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Large Deviations for the Asymmetric
Simple Exclusion Process

Srinivasa R.S. Varadhan

Abstract.

We explain the large deviation behavior of the totally asymmet-
ric simple exclusion process in one dimension.

\S 1. Introduction

So far, large deviations from hydrodynamic scaling have been worked
out only for systems under diffusive scaling. Large deviation results are
presented here for the Totally Asymmetric Simple Exclusion Process or
TASEP in one dimension. This work was carried out by Leif Jensen [2]
in his $PhD$ dissertation submitted to New York University in the year
2000 and is available at the website

http:$//www$ . mat $h$ . columbia. $edu/\sim jensen/thesis$ . html

We will present here a detailed sketch of the derivation of the upper

bound and a rough outline of how the lower bound is established.

\S 2. Hydrodynamic limit of TASEP

The Model.

We have a particle system on the integers $Z$ or (in the periodic case)
on $Z_{N}$ , the integers moduo $N$ . The configuration is $\eta=\{\eta_{x} : x\in Z\}$

or $\{\eta_{x} : x \in Z_{N}\}$ . The evolution of $\eta(t)=\{\eta_{x}(t)\}$ is governed by the
generator

$(\mathcal{L}f)(\eta)=\sum_{x}\eta_{x}(1-\eta_{x+1})[f(\eta^{x,x+1})-f(\eta)]$
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where

$\eta_{z}^{x,y}=\{$

$\eta_{z}$ if $z\neq x$ , $y$

$\eta_{y}$ if $z=x$

$\eta_{x}$ if $z=y$

This corresponds to the process where the particles independently wait
for an exponential time and then jump one step to the right if the site is
free. Otherwise they wait for another exponential time. All the particles
are doing this simultaneously and independently.

The Scaling.

For each $N$ we consider an initial configuration $\eta_{x,,,N}$ , that may or
may not be random. We consider these models for $ N\rightarrow\infty$ . Assume
that for some deterministic density function $\rho_{0}(\xi)$ , $0\leq\rho_{0}(\cdot)\leq 1$ , and
every test function $J(\cdot)$ ,

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum J(\frac{x}{N})\eta_{x,,,N}=\int J(\xi)\rho_{0}(\xi)d\xi$

The limit is taken in probability in the random case. The class of test
functions are continuous functions with compact support in $R$ , if we
started with $Z$ and the periodic unit interval $S$ , if we started with $Z_{N}$ .

Time is speeded up by a factor of $N$ , i.e. the process is viewed at
time $Nt$ or equivalently the generator is multiplied by a factor of $N$ .

This introduces in a natural way a probability measure $P_{N}$ on the space
of trajectories { $\eta_{x}(t)$ : $x\in Z_{N}$ or $Z$ , $t$ $\geq 0$ }.

Theorem 2.1. (The law of large numbers.) For any $t$ $>0$ , there
exists a deterministic density function $\rho(t, \cdot)$ , on $R$ or $S$ as the case may
be, such that

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum J(\frac{x}{N})\eta_{x}(t)=\int J(\xi)\rho(t, \xi)d\xi$

in probability for every suitable test function. The density $\rho(t, x)$ is
determined as the unique weak solution of

(1) $\rho_{t}(t, \xi)+[\rho(t, \xi)(1-\rho(t, \xi))]_{\xi}=0$

with initial condition $\rho(0, \cdot)=\rho_{0}(\cdot)$ , that satisfifies the ’entropy condi-
tion’.

Remark 2.2. The entropy condition can be stated in many equiv-
alent forms. For example if $\rho(t, \cdot)$ is a smooth solution, then for any
smooth function $h(r)$

$[h(\rho(t, \xi))]_{t}=h^{/}(\rho(t, \xi))\rho_{t}(t, \xi)=-h^{J}(\rho(t, \xi))(1-2\rho(t, \xi))\rho_{\xi}(t, \xi)$
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or

(2) $[h(\rho(t, \xi))]_{t}+[g(\rho(t, \xi))]_{\xi}=0$

where $g$ and $h$ are related by

(3) $g’(r)=h’(r)(1-2r)$

If $\rho(t, \cdot)$ is only a weak solution, then equation (2) may not hold even
weakly. A weak solution of equation (1) is said to satisfy the entropy
condition if for every convex function $h$ and the corresponding $g$ defifined
by equation (3),

(4) $[h(\rho(t, \xi))]_{t}+[g(\rho(t, \xi))]_{\xi}\leq 0$

holds as a distribution on $[0, T]\times R$ or $[0, T]\times S$ as the case may be. Then

for any initial value, the weak solution satisfying the entropy condition
exists and is unique. The density profifile of the TASEP converges to this
unique solution.

We will not prove it here. For the special case when the sites are $Z$

and $\eta_{x,,,N}(0)=1$ for $x\leq 0$ and 0 otherwise was carried out by Rost [4],
who proved that in th-s case the solution $\rho(t, \xi)$ is the rarefaction wave,

$\rho(t, \xi)=\{$

1 if $\xi\leq-t$

$\frac{t-\xi}{2t}$ if $-t\leq\xi\leq t$

0 if $\xi\geq t$

and the density of the TASEP converges to it. Sepp\"al\"ainen in [5] ob-
tained a representation of the TASEP with arbitrary initial conditions
in terms of a family of coupled processes with initial conditions of Rost
type and was able to reduce the general case to the Rost case.

If we look at special solutions of the form

$\rho(t, \xi)=\{$

$\rho$ if $\xi\leq 0$

$ 1-\rho$ if $\xi\geq 0$

then this will be an entropic solution only when $\rho\leq\frac{1}{2}$ . In particular if
$\rho=1$ , although the initial profile in the Rost case is a stationary weak
solution it is not entropic. On the other hand if we hold the lead particle
from jumping, then nothing can move. So with probability $e^{-Nt}$ , the
Rost initial profile can remain intact up to time $t$ . This illustrates that
non-entropic solutions are relevant for large deviations.
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\S 3. Large Deviations. Some super exponential estimates

The validity of hydrodynamical scaling depends on some basic facts.
We will state them in the periodic case. The needed modifications when
we have the entire $Z$ are obvious. The ’one block estimate’ allows one
to replace the microscopic flux by its expectations, given the densities
over blocks of size $2k+1$ . If

$\mathcal{E}(N, k, t)=\frac{1}{N}\int_{0}^{t}\sum_{x}|e_{N,,,k,x}(s)|ds$

where

$e_{N,,,k,x}(s)=|\frac{1}{2k+1}\sum_{y:|y-x|\leq k}\eta_{y}(s)(1-\eta_{y+1}(s))-\overline{\eta}_{x}^{k}(s)(1-\overline{\eta}_{x}^{k}(s))|$

and $\overline{\eta}_{x}^{k}=\frac{1}{2k+1}\sum_{y:|y-x|\leq k}\eta_{y}$ , then

$\lim_{k\rightarrow\infty}\lim_{N\rightarrow\infty}E^{P_{N}}[\mathcal{E}(N, k, t)]=0$

The expectation is taken here with respect to the measure $P_{N}$ that
corresponds to some initial profile on the periodic lattice $Z_{N}$ and evolves
according to TASEP dynamics in the speeded up time scale. Then the
two block estimate allows one to replace $\overline{\eta}_{x}^{k}$ with large $k$ by $\overline{\eta}_{x}^{N\epsilon}$ with a
small $\epsilon$ . One can exhibit this in many ways. For instance, if we define,

$D(N, \epsilon, k, t)=\int_{0}^{t}[\frac{1}{N}\sum_{x}[\overline{\eta}_{x,,,N}^{k}(s)]^{2}-\frac{1}{N}\sum_{x}[\overline{\eta}_{x,,,N}^{N\epsilon}(s)]^{2}]ds$

then, by proving

$\lim_{\epsilon\rightarrow 0}\lim_{k\rightarrow\infty}\lim_{N\rightarrow\infty}E^{P_{N}}[D(N, \epsilon, k, t)]=0$

one can establish that any limit of the empirical density is a weak solu-
tion of equation (1).

Remark 3.1. Because offifinite propagation speed, basically the ef-
fect of any change in a region is only felt over $a$ fifinite macroscopic do-
main. This allows us to go back and forth between the periodic and
the nonperiodic cases without much effort. If we take the domain large
enough then the probability of any effect outside is superexponentially
small. So even for large deviations, one can go back and forth.
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Theorem 3.2. One has the super exponential ’one block’ and ’two
block estimates’. For any $\delta>0$ ,

(5) $\lim\sup\lim_{Nk\rightarrow\infty\rightarrow}\sup_{\infty}\frac{1}{N}\log P[\mathcal{E}(N, k, t)\geq\delta]=-\infty$

(6) $\lim_{\epsilon\rightarrow 0}\sup\lim_{k\rightarrow\infty}\sup\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N}\log P[D(N, \epsilon, k, t)\geq\delta]=-\infty$

Sketch of proof: We look at the periodic case. The Dirichlet form

$D(p)=\sum_{x,,,\eta}[\sqrt{p(\eta^{x,x+1})}-\sqrt{p(\eta)}]^{2}$

can be used in conjunction with the Feynman-Kac formula to provide
the first estimate. This is not any different from the symmetric case.
The fact that the scaling factor is $N$ and not $N^{2}$ does not affect the
estimate. It only matters that it is large.

The second estimate on the other hand is a bit tricky. In the sym-
metric case the proof uses the full strength of the factor $N^{2}$ , and does
not work here. Instead the proof is carried out in several steps. First
one proves that there is an exponential error bound, for large deviations
from the hydrodynamical limit in the Rost case, by explicit computa-
tion. This is not hard and can be done by just following Rost’s proof
carefully. Then this is extended to arbitrary initial conditions by follow-
ing through Sepp\"al\"ainen’s proof. One then notices that, by convexity, if
$D(N, \epsilon, k, t)$ does not go to zero, and the one block estimate holds, then
the hydrodynamic limit cannot hold. Therefore the two block estimate
holds with exponential error probability. Finally a bootstrap argument
is used to improve the exponential error probability to a superexponen-
tial estimate. The space time region of size $N\times N$ is divided into $\ell^{2}$ grids
of size $\frac{N}{\ell}\times\frac{N}{\ell}$ . The probability of a significant violation in the two block

estimate is $e^{-c\frac{N}{\ell}}$ for one grid. The grids do not influence each other
that much. Now the usual Bernoulli large deviation estimate yields a
multiplication of the exponent by a factor $\ell^{2}$ , that equals the number of
grids. If we pick $\ell$ large we are done.

Corollary 3.3. Outside the set of weak solutions the probability
measure $P_{N}$ decays superexponentially fast.

It is then natural to expect that the rate function for large deviations
will be a measure of how ’nonentropic’ the weak solution is.
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\S 4. Macroscopic and Microscopic Entropies.

A microstate on the configurations on $Z_{N}$ is a probability distribu-
tion $p_{N}(\eta)$ on the configurations $\eta\in\{0,1\}^{Z_{N}}$ . Its entropy (relative to
the uniform distribution) is defined as

$H_{N}(p_{N})=N\log 2+\sum p_{N}(\eta)\log[p_{N}(\eta)]$

For a macroscopic density profile $\rho(\xi)$ , the corresponding entropy func-
tion is defined by

$ H(\rho(\cdot))=\log 2+\int_{S}[\rho(\xi)\log\rho(\xi)+(1-\rho(\xi))\log(1-\rho(\xi))]d\xi$

If $p_{N}$ has asymptotic profile $\rho$ , in the sense that

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum J(\frac{x}{N})\eta_{x}=\int J(\xi)\rho(\xi)d\xi$

in probability with respect to $p_{N}$ , then by Jensen’s inequality

$\lim\inf H_{N}(p_{N})\underline{1}\geq H(\rho(\cdot))$

$N\rightarrow\infty N$

We need a result of Kosygina [3] that asserts that under certain addi-
tional conditions the equality holds, i.e.

$\lim\underline{1}H_{N}(p_{N})=H(\rho(\cdot))$

$N\rightarrow\infty N$

Two conditions are needed.
$\circ$ The Dirichlet form is “small”

$D_{N}(p_{N})=\sum_{x,,,\eta}[\sqrt{p(\eta^{x,x+1})}-\sqrt{p(\eta)}]^{2}=o(N)$

$\blacksquare$ The two block estimate holds.

$\lim_{\epsilon\rightarrow 0}\lim_{k\rightarrow\infty}\lim_{N\rightarrow\infty}E^{p_{N}}[D(N, \epsilon, k)]=0$

where

$D(N, \epsilon, k)=\frac{1}{N}\sum_{x}[\overline{\eta}_{x,,,N}^{k}]^{2}-\frac{1}{N}\sum_{x}[\overline{\eta}_{x,,,N}^{N\epsilon}]^{2}$
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The proof uses the fact that the control of Dirichlet form allows us to
estimate $\frac{1}{N}H_{N}(p_{N})$ by

$\log 2+E^{P_{N}}[\frac{1}{N}\sum_{x}[\overline{\eta}_{x}^{k}\log\overline{\eta}_{x}^{k}+(1-\overline{\eta}_{x}^{k})\log(1-\overline{\eta}_{x}^{k})]]$

and the two block estimate allows $k$ to be replaced by $ N\epsilon$ and if the
law of large numbers holds then we easily pass to $H(\rho(\cdot))$ , providing the
upper bound. The lower bound as we mentioned is essentially Jensen’s
inequality.

With some additional work the following theorem due to Kosygina
can be proved.

Theorem 4.1. Consider the evolution according to TASEP in the
periodic case with any initial conditions. Suppose the hydrodynamic limit
holds with some profifile $\rho(t, \xi)$ . Then for any $\delta>0$

$\lim\sup_{\delta N\rightarrow\infty}\sup_{\leq s\leq t}|\frac{1}{N}H_{N}(p_{N}(s))-\mathcal{H}(\rho(s, \cdot))|=0$

Idea of proof: The discussion above will allow us to control it for most
times s. But the entropy is monotone and cannot fluctuate wildly.

Remark 4.2. Actually the theorem Kosygina will continue to hold
even if we modify the dynamics by changing the rates, replacing in the
speeded up scale $N$ by $N\lambda_{x,,,x+1}(s, \eta)$ , provided the relative entropy of the
modifified process with respect to the unperturbed process remains bounded
by $CN$ . This is because the estimates on the Dirichlet form, usually
obtained by differentiating the entropy at time $t$ , with respect to $t$ can still
be derived. Because the two block estimates has superexponential error
estimates for the unperturbed process, they will continue to hold for the
perturbed process which has relative entropy bounded by $CN$ . Since the
proof of Theorem 4 $\cdot$ 1 depends only on estimates on the Dirichlet form
and two block estimates, the Theorem will continue to hold even when
we perturb.

Remark 4.3. If for some $p_{N}$ with profifile $\rho$ the entropy relation

$\lim_{N\rightarrow}\sup_{\infty}|\frac{1}{N}H_{N}(p_{N})-H(\rho(\cdot))|=0$

$holdS_{)}$ then from the super additivity of the entropy function over disjoint
blocks, one has for the marginal $pN,B$ of $p_{N}$ on any block of size $N(b-a)$
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say from $[Na, Nb]$ ,

$\lim_{N\rightarrow}\sup_{\infty}|\frac{1}{N}H_{N}(p_{N,,,B})-\int_{a}^{b}h(\rho(\xi))d\xi|=0$

\S 5. Large Deviation. The rate function

The basic space on which we will carry out the large deviation is
the space $\Omega=C[[0, T]$ , A4] of continuous maps $\rho(t, d\xi)$ of $[0, T]$ into the
space $\mathcal{M}$ of nonnegative measures on $S$ . Although under $P_{N}$ , $\rho(t, d\xi)$

consists of atoms with mass $\frac{1}{N}$ , because of exclusion any conceivable
limit will be supported on $\rho(t, d\xi)$ that have densities $\rho(t, \xi)d\xi$ that sat-
isfy $0\leq\rho(t, \xi)\leq 1$ for all $(, \xi)\in[0, T]\times S$ and are weakly continuous
as mappings of $[0, T]\rightarrow \mathcal{M}$ .

The rate function $I(\rho(\cdot, \cdot))$ is defined as $+\infty$ if $\rho(\cdot, \cdot)$ is not a weak
solution of

$\rho_{t}+[\rho(1-\rho)]_{\xi}=0$

If it is a weak solution, then

$I(\rho(\cdot, \cdot))=\int_{0+0}^{T-0}\int_{S}[[h(\rho(\cdot, \cdot))]_{t}+[g(\rho(\cdot, \cdot))]_{\xi}]^{+}dtd\xi$

$=\sup_{J\in J}\int_{0}^{T}\int_{S}J(t, \xi)[[h(\rho(\cdot, \cdot))]_{t}+[g(\rho(\cdot, \cdot))]_{\xi}]dtd\xi$

$=-\inf_{J\in J}\int_{0}^{T}\int_{S}[J_{t}(t, \xi)h(\rho(\cdot, \cdot))+J_{\xi}(t, \xi)g(\rho(\cdot, \cdot))]dtd\xi$

Here $h(r)=r\log r+(1-r)\log(1-r)$ and $g(r)$ as defined by equation
(3) is

$g(r)=r(1-r)\log\frac{r}{(1-r)}-r$

and
$J$ $=\{J(\cdot, \cdot) : 0\leq J(\cdot, \cdot)\leq 1, J(0, \cdot)\equiv J(T, \cdot)\equiv 0\}$

It is interesting to note that the set of weak solutions of nonlinear equa-
tions is in general not weakly closed. However a result on compensated
compactness, that can be found in Tartar [6], tells us that the set $C_{\ell}$ of
weak solutions for which $I(\rho(\cdot, \cdot))\leq\ell$ is in fact compact in the strong
topology, guaranteeing that the rate function is indeed lower semi con-
tinuous. It is easy to check uniform modulus of continuity in time in
the weak topology. So the rate function in fact does have compact level
sets.
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\S 6. Upper Bounds

For upper bounds we will use the formulation of Ellis and Dupuis
[1]. Suppose $\eta_{x,,,N}$ is a deterministic initial condition with a profile $\rho_{0}(\xi)$ .

Theorem 6.1. Suppose $P_{N}$ is the measure on the confifiguration
space $\{\eta_{x}(t)\}$ induced by the TASEP and $Q_{N}$ is such that $Q_{N}<<P_{N}$

and the measure $\hat{Q}_{N}$ induced by $Q_{N}$ on $\Omega$ converges to the degenerate
distribution at $\rho(\cdot, \cdot)\in\Omega$ . Then

$\lim\inf H(Q_{N}|P_{N})\underline{1}\geq I(\rho(\cdot, \cdot))$

$N\rightarrow\infty N$

Remark 6.2. This is easily seen to be equivalent to the standard
upper bound $LDP$ estimate.

The proof is broken up into several lemmas.

Lemma 6.3. Without loss of generality we can assume that $Q_{N}$

is Markov with rates $N\hat{\lambda}(t, x, \eta)$ .

Proof. Consider the probability distribution $q_{N}(t, \eta)$ of $\eta(t)$ at time
$t$ under $Q_{N}$ . We have

$\frac{1}{N}\sum_{x}J(\frac{x}{N})\eta_{x}\rightarrow\int J(\xi)\rho(t, \xi)d\xi$

in probability with respect to $q_{N}(t, \eta)$ . The process $Q_{N}$ has some rates
$N\lambda_{N}(t, x, \omega)$ of particles jumping from $x$ to $x+1$ , that may depend on
the past history upto time $t$ . This comes from general martingale theory.
One can write the formal generator

$(\mathcal{L}_{t,,,\omega}f)(\eta)=N\sum\lambda(t, x, \omega)\eta_{x}(1-\eta_{x+1})[f(\eta^{x,x+1})-f(\eta)]$

and with respect to $Q_{N}$ ,

$f(\eta(t))-f(\eta(0))-\int_{0}^{t}(\mathcal{L}_{s,,,\omega}f)(\eta(s))ds$

will be martingales. By Girsanov formula one can calculate on $[0, T]$ ,

$\frac{1}{N}H(Q_{N}|P_{N})=E^{Q_{N}}[\int_{0}^{T}[\sum_{x}\eta_{x}(t)(1-\eta_{x+1}(t))\theta(\lambda(t, x, \omega))]dt]$

where $\theta(\lambda)=\lambda\log\lambda-\lambda+1$ . If we replace $\lambda(t, x, \omega)$ by its conditional
expectation

$\hat{\lambda}(t, x, \eta)=E^{Q_{N}}[\lambda(t, x, \omega)|\eta(t)]$
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we see that

$E^{Q_{N}}[f(\eta(t))-f(\eta(0))]=E^{Q_{N}}[\int_{0}^{T}(\hat{\mathcal{L}}_{t}f)(\eta(t))dt]$

with

$(\hat{\mathcal{L}}_{t}f)(\eta)=N\sum\hat{\lambda}(t, x, \eta)\eta_{x}(1-\eta_{x+1})[f(\eta^{x,x+1})-f(\eta)]$

In other words $q_{N}(t, \eta)$ is the solution of the forward equation cor-

responding to $\hat{\mathcal{L}}$ . On the other hand, since $\theta(\lambda)$ is a convex function of
$\lambda$ , by Jensen’s inequality,

$E^{Q_{N}}[\eta_{x}(t)(1-\eta_{x+1}(t))\theta(\lambda(t, x, \omega))]$

$\geq E^{Q_{N}}[\eta_{x}(t)(1-\eta_{x+1}(t))\theta(\hat{\lambda}(t, x, \omega))]$

The Markov process with $\hat{\mathcal{L}}_{t}$ as generator has the same marginals
at time $t$ as $Q_{N}$ and will work as well. In other words for our theorem
we can assume with out loss of generality that $Q_{N}$ is Markov with rates
$N\hat{\lambda}(x, t, \eta)$ . Q.E.D.

Consider the joint probability distribution $q_{N,,,x,k}(t, \eta)$ at the $2k+1$ sites
$[x-k, \ldots, x+k]$ of $\{\eta_{y}\}$ under $q_{N}(t, \eta)$ . We think of it as function of $\eta$

that depends on the variables $\{\eta_{y} : |y-x|\leq k\}$ .
We let

$H(N, x, k, t)=\frac{1}{N}$ $\sum$ $qN,x,k(t, \eta)\log qN,x,k(t, \eta)$

$\eta\in[0,1]^{2k+1}$

and compute

$H_{t}(N, x, k, t)=\frac{1}{N}$ $\sum$ $\dot{q}N,x,k(t, \eta)[1+\log qN,x,k(t, \eta)]$

$\eta\in[0,1]^{2k+1}$

$=\frac{1}{N}$ $\sum$ $\dot{q}N,x,k(t, \eta)\log qN,x,k(t, \eta)$

$\eta\in[0,1]^{2k+1}$

$=\frac{1}{N}$ $\sum$ $\dot{q}_{N}(t, \eta)\log q_{N,,,x,k}(t, \eta)$

$\eta\in[0,1]^{N}$
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Using the forward equation $\dot{q}_{N}(t, \eta)=N(\mathcal{L}_{t}^{*}q_{N})(t, \eta)$ , we get

$H_{t}(N, x, k, t)$

$=\sum_{\eta\in[0,1]^{N}}qN(t, \eta)\mathcal{L}_{t}[\log qN,x,k(t, \eta)]$

$=x-k-1\leq y\leq x+k\sum_{\eta\in[0,1]^{N}}$

$q_{N}(t, \eta)\hat{\lambda}(t, y, \eta)e_{y,y+1}(\eta)\log\frac{qN,x,k(t,\eta^{y,y+1})}{qN,x,k(t,\eta)}$

where $e_{y,y+1}(\eta)=\eta_{y}(1-\eta_{y+1})$ . We use the inequality

$\lambda$ $\log y\leq\lambda\log\lambda-\lambda+1+e^{a}y-1-a\lambda$

with the choice of $a=a_{N,,,x,y,k}(\eta)$ to be made later.

$ H_{t}(N, x, k, t)\leq$

$x-k-1\leq y\leq x+k\sum_{\eta\in[O,1]^{N}}q_{N}(t, \eta)e_{y,y+1}(\eta)[\hat{\lambda}(t, y, \eta)\log\hat{\lambda}(t, y, \eta)-\hat{\lambda}(t, y, \eta)+1]$

$+x-k-1\leq y\leq x+k\sum_{\eta\in[0,1]^{N}}$

$q_{N}(t, \eta)e_{y,y+1}(\eta)\frac{e^{a_{N,x,y,k}}qN,x,k(t,\eta^{y,y+1})-qN,x,k(t,\eta)}{qN,x,k(t,\eta)}$

$-x-k-1\leq v\leq x+k\sum_{\eta\in[0,1]^{N}}q_{N}(t, \eta)e_{y,y+1}(\eta)\hat{\lambda}(t, y, \eta)a_{N,,,x,y,k}$

We rewrite this as

$x-k-1\leq y\leq x+k\sum_{\eta\in[0,1]^{N}}q_{N}(t, \eta)e_{y,y+1}(\eta)[\hat{\lambda}(t, y, \eta)\log\hat{\lambda}(t, y, \eta)-\hat{\lambda}(t, y, \eta)+1]$

$\geq H_{t}(N, x, k, t)-A_{1}(N, x, k, t)+A_{2}(N, x, k, t)$

where

$A_{1}(N, x, k, t)=$

$x-k-1\leq y\leq x+k\sum_{\eta\in[0,1]^{N}}$

$q_{N}(t, \eta)e_{y,y+1}(\eta)\frac{e^{a_{N,x,y,k}}qN,x,k(t,\eta^{y,y+1})-qN,x,k(t,\eta)}{qN,x,k(t,\eta)}$
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and

$A_{2}(N, x, k, t)=x-k-1\leq v\leq x+k\sum_{\eta\in[0,1]^{N}}q_{N}(t, \eta)e_{y,y+1}(\eta)\hat{\lambda}(t, y, \eta)a_{N,,,x,y,k}$

We now multiply by $J(t, \frac{x}{N})$ , where $J\in J$ , sum over $x$ , integrate with
respect to $t$ from 0 to $T$ and finally multiply by $\frac{1}{(2k+2)N}$ ,

$\frac{1}{N}H(Q_{N}|P_{N})$

$\geq\int_{0}^{T}\frac{1}{(2k+2)N}\sum_{x\in Z_{N}}J(t, \frac{x}{N})d[$ $\sum$ $q_{N,,,x,k}(t, \eta)\log q_{N,,,x,k}(t, \eta)]$

$\eta\in[0,1]^{2k+1}$

$-E^{Q_{N}}[\int_{0}^{T}[$ $\frac{1}{2k+2}$
$\sum_{x,,,y}$

$ J(t, \frac{x}{N})e_{y,y+1}(\eta)\times$

$x-k-1\leq y\leq x+k$

$\frac{e^{a_{N,x,y,k}}q_{N,x,k}(t,\eta^{y,y+1})-q_{N,x,k}(t,\eta)}{q_{N,x,k}(t,\eta)}]dt]$

$+E^{Q_{N}}[\int_{0}^{T}[$ $\frac{1}{2k+2}$
$\sum_{x,,,y}$

$ J(t, \frac{x}{N})e_{y,y+1}(\eta)\times$

$x-k-1\leq y\leq x+k$

$\hat{\lambda}(t, y, \eta)a_{N,,,x,y,k}]dt]$

$=T_{1}(N, J(\cdot, \cdot), k)-T_{2}(N, J(\cdot, \cdot), k)+T_{3}(N, J(\cdot, \cdot), k)$

Now we have to analyse the terms on the right. Let us look at

$T_{1}(N, J(\cdot, \cdot), k)=$

$\int_{0}^{T}\frac{1}{(2k+2)N}\sum_{x\in Z_{N}}J(t, \frac{x}{N})d[\sum_{\eta\in[0,1]^{2k+1}}qN,x,k(t, \eta)\log qN,x,k(t, \eta)]$

Integrating by parts,

$T_{1}(N, J(\cdot, \cdot), k)=$

$-\int_{0}^{T}\sum_{x\in Z_{N}}J_{t}(t, \frac{x}{N})[$ $\frac{1}{(2k+2)N}$ $\sum$ $qN,x,k(t, \eta)\log qN,x,k(t, \eta)]dt$

$\eta\in[0,1]^{2k+1}$

We pick $ k=N\epsilon$ and let $\epsilon\rightarrow 0$ at the end.
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Lemma 6.4. If for $t\in[0, T]$ , $q_{N}(t, \eta)$ leads to the profifile $\rho(t, \cdot)$ ,

then

$\lim\lim$
$\epsilon\rightarrow 0N\rightarrow\infty$

$\int_{0}^{T}\sum_{x\in Z_{N}}J_{t}(t, \frac{x}{N})[\frac{1}{2N^{2}\epsilon}\sum_{\eta\in[0,1]^{2N\epsilon}}q_{N,,,x,N\epsilon}(t, \eta)\log q_{N,,,x,N\epsilon}(t, \eta)]dt$

$=\int_{0}^{T}\int_{S}J_{t}(t, \xi)h(\rho(t, \xi))dtd\xi$

Proof. Let us consider the quantity

$H_{N}(t, x, \epsilon)=\log 2+\frac{1}{2N\epsilon}\sum_{\eta\in[0,1]^{2N\epsilon+1}}q_{N,,,x,N\epsilon}(t, \eta)\log q_{N,,,x,N\epsilon}(t, \eta)$

and the measure

$\mu_{N}(t, \epsilon)=\frac{1}{N}\sum_{x}H_{N}(t, x, \epsilon)\delta_{\frac{x}{N}}$

We need to prove the weak convergence of

$\lim_{\epsilon\rightarrow 0}\lim_{N\rightarrow\infty}\mu_{N}(t, \epsilon)dt=h(\rho(t, \xi))dtd\xi$

Since we are looking at relative entropy with respect to a product mea-
sure, i.e. uniform distribution on $[0, 1]^{Z_{N}}$ , it is easy to see that

$\lim$ $\inf$ $\lim$ $\inf\mu_{N}(t, \epsilon)dt\geq h(\rho(t, \xi))dtd\xi$

$\epsilon\rightarrow 0$ $ N\rightarrow\infty$

in view of the remark at the end of the last section. On the other hand
the total mass of $\mu_{N}(t, \epsilon)$ is dominated by the total entropy

$\log 2+\frac{1}{N}$ $\sum$ $q_{N}(t, \eta)\log q_{N}(t, \eta)$

$\eta\in[0,1]^{Z_{N}}$

and we are done. Q.E.D.

Now we try to control $T_{2}(N, J(\cdot, \cdot), N\epsilon)-T_{2}(N, J(\cdot, \cdot), N\epsilon)$ which is more
difficult. The interior terms with x–k–l $<y<x+k$ are easy. We
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choose $a_{N,,,x,y,k}=0$ .

$E^{Q_{N}}\{$
$\frac{1}{2N\epsilon}\sum_{x-k-1<y<x+k}e_{y,y+1}(\eta)\frac{q_{N,x,N\epsilon}(t,\eta^{y,y+1})-q_{N,x,N\epsilon}(t,\eta)}{q_{N,x,N\epsilon}(t,\eta)}]$

$=\sum_{\eta\in[0,1]^{z_{2N\epsilon}}}\frac{1}{2N\epsilon}\sum_{x-k-1<y<x+k}e_{y,y+1}(\eta)\times$

$[q_{N,,,x,N\epsilon}(t, \eta^{y,y+1})-q_{N,,,x,N\epsilon}(t, \eta)]$

$=\sum_{\eta\in[0,1]^{z_{2N\epsilon}}}\frac{1}{2N\epsilon}\sum_{x-k-1<y<x+k}[\eta_{y+1}-\eta_{y}]q_{N,,,x,N\epsilon}(t, \eta)$

If we carry out a summation by parts in $x$ and integration over $t$ , this
leads in the limit to

$-\int_{0}^{T}\int_{S}J_{\xi}(t, \xi)\rho(t, \xi)dtd\xi$

We look next at the boundary terms. Note that $k=[N\epsilon]$ . The boundary
terms equal $B=B_{1}+B_{2}+B_{3}+B_{4}$

$ B_{1}=-E^{Q_{N}}[\int_{0}^{T}[\frac{1}{2N\epsilon}\sum_{x}J(t, \frac{x}{N})\eta_{x-k-1}(1-\eta_{x-k})\times$

$\frac{e^{a_{N,x,-,k}}qN,x,k(t,\eta^{x-k-1,x-k})-qN,x,k(t,\eta)}{q_{N,x,k}(t,\eta)}]dt]$

$ B_{2}=-E^{Q_{N}}[\int_{0}^{T}[\frac{1}{2N\epsilon}\sum_{x}J(t, \frac{x}{N})\eta_{x+k}(1-\eta_{x+k+1})\times$

$\frac{e^{a_{N,x,+,k}}qN,x,k(t,\eta^{x+k,x+k+1})-qN,x,k(t,\eta)}{q_{N,x,k}(t,\eta)}]dt]$

$ B_{3}=+E^{Q_{N}}[\int_{0}^{T}[\frac{1}{2N\epsilon}\sum_{x}J(t, \frac{x}{N})\eta_{x-k-1}(1-\eta_{x-k})\times$

$\hat{\lambda}(t, x-k -1, \eta)a_{N,,,x,-,k}]dt]$
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$ B_{4}=+E^{Q_{N}}[\int_{0}^{T}[\frac{1}{2N\epsilon}\sum_{x}J(t, \frac{x}{N})\eta x+k(1-\eta_{x+k+1})\times$

$\hat{\lambda}(t, x+k, \eta)a_{N,,,x,+,k}]dt]$

We would like to make the choice of $a_{N,,,x,-,k}=-u(t, \frac{x-k-1}{N})$ and
$a_{N,,,x,+,k}=u(t, \frac{x+k}{N})$ $fr$ some smooth $u$ . We can combine $B_{3}$ and $B_{4}$

and write

$B_{3}+B_{4}$

$=E^{Q_{N}}[\int_{0}^{T}[\frac{1}{2N\epsilon}\sum_{x}[J(t, \frac{x+k+1}{N})-J(t, \frac{x-k}{N})]\times$

$\eta_{x}(1-\eta_{x+1})\hat{\lambda}(t, x, \eta)u(t, \frac{x}{N})]dt]$

$=E^{Q_{N}}[\int_{0}^{T}[\frac{1}{2N\epsilon}\sum_{x}[J(t, \frac{x+k+1}{N})-J(t, \frac{x-k}{N})]\times$

$\eta_{x}(1-\eta_{x+1})u(t, \frac{x}{N})]dt]$

$+E^{Q_{N}}[\int_{0}^{T}[\frac{1}{2N\epsilon}\sum_{x}[J(t, \frac{x+k+1}{N})-J(t, \frac{x-k}{N})]\times$

$[\hat{\lambda}(t, x, \eta)-1]u(t, \frac{x}{N})]dt]$

$\simeq\frac{1}{2\epsilon}\int_{0}^{T}\int_{S}[J(t, \xi+\epsilon)-J(t, x-\epsilon)]\rho(t, \xi)(1-\rho(t, \xi))u(t, \xi)dtd\xi$

$+Error$

The error term is dominated by

$CE^{Q_{N}}[\int_{0}^{T}[\frac{1}{N}\sum_{x}|\hat{\lambda}(t, x, \eta(t))-1|]dt]$

For any $\theta>0$ , there is a constant $C_{\theta}$ such that

$|\lambda-1|\leq\theta+C_{\theta}[\lambda\log\lambda-\lambda+1]$

Therefore

Error\leq $C\theta+\frac{C_{\theta}}{N^{2}}H(Q_{N}|P_{N})$
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We will get an estimate on $B_{1}$ . The term $B_{2}$ is similar. $B_{1}$ is estimated
by

$\frac{1}{2N\epsilon}E^{Q_{N}}[\int_{0}^{T}\sum_{x}\eta_{x-1}(1-\eta_{x})|e^{-u(t,\frac{x}{N})_{\frac{q_{N,x,x+2k}(t,\eta^{x-1,x})}{q_{N,x,x+2k}(t,\eta)}}}-1|dt]$

The quantity

$R_{N}=\eta_{x-1}(1-\eta_{x})\frac{q_{N,x,x+2k}(t,\eta^{x-1,x})}{q_{N,x,x+2k}(t,\eta)}$

has to be looked at carefully. Take $x=0$ . If we denote $q_{N,,,x,x+2k}(t, \eta)$

by $f_{N}(\eta_{0}, \eta_{1}, \cdots, \eta_{2k})$ then

$ R_{N}=\eta_{1}(1-\eta_{0})\frac{f_{N}(1,\eta_{1},,\eta_{2k})}{f_{N}(0,\eta_{1},,\eta_{2k})}\cdots\cdots=\eta_{1}(1-\eta_{0})\frac{p_{N}(1|\eta_{1},,\eta_{2k})}{p_{N}(0|\eta_{1},,\eta_{2k})}\cdots\cdots$

$\simeq\eta_{1}(1-\eta o)\frac{\rho(0)}{1-\rho(0)}$

Therefore it follows that

$\lim_{N\rightarrow}\sup_{\infty}B_{1}\leq\frac{1}{2\epsilon}\int_{0}^{T}\int_{S}\rho(t, \xi)(1-\rho(t, \xi))|\frac{e^{-u(t,\xi)}\rho(t,\xi)}{1-\rho(t,\xi)}-1|dtd\xi$

and similarly

$\lim_{N\rightarrow}\sup_{\infty}B_{2}\leq\frac{1}{2\epsilon}\int_{0}^{T}\int_{S}\rho(t, \xi)(1-\rho(t, \xi))|\frac{e^{u(t,\xi)}(1-\rho(t,\xi))}{\rho(t,\xi)}-1|dtd\xi$

If we let $u$ approach $\log\frac{\rho(t,\xi)}{1-\rho(t,\xi)}$ both $B_{1}$ and $B_{2}$ tend to 0 for any positive
$\epsilon$ . Finally we let $\epsilon\rightarrow 0$ .

$\lim_{\epsilon\rightarrow 0}\lim_{N\rightarrow\infty}[B_{3}+B_{4}]=\int_{0}^{T}\int_{S}J_{\xi}(t, \xi)\rho(t, \xi)(1-\rho(t, \xi))\log\frac{\rho(t,\xi)}{1-\rho(t,\xi)}dtd\xi$

This proves

$\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N}H(Q_{N}|P_{N})\geq$

$-\int_{0}^{T}\int_{S}J_{t}(t, \xi)h(\rho(t, \xi))dtd\xi+\int_{0}^{T}\int_{S}J_{\xi}(t, \xi)\rho(t, \xi)dtd\xi$

$-\int_{0}^{T}\int_{S}J_{\xi}(t, \xi)\rho(t, \xi)(1-\rho(t, \xi))\log\frac{\rho(t,\xi)}{1-\rho(t,\xi)}dtd\xi$

$=-\int_{0}^{T}\int_{S}[J_{t}(t, \xi)h(\rho(t, \xi))+J_{\xi}(t, \xi)g(\rho(t, \xi))]dtd\xi$



Large Deviations of TASEP 17

Since $J$ is arbitrary, we are done.

\S 7. Lower Bounds

The situation with the lower bounds is not totally satisfactory. Ide-
ally one should construct an explicit perturbation of the rates that pro-
duces a particular profile, the entropy cost of such a perturbation being
approximately equal to the rate function for such a large deviation. This
one is not able to do at this time. The best we can do is to prove the ex-
istence of such perturbations and construct them implicitly. Even this
we can do only to produce a single non-entropic shock traveling at a
constant speed. By patching together, one can possibly handle a finite
number of shocks of varying speeds, even crossing each other forming
caustics. However one does not see at the moment how to produce a
’general’ non-entropic weak solution, partly because one does not know
what it is. Ideally there would be an approximation theorem allowing
us to pass from a solution with a finite number of shocks to a general
weak solution with a finite large deviation rate.

We will sketch the proof for the simple case of a stationary non-
entropic shock at 0 starting from a special initial configuration. Suppose
we are given on $Z$ an initial configuration of particles where every site
$x\leq 0$ is filled and every site $x>0$ is empty. We wish to perturb
the standard speeded up TASEP dynamics with new rates $N\lambda_{N}(t, x, \eta)$ ,
such that for the modified process $Q_{N}$ , for every test function $J$ with
compact support and every $t$ $\in[0, T]$ , we have in probability,

$\lim_{N\rightarrow\infty}\sum_{x}J(\frac{x}{N})\eta_{x}(t)=\int_{-\infty}^{\infty}J(\xi)\rho(t, \xi)d\xi$

where $\rho(t, \xi)$ is the following special weak solution.

(7) $\rho(t, \xi)=\{$

1 if $x\leq-t$

$\frac{t-x}{2t}$ if $-t\leq x\leq-t(2\rho-1)$

$\rho$ if $-t(2\rho-1)\leq x\leq 0$

$ 1-\rho$ if $0\leq x\leq t(2\rho-1)$

$\frac{t-x}{2t}$ if $t(2\rho-1)\leq x\leq t$

0 if $x\geq t$

Here $\rho>\frac{1}{2}$ and there is a non-entropic shock at 0 where the density

jumps from a higher value of $\rho>\frac{1}{2}$ to the lower value of $1-\rho<\frac{1}{2}$ . The
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rate function for this profile in the interval $[0, T]$ is proportional to $T$ ,
i.e. equals $c(\rho)T$ , where

(8) $c(\rho)=2\rho-1-2\rho(1-\rho)\log\frac{\rho}{1-\rho}$

The problem is to find rates $N\lambda_{N}(x, \eta)$ such that the process with these
new rates has a law of large numbers with the profile $\rho(t, \xi)$ given by (7)
and achieve this with an entropy cost that is roughly $c(\rho)N$ . We know
from the upper bound that we cannot do better. Since we want to slow
down particles at or near 0, ideally cutting down the rate at 0 should do
it. If we slow down the rate at 0 to $ N\lambda$ with some fixed $\lambda<1$ , holding
all other rates at $N$ , we will produce a profile of the type we want with
some $\rho=\rho(\lambda)$ that is hard to determine, except in the trivial case of
$\lambda=0$ , $\rho=1$ , $c(0)=1$ . The cost is surely not going to be optimal. We
can however lower the rate at several points around 0, depending on the
current configuration of particles. The new rates $N\lambda_{N}(x, \eta)$ will do the
trick. We will implicitly construct them. We will then have to see how
this will work for any initial condition. After that we need to modify
the construction for shocks moving with constant velocity. Then patch
things together for one or more shocks with non constant jumps and non
constant velocities that may cross each other.

The idea for a single shock is simple enough. A non-entropic shock
is entropic if time is reversed. Let us begin with a generator of a TASEP
with jumps to the left rather than to the right. The generator is given
by

$(\hat{\mathcal{L}}f)(\eta)=N\sum_{x}\eta_{x+1}(1-\eta_{x})[f(\eta^{x,x+1})-f(\eta)]$

We start with some initial configuration at $t$ $=0$ , that produces the
density profile of $\rho(T, \xi)$ specified by equation (7). The hydrodynamical
scaling limit will be an entropic solution of

$\hat{\rho_{t}}-[\hat{\rho}(1-\hat{\rho})]_{x}=0$

with $\hat{\rho}\tau(0, \xi)=\rho(T, \xi)$ . This is seen to be the time reversal of the profile
given in (7).

$\hat{\rho}\tau(t, \xi)=\rho(T-t, \xi)$

for $0\leq t\leq T$ and $\xi\in R$ . If we now take the process $Q_{N}$ corresponding

to $\hat{\mathcal{L}}$ and reverse time to get trajectories $\eta(T-t)$ , the new process
will have some generator $\mathcal{L}_{N,,,T,t}$ that is time inhomogeneous and nearly
impossible to compute. However it does have the advantage that it has
a hydrodynamical limit with a profile that is the time reversed version
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of $\hat{\rho}\tau(t, \xi)$ which is of course $\rho(t, \xi)$ . The entropy will match, because
while the forward motion is losing entropy at the shock, the time reversed
motion will put it back and this is done by the new rates for the reversed
process. If we do not waste entropy at microscopic scale, then the book
keeping at micro and macro levels match and will give us the lower bound

for large deviations. However the rates for $\hat{\mathcal{L}}_{N,,,T,t}$ are too messy and one
has to make it independent of $T$ , $N$ and $t$ , and localize it, so that it is
transportable and can be used as a module that we can use at any place
and time to slow the flow, which is all that any non-entropic solution is
expected to do. We start with a fairly general simple calculation.

Let $P$ be a time homogeneous Markov process with trajectories $x(t)$

in a finite time interval $[0, T]$ , on a finite state space with generator

$(Af)(x)=\sum c(x, y)f(y)$ .

Let $\pi(t, x)$ be the marginal distributions in the time interval $[0, T]$ . We

denote by $C(x)=-c(x, x)=\sum_{y\neq x}c(x, y)$ . Let $\hat{P}_{T}$ be the process that

corresponds to the time reversed trajcetories $y(t)=x(T-t)$ . Although
$\hat{P}_{T}$ is a Markov process, it is in general time inhomogeneous and will
have a generator that depends on the marginals $\pi(\cdot, \cdot)$ . We denote its
time dependent generator by

$(\hat{A}_{T,,,t}f)(x)=\sum_{y\neq x}\hat{c}\tau(t, x, y)f(y)$

and
$\hat{C}_{T}(x)=-\hat{c}_{T}(t, x, x)=\sum\hat{c}_{T}(t, x, y)$

We can also reverse the generator and define $\hat{A}$ as

$(\hat{A}f)(x)=\sum\hat{c}(x, y)f(y)$

with $\hat{c}(x, y)=c(y, x)$ for $x\neq y$ and

$\hat{C}(x)=-\hat{c}(x, x)=\sum_{y\neq x}\hat{c}(x, y)=\sum_{y\neq x}c(y, x)$

We denote by $\hat{Q}_{T}$ , the process with generator $\hat{A}$ with initial distribution
$\pi(T, \cdot)$ .
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Theorem 7.1. We have the following simple formula connecting
the function

$H(t)=\sum_{x}\pi(t, x)\log\pi(t, x)$

and the relative entropy $H(\hat{P}_{T},\hat{Q}_{T})$ .

(9) $H(\hat{P}_{T}|\hat{Q}_{T})=H(0)-H(T)+E^{\hat{Q}_{T}}[\int_{0}^{T}[\hat{C}(x(t))-C(x(t))]dt]$

Proof. The probabilities $\pi(t, x)$ satisfy the forward equation

$\frac{d\pi(t,y)}{dt}=\sum_{x\neq y}c(x, y)\pi(t, x)-C(y)\pi(t, y)$

The time reversed process $\hat{P}_{T}$ defined by $y(t)=x(T-t)$ will have
marginals $\pi(T-t, y)$ and some generator

$(\hat{A}_{T,,,t}f)(x)=\sum\hat{c}_{T}(t, x, y)f(y)$

Of course

$\frac{d\pi(T-t,y)}{dt}=-\sum_{x\neq y}c(x, y)\pi(T-t, x)+C(y)\pi(t, y)$

$=\sum_{x\neq y}\hat{c}_{T}(t, x, y)\pi(T-t, x)-\hat{C}_{T}(t, y)\pi(T-t, y)$

Actually it is not hard to see that for $x\neq y$

$\pi(T-t, x)\hat{c}_{T}(t, x, y)=\hat{c}(x, y)\pi(T-t, y)$

and

$\hat{C}_{T}(t, x)=\frac{1}{\pi(T-t,x)}\sum_{y\neq x}\hat{c}(x, y)\pi(T-t, y)$

Our goal is to compute the relative entropy

$H(\hat{P}_{T}|\hat{Q}_{T})=\int_{0}^{T}\sum_{x}\pi(T-t, x)\sum_{y.y\neq x}[c_{T}(t, x, y)\log,\frac{c_{T}(t,x,y)}{\hat{c},(x,y)}$

$-c_{T}(t, x, y)+\hat{c}(x, y)]dt$
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$H(\hat{P}_{T}|\hat{Q}\tau)$

$=\int_{0}^{T}[\sum_{x}\pi(T-t, x)[$ $[.\sum_{y\cdot y\neq x}\frac{c(y,x)\pi(T-t,y)}{\pi(T-t,x)}\log\frac{\pi(T-t,y)}{\pi(t-t,x)}]$

$-C_{T}(t, x)+\hat{C}(x)]]dt$

$=\int_{0}^{T}\sum_{x\neq y}c(y, x)[\pi(T-t, y)\log\frac{\pi(T-t,y)}{\pi(T-t,x)}$

$-\pi(T-t, y)+\pi(T-t, x)]dt$
$|$

$=\int_{0}^{T}\sum_{x\neq y}c(y, x)[\pi(t, y)\log\frac{\pi(t,y)}{\pi(t,x)}-\pi(t, y)+\pi(t, x)]dt$

We begin by differentiating $H(t)=\sum_{y}\pi(t, y)\log\pi(t, y)$ .

$H^{/}(t)=\frac{d}{dt}\sum_{y}\pi(t, y)\log\pi(t, y)=\sum_{y}\pi(t, y)(A\log\pi(t, \cdot))(y)$

$=\sum_{y}\pi(t, y)[[\sum_{x\neq y}c(y, x)\log\pi(t, x)]-C(y)\log\pi(t, y)]$

$=\sum_{x\neq y}c(y, x)[\pi(t, y)\log\pi(t, x)-\pi(t, y)\log\pi(t, y)]$

$=-\sum_{x\neq y}c(y, x)\pi(t, y)\log\frac{\pi(t,y)}{\pi(t,x)}$

This proves (9). Q.E.D.

Let us start the backward TASEP $\hat{\mathcal{L}}$, with an initial distribution $\mu_{N}$

concentrated on the finite set

$\Omega_{N,,,L}=\{\eta$ : $\eta_{x}=1$ for $x<-NL$ and $\eta_{x}=0$ for $x\geq NL\}$

for some $L\geq T$ . Our initial distribution $\mu_{N}$ will be a Bernoulli with
$\mu_{N}[\eta_{x}=1]=\rho(T, \frac{x}{N})$ given in equation (7). Assume $L\geq T$ . Then the
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TASEP will have profile $\rho(T-t, \xi)$ and at time $t=T$ end up at $\rho(0, \xi)$ .
The time reversed process will now be a perturbation of the TASEP
going in the right direction with the profile we need. (7.1). We note
that

$\hat{C}(\eta)-C(\eta)=N\sum_{x}\eta_{x}(1-\eta_{x+1})-N\sum_{x}\eta_{x+1}(1-\eta_{x})$

$=N\sum_{x}[\eta_{x}-\eta_{x+1}]\equiv N$ .

Moreover $H(T)=0$ and

$\frac{1}{NT}H(0)\simeq\frac{1}{T}\int_{-T}^{T}[\rho(T, \xi)\log\rho(T, \xi)+(1-\rho(T, \xi))\log(1-\rho(T, \xi))]d\xi$

$=2(2\rho-1)[\rho\log\rho+(1-\rho)\log(1-\rho)]$

+2 $\int_{2\rho-1}^{1}[\frac{1-\xi}{2}\log\frac{1-\xi}{2}+\frac{1+\xi}{2}\log\frac{1+\xi}{2}]d\xi$

$=2\rho-2-2\rho(1-\rho)\log\frac{\rho}{1-\rho}$

The relative entropy can now be computed using formula (9) and is seen
to be asymptotic to $CTN$ with

$C=c(\rho)=2\rho-2-2\rho(1-\rho)\log\frac{\rho}{1-\rho}+1$

$=2\rho-1-2\rho(1-\rho)\log\frac{\rho}{1-\rho}$

agreeing with (8).

This perturbation is neither stationary in time nor local in nature.
We need to modify it.

The special initial configuration of particles at every site $x\leq 0$ and
no particles at any site $x>0$ will be denoted by $\overline{\eta}$ . Let $N(T)$ be the
number of transitions from 0 to 1 during $[0, T]$ for the TASEP. Let $P$

be the unpertubed TASEP from this special configurartion. Our initial
goal is to construct, for each given $\rho$ a perturbed measure $Q_{\rho}$ such that
$Q_{\rho}<<P$ , with

$E^{Q_{\rho}}[N(T)]\simeq\rho(1-\rho)T$

and
$H(Q_{\rho}|P)\simeq Tc(\rho)$



Large Deviations of TASEP 23

with $c(\rho)$ given by (8). We wish to do this with a local, time independent
perturbation at least approximately. We can work out the algebra and
restate it as trying to make for $a<\frac{1}{4}$ ,

$E^{Q_{\rho}}[N(T)]\simeq aT$

with an entropy cost not exceeding

(10) $I(a)=\sqrt{1-4a}-2a\log\frac{1+\sqrt{1-4a}}{1-\sqrt{1-4a}}$

We consider for $\sigma>0$ ,

$U(\sigma, t, \eta)=E^{\eta}[e^{-\sigma N(t)}]$

where $\eta$ is the initial configurartion. First we note that by a simple
coupling argument

$U(\sigma, t,\overline{\eta})\leq U(\sigma, t, \eta)\leq U(\sigma, t,\overline{\eta})e^{\sigma g(\eta)}$

with

$g(\eta)=\sum_{x\leq 0}(1-\eta_{x})+\sum_{x>0}\eta_{x}$

for all configurations $\eta$ with only a finite number of ocupied sites $x$ with
$x>0$ and finite number of empty sites $x$ with $x\leq 0$ . By Markov
property, if

$A(\sigma, t)=\inf_{\eta}U(\sigma, t, \eta)=U(\sigma, t,\overline{\eta})$

then $A(\sigma, t+s)\geq A(\sigma, t)A(\sigma, s)$ and $-\log A(t)$ is subadditive and

(11) $\lim_{t\rightarrow\infty}\frac{\log A(\sigma,t)}{t}=\sup_{t}\frac{\log A(\sigma,t)}{t}=-\lambda(\sigma)$

exists. Moreover

$e^{-t\lambda(\sigma)-\theta(t)}.\leq U(\sigma, t,\overline{\eta})\leq U(\sigma, t, \eta)\leq e^{-t\lambda(\sigma)+\sigma g(\eta)}$

where $\theta(t)=o(t)$ as $t$ $\rightarrow\infty$ . We can write down a differential equation
satisfied by $U(\sigma, t, \eta)$

$\frac{\partial U(\sigma,t,\eta)}{\partial t}=(\mathcal{L}_{\sigma}U)(\sigma, t, \eta)$

with
$U(\sigma, 0, \eta)=1$
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The genertaor $\mathcal{L}_{\sigma}$ is obtained by a combination of Girsanov formula and
Feynman-Kac formula. It takes the form

$(\mathcal{L}_{\sigma}U)(\eta)=\sum c_{x,,,x+1}\eta_{x}(1-\eta_{x+1})[U(\eta^{x,x+1})-U(\eta)]-(1-e^{-\sigma})U(\eta)$

where $c_{x,,,x+1}=1$ for $x\neq 0$ and $c_{0,,,1}=e^{-\sigma}$ .

Theorem 7.2. Le $\sigma>0$ be given. For each $\epsilon>0$ , there exists $a$

positive local function $V=V_{\sigma,,,\epsilon}(\eta)$ that satisfifies
$(\mathcal{L}_{\sigma}V)(\eta)+(\lambda(\sigma)+\epsilon)V(\eta)\geq 0$

for all $\eta$ .

Proof As a first step we produce a function that is continuous, i.e.
depends weakly on far away sites and then approximate it to get a local
function. Our first choice is

$W(\eta)=\frac{1}{t_{0}}\int_{0}^{t_{0}}\exp[(\lambda(\sigma)+\frac{\epsilon}{2})t]U(\sigma, t, \eta)dt$

Because of the lower bound on $U$ we can assume that $t_{0}$ is large enough
so that for all $\eta$ ,

$e^{[\lambda(\sigma)+\frac{\epsilon}{2}]t_{0}}U(\sigma, t_{0}, \eta)\geq 1$

Let us compute $\mathcal{L}_{\sigma}W$ .

$(\mathcal{L}_{\sigma}W)(\eta)=\frac{1}{t_{0}}\int_{0}^{t_{0}}\exp[(\lambda(\sigma)+\frac{\epsilon}{2})t](\mathcal{L}_{\sigma}U)(\sigma, t, \eta)dt$

$=\frac{1}{t_{0}}\int_{0}^{t_{0}}\exp[(\lambda(\sigma)+\frac{\epsilon}{2})t]U_{t}(\sigma, t, \eta)dt$

$=\frac{1}{t_{0}}[e^{[\lambda(\sigma)+\frac{\epsilon}{2}]t_{0}}U(\sigma, t_{0}, \eta)-1]-(\lambda(\sigma)+\frac{\epsilon}{2})W(\eta)$

$\geq-(\lambda(\sigma)+\frac{\epsilon}{2})W(\eta)$

Since $t_{0}$ is finite, $W$ depends weakly on far away sites, and can be nicely
approximated by a $V$ that is local. Q.E.D.

The next step is to use $V=V_{\sigma,,,\epsilon}$ to construct our perturbations.
These perturbations cost entropy but will limit the flow between 0 and
1. There is a trade off and $\sigma$ is the parameter that will control this
trade off. Opitmality in the trade off is reached as $\epsilon\rightarrow 0$ . We begin by
defining the rates

$c_{x,,,x+1}(\sigma, \epsilon, \eta)=c_{x,,,x+1}(\sigma)\frac{V(\eta^{x,x+1})}{V(\eta)}$
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Note that $c_{x,,,x+1}(\sigma)=1$ for $x\neq 0$ and $c_{0,,,1}=e^{-\sigma}$ . The corresponding
perturbed evolution

$(\mathcal{L}_{\sigma,,,\epsilon}f)(\eta)=\sum_{x}c_{x,,,x+1}(\sigma, \epsilon, \eta)\eta_{x}(1-\eta_{x+1})[f(\eta^{x,x+1})-f(\eta)]$

is local. Let us speed up by $N$ , and do the hydrodynamic scaling for this
perturbation. Let $Q_{N}$ be the perturbed process and $P_{N}$ be the original
process both rescaled and with the special initial configuration $\overline{\eta}$ .

Theorem 7.3. For every $N$ , we have on the interval $[0, T]$ ,

$H(Q_{N}|P_{N})\leq E^{Q_{N}}[\log V(\eta(T))-\log V(\eta(0))-\sigma N(T)]+NT[\lambda(\sigma)+\epsilon]$

Proof.

$\frac{1}{N}H(Q_{N}|P_{N})=E^{Q_{N}}[\int_{0}^{T}\phi_{\sigma,,,\epsilon}(\eta(t))dt]$

where

$\phi_{\sigma,,,\epsilon}(\eta)=e_{x,,,x+1}(\eta)[c_{x,,,x+1}(\sigma, \epsilon, \eta)\log c_{x,,,x+1}(\sigma, \epsilon, \eta)-c_{x,,,x+1}(\sigma, \epsilon, \eta)+1]$

We use our definition of $c_{x,,,x+1}(\sigma, \epsilon, \eta)$ and an easy calculation to get

$\phi_{\sigma,,,\epsilon}(\eta)=(\mathcal{L}_{\sigma,,,\epsilon}\log V)(\eta)-\sigma e_{0,,,1}(\eta)c_{0,,,1}(\sigma, \epsilon, \eta)-\frac{(\mathcal{L}_{\sigma}V)(\eta)}{V(\eta)}$

The proof is completed by integrating with respect to $t$ and taking ex-
pectations, noting

$NE^{Q_{N}}[\int_{0}^{T}(\mathcal{L}_{\sigma,,,\epsilon}\log V)(\eta(t))dt]$

$=E^{Q_{N}}[\int_{0}^{T}[\log V(\eta(T))-\log V(\eta(0))]]$

Q.E.D.

Now the rest of the argument is relatively straight forward. First, we

need a lemma.

Lemma 7.4. The limit $\lambda(\sigma)$ defifined in (11) satisfifies

$\lambda(\sigma)=\rho\geq\frac{f1}{2}in[\sigma\rho(1-\rho)+c(\rho)]=\inf_{a\leq\frac{1}{4}}[a\sigma+I(a)]$

where $I(a)$ is as in (10).
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Proof. Upper bound: If $F(\rho(\cdot, \cdot))$ is the flow through the origin dur-
ing $[0, T]$ for a weak solution $\rho(\cdot, \cdot)$ , then from the upper bound already
established

$T\lambda(\sigma)\geq-\inf_{\rho(\cdot,\cdot)}[\sigma F(\rho(\cdot, \cdot))+I(\rho(\cdot, \cdot))]$

If one fixes $F(\rho(\cdot, \cdot))=aT=\rho(1-\rho)T$ , the infimum of $I(\rho(\cdot, \cdot))$ is shown
by a variational argument to equal $Tc(\rho)=TI(a)$ .

Lower bound: By a simple calculation using Jensen’s inequality

$\log E^{P_{N}}[e^{-\sigma N(T)}]=\log E^{Q_{N}}[e^{-\sigma N(T)}\frac{dP_{N}}{dQ_{N}}]$

$=\log E^{Q_{N}}[e^{-\sigma N(T)+\log[\frac{dP_{N}}{dQ_{N}}]}]$

$=\log E^{Q_{N}}[e^{-\sigma N(T)-}\log[\frac{dQ_{N}}{dP_{N}}]]$

$\geq-E^{Q_{N}}[\sigma N(T)+\log[\frac{dQ_{N}}{dP_{N}}]]$

$=-E^{Q_{N}}[\sigma N(T)]-H(Q_{N}|P_{N})$

We can take any $Q_{N}$ and we pick it as the time reversal of the
backward TASEP. Our earlier calculations establish the lower bound of
$Tc(\rho)$ for the relative entropy and $T\rho(1-\rho)$ for the flow. One checks
that $I(a)$ is a strictly convex function of $a$ . Q.E.D.

This proves that if we perturb by $\mathcal{L}_{\sigma,,,\epsilon}$ and take the limit as $\epsilon\rightarrow 0$ ,
the profiles we get will satisfy the entropy condition, will have flow at 0
limited by Ta and the realtive entropy will be bounded by $TI(a)$ , where
$a$ is dual to $\sigma$ .

The final step in the proof is to prove that the only profile, that sat-
isfies the entropy condition away from 0, has the rate function bounded
by $TI(a)$ and the flow through the origin bounded by Ta, is given by
(7) with $\rho>\frac{1}{2}$ chosen so that $a=\rho(1-\rho)$ .
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Random Path Representation and Sharp

Correlations Asymptotics at High-Temperatures

Massimo Campanino1, Dmitry Ioffe2, and Yvan Velenik

Abstract.

We recently introduced a robust approach to the derivation of
sharp asymptotic formula for correlation functions of statistical me-
chanics models in the high-temperature regime. We describe its appli-
cation to the nonperturbative proof of Ornstein-Zernike asymptotics
of 2-point functions for self-avoiding walks, Bernoulli percolation and
ferromagnetic Ising models. We then extend the proof, in the Ising
case, to arbitrary odd-odd correlation functions. We discuss the fluc-
tuations of connection paths (invariance principle), and relate the
variance of the limiting process to the geometry of the equidecay

profiles. Finally, we explain the relation between these results from
Statistical Mechanics and their counterparts in Quantum Field The-
$ory$.

\S 1. Introduction

In many situations, various quantities of interest can be represented
in terms of path-like structures. This is the case, e.g., of correlations
in various lattice systems, either in perturbative regimes (through a
suitable expansion), or non-perturbatively, as in the ferromagnetic Ising
models at supercritical temperatures. Many important questions about
the fine asymptotics of these quantities can be reformulated as local limit
theorems for these (essentially) one-dimensional objects. In [7], building
upon the earlier works $[15, 6]$ , we proposed a robust non-perturbative
approach to such a problem. It has already been applied successfully in
the case of self-avoiding walks, Bernoulli percolation and Ising models.
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We briefly review the results that have been thus obtained (see also [8]
for a short description of the main ideas of the proof).

Self-avoiding walks. A self-avoiding path $\omega$ from 0 to $x\neq 0$ is a
sequence of distinct sites $t_{0}=0$ , $t_{1}$ , $t_{2}$ , $\ldots$ , $t_{n}=x$ in $\mathbb{Z}^{d}$ , with $|t_{i}-t_{i-1}|=$

$1$ , $i=1$ , $\ldots$ , $n$ (the restriction to nearest-neighborjumps can be replaced
by arbitrary, possibly weighted, jumps of finite range). Let $\beta<0$ , we
are interested in the following quantity:

$G_{\beta}^{SAW}(x)=\triangle.\sum_{\omega\cdot 0\rightarrow x}e^{\beta|\omega|}$ ,

where the sum runs over all self-avoiding paths from 0 to $x$ , and $|\omega|$

denotes the length of the path. $G_{\beta}^{SAW}(x)$ is finite for all $\beta<\beta_{c}^{SAW}$ ,

with $\beta_{c}^{SAW}>-\infty$ . Actually, $\sum_{x\in \mathbb{Z}^{d}}G_{\beta}^{SAW}(x)$ is finite if and only if
$\beta<\beta_{c}^{SAW}$ .

Bernoulli bond percolation. Let $\beta>0$ . We consider a family of i.i.d.
{0, 1}-valued random variables $n_{e}$ , indexed by the bonds $e$ between two
nearest-neighbor sites of $\mathbb{Z}^{d}$ (again, restriction to nearest-neighbor sites
can be dropped); $Prob_{\beta}(n(e)=1)=1-e^{-\beta}$ . We say that 0 is connected
to $x(0+\rightarrow x)$ in a realization $n$ of these random variables if there is a
self-avoiding path $\omega$ from 0 to $x$ such that $n_{e}=1$ for all increments $e$

along the path. We are interested in the following quantity:

$G_{\beta}^{perc}(x)=\triangle Prob_{\beta}(0\mapsto x)$ .

The high-temperature region $\beta<\beta_{c}^{perc}$ is defined through

$\beta_{c}^{perc}=\triangle\sup\{\beta ^{:} _{x\in \mathbb{Z}^{d}}\sum G_{\beta}^{perc}(x)<\infty\}>0$
.

It is a deep result of [2] that the percolation transition is sharp, i.e.

$\beta_{c}=\inf\{\beta : Prob_{\beta}(0\mapsto\infty)>0\}$ .

Ising model. Let $\beta>0$ . We consider a family of {-1, 1}-valued ran-

dom variables $\sigma_{x}$ , indexed by the sites $x$
$\in \mathbb{Z}^{d}$ . Let $\Lambda_{L}=\{-L, \ldots, L\}^{d}$ .

The probability of a realization $\sigma$ of the random variables $(\sigma_{x})_{x\in\Lambda_{L}}$ ,

with boundary condition $\overline{\sigma}\in\{-1,1\}^{\mathbb{Z}^{d}}$ , is given by

$\mu_{\beta,\overline{\sigma},L}(\sigma)=\triangle(Z_{\beta,\overline{\sigma},L})^{-1}\exp[\beta\sum_{|x-y|=1\{x,y\}\subset\Lambda_{L}}\sigma_{x}\sigma_{y}+\beta\sum_{|x-y|=1x\in\Lambda_{L},y\not\in\Lambda_{L}}\sigma_{x}\overline{\sigma}_{y}]$

.
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(As for the two previous models, the nearest-neighbor restriction can be
replaced by a–possibly weighted–finite-range assumption.) The set
of limiting measures, as $ L\rightarrow\infty$ and for any boundary conditions, is a
simplex, whose extreme elements are the Gibbs states of the model. We
define the high-temperature region as $\beta<\beta_{c}^{Ising}$ , where

$\beta_{c}^{Ising}=\sup$ { $\beta$ : There is a unique Gibbs state at parameter $\beta$ } $>0$ .

We are interested in the following quantity:

$G_{\beta}^{Ising}(x)=\triangle E_{\mu_{\beta}}[\sigma_{0}\sigma_{x}]$ ,

where the expectation is computed with respect to any translation in-

variant Gibbs state $\mu_{\beta}$ (it is independent of which one is chosen). It is
a deep result of [3] that the high-temperature region can also be char-
acterized as the set of all $\beta$ such that

$\sum_{x\in \mathbb{Z}^{d}}G_{\beta}^{Ising}(x)<\infty$
.

We now discuss simultaneously these three models; to that end, we
simply forget the $del$-specific superscripts, and simply write $\beta_{c}$ or $G_{\beta}$ .

It can be shown that for all three models, for all $\beta<\beta_{c}$ , the function
$G_{\beta}(x)$ is actually exponentially decreasing in $|x|$ , i.e. the corresponding
inverse correlation length $\xi_{\beta}$ : $\mathbb{R}^{d}\rightarrow \mathbb{R}$ satisfy

$\xi_{\beta}(x)=\triangle\lim_{k\rightarrow\infty}-\frac{1}{k}\log G_{\beta}(\lfloor kx\rfloor)>0$ ,

where $\lfloor x\rfloor$ is the componentwise integer part of $x$ . Obviously, $\xi_{\beta}$ is
positive-homogeneous, and it is not difficult to prove that it is convex;
it is thus an equivalent norm on $\mathbb{R}^{d}$ (for $\beta<\beta_{c}$ ).

The main result of [15, 6, 7] is the derivation of the following sharp
asymptotics for $G_{\beta}(x)$ , as $|x|\rightarrow\infty$ , for these three models, in the cor-
responding high-temperature regions.

Theorem 1.1. Consider one of the models above, and let $\beta<\beta_{c}$ .

Then, uniformly as $|x|\rightarrow\infty$ ,

$G_{\beta}(x)=\frac{\Psi_{\beta}(n_{x})}{\sqrt{|x|^{d-1}}}e^{-\xi_{\beta}(n_{x})|x|}(1+o(1))$ ,

where $n_{x}=x/|x|$ , and $\Psi_{\beta}$ is strictly positive and analytic. Moreover,
$\xi_{\beta}$ is also an analytic function.
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As a by-product of the proof of Theorem 1.1, we obtain the following
results on the shape of the equidecay profiles,

$U_{\beta}=\triangle\{x\in \mathbb{R}^{d} _{:} \xi_{\beta}(x)\leq 1\}$

and their polar, the Wulff shapes

$K_{\beta}=\triangle n\in S^{d-1}\cap\{t\in \mathbb{R}^{d} ^{:} (t, n)_{d}\leq\xi_{\beta}(n)\}$
.

Theorem 1.2. Consider one of the models above, and let $\beta<\beta_{c}$ .

Then $K_{\beta}$ has a locally analytic, strictly convex boundary. Moreover, the
Gaussian curvature $\kappa_{\beta}$ of $K_{\beta}$ is uniformly positive,

(1) $\overline{\kappa}_{\beta}=\triangle\min_{t\in\partial K_{\beta}}\kappa_{\beta}(t)>0$ .

By duality, $\partial U_{\beta}$ is also locally analytic and strictly convex.

Remark 1.3. In two dimensions $K_{\beta}$ is reminiscent of the Wulff
shape (and is exactly the low-temperature Wulff shape in the cases of
the nearest-neighbor Ising and percolation models). Equation (1) is then
called the positive stiffness condition; it is known to be equivalent to the
following sharp triangle inequality $[14, 20]$ : Uniformly in $u$ , $v\in \mathbb{R}^{2}$

$\xi_{\beta}(u)+\xi_{\beta}(v)-\xi_{\beta}(u+v)\geq\overline{\kappa}_{\beta}(|u|+|v|-|u+v|)$ .

Theorem 1.1 can in fact easily be extended to arbitrary odd-odd
correlation functions. We show this here in the most difficult case of fer-
romagnetic Ising models; namely, we establish exact asymptotic formula
for correlation functions of the form $E_{\mu_{\beta}}[\sigma_{A}\sigma_{B+x}]$ , where $A$ , $B$ are finite

subsets of $\mathbb{Z}^{d}$ with $|A|$ and $|B|$ odd, and for any $C\subset \mathbb{Z}^{d}$ , $\sigma_{C}=\triangle\prod_{y\in C}\sigma_{y}$ .

Notice that even-odd correlations are necessarily zero by symmetry. The
case of even-even correlations is substantially more delicate though (al-
ready for the much simpler SAW model), in particular in low dimensions;
we hope to come back to this issue in the future.

Theorem 1.4. Consider the Ising model. Let $\beta<\beta_{c}^{Ising}$ , and let
$A$ and $B$ be finite odd subsets of $\mathbb{Z}^{d}$ . Then, uniformly in $|x|\rightarrow\infty$ ,

$E_{\mu_{\beta}}[\sigma_{A}\sigma_{B+x}]=\frac{\Psi_{\beta}^{A,B}(n_{x})}{\sqrt{|x|^{d-1}}}e^{-\xi_{\beta}(n_{x})|x|}(1+o(1))$ ,

where $n_{x}=x/|x|$ , and $\Psi_{\beta}^{A,B}$ is strictly positive and analytic.
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We sketch the proof of this theorem in Section 4.

The main feature shared by the three models discussed above is that
the function $G_{\beta}(x)$ can each time be written in the form

(2)
$G_{\beta}(x)=.\sum_{\lambda.0\rightarrow x}q_{\beta}(\lambda)$

,

where the sum runs over admissible path-like objects (SAW paths, per-
colation clusters, random-lines, see Section 3, respectively). The weights
$q_{\beta}(\cdot)$ are supposed to be strictly positive and to possess a variation of
the following four properties:

$\circ$ Strict exponential decay of the two-point function: There
exists $ C_{1}<\infty$ such that, for all $x\in \mathbb{Z}^{d}\backslash \{0\}$ ,

(3)
$g(x)=.\sum_{\lambda.0\rightarrow x}q(\lambda)\leq C_{1}e^{-\xi(x)}$

,

where $\xi(x)=-\lim_{k\rightarrow\infty}(k)^{-1}\log g(\lfloor kx\rfloor)$ is the inverse correla-
tion length.

$\circ$ Finite energy condition: For any pair of compatible paths $\lambda$

and $\eta$ define the conditional weight

$q(\lambda|\eta)=q(\lambda II \eta)/q(\eta)$

where $\lambda II\eta$ denotes the concatenation of $\lambda$ and $\eta$ . Then there ex-
ists a universal finite constant $ C_{2}<\infty$ such that the conditional
weights are controlled in terms of path sizes $|\lambda|$ as:

(4) $q(\lambda|\eta)\geq e^{-C_{2}|\lambda|}$ .

$\circ BK$-type splitting property: There exists $ C_{3}<\infty$ , such that,
for all x, y $\in \mathbb{Z}^{d}\backslash \{0\}$ with x $\neq y$ ,

(5)
$\sum_{\lambda.0\rightarrow x\rightarrow y}q(\lambda)\leq C_{2}.\sum_{\lambda.0\rightarrow x}q(\lambda).\sum_{\lambda.x\rightarrow y}q(\lambda)$

.

$\circ$ Exponential mixing : There exists $ C_{4}<\infty$ and $\theta\in(0,1)$

such that, for any four paths $\lambda$ , $\eta$ , $\gamma_{1}$ and $\gamma_{2}$ , with $\lambda II$ $\eta II\gamma_{1}$ and
$\lambda II$ $\eta II\gamma_{2}$ both admissible,

(6)
$\frac{q(\lambda|\eta II\gamma_{1})}{q(\lambda|\eta II\gamma_{2})}\leq\exp\{C_{4}y\in\gamma_{1}\cup\gamma_{2}\sum_{x\in\lambda}\theta^{|x-y|}\}$

.
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Many other models enjoy a graphical representation of correlation func-
tions of the form (2). In perturbative regimes, cluster expansions pro-
vide a generic example. Non-perturbative examples include the random-
cluster representation for Potts (and other) models [10], or random walk
representation of $N$-vector models [11], etc... However, it might not
always be easy, or even possible, to establish properties (3), (4), (5)
and (6) for the corresponding weights, especially (5) which is probably
the less robust one. It should however be possible to weaken the latter
so that it only relies on some form of locally uniform mixing properties.

Road-map to the paper

In Section 2 we review and explain our probabilistic approach to
the analysis of high temperature correlation functions. The point of de-
parture is the random path representation formula (2), and the whole
theory is built upon a study of the local fluctuation structure of the
corresponding connection paths. One of the consequences is the va-
lidity of the invariance principle under the diffusive scaling, which we
formulate in Theorem 2.2 below. For simplicity the discussion in Sec-
tion 2 is restricted to the case of SAW-s, and hence the underlying local
limit results are those about the sums of independent random variables.
In the case of high temperature ferromagnetic Ising models the ran-
dom line representation, which we shall briefly recall in Section 3, gives
rise to path weights $q_{\beta}$ which do not possess appropriate factorization
properties. Nevertheless these weights satisfy conditions $(3)-(6)$ and we
conclude Section 3 with an explanation of how the problem of finding
correlation asymptotics can be reformulated in terms of local limit prop-
erties of one dimensional systems generated by Ruelle operators for full
shifts on countable alphabets. The proof of Theorem 1.4 is discussed
in Section 4. Finally, in Section 5, we explain the relation between
the problems discussed here, inspired by Statistical Physics, and their
counterparts originating from the corresponding lattice Quantum Field
Theories.

\S 2. Fluctuations of connection paths

In this section we describe local structure and large scale proper-
ties of connection paths conditioned to hit a distant point. In all three
models above (SAW, percolation, Ising) the distribution of the connec-
tion paths converges, after the appropriate rescaling, to the $(d-1)-$

dimensional Brownian bridge, and, from the probabilistic point of view,
these results belong to the realm of classical Gaussian local limit anal-
ysis of one dimensional systems based on uniform analytic expansions



Correlations asymptotics at high temperatures 35

of finite volume $\log$-moment generating functions. An invariance princi-
ple for the sub-critical Bernoulli bond percolation has been established
in [17] and for the phase separation line in the $2D$ nearest neighbour
Ising model at any $\beta>\beta_{c}$ in [13]. In both cases the techniques and the
ideas of [6] and [7] play the crucial role, and, in fact, the renormalization
and the fluctuation analysis developed in the latter papers pertains to
a large class of models which admit a random path type representation
with path weights enjoying a suitable variation of $(3)-(6)$ . In particular,
it should lead to a closed form theory of low temperature phase bound-
aries in two dimensions [16]. Note that different tools have been early
employed in $[9, 12]$ .

For the sake of simplicity we shall sketch here the case of self-
avoiding walks and shall try to stipulate the impact of the geometry
of $K_{\beta}$ on the magnitude of paths fluctuations in the corresponding di-
rections.

Let $\hat{x}\in S^{d-1}$ and the dual point $\hat{t}\in\partial K_{\beta};(\hat{t},\hat{x})=\xi_{\beta}(\hat{x})$ , be fixed
for the rest of the section. Consider the set $\prime \mathcal{P}^{n}$ of all self-avoiding paths
$\gamma$ : $o\rightarrow\lfloor n\hat{x}\rfloor$ , where for $y\in \mathbb{R}^{d}$ we define $\lfloor y\rfloor=(\lfloor y_{1}\rfloor, \ldots, \lfloor y_{d}\rfloor)\in \mathbb{Z}^{d}$ .

Finally, consider the following probability measure $\mathbb{P}_{\beta}^{n}$ on $\prime \mathcal{P}^{n}$ :

(7) $\mathbb{P}_{\beta}^{n}(\gamma)=\frac{1}{Z_{\beta}^{n}}e^{\beta|\gamma|}1_{\{\gamma\in P^{n}\}}$ .

In order to explain and to formulate the invariance principle which holds
under $\mathbb{P}_{\beta}^{n}$ we need, first of all, to readjust the notion of irreducible split-
ting of paths $\gamma\in\prime P^{n}$ ;

(8) $\gamma=\lambda_{L}II\lambda_{I}II\cdots II\lambda_{M}II\lambda_{R}$ .

Fix $\delta\in(0,1)$ and a large enough renormalization scale $K$ . Given a path
$\lambda=(u_{0}, u_{1}, \ldots, u_{m})$ let us say that a point $ u\iota$ ; $0<l<m$ , is $\hat{x}$-correct
break point of $\lambda$ if the following two conditions hold:

A) $(u_{j},\hat{x})<(u_{l},\hat{x})<(u_{i},\hat{x})$ for all $j<l<i$ .

B) The remaining sub-path $(u_{l+1}, \ldots, u_{m})$ lies inside the set

$2KU_{\beta}(u_{l})+C_{\delta}(\hat{t})$ ,

where $U_{\beta}(z)=z+U_{\beta}$ , and the forward cone $C_{\delta}(\hat{t})$ is defined as

(9) $C_{\delta}(\hat{t})=\{y\in \mathbb{R}^{d} : (y,\hat{t})>(1-\delta)\xi_{\beta}(y)\}$ .

Note that this definition depends on the parameters $K$ and $\delta$ ; as they
are usually kept constant, we only write them explicitly when needed.
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With $\hat{x}\in S^{d-1},\hat{t}\in\partial K_{\beta}$ , $K$ and $\delta$ fixed as above let us say that a path
$\lambda$ is irreducible if it does not contain $\hat{x}$-correct break points. We use $S$

to denote the set of all irreducible paths (modulo $\mathbb{Z}^{d}$-shifts). Define also
the following three subsets of $S$ :

$S_{L}=\{\lambda=(u_{0}, \ldots, u_{m})\in S : \forall l>0(u\iota,\hat{x})<(u_{m},\hat{x})\}$

(10) $S_{R}=\{$ $\lambda=(u_{0}, \ldots, u_{m})\in S$

:
$\forall l>0(u_{l},\hat{x})>(u_{0},\hat{x})and\}$

$\gamma\subset KU_{\beta}(u_{0})+C_{\delta}(\hat{t})$ .

$S_{0}=S_{L}\cap S_{R}$

For any $\gamma\in\prime p_{n}$ which has at least two $\hat{x}$-correct break points the
decomposition (8) is unambiguously defined by the following set of con-
ditions:

$\lambda_{L}\in S_{L}$ , $\lambda_{R}\in S_{R}$ and $\lambda_{1}$ , $\ldots$ , $\lambda_{M}\in S_{0}$ .

The only difference between (8) and the irreducible decomposition em-
ployed in [7] is that the break points here are defined with respect to the
$\hat{x}$-orthogonal hyper-planes instead of $\hat{t}$-orthogonal hyper-planes. This is
to ensure that the displacements along all the $\lambda$-paths which appear in
(8) have positive projection on the direction of $\hat{x}$ . More precisely, given
a SAW path $\lambda=(u_{0}, \ldots, u_{m})$ let us define the displacement along $\lambda$ as
$V(\lambda)=u_{m}-u_{0}$ . By the very definition of (8) all

$V_{L}=\triangle V(\lambda_{L})$ , $V_{1}=\triangle V(\lambda_{1})$ , $\ldots$ , $V_{M}=\triangle V(\lambda_{M})$ , $V_{R}=\triangle V(\lambda_{R})$ .

belong to the (lattice) half-space $\{y\in \mathbb{Z}^{d} : (y,\hat{x})>0\}$ . The renormal-
ization calculus developed in $[6, 7]$ implies:

Lemma 2.1. For every $\beta<\beta_{c}$ and for any $\delta>0$ there exists $a$

finite scale $K_{0}=K_{0}(\delta, \beta)$ and a number $iJ$ $=\iota/(\delta, \beta)>0$ , such that

(11)
$.\sum_{\lambda\in S.V(\lambda)=y}e^{\beta|\lambda|}$

$\leq\exp\{-(\hat{t}, y)-\iota/|y|\}$ ,

uniformly in $y\in \mathbb{Z}^{d}$ .

Going back to the decomposition (8) notice that

(12) $ V_{L}+V_{1}+\cdots+V_{M}+V_{R}=\lfloor n\hat{x}\rfloor$
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for any $\gamma$ : $O\rightarrow\lfloor n\hat{x}\rfloor$ . Therefore, Lemma 2.1 and the Ornstein-Zernike
formula of Theorem 1.1 yield:

(13) $\mathbb{P}_{\beta}^{n}(\max\{|V_{L}|, |V_{1}|, \ldots, |V_{M}|, |V_{R}|\}>(\log n)^{2})=o(\frac{1}{n^{\rho}})$ ,

for any $\rho>0$ . In particular, if for given $\gamma$ : $O\rightarrow\lfloor n\hat{x}\rfloor$ one considers
the piece-wise constant trajectory $\hat{\gamma}$ through the vertices 0, $V_{L}$ , $V_{L}+$

$V_{1}$ , $\ldots$ , $\lfloor n\hat{x}\rfloor$ , then the $\mathbb{R}^{d_{-}}$Hausdorff distance between $\gamma$ and $\hat{\gamma}$ is bounded
above as:

(14) $\mathbb{P}_{\beta}^{n}(d_{H}(\gamma,\hat{\gamma})>(\log n)^{2})=o(\frac{1}{n^{\rho}})$ ,

as well. Indeed, one needs only to control the fluctuation of $\lambda_{L}$ in (8),
the traversal deviations of paths in $S_{R}$ are automatically under control
by the cone confinement property (10).

Estimate (14) enables a formulation of the invariance principle for
SAW $\gamma$ in terms of the effective path $\hat{\gamma}$ . In its turn the invariance
principle for $\hat{\gamma}$ is a version of the conditional invariance principle for
paths of random walks in $(d-1)$ -dimensions with the direction of the
target point $\hat{x}$ playing the role of time. It happens to be natural to

choose the frame of the remaining $(d-1)$ spatial dimensions according to

principal directions of curvature $\mathfrak{d}_{1}$ , $\ldots$ , $\mathfrak{o}_{d-1}$ of $\partial K_{\beta}$ at $\hat{t}$ . In this way, in
view of the positive $\hat{x}$-projection property of all the $\lambda$-path displacements
in (8), the effective path $\hat{\gamma}\subset \mathbb{R}^{d}$ could be parametrized in the orthogonal

frame $(\hat{X}, \mathfrak{d}_{1}, \ldots, \mathfrak{d}_{d-1})$ as a function $\hat{X}$ : $[0, n]\rightarrow \mathbb{R}^{d-1}$ . As usual define

the diffusive scaling $\hat{X}_{n}(\cdot)$ of $\hat{X}(\cdot)$ as

$\hat{X}_{n}(\tau)=\frac{1}{\sqrt{n}}\hat{X}(\lfloor n\tau\rfloor)$ .

Let $C_{0,0}[0,1]$ be the space of continuous $\mathbb{R}^{d-1}$ -valued functions $f$ on $[o, _{1}]$

which satisfy the boundary conditions $f(0)=f(1)=0$ .

Theorem 2.2. The distribution of $\hat{X}_{n}(\cdot)$ under $\mathbb{P}_{\beta}^{n}$ weakly con-
verges on $C_{0,0}[0,1]$ to the distribution of

(15) $(\sqrt{\kappa_{1}}B_{1}(\cdot), \ldots, \sqrt{\kappa_{d-1}}B_{d-1}(\cdot))$ ,

where $B_{1}(\cdot)$ , $\ldots$ , $B_{d-1}(\cdot)$ are independent Brownian bridges on $[0, 1]$ and
$\kappa_{1}$ , $\ldots$ , $\kappa_{d-1}$ are the principal curvatures of $\partial K_{\beta}$ at $\hat{t}$ .
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Let us dwell on the probabilistic picture behind Theorems 1.1, 1.2
and 2.2: First of all, note that by Lemma 2.1

(16)
$\mathbb{Q}_{0}(y)=e^{(\hat{t},y)}\sum_{\lambda\in S_{O}.V(\lambda)=y}e^{\beta|\lambda|}=\triangle e^{(\hat{t},y)}W_{0}(y)$

is a (non-lattice) probability distribution on $\mathbb{Z}^{d}$ with exponentially de-
caying tails. Indeed, an alternative important way to think about $K_{\beta}$ is
as of the closure of the domain of convergence of the series

(17) $t$

$\in \mathbb{R}^{d}\mapsto\sum_{y\in \mathbb{Z}^{d}}e^{(t,y)}G_{\beta}(y)$
.

On the other hand, Lemma 2.1 ensures that the series $W_{0}(t)=\triangle$

$\sum e^{(t,y)}W_{0}(y)$ converges in the $lJ$-neighbourhood $B_{\iota/}(\hat{t})=\{t : |t-\hat{t}|<l/\}$

of $\hat{t}$ . In view of the decomposition (8) and Lemma 2.1,

(18) $G_{\beta}(n\hat{x})=O(e^{-n\xi_{\beta}(\hat{x})-\iota/n})+\sum_{M=1}^{\infty}W_{L}*W_{0}^{*M}*W_{R}(n\hat{x})$ ,

where we have assumed for the convenience of notation that $n\hat{x}\in \mathbb{Z}^{d}$ ,
and

$W_{L}(y)=.\sum_{\lambda\in S_{L}\cdot V(\lambda)=y}e^{\beta|\lambda|}$
and

$W_{R}(y)=.\sum_{\lambda\in S_{R}\cdot V(\lambda)=y}e^{\beta|\lambda|}$
.

As a result, the piece of the boundary $\partial K_{\beta}$ inside $B_{l/}(\hat{t})$ is implicitly
given by

$\partial K_{\beta}\cap B_{lJ}(\hat{t})=\{t\in B_{l/}(\hat{t}) : W_{0}(t)=1\}$ .

In order to obtain the full claim of Theorem 1.2 one needs only to check
the non-degeneracy of $Hess(W_{0})$ at $\hat{t}$ , which, in the case of SAW-s, is a
direct consequence of the finite energy condition (4). Note, by the way,
that since $\hat{x}$ is the normal direction to $\partial K_{\beta}$ at $\hat{t}$ , there exists a number
$\alpha\in(0, \infty)$ , such that

(19) $\nabla W_{0}(t)=\alpha\hat{x}$ .
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Multiplying both sides of (18) by $e^{n\xi_{\beta}(\hat{x})}=e^{(\hat{t},n\hat{x})}$ we arrive to the
following key representation of the two point function $ G\beta$ :

(20)

$e^{n\xi_{\beta}(\hat{x})}G_{\beta}(n\hat{x})=e^{n(\hat{t},\hat{x})}G_{\beta}(n\hat{x})=O(e^{-n\iota/})$

$+\sum_{v_{L},v_{R}\in \mathbb{Z}^{d}}\mathbb{Q}_{L}(v_{L})\mathbb{Q}_{R}(v_{R})\sum_{M=1}^{\infty}\mathbb{Q}_{0}(V_{1}+\cdots+V_{M}=n\hat{x}-v_{L}-v_{R})$ ,

where, similar to (16), we have defined $\mathbb{Q}_{L}(v)=e^{(\hat{t},v)}W_{L}(v)$ and, ac-

cordingly, $\mathbb{Q}_{R}(v)=e^{(\hat{t},v)}W_{R}(v)$ .

Unlike $\mathbb{Q}_{0}$ the measures $\mathbb{Q}_{L}$ and $\mathbb{Q}_{R}$ are in general not probability
but, by Lemma 2.1, they are finite and have exponentially decaying tails:

$\sum(\mathbb{Q}_{L}(y)+\mathbb{Q}_{R}(y))\leq e^{-\iota/n/2}$ .
$|y|>n$

Since by (19) the expectation of $V_{l}$ under $\mathbb{Q}_{0}$ equals to $\alpha\hat{x}$ , the usual local
limit CLT for $\mathbb{Z}^{d}$ random variables and the Gaussian summation formula
imply that the right hand side in (20) equals to $c_{1}/\sqrt{n^{d-1}}$ . Actually, a
slightly more careful analysis along these line leads to the full analytic
form of the Ornstein-Zernike formula as claimed in Theorem 1.1.

Let us explain now how the principal curvatures $\kappa_{1}$ , $\ldots$ , $\kappa_{d-1}$ of
$\partial K_{\beta}$ at $\hat{t}$ enter the picture: By the irreducible path representation and
arguments completely similar to those just reproduced above, the total
weight of all piece-wise constant paths $\hat{\gamma}=\hat{\gamma}(V_{L}, V_{1}, \ldots, V_{M}, V_{R});M=$

$1$ , 2, $\ldots$ , which pass through a point $v_{n}\in \mathbb{Z}^{d}$ ;

$v_{n}=\lambda n\hat{x}+\sqrt{n}\sum_{l=1}^{d-1}a_{l}0_{l}=\triangle\lambda n\hat{x}+\sqrt{n}\mathfrak{v}$ ,

equals to

$\frac{c_{2}}{\sqrt{(\lambda(1-\lambda)n^{2})^{(d-1)}}}e^{-\xi_{\beta}(v_{n})-\xi_{\beta}(n\hat{x}-v_{n})}(1+o(1))$

,

where $c_{2}>0$ does not depend on $\lambda\in(0,1)$ and the coefficients $a_{1}$ , $\ldots$ ,
$a_{d-1}$ . Comparing with the $OZ$ formula for the full partition function
$G_{\beta}$ , we infer that

$\mathbb{P}_{\beta}^{n}(v_{n}\in\hat{\gamma})=\frac{c_{3}\exp\{-(\xi_{\beta}(v_{n})+\xi_{\beta}(n\hat{x}-v_{n})-\xi_{\beta}(n\hat{x}))\}}{\sqrt{(\lambda(1-\lambda)n)^{d-1}}}(1+o(1))$ .
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From now on we refer to Chapter 2.5 in [22] for the missing details in the
arguments below. $\xi_{\beta}$ is the support function of $K_{\beta}$ and by Theorem 1.2
it is a smooth function. Thus, for every $v\in \mathbb{R}^{d}$ the gradient $\nabla\xi_{\beta}(v)\in$

$\partial K_{\beta}$ and $\xi_{\beta}(v)=(\nabla\xi_{\beta}(v), v)$ (in particular $\hat{t}=\nabla\xi_{\beta}(\hat{x})=\nabla\xi_{\beta}(n\hat{x})$ ).

Principal radii of the curvature $1/\kappa_{1}$ , $\ldots$ , $1/\kappa_{d-1}$ of $\partial K_{\beta}$ at $\hat{t}$ are the
eigenvalues of the linear map

$d^{2}\xi_{\beta}|_{\hat{x}}$ : $T_{\hat{x}}S^{d-1}\mapsto T_{\hat{x}}S^{d-1}$ ,

and $\mathfrak{d}_{1}$ , $\ldots$ , $\mathfrak{v}_{d-1}\in T_{\hat{x}}S^{d-1}$ are the corresponding eigenvectors. There-
fore,

$\xi_{\beta}(v_{n})+\xi_{\beta}(n\hat{x}-v_{n})-\xi_{\beta}(n\hat{x})=n\lambda(\xi_{\beta}(\hat{x}+\frac{1}{\lambda\sqrt{n}}\mathfrak{d})-\xi_{\beta}(\hat{x}))$

$+n(1-\lambda)(\xi_{\beta}(\hat{x}-\frac{1}{(1-\lambda)\sqrt{n}}\mathfrak{d})-\xi_{\beta}(\hat{x}))$

$=\frac{1}{2\lambda}(d^{2}\xi_{\beta}|_{\hat{x}}\mathfrak{v}, o)$
$+\frac{1}{2(1-\lambda)}(d^{2}\xi_{\beta}|_{\hat{x}}\mathfrak{v}, o)$ $+O(\frac{1}{\sqrt{n}})$

$=\frac{1}{2\lambda(1-\lambda)}\sum_{l=1}^{d-1}\frac{a_{l}^{2}}{\kappa_{l}}+O(\frac{1}{\sqrt{n}})$ .

Computations for higher order finite dimensional distributions follow a
completely similar pattern.

\S 3. Random-line representation of Ising correlations

Correlation functions of ferromagnetic Ising models admit a very
useful representation in terms of sums over weighted random paths,
which is especially convenient for our purposes here. The two-point
function formula (2) is a particular case. In this section, we recall how
this representation is derived; we refer to [20] for details and additional
results. In the end of the section we shall briefly indicate how (20) and,
accordingly, the whole local limit analysis should be $re$-adjusted in order
to incorporate the (dependent) case of Ising paths.

Although we use it for the infinite-volume Gibbs measure, it is con-
venient to derive the random path representation first for finite volumes,
and then take the limit. As there is a single Gibbs state for the values
of $\beta$ we consider, it suffices to consider free boundary conditions (i.e. no
interactions between spins inside the box and spins outside).
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Given a set of edges $B$ of the lattice $\mathbb{Z}^{d}$ , we define the associated set

of vertices as $ V_{B}=\triangle$ { $x\in \mathbb{Z}^{d}$ : $\exists e\in B$ with $x\in e$}($x\in e$ means that
$x$ is an endpoint of $e$ ). For any vertex $x\in V_{B}$ , we define the index of

$x$ in $B$ by $ind(x, B)=\triangle\sum_{e\in B}1_{\{e\ni x\}}$ . The boundary of $B$ is defined by
$\partial B=\triangle$

{ $x\in V_{B}$ : $ind$ ( $x$ , $B$ ) is odd}.
In this context, the finite volume Gibbs measure is defined by

$\mu_{B,\beta}(\sigma)=\triangle Z_{\beta}(B)^{-1}$

$\exp[-\beta\sum_{e=(x,y)\in B}\sigma_{x}\sigma_{y}]$
,

and we use the standard notation $\langle \cdot\rangle_{B,\beta}$ to denote expectation w.r.t.
this probability measure.

We fix an arbitrary total ordering of $\mathbb{Z}^{d}$ . At each $x\in \mathbb{Z}^{d}$ , we fix (in
an arbitrary way) an ordering of the $x$-incident edges of the graph:

$B(x)=\triangle\{e\in B : ind(x, \{e\})>0\}=\{e_{1}^{x}, \ldots, e_{ind(x,B)}^{x}\}$ ,

and for two incident edges $e=e_{i}\in B(x)$ , $e^{/}=e_{j}\in B(x)$ we say that
$e\leq e’$ if the corresponding inequality holds for their sub-indices; $i\leq j$ .

Let $A\subset V_{B}$ be such that $|A|$ is even; we write $\sigma_{A}=\triangle\prod_{i\in A}\sigma_{i}$ . Using

the identity $e^{\beta\sigma_{x}\sigma_{y}}=\cosh(\beta)(1+\sigma_{x}\sigma_{y}\tanh(\beta))$ , we obtain the following
expression for the correlation function $\langle\sigma_{A}\rangle_{B,\beta}$ ,

$\langle\sigma_{A}\rangle_{B,\beta}=Z_{\beta}(B)^{-1}\partial D=A\sum_{D\subset B}\prod_{e\in D}\tanh\beta$

,

where

$ Z_{\beta}(B)=\triangle\partial D=\emptyset\sum_{D\subset B}\prod_{e\in D}\tanh\beta$

.

From $D\subset B$ with $\partial D=A$ , we would like to extract a family of $|A|/2$

“self-avoiding paths” connecting pairs of sites of $A$ . We apply the fol-
lowing algorithm:

STEP 0 Set $k=1$ and $\triangle=\emptyset$ .

STEP 1 Set $z_{0}^{(k)}$ to be the first site of $A$ in the ordering of $\mathbb{Z}^{d}$ fixed above,

$j=0$ , and update $A=\triangle A\backslash \{z_{0}^{(k)}\}$ .

STEP 2 Let $e_{j}^{(k)}=(z_{j}^{(k)}, z_{j+1}^{(k)})$ be the first edge in $ B(z_{j}^{(k)})\backslash \triangle$ (in the

ordering of $B(z_{j}^{(k)})$ fixed above) such that $e_{j}^{(k)}\in D$ . This defines $z_{j+1}^{(k)}$ .
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STEP 3 Update $\triangle=\triangle\triangle\cup\{e\in B(z_{j}^{(k)}) : e\leq e_{j}^{(k)}\}$ . If $z_{j+1}^{(k)}\in A$ , then go

to STEP 4. Otherwise update $j=\triangle j+1$ and return to STEP 2.

STEP 4 Set $n^{(k)}=j+1$ and stop the construction of this path. Update
$A=\triangle A\backslash \{z_{j+1}^{(k)}\}$ , $k=\triangle k+1$ and go to STEP 1.

This procedure produces a sequence $(z_{0}^{(1)}, \ldots, z_{n^{(1)}}^{(1)}, z_{0}^{(2)}, \ldots, z_{n^{(|A|/2)}}^{(|A|/2)})$ .

Let $\overline{i}=\triangle|A|/2+1-i$ , and set $ w_{k}^{(i)}=z_{n-k}^{(\overline{i})}\triangle$ .

We, thus, constructed $|A|/2$ paths, $\gamma_{i}$ , $i=1$ , $\ldots$ , $|A|/2$ , given $byl$

$\gamma_{i}=\triangle\gamma_{i}(D)=\triangle(w_{0}^{(i)}, \ldots, w_{n^{(i)}}^{(i)})$

connecting distinct pairs of points of $A$ , and such that

$o(w_{k}^{(i)}, w_{k+1}^{(i)})\in B$ , $k=0$ , $\ldots$ , $n^{(i)}-1$ , $i=1$ , $\ldots$ , $|A|/2$

$\circ(z_{k}^{(i)}, z_{k+1}^{(i)})\neq(z_{l}^{(j)}, z_{l+1}^{(j)})$ if $i\neq j$ , or if $i=j$ but $k\neq l$ .

(but $z_{k}^{(i)}=z_{l}^{(j)}$ is allowed). A family of contours $\underline{\gamma}=(\gamma_{1}, \ldots, \gamma_{|A|/2})$ is
$(A, B)$-admissible if it can be obtained from a set $D\subset B$ with $\partial D=A$ ,
using this algorithm; in that case we write $\underline{\gamma}\sim(A, B)$ . Notice that here
the order of the paths is important: if $\gamma_{k}$ is a path from $x_{k}$ to $y_{k}$ then
we must have $y_{1}>y_{2}>\ldots>y_{|A|/2}$ . This is to ensure that we do not
count twice the same configuration of paths.

The construction also yields a set of edges $\triangle(\underline{\gamma})=\triangle\triangle$ . Observe that
$\triangle(\underline{\gamma})$ is entirely determined by $\underline{\gamma}$ (and the order chosen for the sites and
edges). In particular the sets $D\subset B$ giving rise to an $(A, B)$ -admissible
family $\underline{\gamma}$ are characterized by $\partial D=A$ and

$|A|/2$

$D\cap\triangle(\underline{\gamma})=i=1\cup\gamma_{i}$
.

Therefore, for such sets, $\partial(D\backslash \triangle(\underline{\gamma}))=\emptyset$ , and we can write

$\langle\sigma_{A}\rangle_{\beta,B}=\sum_{\underline{\gamma}\sim(A,B)}q_{\beta,B}(\underline{\gamma})$

,

where

$q_{\beta,B}(\underline{\gamma})=w(\underline{\gamma})\underline{Z_{\beta}(B\backslash \triangle(\underline{\gamma}))}Z_{\beta}(B)$

’

lThis backward construction of the lines turns out to be convenient for
the reformulation in terms of Ruelle’s formalism, see [7].
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with

$ w(\underline{\gamma})=\prod_{i=1}^{|A|/2}\prod_{k=1}^{n^{(i)}}\tanh\beta$ .

This is an instance of the random-line representation for correlation
functions of the Ising model in $B$ . It has been studied in detail in
$[19, 20]$ and is essentially equivalent (though the derivations are quite
different) to the random-walk representation of [1]. $We’ 11$ need a version
of this representation when $B$ is replaced by the set $\mathcal{E}(\mathbb{Z}^{d})$ of all edges
of $\mathbb{Z}^{d}$ . To this end, we use the following result ([20], Lemmas 6.3 and
6.9): For all $\beta<\beta_{c}$ ,

(21)
$\langle\sigma_{A}\rangle_{\beta}=\sum_{\underline{\gamma}\sim A}q_{\beta}(\underline{\gamma})$

,

where $q_{\beta}(\underline{\gamma})=\triangle\lim_{B_{n}\nearrow \mathcal{E}(\mathbb{Z}^{d})q\beta,B_{n}}(\underline{\gamma})$ is well defined.

It will also be useful to work with a more relaxed definition of ad-
ibility, since we want to cut our paths into pieces, and the order of

the resulting pieces might not correspond with the order of their end-
points. In general, given a path $\gamma=(x_{1}, x_{2}, \ldots, x_{n})$ , we define $\triangle(\gamma)=$

$\bigcup_{k=1}^{n}\{e\in B(x_{k}) : e\leq(x_{k-1}, x_{k})\}$ . We say that a path $\gamma=(x_{1 },\ldots, x_{n})$

is admissible if $\{(x_{1}, x_{2}), \ldots, (x_{k-1}x_{k})\}\cap\triangle((x_{k}, \ldots, x_{n}))=\emptyset$ for all
$2\leq k\leq n-1$ . Given a family of paths $\underline{\gamma}=(\gamma_{1}, \ldots, \gamma_{n})$ , we define
$\triangle(\underline{\gamma})=\bigcup_{k=1}^{n}\triangle(\gamma_{k})$ . A family of admissible paths $\underline{\gamma}$ is then admissible
if $(\gamma_{1}, \ldots, \gamma_{k})\cap\triangle((\gamma_{k+1}, \ldots, \gamma_{n}))=\emptyset$ for all $1\leq k\leq n-1$ . Notice
that the order of the paths is still important $((\gamma_{1}, \gamma_{2})$ can be admissi-
ble while $(\gamma_{2}, \gamma_{1})$ is not), but there are no constraint on the order of
their endpoints. Indeed, they can even share endpoints. Observe that
these definitions are identical to those above when restricted to the same
setting.

We then have the following crucial inequality: Let $\underline{\gamma}$ be an admissible
family of paths. Then

(22) $\sum$
$q_{\beta}(\gamma_{0}, \underline{\gamma})\leq q_{\beta}(\underline{\gamma})\cdot\sum_{\gamma_{0}.x\rightarrow y}q_{\beta}(\gamma o)$

.
$\gamma o\cap\triangle.(\underline{\gamma})=\emptyset\gamma_{0}.x\rightarrow y$

We give a brief proof. It is enough to consider the analogous statement
in finite volumes $B$ . Since $\triangle(\gamma_{0}, \underline{\gamma})=\triangle(\gamma_{0})\cup\triangle(\underline{\gamma})$ and $\gamma_{0}\cap\triangle(\underline{\gamma})=\emptyset$ ,
we have

$q_{\beta,B}(\gamma_{0}, \underline{\gamma})=q\beta,B\backslash \triangle(\underline{\gamma})(\gamma o)q\beta,B(\underline{\gamma})$ .
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Hence (22) follows simply from Griffiths’ second inequality since

$\sum_{\gamma o\subset B\backslash \triangle(\underline{\gamma})}q_{\beta,B\backslash \triangle(\underline{\gamma})}(\gamma_{0})=\langle\sigma_{x}\sigma_{y}\rangle_{\beta,B\backslash \triangle(\underline{\gamma})}\leq\langle\sigma_{x}\sigma_{y}\rangle_{\beta}$

.

If the set $A$ in (21) contains only two points, $A=\{x, y\}$ , then we
recover (2). The main difference between the SAW case considered in
Section 2 and the case of sub-critical ferromagnetic Ising models is that
the path weights $q_{\beta}$ in (2) do not factorize: In general,

$q_{\beta}(\gamma II \lambda)\neq q_{\beta}(\gamma)q_{\beta}(\lambda)$ .

Consequently, the displacement variables $V_{1}$ , $V_{2}$ , $\ldots$ fail to be indepen-
dent and the underlying local limit analysis should be generalized. The
appropriate framework is that of the statistical mechanics of one dimen-
sional systems generated by Ruelle operators for full shifts on countable
alphabets. We refer to [7] for all the background material and here only
sketch how the construction leads to the claims of Theorems 1.1, 1.2
and, after an appropriate $re$-definition of the measures $\mathbb{P}_{\beta}^{n}$ , to the in-
variance principle stated in Theorem 2.2: As in the case of SAW-s fix
a direction $\hat{x}\in S^{d-1}$ . The key renormalization result (Theorem 2.3 in
[7] $)$ which implies that the rate of decay of the irreducible connections
is strictly larger than the rate of decay of the two point function $G_{\beta}$ . In
view of (8) this validates a representation of $G_{\beta}$ as a sum of dependent
random variables $V_{L}+V_{1}+\cdots+V_{M}+V_{R}$ with exponentially decaying
tails. Namely, as in Section 2 let $S=S(K)$ be the set of all $\hat{x}$ irreducible
paths. Then the following Ising analog of Lemma 2.1 holds:

Lemma 3.1. For every $\beta<\beta_{c}$ and for any $\delta>0$ there exists $a$

finite scale $K_{0}=K_{0}(\delta, \beta)$ and a number $iJ$ $=\iota/(\delta, \beta)>0$ , such that

(23)
$.\sum_{\lambda\in S.V(\lambda)=y}q_{\beta}(\lambda)\leq\exp\{-(\hat{t}, y)-\nu|y|\}$

,

uniformly in $y\in \mathbb{Z}^{d}$ .

The above Lemma suggests that the main contribution to the sharp
asymptotics of $G_{\beta}$ comes from the weights of the paths $\lambda_{1}$ , $\ldots$ , $\lambda_{M}$ in the
decomposition (8). Accordingly, consider now the set $S_{0}$ of cylindrical
$\hat{x}$-irreducible paths which was introduced in Section 2. Given a finite
collection $\lambda$ , $\lambda_{1}$ , $\ldots$ , $\lambda_{M}\in S_{0}$ define the conditional weight

$ q_{\beta}(\lambda|\underline{\lambda})=q_{\beta}(\lambda|\lambda_{1}II\cdots II\lambda_{M})=\frac{q_{\beta}(\lambda II\lambda_{1}IIII\lambda_{M})}{q_{\beta}(\lambda_{1}LIII\lambda_{M})}\cdots\cdots$ .
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By the crucial exponential mixing property (6) one is able to control the
dependence of the conditional weights $q_{\beta}(\lambda|\underline{\lambda})$ on $\lambda_{M}$ as follows:

(24) $\ldots\sup_{\lambda,\lambda_{1},,\lambda_{M-1}\in S_{0}}\sup_{\lambda_{M},\overline{\lambda}_{M}\in S_{0}}\frac{q_{\beta}(\lambda|\lambda_{1}IIII\lambda_{M})}{q_{\beta}(\lambda|\lambda_{1}IIII\tilde{\lambda}_{M})}\cdots\cdots\leq e^{c_{1}\theta^{M}}$

In our formalism the set $S_{0}$ plays the role of a countable alphabet. The
estimate (24) enables the extension of the conditional weights $q_{\beta}(\lambda|\underline{\lambda})$

to the case of infinite strings $\underline{\lambda}=(\lambda_{1}, \lambda_{2}, \ldots)$ . Let $\mathfrak{S}_{0,\theta}$ be the set of all
such strings endowed with the metrics

$d_{\theta}(\underline{\lambda}, \underline{\tilde{\lambda}})=\theta^{\inf\{k:\lambda_{k}\neq\overline{\lambda}_{k}\}}$ .

and let $S_{0,\theta}$ be the set of all bounded Lipschitz continuous functions on
$\mathfrak{S}_{0,\theta}$ .

As before we choose $\hat{t}\in\partial K_{\beta}$ to be the dual direction to $\hat{x}$ . Given a
path $\lambda\in S_{0}$ and a string $\underline{\lambda}\in \mathfrak{S}_{0,\theta}$ define the potential

$\psi_{\beta}(\lambda|\underline{\lambda})=\log q_{\beta}(\lambda|\underline{\lambda})+(\hat{t}, V(\lambda))$ .

By (6) and Lemma 3.1 the operator

(25)
$\mathcal{L}_{z}f(\underline{\lambda})=\sum_{\lambda\in S_{0}}e^{\psi_{\beta}(\lambda|\underline{\lambda})+(z,V(\lambda))}f(\lambda II\underline{\lambda})$

,

is well defined and bounded on $\mathfrak{F}_{0,\theta}$ $fr$ every $z\in \mathbb{C}^{d}$ with $|z|<\nu$ .

The dependent Ising analog of (20) is then given (see Section 3 of
[7] $)$ by

$e^{n\xi\beta(\hat{x})}G_{\beta}(n\hat{x})=O(e^{-n\iota/})$

(26)
$+\sum_{\mu\in S_{L}}\sum_{\eta\in S_{R}}q_{\beta}(\mu)q_{\beta}(\eta)\sum_{M=1}^{\infty}\mathbb{Q}_{0,M}^{\mu,\eta}(n\hat{x}-v_{L}-v_{R})$ .

For each $M=1,2$ , $\ldots$ the family of weights $\{\mathbb{Q}_{0,M}^{\mu,\eta}\}$ is related to the

family of operators $\{\mathcal{L}_{z}\}$ via the Fourier transform:

(27)
$\sum_{y\in \mathbb{Z}^{d}}e^{(z,y)}\mathbb{Q}_{0,M}^{\mu,\eta}(y)=\mathcal{L}_{z}^{M}w_{\mu,\eta}$

,

where the family $\{w_{\mu,\eta}\}$ is uniformly positive and uniformly bounded in
$S_{0,\theta}$ . In this way the analytic perturbation theory of the leading (that
is lying on the spectral circle) eigenvalue of $\mathcal{L}_{z}$ enables the expansion of
the logarithm of the right hand side in (26) which, in its turn, leads to
classical Gaussian local limit results for the dependent sums $V_{1}+\cdots+V_{M}$ .
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\S 4. Asymptotics of odd-odd correlations

In this section, we sketch the proof of Theorem 1.4. We do not
give a complete, self-contained argument, since this would be too long,
and would involve many repetitions from [7]. Instead, we provide the
only required update as compared to the proof for 2-point functions
given in the latter work. As such, this section should be considered as
a complement, and we shall give exact references to the formulas in [7]
whenever required.

As explained in Section 3, the correlation function $\langle\sigma_{A}\sigma_{B+x}\rangle_{\beta}$ ad-
mits a random-line representation of the form

$\langle\sigma_{A}\sigma_{B+x}\rangle_{\beta}=\sum_{\underline{\gamma}\sim A\cup(B+x)}q_{\beta}(\underline{\gamma})$

,

where $\underline{\gamma}$ runs over families of compatible open contours connecting all the

sites of $A\cup(B+x)$ . Among the $\frac{1}{2}(|A|+|B|)$ paths of $\underline{\gamma}$ , at least one must
connect a site of $A$ to a site of $B+x$ . We first show that one can ignore
the contribution of $\underline{\gamma}$ with more than one such connection (i.e. at least
three of them). The first observation is that we have the following lower
bound on the correlation function: By the second Griffiths’ inequality,

$\langle\sigma_{A}\sigma_{B+x}\rangle_{\beta}\geq\langle\sigma_{A\backslash \{y\}}\rangle_{\beta}\langle\sigma_{B\backslash \{z\}}\rangle_{\beta}\langle\sigma_{y}\sigma_{z+x}\rangle_{\beta}$ ,

where $y$ and $z$ are arbitrarily chosen sites of $A$ and $B$ respectively. An-
other application of the second Griffiths’ inequality implies that

$\langle\sigma_{A\backslash \{y\}}\rangle_{\beta}\langle\sigma_{B\backslash \{z\}}\rangle_{\beta}>0$ .

Moreover, we already know that

$\langle\sigma_{y}\sigma_{z+x}\rangle_{\beta}=\Psi_{\beta}(n_{x})|x|^{-(d-1)/2}e^{-\xi_{\beta}(x)}(1+o(1))$ .

But, applying (22), we obtain immediately that the contribution of fam-
ilies of paths $\underline{\gamma}$ with three or more connections between $A$ and $B+x$ is

bounded above by $C(A, B)e^{-3\xi_{\beta}(x)}$ and is therefore negligible.

We can henceforth safely assume that there is a single connection
between $A$ and $B+x$ ; we denote the corresponding path by $\gamma$ , while the
remaining paths are denoted by $\underline{\gamma}_{A}$ and $\underline{\gamma}_{B}$ . We want to show that we
can repeat the argument used for the two-point function in [7] in this
more general setting. This is indeed quite reasonable since the paths
in $\underline{\gamma}_{A}$ and $\underline{\gamma}_{B}$ should remain localized, and therefore the picture is still
that of a single very long path as for 2-point functions. The main point
is thus to prove sufficiently strong localization properties for the paths
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$\underline{\gamma}_{A}$ and $\gamma-B$ ’ so as to ensure that an appropriate version Lemma 3.1 (see

also Theorem 2.3 of [7] $)$ still holds. The import of the latter lemma was
to assert nice decay and decoupling properties of the integrated weights
of the irreducible pieces in the decomposition of connection paths (8).
Notice first that exactly the same decomposition can still be used here,
provided we attach the paths in $\underline{\gamma}_{A}$ and $\gamma-B$ to the corresponding left-
most and rightmost extremal pieces $\lambda_{L}$ and $\lambda_{R}$ , and keep the remaining
intermediate cylindrical irreducible pieces unchanged. Apart from the
compatibility requirements one then has to check that $\underline{\gamma}_{B}$ stays inside

the forward cone containing $\lambda_{R}$ , so that the crucial estimate (3.9) in [7]
remains valid.

Let $y$
$\in A$ , $z\in B+x$ , $\gamma$ : $y\rightarrow z$ , and let $\underline{\gamma}_{A}$ , resp. $\underline{\gamma}_{B}$ , denote

the collections of remaining paths connecting pairs of sites in $A\backslash \{y\}$ ,

respectively $x+B\backslash \{z\}$ . For given collections $\underline{\gamma}_{A}$ and $\underline{\gamma}_{B}$ we define the

irreducible decomposition of $\gamma$ in precisely the same way as in (8), except
for the extremal pieces $\lambda_{L}=(u_{0}^{L}, \ldots, u_{m}^{L})$ and $\lambda_{R}=(u_{0}^{R}, \ldots, u_{n}^{R})$ , which
have to satisfy the following modified set of conditions:

$o$ $(u_{k}^{L},\hat{x})<(u_{m}^{L},\hat{x})\forall k=0$ , $\ldots$ , $m-1$
$o$ $(u_{k}^{R},\hat{x})>(u_{0}^{R},\hat{x})\forall k=1$ , $\ldots$ , $n$

$o\underline{\gamma}_{A}$ must belong to the same $\hat{x}$-halfspace as $\lambda_{L}$ and for any $\hat{x}-$

break point $u_{k}^{L}$ of $\lambda_{L}$ the $\hat{x}$-orthogonal hyperplane through $u_{k}^{L}$

intersects $\underline{\gamma}_{A}$ .

$o\underline{\gamma}_{B}$ must belong to the same $\hat{x}$-halfspace as $\lambda_{R}$ and for any $\hat{x}-$

break point $u_{k}^{R}$ of $\lambda_{R}$ the $\hat{x}$-orthogonal hyperplane through $u_{k}^{R}$

intersects $\underline{\gamma}_{B}$ .

$\circ\underline{\gamma}_{B}$ must belong to $2KU_{\beta}(u_{0}^{R})+C_{\delta}(t)$ (see (9)).

With a slight ambiguity of notation let us call compatible pairs $(\underline{\gamma}_{A}, \lambda_{L})$

and $(\underline{\gamma}_{B}, \lambda_{R})\hat{x}$-irreducible if they satisfy all the conditions above. We
then only have to check that

$\sum$
$q_{\beta}$ ( $\underline{\gamma}_{A}$ , $\lambda)\leq e-(\hat{t},u-y)-\iota/|u-y|$ ,

$(\underline{\gamma}_{A},\lambda_{L})\hat{x}$ irreducible
$\lambda_{L}\cdot y\rightarrow u$

$\sum$
$ Q\beta$ ( $\underline{\gamma}_{B}$ , $\lambda$ ) $\leq e-(\hat{t},z-u)-\iota/|z-u|$

$(\underline{\gamma}_{B},\lambda_{R})\hat{x}$ irreducible
$\lambda_{R}$ : $u\rightarrow z$

for some $\nu>0$ and any $u\in \mathbb{Z}^{d}$ . We only check the second statement
since it is the most complicated one. Fix a large enough scale $K$ . A site
$u$ of $\gamma$ is a $(\hat{x}, \gamma_{B}, \delta)$ -admissible break point if it is a $\hat{x}$-break point of $\gamma$
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and, in addition,
$\underline{\gamma}_{B}\subset 2KU_{\beta}(u)+C_{\delta}(\hat{t})$ .

Lemma 4.1. Fix $a$ forward cone parameter $\delta\in(0,1/4)$ and a set
$B=\{y_{1}, z_{1}, \ldots, y_{n}, z_{n}\};B\subset \mathbb{Z}^{d}\backslash \{0\}$ . There exist a renormalization
scale $K_{0}$ and positive numbers $\epsilon=\epsilon(\delta, \beta)$ , $\nu=\nu(\delta, \beta)$ and $N=N(\beta)<$

$\infty$ , such that for all $K\geq K_{0}$ , the upper bound

$\sum$
$ q\beta$ ( $\lambda$ , $\underline{\gamma}_{B}$ ) $1$

{ $\lambda$ has no $(\hat{x},$
$\underline{\gamma}_{B})$ -admissible break points}

$\leq Ne^{-(t,x)_{d}-\iota/|x|}$ ,
$\lambda:-x\rightarrow 0$

$\partial\underline{\gamma}_{B}$

holds uniformly in the dual directions $t$ $\in\partial K_{\beta}$ and in the starting points
$x\in \mathbb{Z}^{d}$ . In the first sum $\underline{\gamma}_{B}$ , $\lambda$ runs over all admissible family of paths
such that $\lambda$ : $-x\rightarrow 0$ , while $\underline{\gamma}_{B}=(\gamma_{1}, \ldots, \gamma_{n})$ satisfies $\gamma_{k}$ : $y_{k}\rightarrow z_{k}$ .

Proof Applying (22), we can assume that $x\in C_{lJ}’(t)$ , see the remark
after Theorem 2.3 of [7]. Let $Q_{C}(x)=\{v\in \mathbb{Z}^{d} : |v|\leq|x|/C\}$ where $C$

is some large enough constant. To simplify notations, we suppose that
$B=\{y, z\}$ , i.e. that $\underline{\gamma}_{B}\equiv\gamma$ : $y\rightarrow z$ . The general case is treated in the
same way.

We first show that, typically, $\gamma\subset Q_{C}(x)$ . Indeed, using again (22),
we have that

$\sum$ $ q_{\beta}(\lambda, \gamma)1_{\{\gamma\not\subset Q_{C}(x)\}}\leq$ $\sum$

$\lambda\cdot.-x0\dot{\gamma}\cdot y\rightarrow z(\lambda,\gamma)$ $u\in\partial Q_{C}(x)\gamma_{1}$

:

$y\rightarrow.’’,\vec{\gamma_{2}}.\cdot u\rightarrow z(\lambda_{1}\gamma_{2})\sum_{\lambda.\frac{’’\gamma}{u}x0}q_{\beta}(\lambda, \gamma_{1}, \gamma)$

$\leq$ $\sum$ $\langle\sigma_{-x}\sigma_{0}\rangle_{\beta}\langle\sigma_{y}\sigma_{u}\rangle_{\beta}\langle\sigma_{u}\sigma_{v}\rangle_{\beta}$

$u\in\partial Q_{C}(x)$

$\leq\frac{c_{d}|x|}{C}e^{-c|x|}e^{-\xi_{\beta}(x)}$ .

We can therefore suppose that $\gamma\subset Qc(x)$ . Observe now that in the
latter case

{ $\lambda$ has no ( $x$ , $\gamma$ , $ 2\delta$) break points}

$\subset$ { $\lambda$ has no $x$-break point $u$ with ( $t$ , $u)\leq-\frac{1}{2}(t,$ $x)$ }

$=A\triangle(t, K, \delta, x)$ ,

provided that $C$ is taken large enough. Indeed, would such a $x$ break
point $u$ exist then the cone $u+C_{2\delta}(t)$ must contain the box $Qc(x)$ , hence
also $\gamma$ .
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The probability of $A(t, K, \delta, x)$ is estimated exactly as in the proof
of Theorem 2.3 of [7]. Indeed, the presence of the path $\gamma$ only affects
an arbitrarily small fraction of the slabs $S_{k}(t)$ introduced in the latter
proof, provided $C$ is taken large enough, so that the argument given
there applies with no modifications. Q.E.D.

\S 5. Relation to Quantum Field Theories

There is an abundant literature devoted to the relation between Ising
and other ferromagnetic type models to the Euclidean lattice quantum
field theories, see e.g. $[21, 18]$ or more recently $[5, 4]$ ; the latter article
contains also an extensive bibliography on the subject. In this works
the spins live on the integer lattice $\mathbb{Z}^{d+1}$ with one special direction, say
$\overline{e}_{1}$ , being visualized as the imaginary time axis. Thus, for example, the
analyticity properties of the mixed Fourier transform

(28)
$\mathbb{G}_{\beta}(p_{1}, ip)=\sum_{x_{1}\in \mathbb{Z}}\sum_{x\in \mathbb{Z}^{d}}e^{p_{1}x_{1}+i(p,x)}G_{\beta}(x_{1}, x)$

,

$(p_{1}, p)\in \mathbb{T}\times T^{d}$ , are related in this way to the question of existence of
one particle states.

Below we shall briefly indicate how the the key probabilistic repre-
sentation (20) leads to the following conclusion (see e.g Proposition 4.2
in [18], Theorem 2.3 in [21] $)$ : For every $p\in \mathbb{T}^{d}$ define

(29) $\omega(p)=-\lim_{n\rightarrow\infty}\frac{1}{n}\log\sum_{x\in \mathbb{Z}^{d}}e^{i(p,x)}G_{\beta}(n, x)$ ,

$\omega(p)$ being interpreted as the energy of a particle with momentum $p$ .

Theorem 5.1. There exists a neighbourhood $B_{\delta}=\{p : |p|<\delta\}$

of the origin in $\mathbb{R}^{d}$ such that the function $p\mapsto\omega(p)$ is real analytic on
$B_{\delta}$ . $Hess(\omega)(0)$ is precisely the matrix of the second fundamental form
of $\partial K_{\beta}$ at $\hat{t}=(\xi_{\beta}(\overline{e}_{1}), 0)$ . Furthermore, there exists $\epsilon>0$ such that for
every $p\in B_{\delta}$ the function

$p_{1}\mapsto \mathbb{G}_{\beta}(p_{1}, ip)$

has a meromorphic extension to the disc $\{p_{1}\in \mathbb{C} : |p_{1}-\hat{p}_{1}|<\epsilon\};\hat{p}_{1}=$

$\xi_{\beta}(\overline{e}_{1})$ , with the only simple pole at $p_{1}=\omega(p)$ .

In the sequel we use the notation introduced in Section 2. Because
of the $\mathbb{Z}^{d}$-lattice symmetries the dual point $\hat{t}\in\partial K_{\beta}$ of $\overline{e}_{1}$ is given by
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$\hat{t}=(\hat{p}_{1},0)$ with $\hat{p}_{1}=\xi_{\beta}(\overline{e}_{1})$ . Given $y\in \mathbb{Z}^{d+1}$ define (see (10))

$W(y)=\gamma\cdot.0y\sum_{\gamma\in S}e^{\beta|\gamma|}$

,

and let $W_{L}$ , $W_{0}$ and $W_{R}$ be defined as in Section 2. Summing up all the
weights of irreducible paths in (8) we arrive to the following representa-
tion of $G_{\beta}$ :

$G_{\beta}(y)=W(y)+\sum_{y_{L}+y_{R}=y}W_{L}(y_{L})W_{R}(y_{R})$

(30)

$+\sum_{y_{L},yR}\sum_{M=1}^{\infty}W_{L}(y_{L})W_{R}(y_{R})W_{0}^{*M}(y-y_{L}-y_{R})$ .

Consider the mixed Fourier transforms

$W(p_{1}, p)=\sum_{x_{1}\in \mathbb{Z}}\sum_{x\in \mathbb{Z}^{d}}e^{p_{1}x_{1}+(p,x)}W(x_{1}, x)$

and

$W_{b}(p_{1}, p)=\sum_{x_{1}\in \mathbb{Z}}\sum_{x\in \mathbb{Z}^{d}}e^{p_{1}x_{1}+(p,x)}W_{b}(x_{1}, x);b=0$
, $L$ , $R$ .

By Lemma 2.1 all four functions above are analytic in the complex neigh-
bourhood $B_{\iota}^{\mathbb{C}}$, $(\hat{t})$ of $\hat{t};B_{l}^{\mathbb{C}}$, $(\hat{t})=\{(p_{1}, p) : \sqrt{|p_{1}-\hat{p}_{1}|^{2}+|p|^{2}}<\nu\}$ . Thus,

the extension of $\mathbb{G}_{\beta}(p_{1}, p)$ to $B_{\iota}^{\mathbb{C}}$, $(\hat{t})$ is given by:

$W(p_{1}, p)+\frac{W_{L}(p_{1},p)W_{R}(p_{1},p)}{1-W_{0}(p_{1},p)}$ .

Consequently, the surface of poles of $G_{\beta}(p_{1}, p)$ inside $B_{\iota}^{\mathbb{C}}$, (t) is given by
the implicit equation

(31) $W_{0}(p_{1}, p)=1$ .

As we have already seen in Section 2, the restriction of (31) to $(p_{1}, p)\in$

$\mathbb{R}\times \mathbb{R}^{d}$ defines the piece of the boundary $\partial K_{\beta}$ inside $B_{l/}(\hat{t})$ . Since by
(19) $\partial W_{0}/\partial p_{1}(t)\neq 0$ and, in addition, $Hess(W_{0})(\hat{t})$ is non-degenerate,
the analytic implicit function theorem implies that there exists $\delta>0$ ,

such that the equation (31) can be resolved for $p\in B_{\delta}^{\mathbb{C}}(\hat{t})\subset \mathbb{C}^{d}$ as

(32) $p_{1}=\overline{\omega}(p)$ .

In particular, for $p\in \mathbb{R}^{d}$ the equation (32) gives a parameterization of
$\partial K_{\beta}$ in the $\delta$-neighbourhood of $\hat{t}$ , and $Hess(\overline{\omega})(0)$ is, indeed, the matrix
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of the second fundamental form of $\partial K_{\beta}$ at $\hat{t}$ . Finally, the 1-particle mass
shell $\omega$ in (29) is recovered as $\omega(p)=\overline{\omega}(ip)$ .

In the case of ferromagnetic Ising models set $\overline{p}=(p_{1}, p)$ and readjust
-

the definition (25) of the Ruelle operator $\mathcal{L}_{z}$ as $\mathcal{L}_{\tilde{p}}=\mathcal{L}_{\tilde{p}-\hat{t}}$ . Then $\mathcal{L}$ -is

well defined and bounded on $S_{0,\theta}$ for every $\overline{p}\in B_{I}^{\mathbb{C}}$, $(\hat{t})$ . It could be then

shown that the surface of poles of $\mathbb{G}_{\beta}$ inside $B_{\iota}^{\mathbb{C}}$, $(\hat{t})$ is implicitly given by

$\tilde{\rho}_{\beta}(p_{1}, p)=1$ ,

where $\tilde{\rho}_{\beta}(p_{1}, p)$ is the leading (lying on the spectral circle) eigenvalue of
$\overline{\mathcal{L}}_{\tilde{p}}$ . Further analysis of the spectral properties of the family $\{\overline{\mathcal{L}}_{\tilde{p}}\}$ reveals
[7] that there exists $\epsilon>0$ , such that $\rho_{\beta}(p_{1}, p)$ is a simple pole of the

corresponding resolvent for every $\overline{p}\in B_{\epsilon}^{\mathbb{C}}(\hat{t})$ . In this way, the conclusion
of Theorem 5.1 follows from the analytic perturbation theory of discrete
spectra and from the conditional variance argument which ensures the
non-degeneracy of $Hess(\rho_{\beta})(t)$ .
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Spectral Gap Inequalities in Product Spaces with
Conservation Laws

Pietro Caputo

Abstract.

Following an idea introduced by Carlen, Carvalho and Loss [7]
we propose a general strategy to prove Poincar\’e inequalities in prod-

uct spaces with one or more conservation laws. The method is shown
to yield alternative proofs of well known results, such as the diffusive
bounds for the spectral gap of generalized exclusion and zero range
processes. Other models are also discussed, including anisotropic ex-

clusion processes, simple exclusion with site-disorder and Ginzburg-
Landau processes, where this approach provides sharp spectral gap
estimates apparently inaccessible by previously known techniques.

\S 1. Introduction

The problem of determining the speed of convergence to equilibrium
of conservative stochastic dynamics has motivated many investigations
in recent years. In the context of reversible processes the simplest way
to attack this question is by estimating the spectral gap of the corre-
sponding Markov generators or–equivalently–by proving a Poincar\’e

inequality. In this direction an important achievement are the diffu-
sive estimates established for Kawasaki dynamics in high temperature
lattice gases by Lu and Yau [21] and by Cancrini and Martinelli [3].
In this paper we confine ourselves to systems whose underlying equilib-
rium measure is product and the only remaining interaction is due to the
global conservation law. Although this is certainly a radical simplifica-
tion, we shall see that already in this class one finds interesting models
for which traditional techniques apparently fail to give optimal spectral
gap bounds.

The simplest model in this class is the simple exclusion process,
for which sharp spectral gap estimates are well known, at least since the

Received December 24, 2002.
Revised February 14, 2003.



54 P. Caputo

work of Quastel, [22]. Other conservative dynamics sharing the product-
property are the so-called generalized simple exclusion processes and the
zero range process. For these models the martingale approach of [21]
was successfully applied by Landim, Sethuraman and Varadhan [20] to
show that the spectral gap scales diffusively with the size of the system,
uniformly in the conserved parameter. A rather complete picture of
decay to equilibrium for the zero range process was then obtained by
Janvresse, Landim, Quastel and Yau [14].

As already noted in [22], when the system is of product type it is
natural to drop all geometrical constraints in the dynamics and consider
processes where exchanges are performed along the edges of a complete
graph rather than only along nearest neighbors edges. As we shall see in
all the examples treated in this note, once one has a Poincar\’e inequality
for this complete graph (mean-field) dynamics a straightforward com-
parison argument allows to derive diffusive scaling bounds for the local
exchange dynamics.

An example of complete graph dynamics is the model proposed by
Kac [15] to study trend to equilibrium for the Boltzmann equation.
Spectral gap estimates for this process were investigated by Diaconis
and Saloff-Coste [10], and by Janvresse [13]. The latter work catches
the right shrinking-rate of the spectral gap by adapting the martingale
approach of [21]. Recent remarkable work of Carlen, Carvalho and Loss
$[7, 8]$ however shows that spectral gap estimates for the Kac model can
be sharpened considerably if one-site Poincar\’e inequalities in the mar-
tingale approach are replaced by a fine analysis of the spectrum of an
auxiliary Markov process.

As observed in [8] their approach can be generalized to treat a
broader class of models than just the Kac model. Our aim in this paper
is to show that in principle some of the ideas of [7] apply to all conser-
vative systems of product type. In the case of Kac and related models
considered in [8] the spectrum of the auxiliary process can be computed
rather explicitly in view of the special form of the probability measures
involved. This is in general not the case for the models discussed here
and the main technical ingredient in our estimates are uniform local
expansions related to the central limit theorem.

Here is a plan of the paper. In section 2 we discuss the auxiliary dy-
namics introduced in [7] and outline a general strategy to prove uniform
spectral gap estimates in product spaces with one or more conservation
laws. Here we present explicit sufficient conditions to be checked in spe-
cific models. The known results on generalized exclusion and zero range
processes mentioned above are $re$-derived in a compact way in section 3
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and section 4, respectively. A simple instance of a model with many con-
servation laws is considered in section 5. Recent results on anisotropic
exclusion and Ginzburg-Landau processes appearing in [5] and [4] are
reviewed in section 6 and section 7, respectively. Finally in section 8 we
prove a new estimate for the simple exclusion process with site disorder.

\S 2. A general strategy

Consider a generic probability space $(X, F, \mu)$ . In the applications
to be discussed below we shall choose $X=\mathbb{N}$ , $\mathbb{Z}$ or $\mathbb{R}$ depending on the
specific model. For every $N\in \mathbb{N}$ denote by $\Omega_{N}$ the $N$-fold product of
$X$ , $\Omega_{N}=X^{N}$ and by $\mu_{N}=\mu^{\otimes N}$ the associated product measure. The
conservation law is expressed in terms of a given measurable function
$\xi$ : $X\rightarrow \mathbb{R}$ , with $\xi\in L^{2}(\mu)$ . Namely, given a parameter $\rho\in \mathbb{R}$ to play
the role of a density, we shall look at configurations $\eta=\{\eta_{k}\}_{k=1}^{N}\in\Omega_{N}$

such that $\sum_{k=1}^{N}\xi(\eta_{k})=\rho N$ . If we define $\xi_{\rho}=\xi-\rho$ , we consider the
measurable set

(1) $\ominus_{N,,,\rho}:=\{\eta\in\Omega_{N} ^{:} \sum_{k=1}^{N}\xi_{\rho}(\eta_{k})=0\}$ .

Whenever it makes sense we define the canonical probability measure
by conditioning on the event $\Theta_{N,,,\rho}$ :

(2) $l\nearrow N,\rho=\mu_{N}(\cdot|\ominus_{N,,,\rho})$ .

