function, equal to one near $S^{m}$ , and with support contained
within the domain of definition of $h$ . Clearly, $u-\chi h$ $=0$ on $S^{m}$ , and
$\triangle(u-\chi h)=g\in C_{0}^{\infty}(B)$ . If $G$ is the Greens function of $B$ , one conse-
quently has $u-\chi h$ $=Gg$ . The explicit formula for $G$ , obtained by the
method of images [2, p. 264], now shows that $u$ extends harmonically
past the boundary of B. $\square $

The converse to Proposition 4.2 is
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Proposition 4.5. If $f$ is real analytic, then $|a_{k,j}|\leq c_{1}e^{-c_{2}k}$ in
the expansion (4.1).

Proof. Let $u$ be the solution of the Dirichlet problem on $B^{m+1}$ ,

with boundary data $f$ . Since $f$ is $C^{\infty}$ , the coefficients $a_{k,j}$ decay faster
than any polynomial in $k$ , as observed above. Thus the series in (4.3)
converges for $r\leq 1$ . By uniqueness in the Dirichlet problem, we have
for $r\leq 1$ ,

(4.6) $u(r, \theta)=\sum_{k=0}^{\infty}r^{k}\sum_{j=1}^{q(k)}a_{k,j}Y_{k,j}(\theta)$ .

By Lemma 4.4, we have for some $\delta>0$ and $ r\leq 1+\delta$ , a uniformly
convergent expansion

$u(r, \theta)=\sum_{k=0}^{\infty}\sum_{j=1}^{q(k)}a_{k,j}(r)Y_{k,j}(\theta)$ .

Since $u$ is harmonic, separation of variables shows that each $a_{k,j}(r)$

satisfies a second order ordinary differential equation. By the uniqueness
theory for ordinary differential equations, (4.6) holds when $ r\leq 1+\delta$ .

Taking the $L^{2}$ norm gives

$\sum_{k=0}^{\infty}(1+\delta)^{2k}\sum_{j=1}^{q(k)}|a_{k,j}|^{2}=\int_{S^{m}}|u(1+\delta, \theta)|^{2}$ .

Therefore $|a_{k,j}|$ decays exponentially in $k$ . $\square $
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Floer Homology and Mirror Symmetry II
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Abstract.

This is the second part of a series of articles explaining applica-

tions of Floer homology to mirror symmetry and $D$-brane. This arti-
cle is independent of part I [Fu9]. We will associate an $A_{\infty}$ category
to a symplectic manifold. This is an improved version of previous

ones [Ful], [Fu4] in which there were some flaw. The correction is

based on a book [FOOO] written jointly with Oh, Ohta, Ono. While

correcting the flaw, we find various interesting new phenomena which

are related to mirror symmetry.
We also discuss homological algebra of $A_{\infty}$ category in this ar-

ticle.

This article is a survey article. So most of the material written

here are minor modifications of the results which are already known
to somebody. However it is rather hard to find a reference of them.
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\S 6. Twisted complex and derived $A_{\infty}$ category

\S 7. $A_{\infty}$ functor and natural transformations

\S 8. Homotopy equivalence and $A_{\infty}$ analogue of J. H. C.
Whitehead theorem

\S 9. An $A_{\infty}$ analogue of Yoneda’s lemma

\S 0. Introduction

This is the second part of a series of articles, describing a project
in progress to study homological mirror symmetry [Kol], [Ko2] and D-
brane using Floer homology of Lagrangian submanifolds. See [Fu5],
[Fu6], [Fu7], [FOOO], [Kol], [Ko2], [KoSl], [Ot], [PZ], [Se2], [Se3], [ST],
[SYZ] for related or different aspects of homological mirror symmetry.
Though this is the second part, it is independent of the first part [Fu9].
In this second part, we focus the $A_{\infty}$ category constructed by using Floer
homology of Lagrangian submanifolds, and homological algebra of $A_{\infty}$

categories. In this sense, this article is an updated version of author’s
previous papers [Ful], [Fu4]. Time has passed after [Ful], [Fu4] were
written. During those period, we made several progress, some of which
are explained in this article.

Among the points where the contents of this article overlaps with
[Fu4], there are three points where we improve the constructions there.
One is that we removed an assumption in [Fu4], that all Lagrangian
submanifolds are monotone and have minimum Maslov index $\geq 3$ . (See

\S 2 for the definition of Maslov index.) We assumed it in [Fu4] because
we used results by Oh [Ohl] to define Floer homology of Lagrangian
submanifolds. This assumption is not extremely restrictive for the pur-
pose of [Fu4], that is to study relative Floer homology of 3 manifolds
with boundary. However, for the purpose of this article, that is to study
mirror symmetry, this assumption is rather restrictive. To study mir-

ror symmetry, the case of Lagrangian submanifolds in Calabi-Yau 3 fold
with Maslov index 0 is the most important. Such Lagrangian submani-
folds are monotone but do not satisfy the condition that minimal Maslov
index\geq 3.

To define Floer homology of non monotone Lagrangian submanifolds
or to remove the condition that minimal Maslov index $\geq 3$ , we need the
obstruction theory developed in [FOOO]. The summary of a part of it
is included in this article. (See [Ot] for another summary of [FOOO].)
We generalize the construction of $A_{\infty}$ category explained in [Ful], [Fu4]
to more general situation using the idea of [FOOO].

The second point is that we put precise sign in each formula. In the
side of geometry, this requires us to describe orientations of the moduli
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spaces of pseudoholomorphic discs involved in the construction. Actu-
ally the argument we need to do so is already developed in detail in
[FOOO] Chapter $6^{1}$ . There, the case when only one or two Lagrangian
submanifolds appear, are studied. But the method there can be gener-
alized easily to the present situation where more than two Lagrangian
submanifolds appear at the same time.

We need to study sign also in the algebraic construction involved.
Various constructions on homological (homotopical) algebra of $A_{\infty}$ cat-
egory is developed in [Fu4] Part $II$ . There we worked over $\mathbb{Z}_{2}$ coefficient.
In this article, we give precise sign to the discussion there. The sign
in the study of $A_{\infty}$ category is rather hard and is not at all a trivial
matter. Actually the author was unable to work over $\mathbb{Z}$ coefficient in
[Fu4] Part $II$ , because he could not find correct sign when he was writing
[Fu4]. To fix the sign we develop more systematic way to write the for-
mulas in [Fu4] Part $II$ . As a consequence, the description of this article
is considerably simplified compared to one in [Fu4] Part $II$ .

Thirdly we solved in [FOOO] the trouble related to the existence
of the identity element in the $A_{\infty}$ category of Lagrangian submanifold,
which was discussed in [Fu4] \S 13 in unsatisfactory way. In [FOOO] \S 20
we discussed the problem of identity in the $A_{\infty}$ algebra we associate
to a Lagrangian submanifold. As a consequence of [FOOO] \S 20 and \S 5
of present article, we have an $A_{\infty}$ category with identity. The identity
element plays a central role in the proof of Yoneda’s lemma which we
prove in \S 9 of present article, refining the proof given in [Fu4] \S 12.

Now the outline of each sections are in order. In \S 1, we introduce
the notions of $A_{\infty}$ category and filtered $A_{\infty}$ category. The other sections

of Chapter 1 are devoted to the construction of its example. Namely we
associate a filtered $A_{\infty}$ category to each symplectic manifold.

In \S 2, we describe an objects of this filtered $A_{\infty}$ category. The object
is roughly speaking a pair of a Lagrangian submanifold and a flat $U(1)$

bundle on it. But we need to add some additional topological data.
The main point of this section is to describe precisely the additional
data we add and explain the reason we need it. The additional data
are relative spin structure (which is related to the orientation or sign),
and the grading, (which is related to the degree). We follow [FOOO]

lWhen we quote [FOOO] in this article, we refer its preprint version

which was completed in 2000 December and can be obtained from the author’s
home page http://www.kusm.kyoto-u.ac.jp/-fukaya/fukaya.html at the time of
writing this article. We are now adding more materials to it and there will be
some change of the order of the chapters in the final version.
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Chapter 6 on the first point and follow Kontsevich, Seidel [Sel] on the
second point.

\S 3, \S 4 are devoted to the definition of the module of morphisms and
operations to define our filtered $A_{\infty}$ category. To define an operator
we need to consider two cases separately. The first case is when the
Lagrangian submanifolds involved are mutually transversal. This case
was discussed in [Fill], [Fu4]. We discuss this case in \S 3.

In \S 4 we discuss the general case, namely the case when we do not
assume transversality. Especially we need to study the case when two
Lagrangian submanifolds involved coincide to each other. In a similar
way, we can discuss more general case when they are of clean intersection.
But we do not do it in this article. (See [Po] and [FOOO] 16.) The
construction in \S 4 is a natural generalization of one in [FOOO] where
we associate a filtered $A_{\infty}$ algebra to a Lagrangian submanifold.

In \S 5 we discuss the problem of unit. Namely we define a notion,
homotopy unit (which was first introduced in [FOOO] in the case of $A_{\infty}$

algebra) and sketch the idea how to construct the homotopy unit in the
case of the $A_{\infty}$ category of Lagrangian submanifolds.

In Chapter 2 we discuss homological algebra of $A_{\infty}$ category. After
writing [Fu4], the author leaned that there are many works done in
this direction, in the case of $A_{\infty}$ algebra or differential graded category,
especially by Russian mathematicians. However the reference on it is
rather scattered and it is rather hard to find a good reference where we
find an appropriate description (and its proofs) of the results we need,
especially in the case of $A_{\infty}$ category. So the author include it in this
article. But he does not assert so much credit on it. Namely they are
rather minor modification of the results already known to specialists in
closely related situations, though some of the results in Chapter 2 are
new in the sense they are not proved in the references. The author tries
to quote appropriate reference in case he found it. However, since the
author is far from being a specialist of homological algebra there should
be many works which is closely related to Chapter 2 but is not known
to the author.

In \S 6, we describe the notion of twisted complex and derived $A_{\infty}$ cat-
egory. Twisted complex is a natural analogue of chain complex. Namely
in the case of abelian category we study chain complex and use it to
construct derived category. In a similar way we use twisted complex in
the case of $A_{\infty}$ category. Twisted complex was introduced by Bondal-
Kapranov $[BoK]$ in the case of differential graded category. Kontsevitch
[Kol] proposed to use it in mirror symmetry. (It was also applied in
[Fu7] to mirror symmetry.)
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The author, in [Fill], [Fu4], proposed to use the $A_{\infty}$ category of $A_{\infty}$

functors in the study of Floer homology of 3 manifolds with boundary.
For each twisted complex of an $A_{\infty}$ category $C$ , we can associate an $A_{\infty}$

functor from $C$ to $CH$ . Here $C’H$ is the $A_{\infty}$ category whose object is a
chain complex. In this sense, $A_{\infty}$ functor to $CH$ is a natural generaliza-
tion of twisted complex. Also the idea of $A_{\infty}$ functor is important to
understand Floer homology of family of Lagrangian submanifolds (see
[Fu5] $)$ and its application to mirror symmetry. Moreover, to clarify the
dependence (or independence) of the $A_{\infty}$ category described in Chapter
1, we need to define a notion of homotopy equivalence of $A_{\infty}$ categories
and hence we use the notion of $A_{\infty}$ functors. So we introduce the no-
tion of $A_{\infty}$ functors in section 7. There we construct a representable
$A_{\infty}$ functor and an $A_{\infty}$ category whose objects are $A_{\infty}$ functors.

In \S 8 we define homotopy equivalence of $A_{\infty}$ category. We prove
in \S 8 that an $A_{\infty}$ functor which induces isomorphismes on cohomolo-
gies is a homotopy equivalence. This result is an algebraic analogue of
J. H. C. Whitehead theorem in topology and is proved in [FOOO] \S A5
in the case of $A_{\infty}$ algebra. (A similar results should had been proved in
various cases in the reference. The author was unable to locate the first
place where this kinds of results appeared.)

In \S 9, we prove another main result of the homological algebra of
$A_{\infty}$ category, an $A_{\infty}$ analogue of Yoneda’s lemma. This result implies
that we can embed any $A_{\infty}$ category $C$ to the $A_{\infty}$ category of $A_{\infty}$

functors from $C$ to $C’H$ . (Namely we identify an object of $C$ to a functor
represented by it.) As mentioned above, this point will be important
to the further study of mirror symmetry and of Floer homology of 3
manifolds with boundary. An $A_{\infty}$ analogue of Yoneda’s lemma was
proved in [Fu4] except signs. We give a proof with sign here and also we
simplify the proof in [Fu4].

Those results on homological algebra of $A_{\infty}$ category will be used in
future to further study the filtered $A_{\infty}$ category constructed in Chapter 1

of this article. For example we will prove that the filtered $A_{\infty}$ category
constructed in Chapter 1 of this article is independent of the various
choices involved up to homotopy equivalence. This results together with
other results are not included in this Part $II$ and is postponed to Part
III etc. So two chapters of this article are yet rather independent in this

article but will be unified in future.
The author would like to thank Professors Yong-Geun Oh, Hiroshi

Ohta, and Kaoru Ono, the joint authors of the book [FOOO]. He is

happy to share many of the ideas described in this article with them.
The author also would like to thank Professor Seiki Nishikawa for

his patience. The author apologize to other authors of this proceeding,
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since the delay of the completion of this article causes the delay of the
publication of this proceeding.

Last but not the least, this article is dedicated to Professor Kat-
suhiro Shiohama for his 60th birth day. The author owes much to Pro-
fessor Shiohama for his encouragement and support especially at the
time when the author started his career as a mathematician.

Chapter 1: Floer homology and $A_{\infty}$ category

\S 1. $A_{\infty}$ category and filtered $A_{\infty}$ category

To study the part of homological mirror symmetry conjecture we
concern with in this article, we need to use the notion of $A_{\infty}$ category
appeared in [Ful] in the study of topological field theory. ( $A_{\infty}$ struc-
ture had been studied in homotopy theory for a long time, especially in

[St].) Actually we need to include the obstruction theory we developed
in [FOOO], and to modify the definition of $A_{\infty}$ category a bit, in order
to correct the flaw pointed out in [Ko2], [Ohl]. We call this modified
version fifiltered $A_{\infty}$ category. We start with the usual definition of $A_{\infty}$

category. Most of the constructions in this section are straight forward
generalizations of the definition of filtered $A_{\infty}$ algebra in [FOOO] Chap-
ter 4.

We fix $R$ , a commutative ring with unit. In our main application,
$R$ will be $\mathbb{C}$ or $\mathbb{Q}$ .

Definition 1.1. An $A_{\infty}$ category, $C$ , is a collection of a set $\mathfrak{O}b(C)$ ,

the set of objects, a graded free $R$ module $C(c_{1}, c_{2})$ for each $c_{1}$ , $ c_{2}\in$

$\mathfrak{O}b(C)$ , the operations

$\mathfrak{m}_{k}$ : $C[1](c_{0}, c_{1})\otimes\cdots\otimes C[1](c_{k-1}, c_{k})\rightarrow C[1](c_{0}, c_{k})$ ,

of $degree+1$ for $k=1,2$ , $\ldots$ and $c_{i}\in \mathfrak{O}b(C)$ . Here $C[1](c_{0}, c_{1})$ is $C(c_{0}, c_{1})$

with degree shifted. $(C[1]^{m}(c_{0}, c_{1})=C^{m+1}(c_{0}, c_{1}))$ . They are assumed
to satisfy the $A_{\infty}$ formula (1.3) described below.

To describe the $A_{\infty}$ formula, we introduce notations. Let $a$ , $ b\in$

$\mathfrak{O}b(C)$ , we put

(1.3)
$B_{k}C[1](a, b)=a=c_{O},c_{1},.,cc=b\oplus_{k-1,k}C[1](c_{0}, c_{1})\otimes\cdots\otimes C[1](c_{k-1}, c_{k})$

.

We define, in case $k=0$ ,

$B_{0}C[1](a, a)=R$ , $B_{0}C[1](a, b)=0$ if $a$ $\neq b$ .
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We put

$BC[1](a, b)$ $=$
$\oplus_{k}B_{k}C[1](a, b)$

,
$B_{k}C[1]=\oplus B_{k}C[1]a,b(a, b)$

,

$BC[1]$ $=$
$\oplus BC[1]a,b(a, b)$

.

We define a homomorphism

$\triangle$ :
$B_{k}C[1](a, b)\rightarrow k_{1}+k_{2}=k\oplus\oplus_{c}B_{k_{1}}C[1](a, c)\otimes B_{k_{2}}C[1](c, b)$

by

$\triangle(x_{1}\otimes\cdots\otimes x_{k})=(x_{1}\otimes\cdots\otimes x_{k_{1}})\otimes(x_{k_{1}+1}\otimes\cdots\otimes x_{k})$ .

It induces maps $\triangle$ : $B_{k}C[1]\rightarrow\oplus_{k_{1}+k_{2}=k}B_{k_{1}}C[1]\otimes B_{k_{2}}C[1]$ , $\triangle$ : $ BC[1]\rightarrow$

$BC[1]\otimes BC[1]$ . $(BC[1](a, a), \triangle)$ and $(BC[1], \triangle)$ are graded coalgebras.
(They are coassociative but not cocomutative.)

Operations $\mathfrak{m}_{k}$ define homomorphisms: $B_{k}C[1](a, b)\rightarrow C[1](a, b)$ . It
can be extended uniquely to coderivations

$\hat{d}_{k}$ : $BC[1]\rightarrow BC[1]$ , $\hat{d}_{k}$ : $BC[1](a, b)\rightarrow BC[1](a, b)$

by

$\hat{d}_{k}(x_{1}\otimes\cdots\otimes x_{n})$ $=$
$\sum_{\ell}(-1)^{(deg+1)+\cdot\cdot+(degx_{\ell-1}+1)}\tau_{1}$

$x_{1}\otimes\cdots\otimes \mathfrak{m}_{k}(x_{\ell}, \ldots, x_{\ell+k-1})\otimes\cdots\otimes x_{r\iota}$ .

We put

$\hat{d}=\sum_{k}\hat{d}_{k}$
.

Now the $A_{\infty}$ formula is

(1.3) $\hat{d}o\hat{d}=0$ .

We can expand it and rewrite it using $\mathfrak{m}_{k}$ . We thus obtain, for example,

0 $=$ $\mathfrak{m}_{1}\mathfrak{m}_{1}$ ,

0 $=$ $\mathfrak{m}_{1}\mathfrak{m}_{2}(x\otimes y)+\mathfrak{m}_{2}(\mathfrak{m}_{1}(x)\otimes y)+(-1)^{degx+1}\mathfrak{m}_{2}(x\otimes \mathfrak{m}_{1}(y))$ .

(See [GJ], [FOOO] Chapter 4.) Namely $(C(a, b),$ $\mathfrak{m}_{1})$ is a chain complex
and $\mathfrak{m}_{2}$ is a derivation up to sign.
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Remark 1.4. Here we follow the sign convention of [FOOO] and
not of [Fu7].

Definition 1.5. Let $c\in \mathfrak{O}b(C)$ . We say an element $e_{c}\in C^{0}(c, c)=$

$C^{1}[1](c, c)$ is a unit if

(1.5.1) $\mathfrak{m}_{2}(e_{c}, x_{1})=x_{1}$ , $\mathfrak{m}_{2}(x_{2}, e_{c})=(-1)^{degx_{2}}x_{2}$

for $x_{1}\in C(c, c’)$ , $x_{2}\in C(c’, c)$ and

(1.5.2) $\mathfrak{m}_{k+\ell+1}(x_{1}, \ldots, x_{\ell}, e_{c}, y_{1}, \ldots, y_{k})=0$

for $k+\ell\neq 1$ .

Definition 1.6. $A_{\infty}$ category with one object is called an $A_{\infty}$

algebra.

Example-Lemma 1.7. Let $(A, d, \cdot)$ be a differential graded alge-
bra. Namely $d:A^{k}\rightarrow A^{k+1}$ , $\wedge:A^{k}\otimes A^{\ell}\rightarrow A^{k+\ell}$ with

(1.5.1) $d\circ d=0$ ,

(1.5.2) $(x\cdot y)$ $\cdot z=x\cdot(y \cdot z)$ ,

(1.8.3) $d(x\cdot y)=dx$ $\cdot y+(-1)^{degx}x\cdot dy$ .

We put

(1.5.1) $\mathfrak{m}_{1}(x)=(-1)^{degx}dx$ ,

(1.9.2) $\mathfrak{m}_{2}(x, y)=(-1)^{degx(degy+1)}x\cdot y$ ,

(1.8.3) $\mathfrak{m}_{k}=0$ for $k>2$ .

Then $(A, \mathfrak{m})$ is an $A_{\infty}$ algebra.

Proof, $\mathfrak{m}_{1}\mathfrak{m}_{1}=0$ follows from (1.8.1). We calculate using (1.8.3)
and (1.9.1), (1.9.2) that

$\mathfrak{m}_{1}(\mathfrak{m}_{2}(x, y))$ $=$ $(-1)^{degx+degy+degx(degy+1)}d(x\cdot y)$

$=$ $-\mathfrak{m}_{2}(\mathfrak{m}_{1}(x), y)-(-1)^{degx+1}\mathfrak{m}_{2}(x, \mathfrak{m}_{1}(y))$ .

This is $A^{\infty}$ formula on $B_{2}A[1]$ . We can also check

$\mathfrak{m}_{2}$ $(\mathfrak{m}_{2}(x, y)$ , $z)+\mathfrak{m}_{2}(x, \mathfrak{m}_{2}(y, z))$

$=(-1)^{degxdegy+degxdegz+degxdegz+degy}((x\cdot y)\cdot z-x\cdot(y\cdot z))$ ,

which is zero by (1.8.2). $\square $
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Definition-Example 1.10 $([BoK])$ . A differential graded category
$C$ is a collection of a set $\mathfrak{O}b(C)$ , the set of objects, a differential graded
$R$ module $C(c_{1}, c_{2})$ for each $c_{1}$ , $c_{2}\in \mathfrak{O}b(C)$ , the operations

$o:C(c_{1}, c_{2})\otimes C(c_{2}, c_{3})\rightarrow C(c_{1}, c_{3})$ ,

which is a chain map and is associative in the sense of (1.8.2). We then
define $\mathfrak{m}_{k}$ by (1.9). We obtain an $A_{\infty}$ category.

For later use, we introduce some other notations. Let $C$ be an $A_{\infty}$

category and $c$ be its object. We put

$BC[1](c)=\oplus_{k}B_{k}C[1](c)=\oplus_{k}C[1](c, c)^{\otimes k}$
.

(We remark that $B_{k}C[1](c)\neq B_{k}C[1](c,$ $c).$ ) $BC[1](c)$ is a coalgebra and
$\mathfrak{m}_{k}$ defines a structure of $A_{\infty}$ algebra on it.

Actually our main example is a filtered $A_{\infty}$ category rather than
$A_{\infty}$ category. We are going to define it. We first define a universal
Novikov ring [No], [FOOO].

Definition 1.11. Let $T$ be a formal parameter. We consider a
formal power series

(1.12)
$\sum_{i=1}a_{i}T^{\lambda_{i}}$

where $a_{i}\in R$ , $\lambda_{i}\in \mathbb{R}$ . We assume $\lambda_{i}<\lambda_{i+1}$ and $\lim_{i\rightarrow\infty}\lambda_{i}=\infty$ .

We denote by $\Lambda_{R,nov}$ the set of all such series. It has an obvious ring
structure.

We consider its subring consisting of (1.12) such that $\lambda_{i}\geq 0$ in
addition and denote it by $\Lambda_{R,0,nov}$ . The ring $\Lambda_{R,0,nov}$ has a maximal
ideal consisting of all series (1.12) such that $\lambda_{i}>0$ in addition. We
denote it by $\Lambda_{+,nov}$ .

We write $\Lambda_{nov}$ , $\Lambda_{0,nov}$ , $\Lambda_{+,nov}$ in place of $\Lambda_{R,nov}$ , $\Lambda_{R,0,nov}$ , $\Lambda_{R,+,nov}$

in case no confusion can occur.
For each $\lambda$ , we define $F^{\lambda}\Lambda_{nov}$ so that it consists of the elements

(1.12) satisfying $\lambda_{i}\geq\lambda$ in addition. It induces a filtration on $\Lambda_{nov}$ .
Namely each $F^{\lambda}\Lambda_{nov}$ is an additive subgroup and $ F^{\lambda_{1}}\Lambda_{nov}\cdot F^{\lambda_{2}}\Lambda_{nov}\subseteq$

$F^{\lambda_{1}+\lambda_{2}}\Lambda_{nov}$ . Filtration on $\Lambda_{nov}$ induces ones on $\Lambda_{0,nov}$ and $\Lambda_{+,nov}$ .

Our filtration induces a uniform structure on $\Lambda_{nov}$ , $\Lambda_{0,nov}$ and $\Lambda_{+,nov}$

in a usual way. Then these rings are complete with respect to it.

Remark 1.13. In [FOOO], we considered the set of series
$\sum_{i=1}^{\infty}a_{i}T^{\lambda_{i}}e^{n_{i}}$ where $n_{i}$ are integers, and denote by $\Lambda_{nov}$ the set of all
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such series. However for the present purpose (that is to discuss Mirror
symmetry where the case $c^{1}(M)=0$ is important) it is more convenient
to use Definition 1.11.

Now we define filtered $A_{\infty}$ category.

Definition 1.14. A filtered $A_{\infty}$ category $C$ is a correction of a set
$\mathfrak{O}b(C)$ , the set of objects, a graded torsion free filtered $\Lambda_{0,nov}$ module
$C(c_{1}, c_{2})$ for each $c_{1}$ , $c_{2}\in \mathfrak{O}b(C)$ , the operations

$\mathfrak{m}_{k}$ : $C[1](c_{0}, c_{1})\otimes\cdots\otimes C[1](c_{k-1}, c_{k})\rightarrow C[1](c_{0}, c_{k})$ ,

of degree $+1$ for $k=0,1$ , 2, $\ldots$ , and $c_{i}\in \mathfrak{O}b(C)$ . Note that $k=0$ is
included in the case of filtered $A_{\infty}$ category. Here $\mathfrak{m}_{0}$ is a map

$\mathfrak{m}_{0}$ :
$\Lambda_{0,nov}\rightarrow\oplus_{c}C[1](c, c)$

.

( $\mathfrak{m}_{0}$ is not included in the case of $A_{\infty}$ category.) We assume that $\mathfrak{m}_{k}$

respects the filtration in the sense that

$\mathfrak{m}_{k}(F^{\lambda_{1}}C[1](c_{0}, c_{1})\otimes\cdots\otimes F^{\lambda_{k}}C[1](c_{k-1}, c_{k}))$

(1.15)
$\subseteq F^{\Sigma\lambda_{i}}C[1](c_{0}, c_{k})$ .

They induce coderivations

$\hat{d}_{k}$ : $BC[1]\rightarrow BC[1]$ , $\hat{d}_{k}$ : $BC[1](a, b)\rightarrow BC[1](a, b)$

in the same way as before. Our filtrations on $C$ induces one on $BC[1]$

and we let $\hat{B}C[1]$ be the completion, $\hat{d}_{k}$ induces a map: $\hat{B}C[1]\rightarrow\hat{B}C[1]$ ,

which we denote by the same symbol. The sum

$\hat{d}=\sum_{k=0}^{\infty}\hat{d}_{k}$

converges by virtue of (1.15). Now we assume

(1.16) $\hat{d}\circ\hat{d}=0$ .

We assume also

(1.17) $\mathfrak{m}_{0}\equiv 0$ $mod \Lambda_{+,nov}$ .

We define a unit of filtered $A_{\infty}$ category in the same way as Definition
1.5.

A filtered $A_{\infty}$ category with one object is called a fifiltered $A_{\infty}$ alge-
bra.
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For each filtered $A_{\infty}$ category $C$ and $c\in \mathfrak{O}b(C)$ , the operations
$\mathfrak{m}_{k}$ : $B_{k}C(c)\rightarrow C(c, c)$ define a structure of filtered $A_{\infty}$ algebra on $C(c, c)$ .

We can construct an $A_{\infty}$ category (of $\Lambda_{0,nov}$ module) from a filtered
$A_{\infty}$ category $C$ in the following way. Let $c\in \mathfrak{O}b(C)$ . We define

Definition 1.18. An element $b$ of $F^{+}C^{1}(c, c)$ is said to be a
bounding chain if

$\hat{d}(e^{b})=0$ .

Here $F^{+}C^{1}(c, c)=\bigcup_{\lambda>0}F^{\lambda}C^{1}(c, c)$ and

$e^{b}=1+b+b\otimes b+b\otimes b\otimes b+\cdots\in\hat{B}C(c, c)$ .

We define $\tilde{\mathcal{M}}(c)$ be the set of all bounding chains of $c$ .

Definition 1.19. Let $b_{i}\in\tilde{\mathcal{M}}(c_{i})$ , $i=0$ , $\ldots$ , $k$ , $k>0$ . We define

$\mathfrak{m}_{k}^{(b_{O},..,b_{k})}$ : $C[1](c_{0}, c_{1})\otimes\cdots\otimes C[1](c_{k-1}, c_{k})\rightarrow C[1](c_{0}, c_{k})$

by

$\mathfrak{m}_{k}^{(b_{0}}$
”

$b_{k}$ )
$(x_{1}, \ldots, x_{k})$

$=$
$\sum_{\ell_{0},..\ell_{k}},\mathfrak{m}_{k+\ell_{O}+}+\ell_{k}(b_{0}^{\ell_{0}}, x_{1}, b_{1}^{\ell_{1}}, \ldots, b_{k-1}^{\ell_{k-1}}, x_{k}, b_{k}^{\ell_{k}})$

.

Here
$\ell$ times

$b^{\ell}=b\otimes\cdots\otimes b$ .

Proposition 1.20. We put

$\mathfrak{O}b(C’)=$ $\cup$ $\tilde{\mathcal{M}}(c)\times\{c\}$ ,
$c\in 1\supset b(C)$

$C’((c, b)$ , $(c’, b’))=C(c, c’)$ and let $\mathfrak{m}_{k}^{(b_{O}}’$

. ’
$b_{k}$ )

$6e$ the operations. Then $C’$

is an $A_{\infty}$ category.

The proof (which is easy) goes in exactly the same was as the proof
of [FOOO] Lemma 13.37. Hence we omit it.

Actually $\tilde{\mathcal{M}}(c)$ is too big and it is more reasonable to define an
equivalence relation $\sim on$ it and divide $\lambda\tilde{\Lambda}(c)by\sim$ . See [FOOO], [Fu5],
[Ot] on it.

We can continue and study $A_{\infty}$ functor, natural transformations
etc. We will do it later. We give our main example before continuing
the discussion on algebraic formalism. If the reader is mainly interested
in algebraic formalism then he can skip \S 2\sim \S 5 and proceed to Chapter
2.
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\S 2. Floer homology and $A_{\infty}$ category I - the set of objects -

The idea of this section is rather old. Inspired by S. Donaldson’s
lecture [Do], the author [Fill] found that Floer homology and counting
of holomorphic polygons will define an $A_{\infty}$ category. However there
was a trouble in defining Lagrangian intersection Floer homology as was
mentioned in [Ko2], [Ohl]. We could overcome this trouble in [FOOO]
and the construction is now presented here in a modified way. The
notion of filtered $A_{\infty}$ category introduced in the last section is defined
for this purpose.

We explain, in this section, the definition of the objects of our filtered
$A_{\infty}$ category $\mathcal{L}A\mathcal{G}$ and define a graded $\Lambda_{0,nov}$ module $\mathcal{L}A\mathcal{G}(c, c’)$ for
two objects when $c\neq c’$ . Basically an object of $\mathcal{L}A\mathcal{G}$ is a Lagrangian
submanifold. However we need to add some topological data to it. One
of the topological data to be added is related to the orientation problem
of the moduli space of pseudoholomorhic discs. Another data to be
added is related to the way to fix the degree of elements of $\mathcal{L}A\mathcal{G}(c, c’)$ .

To motivate those data we mention some comments on how they will be
used. During those comments we assume that the reader is familiar to
the Floer homology and pseudoholomorphic curves. (Please skip them
otherwise.) Let $(M, \omega)$ be a symplectic manifolds. Let $B$ be a closed 2

form which we call the $B$-field. We put $\Omega=\omega+2\pi\sqrt{-1}B$ .

Definition 2.1. Let $1\supset b_{1}(\mathcal{L}A\mathcal{G}(M, \Omega))$ be the set of all pairs $(L, \mathcal{L})$

such that:

(2.1.1) $L$ is a Lagrangian submanifold. Namely $dimL=dimM/2$ and
$\omega|_{L}=0$ .

(2.1.2) $\mathcal{L}$ is a complex line bundle equipped with a unitary connection
$\nabla$ such that its curvature $F_{\nabla}$ coincides with the restriction of $2\pi\sqrt{-1}B$

to L. (Here we identify the Lie algebra of $U(1)$ with $\sqrt{-1}\mathbb{R}.$ )

Remark 2.2. One may consider more general objects than
$\mathfrak{O}b_{1}(\mathcal{L}A\mathcal{G})(M, \Omega)$ . There are at least two generalizations.

(2.2.1) One may relax the condition on $L$ so that $L\rightarrow M$ is a La-
grangian immersion.
(2.2.2) One may consider the vector bundle $\mathcal{L}$ together with its unitary
connection $\nabla$ whose curvature is $2\pi\sqrt{-1}B$ times the unit matrix.

The modification of the construction to include these cases will be
discussed elsewhere. (See [Ak] on (2.2.1).)

It seems impossible to define an $A_{\infty}$ category whose objects are
all elements of $\mathfrak{O}b_{1}(\mathcal{L}A\mathcal{G}(M, \Omega))$ because of the transversality prob-
lem. (We use Bair’s category theorem to achieve transversality quite
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frequently.) So instead we take and fix a countable set of Lagrangian
submanifolds and let $\mathfrak{O}b_{2}(\mathcal{L}A\mathcal{G}(M, \Omega))$ be the set of all elements $(L, \mathcal{L})\in$

$\mathfrak{O}b_{1}(\mathcal{L}A\mathcal{G}(M, \Omega))$ such that $L$ is in this countable set.
The module of morphisms $\mathcal{L}A\mathcal{G}((L_{1}, \mathcal{L}_{1})$ , $(L_{2}, \mathcal{L}_{2}))$ of our filtered

$A_{\infty}$ category is Floer’s chain complex, which is the free $\Lambda_{0,nov}$ module
generated by the intersection $points\in L_{1}\cap L_{2}$ . More precisely

(2.3) $\mathcal{L}A\mathcal{G}((L_{1}, \mathcal{L}_{1}),$

$(L_{2}, \mathcal{L}_{2}))=p\in L_{1}\cap L_{2}\oplus Hom((\mathcal{L}_{1})_{p}, (\mathcal{L}_{2})_{p})\otimes_{\mathbb{C}}\Lambda_{0,nov}$
.

However there are two delicate points which will soon come to the story.
The first of them is sign or orientation of the moduli space of pseudo-
holomorphic discs which we will use to define operations $\mathfrak{m}_{k}$ (see \S 3, \S 4),
and the other is the degree in the Floer homology.

We start with the first point. We refer [FOOO] Chapter 6 for the
thorough argument on the orientation and present only a sketch of it
in this article. We first fix an element $st$ $\in H^{2}(M;\mathbb{Z}_{2})$ . We take a
3-skeleton $M^{(3)}$ of $M$ . Then there exists a unique real rank 2 vector
bundles $V(st)$ on $M^{(3)}$ such that $w^{1}(V(st))=0$ , $w^{2}(V(st))=st$ , here
$w$ is the Stiefel-Whitney class.

Definition 2.4 ([FOOO]). $L$ is said to be relatively spin in $(M, st)$

if it is oriented and if the second Stiefel-Whitney class of (the tangent
bundle of) $L$ coincides with the restriction of st.

Let $L$ be relatively spin in $(M, st)$ , and let $L^{(2)}$ be the two skeleton
of $L$ . Then $V\oplus TL$ is trivial on $L^{(2)}$ .

A $(M, st)$-relative spin structure of $L$ is by definition a spin structure

of the restriction of $V\oplus TL$ to $L^{(2)}$ .

We remark that the two spin structures are equivalent if it is equiv-
alent on the first skeleton. Moreover oriented vector bundle is trivial
on two skeleton if it is spin. Therefore the set of $(M, st)$ -relative spin

structures of $L$ corresponds one to one to the set of trivializations of the
restriction of $V\oplus TL$ to $L^{(1)}$ which can be extended to $L^{(2)}$ . We use
this remark to show the following:

Lemma 2.5. The group $H^{1}(L;\mathbb{Z}_{2})$ acts simple transitively on the
set of all $(M, st)$ -relative spin structures of $L$ if it is nonempty.

Proof. Let $\psi$ $\in C^{1}(L;\mathbb{Z}_{2})$ be a cocycle defining an element of
$H^{1}(L;\mathbb{Z}_{2})$ . Let $\Psi$ : $V\oplus TL|_{L^{(2)}}\rightarrow L^{(2)}\times \mathbb{R}^{n+2}$ be isomorphism of
bundles whose restrictions to $V\oplus TL|_{L^{(1)}}$ define a relative spin struc-
tures of $L$ . For each one cell $\triangle^{1}$ of $L$ we define a map

$g_{\psi,\triangle^{1}}$ : $(\triangle^{1}, \partial\triangle^{1})\rightarrow(SO(n+2), I)$
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representing $\psi(\triangle^{1})\in\pi_{1}(SO(n+2))=\mathbb{Z}_{2}$ . ( $I$ $\in SO(n+1)$ is the unit
matrix.) We put

$\Psi’(x, v)=g_{\psi,\triangle^{1}}(x)(x, v)$

for $(x, v)\in V\oplus TL|_{L^{(1)}}$ , $x\in\triangle^{1}$ . Since $\psi$ is a cocycle it follows that
$\Psi’$ : $V\oplus TL|_{L^{(1)}}\rightarrow L^{(1)}\times \mathbb{R}^{n+2}$ can be extended to $L^{(2)}$ . It is easy to
see that the relative spin structure determined by $\Psi’$ depends only on
the cohomology class of $\psi$ and the relative spin structure $\Psi$ . We put
$[\psi]\cdot[\Psi]=[\Psi’]$ .

Conversely, let $\Psi_{i}$ : $V\oplus TL|_{L^{(2)}}\rightarrow L^{(2)}\times \mathbb{R}^{n+2}$ be isomorphism
of bundles whose restrictions to $V\oplus TL|_{L^{(1)}}$ define two relative spin
structures of $L$ . There exists a map $g$ : $L^{(2)}\rightarrow SO(n+2)$ such that

$\Psi_{2}(x, v)=g(x)(\Psi_{1}(x, v))$ .

Since $\pi_{0}$ SO(n+2) $)$ is trivial we may modify $\Psi_{i}$ so that $g(x)=1$ for
$x\in L^{(1)}$ . Then for each 1 cell $\triangle^{1}$ of $L$ we have

$[g|_{\triangle^{1}}]\in\pi_{1}(SO(n+2))=\mathbb{Z}_{2}$ .

We regard it as a cochain. It is a cocycle since $g$ can be extended to
$L^{(2)}$ . We thus obtain $\psi=g$ such that $[\psi]\cdot[\Psi_{1}]=[\Psi_{2}]$ . $\square $

We denote by $\mathfrak{O}b_{3}(\mathcal{L}A\mathcal{G}(M, \Omega, st))$ the set of all pairs of $(L, \mathcal{L})\in$

$\mathfrak{O}b_{2}(\mathcal{L}A\mathcal{G}(M, \Omega))$ and an $(M, st)$ -relative spin structure on $L$ . The rea-
son we add relative spin structure is that it induces orientations of vari-
ous moduli spaces we use in a canonical way. (See the next section and
[FOOO] Chapter 6.)

Next we consider the degree problem. We use the notion of graded
Lagrangian submanifold due to M. Kontsevich and P. Seidel [Sel] for
this purpose. Let $(\mathbb{R}^{2n}, \omega)$ be a symplectic vector space of dimension
$2n$ . We denote by $Lag_{n}=Lag(\mathbb{R}^{2n}, \omega)$ the set of all oriented linear
subspaces $V$ of $\mathbb{R}^{2n}$ of dimension $n$ such that $\omega|_{V}\equiv 0$ . We call it the
oriented Lagrangian Grassmanian. It is well-known that $\pi_{1}(Lag_{n})\cong \mathbb{Z}$

and it has a generator called the (universal) Maslov class. (See [AG]).

Let $\overline{Lag}_{n}$ be the universal covering space of Lagn.
Let $(M, \omega)$ be a symplectic manifold. Then we have a fiber bundle

Lag(M) $\rightarrow M$ whose fiber at $p\in M$ is identified with $Lag(T_{p}M)$ . We
remark that we can find an almost complex structure compatible with
its symplectic structure, and it is unique up to homotopy. Hence the
Chern classes of the tangent bundle of a symplectic manifolds are well
defined.
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Lemma 2.6. The following two conditions are equivalent.

(2.7.1) $c^{1}(M)=0$ where $c^{1}(M)$ is the fifirst Chern class of $TM$ .

(2.7.2) There exists a covering space $\overline{Lag}\underline{(}M$ ) of Lag(M) such that its

restriction to each fifiber is identifified with $Lag_{n}\rightarrow Lagn$ .

Proof. $\underline{S}ince\overline{Lag}\rightarrow$ Lag is a covering space, the obstruction to

construct Lag(M) lies in the second cohomology. Hence it is easy to see
that (2.7.2) is equivalent to the triviality of the bundle Lag(M) $\rightarrow M$

at the two skeleton $M^{(2)}$ of $M$ .

Now let us assume (2.7.1). Then the complex vector bundle $TM$

is trivial on two skeleton. Since Symplectic group Symp(n) is homo-
topy equivalent to $U(n)$ , it follows that Lag(M) $\rightarrow M$ is trivial on two
skeleton. The proof of the converse is similar. $\square $

From now on, we assume $c^{1}(M)=0$ . (In the case when the compati-
ble almost complex structure is integrable, this condition implies that $M$

has a Ricci flat K\"ahler metric, due to Yau’s proof of Calabi conjecture.)

We also fifix a covering space $\overline{Lag}(M)$ of Lag(M) as in (2.7.2).

Remark 2.8. In a way similar to the proof of Lemma 2.5, we can

show that the set of such lifts $\overline{Lag}(M)$ is an affine space over $H^{1}(M; \mathbb{Z})$

if it is nonempty.

Let $L$ be an oriented Lagrangian submanifold. We have a canonical
section $s$ of the restriction of Lag(M) to $L$ . Namely

$s(p)=T_{p}L\subseteq T_{p}M$ .

Definition 2.9. A graded Lagrangian submanifold of $(M,\overline{Lag}(M))$

$\underline{is}$a pair of oriented Lagrangian submanifold $L$ and a lift of $s$ to $\tilde{s}$ : $ L\rightarrow$

Lag(Af). We call $\overline{s}$ , the grading of $L$ .

Definition 2.10. We denote by $\mathfrak{O}b_{4}(\mathcal{L}A\mathcal{G}(M, \Omega, st,\overline{Lag}(M)))$ the
set of all triples $(L, \mathcal{L},\tilde{s})$ such that $(L, \mathcal{L})\in \mathfrak{O}b_{3}(\mathcal{L}A\mathcal{G}(M, \Omega, st))$ and
that $(L,\tilde{s})$ is a graded Lagrangian submanifold.

Example 2.11. Let $T^{*}N\rightarrow N$ be a cotangent bundle of an
oriented manifold $N$ with a canonical symplectic structure. The tangent
bundle $TT^{*}N$ is isomorphic to the complexification of the pull back
$\pi^{*}TN$ .

Hence its structure group is reduced to $U(n)\cap GL(n;\mathbb{R})=O(n)$ .

Moreover, since $N$ is oriented, it follows that the structure group is

reduced to SO(n). Since $Lag_{n}=U(n)\underline{/SO}(n)$ it follows that the bundle
$Lag_{n}(T^{*}N)$ is trivial. We thus obtain Lag(T*N) as in (2.5.2).
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We remark that the zero section is a Lagrangian submanifold. Hence
we have a section $s_{0}$ of Lag(T*N) on the zero section. Since zero section
$\cong N$ is homotopy equivalent to $T^{*}N$ it induces a $\dot{s}$ection $s_{0}$ of Lag(T*N).
It then induces a trivialization of Lag(T*N) and hence a section $\tilde{s}_{0}$ :
$T^{*}N\rightarrow\overline{Lag}(T^{*}N)$ . We may choose $\tilde{s}_{0}$ such that $\tilde{s}_{0}(p)$ is transversal to
the tangent space of the fibers of $T^{*}N\rightarrow N$ .

Now let $L$ be a Lagrangian submanifold of $T^{*}N$ transversal to the
fiber. Then, for each $p\in L$ , there exists a path $\ell_{p}$ which joints $T_{p}L$ to
$s_{0}(p)$ in $Lag(T_{p}T^{*}N)$ such that $\ell_{p}(t)$ is transversal to the tangent space
of the fiber for each $t\neq 0$ . The homotopy class of such $\ell_{p}$ is unique.
We lift it so that $s_{0}(p)$ will be lifted to $\overline{s}_{0}(p)$ . In this way we obtain a

lift $\tilde{s}(p)\in\overline{Lag}(T_{p}T^{*}N)$ . It is easy to see that this lift is independent of
various choices.

We thus obtain a graded Lagrangian submanifold $(L,\tilde{s})$ .

In a similar way, we can consider the case when $(M, \omega)$ has a singular
Lagrangian fibration as follows. Let $\pi$ : $M\rightarrow N$ be a smooth map with
the following properties.

(2.12.1) There exists a subcomplex $X\subset M$ of codimension $>2$ such
that $\pi$ is a submersion on $M-X$ .

(2.12.2) The kernel of the differential of $ d_{p}\pi$ at $p\in M-X$ is a La-
grangian vector subspace of $T_{p}M$ .

(2.12.3) $\pi$ is proper.

Now we define a section $s’$ of Lag(M) on $M$ $-X$ by putting $s’(p)=$

$Ker$ $ d_{p}\pi$ . It defines a real vector bundle on $M-X$ whose fiber at $p$ is $s’(p)$ .

This vector bundle tensored with $\mathbb{C}$ is isomorphic to the tangent bundle
of $M-X$ . Thus, in the same way as above, we have a trivialization of

Lag(M) on $M-X$ . It induces a bundle $\overline{Lag}(M-X)$ on $M-X$ . We can

extend it to $\overline{Lag}(M)\rightarrow M$ uniquely since the codimension of $X$ in $M$

is $>2$ . (Note the trivialization of the restriction of Lag(M) to $M-X$
may not be extended.)

Actually the condition for a Lagrangian submanifold to be graded
is related to the (absolute) Maslov index $\eta$ : $\pi_{2}(M, L)\rightarrow \mathbb{Z}$ as follows.

Let us first review Maslov index. Let $\varphi$ : $(D^{2}, \partial D^{2})\rightarrow(M, L)$

be a map representing an element of $\pi_{2}(M, L)$ . The pullback bundle
$\varphi^{*}(TM)$ has a trivialization since $D^{2}$ is contractible. We restrict this
trivialization to $\partial D^{2}$ . On the other hand, for each $t\in\partial D^{2}$ we have a

Lagrangian subspace $T_{\varphi(p)}L\subset T_{\varphi(p)}M$ . Hence we have $S^{1}\rightarrow Lag_{n}$ . It
determines an element of $\pi_{1}(Lag_{n})\cong \mathbb{Z}$ . We call it Maslov index and
write $\eta([\varphi])$ .
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We consider the composition $\pi_{2}(M)\rightarrow\pi_{2}(M, L)\rightarrow \mathbb{Z}$ . One can
verify easily that the composition coincides with the twice of the first
Chern class $c^{1}$ : $\pi_{2}(M)\rightarrow \mathbb{Z}$ .

Therefore, in the case when $c^{1}(M)=0$ , the homomorphism $\eta$ in-
duces a homomorphism : $Im(\pi_{2}(M, L)\rightarrow\pi_{1}(L))\rightarrow \mathbb{Z}$ . We can extend

it to $\pi_{1}(L)$ as follows. Using $c^{1}(M)=0$ there exists a lift $\overline{Lag}(M)\rightarrow M$ .

Let $\ell$ : $S^{1}\rightarrow L$ be a loop representing an element of $\pi_{1}(L)$ . We define a
map

$\ell+:S^{1}\rightarrow$ Lag(M)

by

$\ell^{+}(t)=T_{\ell(t)}L\in Lag(T_{p}M)$ .

Since $\overline{Lag}(M)\rightarrow Lag(M)$ is a covering space we have a lift

$\tilde{\ell}^{+}(t)$ : $[0, 1]\rightarrow\overline{Lag}(M)$

of $\ell^{+}$ . Since $\overline{Lag}/\mathbb{Z}=Lag$ there exists $\overline{\eta}(\ell)\in \mathbb{Z}$ such that

$\overline{\eta}(\ell)\cdot\tilde{\ell}^{+}(0)=\tilde{\ell}+(1)$ .

It is easy to see that $\overline{\eta}$ defines a homomorphism

$\overline{\eta}$ : $\pi_{1}(L)\rightarrow \mathbb{Z}$ .

Now it is easy to show the following two lemmata.

Lemma 2.13. The composition of $\pi_{2}(M, L)\rightarrow\pi_{1}(L)$ with $\overline{\eta}$ is $\eta$ .

Lemma 2.14. There existsa lift $\tilde{s}$ of $s$ : $L\rightarrow Lag(M)$ if and only

if $\overline{\eta}$ : $\pi_{1}(L)\rightarrow \mathbb{Z}$ is 0.

We remark that $\overline{\eta}$ depends on the choice of $\overline{Lag}(M)$ , while $\eta$ does

not depend on it. Note the set of all choices of $\overline{Lag}(M)$ is an affine space
over $H^{1}$ $(M; \mathbb{Z})=Hom(\pi_{1}(M), \mathbb{Z})$ . In view of the exact sequence

$\pi_{2}(M;L)\rightarrow\pi_{1}(L)\rightarrow\pi_{1}(M)$ ,

the group $Hom(\pi_{1}(M), \mathbb{Z})$ controls the way to extend $\eta$ (which is defined
on the image of $\pi_{2}(M;L)\rightarrow\pi_{1}(L))$ to $\overline{\eta}$ which is defined on $\pi_{1}(L)$ .

Now let $(L_{1},\overline{s}_{1})$ and $(L_{2},\tilde{s}_{2})$ be graded Lagrangian submanifolds
which intersect transversally each other. Let $p\in L_{1}\cap L_{2}$ . We are going
to define an index $\eta_{L_{1},L_{2}}(p)$ .
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We first consider a pair of family of Lagrangian submanifolds $\ell_{0}(\tau)$ ,
$\ell_{1}(\tau)\in Lag_{n}$ , $\tau\in \mathbb{R}$ so that it is constant for $|\tau|$ large. We assume that

(2.15) $\ell_{0}(-\infty)\cap\ell_{1}(-\infty)=\ell_{0}(\infty)\cap\ell_{1}(\infty)=\{0\}$ .

We want to associate an integer, Maslov-Viterbo index $\eta(\ell_{0}, \ell_{1})$ , for such
a pair. We need its relation to the index of Cauchy-Riemann operator
also. Let us now describe it. We consider the product $\mathbb{R}\times[0,1]\subset \mathbb{C}$

and identify $\tau$ to the first coordinate. We consider the operator

$\overline{\partial}$ : $W^{1,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n})\rightarrow W^{0,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n}\otimes\Lambda^{0,1})$ ,

where $W^{k,p}$ denotes the set of sections of Sobolev $(k,p)$ class, that is
the linear space of sections whose derivatives up to order $k$ are of $L^{p}$

class. (We take $p>2$ . So $W^{1,p}\subseteq C^{0}.$ ) For an element $ u\in W^{k+1,2}(\mathbb{R}\times$

$[0,1];\mathbb{C}^{n})$ , we put the boundary condition

(2.16) $u(\tau, 0)\in\ell_{0}(\tau)$ , $u(\tau, 1)\in\ell_{1}(\tau)$ .

We denote by $W^{1,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n} ; \ell_{0}, \ell_{1})$ the subset of $W^{1,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n})$

satisfying the boundary condition (2.16). Then the $\overline{\partial}$ operator induces
an operator:

(2.17) $\overline{\partial}$ : $W^{1,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n} ; \ell_{0}, \ell_{1})\rightarrow W^{0,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n}\otimes\Lambda^{0,1})$ .

Lemma 2.18. (2.17) is a Fredholm operator.

The lemma is a consequence of (2.15). The proof is omitted.
We can calculate the index of (2.17) in the following way. We first

take $g(\tau)$ such that $g(\tau)\ell_{0}(\tau)=\ell_{0}(-\infty)$ . Then we consider the pair
$\ell_{0}’(\tau)\equiv\ell_{0}(-\infty)$ , $\ell_{1}’(\tau)\equiv g(\tau)\ell_{1}(\tau)$ . It is easy to see that the index of
(2.17) does not change if we replace $\ell_{0}(\tau)$ , $\ell_{1}(\tau)$ by $\ell_{0}’(\tau)$ , $\ell_{1}’(\tau)$ . Hence
we may assume that $\ell_{0}(\tau)$ is independent of $\tau$ . We put $V=\ell_{0}(\tau)$ .

For $V\in Lagn$ , let $X(V)$ be the set of all $V’\in Lag_{n}$ such that $V’$

is not transversal to V. $X(V)$ is a (real) codimension one subcomplex
such that it is a smooth submanifold outside a set of (real) codimension
$>1$ in $X(V)$ .

Proposition 2.19. There exists an orientation of the regular part

of $X(V)$ such that the index of (2.17) is equal to the intersection number
$\ell_{1}\cdot X(V)$ when $V\equiv\ell_{0}(\tau)$ .

Sketch of a proof We explain an idea of the proof of Proposition
2.19 by using the notion of spectral flow ([APS]). Let us consider the
operator (2.17). It is an operator

(2.20) $\overline{\partial}=\frac{\partial}{\partial\tau}+J_{t,\tau}\circ\frac{\partial}{\partial t}$ .
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$J_{t,\tau}\circ(\partial/\partial t)$ is a family of elliptic operators on $[0, 1]$ and is parametrized
by $\tau$ . Also the boundary condition (2.16) is $\tau$ dependent. We choose
an appropriate bundle automorphism of $\varphi^{*}TM$ on $\mathbb{R}\times[0,1]$ and use it
to regard $J_{t,\tau}\circ(\partial/\partial t)$ as a family of elliptic operators whose boundary
condition is $\tau$ independent. We thus obtain an operator

(2.21) $\frac{\partial}{\partial\tau}+P_{\tau}$

where

$P_{\tau}$ : $W^{1,p}([0,1];\mathbb{C}^{n}; \Xi)\rightarrow W^{0,p}([0,1];\mathbb{C}^{n})$ .

$Here\cup--$ is a boundary condition independent of $\tau$ . Then, as in [APS], the
index of (2.21) is calculated by the spectral flow of the family of elliptic
operators $P_{\tau}$ . We remark that the operator $P_{\tau}$ will have a kernel in a
neighborhood of the points $\tau$ where $\ell_{1}(\tau)$ are not transversal to $\ell_{0}$ .

Thus the index of the spectral flow coincides with the intersection
number $\ell_{1}\cdot X(V)$ . $\square $

For our purpose, we need to relax the condition (2.15) and consider
the case

(2.22) $\ell_{0}(-\infty)=\ell_{1}(-\infty)$ , $\ell_{0}(\infty)\cap\ell_{1}(\infty)=\{0\}$ .

(We still assume $\ell_{0}(\tau)\equiv\ell_{0}(0).$ ) We perturb $\ell$ so that it is transver-
sal to $X(\ell(0))$ on $(0, 1]$ . Then we will put

(2.23) $\eta(\ell_{0}, \ell_{1})$ $‘‘=$ ”
$\ell_{1}|_{(0,1]}\cdot X(\ell_{0}(0))$

where. is the intersection number. However, since $\ell_{0}(O)\in X(\ell_{0}(0))$ , we
need to be very careful to define the intersection pairing in (2.23). Actu-
ally $\ell_{0}(0)\in X(\ell_{0}(0))$ is a singular point of $X(\ell_{0}(0))$ where $n$ components
of codimension one meet each other. To define right hand side of (2.23)
rigorously, we modify $\ell_{1}$ in a neighborhood of 0 as follows. Let $U(\ell_{0}(0))$

be a small neighborhood of $\ell_{0}(0)$ in Lagn. We will define components
$U_{i}(\ell_{0}(0))$ such that

$n$

(2.24)
$U(\ell_{0}(0))-X(\ell_{0}(0))=i=0\cup U_{i}(\ell_{0}(0))$ ,

as follows.
We take a symplectic isomorphism $\mathbb{C}^{n}\simeq T^{*}\ell_{0}(0)$ . For each

$V\in U(\ell_{0}(0))-X(\ell_{0}(0))$ ,



50 K. Fukaya

there exists a non degenerate quadratic function $f$ on $\ell_{0}(0)$ such that
$V$ is a graph of $df$ . We define $U_{i}(\ell_{0}(0))$ so that $V\in U_{i}(\ell_{0}(0))$ if $f$ is a
quadratic function of index $i$ .

We may choose $U(\ell_{0}(0))$ so that $U_{i}(\ell_{0}(0))$ is contractible. Note that
$\overline{U}_{i}(\ell_{0}(0))\cap\overline{U}_{i+1}(\ell_{0}(0))$ is of codimension one in $X(\ell(0))$ and they are
all of the codimension 1 components of $X(\ell(0))\cap U(\ell_{0}(0))$ .

Now we modify $\ell_{1}$ so that $\ell_{1}(\epsilon)$ is in $U_{n}(\ell_{0}(0))$ for small $\epsilon$ . Now we
define $\eta(\ell_{0}, \ell_{1})$ by

(2.25) $\eta(\ell_{0}, \ell_{1})=\ell_{1}|_{[\epsilon,1]}\cdot X(\ell_{0}(0))$ .

If we take another perturbation $\ell$ such that $\ell_{1}’(\epsilon)$ is in $U_{k}(\ell_{0}(0))$ for
small $k$ , then

(2.26) $\ell_{1}|_{[\epsilon,1]}\cdot X(\ell_{0}(0))+n=\ell_{1}’|_{[\epsilon,1]}\cdot X(\ell_{0}(0))+k$ .

Let $-\ell$ be the path such that $-\ell(t)=\ell(1-t)$ then we have

Lemma 2.27. $\eta(\ell_{0}, \ell_{1})+\eta(\ell_{1}, \ell_{0})=-n$ , if (2.25) holds.

$Proo/$. Let us perturb $\ell_{1}$ so that $\ell_{1}(\epsilon)$ is in $U_{n}(\ell_{0}(0))$ for small $\epsilon$ .

Then we have

$\ell_{1}|_{(0,1)}\cdot X(\ell_{0}(0))+\ell_{0}|_{(0,1)}\cdot X(\ell_{1}(0))=0$ .

Let us change the pair $\ell_{1}$ , $\ell_{0}$ by the one parameter family of authomor-
phisms of $\mathbb{C}^{n}$ as follows: Let us denote the modified pair by $\ell_{1}’$ , $\ell_{0}’$ : we
take it so that $\ell_{1}’$ is constant.

We then find that $\ell_{0}’(\epsilon)\in U_{0}(\ell_{1}’(0))$ for $\epsilon$ small. Lemma 2.27 now
follows from (2.26). $\square $

Now we are going to define an index of the intersection point of two
graded Lagrangian $submanifo1d\underline{s(}L_{1},\tilde{s}_{1}$ ), $(L_{2},\tilde{s}_{2})$ . Let $p\in L_{1}\cap L_{2}$ . We

take a pair $(\overline{\ell}_{0},\overline{\ell}_{1})$ of path in $Lag(T_{p}M)$ such that $\tilde{\ell}_{0}(0)=\ell_{1}^{-}(0)$ , and
$\tilde{\ell}_{0}(1)=\tilde{s}_{1}(p),\tilde{\ell}_{1}(1)=\tilde{s}_{2}(p)$ . We put $\ell_{i}=\pi\circ\overline{\ell}_{i}$ . We then put

(2.25) $\eta_{(L_{1},\overline{s}_{1}),(L_{2},\overline{s}_{2})}(p)=\eta(\ell_{0}, \ell_{1})$ .

It is easy to see that the right hand side is independent of the path
$(\tilde{\ell}_{0},\tilde{\ell}_{1})$ .

Definition 2.29. Let

$(L_{1},\tilde{s}_{1}, \mathcal{L}_{1})$ , $(L_{2},\tilde{s}_{2}, \mathcal{L}_{2})\in l\supset b_{4}(\mathcal{L}A\mathcal{G}(M, \Omega, st,\overline{Lag}(M)))$ .
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We assume $L_{1}\neq L_{2}$ . We define:

(2.30) $\mathcal{L}A\mathcal{G}^{k}((L_{1},\tilde{s}_{1}, \mathcal{L}_{1}), (L_{2},\tilde{s}_{2}, \mathcal{L}_{2}))$

$=\eta_{(L,\overline{s})(L\overline{s})^{(p)=k}}11p\in L\cap L_{2}\oplus_{1}Hom((\mathcal{L}_{1})_{p}2,2’(\mathcal{L}_{2})_{p})\otimes_{\mathbb{C}}\Lambda_{0,nov}$

.

We discuss the case $L_{1}=L_{2}$ later. (We actually need one more small
modification to (2.30) for the orientation problem. We will discuss it
later. See (3.16).)

Lemma 2.27 implies:

(2.31) $\eta_{(L_{1},\overline{s}_{1}),(L_{2},\overline{s}_{2})}(p)=-n-\eta_{(L_{2},\overline{s}_{2}),(L_{1},\tilde{s}_{1})}(p)$

Example 2.32. Let $u=df$ be an exact 1 form on $N$ and $ L_{2}\subset$

$T^{*}N$ be its graph. Let $L_{1}$ be a zero section. We assume that $f$ is a
Morse function. If $p\in L_{1}\cap L_{2}$ then $p=(x, 0)$ and $df(x)=0$ . We define
$\tilde{s}_{1},\tilde{s}_{2}$ as in Example 2.11. We find

$\eta(L_{1},\overline{s}_{1}),(L_{2},\overline{s}_{2})(p)=Index(\nabla_{x}^{2}f)-n$ .

Here $\nabla_{x}^{2}f$ is the Hessian of $f$ at $x$ . Namely in this case the Maslov index
reduces to the Morse index.

Remark 2.33. Let $(L_{1},\tilde{s}_{1})$ be a graded Lagrangian submanifold.
We assume that $L_{1}$ is connected. When we change the lift $\tilde{s}_{1}$ , then
the degree $\eta$ changes $on\underline{ly}$by an overall integer. Let us state it more
precisely. We recall that Lag(M) $\rightarrow$ Lag(M) is a normal covering whose
deck transformation group is $\mathbb{Z}$ . Let $\tilde{s}_{1}’$ be another lift of $s_{1}(p)=T_{p}(L)$ .

Then there exists an integer $k$ such that $\tilde{s}_{1}=k\cdot\tilde{s}_{1}’$ . We have:

(2.34.1) $\eta_{(L_{1},\overline{s}_{1}),(L_{2},\overline{s}_{2})}(p)=\eta_{(L_{1},\overline{s}_{1}’),(L_{2},\overline{s}_{2})}(p)+k$

and

(2.34.2) $\eta_{(L_{1},\overline{s}_{2}),(L_{2},\tilde{s}_{1})}(p)=\eta_{(L_{1},\overline{s}_{2}),(L_{2},\overline{s}_{1}’)}(p)-k$

for every $(L_{1},\tilde{s}_{2})$ and $p\in L_{1}\cap L_{2}$ . More precisely the identification

of the deck transformation group of $\overline{Lag}(M)\rightarrow$ Lag(M) and $\mathbb{Z}$ has an
ambiguity Aut $(\mathbb{Z})=\{\pm 1\}$ . We can fix it by requiring (2.34).

So far, we restricted ourselves to a symplectic manifold with $c^{1}=0$

and Lagrangian submanifold with Maslov index 0. This allows us to
define Floer homology with $\mathbb{Z}$ grading. However it is useful for some
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other purposes to relax the condition $c^{1}=Maslov$ index $=0$ . Let us
discuss the general case here, following [Sel]. Let us define $N\in \mathbb{Z}_{\geq 0}$ by

$Im(c^{1} : \pi_{1}(M)\rightarrow \mathbb{Z})=N\mathbb{Z}$ .

$N$ is called the minimal Chern number of $(M, \omega)$ . In a way similar to
the proof of Lemma 2.6, we can construct a covering space

(2.35) $\pi$ : $\overline{Lag}^{N}(M)\rightarrow Lag(M)$

such that $\pi$ induces $2N$ hold covering on each fiber. (We remark that
two hold fiberwise covering of Lag(M) always exists because $M$ is ori-
entable.)

For any $N’$ dividing $N$ , we put

$\overline{Lag}^{N’}(M)=\overline{Lag}^{N}(M)/\mathbb{Z}_{N/N’}$

which is a $2N’$ hold fiberwise covering of Lag(M).
Let $L\subset M$ be a Lagrangian submanifold. We can define

$\overline{\eta}$ : $\pi_{1}(L)\rightarrow \mathbb{Z}_{2N}$

using (2.35). Moreover the composition of $\pi_{2}(M;L)\rightarrow\pi_{1}(L)$ and $\overline{\eta}$

coincides with the $mod 2N$ reduction of $\eta$ : $\pi_{2}(M;L)\rightarrow \mathbb{Z}$ . (Note that
the Maslov index $\eta$ : $\pi_{2}(M;L)\rightarrow \mathbb{Z}$ is defined for any pair of symplectic
manifold $M$ and its Lagrangian submanifold $L.$ ) Now we have:

Lemma 2.36. A lift

$\tilde{s}$ : $L\rightarrow L\tilde{a}g^{N’}(M)|_{L}$

of the map $s$ : $L\rightarrow Lag(M)|_{L}$ exists if and $on/y$ if the image of $\overline{\eta}$ :
$\pi_{1}(L)\rightarrow \mathbb{Z}_{2N}$ is contained in $2N’\mathbb{Z}_{2N}$ .

Such a lift $\tilde{s}$ is called an $N’$ grading of $L’$ . Let $L_{i}(i=1,2)$ be a
pair of Lagrangian submanifolds with $N’$ grading. We assume they are
transversal to each other. Let $p\in L_{1}\cap L_{2}$ . Then we can define its index
$\eta(p)\in \mathbb{Z}_{2N’}$ in a similar way to Definition 2.25. Thus we have a $\mathbb{Z}_{2N’}$

graded Floer homology.

\S 3. Floer homology and $A_{\infty}$ category II - the operator $\mathfrak{m}_{k}$
-

the transversal case -

We next define

$\mathfrak{m}_{k}$ : $\mathcal{L}A\mathcal{G}[1](c_{0}, c_{1})\otimes\cdots\otimes \mathcal{L}A\mathcal{G}[1](c_{k-1}, c_{k})\rightarrow \mathcal{L}A\mathcal{G}[1](c_{0}, c_{k})$
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where $c_{i}=(L_{i},\tilde{s}_{i}, \mathcal{L}_{i})\in \mathfrak{O}b_{4}(\mathcal{L}A\mathcal{G}(M, \Omega, st,\overline{Lag}(M)))$ , under the addi-
tional asumption that $L_{i}\neq L_{i+1}$ . (Here $L_{k+1}=L_{0}$ by convention.) It
follows from our assumption that $L_{i}$ is transversal to $L_{i+1}$ . Again the
idea presented here is not new and is discussed already in [Ful], [Fu4].
However we here give a more precise argument especially on degree and
orientation. In fact there were several errors on those points in [Ful].

