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We dedicate this work to Kiyosi It\^o, the “Newton of continuous
Stochastic Dynamic” , one of the most influential scholars of the last
century; the topic of this paper underlines in itsef the deep influence
that the 1976 Kyoto Symposium [12] has had on the whole subsequent
carrier of the second author who is also deeply indebted to Kiyosi It\^o

for fifty years of warm personnal relations; his attentive support ffom
the beginning to some of our scientific enterprises has been a key step
towards their international recognition.

In classical Stochastic Analysis regularity properties are time inde-
pendent : the Brownian motion is for all time H\"olderian of order $(\frac{1}{2}-\epsilon)$

regular, the tangent space to the Wiener space (i.e. the Cameron-Martin
space) is also time independent. The Stochastic Analysis on Loop groups
have recently confirmed the paradigm that regularity properties are time
independent.

It has been a surprise that regularity exponents for highly non linear
infinite dimensionnal diffusion as the canonic diffusion above Virasoro
algebra are time dependent $[2],[9]$ . We shall discuss in this paper the
status of tangent space to Virasoro diffusion; we shall exhibit a mini-
mal tangent space which is time independent; it is conceivable that the
maximal tangent space is time dependent, fact which will be established
on a toy model. The finite dimensional root of of this phenomen lies in
the fact that hypoelliptic diffusion on $R^{d}$ does not satisfy simple scaling
relation when the time goes to zero [4], [11].

Stability of interest models in Mathematical Finance are deeply af-
fected by these infinite dimensional effects.
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1. Regularity of the canonical diffusion above Virasoro alge-
bra.

The group of $C^{\infty}$ diffeomorphism of the circle $S^{1}$ , $Diffff(S^{1})$ , has for
Lie algebra $diffff(S^{1})$ the $C^{\infty}$ vector fields on $S^{1}$ ; we identify a function
$u(\theta)$ to the vector field $u(\theta)\frac{d}{d\theta}$ ; with this identication the bracket of
vector fields becomes $[u, v]=\dot{v}u-\dot{u}v$ . Complexifying the underlying
real vector space we get the following expression for this bracket in the
complex trigonometric basis :

$[e^{in\theta}, e^{im\theta}]=i(m-n)e^{i(m+n)\theta}$

Given a positive constant $c>0$ , define the bilinear antisymmetric form

$\omega_{c}(f, g):=-\frac{c}{12}\int_{S^{1}}(f^{J}+f^{(3)})gd\theta$ ;

then
$\omega_{c}([f_{1}, f_{2}], f_{3})+\omega_{c}([f_{2}, f_{3}], f_{1})+\omega_{c}([f_{3}, f_{1}], f_{2})=0$ ,

$\omega_{c}(e^{in\theta}, e^{-im\theta})=i\delta_{n}^{m}\frac{c}{6}(n^{3}-n)$ , $n>0$ .

Virasoro algebra is defined as $\mathcal{V}_{c}:=R\oplus diff(S^{1})$ with the following
bracket :

$[\xi\kappa+f, \eta\kappa+g]:=\omega_{c}(f, g)\kappa+[f, g]$ .

Brownian motion on Diff $(S^{1})$ .

Define the Hilbertian metric $\frac{3}{2}$ by :

$||\emptyset||_{H^{g}}^{2}2=\sum_{n>1}(n^{3}-n)(a_{n}^{2}+b_{n}^{2})$
, $\phi(\theta)=\frac{1}{2}a_{0}+\sum_{n=1}^{+\infty}(a_{n}\cos n\theta+b_{n}\sin n\theta)$ ;

define

$e_{n}$ : $R^{2}\mapsto diffff(S^{1})$ , $e_{n}(\xi)=\frac{1}{\sqrt{n^{3}-n}}(\xi^{1}\cos n\theta+\xi^{2}\sin n\theta)$ , $n>1$ .

Let $X_{k}$ be independent copies of Wiener space of the $R^{2}$ -valued
Brownian motion; define $X=\otimes X_{k}$ and consider the Stratonovich
SDE:

$dg_{x}(t)=(\sum_{k>1}e_{k}(dx_{k}(t)))og_{x}(t)$ , $gx(O)=Identity$
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$dg_{x}(rt)=(\sum_{k>1}r^{k}e_{k}(dx_{k}(t)))og_{x}^{r}(t)$ , $g_{x}^{r}(0)=Identity$ ;

then, $gx(t)$ eDiff $(S^{1})\forall r<1$ .

Theorem. [2], [9].

Denote $H^{\beta}(S^{1})$ the group of homemorphism of $S^{1}$ , with an H\"olderian

modulus of continuity $\beta$ , then

$\lim_{r\rightarrow 1}g_{x}^{r}(t):=g_{x}(t)\in H^{\beta(t)}(S^{1})$ , $a.s.$ ,

$\beta(t)=\frac{1-\sqrt{1-e^{-\frac{t}{2}}}}{1+\sqrt{1-e^{-\frac{t}{2}}}}$ .

The laws $\iota/_{t}$ of $g_{x}(t)$ satisfy $lJ_{t}*\iota/_{t’}=\iota\nearrow t+t’$ .
Remark. The composition of two homemorphisms of H\"olderian expo-
nents $\gamma$ , $\gamma^{/}$ can have an H\"olderian exponent as worst as $\gamma\gamma^{/}$ : this fact
explains the exponential decrease of $\beta(t)$ when $\rightarrow+\infty$ .

It is obvious that the metric used to construct the Brownian mo-
tion degenerates on the vector fields $\cos\theta$ , $\sin\theta$ , 1. The Lie subagebra
generated by these three vector fields is isomorphic to $sl(2, R)$ ; the cor-
responding subgroup $\Gamma$ of $Diffff(S^{1})$ is the restriction to the circle of the
group of M\"obius transformations of the unit disk.