The complete graph dynamics will be described by a Dirichlet form of
the type

(3) $\mathcal{E}_{N,,,\rho}(f)=\frac{1}{N}\sum_{k=1}^{N}\sum_{\ell=1}^{N}l\nearrow N,\rho[(v_{k,,,\ell}f)^{2}]$ ,

where $v_{k,,,\ell}$ are generic exchange operators to be specified in each model.
For the moment we only require that $v_{k,,,k}=0$ , $k=1,2$ , $\ldots$ , $N$ . To
carry a concrete example in mind we recall that the complete graph
exclusion process is recovered in the case $X=\{0,1\}$ , $\mu=Be(p)$ , any
$p\in(0,1);\xi(\eta_{k})=\eta_{k}$ , $[v_{k},\ell f](\eta)=f(\eta^{k,\ell})-f(\eta)$ , with $\eta^{k,\ell}$ denoting the
configuration $\eta$ where $\eta_{k}$ and $\eta_{\ell}$ have been exchanged.

We denote by $Var_{N,,,\rho}(f)$ the usual variance of $f\in L^{2}(\Omega_{N,N,,\rho} lJ)$ with
respect to $ l\nearrow N,\rho$ . The Poincar\’e constant for fixed $N$ and $\rho$ is defined by

(4) $\gamma(N, \rho)=\sup_{f}\frac{Var_{N,\rho}(f)}{\mathcal{E}_{N,\rho}(f)}$ ,
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with the supremum ranging over functions $f$ in the domain of the Dirich-
let form $\mathcal{E}_{N,,,\rho}$ . Definition (4) is meaningful for all ergodic processes, i.e.
when $Var_{N,,,\rho}(f)>0$ implies $\mathcal{E}_{N,,,\rho}(f)>0$ , and we set by convention
$\gamma(N, \rho)=0$ in all degenerate cases, i.e. when $Var_{N,,,\rho}(f)=\mathcal{E}_{N,,,\rho}(f)=0$

for all $f$ , such as e.g. the exclusion process with $\rho\in\{0,1\}$ . We say that
$\iota\nearrow N,\rho$ satisfies a uniform Poincar\’e inequality if $\sup_{N}\sup_{\rho}\gamma(N, \rho)<\infty$ .

2.1. The auxiliary process

Let $F_{k}$ denote the $\sigma-$algebra generated by the one-site variables $\eta_{k}$ ,
$k=1$ , $\ldots$ , ’

$N$ . Following $[7, 8]$ we consider the nonnegative stochastic
operator $\prime p$ : $L^{2}(\iota/_{N,,,\rho})\rightarrow L^{2}(\iota/_{N,,,\rho})$ defined by

(5) $Pf$ $=\frac{1}{N}\sum_{k=1}^{N}l/_{N,,,\rho}(f|F_{k})$ .

Then 1-P can be interpreted as the generator of a new Markov process
with reversible invariant measure $\iota/_{N,,,\rho}$ . This is completely independent
of the actual dynamics defined by (3), but we will see in a moment that
an estimate on the spectral gap of this process produces useful recursive
bounds on the constants $\gamma(N, \rho)$ . To gain some insight observe that by
symmetry

(6) $\iota/_{N,,,\rho}(\xi(\eta_{k})|\eta_{j})=\rho_{\eta_{j}}:=\rho+\frac{\rho-\xi(\eta_{j})}{N-1}$

whenever $k\neq j$ , so that

(7) $\iota/_{N,,,\rho}(\xi_{\rho}(\eta_{k})|\eta_{j})=-\frac{1}{N-1}\xi_{\rho}(\eta_{j})$ , $k\neq j$ .

Here and in what follows we often write (with slight abuse) $\iota/(f|\eta_{j})$ for
the function $\iota/(f|F_{j})(\eta)$ . It follows that any function of the form

(8) $f_{\xi}(\eta)=\sum_{k=1}^{N}\alpha_{k}\xi_{\rho}(\eta_{k})$ , $\alpha\in \mathbb{R}^{N}$

satisfies

(9) $Pf_{\xi}=\frac{1}{N-1}f_{\xi}$ , $(1-P)f_{\xi}=\frac{N-2}{N-1}f_{\xi}$ .

We formulate the needed spectral gap inequality as follows. We say that
property (SGP) holds if there exists $ C<\infty$ , $\delta>0$ such that for every
$N\geq 3$ , $\rho\in \mathbb{R}$ and $f\in L^{2}(\iota/_{N,,,\rho})$ with $lJ_{N,,,\rho}(f)=0$ :

$lJ_{N,,,\rho}(f(1-P)f)\geq\frac{N-2}{N-1}[1-CN^{-1-\delta}]\iota\nearrow N,\rho(f^{2})$ . (SGP)
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We now turn to the implications of such a bound. A useful criterium to
check the bound (SGP) in specific models will be developed in the next
subsection. We define the constant

(10) $\gamma(N):=\sup_{\rho}\gamma(N, \rho)$
.

Proposition 2.1. Assume $\gamma(N)<\infty$ for every $N\in \mathbb{N}$ . If (SGP)
holds then we have the uniform Poincar\’e inequality

(11) $\sup_{N}\gamma(N)<\infty$

Proof It is sufficient to show that (SGP) implies a bound of the
form

(12) $\gamma(N)\leq[1+CN^{-1-\delta}]\gamma(N-1)$ ,

with $ C<\infty$ and $\delta>0$ independent of $\rho$ and $N$ .
Take an arbitrary function1 $f\in L^{2}(\iota/_{N,,,\rho})$ with $l/_{N,,,\rho}(f)=0$ . The

conditional expectation $\iota/_{N,,,\rho}(f|\eta_{k})$ is identified with the average
$\iota/_{N-1,,,\rho_{\eta_{k}}}(f)$ , where $\rho_{\eta_{k}}$ is given in (6). For each $k$ we then have the
decomposition

$\iota/_{N,,,\rho}(f^{2})=\iota\nearrow N,,\rho[Var_{N-1,,,\rho_{\eta_{k}}}(f)]+\iota/_{N,,,\rho}[\nu_{N,,,\rho}(f|\eta_{k})^{2}]$ .

Averaging over $k$ :

(13) $\iota/_{N,,,\rho}(f^{2})=\frac{1}{N}\sum_{k=1}^{N}l\nearrow N,\rho[Var_{N-1,,,\rho_{\eta_{k}}}(f)]+lJ_{N,,,\rho}[fPf]$

with the operator $P$ defined in (5). By definition of the constants (10):

$Var_{N-1,,,\rho_{\eta_{k}}}(f)\leq\gamma(N-1)\mathcal{E}_{N-1,,,\rho_{\eta_{k}}}(f)$

(14) $=\frac{\gamma(N-1)}{N-1}\sum_{j\neq k}\sum_{\ell\neq k}lJ_{N,,,\rho}[(v_{j,\ell}f)^{2}|F_{k}]$

From (13)-(14) and the identity

$\frac{1}{N}\sum_{k=1}^{N}\iota\nearrow N,,\rho[\mathcal{E}_{N-1,,,\rho_{\eta_{k}}}(f)]=\frac{N-2}{N-1}\mathcal{E}_{N,,,\rho}(f)$

$ 1\ln$ this proof we shall not be careful about questions of domains of the
Dirichlet forms $\mathcal{E}_{N,\rho}$ . It is however straightforward to settle these issues in all
the following applications.
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we obtain the estimate

(15) $\nu_{N,,,\rho}[f(1-P)f]\leq\frac{N-2}{N-1}\gamma(N-1)\mathcal{E}_{N,,,\rho}(f)$ .

Now (12) follows from (15) and the hypothesis (SGP). Q.E.D.

2.2. Reduction to one-dimensional process

As in [8] the spectrum of $P$ can be studied in terms of the spectrum
of a one-dimensional operator $\mathcal{K}$ , see (16) below. Here we show that
the estimate (SGP) is implied by a suitable spectral estimate on $\mathcal{K}$ , see
(SGK) below.

Let $\pi_{k}$ be the canonical projection of $\Omega_{N}$ onto $X$ given by
$\pi_{k}\eta-1=\eta_{k}$

.

We call $\nu_{N,,,\rho}^{1}$ the one-site marginal of $\nu_{N,,,\rho}$ , i.e. $\nu_{N,,,\rho}^{1}=\nu_{N,,,\rho}\circ\pi_{1}$ is the
distribution of $\eta_{1}$ under $\nu_{N,,,\rho}$ . By permutation symmetry all one-site
marginals coincide. Let 7{denote the Hilbert space $L^{2}(X, \iota_{N,,,\rho}/^{1})$ and use
$\langle\cdot, \cdot\rangle$ for the corresponding scalar product. Write also $\langle g\rangle$ for the mean of
a function $g\in H$ w.r.t. $\nu_{N,,,\rho}^{1}$ . We write $\mathcal{H}_{0}$ for the subspace of $g\in 7\{such$

that $\langle g\rangle=0$ . We define the stochastic self-adjoint operator $\mathcal{K}$ : $H$ $\rightarrow H$

by the bilinear form:

(16) $\langle g, \mathcal{K}h\rangle=\nu_{N,,,\rho}[(go\pi_{1})(h\circ\pi_{2})]$ , $g$ , $h\in 7\{$ .

The identity (7) shows that

(17) $\mathcal{K}\xi_{\rho}=-\frac{1}{N-1}\xi_{\rho}$

for every $\rho$ . Thus the spectrum of $\mathcal{K}$ always contains the eigenvalues

$sper’ umof\mathcal{K}isconfifinedaroundzerowithinaneighborhoodofradius-\frac{1}{N-1,ct}and1.Wesaythatproperty(SGK)holdsiftherestofthe$

$O(N^{-1-\delta})$ for some $\delta>0$ uniformly in $N$ , $\rho$ , i.e. if there exist constants
$ C<\infty$ , $\delta>0$ such that for every $N$ and $\rho$ , for every $g\in H_{0}$ satisfying
$\langle g, \xi_{\rho}\rangle=0$ one has

$|\langle g, \mathcal{K}g\rangle|\leq CN^{-1-\delta}\langle g, $g\rangle . (SGK)

Lemma 2.2. (SGK) implies (SGP).

Proof. We define the closed subspace $\Gamma$ of $L^{2}(\nu_{N,,,\rho})$ consisting of
sums of mean-zero functions of a single variable:

$N$

(18) $\Gamma=\{f\in L^{2}(\iota/_{N,,,\rho})$ :
$f=\sum_{k=1}g_{k}o\pi_{k}$

; $g_{1}$ , $\ldots$ , $g_{N}\in H_{0}$ , $\}$
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We first observe that $Pf$ $\in\Gamma$ for every $f\in L^{2}(\nu_{N,,,\rho})$ with $\nu_{N,,,\rho}(f)=0$ .

Therefore $Pf$ $=0$ whenever $f\in\Gamma^{\perp}$ , $f$ with mean zero. In particular we
may restrict to $ f\in\Gamma$ to prove (SGP).

Given $ f\in\Gamma$ , $f=\sum_{k}g_{k}\circ\pi_{k}$ , we define $\varphi_{f}=\sum_{k}g_{k}$ , a function in
$H_{0}$ . A simple computation shows that

(19)
$\nu_{N,,,\rho}(f^{2})=\langle\varphi_{f}, \mathcal{K}\varphi_{f}\rangle+\sum_{k}\langle g_{k}, (1-\mathcal{K})g_{k}\rangle$

,

where $\mathcal{K}$ is the operator defined in (16). Similarly one computes

(20) $\nu_{N,,,\rho}(f(1-P)f)=\frac{N-2}{N}\langle\varphi_{f}, \mathcal{K}(1-\mathcal{K})\varphi_{f}\rangle$

$+\frac{1}{N}\sum_{k}\langle g_{k}, (1-\mathcal{K})[(N-1)+\mathcal{K}]g_{k}\rangle$ .

Consider now the subspace $S$ $\subset\Gamma$ of symmetric functions:

(21) $S$ $=\{f\in L^{2}(\nu_{N,,,\rho})$ : $f=\sum_{k=1}^{N}go\pi_{k}$ , $g\in\gamma\{_{0}\}$ .

Since $S$ is invariant for $P$ , i.e. $PS\subset S$ we may consider separately the
cases $f\in S$ and $f\in S^{\perp}$ , with $S^{\perp}$ denoting the orthogonal complement

in $\Gamma$ . When $f\in S$ , $f=\sum_{k=1}^{N}g\circ\pi_{k}$ we have $\varphi f=Ng$ and rearranging
terms in (19) and (20) we obtain

(22) $\nu_{N,,,\rho}(f^{2})=N(N-\cdot 1)\langle g, [\mathcal{K}+\frac{1}{N-1}]g\rangle$

(23) $\nu_{N,,,\rho}(f(1-P)f)=(N-1)^{2}\langle g, [1-\mathcal{K}][\mathcal{K}+\frac{1}{N-1}]g\rangle$

From (SGK) we see that $\mathcal{K}+\frac{1}{N-1}$ is nonnegative on the whole subspace
$H_{0}$ . Moreover, since $f=0$ when $g$ is a multiple of $\xi_{\rho}$ , we may then

restrict to the case $\langle g, \xi_{\rho}\rangle=0$ . Writing $\tilde{g}=[\mathcal{K}+\frac{1}{N-1}]^{\frac{1}{2}}g$ and observing

that $\langle\tilde{g}\rangle=0$ and $\langle\tilde{g}, \xi_{\rho}\rangle=0$ , the assumption (SGK) implies

$\nu_{N,,,\rho}(f(1-P)f)\geq(N-1)^{2}[1-CN^{-1-\delta}]\langle\tilde{g},\tilde{g}\rangle$

(24) $\geq\frac{N-2}{N-1}[1-CN^{-1-\delta}]\nu_{N,,,\rho}(f^{2})$ , $f\in S$ .

We turn to study the case $f\in S^{\perp}$ . Let us first observe that one
can assume without loss that $ f\in\Gamma$ is such that $\langle\varphi_{f}, \xi_{\rho}\rangle=\sum_{k}\langle g_{k}, \xi_{\rho}\rangle=$

$0$ . Indeed if $ c=(N\langle\xi_{\rho}, \xi_{\rho}\rangle)^{-1}\sum_{k}\langle g_{k}, \xi_{\rho}\rangle$ and $\tilde{g}_{k}=g_{k}-c\xi_{\rho}$ , we have
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$\sum_{k}\tilde{g}_{k}\circ\pi_{k}=\sum_{k}g_{k}\circ\pi_{k}$ in $L^{2}(\nu_{N,,,\rho})$ since by the conservation law
$\sum_{k}\xi_{\rho}\circ\pi_{k}=0$ . Now, for every $u\in S$ , $u=\sum_{k}u_{0}\circ\pi_{k}$ , with $u_{0}\in H_{0}$

one has
$\nu_{N,,,\rho}(uf)=(N-1)\langle\varphi_{f}, [\mathcal{K}+\frac{1}{N-1}]u_{0}\rangle$ .

Thus $f\in S^{\perp}$ implies that $[\mathcal{K}+\frac{1}{N-1}]\varphi_{f}$ is a constant in $H$ . Since $\langle\varphi_{f}\rangle=0$

and $\langle\varphi_{f}, \xi_{\rho}\rangle=0$ , (SGK) implies $\varphi_{f}=0$ . Writing $\hat{g}_{k}=(1-\mathcal{K})^{\frac{1}{2}}g_{k}$ , then
(19) and (20) imply

(25)
$\nu_{N,,,\rho}(f^{2})=\sum_{k}\langle\hat{g}_{k},\hat{g}_{k}\rangle$

(26) $\nu_{N,,,\rho}(f(1-P)f)=\frac{1}{N}\sum_{k}\langle\hat{g}_{k}, [(N-1)+\mathcal{K}]\hat{g}_{k}\rangle$

Since $\langle\hat{g}_{k}\rangle=0$ for all $k$ we use (SGK) to estimate

$\langle\hat{g}_{k}, \mathcal{K}\hat{g}_{k}\rangle\geq-\frac{1}{N-1}\langle\hat{g}_{k},\hat{g}_{k}\rangle$ .

$bom$ $(25)$ and (26) we obtain

(27) $\nu_{N,,,\rho}(f(1-P)f)\geq\frac{N-2}{N-1}\nu_{N,,,\rho}(f^{2})$ , $f\in S^{\perp}$

Prom (24) and (27) we obtain (SGP) and the proof is completed. Q.E.D.

2.3. Several conservation laws

In the case of more than one conservation law we are given an $r-$

dimensional vector $\overline{\xi}=(\xi^{1}, \ldots, \xi^{r})$ of measurable functions $\xi^{j}$ : $X\rightarrow \mathbb{R}$ ,
for some positive integer $r$ , and we require that

$\sum_{k=1}^{N}\xi^{j}(\eta_{k})=p^{\uparrow}N$ , $j=1$ , $\ldots$ , $r$

with $\overline{\rho}:=(\rho^{1}, \ldots, \rho^{r})$ an assigned density vector. If we $denote\ominus_{N},-$ the
event realizing simultaneously all the constraints above we then define
the conditional probability measure

(28) $\nu_{N,,,\overline{\rho}}=\mu_{N}(\cdot|\Theta_{N,,,\overline{\rho}})$ .

With these notations the argument of Proposition 2.1 carries over with
no change provided we replace $\rho$ with $\overline{\rho}$ . We observe that (17) now holds

for every $\xi_{\rho^{j}}^{j}$ , $j=1$ , $\ldots$ , $r$ . Moreover, as in Lemma 2.2 one proves that

(SGP) can be obtained as a consequence of (SGK), provided the latter
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condition is modified by requiring the spectral estimate for any $g\in\gamma\{_{0}$

which is orthogonal to all functions $\xi_{\rho^{j}}^{j}$ simultaneously. As a simple

example of a system with several conservation laws we will discuss the
colored exclusion process in section 5.

2.4. From complete graph to local exchanges

In many applications it is interesting to consider local versions of
the conservative dynamics. In analogy with (3) we describe such local
dynamics by the Dirichlet form

(29) $D_{N,,,\rho}(f)=\sum_{k=1}^{N-1}\nu_{N,,,\rho}[(v_{k,,,k+1}f)^{2}]$ .

The standard tool to compare the forms $D_{N,,,\rho}$ and $\mathcal{E}_{N,,,\rho}$ is what is often
called (for obvious reasons) the moving-particle lemma. In this general
setting we may state this as follows. We say that a moving-particle
lemma holds, or simply that (MP) holds if there exists a constant $ C<\infty$

such that for every $N$ and $\rho$ , every integer $n\leq N$ and every $f$ one has

$\nu_{N,,,\rho}[(v_{1,,,n}f)^{2}]\leq Cn\sum_{k=1}^{n-1}\nu_{N,,,\rho}[(v_{k,,,k+1}f)^{2}]$ . (MP)

A simple consequence of (MP) is the comparison estimate

(30) $\mathcal{E}_{N,,,\rho}(f)\leq CN^{2}D_{N,,,\rho}(f)$ .

Thus, if we are able to prove the uniform Poincar\’e inequality (11) and
(MP) holds we can infer uniform diffusive estimates for the local dy-
namics. These arguments can be generalized in a straightforward way to
treat local dynamics in which particles are located at the sites of a box in
a $d$-dimensional lattice $\mathbb{Z}^{d}$ , any $d\geq 1$ . Suppose for instance $N=L^{d}$ , for
some $L\in \mathbb{N}$ , is the cardinality of the hypercube $\Lambda_{L}=\{1, \ldots, L\}^{d}\subset \mathbb{Z}^{d}$

and we are interested in a process defined by the Dirichlet form

(31)
$\overline{D}_{L,,,\rho}(f)=x,y\in\Lambda_{L}\sum_{1x-y|=1}..\nu_{N,,,\rho}[(v_{x,,,y}f)^{2}]$

,

where $|x|:=\sum_{i=1}^{d}|x_{i}|$ , $x\in \mathbb{Z}^{d}$ . Then, assuming (MP), a straightforward
path-counting argument gives the diffusive bound

(32) $\mathcal{E}_{N,,,\rho}(f)\leq CL^{2}\overline{D}_{L,,,\rho}(f)$ .

We shall see that all the examples we consider hereafter do satisfy the
(MP) property.



62 P. Caputo

\S 3. Generalized exclusion

Here we take $X=\{0,1, \ldots, R\}$ , $R$ a given integer, and $\mu$ a probabil-
ity measure on $X$ such that $p(n):=\mu(\eta_{1}=n)>0$ for all $n=0,1$ , $\ldots$ , $R$ .
$\Omega_{N}$ is the space of configurations $\eta=(\eta_{k})$ , with the interpretation that
$\eta_{k}$ is the number of particles at site $k$ . Here $\xi(\eta_{k})=\eta_{k}$ and the total
number of particles is conserved. For any $\rho\in I_{R,,,N}:=\{0$ , $\frac{1}{N}$ , $\frac{2}{N}$ , $\ldots$ , $R-$
$\frac{1}{N}$ , $R\}$ we have the canonical measure $\nu_{N,,,\rho}$ defined by (2).

The generalized exclusion process on the complete graph {1, 2, $\ldots$ ,
$N\}$ can be loosely described as follows. At each site a Poisson clock rings
with rate 1. When site $k$ rings we choose uniformly one of the sites, say
$j$ . If $k\neq j$ , if site $k$ contains at least one particle (i.e. $\eta_{k}>0$ ) and site
$j$ is not saturated (i.e. $\eta_{j}<R$), a particle is moved from $k$ to $j$ with
rate $c(\eta_{k}, \eta_{j})$ , otherwise nothing happens. The rates $c(\cdot, \cdot)$ are chosen in
such a way that the resulting process is reversible w.r.t. $\nu_{N,,,\rho}$ . A possible
choice is for instance $c(\eta_{j}, \eta_{k})=1/[p(\eta_{j})p(\eta_{k})]$ . In any case, assuming a
uniform bound from above and below on the rates $c(\cdot, \cdot)$ , the resulting
Dirichlet form is controlled (up to multiplicative constants) in terms of
the quadratic form

(33) $\mathcal{E}_{N,,,\rho}(f)=\frac{1}{N}\sum_{k=1}^{N}\sum_{\ell=1}^{N}\nu_{N,,,\rho}[(v_{k,,,\ell}f)^{2}]$ , $v_{k,,,\ell}f=f\circ T_{k,,,\ell}-f$

where $f$ is any real function on $\Omega_{N}$ and

$(T_{k,,,\ell}\eta)_{j}=\{$

$\eta_{k}-1$ if $j=k$ , $\eta_{k}>0$ and $\eta_{l}<R$

$\eta_{\ell}+1$ if $ j=\ell$ , $\eta_{k}>0$ and $\eta_{\ell}<R$

$\eta_{j}$ otherwise.

As in Lemma A.2.8 of [16] (p.392) it is not difficult to prove that property
(MP) holds for this model. In particular, by (30)-(32) the estimate of
Theorem 3.1 below immediately implies the well known diffusive scaling
estimate (as given e.g. in [16], Theorem A.2.1).

Theorem 3.1. For every $R\in \mathbb{N}$ there exists $ C<\infty$ such that

$\sup_{N\geq 2}\sup_{\rho\in I_{R,N}}\gamma(N, \rho)\leq C$
.

The proof of Theorem 3.1 is based on Proposition 2.1. We thus have
to check that $\sup_{\rho}\gamma(N, \rho)$ is finite for all $N$ and that property (SGP)
holds.

The first requirement is easily seen to be satisfied. Namely for every
fixed $N$ and $\rho\in I_{R,,,N}$ , $\rho\neq 0$ , $R$ , the process is ergodic, i.e. whenever
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$f\in L^{2}(\nu_{N,,,\rho})$ is such that $D_{N,,,\rho}(f)=0$ then $f$ is constant over $\Theta_{N,,,\rho}$ .
This implies that $\gamma(N, \rho)<\infty$ . Since $\rho$ can take only a finite number of
values we have $\gamma(N)=\sup_{\rho}\gamma(N, \rho)<\infty$ for every fixed $N$ .

To prove (SGP) we rely on Lemma 2.2. In this setting the operator
$\mathcal{K}$ defined in (16) is a $(R+1)\times(R+1)$ -matrix with entries

$\mathcal{K}(n, m)=\nu_{N,,,\rho}(\eta_{2}=m|\eta_{1}=n)$ .

In order to simplify the notation we adopt the following shortcuts:

(34) $\nu(n):=\nu_{N,,,\rho}(\eta_{1}=n)$ , $\nu(n, m):=\nu_{N,,,\rho}(\eta_{1}=n, \eta_{2}=m)$

For any function $\varphi\in H_{0}$ we have

(35) $\langle\varphi, \mathcal{K}\varphi\rangle=\sum_{n=0}^{R}\sum_{m=0}^{R}\nu(n)\nu(m)Q(n, m)\varphi(n)\varphi(m)$

where we introduce the kernel

(36) $Q(n, m)=\frac{\nu(n,m)-\nu(n)\nu(m)}{\nu(n)\nu(m)}$

The proof of (SGK) will be obtained by a careful examination of the
kernel $Q$ . If $\varphi\in H_{0}$ is such that $\langle\varphi, \xi_{\rho}\rangle=0$ as in the hypothesis of
(SGK), then from (35) we have

$\langle\varphi, \mathcal{K}\varphi\rangle=\sum_{n=0}^{R}\sum_{m=0}^{R}\nu(n)\nu(m)[Q(n, m)+\frac{\xi_{\rho}(n)\xi_{\rho}(m)}{\sigma_{\rho}^{2}N}]\varphi(n)\varphi(m)$ ,

where $\sigma_{\rho}^{2}$ refers to the grand-canonical variance at density $\rho$ , see (39)

below. Therefore (SGK) follows from the Schwarz’ inequality and Propo-
sition 3.2 below, which we prove in the next subsection.

Proposition 3.2. For every $R\in \mathbb{N}$ there exists $ C<\infty$ and $\delta>0$

such that

(37) $\sum_{n=0}^{R}\sum_{m=0}^{R}\nu(n)\nu(m)[Q(n, m)+\frac{\xi_{\rho}(n)\xi_{\rho}(m)}{\sigma_{\rho}^{2}N}]^{2}\leq CN^{-2-\delta}$

3.1. Proof of Proposition 3.2

We start with some preliminaries. Let $\overline{\mu}_{\alpha}$ , $\alpha>0$ , be the probability
measure on $X$ defined by

(38) $\overline{\mu}_{\alpha}(\eta_{1}=k)=\frac{p(k)\alpha^{k}}{\overline{Z}_{\alpha}}$ , $\overline{Z}_{\alpha}=\sum_{j=0}^{R}p(j)\alpha^{j}$
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Let $\rho=\rho(\alpha)$ be the average number of particles according to $\overline{\mu}_{\alpha}$ :

$\rho=\frac{1}{\overline{Z}_{\alpha}}\sum_{k=1}^{R}kp(k)\alpha^{k}$

Since the function $\rho:[0, \infty]\rightarrow[0, R]$ is strictly increasing, with $\rho’(\alpha)=$

$\alpha^{-1}Var_{\overline{\mu}_{\alpha}}(\eta_{1})$ , we can invert it to to find the function $\alpha(\rho)$ : $[0, R]\rightarrow$

$[0, \infty]$ . From now on we shall write $\mu_{\rho}$ for the measure $\overline{\mu}_{\alpha(\rho)}$ . We call
$\sigma_{\rho}^{2}$ the variance

(39) $\sigma_{\rho}^{2}=Var_{\mu_{\rho}}(\eta_{1})$

Clearly $\sigma_{\rho}^{2}\leq R^{2}/2$ , and $\sigma_{\rho}^{2}\rightarrow 0$ when $\rho\rightarrow 0$ or $\rho\rightarrow R$ . Define $p_{\rho}(k):=$

$\mu_{\rho}(\eta_{1}=k)$ . It is simple to check the following estimates, to be used for
small density $\rho$ :

(40)

$p_{\rho}(0)=1-\rho+O(\rho^{2})$ , $p_{\rho}(1)=\rho+O(\rho^{2})$ , $p_{\rho}(k)=O(\rho^{k})$ , $k\geq 2$ .

In particular, $\sigma_{\rho}^{2}=\rho+O(\rho^{2})$ , as $\rho\rightarrow 0$ . By duality the same estimate
holds with $\rho$ replaced by $ R-\rho$ when $\rho\rightarrow R$ . The characteristic function
of the rescaled variable $\xi_{\rho}/\sigma_{\rho}$ is defined by

(41) $v_{\rho}(\zeta)=\mu_{\rho}(\exp(i\zeta\xi_{\rho}/\sigma_{\rho}))$

Lemma 3.3. There exists $a=a(R)>0$ such that for every $\rho\in$

$(0, R)$

$|v_{\rho}(\zeta)|\leq e^{-a\zeta^{2}}$ , $\zeta\in[-\pi\sigma_{\rho}, \pi\sigma_{\rho}]$ .

Proof. Observe that by the trigonometric identity $\cos(\alpha-\beta)=$

$\cos\alpha\cos\beta+\sin\alpha\sin\beta$ :

$|v_{\rho}(\zeta)|^{2}=\mu_{\rho}[\cos(\zeta\xi_{\rho}/\sigma_{\rho})]^{2}+\mu_{\rho}[\sin(\zeta\xi_{\rho}/\sigma_{\rho})]^{2}$

$=\sum_{k=0}^{R}\sum_{j=0}^{R}p_{\rho}(k)p_{\rho}(j)\cos[\zeta(k-j)/\sigma_{\rho}]$ .

Now estimate

$\cos[\zeta(k-j)/\sigma_{\rho}]\leq\{$

1 if $|k-j|\neq 1$

$1-\frac{2\zeta^{2}}{\pi^{2}\sigma_{\rho}^{2}}$ if $|k-j|=1$
$|\zeta|\leq\pi\sigma_{\rho}$

It follows that

$|v_{\rho}(\zeta)|^{2}\leq 1-\frac{4\zeta^{2}}{\pi^{2}\sigma_{\rho}^{2}}\sum_{k=0}^{R-1}p_{\rho}(k)p_{\rho}(k+1)$ .
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Using (40) it is easy to check that there exists $\delta=\delta(R)>0$ such that
uniformly in $\rho\in(0, R)$

$\sum_{k=0}^{R-1}p_{\rho}(k)p_{\rho}(k+1)\geq\delta\sigma_{\rho}^{2}$ .

We have shown that $|v_{\rho}(\zeta)|^{2}-1\leq-2a\zeta^{2}$ , with $a=2\delta/\pi^{2}$ . The lemma

then follows from the elementary inequality $x\leq e^{\frac{1}{2}(x^{2}-1)}$ , $x\in[0,1]$

applied to $x=|v_{\rho}(\zeta)|$ . Q.E.D.
We now start the proof of Proposition 3.2. By particle-hole duality

we may restrict to densities $\rho$ satisfying $\rho\leq R/2$ . It is convenient to

consider separately two regimes of density.

The case $\frac{R}{2}\geq\rho\geq N^{-\frac{3}{4}}$ . Denote by $\mu_{N,,,\rho}$ the product measure $\mu_{\rho}^{\otimes N}$

and recall the event $\ominus_{N,,,\rho}$ that the sum of the $\eta$ ’s is $\rho N$ . Set $\tilde{v}_{\rho}(\zeta)=$

$v_{\rho}(\zeta/\sqrt{N})$ . By elementary Fourier transform we have

(42) $2\pi\sigma_{\rho}\sqrt{N}\mu_{N,,,\rho}(\Theta_{N,,,\rho})=\int d\zeta\tilde{v}_{\rho}(\zeta)^{N}$

Here and in the rest of this proof all the integrals are over the interval
$[-\pi\sigma_{\rho}\sqrt{N}, \pi\sigma_{\rho}\sqrt{N}]$ . Similarly

(43) $\nu(n)=\frac{p_{\rho}(n)}{2\pi\sigma_{\rho}\sqrt{N}\mu_{N,\rho}(\ominus_{N,\rho})}\int d\zeta\tilde{v}_{\rho}(\zeta)^{N-1}ei\frac{\zeta}{\sigma_{\rho^{\sqrt{N}}}}\overline{n}$

(44) $\nu(n, m)=\frac{p_{\rho}(n)p_{\rho}(m)}{2\pi\sigma_{\rho}\sqrt{N}\mu_{N,\rho}(\Theta_{N,\rho})}\int d\zeta\tilde{v}_{\rho}(\zeta)^{N-2}ei\frac{\zeta}{\sigma_{\rho}\sqrt{N}}[\overline{n}+\overline{m}]$

where we use the shortcut notation $\overline{n}=\xi_{\rho}(n)=n-\rho,\overline{m}=\xi_{\rho}(m)=$

$ m-\rho$ . We can then write

(45) $Q(m, n)=\frac{\nu(n,m)-\nu(n)\nu(m)}{\nu(n)\nu(m)}=\frac{NUM}{DEN}$

with

NUM:= $\int dt\tilde{v}_{\rho}(\zeta)^{N-2}ei\frac{\zeta}{\sigma_{\rho^{\sqrt{N}}}}[\overline{n}+\overline{m}]\int d\zeta’\tilde{v}_{\rho}(\zeta’)^{N}$

(46) $-\int d\zeta\tilde{v}_{\rho}(\zeta)^{N-1}ei\frac{\zeta}{\sigma_{\rho}\sqrt{N}}\overline{n}\int d\zeta’\tilde{v}_{\rho}(\zeta’)^{N-1}e\dot{\iota}\frac{\zeta^{J}}{\sigma_{\rho}\sqrt{N}}\overline{m}$

and

DEN:= $\int d\zeta\tilde{v}_{\rho}(\zeta)^{N-1}ei\frac{\zeta}{\sigma_{\rho^{\sqrt{N}}}}\overline{n}\int d\zeta’\tilde{v}_{\rho}(\zeta’)^{N-1}ei\frac{\zeta’}{\sigma_{\rho^{\sqrt{N}}}}\overline{m}$
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Thanks to the bound of Lemma 3.3 we have $|\tilde{v}_{\rho}(\zeta)|^{N}\leq e^{-a\zeta^{2}}$ . Therefore
in the integrals above only the region $|\zeta|\leq C\log N$ (for some large but
fixed $C$ ) has to be taken care of. We then observe that there exists $\delta>0$

such that uniformly

(47) $\tilde{v}_{\rho}(\zeta)=1-\frac{\zeta^{2}}{2N}+O(N^{-1-\delta})$ , $|\zeta|\leq C\log N$ .

Indeed, by expanding $\tilde{v}_{\rho}$ around the origin the third order error term

is bounded from above by $C|\zeta|^{3}(\sigma_{\rho}\sqrt{N})^{-3}\mu_{\rho}(|\xi_{\rho}|^{3})$ . Observing that
$\mu_{\rho}(|\xi_{\rho}|^{3})\leq C\sigma_{\rho}^{2}$ and $\sigma_{\rho}^{2}\geq C^{-1}\rho$ then (47) follows from the assumption

$R/2\geq\rho\geq N^{-3/4}$ . Similarly one can write $\tilde{v}_{\rho}(\zeta)^{N}=e^{-\frac{1}{2}\zeta^{2}}+O(N^{-\delta})$

in the range $|\zeta|\leq C\log N$ . This gives the uniform estimates

$I_{1}:=\int d\zeta\tilde{v}_{\rho}(\zeta)^{N}=\sqrt{2\pi}+O(N^{-\delta})$

$I_{2}:=\int d\zeta\zeta^{2}\tilde{v}_{\rho}(\zeta)^{N}=\sqrt{2\pi}+O(N^{-\delta})$

$I_{3}:=\int d\zeta\zeta\tilde{v}_{\rho}(\zeta)^{N}=O(N^{-\delta})$

From (47) we also deduce

$\tilde{v}_{\rho}(\zeta)^{N-2}=\tilde{v}_{\rho}(\zeta)^{N}(1+\frac{\zeta^{2}}{N}+O(N^{-1-\delta}))$

$\tilde{v}_{\rho}(\zeta)^{N-1}=\tilde{v}_{\rho}(\zeta)^{N}(1+\frac{\zeta^{2}}{2N}+O(N^{-1-\delta}))$

uniformly in the region $|\zeta|\leq C\log N$ . We then expand

$e^{i\frac{\zeta}{\sigma_{\rho^{\sqrt{N}}}}\overline{n}}=1+i\frac{\zeta\overline{n}}{\sigma_{\rho}\sqrt{N}}+u_{n}(\zeta)$

$e^{i\frac{\zeta}{\sigma_{\rho^{\sqrt{N}}}}[\overline{n}+\overline{m}]}=(1+i\frac{\zeta\overline{n}}{\sigma_{\rho}\sqrt{N}}+u_{n}(\zeta))(1+i\frac{\zeta\overline{m}}{\sigma_{\rho}\sqrt{N}}+u_{m}(\zeta))$

with error terms $u_{n}$ satisfying $|u_{n}(\zeta)|\leq C\zeta^{2}\frac{\overline{n}^{2}}{N\sigma_{\rho}^{2}}$ . When we plug all the

previous identities into (46), after all the cancellations we arrive at

NUM $=-\frac{\overline{n}\overline{m}}{\sigma_{\rho}^{2}N}(I_{1}I_{2}-I_{3}^{2})+R_{1}(n, m)$

$\overline{n}\overline{m}$

(48)
$=-2\pi\overline{\sigma_{\rho}^{2}N}+R_{1}(n, m)+R_{2}(n, m)$
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with remainder terms satisfying

$|R_{1}(n, m)|\leq C\frac{\overline{n}^{2}\overline{m}^{2}}{(\sigma_{\rho}^{2}N)^{2}}+C\frac{(|\overline{n}|\overline{m}^{2}+|\overline{m}|\overline{n}^{2})}{(\sigma_{\rho}^{2}N)^{3/2}}+O(N^{-1-\delta})$

and $|R_{2}(n, m)|\leq CN^{-1-\delta}|\overline{n}||\overline{m}|/\sigma_{\rho}^{2}$ . Using the bounds $\nu(\xi_{\rho}^{2})\leq C\sigma_{\rho}^{2}$

and $\nu(\xi_{\rho}^{4})\leq C\sigma_{\rho}^{2}$ together with $\sigma_{\rho}^{2}\geq C^{-1}N^{-\frac{3}{4}}$ we see that

(49)
$\sum_{n,,,m}\nu(n)\nu(m)|R_{i}(n, m)|^{2}\leq O(N^{-2-\delta})$

, $i=1,2$ .

On the other hand similar reasoning implies

(50) DEN $=2\pi+O(N^{-\delta})$

In conclusion (37) follows from (48)-(50).

The case $\rho\leq N^{-\frac{3}{4}}$ . We first check that

(51)
$n,m:n+mnm\neq 1\sum_{\geq 2},$

$\nu(n)\nu(m)Q(n, m)^{2}=O(N^{-2-\delta})$

To prove (51) we take advantage of the very thin tails of $\nu(n)$ in the
range $\rho\leq N^{-3/4}$ . By a standard argument using Lemma 3.3 (see e.g.
the proof of Proposition 3.8 in [5] $)$ , from (43)-(44) and (40) one obtains

(52) $\nu(n)\leq Cp_{\rho}(n)$

and $\nu(n, m)\leq Cp_{\rho}(n)p_{\rho}(m)$ , where $C$ is a uniform constant. There-
fore $\nu(n)=O(\rho^{n})$ and $\nu(n, m)=O(\rho^{n+m})$ . In the same way, writing
$\nu(m|n):=\frac{\iota/(m,n)}{\iota/(n)}$ , we have

$\frac{\nu(n,m)^{2}}{\nu(n)\nu(m)}=\nu(m|n)\nu(n|m)\leq C\rho_{m}\rho_{n}nm\leq C\rho n+m$ ,

where $\rho_{n}=\rho+(\rho-n)/(N-1)\leq\rho N/(N-1)$ . Therefore

$\nu(n)\nu(m)Q(n, m)^{2}\leq C\rho n+m$

In particular, $\sum_{n+m\geq 3}\nu(n)\nu(m)Q(n, m)^{2}\leq C\rho s\leq CN^{-9/4}$ , since
$\rho\leq N^{-3/4}$ . On the other hand $Q(0,2)=O(\rho)$ since $\nu(0,2)=\nu(2)-$

$\nu(\eta_{1}=2, \eta_{2}\geq 1)=\nu(0)\nu(2)+O(\rho^{3})$ . It follows $\nu(0)\nu(2)Q(0,2)^{2}=$
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$O(\rho^{4})$ . This completes the proof of (51). In a similar way, using $\sigma_{\rho}^{2}=$

$\rho+O(\rho^{2})$ one checks:

(53)
$n,m:n+m\sum_{nm\neq 1}\nu(n)\nu(m)\geq 2,|\frac{\xi_{\rho}(n)\xi_{\rho}(m)}{\sigma_{\rho}^{2}N}|^{2}=O(N^{-2-\delta})$

It remains to prove that (37) holds when $n$ and $m$ are restricted to
{0, 1}:

(54)

$\nu(n)\nu(m)[Q(n, m)+\frac{\xi_{\rho}(n)\xi_{\rho}(m)}{\sigma_{\rho}^{2}N}]^{2}=O(N^{-2-\delta})$ , $n$ , $m\in\{0,1\}$ .

Recall that $\nu(1)=\rho+O(\rho^{2})$ and $\nu(0)=1-\rho+O(\rho^{2})$ . With $\rho_{n}=$

$\rho-\xi_{\rho}(n)/(N-1)$ we then have

$\nu(m|n)=\{$
$(1-\rho_{n})+O(\rho^{2})$ $m=0$

$\rho_{n}+O(\rho^{2})$ $m=1$

Therefore

(55) $Q(m, n)=\frac{\nu(m|n)-\nu(m)}{\nu(m)}=\{^{\frac{\xi_{\rho}(n)}{-\frac{-\rho\xi_{\rho}/_{n)}^{N}}{\rho N}(1}+O(\rho^{2})}+O(\rho)$ $m=1m=0$

Since $\sigma_{\rho}^{2}=\rho+O(\rho^{2})$ , (55) implies (54). This completes the proof of the
proposition.

\S 4. Zero range processes

The zero range processes fit the general setting of section 2. Here
$X=\mathbb{N}$ and the variables $\eta_{k}$ are interpreted as occupation numbers. The
apriori probability measure $\mu$ is of the form

$p(0)=\frac{1}{Z}$ ; $p(n)=\frac{1}{Z}\prod_{i=1}^{n}\frac{1}{c(i)}$ , $n\geq 1$

where $p(n):=\mu(\eta_{k}=n)$ , $c$ is a given positive function on $\mathbb{N}_{+}$ to be
interpreted as the rate of escape, see below, and $Z$ is the normalization
constant. We shall make assumptions which imply in particular that
$c(n)\geq\delta n$ for some $\delta>0$ and all $n\geq 1$ so that $\mu$ is always well defined
(and has all exponential moments).
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The conserved quantity is the total number of particles, so $\xi(\eta_{k})=$

$\eta_{k}$ . The complete graph dynamics is described as follows. Each site
$k\in\{1, \ldots, N\}$ is equipped with a Poisson clock which rings at rate 1.
When site $k$ rings we choose uniformly another site, say $j$ . If $k\neq j$

and $\eta_{k}>0$ we move one particle from $k$ to $j$ with rate $c(\eta_{k})$ . The rate
is independent of the configuration $\eta$ outside site $k$ , thus justifying the
name zero range. The canonical measures $\nu_{N,,,\rho}$ are reversible since

$c(n)p(n)p(m)=c(m+1)p(n-1)p(m+1)$ , $n\geq 1$ , $m\geq 0$ .

The Dirichlet form is then given by (3) with

(56) $v_{k,,,\ell}f(\eta)=\sqrt{c(\eta_{k})/2}[f(T_{k,,,\ell}\eta)-f(\eta)]$

where

$(T_{k,,,\ell}\eta)_{j}=\{$

$\eta_{k}-1$ if $j=k$ , $\eta_{k}\geq 1$

$\eta 0+1$ if $j=p$ , $\eta_{k}\geq 1$

$\eta_{j}$ otherwise.

We make two assumptions on the rate $c(\cdot)$ :

$\circ c$ is globally Lipschitz: There exists $ a_{1}<\infty$ such that

$\sup_{n}|c(n+1)-c(n)|\leq a_{1}$ (H1)

$\circ c$ grows at infinity: There exists $ N_{0}<\infty$ and $a_{2}>0$ such that

$c(n)\geq c(m)+a_{2}$ , $n\geq N_{0}+m$ (H2)

A very special case is $c(n)=n$ , so that the measure $\mu$ is Poisson. In
this case the process consists of $\rho N$ independent random walks on the
complete graph and therefore a uniform Poincar\’e inequality is trivially
obtained by tensorization. (HI) and (H2) are the assumptions consid-
ered by Landim, Sethuraman and Varadhan [20] and we shall use some
key preliminary results of [20] to make our proof. Since the property
(MP) discussed in section 2 is immediate for the zero range process (56)
one can recover the main results of [20] using (30)-(32) and the theorem
below.

Theorem 4.1. Assume (HI) and (H2). There exists $ C<\infty$ such
that

(57)
$\sup_{N\geq 2\rho}\sup_{\in \mathbb{N}/N}\gamma(N, \rho)\leq C$
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We shall prove the theorem by checking the hypothesis of Proposi-
tion 2.1. We follow as closely as possible the analysis of the previous
section. However more care is required here in view of the unbounded-
ness of the variables $\eta_{k}$ .

Let $\gamma(N)$ be defined as in (10). We first check that $\gamma(N)<\infty$ for
all $N$ . From Lemma 3.1 and Lemma 3.2 of [20] we have that for any
$f\in L^{2}(\nu_{N,,,\rho})$ with $\nu_{N,,,\rho}(f)=0$

$\frac{1}{N}\sum_{k=1}^{N}\nu_{N,,,\rho}(\nu_{N,,,\rho}(f|F_{k})^{2})\leq C[\mathcal{E}_{N,,,\rho}(f)+\frac{1}{N}\sum_{k=1}^{N}\nu(Var_{N-1,,,\rho_{\eta_{k}}}(f))]$

for some uniform constant $ C<\infty$ . Thus from (13) and (14) we obtain
in particular

$\gamma(N)\leq C\gamma(N-1)+C$ , $N\geq 2$ ,

which clearly implies that $\gamma(N)$ is finite for every $N$ , since $\gamma(1)=0$ .

Thanks to Lemma 2.2 we reduce the proof of (SGP) to the proof of
estimate (SGK). As in (35) we write

(58) $\langle\varphi, \mathcal{K}\varphi\rangle=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\nu(n)\nu(m)Q(n, m)\varphi(n)\varphi(m)$

with the kernel $Q$ given by (36). In the next subsection we prove (SGK)

4. 1. Proof of (SGK)

As in (38) we define the exponential family $\overline{\mu}_{\alpha}$ , $\alpha>0$ and the cor-
responding measures $\mu_{\rho}$ indexed by the density $\rho>0$ . The latter is
given by $\rho=\mu_{\rho}(\eta_{1})$ and a simple computation gives $\alpha(\rho)=\mu_{\rho}(c(\eta_{1}))$ .

The variance $\sigma_{\rho}^{2}$ is defined as in (39). As shown in [20], Lemma 5.1, the
assumptions (HI) and (H2) imply the uniform bounds

(59) $\delta\rho\leq\sigma_{\rho}^{2}\leq\delta^{-1}\rho$ .

for some $\delta\in(0,1)$ . We distinguish two regimes according to the value
of the density $\rho$ . We speak of low density when $\rho<1$ and of high
density when $\rho\geq 1$ . Note that the choice of the critical value 1 is
purely conventional. For low densities we use the same strategy as in
the previous section with only small modifications. In the case of high
density we rely on the uniform local central limit theorem derived in
[20], Theorem 6. 1.

Low density. When $\rho\leq 1$ the system behaves in many respects like the
model with cutoff considered in the previous section. In particular when
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$\rho\rightarrow 0$ we have the same estimates as in (40). We are going to prove the
following analogon of Proposition 3.2.

There exists $ C<\infty$ and $\delta>0$ such that for any $N\in \mathbb{N}$ and any
$\rho\leq 1$

(60) $\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\nu(n)\nu(m)[Q(n, m)+\frac{\xi_{\rho}(n)\xi_{\rho}(m)}{\sigma_{\rho}^{2}N}]^{2}\leq CN^{-2-\delta}$

As seen in the previous section, this bound immediately implies (SGK)
in the low density region $\rho\leq 1$ .

Let $v_{\rho}$ denote the characteristic function for the random variable
$\xi_{\rho}/\sigma_{\rho}$ , see (41). With the observations above, the estimate (59) and the
argument of Lemma 3.3 one checks that there exists $a>0$ independent
of $\rho\leq 1$ such that

(61) $|v_{\rho}(\zeta)|\leq e^{-a\zeta^{2}}$ , $\zeta\in[-\pi\sigma_{\rho}, \pi\sigma_{\rho}]$ .

When $N^{-\frac{3}{4}}\leq\rho\leq 1$ the proof of the proposition goes as follows.
We write $Q(n, m)$ as in (45). Expanding as in (47) we have the same
estimates as in (48)-(50). The only exception is that (50) now holds
in the following sense: for every $T$ $>0$ there exists $\delta>0$ such that
uniformly in $N^{-\frac{3}{4}}\leq\rho\leq 1$

(62)
$n+m\leq T\log N\sup_{n,,,m}|DEN-2\pi|=O(N^{-\delta})$

.

In this way we have obtained

$n+m\leq T\log N\sum_{n,,,m}\nu(n)\nu(m)[Q(n, m)+\frac{\xi_{\rho}(n)\xi_{\rho}(m)}{\sigma_{\rho}^{2}N}]^{2}=O(N^{-2-\delta})$

On the other hand, since $\nu(n)\leq Cp_{\rho}(n)\leq Ce^{-n/C}$ uniformly in $N$ and
$\rho\leq 1$ , we have

$n+m>T.1ogN\sum_{n,,,m}.\nu(n)\nu(m)[Q(n, m)+\frac{\xi_{\rho}(n)\xi_{\rho}(m)}{\sigma_{\rho}^{2}N}]^{2}=O(N^{-3})$

provided $T$ is sufficiently large (but independent of $\rho$ and $N$ ). This

proves the claim in the regime $N^{-\frac{3}{4}}\leq\rho\leq 1$ .

When $\rho\leq N^{-\frac{3}{4}}$ we use exactly the same argument as in (51) and
(55) which applies without modifications. This ends the proof of (SGK)
in the case $\rho\leq 1$ .
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High density. Here the strategy above has to be modified since the
Gaussian bound (61) does not hold anymore and one has to control
every estimate uniformly as $\rho\rightarrow\infty$ . The main tool is the uniform
Edgeworth expansion derived in [20]. For $M$ $\in \mathbb{N}$ , we define

(63) $W_{M,,,\rho}(t)=\mu_{M,,,\rho}(\sum_{k=1}^{M}(\eta_{k}-\rho)=-t)$ .

In (63) and all expressions below when we write $W_{M,,,\rho}(t)$ we assume that
$\rho M-t$ is a nonnegative integer. The following lemma is a straightforward
consequence of [20], Theorem 6.1, part (b).

Lemma 4.2. For any $\kappa<1/6$ there exists $ C<\infty$ such that for
all $M$ $\geq 1$ and all $\rho\geq 1$

$\sup_{|t|\leq\sigma_{\rho}M^{\kappa}}|\sigma_{\rho}\sqrt{M}W_{M,,,\rho}(t)-\frac{e^{-_{2}-_{\sigma_{\rho^{M}}^{Z^{-}}}^{t^{2}}}}{\sqrt{2\pi}}(1+\frac{A_{\rho}t}{\sigma_{\rho}M}+\frac{B_{\rho}}{M})|\leq CM^{-\frac{3}{2}}$

,

where $A_{\rho}$ and $B_{\rho}$ are real numbers with $\sup_{\rho\geq 1}(|A_{\rho}|+|B_{\rho}|)<\infty$ .

We can express the kernel $Q(n, m)$ in terms of the probabilities (63):

(64) $Q(n, m)=\frac{W_{N-2,\rho}(\overline{n}+\overline{m})W_{N,\rho}(0)-W_{N-1,\rho}(\overline{n})W_{N-1,\rho}(\overline{m})}{W_{N-1,\rho}(\overline{n})W_{N-1,\rho}(\overline{m})}$ ,

where $\overline{n}=n-\rho,\overline{m}=m-\rho$ . We fix $\kappa=1/10$ and define the sets

$\mathcal{T}_{N,,,\rho}=\{(n, m)\in \mathbb{N}^{2} : |\overline{n}|+|\overline{m}|\leq\sigma_{\rho}N^{\kappa}\}$

Let us agree to denote $by\in(N)$ anything which vanishes at least as
$O(N^{-\frac{3}{2}})$ uniformly in the sets $\mathcal{T}_{N,,,\rho}$ , $\rho\geq 1$ . Thus the result of Lemma
4.2, with $M=N-1$ and $t=\overline{n}$ , can be written as

(65)

$\sigma_{\rho}\sqrt{N-1}W_{N-1,,,\rho}(\overline{n})=\frac{e-\frac{\overline{n}^{2}}{2\sigma_{\rho}^{2}(N-1)}}{\sqrt{2\pi}}(1+\frac{A_{\rho}\overline{n}}{\sigma_{\rho}(N-1)}+\frac{B_{\rho}}{N-1})+\in(N)$

We use now (65) to write

$2\pi\sigma_{\rho}^{2}(N-1)W_{N-1,,,\rho}(\overline{n})W_{N-1,,,\rho}(\overline{m})$

$=e^{2\sigma_{\rho}(N-1)}-^{\overline{n}^{2}}=^{+\overline{m}^{2}}(1+\frac{A_{\rho}\overline{n}}{\sigma_{\rho}(N-1)}+\frac{B_{\rho}}{N-1})(1+\frac{A_{\rho}\overline{m}}{\sigma_{\rho}(N-1)}+\frac{B_{\rho}}{N-1})+\epsilon(N)$

$=e-\frac{\overline{n}^{2}+\overline{m}^{2}}{2\sigma_{\rho}^{2}N}(1+\frac{A_{\rho}(\overline{n}+\overline{m})}{\sigma_{\rho}N}+\frac{2B_{\rho}}{N})+\epsilon(N)$ .
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Furthermore, writing $q(N)=(N-1)/\sqrt{N(N-2)}=1+O(N^{-2})$ , from
Lemma 4.2, with $M$ $=N-2$ and $t=\overline{n}+\overline{m}$ , one has

$2\pi\sigma_{\rho}^{2}(N-1)W_{N-2,,,\rho}(\overline{n}+\overline{m})W_{N,,,\rho}(0)$

$=q(N)e-\frac{(\overline{n}+\overline{m})^{2}}{2\sigma_{\rho}^{2}(N-2)}(1+\frac{A_{\rho}(\overline{n}+\overline{m})}{\sigma_{\rho}(N-2)}+\frac{B_{\rho}}{N-2})(1+\frac{B_{\rho}}{N})+\epsilon(N)$

$=e-\frac{(\overline{n}+\overline{m})^{2}}{2\sigma_{\rho}^{2}N}(1+\frac{A_{\rho}(\overline{n}+\overline{m})}{\sigma_{\rho}N}+\frac{2B_{\rho}}{N})+\in(N)$

$=e-\frac{\overline{n}^{2}+\overline{m}^{2}}{2\sigma_{\rho}^{2}N}(1-\frac{\overline{n}\overline{m}}{\sigma_{\rho}^{2}N})(1+\frac{A_{\rho}(\overline{n}+\overline{m})}{\sigma_{\rho}N}+\frac{2B_{\rho}}{N})+\in(N)$ .

Inserting in (64) we have obtained

(66) $\sup_{\rho\geq 1(n},\sup_{m)\in I_{N,\rho}}|Q(n, m)+\frac{\xi_{\rho}(n)\xi_{\rho}(m)}{\sigma_{\rho}^{2}N}|=O(N^{-\frac{3}{2}})$

To conclude the proof of (SGK) in the case $\rho\geq 1$ it is therefore sufficient
to prove

(67) $\sum$ $\nu(n, m)|\varphi(n)||\varphi(m)|\leq CN^{-\frac{3}{2}}\langle\varphi, \varphi\rangle$ ,
$(n,m)\not\in I_{N,,,\rho}$

for any $\varphi\in H$ , uniformly over $\rho\geq 1$ .

We first claim that for any $k\in \mathbb{N}$ there exists $ C_{k}<\infty$ such that

(68) $\nu(|\eta_{1}-\rho_{m}|\geq T\sigma_{\rho}|\eta_{2}=m)\leq C_{k}T^{-2k}$

for any $0\leq m\leq\rho N/2$ and any $T$ $>0$ , with $\rho_{m}=\rho+(\rho-m)/(N-1)$ .

To prove (68) recall that there exists $ C<\infty$ independent of $\rho$ such
that for every $n\in \mathbb{N}$ we have $\nu(n)\leq Cp_{\rho}(n)$ (this is a consequence of
Lemma 4.2 if $\rho\geq 1$ , otherwise see (52) $)$ . Therefore $\nu(n|m)\leq Cp_{\rho_{m}}(n)$

and
$\nu(|\eta_{1}-\rho_{m}|\geq T\sigma_{\rho}|\eta_{2}=m)\leq Cm_{2k,,,\rho_{m}}(T\sigma_{\rho})^{-2k}$ ,

where $m_{2k,,,\rho}:=\mu_{\rho}[(\eta_{1}-\rho)^{2k}]$ . From [20], Lemma 5.2, we know that

$ M_{k}:=\sup_{\rho\geq 1/2}\frac{m_{2k,\rho}}{\sigma_{\rho}^{2k}}<\infty$ ,

for every $k\in \mathbb{N}$ . Since $m\leq\rho N/2$ implies $\rho_{m}\geq\rho/2\geq 1/2$ , the above
yields

$\nu(|\eta_{1}-\rho_{m}|\geq T\sigma_{\rho}|\eta_{2}=m)\leq CM_{k}(T\sigma_{\rho}/\sigma_{\rho_{m}})^{-2k}$
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Now (68) follows since by (59) we have $\sigma_{\rho}/\sigma_{\rho_{m}}\geq\delta\sqrt{\rho}/\rho_{m}$ and using
$m\geq 0$ , $\rho\geq\rho_{m}(N-1)/N$ .

Once (68) is established we may prove (67) as follows. Observe
that for any $N\geq 3$ , $(n, m)\not\in \mathcal{T}_{N,,,\rho}$ implies either $|n-\rho_{m}|\geq T\sigma_{\rho}$ or
$|m-\rho_{n}|\geq T\sigma_{\rho}$ , with $T=N^{\kappa}/4$ . By (68) and the Schwarz’ inequality
we estimate, uniformly in $\rho\geq 1$ :

$n+m\leq\rho N/2\sum_{(n,m)\not\in \mathcal{T}_{N,\rho}}\nu(n, m)|\varphi(n)||\varphi(m)|$

$\leq 2\sum_{m\leq\rho N/2}\nu(m)|\varphi(m)|\sum_{n:|n-\rho_{m}|\geq T\sigma_{\rho}}\nu(n|m)|\varphi(n)|$

$\leq\sqrt{C_{k}}T^{-k}\sum_{m}\nu(m)|\varphi(m)|(\sum_{n}\nu(n|m)|\varphi(n)|^{2})\frac{1}{2}\leq\sqrt{C_{k}}T^{-k}\langle\varphi, \varphi\rangle$ .

Since $T=N^{\kappa}/4$ we choose $k$ such that $k\kappa>3/2$ and (67) is proven
under the additional requirement $n+m\leq\rho N/2$ .

It remains to prove

(69)
$ n+m>\rho.N/2\sum_{n,,,m}.\nu(n, m)|\varphi(n)||\varphi(m)|\leq N^{-\frac{3}{2}}\langle\varphi, \varphi\rangle$

This in turn follows from Schwarz’ inequality and the uniform bound

(70)
$n+m>\rho.N/2\sum_{n,,,m}.\nu(n|m)\nu(m|n)\leq N^{-3}$

To establish (70) we write $\nu(n|m)\nu(m|n)\leq Cp_{\rho_{m}}(n)p_{\rho_{n}}(m)$ and use
the simple bounds $p_{\rho}(n)\leq e^{-n/C}$ valid for $ n\geq C\rho$ , where $C$ is a suf-
ficiently large constant. Recalling that $\rho\geq\rho_{m}(N-1)/N$ , $m\geq 0$ this
immediately implies (70) and therefore (69). This ends the proof of
(SGK) in the high density region $\rho\geq 1$ .

\S 5. Colored exclusion

In this section we consider a model with different kinds of particles,
or particles of different colors, with the constraint that each site is oc-
cupied at most by a single particle and the number of particles of each
kind is conserved. We set $X=\{0,1, \ldots, R\}$ with some positive integer
$R$ . If $\eta_{k}=0$ we say that site $k$ is empty while if $\eta_{k}=m$ , $m\in\{1, \ldots, R\}$

we think of site $k$ as being occupied by a particle with color $m$ . The
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conservation laws are expressed in terms of the functions

(71) $\xi^{m}(\eta_{k})=1_{\{m\}}(\eta_{k})=\{$

1 $\eta_{k}=m$

0 $\eta_{k}\neq m$

so that the multicanonical measure $\nu_{N},-$ in (28) is obtained by condi-
tioning on the event

$\ominus_{N,,,\overline{\rho}}=\{\eta\in\Omega_{N} ^{:} \sum_{k=1}^{N}\xi^{m}(\eta_{k})=\rho_{m}N, m=1, \ldots, R\}$ ,

with $\overline{\rho}=(\rho_{1}, \ldots, \rho_{R})$ an assigned density vector with $\sum_{m=1}^{R}\rho_{m}\leq 1$ .

We say that $\overline{\rho}$ is trivial if $\rho_{m}\in\{0,1\}$ for every $m\in\{1, \ldots, R\}$ . The
dynamics is given by random transpositions so that the Dirichlet form
is

(72) $\mathcal{E}_{N,,,\overline{\rho}}(f)=\frac{1}{N}\sum_{k=1}^{N}\sum_{\ell=1}^{N}\nu_{N,,,\overline{\rho}}[(f\circ T_{k,,,\ell}-f)^{2}]$

where $f\in L^{2}(\nu_{N,,,\overline{\rho}})$ and

$(T_{k,,,\ell}\eta)_{j}=\{$

$\eta_{k}$ if $ j=\ell$

$\eta\ell$ if $j=k$

$\eta_{j}$ otherwise.

This and related random transposition or card-shuffling models have
been studied in great detail by Diaconis and Shashahani [11] with more
elaborate techniques. The result we prove below is rather simple but
it illustrates well the use of the general arguments outlined in section
2. Note that when $R=1$ we have the usual exclusion process on the
complete graph, sometimes called the Bernoulli-Laplace model. When
$R=2$ the model was studied by Quastel, [22].

Let $\gamma(N,\overline{\rho})$ be the Poincar\’e constant associated to the couple $(N,\overline{\rho})$ ,
as in (4). Note that $\gamma(N,\overline{\rho})=0$ when $\overline{\rho}$ is trivial. Let $\rho^{*}=\rho^{*}(N)$ be
the density vector corresponding to one particle only: $\rho_{1}^{*}=1/N$ and
$\rho_{m}^{*}=0$ , $m=2$ , $\ldots$ , $R$ . When $\overline{\rho}=\rho^{*}$ we have a (rate 2) random walk
on the complete graph and a direct computation shows that $\mathcal{E}_{N,,,\rho^{*}}(f)=$

$4Var_{N,,,\rho^{*}}(f)$ for every $f$ . Therefore $\gamma(N, \rho)*=1/4$ .

Theorem 5.1. For any $R\in \mathbb{Z}_{+}$ , $N\geq 2$ and any density $\overline{\rho}$ :

(73) $\gamma(N,\overline{\rho})\leq\gamma(N, \rho)*=\frac{1}{4}$
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Proof. We shall use the notation (34). We write $\rho_{0}=1-\sum_{m=1}^{R}\rho_{m}$

and $\xi_{\rho_{m}}^{m}(n)=1_{\{m\}}(n)-\rho_{m}$ for every $m=0,1$ , $\ldots$ , $R$ . Notice that by
symmetry we have

$\nu(m)=\rho_{m}$ , $m=0,1$ , $\ldots$ , $R$ .

Therefore

(74) $\nu(m|n)=\frac{\nu(m,n)}{\nu(n)}=\frac{\rho_{m}N-\xi^{m}(n)}{N-1}=\rho_{m}-\frac{\xi_{\rho_{m}}^{m}(n)}{N-1}$ .

Take $\varphi\in H_{0}$ and write

$\langle\varphi, \mathcal{K}\varphi\rangle=\sum_{n=0}^{R}\sum_{m=0}^{R}\nu(n)[\nu(m|n)-\nu(m)]\varphi(n)\varphi(m)$

(75) $=-\frac{1}{N-1}\sum_{m=0}^{R}\varphi(m)\langle\xi_{\rho_{m}}^{m}, \varphi\rangle$

From this we see that whenever $\varphi\in H_{0}$ is orthogonal to all $\xi_{\rho_{m}}^{m}$ then
$\langle\varphi, \mathcal{K}\varphi\rangle=0$ . From the analysis in Lemma 2.2 it follows that

(76) $\nu_{N,,,\overline{\rho}}(f(1-P)f)\geq\frac{N-2}{N-1}\nu_{N,,,\overline{\rho}}(f^{2})$

for every $f\in L^{2}(\nu_{N,,,\overline{\rho}})$ with $\nu_{N,,,\overline{\rho}}(f)=0$ and any $N\geq 3$ . Thus if $\gamma(N)$

denotes supremum of $\gamma(N,\overline{\rho})$ over all possible values of $\overline{\rho}$ , the argument
of Proposition 2.1 gives $\gamma(N)\leq\gamma(2)$ for every $N\geq 3$ . The theorem
then follows since $\gamma(2)=\gamma(2, \rho)*=1/4$ . Q.E.D.

\S 6. Anisotropic exclusion processes

Here we review recent results obtained in collaboration with F. Mar-
tinelli, $[5, 6]$ . The model can be described in the general framework of
section 2. We set $X=\{0,1\}^{H}$ where $H$ is a positive integer to be inter-
preted as the height of the system. The measure $\mu$ is itself a product of
Bernoulli measures

$\mu=\otimes_{h=1}^{H}\mu_{h}$ , $\mu_{h}=Be(p_{h})$

(77) $p_{h}:=\frac{q^{2h}}{1+q^{2h}}$ , $q\in(0,1)$ .

Then $\Omega_{N}=X^{N}$ and a configuration $\eta=\{\eta_{i}\}_{i=1}^{N}$ is given in terms of
its components $\eta_{i}=\{\alpha_{(i,h)}\}_{h=1}^{H}$ , with $\alpha_{i,,,h}\in\{0,1\}$ interpreted as the
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presence or absence of a particle at site $(i, h)$ . The conservation law is
given by

$\xi(\eta_{i})=\sum_{h=1}^{H}\alpha_{(i,h)}$ .

The canonical measures $\nu_{N,,,\rho}=\nu_{H,,,N,\rho}$ are defined as usual by (2) for
every fixed value of $H$ . We may think of identical particles placed
at the sites of a two-dimensional cylindrical region $\Lambda=\{1, \ldots, N\}\times$

$\{1, \ldots, H\}$ . Each site can be occupied by at most one particle and the
total number of particles is fixed. Since $q<1$ there is anisotropy in the
vertical axis and particles prefer to be at the bottom of $\Lambda$ . The choice of
the model (77) is motivated by interesting connections with anisotropic
quantum spin chains, see [1, 5, 6, 17, 18] and references therein.

The dynamics can be described as follows. At each site of $\Lambda$ we
have an independent rate 1 Poisson clock. Suppose site $(i, h)$ rings. If
$h=H$ we do nothing. If $h<H$ we choose at random one of the sites
$(j, h+1)$ , $j=1$ , $\ldots$ , $N$ . The occupation variables $\alpha_{(i,h)}$ and $\alpha_{(j,h+1)}$ are
then exchanged with rate

(78) $c_{(i,h);(j,h+1)}(\alpha)=q^{\alpha_{(i,h)}-\alpha_{(j,h+1)}}$ .

That is if a particle is moving upwards the rate is $q$ whereas if it is
moving downwards the rate is $q^{-1}$ . We thus obtain a process described
by the Dirichlet form (3) with the exchange operators, for $i\neq j$

(79) $v_{i,,,j}f(\alpha)=(\frac{1}{2}\sum_{h=1}^{H-1}c_{(i,h);(j,h+1)}(\alpha)[f(\alpha^{(i,h);(j,h+1)})-f(\alpha)]^{2})\frac{1}{2}$ ,

and $v_{i,,,i}f=0$ , where we write $\alpha^{(i,h);(j,h+1)}$ for the configuration in which
the values of $\alpha$ at $(i, h)$ and $(j, h+1)$ have been exchanged. Notice that
the process is local in the vertical direction while it is nonlocal in the
horizontal direction. One of the main results of [6] is that for every
$q\in(0,1)$ the relaxation time is bounded, uniformly in $H$ , in $N$ and in
the number of particles.

Let us recall the definition of the Poincar\’e constant (4). In order to
keep track of the dependence on $H$ we write here $\gamma(H, N, \rho)$ instead of
$\gamma(N, \rho)$ .

Theorem 6.1. For every $q\in(0,1)$ there exists $ C<\infty$ such that

(80)
$\sup_{N\geq 2}\sup_{H\geq 2}\sup_{\rho}\gamma(H, N, \rho)\leq C$
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The proof of Theorem 6.1 has been obtained by applying the argu-
ments of Proposition 2.1 and Lemma 2.2. The crucial step in the proof
of property (SGK) is a result analogous to Proposition 3.2. We refer to
[6] for more details.

Some of the applications of Theorem 6.1, especially those to quan-
tum Heisenberg models, are linked to the restriction of the process to
horizontal sums of the basic variables $\alpha_{i,,,h}$ given by

$\omega_{h}=\sum_{i=1}^{N}\alpha_{(i,h)}$ , $h=1$ , $\ldots$ , $H$

In view of the symmetries of the Dirichlet form $\mathcal{E}_{N,,,\rho}$ defined by (79) it
is not hard to see that the restriction to the variables $\{\omega_{h}\}$ is again a
Markov process. Indeed, the latter can be described as follows. Assign
to each row $h=1$ , $\ldots$ , $H-1$ two independent exponentially distributed
times (with mean 1), $\tau_{-}^{h}$ and $\tau_{+}^{h}$ . When $\tau_{+}^{h}$ rings the configuration $\omega$ is
updated with rate $r_{+,h}(\omega):=q^{-1}(N-\omega_{h})\omega_{h+1}/N$ to the configuration
$\omega^{+,h}$ in which $\omega_{h}$ is increased by 1 and $\omega_{h+1}$ is decreased by 1 (while
the rest is unchanged). When $\tau_{-}^{h}$ rings we do the reverse transition

( $\omega\rightarrow\omega^{-,h}$ : $\omega_{h}$ is decreased and $\omega_{h+1}$ increased) with rate $r_{-,,,h}(\omega):=$

$q(N-\omega_{h+1})\omega_{h}/N$ . We can write the Dirichlet form of this process as

(81)

$\frac{1}{2}\sum_{h=1}^{H-1}\overline{\nu}(r_{+,h}(\omega)[f(\omega^{+,h})-f(\omega)]^{2}+r_{-,,,h}(\omega)[f(\omega^{-,h})-f(\omega)]^{2})$

where $\overline{\nu}$ stands for the marginal of $\nu_{H,,,N,\rho}$ on the variables $\omega$ . A simple
computation gives the probability $\overline{\nu}(\omega)$ of a single $\omega$ compatible with
the global constraint $\sum_{h}\omega_{h}=\rho N$ :

(82) $\overline{\nu}(\omega)=\frac{1}{\overline{Z}}\prod_{h=1}^{H}$ $\left(\begin{array}{l}N\\\omega_{h}\end{array}\right)$
$q^{2h\omega_{h}}$

The process (81) can be interpreted as describing relaxation of a non-
negative profile $\{\omega_{h}\}_{h=1}^{H}$ subject to a fixed area constraint. In view of
the anisotropy the profile is strongly localized under the measure $\overline{\nu}$ , i.e.
$\omega_{h}\approx N$ for heights $h$ below $\rho$ and $\omega_{h}\approx 0$ above $\rho$ with high probability.
By Theorem 6.1 relaxation to equilibrium in $L^{2}(\overline{\nu})$ is exponentially fast
uniformly in $\rho$ .

In the case $N=2$ the process (81) admits another interesting inter-
pretation as a model for diffusion limited chemical reactions, see [1] and
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references therein. Namely describe the state $\omega_{h}=2$ as the presence at
$h$ of a particle of type $A$ , $\omega_{h}=0$ as a particle of type $B$ and $\omega_{h}=1$ as
the absence of particles. If $n_{A}$ , $n_{B}$ denote the size of the two populations
we see that the difference $n_{A}-n_{B}$ is conserved and we have a model for
asymmetric diffusion with creation and annihilation of the two species.
Particles of type $A$ have a constant drift towards the bottom while par-
ticles of type $B$ have the same drift towards the top. Nearest neighbour
pairs can produce the reaction $ A+B\rightarrow$ inert and the reverse reaction
inert $\rightarrow A+B$ with the appropriate rates. While Theorem 6.1 implies
immediately a uniform lower bound on the spectral gap for this process,
a direct proof of the result for the two-particle model seemed difficult to
us.

\S 7. Ginzburg-Landau processes

Here we discuss a recent result ([4]) for the Ginzburg-Landau pro-
cess. The model is obtained from the general setting in section 2 with
$X=\mathbb{R}$ and $\xi(\eta_{k})=\eta_{k}$ . The single site probability distribution is of the
form

(83) $\mu(d\eta)=\frac{e^{-V(\eta)}}{Z}d\eta$ ,

where $V$ : $\mathbb{R}\rightarrow \mathbb{R}$ is a given function with $ Z=\int e^{-V(\eta)}d\eta<\infty$ . Precise
assumptions on $V$ are specified below. The resulting canonical measure
$\nu_{N,,,\rho}$ on the hyperplane $\sum_{k=1}^{N}\eta_{k}=\rho N$ is given by (2), for all $\rho\in \mathbb{R}$ . We
consider the process defined by the symmetric Dirichlet form $\mathcal{E}_{N,,,\rho}$ given
in (3) with the choice

(84) $v_{k,,,\ell}f=\partial_{k}f-\partial_{\ell}f$ ,

where $\partial_{k}f$ is the partial derivative of $f$ along the $k$-th coordinate $\eta_{k}$ .
This yields an ergodic diffusion process on every $p-$ hyperplane with
reversible invariant measure $\nu_{N,,,\rho}$ given by (2). In the definition (4) of
the Poincar\’e constant $\gamma(N, \rho)$ the supremum is taken over all smooth
functions $f$ : $\mathbb{R}^{N}\rightarrow \mathbb{R}$ .

The main result of [4] says that a uniform Poincar\’e inequality holds
whenever $V$ is of the form $ V=\varphi+\psi$ with $\psi$ a smooth bounded function
and $\varphi$ a strictly convex function satisfying some mild growth condition
at infinity. To describe the latter we define the class $\Phi$ of functions
$\varphi\in C^{2}(\mathbb{R}, \mathbb{R})$ with second derivative $\varphi’’$ satisfying

$\blacksquare$ Strict convexity: There exists $\delta>0$ such that $\varphi’’\geq\delta$ .
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$\circ$ Polynomial growth at infinity: There exist constants $\beta_{-}$ , $\beta_{+}\in$

$[0, \infty)$ and a constant $C\in[1, \infty)$ such that

(85) $\frac{1}{C}\leq\lim_{x\rightarrow}\inf_{\infty}\frac{\varphi’’(\pm x)}{x^{\beta}\pm}\leq\lim_{x\rightarrow}\sup_{\infty}\frac{\varphi’’(\pm x)}{x^{\beta}\pm}\leq C$ .

Clearly, any strictly convex polynomial belongs to $\Phi$ . The perturbation
will be taken from the class $\Psi$ of functions $\psi\in C^{2}(\mathbb{R}, \mathbb{R})$ such that
$|\psi|_{\infty}<\infty$ , $|\psi’|_{\infty}<\infty$ and $|\psi^{JJ}|_{\infty}<\infty$ .

Theorem 7.1. Assume $V$ is of the form $ V=\varphi+\psi$ with $\varphi\in\Phi$

and $\psi\in\Psi$ . Then

(86)
$\sup_{N\in \mathbb{N}}\sup_{\rho\in \mathbb{R}}\gamma(N, \rho)<\infty$

.

An immediate corollary of Theorem 7.1 is the uniform diffusive
bound for the local dynamics (29). This follows from property (MP) and
(30)-(32). Diffusive bounds for the spectral gap of Ginzburg-Landau
processes are a key ingredient in the proof of hydrodynamic limits for
the nongradient system considered by Varadhan [24]. When there is
no perturbation $(\psi=0)$ , Theorem 7.1 (without the additional require-
ment (85) $)$ becomes an immediate consequence of the Brascamp-Lieb
inequality [2], see [4]. Since perturbative arguments are very sensitive to
the increasing number of dimensions, the case of nonconvex potentials is
much more involved. Recently the uniform diffusive estimate has been
obtained by Landim, Panizo, Yau [19] in the case $V(x)=ax^{2}+\psi(x)$ ,
$a>0$ and $\psi$ bounded. The results of [19] have been later generalized
slightly by Chafai [9]. The proofs of both [19] and [9] are based on the
martingale approach ([21]) and the method is sufficiently robust to yield
the stronger logarithmic Sobolev inequality. These techniques seem to
fail however in the case of non quadratic potentials - thus ruling out
natural problems such as quartic potentials.

The proof of Theorem 7.1 is based on the general strategy outlined
in Proposition 2.1 and Lemma 2.2. The delicate part of the work is to
establish the bound required in condition (SGK). Formally the situation
is similar to that encountered in previous sections, but here $\mathcal{K}$ is an in-
tegral operator and the technique has to be modified slightly. Moreover,
contrary to the case of zero range processes discussed in section 4, here
the variance $\sigma_{\rho}^{2}$ of the grand-canonical measures

(87) $\mu_{\rho}(dx)=\frac{e^{-V(x)-\lambda_{\rho}x}}{Z_{\rho}}dx$
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vanishes as $\rho\rightarrow\pm\infty$ as soon as $\varphi’’$ is unbounded. In the above formula
$\lambda_{\rho}$ is determined as usual by the condition that $(Z_{\rho})^{-1}\int xe^{-V(x)-\lambda_{\rho}x}dx$

$=\rho$ . The technical hypothesis (85) is mainly used to control the speed of
decay of $\sigma_{\rho}^{2}$ . Using a uniform local central limit theorem for the measures
(87) we prove in [4], Theorem 3.1, that there exists $ C<\infty$ independent
of $\rho$ and $N$ such that for every $f\in H_{0}$ satisfying $\langle f, \xi_{\rho}\rangle=0$ one has

(88) $|\langle f, \mathcal{K}f\rangle|\leq CN^{-\frac{3}{2}}\langle f, f\rangle$ .

\S 8. Exclusion with site-disorder

Here we consider the following non-homogeneous model. The sin-
gle state space is $X=\{0,1\}$ and the conservation law is $\xi(\eta_{k})=\eta_{k}$ ,

interpreted as the presence or absence of a particle at $k$ . In contrast to
previous models here the measure $\mu$ is site-dependent. We choose for
every $k\in\{1, \ldots, N\}$ , $N\in \mathbb{N}$ , the Bernoulli measures $\mu_{k}=Be(\omega_{k})$ :

(88) $\mu_{k}(\eta_{k}=1)=\omega_{k}$ , $\omega_{k}\in[\delta, 1-\delta]$ , $k=1$ , $\ldots$ , $N$

Here $\delta\in(0,1/2]$ is fixed and $\omega\in[\delta, 1 -\delta]^{N}$ can be interpreted as a
realization of a random field, as in $[12, 23]$ . However, we shall not use
any probabilistic structure behind the variables $\omega$ and our results will
all be uniform in $\omega\in[\delta, 1-\delta]^{N}$ . For every such $\omega$ , every $\rho\in[0,1]$ , we
define the (quenched) canonical measure

(90) $\nu_{N,,,\rho}=\otimes k=1N\mu_{k}(\cdot|\sum_{\ell=1}^{N}\eta_{\ell}=\rho N)$ .

The Dirichlet form of the complete graph dynamics is written as in (3)
with the choice

$v_{k,,,l}f=\sqrt{c_{k},\ell(\eta)}[f(\eta^{k,\ell})-f(\eta)]$ ,

where as usual $\eta^{k,\ell}$ denotes the configuration where $\eta_{k}$ and $\eta_{\ell}$ have been
exchanged, and $c_{k,,,\ell}$ denotes the associated transition rate. A possible
choice of the rates is e.g.

$c_{k,,,\ell}(\eta)=\{$

$\omega_{k}(1-\omega_{\ell})$ $(\eta_{k}, \eta\ell)=(0,1)$

$\omega_{\ell}(1-\omega_{k})$ $(\eta_{k}, \eta_{l})=(1,0)$

The result below applies to any choice of rates provided these are uni-
formly bounded from above and away from zero.

For every fixed $\omega$ we call $\gamma^{\omega}(N, \rho)$ the corresponding Poincar\’e con-
stant as in (4).
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Theorem 8.1. For every $\delta\in(0,1/2]$ there exists $ C<\infty$ such
that

(91) $\sup$ $\sup$ $\sup$ $\gamma^{\omega}(N, \rho)\leq C$ .
$N\geq 2\omega\in[\delta,1-\delta]^{N}\rho\in(0,1)$

Theorem 8.1 is a useful tool in the proof of hydrodynamic limit for
the site-disordered simple exclusion process, $[12, 23]$ . One can check that
the model described above satisfies the moving particle lemma (MP) of
section 2. A little care is required here because of the inhomogeneous
medium. We refer to Lemma 3.1 in [23] for details. Thus an immediate
corollary of Theorem 8.1 is the diffusive bound on the spectral gap of
the local dynamics, see (30)-(32).

8. 1. Proof of Theorem 8. 1

We use the iteration outlined in Proposition 2.1. From a comparison
with the homogeneous case $\omega_{k}\equiv const$ , we see that $\sup_{\omega}\sup_{\rho}\gamma^{\omega}(N, \rho)\leq$

$C^{N}$ for some $ C<\infty$ . This guarantees that the first hypothesis of the
proposition is satisfied.

If $P$ denotes the operator introduced in (5) we need to show that
(SGP) holds, i.e. that for every $f\in L^{2}(\nu_{N,,,\rho})$ with $\nu_{N,,,\rho}(f)=0$

(92) $\nu_{N,,,\rho}(f(1-P)f)\geq\frac{N-2}{N-1}[1-CN^{-1-\epsilon}]\nu_{N,,,\rho}(f^{2})$

with independent constants $\epsilon>0$ , $ C<\infty$ . As seen in section 2 (see the
proof of Lemma 2.2) it is sufficient to prove (92) for functions $f$ of the

form $f(\eta)=\sum_{k=1}^{N}g_{k}(\eta_{k})$ with $g_{k}$ : $X\rightarrow \mathbb{R}$ a mean-zero function. Since
here $X=\{0,1\}$ , we must have $g_{k}=\alpha_{k}(\eta_{k}-\rho_{k})$ , $\rho_{k}:=\nu_{N,,,\rho}(\eta_{k})$ , for
some $\alpha_{k}\in \mathbb{R}$ . That is, we shall prove (92) for functions of the form

(93) $f(\eta)=\sum_{k=1}^{N}\alpha_{k}\overline{\eta}_{k}$ , $\alpha\in \mathbb{R}^{N}$

with $\overline{\eta}_{k}:=\eta_{k}-\rho_{k}$ . We take $f$ as in (93) and compute

(94)
$\nu_{N,,,\rho}(f^{2})=\sum_{k,,,\ell}\alpha_{k}\alpha_{\ell}\nu_{N,,,\rho}(\overline{\eta}_{k}\overline{\eta}_{\ell})=\langle\tilde{\alpha}, Q\tilde{\alpha}\rangle$

where we use the notation

$Q_{k,,,\ell}:=\frac{\nu_{N,\rho}(\overline{\eta}_{k}\overline{\eta}_{\ell})}{\gamma_{k}\gamma\ell}$ , $\tilde{\alpha}_{k}:=\gamma_{k}\alpha_{k}$ , $\gamma_{k}^{2}:=\nu_{N,,,\rho}(\overline{\eta}_{k}^{2})=\rho_{k}(1-\rho_{k})$
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and $\langle v, w\rangle:=\sum_{k=1}^{N}v_{k}w_{k}$ $fr$ the scalar product in $\mathbb{R}^{N}$ . Observing that

$\nu_{N,,,\rho}(\overline{\eta}_{k}|\eta_{j})=\frac{\nu_{N,\rho}(\overline{\eta}_{k}\overline{\eta}_{j})}{\gamma_{j}^{2}}\overline{\eta}_{j}$

one obtains in a similar way

$\nu_{N,,,\rho}(fPf)=\frac{1}{N}\langle\tilde{\alpha}, Q^{2}\tilde{\alpha}\rangle$ .

$Q$ is a non-negative matrix. Setting $\hat{\alpha}:=Q^{\frac{1}{2}}\tilde{\alpha}$ we have

(95) $\nu_{N,,,\rho}(f(1-P)f)=\langle\hat{\alpha}, (1-\frac{Q}{N})\hat{\alpha}\rangle$ , $\nu_{N,,,\rho}(f^{2})=\langle\hat{\alpha},\hat{\alpha}\rangle$ .

We write now $\Gamma:=1-Q$ , so that

$\Gamma_{k,,,\ell}=\{$

$-\frac{\iota/_{N,\rho}(\overline{\eta}_{k}\overline{\eta}\ell)}{\gamma_{k}\gamma\ell}$ $ k\neq\ell$

0 $ k=\ell$

Then (95) reads

$\nu_{N,,,\rho}(f(1-P)f)=\frac{N-1}{N}\langle\hat{\alpha}, (1+\frac{\Gamma}{N-1})\hat{\alpha}\rangle$ .

By (95), the claim (92) follows if we can prove

(96) $\Gamma\geq-CN^{-\epsilon}$

This in turn will follow from the next lemma.

Lemma 8.2. There exists $ C<\infty$ , $\epsilon>0$ such that for all $\omega$ , $N$ , $\rho$

and $ k\neq\ell$

(97) $|\Gamma_{k,,,\ell}-\frac{\beta_{k}\beta_{\ell}}{N}|\leq CN^{-1-\epsilon}$

with non-negative numbers $\beta_{k}=\beta_{k}(\omega, N, \rho)$ , $k=1$ , $\ldots$ , $N$ satisfying
$\beta_{k}\leq C$ uniformly.

Assuming (97) we conclude

$\langle v, \Gamma v\rangle=\sum_{k}\sum_{\ell\neq k}v_{k}v_{\ell}(\frac{\beta_{k}\beta_{\ell}}{N}+O(N^{-1-\epsilon}))$

$\geq-\frac{1}{N}\sum_{k}\beta_{k}^{2}v_{k}^{2}-CN^{-\epsilon}\sum_{k}v_{k}^{2}\geq-C’N^{-\epsilon}\langle v, v\rangle$

with a constant $ C’<\infty$ . This gives (96).
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8.2. Proof of Lemma 8.2

We start with some preliminaries. Let $p_{k,,,\rho}$ be the grand-canonical
single site probabilities

$p_{k,,,\rho}:=\frac{\omega_{k}e^{\lambda}}{\omega_{k}e^{\lambda}+1-\omega_{k}}$

where $\lambda=\lambda_{N,,,\rho}^{\omega}$ is a real number such that $\sum_{k=1}^{N}p_{k,,,\rho}=\rho N$ . We set
$\mu_{k,,,\rho}:=Be(p_{k,,,\rho})$ and call $\mu_{N,,,\rho}=\otimes_{k=1}^{N}\mu_{k,,,\rho}$ the corresponding grand-
canonical measure. We also use the notations

$\hat{\eta}_{k}=\eta_{k}-p_{k,,,\rho}$ , $\sigma_{k,,,\rho}^{2}=p_{k,,,\rho}(1-p_{k,,,\rho})$ , $\sigma_{\rho}^{2}=\frac{1}{N}\sum_{k=1}^{N}\sigma_{k,,,\rho}^{2}$

Since $\omega_{k}\in[\delta, 1 -\delta]$ it is immediate to check that there exists $C=$

$ C(\delta)<\infty$ such that $p_{k,,,\rho}\leq Cp_{\ell,,,\rho}$ for all $k$ , $\ell$ and $\rho$ . In particular for
some $ C=C(\delta)<\infty$ one has

(98) $ C^{-1}\rho\leq p_{k,,,\rho}\leq C\rho$ , $C^{-1}\rho(1-\rho)\leq\sigma_{k,,,\rho}^{2}\leq C\rho(1-\rho)$

Given $k$ , $\ell\in\{1, \ldots, N\}$ consider the events

$U_{1}=\{\eta ^{:} _{j\neq k,\ell}\sum\eta_{j}=\rho N-1\}$
,

$U_{2}=\{\eta ^{:} _{j\neq k,\ell}\sum\eta_{j}=\rho N-2\}$
.

A simple computation shows that

(99) $\frac{\rho_{k}}{\rho_{\ell}}=\frac{\omega_{k}((1-\omega_{\ell})\mu_{N,\rho}(U_{1})+\omega_{\ell}e^{\lambda}\mu_{N,\rho}(U_{2}))}{\omega\ell((1-\omega_{k})\mu_{N,\rho}(U_{1})+\omega_{k}e^{\lambda}\mu_{N,\rho}(U_{2}))}$

From the bounds on $\omega$ we deduce that there exists $ C=C(\delta)<\infty$ such
that $\rho_{k}\leq C\rho_{\ell}$ and similarly

(100) $ C^{-1}\rho\leq\rho_{k}\leq C\rho$ , $C^{-1}\rho(1-\rho)\leq\gamma_{k}^{2}\leq C\rho(1-\rho)$ .

We turn to the proof of the lemma. By duality we may assume
$\rho\leq 1/2$ . We start with the case $1/2\geq\rho\geq N^{-3/4}$ . Let $\tilde{v}_{k,,,\rho}(\zeta)$ denote
the characteristic function

$\tilde{v}_{k,,,\rho}(\zeta)=\mu_{k,,,\rho}[\exp(i\frac{\zeta\hat{\eta}_{k}}{\sigma_{\rho}\sqrt{N}})]$ .

Since by (98) $\sigma_{k,,,\rho}^{2}\geq C^{-1}\sigma_{\rho}^{2}$ , the argument of Lemma 3.3 implies the
Gaussian bound

(100) $|\tilde{v}_{k,,,\rho}(\zeta)|\leq e^{-a\zeta^{2}/N}$ , $|\zeta|\leq\pi\sigma_{\rho}\sqrt{N}$
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with some $a>0$ only depending on $\delta$ . Using Fourier transform we see
that

$\nu_{N,,,\rho}(\overline{\eta}_{k}\overline{\eta}_{\ell})=\frac{p_{k,\rho}p_{\ell,\rho}A_{k,\ell}}{B^{2}}$

with

$B:=\int d\zeta\prod_{k=1}^{N}\tilde{v}_{k,,,\rho}(\zeta)$

and

$A_{k,,,\ell}:=\int d\zeta e^{i\frac{\zeta}{\sigma_{\rho^{\sqrt{N}}}}(2-p_{k,\rho}-p_{\ell,\rho})}\prod_{j\neq k,\ell}\tilde{v}_{j,\rho}(\zeta)\int d\zeta’\prod_{j}\tilde{v}_{j,\rho}(\zeta’)$

(102)

$-\int d\zeta^{i(1-p_{k,\rho})}e^{\tilde{\sigma_{\rho^{\sqrt{N}}}}}\prod_{j\neq k}\tilde{v}_{j,\rho}(\zeta)\int d\zeta’e^{i\frac{\zeta^{l}}{\sigma_{\rho}\sqrt{N}}(1-p_{l,\rho})}\prod_{j\neq\ell}\tilde{v}_{j,\rho}(\zeta’)$ .

Here all integrals are in the range $[-\pi\sigma_{\rho}\sqrt{N}, \pi\sigma_{\rho}\sqrt{N}]$ . Using the hy-
pothesis $\rho\geq N^{-3/4}$ , the bounds (98) and the computation of section 3,
see (47), we have

$\tilde{v}_{j,\rho}(\zeta)=1-\frac{\zeta^{2}\sigma_{j,\rho}^{2}}{2\sigma_{\rho}^{2}N}+O(N^{-1-\epsilon})$ , $|\zeta|\leq C\log N$ .

Since $\sigma_{\rho}^{2}=(\sum_{k}\sigma_{k,,,\rho}^{2})/N$ we have

$\prod_{j}\tilde{v}_{j,\rho}(\zeta)=1-\frac{\zeta^{2}}{2}+O(N^{-\epsilon})$ , $|\zeta|\leq C\log N$ .

As in (50) we deduce

$B=\sqrt{2\pi}+O(N^{-\epsilon})$

Moreover

$\prod_{j\neq k,\ell}\tilde{v}_{j,\rho}(\zeta)=(1+\frac{\zeta^{2}(\sigma_{k,\rho}^{2}+\sigma_{\ell,\rho}^{2})}{2\sigma_{\rho}^{2}N}+O(N^{-1-\epsilon}))\prod_{j}\tilde{v}_{j,\rho}(\zeta)$ ,

$\prod_{j\neq k}\tilde{v}_{j,\rho}(\zeta)=(1+\frac{\zeta^{2}\sigma_{k,\rho}^{2}}{2\sigma_{\rho}^{2}N}+O(N^{-1-\epsilon}))\prod_{j}\tilde{v}_{j,\rho}(\zeta)$ , $|\zeta|\leq C\log N$ .

If we plug these expansions in (102) and open all the brackets as in the
derivation of (48) we obtain the estimate

$p_{k,,,\rho}p_{\ell,,,\rho}A_{k,,,\ell}=-2\pi\frac{\sigma_{k,\rho}^{2}\sigma_{\ell,\rho}^{2}}{\sigma_{\rho}^{2}N}+O(\sigma_{\rho}^{2}N^{-1-\epsilon})$
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uniformly in the case $\rho\geq N^{-3/4}(\sigma_{\rho}^{2}\geq C^{-1}N^{-3/4})$ . Using $\gamma_{k}=$

$O(\sigma_{k,,,\rho})=O(\sigma_{\rho})$ the Lemma follows with $\beta_{k}=\sigma_{k,,,\rho}^{2}/(\gamma_{k}\sigma_{\rho})=O(1)$

by (98) and (100). This proves (8.2) in the case $\rho\geq N^{-3/4}$ .

We now prove the lemma for densities $\rho\leq N^{-3/4}$ . We set $\hat{\omega}_{k}:=$

$\omega_{k}/(1-\omega_{k})$ and rewrite (99) as

$\overline{\hat{\omega}_{\ell}}\overline{1+e^{\lambda}\hat{\omega}_{k}W}$
’(103) $\frac{\rho_{k}}{\rho_{l}}=\hat{\omega}_{k}1+e^{\lambda}\hat{\omega}_{\ell}W$

$W:=\frac{\mu_{N,\rho}(U_{2})}{\mu_{N,\rho}(U_{1})}$ .

When $\rho N=1$ we have $W=0$ and $\rho_{k}/\rho_{\ell}=\hat{\omega}_{k}/\hat{\omega}_{\ell}$ . Suppose $\rho N\geq 2$ .

Define the event

$V^{m}=\{\eta ^{:} _{j\neq k,\ell,m}\sum\eta_{j}=\rho N-2\}$
.

Then

$\mu_{N,,,\rho}(U_{1})=\frac{1}{\rho N-1}\sum_{m\neq k,\ell}p_{m,,,\rho}\mu_{N,,,\rho}(V^{m})$ ,

$\mu_{N,,,\rho}(U_{2})=\frac{1}{N(1-\rho)}\sum_{m\neq k,\ell}(1-p_{m,,,\rho})\mu_{N,,,\rho}(V^{m})$ .

Since $ p_{m,,,\rho}\geq C^{-1}\rho$ we see that $W=\mu_{N,,,\rho}(U_{2})/\mu_{N,,,\rho}(U_{1})\leq C$ uniformly.
Using $ e^{\lambda}\leq Cp_{k,,,\rho}\leq C’\rho$ , from (103) we have

(104) $\frac{\rho_{k}}{\rho\ell}=\frac{\hat{\omega}_{k}}{\hat{\omega},\ell},[1+O(\rho)]$ .

Summing over $k$ in (104) we arrive at the estimate

(105) $\rho\ell=\frac{\rho N\hat{\omega}_{\ell}}{\sum_{k}\hat{\omega}_{k}}+O(\rho^{2})$ .

Set now $\rho_{\ell}^{(j)}:=\nu_{N,,,\rho}(\eta_{\ell}|\eta_{j}=1)$ . From (105) applied to $N-1$ sites with
$\rho N-1$ particles:

$\rho_{\ell}^{(j)}=\frac{(\rho N-1)\hat{\omega}_{\ell}}{\sum_{k\neq j}\hat{\omega}_{k}}+O(\rho^{2})=\rho_{\ell}-\frac{\hat{\omega}_{\ell}}{\sum_{k}\hat{\omega}_{k}}+O(\rho^{2})$ .

Since $\nu_{N,,,\rho}(\overline{\eta}_{k}\overline{\eta}\ell)=-\rho_{k}(\rho\ell-\rho_{\ell}^{(k)})$ , $\Gamma_{k,,,\ell}$ can be written as

$\Gamma_{k,,,\ell}=\frac{\rho_{k}\hat{\omega}_{\ell}}{\gamma_{k}\gamma_{\ell}\sum_{j}\hat{\omega}_{j}}+O(\rho^{2})=\frac{\rho N\hat{\omega}_{k}\hat{\omega}_{\ell}}{\gamma_{k}\gamma_{\ell}(\sum_{j}\hat{\omega}_{j})^{2}}+O(\rho^{2})$ .
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Since $\rho^{2}\leq N^{-3/2}$ , (97) follows with $\beta_{k}:=N\hat{\omega}_{k}\sqrt{\rho}/\gamma_{k}(\sum_{j}\hat{\omega}_{j})$ . Then
$\beta_{k}=O(1)$ by (100). This completes the proof of Lemma 8.2.
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Ten Explicit Criteria of One-Dimensional Processes

Mu-Fa Chen

Abstract.

The traditional ergodicity consists a crucial part in the theory
of stochastic processes, plays a key role in practical applications.
The ergodicity has much refined recently, due to the study on some
inequalities, which are especially powerful in the infinite dimensional
situation. The explicit criteria for various types of ergodicity for
birth-death processes and one-dimensional diffusions are collected in
Tables 8.1 and 8.2, respectively. In particular, an interesting story

about how to obtain one of the criteria for birth-death processes is
explained in details. Besides, a diagram for various types of ergodicity
for general reversible Markov processes is presented.

The paper is organized as follows. First, we recall the study on an
exponential convergence from different point of view in different sub-
jects: probability theory, spectral theory and harmonic analysis. Then
we show by examples the difficulties of the study and introduce the ex-
plicit criterion for the convergence, the variational formulas and explicit
estimates for the convergence rates. Some comparison with the known
results and an application are included. Next, we present ten (eleven)
criteria for the two classes of processes, respectively, with some remarks.
In particular, a diagram of various types of ergodicity for general re-
versible Markov processes is presented. For which, partial proofs are
included in Appendix. Finally, we indicate a generalization to Banach
spaces, this enables us to cover a large class of inequalities (equivalently,
various types of ergodicity).

Let us begin with the paper by recalling the three traditional types
of ergodicity.
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\S 1. Three traditional types of ergodicity

Let $Q=(q_{ij})$ be a regular $Q$-matrix on a countable set $E=$

$\{i,j, k, \cdots\}$ . That is, $q_{ij}\geq 0$ for all $i\neq j$ , $ q_{i}:=-q_{ii}=\sum_{j\neq i}q_{ij}<\infty$

for all $i\in E$ and $Q$ determines uniquely a transition probability matrix
$P_{t}=(p_{ij}(t))$ (which is also called a $Q$-process or a Markov chain). De-
note by $\pi=(\pi_{i})$ a stationary distribution of $P_{t}$ : $\pi P_{t}=\pi$ for all $t\geq 0$ .
From now on, assume that the $Q$-matrix is irreducible and hence the
stationary distribution $\pi$ is unique. Then, the three types of ergodicity
are defined respectively as follows.

(1.1) Ordinary ergodicity: $\lim_{t\rightarrow\infty}|p_{ij}(t)-\pi_{j}|=0$

(1.2) Exponential ergodicity: $\lim_{t\rightarrow\infty}e^{\hat{\alpha}t}|p_{ij}(t)-\pi_{j}|=0$

(1.3) Strong ergodicity: $\lim_{t\rightarrow\infty}\sup_{i}|p_{ij}(t)-\pi_{j}|=0$

$=\lim_{t\rightarrow\infty}e^{\hat{\beta}t}\sup_{i}|p_{ij}(t)-\pi_{j}|=0$ ,

where $\hat{\alpha}$ and $\hat{\beta}$ are (the largest) positive constants and $i,j$ varies over
whole $E$ . The equivalence in (1.3) is well known but one may refer to
Proof (b) in the Appendix of this paper. These definitions are mean-
ingful for general Markov processes once the pointwise convergence is
replaced by the convergence in total variation norm. The three types of
ergodicity were studied in a great deal during 1953-1981. Especially, it
was proved that

strong ergodicity $\Rightarrow exponential$ $ergodicity\Rightarrow ordinary$ ergodicity.

Refer to Anderson (1991), Chen (1992, Chapter 4) and Meyn and
Tweedie (1993) for details and related references. The study is quite
complete in the sense that we have the following criteria which are de-
scribed by the $Q$-matrix plus a test sequence $(y_{i})$ only, except the expo-
nential ergodicity for which one requires an additional parameter $\lambda$ .

Theorem 1.1 (Criteria). Let $ H\neq\emptyset$ be an arbitrary but fixed fi-
nite subset of E. Then the following conclusions hold.

(1) The process $P_{t}$ is ergodic iff the system of inequalities

(1.4) $\{$

$\sum_{j}q_{ij}y_{j}\leq-1$ , $i\not\in H$

$\sum_{i\in H}\sum_{j\neq i}q_{ij}y_{j}<\infty$

has a nonnegative finite solution $(y_{i})$ .
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(2) The process $P_{t}$ is exponentially ergodic iff for some $\lambda>0$ with
$\lambda<q_{i}$ for all $i$ , the system of inequalities

(1.5) $\{$

$\sum_{j}q_{ij}y_{j}\leq-\lambda y_{i}-1$ , $i\not\in H$

$\sum_{i\in H}\sum_{j\neq i}q_{ij}y_{j}<\infty$

has a nonnegative finite solution $(y_{i})$ .

(3) The process $P_{t}$ is strongly ergodic iff the system (1.4) of inequal-
ities has a bounded nonnegative solution $(y_{i})$ .

The probabilistic meaning of the criteria reads respectively as fol-
lows:

$\max_{i\in H}E_{i}\sigma_{H}<\infty$ , $\max_{i\in H}E_{i}e^{\lambda\sigma_{H}}<\infty$ and
$\sup_{i\in E}E_{i}\sigma_{H}<\infty$

,

where $\sigma_{H}=\inf$ { $t\geq the$ first jumping time: $X_{t}\in H$ } and $\lambda$ is the same
as in (1.5). The criteria are not completely explicit since they depend
on the test sequences $(y_{i})$ and in general it is often non-trivial to solve
a system of infinite inequalities. Hence, one expects to find out some
explicit criteria for some specific processes. Clearly, for this, the first
candidate should be the birth-death process. Recall that for a birth-
death process with state space $E=\mathbb{Z}_{+}=\{0,1,2, \cdots\}$ , its $Q$-matrix has
the form: $q_{i,,,i+1}=b_{i}>0$ for all $i\geq 0$ , $q_{i,,,i-1}=a_{i}>0$ for all $i\geq 1$ and
$q_{ij}=0$ for all other $i\neq j$ . Along this line, it was proved by Tweedie
(1981)(see also Anderson (1991) or Chen (1992)) that

(1.6) $S:=\sum_{n\geq 1}\mu_{n}\sum_{j\leq n-1}\frac{1}{\mu_{j}b_{j}}<\infty\Rightarrow Exponentia1$ ergodicity,

where $\mu_{0}=1$ and $\mu_{n}=b_{0}\cdots b_{n-1}/a_{1}\cdots a_{n}$ for all $n\geq 1$ . Refer to Wang
(1980), Yang (1986) or Hou et $a1$ (2000) for the probabilistic meaning of
$S$ . The condition is explicit since it depends only on the rates $a_{i}$ and $b_{i}$ .

However, the condition is not necessary. A simple example is as follows.
Let $a_{i}=b_{i}=i^{\gamma}(i\geq 1)$ and $b_{0}=1$ . Then the process is exponential
ergodic iff $\gamma\geq 2$ (see Chen (1996)) but $ S<\infty$ iff $\gamma>2$ . Surprisingly,
the condition is correct for strong ergodicity.

Theorem 1.2 (Zhang, Lin and Hou (2000)).

$S<\infty=Strong$ ergodicity.

Refer to Hou et $a1$ (2000). With a different proof, the result is extended
by Y. H. Zhang (2001) to the single-birth processes with state space
$\mathbb{Z}_{+}$ . Here, the term “single birth”means that $q_{i,,,i+1}>0$ for all $i\geq 0$
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but $q_{ij}\geq 0$ can be arbitrary for $j<i$ . Introducing this class of Q-
processes is due to the following observation: If the first inequality in
(1.4) is replaced by equality, then we get a recursion formula for $(y_{i})$

with one parameter only. Hence, there should exist an explicit criterion
for the ergodicity (resp. uniqueness, recurrence and strong ergodicity).
For (1.5), there is also a recursion formula but now two parameters are
involved and so it is unclear whether there exists an explicit criterion or
not for the exponential ergodicity.

Note that the criteria are not enough to estimate the convergence
rate $\hat{\alpha}$ or $\hat{\beta}$ (cf. Chen (2000a)). It is the main reason why we have to
come back to study the well-developed theory of Markov chains. For
birth-death processes, the estimation of $\hat{\alpha}$ was studied by Doorn in a
book (1981) and in a series of papers (1985, 1987, 1991). He proved, for
instance, the following lower bound

$\hat{\alpha}\geq\inf_{i\geq 0}\{a_{i+1}+b_{i}-\sqrt{a_{i}b_{i}}-\sqrt{a_{i+1}b_{i+1}}\}$ ,

which is exact when $a_{i}$ and $b_{i}$ are constant. The following formula for
the lower bounds was implicated in his papers and rediscovered in a
different point of view (in the study on spetral gap) by Chen (1996):

$\hat{\alpha}=\sup_{v>0}\inf_{i\geq 0}\{a_{i+1}+b_{i}-a_{i}/v_{i-1}-b_{i+1}v_{i}\}$ .

Besides, the precise $\hat{\alpha}$ was determined by Doorn for four practical mod-
els. The main tool used in Doom’s study is the Karlin-Mcgregor’s rep-
resentation theorem, a specific spectral representation, involving heavy
techniques. There is no explicit criterion for $\hat{\alpha}>0$ ever appeared so far.

\S 2. The first (non-trivial) eigenvalue (spectral gap)

The birth-death processes have a nice property–symmetrizability:
$\mu_{i}p_{ij}(t)=\mu_{j}p_{ji}(t)$ for all $i,j$ and $t\geq 0$ . Then, the matrix $Q$ can
be regarded as a self-adjoint operator on the real $L^{2}$ -space $L^{2}(\mu)$ with
norm $||$ . $||$ . In other words, one can use the well-developed $L^{2}$ theory
For instance, one can study the $L^{2}$ -exponential convergence given below.
Assuming that $ Z=\sum_{i}\mu_{i}<\infty$ and then setting $\pi_{i}=\mu_{i}/Z$ . Then, the
convergence means that

(2.1) $||P_{t}f-\pi(f)||\leq||f-\pi(f)||\leq e^{-\lambda_{1}t}$

for all $t\geq 0$ , where $\pi(f)=\int fd\pi$ and $\lambda_{1}$ is the first non-trivial eigenvalue
(more precisely, the spectral gap) of $(-Q)$ (cf. Chen (1992, Chapter 9)).
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The estimation of $\lambda_{1}$ for birth-death processes was studied by Sul-
livan (1984), Liggett (1989) and Landim, Sethuraman and Varadhan
(1996) (see also Kipnis&Lamdin (1999)). It was used as a comparison
tool to handle the convergence rate for some interacting particle sys-
tems, which are infinite-dimensional Markov processes. Here we recall
three results as follows.

Theorem 2.1 (Sullivan (1984)). Let $c_{1}$ and $c_{2}$ be two constants
satisfying

$c_{1}\geq\sup_{i\geq 1}\frac{\sum_{j\geq i}\mu_{j}}{\mu_{i}}$ , $c_{2}\geq\sup_{i\geq 1}\frac{\mu_{i}}{\mu_{i}a_{i}}$ .

Then $\lambda_{1}\geq 1/4c_{1}^{2}c_{2}$ .

Theorem 2.2 (Liggett (1989)). Let $c_{1}$ and $c_{2}$ be two constants
satisfying

$c_{1}\geq\sup_{i\geq 1}\frac{\sum_{j\geq i}\mu_{j}}{\mu_{i}a_{i}}$ , $c_{2}\geq\sup_{i\geq 1}\frac{\sum_{j\geq i}\mu_{j}a_{j}}{\mu_{i}a_{i}}$ .

Then $\lambda_{1}\geq 1/4c_{1}c_{2}$ .

Theorem 2.3 (Liggett (1989)). For bounded $a_{i}$ and $b_{i}$ , $\lambda_{1}>0$ iff
$(\mu_{i})$ has an exponential tail.

The reason we are mainly interested in the lower bounds is that on
the one hand, they are more useful in practice and on the other hand,
the upper bounds are usually easier to obtain from the following classical
variational formula.

$\lambda_{1}=\inf\{D(f) : \mu(f)=0, \mu(f^{2})=1\}$ ,

where

$D(f)=\frac{1}{2}\sum_{i,,,j}\mu_{i}q_{ij}(f_{j}-f_{i})^{2}$ , $\ovalbox{\tt\small REJECT}(D)=\{f\in L^{2}(\mu) ^{:} ^{D(f)}<\infty\}$

and $\mu(f)=\int fd\mu$ .
Let us now leave Markov chains for a while and turn to diffusions.

\S 3. One-dimensional diffusions

As a parallel of birth-death process, we now consider an elliptic
operator $L=a(x)d^{2}/dx^{2}+b(x)d/dx$ on the half line $[0, \infty)$ with $a(x)>$

$0$ everywhere. Again, we are interested in estimation of the principle
eigenvalues, which consist of the typical, well-known Sturm-Liouville
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eigenvalue problem in the spectral theory. Refer to Egorov&Kondratiev
(1996) for the present status of the study and references. Here, we
mention two results, which are the most general ones we have ever known
before.

Theorem 3.1. Let $b(x)\equiv 0$ (which corresponds to the birth-death
process with $a_{i}=b_{i}$ for all $i\geq 1$) and set $\delta=\sup_{x>0}x\int_{x}^{\infty}a^{-1}$ . Here
we omit the integration variable when it is integrated with respect to the
Lebesgue measure. Then, we have

1. $ Kac\emptyset$ Krein (1958): $\delta^{-1}\geq\lambda_{0}\geq(4\delta)^{-1}$ , here $\lambda_{0}$ is the first
eigenvalue corresponding to the Dirichlet boundary $f(0)=0$ .

2. Kotani 8 Watanabe (1982): $\delta^{-1}\geq\lambda_{1}\geq(4\delta)^{-1}$ .

It is simple matter to rewrite the classical variational formula as
(3.1) below. Similarly, we have (3.2) for $\lambda_{0}$ .

Poincar\’e inequalities.

(3.1) $\lambda_{1}$ : $||f-\pi(f)||^{2}\leq\lambda_{1}^{-1}D(f)$

(3.2) $\lambda_{0}$ : $||f||^{2}\leq\lambda_{0}^{-1}D(f)$ , $f(0)=0$ .

It is interesting that inequality (3.2) is a special but typical case of
the weighted Hardy inequality discussed in the next section.

\S 4. Weighted Hardy inequality

The classical Hardy inequality goes back to Hardy (1920):

$\int_{0}^{\infty}(\frac{f}{x})^{p}\leq(\frac{p}{p-1})^{p}\int_{0}^{\infty}f^{Jp}$ , $f(0)=0$ , $f’\geq 0$ ,

where the optimal constant was determined by Landau (1926). After
a long period of efforts by analysts, the inequality was finally extended
to the following form, called weighted Hardy inequality (Muckenhoupt
(1972) $)$

(4.1) $\int_{0}^{\infty}f^{2}d\nu\leq A\int_{0}^{\infty}f^{\prime^{2}}d\lambda$ , $f\in C^{1}$ , $f(0)=0$ ,

where $iJ$ and $\lambda$ be nonnegative Borel measures.
The Hardy-type inequalities play a very important role in the study

of harmonic analysis and have been treated in many publications. Refer
to the books: Opic&Kufner (1990), Dynkin (1990), Mazya (1985) and
the survey article Davies (1999) for more details. We will come back
this inequality soon.
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We have finished the overview of the study on the exponential con-
vergence (equivalently, the Poincar\’e inequality) in the different subjects.
In order to have a more concrete feeling about the the difficulties of the
topic, we now introduce some simple examples.

\S 5. Difficulties

First, consider the birth-death processes with finite state space $E$ .

When $E=\{0,1\}$ , the $Q$-matrix becomes $Q=\left(\begin{array}{ll}-b_{0} & b_{0}\\a_{1} & -a_{1}\end{array}\right)$ . Then,

it is trivial that $\lambda_{1}=a_{1}+b_{0}$ . The result is nice since either $a_{1}$ or $b_{0}$

increases, so does $\lambda_{1}$ . If we go one more step, $E=\{0,1, 2\}$ , then we
have four parameters $b_{0}$ , $b_{1}$ and $a_{1}$ , $a_{2}$ and

$\lambda_{1}=2^{-1}[a_{1}+a_{2}+b_{0}+b_{1}-\sqrt{(a_{1}-a_{2}+b_{0}-b_{1})^{2}+4a_{1}b_{1}}]$ .

Now, the role for $\lambda_{1}$ played by the parameters becomes ambiguous.
When $E=\{0,1, 2, 3\}$ , we have six parameters: $b_{0}$ , $b_{1}$ , $b_{2}$ , $a_{1}$ , $a_{2}$ , $a_{3}$ . Then

$\lambda_{1}=\frac{D}{3}-\frac{C}{3\cdot 2^{1/3}}+\frac{2^{1/3}(3B-D^{2})}{3C}$ ,

where the quantities $D$ , $B$ and $C$ are not too complicated:

$D=a_{1}+a_{2}+a_{3}+b_{0}+b_{1}+b_{2}$ ,

$B=a_{3}b_{0}+a_{2}(a_{3}+b_{0})+a_{3}b_{1}$

$+b_{0}b_{1}+b_{0}b_{2}+b_{1}b_{2}+a_{1}(a_{2}+a_{3}+b_{2})$ ,

$C=(A+\sqrt{4(3B-D^{2})^{3}+A^{2}})^{1/3}$

However, in the last expression, another quantity is involved:

$A=-2a_{1}^{3}-2a_{2}^{3}-2a_{3}^{3}+3a_{3}^{2}b_{0}+3a_{3}b_{0}^{2}-2b_{0}^{3}+3a_{3}^{2}b_{1}$

-12 $a_{3}b_{0}b_{1}+3b_{0}^{2}b_{1}+3a_{3}b_{1}^{2}+3b_{0}b_{1}^{2}-2b_{1}^{3}-6a_{3}^{2}b_{2}+6a_{3}b_{0}b_{2}$

$+3b_{0}^{2}b_{2}+6a_{3}b_{1}b_{2}-12b_{0}b_{1}b_{2}3b_{1}^{2}b_{2}-6a_{3}b_{2}^{2}+3b_{0}b_{2}^{2}+3b_{1}b_{2}^{2}$

-2 $b_{2}^{3}+3a_{1}^{2}(a_{2}+a_{3}-2b_{0}-2b_{1}+b_{2})$

$+3a_{2}^{2}[a_{3}+b_{0}-2(b_{1}+b_{2})]$

$+3a_{2}[a_{3}^{2}+b_{0}^{2}-2b_{1}^{2}-b_{1}b_{2}-2b_{2}^{2}$

$-a_{3}(4b_{0}-2b_{1}+b_{2})+2b_{0}(b_{1}+b_{2})]$

$+3a_{1}[a_{2}^{2}+a_{3}^{2}-2b_{0}^{2}-b_{0}b_{1}-2b_{1}^{2}-a_{2}(4a_{3}-2b_{0}+b_{1}-2b_{2})$

$+2b_{0}b_{2}+2b_{1}b_{2}+b_{2}^{2}+2a_{3}(b_{0}+b_{1}+b_{2})]$ .



96 M.-F. Chen

Thus, the roles of the parameters are completely mazed! Of course, it
is impossible to compute $\lambda_{1}$ explicitly when the size of the matrix is
greater than five!

Next, we go to the estimation of $\lambda_{1}$ . Consider the infinite state space
$E=\{0,1, 2, \cdots\}$ . Denote by $g$ and $D(g)$ , respectively, the eigenfunction
of $\lambda_{1}$ and the degree of $g$ when $g$ is polynomial. Three examples of the
perturbation of $\lambda_{1}$ and $D(g)$ are listed in Table 1.1.

Table 1.1 Three examples of the perturbation of $\lambda_{1}$ and $D(g)$

The first line is the well known linear model, for which $\lambda_{1}=1$ , inde-
pendent of the constant $c>0$ , and $g$ is linear. Next, keeping the same
birth rate, $b_{i}=i+1$ , changes the death rate $a_{i}$ from $2i$ to $2i+3$ (resp.
$2i+4+\sqrt{2})$ , which leads to the change of $\lambda_{1}$ from one to two (resp.
three). More surprisingly, the eigenfunction $g$ is changed from linear to
quadratic (resp. triple). For the other values of $a_{i}$ between $2i$ , $2i+3$

and $2i+4+\sqrt{2}$ , $\lambda_{1}$ is unknown since $g$ is non-polynomial. As seen from
these examples, the first eigenvalue is very sensitive. Hence, in general,
it is very hard to estimate $\lambda_{1}$ .

Hopefully, I have presented enough examples to show the difficulties
of the topic.

{?}6. Results about $\lambda_{1},\hat{\alpha}$ and $\lambda_{0}$

It is position to state our results. To do so, define

$\ovalbox{\tt\small REJECT}=\{w:w_{i}\uparrow\uparrow, \pi(w)\geq 0\}$ ,
$Z=\sum_{i}\mu_{i}$

,

$\delta=\sup_{i>0,,j}\sum_{\leq i-1}\frac{1}{\mu_{j}b_{j}}\sum_{j\geq i}\mu_{j}$ ,

$where\uparrow\uparrow means$ strictly increasing. By suitable modification, we can
define $\ovalbox{\tt\small REJECT}/$

’ and explicit sequences $\delta_{n}$ and $\delta_{n}’$ . Refer to Chen (2001a) for
details.

The next result provides a complete answer to the question proposed
in Section 1.

Theorem 6.1. For birth-death processes, the following assertions
hold.
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(1) Dual variational formulas:

(6.1) $\lambda_{1}=\sup_{w\in\Psi}\inf_{i\geq 0}\mu_{i}b_{i}(w_{i+1}-w_{i})/\sum_{j\geq i+1}\mu_{j}w_{j}$ [Chen (1996)]

(6.2) $=\inf_{w\in\Psi’}\sup_{i\geq 0}\mu_{i}b_{i}(w_{i+1}-w_{i})/\sum_{j\geq i+1}\mu_{j}w_{j}$ [Chen (2001a)]

(2) Appoximating procedure and explicit bounds:

$Z\delta^{-1}\geq\delta_{n}^{\prime-1}\geq\lambda_{1}\geq\delta_{n}^{-1}\geq(4\delta)^{-1}$ for all $n$ [Chen $(2000b,$ $2001a)$ ].

(3) Explicit criterion: $\lambda_{1}>0$ iff $\delta<\infty$ [Miclo (1999), Chen (20006)].
(4) Relation: $\hat{\alpha}=\lambda_{1}$ [Chen (1996)].

In (6.1), only two notations are used: the sets $\ovalbox{\tt\small REJECT}/$ and $\ovalbox{\tt\small REJECT}’$ of test
functions (sequences). Clearly, for each test function, (6.1) gives us a
lower bound of $\lambda_{1}$ . This explains the meaning of “variational”. Because
of (6.1), it is now easy to obtain some lower estimates of $\lambda_{1}$ , and in
particular, one obtains all the lower bounds mentioned above. Next,
by exchanging the orders of “

$\sup$
” and “ $\inf’’$ , we get (6.2) from (6.1),

ignoring a slight modification of $\ovalbox{\tt\small REJECT}/$ . In other words, (6.1) and (6.2) are
dual of one to the other. For the explicit estimates “

$\delta^{-1}\geq\lambda_{0}\geq(4\delta)^{-1}$
”

and in particular for the criterion, one needs to find out a representa-
tive test function $w$ among all $w$

$\in\ovalbox{\tt\small REJECT}/$ . This is certainly not obvious,
because the test function $w$ used in the formula is indeed a mimic of the
eigenfunction (eigenvector) of $\lambda_{1}$ , and in general, the eigenvalues and
the corresponding eigenfunctions can be very sensitive, as we have seen
from the above examples. Fortunately, there exists such a representa-
tive function with a simple form. We will illustrate the function in the
context of diffusions in the second to the last paragraph of this section.

In parallel, for diffusions on $[0, \infty]$ , define

$C(x)=\int_{0}^{x}b/a$ , $\delta=\sup_{x>0}\int_{0}^{x}e^{-C}\int_{x}^{\infty}e^{C}/a$ ,

$\ovalbox{\tt\small REJECT}=$ { $f\in C[0,$ $\infty)\cap C^{1}(0$ , $\infty)$ : $f(0)=0$ and $f’|_{(0,\infty)}>0$ }.

Theorem 6.2 (Chen ( $1999a$ , $2000b$ , $2001a$)). For diffusion
on $[0, \infty)$ , the following assertions hold.
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(1) Dual variational formulas:

(6.3) $\lambda_{0}\geq\sup_{f\in\ovalbox{\tt\small REJECT}}\inf_{x>0}e^{C(x)}f’(x)/\int_{x}^{\infty}fe^{C}/a$

(6.4)
$\lambda_{0}\leq\inf_{f\in\ovalbox{\tt\small REJECT}}$ , $\sup_{x>0}e^{C(x)}f’(x)/\int_{x}^{\infty}fe^{C}/a$

Furthermore, the signs of the equality in(6.3) and (6.4) hold if
both $a$ and $b$ are continuous on $[0, \infty)$ .

(2) Appoximating procedure and explicit bounds: A decreasing se-
quence $\{\delta_{n}\}$ and an increasing sequence $\{\delta_{n}’\}$ are constructed ex-
plicitly such that

$\delta^{-1}\geq\delta_{n}^{\prime-1}\geq\lambda_{0}\geq\delta_{n}^{-1}\geq(4\delta)^{-1}$ for all $n$ .

(3) Explicit criterion: $\lambda_{0}$ (resp. $\lambda_{1}$ ) $>0$ iff $\delta<\infty$ .

We mention that the above two results are also based on Chen and
Wang (1997a).

To see the power of the dual variational formulas, let us return to
the weighted Hardy’s inequality.

Theorem 6.3 (Muckenhoupt (1972)). The optimal constant $A$ in
the inequality

(6.5) $\int_{0}^{\infty}f^{2}d\iota/\leq A\int_{0}^{\infty}f^{\prime 2}d\lambda$ , $f\in C^{1}$ , $f(0)=0$ ,

satisfies $B\leq A\leq 4B$ , where $B=\sup_{x>0}\nu[x, \infty]\int_{x}^{\infty}(d\lambda_{abs}/dLeb)^{-1}$ and

$dAabs/dLeb$ is the derivative of the absolutely continuous part of $\lambda$ with
respect to the Lebesgue measure.

By setting $\nu=\pi$ and $\lambda=e^{C}dx$ , it follows that the criterion in
Theorem 6.2 is a consequence of the Muckenhoupt’s Theorem. Along
this line, the criteria in Theorems 6.1 and 6.2 for a typical class of the
processes were also obtained by Bobkov and G\"otze $(1999a, b)$ , in which,
the contribution of an earlier paper by Luo (1992) was noted.

We now point out that the explicit estimates “
$\delta^{-1}\geq\lambda_{0}\geq(4\delta)^{-1}$

”

in Theorems 6.2 or 6.3 follow from our variational formulas immediately.
Here we consider the lower bound “

$(4\delta)^{-1}$
” only, the proof for the upper

bound “ $\delta^{-1}$ ” is also easy, in terms of (6.4).
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Recall that $\delta=\sup_{x>0}\int_{0}^{x}e^{-C}\int_{x}^{\infty}e^{C}/a$ . Set $\varphi(x)=\int_{0}^{x}e^{-C}$ . By
using the integration by parts formula, it follows that

$\int_{x}^{\infty}\frac{\sqrt{\varphi}e^{C}}{a}=-\int_{x}^{\infty}\sqrt{\varphi}d(\int^{\infty}.\frac{e^{C}}{a})$

$\leq\frac{\delta}{\sqrt{\varphi(x)}}+\frac{\delta}{2}\int_{x}^{\infty}\frac{\varphi’}{\varphi^{3/2}}\leq\frac{2\delta}{\sqrt{\varphi(x)}}$ .

Hence

$I(\sqrt{\varphi})(x)=\frac{e^{-C(x)}}{(\sqrt{\varphi})(x)},\int_{x}^{\infty}\frac{\sqrt{\varphi}e^{C}}{a}\leq\frac{e^{-C(x)}\sqrt{\varphi(x)}}{(1/2)e^{-C(x)}}$ .
$\frac{2\delta}{\sqrt{\varphi(x)}}=4\delta$ .

This gives us the required bound by (6.3).
Theorem 6.2 can be immediately applied to the whole line or higher-

dimensional situation. For instance, for Laplacian on compact Riemann-
ian manifolds, it was proved by Chen&Wang (1997b) that

$\lambda_{1}\geq\sup_{f\in\ovalbox{\tt\small REJECT}}\inf_{r\in(0,D)}I(f)(r)^{-1}=:\xi_{1}$ ,

where $I(f)$ is the same as before but for some specific function $C(x)$ .

Thanks are given to the coupling technique which reduces the higher

dimensional case to dimension one. We now have $\delta^{-1}\geq\delta_{n}^{\prime-1}\downarrow\geq\xi_{1}\geq$

$\delta_{n}^{-1}\uparrow\geq(4\delta)^{-1}$ , similar to Theorem 6.2. Refer to Chen $(2000b, 2001a)$

for details. As we mentioned before, the use of the test functions is
necessary for producing sharp estimates. Actually, the variational for-
mula enables us to improve a number of best known estimates obtained
previously by geometers, but none of them can be deduced from the
estimates “

$\delta^{-1}\geq\xi_{1}\geq(4\delta)^{-1}‘‘$ . Besides, the approximating procedure
enables us to determine the optimal linear approximation of $\xi_{1}$ in $K$ :

$\xi_{1}\geq\frac{\pi^{2}}{D^{2}}+\frac{K}{2}$ ,

where $D$ is the diameter of the manifold and $K$ is the lower bound of
Ricci curvature (cf., Chen, Scacciatelli and Yao (2001)). We have thus
shown the value of our dual variational formulas.

\S 7. Three basic inequalities

Up to now, we have mainly studied the Poincar\’e inequality, i.e.,
(7.1) below. Naturally, one may study other inequalities, for instance,
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the logarithmic Sobolev inequality or the Nash inequality listed below.

(7.1)

Poincar\’e inequality: $||f-\pi(f)||^{2}\leq\lambda_{1}^{-1}D(f)$

(7.2)

Logarithmic Sobolev inequality: $\int f^{2}\log(|f|/||f||)d\pi\leq\sigma^{-1}D(f)$

(7.3)

Nash inequality: $||f-\pi(f)||^{2+4/\iota/}\leq\eta^{-1}D(f)||f||_{1}^{4/\iota/}$

(for some $\nu>0$ ).

Here, to save notation, $\sigma$ (resp. $\eta$ ) denotes the largest constant so that
(7.2) (resp. (7.3)) holds.

The importance of these inequalities is due to the fact that each
inequality describes a type of ergodicity. First, (7.1)=(2.1). Next,
the logarithmic Sobolev inequality implies (is indeed equivalent to, in the
context of diffusions) the decay of the semigroup $P_{t}$ to $\pi$ exponentially
in relative entropy with rate $\sigma$ and the Nash inequality is equivalent to
$||P_{t}f-\pi(f)||\leq C||f||_{1}/t^{\iota//2}$ .

\S 8. Criteria

Recently, the criteria for the last two inequalities as well as for the
discrete spectrum (which means that there is no continuous spectrum
and moreover, all eigenvalues have finite multiplicity) are obtained by
Mao (2000,$ ^{2002a}$ , based on the weighted Hardy’s inequality. On
the other hand, the main parts of Theorems 6.1 and 6.2 are extended
to a general class of Banach spaces in Chen $(2002a, d, e)$ , which unify
a large class inequalities and provide a unified criterion in particular.
We can now summarize the results in Table 8.1. The table is arranged
in such order that the property in the latter line is stranger than the
former one, the only exception is that even though the strong ergodicity
is often stronger than the logarithmic Sobolev inequality but they are
not comparable in general (Chen (2002b)).

Birth-death processes
Transition intensity:

$i\rightarrow i+1$ at rate $b_{i}=q_{i,,,i+1}>0$

$\rightarrow i-1$ at rate $a_{i}=q_{i,,,i-1}>0$ .
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Define

$\mu_{0}=1$ , $\mu_{n}=\frac{b_{0}b_{n-1}}{a_{1}a_{n}}\cdots\cdots$

’
$n\geq 1$ ;

$\mu[i, k]=\sum_{i\leq j\leq k}\mu_{j}$
.

Table 8.1. Ten criteria for birth-death processes

Here, “
$(*)$ & $\cdots$

” means that one requires the uniqueness condition in
the first line plus the condition $‘‘\ldots‘‘$ . The “

$(\in)$
” in the last line means

that there is still a small gap from being necessary. In other words, when
$lJ$ $\in(0,2]$ , there is still no criterion for the Nash inequality.

Diffusion processes on [0,$ \infty)$ with reflecting boundary
Operator:

$L=a(x)\frac{d^{2}}{dx^{2}}+b(x)\frac{d}{dx}$ .

Define

$C(x)=\int_{0}^{x}b/a$ , $\mu[x, y]=\int_{x}^{y}e^{C}/a$ .

For the Nash inequality, we have the same remark as before. The reason
we have one more criterion here is due to the equivalence of the loga-
rithmic Sobolev inequality and the exponential convergence in entropy.
However, this is no longer true in the discrete case. In general, the loga-
rithmic Sobolev inequality is stronger than the exponential convergence
in entropy. A criterion for the exponential convergence in entropy for
birth-death processes remains open (cf., Zhang and Mao (2000) and Mao
and Zhang (2000) $)$ . The two equivalences in the tables come from the
next diagram.
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Table 8.2. Eleven criteria for one-dimensional diffusions

\S 9. New picture of ergodic theory

Theorem 9.1. Let $(E, d)$ be a measurable space with countably
generated $g$ . Then, for a Markov processes with state space $(E, d)$ ,
reversible and having transition probability densities with respect to $a$

probability measure $\pi$ , we have the diagram shown in Figure 9.1.

Nash inequality
$\swarrow\swarrow$ $\searrow\searrow$

Logarithmic Sobolev inequality $L^{1}$ -exponential convergence
$\Downarrow$ $||$

Exponential convergence in entropy $\pi- a.s$ . Strong ergodicity
$\Downarrow$ $\Downarrow$

Poincar\’e inequality $=$ $\pi- a.s$ . Exponential ergodicity
$\Downarrow$

$L^{2}$ -algebraic ergodicity
$\Downarrow$

Ordinary ergodicity

Fig. 9.1. Diagram of nine types of ergodicity

Here are some remarks about Figure 9.1.

(1) The importance of the diagram is obvious. For instance, by us-
ing the estimates obtained from the study on Poincar\’e inequal-
ity, based on the advantage on the analytic approach –the
$L^{2}$ theory and the equivalence in the diagram, one can estimate
exponentially ergodic convergence rates, for which, the known
knowledge is still very limited. Actually, these two convergence
rates are often coincided (cf. the proofs given in Appendix). In
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particular, one obtains a criterion for the exponential ergodicity
in dimension one, which has been opened for a long period. Con-
versely, one obtains immediately some criteria, which are indeed
new, for Poincar\’e inequality to be held from the well-known crite-
ria for the exponential ergodicity. Next, there is still very limited
known knowledge about the $L^{1}$ -spectrum, due to the structure
of the $L^{1}$ -space, which is only a Banach but not Hilbert space.
Based on the probabilistic advantage and the identity in the di-
agram, from the study on the strong ergodicity, one learns a lot
about the $L^{1}$ -spectral gap of the generator.

(2) The $L^{2}$ -algebraic ergodicity means that $Var(P_{t}f)\leq CV(f)t^{1-q}$

$(t>0)$ holds for some $V$ having the properties: $V$ is homoge-
neous of degree two (in the sense that $V(cf+d)=c^{2}V(f)$ for any
constants $c$ and $d$ ) and $ V(f)<\infty$ for all functions $f$ with finite
support (cf. Liggett (1991)). Refer to Chen and Wang (2000),
R\"ockner and Wang (2001) for the study on the $L^{2}$ -algebraic con-
vergence.

(3) The diagram is complete in the following sense: each single-
directed implication can not be replaced by double-directed one.
Moreover, the $L^{1}$ -exponential convergence (resp., the strong er-
godicity) and the logarithmic Sobolev inequality (resp., the ex-
ponential convergence in entropy) are not comparable.

(4) The reversibility is used in both of the identity and the equiva-
lence. Without the reversibility, the $L^{2}$-exponential convergence
still implies $\pi- a.s$ . exponentially ergodic convergence.

(5) An important fact is that the condition “having densities” is
used only in the identity of $L^{1}$ -exponential convergence and $\pi- a.s$ .

strong ergodicity, without this condition, $L^{1}$ -exponential conver-
gence still implies $\pi- a.s$ . strong ergodicity, and so the diagram
needs only a little change (However, the reversibility is still re-
quired here). Thus, it is a natural open problem to remove this
“density’s condition”.

(6) Except the identity and the equivalence, all the implications in
the diagram are suitable for general Markov processes, not neces-
sarily reversible, even though the inequalities are mainly valuable
in the reversible situation. Clearly, the diagram extends the er-
godic theory of Markov processes.

The diagram was presented in Chen $(1999c, 2002b)$ , originally stated
mainly for Markov chains. Recently, the identity of $L^{1}$ exponential con-
vergence and the $\pi- a.s$ . strong ergodicity is proven by Mao (2002c). A
counter-example of diffusion was constructed by Wang (2001) to show
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that the strong ergodicity does not imply the exponential convergence
in entropy. Partial proofs of the diagram are given in Appendix.

\S 10. Go to Banach spaces

To conclude this paper, we indicate an idea to show the reason why
we should go to the Banach spaces.

Theorem 10.1 (Varopoulos, N. (1985); Carlen, E. A., Kusuoka,
S., Stroock, D. W. (1987); Bakry, D., Coulhon, T., Ledoux, M. and
Saloff-Coste, L. (1995) $)$ . When $\nu>2$ , the Nash inequality

$||f-\pi(f)||^{2+4/\iota/}\leq C_{1}D(f)||f||_{1}^{4/\iota/}$

is equivalent to the Sobolev-type inequality

$||f-\pi(f)||_{\iota//(\iota/-2)}^{2}\leq C_{2}D(f)$ ,

where $||$ . $||_{p}$ is the $L^{p}(\mu)$ -norm.

In view of Theorem 10.1, it is natural to study the inequality

$||(f-\pi(f))^{2}||_{B}\leq AD(f)$

for a general Banach space $(B, ||\cdot||_{B}, \mu)$ . It is interesting that even for the
general setup, we still have quite satisfactory results. Refer to Bobkov
and G\"otze $(1999a, b)$ and Chen $(2002a, d, e)$ for details.