We use moduli spaces of pseudoholomorphic discs. Let us consider
a pair $(D^{2},\overline{z})$ of 2 disc $D^{2}$ with the canonical complex structure and
$\overline{z}=(z_{0}, \ldots, z_{k})$ , the ordered set of $k+1$ points on its boundary. We

assume that $(z_{0}, \ldots, z_{k})$ respects the cyclic order. We denote by $\overline{\mathcal{M}}_{k+1}$

the space of all such pairs. The group $PSL(2;\mathbb{R})=Aut(D^{2}, J)$ acts on
it, and let $\lambda\Lambda_{k+1}$ be the quotient space. It is well known that $\mathcal{M}_{k+1}$ is
diffeomorphic to $\mathbb{R}^{k-2}$ and carries a natural orientation. We can com-
pactify it to $C\lambda\Lambda_{k+1}$ in a way similar to the Deligne-Mumford compact-
ification of the moduli space of marked closed Riemann surfaces. (See
[FOh], [FOOO] \S 3.)

Let $(D^{2},\overline{z})\in\tilde{\mathcal{M}}_{k+1}$ . Let $\partial_{i}D^{2}$ be the part of $\partial D^{2}$ between $z_{i-1}$

and $z_{i}$ . (Here $z_{-1}=z_{k+1}$ by notation.)
Let $p_{i}\in L_{i}\cap L_{i+1}$ . ( $L_{k+1}=L_{0}$ by notation.) We fix a compatible

almost complex structure $J$ on $M$ . Namely we assume

$\omega(JX, JY)=\omega(X, Y)$ , $\omega(X, JX)\geq 0$ .

We consider the set of all $((D^{2},\overline{z})$ , $\varphi)$ such that

(3.1.1) $(D^{2},\overline{z})\in \mathcal{M}_{k+1}$ , $\varphi$ : $D^{2}\rightarrow M$ ,

(3.1.2) $\varphi$ is pseudoholomorphic,
(3.1.3) $\varphi(\partial_{i}D^{2})\subset L_{i}$ ,

(3.1.4) $\varphi(z_{i})=p_{i}$ .

Figure 3. 1.

We denote by $\Lambda^{-}4_{k+1}(L_{0}, \ldots, L_{k}; p_{1}, \ldots,p_{k})$ the set of all such
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$((D^{2},\overline{z})$ , $\varphi)$ .

The group $PSL(2;\mathbb{R})$ acts on $-\Lambda\tilde{\Lambda}_{k+1}(L_{0}, \ldots, L_{k} ; p_{1}, \ldots,p_{k})$ by

$u$ . $((D^{2},\overline{z})$ , $\varphi)=((D^{2}, u(\overline{z})),$ $\varphi\circ u^{-1})$ .

Let $\lambda\Lambda_{k+1}(L_{0}, \ldots, L_{k} ; p_{1}, \ldots,p_{k})$ be the quotient space. We can com-
pactify our moduli space $\Lambda 4_{k+1}(L_{0}, \ldots, L_{k}; p_{1}, \ldots,p_{k})$ by using a no-
tion of stable map from open Riemann surface. (See [FOOO] \S 3.) Let
$CA4_{k+1}(L_{0}, \ldots, L_{k} ; p_{1}, \ldots,p_{k})$ be the compactification.

Theorem 3.2. There exists a Kuranishi structure (with corners)

of dimension $n+(k+1)-\sum\eta_{(L_{i},\overline{s}_{i}),(L_{i+1},\overline{s}_{i+1})}(p_{i})-3$ on
$C\mathcal{M}_{k+1}(L_{0}, \ldots, L_{k} ; p_{1}, \ldots,p_{k})$ .

The notion of Kuranishi structure is defined in [FOn2], to han-
dle transversality problem appeared in the construction of fundamental
chains of various moduli spaces in a uniform way. We do not try to
define it here. Roughly speaking it is a way to restate the following
imprecise statement in a rigorous way:

“Theorem 3.2”’
$2$ . By $a$

” generic perturbation ,
$C\lambda\Lambda_{k+1}(L_{0}, \ldots, L_{k} ; p_{1}, \ldots,p_{k})$ will become a manifold with corner. Its
dimension is $n+(k+1)-\sum\eta_{(L_{i},\overline{s}_{i}),(L_{i+1},\overline{s}_{\dot{x}+1})}(p_{i})-3$ .

The word “generic perturbation” in “Theorem3.2”’ should be made
precise. Kuranishi structure is a way to include as the most general
perturbation as possible. Usually the reader do not have to be bothered
with the detail of the study of a space with Kuranishi structure. The
frame work of Kuranishi structure is designed so that desired fundamen-
tal chain (usually over $\mathbb{Q}$ ) which has the properties expected from naive
guess can be constructed in the situation we are interested in (that is
the moduli space of pseudoholomorphic discs). However if the reader is
interested in the most delicate parts of the proofs, he needs to investi-
gate Kuranishi structures. (For example the discussion of Remark 3.3
requires a detail of the frame work of Kuranishi structure.) We pretend
as if a statement like “Theorem 3.2”’ is correct usually and give remarks
on Kuranishi structure when necessary.

Remark 3.3. In our case, the fundamental chain of
$C\lambda\Lambda_{k+1}(L_{0}, \ldots, L_{k} ; p_{1}, \ldots, p_{k})$ can be defined over integer. In fact, by
Lemma 2.10, the Maslov index is 0 in our case. Moreover by Lemma

$2We$ write Theorem in the quote since the statement as is stated is not
correct.
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2.6, $c^{1}(M)=0$ . It follows that our Lagrangian submanifold is semi-
positive in the sense of [FOOO] Chapter 3. Therefore, we can apply
the method of [FOOO] \S 9, \S A3 to obtain a perturbation of our moduli
space so that it is a simplicial complex with fundamental chain over $\mathbb{Z}$ .

(It is actually a space with Whitney stratification.) Using this remark,
our filtered $A_{\infty}$ category is defined over $\Lambda_{\mathbb{Z},0,nov}$ . Also we can work over
$\Lambda_{\mathbb{Z}_{2},0,nov}$ and forget all the orientation problems (as we did in [Fu4]).
However to work over $\mathbb{C}$ (or $\Lambda_{\mathbb{C},nov}$ ) seems to be natural when our main
interest is in mirror symmetry and not in applications of Floer homology
to symplectic topology.

The proof of Theorem 3.2 consists of two parts. One is to use im-
plicit function theorem and Taubes’ type gluing argument to construct
Kuranishi structure. This part is in fact a straightforward analogue of
the argument presented in [FOn2] Chapter 3, [FOh] and [FOOO] Chap-
ter 5. So we do not repeat it. The second part is a calculation of the
(virtual) dimension, which is related to the study of Maslov index in the
last section. We discuss this second point now. The argument here is
also an analogy of one in [FOOO] Chapter 6.

First we remark that the number $k+1-3$ is the dimension of the
moduli space $C\mathcal{M}_{k+1}$ . There is a natural projection

$C\mathcal{M}_{k+1}(L_{0}, \ldots, L_{k} ; p_{1}, \ldots,p_{k})\rightarrow C\mathcal{M}_{k+1}$ .

Hence we are only to show that the virtual dimension of the fiber of the
projection is $n$ $-\sum\eta_{(L_{i},\overline{s}_{i}),(L_{i+1},\overline{s}_{i+1})}(p_{i})$ . (In the case of the space with

Kuranishi structure, its virtual dimension is its dimension by definition.
So it suffices to calculate the virtual dimension.)

Namely we fix $(D^{2},\overline{z})\in \mathcal{M}_{k+1}$ and study the moduli space of pseu-
doholomorphic maps $\varphi$ . (Actually we need to study the case when the
domain of $\varphi$ is singular also. However since the study of it is similar to
and is written in detail in [FOOO] Chapter 5, we omit it.)

The study of virtual dimension is a problem calculating the index.
We first choose a metric on the domain and fix a function space to work

with. For our purpose, it is convenient to use an alternative represen-
tative of $(D^{2},\overline{z})$ . Namely we take a one dimensional K\"ahler manifold $\Sigma$

with the following properties:

(3.4.1) There exists a compact subset $\Sigma_{0}$ such that the complement
$\Sigma-\Sigma_{0}$ is isometric to the disjoint union of $k+1$ copies of $(-\infty, 0]\times[0,1]$ .

(3.4.2) $\Sigma$ is conformaly equivalent to $D^{2}-\{z_{1}, \ldots, z_{k+1}\}$ .

By using [FOh] Theorem 10.4, such $\Sigma$ with a singular Riemannian
metric is given in a canonical way. Also $\Sigma$ and metric in [FOh] Theorem
10.4 depends smoothly on $(D^{2},\overline{z})$ . This fact is essential to work out the
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Taubes’ type gluing construction and the analytic detail of the proof
of Theorem 3.2, as in [FOOO] Chapter 5. For our purpose, that is to
calculate the index, we do not need it.

Note that $k+1$ copies of $(-\infty, 0]\times[0,1]$ in (3.4.1) corresponds to the
marked points $z_{0}$ , $\ldots$ , $z_{k+1}$ by $(3.4. \cdot 2)$ . We let $End_{i}\Sigma\equiv(-\infty, 0]\times[0,1]$

be the copy corresponding to $z_{i}$ .

Let $\varphi$ : $D^{2}\rightarrow M$ be a smooth map satisfying (3.1.1), (3.1.3), (3.1.4).
It induces a map $\Sigma\rightarrow M$ , which we denote by the same symbol. We
consider the operator

(3.5) $D_{\varphi}\overline{\partial}$ : $W^{1,p}(\Sigma^{*}, \varphi TM;\varphi T*L)\rightarrow W^{0,p}(\Sigma^{*}, \varphi TM\otimes\Lambda^{0,1}\Sigma)$ .

Here (3.5) is a linearization operator of the pseudoholomorphic curve
equation:

$\overline{\partial}\varphi=0$ ,

$W^{k,p}$ in (3.5) denotes the space of all sections whose derivative up to
order $k$ is of $L^{p}$ class, and

$W^{1,p}(\Sigma^{*}, \varphi TM;\varphi T*L)$

$=$ { $u\in W^{1,p}$ ( $\Sigma$ , $\varphi^{*}TM$ ) $|u(x)\in T_{\varphi(x)}L_{i}$ if $ x\in\partial_{i}\Sigma$ }

where $\partial_{i}\Sigma$ is a part of $\partial\Sigma$ which corresponds to $\partial_{i}D^{2}$ . (We remark that
elements of $W^{1,p}$ is continuous since we assumed $p>2.$ )

Note that ends of $\Sigma$ are of product type. We also assumed that $L_{i}$

is transversal to $L_{i+1}$ at $p_{i}$ . Hence the operator (3.5) is nondegenerate
at the end. Therefore, by a standard argument, we can prove that (3.5)
is Fredholm. We are going to calculate its index.

We first trivialize $\varphi^{*}TM$ on $\Sigma$ . The trivialization is unique up to
homotoy since $\Sigma$ is contractible. We next take a path $s_{i}$ : $\partial_{i}\Sigma\rightarrow Lagn$ .
$s_{i}$ is defied by $s_{i}(x)=T_{\varphi(x)}TL\subset T_{\varphi(x)}TM=(\varphi^{*}TM)_{x}\cong \mathbb{C}^{n}$ .

We thus reduced the problem calculating the virtual dimension of
the moduli space $C\Lambda 4_{k+1}(L_{0}, \ldots, L_{k}; p_{1}, \ldots,p_{k})$ to the problem calcu-
lating the index of the operator

(3.6) $\overline{\partial}$ : $W^{1,p}(\Sigma, \mathbb{C}^{n}; s_{0}, \ldots, s_{k})\rightarrow W^{0,p}(\Sigma, \mathbb{C}^{7\iota}\otimes\Lambda^{0,1}\Sigma)$ ,

where

$W^{1,p}(\Sigma, \mathbb{C}^{n}; s_{0}, \ldots, s_{k})=$ { $u\in W^{1,p}(\Sigma,$ $\mathbb{C}^{\tau x})|u(x)\in s_{i}(x)$ if $ x\in\partial_{i}\Sigma$ }.

The index of (3.6) does not change if we change $s_{i}$ in a homotopy class.
Hence we may assume:

(3.7) $\{$

$s_{i}(\tau, 1)=T_{pi}L$ if $\tau<-T$ , $(\tau, 1)\in End_{i+1}\Sigma$ ,

$s_{x}(\tau, 0)=T_{pi}L$ if $\tau<-T$ , $(\tau, 0)\in End_{i}\Sigma$ .
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We next construct an elliptic complex whose index is $\eta_{(L_{i},\overline{s}_{i}),(L_{i+1},\overline{s}_{i+1})}(p)$ .

We put:

$Y=D^{2}\cup\{x+\sqrt{-1}y|x\geq 0, y\in[-1,1]\}\subset \mathbb{C}$ .

Figure 3.2.

We remark $\partial Y\cong \mathbb{R}$ where $-\infty$ corresponds to $\infty-\sqrt{-1}$ and $\infty$

corresponds $\infty+\sqrt{-1}$ . We also define a path $\tilde{\ell}_{i}$ : $\mathbb{R}\rightarrow\overline{Lag}(T_{p_{i}}M)$ such

that $\tilde{\ell}_{i}(-\infty)=\tilde{s}_{i}(p)$ and $\tilde{\ell}_{\dot{x}}(\infty)=\tilde{s}_{i+1}(p)$ , where $\tilde{s}_{i}$ is the grading of the
Lagrangian submanifold of $L_{i}$ we have chosen. We may also assume that
$\ell_{i}(t)$ is locally constant if $|t|>T$ . We thus obtain a Fredholm operator

(3.8.z) $\overline{\partial}$ : $W^{1,p}(Y, T_{pi}M;\ell_{i})\rightarrow W^{0,p}(Y, T_{p_{x}}M\otimes\Lambda^{0,1}\Sigma)$ .

Here $\ell_{i}=\pi o\ell_{i}^{-}$ and $W^{1,p}(Y, T_{p_{i}}M;\ell_{i})$ is defined by

$W^{1,p}(Y, T_{pi}M;\ell_{i})=$ { $u\in W^{1,p}(Y,$ $T_{pi}M)|u(x)\in\ell_{i}(x)$ if $x\in\partial Y\cong \mathbb{R}$ }.

Now we have the following two Lemmata 3.9 and 3.13.

Lemma 3.9. The index of (3.8.z) is $\eta_{(L_{i},\overline{s}_{i}),(L_{i+1},\tilde{s}_{i+1})}(p)$ .

Proof. Take a biholomorphic map $\psi$ : $\mathbb{R}\times[0,1]$ $\rightarrow Y-\{-1\}$

such that $(\infty, t)$ corresponds $\infty+t\sqrt{-1}$ and $(-\infty, t)$ corresponds $-1\in$

$\partial\overline{Y}$ . We pull back the boundary condition $\ell_{i}$ to $\mathbb{R}\times\{0,1\}$ and obtain
$(\ell_{i,0}, \ell_{i,1})$ . We then consider the operator

(3.10) $\overline{\partial}$ : $W^{1,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n}; \ell_{i,0}, \ell_{i,1})\rightarrow W^{0,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n}\otimes\Lambda^{0,1})$ .
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The operator (3.10) is similar to (2.17). However (3.10) is not a Fredholm
operator since the operator is degenerate when $\tau\in \mathbb{R}$ goes to $-\infty$ . In
fact $\ell_{i,0}(-\infty)=\ell_{i,1}(-\infty)$ . So to obtain a Fredholm operator, we need to
use a weighted Sobolev norm. We consider the weighted Sobolev norm

$||u||_{1,p,\delta}^{p}=||e^{\delta|\tau|}u||_{p}^{p}+||e^{\delta|\tau|}\nabla u||_{p}^{p}$

where $||$ $||_{p}$ is the usual $L^{p}$ norm and $\nabla$ is a covariant derivative. We
define $W^{1,p,\delta}(\mathbb{R}\times[0,1];\mathbb{C}^{n}; \ell_{i,0}, \ell_{i,1})$ using this weighted Sobolev norm
and the same boundary condition as $W^{1,p}(\mathbb{R}\times[0,1];\mathbb{C}^{n} ; \ell_{i,0}, \ell_{i,1})$ . We
then consider

$\overline{\partial}$ : $W^{1,p,\delta}(\mathbb{R}\times[0,1];\mathbb{C}^{n};\ell_{i,0}, \ell_{i,1})$

$(3.11.\delta)$

$\rightarrow W^{0,p,\delta}(\mathbb{R}\times[0,1];\mathbb{C}^{n}\otimes\Lambda^{0,1})$ .

$(3.11.\delta)$ is a Fredholm operator for nonzero small $\delta$ . We can prove the
following easily.

Sublemma 3.12. The index of $(3.11.\delta)$ is $\eta(\ell_{i,0}, \ell_{i,1})-n$ if $\delta>0$

and $if|\delta|$ is small, and is $\eta(\ell_{i,0}, \ell_{i,1})$ if $\delta<0$ and if $|\delta|$ is small

In fact, if we study (3.10) using spectral flow as in the sketch of the
proof of Proposition 2.19, then we find that $n$ is the number of eigenval-
ues converging to 0 as $\tau\rightarrow-\infty$ . Hence the index changes by $n$ when
we move $\delta$ from negative to positive. This difference corresponds to the
way to perturb $\ell_{i,1}(\tau)$ for $\tau$ close to $-\infty$ . Namely if we perturb so that
$\ell_{i,0}(-\infty)$ is transversal to $\ell_{i,1}(-\infty)$ . (Then the operator $(3.11.\delta)$ will
become Fredholm.) We can prove the sublemma using this observation.

Now we consider the case when $\delta>0$ . This means that we consider
the solution of $\overline{\partial}u=0$ with $u$ converges to 0 in the exponential order
as $\tau\rightarrow-\infty$ . Then when we transform $u$ by $\psi$ , it will corresponds to
an element of the kernel of $(3.8.i)$ such that its value at -1 is zero.
Therefore we find that the index of $(3.11.\delta)$ for $\delta>0$ is the index of
(3.8.i) minus $n$ . Lemma 3.9 follows from Sublemma 3.12. $\square $

Lemma 3.13. The index of (3.6) plus the sum of the indices of
(3.8.i) for $i=0$ , $\ldots$ , $k$ is $n$ .

Proof. We glue the elliptic operator (3.6) with the elliptic operators
(3.8.i) on their boundaries. Then we obtain an elliptic operator

(3.14) $\overline{\partial}$ : $W^{1,p}(D^{2} ; \mathbb{C}^{n}; \ell)\rightarrow W^{0,p}(D^{2}; \mathbb{C}^{n}\otimes\Lambda^{0,1})$ .

Here notations in (3.14) are defined as follows.
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$\ell:S^{1}\rightarrow \mathbb{C}^{n}$ is a path obtained byjoining $s_{0},\ell_{0}$ , $s_{1},\ell_{1}$ , $s_{2},\ell_{2}$ , $\ldots,\ell_{k}$ , $s_{k}$

in this order. $W^{1,p}(D^{2} ; \mathbb{C}^{n}; \ell)$ is the set of $W^{1,p}$ sections $u$ of $\mathbb{C}^{n}$ on $D^{2}$

such that $u(t)\in\ell(t)$ for $t\in S^{1}=\partial D^{2}$ .

Now the index of (3.14) is equal to the index of (3.6) plus the sum
of the indices of $(3.8.i)$ for $i=0$ , $\ldots$ , $k$ by excision property of indices.

On the other hand, the homotopy invariance of index implies that
the index of (3.14) depends only on the homotopy type of $\ell$ . Moreover,

in fact, $\ell$ is lifted to Lagn since $s_{0}$ , $\ell_{0}$ , $s_{1}$ , $\ell_{1}$ , $s_{2}$ , $\ell_{2}$ , $\ldots$ , $\ell_{k}$ , $s_{k}$ are all lifted.
Hence we may assume that $\ell$ is constant. Then it is easy to see that the
index of (3.14) is $n$ . The proof of Lemma 3.13 is complete. $\square $

From Lemma 3.9 and Lemma 3.13 we find that the virtual dimen-
sion of the moduli space $C\lambda\Lambda_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$ is as asserted in
Theorem 3.2. $\square $

We next discuss the orientation. To define an orientation of the
moduli space $C\mathcal{M}_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$ , we need one extra data,
which we discuss now. We consider the complex $(3.8.i)$ . Its index as a
virtual vector space depends only on the homotopy class of the path $\ell_{i}$ .

Since $\ell_{i}=\pi\circ\ell_{i}$ , and $\tilde{\ell}_{i}$ is a path joining $\tilde{s}_{i}(p)$ and $\tilde{s}_{i+1}(p)$ which is unique
up to homotopy, it follows that the homotopy class of $\ell_{i}$ is defined in a
canonical way for graded Lagrangian submanifold. Therefore the virtual
vector space, which is an index of $(3.8.i)$ , is well-defined. Now we choose
the orientation of this virtual vector space, the index of (3.8.i).

Remark 3.15. In a similar context of finite dimensional Morse
theory, we need to fix an orientation of the stable (or unstable) manifold
of each critical point in order to fix an orientation of the moduli space
of connecting orbit. (See for example [FOn2] 21.)

The orientation of the index virtual vector space of $(3.8.i)$ corre-
sponds to the choice of orientation of stable manifold in the finite di-
mensional Morse theory.

To describe the choice of the orientation of the index of (3.8.i) in

more canonical way, we proceed as follows. We modify the definition in
(2.30) and put

$\mathcal{L}A\mathcal{G}^{k}((L_{1},\tilde{s}_{1}, \mathcal{L}_{1}), (L_{2},\tilde{s}_{2}, \mathcal{L}_{2}))$

(3.16) $=\eta_{(L_{1},\overline{s}_{1}),(L_{2^{\overline{S}}2})^{(p)=k}}p\in L\cap,L\oplus_{12}Hom((\mathcal{L}_{1})_{p}, (\mathcal{L}_{2})_{p})$

$\otimes_{\mathbb{C}}\Lambda_{0,nov}\otimes_{\mathbb{R}}\Lambda^{top}$ (Index $(3.8.i)$ .

(3.16) is isomorphic to (2.30). The choice of isomorphism corresponds
one to one to the choice of orientations of the index of $(3.8.i)$ . In case
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we fix a choice of the index virtual vector space of (3.8.i) for each $p$ , we
use (2.30) in place of (3.16).

Remark 3.17. In (3.16) we include the determinant of (3.8.i) in
Floer’s chain complex. The necessity of it becomes more apparent if we
consider more general situation. Namely let us consider the case when
$L_{1}$ may not be transversal to $L_{2}$ but is of clean intersection. (It means
that the $L_{1}\cap L_{2}$ is a submanifold and the $T_{p}L_{1}\cap T_{p}L_{2}\cong T_{p}(L_{1}\cap L_{2})$

for $p\in L_{1}\cap L_{2}$ is of constant dimension.) In that case the right hand
side of (3.16) will become

$\mathcal{L}A\mathcal{G}((L_{1},\tilde{s}_{1}, \mathcal{L}_{1}), (L_{2},\overline{s}_{2}, \mathcal{L}_{2}))$

$=\Gamma(L_{1}\cap L_{2;}Hom(\mathcal{L}_{1}|_{L_{1}\cap L_{2}}, \mathcal{L}_{2}|_{L_{1}\cap L_{2}})$

$\otimes_{\mathbb{C}}\Lambda_{0,nov}\otimes_{\mathbb{R}}\Lambda^{top}$ (Index(3.8.i)).

Here $\Lambda^{top}$ (Index(3.8.i)) is one dimensional real vector bundle on $L_{1}\cap L_{2}$ ,
which corresponds to a local system $\pi_{1}(L_{1}\cap L_{2})\rightarrow\{\pm 1\}$ . See [FOOO]
Chapter 625.6 for detail.

Theorem 3.18. A choice of $(M, st)$ -relative spin structures on $L_{i}$

and a choice of an orientation of the index virtual vector space of (3.8.i)
induce an orientation of $C\mathcal{M}_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$ , in a canonical
way.

Here orientation of $C_{\vee}\mathcal{M}_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$ means orientation
in the sense of Kuranishi structure [FOn2].

Proof The idea of the proof is a combination of ones in [FOOO]
Chapter 6 and [FOn] \S 21, (the later is suggested already in Floer’s paper
[F13] $)$ . Let $E_{i}$ be the index virtual vector space of $(3.8.i)$ . For each

$\varphi$ : $(D^{2}, \partial D^{2})\rightarrow(M, L)$ , let $E(\varphi)$ be the index virtual vector space of
(3.6). $\varphi$ induces paths $s_{i}$ : $\partial_{i}\Sigma\rightarrow Lag_{n}$ as explained during the proof of
Theorem 3.2. Joining them with $\ell_{i}$ we obtain a loop $\ell$ : $\Sigma\rightarrow Lag_{n}$ as
in the proof of Theorem 3.2. $\ell$ depends continuously on $\varphi$ , so we write
$\ell(\varphi)$ . We thus find a family of elliptic operators

(3.19) $\overline{\partial}$ : $W^{1,p}(D^{2}; \mathbb{C}^{n}; \ell(\varphi))\rightarrow W^{0,p}(D^{2} ; \mathbb{C}^{7L}\otimes\Lambda^{0,1})$

parametrized by $\varphi$ . The following result is proved in [FOOO] Chapter
6 Theorem 21.1 (see also D. Silva [Sil]).

Theorem 3.20. The choice of $(M, st)$ -relative spin structures on
$L_{i}$ induces an orientation of the index bundle of (3.19).

Let $E’(\varphi)$ be the virtual vector space which is the index of (3.19).
Let $E(\varphi)$ be the virtual vector space which is the index of (3.5). Let $E_{i}$
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be the index of $(3.8.i)$ . Then by family of index gluing theorem (see for
example [Fu8] \S 4) we have an isomorphism

$k$

(3.21)
$E’(\varphi)\oplus\oplus E_{i}\cong E(\varphi)i=0$

.

Here $E’(\varphi)$ , $E(\varphi)$ are virtual vector bundles and $E_{i}$ are virtual vector
spaces. Theorem 3.18 follows from Theorem 3.20 and (3.21). $\square $

Remark 3.22. We may take an orientation of
$C\Lambda 4_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$ such that (3.21) holds as an identify of
oriented vector space. However in order to define an operator $\mathfrak{m}_{k}$ satis-
fying $A_{\infty}$ formula, we need to change this orientation in a way depending
on the $dimE_{i}$ and $n$ in a similar way to [FOOO] Chapter 6. Namely we
put

$k$

$E’(\varphi)\oplus(-1)^{\epsilon}.\oplus_{0}?=E_{i}\cong E(\varphi)$
,

$\epsilon=\sum_{j=0}^{k}\sum_{\ell=1}^{j}dimE_{i}$ .

(Compare the above formula to [FOOO] Remark 25.2 (1).)

The problem of degree and orientation being understood, we are
ready to define $\mathfrak{m}_{k}$ in the case $L_{i}\neq L_{i+1}$ .

We consider the case when the dimension

$dimC\lambda\Lambda_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$

$=n+(k+1)-\sum_{i=0}^{k}\eta_{(L_{i},\overline{s}_{i}),(L_{i+1},\overline{s}_{i+1})}(p_{i})-3=0$ .

This (together with (2.37)) implies

(3.23) $1+\sum_{i=0}^{k-1}(\eta_{(L_{i},\overline{s}_{i}),(L_{i+1},\overline{s}_{i+1})}(p_{i})-1)=\eta(L_{0},\tilde{s}_{0}),(L_{k},\overline{s}_{k})(p_{k})-1$ .

Let us put $degp_{i}=\eta_{(L_{i},\overline{s}_{i}),(L_{i+1},\overline{s}_{i+1})}(p_{i})$ for $i=0$ , $\ldots$ , $k-1$ , and
$degp_{k}=\eta_{(L_{0},\overline{s}_{O}),(L_{k},\tilde{s}_{k})}(p_{k})$ . Then (3.23) implies that

$1+\sum(degp_{i}-1)=degp_{k}-1$ .
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We are going to define the matrix elements

(3.24) $\langle \mathfrak{m}_{k}(p_{0}, \ldots,p_{k-1}),p_{k}\rangle$

$\in Hom$ ( $.\otimes_{0}Hom((\mathcal{L}_{i})_{pi}, (\mathcal{L}_{\dot{\tau}+1})_{p_{i}})$
, $Hom((\mathcal{L}_{0})_{pk}, (\mathcal{L}_{k})_{pk})$ ) $\otimes_{\mathbb{C}}\Lambda_{nov}$

when (3.23) is satisfied.
Before defining (3.24), we explain how (3.24) defines $\mathfrak{m}_{k}$ . We recall

that an element of $\mathcal{L}A\mathcal{G}((L_{i},\tilde{s}_{i}, \mathcal{L}_{i}), (L_{i+1},\tilde{s}_{i+1}, \mathcal{L}_{i+1}))$ is, by definition,
a formal sum

$\sum_{j=0}^{\infty}T^{\lambda_{i}^{(j)}}[v_{i}^{(j)}]$

where

$v_{i}^{(j)}\in Hom((\mathcal{L}_{i})_{p_{i}^{(j)}}, (\mathcal{L}_{i+1})_{p_{i}^{(j)}})$ , $p_{i}^{(j)}\in L_{i}\cap L_{i+1}$ .

Then we define

$\mathfrak{m}_{k}(v_{1}^{(j_{1})}, \ldots, v_{k-1}^{(j_{k-1})})$ ,

by

(3.25) $\mathfrak{m}_{k}(v_{1}^{(j_{1})}, \ldots, v_{k-1}^{(j_{k-1})})$

$=\sum_{j_{1},.,j_{k}pk}\sum_{\in L_{O}\cap L_{k}}T^{\lambda_{1}^{(j_{1})}+}$

. $+\lambda_{k-1}^{(j_{k-1})}$

$\langle \mathfrak{m}_{k}(p_{0}^{(j_{1})}, \ldots,p_{k-1}^{(j_{k-1})}),p_{k}\rangle(v_{1}^{(j_{1})}\otimes\cdots\otimes v_{k-1}^{(j_{k-1})})$ ,

using (3.24). Now we define (3.24).

Definition 3.26. We define (3.24) by

$(3.27)\sum_{L_{k}\varphi\in C\mathcal{M}_{k+1}(L_{O},.,,p_{0},,p_{k})}\ldots T^{ReE(\varphi)}e^{\sqrt{-1}ImE(\varphi)}h_{\nabla}(\varphi(\partial D^{2}))\epsilon_{\varphi}$

where $E$ , $h$ , $\epsilon$ are defined below. First we define $E$ by

$ E(\varphi)=\int_{D^{2}}\varphi^{*}\Omega$ .

$ReE$ and $ImE$ are its real and imaginary parts, respectively.
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Figure 3.3.

Next we define $h$ . Let $v_{i}\in Hom((\mathcal{L}_{i})_{p_{i}}, (\mathcal{L}_{i+1})_{pi})$ . Then

(3.28) $h_{\nabla}(\varphi(\partial D^{2}))(v_{0}\otimes\cdots\otimes v_{k-1})$

$=P_{\nabla_{k}}(\varphi(\partial_{k}D^{2}))\circ v_{k-1}\circ\cdots\circ P_{\nabla_{1}}(\varphi(\partial_{1}D^{2}))\circ v_{0}$ .

Here $P_{\nabla_{i}}(\varphi(\partial_{i}D^{2}))$ : $(\mathcal{L}_{i})_{p_{i}}\rightarrow(\mathcal{L}_{i})_{p_{i+1}}$ is the parallel transport along

the path $\varphi(\partial_{i}D^{2})$ of the bundle $\mathcal{L}_{i}$ with respect to the connection $\nabla_{i}$ .

Finally $\epsilon_{\varphi}$

$\in$ $\{\pm 1\}$ is determined by the orientation of
$C\Lambda\Lambda_{k+1}(L_{0}, \ldots, L_{k}; p_{0}, \ldots,p_{k})$ defined by Theorem 3.20. (See also Re-
mark 3.22.)

Lemma 3.29. (3.27) is an element of $Hom((\mathcal{L}_{0})_{p\kappa}, (\mathcal{L}_{k})_{p_{k}})\otimes\Lambda_{+,nov}$ .

Lemma 3.27 is a consequence of Gromov compactness theorem. (See
[FOOO] Proposition 5.8 for the proof of a similar statement.) The fol-
lowing lemma is used in the proof of $A_{\infty}$ formula.

Lemma 3.30. $T^{ReE(\varphi)}e^{\sqrt{-1}ImE(\varphi)}h_{\nabla}(\varphi(\partial D^{2}))$ depends only on
the homotopy class of $\varphi$ .

Proof. We can prove that $ReE(\varphi)$ depends only on the homotopy
class of $\varphi$ by using Stokes’ theorem and the fact that $L_{i}$ is a Lagrangian

submanifold. Homotopy independence of $e^{\sqrt{-1}ImE(\varphi)}h_{\nabla}(\varphi(\partial D^{2}))$ fol-
lows from the condition that the curvature of $\nabla_{i}$ is $2\pi\sqrt{-1}B$ (Condition
(2.1.2) $)$ . $\square $

Remark 3.31. We remark that we are working under the
hypothesis $L_{i}\neq L_{i+1}$ in this section. In this case we put $\mathfrak{m}_{0}=0$ .
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We also remark that in this case the coefficient of the operator belongs
to the maximal ideal $\Lambda_{+,nov}$ , since the energy of nonconstant pseudo-
holomorphic map is always positive.

Remark 3.32. Theorem 3.2 implies that
$C\mathcal{M}_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$ has a Kuranishi structure but it is in gen-
eral not true that we can find a generic perturbation using $J$ so that it is a
manifold. So in order to make sense of (3.27) we need to take multivalued
perturbation (multisection) as in [FOn2] and use it to define a fundamen-
tal chain over $\mathbb{Q}$ of our moduli space $C\lambda\Lambda_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$ . In
the situation of (3.27) where the moduli space is of dimension 0, it means
that we need to put multiplicity $=\pm 1/integer$ in place of $\epsilon_{\varphi}\in\{\pm 1\}$ .

However, in our situation, all of our Lagrangian submanifolds are
semipositive in the sense defined in [FOOO] Chapter 3. Hence by using
normally polynomial sections described in [FOOO] \S A3, we can prove
that $C\Lambda 4_{k+1}(L_{0}, \ldots, L_{k} ; p_{0}, \ldots,p_{k})$ has a fundamental chain over $\mathbb{Z}$ . In
other words our operation $\mathfrak{m}_{k}$ is defined over $\Lambda_{\mathbb{Z},0,nov}$ .

The next task to be carried out might be the proof of $A_{\infty}$ formula
$\hat{d}\circ\hat{d}=0$ . However the formula

(3.33) $\sum\pm \mathfrak{m}_{*}(x_{0}, \ldots, x_{\ell-1}, \mathfrak{m}_{*}(x\ell, \ldots, x_{m}), x_{m+1}, \ldots, x_{k})=0$

does not holds if we consider only $\mathfrak{m}_{*}$ with $*>0$ . In other words we
can not prove $A_{\infty}$ formula when we consider only $L_{i}$ ’s with $L_{i}\neq L_{i+1}$ .

We need to include the case $L_{i}=L_{i+1}$ and $\mathfrak{m}_{0}$ , which is nonzero in the
general case. Namely, for example, we are not able to prove

$0=$ $\mathfrak{m}_{1}(\mathfrak{m}_{3}(x_{0}, x_{1}, x_{2}))$

$+\mathfrak{m}_{2}$ $(\mathfrak{m}_{2}(x_{0}, x_{1})$ , $x_{2})+(-1)^{degx_{0}+1}\mathfrak{m}_{2}(x_{0}, \mathfrak{m}_{2}(x_{1}, x_{2}))$

(3.34)
$+\mathfrak{m}_{3}(\mathfrak{m}_{1}(x_{0}), x_{1}, x_{2})+(-1)^{degx_{0}+1}\mathfrak{m}_{3}(x_{0}, \mathfrak{m}_{1}(x_{1}),$ $x_{2})$

$+(-1)^{degxo+1+degx_{1}+1}\mathfrak{m}_{3}(x_{0}, x_{1}, \mathfrak{m}_{1}(x_{2}))$ ,

which is (3.33) in case $k=2$ , if we consider only $\mathfrak{m}_{*}with*>0$ . In place
of (3.34), we will prove

$0=$ $\mathfrak{m}_{1}(\mathfrak{m}_{3}(x_{0}, x_{1}, x_{2}))$

$+\mathfrak{m}_{2}$ $(\mathfrak{m}_{2}(x_{0}, x_{1})$ , $x_{2})+(-1)^{degxo+1}\mathfrak{m}_{2}(x_{0}, \mathfrak{m}_{2}(x_{1}, x_{2}))$

$+\mathfrak{m}_{3}(\mathfrak{m}_{1}(x_{0}), x_{1}, x_{2})+(-1)^{degx_{O}+1}\mathfrak{m}_{3}(x_{0}, \mathfrak{m}_{1}(x_{1}),$ $x_{2})$

(3.35) $+(-1)^{degx_{0}+1+degx_{1}+1}\mathfrak{m}_{3}(x_{0}, x_{1}, \mathfrak{m}_{1}(x_{2}))$

$+\mathfrak{m}_{4}(\mathfrak{m}_{0}(1), x_{0}, x_{1}, x_{2})+(-1)^{degx_{0}+1}\mathfrak{m}_{4}(x_{0}, \mathfrak{m}_{0}(1),$
$x_{1}$ , $x_{2})$

$+(-1)^{degxo+1+degx_{1}+1}\mathfrak{m}_{4}(x_{0}, x_{1}, \mathfrak{m}_{0}(1), x_{2})$

$+(-1)^{degxo+1+degx_{1}+1+degx_{2}+1}\mathfrak{m}_{4}(x_{0}, x_{1}, x_{2}, \mathfrak{m}_{0}(1))$ .
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Here, for example, the element $\mathfrak{m}_{0}(1)$ which appeared in $\mathfrak{m}_{4}(\mathfrak{m}_{0}(1),$
$x_{0}$ , $x_{1}$ ,

$x_{2})$ is an element of the $\Lambda_{0,nov}$ module $\mathcal{L}A\mathcal{G}((L_{0},\tilde{s}_{0}, \mathcal{L}_{0}), (L_{0},\overline{s}_{0}, \mathcal{L}_{0}))$ .

Thus $\mathfrak{m}_{0}$ and $\mathfrak{m}_{4}$ in (3.35) are not defined in this section. So we gener-
alize the definition of this section and discuss the case when $L_{i}=L_{i+1}$

for some $i$ , in the next section.

\S 4. Floer homology and $A_{\infty}$ category III - the operator $m_{k}-$

the general case -

The discussion of this section is a combination of the argument of
[FOOO] (especially its Chapter 4) and one of the last section. Namely,
in the case when $c_{0}=\cdots=c_{k+1}=c=(L,\tilde{s}, \mathcal{L})$ , the operator

$\mathfrak{m}_{k}$ : $\mathcal{L}A\mathcal{G}[1](c, c)\otimes\cdots\otimes \mathcal{L}A\mathcal{G}[1](c, c)\rightarrow \mathcal{L}A\mathcal{G}[1](c, c)$

$(k=0,1, \ldots)$ is the operator of the filtered $A_{\infty}$ algebra structure con-
structed in [FOOO] Theorem 13.22.

We consider the following situation. Let $L_{(j)}$ , $j=1$ , $\ldots$ , $m$ be La-
grangian submanifolds such that $L_{(j)}\neq L_{(j+1)}$ . Let $\ell_{j}\in \mathbb{Z}_{>0}$ . We
put $L_{0}=\cdots=L_{\ell_{1}-1}=L_{(0)}$ , $L_{\ell_{1}}=\cdots=L_{\ell_{1}+\ell_{2}-1}=L_{(1)}$ , $\ldots$ ,

$L_{\Sigma_{j=0}^{m1}\ell_{j}}=\cdots=L_{\Sigma_{j=0}^{m}\ell_{j}-1}=L_{(m)}$ . We take $\overline{s}_{i}$ , $\mathcal{L}_{i}$ so that

$c_{i}=(L_{i},\overline{s}_{i}, \mathcal{L}_{i})\in \mathfrak{O}b_{4}(\mathcal{L}A\mathcal{G}(M, \Omega, st,\overline{Lag}(M)))$ .

We write also

$ s_{i}^{(j)}=s\ell_{o++\ell_{i-1}+j}\cdots$ , $\mathcal{L}_{i}^{(j)}=\mathcal{L}_{\ell o++\ell_{i-1}+j}\cdots$ ,

sometimes. We are going to define:

$\mathfrak{m}_{k}$ : $\mathcal{L}A\mathcal{G}[1](c_{0}, c_{1})\otimes\cdots\otimes \mathcal{L}A\mathcal{G}[1](c_{k-1}, c_{k})\rightarrow \mathcal{L}A\mathcal{G}[1](c_{0}, c_{k})$ .

(Here $k=0,1$ $\ldots.$ ) Note that we defined the graded $\Lambda_{0,nov}$ module
$\mathcal{L}A\mathcal{G}[1](c_{i}, c_{i+1})$ if $L_{i}\neq L_{i+1}$ in Definition 2.29. But in case $L_{i}=L_{i+1}$

we need to start with the definition of $\mathcal{L}A\mathcal{G}[1](c_{i}, c_{i+1})$ . Let us put
$L=L_{i}=L_{i+1}$ . We have $(\tilde{s}_{i}, \mathcal{L}_{\dot{\iota}})$ , $(\tilde{s}_{i+1}, \mathcal{L}_{i+1})$ on $L_{i}$ , $L_{i+1}$ .

Roughly speaking the graded $\Lambda_{0,nov}$ module $\mathcal{L}A\mathcal{G}((L, \mathcal{L}_{i}),$ $(L, \mathcal{L}_{i+1}))$

we are going to define is a singular chain complex with local coefficient
$Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})$ . (We remark that the curvature of $\mathcal{L}_{i}$ coincides with the
curvature of $\mathcal{L}_{i+1}$ by (2.2.2). Hence $Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})$ is a flat $U(1)$ bundle.)
But we need to be a bit careful in defining it, so that the definition of $\mathfrak{m}_{k}$ ,

which is based on the smooth correspondence, works. (See also [FOOO]

\S Al.)
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Let $\sigma$ : $\triangle^{q}\rightarrow L$ be a smooth (singular) simplex. Let $(1, 0, \ldots, 0)\in$

$\triangle^{q}$ be the base point. We take a trivialization $\sigma^{*}\mathcal{L}_{i}\cong\triangle^{q}\times(\mathcal{L}_{i})_{\sigma(1,0,0)}\ldots$

,

by using a parallel transport along the $\sigma$ image of the straight line joining
$(1, 0, \ldots, 0)$ with a given point on $\triangle^{q}$ . A smooth singular simplex with
local coefficient $Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})$ is a pair $(\sigma, u)$ such that $\sigma$ : $\triangle^{q}\rightarrow L$ and
$u\in Hom((\mathcal{L}_{i})_{\sigma(1,0,.,0)}, (\mathcal{L}_{i+1})_{\sigma(1,0,0)}\ldots,)$ . We now put:

(4.1) $S_{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))=\{\sum a_{i}(\sigma_{i}, u_{i})|a_{i}\in \mathbb{C}\}/\sim_{1}$ .

Here $(\sigma_{i}, u_{i})$ are smooth singular chain complexes with local coefficient,
$\sum$ is a finite sum, $and\sim_{1}$ is defined by $a_{i}(\sigma_{i}, u_{?})+a_{i}’(\sigma_{i}, u_{i}’)\sim_{1}(\sigma_{i},$ $a_{i}u_{i}+$

$a_{i}’u_{i}’)$ . We can define a boundary operator $\partial$ on it using a trivialization
$\sigma^{*}\mathcal{L}_{i}\cong\triangle^{q}\times(\mathcal{L}_{i})_{\sigma(1,0}$ , ,0) .

We need to divide it further by an appropriate equivalence relation
and then take a countably generated subcomplex, in order to obtain the

chain complex we use. Let us now describe this process.
Let $Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})^{*}$ be the dual bundle of $Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})$ . We con-

sider the vector bundle $Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})\otimes\Lambda^{q}(L)$ on $L$ and let

$W^{-\infty}(Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})\otimes\Lambda^{q}(L))$

be the set of all distribution valued sections of it. Note an element of it
can be identified with a linear map

$C^{\infty}(Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})^{*}\otimes\Lambda^{n-q}(L))\rightarrow \mathbb{C}$

by

$T\mapsto(w\mapsto\int_{L}T\wedge w)$ .

(We assume that $L$ is oriented.) We use this identification to define a
map

$T:S_{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))\rightarrow W^{-\infty}(Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})\otimes\Lambda^{n-q}(L))$

by putting

(4.2) $\int_{L}T(\sigma_{i}, u_{i})\wedge w=\int_{\triangle q}\langle u_{i}, \sigma^{*}w\rangle$ ,

and extending it to a complex linear map in an obvious way. Note that
we used the trivialization $\sigma^{*}\mathcal{L}_{i}\cong\triangle^{q}\times(\mathcal{L}_{i})_{\sigma(1,0}$

, ,0) mentioned before
to define the right hand side of (4.2).
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We define an equivalence relation $S_{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))$ such that
$x\sim_{2}y$ if and only if $T(x)=T(y)$ . We now put

$\overline{S}_{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))=S_{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))/\sim_{2}$ .

Let $P$ be a simplicial complex of dimension $q$ and $f$ : $P\rightarrow L$ be a
piecewise smooth map. We assume that $P$ has a base point. We assume
that the pull back $f^{*}$ $Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})$ is trivial and we fix a trivialization.
Let $u$ be an element of the fiber of $f^{*}$ $Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})$ at the base point.
Then, from $f$ and $u$ , we obtain an element of $\overline{S}_{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))$ in
an obvious way. This element is independent of the subdivision of the
simplicial complex $P$ (as a chain). We denote it by $[P, f, u]$ . Every
element of $\overline{S}_{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))$ is realized in this way. We remark that,
if we do not divide by the equivalence $re1ation\sim_{2}$ , then the element we
obtain will depend on the subdivision of the simplicial complex $P$ .

We use cohomology rather than homology (since the product struc-
ture is the main issue here). We write

$\overline{S}^{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))=\overline{S}_{n-q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))$ .

Next we need to take a countably generated (over $\mathbb{C}$ ) subcomplex of
$\overline{S}^{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))$ . We recall that we have fixed a countable set of
Lagrangian submanifolds and we assumed that the Lagrangian subman-
ifold part of the objects of our category is always in this set. We next

choose a countably generated subcomplex of $\overline{S}^{*}(L)$ for each member $L$

of the countable set of Lagrangian submanifolds we have chosen.
The condition that this subcomplex is assumed to satisfy, is rather

delicate and is not mentioned here. (See [FOOO] \S Al, A5.) The reason
we need to choose a countably generated subcomplex is that we need to
use frequently Bair’s category theorem to achieve transversality in vari-

ous situations and in Bair’s category theorem countability is an essential
issue. The transversality here is not only a technical problem but also
is related to many essential points of the story. It is related to the fact
that, for example, the square of delta function is ill-defined, and hence
is also related to the problem of infinity in quantum field theory.

We denote by $C^{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))$ the countably generated sub-
complex we have chosen. We put

$\mathcal{L}A\mathcal{G}^{q}((L, \mathcal{L}_{i})$ , $(L, \mathcal{L}_{i+1}))=C^{q}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))\wedge\otimes_{\mathbb{C}}\Lambda_{0,nov}$ .

Here $\otimes_{\mathbb{C}}\wedge$ means that we take a completion by using topology induced
by the filtration of $\Lambda_{0,nov}$ . (Note we assumed $L_{i}=L_{i+1}=L.$ ) In other
words an element of $\mathcal{L}A\mathcal{G}^{q}((L, \mathcal{L}_{i})$ , $(L, \mathcal{L}_{i+1}))$ is realized by countable
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sum

$\sum T^{\lambda_{i}}[P_{i}, f_{i}, u_{i}]$

where $\lambda_{i}\rightarrow\infty$ . Using the grading of our Lagrangian submanifold,
we shift the degree as follows. Let $\tilde{s}_{i}$ and $\tilde{s}_{i+1}$ be two gradings of our
Lagrangian submanifold $L$ . Then, as mentioned in $section\underline{2,}$there exists

a unique integer $k$ such that $\tilde{s}_{?+1}.=k\cdot\overline{s}_{i}$ . Here $\mathbb{Z}$ acts on Lagn as a deck
transformation group. We put

(4.3) $k=\tilde{s}_{i+1}-\tilde{s}_{i}\in \mathbb{Z}$ .

Now we define:

Definition 4.4.

$\mathcal{L}A\mathcal{G}^{q}((L,\overline{s}_{i}, \mathcal{L}_{i}), (L,\tilde{s}_{i+1}, \mathcal{L}_{i+1}))$

$=$ $ C^{q+(\overline{s}_{i+1}-\overline{s}_{i})}(L;Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))\otimes_{\mathbb{C}}\Lambda_{0,nov}\wedge$ .

We thus defined $\mathcal{L}A\mathcal{G}(c, c’)$ in our general situation. We turn to the
definition of our operators $\mathfrak{m}_{k}$ .

Let $L_{(j)}$ , $\ell_{j}$ , $(j=1, \ldots, m)$ , $c_{i}=(L_{i},\tilde{s}_{i}, \mathcal{L}_{i})(i=0, \ldots, \sum_{j=0}^{m}\ell_{j})$ be
as in the beginning of this section. For $i$ with $L_{(j)}=L_{i}\neq L_{i+1}=L_{(j+1)}$ ,

we take $p_{i}=p_{(j)}\in L_{(j)}\cap L_{(j+1)}$ and

$v_{i}\in Hom((\mathcal{L}_{i})_{p_{(j)}}, (\mathcal{L}_{i+1})_{p_{(j)}})$ .

For $i$ with $L_{(j)}=L_{i}=L_{i+1}$ , we take

$x_{i}=[P_{i}, f_{i}, u_{i}]\in C^{g_{i}+(\overline{s}_{i+1}-\overline{s}_{i})}(L_{(j)} ; Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1}))$ .

We are going to define

$\mathfrak{m}_{\Sigma_{j=0}^{m1}\ell_{j}}(x_{0},$ $\ldots$ , $x_{l_{0}-1}$ , $v\ell_{o}$ , $x\ell_{o+1}$ , $\ldots$ , $x\ell_{o+\ell_{1}-1}$ , $v\ell_{o+\ell_{1}}$ ,

(4.5) $x\ell_{o+\ell_{1}-1}$ , $\ldots$ , $X\ell_{0}+\cdot+\ell_{m-1}-1$ ,
$ v\ell_{o++\ell_{m-1}}\cdots$ , $x_{\ell_{O}+\cdot\cdot+\ell_{m-1}+1}$ , $\ldots$ , $x_{\ell o++\ell_{m}-1}\cdots)$ .

Hereafter we write (4.5) as $\mathfrak{m}(x_{0}, \ldots, x_{\ell_{O}+\cdot\cdot+\ell_{m}-1})$ , for simplicity. There
are two cases:

(4.6.1) $L_{(m)}\neq L_{(0)}$ .

(4.6.2) $L_{(m)}=L_{(0)}$ .

Case (4.6.1): In this case we take $p_{(m)}\in L_{(m)}\cap L_{(0)}$ and are going to
define the matrix element

$\langle \mathfrak{m}(x_{0}, \ldots, x_{\ell_{0}+\cdot\cdot+\ell_{m}-1}), p_{(m)}\rangle$

(4.7)
$\in Hom((\mathcal{L}_{\ell_{O}+\cdot+\ell_{m}-1})_{p_{(m)}}, (\mathcal{L}_{0})_{p_{(m)}})$ .
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Figure 4. 1.

We need to define (4.7) only in case the degree is correct. Namely in

case

(4.8) $\sum(g_{i}+1)+\sum(\eta(p_{(j)})+1)=\eta(p_{(m)})+1$ .

To define (4.7) in case (4.8) is satisfied, we use a moduli space which
is similar to but a bit more complicated than one we used in the last
section. Let us define it now. Let us consider the system
$((D^{2},\overline{z},\cdot\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}), \varphi)$ such that

(4.9.1) $((D^{2},\overline{z}),$ $\varphi)\in\tilde{\Lambda}4_{m+1}(L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots,p_{(m)})$ , where the
right hand side is as in (3.1).

(4.9.2) $\overline{w}^{(j)}=(w_{1}^{(j)}, \ldots, w_{\ell_{j}-1}^{(j)})$ . $w_{i}^{(j)}\in\partial_{j}D^{2}$ . Here $\partial_{j}D^{2}$ is as in the

last section.
(4.9.3) If $i\neq i’$ then $w_{i}^{(j)}\neq w_{i}^{(j)},$ . $w_{1}^{(j)}$ , $\ldots$ , $w_{\ell_{j}-1}^{(j)}$ respects the order of
$\partial_{j}D^{2}$ .

The totality of such $((D^{2},\overline{z},\cdot\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}), \varphi)$ is denoted by

$\tilde{\mathcal{M}}_{m+1}(L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots, p_{(m)} ; \ell_{0}, \ldots, \ell_{m})$ .

We divide it by an obvious action of $PSL(2;\mathbb{R})$ and denote the quotient
space by

$\Lambda 4_{m+1}(L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots, p_{(m)} ; \ell_{0}, \ldots, \ell_{m})$ .
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We can compactify it by using the notion of stable rnaps. (See [FOOO]

\S 3 for its definition in the case Riemann surface has a boundary.) We
denote the compactification by

$C\mathcal{M}_{m+1}(L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots,p_{(m)} ; \ell_{0}, \ldots, \ell_{m})$ .

We define evaluation maps

$\overline{e}v=(\overline{e}v^{(0)}, \ldots,\overline{e}v^{(m)})$ , $\overline{e}v^{(j)}=(ev_{1}^{(j)}, \ldots, ev_{\ell_{j}-1}^{(j)})$ ,

such that

$\overline{e}v^{(j)}$ : $C\Lambda 4_{m+1}(L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots,p_{(m)} ; \ell_{0}, \ldots, \ell_{m})\rightarrow L_{(j)}^{\ell_{j}-1}$

is

$\overline{e}v_{i}^{(j)}[(D^{2},\overline{z}\cdot,\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}), \varphi]=\varphi(w_{i}^{(j)})$ .

We consider the fiber product

$C\mathcal{M}_{m+1}(L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots,p_{(m)} ; \ell_{0}, \ldots, \ell_{m})$

(4.10)
$\tilde{\in}v\times_{f*}\prod_{j}\prod_{i=1}^{\ell_{j}-1}P_{\ell o++\ell_{j-1}+i}\cdots$ .

Now we have:

Lemma 4.11. If (4.8) is satisfified then (4.10) has a Kuranishi
structure of dimension 0. The choice of relative spin structure on $L_{(j)}$

and the choices of the orientations of the index virtual bundle of (3.8.i).
determine an orientation of (4.10) in a canonical way.

Proof. The proof of Lemma 4.11 is a straight forward combination
of the argument of [FOOO] Chapters 5, 6 and one in the last section.
We remark that to prove Lemma 4.11 we need to restrict the chains $P_{i}$

so that only countably many of them are studied, since we need to use
Bair’s category theorem to prove Lemma 4.11.

We need to choose the orientation by modifying the fiber product
orientation in a way combining [FOOO] Chapter 6 and (3.21) as follows:

We remark that each $P_{i}$ is regarded as a cochain rather than a
chain. This means that we coorient it. Namely for each $x\in P_{i}$ such
that $f_{i}$ : $P_{i}\rightarrow L(f_{i}$ is the map defining $P_{i}$ as a differential form valued
distribution) is an immersion at $x$ , we have an orientation of the normal
bundle $N_{f_{i}(x)}f_{i}(P_{i})$ .

For each marked point $z_{i}$ we define $E_{i}$ as follows. If $L_{i}\neq L_{i+1}$ then
we define $E_{i}$ as in (3.21) namely it is the index of (3.8.i). In case $ L_{i}\neq$
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$L_{i+1}$ , then $z_{i}$ corresponds to some $P_{i’}$ . Then we put $E_{i}=N_{f_{j}(x)}f_{j}(P_{j})$

here $f_{j}(x)=\varphi(z_{i})$ . Then (3.21) holds. So we define an orientation by
(3.22). $\square $

Now to define the matrix element (4.7), we need to define a weight.
We put

$ E((D^{2},\overline{z}\cdot,\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}), \varphi)=\int_{D^{2}}\varphi^{*}\omega$ .

Then the “absolute value” of the weight we put is $T^{E((D^{2},\tilde{z},\tilde{w}^{(0)},\tilde{w}^{(m)}),\varphi)}\ldots,$

.

We next are going to define the “phase factor”

$H(((D^{2},\overline{z},\cdot\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}), \varphi);\overline{u},\overline{v})$

$\in$ $Hom((\mathcal{L}_{\ell_{O}+}.+\ell_{m}-1)_{p_{(m)}}, (\mathcal{L}_{0})_{p_{(m)}})$ .

Here $\overline{u}$ denotes the totality of $u_{i}\in Hom((\mathcal{L}_{i})_{qi}, (\mathcal{L}_{i+1})_{qi})$ here $q_{i}$ is the
image by $f_{i}$ of the base point of $P_{i}$ , and $\overline{v}$ denotes the totality of $ v_{i}\in$

$Hom((\mathcal{L}_{i})_{p_{(j)}}, (\mathcal{L}_{i+1})_{p_{(j)}})$ . We put

$\alpha_{i}=\{$

$u_{i}$ if $L_{i}=L_{i+1}$ ,

$v_{i}$ if $L_{i}\neq L_{i+1}$ .

Now we put

$P_{\nabla}(\varphi(\partial D^{2}))$

$=$ $P_{\nabla_{\Sigma_{j=0}^{m\ell_{j}}}}(\varphi(\partial_{\Sigma_{j=0}^{m}\ell_{j}}D^{2}))\circ\alpha_{\Sigma_{j=0}^{m}\ell_{j}-1}o\cdots o\alpha_{1}oP_{\nabla_{1}}(\varphi(\partial_{1}D^{2}))$ .

We remark here that we use the trivialization of $f_{i}^{*}Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})$ to
regard $u_{i}$ as an element of $Hom((\mathcal{L}_{i})_{w_{i}^{(j)}},’(\mathcal{L}_{i+1})_{w_{i}^{(j)}},)$ where $\ell_{0}+\cdots+$

$\ell_{j-1}+i’=i$ . (A priori, $u_{i}$ is a homomorphism between the fibers at
$q_{i}=f_{i}(1,0, \ldots, 0).)$

Now we define

$H(((D^{2},\overline{z},\cdot\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}), \varphi);\overline{u},\overline{v})$

$=$ $\exp(2\pi\sqrt{-1}\int_{D^{2}}\varphi^{*}B)P_{\nabla}(\varphi(\partial D^{2}))$ .

Definition 4.12. We assume that (4.6.1) and (4.8) are satisfied.
Then we define the matrix element (4.7) by

$\sum$
$\epsilon_{\varphi}T^{E((D^{2},\overline{z},\tilde{w}^{(0)},,\tilde{w}^{(m)}),\varphi)}\ldots$

(4.13) $[(D^{2},\tilde{z},\tilde{w}^{(0)},\tilde{w}),\varphi]\in(4.10)$

$H(((D^{2},\overline{z},\cdot\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}), \varphi);\overline{u},\overline{v})$ .
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Here $\epsilon_{\varphi}=\pm 1$ is determined by the orientation of the moduli space
(4.10).

It is a consequence of Gromov compactness that (4.13) is an element
of

$Hom((\mathcal{L}_{\ell_{0}+}+\ell_{m}-1)_{p_{(m)}}, (\Sigma_{0})_{p_{(m)}})\wedge\otimes\Lambda_{nov}$ .

We thus defined the operator $\mathfrak{m}_{k}$ in Case (4.6.1).

Case (4.6.2): This case is similar to the case of (4.6.1) and we proceed
as follows.

Let us define a moduli space

$\mathcal{M}_{m+1}(L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots,p_{(m-1)} ; \ell_{0}, \ldots, \ell_{m})$

as follows. We have $p_{(j)}\in L_{(j)}\cap L_{(j+1)}$ for $j=0$ , $\ldots$ , $m-1$ . We consider

the system $((D^{2},\overline{z},\cdot\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}, u), \varphi)$ such that

(4.14.1) Put $\overline{z}=(z_{0}, \ldots, z_{m}),\overline{z}_{-}=(z_{0}, \ldots, z_{m-1})$ . Then $((D^{2}, (z_{-})),$ $\varphi)$

$\in\tilde{\mathcal{M}}_{m}(L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots,p_{(m-1)})$ . Where the right hand side is as
in (3.1).

(4.14.2) $\overline{w}^{(j)}=(w_{1}^{(j)}, \ldots, w_{\ell_{j}-1}^{(j)})$ . $w_{i}^{(j)}\in\partial_{j}D^{2}$ . Here $\partial_{j}D^{2}$ is as in the

last section.
(4.14.3) If $i\neq i’$ then $w_{i}^{(j)}\neq w_{i}^{(j)},$ . $w_{1}^{(j)}$ , $\ldots$ , $w_{\ell_{j}-1}^{(j)}$ respects the order of
$\partial_{j}D^{2}$ .

Figure 4.2.
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Figure 4.3.

We split this moduli space according to the homotopy type of the
map $\varphi$ . We denote a homotopy class by $\beta$ and let

$\Lambda 4_{m+1}(\beta;L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots, p_{(m-1)} ; \ell_{0}, \ldots, \ell_{m})$

be the corresponding component of the moduli space. We define an
evaluation map

$\overline{e}v^{(j)}$ : $C\Lambda 4_{m+1}$ $(\beta;L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots,p_{(m-1)} ; \ell_{0}, \ldots, \ell_{m})\rightarrow L_{(j)}^{\ell_{j}-1}$ ,

in a way similar to the case (4.6.1). Using it we define the fiber product.

$\mathfrak{M}_{\beta}(p_{(1)}, \ldots, p_{(m-1)} ; P_{1}, \ldots, P_{\Sigma\ell_{j}})$

$=C\mathcal{M}_{m+1}(\beta;L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots, p_{(m-1)} ; \ell_{0}, \ldots, \ell_{m})$

(4.15)
$\overline{e}v\times_{f*}\prod_{j}\prod_{i=1}^{\ell_{j}-1}P_{\ell o+}+\ell_{j-1}+i$ .

We also define another evaluation map at the remaining mark point $z_{m}$ .

Namely we define

$ev$ : $C_{\sim}\mathcal{M}_{m+1}$ $(\beta;L_{(0)}, \ldots, L_{(m)} ; p_{(1)}, \ldots, p_{(m-1)} ; \ell_{0}, \ldots, \ell_{m})\rightarrow L_{(m)}$

$=L_{(0)}$

by

$ev((D^{2},\overline{z},\cdot\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}, u), \varphi)=\varphi(z_{m})$ .
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It induces

$ev:\mathfrak{M}_{\beta}(p_{(1)}, \ldots,p_{(m-1)} ; P_{1}, \ldots, P_{\Sigma\ell_{j}})\rightarrow L_{(0)}$ .

Now we put

$\sum_{\beta}T^{E((D^{2},\tilde{z},\tilde{w}^{(0)}}.,$

. ’

$\tilde{w}^{(m)}$ ) ’
$\varphi_{\beta}$ )

(4.16)
$H(((D^{2},\overline{z},\cdot\overline{w}^{(0)}, \ldots,\overline{w}^{(m)}), \varphi_{\beta});\overline{u},\overline{v})$

$ev_{*}[\mathfrak{M}_{\beta}(p_{(1)}, \ldots,p_{(m-1)} ; P_{1}, \ldots, P_{\Sigma\ell_{j}})]$ ,

where $\varphi_{\beta}$ is a map with homotopy class $\beta$ . (4.16) is an element of

$C^{g+(\overline{s}_{k}-\overline{s}_{0})}(L;Hom(\mathcal{L}_{(0)}, \mathcal{L}_{(m)}))$ .

$(g=\ell_{0}+\cdots+\ell_{m}-1.)$ We define

$\mathfrak{m}(x_{0}, \ldots, x_{\ell o+\cdot\cdot+\ell_{m}-1})=(4.16)$ .

Now we have:

Theorem 4.17. The operation $\mathfrak{m}_{k}$ defifined above satisfifies $A_{\infty}$

relations.

Since the detail of the definition of module of morphisms and op-
erations are already discussed, the proof of Theorem 4.17 is in fact a
straight forward generalization of the argument of [FOOO] and one of
[Ful], [Fu4]. So we do not repeat it. The main idea is that the degen-
eration of elements of $\Lambda 4_{k+1}$ can be described as in the Figure 4.3 and
they correspond to the terms in the $A_{\infty}$ formula.

\S 5. Unit and Homotopy unit

We have thus constructed operations $\mathfrak{m}_{k}$ which satisfy the $A_{\infty}$

relations. To complete the construction of our filtered $A_{\infty}$ category
$\mathcal{L}A\mathcal{G}(M, \omega)$ we need to construct a unit. There is a delicate prob-
lem related to transversality to construct a unit of our $A_{\infty}$ category
$\mathcal{L}A\mathcal{G}(M, \omega)$ . This problem is solved in [FOOO] \S 20. We discuss an
outline of it here (together with its slight generalization. Namely we
generalize from the case $A_{\infty}$ algebra discussed in [FOOO] to $A_{\infty}$ cate-
gory).

Let $(L,\overline{s}, \mathcal{L})$ be an object of $\mathcal{L}A\mathcal{G}(M, \omega)$ . Then, by definition, the
module of morphisms, $\mathcal{L}A\mathcal{G}((L,\overline{s}, \mathcal{L}), (L,\overline{s}, \mathcal{L}))$ is a subcomplex of the de-
Rham complex $W^{-\infty}(L;\mathbb{C}\otimes\Lambda^{*}(L))$ of distribution valued forms, since
$Hom(\mathcal{L}, \mathcal{L})$ together with its connection is trivial. Then $ 1\in W^{-\infty}(L;\mathbb{C}\otimes$
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$\Lambda^{0}(L))$ is an element of $\mathcal{L}A\mathcal{G}^{0}((L,\tilde{s}, \mathcal{L}), (L,\tilde{s}, \mathcal{L}))$ . Actually 1 is the el-
ement corresponding to the fundamental chain $[L]$ by our identification
(4.2), the Poincar\’e duality. So we write $[L]$ rather than 1.

“Theorem 5.1”3. $[L]$ is a unit of our fifiltered $A_{\infty}$ category
$\mathcal{L}A\mathcal{G}(M, \omega)$ .

“Proof” 4. We need to show

(5.2) $\mathfrak{m}_{k}(x_{1}, \ldots, x_{i-1}, [L], x_{i+1}, \ldots, x_{k})=0$

for $k>2$ . We also need to show

(5.3) $\mathfrak{m}_{1}([L])=0$ , $(-1)^{degx}\mathfrak{m}_{2}([L], x)=\mathfrak{m}_{2}(x, [L])=x$ .

(5.3) can be “proved” in a way similar to (5.2). So we explain the
idea of the “proof” of (5.2). There are two cases to study. Namely
the transversal case (which corresponds \S 3) and the nontransversal case
(which corresponds to \S 4). Actually the general case is a mixture. In the
case when $L_{0}=\cdots=L_{k}$ the argument is explained in detail in [FOOO]
Chapter 5 (and is outlined in [FOOO] Chapter 2 section 7). So we
restrict ourselves to the following special case. Suppose we have mutually
transversal three Lagrangian submanifolds $L_{0}$ , $L_{1}$ , $L_{2}$ . We put $L_{3}=L_{2}$ .