It had be shown [1] that $\mathcal{M}_{1}:=Diffff(S^{1})/\Gamma$ is an homogeneous Rie-
mannian manifold, that the Hilbert transform on the circle pass to the
quotient and defines an integrable almost complex structure for which
$\mathcal{M}_{1}$ becomes an homogeneous K\"ahler manifold. Denote $\pi$ : $Diffff(S^{1})\rightarrow$

$\mathcal{M}_{1}$ , then $\pi(g_{x}^{-1}(t))$ is the Brownian motion on $\mathcal{M}_{1}$ and defines the heat
semi-group on function on $\mathcal{M}_{1}$ . This section will prove the backward
regularity of this heat semi-group.

Background of finite dimensional Stochastic Riemannian Ge-
ometry.

Denote by $M$ a Riemannian manifold of dimension $d$ ; a frame $r$

is a Euclidean isomorphism of $R^{d}$ onto the tangent plane $T_{\pi(r)}(M)$ ; the

collection of all ffames on $M$ is a smooth manifold $O(M)$ on which the or-
thogonal group operates on the right : this is the bundle of orthonormal

frames. The Levi-Civita connection defines on $O(M)$ a parallelism that

is a canonical differential form of degree 1, with values in $R^{d}\oplus R^{d}\otimes_{a}R^{d}$

let $\omega=(\dot{\omega},\dot{\omega})$ . Riemannian geometry is encompassed in the Darboux-
Cartan structural equations :

$<A\wedge B$ , $d\dot{\omega}>=\ddot{\omega}(A)\dot{\omega}(B)-\dot{\omega}(B)\dot{\omega}(A)$ ,
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$<A\wedge B$ , $d\dot{\omega}>=\dot{\omega}(A)\dot{\omega}(B)-\dot{\omega}(B)\dot{\omega}(A)+\Omega(\dot{\omega}(A),\dot{\omega}(B))$ ,

where $\Omega$ is the Riemann curvature tensor.
Given an $R^{d}$ valued brownian motion $x(\tau)$ the horizontal diffusion

is defined by the Stratonovitch SDE

$<dr_{x},\dot{\omega}>=dx$ , $<dr_{x},\ddot{\omega}>=0$ , $r_{x}(0)=r_{0}$ ,

where $r_{0}\in O(M)$ is fixed. The It\^o parallel transport is the isometry

$t_{0-\tau}^{x}$ : $T_{\pi(r_{x}(\tau)}(M)\mapsto T_{\pi(r_{0})}(M)$ defined by $t_{0-\tau}^{x}=r_{x}(0)o(r_{x}(\tau))^{-1}$ .

A variation induces $x\mapsto x+\epsilon\tilde{\zeta}$ induces a variation of the path $(\zeta, \rho)$

defined by

$\zeta(\tau):=<\frac{dr^{\epsilon}(\tau)}{d\epsilon_{=0}},\dot{\omega}>$ , $\rho(\tau):=<\frac{dr^{\epsilon}(\tau)}{d\epsilon_{=0}}$ , $\dot{\omega}>$ , $r^{\epsilon}(\tau):=r_{x+\epsilon}(\tau)$ .

These two variations are linked by the two following key SDE [6], [10],
[7], [14], the first being an It\^o SDE, the second a Stratonovitch SDE :

(1.1) $d\tilde{\zeta}=d\zeta-\frac{1}{2}Ricci(\zeta)d\tau-\rho dx$ , $d\rho=\Omega(\zeta, odx)$ .

Two parallel transports on $\mathcal{M}_{1}$ .
We follow Bowick-Lahiri [5]. We have on $\mathcal{M}_{1}$ two connections :

the Levi-Civita connection $\nabla_{X}$ and the connection $\mathcal{L}_{X}$ induced by the
leffi invariant Maurer-Cartan form on $Diffff(S^{1})$ ; we introduce a tensorial
operator on $T_{0}(\mathcal{M}_{1})$ defined by

$\phi_{X}=\mathcal{L}_{X}-\nabla_{X}$

The operator $\phi$ , extended to the complexification, has the following ex-
pression in the complex trigonometric basis :

(1.2) $\phi_{e^{ir\theta}}(e^{iq\theta})=i(r-q)\ominus(-q-r)$ , $r>1$ ,

where $\Theta(t):=1_{[0,+\infty[}$ is the Heaviside function. For $s<-1$ we prolon-

gate $\phi_{*}$ by requiring hermitian symmetry : $\phi_{e^{i\epsilon\theta}}:=(\phi_{e^{-is\theta}})^{*}$ .
Then the Riemannian curvature of $\mathcal{M}_{1}$ can be expressed in terms

of the operator $\phi_{*}$ by

$\Omega(X, Y)=[\nabla_{X}, \nabla_{Y}]-\nabla[X,Y]=[\phi x, \phi_{Y}]-\phi[X,Y]$ ,

the last identity results from $[\mathcal{L}_{X}, \mathcal{L}_{Y}]-\mathcal{L}_{[X,Y]}=0$ together with $[\mathcal{L}_{X},\nabla_{Y}]$

$=\nabla_{[X,Y]}$ identity coming ffom the invariance of the K\"ahlerian metric
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under the left action of Diff $(S^{1})$ . The curvature tensor is of $trace$ class
[5], and its $trace$ is

(1.3) Ricci $=-\frac{13}{6}\times Identity$

Lemma.
Denote $V_{q}$ the space generated by $\cos k\theta$ , $\sin k\theta$ , $k\in[2, q]$ then the

operators $\phi_{*}$ preserve $V_{q}$ and are nilpotent on $V_{q}$ .

Denote $\eta_{n}(\xi)=\tilde{\phi}_{e_{n}(\xi)}$ , $\xi\in R^{2}$ , where $\tilde{\phi}_{X}$ is the matrix associated

to $\phi_{X}$ in the real trignometric basis $(n^{3}-n)^{-\frac{1}{2}}\cos n\theta$ , $(n^{3}-n)^{-\frac{1}{2}}\sin n\theta$ .
Theorem

The matrix Stratonovich $SDE$

(1.4) $M_{t}=\mathcal{U}_{t}o(-\sum_{k>1}\eta_{k}(dx_{k}(t)))$ , $\mathcal{U}_{0}=Identity$

has a unique solution and $\mathcal{U}_{t}$ is a unitary matrix.
Proof.