\S 11. Appendix: Partial proofs of Theorem 9.1

The detailed proofs and some necessary counterexamples were pre-
sented in Chen $(1999c, 2002b)$ for reversible Markov processes, except
the identity of the $L^{1}$ -exponential convergence and $\pi- a.s$ . strong ergod-
icity. Note that for discrete state spaces, one can rule out “

$a.s$ .” used
in the diagram. Here, we prove the new identity and introduce some
more careful estimates for the general state spaces. The author would
like to acknowledge Y. H. Mao for his nice ideas which are included in
this appendix. The steps of the proofs are listed as follows.

(a) Nash inequality $\Rightarrow L^{1}$ -exponential convergence
and $\pi- a.s$ . Strong ergodicity.

(b) $L^{1}$ -exponential convergence $=\pi- a.s$ . Strong ergodicity.
(c) Nash inequality $\Rightarrow Logarithmic$ Sobolev inequality.
(d) $L^{2}$ -exponential $convergence\Rightarrow\pi- a.s$ . Exponential ergodicity.
(e) Exponential $ergodicity\Rightarrow L^{2}$-exponential convergence.
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(a) Nash inequality $\Rightarrow L^{1}- exponentia|$ convergence and $\pi- a.s$ .

Strong ergodicity [Chen (1999b)]. Denote by $||\cdot||_{p\rightarrow q}$ the operator’s norm
from $L^{p}(\pi)$ to $L^{q}(\pi)$ . Note that

Nash inequality $=Var(P_{t}(f))=||P_{t}f-\pi(f)||_{2}^{2}\leq C^{2}||f||_{1}^{2}/t^{q-1}$

$(q:=\nu/2+1)$

$=||(P_{t}-\pi)f||_{2}\leq C||f||_{1}/t^{(q-1)/2}$ .

$=||P_{t}-\pi||_{1\rightarrow 2}\leq C/t^{(q-1)/2}$ .

Since $||P_{t}-\pi||_{1\rightarrow 1}\leq||P_{t}-\pi||_{1\rightarrow 2}$ , we have

Nash inequality $\Rightarrow L^{1}$ -algebraic convergence.

Furthermore, because of the semigroup property, the convergence of
$||$ . $||_{1\rightarrow 1}$ must be exponential, we indeed have

Nash inequality $\Rightarrow L^{1}$ -exponential convergence.

In the symmetric case: $P_{t}-\pi=(P_{t}-\pi)^{*}$ , and so

$||P_{2t}-\pi||_{1\rightarrow\infty}\leq||P_{t}-\pi||_{1\rightarrow 2}||P_{t}-\pi||_{2\rightarrow\infty}=||P_{t}-\pi||_{1\rightarrow 2}^{2}$ .

Hence, $||P_{t}-\pi||_{1\rightarrow\infty}\leq C/t^{q-1}$ . Thus,

$ess\sup_{x}||P_{t}(x, \cdot)-\pi||_{Var}=ess\sup_{x}\sup|(P_{t}(x, \cdot)-\pi)f|$

$|f|\leq 1$

$\leq ess\sup_{x}\sup_{||f||_{1}\leq 1}|(P_{t}(x, \cdot)-\pi)f|=\sup_{||f||_{1}\leq 1}ess\sup_{x}|(P_{t}(x, \cdot)-\pi)f|$

$=||P_{t}-\pi||_{1\rightarrow\infty}\leq C/t^{q-1}\rightarrow 0$ , as $ t\rightarrow\infty$ .

This gives us the $\pi- a.s$ . strong ergodicity.

(b) $L^{1}- exponentia|$ convergence $=\pi- a.s$ . Strong ergodicity [Mao
(2002c) $]$ . Since $(L^{1})^{*}=L^{\infty}\Rightarrow||P_{t}-\pi||_{1\rightarrow 1}=||P_{t}^{*}-\pi||_{\infty\rightarrow\infty}$ and
$ P_{t}^{*}(x, \cdot)<<\pi$ , we have

$||P_{t}^{*}-\pi||_{\infty\rightarrow\infty}=ess\sup_{x}\sup_{||f||_{\infty}=1}|(P_{t}^{*}-\pi)f(x)|$

$=ess\sup_{x}$ $\sup$ $|(P_{t}^{*}-\pi)f(x)|$

$\sup|f|=1$

$=ess\sup_{x}||P_{t}^{*}(x, \cdot)-\pi||_{Var}$ .
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Hence, $\pi- a.s$ . strong ergodicity is exactly the same as the $L^{1}$ -exponential
convergence. Without condition “

$P_{t}^{*}(x, \cdot)<<\pi’’$ , the second equality
becomes $‘‘\geq’’$ , and so we have in the general reversible case that

$L^{1}$ -exponential $convergence\Rightarrow\pi- a.s$ . Strong ergodicity.

(c) Nash $inequality\Rightarrow Logarithmic$ Sobolev inequality
[Chen (1999b)]. Because $||f||_{1}\leq||f||_{p}$ for all $p\geq 1$ , we have $||\cdot||_{2\rightarrow 2}\leq$

$||$ . $||_{1\rightarrow 2}\leq C/t^{(q-1)/2}$ , and so

Nash inequality\Rightarrow Poincar\’e inequality $\Leftrightarrow\lambda_{1}>0$ .

$||P_{t}||_{p\rightarrow 2}\leq||P_{t}||_{1\rightarrow 2}\leq||P_{t}-\pi||_{1\rightarrow 2}+||\pi||_{1\rightarrow 2}<\infty$ , $p\in(1,2)$ .

The assertion now follows from [Bakry (1992); Theorem 3.6 and Propo-
sition 3.9].

The remainder of the Appendix is devoted to the proof of the asser-
tion:

(A1) $L^{2}$ -exponential $convergence\Leftrightarrow\pi- a.s$ . Exponential ergodicity.

Actually, this is done by Chen (2000a). Because, by assumption, the

process is reversible and $ P_{t}(x, \cdot)<<\pi$ . Set $p_{t}(x, y)=\frac{dP_{t}(x,\cdot)}{d\pi}(y)$ . Then
we have $p_{t}(x, y)=p_{t}(y, x)$ , $\pi\times\pi- a.s$ . $(x, y)$ . Hence

(A2) $\int p_{s}(x, y)^{2}\pi(dy)=\int p_{s}(x, y)p_{s}(y, x)\pi(dy)=p_{2s}(x, x)<\infty$

(Carlen et $a1$ (1987)).

This means that $p_{t}(x, \cdot)\in L^{2}(\pi)$ for all $t>0$ and $\pi- a.s$ . $x\in E$ . Thus, by
[Chen (2000a); Theorem 1.2] and the remarks right after the theorem,
(A1) holds.

The proof above is mainly based on the time-discrete analog result
by Roberts and Rosenthal (1997). Here, we present a more direct proof
of (A2) as follows.
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(d) $L^{2}$ exponential $convergence\Rightarrow\pi- a.s$ . Exponential ergodicity [Chen
$(1991, 1998, 2000a)]$ . Let $\mu<<\pi$ . Then

$||\mu P_{t}-\pi||_{Var}=\sup_{|f|\leq 1}|(\mu P_{t}-\pi)f|=\sup_{|f|\leq 1}|\pi(\frac{d\mu}{d\pi}P_{t}f-f)|$

$=\sup_{|f|\leq 1}|\pi(fP_{t}^{*}(\frac{d\mu}{d\pi})-f)|$

(A3) $=\sup_{|f|\leq 1}|\pi[f($ $P_{t}^{*}(\frac{d\mu}{d\pi}-1))]|$

$\leq||P_{t}^{*}(\frac{d\mu}{d\pi}-1)|\left|1 & \leq\right||\frac{d\mu}{d\pi}-1||_{2}e^{-tgap(L^{*})}$

$=||\frac{d\mu}{d\pi}-1||_{2}e^{-tgap(L)}$ .

We now consider two cases separately.
In the reversible case with $ P_{t}(x, \cdot)<<\pi$ , by (A2), we have

$||P_{t}(x, \cdot)-\pi||_{Var}\leq||P_{t-s}(\frac{dP_{s}(x,\cdot)}{d\pi}-1)||_{1}$

(A4) $\leq||p_{s}(x, \cdot)-1||_{2}e^{-(t-s)}$ gap(L)

$=[\sqrt{p_{2s}(x,x)-1}e^{s}$
gap

$(L)]e^{-tgap(L)}$ , $t\geq s$ .

Therefore, there exists $ C(x)<\infty$ such that

(A5) $||P_{t}(x, \cdot)-\pi||_{Var}\leq C(x)e^{-tgap(L)}$ , $t\geq 0$ , $\pi- a.s$ . (x).

Denote $by\in_{1}$ be the $largest\in such$ that $||P_{t}(x, \cdot)-\pi||_{Var}\leq C(x)e^{-\in t}$ for
all $t$ . $Then\in_{1}\geq gap(L)=\lambda_{1}$ .

In the $\varphi$-irreducible case, without using the reversibility and transi-
tion density, from (A3), one can still derive $\pi- a.s$ . exponential ergodicity
(but may have different rates). Refer to Roberts and Tweedie (2001) for
a proof in the time-discrete situation (the title of the quoted paper is
confused, where the term “ $L^{1}$ -convergence” is used for the $\pi- a.s$ . ex-
ponentially ergodic convergence, rather than the standard meaning of
$L^{1}$ -exponential convergence used in this paper. These two types of con-
vergence are essentially different as shown in Theorem 9.1). In other
words, the reversibility and the existence of the transition density are
not essential in this implication.

(e) $\pi- a.s$ . Exponential ergodicity $\Rightarrow L^{2}- e\times ponentia|$ convergence [Chen
(2000a), Mao (2002c) $]$ . In the time-discrete case, a similar assertion was
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proved by Roberts and Rosentha1(1997) and so can be extended to the
time-continuous case by using the standard technique [cf., Chen (1992),
4.4]. The proof given below provides more precise estimates. Let the

$\sigma$-algebra $g$ be countably generated. By Numemelin and P. Tuominen
(1982) or [Numemelin (1984); Theorem 6.14 (iii)], we have in the time-
discrete case that

$\pi- a.s$ . geometrically ergodic convergence

$=||||P^{n}(\blacksquare, \cdot)-\pi||_{Var}||_{1}$ geometric convergence,

here and in what follows, the $L^{1}$ -norm is taken with respect to the
variable $‘‘\circ‘‘$ . This implies in the time-continuous case that

$\pi- a.s$ . exponentially ergodic convergence

$\Leftrightarrow||||P_{t}(\blacksquare, \cdot)-\pi||_{Var}||_{1}$ exponential convergence.

Assume that $||||P_{t}(\blacksquare, \cdot)-\pi||_{Var}||_{1}\leq Ce^{-\epsilon_{2}t}$ with $1argest\in_{2}$ .
We now prove that $||||P_{t}(\circ, \cdot)-\pi||_{Var}||_{1}\geq||P_{t}-\pi||_{\infty\rightarrow 1}$ . Let $||f||_{\infty}=$

$1$ . Then

$||(P_{t}-\pi)f||_{1}=\int\pi(dx)|\int[P_{t}(x, dy)-\pi(dy)]f(y)|$

$\leq\int\pi(dx)\sup_{||g||_{\infty}\leq 1}|\int[P_{t}(x, dy)-\pi(dy)]g(y)|$

$=||||P_{t}(\circ, \cdot)-\pi||_{Var}||_{1}$

(Need $P_{t}$ ( $x$ , $\cdot)<<\pi$ or reversibility!).

Next, we prove that $||P_{2t}-\pi||_{\infty\rightarrow 1}=||P_{t}-\pi||_{\infty\rightarrow 2}^{2}$ in the reversible case.
We have

$||(P_{t}-\pi)f||_{2}^{2}=((P_{t}-\pi)f, (P_{t}-\pi)f)=(f, (P_{t}-\pi)^{2}f)$

$=(f, (P_{2t}-\pi)f)\leq||f||_{\infty}||(P_{2t}-\pi)f||_{1}$

$\leq||f||_{\infty}^{2}||P_{2t}-\pi||_{\infty\rightarrow 1}$ .

Hence $||P_{2t}-\pi||_{\infty\rightarrow 1}\geq||P_{t}-\pi||_{\infty\rightarrow 2}^{2}$ . The inverse inequality is obvious
by using the semigroup property and symmetry: $||P_{2t}-\pi||_{\infty\rightarrow 1}\leq||P_{t}-$

$\pi||_{\infty\rightarrow 2}||P_{t}-\pi||_{2\rightarrow 1}=||P_{t}-\pi||_{\infty\rightarrow 2}^{2}$ .

We remark that in general case, without reversibility, we have $||P_{t}-$

$\pi||_{\infty\rightarrow 1}\geq||P_{t}-\pi||_{\infty\rightarrow 2}^{2}/2$ . Actually,

$||(P_{t}-\pi)f||_{2}^{2}\leq\int|(P_{t}-\pi)f|^{2}d\pi\leq 2||f||_{\infty}\int|(P_{t}-\pi)f|d\pi$

$\leq 2||f||_{\infty}^{2}||P_{t}-\pi||_{\infty\rightarrow 1}$ , $f\in L^{\infty}(\pi)$ .
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Finally, assume that the process is reversible. We prove that $\lambda_{1}=$

gap(L)\geq $\in_{2}$ . We have just proved that for every $f$ with $\pi(f)=0$ and
$||f||_{2}=1$ , $||P_{t}f||_{2}^{2}\leq C||f||_{\infty}^{2}e^{-2\in_{2}t}$ . Following [Wang (2000; Lemma 2.2),
or R\"ockner and Wang (2001) $]$ , by the spectral representation theorem,
we have

$||P_{t}f||_{2}^{2}=\int_{0}^{\infty}e^{-2\lambda t}d(E_{\lambda}f, f)$

$\geq[\int_{0}^{\infty}e^{-2\lambda s}d(E_{\lambda}f, f)]^{t/s}$ (by Jensen inequality)

$=||P_{s}f||_{2}^{2t/s}$ , $t\geq s$ .

Thus, $||P_{s}f||_{2}^{2}\leq[C||f||_{\infty}^{2}]^{s/t}e^{-2\epsilon_{2}s}$ . Letting $ t\rightarrow\infty$ , we get

$||P_{s}f||_{2}^{2}\leq e^{-2\in_{2}s}$ , $\pi(f)=0$ , $||f||_{2}=1$ , $f\in L^{\infty}(\pi)$ .

Since $L^{\infty}(\pi)$ is dense in $L^{2}(\pi)$ , we have

$||P_{s}f||_{2}^{2}\leq e^{-2\in_{2}s}$ , $s\geq 0$ , $\pi(f)=0$ , $||f||_{2}=1$ .

Therefore, $\lambda_{1}\geq\in_{2}$ . Q.E.D.

Remark $AI$ . Note that when $p_{2s}(\cdot, \cdot)\in L^{1/2}(\pi)$ (in particular, when
$p_{2s}(x, x)$ is bounded in $x$ ) for some $s>0$ , from (A4), it follows that there
exists a constant $C$ such that $||||P_{t}(\blacksquare, \cdot)-\pi||_{Var}||_{1}\leq Ce^{-\lambda_{1}t}$ . Then, we
$have\in_{2}\geq\lambda_{1}$ . Combining this with (e), we indeed have $\lambda_{1}=\in_{2}$ .

Remark A2. It is proved by Hwang et $a1$ (2002) that under mild
condition, in the reversible case, $\lambda_{1}=\in_{1}$ . Refer also to Wang (2002) for
related estimates.

Final remark. The main body of this paper is an updated version of
Chen (2001c), which was written at the beginning stage of the study
on seeking explicit criteria. The resulting picture is now quite complete
and so the most parts of the original paper has to be changed, except

the first section. This paper also refines a part of Chen (2002c).
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Abstract.

Directed polymers in random environment can be thought of as
a model of statistical mechanics in which paths of stochastic pro-
cesses interact with a quenched disorder (impurities), depending on
both time and space. We review here main results which have been
obtained during the last fifteen years, with proofs to most of the re-
sults. The material covers the diffusive behavior of the polymers in
weak disorder phase studied by J. Imbrie, T. Spencer, E. Bolthausen,

R. Song and X. Y. Zhou [11, 3, 25], and localization of the paths in
strong disordered phase recently obtained by P. Carmona, Y. Hu,

and the authors of the present article $[4, 5]$ .
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1. Introduction

1.1. Physical background

We start with an informal description of the situation we will discuss
in these notes. Imagine a hydrophilic polymer chain wafting in water.
Due to the thermal fluctuation, the shape of the polymer should be
understood as a random object. We now suppose that the water contains
randomly placed hydrophobic molecules as impurities, which repel the
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hydrophilic monomers which the polymer consists of. The question we
address here is:

(1.1)
How do the impurities affect the global shape of the polymer chain?

We try to answer this question in a mathematical framework. However,
as is everywhere else in mathematical physics, it is very difficult to do so
without compromising with a rather simplified picture of the real world.
Here, our simplification goes as follows. We first suppress entanglement
and $U$-turns of the polymer; we shall represent the polymer chain as a
graph $\{(j, \omega_{j})\}_{j=1}^{n}$ in $\mathbb{N}\times \mathbb{Z}^{d}$ , so that the polymer is supposed to live
in $(1+d)$ -dimensional discrete lattice and to stretch in the direction of
the first coordinate. Each point $(j, \omega_{j})\in \mathbb{N}\times \mathbb{Z}^{d}$ on the graph stands
for the position of $j$-th monomer in this picture. Secondly, we assume
that, the transversal motion $\{\omega_{j}\}_{j=1}^{n}$ performs a simple random walk in
$\mathbb{Z}^{d}$ , if the impurities are absent. We then define the energy of the path
$\{(j, \omega_{j})\}_{j=1}^{n}$ by

(1.2) $-\beta\sum_{j=1}^{n}\eta(j, \omega_{j})$ ,

where $\beta=1/T>0$ is the inverse temperature and { $\eta(n, x)$ : $n$ $\geq 1$ , $ x\in$

$\mathbb{Z}^{d}\}$ is a real i.i.d. random variables, with $\eta(n, x)$ describing the presence
(or strength) of an impurity at site $(n, x)$ . The typical shape $\{(j, \omega_{j})\}_{j=1}^{n}$

of the polymer is then given by the one that minimizes the energy (1.2).
Let us suppose for example that $\eta(n, x)$ takes two different values $+1$

(”presence of a water molecule at ( $n$ , $x$ ) $’’$

) and -1 ( $‘‘$presence of the
hydrophobic impurity at $(n, x)$

” ). Then, the energy of the polymer is
increased $by+\beta$ each time a monomer is in contact with the impurity
$(\eta(j, \omega_{j})=-1)$ . Therefore, the typical shape of the polymer for each
given configuration of $\{\eta(j, x)\}$ is given by the one which tries to avoid
the impurities as much as possible. The purpose of these notes is to

introduce rigorous results which answer (1.1) roughly as follows.

(a): If $d\geq 3$ and $\beta$ small enough, the impurities do not affect the
global shape of the polymer (the weak disorder phase).

(b): If either (i): $d\leq 2$ and $\beta\neq 0$ or (ii): $d\geq 3$ and $\beta$ large enough1 ,
then, the impurities change the global shape of the polymer dras-
tically (the strong disorder phase).

$x$ To be precise, there are some exceptions. See Remark 2.2.1 below.
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1.2. Simple random walk model for directed polymers

We now put the informal description given in section 1.1 into a math-
ematical framework. As we mentioned before, the framework can be
thought of as a model in statistical mechanics. However, no prior knowl-
edge of statistical mechanics is needed in this paper. The model we
consider here is defined as a random walk in a random environment.
We first fix notation for the random walk and the random environment.
Then, we introduce the polymer measure.

$o$ The random walk: $(\{\omega_{n}\}_{n\geq 0}, P)$ is a simple random walk on the d-
dimensional integer lattice $\mathbb{Z}^{d}$ . More precisely, we let $\Omega$ be the path space
$\Omega=\{\omega=(\omega_{n})_{n\geq 0}; \omega_{n}\in \mathbb{Z}^{d}, n\geq 0\}$ , $F$ be the cylindrical $\sigma$-field on $\Omega$ ,

and, for all $n$ $\geq 0$ , $\omega_{n}$ : $\omega\mapsto\omega_{n}$ be the projection map. We consider the
unique probability measure $P$ on $(\Omega, \mathcal{F})$ such that $\omega_{1}-\omega_{0}$ , $\ldots$ , $\omega_{n}-\omega_{n-1}$

are independent and

$P\{\omega_{0}=0\}=1$ , $P\{\omega_{n}-\omega_{n-1}=\pm\delta_{j}\}=(2d)^{-1}$ , $j=1,2$ , $\ldots$ , $d$ ,

where $\delta_{j}=(\delta_{kj})_{k=1}^{d}$ is the $j$-th vector of the canonical basis of $\mathbb{Z}^{d}$ . In
the sequel, $P[X]$ denotes the $P$-expectation of a $r.v$ .(random variable)
$X$ on $(\Omega, F, P)$ .

$\circ$ The random environment: $\eta=\{\eta(n, x) : n\in \mathbb{N}, x\in \mathbb{Z}^{d}\}$ is a se-
quence of $r.v$ . ’s which are real valued, non-constant, and i.i.d.(independent
identically distributed) $r.v$ .’s defined on a probability space $(H, \mathcal{G}, Q)$

such that

(1.3) $ Q[\exp(\beta\eta(n, x))]<\infty$ for all $\beta\in \mathbb{R}$ .

Here, and in the sequel, $Q[Y]$ denotes the $Q$-expectation of a $r.v$ . $Y$ on
$(H, \mathcal{G}, Q)$ .

$\circ$ The polymer measure: For any $n$ $>0$ , define the probability mea-
sure $\mu_{n}$ on the path space $(\Omega, F)$ by

(1.4) $\mu_{n}(d\omega)=\frac{1}{Z_{n}}\exp(\beta\sum_{1\leq j\leq n}\eta(j, \omega_{j}))P(d\omega)$ ,

where $\beta>0$ is a parameter (the inverse temperature) and

(1.5) $Z_{n}=P[\exp(\beta\sum_{1\leq j\leq n}\eta(j, \omega_{j}))]$

is the normalizing constant (the partition function).
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The polymer measure $\mu_{n}$ can be thought of as a Gibbs measure on
the path space $(\Omega, F)$ with the Hamiltonian (1.2). We stress that the
random environment $\eta$ is contained in both $Z_{n}$ and $\mu_{n}$ without being
integrated out, so that they are $r.v$ . ’s on the probability space $(H, \mathcal{G}, Q)$ .

The polymer is attracted to sites where the random environment is pos-
itive, and repelled by sites where the environment is negative.

Remark 1.2.1. This model was originally introduced in physics
literature [10] to mimic the phase boundary of Ising model subject to
random impurities. Later on, the model reached the mathematics com-
munity $[11, 3]$ , where it was reformulated as above.

Here are two standard choices for the distribution of $\eta(n, x)$ .

Example 1.2.1. Bernoulli environment ([3, 11, 25]); This is
the case with

$Q\{\eta(n, x)=-1\}=p>0$ , $Q\{\eta(n, x)=+1\}=1-p>0$ .

In the physical picture described in section 1.1, $\eta(n, x)=-1$ (resp.
$\eta(n, x)=+1)$ can be interpreted as the presence of a hydrophobic im-
purity (resp. a water molecule) at site $(x, n)$ .

Example 1.2.2. Gaussian environment ([4]); This is the case
in which $\eta(n, x)$ is a standard normal random variable;

$Q\{\eta(n, x)\in dt\}=\frac{1}{\sqrt{2\pi}}$ $\exp(-t^{2}/2)dt$ .

2. Some typical results for the simple random walk model

In this section, we present some typical results for the simple random
walk model. Here, we focus on the conceptual issues on these results
and do not go into the proofs.

We now introduce an important quantity for this model, which ap-
pears in the assumptions of the results we present. Let $\lambda(\beta)$ be the
logarithmic moment generating function of $\eta(n, x)$ ,

(2.1) $\lambda(\beta)=\ln Q[\exp(\beta\eta(n, x))]$ , $\beta\in \mathbb{R}$ .

The function $\lambda(\beta)$ can be explicitly computed for some typical choice
of the distribution of $\eta(n, x)$ . For example, $\lambda(\beta)=\ln(pe^{-\beta}+(1-p)e^{\beta})$

for the Bernoulli environment (Example 1.2.2) and $\lambda(\beta)=\frac{1}{2}\beta^{2}$ for the
Gaussian environment (Example 1.2.2).
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2.1. The weak disorder phase

The results we present in this subsection show that the impurities do not
change the transversal fluctuation of the polymer if $d\geq 3$ and $\beta$ is small
enough. We first recall the following fact about the return probability
$\pi_{d}$ for the simple random walk:

(2.2) $\pi_{d}=def$
.

$P$ {$\omega_{n}=0$ for some $n\geq 1$ } $\{$

$=1$ if $d\leq 2$ ,
$<1$ if $d\geq 3$ .

More precisely, it is known that $\pi_{d+1}<\pi_{d}$ for all $d\geq 3$ [$22$ , Lemma 1]
and that $\pi_{3}=0.3405\ldots$ [ $26$ , page 103]. In particular, $\pi_{d}\leq 0.3405\ldots$ for
all $d\geq 3$ .

Theorem 2.1.1. (The diffusive behavior; [11, 3, 25]) Sup-
pose that d $\geq 3$ (hence $\pi_{d}<1$ ) and that

(2.3) $\gamma_{1}(\beta)=\lambda(ef.2\beta)-2\lambda(d\beta)<\ln(1/\pi_{d})$ .

Then,

(2.4) $\lim\mu_{n}[|\omega_{n}|^{2}]/n=1$ Q-a. $s$ .
$ n\nearrow\infty$

Note that $\gamma_{1}(\beta)$ is increasing on $[0, \infty)$ and $\gamma_{1}(0)=0$ so that the
condition in (2.3) does hold if $\beta$ is small. Proof of Theorem 2.1.1 is given
in section 3.2

Example 2.1.1. Consider the Bernoulli environment (Exam-
$ple$ $1.2.1)$ . In this case, it is not difficult to see from direct computations
that $\lim\gamma_{1}(\beta)=-\ln(1-p)$ . This shows that (2.3) holds for all $\beta\geq 0$

$\beta\nearrow\infty$

if $p<1-\pi_{d}$ .

Example 2.1.2. Consider the Gaussian environment (Exam-
$ple$ $1.2.2)$ . Then, $\gamma_{1}(\beta)=\beta^{2}$ and hence (2.3) holds if $\beta<\sqrt{\ln(1/\pi_{d})}$ .

Remark 2.1.1. The first rigorous proof of Theorem 2.1.1 was
obtained by J. Z. Imbrie and T. Spencer [11] in the case of Bernoulli
environment. Soon afterwards, a more transparent proof based on the
martingale analysis was given by E. Bolthausen [3]. The martingale
proof was then extended to general environment under condition (2.3)
by R. Song and X. Y. Zhou [25]. By the argument in $[3, 25]$ , it is possible
to get a much more precise statement than (2.4). In fact, under the same
assumption in Theorem 2.1.1, the following central limit theorem holds;
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for all $f\in C(\mathbb{R}^{d})$ with at most polynomial growth at infinity,

(2.5)

$\lim_{n\nearrow\infty}\mu_{n}[f(\omega_{n}/\sqrt{n})]=(2\pi)^{-d/2}\int_{\mathbb{R}^{d}}f(x/\sqrt{d})\exp(-|x|^{2}/2)dx$ , Q-a.s.

The diffusive behavior (2.4) follows from (2.5) by choosing $f(x)=|x|^{2}$ .

In [3], (2.5) is obtained for the Bernoulli environment only. However,
with the help of the observation made in [25], it is not difficult to extend
the central limit theorem to general environment under the assumption
in Theorem 2.1.1. We will sketch the proof of (2.5) in Remark 3.2.4
below.

We now recall the following well known fact for the simple random
walk, i.e., the case of $\beta=0$ ;

(2.6) $\max_{x\in \mathbb{Z}^{d}}P\{\omega_{n}=x\}=\mathcal{O}(n^{-d/2})$ , as $n$ $\nearrow\infty$ .

The decay rate $n^{-d/2}$ in (2.6) can be understood asamanifestation of
the fact that the possible position of $\omega_{n}$ is spread over a ball in $\mathbb{Z}^{d}$ with
radius const, $\times\sqrt{n}$ .

For $\beta\neq 0$ , we can still prove (2.6) in a weaker form as follows.

Theorem 2.1.2. (Delocalization; [4, 5]) Suppose that d $\geq 3$

and that $\beta$ is small enough so that (2.3) holds. Then,

(2.7)
$\sum_{n\geq 1}\max_{x\in \mathbb{Z}^{d}}\mu_{n-1}\{\omega_{n}=x\}^{2}<\infty$

, Q-a. $s$ .

and thus,

(2.3) $\lim_{n\nearrow\infty}\max_{x\in \mathbb{Z}^{d}}\mu_{n-1}\{\omega_{n}=x\}=0$ , Q-a. $s$ .

Proof of Theorem 2.1.2 is given in section 3.3.

Remark 2.1.2. Theorem 2.1.2 was obtained for Gaussian en-
vironment by P. Carmona and Y. Hu [4] and then for general environ-
ment by F. Comets, T. Shiga and N. Yoshida [5].

2.2. The strong disorder phase

The result we present in this subsection shows that the behavior of the
polymer is quite different from the usual random walk if either (i) $d=1,2$
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and $\beta\neq 0$ or (ii) $d\geq 3$ and $\beta$ is large2 For this model, it is rather recent
that the phenomena of this kind began to be studied rigorously.

We now present a result which is in sharp contrast with (2.6) and
(2.8).

Theorem 2.2.1. (Localization to the favorite sites [4, 5])
Suppose either that

(i): $d=1,2$ and $\beta\neq 0$ or
(ii): $d\geq 1$ and

(2.9) $\gamma_{2}(\beta)=\beta\lambda^{/}(\beta)def.-\lambda(\beta)>\ln(2d)$ .

Then, there exists a constant $c=c(d, \beta)>0$ such that

(2.10) $\varlimsup_{n\nearrow\infty}\max_{x\in \mathbb{Z}^{d}}\mu_{n-1}\{\omega_{n}=x\}\geq c$ , Q-a. $s$ .

The bound (2.10) suggests that the position of $\omega_{n}$ , viewed under the
polymer measure $\mu_{n-1}$ , is concentrated at a small region (the “favorite
sites”) with the size $\mathcal{O}(1)$ as $ n\nearrow\infty$ .

Note that $\gamma_{2}$ is increasing on $[0, \infty)$ and therefore that (2.9) holds
for large enough $\beta$ if

(2.11) $\lim\gamma_{2}(\beta)>\ln(2d)$ .
$\beta\nearrow\infty$

We see from Theorem 2.1.2 and Theorem 2.2.1 that, if $d\geq 3$ and (2.11),
then a phase transition occurs as $\beta$ increases from the weak disorder
phase to the strong disorder phase.

Theorem 2.2.1 under condition (ii) is proved in section 3.4. For the
proof of this theorem under condition (i), we refer the reader to $[4, 5]$ .

Remark 2.2.1. For $d\geq 3$ , there are exceptional choices of
the distribution of $\eta(n, x)$ like the one discussed in Example 2.1.1, for
which (2.10) does not hold even for large $\beta$ (in fact, (2.8) holds for all $\beta$ );
to be on the safe side for this statement, one can consider unbounded
environments, or bounded ones without mass on the top point of its
support. In this case, one has (2.11), and hence (2.9) for large enough
$\beta$ . See Example 2.2.1 and Example 2.2.2 below.

Example 2.2.1. Consider the Bernoulli environment (Exam-
ple 1.2.1). Then, it is not difficult to see from direct computations that
$\lim\gamma_{2}(\beta)=\ln(1/(1-p))$ . This shows that (2.9) holds for large enough

$\beta\nearrow\infty$

$\beta$ if $p>1-\frac{1}{2d}$ .

$2This$ is again, up to some exceptions See Remark 2.2.1 below.
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Example 2.2.2. Consider the Gaussian environment (Exam-

ple 1.2.1). Then, $\gamma_{2}(\beta)=\beta^{2}/2$ and hence (2.9) holds if $\beta>\sqrt{2\ln(2d)}$ .

Remark 2.2.2. Theorem 2.2.1 was obtained for Gaussian en-
vironment by P. Carmona and Y. Hu [4] and then for general environ-
ment by F. Comets, T. Shiga and N. Yoshida [5].

2.3. The normalized partition function and its positivity in
the limit

We now introduce an important process on $(H, \mathcal{G}, Q)$ ( $(2.12)$ below),
which is a martingale in fact. The large time behavior of this process
characterizes the phase diagram of this model and for this reason, many
of results on the model can be best understood from the viewpoint of
this process.

Define the normalized partition function by

(2.12) $W_{n}=\exp(-\lambda(\beta)n)Z_{n}$ , $n$ $\geq 1$ .

We then have

Lemma 2.3.1. The limit

(2.13) $W_{\infty}=\lim_{n\nearrow\infty}W_{n}$

exists Q-a. $s$ . Moreover, there are only two possibilities for the positivity

of the limit;

(2.14) $Q\{W_{\infty}>0\}=1$ ,

or

(2.15) $Q\{W_{\infty}=0\}=1$ .

The proof of this lemma is standard and is given in section 3.1.
The above contrasting situations (2.14) and (2.15) can be consid-

ered as the characterization of the weak disorder phase and the strong
disorder phase, respectively. In fact, as are shown in Theorem 3.3.1 be-
low, (2.14) implies (2.7), while (2.15) implies a weaker form of (2.10)
that $\sum_{n\geq 1}\max_{x\in \mathbb{Z}^{d}}\mu_{n-1}\{\omega_{n}=x\}=\infty$ , Q-a. $s$ . It is even expected that
(2.14) implies (2.5) and that (2.15) implies (2.10).

We close this subsection with the following result, which, in consis-
tency with what we discuss above, describes the basic phase diagram of
the model.

Theorem 2.3.2. (a): For $d\geq 3$ , (2.3) implies (2.14).



Directed Polymers 123

(b): Either (i) or (ii) in Theorem 2.2.1 implies (2.15).

Proofs of Theorem 2.3.2 (a) and (b) are given in Sections 3.2 and
3.4, respectively.

Remark 2.3.1. For $d\geq 3$ , it is an interesting question to
find a characterization of (2.14) (or (2.15)) in terms of the distribution
of $\eta(n, x)$ . As is shown in section 3.1, $(W_{n})_{n\geq 1}$ is a mean-one, positive
martingale on $(H, \mathcal{G}, Q)$ . In this respect, this question has somewhat
similar flavor to some other topics in the probability theory such as
Kakutani’s dichotomy for infinite product measure (e.g.,[8, page 244]),
nontriviality of the limit of the normalized Galton-Watson process [1]
and of multiplicative chaos [14].

3. Martingale analysis on the simple random walk model

This section is devoted to the proofs of the results introduced in the
previous one. We define an increasing sequence of sub $\sigma$-fields of $\mathcal{G}$ by

(3.1) $\mathcal{G}_{n}=\sigma[\eta(j, x) ; j\leq n, x\in \mathbb{Z}^{d}]$ , $n$ $\geq 1$ .

A major technical advantage of the model is that we can relate objects
of interest such as

$\mu_{n}[|\omega_{n}|^{2}]$ and $\max_{x\in \mathbb{Z}^{d}}\mu_{n-1}\{\omega_{n}=x\}$

to some martingale on $(H, \mathcal{G}, Q)$ with respect to the filtration $(\mathcal{G}_{n})$ . As
is very easy to guess, what makes this possible is the independence of
the environment $\{\eta(n, x)\}$ , especially in the time parameter $n$ . We will
see from the arguments below, the martingale analysis plays a key role
in everything we do.

3.1. Proof of Lemma 2.3.1

We first show that $(W_{n})_{n\geq 1}$ is a mean-one, positive $(\mathcal{G}_{n})$ martingale on
$(H, \mathcal{G}, Q)$ . Here and in what follows, we use the following notation.

(3.2) $e(n, x)$ $=$ $e(n, x, \eta)=\exp(\beta\eta(n, x)-\lambda(\beta))$ ,

(3.3) $e_{1,,,n}$
$=$

$e_{1,,,n}(\omega, \eta)=\prod_{1\leq j\leq n}e(j, \omega_{j})$
.

Note that $W_{n}=P[e_{1,,,n}]$ in this notation. For any fixed $\omega\in\Omega$ , $e_{1,,,n}$ is
the product of mean-one i.i.d. random variables on $(H, \mathcal{G}, Q)$ and hence
is a mean-one, positive $(\mathcal{G}_{n})$ -martingale. This implies the martingale
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property of $W_{n}$ . By the martingale convergence theorem, the limit $W_{\infty}$

exists Q-a.s. It is clear that the event $\{W_{\infty}=0\}$ is measurable with
respect to the tail $\sigma$-field

$n\geq 1\cap\sigma[\eta(j, x) ^{;} j\geq n, x\in \mathbb{Z}^{d}]$
.

Therefore by Kolmogorov’s zero-one law, only (2.14) and (2.15) are the
possibilities. $\square $

3.2. The second moment method

In this subsection, we give proofs to Theorem 2.1.1 and Theorem 2.3.2
(a). The proofs are based on the $L^{2}$ analysis of certain martingales on
$(H, \mathcal{G}, Q)$ . This approach was introduced by E. Bolthausen [3] and then
investigated further by R. Song and X. Y. Zhou [25]. We summarize the
main step in their analysis as Proposition 3.2.1 below. The proposition
deals with a process $(M_{n})_{n\geq 1}$ on $(H, \mathcal{G}, Q)$ of the form;

(3.4) $M_{n}=P[\varphi(n, \omega_{n})e_{1,,,n}]$ .

Here, $e_{1,,,n}$ has been introduced by (3.3) and $\varphi$ : $\mathbb{N}\times \mathbb{Z}^{d}\rightarrow \mathbb{R}$ is a function
for which we assume the following properties:

(PI): There are constants $C_{i},p\in[0, \infty)$ , $i=0,1$ , 2 such that

(3.5) $|\varphi(n, x)|\leq C_{0}+C_{1}|x|^{p}+C_{2}n^{p/2}$ for all $(n, x)\in \mathbb{N}\times \mathbb{Z}^{d}$ .

(P2): $\Phi_{n}def=$
.

$\varphi(n, \omega_{n})$ , $n$ $\geq 1$ is a martingale on $(\Omega, \mathcal{F}, P)$ with
respect to the filtration

(3.6) $F_{n}=\sigma[\omega_{j} ; j\leq n]$ .

It is easy to see from (P2) that $(M_{n})_{n\geq 1}$ is a $(\mathcal{G}_{n})$ martingale on $(H, \mathcal{G}, Q)$ .

The following proposition generalizes [3, Lemma 4] and [25, Theorem 2].

Proposition 3.2.1. Consider the martingale $(M_{n})_{n\geq 1}$ defined
by (34). Suppose that $d\geq 3$ and that (2.3), (PI), (P2) are satisfied.
Then, there exists $\kappa\in[0,p/2)$ such that

(3.7)0$\max_{\leq j\leq n}|M_{j}|=\mathcal{O}(n^{\kappa})$ , as $ n\nearrow\infty$ , Q-a. $s$ .

If in addition, $p<\frac{1}{2}d-1$ , then

(3.8) $\lim M_{n}$ exists Q-a. $s$ . and in $L^{2}(Q)$ .
$ n\nearrow\infty$
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Remark 3.2.1. As will be seen from the way (3.7) is used
below, it is crucial that the divergence of the right-hand-side is strictly
slower than $n^{p/2}$ , and this is where the property (P2) is relevant. If we
drop the property (P2) from the assumption of Proposition 3.2.1, we
then have a larger bound:

(3.9) $M_{n}=\mathcal{O}(n^{p/2})$ , as $n$ $\nearrow\infty$ , Q-a.s.

This larger bound from the weaker assumption can be obtained via
Proposition 3.2.1 as in the proof of (2.1) in [3].

We will prove Proposition $3.2.1later$ on. Before doing so, we explain
how this proposition is used to derive the desired conclusions in Theorem
2.1.1 and in Theorem 2.3.2 (a).

$\circ$ Theorem 2.3.2 (a) is proved by choosing $\varphi\equiv 1$ in Proposition
3.2.1. By (3.8), $M_{n}=W_{n}$ converges in $L^{2}(Q)$ . In particular,

$Q[W_{\infty}]=\lim_{n\nearrow\infty}Q[W_{n}]=1$ .

This implies $Q\{W_{\infty}>0\}>0$ and hence that $Q\{W_{\infty}>0\}=1$ by the
zero-one law.

$\blacksquare$ To prove (2.4), we take $\varphi(n, x)=|x|^{2}-n$ (hence $p=2$ ). Then,
by Theorem 2.3.2 (a) and Proposition 3.2.1, there exists $\kappa\in[0,1)$ such
that

$\mu_{n}[|\omega_{n}|^{2}]-n=P[\varphi(n, \omega_{n})e_{1,,,n}]/W_{n}=\mathcal{O}(n^{\kappa})$ Q-a.s.

We now turn to the proof of Proposition 3.2.1. Here, we follow [25].
We present a key step in the proof as a lemma.

Lemma 3.2.2. Suppose that $d\geq 3$ and that (2.3), (PI), (P2)
are satisfied. Then,

(3.10) $Q[M_{n}^{2}]=\mathcal{O}(b_{n})$ , as $n$ $\nearrow\infty$ , Q-a. $s$ .

where $b_{n}=1$ if $p<\frac{d}{2}-1$ , $b_{n}=\ln n$ if $p=\frac{d}{2}-1$ , and $b_{n}=n^{p-\frac{d}{2}+1}$ if
$p>\frac{d}{2}-1$ .

Remark 3.2.2. The choice of $b_{n}$ is made in order to have
$\sum_{1\leq j\leq n}j^{p-\frac{d}{2}}=\mathcal{O}(b_{n})$ . See (3.15) below for the reason of the power
$p-\frac{d}{2}$ .

Proof of Lemma 3.2.2: On the product space $(\Omega^{2}, \mathcal{F}^{\otimes 2})$ , we consider
the probability measure $P^{\otimes 2}=P^{\otimes 2}(d\omega, d\overline{\omega})$ , that we will view as the



126 F.Comets, T. Shiga, and N. Yoshida

distribution of the couple $(\omega,\overline{\omega})$ with $\overline{\omega}=(\overline{\omega}_{k})_{k\geq 0}$ an independent copy
of $\omega=(\omega_{k})_{k\geq 0}$ . We write $\chi_{i_{1},,,..,i_{k}}$ for the indicator function of the event

$\{\omega_{i_{1}}=\overline{\omega}_{i_{1}}, \omega_{i_{2}}=\overline{\omega}_{i_{2}}, \ldots, \omega_{i_{k}}=\overline{\omega}_{i_{k}}\}$ .

We first expand the second moment $Q[M_{n}^{2}]$ as follows:

(3.11)

$Q[M_{n}^{2}]=\Phi_{0}^{2}+\sum_{1\leq k\leq n}(e^{\gamma_{1}(\beta)}-1)^{k}\sum_{1\leq i_{1}<<i_{k}\leq n}\ldots P^{\otimes 2}[\Phi_{i_{k}}(\omega)^{2}\chi_{i_{1},,,..,i_{k}}]$
.

To see this, we write $M_{n}^{2}$ in terms of the independent copy:

$M_{n}^{2}$ $=$ $P[\Phi_{n}e_{1,,,n}]^{2}$

(3.12) $=$ $P^{\otimes 2}[\Phi_{n}(\omega)\Phi_{n}(\overline{\omega})e_{1,,,n}(\omega, \eta)e_{1,,,n}(\overline{\omega}, \eta)]$ .

It follows from (3.12) that

(3.13) $Q[M_{n}^{2}]=P^{\otimes 2}[\Phi_{n}(\omega)\Phi_{n}(\overline{\omega})Q[e_{1,,,n}(\omega, \eta)e_{1,,,n}(\overline{\omega}, \eta)]]$ .

On the other hand, with notation (3.2), we have that

$Q[e(\omega_{j}, \eta)e(\overline{\omega}_{j}, \eta)]=1+(e^{\gamma_{1}(\beta)}-1)\chi_{j}$ ,

$ane$ hence that

$Q[e_{1,,,n}(\omega, \eta)e_{1,,,n}(\overline{\omega}, \eta)]$ $=$
$\prod_{1\leq j\leq n}(1+(e^{\gamma_{1}(\beta)}-1)\chi_{j})$

(3.14) $=$
$ 1+\sum_{1\leq k\leq n}(e^{\gamma_{1}(\beta)}-1)^{k}\sum_{1\leq i_{1}<<i_{k}\leq n}\ldots\chi_{i_{1},,,i_{k}}\ldots\cdot$

The expansion (3.11) is now obtained by inserting (3.14) into (3.13) and
by the martingale property of $\Phi_{n}$ .

Let us fix $i_{1}$ , $\ldots$ , $i_{k}$ for a moment. We then have by (3.5) that

$P^{\otimes 2}[\Phi_{i_{k}}(\omega)^{2}\chi_{i_{1},,,i_{k}}\ldots,]\leq 3C_{1}^{2}A_{i_{1},,,..,i_{k}}+3(C_{0}^{2}+C_{2}^{2})B_{i_{1},,,i_{k}}\ldots,$ ,

where

$A_{i_{1},,,..,i_{k}}=P^{\otimes 2}[|\omega_{i_{k}}|^{2p}\chi_{i_{1},,,..,i_{k}}]$ , $B_{i_{1},,,i_{k}}\ldots,=i_{k}^{p}P^{\otimes 2}[\chi_{i_{1},,,i_{k}}\ldots,]$ .

We now bound $ A_{i_{1},,,i_{k}}\ldots$, from above. As will be seen from the way it is
done, the same bound (up to the multiplicative constant) is obtained for
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$ B_{i_{1},,,i_{k}}\ldots,\cdot$ Observe that

$P^{\otimes 2}[|\omega_{n}|^{2p}\chi_{n}]$ $=$
$\sum_{x\in \mathbb{Z}^{d}}P[|\omega_{n}|^{2p} ^{:} \omega_{n}=x]P[\omega_{n}=x]$

$\leq$
$Cn^{-\frac{d}{2}}P[|\omega_{n}|^{2p}]$

(3.15) $\leq$

$Cn^{p-\frac{d}{2}}$ ,

where we have used (2.6) on the second line. We write $j_{\ell}=i_{\ell}-i_{\ell-1}$ ,
$\ell=1,2$ , . $.$ , $k$ with $i_{0}=0$ . We then see from the Markov property and
(3.15) that

$A_{i_{1}},..,i_{k}$

$\leq$

$k^{2p-1}\sum_{1\leq\ell\leq k}P^{\otimes 2}[|\omega_{i_{\ell}}-\omega_{i_{l-1}}|^{2p}\chi_{i_{1},,,i_{k}}\ldots,]$

$=$ $k^{2p-1}\sum_{1\leq\ell\leq k}(\prod_{1\leq m<\ell}P^{\otimes 2}[\chi_{j_{m}}])P^{\otimes 2}[|\omega_{j\ell}|^{2p}\chi_{j\ell}](\prod_{\ell<m\leq k}P^{\otimes 2}[\chi_{j_{m}}])$

$\leq$

$Ck^{2p-1}\sum_{1\leq\ell\leq k}j_{\ell}^{p-\frac{d}{2}}1\leq m\leq k\prod_{m\neq\ell}P^{\otimes 2}[\chi_{j_{m}}]$

Note that $\sum_{1<j\leq n}j^{p-\frac{d}{2}}=\mathcal{O}(b_{n})$ and that $\sum_{j\geq 1}P^{\otimes 2}[\chi_{j}]=\frac{\pi_{d}}{1-\pi_{d}}$ .

Therefore, we obtain from what we have seen above that

$\sum_{1\leq i_{1}<..<i_{k}\leq n}P^{\otimes 2}[\Phi_{i_{k}}(\omega)^{2}\chi_{i_{1},,,i_{k}}\ldots,]$

$\leq$

$Ck^{2p-1}\sum_{1\leq p\leq k1}\sum_{\leq j_{1}\leq n1}\cdots\sum_{\leq j_{k}\leq n}j_{\ell}^{p-\frac{d}{2}}1\leq m\leq k\prod_{m\neq\ell}P^{\otimes 2}[\chi_{j_{m}}]$

$\leq$
$\mathcal{O}(b_{n})k^{2p}(\frac{\pi_{d}}{1-\pi_{d}})^{k-1}$

By this and (3.11), we now arrive at

$Q[M_{n}^{2}]\leq\Phi_{0}^{2}+\mathcal{O}(b_{n})\sum_{k\geq 1}k^{2p}(e^{\gamma_{1}(\beta)}-1)^{k}(\frac{\pi_{d}}{1-\pi_{d}})^{k-1}$

The summation in $k$ converges, thanks to the assumptions $d\geq 3$ and
(2.3). This finishes the proof of (3.10). $\square $
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Remark 3.2.3. We see from the proof of (3.10) that

$\sup_{n\geq 1}Q[W_{n}^{2}]=1+\sum_{k\geq 1}(e^{\gamma_{1}(\beta)}-1)^{k}(\frac{\pi_{d}}{1-\pi_{d}})^{k-1}$

This shows that $\sup_{n\geq 1}Q[W_{n}^{2}]<\infty$ if and only if $d\geq 3$ and (2.3) holds.

It is now, easy to complete the proof of Proposition 3.2.1. We set
$M_{n}^{*}=\max_{0\leq j\leq n}|M_{j}|$ to simplify the notation. For (3.10), it is sufficient
to prove that for any $\delta>0$ ,

(3.16) $M_{n}^{*}=\mathcal{O}(n^{\delta}\sqrt{b_{n}})$ as $n$ $\nearrow\infty$ , Q-a.s.,

where $b_{n}$ is the $L^{2}-$bound in Lemma 3.2.2. Moreover, by the mono-
tonicity of $M_{n}^{*}$ and the polynomial growth of $n^{\delta}\sqrt{b_{n}}$ , it is enough to
prove (3.16) along a subsequence $\{n^{k} : n \geq 1\}$ for some power $k\geq 2$ .

Now, take $ k>1/\delta$ . We then have by Chebychev’s inequality, Doob’s
inequality and Lemma 3.2.2 that

$Q\{M_{n^{k}}^{*}>n^{k\delta}\sqrt{b_{n^{k}}}\}$ $\leq$ $Q\{M_{n^{k}}^{*}>n\sqrt{b_{n^{k}}}\}$

$\leq$ $Q[(M_{n^{k}}^{*})^{2}]/(n^{2}b_{n^{k}})$

$\leq$ $4Q[M_{n^{k}}^{2}]/(n^{2}b_{n^{k}})$

$\leq$ $Cn^{-2}$ .

Then, it follows from the Borel-Cantelli lemma that

$Q$ { $M_{n^{k}}^{*}\leq n^{k\delta}\sqrt{b_{n^{k}}}$ for large enough $n$
’

$s$ } $=1$ .

This ends the proof of (3.7).
The second statement (3.8) in Proposition 3.2.1 follows from Lemma

3.2.2 and the martingale convergence theorem. This completes the proof
of Proposition 3.2. 1. $\square $

Remark 3.2.4. With Proposition 3.2.1 in hand, we are no
longer far away from the central limit theorem (2.5). Following [3], we
now explain a route to (2.5).

We let $a=(a_{j})_{j=1}^{d}$ and $b=(b_{j})_{j=1}^{d}$ denote multi indices in what
follows. We will use standard notation $|a|_{1}=a_{1}+\ldots+a_{d}$ , $x^{a}=x_{1}^{a_{1}}\cdots x_{d}^{a_{d}}$

and $(\frac{\partial}{\partial x})^{a}=(\frac{\partial}{\partial x_{1}})^{a_{1}}\cdots(\frac{\partial}{\partial x_{d}})^{a_{d}}$ for $x\in \mathbb{R}^{d}$ . It is enough to prove (2.5)

for any monomial of the form $f(x)=x^{a}$ . We will do this by induction
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on $|a|_{1}$ . We introduce

$\varphi(n, x)$ $=$ $(\frac{\partial}{\partial\theta})^{a}\exp(\theta\cdot x-n\rho(\theta))|_{\theta=0}$ ,

$\psi(n, x)$ $=$ $(\frac{\partial}{\partial\theta})^{a}\exp(\theta\cdot x-n\frac{|\theta|^{2}}{2d})|_{\theta=0}$ ,

where $\rho(\theta)=\ln(\frac{1}{d}\sum_{1\leq j\leq d}\cosh(\theta_{j}))$ . Clearly, the function $\varphi$ satisfies

(PI) and (P2) with $p=|a|_{1}$ . On the other hand, we see from the
definition of $\psi$ that

(3.17) $(2\pi)^{-d/2}\int_{\mathbb{R}^{d}}\psi(1, x/\sqrt{d})e^{-|x|^{2}/2}dx=0$ .

Moreover, it is not difficult to see [3, Lemma $3c$ ] that $\varphi(n, x)=x^{a}+$

$\varphi_{0}(n, x)$ and $\psi(n, x)=x^{a}+\psi_{0}(n, x)$ where

$\varphi_{0}(n, x)=|b|_{1}+2j\leq|a|_{1}\sum_{j\geq 1}A_{a}(b, j)x^{b}n^{j}$

,
$\psi_{0}(n, x)=|b|_{1}+2j=|a|_{1}\sum_{j\geq 1}A_{a}(b, j)x^{b}n^{j}$

.

for some $A_{a}(b,j)\in \mathbb{R}$ . In particular, $\varphi_{0}$ and $\psi_{0}$ have the same coefficients
for $x^{b}n^{j}$ with $|b|_{1}+2j=|a|_{1}$ . We now write $\mu_{n}[(\omega_{n}/\sqrt{n})^{a}]$ as

$\mu_{n}[(\omega_{n}/\sqrt{n})^{a}]$ $=$ $\frac{1}{W_{n}}P[\varphi(n, \omega_{n})e_{1,,,n}]n^{-|a|_{1}/2}$

$-\frac{1}{W_{n}}P[\psi_{0}(1, \omega_{n}/\sqrt{n})e_{1,,,n}]$

$+\frac{1}{W_{n}}P[(\psi_{0}(n, \omega_{n})-\varphi_{0}(n, \omega_{n}))e_{1,,,n}]n^{-|a|_{1}/2}$

As $n$ $\nearrow\infty$ , the second term converges to $(2\pi)^{-d/2}\int_{\mathbb{R}^{d}}(x/\sqrt{d})^{a}$

$\times e^{-|x|^{2}/2}dx$ by the induction hypothesis and (3.17). The first and the
third terms on the right-hand side vanish as $ n\nearrow\infty$ . In fact, we use
Theorem 2.3.2 (a), Proposition 3.2.1 for the first term and Theorem
2.3.2 (a), (3.9) for the third term.

3.3. The replica overlap

In this subsection, we prove Theorem 2.1.2 as a consequence of Theorem
2.3.2 (a) and Theorem 3.3.1 below.

For $n$ $\geq 1$ , we introduce the following random variables on $(H, \mathcal{G}, Q)$ ;

$I_{n}=\sum_{x\in \mathbb{Z}^{d}}\mu_{n-1}\{\omega_{n}=x\}^{2}$
, $J_{n}=\max_{x\in \mathbb{Z}^{d}}\mu_{n-1}\{\omega_{n}=x\}$ .
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It is clear that

(3.18) $J_{n}^{2}\leq I_{n}\leq J_{n}$ .

Both Theorem 2.1.2 and Theorem 2.2.1 deal with the large time behavior
of $J_{n}$ , $n$ $\nearrow\infty$ . As we will see below, $I_{n}$ is better suited for the martingale
analysis. For this reason, we will prove these theorems by studying $I_{n}$ ,
rather than $J_{n}$ itself.

We now mention to an interpretation of $I_{n}$ . On the product space
$(\Omega^{2}, F^{\otimes 2})$ , we consider the probability measure $\mu_{n}^{\otimes 2}=\mu_{n}^{\otimes 2}(d\omega, d\overline{\omega})$ , that
we will view as the distribution of the couple $(\omega,\overline{\omega})$ with $\overline{\omega}=(\overline{\omega}_{k})_{k\geq 0}$

an independent copy of $\omega=(\omega_{k})_{k\geq 0}$ with law $\mu_{n}$ . We then have that

(3.19) $I_{n}=\mu_{n-1}^{\otimes 2}(\omega_{n}=\overline{\omega}_{n})$ .

Hence, the summation

(3.20)
$\sum_{1\leq k\leq n}I_{k}$

is the expected amount of the overlap up to time $n$ of two independent
polymers in the same (fixed) environment. This can be viewed as an
analogue to the so-called replica overlap often discussed in the context
of disordered systems, e.g. mean field spin glass, and also of directed
polymers on trees [7].

The large time behavior of (3.20) and the normalized partition func-
tion $W_{n}$ are related as follows.

Theorem 3.3.1. Let $\beta\neq 0$ . Then,

(3.21) $\{W_{\infty}=0\}=\{\sum_{n\geq 1}I_{n}=\infty\}$ , Q-a. $s$ .

Moreover, if $Q\{W_{\infty}=0\}=1$ , there exist $c_{1}$ , $c_{2}\in(0, \infty)$ such that
Q-a. $s.$ ,

(3.22)
$c_{1}\sum_{1\leq k\leq n}I_{k}\leq-\ln W_{n}\leq c_{2}\sum_{1\leq k\leq n}I_{k}$ for large enough $n$ ’s.

We first note that Theorem 2.1.2 is now obtained as a consequence
of Theorem 2.3.2 (a), (3.21) and (3.18).

Proof of Theorem 3.3.1: To conclude (3.21) and (3.22), it is enough
to show the following (3.23) and (3.24):

(3.23) $\{W_{\infty}=0\}\subset\{\sum_{n\geq 1}I_{n}=\infty\}$ , Q-a.s.
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There are $c_{1}$ , $c_{2}\in(0, \infty)$ such that

(3.24) $\{\sum_{n\geq 1}I_{n}=\infty\}\subset$ {(3.22) holds}, Q-a.s.

The proof of (3.23) and (3.24) are based on Doob’s decomposition for the
process $-\ln W_{n}$ . It is convenient to introduce some more notation. For
a sequence $(a_{n})_{n\geq 0}$ (random or non-random), we set $\triangle a_{n}=a_{n}-a_{n-1}$

for $n$ $\geq 1$ . Let us now recall Doob’s decomposition in this context; any
$(\mathcal{G}_{n})$-adapted process $X=\{X_{n}\}_{n\geq 0}\subset L^{1}(Q)$ can be decomposed in a
unique way as

$X_{n}=M_{n}(X)+A_{n}(X)$ , $n\geq 1$ ,

where $M(X)$ is an $(\mathcal{G}_{n})$ martingale and

$A_{0}=0$ , $\triangle A_{n}=Q[\triangle X_{n}|\mathcal{G}_{n-1}]$ , $n$ $\geq 1$ .

$M_{n}(X)$ and $A_{n}(X)$ are called respectively, the martingale part and com-
pensator of the process $X$ . If $X$ is a square integrable martingale, then
the compensator $A_{n}(X^{2})$ of the process $X^{2}=\{(X_{n})^{2}\}_{n\geq 0}\subset L^{1}(Q)$ is
denoted by $\langle X\rangle_{n}$ and is given by the following formula:

$\triangle\langle X\rangle_{n}=Q[(\triangle X_{n})^{2}|\mathcal{G}_{n-1}]$

Here, we are interested in the Doob’s decomposition of $X_{n}=-\ln W_{n}$ ,

whose martingale part and the compensator will be henceforth denoted
$M_{n}$ and $A_{n}$ respectively

(3.25) $-\ln W_{n}=M_{n}+A_{n}$ .

To compute $M_{n}$ and $A_{n}$ , we introduce $U_{n}=\mu_{n-1}[e(n, \omega_{n})]-1$ (Recall

(3.2) $)$ . It is then clear that

(3.28) $W_{n}/W_{n-1}=1+U_{n}$

and hence that

(3.27) $\triangle A_{n}=-Q[\ln(1+U_{n})|\mathcal{G}_{n-1}]$ ,

$\triangle M_{n}=-\ln(1+U_{n})+Q[\ln(1+U_{n})|\mathcal{G}_{n-1}]$ .

In particular,

(3.28) $\triangle\langle M\rangle_{n}\leq Q[\ln^{2}(1+U_{n})|\mathcal{G}_{n-1}]$ .
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We now claim that there is a constant $c\in(0, \infty)$ such that

(3.29) $\frac{1}{c}I_{n}\leq\triangle A_{n}\leq cI_{n}$ , $\triangle\langle M\rangle_{n}\leq cI_{n}$ .

Indeed, both follow from (3.27), (3.28) and Lemma 3.3.2 below; $\{e_{i}\}$ ,
$\{\alpha_{i}\}$ and $Q$ in the lemma play the roles of $\{e(n, z)\}_{|z|_{1}\leq n}$ , $\{\mu_{n-1}(\omega_{n}=$

$z)\}_{|z|_{1}\leq n}$ and $Q[\cdot|\mathcal{G}_{n-1}]$ .

We now conclude (3.23) from (3.29) as follows (the equalities and
the inclusions here being understood as Q-a. $s.$ ):

$\{\sum_{n\geq 1}I_{n}<\infty\}$ $\subset$ $\{A_{\infty}<\infty, \langle M\rangle_{\infty}<\infty\}$

$\subset$ { $ A_{\infty}<\infty$ , $\lim M_{n}$ exists and is finite}
$ n\nearrow\infty$

$\subset$ $\{W_{\infty}>0\}$ .

Here, on the second line, we have used a well-known property for mar-
tingales, e.g. [8, page 255, (4.9)].

Finally we prove (3.24). By (3.29), it is enough to show that

(3.30) $\{A_{\infty}=\infty\}\subset\{\lim_{n\nearrow\infty}-\frac{\ln W_{n}}{A_{n}}=1\}$ , Q-a.s.

Thus, let us suppose that $ A_{\infty}=\infty$ . If $\langle M\rangle_{\infty}<\infty$ , then again by [8,
page 255, (4.9) $]$ ,

$\lim_{n\nearrow\infty}M_{n}$ exists and is finite and therefore (3.30) holds.

If, on the contrary, $\langle M\rangle_{\infty}=\infty$ , then

$\ln W_{n}=\underline{M_{n}}\underline{\langle M\rangle_{n}}+1\rightarrow 1$

Q-a.s.
$-\overline{A_{n}}$ $\langle M\rangle_{n}$ $A_{n}$

by (3.29) and the law of large numbers for martingales, see [8, page
$255\square $

’

(3.30) $]$ . This completes the proof of Theorem 3.3.1.

Lemma 3.3.2. Let $e_{i}$ , $1\leq i\leq m$ be positive, non-constant
$i.i.d$ . random variables on a probability space $(H, \mathcal{G}, Q)$ such that

$Q[e_{1}]=1$ , $ Q[e_{1}^{3}+\ln^{2}e_{1}]<\infty$ .

For $\{\alpha_{i}\}_{1\leq i\leq m}\subset[0, \infty)$ such that $\sum_{1\leq i\leq m}\alpha_{i}=1$ , define a centered

random variable $U>-1$ by $U=\sum_{1\leq i\leq m}\alpha_{i}e_{i}-1$ . Then, there exists $a$
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constant $c\in(0, \infty)$ , independent of $\{\alpha_{i}\}_{1\leq i\leq m}$ such that

(3.32) $\frac{1}{c}\sum_{1\leq i\leq m}\alpha_{i}^{2}$

$\leq$ $Q[\frac{U^{2}}{2+U}]$ ,

(3.32) $\frac{1}{c}\sum_{1\leq i\leq m}\alpha_{i}^{2}$

$\leq$ $-Q$
$[\ln(1+U)]\leq c\sum_{1\leq i\leq m}\alpha_{i}^{2}$

,

(3.33)
$Q[\ln^{2}(1+U)]\leq c\sum_{1\leq i\leq m}\alpha_{i}^{2}$

.

The readers are invited to try the proof of this lemma as an inter-
esting exercise. A solution can be found in [5].

3.4. The fractional moment method

In this subsection, we prove Theorem 2.2.1(b) and Theorem 2.3.2(b).
Both are obtained by dealing with the fractional moment $Q[W_{n}^{\theta}]$ , $0<$

$\theta<1$ . To be more precise, we will prove that for some $\theta\in(0,1)$ and
$ a_{n}\nearrow\infty$ ,

(3.34) $\varlimsup\underline{1}\ln Q[W_{n}^{\theta}]<0$ .
$n\nearrow\infty a_{n}$

Proof of Theorem 2.2.1 under condition (ii): We first assume (3.34)
with $a_{n}=n$ for a moment to see that it implies (2.10). We then have
by the Borel-Cantelli lemma that there is $c_{3}\in(0, \infty)$ such that

(3.35)
$\varlimsup\underline{1}\ln W_{n}<-c_{3}$

, Q-a.s.
$n\nearrow\infty n$

Then, by (3.18) and (3.22) we conclude that

$\varlimsup_{n\nearrow\infty}J_{n}$

$\geq$

$\varlimsup_{n\nearrow\infty}\frac{1}{n}\sum_{1\leq k\leq n}I_{k}$

$\geq$

$-\varliminf\underline{1}\ln W_{n}$

$n\nearrow\infty 2cn$

$\geq$ $c_{3}/c_{2}$ .

We now turn to the proof of (3.34) with $a_{n}=n$ . Recall the notation
(3.2) and define

$W_{n,,,m}^{x}=P[\prod_{1\leq j\leq m}e(j+n, x+\omega_{j})$ , $n$ , $m\geq 1$ .
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For $\theta\in(0,1)$ , by the subadditive estimate $(u+v)^{\theta}\leq u^{\theta}+v^{\theta}$ , $u$ , $v>0$ ,

we get

$W_{n}^{\theta}\leq(2d)^{-\theta}\sum_{x,,,|x|_{1}=1}e(1, x)^{\theta}(W_{1,n-1}^{x})^{\theta}$
.

Since $W_{1,,,n-1}^{x}$ has the same law as $W_{n-1}$ ,

$Q[W_{n}^{\theta}]\leq r(\theta)Q[W_{n-1}^{\theta}]$ ,

where $r(\theta)=(2d)^{1-\theta}Q[e(1, x)^{\theta}]$ . Note that $\theta\mapsto\ln r(\theta)$ is convex, contin-
uously differentiable, and that $\ln(2d)=\ln r(0)>\ln r(1)=0$ . Therefore

$r(\theta)<1$ for some $\theta\in(0,1)$ if and only if $0<\frac{d\ln r(\theta)}{d\theta}|_{\theta=1}$ , which is

equivalent to $\gamma_{2}(\beta)>\ln(2d)$ . $\square $

Proof of Theorem 2.3.2(b): We will check (3.34) where $a_{n}=n^{1/3}$

if $d=1$ and $a_{n}=\sqrt{\ln n}$ if $d=2$ . In this respect, we first prove an
auxiliary lemma.

Lemma 3.4.1. For $\theta\in[0,1]$ and $\Lambda\subset \mathbb{Z}^{d}$ ,

(3.36) $|\Lambda|Q[W_{n-1}^{\theta}I_{n}]\geq Q[W_{n-1}^{\theta}]-2P(\omega_{n}\not\in\Lambda)^{\theta}$ .

Proof: Repeating the argument in [19, page 453], we see that

$|\Lambda|I_{n}$ $\geq$

$|\Lambda|\sum_{z\in\Lambda}\mu_{n-1}(\omega_{n}=z)^{2}$

$\geq$ $\mu_{n-1}(\omega_{n}\in\Lambda)^{2}$

$=$ $(1-\mu_{n-1}(\omega_{n}\not\in\Lambda))^{2}$

$\geq$ $1-2\mu_{n-1}(\omega_{n}\not\in\Lambda)$

$\geq$ $1-2\mu_{n-1}(\omega_{n}\not\in\Lambda)^{\theta}$ .

Note also that

$Q[W_{n-1}^{\theta}\mu_{n-1}(\omega_{n}\not\in\Lambda)^{\theta}]$ $\leq$ $Q[W_{n-1}\mu_{n-1}(\omega_{n}\not\in\Lambda)]^{\theta}$

$=$ $P(\omega_{n}\not\in\Lambda)^{\theta}$ .

We therefore see that

$|\Lambda|Q[W_{n-1}^{\theta}I_{n}]$ $\geq$ $Q[W_{n-1}^{\theta}]-2Q[W_{n-1}^{\theta}\mu_{n-1}(\omega_{n}\not\in\Lambda)^{\theta}]$

$\geq$ $Q[W_{n-1}^{\theta}]-2P(\omega_{n}\not\in\Lambda)^{\theta}$ .

$\square $
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Assume now that $\theta\in(0,1)$ , and define a function $f$ : $(-1, \infty)\rightarrow$

$[0, \infty)$ by

$f(u)=1+\theta u-(1+u)^{\theta}$ .

It is then clear that there are constants $c_{1}$ , $c_{2}\in(0, \infty)$ such that

(3.37) $\frac{c_{1}u^{2}}{2+u}\leq f(u)\leq c_{2}u^{2}$ for all $u\in(-1, \infty)$ .

We see from (3.26), (3.37) and (3.31) that

$Q[\triangle W_{n}^{\theta}|\mathcal{G}_{n-1}]$ $=$ $W_{n-1}^{\theta}Q[(1+U_{n})^{\theta}-1|\mathcal{G}_{n-1}]$

$=$ $-W_{n-1}^{\theta}Q[f(U_{n})|\mathcal{G}_{n-1}]$

$\leq$ $-c_{3}W_{n-1}^{\theta}I_{n}$ .

We therefore have by (3.36) that

(3.38) $QW_{n}^{\theta}\leq(1-\frac{c_{3}}{|\Lambda|})Q[W_{n-1}^{\theta}]+\frac{2c_{3}}{|\Lambda|}P(\omega_{n}\not\in\Lambda)^{\theta}$ .

For $d=1$ , set $\Lambda=(-n^{2/3}, n^{2/3}]$ . Then,

$P(\omega_{n}\not\in\Lambda)=P(|\frac{\omega_{n}}{n^{1/2}}|\geq n^{1/6})\leq 2\exp(-\frac{n^{1/3}}{2})$ ,

so that (3.38) reads,

$QW_{n}^{\theta}\leq(1-\frac{c_{3}}{2n^{2/3}})Q[W_{n-1}^{\theta}]+4c_{3}\exp(-\frac{\theta n^{1/3}}{2})$ .

It is not difficult to conclude (3.34) with $a_{n}=n^{1/3}$ from the above.
For $d=2$ , we set

$\Lambda=(-n^{1/2}\ln^{1/4}n, n^{1/2}\ln^{1/4}n]^{2}$

to get (3.34) with $a_{n}=\sqrt{\ln n}$ in a similar way as above. $\square $

4. Some related models

The simple random walk model which we have discussed so far has a
number of close relatives in the literature. We now mention some of
them.



136 F.Comets, T. Shiga, and N. Yoshida

4.1. Gaussian random walk model

This model considered in M. Petermann [23] and by O. Mejane [20].
The polymer measure for this model is defined by the same expression
(1.4). Here, however, the random walk $(\omega_{n})_{n\geq 1}$ is the summation of
independent Gaussian random variables in $\mathbb{R}^{d}$ , i.e., $\Omega$ is replaced by
$\Omega=\{\omega=(\omega_{n})_{n\geq 0}; \omega_{n}\in \mathbb{R}^{d}, n \geq 0\}$ and $P$ is the unique measure on
$(\Omega, \mathcal{F})$ such that $\omega_{1}-\omega_{0}$ , $\ldots$ , $\omega_{n}-\omega_{n-1}$ are independent and

$P\{\omega_{0}=0\}=1$ , $P\{\omega_{n}-\omega_{n-1}\in dx\}=(2\pi)^{-d/2}$ $\exp(-|x|^{2}/2)dx$ .

Moreover, as the random environment, one takes a random field

$\{\eta(n, x) ; (n, x)\in \mathbb{N}\times \mathbb{R}^{d}\}$

with a certain mild correlation in $x$ variables. A major technical advan-
tage in working with the Gaussian random walk rather than the simple
random walk is the applicability of a Girsanov-type path transformation,
which plays a key role in analyzing this model.

4.2. Brownian directed polymer

This model is introduced in [6] as a continuous model of directed poly-
mers in random environment, defined in terms of Brownian motion and
of a Poisson random measure. We first fix notation we use for the Brow-
nian motion and Poisson random measure. Then, we introduce the poly-
mer measure. We write $\mathbb{R}_{+}=[0, \infty)$ .

$\circ$ The Brownian motion: Let $(\{\omega_{t}\}_{t\geq 0}, P)$ denote a $d$-dimensional
standard Brownian motion. To be more specific, we let the measurable
space $(\Omega, F)$ be $C(\mathbb{R}_{+}\rightarrow \mathbb{R}^{d})$ with the cylindrical $\sigma$-field, and $P$ be the
Wiener measure on $(\Omega, F)$ such that $P\{\omega_{0}=0\}=1$ .

$\circ$ The space-time Poisson random measure: We let $\eta$ denote the
Poisson random measure on $\mathbb{R}_{+}\times \mathbb{R}^{d}$ with the unit intensity, defined on
a probability space $(\mathcal{M}, \mathcal{G}, Q)$ . To make the definitions more precisely,
we let $B(\mathbb{R}_{+}\times \mathbb{R}^{d})$ denote the class of Borel sets in $\mathbb{R}_{+}\times \mathbb{R}^{d}$ . Then,
$\eta$ is an integer valued random measure characterized by the following
property: If $A_{1}$ , $\ldots$ , $A_{n}\in B(\mathbb{R}_{+}\times \mathbb{R}^{d})$ are disjoint and bounded, then

(4.1)

$Q(\bigcap_{j=1}^{n}\{\eta(A_{j})=k_{j}\})=\prod_{j=1}^{n}\exp(-|A_{j}|)\frac{|A_{j}|^{k_{j}}}{k_{j}!}$ for $k_{1}$ , $\ldots$ , $k_{n}\in \mathbb{N}$ .

Here, $|A|$ denotes the Lebesgue measure of $\mathbb{R}^{d+1}$ .
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$\circ$ The polymer measure: We let $V_{t}$ denote a “tube” around the graph
$\{(s, \omega_{s})\}_{0<s\leq t}$ of the Brownian path,

(4.2) $V_{t}=V_{t}(\omega)=\{(s, x) ; s\in(0, t], x\in U(\omega_{s})\}$ ,

where $U(x)\subset \mathbb{R}^{d}$ is the closed ball with the unit volume, centered at
$x\in \mathbb{R}^{d}$ . For any $t>0$ , define a probability measure $\mu_{t}$ on the path
space $(\Omega, F)$ by

(4.3) $\mu_{t}(d\omega)=\frac{\exp(\beta\eta(V_{t}))}{Z_{t}}P(d\omega)$ ,

where $\beta\in \mathbb{R}$ is a parameter and

(4.4) $Z_{t}=P[\exp(\beta\eta(V_{t}))]$ .

The Brownian motion model defined above can be thought of as a natural
$tran^{*}sposition$ of the simple random walk model into continuum setting.

Analogous results of Theorem 2.1.2, Theorem 2.2.1, Theorem 2.3.2,
and Theorem 3.3.1 as well as an almost sure large deviation principle for
the polymer measure are obtained for this model in [6]. The model allows
application of stochastic calculus, with respect to both Brownian motion
and Poisson process, leading to qualitative properties of the quenched
Lyapunov exponent and handy formulas for the fluctuation of the free
energy.

Another strong motivation for the present model is its relation to

some stochastic partial differential equations. To describe the connec-
tion, it is necessary to relativize the partition function, by specifying
the ending point of the Brownian motion at time $t$ . Let $P[\cdot|\omega_{t}=y]$ be
the distribution of the Brownian bridge starting at the origin at time 0
and ending at $y$ at time $t$ . Define

(4.3) $Z_{t}(y)=P[\exp(\beta\eta(V_{t}))|\omega_{t}=y](2\pi t)^{-d/2}$ $\exp\{-|y|^{2}/2t\}$ .

Then, by definition of the Brownian bridge,

$Z_{t}=\int_{\mathbb{R}^{d}}Z_{t}(y)dy$ .

Similar to the Feynman-Kac formula, one obtains [6] the following sto-
chastic heat equation (SHE) with multiplicative noise in a certain weak
sense,

(4.6)
$dZ_{t}(y)=\frac{1}{2}\triangle_{y}Z_{t}(y)dt+(e^{\beta}-1)Z_{t^{-}}(y)\eta(dt\times U(y))$ , $t\geq 0$ , $y\in \mathbb{R}^{d}$ ,
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$wheredZ_{t}(y)denotesthetimediffferentialand\triangle_{y}=(\frac{\partial}{ve1\partial y^{1}})^{2}+\ldots+(\frac{\partial}{red\partial y^{d}})^{2}Inthe1iterature,thisequationhasbeenextensiyconsidein$

.

the case of a Gaussian driving noise, instead of the Poisson process $\eta$

here. Although we are able to prove (4.6) only in the weak sense, let
us now pretend that (4.6) is true for all $y$

$\in \mathbb{R}^{d}$ . We would then see
from It\^o’s formula that the function $h_{t}(y)=\ln Z_{t}(y)$ solves the Kardar-
Parisi-Zhang equation (KPZ):

$dh_{t}(y)=\frac{1}{2}(\triangle_{y}h_{t}(y)+|\nabla_{y}h_{t}(y)|^{2})dt+\beta\eta(dt\times U(y))$ .

We observe that, since $h$ has jumps in the space variable $y$ , the non-
linearity makes the precise meaning of this equation somewhat knotty.
This equation was introduced in [15] to describe the long scale behavior
of growing interfaces. More precisely, the fluctuations in the KPZ equa-
tion-driven by a $\delta$-correlated, gaussian noise-, are believed to be non
standard, and universal, i.e., the same as in a large class of microscopic
models. See [17] for a detailed review of kinetic roughening of growth
models within the physics literature, in particular to Section 5 for the
status of this equation.

4.3. Crossing Brownian motion in a soft Poissonian potential

This model is studied by M. W\"uthrich [30, 31, 32], see also [28]. The
model investigated there is described in terms of Brownian motion and
of Poisson points. However, the Brownian motion there is “undirected”
in other words, the $d$-dimensional Brownian motion travels through the
Poisson points distributed in space $\mathbb{R}^{d}$ , not in space-time as in the Brow-
nian directed polymer.

4.4. First and last passage percolation

The first (resp. last) passage percolation can be thought of as an ana-
logue of directed polymers at $\beta=-\infty$ (resp. $\beta=+\infty$ ). In fact, we
have for example that

$\lim_{\beta\nearrow+\infty}\frac{1}{\beta}\ln Z_{n}=T_{n}^{*}=\max_{\omega\in\Omega\cdot\omega_{0}=0}.\sum_{1\leq j\leq n}def.\eta(j, \omega_{j})$ ,

i.e., the maximal passage time $T_{n}^{*}$ in the context of the directed last
passage percolation can be obtained as a limit of the free energy of the
directed polymer. It is expected and even partly vindicated that the
properties of the path with $minimal/maximal$ passage time has similar
feature to the typical paths under the polymer measure [16, 21, 18]. A
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few exactly solvable models of directed last passage percolation have re-
cently been worked out in dimension $d=1[2,12, 13]$ . Johansson [12]
treats the case of geometrically distributed $\eta$ ’s, and Baik, Deift and Jo-
hansson analyze some continuous space Poissonian directed last passage
percolation model in connection with the longest increasing sequence of
the random permutation $[2, 13]$ . For these exactly solvable models, it is
proven that the maximal passage time $T_{n}^{*}$ has the following asymptotic
form in law as $ n\nearrow\infty$ :

(4.7) $c_{0}n+c_{1}n^{1/3}X$ ,

where $c_{i}$ , $i=1,2$ are positive constants and $X$ is a random variable
with the Tracy-Widom distribution. As is well known, the Tracy-Widom
distribution appeared in the literatures in connection with the Gaussian
Unitary Ensemble [29]. Since then, it has increasingly realized that
this distribution is universal as the scaling limit of many other related
models. For this reason, we are tempted to believe that for $d=1$ and
$\beta\neq 0$ , the free energy $\ln Z_{n}$ of the directed polymer has the same large
time behavior as (4.7) with $c_{i}$ , $i=1,2$ depending on $\beta$ and the choice
of $\eta[27]$ .

4.5. Other models

Directed polymers in random environment, at positive or zero tempera-
ture, relate-even better, can sometimes be exactly mapped-to a num-
ber of interesting models of growing random surfaces (directed invasion
percolation, ballistic deposition, polynuclear growth, low temperature
Ising models), and non equilibrium dynamics (totally asymmetric sim-
ple exclusion, population dynamics in random environment); We refer to
the survey paper [17] by Krug and Spohn for detailed account on these
models and their relations.

5. Critical exponents

We write $\xi(d)$ for the “wandering $exponent’’,i.e.$ , the critical exponent
for the transversal fluctuation of the path, and $\chi(d)$ for the the criti-
cal exponent for the longitudinal fluctuation of the free energy. Their
definitions are roughly

(5.1) $\sup_{0\leq j\leq n}|\omega_{j}|\approx n^{\xi(d)}$ and $\ln Z_{n}-Q[\ln Z_{n}]\approx n^{\chi(d)}$ as $n$ $\nearrow\infty$ .

There are various ways to define rigorously these exponents, e.g. (0.6)
and (0.10-11) in [30], (2.4) and (2.6-7-8) in [24], and the equivalence
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between these specific definitions are often non trivial. Here, we do not
go into such subtlety and take (5.1) as “definitions”. The polymer is
said to be diffusive if $\xi(d)=1/2$ and super-diffusive if $\xi(d)>1/2$ .

These exponents are investigated in the context of various other
models and in a large number of papers. In particular, it is conjectured
in physics literature that the scaling identity holds in any dimension,

(5.2) $\chi(d)=2\xi(d)-1$ , $d\geq 1$ ,

and that the polymer is super-diffusive in dimension one;

(5.3) $\chi(1)=1/3$ , $\xi(1)=2/3$ .

See, e.g., [10],[9, (3.4),(5.11),(5.12)], [17, (5.19),(5.28)]. For some models
of directed first passage percolation, K. Johansson $[12, 13]$ proves (5.3),
cf. (4.7).

On the other hand, other rigorous results prove (or suggest) for
example that

(5.4) $\chi(d)$ $\geq$ $2\xi(d)-1$ for all $d\geq 1$ ,

(5.5) $\xi(d)$ $\leq$ 3/4 for all $d\geq 1$ ,

(5.6) $\xi(1)$ $>$ 1/2

M. Piza [24] discusses (5.4)-(5.6) for the simple random walk model. For
the Gaussian random walk model, M. Petermann [23] proves (5.6), while
O. Mejane [20] shows (5.5). F. Comets and N. Yoshida [6] discuss (5.4)-
(5.6) in the framework of Brownian directed polymer. Critical exponents
similar to the above are also discussed for the crossing Brownian motion
in a soft Poissonian potential by M. W\"uthrich [30, 31, 32] and for the
first passage percolation by C. Licea, M. Piza and C. Newman $[21, 18]$ .

Acknowledgements: We would like to thank H. Spohn for nice discussions

and variable remarks.
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Abstract.

The hyperbolic (Euler) scaling limit of weakly asymmetric Ginz-
burg-Landau models with a single conservation law is investigated,
weak asymmetry means that the microscopic viscosity of the system
tends to infinity in a prescribed way during the hydrodynamic limit.

The system is not attractive, its potential is a bounded perturbation
of a quadratic function. The macroscopic equation reads as $\partial_{t}\rho+$

$\partial_{x}S’(\rho)=0$ , where $S$ is a convex function. The Tartar-Murat theory
of compensated compactness is extended to microscopic systems, we
prove weak convergence of the scaled density field to the set of weak
solutions. In the attractive case of a convex potential this set consists
of the unique entropy solution. Our main tool is the logarithmic
Sobolev inequality of Landim, Panizo and Yau for continuous spins.

\S 1. Introduction and Main Result

In the last fifteen years a great progress has been made in the theory
of hydrodynamic limits. Although the first papers [2] and [22] concern
hyperbolic problems, most results are related to diffusive systems, see
e.g. [13,29,30] and the monograph [15] with historical notes and further
references. The main difficulty in hyperbolic problems comes from the
breakdown of regularity and uniqueness of macroscopic solutions. In a
smooth regime the relative entropy method of Yau [32] works well in
quite general situations. Beyond shocks, however, only some attractive
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systems like asymmetric exclusions, zero range and stick processes are
tractable, see [1,4,21,23,24] and also $[16,31]$ on entropy and large devia-
tions for asymmetric exclusion processes. The specific structure of these
models is very important, and PDE techniques play an essential role
in the proofs. The main purpose of this paper is to develop a general
method for hyperbolic problems: we are going to extend the Tartar -

Murat theory of compensated compactness to microscopic (stochastic)
systems, see [26] and [19] for the first ideas, [14] or [25] for a systematic
treatment of these advanced PDE techniques. Compensated compact-
ness yields weak convergence of the scaled empirical density to the set
of weak solutions to the macroscopic equations. A first exposition of
the main ideas for stochastic systems was given in [9] in the case of
asymmetric exclusions, and also for a lattice gas with two conservation
laws. Here we study an asymmetric Ginzburg-Landau model with a
single conservation law in details; we wanted to demonstrate that this
method is really applicable. Another model, a two-component lattice
gas with collisions is to be discussed in a forthcoming paper [11], see
also $[27,28]$ for a large class of two-component models. To have conver-
gence of the scaled microscopic process to a well specified macroscopic
solution, one has to supplement compensated compactness with the en-
tropy condition of Lax and $Kru\check{z}kov$ implying the uniqueness of the
limiting macroscopic solution. Unfortunately, we can only prove this
condition for attractive Ginzburg-Landau models by adapting the cou-
pling method of Rezakhanlou [21]. In another paper [10] we investigate
non-attractive lattice gas models with a single conservation law. The
structure of these systems allows us to verify also the entropy condi-
tion, thus we get convergence to a single entropy solution specified by
its initial value.

Let $\eta_{k}(t)\in \mathbb{R}$ for $t$ $\geq 0$ , $k\in \mathbb{Z}$ , and consider the following infinite
system of stochastic differential equations as the evolution law of this
continuous spin model. Given a potential $V(y)=y^{2}/2+U(y)$ such that
$U$, $U’$ , $U’’$ are bounded,

(1.1) $d\eta_{k}=\frac{1}{2}(V_{k-1}’-V_{k+1}’)dt$

$+\sigma(\in)(V_{k+1}’+V_{k-1}’-2V_{k}’)dt+\sqrt{2\sigma(\in)}(dw_{k-1}-dw_{k})$ ,

where $w_{k}$ , $k\in \mathbb{Z}$ is a family of independent Wiener processes, $\sigma=$

$\sigma(\in)>1/2$ is the coefficient of microscopic viscosity; abbreviations like
$V_{k}’:=V’(\eta_{k})$ are widely used also later on. The scaling parameter,
$0<\in\rightarrow 0$ of the hydrodynamic limit is interpreted as the spacing of
the lattice in macroscopic units, hyperbolic scaling means that time is
speeded up by a factor of $ 1/\in$ . We shall let $\sigma$ depend on $\in$ during the
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limiting procedure in such a way $that\in\sigma(\in)\rightarrow 0as\in\rightarrow 0$ , thus the
effect of the second difference, $\sigma(V_{k+1}’+V_{k-1}’-2V_{k}’)$ diminishes as $\in\rightarrow 0$ .

A technical condition, $\in\sigma^{2}(\in)\rightarrow\infty$ will be explained later.
Since the drift is Lipschitz continuous in a weighted $\ell^{2}$ space, $\Omega$

of doubly infinite sequences $\eta=(\eta_{k} : k\in \mathbb{Z})$ with weights $e^{-|k|}$ , for
instance, the existence of unique strong solutions to (1.1) follows by a
standard iteration procedure, and $\Omega$ carries a large class of probability
measures, see e.g. [9] for further references. Let $\mathcal{F}_{k,,,l}$ denote the $\sigma$-field
generated by $\eta_{k},\iota:=(\eta_{j} : k-l<j\leq k)$ , $\mu_{t}$ is the distribution of the
evolved configuration $\eta(t)$ , and $\mu_{t,,,k,l}$ denotes the distribution of $\eta_{k,,,l}(t)$ .

Short hand notation is to be used later in case of $k=n$ and $l$ $=2n$ .

The total spin $\sum\eta_{k}$ is formally preserved by the evolution, and
certain product measures $\lambda_{z}$ with one dimensional marginal densities
$g_{z}$ , $z\in \mathbb{R}$ ,

$g_{z}(y):=\exp(zy-V(y)-F(z))$ , $F(z):=\log\int_{-\infty}^{\infty}e^{zy-V(y)}dy$

are all stationary states. As a reference measure, $\lambda$

$:=\lambda_{0}$ will be used;

we may and do assume that $F(0)=F’(0)=0$ . A converse statement on
stationary states in a much stronger form will be needed, our main tool
is the logarithmic Sobolev inequality of [17]; that is why we are assuming
that $V$ is a bounded perturbation of a quadratic function. The model is
attractive if $V$ is convex; we are interested in the general case when an
effective coupling is not available.

Due to the asymmetric part $(1/2)(V_{k-1}’-V_{k+1}’)$ of the drift, the
model admits a hyperbolic scaling as specified below. In the absence

of the stochastic term $\sqrt{2\sigma}(dw_{k}-dw_{k-1})$ , (1.1) looks like a lattice
approximation procedure for solving $\partial_{t}\rho+\partial_{x}V’(\rho)=0$ ; the viscid part
$\sigma(V_{k+1}’+V_{k-1}’-2V_{k}’)$ is needed even in this deterministic situation to
stabilize the algorithm, see [14,18,25]. However, in regions of the phase

space where $V$ is concave, the viscid correction plays an opposite role;
the convexity of $V$ is very important in the deterministic case. Moreover,
the value of $\sigma$ may depend on the initial condition.

The behavior of the stochastic model is similar, but more complex.
For $\in$ $>0$ interpreted as the macroscopic spacing of the lattice, let
$\rho_{\epsilon}(t, x):=\eta_{k}(t/\in)$ if $|x-k\in|<\in/2$ denote the empirical process; we
are interested in its limiting behavior as the scaling $parameter\in\rightarrow 0$ .

In view of the principle of local equilibrium, the true distribution, $\mu_{t/\in}$

of our process is close to a product measure with marginal densities $g_{z}$

such that $z$ does depend on space and time. Since $\lambda_{z}(\eta_{k})=F’(z)=$

$\rho$ is the expectation of $\eta_{k}$ with respect to $\lambda_{z}$ , while $\lambda_{z}(V_{k}’)=z=$

$S’(\rho)$ if $\rho=F’(z)$ , where $S(\rho):=\sup_{z}\{z\rho-F(z)\}$ , $\partial_{t}\rho+\partial_{x}S’(\rho)\approx$
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$\in\sigma\partial_{x}^{2}S’(\rho)$ is expected for the asymptotic mean of $\rho_{\Xi}as\in\rightarrow 0$ . This
was proven in [7] for $\sigma=\sigma_{0}/\in$ and small $U$ by means of the parabolic
perturbation technique of [6], see also $[12,4]$ on the weakly asymmetric
exclusion process. Heuristic considerations of this kind suggest that
the macroscopic equation becomes $\partial_{t}\rho+\partial_{x}S’(\rho)=0$ if $\in\sigma\rightarrow 0$ during
the hydrodynamic limit. This can be proven by means of the relative
entropy method [32] when the macroscopic solution is smooth, even
if $\sigma>0$ is fixed. In case of an incompressible limit (perturbation of
equilibrium) the initial configuration is changed during the scaling limit,
see [20,24,28].

In a regime of shocks some new methods are needed, this is the
subject of the present paper. Unfortunately, we are able to control
oscillations of the empirical process only if the microscopic viscosity, $\sigma$

goes to infinity $as\in\rightarrow 0$ . More precisely, we are assuming that $\in\sigma\rightarrow 0$

but $\in\sigma^{2}\rightarrow+\infty$ as $\in\rightarrow 0$ . For example, $\sigma(\in):=\sqrt{\in}\log(1/\in)$ is an
allowed choice. Let us remark that the concept of microscopic viscosity
is plausible in many other cases, and conditions on its growth rate are
the same as above, see [9,10,11], but Dittrich [4] only needs $\in\sigma^{3}\rightarrow+\infty$

in case of asymmetric exclusions. If the generator, $\mathcal{L}$ of a conservative
process decomposes as $\mathcal{L}=\mathcal{L}_{0}+\sigma 6$ , where 6 is symmetric, then the
parameter $\sigma>0$ may be interpreted as the microscopic viscosity of the
model. The paper [28] investigates perturbation of the equilibrium for
a class of two-component hyperbolic models in a smooth regime; the
order of microscopic viscosity of these models is the same as here. Also
in such situations we use the term weakly asymmetric system; perhaps
the phrase large microscopic viscosity limit would be more correct.

A locally square integrable $\rho\in L_{1oc}^{2}(\mathbb{R}_{+}^{2})$ is a weak solution to $\partial_{t}\rho+$

$\partial_{x}S’(\rho)=0$ with initial value $\rho_{0}\in L_{1oc}^{2}(\mathbb{R})$ if $\rho(t, x)$ satisfies

(1.2) $\int_{0}^{\infty}\int_{-\infty}^{\infty}(\rho\psi_{t}’+S’(\rho)\psi_{x}’)dxdt+\int_{-\infty}^{\infty}\rho_{0}(x)\psi(0, x)dx=0$

for all test functions $\psi\in C_{c}^{1}(\mathbb{R}^{2})$ , where $\psi_{u}’:=\partial_{u}\psi$ , $C_{c}^{k}(\mathbb{R}^{2})$ is the
space of compactly supported $\psi$ : $\mathbb{R}^{2}\mapsto \mathbb{R}$ with $k$ continuous derivatives,
$\mathbb{R}_{+}^{2}:=[0, \infty)\times \mathbb{R}$ , $L_{1oc}^{2}$ is the space of locally square integrable functions.
It is easy to check that $S’’$ is bounded, thus the definition above is not
a senseless one. In fact, only the local integrability of $\rho$ is needed in
(1.2) because $S’$ is linearly bounded, but we prefer an $L^{2}$ setting. In
case of a single conservation law the Lax entropy condition is sufficient
for the uniqueness of weak solutions, see [14] or [25]. For $\alpha>0$ let $H_{\alpha}$

denote the set of such couples $(h, J)$ of continuously differentiable real
functions that $|h(u)|+|J(u)|=O(|u|^{\alpha})$ for large $u$ , and $J’=h’S’’$ , that



Asymmetric Systems 147

is $\partial_{t}h(\rho)+\partial_{x}J(\rho)=0$ along classical solutions; $(h, J)$ is called an Lax
entropy pair. A weak solution, $\rho$ satisfies the entropy condition if

(1.3) $\int_{0}^{\infty}\int_{-\infty}^{\infty}(h(\rho)\psi_{t}’+J(\rho)\psi_{x}’)dxdt+\int_{-\infty}^{\infty}h(\rho_{0}(x))\psi(0, x)dx\geq 0$

for all $0\leq\psi\in C_{c}^{1}(\mathbb{R}^{2})$ and $(h, J)\in H_{1}$ with $h$ convex. An equivalent
version of the Lax inequality has been proposed by Kruzkov, see $[21,25]$ ,

namely

$\int_{0}^{\infty}\int_{-\infty}^{\infty}(|\rho-c|\psi_{t}’+|S’(\rho)-S’(c)|\psi_{x}’)dxdt$

(1.4) $+\int_{-\infty}^{\infty}|\rho_{0}(x)-c|\psi(0, x)dx\geq 0$

for all $0\leq\psi\in C_{c}^{1}(R^{2})$ and $c\in \mathbb{R}$ ; the flux of $h_{c}(u):=|u-c|$ can be
chosen as $J_{c}(u):=|S’(u)-S’(c)|$ .

The Lax inequality is motivated by the viscous approximation $\partial_{t}u_{\Xi}+$

$\partial_{x}S’(u_{\epsilon})=\in\sigma\partial_{x}^{2}\Phi’(u_{\in})$ , $where\in\sigma\rightarrow 0$ , because

$\partial_{t}h(u_{\Xi})+\partial_{x}J(u_{\Xi})=\in\sigma h’(u_{\in})\partial_{x}^{2}\Phi’(u_{\Xi})$

(1.5) $=\in\sigma\partial_{x}(h’(u_{\Xi})\Phi’’(u_{\Xi})\partial_{x}u_{\in})-\in\sigma h’’(u_{\in})\Phi’’(u_{\in})(\partial_{x}u_{\Xi})^{2}$ ,

whence one can derive (1.3) with an appropriate choice of $\Phi$ ; the most
favored one is $\Phi(u)=u^{2}/2$ . We see that there is a freedom in choos-
ing the viscid $correction\in\sigma\partial_{x}^{2}\Phi’$ , but $\Phi’’\geq 0$ is very important at this
point; the structure of lattice approximation procedures and other nu-
merical schemes is similar. The viscous correction must be elliptic in

all cases. Stochastic models are structured in a more canonical way be-
cause they must have a stationary state; the form of (1.1) is dictated by
this requirement. Calculations at the microscopic level follow the above
scheme of the viscous approximation, that is why the strict convexity of
$V$ is needed for (1.3) or (1.4).

Several topologies shall be used in the study of the limit distribu-
tion of the empirical process $\rho_{\Xi}$ . We shall see that $\rho_{\Xi}$ is locally square
integrable, thus the weak topology of $L_{1oc}^{2}(\mathbb{R}_{+}^{2})$ will be the first one; the
distribution $P_{\epsilon}$ of $\rho_{\epsilon i}$ will be considered on this space. We are interested
in the limiting behavior of the density field $R_{\epsilon}$ ,

(1.6) $R_{\in}(\psi):=\int_{0}^{\infty}\int_{-\infty}^{\infty}\psi(t, x)\rho_{\Xi}(t, x)dxdt$ ,

where $\psi\in C_{c}(\mathbb{R}^{2})$ is compactly supported. The initial conditions are
specified in terms of a family $\mu_{\Xi},0$ $:\in>0$ of initial distributions. First
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of all, we have some $\rho_{0}\in L_{1oc}^{2}(\mathbb{R})$ such that

(1.7) $\lim_{\in\rightarrow 0}\int_{-\infty}^{\infty}\varphi(x)\rho_{\in}(0, x)dx=\int_{-\infty}^{\infty}\varphi(x)\rho_{0}(x)dx$

in probability for all $\varphi\in C_{c}(\mathbb{R})$ . The second condition tells that the
entropy, $S$ of $\mu_{\epsilon,,,0}$ relative to $\lambda$

$:=\lambda_{0}$ is extensive. The entropy of a
probability measure $iJ$ relative to $\lambda$ is defined as $S[\nu|\lambda]:=\iota/(\log f)$ if
$\iota/<<\lambda$ and $ d\iota/=fd\lambda$ , $ S=+\infty$ otherwise. Let $\mu_{\Xi,,,0,n}$ denote the
restriction of $\mu_{\Xi},0$ to $\mathcal{F}_{n,,,2n}$ , and suppose that $ f_{n}:=d\mu_{\in,,,0,n}/d\lambda$ satisfies

(1.8) $S_{n}[\mu_{\in,,,0}|\lambda]:=\int f_{\epsilon,,,n}\log f_{\in,,,n}d\lambda\leq C_{0}n$ $\forall\in>0$ and $n\in \mathbb{N}$ .

Our main result is

Theorem 1.1. Suppose (1.7), (1.8) and specify $\sigma=\sigma(\in)$ such
$ that\in\sigma(\in)\rightarrow 0but\in\sigma^{2}(\in)\rightarrow+\infty$ $as\in\rightarrow 0$ . Then the family $P_{\Xi}$ is tight
$as\in\rightarrow 0$ , and any limit distribution is concentrated on a set of weak
solutions (1.2) to the macroscopic equation $\partial_{t}\rho+\partial_{x}S’(\rho)=0$ . Moreover,

if $V$ is strictly convex, then we have a weak solution $\rho\in L_{loc}^{2}(\mathbb{R}_{+}^{2})$ such
that

$\lim_{\in\rightarrow 0}R_{\Xi}(\psi)=R(\psi):=\int_{0}^{\infty}\int_{-,,\infty}^{\infty}\psi(t, x)\rho(t, x)dxdt$

in probability for all $\psi\in C_{c}(\mathbb{R}^{2})$ ; this $\rho$ is uniquely specified by its initial
value $\rho_{0}$ and the entropy condition (1.4).

The paper is organized as follows. Below and in Section 2 we are
going to exhibit the main ideas of the argument. Section 3 summarizes
some basic facts on the microscopic model, further technical details are
added in Section 4. The proof is then completed in the last section.

The first main step of the proof is certainly the replacement of $V’(\rho_{\epsilon})$

with $S’(\rho_{\Xi})$ , this characteristic argument of hydrodynamic limits does
not appear in PDE theory. The second step is then to show that the
weak limit of $S’(\rho_{\epsilon})$ equals $S’(\rho)$ , where $\rho$ is the weak limit of $\rho_{\in}$ . As
we have learned from [13], the replacement of $V’$ with $S’$ can be done
at a level of block averages. In case of a diffusive scaling the celebrated
two-block estimate allows us to work with macroscopic blocks, thus the
weak limit commutes with $S’$ . This step is more difficult if we consider
a hyperbolic problem because the two-block lemma extends to blocks
of size $l$ $=o(\sqrt{\sigma}/\in)$ only, consequently there is no direct argument
to identify the weak limit of $S’(\rho_{\in})$ . The concept of measure solution
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plays an important role at this point, see e.g. [3] on partial differential
equations, and [29] on a first application to a microscopic system.

Let $\Theta$ denote the set of measurable families $\theta=\theta_{t,,,x}$ : $(t, x)\in \mathbb{R}_{+}^{2}$

of probability measures on $\mathbb{R}$ such that $\theta_{t,,,x}(u^{2})$ is locally integrable on
$\mathbb{R}_{+}^{2}$ . $\theta\in\Theta$ is a measure solution to (1.1) if

(1.9) $\int_{0}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\theta_{t,,,x}(d\rho)(\rho\psi_{t}’+S’(\rho)\psi_{x}’)dxdt=0$

for all $\psi\in C_{c}^{1}(\mathbb{R}_{+}^{2})$ , the space of $\psi\in C^{1}(\mathbb{R}^{2})$ such that $supp\psi$ is con-
tained in the interior of $\mathbb{R}_{+}^{2}$ . Notice that the initial value has not been

included in this definition. A function $u\in L_{1oc}^{2}(\mathbb{R}_{+}^{2})$ is represented by
a family $\theta\in\Theta$ of Dirac measures such that $\theta_{t,,,x}$ is concentrated at the
actual value $u(t, x)$ of $u$ ; this $\theta$ is called the Young representation of
$u$ . Moreover, any $\theta\in\Theta$ can be identified as a locally finite measure
$m_{\theta}$ , $dm_{\theta}:=dt$ $dx\theta_{t,,,x}$ (du) on $\mathbb{R}_{+}^{3}:=\mathbb{R}_{+}^{2}\times \mathbb{R}$ ; equip $\Theta$ with the associ-
ated weak topology. Therefore any weak solution is a measure solution,
and the existence of measure solutions follows by a direct compactness
argument. Compensated compactness is the tool for proving that any
measure solution is actually a weak solution. We say that $\theta\in\Theta$ admits a
Tartar factorization for a couple $(h_{1}, J_{1})$ , $(h_{2}, J_{2})\in H_{1}$ of entropy pairs,
if for almost every $(t, x)\in \mathbb{R}_{+}^{2}$ we have

(1.10) $\theta_{t,,,x}(h_{1}J_{2})-\theta_{t,,,x}(h_{2}J_{1})=\theta_{t,,,x}(h_{1})\theta_{t,,,x}(J_{2})-\theta_{t,,,x}(h_{2})\theta_{t,,,x}(J_{1})$ .

In the case of a single conservation law like $\partial_{t}\rho+\partial_{x}S’(\rho)=0$ ,

Tartar’s factorization implies that $\theta$ is a family of Dirac measures, that
is a weak solution. To get uniqueness of weak solutions we need the
$Kru\check{z}kov$ inequality (1.4). The entropy condition can also be stated at
the level of measure solutions,

$\int_{0}^{\infty}\int_{-\infty}^{\infty}(\theta_{t,,,x}(h_{c})\psi_{t}’+\theta_{t,,,x}(J_{c})\psi_{x}’)dxdt$

(1.11) $+\int_{-\infty}^{\infty}\theta_{0,,,x}(h)\psi(0, x)dx\geq 0$

for all $0\leq\psi\in C_{c}^{1}(\mathbb{R}^{2})$ and for the Kruzkov entropy pairs $(h_{c}, J_{c})$ ,
$c\in \mathbb{R}$ , see (1.4); the derivation of (1.11) is easier than that of (1.4).
Let us remark that DiPerna [3] proves the uniqueness of measure solu-
tions satisfying (1.11) without any reference to Tartar’s factorization,
but his initial condition is much stronger than that we do have here.
Compensated compactness requires large microscopic viscosity, but it
has an advantage from the point of view of uniqueness. Since we have
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weak solutions, (1.4) is sufficient, i.e. no continuity condition is needed
at time zero, see [22].

Entropy pairs constitute additional conservation laws at the macro-
scopic level, but the microscopic model must be ergodic, thus it can
not have any other conservation law than those we are a priori given.
Therefore the Lax entropies exhibit rapid oscillations, they should be
controlled by means of non-gradient tools as initiated by Varadhan [30].

\S 2. Compensated Compactness

The proof of Tartar’s factorization is based on some functional ana-
lytic properties of the Lax entropy production $X:=\partial_{t}h+\partial_{x}J$ , we have
to estimate $X$ in various spaces. Let $||\varphi||$ denote the uniform norm,
$||\varphi||_{p}$ is the $L^{p}$ norm of $\varphi$ : $\mathbb{R}^{2}\mapsto \mathbb{R}$ for $p\geq 1$ . The Sobolev space
$H_{+1}(\mathbb{R}^{2})$ is defined as the completion of $C_{c}^{1}(\mathbb{R}^{2})$ with respect to $||$ . $||_{+1}$ ,
$||\varphi||_{+1}^{2}:=||\varphi||_{2}^{2}+||\varphi_{t}’||_{2}^{2}+||\varphi_{x}’||_{2}^{2}$ , and $H_{-1}(\mathbb{R}^{2})$ is the dual of $H_{+1}$ with
respect to $L^{2}(\mathbb{R}^{2})$ . Here and below we adopt a convention: if a func-
tion $u$ is only defined on $\mathbb{R}_{+}^{2}$ , then we extend its definition by setting
$u(t, x)=0$ for $t<0$ .

A first version of Tartar’s theorem can be stated as follows. Let
$(h_{i}, J_{i})\in H_{1}$ for $i=1,2$ , and set $X_{i,,,\in}:=\partial_{t}h_{i}(u_{\in})+\partial_{x}J_{i}(u_{\Xi})$ . Suppose
that $u_{\Xi}$ , $h_{i}(u_{\Xi})$ and $J_{i}(u_{\Xi})$ are all weakly convergent in $L^{2}(\mathbb{R}^{2})as\in\rightarrow 0$ ,
while the Young representation $\theta_{\Xi}$ of $u_{\in}$ tends to some $\theta\in\Theta$ . If the set
$\{X_{i,,,\in} : i=1,2;\in>0\}$ is relative compact in $H_{-1}(\mathbb{R}^{2})$ , then (1.10)
holds true. The so called Murat lemma on the conditions of Tartar’s
theorem had certainly been motivated by (1.5). It states that if $h_{i}(u_{\Xi})$

and $J_{i}(u_{\in})$ are bounded in $L^{p}(\mathbb{R}^{2})$ for some $p>2$ , and $X_{i,,,\in}=Y_{i,,,\in}+Z_{i,,,\in}$

such that $Z_{i,,,\in}$ is bounded in the space of finite signed measures on $\mathbb{R}^{2}$

while $Y_{i,,,\in}$ belongs to a compact set of $H_{-1}(\mathbb{R}^{2})$ , then $X_{i,,,\in}$ also lies
in a compact subset of $H_{-1}(\mathbb{R}^{2})$ . Since the empirical process does not
vanish at infinity, we have to localize the problem by multiplying $X$ with
a general $\phi\in C_{c}^{2}(\mathbb{R}^{2})$ ; this step is also present in the original papers [26]
and [19]. “Compensation” appears at two places. The factorization on
the right hand side of (1.10) holds true only for the difference on the left,
and $\partial_{t}h$ , $\partial_{x}J$ alone are only bounded in $H_{-1}$ , their sum does belong to
a compact set.

In view of our project, we formulate and prove Tartar’s factorization
and the entropy inequality at the microscopic level, this will be done in
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terms of block averages. For any sequence $\xi$ indexed by $\mathbb{Z}$ ,

(2.1) $\overline{\xi}_{l,,,k}:=\frac{1}{l}\sum_{j=0}^{l-1}\xi_{k-j}$ and $\hat{\xi}_{l,,,k}:=\frac{1}{l^{2}}\sum_{j=-l}^{l}||j|-l|\xi_{k+j}$ .

For example, $\overline{V}_{l,,,k}’$ refers to the sequence $V_{k}’=V’(\eta_{k})$ . The smooth av-

eraging $\hat{\xi}_{l}$ seems to be convenient in analytic calculations, while the
usual one, $\overline{\xi}_{l}$ is preferred in computing canonical expectations. The size
$l$ $=l(\in)$ of these blocks should be chosen in such a way that

(2.2) $\lim_{\in\rightarrow}\sup_{0}\frac{\sigma(\in)}{\in l^{3}(\epsilon)}<+\infty$ and $\lim_{\in\rightarrow 0}\frac{l(\in)}{\sigma(\in)}=0$ ,

$thus\in l^{2}(\sigma)\rightarrow+\infty as\in\rightarrow 0$ . $Since\in\sigma(\in)\rightarrow 0and\in\sigma^{2}(\in)\rightarrow+\infty$ ,
$\sigma^{2}=o(l^{3})$ . We see also that $(\sigma/\in)^{1/3}=O(l)=o(\sigma)$ , thus the integer

part $of\in-1/4\sqrt{\sigma(\in)}$ is an acceptable choice for $l$ . Because of some tech-
nical reasons, we modify the empirical process as $\hat{\rho}_{\Xi}(t, x):=\hat{\eta}l,k(t/\in)$ if
$|x-k\in|<\in/2,\hat{P}_{\Xi}$ denotes its distribution on $L_{1oc}^{2}(\mathbb{R}_{+}^{2})$ ; from now on
the block size $l$ $=l(\in)$ is specified according to (2.2). In view of the
Young representation, the empirical process $\hat{\rho}_{\Xi}$ can be considered also

asarandom element $\theta\wedge\in$ of $\Theta$ ; the distribution, $\hat{P}_{\theta,,,\in}$ of $\hat{\theta}_{\Xi}$ is defined on

this space. Of course, $P_{\epsilon},\hat{P}_{\Xi}$ and $\hat{P}_{\theta,,,\in}$ are not really different from each
other, just the notion of weak convergence varies.

The microscopic version of entropy production $X=\partial_{t}h+\partial_{x}J$ is

defined for $\psi\in C_{c}^{1}(\mathbb{R}_{+}^{2})$ and $(h, J)\in H_{1}$ by

(2.3) $X_{\Xi}(\psi, h):=-\int_{0}^{\infty}\int_{-\infty}^{\infty}(h(\hat{\rho}_{\in})\psi_{t}’+J(\hat{\rho}_{\Xi})\psi_{x}’)dxdt$ ,

remember that $\psi$ is compactly supported in the interior of $\mathbb{R}_{+}^{2}$ . We have

(2.4) $X_{\Xi}(\psi, h)=N_{\Xi}(\psi, h)+M_{\Xi}(\psi, h)$

$+\frac{1}{\in}\int_{0}^{\infty}\int_{-\infty}^{\infty}\psi(t, x)(\mathcal{L}h(\hat{\rho}_{\epsilon})+\in\overline{\nabla}_{\in}J(\hat{\rho}_{\Xi}))dxdt$ ,

where $N_{\Xi}$ is a numerical error due to the lattice approximation of the
space derivative, $M_{\Xi}$ is a stochastic integral coming from the Ito lemma,

and $\mathcal{L}$ $=\mathcal{L}_{0}+\sigma 6$ is the generator of the microscopic process (1.1). On
smooth cylinder functions $\varphi(\eta)$ , $\mathcal{L}_{0}$ and 6 are acting as

$\mathcal{L}_{0}\varphi:=-\sum_{k\in \mathbb{Z}}(\overline{\nabla}_{1}V_{k}’)\partial_{k}\varphi$
, $ 6\varphi$

$:=\sum_{k\in \mathbb{Z}}(\nabla_{1}\partial_{k}-\nabla_{1}V_{k}’)\nabla_{1}\partial_{k}\varphi$
,
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where $\partial_{k}\varphi:=\partial\varphi/\partial\eta_{k}$ , $\nabla_{l}\xi_{k}:=l^{-1}(\xi_{k+l}-\xi_{k}),\overline{\nabla}_{l}:=(1/2)(\nabla_{l}-\nabla_{l}^{*})$ ,
$\nabla_{l}^{*}\xi_{k}:=l^{-1}(\xi_{k-l}-\xi_{k})$ , $\triangle\iota:=-\nabla_{l}^{*}\nabla_{l}$ for $l$ $\in \mathbb{N}$ . Note that $\nabla_{1}\hat{\xi}_{l}=\nabla_{l}\overline{\xi}_{l}$ .

The formalism is used also for functions $as\in\nabla_{\epsilon}\varphi(x):=\varphi(x+\in)-\varphi(x)$ ,
$\overline{\nabla}_{\in}\varphi(x):=(1/2\in)(\varphi(x+\in)-\varphi(x-\in))$ , and so on.

Mimicking integration by parts, the numerical error becomes

(2.5) $N_{\in}(\psi, h)=\int_{0}^{\infty}\int_{-\infty}^{\infty}J(\hat{\rho}_{5})(\overline{\nabla}_{\in}-\partial_{x})\psi(t, x)dxdt$ .

The stochastic equations for $\hat{\eta}$ read as

$d\hat{\eta}l,,k=-\overline{\nabla}_{1}\hat{V}_{l,,,k}’dt+\sigma\triangle_{1}\hat{V}_{l,,,k}’dt+\sqrt{2\sigma}\nabla_{1}^{*}d\hat{w}_{l,,,k}$ ,

thus scaling the noise as $\hat{\zeta}(t, x):=\sqrt{\in}\hat{w}_{l,,,k}(t/\in)$ if $|x-k\in|<\in/2$ ,

(2.6) $M_{\Xi}(\psi, h)=\sqrt{2\sigma\in}\int_{-,,\infty}^{\infty}\int_{0}^{\infty}\psi(t, x)h’(\hat{\rho}_{\in})\nabla_{\Xi}^{*}\hat{\zeta}_{\in}(dt, x)dx$ .

Splitting $\mathcal{L}/\in into$ its asymmetric and symmetric components, we obtain
a decomposition $X_{\Xi}=N_{\Xi}+M_{\Xi}+X_{a,,,\in}+X_{s,,,\in}$ , where

(2.7) $X_{a,,,\in}(\psi, h):=\frac{1}{\in}\int_{0}^{\infty}\int_{-,,\infty}^{\infty}\psi(t, x)(\mathcal{L}_{0}h(\hat{\rho}_{\Xi})+\in\overline{\nabla}_{\in}J(\hat{\rho}_{\in}))dxdt$ ,

(2.8) $X_{s,,,\in}(\psi, h):=\frac{\sigma}{\in}\int_{0}^{\infty}\int_{-\infty}^{\infty}\psi(t, x)6h(\hat{\rho}_{\Xi}(t, x))dxdt$ .

The main term here is certainly the asymmetric $X_{a,,,\in}(\psi, h)$ .

Having in mind (1.5) and the Tartar-Murat theorems, we are look-
ing for a decomposition of entropy production $X_{\in}(\psi, h)=Y_{\in}(\psi, h)+$

$Z_{\in}(\psi, h)$ described as follows.

Proposition 2.1. Let $(h_{1}, J_{1})$ , $(h_{2}, J_{2})\in H_{1}$ , and suppose that
we are given some random functional $Y_{\in}(\psi, h_{i})$ , $Z_{\in}(\psi, h_{i})$ , $A_{\in}(\phi)$ , $B_{\epsilon}(\phi)$

such that $X_{\epsilon}=Y_{\in}+Z_{\in}$ , $A_{\in}(\phi)$ and $B_{\Xi}(\phi)$ do not depend on $\psi$ , moreover

$|Y_{\in}(\phi\psi, h_{i})|\leq A_{\in}(\phi)||\psi||_{+1}$ , $|Z_{\in}(\phi\psi, h_{i})|\leq B_{\Xi}(\phi)||\psi||$

for each $\psi\in C_{c}^{1}(\mathbb{R}_{+}^{2})$ , $\phi\in C_{c}^{2}(\mathbb{R}^{2})$ , $i=1,2$ $and\in>0$ . If $||\phi\rho_{\epsilon}||_{2}^{2}\leq$

$B_{\in}(\phi)$ , $EA_{\in}(\phi)\rightarrow 0$ and $\lim\sup EB_{\in}(\phi)<+\infty as\in\rightarrow 0$ , the $\hat{P}_{\theta,,,\in}:$ $\in>$

$0$ is tight on $\Theta$ , and (1.10) holds true with probability one with respect

to any weak limit point $\hat{P}_{\theta}$ of $\hat{P}_{\theta,,,\in}as\in\rightarrow 0$ .
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This is a microscopic (stochastic) synthesis of the fundamental re-
sults of L. Tartar and F. Murat on compensated compactness. We post-
pone its proof to the last section, the main problem is to verify the
conditions; that is the content of Sections 3 and 4. The first part of
Theorem 1.1 follows from Proposition 2.1 and Lemma 5.1.

For the Lax-Kruzkov inequality we do not need bounds that are
uniform in $\psi$ , but the viscid term, $\sigma\triangle_{1}V’$ of the microscopic evolution
must be elliptic as a (nonlinear) operator on the configuration space.

Proposition 2.2. Suppose all conditions of Theorem 1.1 includ-
ing the strict convexity of $V$, then $\hat{P}_{\theta,,,\in}$ $:\in>0$ is a tight family with
respect to the weak topology of $\Theta$ , and its weak limit distributions are
concentrated on a set of measure solutions satisfying (1.11).

The proof of this statement is based on the attractiveness of the
microscopic process due to monotonicity of $V’$ . Following [21], it is pre-
sented in Section 5. The proof of Theorem 1.1 is then completed by weak
uniqueness of entropy solutions. The case of a general (non-convex) po-
tential is a formidable open problem.

\S 3. The a priori bounds

This section summarizes some estimates based on relative entropy

and its rate of production, the fundamental entropy inequality $\nu(\varphi)\leq$

$S[\nu|\lambda]+\log\lambda(e^{\varphi})$ will be used several times. The Donsker-Varadhan
rate function of a probability measure $\nu<<\lambda$ with respect to a self-
adjoint generator, $\mathfrak{S}$ of a Markov process in $L^{2}(\lambda)$ is a Dirichlet form
$D[\nu|\lambda, \mathfrak{S}]:=-4\lambda(\sqrt{f}\mathfrak{S}\sqrt{f})$ when $ f:=d\nu/d\lambda$ ; for technical details
see [13],[15] or [9] with further references. We consider (1.1) with an
arbitrary, but fixed value of $\sigma>1/2$ , $\mu_{t,,,n}$ is the restriction of the evolved
measure, $\mu_{t}$ to $\mathcal{F}_{n,,,2n}$ , and $f_{n}(t, \eta)$ denotes the $\lambda$-density of $\mu_{t,,,n}$ , if any.
Set $S_{n}(t):=S[\mu_{t,,,n}|\lambda]$ , while $D_{n}(t):=D[\mu_{t,,,n}|\lambda, 6_{n,,,2n}]$ , where

$ 6_{k,,,l}\varphi:=\sum_{j=k-l+1}^{k-1}(\nabla_{1}\partial_{j}-\nabla_{1}V_{j}’)\nabla_{1}\partial_{j}\varphi$

for smooth $\varphi$ . If $0<f_{n}$ is differentiable then

$ D_{n}(t)=4\sum_{k=1-n}^{n-1}\int(\nabla_{1}\partial_{k}\sqrt{f_{n}})^{2}d\lambda=\sum_{k=1-n}^{n-1}\int\frac{1}{f_{n}}(\nabla_{1}\partial_{k}f_{n})^{2}d\lambda$ .

First we derive an explicit bound for $S_{n}$ and the time integral of $D_{n}$ .
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Lemma 3.1. If $S_{n}(0)\leq C_{0}n$ then

$S_{n}(t)+\sigma\int_{0}^{t}D_{n}(s)ds\leq C_{1}(t+\sqrt{n^{2}+\sigma t})$

for all $n$ $\in \mathbb{N}$ , where $C_{1}$ is a constant depending only on $C_{0}$ and $U$.

Proof. We follow the proof of Proposition 1 in [8], only the main
steps are presented. Remember that $\lambda$ is preserved by the deterministic
process generated by $\mathcal{L}_{0}$ , i.e. $\lambda(\mathcal{L}_{0}\varphi)=0$ , while 6 is symmetric in
$L^{2}(\lambda)$ , thus

$\int\varphi 6\psi d\lambda=-\sum_{k\in \mathbb{Z}}\int(\nabla_{1}\partial_{k}\varphi)\nabla_{1}\partial_{k}\psi d\lambda$

for smooth cylinder functions $\varphi$ and $\psi$ . If $f_{n}>0$ is smooth enough, then
by a direct calculation

$\partial_{t}S_{n}=\int(\partial_{t}+\mathcal{L})\log f_{n}(t, \eta)\mu_{t}(d\eta)=\int f_{n+1}\mathcal{L}\log f_{n}d\lambda$

$=\sum_{k\in \mathbb{Z}}\int f_{n+1}(\overline{\nabla}_{1}V_{k}’)\frac{\partial_{k}f_{n}}{f_{n}}d\lambda-\sigma\sum_{k\in \mathbb{Z}}\int(\nabla_{1}\partial_{k}f_{n+1})\frac{\nabla_{1}\partial_{k}f_{n}}{f_{n}}d\lambda$

$=-\sigma D_{n}-\sigma D_{\partial,,,n}+\sum_{k\in \mathbb{Z}}\int(f_{n+1}-f_{n})(\tilde{\nabla}_{1}V_{k}’)\frac{\partial_{k}f_{n}}{f_{n}}d\lambda$

$-\sigma\sum_{k\in \mathbb{Z}}\int(\nabla_{1}\partial_{k}f_{n+1}-\nabla_{1}\partial_{k}f_{n})\frac{\nabla_{1}\partial_{k}f_{n}}{f_{n}}d\lambda$ ,

where

$ D_{\partial,,,n}(t):=\int\frac{1}{f_{n}}(\partial_{n}f_{n})^{2}d\lambda+\int\frac{1}{f_{n}}(\partial_{1-n}f_{n})^{2}d\lambda$

and $f_{n}=f_{n}(t, \eta)$ . Both sums on the right hand side above consist only
of boundary terms corresponding to $k=\pm n$ , $\lambda(V_{k}’)=0\forall k$ , and for
$k=n+1$ or $k=-n$ we have

$\int\varphi_{n}\partial_{k}f_{n+1}d\lambda=\int\varphi_{n}V_{k}’f_{n+1}d\lambda$

whenever $\varphi_{n}$ is $\mathcal{F}_{n,,,2n}$ measurable. Denoting

$ B_{n}(t):=\frac{1}{2}\int(V_{n+1}’\partial_{n}f_{n}-V_{-n}’\partial_{1-n}f_{n})\frac{f_{n+1}}{f_{n}}d\lambda$ ,
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by an easy computation we arrive at

$\partial_{t}S_{n}+\sigma D_{n}=(1+2\sigma)B_{n}-\sigma D_{\partial,,,n}$

(3.1) $=B_{n}-\sigma\sum_{k=\pm n}\int(\nabla_{1}\partial_{k}f_{n+1})\frac{\nabla_{1}\partial_{k}f_{n}}{f_{n}}d\lambda$

$\leq B_{n}+\sigma\sqrt{D_{n+1}-D_{n}}\sqrt{D_{\partial,n}}$ ;

at the final step $\nabla_{1}\partial_{n}f_{n}=-\partial_{n}f_{n}$ , $\nabla_{1}\partial_{-n}f_{n}=\partial_{1-n}f_{n}$ , the Schwarz
inequality and convexity of $D$ were used.

First of all we have to estimate $B_{n}$ . For any probability measure $\nu$ ,

and $u\in \mathbb{R}$ we have an entropy bound

$u\nu(V_{k}’)\leq S[\nu|\lambda]+\log\lambda(e^{uV_{k}’})\leq S[\nu|\lambda]+\frac{1}{2}||V^{JJ}||u^{2}$ ,

see (3.4) for the second inequality, whence by setting $u=\pm\sqrt{2S/||V^{JJ}||}$

we obtain that $l/^{2}(V_{k}’)\leq 2||V^{JJ}||S[\nu|\lambda]$ . Let $\nu=\mu_{t}[\cdot|\mathcal{F}_{n,,,2n}]$ , again by
Schwarz and convexity we get

$B_{n}(t)\leq K_{0}\sqrt{S_{n+1}(t)-S_{n}(t)}\sqrt{D_{\partial,n}(t)}$ .

In view of (3.1) there is nothing to prove if $(1+2\sigma)B_{n}\leq\sigma D_{\partial,,,n}$ , but

$\sigma D_{\partial,,,n}\leq 4B_{n}\leq 4K_{0}\sqrt{(S_{n+1}-S_{n})D_{\partial,n}}$

in the opposite case, whence a system

$\partial_{t}S_{n}+\sigma D_{n}\leq K_{1}(S_{n+1}-S_{n}+\sigma\sqrt{S_{n+1}-S_{n}}\sqrt{D_{n+1}-D_{n}})$

of differential inequalities follows immediately, where $K_{1}$ depends only
on $||V’’||$ . This system admits an explicit solution, see Lemma 3 in [8],
the result is just the bound we have to prove. Since the final statement
does not depend on smoothness of $f_{n}$ any more, this restriction can be
removed by a standard regularization. Q.E.D.

As a first consequence, from the entropy bound we get the moment
condition $\lim\sup E||\phi\rho_{\Xi}||_{2}^{2}<+\infty$ of Proposition 2.1 for $\phi\in C_{c}^{2}(\mathbb{R}^{2})$ .

Lemma 3.2. We have a universal constant $C_{2}$ such that

$\frac{1}{nt}\sum_{|k|<n}\int_{0}^{t}\int\eta_{k}^{2}d\mu_{s}ds\leq C_{2}(1+\frac{t}{n}+\sqrt{1+\sigma t/n^{2}})$ .
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Proof. From the basic entropy inequality, $\nu(\varphi)\leq S[\nu|\lambda]+\log\lambda(e^{\varphi})$ ,

for any $\beta>0$ we get

$\frac{1}{n}\sum_{|k|<n}\mu_{t}(\eta_{k}^{2})\leq\frac{1}{\beta n}S_{n}(t)+\frac{2}{\beta}\log\lambda(e^{\beta\eta_{k}^{2}})$ .

To estimate $\lambda(e^{\eta_{k}^{2}})$ , let $E_{g}$ denote expectation with respect to an $N(0,2\beta)$

variable $\zeta$ , then $e^{\beta\eta_{k}^{2}}=E_{g}e^{\zeta\eta_{k}}$ , thus $\lambda(e^{\zeta\eta k})=e^{F(\zeta)}$ , and $ F(\zeta)\leq$

$(1/2)||F’’||\zeta^{2}$ as $F(0)=F’(0)=0$ by assumption. Since $F’’(z)$ just the
variance of $\eta_{k}$ under $\lambda_{z}$ , $F’’(z)\leq\lambda_{z}((\eta_{k}-y)^{2})$ e.g. if $z=V’(y)$ . How-
ever, $(\eta_{k}-y)^{2}\leq a+b(V_{k}’-z)^{2}$ because $V’’(x)$ is strictly positive for large
$|x|$ , while $\lambda_{z}((V_{k}’-z)^{2})=\lambda_{z}(V_{k}’’)$ , we have $||F’’||\leq a+b||V^{JJ}||<+\infty$ .

Finally,

(3.2) $\log E_{g}e^{\gamma\zeta^{2}}=-\log\sqrt{1-4\gamma\beta}\leq 4\gamma\beta$ whenever $8\gamma\beta\leq 1$ ,

which completes the proof via Lemma 3.1. Q.E.D.

The following lemma summarizes some results of [17]. For any lin-

early bounded $h\in C(\mathbb{R})$ , and $\alpha_{j}\in \mathbb{R}$ : $0\leq j<l$ set $\hat{h}(\rho):=\lambda_{z}(h(\eta_{k}))$ ,

$\phi_{l,,,k}(h, \alpha):=\sum_{j=0}^{l-1}\alpha_{j}(h(\eta_{k-j})-\hat{h}(\overline{\eta}_{l,,,k}))$ ,

and $\Phi_{h}(\rho, u):=\log\lambda_{z}(e^{uh(\eta_{k})-u\hat{h}(\rho)})$ , where $z:=S’(\rho)$ .

Lemma 3.3. We have positive constants $l_{0}$ and $C_{3}$ depending only
on $U$ such that if $l$ $>l_{0}$ , then any probability measure, $\nu$ on $\mathcal{F}_{k,,,l}$ satisfies

$\beta\int\phi_{l,,,k}(h, \alpha)d\nu\leq C_{3}(1+l^{2}D[\nu|\lambda, 6_{k,,,l}])$

$+\frac{1}{2}\log\int\exp(\sum_{j=0}^{l-1}\Phi_{h}(\overline{\eta}_{l,,,k}, 2\beta\alpha_{j}))$ du.

Proof. Given $\overline{\eta}l,k=\rho$ , denote $\overline{\nu}_{l,,,\rho}$ and $\overline{\lambda}_{l,,,\rho}$ the conditional distri-
butions of $\eta_{k,,,l}$ under $\nu$ and $\lambda$ , respectively. In view of LSI, which is
Theorem 2.2 in [17], we have $S[\overline{\nu}_{l,,,\rho}|\overline{\lambda}_{l,,,\rho}]\leq C_{3}’l^{2}D[\overline{\nu}_{l,,,\rho}|\overline{\lambda}_{l,,,\rho}, 6_{k,,,l}]$ for all $\nu$

and $\rho$ with the same $C_{3}’$ , thus from the entropy bound

(3.3) $\beta\overline{\nu}_{l,,,\rho}(\phi_{l,,,k})\leq C_{3}’l^{2}D[\overline{\nu}_{l,,,\rho}|\overline{\lambda}_{l,,,\rho}, 6_{k,,,l}]+\log\overline{\lambda}_{l,,,\rho}(e^{\beta\phi_{l,k}})$ .

Let $\overline{\lambda}_{l,,,m,\rho}$ denote the restriction of $\overline{\lambda}_{l,,,\rho}$ to $\mathcal{F}_{k,,,m}$ . If $l$ is large enough,
$z=S’(\rho)$ and $1<m\leq 1+l/2$ , then $d\overline{\lambda}_{l,,,m,\rho}/d\lambda_{z}$ is uniformly bounded
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in view Corollary 5.5 of [17]. Splitting $\phi_{l,,,k}(h, \alpha)$ into two pieces, by
means of the Schwarz inequality we obtain that

$\log\overline{\lambda}_{l,,,\rho}(e^{\beta\phi_{k,l}})\leq\log C_{3}’’+\frac{1}{2}\log\lambda_{z}(e^{2\beta\phi_{l,k}})$ if $z=S’(\rho)$ .

Since $6_{k,,,l}\overline{\eta}_{l,,,k}=0$ , we can integrate (3.3) with respect to $\nu$ ; notice that
$D[\nu|\lambda_{z}, 6_{k,,,l}]$ does not depend on $z$ . Q.E.D.

From now on we are assuming that $l$ $>l_{0}$ in all statements. On the
rate of convergence to local equilibrium we have

Lemma 3.4. There exists a universal constant $C_{4}$ such that

$\frac{1}{nl}\sum_{|k|<n}\int_{0}^{t}\int(\overline{V}_{l,,,k}’-S’(\overline{\eta}_{l,,,k}))^{2}d\mu_{s}ds\leq C_{4}C_{t,,,n}(\sigma, l)$ ,

where $C_{t,,,n}(\sigma, l)$ $:=t/l^{2}+(l/\sigma)(1+tn^{-1}+\sigma tn^{-2})$ .

Proof. We apply Lemma 3.3 with $h=V’$ , $\alpha_{j}=1/l$ and $\beta=\beta_{0}l$ ;
for brevity we let $\phi=\phi_{l,,,k}(V’, \alpha)$ and $\Phi(\rho, u)=\Phi_{V’}(\rho, u)$ . First we show

that $\lambda_{z}(e^{\beta\phi^{2}})\leq C_{4}’$ if $z=S’(\overline{\eta}_{l,,,k})$ and $\beta_{0}$ is small. Since $e^{\beta\phi^{2}}=E_{g}e^{\zeta\phi}$

if $\zeta$ is an $N(0,2\beta)$ variable, and $\lambda_{z}(e^{\beta\phi})=E_{g}e^{l\Phi(\rho,\zeta/l)}$ , the statement
follows in the usual way by (3.2). Indeed, $\Phi(\rho, u)\leq\frac{1}{2}||V’’||u^{2}$ for all
$y\in \mathbb{R}$ because $\Phi(z, 0)=0$ and, integrating by parts, we obtain a bound

(3.4) $\Phi_{u}’(\rho, u)=u\int V’’(\eta_{k})\exp(uV_{k}’-uz-\Phi(\rho, u))d\lambda_{z}$ ,

that is $|\Phi_{u}’(\rho, u)|\leq|u|||V’’||$ , whence $C_{4}’=O(\beta_{0})$ , thus

$\beta_{0}l\int(\overline{V}_{l,,,k}-S’(\overline{\eta}_{l,,,k})d\mu_{s}\leq C_{3}+C_{3}l^{2}D[\mu_{s,,,k,l}|\lambda, 6_{k,,,l}]+C_{4}’$ .

Doing summation for $k$ and integrating with respect to time, the state-
ment follows from Lemma 3.1 by subadditivity of $D$ . Q.E.D.

Differences of various block averages are estimated by means of

Lemma 3.5. Let $\alpha_{j}\in \mathbb{R}$ for $0\leq j<l$ such that $\sum\alpha_{j}=0$ ,
$\sum\alpha_{j}^{2}\leq 1/l$ , and set $\phi_{l,,,k}(1, \alpha):=\phi_{l,,,k}(h, \alpha)$ when $h(y)\equiv y$ . We have $a$

universal $C_{5}$ such that

$\frac{1}{nl}\sum_{|k|<n}\int_{0}^{t}\int\phi_{l,,,k}^{2}(1, \alpha)d\mu_{s}ds\leq C_{5}C_{t,,,n}(\sigma, l)$ .
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Proof. It is essentially the same as that of Lemma 3.4 with the only
difference that at the final step, in the exponent we have

$\sum_{j=0}^{l-1}(F(\alpha_{j}\zeta)-\alpha_{j}\zeta F’(z)-F(z))=\frac{1}{2}\sum_{j=0}^{l-1}F’’(\gamma_{j})\alpha_{j}^{2}\zeta^{2}\leq\frac{1}{2l}||F’’||\zeta^{2}$ ,

which completes the proof as $||F’’||<+\infty$ . Q.E.D.

The following lemma is essentially the two-block estimate of [13]. In
particular, choosing $l$ $=2r$ we obtain a bound for $(\nabla_{r}\overline{V}_{r,,,k}’)^{2}$

Lemma 3.6. We have a universal $C_{6}$ such that for $2r\leq l$ ,

$\frac{1}{nl}\sum_{|k|<n}\int_{0}^{t}\int(\overline{V}_{r,,,k}’-\overline{V}_{l,,,k}’)^{2}d\mu_{s}ds\leq C_{6}C_{t,,,n}(\sigma, l, r)$ ,

where $C_{t,,,n}(\sigma, l, r):=t/rl+(l/\sigma)(1+tn^{-1}+\sigma tn^{-2})$ .