We also assume $\mathcal{L}_{3}=\mathcal{L}_{2}$ . Let $p_{i}\in L_{i}\cap L_{i+1}$ , $i=0,1$ and let $p_{2}\in L_{1}\cap L_{2}$ .

Let $u_{i}\in Hom(\mathcal{L}_{i}, \mathcal{L}_{i+1})_{pi}$ , $i=0,1$ and $u_{2}\in Hom(\mathcal{L}_{0}, \mathcal{L}_{2})_{p2}$ . We want
to show that the matrix element

(5.4) $\langle \mathfrak{m}_{3}((p_{0}, u_{0}), (p_{1}, u_{1}), [L_{2}]), (p_{2}, u_{2})\rangle$

is zero. (This is a part of Formula (5.2) to be shown.) We recall that
the matrix element (5.4) is defined as follows. We consider the set of
$(\varphi, (z_{0}, z_{1}, z_{2}), w)$ such that the following holds:

(5.5.1) $\varphi$ : $D^{2}\rightarrow M$ is a pseudoholomorphic map.
(5.5.2) $z_{0}$ , $z_{1}$ , $w$ , $z_{2}\in\partial D^{2}$ . And they are in this order, with respect
to the usual cyclic orientation on $\partial D^{2}$ .

(5.5.3) $\varphi(\overline{z_{0},z_{1}})\in L_{1}$ , $\varphi(\overline{z_{1},z_{2}})\in L_{2}$ , $\varphi(\overline{z_{2},z_{0}})\in L_{0}$ .

We divide the set of all such $(\varphi, (z_{0}, z_{1}, z_{2}), w)$ by an obvious
$PSL(2;\mathbb{R})$ action and let

$\mathcal{M}_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2} ; 0, 0, 1)$

$3We$ put this statement in the quote since it is not correct as it is stated.
We will state a precise theorem later (Theorem 5.13).

$4We$ put proof in the quote since it contains a gap. The correct proof
of the theorem will be explained later. We need to go into the detail of the
framework of Kuranishi structure to make it precise.
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be the quotient space. (This definition is a special case of the definition in
the last section.) We compactify it to $C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2}; o, 0, 1)$ .

We define an evaluation map

$ev:C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2}; 0, o, 1)\rightarrow L_{2}$

by

$ev(\varphi, (z_{0}, z_{1}, z_{2}), w)=\varphi(w)$ .

Now, by definition, the matrix element (5.4) is given by the order counted
with sign of the (finite) set

(5.6) $C\lambda 4_{3}(L_{0}, L_{1}, L_{2} ; p_{0},p_{1},p_{2}; o, 0, 1)$ $\times_{L_{2}}L_{2}$ ,

in the case when the moduli space and the fiber product is transversal
and the virtual dimension of (5.6) is zero. We need to show that this
number is zero.

To “prove” it we consider the moduli space

$C.\mathcal{M}_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2})=C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2} ; p_{0},p_{1},p_{2}; 0, 0, 0)$

defined in section 3. This moduli space consists of isomorphism classes
of $(\varphi, (z_{0}, z_{1}, z_{2}))$ satisfying the same conditions as (5.5). So we can
define a map

(5.7) $\pi$ : $C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2} ; p_{0}, p_{1},p_{2} ; 0, 0, 1)\rightarrow C\lambda\Lambda_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2})$

by

$\pi(\varphi, (z_{0}, z_{1}, z_{2}), w)=(\varphi, (z_{0}, z_{1}, z_{2}))$ .

It is easy to see that the fiber of the map (5.7) is one dimensional and
is parametrized by the position of $w\in\overline{p_{2}p_{0}}$ .

It follows that

Virdim $C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2}; o, 0, 1)$

$=$ Virdim $C\Lambda 4_{3}(L_{0}, L_{1}, L_{2} ; p_{0},p_{1},p_{2})+1$ .

One the other hand, by the definition of fiber product and virtual di-
mension, we have, in general

Virdim $A\times {}_{B}C=VirdimA+VirdimC-$ Virdim $B$ .

Hence

Virdim $C\lambda\Lambda_{3}(L_{0}, L_{1}, L_{2} ; p_{0},p_{1},p_{2}; 0, 0, 1)$ $\times_{L_{2}}L_{2}$

$=Virdim$ $C\Lambda 4_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2} ; o, 0, 1)$ .
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We are studying the case when the virtual dimension of (5.6) is zero.
Therefore we have

(5.8) Virdim $C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2} ; p_{0},p_{1},p_{2})=-1$ .

(5.8) implies that (if everything is transversal then)

$C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2;} p_{0}, p_{1},p_{2})$

is empty. Hence $C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2} ; 0, 0, 1)$ is also empty.
Thus we are done ? $\square $

Actually there is a gap in the above argument. (5.8) implies that the
space $C\mathcal{M}_{3}(L_{0}, L_{1}, L_{2}; p_{0},p_{1},p_{2})$ is empty, only in case it is transversal.
Using the theory of Kuranishi structure and multivalued perturbation,
we can always make it transversal. However the trouble is whether we
can make this perturbation to be compatible with the map $\pi$ in (5.7).
Namely if we take a perturbation compatible with (5.7), then it is not
consistent with other maps we mention below.

The boundary of moduli spaces

$C\mathcal{M}_{m}(L_{0}, \ldots, L_{m}; p_{(0)}, \ldots,p_{(m)} ; \ell_{1}, \ldots, \ell_{m})$

can be described by products of similar moduli spaces (but with smaller
$m$ or $\ell_{i}$ ). This consistency is essential to show $A_{\infty}$ formula, Theorem
4.17. It is possible to make the perturbations consistent with this iden-
tification of the boundary to other moduli spaces. However, we cannot
find, in general, a perturbation which is compatible to both. Namely
in general there is no perturbation which is compatible with $\pi$ and the
identification of the boundary of the moduli space with the product of
the other moduli spaces.

This problem looks rather technical. But it is quite delicate and es-
sential point. It is explained in detail in [FOOO] Chapter 5 and is solved
there. In [FOOO], the case we have only one Lagrangian submanifold is

discussed. But the general case is completely parallel. So we only give
a statement here.

To state the precise version of “Theorem 5.1”, we need to introduce

a notion of homotopy unit. To explain it, let us start with a geometric
model of this notion. We first review the following well know notion in
topology.

Definition 5.9. An $H$-space is a space $X$ with a map $ p:X\times X\rightarrow$

$X$ and a base point $e\in X$ such that $p(x, e)=p(e, x)=x$ .

Homotopy $H$ space is $(X,p, e)$ such that the restrictions of $p$ to $\{e\}\times$

$X\cong X$ and to $X\times\{e\}\cong X$ are homotopic to identity.
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Lemma 5.10. Homotopy $H$ space is homotopy equivalent to an
$H$ space.

Proof. Let us consider $X\cup[0,1]$ and identify 0 with $e$ . We get a
space $X_{+}$ which is obviously homotopy equivalent to $X$ . By assumption
there exists a homotopies

$H_{l}$ : $X\times[0,1]\rightarrow X$ , $H_{r}$ : $X\times[0,1]\rightarrow X$

such that

$H_{l}(x, O)=p(e, x)$ , $H_{r}(x, O)=p(x, e)$ , $H_{l}(x, 1)=H_{r}(x, 1)=x$ .

We extend $p$ to $X_{+}\times X_{+}$ by putting

$p(t, x)=H_{l}(x, t)$ , $p(x, t)=H_{r}(x, t)$ .

Then $(X_{+},p, 1)$ is an $H$ space. $\square $

Now we translate the definition of $X_{+}$ in the proof above into the
algebraic language and define homotopy unit as follows. Let $C$ be an
$A_{\infty}$ category without unit. Let

$e_{c}\in C^{0}(c, c)$

be elements. We define

$C(c, c)_{+}=C(c, c)\oplus R\cdot e_{c+}\oplus R\cdot f_{c}$

such that $dege_{c+}=0$ , $deg$ $f_{c}=-1$ . We extend $\mathfrak{m}_{1}$ to $C(c, c)_{+}$ by

$\mathfrak{m}_{1}(f_{c})$ $=$ $e_{c+}-e_{c}$ ,

$\mathfrak{m}_{1}(e_{c+})$ $=$ 0.

We put $C(c, c’)_{+}=C(c, c’)$ . We then define $BC_{+}$ as in \S 1.

Definition 5.11. We say that $e_{c}$ is a homotopy unit if we can
extend $\mathfrak{m}_{k}$ to $BC_{+}$ so that it will become an $A_{\infty}$ category with unit $e_{c+}$ .

We remark that, by the definition of unit, the extension of $\mathfrak{m}_{k}$ to $BC_{+}$

is automatically determined in the case $e_{c+}$ is included in the formula.
So to extend $\mathfrak{m}_{k}$ we only need to define

$\mathfrak{m}_{k}(x_{1,1},$
$\ldots$ , $x_{1,\ell_{1}}$ , $f_{c}$ , $x_{2,1}$ , $\ldots$ , $x_{2,\ell_{2}}$ ,

(5.12)
, $f_{c}$ , $x_{3,1}$ , $\ldots$ , $x_{m-1,\ell_{m-1}}$ , $f_{c}$ , $x_{m,1}$ , $\ldots$ , $x_{m},\ell_{m})$ ,

where $k=\sum_{i=1}^{m}(\ell_{i}+1)-1$ . We can write down the equation they are
supposed to satisfy by rewriting $A_{\infty}$ formula. See [FOOO] \S 20 for such
a formula.
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We can define a notion of homotopy unit of filtered $A_{\infty}$ category in
the same way. Now we have:

Theorem 5.13. $[L]$ is a homotopy unit of $\mathcal{L}A\mathcal{G}(M, \omega)$ .

The proof is a straight forward generalization of the argument in
[FOOO] \S 20. So we discuss it only very briefly. As we mentioned above,

the reason that $[L]$ fails to be a unit (or in other words the reason (5.2)
can be nonzero) is that the perturbation is not compatible with maps
(5.7) (and its analogues). Let us restrict ourselves to the case of (5.4).

On the other hand, we can find another perturbation so that it is
compatible with $\pi$ but is not compatible with other operations. We now
choose these two perturbations and take a homotopy between them. We
now have a moduli space using this one parameter family of perturba-
tions. Taking its fundamental chain (or counting its order with sign) we
obtain a matrix element

$\langle \mathfrak{m}_{3}((p_{0}, u_{0}), (p_{1}, u_{1}), f_{[L_{2}]}), (p_{2}, u_{2})\rangle$ .

The other operations in (5.12) can be defined in a similar way.
Using Theorem 5.13 we can modify our filtered $A_{\infty}$ category

$\mathcal{L}A\mathcal{G}(M, \omega)$ , (which has only a homotopy unit) so that it has an (ex-
act) unit. From now one, we write $\mathcal{L}A\mathcal{G}(M, \omega)$ for this modified one.

Chapter 2: Homological algebra of $A_{\infty}$ category

\S 6. Twisted complex and derived $A_{\infty}$ category

We have constructed our main example in \S 2\sim \S 5. So we go back
to the continuation of Section 1 and further study algebraic formalism.
In this section we follow Bondal-Kapranov $[BoK]$ and Kontsevich [Kol]
(see also [Fu7] 16), to define twisted complex and derived $A_{\infty}$ category.

In the case of abelian category, its derived category $C$ is constructed
in the following way. First, we consider the category $CC$ of chain complex

of objects of C. We then consider the weak equivalence between objects
of $CC$ . (Weak equivalence is a chain map which induces an isomorphism
in cohomology.) We divide our category $CC$ by weak equivalence and
obtain $DC$ . The category $DC$ is not an abelian category, but has an op-
eration which is an algebraic version of the construction of the mapping
cone (in topology). This construction of mapping cone gives a notion of
distinguished triple on $DC$ . Then $DC$ will become a triangulated cate-
gory. (See [GM], $[KaS]$ , [Ha] etc. for detail.)

To generalize this construction to $A_{\infty}$ category, we need to generalize
the notion of chain complex (of elements of C) to twisted complex.
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Remark 6.1. The twisted complex is defined by Bondal-Kapranov
$[BoK]$ in the case when $\mathfrak{m}_{k}=0$ for $k\geq 3$ . Kontsevitch [Kol] mentioned
its generalization to $A_{\infty}$ category and suggested its application to mirror
symmetry. The twisted complex was also applied in [Fu7] to mirror
symmetry. (The author learned some part of the contents of this section
from P. Seidel’s talks and papers [Se2], [Se3].)

Let $C$ be an $A_{\infty}$ category. We first increase the objects of it a bit in
the following way. Let $c$ be an object of $C$ and $k$ be an integer. We add
an object $c[k]$ and put

(6.2) $C(c’[\ell], c[k])=C(c’, c)[\ell-k]$ .

We add all of $c[k]$ and define $\mathfrak{m}_{k}$ as follows. Let

$x_{i}\in C^{degx_{i}-k_{i-1}+k_{i}}(c_{i-1}, c_{i})$ . $\cong C^{degx_{i}}(c_{i-1}[k_{i-1}], c_{i}[k_{i}])$ .

We write $s^{*}x_{i}$ when we regard it as an element of $C^{degx_{i}}(c_{i-1}[k_{i-1}], c_{i}[k_{i}])$ ,

and write $x_{i}$ when we regard it as an element of $C^{degx_{i}+k_{i}-k_{i-1}}(c_{i-1}, c_{i})$ .

Now we put

(6.3) $\mathfrak{m}_{k}(s^{*}x_{1}, \ldots, s^{*}x_{k})=(-1)^{k_{0}}s^{*}\mathfrak{m}_{k}(x_{1}, \ldots, x_{k})$ .

Then we have

$\sum_{1\leq\ell<m\leq k}(-1)^{degs^{*}x_{1}+}+degs^{*}x_{\ell-1}+\ell-1$

$\mathfrak{m}_{k-m+\ell+1}(s^{*}x_{1}, \ldots, \mathfrak{m}_{m-\ell+1}(s^{*}x\ell, \ldots, s^{*}x_{m}), \ldots, s^{*}x_{k})$

$=$
$\sum_{1\leq\ell<m\leq k}(-1)^{degx_{1}+}$

. $+degx_{\ell-1}+\ell-k_{O}+k_{\ell-1}-1$

$\mathfrak{m}_{k-m+\ell+1}(s^{*}x_{1}, \ldots, \mathfrak{m}_{m-\ell+1}(s^{*}x_{\ell}, \ldots, s^{*}x_{m}), \ldots, s^{*}x_{k})$

$=$
$\sum_{1\leq\ell<m\leq k}(-1)^{degx_{1}+\cdot\cdot+degx_{\ell-1}+\ell-1}$

$s^{*}(\mathfrak{m}_{k-m+\ell+1}(x_{1}, \ldots, \mathfrak{m}_{m-\ell+1}(x_{\ell}, \ldots, x_{m}), \ldots, x_{k}))$

$=$ 0.

Thus $A_{\infty}$ formula holds.
We add more objects to $C$ as follows. Let us consider formally the

direct sum $c_{1}\oplus\cdots\oplus c_{k}$ and regard it as an object of our $A_{\infty}$ category.
We then define

$k$ $m$

$C(c_{1}\oplus\cdots\oplus c_{k}, c_{1}’\oplus\cdots\oplus c_{m}’)=\oplus i=1\oplus C(c_{t}, c_{j}’)j=1$
.
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We define operations $\mathfrak{m}_{k}$ in an obvious way.
From now on, we always extend the set of objects of $A_{\infty}$ category

in this way. Then, for any objects $c$ , $c’$ , we have $c[k]$ and $c\oplus c’$ . The
object $c\oplus c’$ is the direct sum in the sense of additive category.

Actually in our main example, the object $c[k]$ exists already since it
corresponds to the same Lagrangian submanifold, $U(1)$ bundle, etc. as
$c$ but with different grading $\tilde{s}$ .

On the other hand, the direct sum $c\oplus c’$ (already) exists if $c$ and $c’$

correspond to Lagrangian submanifolds $L$ , $L’$ such that $ L\cap L’=\emptyset$ . In
this case, $c\oplus c’$ corresponds $L\cup L’$ together with line bundle, framing,
relative spin structure induced ones from $c$ and $c’$ .

However, in case $ L\cap L’\neq\emptyset$ , the disjoint union $L\cup L’$ is not an
embedded Lagrangian submanifold and hence is not an objects of our
$A_{\infty}$ category. (If we include immersed Lagrangian submanifold as an
objects, then again $c\oplus c’$ will be included (geometrically).) Here we
simply add $c\oplus c’$ formally.

Now we start the construction of twisted complex and derived $A_{\infty}$

category. Let $k_{1}<k_{2}$ be integers. We consider a finitely many objects
$c_{i}\in l\supset b(C)$ , $(i=k_{1}, \ldots, k_{2})$ and elements

$x_{i,j}\in C[1]^{0}(c_{i}[i], c_{j}[j])\cong C^{1+i-j}(c_{i}, c_{j})$

for each $i<j$ .

Definition 6.4. We say $(c_{k_{1}}, \ldots, c_{k_{2}} ; (x_{i,j}))$ is a twisted complex
if for each $i<j$ , the equation:

(6.5)
$\sum_{m\geq 1i=\ell_{o}}\sum_{<<\ell_{m}=j}\mathfrak{m}_{m}(x_{\ell\ell}O,1 , \ldots, x\ell_{m-1},\ell_{m})=0$

is satisfied. The set of all twisted complex is denoted by $\mathfrak{O}b(DC)$ .

Example 6.6. If $x_{i,j}=0$ for $j\neq i+1$ then (6.5) is

(6.7.1) $\mathfrak{m}_{2}(x_{i,i+1}, x_{i+1,i+2})$ $=$ 0,

(6.7.2) $\mathfrak{m}_{1}(x_{i,i+1})$ $=$ 0.

(6.7.2) implies that $x_{i,i+1}$ is a cocycle. Since $\mathfrak{m}_{2}$ is the composition of
morphisms (upto sign), (6.7.1) implies that

$0\rightarrow c_{k_{1}}x_{k_{1},k_{1}+1}\rightarrow\cdots x_{k_{2}-1,k_{2}}\rightarrow c_{k_{2}}\rightarrow 0$

is a chain complex in our additive category C. (Note $degx_{i,i+1}=0$ if we
regard it as an element of $C(c_{i}, c_{i+1})$ (and not of $C$ ( $c_{i}[i]$ , $c_{i+1}[i+1]$ )).
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We are going to show that twisted complex consist a triangulated
category. (See [GM], [Ha], $[KaS]$ for the definition of triangulated cate-
gory.)

We first define an additive category whose object is a twisted com-

plex. Let $c^{(1)}=(c_{k_{1}}^{(1)}, \ldots, c_{k_{2}}^{(1)} ; (x_{i,j}^{(1)}))$ , $c^{(2)}=(c_{k_{1}}^{(2)}, \ldots, c_{k_{2}}^{(2)} ; (x_{i,j}^{(2)}))$ be
twisted complexes. We first define a morphism between them. We put

(6.8)
$C^{k}(c^{(1)}, c^{(2)})=\oplus C[1]^{k}(c_{i}^{(1)}i,j[i], c_{j}^{(2)}[j])$

.

We define a boundary operator $\hat{\mathfrak{m}}_{1}$ on it by

$\hat{\mathfrak{m}}_{1}(y_{i,j})=(z_{i,j})$

where

$z_{i,j}=\sum_{i\leq a<b\leq j}\sum_{m_{1}\geq 1,m_{2}\geq 1}i=\ell_{O}^{(1)}<$ $\sum_{<\ell_{m_{1}}^{(1)}=a<b=\ell_{0}^{(2)}<<\ell_{m_{2}}^{(2)}=j}\cdots$

$\mathfrak{m}_{m}$ ( $x_{\ell_{0}^{(1)},\ell_{1}^{(1)}}^{(1)}$ , $\ldots$ , $x_{\ell_{m_{1}-1}^{(1)},\ell_{m_{1}}^{(1)}}^{(1)}$ , $y_{a,b}$ , $x_{\ell_{0}^{(2)},\ell_{1}^{(2)}}^{(2)}$ , $\ldots$ , $x_{\ell_{m_{2}-1}^{(2)},\ell_{m_{2}}^{(2)}}^{(2)}$ ).
Lemma 6.9. $\hat{\mathfrak{m}}_{1}\circ\hat{\mathfrak{m}}_{1}=0$ .

Since the formulas which we need to prove Lemma 6.9 are rather
long, we develop some notations before starting calculation. We define

$x_{i,j}^{(1)}\in BC[1]^{0}(c_{i}^{(1)}[i], c_{j}^{(1)}[j])$

by

$x_{i,j}^{(1)}=\sum$
$\sum_{m\geq 1i=\ell_{O}<\cdot\cdot<\ell_{m}=j}x_{\ell_{O},\ell_{1}}^{(1)}\otimes\cdots\otimes x_{\ell_{m-1},\ell_{m}}^{(1)}$

.

Then (6.5) is

(6.10) $\mathfrak{m}(x_{i,j}^{(1)})=\mathfrak{m}(x_{i,j}^{(2)})=0$ .

Here and hereafter $\mathfrak{m}$ : $BC[1]\rightarrow B_{1}C[1]$ is the operation which is $\mathfrak{m}_{k}$ on
$B_{k}C[1]$ . The definition of $\hat{\mathfrak{m}}_{1}$ is rewritten as

(6.11)
$z_{i,j}=\sum_{i\leq a<b\leq j}\mathfrak{m}(x_{i,a}^{(1)}\otimes y_{a,b}\otimes x_{b,j}^{(2)})$

.

We may further simplify the notation as follows. We consider $BC[1]$ and
define a product $\circ$ on it as follows. Let $x\in BC[1](a, b)$ , $y\in BC[1](c, d)$ ,
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Then:

$x\blacksquare y=\{$

$x\otimes y$ if $b=c$ ,
0 if not.

We put

$x_{i,*}=\sum_{j}x_{i,j}$
,

$x_{*,j}=\sum_{i}x_{i,j}$
,

$x_{**},=\sum_{i,j}x_{i,j}$
.

We define $y_{i,*}$ , $y_{*,j}$ , $y_{**},$ , $z_{i,*}$ , $z_{*,j}$ , $z_{**}$, in a similar way. Then (6.10) is
equivalent to

(6.12) $\hat{d}(x_{**}^{(0)},)=\hat{d}(x_{**}^{(1)},)=0$ .

(6.11) can be written as

(6.10) $z_{**},=\mathfrak{m}(x_{**}^{(1)},\circ y_{**},\circ x_{**}^{(2)},)$ .

Proof of Lemma 6.9. We have

$\hat{\mathfrak{m}}_{1}(\hat{\mathfrak{m}}_{1}(y_{i,j}))=(w_{i,j})$

where

$w_{**},=\mathfrak{m}(x_{**}^{(1)},\circ \mathfrak{m}(x_{**}^{(1)},\circ y_{**},\circ x_{**}^{(2)},)\circ x_{**}^{(2)},)$ .

(Here we assumed $c_{i}\neq c_{j}$ for $i\neq j$ for simplicity.) Note the degree of
$x_{i,j}$ are all zero (after shifted). Hence $A_{\infty}$ formula implies

$\mathfrak{m}(x_{**}^{(1)},o\mathfrak{m}(x_{**}^{(1)},oy_{**},ox_{**}^{(2)},)ox_{**}^{(2)},)$

$+\mathfrak{m}(\hat{d}(x_{**}^{(1)},)\circ y_{**},\circ x_{**}^{(2)},)+(-1)^{degy_{**}+1},\mathfrak{m}(x_{**}^{(1)},\circ y_{**},\circ\hat{d}(x_{**}^{(2)},))=0$ .

The second and the third terms vanish by (6.10). The lemma follows. $\square $

Definition 6.14. We say an element of $C(c^{(1)}, c^{(2)})$ a morphism
in $DC$ . It is said to be a closed morphism if it is $\hat{\mathfrak{m}}_{1}$ closed. We also put:

$DC(c^{(1)}, c^{(2)})=H^{*}(C(c^{(1)}, c^{(2)});\hat{\mathfrak{m}}_{1})$ .

We next define (higher) compositions:

(6.15) $\hat{\mathfrak{m}}_{k}$ : $C(c^{(0)}, c^{(1)})\otimes\cdots\otimes C(c^{(k-1)}, c^{(k)})\rightarrow C(c^{(0)}, c^{(k)})$

by

(6.16) $\hat{\mathfrak{m}}_{k(y_{*,*}^{(1)}}\ldots,,,,,\cdots,,\cdot$
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Theorem 6.17. We have an $A_{\infty}$ category $VC$ such that the set

of objects is $\mathfrak{O}b(DC)$ , the set of morphisms is given by (6.8), and the
operations are given by (6.16).

Proof. We are only to check the $A_{\infty}$ formula. The proof of it is
quite similar to the proof of Lemma 6.9 and is left to the reader. $\square $

We next are going to define the mapping cone in our category $VC$ .

For this purpose, we introduce a systematic way to associate an object of
$VC$ to each object of $VVC$ . (More precisely we can define an $A_{\infty}$ functor
$DDC$ $\rightarrow DC$ . See the next section for the definition of $A_{\infty}$ functor.)

Let $c^{(k)}=((c_{i}^{(k)} ; i\in I^{k}), (x_{i,j}^{(k)}))$ be a twisted complex, where $k\in I$ .

( $I$ , $I^{k}$ be subsets of $\mathbb{Z}$ of the form $\{a$ , $a+1$ , $a+2$ , $\ldots$ , $b\}.$ ) Let

$y^{(k,n)}\in(DC)[1]^{0}(c^{(k)}[k], c^{(n)}[n])=\oplus_{m}C[1]^{0}(c_{\ell}^{(k)}\ell,[k+\ell], c_{m}^{(n)}[n+m])$
.

We write its $C[1]^{0}(c_{\ell}^{(k)}[k+\ell], c_{m}^{(n)}[n+m])$ component by $y_{\ell,m}^{(k,n)}$ .

We assume $c$ $=((c^{(k)} ; k\in I), (y^{(k,n)}))$ is a twisted complex of the
$A_{\infty}$ category $VC$ . We are going to construct an object $|c|$ of $VC$ . The
construction is an analogy of the construction of double complex.

We put

(6.18)
$|c|_{i}=k+\ell=i\oplus c_{\ell}^{(k)}$

.

Let $i<j$ . We are going to define $z_{i,j}\in C^{0}[1](|c|_{i}[i], |c|_{j}[j])$ . Let $k$ , $\ell$ , $m$ , $n$

be integers such that $k+\ell=i$ , $m+n=j$ . We define $z_{i,j}^{(k,\ell,m,n)}$ , the
$C(c_{\ell}^{(k)}, c_{m}^{(n)})$ component of $z_{i,j}$ by:

(6.18) $z_{i,j}^{(k,\ell,m,n)}=\{$

$(k,n)$

if $k<n$$y_{\ell,m}$

$x_{\ell,m}$ if $k=n$ , $\ell<m$

0 otherwise.

Lemma 6.20. $|c|=(|c|_{i}, z_{i,j})$ is a twisted complex.

Proof. The condition (6.5) for $|c|$ reduces to the condition (6.5) for
$c$ and ones for $c_{i}$ . $\square $

Suppose we have two twisted complexes $c$ , $c’$ and $y\in C^{0}(c, c’)=$

$C[1]^{0}(c[-1], c’)$ , be a closed morphism. We put $c_{-1}=c$ and $c_{0}=c’$ .

Then ( $c_{-1}$ , $c_{0}$ ; y) is an object of $VVC$ . Hence $|c_{-1}$ , $c_{0}$ ; $y|$ is an object
of $VC$ . We call it the mapping cone of $y$ : $c\rightarrow c’$ and write it as
Cone(c, $c’$ ; $y$ ).
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Lemma 6.21. There exists $I:c’\rightarrow Cone(c, c’; y)$ , $J$ : Cone(c, $c’$ ; y)
$\rightarrow c[1]$ such that, for any twisted complex $h$ , we have a long exact se-
quence

$H^{*}$ $(DC(b, c)$ , $\mathfrak{m}_{1})$

$ R_{y}\rightarrow$

$H^{*}(DC(b, c’),$ $\mathfrak{m}_{1})$

$\rightarrow \mathcal{T}$

$H^{*}$ ($DC(b$ , Cone(c, $c’$ ; $y))$ , $\mathfrak{m}_{1}$ )

$\rightarrow J$

$H^{*}(DC(b, c[1]), \mathfrak{m}_{1})$

$ R_{y}\rightarrow$

$ H^{*}(DC(b, c’[1]), \mathfrak{m}_{1})\rightarrow\cdots$

Here $R_{y}$ is induced by the right multplication by $y$ .

Proof. We remark that

Cone $(c, c’; y)_{i}=c_{i+1}\oplus c_{\dot{x}}’$ .

Hence we can define I as an inclusion $c_{i}’\rightarrow c_{i+1}\oplus c_{i}’\cong Cone(c, c’; y)_{i}$ .

And we define $J$ as a projection Cone $(c, c’; y)_{i}\cong c_{i+1}\oplus c_{i}’\rightarrow c_{i+1}$ . It is
easy to see that I and $J$ are morphisms in $DC$ . By definition we have
an exact sequence of chain complex

$O\rightarrow$ $(DC(b, c’)$ , $\mathfrak{m}_{1})$

$\rightarrow \mathcal{T}$

($DC(b$ , Cone(c, $c’$ ; y) $)$ , $\mathfrak{m}_{1}$ )

$\rightarrow J$

$(DC(b, c[1]), \mathfrak{m}_{1})\rightarrow 0$ .

By definition, the operator $H^{*}$ $(DC(b, c)$ , $\mathfrak{m}_{1})\rightarrow H^{*}(DC(b, c’),$
$\mathfrak{m}_{1})of\square $

the associated long exact sequence is $R_{y}$ .

So far we defined a notion corresponding to chain complex and to
mapping cone, in the case of $A_{\infty}$ category. Usually to construct the

derived category from the category of chain complex, we need to divide it
by weak equivalence. We define a similar notion, homotopy equivalence
between two objects of $A_{\infty}$ category.

Definition 6.22. Let $C$ be an $A_{\infty}$ category and $c$ , $c’\in 1\supset b(C)$ . Let
$x\in C^{0}(c, c’)$ . We say that $x$ is a homotopy equivalence if there exists
$y\in C^{0}(c’, c)$ such that

(6.23.1) $\mathfrak{m}_{1}(x)=\mathfrak{m}_{1}(y)=0$ .

(6.23.2) $\mathfrak{m}_{2}(y, x)-e_{c}\in Im\mathfrak{m}_{1}$ , $\mathfrak{m}_{2}(x, y)-e_{c’}\in Im\mathfrak{m}_{1}$ .

Two objects $c$ , $c’\in \mathfrak{O}b(C)$ are said to be homotopy equivalent to each
other if there exists a homotopy equivalence between them.

Lemma 6.24. Let $c$ , $c’\in \mathfrak{O}b(C)$ , $x\in C^{0}(c, c’)$ with $\mathfrak{m}_{1}(x)=0$ .

Then the following fifive conditions are equivalent to each other.

(6.25.1) $x$ is a homotopy equivalence.
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(6.25.2) For each $b\in \mathfrak{O}b(C)$ the map $R_{x}$ : $C(b, c)\rightarrow C(b, c’)$ , $ z\mapsto$

$\mathfrak{m}_{2}(z, x)$ induces an isomorphism on homology.
(6.25.3) The map $R_{x}$ : $C(c’, c)\rightarrow C(c’, c’)$ induces a surjection on ho-
mology and $R_{x}$ : $C(c, c)\rightarrow C(c, c’)$ induces an injection on homology.
(6.25.4) For each $b\in \mathfrak{O}b(C)$ the map $L_{x}$ : $C(c’, b)\rightarrow C(c, b)$ , $ z\mapsto$

$\mathfrak{m}_{2}(x, z)$ induces an isomorphism on homology.
(6.25.5) The map $L_{x}$ : $C(c’, c)\rightarrow C(c, c)$ induces a surjection on homol-
ogy and $L_{x}$ : $C(c’, c’)\rightarrow C(c, c’)$ induces an injection on homology.

Proof. (6.25.1)\Rightarrow (6.25.2): $\mathfrak{m}_{1}(x)=0$ together with $A_{\infty}$ formulae
implies that $R_{x}$ is a chain map. Let $y$ be as in (6.23). Then it is easy to
see that $R_{x}\circ R_{y}$ , $R_{y}\circ R_{x}$ induces identity in homology. (6.25.2) follows.
(6.25.2)\Rightarrow (6.25.3): Obvious.
(6.25.3)\Rightarrow (6.25.1): By (6.25.3) there exists $y$ such that $\mathfrak{m}_{2}(y, x)-e_{c’}\in$

$Im\mathfrak{m}_{1}$ . Hence

$\mathfrak{m}_{2}$
$(\mathfrak{m}_{2}(x, y)$ , $x)$ $\equiv$ $-(-1)^{deg’x}\mathfrak{m}_{2}(x, \mathfrak{m}_{2}(y, x))$ $mod Im\mathfrak{m}_{1}$

$\equiv$ $(-1)^{degx}\mathfrak{m}_{2}(x, e_{c’})$ $mod Im\mathfrak{m}_{1}$

$\equiv$ $mod Im\mathfrak{m}_{1}$

$\equiv$ $\mathfrak{m}_{2}(e_{c}, x)$ $mod Im\mathfrak{m}_{1}$ .

Hence $\mathfrak{m}_{2}(x, y)\equiv e_{c}mod Im\mathfrak{m}_{1}$ .

The proof of equivalence between (6.25.1), (6.25.4), (6.25.5) is sim-
ilar. $\square $

Lemma 6.24 implies that the composition of homotopy equivalences
is a homotopy equivalence.

We define a category $DC$ as follows. (It is a category in the usual
sense and is an additive category.) Its object is a homotopy equivalence
class of the objects of $A_{\infty}$ category $DC$ . Morphism between them is
defined by Definition 6.14. By (6.25.2), (6.25.4), a homotopy equivalence
induces an isomorphism on $Hom(c^{(1)}, c^{(2)})$ in Definition 6.14 hence the
set of morphisms is well defined. The composition of the morphisms is
induced by $\mathfrak{m}_{2}$ . The $A_{\infty}$ formula implies that the composition in the
homology level is (exactly) associative.

(Actually to perform this construction in a rigorous way we need to
define and use a notion of quotient category. Since it is standard we do
not discuss it. See for example [GM], $[KaS].)$

We next define distinguished triangles in $DC$ and prove that $DC$

will be a triangulated category. We use the notion of mapping cone for
this purpose. To do so, we need to show that the homotopy equiva-
lence classes of Cone( $c^{(1)}$ , $c^{(2)}$ ; y) depends only of the homotopy class of
$(c^{(1)}, c^{(2)} ; y)$ . More precisely we prove the following.



Floer Homology and Mirror Symmetry II 87

Lemma 6.26. Let $u_{1}\in DC(c^{(1)}, c^{\prime(1)})$ , $u_{2}\in DC(c^{(2)}, c^{\prime(2)})$ be
homotopy equivalences. We assume $\mathfrak{m}_{2}(u_{1}, y’)-\mathfrak{m}_{2}(y, u_{2})\in Im\mathfrak{m}_{1}$ .

Then Cone( $c^{(1)}$ , $c^{(2)}$ ; y) is homotopy equivalent to $Cone(c^{\prime(1)}, c^{\prime(2)} ; y’)$

in the $A_{\infty}$ category $VC$ .

Proof. We put

$\mathfrak{m}_{2}(u_{1}, y’)-\mathfrak{m}_{2}(y, u_{2})=\mathfrak{m}_{1}(z)$ .

Then $(u_{1}, u_{2}, z)$ defines a closed morphism

$DC((c^{(1)}, c^{(2)} ; y), (c^{\prime(1)}, c^{\gamma(2)} ; y’))$ .

Hence we have a closed morphism

(6.27) $Cone(c^{(1)}, c^{(2)} ; y)\rightarrow Cone(c^{\prime(1)}, c^{\prime(2)} ; y’)$ .

Then we obtain a commutative diagram:

Diagram 6. 1.

comparing exact sequences in Lemma 6.21. Then Lemma 6.21 and five
lemma implies that (6.27) induces an isomorphism

$DC(b, Cone(c^{(1)}, c^{(2)} ; y))\cong DC(b, Cone(c^{\prime(1)}, c^{\prime(2)} ; y’))$

for any $b$ . The lemma now follows from Lemma 6.24. $\square $

Using Lemma 6.26 we can define a notion of distinguished triangle
in $DC$ as follows.

Definition 6.28.

$[c^{(1)}]\rightarrow[c^{(2)}]\rightarrow[Cone(c^{(1)}, c^{(2)} ; y)]\rightarrow[c^{(1)}[1]]$

is said to be a distinguished triangle.

Theorem 6.29. $DC$ is a triangulated category.
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Figure 6.1.

Figure 6.2.

We omit the proof, which is rather a straightforward check of the
axiom.

Definition 6.30. $DC$ is called the derived $A_{\infty}$ category of our $A_{\infty}$

category C.
In case we start with filtered $A_{\infty}$ category $C$ we first construct an $A_{\infty}$

category as in Definition 1.14 and then construct derived $A_{\infty}$ category.
We call it also the derived $A_{\infty}$ category of $C$ and write it also as $DC$ .

Note that the objects of derived $A_{\infty}$ category of a filtered $A_{\infty}$ cat-

egory $C$ can be regarded as $c=((c_{i} ; i\in\{k_{1}, k_{1}+1, \ldots, k_{2}\}), (x_{i,j}^{(k)}))$ .

But, in this case, $x_{i,i}$ may be nonzero, ( $x_{i,i}$ should be in $C[1]^{0}(c_{i}, c_{i})$

and moreover $x_{i,i}\in\bigcup_{\lambda>0}F^{\lambda}C[1]^{0}(c_{i}, c_{i}).)x_{i,j}$ is supposed to satisfy an
equation

(6.31)
$\sum_{m\ell_{0}},\sum_{\ell_{m}},\mathfrak{m}_{m}(X\ell_{0},\ell_{1}, \ldots, X\ell_{m-1},\ell_{m})=0$

,

which is similar to (6.5). However, in (6.31), $m=0,1$ , $\ldots$ , $\ell_{0}\leq\ell_{1}\leq$

$\ldots\leq\ell_{m}$ . (Namely the case $\ell_{i}=\ell_{i+1}$ is included.) Actually, in the case
$\ell_{0}=\cdots=\ell_{m}=\ell$ , (6.31) is

$\mathfrak{m}(e^{x_{\ell\ell}})=0$ ,

that is the definition $x_{\ell,\ell}$ to be a bounding chain.

An element $c=((c_{i} ; i\in\{k_{1}, k_{1}+1, \ldots, k_{2}\}), (x_{i,j}^{(k)} ; i\leq j))$ can be
described by Figure 6.1 above. On the other hand, an element (( $c_{i}$ ; $ i\in$

$\{k_{1}, k_{1}+1, \ldots, k_{2}\})$ , $(x_{i,j}^{(k)} ; i<j))$ can be described by Figure 6.2 above.
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\S 7. $A_{\infty}$ functor and natural transformation

In sections 6, we consider more general objects than the original
objects (that is the twisted complex) of our $A_{\infty}$ category C. In this
section, we further generalize it and define a notion, $A_{\infty}$ functor $C$ $\rightarrow$

$C?${, which was defined in [Fu4] over $\mathbb{Z}_{2}$ coefficient. We simplify the
description of [Fu4] using Bar complex and also we put here the precise
sign, which was not discussed in [Fu4].

Definition 7.1. Let $C_{1}$ , $C_{2}$ be $A_{\infty}$ categories. An $A_{\infty}$ functor $\mathcal{F}$

from $C_{1}$ to $C_{2}$ is a collection of $\mathcal{F}_{k}$ , $k=1,2$ , $\ldots$ such that

(7.2.1) $\mathcal{F}_{0}$ : Ob $(C_{1})\rightarrow \mathfrak{O}b(C_{2})$ is a map.
(7.2.2) For $c_{1}$ , $c_{2}\in \mathfrak{O}b(C_{1})$ ,

$\mathcal{F}_{k}(c_{1}, c_{2})$ : $B_{k}C_{1}[1](c_{1}, c_{2})\rightarrow C_{2}[1](\mathcal{F}_{0}(c_{1}), \mathcal{F}_{0}(c_{2}))$

is a homomorphism of degree 0.
(7.2.3) We extend $\mathcal{F}_{k}(c_{1}, c_{2})$ to a coalgebra homomorphism

(7.3.1) $\hat{\mathcal{F}}(c_{1}, c_{2})$ : $BC_{1}[1](c_{1}, c_{2})\rightarrow BC_{2}[1](\mathcal{F}_{0}(c_{1}), \mathcal{F}_{0}(c_{2}))$ .

Then $f(c_{1}, c_{2})$ is a chain map with respect to the boundary operator $d$

in Definition 1. 1.

Note

$\hat{\mathcal{F}}(x_{1}\otimes\cdots\otimes x_{k})$

$=$
$\sum_{m0=\ell_{1}<\ell_{2}<}\sum_{<\ell_{m}=k}.\mathcal{F}_{\ell_{2}-\ell_{1}-1}(x_{\ell_{1}+1}\otimes\cdots\otimes x\ell_{2})\otimes\cdots$

$\ldots\otimes \mathcal{F}_{\ell_{m}-\ell_{m-1}-1}(x_{\ell_{m-1}+1}\otimes\cdots\otimes x\ell_{m})$ .

Our homomorphism $\hat{\mathcal{F}}$ on $B_{0}C_{1}[1]$ is defined as follows. We remark

$B_{0}C_{1}[1](c_{1}, c_{2})\cong\{$

$R$ $c_{1}=c_{2}$ ,

0 $c_{1}\neq c_{2}$ .

We put

(7.2.2) $\hat{\mathcal{F}}(x)=\{$

$x$ if $x\in B_{0}C_{1}[1](c, c)$ ,
0 if $x\in B_{0}C_{1}[1](c_{1}, c_{2})$ , $c_{1}\neq c_{2}$ .

We next give an example of $A_{\infty}$ functor, that is a represent
functor. We first define an $A_{\infty}$ category $C’H$ for this purpose.



90 K. Fukaya

Definition 7.4. $\mathfrak{O}b(C\mathcal{H})$ is the set of (all) chain complexes of free
$R$ nodules5

$C’H^{k}$ $((C, d)$ ,
$(C’, d))=\oplus Hom_{R}(C^{\ell}, C^{J\ell+k})\ell$

.

We define

(7.5.2) $\mathfrak{m}_{1}(x)$ $=$ $d\circ x+(-1)^{degx+1}x\circ d$ ,

(7.5.2) $\mathfrak{m}_{2}(x, y)$ $=$ $(-1)^{degx(degy+1)}yox$ .

We put $\mathfrak{m}_{k}=0$ for $k\geq 3$ .

Remark 7.6. The sign in (7.5.2) is the same as one we need
to regard differential graded algebra as an $A_{\infty}$ algebra. (See Example-
Lemma 1.7.)

Proposition 7.7. $C’H$ is an $A_{\infty}$ category.

Proof. It is easy to check $\mathfrak{m}_{1}\circ \mathfrak{m}_{1}=0$ . We calculate

$(\mathfrak{m}_{1}\circ \mathfrak{m}_{2})(x, y)$ $=$ $(-1)^{degx(degy+1)}d\circ y\circ x$

$+(-1)^{degx+degy+1}(-1)^{degx(degy+1)}yox\circ d$

$=$ $(-1)^{degxdegy+degx}d\circ y\circ x$

$+(-1)^{degx(degy+1)+degy+1}yod\circ x$

$-(-1)^{(degx+1)(degy+1)}yod\circ x$

$-(-1)^{degx+degy}(-1)^{degx(degy+1)}yox\circ d$

$=$ $-(-1)^{degx+1}\mathfrak{m}_{2}(x, \mathfrak{m}_{1}(y))-\mathfrak{m}_{2}(\mathfrak{m}_{1}(x), y)$ .

This implies $\mathfrak{m}\circ\hat{d}=0$ on $B_{2}$ . We next calculate

$\mathfrak{m}_{2}$
$(\mathfrak{m}_{2}(x, y)$ , $z)+(-1)^{degx+1}\mathfrak{m}_{2}(x, \mathfrak{m}_{2}(y, z))$

$=$ $(-1)^{degx(degy+1)+(degx+degy)(degz+1)}z\circ(y\circ x)$

$+(-1)^{degx+1+degy(degz+1)+degx(degy+degz+1)}(z\circ y)\circ x$

$=$ 0,

which is the third and the last part of the $A_{\infty}$ formulae to be checked. $\square $

We next define:

$5To$ avoid Russell paradox in set theory, we fix a sufficiently large set (a
universe) and consider only free $R$ modules contained in this set.
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Definition 7.8. Let $C$ be an $A_{\infty}$ category. We define its opposite
$A_{\infty}$ category $C^{o}$ as follows.

(7.9.1) $\mathfrak{O}b(C^{o})=\mathfrak{O}b(C)$ .

(7.9.2) Let $c$ , $c’\in \mathfrak{O}b(C^{o})=\mathfrak{O}b(C)$ . We put $C^{o}(c, c’)=C(c’, c)$ .

(7.9.3) We define (higher) composition operators $\mathfrak{m}_{k}^{o}$ of $C^{o}$ by:

$\mathfrak{m}_{k}^{o}(x_{1}, \ldots, x_{k})=(-1)^{\epsilon}\mathfrak{m}_{k}(x_{k}, \ldots, x_{1})$ ,

where

$\epsilon=\sum_{1\leq i<j\leq k}(degx_{i}+1)(degx_{j}+1)+1$
.

Lemma 7.10. $C^{o}$ is an $A_{\infty}$ category.

Proof. First we introduce some notations to simplify the formula.
We put $x=x_{1}\otimes\cdots\otimes x_{k}\in B_{k}C$ and

(7.11)
$\triangle^{m-1}x=\sum_{a}x_{a}^{(1)}\otimes\cdots\otimes x_{a}^{(m)}$

.

Here

$\triangle^{m-1}=\cdots o(\triangle\otimes 1\otimes 1)\circ(\triangle\otimes 1)\circ\triangle$ .

Let

(7.12.1) $degx=degx_{1}+\cdots+deg$ $x_{k}$

be the degree of $x$ and

(7.12.2) $deg’x=degx_{1}+\cdots+degx_{k}+k$

be its degree after shifted. We use notations (7.11), (7.12.1), (7.12.2)
frequently for the rest of this article. We put

(7.12.1) $x^{op}=x_{k}\otimes\cdots\otimes x_{1}$ ,

and

(7.13.2)
$\epsilon(x)=\sum_{1\leq i<j\leq k}(degx_{i}+1)(degx_{j}+1)$

.

The $A_{\infty}$ formula for $\mathfrak{m}$ can be written as

(7.14) $\sum_{a}(-1)^{deg’x_{a}^{(1)}}\mathfrak{m}(x_{a}^{(1)}, \mathfrak{m}(x_{a}^{(2)}),$
$x_{a}^{(3)})=0$ .
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We have

$\mathfrak{m}(x_{a}^{(1)}, \mathfrak{m}(x_{a}^{(2)})$ , $x_{a}^{(3)})$
$=$

$(-1)^{\epsilon(x_{a}^{(1)})+\epsilon(x_{a}^{(2)})+\epsilon(x_{a}^{(3)})+\epsilon_{1}(a)}$

(7.15)
$\mathfrak{m}^{o}$ $(x_{a}^{(3)op}, \mathfrak{m}^{o}(x_{a}^{(2)op})$ , $x_{a}^{(1)op})$ ,

where $\epsilon(x_{a}^{(j)})$ are as in (7.13.2) and

$\epsilon_{1}(a)=(deg’x_{a}^{(1)}+deg’x_{a}^{(3)})(deg’x_{a}^{(2)}+1)+deg’x_{a}^{(1)}deg’x_{a}^{(3)}$ .

We remark that

$\epsilon(x_{a}^{(1)})+\epsilon(x_{a}^{(2)})+\epsilon(x_{a}^{(3)})+(deg’x_{a}^{(1)}+deg’x_{a}^{(3)})deg’x_{a}^{(2)}$

$+deg’x_{a}^{(1)}deg’x_{a}^{(3)}=\epsilon(x)$ ,

and is independent of $a$ . Hence (7.14) and (7.15) imply

$\sum(-1)^{deg^{J}x_{a}^{(3)op}}\mathfrak{m}^{o}(x_{a}^{(3)op}, \mathfrak{m}^{o}(x_{a}^{(2)op}),$ $x_{a}^{(1)op})=0$ .

This is the $A_{\infty}$ formula of $\mathfrak{m}^{o}$ to be checked. $\square $

Definition 7.16. Let $C$ be an $A_{\infty}$ category and $c\in \mathfrak{O}b(C)$ . We
construct an $A_{\infty}$ functor $\mathcal{F}^{c}=Hom(\cdot, c)$ : $C$ $\rightarrow C\mathcal{H}^{o}$ as follows.

(7.17.1) $\mathcal{F}_{0}^{c}(b)=C(b, c)$ . (We take $\mathfrak{m}_{1}$ as the boundary operator.)
(7.17.2) $\mathcal{F}_{k}^{c}(x_{1}, \ldots, x_{k})(y)=\mathfrak{m}_{k+1}(x_{1}, \ldots, x_{k}, y)$ . Here

$y\in C(b, c)$ , $b_{1}$ , $\ldots$ , $b_{k+1}=b\in \mathfrak{O}b(C)$ , $x_{i}\in C(b_{i}, b_{i+1})$ .

Proposition 7.18. $\mathcal{F}^{c}$ is an $A_{\infty}$ functor.
Proof. We calculate

$\mathfrak{m}_{2}^{o}(\mathcal{F}(x_{a}^{(1)}), \mathcal{F}(x_{a}^{(2)}))$

$=$
$-(-1)^{(deg\mathcal{F}(x_{a}^{(1)})+1)(degF(x_{a}^{(2)})+1)}\mathfrak{m}_{2}(\mathcal{F}(x_{a}^{(2)}), \mathcal{F}(x_{a}^{(1)}))$

$=$ $-(-1)^{(degF(x_{a}^{(1)})+1)(deg\mathcal{F}(x_{a}^{(2)})+1)+(degF(x_{a}^{(1)})+1)degF(x_{a}^{(2)})}$

$\mathcal{F}(x_{a}^{(1)})\circ \mathcal{F}(x_{a}^{(2)})$

$=$
$-(-1)^{deg’x_{a}^{(1)}}\mathcal{F}(x_{a}^{(1)})\circ \mathcal{F}(x_{a}^{(2)})$ .

We recall $\mathfrak{m}_{k}=0$ for $k\geq 3$ in $C\mathcal{H}$ . Hence the condition that $\hat{\mathcal{F}}$ is a chain
map is

$0=$ $\sum(-1)^{deg’x_{a}^{(1)}}\mathcal{F}(x_{a}^{(1)})o\mathcal{F}(x_{a}^{(2)})$

$a$

(7.19) $+(-1)^{deg’x}\mathcal{F}(x)\circ \mathfrak{m}_{1}+\mathfrak{m}_{1}\circ \mathcal{F}(x)$

$+\sum(-1)^{deg’x_{a}^{(1)}}\mathcal{F}(x_{a}^{(1)}, \mathfrak{m}(x_{a}^{(2)}),$ $x_{a}^{(3)})$ .
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(We use also $\mathfrak{m}_{1}^{o}=-\mathfrak{m}_{1}$ to deduce (7.19).) We plug in $y$ to the right
hand side of (7.19). Then the first term of the right hand side will be

(7.20) $\sum(-1)^{deg’x_{a}^{(1)}}\mathfrak{m}(x_{a}^{(1)}, \mathfrak{m}(x_{a}^{(2)}, y))$ .

The second and the third terms of the right hand side will be

(7.21) $(-1)^{deg’x}\mathfrak{m}(x, \mathfrak{m}_{1}(y))+\mathfrak{m}_{1}(\mathfrak{m}(x, y))$ .

The fourth term will be

(7.22) $\sum_{a}(-1)^{deg’x_{a}^{(1)}}\mathfrak{m}(x_{a}^{(1)}, \mathfrak{m}(x_{a}^{(2)}),$

$x_{a}^{(3)}$ , $y)$ .

(7.20)+(7.21)+(7.22)=0 is the $A_{\infty}$ formula for in. We thus proved
(7.19). $\square $

We next define a similar but a bit different $A_{\infty}$ functor $\mathfrak{R}c\mathfrak{p}_{0}(c)$ :
$C^{o}\rightarrow CH$ . (At this stage $\mathfrak{R}c\mathfrak{p}_{0}(c)$ is just a symbol. We will define $\mathfrak{R}c\mathfrak{p}_{k}$

in section 9.) For this purpose, we prove the following.

Definition-Lemma 7.23. For each $A_{\infty}$ functor $\mathcal{F}$ : $C_{1}\rightarrow C_{2}$ , we
can construct its opposite $A_{\infty}$ functor $\mathcal{F}^{o}$ : $C_{1}^{o}\rightarrow C_{2}^{o}$ as follows.
(7.24.1) $\mathcal{F}_{0}^{o}=\mathcal{F}_{0}$ .

(7.24.2) $\mathcal{F}_{k}^{o}(x)=(-1)^{\epsilon(x)}\mathcal{F}_{k}(x^{op})$ . Here we use notation (7.13).

Proof We need to check

$\sum_{\ell}\sum_{a}\mathfrak{m}_{\ell}^{o}(\mathcal{F}^{o}(x_{a}^{(1)}), \ldots, \mathcal{F}^{o}(x_{a}^{(\ell)}))$

(7.25)
$=\sum_{a}(-1)^{deg’x_{a}^{(1)}}\mathcal{F}^{o}(x_{a}^{(1)}, \mathfrak{m}^{o}(x_{a}^{(2)}),$ $x_{a}^{(3)})$ .

The left hand side of (7.25) is

(7.26)
$\sum_{\ell}\sum_{a}(-1)^{\epsilon(x)+1}\mathfrak{m}_{\ell}(\mathcal{F}(x_{a}^{(\ell)op}), \ldots, \mathcal{F}(x_{a}^{(1)op}))$

.

In a way similar to the proof of Lemma 6.8, we can check that the right
hand side of (7.25) is

(7.27) $\sum_{a}(-1)^{deg’x_{a}^{(3)}}\mathcal{F}(x_{a}^{(3)op}, \mathfrak{m}(x_{a}^{(2)op}),$

$x_{a}^{(1)op})$ .

(7.26)=(7.27) is the condition that $\mathcal{F}$ is an $A_{\infty}$ functor. $\square $

In view of (7.24) and (7.17), we can define an $A_{\infty}$ functor $\mathfrak{R}c\mathfrak{p}_{0}(c)$ :
$C^{o}\rightarrow C’H$ as follows.
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Definition 7.28.

(7.29.1) $\mathfrak{R}c\mathfrak{p}_{0}(c)_{0}(b_{0})=C(b_{0}, c)$ .

Let $x\in B_{k}C^{o}(b_{0}, b_{k})=B_{k}C(b_{k}, b_{0})$ , $y\in \mathfrak{R}c\mathfrak{p}_{0}(c)_{0}(b_{0})=C(c, b_{0})$ . Then

(7.29.2) $\mathfrak{R}c\mathfrak{p}_{0}(c)_{k}(x)(y)=(-1)^{\epsilon(x)}\mathcal{F}^{c}(x^{op})(y)=(-1)^{\epsilon(x)}\mathfrak{m}(x^{op}, y)$ .

We next apply the construction of $\mathcal{F}^{c}$ and $\mathfrak{R}c\mathfrak{p}_{0}(c)$ to the opposite
$A_{\infty}$ category $C^{o}$ and define $c\mathcal{F}$ , $1\supset \mathfrak{p}\mathfrak{R}c\mathfrak{p}_{0}(c)$ as follows.

Definition 7.30. $c\mathcal{F}$ : $C$ $\rightarrow C’H$ is defined by

(7.31.1) $c\mathcal{F}_{0}(b_{0})=C(c, b_{0})$ .

(7.31.2) $c\mathcal{F}_{k}(x)(y)=\mathfrak{m}_{k+1}^{o}(x, y)=-(-1)^{\epsilon(x)+deg’ydeg’x}\mathfrak{m}_{k+1}(y, x^{op})$ ,

where $x\in B_{k}C^{o}(b_{0}, b_{k})=B_{k}C(b_{k}, b_{0})$ , $y\in c\mathcal{F}_{0}(b_{0})\in C(c, b_{0})$ .

$OpRep0(c)$ : $C^{o}\rightarrow CH^{o}$ is defined by

(7.32.1) $\mathfrak{O}\mathfrak{p}\mathfrak{R}c\mathfrak{p}_{0}(c)(b_{0})=C(c, b_{0})$ .

(7.32.2) $\mathfrak{O}\mathfrak{p}\mathfrak{R}c\mathfrak{p}_{k}(x)(y)=(-1)^{\epsilon(x)c}\mathcal{F}_{k}(x)(y)$

$=-(-1)^{deg’ydeg^{l}x}\mathfrak{m}_{k+1}(y, x^{op})$ .

It follows from construction that $c\mathcal{F}$ and $\mathfrak{R}c\mathfrak{p}_{0}(c)$ are $A_{\infty}$ functors.

Definition 7.33. We say an $A_{\infty}$ functor : $C$ $\rightarrow CH^{o}$ , $C^{o}\rightarrow C’H$ ,
$C$ $\rightarrow C\mathcal{H}$ , $C^{o}\rightarrow CH^{o}$ to be representable if it is homotopic to $\mathcal{F}^{c}$ , $\mathfrak{R}c\mathfrak{p}_{0}(c)$ ,
$c\mathcal{F}$ and $\mathfrak{O}\mathfrak{p}\mathfrak{R}c\mathfrak{p}_{0}(c)$ , respectively. (Homotpy between $A_{\infty}$ functors will
be defined in the next section.)

We next generalize the constructions above to the case when $c$ is
a twisted complex. For this purpose we first define a composition of
two $A_{\infty}$ functors. Let $C_{1}$ , $C_{2}$ , $C_{3}$ be $A_{\infty}$ categories and $\mathcal{F}$ : $C_{1}\rightarrow C_{2}$ ,
$\mathcal{G}$ : $C_{2}\rightarrow C_{3}$ be $A_{\infty}$ functors.

Definition 7.34. The composition $\mathcal{G}\circ \mathcal{F}$ : $C_{1}\rightarrow C_{3}$ is defined as
follows.

(7.35.1) $(\mathcal{G}\circ \mathcal{F})_{0}$ $=$ $\mathcal{G}_{0}o\mathcal{F}_{0}$

$\overline{\mathcal{G}\circ \mathcal{F}}(c_{1}, c_{2})$

$=$ $\hat{\mathcal{G}}(\mathcal{F}_{0}(c_{1}), \mathcal{F}_{0}(c_{2}))\circ\hat{\mathcal{F}}(c_{1}, c_{2})$

(7.35.2) : $BC_{1}(c_{1}, c_{2})\rightarrow BC_{3}(\mathcal{G}_{0}(\mathcal{F}_{0}(c_{1})), \mathcal{G}_{0}(\mathcal{F}_{0}(c_{2})))$ .

It is easy to see that the composition is an $A_{\infty}$ functor.
We remark that there is an obvious $A_{\infty}$ functor $C$ $\rightarrow DC$ .

Definition 7.36. Let $c$ be an twisted complex of $A_{\infty}$ category C.
We then consider the composition

(7.37) $C$
$\rightarrow DC\mathcal{F}^{c}\rightarrow CH^{o}$
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where $\mathcal{F}^{c}$ is defined by applying Definition 6.15 to $A_{\infty}$ category $DC$ .

We write also $\mathcal{F}^{c}$ the composition (7.37). Similarly we define $c\mathcal{F}$ as the
composition

$C^{o}\rightarrow(DC)^{o}\rightarrow C’\mathcal{H}^{o}c_{f}$ ,

where $c$ is a twisted complex of $C^{o}$ . (Actually the twisted complex of
$C^{o}$ can be constructed from one on $C$ by changing the sign of the maps
$x_{i,j}$ appropriately. We leave the reader the problem to find the correct
sign.) We define $\mathfrak{R}c\mathfrak{p}_{0}(c)$ , $\mathfrak{O}\mathfrak{p}\mathfrak{R}c\mathfrak{p}_{0}(c)$ in a similar way.

Definition 7.38. An $A_{\infty}$ functor: $C$ $\rightarrow C’H^{o}$ , $C^{o}\rightarrow C\mathcal{H}$ , $C$ $\rightarrow C’H$ ,
$C^{o}\rightarrow CH^{o}$ is said to be derived representable if it is homotopic to $\mathcal{F}^{c}$ ,
$\mathfrak{R}c\mathfrak{p}_{0}(c)$ , $c\mathcal{F}$ , $\mathfrak{O}\mathfrak{p}\mathfrak{R}c\mathfrak{p}_{0}(c)$ , respectively.

We next explain that $A_{\infty}$ functors are natural generalization of the
notion of differential graded modules. Let $(A, d, \wedge)$ be a differential
graded algebra. It defines an $A_{\infty}$ algebra as in Example-Lemma 1.7.
We write it $(A, \mathfrak{m}_{1}, \mathfrak{m}_{2})$ . $(\mathfrak{m}_{3}=\cdots=0.)$ We may regard it as an $A_{\infty}$

category $A$ with one object.

Lemma 7.39. Homotopy classes of $A_{\infty}$ functors $\mathcal{F}$ : $A\rightarrow CH^{0}$

such that $\mathcal{F}_{k}=0$ for $k\geq 2$ , correspond one to one to the homotopy
equivalence classes of graded differential left module over $(A, d, \wedge)$ .

Proof Let $(D, d, \cdot)$ be a graded differential module over $(A, d, \wedge)$ .

We define

$\mathcal{F}_{0}^{d}(c_{0})=(D, d)$ .

Here $c_{0}$ is the unique object of A. we define

$\mathcal{F}_{1}^{d}$ : $A\rightarrow Hom((D, d),$ $(D, d))$

by

$\mathcal{F}_{1}^{d}(x)(v)=(-1)^{degx(degv+1)}x\cdot v$ .

As in Example-Lemma 1.7, we can easily check that $\mathcal{F}_{1}^{d}$ is a chain map
and

$\mathcal{F}_{1}^{d}(\mathfrak{m}_{2}(x, x’))=\mathcal{F}_{1}^{d}(x’)\circ \mathcal{F}_{1}^{d}(x)$ .

Hence by putting $\mathcal{F}_{k}^{d}=0$ , $k>1$ we find an $A^{\infty}$ functor $\mathcal{F}$ : $A\rightarrow CH^{0}$ .

The converse can be proved in a similar way. $\square $

We remark that a representable functor $\mathcal{F}$ : $A\rightarrow CH^{0}$ corresponds
to $A$ itself (regarded as an $A$ module) by Lemma 7.39.



96 K. Fukaya

Definition 7.40. A left $A_{\infty}$ module of an $A_{\infty}$ algebra $C$ is an $A_{\infty}$

functor $C$ $\rightarrow CH^{0}$ . A right $A_{\infty}$ module of an $A_{\infty}$ algebra $C$ is an $A_{\infty}$

functor $C$ $\rightarrow CH$ .

In a way similar to the proof of Lemma 7.39, we can check that this
definition coincides with one given in [FOOO] \S 14.

Let $C$ be an $A_{\infty}$ category and $c$ , $c’$ be objects of it. There is an
obvious $A_{\infty}$ functor $C(c)\rightarrow C$ . (Here we regard $C(c)$ an $A_{\infty}$ algebra,

that is an $A_{\infty}$ category with single object $c.$ ) We compose it with $\mathcal{F}^{c’}$ :
$C$ $\rightarrow CH$ and we obtain a left $A_{\infty}C(c)$ module, which is $C(c, c’)$ as an $R$

module. In a similar way, $C(c, c’)$ has a structure of right $C(c’)$ module.
In other words, $C(c, c’)$ is a left $C(c)$ and right $C(c’)$ bimodule in the
sense defined in [FOOO] \S 14.

In the case of $\mathcal{L}A\mathcal{G}(M, \omega)$ , this implies that we have a $\mathcal{L}A\mathcal{G}(L, b)$ ,
$\mathcal{L}A\mathcal{G}(L’, b’)$ bimodule $\mathcal{L}A\mathcal{G}((L, b),$ $(L’, b’))$ . (Here $b$ and $b’$ are bounding
chains.) This is what is constructed in [FOOO] \S 14. The homology
of $\mathcal{L}A\mathcal{G}((L, b)$ , $(L’, b’))$ is the Floer homology between two Lagrangian
submanifolds.

Remark 7.41. Let $X$ be a scheme over $R$ . We can associate the
following category $C(X)$ , which is an $A_{\infty}$ category. (Note that it satisfies
$\mathfrak{m}_{k}=0$ for $k\neq 2$ , and that $\mathfrak{m}_{2}$ is commutative.)

The object of $C(X)$ is an affine open subsets $U_{A}=Spec(A)\subset X$ .

The set of morphisms from $U_{A}$ to $U_{B}$ is {0} unless $U_{B}\subseteq U_{A}$ . In the
case $U_{B}\subseteq U_{A}$ , the set of the morphisms $C(X)(U_{A}, U_{B})$ is the ring $A$ . If
$U_{C}\subseteq U_{B}\subseteq U_{A}$ then $A\subseteq B\subseteq C$ . $\mathfrak{m}_{2}$ is defined as $A\otimes B\rightarrow B$ (the
product of ring $B$ ).

A functor from $C(X)$ to the category of $R$ modules can be identified
with a presheaf on $X$ .

We further study relations of $A_{\infty}$ functor to twisted complex.

Lemma 7.42. Let $\mathcal{F}$ : $C_{1}\rightarrow C_{2}$ be an $A^{\infty}$ functor. Then there
exists an $A^{\infty}$ functor $D\mathcal{F}$ : $DC_{I}\rightarrow DC_{2}$ such that the following diagram
commutes.

Sketch of the proof. Let $(c_{k_{1}}, \ldots, c_{k_{2}} ; (x_{i,j}))$ to be a twisted com-
plex of $C_{1}$ . We put

$y_{a,b}=\sum_{k}\sum_{a=i_{1}<<i_{k}=b}\cdots \mathcal{F}_{k}(x_{i_{1}}, \ldots, x_{i_{k}})$
.

It is easy to see that $(\mathcal{F}_{0}(c_{k_{1}}), \ldots, \mathcal{F}_{0}(c_{k_{2}});(y_{i,j}))$ is a twisted complex
of $C_{2}$ . We put
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Diagram 7. 1.

$(D\mathcal{F})_{0}(c_{k_{1}}, \ldots, c_{k_{2};}(x_{i,j}))=(\mathcal{F}_{0}(c_{k_{1}}), \ldots, \mathcal{F}_{0}(c_{k_{2}});(y_{i,j}))$ .

We omit the definition of $(D\mathcal{F})_{k}$ , $k\geq 1$ . $\square $

Lemma 7.43. $T/iere$ exists an $A^{\infty}$ functor $7^{\supset}:$ $DD\mathcal{F}$ $\rightarrow D\mathcal{F}$ such
that $P_{0}(c)=|c|$ . Here $|c|$ is defifined in Lemma 6.20.

The proof is straightforward and is left to the reader.
We now proceed to the definition of an $A_{\infty}$ category $S\iota\iota \mathfrak{n}t(C_{1}, C_{2})$

whose objects are $A_{\infty}$ functors. (Here $C_{1}$ , $C_{2}$ are $A_{\infty}$ categories.) This
section is almost the same as [Fu4] \S 10. However we put signs to every
formula and check the formula with signs. (In [Fu4] we worked over $\mathbb{Z}_{2}.$ )
The presentation of the proof is improved also.