The restriction to $V_{q}$ of this SDE is equivalent to an SDE which is
driven only by $2q$ Brownian motion; this SDE which is solvable by the
finite dimensional theory $o$

Backward regularity. (Minimal tangent space)
Theorem.

Given $z$ such that $||z||_{H^{\frac{3}{2}}}<\infty$ then, for a generic test function $\Phi$

defined on $\mathcal{M}_{1}$ ,

(1.5) $|\frac{d}{d\epsilon_{=0}}E((\pi^{*}\Phi)(\exp(\epsilon z)g_{x}(t))))|^{2}$

$\leq\frac{13}{6(1-\exp(-\frac{13}{6}t)}||z||^{2}H^{\frac{3}{2}}E(|\pi^{*}\Phi(g_{x}(t))|^{2})$ .

Proof.
We follow the strategy that Driver [8] developped in the case of Loop

groups making the change of variables

$y_{t}=\int_{0}^{t}\mathcal{U}_{s}dx(s)$ ;

then $y_{t}$ is a new brownian motion to which we can apply the finite dimen-
sional Riemannian geometry because the curvature operator preserves
the $V_{q}$ $\blacksquare$
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2. Infinite dimensional non autonomous Riemannian metrics.

Consider a group $G$ of dimension finite or infinite; for instance $G$

could be the group of diffeomorphism of a compact manifold, case which
includes the theory of Stochastic Flows.

We consider a left invariant diffusion on $G$ ; denote by $\triangle=\frac{1}{2}\sum_{k\geq 1}\partial_{A_{k}}^{2}$

$+\partial_{A_{0}}$ its infinitesimal operator where the $A_{k}$ are left invariant vector
field on $G$ ; denote by $\nabla$ the corresponding gradient : $\nabla\phi*\nabla\psi:=$

$\triangle(\phi\psi)-\phi\triangle\psi-\psi\triangle\phi$ .
We denote by $p_{T}(dg)$ the law of the process starting from the iden-

tity. Given a tangent vector at the identity $z$ define the “logarithmic
derivative” of $p_{T}$ by the identity

(2.1) $\frac{d}{d\epsilon_{=0}}E(\Phi(\exp(\epsilon z)g_{x}(T))=E(K_{z,,,T}(g_{x}(T))\Phi(g_{x}(T)))$ ,

where $\Phi$ is a generic test function.
For all $T>0$ define a Hilbertian norm by

(2.1) $||z||_{T}^{2}:=E(|K_{z,,,T}(g_{x}(T))|^{2}))$ .

Theorem.

If $T<T^{/}$ then

(2.3) $||z||_{T’}\leq||z||_{T}$ .

Proof.
For $\eta>0$ define $\Psi(g):=E_{g_{x}(T)=g}(\Phi(g_{x}(T+\eta))$ , then

$E(\Phi(\exp(\epsilon z)g_{x}(T+\eta))=E(E^{N_{T}}(\Phi(\exp(\epsilon z)g_{x}(T+\eta))$

$=E(\Psi(\exp(\epsilon z)g_{x}(T)))$ ;

differentiating relatively to $\epsilon$ we obtain

$E(K_{z,,,T+\eta}(g_{x}(T+\eta))\Phi(g_{x}(T+\eta)))=E(K_{z,,,T}(g_{x}(T))\Psi(g_{x}(T)))$ ,

letting $\eta\rightarrow 0$ we write $\simeq equalities$ modulo $o(\epsilon)$ ; then by It\^o calculus :

$K_{z,,,T+\eta}(g_{x}(T+\eta)-K_{z,,,T}(g_{x}(T)\simeq\eta(\frac{\partial K}{\partial T}+\triangle K)+\nabla K*(x(T+\eta)-x(T))$

$\Psi(g)-\Phi(g)\simeq\eta\triangle\Phi(g)$ ,

$\Phi(g_{x}(T+\eta))\simeq\Phi(g_{x}(T))+\eta(\triangle\Phi(g_{x}(T)))+\nabla\Phi*(x(T+\eta)-x(T))$
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$\frac{1}{\eta}E^{N_{T}}(K_{z,,,T+\eta}(g_{x}(T+\eta))\Phi(g_{x}(T+\eta)))-(K_{z,,,T}(g_{x}(T))\Phi(g_{x}(T)))$

$\simeq\Phi(\frac{\partial K}{\partial T}+\triangle K)+K\triangle\Phi+\nabla\Phi*\nabla K$ ;

$\frac{1}{\eta}E(K_{z,,,T+\eta}(g_{x}(T+\eta))\Phi(g_{x}(T+\eta)))-(K_{z,,,T}(g_{x}(T))\Phi(g_{x}(T)))$

$\simeq\Phi(\frac{\partial K}{\partial T}+\triangle K)+K\triangle\Phi+\nabla\Phi*\nabla K)-K\triangle\Phi$

(2.4) $E(\Phi(\frac{\partial K}{\partial T}+\triangle(K))+\nabla K*\nabla\Phi)=0$ .

From the other hand

$\frac{\partial}{\partial T}E[(K_{T}(g))^{2})]=E[\triangle(K_{T}^{2})+\frac{\partial K_{T}^{2}}{\partial T}]$

$=E[2K_{T}(\frac{\partial K}{\partial T}+\triangle(K_{T}))+\nabla K_{T}*\nabla K_{T})]=-E[\nabla K_{T}*\nabla K_{T}]<0$ ,

the last equality is obtained by applying (2.4) with $\Phi=K_{T}$

Consider now the ffee Lie algebra $\mathcal{G}$ generated by $d$ vector fields
$A_{1}$ , $\ldots A_{d}$ ; denote $G$ the infinite dimensional group associated. Denote
$x$ a $d$-dimensional Brownian motion and define on $G$ the process by the
following Stratanovitch SDE

$dg_{x}(t)=g_{x}(t)o\sum_{k=1}^{d}A_{k}dx^{k}(t)$ , $g_{x}(0)=Identity$

denote $\prime\mu_{T}$ the completion of $\mathcal{G}$ for the norm $||z||_{T}$ .

Theorem. For $T\neq T’$ , we have
(2.5)
$H_{T}\neq\prime\mu_{T’}$ , which means the inequivalence of the corresponding norms.