Proof. This is a consequence of the previous lemma, but integrat-
ing by parts on the left hand side, it can directly be estimated by the
Dirichlet form via the Schwarz inequality without any reference to LSI,
see e.g. [8] for details. Q.E.D.

Now we are in a position to verify all conditions of Proposition 2.1.

\S 4. The Lax entropy production

We start with the explicit decomposition $X_{\in}=N_{\in}+M_{\in}+X_{a,,,\in}+X_{s,,,\in}$

of entropy production, see (2.3) and (2.5), (2.6), (2.7), (2.8). To get
$X_{\Xi}=Y_{\Xi}+Z_{\Xi}$ as needed in Proposition 2.1, we split some terms into
new ones, and each of them will be casted into one of two categories
named by $Y$ and $Z$ according to the bound it satisfies. More precisely,
a random functional $\Gamma_{\in}(\psi)$ is of type $Y$ if for each $\phi\in C_{c}^{2}(\mathbb{R})$ we have a
random bound $A_{\in}(\phi)$ such that $A_{\in}(\phi)$ does not depend on $\psi$ ,

$|\Gamma_{\in}(\phi\psi)|\leq A_{\Xi}(\phi)||\psi||_{+1}$ and $\lim_{\in\rightarrow 0}EA(\phi)=0$ .

Similarly, $\Gamma$ is of type $Z$ if

$|\Gamma_{\Xi}(\phi\psi)|\leq A_{\Xi}(\phi)||\psi||$ and $\lim_{\in\rightarrow}\sup_{0}EA(\phi)<+\infty$ .

In case of terms of type $Z$ we also indicate if the bound does, or
does not vanish.
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Throughout this section we deal with an entropy pair $(h, J)\in \mathcal{H}_{1}$

such that $h’$ and $h’’$ are bounded. All calculations are done at the
microscopic level, thus the integral mean

(4.1) $\psi_{k}(t):=\frac{1}{\in}\int_{-\in/2}^{\in/2}\psi(t\in, k\in+x)\phi(t\in, k\in+x)dx$

appears at several places; the notation $H_{k}(t):=H(\hat{\eta}l,k(t))$ shall also be
used for functions $H\in C(\mathbb{R})$ like $h$ , $J$, $h’$ , $S’’$ and so on. $\phi\in C_{c}^{2}(\mathbb{R}^{2})$

plays an explicit role only in

Lemma 4.1. The stochastic integral $M_{\epsilon}$ is of type $Y$.

Proof. This is the only case where we estimate the $H_{-1}$ norm in a
direct way by using Fourier transform; the underlying generalized func-
tion is just

$m_{\in}(t, x):=\sqrt{2\in\sigma}h’(\hat{\rho}_{\in}(t, x))\phi(t, x)\partial_{t}\nabla_{\in}^{*}\hat{\zeta}_{\in}(t, x)$ .

In view of $|M_{\Xi}(\psi, h)|\leq||m_{\Xi}||_{-1}||\psi||_{+1}$ , we have to show that

(4.2) $\lim_{\in\rightarrow 0}E||m_{\in}||_{-1}^{2}=\lim_{\in\rightarrow 0}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\frac{E|\tilde{m}_{\Xi}(\tau,\omega)|^{2}}{1+\tau^{2}+\omega^{2}}d\tau d\omega=0$ ,

where $\tilde{m}_{\Xi}$ denotes the Fourier transform of $m_{\in}$ . In microscopic variables

$\tilde{m}_{\Xi}(\tau, \omega)=\frac{\in\sqrt{2\sigma}}{l}\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}\psi_{k}(t, \tau, \omega)h_{k}’(t)(d\overline{w}_{l,,,k-1}-d\overline{w}_{l,,,k+l-1})$ ,

where $\psi_{k}(t, \tau, \omega)$ is defined by (4.1) with $\psi=(2\pi)^{-1}\exp(\iota t\tau+\iota x\omega)$ . The
sum of the integrands can be rewritten as a sum like $\sum\overline{\xi}_{l,,,k}dw_{k}$ , thus a
simple Ito calculus and $(\overline{\xi}_{l,,,k})^{2}\leq(\overline{\xi}^{2})_{l,,,k}$ result in

$E|\tilde{m}_{\in}(\tau, \omega)|^{2}\leq\frac{4\sigma\in^{2}}{l^{2}}\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}|\psi_{k}(t)h_{k}’(t)|^{2}dt$

$\leq\frac{4\sigma\epsilon^{2}}{l^{2}}||h’||^{2}\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}|\psi_{k}(t)|^{2}dt$ .

Of course, $\psi_{k}(t)$ is bounded, and it is zero if one of $|\in k|$ or $\in t$ exceeds
some threshold depending on the support of $\phi$ . For large values of $|\omega|$

another bound of

$\psi_{k}(t, \tau, \omega)=\frac{e^{\iota\tau t+\iota\omega k}}{2\pi\epsilon}\int_{-\in/2}^{\in/2}e^{xx\omega}\phi(\in t, \in k+x)dx$
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is needed. Integrating by parts we get

$|\psi_{k}(t, \tau, \omega)|\leq\frac{1}{2\pi\epsilon\omega}|\int_{-,,\in/2}^{\in/2}e^{\iota x\omega}\phi_{x}’(\in t, \in k+x)dx|$

$+\frac{1}{2\pi\epsilon\omega}|e^{\iota\in\omega/2}\phi(\in t, \in k+\in/2)-e^{-\iota\in\omega/2}\phi(\in t, \in k-\in/2)|$

$\leq\frac{3}{4\pi|\omega|}||\phi_{x}’||+\frac{|\sin(\omega\epsilon/2)|}{2\pi\epsilon|\omega|}||\phi||$ ,

thus we have a constant, $K_{1}$ depending only on $\phi$ such that

$|\psi_{k}(t, \tau, \omega)|^{2}\leq K_{1}\Psi_{\in}(\omega)$ , where $\Psi_{\Xi}(\omega):=\min\{1, (\in\omega)^{-2}\}$

and $0<\in<1$ . Comparing the bounds above, we see that

$E|\tilde{m}_{\Xi}(\tau, \omega)|^{2}\leq K_{2}||h’||^{2}\frac{\sigma}{l^{2}}\Psi_{\in}(\omega)$ ,

thus integrating (4.2) with respect to $\tau$ ,

$E||m_{\Xi}||_{-1}^{2}\leq\frac{K_{3}\sigma}{l^{2}}\int_{-,,\infty}^{\infty}\frac{\Psi_{\in}(\omega)d\omega}{\sqrt{1+\omega^{2}}}$

follows immediately, where $K_{3}$ is a new constant depending only on $\phi$

and $||h’||$ . Integrating over the domain $|\omega|<1/\in$ , the trivial bound
$\Psi_{\in}(\omega)\leq 1$ is sufficient, while $\Psi_{\in}(\omega)\leq(\in\omega)^{-2}$ is used in the opposite
case to conclude

$E|\tilde{m}_{\in}(\tau, \omega)|^{2}\leq K_{4}\frac{\sigma}{l^{2}}(1-\log\in)$ .

In view of (2.2) and its consequences we have $\sigma=o(\iota^{3/2})$ and $1/\in=$

$o(l^{2})$ , thus the right hand side vanishes $as\in\rightarrow 0$ . Q.E.D.

From now on we may suppress the dependence of our functionals on
$\phi$ . In practice this simply means that we put $\phi\equiv 1$ and suppose that
the support of $\psi$ is contained in a rectangle $(-1, T)\times(-L, L)$ , thus we
need the estimates of Section 3 for $ n<L/\in$ and $t<T/\in on1y$. Introduce

(4.3) $Q_{\in}^{*}:=\in\overline{l}\sum_{|k|<L/\in}\int_{0}^{T/\in}Q_{k}(t, l)dt$ ,

where $Q_{k}(t, l)$ $:=(l\nabla_{l}\overline{\eta}_{k,,,l})^{2}+(\hat{\eta}_{l,,,k+l}-\hat{\eta}_{l,,,k})^{2}+(\hat{\eta}_{l,,,k}-\overline{\eta}_{l,,,k})^{2}+(l\nabla_{l}\overline{V}_{l,,,k}’)^{2}$ ,
and

(4.4) $Z_{\Xi}^{*}:=\in\overline{l}\sum_{|k|<L/\in}\int_{0}^{T/\in}(\overline{V}_{l,,,k}’(\eta(t))-S’(\overline{\eta}_{l,,,k}(t))^{2}dt$ .
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Moreover, set $C_{\in}(\sigma, l)$ $:=C_{t,,,n}(\sigma, l)$ when $t=T/\in andn$ $=L/\in$ . In the
rest of the paper we assume (2.2), thus $C_{\in}=O(l/\sigma)$ goes to 0 $as\in\rightarrow 0$ .

In view of the a priori bounds, $EQ^{*}$ and $EZ_{\in}^{*}$ are of order $C_{\in}(\sigma, l)$ .

It is a bit surprising that a two-block lemma is needed to treat $N_{\Xi}$ .

Lemma 4.2. The numerical error $N_{\in}is$ of type $Y$.

Proof. Let $\psi_{k}(t)$ be as in (4.1) with $\phi\equiv 1$ , then

$N_{\in}(\psi, h)=\in\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}(\overline{\nabla}_{1}\psi_{k}-\in\overline{\nabla}_{\in/2}\psi(t\in, k\in))J_{k}(t)dt$ .

Since $\overline{\nabla}_{1}=\nabla_{1}-(1/2)\triangle_{1}$ , the integrand turns into (1/2) $(\nabla_{1}\psi_{k})\nabla_{1}J_{k}+$

$\varphi_{k}\nabla_{1}^{*}J_{k}$ , where $\varphi_{k}:=\psi_{k}-\psi(t\in, k\in-\in/2)$ is an integral of $\psi_{x}’$ . By the
Schwarz inequality

$\varphi_{k}(t)=\frac{1}{2\in}\int_{-,,\in/2}^{\in/2}(\in-2x)\psi_{x}’(t\in, k\in+x)dx=O(\sqrt{\in})||1_{\epsilon,,,k}\psi_{x}’(t\in, \cdot)||_{2}$ ,

where $1_{\epsilon,,,k}(x)$ is the indicator of the interval $(k\in-\in/2, k\in+\in/2)$ ; the $L^{2}$

norm refers to space. Similarly,

$\nabla_{1}\psi_{k}(t)=\frac{1}{\in}\int_{-\in}^{\Xi}(\in-|x|)\psi_{x}’(t\in, k\in+x+\in/2)dx$ ,

thus $\nabla_{1}\psi_{k}$ satisfies the same bound that $\varphi_{k}$ does.
On the other hand, $\nabla_{1}^{*}J_{k}=J’(\gamma_{k})\nabla_{l}^{*}\overline{\eta}\iota,k+l-1$ with some intermedi-

ate value $\gamma_{k}$ . Since $J’=h’S’’$ is bounded, separating $\varphi_{k}$ and $\nabla_{1}^{*}J_{k}$ by
means of the Schwarz inequality, and doing the same with $\nabla_{1}\psi_{k}$ and
$\nabla_{1}J_{k}$ , we obtain that $N_{\in}^{2}=O(\in)||\psi_{x}’||_{2}^{2}Q_{\in}^{*}$ , that is $N_{\Xi}$ is of type $Y$, and
$\sqrt{\in l}/\sigma$ is its order. Q.E.D.

The next step is the only one where LSI is really needed.

Lemma 4.3. The asymmetric functional, $X_{a,,,\in}$ reads as $X_{a,,,\in}=$

$Y_{a,,,\in}+Z_{a,,,\in}+Q_{a,,,\in}$ , where $Q_{a,,,\in}and$ $Z_{a,,,\in}are$ of type $Z$ with a vanishing
bound, $Y_{a,,,\epsilon}$ is of type $Y$.

Proof. Using earlier notation we have

$X_{a,,,\in}(\psi, h)=\frac{\in}{2}\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}(\psi_{k}+\psi_{k+1})(\nabla_{1}J_{k}-h_{k}’\nabla_{l}\overline{V}_{l,,,k}’)dt$ ,

and $\nabla_{1}J_{k}=h_{k}’S_{k}’’\nabla_{l}\overline{\eta}_{l,,,k}+\frac{1}{2}J’’(\gamma_{k})(\nabla_{l}\overline{\eta}_{l,,,k})^{2}$ with some intermediate
value $\gamma_{k}$ . Moreover, $S_{k}’’\nabla_{l}\overline{\eta}_{l,,,k}=\nabla_{l}S’(\overline{\eta}_{l,,,k})+S’’’(\tilde{\eta}_{k}’’)(\hat{\eta}l,k-\tilde{\eta}_{k}’)\nabla_{l}\overline{\eta}_{l,,,k}$ ,
where $\tilde{\eta}_{k}’$ is a convex combination of $\overline{\eta}_{l,,,k+l}$ and $\overline{\eta}_{l,,,k}$ , i.e. $|\hat{\eta}_{l,,,k}-\tilde{\eta}_{k}’|\leq$
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$|\hat{\eta}_{l,,,k}-\overline{\eta}_{l,,,k}|+|\hat{\eta}_{l,,,k}-\overline{\eta}_{l,,,k-l}|$ . Summarizing the calculations above, we get
$X_{a,,,\in}=X_{a,,,\in}^{*}+Q_{a,,,\in}$ , where

$X_{a,,,\in}^{*}:=\frac{\in}{2}\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}(\psi_{k}+\psi_{k+1})h_{k}’\nabla_{l}(S’(\overline{\eta}_{l,,,k})-\overline{V}_{l,,,k}’)dt$ ,

while the remainder, $Q_{a,,,\in}$ is a bilinear form of differences of block aver-
ages of size at most $2l+1$ . Since $J^{JJ}=h^{JJ}S’’+h’S’’’$ , and $S’’’$ is bounded
in view of Lemma 5.1 in [17], the coefficients of $Q_{a,,,\in}$ are all uniformly
bounded, consequently $Q_{a,,,\in}=O(||\psi||)Q_{\in}^{*}$ . This means that $Q_{a,,,\epsilon}$ is of
type $Z$ with a vanishing order of $C_{\in}(\sigma, l)=O(l/\sigma)$ .

On the other hand, from $\nabla_{l}^{*}(\xi_{k}\xi_{k}’)=(\nabla_{l}^{*}\xi_{k})\xi_{k}’+\xi_{k-l}\nabla_{l}^{*}\xi_{k}’$ we get
$X_{a,,,\epsilon}^{*}=Y_{a,,,\in}+Z_{a,,,\in}$ , where

$Y_{a,,,\in}:=\frac{\in}{2}\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}(\nabla_{l}^{*}\psi_{k}+\nabla_{l}^{*}\psi_{k+1})h_{k}’(S’(\overline{\eta}_{l,,,k})-\overline{V}_{l,,,k}’)dt$ ,

$Z_{a,,,\in}:=-\sum_{k\in \mathbb{Z}}\in 2\int_{0}^{\infty}(\psi_{k-l}+\psi_{k+1-l})(\nabla_{l}^{*}h_{k}’)(S’(\overline{\eta}_{l,,,k})-\overline{V}_{l,,,k}’)dt$ .

From the estimate of Lemma 4.2 for $\nabla_{1}\psi$ it follows by convexity that
$(\nabla_{l}\psi_{k}(t))^{2}=O(l\in)||1_{l\in,,,k}\psi_{x}’(t\in, \cdot)||_{2}^{2}$ . Separating the space gradients of
$\psi$ from $h’(S’-\overline{V}_{l}’)$ by means of the Schwarz inequality, we obtain that

$|Y_{a,,,\epsilon}|^{2}\leq\in^{2}||h’||||\psi_{x}’||_{2}^{2}Z_{\epsilon}^{*}$ , thus $Y_{a,,,s}$ is of type $Y$, and $\sqrt{l\in}C_{\in}^{1/2}(\sigma, l)$ is
the order of its bound. Finally, $\nabla_{l}^{*}h_{k}’=h’’(\gamma_{k}’)\nabla_{l}^{*}\hat{\eta}_{l,,,k}$ , whence $|Z_{a,,,\in}|^{2}\leq$

$||h’’||||\psi||Q_{\in}^{*}Z_{\epsilon}^{*}$ , that is $Z_{a,,,\epsilon}$ is of type $Z$ with a vanishing bound of
order $C_{\in}(\sigma, l)$ . Q.E.D.

The symmetric form decomposes as $X_{s,,,\in}=X_{s1,,,\in}+X_{s2,,,\in}$ , where

$X_{s1,,,\in}(\psi, h)$
$:=-\sigma\in\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}\nabla_{1}(\psi_{k}h_{k}’)(\nabla_{l}\overline{V}_{l,,,k}’)dt$ ,

$X_{s2,,,\in}(\psi, h)$
$:=\frac{\sigma\in}{l^{2}}\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}\psi_{k}h_{k}’’(d\overline{w}_{l,,,k-1}-d\overline{w}_{l,,,k+l-1})^{2}$

$=\frac{2\sigma\epsilon}{l^{3}}\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}\psi_{k}h_{k}’’dt$ .
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In case $ofX_{s1,,,\in}$ we write $\nabla_{1}(\psi_{k}h_{k}’)=\psi_{k}\nabla_{1}h_{k}’+h_{k+1}’\nabla_{1}\psi_{k}$ to get $X_{s1,,,\in}=$

$Y_{s,,,\in}-Z_{S,,,\Xi}$ , where

$Z_{S,,,\Xi}:=\sigma\in\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}\psi_{k}(\nabla_{1}h_{k}’)\nabla_{l}\overline{V}_{l,,,k}’dt$ ,

$Y_{s,,,\in}:=-\sigma\in\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}(\nabla_{1}\psi_{k})h_{k+1}’\nabla_{l}\overline{V}_{l,,,k}’dt$ .

The symmetric part of entropy production is handled by means of

Lemma 4.4. We have $X_{s,,,\in}=Y_{s,,,\in}+X_{s2,,,\in}-Z_{s,,,\in}$ , where $Y_{s,,,\in}is$ of
type $Y$ , $X_{s2,,,\in}is$ of type $Z$ , and $\sigma/\in l^{3}$ is the order of its bound. $Z_{a,,,\in}is$

also of type $Z$ , but its bound does never vanish.

Proof. Since $h’’$ is bounded, $X_{s2,,,\in}=||\psi||O(\sigma/\in l^{3})$ is of type $Z$ .

From $2xy\leq x^{2}+y^{2}$ , and $\nabla_{l}h_{k}’=h’’(\gamma_{k}’’)\nabla_{l}\overline{\eta}_{l,,,k}$ we get

$|Z_{s,,,\epsilon}|\leq\frac{\sigma}{2l}||h’’||||\psi||(Q_{\in}^{*}+Z_{\Xi}^{*})$ ,

see (4.3) and (4.4) for the definition of $Q_{\Xi}^{*}$ and $Z_{\in}^{*}$ . Therefore $Z_{s,,,\in}$ is of
type $Z$ , and the bound does not vanish. Finally, applying the Schwarz
inequality as we did many times before, we have

$|Y_{S,,,\Xi}|^{2}\leq\frac{\sigma^{2}\epsilon}{l}||h’||^{2}||\psi_{x}’||_{2}^{2}Q_{\in}^{*}$ ,

consequently $Y_{s,,,\in}$ is of type $Yas\in\sigma^{2}l^{-1}C_{\in}(\sigma, l)=O(\in\sigma)$ . Q.E.D.

\S 5. Completion of the proofs

Proposition 2.1, is a more or less direct consequence of the results
of Section 4.

Proof of Proposition 2.1: Suppose first that $(h_{i}, J_{i})\in H_{\alpha}$ , where
$0<\alpha<1$ , and $h’$ , $h’’$ are bounded, then $\lim\sup E||\phi\rho_{\in}||_{2}^{2}<+\infty$ implies
$h$ , $J\in L^{p}(\mathbb{R}_{+}^{2})$ with some $p>2$ . More precisely, the distributions of
$h_{i}(\hat{\rho}_{\in})$ and $J_{i}(\hat{\rho}_{\in})$ are tight in the weak topology of $L_{1oc}^{p}(\mathbb{R}_{+}^{2})$ . Similarly,
the distributions of the functionals $Y_{\in}$ and $Z_{\in}$ are tight with respect to
the weak local topology of $H_{-1}$ and the space of measures, respectively.
In view of the Skorohod embedding theorem, see Theorem 1.8 in Chapter
3 of [5], we can realize the associated weak convergence of probability
measures as $a.s$ . convergence on a suitably constructed probability space.
In this setting the theorems of Tartar and Murat apply directly, so we
have Tartar factorization for entropy pairs from $H_{\alpha}$ . The final statement
follows by a direct approximation procedure. Q.E.D.

Tartar’s factorization property is the input of
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Lemma 5.1. Let $ h_{1}(\rho):=\rho$ , $J_{1}(\rho):=S’(\rho)$ , $h_{2}(\rho):=S’(\rho)$ and

define $J_{2}$ by $J_{2}(0)=0$ and $J_{2}’(\rho):=S^{\prime\prime 2}(\rho)$ . If this couple of entropy
pairs satisfies (1.10), then $\theta_{t,,,x}$ is almost everywhere a Dirac measure.

Proof The trivial case of a quadratic $V$ can be excluded, thus
there is no such interval where $S’’$ is constant because $S$ is analytic.
Rearranging (1.10) we get

$\int_{-,,\infty}^{\infty}\int_{-\infty}^{\infty}Q(u, v)\theta_{t,,,x}$ (du) $\theta_{t,,,x}(dv)=0$ $a.s$ . on $\mathbb{R}_{+}^{2}$ ,

where $Q(u, v):=(u-v)(J_{2}(u)-J_{2}(v))-(S’(u)-S’(v))^{2}$ . Since

$J_{2}(u)-J_{2}(v)=(u-v)\int_{0}^{1}S^{\prime\prime 2}(tu+(1-t)v)dt$ ,

$S’(u)-S’(v)=(u-v)\int_{0}^{1}S’’(tu+(1-t)v)dt$ ,

$Q(u, v)>0$ follows by the Schwarz inequality if $u\neq v$ , which proves the
Dirac property of $\theta$ . Q.E.D.

As a consequence, we have (1.2) with probability one with respect
to any weak limit distribution of $\hat{\rho}_{\in}$ . In view of Lemma 3.5 the same
statement holds also true for the usual averages $\overline{\rho}_{\in}$ defined by $\overline{\rho}_{\in}(t, x):=$

$\overline{\eta}_{k}(t/\in)$ if $|x-k\in|<\in/2$ , and even $l$ $=o(1/\in)$ is allowed; the lower bound
$l$ $\geq(\sigma/\in)^{1/3}$ is the relevant one.

To prove Proposition 2.2, we have to show that the contribution
of terms $(\nabla_{1}h(\hat{\eta}_{l,,,k}))\nabla_{l}\overline{V}_{l,,,k}’$ is not negative if $h$ is convex. Despite of
Lemma 3.4, this is not quite obvious. Fortunately, the Lax-Kruzkov
inequality does not require uniform bounds as compensated compactness
does, weak limiting arguments are sufficient. Nevertheless, convexity of
$V$ seems to be essential at this point.

Proof of Proposition 2.2: Since $V$ is convex by assumption, fol-
lowing [21] we can exploit the attractiveness of the process, see also
[15] for some technical details. Let $\zeta$ denote the equilibrium process
with initial distribution $\lambda_{z}$ such that $F’(z)=c$ . The original process,
$\eta$ is coupled to $\zeta$ simply by identifying the Wiener processes in their
stochastic equations (1.1); the initial distribution is $\mu_{\Xi},0\times\lambda_{z}$ . It is re-
markable that this coupled process admits a comparison principle: the
set

$\{(\eta, \zeta) : (\eta_{k+1}-\eta_{k})(\zeta_{k+1}-\zeta_{k})\geq 0\forall k\in \mathbb{Z}\}$
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is preserved by time. Introduce

$W_{\Xi}(\eta, \zeta, \psi)$
$:=\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}\psi_{t}’(t, \in k)|\eta_{k}(t/\in)-\zeta_{k}(t/\in)|dxdt$ ,

$W_{\Xi}^{*}(\eta, \zeta, \psi)$
$:=\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}\psi_{x}’(t, \in k)|V’(\eta_{k}(t/\in))-V’(\zeta_{k}(t/\in))|dxdt$ ,

$H_{\in}(\eta, \psi)$ $:=\int_{0}^{\infty}\int_{-\infty}^{\infty}\psi_{t}’(t, x)|\hat{\rho}_{\Xi}(t, x)-c|dxdt$ ,

$H_{\Xi}^{*}(\eta, \psi)$ $:=\int_{0}^{\infty}\int_{-\infty}^{\infty}\psi_{t}’(t, x)|S’(\hat{\rho}_{\in}(t, x))-S’(c)|dxdt$ ;

we have to show that for all $c\in \mathbb{R}$ and $0\leq\psi\in C_{c}^{1}(\mathbb{R}_{+}^{2})$ we have

(5.2) $\lim_{\in\rightarrow 0}(W_{\in}(\eta, \zeta, \psi)-H_{\Xi}(\eta, \psi))=0$ ,

(5.2) $\lim_{\in\rightarrow 0}(W_{\in}^{*}(\eta, \zeta, \psi)-H_{\in}^{*}(\eta, \psi))=0$ ,

(5.3) $\lim_{\in\rightarrow}\inf_{0}(W_{\in}(\eta, \zeta, \psi)+W_{\in}^{*}(\eta, \zeta, \psi))\geq 0$

in the sense of stochastic convergence, see Section 3 of [21]; the crucial
point is (5.3). To prove it, observe first that $\eta_{k}-\zeta_{k}$ is differentiable,
and $V_{k-1}’-V_{k+1}’=2V_{k-1}’-2V_{k}’-V_{k-1}’-V_{k+1}’+2V_{k}’$ , thus

$\partial_{t}|\eta_{k}-\zeta_{k}|=sign(\eta_{k}-\zeta_{k})(V’(\eta_{k-1})-V’(\zeta_{k-1})-V’(\eta_{k})+V’(\zeta_{k}))$

$+(\sigma-1/2)sign(\eta_{k}-\zeta_{k})(V’(\eta_{k-1})-V’(\zeta_{k-1})-V’(\eta_{k})+V’(\zeta_{k}))$

$+(\sigma-1/2)sign(\eta_{k}-\zeta_{k})(V’(\eta_{k+1})-V’(\zeta_{k+1})-V’(\eta_{k})+V’(\zeta_{k}))$ .

Let $\chi_{k}(\eta, \zeta):=sign(\eta_{k}-\zeta_{k})sign(\eta_{k+1}-\zeta_{k+1})$ , by an elementary com-
putation

$\partial_{t}|\eta_{k}-\zeta_{k}|\leq\chi k-1|V’(\eta_{k-1})-V’(\zeta_{k-1})|-\chi_{k}|V’(\eta_{k})-V’(\zeta_{k})|$

$+(\sigma-1/2)\chi_{k-1}(|V’(\eta_{k-1})-V’(\zeta_{k-1})|-|V’(\eta_{k})-V’(\zeta_{k})|)$

$-(\sigma-1/2)\chi_{k}(|V’(\eta_{k})-V’(\zeta_{k})|-|V’(\eta_{k+1})-V’(\zeta_{k+1})|)$

$-(\sigma-1/2)(2-\chi_{k-1}-\chi_{k})|V’(\eta_{k})-V’(\zeta_{k})|$ .

Hence by rearranging the sums we get

$W_{\Xi}+W_{\in}^{*}\geq R_{\in}(\eta, \zeta, \psi)+\in\sum_{k\in \mathbb{Z}}\int_{0}^{\infty}W_{k}(t/\in)dt$ ,
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where $R_{\in}$ is a numerical error term, $t$ is the macroscopic time, and

$W_{k}(t)$ $:=\psi_{x}’(\in t, \in k)(\chi_{k}-1)|V’(\eta_{k})-V’(\zeta_{k})|$

$+(\sigma-1/2)\psi_{x}’(t, \in k)\chi_{k}\nabla_{1}|V’(\eta_{k})-V’(\zeta_{k})|$

$+(1/\in)(\sigma-1/2)\psi(\in t, \in k)(1-\chi_{k})|V’(\eta_{k})-V’(\zeta_{k})|$ .

Since $\psi\in C^{2}(\mathbb{R}^{2})$ may be assumed, $R_{\in}$ goes to zero as $\in\rightarrow 0$ , and $\chi_{k}\nabla_{1}$

on the second lime above can be replaced with $(\chi_{k}-1)\nabla_{1}$ , we see that
the last nonnegative terms dominate the rest. Indeed, $\in|\psi_{x}’|=o(\psi)$ is
certainly true if $\psi>0$ vanishes in a suitable way as $|x|\rightarrow\infty$ , whence
the general case follows by a direct approximation procedure.

The proofs of (5.1) and (5.2) also follow [21]; but they turn out to be
much simpler in our case. The formal generator of the coupled process
reads as $\mathcal{L}_{\eta,\zeta}:=\mathcal{L}_{0,,,\eta}+\mathcal{L}_{0,,,\zeta}+\sigma 6_{\eta,\zeta}$ , where $\mathcal{L}_{0,,,\eta}$ and $\mathcal{L}_{0,,,\zeta}$ are identical
copies of $\mathcal{L}_{0}$ acting on the $\eta$ and $\zeta$ components, respectively, while $6_{\eta,\zeta}$

is the generator of the coupled process $(\eta, \zeta)$ defined by

$d\eta_{k}=\triangle_{1}V’(\eta_{k})dt+\sqrt{2}\nabla_{1}^{*}dw_{k}$ , $d\zeta_{k}=\triangle_{1}V’(\zeta_{k})dt+\sqrt{2}\nabla_{1}^{*}dw_{k}$

with identical Wiener processes for both systems. In view of the Kol-
mogorov equation, for smooth cylinder functions

$E\phi(\eta(t), \zeta(t))=E\phi(\eta(0), \zeta(0))+E\int_{0}^{t}\mathcal{L}_{\eta,\zeta}\phi(\eta(s), \zeta(s))ds$ .

Let $\overline{\nu}_{\in}$ denote the time average of the joint distribution of $\eta$ and $\zeta$ from
$t=0$ to $ t=1/\in$ . In view of the $L^{2}$ moment condition coming from
Lemma 3.2, this family is tight, thus dividing the Kolmogorov equation
by $\sigma/\in$ , we see that its weak limit points are all stationary measures for
the coupled process generated by $6_{\eta,\zeta}$ . Performing a simultaneous av-
eraging also in space, we obtain translation invariant limit distributions
$\overline{\nu}$ that are stationary with respect to $6_{\eta,\zeta}$ , and also satisfy the moment
conditions $\overline{\nu}(\eta_{k}^{2}+\zeta_{k}^{2})=K<+\infty$ . These statements follow immediately
also from Theorem 1 of [8] without any averaging in space. The evalu-
ation of $W$ and $W^{*}$ should be based on such a joint distribution $\overline{\nu}$ , see
[13] and [22].

To prove that $\chi_{k}=1\overline{\nu}- a.s$ . for all $k\in \mathbb{Z}$ , consider now the coupled
process defined by $6_{\eta,\zeta}$ , with $\overline{\iota/}as$ its initial distribution. By elementary
calculation we get

$\partial_{t}|\eta_{k}-\zeta_{k}|=-\nabla_{1}sign(\eta_{k}-\zeta_{k})\cdot\nabla_{1}(V’(\eta_{k})-V’(\zeta_{k}))$

$+sign(\eta_{k+1}-\zeta_{k+1})\nabla_{1}(V’(\eta_{k})-V’(\zeta_{k}))$

-sign $(\eta_{k}-\zeta_{k})\nabla_{1}(V’(\eta_{k-1})-V’(\zeta_{k-1}))$ ,
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where both sides are of mean zero with respect to $\overline{\nu}$ because of its sta-
tionarity. Summing for $k\in(-n, n)$ we see that the last two terms cancel
each other, only two of them survives at the boundary. Therefore the

translation invariance of $\overline{\nu}$ implies

$\int\nabla_{1}sign(\eta_{k}-\zeta_{k})\cdot\nabla_{1}(V’(\eta_{k})-V’(\zeta_{k}))d\overline{\nu}=0$

for all $k\in \mathbb{Z}$ , that is $sign(\eta_{k}-\zeta_{k})$ is a constant $\overline{\nu}- a.s$ . This means
that $\overline{\nu}[\chi_{k}=1]=1$ for all $k\in \mathbb{Z}$ , thus we can get rid of the absolute
values under the sums in the expressions of $W$ and $W^{*}$ . First we replace
$\eta$ and $\zeta$ in $W_{\in}$ and $W_{\in}^{*}$ with their large microscopic block averages $\overline{\eta}_{r}$

and $\overline{\zeta}_{r}$ . $Letting\in\rightarrow 0$ first, and $ r\rightarrow+\infty$ at the second step, we get $c$

as the limit of $\overline{\zeta}_{r}$ . Finally, Lemma 3.6 allows us to replace $\overline{\eta}_{r}$ with $\overline{\eta}\iota$ ,
where $l$ $=l(\in)$ is the intermediate block size of (2.2). The replacement
of $V’(\eta_{k})$ with $S’(\overline{\eta}_{l,,,k})$ is the same, thus we can pass to (1.11) along
subsequences. Q.E.D.

Proof of Theorem 1.1: In view of Skorohod’s embedding, Lemma 5.1
and the a priori bounds, the empirical processes, $\hat{\rho}_{\in}$ and $\overline{\rho}_{\in}$ converge
almost surely, and also in $L_{1oc}^{1}(\mathbb{R}_{+}^{2})$ to the same $\rho\in L^{2}(\mathbb{R}_{+}^{2})$ along sub-
sequences. At the same time, $V’(\rho_{\in})$ has the same weak limits as $S’(\overline{\rho}_{\in})$

does, thus we have convergence to the set of weak solutions.
The uniqueness part is now a direct consequence of Proposition 2.2

and weak uniqueness of entropy solutions, see $Kru\check{z}kov’ s$ result, The-
orem 2.3.5 in [25]. Although the proof there is written for bounded
solutions only, the essential condition is bounded propagation, that is
$||S’’||<+\infty$ . By means of the local $L^{2}$ bound we have, the argument
extends to our case without any essential change. On the other hand,
we have already derived from Proposition 2.1 and Lemma 5.1 that the
measure solutions involved in (1.11) are all weak solutions, thus we have
(1.4), too. Therefore any limit distribution of the empirical process $\hat{\rho}_{\epsilon}$

is concentrated on the unique entropy solution specified by its initial
value. In this way we have shown that $if\in\rightarrow 0$ then

$\hat{R}_{\Xi}(\psi):=\int_{0}^{\infty}\int_{-\infty}^{\infty}\psi(t, x)\hat{\rho}_{\Xi}(t, x)dxdt$

converges in probability for each $\psi\in C_{c}(\mathbb{R}^{2})$ to $R(\psi)$ defined in Theorem
1.1. However, $R_{\Xi}(\psi)$ has the same limit. Q.E.D.

Concluding remarks: We are trying to present a brief and heuris-
tic description of situations of hyperbolic scaling in which the method
proposed here might apply, several principal open problems are also
mentioned. We consider a microscopic Markov evolution generated by
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$\mathcal{L}=\mathcal{L}_{0}+\sigma(\in)6$ such that both $\mathcal{L}_{0}$ and 6 are Markov generators, and the
conservative observables and the associated (equilibrium) Gibbs states
of 6 are all conserved also by $\mathcal{L}_{0}$ . The main component, $\mathcal{L}_{0}$ is asym-
metric (but not necessarily antisymmetric), while 6 is symmetric with
respect to the equilibrium states. The scaling $parameter\in>0$ denotes
the macroscopic unit of distance in space, $\sigma(\in)>0$ is interpreted as the
coefficient of microscopic viscosity, $\sigma(\in)\rightarrow+\infty and\in\sigma(\in)\rightarrow 0$ as $\in\rightarrow 0$ .

First of all we are assuming that $\mathcal{L}_{0}$ admits Euler scaling with a
resulting hyperbolic system of macroscopic conservation laws, that is we
speed up time by a factor of $ 1/\in$ , see e.g. [27] for a class of such models.
In the absence of the symmetric stabilization $\sigma 6$ , these equations can
be derived in a smooth regime only. In general, there is a good reason to
expect that the effect of $(1/\in)\sigma(\in)6$ diminishes as $\in\rightarrow 0$ because $\in-26$

is the proper scaling of the symmetric 6. In other words,

$\epsilon^{-1}\mathcal{L}=\in-1\mathcal{L}_{0}+(\in\sigma(\in))\in-2\otimes$

resembles the scheme of small viscosity limit $as\in\rightarrow 0;\in\sigma(\in)$ is the
coefficient of macroscopic viscosity.

Independently of the number of conservation laws, once we have LSI
for 6, there is a good chance to derive Tartar’s factorization property
for the limiting Young measures; $\in\sigma^{2}(\in)\rightarrow+\infty as\in\rightarrow 0$ seems to be a
general condition at this point, see [9,10,11]. It is not clear this time if
this condition could be relaxed, or not. In the case of a single conser-
vation law Tartar factorization is usually sufficient for the identification
of measure solutions as weak solutions by using an argument like that
of Lemma 5.1. The problem of two conservation laws is more delicate,
a very nice model is discussed in [11]. In other cases we have to do
something more for proving that measure solutions are weak solutions.
Although there is a general theory of hyperbolic and genuinely nonlin-
ear systems of two conservation laws in one space dimension initiated by
DiPerna, additional difficulties emerge when we are working on stochas-
tic models. Indeed, this theory requires at the very beginning that the
limiting Young measure is compactly supported. Moreover, most phys-
ically motivated models have some singularities in the phase space of
the macroscopic equations, general methods fail at such points. In PDE
theory these difficulties are ruled out by restricting the initial values to
singularity-free compact invariant regions, if any. However, it is not easy
to establish the existence of such invariant regions in the case of micro-
scopic systems. Coupling is an effective tool, but attractive evolutions
do not allow two conservation laws.

Anyway, compensated compactness yields convergence of the em-
pirical process to a set of weak solutions in several cases, so the next
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question is the uniqueness of the limit. If we have a single conservation
law, the Lax-Kruzkov entropy condition is sufficient for uniqueness, and
coupling based on attractiveness is not the only way of proving it. For
example, if 6 is acting on the conservative observables like a discrete
Laplacian, that is a linear elliptic operator, then the derivation of the
Lax inequality (1.3) is only a question of direct computations. This is
the case when $\mathcal{L}_{0}$ describes interacting exclusions because then 6 can
be chosen as the generator of stirring, see $[10,11]$ . There is a conflict of
$\mathcal{L}_{0}$ and 6 if the cardinality of the individual phase space is bigger than
three. For instance, the easy way mentioned above is only available for
the trivial, linear Ginzburg-Landau model. It is not clear if attractive-
ness of 6 were sufficient for the Lax-Kruzkov inequality. Uniqueness for
two conservation laws is certainly very hard, even in the simplest cases
Oleinik type entropy conditions were needed for the Riemann invariants.
The derivation of such one-sided uniform bounds on space gradients is
really problematic for stochastic models.

Acknowledgement: I am indebted to Claudio Landim for useful
discussions on LSI and uniform large deviation estimates.
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Large Deviations for $\nabla\varphi$ Interface Model
and Derivation of Free Boundary Problems

Tadahisa Funaki and Hironobu Sakagawa

Abstract.

We consider the $\nabla\varphi$ Interface model with weak self potential
(one-body potential) under general Dirichlet Boundary conditions on
a Large bounded domain and establish the Large deviation principle
for the macroscopically scaled Interface height variables. As its ap-
plication the law of Large numbers is proved and the limit profile is
characterized by a variational problem which was studied by Alt-
Caffarelli [1], Alt-Caffarelli-Friedman [2] and others. The minimizers
generate free boundaries inside the domain. We also discuss the $\nabla\varphi$

Interface model with $\delta$-pinning potential in one dimension.

\S 1. Introduction

Interfaces and variational problems.

It is one of the quite general and fundamental principles in physics
that physically realizable phenomena may be characterized by varia-
tional problems. Such principle is expected to hold in the problem
related to the phase coexistence and separation as well. Indeed, un-
der the situation that two distinct pure phases like $crystal/vapor$ CO-

exist in space, hypersurfaces called interfaces are formed and separate
these distinct phases at macroscopic level. The shape of the interface in
$equ$垣市 rium is assumed to minimize the anisotropic total surface energy.
The corresponding solutions may be obtained by the so-called Wulff con-
struction(see [5], [8] and references therein). The underlying variational
problems change depending on the physical situations of interest.

In statistical mechanics, to derive the shape of the macroscopic inter-
face, one need to determine its total surface energy based on statistical
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ensembles at microscopic level, which are formulated as Gibbs measures.
This procedure can be accomplished by analyzinga proper scaling limit
in the ensembles, which connects microscopic and macroscopic levels.

$\nabla\varphi$ interface model.

The basic microscopic model we study in this article is the $\nabla\varphi$ in-
terface model, which is a continuous analogue of SOS type model. In
this model, the interface is already considered as a microscopic object
and described by height variables $\phi=\{\phi(x)\}$ , the vertical distance of
the surface measured from the points $x$ on afixed reference hyperplane
located in the space (see[18], [19] for example). Assuming interfaces
are formed in $d+1$ dimensional space, the variables $\phi$ are defined on a
large bounded domain $D_{N}$ in the $d$ dimensional square lattice $\mathbb{Z}^{d}$ . Here
$D_{N}$ corresponds to the reference hyperplane which is discretized and
$N\in \mathbb{Z}_{+}$ is the scaling parameter representing the ratio of the macro-
scopically typical length to the microscopic one.

Given strictly convex symmetric nearest neighbor interactions $V$ :
$\mathbb{R}\rightarrow \mathbb{R}$ and boundary conditions $\psi$ $=\{\psi(x)\in \mathbb{R};x\in\partial^{+}D_{N}\}$ , an

interface energy $H_{N}^{\psi}(\phi)$ at microscopic level called Hamiltonian is as-
signed to each interface height variable $\phi=\{\phi(x)\in \mathbb{R};x\in D_{N}\}$ on $D_{N}$

as a sum of $V(\phi(x)-\phi(y))$ taken over all pairs of neighboring sites $x$

and $y$ in the domain $\overline{D_{N}}$ . Here $\overline{D_{N}}=D_{N}\cup\partial^{+}D_{N}$ is the closure of
$D_{N}$ , $\partial^{+}D_{N}=$ { $x\not\in D_{N;}|x-y|=1$ for some $y$ $\in D_{N}$ } is the outer
boundary of $D_{N}$ and $\phi(x)=\psi(x)$ for $x\in\partial^{+}D_{N}$ in the sum; note
that $x\not\in D_{N}$ means $x\in \mathbb{Z}^{d}\backslash D_{N}$ . We shall take $D_{N}=ND\cap \mathbb{Z}^{d}$ for
afixed bounded domain $D$ in $\mathbb{R}^{d}$ having piecewise Lipschitz boundary
$\partial D$ , where $ND=\{N\theta\in \mathbb{R}^{d} ; \theta\in D\};D$ is the macroscopic reference
hyperplane while $D_{N}$ is its microscopic correspondence.

Weak self potentials.

We further assume the space is filled by a media changing in the
distances from $D_{N}$ . Such situation can be realized by adding self po-
tentials(one-body potentials) $U$ : $D\times \mathbb{R}\rightarrow \mathbb{R}$ to the Hamiltonian which
has therefore the following form:

(1.1)
$H_{N}^{\psi,U}(\phi)=\sum_{x,,,y\in\overline{D_{N}},|x-y|=1}V(\phi(x)-\phi(y))+\sum_{x\in D_{N}}U(\frac{x}{N}, \phi(x))$

.

The first sum Here is over all pairs of neighboring sites. Then the statis-
tical ensemble for the height variables $\phi$ is defined by the finite volume
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Gibbs measure on $D_{N}$

(1.2) $\mu_{N}^{\psi,U}(d\phi)=\frac{1}{Z_{N}^{\psi,U}}\exp\{-H_{N}^{\psi,U}(\phi)\}\prod_{x\in D_{N}}d\phi(x)$ ,

where $Z_{N}^{\psi,U}$ is anormalization factor; note that $\mu_{N}^{\psi,U}\in P(\mathbb{R}^{D_{N}})$ , the
family of all probability measures on $\mathbb{R}^{D_{N}}$ . We shall sometimes regard
$\mu_{N}^{\psi,U}\in P(\mathbb{R}^{\overline{D_{N}}})$ by considering $\phi(x)=\psi(x)$ for $x\in\partial^{+}D_{N}$ under $\mu_{N}^{\psi,U}$ .

We consider the case that $U$ is represented as $U(\theta, r)=Q(\theta)W(r)$ , where
the function $Q$ : $D\rightarrow[0, \infty)$ is bounded and the basic assumption on $W$ :
$\mathbb{R}\rightarrow \mathbb{R}$ is that the limits $\alpha=\lim_{r\rightarrow+\infty}W(r)$ and $\beta=\lim_{r\rightarrow-\infty}W(r)$

exist, and the values of $W$ are always between $\alpha$ and $\beta$ ;see the conditions
(Q1), (W1) and (W2) in Section2. The self potential $U$ is called weak
since it is bounded. Atypical example of $W$ we have in mind throughout
this paper is a function of the form

(1.3) $W(r)=\beta 1_{\{r<0\}}+\alpha 1_{\{r\geq 0\}}$ , $r\in \mathbb{R}$ .

This potential describes the situation that the space is filled by two dif-
ferent media above and below the hyperplane $D_{N}$ . If $\beta<\alpha$ , the negative
values are more favorable than the positive ones for the interface height
variables $\phi$ under the Gibbs measures. In other words the interface is
weakly attracted to the negative side, namely by the media below the
hyperplane $D_{N}$ .

Scaling limit and large deviations.

The aim of the present paper is to study the macroscopic behav-
$ior$ of the microscopic height variables $\phi$ under the Gibbs measures
$\mu_{N}^{\psi,U}$ as $N$ $\rightarrow$ $\infty$ . The scaling connecting microscopic and macro-
scopic levels is introduced by associating the macroscopic height vari-
ables $h^{N}=\{h^{N}(\theta);\theta\in D\}$ with $\phi$ as step functions (or their polilinear
approximations (2.1) $)$ on $D$ , which satisfy

$h^{N}(x/N)=N^{-1}\phi(x)$ , $x\in D_{N}$ .

Note that both x- and $\phi$-axis are rescaled by the same factor $1/N$ , since
the interface is located in the $d+1$ dimensional space. The boundary
conditions $\psi$ should be simultaneously scaled to have macroscopic limits
$g(\theta)$ , $\theta\in\partial D$ , see the conditions $(\psi 1)$ , $(\psi 2)$ in Section 2. We shall

prove that the law of Large numbers holds for $h^{N}$ distributed under $\mu_{N}^{\psi,U}$

as $ N\rightarrow\infty$ and the limit $h=\{h(\theta);\theta\in D\}$ is characterized as the
minimizer of the macroscopic total surface energy

(1.4) $\int_{D}\sigma(\nabla h(\theta))d\theta-A\int_{D}Q(\theta)1(h(\theta)\leq 0)d\theta$
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in the class of $h$ having boundary condition $g$ if the minimizer is unique,
see Corollary2.1. Here $\sigma=\sigma(u)\in \mathbb{R}$ is the so-called surface tension
of the (macroscopic) surface with tilt $u\in \mathbb{R}^{d}$ (see (2.3) or[18]) and we
assume $A=\alpha-\beta\geq 0$ . When $A<0$ , the formula (1.4) should be
slightly modified.

We shall actually establish the large deviation principle (LDP) for
$h^{N}$ under $\mu_{N}^{\psi,U}$ , see Theorem 2.1. As its application, one can prove
the law of large numbers. The variational problem characterizing the
limit generates free boundaries inside $D$ . Such variational problem was
thoroughly studied by Alt and Caffarelli [1] for non-negative macroscopic
boundary data $g$ with $A>0$ and by Alt, Caffarelli and Friedman[2] for
general $g$ especially when $\sigma$ is quadratic: $\sigma(u)=|u|^{2}$ , and by Weiss[26]
for more general $\sigma$ .

Bibliographical notes.

Our results are related to those obtained by Pfister and Velenik [24].
They considered the two dimensional Ising model at low temperature on
alarge box with attractive wall set at the bottom line. This line segment
corresponds to our hyperplane $D_{N}$ , although it has an effect of hard wall
at the same time, since the interfaces separating $\pm$-phases can not go
down beyond the bottom line in their setting. One of the motivations
of [24] was to understand the so-called wetting or $pinning/depinning$

transition.
The problem of the wetting transition is recently discussed for the

$\nabla\varphi$ interface model as well by several authors. We shortly summarize
the known results. The potential

(1.5) $U(\theta, r)=U(r)=-b1_{\{|r|\leq a\}}$ , $r\in \mathbb{R}$

with $a$ , $b>0$ is called of square well type and yields a weak pinning
effect to the interface near $D_{N}$ , i.e. the level $\phi(x)=0$ . The limit as
$a\downarrow 0$ keeping $s=2a(e^{b}-1)$ constant is called $\delta$-pinning. Dunlop et
al. [16] first prove the localization of the $\phi$-field, namely the uniform

boundedness in $N$ of the expected height variables $E^{\mu_{N}^{0,U}}[|\phi(x)|]$ under

the Gibbs measures $\mu_{\Lambda}^{0_{\Gamma}U}$’with0-boundary conditions or the existence

of infinite volume limit of $\mu_{l\vee}^{0,U}$ as $ N\rightarrow\infty$ , if the Hamiltonian contains
arbitrarily weak pinning potentials $U$ when $d=2$ for quadratic $V$ . This
should be compared with the case without pinning(i.e. $U\equiv 0$ ) in which
the localization occurs only when $d\geq 3$ and also compared with the case
of strong pinning(or massive) potentials satisfying $\lim_{|r|\rightarrow\infty}U(r)=+\infty$

for which the localization occurs for all dimensions. The result of [16]
is extended for general convex potential $V$ by Deuschel and Velenik [15]
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later. In addition to the localization, the mass generation, namely the
exponential decay of the correlations of the $\phi$-field is shown by Ioffe
and Velenik [20] for $d=2$ with $\delta$-pinning. Further precise estimates on
the asymptotic behaviors of the mass and the degree of localization by
means of the variances of the field as the pinning effect becomes smaller
were established by Bolthausen and Velenik [9]. The basic assumption
in our paper (W2) on the potential $W(r)$ unfortunately excludes the
potential $U$ of square well type given in (1.5).

When $ U(r)=+\infty$ for $r<0$ , we say that the hard wall is settled
at the level $\phi(x)=0$ or at $D_{N}$ . The $\phi$-field can take only non-negative

values. To discuss the wetting transition for the $\nabla\varphi$ interface model,
the effects of the hard wall and the pinning near 0-level are introduced
at the same time. Fisher [17] proved the existence of the wetting tran-
sition, namely the qualitative change in the $localization/delocalization$

of the field depending on which of these two competitive effects dom-
inate the other, when $d=1$ for the SOS type discrete model. This

result is extended by Caputo and Velenik [10] for $d=2$ . The precise
path level behavior is discussed by Isozaki and Yoshida[21] when $d=1$ .
Bolthausen et al. [7] showed that, contrarily when $d\geq 3$ , no transition
occurs and the field is always localized, $i.e$ . only the phase of partial
wetting appears. Note that the field onahard wall is delocalized for all
dimensions $d$ if there is no pinning effect, $i.e$ . $U\equiv 0$ for $r\geq 0$ . The lat-
$ter$ property is called entropic repulsion. Bolthausen and Ioffe [8] proved
the law of Large numbers in the partial wetting phase in 2-dimension
(i.e. $d=2$ ) under the Gibbs measures with0-boundary conditions, hard
wall, $\delta$ pinning and quadratic $V$ conditioned that the macroscopic total

volume of the interfaces is kept constant. They derived the so-called
Winterbottom shape in the limit and the variational problem charac-
terizing it. The 1-dimensional case with general $V$ was discussed by De
Coninck et al. [11].

Our model only takes aspecial class of self potentials, in particular
satisfying the condition(W2), into account and neglects the effect of the
hard wall. Since the field can take negative values and the potential $U$

has no strong singularity like hard wall, the situation becomes mild in
asense. On the other hand, this makes us possible to discuss the corre-
sponding dynamics without making much effort, which will be discussed
elsewhere; see also [23] for dynamics with general boundary conditions
when $U\equiv 0$ .

Organization of the paper.

In Section2, the model is introduced in more precise way and the
main results are stated. The proof of the Large deviation principle is
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reduced to the case of $U\equiv 0$ in Section3, since the potential $U$ can be
treated as a rather simple perturbation. The large deviation principle
for general boundary conditions without the self potential $U$ is proved in
Sections4and5. The case with0-boundary conditions without $U$ was
discussed by Deuschel et al. [13]. Our main effort is therefore made for
the treatment of the general boundary conditions. By asimple shift the
problem can be reduced to the 0-boundary case, however with bond-
depending interaction potentials. Finally, in Section6, we prove the
large deviation principle for $\delta$-pinning case when $d=1$ and Gaussian
potential.

\S 2. Model and Results

Model and basic assumptions.

Recall thata bounded domain $D$ in $\mathbb{R}^{d}$ with piecewise Lipschitz
boundary is given and microscopic regions $D_{N}$ , $\overline{D_{N}}$ and $\partial^{+}D_{N}$ , $N\in \mathbb{Z}_{+}$

in $\mathbb{Z}^{d}$ are defined from $D$ . For aconfiguration $\phi=\{\phi(x);x\in D_{N}\}\in$

$\mathbb{R}^{D_{N}}$ of the random interface on $D_{N}$ and microscopic boundary condition
$\psi=\{\psi(x);x\in\partial^{+}D_{N}\}\in \mathbb{R}^{\partial^{+}D_{N}}$ , $\phi\vee\psi$ represents that on $\overline{D_{N}}$ which
coincides with $\phi$ on $D_{N}$ and $\psi$ on $\partial^{+}D_{N}$ . For every $\Lambda\subset \mathbb{Z}^{d}$ , $\Lambda^{*}$ denotes
the set of all directed bonds $ b=\langle x, y\rangle$ in $\Lambda$ , which are directed from
$y$ to $x$ . We write $x_{b}=x$ , $y_{b}=y$ for $ b=\langle x, y\rangle$ . For each $b\in(\mathbb{Z}^{d})^{*}$

and $\phi=\{\phi(x);x\in \mathbb{Z}^{d}\}$ , define $\nabla\phi(b)=\phi(xb)-\phi(y_{b})$ . We also define
$\nabla_{j}\phi(x)=\phi(x+ej)-\phi(x)$ , $1\leq j\leq d$ for $x\in \mathbb{Z}^{d}$ where $e_{j}\in \mathbb{Z}^{d}$ is the
j-th unit vector. $\nabla\phi(x)=\{\nabla j\phi(x)\}_{1\leq j\leq d}$ denotes vector field of height
differences of $\phi$ .

The Hamiltonian on $D_{N}$ with boundary condition $\psi$ is defined by

$H_{N}^{\psi}(\phi)=\frac{1}{2}V(\nabla(\phi b\in\frac{\sum}{D_{N}}*\vee\psi)(b))$ , $\phi\in \mathbb{R}^{D_{N}}$ .

Note that this coincides with the first term of (1.1). For the interaction
potential $V$ , we assume the following conditions:

(V1) $V\in C^{2}(\mathbb{R})$ ,

(V2) $V(\eta)=V(-\eta)$ for every $\eta\in \mathbb{R}$ ,

(V3)there exist $c_{-}$ , $c_{+}>0$ such that $c_{-}\leq V’’(\eta)\leq c_{+}$ for every $\eta\in \mathbb{R}$ .

Next, let $U$ : $D\times \mathbb{R}\rightarrow \mathbb{R}$ beaselfpotential which has an effect attracting
the interface $\phi$ to the negative or positive side. We consider the case
that $U$ is decomposed as $U(\theta, r)=Q(\theta)W(r)$ , where $Q$ : $D\rightarrow[0, \infty)$ ,
$W$ : $\mathbb{R}\rightarrow \mathbb{R}$ and assume the following conditions:
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(Q1) $Q$ is non-negative, bounded and piecewise continuous,
(W1) $W$ is measurable,
(W2)there exist $\alpha$ , $\beta\in \mathbb{R}$ such that $\lim_{r\rightarrow+\infty}W(r)=\alpha$ , $\lim_{r\rightarrow-\infty}W(r)$

$=\beta$ and $\alpha\wedge\beta\leq W(r)\leq\alpha\vee\beta$ for every $r\in \mathbb{R}$ (in particular, $W$

is bounded).

Then, $H_{N}^{\psi,U}(\phi)=H_{N}^{\psi}(\phi)+\sum_{x\in D_{N}}U(\frac{x}{N}, \phi(x))$ is the Hamiltonian(1.1)
on $D_{N}$ with boundary condition $\psi$ and self potential $U$ . The corre-
sponding finite volume Gibbs measure $\mu_{N}^{\psi,U}$ on $D_{N}$ is defined by (1.2).

We shall denote $\mu_{N}^{\psi,0}$ by $\mu_{N}^{\psi}$ . In the Gaussian case i.e. $V(\eta)=\frac{1}{2}\eta^{2}$ and
$U\equiv 0$ , we shall denote it by $\mu_{N}^{\psi,*}$ .

For $g\in C^{\infty}(\mathbb{R}^{d})$ , define $H_{g}^{1}(D)=\{h\in H^{1}(D);h-g|_{D}\in H_{0}^{1}(D)\}$ .

The function $g|_{\partial D}$ will be the macroscopic boundary condition. We as-
sume the following conditions for the corresponding microscopic bound-

$ary$ condition $\psi\in \mathbb{R}^{\partial^{+}D_{N}}$ .

$(\psi 1)x\in\partial D_{N}\max_{+}|\psi(x)|\leq CN$ ,

$(\psi 2)\sum_{x\in\partial+D_{N}}|\psi(x)-Ng(\frac{x}{N})|^{p0}\leq CN^{d}$
for some $C>0$ and $p0>2$ .

Remark 2.1. Since $\partial D$ is piecewise Lipschitz and $g|_{D}\in C^{\infty}(\overline{D})$ ,
by Theorem8.7and Theorem8.9of [27], there exists $a$ continuous linear

trace operator $T_{0}$ : $H^{1}(D)\rightarrow H^{\frac{1}{2}}(\partial D)$ such that $T_{0}u=u|_{\partial D}$ for every
$u\in C^{\infty}(\overline{D})$ and it holds that $H_{g}^{1}(D)=\{h\in H^{1}(D);T_{0}h=g|_{\partial D}\}$ .

Scaling and polilinear interpolation.

Our scaled random interface $\{h^{N}(\theta);\theta\in D\}$ is defined by polilinear
interpolation of the macroscopically scaled height variables i.e. $h^{N}(\theta)=$

$\frac{1}{N}\phi(x)$ for $\theta=\frac{x}{N}$ , $x\in\overline{D_{N}}$ and

(2.1) $h^{N}(\theta)$ $=$ $\sum$
$[\square ^{d}(\lambda_{i}$

{ $ N\theta$。}
$\lambda\in\{0,1\}^{d}i=1$

$+$ ( 1 $-\lambda$。)(1–{N\mbox{\boldmath $\theta$}。}) $)]$ $h^{N}(\frac{[N\theta]+\lambda}{N})$ ,

for general $\theta\in D$ , where $[\cdot]$ and $\{\cdot\}$ denote the integral and the fractional
parts, respectively, see (1.1 ) of [13]. We also define the scaled profile
$\{\overline{h}^{N}(\theta);\theta\in D\}$ by step function $i.e$ . $\overline{h}^{N}(\theta)=\frac{1}{N}\phi([N\theta])$ for $\theta\in D$ .

Similarly, for each scalar lattice field $\{u(\frac{x}{N});x\in D_{N}\}$ , we will define
$\{u^{N}(\theta);\theta\in D\}$ by $u^{N}(\theta)=u(\frac{x}{N})$ for $\theta=\frac{x}{N}$ , $x\in D_{N}$ and by (2.1)for

general $\theta\in D$ and $\{\overline{u}^{N}(\theta);\theta\in D\}$ by $u-N(\theta)=u(\frac{[N\theta]}{N})$ for $\theta\in D$ . Also,
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given $a$ continuous function $f(\theta)$ of $\theta\in D$ , we will define $\{f^{N}(\theta);\theta\in D\}$

and $\{\overline{f}^{N}(\theta);\theta\in D\}$ from scalar lattice fifield $\{f(\frac{x}{N});x\in D_{N}\}$ as above.
Using Jensen’ $s$ inequality and elementary estimates, we can see that for
each $p>1$ , there exists aconstant $C_{0}=C_{0}$ $(d, p)>0$ such that

(2.2) $C_{0}||\overline{u}^{N}||_{L^{p}(D)}\leq||u^{N}||_{L^{p}(D)}\leq||\overline{u}^{N}||_{L^{p}(D)}$ ,

for every scalar lattice field $\{u(\frac{x}{N});x\in D_{N}\}$ .

LDP in the case with weak self potentials.

Now we are in the position to state the main result of this paper.
The (normalized) surface tension with tilt $u\in \mathbb{R}^{d}$ is defined by

(2.3) $\sigma(u)=-\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\log\frac{Z_{\Lambda_{N}}^{\psi_{u}}}{Z_{\Lambda_{N}}^{0}}$ ,

where $Z_{\Lambda_{N}}^{\psi}$ isapartition function for $\mu_{\Lambda_{N}}^{\psi}(=\mu_{\Lambda_{N}}^{\psi,0})$ on $\Lambda_{N}=[1, N-1]^{d}\cap$

$\mathbb{Z}^{d}$ and $\psi_{u}(x)=u\cdot x$ , $x\in\overline{\Lambda_{N}}$ represents the $u$-tilted boundary condition
(cf. [13], [18]). For $h\in H^{1}(D)$ , defifine surface free energy (integrated
surface tension)

$\Sigma(h)=\int_{D}\sigma(\nabla h(\theta))d\theta$ .

Theorem 2.1. The family of random surfaces $\{h^{N}(\theta);\theta\in D\}$

$\psi,U$

distributed under $\mu_{N}$ satisfies the large deviation $p$バ nciple (LDP) on
$L^{2}(D)$ with speed $N^{d}$ and the rate functional $I^{U}(h)$ , that is, for every
closed set $C$ and open set $O$ of $L^{2}(D)$ we have that

(2.4) $\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N^{d}}\log\mu_{N}^{\psi,U}(h^{N}\in C)\leq-\inf_{h\in C}I^{U}(h)$ ,

(2.5) $\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N^{d}}\log\mu_{N}^{\psi,U}(h^{N}\in O)\geq-\inf_{h\in \mathcal{O}}I^{U}(h)$ .

The functional $I^{U}(h)$ is given by

$I^{U}(h)=\{$

$\Sigma^{U}(h)-\inf_{H_{g}^{1}(D)}\Sigma^{U}$ if $h\in H_{g}^{1}(D)$ ,

$+\infty$ otherwise,
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where $\inf_{H_{g}^{1}(D)}\Sigma^{U}=\inf\{\sum^{U}(h);h\in H_{g}^{1}(D)\}$ and

$\sum^{U}(h)=\Sigma(h)+\alpha\int_{D}Q(\theta)1(h(\theta)>0)d\theta+\beta\int_{D}Q(\theta)1(h(\theta)<0)d\theta$

$+(\alpha\wedge\beta)\int_{D}Q(\theta)1(h(\theta)=0)d\theta$ .

Remark 2.2. By the $proo/of$ Theorem2.1 {see (3.8) $6eZow)$ , if $U$

is given by $U(\theta, r)=QW(r)$ for some constant $Q\geq 0$ and $W(r)$ satisfies
the condition(W2) with $(\alpha, \beta)=(0, -A)$ or $(-A, 0)$ for some $A\geq 0$ so
that $-A$ $\leq W(r)\leq 0$ $/or$ every $r\in \mathbb{R}$ , then it holds that

(2.6) $-AQ$ $=-\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\log\frac{Z_{\Lambda_{N}}^{0,U}}{Z_{\Lambda_{N}}^{0}}$ ,

where the right hand side represents the difference of the free energies

of the interface in the case with self potential and in the case without

self potential. In this sense, $\Sigma^{U}(h)$ above represents macroscopic total

surface energy of the profifile $h$ ;see also Remark3.1 below.

Asacorollary of the upper bound (2.4) in Theorem2.1, we obtain

the following law of Large numbers for $\{h^{N}(\theta);\theta\in D\}$ under $\mu_{N}^{\psi,U}$ .

Corollary 2.1. If $\Sigma^{U}$ has $a$ unique minimizer $h-$ in $H_{g}^{1}(D)$ , then

the law of Large numbers holds under $\mu_{N}$ , namely,
$\psi,U$

$\lim$ $\mu_{N}^{\psi,U}(||h^{N}-\overline{h}||_{L^{2}(D)}>\delta)=0$ ,
$ N\rightarrow\infty$

for every $\delta>0$ .

Remark 2.3. (Free boundary problems) If $\sigma=\sigma(u)$ is smooth
enough $(i.e. \sigma\in C^{2,\gamma}(\mathbb{R}^{d}), \gamma>0)$ and if the free boundary $\partial\{h>$

$0\}$ of the minimizer $h$ of $\Sigma^{U}$ is locally $C^{2}$ , then $h$ satisfies the Eu-
ler equation $div\{\nabla\sigma(\nabla h)\}=0$ in $D\backslash \partial\{h>0\}$ and the condition
$\Psi(\nabla h^{+})$ 一重 $(\nabla h^{-})=AQ$ on the free boundary $D$ 口�$\{h>0\}$ , where
重 $(u)=u\cdot\nabla\sigma(u)-\sigma(u)$ and $A=(\alpha\vee\beta)-(\alpha\wedge\beta)$ . The Lipschitz con-
tinuity of the minimizer $h$ and the regularity of its free boundary were
studied by[1], [2], [26] and others. In our case, for the regularity of the
surface tension, $\sigma\in C^{1,1}(\mathbb{R}^{d})$ is only known in general, see[18].

LDP for 6-pinning in one dimension.

The Gibbs measure with $\delta$-pinning corresponds to the weak limit

of the square-well pinning measure $\mu_{N}$ with $W(r)=-b1\{|r|\leq a\}$ as
$\psi,w$
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$a\downarrow 0$ , $ b\rightarrow\infty$ by keeping $2a(e^{b}-1)=e^{J}$ for $J\in \mathbb{R}$ and has the following
representation:

$\mu_{N}^{\psi,J}(d\phi)=\frac{1}{Z_{N}^{\psi,J}}\exp\{-H_{N}^{\psi}(\phi)\}\prod_{x\in D_{N}}(e^{J}\delta_{0}(d\phi(x))+d\phi(x))$ .

We regard $\mu_{N}^{\psi,J}\in P(\mathbb{R}^{\overline{D_{N}}})$ by considering $\phi(x)=\psi(x)$ for $x\in\partial^{+}D_{N}$

as before.
We study the large deviation principle for $\{h^{N}(\theta);\theta\in D\}$ under

$\mu_{N}^{\psi,J}$ when $d=1$ and with Gaussian potential i.e. $V(\eta)=\frac{1}{2}\eta^{2}$ . Let $D=$

$(0,1)$ , $D_{N}=[1, N-1]$ 口 $\mathbb{Z}$ and take the boundary condition $\psi(0)=aN$

and $\psi(N)=bN$ , $a$ , $b\in \mathbb{R}$ . We shall denote $\mu_{N}^{\psi,J}$ , $Z_{N}^{\psi,J}$ , $\mu_{N}^{\psi}$ and $Z_{N}^{\psi}$ as
$\mu_{\Lambda^{\Gamma}}^{a,b,J}$ , $Z_{p\gamma}^{a,b,J}$ , $\mu_{\Lambda^{\Gamma}}^{a,b}$ and $Z_{\Lambda^{\Gamma}}^{a,b}$ , respectively. Define

垣 $a,b$ $(D)=\{h\in C([0,1];\mathbb{R});h(0)=a, h(1)=b\}$ ,

$H_{a,,,b}^{1}(D)=$ { $h\in W_{a,,,b}(D);h$ is absolutely continuous and $h’\in L^{2}(D)$ }.

The space $W_{a,,,b}(D)$ is endowed with the topology determined by the
$\sup$-norm $||\cdot||_{\infty}$ . Then, we have the following LDP.

Theorem 2.2. Assume that $d=1$ and $V(\eta)=\frac{1}{2}\eta^{2}$ . Then the

family of random surfaces $\{h^{N}(\theta);\theta\in D\}$ distributed under $\mu_{\Lambda^{\Gamma}}^{a,b,J}$ sat-

isfies the large deviation principle on $W_{a,,,b}(D)(i.e$ . the upper and lower
bounds for closed and open subsets of $W_{a,,,b}(D)$ , respectively) with speed
$N$ and the rate functional given by

$I^{J}(h)=\{$

$\sum^{J}(h)-\inf_{H_{a,b}^{1}(D)}\sum^{J}$
if $h\in H_{a,,,b}^{1}(D)$ ,

$+\infty$ otherwise,

where

$\sum^{J}(h)=\frac{1}{2}\int_{0}^{1}(h’)^{2}(\theta)d\theta+\tau(\mathcal{J})|\{\theta\in D;h(\theta)=0\}|$ ,

and

(2.7) $\tau(\mathcal{J})=-\lim_{N\rightarrow\infty}\frac{1}{N}\log\frac{Z_{\Lambda^{\Gamma}}^{0,0,J}}{Z_{\wedge\Gamma}^{0,0}}$ ,

note that $|\cdot|$ stands for the Lebesgue measure.

Remark 2.4. The function $\tau(J)$ is the so-called pinning free en-
ergy. By the proof of Theorem2.2and Remark6.1 below, one can see
that the limit exists and $\tau(\mathcal{J})<0$ for every $J\in \mathbb{R}$ .
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\S 3. Proof of Theorem 2.1: LDP with Self Potentials

LDP without self potentials.

This section reduces the proof of Theorem2.1to the LDP for $\mu_{N}^{\psi}(=$

$\mu_{N}^{\psi,0})$ , i.e. the Gibbs measure without self potential. The case where the
boundary condition $\psi\equiv 0$ was studied in[13].

Proposition 3.1. The family of random surfaces $\{h^{N}(\theta);\theta\in D\}$

distributed under $\mu_{N}^{\psi}$ satisfifies the large deviation principle on $L^{2}(D)$ with
speed $N^{d}$ and the rate functional given by

$I(h)=\{$
$\Sigma(h)-\inf_{H_{g}^{1}(D)}\Sigma$

if $h\in H_{g}^{1}(D)$ ,

$+\infty$ otherwise.

Treatment of boundary conditions.

One of the key observations for the proof of Proposition 3.1 is the
following trivial identity:

(3.1) $\nabla(\phi\vee\psi)(b)=\nabla((\phi-\xi)\vee 0)(b)+\nabla(\xi\vee\psi)(b)$ ,

for every $\xi=\{\xi(x);x\in D_{N}\}$ and $b\in\overline{D_{N}}^{*}$ Now take $\xi$ as $\xi(x)=$

$Ng(\frac{x}{N})$ for $x\in D_{N}$ (and for $x\in\overline{D_{N;}}$ recall $g\in C^{\infty}(\mathbb{R}^{d})$ ) and define

$\overline{H}_{N}^{\psi}(\phi)=\frac{1}{2}b\in\frac{\sum}{D_{N}}*V(\nabla(\phi\vee 0)(b)+\nabla(\xi\vee\psi)(b))$ .

Consider the finite volume Gibbs measure with Hamiltonian $H-\psi N(\emptyset)$ and
0-boundary condition:

$\ovalbox{\tt\small REJECT} d\phi)=\frac{1}{\overline{Z}_{N}^{\psi}}\exp\{-\overline{H}_{N}^{\psi}(\phi)\}\prod_{x\in D_{N}}d\phi(x)$ .

Then the following LDP holds for $\tilde{\mu}_{N}^{\psi}$ .

Proposition 3.2. The family of random surfaces $\{h^{N}(\theta);\theta\in D\}$

distributed under $\mu\sim\psi N$ satisfies the Large deviation principle on $L^{2}(D)$ with
speed $N^{d}$ and the rate functional given by

$\overline{I}(h)=\{$

$\overline{\Sigma}(h)-\inf_{H_{O}^{1}(D)}\overline{\Sigma}$ if $h\in H_{0}^{1}(D)$ ,

$+\infty$ otherwise,
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where

$\overline{\Sigma}(h)=\int_{D}\sigma(\nabla h(\theta)+\nabla g(\theta))d\theta$ .

We shall prove this proposition in Sections 4 and 5.

Proof of Proposition3.1. Consider the continuous map $\Phi_{g}$ : $L^{2}(D)$

$\rightarrow L^{2}(D)$ given by $\Phi_{g}(h)=h+g$ . It is easy to see that

$I(h)=\inf\{\overline{I}(\tilde{h});\tilde{h}\in L^{2}(D), \Phi_{g}(\tilde{h})=h\}$ .

Then by definitions of $\mu_{N}^{\psi},\tilde{\mu}_{N}^{\psi}$ and (3.1), Proposition3.1 follows from
the contraction principle (cf. [25], [14] and [12, Theorem 4.2.1]) and
Proposition3.2. Q.E.D.

Deduction of Theorem 2.1 from Proposition 3.1.

We shall prove Theorem 2.1 assuming that Proposition 3.2 and
therefore Proposition 3.1 are shown. We only consider the case where
$\alpha\geq\beta$ . The case where $\alpha\leq\beta$ can be proved completely in an analogous
manner or by turning the interfaces upside down by the map $\phi\mapsto-\phi$

and $\psi\mapsto-\psi$ . The pinning potential $U(\theta, r)=Q(\theta)W(r)$ which sat-
isfies the conditions( $W\underline{1)}$ and $(\underline{W2})$ with $\alpha\geq\beta$ can be rewritten as
$U(\theta, r)=Q(\theta)\alpha+Q(\theta)W(r)$ and $W(r)$ satisfifies conditions (W1)and

(W2)’ there exists $A\geq 0$ such that $\lim_{r\rightarrow+\infty}W(r)=0$ , $\lim_{r\rightarrow-\infty}W(r)$

$=-A$ and $-A\leq W(r)\leq 0$ for every $r\in \mathbb{R}$ ,

with $ A=\alpha-\beta$ . Since the contribution of the first term $ Q(\theta)\alpha$ in
$\exp\{-H_{N}^{\psi,U}(\phi)\}$ of $\mu_{N}^{\psi,U}$ cancels with the normalization factor, we only

have to consider the case that $W$ satisfies the conditions(W1) and $(W2)’$ .

The following lemma allows us to replace the self potential part
of the Hamiltonian by the integration of $-AQ$ on the domain where
$g\in L^{2}(D)$ is non-positive when the macroscopically scaled profile $h^{N}$

is $case$ enough to $g$ . Note that $g$ here represents a general function in
$L^{2}(D)$ and not the macroscopic boundary condition.

lemma 3.1. Assume the conditions (Q1), (W1) and $(W2)’$ on
$U(\theta, r)=Q(\theta)W(r)$ . Let $g\in L^{2}(D)$ and $0<\delta<1$ be fifixed. If $ h^{N}\in$

$B_{2}$ $(g, \delta)=\{h\in L^{2}(D);||h-g||_{L^{2}(D)}<\delta\}$ for $N$ large enough, then there
exists some constant $C>0$ such that

$\sum_{x\in D_{N}}U(\frac{x}{N}, \phi(x))+N^{d}A\int_{D}Q(\theta)1(g(\theta)\leq-\delta^{\frac{1}{2}})d\theta\leq CN^{d}\delta$ ,

for every $N$ large enough.
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Proof. There exists an approximating sequence $\{g_{k}\}_{k\geq 1}\subset C(D)$ of
$g\in L^{2}(D)$ such that $||gk-g||_{L^{2}(D)}\rightarrow 0$ as $ k\rightarrow\infty$ . Recall that one can
define $g_{k}^{N}$ (polilinear functions)and $\overline{g}_{k}^{N}$ (step functions)for $g_{k}\in C(D)$ .

Now, by(2.2), it holds that

$||\overline{h}^{N}-g||_{L^{2}(D)}\leq C||h^{N}-g||_{L^{2}(D)}+a_{N,,,k}$ ,

for every $k\geq 1$ , where

$a_{N,,k}=(C+1)||g-g_{k}||_{L^{2}(D)}+C||g_{k}-g_{k}^{N}||_{L^{2}(D)}+||g_{k}-\overline{g}_{k}^{N}||_{L^{2}(D)}$ ,

which goes to0as $ N\rightarrow\infty$ and $ k\rightarrow\infty$ . Hence,

(3.2) $||\overline{h}^{N}-g||_{L^{2}(D)}<C\delta+a_{N,,,k}$ ,

if $h^{N}\in B_{2}$ $(g, \delta)$ . The positive constants $C$ in the estimates may change
from line to line in the paper.

Now, for $\gamma>0$ , we rewrite

$\sum_{x\in D_{N}}U(\frac{x}{N}, \phi(x))+N^{d}A\int_{D}Q(\theta)1(g(\theta)\leq-\gamma)d\theta$

$=N^{d}\int_{D}(W(N\overline{h}^{N}(\theta))+A1(g(\theta)\leq-\gamma))Q(\theta)d\theta$

$+\{\sum_{x\in D_{N}}Q(\frac{x}{N})W(N\overline{h}^{N}(\frac{x}{N}))-N^{d}\int_{D}W(N\overline{h}^{N}(\theta))Q(\theta)d\theta\}$

$\equiv S_{1}+S_{2}$ .

For $S_{1}$ , we divide the integration on $D$ into the sum of those on three
domains $\{g>-\gamma\}(\equiv\{\theta\in D;g(\theta)>-\gamma\})$ , $\{g\leq-\gamma\}$ 口 $C_{N,,,\gamma}^{c}$ and
$\{g\leq-\gamma\}$ 口 $C_{N,,,\gamma}$ , where $C_{N,,,\gamma}=\{|\overline{h}^{N}-g|<\gamma/2\}$ and $C_{N,,,\gamma}^{c}=D\backslash C_{N,,,\gamma}$ .

The integration on $\{g>-\gamma\}$ is non-positive, because $Q\geq 0$ , $W\leq 0$

and $A1$ $(g(\theta) \leq-\gamma)=0$ on this domain. Next, since (3.2) implies
$|C_{N,,,\gamma}^{c}|<\frac{4}{\gamma^{2}}(C\delta+a_{N,,,k})^{2}$ , we obtain

$\int_{\{g\leq-\gamma\}\cap C_{N,\gamma}^{c}}|W(N\overline{h}^{N}(\theta))+A1(g(\theta)\leq 0)|d\theta\leq\frac{K}{\gamma^{2}}(C\delta+a_{N,,,k})^{2}$ ,

where $K=4(||W||_{\infty}+A)$ . On $\{g\leq-\gamma\}$ 口 $C_{N,,,\gamma}$ , we have $\overline{h}^{N}(\theta)<$

$-\gamma/2$ . By this fact and the assumption $(W2)’$ , $|W(N\overline{h}^{N}(\theta))+A1(g(\theta)\leq$

$-\gamma)|\leq\delta$ holds for $N$ large enough and we see that

$\int_{\{g\leq-\gamma\}\cap C_{N,\gamma}}|W(N\overline{h}^{N}(\theta))+A1(g(\theta)\leq-\gamma)|d\theta\leq\delta|D|$ .
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Therefore, we obtain

$S_{1}\leq N^{d}||Q||_{\infty}(\frac{K}{\gamma^{2}}(C\delta+a_{N,,,k})^{2}+\delta|D|)$ ,

for $N$ large enough, every $k\geq 1$ and $\gamma>0$ . For $S_{2}$ , we have

$|S_{2}|\leq N^{d}||W||_{\infty}\int_{D}|Q(\frac{[N\theta]}{N})-Q(\theta)|d\theta+O(N^{d-1})$ ,

where $O(N^{d-1})$ is the boundary term. Finally, taking $\gamma=\delta^{\frac{1}{2}}$ and $N$ , $k$

large enough, we complete the proof. Q.E.D.

Under the condition $(W2)’$ , the rate functional $\sum^{U}(h)$ has the form

(3.3) $\sum^{U}(h)=\sum(h)-A\int_{D}Q(\theta)1(h(\theta)\leq 0)d\theta$ ,

which coincides with (1.4), and enjoys the following properties.

Lemma 3.2. (1) The functional $\Sigma^{U}(h)$ is lower semi-continuous
on $L^{2}(D)$ .

(2)Let $\Sigma_{-}^{U}(h)$ be the functional defifined by(3.3)with1 $(h(\theta)\leq 0)$ replaced
by1 $(h(\theta)<0)$ . Then, for every open set $O$ of $L^{2}(D)$ , we have that

$\inf_{h\in O}\Sigma^{U}(h)=\inf_{h\in O}\Sigma_{-}^{U}(h)$ .

Proof. (1) Decomposing $D$ into two domains $C_{\gamma}=\{|h-g|<\gamma\}$

and $C_{\gamma}^{c}$ , in asimilar way to the proof of Lemma3.1, one can prove that

$\int_{D}Q(\theta)1(h(\theta)\leq 0)d\theta\leq\int_{D}Q(\theta)1(g(\theta)\leq\gamma)d\theta+||Q||_{\infty}\frac{\delta^{2}}{\gamma^{2}}$ ,

for every $\gamma>0$ if $h\in B_{2}$ $(g, \delta)$ . By this inequality and the property
(strict convexity) of the surface tension (cf. [13, Lemma 3.6]):

(3.4) $\frac{1}{2}c_{-}|v-u|^{2}\leq\sigma(v)-\sigma(u)-(v-u)\cdot(\nabla\sigma)(u)\leq\frac{1}{2}c_{+}|v-u|^{2}$ ,

for every $u$ , $v\in \mathbb{R}^{d}$ , it is easy to see the lower semi-continuity of $\sum^{U}(h)$

on $L^{2}(D)$ .
(2) Since $\sum^{U}(h)\leq\Sigma_{-}^{U}(h)$ is obvious for every $h\in L^{2}(D)$ , the conclusion
follows once we can show that

(3.5) $\inf_{h\in O}\Sigma^{U}(h)\geq\inf_{h\in O}\Sigma_{-}^{U}(h)$ .
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To this end, for every $\epsilon>0$ , take $h\in O$ such that $\sum^{U}(h)\leq\inf_{\mathcal{O}}\sum^{U}+\epsilon$ .

We approximate such $h$ by a sequence $\{h^{n}\}_{n\geq 1}$ defined by $h^{n}(\theta)$ $=$

$h(\theta)-f^{n}(\theta)$ , where $f^{n}\in C_{0}^{\infty}(D)$ are functions such that $f^{n}(\theta)\equiv\frac{1}{n}$

on $D_{n}=$ { $\theta\in D$ ;dist ( $\theta$ , $\partial D$ ) $\geq$ $\frac{1}{n}$ } and $|\nabla f^{n}(\theta)|$ $\leq C$ with $C>0$ .

Note that $h^{n}$ satisfy the same boundary condition as $h$ . Then, since
$\lim_{n\rightarrow\infty}\sum(h^{n})=\sum(h)$ (recall $h\in H_{g}^{1}(D)$ ) and

$-A\int_{D}Q(\theta)1(h^{n}(\theta)<0)d\theta\leq-A\int_{D_{n}}Q(\theta)1(h(\theta)$ く $\frac{1}{n})$ $ d\theta$

$\leq-A\int_{D}Q(\theta)1(h(\theta)\leq 0)d\theta+A||Q||_{\infty}|D\backslash D_{n}|$ ,

we obtain $\lim\sup_{7l\rightarrow\infty}\Sigma_{-}^{U}(h^{n})\leq\Sigma^{U}(h)$ . However, $O$ is an open set of
$L^{2}(D)$ , so that $h^{n}\in O$ for $n$ large enough and thus (3.5) is shown.

$Q.E$ .D.

Proof of Theorem2.1. Stepl (lower bound). Let $g\in L^{2}(D)$ and
$\delta>0$ . Then, by Lemma3.1 and the LDP lower bound for $\mu_{N}^{\psi}$ (Propo-

sition3.1), we have

$\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N^{d}}\log\frac{Z_{N}^{\psi,U}}{Z_{N}^{\psi}}\mu_{N}^{\psi,U}(h^{N}\in B_{2}(g, \delta))$

$\geq-$ $\inf$ $ I(h)+A\int_{D}Q(\theta)1(g(\theta)\leq-\delta^{\frac{1}{2}})d\theta-C\delta$

$h\in B_{2}(g,\delta)$

$\geq-\{I(g)-A\int_{D}Q(\theta)1(g(\theta)\leq-\delta^{\frac{1}{2}})d\theta\}-C\delta$ .

Take now an arbitrary open set $O$ of $L^{2}(D)$ . Then,

$\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N^{d}}\log\frac{Z_{N}^{\psi,U}}{Z_{N}^{\psi}}\mu_{N}^{\psi,U}(h^{N}\in O)$

$\geq-\{I(h)-A\int_{D}Q(\theta)1(h(\theta)\leq-\delta^{\frac{1}{2}})d\theta\}-C\delta$

for every $h\in O$ and $\delta>0$ such that $B_{2}$ $(h, \delta)\subset O$ . Letting $\delta\downarrow 0$ , since
$h\in O$ is arbitrary, we have

(3.5) $\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N^{d}}\log\frac{Z_{N}^{\psi,U}}{Z_{N}^{\psi}}\mu_{\Lambda^{\Gamma}}^{\psi,U}(h^{N}\in O)$

$\geq-\inf_{h\in \mathcal{O}}\{I(h)-A\int_{D}Q(\theta)1(h(\theta)<0)d\theta\}$ .
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However, by Lemma 3.2-(2), one can replace 1 $(h(\theta)<0)$ with 1 $(h(\theta)\leq$

$0)$ in the right hand side of (3.6).
Step2(upper bound). Let $g\in L^{2}(D)$ and $\delta>0$ be fixed. We define

$L_{N}^{+}=N\{\theta\in D;g(\theta)>\delta^{\frac{1}{2}}\}\cap \mathbb{Z}^{d}$ ,

$L_{N}^{-}=N\{\theta\in D;g(\theta)<-\delta^{\frac{1}{2}}\}\cap \mathbb{Z}^{d}$ ,

$I_{N}=N\{\theta\in D;|g(\theta)|\leq\delta^{\frac{1}{2}}\}\cap \mathbb{Z}^{d}$ .

By the assumption $(W2)’$ on $W$ , for every $\epsilon>0$ there exists $K=K_{\epsilon}>0$

such that $ W(r)\geq-(A-\epsilon)1\{r\leq K\}-\epsilon$ for every $r\in \mathbb{R}$ . Therefore, we
have

$\exp\{-\sum_{x\in D_{N}}U(\frac{x}{N}, \phi(x))\}$

$\leq\exp\{(A-\epsilon)\sum_{x\in D_{N}}Q(\frac{x}{N})1(\phi(x)\leq K)+\epsilon\sum_{x\in D_{N}}Q(\frac{x}{N})\}$

$=\exp\{\epsilon\sum_{x\in D_{N}}Q(\frac{x}{N})\}\sum_{\Lambda\subset D_{N}}\prod_{x\in\Lambda}(e^{(A-\in)Q(\frac{x}{N})}-1)1(\phi(x)\leq K)$ .

Now, if $\phi(x)\leq K$ for $x\in L_{N}^{+}$ , then $\frac{1}{N}\phi(x)-g(\frac{x}{N})<-\frac{1}{2}\delta^{\frac{1}{2}}$ for $N$ large
enough. Thus, if $\phi(x)\leq K$ for every $x\in\Lambda\subset L_{N}^{+}$ on $\{h^{N}\in B_{2}(g, \delta)\}$ ,
since $||\overline{h}^{N}-\overline{g}^{N}||_{L^{2}(D)}<\frac{1}{c_{o}}(\delta+||g-g^{N}||_{L^{2}(D)})$ , we have for $N$ large
enough

$\frac{2\delta^{2}}{C_{0}}>\frac{1}{N^{d}}\sum_{x\in D_{N}}(\frac{1}{N}\phi(x)-g(\frac{x}{N}))^{2}>\frac{|\Lambda|\delta}{4N^{d}}$ ,

namely, $|\Lambda|<8C_{0}^{-1}\delta N^{d}$ , where $C_{0}>0$ is the constant appeared in(2.2).
Combining these facts

$x$
$Z^{\psi,U}$

$\exp\{-\epsilon\sum_{x\in D_{N}}Q(_{\overline{N}})\}\frac{N}{Z_{N}^{\psi}}\mu_{N}^{\psi,U}(h^{N}\in B_{2} (g, \delta))$

$\leq|\Lambda|<8C_{O}^{-1}\sum_{\Lambda\subset L_{N}^{+}}\prod_{x\in\Lambda}(e^{(A-\in)Q(\frac{x}{N})}\delta N^{d}-1)\sum_{\Lambda’\subset I_{N}\cup L_{N}^{-}}\prod_{x\in\Lambda^{l}}(e^{(A-\in)Q(\frac{x}{N})}-1)$

$\times\frac{1}{Z_{N}^{\psi}}\int 1$ $(h^{N}\in B_{2} (g, \delta))1$ ( $\phi(x)\leq K$ for every $x\in\Lambda\cup\Lambda’$ )

$\times\exp\{-H_{N}^{\psi}(\phi)\}\prod_{x\in D_{N}}d\phi(x)$
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$\leq(e^{(A-\in)||Q||_{\infty}}-1)^{8C_{0}^{-1}\delta N^{d}}|\{\Lambda\subset L_{N}^{+}; |\Lambda|<8C_{0}^{-1}\delta N^{d}\}|$

$\times\exp\{(A-\epsilon)\sum_{x\in I_{N}\cup L_{N}^{-}}Q(\frac{x}{N})\}\mu_{N}^{\psi}(h^{N}\in B_{2} (g, \delta))$
.

By using Stirling’s formula, we see that

$|\{\Lambda\subset L_{N}^{+} ; |\Lambda|<8C_{0}^{-1}\delta N^{d}\}|\leq\frac{(CN^{d})^{8C_{0}^{-1}\delta N^{d}}}{(8C_{0}^{-1}\delta N^{d})!}$

$\leq\frac{C}{\delta}N^{d}(\frac{C}{\delta})^{C\delta N^{d}}(1+o(1))$

as $ N\rightarrow\infty$ , for some constant $C>0$ independent of $N$ and $\delta$ . Hence, by

the LDP upper bound for the measure $\mu_{N}^{\psi}$ (Proposition 3.1), we obtain

� $im\sup_{N\rightarrow\infty}\frac{1}{N^{d}}\log\frac{Z_{N}^{\psi,U}}{Z_{N}^{\psi}}\mu_{N}^{\psi,U}(h^{N}\in B_{2}(g, \delta))$

$\leq(A-\epsilon)\int_{D}Q(\theta)1(g(\theta)\leq\delta^{\frac{1}{2}})d\theta$

$-nfI(\frac{i}{B}h)h\in 2(g,\delta)+C(\delta)+\epsilon\int_{D}Q(\theta)d\theta$ ,

where $C(\delta)$ isaconstant independent of $N$ and goes to0as $\delta\rightarrow 0$ . Then,
by using the lower semi-continuity of $I(h)$ and the right-continuity of
$\int_{D}Q(\theta)1(g(\theta)\leq\delta^{\frac{1}{2}})d\theta$ in $\delta$ , we see that for every $g\in L^{2}(D)$ and $\epsilon>0$ ,

there exists $\delta>0$ small enough such that

$\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N^{d}}\log\frac{Z_{N}^{\psi,U}}{Z_{N}^{\psi}}\mu_{N}^{\psi,U}(h^{N}\in B_{2}(g, \delta))$

$\leq-\{I(g)-A\int_{D}Q(\theta)1(g(\theta)\leq 0)d\theta\}+\epsilon$ .

Therefore, the standard argument in the theory of LDP yields

(3.7) $\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N^{d}}\log\frac{Z_{N}^{\psi,U}}{Z_{N}^{\psi}}\mu_{N}^{\psi,U}(h^{N}\in C)$

$\leq-\inf_{h\in C}\{I(h)-A\int_{D}Q(\theta)1(h(\theta)\leq 0)d\theta\}$ ,

for every compact set $C$ of $L^{2}(D)$ . Since $U$ is bounded, exponential

tightness for $\mu_{\Lambda^{\Gamma}}^{\psi,U}$ can be proved inasimilar way to those for $\mu_{N}^{\psi}$ which
will be proved in Section 4 (see Remark4.1below). Thus, (3.7) holds
for every closed set $C$ of $L^{2}(D)$ .
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Finally, taking $O=C=L^{2}(D)$ in (3.6) (recall the remark subse-
quent to the estimate) and (3.7), we see that

(3.8) $\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\log\frac{Z_{N}^{\psi,U}}{Z_{N}^{\psi}}=-\inf_{H_{g}^{1}(D)}\Sigma^{U}+\inf_{H_{g}^{1}(D)}\Sigma$ ,

and this concludes the proof. $Q$ .E.D.

Remark 3.1. As we mentioned in Remark2.2, if $U$ is given by
$U(\theta, r)=QW(r)$ for some constant $Q\geq 0$ and $W(r)$ (or $W(-r)$ ) satis-

fying the condition(W2), then(3.8)with $D_{N}=\Lambda_{N}$ yields the difference
of the free energies of the interface in the case with and without self po-
tentials, see (2.6). This can also be proved in the following way under
the condition $(W2)’$ : for every $\epsilon\in(0, A)$ there exists $K=K_{\in}>0$ such
that $W(r)\leq-(A-\epsilon)1\{r\leq-K\}$ for every $r\in \mathbb{R}$ . Therefore, we have

$\frac{Z_{\Lambda_{N}}^{0,U}}{Z_{\Lambda_{N}}^{0}}=E^{\mu_{\Lambda_{N}}^{0}}[\exp\{-Q\sum_{x\in\Lambda_{N}}W(\phi(x))\}]$

$\geq E^{\mu_{\Lambda_{N}}^{O}}[\exp\{(A-\epsilon)Q\sum_{x\in\Lambda_{N,\epsilon}}1(\phi(x)\leq-K)\}]$

$=E^{\mu_{\Lambda_{N}}^{0}}[\sum_{\Gamma\subset\Lambda_{N,\in}}(e^{(A-\in)Q}-1)^{|\Gamma|}1$
( $\phi(x)\leq-K$ for every $ x\in\Gamma$ ) $]$

$\geq e^{(A-\in)Q|\Lambda_{N}|}’\in\mu_{\Lambda_{N}}^{0}$ ( $\phi(x)\leq-K$ for every $x\in\Lambda_{N,,,\in}$ ),

where $\Lambda_{N,,,\epsilon}=$ { $x\in\Lambda_{N;}$ dist ( $x$ , $\Lambda_{N}^{c}$ ) $\geq\epsilon N$ }. However, [6, Proposition
2.1] shows that the probability in the last line is bounded below by

$\exp\{-CN^{d-2}\log N(1+o(1))\}$ ,

as $ N\rightarrow\infty$ for some constant $C>0$ independent of N. This implies

$\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N^{d}}\log\frac{Z_{\Lambda_{N}}^{0,U}}{Z_{\Lambda_{N}}^{0}}\geq AQ$ .

The opposite inequality is obvious, since $W(r)\geq-A$ .

\S 4. Proof of Proposition 3.2: LDP without Self Potentials

Convergence of average profiles.

In this section, the proof of Proposition3.2 will be given assuming
the convergence of average profiles (Lemma 4.1). We shall follow the
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strategy of[13]. The only difference is that the Dirichlet boundary data
$g|_{\partial D}$ is given from $g\in C^{\infty}(\mathbb{R}^{d})$ in our case, while [13] treated the case
of $g\equiv 0$ . For $f\in C$架 (D), set

$H_{N,,,f}^{\psi}(\phi)=H_{N}^{\psi}(\phi)-\frac{1}{N}\sum_{x\in D_{N}}f(\frac{x}{N})\phi(x)$ ,

$\overline{H}_{N,,,f}^{\psi}(\phi)=\overline{H}_{N}^{\psi}(\phi)-\frac{1}{N}\sum_{x\in D_{N}}f(\frac{x}{N})\phi(x)$ ,

and consider the following two Gibbs probability measures:

$\mu_{N,,,f}^{\psi}(d\phi)=\frac{1}{Z_{N,f}^{\psi}}\exp\{-H_{N,,,f}^{\psi}(\phi)\}\prod_{x\in D_{N}}d\phi(x)$ ,

$\tilde{\mu}_{N,,,f}^{\psi}(d\phi)=\frac{1}{\overline{Z}_{N,f}^{\psi}}\exp\{-\overline{H}_{N,,,f}^{\psi}(\phi)\}\prod_{x\in D_{N}}d\phi(x)$ ,

having the different boundary conditions $\phi(x)=\psi(x)$ and $\phi(x)=0$ for
$x\in\partial^{+}D_{N}$ , respectively;recall that $\psi$ and $g$ satisfy the conditions $(\psi 1)$ ,
$(\psi 2)$ . We write the averages of the profile $h^{N}$ defined by (2.1) under

$\mu_{N,,,f}^{\psi}$ and $\mu\sim\psi N,,f$ as $\overline{h}_{N,,,f}^{\psi}(\theta)=E^{\mu_{N,f}^{\psi}}[h^{N}(\theta)]$ and $\overline{h}_{N,,,f}^{\psi}(\theta)=E^{\tilde{\mu}_{N,f}^{\psi}}[h^{N}(\theta)]$ ,

respectively. For $f\in L^{2}(D)$ , $h_{f}$ denotes the unique weak solution $h=$

$h(\theta)$ in $H_{0}^{1}(D)$ of the following elliptic partial differential equation:

$div\{(\nabla\sigma)(\nabla h(\theta)+\nabla g(\theta))\}=-f(\theta)$ , $\theta\in D$ .

The crucial step in the proof of Proposition 3.2 is the following lemma.

Lemma4.1.

$\overline{h}_{N,,,f}^{\psi}\rightarrow h_{f}$ in $H_{0}^{1}(D)$ as $ N\rightarrow\infty$ .

We shall prove this Lemma in Section 5. Next, define

$--N,f-\psi\equiv\frac{\overline{Z}_{N,f}^{\psi}}{\overline{Z}_{N}^{\psi}}=E^{\overline{\mu}_{N}^{\psi}}[\exp\{\frac{1}{N}\sum_{x\in D_{N}}f(\frac{x}{N})\phi(x)\}]$ .

Then, inasimilar way to the proof of Theorem1.1of[13], by calculating

the functional derivative of $\Sigma-(h)$ and using the differentiation-integration

trick (i.e. computing $\frac{d}{dt}\log\overline{Z}_{N,,,tf}^{\psi}$ and integrating it in $t$ $\in[0,1]$ ), Lemma
4.1 yields the following lemma. The proof is omitted.
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Lemma 4.2. The limit $\Lambda(f)\equiv$ $\lim$ $\frac{1}{N^{d}}\log$ ニ $\psi N,f$ exists and it
$ N\rightarrow\infty$

holds that

$\Lambda(f)$ $=$ $\int_{D}\int_{0}^{1}h_{tf}(\theta)f(\theta)dtd\theta$ ,

$=$
$\sup_{h\in H_{0}^{1}(D)}\{\langle h, f\rangle-\overline{\Sigma}(h)\}+\inf_{H_{0}^{1}(D)}\overline{\Sigma}$

,

$=$
$\langle h_{f}, f\rangle-\overline{\Sigma}(h_{f})+\inf_{H_{o}^{1}(D)}\overline{\Sigma}$ ,

where $\langle h, f\rangle=\int_{D}h(\theta)f(\theta)d\theta$ .

Exponential tightness.

For the proof of the LDP upper bound in Proposition3.2, we prepare
the following lemma.

Lemma 4.3. There exists $\epsilon>0$ such that

$\sup_{N>1}\frac{1}{N^{d}}\log E^{\overline{\mu}_{N,f}^{\psi}}[\exp\{\epsilon\underline{\sum}(|h^{N}(\frac{x}{N})|^{2}+|\nabla^{N}h^{N}(\frac{x}{N})|^{2})\}]<\infty$ ,

$x\in D_{N}$

where for $a$ scalar lattice fifield $\{u(\frac{x}{N});x \in \overline{D_{N}}\}$ , $\nabla^{N}u(\frac{x}{N})$ $=$

$\{\nabla_{j}^{N}u(\frac{x}{N})\}_{1\leq j\leq d}$ denotes $a$ discrete gradient of $u$ defifined by $\nabla_{j}^{N}u(\frac{x}{N})=$

$N\{u(\frac{x+e_{j}}{N})-u(\frac{x}{N})\}$ , $1\leq j\leq d$ .

Proof. Since $D$ is bounded, by discrete Poincar\’e’s inequality and
the definition of $h^{N}$ , we only have to prove that there exists $\epsilon>0$ such
that

(4.1)
$\sup_{N\geq 1}\frac{1}{N^{d}}\log E^{\overline{\mu}_{N,f}^{\psi}}[\exp\{\epsilon_{b\in}\frac{\sum}{D_{N}}*|\nabla\phi(b)|^{2}\}]<\infty$ .

However, this is shown by a simple direct computation. Indeed, by the
strict convexity of $V$ , it is easy to see that

$\frac{1}{2}c_{-}H_{N}^{0,*}(\phi)-\frac{1}{4}c_{-}b\in\frac{\sum}{D_{N}}*(\nabla(\xi\vee\psi)(b))^{2}$

$\leq\overline{H}_{N}^{\psi}(\phi)\leq 2c_{+}H_{N}^{0,*}(\phi)+\frac{1}{2}c_{+}b\in\frac{\sum}{D_{N}}*(\nabla(\xi\vee\psi)(b))^{2}$ ,
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where $H_{\Lambda^{\Gamma}}^{0,*}(\phi)=\frac{1}{4}b\in\frac{\sum}{D_{N}}*(\nabla(\phi\vee 0)(b))^{2}$ Therefore, the expectation in

(4.1) is bounded above by

$\exp\{(\frac{c_{-}}{4}+\frac{c_{+}}{2})b\in\frac{\sum}{D_{N}}*|\nabla(\xi\vee\psi)(b)|^{2}\}$

$\int\exp\{(4\epsilon-\frac{c_{-}}{2})H_{l\backslash \Gamma}^{0,*}(\phi)+\frac{1}{N}\sum_{x\in D_{N}}f(\frac{x}{N})\phi(x)\}\prod_{x\in D_{N}}d\phi(x)$

$\times$

$\int\exp\{-2c_{+}H_{N}^{0,*}(\phi)+\frac{1}{N}\sum_{x\in D_{N}}f(\frac{x}{N})\phi(x)\}\prod_{x\in D_{N}}d\phi(x)$

A simple Gaussian calculation yields

$\int\exp\{-\alpha H_{\Lambda^{\Gamma}}^{0,*}(\phi)+\frac{1}{N}\sum_{x\in D_{N}}f(\frac{x}{N})\phi(x)\}\prod_{x\in D_{N}}d\phi(x)$

$=(\frac{2\pi}{\alpha})2\sqrt{\det(-\triangle_{D_{N}})}\exp\{\frac{1}{2\alpha N^{2}}V_{N,,,f}\underline{|D}_{\Delta^{\underline{|}}}\}$ ,

for every $\alpha>0$ , where $\triangle_{D_{N}}$ is a discrete Laplacian on $D_{N}$ with 0-
boundary condition,

$V_{N,,,f}=$
$(f(_{\overline{N}}), (-\triangle_{D_{N}})^{-1}f(-)N)_{D_{N}}=Varo,*\mu_{N}(\sum_{x\in D_{N}}f(\frac{x}{N})\phi(x))$

,

and $( )_{D_{N}}$ denotes $l^{2}(D_{N})$ -scalar product. Therefore, for every
$0<\epsilon<’\frac{1}{8}$

$c_{-}$ , we obtain

$\log E^{\overline{\mu}_{N,f}^{\psi}}[\exp\{\epsilon b\in\frac{\sum}{D_{N}}*|\nabla\phi(b)|^{2}\}]$

$\leq C|D_{N}|+C\frac{1}{N^{2}}V_{N,,,f}+Cb\in\frac{\sum}{D_{N}}*|\nabla(\xi\vee\psi)(b)|^{2}$ ,

for some $C=C_{\epsilon}>0$ independent of $N$ . However, $V_{N,,,f}=O(N^{d+2})$

(cf. [13, Lemma 2.8]) and

$b\in\frac{\sum}{D_{N}}*|\nabla(\xi\vee\psi)(b)|^{2}$

$\leq 2b\in\frac{\sum}{D_{N}}*|\nabla\xi(b)|^{2}+2\sum_{x\in\partial+D_{N}}|\xi(x)-\psi(x)|^{2}=O(N^{d})$
,

as $ N\rightarrow\infty$ by recalling the assumption on $\psi$ and that $\xi(x)=Ng(\frac{x}{N})$ for
$x\in\overline{D_{N}}$ with $g|_{D}\in C^{\infty}(\overline{D})$ . This concludes the proof of(4.1). Q.E.D.
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Proof of Proposition3.2.

Proof of Proposition3. 2; upper bound. For every $f\in C_{0}^{\infty}(D)$ and
measurable set $\mathcal{E}$ of $L^{2}(D)$ , Chebyshev’ $s$ inequality shows

(4.2) $\tilde{\mu}_{N}^{\psi}(h^{N}\in \mathcal{E})\leq\exp\{-N^{d}\inf_{h\in \mathcal{E}}\langle h, f\rangle\}E^{\overline{\mu}_{N}^{\psi}}[\exp\{N^{d}\langle h^{N}, f\rangle\}]$ .

Noting that

$N^{d}\langle h^{N}, f\rangle\leq\frac{1}{N}f(\frac{x}{N})\phi(x)x\in\frac{\sum}{D_{N}}+\frac{1}{N^{2}}||\nabla f||_{\infty}x\in\frac{\sum}{D_{N}}|\phi(x)|$
,

and using H\"older’s inequality, the expectation in the right hand side of
(4.2)is bounded above by

$E^{\overline{\mu}_{N}^{\psi}}[\exp\{\frac{p}{N}f(\frac{x}{N})\phi(x)x\in\frac{\sum}{D_{N}}\}]\frac{1}{p}E^{\overline{\mu}_{N}^{\psi}}[\exp\{\frac{q}{N^{2}}||\nabla f||_{\infty}x\in\frac{\sum}{D_{N}}|\phi(x)|\}]\frac{1}{q}$

$\equiv I_{1}^{N}\times I_{2}^{N}$ ,

for $p$ , $q>1$ satisfying $\frac{1}{p}+\frac{1}{q}=1$ . However, Lemmas 4.2 and4.3 imply

$\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\log I_{1}^{N}=\frac{1}{p}\Lambda(pf)$ ,

and

$\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N^{d}}\log I_{2}^{N}\leq 0$ ,

respectively. Hence, we have

$\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N^{d}}\log\tilde{\mu}_{N}^{\psi}(h^{N}\in \mathcal{E})\leq-\inf_{h\in \mathcal{E}}\langle h, f\rangle+\frac{1}{p}\Lambda(pf)$ .

Now, by(3.4), we can prove the continuity of $h_{f}$ in $H_{0}^{1}(D)$ with respect
to $f\in L^{2}(D)$ (cf. [13, Section3.5]). Therefore, by taking the limit $p\downarrow 1$

and infimum with respect to $f\in C_{0}^{\infty}(D)$ , we obtain

$\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N^{d}}\log\tilde{\mu}_{N}^{\psi}(h^{N}\in \mathcal{E})\leq-\sup_{f\in C_{0}^{\infty}(D)}\inf_{h\in \mathcal{E}}\{\langle h, f\rangle-\Lambda(f)\}$ .

Then by using Lemma 4.2, mini-max theorem (cf. [22, Appendix 2
Lemma 3.2]) and duality Lemma (cf. [12, Lemma 4.5.8]), the standard
argument yields the LDP upper bound for every compact set of $L^{2}(D)$ .
This can be generalized for every closed set, since the exponential tight-
ness of $\mu\sim\psi N,,f$ follows from Lemma 4.3. $Q.E$ .D.
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Remark 4.1. Since the potential $U$ is bounded, by recalling (3.1)
and the assumption on $\psi$ , we see that the estimate in Lemma 4 $\cdot$ 3 holds

for $\mu_{N}^{\psi,U}$ in place of $\tilde{\mu}_{N,,,f}^{\psi}$ for some $\epsilon_{0}>0$ , which might be smaller than

that in Lemma 4.1. In particular, the exponential tightness holds for
$\mu_{N}^{\psi,U}$ .

Proof of Proposition3.2;lower bound. By Lemmas 4.1 and 4.2, it
is easy to see that

$\lim_{N\rightarrow\infty}\frac{1}{N^{d}}H(\tilde{\mu}_{N,,,f}^{\psi}|\tilde{\mu}_{N}^{\psi})=\overline{I}(h_{f})$ ,

where $H(\tilde{\mu}_{N,,,f}^{\psi}|\tilde{\mu}_{N}^{\psi})=E^{\overline{\mu}_{N,f}^{\psi}}[\log\frac{d\overline{\mu}_{N,f}\psi}{d\tilde{\mu}_{N}\psi}]$ is the relative entropy of $\tilde{\mu}_{N,,,f}^{\psi}$

with respect to $\tilde{\mu}_{N}^{\psi}$ ; see (5.4) in [13]. On the other hand, by Lemma
4.1, Brascamp-Lieb inequality (cf. [13, Lemma 2.8]) and the definition

of $h\sim\psi N,,f$ , one can prove that $\lim E^{\overline{\mu}_{N,f}^{\psi}}[||h^{N}-hf||_{L^{2}(D)}^{2}]=0$ (cf. (1.39)
$ N\rightarrow\infty$

in [13] $)$ , and this implies $\lim\tilde{\mu}_{N,,,f}^{\psi}(h^{N}\in O)=1$ for every open set
$ N\rightarrow\infty$

$O\subset L^{2}(D)$ satisfying $h_{f}\in O$ . Combining these two facts with the
entropy inequality(cf. [13, Lemma5.4.21]), we obtain

$\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N^{d}}\log\tilde{\mu}_{N}^{\psi}(h^{N}\in O)\geq-f\in C^{\infty}(D)\inf_{s.t.\mathring{h}_{f}\in \mathcal{O}}\overline{I}(h_{f})$
.

However, we can prove by (3.4) that if $h_{fn}\rightarrow h$ in $H_{0}^{1}(D)$ as $ n\rightarrow\infty$

for $\{f_{n}\}\subset C_{0}^{\infty}(D)$ then $\overline{I}(h_{fn})\rightarrow\overline{I}(h)$ as $n$ $\rightarrow\infty$ . This fact and
the continuity of $h_{f}$ in $H_{0}^{1}(D)$ with respect to $f\in L^{2}(D)$ yield that

$f\in C_{0}^{\infty}(D)\inf_{s.t.h_{f}\in \mathcal{O}}\overline{I}(h_{f})=\inf_{h\in \mathcal{O}}\overline{I}(h)$

for every open set $O$ $\subset L^{2}(D)$ , which com-

pletes the proof of the LDP lower bound. $Q.E.D$ .

\S 5. Proof of Lemma 4.1: Convergence of Average Profiles

Reduction to two lemmas (Lemmas 5.2 and 5.3).

In this section we shall prove Lemma 4.1. The following Lemma
follows from(3.4) (cf. [13, Lemma3.7]).

Lemma 5.1. Let $\{h_{n}\}_{n\geq 1}$ be $a$ sequence of $H_{0}^{1}(D)$ and defifine
$\overline{\Sigma}_{f}(h)$

$=\overline{\Sigma}(h)-\langle h, f\rangle$ . If $\lim_{n\rightarrow\infty}\overline{\Sigma}_{f}(h_{n})=\inf_{H_{0}^{1}(D)}\overline{\Sigma}_{f}$ , then $h_{n}\rightarrow h_{f}$ in $H_{0}^{1}(D)$

as $ n\rightarrow\infty$ .
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Also by (3.4), we have

$\overline{\Sigma}_{f}(q)-\overline{\Sigma}_{f}(\tilde{h}_{N,,,f}^{\psi})$

$\geq\int_{D}(\nabla q(\theta)-\nabla\tilde{h}_{N,,,f}^{\psi}(\theta))\cdot(\nabla\sigma)(\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)+\nabla g(\theta))d\theta$

$-\int_{D}(q(\theta)-\tilde{h}_{N,,,f}^{\psi}(\theta))f(\theta)d\theta$ ,

for every $q\in C_{0}^{\infty}(D)$ . Once we can prove that the right hand side

goes to 0 as $ N\rightarrow\infty$ for every $q\in C$架 (D), we have $\lim$ $\overline{\sum}f(\tilde{h}_{N,,,f}^{\psi})=$

$ N\rightarrow\infty$

$\inf_{H_{O}^{1}(D)}\overline{\Sigma}f$ . This combined with Lemma5.1completes the proof of Lemma

4.1. Hence, all we have to prove are the following two lemmas.

Lemma 5.2. For every $q\in C_{0}^{\infty}(D)$ ,

$\lim_{N\rightarrow\infty}\int_{D}\nabla q(\theta)\cdot(\nabla\sigma)(\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)+\nabla g(\theta))d\theta=\int_{D}q(\theta)f(\theta)d\theta$ .

Lemma5.3.

$\lim_{N\rightarrow\infty}\{\int_{D}\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)\cdot(\nabla\sigma)(\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)+\nabla g(\theta))d\theta$

$-\int_{D}\tilde{h}_{N,,,f}^{\psi}(\theta)f(\theta)d\theta\}=0$ .

For the proof of Lemmas5.2and5.3, we prepare several lemmas.

A priori bounds.

Lemma 5.4. There exists some $ p\in$ $(2, p_{0})$ such that

$\sup_{N\geq 1}||\nabla\tilde{h}_{N,,,f}^{\psi}||_{L^{p}(D)}<\infty$ and $\sup_{N\geq 1}||\nabla\overline{h}_{N,,,f}^{\psi}||_{L^{p}(D)}<\infty$ ,

where $p_{0}>2$ is the constant appearing in the condition $(\psi 2)$ .

Proof. We first prove the uniform $L^{p}$ estimate for $\nabla\tilde{h}_{N,,,f}^{\psi}$ . It is easy
to see that

(5.1)

$V’(\nabla_{j}\phi(x)+\nabla_{j}(\xi\vee\psi)(x))$

$-V’(\nabla_{j}\phi(x)-E^{\overline{\mu}_{N,f}^{\psi}}[\nabla_{j}\phi(x)]+\nabla_{j}(\xi\vee\psi)(x))$

$=E^{\overline{\mu}_{N,f}^{\psi}}[\nabla_{j}\phi(x)]$

$\times\int_{0}^{1}V’’(\nabla_{j}\phi(x)-(1-t)E^{\overline{\mu}_{N,f}^{\psi}}[\nabla_{j}\phi(x)]+\nabla_{j}(\xi\vee\psi)(x))dt$ ,
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for every 1 $\leq j\leq d$ and $x\in D_{N}$ . For $x\in D_{N}$ , define $A_{N}(x)=$

$\{A_{N,,,i,j}(x)\}_{1\leq i,j\leq d}$ and $a_{N}(x)=\{a_{N,,,j}(x)\}_{1\leq j\leq d}$ by

$A_{N,,,j,j}(x)=E^{\tilde{\mu}_{N,f}^{\psi}}[\int_{0}^{1}V’’(\nabla_{j}\phi(x)-(1-t)E^{\overline{\mu}_{N,f}^{\psi}}[\nabla_{j}\phi(x)]$

$+\nabla_{j}(\xi\vee\psi)(x))dt]$ ,

$A_{N,,,i,j}(x)=0$ if $i\neq j$ ,

$a_{N,,,j}(x)=E^{\tilde{\mu}_{N,f}^{\psi}}[V’(\nabla_{j}\phi(x)-E^{\overline{\mu}_{N,f}^{\psi}}[\nabla_{j}\phi(x)]+\nabla_{j}(\xi\vee\psi)(x))]$ ,

respectively. Then, taking $divN\{E^{\overline{\mu}_{N,f}^{\psi}}[\cdot]\}$ of the both sides of(5.1),
we have

$div_{N}\{A_{N}(x)\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})\}$

$=-div_{N}\{a_{N}(x)\}+div_{N}\{E^{\overline{\mu}_{N,f}^{\psi}}[V’(\nabla\phi(x)+\nabla(\xi\vee\psi)(x))]\}$ ,

where $divN\alpha$ is defined by $divN\alpha(x)=N\sum_{j=1}^{d}(\alpha_{j}(x)-\alpha_{j}(x-e_{j}))$ for a

vector lattice field $\alpha(x)=\{\alpha j(x)\}_{1\leq j\leq d}$ , $x\in \mathbb{Z}^{d}$ . By calculating $\frac{\partial H_{N,f}^{\psi}}{\partial\phi(x)}$

and taking its expectation under $\mu_{N,,,f}^{\psi}$ as in the proof of (1.55) of [13],
we obtain

(5.2) $div_{N}\{E^{\mu_{N,f}^{\psi}}[V’(\nabla\phi(x))]\}=-f(\frac{x}{N})$ ,

for every $x\in D_{N}$ . By (3.1), the change of variable yields

$div_{N}\{E^{\overline{\mu}_{N,f}^{\psi}}[V’(\nabla\phi(x)+\nabla(\xi\vee\psi)(x))]\}=-f(\frac{x}{N})$ .

Therefore, $\{\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})\}$ satisfies the following discrete elliptic equation:

$div_{N}\{A_{N}(x)\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})\}=-div_{N}\{a_{N}(x)\}-f(\frac{x}{N})$ ,

for every $x\in D_{N}$ . However, by the assumption on $V$ , $A_{N}(x)$ satisfies
the uniform ellipticity condition $c_{-}I\leq A_{N}(x)\leq c_{+}I$ for every $x\in D_{N}$ .
Hence, by the proof of Lemma3.4of[13], we know that there exist some
$p>2$ and $ C<\infty$ such that

$||\nabla\tilde{h}_{N,,,f}^{\psi}||_{L^{p}(D)}\leq C(||a_{N}||_{L^{p}(D)}+||f||_{L^{p}(D)})$ ,

uniformly in $N$ . Note that $\tilde{\mu}_{N,,,f}^{\psi}$ is endowed with0-boundary condition.
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Now, since $V’$ is linearly growing, using the change of variable again,
we have that

$|a_{N_{\backslash }j}(x)|\leq C(E^{\mu_{N,f}^{\psi}}[|\nabla_{j}\phi(x)-E^{\mu_{N,f}^{\psi}}[\nabla_{j}\phi(x)]|]+|\nabla_{j}(\xi\vee\psi)(x)|)$ ,

for some $C>0$ . Then, $\sum_{x\in D_{N}}|aN(x)|^{p0}=O(N^{d})$ as $ N\rightarrow\infty$ follows
from the Brascamp-Lieb inequality and the assumptions on $\psi$ as in the
proof of Lemma 4.3. This proves the uniform $L^{p}$ estimate for $\nabla\tilde{h}_{N,,,f}^{\psi}$ .

The uniform $L^{p}$ estimate for $\nabla\overline{h}_{N,,,f}^{\psi}$ follows from that for $\nabla\tilde{h}_{N,,,f}^{\psi}$ ,

the change of variable and the assumptions on $\psi$ . $Q$ .E.D.

Lemma 5.5. For every $e\in \mathbb{Z}^{d}$ with $|e|=1$ , we have

(5.3) $\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\sum_{x\in D_{N}}|\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x+e}{N})-\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})|^{2}=0$ ,

(5.4) $\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\sum_{x\in D_{N}}|\nabla^{N}\overline{h}_{N,,,f}^{\psi}(\frac{x+e}{N})-\nabla^{N}\overline{h}_{N,,,f}^{\psi}(\frac{x}{N})|^{2}=0$ .

Proof. We first prove (5.4) by following the argument for the proof
of Lemma3.1of[13]. Define $I_{N}=$ { $x\in D_{N;}$ dist ( $x$ , $\mathbb{Z}^{d}\backslash D_{N})\geq 2$ }, then
the sum $\sum_{x\in D_{N}}$ in (5.4) can be divided into $\sum_{x\in I_{N}}$ and $\sum_{x\in D_{N}\backslash I_{N}}$ .

The boundary term $\sum_{x\in D_{N}\backslash I_{N}}$ is $o(N^{d})$ as $ N\rightarrow\infty$ by Lemma5.4and
H\"older’ $s$ inequality. For the interior term $\sum_{x\in I_{N}}$ , the entropy argument

(cf. [13, Proposition2.10and Lemma3.2]) yields the desired result. Note
that the variance of the field $\phi(x)$ does not depend on the boundary

condition $\psi$ under the Gaussian measure $\mu_{N}^{\psi,*}$ .

Next, we shall prove (5.3). The boundary term $\sum_{x\in D_{N}\backslash I_{N}}$ is $o(N^{d})$

as before. For the interior term, by (3.1), the change of variable yields

(5.5) $\nabla_{j}^{N}\overline{h}_{N,,,f}^{\psi}(\frac{x}{N})=\nabla_{j}^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})+\nabla_{j}(\xi\vee\psi)(x)$ ,

for every $1\leq j\leq d$ and $x\in D_{N}$ . The contribution from the first term
is $o(N^{d})$ by (5.4), while that coming from the second term: $\sum_{x\in I_{N}}$

$|\nabla\xi(x+e)-\nabla\xi(x)|^{2}$ is also $o(N^{d})$ . This is because $\xi(x)=Ng(\frac{x}{N})$ and

we have $\nabla_{j}\xi(x+e)-\nabla_{j}\xi(x)=\frac{1}{N}\nabla_{j}^{N}\nabla_{e}^{N}g(\frac{x}{N})$ for every $1\leq j\leq d$ and
$x\in D_{N}$ . Q. $E.D$ .
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Local equilibria.

Next, let

$\mathcal{X}$ $=$ { $\eta\in \mathbb{R}^{(\mathbb{Z}^{d})^{*}};$
$\eta=\nabla\phi$ for some $\phi\in \mathbb{R}^{\mathbb{Z}^{d}}$ },

$\mathcal{X}_{r}$ $=$
$\{\eta\in \mathcal{X};\sum_{b\in(\mathbb{Z}^{d})^{*}}|\eta(b)|^{2}e^{-2r|x_{b}|}<\infty\}$

, $r>0$ ,

and define $Q_{N}\in \mathcal{M}_{+}(D\times \mathcal{X})$ and $V_{N}\in \mathcal{M}+(\mathbb{R}^{d}\times \mathcal{X})$ by

$Q_{N}(d\theta d\eta)=\frac{1}{N^{d}}\sum_{x\in D_{N}}\delta_{\frac{x}{N}}(d\theta)\mu_{N,,,f}^{\psi,\nabla}\circ\tau_{x}^{-1}(d\eta)$ ,

$V_{N}(dvd\eta)=\frac{1}{N^{d}}\sum_{x\in D_{N}}\delta_{\nabla^{N}\overline{h}_{N,f}^{\psi}(\frac{x}{N})}(dv)\mu_{N,,,f}^{\psi,\nabla}\circ\tau_{x}^{-1}(d\eta)$ ,

where $\mathcal{M}_{+}(\mathcal{E})$ stands for the class of all non-negative measures on $\mathcal{E}$ ,
$\mu_{N,,,f}^{\psi,\nabla}(d\eta)$ is the distribution of $\eta=\nabla\phi$ on $\mathcal{X}$ under $\mu_{N,,,f}^{\psi}$ and $\tau_{x}$ : $\mathcal{X}\rightarrow \mathcal{X}$

denotes the shift on $\mathbb{Z}^{d}$ defined by $(\tau_{x}\eta)(b)=\eta(b-x)$ for $b\in(\mathbb{Z}^{d})^{*}$ .

We regard $\mu_{N,,,f}^{\psi}\in P(\mathbb{R}^{\mathbb{Z}^{d}})$ by considering $\phi(x)=\psi(x)(=g(\frac{x}{N}))$ for
$x\in \mathbb{Z}^{d}\backslash D_{N}$ . We denote by $\mu_{v}^{\nabla}(d\eta)$ , $v=(v_{i})_{1\leq i\leq d}\in \mathbb{R}^{d}$ the unique $\nabla\phi-$

Gibbs measure on $\mathcal{X}$ which is translation invariant, ergodic and satisfies
$ E^{\mu_{v}^{\nabla}}[\eta(b)^{2}]<\infty$ for every $b\in(\mathbb{Z}^{d})^{*}$ and $E^{\mu_{v}^{\nabla}}[\eta(e_{i})]=v_{i}$ for every
$1\leq i\leq d$ (cf. [18, Section3]).

Inasimilar way to the proof of Lemma4.3of[13], we can prove the
following lemma. Note again that the variance does not depend on the
boundary condition $\psi$ under the Gaussian measure $\mu_{N}^{\psi,*}$ . The proof is
omitted.

Lemma 5.6. For each $r>0$ both the families of measures $\{Q_{N}\}$

on $D\times \mathcal{X}_{r}$ and $\{V_{N}\}$ on $\mathbb{R}^{d}\times \mathcal{X}_{r}$ are tight. Moreover, for every limit point
$Q$ of $\{Q_{N}\}$ , there exists $l/_{Q}\in \mathcal{M}_{+}(D\times \mathbb{R}^{d})$ such that $Q$ is represented
as

$Q(d\theta d\eta)=\int_{\mathbb{R}^{d}}l/_{Q}(d\theta dv)\mu_{v}^{\nabla}(d\eta)$ .

Similarly, for each limit point $V$ of $\{V_{N}\}$ , there exists $l/v$
$\in \mathcal{M}_{+}(\mathbb{R}^{d}\times \mathbb{R}^{d})$

such that $V$ is represented as

$V(dvd\eta)=\int_{\mathbb{R}^{d}}\iota/_{V}(dvdu)\mu_{u}^{\nabla}(d\eta)$ .
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Now by Lemma 5.4, along some subsequence, $\{\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)\}_{N}$ gener-

ates the family of Young measures $\tilde{l/}(\theta, dv)\in P(\mathbb{R}^{d})i.e$ . it holds that

(5.6) $\lim_{N\rightarrow\infty}\int_{D}q(\theta)G(\nabla\tilde{h}_{N,,,f}^{\psi}(\theta))d\theta=\int_{D\times \mathbb{R}^{d}}q(\theta)G(v)\tilde{l/}(\theta, dv)d\theta$ .

for every $q\in L^{\infty}(D)$ and $G\in C_{0}(\mathbb{R}^{d})$ (cf. [13, Section4.3], [3]). Then,
the following Lemma holds.

Lemma 5.7. If the subsequence $\{N\}$ is commonly taken, the $\lim-$

its $lJQ$ and $i/v$ which appear in Lemma 5.6can be represented as

(5.7) $ l/_{Q}(d\theta dv)=\tilde{\iota/}(\theta, dv-\nabla g(\theta))d\theta$ ,

and

(5.8) $ lJ_{V}(dvdu)=\delta_{v}(du)\int_{D}\tilde{\iota/}(\theta, dv-\nabla g(\theta))d\theta$ .

Proof. By following the argument in the proof of Lemma 4.4 of
[13], we shall only prove (5.7). The second equality (5.8) can be proved
in a similar manner. For (5.7), it is enough to show that

(5.9) $\int_{D\times \mathbb{R}^{d}}q(\theta)G(v)\nu_{Q}(d\theta dv)=\int_{D\times \mathbb{R}^{d}}q(\theta)G(v+\nabla g(\theta))\tilde{\iota/}(\theta, dv)d\theta$

for every $q\in C_{0}^{\infty}(D)$ and $G\in C_{b}^{1}(\mathbb{R}^{d})$ . In fact, since the ergodicity of
$\mu_{v}^{\nabla}$ implies

$G(v)=\lim_{l\rightarrow\infty}E^{\mu_{v}^{\nabla}}[G(Av_{l}\eta)]$ ,

where $Av_{l}\eta=\frac{1}{(2l+1)^{d}}\sum_{x\in B_{l}}\eta(x)\in \mathbb{R}^{d}$ , $B_{l}=[-l, l]^{d}$ 口
$\mathbb{Z}^{d}$ , we have by

Lemma 5.6,

$\int_{D\times \mathbb{R}^{d}}q(\theta)G(v)r/_{Q}(d\theta dv)$

$l\rightarrow\infty N\rightarrow\infty\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})E^{\mu_{N,f}^{\psi,\nabla}o\tau_{x}}$
$=\lim$ $\lim$

-1

$[G(Av_{l}\eta)]$ .

If one can replace $E^{\mu_{N,f}^{\psi,\nabla}o\tau_{x}^{-1}}[G(Av_{l}\eta)]$ with $G(\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})+\nabla^{N}g(\frac{x}{N}))$ ,

then the right hand side is equal to

$\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})G(\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})+\nabla^{N}g(\frac{x}{N}))$

$=\int_{D\times \mathbb{R}^{d}}q(\theta)G(v+\nabla g(\theta))\tilde{\iota/}(\theta, dv)d\theta$ ,
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which implies (5.9). The last equality follows from Proposition 4.2 of
[13], Lemma 5.5 and the fact that the equation (5.6) holds for $G=$

$G(v+\nabla g(\theta))$ instead of $G=G(v)$ by p.213 remark 3 of [3].
For the replacement above, we have

$|\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})E^{\mu_{N,f}^{\psi,\nabla}\circ\tau_{x}^{-1}}[G(Av_{l}\eta)]$

$-\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})G(\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})+\nabla^{N}g(\frac{x}{N}))|$

$\leq S_{1}+S_{2}+S_{3}$ ,

where

$S_{1}=|\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})\{E^{\mu_{N,f}^{\psi,\nabla}\circ\tau_{x}^{-1}}[G(Av_{l}\eta)]-G(E^{\mu_{N,f}^{\psi,\nabla}\circ\tau_{x}^{-1}}[Av_{l}\eta])\}|$ ,

$S_{2}=|\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})\{G(E^{\mu_{N,f}^{\psi,\nabla}\circ\tau_{x}^{-1}}[Av_{l}\eta])-G(\nabla^{N}\overline{h}_{N,,,f}^{\psi}(\frac{x}{N}))\}|$ ,

$S_{3}=|\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})\{G(\nabla^{N}\overline{h}_{N,,,f}^{\psi}(\frac{x}{N}))$

$-G(\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})+\nabla^{N}g(\frac{x}{N}))\}|$ .

In a similar way to the proof of Lemma 4.4 of [13], we can prove that
$S_{1}$ , $S_{2}\rightarrow 0$ as $ N\rightarrow\infty$ , $l$

$\rightarrow\infty$ . Also by (5.5),

$S_{3}=|\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})\{G(\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})+\nabla(\xi\vee\psi)(x))$

$-G(\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})+\nabla\xi(x))\}|$

$\leq\frac{1}{N^{d}}\sum_{x\in\partial^{-}D_{N}}||q||_{\infty}||\nabla G||_{\infty}|\nabla(\xi\vee\psi)(x)-\nabla\xi(x)|$ ,

where $\partial^{-}D_{N}=$ { $x\in D_{N}$ ; dist ( $x$ , $\mathbb{Z}^{d}\backslash D_{N}$ ) $=1$ }. This goes to 0 as
$ N\rightarrow\infty$ by the assumptions on $\psi$ . Q. $E.D$ .

Proof of Lemmas 5.2and5.3.

We are now in the position to prove Lemmas 5.2 and 5.3.
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Proof of Lemma5.2. For every $q\in C_{0}^{\infty}(D)$ , by (5.2) and summa-
tion by parts, we have

$\int_{D}q(\theta)f(\theta)d\theta=\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\sum_{x\in D_{N}}q(\frac{x}{N})f(\frac{x}{N})$

$=\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\sum_{x\in D_{N}}\nabla^{N}q(\frac{x}{N})\cdot E^{\mu_{N,f}^{\psi}}[V’(\nabla\phi(x))]$ .

Now by the definition of $Q_{N}$ , Lemmas 5.6,5.7and the property of the

surface tension $\frac{\partial\sigma}{\partial v_{i}}(v)=E^{\mu_{v}^{\nabla}}[V’(\nabla_{i}\phi(0))]$ for every $1\leq i\leq d$ (cf. [18,

Theorem3.4(iii) $])$ , we obtain

$\int_{D}q(\theta)f(\theta)d\theta=\int_{Dx\mathcal{X}}\nabla q(\theta)\cdot E^{\mu_{v}^{\nabla}}[V’(\nabla\phi(0))]\nu_{Q}(d\theta dv)$

$=\int_{D\times \mathbb{R}^{d}}\nabla q(\theta)\cdot(\nabla\sigma)(v+\nabla g(\theta))\tilde{\nu}(\theta, dv)d\theta$

$=$ $\lim$$ N\rightarrow\infty\int_{D}\nabla q(\theta)\cdot(\nabla\sigma)(\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)+\nabla g(\theta))d\theta$ ,

Note that we can apply(5.6) for $G=G(v, \theta)=(\nabla\sigma)(v+\nabla g(\theta))$ instead
of $G=G(v)$ by p.213remark3of[3] and the property of the surface
tension $|(\nabla\sigma)(u)|\leq c(1+|u|)$ (cf. [18, Theorem3.4 (v)]).

Q.E.D.

Proof of Lemma5.3. By (5.2), summation by parts and (5.5), we
have

$\lim_{N\rightarrow\infty}\int_{D}\tilde{h}_{N,,,f}^{\psi}(\theta)f(\theta)d\theta$

$=$ $\lim$
$N\rightarrow\infty\frac{1}{N^{d}}\sum_{x\in D_{N}}\nabla^{N}\tilde{h}_{N,,,f}^{\psi}(\frac{x}{N})\cdot E^{\mu_{N,f}^{\psi}}[V’(\nabla\phi(x))]$

$=$ $\lim$
$N\rightarrow\infty\frac{1}{N^{d}}\sum_{x\in D_{N}}\nabla^{N}\overline{h}_{N,,,f}^{\psi}(\frac{x}{N})\cdot E^{\mu_{N,f}^{\psi}}[V’(\nabla\phi(x))]$

-

$\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\sum_{x\in D_{N}}\nabla(\xi\vee\psi)(x)\cdot E^{\mu_{N,f}^{\psi}}[V’(\nabla\phi(x))]$

$\equiv S_{1}-S_{2}$ .

Now, by the assumptions on $V$ and $\psi$ , it is easy to see that

$S_{2}=\lim_{N\rightarrow\infty}\frac{1}{N^{d}}\sum_{x\in D_{N}}\nabla^{N}g(\frac{x}{N})\cdot E^{\mu_{N,f}^{\psi}}[V’(\nabla\phi(x))]$ ,
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since $\xi(x)=Ng(\frac{x}{N})$ . Hence, by the proof of Lemma5.2, we obtain

$S_{2}=$ $\lim$$ N\rightarrow\infty\int_{D}\nabla g(\theta)\cdot(\nabla\sigma)(\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)+\nabla g(\theta))d\theta$ .

Also, by Lemmas 5.6,5.7 and the property of the surface tension $\sigma$ , in
a similar way to the proof of Lemma 5.2 we can prove that

$S_{1}=$ $\lim$$ N\rightarrow\infty\int_{D}(\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)+\nabla g(\theta))\cdot(\nabla\sigma)(\nabla\tilde{h}_{N,,,f}^{\psi}(\theta)+\nabla g(\theta))d\theta$ .

Therefore, the proof is completed. $Q.E.D$ .

\S 6. Proof of Theorem 2.2: LDP for 6-Pinning

Schilder’s theorem.

Throughout this section, we assume that $d=1$ and $V(\eta)=\frac{1}{2}\eta^{2}$ . We

first notice that the Large deviation principle holds for $\{h^{N}(\theta);\theta\in D\}$

under $\mu_{N}^{a,b}$ on $W_{a,,,b}(D)$ . Recall that the space $W_{a,,,b}(D)$ is endowed with
the topology determined by the $\sup$-norm.

Lemma 6.1. For the family of distributions on the space $W_{a,,,b}(D)$

under $\mu_{\Lambda^{\Gamma}}^{a,b}$ of $\{h^{N}(\theta);\theta\in D\}$ , the Large deviation $p$バ nciple holds with $a$

rate functional $I^{a,b}(h):=\sum(h)-\frac{1}{2}(b-a)^{2}$ where $\Sigma(h)=\frac{1}{2}\int_{0}^{1}(h’)^{2}(\theta)d\theta$ .