Let $\mathcal{F}^{1}$ , $\mathcal{F}^{2}$ be $A_{\infty}$ functors from $C_{1}$ to $C_{2}$ . Let $a$ , $b\in \mathfrak{O}b(C_{1})$ . Let $\ell$

be an integer. We consider a family of operators

(7.44) $T_{k}(a, b)$ : $B_{k}C_{1}[1](a, b)\rightarrow C_{2}[1](\mathcal{F}_{0}^{1}(a), \mathcal{F}_{0}^{2}(b))$

of degree $t$ . (Here $k=1,2$ , $\ldots$ for $a$ $\neq b$ and $k=0,1$ , 2, $\ldots$ for $a=$

$b.)$ We write $t-1=0cgT$ , $t=0cg’T$ . We use Deg in place of $deg$

here to avoid confusion. 0cgT will be a degree of $T$ as a pre natural
transformation as we will define below (Definition 7.49). $degT_{k}(a, b)$ is
a degree as a homomorphism between graded modules. We remark that
$0cg’T=degT_{k}(a, b)$ . We also remark that, for $x\in B_{k}C[1](a, b)$ , we have

$deg’T_{k}(a, 6)(x)=0cg’T+degx=DegT+degx+1$ .

For $a’$ , $b’\in \mathfrak{O}b(C_{2})$ , let

$\pi_{a’,b’}$ : $BC_{2}[1](a’, b’)\rightarrow C_{2}[1](a’, b’)$

be the projection.
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Lemma 7.45. For each family $T_{k}(a, b)$ there exists uniquely $a$

family

$\hat{T}(a, b)$ : $BC_{1}[1](a, b)\rightarrow BC_{2}[1](\mathcal{F}_{0}^{1}(a), \mathcal{F}_{0}^{2}(b))$ ,

of homomorphisms with the following properties.

(7.46.1) $\pi_{F_{0}^{1}(a),F_{0}^{2}(b)}\circ\hat{T}(a, b)=T_{k}(a, b)$ on $B_{k}C_{1}[1](a, b)$ .

(7.46.2) $\triangle\circ\hat{T}(a, b)=\sum(\hat{\mathcal{F}}1^{\wedge}\otimes\hat{T}(c, b)+\hat{T}(a, c)\wedge\otimes\hat{\mathcal{F}}^{2})\circ\triangle$ .

$ Here\otimes\wedge$ is define by $(A\otimes B)\wedge(x, y)=(-1)^{degBdeg’x}A(x)\otimes B(y)$ . (Note
$degB=0cg’B$ and $deg’x$ is the degrees after shifted.)

Proof. Let $x\in BC_{1}[1](a, b)$ . We use notation (7.11). We define

(7.47) $\hat{T}(x)=\sum_{a}(-1)^{degTdeg’x_{a}^{(1)}}f^{1}(x_{a}^{(1)})\otimes T(x_{a}^{(2)})\otimes\hat{\mathcal{F}}^{3}(x_{a}^{(3)})$ .

It is easy to check (7.46). Uniqueness is also easy to show. $\square $

Hereafter we write $T$ etc. in place of $T_{k}(a, b)$ etc. in case no confusion
can occur.

Lemma 7.48. For each family $T_{k}(a, b)$ with $t=0cg’T_{k}(a, b)=$

$degT$ , there exists a family $(\delta T)_{k}(a, b)$ such that

$\overline{\delta T}=\hat{d}\circ\hat{T}+(-1)^{t+1}\hat{T}\circ\hat{d}$ .

Proof. We calculate

$\triangle\circ(\hat{d}\circ\hat{T}+(-1)^{t+1}\hat{T}\circ\hat{d})$

$=$ $(\hat{d}\otimes 1\wedge+1\otimes\hat{d})\wedge\circ\triangle\circ\hat{T}+(-1)^{t}\triangle\circ\hat{T}\circ\hat{d}$

$=$ $(\hat{d}\otimes 1\wedge+1\otimes\hat{d})\wedge\circ(\hat{\mathcal{F}}^{1}\otimes\hat{T}\wedge+\hat{T}\otimes\hat{\mathcal{F}}^{2})\wedge\circ\triangle$

$+(-1)^{t+1}(\hat{\mathcal{F}}^{1}\otimes\hat{T}\wedge+\hat{T}\otimes\hat{\mathcal{F}}^{2})\wedge\circ(\hat{d}\otimes 1\wedge+1\otimes\hat{d})\wedge\circ\triangle$

$=$ $(\hat{\mathcal{F}}^{1}\otimes(\wedge\hat{d}\circ\hat{T}+(-1)^{t+1}\hat{T}\circ\hat{d})+(\hat{d}\circ\hat{T}+(-1)^{t+1}\hat{T}\circ\hat{d})\otimes\hat{\mathcal{F}}^{2})\wedge\circ\triangle$ .

Lemma 7.48 then follows from Lemma 7.45. $\square $

Definition 7.49. We say a family $T$ as in (7.44), a pre natural

transformation from $\mathcal{F}^{1}$ to $\mathcal{F}^{2}$ . We let $S\iota\iota \mathfrak{n}t(\mathcal{F}^{1}, \mathcal{F}^{2})$ be the set of all pre
natural transformations. (It is a graded module over the commutative
ring $R$ we work on.)

We define a boundary operator $\mathfrak{M}_{1}=-\delta$ on it by Lemma 7.48.
We say that $T$ is a natural transformation or $A_{\infty}$ transformation if

it is $\delta$ closed.
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We remark that $0cg(T)=deg(T_{0}(1))$ , where $T_{0}(1)\in C[1](c, c)$ .

We put minus sign in $\mathfrak{M}_{1}=-\delta$ since we need it to show Theorem
9.1 later.

Corollary 7.50. $\delta\circ\delta=0$ . In other words, $(Su\mathfrak{n}t(\mathcal{F}^{1}, \mathcal{F}^{2}),$ $\mathfrak{M}_{1})$

is a chain complex.

Corollary 7.50 is immediate from Lemma 7.45. We use the symbol
$\mathfrak{M}$ to denote the operations on $S\iota\iota \mathfrak{n}t(\mathcal{F}^{1}, \mathcal{F}^{2})$ in order to distinguish it
from operations on $C_{1}$ , $C_{2}$ .

Remark 7.51. If $T$ is a natural transformation, then
$T_{0}(a)=T_{0}(a)(1)$ is a closed morphism in $C_{2}(\mathcal{F}_{0}^{1}(a), \mathcal{F}_{0}^{2}(a))$ . (Here
$1\in B_{0}C_{1}[1]=the$ coefficient ring $R.$ ) Moreover we have

$\mathfrak{m}_{2}$ $(T_{1}(a, b)(x)$ , $T_{0}(b))\equiv\pm \mathfrak{m}_{2}(T_{0}(a), T_{1}(a, b)(x))$ $mod Im\mathfrak{m}_{1}$ .

for each $x\in C_{1}(a, b)$ . Thus natural transformation in our sense defines
a natural transformation in the usual sense in homology level.

We next define $\mathfrak{m}_{k}$ , $k\geq 2$ . Let $\mathcal{F}^{i}$ , $i=0$ , $\ldots$ , $k$ be $A_{\infty}$ functors from
$C_{1}$ to $C_{2}$ and $T^{i}\in S\iota 1\mathfrak{n}t(\mathcal{F}^{i-1}, \mathcal{F}^{i})$ be pre natural transformations. We
put $t_{i}=0cg’T^{i}$ . Let $x\in B(C_{1}[1])$ . We consider

$\triangle^{2k+1}x=\sum_{a}x_{a}^{(1)}\otimes\cdots\otimes x_{a}^{(2k+1)}$
.

and put

$\hat{T}(x)=$

(7.52)
$-\sum(-1)^{\epsilon_{a}}\mathfrak{m}(\hat{\mathcal{F}}^{0}(x_{a}^{(1)}),$ $T^{1}(x_{a}^{(2)})$ , $\ldots$ , $T^{k}(x_{a}^{(2k)}),\hat{\mathcal{F}}^{k}(x_{a}^{(2k+1)}))$ ,

where

(7.53) $\epsilon_{a}=\sum_{j=1}^{k}\sum_{i=1}^{2j-1}t_{j}deg’x_{a}^{(i)}$ .

It is easy to see that $\hat{T}$ satisfies (7.46.2). Hence we can use it to define
a pre natural transformation $T$ . We also remark that 0cgT $=t_{1}+\cdots t_{k}$

and is $0cg’T=t_{1}+\cdots t_{k}+1$ .

Definition 7.54. We put $\mathfrak{A}l_{k}(T^{1}, \ldots, T^{k})=T$ .

We remark that $\mathfrak{M}_{k}$ is of degree one in the sense of $0cg’$ . Namely
we have

$0cg’T=0cg’T^{1}+\cdots+0c\mathfrak{g}’T^{k}+1$ .
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We remark that the overall minus sign in (7.52) will be necessary for
Theorem 9.1 to hold.

Theorem-Definition 7.55. There exists an $A_{\infty}$ category
$Su\mathfrak{n}\not\in(C_{1}, C_{2})$ such that its object is an $A_{\infty}$ functor : $C_{1}\rightarrow C_{2}$ , the set of
morphisms are the set of pre natural transformations, and that (higher)
compositions are defifined by Defifinition 7.54.

Proof The $A_{\infty}$ formula we are going to check is:

(7.56)
$0=\sum_{1\leq m\leq\ell\leq k}(-1)^{t_{1}+}+t_{m-1}\mathfrak{M}_{k-\ell+m}(T^{1},$

$\ldots$ , $T^{m-1}$ ,

$i\mathfrak{M}_{\ell-m+1}(T^{m}, \ldots, T^{\ell})$ , $T^{\ell+1}$ , $\ldots$ , $T^{k})(x)$ ,

where $t_{i}=0cg’T^{i}$ . To prove (7.56), we compare it with

$0=$

(7.57)
$(-1)^{\epsilon_{1}(a)}(\mathfrak{m}\circ\hat{d})(\hat{\mathcal{F}}^{0}(x_{a}^{(1)}), T^{1}(x_{a}^{(2)})$ , $\ldots$ , $T^{k}(x_{a}^{(2k)}),\hat{\mathcal{F}}^{k}(x_{a}^{(2k+1)}))$ ,

where

(7.58) $\epsilon_{1}(a)=\sum_{j=1}^{k}\sum_{i=1}^{2j-1}t_{j}deg’x_{a}^{(\dot{x})}$ .

The formula (7.57) follows from the $A_{\infty}$ formula of $C_{2}$ . We study the
terms appearing in (7.56) and (7.57).

We first study the terms appearing in (7.57). There are two types
of them. One is:
Type 1: Let $1\leq m<\ell\leq k$ . Then we have

$\mathfrak{m}(\hat{\mathcal{F}}^{0}(x_{m}^{(1)}),$
$T^{1}(x_{a}^{(2)})$ , $\ldots,\hat{\mathcal{F}}^{m-1}(x_{a,b}^{(2m-1),(1)})$ ,

$\mathfrak{m}(\hat{\mathcal{F}}^{m-1}(x_{a,b}^{(2m-1),(2)}),$ $T^{m}(x_{a}^{(2m)})$ , $\ldots$

(7.59)
$\ldots$ , $T^{\ell-1}(x_{a}^{(2\ell-2)}),\hat{\mathcal{F}}^{\ell}(x_{a,b}^{(2\ell-1),(1)}))$

$\hat{\mathcal{F}}^{\ell}(x_{a,b}^{(2\ell-1),(2)})$ , $\ldots$ , $T^{k}(x_{a}^{(2k)}),\hat{\mathcal{F}}^{k}(x_{a}^{(2k+1)}))$ .

Here we put

$\triangle(x_{a}^{(i)})=\sum_{b}x_{a,b}^{(i),(1)}\otimes x_{a,b}^{(i),(2)}$
.

For a moment we do not put sign in the formula. We will check the sign
carefully later.
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Type 2: This is an analogue of (7.59) in the case when $1\leq m=\ell\leq k$ .

That is:

$\mathfrak{m}(\hat{\mathcal{F}}^{u}(x_{a}^{(1)}), T^{1}(x_{a}^{(2)}),$

$\ldots$ , $T^{m}(x_{a}^{(2m)})$ ,

(7.60) $\hat{d}(\hat{\mathcal{F}}^{m}(x_{a}^{(2m+1)}))$ , $T^{m+1}(x_{a}^{(2m+2)})$ ,

$\ldots$ , $T^{k}(x_{a}^{(2k)}),\hat{\mathcal{F}}^{k}(x_{a}^{(2k+1)}))$ .

Now we turn to the terms appearing in (7.56).
Type 3: This is exactly the same as (7.59).

The other types of terms in (7.56) are the cases when $\mathfrak{M}_{1}$ appears.
We remark that $\mathfrak{M}_{1}$ appears in (7.56) in case $\ell=m+k-1$ or $\ell=m$ .

The terms of Types 4, 5 below correspond to the case either $\ell=m+k-1$

and the terms of Type 6 correspond to the case $\ell=m$ .

Let us first consider the case $\ell=m+k-1$ . We recall

$(\mathfrak{M}_{1}(\mathfrak{M}_{k}(T^{1}, \ldots, T^{k})))(x)=(\mathfrak{m}\circ \mathfrak{M}_{k}(T^{1}, \ldots, T^{k})^{\Lambda})(x)$

(7.61)
$+(-1)^{t_{1}+}+t_{k}(\mathfrak{M}_{k}(T^{1}, \ldots, T^{k})o\hat{d})(x)$ .

We remark that $0cg’\mathfrak{M}_{k}(T^{1}, \ldots, T^{k})=t_{1}+\cdots+t_{k}+1$ . Note that the
first term of (7.61) is already included in Type 3. So we only need to
consider the second term. They are one of the following two types.
Type 4:

$\mathfrak{m}(\hat{\mathcal{F}}^{u}(x_{a}^{(1)}), T^{1}(x_{a}^{(2)}),$

$\ldots$ , $T^{m}(x_{a}^{(2m)})$ ,
(7.62)

$\hat{\mathcal{F}}^{m}(\hat{d}(x_{a}^{(2m+1)}))$ , $T^{m+1}(x_{a}^{(2m+2)})$ , $\ldots$ , $T^{k}(x_{a}^{(2k)}),\hat{\mathcal{F}}^{k}(x_{a}^{(2k+1)}))$ .

Type 5:

$\mathfrak{m}(\hat{\mathcal{F}}^{0}(x_{a}^{(1^{\backslash }}’), T^{1}(x_{a}^{(2)}),$ $\ldots,\hat{\mathcal{F}}^{m-1}(x_{a}^{(2m-1)})$ ,
(7.63)

$T^{m}(\hat{d}(x_{a}^{(2m)}))$ , $\ldots$ , $T^{k}(x_{a}^{(2k)}),\hat{\mathcal{F}}^{k}(x_{a}^{(2k+1)}))$ .

We next consider the case $\ell=m$ . we recall

$\mathfrak{A}l_{k}(T^{1}, \ldots, \mathfrak{U}l_{1}(T^{m}), \ldots, T^{k})(x)$

(7.64) $=\mathfrak{M}_{k}(T^{1}, \ldots, \mathfrak{m}\circ\hat{T}^{m}, \ldots, T^{k})(x)$

$+(-1)^{t_{m}}\mathfrak{M}_{k}(T^{1}, \ldots, T^{m}\circ\hat{d}, \ldots, T^{k})(x)$ .

The first term again is included in Type 3. The second term then gives:
Type 6: This type is actually the same as Type 5.

We have finished describing all the types of the terms in (7.56).
We now can prove the case when the coefficient ring is $\mathbb{Z}_{2}$ immediately.
Namely terms of Types 1 and 3 cancel each other and terms of Types 2
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and 4 cancel each other, since $\hat{\mathcal{F}}$ is a chain map, and terms of Types 5
and 6 cancel each other.

Let us now check the sign.
The sign in Type 3 is given by $(-1)^{\epsilon_{2}(a)+t_{1}++t_{m-1}}\cdots$ where

$\epsilon_{2}(a)$ $=$ $\sum_{j=m}^{\ell}t_{j}(deg’x_{a,b}^{(2m-1),(2)}+\sum_{i=2m}^{2j-1}deg^{J}x_{a}^{i})$

$+\sum_{j=1}^{m-1}\sum_{i=1}^{2j-1}t_{j}deg^{J}x_{a}^{i}$

(7.65) $+(t_{m}+\cdots+t_{\ell}+1)\times$

$\times(\sum_{i=0}^{2m-2}deg’x_{a}^{i}+deg’x_{a,b}^{(2m-1),(1)})$

$+\sum_{j=\ell+1}^{k}\sum_{i=1}^{2j-1}t_{j}deg’x_{a}^{i}$ .

Note that the first line in (7.65) comes from $\mathfrak{M}_{\ell-m+1}(T^{m}, \ldots, T^{\ell})$ in
(7.56) and the rest comes from $\mathfrak{M}_{k-\ell+m}$ .

We calculate (7.65) and obtain

$\epsilon_{2}(a)-\epsilon_{1}(a)=\sum_{i=0}^{2m-2}deg^{J}x_{a}^{i}+deg^{J}x_{a,b}^{(2m-1),(1)}$ .

On the other hand, the sign in the case of Type 1 in (7.57) is
$(-1)^{\epsilon_{1}(a)+\epsilon_{3}(a)}$ where

$\epsilon_{3}(a)$ $=$ $deg’x_{m}^{(1)}+deg^{J}T^{1}(x_{a}^{(2)})+\cdots+deg’x_{a,b}^{(2m-1),(1)}$

$\equiv$ $\sum_{i=0}^{2m-2}deg’x_{a}^{i}+deg’x_{a,b}^{(2m-1),(1)}+\sum_{i=1}^{m-1}t_{i}$ $mod 2$ .

Thus Types 1 and 3 coincides together with sign.
We next consider Types 2 and 4. We find using (7.61) that the sign

of both of them is

$\epsilon_{1}(a)+\sum_{i=1}^{m}t_{i}+\sum_{j=1}^{2m}deg’x_{a}^{j}$

and coincides to each other.
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Next the sign of the terms of Type 5 is $(-1)^{\epsilon_{4}(a)}$ , where

$\epsilon_{4}(a)=\epsilon_{1}(a)+\sum_{i=1}^{m}t_{i}+\sum_{j=1}^{2m+1}deg’x_{a}^{j}$ .

We study Type 6. Note that we have sign $(-1)^{t_{1}+\cdot\cdot+t_{m-1}}$ in (7.56). So
using (7.64) we find that the sign of the terms of Type 6 is $(-1)^{\epsilon_{4}(a)+1}$ .

The proof of $A_{\infty}$ formula (7.56) is now complete.

Finally we define unit, that is the identity transform $Id^{F}$ for each
$\mathcal{F}\in \mathfrak{O}b(C_{1}, C_{2})$ . Let $e_{c}\in C_{2}^{0}(c, c)$ be the unit in $C_{2}$ . Namely we assume
that (1.5) is satisfied for it. We put

(7.66.2) $Id_{0}^{\mathcal{F}}(a)$ $=$ $-e_{\mathcal{F}_{0}(a)}\in C_{2}^{0}(\mathcal{F}_{0}(a), \mathcal{F}_{0}(a))$ ,

(7.66.2) $Id_{k}^{F}$ $=$ 0, for $k\geq 1$ .

(Note that $Id_{1}^{\mathcal{F}}(x)\neq x.$ ) It is easy to see from definition that $Id^{F}$

satisfies (1.5) for $\mathfrak{M}$ . (We remark that we need minus sign in (7.66)
since we put overall minus sign in the definition of $\mathfrak{M}_{k}.$ ) $\square $

\S 8. Homotopy equivalence and $A_{\infty}$ analogue of J. H. C. White-
head Theorem

We now define homotopy equivalence between $A_{\infty}$ categories.

Definition 8.1. Two $A_{\infty}$ functors $\mathcal{F}^{1}$ , $\mathcal{F}^{2}$ : $C_{1}\rightarrow C_{2}$ are said to
be homotopic to each other if they are homotopy equivalent as objects

of $Su\mathfrak{n}t(C_{1}, C_{2})$ in the sense of Definition 6.22.

Definition 8.2. The identity functor $Id^{C}$ : $C$ $\rightarrow C$ is defined as
follows.

(8.3.1) $Id_{0}^{C}(c)=c$ .

(8.3.1) $Id_{1}^{C}(x)=x$ .

(8.3.3) $Id_{k}^{C}=0$ for $k\geq 2$ .

Remark 8.4. The identity functor is similar to but is different
from the identity transformation defined at the end of the last section.

Definition 8.5. An $A_{\infty}$ functor $\mathcal{F}$ : $C_{1}\rightarrow C_{2}$ is said to be a

homotopy equivalence if there exists an $A_{\infty}$ functor $\mathcal{F}’$ : $C_{2}\rightarrow C_{1}$ such

that the composition $\mathcal{F}\circ \mathcal{F}’$ is homotopic to $Id^{C_{2}}$ and that $\mathcal{F}’o\mathcal{F}$ is

homotopic to $Id^{C_{1}}$ .

Two $A_{\infty}$ categories are said to be homotopy equivalent to each other
if there exists a homotopy equivalence between them.
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Now the main result of this section is:

Theorem 8.6. Let $\mathcal{F}:C_{1}\rightarrow C_{2}$ be an $A_{\infty}$ functor such that:

(8.7.1) $\mathcal{F}_{1}$ : $C_{1}(c_{1}, c_{1}’)\rightarrow C_{2}(\mathcal{F}_{0}(c_{1}), \mathcal{F}_{0}(c_{1}’))$ induces an isomorphism on
$\mathfrak{m}_{1}$ homology:
(8.7.2) For any $c_{2}\in \mathfrak{O}b(C_{2})$ there exists $c_{1}\in \mathfrak{O}b(C_{1})$ such that $\mathcal{F}_{0}(c_{1})$

is homotpy equivalent to $c_{2}$ .

Then $\mathcal{F}$ is a homotopy equivalence.

Remark 8.8. In the case of $A_{\infty}$ algebras, Theorem 8.9 was proved
in [FOOO] \S A5. (8.7) is used as a defifinition of homotopy equivalence in
[KoSl]. It seems that Kontsevich-Soibelman announced in [KoSl] that
they will prove in $[KoS2]$ a result similar to Theorem 8.6.

To prove Theorem 8.6, we start with the following special case.

Proposition 8.9. We assume (8.7.1) and that $\mathcal{F}_{0}$ : $\mathfrak{O}b(C_{1})\rightarrow$

Ob $(C_{2})$ is a bijection. Then $\mathcal{F}$ is a homotopy equivalence.

Proof. The proof is similar to the argument of [FOOO] \S A5. We
need to construct an $A_{\infty}$ functor $\mathcal{F}’$ : $C_{2}\rightarrow C_{1}$ and a natural transforma-
tion $T$ : $\mathcal{F}\circ \mathcal{F}’\rightarrow Id^{C_{2}}$ . For this purpose, we construct $\mathcal{F}_{k}’$ : $ B_{k}C_{2}[1]\rightarrow$

$B_{1}C_{1}[1]$ and $T_{k}$ : $B_{k}C_{2}[1]\rightarrow B_{1}C_{2}[1]$ inductively on $k$ . To describe the
induction hypothesis, we define the notions, $A_{k}$ functor and $A_{k}$ trans-
formation.

Let $C$ , $C’$ be $A_{\infty}$ categories, $\mathcal{G}o$ : $B_{0}C\rightarrow B_{0}C’$ be a map and $\mathcal{G}\ell$ :
$B_{\ell}C[1](c_{1}, c_{2})\rightarrow B_{1}C’[1](c_{1}, c_{2})$ , $1\leq i\leq k$ be $R$ module homomorphisms
of degree 0.

We put:

$B_{a}$ , , $bC[1]=\frac{\oplus_{i=0}^{a}B_{i}C[1]}{\oplus_{i=0}^{b-1}B_{i}C[1]}$ .

The boundary operator of the chain complex $BC[1]$ induces a boundary
operator on $B_{a},..,{}_{b}C[1]$ . Hence $B_{a}$

, , $bC[1]$ is a chain complex.

Lemma 8.10. There exists uniquely a coalgebra homomorphism

$\hat{\mathcal{G}}$ : $BC[1]\rightarrow BC’[1]$

such that

(8.11.1) $\hat{\mathcal{G}}=\hat{\mathcal{G}}_{0}$

, $.,k$
$on\oplus_{i=0}^{k}B_{i}C[1]$ .

(8.11.2) $B_{1}C’[1]$ component of $\hat{\mathcal{G}}(B_{i}C[1])$ is 0 for $i>k$ .
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Proof. We define $\mathcal{G}$ : $BC[1]\rightarrow B_{1}C’[1]$ by $\mathcal{G}=\mathcal{G}\ell$ on $ B_{\ell}C[1]1\leq$

$\ell\leq k$ , and $\mathcal{G}=0$ on $B_{\ell}C[1]\ell>k$ . We now define $\hat{\mathcal{G}}$ in the same way as
(7.3). Namely

$\hat{\mathcal{G}}(x)=\sum_{i,a}\mathcal{G}(x_{i,a}^{(1)})\otimes\cdots\otimes \mathcal{G}(x_{i,a}^{(\dot{x})})$
.

Here

$\triangle^{i}(x)=\sum_{a}x_{i,a}^{(1)}\otimes\cdots\otimes x_{i,a}^{(i)}$
.

(The definition of $\hat{\mathcal{G}}$ on $B_{0}C[1]$ is the same as (7.3.2).) It is easy to check
(8.11). $\square $

$\hat{\mathcal{G}}$ induces a homomorphism : $B_{a}$ , $..,{}_{b}C[1]\rightarrow B_{a}$ , , $bC[1]$ for each $a<b$ .

We denote it by $\mathcal{G}_{a,..,b}$ .

Definition 8.12. We say $\mathcal{G}_{i}i\leq k$ is an $A_{k}$ functor if $\mathcal{G}_{0,..,k}$ is a
chain map.

Lemma 8.13. If $\mathcal{G}_{i}$ , $i\leq k$ is an $A_{k}$ functor then $\mathcal{G}_{a}$

, , $b$ is a chain
map for $b-a\leq k-1$ .

The proof is easy and is left to the reader.
Let us next denfine an $A_{k}$ transformation. Let $\mathcal{G}$ and $\mathcal{G}’$ be $A_{k}$

functors from $C$ to $C’$ . Let $S_{\ell}$ : $B_{\ell}C[1](c_{1}, c_{2})\rightarrow B_{1}C’[1](\mathcal{G}_{0}(c_{1}), \mathcal{G}_{0}’(c_{2}))$ ,
$1\leq\ell\leq k$ be $R$ module homomorphisms of degree $s+1$ . It induces

$k$

(8.14) $ S_{0,k}\ldots$, $:\oplus B_{i}C[1]i=0\rightarrow\oplus_{i}B_{?}.C’[1]$

as follows. We define $S:BC[1]\rightarrow B_{1}C’[1]$ by $S=S_{\ell}$ on $B_{\ell}C[1]$ , $ 0\leq\ell\leq$

$k$ and $S=0$ on $B_{\ell}C$ , $\ell>k$ . We then put:

$S_{0,..,k}(x)$

(8.15)
$=\sum_{a}(-1)^{sdeg’x_{a}^{(1)}}\mathcal{G}o$

,
$.,k(x_{a}^{(1)})\otimes S(x_{a}^{(2)})\otimes \mathcal{G}_{0,..,k}’(x_{a}^{(3)})$ .

We remark here in (8.15) the case $x_{a}^{(2)}=1\in B_{0}C[1]$ is included. As a

consequence, the image of $S_{0},$ . ’
$k$ is not contained in $\oplus_{i=0}^{k}B_{i}C[1]$ .

Definition 8.16. We say $S_{\ell}$ , $0\leq\ell\leq k$ , is an $A_{k}$ transformation
if

$\hat{d}oS_{0}$

, ,
$k+(-1)^{s+1}S_{0,k}\ldots,\circ\hat{d}=0$ ,

on $\oplus_{i=0}^{k}B_{i}C[1]$ . We put $ocg’S=s$ .
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Now we go back to the proof of Proposition 8.9. We are going to
construct an $A_{k}$ functor $\mathcal{F}_{\ell}’\ell\leq k$ , and an $A_{k}$ transformation $T_{\ell}\ell\leq k$ ,

from $\mathcal{F}\circ \mathcal{F}’$ to $Id^{C_{2}}$ by induction on $k$ . (We remark that the composition
of two $A_{k}$ functors is well defined and is an $A_{k}$ functor.)

We start with the case $k=0$ . We put

(8.17) $\mathcal{F}_{0}’=\mathcal{F}_{0}^{-1}$ : $\mathfrak{O}b(C_{2})\rightarrow \mathfrak{O}b(C_{1})$ .

We remark that

$B_{0}C[1]=c\in 1\supset b(C)\oplus R$

hence a map $\mathfrak{O}b(C_{2})\rightarrow \mathfrak{O}b(C_{1})$ induces a homomorphism $ B_{0}C_{2}[1]\rightarrow$

$B_{0}C_{1}[1]$ .

We next put

(8.18) $T_{0}(c)=e_{c}\in C_{1}(\mathcal{F}_{0}(\mathcal{F}_{0}’(c)), c)=C_{1}(c, c)$ .

Now we assume that we have an $A_{k-1}$ transformation $\mathcal{F}_{\ell}’$ , $ 0\leq\ell\leq$

$k-1$ and an $A_{k-1}$ transformation $T_{\ell}$ , $0\leq\ell\leq k-1$ and will consider the
case of $k$ . It follows from Lemma 8.13 that $\mathcal{F}_{\ell}’$ , $0\leq\ell\leq k-1$ determine
a chain map

(8.19) $\mathcal{F}_{2,,k}’\ldots$ : $B_{2},$ . $.,{}_{k}C_{2}[1]\rightarrow B_{2},..,{}_{k}C_{1}[1]$ .

Using the obvious $R$ module isomorphism

$k$

$B_{2}$ , $\ldots,{}_{k}C[1]=\oplus i=2B_{i}C[1]$

(8.19) induces an $R$ module homomorphism

$k$ $k$

(8.20) $\tilde{\mathcal{F}}_{2}’$

, ’
$k$ $:\oplus B_{i}C[1]i=2\rightarrow\oplus B_{i}C[1]i=1$

.

Note however that (8.20) is not a chain map in general.

It is easy to see that (8.20) coincides with $\overline{\mathcal{F}}_{1,,k-1}’\ldots$ on $\oplus_{i=2}^{k-1}B_{i}C$ .

Hence we extend (8.20) to

$k$ $k$

(8.21) $\overline{\mathcal{F}}_{1}’$

, , $k$ :
$\oplus B_{i}Ci=1\rightarrow\oplus B_{i}Ci=1$

.

We remark however that (8.21) is not a chain map in general. Neverthe-
less, using the fact that $\mathcal{F}_{2}’,$

. ’
$k$
and $\mathcal{F}_{1,,k-1}’\ldots$ are chain maps (Lemma

8.13), we can easily prove the following:
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Lemma 8.22. The image of $\tilde{\mathcal{F}}_{1,,k}’\ldots\circ\hat{d}-\hat{d}\circ\tilde{\mathcal{F}}_{1,..,k}’$ is contained

in $B_{1}C_{1}[1]$ . Moreover $\tilde{\mathcal{F}}_{1,,k}’\ldots\circ\hat{d}-\hat{d}\circ\tilde{\mathcal{F}}_{1,,k}’\ldots$ vanishes $on\oplus_{i=1}^{k-1}B_{i}C_{2}[1]$ .

We put

$--\cup=\tilde{\mathcal{F}}_{1,..,k}’o\hat{d}-\hat{d}o\tilde{\mathcal{F}}_{1}’$

, $.,k$
: $B_{k}C_{2}[1]\rightarrow B_{1}C_{1}[1]$ .

Note that $\mathfrak{m}_{1}$ defines an $R$ module homomorphism

$d_{1}$ : $B_{k}C_{2}[1]\rightarrow B_{k}C_{2}[1]$ ,

by

$d_{1}(x_{1}\otimes\cdots\otimes x_{k})$

$=$
$\sum_{i}(-1)^{deg^{l}x_{1}+}..deg^{J}x_{i+1}x_{1}\otimes\cdots\otimes \mathfrak{m}_{1}(x_{i})\otimes\cdots\otimes x_{k}$

.

We can prove $d_{1}d_{1}=0$ easily.
We define a boundary operator on $Hom(B_{k}C_{2}[1], B_{1}C_{1}[1])$ by

(8.23) $d\phi=\mathfrak{m}_{1}\circ\phi+(-1)^{deg^{J}\phi}\phi\circ d_{1}$ .

Lemma 8.22 then implies

$d_{-}^{-}-=0$ .

We moreover have the following:

Lemma 8.24. $\Xi$ is contained in the image of $d$ .

Proof We define a boundary operator $d$ on $Hom(B_{k}C_{2}[1], B_{1}C_{2}[1])$

in a way similar to (8.23). Then $\mathcal{F}_{1}$ induces a chain homomorphism $\mathcal{F}_{1,*}$ :
$Hom(B_{k}C_{2}, B_{1}C_{1})\rightarrow Hom(B_{k}C_{2}, B_{1}C_{2})$ . By assumption $\mathcal{F}_{1,*}$ induces an
isomorphism on homology. So it suffices to show that $\mathcal{F}_{1}\circ\Xi$ is a $d$

boundary.
We next rewrite the Definition 8.16 (Sublemma 8.26). We need some

notations for it.
We define $T:BC_{1}[1]\rightarrow B_{1}C_{1}[1]$ by $T=T_{\ell}$ on $B_{\ell}C_{1}[1]$ , $0\leq\ell<k-1$

and $T=0$ on $B_{\ell}C_{1}[1]$ , $\ell>k$ . We define $\overline{T}:BC_{1}[1]\rightarrow B_{1}C_{1}[1]by\overline{T}-=T_{\ell}$

on $B_{\ell}C_{1}[1]$ , $1\leq\ell\leq k-1$ and $T=0$ on $B_{\ell}C_{1}[1]$ , $\ell>k$ or $\ell=0$ .

We then define $\hat{T}$ and
$\overline{T}\wedge$

in the same way as (8.17). Namely we put

$\hat{T}(x)$ $=$ $\sum_{a}(-1)^{deg’x_{a}^{(1)}}\hat{\mathcal{F}}’(\hat{\mathcal{F}}(x_{a}^{(1)}))\otimes T(x_{a}^{(2)})\otimes x_{a}^{(3)}$ ,
(8.25)

$\overline{T}(x)\wedge$

$=$
$\sum_{\sigma}(-1)^{deg’x_{a}^{(1)}}\hat{\mathcal{F}}’(\hat{\mathcal{F}}(x_{a}^{(1)}))\otimes\overline{T}(x_{a}^{(2)})\otimes x_{a}^{(3)}$ .
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We consider a filtration $S$ (the number filtration) of $BC_{1}[1]$ such that
$S^{k}BC_{1}[1]=\oplus_{i=0}^{k}B_{\dot{x}}C_{1}[1]$ . Note that $\hat{T}$ does not preserve this filtration

since $T_{0}(B_{0}C_{1}[1])\subset B_{1}C_{1}[1]$ is nonzero. But
$\overline{T}\wedge$

does preserve this filtra-

tion. Therefore
$\overline{T}\wedge$

induces an $R$ module homomorphism $B_{a}$
, , $ bC_{1}[1]\rightarrow$

$B_{a}$
, ’

${}_{b}C_{1}[1]$ . We write it as $\overline{T}_{a,..,b}$ .

We next recall that $\mathcal{F}’$ : $BC_{2}[1]\rightarrow B_{1}C_{2}[1]$ is equal to $\mathcal{F}_{\ell}’$ on $B_{\ell}C_{2}[1]$

$1\leq\ell\leq k-1$ , and is equal to 0 on $B_{\ell}C_{2}[1]\ell\geq k$ .

Sublemma 8.26. $T_{\ell}O\leq\ell\leq k-1$ , is an $A_{k-1}$ transformation,

if and only if

(8.27) $\mathcal{F}\circ\overline{\mathcal{F}}_{1}’$

, , $k-1$
$-id-\mathfrak{m}\circ\overline{T}_{1}$

, , $k-1$
$-\overline{T}\circ\hat{d}=0$ .

Here (8.27) is a formula for an element in

$Hom(B_{1}, _{k-},{}_{1}C_{2}[1], B_{1}C_{2}[1])$ ,

and

$id\in Hom(B_{1}C_{2}[1], B_{1}C_{2}[1])\subset Hom(B_{1}, _{k-},{}_{1}C_{2}[1], B_{1}C_{2}[1])$ .

Proof. We consider

(8.28) $\overline{\Psi}=-\hat{d}oT_{0}$

, , $k-1+T_{0}$ , , $k-1$
$o\hat{d}\in Hom(B_{0,..,k-}{}_{1}C_{2}[1], BC_{2}[1])$ .

Let $\Psi$ be its $Hom(B_{0_{ },k-1},C_{2} [1], B_{1}C_{2}[1])$ component. It is easy to see

$\tilde{\Psi}(x)=\sum_{a}x_{a}^{(1)}\otimes\Psi(x_{a}^{(2)})\otimes x_{a}^{(3)}$
.

Hence $\tilde{\Psi}$ is zero if and only if $\Psi$ is zero. On the other hand $\overline{\Psi}$ is zero if

and only if $T_{\ell}$ , $0\leq\ell\leq k-1$ is an $A_{k-1}$ transformation, by definition.
Hence, to prove Sublemma 8.26, it suffices to show that $\Psi$ is the left
hand side of (8.27). This can be easily seen by using (8.18) and the fact
that $e_{c}$ is the unit as follows.

Let us consider the $Hom(B_{0,.k-}{}_{1}C_{2} ’[1], B_{1}C_{2}[1])$ component of (8.28).
We find that the sum of the terms of it which contains $T_{0}$ is

(8.28) $x\mapsto\sum_{a}\mathfrak{m}((-1)^{deg’x_{a}^{(1)}}\hat{\mathcal{F}}(\hat{\mathcal{F}}’(x_{a}^{(1)}))\otimes e\otimes x_{a}^{(2)})$ .

The terms of the right hand side of (8.29) are zero unless $x_{a}^{(2)}=1$ or
$x_{a}^{(1)}=1$ . In the first case it is

$(-1)^{deg’x}\mathfrak{m}_{2}(\hat{\mathcal{F}}(\hat{\mathcal{F}}’(x)), e)=-\hat{\mathcal{F}}(\hat{\mathcal{F}}’(x))$ .
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In the second case, it is

$\mathfrak{m}(e\otimes x)=\{$

$x$ if $x\in C_{1}[1]$ ,
0 otherwise.

Thus they correspond to the first and second terms of (8.27). The terms
of the $Hom(B_{0,..,k-}{}_{1}C_{2}[1], B_{1}C_{1}[1])$ component of (8.28) which do not
contain $T_{0}$ correspond to the third and fourth terms of (8.27). (Note
OcgT $=0.$ )

The proof of Sublemma 8.26 is complete. $\square $

We go back to the proof of Lemma 8.24. (8.27) implies

$\mathcal{F}_{a,,b}\ldots o\mathcal{F}_{a}’,$

. ’

$b-id-\hat{d}\circ\overline{T}_{a,..,b}-\overline{T}_{a},$
. ’

$bo\hat{d}=0$ ,

if $b-a<k-1$ . (Here $id$ is the indentity on $B_{a},$ . ’

${}_{b}C_{2}[1].$ ) We put

$\Phi=\mathcal{F}_{1}$

, ,
$ko\tilde{\mathcal{F}}_{1}’$

, , $k-id$
$-\hat{d}\circ\overline{T}$

, ,
$k-\overline{T}_{1}$

, ’
$k$

$o\hat{d}$ .

Since $\Phi$ induces zero on $B_{2}$ , , ${}_{k}C_{2}[1]$ and on $B_{1}$ , , $k-{}_{1}C_{2}[1]$ it follows that

$\Phi\in Hom(B_{k}C_{2}[1], B_{1}C_{2}[1])$ .

In other words, $\Phi=0$ on $B_{1}$
, $..,k-{}_{1}C_{2}[1]$ and the image of $\Phi$ is contained

in $B_{1}C_{2}[1]$ .

Now we calculate:

$\mathcal{F}_{1}o---$ $=$ $\mathcal{F}_{1,,k-}\ldots o--$

$=$ $\mathcal{F}_{1},..,ko\overline{\mathcal{F}}_{1,,k}’\ldots o\hat{d}-\mathcal{F}_{1},..,ko\hat{d}o\tilde{\mathcal{F}}_{1}’,$

. ’
$k$

$=$ $\mathcal{F}_{1}$

, , $ko\tilde{\mathcal{F}}_{1}’,..,ko\hat{d}-\mathfrak{m}_{1}o\mathcal{F}_{1},$ . $.,k$

$o\tilde{\mathcal{F}}_{1}’$

, , $k$

$=$ $(id+\hat{d}\circ\overline{T}_{1,..,k-1}+\overline{T}_{1,k-1}\ldots,\circ\hat{d}+\Phi)\circ\hat{d}$

$-\hat{d}o(id+\hat{d}o\overline{T}_{1,k-1}\ldots,+\overline{T}_{1,.,k-1}\circ\hat{d}+\Phi)$

$=$ $-d\Phi$ .

The proof of Lemma 8.24 is complete. $\square $

We define $\mathcal{F}_{k}’\in Hom(B_{k}C_{2}[1], B_{1}C_{1}[1])$ such that

(8.30) $d\mathcal{F}_{k}’=--\cup-$ .

It is now easy to see that $\mathcal{F}_{\ell}’$ , $0\leq\ell\leq k$ is an $A_{k}$ functor.
We remark that $\mathcal{F}_{k}’$ satisfying (8.30) is not unique. Namely we

can take any element $\Psi$ in the kernel of $d$ : $Hom(B_{k}C_{2}[1], B_{1}C_{1}[1])\rightarrow$
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$Hom(B_{k}C_{2}[1], B_{1}C_{1}[1])$ and can replace $\mathcal{F}_{k}’$ by $\mathcal{F}_{k}’+\Psi$ . We will use this
freedom in the next step.

Now we are going to construct $T_{k}$ . Using $T_{\ell}$ , $\ell=1$ , $\ldots$ , $k-1$ (and
$\mathcal{F}_{\ell}’)$ we define

$\overline{T}_{a},$

. ’

$b:B_{a},\ldots,{}_{b}C_{2}[1]\rightarrow B_{a},\ldots,{}_{b}C_{2}[1]$ .

Using $T_{\ell}$ , $\ell=0,1$ , $\ldots$ , $k-1$ (and $\mathcal{F}_{\ell}’$ ) we define

$k-1$

$\hat{T}_{1,k-1}\ldots$

, :
$\oplus_{0}B_{\ell}C_{2}[1]\ell=\rightarrow\oplus_{0}B_{\ell}C_{2}[1]\ell=$

.

$\hat{T}_{1,..,k-1}$ is a chain map by induction hypothesis. We consider

$k$ $k$

$\overline{T}_{1,k}\ldots$

, :
$\oplus i=1B_{i}C_{2}[1]\rightarrow\oplus i=1B_{i}C_{2}[1]$

.

We put

(8.31) $\mathfrak{T}=\mathcal{F}_{1}$

, ,
$k\circ \mathcal{F}_{1,,k}’\ldots-id-\hat{d}\circ\overline{T}_{1}$

, $.,k$

$-\overline{T}_{1}$

, ,
$k\circ\hat{d}$ .

In the same way as the proof of Sublemma 8.26, we can use the fact that
$\hat{T}_{1},$

. ’
$k-1$ is a chain map, to show the following:

Lemma 8.32. The image of $\mathfrak{T}$ is contained in $B_{1}C_{2}[1]$ . Moreover
$\mathfrak{T}$ vanishes $on\oplus_{i=1}^{k-1}B_{i}C_{2}[1]$ .

We may regard $\mathfrak{T}\in Hom(B_{k}C_{2}[1], B_{1}C_{2}[1])$ by Lemma 8.32. Then,
by definition and Lemma 8.32 we have $d\mathfrak{T}=0$ .

Lemma 8.33. We can choose $\mathcal{F}_{k}’$ so that $\mathfrak{T}\in Imd$ .

Proof. If we replace $\mathcal{F}_{k}’$ by $\mathcal{F}_{k}’+\Psi$ , then, by (8.31), (
$\Sigma$ is replaced

by $\mathfrak{T}+\mathcal{F}_{1}\circ\Psi$ . The lemma now follows from the fact that $\mathcal{F}_{1}$ induces
an isomorphism

$H(Hom(B_{k}C_{2}[1], B_{1}C_{1}[1]), d)\cong H(Hom(B_{k}C_{2}[1], B_{1}C_{2}[1]), d)$ .

$\square $

Lemma 8.33 and Sublemma 8.26 immediately imply that we can
choose $T_{k}$ such that $T_{\ell}$ , $\ell=0$ , $\ldots$ , $k$ is an $A_{k}$ transformation.

Thus we have constructed $\mathcal{F}’$ and $T$ : $\mathcal{F}\circ \mathcal{F}’\rightarrow Id^{C_{2}}$

. We next show
that $T$ is a homotopy equivalence. We prove it by using the following
general result:
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Proposition 8.34. Let $\mathcal{G}$ , $\mathcal{G}’$ be $A_{\infty}$ functors $C$ $\rightarrow C’$ . Let $ T:\mathcal{G}\rightarrow$

$\mathcal{G}’$ $6e$ a natural transformation. We assume that $T_{0}(c)$ : $\mathcal{G}_{0}(c)\rightarrow \mathcal{G}_{0}’(c)$

is a homotopy equivalence for any $c$ .

Then there exits a natural transformation $T’$ : $\mathcal{G}’\rightarrow \mathcal{G}$ , and pre
natural transformations $S$ : $\mathcal{G}\rightarrow \mathcal{G}$ , $S’$ : $\mathcal{G}’\rightarrow \mathcal{G}’$ such that

$Id^{\mathcal{G}’}-\mathfrak{M}_{2}(T’, T)=\mathfrak{M}_{1}(S)$ , $Id^{\mathcal{G}}-\mathfrak{M}_{2}(T, T’)=\mathfrak{M}_{1}(S’)$ .

Proof. The proof is similar to the construction of $\mathcal{F}’$ and $T$ above.
Namely we construct

$T_{k}’$ : $B_{k}C[1]\rightarrow B_{1}C’[1]$ , $S_{k}’$ : $B_{k}C[1]\rightarrow B_{1}C’[1]$

inductively. More precisely we prove the following lemma by induction
on $k$ .

Lemma 8.34. $k$ . Suppose $T_{\ell}’$ , for $\ell=0$ , $\ldots$ , $k$ is an $A_{k}$ trans-

formation and $S_{\ell}’$ : $B_{\ell}C[1]\rightarrow B_{1}C[1]$ for $\ell=0$ , $\ldots$ , $k$ are $R$ module
homomorphisms. We defifine $T_{(k)}’$ , $S_{(k)}’$ by putting $T_{(k),i}’=S_{(k),i}’=0$ for
$i>k$ , and $T_{(k),i}’=T_{i}’$ , $S_{(k),i}’=S_{i}’$ for $i\leq k$ . Then we have:

(8.36) $Id^{\mathcal{G}’}-\mathfrak{M}_{2}(T_{(k)}’, T)=\mathfrak{M}_{1}(S_{(k)}’)$ , on $B_{k}C_{2}[1]$ .

Proof. For $k=0$ , we let $T_{0}’(c)\in C_{2}(\mathcal{G}’(c), \mathcal{G}(c))$ be a homotopy

inverse to $T_{0}(c)$ . Then there exists $S_{0}’(c)\in C_{2}(\mathcal{G}’(c), \mathcal{G}’(c))$ such that

(8.37) $\mathfrak{m}_{1}(T_{0}’(c))=0$ , $\mathfrak{m}_{1}(S_{0}’(c))=\mathfrak{m}_{2}(T_{0}’(c), T_{0}(c))$ .

Thus, we have proved Lemma 8.35.0.
We assume Lemma 8.35. $A;$ –1 and will prove Lemma 8.35. $k$ .

Sublemma 8.38. $\mathfrak{M}_{1}(S_{(k-1)}’)$ is zero on $B_{k-}{}_{1}C’[1]$ . The image

of the restriction of $\mathfrak{M}_{1}(S_{(k-1)}’)$ to $B_{k}C’[1]$ is $\dot{\iota}nB_{1}C’[1]$ .

The proof is similar to the proof of Lemma 8.22 and is omitted.
We let $\Psi$ be the restriction of $\mathfrak{M}_{1}(S_{(k-1)}’)$ to $B_{k}C’[1]$ . Sublemma

8.38 implies

$\Psi\in Hom(B_{k}C’[1], B_{1}C’[1])$ .

Sublemma 8.39. $d_{1}\circ\Psi-\Psi\circ d_{1}=0$ .

Proof. This follows immediately from $\mathfrak{M}_{1}(\mathfrak{M}_{1}(S_{(k-1)}’))=0$ and

Sublemma 8.38. $\square $

Sublemma 8.40. There exists $\Phi\in Hom(B_{k}C_{2}, B_{1}C_{2})$ . such that:

$\Psi=d_{1}\circ\Phi+\Phi\circ d_{1}$ .
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Proof. We define

$T_{0*}$ : $Hom(B_{k}C’[1], B_{1}C[1])\rightarrow Hom(B_{k}C’[1], B_{1}C’[1])$

as follows. Let $V\in Hom(B_{k}C’[1], B_{1}C[1])$ and $c_{0}$ , $\ldots$ , $c_{k}\in \mathfrak{O}b(C’)$ , $ x_{i}\in$

$C’(c_{i-1}, c_{i})$ . We then put

$T_{0*}(V)(x_{1}, \ldots, x_{k})=\mathfrak{m}_{2}(V(x_{1}, \ldots, x_{k}), T_{0}(c_{k}))$ .

It follows from assumption that $T_{0*}$ induces an isomorphism on coho-
mology. Hence, by Sublemma 8.39, it suffices to show that $T_{0*}(\Psi)$ is a
boundary. By Sublemma 8.38, we find that $T_{0*}(\Psi)$ is a restriction of
$\mathfrak{M}_{2}(\Psi, T)$ to $B_{k}C’[1]$ . By $A_{\infty}$ formula of $\mathfrak{M}_{k}$ we have

$\mathfrak{M}_{2}(\Psi, T)=\mathfrak{M}_{2}(\mathfrak{M}_{1}(T_{(k-1)}’), T)=\mathfrak{M}_{1}(\mathfrak{M}_{2}(T_{(k-1)}’), T)$ .

By induction hypothesis

$\mathfrak{M}_{2}(T_{(k-1)}’, T)=Id^{\mathcal{G}’}-\mathfrak{M}_{1}(S_{(k-1)}’)$

on $B_{k-}{}_{1}C’[1]$ . Let $-\Phi$ be the restriction of $\mathfrak{M}_{2}(T_{(k-1)}’, T)$ on $B_{k}C’[1]$ .

Then, by induction hypothesis, $\Phi\in Hom(B_{k}C’[1], B_{1}C’[1])$ . We now
have

$\mathfrak{M}_{1}(\mathfrak{M}_{2}(T_{(k-1)}’), T)=-\mathfrak{M}_{1}(\Phi)=\hat{d}_{1}o\Phi+\Phi o\hat{d}$

as required. $\square $

If we put $ T_{k}’=\Phi$ then we have

$\mathfrak{M}_{1}(T_{(k)}’)=0$ .

We remark that $\Phi$ satisfying the conclusion of Sublemma 8.39 is not
unique. Namely we may change it by any cocycle in $Hom(B_{k}C’[1],B_{1}C’[1])$ .

We next define $S_{k}’$ . Using induction hypothesis, we can prove that

the restriction of

$Id^{\mathcal{G}’}-\mathfrak{M}_{2}(T_{(k-1)}’, T)-\mathfrak{M}_{1}(S_{(k-1)}’)$

to $B_{k}C’[1]$ defines an element of $Hom(B_{k}C’[1], B_{1}C’[1])$ . We denote it by
—. We can prove that $---is$ a cocycle in a way similar to the proof of
Sublemma 8.39. Therefore, we may choose $T_{k}’$ so that

$\cup---T_{0*}(T_{k}’)$

is a coboundary. Hence we may choose $S_{k}’$ such that (8.36) is satisfied.
The proof of Lemma 8.35. $A$: is now complete. $\square $
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By Lemma 8.35, we obtain $T’$ and $S’$ . To construct $S$ , we proceed
as follows. We apply the above construction to $T’$ in place of $T$ and
obtain $T’’$ and $S’’$ such that

$Id^{\mathcal{G}}-\mathfrak{M}_{2}(T’, T’’)=\mathfrak{M}_{1}(S’’)$ .

Then

$T^{JJ}\equiv \mathfrak{M}_{2}$ $(\mathfrak{M}_{2}(T, T’)$ , $T’’)\equiv \mathfrak{M}_{2}(T, \mathfrak{U}\mathfrak{l}_{2}(T’, T’’))\equiv T$ $mod Im(\mathfrak{M}_{1})$ .

Therefore

$Id^{\mathcal{G}’}-\mathfrak{M}_{2}(T’, T)\equiv Id^{\mathcal{G}’}-\mathfrak{M}_{2}(T’, T’’)\equiv 0$ $mod Im(\mathfrak{M}_{1})$ .

The proof of Proposition 8.34 is complete. $\square $

We need here some elementary properties of homotopy equivalence.

Proposition-Definition 8.41. An $A_{\infty}$ functor $\mathcal{F}$ : $C_{1}\rightarrow C_{2}$

induces $A_{\infty}$ functors $\mathcal{F}_{*}$ : $S\iota\iota \mathfrak{n}t(C, C_{1})\rightarrow S\iota 1\mathfrak{n}t(C, C_{2})$ , $\mathcal{F}^{*}$ : $ Su\mathfrak{n}t(C_{2}, C)\rightarrow$

$Su\mathfrak{n}t(C_{1}, C)$ such that $(\mathcal{F}_{*})_{0}(\mathcal{G})=\mathcal{F}\circ \mathcal{G}$ , $(\mathcal{F}^{*})_{0}(\mathcal{G})=\mathcal{G}\circ \mathcal{F}$ .

Proof. Let $T^{i}\in Su\mathfrak{n}t(\mathcal{G}^{i-1}, \mathcal{G}^{i})$ be pre natural transformations such
that $0cg’T^{i}=t_{i}$ . We put

(8.42)
$((\mathcal{F}_{*})_{k}(T^{1}, \ldots, T^{k}))(x)=\sum_{a}(-1)^{\epsilon_{a}}\mathcal{F}(\hat{\mathcal{G}}^{0}(x_{a}^{(1)}),\hat{T}^{1}(x_{a}^{(2)})$

,

$\ldots,\hat{T}^{k}(x_{a}^{(2k)}),\hat{\mathcal{G}}^{k}(x_{a}^{(2k+1)}))$ ,

where

$\epsilon_{a}=\sum_{j=1}^{k}\sum_{i=1}^{2j-1}t_{j}deg’x_{a}^{(i)}$ .

We can prove that (8.42) defines an $A_{\infty}$ functor in a way similar to the
proof of Theorem 7.55. (We omit the detail.)

We next define

$((\mathcal{F}^{*})_{1}(T^{1}))(x)$ $=$ $T^{1}(\hat{\mathcal{F}}(x))$ ,

$((\mathcal{F}^{*})_{k}(T^{1}, \ldots, T^{k}))(x)$ $=$ 0 $k>2$ .

It is easy see that $\mathcal{F}^{*}$ is an $A_{\infty}$ functor. $\square $

The following two corollaries are immediate consequences.

Corollary 8.43. If $\mathcal{F}:C_{1}\rightarrow C_{2}$ is homotopic to $\mathcal{F}’$ : $C_{1}\rightarrow C_{2}$ and

$\mathcal{G}’.\circ \mathcal{F}\mathcal{G}\cdot C_{2},.\rightarrow C_{3}$

is homotopic to $\mathcal{G}’$ : $C_{2}\rightarrow C_{3}$ , then $\mathcal{G}\circ \mathcal{F}$ is homotopic to
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Corollary 8.44. If $\mathcal{F}$ : $C_{1}\rightarrow C_{2}$ and $\mathcal{G}$ : $C_{2}\rightarrow C_{3}$ are homotopy
equivalences then $\mathcal{G}o\mathcal{F}$ is a homotopy equivalence.

We are now in the position to complete the proof of Proposition 8.9.
We have constructed $\mathcal{F}’$ . By using Proposition 8.34, we can prove that
$\mathcal{F}o\mathcal{F}’$ is homotopic to identity.

We next prove that $\mathcal{F}’$ $o\mathcal{F}$ is homotopic to identity. For this purpose,
we apply the same argument to $\mathcal{F}’$ and obtain $\mathcal{F}’’$ such that $\mathcal{F}’\circ \mathcal{F}’’$ is
homotopic to identity. It follows that $\mathcal{F}’’$ is homotopic to $\mathcal{F}$ . Hence by
Corollary 8.43, $\mathcal{F}’\circ \mathcal{F}$ is homotopic to identity. The proof of Proposition
8.9 is complete. $\square $

We continue the proof of Theorem 8.6. In this section we complete
the proof in the case of differential graded category and postpone the

proof of the general case to the next section.
Our next goal is the proof of Lemma 8.45, which is another case of

Theorem 8.6. We define the notion of full subcategory of $A_{\infty}$ category
in an obvious way.

Lemma 8.45. Let $C_{2}$ be an $A_{\infty}$ category such that $\mathfrak{m}_{k}=0$ for
$k\geq 3$ . Let $C_{1}$ be a full subcategory $ofC_{2}$ and $\mathcal{F}:C_{1}\rightarrow C_{2}$ be the inclusion.
We assume (8.7.2). Then $\mathcal{F}$ : $C_{1}\rightarrow C_{2}$ is a homotopy equivalece.

Proof. Let $c\in \mathfrak{O}b(C_{2})-l\supset b(C_{1})$ . We choose $\mathcal{F}_{0}’(c)\in \mathfrak{O}b(C_{1})$ which
is homotopy equivalent to $c$ . If $c\in \mathfrak{O}b(C_{1})$ we put $\mathcal{F}_{0}’(c)=c$ .

By the choice of $\mathcal{F}_{0}’(c)$ , there exists

$T_{0}’(c)\in C_{2}(c, \mathcal{F}_{0}’(c))$ , $T_{0}(c)\in C_{2}(\mathcal{F}_{0}’(c), c)$

and

$S_{0}’(c)\in C_{2}(c, c)$ , $S_{0}(c)\in C_{2}(\mathcal{F}_{0}’(c), \mathcal{F}_{0}’(c))$

such that

$e_{F_{O}(c)}-\mathfrak{m}_{2}(T_{0}(c), T_{0}’(c))$ $=$ $\mathfrak{m}_{1}(S_{0}(c))$

$e_{F_{\acute{O}}(c)}-\mathfrak{m}_{2}(T_{0}’(c), T_{0}(c))$ $=$ $\mathfrak{m}_{1}(S_{0}’(c))$ .

For $c\in \mathfrak{O}b(C_{1})$ we put $T_{0}(c)=T_{0}’(c)=Id^{c}$ and $S_{0}(c)=S_{0}’(c)=0$ .

We next define $\mathcal{F}_{k}’$ . We first put

$x\circ y=(-1)^{degx}\mathfrak{m}_{2}(x, y)$ , $d(x)=\mathfrak{m}_{1}(x)$ .

Then, using the fact that $\mathfrak{m}_{k}=0$ for $k\geq 3$ , we have

$d(x\circ y)$ $=$ $dx\circ y+(-1)^{degx+1}x\circ dy$ ,

$(x\circ y)\circ z$ $=$ $x\circ(y\circ z)$ ,

$e\circ x$ $=$ $x=x\circ e$ .
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In view of the second formula, we may write

$x_{1}\circ x_{2}\circ\cdots\circ x_{k}$

etc. Now let $x_{i}\in C_{2}(c_{i-1}, c_{i})$ . We put

$\mathcal{F}_{k}’(x_{1}, \ldots, x_{k})$

$=$ $T_{0}’(c_{0})\circ x_{1}\circ S_{0}’(c_{1})\circ x_{2}\circ\cdots\circ S_{0}’(c_{k-1})\circ x_{k}\circ T_{0}’(c_{k})$ .

We remark that

$d(S_{0}’(c))=e_{F_{O}(c)}-T_{0}’(c)\circ T_{0}(c)$ .

It follows from definition that

$d(\mathcal{F}_{k}’(x_{1}, \ldots, x_{k}))$

$=\sum_{i}(-1)^{degx_{1}+}$

.
$degx_{i-1}+i-1\mathcal{F}_{k}’(x_{1}, \ldots, dx_{i}, \ldots, x_{k})$

$+\sum_{i}(-1)^{degx_{1}+}$

.
$degx_{i}+i\mathcal{F}_{k}’(x_{1}, \ldots, x_{i}\circ x_{i+1}, \ldots, x_{k})$

$+\sum_{i}(-1)^{degx_{1}+\cdot\cdot degx_{i-1}+i-1+1}\mathcal{F}_{i}’(x_{1}, \ldots, x_{i})\circ \mathcal{F}_{k-i}’(x_{i+1}, \ldots, x_{k})$
.

Therefore

$\mathfrak{m}_{1}(\mathcal{F}_{k}’(x_{1}, \ldots, x_{k}))$

$+\sum_{i}(-1)^{degx_{1}+}$

.
$degx_{i-1}+i-1\mathcal{F}_{i}’(x_{1}, \ldots, x_{i})\circ \mathcal{F}_{k-i}’(x_{i+1}, \ldots, x_{k})$

$=\sum_{i}(-1)^{degx_{1}+\cdot\cdot degx_{i-1}+i-1}\mathcal{F}_{k}’(x_{1}, \ldots, \mathfrak{m}_{1}(x_{i}), \ldots, x_{k})$

$+(-1)^{degx_{1}+degx_{i-1}+?-1}\cdots.\mathcal{F}_{k}’(x_{1}, \ldots, \mathfrak{m}_{2}(x_{i}, x_{i+1}), \ldots, x_{k})$ .

It follows that $\mathcal{F}_{k}’$ , $k=0$ , $\ldots$ is an $A_{\infty}$ functor.
The composition $\mathcal{F}’$ $\circ \mathcal{F}$ is an identity functor. We are going to show

that $\mathcal{F}\circ \mathcal{F}’$ is homotopic to identity. For this purpose, we are going to
construct $T$ : $\mathcal{F}\circ \mathcal{F}’-$,

$1_{C_{2}}$ satisfying the assumption of Proposition
8.34. We already constructed $T_{0}$ . We remark that

$(\mathcal{F}o\mathcal{F}’)(x_{1}, \ldots, x_{k})=\mathcal{F}_{k}’(x_{1}, \ldots, x_{k})$ .
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Hence the condition $T$ : $\mathcal{F}$
$o\mathcal{F}’\rightarrow Id^{C_{2}}$ to be an $A_{\infty}$ functor can be

written as

$\sum_{i}(-1)^{degx_{1}+}$
$degx_{i-1}+i-1+1T_{0}(c_{0})\circ x_{1}\circ S_{0}’(c_{1})\circ x_{2}\circ S_{0}’(c_{2})\circ\cdots$

$\ldots$ $ox_{i}oT_{0}’(c_{i})oT_{k-i}(x_{i+1}, \ldots, x_{k})$

(8.46)= $\mathfrak{m}_{1}(T_{k}(x_{1}, \ldots, x_{k}))$

$+\sum(-1)^{degx_{1}+}$ $degx_{i-1}+i-1T_{k}(x_{1}, \ldots, \mathfrak{m}_{1}(x_{i}), \ldots, x_{k})$

$+\sum_{\dot{?}}^{i}(-1)^{degx_{1}+}$ $degx_{i-1}+i-1T_{k}(x_{1}, \ldots, \mathfrak{m}_{2}(x_{i}, x_{i+1}), \ldots, x_{k})$ .

We put

$T_{k}(x_{1}, \ldots, x_{k})=T_{0}(c_{0})\circ x_{1}\circ S_{0}’(c_{1})\circ x_{2}\circ\cdots\circ x_{k}\circ S_{0}’(c_{k})$ .

(8.46) can be checked easily.
Lemma 8.45 now follows from Proposition 8.34. $\square $

Now we show:

Proposition 8.47. Theorem 8.6 holds if $\mathfrak{m}_{k}=0$ for $k>2$ in $C_{1}$ ,
$C_{2}$ .

Proof. Let $C_{2}’$ be the full subcategory such that $\mathfrak{O}b(C_{2}’)$ is the image
of $\mathcal{F}_{0}$ . Lemma 8.41 implies that the inclusion $C_{2}’\rightarrow C_{2}$ is a homotopy
equivalence.

For each $c\in \mathfrak{O}b(C_{2}’)$ we take and fix $\alpha(c)\in$ Ob $(C_{1})$ such that
$\mathcal{F}_{0}(\alpha(c))=c$ . Let $C_{1}’$ be the full subcategory of $C_{1}$ such that Ob $(C_{1}’)$

is the image of $\alpha$ . Proposition 8.9 implies that the restriction of $\mathcal{F}$ to
$C’$ induces a homotopy equivalence $C_{1}’\rightarrow C_{2}’$ . Therefore, using Corollary
8.43 and 8.44, it suffices to show that $C_{1}’\rightarrow C_{1}$ is a homotopy equivalence
to complete the proof of Proposition 8.47. This follows from Lemma 8.45
and the following Lemma 8.48. $\square $

Lemma 8.48. We assume (8.7). If $\mathcal{F}_{0}(b)=\mathcal{F}_{0}(b’)$ then $b$ is
homotopy equivalent to $b’$ .

Proof. By (8.7) we have

$\mathcal{F}_{1*}$ : $H(C_{1}(b, b’);\mathfrak{m}_{1})\rightarrow H(C_{2}(\mathcal{F}_{0}(b), \mathcal{F}_{0}(b’));\mathfrak{m}_{1})$

is an isomorphism. We take $[f]\in H(C_{1}(b, b’);\mathfrak{m}_{1})$ which is mapped to
$[e_{F_{O}(b)}]$ by $\mathcal{F}_{1*}$ . It is easy to see that

$\mathfrak{m}_{2}(f, \cdot)$ : $C_{1}(b’, a)\rightarrow C_{1}(b, a)$

$\mathfrak{m}_{2}(\cdot, f)$ : $C_{1}(a, b)\rightarrow C_{1}(a, b’)$
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induces isomorphism on homology. The lemma then follows from Lemma
6.24. $\square $

We need the following proposition in the next section.

Proposition 8.49. If $C_{1}$ is homotopy equivalent to $C_{2}$ , then
$S\iota\iota \mathfrak{n}t(C, C_{1})$ is homotopy equivalent to $Su\mathfrak{n}\not\in(C, C_{2})$ and $Su\mathfrak{n}t(C_{1}, C)$ is ho-
motopy equivalent to $Su\mathfrak{n}\not\in(C_{2}, C)$ .