Proof.
We shall use the Ben-Arous expansion [3] ( see Theorem 15)

$g_{x}(t)=\exp(\sum_{m=1}^{\infty}\sum_{J\in\sigma_{m}}M_{J}(t)U^{J})$

where $A^{J}:=[A_{j_{1}}$ , [ $A_{j_{2}}$ , $\ldots$ , $[A_{j_{n-1}}, A_{j_{\mathfrak{n}}}]$ , where $\sigma_{m}$ denotes a maximal

subset of $[1, d]^{m}$ such that the $A^{J}$ are linearly independent in $\mathcal{G}$ and
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where iterated integrals $M_{J}$ have been constructed by Meyer and are
mutually orthogonal in $L^{2}$ . We decompose

$z=\sum_{m=1}^{\infty}z_{m}$ ,
$z_{m}=\sum_{J\in\sigma_{m}}c_{J}A^{J}$

.

Lemma.

(2.6) $||z||_{T}^{2}=\sum_{m=1}^{\infty}||z_{m}||_{T}^{2}$

By the rescaling of Meyer integrals we have

$||z_{m}||_{T}^{2},$ $=[\frac{T}{T},]^{m}||z_{m}||_{T}^{2}$

relation which shows the inequivalence of the two norms

3. Instability ofHeath-Jarrow-Merton model of interest rates.

All long terms loans (States bounds, mortgages, companies bounds)
are appearing on a single market, the “ zero coupon default ffee bonds
market”. Every day it is possible to buy bonds at any maturity between
1 up to 360 months; for each maturity the market gives a price; all
these prices can be summarized by a single positive function $r_{t}(x)$ the
instantaneous forward rate such that the discount price today of a 1
dollar bound paid in five years is equal to

$\exp(-\int_{0}^{60}r_{t}(x)dx)$ .

The associated configuration space $C$ is $(R^{+})^{360}$ .

The HJM model replace the $C$ by the space of continuous positive
functions $r_{t}(x)$ , $x\in[0,360]$ and propose that “for the risk ffee measure”
the interest rate curve dynamic can be described by the following It\^o

SDE, driven by $q$ independent Brownian motion $W^{*}(t)$ ,

$dr_{t}(x)=(\frac{\partial r_{t}(x)}{\partial x}+Z_{t}(x))dt+\sum_{k=1}^{q}\phi_{k,,,t}(x)dW^{k}(t)$ ,

(3.1) $Z_{t}(x)=\sum_{k=1}^{q}\phi_{k,,,t}(x)\int_{0}^{x}\phi_{k,,,t}(s)ds$ .
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This HJM modell can be mathematically established under the two gen-
eral assumptions : market where an agent cannot increase his wealth
without risk (arbitrage free) and market variations ffee ffom jumps.

A practical fact is that the variance injected in the equation is very
low : $q\leq 4$ . This means that the operator associated with the SDE
(3.1) is an hypoellitic operator driven by at most four vectors fields in $a$

Euclidean space of large dimension.

Consider the Stochastic flow $U_{t-t_{0}}^{W}$ defined as $U_{t-t_{0}}^{W}(r_{0})$ being the

solution of (3.1) for $r_{W}(t_{0})=r_{0}$ . Denote by $J_{t-t_{0}}^{W}$ the Jacobian of the

flow $U_{t-t_{0}}^{W}$ which is defined by solving the linearized SDE.
Greeks means the reaction of the market at an infinitesimal pertu-

bation $\delta_{0}$ of $r_{0}$ appearing at time $t_{0}$ , $W^{*}(s)-W^{*}(t_{0})$ , $s\geq t_{0}$ being
fixed :

$\frac{d}{d\epsilon_{\epsilon=0}}U_{t-t_{0}}^{W}(r_{0}+\epsilon\delta_{0})=J_{t-t_{0}}^{W}(\delta_{0}):=\delta^{W}(t)$ ,

is called the Greek propagation.
Every trader can buy or sell european options which is a contract

by which the seller obliges himself to pay at maturity $T$ an amount of
money equal to $F(r_{T})$ . The option is called digital if the function $F$ is
discontinuous.

Sensitivities at the option $F$ is defined

$\frac{d}{d\epsilon_{\epsilon=0}}E(F(U_{T-t_{0}}^{W}(r_{0}+\epsilon\delta_{0}))=E(<dF, J_{T-t_{0}}^{W}(\delta_{0})>)$ .

Sensitivities regularization for digital european options
Denote $C$ the vector space of all possible infinitesimal pertubation

$\delta_{0}$ of the market at time $t_{0}$ ; consider the Hilbertian norm $||\delta||_{T,,,t_{0}}$ defined
in (2.2) and denote $C_{t_{0},,,T}$ the corresponding Hilbert space then

$|\frac{d}{d\epsilon_{\epsilon=0}}E(F(U_{T-t_{O}}^{W}(r_{0}+\epsilon\delta))|\leq||\delta||_{T,,,t_{0}}(E(|F(r_{W}(T)|^{2}))^{\frac{1}{2}}$

Compartimentage Principle.
“Generically” the sequence of Hilbert spaces $C_{T,,,t_{0}}$ is strictly increas-

ing relatively the parameter $T$ and strictly decreasing relatively to the
parameter $t_{0}$ .
Hedging

The Clark-Ocone-Karatzas formula
(3.2)

$F(r_{W}(T))-E(F(r_{W}(t_{0})))=\sum_{k=1}^{q}\int_{t_{0}}^{T}E^{F_{s}}(D_{s,,,k}(F(r_{W}(T)))dW^{k}(s)$
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gives a realization of the option along each trajectory. The corresponding
strategy of replication, consist for the trader to balance at each time $t$

his portfolio according the infinitesimal observed variation of the driving
Brownian $W^{k}(t+\epsilon)-W^{k}(t)$ , multiply by $E^{F_{s}}(D_{s,,,k}(F(r_{W}(T))$ .

The formula (3.2) is a specialization of the general It\^o theorem say-
ing that any random variable of zero expectation is representable by a
Stochastic integral; at this level of generality the integrand is only in
$L^{2}([t_{0}, T])$ on each trajectory. As the financial replication of the option
is given by this integrand, it is impossible to realize this replication if
this integrand is not at least continuous; otherwise instabilities appear.