Proof. Let $w=\{w(x);x\in[0, N]\}$ be the one-dimensional standard
Brownian motion starting at0and set $h-N(\theta):=w(N\theta)/N$ , $\theta\in[0,1]$ .

Then, by Schilder’s theorem (see, $e.g.$ , Theorem 5.1 of [25]), the Large
deviation principle holds for $\{\overline{h}^{N}\}_{N}$ on $W_{0}=\{h\in C([0,1];\mathbb{R});h(0)=0\}$

with the rate function $\Sigma(h)$ . Define $\phi=\{\phi(x);x\in[0, N]\}$ from $w$ as

$\phi(x)=w(x)-xw(N)/N+(N-x)a+xb$ . Then, $\{\phi(x);x\in D_{N}\}$ is $\mu_{N}^{a,b}-$

distributed. Set $h\sim N(\theta)=\phi(N\theta)/N$ , $\theta\in[0,1]$ , and considera mapping
$\Phi$ : $\overline{h}\in W_{0}\mapsto\tilde{h}\in W_{a,,,b}(D)$ defined by

$\Phi(\overline{h})(\theta)=\overline{h}(\theta)-\theta\overline{h}(1)+(1-\theta)a+\theta b$ .

Then, $\Phi$ is continuous and $\tilde{h}^{N}=\Phi(\overline{h}^{N})$ holds. Therefore, by the con-
traction principle, the Large deviation principle holds for $\{\tilde{h}^{N}\}_{N}$ with the

rate functional $\Sigma\sim(h)=.\inf_{\overline{h}}\Sigma(\overline{h})$ , which coincides with $I^{a,b}(h)$ .

The proof of Lemma is completed by showinga super exponential esti-

mate for the difference between $h^{N}$ and $h\sim N$ as in p.17of[25]: For every
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$\delta>0$ ,

$P(||h^{N}-\tilde{h}^{N}||_{\infty}\geq\delta)=\exp[-\frac{N^{2}\delta^{2}}{8}+o(N^{2})]$ ,

as $ N\rightarrow\infty$ . Q. $E.D$ .

Proof of Theorem 2.2.

Proof of Theorem2.2. Stepl (lower bound). Let $\delta>0$ and $ g\in$

$W_{a,,,b}(D)$ which satisfies the condition:

$|\{\theta\in D;g(\theta)=0\}|>0$ and there exist disjoint intervals

(6.1) $\{I^{j}\}_{1\leq j\leq K}$ , $ K<\infty$ such that $|\{\theta\in D;g(\theta)=0\}|=\sum_{j=1}^{K}|I^{j}|$

and $g(\theta)=0$ if $\theta\in\bigcup_{j=1}^{K}I^{j}$ ,

be fixed. Then, one can decompose $D\backslash \bigcup_{j=1}^{K}I^{j}=\bigcup_{j=1}^{K+1}L^{j}$ with dis-

joint intervals $\{L^{j}\}_{1\leq j\leq K+1}$ . We define $I_{N}^{j}=NI^{j}\text{口}\mathbb{Z}$ , $L_{N}^{j}=NL^{j}$ 口

$\mathbb{Z}$ , $I_{N}=\bigcup_{j=1}^{K}I_{N}^{j}$ and $L_{N}=\bigcup_{j=1}^{K+1}L_{N}^{j}$ . By expanding the product

$\prod_{x\in D_{N}}(e^{J}\delta_{0}(d\phi(x))+d\phi(x))$ , we have

$\frac{Z_{N}^{a,b,J}}{Z_{N}^{a,b}}\mu_{\Lambda^{\Gamma}}^{a,b,J}(h^{N}\in B_{\infty}(g, \delta))$

$=\sum_{\Lambda\subset D_{N}}e^{J|\Lambda^{c}|}\frac{Z_{\Lambda}^{a,b}}{Z_{N}^{a,b}}\mu_{\Lambda}^{a,b}(h^{N}\in B_{\infty}(g, \delta))$

$\geq\sum_{L_{N}\subset\Lambda\subset D_{N}}e^{J|\Lambda^{c}|}\frac{Z_{\Lambda}^{a,b}}{Z_{N}^{a,b}}\mu_{\Lambda}^{a,b}(h^{N}\in B_{\infty}(g, \delta))$

$=\sum_{A\subset I_{N}}e^{J|I_{N}\backslash A|}\frac{Z_{L_{N}\cup A}^{a,b}}{Z_{\wedge\Gamma}^{a,b}}\mu_{L_{N}\cup A}^{a,b}$
$(h^{N}\in B_{\infty} (g, \delta))$ ,

where $B_{\infty}$ $(g, \delta)=\{h\in W_{a,,,b}(D);||h-g||_{\infty}<\delta\}$ and $\mu_{\Lambda}^{a,b}$ is defined by

$\mu_{\Lambda}^{a,b}(d\phi)=\frac{1}{Z_{\Lambda}^{a,b}}\exp\{-\frac{1}{2}\sum_{b\in\overline{\Lambda}*}V(\nabla(\phi\vee\tilde{\psi})(b))\}$

$\times\prod_{x\in\Lambda}d\phi(x)\delta_{\overline{\psi}}x\in\frac{\prod}{D_{N}}\backslash \Lambda(d\phi(x))$

,
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and $\psi\sim(x)=\psi(x)$ if $x\in\partial^{+}D_{N}=\{0, N\}$ (i.e. $\psi\sim(0)=aN,\tilde{\psi}(N)=bN$ ),
$\tilde{\emptyset}(x)=0$ if $ x\in D_{N}\backslash \Lambda$ . The constant $Z_{\Lambda}^{ab}$’ is for normalization.

Now, write $I_{N}\backslash A=\{x_{1}, x_{2}, \cdots, xk\}$ , 1 $\leq x_{1}<x_{2}<\cdots<xk\leq$

$N-1$ and define $l_{1}=[1, x_{1} -- 1]$ 口 $\mathbb{Z}$ , $l_{2}=[x_{1}+1, x_{2}-1]$ 口 $\mathbb{Z}$ , $\cdots$ , $l_{k}=$

$[x_{k-1}+1, x_{k}-1]$ 口 $\mathbb{Z}$ , $l_{k+1}=[x_{k}+1, N-1]$ 口 $\mathbb{Z}$ . Then, $\bigcup_{j=1}^{k+1}l_{j}=L_{N}\cup A$

and by the Markov property of the $\phi$-field, we have

$\mu_{L_{N}\cup A}^{a,b}(h^{N}\in B_{\infty} (g, \delta))\geq\mu_{L_{N}\cup A}^{a,b}( \max |-\phi(x)1-g(\frac{x}{N})|<\frac{1}{2}\delta)$

$x\in\bigcup_{j=1}^{k+1}l_{j}N$

$=\prod_{j=1}^{k+1}\mu_{l_{j}}^{a_{j},b_{j}}(\max_{x\in l_{j}}|\frac{1}{N}\phi(x)-g(\frac{x}{N})|<\frac{1}{2}\delta)$ ,

for $N$ Large enough, where $a_{j}=a$ if $j=1$ , $a_{j}=0$ otherwise, $b_{j}=b$

if $j=k+1$ , $b_{j}=0$ otherwise. We define $\Gamma=\{1\leq j\leq k+1;l_{j}\supset$

$L_{N}^{i}$ for some $1\leq i\leq K+1$ } and $\Gamma^{c}=\{1\leq j\leq k+1\}\backslash \Gamma$ . If $j\in\Gamma^{c}$ ,

since $g(\frac{x}{N})=0$ for each $x\in l_{j}$ , we have

$\mu_{l_{j}}^{a_{j},b_{j}}(\max_{x\in l_{j}}|\frac{1}{N}\phi(x)-g(\frac{x}{N})|<\frac{1}{2}\delta)=\mu_{l_{j}}^{a_{j},b_{j}}(\max_{x\in l_{j}}|\frac{1}{N}\phi(x)|<\frac{1}{2}\delta)$

$\geq 1-\sum_{x\in l_{j}}\mu_{l_{j}}^{0,0}(|\phi(x)|\geq\frac{1}{2}\delta N)$ .

However, it is easy to see that

$\mu_{l_{j}}^{0,0}(|\phi(x)|\geq\frac{1}{2}\delta N)\leq\exp\{-\frac{(\frac{1}{2}\delta N)^{2}}{v_{ar_{\mu_{\iota_{j}}^{O,0}}}(\phi(x))}\}\leq\exp\{-C\delta^{2}N\}$ ,

for some $C>0$ and we obtain

$\prod_{j\in\Gamma^{c}}\mu_{l_{j}}^{a_{j},b_{j}}(\max_{x\in l_{j}}|\frac{1}{N}\phi(x)-g(\frac{x}{N})|<\frac{1}{2}\delta)\geq 1-N\exp\{-C\delta^{2}N\}$ .

Next, for every closed interval $F\equiv[xF, y_{F}]\subset[0,1]$ , define

$B_{\infty}$

$(g, \delta;F)=\{h\in C(F;\mathbb{R});\sup_{\theta\in F}|h(\theta)-g(\theta)|<\delta\}$ ,

$W_{a,,,b}(F)=\{h\in C(F;\mathbb{R});h(x_{F})=a, h(y_{F})=b\}$ ,

$H_{a,,,b}^{1}(F)=$ { $h\in W_{a,,,b}(F);h$ is absolutely continuous, $h’\in L^{2}(F)$ }.
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We also define1$\sim j=\frac{l_{j}}{N}\subset[0,1]$ for $ j\in\Gamma$ . Then, by the LDP lower bound

for $\mu_{A^{\Gamma}}^{a,b}$ (Lemma6.1), we know that

$\prod_{j\in\Gamma}\mu_{l_{j}}^{a_{j},b_{j}}(\max_{x\in l_{j}}|\frac{1}{N}\phi(x)-g(\frac{x}{N})|<\frac{1}{2}\delta)$

$\geq\exp\{-N(\sum_{j\in\Gamma}\inf_{h\in B_{\infty}(g,\frac{1}{2}\delta,\overline{l}_{j})}\cdot I_{\frac{}{l},j}^{a_{j},b_{j}}(h)+\epsilon)\}$

$\geq\exp\{-N(\Sigma(g)-\frac{1}{2}(\frac{a^{2}}{|\tilde{l}_{1}|}+\frac{b^{2}}{|\tilde{l}_{k+1}|})+\epsilon)\}$ ,

for every $\epsilon>0$ and $N$ large enough, where

$I_{F}^{a,b}(h)=\{$

$\Sigma_{F}(h)-\frac{(b-a)^{2}}{2|F|}$ if $h\in H_{a,,,b}^{1}(F)$ ,

$+\infty$ otherwise,

and $\Sigma_{F}(h)=\frac{1}{2}\int_{F}(h’)^{2}(\theta)d\theta$ for closed interval $F\subset[0,1]$ . Recall that
$\Sigma_{[0,1]}(h)$ coincides with $\Sigma(h)$ . Therefore, we obtain

$\mu_{L_{N}\cup A}^{a,b}(h^{N}\in B_{\infty}(g, \delta))$

$\geq\exp\{-N(\sum(g)-\frac{1}{2}(\frac{a^{2}}{|\tilde{l}_{1}|}+\frac{b^{2}}{|\tilde{l}_{k+1}|})+\epsilon)\}(1-Ne^{-CN\delta^{2}})$ .

Note that this estimate holds for every choice of $A\subset I_{N}$ and for every
$N$ large enough, since $|\Gamma|\leq K+1$ is independent of $N$ . Also, simple
calculation yields that

$Z_{L_{N}\cup A}^{a,b}=Z_{L_{N}\cup A}^{0,0}\exp\{-\frac{N}{2}(\frac{a^{2}}{|\tilde{l}_{1}|}+\frac{b^{2}}{|\tilde{l}_{k+1}|})\}$ ,

$Z_{\Lambda^{\Gamma}}^{a,b}=Z_{N}^{0,0}\exp\{-\frac{N}{2}(b-a)^{2}\}$ .

Hence we obtain

(6.2) $\frac{Z_{\Lambda I}^{a,b,J}}{Z_{\Lambda}^{a}\Gamma b},\mu_{\Lambda^{\Gamma}}^{a,b,J}(h^{N}\in B_{\infty} (g, \delta))$

$\geq\sum_{A\subset I_{N}}e^{J|I_{N}\backslash A|}\frac{Z_{L_{N}\cup A}^{0,0}}{Z_{\Lambda^{\Gamma}}^{0,0}}\exp\{-N(I^{a,b}(g)+2\epsilon)\}$ ,

for every $\epsilon>0$ and $N$ large enough.
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Now, we can exactly calculate that $Z_{N}^{0,0}=\frac{(\sqrt{2\pi})^{N-1}}{\sqrt{N}}$ and this shows

(6.3) $1\leq\frac{Z_{L_{N}\cup A}^{0,0}}{Z_{L_{N}}^{0,0}Z_{A}^{0,0}}\leq e^{a_{N}}$ ,

for every $A\subset I_{N}$ , where aN $=o(N)$ . Note that $L_{N}$ consists of finite
number of disjoint intervals of size $O(N)$ . By using(6.3), it is easy to
see that

(6.4) $\frac{Z_{I_{N}}^{0,0,J}}{Z_{I_{N}}^{0,0}}e^{-a_{N}}\leq\sum_{A\subset I_{N}}e^{J|I_{N}\backslash A|}\frac{Z_{L_{N}\cup A}^{0,0}}{Z_{\Lambda^{\Gamma}}^{0,0}}\leq\frac{Z_{I_{N}}^{0,0,J}}{Z_{I_{N}}^{0,0}}e^{a_{N}}$ .

The sub-additivity argument (cf. [8, Section4.3], [18, Appendix $II]$ ) and

the fact that $\frac{|I_{N}|}{N}\rightarrow|\{\theta\in D;g(\theta)=0\}|$ as $ N\rightarrow\infty$ yield that the limit
$\tau(\mathcal{J})$ in (2.7) exists and it holds that

(6.5) $\lim_{N\rightarrow\infty}\frac{1}{N}\log\frac{Z_{I_{N}}^{0,0,J}}{Z_{I_{N}}^{0,0}}=-\tau(\mathcal{J})|\{\theta\in D;g(\theta)=0\}|$ .

Combining(6.4), (6.5) with(6.2), we obtain

(6.6) $\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N}\log\frac{Z_{\Lambda^{\Gamma}}^{a,b,J}}{Z_{\wedge\Gamma}^{a,b}}\mu_{\Lambda I}^{a,b,J}(h^{N}\in B_{\infty} (g, \delta))$

$\geq-I^{a,b}(g)-\tau(\mathcal{J})|\{\theta\in D;g(\theta)=0\}|$

$\equiv-I^{a,b;J}(g)$ ,

for every $g\in W_{a,,,b}(D)$ satisfying the condition(6.1) and $\delta>0$ . In the
case that $|\{\theta\in D;g(\theta)=0\}|=0$ , we have only to take the sum $A=I_{N}$

in (6.2)and the same inequality as above is obtained.
However, for every open set $O$ of $W_{a,,,b}(D)$ , we have that

(6.7) $g\in \mathcal{O}\inf_{(6.1)’}.\cdot I^{a,b;J}(g)=\inf_{h\in O}I^{a,b;J}(h)$ ,

where $(6.1)’$ means the condition (6.1)or $|\{\theta\in D;g(\theta)=0\}|=0$ .

Indeed, since the left hand side of (6.4) is larger than or equal to the
right hand side, we may prove the reverse inequality only. To this end,
for every $\epsilon>0$ , take $h\in O$ such that $ I^{a,b;J}(h)\leq\inf_{o}I^{a,b;J}+\epsilon$ ; note
that $h\in H_{a,,,b}^{1}(D)$ . Since $O$ is open, one can find $\delta>0$ such that
$B_{\infty}$ $(h, \delta)\subset O$ . Taking $r\iota\geq 1$ such that $|\theta_{1}-\theta_{2}|\leq 1/n$ implies $|h(\theta_{1})-$

$ h(\theta_{2})|<\delta$ , divide the interval $[0, 1]=\bigcup_{k=1}^{n}J_{k}$ , Jh $=[(k-1)/n, k/n]$ and
set $J$ $=\bigcup_{k}J_{k}$ , the union of $J_{k}$ ’s on which $h(\theta)\neq 0$ . We now define
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a function $g=g(\theta)$ , first on $J$ , by $g(\theta)=h(\theta)$ . On $J^{c}$ , starting at
points in $\partial J$ , $g(\theta)=h(\theta)$ up to $\overline{\theta}’ s$ such that $h(\overline{\theta})=0$ , and set $g\equiv 0$

otherwise. Then, $g\in B_{\infty}$ $(h, \delta)\subset O$ , $I^{a,b;J}(g)\leq I^{a,b;J}(h)$ and $g$ satisfies
the condition $(6.1)’$ . This proves(6.7). Therefore, from (6.6) and (6.7),
we have

(6.8) $\lim_{N\rightarrow}\inf_{\infty}\frac{1}{N}\log\frac{Z_{\Lambda^{\Gamma}}^{a,b,J}}{Z_{\wedge\Gamma}^{a}b},\mu_{N}^{a,b,J}(h^{N}\in O)\geq-\inf_{h\in \mathcal{O}}I^{a,b;J}(h)$ ,

for every open set $O$ of $W_{a,,,b}(D)$ .

Step2(upper bound). Let $\delta>0$ and $g\in W_{a,,,b}(D)$ which satisfies the
condition:

for every $\gamma>0$ small enough, there exist disjoint

(6.9) intervals $\{I^{j}(\gamma)\}_{1\leq j\leq K}$ , $ K<\infty$ such that

$\{\theta\in D;|g(\theta)|\leq\gamma\}=\bigcup_{j=1}^{K}I^{j}(\gamma)$ ,

be fixed. Then, one can write $\{\theta\in D;|g(\theta)|>\gamma\}=\bigcup_{j=1}^{K+1}L^{j}(\gamma)$ for

disjoint intervals $\{L^{j}(\gamma)\}_{1\leq j\leq K+1}.\cdot$ We define $I_{N}^{j}=NI^{j}(\delta)\cap \mathbb{Z}$ , $L_{N}^{j}=$

$NL^{j}(\delta)\cap \mathbb{Z}$ , $I_{N}=\bigcup_{j=1}^{K}I_{N}^{J}$ and $L_{N}=\bigcup_{j=1}^{K+1}L_{N}^{j}$ . Since $\mu_{\Lambda}^{a,b}(h^{N}\in$

$B_{\infty}$ $(g, \delta))=0$ for $\Lambda\subset D_{N}$ such that $\Lambda\not\supset L_{N}$ , we have

$\frac{Z_{N}^{a,b,J}}{Z_{\wedge\Gamma}^{a}b},\mu_{\Lambda^{\Gamma}}^{a,b,J}(h^{N}\in B_{\infty}(g, \delta))$

$=\sum_{L_{N}\subset\Lambda\subset D_{N}}e^{J|\Lambda^{c}|}\frac{Z_{\Lambda}^{a,b}}{Z_{N}^{a,b}}\mu_{\Lambda}^{a,b}(h^{N}\in B_{\infty}(g, \delta))$

$=\sum_{A\subset I_{N}}e^{J|I_{N}\backslash A|}\frac{Z_{L_{N}\cup A}^{a,b}}{Z_{l\backslash \Gamma}^{a,b}}\mu_{L_{N}\cup A}^{a,b}$ $(h^{N}\in B_{\infty} (g, \delta))$ .

Now, let $I_{N}\backslash A=\{x_{1}, x_{2}, \cdots, x_{k}\}$ , $1\leq x_{1}<x_{2}<\cdots<x_{k}\leq N-1$

and define $l_{1}$ , $l_{2}$ , $\cdots$ , $l_{k}$ , $l_{k+1}$ and $\Gamma$ in the same way as in the proof of
lower bound. Then, by the Markov property of the $\phi$-field and the LDP
upper bound for $\mu_{N}^{a,b}$ (Lemma 6.1), we have

$\mu_{L_{N}\cup A}^{a,b}$

$(h^{N}\in B_{\infty} (g, \delta))\leq\mu_{L_{N}\cup A}^{a,b}(\max_{x\in\bigcup_{j=1}^{k+1}l_{j}}|\frac{1}{N}\phi(x)-g(\frac{x}{N})|<\delta)$

$\leq\prod_{j\in\Gamma}\mu_{l_{j}}^{a_{j},b_{j}}(\max_{x\in l_{j}}|\frac{1}{N}\phi(x)-g(\frac{x}{N})|<\delta)$
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$\leq\exp\{-N(\sum_{j\in\Gamma}\inf_{h\in\overline{B}_{\infty}(g,2\delta;\overline{l}_{j})}I_{\overline{l}_{j}}^{a_{j},b_{j}}(h)-\epsilon)\}$

$\leq\exp\{-N$
$( h(0)=a,h(1)=’ b\inf_{h\in\overline{B}_{\infty}(g,2\delta)}\Sigma(h)-\frac{1}{2}(\frac{a^{2}}{|\tilde{l}_{1}|}+\frac{b^{2}}{|\tilde{l}_{k+1}|})-\epsilon)\}$

,

for every $\epsilon>0$ and $N$ Large enough. Then, inasimilar way to the proof
of lower bound, we can prove that

(6.10) $\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N}\log\frac{Z_{N}^{a,b,J}}{Z_{N}^{a,b}}\mu_{N}^{a,b,J}(h^{N}\in B_{\infty} (g, \delta))$

$\leq-\inf_{h\in\overline{B}_{\infty}(g,2\delta)}I^{a,b}(g)-\tau(\mathcal{J})|\{\theta\in D;|g(\theta)|\leq\delta\}|$ ,

for every $g\in W_{a,,,b}(D)$ satisfying the condition (6.9) and $\delta>0$ . Note
that $I_{N}$ is defined by $N\{\theta\in D;|g(\theta)|\leq\delta\}$ 口 $\mathbb{Z}$ in this case.

By using(6.10), the right-continuity of $|\{\theta\in D;|g(\theta)|\leq\delta\}|$ in $\delta$

and the fact that the set of $g\in W_{a,,,b}(D)$ satisfying the condition(6.9) is
dense in $W_{a,,,b}(D)$ , the similar argument to the proof of the upper bound
of Theorem2.1 yields that for every $g\in W_{a,,,b}(D)$ and $\epsilon>0$ , there exists
some $\delta>0$ such that

$\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N}\log\frac{Z_{\Lambda^{\Gamma}}^{a,b,J}}{Z_{l\backslash ^{r}}^{a,b}}\mu_{N}^{a,b,J}$ $(h^{N}\in B_{\infty} (g, \delta))\leq-I^{a,b;J}(g)+\epsilon$ .

Since $\mu_{N}^{a,b,J}$ can be written as the superposition of $\mu_{\Lambda}^{a,b}$ , $\Lambda\subset D_{N}$ , expo-

nential tightness for $\mu_{l\backslash \Gamma}^{a,b,J}$ follows from the similar argument as before
and the standard argument yields

(6.11) $\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N}\log\frac{Z_{N}^{a,b,J}}{Z_{\Lambda}^{a}rb},\mu_{N}^{a,b,J}(h^{N}\in C)\leq-\inf_{h\in C}I^{a,b;J}(h)$ ,

for every closed set $C$ of $W_{a,,,b}(D)$ . The lower and upper bounds (6.8)
and (6.11)conclude the proof. $Q.E.D$ .

Remark 6.1. By the proof above and[8, Lemma2.3.1 (a)] (note
that the argument given there can be extended to all $d\geq 1$ ), we know
that

$\frac{Z_{N}^{0,0,J}}{Z_{N}^{0,0}}=\sum_{\Lambda\subset D_{N}}e^{J|\Lambda^{c}|_{\frac{Z_{\Lambda}^{0,0}}{Z_{\Lambda^{\Gamma}}^{0,0}}}}\geq\sum_{\Lambda\subset D_{N}}e^{J|\Lambda^{c}|}e^{-C|\Lambda^{c}|}=(1+e^{J-C})^{|D_{N}|}$

for some constant $C>0$ . Therefore, $\tau(\mathcal{J})<0$ for every $J\in \mathbb{R}$ .
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A PDE Approach for Motion of Phase-Boundaries
by a Singular Interfacial Energy

Mi-Ho Giga and Yoshikazu Giga

\S 1. Introduction

This is a review paper on geometric motions of phase boundaries
like crystal surfaces when the interfacial energy is very singular. Such
motions arise in nonequilibrium problem at low temperature. Our pur-
pose is to review a macroscopic approach describing the phenomena by
a partial differential equation (PDE) with singular diffusivity. Because
of nonlocal effect of singular diffusivity the notion of solution itself is
unclear. In this paper we focus the problem whether a solution of ap-
proximate parabolic problem converges to a ’solution’ of PDE with the
singular diffusivity. We do not intend to exhaust the references.

The equilibrium of a crystal shape is often explained as a solution
of an anisotropic isoperimetric problem. The problem is described as
follows. Let $\gamma$ be a continuous function on $R^{n}$ which is positively ho-
mogeneous of degree one, $ie.$ , $\gamma(\lambda p)=\lambda\gamma(p)$ for all $p\in R^{n}$ , $\lambda>0$ .

Assume that $\gamma(p)>0$ for $p\neq 0$ . For an oriented hypersurface $S$ with
the orientation $n$ (a unit normal vector field) in $R^{n}$ let $I(S)$ be defined
by

(1.1) $I(S)=\int_{S}\gamma(n)dS$ ,

where $dS$ denotes the surface element. The quantity $I(S)$ is called the
interfacial energy and $\gamma$ is called the interfacial energy density (depend-
ing upon the temperature $\tau$ through the structure of the crystal surface
$S)$ .
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Anisotropic isoperimetric problem. Minimize $I(\partial D)$ among all
open sets $D(\subset R^{n})$ with a fixed volume.

The answer is by now well-known. The interfacial energy $I(\partial D)$ is
minimized if and only if $D$ is a dilation of the Wulff shape $\mathcal{W}_{\gamma}$ defined
by

(1.2) $\mathcal{W}_{\gamma}=\bigcap_{|m|=1}\{x\in R^{n}, x\cdot m\leq\gamma(m)\}$ .

The reader is referred to [5], [34], [30] and references cited there for the
development of the theory. This Wulff shape is considered as a shape of
a crystal in an equilibrium state. The Wulff shape is always convex and
closed, and its support function

$\hat{\gamma}(p)=\sup\{p. x; x\in \mathcal{W}_{\gamma}\}$ for $p\in R^{n}$

is the convex hull of $\gamma$ . At low temperature the Wulff shape has a
flat portion called a facet. In this case $\hat{\gamma}$ is not $C^{1}$ at the direction
corresponding to the normal of the facet. We rather consider $\hat{\gamma}$ instead
of $\gamma$ , so we assume that $\gamma$ is always convex, since $\mathcal{W}_{\gamma}=\mathcal{W}_{\hat{\gamma}}$ .

The first variation of $I(\partial D)$ with respect to a variation of the volume
of $D$ is

(1.3) $H_{\gamma}=-div_{S}((\nabla_{p}\gamma)(n))$ with $S=\partial D$ .

This is called the weighted mean curvature of $S$ in the direction of $n$ ,

which is the unit outer normal vector field of $\partial D$ . Here $div_{S}$ denotes the
surface divergence. If $\gamma(p)=|p|$ , then $H_{\gamma}$ is the usual mean curvature
H. (We use the convention that $H$ is the sum of all principal curvatures
instead of its average.) The weighted mean curvature of $\partial \mathcal{W}_{\gamma}$ always
equals $-(n-1)$ so $\mathcal{W}_{\gamma}$ substitutes the role of a unit sphere for usual
mean curvature. If $H_{\gamma}=-(n-1)$ , we expect that $D$ is the Wulff shape
but we do not know in general whether such a conjecture is settled except
the case $\gamma(p)=|p|$ which is proposed by H. Hopf and solved affirmatively
by [1]. If $\gamma$ is not $C^{1}$ so that $\mathcal{W}_{\gamma}$ has a facet, we observe that $H_{\gamma}$ should
be a nonlocal quantity since otherwise $H_{\gamma}=0$ on such a facet, since the
second fundamental form equals zero on a facet.

In nonequilibrium state a phase-boundary such as a crystal surface
moves. Its motion is often considered as a result of thermodynamical
driving forces variation of the free energy. A typical example is the
mean curvature flow equation

(1.4) $V=H$ on $S_{t}$
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proposed by Mullins [40] to describe the motion of the antiphase bound-
aries of grains in material sciences. Here, $V$ denotes the normal velocity
of evolving (embedded) (hyper) surface $\{S_{t}\}$ in the direction of $n$ ; the
parameter $t$ denotes the time variable. The mean curvature is consid-
ered as the first variation of the area. To study a crystal growth problem
anisotropic effect must be taken into account. For example one consider

(1.5) $V=M(n)(H_{\gamma}+C)$ on $S_{t}$

as proposed by [39]. Here $C$ is a constant and $M(n)$ is a positive continu-
ous function on the unit sphere $S^{n-1}$ ; $H_{\gamma}$ is the weighted mean curvature
defined in (1.3), which is considered as the first variation of I of (1.1).
An axiomatic derivation of equations like (1.4) and (1.5) is found, for
example, in [34]. Mathematical theory is well-developed for (1.4) and its
generalization (1.5) if $\gamma$ is smooth and convex. For example one is able to
extend a solution beyond singularities (e.g. pinching) to a global-in-time
solution by a level set method [43] (see also [46] and [42]) whose analytic
foundation is established by [10], [13]; see [27], [30] and references cited
there.

At low temperature $\tau$ the Frank diagram of $\gamma=\gamma^{\tau}$

$Frank\gamma=\{p\in R^{n}; \gamma(p)\leq 1\}$

may have a corner whose position vector directs to the normal of $\mathcal{W}_{\gamma}$ .

(Frank $\gamma$ is a convex conjugate (or polar) of $\mathcal{W}_{\gamma}.$ ) There is a critical
temperature $\tau_{R}(n)$ (depending on n) called roughening temperature such
that there is a facet of $\mathcal{W}_{\gamma}$ with the normal $n$ if and only if $\tau<\tau_{R}(n)$ .
The evolution law also depends on temperature explicitly. When the
latent heat is negligible, its general form [34] is

(1.6) $V=f(n, H_{\gamma}+C)$ on $S_{t}$

for a given smooth function $f=f^{\tau}$ on $S^{n-1}\times R$ , which is nondecreasing
in the second variable. The theory of crystal growth [11] says that if
$\tau\leq\tau_{R}(n)$ , then

$\frac{\partial f^{\tau}}{\partial X}(n, X)=0$ at $X=0$

while $\tau>\tau_{R}(n)$ ,

$\frac{\partial f^{\tau}}{\partial X}(n, X)\neq 0$ at $X=0$ .

So if $\tau>\tau_{R}(n)$ , the equation (1.6) can be approximated by (1.5) at
least for small $H_{\gamma}+C$ . However, if $\tau\leq\tau_{R}(n)$ , we have to study (1.6)
directly. Evolutions with facets are also discussed in surface sciences;
see [9], [47] and papers cited there.
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If Frank $\gamma$ has a corner, the definition of solution is not clear even for
(1.5). If Frank $\gamma$ is a convex polyhedra, $\gamma$ is called a crystalline energy
(density). If $n=2$ and $S_{t}$ is a planar curve, a notion of solution is
proposed by [2] and [48] by restricting $S_{t}$ as a spcecial polygonal curve.
This evolution is called a crystalline motion. Based on variational and
order-preserving structure the notion of solution is extended by [16],
[19], [21] for (1.5) and (1.6), when $S_{t}$ is a general graph-like curve $(2.2$

and Appendix). It applies for general graph-like curves with general $\gamma$

not necessarily crystalline. Even the level set approach handling non
graph-like curves is extended to this situation in [23], [24] ; see also [28]
for a review. By now it is known that the problem for $n=2$ is well-
posed although the diffusion effect included in $H_{\gamma}$ is not local. To see the
difficulty of the problem we assume that $n=2$ , $S_{t}=\{(x, y);y=u(x, t)\}$

and $\gamma(p_{1},p_{2})=|p_{1}|+|p_{2}|$ and observe that (1.5) with $M$ $\equiv 1$ , $C\equiv 0$

equals
$u_{t}(1+u_{x}^{2})^{-1/2}=(u_{x}/|u_{x}|)_{x}$ ,

where subscripts $t$ and $x$ of $u$ denote the partial derivatives. It formally
equals (2.3) since $(1+p^{2})^{1/2}\delta(p)=\delta(p)$ , where $\delta$ denotes the Dirac
delta function; the notion of solution to (2.3) is unclear at all. Similar
equation

$u_{t}=(u_{x}/|u_{x}|)_{x}+u_{xx}$

has been proposed by H. Spohn [47], where he proposed a notion of
solution based on free boundary value problems.

In this paper we focus the problem whether our solution of (1.6) with
singular $\gamma$ can approximated by a solution of approximate equation (1.6)
with regular $\gamma$ , when $S_{t}$ is given as the graph of a function. We discuss
this problem in Section 2. Except the last convergence (2.11) the results
are known (cf. [16], [21], [23], [24] and papers cited there). For evolving
curves the notions (2.2 and Appendix) of a solution are consistent with
an ansatz that the flat portion called facet (whose normal corresponds
to the corner of the Frank diagram) stays as flat during the evolution.
We call this ansatz facet-stay-as-facet hypothesis. This hypothesis is
invoked to define crystalline motion. Our convergence results in Section
2 assert that the facet-stay-as-facet hypothesis is fulfilled for a limit of
solutions of approximate problems. This has a strong contrast to the
problem for evolving surfaces where a facet may break (Remark 2.3
(i) $)$ . So far for three-dimensional problem even local-in-time solvability
is unknown even when $\gamma$ is crystalline. In Section 3 we claim that a
solution proposed by H. Spohn [47] is a solution in our sense so it is
obtained as a limit of approximate problems. For more examples of
solutions see [36], [26]. There are several other applications of equations
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with singular diffusivity. The reader is referred to [45], [29], [25], [49] as
well as [36], [26].

In the thermal grooving problem it is often more important to study
evolution by surface diffusion [41]. This corresponds to the fourth order
problem $V=-\triangle H_{\gamma}[8]$ . Although there are several analytic results
when $H_{\gamma}=H$ , for singular $\gamma$ there are no analytic results; except [47]
where several special solutions are proposed; however several numeri-
cal results are available as in [44]. This type of problem seems to be
important to study thermal smoothing of surface [9].

Before we conclude this introduction we would like to point out sev-
eral relations between microscopic approach and macroscopic approach.
For equilibrium problems macroscopic model is justified as a limit of
several microscopic models [5]. There is roughening transition in mi-
croscopic model [15]. At the low temperature macroscopic interfacial
energy obtained from microscopic models may have singularities so that
the Wulff shape has a facet for $n\geq 3$ (while it has no facet when $n=2$ ).
However, for nonequilibrium problem, the convergence from microscopic
to macroscopic is only known above the roughening temperature [18],
[35] mainly because of lack of estimates; see also a nice review by T.
Funaki [17]. The authors are grateful to Professor Tadahisa Funaki and
Professor Herbert Spohn for valuable informative remarks.

\S 2. General convergence results

We are interested in studying the convergence of a solution when
singular interfacial energy is approximated by a smooth energy. So far
there are two systematic ways to study this kind of problems. One is
based on comparison priciples and is considered as an extension [19],
[21] of the theory of viscosity solutions [12]. The other one is based on
the theory of nonlinear semigroups initiated by [37] (see also [3]). It

reflects the variational structure. The first method is so far restricted
to one space dimensional problem but it applies to equations without

divergence structure. The second method applies to general space di-
mension but it is restricted to a gradient system, which has a divergence
structure. We first discuss the first method.

2.1. Viscosity approach

We consider a fully nonlinear evolution equation in one space dimension
of the form

(2.1) $u_{t}+F(u_{x}, \Lambda_{W}(u))=0$ , $x\in R$ , $t>0$
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with $\Lambda_{W}(u)$ formally written as $(W’(u_{x}))_{x}$ . Here $W$ is a given convex
function on $R$ and $C^{2}$ outside a discrete set $P$ . Thus the derivative of
$W$ may have jumps. The function $F$ : $R\times R\rightarrow R$ is a given continuous
function satisfying a monotonicity condition:

(2.2) $F(p, X)\leq F(p, Y)$ for $X\geq Y$,

so that the equation (2.2) is (degenerate) parabolic. (The value $\Lambda_{W}$ is
actually unchanged by adding an affine function to $W$ but we denote it
by $\Lambda_{W}$ rather than by $\Lambda_{W^{Jl}}:$ ) If $F(p, X)=-X$ , then (2.1) is the heat
equation when $W(p)=p^{2}/2$ . If $W(p)=|p|$ , the equation (2.1) formally
becomes

(2.3) $u_{t}=2\delta(u_{x})u_{xx}$ ,

and the quantity $\delta(u_{x})u_{xx}$ is not well-defined even in the distribution
sense for smooth $u$ . So we need to introduce a new notion of solution.
(For this particular example both the first and the second methods pro-
vide a suitable notion of a solution.) In [19] (see also [21]) a notion of
solution called a viscosity solution for initial value problem of (2.1) is
proposed and its unique existence is proved under periodic boundary
condition to avoid extra technicality; see [19] for other boundary con-
ditions. We shall recall its definition as well as that of $\Lambda_{W}$ briefly in
the Appendix. Fortunately, in various settings we have the convergence
principle.
CVP. Assume that $F_{\in}\rightarrow F$ and $W_{\in}\rightarrow W$ locally uniformly $as\in\rightarrow 0$ .
For $\Xi>0$ let $u^{\Xi}\in C([0, T)$ $\times T)$ be a solution of
(2.4)

$u_{t}+F_{\Xi}(u_{x}, \Lambda_{W_{\Xi}}(u))=0$ in $(0, T)$ $\times R$ with $u|_{t=0}=u_{0}^{\Xi}$ in $R$

with $u_{0}^{\Xi}\in C(T)$ , $T=R/\omega Z$ , $\omega>0$ . If $u_{0}^{\Xi}\rightarrow u_{0}$ in $C(T)$ , then $u^{\Xi}$

convergences to some function $u$ locally uniformly in $[0, T)\times T$ (without
taking a subsequence) and $u$ is a unique solution of (2.1) with the initial
data $u_{0}\in C(T)$ . (The constant $T$ may be taken $as+\infty.$ ) (We should not
assume uniform convergence of derivatives of $W_{\epsilon}$ so that $W$ is allowed
to be non $- C^{1}.$ )

To state the convergence result rigorously we need to introduce a
class of $W$ and $F$ .

$\mathcal{E}=\{W;W$ is convex in $R$ and $W$ is $C^{2}$ except some
discrete set $P$ . Moreover, $\sup_{K\backslash P}W’’=C_{K}<\infty$ for
every compact set $K$ in $R$}.
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Any piecewise linear, convex function $W$ belongs to $\mathcal{E}$ . Also $W(p)=$

$a|p|/2+bp2/2$ for $a$ , $b>0$ belongs to $\mathcal{E}$ . Let $F$ be the set of all continuous
function $F$ satisfying the monotonicity condition (2.2). We shall state
a special version of the convergence result in [21] where $F$ is allowed to
depend on the time explicitly.

Theorem 2.1 (Convergence). Assume that $F_{\in}$ , $F\in \mathcal{F}$ and that $W_{\in}$ ,
$W\in \mathcal{E}$ . Then(CVP) holds for viscosity solutions.

Of course, if $W_{\in}$ and $F_{\in}$ are smooth and the problem (2.4) is strictly
parabolic with smooth initial data $u_{0}^{\in}$ , then the classical theory [38] of
parabolic equations provides a unique smooth solution $u^{\in}$ for (2.4). So
Theorem 2.1 justifies the notion of solution when $W’$ may have jumps
in the sense that the solution is the limit of classical solutions of the
strictly parabolic problems. On the other hand, if $W_{\in}$ is piecewise linear,
and $W$ is smooth, Theorem 2.1 also provides the convergence of the
crystalline algorithm (proposed by [2] and [48]). Theorem 2.1 extends
some aspects of earliear convergnece results [16], [33] of the algorithm
for a general equation. The reader is referred to [21], [22] for details and
generalizations. As in [22] we also have the convergence of derivatives.

Theorem 2.2 (Convergence of derivaties). Assume that $F_{\in}$ , $F\in F$

and that $W_{\epsilon}$ , $W\in \mathcal{E}$ . Under the situation of (CVP) assume furthermore
that $u_{0xx}^{\in}(\epsilon>0)$ is a finite Radon measure with $\lim\sup_{\in\rightarrow 0}||u_{0xx}^{\in}||_{1}<$

$\infty$ . Then

$\lim_{\in\rightarrow 0}\sup_{0\leq t<T’}||u_{x}^{\in}-u_{x}||_{L^{r}(T)}(t)=0$

for every $r\in[1, \infty)$ and $0<T’<T$ . Here $||\cdot||_{1}$ denotes the total
variation of the measure and $u_{0xx}^{\in}$ represents the distributional second
derivative of $u_{0}^{\in}$ .

Remark 2.3. (i) So far this method does not apply to a spatially in-
homogeneous equation or higher dimensional problems because of com-
plexity of nonlocal curvatures. Despite proposal of several notions of
solutions [31], [4], [32], the local existence of a solution approximated by
smoother problem is not yet known.
(ii) Theorem 2.1 applies to the interface equation (1.6) when $S_{t}$ is
the graph of a spatially periodic function of one variable. In fact, if
$S_{t}=\{y=u(t, x)\}$ , then (1.6) can be written in the form of (2.1) with

$W(p)=\gamma(-p, 1)$ ,

$F(p, X)=-(1+p^{2})^{1/2}f((-p(1+p^{2})^{-1/2}, (1+p^{2})^{-1/2}),$ $X+C)$



220 M.-H Giga and Y. Giga

when $n$ is taken upward, $i.e.$ , $n=(-u_{x}, 1)/(1+u_{x}^{2})^{1/2}$ . The weighted
curvature $H_{\gamma}$ of $S_{t}$ in the direction of $n$ at $(x_{0}, u(x_{0}))$ equals $\Lambda_{W}(u)(x_{0})$ .
Thus CVP implies that the solution $\{S_{t}^{\in}\}$ of

$V=f_{\in}(n, H_{\gamma_{\Xi}})$ on $S_{t}^{\in}=\{y=u^{\in}(t, x)\}$

converges to the solution of $\{S_{t}\}$ of (1.6) in the Hausdorff distance sense
in $[0, ^{T})$

$\times T\times R$ , provided that $f_{\in}\rightarrow f$ , $\gamma_{\in}\rightarrow\gamma$ locally uniformly as
$\in\rightarrow 0$ and that $S_{0}^{\in}\rightarrow S_{0}$ in $T\times R$ in the Hausdorff distance sense. Such
a convergence result has been proved for closed curves in more general
setting [24].

2.2. Variational approach

We consider a gradient system in a multi-dimensional space $R^{n}$ under
periodic boundary condition, $i.e$ . in $T^{n}=\Pi_{j=1}^{n}(R/\omega_{j}Z)$ , $\omega_{j}>0(j=$
$1$ , $\ldots$ , $n)$ :

(2.5) $u_{t}-div((DW)(\nabla u))=0$ in $T^{n}\times(0, \infty)$ .

Here $W$ : $R^{n}\rightarrow R$ be a convex function and $DW$ denotes the gradient
of $W$ . If initial data $u_{0}$ is Lipschitz continuous, the maximum principle
yields a priori bound

(2.6) $||\nabla u||_{\infty}(t)\leq||\nabla u_{0}||_{\infty}$ for all $t\geq 0$ ,

where $||$ . $||_{\infty}$ denotes the $L^{\infty}-$ norm in $L^{\infty}(T^{n})$ . For example,

$||\nabla u||_{\infty}(t)=ess.\sup_{x\in T^{n}}|\nabla u(x, t)|$ .

Let $K$ be a number such that $||\nabla u_{0}||_{\infty}\leq K$ . We may modify $W(p)$ for
$|p|\geq K+1$ so that $W(p)$ is coercive in the sense that

(2.7) $\lim W(p)/|p|=\infty$
$|p|\rightarrow\infty$

without changing the notion of a solution with initial data $u_{0}$ since
(2.6) holds. This modification simplifies the formulation. As in [16] we
formulate the problem by using subdifferentials. If we define the energy
for $v\in H=L^{2}(T^{n})$ by
(2.8)

$\varphi(v)=\{$

$\int_{T^{n}}W(\nabla v)dx$ if $\nabla v\in L^{1}(T^{n})$ and $W(\nabla v)\in L^{1}(T^{n})$ ,

$\infty$ otherwise,

then $\varphi$ is convex and lower semicontinuous in $H$ as in [6]. (The coerciv-
$ity$ assumption (2.7) is important to conclude the lower semicontinuity.)
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In [16] only one dimensional problem is treated but we follow their ap-
proach. Then the initial value problem for (2.5) with $||\nabla u_{0}||_{\infty}\leq K$ is
formulated as an abstract ordinary differential equation for $u(t)=u(\cdot, t)$

in the Hilbert space $L^{2}(T^{n})$ with the standard inner product $<f$ , $g>=$
$\int_{T^{n}}$ fgdx:

(2.9) $\frac{du}{dt}(t)\in-\partial\varphi(u(t))$ for $t>0$ , $u|_{t=0}=u_{0}$ ,

where $\partial\varphi$ denotes the subdifferential of $\varphi$ , $i.e.$ ,

$\partial\varphi(v)=$ { $w\in H$ ; $\varphi(v+h)-\varphi(v)\geq<w$ , $h>$ holds for all $h\in H$ }.

A general theory guarantees that for $u_{0}\in H$ satisfy $||\nabla u_{0}||_{\infty}\leq K$

there is a unique solution $u\in C([0, T);H)$ of (2.9) (with (2.8)) which
is absolutely continuous with values in $H$ on $[\delta, T]$ as a function of $t$ for
every $\delta>0$ , $T$ $>0$ ; see [3]. We refer this $u$ as the solution of (2.5) (in
the variational sense) with initial data $u_{0}$ . As in [16] a general stability
theorem due to J. Watanabe [50] (see also [26]) based on a result of H.
Brezis and A. Pazy [7] implies the following convergence result.

Theorem 2.4. Assume that $W^{\in}and$ $W$ are convex in $R^{n}$ . Assume
that $W^{\in}(p)=W(p)$ for $|p|\geq K+1$ and satisfies (2.7). Assume that
$W^{\in}\rightarrow W$ (locally uniformly) $as\in\rightarrow 0$ . Let $u^{\in}be$ the solution of

$u_{t}-div((DW^{\in})(\nabla u))=0$ in $T^{n}\times(0, \infty)$ , $u|_{t=0}=u_{0}^{\in}$

with $||\nabla u_{0}^{\in}||_{\infty}\leq K$ . Assume that $u_{0}^{\in}\rightarrow u_{0}$ in $L^{2}(T^{n})$ as $\epsilon\rightarrow 0$ . Then
$u^{\in}$ converges to a solution $u$ of (2.5) with the initial data $u_{0}$ in the sense
that for any $T$ $>0$

(2.10)
$\lim_{\in\rightarrow 0}\sup_{0\leq t\leq T}||u^{\in}-u||_{L^{2}(T^{n})}(t)=0$

.

Remark 2.5.(i) Since $||\nabla u^{\in}||_{\infty}(t)\leq K$ for all t $\geq 0$ (cf $(2.6))$ , by
Arzel\‘a-Ascoli’s theorem we also get the uniform convergence

(2.11)
$\lim_{\in\rightarrow 0_{0}}\sup_{\leq t\leq T}||u^{\in}-u||_{\infty}(t)=0$

.

The proof of (2.11) admitting (2.10) and (2.6) is elementery; see [25,
Lemma 4.3].
(ii) This convergence result also asserts that the solution with singular
energy is approximated by that of smoother problem.
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(iii) This approach applies to spatially inhomogeneous equation of the
form

$u_{t}-\frac{1}{b(x)}\{div(a(x)(DW)(\nabla u))+C(x)\}=0$

as described in [26] and [20].
(iv) By Theorem 2.1 and 2.4 if both variational and viscosity notion of
solution is available it must agree each other, since both solutions are
obtained as the same limiting procedure [20].

\S 3. Examples

Example 1. We consider (2.3) with $\omega$-periodic boundary condition,
$i.e.$ , in $T\times(0, \infty)$ with $T=R/(\omega Z)$ and $\omega>0$ . Assume that the initial
data

(3.1) $u_{0}(x)=\{$

$A(x)$ , $0\leq x\leq\alpha_{0}$ ,
$h_{0}$ , $\alpha_{0}\leq x\leq\beta_{0}$ ,
$B(x)$ , $\beta_{0}\leq x\leq\omega/2$

with $\alpha_{0}\leq\beta_{0}$ , $A’>0$ , $B’<0$ , $A(0)=B(\omega/2)=0$ , $A(\alpha_{0})=B(\beta_{0})=h_{0}$ .

Here $A$ and $B$ are $C^{1}$ and $h_{0}>0$ is a constant. We also assume that
$A’\leq K,$ $-B’\leq K$ with some $K>0$ so that $u_{0}$ is Lipschitz continuous.
We extend $u_{0}$ to $[-\omega/2,0]$ as an odd function, and further extend $u_{0}$ as
an $\omega$-periodic function in $R$ , $i.e.$ , a function on T. The problem (2.3)
with (3.1) is formulated as in (2.9) if we take $\varphi$ in (2.8) with $W(p)=|p|$

for $p$ , $|p|\leq K+1$ where $||u_{0x}||_{\infty}\leq K$ . The solution is explicitly written
as follows; see [19],[26]. Let $h(t)$ be a function defined by

$h(t)=S^{-1}(2t)$ , $ S(k)=\int_{k}^{h_{0}}(B^{-1}(\eta)-A^{-1}(\eta))d\eta$ ,

where-l represents the inverse of a function. This $h(t)$ satisfies $h(0)=h_{0}$

and is decreasing in time. Moreover, $h(T)=0$ for $T$ $=S(0)/2$ . We set

$u(x, t)=\{$
$\min(h(t), u_{0}(x))$ , $t\leq T$ , $x\in[0, \omega/2]$ ,

0, $t>T$

and extend $u(\cdot, t)$ to $[-\omega/2,0]$ as an odd function, and further extend
$u(\cdot, t)$ as an $\omega$-periodic function in R. It turns out that $u(x, t)$ is the
unique solution of (2.3) with (3.1) (in the variational sense). Indeed, if
we set

$\alpha(t)=A^{-1}(h(t))$ , $\beta(t)=B^{-1}(h(t))$ with $\alpha(0)=\alpha_{0}$ , $\beta(0)=\beta_{0}$ ,
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then

(3.2) $h_{t}(t)=-\frac{2}{\beta(t)-\alpha(t)}$ .

The right hand side can be interpreted as $-(W’(+0)-W’(-O))/\{1ength$

of flat portion} where $W(p)=|p|$ . See Definition A.3 in the Appendix.
Since

(3.2) $u(x, t)=\{$

$A(x)$ , $0\leq x\leq\alpha(t)$ ,
$h(t)$ , $\alpha(t)\leq x\leq\beta(t)$ ,
$B(x)$ , $\beta(t)\leq x\leq\omega/2$

for $t\leq T$ , it is not difficult to derive

$u_{t}(\cdot, t)\in-\partial\varphi(u(\cdot, t))$ for all $t>0$

from (3.2) [36], [26]. Indeed, we fix $t\in[0, T)$ and set

$\zeta(x)=\{$

-1 $ 0\leq x\leq\alpha$ ,

$,\frac{2}{1\beta-\alpha}$

,
$(x-\alpha)-1$ ,

$\beta\leq\alpha\leq x\leq x\leq\omega/2;\beta$

,

here we suppress $t$-dependence of $\alpha$ , $\beta$ and $\zeta$ . We extend $\zeta$ to $[-\omega/2,0]$

as an even function, and further extend $\zeta$ as an $\omega$-periodic function in
R. We then observe that $u_{t}(x, t)=-\zeta_{x}(x)$ for $x\in(0, \omega)$ . To show
$u_{t}\in-\partial\varphi(u)$ it suffices to prove

$\zeta_{x}\in\partial\varphi(v)$ with $v(x)=u(x, t)$ .

We observe that

$-\zeta(x)\in\partial W(v_{x}(x))$ , $ 0\leq x\leq\omega$ ,

where $\partial W$ is the subdifferential of a convex function $W$ on R. In other
words, $W(v_{x}(x)+q)-W(v_{x}(x))\geq-\zeta(x)q$ for all $q\in R$ , $x\in[0, \omega]$ .

Thus by definition of $\partial W$

$\varphi(v+h)$ $\varphi(v)=\int_{0}^{\omega}\{W(v_{x}(x)+h_{x}(x))-W(v_{x}(x))\}dx$

$\geq$ $\int_{0}^{\omega}-\zeta(x)h_{x}(x)dx$

for all $h\in L^{2}(T)$ with $h_{x}\in L^{2}(T)$ , $W(h_{x})\in L^{1}(T)$ . Integrating by
parts yields

$\varphi(v+h)-\varphi(v)\geq\int_{0}^{\omega}\zeta_{x}hdx$
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so we conclude that $\zeta_{x}\in\partial\varphi(v)$ . Thus, we conclude that $ u_{t}(\cdot, t)\in$

$-\partial\varphi(u(\cdot, t))$ for each $t\in(0, T)$ . It is clear that this relation holds for all
$t\geq T$ since $0\in-\partial\varphi(0)$ .

Note that $u_{t}$ is a constant on each flat portion of $u$ and its quantity
depends on the length of the flat portion so is determined nonlocally. We
also note that the flat portion (facet) instantaneously (spontaneously)
formed when $\alpha_{0}=\beta_{0}$ . The speed of $\alpha(t)$ , $\beta(t)$ at $t=0$ is infinite in
this case. By the way we note that the speed (3.2) at the facet can be
formally obtained by integrating (2.3) on interval $(\alpha(t)-0, \beta(t)+0)$ if
one assumes the facet-stay-as-facet hypothesis (see [2], [48]).

Our convergence theorems (Theorems 2.1, 2.4 and Remark 2.5 (i))
in partiular imply that such a solution $u$ is obtained as a local uniform
limit of the solution $u^{\in}$ of

(A) $u_{t}=a_{\in}(u_{x})u_{xx}$ , $u|_{t=0}=u_{0}$

with a smooth positive function $a_{\in}$ such that $ a_{\in}\rightarrow 2\delta$ as a weak conver-
gence of measures in (K–l,$ K+1$ ) $as\in\rightarrow 0$ . (We may assume that
$a_{\in}(p)=1$ for $p$ with $|p|\geq K+2.$ ) Moreover, $u$ is the viscosity solution
as shown in [19].
Example 2. We give another example of an equation that a facet is
spontaneously formed. We consider

(3.4) $u_{t}=2c_{0}\delta(u_{x})u_{xx}+u_{xx}$

instead of (2.3) with $c_{0}>0$ . For initial value $u_{0}$ we again consider $\omega-$

periodic function in $R$ defined in Example 1. Our equation (3.4) is
formulated as (2.9) by taking $\varphi$ of (2.8) by setting

$W(p)=c_{0}|p|+|p|^{2}/2$ for $p$ with $|p|\leq K+1$ .

In [47] H. Spohn solves the initial value problem for (3.4) with (3.1)
by reducing it to the Stefan problem studied by [14] under a symmetry
assumption

(3.5) $u_{0}(x-\omega/4)=u_{0}(-x-\omega/4)$ .

Since his proposed solution is expressed by a different dependent vari-
able, it is a priori not clear that it is the solution in our sense. We shall
recall his solution. Assume that $u$ is of the form

$\{$

$u(x, t)=h(t)$ , $\alpha(t)\leq x\leq\omega_{1}$ , $\omega_{1}=\omega/4$ ,
$u(0, t)=0$ ,
$u_{x}(x, t)>0$ , $0\leq x\leq\alpha(t)$



Singular Interfacial Energy 225

with some free boundary $\alpha(t)$ at least for small $t>0$ . By our symmetry
assumption (3.5) it is natural to assume that $u(x-\omega_{1}, t)=u(-x-\omega_{1}, t)$ .

Differentiate $u_{t}=(W’(u_{x}))_{x}$ with $W(p)=c_{0}|p|+|p|^{2}/2$ in $x$ formally
and set $w=u_{x}$ to get

(3.6) $w_{t}=g(w)_{xx}$

with $g$ defined by

$g(w)=\{$
$c_{0}+w$ for $w>0$ ,
$-c_{0}+w$ for $w<0$ .

We set $v=g(w)$ and observe that $v(x, t)>c_{0}$ for $x\in[0,$ $\alpha(t))$ . As in [47]
we postulate $v$ and $v_{x}$ is continuous accross $x=\alpha(t)$ and $v(\alpha(t), t)=c_{0}$

for (small) $t>0$ . Since $u_{x}=0$ on $(\alpha(t), 2\omega_{1}-\alpha(t))$ , it is natural to
postulate $0<v(x, t)<c_{0}$ for $(\alpha(t), \omega_{1})$ by symmetry. Here the case
$\alpha_{0}=\beta_{0}$ is also allowed. By (3.6) $v$ satisfies

(3.7) $v_{t}=v_{xx}$ for $x\in(0, \alpha(t))$ ,

(3.8) $0=v_{xx}$ for $x\in(\alpha(t), \omega_{1})$ .

Since $v(\omega_{1}, t)=0$ by symmetry, the equation (3.8) yields

$v(x, t)=c_{0}(\omega_{1}-x)/(\omega_{1}-\alpha(t))$ , $x\in(\alpha(t), \omega_{1})$ .

By continuity assumption of $v_{x}$ we have

(3.8) $v_{x}(\alpha(t)-0, t)=-c_{0}/(\omega_{1}-\alpha(t))$ for (small) $t>0$ .

Thus we obtain the Stefan type problem (3.7), (3.9) with $v(\alpha(t), t)=$

$c_{0}$ . The boundary condition $v_{x}(0, t)=0$ is provided by the symmetry
assumption of $u_{0}$ . If $(v, \alpha)$ satisfies these equations, $u(x, t)$ for $0<x<$
$\alpha(t)$ must satisfiy the heat equation. According to [14] this problem is
solvable until $\alpha(t)$ becomes zero provided that $A$ in $u_{0}$ is $C^{3}$ in $[0, \alpha_{0}]$ .

The free boundary $\alpha=\alpha(t)$ is $C^{1}$ for $t>0$ and continuous up to $t=0$ .
Thus our $u$ has the property that $u\in C([0, T),$ $L^{2}(T))$ and that $u$ is
absolutely continuous on $[\delta, T -\delta]$ for $\delta>0$ . To see that $u$ is a solution
of (3.4) in our variational sense it suffices to show that

$u_{t}(x, t)=\frac{-2c_{0}}{\beta(t)-\alpha(t)}$

$=-(W’(+0)-W’(-0))/${the length of flat portion},
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for $x\in(\alpha(t), \beta(t))$ and for $t\in(0, T)$ with

$ T=\sup${ $t$ ; $\alpha(\tau)>0$ for $\tau\in[0,$ $t)$ },

where $\beta(t)=2\omega_{1}-\alpha(t)$ . In fact, as in Example 1 this speed relation
together with $u_{t}=u_{xx}$ for $0\leq x\leq\alpha(t)$ yields $u_{t}\in-\partial\varphi(u)$ for $a.e$ .
$t\in(0, T)$ by observing that for each $t\in(0, T)$

$\zeta(x)=\{$ $\mathring{\frac{-u_{x}2c}{-u_{x}\beta-\alpha}},’(x-\alpha)-c_{0}$ , $\beta\leq x\leq\omega’/20\leq x\leq\alpha\alpha\leq x\leq\beta$,

fulfills $u_{t}=-\zeta_{x}$ and $\zeta_{x}\in\partial\varphi(v)$ with $v(x)=u(x, t)$ , where we suppress
$t$-dependence of $\alpha$ , $\beta$ and $\zeta$ . (As in Example 1, we extend $\zeta$ as an $\omega-$

periodic function in R.)
Since for $t\geq T$ we have $u\equiv 0$ so (2.9) is clearly fulfilled for $t\geq T$ .

In other words it suffices to prove that

(3.10) $u_{t}(x, t)=-c_{0}/(\omega_{1}-\alpha(t))$ , $\alpha(t)\leq x\leq\beta(t)$ .

We integrate (3.7) with respect to $x\in(0, \alpha(s))$ and then the time vari-
able $s\in(0, t)$ . We observe that

$\int_{0}^{\alpha(s)}v_{xx}(x, s)dx$ $=$ $v_{x}(\alpha(s)-0, s)-0$

$=$ $-c_{0}/(\omega_{1}-\alpha(s))$

by (3.9) and that

$\int_{0}^{t}$ $(\int_{0}^{\alpha(s)}v_{t}(x, s)dx)ds=\int_{0}^{t}(\int_{0}^{\alpha(s)}(v-c_{0})_{t}(x, s)dx)ds$

$=$ $\int_{0}^{\alpha(t)}(v(x, t)-c_{0})dx-\int_{0}^{\alpha(0)}(v(x, 0)-c_{0})dx$ ,

by changing the order of integration and $v(\alpha(s), s)=c_{0}$ . Thus from
(3.7) it follows that

$\int_{0}^{\alpha(0)}(v(x, 0)-c_{0})dx=\int_{0}^{\alpha(t)}(v(x, t)-c_{0})dx+c_{0}\int_{0}^{t}(\omega_{1}-\alpha(s))^{-1}ds$ .

Since $u(\alpha(t), t)=\int_{0}^{\alpha(t)}(v(x, t)-c_{0})dx$ , we have

$\frac{d}{dt}(u(\alpha(t), t))=\frac{d}{dt}\int_{0}^{\alpha(t)}(v(x, t)-c_{0})dx=-\frac{c_{0}}{\omega_{1}-\alpha(t)}$ .
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Since $v(\alpha(t), t)=c_{0}$ so that $u_{x}(\alpha(t), t)=0$ , this implies (3.10).
We thus conclude that Spohn’s solution is the solution in our vari-

ational sense. Thus, again our convergence theorems (Theorem, 2.1,
2.4 and Remark 2.5(i) $)$ in paticular implies that such a solution $u$ can
be obtained as a local uniform limit of the solution of the approximate
equation (A) if $a_{\in}\rightarrow 2c_{0}\delta+1$ as $\epsilon\rightarrow 0$ . Moreover, it is the viscosity
solution. Thus as noted in [21], [22] it can be approximated numerically
by a crystalline algorithm. A similar remark also applies to Example 1.

If $u_{0}$ is concave in $[0, \omega/2]$ , $u(x, t)$ is also concave in $[0, \omega/2]$ for
$t\in[0, T]$ . This can be proved by above approximation and the standard
maximum principle. In this case our solution $u$ of (3.4) is a subsolution of
(2.3) on $(0, \omega/2)$ . Thus by a comparison theorem [19] $u\equiv 0$ for $t>T_{0}$

with some $T_{0}>0$ since the solution of (2.3) vanishes in finite time.
In [47] this phenomena has been proved by a different method under
the assmption that $A’’<0$ in $[0, \omega/2]$ . In his situation $\alpha$ is monotone
decreasing as shown in [47].

Appendix. Definition of viscosity solution and its exis-
tence

We recall the definition of viscosity solution for (2.1) and the exis-
tence theorem for the reader’s convenience [19], [21]. In the appendix
we assume $W\in \mathcal{E}$ and $F\in \mathcal{F}$ . Let $\Omega$ be an open interval.

Definition A.l ( $P$-faceted). A function $f\in C(\Omega)$ is called faceted
at $ x_{0}\in\Omega$ with slope $p$ in $\Omega$ if $f$ fulfills the following properties : there
is a closed nontrivial finite interval $I$ $(\subset\Omega)$ (called a faceted region)
containing $x_{0}$ such that $f$ agrees with an affine function

$l_{p}(x)=p(x-x_{0})+f(x_{0})$

in I and $f(x)\neq l_{p}(x)$ for all $x\in J\backslash I$ with some neighborhood $J(\subset\Omega)$

of $I$ . The length of I is denoted by $L(f, x_{0})$ . For a discrete set $P$ in $R$ a
function $f$ is called $P$ faceted at $x_{0}$ in $\Omega$ if $f$ is faceted at $x_{0}$ in $\Omega$ with
some slope $p\in P$ .

Definition A.2 (Space of test functions). Let $P$ be the set of jump
discontinuities of $W’$ . Let $C_{P}^{2}(\Omega)$ be the set of all $f\in C^{2}(\Omega)$ such that
$f$ is $P$ faceted at $x_{0}$ in $\Omega$ whenever $f’(x_{0})\in P$ . For $ Q:=(0, T)\times\Omega$ with
$T>0$ let $A_{P}(Q)$ be the set of all function on $Q$ of the form

$f(x)+g(t)$ , $f\in C_{P}^{2}(\Omega)$ , $g\in C^{1}(0, T)$ .
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Definition A.3 (Weighted curvature). Let $P$ be the set of jump
discontinuities of $W’$ . Let $x_{0}$ be a point in $\Omega$ .

For $f\in C^{2}(\Omega)$ we set the value

$\Lambda_{W}(f)(x_{0})=W’’(f’(x_{0}))f’’(x_{0})$

if $f’(x_{0})\not\in P$ , and

$\Lambda_{W}(f)(x_{0})=\frac{\chi(f,x_{0})}{L(f,x_{0})}\triangle(f’(x_{0}))$

if $f’(x_{0})\in P$ and $f$ is $P$-faceted at $x_{0}$ in $\Omega$ . Here $\triangle(p)=W’(p+0)-$

$W’(p-0)$ for $p\in P$ , and $\chi(f, x_{0})$ is the transition number defined by

$\{$

$\chi=+1$ if $f\geq l_{p}$ in $J$,
$\chi=-1$ if $f\leq l_{p}$ in $J$,
$\chi=0$ otherwise

for some neighborhood $J$ of the faceted region $I$ .

Definition A.4 (Viscosity solution). A real valued continuous func-
tion $u$ on $ Q=(0, T)\times\Omega$ is a viscosity subsolution of

(1) $u_{t}+F(u_{x}, \Lambda_{W}(u))=0$ in $Q$

if

(2) $\psi_{t}(\hat{t},\hat{x})+F(\psi_{x}(\hat{t},\hat{x}),$ $\Lambda_{W}(\psi(\hat{t}, \cdot),\hat{x}))\leq 0$

whenever $(\psi, (\hat{t},\hat{x}))\in A_{P}(Q)\times Q$ fullfills

$\max_{Q}(u-\psi)=(u-\psi)(\hat{t},\hat{x})$ .

A viscosity supersolution is defined by replacing $\max$ by $\min$ , and the
inequality in (2) by the reverse one. If $u$ is a sub- and supersolution, $u$

is called a viscosity solution.

Theorem A.5 (Existence [19]). Suppose that $u_{0}\in C(R)$ is periodic
with period $\omega>0$ . Then there exists a unique function $u\in C([0, T]\times R)$

(for any $T$ $>0$) that satisfies
(i) $u$ is a viscosity solution of (1) in $(0, T)$ $\times R$ ;
$(ii)u(0, x)=u_{0}(x)$ for $x\in R$ ;
(iii) $u(t, x+\omega)=u(t, x)$ for $(t, x)\in[0, T)\times$ R.
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The Dobrushin-Hryniv Theory for the
Two-Dimensional

Lattice Widom-Rowlinson Model

Yasunari Higuchi, Joshin Murai and Jun Wang

Abstract.

We consider the fluctuation of the phase boundary separating
two phases of the Widom-Rowlinson model in the plane square lat-

tice. The phase boundary is conditioned to have specified values of
the area underneath and the height difference of two end points. Do-
brushin and Hryniv studied the phase boundary of the Solid-on-Solid
model [DH1] and of the Ising model [DH2], and obtained the central
limit theorem for the fluctuation of the phase boundary from the

Wulff profile. The phase boundary of the Ising model is well approxi-
mated by that of the Solid-on-Solid model with the aid of the cluster
expansion. Their argument seems to be applicable to the general
models which have polymer representation. We apply their theory to
the Widom-Rowlinson model.

\S 1. Introduction

Let $Z^{2}$ be the square lattice and let $\Lambda_{L,M}$ be the rectangle [1, $L-$
$1]$ $\times[-M, M]$ in $Z^{2}$ . We consider a system of particles in $\Lambda_{L,M}$ . These
particles are of two types, either A or B. There is strong repulsive inter-
action between particles of different types. Namely, a $B$ particle can not
occupy a site within distance $\sqrt{2}$ from a site where an A particle sits,
and vice versa.

A configuration $\omega$ is a function from $\Lambda_{L,M}$ to $\{-1, 0, +1\}$ . $\omega(x)=$

$+1$ denotes that the site $x$ is occupied by an A particle, $\omega(x)=-1$

denotes that $x$ is occupied by a $B$ particle and $\omega(x)=0$ denotes that
there is no particle at $x$ . We say that a configuration $\omega$ is feasible if
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$\omega(x)\omega(y)\geq 0$ for all pairs $x$ , $y$ with $|x-y|\leq\sqrt{2}$ , where $|$ . $|$ denotes the
Euclidean distance.

Let $\Omega_{L,M}$ denote the set of all feasible configurations in $\Lambda_{L,M}$ . The
Hamiltonian of our system is a function on $\Omega_{L,M}$ given by

(1.1)
$H(\omega)=\sum_{x\in\Lambda_{L,M}}\mu(1-\omega(x)^{2})$

for every $\omega\in\Omega_{L,M}$ . Here, $\mu$ denotes the chemical potential.
Let $h>0$ be fixed and assume that $M>Lh$ . Then we can put the

following boundary condition:

$\eta^{h}(x)=\{$

+1, if $ x^{2}>\lceil hx^{1}\rceil$ ,
0, if $ x^{2}=\lceil hx^{1}\rceil$ ,
-1, otherwise,

for every $x=(x^{1}, x^{2})\in\partial\Lambda_{L,M}=[0, L]\times[-M-1, M+1]\backslash \Lambda_{L,M}$ . Let
$\Omega_{L,M}^{h}$ denote the set of all configurations $\omega$ in $\Omega_{L,M}$ such that $\omega o\eta^{h}$ is
feasible, where $\omega\circ\eta$ is given by

$\omega\circ\eta(x)=\{$

$\omega(x)$ , if $x\in\Lambda_{L,M;}$

$\eta(x)$ , if $x\in\partial\Lambda_{L,M}$ .

The conditional Gibbs distribution on $\Omega_{L,M}^{h}$ with the boundary condi-

tion $\eta^{h}$ is given by

(1.2) $P_{L,M}^{h}(\omega)=(Z_{L,M}^{h})^{-1}\exp\{-\mu|S^{0}(\omega)|\}$ ,

where $S^{0}(\omega)$ is the set of points in $\Lambda_{L,M}$ such that $\omega$ takes 0 value, $|S|$

denotes the cardinality of a set $S$ , and $Z_{L,M}^{h}$ is the normalizing constant,
which we call the partition function.

For a feasible configuration $\omega$ , we call a connected component of
$S^{0}(\omega)$ a contour. Among contours we can find a unique contour which
connects $(0, 0)$ with $(L, \lceil hL\rceil)$ . We call this the separating contour with
the starting point $(0, 0)$ and the end point $(L, \lceil hL\rceil)$ , and denote it by
$\Gamma(\omega)$ . Let $S_{L,M}^{h}$ denote the collection

{ $\Gamma(\omega);\omega\in\Omega_{L,M}^{h}$ is feasible}.

The aim of this paper is to investigate the fluctuation of the separating
contour via Dobrushin-Hryniv theory.

the backbone
We say that a set $C\subset Z^{2}is*connected$ if for every $x$ , $y\in C$ , there

exist a sequence $z_{0}=x$ , $z_{1}$ , $\ldots$ , $z_{m}=y$ in $C$ such that $|z_{i}-z_{i-1}|\leq\sqrt{2}$ for
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every $1\leq i\leq n$ . A hole of a connected set $C\subset Z^{2}$ is a $finite*connected$

component of $C^{c}=Z^{2}\backslash C$ . Let $C_{1}$ , $C_{2}$ , $\ldots$ , $C_{n}$ be connected subsets of
$\Lambda_{L,M}$ . We say that contours $\{C_{j}\}$ are compatible if they are connected
components of the set $\bigcup_{1\leq j\leq n}C_{j}$ . We also say that $\{C_{j}\}$ are compatible
with a connected set $D$ if $\{D, C_{j}\}$ are compatible for every $j$ . Then the
partition function $Z_{L,M}^{h}$ can be rewritten as

$Z_{L,M}^{h}=\sum_{\Gamma\in S_{L,M}^{h}}\sum_{\{C_{j}\}}2^{N(\Gamma)}$ $\exp\{-\mu|\Gamma|\}\prod_{j}(2^{N(C_{j})}\exp\{-\mu|C_{j}|\})$
,

where the second summation is taken over compatible families $\{C_{j}\}$ ,
which are compatible with $\Gamma$ , $|\Gamma|$ is the number of points in $\Gamma$ and $N(C)$

is the number of holes in $C$ . Therefore, we can find $\mu_{0}$ sufficiently large
so that we have a cluster expansion (see [KP])

(1.3)
$Z_{L,M}^{h}=\sum_{\Gamma\in S_{L,M}^{h}}\exp\{-\mu|\Gamma|+N(\Gamma)\ln 2+\Lambda\subset\Lambda_{L,M}\sum_{\Lambda c\Gamma}\Phi(\Lambda)\}$

for $\mu>\mu_{0}$ , where $\Lambda c\Gamma$ denotes that $\Lambda$ is compatible with $\Gamma$ . Moreover,

the function $\Phi(\Lambda)$ satisfies the estimate

(1.4)
$\sum_{\Lambda\ni 0}|\Phi(\Lambda)|e^{(\mu-\mu_{0})|\Lambda|}<1$

,

and $\Phi(\Lambda)=0$ unless $\Lambda$ is connected. Let

$Z_{L,M}^{+}=\exp\{\sum_{\Lambda\subset\Lambda_{L,M}}\Phi(\Lambda)\}$
.

Dividing both sides of (1.3) by $Z_{L,M}^{+}$ , we have

(1.5) $\frac{Z_{L,M}^{h}}{Z_{L,M}^{+}}=\sum_{\Gamma\in S_{L,M}^{h}}$

$\exp\{-\mu|\Gamma|+N(\Gamma)\ln 2-\Lambda\subset\Lambda_{L,M}\sum_{\Lambda i\Gamma}\Phi(\Lambda)\}$

,

where $\Lambda i\Gamma$ denotes that $\Lambda$ is incompatible with $\Gamma$ . We use the summand
in the right hand side of (1.5) as a statistical weight of the separating
contour F. Let $\Gamma\in S_{L,M}^{h}$ . We extract a self-avoiding path from $\Gamma$ in the
following way.

First we define an order of preference among four directions;
up $>down>right>left$ .

This order naturally defines an order among self-avoiding paths con-
necting $(0, 0)$ with $(L, \lceil hL\rceil)$ . To be more precise, let $\pi=\{x_{1}, x_{2}, \ldots, x_{n}\}$
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and $\pi’=\{y_{1}, y_{2}, \ldots, y_{k}\}$ be two self-avoiding paths connecting $(0, 0)$

with $(L, \lceil hL\rceil)$ . Let $j_{0}$ be the first number $j$ such that $x_{j}\neq y_{j}$ . We
define that $\pi>\pi’$ if the direction of the ordered edge $\{x_{j_{0}-1}, x_{j_{0}}\}$ is
preferred to the direction of the ordered edge $\{yj_{o}-1, y_{j_{o}}\}$ . Now, let

$\square r:=$ { $\pi$ : self-avoiding path in $\Gamma$ connecting (0, 0) with $(L,$ $\lceil hL\rceil)$ }.

Let $\pi(\Gamma)$ be the unique maximal element of $\square r$ with respect to this
order. We call $\pi(\Gamma)$ the backbone of $\Gamma$ . This backbone will play the role
of the phase separation line of the $2D$ Ising model.

For $\Gamma\in S_{L,M}^{h}$ , $\pi(\Gamma)$ separates $[0, L]$ $\times[-M-1, M+1]$ into two
$*connected$ components. One is above $\pi(\Gamma)$ and the other is below $\pi(\Gamma)$ .
Let $a^{-}(\pi(\Gamma))$ and $a^{+}(\pi(\Gamma))$ be the number of points in $Z^{2^{*}}\cap[0, L]\times$

$[-M-1, M+1]$ , which are below $\pi(\Gamma)$ and above $\pi(\Gamma)$ , respectively.
Here, $Z^{2^{*}}=Z^{2}+(\frac{1}{2}, \frac{1}{2})$ . The area $a(\pi(\Gamma))$ is defined by

(1.6) $a(\pi(\Gamma)):=a^{-}(\pi(\Gamma))-a^{+}(\pi(\Gamma))$ .

This value is independent of $M$ if $M$ is sufficiently large.

free energy
If $\mu$ is sufficiently large, (1.5) has a limit as $ M\rightarrow\infty$ :

(1.7) $\lim_{M\rightarrow\infty}\frac{Z_{L,M}^{h}}{Z_{L,M}^{+}}=\sum_{\Gamma\in S_{L}^{h}}\exp\{-\mu|\Gamma|+N(\Gamma)\ln 2-\Lambda\subset\Lambda_{L,\infty}\sum_{\Lambda i\Gamma}\Phi(\Lambda)\}$ ,

where $S_{L}^{h}:=\bigcup_{M>0}S_{L,M}^{h}$ , $\Lambda_{L,\infty}:=[1, L-1]\times(-\infty, \infty)\cap Z^{2}$ .

Let $W(\Gamma)$ be the weight in the right hand side of (1.7);

$W(\Gamma):=\exp\{-\mu|\Gamma|+N(\Gamma)\ln 2-\Lambda\subset\Lambda_{L,\infty}\sum_{\Lambda i\Gamma}\Phi(\Lambda)\}$

for $\Gamma\in\bigcup_{h\in R}S_{L}^{h}=S_{L}$ . For $\Gamma\in S_{L}$ , we denote by $A(\Gamma)=(0,0)$ and
$B(\Gamma)=(L, k(\Gamma))$ the starting point and endpoint of $\Gamma$ , respectively.

For $\zeta\in C$ , we define

(1.8) $\varphi(\zeta):=\lim_{L\rightarrow\infty}\frac{1}{L}\ln\sum_{\Gamma\in S_{L}}e^{\mu\zeta k(\Gamma)}W(\Gamma)$ .

if the limit exists. This is the free energy of the height of the last point
of $\Gamma$ . For $\Gamma\in S_{L}$ , we define $\{X_{L}(t);t\in[0,1]\}=\{X_{L}(t;\Gamma);t\in[0,1]\}$
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by

$\left\{X_{L}(\frac{j}{L)})X_{L}(t==\max\{k\in Z\cdot,(j,k\in\pi(\Gamma)\}(j+1-Lt)X_{L}(\frac{)j}{L})+(Lt,-j)X_{L}(\frac{j+1}{L})\right.$

$(j\leq Lt\leq j+1)$

Let $P_{L}$ be the probability measure on $S_{L}$ defined by

(1.9) $P_{L}(\Gamma)=[,\sum_{\Gamma\in S_{L}}W(\Gamma’)]-1W(\Gamma)$ .

Theorem There exists $\mu_{1}>\mu_{0}$ such that for $\mu>\mu_{1}$ , (1.9) is well
defined on $S_{L}$ and the followings hold.

Assume that for $h>0$ and $a\geq\frac{h}{2}$ there exist a $\delta>0$ and a pair
$(\zeta_{0}, \zeta_{1})\in R^{2}$ with $\max\{|\zeta_{0}+\zeta_{1}|, |\zeta_{1}|\}\leq 1-\frac{\delta}{\mu}$ such that

$\frac{1}{\mu}\int_{0}^{1}\nabla_{(\zeta_{0},\zeta_{1})}\varphi(\zeta_{0}(1-x)+\zeta_{1})dx=(a, h)$ .

Then the process

$Y_{L}(t):=\frac{1}{\sqrt{L}}\{X_{L}(t)-\frac{L}{\mu}\int_{0}^{t}\varphi’(\zeta_{0}(1-x)+\zeta_{1})dx\}$

under $P_{L}(\cdot|a(\pi(\Gamma))=\lceil aL^{2}\rceil, k(\Gamma)=\lceil hL\rceil)$ converges

$Y(t)=\frac{1}{\mu}\int_{0}^{t}\sqrt{\varphi’’(\zeta_{0}(1-x)+\zeta_{1})}dB(x)$

conditioned that

$\int_{0}^{1}Y(t)dt=0$ , $Y(1)=0$ .

Here, $\{B(t)\}_{t\geq 0}$ is the one dimensional standard Brownian motion.

Remark Although $X_{L}(t)$ is defined by the backbone $\pi(\Gamma)$ , the width
(in the $x^{2}$ direction) of the separating contour $\Gamma$ is negligible and, hence,
the limiting process $Y(t)$ depends only on $\Gamma$ . So, the choice of the

backbone is for technical reasons only.

The proof of the theorem goes along the line of $[DH1,2]$ , and we
regard our model as a perturbation of Solid-on-Solid(SOS) model. This
SOS model corresponds to the ensemble of (site) self avoiding paths in
$[0, L]$ $\times Z$ starting from $(0, 0)$ and ending at a site in $\{x^{1}=L\}$ , which
do not go back in the horizontal direction. Let us call such a path an
$SOS$ path. There are no $\{\Lambda_{\alpha}\}$ ’s for the SOS model.
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An SOS path will be cut into simple polymers. A simple poly-
mer is obtained from intersection of an SOS path with a vertical line
$\{x^{1}=j\}$ for some $1\leq j\leq L$ , shifted so that its starting point is at
height zero. So, it has a form $\{(j, 0), (j, 1), \ldots, (j, k)\}$ for some $k\geq 0$ or

$\{(j, 0),(jLet’ -1), \ldots, (j, k)\}$
for some $k<0$ .

$Q(\zeta)=startingfrom(0,0)\sum_{\xi simplepolymer}e^{\mu\zeta k(\xi)-\mu|\xi|}$

where $k(\xi)$ and $|\xi|$ are the height of the endopoint of $\xi$ and number of
sites in $\xi$ , respectively. Then

$\sum_{\Gamma:SOSpathin}[0,L]\times Ze^{\mu}\zeta k(\Gamma)W(\Gamma)=Q(\zeta)^{L}$
.

We would like to show that

$Q(\zeta)^{-L}\sum_{\Gamma\in S_{L}}e^{\mu\zeta k(\Gamma)}W(\Gamma)$

has a form;

(1.10)
$disjointinterva’ ls\sum_{I_{1},,I_{r}\subset[O,L]}\prod_{j=1}^{r}X(I_{j})$

which admits a cluster expansion, and is equal to $e^{L\varphi_{L}(\zeta)}$ for some func-
tion $\hat{\varphi}_{L}$ analytic in $\zeta$ . Further, we need that the second derivative in $\zeta$ of
$\hat{\varphi}_{L}$ is sufficiently small in absolute value compared to the second deriva-
tive (in $\zeta$ ) of $\ln Q$ in order to show the non-degeneracy of the covariance
of the limit process $Y(t)$ .

These two points, i.e., a) existence and analyticity of the free energy
and b) non-degeneracy of the limiting covariance are to be checked de-
pending on our model. Remaining arguments are the same as in $[DH1,2]$ ,
and we present them for the sake of completeness.

Finally, recent progress of understanding the fluctuation of interfaces
provides us a beautiful and systematic approach using the renewal theory
([ Ioffe $]$ , [KH] ). For our problem, it seems also possible to follow this
new line. However, what we have to check are the same, and at this
stage we are not able to present our result in a compact form following
this general approach.

Acknowledgement The authors thank D.Ioffe for many valuable com-
ments and stimulating discussions. He pointed out that this approach
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is possible for the continuum Widom-Rowlinson model, which should be
true, but we have not completed the whole story, yet.

\S 2. Local limit theorem

We will first show the existence of the limit (1.8) and its analyticity.
Let $\Gamma\in S_{L}$ , $A(\Gamma)=(0,0)$ , $B(\Gamma)=(L, k(\Gamma))$ be its starting and ending
points. Let $\pi(\Gamma)$ be the backbone of $\Gamma$ connecting $A(\Gamma)$ with $B(\Gamma)$ . We
decompose $\Gamma\backslash \pi(\Gamma)$ into connected components $\{C_{j}\}_{j=1}^{s}$ . As in [DH2]

we expand

$\exp\{-\Lambda\subset\Lambda_{L,\infty}\sum_{\Lambda i\Gamma}\Phi(\Lambda)\}=\sum_{n=0}^{\infty}\Lambda_{1}$

,

$\Lambda_{\mu}’ i\Gamma\sum_{\Lambda_{n}\subset\Lambda_{L,\infty}},\prod_{\iota=1}^{n}(e^{-\Phi(\Lambda_{\nu})}-1)$
.

Then

(2.1)
$\sum_{\Gamma\in S_{L}}e^{\mu\zeta k(\Gamma)}W(\Gamma)$

$=$ $\sum$ $\sum$ $\sum$ $\sum$

$k=$– $\infty$
$\pi$ , (o, $o$ ) $\rightarrow(L, k)$ $C_{1}$ , $C_{S}$ , compatibl $e$ $\Lambda_{1}$ , $\Lambda_{t}$ ,
$sel$ $f-av$ $oi$ din $g$ $ C_{\mathcal{U}}i\pi$ , $ C_{\nu}\cap\pi=\emptyset$ $\Lambda_{\alpha}$ is connected

$\pi\subset\Lambda_{L,\infty}$ $\pi,bac$ kbone of $\pi\cup c_{1}\cup$ $\cup C_{S}$ $\Lambda_{\alpha}i\pi\cup c_{1}\cup$ $\cup C_{S}$

$e^{\mu\zeta k}e^{-\mu|\pi|+N(\pi,C_{1},C_{s})\ln 2-\mu\Sigma_{\nu=1}^{s}|C_{\nu}|}\ldots,\prod_{\alpha=1}^{t}(e^{-\Phi(\Lambda_{\alpha})}-1)$ ,

where $N(\pi, C_{1}, \ldots, C_{s})$ denotes the number of holes of $\pi\cup\bigcup_{\iota}^{S},{}_{=1}C_{\iota/}$ .

polymers
Defining polymers is to cut the separating contour $\Gamma$ into elementary

pieces according to the additional information of $\{\Lambda_{\alpha}\}$ . A simplest way
to do it would be to cut $\gamma$ at lines $\{x^{1}=\ell+\frac{1}{2}\}$ of dual lattice such that
they intersect only one edge of $\Gamma$ and intersection with edges of $\Lambda_{\alpha}$ ’s
is empty. But the resulting pieces, say polymers, do interact. Even a
“simple polymer” can interact with some polymers.

For example, a part of $\Gamma$ like Fig 1 will be separated into two parts:
one having $\subset shape$ and one point to the right of it. If instead of one
point, there comes a simple polymer of height three to the right of $D$ ,
then they are put together and there is no natural way to cut then (Fig.
2).

Thus, in a natural way of cutting procedure, $\Gamma$ will be cut into
interacting polymers. This causes us to introduce a polymer chain below,
working with which we can use usual cluster expansion. The idea is to
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$OO^{1}|O\rightarrow$

$O$
$|$

$\rightarrow O\prod_{1}^{1}$

Fig. 1

OOO
$O$ $O$

$\rightarrow O\square O\rightarrow$

Fig. 2

treat a cluster of polymers interacting each other possibly through simple
polymers which are at neiboring sites of such ’active’ polymers.

Let $\hat{l}\leq\hat{r}$ be positive integers. A polymer $\xi$ with base $[\hat{l},\hat{r}]$ is a
collection $\xi=(\gamma, C_{1}, \ldots, C_{s}, \Lambda_{1}, \ldots, \Lambda_{t})$ such that

(a) $\gamma$ is a self-avoiding path in $\{\hat{l}\leq x^{1}\leq\hat{r}\}$ starting from $(\hat{l}, 0)$ and
ending at a point $(\hat{r}, k)$ in $\{x^{1}=\hat{r}\}$ . Here, we understand $\gamma$ as
an edge set.

(b) $\{C_{\nu}\}_{\iota=1}^{s}$, is a compatible family of connected subsets of $\{x\in$

$\Lambda_{L,\infty}$ ; $\hat{l}\leq x^{1}\leq\hat{r}$ } such that
(b-1) $ C_{lJ}\cap V(\gamma)=\emptyset$ , where $V(\gamma)$ is the set of vertices in $\gamma$ .

(b-2) $C_{lJ}\cup V(\gamma)$ is connected.
(b-3) $\gamma$ is the backbone of $\gamma\cup C_{1}\cup\ldots\cup C_{s}$ with starting point

$(\hat{l}, 0)$ and endpoint $(\hat{r}, k)$ .

(c) $\{\Lambda_{\alpha}\}_{\alpha=1}^{t}$ is a collection of connected subsets of { $x\in\Lambda_{L,\infty}$ ; $\hat{l}\leq$

$x^{1}\leq\hat{r}\}$ such that

$\Lambda_{\alpha}iV(\gamma)\cup\bigcup_{\iota/=1}^{S}C_{\iota/}$ .

Besides these conditions, we need a technical condition for a polymer.
This condition is to subtract ’simple polymers’ from the phase separating
contour $\Gamma$ as much as possible.

An edge $e$ is called an edge of $\xi$ if

$e\in\gamma\cup \mathcal{E}(\bigcup_{l}^{s},{}_{=1}C_{\iota/}\cup\bigcup_{\alpha=1}^{t}\Lambda_{\alpha})\cup \mathcal{E}(\gamma, \bigcup_{\iota}^{s},{}_{=1}C_{l/}\cup\bigcup_{\alpha=1}^{t}\Lambda_{\alpha})$ ,

where $\mathcal{E}(\bigcup_{\iota}^{s},{}_{=1}C_{\ddagger/}\cup\bigcup_{\alpha=1}^{t}\Lambda_{\alpha})$ is the set of nearest neighbor edges in
$\bigcup_{\nu=1}^{s}C_{\nu}\cup\bigcup_{\alpha=1}^{t}\Lambda_{\alpha}$ , and $\mathcal{E}(\gamma, \bigcup_{\nu=1}^{s}C_{l/}\cup\bigcup_{\alpha=1}^{t}\Lambda_{\alpha})$ is the set of edges that
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connect $\gamma$ with $\bigcup_{\nu=1}^{s}C_{\nu}\cup\bigcup_{\alpha=1}^{t}\Lambda_{\alpha}$ . An edge $e=\{x, y\}$ of $\xi$ is not ad-
missible if it is a horizontal edge in $\mathcal{E}(\gamma, \bigcup_{\nu=1}^{s}C_{\nu}\cup\bigcup_{\alpha=1}^{t}\Lambda_{\alpha})$ , such that

(1) The left vertex $x$ is in a connected component $D$ of $\bigcup_{\nu=1}^{s}C_{\nu}\cup$

$\bigcup_{\alpha=1}^{t}\Lambda_{\alpha}$ and the right vertex $y$ is in $V(\gamma)$ ,

(2) further, there exists a horizontal edge $e’=\{x’, y’\}$ of $\xi$ such that
$x’\in V(\gamma)$ and $y’\in D$ , where $x’$ is the left vertex of $e’$ .

Other edges of $\xi$ are admissible. Also, we identify an edge $\{x, y\}$ of
$Z^{2}$ with the line segment connecting $x$ and $y$ . Now we introduce the
remaining condition (d) for a polymer $\xi$ .

(d) If $\hat{l}<\hat{r}$ , then for $\hat{l}\leq j<\hat{r}$ , $j\in N$ , the line $\ell_{j}=\{x^{1}=j+\frac{1}{2}\}$

intersects at least two admissible edges of $\xi$ .

We call $\gamma$ the backbone of $\xi$ . For two disjoint self-avoiding paths $\gamma_{1}$ , $\gamma_{2}$

such that the starting point of $\gamma_{2}$ is nearest neighbor of the endpoint
of $\gamma_{1}$ , we can define the concatenation $\gamma_{1}\circ\gamma_{2}$ of these paths by simply
connecting them.

Let $\xi=(\gamma, C_{1}, \ldots, C_{u}, \Lambda_{1}, \ldots, \Lambda_{v})$ and $\xi’=(\gamma’,$ $C_{1}’$ , $\ldots$ , $C_{w}’$ , $\Lambda_{1}’$ , $\ldots$

, $\Lambda_{z}’)$ be two polymers with bases $[\hat{l},\hat{r}]$ and $[\hat{l}’,\hat{r}’]$ $(\hat{l}\leq\hat{l}’)$ , respectively.
We say that $\xi$ and $\xi’$ are compatible if either of the following conditions
holds;

(1) $\hat{r}+1<\hat{l}’$ ,

(2) $\hat{l}^{J}=\hat{r}+1$ , the backbone of

$\tilde{\Gamma}:=\gamma\cup C_{1}\cup\ldots\cup C_{u}\cup(\gamma’+(0, k(\gamma)))\cup(C_{1}’+(0, k(\gamma)))\cup\ldots\cup(C_{w}’+(0, k(\gamma)))$

is the concatenation $\gamma\circ(\gamma’+(0, k(\gamma)))$ , and connected compo-

nents of the set $\tilde{\Gamma}\backslash \gamma o(\gamma’+(0, k(\gamma)))$ are $\{C_{1}$ , $\ldots$ , $C_{u}$ , $C_{1}’+$

$(0, k(\gamma))$ , $\ldots$ , $C_{w}’+(0, k(\gamma))\}$ . Here, $k(\gamma)$ is the hight of the end-
point of $\gamma$ .

The family $\{\xi_{p}\}_{p=0}^{n+1}$ is compatible if $\xi_{p}$ and $\xi_{p’}(p\neq p’)$ are compatible.

Let $\pi$ be a self-avoiding path in $\Lambda_{L,\infty}$ connecting $(0, 0)$ with $(L, k(\pi))$ ,
$\{C_{\nu}\}_{\nu=1}^{s}$ be a compatible family of connected subsets of $\Lambda_{L,\infty}$ such that

(1) $ C_{\nu}i\pi$ and $ C_{\nu}\cap\pi=\emptyset$ ,
(2) $\pi$ is the backbone of $V(\pi)\cup\bigcup_{\nu=1}^{s}C_{\nu}$ .

Let also $\{\Lambda_{\alpha}\}_{\alpha=1}^{t}$ be a collection of connected subsets of $\Lambda_{L,\infty}$ such that
$\Lambda_{\alpha}i\pi\cup\bigcup_{\nu=1}^{s}C_{\nu}$ for each $\alpha$ . We say that the line $\ell_{j}=\{x^{1}=j+\frac{1}{2}\}$

$(0\leq j\leq L-1)$ is a cutting line of $(\pi, \{C_{\nu}\}_{\nu=1}^{s}, \{\Lambda_{\alpha}\}_{\alpha=1}^{t})$ if $\ell_{j}$ intersects

only one admissible edge of $(\pi, \{C_{\nu}\}_{\nu=1}^{s}, \{\Lambda_{\alpha}\}_{\alpha=1}^{t})$ .
Let $\ell_{0}<\ell_{j_{1}}<\ldots<\ell_{j_{n}}<\ell_{j_{n+1}}=\ell_{L-1}$ be all the cutting lines

of $(\pi, \{C_{\nu}\}_{\nu=1}^{s}, \{\Lambda_{\alpha}\}_{\alpha=1}^{t})$ . For each $m\in\{0,1, \ldots, n+1\}$ , there is a
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unique edge $e_{m}=\{B_{m}, A_{m+1}\}$ of $\pi$ which intersects $\ell_{j_{m}}$ . Let $\gamma_{m}$ be the

portion of $\pi$ starting from $A_{m}$ and ending at $B_{m}$ . Also let $\{C_{\nu}^{(m)}\}_{\nu=1}^{s(m)}$

and $\{\Lambda_{\alpha}^{(m)}\}_{\alpha=1}^{t(m)}$ be the set of elements of $\{C_{\nu}\}_{\nu=1}^{s}$ and $\{\Lambda_{\alpha}\}_{\alpha=1}^{t}$ such
that they are subsets of $[j_{m-1}+1,j_{m}]\times(-\infty, \infty)\cap Z^{2}$ . Then $A_{m}=$

$(j_{m-1}+1,p)$ for some $p\in Z$ . Thus we obtain the $m$-th polymer $\xi_{m}$ by
setting

$\xi_{m}=$ $(\gamma_{m}-(0,p)$ , $\{C_{\nu}^{(m)}-(0,p)\}_{\nu=1}^{s(m)}$ , $\{\Lambda_{\alpha}^{(m)}-(0,p)\}_{\alpha=1}^{t(m)})$ .

By definition, $\{\xi_{0}, \xi_{1}, \ldots, \xi_{n+1}\}$ are compatible.

For a polymer $\xi_{m}=(\gamma_{m}, \{C_{\nu}^{(m)}\}, \{\Lambda_{\alpha}^{(m)}\})$ , let $k_{m}=k(\xi_{m})=k(\gamma_{m})$

be the hight of the endpoint of the self-avoiding path $\gamma_{m}$ . Then the
hight $k(\pi)$ of the endpoint of the original path $\pi$ is given by

$k(\pi)=\sum_{m=0}^{n+1}k(\gamma_{m})$ .

For a polymer $\xi=(\gamma, \{C_{\nu}\}_{\nu=1}^{u}, \{\Lambda_{\alpha}\}_{\alpha=1}^{v})$ , set

(2.2) $\Psi(\xi)=e^{-\mu|\gamma|+N^{*}(\gamma,C_{1},C_{u})\ln 2-\mu\Sigma_{\nu=1}^{u}|C_{\nu}|}\ldots,\times\prod_{\alpha=1}^{v}(e^{-\Phi(\Lambda_{\alpha})}-1)$ ,

Where

$N^{*}(\gamma, C_{1}, \ldots, C_{s})$ $=$ $N(\gamma, C_{1}, \ldots, C_{s})$

$+$ $N_{l}(\gamma, C_{1}, \ldots, C_{s})+N_{r}(\gamma, C_{1}, \ldots, C_{s})$

and $N_{l}(\gamma, C_{1}, \ldots, C_{s})$ is the number of new holes created by $ V(\gamma)\cup$

$\bigcup_{\nu=1}^{s}C_{\nu}$ and the line $\{x^{1}=\hat{l}-1\}$ , where $base()$ $=[\hat{l},\hat{r}]$ . Similarly,
$N_{r}(\gamma, C_{1}, \ldots, C_{s})$ is the number of new holes created by $V(\gamma)\cup\bigcup_{\nu=1}^{s}C_{\nu}$

and the line $\{x^{1}=\hat{r}+1\}$ .
A polymer $\xi$ is called simple if $6ase()$ is one point and $\xi=(\gamma, \emptyset, \emptyset)$ .

Thus, the weight $\Psi(\xi)$ is given by $\Psi(\xi)=e^{-\mu|\gamma|}$ . A polymer $\xi$ is called
decorated if it is not simple.

A decorated polymer $\xi=(\gamma, \{C_{\nu}\}, \{\Lambda_{\alpha}\})$ with $base()$ $=[\hat{l},\hat{r}]$ is said
$r$-active if there exists a simple polymer $\xi_{1}=(\gamma_{1}, \emptyset, \emptyset)$ with $base(\xi_{1})=$

$\{\hat{r}+1\}$ such that $\xi_{1}$ is incompatible with $\xi$ or the concatenation of $\gamma$

and $\gamma_{1}$ together with $\bigcup_{\nu}C_{\nu}$ produces a new hole. $\xi$ is said $l$-active if
there exists a simple polymer $\xi_{2}=(\gamma_{2}, \emptyset, \emptyset)$ with $base(\xi_{2})=\{\hat{l}-1\}$

such that $\xi_{2}$ is incompatible with $\xi$ or the concatenation of $\gamma_{2}$ and $\gamma$

together with $\bigcup_{\nu}C_{\nu}$ produces a new hole. If $\xi$ is both $r$-active and 1-
active, we call it $bi$-active. A polymer chain is a family of decorated
polymers $C$ $=\{\xi_{1}, \ldots, \xi_{m}\}$ such that
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(1) $\{\xi_{1}, \ldots, \xi_{n}\}$ are compatible.

(2) If $base(\xi_{u})=[\hat{l}_{u},\hat{r}_{u}]$ , $1\leq u\leq n$ , then $\hat{l}_{u+1}=\hat{r}_{u}+1$ or $\hat{r}_{u}+2$ for
every $u$ .

(3) If $\hat{l}_{u+1}=\hat{r}_{u}+2$ for some $w$ , then $\xi_{u}$ is $r$-active and $\xi_{u+1}$ is 1-active.

Let $C_{1}$ and $C_{2}$ be two polymer chains. We say that $C_{1}$ and $C_{2}$ are compat-
ible if $C_{1}\cup C_{2}$ is a compatible family of polymers, but it is not a polymer
chain.
For a polymer chain $C$ $=\{\xi_{1}, \ldots, \xi_{m}\}$ , let

base(C)= $base(\xi_{1})\cup\ldots\cup base(\xi_{m})$ .

For a polymer $\xi$ , we define

$\hat{\Psi}(\xi;\zeta):=e^{\mu\zeta k(\xi)}\Psi(\xi)Q(\zeta)^{-|base(\xi)|}$ ,

where $|base(\xi)|=\hat{r}-\hat{l}+1$ when base(\mbox{\boldmath $\xi$}) $=[\hat{l},\hat{r}]$ , and $Q(\zeta)$ is the gener-
ating function of the hight of the endpoint of a simple polymer ;

$Q(\zeta)=e^{-\mu}\sum_{k=-\infty}^{\infty}e^{\mu\zeta k}e^{-|k|\mu}$ .

Also, for a polymer chain $C$ $=\{\xi_{1}, \ldots, \xi_{m}\}$ , we put

$F_{\hat{\Psi}}(C;\zeta):=\prod_{u=1}^{m}\hat{\Psi}(\xi_{u}; \zeta)\times J\iota(\xi_{1})J_{r}(\xi_{m})\prod_{u=1}^{m-1}J(\xi_{u}, \xi_{u+1})$ ,

where for $6ase()$ $=[\hat{l},\hat{r}]$ and $base(\xi_{1})=[c, d]$ with $c>\hat{r}$ , $ J\iota$ , $J_{r}$ , $J$ are
defined in the following way.

$J\iota(\xi)=$

$\sum_{\xi’c\xi}^{/_{\hat{l}-1}}\hat{\Psi}(\xi’; \zeta)2^{N(\xi’,\xi)-N_{l}(\xi,C_{1},C_{s})}\ldots$
, if $\xi$ is 1-active

$\backslash 1$ , otherwise,

where $\sum_{\xi’c\xi}^{\hat{l}-1}$ means over simple polymers $\xi’=(\gamma’, \emptyset, \emptyset)$ with base $\{\hat{l}-1\}$

compatible with $\xi$ , and $N(\xi’, \xi)$ is the number of new holes created by
the concatenation of $\gamma’$ and $\gamma$ together with $\bigcup_{\nu}C_{\nu}$ , which is not larger
than $N_{l}(\gamma, C_{1}, \ldots, C_{s})$ . Similarly,

$J_{r}(\xi)=\{$

$\sum_{\xi’c\xi}^{\hat{r}+1}\hat{\Psi}(\xi’;\zeta)2^{N(\xi,\xi’)-N_{r}(\gamma,C_{1},C_{s})}\ldots,$ , if $\xi$ is $r$-active

1, otherwise,
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and $J(\xi, \xi_{1})$ is defined in two cases.

(i) If $c=\hat{r}+2$ , $\xi$ is $r$-active and $\xi_{1}$ is 1-active, then

$ J(\xi, \xi_{1})=\sum_{\xi’c\xi,\xi_{1}}^{\hat{r}+1}\hat{\Psi}(\xi’; \zeta)2^{N(\xi,\xi’)+N(\xi’,\xi_{1})-N_{r}(\gamma,C_{1},C_{s})-N_{l}(\gamma_{1},\overline{C}_{1},,\overline{C}_{s_{1}})}\ldots,\ldots$ ,

(ii) If $c=\hat{r}+1$ , and $\xi$ and $\xi’$ are compatible, then

$ J(\xi, \xi_{1})=2^{N(\xi,\xi_{1})-N_{r}(\gamma,C_{1},,C_{s})-N_{l}(\gamma_{1},\overline{C}_{1},,\tilde{C}_{s_{1}})}\ldots\ldots$ .

Let $\mathcal{K}_{L}$ be the set of all decorated polymers with base in $[0, L]$ , and $C72_{L}$

be the set of polymer chains with base in $[0, L]$ . Then we have

(1.8)
$\frac{1}{Q(\zeta)^{L}}\sum_{\Gamma\in S_{L}}e^{\mu\zeta k(\Gamma)}W(\Gamma)=compatible\sum_{c_{1},,c_{r}\in CP_{L}}$

,

$\prod_{i=1}^{r}F_{\hat{\Psi}}(C_{i;}\zeta)$ .

Lemma 2.1 Let $\delta>0$ be given. Then there exists $\mu_{4}>\mu_{0}$ such that

for $\mu>\mu_{4}$ , the free energy $\varphi(\zeta)$ in (1.8) exists and is analytic in $\zeta$ if
$Re\zeta<1-\frac{\delta}{\mu}$ .

Proof. It is sufficient to show that

$\frac{1}{L}\ln\sum_{compatible}c_{1},,c_{r}\in C\mathcal{P}_{L}$

,

$\prod_{i=1}^{r}F_{\hat{\Psi}}(C_{i}; \zeta)$

converges as $ L\rightarrow\infty$ and its limit $\hat{\varphi}(\zeta)$ is analytic for $Re\zeta<1-\frac{\delta}{\mu}$ .

Then we have
$\varphi(\zeta)=\hat{\varphi}(\zeta)+\ln Q(\zeta)$ ,

which is analytic in this region.
In order to verify the convergence and analyticity, we have to check

that there exist functions $c^{*}$ , $d^{*}$ : $C’\mathcal{P}=$ { $C$ ; polymer chain} $\rightarrow[0, \infty)$

such that

(2.4)
$\sum_{C\in CP\cdot CiC_{0}},e^{c^{*}(C)+d^{*}(C)}|F_{\hat{\Psi}}(C;\zeta)|\leq c^{*}(C_{0})$

for any polymer chain $C_{0}$ and for any $\zeta\in C$ with $Re\zeta<1-\frac{\delta}{\mu}$ (see

e.g. [KP] $)$ . For a decorated polymer $\xi=(\gamma, \{C_{\nu}\}, \{\Lambda_{\alpha}\})$ , we put $c(\xi)=$

$3|base(\xi)|$ and

$d(\xi)=\{$ $(\mu-\mu_{4})|base(\xi)|+\frac{\delta}{6\delta}(\mu-\mu_{4})|base(\xi)|+\frac{}{6}|\gamma|-|\gamma|,(\mu-\mu_{2}-1)$

, if $|base(\xi)|\geq 2$ ,

if $|base(\xi)|=1$ .
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Then we set

$c^{*}(C)=\sum_{\xi\in C}c(\xi)$
,

$d^{*}(C)=\sum_{\xi\in C}d(\xi)$

The constant $\mu_{4}$ is specified later. We will first show that

(2.5)
$\sum_{\xi\in \mathcal{K}_{L},\xi i\xi_{0}}e^{c(\xi)+d(\xi)}|\hat{\Psi}(\xi;\zeta)|\leq c(\xi_{0})$

for every polymer $\xi_{0}$ . Note first that

(2.6) $|\gamma|=N_{v}(\gamma)+N_{h}(\gamma)+1$ ,

where $N_{v}(\gamma)$ is the number of vertical edges in $\gamma$ , and $N_{h}(\gamma)$ is the num-
ber of horizontal edges in $\gamma$ . Also, by definition of decorated polymers,
if base(\mbox{\boldmath $\xi$}) is one point, then

(2.7a) $N_{h}(\gamma)+\sum_{\nu=1}^{s}|C_{\nu}|+\sum_{\alpha=1}^{t}|\Lambda_{\alpha}|\geq 1$ ,

since either $\{C_{\nu}\}$ or $\{\Lambda_{\alpha}\}$ is non-empty if base(\mbox{\boldmath $\xi$}) is one point. If
$|base(\xi)|\geq 2$ , then we have

(2.7b) $N_{h}(\gamma)+\sum_{\nu=1}^{s}|C_{\nu}|+\sum_{\alpha=1}^{t}|\Lambda_{\alpha}|\geq 2(|base(\xi)|-1)$ .

Let $\gamma$ be a self-avoiding path such that it is the backbone of some deco-

rated polymer with base $I$ $=[\hat{l},\hat{r}]$ . We estimate the following sum.

$G(\gamma):=$ $\sum$ $|\Psi(\xi)e\mu k(\gamma)\zeta|$ .
$\xi;\gamma$ is the backbone of $\xi$

From (1.4), $|\Phi(\Lambda)|\leq e^{-(\mu-\mu o)|\Lambda|}<1$ and therefore we have

$|e^{-\Phi(\Lambda)}-1|\leq e^{-(\mu-\mu o-1)|\Lambda|}$ .
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Using this, if $\hat{l}=\hat{r}$ , i.e., $|I|=1$ , then we have $N^{*}(\gamma, C_{1}, \ldots, C_{s})=0$

and

(2.8)
$G(\gamma)\leq e^{-\mu|\gamma|}e^{\mu k(\gamma)Re\zeta}\sum_{i\{C_{\nu}\}\cdot C_{\nu}\gamma},e^{-\mu\Sigma_{\nu}|C_{\nu}|}$

$\sum$
$e^{-(\mu-\mu o-1)\Sigma_{\alpha}|\Lambda_{\alpha}|}$

$\{\Lambda_{\alpha}\};\Lambda_{\alpha}i\gamma\cup C_{1}\cup\cdots\cup C_{s}$

$\leq e^{-\mu|\gamma|+\mu k(\gamma)Re\zeta-(\mu-\mu_{2}-1)}$

$\times\sum_{\{C_{\nu}\}\ovalbox{\tt\small REJECT} C_{\nu}i\gamma}$

$e^{-\mu_{2}\Sigma_{\nu}|C_{\nu}|}$

$\times\{\Lambda_{\alpha}\};\Lambda_{\alpha}\sum_{i\gamma\cup C_{1}\cup\cup c_{s}}\cdots e^{-(\mu_{2}-\mu o)\Sigma_{\alpha}|\Lambda_{\alpha}|}$

The summation over $\{\Lambda_{\alpha}\}$ is estimated as follows.

$\{\Lambda_{\alpha}\};\Lambda_{\alpha}\sum_{i\gamma\cup C_{1}\cup\cup c_{s}}\cdots e^{-(\mu_{2}-\mu o)\Sigma_{\alpha}|\Lambda_{\alpha}|}$

$\leq\sum_{t=0}^{\infty}\frac{1}{t!}\sum_{i\Lambda_{1}\gamma\cup C_{1}\cup\cup C_{s}\Lambda_{t}}\cdots\cdots\sum_{i\gamma\cup C_{1}\cup\cup C_{s}}\cdots e^{-(\mu_{2}-\mu_{0})\Sigma_{\alpha}|\Lambda_{\alpha}|}$

$\leq\exp\{4|\gamma\cup C_{1}\cup\cdots\cup C_{s}|\sum_{\Lambda\ni 0;connected}e^{-(\mu_{2}-\mu o)|\Lambda|}\}$

$=\exp\{(|\gamma|+\sum_{\nu}|C_{\nu}|)g_{1}(\mu_{2}, \mu_{0})\}$ .

Since there exist constants $K_{1}$ , $\kappa>0$ such that the number $N_{n}$ of con-
nected sets of $n$ points in $Z^{2}$ which contain the origin is bounded as

$N_{n}\leq K_{1}\kappa^{n}$ $(n\geq 1)$ ,

we know that $g_{1}(\mu_{2}, \mu_{0})=4\sum_{\Lambda\ni 0;connected}e^{-(\mu_{2}-\mu_{O})|\Lambda|}$ goes to zero
exponentially fast as $\mu_{2}\rightarrow\infty$ . Thus, summing up the RHS of (2.8) over
$\{\Lambda_{\alpha}\}$ ’s we obtain

$G(\gamma)\leq e^{-(\mu-g_{1}(\mu_{2},\mu o))|\gamma|+\mu k(\gamma)Re\zeta}$

$xe^{-(\mu-\mu_{2}-1)}$
$\sum$

$e^{-(\mu_{2}-g_{1}(\mu_{2},\mu o))\Sigma_{\nu}|C_{\nu}|}$

$\{C_{\nu}\};C_{\nu}i\gamma$

$\leq e^{-(\mu-g_{1}(\mu_{2},\mu o)-g_{2}(\mu_{2},\mu o))|\gamma|+\mu k(\gamma)Re\zeta-(\mu-\mu_{2}-1)}$ ,
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where $g_{2}(\mu_{2}, \mu_{0})=4\sum_{C\ni 0;connected}e^{-(\mu_{2}-g_{1}(\mu_{2},\mu_{O}))|C|}$ . If $\hat{r}>\hat{l}$ , i.e.,
$|I|\geq 2$ , then since $N^{*}(\gamma, C_{1}, \ldots, C_{s})\leq N_{h}(\gamma)+\sum_{\nu}|C_{\nu}|$ , we have ffom
(2.7b) as in (2.8),

(2.9) $G(\gamma)\leq e^{-\mu|\gamma|+\mu k(\gamma)Re\zeta}$ $\sum$
$ e^{-\mu\Sigma_{\nu}|C_{\nu}|}2^{N^{*}(\gamma,C_{1},,C_{s})}\ldots$

$\{C_{\nu}\};C_{\nu}i\gamma$

$\times\sum_{\{\Lambda_{\alpha}\};\Lambda_{\alpha}i\gamma\cup C_{1}\cup C_{s}}\ldots e^{-(\mu-\mu o-1)\Sigma_{\alpha}|\Lambda_{\alpha}|}$

$\leq e^{-\mu|\gamma|+\mu k(\gamma)Re\zeta-(\mu-\mu_{2}-1)(2|I|-N_{h}(\gamma)-2)}2^{N_{h}(\gamma)}$

$\times\sum_{\{C_{\nu}\}\cdot C_{\nu}i\gamma},e^{-(\mu_{2}-\ln 2)\Sigma_{\nu}|C_{\nu}|}$

$\times$

$\{\Lambda_{\alpha}\};\Lambda_{\alpha}\sum_{i\gamma\cup C_{1}\cup\cup c_{s}}\ldots e^{-(\mu_{2}-\mu o)\Sigma_{\alpha}|\Lambda_{\alpha}|}$

$\leq e^{-(\mu-g_{1}(\mu_{2},\mu o))|\gamma|+\mu k(\gamma)Re\zeta-(\mu-\mu_{2}-1)(2|I|-N_{h}(\gamma)-2)}$

$\times\sum e^{-(\mu_{2}-g_{1}(\mu_{2},\mu o)-\ln 2)\Sigma_{\nu}|C_{\nu}|}e^{N_{h}(\gamma)\ln 2}$

$\{C_{\nu}\}$

$\leq e^{-(\mu-g_{1}(\mu_{2},\mu_{O})-g_{3}(\mu_{2},\mu o))|\gamma|+\mu k(\gamma)Re\zeta}$

$\times e^{-(\mu-\mu_{2}-1)(2|I|-N_{h}(\gamma)-2)+N_{h}(\gamma)\ln 2}$ ,

where $gs(\mu_{2}, \mu_{0})=4\sum_{C\ni 0;connected}e^{-(\mu_{2}-g_{1}(\mu_{2},\mu o)-\ln 2)}$ . We take $\mu_{2}$ suf-

ficiently large so that $g_{1}(\mu_{2}, \mu_{0})$ , $g_{2}(\mu_{2}, \mu_{0})$ and $g_{3}(\mu_{2}, \mu_{0})$ are all smaller
than $\frac{\delta}{4}$ .

Assume that $Re\zeta<1-\frac{\delta}{\mu}$ . Then since $N_{v}(\gamma)\geq|k(\gamma)|$ , from (2.6)

we have

(2.10) $G(\gamma)\leq e^{-\frac{\delta}{2}N_{v}(\gamma)-(\mu_{2}-\frac{\delta}{2})(N_{h}(\gamma)+1)-(\mu-\mu_{2}-1)(2|I|-1)}$ ,

if $|I|\geq 2$ , and

(2.10) $G(\gamma)\leq e^{-\frac{\delta}{2}N_{v}(\gamma)-(\mu_{2}-\frac{\delta}{2})-2(\mu-\mu_{2}-1)}$

if $|I|=1$ . Since $c(\xi)$ and $d(\xi)$ depend only on the backbone $\gamma$ , we write
then $c(\gamma)$ and $d(\gamma)$ . Then

(2.12) $\sum$ $|\Psi(\xi)e\mu k(\gamma)\zeta|ec(\xi)+d(\xi)$

$\xi;\gamma$ is the backbone of $\xi$

$=G(\gamma)e^{c(\gamma)+d(\gamma)}$

$\leq e^{-\frac{\delta}{3}N_{v}(\gamma)-(\mu_{2}-\frac{2\delta}{3})(N_{h}(\gamma)+1)}e^{-(\mu+\mu_{4}-2\mu_{2}-5)|base(\gamma)|}$ ,
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where base(j) $=base(\xi)$ for any $\xi$ such that $\gamma$ is the backbone of $\xi$ .

Therefore we have for a fixed interval $I$ ,

(2.13)
$bas\sum_{e(\gamma)=I}G(\gamma)e^{c(\gamma)+d(\gamma)}$

$\leq e^{-(\mu+\mu_{4}-2\mu_{2}-5)|I|}$
$\sum$

$e^{-\frac{\delta}{3}N_{v}(\gamma)-(\mu_{2}-\frac{2\delta}{3})(N_{h}(\gamma)+1)}$ .

base(\gamma )= $I$

To estimate the RHS of (2.13) we separate $\gamma$ into fragments following
the idea of [DKS]. Let $\gamma=\{x_{0}, x_{1}, \ldots, x_{n}\}$ be a self-avoiding path with
base(j)= $I$ . Let $j_{0}=0$ , and for $i\geq 1$ , let

$ j_{i}:=\min$ {$j>j_{i-1}$ ; $\{x_{j-1}$ , $x_{j}\}$ is a horizontal edge}.

Each vertical part $\{x_{j_{i-1}}, x_{j_{i-1}+1}, \ldots, x_{j_{i}-1}\}$ of $\gamma$ with the direction of
the exit vector $\{x_{j_{i}-1}, x_{j_{i}}\}$ is called a fragment. For a fragment $f=$

$\{\overline{x}_{0},\overline{x}_{1}, \ldots,\overline{x}_{p}\}$ with exit direction $e(f)$ , we define

$W(f):=e^{-\frac{\delta}{3}N_{v}(f)-(\mu_{2}-\frac{2\delta}{3})}=e^{-\frac{p\delta}{3}-(\mu_{2}-\frac{2\delta}{3})}$ .

Then the decomposition of $\gamma$ into fragments $\{f_{1}, \ldots, f_{r}\}$ leads to the
identity

$e^{-\frac{\delta}{3}N_{v}(\gamma)-(\mu_{2}-\frac{2\delta}{3})(N_{h}(\gamma)+1)}=\prod_{j=1}^{r}W(f_{j})$ .

Therefore we have

$\sum$
$ e^{-\frac{\delta}{3}N_{v}(\gamma)-(\mu_{2}-\frac{2\delta}{3})(N_{h}(\gamma)+1)}=\sum\infty$

$\sum$
$\square ^{r}W(f_{j})$

$\gamma;base(\gamma)=I$ $r=|I|f_{1},$ . ., $fr$ $j=1$

$\leq\sum_{r=|I|}^{\infty}(2\sum_{k=-\infty}^{\infty}e^{-\frac{\delta}{3}|k|})r\times e^{-(\mu_{2}-\frac{2\delta}{3})r}$

$=\frac{R(\mu_{2},\delta)^{|I|}}{1-R(\mu_{2},\delta)}$ ,

if $\mu_{2}$ is sufficiently large. Thus, if $Re\zeta<1-\frac{\delta}{\mu}$ and $\mu>\mu_{2}$ , where $\mu_{2}$ is
sufficiently large, we have

$\sum_{base(\gamma)=I}G(\gamma)e^{c(\gamma)+d(\gamma)}\leq e^{-(\mu+\mu_{4}-2\mu_{2}-5)|I|_{\frac{R(\mu_{2},\delta)^{|I|}}{1-R(\mu_{2},\delta)}}}$ .
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Since

(2.14) $|Q(\zeta)|=e^{-\mu}|\frac{\sinh\mu}{\cosh\mu-\cosh\mu\zeta}|$

$\geq\frac{e^{-\mu}\tanh\mu_{2}}{1+e^{-\delta}}:=e^{-\mu-\mu_{3}}$

if $Re\zeta<1-\frac{\delta}{\mu}$ and $\mu>\mu_{2}$ , we have

(2.14) $\sum$ $|\hat{\Psi}(\xi;\zeta)|e^{c(\xi)+d(\xi)}\leq e^{-(\mu_{4}-2\mu_{2}-\mu_{3}-5)|I|_{\frac{R(\mu_{2},\delta)^{|I|}}{1-R(\mu_{2},\delta)}}}$ .

base(\mbox{\boldmath $\xi$})= $I$

Let $\mu_{4}>2\mu_{2}+\mu_{3}+5$ . For $\mu>\mu_{4}$ we will estimate the RHS of (2.5).

Fix $\xi_{0}$ and write $base(\xi_{0})=[\hat{l},\hat{r}]$ . Then we have

$\sum_{\xi i\xi_{0}}|\hat{\Psi}(\xi;\zeta)|e^{c(\xi)+d(\xi)}\leq\sum_{x\in[\hat{l}-1,\hat{r}+1]}\sum_{I\ni x}\frac{R(\mu_{2},\delta)^{|I|}}{1-R(\mu_{2},\delta)}$

$=\frac{(\hat{r}-\hat{l}+3)}{1-R(\mu_{2},\delta)}\sum_{k=1}^{\infty}kR(\mu_{2}, \delta)^{k}$

$\leq 3|base(\xi_{0})|\frac{R(\mu_{2},\delta)}{(1-R(\mu_{2},\delta))^{3}}\leq c(\xi_{0})$ .

if $\mu_{2}$ is large. Thus, (2.5) is proved. From (2.5) to (2.4), we argue in the

following way. We call a family of intervals $I_{1}=[\hat{l}_{1},\hat{r}_{1}]$ , $\ldots$ , $I_{n}=[\hat{l}_{n},\hat{r}_{n}]$

linked intervals if for each $1\leq u\leq n,\hat{r}_{u}<\hat{l}_{u+1}\leq\hat{r}_{u}+2$ holds. The base
of a polymer chain forms linked intervals. For a fixed polymer chain $C_{0}$ ,

let $[base(C_{0})]=[\hat{l}_{0},\hat{r}_{0}]$ be the smallest interval including base(Co). Then
noting that the distance of $base(C_{0})$ and base(C) is less than 2 if $C_{0}$ and
$C$ are incompatible, we have

$\sum_{CiC_{0}}|F_{\hat{\Psi}}(C;\zeta)|e^{c^{*}(C)+d^{*}(C)}$

$\leq$ $\sum$ $\sum$ $\sum$ $\sum$

$x\in[\hat{l}_{0}-2,\hat{r}o+2]n=1I_{1},\ldots,I_{n}\subset[0,L];\cup I_{u}\ni x$ $\xi_{1},$ . , $\xi_{n}\in \mathcal{K}_{L}$ ;
linked intervals, $base(\xi_{u})=I_{u},1\leq u\leq n$

$\prod_{u=1}^{n}[\hat{\Psi}(\xi_{u}; \zeta)e^{c(\xi_{u})+d(\xi_{u})}]J_{l}(\xi_{1})J_{r}(\xi_{n})\prod_{u=1}^{n-1}J(\xi_{u}, \xi_{u+1})$

By definition and (2.14), there exists $\mu_{3}^{*}>0=\mu_{3}^{*}(\delta)$ such that $|J_{r}|$ ,
$|J_{l}|$ , $|J|$ are all bounded by $e^{\mu_{3}^{*}}$ from above if $Re(\zeta)<1-\frac{\delta}{\mu}$ . Therefore
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from the estimate (2.15), we have

$base(\xi_{u}\ldots)=I_{u}1\leq u\leq n\sum_{\xi_{1},,\xi_{n}\in \mathcal{K}_{L\ovalbox{\tt\small REJECT}}},\prod_{u=1}^{n}[\hat{\Psi}(\xi_{u}; \zeta)e^{c(\xi_{u})+d(\xi_{u})}]J\iota(\xi_{1})J_{r}(\xi_{n})\prod_{u=1}^{n-1}J(\xi_{u}, \xi_{u+1})$

$\leq\prod_{u=1}^{n}e^{-(\mu_{4}-2\mu_{2}-\mu_{3}-2\mu_{3}^{*}-5)|I_{u}|_{\frac{R(\mu_{2},\delta)^{|I_{u}|}}{1-R(\mu_{2},\delta)}}}$ .

Assuming that $\mu_{4}>2\mu_{2}+\mu_{3}+2\mu_{3}*+5$ , we have

$\sum_{CiC_{O}}|F_{\hat{\Psi}}(C;\zeta)|e^{c^{*}(C)+d^{*}(C)}$

$\leq(\hat{r}_{0}-\hat{\iota}_{0}+4)\sum\sum$ $\sum$$n=1u=1\infty nI_{1},\ldots,I_{n}\subset[0,L];I_{u}\ni x,\prod_{u=1}^{n}\frac{R(\mu_{2},\delta)^{|I_{u}|}}{1-R(\mu_{2},\delta)}$

linked intervals

$\leq(\hat{r}_{0}-\hat{l}_{0}+4)\frac{R(\mu_{2},\delta)}{(1-R(\mu_{2},\delta))^{3}}\sum_{n=1}^{\infty}n(\frac{2R(\mu_{2},\delta)}{(1-R(\mu_{2},\delta))^{2}})n-1$

$\leq\frac{(\hat{r}_{0}-\hat{l}_{0}+4)}{2}$

if $\mu_{2}$ is large. Since $\sum_{\xi\in C_{O}}|base(\xi)|\geq\max\{\frac{2}{3}[base(C_{0})], 1\}$ , the RHS of
the above inequality is not larger than $c^{*}(C_{0})$ .

This allows us to apply general theory of cluster expansion so that
there exists a function

$F_{\hat{\Psi}}^{T}$ : $\prime p_{f}(CP)\times C\rightarrow C$

such that $F_{\hat{\Psi}}^{T}$ is analytic for $Re\zeta<1-\frac{\delta}{\mu}$ and it satisfies

(2.16)
$compatible\sum_{c_{1},,c_{r}\in CP_{L}}$

,

$\prod F_{\hat{\Psi}}(C_{i;}\zeta)=\exp\{\sum_{\triangle\in P_{f}(CP_{L})}F_{\hat{\Psi}}^{T}(\triangle;\zeta)\}$

and

(2.17)
$\sum_{\triangle iC_{O}}|F_{\hat{\Psi}}^{T}(\triangle;\zeta)|e^{d^{*}(\triangle)}\leq c^{*}(C_{0})$

,

where $\prime p_{f}(CP_{L})$ is the collection of all finite subsets of $C’\mathcal{P}_{L}$ and $d^{*}(\triangle)=$

$\sum_{C\in\triangle}d^{*}(C)$ . If $\triangle$ is decomposed into two disjoint subsets $\triangle_{1}$ and $\triangle_{2}$

such that $\{C_{1}, C_{2}\}$ are compatible for every pair $C_{1}\in\triangle_{1}$ , $C_{2}\in\triangle_{2}$ , then
$F_{\hat{\Psi}}^{T}(\triangle;\zeta)=0$ . We call $\triangle\in P_{f}(CP_{L})$ a cluster if there are no such
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decomposition $\triangle=\triangle_{1}\cup\triangle_{2}$ . Also, we note that $F_{\hat{\Psi}}^{T}(\triangle;\zeta)$ is invariant

under horizontal translation of $\triangle$ . For $\triangle\in P_{f}(CP)$ , put base(A) $=$

$\bigcup_{C\in\triangle}base(C)$ . Then (2.16) and (2.17) implies that the limit

$\hat{\varphi}(\zeta)=\lim_{L\rightarrow\infty}\frac{1}{L}\ln\ldots\sum_{C_{1},,C_{r}\in CP_{L}}\prod_{u=1}^{r}F_{\hat{\Psi}}(C_{u};\zeta)$

$=\triangle\in P_{f}(C7^{2}),[base(\Delta)]=[0,k]\sum_{forsomek\geq 0}F_{\hat{\Psi}}^{T}(\triangle;\zeta)$

exists and analytic for $\zeta<1-\frac{\delta}{\mu}$ if $\mu>\mu_{4}$ .

free energy for a joint distribution

Let $q\geq 1$ , and let $0<t_{1}<\cdots<t_{q+1}=1$ . For $\underline{\zeta}=(\zeta_{0}, \zeta_{1}, \ldots, \zeta_{q+1})$

$\in C^{q+1}$ , let

(2.18) $\varphi^{(q)}(\underline{\zeta};t_{1, }\ldots, t_{q+1})=\lim_{L\rightarrow\infty}\frac{1}{L}\ln\sum_{\Gamma\in S_{L}}e^{\mu\underline{\zeta}\cdot\hat{X}_{L}^{(q)}(t_{1}}’\ldots$

’
$t_{q+1}$ )

$W(\Gamma)$

if the limit exists. Here, the random vector $\hat{X}_{L}^{(q)}(t_{1}, \ldots, t_{q+1})$ is defined
by

(2.19)

$\hat{X}_{L}^{(q)}(t_{1}, \ldots, t_{q+1})=(\frac{a(\pi(\Gamma))}{L},$ $X_{L}(\frac{\lfloor Lt_{1}\rfloor}{L})$ , $\ldots$ , $X_{L}(\frac{\lfloor Lt_{q}\rfloor}{L})$ , $X_{L}(1))$ .

With a slight change of the proof of Lemma 2.1, we can prove existence
and analyticity of the limit $\varphi^{(q)}(\underline{\zeta};t_{1}, \ldots, t_{q+1})$ . To be more precise, we
decompose $a(\pi(\Gamma))$ into terms corresponding to polymers appearing in
the decomposition of $\Gamma$ . Let $\xi=(\gamma, \{C_{\nu}\}, \{\Lambda_{\alpha}\})$ be a polymer with base
$[a, b]$ . The area area(\mbox{\boldmath $\xi$}) is then defined by

area(\mbox{\boldmath $\xi$})= $\#$ { $x\in[\hat{l},\hat{r}]\times[-M,$ $M]\cap Z^{2^{*}};$ $x$ is below7}
$-\#$ { $x\in[\hat{l},\hat{r}]\times[-M,$ $M]\cap Z^{2^{*}};$ $x$ is above7}.

This is independent of large $M$ . For a $\Gamma\in S_{L}$ , denote $D(\Gamma)$ all polymers,
which obtained through any triple $(\pi(\Gamma), \{C_{\nu}\}, \{\Lambda_{\alpha}\})$ with its cutting
lines, where $\{\Lambda_{\alpha}\}$ is taken over all families of connected sets such that
$\Lambda_{\alpha}i\Gamma$ for each $\alpha$ . We have

(2.20)
$a(\pi(\Gamma))=\sum_{\xi\in D(\Gamma)}$

{area(\mbox{\boldmath $\xi$})+k(\gamma )(L-r^(\mbox{\boldmath $\xi$}))},
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where $base()$ $=[\hat{l}(\xi),\hat{r}(\xi)]$ for $\xi\in D(\Gamma)$ . Therefore,

$\underline{\zeta}\cdot\hat{X}_{L}^{(q)}(t_{1}, \ldots, t_{q+1})=\zeta_{0}\sum_{\xi\in D(\Gamma)}\{\frac{area(\xi)}{L}+k(\gamma)(1-\frac{\hat{r}(\xi)}{L})\}$

$+\sum_{i=1}^{q+1}\zeta_{i}\sum_{\xi\in D(\Gamma)}1_{[\hat{r}(\xi)<Lt_{i}]}k(\gamma)$

$+\sum\zeta_{i}q+1$

$\sum$ $1_{[\hat{l}(\xi)\leq Lt_{i}\leq\hat{r}(\xi)]}k(\gamma;t_{i}L)$ ,
$i=1$ $\xi\in D(\Gamma)$

where $k(\gamma;t_{i}L)$ is the maximal hight of the intersection of polygonal line
$\gamma$ and the vertical line $\{x^{1}=t_{i}L\}$ .

Proposition 2.2. Let $\mu>\mu_{4}$ . If $\underline{\zeta}$ satisfies

(2.21) $\{$

$\max\{|Re(\zeta_{0}+\zeta_{q+1})|, |Re\zeta_{q+1}|\}\leq 1-\frac{2\delta}{\mu}$ ,
$|Re\zeta_{i}|\leq\frac{\delta}{4(q+1)\mu}$ , $i=1,2$ , $\ldots$ , $q$ ,

then the limit $\varphi^{(q)}(\underline{\zeta};t_{1}, \ldots, t_{q+1})$ exists and is analytic in $\underline{\zeta}$ .

Proof. Let $\xi$ be a polymer with base $[\hat{l}(\xi),\hat{r}(\xi)]\subset[0, L]$ . We decompose
$\xi$ into fragments $\{f_{p}\}_{p=1}^{P}$ . The hight of a fragment $f=\{x_{1}, \ldots, x_{u}\}$ is

defined by
$h(f)=x_{u}^{2}-x_{1}^{2}$

and the position of $f$ is given by

$pos(f)=x_{1}^{1}=x_{u}^{1}$ .

Then we have as in [DH2],

area(\mbox{\boldmath $\xi$}) $=p\sum_{=1}^{P}h(f_{p})(\hat{r}(\xi)-pos(f_{p}))$ .

Since $k(\gamma)=\sum_{p=1}^{P}h(f_{p})$ , we have

$\frac{area(\xi)}{L}+k(\gamma)(1-\frac{\hat{r}(\xi)}{L})=\sum_{p=1}^{P}h(f_{p})(1-\frac{pos(f_{p})}{L})$ .
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Thus, we have

$|Re[\zeta_{0}(\frac{area(\xi)}{L}+k(\gamma)(1-\frac{\hat{r}(\xi)}{L}))+\sum_{i=1}^{q+1}\zeta_{i}1_{[\hat{r}(\xi)<Lt_{i}]}k(\gamma)$

$+\sum_{i=1}^{q+1}\zeta_{i}1_{[\hat{l}(\xi)\leq Lt_{i}\leq\hat{r}(\xi)]}k(\gamma;Lt_{i})]|$

$\leq|Re(\zeta_{0}+\zeta_{q+1})\sum_{p=1}^{P}h(f_{p})(1-\mathring{\frac{ps(f_{p})}{L}})+Re\zeta_{q+1}\sum_{p=1}^{P}h(f_{p})\mathring{\frac{ps(f_{p})}{L}}|$

$+\sum_{i=1}^{q}|Re\zeta_{i}|N_{v}(\gamma)$

$\leq|Re(\zeta_{0}+\zeta_{q+1})|\sum_{p=1}^{P}|h(f_{p})|(1-\mathring{\frac{ps(f_{p})}{L}})+|Re\zeta_{q+1}|\sum_{p=1}^{P}|h(f_{p})|\frac{pos(f_{p})}{L}$

$+\sum_{i=1}^{q}|Re\zeta_{i}|N_{v}(\gamma)$

$\leq[\max\{|Re(\zeta_{0}+\zeta_{q+1})|, |Re\zeta_{q+1}|\}+\sum_{i=1}^{q}|Re\zeta_{i}|]N_{v}(\gamma)$ .

Set

$X^{(L)}(\underline{\zeta};\xi)=X_{t_{1},,t_{q+1}}^{(L)}\ldots(\underline{\zeta};\xi)$

$=\zeta_{0}(\frac{area(\xi)}{L}+k(\gamma)(1-\frac{\hat{r}(\xi)}{L}))+\sum_{i=1}^{q+1}\zeta_{i}1_{[\hat{r}(\xi)<Lt_{i}]}k(\gamma)$

$+\sum_{i=1}^{q+1}\zeta_{i}1_{[\hat{l}(\xi)\leq Lt_{i}\leq\hat{r}(\xi)]}k(\gamma;Lt_{i})$ .