Proof. Let $\mathcal{F}$ : $C_{1}\rightarrow C_{2}$ , $\mathcal{F}’$ : $C_{2}\rightarrow C_{1}$ be as in Definition 8.5 and
let $H$ , $H’$ be natural transformations from $\mathcal{F}o\mathcal{F}’$ to identity functor
and from identity functor to $\mathcal{F}\circ \mathcal{F}’$ respectively. Let $\mathcal{G}$ : $C$ $\rightarrow C_{2}$ be an
$A_{\infty}$ functor. We put

$fio(\mathcal{G})$ $=$ $(\mathcal{G}^{*})_{1}(H)\in S\iota\iota \mathfrak{n}t((\mathcal{F}_{*}\circ \mathcal{F}_{*}’)_{0}(\mathcal{G}), \mathcal{G})$

$fl_{k}$ $=$ 0, $k>0$ . (Note $(\mathcal{G}^{*})_{k}=0$ for $k>1.$ )

It is easy to check that $fi$ is a natural transform from $\mathcal{F}_{*}o\mathcal{F}_{*}’$ to the
identity functor $Id_{ifu\mathfrak{n}t(C,C_{2})}$ . We define in a similar way a natural trans-
formation $\ovalbox{\tt\small REJECT}’$ from $Id_{\mathfrak{F}u\iota\tau t(C,C_{2})}$ to $\mathcal{F}_{*}\circ \mathcal{F}_{*}’$ . We assume that

$\mathfrak{M}_{2}(H, H’)-Id_{Id_{\mathfrak{F}u\mathfrak{n}f(C_{1},C_{1})}}=\mathfrak{M}_{1}(T)$ .

(Note that the confusing symbol $Id_{Id_{ffu\mathfrak{n}t(C_{1},C_{1})}}$ denotes the identity trans-

form from the identity functor: $C_{1}\rightarrow C_{1}$ to itself.) We assume also that

$\mathfrak{M}_{2}(H’, H)-Id_{\mathcal{F}o\mathcal{F}’}=\mathfrak{M}_{1}(T’)$ .

We put

$\mathfrak{T}_{0}(\mathcal{G})$ $=$ $(\mathcal{G}^{*})_{1}(T)\in S\iota\iota \mathfrak{n}\not\in((\mathcal{F}_{*}o\mathcal{F}_{*}’)_{0}(\mathcal{G}), \mathcal{G})$

$\mathfrak{T}_{k}$ $=$ 0, $k>0$ .

And we define $\mathfrak{T}’$ in a similar way. Then we find

$Id_{Id_{Su\mathfrak{n}t(CC_{1})}}-\hat{\mathfrak{M}}_{2}$ $(fi, fi’)$ $=$ $\hat{\mathfrak{M}}_{1}(\mathfrak{T})$ ,

$Id_{(\mathcal{F}o\mathcal{F}’)_{*}}-\hat{\mathfrak{A}}l_{2}(\mathfrak{H}’, \mathfrak{H})$ $=$ $\hat{\mathfrak{U}}l_{1}(\mathfrak{T}’)$ .

Here $\hat{\mathfrak{U}}l$ is the $A_{\infty}$ structure on $su\mathfrak{n}t(Su\mathfrak{n}t(C, C_{1})$ , $S\iota\iota \mathfrak{n}t(C, C_{1}))$ .

Thus we proved that $(\mathcal{F}\circ \mathcal{F}’)_{*}$ is homotopic to identity. This com-
plete the proof of the first half of the Proposition 8.49. The second half
can be proved in a similar way. $\square $
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\S 9. An $A_{\infty}$ analogue of Yoneda’s lemma

In \S 7 we constructed an $A_{\infty}$ functor $\mathfrak{R}c\mathfrak{p}_{0}(c)$ : $C^{o}\rightarrow C\mathcal{H}$ for each
object $c$ of C. The purpose of this section is to make it functorial.
Moreover we prove that $c\mapsto \mathfrak{R}c\mathfrak{p}_{0}(c)$ defines a homotopy equivalence
between the $A_{\infty}$ category $C$ and one of representable $A_{\infty}$ functors: $C^{o}\rightarrow$

$CH$ . Namely we prove the following Theorem 9.1. We let $\mathfrak{R}c\mathfrak{p}(C^{o}, CH)$

be the full subcategory of $Su\mathfrak{n}t(C^{o}, CH)$ such that Ob $(\mathfrak{R}c\mathfrak{p}(C^{o}, CH))$ is
the set of all representable $A_{\infty}$ functors. We define a full subcategory
$\mathfrak{D}\mathfrak{R}c\mathfrak{p}(C^{o}, CH)$ of $Su\mathfrak{n}t(C^{o}, CH)$ such that $\mathfrak{O}b(\mathfrak{D}\mathfrak{R}c\mathfrak{p}(C^{o}, CH))$ is the set
of all derived representable $A_{\infty}$ functors.

Theorem 9.1. There existsa homotopy equivalences of $A_{\infty}$ func-
tors $\mathfrak{R}c\mathfrak{p}$ : $C$ $\cong \mathfrak{R}c\mathfrak{p}(C^{o}, CH)$ , $\mathfrak{D}\mathfrak{R}c\mathfrak{p}$ : $DC$ $\cong \mathfrak{D}\mathfrak{R}c\mathfrak{p}(C^{o}, CH)$ , such that
$\mathfrak{R}c\mathfrak{p}_{0}(c)$ is an in Defifinition 7.28.

Remark 9.2. The first half of Theorem 9.1 was proved in [Fu4]

\S 12, over $\mathbb{Z}_{2}$ coefficient. In this article we are going to put precise sign
in its proof. We also improve the presentation of the proof in [Fu4].

Remark 9.3. In the case of usual category, the first half of The-
orem 9.1, which is Yoneda’s lemma, is well known.

We remark that actually $\mathfrak{R}c\mathfrak{p}(C^{o}, CH)$ is a differential graded cate-
gory, since all the higher compositions are zero. Therefore Theorem 9.1
implies the following:

Corollary 9.4. Any $A_{\infty}$ category is homotopy equivalent to $a$

differential graded category.

Proof of Theorem 9.1. We already defined $\mathfrak{R}c\mathfrak{p}_{0}$ . We will define
$\mathfrak{R}c\mathfrak{p}_{k}$ : $B_{k}(C)\rightarrow B_{1}(\mathfrak{R}c\mathfrak{p}(C^{o}, CH))$ . Let

$c_{0}$ , $\ldots$ , $c_{k}\in \mathfrak{O}b(C)$ , $x_{i}\in C(c_{i-1}, c_{i})$ .

We need to define a natural transformation

(9.5) $\mathfrak{R}c\mathfrak{p}_{k}(x_{1}, \ldots, x_{k})$ : $\mathfrak{R}c\mathfrak{p}_{0}(c_{0})\rightarrow \mathfrak{R}c\mathfrak{p}_{0}(c_{k})$ .

Let $b_{0}$ , $\ldots$ , $b_{\ell}\in \mathfrak{O}b(C)$ , $y_{i}\in C^{o}(b_{i-1}, b_{i})=C(bo, b_{i-1})$ . To define (9.5) we
need to define

$\mathfrak{R}c\mathfrak{p}_{k}(x_{1}, \ldots, x_{k})\ell(y_{1}, \ldots, y\ell)\in Hom(\mathfrak{R}c\mathfrak{p}_{0}(c_{0})_{0}(b_{0}), \mathfrak{R}c\mathfrak{p}_{0}(c_{k})_{0}(b_{\ell}))$ .

Let $z\in \mathfrak{R}c\mathfrak{p}_{0}(c_{0})_{0}(b_{\ell})=C(b_{0}, c_{0})$ . We put $x=x_{1}\otimes\cdots\otimes x_{k}$ , $y=y_{1}\otimes$

$\ldots\otimes y_{\ell}$ . We use the notations $x^{op}=x_{k}\otimes\cdots\otimes x_{1}$ , $\epsilon(x)=\sum_{i<j}(degx_{i}+$

$1)(degx_{j}+1)$ etc. introduced in \S 7. Now we define
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Definition 9.6.

(9.7) $(\mathfrak{R}c\mathfrak{p}_{k}(x))_{\ell}(y)(z)=(-1)^{\epsilon(y)+(deg’x)(deg’y+deg’z)}\mathfrak{m}_{k+\ell+1}(y^{op}, z, x)$ .

We remark that the right hand side of (9.7) is in $\mathfrak{R}c\mathfrak{p}_{0}(c_{k})(b_{\ell})=$

$C(b_{\ell}, c_{k})$ . We also remark that

$0cg’(\mathfrak{R}c\mathfrak{p}_{k}(x))_{\ell}(y)=deg’x+deg’y$ .

Lemma 9.8. (9.7) defifines an $A_{\infty}$ functor.

Proof. By $A_{\infty}$ formula of $\mathfrak{m}$ we have

0 $=$ $\sum(-1)^{deg’y_{\alpha}^{(3)}}\mathfrak{m}(y_{a}^{(3)op}, \mathfrak{m}(y_{a}^{(2)op}),$ $y_{1}^{(1)op}$ , $z$ , x)

(9.9)
$+\sum_{a,b}(-1)^{deg’y_{a}^{Jlop}}\mathfrak{m}(y_{a}^{\prime\prime op}, \mathfrak{m}(y_{a}^{\prime op}, z, x_{b}’), x_{b}’’)$

$+(-1)^{deg’y+deg’z}\mathfrak{m}(y^{op}, z,\hat{d}x)$ .

We will rewrite each term of (9.9). The first term is equal to:

(9.10) $(-1)^{\epsilon_{1}}\mathfrak{R}c\mathfrak{p}(x)(y_{a}^{(1)}, \mathfrak{m}^{o}(y_{a}^{(2)}),$ $y_{a}^{(3)})(z)=(-1)^{\epsilon_{2}}\mathfrak{R}c\mathfrak{p}(x)(\hat{d}^{o}y)(z)$

where $\hat{d}^{op}$ is the coderivation induced by $\mathfrak{m}^{o}$ on $C^{o}$ and

$\epsilon_{1}$ $=$ $deg’y_{a}^{(3)}+\epsilon(y_{a}^{(2)})+1+(deg’x)(deg’y+deg’z+1)$

$+\epsilon(y_{a}^{(1)}, \mathfrak{m}^{o}(y_{a}^{(2)}),$ $y_{a}^{(3)})$

$=$ $deg’y_{a}^{(1)}+(deg^{J}x)(deg’y+deg’z+1)+\epsilon(y)$ .

Hence

(9.11) $\epsilon_{2}=(deg’x)(deg’y+deg’z+1)+\epsilon(y)$ .

We divide the second terms of (9.9) into the following five cases.
Case 1: $x_{b}’\neq 1\in B_{0}C$ , $x_{b}’’\neq 1\in B_{0}C$ :

The second term of (9.9) of this case is

$\sum_{a,b}(-1)^{\epsilon_{3}(a,b)}\mathfrak{m}(y_{a}^{\prime\prime op}, \mathfrak{R}c\mathfrak{p}(x_{b}’)(y_{a}’)(z),$

$x_{b}’’)$

(9.12)
$=\sum_{a,b}(-1)^{\epsilon_{4}(a,b)}\mathfrak{R}c\mathfrak{p}(x_{b}’’)(y_{a}’’)(\mathfrak{R}c\mathfrak{p}(x_{b}’)(y_{a}’)(z))$

$=\sum_{a,b}(-1)^{\epsilon_{5}(a,b)}\mathfrak{m}_{2}(\mathfrak{R}c\mathfrak{p}(x_{b}’)(y_{a}’), \mathfrak{R}c\mathfrak{p}(x_{b}’’)(y_{a}’’))(z)$
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where $\mathfrak{m}_{2}$ in the third line is an operation in $CH$ and

$\epsilon_{3}(a, b)$ $=$ $deg’y_{a}’’+(deg’x_{b}’)(deg’y_{a}’+deg’z)+\epsilon(y_{a}’)$

$\epsilon_{4}(a, b)$ $=$ $\epsilon_{3}(a, b)+(deg’x_{b}’’)(1+deg’y_{a}^{JJ}+deg’z+deg’x_{b}’$

$+deg^{J}y_{a}’)+\epsilon(y_{a}’’)$

$\epsilon_{5}(a, b)$ $=$ $\epsilon_{4}(a, b)+(deg’x_{b}’+deg’y_{a}’+1)(deg’x_{b}’’+deg^{J}y_{a}’’)+1$ .

We calculate (using $0cg’\mathfrak{R}c\mathfrak{p}(x_{b}’)(y_{a}’)=deg’x_{b}’+deg’y_{a}’+1$ ) that

$\epsilon_{5}(a, b)=e(y)+deg’ x$ $deg’ z+deg’ xdeg’y+deg$ ’
$x_{b}’’$ $deg$

’
$y_{a}’$ .

Therefore (9.12) is equal to

(9.13)
$\sum_{b}(-1)^{\epsilon_{6}}\mathfrak{M}_{2}(\mathfrak{R}c\mathfrak{p}(x_{b}’), \mathfrak{R}c\mathfrak{p}(x_{b}’’))(y)(z)$

where

(9.14) $\epsilon_{6}=\epsilon(y)+(deg’x)(deg’z+deg’y)+1$ .

Case 2: $x_{b}’=1\in B_{0}C$ , $y_{a}’\neq 1\in B_{0}C$ :
In this case the second term of (9.9) is:

$\sum(-1)^{\epsilon_{7}(a)}\mathfrak{m}(y_{a}^{\prime\prime op}, \mathfrak{R}c\mathfrak{p}_{0}(c_{0})(y_{a}’)(z),$ $x)$

$=\sum(-1)^{\epsilon_{8}(a)}\mathfrak{R}c\mathfrak{p}(x)(y_{a}’’)(\mathfrak{R}c\mathfrak{p}_{0}(c_{0})(y_{a}’)(z))a$

(9.15)
$=\sum^{a,b}(-1)^{\epsilon_{9}(a)}\mathfrak{m}_{2}(\mathfrak{R}c\mathfrak{p}_{0}(c_{0})(y_{a}’), \mathfrak{R}c\mathfrak{p}(x)(y_{a}’’))(z)$

$=(-1)^{\epsilon_{6}}\mathfrak{M}_{2}(\mathfrak{R}c\mathfrak{p}_{0}(c_{0}), \mathfrak{R}c\mathfrak{p}(x))(y)(z)a$

where $\epsilon_{6}$ is as in (9.14). In fact

$\epsilon_{7}(a)$ $=$ $deg’y_{a}’’+\epsilon(y_{a}’)$ ,

$\epsilon_{8}(a)$ $=$ $\epsilon_{7}(a)+(deg’x)(y_{a}^{JJ}+y_{a}’+deg’z+1)+\epsilon(y_{a}^{JJ})$

$\epsilon_{9}(a)$ $=$ $\epsilon_{8}(a)+(deg’y_{a}’+1)(deg^{J}x+deg’y_{a}^{JJ})$

$\equiv$ $\epsilon_{6}+deg’ x$ $deg$
’

$y_{a}’$ $mod 2$ .

Case 3: $x_{b}’=1\in B_{0}C$ , $y_{a}’=1\in B_{0}C$ :
In a similar way, we have

(9.16) $(-1)^{\epsilon_{6}+deg^{J}x+deg’y}\mathfrak{R}c\mathfrak{p}(x)(y)(\mathfrak{m}_{1}(z))$ .

In face we have

$deg’ y+$ $(deg’ x)(deg/z+deg’ y)+e(y)=\epsilon_{6}+deg’ x+deg$ ’

$y$ .
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Case 4: $x_{b}’’=1\in B_{0}C$ , $y_{a}^{JJ}\neq 1\in B_{0}C$ :

In a similar way we have

(9.17) $(-1)^{\epsilon_{6}}\mathfrak{M}_{2}(\mathfrak{R}c\mathfrak{p}(x), \mathfrak{R}c\mathfrak{p}_{0}(c_{k}))(y)(z)$ .

Case 5: $x_{b}’’=1\in B_{0}C$ , $y_{a}’’=1\in B_{0}C$ :

In a similar way we have

(9.18) $(-1)^{\epsilon_{6}}\mathfrak{m}_{1}(\mathfrak{R}c\mathfrak{p}(x)(y)(z))$ .

We remark that the sum of (9.10), (9.16) and (9.18) is

(9.19) $(-1)^{\epsilon_{6}}\mathfrak{M}_{1}(\mathfrak{R}c\mathfrak{p}(x))(y)(z)$

Finally the third term of (9.9) is:

(9.20) $(-1)^{\epsilon_{6}+1}\mathfrak{R}c\mathfrak{p}(\hat{d}x)(y)(z)$ .

Thus $(-1)^{\epsilon_{6}}$ times (9.9) implies

$\sum_{x_{b}’\neq 1,x_{b}’’\neq 1}\mathfrak{M}_{2}(\mathfrak{R}c\mathfrak{p}(x_{b}’), \mathfrak{R}c\mathfrak{p}(x_{b}^{JJ}))(y)+\mathfrak{M}_{2}(\mathfrak{R}c\mathfrak{p}_{0}(c_{0}), \mathfrak{R}c\mathfrak{p}(x))(y)$

$+\mathfrak{M}_{2}(\mathfrak{R}c\mathfrak{p}(x), \mathfrak{R}c\mathfrak{p}_{0}(c_{k}))(y)+\mathfrak{M}_{1}(\mathfrak{R}c\mathfrak{p}(x))(y)$

$=\mathfrak{R}c\mathfrak{p}(\hat{d}x)(y)$ .

(We remark that we need over all minus sign in the definition of $\mathfrak{M}_{k}$ to

show this formula.) The proof of Lemma 9.8 is complete. $\square $

Using Lemma 9.8 and Proposition 8.9, it suffices to check (8.7.1) for
$\mathfrak{R}c\mathfrak{p}$ to complete the proof of Theorem 9.1. Namely we need to show

$\mathfrak{R}c\mathfrak{p}_{1}$ : $C(c_{1}, c_{2})\rightarrow S\iota\iota \mathfrak{n}c(\mathfrak{R}c\mathfrak{p}_{0}(c_{1}), \mathfrak{R}c\mathfrak{p}_{0}(c_{2}))$

induces an isomorphism on homology. We define

$\Pi$ : $Su\mathfrak{n}c(\mathfrak{R}c\mathfrak{p}_{0}(c_{1}), \mathfrak{R}c\mathfrak{p}_{0}(c_{2}))\rightarrow C(c_{1}, c_{2})$

by

$\square (T)=(-1)^{0_{\ell}\tau}9^{l}T_{0}(c_{1})(e_{c_{1}})$ .

(Note $e_{c_{1}}\in C(c_{1}, c_{1})=\mathfrak{R}c\mathfrak{p}_{0}(c_{1})_{0}(c_{1})$ . Hence $T_{0}(c_{1})(e_{c_{1}})\in \mathfrak{R}c\mathfrak{p}_{0}(c_{2})_{0}(c_{1})$

$=C(c_{1}, c_{2}).)$
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Lemma 9.21. $\Pi$ is a chain map.

Proof. Let $T\in Su\mathfrak{n}c(\mathfrak{R}c\mathfrak{p}_{0}(c_{1}), \mathfrak{R}c\mathfrak{p}_{0}(c_{2}))$ . We have

$\square (\mathfrak{M}_{1}(T))$ $=$ $(-1)^{0\iota \mathfrak{g}’T}(\mathfrak{M}_{1}(T))_{0}(c_{1})(e_{c_{1}})$

$=$ $(-1)^{0e\mathfrak{g}’T+1}\mathfrak{m}_{1}(T_{0}(c_{1})(e_{c_{1}}))=\mathfrak{m}_{1}(\square (T))$ .

(We remark that overall minus sign in the definition of $\mathfrak{M}_{1}$ is essential
here.) $\square $

We have

$(\Pi\circ \mathfrak{R}c\mathfrak{p}_{1})(x)=(-1)^{deg’x}(\mathfrak{R}c\mathfrak{p}_{1}(x)_{0}(c_{1}))(e_{c_{1}})=\mathfrak{m}_{2}(e_{c_{1}}, x)=x$ .

So, to complete the proof of Theorem 9.1, it suffices to show that $\mathfrak{R}c\mathfrak{p}_{1}o\square $

is homotopic to identity. We define an operator

$\mathcal{H}$ : $Su\mathfrak{n}c(\mathfrak{R}c\mathfrak{p}_{0}(c_{1}), \mathfrak{R}c\mathfrak{p}_{0}(c_{2}))\rightarrow S\iota\iota \mathfrak{n}c(\mathfrak{R}c\mathfrak{p}_{0}(c_{1}), \mathfrak{R}c\mathfrak{p}_{0}(c_{2}))$

of $degree+1$ by

$(H(T))_{k}(y)(z)=(-1)^{deg’zdeg’y+deg’z+deg’y+0\epsilon g’T}T_{k+1}(z, y)(e_{c_{1}})$ .

Here $y\in B_{k}C^{j}(b_{1}, b_{k})$ , $z\in C(b_{1}, c_{1})=\mathfrak{R}c\mathfrak{p}_{0}(c_{1})(b_{1})$ . (Then $T_{k+1}(y, z)$

$(e_{c_{1}})\in \mathfrak{R}c\mathfrak{p}_{0}(c_{2})(b_{k}).)$

Lemma 9.22.

(9.23) $T-(\mathfrak{R}c\mathfrak{p}_{1}\circ\Pi)(T)=(\mathfrak{M}_{1}\circ H+H\circ \mathfrak{M}_{1})(T)$ .

Proof. We have

$(-1)^{0\iota \mathfrak{g}’T}\mathfrak{M}_{1}(H(T)(y)(z))$

$=$ $\mathfrak{m}_{1}(H(T)(y)(z))+(-1)^{0cg’T}H(T)(\hat{d}^{op}y)(z)$

$+(-1)^{0c\mathfrak{g}’T+deg’y}H(T)(y)(\mathfrak{m}_{1}(z))$

$+\sum \mathfrak{m}_{2}(H(T)(y_{a}’), \mathfrak{R}c\mathfrak{p}_{0}(y_{a}’’))(z)$

$+\sum^{a}(-1)^{(0e\mathfrak{g}’T+1)deg’y_{a}’}\mathfrak{m}_{2}(\mathfrak{R}c\mathfrak{p}_{0}(y_{a}’), H(T)(y_{a}’’))(z)$

$=$
$(-1)^{\epsilon_{1}}\mathfrak{m}_{1}(T(z, y)(e))a$

$+\sum(-1)^{\epsilon_{2}}T(z, y_{a}^{(1)}, \mathfrak{m}(y_{a}^{(2)op}), y_{a}^{(3)})(e)$

$a$

$+(-1)^{\epsilon_{3}}T(\mathfrak{m}_{1}(z), y)(e)$

$+\sum(-1)^{\epsilon_{4}}\mathfrak{m}(y_{a}^{J;op}, T(z, y_{a}’)(e))$

$+\sum_{a}^{a}(-1)^{\epsilon_{5}}T(\mathfrak{m}(y_{a}^{;op}, z),$ $y_{a}^{JJ})(e)$ .
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Here

$\epsilon_{1}=deg’ydeg’z+deg’y+deg’z$ ,

$\epsilon_{2}=0cg’T+(deg’y+1)(deg’z)+deg’y+1+deg’z+deg’y_{a}^{(1)}$

$+\epsilon(y_{a}^{(2)})$ ,

$\epsilon_{3}=0cg’T+deg’y+(deg’y)(deg’z+1)+deg’y+deg’z+1$ ,

$\epsilon_{4}=(0cg’T+1+deg^{J}y_{a}’)(deg’y_{a}’’)+deg’zdeg^{J}y_{a}’+\epsilon(y_{a}’’)+deg^{J}y_{a}’$

$+deg^{r}z$ ,

$\epsilon_{5}=(0cg’T+1)(deg’y_{a}’)+(deg’y_{a}’+1)(0cg’T+deg’y_{a}’’+1)+\epsilon(y_{a}’)$

$+deg’y_{a}’’(deg’z+deg^{J}y_{a}’+1)+deg^{J}y_{a}’’+deg’z+deg’y_{a}’+1$ .

We also have

$(-1)^{0\iota \mathfrak{g}’T+1}H(\mathfrak{M}_{1}(T))(y)(z)$

$=$ $(-1)^{deg’y+deg^{l}z+deg^{l}zdeg^{J}y}\mathfrak{m}_{1}(T(z, y)(e))$

$+\sum(-1)^{\epsilon_{6}}T(\mathfrak{m}(y_{a}^{\prime op}, z),$ $y_{a}’’)(e)$

(9.24)
$+\sum_{a}^{a}(-1)^{\epsilon_{7}}T(z, y_{a}^{(1)}, \mathfrak{m}(y_{a}^{(2)op}), y_{a}^{(3)})(e)$

$+(-1)^{deg’y+deg’z+deg^{J}zdeg’y}\sum_{degy_{\acute{\acute{a}}}\neq 0}\mathfrak{m}_{2}(T(z, y_{a}’),$

$\mathfrak{R}c\mathfrak{p}(y_{a}’’))(e)$

$+(-1)^{deg’y+deg’z+deg’zdeg’y}\mathfrak{m}_{2}(T_{0}, \mathfrak{R}c\mathfrak{p}_{0}(z, y))(e)$

$+(-1)^{deg’y+deg^{r}z+deg^{l}zdeg’y+0cg’Tdeg’z}\mathfrak{m}_{2}(\mathfrak{R}c\mathfrak{p}_{0}(z), T(y))(e)$ .

Here

$\epsilon_{6}$ $=$ $deg’y+deg’z+deg’zdeg’y+deg’zdeg’y_{a}’+\epsilon(y_{a}’)$

$+0cg’T+1=\epsilon_{5}$ ,

$\epsilon_{7}$ $=$ $deg’y+deg’z+deg’zdeg’y+0cg’T+1+deg’z+deg’y_{a}^{(1)}$

$+\epsilon(y^{(2)})=\epsilon_{2}$ .

The fourth term of (9.24) is:

$(-1)^{\epsilon_{8}}\mathfrak{m}(y_{a}^{\prime\prime op}, T(z, y_{a}’)(e))$ ,

where

$\epsilon_{8}=deg’y+deg’z+deg’zdeg’y+(0cg’T+deg’z+deg’y_{a}’)deg’y_{a}’’$

$+\epsilon(y_{a}’’)=\epsilon_{4}$ .

The fifth term of (9.24) is

$(-1)^{\epsilon_{9}}\mathfrak{m}(y^{op}, z, T(e))$ $=$ $\mathfrak{R}c\mathfrak{p}_{1}(T(e))(y)(z)$

$=$ $(-1)^{0cg’T}((\mathfrak{R}c\mathfrak{p}_{1}\circ\square )(T))(y)(z)$ ,
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where

$\epsilon_{9}$ $=$ $deg’y+deg’z+deg’zdeg’y+(0c\mathfrak{g}’T)(deg’y+deg’z)$

$+deg’ydeg’z+\epsilon(y)$ .

Finally the sixth term of (9.24) is:

$(-1)^{deg’y+deg’z+deg’zdeg’y+0cg’Tdeg’z+(deg’z+1)(0cg’T+deg’y)}$

$T(y)(\mathfrak{m}_{2}(e, z))$ ,

$=(-1)^{0eg’T+1}T(y)(z)$ .

The lemma follows. $\square $

The proof of the first half of Theorem 9.1 is now complete. We omit
the proof of the second half. (Which is analogous to the argument of
the last section of [Fu7].) $\square $

We are now in the position to complete the proof of Theorem 8.6.
We consider the following Diagram. We can easily see that the diagram

Diagram 9. 1.

commutes. Moreover

$S*:\mathfrak{R}c\mathfrak{p}(C_{1}^{o}, C\mathcal{H})\rightarrow \mathfrak{R}c\mathfrak{p}(C_{2}^{o}, CH)$

satisfies the assumption of Theorem 8.6, by the proof of Proposition
8.49. Hence by Proposition 8.47 it is a homotopy equivalence. Moreover
by Theorem 9.1 the vertical allows are homotopy equivalence. Therefore
by Corollary 8.44 $S$ is a homotopy equivalence. The proof of Theorem
8.6 is now complete. $\square $
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Solution to the Shadow Problem in 3-Space

Mohammad Ghomi

Abstract.

If a convex surface, such as an egg shell, is illuminated from any
given direction, then the corresponding shadow cast on the surface
forms a connected subset. The shadow problem, first studied by H.
Wente in 1978, asks whether a converse of this phenomenon is true
as well. In this report it is shown that the answer is yes provided
that each shadow is simply connected; otherwise, the answer is no.
Further, the motivations behind this problem, and some ramifications
of its solution for studying constant mean curvature surfaces in 3-
space (soap bubbles) are discussed.

\S 1. Introduction

Let $M$ $\subset R^{3}$ be a smooth convex surface, i.e., the boundary of a
convex body; let $n:M$ $\rightarrow S^{2}$ denote the outward unit normal vectorfield,
which we also refer to as the Gauss map, of $M$ ; and let $u\in S^{2}$ be a unit
vector. Suppose that $M$ is illuminated by parallel rays of light flowing
in the direction of $u$ , see Figure 1. Then, the shadow cast on $M$ , i.e.,

the set of points in $M$ not reached by the rays of light, is given by

(1.1) $S_{u}.--\{p\in M|\langle n(p), u\rangle>0\}$ ,

where $\langle\cdot, \cdot\rangle$ denotes the standard inner product in $R^{3}$ . It is intuitively
clear, and not too difficult to show [Ghm], that if $M$ is convex, then, for
every $u\in S^{2}$ , $S_{u}$ is a connected subset of $M$ .

It is natural to ask whether the connectedness of the shadows char-
acterizes convex surfaces, i.e., whether the converse of the above phe-
nomenon holds as well. More precisely, let $M$ be a closed (i.e., compact
and connected) surface immersed in $R^{3}$ . Suppose that $M$ is oriented, so
that the gauss map is globally well-defined. Then, for every unit vector

2000 Mathematics Subject Classification. Primary $ 53A05,\cdot$ Secondary
52A15, 53A02, 53C45.
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$\ll$

$X$

$\prec$

$M$

Fig. 1. The shadow cast on a surface $M$ , when illuminated
by light rays parallel to $u$ corresponds to points $p$ in
$M$ where the inner product between $u$ and the unit

normal $n(p)$ is positive.

$u\in S^{2}$ , let the corresponding shadow, $S_{u}$ , be defined as in (1.1). Sup-
pose that for every $u$ , $S_{u}$ is a connected subset of $M$ . Does it then follow
that $M$ is convex?

In 1978, motivated by problems concerning the stability of constant
mean curvature surfaces, H. Wente appears to have been the first person
to have studied the above question [Wntl], see Section 4, which has
since become known as the shadow problem (a.k.a. the illumination
conjecture). Recently, the author has proved that this problem has a
positive solution provided that the shadows are simply connected:

Theorem 1.1. Let $M$ be an oriented compact surface immersed
in $R^{3}$ . Suppose that for every $u\in S^{2}$ , the corresponding shadow, $S_{u}$ , is
simply connected. Then $M$ is convex. In particular, $M$ is embedded and
homeomorphic to $S^{2}$ .

A proof of the above theorem is outlined in Section 2. Furthermore, in
Section 3, we will show that the additional condition in Theorem 1.1 (the

word simply) is in fact necessary, as there exist embedded closed surfaces
of genus one all of whose shadows are connected. Some ramifications for
studying constant mean curvature surfaces will be discussed in Section
4.

Note 1.2. If $M$ is assumed to be simply connected, then the
assumption, in Theorem 1.1, that the shadows be ’simply connected’
may be weakened to ’connected’ [Ghm].

Note 1.3. The compactness assumption in Theorem 1.1 cannot
be removed. Suppose, for instance, that $M$ is a hyperbolic paraboloid,
such as the one given by the graph of the equation $z=xy$ . Then
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all the shadows of $M$ are simply connected, even though $M$ is not a
convex surface. To see this, let $H_{u}$ denote the (open) hemisphere in
$S^{2}$ determined by the unit vector $u$ , i.e., let $H_{u}:=\{x\in S^{2}|\langle x, u\rangle>$

$0\}$ . A direct computation shows that the Gauss map of $M$ , $n$ , is a
homeomorphism into $H_{(0,0,1)}$ (the Northern hemisphere). Further, note

that $S_{u}=n^{-1}(H_{u})=n^{-1}(H_{u}\cap H_{(0,0,1)})$ . Thus, since $H_{u}\cap H_{(0,0,1)}$ is
simply connected, it follows that $S_{u}$ is simply connected as well.

\S 2. Outline of the Proof

The proof is by contradiction, and is organized into three steps de-
scribed below. The first two steps employ techniques from Morse theory
[Mil], and the third step, which is the main part of the proof, introduces
a topological invariant for shadows by permuting the critical points of
height functions. For a full treatment of all the details, we refer the
reader to [Ghm].

2.1. Critical points of height functions

Suppose that $M$ satisfies the hypothesis of Theorem 1.1, but is not
convex. Then there exists a unit vector $v\in S^{2}$ such that the correspond-
ing height function $h_{v}$ : $M\rightarrow R$ , defined by

$ h_{v}(p):=\langle p, v\rangle$ ,

has at least three nondegenerate critical points, see Figure 2. This fol-

$p_{2}$

$f^{v}\sim^{u}$

Fig. 2. If a closed surface, $M$ , immersed in $R^{3}$ , is not con-
vex, then there exists a direction, $v$ , such that the
corresponding height function, $h_{v}$ , is a Morse func-
tion with at least three critical points.

lows from basics of the theory of tight immersions [CC] going back to
the works of Chern and Lashof [CL]: let $\# C(h_{u})$ denote the number of
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critical points of a Morse height function $h_{u}$ , and let $K$ be the Gauss
curvature of $M$ ; then one has the following formula

$\frac{1}{2}\int_{S^{2}}\# C(h_{u})$ $du=\int_{M}|K(x)|dx$ .

Note that the integral on the left is well-defined, because for almost
every $u\in S^{2}$ , $h_{u}$ is a Morse function (this is an easy application of
Sard’s theorem), and consequently $\# C(h_{u})$ is finite. The integral on the
right is known as the total absolute curvature, which is bounded below
by $ 4\pi$ , because the Gauss map is surjective. $\int_{M}|K(x)|dx$ attains its
minimum only when $M$ is convex [CL, Thm 3]. Thus, assuming that $M$

is not convex, $\int_{M}|K(x)|dx>4\pi$ . Consequently, by the above formula,
there has to exist a Morse function, $hv$ , with more than two critical
points.

2.2. Regularity of the boundary of shadows

Let $v^{\perp}.--\{u\in S^{2}|\langle u, v\rangle=0\}$ . Using Sard’s theorem, it can be
shown that, after a perturbation of $v$ , we can assume that there exists
a vector $u_{0}\in v^{\perp}$ , such that the boundary of the corresponding shadow,
$\partial S_{u_{O}}$ , is a regular submanifold of $M$ . This is a consequence of the fact
that, for almost every $u\in S^{2}$ , $\partial S_{u}$ is regular, which, briefly, may be
proved as follows: define the shadow function $f_{u}$ : $M\rightarrow R$ by

$ f_{u}(p):=\langle n(p), u\rangle$ ,

and observe that $\partial S_{u}\subset f_{u}^{-1}(0)$ . Further, let $UTM$ denote the unit tan-
gent bundle of $M$ , i.e., $UTM$ $:=\{(p, t_{p})|p\in M$ , $t_{p}\in T_{p}M$ , and $||t_{p}||=$

$1\}$ . Define $\tau:UTM$ $\rightarrow S^{2}$ and $\pi:UTM\rightarrow M$ , by $\tau(p, t_{p}):=t_{p}$ and
$\pi(p, t_{p}):=p$ respectively.

$UTM$ $\rightarrow\tau S^{2}$

$\downarrow\pi$

$M$

Then $f_{u}^{-1}(0)=\pi(\tau^{-1}(u))$ . Let $u$ be a regular value of $\tau$ . Then $\tau^{-1}(u)$

is a regular curve in $UTM$ . Further, it is not too difficult to show that $\pi$

is an embedding on $\tau^{-1}(u)$ . Hence, by Sard’s theorem, for almost every
$u$ , $f_{u}^{-1}(0)$ , and consequently $\partial S_{u}$ , is a regular curve (for more results
of this type and an introduction to studying geometry of the shadow
boundaries on illuminated surfaces see [Hwd2] $)$ .

After a rotation of the coordinate axis, and for the sake of conve-
nience, we assume from now on that $v=(0,0,1)$ and $u_{0}=(1,0,0)$ .

Further, we parameterize $v^{\perp}$ by $u(\theta):=(\cos\theta, \sin\theta, 0)$ , $\theta\in[0,2\pi]$ .
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2.3. Induced permutations on the critical points

Let $p_{i}$ , $i=1,2,3$ , denote three critical points of $h_{v}$ . For every $\theta\in$

$[0,2\pi]$ , we define a permutation $\sigma(\theta)\in Sym(p_{1}, p_{2},p_{3})$ , the symmetric
group of three elements, as follows.

Fix $\theta\in[0,2\pi]$ . Note that $p_{i}\in\partial S_{u(\theta)}$ ; furthermore, since $p_{i}$ is a
nondegenerate critical point of the height function $h_{v}$ , it follows that
$\partial S_{u(\theta)}$ is regular in a neighborhood of $p_{i}$ , see Figure 3. This together

$p$

$n(p)$

Fig. 3. If $p$ is a regular critical point of the height function
$h_{v}$ , then $n(p)=\pm v$ , and for every $u\in S^{2}$ orthogonal
to $n(p)$ the boundary of the corresponding shadow
$\partial S_{u}$ is regular in a neighborhood of $p$ ; because, $n$ is a
local diffeomorphism at $p$ , and $\partial S_{u}$ is the pull-back
via $n$ of a great circle in $S^{2}$ .

with the simply-connectedness of $S_{u(\theta)}$ implies that there exists a simple
closed curve $T$ in the closure of $S_{u(\theta)}$ such that: (i) $T$ is composed of
three smooth arcs which end at $p_{i}$ , (ii) each arc meets $\partial S_{u(\theta)}$ transver-
sally, and (iii) the interior of each arc lies in $S_{u(\theta)}$ . We say that such
a curve is a standard triangle for $S_{u(\theta)}$ , see Figure 4. Since $S_{u(\theta)}$ is
simply connected, $T$ bounds a unique region in $S_{u(\theta)}$ . This region inher-
its an orientation from $M$ (recall that $M$ is, by assumption, oriented),
which in turn induces a preferred sense of direction on $T$ . The induced
direction on $T$ determines a permutations for $p_{i}$ in a natural way; for
instance, suppose that as we move along $T$ away from $p_{1}$ we encounter
$p_{2}$ before reaching $p_{3}$ , then we say that the induced permutation is the
cycle $(p_{1}p_{2}p_{3})$ . Finally, note that the induced permutation on $p_{i}$ does
not depend on the choice of the standard triangle; because, if $T^{/}$ is any
other standard triangle in $S_{u(\theta)}$ , then $T’$ and $T$ are homotopic in $S_{u(\theta)}$

by the simply-connectedness of $S_{u(\theta)}$ . So we conclude that each shadow
$S_{u(\theta)}$ determines a unique permutation on $\{p_{1},p_{2}, p_{3}\}$ , which we denote
by $\sigma(\theta)$ .
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$M$

Fig. 4. Each shadow, $S_{u(\theta)}$ , contains a standard triangle.

Note that the boundary of the shadow is a regular
curve in a neighborhood of the critical points $p_{i}$ .

We claim that the map $\sigma:[0,2\pi]\rightarrow Sym(p_{1},p_{2}, p_{3})$ which we defined
above is constant. To this end, since $[0, 2\pi]$ is connected, it suffices to
show that $\sigma$ is locally constant. This follows from the fact that whenever
$\theta$ and $\theta’$ are sufficiently close, then $S_{u(\theta)}$ and $S_{u(\theta’)}$ have a standard
triangle in common, see Figure 5. The proof of this is based on the

$M$

Fig. 5. For every $\theta$ there exists an $\epsilon>0$ such that the shad-
ows $S_{u(\theta)}$ and $S_{u(\theta+\epsilon)}$ have a standard triangle in

common. This shows that the induced permutation

on $\{p_{1}, p_{2}, p_{3}\}$ is locally constant.

compactness of $T$ , the assumption that $T$ meets $\partial S_{u(\theta)}$ only at $p_{i}$ and
does so transversally, and the observation that in a neighborhood of $p_{i}$

$\partial S_{u(\theta)}$ depends continuously on $\theta$ .
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On the other hand, it is not difficult to show that $\sigma(0)\neq\sigma(\pi)$ .

To see this, recall that $\partial S_{u(0)}$ is regular by construction. This implies
that $\partial S_{u(\pi)}=\partial S_{u(0)}$ . Further, since $S_{u(0)}$ is, by assumption, simply
connected, $\partial S_{u(0)}$ is connected. In particular, $\partial S_{u(0)}$ is a simple closed
curve passing through $p_{i}$ . Suppose that $\partial S_{u(0)}$ is given the orientation
induced by $S_{u}(0)$ , and note that the corresponding permutation induced
on $p_{i}$ coincides with $\sigma(0)$ , because all standard triangles in $S_{u(0)}$ are
homotopic to $\partial S_{u(0)}$ . Similarly, if $\partial S_{u(\theta)}$ is oriented by $S_{u(\pi)}$ , then this
gives rise to a permutation of $p_{i}$ which is identical with $\sigma(\pi)$ . $S_{u(0)}$

and $S_{u(\pi)}$ induce opposite orientations on $\partial S_{u(\theta)}$ . Hence $\sigma(0)=-\sigma(\pi)$ ,

which produces the desired contradiction and completes the proof.

\S 3. A counterexample

In this section we show that Theorem 1.1 does not remain valid if
the condition that the shadows be ’simply connected’ is replaced by ’con-
nected’. More specifically, we show that there exists a smooth embedded
surface of genus one all of whose shadows are connected. This surface
is given by building a tube around a closed curve without any pairs of
parallel tangent lines. An explicit example of such a curve, formulated
by Ralph Howard, is given by $\gamma(t):=(x(t), y(t),$ $z(t))$ , where

$x(t)$ $:=$ $-\cos(t)-\frac{1}{20}\cos(4t)+\frac{1}{10}\cos(2t)$ ,

(3.1) $y(t)$ $:=$ $+\sin(t)+\frac{1}{10}\sin(2t)+\frac{1}{20}\sin(4t)$ ,

$z(t)$ $:=$ $-\frac{46}{75}\sin(3t)-\frac{2}{15}\cos(3t)\sin(3t)$ ,

$t\in[0,2\pi]$ . Figure 6 shows the pictures of a small tube built around
the above curve. Let $\Gamma$ denote the $trace$ of $\gamma$ . Since $\Gamma$ is a regular
submanifold, it follows from the tubular neighborhood theorem that

there exists an $r>0$ such that

$M:=$ { $x\in R^{3}|$ dist(x, $\Gamma)=r$ }

is a smooth surface, where dist(x, $\Gamma$ ) $:=\inf_{y\in\Gamma}||x-y||$ . We claim that,

since $\Gamma$ has no pair of parallel tangent lines, each shadow of $M$ is a
connected subset. Before proving this, however, we describe a general
procedure for constructing $\Gamma$ .

Let $T\subset S^{2}$ be a smooth simple closed curve such that (i) the origin
is contained in the interior of the convex hull of $T$ , $(0, 0, O)\in int$ conv $T$ ,

and (ii) $T$ does not contain any pair of antipodal points. Although it
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Fig. 6. Three different views of a nonconvex surface all of
whose shadows are connected. This surface is con-
structed by building a tube around a curve with no
pair of parallel tangents.

is not immediately clear that such curves exist, they are not difficult to
construct. Figure 7 shows an example, which is perhaps, qualitatively
speaking, the simplest. Let $T(s)$ , $s\in R$ , denote a periodic parameter-

$\ovalbox{\tt\small REJECT}^{;},\prime$

’

Fig. 7. A simple closed curve on the sphere which contains
the origin in the interior of its convex and is disjoint
from its antipodal reflection. An appropriate inte-
gration of the above yields a space curve with no
parallel tangents.

ization of $T$ by arclength. So, assuming $T$ has $to_{\cup}^{\downarrow}a1$ length $L$ , we have

$T(s+L)=T(s)$ . Since $(0, 0, O)\in int$ conv $T$ , there exists a (density)

function $v(s)$ with period $L$ such that $\int_{0}^{L}v(s)T(s)ds=0$ ; or, intuitively
speaking, it is possible to distribute mass along $T$ so that the center of
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gravity of the resulting object coincides with the origin. Now set

$\gamma(t):=\int_{0}^{t}v(s)T(s)ds$ .

Then $\gamma(t+L)=\gamma(t)$ . Further, $\gamma’(t)/||\gamma^{/}(t)||=T(t)$ . Thus $\gamma$ is a closed
curve whose tangential spherical image coincides with $T$ . In particular,
$\gamma$ has no parallel tangent lines. Hence $\Gamma$ (the $trace$ of $\gamma$ ) is the desired
curve.

Next we show that $M$ , given by a small tube around $\Gamma$ , has connected
shadows. To see this, let $\pi:M$ $\rightarrow\Gamma$ be the obvious projection, i.e.,
the nearest point map. For every $ x\in\Gamma$ , let $F_{x}:=\pi^{-1}(x)$ be the
corresponding fiber. Note that (i) each fiber, $F_{x}$ , is a circle, (ii) the
image of each fiber under the Gauss map, $n(F_{x})$ , is the great circle in $S^{2}$

which lies in the plane perpendicular to $T(x)$ , and (iii) $n$ is one-to-one
on each $F_{x}$ . Let $u\in S^{2}$ , and let $S_{u}$ be the corresponding shadow cast
on $M$ . Recall that $S_{u}=n^{-1}(H_{u})$ , where $H_{u}:=\{x\in S^{2}|\langle x, u\rangle>0\}$

is an open hemisphere, see Figure 8. Thus, for each fiber, $F_{x}$ , we have

$u$

(x)
$)$

$\Gamma$

Fig. 8. Unless $T(x)$ and $u$ are parallel, the fiber $F_{x}$ of the
tube around $\Gamma$ intersects the shadow $S_{u}$ along an
open semicircle.

only two possibilities: either $F_{x}$ intersects $S_{u}$ in an open half-circle, or
$F_{x}$ is disjoint from $S_{u}$ . But, by construction of $\Gamma$ , the latter occurs for
at most for one $ x\in\Gamma$ . Hence, it follows that each shadow, $S_{u}$ , is either
homeomorphic to a disk or an annulus. In particular, $S_{u}$ is connected
for every $u\in S^{2}$ .

Note 3.1. It is an elementary and well-known fact that if $\Gamma$ is
a closed curve, then its tangential spherical image (a.k.a. tangent indi-
catrix or tantrix), contains the origin in the interior of its convex hull.
Here we showed that a converse of this phenomenon holds as $we1^{\gamma}1$ . This
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observation is also known, and has been attributed to L\"owner; but it is
not clear if it had ever been published by him. See [Hwd3] for detailed
proofs and historical comments. A proof may also be found in [Gmv, $p$ .

168]

Note 3.2. It is possible to construct a simple closed curve without
parallel tangents which lies on a cylinder with a convex base. In fact, the
equations (3.1) give one such example. So a loop without parallel tan-
gents may lie on the boundary of a convex body. Interestingly enough,
however, no such curve may be constructed on an ellipsoid. This follows
from recent results of Joel Weiner [Wne] or Bruce Solomon [Sim] who
showed that the tantrix of a spherical curve, if embedded, divides the
sphere into equal areas. Consequently, any loop on a sphere has to have
a pair of parallel tangents. Further, ellipsoids must have this property
as well, because they are equivalent to the sphere up to a linear transfor-
mation. It would be interesting to know if ellipsoids are the only closed
surfaces which admit no loops without parallel tangent.1

\S 4. Applications

4.1. Stable constant mean curvature surfaces

In this section we discuss the original motivation for studying the
shadow problem, and indicate how one can obtain a classical isoperimet-
ric result using Theorem 1.1.

Let $M$ be an oriented, closed, and stable constant mean curvature
(CMC) surface immersed in $R^{3}$ . Stable means that $M$ is a critical surface
for the area functional subject to a volume constraint. In 1978, when
the shadow problem seems to have first originated, it was not yet known
that $M$ is necessarily a (round) sphere. Motivated by this question,

one might make the following observation: $M$ , much like a sphere, has
connected shadows. This is based on a variation argument, described
below, which the author first learned from Henry Wente [Wntl].

For all $u\in S^{2}$ , the shadow function $f_{u}$ : $M\rightarrow R$ , $ f_{u}(p):=\langle n(p), u\rangle$ ,

is a Jacobi field on $M$ , i.e., for the perturbation

$p\mapsto p+tf_{u}(p)n(p)$ ,

the first variation of volume and the first and second variation of area
are all zero; because, the variations corresponds to a rigid motion of

lNote added in proof: since this paper was first written, the author and

Bruce Solomon have proved that the property of having no loops without
parallel tangent lines (skew loops), does indeed characterize ellipsoids amongst
all closed surfaces immersed in 3-space [GS].
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$M$ in the direction $u$ . Consider the nodal regions of $f_{u}$ on $M$ . These
are the sets where $f_{u}$ is either positive or negative, and correspond,
therefore, to the shadows $S_{u}$ and $S_{-u}$ , respectively. Suppose, towards
a contradiction, that $S_{u}$ is not connected, then there are at least three
nodal regions $A_{i}$ , $i=1,2,3$ . Consequently, one can form three functions
$f_{i}$ by setting $f_{i}:=f$ on $A_{i}$ and $f_{i}:=0$ elsewhere. One can then take

a suitable linear combination $\sum_{i=1}^{3}\lambda_{i}f_{i}$ , to obtain a function for which
the first variation of volume is zero but the second variation of area is
negative, contradicting the stability assumption. Hence, we conclude
that all shadows of $M$ are connected.

Suppose now that $M$ is simply connected, then, see Note 1.2, the

connectedness of the shadows of $M$ imply that each shadow is simply
connected. Hence, by Theorem 1.1, it follows that $M$ is convex. In
particular, $M$ is embedded. Consequently, by applying the maximum

principle together with the reflection technique introduced by Aleksan-
drov [Akv], it follows that $M$ is a sphere.

The above result is well-known, and may be regarded as a weak
version of a theorem of Hopf [Hpf, p. 138], or a theorem of Barbosa
and do Carmo [BC]. Hopf showed, without assuming stability, that any
closed CMC surface of genus zero must be a sphere, and Barbosa and
do Carmo proved that a closed oriented surface of higher genus must
also be a sphere provided it is stable (for an elementary proof of this
result, see [Wnt2] $)$ . Finally, Wente showed that the stability assumption
in higher genus is not superfluous [Wnt3] by constructing a CMC torus
in $R^{3}$ ; thus, settling a famous and long standing question of Hopf [Hpf,
p. 131].

In closing this section, we should also point out that a number of
results concerning the connection between the number of components
of nodal regions of the shadow function (the vision number) and the
stability index of complete minimal surfaces in $R^{3}$ have been obtained
by Jaigyoung Choe [Cho].

4.2. Convexity of the level sets of $H$-graphs

Recently, shadows on illuminated surfaces have been studied within
the context of another problem involving constant mean curvature. This
problem, unlike those mentioned in the previous subsection, is still open.
Let $\Omega\subset R^{2}$ be a convex domain, and $f\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ be a solution
to the following boundary value problem:

$Div(\frac{gradf}{\sqrt{1+||gradf||^{2}}})=2H$ on $\Omega$ , and $f=0$ on $\partial\Omega$ .
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Let $M$ denote the graph of $f$ . Then $M$ has constant mean curvature $H$ .

Intuitively, one may think of $M$ as the membrane of least area, spanned
by $\partial\Omega$ , which traps a given volume above the $xy$-plane. It has been
a well-known and long standing problem [Kwl] to show that the level
sets of $M$ , and those given by equations of similar type, are convex.
Recently, John McCuan [Mcnl] has obtained a number of results on
this problem. In particular, he has shown that for every unit vector
$u(\theta):=(\cos\theta, \sin\theta, 0)$ , the set $X_{u(\theta)}:=\{x\in\overline{\Omega}|\langle gradf(x), u(\theta)\rangle=0\}$

is a connected regular curve, assuming that $\partial\Omega$ has strictly positive
curvature. This implies that the shadow $S_{u(\theta)}$ is a simply connected
subset of $M$ , because $X_{u(\theta)}$ is the projection of $\partial S_{u(\theta)}$ into the $xy$-plane.
One is then led to consider the following question [Mcn2]: does the
simply-connectedness of the shadows $S_{u(\theta)}$ imply that the level sets of
$M$ are convex? The answer is ne gative, see Figure 9. At present it is not

Fig. 9. A graph with zero boundary values over a convex
domain which has nonconvex level sets, even though
the shadows $S_{u(\theta)}$ are simply connected. $S_{u(\theta)}$ is
simply connected because the graph has a unique
critical point.

clear what shadow property, if any, would characterize the convexity of
level sets.
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On $4$-dimensional $CR$-Submanifolds of a
$6$-dimensional Sphere

Hideya Hashimoto, Katsuya Mashimo and Kouei Sekigawa

Abstract.

We prove several fundamental properties of 4-dimensional CR-
submanifolds of a nearly K\"ahler 6-dimensional sphere and construct
explicit examples of such submanifolds.

\S 1. Introduction

Let $S^{6}$ be the 6-dimensional unit sphere centered at the origin of a
7-dimensional Euclidean space $R^{7}$ . We denote by $O$ the normed algebra
of octonions (or Cayley algebra) and identify the set of pure imaginary
octonions $ImO$ with $R^{7}$ . An almost complex structure on $S^{6}$ is defined
as follows:

$JX=X\times x$ , $x$
$\in S^{6}$ , $X\in T_{x}(S^{6})$ ,

where $\times$ denotes the cross product of octonions. The almost complex
structure $J$ is compatible with the canonical metric $\langle, \rangle$ and the almost
Hermitian structure $(J, \langle, \rangle)$ on $S^{6}$ is nearly K\"ahler ([F-I]).

In this paper, we shall study 4-dimensional $CR$ submanifolds of the
nearly K\"ahler manifold $(S^{6}, J, \langle, \rangle)$ . Let $M$ be a submanifold of $S^{6}$ . We
put $\mathcal{H}_{x}=T_{x}M\cap J(T_{x}M)$ for $x$ $\in M$ and denote by $H_{x}^{\perp}$ the orthogonal
complement of $\prime H_{x}$ in $T_{x}M$ . If the dimension of $H_{x}$ is constant and
$J(H_{x}^{\perp})\subset T_{x}^{\perp}M$ for any $x\in M$ , the submanifold $M$ is called a $CR$

submanifold.
Concerning the existence of almost complex submanifolds and to-

tally real submanifolds of $(S^{6}, J, \langle, \rangle)$ , many results have been obtained
(see, [Gr], [Se]). On the other hand, about the existence of CR-submani-
folds, only a result by Sekigawa was known before our previous paper
([H-M]), in which the first and the second authors proved that there
exist many 3-dimensional $CR$ submanifolds.

One aim of this paper is to give some topological restrictions on
the existence of compact 4-dimensional $CR$ submanifolds of $S^{6}$ . For

2000 Mathematics Subject Classification. Primary $53B25$ ; Secondary
53C15.
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example, we prove that the Euler number of a compact 4-dimensional
$CR$-submanifold is equal to zero. We also consider the integrability
of the distributions $\prime H$ and $H^{\perp}$ . Many examples of 4-dimensional CR-
submanifolds of $S^{6}$ will be given in the last section.

The authors wish to express their gratitude to Professor Yasuo Mat-
sushita for his many valuable comments on characteristic classes.

\S 2. Preliminaries

Let $Q$ be the skew field of all quaternions. The algebra of octonions
$O$ is the direct sum $O=Q\oplus Q$ with the following multiplication:

$(q, r)\cdot(s, t)=(qs-t^{\iota}r, tq+rsL)$ , $q$ , $r$ , $s$ , $t$ $\in Q$ ,

where $\iota$ means the conjugation in Q. We define a conjugation in $O$ by
$(q, r)^{\iota}=(q^{\iota}, -r)$ , $q$ , $r\in Q$ , and an inner product $\langle, \rangle$ by

$\langle x, y\rangle=\frac{(x\cdot y^{\iota}+y\cdot x^{\iota})}{2}$ , $x$ , $y$ $\in O$ .

We denote by $G_{2}$ the group of automorphisms of $O$ , that is,

$G_{2}=$ { $g$ $\in GL$ (8, $R$),$\cdot$ $g(uv)=g(u)g(v)$ for any $u$ , $v\in O$ }.

Each element of $G_{2}$ leaves invariant the identity element $(1, 0)$ and its
orthogonal complement $Im$ O. Thus we may regard $G_{2}$ as a subgroup
of $GL(7, R)=GL(Im O)$ .

Now, we define a basis of $C\otimes ImO$ ,

$(\epsilon i, E, \overline{E})=(\in, E_{1}, E_{2}, E_{3}, \overline{E}_{1},\overline{E}_{2},\overline{E}_{3})$

as follows:
$\in=(0,1)\in Q\oplus Q$ ,

$E_{1}=iN$ , $E_{2}=jN$ , $E_{3}=-kN$ ,

$\overline{E}_{1}=i\overline{N}$ , $\overline{E}_{2}=j\overline{N}$ , $\overline{E}_{3}=-k\overline{N}$ ,

where $N=(1-\sqrt{-1}\in:)/2$ , $\overline{N}=(1+\sqrt{-1}\in)/2\in C\otimes O$ . We denote
also by $g$ the complex linear extension of $g$ $\in G_{2}$ . A basis $(u, f, \overline{f})$ of
$C\otimes Im$ $O$ is said to be admissible, if there exists an element $g$ of $G_{2}$

such that $(u, f, \overline{f})=(\in, E, \overline{E})g$ . We identify an element of $G_{2}$ with
an admissible basis by the injection

$\iota$ : $G_{2}\rightarrow GL(7, C)$ ; $g\mapsto(\epsilon i, E, \overline{E})g$ .
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We denote by $M_{p\times q}(C)$ the set of $p\times q$ complex matrices. Let $[a]$

be the element given by

$[a]=$ $\left(\begin{array}{lll}0 & a_{3} & -a_{2}\\-a_{3} & 0 & a_{1}\\a_{2} & -a_{1} & 0\end{array}\right)$ $\in M_{3\times 3}(C)$

for $a=t(a_{1}a_{2}a_{3})\in M_{3\times 1}(C)$ . Then we have

$[a]b+[b]a=0$ ,

where $a$ , $b\in M_{3\times 1}(C)$ . We adopt the matrix representation of elements
of $GL(7, C)$ with respect to $(\in, E, \overline{E})$ .

Proposition 2.1 (cf. Bryant [Br]). The pull-back $\Phi$ of the Maurer-
Cartan form of $GL(7, C)$ is of the form

(2.1) $\Phi=(_{2\sqrt{-1}}^{0}-2\sqrt{-1}\frac{\theta}{\theta}$ $-\sqrt{-1}{}^{t}\overline{\theta}[\theta]$ $[])\frac{\sqrt{-1}\overline{\theta}}{\kappa}{}^{t}\theta$

where $\kappa=(\kappa_{j^{i}})(1\leq i, j\leq 3)$ (resp. $\theta=t(\theta^{1}\theta^{2}\theta^{3})$ ) is an $5\mathfrak{U}(3)-$

valued (resp. $M_{3\times 1}(C)$ valued left invariant 1-forms. The Maurer-
Cartan equation $ d\Phi=-\Phi\wedge\Phi$ reduces to

(2.2) $ d\theta$ $=$ $-\kappa\wedge\theta+[\overline{\theta}]\wedge\overline{\theta}$ ,

(2.3) $ d\kappa$ $=$ $-\kappa\wedge\kappa$ $+3\theta\wedge t$ $\overline{\theta}-(^{t}\theta\wedge\overline{\theta})I_{3}$ .

\S 3. Structure equations

Let $\varphi$ : $M$ $\rightarrow S^{6}$ be a 4-dimensional submanifold of $S^{6}$ . We denote
by $\nabla$ (resp. $D$ ) the Levi Civita connection of $M$ (resp. $S^{6}$ ) and by $\nabla^{\perp}$ the
induced connection on the normal bundle of $M$ in $S^{6}$ . We denote by $\sigma$

the second fundamental form and $A_{\iota/}$ the shape operator in the direction
of $lJ$ . The Gauss and the Weingarten formulas are given respectively by

$D_{X}(\varphi_{*}(Y))$ $=$ $\varphi_{*}(\nabla_{X}Y)+\sigma(X, Y)$ ,

$D_{X}\iota/$ $=$ $-\varphi_{*}(A_{\iota/}(X))+\nabla_{X}^{\perp}\iota/$ ,

where $X$ , $Y$ are tangent vector fields and $iJ$ is a normal vector field.
Let $\varphi$ : $M$ $\rightarrow S^{6}$ be an oriented 4-dimensional $CR$ submanifold of

$S^{6}$ . Define an orientation on $H^{\perp}$ in such a way that an orthonormal base
$\{\xi_{1}, \xi_{2}\}$ of $H_{p}^{\perp}$ for $p\in M$ is oriented if and only if $\{v, J(v), \xi_{1}, \xi_{2}\}$ is
oriented for some unit vector $v\in\prime H_{p}$ .
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Lemma 3.1. Take an oriented orthonormal base $\{\xi_{1}, \xi_{2}\}$ of $H_{p}^{\perp}$

for $p\in M$ . The vector $\xi_{1}\times\xi_{2}$ is an element of $H_{p}$ and is independent

of the choice of the base.

We denote by $\mathcal{F}$ the bundle of unit vectors of $H^{\perp}$ . For a vector $\xi\in \mathcal{F}$

we denote by $\xi’$ the vector such that $\{\xi, \xi’\}$ is an oriented orthonormal
frame of $\mathcal{F}$ . We define a mapping $\psi$ : $\mathcal{F}\rightarrow GL(7, C)$ by

$\psi(\xi)=(\varphi o\pi(\xi), f, \overline{f})$

where

$f_{1}$ $=$ $\frac{1}{2}(\xi-\sqrt{-1}J\xi)$ ,

$f_{2}$ $=$ $\frac{1}{2}(\xi’-\sqrt{-1}J\xi’)$ ,

$f_{3}$ $=$ $-\overline{f_{1}\times f_{2}}=-\frac{1}{2}(\xi\times\xi’-\sqrt{-1}J(\xi\times\xi’))$ .

Define $C\otimes Im$ $O$-valued functions $f_{3}$ , —1 $and---2$ on $\mathcal{F}$ as follows:

$f_{3}((\varphi\circ\pi(\xi))f, \overline{f}))=f_{3}$ ,

—1 $((\varphi o\pi(\xi), f, \overline{f}))=\xi$ ,

—2 $((\varphi o\pi(\xi), f, \overline{f}))=\xi’$ .

Note that the image of the mapping $\psi$ is contained in $\iota(G_{2})$ . Also any
element of the fibre is expressed as $\cos(\theta)\xi+\sin(\theta)\xi’$ .

Proposition 3.2. Restricting the 1-forms $\kappa_{i}^{j}$ and $\theta^{i}$ given in

Proposition 2.1 to $\mathcal{F}$ , we have the following:

(3.1) $d\varphi\circ\pi_{*}$ $=$ $f_{3}\otimes(-2\sqrt{-1}\theta^{3})+\overline{f_{3}}\otimes(2\sqrt{-1}\overline{\theta^{3}})$

$+_{-2}--\otimes\mu_{2}+\cup 1--\otimes\mu_{1}$ ,

(3.2) $\theta^{3}(\tilde{X})$ $=$ $\sqrt{-1}\langle\pi^{*}d\varphi(\tilde{X})$ , $\overline{f_{3}}\rangle$ ,

$\theta^{1}(\tilde{X})$ $=$
$\frac{\sqrt{-1}}{2}\langle\pi^{*}d\varphi(\tilde{X}),---1\rangle=\frac{\sqrt{-1}}{2}\mu_{1}(\tilde{X})$ ,

(3.3) $\theta^{2}(\tilde{X})$ $=$
$\frac{\sqrt{-1}}{2}\langle\pi^{*}d\varphi(\tilde{X}))^{\cup 2}--\rangle=\frac{\sqrt{-1}}{2}\mu_{2}(\tilde{X})$ ,

(3.4) $df_{3}$ $=$ $\pi\circ\psi\otimes(-\sqrt{-1}\overline{\theta^{3}})+f_{3}\otimes\kappa s^{3}$

$+_{-2}^{-}-\otimes\frac{1}{2}(\frac{\sqrt{-1}}{2}\mu_{1}+\kappa s^{2})$
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$----1\otimes\frac{1}{2}(\frac{\sqrt{-1}}{2}\mu_{2}-\kappa_{3^{1}})$

$-J_{-2}^{-}-\otimes\frac{1}{2}(\frac{1}{2}\mu_{1}+\sqrt{-1}\kappa_{3^{2}})$

$+J_{-1}^{-}-\otimes\frac{1}{2}(\frac{1}{2}\mu_{2}-\sqrt{-1}\kappa_{3^{1}})$ ,

(3.5) $d_{-2}^{-}-$ $=$ $\pi\circ\psi\otimes(-\mu_{2})+f_{3}\otimes(\kappa_{2^{3}}+\frac{\sqrt{-1}}{2}\mu_{1})$

$+\overline{f_{3}}\otimes(\overline{\kappa_{2^{3}}}-\frac{\sqrt{-1}}{2}\mu_{1})$

$+_{\cup 1}^{-}-\otimes\frac{1}{2}(\kappa_{2}^{1}+\overline{\kappa_{2}^{1}}+\theta^{3}+\overline{\theta^{3}})$

$-J_{-2}^{-}-\otimes(\sqrt{-1}\kappa_{2^{2}})$

$+J_{-1}^{-}-\otimes\frac{\sqrt{-1}}{2}(-\kappa_{2}^{1}+\overline{\kappa_{2}^{1}}+\theta^{3}-\overline{\theta^{3}})$ ,

(3.6) $d_{-1}^{-}-$ $=$ $\pi o\psi\otimes(-\mu_{1})+f_{3}\otimes(\kappa_{1^{3}}-\frac{\sqrt{-1}}{2}\mu_{2})$

$+\overline{f_{3}}\otimes(\overline{\kappa_{1^{3}}}+\frac{\sqrt{-1}}{2}\mu_{2})$

$+_{-2}--\otimes\frac{1}{2}(\kappa_{1^{2}}+\overline{\kappa_{1}^{2}}-\theta^{3}-\overline{\theta^{3}})$

$+J_{-2}^{-}-\otimes\frac{\sqrt{-1}}{2}(-\kappa_{1^{2}}+\overline{\kappa_{1^{2}}}-\theta^{3}+\overline{\theta^{3}})$

$+J_{-1}^{-}-\otimes(-\sqrt{-1}\kappa_{1}^{1})$ ,

(3.7) $d(J_{-2}^{-}-)$ $=$ $f_{3}\otimes\sqrt{-1}(\kappa_{2^{3}}-\frac{\sqrt{-1}}{2}\mu_{1})$

$-\overline{f_{3}}\otimes\sqrt{-1}(\overline{\kappa_{2^{3}}}+\frac{\sqrt{-1}}{2}\mu_{1})+---2\otimes\sqrt{-1}\kappa_{2^{2}}$

$+_{-1}^{-}-\otimes\frac{\sqrt{-1}}{2}(\kappa_{2}^{1}-\overline{\kappa_{2^{1}}}+\theta^{3}-\overline{\theta^{3}})$

$+]_{-1}^{-}-\otimes\frac{1}{2}(\kappa_{2^{1}}+\overline{\kappa_{2^{1}}}-\theta^{3}-\overline{\theta^{3}})$ ,

(3.8) $d(J_{-1}^{-}-)$ $=$ $f_{3}\otimes\sqrt{-1}(\kappa_{1^{3}}+\frac{\sqrt{-1}}{2}\mu_{2})$

$-\overline{f_{3}}\otimes\sqrt{-1}(\overline{\kappa_{1^{3}}}-\frac{\sqrt{-1}}{2}\mu_{2})$
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$+_{-2}^{-}-\otimes\frac{\sqrt{-1}}{2}(\kappa_{1}^{2}-\overline{\kappa_{1^{2}}}-\theta^{3}+\overline{\theta^{3}})$

$+_{-1}^{-}-\otimes\sqrt{-1}\kappa_{1}^{1}$

$+J_{-2}^{-}-\otimes\frac{1}{2}(\kappa_{1^{2}}+\overline{\kappa_{1^{2}}}+\theta^{3}+\overline{\theta^{3}})$ .