3.3. Theorem [13].
Denote $\Theta$ the stopping time such that

$ J_{t_{0}-t}^{W}(\Phi_{k}(r_{W}(t)))\in C_{T,,,t}\forall t\leq\Theta$ , $\forall k\in[1, q]$ ;

then $E^{F_{\Theta}}(F(r_{W}(T)))$ is replicable by a stable Clark-Ocone-Karatzas for-
mula.
Proof.

$E^{F_{s}}(D_{s,,,k}(F(r_{W}(T)))=E(<dF, J_{T-s}^{W}(\Phi_{k}(r_{W}(s))>)$

Consequence : Traders must try to sale digital options before the stop-
ping time $\Theta$ .
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Invariant Measures for a Stochastic Porous
Medium Equation

Giuseppe Da Prato and Michael R\"ockner

Abstract.

We prove the existence of (. finitesimally) invariant measures
for a stochastic version of the porous medium equation (of exponent
$m=3)$ with Dirichlet Laplacian on an open set in $\mathbb{R}^{d}$ .

\S 1. Introduction

The porous medium equation

(1.1) $\frac{\partial X}{\partial t}=\triangle(X^{m})$ , $m\in \mathbb{N}$ ,

on a bounded open set $D\subset \mathbb{R}^{d}$ has been studied extensively. We refer
to [1] for both the mathematical treatment and the physical background
and also to [2, Section 4.3] for the general theory of equations of such
type.

In this paper we are interested in a stochastic version of (1.1).
Throughout this paper we assume

(H1) $m=3$ .

We believe our approach can be extended for other odd values of $m$ , but
this would require a technically much more complicated proof. To avoid
the latter and to explain the main idea we restrict to the above case.

We consider Dirichlet boundary conditions for the Laplacian $\triangle$ . So,
the stochastic partial differential equation we would like to analyze for
suitable initial conditions is the following:

(1.2) $dX(t)=\triangle(X^{3}(t))dt+\sqrt{C}dW(t)$ , $t$ $\geq 0$ .

Received April 15, 2003.
2000 Mathematics Subject Classification AMS : $76S05,35J25,37L40$ .
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As in [3], where similar equations were studied (but with $x\rightarrow x^{3}$ replaced
by some $\beta$ : $\mathbb{R}\rightarrow \mathbb{R}$ of linear growth, satisfying, in particular, $\beta’\geq c>$

$0)$ , it turns out that the appropriate state space is $H^{-1}(D)$ , i.e. the dual
of the Sobolev space $H_{0}^{1}:=H_{0}^{1}(D)$ . Below we shall use the standard
$L^{2}(D)$ dualization $\langle\cdot, \cdot\rangle$ between $H_{0}^{1}(D)$ and $H=H^{-1}(D)$ induced by
the embeddings

$H_{0}^{1}(D)\subset L^{2}(D)^{/}=L^{2}(D)\subset H^{-1}(D)=H$

without further notice. Then for $x\in H$

$|x|_{H}^{2}=\int_{D}(-\triangle)^{-1}x(\xi)x(\xi)d\xi$

and for the dual $H^{/}$ of $H$ we have $H^{/}=H_{0}^{1}$ .
$(W_{t})_{t\geq 0}$ is a cylindrical Brownian motion in $H$ and $C$ is a positive

definite bounded operator on $H$ of $trace$ class. To be more concrete
below we assume:

There exists $\lambda_{k}$ , $k\in[0, +\infty)$ , $k\in \mathbb{N}$ , such that for the eigenbasis
(H2) $\{e_{k}|k\in \mathbb{N}\}$ of $\triangle$ (with Dirichlet boundary conditions) we have

$Ce_{k}=\sqrt{\lambda_{k}}e_{k}$ for $dl$ $k\in \mathbb{N}$ .

For $\alpha_{k}:=\sup_{\xi\in D}|e_{k}(\xi)|^{2}$ , $k\in \mathbb{N}$ , we have

(H3)
$ K:=\sum_{k=1}^{\infty}\alpha_{k}\lambda_{k}<+\infty$ .

Our aim in this paper is to construct invariant measures for (1.2). Exis-
tence of solutions to (1.2) will be studied in another paper. To formulate
what is meant by “invariant measure” without refering to a solution of
(1.2) we need to consider the generator, also called Kolmogorov operator,
corresponding to (1.2).

Applying It\^o’s formula (on a heuristic level) to (1.2) one finds what
the corresponding Kolmogorov operator, let us call it $N_{0}$ , should be,
namely

(1.3) $N_{0}\varphi(x)=\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}D^{2}\varphi(e_{k}, e_{k})+D\varphi(x)(\triangle(x^{3}))$ , $x\in H$ ,

where $ D\varphi$ , $ D^{2}\varphi$ denote the first and second Pr\’echet derivatives of $\varphi$ :
$H\rightarrow \mathbb{R}$ . So, we take $\varphi\in C_{b}^{2}(H)$ .

In order to make sense of (1.3) one needs that $\triangle(x^{3})\in H$ at least
for “relevant” $x\in H$ . Here one clearly sees the difficulties since $x^{3}$ is,
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of course, not defined for any Schwartz distribution in $H=H^{-1}$ , not to
mention that it will not be in $H_{0}^{1}(D)$ . An invariant measure for (1.2) is
now defined “infinitesimally” (cf. [4]), without having a solution to (1.2),
as the solution to the equation

(1.4) $N_{0}^{*}\mu=0$

with the property that $\mu$ is supported by those $x\in H$ for which $x^{3}$

makes sense and $\triangle(x^{3})\in H$ . (1.4) is a short form for

(1.5) $N_{0}\varphi\in L^{1}(H, \mu)$ and $\int_{H}N_{0}\varphi d\mu=0$ for all $\varphi\in C_{b}^{2}(H)$ .

Any invariant measure for any solution of (1.2) in the classical sense will
satisp (1.4).