As before, let

(2.22) $\hat{\Psi}(\xi;\underline{\zeta}, t_{1}, \ldots, t_{q+1})=\Psi(\xi)e^{\mu X^{(L)}(\underline{\zeta};\xi)}\prod_{\ell=\hat{l}(\xi)}^{\hat{r}(\xi)}Q^{-1}(\zeta_{L}(\ell))$ ,

where $\zeta_{L}(\ell)=\zeta_{0}(1-\frac{\ell}{L})+\sum_{i=1}^{q+1}\zeta_{i}1_{[\ell\leq Lt_{i}]}$ . For simplicity we write $\hat{\Psi}(\xi;\underline{\zeta})$

for $\hat{\Psi}(\xi;\underline{\zeta};t_{1}, \ldots, t_{q+1})$ for the moment. Then for a polymer chain $C$ $=$
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$\{\xi_{1}, \ldots, \xi_{m}\}$ , we define $F_{\hat{\Psi}}(C;\underline{\zeta})=F_{\hat{\Psi}}(C;\underline{\zeta}, t_{1}, \ldots, t_{q+1})$ analogously to
$F_{\hat{\Psi}}(C;\zeta)$ . Namely,

$F_{\hat{\Psi}}(C;\underline{\zeta})=\prod_{u=1}^{m}\hat{\Psi}(\xi_{u}; \underline{\zeta})J_{l}^{(q)}(\xi_{1})J_{r}^{(q)}(\xi_{m})\prod_{u=1}^{m-1}J^{(q)}(\xi_{u}, \xi_{u+1})$ ,

where $J_{l}^{(q)}$ , $J_{r}^{(q)}$ and $J^{(q)}$ are defined as $J_{l}$ , $J_{r}$ and $J$ by replacing
$\hat{\Psi}(\xi;\zeta)$ with $\hat{\Psi}(\xi;\underline{\zeta})$ . If $\underline{\zeta}$ satisfies (2.21), then $Q(\zeta_{L}(\ell))$ is analytic in $\underline{\zeta}$

and satisfies the estimate

$|Q(\zeta_{L}(\ell))^{-1}|\leq e^{\mu+\mu_{3}}$ $\ell=0,1$ , $\ldots$ , $L$

if $\mu>\mu_{2}$ . Therefore as in the proof of Lemma 2.1, for $\mu>\mu_{4}$ we have
convergent cluster expansion:

(2.23)

$\frac{1}{L}\ln\sum_{compatiblec_{1},,c_{n}\in CP}\prod_{L,j=1}^{n}F_{\hat{\Psi}}(C_{j} ^{;} \underline{\zeta})=\frac{1}{L}\triangle\in P_{f}(CP_{L})$
$\sum$ $F_{\hat{\Psi}}^{T}(\triangle;\underline{\zeta}, t_{1}, \ldots, t_{q+1})$

such that $F_{\hat{\Psi}}^{T}(\triangle;\underline{\zeta}, t_{1}, \ldots, t_{q+1})=0$ unless $\triangle$ is a cluster, and (2.17)

holds uniformly in $\zeta$ satisfying (2.21). So, if (2.23) converges uniformly
in $\underline{\zeta}$ satisfying ( $2.2\overline{1)}$ , then the limit is analytic in this region.

For an interval $I$ $\subset[0, L]$ , set

$--\wedge-(I;\underline{\zeta}, t_{1}, \ldots, t_{q+1}):=$
$\sum$

$\square F_{\hat{\Psi}}(C_{i;}\underline{\zeta}, t_{1}, m\ldots, t_{q+1})$

.

$c_{1}b’ a$

Then by cluster expansion we have

$\ln_{\cup}^{-}-\wedge(I;\underline{\zeta}, t_{1}, \ldots, t_{q+1})=\sum_{\triangle\in P_{f}(CP)\cdot base(\triangle)\subset I},F_{\hat{\Psi}}^{T}(\triangle;\underline{\zeta}, t_{1}, \ldots, t_{q+1})$

if $\underline{\zeta}$ satisfies (2.21), where base(A) $=\bigcup_{C\in\triangle}base(C)$ . Writing

(2.24)
$\Phi(J;\underline{\zeta}):=\sum_{\triangle\in P_{f}(CP)\ovalbox{\tt\small REJECT}[base(\triangle)]=J}F_{\hat{\Psi}}^{T}(\triangle;\underline{\zeta}, t_{1}, \ldots, t_{q+1})$

for an interval $J\subset I$ , we obtain

$\ln_{\cup}^{-}-\wedge(I;\underline{\zeta}, t_{1}, \ldots, t_{q+1})=\sum_{J\subset I}\Phi(J;\underline{\zeta})$
.
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From M\"obius’ inversion formula, we also have

(2.25)
$\Phi(J;\underline{\zeta})=\sum_{\overline{I}\subset J}(-1)^{|J|-|\overline{I}|}\ln_{\cup}^{-}-\wedge(\tilde{I};\underline{\zeta}, t_{1}, \ldots, t_{q+1})$

.

Let us also define

$\Phi_{0}(J;\zeta):=,\sum_{\triangle\in P_{f}(CP)\cdot[base(\triangle)]=J}F_{\hat{\Psi}}^{T}(\triangle;\zeta)$
,

where $F_{\hat{\Psi}}^{T}(\triangle;\zeta)$ is given in (2.16) through cluster expansion. Then by

(2.17) and the definition of $d^{*}(\triangle)$ , $\Phi(J;\underline{\zeta})$ and $\Phi_{0}(J;\zeta)$ satisfy the fol-
lowing estimate.

(2.26) $\max\{|\Phi(J;\underline{\zeta})|, |\Phi_{0}(J;\zeta)|\}\leq 3e^{-(\mu-2\mu_{4}+\mu_{2}+1)\lceil\frac{|J|}{3}\rceil}$

if $\mu>2\mu_{4}-\mu_{2}-1$ , $|Re\zeta|\leq 1-\frac{\delta}{\mu}$ and $\underline{\zeta}$ satisfies (2.21).

Lemma 2.3. Let $\mu>2\mu_{4}-\mu_{2}-1$ . If $\underline{\zeta}$ satisfies (2.21), then

(2.27)
$\lim\underline{1}$

$\sum$ $|\Phi(J;\underline{\zeta})-\Phi_{0}(J;\zeta_{L}(\hat{r}))|=0$ ,
$L\rightarrow\infty L$

$J=[\text{{\it \^{i}}}_{\hat{r}]\subset[0,L]}$,

where $\zeta_{L}(\hat{r})=\zeta_{L}(\hat{r};\underline{\zeta}):=\zeta_{0}(1-\frac{\hat{r}}{L})+\sum_{i=1}^{q+1}\zeta_{i}1_{[0,Lt_{i}]}(\hat{r})$ .

Lemma 2.3 implies that

$\lim\underline{1}$

$\sum$
$\Phi(J;\underline{\zeta})=\lim\underline{1}$

$\sum$ $\Phi_{0}(J;\zeta_{L}(\hat{r}))$ .
$L\rightarrow\infty L$ $L\rightarrow\infty L$

$J=[\text{{\it \^{i}}},\hat{r}]\subset[0,L]$ $J=[\text{{\it \^{i}}}_{\hat{r}]\subset[0,L]}$,

Note that for $\zeta$ satisfying $|Re\zeta|<1-\frac{\delta}{\mu}$ ,

$\hat{\varphi}(\zeta)=forsomek\geq 0\sum_{J=[-k,0]}\Phi_{0}(J;\zeta)$

,

which implies that

(2.28)

$\lim_{L\rightarrow\infty}\frac{1}{L}$ $\sum$ $\Phi_{0}(J;\zeta_{L}(\hat{r}))=\int_{0}^{1}\hat{\varphi}(\zeta_{0}(1-x)+\sum_{i=1}^{q+1}\zeta_{i}1_{[0,t_{i}]}(x))dx$

$J=[\hat{l},\hat{r}]\subset[0,L]$

uniformly in $\underline{\zeta}$ satisfying (2.21). As a result of Proposition 2.2 and
Lemma 2.3, we obtain
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Corollary 2.4 For $\mu>\mu_{4}$ ,

(2.29)

$\varphi^{(q)}(\underline{\zeta};t_{1}, \ldots, t_{q+1})=\int_{0}^{1}(\hat{\varphi}+\ln Q)(\zeta_{0}(1-x)+\sum_{i=1}^{q+1}\zeta_{i}1_{[0,t_{i}]}(x))dx$

if $\underline{\zeta}$ satisfies (2.21). This function is analytic in $\underline{\zeta}$ in this region.

Proof of Lemma 2.3. We first introduce an intermediate weight $\tilde{\Psi}(\xi;\underline{\zeta})$

by

$\tilde{\Psi}(\xi;\underline{\zeta})$

$:=\Psi(\xi)\exp[\mu\{\zeta_{0}(\frac{area(\xi)}{L}+(1-\frac{\hat{r}(\xi)}{L})k(\gamma))+\sum_{i=1}^{q+1}\zeta_{i}1_{[\hat{r}(\xi)<Lt_{i}]}k(\gamma)\}]$

$\times$

$b(\xi)\prod Q^{-1}(\zeta_{L}(\ell))$

.

$\ell=a(\xi)$

It is easy to verify that $\tilde{\Psi}(\xi;\underline{\zeta})$ also satisfies (2.5) if $\underline{\zeta}$ satisfies (2.21),

and therefore we have corresponding $\tilde{\Phi}$ by

$m$

$\ln$ $\sum$ $\prod F_{\overline{\Psi}}(Cp;\underline{\zeta})=$ $\sum$ $\tilde{\Phi}(\mathcal{J};\underline{\zeta})$

$ c_{1},,c_{m}base(C_{p})\subset$
’

$c\circ mpatibleI,1\leq p\leq mp=1$
$J\subset I$ ; interval

for every interval $I$ $\subset[0, L]$ . $\tilde{\Phi}$ also satisfies the estimate (2.26). By

the M\"obius inversion formula $\Phi(I;\underline{\zeta})=\tilde{\Phi}(I;\underline{\zeta})$ if I contains none of

$\{Lt_{i}\}_{j=1}^{q+1}$ . This means by (2.26) that

(2.30) $\lim_{L\rightarrow\infty}\frac{1}{L}\sum_{J\subset[0,L]}|\Phi(J;\underline{\zeta})-\tilde{\Phi}(J;\underline{\zeta})|=0$ .

For $s\in[0,1]$ , let us define

$\tilde{\Psi}_{s}(\xi;\underline{\zeta}):=s\tilde{\Psi}(\xi;\underline{\zeta})+(1-s)\hat{\Psi}(\xi;\zeta_{L}(\hat{r}))$ ,

and let $\tilde{\Phi}_{s}$ be the corresponding function defined through cluster expan-
sion. Then we have

(2.31) $|\tilde{\Phi}(J;\underline{\zeta})-\Phi_{0}(J;\zeta_{L}(\hat{r}))|$

$\leq\sum_{\xi\in \mathcal{K}(J)}\sup_{s,\underline{\zeta}}|_{\partial\tilde{\Psi}_{s}(\xi\cdot\underline{\zeta})}^{\underline{\partial\tilde{\Phi}_{s}(J,\underline{\zeta})}},\cdot||\tilde{\Psi}(\xi;\underline{\zeta})-\hat{\Psi}(\xi;\zeta_{L}(b))|$ .
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Like (2.25) we have

$\tilde{\Phi}_{S}(\mathcal{J};\underline{\zeta})=$ $\sum$ $(-1)|J|-|I’|\ln_{\cup}^{\simeq}-(I’)$ ,
$I’\subset J$ , interval

where

$\cup-\sim-(I’):=baSe(c_{p})\subset I’\sum_{c_{1},c_{m}\in C\mathcal{P}1\leq p\leq m}\prod_{p=1}^{m}F_{\overline{\Psi}_{s}}(C_{p};\underline{\zeta})$
.

For a polymer chain $C$ with $6ase(C)\subset I’$ , we have

$|\frac{\partial\ln_{\cup}^{\simeq}-(I’)}{\partial F_{\overline{\Psi}_{s}}(C)}|\leq\exp\{\sum_{\triangle iC}base(\triangle)\subset I’|F_{\overline{\Psi}_{s}}^{T}(\triangle;\underline{\zeta})|\}$

$\leq\exp\{c^{*}(C)e^{-(\mu-2\mu_{4}+\mu_{2}\dagger 1)}\}$ .

Therefore for a polymer $\xi$ with base(\mbox{\boldmath $\xi$})\subset I’, we have

$|\frac{\partial\ln_{\cup}^{-}-\sim(I’)}{\partial\tilde{\Psi}_{s}(\xi)}|$

$\leq C\in C7^{\supset},C\ni\xi base(C)\subset I\sum_{j}|\frac{\partial F_{\overline{\Psi}_{s}}(C,\underline{\zeta})}{\partial\tilde{\Psi}_{s}(\xi,\underline{\zeta})}.\cdot|\exp\{c^{*}(C)e^{-(\mu-2\mu_{4}+\mu_{2}+1)}\}$

$\leq$ $\sum$ $\sum$ $\sum$

$n$ , $m\geq 0$ {Il, , $I_{n}$ }, $\{In+1 ^{I\}}n+m$
$I_{1}$ , $I_{n}$ , $base$ $(\xi)fo$ $r$ $ba$ se $(\xi)$ , $I_{n+1}$ , $I_{n+m}form$

$l$ in $ke$ $d$ int erval $s$
$\iota$ in $ke$ $d$ in $terv$ a $\iota$

$s$

$\times\exp\{c(\xi)e^{-(\mu-2\mu_{4}+\mu_{2}+1)}\}e^{(n+m+2)\mu_{3}^{*}}$

$\times\prod_{p=1}^{n+m}(\sum_{base(\xi_{p})=I_{p}}|\tilde{\Psi}_{s}(\xi_{p};\underline{\zeta})|e^{d(\xi_{p})+c(\xi_{p})})$

$\leq\sum_{n,m\geq 0}\{\frac{2R(\mu_{2},\delta)e^{2\mu_{3}}*}{(1-R(\mu_{2},\delta))^{2}}\}^{n+m}\exp\{c(\xi)e^{-(\mu-2\mu_{4}+\mu_{2}+1)}\}$

$\leq 4\exp\{c(\xi)e^{-(\mu-2\mu_{4}+\mu_{2}+1)}\}$ ,

if $\mu_{2}$ is sufficiently large. This implies the uniform bound

(2.32) $|_{\partial\tilde{\Psi}_{s}(\xi,\underline{\zeta})}^{\underline{\partial\tilde{\Phi}_{s}(J\cdot\underline{\zeta})}}.’|\leq 4|J|^{2}\exp\{3|base(\xi)|e^{-(\mu-2\mu_{4}+\mu_{2}+1)}\}$

for $s\in[0,1]$ , $\xi\in \mathcal{K}(J)$ and $\underline{\zeta}$ satisfying (2.21). Let $J=[\hat{l},\hat{r}]$ be an

interval in $[0, L]$ with $|J|\leq(\ln L)^{2}$ and $Lt_{i}\not\in J$ for any $i=1$ , $\ldots$ , $q+1$ ,
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and let $\xi\in \mathcal{K}(J)$ be such that $N_{v}(\xi)\leq(\ln L)^{2}$ . Let $K>0$ be an
arbitrary positive number and we fix it. We assume that $\underline{\zeta}$ satisfies

(2.21) with $|Im\zeta_{0}|\leq K$ . By analyticity, for $\hat{l}\leq\ell\leq\hat{r}$ we have

$\log Q(\zeta_{L}(\hat{r}))-\log Q(\zeta_{L}(\ell))\leq Const.\frac{(\ln L)^{2}}{L}$ .

uniformly in $\underline{\zeta}$ in this region. From this and the fact that

$\mu\frac{area(\xi)}{L}+\mu(\frac{\hat{r}}{L}-\frac{\hat{r}(\xi)}{L})k(\gamma)\leq\frac{\mu}{L}\sum_{f}|h(f)|(\hat{r}-pos(\xi))$

$\leq\mu\frac{(\ln L)^{2}}{L}N_{v}(\xi)\leq\mu(\ln L)^{4}/L$ ,

using the inequality $|e^{z}-1|\leq|z|e^{|z|}$ we have

(2.33) $|\tilde{\Psi}(\xi,\cdot\underline{\zeta})-\hat{\Psi},\underline{(\xi,\cdot\zeta_{L}(\hat{r}))|}|\hat{\Psi}(\xi\cdot\underline{\zeta})|$

$=|\frac{Q(\zeta_{L}(\hat{r}))^{|base(\xi)|}}{\prod_{\ell=\hat{l}(\xi)}^{\hat{r}(\xi)}Q(\zeta_{L}(\ell))}\exp[\mu\zeta_{0}\frac{area(\xi)}{L}+\mu\zeta_{0}(\frac{\hat{r}}{L}-\frac{\hat{r}(\xi)}{L})k(\gamma)]-1|$

$\leq Const.\frac{(\ln L)^{4}}{L}$ .

The constant does not depend on $L$ or $\underline{\zeta}$ satisfying $|Im\zeta_{0}|\leq K$ and
(2.23). Hence we have

$|\tilde{\Phi}(J;\underline{\zeta})-\Phi_{0}(J;\zeta_{L}(\hat{r}))|$

$\leq Const$ .
$N_{v}(\xi)\leq(\ln L)^{2}\sum_{\xi,base(\xi)\subset J}|J|^{2}e^{3|base(\xi)|e^{-(\mu-2\mu_{4}+\mu_{2}+1)}}|\hat{\Psi}(\xi;\underline{\zeta})|\frac{(\ln L)^{4}}{L}$

$+N_{v}(\xi)\geq(\ln L)^{2}\sum_{\xi,base(\xi)\subset J}|J|^{2}e^{3|base(\xi)|e^{-(\mu-2\mu_{4}+\mu_{2}+1)}}(|\tilde{\Psi}(\xi;\underline{\zeta})|+|\hat{\Psi}(\xi;\zeta_{L}(\hat{r}))|)$

$:=I+II$ .
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Since $|J|\leq(\ln L)^{2}$ and $\underline{\zeta}$ satisfies (2.21), we can bound I and $II$ in the
following way.

$I$

$\leq Const.|J|^{3}\{\xi,base(\xi)=[O,k]\sum_{forsomek\geq 0}|\hat{\Psi}(\xi;\underline{\zeta})|e^{c(\xi)+d(\xi)}\}\frac{(\ln L)^{4}}{L}$

$=O(\frac{(\ln L)^{10}}{L})$ ,

$II$
$\leq|J|^{2}e^{-\frac{\delta}{6}(\ln L)^{2}}\sum_{\xi,base(\xi)\subset J}[|\tilde{\Psi}(\xi;\underline{\zeta})|+|\hat{\Psi}(\xi;\zeta_{L}(\hat{r}))|]e^{c(\xi)+d(\xi)}$

$\leq 6(\ln L)^{6}e^{-\frac{\delta}{6}(\ln L)^{2}}$

Using this and (2.26), we have

$\frac{1}{L}$ $\sum$ $|\tilde{\Phi}(J;\underline{\zeta})-\Phi_{0}(J;\zeta_{L}(\hat{r}))|$

$J=[\text{{\it \^{i}}}_{\hat{r}]\subset[0,L]}$,

$\leq\frac{6}{L}|J|>(\ln L)^{2}\sum_{J\subset[0,L]},e^{-(\mu-2\mu_{4}+\mu_{2}+1)\lceil\frac{|J|}{3}\rceil}+\frac{6}{L}Lt_{i}\in Jforso’ mei|J|\leq(1nL)^{2}\sum_{J\subset[0L]}e^{-(\mu-2\mu_{4}+\mu_{2}+1)\lceil\frac{|J|}{3}\rceil}$

$+\frac{1}{L}Lt_{i}\not\in Jforanyi=1J=[\hat{l},r]\subset[0,L,,]\sum_{|J|\leq(1nL)^{2}}$

,

’

$q+1|\tilde{\Phi}(J;\underline{\zeta})-\Phi_{0}(J;\zeta_{L}(\hat{r}))|$

$=O(\frac{(\ln L)^{10}}{L})$

uniformly in $\underline{\zeta}$ satisfying (2.21) with $Im\zeta_{0}\leq K$ . Since we can take

$K>0$ in an arbitrary way, we proved (2.27).

the limiting quadratic form
Let $\underline{\zeta}$ satisfy (2.21). We introduce a $(q+1)\times(q+1)$ matrix $V_{L}(\underline{\zeta})$

by

$V_{L}(\underline{\zeta})=\frac{1}{\mu^{2}L}Hess\ln\sum_{\Gamma\in S_{L}}e^{\mu\underline{\zeta}\cdot\hat{X}_{L}^{(q)}(t_{1},t_{q+1})}\ldots,W(\Gamma)$ .

This is analytic in $\underline{\zeta}$ satisfying (2.21).

Lemma 2.5. Assume that $\mu>2\mu_{4}-\mu_{2}-1$ and that $\underline{\zeta}\in R^{q+2}$ and
$\underline{\zeta}$ satisfies (2.21). Then uniformly in $\underline{\zeta}$ and $\underline{\eta}=(\eta_{0}, \ldots, \eta_{q+1})\in R^{q+2}$
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such that $|\underline{\eta}|=1$ ,

$\underline{\eta}\cdot V_{L}(\underline{\zeta})\underline{\eta}\rightarrow\underline{\eta}\cdot V(\underline{\zeta})\underline{\eta}$

as $ L\rightarrow\infty$ , where

(2.34) $V(\underline{\zeta})=\frac{1}{\mu^{2}}Hess\int_{0}^{1}(\ln Q+\hat{\varphi})(\zeta(x))dx$ ,

and

(2.35) $\zeta(x)=\zeta_{0}(1-x)+\sum_{i=1}^{q+1}\zeta_{i}1_{[0,t_{i}]}(x)$ .

Further, there exists $\mu_{5}>2\mu_{4}-\mu_{2}-1$ such that $V(\underline{\zeta})$ is uniformly
positive definite for $\mu>\mu_{5}$ .

Proof. Let $\mu_{5}>\mu_{4}+1$ be fixed and let $\mu>\mu_{5}$ . It is easy to see that
$\ln Q(\zeta(x))$ is analytic in $\underline{\zeta}$ for every $x\in[0,1]$ , and

$\underline{\eta}$

. $V(\underline{\zeta})\underline{\eta}=\frac{1}{\mu^{2}}\int_{0}^{1}(\eta 0(1-x)+\sum_{i=1}^{q+1}\eta_{i}1_{[0,t_{i}]}(x))^{2}(\ln Q+\hat{\varphi})’’(\zeta(x))dx$ .

The uniform convergence of

$\frac{1}{L}\ln\sum_{\Gamma\in S_{L}}e^{\mu\underline{\zeta}X_{L}^{(q)}(t_{1},..,t_{q+1})}W(\Gamma)$

to

$\int_{0}^{1}(\ln Q+\hat{\varphi})(\zeta(x))dx$

assures the convergence $V_{L}(\underline{\zeta})\rightarrow V(\underline{\zeta})$ by Cauchy’s formula. What
remains to prove is the non-degeneracy of $V(\underline{\zeta})$ . First, note that for any
$\zeta\in R$ with $|\zeta|<1$ ,

(2.36) $\frac{1}{\mu^{2}}(\ln Q)’’(\zeta)=\mathring{\frac{csh\mu\cosh\mu\zeta-1}{(\cosh\mu-\cosh\mu\zeta)^{2}}}\geq e^{-\mu}\frac{\cosh\mu_{5}-1}{\cosh\mu_{5}}$

holds if $\mu>\mu_{5}$ .

We prove the lemma in two different cases depending on whether
$|\zeta_{0}+\zeta_{q+1}|$ and $|\zeta_{q+1}|$ are both small or not.

Case 1) $|\zeta_{0}+\zeta_{q+1}|<1/5$ , $|\zeta_{q+1}|<1/5$ .
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In this case, we have

$|\zeta(x)|\leq(1-x)|\zeta_{0}+\zeta_{q+1}|+x|\zeta_{q+1}|+\sum_{i=1}^{q}|\zeta_{i}|$

$<\underline{1}\underline{\delta}+$

-5 $ 4\mu$

for every $x\in[0,1]$ . By Cauchy’s formula, we have

$\hat{\varphi}^{JJ}(\zeta(x))=\frac{1}{\pi i}\int_{|z-\zeta(x)|=\frac{1}{5}}\frac{\hat{\varphi}(z)}{(z-\zeta(x))^{3}}dz$

If $|z-\zeta(x)|=\frac{1}{5}$ , then $|Rez|<\frac{3}{5}<1-\frac{\delta}{\mu}$ . Therefore by (2.26) and (2.28)

we have

$|\hat{\varphi}(z)|\leq 9\sum_{n=1}^{\infty}e^{-(\mu-2\mu_{4}+\mu_{2}+1)n}$ .

Therefore as $\mu\rightarrow\infty$

(2.37) $|\frac{1}{\mu^{2}}\hat{\varphi}’’(\zeta(x))|\leq\frac{18\cdot 5^{2}}{\mu^{2}}e^{-\mu}(1+o(1))$

uniformly in $x\in[0,1]$ . Taking $\mu_{5}$ sufficiently large, we have

$\frac{1}{\mu^{2}}(\ln Q+\hat{\varphi})’’(\zeta(x))\geq\frac{e^{-\mu}}{2}>0$

for $\mu>\mu_{5}$ .

Case 2) $|\zeta_{q+1}|>\frac{1}{5}$ or $|\zeta_{0}+\zeta_{q+1}|>\frac{1}{5}$ .

We assume that $|\zeta_{0}+\zeta_{q+1}|>\frac{1}{5}$ . The argument for the case where
$|\zeta_{q+1}|>\frac{1}{5}$ is the same. For $x\in[0, \frac{1}{16}]$ we have

$|\zeta(x)|\geq(1-x)|\zeta_{0}+\zeta_{q+1}|-x|\zeta_{q+1}|-\sum_{i=1}^{q}|\zeta_{i}|$

$\geq\frac{1}{8}-\frac{\delta}{4\mu}>\frac{1}{10}$

for $\mu>\mu_{5}$ , if $\mu_{5}$ is sufficiently large. This means that

$\frac{1}{\mu^{2}}(\ln Q)’’(\zeta(x))\geq\frac{e^{-\frac{9}{10}\mu}}{4}\frac{\cosh\mu_{5}-1}{\cosh\mu_{5}}$
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for $x\in[0, \frac{1}{16}]$ and $\mu>\mu_{5}$ . Therefore by (2.36)

(2.38) $\int_{0}^{\frac{1}{16}}\frac{1}{\mu^{2}}(\ln Q)’’(\zeta(x))(\eta_{0}(1-x)+\sum_{i=1}^{q+1}\eta_{i}1_{[0,t_{i}]}(x))^{2}dx$

$\geq\frac{e^{-\frac{9}{10}\mu}}{16\cdot 4}\frac{\cosh\mu_{5}-1}{\cosh\mu_{5}}\int_{0}^{1}(\eta 0(1-x)+\sum_{i=1}^{q+1}\eta_{i}1_{[0,t_{i}]}(x))^{2}dx$ .

Since $\underline{\zeta}\in R^{q+2}$ satisfies (2.21), $|\zeta(x)|<1-\frac{7\delta}{4\mu}$ for every $x\in[0,1]$ . By

Cauchy’s formula,

$\hat{\varphi}’’(\zeta(x))=\frac{1}{\pi i}\int_{|z-\zeta(x)|=\frac{\delta}{2\mu}}\frac{\hat{\varphi}(z)}{(z-\zeta(x))^{3}}d\zeta$ .

Since the circle $\{|z-\zeta(x)|=\frac{\delta}{2\mu}\}$ lies entirely in the region $\{Rez<1-\frac{\delta}{\mu}\}$ ,

by (2.26) and (2.28) we have

(2.39) $|\int_{0}^{1}\frac{1}{\mu^{2}}\hat{\varphi}’’(\zeta(x))dx|\leq\frac{12}{\delta^{2}}e^{-\mu}(1+o(1))$ .

Thus, by (2.38) and (2.39) $V(\underline{\zeta})$ is uniformly positive definite.

Let $\hat{P}_{L}^{(q)}$ be the distribution of $\hat{X}_{L}^{(q)}(t_{1}, \ldots, t_{q+1})$ under $P_{L}$ , and $\hat{P}_{L,\underline{\zeta}}^{(q)}$

be given by

$\hat{P}_{L,\underline{\zeta}}^{(q)}(\underline{\eta})=E_{L}[e^{\mu\underline{\zeta}\cdot\hat{X}_{L}^{(q)}(t_{1},t_{q+1})}\ldots,]-1e^{\mu\underline{\zeta}\cdot\underline{\eta}}\hat{P}_{L}^{(q)}(\underline{\eta})$

for $\mu>\mu_{5}$ , $\underline{\zeta}\in R^{q+2}$ satisfying (2.21).

Lemma 2.6. Let $\delta>0$ be small and $\mu>\mu_{5}$ . Assume that $\underline{\zeta}_{L},\underline{\zeta}\in$

$R^{q+2}$ satisfy (2.21) and $\underline{\zeta}_{L}\rightarrow\underline{\zeta}$ as $ L\rightarrow\infty$ . Then, under $\hat{P}_{L,\underline{\zeta}_{L}}^{(q)}$ the

centralized random vector

$\hat{Y}_{L}^{(q)}(t_{1}, \ldots, t_{q+1})=\frac{1}{\sqrt{L}}(\hat{X}_{L}^{(q)}(t_{1}, \ldots, t_{q+1})-\hat{E}_{L,\underline{\zeta}_{L}}^{(q)}\hat{X}_{L}^{(q)}(t_{1}, \ldots, t_{q+1}))$

converges weakly to a centered Gaussian random vector $\hat{Y}^{(q)}(t_{1}, \ldots, t_{q+1})$

of which covariance matrix is given by $V(\underline{\zeta})$ .

Proof. Let

$g_{L}(\underline{\eta})=\hat{E}_{L,\underline{\zeta}}^{(q)}L[e^{i\underline{\eta}\cdot\hat{Y}_{L}^{(q)}(t_{1},t_{q+1})}\ldots,]$ .

Then

$\ln g_{L}(\underline{\eta})=L\varphi_{L}(\underline{\zeta}_{L}+\frac{i}{\sqrt{L}\mu}\underline{\eta})-L\varphi_{L}(\underline{\zeta})-\sqrt{L}\cdot\hat{E}_{L,\underline{\zeta}_{L}}^{(q)}\underline{i\underline{\eta}}[\hat{X}_{L}^{(q)}(t_{1}, \ldots, t_{q+1})]$ ,
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where $\varphi_{L}(\underline{\zeta})$ is given by

$\varphi_{L}(\underline{\zeta})=\frac{1}{L}\ln\sum_{\Gamma\in S_{L}}e^{\mu\underline{\zeta}\cdot\hat{X}_{L}^{(q)}(t_{1},t_{q+1})}\ldots,W(\Gamma)$ .

$i$

Since $\underline{\zeta}_{L}$ satisfies (2.21), so does
$\underline{\zeta}_{L}+\overline{\mu\sqrt{L}}^{\underline{\eta}}$

, and we have

$i$

$\varphi_{L}(\underline{\zeta}_{L}+\overline{\mu\sqrt{L}}^{\underline{\eta})}-\varphi_{L}(\underline{\zeta}_{L})$

$=\frac{i}{\mu L\sqrt{L}}E_{L,\underline{\zeta}_{L}}^{(q)}[\hat{X}_{L}^{(q)}(t_{1}, \ldots, t_{q+1})]-\frac{1}{2\mu^{2}L^{2}}\sum_{j,k=1}^{q+1}\eta_{j}\eta_{k}\frac{\partial^{2}\varphi_{L}}{\partial\zeta_{j}\partial\zeta_{k}}|_{\underline{\zeta}=\underline{\zeta}_{L}}+R_{L}$ .

Since

$\frac{1}{\mu^{2}L}\sum_{j,k=1}^{q+1}\eta_{j}\eta_{k}\frac{\partial^{2}\varphi_{L}}{\partial\zeta_{j}\partial\zeta_{k}}|_{\underline{\zeta}=\underline{\zeta}}L=\sum_{j,k=1}^{q+1}\eta_{j}\eta_{k}V_{L}(\underline{\zeta}_{L})_{j,k}$ ,

this term converges $to-\frac{1}{2}\eta\cdot V(\zeta)\underline{\eta}$ . So it remains to show that $LR_{L}\rightarrow 0$

as $ L\rightarrow\infty$ . Formally, $R_{L}$ has the following integral representation.

(2.40) $R_{L}=(\frac{i}{\mu\sqrt{L}})^{3}\sum_{1\leq j\leq k\leq m\leq n}R_{j,k,m}$ ,
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where for $j<k<m$ ,

$R_{j,j,j}=\frac{\eta_{j}^{3}}{2\pi i}\int_{C_{j}}\frac{\varphi_{L}(\underline{\zeta}_{L}+(\xi_{j}-\zeta_{L,j})e_{j}+\sum\nu=j+1(n\frac{i}{\mu\sqrt{L}})\eta_{\nu}e_{\nu})}{(\xi_{j}-\zeta_{L},j)^{3}(\xi_{j}-\zeta_{L,j}-(\frac{i}{\mu\sqrt{L}})\eta_{j})}d\xi_{j}$ ,

$R_{j,j,k}=\frac{\eta_{j}^{2}\eta_{k}}{(2\pi i)^{2}}\int_{C_{j}}\frac{d\xi_{j}}{(\xi_{j}-\zeta_{L,j})^{3}}\int_{C_{k}}d\xi_{k}$

$\times\frac{\varphi_{L}(\underline{\zeta}_{L}+\sum_{\alpha=j,k}}{(\xi_{k}-\zeta}\frac{(\xi_{\alpha}-\zeta_{L,j})e_{\alpha}+\sum_{\beta=k+1}^{n}(\frac{i}{\mu\sqrt{L}})\eta_{\beta}e_{\beta})}{L,k)(\xi_{k}-\zeta_{L,k}-(\frac{i}{\mu^{\sqrt{L}}})\eta_{k})}$ ,

$R_{j,k,k}=\frac{\eta_{j}\eta_{k}^{2}}{(2\pi i)^{2}}\int_{C_{j}}\frac{d\xi_{j}}{(\xi_{j}-\zeta_{L,j})^{2}}\int_{C_{k}}d\xi_{k}$

$\times\frac{\varphi_{L}(\underline{\zeta}_{L}+\sum_{\alpha=j,k}(\xi_{\alpha}-\zeta_{L,\alpha})e_{\alpha}+\sum_{\beta=k+1}(\frac{i}{\mu\sqrt{L}})\eta_{\beta}e_{\beta})}{(\xi_{j}-\zeta_{L,j})(\xi_{k}-\zeta_{L,k}-(\frac{i}{\mu\sqrt{L}})\eta_{k})}$ ,

$R_{j,k,m}$ $=\frac{\eta_{j}\eta_{k}\eta_{m}}{(2\pi i)^{3}}\int_{C_{j}}\frac{d\xi_{j}}{(\xi_{j}-\xi_{L,j})^{2}}\int_{C_{k}}\frac{d\xi_{k}}{(\xi_{k}-\zeta_{L,k})^{2}}\int_{C_{m}}d\xi_{m}$

$\times\frac{\varphi_{L}(\underline{\zeta}_{L}+\sum_{\alpha=j,k,m}(\xi_{\alpha}-\zeta_{L,\alpha})e_{\alpha}+\sum_{\beta=m+1}^{n}(\frac{i}{\mu\sqrt{L}})\eta_{\beta}e_{\beta})}{(\xi_{m}-\zeta_{L,m})(\xi_{m}-\zeta_{L,m}-(\frac{i}{\mu\sqrt{L}})\eta_{m})}$ .

Here, $C_{p}$ is a curve composed of the lower half of the circle $\{|\xi_{p}-\zeta_{L,p}|=$

$\rho\}$ , upper half of the circle $\{|\xi_{p}-\zeta_{L,p}-(\frac{i}{\mu\sqrt{L}})\eta_{p}|=\rho\}$ , and vertical line

segments connecting them, and $\rho$ is a small positive
number. Let us estimate $|R_{j,j,j}|$ . Other terms can be estimated

similarly. Set

$\underline{w}_{L}(j):=\underline{\zeta}_{L}+(\xi_{j}-\zeta_{L,j})e_{j}+\sum_{\nu=j+1}^{n}\frac{i}{\mu\sqrt{L}}\eta_{\nu}e_{\nu}$ .

Then it is easy to see that

$\max\{|Re(w_{L}(j)_{0}+w_{L}(j)_{q+1})|, |Re(w_{L}(j)_{q+1})|\}\leq 1-\frac{2\delta}{\mu}+\rho(\delta_{0,j}+\delta_{q+1,j})$

and $|Re(w_{L}(j)_{\alpha})|\leq\frac{\delta}{4(q+1)\mu}+\rho\delta_{\alpha,j}$ , where $\delta_{j,k}=1$ if $j=k$ and $=0$

if $j\neq k$ . Note that

$\varphi_{L}(w_{L}(j))=\hat{\varphi}(w_{L}(j))+\frac{1}{L}\sum_{\ell=0}^{L}\ln Q(\underline{\tilde{w}}_{L}(j;\ell))$ ,
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where

$\underline{\tilde{w}}_{L}(j;\ell):=w_{L}(j)_{0}(1-\frac{\ell}{L})+\sum_{p=1}^{q+1}w_{L}(j)_{p}1_{[\ell\leq Lt_{p}]}$ ,

and that

$|Re\underline{\tilde{w}}_{L}(j;\ell)|\leq\max\{|Re(w_{L}(j)_{0}+w_{L}(j)_{q+1})|, |Re(w\iota(j)_{q+1})|\}$

$+\sum_{p=1}^{q}|Re(w_{L}(j)_{p})|<1-\frac{7\delta}{4\mu}+\rho$ .

If $\rho<\delta/4\mu$ , then we have analyticity of the integrand in the expression
of $R_{j,j,j}$ as in the proof of Proposition 2.2. This is true when $\underline{\zeta}_{L}$ satisfies

(2.21) and $\xi_{j}\in C_{j}$ . Thus, we can assume that $|\varphi_{L}(\underline{w}_{L}(j))|$ . From this
we easily obtain that

$|R_{j,j,j}|\leq 2M\frac{|\eta_{j}|^{3}}{\rho^{3}}$

for some $M$ $>0$ , which is independent of $L$ . This means that $LR_{L}=$

$O(L^{-1/2})$ uniformly in $\underline{\eta}$ .

Let $g_{\underline{\zeta}}$ be the density function of the Gaussian vector $\hat{Y}^{(q)}(t_{1},$
$\ldots$ ,

$t_{q\dagger 1})$ given in Lemma 2.6.

Proposition 2.7. Let $\mathcal{X}_{L}^{(q)}=(L^{-1}Z)\times Z^{q+1}$ . For each $\underline{x}_{L}\in \mathcal{X}_{L}^{(q)}$ and
$\underline{\zeta}_{L}\in R^{q+2}$ satisfying (2.21), let

$\underline{y}_{L}:=\frac{1}{\sqrt{L}}(\underline{x}_{L}-\hat{E}_{L,\underline{\zeta}}^{(q)}\hat{X}_{L}^{(q)}L(t_{1}, \ldots, t_{q+1}))$ .

Then we have
$2L^{(q+4)/2}\hat{P}_{L}^{(q)}(\underline{x}_{L})-g_{\underline{\zeta}_{L}}(\underline{y}_{L})\rightarrow 0$

uniformly in $\underline{x}_{L}\in \mathcal{X}_{L}$ and $\underline{\zeta}_{L}\in R^{q+2}$ satisfying (2.21).

The proof is a complete repetition of the proof of Theorem 6.3 in

[DH2], so we omit it. Let $h>0$ and $a\geq\frac{h}{2}$ be such that

(2.41a) $\frac{1}{\mu}\int_{0}^{1}(1-x)\varphi’((1-x)\zeta_{0}^{*}+\zeta_{1}^{*})dx=a$

(2.41b) $\frac{1}{\mu}\int_{0}^{1}\varphi’((1-x)\zeta_{0}^{*}+\zeta_{1}^{*})dx=h$
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hold for some $(\zeta_{0}^{*}, \zeta_{1}^{*})\in R^{2}$ with

(2.42) $\max\{|\zeta_{0}^{*}+\zeta_{1}^{*}|, |\zeta_{1}^{*}|\}\leq 1-\frac{2\delta}{\mu}$ ,

where $\varphi=\ln Q+\hat{\varphi}$ . Let also $a_{L}>0$ and $h_{L}>0$ satisfy

(2.43a) $\frac{1}{\mu}\frac{\partial\varphi_{L}}{\partial\zeta_{0}}(\zeta_{L,0},0, \ldots, 0, \zeta_{L,1})=\frac{a_{L}}{L^{2}}$

(2.43b) $\frac{1}{\mu}\frac{\partial\varphi_{L}}{\partial\zeta_{1}}(\zeta_{L,0},0, \ldots, 0, \zeta_{L,1})=\frac{h_{L}}{L}$

for some $(\zeta_{L,0}, \zeta_{L,1})$ satisfying (2.42), and

$(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L})\rightarrow(a, h)$ .

For simplicity, we write $\varphi_{L}(\zeta_{0}, \zeta_{1})$ for $\varphi_{L}(\zeta_{0},0, \ldots, 0, \zeta_{1})$ . By the ar-
gument in the proof of Lemma 2.5, for a sufficiently small $\rho>0$ ,
$\varphi_{L}(\zeta_{L,0}, \zeta_{L,1})$ and

$\mathcal{L}(\zeta_{0}, \zeta_{1}):=\int_{0}^{1}\varphi(\zeta_{0}(1-x)+\zeta_{1})dx$

are analytic in $(\zeta_{0}, \zeta_{1})\in D_{\rho}$ , where

$D_{\rho}:=\{(\zeta_{0}, \zeta_{1})\in C^{2}; \max\{|\zeta_{0}-\zeta_{0}^{*}|, |\zeta_{1}-\zeta_{1}^{*}|\}\leq\rho\}$ .

Also, $\varphi_{L}(\zeta_{0}, \zeta_{1})$ converges to $\mathcal{L}(\zeta_{0}, \zeta_{1})$ uniformly in $D_{\rho}$ . Therefore we
also have the convergence;

(2.44) $(\nabla_{(\zeta_{o},\zeta_{1})}\varphi_{L})(\zeta_{0}^{*}, \zeta_{1}^{*})\rightarrow(\nabla_{(\zeta_{o},\zeta_{1})}\mathcal{L})(\zeta_{0}^{*}, \zeta_{1}^{*})$ .

This convergence is uniform in $(\zeta_{0}^{*}, \zeta_{1}^{*})$ satisfying (2.42). By Lemma 2.5
for $q=0$ , there exist $L_{0}\geq 1$ and $\epsilon=\epsilon(\rho, \mu, \delta, \zeta_{0}^{*}, \zeta_{1}^{*})>0$ such that

$\sum_{j,k=0}^{1}[Hess_{(\zeta_{0},\zeta_{1})}\varphi_{L}(\zeta_{0}, \zeta_{1})]_{j,k}\eta_{j}\eta_{k}\geq\epsilon(|\eta_{0}|^{2}+|\eta_{1}|^{2})$ ,

$\sum_{j,k=0}^{1}[Hess_{(\zeta_{0},\zeta_{1})}\mathcal{L}(\zeta_{0}, \zeta_{1})]_{j,k}\eta_{j}\eta_{k}\geq\epsilon(|\eta 0|^{2}+|\eta_{1}|^{2})$ ,
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for $(\zeta_{0}, \zeta_{1})\in D_{\rho}\cap R^{2}$ , $L\geq L_{0}$ and $\eta_{0}$ , $\eta_{1}\in R$ . This implies that
$\nabla_{(\zeta_{0},\zeta_{1})}\varphi_{L}$ and $\nabla_{(\zeta_{0},\zeta_{1})}\mathcal{L}$ are one-to-one bicontinuous maps on $D_{\rho}\cap R^{2}$

for every $L\geq L_{0}$ . In particular, we have

(2.45a)

$||(\nabla_{(\zeta_{o},\zeta_{1})}\varphi_{L})(\zeta_{0}, \zeta_{1})-(\nabla_{(\zeta_{o},\zeta_{1})}\varphi_{L})(\zeta_{0}^{*}, \zeta_{1}^{*})||\geq\frac{\epsilon}{2}||(\zeta_{0}, \zeta_{1})-(\zeta_{0}^{*}, \zeta_{1}^{*})||$

and

(2.45b)

$||(\nabla_{(\zeta_{0},\zeta_{1})}\mathcal{L})(\zeta_{0}, \zeta_{1})-(\nabla_{(\zeta_{0},\zeta_{1})}\mathcal{L})(\zeta_{0}^{*}, \zeta_{1}^{*})||\geq\frac{\epsilon}{2}||(\zeta_{0}, \zeta_{1})-(\zeta_{0}^{*}, \zeta_{1}^{*})||$

for every $(\zeta_{0}, \zeta_{1})\in D_{\rho}\cap R^{2}$ . By (2.44) and the definition of $(a, h)$ and
$(a_{L}, h_{L})$ , we have

$||\frac{1}{\mu}\nabla_{(\zeta_{L,0},\zeta_{L,1})}\varphi_{L}(\zeta_{0}^{*}, \zeta_{1}^{*})-(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L})||\rightarrow 0$ .

This means that we can find $(\zeta_{L,0}, \zeta_{L,1})\in D_{\rho}$ which solves $(2.43a, 2.43b)$

and by $(2.45a, 2.45b)$ it converges to $(\zeta_{0}^{*}, \zeta_{1}^{*})$ .

In order to discuss convergence of $X_{L}(t)$ from Proposition 2.7, except
tightness we need one more estimate which assures that the separating
contour itself neither fluctuates a lot nor is fat. To do this, let us define

(2.46) $vol(\xi):=|\gamma|+\sum_{\alpha+1}^{u}|C_{\alpha}|$

for a polymer $\xi=(\gamma, \{C_{\alpha}\}_{\alpha=1}^{u}, \{\Lambda_{\beta}\}_{\beta=1}^{v})$ .

Lemma 2.8. Let $\mu>\mu_{5}$ , $h>0$ , $a\geq\frac{h}{2}$ and $a$ , $h$ , $a_{L}$ , $h_{L}$ be given as

above such that $(_{L^{2^{L}}}^{\lrcorner}a, \frac{h_{L}}{L})\rightarrow(a, h)$ as $ L\rightarrow\infty$ . Then for every $k\in N$ ,

there exists a constant $L_{0}\geq 1$ such that for $L\geq L_{0}$ ,

(2.47)

$P_{L}(\max\{vol(\xi);\xi\in\triangle(\Gamma)\}\geq\frac{6}{\delta}\ln L+k|a(\pi(\Gamma))=a_{L},$ $k(\Gamma)=h_{L})$

$\leq 1-\exp(-4e^{-\frac{\delta}{6}k})$ .

Proof. Let $(\zeta_{0}^{*}, \zeta_{1}^{*})$ solves $(2.41a, 2.41b)$ satisfying (2.42) and $(\zeta_{L,0}, \zeta_{L,1})$

be a solution of $(2.43a, 2.43b)$ satisfying (2.42) such that $(\zeta_{L,0}, \zeta_{L,1})$
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converges to $(\zeta_{0}^{*}, \zeta_{1}^{*})$ as $ L\rightarrow\infty$ . Put

$\hat{X}_{L}^{(0)}(\Gamma):=(\frac{a(\pi(\Gamma))}{L}, k(\Gamma))$

$=\sum_{\xi\in\triangle(\Gamma)}$ ( $\frac{area(\xi)}{L}+k(\gamma)(1-\frac{\hat{r}(\xi)}{L})$ , $k(\gamma)$).

Then for $N:=\frac{6}{\delta}\ln L+k$ ,

(2.48) $P_{L}(\max\{vol(\xi);\xi\in\triangle(\Gamma)\}\leq N|a(\pi(\Gamma))=a_{L}, k(\Gamma)=h_{L})$

$=[\sum_{\Gamma\in S_{L;}a(\pi(\Gamma))=a_{L},k(\Gamma)=h_{L}}e^{\mu(\zeta_{L,0},\zeta_{L1})\cdot\hat{X}_{L}^{(0)}(\Gamma)}W(\Gamma)]^{-1}$

$\times$ $\sum$
$e\mu(\zeta_{L,0},\zeta_{L,1})\cdot\hat{X}_{L}^{(0)}(\Gamma)W(\Gamma)$ .

$\Gamma\in S_{L},a(\pi(\Gamma))=a_{L},k(\Gamma)=h_{L}$

$vol(\xi)\leq N$ for every $\xi\in\triangle(\Gamma)$

By Proposition 2.7 we have

(2.49)
$\sum_{\Gamma\in S_{L;}a(\pi(\Gamma))=a_{L},k(\Gamma)=h_{L}}e^{\mu(\zeta_{L,0},\zeta_{L,1})\hat{X}_{L}^{(O)}(\Gamma)}W(\Gamma)$

$=e^{L\varphi_{L}(\zeta_{L,O},\zeta_{L,1})}\hat{P}_{L,(\zeta_{L,0},\zeta_{L,1})}^{(0)}(\frac{a_{L}}{L}, h_{L})$

$=e^{L\varphi_{L}(\zeta_{L,0},\zeta_{L,1})}\mathring{\frac{g_{(\zeta_{L},,\zeta_{L,1})}(0,0)}{2L^{2}}}\{1+o(1)\}$

as $ L\rightarrow\infty$ .

Let $(\zeta_{0}, \zeta_{1})$ satisfy (2.42) and

$\varphi_{L}^{(N)}$ ( $\zeta o$ , $\zeta_{1}$ ) $:=\frac{1}{L}\ln$ $\sum$
$e\mu(\zeta_{0},\zeta_{1})\hat{X}_{L}^{(O)}(\Gamma)W(\Gamma)$ .

$\Gamma\in S_{L},a(\pi(\Gamma))=a_{L},k(\Gamma)=h_{L}$

$vol(\xi)\leq N$ for every $\xi\in\triangle(\Gamma)$

It is straightforward to check that the estimate (2.4) is still valid when
we replace $d(\xi)$ with

$d_{1}(\xi):=d(\xi)-\frac{\delta}{6}|\gamma|+\frac{\delta}{6}vol(\xi)$ .

The only change is that we introduce

$G_{1}(\gamma):=$ $\sum$ $|\Psi(\xi)e\mu(\zeta_{0},\zeta_{1})\cdot\hat{X}_{L}^{(O)}e^{\frac{\delta}{6}\sum_{\alpha}}|C_{\alpha}||$ ,
$\xi;\gamma$ is the backbone of $\xi$
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in place of $G(\gamma)$ , and in estimating $G_{1}(\gamma)$ , we have to put

92 ( $\mu_{2}$ , $\mu_{0})=4$ $\sum$
$e^{-(\mu_{2}-g_{1}}(\mu_{2},\mu o)-\ln 2-\delta/6)|C|$ .

$C\ni 0$ ; connected

Therefore we have convergent cluster expansion;

$\varphi_{L}^{(N)}(\zeta_{0}, \zeta_{1})=\frac{1}{L}\sum_{\triangle\in P_{f}(CP_{L}(N))}F_{\hat{\Psi}}^{T}(\triangle;\zeta_{0}, \zeta_{1})$
,

where $C’\mathcal{P}_{L}(N):=\{C\in CP_{L} ; vol(C)\leq N\}$ and

(2.50)
$\sum_{\triangle iC_{0},\triangle\in P_{f}(CP)}|F_{\hat{\Psi}}^{T}(\triangle;\zeta_{0}, \zeta_{1})|e^{d_{1}^{*}(\triangle)}\leq c^{*}(C_{0})$

.

Therefore we have

(2.51)

$|\varphi_{L}(\zeta_{0}, \zeta_{1})-\varphi_{L}^{(N)}(\zeta_{0}, \zeta_{1})|\leq\frac{1}{L}\sum_{\triangle\in P_{f}(CP_{L})\backslash P_{f}(CP_{L}(N))}|F_{\hat{\Psi}}^{T}(\triangle;\zeta_{0}, \zeta_{1})|$
.

If $\triangle\in 7_{f}^{2}(C’\mathcal{P}_{L}(N))$ , then $\triangle$ contains at least one $\xi\in \mathcal{K}_{L}$ such that
$vol(\xi)\geq N$ . Therefore by (2.50) the RHS of (2.51) is bounded by

$\frac{e^{-\frac{\delta}{6}N}}{L}\sum_{\triangle\in P_{f}(CP_{L})}|F_{\hat{\Psi}}^{T}(\triangle;\zeta_{0}, \zeta_{1})|e^{-d_{1}(\triangle)}\leq 3e^{-\frac{\delta}{6}N}$ .

This estimate is uniform for $(\zeta_{0}, \zeta_{1})$ satisfying (2.42). By analyticity of

$\varphi_{L}$ and $\varphi_{L}^{(N)}$ , we have for $\alpha$ , $\beta\in\{0,1\}$ ,

(2.52a) $|\frac{1}{\mu}\frac{\partial}{\partial\zeta_{\alpha}}[\varphi_{L}-\varphi_{L}^{(N)}](\zeta_{L,0}, \zeta_{L,1})|\leq\frac{3}{\rho}e^{-\frac{\delta}{6}N}$

and

(2.52b) $|\frac{1}{\mu^{2}}\frac{\partial^{2}}{\partial\zeta_{\alpha}\partial\zeta_{\beta}}[\varphi_{L}-\varphi_{L}^{(N)}](\zeta_{L,0}, \zeta_{L,1})|\leq\frac{3}{\rho^{2}}e^{-\frac{\delta}{6}N}$

where $0<\rho<\frac{\delta}{4\mu}$ . Since $ N\rightarrow\infty$ as $ L\rightarrow\infty$ ,

$Hess_{(\zeta_{o},\zeta_{1})}\varphi_{L}^{(N)}(\zeta_{L,0}, \zeta_{L,1})\rightarrow Hess_{(\zeta_{o},\zeta_{1})}\mathcal{L}(\zeta_{0}^{*}, \zeta_{1}^{*})$

as $ L\rightarrow\infty$ . Let $\hat{P}_{L,(\zeta_{L,O},\zeta_{L1})}(\Gamma)$ be the probability weight which is

proportional to $e^{\mu(\zeta_{L,0},\zeta_{L,1})\cdot\hat{X}^{(0)}(\Gamma)}W(\Gamma)$ restricted to the ensemble

{ $\Gamma\in S_{L}$ ; $vol(\xi)\leq N$ for every $\xi\in\triangle(\Gamma)$ }.
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Then by $(2.52a, 2.52b)$ as in the proof of Proposition 2.7, we see that

$\frac{1}{\sqrt{L}}((\frac{a(\pi(\Gamma))}{L}, k(\Gamma))-\frac{1}{\mu}E_{L,(\zeta_{L,O},\zeta_{L,1})}^{(N)}(\frac{a(\pi(\Gamma))}{L}, k(\Gamma)))$

converges to a centered Gaussian vector with covariance matrix

$\frac{1}{\mu^{2}}Hess_{(\zeta_{0},\zeta_{1})}\mathcal{L}(\zeta_{0}^{*}, \zeta_{1}^{*})$

as far as $ N\rightarrow\infty$ as $ L\rightarrow\infty$ . Further, since $ N-\frac{3}{\delta}\ln L\rightarrow\infty$ ,

$\frac{1}{\mu}|\nabla_{(\zeta_{0},\zeta_{1})}\varphi_{L}^{(N)}(\zeta_{L,0}, \zeta_{L,1})-(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L})|=o(\frac{1}{\sqrt{L}})$

as $ L\rightarrow\infty$ and by this we have

$\hat{P}_{L,(\zeta_{L,0},\zeta_{L,1})}^{(N)}((\frac{a(\pi(\Gamma))}{L}, k(\Gamma))=(\frac{a_{L}}{L}, h_{L}))=\mathring{\frac{g_{(\zeta_{L},,\zeta_{L,1})}(0,0)}{2L^{2}}}\{1+o(1)\}$

as in the proof of Proposition 2.7. Combining this with (2.48) and
(2.49), we see that there exists an $L_{0}\geq 1$ such that for $L\geq L_{0}$ and
$N=\frac{6}{\delta}\ln L+k$ ,

$P_{L}$ ( $vol(\xi)\leq N$ for every $\xi\in\triangle(\Gamma)|a(\pi(\Gamma))=a_{L}$ , $k(\Gamma)=h_{L}$ )

$\geq\exp\{-L|\varphi_{L}(\zeta_{L,0}, \zeta_{L,1})-\varphi_{L}^{(N)}(\zeta_{L,0}, \zeta_{L,1})|\}\exp\{-e^{-\frac{\delta}{6}k}\}$

$\geq\exp\{-4e^{-\frac{\delta}{6}k}\}$ .

Theorem 2.9. Let $\mu>\mu_{5}$ , $h>0$ , $a\geq\frac{h}{2}$ and $a_{L}$ , $h_{L}$ be given as above.

Further, we assume that $aL^{2}-a_{L}=o(\sqrt{L^{3}})$ and $hL-h_{L}=o(\sqrt{L})$ as
$ L\rightarrow\infty$ . Then the process $Y_{L}(t)$ under $P_{L}(\cdot|a(\pi(\Gamma))=a_{L}, k(\Gamma)=h_{L})$

converges in finite dimensional distribution to the process

$Y(t)=\frac{1}{\mu}\int_{0}^{t}\sqrt{\varphi’’(\zeta_{1}+(1-x)\zeta_{0})}dB(x)$

conditioned that

$\int_{0}^{1}Y(t)dt=0$ , $Y(1)=0$ .

Proof. Let $q\geq 1$ , and $0<t_{1}<\cdots<t_{q+1}=1$ be given arbitrarily.
We take $(\zeta_{0}, \zeta_{1})\in R^{2}$ which satisfies (2.42) and solves $(2.41a, 2.41b)$ .

Also, we take $(\zeta_{L,0}, \zeta_{L,1})$ as a solution of $(2.43a, 2.43b)$ which satisfies
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(2.42). Then by the above argument $(\zeta_{L,0}, \zeta_{L,1})\rightarrow(\zeta_{0}, \zeta_{1})$ as $ L\rightarrow\infty$ .
Let $\underline{\zeta}_{L}^{o},\underline{\zeta}^{O}\in R^{q+2}$ be

$\underline{\zeta}_{L}^{o}=(\zeta_{L,0},0, \ldots, 0, \zeta_{L,1})$

$\underline{\zeta}^{o}=(\zeta_{0},0, \ldots, 0, \zeta_{1})$ .

From the assumption of the theorem and (2.45a) and the uniform bound-
edness of $Hess_{\underline{\zeta}}\varphi_{L}$ , we have

$\hat{E}_{L,\underline{\zeta}^{\circ}}^{(q)}\hat{X}_{L}^{(q)}L(t_{1}, \ldots, t_{q+1})$

$=(\frac{a_{L}}{L},\hat{E}_{L,\underline{\zeta}^{\circ}}^{(q)}X_{L}(\frac{\lfloor Lt_{1}\rfloor}{L})L’\ldots,\hat{E}_{L,\underline{\zeta}^{\circ}}^{(q)}X_{L}(\frac{\lfloor Lt_{q}\rfloor}{L})L’$
$h_{L})$

$=\frac{L}{\mu}(\nabla_{\underline{\zeta}}\varphi_{L})(\underline{\zeta}_{L}^{o})$

$=\frac{L}{\mu}(\nabla_{\underline{\zeta}}\varphi^{(q)})(\underline{\zeta}^{o} _{;} t_{1}, \ldots, t_{q+1})+o(\sqrt{L})$ .

By proposition 2.7 we have for $-\infty<\hat{l}_{j}<\hat{r}_{j}<\infty$ , $1\leq j\leq q$ ,

$\lim_{L\rightarrow\infty}\hat{P}_{L}^{(q)}(y_{j}\in[\hat{l}_{j},\hat{r}_{j}] 1\leq j\leq q|x_{0}=\frac{a_{L}}{L}, x_{q+1}=h_{L})$

$=\lim_{L\rightarrow\infty}\hat{P}_{L,\underline{\zeta}_{L}^{\circ}}^{(q)}(y_{j}\in[\hat{l}_{j},\hat{r}_{j}] ^{1}\leq j\leq q|x_{0}=\frac{a_{L}}{L}, x_{q+1}=h_{L})$

$\int_{[\hat{l}_{1},\hat{r}_{1}]\times\times[\hat{l}_{q},\hat{r}_{q}]}\cdots g_{\underline{\zeta}}\circ$ $(o, y1, \ldots, y_{q}, ^{0})dy_{1}\cdots dy_{q}$

$=\overline{\int_{R^{q}}g_{\underline{\zeta}}\circ(0,y_{1},\ldots,y_{q},0)dy_{1}\cdots dy_{q}}$

.

Let
$\hat{Y}^{(q)}(t_{1}, \ldots, t_{q+1})=(Y_{0}, Y(t_{1}),$ $Y(t_{2})$ , $\ldots$ , $Y(t_{q+1}))$

be a Gaussian random vector with distribution density $g_{\underline{\zeta}}(y_{0}, \ldots, y_{q+1})$ .

Then its covariance matrix is given by

$E[Y(t_{j})Y(t_{k})]=\frac{1}{\mu^{2}}\int_{0}^{t_{j}\wedge t_{k}}\varphi’’(\zeta_{0}(1-x)+\zeta_{1})dx$

for $j$ , $k=1$ , $\ldots$ , $q+1$ , where $a\wedge b=\min\{a, b\}$ , and

$E[Y_{0}Y(t_{j})]=\frac{1}{\mu^{2}}\int_{0}^{t_{j}}\varphi’’(\zeta_{0}(1-x)+\zeta_{1})dx$

$E[Y_{0}^{2}]=\frac{1}{\mu^{2}}\int_{0}^{1}\varphi’’(\zeta_{0}(1-x)+\zeta_{1})dx$
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for $j=1,2$ , $\ldots$ , $q+1$ . This means that $\{Y_{0}, \{Y(t)\}_{t\in[0,1]}\}$ is a Gaussian
system with covariance given above for every $0<t_{1}<\ldots<t_{q+1}=$

$1$ , $q\geq 1$ . Finally, by Lemma 2.8 we can replace $\hat{E}_{L,\underline{\zeta}^{o}}^{(q)}X_{L}(t_{j})L$ with

$\hat{E}_{L,\underline{\zeta}^{o}}^{(q)}X_{L}(\frac{\lfloor Lt_{j}\rfloor}{L})L$ for every $1\leq j\leq q$ in the above argument.

\S 3. Tihgtness

As usual, we will estimate the fourth moment of $Y_{L}(t)-Y_{L}(s)$ for
every $s$ , $t\in[0,1]$ . First, we show the following one polymer estimate.
For an integer $x\in[0, L]$ and $\Gamma\in S_{L}$ , let $\xi(x)=\xi(x, \Gamma)$ be the unique

element of $D(\Gamma)$ whose base contains $x$ .

Lemma 3.1 Let $\mu>\mu_{5}$ , $h>0$ , $a\geq\frac{h}{2}$ and $a_{L}$ , $h_{L}$ be given as in
Lemma 2.8. Then there exist constants $C>0$ and $L_{1}\geq 1$ such that for
$L\geq L_{1}$ ,

$E_{L}[e^{\frac{1}{2}d(\xi(x))}|a(\pi(\Gamma))=a_{L},$ $k(\Gamma)=h_{L}]\leq C$ .

Proof. Let $(\zeta_{0}^{*}, \zeta_{1}^{*})$ satisfy $(2.41a, 2.41b)$ and (2.42), and $(\zeta_{L,0}, \zeta_{L,1})$

satisfy (2.42) and $(2.43a, 2.43b)$ such that $(\zeta_{L,0}, \zeta_{L,1})\rightarrow(\zeta_{0}^{*}, \zeta_{1}^{*})$ as $ L\rightarrow$

$\infty$ . For $\Gamma\in S_{L}$ such that $ D(\Gamma)\ni\xi$ , let $\Gamma’(\xi)$ denote the set of elements
of $S_{L}$ such that $D(\Gamma’(\xi))=D(\Gamma)\backslash \{\xi\}$ . Also we put for a polymer $\xi$ ,

$\hat{X}_{L}^{(0)}(\xi)=(\frac{area(\gamma)}{L}+k(\gamma)(1-\frac{\hat{r}(\xi)}{L}), k(\gamma))$ ,

and $\Psi(\xi;\zeta_{0}, \zeta_{1}):=\Psi(\xi)\exp\{\mu\hat{X}_{L}^{(0)}(\xi)\cdot(\zeta_{0}, \zeta_{1})\}$ , where $\gamma$ stands for the
backbone of $\xi$ . Then

$P_{L,(\zeta_{L,O},\zeta_{L,1})}[\{D(\Gamma)\ni\xi\}\cap\{\hat{X}_{L}^{(0)}(\Gamma)=(\frac{a_{L}}{L}, h_{L})\}]$

$=e^{-L\varphi L(\zeta_{L,O},\zeta_{L,1})}\Psi(\xi;\zeta_{L,0}, \zeta_{L,1})$

$\times$

$\sum_{\Gamma\in S_{L},D(\Gamma)\ni\xi}$

,

$e^{\mu(\zeta_{L,0},\zeta_{L,1})\cdot\hat{X}_{L}^{(0)}(\Gamma’(\xi))}W(\Gamma’(\xi))$ .

$a(\pi(\Gamma))=a_{L},k(\Gamma)=h_{L}$

By the cluster expansion we have

(3.1) $P_{L,(\zeta_{L,0},\zeta_{L,1})}[\{D(\Gamma)\ni\xi\}\cap\{\hat{X}_{L}^{(0)}(\Gamma)=(\frac{a_{L}}{L}, h_{L})\}]$

$=\sum_{c\ni\xi}C\in CP_{L}F_{\hat{\Psi}}(C;\zeta_{L,0}, \zeta_{L,1})$ $\exp\{- _{\triangle\in P_{f}(CP_{L}),\triangle ic}\sum F_{\hat{\Psi}}^{T}(\triangle;\zeta_{L,0}, \zeta_{L,1})\}$

$\times P_{L,(\zeta_{L,0},\zeta_{L,1})}[a(\pi(\Gamma))=a_{L}, k(\Gamma)=h_{L}|D(\Gamma)\ni\xi]$ ,
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where

$\hat{\Psi}(\xi;\zeta_{L,0}, \zeta_{L,1}):=\Psi(\xi;\zeta_{L,0}, \zeta_{L,1})\prod_{\ell=0}^{L}Q^{-1}(\zeta_{L,0}(1-\frac{\ell}{L})+\zeta_{L,1})$ .

Since the final term in the RHS of (3.1) is not larger than 1, by the same
argument to derive (2.32) we have for $C>0$ ,

$\sum_{\xi,base(\xi)\ni x}$

,

$e^{\frac{1}{2}d(\xi)}P_{L,(\zeta_{L,0},\zeta_{L,1})}[\{D(\Gamma)\ni\xi\}\cap\{\hat{X}_{L}^{(0)}(\Gamma)=(\frac{a_{L}}{L}, h_{L})\}]$

$|\gamma|\geq C\ln L$

$\leq 4\sum_{\xi;base(\xi)\ni x,|\gamma|\geq C\ln L}e^{c(\xi)+\frac{1}{2}d(\xi)}\hat{\Psi}(\xi;\zeta_{L,0}, \zeta_{L,1})$
.

As in the proof of Lemma 2.1,

(3.2)
$\xi,\sum_{base(\xi)\ni x,|\gamma|\geq C\ln L}e^{c(\xi)+\frac{1}{2}d(\xi)}|\hat{\Psi}(\xi;\zeta_{L,0}, \zeta_{L,1})|$

$\leq e^{-\frac{\delta}{12}C\ln L}\xi,\sum_{base(\xi)\ni x}e^{c(\xi)+d(\xi)}|\hat{\Psi}(\xi;\zeta_{L,0}, \zeta_{L,1})|$

$\leq 3e^{-\frac{\delta}{12}C\ln L}$ .

By (2.49), we have for a constant $C_{1}>0$ and a sufficiently large $L$ ,

$E_{L,(\zeta_{L,O},\zeta_{L,1})}[e^{\frac{1}{2}d(\xi(x))}1_{\{|\gamma(x)|\geq C\ln L\}}|\hat{X}_{L}^{(0)}(\Gamma)=(\frac{a_{L}}{L}, h_{L})]$

$\leq C_{1}L^{2}e^{-\frac{\delta}{12}C\ln L}$ ,

which goes to zero as $ L\rightarrow\infty$ . Here, $\gamma(x)$ stands for the backbone of
$\xi(x)$ .

Assume that $|\gamma|\leq C\ln L$ for the backbone $\gamma$ of $\xi$ . Then since

$\varphi_{L}(\zeta_{L,0}, \zeta_{L,1}|\xi):=\frac{1}{L}ln,\sum_{\Gamma\in S_{L}\cdot D(\Gamma)\ni\xi}e^{\mu(\zeta_{L,O},\zeta_{L,1})\hat{X}_{L}^{(0)}(\Gamma)}W(\Gamma)$

$=\varphi_{L}(\zeta_{L,0}, \zeta_{L,1})-\frac{1}{L}\sum_{\triangle\in \mathcal{K}_{L},\triangle i\xi}F_{\hat{\Psi}}^{T}(\triangle;\zeta_{L,0}, \zeta_{L,1})$ ,

$[Hess_{(\zeta_{0},\zeta_{1})}\varphi_{L}(\cdot|\xi)](\zeta_{L,0}, \zeta_{L,1})$ converges to $[Hess_{(\zeta_{0},\zeta_{1})}\mathcal{L}](\zeta_{0}^{*}, \zeta_{1}^{*})$ uni-
formly in $\xi$ with $|\gamma|\leq C\ln L$ . Therefore there exist constants $C_{2}>0$
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and $L_{0}\geq 1$ such that for $L\geq L_{0}$ ,

(3.3) $P_{L,(\zeta_{L,0},\zeta_{L,1})}(a(\pi(\Gamma))=a_{L}, k(\Gamma)=h_{L}|D(\Gamma)\ni\xi)\leq\frac{C_{2}}{L^{2}}$

uniformly in $\xi$ such that $|\gamma|\leq C\ln L$ . Combining (2.49) with (3.3), we
can find $L_{1}$ such that for $L\geq L_{1}$ ,

(3.4) $E_{L,(\zeta_{L,0},\zeta_{L,1})}[e^{\frac{1}{2}d(\xi(x))}1_{\{|\gamma|\leq C\ln L\}}|\hat{X}_{L}^{(0)}(\Gamma)=(\frac{a_{L}}{L}, h_{L})]$

$\leq C_{1}C_{2}\sum_{base(\xi)\ni x,|\gamma|\leq C\ln L}|\hat{\Psi}(\xi)|e^{\frac{1}{2}d(\xi)+c(\xi)}\leq 3C_{1}C_{2}$
.

This together with (3.3) proves Lemma 3.1.
Now let us turn to the estimate of the fourth moment of $Y_{L}(t)-$

$Y_{L}(s)$ . It is sufficient to consider the case where $Ls$ , $Lt$ are integers and
$s<t$ .

Lemma 3.2 There exist constants $C_{3}>0$ and $L_{2}\geq 1$ such that for
$L\geq L_{2}$ , if $|t-s|\leq L^{-\frac{4}{5}}$ , then

(3.5) $E_{L}(|Y_{L}(t)-Y_{L}(s)|^{4}|a(\pi(\Gamma))=a_{L}, k(\Gamma)=h_{L})\leq C_{3}|t-s|^{\frac{3}{2}}$ .

Proof. Since

$Y_{L}(t)-Y_{L}(s)=\frac{1}{\sqrt{L}}[X_{L}(t)-X_{L}(s)-\frac{L}{\mu}\int_{s}^{t}\varphi’(\zeta_{0}^{*}(1-x)+\zeta_{1}^{*})dx]$ ,

we estimate

$E_{L}(|X_{L}(t)-X_{L}(s)|^{4}|a(\pi(\gamma))=a_{L}, k(\gamma)=h_{L})$

and

$E_{L}(|L\int_{s}^{t}\varphi’(\zeta_{0}^{*}(1-x)+\zeta_{1}^{*})dx|^{4}|a(\pi(\gamma))=a_{L}, k(\gamma)=h_{L})$

separately, where $(\zeta_{0}^{*}, \zeta_{1}^{*})$ solves (2.41a), (2.41b) and satisfies (2.42). By
analyticity the latter is bounded by $C(L|t-s|)^{4}$ for some positive con-
stant $C$ . Also, by Lemma 3.1, the former is bounded by

$C’(L|t-s|)^{4}$

for some positive constant $C’$ . It remains to check that

$L^{2}|t-s|^{4}\leq|t-s|^{\frac{3}{2}}$ ,
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which is true when $|t-s|\leq L^{-\frac{4}{5}}$ .

To handle the case where $|t-s|\geq L^{-\frac{4}{5}}$ , we introduce a moment

generating function $\varphi_{L}^{(s,t)}$ by

$\varphi_{L}^{(s,t)}(\zeta_{0}, \zeta_{1}, \zeta_{2}):=\frac{1}{L}\ln\sum_{\Gamma\in S_{L}}e^{\mu\hat{X}_{L}^{(s,t)}(\Gamma)\cdot\underline{\zeta}}W(\Gamma)$ ,

where

$\hat{X}_{L}^{(s,t)}(\Gamma):=(\frac{a(\pi(\Gamma))}{L}, k(\Gamma),$ $\frac{X_{L}(t)-X_{L}(s)}{\sqrt{t-s}})$

and $\underline{\zeta}=(\zeta_{0}, \zeta_{1}, \zeta_{2})\in R^{3}$ such that $(\zeta_{0}, \zeta_{1})$ satisfies (2.42) and

(3.6) $|\zeta_{2}|\leq\frac{\delta}{2\mu}\sqrt{t-s}$ .

To complete the proof of the tightness of $\{Y_{L}(t), 0\leq t\leq 1\}$ , it is

sufficient to show that there exists a constant $\epsilon_{0}$ independent of $L$ such
that (3.5) holds for all $s$ , $t\in[0,1]$ with $|t-s|\leq\epsilon_{0}$ .

Let $a$ , $h$ , $a_{L}$ , $h_{L}$ , $(\zeta_{0}^{*}, \zeta_{1}^{*})$ , $(\zeta_{L,0}, \zeta_{L,1})$ be taken as before; i.e.,

1. $(\zeta_{0}^{*}, \zeta_{1}^{*})$ and $(\zeta_{L,0}, \zeta_{L,1})$ satisfy (2.42),
2. $(\zeta_{0}^{*}, \zeta_{1}^{*})$ solves (2.41a), (2.41b), and
3. $(\zeta_{L,0}, \zeta_{L,1})$ solves (2.43a), (2.43b).

Put

(3.7) $v_{L}:=\frac{1}{\mu}\frac{\partial\varphi_{L}^{(s,t)}}{\partial\zeta_{2}}(\zeta_{L,0}, \zeta_{L,1},0)$ .

Then as in the proof of Lemma 2.3, we can show that

(3.8) $v_{L}-\frac{1}{\mu\sqrt{t-s}}\int_{s}^{t}\varphi’(\zeta_{0}^{*}(1-x)+\zeta_{1}^{*})dx=O(L^{-\frac{3}{5}}(\ln L)^{10})$ .

Therefore

$\frac{Y_{L}(t)-Y_{L}(s)}{\sqrt{t-s}}=\frac{X_{L}(t)-X_{L}(s)}{\sqrt{L(t-s)}}-\sqrt{L}v_{L}+o(1)$ .

So, we will show that for some $\epsilon_{0}>0$ and for all $s$ , $t\in[0,1]$ such that
$|t-s|<\epsilon_{0}$ ,

$\sum_{k=0}^{\infty}(k+1)^{4}P_{L}(\frac{X_{L}(t)-X_{L}(s)}{\sqrt{L(t-s)}}-v_{L}\sqrt{L}\geq k|$ $a(\pi(\gamma))=a_{L}k(\Gamma)=h_{L}’)$
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converges and is bounded from above by a constant independent of
$L$ , $s$ , $t$ . For $k\in N$ , let $\underline{\zeta}_{L}^{(k)}=(\zeta_{L,0}^{(k)}, \zeta_{L,1}^{(k)}, \zeta_{L,2}^{(k)})$ be the solution of

$\frac{1}{\mu}[\nabla_{(\zeta_{0},\zeta_{1},\zeta_{2})}\varphi_{L}^{(s,t)}](\underline{\zeta}_{L}^{(k)})=(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L}+\frac{k}{\sqrt{L}})$

and $\zeta_{L}^{(0)}=(\zeta_{L,0}, \zeta_{L,1},0)$ . For $\underline{\eta}=(\eta_{0}, \eta_{1}, \eta_{2})$ , let $\varphi_{L}^{*(s,t)}(\underline{\eta})$ be the Le-

gendre transform of $\frac{1}{\mu}\varphi_{L}^{(s}$

’
$t$ ). Then by duality,

$[\nabla_{\underline{\eta}}\varphi_{L}^{*(s,t)}](\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L}+\frac{k}{\sqrt{L}})=(\zeta_{L,0}^{(k)}, \zeta_{L,1}^{(k)}, \zeta_{L,2}^{(k)})$

and

$\zeta_{L,2}^{(k)}=\int_{0}^{\frac{k}{\sqrt{L}}}\frac{\partial^{2}\varphi_{L}^{*(s,t)}}{\partial\eta_{2}^{2}}(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L}+u)du\geq 0$ .

Therefore

(3.9)

$P_{L}(\frac{X_{L}(t)-X_{L}(s)}{\sqrt{L(t-s)}}\geq v_{L}\sqrt{L}+k|$ $a(\pi(\Gamma))=a_{L}k(\Gamma)=h_{L}’)$

$=\sum_{j\geq Lv_{L}\sqrt{t-s}+k\sqrt{L(t-s)}}\frac{e^{L^{(s,t)}}\varphi_{L}(\underline{\zeta}^{(k)}L)-\mu(\frac{a_{L}}{L},h_{L},j)\zeta_{L}^{(k)}}{e^{L\varphi_{L}(\underline{\zeta}_{L}^{(0)})-\mu(\frac{a_{L}}{L},h_{L},Lv_{L})\zeta_{L}^{(0)}}(s,t)}$

$P_{L,\underline{\zeta}_{L}^{(k)}}(X_{L}(t)-X_{L}(s)=j, a(\pi(\Gamma))=a_{L},$ $k(\Gamma)=h_{L})$

$\times\overline{P_{L,\underline{\zeta}_{L}^{(O)}}(a(\pi(\Gamma))=a_{L},k(\Gamma)=h_{L})}$

$\leq\exp\{-L\mu[\varphi_{L}^{*(s,t)}(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L}+\frac{k}{\sqrt{L}})-\varphi_{L}^{*(s,t)}(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L})]\}$

$P_{L,\underline{\zeta}_{L}^{(k)}}(\frac{X_{L}(t)-X_{L}(s)}{\sqrt{L(t-s)}}\geq v_{L}\sqrt{L}+k,$ $a(\pi(\Gamma))=a_{L}$ , $k(\Gamma)=h_{L})$

$\times\overline{P_{L,\underline{\zeta}_{L}^{(O)}}(a(\pi(\Gamma))=a_{L},k(\Gamma)=h_{L})}$
.

From Proposition 2.7, the RHS of (3.9) is bounded by

$\exp\{-L\mu[\varphi_{L}^{*(s,t)}(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L}+\frac{k}{\sqrt{L}})-\varphi_{L}^{*(s,t)}(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L})]\}$

$\times Const.L^{2}$ .

as $ L\rightarrow\infty$ .
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Lemma 3.3. There exist positive constants $\alpha_{1}$ , $\alpha_{2}$ , $L_{0}$ such that every
eigenvalue of

$\frac{1}{\mu^{2}}Hess_{(\zeta_{0},\zeta_{1},\zeta_{2})}[\varphi_{L}^{(s,t)}(\zeta_{0}, \zeta_{1}, \frac{\zeta_{2}}{\sqrt{t-s}})]$

is in the interval $[\alpha_{1}, \alpha_{2}]$ if $L\geq L_{0}$ and

(3.10) $\{$

$|\zeta_{2}|$ $\leq\frac{\delta}{3\mu}\sqrt{|t-s|}$

$\max\{|\zeta_{0}+\zeta_{1}|, |\zeta_{1}|\}$ $\leq 1-\frac{3\delta}{2\mu}$

For the moment we take it for granted that Lemma 3.3 is true. Then,
since $(\zeta_{L,0}, \zeta_{L,1})$ satisfies (2.42), by Lemma 3.3 and the continuity, we

can find $\epsilon>0$ such that if $\frac{k}{\sqrt{L}}<\epsilon\sqrt{t-s}$ , then $|\zeta_{L,0}^{(k)}-\zeta_{L,0}|$ , $|\zeta_{L,1}^{(k)}-\zeta_{L,1}|$ ,

$|\zeta_{L,2}^{(k)}|$ are all bounded by $\frac{\delta}{4\mu}$ and every eigenvalue of

$[Hess_{\underline{\eta}}\varphi_{L}^{*(s,t)}](\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L}+\frac{k}{\sqrt{L}})$

is in the interval $[\alpha_{2}^{-1}, \alpha_{1}^{-1}]$ . Thus, we have

(3.10) $\varphi_{L}^{*(s,t)}(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L}+\frac{k}{\sqrt{L}})-\varphi_{L}^{*(s,t)}(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L})$

$=\int_{0}^{\frac{k}{L}}(\frac{k}{\sqrt{L}}-u)\frac{\partial^{2}\varphi_{L}^{*(s,t)}}{\partial\eta_{2}^{2}}(\frac{a_{L}}{L^{2}}, \frac{h_{L}}{L}, v_{L}+u)du\geq\alpha_{2}^{-1}\frac{k^{2}}{2L}$

if $k\leq\epsilon\sqrt{L(t-s)}$ . By convexity, this means that the LHS of (3.9) is
not less than

(3.12)

$\frac{k}{\sqrt{L}}\frac{\varphi_{L}^{*(s,t)}(\frac{a_{L}}{L^{2}},\frac{h_{L}}{L},v_{L}+\epsilon\sqrt{t-s})-\varphi_{L}^{*(s,t)}(\frac{a_{L}}{L^{2}},\frac{h_{L}}{L},v_{L})}{\epsilon\sqrt{t-s}}\geq\frac{\alpha_{2}^{-1}}{2}\epsilon L^{-\frac{9}{10}}k$

(3.12) proves that

$\sum_{k\geq s\sqrt{L(t-s)}}(k+1)^{4}P_{L}(\frac{X_{L}(t)-X_{L}(s)}{\sqrt{L(t-s)}}\geq v_{L}\sqrt{L}+k|$
$a(\pi(\Gamma))=a_{L}k(\Gamma)=h_{L}’)$

$=O$ ( $L^{4}$ exp{ $-\mu\frac{\alpha_{2}^{-1}\epsilon}{2}L^{\frac{1}{5}}\}$ )
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for large $L$ . Also, for $k\leq\epsilon\sqrt{L(t-s)}$ , $Hess_{(\zeta_{0},\zeta_{1},\zeta_{2})}[\varphi_{L}^{(s,t)}(\zeta_{0}, \zeta_{1}, \frac{\zeta_{2}}{\sqrt{t-s}})]$

is uniformly positive definite and by Lemma 3.3,

$P_{L,\underline{\zeta}_{L}}(k)(\frac{X_{L}(t)-X_{L}(s)}{\sqrt{L(t-s)}}\geq v_{L}\sqrt{L}+k,$ $a(\pi(\Gamma))=a_{L}$ , $k(\Gamma)=h_{L})$

$\leq P_{L,\underline{\zeta}_{L}^{(k)}}(a(\pi(\Gamma))=a_{L}, k(\Gamma)=h_{L})$

$\leq\frac{Const}{L^{2}}.$ .

This and (3.9) together with (3.8) prove

$\sum_{k\leq\epsilon\sqrt{L(t-s)}}(k+1)^{4}$

$\times P_{L}(\frac{X_{L}(t)-X_{L}(s)}{\sqrt{L(t-s)}}\geq v_{L}\sqrt{L}+k|a(\pi(\Gamma))=a_{L},$ $k(\Gamma)=h_{L})$

$\leq Const.\sum_{k=0}^{\infty}(k+1)^{4}e^{-\frac{k^{2}}{2\alpha_{2}}}<\infty$

Proof of Lemma 3.3. Put

$\Psi_{L}^{(s,t)}(\xi;\zeta_{0}, \zeta_{1}, \frac{\zeta_{2}}{\sqrt{t-s}})$

$=\Psi(\xi)\exp\{\zeta_{0}(\frac{\hat{l}(\xi)}{L}+(1-\frac{\hat{r}(\xi)}{L}k(\gamma))+\zeta_{1}k(\gamma)+\frac{\zeta_{2}}{\sqrt{t-s}}k(\gamma;Ls, Lt)\}$

where

(3. 8)

$k(\gamma;Ls, Lt)=\{$

$k(\gamma)$ if base $()$ \subset [Ls, $Lt$],
$k(\gamma)-k(\gamma;Ls)$ if $\hat{l}(\xi)<Ls\leq\hat{r}(\xi)\leq Lt$

$k(\gamma;Lt)$ if $Ls\leq\hat{l}(\xi)\leq Lt<\hat{r}(\xi)$

$k(\gamma;Lt)-k(\gamma;Ls)$ if $\hat{l}(\xi)<Ls<Lt<\hat{r}(\xi)$ .
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Then as in the proof of Proposition 2.2, we have a convergent cluster
expansion

$\varphi_{L}(\zeta_{0}, \zeta_{1}, \frac{\zeta_{2}}{\sqrt{t-s}})$

$=\frac{1}{L}\sum_{J=[a,b]\subset[0,L]}\Phi^{(\triangle)}(J;\zeta_{0}, \zeta_{1}, \frac{\zeta_{2}}{\sqrt{t-s}})$

$=\frac{1}{L}$ $\sum$ $\Phi(J;\zeta_{L}(\hat{r}))$

$J=[\text{{\it \^{i}}},\hat{r}]\subset[0,L]\backslash [s,t]$

$+\frac{1}{L}$ $\sum$ $\Phi(J;\zeta_{L}(\hat{r})+\frac{\zeta_{2}}{\sqrt{t-s}})+O(\frac{(\ln L)^{10}}{L})$

$J_{-}^{-}[\hat{l},\hat{r}]\subset[0,L]Ls\leq\hat{r}\leq Lt$

$=\int_{0}^{1}\varphi(\zeta_{0}(1-x)+\zeta_{1}+\frac{\zeta_{2}}{\sqrt{t-s}}1_{[s,t]}(x))dx+O(\frac{(\ln L)^{10}}{L})$ .

Note that

$\frac{\partial}{\partial\zeta_{2}}\Phi^{(s,t)}(J;\zeta_{0}, \zeta_{1}, \frac{\zeta_{2}}{\sqrt{t-s}})=0$

if $ J\cap[s, t]=\emptyset$ . By analitycity, this means that for $\underline{\eta}\in R^{3}$

(3.14) $\underline{\eta}$

. $[Hess_{(\zeta_{0},\zeta_{1},\zeta_{2})}\varphi_{L}^{(s,t)}(\zeta_{0}, \zeta_{1}, \frac{\zeta_{2}}{\sqrt{t-s}})]\underline{\eta}$

$=\int_{0}^{1}\{(1-x)\eta_{0}+\eta_{1}+\frac{\eta_{2}}{\sqrt{t-s}}1_{[s,t]}(x)\}^{2}$

$\times\varphi’’(\zeta_{0}(1-x)+\zeta_{1}+\frac{\zeta_{2}}{\sqrt{t-s}}1_{[s,t]}(x))dx$

$+|\eta|^{2}O(L^{-\frac{1}{5}}(\ln L)^{10})$

as long as $t-s$ $>L^{-\frac{4}{5}}$ . If $(\zeta_{0}, \zeta_{1}, \zeta_{2})$ satisfies (3.10), then as in the proof
of Lemma 2.5, we have some $\alpha_{1}^{0}>0$ depending only on $\mu$ and $\delta$ such
that

$\alpha_{1}^{0}\leq\varphi’’(\zeta_{0}(1-x)+\zeta_{1}+\frac{\zeta_{2}}{\sqrt{t-s}}1_{[s,t]}(x))$

for every $x\in[0,1]$ . Also, by analyticity, there exists $\alpha_{2}^{0}>0$ depending
only on $\mu$ and $\delta$ such that

$\varphi’’(\zeta_{0}(1-x)+\zeta_{1}+\frac{\zeta_{2}}{\sqrt{t-s}}1_{[s,t]}(x))\leq\alpha_{2}^{0}$
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for every $x\in[0,1]$ . Therefore we have

(3.15)

$\alpha_{1}^{0}\int_{0}^{1}\{\eta_{0}(1-x)+\eta_{1}+\frac{\eta_{2}}{\sqrt{t-s}}1_{[s,t]}(x)\}^{2}dx+O(L^{-\frac{1}{5}}(\ln L)^{10})\cdot|\underline{\eta}|^{2}$

$\leq the$ RHS of (3.14)

$\leq\alpha_{2}^{0}\int_{0}^{1}\{\eta 0(1-x)+\eta_{1}+\frac{\eta_{2}}{\sqrt{t-s}}1_{[s,t]}(x)\}^{2}dx+O(L^{-\frac{1}{5}}(\ln L)^{10})\cdot|\underline{\eta}|^{2}$ .

Further, since

$\int_{0}^{1}\{\eta_{0}(1-x)+\eta_{1}+\frac{\eta_{2}}{\sqrt{t-s}}1_{[s,t]}(x)\}^{2}dx$

$=\int_{0}^{1}\{\eta_{0}(1-x)+\eta_{1}\}^{2}dx+\eta_{2}^{2}+\frac{2\eta_{2}}{\sqrt{t-s}}\int_{s}^{t}\{\eta_{0}(1-x)+\eta_{1}\}dx$

Since we know that the first term in the RHS of the above equality is
bounded from below by $\alpha_{1}^{0}(\eta_{0}^{2}+\eta_{1}^{2})$ , the RHS is bounded from below by

$\alpha_{1}^{0}(\eta_{0}^{2}+\eta_{1}^{2})-2\sqrt{t-s}(|\eta_{0}\eta_{2}|+|\eta_{1}\eta_{2}|)+\eta_{2}^{2}$

$\geq(\alpha_{1}^{0}-\sqrt{t-s})(\eta_{0}^{2}+\eta_{1}^{2})+(1-2\sqrt{t-s})\eta_{2}^{2}$ .

Set $2\alpha_{1}:=\min\{\frac{1}{2}\alpha_{0}^{1}, \frac{1}{3}\}$ . It is obvious that the RHS of the above in-

equality is larger than $\alpha_{1}|\underline{\eta}|^{2}$ if $\sqrt{t-s}<2\alpha_{1}$ . The existence of $\alpha_{2}$ is
obvious from (3.14).
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Infinite Systems of Non-Colliding Brownian Particles

Makoto Katori, Taro Nagao and Hideki Tanemura

Abstract.

Non-colliding Brownian particles in one dimension is studied. $N$

Brownian particles start from the origin at time 0 and then they do
not collide with each other until finite time $T$ . We derive the de-
terminantal expressions for the multitime correlation functions using
the self-dual quaternion matrices. We consider the scaling limit of
the infinite particles $ N\rightarrow\infty$ and the infinite time interval $ T\rightarrow\infty$ .
Depending on the scaling, two limit theorems are proved for the mul-
titime correlation functions, which may define temporally inhomoge-
neous infinite particle systems.

\S 1. Introduction

We consider the process $X(t)$ , which represents the system of $N$

Brownian motions in one dimension all started from the origin and con-
ditioned never to collide with each other up to time $T$ . If we take the
limit $T$ $\rightarrow\infty$ , the system becomes a temporally homogeneous diffu-
sion process $Y(t)$ , which is the Doob $h$-transform [3] of the absorbing
Brownian motion in a Weyl chamber

$R_{<}^{N}=\{x$ $=(x_{1}, x_{2}, \ldots, x_{N})\in R^{N}\cdot x_{1})<x_{2}<\cdots<x_{N}\}$ ,

with harmonic function $h_{N}(x)=\prod_{1\leq i<j\leq N}(x_{j}-x_{i})[8]$ . By virtue of
the Karlin-McGregor formula $[12, 13]$ , its transition density $f_{N}(t, x, y)$

from the state $x$ to $y$ in $R_{<}^{N}$ in time period $t>0$ is given by

$f_{N}(t, x, y)=1\leq i,j\leq N\det(p_{t}(x_{i}, y_{j}))$ ,

where $p_{t}(x, y)=\frac{1}{\sqrt{2\pi t}}e^{-(x-y)^{2}/2t}$ . On the other hand, if the non-

colliding time interval $T$ remains finite, the process $X(t)$ , $0\leq t\leq T$ ,
is temporally inhomogeneous [15].

Received January 6, 2003.
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We notice an integral formula found in Harish-Chandra [9], Itzykson
and Zuber [10], and Mehta [16],

$\frac{1\leq i,j\leq N\det(p_{f}(x_{i},y_{j}))}{h_{N}(x)h_{N}(y)}=c\int dU\exp[-\frac{1}{2t}tr(X-U^{\uparrow}YU)^{2}]$

with $c^{-1}=(2\pi)^{N/2}t^{N^{2}/2}\prod_{i=1}^{N+1}\Gamma(i)$ , where $X$ and $Y$ are the $N\times N$

diagonal matrices, $X_{ij}=x_{i}\delta_{ij}$ , $Y_{ij}=y_{i}\delta_{ij}$ , and the integral is taken
over the group of unitary matrix $U$ of size $N$ . This equality implies that
the non-colliding Brownian motions such as $X(t)$ and $Y(t)$ can be de-
scribed by using the eigenvalue-statistics of Hermitian random matrices
in Gaussian ensembles [18]. In earlier papers $[14, 15]$ , it was shown that
$Y(t)$ is identified with Dyson’s Brownian motion model with $\beta=2[4]$

and the particle distribution is expressed by the probability density of
eigenvalues of random matrices in the Gaussian unitary ensemble (GUE)

with variance $t$ , while $\sqrt{\frac{T}{t(2T-t)}}X(t)$ coincides with the distribution of

eigenvalues of random matrices in the Pandey-Mehta ensemble $[19, 25]$

with $\alpha=\sqrt{\frac{T-t}{T}}$ , and this temporally inhomogeneous process exhibits a

transition from the GUE statistics to the Gaussian orthogonal ensemble
(GOE) statistics as the time $t$ goes on from 0 to $T$ .

It is known that the eigenvalue distributions of Hermitian random
matrices have determinantal expressions. For instance, in the GUE, the
probability density of $N$ eigenvalues is expressed by

$\rho_{N}(x_{1}, x_{2}, . . . , x_{N})=\frac{1}{N!}\det(K_{N}(x_{i}, x_{j})))1\leq i,j\leq N$

with $K_{N}(x, y)=\sum_{\ell=0}^{N1}\varphi\ell(x)\varphi_{\ell}(y)$ , where

(1.1) $\varphi_{\ell}(x)=\frac{1}{\sqrt{h_{\ell}}}e^{-x^{2}/2}H_{\ell}(x)$

with the $\ell$-th Hermite polynomial $H_{\ell}(x)$ and $h_{\ell}=\sqrt{\pi}2^{\ell}\ell!$ . By the
orthogonality of $\varphi_{k}(x)$ , we can prove the equality

$\int 1\leq id,etK_{N}(x_{i}, x_{j})dx_{N’}j\leq N’$

(1.2) $=(N-N’+1)\det K_{N}(x_{i}, x_{j})1\leq i,j\leq N’-1$

for any $1\leq N’\leq N$ . Such integral property enables us not only to obtain
determinantal expressions for correlation functions, but also to argue
the $ N\rightarrow\infty$ limit of the system by studying the large $N$ asymptotic of
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the function $K_{N}(x, y)$ . With proper scaling limit, determinantal point
processes with sine-kernel and Airy-kernel are derived. See [27] and
references therein.

In the present paper, we derive the determinantal expressions of
the multitime correlation functions for the process $X(t)$ . Our aim is to
prove limit theorems of the multitime correlation functions in the scaling
limits of infinite particles $ N\rightarrow\infty$ and infinite time interval $ T\rightarrow\infty$ .

Depending on the scaling, we derive two kinds of limit theorems, one of
which provides a spatially homogeneous but temporally inhomogeneous
infinite particle system (Theorem 1), and other of which does the system
with inhomogeneity both in space and time (Theorem 2). We remark
that it is easier to prove the limit theorems for Dyson’s Brownian motion
model $Y(t)$ . Corresponding to Theorem 1, we will obtain the multitime
correlation functions of the homogeneous system, which coincides with
the system studied by Spohn [28] , Osada [24], and Nagao and Forrester
[21]. Similarly, corresponding to Theorem 2, an infinite system with
spatial inhomogeneity will be derived, which is related with the Airy
process recently studied by Pr\"ahofer and Spohn [26] and Johansson [11].

One of the key points of our arguments is that, in order to give the
determinantal expressions for the correlation functions for the present
processes, we shall prepare matrices with the elements, which are neither
real nor complex $numberS_{)}$ but quaternions

$q=q_{0}+q_{1}e_{1}+q_{2}e_{2}+q_{3}e_{3}\in Q$

with $q_{i}\in C$ , $0\leq i\leq 3_{)}$ in which the four basic units $\{1, e_{1}, e_{2}, e_{3}\}$ have
the following 2 $\times 2$ matrix $representationS_{)}C$ : $Q\mapsto Mat_{2}(C)$ ;

$C(1)=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ , $C(e_{1})=\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ ,

$C(e_{2})=(-\sqrt{-1}0$ $-\sqrt{-1}0)$ , $C(e_{3})=(\sqrt{-1}0$ $-\sqrt{-1}0)$ .

The dual of a quaternion $q$ is defined by $q^{\uparrow}=q_{0}-\sum_{i=1}^{3}q_{i}e_{i}$ , and for

a quaternion matrix $Q=(q_{ij})$ , $q_{ij}\in Q$ , its dual matrix $Q\dagger=((Q^{\uparrow})_{ij})$

is defined to have the elements $(Q\dagger)_{ij}=q_{ji}^{\dagger}$ . Following Dyson’s defi-

nition of the quaternion determinant for self-dual matrices [5, 17, 18]
$)$

we can give the quaternion determinantal expressions having the simi-
lar properties to (1.2) for arbitrary multitime correlation functions for
$X(t)$ (Theorem 3). As briefly reported in [23], the present results can
be regarded as simple applications of the results given in Nagao and
Forrester [22] and Nagao [20] for multimatrix models, and in Forrester,
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Nagao and Honner [6] for the asymptotic of quaternion determinantal
systems, here we give, however, a self-contained explanation for all the
formulae and calculus developed in the random matrix theory, which are
used to prove our limit theorems.

The theorems proved here mean the convergence of processes in the
sense of finite dimensional distributions. As argued in Pr\"ahofer and
Spohn [26] and in Johansson [11], tightness in time should be confirmed.

\S 2. Statement of Results

For a given $T$ $>0$ , we define

(2.1) $g_{N}^{T}(s, x;t, y)=\frac{f_{N}(t-s,x,y)N_{N}(T-ty))}{N_{N}(T-s,x)}$

for $0\leq s\leq t\leq T$ , $x$ , $y\in R_{<}^{N}$ , where $N_{N}(tx))=\int_{R_{<}^{N}}f_{N}(t, x, y)dy$ ,

which is the probability that a Brownian motion started at $x\in R_{<}^{N}$

does not hit the boundary of $R_{<}^{N}$ up to time $t>0$ . The function
$g_{N}^{T}(s, X_{)}.t, y)$ can be regarded as the transition probability density from
the state $x\in R_{<}^{N}$ at time $s$ to the state $y\in R_{<}^{N}$ at time $t$ , and associated
with the temporally inhomogeneous diffusion process, which is the $N$

Brownian motions conditioned not to collide with each other in a time
interval $[0, T]$ . In $[14, 15]$ it was shown that as $|x|\rightarrow 0$ , $g_{N}^{T}(0, x, t, y)$

converges to

(2.2) $g_{N}^{T}(0,0, t, y)\equiv C(N, T, t)h_{N}(y)N_{N}(T-t, y)\prod_{i=1}^{N}p_{t}(0, y_{i}))$

where $C(N, T, t)=\pi^{N/2}(\prod_{j=1}^{N}\Gamma(j/2))^{-1}T^{N(N-1)/4}t^{-N(N-1)/2}$ . Then

the diffusion process $X(t)$ starting from 0 can be constructed.
We denote by $X$ the space of countable subset $\xi$ of $R$ satisfying

$\#(\xi\cap K)<\infty$ for any compact subset $K$ . We introduce the map
$\gamma$ from $\bigcup_{n=1}^{\infty}R^{n}$ to $X$ defined by $\gamma(x_{1}, x_{2}, \ldots, x_{n})=\{x_{i}\}_{i=1}^{n}$ . Then
$--N(-t)=\gamma X(t)$ is the diffusion process on the set $X$ with transition
density function $\overline{g}_{N}^{T}(s, \xi;t, \eta)$ , $0\leq s\leq t\leq T$ :

$\tilde{g}_{N}^{T}(S_{)}\xi;t, \eta)=\{$

$g_{N}^{T}(s, x;t, y)$ , if $s>0,$ $Q\xi=Q\eta=N$ ,
$g_{N}^{T}(0,0;t, y)$ , if $s=0$ , $\xi=\{0\}$ , $\#\eta=N$ ,
0, otherwise,

where $x$ and $y$ are the elements of $R_{<}^{N}$ with $\xi=\gamma x$ , $\eta=\gamma y$ . For
$x_{N}^{(m)}\in R_{<}^{N}$ , $1\leq m\leq M+1$ , and $N’=1,2$ , $\ldots$ , $N$ , we put $x_{N}^{(m)},=$
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( $ x_{1)}^{(m)}x_{2)}^{(m)}\ldots$ , $x_{N}^{(m)},$ ) and $\xi_{m}^{N’}=\gamma x_{N}^{(m)},$ . For a given time interval $[0, T]$ ,

we consider the $M$ intermediate times $0<t_{1}<t_{2}<\cdots<t_{M}<T$ .

Then the multitime transition density function of the process $---N(t)$ is
given by

(2.3) $\rho_{N}^{T}(t_{1}, \xi_{1)}^{N}. \ldots ; t_{M+1}, \xi_{M+1}^{N})=\prod_{m=0}^{M}\tilde{g}_{N}^{T}(t_{m}, \xi_{m}^{N}; t_{m+1}, \xi_{m+1}^{N})$ ,

where, for convenience, we set $t_{0}=0$ , $t_{M+1}=T$ and $\xi_{0}^{N}=\{0\}$ . From
(2.1) and (2.2) we have

(2.4) $\rho_{N}^{T}(t_{1}, \xi_{1)}^{N}.t_{2}, \xi_{2}^{N}; \ldots ; t_{M+1)}\xi_{M+1}^{N})$

$=C(N, T, t_{1})h_{N}(x_{N}^{(1)})sgn(h_{N}(x_{N}^{(M+1)}))$

$\times\prod_{i=1}^{N}p_{t_{1}}$ (0, $x_{i}^{(1)}$ ) $\prod_{m=1}^{M}1\leq id,etj\leq N(p_{t_{m+1}-t_{m}}(x_{i)}^{(m)}x_{j}^{(m+1)}))$ .

For a sequence $\{N_{m}\}_{m=1}^{M+1}$ of positive integers less than or equal to $N$ ,
we define the $(N_{1}, N_{2,)}\ldots N_{M+1})$ -multitime correlation function by

(2.5) $\rho_{N}^{T}(t_{1},$ $\xi_{1}^{N_{1}}$ ; $t_{2}$ , $\xi_{2}^{N_{2}}$ ; $\ldots$ ; $t_{M+1}$ , $\xi_{M+1}^{N_{M+1}})$

$=\int_{\Pi_{m=1}^{M+1}R^{N-N_{m}}}\prod_{m=1}^{M+1}\frac{1}{(N-N_{m})!}\prod_{i=N_{m}+1}^{N}dx_{i}^{(m)}$

$\times\rho_{N}^{T}(t_{1}, \xi_{1}^{N}; t_{2)}\xi_{2}^{N}; \ldots ; t_{M+1}, \xi_{M+1}^{N})$ .

We will study limit theorems of the correlation functions $\rho_{N}^{T_{N}}$ as
$ N\rightarrow\infty$ . First, we consider the case $T_{N}=2N$ . Let

$\overline{S}(S_{)}x;t, y)$

$=\{$

$\frac{1}{\pi}\int_{0}^{1}d\lambda\cos(\lambda(x-y))e^{-\lambda^{2}(t-s)/2}$ if $s>t$

$\frac{\sin(x-y)}{\pi(x-y)}$ if $s=t$

$-\frac{1}{\pi}\int_{1}^{\infty}d\lambda\cos(\lambda(x-y))e^{-\lambda^{2}(t-s)/2}$ if $s<t$
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$D(s, x;t, y)=-\frac{1}{\pi}\int_{0}^{1}d\lambda\lambda\sin(\lambda(x-y))e^{-(s+t)\lambda^{2}/2}$

$\overline{I}(s, x;t, y)=-\frac{1}{\pi}\int_{1}^{\infty}d\lambda\frac{1}{\lambda}\sin(\lambda(x-y))e^{(s+t)\lambda^{2}/2}$ .

And let $q^{m,n}(x, y)$ be the quaternion, whose 2 $\times 2$ matrix expression is
given by

$C(q^{m,n}(_{X_{)}}y))=(D(s_{m},x’\cdot,s_{n)}y)\overline{S}(s_{m},x\cdot s_{n},y)$ $\overline{\frac{I}{S}}(S_{m},X_{)}\cdot\cdot s_{n},y)(s_{n},y,s_{m},x))$ .

Let $M\geq 1$ and $\{N_{m}\}_{m=1}^{M+1}$ be a sequence of positive integers. We de-

note by $\mathbb{Q}$ ( $x_{N_{1}}^{(1)}$ , $x_{N_{2}}^{(2)}$ , $\ldots$ , $x_{N_{M+1}}^{(M+1)}$ ) the self-dual $\sum_{m=1}^{M+1}N_{m}\times\sum_{m=1}^{M+1}N_{m}$

quaternion matrix whose elements are $q^{m,n}(x_{i)}^{(m)}x_{j}^{(n)})$
)

$1\leq i\leq N_{m)}$

$1\leq j\leq N_{n}$ , $1\leq m$ , $n\leq M+1$ , that is,

$\mathbb{Q}(x_{N_{1}}^{(1)},$ $x_{N_{2})}^{(2)},$$\ldots x_{N_{M+1}}^{(M+1)})$

$=$ $\left\{\begin{array}{llll}\mathbb{Q}^{2,1}\mathbb{Q}^{1,1}( ) \cdots & \cdots\cdots & \cdots\cdots & \mathbb{Q}^{1,M+1}\mathbb{Q}^{2,M+1}\{ \cdots\cdots )\\\cdots & \cdots & \cdots & \cdots\\\cdots & \cdots & \cdots & \cdots\\\mathbb{Q}^{M+1,1}(x_{N_{M+1}}^{(M+1)}, & x_{N_{1}}^{(1)}) & \cdots & \mathbb{Q}^{M+1,M+1}(x_{N_{M+1})}^{(M+1)}x_{N_{M+1}}^{(M+1)})\end{array}\right\}$

with blocks of $N_{m}\times N_{n}$ quaternion matrices

$\mathbb{Q}^{m,n}$ ( $x_{N_{m}}^{(m)}$ , $x_{N_{n}}^{(n)})=(q^{m,n}(x_{i)}^{(m)}x_{j}^{(n)}))_{1\leq i\leq N_{m},1\leq j\leq N_{n}})$

for $1\leq m$ , $n\leq M+1$ .
For an $N\times N$ self-dual quaternion matrix $Q$ , the quaternion deter-

minant TdetQ is defined by Dyson [5] as

$\ell(\pi)$

TdetQ
$=\sum_{\pi\in S_{N}}(-1)^{N-\ell(\pi)}\prod_{1}q_{ab}q_{bc}\cdots q_{da}$

,

where $\ell(\pi)$ denotes the number of exclusive cycles of the form $(a\rightarrow b\rightarrow$

$c\rightarrow\cdots\rightarrow d\rightarrow a)$ included in a permutation $\pi\in S_{N}$ .
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Theorem 1. Let $T_{N}=2N$ . For any $M\geq 1$ , any sequence $\{N_{m}\}_{m=1}^{M+1}$

of positive integers, and any strictly increasing sequence $\{s_{m}\}_{m=1}^{M+1}$ of
nonpositive numbers with $s_{M+1}=0$ ,

$\rho(s_{1},$ $\xi_{1}^{N_{1}}$ ; $s_{2)}\xi_{2}^{N_{2}}$ ; $\ldots$ ; $s_{M}$ , $\xi_{M}^{N_{M}}$ ; 0, $\xi_{M+1}^{N_{M+1}})$

$\equiv$ $\lim_{N\rightarrow\infty}\rho_{N}^{T_{N}}(T_{N}+s_{1},$ $\xi_{1}^{N_{1}}$ ; $T_{N}+s_{2}$ , $\xi_{2}^{N_{2}}$ ; $\ldots$ ; $T_{N}$ , $\xi_{M+1}^{N_{M+1}})$

$=$ Tdet $\mathbb{Q}$ ( $x_{N_{1})}^{(1)}x_{N_{2})}^{(2)}\ldots$ , $x_{N_{M+1}}^{(M+1)}$ ).

Remark 1. The above system is spatially homogeneous, since all
elements of the quaternion determinant are functions of difference of

positions, $x_{i}^{(m)}-x_{j}^{(n)}$ . This expresses the bulk property of our in-
finite particle system. When $M=1$ , the present system is equiv-
alent with the $ N\rightarrow\infty$ limit of the two-matrix model reported by
Pandey and Mehta [19) 25]. In the system defined by Theorem 1,
if we take the further limit such that $ s_{m}\rightarrow-\infty$ with the time dif-
ference $s_{n}-s_{m}$ fixed, 1 $\leq m$ , $n\leq M$ , then $D(s_{m}, x;s_{n}, y)\rightarrow\infty_{)}$

$\overline{I}(s_{m}, x;s_{n}, y)\rightarrow 0$ , while the product $D(s_{m}, x;s_{n}, y)\overline{I}(s_{m}, x;s_{n)}y)\rightarrow 0$ .

Therefore, we may replace $D$ and $\overline{I}$ by zeros in this limit, and the

quaternion determinant Tdet $\mathbb{Q}$ ( $x_{N_{1})}^{(1)}x_{N_{2})}^{(2)}\ldots$ , $x_{N_{M}}^{(M)}$ ) will be reduced to

an ordinary determinant $\det$ A ( $x_{N_{1}}^{(1)}$ , $x_{N_{2}}^{(2)}$ , $\ldots$ , $x_{N_{M}}^{(M)}$ ) with the elements

$a^{m,n}(x_{i)}^{(m)}x_{j}^{(n)})=\overline{S}(s_{m},$ $x_{i}^{(m)}$ ; $s_{n}$ , $x_{j}^{(n)})$ . Hence, we obtain a tempo-

rally and spatially homogeneous system, whose correlation functions are
given by

$\rho’$ ( $s_{1}$ , $\xi_{1}^{N_{1}}$ ; $s_{2}$ , $\xi_{2}^{N_{2}}$ ; $\cdots$ ). $s_{M}$ , $\xi_{M}^{N_{M}})=\det$ A $(x_{N_{1})}^{(1)}x_{N_{2})}^{(2)},$$\ldots x_{N_{M}}^{(M)})$ .

Such a homogeneous system was studied by Spohn [28], Osada [24] and
Nagao and Forrester [21] as an infinite particle limit of Dyson’s Brownian
motion model [4].

Next, we consider the case that $T_{N}=2N^{1/3}$ . In order to state the
result, we have to introduce the following functions. Let Ai(z) be the
Airy function:

(2.6) Ai(z) $=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{\sqrt{-1}(zt+t^{3}/3)}dt$ .
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For $S_{)}t<0$ and $x$ , $y\in R$ , we put

$D(s, X_{)}.t, y)$ $=$ $\frac{1}{4}[\int_{0}^{\infty}d\lambda e^{s\lambda/2}Ai(x+\lambda)\frac{d}{d\lambda}\{e^{t\lambda/2}Ai(y+\lambda)\}$

$-\int_{0}^{\infty}d\lambda e^{t\lambda/2}Ai(y+\lambda)\frac{d}{d\lambda}\{e^{s\lambda/2}Ai(x+\lambda)\}]$ ,

$\overline{I}(S_{)}x;t, y)$ $=$ $\int_{0}^{\infty}d\lambda e^{t\lambda/2}Ai(y-\lambda)\int_{\lambda}^{\infty}d\lambda’e^{s\lambda’/2}Ai(x-\lambda’)$

$-\int_{0}^{\infty}d\lambda e^{s\lambda/2}Ai(x-\lambda)\int_{\lambda}^{\infty}d\lambda’e^{t\lambda’/2}Ai(y-\lambda’))$

and
$\overline{S}(s, x;t, y)=S(s, x;t, y)-P(s, x;t, y)1(s<t)$ ,

with

$S(s, x;t, y)$ $=$ $\int_{0}^{\infty}d\lambda e^{(t-s)\lambda/2}Ai(x+\lambda)Ai(y+\lambda)$

$+\frac{1}{2}Ai(y)\int_{0}^{\infty}d\lambda e^{s\lambda/2}Ai(x-\lambda)$ ,

$P(S_{)}x;t, y)$ $=$ $\int_{-\infty}^{\infty}d\lambda e^{(t-s)\lambda/2}Ai(x+\lambda)Ai(y+\lambda)$ ,

where 1 $(s<t)=1$ if $s<t$ , and $=0$ otherwise. And let $q^{m,n}(x, y)$ be
the quaternion, whose $2\times 2$ matrix expression is given by

$C(q(m,nxy)))=(D(s_{m}’,x\cdot,s_{n}’,y)\overline{S}(smx\cdot sny))$ $\overline{\frac{I}{S}}(sx\cdot;msn)y)(s_{n)}’ y,s_{m},x))$ .

Let $M\geq 1$ and $\{N_{m}\}_{m=1}^{M+1}$ be a sequence of positive integers. We de-

note by $Q$ ( $x_{N_{1}}^{(1)}$ , $x_{N_{2}}^{(2)}$ , $\ldots$ , $x_{N_{M+1}}^{(M+1)}$ ) the self-dual $\sum_{m=1}^{M+1}N_{m}\times\sum_{m=1}^{M+1}N_{m}$

quaternion matrix whose elements are $q^{m,n}$ ( $x_{i}^{(m)}$ , $x_{j}^{(n)}$ )) $1\leq i\leq N_{m}$ ,

$1\leq j\leq N_{n}$ , $1\leq m$ , $n\leq M+1$ .

Theorem 2. Let $T_{N}=2N^{1/3}$ and $a_{N}(s)=2N^{2/3}-s^{2}/4$ for $s\in R$ . For
any $M\geq 1$ , any sequence $\{N_{m}\}_{m=1}^{M+1}$ of positive integers, and any strictly

increasing sequence $\{s_{m}\}_{m=1}^{M+1}$ of nonpositive numbers with $s_{M+1}=0$ ,

$\hat{\rho}(s_{1},$
$\xi_{1}^{N_{1}}$ ; $\ldots$ ; $s_{M+1}$ , $\xi_{M+1}^{N_{M+1}})$

$\equiv$
$\lim_{N\rightarrow\infty}\rho_{N}^{T_{N}}$ ($T_{N}+s_{1}$ , $\theta_{a_{N}(s_{1})}\xi_{1}^{N_{1}}$ ; $\cdots$ ). $T_{N}$ , $\theta_{a_{N}(s_{M+1})}\xi_{M+1}^{N_{M+1}})$

$=$ Tdet $Q$ ( $x_{N_{1}}^{(1)}$ , $\ldots$ , $x_{N_{M+1}}^{(M+1)}$ ),
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where $\theta_{u}\{x_{i}\}=\{x_{i}+u\}$ .

Remark 2. This theorem may define an infinite particle system, in
which any type of space-time correlation function is given by the above
quaternion determinant. This quaternion determinantal system is the
same as that derived in Forrester, Nagao and Honner [6], and it is in-
homogeneous both in space and time. The spatial inhomogeneity is
attributed to the fact that this system expresses the edge property of
the infinite non-colliding Brownian particles. Thus, if we take the bulk

limit, $ x_{i}^{(m)}\rightarrow-\infty$ with the position differences $x_{i}^{(m)}-x_{j}^{(n)}$ fixed, then
the system should recover spatial homogeneity. It is confirmed by ob-
serving that the quaternion determinantal system given in Theorem 1
can be derived as the bulk limit of the system of Theorem 2, if we use
the asymptotic expansion of the Airy function (2.6) [1]

$)$

Ai $(-x)\sim\frac{1}{\pi^{1/2}x^{1/4}}\cos(\frac{2}{3}x^{3/2}-\frac{\pi}{4})$ as $ x\rightarrow\infty$ .

On the other hand, keeping the spatial inhomogeneity, one can consider
the limit $ s_{m}\rightarrow-\infty$ with the time difference $s_{n}-s_{m}$ fixed, $1\leq m$ , $ n\leq$

$M$ . In this limit, $D(s_{m}, x;s_{n}, y)\rightarrow 0,\overline{I}(s_{m)}x;s_{n}, y)\rightarrow 0$ , and

$S(s_{m}, X_{)}.s_{n}, y)\rightarrow\int_{0}^{\infty}d\lambda e^{(s_{n}-s_{m})\lambda/2}Ai(x+\lambda)Ai(y+\lambda)$ .

Hence the off-diagonal elements vanish in the $2\times 2$ matrix expressions
of quaternion $q^{m,n}(x, y)$ and

$C(q^{m,n}(x, y))\rightarrow\left(\begin{array}{ll}\alpha^{m,n}(x,y) & 0\\0 & \sigma^{n,m}(y,x)\end{array}\right)$

for $1\leq m$ , $n$ $\leq M$ , where

$\alpha^{m,n}(x, y)=\alpha(s_{m}, x;s_{n}, y)$

$=\{$

$\int_{0}^{\infty}d\lambda e^{(s_{n}-s_{m})\lambda/2}Ai(x+\lambda)Ai(y+\lambda)$ if $m\geq n$

$-\int_{-\infty}^{0}d\lambda e^{(s_{n}-s_{m})\lambda/2}Ai(x+\lambda)Ai(y+\lambda)$ if $m<n$ .

Then the quaternion determinant TdetQ ( $x_{N_{1}}^{(1)}$ , $x_{N_{2}}^{(2)}$ , $\ldots$ , $x_{N_{M}}^{(M)}$ ) is re-

duced to an ordinary determinant $\det A$ ( $x_{N_{1}}^{(1)}$ , $x_{N_{2}’)}^{(2)}\ldots x_{N_{M}}^{(M)}$ ) with the
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elements $\alpha^{m,n}$ ( $x_{i}^{(m)}$ , $x_{j}^{(n)}$ ). In this way, we will obtain the infinite par-

ticle system, which is temporally homogeneous but spatially inhomoge-
neous with the multitime correlation functions

$\hat{\rho}^{J}$ ( $s_{1)}\xi_{1}^{N_{1}}$ ; $s_{2}$ , $\xi_{2}^{N_{2}}$ ; $\ldots$ ; $s_{M}$ , $\xi_{M}^{N_{M}})=\det A(x_{N_{1}}^{(1)},$ $x_{N_{2}}^{(2)}$ , $\ldots$ , $x_{N_{M}}^{(M)})$ .

In particular, if we set $N_{1}=N_{2}=\cdots=N_{M}=1$ , then

$\tilde{\rho}$ ( $s_{1}$ , $\{x^{(1)}\};\ldots$ ; $s_{M}$ , $\{x^{(M)}\})=1\leq m,n\leq M\det(\alpha^{m,n}$ ( $x^{(m)}$ , $x^{(n)}$ ) $)$ .

This is the same as the system called the Airy process by Pr\"ahofer and
Spohn in [26]. (See also [11].)

\S 3. Quaternion determinantal expressions of the correlations

In this section we give quaternion determinantal expressions for the
correlation functions defined in (2.5) along the procedure in [20]. From
now on we consider the case $N$ is even, for simplicity of notations. See
[20], for necessary modifications for odd case. For $1\leq m$ , $n\leq M+1$ ,

define

(3.1) $F^{m,n}(xy))=\int_{-,,\infty}^{\infty}dw\int_{-\infty}^{w}dz$ $\left|\begin{array}{ll}p_{T-t_{m}}(x,z) & p_{T-t_{m}}(x,w)\\p_{T-t_{n}}(y,z) & p_{T-t_{n}}(y,w)\end{array}\right|$ ,

where $p0(y, x)dy=\delta_{x}(dy)$ . We introduce an antisymmetric inner prod-
ucts

$\langle f, g\rangle_{m}=\int_{R}dx\int_{R}dyF^{m,m}(x, y)f(x)g(y)$ ,

and

$\langle f)g\rangle=\int_{R}dx\int_{R}dyF^{1,1}(x, y)p_{t_{1}}(0, x)p_{t_{1}}(0, y)f(x)g(y)$ .

For $k=0,1$ , $\ldots$ we consider the polynomials in $x$ of degree $k$ defined by

(3.2) $R_{k}(x)=z_{1}^{-k}\sum_{j=1}^{k}\alpha_{kj}H_{j}(\frac{x}{c_{1}})z_{1}^{j}$ ,

where $c_{1}=\sqrt{\frac{t_{1}(2T-t_{1})}{T}}$

)
$z_{1}=\sqrt{\frac{2T-t_{1}}{t_{1}}}$ ,

(3.1) $\alpha_{kj}=\{$

$2^{-k}c_{1}^{k}\delta_{kj)}$ if $k$ is even,

$2^{-k}c_{1}^{k}\{\delta_{kj}-2(k-1)\delta_{k-2j}\}$ , if $k$ is odd,
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and $H_{j}(x)$ are the Hermite polynomials. They are monic and satisfy the
skew orthogonal relations:

$\langle R_{2j)}R_{2\ell+1}\rangle=-\langle R_{2\ell+1}, R_{2j}\rangle=r_{j}\delta_{j\ell}$ ,

$\langle R_{2j}, R_{2\ell}\rangle=\langle R_{2j+1)}R_{2\ell+1}\rangle=0$ , $j$ , $\ell=0,1$ , 2, $\ldots$ )

where

$r_{j}=\frac{\Gamma(j+\frac{1}{2})\Gamma(j+1)}{\pi}(\frac{t_{1}^{2}}{T})^{2j+1/2}$

For $m=1,2$ , $\ldots$ , $M+1$ , and $k=0_{)}1$ , $\ldots$ , put

(3.4) $R_{k}^{(m)}(x)=\int_{R}dyR_{k}(y)p_{t_{1}}(0, y)p_{t_{m}-t_{1}}(y, x)$ .

Then we can prove the skew orthogonal relations

$\langle R_{2j}^{(m)}, R_{2\ell+1}^{(m)}\rangle_{m}=-\langle R_{2\ell+1}^{(m)}, R_{2j}^{(m)}\rangle_{m}=r_{j}\delta_{j\ell}$ ,

$\langle R_{2j)}^{(m)}R_{2\ell}^{(m)}\rangle_{m}=\langle R_{2j+1}^{(m)}, R_{2\ell+1}^{(m)}\rangle_{m}=0$ , $j$ , $\ell=0,1$ , 2, $\ldots$ ,

for any $m=1,2,$ $\ldots$ , $M+1$ . For $m=1,2$ , $\ldots$ , $M+1_{)}$ define

(3.5) $\Phi_{k}^{(m)}(x)=\int_{R}dyR_{k}^{(m)}(y)F^{m,m}(y, x)$ , $k=0,1$ , 2, $\ldots$ .

Now we introduce the functions on $R^{2}$ , $D^{m,n}$ , $I^{m,n}$ and $S^{m,n}1$
)

$\leq m$ , $ n\leq$

$M+1_{)}$ given by

(3.4) $D^{m,n}(x, y)=\sum_{k=0}^{(N/2)-1}\frac{1}{r_{k}}[R_{2k}^{(m)}(x)R_{2k+1}^{(n)}(y)-R_{2k+1}^{(m)}(x)R_{2k}^{(n)}(y)])$

(3.7) $I^{m,n}(x, y)=-\sum_{k=0}^{(N/2)-1}\frac{1}{r_{k}}[\Phi_{2k}^{(m)}(x)\Phi_{2k+1}^{(n)}(y)-\Phi_{2k+1}^{(m)}(x)\Phi_{2k}^{(n)}(y)]$ ,

(3.4) $S^{m,n}(x, y)=\sum_{k=0}^{(N/2)-1}\frac{1}{r_{k}}[\Phi_{2k}^{(m)}(x)R_{2k+1}^{(n)}(y)-\Phi_{2k+1}^{(m)}(x)R_{2k}^{(n)}(y)]$ .

Further we define

(3.9) $\tilde{S}^{m,n}(x, y)=S^{m,n}(x, y)-p_{t_{n}-t_{m}}(x, y)1(m<n)$ ,

(3.10) $\tilde{I}^{m,n}(xy))=I^{m,n}(x, y)+F^{m,n}(x, y)$ .
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Define the quaternions $q^{m,n}(x, y)$ , $1\leq m$ , $n$ $\leq M+1$ , $x$ , $y$ $\in R$ so that
these 2 $\times 2$ matrix expressions $C(q^{m,n}(x, y))$ are given by

$C(q^{m,n}(x, y))=\left(\begin{array}{ll}\overline{S}^{m,n}(x,y) & \underline{\overline{I}}^{m,n}(x,y)\\D^{m,n}(x,y) & S^{n,m}(y,x)\end{array}\right)$ .

Let $M\geq 1$ and $\{N_{m}\}_{m=1}^{M+1}$ be a sequence of positive integers less

than or equal to $N$ . For $x_{N}^{(m)}\in R_{<)}^{N}1\leq m\leq M+1$ , we de-

note by $Q$ ( $x_{N_{1}}^{(1)}$ , $x_{N_{2})}^{(2)}\ldots$ , $x_{N_{M+1}}^{(M+1)}$ ) the self-dual $\sum_{m=1}^{M+1}N_{m}\times\sum_{m=1}^{M+1}N_{m}$

quaternion matrix whose elements are $q^{m,n}$ ( $x_{i}^{(m)}$ , $x_{j}^{(n)}$ ), $1\leq i\leq N_{m}$ ,

$1\leq j\leq N_{n}$ , $1\leq m$ , $n\leq M+1$ . Then we show the following relation.

Theorem 3. The multitime correlation function (2.5) is written as

$\rho_{N}^{T}$ ( $t_{1}$ , $\xi_{1)}^{N_{1}}$.
$\ldots$ ; $t_{M+1}$ , $\xi_{M+1}^{N_{M+1}})=T\det Q(x_{N_{1}}^{(1)},$ $x_{N_{2})}^{(2)},$$\ldots x_{N_{M+1}}^{(M+1)})$ .

In order to prove the theorem, first we introduce the Pfaffian. For
an integer $N$ and an antisymmetric $2N\times 2N$ matrix $A=(a_{ij})$ , the
Pfaffian is defined as

Pf(A)= $Pf_{1\leq i<j\leq 2N}(a_{ij})$

$=\frac{1}{N!}\sum_{\sigma}sgn(\sigma)a_{\sigma(1)\sigma(2)}a_{\sigma(3)\sigma(4)}\cdots a_{\sigma(2N-1)\sigma(2N)}$ ,

where the summation is extended over all permutations $\sigma$ of $(1, 2, \ldots, 2N)$

with restriction $\sigma(2k-1)<\sigma(2k)$ , $k=1,2,$ $\ldots$ , $N$ . If $Q$ is an $N\times N$

self-dual quaternion matrix, then

(3.11) TdetQ $=Pf(JC(Q))$ ,

where $J$ is an $2N\times 2N$ antisymmetric matrix with only non-zero elements

$J_{2k+1,2k+2}=-J_{2k+2,2k+1}=1$ , $k=0,1$ , 2, $\ldots$ , $N-1$ .

See, for instance, Mehta [17].
For a function $\psi^{m,n}$ defined on $R^{2}$ we denote the $N\times N$-matrices

whose $(i, j)$ -entry is $\psi^{m,n}(x_{i}^{(m)},$ $x_{j}^{(n)})$ by $\psi^{m,n}(x_{N}^{(m)},$ $x_{N}^{(n)})$ , or simply

by $\psi^{m,n}$ for short. And we denote by $R^{(m)}(x_{N}^{(m)})$ the $N\times N$ ma-

trix with $R^{(m)}(x_{N}^{(m)})_{i,,,j}=R_{j-1}^{(m)}(x_{i})$ , and by $\Phi^{(m)}(x_{N}^{(m)})$ that with
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$\Phi^{(m)}(x_{N}^{(m)})_{i,,,j}=\Phi_{j-1}^{(m)}(x_{i})$ . Let $L$ be the $N\times N$ diagonal matrix with

$L_{i,,,i}=\sqrt{r[(i-1)/2]})i=1,2,$ $\ldots,$
$N$ , and $R-(m)(x_{N}^{(m)})=L^{-1}R^{(m)}(x_{N}^{(m)})$ .

Then we have

(3.12) $\overline{R}^{(m)}(x_{N}^{(1)})J\overline{R}^{(n)}(x_{N}^{(1)})^{T}=D^{m,n}(x_{N}^{(m)},$ $x_{N}^{(n)})$ .

As the first step of the proof of Theorem 3. We show that the
multitime probability density defined in (2.3) is written as

(3.13) $\rho_{N}^{T}(t_{1}, \xi_{1)}^{N}. \ldots ; t_{M+1}, \xi_{M+1}^{N})=T\det Q(x_{N}^{(1)},$
$\ldots,$

$x_{N}^{(M+1)})$ .

For simplicity of notation, here we give the proof of (3.13) for $M=2$ .

It is straightforward to prove (3.13) for general $M$ . Since

$sgn(h_{N}(x_{N}^{(3)}))=Pf_{1\leq i<j\leq N}($$sgn(x_{j}^{(3)}-x_{i}^{(3)}))$ ,

and $sgn(y-x)=F^{3,3}(x, y)$ , we have

(3.14) $sgn(h_{N}(x_{N}^{(3)}))=Pf[F^{3,3}]$ .

Noting that $R_{k}(x)$ is the monic polynomial of degree $k$ , we have

$h_{N}(x^{(1)})=1\leq i,j\leq N\det((x_{j}^{(1)})^{i-1})=1\leq i,j\leq N\det(R_{i-1}(x_{j}^{(1)})))$

and so

(3.15) $\prod pt_{1}N(0,$
$x_{i}^{(1)})h_{N}(x^{(1)})=\det[R^{(1)}(x_{N}^{(1)})]$

$i=1$

Since $\det L=\prod_{k=0}^{N/2-1}r_{k}=C(N, T, t_{1})^{-1}$ , from (3.12) and (3.15)

(3.16) $C(NT, t_{1}))\prod p_{t_{1}}N(0$ , $x_{i}^{(1)})h_{N}(x^{(1)})=\det[\overline{R}^{(1)}(x_{N}^{(1)})]$

$i=1$

$=Pf[\overline{R}^{(1)}(x_{N}^{(1)})J\overline{R}^{(1)}(x_{N}^{(1)})^{T}]$

$=Pf[D^{1,1}$ ( $x_{N}^{(1)}$ , $x_{N}^{(1)}$ ) $]$ .
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Then from (2.4), (3.14) and (3.16) we have

$\rho_{N}^{T}(t_{1}, \xi_{1}^{N}; t_{2}, \xi_{2}^{N}; t_{3}, \xi_{3}^{N})$

$=Pf[D^{1,1}]Pf[F^{3,3}]\prod_{m=1}^{2}det1\leq i,j\leq N[p_{t_{m+1}-t_{m}}]$

$=(-1)^{3N/2}Pf$ $\left\{\begin{array}{ll}D^{1,1} & O\\O & -F^{3,3}\end{array}\right\}m\prod_{=1}^{2}Pf$ $\left\{\begin{array}{ll}O & -(p_{t_{m+1}-t_{m}})^{T}\\p_{t_{m+1}-t_{m}} & O\end{array}\right\}$ .

By basic properties of the Pfaffians, we have

$Pf$ $\left\{\begin{array}{ll}D^{1,1} & o\\o & -F^{3,3}\end{array}\right\}\prod_{=1}^{2}Pf[p_{t_{m+1}-t_{m}}O$ $-(p_{t_{m+o^{1}}-t_{m}})^{T}]$

$=Pf\{$

$D^{1,1}$

$o$

$o$

$ooo$

$-F^{3,3}ooooo$ $p_{t_{21}}oo^{\frac {}{}t}ooo$ $-(p_{t_{21}})^{T}ooo^{\frac {}{}t}oo$
$pt_{3}-t_{2}ooooo$ $-(p_{t_{32}})^{T}o^{\frac {}{}t}oooo]$

$=Pf[D^{1,1}OOOOO$ $-(p_{t_{21}})^{T}oo^{\frac {}{}t}ooo$ $p_{t_{21}}oooo^{\frac {}{}t}o$ $-(p_{t_{32}})^{T}o^{\frac {}{}t}oooo$ $p_{t_{32}}o^{\frac {}{}t}oooo$ $-F^{3,3}ooooo]$

$=Pf\{$

$D^{1,1}$ $o$ $o$ $o$ $o$

$o$ $-F^{1,1}$
$p_{t_{2}-t_{1}}$

$-F^{1,2}$
$p_{t_{3}-t_{1}}$

$o$ $-(p_{t_{2}-t_{1}})^{\Gamma}$ $o$ $o$ $o$

$-F^{3,3}-F^{2,3}-F^{1,3}OOO]$ .
$o$ $-F^{2,1}$ $o$ $-F^{2,2}$

$p_{L_{3}-t_{2}}$

$o$ $-(p_{t_{3}-t_{1}})^{T}$ $o$ $-(p_{t_{3}-t_{2}})^{T}$ $o$

$o$ $-F^{3,1}$ $o$ $-F^{3,2}$ $o$

Since $x_{N}^{(1)}\in R_{<}^{N}$ , $h_{N}(x_{N}^{(1)})\neq 0$ , and so $\det[R^{(1)}(x_{N}^{(1)})]\neq 0$ by (3.15).

Hence we can define matrices

$U^{(m)}=R^{(m)}(x_{N}^{(m)})R^{(1)}(x_{N}^{(1)})^{-1}$ , $V^{(m)}=\Phi^{(m)}(x_{N}^{(m)})R^{(1)}(x_{N}^{(1)})^{-1}$ ,

which satisfies

$U^{(m)}D^{1,1}(U^{(n)})^{T}=D^{m,n}$ , $V^{(m)}D^{1,1}(V^{(n)})^{T}=-I^{m,n}$ ,

$V^{(m)}D^{1,1}(U^{(n)})^{T}=S^{m,n}$ , $U^{(m)}D^{1,1}(V^{(n)})^{T}=-(S^{n,m})^{T}$ .
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By repeating elementary operations, we see that the last Pfaffian equals
to

$Pf[-S^{1,1}-S^{2,1}-S^{3,1}D^{2,1}D^{1,1}D^{3,1}$
$(^{1,2},)^{T}(^{1,1})^{T}(^{1,3})^{T}\frac{s}{}\overline{I}^{1,1}\frac{\overline{s}}{\overline{s},-}\tilde{I}^{2,1}\overline{I}^{3,1}$ $-\overline{S}^{1,2}-\overline{S}^{2,2}-S^{3,2}D^{2,2}D^{1,2}D^{3,2}$ $(^{2,2},)^{T}(^{2,1})^{T}(^{2,3})^{T}\frac{s}{}\overline{I}^{1,2}\frac{s}{\overline{s},-}\overline{I}^{2,2}\overline{I}^{3,2}$ $-\overline{S}^{2,3}-\overline{S}^{1,3}-S^{3,3}D^{1,3}D^{2,3}D^{3,3}$

$(S^{3,1})^{T}(S)-\overline{I}^{1,3}-\overline{I}^{2,3}-\overline{I}^{3,3}s_{3,,,3T}^{3,2}]$

$=(-1)^{3N/2}Pf$ $\left\{\begin{array}{lll}A^{1,1} & A^{1,2} & A^{1,3}\\A^{2,1} & A^{2,2} & A^{2,3}\\A^{3,1} & A^{3,2} & A^{3,3}\end{array}\right\}$ ,

where each $A^{m,n}=(A_{ij}^{m,n})$ is a $2N\times 2N$ matrix which consists of $2\times 2$

blocks

$A_{ij}^{m,n}=\left(\begin{array}{ll}D_{ij}^{m,n} & \tilde{S}_{ji}^{n,m}\\-\tilde{S}_{ij}^{m,n} & -\tilde{I}_{ij}^{m,n}\end{array}\right)$ .