Remark 3.3. From Lemma 3.1, there exists a complex valued
global 1-form $\Theta$ on $M^{4}$ such that $\pi^{*}\Theta=\theta^{3}$ .

Next we give the explicit expression of the integarabihty conditions
(2.2) and (2.3).

Lemma 3.4. On $\mathcal{F}$ , we have the following:

(3.9) $d\mu 1$ $=$ $-\kappa_{1}^{1}\wedge\mu^{1}-\kappa_{2}^{1}\wedge\mu^{2}$

$-\kappa_{3^{1}}\wedge(-2\sqrt{-1}\theta^{3})+2\mu 2\wedge\overline{\theta^{3}})$

(3.10) $d\mu 2$ $=$ $-\kappa_{1}^{2}\wedge\mu^{1}-\kappa_{2^{2}}\wedge\mu^{2}$

$-\kappa s^{2}\wedge(-2\sqrt{-1}\theta^{3})-2\mu 1\wedge\overline{\theta^{3}}$ ,

(3.11) $d\theta^{3}$

$=$
$-\frac{\sqrt{-1}}{2}(\kappa_{1^{3}}\wedge\mu^{1}+\kappa_{2^{3}}\wedge\mu^{2})$

$-\kappa_{3^{3}}\wedge\theta^{3}+\frac{1}{2}\mu^{1}\wedge\mu^{2}$ ,

(3.12) $d\kappa_{3^{3}}$ $=$ - $\sum_{j=1}^{3}\kappa_{j^{3}}\wedge\kappa_{3^{j}}+2\theta^{3}\wedge\overline{\theta^{3}}$ ,

(3.13) $d\kappa_{i^{i}}$
$=$ - $\sum_{j=1}^{3}\kappa_{j^{i}}\wedge\kappa_{i^{j}}-\theta^{3}\wedge\overline{\theta^{3}}$ $(i=1,2)$ ,

(3.14) $d\kappa_{2}^{1}$
$=$ - $\sum_{j=1}^{3}\kappa_{j}^{1}\wedge\kappa_{2}^{j}+\frac{4}{3}\mu^{1}\wedge\mu^{2}$ ,

(3.15) $d\kappa_{3}^{1}$ $=$ -

$\sum_{j=1}^{3}\kappa_{j}^{1}\wedge\kappa_{3^{j}}+\frac{3\sqrt{-1}}{2}\mu^{1}\wedge\overline{\theta^{3}}$ ,

(3.16) $d\kappa_{3^{2}}$ $=$ - $\sum_{j=1}^{3}\kappa_{j}^{2}\wedge\kappa_{3^{j}}+\frac{3\sqrt{-1}}{2}\mu^{2}\wedge\overline{\theta^{3}}$ .
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Finally we shall represent the connection 1-form $\langle(d_{-1}^{-}-)(\tilde{X}),---2\rangle$ of

the $S^{1}$ bundle $\mathcal{F}$ explicitely, in terms of the local data. We put

$\partial_{\theta}=\frac{d}{d\theta}|_{\theta=0}(\cos(\theta)\xi+\sin(\theta)\xi’)=\xi’$ ,

and denote by $ d\theta$ its dual 1-form. By (3.6), we obtain

$\langle(d_{\cup 1}^{-}-)(\tilde{X}),---2\rangle=-\frac{1}{2}(\kappa_{2^{1}}+\overline{\kappa_{2^{1}}}+\theta^{3}+\overline{\theta^{3}})(\tilde{X})=\langle\nabla_{d\pi(\tilde{X})}\xi_{1}$ , $\xi_{2}\rangle+d\theta(\tilde{X})$ .

In particular, we have (1/2) $(\kappa_{2}^{1}+\overline{\kappa_{2^{1}}})(\partial_{\theta})=1$ .

\S 4. Topological restrictions

In this section we prove several topological properties of 4-dimensional
$CR$-submanifolds of $S^{6}$ . From Lemma 3.1 and Hopf’s Index theorem, we
immediately obtain the following

Proposition 4.1. Let $\varphi$ : $M^{4}\rightarrow S^{6}$ be an oriented 4-dimensional
$CR$-submanifold of $S^{6}$ . Then both of the Euler class of $M^{4}$ and the Euler
class of the complex subbundle $\prime \mathcal{H}$ over $M$ vanish. If $M^{4}$ is compact, then
the Euler number $\chi(M^{4})$ is equal to zero. In particular, $S^{4}$ , $S^{2}\times S^{2}$ and
$CP^{2}$ can not be immersed into $S^{6}$ as a $CR$-submanifold.

Next we shall establish the relations of the various characteristic
classes of the bundles $H$ , $7\{^{\perp}$ and $T^{\perp}M^{4}$ over $M^{4}$ . We denote by $J_{H}$

the restriction to $H$ of the almost complex structure of $S^{6}$ , and $J’$ the
almost complex structure on $H^{\perp}$ such that the orient determined
by the almost complex structure $J_{1}=J_{H},\oplus J’$ on $M$ coincides with that
given on $M$ . We denote by $J_{2}$ the opposite almost complex structure:
$J_{2}=J_{\mathcal{H}}\oplus(-J’)$ . We also denote by $J^{\perp}$ the almost complex structure of
$T^{\perp}M^{4}$ which is compatible with the orientation of $T^{\perp}M^{4}$ . Recall that

(4.1) $\varphi^{*}(TS^{6})|_{M^{4}}=H\oplus H^{\perp}\oplus T^{\perp}M^{4}$ .

Let $V$ be the direct sum $V=\mathcal{H}^{\perp}\oplus T^{\perp}M^{4}$ . We denote by $J_{V}$ the
restriction to $V$ of the almost complex structure $J$ of $S^{6}$ . We denote by
$V^{(1,0)}$ (resp. $V^{(0,1)}$ ) the set of vectors of type $(1,0)$ (resp. (0,1)) in the
complexification $V\otimes C$ .

Proposition 4.2. Let $\varphi$ : $M$ $\rightarrow S^{6}$ be an oriented 4-dimensional
$CR$ -submanifold of $S^{6}$ . Then we have in $H^{*}(M;Z)$

(1) $e(H)=c_{1}(H^{(1,0)})(\equiv c_{1}(H^{(10)}, J_{\mathcal{H}}))=0$ ,
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(2) $p_{1}(TM^{4})=\{c_{1}(H^{\perp(1,0)}, J’)\}^{2}=-\{c_{1}(T^{\perp(1,0)}M^{4}, J^{\perp})\}^{2}$ ,

(3) $p_{1}(V)=0$ ,

(4) $c_{1}(V^{(1,0)})=0$ ,

where we denote by $p_{1}()$ (resp. $c_{1}$ ( )) the first Pontrjagin (resp. Chern)
class and by $e()$ the Euler class of the respective bundles.

Proof. By Lemma 3.1, we get (1) immediately. For (2), we calcu-
late the second Chern class of the complexified tangent bundle $TM^{4}\otimes C$

by making use of the above decomposition. Then, we have

$c(TM^{4}\otimes C)$ $=$ $c(\mathcal{H}^{(1,0)}\oplus H^{(0,1)}\oplus H^{\perp(1,0)}\oplus H^{\perp(0,1)})$

$=$ $(1-\{c_{1}(H^{(1,0)})\}^{2})(1-\{c_{1}(H^{\perp(1,0)})\}^{2})$ .

Therefore we have $c_{2}(TM^{4}\otimes C)=-\{c_{1}(H^{(1,0)})\}^{2}-\{c_{1}(H^{\perp(1,0)})\}^{2}$ , from

which we get $p_{1}(TM^{4})=\{c_{1}(H^{(1,0)})\}^{2}+\{c_{1}(H^{\perp(1,0)})\}^{2}$ . Hence we have
(2).

Next, we prove (3) and (4). From the decomposition $\varphi^{*}(T^{(1,0)}S^{6})|_{M^{4}}$

$=H^{(1,0)}\oplus V^{(1,0)}$ and $c(T^{(1,0)}S^{6})=1$ , we have

$=$ $1+c_{1}(H^{(1,0)})+c_{1}(V^{(1,0)})$

$+c_{1}(H^{(1,0)})c_{1}(V^{(1,0)})+c_{2}(V^{(1,0)})+c_{1}(H^{(1,0)})c_{2}(V^{(1,0)})$ .

Thus we obtain (4). Since $c_{2}(V^{(1,0)})=0$ , we have $p_{1}(V)=-c_{2}(V\otimes C)=$

$c_{1}(V^{(1,0)})^{2}-2c_{2}(V^{(1,0)})=0$ . $\square $

Theorem 4.3. Let $\varphi$ : $M^{4}\rightarrow S^{6}$ be an oriented 4-dimensional
$CR$-submanifold of $S^{6}$ . Then the first Portrjagin class of $M^{4}$ vanishes.
In particular, if $M^{4}$ is compact, its Hirzebruch signature is equal to zero.

Proof. First we can show that the structure group of the vec-
tor bundle $V$ reduces to $Sp(1)\simeq SU(2)$ . The vector bundle $V=$
$\mathcal{H}^{\perp}\oplus T^{\perp}M^{4}$ admits two different orthogonal almost complex structures
$J’\oplus J^{\perp}$ and $J_{V}$ . We may easily check that the composition $(J’\oplus J^{\perp})\circ J_{V}$

is also an orthogonal almost complex structure on $V$ . Furthermore,

these three orthogonal almost complex structures satisfy the quater-
nionic relations. Thus we get $c_{1}(V, (J’\oplus J^{\perp}))=c_{1}(V, -(J’\oplus J^{\perp}))=$

$-c_{1}(V, (J’\oplus J^{\perp}))$ (see [p.46; Theorem (5.11); Kob]). Therefore, we have

$c_{1}(V, (J’\oplus J^{\perp})=c_{1}(H^{\perp}, J’)+c_{1}(T^{\perp}M^{4}, J^{\perp})=0$ ,

from which we get immediately $c_{1}(H^{\perp(1,0)})+c_{1}(T^{\perp(1,0)}M^{4})=0$ . There-
fore, by Proposition 4.2 (2), we obtain the desired result. $\square $
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\S 5. Distributions $\mathcal{H}$ and $\mathcal{H}^{\perp}$

Proposition 5.1. The totally real distribution $H^{\perp}of$ an $ori$ented
4-dimensional $CR$ submanifold $\varphi$ : $M\rightarrow S^{6}$ is not involutive.

Proof. By Frobenius’ theorem, $H^{\perp}$ is involutive if and only if

(5.1) $d\theta^{3}\equiv 0$ $mod \{\theta^{3}, \overline{\theta^{3}}, d\theta\}$ .

From 3.12, we have

$d\theta^{3}\equiv\frac{\sqrt{-1}}{2}(-\sqrt{-1}+\kappa_{1}^{3}(E_{2})-\kappa_{2^{3}}(E_{1}))\mu_{1}\wedge\mu_{2}$ $mod \{\theta^{3}, \overline{\theta^{3}}, d\theta\}$ ,

where $\{E_{1}, E_{2}\}$ is the dual basis of $\{\mu_{1}, \mu_{2}\}$ . Thus (5.1) is equivalent to

$-\sqrt{-1}+\kappa_{1^{3}}(E_{2})-\kappa_{2^{3}}(E_{1})=0$ .

On the other hand, taking account of (3.5), (3.6) and $\pi^{*}d\varphi(E_{i})=---i$ for
$i=1,2$ , we get

$\kappa_{1}^{3}(E_{2})$ $=$ $\sqrt{-1}(2\langle\sigma(_{-2}^{-}-, \overline{f_{3}}), J_{-1}^{-}-\rangle-\frac{1}{2})$ ,

$\kappa_{2^{3}}(E_{1})$ $=$ $\sqrt{-1}(2\langle\sigma(_{-1}^{-}-, \overline{f_{3}}), J_{\cup 2}^{-}-\rangle+\frac{1}{2})$ .

Finally, by (3.6) and (3.7), we have

$-\sqrt{-1}+\kappa_{1}^{3}(E_{2})-\kappa_{2^{3}}(E_{1})$

$=$ $-2\sqrt{-1}+2\sqrt{-1}(\langle\sigma(_{-2}^{-}-, \overline{f_{3}}), J_{-1}^{-}-\rangle-\langle\sigma(_{-1}^{-}-, \overline{f_{3}}), J_{-2}^{-}-\rangle)$

$=$ $-2\sqrt{-1}+2\sqrt{-1}(\langle d_{-2}^{-}-(\overline{f_{3}}), J_{-1}^{-}-\rangle-\langle d_{-1}^{-}-(\overline{f_{3}}), J_{-2}^{-}-\rangle)$

$=$ $-2\sqrt{-1}-2\overline{\theta^{3}}(\overline{f_{3}})$

$=$ $-3\sqrt{-1}$ ,

which is a contradaiction. $\square $

As an immediate consequence of Proposition 4.2 (1), we have the

following lemma on the involutivity of the distibution $\prime H$ .

Lemma 5.2. Let $\varphi$ : $M^{4}\rightarrow S^{6}$ be an oriented 4-dimensional CR-

submanifold of $S^{6}$ . If the distribution $\prime\mu$ is involutive, then each compact

leaf of 7{ is homeomorphic to a torus.

Let $\varphi$ : $M$ $\rightarrow S^{6}$ be an oriented 4-dimensional $CR$ submanifold of
$S^{6}$ . Take a (locally defined) oriented orthonormal frame $\{\xi_{1}, \xi_{2}\}$ of $H^{\perp}$ .

We put $e_{1}=\xi_{1}\times\xi_{2}$ , $e_{2}=J(e_{1})$ and denote by $\omega_{1}$ , $\omega_{2}$ , $\omega_{3}$ , $\omega_{4}$ the
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dual 1-forms of $e_{1}$ , $e_{2}$ , $\xi_{1}$ , $\xi_{2}$ , respectively. From Lemma 3.1, $\omega_{1}$ , $\omega_{2}$ are
independent of the choice of the frame, and it is easily seen that so is
the 2-form $\omega_{3}\wedge\omega_{4}$ .

Proposition 5.3. Let $\varphi$ : $M$ $\rightarrow S^{6}$ be an oriented 4-dimensional
$CR$ submanifold of $S^{6}$ . The pull-back by $\pi$ : $\mathcal{F}\rightarrow M$ of the complex
valued 3-form

$(\omega_{1}+\sqrt{-1}\omega_{2})\wedge\omega_{3}\wedge\omega_{4}$

is equal to $2\sqrt{-1}\theta^{3}\wedge\mu_{1}\wedge\mu_{2}$ and is a closed form.

Proof. By (3.10), (3.11) and (3.12), we have

$d(\theta^{3}\wedge\mu_{1}\wedge\mu_{2})=-(\kappa_{3^{3}}+\kappa_{2^{2}}+\kappa_{1}^{1})\wedge\theta^{3}\wedge\mu_{1}\wedge\mu_{2}=0$ .

$\square $

Remcirk 5.4. The proposition 5.3 is equivalent to the fact that
$div(e_{1})=div(J(e_{1}))=0$ .

\S 6. Examples

In this section, we give two kinds of 4-dimensional $CR$-submanifolds
of $S^{6}$ . A 4-dimensional submanifold $M$ of $S^{6}$ is a $CR$ submanifold if and
only if the normal bundle $T^{\perp}M$ of $M$ is a totally real subbundle (namely,
$\Omega(T^{\perp}M)=\Omega\wedge\Omega(TM)=0$ , where $\Omega$ is the fundamental 2-form of $S^{6}$

defined by $\Omega(X, Y)=\langle JX, Y\rangle$ for $X$ , $Y\in X(S^{6}))$ .

Proposition 6.1. Let $\gamma$ : $I$ $\rightarrow S^{2}\subset ImQ$ be a regular curve in

the unit 2-sphere. Then the following immersion $\psi$ : $I\times Sp(1)\rightarrow S^{6}$ is
a 4-dimensional $CR$ submanifold of $S^{6}$ :

$\psi(t, q)=a\gamma(t)+bq\iota\in$ ,

where $a$ , $b$ are positive real numbers satisfying $a^{2}+b^{2}=1$ .

Proof. It is easy to verify that the vector fields

$\iota/_{1}=\dot{\gamma}(t)\times\gamma(t)$ , $\iota/_{2}=b\gamma(t)-aq^{\iota}\in$

form an orthonormal frame field of the normal bundle and satisfy
$\langle l/_{1}, J(\iota/_{2})\rangle=0$ . $\square $

For an element $(z, q)$ of $U(1)\times Sp(1)$ , we have an automorphism
$\tau(z, q)$ of the Cayley algebra defined by

(6.1) $(\tau(z, q))(r+s\in)=(qrq^{\iota})+(zsq^{\iota})\in$ , $r_{)}s\in Q$ , $r+r^{\iota}=0$ .
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We denote by $L$ the image of the Lie group homomorphism $\tau$ : $ U(1)\times$

$ Sp(1)\rightarrow$ Aut(O) $=G_{2}$ .

It is easily verified that on each orbit of the action of $L$ on $S^{6}$ , there
exists a point of the form $ai+(b+cj)e$ with $a\geq 0$ , $b\geq 0$ , $c\geq 0$ and
$a^{2}+b^{2}+c^{2}=1$ .

Proposition 6.2. For any positive numbers $a$ , $b$ , $c$ satisfying $a^{2}+$

$b^{2}+c^{2}=1$ , the orbit

$ a(qiq^{\iota})+(z(b+cj)q^{\iota})\in$ , $z\in U(1)$ , $q\in Sp(1)$ ,

is a 4-dimensional $CR$ submanifold of $S^{6}$ .

Proof. We denote by $X^{*}$ a Killing vector field on $S^{6}$ induced by
$X\in T_{1}(U(1)\times Sp(1))$ . If we denote by $X_{0}$ , $X_{1}$ , $X_{2}$ , $X_{3}$ the vectors
$(i, 0)$ , $(0, i)$ , $(0, j)$ , $(0, k)$ of $T_{1}(U(1)\times Sp(1))$ respectively, then the tangent
space $T_{p0}(L(p_{0}))$ of the orbit $L(p_{0})$ through the point $ p_{0}=ai+(b+cj)\in$

is spanned by the vectors

$X_{0}^{*}(p_{0})$ $=(bi+ck)\in$ , $X_{1}^{*}(p_{0})$ $=(-bi+ck)\in$ ,
$X_{2}^{*}(p_{0})$ $=-2ak+(c-bj)\in$ , $X_{3}^{*}(p_{0})$ $=2aj-(ci+bk)\in$ .

From

$\Omega(X_{i}^{*}(p_{0}), X_{j}^{*}(p_{0}))=\{$

$6a6c$ , if $i=0$ , $j=2$ ,
$a(5-9a^{2})$ , if $i=2$ , $j=3$ ,

0, otherwise,

we easily obtain

$\Omega\wedge\Omega(X_{0}^{*}(p_{0}), X_{1}^{*}(p_{0})$ , $X_{2}^{*}(p_{0})$ , $X_{3}^{*}(p_{0}))=0$ .

$\square $

Proposition 6.3. The orbit of $L$ through the point $ p=ai+(b+cj)\in$

$(a, b, c\geq 0, a^{2}+b^{2}+c^{2}=1)$ is a minimal submanifold of $S^{6}\dot{\iota}f$ and only

if

$a=\sqrt{\frac{3+\sqrt{57}}{24}}$ , $b=c=\sqrt{\frac{21-\sqrt{57}}{48}}$ .

Proof. With respect to the basis $\{X_{0}(p_{0}), X_{1}(p_{0}), X_{2}(p_{0}), X_{3}(p_{0})\}$ ,

the induced metric $g$ is represented as follows:

$g$ $=\{$

$b^{2}+c^{2}$ $c^{2}-b^{2}$

$c^{2}-b^{2}$ $b^{2}+c^{2}$

0 0
$-2bc$ 0

$3a_{0}^{2}+001$ $3a^{2}+1-2bc00)$ .
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Since the orbit of the action (6.1) through a point $ p=(ai)+(’b+cj)\in$

$(a, b, c>0)$ is diffeomorphic to $U(2)$ , the volume of the orbit is equal
to

const, $\times\det(g)=const$ . $\times 4abc\sqrt{1+3a^{2}}$ .

Considering the extremal of the volume under the condition $a^{2}+b^{2}+c^{2}=$

$1$ , we obtain the result. $\square $
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On Isotropic Minimal Surfaces in Euclidean Space

Masatoshi Kokubu

Abstract.

We investigate a certain class of minimal surfaces in Euclidean
space, which are constructed from a generalization of the Weierstrass
formula. We also show a characterization of the catenoid.

\S 1. Introduction

Let $f$ be a conformal minimal immersion from a Riemann surface
$M$ into Euclidean $N$-space $E^{N}$ . It is given (at least locally) by the real
part of an isotropic holomorphic immersion $F$ from $M$ into complex

Euclidean space $\mathbb{C}^{N}$ . We say that $f$ is $m$ -isotropic if the derivatives $f^{(k)}$

of $f$ of order $k(k=1,2, \ldots, m)$ are isotropic vectors in $\mathbb{C}^{N}$ . (Note that
$f$ is necessarily 1-isotropic, which is equivalent to the conformality of /.)
In other words, an $m$-isotropic minimal surface is locally the projection
from $\mathbb{C}^{N}$ of an $m$-isotropic curve to $E^{N}$ .

The $m$-isotropic curves fully immersed in $\mathbb{C}^{2m+1}$ have a remarkable
representation formula (cf. [4]), which is a generalization of the integral-
free form of the Weierstrass formula for minimal surfaces. In the first
half of this paper, applying it, we present some examples of complete
minimal surfaces in $E^{2m+1}$ . They are based on Enneper’s surface and
the catenoid.

In the latter half of this paper, we study the total curvature of
$m$-isotropic complete minimal surfaces. Several interesting inequalities
concerning the total curvature of complete minimal surfaces in $E^{N}$ have
been known (cf. [1], [5], [6]). Among those, we focus our attention on
the following two inequalities.

Given an $m$-isotropic complete minimal immersion $f:M$ $\rightarrow E^{N}$ , we
denote the Gaussian curvature by $K$ , the area element by dA, the genus
by $g$ , and the number of ends by $r$ , respectively.

$\blacksquare$ (Chern-Osserman’s inequality)

(1) $\int_{M}KdA\leq 4(1-g-r)\pi$ .

2000 Mathematics Subject Classification. Primary $53A10$ ; Secondary
53A07, 53C42.
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$\blacksquare$ (Ejiri’s inequality)
If the immersion $f$ is full and $k$-degenerate, then

(2) $\int_{M}KdA\leq 2(1-g-N+k)\pi$ .

Here, we say that an immersion $f:M\rightarrow E^{N}$ is full if the image $f(M)$

is not contained in any hyperplanes of $E^{N}$ , and that $f$ is $k$ -degenerate
if its Gauss image $l/(M)$ is contained in an $(N-1-k)$ -dimensional
subspace of complex projective $(N-1)$ -space $\mathbb{C}P^{N-1}$ . (By definition,
the Gauss map $iJ$ of $f$ is given by $iJ$ $=[\partial f/\partial z]:M\rightarrow \mathbb{C}P^{N-1}$ , where
$[\partial f/\partial z]$ denotes the complex line spanned by the vector $\partial f/\partial z\in \mathbb{C}$ .

Recall that the catenoid is a complete minimal surface in $E^{3}$ , which
is of genus zero, with two ends and of total curvature $-4\pi$ . So it satisfies
the equality in (1).

Jorge and Meeks [7] showed the formula

$\int_{M}KdA=2(2(1-g)-r-\sum_{j=1}^{r}I_{j})\pi$ ,

where $I_{1}$ , $\ldots$ , $I_{r}$ are positive integers that describe the behaviours of
ends $p_{1}$ , $\ldots,p_{r}$ , respectively. In particular, they proved that an end $p_{j}$

is embedded if and only if $I_{j}=1$ , and hence, that the equality in (1)
holds if and only if all ends of $M$ are embedded. Indeed, the catenoid has
embedded ends. In [7], they also constructed examples with arbitrary
number of embedded ends, which are now called Jorge-Meeks’ $n$-noid
( $n$ is an integer greater than 1). Note that Jorge-Meeks’ 2-noid is the
catenoid.

On the other hand, the catenoid also satisfies the equality in (2). So
the catenoid is an example satisfying the equality both in (1) and in (2).
Then it is natural to ask if there are any other examples with the same
property. We can answer this question for strictly $m$-isotropic complete
minimal surfaces as follows:

Main Theorem (A characterization of the catenoid). The
catenoid in $E^{3}$ is the only strictly $m$ -isotropic complete minimal surface
in $E^{2m+1}$ , which attains the equality both in Chern-Osserman’s inequal-
ity and in EjirVs ’s inequality.

The author is grateful to Professor Masaaki Umehara for directing
his attention to this subject. He also thanks Professor Katsuei Kenmotsu
and the referee for their helpful comments.
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\S 2. Preliminaries

We denote by $M$ a Riemann surface, and by $F:M$ $\rightarrow \mathbb{C}^{N}$ a mero-
morphic curve. Let $\langle, \rangle$ denote the standard inner product of $E^{N}$ ,

and the quadratic form on $\mathbb{C}^{N}$ which is the $\mathbb{C}$-linear extension of it-

self as well. A linear subspace $V$ of $\mathbb{C}^{N}$ is said to be isotropic if
$V\subset V^{\perp}:=$ { $w\in \mathbb{C}^{N}|\langle v$ , $w\rangle=0$ for all $v\in V$ } holds. Note that
if $V$ is isotropic then $\overline{V}$ is also isotropic, $V\cap\overline{V}=\{0\}$ and 2 $dimV\leq N$ .

Here, we denote by $\overline{V}$ the set of all complex conjugate vectors in $V$ .

Definition 1. $F:M\rightarrow \mathbb{C}^{N}$ is called an $m$ -isotropic curve if
$\langle F^{(k)}, F^{(k)}\rangle=0$ $(1 \leq k\leq m)$ hold except at the poles. Here, $F^{(k)}$

denotes the derivative of $F$ of order $k$ with respect to a local coordinate
$z$ of $M$ . For simplicity, a 1-isotropic curve is said to be isotropic. An m-
isotropic curve that is not $(m+1)$ -isotropic is called a strictly $m$ isotropic

curve.

The following two lemmas can be easily checked.

Lemma 1. If $F:M\rightarrow \mathbb{C}^{N}$ is $m$ -isotropic, then the following
equations hold except for poles of $F^{(k)}$ :

$\langle F^{(i)}, F^{(j)}\rangle=0$ , $i+j\leq 2m+1$ .

Lemma 2. $F:M$ $\rightarrow \mathbb{C}^{N}$ is full if and only if at each point $p\in M$ ,

the vectors $F’$ , $F’’$ , $\ldots$ , $F^{(N)}$ are linearly independent except for isolated
points.

Note that Lemma 1 implies that Definition 1 is well-defined.

Proposition 1. If $F:M$ $\rightarrow \mathbb{C}^{N}$ is strictly $m$ isotropic, then $2m+$

$1\leq N$ . Namely, $N=2m+1$ is the minimum dimension of $\mathbb{C}^{N}$ for
which an $m$ -isotropic curve exists.

Proof. It is enough to prove this under the assumption

that $F$ is full. By Lemma 2, $F’$ , $\ldots$ , $F^{(N)}$ are linearly independent
almost everywhere on $M$ . At such a point $p$ , the subspace
$V$ $=$ Span{F’(p), . . . ’

$F^{(m)}(p)$ } is an $m$-dimensional isotropic
subspace of $\mathbb{C}^{N}$ by Lemma 1. Since $F$ is strictly $m$ isotropic,
$\langle F^{(m+1)}(p), F^{(m+1)}(p)\rangle\neq 0$ . Hence, $F^{(m+1)}(p)\not\in V\oplus\overline{V}$ . In fact, sup-

pose that $F^{(m+1)}(p)\in V\oplus\overline{V}$ . Then we may write

(3) $F^{(m+1)}(p)=\sum\lambda_{i}F^{(i)}(p)+\sum\mu_{i}\overline{F^{(i)}(p)}$ .

The inner product of (3) and $F^{(j)}(p)$ then implies

(4) $\sum\mu_{i}\langle\overline{F^{(i)}(p)}, F^{(j)}(p)\rangle=0$ .
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Here, by the linearly independency of $F^{(k)}$ , the matrix $(\langle\overline{F^{(i)}(p)}, F^{(j)}(p)\rangle)$

is nonsingular. Hence, each $\mu_{i}$ must be zero by (4). Substituting these
into (3), we have $F^{(m+1)}(p)=\sum\lambda_{i}F^{(i)}(p)$ . This contradicts to the
linearly independency of $F^{(k)}$ .

Therefore, $\mathbb{C}^{N}$ contains a $(2m+1)$ -dimensional subspace $ V\oplus\overline{V}\oplus$

$\{F^{(m+1)}\}$ . It implies that $2m+1\leq N$ . $\square $

Lemma 3. Let $F:M$ $\rightarrow \mathbb{C}^{2m+1}$ be an $m$ -isotropic curve. Then
$F$ is strictly $m$ -isotropic if and only if $F$ is full.

Proof It is obvious from Proposition 1 that the strictness implies
the fullness.

Suppose now that the $m$-isotropicity of $F$ is not strict. It implies
that $F$ is $(m+1)$-isotropic. By Lemma 1, the equations

$\langle F^{(i)}, F^{(j)}\rangle=0$ , $i+j\leq 2m+3$

holds, which implies that

$\left(\begin{array}{l}{}^{t}F’\\\vdots\\{}^{t} F^{(2m+1)}\end{array}\right)$ $(F’ \cdots F^{(2m+1)})=\left(\begin{array}{lll}0 & \cdots & 0\\\vdots & & \\0 & & \end{array}\right)$ .

(Here, we regard $F$ as a column vector and denote by ${}^{t}F$ its transpose.)
Hence, $\det(F’\cdots F^{(2m+1)})=0$ . Therefore, $F$ is not full. $\square $

Now we are in a position to state an important and fundamental the-
orem concerning full $m$-isotropic curves in $\mathbb{C}^{2m+1}$ , which will be needed
in Section 3.

Theorem 1 (Weierstrass-Ejiri formula). Let $G:M\rightarrow \mathbb{C}^{2m-1}$ be
a full $(m-1)$ -isotropic curve. Suppose that $g$ is a meromorphic function
on $M$ which is not of the form $a\langle G, G\rangle+\langle B, G\rangle+c$ , where $a$ and $c$

are complex numbers and $B$ is a constant vector in $\mathbb{C}^{2m-1}$ . Then the
following system of equations

$\langle G^{(k)}, H\rangle=g^{(k)}$ , $k=1,2$ , $\ldots$ , $2m-1$ ,

has a unique solution $H:M\rightarrow \mathbb{C}^{2m-1}$ .

Moreover, if we define a function $h$ by $ h=\langle G, H’\rangle/\langle G, G’\rangle$ , then
the curve defined by

$(\frac{1}{2}\{1-\langle G, G\rangle\}h+\langle H, G\rangle-g$ , $\sqrt{-1}(\frac{1}{2}\{1+\langle G, G\rangle\}h-\langle H, G\rangle+g)$ ,

$hG-H)$
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is full and $m$ -isotropic in $\mathbb{C}^{2m+1}$ .

Conversely, any full $m$ -isotropic curve in $\mathbb{C}^{2m+1}$ can be represented
in this form.

In the case of $m=1$ , Theorem 1 is the integral-free version of the
Weierstrass formula for minimal surfaces (cf. [2]). For general $m$ , this
formula was proved by Ejiri [4].

\S 3. Applications of Theorem 1

Recall that a minimal surface in $E^{7l}$ is given by the real part of
an isotropic curve in $\mathbb{C}^{n}$ (at least locally). Namely, for a conformal

minimal immersion $f:M$ $\rightarrow E^{N}$ , there exists an isotropic curve $ F:\tilde{M}\rightarrow$

$\mathbb{C}^{N}$ such that $f\circ\pi=ReF$ . Here, $\pi:\tilde{M}\rightarrow M$ denotes the universal
covering of $M$ . In other words, there exists a multi-valued isotropic

curve $F:M\rightarrow \mathbb{C}^{N}$ such that $f=ReF$ . We call $F$ the lift of $f$ .

First, let us recall well-known minimal surfaces in $E^{3}$ .

Example 1 (Enneper’s surface). $M=\mathbb{C}$ , and

(5) $f(z)=Re(3z-z^{3}, \sqrt{-1}(3z+z^{3}),$ $3z^{2})$ .

Example 2 (the catenoid). M $=\mathbb{C}\backslash \{0\}$ , and

(6) $f(z)=Re(\frac{1}{2}(-\frac{1}{z}-z),$ $\frac{\sqrt{-1}}{2}(-\frac{1}{z}+z)$ , $\log z)$ .

Example 3 (Jorge-Meeks’ $n$-noid). $M$ $=(\mathbb{C}\cup\{\infty\})\backslash \{z^{n}=1\}$ ,

and
(7)

$f(z)=Re(\int\frac{1-z^{2n-2}}{2(z^{n}-1)^{2}}dz,$ $\int\frac{\sqrt{-1}(1+z^{2n-2})}{2(z^{n}-1)^{2}}dz$ , $\int\frac{z^{n-1}}{(z^{n}-1)^{2}}dz)$ .

In the case of $n=3$ , integrating (7), we have

(8) $f(z)=Re(^{\frac{z}{6(1+z+z^{2})\sqrt{-1}\{}-}\frac{z(1+z)}{6-6z^{3}}+\frac{\mathring{\frac{21g}{}}(-1+z)+9\mathring{\frac{1g(1+z+z^{2})}{32z)/\sqrt{3}))9\}}}2\arctan((1+}{(z^{3}-1)13\sqrt{}})\frac{}{3}$ .

We define the $m$-isotropicity for minimal surfaces in $E^{N}$ as well as
for curves in $\mathbb{C}^{N}$ .
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Definition 2 $([3]^{*})$ . A conformal minimal immersion $f:M$ $\rightarrow E^{N}$

is said to be $m$ -isotropic if it satisfies the condition that
$\langle f^{(k)}, f^{(k)}\rangle=0$ for $1\leq k\leq m$ . Here, $f^{(k)}$ denotes the partial derivative
$\partial^{k}f/\partial z^{k}$ with respect to a local coordinate $z$ of $M$ . An $m$-isotropic min-
imal surface that is not $(m+1)$ -isotropic is called a strictly $m$ -isotropic
minimal surface.

A conformal minimal immersion is necessarily 1-isotropic, because
the conformality is nothing but the 1-isotropicity. Assume that $F$ is a
lift of $f$ , that is, $f=ReF$ . It then follows from 2 $f^{(k)}=F^{(k)}$ that the
(strictly) $m$-isotropicity of $f$ is equivalent to that of $F$ .

We will construct examples of strictly $m$-isotropic minimal surface
in $E^{2m+1}$ by making use of the Weierstrass-Ejiri formula. Our examples
are based on Enneper’s surface and the catenoid.

First, we recall Theorem 1, the Weierstrass-Ejiri formula. It asserts
that a full $m$-isotropic curve $F:M\rightarrow \mathbb{C}^{2m+1}$ is constructed from a full
$(m-1)$ -isotropic curve $G:M$ $\rightarrow \mathbb{C}^{2m-1}$ and a meromorphic function $g$ .

We denote the curve $F$ constructed with these data by WE(M, $G$ , $g$ ).
With this notation, Enneper’s surface can be written as the real

part of $F=WE(\mathbb{C}, z, z^{3})$ . Namely, (5) is constructed from $G(z)=z$

and $g(z)=z^{3}$ through the Weierstrass-Ejiri formula. It is also easily
verified that the catenoid (6) is given by the real part of $F=WE(\mathbb{C}\backslash $

$\{0\}$ , $z$ , zlog $z$ ).
We note that the data of Enneper’s surface are given by polynomials,

and Enneper’s surface is also given by polynomials.\dagger We can construct
a series of $m$-isotropic minimal surfaces $(m=1,2, \ldots)$ which are given
by polynomials.

Proposition 2. Consider the following recurrence formula:

$F_{0}(z)=z$ , $F_{m}=WE(\mathbb{C}, F_{m-1}, z^{2m+1})(m\geq 1)$

Then it inductively defines strictly $m$ -isotropic polynomials $F_{m}$ : $\mathbb{C}\rightarrow$

$\mathbb{C}^{2m+1}$ of degree $2m+1$ . The real part $ReF_{m}$ : $\mathbb{C}\rightarrow E^{2m+1}$ is a simply-
connected, complete minimal surface of total curvature $-4m\pi$ . In par-
ticular, $ReF_{1}$ is Enneper’s surface.

For the proof, we need the following lemma.

$*In[3]$ , a full $m$-isotropic minimal surface in $E^{2m+1}$ is simply called an
isotropic minimal surface.

\dagger We say that $F=(F_{1}, \ldots, F_{N})$ is a polynomial if each component $F_{i}$ is a
polynomial. By the degree of $F$ we mean the maximum of $deg$ $F_{i}$ .
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Lemma 4. Let $F:\mathbb{C}\rightarrow \mathbb{C}^{2m+1}$ be an $m$ -isotropic polynomial of
degree $2m+1$ . Then $\langle F, F\rangle$ is a polynomial of degree smaller than or
equal to $2m+2$ . Moreover, if $F$ is full, then the degree of $\langle F, F\rangle$ is equal

to $2m+2$ .

Proof. It follows from the $m$-isotropicity that

(9) $\langle F^{(i)}, F^{(j)}\rangle=0$ , $i+j\leq 2m+1$ .

Since $F$ is a polynomial of degree $2m+1$ ,

(10) $F^{(k)}=0$ , $k\geq 2m+2$ .

Equations (9) and (10) then imply

(11) $\langle F, F\rangle^{(2m+2)}=2\langle F^{(2m+1)}, F’\rangle$ ,

(12) $\langle F, F\rangle^{(2m+3)}=2\langle F^{(2m+1)}, F’’\rangle$ .

In particular, we consider the case of $i+j=2m+1$ in (9), that is,

(13) $\langle F^{(i)}, F^{(2m-i+1)}\rangle=0$ , $i=1,2$ , $\ldots$ , $2m$ .

Differentiating (13) twice, we have for $i=1,2,\ldots,2m$ ,

(14)
$\langle F^{(i+2)}, F^{(2m-i+1)}\rangle+2\langle F^{(i+1)}, F^{(2m-i+2)}\rangle+\langle F^{(i)}, F^{(2m-i+3)}\rangle=0$ .

We write the cases $i=1$ , $\ldots$ , $m$ in (14) into the matrix form:

(15) $\{$

2 1
$\backslash $

$0$

1 2
. . .

$0$

. . 2 1
3

$\left(\begin{array}{ll}\langle F^{(2)}, & F^{(2m+1)}\rangle\\\langle F^{(3)}, & F^{(2m)}\rangle\\ & \vdots\\\langle F^{(m)}, & F^{(m+3)}\rangle\\\langle F^{(m+1)}, & F^{(m+2)}\rangle\end{array}\right)=\left(\begin{array}{l}0\\\vdots\\ 0\end{array}\right)$ .

Here, the $m\times m$ matrix on the left-hand side is nonsingular, in fact, its
determinant is equal to $2m+1$ . It then follows that $\langle F^{(2)}, F^{(2m+1)}\rangle=0$ .

This implies that $\langle F, F\rangle^{(2m+3)}=0$ by (12). So we can conclude that
the degree of $\langle F, F\rangle$ is smaller than or equal to $2m+2$ .

Suppose now that $F$ is full. By Lemma 3 it is strictly $m$-isotropic.
So $\langle F^{(m+1)}, F^{(m+1)}\rangle\neq 0$ . Hence,

$\langle F^{(2m+1)}, F’\rangle=\langle F^{(2m)}, F’\rangle’-\langle F^{(2m)}, F’’\rangle=-\langle F^{(2m)}, F’’\rangle$

.

$=(-1)^{m}\langle F^{(m+1)}, F^{(m+1)}\rangle\neq 0$ .
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Therefore, by (11), we may conclude that the degree of $\langle F, F\rangle$ is $2m+$
$2$ . $\square $

Proof of Proposition 2. We prove this by an induction.
First, note that it is trivial in the case of $m=1$ .

Assuming that the assertion is true up to $m-1$ , we are going to
show the case $m$ .

The data for constructing $F_{m}$ are $G=F_{m-1}$ and $g(z)=z^{2m+1}$ . By
our induction assumption and Lemma 4, the function $a\langle G, G\rangle+\langle B, G\rangle+c$

is a polynomial of degree $2m$ , and hence, $g$ is not identical with it.
Therefore, it is assured that $F_{m}$ can be constructed.

We show that $F_{m}$ is a polynomial of degree $2m+1$ . For this, it
suffices to prove that $H$ and $h$ are also polynomials and that the following
inequalities hold:

$degH\leq 2m+1$ , $deg\langle H, G\rangle\leq 2m+1$ , $degh\leq 1$ ,

because $degG=2m-1$ and $degg=2m+1$ .

First, we prove that $H$ is a polynomial. Recall that $H$ is determined

by $\langle G^{(k)}, H\rangle=g^{(k)}$ . Note that the determinant of the matrix $(G^{(k)})$

satisfies
$|G’\cdots G^{(2m-1)}|’=|G’\cdots G^{(2m-2)}G^{(2m)}|=0$ ,

and hence, it is constant. This implies that the inverse of $(G^{(k)})$ has
components consisting of polynomials. Therefore, $H$ is also a polyno-
mial.

In the following, we calculate the degree of $H$ . Differentiating

(16) $\langle G^{(k)}, H\rangle=g^{(k)}$ , $k=1$ , $\ldots$ , $2m-1$

we have

(17) $\langle G^{(k+1)}, H\rangle+\langle G^{(k)}, H’\rangle=g^{(k+1)}$ , $k=1$ , $\ldots$ , $2m-1$ .

Substituting (17) into (16), we have

(18) $\{$

$\langle G^{(k)}, H’\rangle=0$ , $k=1$ , $\ldots$ , $2m-2$ ,

$\langle G^{(2m-1)}, H’\rangle=g^{(2m)}$ .

Moreover, if we differentiate (18) and carry out the calculation similar
to the above, then we have

(19) $\{$

$\langle G^{(k)}, H’’\rangle=0$ , $k=1$ , $\ldots$ , $2m-3$

$g^{(2m)}+\langle G^{(2m-2)}, H’’\rangle=0$ ,

$\langle G^{(2m-1)}, H’’\rangle=g^{(2m+1)}$ .
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Similarly, it follows from (19) that

$\{$

$\langle G^{(k)}, H’’’\rangle=0$ , $k=1$ , $\ldots$ , $2m-4$ ,

$-g^{(2m)}+\langle G^{(2m-3)}, H’’’\rangle=0$ ,

$2g^{(2m+1)}+\langle G^{(2m-2)}, H’’’\rangle=0$ ,

$\langle G^{(2m-1)}, H’’’\rangle=0$ .

Proceeding successively, we obtain

$\{$

$\langle G’, H^{(2m)}\rangle=(2m-1)g^{(2m+1)}\neq 0$ ,
$\langle G^{(k)}, H^{(2m)}\rangle=0$ , $k=2$ , $\ldots$ , $2m-1$ ,

and
$\langle G^{(k)}, H^{(2m+1)}\rangle=0$ , $k=1$ , $\ldots$ , $2m-1$ .

Hence, we have $H^{(2m)}\neq 0$ and $H^{(2m+1)}=0$ , since $G’$ , $\ldots$ , $G^{(2m-1)}$ are
linearly independent. Hence the degree of $H$ is $2m$ .

Since $G’$ , $\ldots$ , $G^{(2m-1)}$ form a basis of $\mathbb{C}^{2m-1}$ at every point $p\in \mathbb{C}$ , we
can write $H’=a_{1}G’+\cdots+a_{2m-1}G^{(2m-1)}$ . Hence, for $k=1$ , $\ldots$ , $2m-2$ ,

$\langle G^{(k)}, H’\rangle=\langle G^{(k)}, a_{1}G’+\cdots+a_{2m-1}G^{(2m-1)}\rangle$

$=a_{1}\langle G^{(k)}, G’\rangle+\cdots+a_{2m-1}\langle G^{(k)}, G^{(2m-1)}\rangle$ .

It follows from the isotropicity of $G$ and (18) that $a_{2}=\cdots=a_{2m-1}=0$ .

So, $H’=a_{1}G’$ . It is easy to see that $a_{1}=h$ . Hence, $H’=hG’$ . This
implies that $h$ is a rational function $P_{1}/P_{2}$ and $degP_{1}-deg$ $P_{2}=1$ .

Furthermore, taking the inner product of $H’=hG’$ with $G^{(2m-1)}$ , we
conclude by (18) that $h\langle G’, G^{(2m-1)}\rangle=g^{(2m)}$ . Since $g^{(2m)}$ has degree 1,

it follows from the above fact that $degh=1$ and $deg\langle G’, G^{(2m-1)}\rangle=0$ .

Finally, it follows from

$\langle H, G\rangle’=\langle H’, G\rangle+\langle H, G’\rangle=h\langle G’, G\rangle+g’=\frac{h}{2}\langle G, G\rangle’+g’$

that $deg\langle H, G\rangle’$ is at most $2m$ . $\square $

In Proposition 2, We have constructed examples $F_{m}$ as a general-
ization of Enneper’s surface. We also construct a generalized catenoid
by applying the Weierstrass-Ejiri formula.

Let $F_{m-1}$ be an $(m-1)$-isotropic curve obtained in Proposition 2.
Then $F_{m-1}$ and the multi-valued function $g(z)=z^{m}\log z$ on $\mathbb{C}\backslash \{0\}$ sat-
isfy the assumption of Theorem 1. So, $C_{m}:=WE(\mathbb{C}\backslash \{0\}, F_{m-1}, z^{m}\log z)$
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is a multi-valued strictly $m$-isotropic curve $C_{m}$ : $\mathbb{C}\backslash \{0\}\rightarrow \mathbb{C}^{2m+1}$ . Ex-
plicit computations according to Theorem 1 shows that $ReC_{m}$ : $\mathbb{C}\backslash \{0\}\rightarrow$

$E^{2m+1}$ is single-valued for $m=1,2,3$ . Indeed, they are given by

$F_{0}(z)=z$ ,

$C_{1}(z)=(\frac{1}{2}(-\frac{1}{z}-z),$ $\frac{\sqrt{-1}}{2}(-\frac{1}{z}+z)$ , $\log z)$ ,

$F_{1}(z)=(3z-z^{3}, \sqrt{-1}(3z+z^{3}),$ $3z^{2})$ ,

$C_{2}(z)=(\frac{1}{72}(\frac{1}{z^{2}}-3z^{2}),$ $\frac{\sqrt{-1}}{72}(\frac{1}{z^{2}}+3z^{2})$ , $\frac{1}{18}(\frac{3}{z}+z)$ ,

$\frac{\sqrt{-1}}{18}(\frac{3}{z}-z)$ , $\frac{1}{12}(1-2\log z))$ ,

$F_{2}(z)=(\frac{-1}{3}z(3z^{4}+5),$ $\frac{\sqrt{-1}}{3}z(3z^{4}-5)$ , $\frac{5}{6}z^{2}(z^{2}-6)$ ,

$\frac{-5}{6}\sqrt{-1}z^{2}(z^{2}+6)$ , $\frac{-10}{3}z^{3})$ ,

$C_{3}(z)=(\frac{1}{3600}(\frac{9}{z^{3}}+10z^{3}),$ $\frac{\sqrt{-1}}{3600}(\frac{9}{z^{3}}-10z^{3}),$ $-\frac{1}{400}(\frac{5}{z^{2}}-3z^{2})$ ,

$-\frac{\sqrt{-1}}{400}(\frac{5}{z^{2}}+3z^{2})$ , $-\frac{1}{80}(\frac{6}{z}+z)$ , $-\frac{\sqrt{-1}}{80}(\frac{6}{z}-z)$ ,

$\frac{1}{120}(6\log z-5))$ .

Hence, $ReC_{1}$ , $ReC_{2}$ and $ReC_{3}$ are single-valued.\ddagger
In the cases of $m=1,2,3$ , explicit formulas of $C_{m}$ also show that

$ReC_{m}$ is a complete minimal surface of genus zero, with two ends and
of total curvature $-4m\pi$ . In particular, $ReC_{1}$ is the catenoid.

If we represent Jorge-Meeks’ trinoid (8) by the Weierstrass-Ejiri For-
mula, then it is given by

$G(z)=z^{2}$ ,

$g(z)=\frac{z^{2}}{6}+\frac{1}{3\sqrt{3}}\arctan(\frac{1+2z}{\sqrt{3}})+\frac{1}{18}(z^{4}-1)\log\frac{z^{2}+z+1}{(z-1)^{2}}$ .

Also, the following is an example similar to the trinoid.

\ddagger For general $m$ , it is still open whether $ReC_{m}$ is single-valued or not.
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Example 4. $M=(\mathbb{C}\cup\{\infty\})\backslash \{z^{3}=1\}$ , and

$f(z)=Re\int\left(\frac{3-3z^{10}}{(z^{3}-1)^{4}},\frac{\sqrt{-1}(3+3z^{10})}{(z^{3}-1)^{4}},\frac{z^{2}(5+5z^{6})}{(z^{3}-1)^{4}},\right.$

$\frac{\sqrt{-1}z^{2}(5-5z^{6})}{(z^{3}-1)^{4}}$ , $\frac{8\sqrt{-1}z^{5}}{(z^{3}-1)^{4}})dz$ ,

which is given by

$G(z)=(\frac{5}{6}z^{2}(1+z^{6}),$ $\frac{5}{6}\sqrt{-1}z^{2}(1-z^{6})$ , $\frac{4}{3}\sqrt{-1}z^{5})$

$g(z)=\frac{4}{243}\{2z^{2}(10-41z^{3}+40z^{6})$

$+30\sqrt{3}(z^{10}+1)\arctan(\frac{1+2z}{\sqrt{3}})+15(z^{10}-1)\log\frac{z^{2}+z+1}{(z-1)^{2}}\}$

through the Weierstrass-Ejiri formula.
This is a strictly 2-isotropic complete minimal surface with three

ends, of genus zero and of total curvature $-20\pi$ .

\S 4. Total curvature

First, we recall some fundamental facts needed later (see [1], [5]
etc.).

If a complete minimal surface $f:M$ $\rightarrow E^{N}$ has finite total curvature,
then $M$ is biholomorphic to a compact Riemann surface $\overline{M}$ punctured
at a finite number of points $p_{1}$ , $\ldots,p_{r}$ , i.e., $M\cong\overline{M}\backslash \{p_{1}, \ldots,p_{r}\}$ . A
sufficiently small neighborhood of each $p_{S}$ is called an end of $M$ . The
Gauss map $[\partial f/\partial z]:M\rightarrow \mathbb{C}P^{N-1}$ can extend to a holomorphic map

from $\overline{M}$ to $\mathbb{C}P^{N-1}$ . In other words, $\partial f/\partial z$ has a pole at each end. It
is known that because of the completeness the order of pole at any end
is greater than or equal to 2, that is, the Laurent expansion of $\partial f/\partial z$

centered at $p_{S}(s=1, \ldots, r)$

(20) $\frac{\partial f}{\partial z}=\frac{1}{z^{l_{s}}}a_{-l_{s}}^{s}+\cdots+\frac{1}{z}a_{-1}^{s}+holomorphic$ part, $a_{-l_{s}}^{s}\neq 0\in \mathbb{C}^{N}$

has the property that

(21) $l_{s}\geq 2$ , $s$ $=1$ , $\ldots$ , $r$ .

Note that Chern-Osserman’s inequality is an immediate conclusion of
(21).
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We also have

(22) $a_{-1}^{s}\in \mathbb{R}^{N}$ , $s=1$ , $\ldots$ , $r$ ,

since $Re\int(\partial f/\partial z)dz$ is single-valued.

Let $V$ be a complex vector subspace of $\mathbb{C}^{N}$ spanned by

$a_{-l_{s}}^{s}$ , $\ldots$ , $a_{-1}^{s}$ $(1\leq s\leq r)$ ,

and $\tilde{V}$ a real vector subspace of $E^{N}$ spanned by

$Rea_{-l_{s}}^{s}$ , $Ima_{-l_{s}}^{s}$ , $\ldots$ , $Rea_{-1}^{s}$ , $Ima_{-1}^{s}$ $(1 \leq s\leq r)$ .

If $f$ is a full immersion, then it holds that

(23) $dim\tilde{V}=N$ .

On the other hand, it is known that the following equality, which is
called the Balancing formula (see [5]), holds:

(24) $\sum a_{-1}^{s}=0$ .

Hence, we have

(25) $dim_{\mathbb{C}}V\leq\sum_{s}l_{s}-1$
.

Note that the inequality (25) is one of the reason why Ejiri’s inequality
holds.

In the following, we investigate what surface attains the equality
both in Chern-Osserman’s inequality and in Ejiri’s inequality.

Recall that Jorge-Meeks’ $n$-noid attains the equality in Chern-Osser-
man’s inequality for any $n$ and that Jorge-Meeks’ 2-noid is the catenoid.
On the other hand, the equality in Ejiri’s inequality is attained by
$ReF_{m}(m=1,2, \ldots)$ or $ReC_{m}(m=1,2,3)$ obtained in Section 3.
This is verified by proving the following lemma.

Lemma 5. A strictly $m$ -isotropic minimal surface in $E^{2m+1}$ is
nondegenerate.

Proof Let $f:M\rightarrow E^{2m+1}$ be a strictly $m$-isotropic minimal sur-
face, and $F:M\rightarrow \mathbb{C}^{2m+1}$ its lift. Then $F$ is also strictly $m$-isotropic,

and hence is full by Lemma 3. The Gauss map $[f’]$ is equal to $[F’]$ .

Assume that $f$ is degenerate. Then there exists a constant vector
$\xi\in \mathbb{C}^{2m+1}$ such that $\langle F’, \xi\rangle=0$ . Hence, $\langle F, \xi\rangle=constant$ , which
contradicts to the fullness of F. $\square $
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Recall that $ReC_{1}$ is also the catenoid. So, the catenoid is an ex-
ample of complete minimal surfaces which attain the equality both in
Chern-Osserman’s inequality and in Ejiri’s inequality. Conversely, Main
Theorem in Section 1 asserts that the catenoid can be characterized as
an $m$-isotropic surface in $E^{2m+1}$ with these properties.

We now give a proof of Main Theorem in what follows.

Lemma 6. If a strictly $m$ -isotropic complete minimal surface $M$

in $E^{2m+1}$ attains the equality in Chern-Osserman’s inequality, then the
number of ends of $M$ is greater than $m$ .

Proof. The equality implies that the order of pole at each end is
exactly 2. Hence, the Laurent expansion (20) leads to

(26) $\frac{\partial f}{\partial z}=\frac{1}{z^{2}}a_{-2}^{s}+\frac{1}{z}a_{-1}^{s}+holomorphic$ part, $a_{-2}^{s}\neq 0\in \mathbb{C}^{N}$ .

If $m\geq 2$ , then it is verified from the 2-isotropicity and (22) that

(27) $a_{-1}^{s}=0$

in (26). Hence, $dim\tilde{V}\leq 2r$ . Therefore, $2m+1\leq 2r$ by (23). Since $m$

and $r$ are integers, we conclude that $m+1\leq r$ .

If $m=1$ , then by the Balancing formula (24), we have

$3=dim\tilde{V}\leq 2r+(r-1)$ .

Hence, $4\leq 3r$ , which means that $2\leq r$ , since $r$ is an integer. $\square $

Lemma 7. If a strictly $m$ -isotropic complete minimal surface $M$

in $E^{2m+1}$ attains the equality both in Chern-Osserman’s inequality and
in Ejiri ’s inequality, then the genus of $M$ is zero and the number of ends
of $M$ is $m+1$ .

Proof. By our assumption, we have

$\int_{M}KdA=4(1-g-r)\pi=2(1-g-(2m+1))\pi$ ,

which implies that

(28) $2(m+1-r)=g$ .

The left-hand side of (28) is smaller than or equal to 0 by Lemma 6 and
the right-hand side is greater than or equal to 0. Therefore, both side
rnust be 0. $\square $
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Proof of Main Theorem. The equality in Chern-Osserman’s inequal-
ity implies that

(29) $\sum l_{s}=2r=2(m+1)$

by Lemma 7. Moreover, the equality in Ejiri’s inequality implies that
the equality must hold in (25). It follows from (29) that

(30) $dim_{\mathbb{C}}V=2(m+1)-1=2m+1$ .

On the other hand, if we assume $m\geq 2$ , then $dim_{\mathbb{C}}V\leq r=m+1$

holds because of (27), and hence the equality (30) cannot occur.
Therefore, we have $m=1$ . In this case, $g=0$ , $r=2$ and the total

curvature is $-4\pi$ . So, it is the catenoid. $\square $

Next, we consider only Chern-Osserman’s inequality for strictly m-
isotropic complete minimal surfaces in $E^{2m+1}$ .

Assume now that the equality is attained by a strictly $m$ isotropic
complete minimal surface $f:M\rightarrow E^{2m+1}$ . By Lemma 6, the number of
ends of $M$ is greater than $m$ . Hence, in the case of $m=1$ , the possibility
of the number of ends is 2, 3, 4, . . .. Indeed, Jorge Meeks’ $n$-noids realize
these values. In the case of $m=2$ , the possibility of the number of ends
is 3, 4, 5, . . .. However, this case is not quite similar to the case of $m=1$ .

Proposition 3. A strictly 2-isotropic complete minimal surface
of genus zero with three ends in $E^{5}$ never attain the equality in Chern-
Osserman’s inequality.

Proof. Assume that there exists a strictly 2-isotropic complete min-
imal surface of genus zero with three ends in $E^{5}$ which attains the equal-
ity in Chern-Osserman’s inequality.

By our assumption, the surface is biholomorphic to $\mathbb{C}\cup\{\infty\}$ punc-
tured at three points. Without loss of generality, we may assume that
these three points are cubic roots of 1, i.e., $\{z^{3}=1\}$ (if necessary, three
punctured points can be mapped to $\{z^{3}=1\}$ by a linear transformation
of $\mathbb{C}\cup\{\infty\})$ .

Since the equality is attained in Chern-Osserman’s inequality, the
$\mathbb{C}^{N}$ -valued one-form $(\partial f/\partial z)dz$ has a pole of order 2 at each end and
the other points are regular. Hence, $\Omega:=(z^{3}-1)^{2}(\partial f/\partial z)$ has a pole
only at $ z=\infty$ . This implies that $\Omega$ is a polynomial of $z$ . The degree of
$\Omega$ is 4, since the induced metric

$(\frac{\partial f}{\partial z}dz)(\overline{\frac{\partial f}{\partial z}dz})$
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determines a positive definite inner product at $ z=\infty$ .

Now, we put

(31) $\frac{\partial f}{\partial z}=\frac{a_{0}z^{4}+a_{1}z^{3}+a_{2}z^{2}+a_{3}z+a_{4}}{(z^{3}-1)^{2}}$ , $a_{j}\in \mathbb{C}^{5}$ .

Since $Re\int(\partial f/\partial z)dz$ is single-valued, the residue at each pole takes a
value in $\mathbb{R}$ .

Indeed,

${\rm Res}_{z=1}=\frac{1}{9}(2a_{0}+a_{1}-a_{3}-2a_{4})$ ,

${\rm Res}_{z=(-1)^{2/3}}=-\frac{1}{18}(2a_{0}+a_{1}-a_{3}-2a_{4})-\frac{\sqrt{3}}{18}i(2a_{0}-a_{1}-a_{3}+2a_{4})$ ,

${\rm Res}_{z=(-1)^{4/3}}=-\frac{1}{18}(2a_{0}+a_{1}-a_{3}-2a_{4})+\frac{\sqrt{3}}{18}i(2a_{0}-a_{1}-a_{3}+2a_{4})$ ,

where $i$ denotes the imaginary unit $\sqrt{-1}$ . Hence, the following holds.

(32) $\{$

$2a_{0}+a_{1}-a_{3}-2a_{4}\in \mathbb{R}^{5}$ ,

$2a_{0}-a_{1}-a_{3}+2a_{4}\in\sqrt{-1}\mathbb{R}^{5}$ .

In the following, we show that the equation (32) contradicts the
strictly 2-isotropicity of the surface.

By (31), the 1-isotropicity $\langle\partial f/\partial z, \partial f/\partial z\rangle=0$ implies that

$\langle a_{0}, a_{0}\rangle=0$ , $\langle a_{0}, a_{1}\rangle=0$ , $\langle a_{1}, a_{1}\rangle+2\langle a_{0}, a_{2}\rangle=0$ , $\langle a_{1}, a_{2}\rangle+\langle a_{0}, a_{3}\rangle=0$ ,

$\langle a_{2}, a_{2}\rangle+2\langle a_{1}, a_{3}\rangle+2\langle a_{0}, a_{4}\rangle=0$ , $\langle a_{2}, a_{3}\rangle+\langle a_{1}, a_{4}\rangle=0$ ,

$\langle a_{3}, a_{3}\rangle+2\langle a_{2}, a_{4}\rangle=0$ , $\langle a_{3}, a_{4}\rangle=0$ , $\langle a_{4}, a_{4}\rangle=0$ ,

and the condition $\langle\partial^{2}f/\partial z^{2}, \partial^{2}f/\partial z^{2}\rangle=0$ implies that

$\langle a_{0}, a_{0}\rangle=0$ , $\langle a_{0}, a_{1}\rangle=0,9\langle a_{1}, a_{1}\rangle+16\langle a_{0}, a_{2}\rangle=0$ ,

$3\langle a_{1}, a_{2}\rangle+2\langle a_{0}, a_{3}\rangle=0,2\langle a_{2}, a_{2}\rangle+3\langle a_{1}, a_{3}\rangle=0$ , $\langle a_{2}, a_{3}\rangle=0$ ,

$\langle a_{3}, a_{3}\rangle=0$ .

Summing up these, we have

(33) $\langle a_{0}, a_{0}\rangle=\langle a_{0}, a_{1}\rangle=\langle a_{0}, a_{2}\rangle=\langle a_{0}, a_{3}\rangle=\langle a_{1}, a_{1}\rangle=\langle a_{1}, a_{2}\rangle$

$=\langle a_{1}, a_{4}\rangle=\langle a_{2}, a_{3}\rangle=\langle a_{2}, a_{4}\rangle=\langle a_{3}, a_{3}\rangle=\langle a_{3}, a_{4}\rangle=\langle a_{4}, a_{4}\rangle=0$ ,

(34) $\langle a_{2}, a_{2}\rangle+2\langle a_{1}, a_{3}\rangle+2\langle a_{0}, a_{4}\rangle=0,2\langle a_{2}, a_{2}\rangle+3\langle a_{1}, a_{3}\rangle=0$ .
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Equations in (34) imply that

(35) $\langle a_{1}, a_{3}\rangle+4\langle a_{0}, a_{4}\rangle=0$ .

It then follows from (33) and (35) that $2a_{0}+a_{1}-a_{3}-2a_{4}$ and $2a_{0}-a_{1}-$

$a_{3}+2a_{4}$ are both isotropic vectors. However, they are real-valued and
purely imaginary-valued, respectively. Hence, they must be zero, i.e.,

$2a_{0}+a_{1}-a_{3}-2a_{4}=0,2a_{0}-a_{1}-a_{3}+2a_{4}=0$ .

Therefore, we have
$2a_{0}=a_{3}$ , $a_{1}=2a_{4}$ .

It follows that
$\langle a_{1}, a_{3}\rangle=4\langle a_{0}, a_{4}\rangle$ ,

which implies from (35) that

$\langle a_{1}, a_{3}\rangle=\langle a_{0}, a_{4}\rangle=0$ .

By (34), we also have $\langle a_{2}, a_{2}\rangle=0$ . Consequently, we have for all $j$ , $k=$

0, 1, 2, 3, 4,
$\langle a_{j}, a_{k}\rangle=0$ .

Therefore, $\langle\partial^{3}f/\partial z^{3}, \partial^{3}f/\partial z^{3}\rangle=0$ , which is a contradiction to the
strictness of the surface. $\square $

Finally of this paper, we propose a problem related to Proposition
3.

Problem. Is there an inequality sharper than Chern-Osserman’s
inequality for strictly $m$-isotropic complete minimal surfaces in $E^{2m+1}$

$(m\geq 2)$ ? Namely, is there a constant $C(m, g, r)$ depending only on
$m$ , $g$ , $r$ such that

$\int_{M}KdA\leq C(m, g, r)\leq 4(1-g-r)\pi$

holds for all strictly $m$-isotropic complete minimal surfaces in $E^{2m+1}$ of
genus $g$ and with $r$ ends?

Proposition 3 means that

$\int_{M}KdA<4(1-g-r)\pi$

in the case of $m=2$ , $g$ $=0$ and $r=3$ . Hence, $C(2,0,3)$ is at most $4(1-$

$ 0-3)\pi-2\pi=-10\pi$ , because the total curvature of complete minimal
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surface takes value in $2\pi \mathbb{Z}$ . On the other hand, there exists a strictly
2-isotropic complete minimal surface with three ends, of genus zero and
of total curvature $-20\pi$ , which is stated in Example 4. Therefore we
conclude that $-20\pi\leq C(2,0,3)\leq-10\pi$ .
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The Topology of Toric HyperK\"ahler Manifolds

Hiroshi Konno1

Abstract.

The topology of hyperK\"ahler quotients of quaternionic vector
spaces by tori is studied. We discuss the relation between their topol-
ogy and a combinatorial property of some polyhedral complexes. As
its simple application we compute their Chern classes.

\S 1. Introduction

The topology of symplectic quotients has been intensively studied in

the last two decades. Especially, Kirwan’s theory enables us to compute
the Betti numbers of symplectic quotients [9], and thanks to the theory
of Jeffrey and Kirwan [8] we can investigate their cohomology rings. On
the other hand, various classes of hyperK\"ahler quotients were introduced
and studied in detail by many authors, but their topology has not yet
been studied well. Recently, in this regard Bielawski and Dancer studied
hyperK\"ahler quotients of quaternionic vector spaces $H^{N}$ by subtori of
$T^{N}$ , which they call toric hyperK\"ahler manifolds [2].

Being influenced by their work, we intend to study the topology of
toric hyperK\"ahler manifolds. It should be remarked that every toric
hyperK\"ahler manifold, if we deform its hyperK\"ahler structure appropri-
ately, contains a union of projective toric manifolds as its deformation
retract. Because of this fact we call it the core of the toric hyperK\"ahler
manifold. Generally speaking, the topology of projective toric manifolds
is well-known [4]. However, since they intersect in a complicated way, it

is not easy to study the topology of the core. Concerning this, in [10]
we determined their cohomology rings.

In this note we also study the topology of toric hyperK\"ahler man-
ifolds. The structure of the core is described by a polyhedral complex
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associated to it. We discuss the relation between the topology of toric
hyperK\"ahler manifolds and a combinatorial property of the associated
polyhedral complex. As its simple application we compute the total
Chern class of toric hyperK\"ahler manifolds.