In \S 2 we construct a solution $\mu$ to (1.4) and prove the necessary
support properties of $\mu$ , more precisely, that for all $M$ $\in \mathbb{N}$ , $M$ $\geq 2$ ,

$\mu(\{x\in L^{2}(D)|x^{M}\in H_{0}^{1}\})=1$ ,

so that $N_{0}$ in (1.3) is $\mu-a.e$ . well defined for all $\varphi\in C_{b}^{2}(H)$ . We rely on
results in [3] which we apply to suitable approximations, i.e. the function
$x\mapsto x^{3}$ is replaced by

$\beta_{\Xi}(x):=\frac{x^{3}}{1+\epsilon x^{2}}+\in x$ , $\in\in(0,1]$ ,

to which the results in [3] apply.

\S 2. Existence of an infinitesimal invariant measure

Throughout this section $(H1)-(H3)$ are still in force. So, we first
consider the following approximations for the Kolmogorov operator $N_{0}$ .

For $\in\in(0,1]$ we define for $\varphi\in C_{b}^{2}(H)$ , $x\in L^{2}(D)$ such that $\beta_{\epsilon}(x)\in H_{0}^{1}$

$(2.1)$ $N_{\Xi}\varphi(x):=\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}D^{2}\varphi(x)(e_{k}, e_{k})+D\varphi(x)(\triangle\beta_{\Xi}(x))$ ,

where

(2.2) $\beta_{\Xi}(r):=\frac{r^{3}}{1+\in r^{2}}+\in r$ , $r\in \mathbb{R}$ .

We note that $\beta_{\Xi}$ is Lipschitz and recall the following result ffom [3] which
is crucial for our further analysis, see [3, Theorems 3.1, 3.9, Remark 3.1].
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Theorem 2.1. $Let\in\in(0,1]$ . Then there exists a probability mea-
sure $\mu_{\Xi}$ on $H$ such that

(2.3) $\mu_{\Xi}(H_{0}^{1})=1$ ,

(2.4) $\int_{H}|x|_{H_{0}^{1}}^{2}\mu_{\epsilon}(dx)<+\infty$ ,

(2.5) $\int_{H}|\beta_{\Xi}|_{H_{0}^{1}}^{2}d\mu_{\epsilon}=\int_{H}|\triangle\beta_{\epsilon}|_{H}^{2}d\mu_{\Xi}<+\infty$

and

(2.6) $\int_{H}N_{\Xi}\varphi d\mu_{\Xi}=0$ for all $\varphi\in C_{b}^{2}(H)$ .

Remark 2.2. (i). In [3] only

$\mu_{\Xi}(\{x\in L^{2}(D)|\beta_{\in}(x)\in H_{0}^{1}\})=1$

was proved. But since $\beta_{\Xi}(0)=0$ , $\beta_{\Xi}(\mathbb{R})=\mathbb{R}$ , and

(2.7) $\beta_{\epsilon}^{J}(r)=r^{2}\frac{3+\epsilon r^{2}}{(1+\epsilon r^{2})^{2}}+\in\geq\in$ for all $r\in \mathbb{R}$ ,

it follows that the inverse $\beta_{\epsilon}^{-1}$ of $\beta_{\Xi}$ is Lipschitz with $\beta_{\Xi}^{-1}(0)=0$ , so
$\beta_{\epsilon}(x)\in H_{0}^{1}$ is equivalent to $x\in H_{0}^{1}$ and (2.4) follows ffom (2.5), since

$|\nabla x|=|\nabla\beta_{\in}^{-1}(\beta_{\Xi}(x))|\leq\in-1|\nabla\beta_{\Xi}(x)|$ .

We thank V. Barbu for pointing this out to us.
(ii) By Theorem 2.1 we have that $N_{\epsilon}\varphi(x)$ is well defined for $\mu_{\epsilon}-a.e$ .

$x\in H$ .

For $N\in \mathbb{N}$ we define

$P_{N}x=\sum_{k=1}^{N}\langle x, e_{k}\rangle_{k}e_{k}$ , $x\in H$ .

Note that, since $\{e_{k}|k\in \mathbb{N}\}$ is the eigenbasis of the Laplacian we have
that the respective restriction $P_{N}$ is also an orthogonal projection on
$L^{2}(D)$ and $H_{0}^{1}$ and on both spaces $(P_{N})_{N\in N}$ also converges strongly to
the identity.

The first new result on $\mu_{\Xi},$ $\in\in(0,1]$ , is the following:
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Proposition 2.3. $\{\mu_{\in}, \in\in(0,1]\}$ is tight on H. For any weak
limit point $\mu$

$\int_{H}|x|_{L^{2}(D)}^{2}\mu(dx)\leq\int_{D}1d\xi+\frac{1}{2}RC$ .

In particular, $\mu(L^{2}(D))=1$ .

Proof. For $n\in \mathbb{N}$ let $\chi_{n}\in C^{\infty}(\mathbb{R})$ , $\chi_{7L}(x)=x$ on $[-n, n]$ , $\chi_{n}(x)=$

$(n+1)sign$ $x$ , for $x\in \mathbb{R}\backslash [-(n+2), n+2]$ , $0\leq\chi_{n}’\leq 1$ and $\sup_{n\in N}|\chi_{n}^{\prime/}|<$

$+\infty$ . Define for $n$ , $N\in \mathbb{N}$

$\varphi_{N,n}(x):=\frac{1}{2}\chi_{n}(|P_{n}x|_{H}^{2})$ .

Then $\varphi_{N,r\iota}\in C_{b}^{2}(H)$ and for $x\in H$

$N_{\epsilon}\varphi_{N,n}(x)$ $=$ $\frac{1}{2}\sum_{k=1}^{N}\lambda_{k}[2\chi_{n}^{/\prime}(|P_{n}x|_{H}^{2})\langle P_{N}x, e_{k}\rangle_{H}^{2}+\chi_{n}^{J}(|P_{n}x|_{H}^{2})]$

$+\chi_{n}^{J}(|P_{n}x|_{H}^{2})\langle P_{N}x, \triangle\beta_{\Xi}(x)\rangle_{H}$ .