We can see that the above matrix $A=(A_{ij}^{m,n})$ satisfies the relation

$A=JC(Q)$ . Therefore, (3.13) is derived from (3.11).
For square integrable functions $\phi$ and $\psi$ defined on $R^{2}$ , put $\phi*$

$\psi(x, y)=\int_{R}\phi(x, z)\psi(z, y)dz$ . Then we have

$S^{m,p}*S^{p,m}=I^{m,p}*D^{p,n}=D^{m,p}*F^{p,n}=S^{m,p})$

$D^{m,p}*S^{p,n}=D^{m,n}$ , $S^{m,p}*I^{p,n}=S^{m,p}*F^{p,n}=I^{m,n}$ ,

$S^{m,p}*p_{t_{n}-t_{p}}=S^{m,n}$ , $D^{m,p}*p_{t_{n}-t_{p}}=D^{m,n}$ , if $p<n$ .

Hence by simple calculation we see that

$\int_{R}q^{m,m}(z, z)dz=N$ ,

$\int_{R}q^{m,p}(x, z)q^{p,n}(z, y)dz=q^{m,n}(x, y)$

$+q^{m,n}(x, y)\kappa(n,p)-\kappa(p, m)q^{m,n}(x, y)$ ,

where $\kappa(n,p)$ is a quaternion with

$C(\kappa(n,p))=\left(\begin{array}{ll}1-1(p<n) & 0\\0 & -1(n<p)\end{array}\right)$ .
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Then by slight modification of Theorem 6 in [22] we have the following
integral formula for any $1\leq N_{m}\leq N$ , $m=1,2$ , $\ldots$ , $M+1$ ,

$\int_{R}$ TdetQ ( $x_{N_{1}}^{(1)},$

$\ldots,$

$x_{N_{m})}^{(m)}\ldots$ , $x_{N_{M+1}}^{(M+1)}$ ) $dx_{N_{m}}^{(m)}$

$=(N-N_{m}+1)T\det Q(x_{N_{1})}^{(1)},$$\ldots x_{N_{m}-1}^{(m)},$
$\ldots$ , $x_{N_{M+1}}^{(M+1)})$ ,

which is the generalization of the formula (1.2) given in Introduction of
the present paper. Successive application of the above relation yields
Theorem 3.

\S 4. Expansion using Hermite polynomials

In this section we show expansions of functions $p_{t_{n}-t_{m}}$ , $R_{k}^{(m)}$ and
$\Phi_{k}^{(m)}$ by using Hermite polynomials $H_{k}$ . Put

$c_{n}=\sqrt{\frac{t_{n}(2T-t_{n})}{T}}$ , $\gamma_{n}=-\frac{T-t_{n}}{T}$ , $z_{n}=\sqrt{\frac{2T-t_{n}}{t_{n}}})$

and $\tau^{(n)}=-\log z_{n}$ . By simple calculation we have

$e^{-(t_{m}/2T)(x/c_{m})^{2}}e^{(t_{n}/2T)(y/c_{n})^{2}}$

$p_{t_{n}-t_{m}}(x, y)$ $=$

$\sqrt{2\pi(t_{n}-t_{m})}$

$\times\exp(-\frac{\{(y/c_{n})-e^{-(\tau^{(n)}-\tau^{(m)})}(x/c_{m})\}^{2}}{1-e^{-2(_{2^{-(n)}}-\tau^{(m)}})})$

for $1\leq m<n<M+1$ . Using Mehler’s formula [2]

$\exp(-\frac{(y-xz)^{2}}{1-z^{2}})=e^{-y^{2}}\sqrt{\pi(1-z^{2})}\sum_{k=0}^{\infty}\frac{z^{k}}{h_{k}}H_{k}(x)H_{k}(y))$

we will have the following expansions using the Hermite polynomials.
For $1\leq m<n\leq M+1$ ,

$\sqrt{T}e^{-\frac{1}{2}(1+\gamma_{m})(x/c_{m})^{2}}e^{-\frac{1}{2}(1-\gamma_{n})(y/c_{n})^{2}}$

(4.1) $p_{t_{n}-t_{m}}(x, y)$ $=$

$\sqrt{t_{n}(2T-t_{m})}$

$\times\sum_{k=0}^{\infty}\frac{e^{-k(\tau^{(n)}-\tau^{(m)})}}{h_{k}}H_{k}(\frac{x}{c_{m}})H_{k}(\frac{y}{c_{n}})$ ,
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and for $1<m\leq M+1_{)}$

$p_{t_{1}}(0, x)p_{t_{m}-t_{1}}(x, y)$ $=$ $\frac{\sqrt{T}e^{-(x/c_{1})^{2}}e^{-\frac{1}{2}(1-\gamma_{m})(y/c_{m})^{2}}}{\sqrt{2\pi t_{1}t_{m}(2T-t_{1})}}$

$\times\sum_{k=0}^{\infty}\frac{e^{-k(\tau^{(m)}-\tau^{(1)})}}{h_{k}}H_{k}(\frac{x}{c_{1}})H_{k}(\frac{y}{c_{m}})$ .

Then from (3.2), (3.4) and the orthogonal relation of the Hermitian
polynomials, we obtain

(4.2) $R_{k}^{(m)}(x)=\frac{e^{-\frac{1}{2}(1-\gamma_{m})(x/c_{m})^{2}}e^{k\tau^{(1)}}}{\sqrt{2\pi t_{m}}}\sum_{j=0}^{k}\alpha_{kj}e^{-j\tau^{(m)}}H_{j}(\frac{x}{c_{m}})$ .

From the definition (3.1) and the expansion (4.1) we can obtain

(4.3) $F^{m,n}(xy))=\frac{e^{-\frac{1}{2}(1+\gamma_{m})(x/c_{m})^{2}}e^{-\frac{1}{2}(1+\gamma_{n})(y/c_{n})^{2}}}{\sqrt{(2T-t_{m})(2T-t_{n})}}$

$\times\sum_{k=0}^{\infty}\sum_{\ell=0}^{\infty}\frac{e^{k\tau^{(m)}}e^{\ell\tau^{(n)}}}{h_{k}h_{\ell}}H_{k}(\frac{x}{c_{m}})H_{\ell}(\frac{y}{c_{n}})$

$\times\langle H_{k}(_{\overline{\sqrt{T}}}))H_{\ell}(_{\overline{\sqrt{T}}})\rangle_{*}$ ,

where $\langle\cdot, \cdot\rangle_{*}$ is the antisymmetric inner product defined by

$\langle f, g\rangle_{*}=\int_{-\infty}^{\infty}dw\int_{-\infty}^{w}dze^{-(z^{2}+w^{2})/2T}[f(z)g(w)-f(w)g(z)]$ .

Put $R_{k}^{*}(x)=\sum_{j=0}^{k}\alpha_{kj}H_{j}(\frac{x}{c_{M+1}})$ . Then $\{R_{k}^{*}(x)\}$ satisfy the following

skew orthogonal relations

(4.4) $\langle R_{2j}^{*}, R_{2\ell+1}^{*}\rangle_{*}=-\langle R_{2\ell+1}^{*}, R_{2j}^{*}\rangle_{*}=r_{j}^{*}\delta_{j\ell}$ ,

$\langle R_{2j}^{*}, R_{2\ell}^{*}\rangle_{*}=0_{)}$ $\langle R_{2j+1}^{*}, R_{2\ell+1}^{*}\rangle_{*}=0$ , for $j$ , $\ell=0,1,2$ , $\ldots$ ,

where $r_{\ell}^{*}=4h_{2\ell}T(c_{1}/2)^{4\ell+1}$ . We put

$\beta_{kj}=\{$

$2^{k}c_{1}^{-k}\delta_{jk)}$ if $k$ is even,

$2^{k}(\frac{k-1}{2})!\{d_{1}(\frac{j-1}{2})!\}^{-1}$ , if $k,j$ are odd and $k\geq j$ ,

0, otherwise,
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for nonnegative integers $k$ and $j$ . Then $\sum_{j=s}^{k}\beta_{kj}\alpha_{js}=\delta_{ks)}$ if $o\leq s\leq k$ ,

and

(4.5) $H_{k}(\frac{x}{\sqrt{T}})=\sum_{j=0}^{k}\beta_{kj}R_{j}^{*}(x)$ .

From the definition (3.5) and the equations (4.2) and (4.3) we have

$\Phi_{k}^{(m)}(x)=\frac{c_{m}}{\sqrt{2\pi t_{m}}(2T-t_{m})}e^{-\frac{1}{2}(1+\gamma_{m})(x/c_{m})^{2}}e^{k\tau^{(1)}}$

$\infty$ $k$
$\ell\tau^{(m)}$

$\times\sum_{\ell=0}\sum_{j=0}\frac{e}{h_{\ell}}H_{\ell}(\frac{x}{c_{m}})\alpha_{kj}\langle H_{j}(_{\overline{\sqrt{T}}})$ , $H_{\ell}(_{\overline{\sqrt{T}}})\rangle_{*}$

$=\overline{\sqrt{2\pi T(2T-t_{m})}}^{e}$

$e^{-\frac{1}{2}(1+\gamma_{m})(x/c_{m})^{2}}k\tau^{(1)}\sum_{j=0}^{\infty}\langle R_{k)}^{*}R_{j}^{*}\rangle_{*}\sum_{\ell=j}^{\infty}\frac{e^{\ell\tau^{(m)}}}{h_{\ell}}H_{\ell}(\frac{x}{c_{m}})\beta_{\ell j}$ .

Using the skew orthogonal relations (4.4), we show that for $k=0,1$ , 2, $\ldots$

(4.6) $\Phi_{2k}^{(m)}(x)$ $=$ $\frac{e^{-\frac{1}{2}(1+\gamma_{m})(x/c_{m})^{2}}r_{k}^{*}}{\sqrt{2\pi T(2T-t_{m})}}e^{2k\tau^{(1)}}$

$\times\sum_{\ell=2k+1}^{\infty}\frac{e^{\ell\tau^{(m)}}}{h_{\ell}}\beta_{\ell 2k+1}H_{\ell}(\frac{x}{c_{m}})$ ,

(4.7) $\Phi_{2k+1}^{(m)}(x)$ $=$ $-\frac{e^{-\frac{1}{2}(1+\gamma_{m})(x/c_{m})^{2}}r_{k}^{*}}{\sqrt{2\pi T(2T-t_{m})}}e^{(2k+1)\tau^{(1)}}$

$\infty$ $\ell\tau^{(m)}$

$\times\sum_{\ell=2k}\frac{e}{h_{\ell}}\beta_{\ell 2k}H_{\ell}(\frac{x}{c_{m}})$ .

Using above expansions we show the following lemma.

Lemma 4. For $1\leq m$ , $n\leq M+1$ ,

(4.8) $F^{m,n}(x, y)=\sum_{k=0}^{\infty}\frac{1}{r_{k}}[\Phi_{2k}^{(m)}(x)\Phi_{2k+1}^{(n)}(y)-\Phi_{2k+1}^{(m)}(x)\Phi_{2k}^{(n)}(y)]$ ,

(4.9) $\overline{I}^{m,n}(xy))=\sum_{k=N/2}^{\infty}\frac{1}{r_{k}}[\Phi_{2k}^{(m)}(x)\Phi_{2k+1}^{(n)}(y)-\Phi_{2k+1}^{(m)}(x)\Phi_{2k}^{(n)}(y)]$ .

Proof. By (4.6), (4.7) and the relation

(4.10) $r_{k}=\frac{1}{2\pi T}(\frac{t_{1}}{2T-t_{1}})^{2k+1/2}r_{k}^{*}$ ,
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we have

$\sum_{k=0}^{\infty}\frac{1}{r_{k}}[-\Phi_{2k+1}^{(m)}(x)\Phi_{2k}^{(n)}(y)+\Phi_{2k}^{(m)}(x)\Phi_{2k+1}^{(n)}(y)]$

$=$ $\frac{e^{-\frac{1}{2}(1+\gamma_{m})(x/c_{m})^{2}}e^{-\frac{1}{2}(1+\gamma_{n})(y/c_{n})^{2}}}{\sqrt{(2T-t_{m})(2T-t_{n})}}\sum_{k=0}^{\infty}r_{k}^{*}$

$\times\{\sum_{j=2k}^{\infty}\frac{e^{j\tau^{(m)}}}{h_{j}}\beta_{j2k}H_{j}(\frac{x}{c_{m}})\times\sum_{\ell=2k+1}^{\infty}\frac{e^{\ell\tau^{(n)}}}{h_{\ell}}\beta_{\ell 2k+1}H_{\ell}(\frac{y}{c_{n}})$

- $\sum_{j=2k+1}^{\infty}\frac{e^{j\tau^{(m)}}}{h_{j}}\beta_{j2k+1}H_{j}(\frac{x}{c_{m}})\times\sum_{\ell=2k}^{\infty}\frac{e^{\ell\tau^{(n)}}}{h_{\ell}}\beta_{\ell}{}_{2k}H_{\ell}(\frac{y}{c_{n}})\}$ .

By (4.4) and (4.5) the right hand side of the above equation equals to

$\frac{e^{-\frac{1}{2}(1+\gamma_{m})(x/c_{m})^{2}}e^{-\frac{1}{2}(1+\gamma_{n})(y/c_{n})^{2}}}{\sqrt{(2T-t_{m})(2T-t_{n})}}\sum_{\mu=0}^{\infty}\sum_{\nu=0}^{\infty}\langle R_{\mu}^{*}, R_{l}^{*},\rangle_{*}$

$\times\sum_{j=\mu}^{\infty}\sum_{\ell=\iota/}^{\infty}\frac{e^{j\tau^{(m)}}e^{\ell\tau^{(n)}}}{h_{j}h_{\ell}}\beta_{j\mu}H_{j}(\frac{x}{c_{m}})\beta_{\ell\iota/}H_{\ell}(\frac{y}{c_{n}})$

$=$ $F^{m,n}(x, y)$ ,

where we have used (4.3). From the definitions (3.7) and (3.10), (4.9) is
derived from (4.8).

\S 5. Proof of Theorems

The following formulae are known for (1.1) $[2, 29]$ . For $u\in R$ ,

(5.1) $\lim_{\ell\rightarrow\infty}(-1)^{\ell}\ell^{1/4}\varphi_{2\ell}(\frac{u}{2\sqrt{\ell}})=\frac{1}{\sqrt{\pi}}\cos u$ ,

(5.2) $\lim_{\ell\rightarrow\infty}(-1)^{\ell}\ell^{1/4}\varphi_{2\ell+1}(\frac{u}{2\sqrt{\ell}})=\frac{1}{\sqrt{\pi}}$ $\sin u$ ,

(5.3) $\lim_{\ell\rightarrow\infty}2^{-\frac{1}{4}}\ell^{\frac{1}{12}}\varphi_{\ell}(\sqrt{2\ell}-\frac{u}{\sqrt{2}\ell^{1/6}})=Ai(-u)$

Here we give the proof of Theorem 2 by using (5.3). The proof of The-
orem 1 will be easier and given by the similar argument using (5.1) and
(5.2).
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Let $b^{m}(x)=\sqrt{2T-t_{m}}\exp\{1/2\gamma_{m}(x/c_{m})^{2}-N\tau^{(m)}\}$ and $\zeta^{m}(x)$ be

the quaternion with

$C(\zeta^{m}(x))=\left(\begin{array}{ll}b^{m}(x) & 0\\0 & 1/b^{m}(x)\end{array}\right)$ .

For $x_{N}^{(m)}\in R_{<}^{N}$ , $1\leq m\leq M+1$ , we consider the transformation of the

quaternions $q^{m,n}(x_{i)}^{(m)}x_{j}^{(n)})\mapsto\tilde{q}n,n(x_{i}^{(m)},$ $x_{j}^{(n)})$ defined by

$\hat{q}^{m,n}(x, y)=\zeta^{m}(x)q^{m,n}(x, y)\zeta^{n}(y)^{-1}$ .

We denote by $\hat{Q}$ ( $x_{N_{1}}^{(1)}$ , $x_{N_{2}}^{(2)}$ , $\ldots$ , $x_{N_{M+1}}^{(M+1)}$ ) the self-dual $\sum_{m=1}^{M+1}N_{m}\times$

$\sum_{m=1}^{M+1}N_{m}$ quaternion matrix whose elements are $q^{\neg n,n}$ ( $x_{i}^{(m)}$ , $x_{j}^{(n)}$ ), $ 1\leq$

$i\leq N_{m}$ , $1\leq j\leq N_{n)}1\leq m$ , $n$ $\leq M+1$ . By the definition of quaternion
determinants, the following invariance is established:

Tdet $Q$ ( $x_{N_{1}}^{(1)}$ , $x_{N_{2}}^{(2)},$

$\ldots,$
$x_{N_{N_{M+1}}}^{(M+1)})=T\det\hat{Q}(x_{N_{1}}^{(1)},$ $x_{N_{2}}^{(m)}$ , $\ldots$ , $x_{N_{N_{M+1}}}^{(M+1)})$ .

Hence to prove Theorem 2 it is enough to show the following lemma.

Lemma 5. Let $T_{N}=2N^{1/3}$ and $t_{m}=T_{N}+s_{m}$ , $1\leq m$ , $n$ $\leq M+1$ .

Then for any $x$ , $y\in R$ ,

(5.4) $\lim_{N\rightarrow\infty}\frac{1}{b^{m}(x)b^{n}(y)}D^{m,n}(a_{N}(s_{m})+x, a_{N}(s_{n})+y)=D(s_{m}, x;s_{n}, y)$ ,

(5.5) $\lim b^{m}(x)b^{n}(y)\tilde{I}^{m,n}(a_{N}(s_{m})+x, a_{N}(s_{n})+y)=\overline{I}(s_{m}, x;s_{n}, y)$ ,
$ N\rightarrow\infty$

(5.6) $\lim_{N\rightarrow\infty}\frac{b^{m}(x)}{b^{n}(y)}\tilde{S}^{m,n}(a_{N}(s_{m})+x, a_{N}(s_{n})+y)=\overline{S}(s_{m}, x;s_{n}, y)$ .

We start to prove this lemma by showing

(5.7) $\lim_{N\rightarrow\infty}\frac{b^{m}(x)}{b^{n}(y)}p_{t_{n}-t_{m}}(a_{N}(s_{m})+x, a_{N}(s_{n})+y)=P(s_{m}, x;s_{n)}y)$ .

By (4.1) and the fact

$\frac{a_{N}(s_{m})+x}{c_{m}}=\sqrt{2N}+\frac{x}{\sqrt{2}N^{1/6}}+O(T_{N}^{-1})$ ,

$\tau^{(n)}=\frac{s_{n}}{T_{N}}+O(T_{N}^{-2})$ ,
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for large $N$ , we have

$\lim_{N\rightarrow\infty}\frac{b^{m}(x)}{b^{n}(y)}p_{t_{n}-t_{m}}(a_{N}(s_{m})+X_{)}a_{N}(s_{n})+y)$

$=\lim_{N\rightarrow\infty}\sqrt{\frac{1}{T_{N}}}\sum_{p=-\infty}^{N}e^{\frac{p}{2N^{1/3}}(s_{n}-s_{m})}\varphi_{N-p}(\sqrt{2N}+\frac{x}{\sqrt{2}N^{1/6}})$

$\times\varphi_{N-p}(\sqrt{2N}+\frac{y}{\sqrt{2}N^{1/6}})$

$=\lim_{N\rightarrow\infty}\frac{1}{N^{1/3}}\sum_{p=-\infty}^{N}e^{\frac{p}{2N^{1/3}}(s_{n}-s_{m})}Ai(x+\frac{p}{N^{1/3}})$ Ai $(y+\frac{p}{N^{1/3}})$ ,

where we have used (5.3). Then we have (5.7).
From (3.8), (4.2), (4.6) and (4.7), we have

$S^{m,n}(x, y)=S_{1}^{m,n}(xy))+S_{2}^{m,n}(x, y)$ ,

with

$S_{1}^{m,n}(x, y)$ $=$ $\frac{b^{n}(y)}{c_{n}b^{m}(x)}\sum_{\ell=0}^{N-1}e^{(N-\ell)(\tau^{(n)}-\tau^{(m)})}\varphi_{\ell}(\frac{x}{c_{m}})\varphi_{\ell}(\frac{y}{c_{n}})$ ,

$S_{2}^{(mn)}(x, y)$ $=$ $\frac{b^{n}(y)}{c_{n}b^{m}(x)}\varphi_{N-1}(y/c_{n})$

$\times\sum_{k=N/2}^{\infty}\frac{B(N/2+k)}{B(N/2-1)}e^{-(N-2k-1)\tau^{(m)}}\varphi 2k+1(\frac{x}{c_{m}})$ ,

where $B(k)=\frac{2^{k}k!}{\sqrt{(2k+1)!}}$ . Since

$\frac{B(k)}{B(\ell)}=(\frac{k}{\ell})^{1/4}(1+\mathcal{O}(\frac{|k-\ell|}{k+\ell})))$

by the same argument to show (5.7) we have

(5.8) $\lim\underline{b^{m}(x)}S^{m,n}(a_{N}(s_{m})+X_{)}a_{N}(s_{n})+y)=S(s_{m}, x;s_{n)}y)$ .
$N\rightarrow\infty b^{n}(y)$

(5.6) is derived from (5.7) and (5.8).
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From (4.6) and (4.7), by calculations with (4.10), we have

$b^{m}(x)b^{n}(y)\Phi_{N+2p}^{(m)}(x)\Phi_{N+2p+1}^{(n)}(y)$

$=-2^{3/2}r_{N/2+p}\frac{T}{\sqrt{N+2p+1}}e^{(2p)\tau^{(n)}}\varphi_{N+2p}(\frac{y}{c_{n}})$

$\times\sum_{k=p}^{\infty}\frac{B(N/2+k)}{B(N/2+p)}e^{(2k+1)\tau^{(m)}}\varphi_{N+2k+1}(\frac{x}{c_{m}})$ .

From (4.9) we obtain (5.5) by the same procedure as above.
From (4.2), by calculations with (3.3) and

$e^{-y^{2}/2}H_{\ell+1}(y)=-2\frac{d}{dy}(e^{-y^{2}/2}H_{\ell}(y))+2\ell e^{-y^{2}/2}H_{\ell-1}(y)$ ,

we have

$\frac{R_{2k}^{(m)}(x)R_{2k+1}^{(n)}(y)}{r_{k}b^{m}(x)b^{n}(y)}$

$=\frac{-1}{2\sqrt{t_{m}t_{n}(2T-t_{m})(2T-t_{n})}}e^{(N-2k)\tau^{(m)}}\varphi_{2k}(\frac{x}{c_{m}})e^{(N-2k+1)\tau^{(n)}}$

$\times\{\varphi_{2k}’(\frac{y}{c_{n}})+\sqrt{2k}(1-e^{-2\tau^{(n)}})\varphi_{2k-1}(\frac{y}{c_{n}})\}$ .

Using the fact that

$\frac{(N-p)^{1/12}}{2^{3/4}N^{1/6}}\varphi_{N-p}’(\frac{a_{N}(s_{n})+y}{c_{n}})=\frac{d}{d\lambda}Ai(y+\lambda)|_{\lambda=p/N^{1/3}}+o(1)$ ,

we obtain (5.4). This completes the proof of Lemma 5.
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Diffusive Behaviour of the Equilibrium Fluctuations
in the Asymmetric Exclusion Processes

Claudio Landim, Stefano Olla and Srinivasa R. S. Varadhan

Abstract.

We consider the asymmetric simple exclusion process in dimen-
sion $d\geq 3$ . We review some results concerning the equilibrium bulk
fluctuations and the asymptotic behaviour of a second class particle.

\S 1. Introduction

The asymmetric simple exclusion process is the simplest model of
a driven lattice gas. This model is given by the dynamics of infinitely
many particles moving on $\mathbb{Z}^{d}$ as asymmetric random walks with an ex-
clusion rule: when a particle attempts to jump on a site occupied by
another particle the jump is suppressed. Of course we consider initial
configurations where there is at most one particle per site. We denote the

configurations by $\eta\in\{0,1\}^{\mathbb{Z}^{d}}$ so that $\eta(x)=1$ if site $x$ is occupied for
the configuration $\eta$ and $\eta(x)=0$ if site $x$ is empty. The number of par-
ticles is conserved and the Bernoulli product measures $\{l/_{\alpha}, \alpha\in[0,1]\}$

are the ergodic invariant measures.
Rezakhanlou, in [11], proved that the empirical field of particles,

after a hyperbolic rescaling of space and time by a parameter $\epsilon$

(1.1) $\pi_{t}^{\epsilon}=\epsilon^{d}\sum\eta_{t\epsilon^{-1}}(x)\delta_{\epsilon x}$

converges weakly, as $\epsilon\rightarrow 0$ , to the (entropic) solution of the Burgers
equation

$\{$

$\partial_{t}\rho+\gamma$ . $\nabla[(1-\rho)\rho]=0$ ,
$\rho(0, \cdot)=\rho_{0}(\cdot)$ .

Received August 16, 2003.
Revised May 5, 2003.
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Here $\rho_{0}$ is the initial asymptotic profile, i.e.

(1.2) $\pi_{0}^{\epsilon}\epsilon\rightarrow 0-\rho_{0}$ in probability,

while $\gamma$ is the average velocity of a single particle. In fact in [11]
the initial distribution of the particles is assumed to be an inhomo-
geneous product measure with a slowly varing profile $\iota/_{\rho o(\epsilon\cdot)}$ , such that
$l/_{\rho o(\epsilon\cdot)}(\eta(x))=\rho 0(\epsilon x)$ .

Suppose now that we start the system with a stationary measure $\iota/_{\alpha}$ ,
for a certain density $\alpha\in$ ] $0,1$ [. The invariant measure $\nu_{\alpha}$ has macroscopic
Gaussian uncorrelated fluctuations, i.e. the fluctuation field

(1.3)
$\xi_{0}^{\epsilon}=\epsilon^{d/2}\sum_{x\in \mathbb{Z}^{d}}\delta_{\epsilon x}(\eta_{0}(x)-\alpha)$

converges in law to a white noise field $\xi$ with covariance

(1.4) $E(\xi(q)\xi(q’))=\alpha(1-\alpha)\delta(q-q’)$

It is not hard to prove in this context that the macroscopic evolution
of these fluctuations, at time $t\epsilon^{-1}$ , will converge to the solution of the
linearized equation

(1.5) $\partial_{t}\xi+(1-2\alpha)\gamma\cdot\nabla\xi=0$

Of course this equation (and the following ones) is to be intended in the
weak sense, since $\xi$ is only a distribution-valued field on $\mathbb{R}^{d}$ . This means
that an initial fluctuation will evolve macroscopically by a deterministic
translation with velocity $(1-2\alpha)\gamma$ . In simple exclusion processes there
is a simple way to keep track of density fluctuations. Let us condition
the stationary measure $\iota/_{\alpha}$ to have the site 0 empty and put in this site
a second class particle, i.e. a particle that has the same jump rates
as the other particles but when a normal (first class) particle attempts
to jump in the site occupied by a second class particle, the particles
exchange sites. Then this second class particles evolves like a density
fluctuation (cf. section 6) and equation (1.5) corresponds to a law of
large numbers for the position $X_{t}$ of the second class particle

(1.6) $\underline{X_{t}}\rightarrow(1-2\alpha)\gamma$

.
$ tt\rightarrow\infty$

The natural question is about the fluctuation around this law of large
numbers. The answer is that, in dimension $d\geq 3$ , the recentered position
of the second class particle $X_{t}-(1-2\alpha)\gamma t$ behaves diffusively and
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$\epsilon(X_{t\epsilon^{-2}}-(1-2\alpha)\gamma t\epsilon^{-2})$ converges in law to a Brownian motion with a
diffusion matrix $D(\alpha)$ (cf. Theorem 6.2).

In dimension $d=1$ and 2 the asymptotic behavior of the second class
particle is superdiffusive (cf. [9, 14]), and one of the most interesting
and challenging problem is to determine the corresponding limit process
in these cases.

We review in this article results concerning the dimension $d\geq 3$ .

The diffusive behaviour of the density fluctuations is then stated in the
following way. Consider the recentered density fluctuation field at diffu-
sive scaling

(1.7)
$Y_{t}^{\epsilon}=\epsilon^{d/2}\sum_{x\in \mathbb{Z}^{d}}\delta_{\epsilon x-vt\epsilon^{-1}}(\eta_{t\epsilon^{-2}}(x)-\alpha)$

where $ v=(1-2\alpha)\gamma$ . We show in section 4 that, as a process with values
on the distributions on $\mathbb{R}^{d}$ , it converges (in law) to the solution of the
linear stochastic partial differential equation

(1.8) $\partial_{t}Y=\nabla\cdot D(\alpha)\nabla Y+\sqrt{2\alpha(1-\alpha)}\sqrt{D(\alpha)}\nabla\cdot W$

where $W(x, t)=(W_{1}, \ldots, W_{d})$ are independent standard white noises
on $\mathbb{R}^{d+1}$ .

This result was proved in [1] for the asymmetric exclusion process
in $d\geq 3$ and in finite macroscopic volume. The purpose of this article
is to give a simpler proof in infinite volume based on the fluctuation-
dissipation theorem as stated in [8]. The fluctuation-dissipation theo-
rem, which was first proved in this context in [7], is in fact the the core
of the proof for the macroscopic density fluctuation, as we explain in
section 4. This theorem states that the space-time fluctuations of the
current associated to the density are equivalent to to the fluctuations of
a gradient of the density times the matrix $D(\alpha)$ , in the sense that the
variance of the difference is asymptotically small (cf. Theorem 3.2 in
section 3).

This fluctuation-dissipation theorem was also applied in order to
study the diffusive incompressible limit (cf. [3]) and the first order cor-
rections to the hydrodynamic limit (cf. [5]). It has also been used to
study corresponding results for a lattice system of particles with exclu-
sion rule with conservation of number of particles, velocity and energy
(cf. [2] and references therein).

The fluctuation-dissipation theorem for the exclusion processes can
be proved by using the duality properties of these models (as explained
in [8] $)$ , that permits to control the size of these fluctuation by estimates
on the Green functions of simple random walks (see also [12] where this
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method is applied in the study of the diffusive behaviour of a tagged
particle). At the moment there are not any result of this type for systems
that do not have such nice duality.

\S 2. Density fluctuations

Fix a probability distribution $p(\cdot)$ supported on a finite subset of
$\mathbb{Z}_{*}^{d}=\mathbb{Z}^{d}\backslash \{0\}$ and denote by $L$ the generator of the simple exclusion
process on $\mathbb{Z}^{d}$ associated to $p(\cdot)$ . $L$ acts on local functions $f$ on $\mathcal{X}_{d}=$

$\{0,1\}^{\mathbb{Z}^{d}}$ as

(2.1)
$(Lf)(\eta)=\sum_{x,,,y\in \mathbb{Z}^{d}}p(y-x)\eta(x)\{1-\eta(y)\}[f(\sigma^{x,y}\eta)-f(\eta)]$

,

where $\sigma^{x,y}\eta$ stands for the configuration obtained from $\eta$ by exchanging
the occupation variables $\eta(x)$ , $\eta(y)$ :

$(\sigma^{x,y}\eta)(z)=\{$

$\eta(z)$ if $z\neq x$ , $y$ ,
$\eta(x)$ if $z=y$ ,
$\eta(y)$ if $z=x$

Denote by $s(\cdot)$ and $a(\cdot)$ the symmetric and the anti-symmetric parts of
the probability $p(\cdot)$ :

$s(x)=(1/2)[p(x)+p(-x)]$ , $a(x)=(1/2)[p(x)-p(-x)]$

and denote by $L^{s}$ , $L^{a}$ the symmetric part and the anti-symmetric part
of the generator L. $L^{s}$ , $L^{a}$ are obtained by replacing $p$ by $s$ , $a$ in the
definition of $L$ .

For $\alpha$ in $[0, 1]$ , denote by $\nu_{\alpha}$ the Bernoulli product measure on $\mathcal{X}$ with
$\nu_{\alpha}[\eta(x)=1]=\alpha$ . Measures in this one-parameter family are stationary
and ergodic for the simple exclusion dynamics and in the symmetric
case, i.e. $p(x)=p(-x)$ , these measures are reversible. Expectation with
respect to $\nu_{\alpha}$ is represented by $<\cdot>_{\alpha}$ and the scalar product in $L^{2}(\nu_{\alpha})$

by $<.$ , $\cdot>_{\alpha}$ .
$Fix\in>0$ . For a configuration $\eta$ , denote by $\pi^{\mathcal{E}}=\pi^{\in}(\eta)$ the empirical

measure associated to $\eta$ . This is the measure on $\mathbb{R}^{d}$ obtained assigning
$mass\in^{d}$ to each particle of $\eta$ :

$\pi^{\Xi}=\in^{d}\sum_{x\in \mathbb{Z}^{d}}\eta(x)\delta_{x\in}$
,

where $\delta_{u}$ stands for the Dirac measure concentrated on $u$ . For a measure
$\pi$ on $\mathbb{R}^{d}$ and a continuous function $G:\mathbb{R}^{d}\rightarrow \mathbb{R}$ , denote by $<\pi$ , $G>the$
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integral of $G$ with respect to $\pi$ . In particular, $<\pi^{\epsilon}$ , $G>is$ equal to
$\epsilon^{d}\sum_{x\in \mathbb{Z}^{d}}G(x\in)\eta(x)$ .

Consider a sequence of probability measures $\mu^{\epsilon}$ on the configuration
space $\mathcal{X}_{d}$ and assume that, under $\mu^{s}$ , $\pi^{\Xi}$ converges in probability to
an absolutely continuous measure $\rho_{0}(u)du$ . This means that for every
continuous function $G:\mathbb{R}^{d}\rightarrow \mathbb{R}$ and every $\delta>0$ ,

(2.2) $\lim_{\in\rightarrow 0}\mu^{\Xi}\{|<\pi^{\Xi}$ , $G>-\int G(u)\rho_{0}(u)du|>\delta\}=0$ .

Consider the hyperbolic equation

(2.2) $\{$

$\partial_{t}\rho+\gamma$ . $\nabla[\rho(1-\rho)]=0$ ,
$\rho(0, \cdot)=\rho_{0}(\cdot)$ .

In this formula $\gamma$ stands for the drift : $\gamma=\sum_{y}yp(y)$ . For $t>0$ , denote
by $\pi_{t}^{\epsilon}$ the empirical measure associated to the state of the process at
time $t$ : $\pi_{t}^{\epsilon}=\pi^{\in}(\eta_{t})$ . Rezakhanlou [11] proved that, starting from a
inhomogeneous product measure $\nu_{\rho(\in\cdot)}$ satisfying (2.2), then, for every
$t\geq 0$ , $\pi_{t\in^{-1}}^{\Xi}$ converges in probability to the measure $\rho(t, u)du$ , where the
density $\rho$ is the entropy solution of the hyperbolic equation (2.3). More
precisely, for a measure $\mu$ on $\mathcal{X}_{d}$ , denote by $\mathbb{P}_{\mu}$ the measure on the path
space $D(\mathbb{R}_{+}, \mathcal{X}_{d})$ induced by the Markov process $\eta_{t}$ and the measure $\mu$ .

Then, for every $t\geq 0$ , every continuous function $G$ and every $\delta>0$ ,

$\lim_{\in\rightarrow 0}\mathbb{P}_{\iota/_{\rho(\in)}}\{|<\pi_{t\in^{-1}}^{\in}$ , $G>-\int G(u)\rho(t, u)du|>\delta\}=0$ ,

where the density $\rho$ is the entropy solution of the hyperbolic equation
(2.3). Notice the Euler rescaling of time in the previous formula.

Let us now consider, for a fixed density $\alpha\in(0,1)$ , the system in
equilibrium with distribution $\mathbb{P}_{\iota/_{\alpha}}$ on the path space. Let $Y^{\epsilon}$

. be the
density fluctuation field that acts on smooth functions $H$ as

(2.4)
$Y_{t}^{\in}(H)=\in^{d/2}\sum_{x\in \mathbb{Z}^{d}}H(x\in-vt\in-1)(\eta_{t\in}-2(x)-\alpha)$

,

where $v=\gamma(1-2\alpha)$ . Notice the diffusive rescaling of time on the right
hand side of this identity.

For any $k\geq 0$ and $f$ , $g\in C^{\infty}(\mathbb{R}^{d})$ consider the scalar product

(2.5) $(g, f)_{k}=\int_{\mathbb{R}^{d}}g(q)(|q|^{2}-\triangle)^{k}f(q)dq$

and denote by $\prime H_{k}$ the corresponding closure. For any positive $k$ we
denote by $H_{-k}$ its dual space with respect to the $L^{2}(\mathbb{R}^{d})\equiv H_{0}$ scalar
product.
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We will show in section 5 that the probability distribution $Q^{\epsilon}$ of $Y^{\epsilon}$

.

under $\mathbb{P}_{\iota/\alpha}$ , is supported and is tight in $D([0, T], H_{-k})$ for any $k>d+1$ .

Observe that in [1] the tightness is proved for any $k>d/2+1$ . This
difference is due to the fact that here we are dealing with distribution
on the infinite volume $\mathbb{R}^{d}$ , while in [1] we were working in the finite
$d$-dimensional torus.

We state now the main theorem. Assume that $d\geq 3$ . Let $D_{i,,,j}(\alpha)$

a strictly positive symmetric matrix. Denote by $A$ , $B$ the differential
operators defined by $A$ $=\sum_{1\leq i,j\leq d}D_{i,,,j}(\alpha)\partial_{u_{i},,,u_{j}}^{2}$ , $B$ $=\sqrt{2\alpha(1-\alpha)}\sigma\nabla$

(where the matrix $\sigma$ is the positive square root of $D$ ). Denote by $\{T_{t}$ , $ t\geq$

$0\}$ the semigroup in $L^{2}(\mathbb{R}^{d})$ associated to the operator $A$ . Fix a positive
integer $k_{0}>d+1$ . Let $Q$ be the probability measure concentrated on
$C([0, T], H_{-k_{0}})$ corresponding to the stationary generalized Ornstein-
Uhlenbeck process with mean 0 and covariance

$E_{Q}[Y_{t}(H)Y_{s}(G)]=\chi(\alpha)\int_{\mathbb{R}^{d}}$ du $(T_{|t-s|}H)(u)G(u)$

for every $0\leq s\leq t$ and $H$ , $G$ in $H_{k_{0}}$ . Here $\chi(\alpha)$ stands for the static
compressibility given by $\chi(\alpha)=Var_{\iota/_{\alpha}}[\eta(0)]=\alpha(1-\alpha)$ .

Theorem 2.1. There exists a strictly positive symmetric matrix
$D_{i,,,j}(\alpha)$ such that the sequence $Q^{\Xi}$ converges weakly to the probability
measure $Q$ of the corresponding Ornstein-Uhlenbeck process.

Formally, $Y_{t}$ is the solution of the stochastic differential equation

$dY_{t}=AY_{t}dt+dB_{t}^{\nabla}$ ,

where $B_{t}^{\nabla}$ is a mean zero Gaussian field with covariances given by

$E_{Q}[B_{t}^{\nabla}(H)B_{s}^{\nabla}(G)]=2\chi(\alpha)(s\wedge t)\int_{\mathbb{R}^{d}}(\nabla H)\cdot D(\nabla G)$ .

In section 6 we show that the viscosity matrix $D(\alpha)$ is identified as

(2.6)

$D_{i,,,j}(\alpha)=\frac{1}{\alpha(1-\alpha)}\lim_{t\rightarrow\infty}\frac{1}{t}\sum_{x\in \mathbb{Z}^{d}}x_{i}x_{j}E_{lJ_{\alpha}}((\eta_{t}(x-vt)-\alpha)(\eta_{0}(0)-\alpha))$ ,

which is also the asymptotic variance of the second class particle. Other
expressions for this matrix can be given (cf. [6]), while in [8] we prove
that $D_{i,,,j}(\alpha)$ are smooth functions of the density $\alpha\in[0,1]$ .
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\S 3. The Fluctuation-Dissipation Theorem

We recall in this section some results proved in [8] (cf. also [7]). For
local functions $u$ , $v$ , define the scalar product $<<\cdot$ , $>>by$

(3.1) $<<u$ ,
$v>>=\sum_{x\in \mathbb{Z}^{d}}\{<\tau_{x}u, v>-<u><v>\}$

,

where $\{\tau_{x}, x\in \mathbb{Z}^{d}\}$ is the group of translations and $<$ $>stands$ for
the expectation with respect to the measure $\nu_{\alpha}$ . That this is in fact an
inner product can be seen by the relation

$<<u$ , $v>>=\lim_{V\uparrow \mathbb{Z}^{d}}\frac{1}{|V|}<\sum_{x\in V}\tau_{x}(u-<u>),\sum_{x\in V}\tau_{x}(v-<v>)>$

Since< $u-\tau_{x}u$ , $v>>=0$ for all $x$ in $\mathbb{Z}^{d}$ , this scalar product is only
positive semidefinite. Denote by $L_{<<\cdot,\cdot>>}^{2}(\nu_{\alpha})$ the Hilbert space generated
by the local functions and the inner product $<<.$ , $\cdot>>$ .

Denote by $L^{s}$ the symmetric part of the generator. For two local
functions $u$ , $v$ , let

$<<u$ , $v>>_{1}=<<u$ , $(-L^{s})v>>$

and let $H_{1}$ be the Hilbert space generated by local functions and the
inner product $<<\cdot$ , $\cdot>>_{1}$ . To introduce the dual Hilbert spaces of $H_{1}$ , for
a local function $u$ , consider the semi-norm $||$ $||_{-1}$ given by

$||u||_{-1}=\sup_{v}\{2<<u$ , $v>>-<<v$ , $v>>_{1}\}$ ,

where the supremum is carried over all local functions $v$ . Denote by $H_{-1}$

the Hilbert space generated by the local functions and the semi-norm
$||\cdot||_{-1}$ .

Notice that the function $\eta(0)-\alpha$ does not belong to $H_{-1}$ . Indeed,
due to the translations, $||\eta(0)-\alpha||_{1}=0$ so that $||\eta(0)-\alpha||_{-1}=\infty$ . One
can show, however, that these linear functions are essentially the only
zero-mean local functions that do not belong to $H_{-1}$ .

To make the previous statement precise, we need to introduce some
notation. For a local function $f$ , denote by $\tilde{f}:[0,1]\rightarrow \mathbb{R}$ the polynomial
defined by

$\tilde{f}(\alpha)=E_{\iota/_{\alpha}}[f]$ .

Denote by $C_{0}=C_{0}(\alpha)$ the collection of local functions such that

$\tilde{f}(\alpha)=E_{\iota/_{\alpha}}[f]=0$ , $\tilde{f}’(\alpha)=\frac{d}{d\beta}E_{\iota/_{\beta}}[f]|_{\beta=\alpha}=0$ .
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It is proved in [8] that all functions in $C_{0}$ have finite $H_{-1}$ norm:

(3.2) $||f||_{-1}<\infty$ if $f\in C_{0}$

Denote by $C_{1}$ the space of local functions $f$ in $C_{0}$ which are orthog-
onal to all linear functions:

$<f$ , $\eta(x)-\alpha>=0$ for all $x$ in $\mathbb{Z}^{d}$ .

The next result states that a local function $f$ in $C_{1}$ has a finite space-time
variance in the diffusive scaling.

Theorem 3.1. Fix $T>0$ , a vector $v_{0}$ in $\mathbb{R}^{d}$ , a smooth function
$G$ : $\mathbb{R}^{d}\rightarrow \mathbb{R}$ with compact support and a local function $f$ in $C_{1}$ . There
exists a finite constant $C_{0}$ such that

$\lim_{\in\rightarrow}\sup_{0}E_{\iota/_{\alpha}}[\sup_{0\leq t\leq T}($ $\epsilon^{d/2+1}\int_{0}^{t\in}\sum_{x\in \mathbb{Z}^{d}}G(\in[x-2-rv_{0}])f(\tau_{x}\eta_{r})dr)^{2}]$

$\leq C_{0}T||G|\left|\begin{array}{l}2\\L^{2}\end{array}\right||f||_{-1}^{2}$ .

The theorem is not correct if we replace $C_{1}$ by $C_{0}$ because $\eta(e_{1})-$

$\eta(0)$ has $H_{-1}$ norm equal to 0 and a finite, strictly positive space-time
variance.

It is proved in [8] that any local function in $C_{0}$ may be approximated
in $H_{-1}$ by a local function in the range of the generator. More precisely,
for every local function $f$ in $C_{0}$ and every $\in>0$ , there exists a local
function $u_{\in}$ , which may be taken in $C_{1}$ , such that

(3.3) $||Lu_{\in}-f||_{-1}^{2}\leq\in$ .

The fluctuation-dissipation theorem stated below follows from this
result, the estimate stated in Theorem 3.1 and some elementary compu-
tations.

Theorem 3.2. Fix $T>0$ , a vector $v_{0}$ in $\mathbb{R}^{d}$ , a local function $w$

in $C_{1}$ and a smooth function $G$ : $\mathbb{R}^{d}\rightarrow \mathbb{R}$ with compact support. There
exist a sequence of local functions $u_{m}$ and $D_{z}(\alpha)$ such that

$\lim\sup\lim_{\in m\rightarrow\infty\rightarrow}\sup_{0}$

$E_{\iota/_{\alpha}}[\sup_{0\leq t\leq T}($ $\epsilon^{d/2+1}\int_{0}^{t\epsilon^{-2}}\sum_{x\in \mathbb{Z}^{d}}G(\in[x-rv_{0}])\tau_{x}W_{m}(\eta_{s})ds)^{2}]=0$ ,

where

$W_{m}(\eta)=w-Lu_{m}+\sum_{z\in \mathbb{Z}^{d}}a(z)D_{z}(\alpha)\{\eta(z)-\eta(0)\}$
.
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The idea of the proof is quite simple. By (3.3), we may approximate
$w$ by some local function $Lu_{m}$ in the range of the generator. However,
$Lu_{m}$ might have linear terms and therefore might not be in $C_{1}$ . Sub-
tracting expressions of type $\eta(z)-\eta(0)$ , we convert $Lu_{m}$ in a $C_{1}$ function
and apply Theorem 3.1.

\S 4. Time evolution of density fluctuations

We show in this section how to deduce from the fluctuation-dissipation
theorem the equilibrium fluctuations for the density field defined in (2.4).

Fix a smooth function $G:\mathbb{R}^{d}\rightarrow \mathbb{R}$ with compact support and define
the martingale $M_{t}^{1,\in}$ by the time evolution equation

$Y_{t}^{\Xi}(G)-Y_{0}^{\in}(G)=\int_{0}^{t}(\partial_{s}+\in-2L)Y_{s}^{\in}(G)ds+M_{t}^{1,\in}$

An elementary computation shows that

(4.1)

$(\partial_{t}+\in-2L)Y_{t}^{\Xi}(G)=-\in^{d/2-1}\sum_{x}(v\cdot\nabla G)[\in(x-vt\in-2)](\eta(x)-\alpha)$

$-\in^{d/2-2}\sum_{x}G[\in(x-vt\in-2)]\sum_{y}j_{x,,,y}$
,

where $j_{x,,,y}$ , the instantaneous current between sites $x$ and $y$ , is given by

$j_{x,,,y}=-s(x-y)$ $[\eta(y)-\eta(x)]$

$-a(x-y)\{\eta(y)(1-\eta(x))+\eta(x)(1-\eta(y))\}$ .

Let $G_{t}^{\in}(x)=G[\in(x-vt\in-2)]$ . Since the current is anti-symmetric $(j_{x,,,y}=$

$-j_{y,x})$ and since its expectation with respect to $\nu_{\alpha}$ is equal to $2a(y-$

$x)\alpha(1-\alpha)$ , an elementary computation gives that

$-\sum_{x}G_{t}^{\Xi}(x)\sum_{y}j_{x,,,y}=\sum_{x,,,y}s(x-y)[G_{t}^{\Xi}(y)-G_{t}^{\epsilon}(x)][\eta(x)-\alpha]$

$-\sum_{x,,,y}a(x-y)[G_{t}^{\epsilon}(x)-G_{t}^{\epsilon}(y)][\eta(y)-\alpha][\eta(x)-\alpha]$

$+(1-2\alpha)\sum_{x,,,y}a(x-y)[G_{t}^{\Xi}(x)-G_{t}^{\epsilon}(y)][\eta(x)-\alpha]$

because

$\eta(y)(1-\eta(x))+\eta(x)(1-\eta(y))-2\alpha(1-\alpha)$

$=-2(\eta(y)-\alpha)(\eta(x)-\alpha)+(1-2\alpha)\{(\eta(y)-\alpha)+(\eta(x)-\alpha)\}$ .
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Finally, since $a(\cdot)$ is anti-symmetric, a Taylor expansion and a change of
variables in the summation permit to conclude that

(4.2) $(\partial_{t}+\in-2L)Y_{t}^{\in}(G)$

$=\in^{d/2}\sum_{x}\sum_{i,,,j}\sigma_{i,,,j}(\partial_{i}\partial_{j}G)[\in(x-vt\in-2)](\eta(x)-\alpha)$

$-\in^{d/2-1}\sum_{x,,,z}a(z)(z\cdot\nabla G)[\in(x-vt\in-2)]\Phi_{x,,,x+z}+R_{\in}(\eta)$
.

In this formula, $\sigma_{i,,,j}$ is the symmetric matrix defined by

$\sigma_{i,,,j}^{s}=\sum s(z)z_{i}z_{j}$ ,

$\Phi_{x,,,y}$ is the zero-mean local function defined by

$\Phi_{x,,,y}=(\eta(x)-\alpha)(\eta(y)-\alpha)$

and $R_{\in}(\eta)$ is a remainder which vanishes in $L^{2}(\iota/_{\alpha})as\in\downarrow 0$ . In fact
$<R_{\in}(\eta)^{2}>=O(\in^{2})$ .

Since $\Phi_{x,,,y}$ belongs to $C_{1}$ , by Theorem 3.2, there exist a sequence of
local functions $\{v_{m}, m\geq 1\}$ in $C_{1}$ and constants $D_{z,,,z’}$ such that

$\lim_{m\rightarrow\infty}\lim_{\in\rightarrow 0}E_{l/_{\alpha}}[\sup_{0\leq t\leq T}|\in^{d/2-1}\int_{0}^{t}\sum_{x,,,z}a(z)(z\cdot\nabla G)[\in(x-vt\in-2)]$

$\{\Phi_{0,,,z}-Lv_{m}-\sum_{z’}a(z’)D_{z,,,z’}[\eta(z’)-\eta(0)]\}(\tau_{x}\eta_{\in s}-2)ds|^{2}]$ $=0$ .

This result shows that we may replace $\Phi_{x,,,x+z}$ in the second term on
the right hand side of (2.4) by $Lv_{m}-\sum_{z’}a(z’)D_{z,,,z’}[\eta(z’)-\eta(0)]$ . The
difference $\eta(z’)-\eta(0)$ enables a second summation by parts which cancels
a $factor\in-1$ , while the term $Lv_{m}$ produces an extra martingale.

Let $F(x)=\sum_{z}a(z)(z\cdot\nabla G)(x)$ . For each $m\geq 1$ , consider the

martingale $M_{t}^{2,m,\in}$ defined by

$M_{t}^{2,m,\in}=\in^{d/2+1}\sum_{x}\int_{0}^{t}F(\in(x-vs\in-2))\in-2Lv_{m}(\tau_{x}\eta_{\in^{-2}s})ds$

$+\in^{d/2+1}\sum_{x}\int_{0}^{t}\partial_{s}F(\in(x-vs\in-2))v_{m}(\tau_{x}\eta_{\in^{-2}s})ds$

$-\in^{d/2+1}\sum_{x}\{F(\in(x-vt\in-2))v_{m}(\tau_{x}\eta_{\epsilon^{-2}t})-F(\in x)v_{m}(\tau_{x}\eta_{0})\}$ .
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Since $v_{m}$ are local functions, it is easy to see that the $L^{2}$ norm of
the third term of the right hand side vanishes $as\in\rightarrow 0$ . The second
term is equal to

$\in^{d/2}\sum_{x}\int_{0}^{T}(v\cdot\nabla F)(\in(x-vt^{-2}\in))v_{m}(\tau_{x}\eta_{\in^{-2}t})dt$ .

Since $v_{m}$ belongs to $C_{1}$ for each $m\geq 1$ , it has finite $H_{-1}$ norm in view
of (3.2). In particular, by Theorem 3.1, the expectation of the square
goes to 0 as $\in\rightarrow 0$ .

In conclusion, we have shown so far that

$\int_{0}^{t}(\partial_{s}+\in-2L)Y_{s}^{\in}(G)ds=\int_{0}^{t}Y_{s}^{\in}(AG)ds+M_{t}^{2,m,\in}+R_{m,,,\in}(t)$ ,

where

$\lim_{m\rightarrow\infty}\lim_{\in\rightarrow 0}E_{\iota/_{\alpha}}(\sup_{0\leq t\leq T}|R_{m,,,\in}(t)|^{2})=0$

and the second order differential operator $A$ is given by

$A=\sum_{i,,,j}^{d}D_{i,,,j}\partial_{i}\partial_{j}$ ,

with the matrix $D_{i,,,j}$ given by

$D_{i,,,j}=\sigma_{i,,,j}-\sum_{z,,,z’}a(z)a(z’)z_{i}z_{j}’D_{z,,,z’}$
.

We turn now to the calculation of the quadratic variation of the
martingale $M_{t}^{1,\in}+M_{t}^{2,n,\in}$ . This is given by

(4.3)

$\int_{0}^{t}\sum_{y}\sum_{z}p(z)\eta(y)[1-\eta(y+z)]\in-2[H_{s}^{\in}(\eta_{s\in^{-2}}^{y,y+z})-H_{s}^{\in}(\eta_{s\in^{-2}})]^{2}ds$ ,

where

$H_{s}^{\in}(\eta)=Y_{s}^{\in}(G)-\in^{d/2+1}\sum_{x}\int_{0}^{T}F(\in(x-vt\in-2))v_{m}(\tau_{x}\eta_{\in}-2t)$ .
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Elementary computations show that (4.3) is equal to

(4.4)

$\int_{0}^{t}\in^{d}\sum_{y}\sum_{z}p(z)\eta(y)[1-\eta(y+z)]\times(\in-1[G_{s}^{\in}(y+z)-G_{s}^{\Xi}(y)]$

$-\sum_{x}F_{s}^{\in}(x)(v_{m}(\tau_{x}\sigma^{y,y+z}\eta_{ss^{-2}})-v_{m}(\tau_{x}\eta_{ss^{-2}})))^{2}ds$ ,

where $F_{s}^{\in}(x)=F(\in(x-vt\in-2))$ .

Since $v_{m}$ is a local function, the sum inside the square in the above
expression extends over a finite number of $x$ depending only on the
support of $v_{m}$ . We can therefore substitute $F_{s}^{\in}(x)$ by $F_{s}^{\in}(y)$ , with an
error that is small in view of Theorem 3.1. In the same way, we replace
the discrete derivative of $G$ by the actual derivative, obtaining that (4.3)
is equal to

$\int_{0}^{t}\in^{d}\sum_{y}\sum_{z}p(z)\eta(y)[1-\eta(y+z)]\times[(z\cdot\nabla G)(\in(y-vt\in-2))$

$-F_{s}^{\Xi}(y)\sum_{x}(v_{m}(\tau_{x}\sigma^{y,y+z}\eta_{s\in^{-2}})-v_{m}(\tau_{x}\eta_{s\in^{-2}}))]2ds$

plus a remainder $R_{\in}(t)$ which vanishes in $L^{2}$ as $\in\downarrow 0$ . Recall the defini-
tion of $F$ and take the limit $as\in\rightarrow 0$ . By the law of large numbers, we
obtain that the previous expression converges to

$t\int dy\sum_{z}p(z)(z\cdot\nabla G)(y)^{2}$

$\times\langle\eta(0)(1-\eta(z))(1-a(z)[\Gamma_{v_{m}}(\eta^{0,z})-\Gamma_{v_{m}}(\eta)])^{2}\rangle$ ,

where $\Gamma_{v_{m}}(\eta)$ denotes the formal sum $\sum_{x}v_{m}(\tau_{x}\eta)$ .

Since we performed this calculations in equilibrium and since for
the invariant product measure the static fluctuations converges to the
Gaussian field with covariance operator $\alpha(1-\alpha)(-\triangle)^{-1}$ , if

$b_{i,,,j}=\lim_{m\rightarrow\infty}\sum_{z}p(z)$

$\times\langle\eta(0)(1-\eta(z))(1-a(z)[\Gamma_{v_{m}}(\eta^{0,z})-\Gamma_{v_{m}}(\eta)])^{2}\rangle z_{i}z_{j}$ ,
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the fluctuation-dissipation relation for the limit Ornstein-Uhlenbeck pro-
cess gives

$b_{i,,,j}=\alpha(1-\alpha)D_{i,,,j}$ .

\S 5. Tightness

Recall that we have defined, for any $k\in \mathbb{R}$ , $\prime H_{k}$ as the closure of
$C^{\infty}(\mathbb{R}^{d})$ with respect to the scalar product

$(g, f)_{k}=\int_{\mathbb{R}^{d}}g(q)(|q|^{2}-\triangle)^{k}f(q)dq$

It is convenient to represent the scalar product $(\cdot, \cdot)_{k}$ in the orthonor-
mal basis of the Hermite polynomials, which are the eigenfunctions of
$|q|^{2}-\triangle$ . Let $\overline{n}$ be a multi-index of $(\mathbb{Z}^{+})^{d}$ and $|\overline{n}|=\sum_{i=1}^{d}n(i)$ . We

denote by $\lambda_{n(i)}=2n(i)+1$ for $n(i)\in \mathbb{Z}^{+}$ and $\lambda_{\tilde{n}}=\sum_{i=1}^{d}\lambda_{n(i)}$ . De-

fine $h_{\overline{n}}(q)=\prod_{i=1}^{d}h_{n(i)}(q_{i})$ where $h_{m}$ is the $m^{th}$ normalized Hermite
polynomial of order $m$ in $\mathbb{R}$ . We have then for every $k\geq 0$ and $f\in L^{2}$

$||f||_{k}^{2}=\int_{\mathbb{R}^{d}}f(q)(|q|^{2}-\triangle)^{k}f(q)dq=\sum_{\overline{n}}\lambda\frac{k}{n}(\int_{\mathbb{R}^{d}}f(q)h_{\tilde{n}}(q)dq)^{2}$

This is valid also for negative $k$ . So the $7\{_{-k}$ -norm of a distribution $\xi$

on $\mathbb{R}^{d}$ can be written as

(5.1)
$||\xi||_{-k}^{2}=\sum_{\tilde{n}}\lambda_{\tilde{n}}^{-k}+\xi(h_{\overline{n}})^{2}$

Observe that, for $k’>k$ , the injection $J$ of $H_{-k}$ in $H_{-k’}$ is compact.
In fact it can be approximated by the finite range operators $J_{m}\xi=$

$\sum_{|\tilde{n}|\leq m}\xi(h_{\tilde{n}})h_{\tilde{n}}$ , and it is easy to see that the operator norm of the
difference is bounded by

$||J-J_{m}||\leq(2m+d)^{-(k’-k)}$

By the compactness of the injections $H_{-k}\epsilon_{->}H_{-k^{J}}$ for $k<k’$ , and
standard compactness arguments, the tightness of the distribution of $Y_{t}^{\epsilon}$

is a consequence of the following proposition.

Proposition 5.1. For any $k>d+1$ and every $T>0$ , we have
that
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1.

$\sup_{\in\in(0,1)}E_{\mu}(\sup_{t\in[0,T]}||Y_{t}^{\in}||_{-k}^{2})<+\infty$

2. For any $R>0$ ,

$\lim_{\delta\rightarrow 0}\lim_{\in\rightarrow}\sup_{0}\mathbb{P}_{\mu}(t,s\in\sup_{|t-s|\leq\delta}[0,T]||Y_{t}^{\in}-Y_{s}^{\Xi}||_{-k}>R)=0$

It is easy to see, by using (5.1) and that $k>d+1$ , that Proposition
5.1 is a consequence of the following

Proposition 5.2. For any smooth function $G$ on $\mathbb{R}^{d}$ with compact
support

(5.2) $\sup_{\in}E_{\mu}(\sup_{t\in[0,T]}Y_{t}^{\in}(G)^{2})\leq TC_{G}$

(5.3) $\lim_{\delta\rightarrow 0}\lim_{\in\rightarrow}\sup_{0}\mathbb{P}_{\mu}(ts\in\sup_{|t-s|\leq\delta}[0,T]|Y_{t}^{\Xi}(G)-Y_{s}^{\Xi}(G)|>R)=0$

Let just sketch the proof of (5.3), the proof of (5.2) will follow a
similar argument (cf. [1] for details).

By the same calculation made in the previous section we have

$Y_{t}^{\in}(G)-Y_{s}^{\in}(G)=\int_{s}^{t}(\partial_{\tau}+\in-2L)Y_{\tau}^{\Xi}(G)d\tau+M_{s,,,t}^{1,\in}$

(5.4)

$=\int_{s}^{t}Y_{\tau}^{\in}(AG)d\tau+M_{s,,,t}^{1,\in}+M_{s,,,t}^{2,m,\in}+R_{m,,,\in}(s, t)$ ,

where $M_{s,,,t}^{1,\in}$ and $M_{s,,,t}^{2,m,\in}$ are the differences of the corresponding martin-
gales defined in the previous section, and

$\lim_{m\rightarrow\infty}\lim_{\in\rightarrow 0}E_{l/_{\alpha}}(\sup_{0\leq s\leq t\leq T}|R_{m,,,\in}(s, t)|^{2})=0$

The first term is easy to deal since

(5.5)

$E_{\mu}(ts\in\sup_{|t-s|\leq\delta}[0,T]|\int_{s}^{t}Y_{\tau}^{\in}(AG)d\tau|^{2})\leq\delta T\langle Y^{\in}(AG)^{2}\rangle\leq\delta TC||AG||_{2}^{2}$ .
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About the difference martingale $\overline{M}_{s,,,t}^{m}=M_{s,,,t}^{1,\in}+M_{s,,,t}^{2,m,\in}$ , for any finite
$m$ has a bounded quadratic variation given by (4.3) or (4.4), and it is
not difficult to show exponential bounds for it. So it follows that for any
$m$

$\lim_{\delta\rightarrow 0}\lim_{\in\rightarrow}\sup_{0}\mathbb{P}_{\mu}(t,s\in\sup_{|t-s|\leq 6}[O,T]|\overline{M}_{s,,,t}^{m}|>R)=0$ .

\S 6. The second class particle

The second class particle is a special particle that has the same jump
rates of the other particles (with the exclusion rule), furthermore when a
normal (first class) particle attempts to jump in the site occupied by the
second class particle, the particles exchange site. Therefore the evolution
of the first class particles is unaffected by the presence of the second
class particles. We will show here that the asymptotic evolution of the
second class particle is closely related to the equilibrium fluctuations of
the density.

Let $\nu_{\alpha}^{0}$ the Bernoulli measure on $\mathbb{Z}^{d}$ with parameter $\alpha$ conditioned
to have the site 0 empty. Let $X_{t}$ be the position at time $t$ of the second
class particle, one starting at time 0 from 0, when the other particles
are distributed initially with $\nu_{\alpha}^{0}$ .

Proposition 6.1.

(6.1) $E^{\iota/}\mathring{\alpha}(1_{[X_{t}=x]})=\frac{1}{\alpha(1-\alpha)}[E^{\iota/_{\alpha}}(\eta_{t}(x)\eta_{0}(0))-\alpha^{2}]$

Proof. Let $\sigma_{0}\eta(x)=\eta(x)$ if $x\neq 0$ and $\sigma_{0}\eta(0)=0$ .

$E^{\iota/_{\alpha}}(\eta_{t}(x)\eta_{0}(0))=\int\nu_{\alpha}(d\eta)\eta(0)E^{\eta}(\eta_{t}(x))$

$=\int\nu_{\alpha}(d\eta)\eta(0)[E^{\eta}(\eta_{t}(x))-E^{\sigma_{0}\eta}(\eta_{t}(x))]$

$+\int\nu_{\alpha}(d\eta)\eta(0)E^{\sigma_{0}\eta}(\eta_{t}(x))$

$=\int\nu_{\alpha}(d\eta)\eta(0)E^{\eta}(1_{[X_{t}=x]})+\int\nu_{\alpha}(d\xi)\frac{\alpha}{1-\alpha}(1-\xi(0))E^{\xi}(\eta_{t}(x))$

(where in the last term we have performed the change of variable $\xi=$

$\sigma_{0}\eta)$

$=\alpha E^{\iota/_{\alpha}^{0}}(1_{[X_{t}=x]})+\frac{\alpha}{1-\alpha}\alpha-\frac{\alpha}{1-\alpha}E^{\nu_{\alpha}}(\eta_{t}(x)\eta_{0}(0))$
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Reordering the term one obtains (6.1). $\square $

Theorem 6.2. $\in(X_{t\in^{-2}}-vt\in-2)$ converges in law to a zero mean
Gaussian $r.w$ . with covariance matrix $tD_{i,,,j}^{s}$ , where $D^{s}$ is the symmetric
part of the viscosity matrix $D$ introduced in the previous section.

Proof. Let $H(y)$ a bounded continuous function on $\mathbb{R}^{d}$ with com-
pact support. Let $G(y)$ a probability density on $\mathbb{R}^{d}$ and let $\nu_{\alpha}^{y}$ the
Bernoulli measure conditioned to have the site $y$ empty. Then

$\in^{d}\sum_{y}G(\in y)E^{\iota/_{\alpha}^{y}}(H(\in(X_{t\in^{-2}}^{y}-vt\in-2)))$

$=\in^{d}\sum_{y}G(\in y)\sum_{x}H(\in(x-vt\in-2))E^{\nu_{\alpha}^{y}}(1_{[x_{t\in}^{y}=x]})-2$
.

In this formula, $X_{t}^{y}$ stands for the position at time $t$ of a second class
particle initially at $y$ . By (6.1) this is equal to

$\frac{1}{\alpha(1-\alpha)}\in^{d}\sum_{y}\sum_{x}H(\in(x-vt\in-2))G(\in y)[E^{\nu_{\alpha}}(\eta_{t\in^{-2}}(x)\eta_{0}(y))-\alpha^{2}]$

$=\frac{1}{\alpha(1-\alpha)}E^{\iota/_{\alpha}}[\in^{d}\sum_{x}H(\in(x-vt\in-2))$

$\times(\eta_{t\in^{-2}}(x)-\alpha)\sum_{y}G(\in y)(\eta_{0}(y)-\alpha)]$

$=\frac{1}{\alpha(1-\alpha)}E^{\iota/_{\alpha}}[Y_{t}^{\in}(H)Y_{0}^{\Xi}(G)]$

and by the convergence result for $Y_{t}^{\in}$ proved in the previous section, this
converge $as\in\rightarrow 0$ to

$\int_{\mathbb{R}^{d}}G(u)e^{tA}H(u)$ du.

$\square $

An immediate consequence of the above result is the following for-
mula for the symmetric part of the viscosity matrix:

$D_{i,,,j}^{s}=\lim_{t\rightarrow\infty}\frac{1}{t}\frac{1}{\alpha(1-\alpha)}\sum_{x}x_{i}x_{j}[E^{\iota/_{\alpha}}(\eta_{t}(x+tv)\eta_{0}(0))-\alpha^{2}]$
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Dyson’s Model in Infinite Dimension and Other

Stochastic Dynamics Whose Equilibrium States are
Determinantal Random Point Fields
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Abstract.

Dyson’s model on interacting Brownian particles is a stochastic
dynamics consisting of an infinite amount of particles moving in $\mathbb{R}$

with a logarithmic pair interaction potential. For this model we will
prove that each pair of particles never collide.

The equilibrium state of this dynamics is a determinantal ran-
dom point field with the sine kernel. We prove for stochastic dynam-
ics given by Dirichlet forms with determinantal random point fields
as equilibrium states the particles never collide if the kernel of deter-
mining random point fields are locally Lipschitz continuous, and give
examples of collision when H\"older continuous.

In addition we construct infinite volume dynamics (a kind of
infinite dimensional diffusions) whose equilibrium states are determi-
nantal random point fields. The last result is partial in the sense that
we simply construct a diffusion associated with the maximal closable
part of canonical pre Dirichlet forms for given determinantal random
point fields as equilibrium states. To prove the closability of canon-
ical pre Dirichlet forms for given determinantal random point fields
is still an open problem. We prove these dynamics are the strong
resolvent limit of finite volume dynamics.

\S 1. Introduction

Dyson’s model on interacting Brownian particles in infinite dimen-
sion is an infinitely dimensional diffusion process $\{(X_{t}^{i})_{i\in \mathbb{N}}\}$ formally
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326 H. Osada

given by the following stochastic differential equation (SDE):

(1.1) $dX_{t}^{i}=dB_{t}^{i}+\sum_{j=1,j\neq i}^{\infty}\frac{1}{X_{t}^{i}-X_{t}^{j}}dt$ $(i=1,2,3, \ldots)$ ,

where $\{B_{t}^{i}\}$ is an infinite amount of independent one dimensional Brow-
nian motions. The corresponding unlabeled dynamics is

(1.2) $X_{t}=\sum_{i=1}^{\infty}\delta_{X_{t}^{i}}$ .

Here $\delta$ . denote the point mass at.. By definition $X_{t}$ is a $\ominus$-valued
diffusion, $where\ominus is$ the set consisting of configurations on $\mathbb{R}$ ; that is,

(1.3) $\ominus=$ { $\theta=\sum_{i}\delta_{x_{i}}$
; $x_{i}\in \mathbb{R}$ , $\theta(\{|x|\leq r\})<\infty$ for all $r\in \mathbb{R}$ }.

We $regard\ominus as$ a complete, separable metric space with the vague topol-
ogy.

In [11] Spohn constructed an unlabeled dynamics (1.2) in the sense of
a Markovian semigroup on $L^{2}(\ominus, \mu)$ . Here $\mu$ is a probability measure on
$(\ominus, \mathfrak{B}(\ominus))$ whose correlation functions are generated by the sine kernel

(1.4) $K_{\sin}(x)=\frac{\overline{\rho}}{\pi x}\sin(\pi x)$ .

(See Section 2). Here $0<\overline{\rho}\leq 1$ is a constant related to the density
of the particle. Spohn indeed proved the closability of a non-negative
bilinear form $(\mathcal{E}, D_{\infty})$ on $L^{2}(\ominus, \mu)$

(1.5) $\mathcal{E}(f, g)=\int_{o-}D[f, g]$ $(\theta)d\mu$ ,

$D_{\infty}=\{f \in D_{\infty}^{loc}\cap L^{2}(\ominus, \mu);\mathcal{E}(f, f)<\infty\}$ .

Here $D$ is the square field given by (2.8) and $D_{\infty}^{loc}$ is the set of the local
smooth functions on $O-$ (see Section 3 for the definition). The Markovian
semi-group is given by the Dirichlet form that is the closure $(\mathcal{E}, D)$ of
this closable form on $L^{2}(\ominus, \mu)$ .

The measure $\mu$ is an equilibrium state of (1.2), whose formal Hamil-
tonian $\prime H$ $=H(\theta)$ is given by $(\theta=\sum_{i}\delta_{x_{i}})$

(1.6)
$H(\theta)=\sum_{i\neq j}-2\log|x_{i}-x_{j}|$

,
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which is a reason we regard Spohn’s Markovian semi-group is a corre-
spondent to the dynamics formally given by the SDE (1.1) and (1.2).

We remark the existence of an $L^{2}-$Markovian semigroup does not
imply the existence of the associated diffusion in general. Here a diffu-
sion means (a family of distributions of) a strong Markov process with
continuous sample paths starting from each $\theta\in\Theta$ .

In [5] it was proved that there exists a diffusion $(\{P_{\theta}\}_{\theta\in\ominus}, \{X_{t}\})$

with state space $\Theta$ associated with the Markovian semigroup above. This
construction admits us to investigate the trajectory-wise properties of the
dynamics. In the present paper we concentrate on the collision property
of the diffusion. The problem we are interested in is the following:

Does a pair of particles $(X_{t}^{i}, X_{t}^{j})$ that $col|ides$ each other for some time
$0<t<\infty e\times|.st7$.

We say for a diffusion on $\ominus the$ non-collision occurs if the above
property does not hold, and the collision occurs if otherwise.

If the number of particles is finite, then the non-collision should
occur at least intuitive level. This is because drifts $\frac{1}{x_{i}-x_{j}}$ have a strong

repulsive effect. When the number of the particles is infinite, the non-
collision property is non-trivial because the interaction potential is long
range and un-integrable. We will prove the non-collision property holds
for Dyson’s model in infinite dimension.

Since the sine kernel measure is the prototype of determinantal ran-
dom point fields, it is natural to ask such a non-collision property is
universal for stochastic dynamics given by Dirichlet forms (1.5) with the
replacement of the measure $\mu$ with general determinantal random point
fields. We will prove, if the kernel of the determinantal random point
field (see (2.3)) is locally Lipschitz continuous, then the non-collision al-
ways occurs. In addition, we give an example of determinantal random
point fields with H\"older continuous kernel that the collision occurs.

The second problem we are interested in this paper is the following:

Does there exist $B$-valued diffusions associated with the Dirichlet forms
$(\mathcal{E}, D)$ on $L^{2}$ (O-, $\mu$ ) when $\mu$ is determinantal random point fields 7.

We give a partial answer for this in Theorem 2.5.

The organization of the paper is as follows: In Section 2 we state
main theorems. In Section 3 we prepare some notion on configuration
spaces. In Section 4 we prove Theorem 2.2 and Theorem 2.3. In Sec-
tion 5 we prove Proposition 2.9 and Theorem 2.4. In Section 6 we prove
Theorem 2.5. Our method proving Theorem 2.1 can be applied to Gibbs
measures. So we prove the non-collision property for Gibbs measures in
Section 7.
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\S 2. Set up and the main result

Let $E\subset \mathbb{R}^{d}$ be a closed set which is the closure of a connected open
set in $\mathbb{R}^{d}$ with smooth boundary. Although we will mainly treat the case
$E=\mathbb{R}$ , we give a general framework here by following the line of [10].
Let $\Theta$ denote the set of configurations on $E$ , which is defined similarly
as (1.3) by replacing $\mathbb{R}$ with E.

A probability measure on $(\ominus, B(O-))$ is called a random point field
on E. Let $\mu$ be a random point field on E. A non-negative, permutation
invariant function $\rho_{n}$ : $E^{n}\rightarrow \mathbb{R}$ is called an $n$-correlation function of $\mu$ if for
any measurable sets $\{A_{1}, \ldots, A_{m}\}$ and natural numbers $\{k_{1}, \ldots, k_{m}\}$

such that $k_{1}+\cdots+k_{m}=n$ the following holds:

$\int_{A_{1}^{k_{1}}\times\cdot\cdot\times A_{m}^{k_{m}}}\rho_{n}(x_{1, }\ldots, x_{n})dx_{1}\cdots dx_{n}=\int_{o-}\prod_{i=1}^{m}\frac{\theta(A_{i})!}{(\theta(A_{i})-k_{i})!}d\mu$ .

It is known ([10], [3], [4]) that, if a family of non-negative, permutation
invariant functions $\{\rho_{n}\}$ satisfies

(2.2) $\sum_{k=1}^{\infty}\{\frac{1}{(k+j)!}\int_{A^{k+j}}\rho_{k+j}dx_{1}\cdots dx_{k+j}\}^{-1/k}=\infty$ ,

then there exists a unique probability measure (random point field) $\mu$

on $E$ whose correlation functions equal $\{\rho_{n}\}$ .

Let $K$ : $L^{2}(E, dx)\rightarrow L^{2}(E, dx)$ be a non-negative definite operator
which is locally $trace$ class; namely

(2.2) $0\leq(Kf, f)_{L^{2}(E,dx)}$ ,

$Tr(1_{B}K1_{B})<\infty$ for all bounded Borel set $B$ .

We assume $K$ has a continuous kernel denoted by $K=K(x, y)$ . Without
this assumption one can develop a theory of determinantal random point
fields (see [10], [9]); we assume this for the sake of simplicity.

Definition 2.1. A probability measure $\mu$ on $\ominus is$ said to be a
determinantal (or fermion) random point field with kernel $K$ if its cor-
relation functions $\rho_{n}$ are given by

(2.3) $\rho_{n}(x_{1}, \ldots, x_{n})=\det(K(x_{i}, x_{j})_{1\leq i,j\leq n})$

We quote:

Lemma 2.2 (Theorem 3 in [10]). Assume $K(x, y)=\overline{K(y,x)}$ and
$0\leq K\leq 1$ . Then $K$ determines a unique determinantal random point

ffield $\mu$ .
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We give examples of determinantal random point fields. The first ex-
ample is the stationary measure of Dyson’s model in infinite dimension.
The first three examples are related to the semicircle law of empirical
distribution of eigen values of random matrices. We refer to [10] for
detail.

Example 2.3 (sine kernel). Let $K_{\sin}$ and $\overline{\rho}$ be as in (1.4). Then

(2.4) $K_{\sin}(t)=\frac{1}{2\pi}\int_{|k|\leq\pi\overline{\rho}}e^{\sqrt{-1}kt}dk$ .

So the $K_{\sin}$ is a function of positive type and satisfies the assumptions
in Lemma 2.2. Let $\hat{\mu}^{N}$ denote the probability measure on $\mathbb{R}^{N}$ defined
by

(2.5) $\hat{\mu}^{N}=\frac{1}{Z^{N}}e^{-\Sigma_{i,j=1}^{N}-2\log|x_{i}-x_{j}|}e^{-\lambda_{N}^{2}\Sigma_{i=1}^{N}x_{i}^{2}}dx_{1}\cdots dx_{N}$ ,

where $\lambda_{N}=2(\pi\overline{\rho})^{3}/3N^{2}$ and $Z^{N}$ is the normalization. Set $\mu^{N}=\hat{\mu}^{N}\circ$

$(\xi^{N})^{-1}$ , where $\xi^{N}$ : $\mathbb{R}^{N}\rightarrow\Theta$ such that $\xi^{N}(x_{1}, \ldots, x_{N})=\sum_{i=1}^{N}\delta_{x_{i}}$ .

Let $\rho_{n}^{N}$ denote the $n$-correlation function of $\mu^{N}$ . Let $\rho_{n}$ denote the n-
correlation function of $\mu$ . Then it is known ([11, Proposition 1], [10])
that for all $n$ $=1,2$ , $\ldots$

(2.6) $\lim_{N\rightarrow\infty}\rho_{n}^{N}(x_{1, }\ldots, x_{n})=\rho_{n}(x_{1, }\ldots, x_{n})$ for all $(x_{1 },\ldots, x_{n})$ .

In this sense the measure $\mu$ is associated with the Hamiltonian $H$ in
(1.6) coming from the $\log$ potential -2 $\log|x|$ .

Example 2.4 (Airy kernel). $E=\mathbb{R}$ and

$K(x, y)=\frac{A_{i}(x)\cdot A_{i}’(y)-A_{i}(y)\cdot A_{\dot{0}}’(x)}{x-y}$

Here $A_{i}$ is the Airy function.

Example 2.5 (Bessel kernel). Let $E=[0, \infty)$ and

$K(x, y)=\frac{J_{\alpha}(\sqrt{x})\cdot\sqrt{y}\cdot J_{\alpha}’(\sqrt{y})-J_{\alpha}(\sqrt{y})\cdot\sqrt{x}\cdot J_{\alpha}’(\sqrt{x})}{2(x-y)}$ .

Here $J_{\alpha}$ is the Bessel function of order $\alpha$ .

Example 2.6. Let $E=\mathbb{R}$ and $K(x, y)=m(x)k(x-y)m(y)$ , where
$k$ : $\mathbb{R}\rightarrow \mathbb{R}$ is a non-negative, continuous even function that is convex in
$[0, \infty)$ such that $k(0)\leq 1$ , and $m$ : $\mathbb{R}\rightarrow \mathbb{R}$ is nonnegative continuous
and $\int_{\mathbb{R}}m(t)dt<\infty$ and $m(x)\leq 1$ for all $x$ and $0<m(x)$ for some
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$x$ . Then $K$ satisfies the assumptions in Lemma 2.2. Indeed, it is well-
known that $k$ is a function of positive type (187 $p$ . in [1] for example), so
the Fourier transformation of a finite positive measure. By assumption
$0\leq K(x, y)\leq 1$ , which implies $0\leq K\leq 1$ . Since $\int K(x, x)dx<\infty$ , $K$ is
of $trace$ class.

Let A denote the subset of $\Theta$ defined by

(2.7) $A=$ { $\theta\in\Theta;\theta(\{x\})\geq 2$ for some $x\in E$ }.

Note that A denotes the set consisting of the configurations with colli-
sions. We are interested in how large the set A is. Of course $\mu(A)=0$

because the 2-correlation function is locally integrable. We study A more
closely from the point of stochastic dynamics; namely, we measure A by
using a capacity.

To introduce the capacity we next consider a bilinear form related to
the given probability measure $\mu$ . Let $D_{\infty}^{loc}$ be the set of all local, smooth
functions $on\ominus defifined$ in Section 3. For $f$ , $g\in D_{\infty}^{loc}$ we set $D[f, g]:\Theta\rightarrow \mathbb{R}$

by

(2.8) $D[f, g](\theta)=\frac{1}{2}\sum_{i}\frac{\partial f(x)}{\partial x_{i}}\frac{\partial g(x)}{\partial x_{i}}$ .

Here $\theta=\sum_{i}\delta_{x_{i}}$ , $x=(x_{1}, \ldots)$ and $f(x)=f(x_{1}, \ldots)$ is the permutation
invariant function such that $f(\theta)=f(x_{1}, x_{2}, \ldots)$ for all $\theta\in O-$ . We set
$g$ similarly. Note that the left hand side of (2.8) is again permutation
invariant. Hence it can be regard as a function of $\theta=\sum_{i}\delta_{x_{i}}$ . Such $f$

and $g$ are unique; so the function $D[f, g]:\ominus\rightarrow \mathbb{R}$ is well defined.
For a probability measure $\mu$ in $O-$ we set as before

$\mathcal{E}(\mathfrak{j}, g)=\int_{o-}D[f, g](\theta)d\mu$ ,

$D_{\infty}=\{f \in D_{\infty}^{loc}\cap L^{2}(\Theta, \mu);\mathcal{E}(f, f)<\infty\}$ .

When $(\mathcal{E}, D_{\infty})$ is closable on $L^{2}$ (O-, $\mu$), we denote its closure by $(\mathcal{E}, D)$ .

We are now ready to introduce a notion of capacity for a pre-
Dirichlet space ( $\mathcal{E}$ , $D_{\infty}$ , $L^{2}$ (O-, $\mu$)). Let $\mathcal{O}$ denote the set consisting of
all open sets $in\ominus$ . For $O\in \mathcal{O}$ we set $\mathcal{L}_{O}=$ { $f$ $\in D_{\infty}$ ; $f$ $\geq 1\mu- a.e$ . on $O$ }
and

Cap(O)= $\{$

$\inf f\in \mathcal{L}_{O}\{\mathcal{E}(f, f)+(f, f)_{L^{2}(O-,\mu)}\}$ $\mathcal{L}_{O}\neq\emptyset$

$\infty$ $\mathcal{L}_{O}=\emptyset$

.
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For an arbitrary subset $A\subset\ominus we$ set Cap(A) $=\inf_{A\subset O\in \mathcal{O}}$ Cap(O).
This quantity Cap is called 1-capacity for the pre-Dirichlet space
$(\mathcal{E}, D_{\infty}, L^{2}(\Theta, \mu))$ .

We state the main theorem:

Theorem 2.1. Let $\mu$ be a determinantal random point field with
kernel K. Assume $K$ is locally Lipschitz continuous. Then

(2.9) Cap(A)=0,

where A is given by (2.7).

In [5] it was proved

Lemma 2.7 (Corollary 1 in [5]). Let $\mu$ be a probability measure
on $\Theta$ . Assume $\mu$ has locally bounded correlation functions. Assume
$(\mathcal{E}, D_{\infty})$ is closable on $L^{2}(\Theta, \mu)$ . Then there exists a diffusion $(\{P_{\theta}\}_{\theta\in O-}$ ,
$\{X_{t}\})$ associated with the Dirichlet space $(\mathcal{E}, D, L^{2}(O-, \mu))$ .

Combining this with Theorem 2.1 we have

Theorem 2.2. Assume $\mu$ satisfies the assumption in Theorem 2.1.
Assume $(\mathcal{E}, D_{\infty})$ is closable on $L^{2}(O-, \mu)$ . Then a diffusion $(\{P_{\theta}\}_{\theta\in O-}$ ,
$\{X_{t}\})$ associated with the Dirichlet space $(\mathcal{E}, D, L^{2}(\Theta, \mu))$ exists and sat-

isfies

(2.10) $P_{\theta}(\sigma_{A}=\infty)=1$ for $q.e$ . $\theta$ ,

where $\sigma_{A}=\inf\{t>0;X_{t}\in A\}$ .

We refer to [2] for $q.e$ . (quasi everywhere) and related notions on
Dirichlet form theory. We remark the capacity of pre-Dirichlet forms
are bigger than or equal to the one of its closure by definition. So (2.10)

is an immediate consequence of Theorem 2.1 and the general theory of
Dirichlet forms once $(\mathcal{E}, D_{\infty})$ is closable on $L^{2}(\Theta, \mu)$ and the resulting
(quasi) regular Dirichlet space $(\mathcal{E}, D, L^{2}(\ominus, \mu))$ exists.

To apply Theorem 2.2 to Dyson’s model we recall a result of Spohn.

Lemma 2.8 (Proposition 4 in [11]). Let $\mu$ be the determinantal
random point field with the sine kernel in Example 2.3. Then $(\mathcal{E}, D_{\infty})$

is closable on $L^{2}(O-, \mu)$ .

We say a diffusion $(\{P_{\theta}\}_{\theta\in}o-, \{X_{t}\})$ is Dyson’s model in infinite di-

mension if it is associated with the Dirichlet space $(\mathcal{E}, D, L^{2}(\Theta, \mu))$ in
Theorem 2.8. Collecting these we conclude:

Theorem 2.3. No collision (2.10) occurs in Dyson’s model in in-

finite dimension.
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The assumption of the local Lipschitz continuity of the kernel $K$

is crucial; we next give a collision example when $K$ is merely H\"older

continuous. We prepare:

Proposition 2.9. Assume $K$ is of trace class. Then $(\mathcal{E}, D_{\infty})$ is
closable on $L^{2}(\ominus, \mu)$ .

Theorem 2.4. Let $K(x, y)=m(x)k(x-y)m(y)$ be as in Exam-
ple 2.6. Let $\alpha$ be a constant such that

(2.11) $0<\alpha<1$ .

Assume $m$ and $k$ are continuous and there exist positive constants $c_{1}$ and
$c_{2}$ such that

(2.12) $c_{1}t^{\alpha}\leq k(0)-k(t)\leq c_{2}t^{Cl}$ for $0\leq t\leq 1$ .

Then ( $\mathcal{E}$ , $D_{\infty}$ , $L^{2}$ (O-, $\mu$ )) is closable and the associated diffusion satisfies

(2.13) $P_{\theta}(\sigma_{A}<\infty)=1$ for $q.e$ . $\theta$ .

Unfortunately the closability of the pre-Dirichlet form $(\mathcal{E}, D_{\infty})$ on
$L^{2}(\Theta, \mu)$ has not yet proved for determinantal random point fields of
locally $trace$ class except the sine kernel. So we propose a problem:

Problem 2.10. (1) Are pre-Dirichlet forms $(\mathcal{E}, D_{\infty})$ on $L^{2}(\Theta, \mu)$

closable when $\mu$ are determinantal random fields with continuous ker-
nels?
(2) Can one construct stochastic dynamics (diffusion processes) associ-
ated with pre-Dirichlet forms $(\mathcal{E}, D_{\infty})$ on $L^{2}(\Theta, \mu)$ .

We remark one can deduce the second problem from the first one
(see [5, Theorem 1]). We conjecture that $(\mathcal{E}, D_{\infty}, L^{2}(\ominus, \mu))$ are always
closable. As we see above, in case of $trace$ class kernel, this problem is
solved by Proposition 2.9. But it is important to prove this for deter-
minantal random point field of locally $trace$ class. This class contains
Airy kernel and Bessel kernel and other nutritious examples. We also re-
mark for interacting Brownian motions with Gibbsian equilibriums this
problem was settled successfully ([5]).

In the next theorem we give a partial answer for (2) of Problem 2.10.
We will show one can construct a stochastic dynamics in infinite volume,
which is canonical in the sense that (1) it is the strong resolvent limit
of a sequence of finite volume dynamics and that (2) it coincides with
$(\mathcal{E}, D)$ whenever $(\mathcal{E}, D_{\infty})$ is closable on $L^{2}(\ominus, \mu)$ .

For two symmetric, nonnegative forms $(\mathcal{E}_{1}, D_{1})$ and $(\mathcal{E}_{2}, D_{2})$ , we
write $(\mathcal{E}_{1}, D_{1})\leq(\mathcal{E}_{2}, D_{2})$ if $D_{1}\supset D_{2}$ and $\mathcal{E}_{1}(f, f)\leq \mathcal{E}_{2}(f, f)$ for all $f$ $\in D_{2}$ .
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Let $(\mathcal{E}^{reg}, D^{reg})$ denote the regular part of $(\mathcal{E}, D_{\infty})$ on $L^{2}(\Theta, \mu)$ , that is,
$(\mathcal{E}^{reg}, D^{reg})$ is closable on $L^{2}(\ominus, \mu)$ and in addition satisfies the following:

$(\mathcal{E}^{reg}, D^{reg})\leq(\mathcal{E}, D_{\infty})$ ,

and for all closable forms such that $(\mathcal{E}’, D’)\leq(\mathcal{E}, D_{\infty})$

$(\mathcal{E}’, D’)\leq(\mathcal{E}^{reg}, D^{reg})$ .

It is well known that such a $(\mathcal{E}^{reg}, D^{reg})$ exists uniquely and called the
maximal regular part of $(\mathcal{E}, D)$ . Let us denote the closure by the same
symbol $(\mathcal{E}^{reg}, D^{reg})$ .

Let $\pi_{r}:\ominus\rightarrow\ominus be$ such that $\pi_{r}(\theta)=\theta(\cdot\cap\{x\in E;|x|<r\})$ . We set

$D_{\infty,,,r}=$ { $f\in D_{\infty}$ ; $f$ is $\sigma[\pi_{r}]$ -measurable}.

We will prove $(\mathcal{E}, D_{\infty,,,r})$ are closable on $L^{2}(\ominus, \mu)$ . These are the finite
volume dynamics we are considering.

Let $\mathbb{G}_{\alpha}$ (resp. $\mathbb{G}_{r,,,\alpha}$ ) $(\alpha>0)$ denote the $\alpha$-resolvent of the semi-group
associated with the closure of $(\mathcal{E}^{reg}, D^{reg})$ (resp. ( $\mathcal{E}$ , $D_{\infty,,,r}$ )) on $L^{2}$ (O-, $\mu$ ).

Theorem 2.5. (1) $(\mathcal{E}^{reg}, D^{reg})$ on $L^{2}(\Theta, \mu)$ is a quasi-regular Dirich-
let form. So the associated diffusion exists.
(2) $\mathbb{G}_{r,,,\alpha}$ converge to $\mathbb{G}_{\alpha}$ strongly in $L^{2}(\ominus, \mu)$ for all $\alpha>0$ .

Remark 2.11. We think the diffusion constructed in Theorem 2.5
is a reasonable one because of the following reason. (1) By definition
the closure of $(\mathcal{E}^{reg}, D^{reg})$ equals $(\mathcal{E}, D)$ when $(\mathcal{E}, D_{\infty})$ is closable. (2)
One naturally associated Markov processes on $\ominus_{r}$ , where $\ominus_{r}$ is the set
of configurations on $E\cap\{|x|<r\}$ . So (2) of Theorem 2.5 implies the
diffusion is the strong resolvent limit of finite volume dynamics.

Remark 2.12. If one replace $\mu$ by the Poisson random measure
$\lambda$ whose intensity measure is the Lebesgue measure and consider the
Dirichlet space $(\mathcal{E}^{\lambda}, D)$ on $L(O-, \lambda)$ , then the associated $\ominus$-valued diffu-
sion is the $O-$-valued Brownian motion $B$ , that is, it is given by

$B_{t}=\sum_{i=1}\delta_{B_{t}^{i}}$
,

where $\{B_{t}^{i}\}(i\in \mathbb{N})$ are infinite amount of independent Brownian mo-
tions. In this sense we say in Abstract that the Dirichlet form given by
(1.5) for Radon measures in $O-$ canonical. We also remark such a type
of local Dirichlet forms are often called distorted Brownian motions.



334 H. Osada

\S 3. Preliminary

Let $I_{r}=(-r, r)^{d}\cap E$ and $\Theta_{r}^{n}=\{\theta\in\Theta;\theta(I_{r})=n\}$ . We note
$\Theta=\sum_{n=0}^{\infty}\ominus_{r}^{n}$ . Let $I_{r}^{n}$ be the $n$ times product of $I_{r}$ . We define $\pi_{r}:\ominus\rightarrow\ominus$

by $\pi_{r}(\theta)=\theta(\cdot\cap I_{r})$ . A function $x:\Theta_{r}^{n}\rightarrow I_{r}^{n}$ is called a $I_{r}^{n}$-coordinate of
$\theta$ if

(3.1) $\pi_{r}(\theta)=\sum_{k=1}^{n}\delta_{x_{k}(\theta)}$ , $x(\theta)=(x_{1}(\theta), \ldots, x_{n}(\theta))$ .

Suppose $f$ : $\Theta\rightarrow \mathbb{R}$ is $\sigma[\pi_{r}]$ -measurable. Then for each $n$ $=1,2$ , $\ldots$ there
exists a unique permutation invariant function $f_{r}^{n}$ : $I_{r}^{n}\rightarrow \mathbb{R}$ such that

(3.2) $\mathfrak{j}(\theta)=f_{r}^{n}(x(\theta))$ for all $\theta\in\Theta_{r}^{n}$ .

We next introduce mollifier. Let $j:\mathbb{R}\rightarrow \mathbb{R}$ be a non-negative, smooth
function such that $j(x)=j(|x|)$ , $\int_{\mathbb{R}^{d}}jdx=1$ and $j(x)=0$ for $|x|\geq$

$\frac{1}{2}$ . Let $j_{\epsilon}=\epsilon j(\cdot/\epsilon)$ and $j_{\epsilon}^{n}(x_{1}, \ldots, x_{n})=\prod_{i=1}^{n}j_{\epsilon}(x_{i})$ . For a $\sigma[\pi_{r}]-$

measurable function $f$ we set $\tilde{s}_{r,,,\epsilon}f:\ominus\rightarrow \mathbb{R}$ by

(3.3) $\tilde{I}_{r,,,\epsilon}f(\theta)=\{$

$j_{\epsilon}^{n}*\hat{f}_{r}^{n}(x(\theta))$ for $\theta\in\ominus_{r}^{n}$ , $n$ $\geq 1$

$f(\theta)$ for $\theta\in\Theta_{r}^{0}$ ,

where $f_{r}^{n}$ is given by (3.2) for $f$ , and $\hat{f}_{r}^{n}$ : $\mathbb{R}^{dn}\rightarrow \mathbb{R}$ is the function defined

by $\hat{f}_{r}^{n}(x)=f_{r}^{n}(x)$ for $x\in I_{r}^{n}$ and $\hat{f}_{r}^{n}(x)=0$ for $x\not\in I_{r}^{n}$ . Moreover $x(\theta)$

is an $I_{r}^{n}$-coordinate of $\theta\in\ominus_{r}^{n}$ , and $*denotes$ the convolution in $\mathbb{R}^{n}$ . It
is clear that $\tilde{t}_{r,,,\epsilon}f$ is $\sigma[\pi_{r}]$ measurable

We say a function $f$ : $\ominus\rightarrow \mathbb{R}$ is local if $f$ is $\sigma[\pi_{r}]$ measurable for
some $ r<\infty$ . For $f:\ominus\rightarrow \mathbb{R}$ and $n$ $\in \mathbb{N}\cup\{\infty\}$ there exists a unique
permutation function $f^{n}$ such that $f(\theta)=f^{n}(x_{1}, \ldots)$ for all $\theta\in\Theta^{n}$ .

Here $O-n=\{\theta\in\Theta;\theta(E)=n\}$ , and $\theta=\sum_{i}\delta_{x_{i}}$ . A function $f$ is called
smooth if $f^{n}$ is smooth for all $n$ $\in \mathbb{N}\cup\{\infty\}$ . Note that a $\sigma[\pi_{r}]$ measurable
function $f$ is smooth if and only if $f_{r}^{n}$ is smooth for all $n$ $\in \mathbb{N}$ .

\S 4. Proof of Theorem 2.2

We give a sequence of reductions of (2.9). Let A denote the set
consisting of the sequences $a=(a_{r})_{r\in \mathbb{N}}$ satisfying the following:

(4.1) $a_{r}\in \mathbb{Q}$ for all $r\in \mathbb{N}$ ,

(4.2) $a_{r}=2r+r_{0}$ for all sufficiently large $r\in \mathbb{N}$ ,

(4.3) $2\leq a_{1},1\leq a_{r+1}-a_{r}\leq 2$ for all $r\in \mathbb{N}$ .
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Note that the cardinality of A is countable by (4.1) and (4.2).
Let I $=\{2,3, \ldots, \}^{3}$ . For $(r, n, m)\in I$ and $a=(a_{r})\in A$ we set

$\ominus^{a}(r, n)=\{\theta\in\Theta;\theta(I_{a_{r}})=n\}$

$\ominus^{a}(r, n, m)=\{\theta\in\ominus;\theta(I_{a_{r}})=n, \theta(\overline{I}_{a_{r}+\frac{1}{m}}\backslash I_{a_{r}})=0\}$ .

Here $\overline{I}_{a_{r}+\frac{1}{m}}$ is the closure of $I_{a_{r}+\frac{1}{m}}$ , where $I_{r}=(-r, r)^{d}\cap E$ as before.

We $remark\ominus^{a}(r, n, m)$ is an open set $in\ominus$ . We set

(4.4)
$A_{\epsilon}^{a}(r, n, m)=\{\theta=\sum_{i}\delta_{x_{i}}$

; $\theta\in\ominus^{a}(r, n, m)$ and $\theta$ satisfy

$|x_{i}-x_{j}|<\epsilon$ and $x_{i}$ , $x_{j}\in I_{a_{r}-1}$ for some $i\neq j$ }.

It is clear that $A_{\epsilon}^{a}(r, n, m)$ is an open set in $\Theta$ .

Lemma 4.1. Assume that for all $a\in A$ and $(r, n, m)\in I$

(4.5)
$\inf_{0<\epsilon<1/2m}$

Cap(Aa(r,$ n$ ,$ m)$ ) $=0$ .

Then (2.9) holds.

Proof. Let

$A^{a}(r, n, m)=\{\theta=\sum_{i}\delta_{x_{i}}$
; $\theta\in\Theta^{a}(r, n, m)$ and $\theta$ satisfy

$x_{i}=x_{j}$ and $x_{i}$ , $x_{j}\in I_{a_{r}-1}$ for some $i\neq j$ }.

Then $A=\bigcup_{a\in A}\bigcup_{(r,n,m)\in I}A^{a}(r, n, m)$ . Since A and I are countable sets

and the capacity is sub additive, (2.9) follows from

(4.6) Cap(Aa(r,$ n$ ,$ m)$ ) $=0$ for all $a\in A$ , $(r, n, m)\in I$ .

Note that $A^{a}(r, n, m)\subset A_{\epsilon}^{a}(r, n, m)$ . So (4.5) implies (4.6) by the mono-
tonicity of the capacity, which deduces (2.9). Q.E.D.

Now fix $a\in A$ and $(r, n, m)\in I$ and suppress them from the notion.
Set

(4.7) $A_{\epsilon}^{-}=A_{\epsilon/2}^{a}(r, n, m)$ , $A_{\epsilon}=A_{\epsilon}^{a}(r, n, m)$ , $A_{\epsilon}^{+}=A_{1+\epsilon}^{a}(r, n, m)$ .

and let $h_{\epsilon}$ : $\mathbb{R}\rightarrow \mathbb{R}(0<\epsilon<1/m<1)$ such that

(4.8) $h_{\epsilon}(t)=\{$

2 $(|t|\leq\epsilon)$

2 $\log|t|/\log\epsilon$ $(\epsilon\leq|t|\leq 1)$

0 $(1\leq|t|)$ .
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We define $\mathfrak{h}_{\epsilon}$ : $\Theta\rightarrow \mathbb{R}$ by $\mathfrak{h}_{\epsilon}(\theta)=0$ for $\theta\not\in\Theta^{a}(r, n, m)$ and

$\mathfrak{h}_{\epsilon}(\theta)=\sum_{x_{i},,,x_{j}\in I_{a_{r}-1},j\neq i}h_{\epsilon}(x_{i}-x_{j})$
for $\theta\in\Theta^{a}(r, n, m)$ .

Here we set $\mathfrak{h}_{\epsilon}(\theta)=0$ if the summand is empty. Let $g_{\epsilon}=\tilde{J}_{a_{r}+\frac{1}{m},\epsilon/4}\mathfrak{h}_{\epsilon}$ .

Here $\tilde{J}_{a_{r}+\frac{1}{m},\epsilon/4}$ is the mollifier introduced in (3.3).

Lemma 4.2. For $0<\epsilon<1/2m$ , $g_{\epsilon}$ satisfy the following:

(4.9) $g_{\epsilon}\in D_{\infty}$

(4.10) $g_{\epsilon}(\theta)\geq 1$ for all $\theta\in A_{\epsilon}$

(4.11) $0\leq g_{\epsilon}(\theta)\leq n(n+1)$ for all $\theta\in O-$

(4.12) $g_{\epsilon}(\theta)=0$ for all $\theta\not\in A_{\epsilon}^{+}$

(4.13) $D[g_{\epsilon}, g_{\epsilon}](\theta)=0$ for all $\theta\not\in A_{\epsilon}^{+}\backslash A_{\epsilon}^{-}$

(4.14) $D[\mathfrak{g}_{\epsilon}, g_{\epsilon}](\theta)\leq\frac{c_{3}}{(\log\epsilon\min|x_{i}-x_{j}|)^{2}}$ for all $\theta\in A_{\epsilon}^{+}\backslash A_{\epsilon}^{-}$ .

Here $\theta=\sum\delta_{x_{k}}$ and the minimum in (4.14) is taken over $x_{i}$ , $x_{j}$ such
that

$x_{i}$ , $x_{j}\in I_{a_{r}-1}$ , $\epsilon/2\leq|x_{i}-x_{j}|\leq 1+\epsilon$ ,

and $c_{3}\geq 0$ is a constant independent of $\epsilon$ ($c_{3}$ depends on ( $r$ , $n$ , $m$)).

Proof. (4.9) follows from [5, Lemma 2.4 (1)]. Other statements are
clear from a direct calculation. Q.E.D.

Permutation invariant functions $\sigma_{r}^{n}$ : $I_{r}^{n}\rightarrow \mathbb{R}^{+}$ are called density
functions of $\mu$ if, for all bounded $\sigma[\pi_{r}]$ -measurable functions $f$ ,

(4.15) $\int_{-}o_{r}^{n}fd\mu=\frac{1}{n^{I}}$

.
$\int_{I_{r}^{n}}f_{r}^{n}\sigma_{r}^{n}dx$ .

Here $f_{r}^{n}$ : $I_{r}^{n}\rightarrow \mathbb{R}$ is the permutation invariant function such that $f_{r}^{n}(x(\theta))$

$=\mathfrak{j}(\theta)$ for $\theta\in\ominus_{r}^{n}$ , where $x$ is an $I_{r}^{n}$-coordinate. We recall relations
between a correlation function and a density function ([10]):

(4.16) $\rho_{n}=\sum_{k=0}^{\infty}\frac{1}{k!}\int_{I_{r}^{k}}\sigma_{r}^{n+k}(x_{1}, \ldots, x_{n+k})dx_{n+1}\cdots dx_{n+k}$

(4.17) $\sigma_{r}^{n}=\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!}\int_{I_{r}^{k}}\rho_{n}+k(x_{1}, \ldots, x_{n+k})dx_{n+1}\cdots dx_{n+k}$
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The first summand in the right hand side of (4.16) is taken to be $\sigma_{r}^{n}$ . It
is clear that

(4.18) $0\leq\sigma_{r}^{n}(x_{1}, \ldots, x_{n})\leq\rho_{n}(x_{1}, \ldots, x_{n})$

Lemma 4.3. There exists a constant $c_{4}$ depending on $r$ , $n$ such
that

(4.19) $\sigma_{r}^{n}(x_{1}, \ldots, x_{n})\leq c_{4}\min_{i\neq j}|x_{i}-x_{j}|$ for all $(x_{1}, \ldots, x_{n})\in I_{r}^{n}$

Proof. By (2.3) and the kernel $K$ is locally Lipschitz continuous,
we see $\rho_{n}$ is bounded and Lipschitz continuous on $I_{r}^{n}$ . In addition, by
using (2.3) we see $\rho_{n}=0$ if $x_{i}=x_{j}$ for some $i\neq j$ . Hence by using (2.3)
again there exists a constant $c_{5}$ depending on $n$ , $r$ such that

(4.20) $\rho_{n}(x_{1}, \ldots, x_{n})\leq c_{5}\min_{i\neq j}|x_{i}-x_{j}|$ for all $(x_{1}, \ldots, x_{n})\in I_{r}^{n}$ .

(4.19) follows from this and (4.18) immediately. Q.E.D.

Lemma 4.4. (4.5) holds true.

Proof. By the definition of the capacity, $g_{\epsilon}\in D_{\infty}$ , (4.9) and (4.10)
we obtain

(4.21) Cap(A\epsilon ) $\leq \mathcal{E}(g_{\epsilon}, g_{\epsilon})+(g_{\epsilon}, g_{\epsilon})_{L^{2}(O-,\mu)}$

So we will estimate the right hand side. We now see by (4.13)

(4.22) $\mathcal{E}(\mathfrak{g}_{\epsilon}, \mathfrak{g}_{\epsilon})=\int_{A_{\epsilon}^{+}\backslash A_{\epsilon}^{-}}D[g_{\epsilon}, g_{\epsilon}]d\mu$

$=\frac{1}{n!}\int_{B_{\epsilon}}\{\frac{1}{2}\sum_{i=1}^{n}\frac{\partial g_{\epsilon}^{n}}{\partial x_{i}}\frac{\partial g_{\epsilon}^{n}}{\partial x_{i}}\}\sigma_{a_{r}+\frac{1}{m}}^{n}dx_{1}\cdots dx_{n}$

$=:I_{\epsilon}$ .

Here $g_{\epsilon}^{n}$ is defined by (3.2) for $g_{\epsilon}$ , and $B_{\epsilon}=\varpi_{a_{r}+\frac{1}{m}}^{-1}(\pi_{a_{r}+\frac{1}{m}}(A_{\epsilon}^{+}\backslash A_{\epsilon}^{-}))$ ,

where $\varpi:I_{a_{r}+\frac{1}{m}}^{n}\rightarrow\ominus is$ the map such that $\varpi((x_{1 },\ldots, x_{n}))=\sum\delta_{x_{i}}$ .

By using (4.14) and Lemma 4.3 for $a_{r}+\frac{1}{m}$ it is not difficult to see
there exists a constant $c_{6}$ independent of $\epsilon$ satisfying the following:

$I_{\epsilon}\leq\frac{c_{6}}{|1og\epsilon|}$ .

This implies $\lim_{\epsilon\rightarrow 0}\mathcal{E}(g_{\epsilon}, g_{\epsilon})=0$ . By (4.11) and (4.12) we have

$(g_{\epsilon}, g_{\epsilon})_{L^{2}(O-,\mu)}=\int_{A_{\epsilon}^{+}}g_{\epsilon}^{2}d\mu\leq n^{2}(n+1)^{2}\mu(A_{\epsilon}^{+})\rightarrow 0$ as $\epsilon\downarrow 0$ .
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Combining these with (4.21) we complete the proof of Lemma 4.4.
Q.E.D.

Proof of Theorem 2.1. Theorem 2.1 follows from Lemma 4.1 and
Lemma 4.4 immediately. Q.E.D.

\S 5. Proof of Proposition 2.9

Lemma 5.1. Let $\mu$ be a probability measure on $(\ominus, B(\ominus))$ such
that $\mu(\{\theta(E)<\infty\})=1$ and that density functions $\{\sigma_{E}^{n}\}$ on $E$ of $\mu$ are
continuous. Then $(\mathcal{E}, D_{\infty})$ is closable on $L^{2}(\ominus, \mu)$ .

Proof. Let $\Theta^{n}=\{\theta\in\ominus;\theta(E)=n\}$ and set

$\mathcal{E}^{n}(f, g)=\sum_{k=1}^{n}\int_{o-k}D[f, g]d\mu$ .

By assumption $\sum_{n=0}^{\infty}\mu(\ominus^{n})=1$ , from which we deduce $(\mathcal{E}, D_{\infty})$ is the
increasing limit of $\{(\mathcal{E}^{n}, D_{\infty})\}$ . Since density functions are continuous,
each $(\mathcal{E}^{n}, D_{\infty})$ is closable on $L^{2}(\ominus, \mu)$ . So its increasing limit $(\mathcal{E}, D_{\infty})$ is
also closable on $L^{2}(\ominus, \mu)$ . Q.E.D.

Lemma 5.2. Let $\mu$ be a determinantal random point field on $E$

with continuous kernel K. Assume $K$ is of trace class. Then their density

functions $\sigma^{n}$ on $E$ are continuous.

Proof. For the sake of simplicity we only prove the case $K<1$ ,
where $K$ is the operator generated by the integral kernel K. The general
case is proved similarly by using a device in $[10, 935 p.]$ .

Let $\lambda_{i}$ denote the $i$-th eigenvalue of $K$ and $\varphi_{i}$ its normalized eigen-
function. Then since $K$ is of $trace$ class we have

(5.1) $K(x, y)=\sum_{i=1}^{\infty}\lambda_{i}\varphi_{i}(x)\overline{\varphi_{i}(y)}$ .

It is known that (see [10, 934 $p.]$ )

(5.2) $\sigma^{n}(x_{1}, \ldots, x_{n})=\det(Id-K)\cdot\det(L(x_{i}, x_{j}))_{1\leq i,j\leq n}$ ,

where $\det(Id-K)=\prod_{i=1}^{\infty}(1-\lambda_{i})$ and

(5.3) $L(x, y)=\sum_{i=1}^{\infty}\frac{\lambda_{i}}{1-\lambda_{i}}\varphi_{i}(x)\overline{\varphi_{i}(y)}$ .
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Since $K(x, y)$ is continuous, eigenfunctions $\varphi_{i}(x)$ are also continuous.
It is well known that the right hand side of (5.1) converges uniformly.
By $0\leq K<1$ we have $0\leq\lambda_{i}\leq\lambda_{1}<1$ . Collecting these implies the
right hand side of (5.3) converges uniformly. Hence $L(x, y)$ is continuous
in $(x, y)$ . This combined with (5.2) completes the proof. Q.E.D.

Proof of Proposition 2.9. Since $K$ is of $trace$ class, the associated
determinantal random point field $\mu$ satisfies $\mu(\{\theta(E)<\infty\})=1$ . By
Lemma 5.2 we have density functions $\sigma_{E}^{n}$ are continuous. So Proposi-
tion 2.9 follows from Lemma 5.1. Q.E.D.

We now turn to the proof of Theorem 2.4. So as in the statement
in Theorem 2.4 let $E=\mathbb{R}$ and $K(x, y)=m(x)k(x-y)m(y)$ , where
$k:\mathbb{R}\rightarrow \mathbb{R}$ is a non-negative, continuous even function that is convex in
$[0, \infty)$ such that $k(0)\leq 1$ , and $m:\mathbb{R}\rightarrow \mathbb{R}$ is nonnegative continuous and
$\int_{\mathbb{R}}m(t)dt<\infty$ and $m(x)\leq 1$ for all $x$ and $0<m(x)$ for some $x$ . We
assume $k$ satisfies (2.12).

Lemma 5.3. There exists an interval I in $E$ such that

(5.4) $\sigma_{I}^{2}(x, x+t)\geq c_{7}t^{\alpha}$ for all $|t|\leq 1$ and $x$ , $x+t\in I$ ,

where $c_{7}$ is a positive constant and $\sigma_{I}^{2}$ is the 2-density function of $\mu$ on
$I$ .

Proof. By assumption we see $\inf_{x\in I}m(x)>0$ for some open
bounded, nonempty interval I in E. By (4.17) we have

(5.5) $\sigma_{I}^{2}(x, x+t)\geq\rho_{2}(x, x+t)-\int_{I}\rho_{3}(x, x+t, z)dz$

By (2.3) and (2.12) there exist positive constants $c_{8}$ and $c_{9}$ such that

(5.6) $c_{8}t^{\alpha}\leq\rho_{2}(x, x+t)$ for all $|t|\leq 1$ and $x$ , $x+t\in I$

$\rho_{3}(x, x+t, z)\leq c_{9}t^{\alpha}$ for all $|t|\leq 1$ and $x$ , $x+t$ , $z\in I$ .

Hence by taking I so small we deduce (5.4) from (5.5) and (5.6). Q.E.D.

Proof of Theorem 2.4. The closability follows from Proposition 2.9.
So it only remains to prove (2.13).

Let $(\mathcal{E}^{2}, D^{2})$ and $(\mathcal{E}, D)$ denote closures of $(\mathcal{E}^{2}, D_{\infty})$ and $(\mathcal{E}, D_{\infty})$ on
$L^{2}$ (O-, $\mu$ ), respectively. Then

(5.7) $(\mathcal{E}^{2}, D^{2})\leq(\mathcal{E}, D)$
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Let I be as in Lemma 5.3. Let $\{I_{r}\}_{r=1},$ . . be an increasing sequence of
open intervals in $E$ such that $I_{1}=I$ and $\bigcup_{r}I_{r}=E$ . Let

(5.8) $\mathcal{E}_{r}^{2}(f, g)=\int_{o-2}\sum_{x_{i}\in I_{r}}\frac{1}{2}\frac{\partial f(x)}{\partial x_{i}}$
. $\frac{\partial g(x)}{\partial x_{i}}d\mu$

Here we set $x=(x_{1}, \ldots)$ , $f$ and $f$ similarly as in (2.8). Then since
density functions on $I_{r}$ are continuous, we see $(\mathcal{E}_{r}^{2}, D_{\infty})$ are closable on
$L^{2}(\Theta, \mu)$ . So we denote its closure by $(\mathcal{E}_{r}^{2}, D_{r}^{2})$ . It is clear that $\{(\mathcal{E}_{r}^{2}, D_{r}^{2})\}$

is increasing in the sense that $D_{r}^{2}\supset D_{r+1}^{2}$ and $\mathcal{E}_{r}^{2}(f, f)\leq \mathcal{E}_{r+1}^{2}(f, f)$ for all
$f$ $\in D_{r+1}$ . So we denote its limit by $(\check{\mathcal{E}}^{2},\check{D}^{2})$ . It is known ([5, Remark
(3) after Theorem 3]) that

(5.9) $(\check{\mathcal{E}}^{2},\check{D}^{2})\leq(\mathcal{E}^{2}, D^{2})$ .

By (5.7), (5.9) and the definition of $\{(\mathcal{E}_{r}^{2}, D_{r}^{2})\}$ we conclude $(\mathcal{E}_{1}^{2}, D_{1}^{2})$

$\leq(\mathcal{E}, D)$ , which implies

(5.10) $Cap_{1}^{2}\leq Cap$ ,

where $Cap_{1}^{2}$ and Cap denote capacities of $(\mathcal{E}_{1}^{2}, D_{1}^{2})$ and $(\mathcal{E}, D)$ , respec-
tively. Let $B=\Theta^{2}\cap$ { $\theta(\{x\})=2$ for some $x\in I$}. Then by (2.11)
and (5.4) together with a standard argument (see [2, Example 2.2.4] for
example) we obtain

(5.11) $0<Cap_{1}^{2}(B)$ .

Since $B$ $\subset A$ , we deduce $0<$ Cap(A) from (5.10) and (5.11), which
implies (2.13). Q.E.D.

\S 6. A construction of infinite volume dynamics

In this section we prove Theorem 2.5. We first prove the closability
of pre-Dirichlet forms in finite volume.

Lemma 6.1. Let $I_{r}=(-r, r)\cap E$ and $\sigma_{r}^{n}$ denote the $n$ density

function on $I_{r}$ . Then $\sigma_{r}^{n}$ is continuous.

Proof. Let $M$ $=\sup_{x,,,y\in I_{r}}|K(x, y)|$ . Then $M$ $<\infty$ because $K$ is
continuous. Let $x_{i}=$ $(K(x_{i}, x_{1})$ , $K(x_{i}, x_{2})$ , $\ldots$ , $K(x_{i}, x_{n}))$ and $||x_{i}||$ de-
note its Euclidean norm. Then by (2.3) we see

(6.1) $|\rho_{n}|\leq\prod_{i=1}^{n}||x_{i}||\leq\{\sqrt{n}M\}^{n}$ .



Non-collision property of Dyson’s model 341

By using Stirling’s formula and (6.1) we have for some positive constant
$c_{10}$ independent of $k$ and $M$ such that

(6.2) $|\frac{(-1)^{k}}{k^{I}}.\int_{I_{r}^{k}}\rho_{n+k}(x_{1}, \ldots, x_{n+k})dx_{n+1}\cdots dx_{n+k}$ $1$

$\leq c_{10}^{k}k^{-k+1/2}(n+k)^{(n+k)/2}M^{n+k}$ .

This implies for each $n$ the series in the right hand side of (4.17) con-
verges uniformly in $(x_{1}, \ldots, x_{n})$ . So $\sigma_{r}^{n}$ is the limit of continuous func-
tions in the uniform norm, which completes the proof. Q.E.D.

Lemma 6.2. $(\mathcal{E}, D_{\infty,,,r})$ are closable on $L^{2}(\Theta, \mu)$ .

Proof. Let $I_{r}=\{x\in E;|x|<r\}$ and $O-_{r}^{n}=\{\theta(I_{r})=n\}$ . Let
$\mathcal{E}_{r}^{n}(\mathfrak{j}, g)=\int_{o_{r}^{n}}-D[f, g]d\mu$ . Then it is enough to show that $(\mathcal{E}_{r}^{n}, D_{\infty,,,r})$ are

closable on $L^{2}$ $(O-, \mu)$ for all $n$ .

Since $f$ is $\sigma[\pi_{r}]$ -measurable, we have $(x=(x_{1}, \ldots, x_{n}))$

$\mathcal{E}_{r}^{n}(f, g)=\frac{1}{n^{I}}$

.
$\int_{I_{r}^{n}}\sum_{i=1}^{n}\frac{1}{2}\frac{\partial f_{r}^{n}(x)}{\partial x_{i}}$ . $\frac{\partial g_{r}^{n}(x)}{\partial x_{i}}\sigma_{r}^{n}(x)dx$ ,

where $f_{r}^{n}$ and $g_{r}^{n}$ are defined similarly as after (4.15). Then since $\sigma_{r}^{n}$ is
continuous, we see $(\mathcal{E}_{r}^{n}, D_{\infty,,,r})$ is closable. Q.E.D.

Proof of Theorem 2.5. By Lemma 6.2 we see the assumption (A. 1*)
in [5] is satisfied. (A.2) in [5] is also satisfied by the construction of
determinantal random point fields. So one can apply results in [5] (The-
orem 1, Corollary 1, Lemma 2.1 (3) in [5] $)$ to the present situation.
Although in Theorem 1 in [5] we treat $(\mathcal{E}, D)$ , it is not difficult to see
that the same conclusion also holds for $(\mathcal{E}^{reg}, D^{reg})$ , which completes the
proof. Q.E.D.

\S 7. Gibbsian case

In this section we consider the case $\mu$ is a canonical Gibbs measure
with interaction potential $\Phi$ , whose $n$-density functions for bounded sets
are bounded, and 1-correlation function is locally integrable. If $\Phi$ is
super stable and regular in the sense of Ruelle, then probability mea-
sures satisfying these exist. In addition, it is known in [5] that, if $\Phi$

is upper semi-continuous (or more generally $\Phi$ is a measurable function
dominated from above by a upper semi-continuous potential satisfying
certain integrable conditions (see [7]) $)$ , then the form $(\mathcal{E}, D)$ on $L^{2}$ (O-, $\mu$ )
is closable. We remark these assumptions are quite mild. In [5] and [7]
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only grand canonical Gibbs measures with pair interaction potential are
treated; it is easy to generalize the results in [5] and [7] to the present
situation.

Proposition 7.1. Let $\mu$ be as above. Assume $d\geq 2$ . Then Cap(A)
$=0$ and no collision (2.10) occurs.

Proof. The proof is quite similar to the one of Theorem 2.1. Let
$I_{\epsilon}$ be as in (4.22). It only remains to show $\lim_{\epsilon\rightarrow 0}I_{\epsilon}=0$ .

We divide the case into two parts: (1) $d=2$ and (2) $3\leq d$ . Assume
(1). We can prove $\lim I_{\epsilon}=0$ similarly as before. In the case of (2) the
proof is more simple. Indeed, we change definitions of $A_{\epsilon}^{+}$ in (4.7) and
$h_{\epsilon}$ in (4.8) as follows: $A_{\epsilon}^{+}=A_{4\epsilon}^{a}(r, n, m)$

(7.1) $h_{\epsilon}(t)=\{$

2 $(|t|\leq\epsilon)$

$-(2/\epsilon)|t|+4$ $(\epsilon\leq|t|\leq 2\epsilon)$

0 $(2\epsilon\leq|t|)$ .

Then we can easily see $\lim I_{\epsilon}=0$ . Q.E.D.

Remark 7.2. (1) This result was announced and used in [6, Lemma
1.4]. Since this result was so different from other parts of the paper [6],
we did not give a detail of the proof there.
(2) In [8] a related result was obtained. In their frame work the choice
of the domain of Dirichlet forms may be not same as ours. Indeed, their
domains are smaller than or equal to ours (we do not know they are
same or not). So one may deduce Proposition 7.1 from their result.
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Random Point Fields Associated with Fermion,

Boson and Other Statistics

Tomoyuki Shirai and Yoichiro Takahashi

Abstract.

We show that the grand canonical ensembles of ideal gas under
Fermi, Boson and other statistics give simple examples of the ran-
dom point fields studied in the previous papers [13, 14, 15]. Also
we present two classes of nonsymmetric integral operators for which
such random point fields do exist.

\S 1. Introduction

In the present paper we are concerned with the nonnegativity prob-
lem of certain generalization of determinants and permanents denoted
by $\det_{\alpha}$ in our previous paper [14]. The problem is almost equivalent
to the existence problem of those random point fields or point processes
whose Laplace transforms are given as the Fredholm determinants to the
power $-1/\alpha$ of certain integral operators. They are also closely related
to the Fermi, Boson and other statistics in quantum statistical mechan-
ics of the ideal gas. Indeed, the grand canonical ensembles under these
statistics (if any) are special examples of our random point fields.

Definition 1.1. Let $\alpha$ be a real number and $A=(a_{ij})$ be a square
matrix of size $n$ . Given a permutation $\sigma$ , denote the number of cycles
by $\nu(\sigma)$ . The following quantity is called the $\alpha$-permanent of $A$ in [18]:

(1.1) $\det_{\alpha}(A)=\sum_{\sigma\in S_{n}}\alpha^{n-\nu(\sigma)}\prod_{i=1}^{n}a_{i\sigma(i)}$ ,

where $S_{n}$ is the symmetric group.
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For instance,

$\det_{\alpha}$ $\left(\begin{array}{ll}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right)$ $=$ $a_{11}a_{22}+\alpha a_{12}a_{21}$ ,

$\det_{\alpha}$ $\left(\begin{array}{lll}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\end{array}\right)$ $=$ $a_{11}a_{22}a_{33}$

$+\alpha(a_{12}a_{21}a_{33}+a_{13}a_{31}a_{22}+a_{23}a_{32}a_{11})$

$+\alpha^{2}(a_{12}a_{23}a_{31}+a_{13}a_{32}a_{21})$ .

It is immediate to see

(1.2) $\det_{-1}(A)=\det(A)$ , $\det_{1}(A)=per(A)$

and

(1.3) $\det_{0}(A)=a_{11}a_{22}\ldots a_{nn}$ .

In [14] we proved the following (though not stated directly there):

Theorem 1.2. There holds the inequality $\det_{\alpha}(A)\geq 0$ if $\alpha$ and
$A$ satisfy one of the following three conditions $(A^{-})$ , (A) and (B).
$(A^{-})\alpha\in\{-1/m|m=1,2, \ldots\}$ and $A$ is nonnegative defifinite.
(A) $\alpha\in\{2/m|m=1,2, \ldots\}$ and $A$ is nonnegative defifinite.
(B) $\alpha\in(0, \infty)$ and $A$ is a nonnegative matrix.

The sufficiency of (B) is obvious from Definition 1.1. We give an
alternative proof of the case (A) below in Section 3. In [14] we also
proposed the following.

Conjecture 1.3. If 0 $\leq\alpha\leq$ 2, $\det_{\alpha}(A)\geq$ 0 for nonnegative

defifinite matrix A of any size.

The random point fields mentioned above are defined as follows.
For simplicity, let $R$ be a locally compact separable metric space and
fix a nonnegative Radon measure $\lambda$ on $R$ . We define the locally finite
configuration space $Q$ over $R$ as the set of nonnegative integer-valued
Radon measures $\xi$ on $R$ and say that a function $f$ is a test function if it
is nonnegative and its support is compact. For a test function $f$ and a
(locally finite) configuration $\xi=\sum\delta_{x_{i}}\in Q$ we denote

$e_{f}(\xi)=\exp(-\int_{R}f(x)\xi(dx))$ .

Now let $\alpha$ be a real number and $K$ be a locally $trace$ class integral
operator on $L^{2}(R, \lambda)$ , i.e., the restriction $K_{\Lambda}$ of $K$ to any compact set $\Lambda$
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is of $trace$ class. The Fredholm determinant $Det(I+T)$ for a $trace$ class
operator $T$ is defined as $\prod_{i=1}^{\infty}(1+\lambda_{i})$ , where $\lambda_{i}$ , $i\geq 1$ are the eigenvalues
(counting the multiplicity) of $T$ .

Definition 1.4. A probability measure $\mu$ on $Q$ will be called a
random point field associated with $(\alpha, K)$ if it satisfies for any test func-
tion $f$

$\int_{Q}\mu(d\xi)e_{f}(\xi)=Det(I+\alpha\varphi K)^{-1/\alpha}$ ,

where $\varphi=1-e^{-f}$ . In particular, $\mu$ is called a fermion point process
and a boson point process in $[8, 9]$ according as $\alpha=-1$ and $\alpha=1$ .
Some people use the terminology “determinantal processes” for fermion
processes (cf. [7, 16]).

In $[13, 14]$ we essentially proved the following:

Theorem 1.5. Assume that the kernel $K(x, y)$ is continuous and,
in addition, that the operator norm $K$ is so small that $||\alpha K||<1$ when
$\alpha<0$ . Set $J=(I+\alpha K)^{-1}K$ .

(i) The random point fifield $\mu$ associated with $(\alpha, K)$ exists and is unique

if $\det_{\alpha}(J(x_{i}, x_{j}))_{i,,,j=1}^{n}$ is nonnegative for any $n$ and any $x_{1}$ , $\ldots$ , $x_{n}$ .

(ii) If the random point fifield $\mu$ associated with $(\alpha, K)$ exists, then both
$\det_{\alpha}(J(x_{i}, x_{j}))_{i,,,j=1}^{n}$ and $\det_{\alpha}(K(x_{i}, x_{j}))_{i,,,j=1}^{n}$ are nonnegative for any $n$

and any $x_{1}$ , $\ldots$ , $x_{n}$ .

Combining Theorems 1.2 and 1.5 we showed

Theorem 1.6. ([14]) The random point fifield $\mu$ associated with
$(\alpha, K)$ exists and is unique if $(\alpha, K)$ satisfifies one of the following con-
ditions:
$(A^{-})\alpha\in\{-1/m|m=1,2, \ldots \}$ , $||\alpha K||<1$ and $K$ is nonnegative

defifinite.
(A) $\alpha\in\{2/m|m=1,2, \ldots\}$ and $K$ is nonnegative defifinite.
(B) $\alpha\in(0, \infty)$ and the kernel $J(x, y)$ defifined by $J=(I+\alpha K)^{-1}K$ is
nonnegative.
Here $||$ . $||$ stands for the operator norm.

The case where $||\alpha K||=1$ with $\alpha<0$ can also be treated in $[14, 15]$

although the operator $J$ becomes unbounded.
In [13, 14, 15] we did not study the case where $K$ is a nonsymmetric

operator. But we can show the following:

Theorem 1.7. Let $R=\mathbb{R}^{1}$ , $\lambda$ be the Lebesgue measure and $T_{t}$ , $ t\geq$

$0$ be the transition semigroup of $a$ one dimensional diffusion process or
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let $R=\mathbb{N}$ , $\lambda$ be a counting measure and $T_{t}$ , $t\geq 0$ be the transition
semigroup of a birth and death process. Then the random point fifield $\mu$

associated with $(-1, T_{t})$ exists and is unique.

We would like to emphasize that $T_{t}$ can be nonsymmetric in the
above Theorem 1.7 (cf. [3, 12]).

We had better to mention here on a rather classical theorem of
Karlin and McGregor $[4, 5]$ from which Theorem 1.7above follows im-
mediately by using Theorem 1.5. Recall that a matrix $A$ is called totally
positive if all of its square minors are nonnegative and that a kernel func-
tion $K(x, y)$ is called totally positive if $\det(K(x_{i}, y_{j}))_{i,,,j=1}^{n}$ is nonnegative
for any $n$ and any $x_{1}$ , $\ldots$ , $x_{n}$ , $y_{1}$ , $\ldots$ , $y_{n}$ .

Theorem 1.8 (Karlin-McGregor). Let $p(t, x, y)$ be the transition
probability density of $a$ one dimensional diffusion process or a birth and
death process. Then for each $t>0$ the kernel function $p(t, x, y)$ is totally
positive.

The proof of Karlin and McGregor is simple and is based only on
the two facts: the strong Markov property and the one dimensionality.
So it may also be applied to discrete time nearest neighbor random
walks on $\mathbb{Z}^{1}$ under suitable settings (cf., [6]). Notice that $p(t, x, y)$ is not
necessarily symmetric in $x$ and $y$ .

\S 2. Fermi statistics, Boson statistics and other statistics

Consider quantum statistical mechanics of ideal gas. If the energy
levels are $E_{i}$ , then the grand canonical partition function $Z$ is given in
text books, for instance [2] as

$Z=\prod(1+ze^{-\beta E_{i}})$ and $Z=\prod(1-ze^{-\beta E_{i}})^{-1}$

under fermi statistics and boson statistics, respectively. If we introduce
the $trace$ class diagonal operator

$J=diag(ze^{-\beta E_{1}}, ze^{-\beta E_{2}}, \ldots)$

on $\ell^{2}(\{1,2, \ldots\})$ and a parameter $\alpha$ , then they can be written as

$Z=Det(I-\alpha J)^{-1/\alpha}$

with $\alpha=-1$ for fermi statistics and $\alpha=1$ for boson statistics.
For general values of $\alpha$ we might consider the $\alpha$-statistics. If the un-

derlying space $R$ consists of a single point, then such statistics exist for
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$\alpha\in\{1/m|m=1,2, \ldots\}$ or $\alpha\in(0, \infty)$ and the corresponding distribu-
tions are called negative binomial or generalized binomial, respectively.
There are some attempts to generalize these distributions to spaces con-
sisting of two or more points [1]. Anyway we need some restriction on
$\alpha$ in order to consider $\alpha$-statistics.

The grand canonical ensemble, say $\mu$ , under $\alpha$-statistics is, if any,
described in terms of its Laplace transform as

(2.1) $\int_{Q}\mu(d\xi)e_{f}(\xi)=\frac{Det(I-\alpha e^{-f}J)^{-1/\alpha}}{Det(I-\alpha J)^{-1/\alpha}}$ .

For fermion and boson cases it is immediate to see, by setting $f$ to

be a linear combination of indicator functions of intervals and then by
expanding the (infinite) product into the (infinite) sum, that one can
obtain the micro canonical ensembles.

Thus, if we introduce an operator $K=(I-\alpha J)^{-1}J$ , then we obtain

$\int_{Q}\mu(d\xi)e_{f}(\xi)=Det(I+\alpha\varphi K)^{-1/\alpha}$ .

Consequently, the grand canonical ensemble $\mu$ is the random point
field over the set $\{1, 2, \ldots\}$ associated with $(\alpha, K)$ in our terminology.
By Theorem 1.6 we may consider the $\alpha$-statisitcs as a real object at
least for $\alpha\in\{-1/m|m=1,2, \ldots\}\cup[0, \infty)$ since $J$ is now nonnegative
definite and has nonnegative entries provided that $||\alpha J||<1$ when $\alpha$ is
positive.

Moreover, the operator $J$ may not be of $trace$ class nor diagonal.
Indeed, $J$ can be a locally $trace$ class operator and one can consider the
infinite volume limit of grand canonical ensembles as is shown by the
following theorem which is a restatement of results in [14]:

Theorem 2.1. Let $\alpha$ be a real number and $J$ be a locally trace

class operator. The random point fifield $\mu$ satisfying (2.1) exists if $(\alpha, J)$

satisfifies one of the following conditions.
$(A^{-})\alpha\in\{-1/m|m=1,2, \ldots\}$ and $J$ is nonnegative defifinite.
(A) $\alpha\in\{2/m|m=1,2, \ldots\}$ and $J$ is nonnegative defifinite with $||\alpha J||<$

$1$ .

(B) $\alpha\in(0, \infty)$ and the kernel $J(x_{7}y)$ is nonnegative with $||\alpha J||<1$ .

The points of the proof of Theorem 2.1 are to introduce restrictions
$J_{\Lambda}$ of $J$ to compact subsets and to show that the operators $(I-\alpha J_{\Lambda})^{-1}J_{\Lambda}$

converge to $K:=(I-\alpha J)^{-1}J$ as $\Lambda\rightarrow R$ . Then it turns out that the
grand canonical ensemble over the compact subsets $\Lambda$ converges to the

limiting grand canonical ensemble which is nothing but our random point
field associated with $(\alpha, K)$ .
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Roughly to say, the random point fields associated with powers of
Fredholm determinants are Gibbs random fields as the argument above
suggests. If $R$ is discrete, say $d$-dimensional square lattice $\mathbb{Z}^{d}$ , then we
obtained the following rigorous result in the fermion case $(\alpha=-1)$ . Since
the fermion point fields have no multiple points, we may safely identify
the configuration space $Q$ with the power set of $R$ or $\{0, 1\}^{R}$ .

Theorem 2.2. ([15]) Let $R=\mathbb{Z}^{d}$ and $\lambda$ be the counting measure.
Assume the the operator $K$ : $\ell^{2}(R)\rightarrow\ell^{2}(R)$ is positive defifinite with
$||K||<1$ . Set $J=(I-K)^{-1}K$ and write its restriction to a subset
$\Lambda_{1}\times\Lambda_{2}$ by $J_{\Lambda_{1},,,\Lambda_{2}}$ . Then the fermion point fifield $\mu$ associated with $K$

exists and is the unique Gibbs measure for the potential

$U(x_{0}|\xi)=J(x_{0}, x_{0})-J_{\{x_{O}\},\xi}(J_{\xi,\xi})^{-1}J_{\xi,\{x_{O}\}}$ , $(x_{0}\in R, \xi\in Q)$ .

Here the potential $U(x_{0}|\xi)$ is defifined by

(2.2) $U(x_{0}|\xi)=-\log\mathring{\frac{\mu(\xi\{x_{0}\}=1|B_{\{x\}^{c}})(\xi)}{\mu(\xi\{x_{0}\}=0|B_{\{x_{0}\}^{c}})(\xi)}}$ ,

where $B_{\{x_{O}\}^{c}}$ is the $\sigma$ -algebra generated by $\xi(x)$ , $x\neq x_{0}$ .