In Section 2 we define toric hyperK\"ahler manifolds and describe
their cohomology rings, which is proved in [10]. The relation of the
topology of toric hyperK\"ahler manifolds and their associated polyhedral
complexes is studied in Section 3. In Section 4 we compute their Chern
classes.

The author would like to thank T. Gocho for suggesting a proof
of Lemma 3.3. He also would like to thank for the organizers of the
conference and JAMI for their hospitality.

\S 2. Toric hyperK\"ahler manifolds

In this section we define toric hyperK\"ahler manifolds and describe
their cohomology rings.

First, let us recall the hyperK\"ahler structure on the quaternionic
vector space $H^{N}$ . Let $\{1, I_{1}, I_{2}, I_{3}\}$ be the standard basis of H. On
$H^{N}$ we define three complex structures by the multiplication of $I_{1}$ , $I_{2}$ , $I_{3}$

from the left, respectively. We denote these complex structures also by
$I_{1}$ , $I_{2}$ , $I_{3}$ . The real torus $T^{N}=\{\alpha=(\alpha_{1}, \ldots, \alpha_{N})\in C^{N}||\alpha_{i}|=1\}$

acts on $H^{N}$ from the right diagonally, and preserves its hyperK\"ahler
structure. If we identify $\xi\in H^{N}$ with $(z, w)\in C^{N}\times C^{N}$ by $\xi=z+wI_{2}$ ,

then the action is given by

$(z, w)\alpha=(z\alpha, w\alpha^{-1})$ .

Let $K$ be a subtorus of $T^{N}$ with Lie algebra $k\subset t^{N}$ . Then we have
the torus $T^{r\iota}=T^{N}/K$ with Lie algebra $t^{7\iota}=t^{N}/k$ . Moreover, we have
the following exact sequences:

0 $\rightarrow$ $k$
$\rightarrow L$ $t^{N}$ $\rightarrow\pi$

$t^{r\iota}$ $\rightarrow$ 0,

0 – $k^{*}$

$\underline{\iota^{*}}$

$(t^{N})^{*}$
$\underline{\pi^{*}}$

$(t^{n})^{*}$ – 0.

Since the action of $K$ on $H^{N}$ preserves its hyperK\"ahler structure, we
obtain the hyperK\"ahler moment map

$\mu_{K}=(\mu_{K,1}, \mu_{K,2}, \mu_{K,3}):H^{N}\rightarrow k^{*}\otimes R^{3}$ ,
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which is given by

$\mu_{K,1}(z, w)=\pi\sum_{i=1}^{N}(|z_{i}|^{2}-|w_{i}|^{2})\iota^{*}u_{i}$ ,

$(\mu_{K,2}+\sqrt{-1}\mu_{K,3})(z, w)=-2\pi\sqrt{-1}\sum_{\dot{x}=1}^{N}z_{i}w_{i}\iota^{*}u_{i}$ ,

where $\{u_{1}, \ldots, u_{N}\}\subset(t^{N})^{*}$ is the dual basis of the standard basis
$\{X_{1}, \ldots, X_{N}\}\subset t^{N}$ . Now we define toric hyperK\"ahler manifolds.

Definition. If $lJ$
$\in k^{*}\otimes R^{3}$ is a regular value of the hyperK\"ahler

moment map $\mu_{K}$ and if the action of $K$ on $\mu_{K}^{-1}(\nu)$ is free, we call the
hyperK\"ahler quotient

$X(\iota/)=\mu_{K}^{-1}(\iota/)/K$

a toric hyperK\"ahler manifold.

Note that $X(\iota/)$ is a $4n$ dimensional hyperK\"ahler manifold. We
denote its hyperK\"ahler structure by $(g_{\iota/}, I_{\iota/,1}, I_{\iota/,2}, I_{\iota/,3})$ . The torus $T^{r\iota}=$

$T^{N}/K$ acts on $X(I/)$ , preserving its hyperK\"ahler structure. This action
gives the hyperK\"ahler moment map

$\mu_{T^{n}}=(\mu T^{n},1, \mu T^{n},2, \mu_{T^{\eta},3}):X(\nu)\rightarrow(t^{n})^{*}\otimes R^{3}$ .

The terminology ‘a toric hyperK\"ahler manifold’ is due to Bielawski and
Dancer [2]. One of their results is the following:

Fact 2.1. The diffeomorphism type of a toric hyperK\"ahler manifold
$X(\iota/)$ is independent of the choice of iJ.

In [10], for each $h\in(t_{Z}^{N})^{*}=\sum_{i=1}^{N}Zu_{i}$ , we constructed a holomor-
phic line budle $L_{h}$ on $X(l/)$ with respect to the complex structure $I_{l/,1}$ .

The equation $z_{i}=0$ defines a divisor $D_{u_{\dot{z}}}$ on $X(\nu)$ , and we showed that
the holomorphic line bundle defined by the divisor $D_{u_{i}}$ is $L_{u_{i}}$ . More-
over, we showed that the dual line bundle $L_{u_{i}}^{*}$ corresponds to the divisor
defined by the equation $w_{i}=0$ . In [10] we described the cohomology
ring of $X(\iota/)$ in terms of the subtorus $K$ as follows.

Theorem 2.2. Let $\Phi:Z[u_{1}, \ldots, u_{N}]\rightarrow H^{*}(X(\nu);Z)$ be a ring
homomorphism defined by $\Phi(u_{i})=c_{1}(L_{u_{i}})$ . Then the following holds:
(1) The map $\Phi$ is surjective. Therefore we have an isomorphism as $a$

ring:

$H^{*}(X(l/);Z)\cong Z[u_{1}, \ldots, u_{N}]/ker$ $\Phi$ .
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(2) $ker\Phi$ is an ideal generated by all

1. $\sum_{i=1}^{N}a_{i}u_{i}\in ker\iota^{*}\cap(t_{Z}^{N})^{*}$ , and

2. $\prod_{b_{i}\neq 0}u_{i}$ for $\sum_{i=1}^{N}b_{i}X_{i}\in k\backslash \{0\}$ .

Example. Let $\pi:t^{5}\rightarrow t^{3}$ be a surjevtive map such that $\pi(X_{4})=$

$-\pi(X_{1})-\pi(X_{2})$ and $\pi(X_{5})=-\pi(X_{1})-\pi(X_{3})$ . Then we have a toric
hyperK\"ahler manifold $X(l/)$ for $iJ$

$\in k^{*}\otimes R^{3}$ satisfying the condition
mentioned above. Since $k$ is spanned by $\{X_{1}+X_{2}+X_{4}, X_{1}+X_{3}+X_{5}\}$ ,

there are 4 types of elements in $k$ as follows:

$X_{1}+X_{2}+X_{4}$ , $X_{1}+X_{3}+X_{5}$ , $X_{2}-X_{3}+X_{4}-X_{5}$ ,

$\sum_{i=1}^{5}a_{i}X_{i}$ where $a_{i}\neq 0$ for $i=1$ , $\ldots$ , 5.

Moreover, since $ker\iota^{*}$ is spanned by $\{u_{2}-u_{4}, u_{3}-u_{5}, u_{1}-u_{2}-u_{3}\}$ ,
Theorem 2.2 implies that in this case $ker\Phi$ is generated by

$\{u_{2}-u_{4}, u_{3}-u_{5}, u_{1}-u_{2}-u_{3}, u_{1}u_{2}u_{4}, u_{1}u_{3}u_{5}, u_{2}u_{3}u_{4}u_{5}, u_{1}u_{2}u_{3}u_{4}u_{5}\}$ .

\S 3. The associated polyhedral complex

In this section we associate a polyhedral complex $C(X(\nu))$ to a
toric hyperK\"ahler manifold $X(\nu)$ with $lJ$ $=(\nu_{1},0,0)\in k^{*}\otimes R^{3}$ . We
also discuss the relation between the topology of $X(\iota/)$ and the asso-
ciated polyhedral complex. Throughout this section, we assume that
$\nu=(\nu_{1},0,0)\in k^{*}\otimes R^{3}$ . We also fix an element $h\in(t^{N})^{*}$ such that
$\iota^{*}h=\nu_{1}$ .

First, let us recall the notion of a polyhedral complex. A polyhedral
complex $C$ is by definition a family of polyhedra in the fixed $R^{n}$ satisfying
the following conditions:

1. If $\sigma$ is an element of $C$ , then every face of $\sigma$ belongs to C.
2. If $\sigma$ and $\tau$ are elements of $C$ and the intersection $\sigma\cap\tau$ is not

empty, then $\sigma\cap\tau$ is a face of both $\sigma$ and $\tau$ .

We define the support of $C$ by $|C|=\bigcup_{\sigma\in C}\sigma$ .

Now we associate a polyhedral complex $C(X(\nu))$ to a toric hy-
perK\"ahler manifold $X(l/)$ with $lJ$ $=(l/_{1},0,0)\in k^{*}\otimes R^{3}$ . Recall that
we fixed $h\in(t^{N})^{*}$ such that $\iota^{*}h=I/_{1}$ . We define hyperplanes $F_{i}$ in
$(t^{7b})^{*}$ by

$F_{i}=\{p\in(t^{n})^{*}|\langle\pi^{*}p+h, X_{i}\rangle=0\}$ for $i=1$ , $\ldots$ , $N$ .

Then these hyperplanes devide $(t^{n})^{*}$ into a finite number of closed convex
polyhedra $\{\triangle_{\epsilon}|\epsilon\in\Theta\}$ , where $\ominus is$ the set consisting of all maps from
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$\{1, \ldots, N\}$ to $\{1,$ $-1\}$ , and $\triangle_{\epsilon}\subset(t^{n})^{*}$ is defined by

$\triangle_{\epsilon}=$ { $p\in(t^{n})^{*}|\epsilon(i)\langle\pi^{*}p+h$ , $X_{i}\rangle\geq 0$ for any $i=1$ , $\ldots$ , $N$ }.

Then the associated polyhedral complex $C(X(\nu))$ is defined to be a com-
plex consisting of all compact faces of all polyhedra $\triangle_{\epsilon}$ , where $\epsilon\in\Theta$ .

It should be remarked that, to define $C(X(\nu))$ , we need $h\in(t^{N})^{*}$ such
that $\iota^{*}h=\nu_{1}$ . However, $C(X(\nu))$ is determined by $\nu_{1}$ up to parallel
translation. So we use this notation.

For each $\epsilon\in\Theta$ , we define a subspace $V_{\epsilon}$ of $H^{N}$ as follows: $(z, w)\in V_{\epsilon}$

if and only if, for any $i=1$ , $\ldots$ , $N$ , $w_{i}=0$ if $\epsilon(i)=1$ , and $z_{i}=0$ if
$\epsilon(i)=-1$ . It is easy to see that if we set $M_{\epsilon}=\mu_{T^{n}}^{-1}(\triangle_{\epsilon}, 0,0)$ , then we
have

$M_{\epsilon}=\{V_{\epsilon}\cap\mu_{K,1}^{-1}(l/_{1})\}/K$ .

Since $V_{\epsilon}\cong C^{N}$ , $M_{\epsilon}$ is an ordinary toric manifold.
Let us recall the fundamental property of $X(\nu)$ , which is proved in

[10].

Lemma 3.1. (1) $\mu_{T^{n}}^{-1}((t^{n})^{*}, 0,0)=\bigcup_{\epsilon\in O-}M_{\epsilon}$ .

(2) Suppose that $\triangle_{\epsilon}\cap F_{i}$ is a face of $\triangle_{\epsilon}$ with codimension one. Then the

homology class represented by $\mu_{T^{n}}^{-1}(\triangle_{\epsilon}\cap F_{i}, 0,0)$ is the Poincar\’e dual of
$\epsilon(i)c_{1}(L_{u_{i}})$ in $M_{\epsilon}$ .

Then we have the following fact, which was due to [5] in special
cases and due to [2] for general toric hyperK\"ahler manifolds.

Fact 3.2. Let $X(I/)$ be a toric hyperK\"ahler manifold with $lJ$ $=$

$(\nu_{1},0,0)$ and $C=C(X(\nu))$ the associated polyhedral complex. Then the

following holds:
(1) For each $\tau\in C(X(\nu))$ , $N_{\tau}=\mu_{T^{n}}^{-1}(\tau, 0,0)$ is a projective toric sub-

manifold of $X(\nu)$ .

(2) $\bigcup_{\tau\in C}N_{\tau}=\mu_{T^{n}}^{-1}(|C|, 0,0)$ is a $T^{r\iota}$ -equivariant deformation retract of
$X(\nu)$ .

(3) The homeomorphism type of $\bigcup_{\tau\in C}N_{\tau}$ is completely determined by
the combinatorial structure of the associated polyhedral complex $C(X(\nu))$ .

Definition. Due to Fact 3.2 we call the union of projective toric

manifolds $\bigcup_{\tau\in C}N_{\tau}$ the core of the toric hyperK\"ahler manifold $X(\nu)$ .

Example. Let us consider a toric hyperK\"ahler manifold $X(\nu)$ in
Section 2 again. Here we assume $iJ$ $=(\iota/_{1},0,0)$ . If we set $v_{1}=\iota^{*}u_{4}=$

$\iota^{*}u_{2}$ and $v_{2}=\iota^{*}u_{5}=\iota^{*}u_{3}$ , then $k^{*}$ is devided into six chambers as in

Figure 1. Suppose that $\nu_{1}\in S_{1}$ . If we define $\epsilon_{1}$ , $\epsilon_{2}\in\ominus by$

$\epsilon_{1}(i)=1$ for $i=1,2,3,4,5$ , $\epsilon_{2}(i)=\{$

1 for $i=1,2,4$ ,
-1 for $i=3,5$ ,
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then the associated polyhedral complex $C(X(\nu))$ consists of all faces of
$\triangle_{\epsilon_{1}}$ and $\triangle_{\epsilon_{2}}$ as in Figure 2, where we take an appropriate coordinate
$(a_{1}, a_{2}, a_{3})$ in $(t^{3})^{*}$ such that $F_{i}=\{(a_{1}, a_{2}, a_{3})|a_{i}=0\}$ for $i=1,2,3$ .

We remark that the combinatorial structure of the associated polyhedral
complex and the topology of the core depend on the chamber. However,

the topology of $X(\nu)$ does not depend on it [10].

Figure 1.

Thus, to study the cohomology of $X(\nu)$ , we have only to study its
core $\bigcup_{\tau\in C}N_{\tau}$ . It is a union of projective toric manifolds, which intersect
along toric submanifolds. The topology of projective toric manifolds $N_{\tau}$

is well-known [4]. However, since $N_{\tau}$ ’s intersect in a comlpicated way, it
is not easy to study the topology of the core.

Let us recall the notion of star-collapsibility, which we learned from
the earlier version of [2].

Definition. A polyhedral complex $C$ is star-collapsible if there
exists a filtration

$\emptyset=C_{r+1}\subset C_{r}\subset\cdots\subset C_{1}=C$

by subcomplexes such that, for $i\leq r$ , there exists a vertex $x_{i}\in C_{i}$ and
the following conditions are satisfied:
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$c\iota_{2}$

$a$

Figure 2.

1. There exists $\sigma_{i}\in C_{i}$ uniquely such that $x_{i}\in\sigma_{i}$ and $\sigma_{i}$ is a maximal
element in $C_{i}$ .

2. $C_{i}\backslash C_{i+1}=$ { $\tau\in C_{i}|x_{i}\in\tau$ , $\tau$ is a face of $\sigma_{i}$ }.

Now we show the following lemma. The proof below was suggested
by T. Gocho.

Lemma 3.3. Let $X(\nu)$ be a toric hyperKdhler manifold with $\nu=$

$(\nu_{1},0,0)$ . Then the associated polyhedral complex $C(X(\nu))$ is star-col-
lapsible.

Proof. Define the $S^{1}$ -action on $H^{N}$ by $(z, w)\beta=(z\beta, w\beta)$ for $\beta\in$

$S^{1}$ . This induces the $S^{1}$ -action on $X(\nu)$ . It is easy to see that this

action preserves $\omega_{l/,1}$ , which is the K\"ahler form with respect to $I_{\nu,1}$ .

Note that the moment map for this action $\mu_{S^{1}}$ : $X(\nu)\rightarrow R$ is proper
and $T^{n}$-invariant. If we perturb this function by a small and generic
$\xi\in t^{n}$ as

$ f([z, w])=\mu_{S^{1}}([z, w])+\langle\mu_{T^{n},1}([z, w]), \xi\rangle$ ,

then $f$ remains proper and the critical point set of $f$ coincides with the
fixed point set of $T^{n}$ , which consists of finite points $\{p_{1}, \ldots, p_{r}\}$ . We
may also assume $f(p_{1})>f(p_{2})>\cdots>f(p_{r})$ .
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Moreover the gradient flow of $f$ is described by the action of 1-
parameter subgroup of the complexification of $S^{1}\times T^{n}$ . Therefore the
gradient flow preserves $N_{\tau}$ for every $\tau\in C(X(\nu))$ .

Note that $f|_{\mu_{\overline{T}^{n}}^{1}((t^{n})^{*},0,0)}$ desends to the function $\overline{f}$ on $(t^{n})^{*}$ . Since
$\overline{f}$ is also proper and bounded below, it is easy to see that, for every
$x_{i}=\mu_{T^{n},1}(p_{i})$ , there exists a unique maximal $\sigma_{i}\in C(X(\nu))$ such that
$x_{i}\in\sigma_{i}$ and $\overline{f}|_{\sigma_{i}}$ has the maximum at $x_{i}$ . Thus $x_{i}$ ’s and $\sigma_{i}$ ’s define a
desired filtration on $C(X(\nu))$ . $\square $

Now we discuss the relation between the topology of $X(\nu)$ and the

combinatorial property of $C(X(\nu))$ .

Theorem 3.4. Let $X(\nu)$ be a toric hyperKdhler manifold with
$\nu=(\nu_{1},0,0)$ with the associated polyhedral complex $C$ $=C(X(\nu))$ . Let
$\emptyset=C_{r+1}\subset C_{r}\subset\cdots\subset C_{1}=C$ , $x_{i}\in C_{i}$ and $\sigma_{i}\in C_{i}$ be a filtration,
vertices and faces concerned with star-collapsibility, respectively. We set
$N_{i}=\mu_{T^{n}}^{-1}(\sigma_{i}, 0,0)$ for $i=1$ , $\ldots$ , $r$ . We denote the embedding of $N_{i}$ into
$X(\nu)$ by $\psi_{i}$ : $N_{i}\rightarrow X(\nu)$ . Then we have

$r$

$ker\Phi=i=1\cap ker(\psi_{i}^{*}\circ\Phi)$
.

Proof Since $ker\Phi\subset\bigcap_{i=1}^{r}ker(\psi_{\dot{x}}^{*}\circ\Phi)$ is trivial, we have only to
show that $ker\Phi\supset\bigcap_{i=1}^{r}ker(\psi_{i}^{*}\circ\Phi)$ . To prove this, it is sufficient to
show that the map

$r$ $r$

$\Psi=\oplus\psi_{i}^{*}:i=1$ $H^{*}(X(\nu);Z)\rightarrow\oplus H^{*}(N_{i;}Z)i=1$

is injective.
We set $E_{i}=\mu_{T^{n}}^{-1}(|C_{i}|, 0,0)$ . Since $|C_{i}|=|C_{i+1}|\cup\sigma_{i}$ , we have $E_{i}=$

$E_{i+1}\cup N_{i}$ . Moreover we prove the following claim.

Claim. The natural map $H^{*}(E_{i;}Z)\rightarrow H^{*}(E_{i+1} $;$ Z)\oplus H^{*}(N_{i;}Z)$

is injective for i $=1$ , \ldots , r.

Proof of Claim. Since $N_{i}$ is a projective toric manifold,
$H^{odd}(N_{i;}Z)=0$ . Moreover, since $N_{i}\backslash (E_{i+1}\cap N_{i})$ is the biggest cell in
$N_{i}$ , we also have $H^{odd}(E_{i+1}\cap N_{?}.; Z)=0$ . To show that $H^{odd}(E_{i;}Z)=0$ ,

we consider the cohomology exact sequence (This argument is due to
Bielawski and Dancer):

$\rightarrow H^{odd}(E_{i}, E_{i+1} ; Z)\rightarrow H^{odd}(E_{i;}Z)\rightarrow H^{odd}(E_{i+1} ; Z)\rightarrow$ .
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Since $ H^{odd}(E_{i}, E_{i+1} ; Z)\cong H^{odd}(N_{\dot{x}}, N_{i}\cap E_{i+1} ; Z)\cong H^{odd}(D, \partial D;Z)\cong$

$0$ , where $D$ is the unit disk in $C^{dim\sigma_{i}}$ , we see that $H^{odd}(E_{i+1} ; Z)\cong 0$

implies $H^{odd}(E_{i;}Z)\cong 0$ . Since $H^{odd}$ ( $E_{r}$ ; Z) $\cong 0$ , by the inductive

argument we have $H^{odd}(E_{i;}Z)=0$ .

Hence, by applying the standard Mayer-Vietoris argument to $E_{i}=$

$E_{i+1}\cup N_{i}$ , we can show the claim. $\square $

By the above claim we can conclude that the map

$H^{*}(X(\nu);Z)\cong H^{*}(E_{1} ; Z)\rightarrow H^{*}(E_{2;}Z)\oplus H^{*}$ ( $N_{1}$ ; Z)

is injective. By using this argument repeatedly, we finish the proof of
Theorem 3.4. $\square $

\S 4. Chern classes

In this section we compute the total Chern class of a toric hy-
Kahler manifold as a simple application of Theorem 3.4.

Theorem 4.1. Let $X(\nu)$ be a toric hyperKdhler manifold. Let

$c(X(\nu))=1+c_{1}(X(\nu))+c_{2}(X(\nu))+\cdots\in H^{*}(X(\nu);Z)$

be the total Chern class of the holomorphic tangent bundle of $X(\nu)$ with
respect to the complex structure $I_{l/,1}$ . Then we have

$c(X(\nu))=\Phi(\prod_{i=1}^{N}(1-u_{i}^{2}))\in H^{*}(X(\nu);Z)$ .

To prove Theorem 4.1, we need the following lemma, which is a
simple generalization of the argument due to Bielawski and Dancer [2].
They showed it in the case $\epsilon_{0}\in\ominus such$ that $\epsilon_{0}(i)=1$ for all $i=1$ , $\ldots$ , $N$ .

Lemma 4.2. Let $X(\nu)$ be a toric hyperKdhler manifold with $\nu=$

$(\nu_{1},0,0)$ . If $M_{\epsilon}$ is not empty, then its holomorphic cotangent bundle
$T^{*}M_{\epsilon}$ is contained in $X(\nu)$ as an open subset.

Proof. We first recall the notation in Section 3. Fix $\epsilon\in\ominus$ . For
$i=1$ , $\ldots$ , $N$ , we define $(q_{i}^{\epsilon},p_{i}^{\epsilon})$ by

$(q_{i}^{\epsilon},p_{i}^{\epsilon})=\{$

$(z_{i}, w_{i})$ if $\epsilon(i)=1$ ,

$(w_{i}, -z_{i})$ if $\epsilon(i)=-1$ .

Then $q^{\epsilon}=(q_{1}^{\epsilon}, \ldots, q_{N}^{\epsilon})$ is a point in the vector space $V_{\epsilon}$ , and $p^{\epsilon}=$

$(p_{1}^{\epsilon}, \ldots,p_{N}^{\epsilon})$ is a point in the dual space $V_{\epsilon}^{*}$ . In other words, we identify
the cotangent bundle $T^{*}V_{\epsilon}$ with $H^{N}$ as above.
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Let us recall that we have a holomorphic description of $M_{\epsilon}$ as follows:

$M_{\epsilon}=U_{\epsilon}/K^{C}$ ,

where $K^{C}$ is the complexification of $K$ , and $U_{\epsilon}$ is an open subset of $V_{\epsilon}$ .

By the argument in [6], $q^{\epsilon}\in U_{\epsilon}$ if and only if the functional $l_{q^{\epsilon}}$ on $k$

defined by

$l_{q^{\epsilon}}(Y)=\langle\nu_{1}, Y\rangle+\frac{1}{4}\sum_{i=1}^{N}|q_{i}^{\epsilon}|^{2}e^{-\epsilon(i)4\pi\langle u_{i}Y\rangle}$ for $Y\in k$

has the minimum. Moreover, we have a holomorphic (with respect to
the complex structure $I_{\nu,1}$ ) description of $X(\nu)$ as follows:

$X(\nu)=W/K^{C}$ ,

where $W$ is a subset of $T^{*}V_{\epsilon}=H^{N}$ . Similarly, $(q^{\epsilon},p^{\epsilon})\in W$ if and only
if $(\mu_{K,2}+\sqrt{-1}\mu_{K,3})(q^{\epsilon},p^{\epsilon})=0$ and the functional $l_{q^{\epsilon},p^{\epsilon}}$ on $k$ defined by

$l_{q^{\epsilon},p^{\epsilon}}(Y)=\langle\nu_{1}, Y\rangle+\frac{1}{4}\sum_{i=1}^{N}|q_{i}^{\epsilon}|^{2}e^{-\epsilon(i)4\pi\langle u_{i}Y\rangle}+\frac{1}{4}\sum_{i=1}^{N}|p_{i}^{\epsilon}|^{2}e^{\epsilon(i)4\pi\langle u_{i}Y\rangle}$

has the minimum.
Suppose that $q^{\epsilon}\in U_{\epsilon}\subset V_{\epsilon}$ and that $p^{\epsilon}\in V_{\epsilon}^{*}$ defines a cotangent

vector of $M_{\epsilon}$ at $[q^{\epsilon}]$ , that is,

$\langle Y_{atq^{\epsilon}}^{*\epsilon},p\rangle=0$ for any $Y=\sum_{i=1}^{N}a_{i}X_{i}\in k$ ,

where $Y^{*}$ is a vector field on $V_{\epsilon}$ generated by $Y$ . If we note

$Y_{atq^{\epsilon}}^{*}=(2\pi\sqrt{-1}\epsilon(1)a_{1}q_{1}^{\epsilon}, \ldots, 2\pi\sqrt{-1}\epsilon(N)a_{N}q_{N}^{\epsilon})$ ,

then we have

$\langle Y_{atq^{\epsilon p}}^{*\epsilon},\rangle=2\pi\sqrt{-1}\sum_{i=1}^{N}a_{?}.\epsilon(i)q_{i}^{\epsilon}p_{i}^{\epsilon}=2\pi\sqrt{-1}\{Y$, $\sum_{i=1}^{N}z_{i}w_{i}u_{i}\}$ .

Therefore, $p^{\epsilon}\in V_{\epsilon}^{*}$ defines a cotangent vector of $M_{\epsilon}$ at $[q^{\epsilon}]$ if and only
if $(\mu_{K,2}+\sqrt{-1}\mu_{K,3})(q^{\epsilon},p^{\epsilon})=0$ . Moreover, if $l_{q^{\epsilon}}$ has the minimum,
then it is easy to see that $l_{q^{\epsilon},p^{\epsilon}}$ has also the minimum. Thus we have
$(q^{\epsilon},p^{\epsilon})\in W$ , which implies $T^{*}M_{\epsilon}\subset X(\nu)$ . $\square $
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Proof of Theorem 4.1. We may assume $\nu=(\nu_{1},0,0)$ . Let $ i_{\epsilon}:M_{\epsilon}\rightarrow$

$X(\nu)$ be the embedding. By Lemma 4.2, we have

$i_{\epsilon}^{*}TX(\nu)\cong TM_{\epsilon}\oplus T^{*}M_{\epsilon}$ .

By the same argument in [4] and Lemma 3.1, we have

$c(TM_{\epsilon})=\Phi_{\epsilon}(\prod_{i=1}^{N}(1+\epsilon(i)u_{i}))$ , $c(T^{*}M_{\epsilon})=\Phi_{\epsilon}(\prod_{i=1}^{N}(1-\epsilon(i)u_{i}))$ ,

where $\Phi_{\epsilon}$ : $Z[u_{1}, \ldots, u_{N}]\rightarrow H^{*}$ ( $M_{\epsilon}$ ; Z) is a ring homomorphism defined
by $\Phi_{\epsilon}(u_{i})=c_{1}(i_{\epsilon}^{*}L_{u_{i}})$ . Therefore we have

$i_{\epsilon}^{*}c(X(\nu))=c(TM_{\epsilon})c(T^{*}M_{\epsilon})=i_{\epsilon}^{*}\Phi(\prod_{i=1}^{N}(1-u_{i}^{2}))$ .

On the other hand, by Theorem 2.2, there exsists $f\in Z[u_{1}, \ldots, u_{N}]$

such that $\Phi(f)=c(X(\nu))$ . Therefore we have

$i_{\epsilon}^{*}\Phi(f-\prod_{i=1}^{N}(1-u_{i}^{2}))=0$ for any $\epsilon\in\Theta$ .

Recall now Lemma 3.4. Since any $\tau\in C(X(l/))$ is a face of $\triangle_{\epsilon}$ for some
$\epsilon\in\ominus$ , we have

$ f-\prod_{i=1}^{N}(1-u_{i}^{2})\in i=1\cap^{r}ker(\psi_{i}^{*}\circ\Phi)=ker\Phi$ .

This implies Theorem 4.1. $\square $
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Cyclic Hypersurfaces of Constant Curvature

Rafael L\’opez

Abstract.

We study hypersurfaces in Euclidean, hyperbolic or Lorentz-
Minkowski space with the property that it is foliated by a one-
parameter family of round spheres. We describe partially such hy-

persurfaces with some assumption on its curvature. In general, we

shall consider the situation that the mean curvature or the Gaussian
curvature is constant.

\S 1. Introduction

A cyclic hypersurface in $(n+1)$ -dimensional Euclidean space $E^{n+1}$

is a hypersurface defined by a smooth one-parameter family of round
$(n -1)$ -spheres. We say then that $M$ is foliated by spheres. The first
example of cyclic hypersurfaces is a hypersurface of revolution, that is,
a hypersurface which is stable under a group of rotations that leave a
straight-line pointwise fixed. It has been known that the only minimal
cyclic surfaces in Euclidean 3-space $E^{3}$ are the catenoid (which it is rota-
tional [15] $)$ and the examples discovered by Enneper and Riemann in the
nineteenth century [2], [3], [19]. Riemann’s surface is a (non-rotational)
surface constructed by circles in parallel planes with the exception of a
discrete set of straight-lines. Moreover, each of these surfaces is invariant
by a family of translations. In higher dimensions, Jagy proved that a
cyclic minimal hypersurface in $E^{7\iota+1}$ , $n$ $\geq 3$ , must be rotational, that is,

it is the $n$-dimensional catenoid [6]. In contrast with the minimal case,

the only cyclic surfaces in $E^{3}$ with nonzero constant mean curvature are
surfaces of revolution [17]. This note is motivated by these examples
and the possible extensions of these results for other space forms. We
are interested in studying cyclic hypersurfaces under some assumptions

on their curvatures. One of our goal in this paper is to exhibit the exis-
tence of a family of maximal spacelike surfaces in the Lorentz-Minkowski

2000 Mathematics Subject Classification. Primary $53A10$ ; Secondary

53C42.
Research partially supported by DGICYT grant number PB97-0785.
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3-space $L^{3}$ that were announced in [9], [10], with similar properties as
Riemann’s examples in $E^{3}$ . These surfaces are foliated by circles in
parallel planes with the exception of a discrete set of straight-lines and
singularities. In this sense, we say that such surface is a ’Riemann type
surface’ in $L^{3}$ . See Figure 1 for an example.

We divide this paper into three parts:

1. Cyclic hypersurfaces of constant mean curvature in hyperbolic
space.

2. Cyclic hypersurfaces of constant mean curvature in Lorentz-
Minkowski space.

3. Cyclic surfaces of constant Gauss curvature in Euclidean space.

Fig. 1. A ’Riemann type surface’ in $L^{3}$ .

\S 2. Cyclic hypersurfaces of constant mean curvature in hy-
perbolic space

In this section we study cyclic hypersurfaces in the $(n+1)$ -dimensio-
nal hyperbolic space $H^{n+1}$ , for which the spheres that determine the
hypersurfaces lie in parallel horospheres. Recall that horospheres are
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the umbilical hypersurfaces in $H^{n+1}$ that are flat. Since there exist no
intrinsic concept of parallelism in hyperbolic setting, we now give our
precise definition.

Definition 2.1. A family of horospheres are called parallel if
their asymptotic boundaries meet at exactly one point.

Since the asymptotic boundary of a horosphere is a point, two par-
allel horospheres meet at infinity in the same point. In the upper half-
space model for $H^{n+1}$ , parallel horospheres can be viewed as horizontal
parallel Euclidean hyperplanes or, after a rigid motion, Euclidean n-
spheres tangent to the hyperplane $x_{n+1}=0$ at the same point. On
the other hand, note that in this model, $(n -1)$ -spheres are Euclidean
$(n-1)$ spheres

Theorem 2.2 ([7], [10]). Let $M$ be a hypersurface in $H^{n+1}$ of
constant mean curvature which is foliated by spheres in parallel
horospheres. Then $M$ is a hypersurface of revolution.

Proof. Consider the upper half-space model for $H^{n+1}$ , that is,
$R_{+}^{n+1}=\{(x_{1}, \ldots, x_{n+1})\in R^{n+1} ; x_{n+1}>0\}$ endowed with the metric

$\langle, \rangle=\frac{dx_{1}^{2}++dx_{n+1}^{2}}{x_{n+1}^{2}}\cdots$ .

After a rigid motion in the ambient space, we may assume that the horo-
spheres are Euclidean hyperplanes in $R_{+}^{n+1}$ parallel to the hyperplane
$x_{n+1}=0$ . We pick a piece $M’$ of $M$ bounded by two spheres $S_{1}\cup S_{2}$ .

The proof consists of two parts.
The first part is done by a standard application of the Alexandrov

reflection method [1]. We consider reflections across a family of vertical
parallel geodesic hyperplanes (in Euclidean sense). These hyperplanes

are also geodesic hyperplanes in $H^{n+1}$ . Reflections across vertical hy-
perplanes are isometries in $H^{n+1}$ , so the mean curvature remains un-
changed. Consider a vertical hyperplane $P$ disjoint from $M’$ and move
$P$ parallel to itself (for example, to the right) until it touches $M’$ at

a first point. One continues to move $P$ a little more to the right and
considers the symmetry through $P$ of the part of $M’$ on the left-side of
$P$ . Now continue moving $P$ to the right and reflecting the left-side of $M’$

until this part touches the part of $M’$ on the right-side of $P$ . The strong
maximum principle implies reflection symmetry if they contact and the
Alexandrov reflection process yields that $P$ is a hyperplane of symmetry
of $M’$ . Thus, for each vertical hyperplane $P$ , some parallel translate of
$P$ is a hyperplane of symmetry of $M’$ and $M’$ inherits the symmetries of
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its boundary $S_{1}\cup S_{2}$ . So, the Euclidean centers of the spheres that define
$M’$ lies in a 2-plane. Without loss of generality, we may suppose that
the curve of centers is parametrized by $(c(t), 0, \ldots, t)$ . It then follows
that $M’$ is defined as the level hypersurface of the function

$f(x_{1}, \ldots, x_{n}, t)=(x_{1}-c(t))^{2}+\sum_{i=2}^{n}x_{i}^{2}-r(t)^{2}$ ,

where $r(t)>0$ denotes the Euclidean radius of each sphere $M’\cap\{x_{n+1}=$

$t\}$ .

The second part of the proof is done by computing of the mean
curvature of $M’$ in terms of the function $f$ . For this, let $N=-\nabla f/|\nabla f|$

be a unit normal vector field of the immersion $M’\rightarrow E_{+}^{n+1}$ . Then the
following formula is well-known:

(1) $nH_{e}|\nabla f|^{3}=\triangle f|\nabla f|^{2}-Hessf(\nabla f, \nabla f)$ ,

where $H_{e}$ denotes the mean curvature of $M$ $\subset E_{+}^{n+1}$ , and $\triangle$ and $Hess$

are the Laplacian and Hessian operators in $E^{n+1}$ , respectively. Choose
$x_{n+1}N$ as the Gauss map of $M’\subset H^{n+1}$ . Then its mean curvature $H$

is related with $H_{e}$ by the formula $H=x_{n+1}H_{e}+N_{n+1}$ , where $N=$

$(N_{1}, \ldots, N_{n+1})$ . Thus (1) yields

(2) $nH|\nabla f|^{3}=nN_{n+1}|\nabla f|^{3}+x_{n+1}(\triangle f|\nabla f|^{2}-Hessf(\nabla f, \nabla f))$ .

If the function $c(t)$ is constant, the curve of centers is a straight-line or-
thogonal to each hyperplanes of the foliation. Consequently, the spheres
that define $M’$ are coaxial and hence $M’$ is a hypersurface of revolution.

Assume, on the contrary, that $M’$ is not a hypersurface of revolution,
that is, $c’\neq 0$ . It is computed that

$\nabla f=2(x_{1}-c, x_{2}, \ldots, x_{n}, -r\lambda)$ , $|\nabla f|^{2}=4r^{2}(1+\lambda)^{2}$ ,

$\triangle f=2(n-r’\lambda-r\frac{\partial\lambda}{\partial r})$ ,

$Hessf(\nabla f, \nabla f)=8r^{2}\{1+2\lambda(\lambda-r’)-\lambda^{2}(r’\lambda+r\frac{\partial\lambda}{\partial t})\}$ ,

where $\lambda=\lambda(x_{1}, t)=((x_{1}-c)c’+rr’)/r$ .

On the other hand,

$\frac{\partial\lambda}{\partial t}=\frac{1}{c’\lambda}\{(\lambda-r’)(c’’r-c’r’)-(c’)^{3}+c’rr’’\}$ .
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Let fix a level $x_{n+1}=t_{0}$ . We introduce a new variable $\lambda=\lambda(x_{1}, t_{0})$

instead of $x_{1}$ . Then (1) and (2) are written respectively as

(3) $nrH(1+\lambda^{2})^{3/2}=a_{0}+a_{1}\lambda+a_{2}\lambda^{2}$ ,

(4) $nrH(1+\lambda^{2})^{3/2}=nr\lambda(1+\lambda^{2})+t_{0}(a_{0}+a_{1}\lambda+a_{2}\lambda^{2})$ ,

where the coefficients $a_{i}$ are independent of $\lambda$ . We take the square of
both sides of the equation (4) and compare terms by terms. The term
of the highest degree corresponds to $\lambda^{6}$ . Then $n^{2}r^{2}H^{2}=n^{2}r^{2}$ and
this yields $H^{2}=1$ . Since the square of the left-hand side of (4) is a
polynomial with only terms of even degree in $\lambda$ , the coefficients of $\lambda^{5}$

and $\lambda^{3}$ vanish on the right-hand side. This yields $t_{0}a_{2}=0$ and $t_{0}a_{0}=0$ ,

respectively. However the constant term on the left-hand side of (4) is
$n^{2}r^{2}H^{2}=n^{2}r^{2}\neq 0$ , obtaining a contradiction. $\square $

In this context, we recall a theorem of Hsiang [5], which is proved by
using the Alexandrov reflection principle, stating that a complete em-
bedded hypersurface $M$ $\subset H^{n+1}$ that remains within a uniform distance
from a geodesic is a hypersurface of revolution.

Remark 1. The same reasoning can be carried over to the case
of Euclidean space $E^{n+1}$ . Indeed, squaring (3), the coefficient of $\lambda^{6}$ on
the rights-hand side is 0. As a consequence, we obtain that ’the only
hypersurfaces in $E^{n+1}$ with nonzero constant mean curvature which are

foliated by $(n-1)$ -spheres in parallel hyperplanes are the hypersurfaces

of revolution’.

\S 3. Cyclic hypersurfaces of constant mean curvature in
Lorentz-Minkowski space

Let $L^{n+1}$ be the $(n+1)$ -dimensional Lorentz-Minkowski space, that
is, $R^{7l+1}$ equipped with the metric $ds^{2}=dx_{1}^{2}+\ldots+dx_{n}^{2}-dx_{n+1}^{2}$ . We

study cyclic hypersurfaces of constant mean curvature in $L^{n+1}$ . First,
we prove the Lorentzian counterpart of the previous section. Then we

investigate the 3-dimensional case, that is, constant mean curvature sur-
faces of $L^{3}$ foliated by circles.

3.1.Cyclic hypersurfaces of constant mean curvature in
$L^{n+1}$

By a similar reasoning as in Theorem 2.2, we obtain the next re-
sult which is analogous to what occurs in Euclidean space $E^{n+1}$ (see
Introduction and Remark 1).
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Theorem 3.1 ([10]). Let $M^{n}$ be a spacelike hypersurface in
$L^{n+1}$ of constant mean curvature $H$ which is foliated by $(n-1)$ -spheres
in parallel spacelike hyperplanes. Then the following hold.

1. If $H\neq 0$ , then $M$ is a hypersurface of revolution.
2. If $H=0$ and

(a) $n\geq 3$ , then $M$ is a hypersurface of revolution.
(b) $n=2$ , then $M$ is a surface of revolution or is $a$

‘ Riemann
type surface

Proof. After a rigid motion of $L^{n+1}$ , we may assume that the paral-
lel spacelike hyperplanes are parallel to $x_{n+1}=0$ (in this case, ’spheres’
are ’Euclidean spheres’). The proof is similar to that for Theorem 2.2
and so we only give an outline. Note that Alexandrov reflection method
works as in $E^{n+1}$ and $H^{n+1}$ : indeed, a spacelike hypersurface in $L^{n+1}$ of
constant mean curvature locally satisfies an elliptic partial differential
equation for which we can use the standard maximum principle. We
compute $H$ through the identity:

(5) $nH|\nabla f|^{3}=\langle\nabla f, \nabla f\rangle\triangle f-Hessf(\nabla f, \nabla f)$ ,

where in this case

$\nabla f=(f_{1}, \ldots, f_{n}, -f_{n+1})$ , $\triangle f=\sum_{i=1}^{n}f_{i,i}-f_{n+1,n+1}$ ,

$Hessf(\nabla f, \nabla f)=\sum_{i,j}f_{i}f_{j}f_{i,j}$
,

$f=f(x_{1}, \ldots, x_{n+1})$ , $f_{i}=\frac{\partial f}{\partial x_{i}}$ , $f_{i,j}=\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}$ .

With the same variable $\lambda$ defined in Section 2, the identity (5) reads as

$nrH(-1+\lambda^{2})^{3/2}=g_{0}+g_{1}\lambda+g_{2}\lambda^{2}$ ,

where the coefficients $g_{?}$
. do not depend on $\lambda$ . We follow the same argu-

ment by squaring the above equation. Special attention should be paid
to the case $H=0$ and $n=2$ . In this situation, $g_{1}=g_{0}=0$ , which
yields the next two ordinary differential equations:

$\frac{rc’’}{c},-2r’=0$ ,

$1+r^{J2}-c^{J2}+rr^{JJ}-\frac{rr’c’’}{c’}=0$ .
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A first integration of both equations can do as in [16, p. 87]. So, the
first equation leads $c’=ar^{2}$ , for a constant $a$ . This yields in the second
equation $1-r^{\prime 2}+rr’’-a^{2}r^{4}=0$ . Consider $x=r^{2}$ and $y=(r^{2})’$ as the
new dependent and independent variables. Thus

$\frac{dt}{dr}=\frac{1}{\sqrt{a^{2}r^{4}+2br^{2}+1}}$ .

Then $M$ is parametrized by $X_{a,b}(u, \theta)=(x(u, \theta),$ $y(u, \theta)$ , $z(u, \theta))$ , where

$ x(u, \theta)=a\int^{u}\frac{u^{2}}{\sqrt{a^{2}u^{4}+2bu^{2}+1}}du+u\cos\theta$ ,

$ y(u, \theta)=u\sin\theta$ ,

$z(u, \theta)=\int^{u}\frac{du}{\sqrt{a^{2}u^{4}+2bu^{2}+1}}$ ,

and $a$ , $b\in R$ . $\square $

The integrals that appear in this parametrization are of elliptic type
(as it occurs with Riemann’s examples in $E^{3}$ ). We illustrate Theorem
3.1 by presenting two examples.

Example 1. Let $a=0$ . In this case, $c’=0$ and the surface is
rotational. This surface is the Lorentzian catenoid:

$X_{0,b}(u, \theta)=(u\cos\theta,$ $ u\sin\theta$ , $\frac{1}{\sqrt{2b}}$ arc $\sinh(\sqrt{2b}u))$ ,

which is generated by the rotation of the curve $((1/\sqrt{2b})\sinh(\sqrt{2b}u), 0, u)$

with respect to the $x_{3}$ -axis. The Lorentzian catenoid is the only maximal
spacelike surface of revolution in $L^{3}$ with respect to a timelike rotation
axis.

Example 2. Let $a=b=1$ . The integrals that define $M$ can be
explicitly calculated. Then $M$ is given by

$X_{1,1}(u, \theta)=(u-\arctan u+u\cos\theta, u\sin\theta, \arctan u)$ .

This surface has a singularity of cone type at the origin. Moreover it is
asymptotic to the planes $x_{3}=\pm\pi/2$ and at these heights, $M$ has two
flat ends. The circles that define $M$ converge to straight-lines as $ u\rightarrow$

$\pm\infty$ . Thus, we can reflect $M$ across them to obtain a simply periodic
embedded maximal surface invariant by a family of translations. Figure
1 in Introduction represents precisely this surface. Up to homotheties
in $L^{3}$ , the immersions $X_{a,b}$ define a one-parameter family of maximal

spacelike surfaces in $L^{3}$ that, in a sense, correspond with Riemann’s
examples in $E^{3}$ .
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3.2. Cyclic maximal surfaces in $L^{3}$

In this and the next subsection we focus on cyclic surfaces with
constant mean curvature in $L^{3}$ . Recall that a surface in $L^{3}$ is called
nondegenerate if the induced metric on it is nondegenerate. In $L^{3}$ , we
have two possibilities: the induced metric is Riemannian and the surface
is called spacelike; or the induced metric is Lorentzian and the surface is
called timelike. In Theorem 3.1 we studied the case that the spheres that
form the hypersurface are contained in parallel spacelike hyperplanes.
We want to consider a more general situation on the hyperplanes that
determine the foliation. First, we give the following definition.

Definition 3.2. A circle in $L^{3}$ is the orbit of a point $p$ under the
action of a group of rotations in $L^{3}$ .

There exist three families of rotations in $L^{3}$ according to the causal
character of the line $L$ that define each family (see for example [4]).
For an easy description of the circles obtained in each case, let $B=$

$(e_{1}, e_{2}, e_{3})$ be the standard basis in $L^{3}$ . Then the following hold:

1. (timelike axis) If $L=span(e_{3})$ , then the circles are Euclidean
circles in horizontal planes.

2. (spacelike axis) If $L=span(e_{1})$ , then the circles are hyperbolas
in vertical planes.

3. (lightlike axis) If $L=span(e_{2}+e_{3})$ , then the circles are parabo-
las in planes parallel to $x_{2}-x_{3}=0$ .

Surfaces of revolution in $L^{3}$ of constant mean curvature have been stud-
ied in [4], [8], [20]. In the Lorentzian case, a surface with $H=0$ every-
where is called maximal. Now we are in a position to give the following
two results for (spacelike or timelike) surfaces (see [9]):

Theorem 3.3. Let $M$ be a nondegenerate maximal cyclic surface
in $L^{3}$ . Then the planes containing pieces of circles must be parallel

Theorem 3.4. Let $M$ be a nondegenerate maximal surface in $L^{3}$

foliated by pieces of circles in parallel planes. Then $M$ is a surface of
revolution or it is contained in $a$

‘ Riemann type surface’.

Proof. [Sketch] For simplicity of the proof of Theorem 3.3, we con-
sider the case where the planes containing the circles are spacelike. The
proof is done by contradiction. Assume that these planes are not par-
allel. Let $\Gamma(u)$ be an orthogonal curve to each $u$-plane of the foliation.
Since $\Gamma$ is not a straight-line, we can consider the Frenet frame of $\Gamma$ . Re-
mark that the unit tangent vector field $t(u)$ to $\Gamma$ has a timelike causal
character. Then $t’$ is a spacelike vector field. Let $n(u)$ be the unit
spacelike vector field such that $t’=\kappa n$ , for some function $\kappa\neq 0$ . Put
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$b=t\wedge n$ . Then Frenet basis associated to $\Gamma$ is given by $\{t, n, b\}$ . Hence
$M$ can be parametrized by

$X(u, v)=c(u)+r(u)(\cos v n(u)+\sin v b(u))$ $r>0$ , $c\in L^{3}$ .

Let us compute the mean curvature $H$ of $X$ by the classical local theory
(see [18]). Let $I$ $=(E, F, G)$ and $II$ $=(e, f, g)$ be the coefficients of
the first and the second fundamental forms respectively, and set $W=$
$EG-F^{2}$ ( $W$ is positive if $M$ is spacelike and negative if $M$ is timelike).

Then the mean curvature $H$ is given by

(6) $H=\frac{eG-2fF+gE}{2W}$ .

Put $c’=\alpha t+\beta n+\gamma b$ , where $\alpha$ , $\beta$ , $\gamma$ are smooth functions on $u$ . Let
us use the corresponding Frenet equations of $\Gamma$ :

$t’$ $=$ $\kappa n$ ,

$n’$ $=$ $\kappa t+\sigma b$ ,

$b’$ $=$ $-\sigma n$ .

Remark that these equations are slightly different from the Euclidean
case. It follows from (6) that $H=0$ is written as

$\sum_{n=0}^{3}A_{n}(u)\cos nv+\sum_{n=1}^{3}B_{n}(u)\sin nv=0$

for some functions $A_{n}$ and $B_{n}$ . This is a linear combination of the
independent functions $\sin nv$ and $\cos nv$ . Thus $A_{n}=B_{n}=0$ for all $n$ .

A hard work to obtain explicit expressions of the coefficients $A_{n}$ and $B_{n}$

together with the fact that $W$, $r\neq 0$ gives a contradiction. Therefore
$\kappa=0$ and $\Gamma$ is a straight-line. When the circles are contained in timelike
or lightlike planes, the reasoning is analogous, with the observation that
in each case the Frenet frame of $\Gamma$ changes as well as the corresponding

Frenet equations. A more explicit example of the reasoning of this kind
can be seen in Theorem 3.5 below.

The proof of Theorem 3.4 is easier. Now, after a rigid motion in $L^{3}$

we may assume that the circles of $M$ are Euclidean circles, hyperbolas
or parabolas, depending on the causal character of the planes containing
the circles. For example, in the case where the planes of the foliation
are spacelike, we assume without loss of generality that the surface is
given by

$X(u, v)=(a(u)+r(u)\cos v, b(u)+r(u)\sin v,$ $u)$ ,
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where $a$ and $b$ are smooth functions on $u$ . If we compute the mean
curvature, then the similar reasoning to the proof of Theorem 3.1 for
$n$ $=2$ applies. $\square $

Remark 2. Maximal spacelike surfaces in $L^{3}$ can be described in

terms of complex data. More exactly, there exists a Weierstrass repre-
sentation as in the case of minimal surfaces in $E^{3}$ . Let $M$ be a Rie-
mann surface and $X$ : $M$ $\rightarrow E^{3}$ a conformal minimal immersion. If
$(M, (\phi_{1}, \phi_{2}, \phi_{3}))$ is the corresponding Weierstrass representation, then

it is easy to prove that $(M, (i\phi_{1}, i\phi_{2}, \phi_{3}))$ defines a maximal spacelike

immersion of $M$ in $L^{3}$ . This process allows us to obtain a correspon-
dence between minimal surfaces in $E^{3}$ and maximal spacelike surfaces
in $L^{3}$ . Therefore it is possible to use the complex analysis machinery

in the study of maximal spacelike surfaces and, in particular, of cyclic
surfaces. This point of view is developed in [9].

3.3. Cyc1ic surfaces of nonzero constant mean curvature
in $L^{3}$

The case $H\neq 0$ in $L^{3}$ is different from the maximal one, as it is the
case in the Euclidean ambient (see Introduction and [17]).

Theorem 3.5 ([11], [12]). Let $M$ be a nondegenerate cyclic sur-

face in $L^{3}$ with nonzero constant mean curvature. Then either the planes
containing the circles must be parallel or $M$ is a subset of a pseudohy-
perbolic surface or a pseudosphere.

Comparing with Theorem 3.3, let us first observe that possibly the
planes are not parallel. But in this case, the surface is contained in a sur-
face of revolution. This phenomenon also occurs in $E^{3}$ : the intersection
between any smooth one-parameter family of (not necessarily parallel)
planes with a sphere produces circles. In the Lorentzian space, the role
of spheres is played by the pseudohyperbolic surfaces $H^{2,1}(r)$ and the

pseudospheres $S^{2,1}(r)$ :

$H^{2,1}(r)=\{p\in L^{3}; \langle p,p\rangle=-r^{2}\}$ ,

$S^{2,1}(r)=\{p\in L^{3}; \langle p,p\rangle=r^{2}\}$ .

The surfaces $H^{2,1}(r)$ and $S^{2,1}(r)$ are spacelike and timelike, respectively.
Moreover, both surfaces have nonzero constant mean curvature $|H|=$

$1/r$ . Theorem 3.5 is a revised and corrected version of [11, Th. 1] and
examples therein: although the examples exhibited in [11] are spacelike

surfaces with nonzero constant mean curvature and foliated by pieces
of circles in non-parallel planes, these surfaces are subsets of $S^{2,1}(r)$ or
$H^{2,1}(r)$ .
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Proof. The case that the planes of the foliation are spacelike is
studied in [11]. It remains the cases that they are timelike or lightlike.
In order to simplify the presentation, we explicitly discuss the case that
the planes are lightlike. By contradiction, we assume that the planes are
not parallel and that, after a homothety in $L^{3}$ , the mean curvature of
$M$ is $H=1/2$ . In each $u$-plane of the foliation that defines $M$ , let $e_{1}(u)$

and $e_{2}(u)$ be vector fields such $\langle e_{1}, e_{1}\rangle=1$ and $\langle e_{1}, e_{2}\rangle=\langle e_{2}, e_{2}\rangle=0$ .

Then $M$ is parametrized as

$X(u, v)=c(u)+ve_{1}(u)+r(u)v^{2}e_{2}(u)$ , $r\neq 0$ .

Denote $n=e_{1}$ and $t=e_{2}$ , and use null coordinates: for each $u$ , let $b(u)$

be the unique lightlike vector orthogonal to $n(u)$ such that

$\langle t, b\rangle=1$ , determinant $(t, n, b)=1$ .

With a change on the variables $u$ and $v$ , we assume that $t’=\kappa n$ for
some function $\kappa$ (see discussion in [9]). Remark that $\kappa\neq 0$ because the
planes are not parallel. The Frenet equations are

$t’$ $=$ $\kappa n$ ,

$n’$ $=$ $\sigma t-\kappa b$ ,

$b’$ $=$ $-\sigma n$ .

In the above notation, the surface is parametrized as

$X(u, v)=c+vn+rv^{2}t$ .

Put $c’=\alpha t+\beta n+\gamma b$ , for smooth functions $\alpha$ , $\beta$ , $\gamma$ . Squaring the

identity (6), we obtain

$\sum_{n=0}^{9}A_{n}(u)v^{n}=0$ .

This is a polynomial equation on the variable $v$ and thus the coefficients
$A_{n}$ vanish everywhere. The coefficient A9 is given by $A_{9}=8\kappa^{3}(2\gamma r^{2}-$

$r’)^{3}$ . Then $r’=2\gamma r^{2}$ . Hence $A_{7}=A_{8}=0$ and

$A_{6}=8\kappa^{3}(2\beta r-8\kappa r^{2}-\sigma)(-2\beta r+\sigma)^{2}$ .

We have two possibilities:

1. $\sigma=2\beta r$ . Then $A_{4}=-81\alpha^{2}\kappa^{4}r^{2}$ . In particular, $\alpha=0$ and this
implies $W=0$ , a contradiction because $M$ is a nondegenerate
surface.
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2. $\sigma=2\beta r-8\kappa r^{2}$ . The computation of $A_{4}$ leads

$A_{4}=384\kappa^{5}r^{4}(-\alpha+8\gamma r^{2})$ .

Then $\alpha=8\gamma r^{2}=4r’$ . By using the Frenet equations, we obtain

$c’=4r’t+\beta n+\gamma b=-(\frac{b}{2r}-4rt)’$

Therefore there exists a point $c_{0}\in L^{3}$ such that $c=c_{0}-$

$b/(2r)+4rt$ and the parametrization of $M$ is

$X(u, v)=c_{0}+r(4+v^{2})t+vn-\frac{1}{2r}b$ .

Thus

$\langle X(u, v)-c_{0}, X(u, v)-c_{0}\rangle=-4$ ,

and $M$ is contained in the pseudohyperbolic surface $H^{2,1}(2)$ .
$\square $

Let us study the case where the planes containing the circles are
parallel. As in Theorem 3.4, an easy reasoning leads to

Theorem 3.6. Let $M$ be a nondegenerate surface in $L^{3}$ with
nonzero constant mean curvature which are foliated by $pi$eces of circles
in parallel planes. Then $M$ is a surface of revolution.

From Theorems 3.5 and 3.6, we have

Corollary 3.7 ([11], [12]). All cyclic nondegenerate surfaces in
$L^{3}$ with nonzero constant mean curvature are surfaces of revolution.

This result claims that there exist no ’Riemann type surfaces’ in $L^{3}$

with nonzero constant mean curvature.

\S 4. Cyclic surfaces of constant Gauss curvature in Euclidean
space

We close this paper with a study of cyclic surfaces in $E^{3}$ with con-
stant Gaussian curvature. We have the following two results:

Theorem 4.1. Let $M$ be a surface in $E^{3}$ with constant Gauss
curvature which is foliated by pieces of circles. Then $M$ is contained in

a sphere or, in the non-spherical case, the planes containing the circles

of the foliation must be parallel.
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Theorem 4.2. Let $M$ be a surface in $E^{3}$ with constant Gauss
curvature $K$ which is foliated by pieces of circles in parallel planes.

1. If $K\neq 0$ , then $M$ is a surface of revolution.
2. If $K=0$ , then the surface is not necessarily rotational. How-

ever, the curve of centers is a straight-line and the radius of
the circles is given by a linear function on the parameter of the
foliation.

As a consequence of these theorems, we have:

Corollary 4.3 ([13]). All cyclic surfaces in $E^{3}$ with nonzero con-
stant Gauss curvature are surfaces of revolution.

In a sense, this corollary is the analogue of Nitsche’s theorem for
nonzero constant mean curvature cyclic surfaces in $E^{3}$ .

Proof. The proof of Theorem 4.1 is similar to Theorem 3.3. By
contradiction, assume that the $u$-planes containing the circles are not
parallel. Consider a curve $\Gamma(u)$ orthogonal to each $u$-plane. Then $M$

can be parametrized in the form

$X(u, v)=c(u)+r(u)(\cos v n(u)+\sin vb(u))$ ,

where $(t, n, b)$ denotes the Frenet frame of $\Gamma$ . The formula for the Gauss-
ian curvature in local coordinates with respect to $X$ is:

$K=\frac{eg-f^{2}}{EG-F^{2}}$ .

By using the Frenet equations as in Theorem 3.3, the above equation
implies that

$\sum_{n=0}^{4}A_{n}(u)\cos nv+\sum_{r\iota=1}^{4}B_{n}(u)\sin nv=0$ .

This is a linear combination of the independent functions $\cos nv$ and
$\sin nv$ . Thus $A_{n}=B_{n}=0$ for all $n$ . A delicate study with the coef-

ficients $A_{n}$ , $B_{n}$ concludes that $M$ is contained in a sphere in the case
that $K>0$ or a contradiction. Theorem 4.2 is proved by considering
a more explicit parametrization of the surface. After a rigid motion in
$E^{3}$ , we may assume that the planes containing the circles are parallel to
the plane $x_{3}=0$ . Then the parametrization of $M$ is in the form

$X(u, v)=(a(u)+r(u)\cos v, b(u)+r(u)$ sinv, $u$ ),

where $a$ , $b$ , $r>0$ are smooth functions on $u$ . Then we compute the
Gaussian curvature $K$ . If $K\neq 0$ , we conclude that $a’=b’=0$ , that is,
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the curve of centers of the circles is a vertical straight-line orthogonal to
each $u$-plane of the foliation. Thus $M$ is a surface of revolution. In the
case $K=0$ , we obtain $a’’=b’’=r’’=0$ . $\square $

Remark 3. Recently the present author has extended Theorems
4.1 and 4.2 to the case of the Lorentz-Minkowski space $L^{3}[14]$ : a non-
degenerate cyclic surface in $L^{3}$ with nonzero constant Gauss curvature
is a surface of revolution. The result is divided into two parts. First, it
is proved that the planes of the foliation are parallel and secondly, we
prove that the surface is rotational. The proof follows the same steps
as in Theorems 4.1 and 4.2, but needs to take care of extra complica-
tion that there are three cases to distinguish according to the causal
character of the planes that define the surface (see Theorems 3.3 and
3.5.)
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Abstract.

Motivated by recent interest in the spectrum of the Laplacian
of incomplete surfaces with isolated conical singularities, we consider

more general incomplete $m$-dimensional manifolds with singularities
on sets of codimension at least 2. With certain restrictions on the
metric, we establish that the spectrum is discrete and satisfies Weyl’s
asymptotic formula.

\S 1. Discreteness of the Spectrum

When one studies the Morse index of minimal surfaces in Euclidean
3-space $\mathbb{R}^{3}$ or of mean curvature 1 surfaces in hyperbolic 3-space $\mathbb{H}^{3}$ , the
problem reduces to the study of the number of eigenvalues less than 2 of
the spectrum of the Laplace-Beltrami operator on $Met_{1}$ surfaces [FC],
[UY], [LR]. ( $Met_{1}$ surfaces are incomplete 2-dimensional manifolds with
constant curvature 1 and isolated conical singularities.) Meti surfaces
are known to have pure point spectrum and satisfy Weyl’s asymptotic
formula.

Here we will show that the spectrum is discrete and that Weyl’s
asymptotic formula holds for more general incomplete manifolds. We
allow the dimension to be arbitrary; we do not make any specific as-
sumptions about the curvature; and we allow more general singularities,
of at least codimension 2 (in a sense to be made precise below). This

more general setting allows us to consider singularities such as a product
of an $m-n$ dimensional metric cone with a portion of $\mathbb{R}^{n}(m\geq n+2)$ ,

one of our desired examples. In this example, the incomplete metric is
singular only in the direction of the metric cone and not on the portion
of $\mathbb{R}^{n}$ itself, so generally the incomplete manifolds and their metrics $\tilde{g}$

that we consider will not be conformally equivalent to open sets of com-
pact Riemann manifolds, unlike the case of $Met_{1}$ surfaces. With this in
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mind, we now define the types of incomplete manifolds and metrics $\tilde{g}$

that we will study here.
Let $(M, g)$ be a compact manifold of dimension $m$ with smooth Rie-

mannian metric $g$ . Let $N$ be a compact submanifold of dimension $n$

with codimension $m-n\geq 2$ . Suppose further that in a neighborhood
of $N$ the metric $g$ can be diagonalized; that is, there exist local coordi-
nates $(x_{1}, \ldots, x_{m-n}, y_{1}, \ldots, y_{n})$ , where $(0, \ldots, 0, y_{1}, \ldots, y_{n})$ are coordi-
nates for $N$ , so that $(dx_{1}, \ldots, dx_{m-n}, dy_{1}, \ldots, dy_{n})$ is globally defined in
some open neighborhood of $N$ and so that the metric $g$ is written

$g=\left(\begin{array}{ll}g_{1} & 0\\0 & g_{2}\end{array}\right)$ ,

where $g_{1}$ is an $m-n\times m-n$ positive definite matrix, and $g_{2}$ is an
$n\times n$ positive definite matrix. (For example, such a case can occur if $M$

has a product structure $M$ $=M_{1}\times N$ near $N$ , where $M_{1}$ is an $m-n$
dimensional compact Riemannian manifold.)

Theorem 1.1. Let $N$ be an $n$ -dimensional compact submanifold
of an $m$ -dimensional compact manifold $(M, g)$ with $m\geq n+2$ such that
the metric $g$ can be diagonalized near N. Choose local coordinates in $a$

neighborhood of $N$ so that

$g$
$=\left(\begin{array}{ll}g_{1} & 0\\0 & g_{2}\end{array}\right)$

in this neighborhood. Let $\tilde{g}$ be another smooth regular metric on $M\backslash N$

so that

$\tilde{g}=\left(\begin{array}{ll}f^{2}g_{1} & 0\\0 & g_{2}\end{array}\right)$

in a neighborhood of $N$ , where $f\in C^{\infty}(M\backslash N)$ .

If $m=2$ , assume that $f\in L_{g}^{2+\epsilon}(M)$ for some $\epsilon\in(0, \infty)$ .

If $m\geq 3$ , assume that $\inf(f)>0$ and $f\in L_{g}^{(m(m-n)/2)+\epsilon}(M)$ for
some $\epsilon\in(0, \infty)$ .

Then the Sobolev space $W_{\overline{g}}^{1,2}(M\backslash N)$ with respect to $\tilde{g}$ is compactly

included in $L\frac{2}{g}(M\backslash N)$ .

Proof When $m\geq 3$ and $p\in(2,2m/(m-2))$ (resp. $m=2$ and
$p\in(2, \infty))$ , then the inclusion $W_{g}^{1,2}(M)$ into $L_{g}^{p}(M)$ is compact. When
$m\geq 3$ and $f\in L^{(m(m-n)/2)+\epsilon}$ (resp. $m=2$ and $f\in L^{2+\epsilon}$ ) for some
positive $\epsilon$ , then the inclusion $L_{g}^{p}(M)$ into $L\frac{2}{g}(M\backslash N)$ is continuous, by
H\"older’s inequality. For example, when $m\geq 3$ , we can choose

$p=\frac{m+(2\epsilon/(m-n))}{(m/2)+(\epsilon/(m-n))-1}$ ,
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$L_{g}^{2}(M)$

$W_{g}^{1,2}(M)$ $L_{g}^{p}(M)$

$|$ $\downarrow$

$W_{\overline{g}}^{1,2}(M\backslash N)$ $L\frac{2}{g}(M\backslash N)$

Figure 1. The compact inclusion of $W_{\overline{g}}^{1,2}(M\backslash N)$ into
$L\frac{2}{g}(M\backslash N)$ .

and then the H\"older inequality implies

$||u||_{L\frac{2}{q}}=\sqrt{\int u^{2}f^{m-n}dA}\leq c\cdot||u||_{L_{g}^{p}}$

for

$ c=(\int f^{(m(m-n)/2)+\epsilon}dA)((m/2)+(\epsilon/(m-n)))^{-1}/2<\infty$ .

So we only need to show that $W_{\overline{g}}^{1,2}(M\backslash N)$ is continuously contained in

$W_{g}^{1,2}(M)$ to conclude $W_{\overline{g}}^{1,2}(M\backslash N)$ is compactly contained in $L\frac{2}{g}(M\backslash N)$ .

When $m\geq 3$ , this is clear, since $\inf(f)>0$ . When $m=2$ , then
$n=0$ , and $g$ and $\tilde{g}$ are conformally equivalent on $M\backslash N$ . Suppose
by way of contradiction that the inclusion is not continuous, that is,

that there exists a sequence of functions $u_{k}$ such that $||u_{k}||_{W_{g}^{12}}=1$

and $||u_{k}||_{W_{\overline{g}}^{1,2}}<1/k$ . By choosing a subsequence if necessary, we may

assume the following:

(1) there exists a function $u$ such that $u_{k}\rightarrow u$ , $W_{g}^{1,2}-$weakly,
(2) there exists a function $v$ such that $u_{k}\rightarrow v$ , $L_{g}^{p}$-strongly,

(3) $u_{k}\rightarrow v$ , $L\frac{2}{g}$ -strongly,
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(4) $u_{k}\rightarrow v$ , $L_{g}^{2}$ -strongly.