Hence integrating with respect to $\mu_{\Xi}$ , by (2.6) we find

$\int_{H}\chi_{7\iota}^{/}(|P_{n}x|_{H}^{2})\langle P_{N}x, \beta_{\in}(x)\rangle_{L^{2}(D)}\mu_{\Xi}(dx)$

$=\frac{1}{2}\sum_{k=1}^{N}\lambda_{k}\int_{H}[2\chi_{n}^{J/}(|P_{n}x|_{H}^{2})\langle P_{N}x, e_{k}\rangle_{H}^{2}+\chi_{n}^{/}(|P_{7\iota}x|_{H}^{2})]\mu_{\epsilon}(dx)$

$\leq\frac{1}{2}\sum_{k=1}^{N}\lambda_{k}+\sup_{k\in N}\lambda_{k}\int_{H}|\chi_{n}^{/\prime}(|P_{n}x|_{H}^{2})||P_{N}x|_{H}^{2}\mu_{\Xi}(dx)$ .

For all $n\in \mathbb{N}$ the integrand in the left hand side is bounded by

$1_{\{|P_{n}x|_{H}^{2}\leq n+2\}}|P_{N}x|_{H}|\beta_{\Xi}(x)|_{H_{0}^{1}}$ ,

and similar bounds for the integrand in the right hand side hold. There-
fore, (2.5) and Lebesgue’s dominated convergence theorem allow us to
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take $ N\rightarrow\infty$ and obtain

$\int_{H}\chi_{n}^{J}(|x|_{H}^{2})\langle x, \beta_{\Xi}(x)\rangle_{L^{2}(D)}\mu_{\Xi}(dx)$

$\leq\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}+\sup_{k\in N}\lambda_{k}\int_{H}|\chi_{n}^{//}(|x|_{H}^{2})||x|_{H}^{2}\mu_{\Xi}(dx)$ .

$\leq\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}+\sup_{k\in N}\lambda_{k}\int_{\{|x|_{H}^{2}\geq n\}}|x|_{H}^{2}\mu_{\Xi}(dx)$ .

Hence taking $ n\rightarrow\infty$ by (2.4) and using the definition (2.2) of $\beta_{\Xi}$ we
arrive at

$\int_{H}\int_{D}(\frac{x^{4}(\xi)}{1+\epsilon x^{2}(\xi)}+\in x^{2}(\xi))d\xi\mu_{\in}(dx)\leq\frac{1}{2}EC$ .

$Since\in\in(0,1]$ , this implies

(2.8) $\int_{H}|x|_{L^{2}(D)}^{2}\mu_{\Xi}(dx)\leq\int_{D}(1+\frac{x^{4}(\xi)}{1+x^{2}(\xi)})d\xi\mu_{\in}(dx)$

$\leq\int_{D}1d\xi+\frac{1}{2}$ Tr $C$ .

Since $L^{2}(D)\subset H$ is compact, this implies that $\{\mu_{\Xi}|\in\in(0,1]\}$ is tight on
$H$ . Since the map $x\rightarrow|x|_{L^{2}(D)}^{2}$ is lwer semicontinuous and nonnegative

on $H$ all assertions follow. $\square $

Later we need better support properties of $\mu$ . Therefore, our next
aim is to prove the following:

Theorem 2.4. Let $(H1)-(H3)$ hold. Then:

(i) For all $M\in \mathbb{N}$ , $M$ $\geq 2$ , there exists a constant $C_{M}=C_{M}(D, K)$

$>0$ such that

$\sup_{\in\in(0,1]}\int_{H}\int_{D}x^{2(M-1)}(\xi)|\nabla x(\xi)|^{2}d\xi\mu_{\epsilon}(dx)\leq C_{M}$ .

(ii) For all $M\in \mathbb{N}$ , $M\geq 2$ and any limit point $\mu$ as in Proposition
2. 3

$\int_{H}\int_{D}|\nabla(x^{M})(\xi)|^{2}d\xi\mu(dx)\leq C_{M}$ .



Invariant measures for a stochastic porous medium equation 19

In particular, setting

$H_{0,M}^{1}:=\{x\in L^{2}(D)|x^{M}\in H_{0}^{1}\}$

we have

$\mu(H_{0,M}^{1})=1$ for all $M\geq 2$ .

In order to prove Theorem 2.4 we need some preparation, i.e. more
precise information about the $\mu_{\epsilon},$ $\in\in(0,1]$ . This can be deduced ffom
(2.6), i.e. ffom the fact that $\mu_{\epsilon}$ is an infinitesimally invariant measure
for $N_{\Xi}$ . So, we fix $\in\in(0,1]$ and for the rest of this section we assume
that $(H1)-(H3)$ hold.

We need to apply (2.6) with $\varphi$ replaced by $\varphi_{M}$ : $L^{2}(D)\rightarrow[0, \infty]$ , $M$

$\in \mathbb{N}$ , given by

$\varphi_{M}(x):=\int_{D}x^{2M}(\xi)d\xi$ , $x\in L^{2}(D)$ .

Clearly, such functions are not in $C_{b}^{2}(H)$ so we have to construct proper
approximations. So, define for $\delta\in(0,1]$

(2.9) $f_{M,\delta}(r):=\frac{r^{2M}}{1+\delta r^{2}}$ , $r\in \mathbb{R}$ .

Then for $r\in \mathbb{R}$

(2.10) $f_{M,\delta}^{J}(r)=(1+\delta r^{2})^{-2}[2Mr^{2M-1}+2\delta(M-1)r^{2M+1}]$

and

(2.11)

$f_{M,\delta}^{//}(r)=2(1+\delta r^{2})^{-3}[M(2M-1)r^{2M-2}+\delta(4M^{2}-6M-1)r^{2M}$

$+\delta^{2}(M-1)(2M-3)r^{2M+2}]$ .