To conclude this section we want to point out an analogy. The
following formula for Schur functions is well known:

$\prod_{i,,,j=1}^{n}(1-x_{i}y_{j})^{-1}=\sum_{p}S_{p}(x)S_{p}(y)$ ,

where the summation is taken over all partition $ p=(p_{1}, \ldots,p_{n}),p_{1}\geq$

$\ldots\geq p_{k}\geq 1$ , of the number $|p|:=p_{1}+\cdots+p_{n}$ , $x=(x_{1}, \ldots, x_{n})$ ,
$y=(y_{1}, \ldots, y_{n})$ and $S_{p}(x)$ is the Schur function. Note that the left
hand side is the reciprocal of a certain determinant. Similarly, $\prod_{i,,,j=1}^{n}(1-$

$2x_{i}y_{j})^{-1/2}$ is expanded in terms of zonal functions $Z_{p}(x)$ and $Z_{p}(y)$ with
suitable coefficients. Moreover, the case of general $\alpha$ can be expanded in
terms of the Jack polynomials which is a new face in the study of sym-
metric functions, (cf. [10]). The zonal function has been introduced and
studied by mathematical statisticians mainly to apply the noncentered
Wishart distributions (cf., for instance [11, 17]).

\S 3. Logarithmic derivatives of Fredholm determinant: Alter-
native proof of the nonnegativity under Condition (A)

The quantity $\det_{\alpha}$ can be characterized as follows:
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Lemma 3.1. Let $\alpha$ be a real number and $A$ be a square matrix of
size $n$ . For $x=(x_{1}, \ldots, x_{n})\in \mathbb{R}^{n}$ write $X=diag(x_{1}, \ldots, x_{n})$ . Then,

$\det_{\alpha}(A)=\frac{\partial^{n}}{\partial x_{1}\partial x_{n}}\ldots|_{x=0}\det(I-\alpha AX)^{-1/\alpha}$ .

Proof Denote by $E_{i}$ the diagonal matrix with 1 on the $ith$ entry
and 0 elsewhere. For a while we write $G=(I-\alpha AX)^{-1}$ for simplicity
of notations. Then,

$\frac{\partial}{\partial x_{i}}\det(I-\alpha AX)^{-1/\alpha}=Tr(GAE_{i})\det(I-\alpha AX)^{-1/\alpha}$ .

Moreover, since $\frac{\partial}{\partial x_{j}}G=\alpha GAE_{j}G$ , we obtain

$\frac{\partial}{\partial x_{j}}Tr$ ( $ GAE_{i_{l}}\ldots$ GAEik)

$=$ $\alpha\{Tr(GAE_{j}GAE_{i_{1}}\ldots GAE_{i_{k}})+Tr(GAE_{i_{1}}GAE_{j}GAE_{i_{2}}\ldots GAE_{i_{k}})$

$+\cdots+Tr(GAE_{i_{l}}\ldots GAE_{i_{k}} GAE_{j})\}$

for any $j$ , $i_{1}$ , $\ldots$ , $i_{k}\in\{1, 2, \ldots, n\}$ and $k\geq 1$ . From these two algorithms
we obtain the above formula. Q.E.D.

The above proof also shows the following:

Lemma 3.2. For all $k$ , $i_{1}$ , $\ldots$ , $i_{k}\in\{1, 2, \ldots, n\}$ ,

$\det_{\alpha}(A_{i_{1},,,i_{k}}\ldots,)=\frac{\partial^{k}}{\partial x_{i_{1}}\partial x_{i_{k}}}\ldots|_{x=0}\det(I-\alpha AX)^{-1/\alpha}$ ,

where $ A_{i_{1},,,i_{k}}\ldots$, stands for the square matrix of size $k$ whose $(j, k)$ -element
is the $(i_{j}, i_{k})$ -element of $A$ .

Example 3.3. Let $\alpha=2$ , $X=diag(x_{1}, \ldots, x_{n})$ and $C$ be a pos-
itive defifinite matrix of size $n$ . Assume $\max|x_{i}|$ is sufficiently small.
Then,

$(\frac{1}{2\pi})^{n/2}\frac{1}{\sqrt{\det C}}\int_{\mathbb{R}^{n}}$
$\exp(-\sum_{i=1}^{n}x_{i}u_{i}^{2})\exp(-\frac{1}{2}\langle C^{-1}u, u\rangle)du$

$=$ $(\det(I+2CX))^{-1/2}$ .

Hence,

$\det_{2}(C)=(\frac{1}{2\pi})^{n/2}\frac{1}{\sqrt{\det C}}\int_{\mathbb{R}^{n}}u_{1}^{2}\cdots u_{n}^{2}\exp(-\frac{1}{2}\langle C^{-1}u, u\rangle)du$ .
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In other words, if $Z=(Z_{1}, \ldots, Z_{n})$ is a Gaussian random variable
with mean 0 and covariance matrix $C$ , then

$\det_{2}(C)=E[Z_{1}^{2}\cdots Z_{n}^{2}]$ .

Proposition 3.4. Let $\alpha$ be a real number and $T$ be a trace class
integral operator on $L^{2}(R, \lambda)$ with kernel $T(x, y)$ . Then,

$Det(I-\alpha zT)^{-1/\alpha}$

$=$ $1+\sum_{n=1}^{\infty}\frac{z^{n}}{n!}\int_{R}\cdots\int_{R}\det_{\alpha}(T(x_{i}, x_{j}))_{i,,,j=1}^{n}\lambda(dx_{1})\ldots\lambda(dx_{n})$

if $z\in \mathbb{C}$ and $|z|$ is sufficiently smallfso that $|\alpha z|||T||<1$ ).

Proof. If $T$ is a finite dimensional operator, the assertion follows
immediately from the Taylor expansion of $\det(I-\alpha zT)^{-1/\alpha}$ in $z$ based
on Lemmas 3.1 and 3.2 where $\lambda$ is the counting measure. The generaliza-
tion to the $trace$ class operators is obtained by a routine approximation
procedure. Q.E.D.

As an application of Proposition 3.4 one can give a proof to the
following well-known formula.

Proposition 3.5. Let $Z(x)$ , $x\in R$ be a Gaussian random fifield
with mean 0 and covariance $K(x, y)$ in the sense that

$E[\{\int_{R}Z(x)\varphi(x)\lambda(dx)\}^{2}]=\int_{R}\int_{R}K(x, y)\varphi(x)\varphi(y)\lambda(dx)\lambda(dy)$ .

Then,

$E[\exp(-\int_{R}Z(x)^{2}\varphi(x)\lambda(dx))]=Det(I+2\varphi K)^{-1/2}$ .

Proof. Expand the exponential in the right hand side. Then the
expectation of each term is expressed as

$\int_{R}\cdots\int_{R}\lambda(dx_{1})\ldots\lambda(dx_{n})E[Z(x_{1})^{2}\ldots Z(x_{n})^{2}]$

$=$ $\int_{R}\cdots\int_{R}\lambda(dx_{1})\ldots\lambda(dx_{n})\det_{2}(K(x_{i}, x_{j}))_{i,,,j=1}^{n}$ .

Consequently, we obtain the desired formula from the previous Propo-
sition 3.4. Q.E.D.
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Theorem 3.6. Let $A$ be a nonnegative defifinite symmetric matrix
and $\alpha\in\{2/m|m=1,2, \ldots\}$ . Then,

$\det_{\alpha}(A)\geq 0$ .

Moreover, if $Z=(Z_{1}, \ldots, Z_{n})$ be a Gaussian random variable with mean

0 and covariance matrix $(1/m)A$ and $Z^{(1)}$ , $\ldots$ , $Z^{(m)}$ be $m$ independent
copies of $Z$ , then

(3.1) $\det_{2/m}(A)=E[\prod_{i=1}^{n}(\sum_{j=1}^{m}(Z_{i}^{(j)})^{2})]$ .

Proof. Consider

$E[\exp(-\sum_{i=1}^{n}x_{i}\sum_{j=1}^{m}(Z_{i}^{(j)})^{2})]=\det(I+(2/m)XA)^{-m/2}$

and differentiate it in $x_{1}$ , $\ldots$ , $x_{n}$ successively. Then we obtain the for-
mula (3.1) and so the desired nonnegativity. Q.E.D.
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L\’evy Processes Conditioned to Stay Positive and
Diffusions in Random Environments

Hiroshi Tanaka

Abstract.

Some general properties of L\’evy processes conditioned to stay
positive are studied. As an application, which is our main concern,

a result of localization is obtained for diffusion processes in L\’evy

environments.

\S 1. Introduction

We discuss a problem of localization of diffusion processes in L\’evy

random environments. For this we must first prepare some general prop-
erties of L\’evy processes conditioned to stay positive, which were studied
intensively by Bertoin $[1, 2]$ and Chaumont $[4, 5]$ . Some of our results
in \S 2 may also be found in [1] and [5] but our method is more or less
analytical and different from theirs.

Let $W$ denote the space of real valued right continuous functions on
$[0, \infty)$ with left limits and vanishing at 0. For an element $w$ of $W$ we
write $w$ $=$ $(w(t), t \geq 0)$ in \S 2 and $w=(w(x), x\geq 0)$ in \S 3.

Given a one-dimensional L\’evy process $W=\{w(t), t \geq 0, P\}$ , we
define a function $h$ by $h(x)=\mu([0, x))$ , $x>0$ , where $\mu$ is the measure in
$[0, \infty)$ determined by (2.9). According to Silverstein [20] the function $h$

is sub-invariant for the absorbing process $W^{-}$ in $(0, \infty)$ ; it is invariant for
$W^{-}$ if $\sup w(t)$ $=\infty a.s$ . Therefore $H(t, x, dy)=h(x)^{-1}P^{-}(t, x, dy)h(y)$

is a sub-Markov transition function in $(0, \infty)$ where $P^{-}(t, x, dy)$ denotes
the transition function of $W^{-}$ . Defining the transition $H(t, 0, dy)$ from 0
in a suitable way, we will have a Markov process with state space $[0, \infty)$ ,

called the $h$-transform of $W^{-}$ and denoted by $W^{h}$ . When $\sup w(t)=\infty$

$a.s.$ , the process $W^{h}$ is what we call the L\’evy process $W$ conditioned to
stay positive. This definition is the same as that of Bertoin and Chau-
mont. When $\sup w(t)<\infty a.s.$ , Hirano [10] showed that there are two

Received December 17, 2002.
Revised March 27, 2003.
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different ways of defining L\’evy processes conditioned to stay positive
(under some additional condition) and so, simply to avoid confusion in
this case we do not call $W^{h}$ the process conditioned to stay positive in
this paper, though it seems so (if, in addition, $W$ has no positive jumps,
$W^{h}$ is not the same as the one considered in [2] $)$ . By an analytic method
we prove that, if $W$ enters immediately into $(0, \infty)$ $a.s$ . and if $W$ enters
$(-\infty, 0)$ within a finite time with positive probability, then $W^{h}$ has a
Feller semigroup $H_{t}$ strongly continuous on C. $[0, \infty)$ , the space of contin-
uous functions on $[0, \infty)$ vanishing at infinity. This fact was also noticed
by Chaumont [5] as a consequence of more probabilistic arguments. For
our application in \S 3 we must also prepare some convergence theorems
on the reversed pre-minimum and the post-minimum processes $\hat{V}_{\lambda}$ and
$V_{\lambda}$ defined in (2.43) and (2.44). Similar results were already obtained
by Bertoin [1] and Chaumont [5] but there is a delicate difference and
we need extra arguments.

In \S 3 we are concerned with diffusion processes in L\’evy random en-
vironments. Suppose that we are given a L\’evy process $W=\{w(x)$ , $ x\geq$

$0$ , $P\}$ . Let $\Omega=C[0, \infty)$ and for $\omega\in\Omega$ set $X(t)=X(t, \omega)=\omega(t)$ (the
value of $\omega$ at time $t$). For each $w\in W$ we denote by $P^{w}$ the probabil-
ity measure on $\Omega$ such that $\{X(t), t\geq 0, P^{w}\}$ is a reflecting diffusion
process on $[0, \infty)$ with generator $\frac{1}{2}e^{w(x)_{\frac{d}{dx}}}(e^{-w(x)}\frac{d}{dx})$ and starting at
0. The reflecting barrier at $x=0$ is not essential; it was considered
just to simplify the situation; we may (but do not) consider the case
where the L\’evy environment $w(x)$ is given in the whole of R. We set
$\mathbb{P}(dwd\omega)=P(dw)P^{w}(d\omega)$ , which is a probability measure on $W\times\Omega$ .

We then regard $\{X(t), t\geq 0, \mathbb{P}\}$ as a process defined on the probability
space $(W\times\Omega, \mathbb{P})$ and call it the (reflecting) diffusion process in the L\’evy

environment $W$ .

When $W$ is a Brownian environment, Brox [3] and Schumacher [19]
proved that $\{X(t), t \geq 0, \mathbb{P}\}$ has the same limiting behavior (or the same
localization property) as Sinai’s random walk in a random environment
([21]). A result of refinement, which corresponds to that of Golosov [8]
for Sinai’s random walk, was then obtained by Tanaka $[22, 25]$ and some
extension by Kawazu-Tamura-Tanaka [13]. In this paper for a certain
class of L\’evy environments we obtain such a results of localization, which
is similar to those of $[8],[22,25],[13]$ . To be precise let $w\in W$ , $\lambda>0$

and set

(1.1) $N(x)=N(x, w)=\inf\{w(y) : 0\leq y\leq x\}$ , $w^{\#}(x)=w(x)-N(x)$ ,

(1.2) $a_{\lambda}=a_{\lambda}(w)=\inf\{x>0:w^{\#}(x)>\lambda\}$ ,

(1.3) $b_{\lambda}=b_{\lambda}(w)=the$ unique $x$ such that $w(x)$ is equal to $N(a_{\lambda})$ .



Diffusions in random environments 357

In general there may be many $x$ with $w(x)=N(a_{\lambda})$ but, in the case we
actually discuss, such an $x$ is unique $a.s$ . (see Lemma 7). It will be proved
that, under a certain condition on $W$ , the distribution of $X(e^{\lambda})-b_{\lambda}$

under $\mathbb{P}$ tends to some nondegenerate distribution $\overline{I/}as$ $\lambda\rightarrow\infty$ . It can
happen that the limit distribution of $X(e^{\lambda})-b_{\lambda}$ under $\mathbb{P}$ exists even when
the limit distribution of a suitably scaled $X(t)$ (without centering, under
$\mathbb{P})$ does not; the latter exists if, in addition, $b_{\lambda}$ has a limit distribution
under a suitable scaling (without centering). We are also interested in

the form of the limit distribution $\overline{\iota/}$ . Under a certain condition on $W$

our result is that $\overline{\nu}$ can be expressed in terms of two independent L\’evy

processes conditioned to stay positive starting at 0, the one is related to
$W$ and the other to $-W$ .

\S 2. L\’evy processes conditioned to stay positive

We use the notation in \S 1 and so $W=\{w(t), t \geq 0, P\}$ is a L\’evy

process starting at 0. Throughout the paper we exclude the trivial case
where $w(t)=0(t\geq 0)a.s$ . The infimum process $N(t)$ and the reflecting
process $w^{\not\simeq\neq}(t)$ are defined by (1.1) with $x$ replaced by $t$ . The hitting
(entrance) times $\sigma(x)$ and $\tau(x)$ are defined by

$\sigma(x)=\inf\{t>0:x+w(t)\leq 0\}$ , $x\geq 0$ ,

$\tau(x)=\inf\{t>0:x+w(t)<0\}$ , $x\geq 0$ ,

$\sigma=\sigma(0)$ , $\tau=\tau(0)$ .

We often consider $\hat{W}=\{\hat{w}(t), t \geq 0\}$ , the dual of $W$ , where $\hat{w}(t)=$

$-w(t)$ and define $\hat{N}(t),\hat{\sigma},\hat{\tau}$ , etc., similarly in terms of $\hat{W}$ . The ab-
sorbing L\’evy process $W^{-}$ in $(0, \infty)$ is defined as the Markov process
$\{x+w(t), 0\leq t<\sigma(x), x>0\}$ and its transition function, semigroup
and Green operator are denoted by $P^{-}(t, x, dy)$ , $T_{t}^{-}$ and $G_{\lambda}^{-}$ , respec-

tively. We set $G^{-}=G_{0}^{-}$ . Another absorbing L\’evy process $W^{=}$ on
$[0, \infty)$ , which does not much differ from $W^{-}$ , is the Markov process
$\{x+w(t), 0\leq t<\tau(x), x\geq 0\}$ ; its Green operator of order 0 is de-
noted by $G^{=}$ . We also define the reflecting L\’evy process $W^{\not\simeq\neq}$ on $[0, \infty)$

associated with $W$ as the Markov process $\{w^{\#}(t;x), t \geq 0, x\geq 0\}$ , where

$w^{\not\simeq\neq}(t;x)$ $=$
$\sup_{0\leq s\leq t}\{w(t;x)-w(s;x)\}\vee w(t;x)$

$=$ $\{$

$x+w(t)$ if $x+N(t)>0$ ,

$w(t)-N(t)$ if $x+N(t)\leq 0$ ,
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wherein $w(t;x)=x+w(t)$ and $a\vee b=\max\{a, b\}$ , and we denote by
$P^{\neq\neq}(t, x, dy)$ the transition function of $W^{\neq}$ . The reflecting dual L\’evy

process $\hat{W}^{\neq}$ on $[0, \infty)$ and its transition function $\hat{P}^{\neq}(t, x, dy)$ are de-

fined in a similar manner from $\hat{W}$ . Throughout the paper $T$ denotes an
exponential random time with mean $ 1/\lambda$ and independent of $W$ .

2.1 Preliminaries. In this subsection we present in an elementary way
some preliminary and known facts concerning the measure $\mu$ such as the
(sub-)invariance for $\hat{W}^{\neq}$ .

Lemma 1. (Silverstein [20, p.556]) (i) For any fifixed $t>0$ , $x>0$

and $y\geq 0$ we have $\hat{P}^{\neq}(t, y, [0, x))=P^{-}(t, x, (y, \infty))$ .

(ii) For any fifixed $t\geq 0$ , $-N(t)=d\hat{w}^{\neq}(t)$ and $-\hat{N}(t)=dw^{\neq}(t)$ , where
$=d$

is the equality in distribution. In particular, $-N(T)=d\hat{w}^{\neq}(T)$ and
$-\hat{N}(T)=dw^{\neq}(T)$ .

Let $\nu_{\lambda}$ be the distribution of $-N(T)$ , or equivalently of $\hat{w}(\# T)$ ,

and $\hat{\nu}_{\lambda}$ be the distribution of $-\hat{N}(T)$ , or equivalently of $w^{\neq}(T)$ . The
fluctuation identity

$\log E\{e^{\xi N(T)+\eta(w(T)-N(T))}\}$

$=\int_{0}^{\infty}\frac{e^{-\lambda t}}{t}\{E(e^{\xi w(t)}-1;w(t)<0)+E(e^{\eta w(t)}-1;w(t)>0)\}dt$

due to Pecherskii-Rogozin [15] (see also Sato [18], Bertoin [2], Doney [6])
implies that $N(T)$ and $w^{\neq}(T)$ are independent and for $\xi\geq 0$

(2.1) $\mathcal{L}(\xi, \nu_{\lambda})=\exp\int_{0}^{\infty}t^{-1}e^{-\lambda t}E\{e^{\xi w(t)}-1;w(t)<0\}dt$ ,

(2.2) $\mathcal{L}(\xi,\hat{\nu}_{\lambda})=\exp\int_{0}^{\infty}t^{-1}e^{-\lambda t}E\{e^{-\xi w(t)}-1;w(t)>0\}dt$ ,

where $\mathcal{L}(\xi, \nu)$ denotes the Laplace transform $\int_{[0,\infty)}e^{-\xi x}\nu(dx)$ of a mea-

sure $\nu$ . The equations (2.1) and (2.2) imply that there exist finite mea-
sures $\mu_{\lambda}$ and $\hat{\mu}_{\lambda}$ on $[0, \infty)$ such that

(2.3) $\mathcal{L}(\xi, \mu_{\lambda})=\exp\int_{0}^{\infty}t^{-1}e^{-\lambda t}E\{e^{\xi w(t)}-e^{-t} ; w(t)<0\}dt$ ,

(2.4) $\mathcal{L}(\xi,\hat{\mu}_{\lambda})=\exp\int_{0}^{\infty}t^{-1}e^{-\lambda t}E\{e^{-\xi w(t)}-e^{-t} ; w(t)>0\}dt$ ,

(2.5) $\nu_{\lambda}=c_{\lambda}\mu_{\lambda}$ , $\hat{\nu}_{\lambda}=\hat{c}_{\lambda}\hat{\mu}_{\lambda}$ ,

(2.6) $c_{\lambda}=\exp\{-\int_{0}^{\infty}t^{-1}e^{-\lambda t}(1-e^{-t})P(w(t)<0)dt\}$ ,
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and $\hat{c}_{\lambda}$ is defined with the replacement of “
$w(t)<0$

” by “
$w(t)>0$

” in
the equation (2.6).

For our elementary and straightforward method the following simple

lemma, probably known, is useful.

Lemma 2. If $W$ is not the zero process, then for any $\xi>0$

(i) $E\{e^{-\xi|w(t)|}\}\leq const.t^{-1/4}$ $(t \geq 0)$ ,

(ii) $E\{1-e^{-\xi|w(t)|}\}\leq const.t^{1/2}$ $(0\leq t\leq 1)$ ,

where const, may depend on $\xi$ .

Proof. Assume that $W$ is not deterministic. Then we can write
$w(t)=w_{0}(t)+w_{1}(t)$ where $w_{0}(t)$ and $w_{1}(t)$ are independent L\’evy pro-
cesses and $E\{w_{0}(t)\}=0$ , $E\{|w_{0}(t)|^{2}\}=\sigma^{2}t$ , $(\sigma>0)$ , $ E\{|w_{0}(t)|^{3}\}<\infty$ .
In fact, the decomposition can be obtained by noting the fact that any
L\’evy process having L\’evy measure with bounded support admits finite
absolute moments of all positive orders (e.g. see Sato [18, p.161]). We
now make use of the Berry-Esseen theorem (e.g. see Feller [7, p.542]):

$\sup_{x\in R}|P\{(\sigma\sqrt{t})^{-1}w_{0}(t)\leq x\}-\int_{-\infty}^{x}(2\pi)^{-1/2}$ $\exp(-y^{2}/2)dy|=O(t^{-1/2})$ ,

as $ t\rightarrow\infty$ . Setting $Y(t)=(\sigma\sqrt{t})^{-1}|w_{0}(t)+x|$ we have

$E\{e^{-\xi|w_{0}(t)+x|}\}$

$=E\{e^{-\xi\sigma\sqrt{t}Y(t)} ; Y(t)<t^{-1/4}\}+E\{e^{-\xi\sigma\sqrt{t}Y(t)} ; Y(t)\geq t^{-1/4}\}$

$\leq P\{Y(t)<t^{-1/4}\}+\exp(-\xi\sigma t^{1/4})$

$\leq const.t^{-1/2}+\int_{\{|y+(\sigma\sqrt{t})^{-1}x|<t^{-1/4}}\}(2\pi)^{-1/2}e^{-y^{2}/2}dy+e^{-\xi\sigma t^{1/4}}$

$\leq const.t^{-1/4}$ (for large $t$ ),

where const, may depend on $\xi$ . Therefore

$E\{e^{-\xi|w(t)|}\}=\int_{-\infty}^{\infty}E\{e^{-\xi|w_{0}(t)+x|}\}P\{w_{1}(t)\in dx\}\leq const.t^{-1/4}$ .

The proof of (ii) is omitted.

2.1.1 $A$ formula on Green operators of absorbing L\’evy processes. For
$\lambda>0$ , $x>0$ and $f\in C_{0}[0, \infty)$ , the space of continuous functions with
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compact supports, we have

(2.7) $G_{\lambda}^{-}f(x)$ $=$ $\int_{0}^{\infty}e^{-\lambda t}E\{f(x+w(t));\sigma(x)>t\}dt$

$=$ $\lambda^{-1}E\{f(x+N(T)+w^{\#}(T));-N(T)<x\}$

$=$ $\lambda^{-1}\int_{[0,x)}\nu_{\lambda}(du)\int_{[0,\infty)}\hat{\nu}_{\lambda}(dv)f(x-u+v)$ ,

and similarly

(2.8) $G_{\lambda}^{=}f(x)=\lambda^{-1}\int_{[0,x]}\nu_{\lambda}(du)\int_{[0,\infty)}\hat{\iota}/_{\lambda}(dv)f(x-u+v)$ , $x\geq 0$ .

By Lemma 2 the integrals on the right hand sides of (2.3) and (2.4) are
convergent for $\lambda=0$ and so the measures $\mu_{\lambda}$ and $\hat{\mu}_{\lambda}$ converge vaguely as
$\lambda\downarrow 0$ to the measures $\mu$ and $\hat{\mu}$ in $[0, \infty)$ , respectively, which are defined
by

(2.9) $\mathcal{L}(\xi, \mu)=\exp\int_{0}^{\infty}t^{-1}E\{e^{\xi w(t)}-e^{-t};w(t)<0\}dt$ ,

(2.10) $\mathcal{L}(\xi,\hat{\mu})=\exp\int_{0}^{\infty}t^{-1}E\{e^{-\xi w(t)}-e^{-t}; w(t)>0\}dt$ ,

where $\xi>0$ . Moreover, using the definition of $c_{\lambda}$ and $\hat{c}_{\lambda}$ we see that
$\lambda^{-1}c_{\lambda}\hat{c}_{\lambda}\rightarrow c^{0}$ as $\lambda\downarrow 0$ where

(2.11) $c^{0}=\exp\int_{0}^{\infty}t^{-1}(1-e^{-t})P\{w(t)=0\}dt$ ,

which is finite by Lemma 2. It is also known that (e.g. see Sato [18,
p.372])

(2.12) $c^{0}=1$ if $W$ is not a compound Poisson process.

Thus $\lambda^{-1}\nu_{\lambda}\otimes\hat{\nu}^{\lambda}=\lambda^{-1}c_{\lambda}\hat{c}_{\lambda}\mu_{\lambda}\otimes\hat{\mu}_{\lambda}\rightarrow c^{0}\mu\otimes\hat{\mu}$ vaguely as $\lambda\downarrow 0$ and
hence letting $\lambda\downarrow 0$ in (2.7) and (2.8) we obtain the following theorem.

Theorem 1. If $W$ is not the zero process, then for $f\in C_{0}[0, \infty)$

$(2.13)$ $G^{-}f(x)=c^{0}\int_{[0,x)}\mu(du)\int_{[0,\infty)}\hat{\mu}(dv)f(x-u+v)$ , $x>0$ ,

(2.14) $G^{=}f(x)=c^{0}\int_{[0,x]}\mu(du)\int_{[0,\infty)}\hat{\mu}(dv)f(x-u+v)$ , $x\geq 0$ .
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This theorem was obtained by Ray [16] for symmetric stable pro-
cesses and by Silverstein [20] for general L\’evy processes; the present
derivation of (2.13) and (2.14) was taken from Tanaka $[23, 24]$ with a
slight improvement.

2.1.2 The measure $\mu$ is a sub-invariant measure of the Markov process
$\hat{W}^{\neq}$ .

Theorem 2. (Silverstein [20]) (i) If the Markov process $\hat{W}^{\neq}is$

recurrent, then $\mu$ is an invariant measure of $\hat{W}^{\neq}$

.

(ii) If $\hat{W}^{\neq\neq}is$ transient, then $\mu$ is a sub-invariant measure of $\hat{W}^{\not\simeq\neq};$ more
precisely, for any $A\in B[0, \infty)$

(2.15) $\mu(A)=\overline{c}E\{\int_{0}^{\infty}1_{A}(\hat{w}^{\#}(t))dt\}$ ,

(2.16) $\int_{[0,\infty)}\mu(dx)\hat{P}^{\#}(t, x, A)=\mu(A)-\overline{c}E\{\int_{0}^{t}1_{A}(\hat{w}^{\#}(s))ds\}$ ,

(2.17) $c-=\exp\{-\int_{0}^{\infty}t^{-1}(1-e^{-t})P(w(t)\geq 0)dt\}$ .

Proof, (i) We assume that $\hat{W}^{\neq}$ is recurrent and that $W$ is not an
increasing process. Take $a>0$ , let $T^{\neq}$ be the time of first return of
$\hat{w}^{\neq}(t)$ to 0 after visiting $(a, \infty)$ and define the measures $\mu_{\lambda}^{\#}$ , $\lambda\geq 0$ , in
$[0, \infty)$ by

(2.18) $\int fd\mu_{\lambda}\#=E\{\int_{0}^{\tau\#}e^{-\lambda t}f(\hat{w}^{\#}(t))dt\}$ .

Then

$\mu_{\lambda}^{\#}=\lambda^{-1}\{1-E(e^{-\lambda T^{\neq}})\}\nu_{\lambda}=\lambda^{-1}\{1-E(e^{-\lambda T^{\neq}})\}c_{\lambda}\mu_{\lambda}$ .

Since $\mu_{\lambda}^{\#}\rightarrow\mu_{0}^{\#}$ and $\mu_{\lambda}\rightarrow\mu$ as $\lambda\downarrow 0$ , the above identity implies that

the measure $\mu_{0}^{\#}$ is a constant multiple of $\mu$ . On the other hand it is easy

to see that $\mu_{0}^{\#}$ is an invariant measure of the recurrent process $\hat{W}^{\neq\neq}$ and

so is $\mu$ . (ii) If $\hat{W}^{\neq}$ is transient, then $\overline{c}>0$ and the assertion follows from

$\int fd\mu=\overline{c}E\{\int_{0}^{\infty}f(\hat{w}^{\#}(t))dt\}$ .
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We now introduce a function $h(x)$ , $x\geq 0$ , by

(2.19) $h(x)=\{$

$\mu([0, x))$ for $x\geq 0$ ,

$\mu(\{0\})$ for $x=0$ .

Then using Lemma 1 we can rephrase Theorem 2 as follows.

Theorem 3. (Silverstein [20]) (i) If $\hat{W}^{\neq}is$ recurrent, then

(2.20) $\int_{(0,\infty)}P^{-}(t, x, dy)h(y)=h(x)$ , $x>0$ ,

(2.21) $\lambda G_{\lambda}^{-}h(x)=h(x)$ , $x>0$ .

(ii) If $\hat{W}^{\neq}is$ transient, then for any $x>0$

(2.22) $\int_{(0,\infty)}P^{-}(t, x, dy)h(y)=h(x)-\overline{c}\int_{0}^{t}P\{\hat{w}^{\#}(s)<x\}ds$ ,

(2.20) $\lambda G_{\lambda}^{-}h(x)=h(x)-\lambda^{-1}\overline{c}\nu_{\lambda}([0, x))$ .

Remark. The following conditions are equivalent to each other (e.g.
see Sato [18] $)$ .

(i) $\hat{W}^{\neq}$ is recurrent. (ii) $\sup_{t\geq 0}w(t)=\infty$ , $a.s$ .

(iii) $\int_{0}^{\infty}t^{-1}(1-e^{-t})P\{w(t)>0\}dt=\infty$ . (iv) $\overline{c}=0$ .

(v) $\int_{1}^{\infty}t^{-1}P\{w(t)>0\}dt=\infty$ . (vi) $\hat{\mu}(R)=\infty$ .

2.2 The Feller property of the semigroup of $W^{h}$ . We define the
superharmonic transform $H(t, $x,$ $dy) of $P^{-}(t, $x,$ $dy) by

(2.24) $H(t, x, dy)=h(x)^{-1}P^{-}(t, x, dy)h(y)$ .

We set $H_{t}f(x)=\int_{(0},{}_{\infty)}H(t, x, dy)f(y)$ . Then $H_{t}f(x)$ is well-defined for
$f\in C.[0, \infty)$ and for $x>0$ . We will prove that $H_{t}f$ can be extended
to a function in $[0, \infty)$ so that $H_{t}$ gives rise to a strongly continuous
sub-Markov semigroup on C. $[0, \infty)$ provided that $\hat{\tau}=0a.s$ . and $\tau<\infty$

with positive probability.
We prepare three lemmas.

Lemma 3. (i) If $W$ is not a compound Poisson process, then
$\mu(\{x\})=\nu_{\lambda}(\{x\})=0$ for any $x>0$ and $\lambda>0$ .
(ii) The condition $\tau=0a.s$ . is equivalent to each of $\mu(\{0\})=0$ and
$\nu_{\lambda}(\{0\})=0$ .
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The proof is easy; for instance, the equivalence of $\tau=0(a.s.)$ and
$\mu(\{0\})=0$ follows from the formula (2.14). The rest are omitted.

In what follows we often use the notation $\nu(f)=\int_{[0,\infty)}fd\iota/$ .

Lemma 4. Suppose that $W$ is not the zero process.
(i) For any $\lambda>0$ and $x>0$

(2.25) $\lambda^{-1}\overline{c}+\int_{[0,\infty)}h(v)\hat{\nu}_{\lambda}(dv)$
$\leq$ $\frac{h(x)}{\nu_{\lambda}([0,x))}$

$\leq$ $\lambda^{-1}\overline{c}+\int_{[0,\infty)}h(x+v)\hat{\nu}_{\lambda}(dv)$ .

(ii) For any $\lambda>0$

(2.28)
$\lim\underline{\nu_{\lambda}([0,x))}=\alpha_{\lambda}$

,
$x\downarrow 0$ $h(x)$

(2.27) $\alpha_{\lambda}=\{\lambda^{-1}\overline{c}+\hat{\nu}_{\lambda}(h)\}^{-1}\in(0, \infty)$ .

Proof. The function $\lambda G_{\lambda}^{-}h$ can be expresses in two ways:

(2.28) $\lambda G_{\lambda}^{-}h(x)=\int_{[0,x)}\nu_{\lambda}(du)\int_{[0,\infty)}\hat{\nu}_{\lambda}(dv)h(x-u+v)$ .

(2.29) $\lambda G_{\lambda}^{-}h(x)=h(x)-\lambda^{-1}\overline{c}\nu_{\lambda}([0, x))$ .

Firstly we remark that the finiteness of $\hat{\nu}_{\lambda}(h)$ follows from (2.28); more-
over, if $\hat{\nu}_{\lambda}(h)=0$ then $\hat{\nu}_{\lambda}$ is the $\delta$-distribution at 0 so $W$ is decreasing
and hence $\overline{c}>0$ . Thus $ 0<\alpha_{\lambda}<\infty$ always. Secondly from (2.28) and
(2.29) we have

$h(x)=\lambda^{-1}\overline{c}\nu_{\lambda}([0, x))+\int_{[0,x)}\nu_{\lambda}(du)\int_{[0,\infty)}\hat{\nu}_{\lambda}(dv)h(x-u+v)$ ,

and hence

$\lambda^{-1}\overline{c}+\hat{\nu}_{\lambda}(h)\leq\frac{h(x)}{\nu_{\lambda}([0,x))}\leq\lambda^{-1}\overline{c}+\hat{\nu}_{\lambda}(h^{x})$ ,

where $h^{x}(\cdot)=h(x+\cdot)$ , which proves (2.25) and (2.26). The proof of the
lemma is finished.

Let $\lambda>0$ , $f\in C_{0}[0, \infty)$ and set

(2.30) $U_{\lambda}f(x)=\int_{0}^{\infty}e^{-\lambda t}H_{t}f(x)dt$ , $x>0$ .
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Then by (2.7) we have

(2.31) $U_{\lambda}f(x)=\lambda^{-1}h(x)^{-1}\int_{[0,x)}\nu_{\lambda}(du)\int_{[0,\infty)}\hat{\nu}_{\lambda}(dv)\tilde{f}(x-u+v)$ ,

where $\tilde{f}=fh$ . If $W$ is not a compound Poisson process, then $h(x)$ is
continuous by Lemma 3 and hence $U_{\lambda}f(x)$ is also continuous in $x>0$ .

Moreover, $U_{\lambda}f(x)$ tends to $\lambda^{-1}\alpha_{\lambda}\hat{\nu}_{\lambda}(\tilde{f})$ as $x\downarrow 0$ by (2.26) and (2.31). On
the other hand it is clear that $U_{\lambda}f(x)$ tends to 0 as $ x\rightarrow\infty$ . Therefore
$U_{\lambda}f(x)$ , $x>0$ , can be extended continuously to a function in C. $[0, \infty)$ ,
which we denote by the same notation $U_{\lambda}f$ . Since $||U_{\lambda}f||_{\infty}\leq\lambda^{-1}||f||_{\infty}$ ,
$U_{\lambda}f$ is well-defined also for $f\in C.[0, \infty)$ . Thus we have a linear operator
$U_{\lambda}$ : C. $[0, \infty)\rightarrow C$ . $[0, \infty)$ , which clearly satisfies

(2.32) $U_{\lambda}f\geq 0$ if $f\geq 0$ ,

(2.33) $||U_{\lambda}f||_{\infty}\leq\lambda^{-1}||f||_{\infty}$ ,

(2.34) $U_{\lambda}-U_{\lambda’}+(\lambda-\lambda’)U_{\lambda}U_{\lambda’}=0$ , $\lambda>0$ , $\lambda’>0$ .

Now we introduce the following conditions.
(A) $\tau=\hat{\tau}=0$ , $a.s$ .

$(A’)$ $\hat{\tau}=0a.s$ . and $ 0<\tau<\infty$ with positive probability.

Lemma 5. If either one of the conditions (A) and $(A’)$ is satisfified,
then

(2.35) $\lim_{\lambda\rightarrow\infty}||\lambda U_{\lambda}f-f||_{\infty}=0$ for $f\in C.[0, \infty)$ .

Proof Making use of (2.7) and (2.26) we have

(2.36) $\lambda U_{\lambda}f(0)=\lim_{x\downarrow 0}\lambda U_{\lambda}f(x)=\lambda\lim_{x\downarrow 0}h(x)^{-1}G_{\lambda}^{-}\tilde{f}(x)=\alpha_{\lambda}\hat{\nu}_{\lambda}(\tilde{f})$ .

If we set $\rho_{\lambda}(dx)=\alpha_{\lambda}h(x)\hat{\nu}_{\lambda}(dx)$ , then $\rho_{\lambda}$ is a measure in $[0, \infty)$ with
total mass $\leq 1$ and (2.36) yields

(2.37) $\lambda U_{\lambda}f(0)=\rho_{\lambda}(f)$ , $f\in C.[0, \infty)$ .

We are going to prove that $\rho_{\lambda}$ converges vaguely to $\delta_{0}$ as $\lambda\rightarrow\infty$ . To
prove this, we assume that $f=U_{\theta}g$ with $g$ $\in C_{0}[0, \infty)$ and $\theta>0$ . Then
the equation (2.34) implies $||\lambda U_{\lambda}f-f||_{\infty}=||\theta U_{\lambda}f-U_{\lambda}g||_{\infty}\rightarrow 0$ , as
$\lambda\rightarrow\infty$ . In particular,

(2.38) $U_{\theta}g(0)=f(0)=\lim_{\lambda\rightarrow\infty}\lambda U_{\lambda}f(0)=\lim_{\lambda\rightarrow\infty}\rho_{\lambda}(f)$ .
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Let $\rho$ be any vague limit of $\rho_{\lambda}$ as $\lambda\rightarrow\infty$ via a sequence $\{\lambda_{n}\}$ . Then
(2.38) implies $U_{\theta}g(0)=\rho(f)$ , which can be rewritten, again by making
use of (2.7) and (2.26), as follows:

(2.39) $\theta^{-1}\alpha_{\theta}\hat{\nu}_{\theta}(\tilde{g})=\rho(\{0\})\theta^{-1}\alpha_{\theta}\hat{\nu}_{\theta}(\tilde{g})$

$+\theta^{-1}\int_{(0,\infty)}h(x)^{-1}\rho(dx)\int_{[0,x)}\nu_{\theta}(du)\int_{[0,\infty)}\tilde{g}(x-u+v)\hat{\iota}/_{\theta(dv)}$ .

We now prove that, under the assumption of the lemma, the equa-
tion (2.39) holds for $g(x)=h(x)^{-1}e^{-\xi x}$ , $\xi>0$ . Since $\hat{\nu}_{\theta}(\{0\})=0$

by Lemma 3, the integration interval $[0, \infty)$ of $\hat{\nu}_{\theta}$ in (2.39) can be re-
placed by the open interval $(0, \infty)$ . With such a replacement we take
$g_{r\iota}(x)=\min\{h(x)^{-1}e^{-\xi x}, n\}$ for $g(x)$ in (2.39) and then let $n$ $\uparrow\infty$ . The
result is

$\theta^{-1}\alpha_{\theta}\int_{(0,\infty)}e^{-\xi x}\hat{\nu}_{\theta}(dx)=\rho(\{0\})\theta^{-1}\alpha_{\theta}\int_{(0,\infty)}e^{-\xi x}\hat{\nu}_{\theta}(dx)$

$+\theta^{-1}\int_{(0,\infty)}h(x)^{-1}\rho(dx)\int_{[0,x)}\nu_{\theta}(du)\int_{(0,\infty)}e^{-\xi(x-u+v)}\hat{\nu}_{\theta}(dv)$ ,

or equivalently,

$\alpha_{\theta}=\rho(\{0\})\alpha_{\theta}+\int_{(0,\infty)}h(x)^{-1}\rho(dx)\int_{[0,x)}e^{-\xi(x-u)}\nu_{\theta}$ (du).

Letting $\xi\uparrow\infty$ we obtain $\alpha_{\theta}=\rho(\{0\})\alpha_{\theta}$ so $\rho=\delta_{0}$ . This proves that $\rho_{\lambda}$

converges vaguely to $\delta_{0}$ as $\lambda\rightarrow\infty$ . Thus (2.37) implies

(2.40) $\lim_{\lambda\rightarrow\infty}\lambda U_{\lambda}f(0)=f(0)$ , $f\in C.[0, \infty)$ .

On the other hand it is clear that, for any $x>0$ ,

(2.41) $\lim\lambda U_{\lambda}f(x)=f(x)$ , $f\in C.[0, \infty)$ .
$\lambda\rightarrow\infty$

From (2.40) and (2.41) we can easily derive (2.35). This completes the
proof of Lemma 5.

As an immediate consequence of (2.32)\sim (2.35) we obtain the fol-
lowing theorem.

Theorem 4. If $\hat{\tau}=0a.s$ . and $\tau<\infty$ with positive probability
(namely, either one of the conditions(A) and $(A’)$ is satisfified), then
there exists a unique strongly continuous sub-Markov semigroup $H_{t}$ on
C. $[0, \infty)$ such that, for any $t>0$ , $x>0$ , $f\in C.[0, \infty)$ ,

(2.42) $H_{t}f(x)=h(x)^{-1}\int_{(0,\infty)}P^{-}(t, x, dy)f(y)h(y)$ .
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Denote by $C_{\triangle}$ the subspace of C. $[0, \infty)$ consisting of those functions
$f$ with $f(0)=E\{f(w(\hat{\tau})-w(\hat{\tau}-));\hat{\tau}<\infty\}$ . We omit the proof of the
following theorem since it is not used in our later arguments. Pictorial
observation of the sample path of the reversed pre-minimum process of
the next subsection suggests the result.

Theorem 5. If $\tau=0,\hat{\tau}>0a.s$ . and $\hat{\tau}<\infty$ with positive probabil-
ity, then there exists a unique strongly continuous sub-Markov semigroup
$H_{t}$ on the subspace $C_{\triangle}$ such that (2.42) holds for $f\in C_{\triangle}$ . $H_{t}$ can not
be strongly continuous at $t$ $=0$ on the whole space C. $[0, \infty)$ .

2.3 The reversed pre-minimum and the post-minimum pro-
cesses. We assume that our L\’evy process $W=\{w(t), t\geq 0, P\}$ satisfies
the following conditions:
Condition (A), $\tau=\hat{\tau}=0a.s$ .

Condition (B). $\sup\{w(t) : t >0\}=-\inf\{w(t) : t >0\}=\infty a.s$ .
So the process $W^{h}$ is the process $W$ conditioned to stay positive. We
denote by $W^{+}$ such a process starting at 0. Similarly $\hat{W}^{+}$ denotes
the process $\hat{W}$ conditioned to stay positive starting at 0. We consider
the reversed pre-minimum and the post-minimum processes $\hat{V}_{\lambda}$ and $V_{\lambda}$

defined by

(2.43) $\hat{V}_{\lambda}(t)=w((b_{\lambda}-t)-)-w(b_{\lambda})$ , $0\leq t<b_{\lambda}$ ,

(2.44) $V_{\lambda}(t)=w(b_{\lambda}+t)-w(b_{\lambda})$ , $0\leq t<c_{\lambda}$ ,

where $a_{\lambda}$ and $b_{\lambda}$ are defined by (1.2) and (1.3) and $c_{\lambda}=a_{\lambda}-b_{\lambda}$ . It

is known that $\hat{V}_{\lambda}$ and $V_{\lambda}$ are independent for each fixed $\lambda$ . We are
interested in the convergence in law of $\hat{V}_{\lambda}$ to $\hat{W}^{+}$ and of $V_{\lambda}$ to $W^{+}$ (as
$\lambda\rightarrow\infty)$ . The proof of the former convergence is considerably easier but
we can prove the latter convergence only under an additional condition
(C) which is somewhat stronger. We have to omit the details of the
latter part since our proof is too lengthy to be included here.

2.3.1 The reversed pre-minimum process. To prove the law convergence
of $\hat{V}_{\lambda}$ first we express the sample functions of $W$ and $\hat{V}_{\lambda}$ , \‘a la It\^o [11,
(6.6) of p.233], in terms of the Poisson point process (P. $p.p$ . for short) of
“$W$-excursions off the zeros of $W^{\neq\neq}’’$ which was first used by Greenwood-
Pitman [9] (see also Bertoin [1]). So let $L(t)$ be the local time of the
reflecting process $W^{\neq}$ at 0, let $L^{-1}(s)$ be the right continuous inverse
function of $L(t)$ and set

$\triangle_{s}=w(L^{-1}(s))-w(L^{-1}(s-))$ , $\zeta_{s}=L^{-1}(s)-L^{-1}(s-)$ .

Some equations to follow hold under the phrase “
$a.s’$.’ but we shall of-

ten omit to write it. We have $L^{-1}(s)=\sum_{r\leq s}\zeta_{r}$ (the continuous part
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vanishes under the condition (A) $)$ . It can also be proved that the con-
tinuous part $N_{c}(t)$ of $N(t)$ is equal to $-cL(t)$ where $c$ is the nonnegative
constant determined by $E\{e^{-cL(T)}\}=E\{e^{-N_{c}(T)}\},$ $T$ being an expo-
nential random time with mean 1 and independent of $W$ . Thus the
decomposition of $N(t)$ to continuous and jump parts yields $N(t-)=$
$-cs+\sum_{r<s}\triangle_{r},$ $t>0$ , where $s$ is determined by $L^{-1}(s-)\leq t\leq L^{-1}(s)$ .

Now let

$p_{s}(t)=w(L^{-1}(s-)+t)-w(L^{-1}(s-))$ for $0\leq t\leq\zeta_{S}$ .

$p_{S}=\{p_{s}(t), 0\leq t\leq\zeta_{s}\}$ is the $W$-excursion on $[L^{-1}(s-), L^{-1}(s)]$ that
starts at 0 (this is a consequence of the condition (A)) and moves during
$[0, \zeta_{s}]$ with the increments of $w$ on $[L^{-1}(s-), L^{-1}(s)]$ , ending at time $\zeta_{S}$

with final value $\triangle_{s}$ . Then $\{p_{s}, s>0\}$ is a P.p. $p$ . and we have

(2.45) $w(t)=p_{s}(t-L^{-1}(s-))-cs+\sum_{r<s}\triangle_{r}$ , $t>0$ ,

with $s$ such that $L^{-1}(s-)\leq t\leq L^{-1}(s)$ where we use the convention
that $p_{s}(\cdot)=0$ whenever $L^{-1}(s-)=L^{-1}(s)$ . Thus the process $W$ is
constructed from the P. $p.p$ . $\{p_{s}, s>0\}$ . Moreover $b_{\lambda}=L^{-1}(s_{\lambda}-)$

where $s_{\lambda}$ is the minimum of $s>0$ such that the excursion $p_{S}$ can cross
the level $\lambda$ .

Consider the reversed excursion $\hat{p}_{S}=\{\hat{p}_{s}(t), t\in\{0-\}\cup[0, \zeta_{s})\}$

defined by

$\hat{p}_{s}(0-)=\triangle_{S}$ and $\hat{p}_{s}(t)=p_{s}((\zeta_{s}-t)-)$ for $0\leq t<\zeta_{S}$ .

Then $\{\hat{p}_{s}, s>0\}$ is also a P.p.p., which we now modify as follows. Let
$\lambda>0$ be fixed, let $s_{\lambda}$ be the same as before and define $\tilde{p}_{S}$ by

$\tilde{p}_{s}=\{$

$\hat{p}_{s_{\lambda}-s}$ for $0<s<s_{\lambda}$ ,

$\hat{p}_{S}$ for $s\geq s_{\lambda}$ .

Then $\{\tilde{p}_{S}, s>0\}=d\{\hat{p}_{S}, s>0\}$ and we can prove that, for $o\leq t<b_{\lambda}$ ,

(2.46) $\hat{V}_{\lambda}(t)=\tilde{p}_{s}(t-\tilde{L}^{-1}(s-))+cs-\sum_{r\leq s}\sim\triangle_{r}$ ,

where $s$ is determined by $\tilde{L}^{-1}(s-)\leq t\leq\tilde{L}^{-1}(s)$ . If we replace $\{\tilde{p}_{s}\}$ by
$\{\hat{p}_{s}\}$ , the right hand side of (2.46) has the form

$\hat{p}_{s}(t-L^{-1}(s-))+cs-\sum_{r\leq s}\triangle_{r}$
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with $s$ such that $L^{-1}(s-)\leq t\leq L^{-1}(s)$ , $0\leq t<b_{\lambda}$ (it is to be noted
that the inverse local time associated with $\{\hat{p}_{s}\}$ is still $L^{-1}(s))$ . From

these observations we see that a cadlag process $\{\hat{V}(t), t \geq 0\}$ is defined
by

(2.47) $\hat{V}(t)=\hat{p}_{s}(t-L^{-1}(s-))+cs-\sum_{r\leq s}\triangle_{r}$ ,

with $s$ such that $L^{-1}(s-)\leq t\leq L^{-1}(s)$ , and for each fifixed $\lambda>0$

(2.48) $\{\hat{V}_{\lambda}(t), 0\leq t<b_{\lambda}\}=d\{\hat{V}(t), 0\leq t<b_{\lambda}\}$ .

We are going to prove that $\{\hat{V}(t), t\geq 0\}$ is the $\hat{W}^{+}$ process. Let $\tilde{b}_{\lambda}$ be
the unique $t$ such that $w(t)=N(\lambda)$ , define the reversed pre-minimum

process $\{\tilde{V}_{\lambda}(t), 0\leq t<\tilde{b}_{\lambda}\}$ in a way similar to (2.43) and set $\overline{b}_{\lambda}=$

$L^{-1}(\overline{s}_{\lambda}-)$ where $\overline{s}_{\lambda}$ is determined by $L^{-1}(\overline{s}_{\lambda}-)\leq\lambda\leq L^{-1}(\overline{s}_{\lambda})$ . Then
as in the case of (2.48) we have

$\{\tilde{V}_{\lambda}(t), 0\leq t<\tilde{b}_{\lambda}\}=d\{\hat{V}(t), 0\leq t<\overline{b}_{\lambda}\}$ .

On the other hand $\{\tilde{V}_{\lambda}(t)\}$ converges in law to $\hat{W}^{+}$ as $\lambda\rightarrow\infty$ by

Bertoin [1, Cor.3.2,Th.3.4]. See also Chaumont [5, Th.2]. ( $\{\tilde{V}_{\lambda}(t)\}$ is

identical in law to the post-minimum process for the dual process $\hat{W}$

while this will not be true for $\{\hat{V}_{\lambda}(t)\}$ . We may also use Millar [14]; in this

case it is better to define $\{\tilde{V}_{\lambda}(t)\}$ and the related quantities by replac-
ing the constant time $\lambda$ in $w(t)=N(\lambda)$ and $L^{-1}(\overline{s}_{\lambda}-)\leq\lambda\leq L^{-1}(\overline{s}_{\lambda})$

with an exponential random time of mean $\lambda$ and independent of $W.$ )

Therefore $\{\hat{V}(t), t\geq 0\}$ is $\hat{W}^{+}$ and we have the following:

Theorem 6. Under the conditions (A) and (B) $\{\hat{V}(t), t \geq 0\}$ de-

fifined by (2.47) is the $\hat{W}^{+}$-process and (2.48) holds for each fifixed $\lambda$ . In

particular, $\hat{V}_{\lambda}$ converges in law to $\hat{W}^{+}$ as $\lambda\rightarrow\infty$ .

2.3.2 The post-minimum process. Since we have no formula for $V_{\lambda}$ like
(2.48), we need extra arguments for the proof of the convergence in law of
$V_{\lambda}$ . And, assuming only the conditions (A) and (B) we did not succeed
(the part (ii) of Theorem 7 in [24] lacked a complete proof); we had
unexpected difficulty in proving the tightness concerning $\{V_{\lambda}\}$ and so
we must assume the additional condition (C) below which is somewhat
stronger. For $ 0<x<\lambda$ let $h_{\lambda}(x)$ denote the probability that $x+w(t)$

enters $(\lambda, \infty)$ before it enters $(-\infty, 0)$ and let us state the following
lemma.
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Lemma 6. If $W$ satisfifies the condition(A) and $\sup w(t)=\infty$

$a.s.$ , then

(2.49) $\lim_{\lambda\rightarrow\infty}h_{\lambda}(x)^{-1}h_{\lambda}(y)=h(x)^{-1}h(y)$ , $x>0$ , $y$ $>0$ .

Outline of proof. We first prepare the result for a random walk
analogous to (2.49), in which the right hand side is replaced by the ratio
of certain renewal functions (e.g. see [13, Theorem 2.3, p.524]). This
ratio is again replaced by the ratio of certain mean occupation measures
of the reflecting dual random walk which are defined in a manner similar
to (2.18). To go to the case of a L\’evy process we make use of the uniform
approximation of $W$ by suitable step processes of semi-Markov type.

Remark. When $\sup w(t)<\infty a.s$ . contrary to the assumption of
the lemma Hirano [10] proved, under some additional condition, that
the limit in (2.49) exists but the equality does not hold so that there
are two different processes conditioned to stay positive attached to the
same $W$ .

From Lemma 6 it follows that

(2.50) $\frac{h_{\lambda}(1)^{-1}h_{\lambda}(x)}{h(1)^{-1}h(x)}\rightarrow 1$ as $\lambda\rightarrow\infty$ ,

uniformly on any compact subset of $(0, \infty)$ .

Condition (C). The convergence in (2.50) is uniform on $(0, a]$ for any
$a>0$ .

Theorem 7. Under $(A),(B)$ and (C), the post-minimum process
$V_{\lambda}$ converges in law to $W^{+}$ as $\lambda\rightarrow\infty$ .

Key of proof. (i) By Lemma 6 the transition function of $V_{\lambda}$ tends
to that of $W^{+}$ as $\lambda\rightarrow\infty$ , and (ii) the family of laws of $V_{\lambda}$ , $\lambda>\lambda_{0}$ , is

tight; we used the condition (C) to check this.

\S 3. Diffusion processes in L\’evy environments

In this section we write $w(x)$ instead of $w(t)$ . Suppose, as stated in

\S 1, that we are given the reflecting diffusion process $\{X(t), t\geq 0, \mathbb{P}\}$

in a L\’evy environment $W=\{w, P\}$ .

3.1 Let $w\in W$ and $x>0$ . Then $w$ is said to be locally right-oscillating
(resp. locally left-oscillating) at $x$ if $\sup\{w(y) : x<y<x+\epsilon\}>w(x)$

and $\inf\{w(y) : x<y<x+\epsilon\}<w(x)$ for any $\epsilon>0$ (resp. if $\sup\{w(y)$ :
$x-\epsilon<y<x\}>w(x-)$ and $\inf\{w(y) : x-\epsilon<y<x\}<w(x-)$ for
any $\epsilon>0$ ) . $w$ is said to be locally oscillating at $x$ if it is locally right-
and left-oscillating at $x$ . $w$ is said to have a local maximum (resp. local
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minimum) at $x$ if $\sup\{w(y), x-\epsilon<y<x+\epsilon\}=w(x)\vee w(x-)$ (resp. if
$\inf\{w(y) : x-\epsilon<y<x+\epsilon\}=w(x)\Lambda w(x-))$ for some $\epsilon$ . An extreme
point is a point of either local maximum or local minimum.

The following lemma can be proved in the same way as Lemma 3.1
of [13].

Lemma 7. If the conditions (A) and (B) are satisfified, then there
exists $W_{0}\subset W$ with $P(W_{0})=1$ such that any $w\in W_{0}$ has the follow-
ing properties:
(i) $\tau=\hat{\tau}=0$ .
(ii) $\sup\{w(x) : x>0\}=-\inf\{w(x) : x>0\}=\infty$ .

(iii) $w$ can not have the same value at distinct extreme points.
(iv) $w$ is locally oscillating at any point of discontinuity. In particular,
$w$ is continuous at any point of local minimum.

We assume that $W$ satisfies the conditions (A) and (B). We denote
by $\mu_{\lambda}^{w}$ the distribution of $X(e^{\lambda})-b_{\lambda}$ under $P^{w}$ and by $\nu_{\lambda}^{w}$ the probability
measure on $[-b_{\lambda}, a_{\lambda}-b_{\lambda}]$ defined by

(3.1) $\nu_{\lambda}^{w}(dx)=Z_{\lambda,,,w}^{-1}$ $\exp\{-(w(x+b_{\lambda})-w(b_{\lambda}))\}dx$ ,

where $Z_{\lambda,,,w}=\int_{-b_{\lambda}}^{c_{\lambda}}\exp dx$ (normalization), $a_{\lambda}$ and $b_{\lambda}$ are defined by (1.2)

and (1.3), and $c_{\lambda}=a_{\lambda}-b_{\lambda}$ . In what follows $||$ . $||$ stands for the total
variation. In computing $||\mu_{\lambda}^{w}-\nu_{\lambda}^{w}||$ we regard $\nu_{\lambda}^{w}$ as a probability measure
in $(-\infty, \infty)$ . Such a convention is often used. Note that $||\mu_{\lambda}^{w}-\nu_{\lambda}^{w}||$ is
a random variable on the probability space $(W, P)$ . For $\alpha>0$ , $\lambda>0$

and $w\in W$ we define $w_{\lambda}^{\alpha}\in W$ by $w_{\lambda}^{\alpha}(x)=\lambda^{-1}w(\lambda^{\alpha}x)$ , $x\geq 0$ . Then
$W_{\lambda}^{\alpha}=\{w_{\lambda}^{\alpha}(x), x\geq 0, P\}$ is a L\’evy process.

Here are the conditions often used in the arguments to follow.

Condition $(D_{\Lambda})$ . Let $\Lambda=\{\lambda_{n}\}$ be a given positive sequence tending to
$\infty$ and let it be fifixed. There exists $\alpha>0$ such that $W_{\lambda}^{\alpha}$ converges in

law, as $\lambda\rightarrow\infty$ along $\Lambda$ , to some L\’evy process $W\sim=\{w(x), x\geq 0,\tilde{P}\}$

satisfying the conditions(A) and (B).
Condition (D). For any positive sequence $\{\lambda_{n}’\}$ tending to $\infty$ there exists
a subsequence $\Lambda=\{\lambda_{n}\}$ of $\{\lambda_{n}’\}$ for which the condition $(D_{\Lambda})$ is satisfified.

Most of strictly semi-stable L\’evy processes satisfy the condition (D).
A simple example of $W$ satisfying (D) but is not strictly semi-stable is
a L\’evy process $W$ with characteristic function

$E\{e^{i\xi w(1)}\}=\exp\int_{0}^{\infty}(\cos i\xi x-1)x^{-\alpha-1}a(x)dx$ ,

where $0<\alpha<2$ and $a(x)$ is a Borel function such that $a(e^{t})$ is aperiodic
in $t$ and bounded from above and below by positive constants.
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Theorem 8. Suppose that $W$ satisfifies the conditions $(A),(B)$ and
$(D_{\Lambda})$ . Then $||\mu_{\lambda}^{w}-\nu_{\lambda}^{w}||\rightarrow 0$ in probability with respect $P$ as $\lambda\rightarrow\infty$

along $\Lambda$ . If, in addition, (D) is satisfified, then the phrase “along $\Lambda$
” is

removed.

3.2 This subsection is for preliminaries to the proof Theorem 8. Let $\Lambda=$

$\{\lambda_{n}\}$ , $W_{\lambda}^{\alpha}$ and $\tilde{W}=\{w(x), x\geq 0,\tilde{P}\}$ be the ones in the condition $(D_{\Lambda})$ .

Then by Lemma 7 there exists $W_{0}\subset W$ with $P(W_{0})=\tilde{P}(W_{0})=1$

such that any $w\in W_{0}$ has the properties $(i)\sim(iv)$ of Lemma 7. Take
an arbitrary $w\in W_{0}$ and then let $\{w_{n}, n \geq 1\}$ be any sequence in
$W$ converging to $w$ in the Skorohod topology. In the argument of this
subsection $\{\lambda_{n}\}$ , $w$ and $\{w_{n}\}$ are all fixed.

We set $a=a_{1}$ and $b=b_{1}$ suppressing the suffix $\lambda=1$ . Then for
any small $\epsilon>0$ there exists $a’$ with the following properties:

$(i’)a<a’<a+\epsilon$ . $(ii’)w$ is continuous at $a’$ .
$(iii’)w(a)-\epsilon<w(x)<w(a’)$ for any $x\in[a, a’)$ .

We set $d’=w(a’)-w(b)$ and $e’=\sup\{w(y)-w(x) : 0\leq x<y\leq b\}$ .
Then $d’>1$ and $e’<1$ (as for the latter we have to take $W_{0}$ so
that $e’<1$ holds for any $w\in W_{0}$ but this is certainly possible). We
now employ the coupling method of Brox [3]. We use the notation $\omega(t)$

instead of $X(t)$ for the time being. Consider the product probability

measure $P_{n}^{\otimes}=P^{\lambda_{n}w_{n}}\otimes\hat{P}_{n}$ on $\Omega\times\hat{\Omega}$ where $\hat{\Omega}=C([0, \infty)\rightarrow[0, a’])$ and
$\hat{P}_{n}$ is the probability measure on $\hat{\Omega}$ with respect to which the coordinate
process $\{\hat{\omega}(t), t\geq 0\}$ is a stationary reflecting diffusion process on $[0, a’]$

with (local) generator

$\frac{1}{2}e^{\lambda_{n}w_{n}}\frac{d}{dx}(e^{-\lambda_{n}w_{n}}\frac{d}{dx})$ .

Let $\hat{\nu}^{w_{n}}$ be the distribution (on [0, $a’]$ ) of $\hat{\omega}(t)$ under $\hat{P}_{n}$ ; it is independent
of $t$ and has the density const.exp $\{-\lambda_{n}w_{n}(x)\}$ , $0\leq x\leq a’$ . We set

$\tau’=\inf\{t>0:\omega(t)=a’\}$ , $\hat{\tau}’=\inf\{t>0:\hat{\omega}(t)=a’\}$ ,

$\tilde{\sigma}=\inf\{t>0, \omega(t)=\hat{\omega}(t)\}$ , $\tilde{\tau}=\inf\{t>\tilde{\sigma} : \hat{\omega}(t)=a’\}$ .

$\tilde{\omega}(t)=\{$

$\omega(t)$ if $0\leq t<\tilde{\sigma}$ ,
$\hat{\omega}(t)$ if $t\geq\tilde{\sigma}$ .

Note that $\tilde{\sigma}\leq\tau’$ and
$\hat{\tau}’\leq d\tau’$

. The following lemma can be proved as in
Brox [3] (see also [12, p.179]).

Lemma 8. (i) The process $\{\omega(t), 0\leq t<\tau’, P^{\lambda_{n}w_{n}}\}$ is equiva-
lent in law to $\{\tilde{\omega}(t), 0\leq t<\tilde{\tau}, P_{n}^{\otimes}\}$ .
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(ii) Let $e’<r<d’$ . Then as $n$ $\rightarrow\infty$ we have, $P_{n}^{\otimes}\{\tilde{\sigma}<e^{\lambda_{n}r}\}\rightarrow 1$ and

(3.2) $P_{n}^{\otimes}\{\tilde{\tau}>e^{\lambda_{n}r}\}=P^{\lambda_{n}w_{n}}\{\tau’>e^{\lambda_{n}r}\}\geq\hat{P}_{n}\{\hat{\tau}’>e^{\lambda_{n}r}\}\rightarrow 1$ .

Denote by $E^{\lambda_{n}w_{n}},\hat{E}_{n}$ and $E_{n}^{\otimes}$ the expectations with respect to
$P^{\lambda_{n}w_{n}},\hat{E}_{n}$ and $P_{n}^{\otimes}$ , respectively. Then for any Borel function $f$ in $[0, \infty)$

with $|f|\leq 1$ and for any positive sequence $\{r_{n}\}$ tending to 1 we have

$E^{\lambda_{n}w_{n}}\{f(\omega(e^{\lambda_{n}r_{n}}))\}=E_{n}^{\otimes}\{f(\tilde{\omega}(e^{\lambda_{n}r_{n}}));\tilde{\sigma}<e^{\lambda_{n}r_{n}}<\tilde{\tau}\}+o(1)$

$=E_{n}^{\otimes}\{f(\hat{\omega}(e^{\lambda_{n}r_{n}}))\}+o(1)=\int_{[0,a’]}fd\hat{\nu}^{w_{n}}+0(1)$ ,

where $0(1)$ , which may vary from place to place, denotes a term whose
absolute value is dominated by some $\epsilon_{n}$ independent of $f$ and tending to
0 as $n$ $\rightarrow\infty$ . Therefore, if $\mu^{w_{n}}$ denotes the distribution of $\omega(e^{\lambda_{n}r_{n}})$ under
$P^{\lambda_{n}w_{n}}$ , then $||\mu^{w_{n}}-\hat{\nu}^{w_{n}}||\rightarrow 0$ as $n$ $\rightarrow\infty$ . This can be rephrased as
(3.3) below. Let $\nu^{w_{n}}$ be the probability measure on $[0, a]$ with density
const.exp $\{-\lambda_{n}w_{n}(x)\}$ , $0\leq x\leq a$ . Since $a’$ can be taken arbitrarily
close to $a$ and since $w_{n}\rightarrow w$ (the Skorohod convergence), we have
$||\hat{\nu}^{w_{n}}-lJ^{w_{n}}||\rightarrow 0$ as $n$ $\rightarrow\infty$ and hence

(3.3) $||\mu^{w_{n}}-\nu^{w_{n}}||\rightarrow 0$ as $n$ $\rightarrow\infty$ .

3.3 We proceed to the proof of Theorem 8. From now on we use $X(t)$

for $\omega(t)$ . As in [3] we have $\{\lambda^{-\alpha}X(\lambda^{2\alpha}t), t\geq 0, P^{w}\}=d\{X(t), P^{\lambda w_{\lambda}^{\alpha}}\}$

and so

$\{X(e^{\lambda}), P^{w}\}=d\{\lambda^{\alpha}X(\lambda^{-2\alpha\lambda}e), P^{\lambda w_{\lambda}^{\alpha}}\}=\{\lambda^{\alpha}X(e^{\lambda r(\lambda)}), P^{\lambda w_{\lambda}^{\alpha}}\}$ ,

where $ r(\lambda)=1-2\alpha\lambda^{-1}\log\lambda$ which tends to 1 as $\lambda\rightarrow\infty$ . Now let us
denote by $\tilde{\mu}_{\lambda}^{w}$ the distribution of $X(e^{\lambda r(\lambda)})$ under $P^{\lambda w_{\lambda}^{\alpha}}$ and by $\tilde{\nu}_{\lambda}^{w}$ the
probability measure on $[o, a(w_{\lambda}^{\alpha})]$ with density const.exp $\{-\lambda w_{\lambda}^{\alpha}(x)\}$ , $ 0\leq$

$x\leq a(w_{\lambda}^{\alpha})$ . Noting that $W_{\lambda}^{\alpha}$ converges in law to $\tilde{W}$ as $\lambda\rightarrow\infty$ along
$\{\lambda_{n}\}$ , we first make use of Skorohod’s realization theorem of almost sure
convergence and then apply (3.3). As a result we have

(3.4) $||\tilde{\mu}_{\lambda}^{w}-\tilde{\nu}_{\lambda}^{w}||\rightarrow 0$ in probability as $\lambda\rightarrow\infty$ along $\{\lambda_{n}\}$ .

Since $a_{\lambda}(w)=\lambda^{\alpha}a(w_{\lambda}^{\alpha})$ , $b_{\lambda}(w)=\lambda^{\alpha}b(w_{\lambda}^{\alpha})$ and $\{X(e^{\lambda})-b_{\lambda}, P^{w}\}$ is
identical in law to $\{\lambda^{\alpha}(X(e^{\lambda r(\lambda)}))-b(w_{\lambda}^{\alpha}), P^{\lambda w_{\lambda}^{\alpha}}\}$ , we have, for any
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Borel function $f$ in $R$ with $|f|\leq 1$ and as $\lambda\rightarrow\infty$ along $\{\lambda_{n}\}$ ,

(3.5) $\int_{[-b_{\lambda},\infty)}fd\mu_{\lambda}w=\int_{[0,\infty)}f(\lambda^{\alpha}(x-b(w_{\lambda}^{\alpha})))\tilde{\mu}_{\lambda}^{w}(dx)$

(3.6) $=\int_{[0,a(w_{\lambda}^{\alpha})]}f(\lambda^{\alpha}(x-b(w_{\lambda}^{\alpha})))\tilde{\nu}_{\lambda}^{w}(dx)+o(1)$

(3.7) $=const$ . $\int_{[0,a(w_{\lambda}^{\alpha})]}f(\lambda^{\alpha}(x-b(w_{\lambda}^{\alpha})))e^{-w(\lambda^{\alpha}x)}dx+o(1)$

(3.8) $=const.\lambda^{-\alpha}\int_{[0,a_{\lambda}]}f(x-b_{\lambda})e^{-w(x)}dx+o(1)$

(3.9) $=\int_{[-b_{\lambda},a_{\lambda}-b_{\lambda}]}fd\nu_{\lambda}^{w}+0(1)$ ,

where we used (3.4) for (3.6), the definition of $\tilde{\nu}_{\lambda}^{w}$ for (3.7), change of
variable for (3.8) and the definition (3.1) of $\nu_{\lambda}^{w}$ for (3.9). The proof of
Theorem 8 is finished.

3.4 Let $\overline{W}$ be the space of those nonnegative functions $w$ in $R$ which
are right continuous and have left limits with $w(0)=w(0-)=0$ . Let
$\overline{P}$ be the probability measure on $\overline{W}$ such that $\overline{W}^{-}=\{w(-x-), x\geq 0\}$

is $W\wedge+,\overline{W}^{+}=\{w(x), x\geq 0\}$ is $W^{+}$ and $\overline{W}^{-}$ and $\overline{W}^{+}$ are independent.
The following lemma can be proved by making use of (2.13).

Lemma 9. Under (A) and (B), $\overline{E}$

$\{\int_{-\infty}^{\infty}e^{-w(x)}dx\}<\infty$ .

By this lemma we can define a probability measure $\overline{\nu}^{w}$ in $R$ , with
superfix $w$ outside some $\overline{P}$-negligible subset of $\overline{W}$ , and then $\overline{\nu}$ by

$\overline{\nu}^{w}(dx)=Z_{w}^{-1}e^{-w(x)}dx$ $(Z_{w}=\int_{-\infty}^{\infty}e^{-w(x)}dx)$ , $\overline{\nu}=\int\overline{\nu}^{w}\overline{P}(dw)$ .

Of course $\nu_{\lambda}^{w}$ and $\overline{\nu}^{w}$ are random variables taking values of probability
measures in $R$ ; the former is governed by $P$ and the latter by $\overline{P}$ . From
Theorem 6 and 7 it will be expected that $\nu_{\lambda}^{w}$ converges in law to $\overline{\nu}^{w}$

as $\lambda\rightarrow\infty$ but, to verify this, we still have to assume the following
condition.

Condition (E). There is a constant $C$ such that, for any $x>0$ and $y$ $>0$ ,

the inequality $h_{\lambda}(x)^{-1}h_{\lambda}(y)\leq Ch(x)^{-1}h(y)$ holds.

In the following theorem $\mu_{\lambda}$ denotes the distribution of $X(e^{\lambda})-b_{\lambda}$

under $\mathbb{P}$ , namely, $\mu_{\lambda}=\int\mu_{\lambda}^{w}P(dw)$ .

Theorem 9. Under the conditions $(A)\sim(E)\nu_{\lambda}^{w}$ and hence $\mu_{\lambda}^{w}$ ,

by Theorem 8, converge in law to $\overline{\nu}^{w}$ as $\lambda\rightarrow\infty$ . In particular, $\mu_{\lambda}$

converges to $\overline{\nu}$ as $\lambda\rightarrow\infty$ .
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For the proof we have to show the law convergence of $Z_{\lambda,,,w}$ (governed
by $P$ ) to $Z_{w}$ (governed by $\overline{P}$ ) as $\lambda\rightarrow\infty$ . Set

$Z_{\lambda,,,w}^{-}=\int_{-b_{\lambda}}^{0}\exp\{-(w(x+b_{\lambda})-w(b_{\lambda}))\}dx$ , $Z_{\lambda,,,w}^{+}=\int_{0}^{c_{\lambda}}$ ,

$Z_{w}^{-}=\int_{-,,\infty}^{0}e^{-w(x)}dx$ , $Z_{w}^{+}=\int_{0}^{\infty}e^{-w(x)}dx$ .

Then the law convergence of $Z_{\lambda,,,w}^{-}$ to $Z_{w}^{-}$ follows immediately from The-

orem 6 (in particular, from (2.48)). As for $Z_{\lambda,,,w}^{+}$ , Theorem 7 alone is not

enough; in fact, we have to show the uniform smallness (w.r.t. $\lambda$ ) of
the tail $\int_{r\wedge c_{\lambda}}^{c_{\lambda}}$ for large $r$ and this is done by using the inequality

(3.10) $P\{V_{\lambda}(t_{k})\in\Gamma_{k}, 1\leq\forall k\leq n\}\leq C\overline{P}\{w(t_{k}), 1\leq\forall k\leq n\}$ ,

where $0\leq t_{1}<t_{2}<\cdots<t_{n}$ and $\Gamma_{k}$ , $1\leq k\leq n$ , are Borel sets in $(0, \infty)$ .

The condition (E) is used for (3.10).

Remark. Our arguments remain valid when the conditions $(D_{\Lambda})$ and
(D) are replaced by the following.
Condition $(D_{\Lambda}’)$ . Let $\Lambda=\{\lambda_{n}\}$ be a given positive sequence tending
to $\infty$ and let it be fifixed. There exists a positive sequence $\{\alpha_{n}\}$ with
$\alpha_{n}=o(\lambda_{n}/\log\lambda_{n})$ and such that $W_{\lambda_{n}}^{\alpha_{n}}$ converges in law, as $n$ $\rightarrow\infty$ , to

some L\’evy process $W\sim=\{w(x), x\geq 0,\tilde{P}\}$ satisfying the conditions (A)
and (E)
Condition $(D’)$ . For any positive sequence $\{\lambda_{n}’\}$ tending to $\infty$ there exists
a subsequence $\Lambda=\{\lambda_{n}\}$ of $\{\lambda_{n}’\}$ for which the condition $(D_{\Lambda}’)$ is satisfified.
Thus Theorem 9 still holds when the condition (D) is replaced by $(D’)$ .

On the other hand the conditions (C) and (E) seem too strong and it is
desirable to remove or relax these conditions.

Examples, (i) Let $W$ be a strictly stable L\’evy process with exponent
$\alpha\in(0,2)$ such that $0<\rho=P\{w(1)>0\}<1$ . Then $W$ satisfies all
the conditions $(A)\sim(E)$ and $h(x)=const.x^{\alpha(1-\rho)}$ . The verification of
(C) and (E) is done by using, in detail, the explicit formula on $h_{\lambda}(x)$

obtained by Rogozin [17].
(ii) Spectrally negative L\’evy processes satisfy the conditions (C) and
(E) since $h_{\lambda}(x)^{-1}h_{\lambda}(y)=h(x)^{-1}h(y)$ , $x$ , $y\in(0, \lambda)$ , for any $\lambda$ . So any
L\’evy process $W$ such that

$E\{e^{i\xi w(1)}\}=\exp\int_{-,,\infty}^{0}(e^{i\xi x}-1-i\xi x)|x|^{-\alpha-1}a(x)dx$ ,

with $1<\alpha<2$ and $0<c_{1}\leq a(x)\leq c_{2}$ , satisfies all the conditions
$(A)\sim(E)$ .
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Zero-Range-Exclusion Particle Systems

K\^ohei Uchiyama

\S 1. Introduction

Let $T_{N}$ denote the one-dimensional discrete torus $Z/NZ$ represented
by $\{1, \ldots, N\}$ . The zero-range-exclusion process that we are to introduce
and study in this article is a Markov process on the state space $\mathcal{X}^{N}:=$

$Z_{+}^{T_{N}}(Z_{+}=\{0,1,2, \ldots\})$ . Denote by $\eta=(\eta_{x}, x\in T_{N})$ a generic element

of $\mathcal{X}^{N}$ , and define
$\xi_{x}=1(\eta_{x}\geq 1)$

(namely, $\xi_{x}$ equals 0 or 1 according as $\eta_{x}$ is zero or positive). The process
is regarded as a ’lattice gas’ of particles having energy. The site $x$ is
occupied by a particle if $\xi_{x}=1$ and vacant otherwise. Each particle has
energy, represented by $\eta_{x}$ , which takes discrete values 1, 2, . . . If $y$ is a
nearest neighbor site of $x$ and is vacant, a particle at site $x$ jumps to $y$ at
rate $c_{ex}(\eta_{x})$ , where $c_{ex}$ is a positive function of $k=1,2$ , $\ldots$ Between two

neighboring particles the energies are transferred unit by unit according
to the same stochastic rule as that of the zero-range processes. In this

article we shall give some results related to the hydrodynamic scaling
limit for this model.

To give a formal definition of the infinitesimal generator of the pro-
cess we introduce some notations. Let $b=(x, y)$ be an oriented bond

of $T_{N}$ , namely $x$ and $y$ are nearest neighbor sites of $T_{N}$ , and $(x, y)$

stands for an ordered pair of them. Define the exclusion operator $\pi_{b}$

and zero-range operator $\nabla_{b}$ attached to $b$ which act on $f\in C(\mathcal{X}^{N})$ by

$\pi_{b}f(\eta)=f(S_{ex}^{b}\eta)-f(\eta)$ and $\nabla_{b}f(\eta)=f(S_{zr}^{b}\eta)-f(\eta)$

where the transformation $S_{ex}^{b}$ : $\mathcal{X}^{N}\mapsto \mathcal{X}^{N}$ is defined by

$(S_{ex}^{b}\eta)_{z}=\{$

$\eta_{y}$ , if $z=x$ ,
$\eta_{x}$ , if $z=y$ ,
$\eta_{z}$ , otherwise,

Received December 26, 2002.
Revised March 24, 2003.
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if $\xi_{x}=1$ and $\xi_{y}=0$ ; and $ S_{zr}^{b}\eta$ by

$(S_{zr}^{b}\eta)_{z}=\{$

$\eta_{x}-1$ , if $z=x$ ,
$\eta_{y}+1$ , if $z=y$ ,
$\eta_{z}$ , otherwise,

if $\eta_{x}\geq 2$ and $\xi_{y}=1$ ; and in the remaining case of $\eta$ , both $ S_{ex}^{b}\eta$ and $ S_{zr}^{b}\eta$

are set to be $\eta$ , namely

$ S_{ex}^{b}\eta=\eta$ if $\xi_{x}(1-\xi_{y})=0$ ,

$ S_{zr}^{b}\eta=\eta$ if $1(\eta_{x}\geq 2)\xi_{y}=0$ .

Let $c_{ex}$ and $c_{zr}$ be two non-negative functions on $Z_{+}$ and define for
$b=(x, y)$

$L_{b}=c_{ex}(\eta_{x})\pi_{b}+c_{zr}(\eta_{x})\nabla_{b}$ .

Let $T_{N}^{*}$ denote the set of all oriented bonds in $T_{N}$ :

$T_{N}^{*}=\{b=(x, y) : x, y\in T_{N}, |x-y|=1\}$ .

Then the infinitesimal generator $L_{N}$ of our Markovian particle process
on $T_{N}$ is given by

$L_{N}=\sum_{b\in T_{N}^{*}}L_{b}$
.

It is assumed that for some positive constant $a_{0}$ , $c_{ex}(k)\geq a_{0}$ for $k\geq 1$

and $c_{zr}(k)\geq a_{0}$ for $k\geq 2$ . This especially implies that the lattice gas on
$T_{N}$ with both the number of particles and the total energy being given
is ergodic. We call the Markov process generated by $L_{N}$ the zero-range-
exclusion process. For the sake of convenience we set

$c_{ex}(0)=0$ and $c_{zr}(0)=c_{zr}(1)=0$ .

We need some technical conditions on the functions $c_{ex}$ and $c_{zr}$ :
there exist positive constants $a_{1}$ , $a_{2}$ , $a_{3}$ , $a_{4}$ and an integer $k_{0}$ such that

(1) $|c_{zr}(k)-c_{zr}(k+1)|\leq a_{1}$ for all $k\geq 1$ ;

(2) $cZT(k)-c_{zr}(l)\geq a_{2}$ whenever $k\geq l+k_{0}$ ;

(3) $a_{3}k\leq c_{ex}(k)\leq a_{4}k$ for all $k\geq 1$ .

These conditions are imposed mainly for guaranteeing an estimate of
the spectral gaps for the local processes ([4]). The conditions (1) and
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(2) are the same as in the paper [2] where is carried out an estimation
of the spectral gap for the zero-range processes.

We shall also write $\pi_{x,y}$ , $S_{ex}^{x,y}$ , $L_{x,y}$ , etc. for $\pi_{b}$ , $S_{ex}^{b}$ , $L_{b}$ , etc.

Grand Canonical Measures and Dirichlet Form.

For a pair of constants $0<p<1$ and $\rho>p$ let $lJ_{p,\rho}=\iota/_{p,\rho}^{T_{N}}$ denote

the product probability measure on $\mathcal{X}^{N}$ whose marginal laws are given
by

$l/_{p,\rho}(\{\eta ^{:} \eta_{x}=l\}):=\{$

$1-p$ if $l$ $=0$ ,

$\frac{p}{Z_{\lambda(p,\rho)}}$ if $l$ $=1$ ,

$\frac{p}{Z_{\lambda(p,\rho)}}$

. $\frac{(\lambda(p,\rho))^{l-1}}{c_{zr}(2)c_{zr}(3)c_{zr}(l)}\cdots$ if $l$ $\geq 2$ ,

for all $x$ . Here $ Z_{\lambda}:=1+\sum_{l=2}^{\infty}\frac{\lambda^{l-1}}{c_{zr}(2)c_{zr}(3)c_{zr}(l)}\cdots$ and $\lambda(p, \rho)$ is a

positive constant depending on $p$ and $\rho$ and determined uniquely by the
relation $ E^{l/_{p,\rho}}[\eta_{x}]=\rho$ , where $E^{l/_{p,\rho}}$ denotes the expectation under the
law $lJ_{p,\rho}$ . Clearly $E^{l/_{p,\rho}}[\xi_{x}]=p$ . The lattice gas is reversible relative to
the measures $lJ_{p,\rho}$ (namely $L_{N}$ is symmetric relative to each of them).

It is convenient to introduce the transformations $S^{b}$ , $b=(x, y)$ which
acts on $\eta\in \mathcal{X}^{N}$ according to

$S^{b}\eta=\{$

$ S_{ex}^{b}\eta$ if $\xi_{y}=0$ ,
$ S_{zr}^{b}\eta$ if $\xi_{y}=1$ ,

and the operators

$\Gamma_{b}=\xi_{x}\pi_{b}+1(\eta_{x}\geq 2)\nabla_{b}$ $(b=(x, y))$ .

The latter may also be defined by $\Gamma_{b}f(\eta)=f(S^{b}\eta)-f(\eta)(f\in C(\mathcal{X}^{N}))$ .
Let $\tau_{x}\eta$ be the configuration $\eta\in \mathcal{X}$ viewed from $x$ , namely $(\tau_{x}\eta)_{y}=$

$\eta_{x+y}$ . We let it also act on a function $f$ of $\eta$ according to $\tau_{x}f(\eta)=$

$f(\tau_{x}\eta)$ . Setting

$c_{01}(\eta)=c_{ex}(\eta o)(1-\xi_{1})+c_{zr}(\eta_{0})\xi_{1}$ ;

$c_{10}(\eta)=c_{ex}(\eta_{1})(1-\xi_{0})+c_{zr}(\eta_{1})\xi_{0;}$

and $c_{x,x+1}=\tau_{x}c_{01}$ , $c_{x+1,x}=\tau_{x}c_{10}$ , we can write

$L_{b}=c_{b}\Gamma_{b}$ .
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The Dirichlet form is then given by

$D^{p,\rho}\{f\}=\sum_{b\in T_{N}^{*}}E^{l/_{p,\rho}}[(\Gamma_{b}f)^{2}c_{b}]$
.

(Functions $f$ of configuration $\eta$ will be always real in this article.)

Diffusion Coefficient Matrix.

Following Varadhan [7] we define the diffusion coefficient matrix.
First we introduce some notations. Let $\mathcal{X}$ denote $Z_{+}^{Z}$ , the set of all
configurations on $Z$ and $F_{c}$ the set of all local functions on $\mathcal{X}$ (namely,
$f\in F_{c}$ if $f$ depends only on a finite number of coordinates of $\eta\in \mathcal{X}$ ).

For $f\in \mathcal{F}_{c}$ we use the symbol $\tilde{f}$ to represent the formal sum $\sum_{x}\tau_{x}f$ . It
has meaning if $\Gamma_{01}$ is acted:

$\Gamma_{01}\tilde{f}=\sum_{x}\Gamma_{01}\tau_{x}f=\sum_{x}\tau_{x}\Gamma_{x,x+1}f$
,

where the infinite sums are actually finite sums. Let $\chi(p, \rho)$ denote the
covariance matrix of $\xi_{0}$ and $\eta_{0}$ under $lJ_{p,\rho}$ :

$\chi(p, \rho)=\left(\begin{array}{ll}(1-p)p & (1-p)\rho\\(1-p)\rho & E^{l/_{p,\rho}}|\eta_{0}-\rho|^{2}\end{array}\right)$

For each $0<p<1$ , $\rho>p$ , let $\hat{c}(p, \rho)=(\hat{c}^{i,j}(p, \rho))_{1\leq i,j\leq 2}$ denote a
$2\times 2$ symmetric matrix whose quadratic form is defined by the following
variational formula:

$\underline{\alpha}\cdot\hat{c}(p, \rho)\underline{\alpha}$ $=$ $\hat{c}^{11}(p, \rho)\alpha^{2}+2\hat{c}^{12}(p, \rho)\alpha\beta+\hat{c}^{22}(p, \rho)\beta^{2}$

$=$ $\inf_{f\in \mathcal{F}_{c}}E^{l/_{p,\rho}}[(\Gamma_{01}\{\alpha\xi_{0}+\beta\eta_{0}+\tilde{f}\})^{2}c_{01}]$

where $\underline{\alpha}=(\alpha, \beta)^{T}$ , a two-dimensional real column vector ( $T$ indicates
the transpose), and. indicates the inner product in $R\times R$ . Then the
diffusion coefficient matrix is defined by

$D(p, \rho)=\hat{c}(p, \rho)\chi^{-1}(p, \rho)$ ,

where $\chi^{-1}(p, \rho)$ is the inverse matrix of $\chi(p, \rho)$ . The two eigen-values of
$D$ are positive (cf. Section 5) and $D$ is diagonalizable.

Let $\nabla^{-}\xi$ and $\nabla^{-}\eta$ be the particle and energy gradients:

$\nabla^{-}\xi=\xi_{0}-\xi_{1}$ and $\nabla^{-}\eta=\eta_{0}-\eta_{1}$



zero-range-exclusion process 381

and $w_{01}^{P}$ and $w_{01}^{E}$ the particle and energy currents, respectively, from the
site 0 to the site 1 :

$w_{01}^{P}=-L_{\{0,1\}}\{\xi_{0}\}$ and $w_{01}^{E}=-L_{\{0,1\}}\{\eta_{0}\}$ .

Here $L_{\{0,1\}}=L_{01}+L_{10}$ . The explicit form of the currents are

$w_{01}^{P}$ $=$ $c_{ex}(\eta_{0})(1-\xi_{1})-c_{ex}(\eta_{1})(1-\xi_{0})$

$w_{01}^{E}$ $=$ $c_{ex}(\eta_{0})(1-\xi_{1})\eta_{0}+c_{zr}(\eta_{0})\xi_{1}-c_{ex}(\eta_{1})(1-\xi_{0})\eta_{1}-c_{zr}(\eta_{1})\xi_{0}$ .

We can show that

$\left(\begin{array}{l}w_{01}^{P}\\w_{01}^{E}\end{array}\right)-D(p, \rho)$ $\left(\begin{array}{l}\nabla^{-}\xi\\\nabla^{-}\eta\end{array}\right)\in\overline{\{\left(\begin{array}{l}Lf_{1}\\Lf_{2}\end{array}\right)}$$.\cdot f_{1}$ , $f_{2}\in F_{c}^{K}$ forsome$K\in N\}^{p,\rho}$ ,

where $\overline{\{\cdots\}}^{p,\rho}$ is the closure relative to the central limit theorem variance
$V^{p,\rho}$ (see Section 3). This would lead one to expect that the hydrody-
namic equation for the limit densities $p=p(t, \theta)$ and $\rho=\rho(t, \theta)$ should
be

$\frac{\partial}{\partial t}$

$\left(\begin{array}{l}p\\\rho\end{array}\right)=\frac{\partial}{\partial\theta}D(p, \rho)\frac{\partial}{\partial\theta}$ $\left(\begin{array}{l}p\\\rho\end{array}\right)$ .

Unfortunately in deriving this equation there arises serious difficulty
due to the unboundedness of the spin values. While the marginal of
our grandcanonical measure is roughly Poisson, the energy current $w_{01}^{E}$

involves the term $c_{ex}(\eta_{0})\eta_{0}$ that is bounded below by $\delta\eta_{0}2(\delta>0)$ and
cannot be controlled by the grandcanonical measure as in the case of
Ginzburg-Landau model, the logarithm of the Poisson density function
being of the order $O(\eta_{0}\log\eta_{0})$ . Nagahata [3] studies a similar model
and derives a system of diffusion equations of the same form as above:
his model is the same as the present one except that the energy values
are bounded by a constant.

In the rest of this article we shall state some results on the equilib-
rium fluctuations and the central limit theorem variances without proof,
and give certain asymptotic estimates for the density-density correlation
coefficients and for the least upper bound of the spectrum of an operator
of the form $V_{N}+L$ as consequences of these results. In the last part of
the paper some upper and lower bounds of the diffusion matrix will be
given.
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\S 2. Density-Density Correlation Function

Consider an infinite particle system on the whole lattice $Z$ whose
formal generator is $L=\sum c_{b}\Gamma_{b}$ . It is well defined on $F_{c}$ :

$Lf(\eta)=\sum_{b\in Z^{*}}c_{b}(\eta)\Gamma_{b}f(\eta)$
, $f\in F_{c}$ .

Let $F_{c}^{O}$ be the set of all $f\in \mathcal{F}_{c}$ such that both $f$ and $Lf$ are in
$L^{2}(\iota/_{p,\rho}, \mathcal{X})$ . Then the operator $L$ with the domain $F_{c}^{O}$ is a symmet-
ric and non-negative transformation in $L^{2}(\iota/_{p,\rho}, \mathcal{X})$ . Clearly $F_{c}^{o}$ is dense
in $L^{2}(\iota/_{p,\rho}, \mathcal{X})$ . Hence $L$ has the Friedrichs extension, which we denote
by $\mathcal{L}$ : namely $\mathcal{L}$ is the smallest self-adjoint extension of $L$ . The following
theorem is a consequence from the standard theory on the semigroup of
operators. Let $\Lambda_{K}$ be the finite interval $\{-K, \ldots, K\}$ and $L_{\Lambda(K)}$ the
generator of the lattice gas on $\Lambda_{K}$ , namely

$L_{\Lambda(K)}=\sum_{b\in\Lambda^{*}(K)}L_{b;}$

also put $\mathcal{X}_{\Lambda(K)}=Z_{+}^{\Lambda(K)}$ . Here $\Lambda(K)$ is used in stead of $\Lambda_{K}$ in sub-or
superscripts and $\Lambda^{*}(K)=(\Lambda(K))^{*}$ (the set of all oriented bonds in $\Lambda$ ).

Theorem 1. The operator $\mathcal{L}$ generates a strongly continuous
Markov semigroup on $L^{2}(\iota/_{p,\rho}, \mathcal{X})$ . Denote by $S(t)$ , $t\geq 0$ this semi-
group, and by $S_{K}(t)$ the semigroup on $L^{2}(\mathcal{X}_{\Lambda(K)})$ generated by $L_{\Lambda(K)}$ .
Then

$\lim S_{K}(t)f(\eta|_{\Lambda(K)})=S(t)f(\eta)$ , $f\in F_{c}^{O}$ ,
$ K\rightarrow\infty$

strongly in $L^{2}(\iota/_{p,\rho}, \mathcal{X})$ . The convergence is locally uniform in $t$ .

Fix $0<p<1$ and $\rho>p$ . Let $\eta(t)$ be a Markov process on $\mathcal{X}$ whose
infinitesimal generator and initial distribution are $\mathcal{L}$ and $\iota/_{p,\rho}$ , respec-
tively. Denote the probability law of the process $\eta(t)$ by $P_{eq}=P_{eq(p,\rho)}$

and the expectation relative to it by $E_{eq(p,\rho)}$ . Define the fluctuation
processes $Y_{t,N}^{P}$ and $Y_{t,N}^{E}$ by

$Y_{t,N}^{P}(J)=\frac{1}{\sqrt{N}}\sum_{x\in Z}J(x/N)(\xi_{x}(N^{2}t)-p)$ , $J\in C_{0}^{\infty}(R)$ ,

$Y_{t,N}^{E}(J)=\frac{1}{\sqrt{N}}\sum_{x\in Z}J(x/N)(\eta_{x}(N^{2}t)-\rho)$ , $J\in C_{0}^{\infty}(R)$

respectively. ( $C_{0}^{\infty}(R)$ is the set of smooth functions with compact sup-
ports.) Under the equilibrium measure $P_{eq(p,\rho)}$ the process $Y_{t,N}=$
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$(Y_{t,N}^{P}, Y_{t,N}^{E})$ converges in the sense of finite dimensional distributions,
namely for each set of $J_{1}$ , $\ldots$ , $J_{k}\in C_{0}^{\infty}(R)$ and $t_{1}$ , $\ldots$ , $t_{k}\in[0, \infty)$ , the
joint distribution of $Y_{t_{1},N}(J_{1})$ , $\ldots$ , $Y_{t_{k},N}(J_{k})$ converges ([6]). The limit
process $Y_{t}=(Y_{t}^{P}, Y_{t}^{E})$ is an infinite dimensional Ornstein-Uhlenbeck
process. The distribution of $Y_{t}$ is described as follows.

Let $K_{D}$ denote the fundamental solution for the heat equation

$\frac{\partial}{\partial t}\underline{u}=D^{T}\frac{\partial^{2}}{\partial\theta^{2}}\underline{u}$

and $U_{t}$ a matrix of corresponding convolution operators:

$U_{t}\underline{J}(\theta)=\int_{-\infty}^{\infty}K_{D}(t, \theta-\theta^{J})\underline{J}(\theta^{J})d\theta’$ ,

where $\underline{J}=(J^{1}, J^{2})^{T}\in C_{0}^{\infty}(R)\times C_{0}^{\infty}(R)$ . Let $\underline{J}_{1}$ and $\underline{J}_{2}$ be vector
functions of the same kind. Then the distribution of the limit process
$Y_{t}$ is given by

$E[e^{i(Y_{O},\underline{J}_{1})}e^{i(Y_{t},\underline{J}_{2})}]=\exp[-\frac{1}{2}\int_{0}^{t}Q\{U_{r}\underline{J}_{2}\}dr-\frac{1}{2}\sigma^{2}\{U_{t}\underline{J}_{2}+\underline{J}_{1}\}]$ ;

in particular

(4) $E[(Y_{0}, \underline{J}_{1})(Y_{t}, \underline{J}_{2})]=\sigma^{2}(U_{t}\underline{J}_{2}, \underline{J}_{1})=(\chi(p, \rho)U_{t}\underline{J}_{2},$ $\underline{J}_{1})_{L^{2}(R)}$ .

Here $E$ denotes the expectation by the probability law of the limit
process and

$Q\{\underline{J}\}=2(\underline{J}’,\hat{c}\underline{J}^{/})_{L^{2}(R)}$ , $\sigma^{2}\{\underline{J}\}=(\underline{J}, \chi\underline{J})_{L^{2}(R)}$ .

(Also $(Y_{t}, \underline{J})=Y_{t}^{P}(J_{1})+Y_{t}^{E}(J_{2})$ , $(\underline{J}_{1}, \underline{J}_{2})_{L^{2}(R)}=\int_{R}(J_{1}^{1}J_{2}^{1}+J_{1}^{2}J_{2}^{2})d\theta$ ;
$\hat{c}=\hat{c}(p, \rho)$ is the matrix appearing in the definition of $D=D(p, \rho);\underline{J}^{J}$ is
the (component-wise) derivative of $\underline{J};\sigma^{2}(\cdot, \cdot)$ is the bilinear form associ-
ated with the quadratic form $\sigma^{2}\{\cdot\}.)$ The kernel $K_{D}$ may be explicitly
written down in the form

$K_{D}(t, \theta)$ $=$ $\frac{1}{2\pi}\int_{-\infty}^{\infty}$ $\exp\{-t\lambda^{2}D^{T}\}e^{-i\lambda\theta}d\lambda$

$=$
$\sqrt{4\pi tD^{T}}^{-1}$

$\exp\{-\theta^{2}(4tD^{T})^{-1}\}$ .

Here $D^{T}$ is the transpose of $D$ ; for a $2\times 2$ real matrix $A$ whose eigenvalues
are positive,

$\sqrt{A}:=\frac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty}$ $\exp\{-\theta^{2}A^{-1}\}d\theta$ ,
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which is a real matrix having positive eigenvalues such that $A=(\sqrt{A})^{2}$ .

Define the symmetric matrix $\Sigma(x, t)$ with parameters $(x, t)\in Z\times$

$[0, \infty)$ by

$\underline{\alpha}$

. $\Sigma(x, t)\underline{\alpha}=E_{eq(p,\rho)}[u_{\underline{\alpha}}(0,0)u_{\underline{\alpha}}(x, t)]$

where $u_{\underline{\alpha}}(x, t)=\alpha(\xi_{x}(t)-p)+\beta(\eta_{x}(t)-\rho)$ .

Since $P_{eq(p,\rho)}$ is invariant under the translation, $\Sigma(x, t)$ is the covari-
ance matrix of $(\xi_{x}(s), \eta_{x}(s))$ and its space-time translation $(\xi_{x+y}(s+$

$t)$ , $\eta_{x+y}(s+t))$ . Hence if we define

$R(x, t):=\Sigma(x, t)\chi^{-1}(p, \rho)$ ,

then $R(x-y, t-s)$ is the space-time correlation coefficient of $(\xi_{x}(t), \eta_{x}(t))$ .

The next theorem states that $R(x, t)$ behaves like $R(x, t)\approx K_{D}(t, x)$ as
$x$ , $ t\rightarrow\infty$ , as being expected ([5]).

Theorem 2. For $\underline{J}=(J^{1}, J^{2})^{T}\in C_{0}^{\infty}(R)\times C_{0}^{\infty}(R)$

$\lim_{N\rightarrow\infty}\sum_{x\in Z}R(x, N^{2}t)\underline{J}(x/N)=\int_{-\infty}^{\infty}K_{D}(t, \theta)\underline{J}(\theta)d\theta$ .

Theorem 2 is deduced from (4). Indeed by (4),

(5) $\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{x}\sum_{y}\underline{J}_{1}(y/N)\cdot R(x-y, N^{2}t)\underline{J}_{2}(x/N)$

$=\int_{-\infty}^{\infty}\underline{J}_{1}(\theta)\cdot U_{t}\underline{J}_{2}(\theta)d\theta$

because the formula under the limit on the left side equals $E[(Y_{0,N}, \underline{J}_{1})$

$(Y_{t,N}, \underline{J}_{2})]$ . If the delta function could be taken for $\underline{J}_{1}$ , the relation of
Theorem 2 would come out. For justification we take Fourier transform
in (5). To this end let $\hat{R}$ be the Fourier series with coefficients $R$ :

$\hat{R}(\lambda, t)$ $=$ $\hat{\Sigma}(\lambda, t)\chi^{-1}$ , $\lambda\in R$

$\hat{\Sigma}(\lambda, t)$ $=$
$\sum_{x\in Z}e^{i\lambda x}\Sigma(x, t)$

.

Lemma 3.

$ 0\leq\hat{\Sigma}(\lambda, t)\leq\hat{\Sigma}(\lambda, 0)=\chi$ .
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Proof. If $a_{x}=e^{i\lambda x}\Sigma(x, t)$ , then

$\sum_{x=-k}^{k-1}\sum_{y=-k}^{k-1}a_{y-x}=\sum_{u=-2k}^{2k}(2k-|u|)a_{u}$ .

The right-hand side divided by $2k$ converges, as $ k\rightarrow\infty$ , to $\hat{\Sigma}(\lambda, t)$ . Since
$S(t)$ is a symmetric operator, the first diagonal component of $a_{y-x}$ may
be expressed in the form

$a_{y-x}^{11}=E^{\nu_{p,\rho}}[e^{i\lambda y}S(t/2)\{\xi_{y}-p\}e^{-i\lambda x}S(t/2)\{\xi_{x}-p\}]$ ,

and similarly for the other components; hence

$\underline{\alpha}\cdot\hat{\Sigma}(\lambda, t)\underline{\alpha}=\lim_{k\rightarrow\infty}\frac{1}{2k}E^{l/_{p,\rho}}|S(t/2)\{\sum_{x=-k}^{k-1}e^{i\lambda x}[\alpha(\xi_{x}-p)+\beta(\eta_{x}-\rho)]\}|^{2}$

The inequalities of the lemma now follow from the fact that $S(t)$ is
contraction in $L^{2}(l/_{p,\rho})$ . Q.E.D.

Proof of Theorem 2. Rewriting the relation (5) by means of $\hat{R}$ , we have

$\lim_{N\rightarrow\infty}\int_{-N\pi}^{N\pi}\underline{\hat{J}}_{1}^{N}(\lambda)\cdot\hat{R}(\lambda/N, N^{2}t)\underline{\hat{J}}_{2}^{N}(-\lambda)d\lambda$

(6) $=\int_{-\infty}^{\infty}\underline{\hat{J}}_{1}(\lambda)\cdot e^{-t\lambda^{2}D^{T}}\underline{\hat{J}}_{2}(-\lambda)d\lambda$ .

Here

$\underline{\hat{J}}^{N}(\lambda)=\frac{1}{N}\sum\underline{J}(x/N)e^{i\lambda x/N}$ , $\underline{\hat{J}}(\lambda)=\int_{-\infty}^{\infty}\underline{J}(\theta)e^{i\lambda\theta}d\theta$ .

By the Poisson summation formula, $\underline{\hat{J}}^{N}(\lambda)=\sum_{x\in Z}\underline{\hat{J}}(\lambda+2\pi Nx)$ . The

class of $J_{1}^{i}$ $(i=1, 2)$ in (6) may be extended to the set of rapidly

decreasing functions. Let $\delta>0$ , $g_{\delta}(\theta)=(4\pi\delta)^{-1/2}e^{-\theta^{2}/(4\delta)}$ and $\underline{J}_{1}(\theta)=$

$g_{\delta}(\theta)\underline{\alpha}$ . Then, $\hat{g}_{\delta}(\lambda)=e^{-\delta\lambda^{2}}$ and

$e^{-\delta\lambda^{2}}\leq\hat{g}_{\delta}^{N}(\lambda)\leq e^{-\delta\lambda^{2}}+\frac{2e^{-\delta(\pi N)^{2}}}{1-e^{-\delta(\pi N)^{2}}}(|\lambda|\leq N\pi)$ ;

and writing $\underline{J}$ for $\underline{J}_{2}$ in (6), we infer that

$\lim_{N\rightarrow\infty}\int_{-N\pi}^{N\pi}e^{-\delta\lambda^{2}}\underline{\alpha}\cdot\hat{R}(\lambda/N, N^{2}t)\underline{\hat{J}}^{N}(-\lambda)d\lambda$

$=\int_{-\infty}^{\infty}e^{-\delta\lambda^{2}}\underline{\alpha}\cdot e^{-t\lambda^{2}D^{T}}\underline{\hat{J}}(-\lambda)d\lambda$ .



386 K. Uchiyama

On taking the limit as $\delta\downarrow 0$ this relation is also valid for $\delta=0$ . The
proof is complete. Q.E.D.

\S 3. Central Limit Theorem Variance

The canonical measure for the configurations on $\Lambda_{n}$ with the number
of particles $m$ and the total energy $E$ is the conditional law

$P_{n,m,E[}\cdot]=\frac{\iota/_{p,\rho}(\cdot\cap\{|\xi|_{\Lambda(n)}=m,|\eta|_{\Lambda(n)}=E\}|F_{Z\backslash \Lambda(n)})}{l/_{p,\rho}(|\xi|_{\Lambda(n)}=m,|\eta|_{\Lambda(n)}=E)}$ .

Here for $\Lambda\subset Z$ , $|\xi|_{\Lambda}=\sum_{x\in\Lambda}\xi_{x}$ and $|\eta|_{\Lambda}=\sum_{x\in\Lambda}\eta_{x}$ ; $F_{\Lambda}$ stands for the
$\sigma$-field in $\mathcal{X}$ generated by $\eta_{y}$ , $ y\in\Lambda$ . From the reversibility relation it
follows that for any functions $f$ and $g$ of $\eta$ and any bond $b\in\Lambda_{n}^{*}$ ,

$E_{n,m,E}[c_{b}(\eta)f(S^{b}\eta)g(\eta)]=E_{n,m,E}[c_{b’}(\eta)f(\eta)g(S^{b’}\eta)]$ ,

where $b^{J}$ is the bond obtained from $b$ by reversing its direction. The
Dirichlet form for $L_{\Lambda(n)}$ accordingly is given by

$D_{n,m,E}\{f\}$ $:=$ $-E_{n,m,E}[fL_{\Lambda(n)}f]$

$=$ $\sum$ $D_{n,m,E}^{b}\{f\}$

$b\in\Lambda^{*}(n)$

where $D_{n,m,E}^{b}\{f\}=\frac{1}{2}E_{n,m,E}[(\Gamma_{b}f)^{2}c_{b}],$ ; the corresponding bilinear form
is given by

$D_{n,m,E}^{01}(f, g)=-\frac{1}{2}E_{n,m,E}[f\cdot(L_{01}+L_{10})g]=\frac{1}{2}E_{n,m,E}[(\Gamma_{01}f)(\Gamma_{01}g)c_{01}]$ .

We introduce a function space on which the central limit theorem
variance is well defined. The numbers $p$ and $\rho$ are fixed so that $0<p<1$
and $\rho\geq p$ unless otherwise specified. They will be dropped from the
notations if used as sub- or superscripts.

Definition 4. Let $\mathcal{G}$ denote the linear space of all functions $h\in \mathcal{F}_{c}$

of the form

(7)
$L_{I}H:=\sum_{b\in I^{*}}L_{b}H=h$

,

where I is an interval of $Z$ and $H$ isa local function such that for some
positive integer $K$ ,

(8)
$\sum_{b\in I^{*}}(\Gamma_{b}H(\eta))^{2}\leq K\sum_{x\in I}(\eta_{x})^{K}$

, $\eta\in \mathcal{X}$ .
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(This bound, which may be replaced by a weaker one, is adopted only for
convenience sake. We may take I as the minimal of intervals $\Lambda$ such
that $h\in F_{\Lambda}$ . )

If $h\in \mathcal{F}_{c}$ satisfies

$E^{\iota/}[h|\mathcal{F}_{Z\backslash I}\vee\sigma\{|\xi|_{I}, |\eta|_{I}\}]=0a.s.$ ,

then it admits a representation (7) but the condition (8) may fail to
hold. The functions $w_{01}^{P}$ , $w_{01}^{E}$ are in $\mathcal{G}$ : the requirements are satisfied
with $I$ $=\{0,1\}$ and $H=-\xi_{0}$ and $H=-\eta_{0}$ , respectively. For each
positive integer $K$ put

$F_{c}^{K}=\{f\in F_{c} ^{:} |f(\eta)|\leq K\sum_{|x|\leq K}(\eta_{x})^{K}\}$

Then the linear space $L\mathcal{F}_{c}^{K}$ is obviously included in $\mathcal{G}$ .
Let $L_{n,m,E}$ denote the restriction of $L_{\Lambda(n)}$ to the space of functions

on $\mathcal{X}_{n,m,E}:=\{\eta\in \mathcal{X}_{\Lambda(n)} : |\xi|_{\Lambda(n)}=m, |\eta|_{\Lambda(n)}=E\}$ , and for $h$ , $g\in \mathcal{G}$ ,

define

$V_{n,m,E}(h, g)=\frac{1}{2n}E_{n,m,E}[\sum_{|x|<n’}\tau_{x}h\cdot(-L_{n,m,E})^{-1}\sum_{|x|<n’}\tau_{x}g]$ ,

where $n^{/}$ is the maximal integer among those for which both sums in the
brackets are $\mathcal{F}_{\Lambda(n)}$ -measurable.

Theorem 5. For every $h$ , $g\in \mathcal{G}$ and for every $p>0$ , $\rho\geq p$ , there
exists a following limit

$\lim_{m/2n\rightarrow p,E/2n\rightarrow\rho}V_{n,m,E}(h, g)$ ,

where the limit is taken in such a way that $n$ , $m$ and $E$ are sent to infinity
so that $m/2n\rightarrow p$ and $ E/2n\rightarrow\rho$ . The functional defined by this limit
makes a bilinear form on $\mathcal{G}$ . If it is denoted by

$V(h, g)=V^{p,\rho}(h, g)$ ,

then the subspace

$\mathcal{G}\circ:=$ { $\alpha w_{01}^{P}+\beta w_{01}^{E}-Lf$ : $\alpha$ , $\beta\in R$ , $f\in \mathcal{F}_{c}^{K}$ $/or$ some $K$ }

is dense in $\mathcal{G}$ with respect to the quadratic form $V^{p,\rho}\{h\}:=V^{p,\rho}(h, h)$ .
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Theorem 5 says that every $h\in \mathcal{G}$ can be approximated by an element
of $\mathcal{G}_{o}$ in the metric $\sqrt{V^{p,\rho}}$ as accurately as one needs. To apply this to
the gradients $\nabla^{-}\xi:=\xi_{0}-\xi_{1}$ and $\nabla^{-}\eta:=\eta_{0}-\eta_{1}$ , we need the following
lemma (cf. [6]).

Lemma 6. Suppose that (1) and (2) are satisfied. Then both $\nabla^{-}\xi$

and $\nabla^{-}\eta$ are in $\mathcal{G}$ . Let $H^{P}$ and $H^{E}$ stand for the corresponding $H$ ’s
(with $I(h)=\{0,1\}$ ). Then

$\Gamma_{01}H^{P}=\xi_{0}/c_{ex}(\eta_{0})$ and $\Gamma_{01}H^{E}=\eta_{0}/c_{ex}(\eta_{0})$ if $\xi_{0}(1-\xi_{1})=1$

and $\Gamma_{01}H^{P}=0$ if $\xi_{0}(1-\xi_{1})=0$ ; moreover there exists a constant $\delta>0$

such that $\delta\leq\Gamma_{01}H^{E}\leq 1/\delta$ whenever 1 $(\eta_{0}\geq 2)\xi_{1}=1$ .

The proof of Theorem 5 may be carried out along the same lines as
in [7] or [8].

\S 4. The Least Upper Bound of Spectrum

In this section we are concerned with the Markov process whose
infinitesimal generator is $\mathcal{L}$ , a self-adjoint operator on $L^{2}(\iota/_{p,\rho})$ (see The-
orem 1). Let $P(\mathcal{X})$ be the set of all probability measures on $\mathcal{X}$ . Define
a functional $I(\mu)$ of $\mu\in P(\mathcal{X})$ by

$I(\mu)=E^{lJ}[\varphi(-\mathcal{L})\varphi]$ , where $\varphi=\sqrt{d\mu}/dl/$

if $\mu$ is absolutely continuous relative to $iJ$
$=lJ_{p,\rho}$ and $\varphi$ is in the domain

of $\sqrt{-\mathcal{L}}$ ; and $I(\mu)=\infty$ otherwise. For a local function $G$ on $\mathcal{X}$ let
$\Omega_{o}\{G+\mathcal{L}\}$ denote the least upper bound of the spectrum of the operator
$G+\mathcal{L}$ . It has the variational representation

$\Omega_{o}\{G+\mathcal{L}\}=\sup_{\mu\in 7^{\supset}(\mathcal{X})}(E^{\mu}[G]-I(\mu))$ .

Given a positive integer $n$ and $h\in \mathcal{G}$ , let $n’$ be the maximal integer
such that $\tau_{y}h\in F_{\Lambda(n)}$ if $|y|<n’$ , and define a function $G_{n}=G_{n}^{h}$ by

$G_{n}=\frac{1}{2n}\sum_{y.|y|<n’}\tau_{y}h$ .

Theorem 7. Le $h\in \mathcal{G}$ . Let the interval $I$ $=I(h)$ and the func-
tion $H$ be chosen so that

(9)
$\sum_{b\in I^{*}}(\Gamma_{b}H)^{2}c_{b}\leq A\sum_{x\in I}\eta_{x}^{K}$
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where $\eta_{x}^{K}=(\eta_{x})^{K}$ , and $A$ and $K$ are positive constants with $K\geq 1$ .
Let $G_{n}=G_{n}^{h}$ be defined as above. Also define a function $\zeta_{n}^{l}(\eta)$ for $l$ $\geq 1$

by

$\zeta_{n}^{l}(\eta)=\frac{1}{2n}$ $\sum$ $\eta_{x}^{K}1(\eta_{x}>l)$ .

$x|x|\leq n$

Then, if $\lambda\in(-1,1)$ , $J\in C_{0}^{2}(R)$ , and $C$ is a positive constant such that
$A|I|^{2}(1-2^{-K})^{-1}\leq C$ , it holds that for all $n$ , $l$ $\in N$ ,

$\varlimsup_{N\rightarrow\infty}\Omega_{o}\{\sum_{x\in Z}[N^{\lambda}J(x/N)\tau_{x}G_{n}-\frac{C}{N}J^{2}(x/N)\tau_{x}\zeta_{n}^{l}]+N^{1+2\lambda}\mathcal{L}\}$

$\leq||J||_{L^{2}}^{2}.\sup_{m,E.E/m\leq 2l}V_{n,m,E}\{h\}$ .

where $||J||_{L^{2}}^{2}=\int_{R}J^{2}d\theta$ and the supremum is taken over all couples of
positive integers $m$ and $E$ such that $m\leq E\leq 2lm$ .

Proof. The proof is divided into three steps.
Step 1. This step is quite similar to a corresponding argument in

[7], so we provide only an outline. The supremum of the spectrum $\Omega_{O}$

that is to be estimated may be given by the variational formula

$\Omega^{N}=\sup_{\mu\in P(\mathcal{X})}E^{\mu}[\sum_{x\in Z}[N^{\lambda}j_{x}\tau_{x}G_{n}-\frac{C}{N}j_{x}^{2}\tau_{x}\zeta_{n}^{l}]-N^{1+2\lambda}I(\mu)]$ .

where we put $j_{x}=J(x/N)$ .

Let $\varphi=\sqrt{d\mu/dl/}andD^{\Lambda}=\sum_{b\in\Lambda^{*}}D^{b}$ , then $I(\mu)=\sum_{b\in Z^{*}}D^{b}\{\varphi\}=$

$\frac{1}{2n}\sum_{x\in Z}D^{\Lambda(n)}\{\tau_{x}\varphi\}$ . We substitute this into the variational expression
given above. To compute the expectation appearing in it we first take the
conditional expectation conditioned on $\omega=\eta|_{\Lambda_{n}^{c}}$ . If $\mu(\cdot|\omega)$ stands for
this conditional law, then $E^{\mu}[G_{n}]$ is expressed as an integral of $F(\omega)=$

$E^{\mu(\cdot 1\omega)}[G_{n}]$ by $\mu$ . We have a similar expression for the form $D^{\Lambda(n)}\{\varphi\}$ ,
which may be naturally restricted to the space $L^{2}(\iota/^{\Lambda(n)}, \mathcal{X}_{\Lambda(n)})(\nu^{\Lambda}$ is
the product measure on $\mathcal{X}_{\Lambda}$ with the same common one-site marginal
as that of $lJ$ $=l/_{p,\rho}$ ). Rewriting $\mu$ for $\mu(\cdot|\omega)\in P(\mathcal{X}_{\Lambda(n)})$ and taking the

supremum in $\mu$ , we see that $\Omega^{N}$ is not greater than

$\frac{N^{1+2\lambda}}{2n}\sum_{x\in Z}\sup_{\mu\in 7^{\supset}(\mathcal{X}_{\Lambda(n)})}\{\frac{2n}{N^{1+2\lambda}}E^{\mu}[N^{\lambda}j_{x}G_{n}-\frac{C}{N}j_{x}^{2}\zeta_{n}^{l}]-D^{\Lambda(n)}\{\varphi\}\}$ .

Decomposing $\mathcal{X}_{\Lambda(n)}$ into the ergodic classes $\mathcal{X}_{n,m,E}$ we may express
$D^{\Lambda(n)}\{\varphi\}$ in the form $D^{\Lambda(n)}\{\varphi\}=\sum_{m}\sum_{E}p_{m,E}D_{n,m,E}\{\varphi_{m,E}\}$ , where
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$p_{m,E}=\mu(\mathcal{X}_{n,m,E})$ and $\varphi_{m,E}$ is the square root of a probability density
on $\mathcal{X}_{n,m,E}$ . As a consequence we see that if

$\Omega_{n,m,E,x}^{N}=\sup_{\mu\in \mathcal{P}(\mathcal{X}_{n,m,E})}\{\frac{2nj_{x}}{N^{1+\lambda}}E^{\mu}[G_{n}]-\frac{2nCj_{x}^{2}}{N^{2+2\lambda}}E^{\mu}[\zeta_{n}^{l}]-D_{n,m,E}\{\varphi\}\}$ ,

then

(10) $\Omega^{N}\leq\frac{N^{1+2\lambda}}{2n}\sum_{x=1}^{N}\sup_{m,E}\Omega_{n,m,E,x}^{N}$ .

Step 2. Let $\langle \cdot\rangle_{n,m,E}$ stand for the expectation by $P_{n,m,E}$ . For $H$

introduced in Definition 4 and for any $F_{\Lambda(n)}$ -measurable function $u$ , we
have the following identity

(11) $\langle u\tau_{x}h\rangle_{n,m,E}=-\frac{1}{2}\sum_{b\in I^{*}(h)}\langle\Gamma_{b+x}u\cdot\tau_{x}(c_{b}\Gamma_{b}H)\rangle_{n,m,E}$

or in terms of the Dirichlet form

(12)
$\langle u\tau_{x}h\rangle_{n,m,E}=-\sum_{b\in I^{*}(h)}D_{n,m,E}^{b+x}(u, \tau_{x}H)$

.

(Here $b+x$ is the oriented bond obtained by translating $b$ by $x.$ ) From
this it follows that

$E^{\mu}[G_{n}]=-\frac{1}{2n}\sum_{|x|<n’}\sum_{b\in I^{*}(h)}D_{n,m,E(\mathcal{T}_{x}H,\varphi)}^{b2}+x$ .

A simple computation verifies that the terms $|D_{n,m,E}^{b}(F, \varphi 2)|$ , where $ F\in$

$C(\mathcal{X}_{n,m,E})$ , are bounded by

$\sqrt{\frac{1}{2}\langle[(\Gamma_{b}F)^{2}c_{b}+(\Gamma_{b’}F)^{2}c_{b’}]\varphi^{2}\rangle_{n,m,E}}\sqrt{D_{n,m,E}^{b}\{\varphi\}}$ .

where $b^{/}$ is the bond $b$ but reversely oriented. By employing Schwarz
inequality and the assumption (9) on $H$ it therefore follows that $|E^{\mu}[G_{n}]|$

is at most

$\frac{1}{2n}$ $\sqrt{|I^{*}|D_{n,m,E}\{\varphi\}}$

$\leq\frac{|I|}{n}\sqrt{A\sum_{|x|\leq n}\langle\eta_{x}^{K}\varphi^{2}\rangle_{n,m,E}}\sqrt{D_{n,m,E}\{\varphi\}}$ .
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By the inequality $2ab-a^{2}\leq b^{2}$ this shows that

(13) $\frac{2nj_{x}}{N^{1+\lambda}}E^{\mu}[G_{n}]-D_{n,m,E}\{\varphi\}\leq\frac{A|I|^{2}j_{x}^{2}}{N^{2+2\lambda}}\sum_{|x|\leq n}\langle\eta_{x}^{K}\varphi^{2}\rangle_{n,m,E}$ .

Since $(m^{-1}\sum\eta_{x})^{K}\leq m^{-1}\sum\eta_{x}^{K}$ , the condition $E=\sum\eta_{x}>2lm$

implies the inequality $2^{-K}\sum\eta_{x}^{K}\geq l^{K}m$ , which in turn implies that

$2n\zeta_{n}^{l}=\sum\eta_{x}^{K}1(\eta_{x}>l)\geq\sum\eta_{x}^{K}-l^{K}m\geq(1-2^{-K})\sum\eta_{x}^{K}$ .

This combined with (13) shows that if the constant $C$ is chosen so that
$A|I|^{2}\leq(1-2^{-K})C$ , then

$\Omega_{n,m,E,x}^{N}\leq 0$ whenever $E/m>2l$ ,

and accordingly that the supremum over the pairs of $m$ and $E$ in (10)
may be restricted to those satisfying $E/m\leq 2l$ . Consequently

(14) $\Omega^{N}\leq\frac{N^{1+2\lambda}}{2n}\sum_{x\in Z}.\sup_{m,E\cdot E/m\leq 2l}\Omega_{n,m,E,x}^{N}$ .

Step 3. Now we apply the following estimate for the spectrum of the
Schr\"odinger type operator $L_{n,m,E}+F$ with $F\in C(\mathcal{X}_{n,m,E})$ satisfying
$\langle F\rangle_{n,m,E}=0$ :

(15) $\Omega_{o}\{F+L_{n,m,E}\}\leq\langle F(-L_{n,m,E})^{-1}F\rangle_{n,m,E}+\frac{4}{\kappa_{n}^{2}}||F||_{\infty}^{3}$ ,

where $\kappa_{n}=\kappa_{n,m,E}$ is the second eigenvalue of $-L_{n,m,E}$ (cf. $[7],[1]$ etc.).

Taking $F=(2nj_{x}/N^{1+\lambda})G_{n,m,E}$ in (15), where $G_{n,m,E}=G_{n}|_{\mathcal{X}_{n,m,E}}$ ,

$\Omega_{n,m,E,x}^{N}$ $\leq$ $\Omega_{o}\{(2nj_{x}/N^{1+\lambda})G_{n,m,E}+L_{n,m,E}\}$

$\leq$ $(2n)V_{n,m,E}\{\frac{j_{x}}{N^{1+\lambda}}h\}+\frac{4}{\kappa_{n}^{2}}\cdot[\frac{2nj_{x}||G_{n,m,E}||_{\infty}}{N^{1+\lambda}}]^{3}$

$=$ $\frac{2nj_{x}^{2}}{N^{2+2\lambda}}V_{n,m,E}\{h\}+O(\frac{1}{N^{3+3\lambda}})$ .

From (14) we thus obtain
$\varlimsup_{N\rightarrow\infty}\Omega^{N}\leq||J||_{L^{2}}^{2}.\sup_{m,E.E/m\leq 2l}V_{n,m,E}\{h\}$

, the

required bound. Q.E.D.
The next theorem is essentially a corollary of Theorem 7.
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Theorem 8. Let $h\in \mathcal{G}$ and put

$F^{N}(\eta)=\sqrt{N}\sum_{x\in Z}J(x/N)\tau_{x}h(\eta)$
.

Then there exists a constant $C$ such that for all positive constants $\beta$ and
$l$ ,

$\varlimsup_{N\rightarrow\infty}E_{eq}|\int_{0}^{T}F^{N}(\eta(N^{2}t))dt|$ $\leq$

$\beta T||J||_{L^{2}}^{2}.\sup_{p_{o},\rho_{o}\cdot\rho_{o}/p_{o}\leq l}V^{p_{\circ},\rho_{\circ}}\{h\}$

$+(\log 2)/\beta+(C\beta)/l$ .

Proof. We may replace $F^{N}$ by

$F_{n}^{N}:=\sqrt{N}\sum_{x\in Z}J(x/N)\frac{1}{2n}$ $\sum$ $\tau_{y}h$ .

$y.|y-x|<n’$

In fact if

$a_{N,n}^{x}=\frac{N}{2n^{2}}\sum_{y\cdot|y-x|<n’}[J(x/N)-J(y/N)]$ ,

then $|a_{N,n}^{x}|\leq\int_{-n/N}^{n/N}|J^{//}(s+N^{-1}x)|ds$ and the difference

$F^{N}-F_{n}^{N}=\frac{n}{\sqrt{N}}\sum_{x\in Z}^{N}a_{N,n}^{x}\tau_{x}h$

is obviously negligible under the equilibrium measure.
Introducing the random variable $X^{N}=\int_{0}^{T}F_{n}^{N}(\eta(N^{2}t))dt$ , we may

write $E_{eq}|X^{N}|$ for what to estimate. Let $K\geq 1$ be a constant for which
the condition (9) is satisfied. Let $\zeta_{n}^{l}$ be a function defined in Theorem 7
and put

$Y^{N}=\int_{0}^{T}\frac{C}{N}\sum_{x\in Z}J^{2}(x/N)\tau_{x}\zeta_{n}^{l}(\eta(N^{2}t))dt$ .

Then by Jensen’s inequality and the Feynman-Kac formula

$E_{eq}[|X^{N}|-\beta Y^{N}]$

$\leq\frac{1}{\beta}\log\max_{+,-}E_{eq}[e^{\pm\beta X^{N}-\beta^{2}Y^{N}}]+\frac{1og2}{\beta}$

$\leq\frac{T}{\beta}\max_{+,-}\Omega_{o}\{\pm\beta F^{N}-\frac{C}{N}\sum_{x\in Z}|\beta J(x/N)|^{2}\tau_{x}\zeta_{n}^{l}+N^{2}L\}+\frac{1og2}{\beta}$ .
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According to Theorems 7 and 5, if $C$ is chosen suitably large, then

$\varlimsup_{N\rightarrow\infty}E_{eq}[ |X^{N}|-\beta Y^{N}]\leq\beta T||J||_{L^{2}}^{2}\sup_{p_{o},\rho_{o}\rho_{o}/p_{o}\leq l}V^{p_{o},\rho_{o}}\{h\}+\frac{1og2}{\beta}$ .

This gives the required inequality since $E_{eq}[\beta Y^{N}]\leq C_{1}\beta/l$ . Q.E.D.

\S 5. Upper and Lower Bounds For $D(p, \rho)$

Let $\underline{\kappa}=\underline{\kappa}(p, \rho)$ and $\overline{\kappa}=\overline{\kappa}(p, \rho)$ stand for the eigen-values of $D(p, \rho)$

such that $\underline{\kappa}\leq\overline{\kappa}$ . We here prove that for some positive constants $m$ and
$M$ ,

$\frac{m}{p+(1+\lambda)^{-1}}\leq\underline{\kappa}\leq\overline{\kappa}\leq M(1+\lambda)$ $(\rho\geq p>0)$ ,

where $\lambda=\lambda(p, \rho)$ is the parameter appearing in the definition of $\nu_{p,\rho}$ .

Proof of the upper bound. We shall apply the fact that if $\hat{c}_{o}$ is a sym-
metric 2 $\times 2$ matrix and $\hat{c}_{o}\geq\hat{c}$ , then $Tr(\hat{c}_{o}\chi^{-1})\geq Tr(\hat{c}\chi^{-1})$ . Let $\langle . \rangle$

indicate the expectation under $\nu_{p,\rho}$ . Then

$\underline{\alpha}\cdot\hat{c}(p, \rho)\underline{\alpha}$ $\leq$
$\langle(\Gamma_{01}\{\alpha\xi_{0}+\beta\eta_{0}\})^{2}c_{01}\rangle$

$=$ $\langle\{\alpha\xi_{0}+\beta\eta o\}^{2}(1-\xi_{1})c_{ex}(\eta_{0})\rangle+\beta^{2}\langle\xi_{0}\xi_{1}c_{zr}(\eta_{0})\rangle$

In view of the conditions (2) and (3), $c_{ex}(\eta_{0})\leq C[c_{zr}(\eta_{0})+1(\eta_{0}=1)]$ . By
combining this with the relations $\langle c_{zr}(\eta_{0})\rangle=p\lambda$ , $\langle\eta_{0}c_{zr}(\eta_{0})\rangle=(\rho+p)\lambda$

and $\langle\eta_{0}^{2}c_{zr}(\eta_{0})\rangle=(\langle\eta_{0}^{2}\rangle+2\rho+p)\lambda$ , the last line above is dominated by
$\beta^{2}p^{2}\lambda$ plus a constant multiple of

(1-p) $[\alpha^{2}p\lambda+2\alpha\beta(\rho+p)\lambda+\beta^{2}(\langle\eta_{0}^{2}\rangle+2\rho+p)\lambda+(\alpha+\beta)^{2}\langle 1(\eta_{0}=1)\rangle]$ .

Recalling what is remarked at the beginning of this proof, noticing
$\det\chi=(p\langle\eta_{0}^{2}\rangle-\rho^{2})(1-p)$ so that

$\chi^{-1}(p, \rho)=\frac{1}{(p\langle\eta_{0}^{2}\rangle-\rho^{2})(1-p)}$ $\left(\begin{array}{ll}\langle\eta_{0}^{2}\rangle-\rho^{2} & -(1-p)\rho\\-(1-p)\rho & (1-p)p\end{array}\right)$

and carrying out simple computations, we see that

$Tr(\hat{c}\chi^{-1})\leq C_{1}[\lambda+p^{2}(\lambda^{2})(p\langle\eta_{0}^{2}\rangle-\rho^{2})^{-1}+\lambda]$ .

Since $\overline{\kappa}+\underline{\kappa}=Tr(\hat{c}\chi^{-1})$ , these yield the required upper bound, if we can
find a positive constant $\delta$ so that

(16) $ p\langle\eta_{0}^{2}\rangle-\rho^{2}\geq\delta p2\lambda$ .
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(This is certainly true for $\lambda\leq 1.$ ) To this end set $\ell=\ell(\lambda)=\max\{k$ :
$c_{zr}(k)\leq\lambda\}$ and $p_{k}=\nu_{p,\rho}\{\eta : \eta_{0}=k\}/p$ . Noticing that $p_{k+1}/p_{k}=$

$\lambda/c_{zr}(k+1)$ , we infer from $|c_{zr}(k)-c_{zr}(\ell)|\leq a_{1}|k-\ell|$ that for all
sufficiently large $\lambda$ ,

$ p_{k}\geq p\ell$ $\exp\{-a_{1}(k-\ell)^{2}/\lambda\}$ if $|k-\ell|\leq 2\sqrt{\lambda}$ ,

or, what we are about to apply, $\min\{\sum_{k<\ell-\sqrt{\lambda}}p_{k}, \sum_{k>\ell+\sqrt{\lambda}}p_{k}\}\geq\delta$

with some constant $\delta>0$ independent of $\lambda$ . Hence

$\langle\eta_{0}^{2}\rangle/p-(\rho/p)^{2}$ $=$ $E^{l/_{p,\rho}}[|\eta_{0}-\rho/p|^{2}|\eta_{0}>0]$

$\geq$ $\lambda P^{l/_{p,\rho}}[|\eta_{0}-\rho/p|\geq\sqrt{\lambda}|\eta_{0}>0]\geq\delta\lambda$ .

Thus we have shown (16).

Proof of the lower bound. Let $A=A(p, \rho)$ be a $2\times 2$ symmetric matrix
whose quadratic form is

$\underline{\alpha}$

. $A\underline{\alpha}=V\{\alpha\nabla^{-}\xi+\beta\nabla^{-}\eta\}$ .

Then $D(p, \rho)=\chi(p, \rho)A^{-1}(p, \rho)$ and it holds that $ V\{\alpha\nabla^{-}\xi+\beta\nabla^{-}\eta\}\leq$

$\langle(\Gamma_{01}\{\alpha H^{P}+\beta H^{E}\})^{2}c_{01}\rangle$ (cf. [6]), where $H^{P}$ and $H^{E}$ are functions
introduced in Lemma 6. We shall apply the inequality

(17) $\underline{\kappa}\geq\frac{\det(\chi A^{-1})}{Tr(\chi A^{-1})}=\frac{1}{E(\chi^{-1}A)}$ .

By employing Lemma 6 as well as the conditions (1) through (3) we see
that for some constant $C$ ,

$\underline{\alpha}$
. $A\underline{\alpha}$ $\leq$ $\langle(\Gamma_{01}\{\alpha H^{P}+\beta H^{E}\})^{2}c_{01}\rangle$

$\leq$ $ C\langle\frac{\xi_{0}(1-\xi_{1})}{c_{zr}(\eta_{0}+1)}(\alpha\xi_{0}+\beta\eta_{0})^{2}\rangle+C\beta^{2}\langle\xi_{1}c_{zr}(\eta_{0})\rangle$ .

One observes that the right-hand side equals $C$ times

$\alpha^{2}(1-p)\frac{p}{\lambda}(1-\frac{1}{Z_{\lambda}})+2\alpha\beta(1-p)\frac{\rho-p}{\lambda}$

$+\beta^{2}(\frac{1-p}{\lambda}\langle(\eta_{0}-\xi_{0})^{2}\rangle+p^{2}\lambda)$ .

Noticing that $Z_{\lambda}=1+\lambda/c_{zr}(2)+O(\lambda^{2})$ as $\lambda\downarrow 0$ and $\nu_{p,\rho}\{\eta_{0}=2\}=$

$p\lambda/c_{zr}(2)Z_{\lambda}$ , and applying the inequality used in the preceding proof,
we infer that

(18) $\det(\chi)R(\chi^{-1}A)\leq C’p2(1-p)\lambda$ for $0<\lambda<1$ .
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For large values of $\lambda$ we make an elementary computation (as we did for
the upper bound) to see that $\det(\chi)Tr(\chi^{-1}A)$ is at most $C$ times

$\frac{1-p}{\lambda}(2-p)(p\langle\eta_{0}^{2}\rangle-\rho^{2})+\frac{(1-p)^{2}p^{2}}{\lambda}-\frac{(1-p)p}{\lambda Z_{\lambda}}(\langle\eta_{0}^{2}\rangle-\rho^{2})+(1-p)p^{3}\lambda$ .

Hence, in view of (16),

$Tr(\chi^{-1}A)\leq C’[\frac{1}{\lambda}+p](\lambda\geq 1)$ .

This together with (17) and (18) concludes the asserted lower bound of
$\underline{\kappa}$ .
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