The fourth item follows from the fact that $||u_{k}-v||_{L_{g}^{2}}\leq\hat{c}\cdot||u_{k}-v||_{L_{g}^{p}}$ ,

since $(M, g)$ is smooth and compact. As $u_{k}$ converges to both $u$ and $v$

$L_{g}^{2}$-weakly, $u=v$ . Also,

$1=\lim_{k\rightarrow}\inf_{\infty}||u_{k}||_{W_{g}^{1,2}}\geq||u||_{W_{g}^{1,2}}$ .

Let $\nabla$ and dA (resp. $\tilde{\nabla}$ and $d\tilde{A}$ ) denote the gradient and area-form
with respect to the metric $g$ (resp. $\tilde{g}$ ). Then, using $\int_{M}|\nabla u_{k}|_{g}^{2}dA=$

$\int_{M}|\tilde{\nabla}u_{k}|\frac{2}{g}d\tilde{A}$ , we have $\int_{M}u_{k}^{2}dA\rightarrow 1$ and $\int_{M}u^{2}dA=1$ and $\int_{M}|\nabla u|_{g}^{2}dA=$

$0$ , so $u$ is a nonzero constant. Also, $\int_{M}u_{k}^{2}d\tilde{A}\rightarrow\int_{M}u^{2}d\tilde{A}=0$ , so
$\int_{M}d\tilde{A}=0$ . This is a contradiction, since $f$ is smooth on $M\backslash N$ and not
identically zero. $\square $

Remark. For $m\geq 3$ , the condition $\inf(f)>0$ is a simple way
to ensure $W_{\overline{g}}^{1,2}$ is continuously contained in $W_{g}^{1,2}$ , but it is necessary.

This is not generally a continuous inclusion if $\inf(f)=0$ . For example,
suppose $\inf(f)=0$ , and $n$ $=0$ . Let $ M_{k}=\{p\in M\backslash N||f(p)|<1/k\}\neq$

$\emptyset$ . Choose $u_{k}$ so that $supp(u_{k})\subset M_{k}$ and $||u_{k}||_{W_{g}^{1,2}}^{2}=1$ . Then $\tilde{g}=f^{2}g$

and $g$ are conformally equivalent and

$||u_{k}||_{W_{\overline{g}}^{12}}^{2}=\int_{M_{k}}(u_{k})^{2}f^{m}dA+\int_{M_{k}}|\nabla u_{k}|_{g}^{2}f^{m-2}dA\leq\frac{1}{k^{m-2}}||u_{k}||_{W_{g}^{1,2}}^{2}$

$=\frac{1}{k^{m-2}}\rightarrow 0$

as $ k\rightarrow\infty$ . Hence, we do not have continuous inclusion.

Let $\overline{\triangle}_{\overline{g}}^{F}$ denote the Freidrichs’ self-adjoint extension of the Laplacian

with domain $C_{0}^{\infty}(M\backslash N)$ , and let $W_{0}^{1},’\frac{2}{g}(M\backslash N)$ be the closure of $C_{0}^{\infty}(M\backslash $

$N)$ in the $W_{\overline{g}}^{1,2}(M\backslash N)$ norm. Standard arguments give the following:

Corollary 1.1. Let $(M\backslash N,\tilde{g})$ be as in Theorem 1.1. The operator
$\overline{\triangle}_{\overline{g}}^{F}$ on $(M\backslash N,\tilde{g})$ has discrete spectrum consisting of eigenvalues $0=$

$\lambda_{1}<\lambda_{2}\leq\cdots\leq\lambda_{j}\leq\cdots\rightarrow+\infty$ , each with multiplicity 1. The

corresponding eigenfunctions $\phi_{1}$ , $\phi_{2}$ , $\ldots\in W_{\overline{g}}^{1,2}(M\backslash N)$ can be chosen

as an orthonormal basis for $L\frac{2}{g}(M\backslash N)$ . Furthermore, the variational
characterization for the eigenvalues holds:

$\lambda_{j}=\inf_{\phi V^{j}\in V^{j}}\sup_{\emptyset\neq 0},\frac{||\nabla\phi||_{L\frac{2}{g}(M\backslash N)}^{2}}{||\phi||_{L_{\frac{2}{g}}(M\backslash N)}^{2}}$ ,
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where $V^{j}$ represents an arbitrary $j$ -dimensional subspace of $W_{0}^{1},’\frac{2}{g}(M\backslash $

$N)$ .

Remark When $W_{0}^{1},’\frac{2}{g}(M\backslash N)=W_{\overline{g}}^{1,2}(M\backslash N)$ , $(M\backslash N,\tilde{g})$ has

negligible boundary, in Gaffney’s sense [G]. Therefore, the Laplacian
considered on Gaffney’s domain of functions is essentially self-adjoint.

Let $\overline{\triangle}_{\overline{g}}^{G}$ denote the unique self-adjoint extension. One can show that the

two self-adjoint operators $\overline{\triangle}_{\overline{g}}^{F}$ and $\overline{\triangle}_{\overline{g}}^{G}$ have equal domains, that is,

$\triangle:=\overline{\triangle}_{\overline{g}}^{G}=\overline{\triangle}_{\overline{g}}^{F}$

Since $(M\backslash N,\tilde{g})$ has negligible boundary, this operator’s domain has no

boundary conditions at $N$ . So when $W_{0}^{1},’\frac{2}{g}(M\backslash N)=W_{\overline{g}}^{1,2}(M\backslash N)$ , this
is the operator for which we will study the spectrum, and it is the same
operator as that used in the study of Morse index of minimal surfaces
in $\mathbb{R}^{3}$ and mean curvature 1 surfaces in $\mathbb{H}^{3}$ .

As seen in the above remark, we would like to consider the cases
where $W_{0}^{1},’\frac{2}{g}(M\backslash N)=W_{\overline{g}}^{1,2}(M\backslash N)$ . We will also need this property
for establishing Weyl’s asymptotic formula, so we now give a sufficient
condition to imply this property [M2]. In order to state it, here we
introduce the notion of capacity and Cauchy boundary [M1], [M2].

Definition 1.1. Let $M$ be an arbitrary Riemannian manifold.
We denote by $O$ , the family of all open subsets of the completion $\overline{M}$ of
$M$ . For $A\in O$ , we define the set of functions $L_{A}$ by

$L_{A}=$ { $f\in W^{1,2}(M)|f\geq 1a.e$ . on $A$ }.

We define the capacity of $A$ , Cap(A), by

Cap(A)= $\{$

$\inf_{f\in L_{A}}||f||_{W^{12}}$ , $ L_{A}\neq\phi$ ,

$\infty$ , $ L_{A}=\phi$ .

For a Borel set $B\subset\overline{M}$ , we define the capacity Cap(B) by

Cap(B) $=A\in O\inf_{B\subset A}$

,
Cap(A).

We say that a subset $B$ of $\overline{M}$ is almost polar if Cap(B) $=0$ .

Definition 1.2. The Cauchy boundary $\partial M$ of $M$ is defined by

$\partial M:=\overline{M}\backslash M$ ,

where $\overline{M}$ is the completion of $M$ with respect to the Riemannian dis-
tance.
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Lemma 1.1 ([M2]). For an arbitrary Riemannian manifold $M$ ,

let $\partial M$ denote the Cauchy boundary of M. If the capacity of $\partial M$ is

finite, then the two Sobolev spaces $W_{0}^{1,2}(M)$ and $W^{1,2}(M)$ coincide if
and only if $\partial M$ is an almost polar set.

In the case of Theorem 1.1, the Cauchy boundary of $M\backslash N$ is $N$ .

It is shown in [M1] that when the lower Minkowski codimension of the
Cauchy boundary is not less than 2, then $\partial M$ is almost polar, where the
lower Minkowski codimension is defined as follows:

Definition 1.3. The lower Minkowski codimension of $\partial M$ is de-
fined to be

$\mathring{\underline{cdim}}_{\Lambda 4}(\partial M):=\lim_{R\rightarrow 0}\inf\frac{\log(vo1(N_{R}))}{1og(R)}$ ,

where $N_{R}$ is a radius $R$ tubular neighborhood of $\partial M$ .

We now consider some examples.

Example 1.1. Consider the “football”. Set $M=\mathbb{C}\cup\{\infty\}$ and
$N=\{0, \infty\}$ ($m=2$ and $n=0$ ) and set

$g=\frac{4(dx^{2}+dy2)}{(1+r^{2})^{2}}$ , $f=\frac{\mu r^{\mu-1}(1+r^{2})}{1+r^{2\mu}}$ , $\mu\in \mathbb{R}^{+}$ , $\tilde{g}=f^{2}g$ ,

where $r=\sqrt{x^{2}+y^{2}}$ . Note that $f\in L_{g}^{2+\epsilon}(M\backslash N)$ for some $\epsilon>0$ , and
$\mathring{\underline{cdim}}_{M}(N)=2$ for any $\mu$ . When $\mu<1$ , the football is an Alexandrov
space and $\triangle$ has discrete spectrum, by [KMS] or by Theorem 1.1 above.
When $\mu>1$ , the football is not an Alexandrov space, but the spectrum
is still discrete, by Theorem 1.1 (see also Lemma 4.3 of [LR]).

Example 1.2. Consider a compact $m$-dimensional manifold $M$

with metric $g$ , and suppose $M$ contains the unit ball $B^{m}$ so that $g$ is
the standard Euclidean metric on $B^{m}\subset M$ . Let $N=\{\overline{o}\}$ be the center
point of $B^{m}\subset M$ . Let $f=r^{\ell}$ on $B^{m}$ and $\tilde{g}=f^{2}g$ with $\ell\in(-2/m, 0)$ ,

and extend $f$ to be positive and smooth on $M\backslash B^{m}$ . Thus $(M\backslash N,\tilde{g})$

is not complete, and coding(N)= $m$ for any $\ell$ . Also, as $f$ satisfies the
conditions of Theorem 1.1, $\triangle$ on $(M\backslash N,\tilde{g})$ has discrete spectrum.

Example 1.3. As it is known that Alexandrov spaces have discrete
spectrum [KMS], we are interested in finding examples that are not
Alexandrov spaces and for which Theorem 1.1 can be applied. The
footballs with $\mu>1$ provide such examples in two dimensions. The
following example shows that one can easily find such examples in higher
dimensions as well. (We choose a slightly complicated function $f$ in order
to easily verify it will not be an Alexandrov space.)
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Consider the previous example with $m=3$ ; that is, $M$ is compact, 3-
dimensional, $N=\{\overline{o}\}\subset B^{3}\subset M$ , and $g$ is the Euclidean metric on $B^{3}$ .

Set $f=\cos^{2}(\phi)r^{\ell}+\sin^{2}(\phi)(1+r^{3/2})\in L_{g}^{(9/2)+\epsilon}(M)$ on $B^{3}\subset M$ , where
$(r, \theta, \phi)$ are the spherical coordinates of $B^{3}$ , and $\ell\in(-2/3,0)$ . Extend $f$

to be positive and smooth on $M\backslash B^{3}$ , and let $\tilde{g}=f^{2}g$ . Then $(M\backslash N,\tilde{g})$ is
not complete, and the conditions of Theorem 1.1 are satisfied. Hence the

spectrum of $\overline{\triangle}_{\overline{g}}^{F}$ is discrete. The ball $B^{3}$ is invariant under the isometry
$(r, \theta, \phi)\rightarrow(r, \theta, \pi-\phi)$ , thus the sectional curvature in the $\{\phi=\pi/2\}-$

plane is $ K_{\overline{g}}=-(\triangle\ln(f))/f^{2}\rightarrow-\infty$ near $N$ , so it is not an Alexandrov
space.

Example 1.4. Consider the 3-dimensional torus $M=T^{3}=$
$\mathbb{R}^{3}/\mathbb{Z}^{3}$ with the standard Euclidean metric $g$ , and the 1-dimensional
torus $N=S^{1}=(\mathbb{R}/\mathbb{Z}, 0,0)\subset M$ . We will use cylindrical coordinates
$(x, r, \theta)$ , where $r$ is the radial distance to $N$ and $x$ is the arc-length along
$N$ . Let $f=\cos^{2}(\theta)+\sin^{2}(\theta)r^{\ell}$ near $N$ with $\ell\in(-2/3,0)$ , and extend $f$

to be positive and smooth away from $N$ . This manifold is incomplete,

and $\overline{\triangle}_{\overline{g}}^{F}$ has discrete spectrum, by Theorem 1.1 and Corollary 1.1.

Remark. Suppose $M$ is 2-dimensional and contains $B^{2}$ so that $g$

is the standard Euclidean metric when restricted to $B^{2}$ . Suppose $N=$

$\{\overline{o}\}\subset B^{2}\subset M$ and $f=-1/(r\ln(r))$ near $N$ . Then, with respect to $\tilde{g}=$

$f^{2}g$ , we have a complete end at $N$ that is a curvature-l psuedosphere of
finite area, so the spectrum is not discrete [D], [Mu]. Since $f\in L^{2}(M, g)$ ,
but $f\not\in L^{2+\epsilon}(M, g)$ for all positive $\epsilon$ , we know Theorem 1.1 is sharp when
$m=2$ . (If we had chosen $f=1/r\in L^{2-\epsilon}(M, g)$ for all small positive
$\epsilon$ instead, we would have produced a round cylindrical end of radius 1
which does not have discrete spectrum and does not have finite area.)

Remark. Consider $M=T^{2}\times T^{m-2}$ and $N=T^{m-2}$ and $f=$

$-1/(r\ln(r))$ near $N$ , where $r$ is radial distance to $N$ . Let the diago-
nalized coordinates near $N$ be $(x_{1}, x_{2}, y_{1}, \ldots, y_{m-2})$ , inherited from the
standard rectangular Euclidean coordinates of $\mathbb{R}^{m}$ Then $(M\backslash N,\tilde{g})$ is
complete, and the sectional curvatures are

$K_{\overline{g}}(\partial_{x_{1}}, \partial_{x_{2}})=-1$ , $K_{\overline{g}}(\partial_{x_{i}}, \partial_{y_{j}})=0$ , $K_{\overline{g}}(\partial_{yi}, \partial_{y_{j}})=0$ .

So the Ricci curvature is bounded below, and hence the essential spec-
trum is not empty [$D$ , Theorem 3.1]. So Theorem 1.1 is not true for this
$f\in L^{p}$ , $p\leq 2$ . Hence, for all $m$ , the restriction on $f$ in Theorem 1.1
cannot be weakened to $f\in L^{p}$ for some $p\leq 2$ .

Remark. Donnelly and Li [DL] have found complete examples
$(M\backslash N,\tilde{g})$ where $M=\mathbb{R}^{m}\cup\{\infty\}$ and $N=\infty(n =0)$ and $\tilde{g}$ is ro-
tationally invariant, so that sectional curvature converges to $-\infty$ at $N$
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and $(M\backslash N,\tilde{g})$ has pure point spectrum. For example, let $m=2$ and
$\tilde{g}=dr^{2}+\exp(-r^{k})d\theta^{2}$ , $k>1$ , in radial coordinates $(r, \theta)$ of $\mathbb{R}^{2}$ . It is
complete and its single end is conformally a punctured disk, and since
the curvature converges to $-\infty$ at the end, it has pure point spectrum
[DL]. Theorem 1.1 does not apply to such examples.

\S 2. Weyl’s formula

In this section, let $M$ be an $m$-dimensional Riemannian manifold
with finite volume and finite diameter. $M$ can be noncompact and in-
complete.

Remark. The manifolds $(M\backslash N,\tilde{g})$ in Theorem 1.1 have finite

volume, since $f\in L_{g}^{(m(m-n)/2)+\epsilon}\subseteq L_{g}^{m-n}$ implies $vol(M\backslash N,\tilde{g})=$

$\int_{M}d\tilde{A}=\int_{M}f^{m-n}dA<\infty$ .

Before stating and proving Weyl’s asymptotic formula, we establish
some notation. Let $N_{R}$ be a radius $R$ tubular neighborhood of the
Cauchy boundary $\partial M$ of $M$ . Note that $vol(M\backslash N_{R})+vol(N_{R})=vol(M)$

and $vol(N_{R})\rightarrow 0$ as $R\rightarrow 0$ . Define the Neumann isoparimetric constant

of $N_{R}$ by

$C_{R}:=\inf_{\gamma}\mathring{\frac{v1(\gamma)}{\min\{vol(M_{1}),vo1(M_{2})\}^{(m-1)/m}}}$ ,

where the infimum is taken over all hypersurfaces $\gamma$ of $N_{R}$ which divide
$N_{R}$ into two parts $M_{1}$ and $M_{2}$ , and where $vol(\gamma)$ represents the $m-$
$1$ dimensional volume of $\gamma$ and $vol(M_{j})$ represents the $m$ dimensional
volume of $M_{j}$ .

Here, we will assume that

$C:=\inf_{R>0}C_{R}>0$ .

Then, since $M$ has finite volume, one can see that $M$ , $N_{R}$ and $M\backslash N_{R}$ all

have pure point spectra. Let $\lambda_{j}^{1,N}$ (resp. $\lambda_{j}^{2,N}$ ) be the Neumann eigen-

values on $Int(M\backslash N_{R})$ (resp. Int $(N_{R})$ ) counted with their multiplicities
(i.e. listed in nondecreasing order, and the number of times that any

eigenvalue appears in the list equals its multiplicity). Let $\lambda_{j}^{3,N}$ be the

Neumann eigenvalues of Int $(M\backslash N_{R})\cup Int(N_{R})$ counted with their mul-
tiplicities. Let $\lambda_{j}^{D}$ be the Dirichlet eigenvalues on Int $(M\backslash N_{R})$ counted
with their multiplicities. Here, we state Weyl’s asymptotic formula for
$M$ .

Theorem 2.1. Let $M$ be an $m$ -dimensional Riemannian manifold
with finite volume and finite diameter. If the Cauchy boundary of $M$ is
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an almost polar set and $C>0$ , then the eigenvalues $\lambda_{j}$ of the Laplacian
$\triangle$ satisfy Weyl ’s asymptotic formula

$\lim_{j\rightarrow\infty}\frac{\lambda_{j}^{m/2}vo1(M)}{j}=\frac{(2\pi)^{m}}{vo1(B^{m})}$

Proof. Let $W=(2\pi)^{m}/vol(B^{m})$ . Note that $\lambda_{j}\leq\lambda_{j}^{D}$ by Dirichlet-
Neumann bracketing techniques (see, for example, volume 4 of [RS]).
Note also that, since $M$ has finite diameter and therefore $M\backslash N_{R}$ is
relatively compact, the $\lambda_{j}^{D}$ satisfy Weyl’s asymptotic formula on $M\backslash N_{R}$ .

So

$\lambda_{j}\leq\lambda_{j}^{D}\approx Wvol(M\backslash N_{R})^{-2/m}j^{2/m}\rightarrow Wvol(M)^{-2/m}j^{2/m}$

for large $j$ , as $R\rightarrow 0$ . This implies

$\lim_{j\rightarrow}\sup_{\infty}\frac{\lambda_{j}^{m/2}vo1(M)}{j}\leq W$ .

Consider the Neumann heat kernel

$H_{R}(x, y, t)=\sum_{\dot{x}=1}^{\infty}e^{-\lambda_{i}^{2N}}{}^{t}\phi_{i}^{2,N}(x)\phi_{i}^{2,N}(y)$

on $N_{R}$ , where $\{\phi_{i}^{2,N}\}_{i=1}^{\infty}$ is an orthonormal basis of eigenfunctions in
$L^{2}(N_{R})$ associated to the eigenvalues $\lambda_{i}^{2,N}$ Using the method of [LT],
we know that the Neumann heat kernel on $N_{R}$ belongs to the Sobolev
space $W^{1,2}(N_{R})$ and has the above form. As the isoperimetric constant
$C_{R}$ of $N_{R}$ is positive and the coarea formula on $N_{R}$ holds for nonnega-
tive functions, the associated Neumann Sobolev constant of $N_{R}$ is also
positive. Additionally, we have $H_{R}(x, y, t)$ in the above form, so the
methods in [CL] can be applied to show

$\lambda_{j}^{2,N}\geq\alpha(m)C_{R}^{2}(\frac{j}{vol(N_{R})})^{2/m}\geq\alpha(m)C^{2}(\frac{j}{vol(N_{R})})^{2/m}$

where $\alpha(m)$ is a positive constant depending only on $m$ .

Note that the list $\{\lambda_{j}^{3,N}\}$ is equal to the disjoint union of the lists
$\{\lambda_{j}^{1,N}\}$ and $\{\lambda_{j}^{2,N}\}$ rearranged in increasing order. Note also that $\lambda_{j}\geq$

$\lambda_{j}^{3,N}$ , by Dirichlet-Neumann bracketing. Since

$\lambda_{j}^{2,N}\geq\alpha(m)C^{2}(j/vol(N_{R}))^{2/m}$ and $\lambda^{1,N},\approx Wvol(M\backslash N_{R})^{-2/m}j^{2/m}$ for
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large $j$ , and since $vol(N_{R})\rightarrow 0$ and $vol(M\backslash N_{R})\rightarrow vol(M)$ as $R\rightarrow 0$ ,

we have

$\lim_{j\rightarrow}\inf_{\infty}\frac{\lambda_{j}^{m/2}vo1(M)}{j}\geq W$ .

$\square $

Example 2.1. Examples 1.1 and 1.2 satisfy the conditions of
Theorem 2.1, hence their eigenvalues satisfy Weyl’s asymptotic formula.

Remark. Using the methods of [CL], one can additionally con-

clude that $\lambda_{j}^{m/2}\geq\alpha(m)\hat{C}^{m/2}j/vol(M)$ $ior$ some positive constant $\hat{C}$

depending only on the lower bound of the Sobolev constants of $N_{R}$ for
all $R>0$ .

Remark. Because the “football” in Example 1.1 satisfies the con-
ditions of Theorem 2.1, it is clear that all $Met_{1}$ surfaces also satisfy
the conditions of Theorem 2.1. The authors hope to consider the more
general case where the conical singularities form a fractal set, and hope
that Theorem 2.1 can be applied to such cases. As an example of such
a case, since Minkowski dimension and Hausdorff dimension coincide on
self-similar fractals, the Cauchy boundary of $(S^{3}\backslash C, g_{S^{3}})$ is almost polar,
where $C$ is a Cantor set.

Remark. The results here bear some relation to the work [KS],
in which Kuwae and Shioya have recently studied the convergence of
the spectra of a sequence of Riemannian manifolds (they do not assume
completeness of the manifolds). Some of the results in [KS] involve the
almost polarity condition.
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Space of Geodesies on Zoll Three-Spheres

Kaoru Ono

Abstract.

The space of geodesies on a Zoll manifold, i.e., a Riemannian
manifold all of whose geodesies are closed with the same minimal
period, carries a natural symplectic structure. In this note, it is shown

that the space of geodesies on a Zoll three-sphere is symplectomorphic
to the product of two copies of two-spheres with the same area.

\S 1. Introduction

The geodesic flow of a Riemannian manifold $(M, g)$ is a Hamiltonian
system on its cotangent bundle $T^{*}M$ . More precisely, we identify the
tangent bundle $TM$ and the cotangent bundle $T^{*}M$ via the Riemann-
ian metric and the Hamiltonian function for the geodesic flow is given
by half of the square of the fiber norm on $T^{*}M$ . Note that the unit
cotangent bundle $U^{*}M$ is an energy hypersurface, i.e., a level set of the
Hamiltonian function. The trajectories of the geodesic flow $\{\Psi_{t}\}$ on the
unit tangent bundle of $(M, g)$ are characteristic curves on $U^{*}M$ with
respect to the standard symplectic structure on $T^{*}M$ .

The space of geodesies Geod(M, $g$ ), is the quotient space of $U^{*}M$

by the characteristic flow, which may not be a nice space, in general. If
all the geodesies are closed with the same minimal period, the quotient

space becomes a manifold. We call a metric $g$ enjoying this property
a Zoll metric. In such a case, the space of geodesies is considered as
the symplectic reduction of the energy hypersurface $U^{*}M$ by the circle
action and carries the natural symplectic structure. The cohomology
class of the symplectic form is the negative of the first Chern class of
the $S^{1}-$bundle $ U^{*}M\rightarrow$ Geod(M, $g$ ). A special feature of the symplectic
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manifold Geod(M, $g$ ) is that it contains Lagrangian spheres which sweep
up the whole space. Namely, the set $L_{p}$ of geodesies passing through
a point $p\in M$ is the image of a fiber of $U^{*}M$ at $p$ by the projection
$U^{*}M\rightarrow Geod(M, g)$ , and hence a Lagrangian sphere. It is obvious that
Geod $(M, g)$ is swept by these Lagrangian spheres.

It is known that the space of geodesies on an $n$-dimensional Zoll
sphere is simply connected and has the same cohomology ring as that
of the complex hyperquadric of complex dimension $n$ $-1$ (see [Y]). In
the case of low dimensional spheres, Hajime Sato proved that the Chern
classes of the space of geodesies of a Zoll 3-sphere has the same form as
in the case of the standard 3-sphere in their cohomology rings, which are
isomorphic, and the space of geodesies of a Zoll 4-sphere is diffeomorphic
to the complex hyperquadric [S].

In this short note, we shall prove the following

Theorem. The space of geodesies on any Zoll 3-sphere is sym-
plectomorphic to the product of two copies of symplectic 2-spheres with
the same area.

Remark. All known examples of Zoll metrics, up to now, are
deformations of the standard metric through Zoll metrics, (see [B], [K]
for examples of Zoll metrics.) In such a case, the result of our Theorem
follows from Moser’s stability theorem [M]. Note also that Theorem
implies the existence of homogeneous symplectomorphism between the
cotangent bundles with the zero section removed of any Zoll three-sphere
and the round three-sphere, which intertwines their geodesic flows.

\S 2. Preliminaries

In this section, we collect several results, which are necessary for our
argument.

A symplectic manifold $(X, \omega)$ is called monotonel, if the symplectic
class $[\omega]$ and the first Chern class $c_{1}(X)$ are positively proportional:

$c_{1}(X)=\lambda[\omega]$ for some $\lambda>0$ .

For 4-dimensional monotone symplectic manifolds, we have the following

Theorem 2.1 (cf. [O-O]). A monotone symplectic $A$ -manifold
$(X, \omega)$ is diffeomorphic to one of $Del$-Pezzo surfaces. If $X$ is minimal,

lMonotonicity is usually defined to be the positive proportionality of $[\omega]$

and $c_{1}(M)$ , as homomorphisms from $\pi_{2}(M)$ to R. Our assumption here is

stronger than this “spherical monotonicity”, in case that $M$ is not simply
connected.
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$i.e.$ , $X$ does not contain (-1) symplectic sphere, then it must be sym-
plectomorphic to either $CP^{2}$ with a multiple of the Fubini-Study form
or the product of two symplectic 2-spheres with the same area.

The result is obtained by combining a consequence of Taubes’ the-
orem $‘‘ SW=GW$” and McDuff’s theorem [MD] concerning rational or
ruled symplectic 4-manifolds. In [O-O], we used Taubes’ theorem and
found a rational curve with non-negative intersection number. Then
McDuff’s theorem implies that it must be a rational or ruled surface,

and we get classification up to diffeomorphism. The statement about
symplectic structure follows from the uniqueness result [MD] (see also
[L-MD] $)$ .

Remark 2.2. As we mentioned, the space of geodesies on a Zoll
3-sphere is a cohomology $S^{2}\times S^{2}$ . So it is sufficient to show that
Geod(M, $g$ ) is a monotone symplectic manifold.

Remark 2.3. It is possible to prove our theorem by combin-
ing Theorem 2.1 with Sato’s result mentioned above, which implies the
monotonicity. Here we shall give another method of computing the
Chern class.

The unit cotangent bundle $U^{*}M$ carries a contact structure $\xi\subset$

$TU^{*}M$ , which inherits the structure of symplectic vector bundle from
the canonical symplectic form on $T^{*}M$ . The tangent bundle along fibers
of $U^{*}M\rightarrow M$ is a Lagrangian subbundle, which we denote by Ver.
Associated to a closed geodesic $\gamma$ : $[0, L]\rightarrow M$ , we consider the loop $\mathcal{L}_{\gamma}$

of Lagrangian subspaces in $\xi$ :

$\mathcal{L}_{\gamma(t)}=d\Psi_{t}(Ver_{\gamma(0)})$ .

We denote by $\mu(\gamma)$ the Maslov index of the loop $\mathcal{L}_{\gamma}$ with respect to the
vertical Lagrangian distribution Ver. The relation between the Maslov
index $\mu(\gamma)$ and the Morse index of the geodesic $\gamma$ is established in [D].
Here we recall the following fact.

Lemma 2.4 (cf. $[B$ , Theorm 7.23]). $\mu(\gamma)$ must be 4. (the Morse
index=2, the nullity $=2$ )

\S 3. Proof of Theorem

Let $g_{0}$ be the standard metric on $M=S^{3}$ and $g$ a metric, all of whose
geodesies are closed with the common minimal period. By multiplying
a suitable real number to $g$ , we may assume that the unit cotangent
ball bundle $B^{g0}M$ with respect to $g_{0}$ is strictly contained in the unit
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cotangent ball bundle $B^{g}M$ with respect to $g$ . By the assumption that
characteristics on unit cotangent bundles $U_{go}^{*}M$ and $U_{g}^{*}M$ are periodic
(with different periods), we can apply symplectic cutting construction
[L] along boundaries to the compact symplectic manifold with bound-
ary $B^{g}M\backslash Int(B90M)$ and get a closed symplectic 6-manifold $(Z, \omega)$ .

Namely, we consider the orbit spaces of boundaries by the circle actions
and replace the boundaries of the compact manifold by the orbit spaces.
It turns out that the space obtained is a smooth manifold, if the cir-
cle actions are free, and carries a natural symplectic structure. This is
the symplectic cutting construction. It is clear that Geod(M, $g_{0}$ ) and
Geod(M, $g$ ) are symplectically embedded in $Z$ .

For the standard metric $g_{0}$ , the space of geodesies Geod(M, $g_{0}$ ) is
diffeomorphic to the complex hyperquadric of complex dimension 2, i.e.,
the product of two copies of $S^{2}$ . We denote by $\alpha_{1}$ and $\beta_{1}$ the Poincar\’e

duals of $S^{2}\times pt$ and $pt\times S^{2}$ , respectively.
Since the cohomology ring of Geod(M, $g$ ) is also isomorphic to that

of $S^{2}\times S^{2}$ , we denote by $\alpha_{2}$ and $\beta_{2}$ the corresponding generators of
the second cohomology group so that $\alpha_{2}\cup\beta_{2}$ Geod(M, $g$ ) $]$ $=1$ and
$\alpha_{2}^{2}$ Geod(M, $g$ ) $]$ $=\beta_{2}^{2}$ Geod(M, $g$ ) $]$ $=0$ .

Lemma 3.1. The first Chern class of Geod(M, g) $is\pm 2(\alpha_{2}+\beta_{2})$ .

Proof. Note that the signature of Geod(M, $g$ ) is zero. Hence the
first Pontrjagin class must be zero. Since $p_{1}=c_{1}^{2}-2c_{2}$ and $c_{2}$ is identified
with the Euler number, $c_{1}^{2}$ Geod(M, $g$ ) $]$ $=8$ . For a simply connected 4-
manifold, the fact that the intersection form is of even type implies the
vanishing of the second Stiefel-Whitney class $w_{2}$ . Combining the fact
that $c_{1}$ modulo 2 equals $w_{2}$ , we have $c_{1}(M)=\pm 2(\alpha_{2}+\beta_{2})$ . $\square $

Remark 3.2. The symplectic manifold, which has the same
cohomology ring as $S^{2}\times S^{2}$ , contains an embedded Lagrangian sphere,
only if the symplectic class is proportional to $\alpha_{2}+\beta_{2}$ . The reason is the
following. The self intersection number of a Lagrangian two-sphere must
be-2 and its homology class must $be\pm(\alpha_{2}-\beta_{2})$ . Then the Lagrangian
condition implies that the integration of the symplectic form over $\alpha_{2}$

and $\beta_{2}$ are the same, which implies the proportionality, although it is
not neccessarily positive proportionality.

We may change, if necessary, the orientation on both factors of $ S^{2}\times$

$S^{2}$ simultaneously and assume that the symplectic class is a positive
multiple of $\alpha_{2}+\beta_{2}$ . Then, once we know that $c_{1}$ Geod(M, $g$ ) $)$ $=2(\alpha_{2}+$

$\beta_{2})$ , our theorem follows from Theorem 2.1. The rest of the argument
is devoted to computing the first Chern class.
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Let $\gamma_{1}$ and $\gamma_{2}$ be orbits of the geodesic flow on $U_{go}^{*}M$ and $U_{g}^{*}M$ ,

respectively. We can regard them as transversal loops in the projec-
tive cotangent bundle $(PT^{*}M, \xi)$ , by identifying $U_{g}^{*}M$ and $U_{g_{O}}^{*}M$ with
projective cotangent bundle using the projection

$T^{*}M\backslash O_{M}\rightarrow PT^{*}M=(T^{*}M\backslash O_{M})/R^{+}$ .

Since $PT^{*}M$ is diffeomorphic to $S^{3}\times S^{2}$ , it is a 5-dimensional simply
connected manifold. Then we can find an isotopy of smooth embeddings
between loops $\gamma_{1}$ and $\gamma_{2}$ . By a $C^{0}$-small perturbation of the isotopy, we
get an isotopy through transversally embedded loops. Hence we obtain
the following

Lemma 3.3. Two transversal loops $\gamma_{1}$ and $\gamma_{2}$ above are transver-
sally isotopic.

Using this lemma, we can construct an symplectically embedded 2-
sphere as follows. Let $\{\gamma_{t}\}$ denote the transversal isotopy between $\gamma_{1}$

and $\gamma_{2}$ . We assume that it is independent of $t$ near $t=1,2$ , respectively.
Take a family of metrics $g_{t}=(2-t)g_{0}+(t-1)g$ . Using the identification
between $U^{gt}M$ and $PT^{*}M$ , we consider that $\gamma_{t}$ is a loop in $U^{gt}M$ . Note
that the unit cotangent bundles with respect to $g_{t}$ are mutually disjoint.
We may rescale the metric the metric small real number so that the unit
cotangent ball bundle $B^{go}M$ is sufficiently small and the $t$-direction is
stretched out and the map

$F:S^{1}\times[1,2]\rightarrow B^{g}M\backslash Int(B^{go}M)$

given by $(s, t)\mapsto\gamma_{t}(s)$ yields a symplectically embedded cylinder. It is
easy to see that after symplectic cutting construction, we get an sym-
plectically embedded sphere $C$ in $Z$ , which intersects Geod(M, $g_{0}$ ) and
Geod(M, $g$ ) with intersection index 1. We denote by $N$ and $S$ the points
in $C$ corresponding to $\gamma_{1}$ and $\gamma_{2}$ , respectively.

By the Mayer-Vietris exact sequence, we have

Lemma 3.4. The second homology group $H_{2}(Z;Z)$ is generated
by $H_{2}$ Geod(M, go; $Z$ ) $)$ and $C$ .

We identify Geod(M, $g_{0}$ ) with $S^{2}\times S^{2}$ and denote by $A$ and $B$ the
generators $[S^{2}\times pt]$ and $[pt\times S^{2}]$ of $H_{2}(S^{2}\times S^{2}; Z)$ .

Then the image of $H_{2}$ Geod(M, $g$ ) ; Z) in $H_{2}(Z;Z)$ is the submodule
spanned by $A+C$ and $B+C$ . Note that $\omega\cdot(A+C)=\omega\cdot(B+C)>0$ . Since
Lemma 3.1 implies that $c_{1}$ Geod(M, $g$ ) $)$ $[A+C]=c_{1}$ Geod(M, $g$ ) $)$ $[B+C]$ ,

it suffices to prove that $c_{1}$ Geod(M, $g$ ) $)$ $[A+C]>0$ . Geod(M, $g$ ) is a
symplectic submanifold, so that an almost complex submanifold with
respect to a compatible almost complex structure and we have
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$c_{1}$ (Geod(M, $g)$ ) $=c_{1}(TZ|_{Geod(M,g)})-PD([Geod(M, g)])$ ,

where $PD([Geod(M, g)])$ is the Poincar\’e dual of the fundamental class
of Geod(M, $g$ ). Hence we have $c_{1}$ (Geod(M, $g$ )) $[A+C]=c_{1}(Z)[A+C]-1$
and $c_{1}(Z)[A+C]=c_{1}(Z)[A]+c_{1}(Z)[C]$ . From the explicit description
of a neighborhood of Geod(M, $g_{0}$ ), we have $c_{1}(Z)[A]=1$ .

We have the following

Lemma 3.5. $c_{1}(Z)[C]=2$ .

Proof. Since $C$ is a symplectically embedded sphere, we may as-

sume that $TC$ is a complex subbundle of a complex vector bundle $TZ|_{C}$ .

We denote by $N_{C}$ its normal bundle. Then we have

$c_{1}(Z)[C]=c_{1}(TC)[C]+c_{1}(N_{C})[C]=2+c_{1}(N_{C})[C]$ .

Note that $N_{C}$ restricted to $C\backslash \{N, S\}$ is identified as the restriction of
$\xi$ and contains a Lagrangian subbundle given by the vertical distribution.
Around $N$ and $S$ , they may have non-trivial Maslov index and may not
extend over $C$ . But by Lemma 2.4, these Maslov indices are the same.
Since the bundle $N_{C}$ is the quotient of $\xi|_{F(S^{1}\times[1,2]}$ by the circle actions

along boundaries, i.e., the differential of the geodesic flows $d\Psi_{t}$ with
respect to the Zoll metrics $g_{0}$ and $g$ , this implies that the symplectic
vector bundle $N_{C}$ is trivial and has vanishing first Chern class. Therefore
we have $c_{1}(Z)[C]=2$ . $\square $

Combining our computation, we have

$c_{1}$ (Geod(M, $g$ )) $[A+C]=c_{1}(Z)[A]+c_{1}(Z)[C]-1=1+2-1=2>0$ ,

which completes the proof of the Theorem.
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Constant Mean Curvature 1 Surfaces with

Low Total Curvature in Hyperbolic 3-Space

Wayne Rossman, Masaaki Umehara and Kotaro Yamada

Abstract.

Surfaces of constant mean curvature one in hyperbolic 3-space

have quite similar properties to minimal surfaces in Euclidean 3-
space. We shall list the possibilities of constant mean curvature one
surfaces in hyperbolic 3-space with low total absolute curvature, or
low dual total absolute curvature, and compare them with the known

classification of minimal surfaces with low total curvature. Complete
proofs of the new results will be published in two forthcoming papers
(listed in the bibliography).

\S Introduction

Recent developments in the study of constant mean curvature 1
(CMC-I) surfaces in hyperbolic 3-space $H^{3}$ (of constant sectional curva-
ture-l) have led to many recently-discovered examples of such surfaces,
and it is now well-known that CMC-I surfaces in $H^{3}$ share quite similar
properties with minimal surfaces in Euclidean 3-space $R^{3}$ . (See [1], [3],
[7], [8], [11], [12], [13], [14], [15] and [16].)

The total absolute curvature of a complete minimal surface in $R^{3}$

is a $ 4\pi$-multiple of a nonnegative integer and is equal to the area of the
Gauss image of the surface. All such surfaces with finite total absolute
curvature less than or equal to $ 8\pi$ have been classified by Lopez [4]. Here
we consider the corresponding problem for CMC-I surfaces in $H^{3}$ .

Classifying CMC-I surfaces in $H^{3}$ with low total absolute curvature
turns out to be more difficult and subtle than Lopez’s classification, for
the following reasons: Unlike the case of minimal surfaces in $R^{3}$ , the
Bryant representation formula, which is an analogy of the Weierstrass
representation formula, is not formulated by using line integration, but
rather uses parallel transport along a path in the non-commutative group

2000 Mathematics Subject Classification. Primary $53A10$ ; Secondary
53A35, 53A42.
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$SL(2, C)$ . Moreover, also unlike the case of minimal surfaces in $R^{3}$ ,

CMC-I surfaces in $H^{3}$ have two Gauss maps, the hyperbolic Gauss map
$G$ and the secondary Gauss map $g$ . The total absolute curvature of
CMC-I surfaces in $H^{3}$ is equal to the area of the image of the secondary
Gauss map $g$ , but since $g$ might not be single-valued on the surface,
the total absolute curvature might not be a $ 4\pi$-multiple of an integer.

The hyperbolic Gauss map $G$ , on the other hand, does not relate to the
total absolute curvature of the surface directly, but it has much clearer
geometric meaning, namely the image $G(p)$ lies in the ideal boundary
$S^{2}$ of the hyperbolic space at the point corresponding to the end of the
normal geodesic emanating from the point $p$ on the surface. Therefore,
unlike the secondary Gauss map $g$ , the hyperbolic Gauss map $G$ is single-
valued on the surface, but it may have essential singularities, even when
the total absolute curvature is finite.

There is a natural notion of dual total absolute curvature for CMC-
1 surfaces in $H^{3}$ . A duality for CMC-I surfaces is introduced in [13,
Remark 1.8], [15], and Yu [17] (called inverse surfaces in [17]), which
interchanges the role of the hyperbolic Gauss map and the secondary
Gauss map (see Section 1.2). The total absolute curvature of the dual
CMC-I surfaces, i.e., the dual total absolute curvature, is equal to the
area of the image of the hyperbolic Gauss map $G$ . In particular, the dual
total absolute curvature is always a $ 4\pi$-multiple of an integer. Though
the total absolute curvature of CMC-I surfaces satisfies only the Cohn-
Vossen inequality, the dual total absolute curvature has a much stronger
lower bound, which is an analogue of the Osserman inequality for mini-
mal surfaces (cf. [15], [18]).

The purpose of this note is to list the possibilities of CMC-I surfaces
in $H^{3}$ with low total absolute curvature, or low dual total absolute curva-
ture, and compare them with Lopez’s classification. Complete proofs of
the new results will be published in forthcoming papers [9], [10]. Though
the results at present do not achieve a full classification of CMC-I sur-
faces with total absolute curvature or dual total absolute curvature less
than or equal to $ 8\pi$ , the authors hope the results might be of help to

readers interested in this subject.

\S 1. Preliminaries

1.1. Total absolute curvature

Let $f:M$ $\rightarrow H^{3}$ be a conformal immersion with CMC-I of a Rie-
mann surface $M$ into $H^{3}$ . Denote the Gaussian curvature, the induced
metric, and the induced area element by $K$ , $ds^{2}$ , and dA, respectively.
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Then $K$ is non-positive and $d\sigma^{2}.--(-K)ds^{2}$ is a conformal pseudo-
metric of constant curvature 1 on $M$ . We call the developing map
$g:\overline{M}\rightarrow CP^{1}$ the secondary Gauss map of $f$ , where $\overline{M}$ is the universal

cover of $M$ . Namely, $g$ is a conformal map such that the pull-back of
the Fubini-Study metric of $CP^{1}$ coincides with $d\sigma^{2}$ .

In addition to the secondary Gauss map, the following two holomor-
phic invariants $G$ and $Q$ are closely related to the geometric properties
of CMC-I surfaces. The hyperbolic Gauss map $G:M$ $\rightarrow CP^{1}$ is defined
as a holomorphic map on $M$ as follows: Identifying the ideal boundary
of $H^{3}$ with $CP^{1}$ , $G(p)$ is the asymptotic class of the normal geodesic
of $f(M)$ starting at $f(p)$ and oriented in the mean curvature vector’s
direction. The Hopf differential $Q$ is the $(2, 0)$ -part of the complexified
second fundamental form, and is a symmetric holomorphic 2-differential
on the Riemann surface $M$ .

As $K$ is a non-positive number, we can define the total absolute
curvature

TA:= $\int_{M}(-K)dA\in[0, +\infty]$ .

Then TA is the area of the image in $CP^{1}$ of the secondary Gauss map.
The value of TA might not be an integral multiple of $ 4\pi$ –for example,

the total curvature of the catenoid cousins [1, Example 2] admits any
positive real number except $ 4\pi$ .

If the induced metric $ds^{2}$ is complete and of finite total absolute cur-
vature (i.e., TA $<+\infty$ ), then there exists a compact Riemann surface $\overline{M}$

and a finite set of points $\{p_{1}, \ldots,p_{n}\}\subset\overline{M}$ such that $M$ is biholomorphic

to $\overline{M}\backslash \{p_{1}, \ldots,p_{r\iota}\}$ . We call the $p_{j}$ ’s the ends of $f$ .

For CMC-I surfaces, equality never holds in the Cohn-Vossen in-

equality [11]:

(1.1) $\frac{TA}{2\pi}>-\chi(M)=n-2+2\gamma$ ,

where $\chi(M)$ denotes the Euler characteristic of $M$ , and $\gamma$ is the genus
of $\overline{M}$ .

1.2. Dual total absolute curvature

The dual CMC-I immersion of a conformal CMC-I immersion is de-
fined as follows ([15], [17]): For a conformal CMC-I immersion $f:M$ $\rightarrow$

$H^{3}$ , there exists a holomorphic null immersion $F:\overline{M}\rightarrow SL(2, C)$ such

that $f=FF^{*}$ , where $\overline{M}$ is the universal cover of $M$ and $F^{*}=\tau F$ . Here,

we consider $H^{3}=SL(2, C)/SU(2)=\{aa^{*}|a\in SL(2, C)\}$ in the Her-
mitian model. We call $F$ the lift of $f$ . Then, the inverse matrix $F^{-1}$ is
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also a holomorphic null immersion, and hence we have a new CMC-I im-

mersion $f^{\neq\neq}=F^{-1}(F^{-1})^{*}:$
$\overline{M}\rightarrow H^{3}$ , which is called the dual of $f$ . The

hyperbolic Gauss map (resp. secondary Gauss map, Hopf differential) of
the dual immersion $f^{\not\simeq\neq}$ is the secondary Gauss map $g$ (resp. hyperbolic
Gauss map $G$ , sign-changed Hopf differential $-Q$ ) of $f$ .

Although the dual immersion might only be defined on the universal

cover $\overline{M}$ of $M$ , the induced metric $ds^{\neq 2}$ and the Gaussian curvature $K^{\neq}$

are well-defined on $M$ itself. Hence we can define the dual total absolute
curvature as

$TA^{\#}:=\int_{M}(-K^{\#})dA^{\#}$ ,

where $dA^{\neq}$ is the area element induced by $ds^{\neq 2}$ . Since the secondary
Gauss map of $f^{\neq}$ is the hyperbolic Gauss map $G$ of $f$ ,
$d\sigma^{\# 2}:=(-K^{\neq})ds^{\# 2}$ is a pseudo-metric of constant curvature 1 with

developing map $G$ . Hence $TA^{\#}$ is the area of the image of $G$ on $CP^{1}$ .

As shown in [15], [17], the induced metric $ds^{2}$ of $f$ is complete if and
only if the dual metric $ds^{\neq 2}$ is complete. If we assume the immersion $f$

is complete and of finite dual total absolute curvature $(i.e., TA^{\#}<+\infty)$ ,
then, as in the finite total curvature case, $M$ is biholomorphic to a finitely
punctured compact Riemann surface: $M=\overline{M}\backslash \{p_{1}, \ldots,p_{r\iota}\}$ . Unlike the
minimal surface case, the hyperbolic Gauss map might not extend to a
meromorphic function on $\overline{M}$ . The dual total absolute curvature $TA^{\#}$

is finite if and only if the hyperbolic Gauss map can be extended to
a meromorphic function on $\overline{M}$ , and in this case, $TA^{\#}=4\pi degG$ . In

particular, $TA^{\#}$ is an integral multiple of $ 4\pi$ .

For $TA^{\#}$ , a hyperbolic analogue of the Osserman inequality holds
[15], namely

(1.2) $\frac{TA^{\#}}{2\pi}\geq 2n-2+2\gamma$ .

1.3. Notation

Assume $f$ is complete with TA $<\infty$ or $TA^{\#}<\infty$ , and let $M$ $=$

$\overline{M}\backslash \{p_{1}, \ldots,p_{n}\}$ , where $\overline{M}$ is a compact Riemann surface. Then $Q$

extends to a meromorphic differential on $\overline{M}[1]$ . We say an end $p_{j}$

$(j=1, \ldots, n)$ of a CMC-I immersion is regular if the hyperbolic Gauss
map is holomorphic at $p_{j}$ . When TA $<\infty$ , an end is regular if and only
if the order of the Hopf differential $Q$ at $p_{j}$ is at least -2. Otherwise,

the hyperbolic Gauss map has an essential singularity at the end [1].
In this way, the orders of the Hopf differential at the ends are

closely related to properties of the surface, so we now introduce a no-
tation for these orders. In the following discussion, we say a surface
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Table 1. Classification of minimal surfaces in $R^{3}$ with

TA $\leq 8\pi[4]$ .

is of type $\Gamma(d_{1}, \ldots, d_{n})$ if the surface is given as an immersion $f:\overline{M}\backslash $

$\{p_{1}, \ldots,p_{r\iota}\}\rightarrow H^{3}$ , where the order of the Hopf differential at $p_{j}$ is $d_{j}$

for each $j=1$ , $\ldots$ , $n$ . We use $\Gamma$ because it is the capitalized letter cor-
responding to $\gamma$ , the genus of $\overline{M}$ . For instance, the class $1(-4)$ means
the class of surfaces of genus 1 with 1 end so that $Q$ has a pole of order
4 at the end, and the class $O(-2, -3)$ is the class of surfaces of genus 0
with two ends so that $Q$ has a pole of order 2 at one end and a pole of
order 3 at the other.

1.4. Minimal surfaces with $TA$ $\leq 8\pi$

Using the above notation, the classification of complete minimal

surfaces in $R^{3}$ with TA $\leq 8\pi$ (Lopez [4]) is listed in Table 1.

\S 2. Complete CMC-I surfaces with $TA$ $\leq 4\pi$

It is well-known that the only complete minimal surfaces in $R^{3}$ of
total curvature less than or equal to $ 4\pi$ are the plane, the Enneper
surface, and the catenoid. In this section, we shall introduce a complete
classification of CMC-I surfaces in $H^{3}$ with TA $\leq 4\pi$ .

Assume $f:M$ $\rightarrow H^{3}$ is a complete conformal immersion of TA $\leq 4\pi$ .

Then, by the Cohn-Vossen inequality (1.1), the genus $\gamma$ and the number
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Table 2. Classification of CMC-I surfaces in $H^{3}$ with TA $\leq$

$ 4\pi$ .

of ends $n$ are restricted to the following cases:

$(\gamma, n)=(0,1)$ , $(0, 2)$ , $(0, 3)$ , $(1, 1)$ .

However, the cases $(\gamma, n)=(0,3)$ and $(1, 1)$ do not occur. More precisely,
the following theorem holds:

Theorem 1 ([10]). Any complete CMC-I surface in $H^{3}$ with
TA $\leq 4\pi$ is one of those in Table 2.

The case marked $\star$ is the class of immersions $f:C\backslash \{0\}\rightarrow H^{3}$ given
by the Weierstrass data

(2.1) $(g,$ $\omega$ $:=\frac{Q}{dg})=(az^{l}+b$ , $\frac{m^{2}-l^{2}}{4a}\frac{dz}{z^{2}})$ , $a\in C\backslash \{0\}$ , $b\in C$ ,

for $l$ $=1$ and $m=2,3$ , $\ldots$ as in the equation (6.5) in [11]. When $b=0$ ,

the surface is a catenoid cousin. However, if $b\neq 0$ , the surface is not
rotationally symmetric.

Though we do not give the details of the proof here, we remark

that the proof is more difficult than for the corresponding case of min-
imal surfaces in $R^{3}$ . For example, the nonexistence of CMC-I surfaces
in $H^{3}$ with $(\gamma, n)=(1,1)$ is shown by applying a flux formula in [8].
The nonexistence of CMC-I surfaces with $(\gamma, n)=(0,3)$ is shown by
first applying the classification of irreducible CMC-I surfaces of type
$O(-2, -2, -2)$ in [16], and then one can show that TA $\geq 4\pi$ for such
surfaces. In [10], we will show the stronger inequality TA $>4\pi$ for CMC-
1 surfaces with $(\gamma, n)=(0,3)$ . However, the proof is not simple. In [10],
some other results for surfaces with TA $\leq 8\pi$ will also be discussed.

\S 3. Complete CMC-I surfaces with $TA^{\#}\leq 8\pi$

In this section, we introduce a partial result on classification of
CMC-I surfaces in $H^{3}$ with $TA^{\#}\leq 8\pi$ . Note that TA may take the
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Table 3. Classification of CMC-I surfaces in $H^{3}$ with
$TA^{\#}\leq 8\pi$ .

value $+\infty$ even if $TA^{\#}$ is finite. By (1.2), the genus $\gamma$ and the number
$n$ of ends of such surfaces are restricted to the following cases:

$(\gamma, n)=(0,1)$ , $(0, 2)$ , $(0, 3)$ , $(1, 1)$ , $(1, 2)$ , $(2, 1)$ .

However, the case $(\gamma, n)=(2,1)$ does not occur, which is a consequence

of the flux formula in [8]. A list of possible surfaces with $TA^{\#}\leq 8\pi$ is
shown in Table 3 (for the proof, see [9]). In this table,

$\blacksquare$ classified means the complete list of the surfaces in such a class
is known,

$\blacksquare classified^{0}$ means there exists a unique surface (up to isome-
tries of $H^{3}$ and deformations that come from its reducibility
[7, Theorem 3.2] $)$ ,

$\blacksquare$ existence means that examples of such surfaces are known to
exist, but they are not yet classified,
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$\blacksquare existence^{d}$ means that examples can be obtained by deforming
from a minimal surface in $R^{3}$ , using the method in [7],

$\blacksquare existence^{1}$ means there exists a 1 parameter family of examples,
which is not deformations coming from reducibility,

$\blacksquare$ unknown means that neither existence nor nonexistence is
known yet.

The case marked $\star\star$ (resp. $\star\star\star$ ) is the class of surfaces given by the
Weierstrass data (2.1) for $m=1$ and $l$ $=2,3$ , $\ldots$ (resp. $m=2$ and
$l$ $=1,3,4$ , $\ldots)$ .

It is interesting to compare Table 3 with Table 1. In the case of
minimal surfaces in $R^{3}$ with TA $\leq 8\pi$ , the cases

$O(-1, -4)$ , $O(-1, -1, -2)$ , $1(-2, -2)$

do not occur, whereas these cases really do occur for CMC-I surfaces
in $H^{3}$ . On the other hand, there is no CMC-I surface in $H^{3}$ of type
$O(-1, -3)$ , in spite of the fact that such minimal surfaces exist in $R^{3}$ .

Although the existence of CMC-I surfaces in $H^{3}$ of type $1(-3)$ and
$1(-1, -1)$ is still unknown, Table 3 shows the existence of CMC-I sur-
faces in $H^{3}$ for which the corresponding minimal surfaces in $R^{3}$ cannot
exist.
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A Note on the Symplectic Volume of the Moduli
Space of Spatial Polygons

Tatsuru Takakura*

Abstract.

We present an altenative proof of the volume formula of the
moduli space of spatial polygons, which was given by Kamiyama-

Tezuka. Our method is based on the commutativity of geometric
quantization and symplectic reduction, originating from a conjecture
of Guillemin-Sternberg.

\S 1. Introduction

Consider the following space $\Lambda 4_{n}$ , often called the moduli space of
spatial polygons;

$\lambda\Lambda_{n}=\{(a_{1}, $
\ldots ,

$ a_{n})\in(S^{2})^{n}|a_{1}+\cdots+a_{n}=0\}/SO_{3}$ ,

where $n$ $\geq 3$ and each $S^{2}$ is the unit sphere in $\mathbb{R}^{3}$ with the standard $SO_{3^{-}}$

action. For simplicity, we asseme that $n$ is odd. In this case $\lambda 4_{n}$ is a
compact connected smooth manifold of dimension 2 $(n-3)$ . The topology
and geometry of this space has been studied from various points of view
(see, e.g., [K-T] and references cited there). For example, it is well-
known that $\mathcal{M}_{n}$ admits a natural symplectic (in fact, K\"ahler) form $\omega_{n}$ .

Concerning symplectic properties of $\mathcal{M}_{n}$ , Kamiyama and Tezuka [K-T]
proved, among other things, the following $formu1a^{1}$ .

2000 Mathematics Subject Classification. Primary $53D20$ ; Secondary
53D50, 14L24.

$*partly$ supported by the Grant-in-Aid for Encouragement of Young
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Added in Proof. After this article was submitted, the author was in-

formed that S. Martin (Transversality theory, cobordisms, and invariants of
symplectic quotients, preprint) had also obtained this formula. His method is

different from those of Kamiyama-Tezuka and us.
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Theorem 1.1 ([K-T, Theorem $C]$ ). The symplectic volume of the
space $\lambda\Lambda_{n}$ is given as follows.

$Vol(\mathcal{M}_{n})=\frac{-1}{2(n-3)!}\sum_{r=0}^{[n/2]}(-1)^{r}$ $\left(\begin{array}{l}n\\r\end{array}\right)$ $(n-2r)^{n-3}$ .

(Strictly speaking, the volume in [K-T] is $(n-3)!$ times our $Vol(\Lambda 4_{n})$ .

Besides, their formula is written in a slightly different form, but is indeed
equivalent to ours (see [K-T, 5]).)

The aim of this paper is to give an alternative proof of the above,
as well as to prove the following more general result.

Theorem 1.2. Let $\mathcal{L}_{n}$ be the complex line bundle over $A4_{n}$ with
$c_{1}(\mathcal{L}_{n})=[\omega_{n}]$ . Then for each non-negative integer $k$ , we have

$\int_{\Lambda 4_{n}}Td(\lambda 4_{n})Ch(\mathcal{L}_{n}^{\otimes k})=dim(V_{k}^{\otimes n})^{SO_{3}}$

$N(n,k)$

$=-\frac{1}{2}$

$\sum_{r=0}(-1)^{r}$

$\left(\begin{array}{l}n\\r\end{array}\right)$ $(^{(n}-2r)kn+-n3-r-2)$ .

Here, $V_{k}$ is the irreducible representation of $SO_{3}$ of dimension $2k+1$ ,

$(V_{k}^{\otimes n})^{SO_{3}}$ is the invariant subspace of $V_{k}^{\otimes n}$ , and $N(n, k)=[\frac{kn+1}{2k+1}]$ .

Note that a similar formula for $k=1$ is given by Kamiyama [Ka],

where the results in [K-T] on the intersection pairings $\int_{\Lambda 4_{n}}\alpha$ . $\beta(\alpha,$ $\beta\in$

$H^{*}(\Lambda 4_{n}))$ are essential. On the other hand, we do not use such infor-
mation in our proof. (In fact, our approach in this paper is able to be
applied to derive general intersection pairings [T].) Actually, the proof
of Theorem 1.2 is a simple application of the “quantization commutes
with reduction” theorem, originally due to Guillemin-Sternberg.

Acknowledgement. I am grateful to Yasuhiko Kamiyama for
explaining his work and for useful discussions.

\S 2. Preliminaries

2.1. First, we need to specify the symplectic structure $\omega_{n}$ . For
this purpose, let us describe the symplectic manifold $(\lambda\Lambda_{n}, \omega_{n})$ as a
symplectic (K\"ahler) quotient, or a reduced phase space due to Marsden-
Weinstein. (See, e.g., [Ki], for this notion, as well as the relation to the
geometric invariant theory.) Let us consider the symplectic manifold
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$(\mathbb{P}^{1},2\omega_{FS})^{n}$ , that is, the product of $n$-copies of complex projective line
with twice the Fubini-Study K\"ahler form. (The Fubini-Study K\"ahler

form $\omega_{FS}$ is supposed to be normalized by $[\omega_{FS}]=c_{1}(H)\in H^{2}(\mathbb{P}^{1})$ ,

where $H$ is the hyperplane bundle on $\mathbb{P}^{1}.$ ) The diagonal action of $SO_{3}=$

$SU_{2}/\{\pm 1\}$ on $(\mathbb{P}^{1},2\omega_{FS})^{n}$ is Hamiltonian. In fact, if we identify each $\mathbb{P}^{1}$

with a coadjoint orbit of $SO_{3}$ in $\epsilon 0_{3}^{*}$ (or a round 2-sphere in $\mathbb{R}^{3}$ ), then

the moment map $\Phi$ : $(\mathbb{P}^{1})^{n}\rightarrow 50_{3}^{*}\cong \mathbb{R}^{3}$ is given by $\Phi(a_{1}, \ldots, a_{n})=$

$a_{1}+\cdots+a_{n}$ . Now our symplectic manifold $(\lambda 4_{n}, \omega_{n})$ is defined as the
symplectic quotient $\Phi^{-1}(0)/SO_{3}$ with the reduced symplectic form.

Remark. In [K-T], the symplectic structure of $\Lambda 4_{n}$ is defined
differently. But it does coincide with ours.

Moreover, $\Lambda 4_{n}$ inherits a complex structure $J_{n}$ from the standard
one on $(\mathbb{P}^{1})^{n}$ , so that $(\mathcal{M}_{n}, \omega_{n}, J_{n})$ is a K\"ahler manifold (called the
K\"ahler quotient).

Let $L$ $=H^{\otimes 2}$ . It is an $SO_{3}$ -equivariant holomorphic line bundle over
$\mathbb{P}^{1}$ . Then the outer tensor product $L^{\mathbb{R}n}$ over $(\mathbb{P}^{1})^{\mathcal{T}l}$ naturally defines
a holomorphic line bundle $\mathcal{L}_{n}$ over $\lambda\Lambda_{n}$ such that $c_{1}(\mathcal{L}_{n})=[\omega_{n}]$ . In
particular, $\Lambda 4_{n}$ is projective.

2.2. Now let us recall the “quantization commutes with reduc-
tion” theorem. This theorem arose from a conjecture of Guillemin-
Sternberg [G-S], and has been proved (and improved) by several people
and by various methods. See, e.g., [S] for a survey and references on

this topic. We do not intend to state it in full generality, but restrict
ourselves only to the following special situation.

For a compact complex manifold $X$ and a holomorphic line bundle
$L$ over $X$ , define $\chi(X, L):=\sum(-1)^{i}H^{i}(X, O(L))$ , as a virtual vector
space. By the Hirzebruch-Riemann-Roch theorem (or Atiyah-Singer in-

dex theorem), we have $dim\chi(X, L)=\int_{X}$ Td(X)Ch(L). If a compact

group $G$ acts holomorphically on $X$ and $L$ is $G$-equivariant, we can re-
gard $\chi(X, L)$ as a virtual representation of $G$ , i.e., an element of the
representation ring $R(G)$ of $G$ .

Suppose in addition that $X$ admits an $G$-invariant K\"ahler form $\omega$

and $L$ admits an $G$-invariant hermitian connection $\nabla$ such that $c_{1}(\nabla)=$

$\omega$ . Then $G$-action on $X$ is Hamiltonian. Let $\Phi$ : $X\rightarrow g^{*}$ be the moment
map. For simplicity, we assume 0 is a regular value of $\Phi$ and $G$ acts freely
on $\Phi^{-1}(0)$ , so that the K\"ahler quotient $X_{G}=\Phi^{-1}(O)/G$ is a smooth
K\"ahler manifold and we have the reduced holomorphic line bundle $L_{G}$

over $X_{G}$ . The theorem we need is the following.
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Theorem 2.1. Under the assumption as above, we have
$\chi(X, L)^{G}=\chi(X_{G}, L_{G})$ , where the left hand side is the $G$ -invariant part

of the virtual representation $\chi(X, L)$ of $G$ .

Remarks. (1) By the argument in 2.1, we are able to apply

this theorem to the case when $G=SO_{3}$ , $(X, L)=((\mathbb{P}^{1})^{n}, L^{\Phi n})$

(with an appropriate invariant hermitian connection) and
$(X_{G}, L_{G})=(\mathcal{M}_{n}, \mathcal{L}_{n})$ .

(2) The original result in [G-S] states that $H^{0}(X, O(L))^{G}$

$=H^{0}(X_{G}, O(L_{G}))$ for the spaces of global holomorphic sec-
tions instead of $\chi$ . Since we can show that the higer cohomolo-
gies vanish for $((\mathbb{P}^{1})^{n}, L^{Bn})$ and $(\lambda\Lambda_{n}, \mathcal{L}_{n})$ , this may be enough
for our purpose.

(3) If we replace $L$ (resp. $L_{G}$ ) to $L^{\otimes k}$ (resp. $L_{G}^{\otimes k}$ ) for a non-
negative integer $k$ , the same formula holds. It is obvious when
$k\geq 1$ . See [M-S] for the case $k=0$ .

\S 3. Proofs

Theorem 1.1 follows from Theorem 1.2, since

$Vol(\mathcal{M}_{n})=\int_{A4_{n}}\exp(\omega_{n})=\int_{\mathcal{M}_{n}}Ch(\mathcal{L}_{n})$

$=\frac{1}{k^{n-3}}\int_{\mathcal{M}_{n}}Ch(\mathcal{L}_{r\iota}^{\otimes k})=\lim_{k\rightarrow\infty}\frac{1}{k^{n-3}}\int_{\mathcal{M}_{n}}Td(\mathcal{M}_{n})Ch(\mathcal{L}_{n}^{\otimes k})$ .

In order to prove Theorem 1.2, note that, for each $k(\geq 0)$ ,

$\int_{\Lambda 4_{n}}Td(_{\sqrt{}}\vee 1_{n})Ch(\mathcal{L}_{n}^{\otimes k})=\chi(\mathcal{M}_{n}, \mathcal{L}_{n}^{\otimes k})=\chi((\mathbb{P}^{1})^{n}, (L^{\otimes k})^{\ovalbox{\tt\small REJECT} n})^{SO_{3}}$

$=(\chi(\mathbb{P}^{1}, L^{\otimes k})^{\otimes n})^{SO_{3}}$

$=(V_{k}^{\otimes n})^{SO_{3}}$

Indeed, the first equality is a direct consequence of Theorem 2.1, the
second one is due to the multiplicative property for $\chi$ , and the third
one is an elementary fact about the representations of $SO_{3}$ (which is a
typical example of the Borel-Weil theorem).
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Now, the invariant part of the representation is computed by the
integration of its character. Namely,

$dim(.V_{k}^{\otimes n})^{SO_{3}}=\frac{1}{\pi}\int_{0}^{2\pi}(\frac{\sin(2k+1)\theta}{\sin\theta})^{n}\sin^{2}\theta d\theta$

$=-\frac{1}{2}{\rm Res}_{z=0}\frac{1}{z}(\frac{z^{2k+1}-z^{-(2k+1)}}{z-z^{-1}})^{n}(z-z^{-1})^{2}$

$=-\frac{1}{2}{\rm Res}_{z=0}\frac{1}{z}z^{-2(kn+1)}(z^{2(2k+1)}-1)^{n}(z^{2}-1)^{-(n-2)}$ .

By considering the Laurent expansion, we obtain Theorem 1.2.

Remark. When $n$ is even $(\geq 4)$ , the space $\lambda 4_{n}$ has singularities.
Nevertheless, Theorem 1.1 holds also in this case (as proved in [K-T]).
So does Theorem 1.2, after modifying the definition of $\chi(\Lambda 4_{n}, \mathcal{L}_{n}^{\otimes k})$ .

These follow from a generalization of Theorem 2.1 to singular quotients
(see [M-S]).
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