We have chosen this approximation since below (cf. Lemma 2.7) it will
be crucial that $f_{M,\delta}^{/\prime}$ is nonnegative if $M$ $\geq 2$ . More precisely we have

$0\leq f_{M,\delta}(r)\leq\frac{1}{\delta}r^{2M-2}$

(2.12) $0\leq f_{M,\delta}^{/}(r)\leq\frac{2M}{\delta}|r|^{2M-3}$

$0\leq f_{M,\delta}^{//}(r)\leq 16M^{2}|r|^{2M-4}\inf\{r^{2},1/\delta\}$ .
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Remark 2.5. The following will be used below: if x $\in H_{0}^{1}$ is such
that for M $\in \mathbb{N}$

(2.13) $\int_{H}x^{2(M-1)}(\xi)|\nabla x(\xi)|^{2}d\xi<\infty$ ,

then $x^{M}\in H_{0}^{1}$ and $x^{M-1}\nabla x=\frac{1}{M}\nabla x^{M}$ , or using the notation intro-
duced in Theorem 2.4(ii) equivalently $x\in H_{0,M}^{1}$ . The proof is standard
by approximation. So, we omit it. We also note that by Poincar\’e’s in-
equality, $H_{0,M}^{1}\subset L^{2M}(D)$ . More precisely, there exists $C(D)\in(0, \infty)$

such that

(2.14) $ C(D)\int_{D}x^{2M}(\xi)d\xi\leq\int_{D}|\nabla x^{M}(\xi)|^{2}d\xi$

$=M\int_{D}x^{2(M-1)}(\xi)|\nabla x^{M}(\xi)|^{2}d\xi$ ,

for all $x$ as above.

The following lemma is a consequence of (2.6) and crucial for our
analysis of $\mu_{\Xi},$ $\in\in(0,1]$ and their limit points.

Lemma 2.6. Let $M\in \mathbb{N}$ , $\delta\in(0,1]$ . Assume that

(2.15) $\int_{H}\int_{D}x^{2(M-2)}(\xi)|\nabla x(\xi)|^{2}d\xi\mu_{\Xi}(dx)<\infty$ if $M$ $\geq 3$ .

Then

$\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}\int_{H}\int_{D}f_{M,\delta}^{\prime/}(x(\xi))e_{k}^{2}(\xi)d\xi\mu_{\in}(dx)$

(2.16)

$=\int_{H}\int_{D}f_{M,\delta}^{J/}(x(\xi))\beta_{\epsilon}^{/}(x(\xi))|\nabla x(\xi)|^{2}d\xi\mu_{\Xi}(dx)$ .

Proof. We first note that (2.15) holds for $M=2$ by (2.3). For
$\kappa\in(0,1]$ we define

$f_{M,\delta,\kappa}(r):=f_{M,\delta}(r)e^{-\frac{1}{2}\kappa r^{2}}$ , $r\in \mathbb{R}$ if $M$ $\geq 2$

and $f_{1,\delta,\kappa}:=f_{1,\delta}$ . Then (2.11) implies that $f_{M,\delta,\kappa}\in C_{b}^{2}(\mathbb{R})$ . Define

$\varphi_{M,\delta,\kappa}(x):=\int_{D}f_{M,\delta,\kappa}(x(\xi))d\xi$ , $x\in L^{2}(D)$ .
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Then it is easy to check that $\varphi M,\delta,\kappa$ is G\^ateaux differentiable on $L^{2}(D)$

and that for all $y$ , $z\in L^{2}(D)$

(2.17) $\varphi_{M,\delta,\kappa}’(x)(y)=\int_{D}f_{M,\delta,\kappa}^{/}(x(\xi))y(\xi)d\xi$ ,

(2.17) $\varphi_{M,\delta,\kappa}^{/\prime}(x)(y, z)=\int_{D}f_{M,\delta,\kappa}^{\prime/}(x(\xi))y(\xi)z(\xi)d\xi$ .

Hence
$\varphi_{M,\delta,\kappa}\circ P_{N}\in C_{b}^{2}(H)$

and for all $x\in H_{0}^{1}$ (hence $\beta_{\in}(x)\in H_{0}^{1}$ )

$N_{\Xi}(\varphi_{M,\delta,\kappa}\circ P_{N})(x)$ $=$ $\frac{1}{2}\sum_{k=1}^{N}\lambda_{k}\int_{D}f_{M,\delta,\kappa}^{\prime/}(P_{N}x(\xi))e_{k}^{2}(\xi)d\xi$

$+\int_{D}f_{M,\delta,\kappa}’(P_{N}x(\xi))P_{N}(\triangle\beta_{\in}(x))(\xi)d\xi$ .

Since $P_{N}\triangle=\triangle P_{N}$ , integrating by parts we obtain

$N_{\Xi}(\varphi_{M,\delta,\kappa}\circ P_{N})(x)$ $=$ $\frac{1}{2}\sum_{k=1}^{N}\lambda_{k}\int_{D}f_{M,\delta,\kappa}^{;/}(P_{N}x(\xi))e_{k}^{2}(\xi)d\xi$

$-\int_{D}f_{M,\delta,\kappa}’’(P_{N}x(\xi))\langle\nabla(P_{N}x)(\xi), \nabla(P_{N}\beta_{\Xi}(x))(\xi)\rangle_{\mathbb{R}^{d}}d\xi$ .

Since $(P_{N})_{N\in N}$ converges strongly to the identity in $H_{0}^{1}$ , we conclude by
(H3) that

$\lim_{N\rightarrow\infty}N_{\Xi}(\varphi_{M,\delta,\kappa}\circ P_{N})(x)$
$=$ $\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}\int_{D}f_{M,\delta,\kappa}^{//}(x(\xi))e_{k}^{2}(\xi)d\xi$

$-\int_{D}f_{M,\delta,\kappa}^{\prime/}(x(\xi))\beta_{\in}^{/}(x)(\xi)|\nabla x(\xi)|^{2}d\xi$ .

Since $\beta_{\in}$ is Lipschitz, by (2.3)-(2.5) and (H3) this convergence also holds
in $L^{1}(H, \mu_{\Xi})$ . Hence (2.6) implies that

$\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}\int_{H}\int_{D}f_{M,\delta,\kappa}^{//}(x(\xi))e_{k}^{2}(\xi)d\xi\mu_{\Xi}(dx)$

(2.19)

$=\int_{H}\int_{D}f_{M,\delta,\kappa}^{//}(x(\xi))\beta_{\Xi}^{/}(x)(\xi)|\nabla x(\xi)|^{2}d\xi\mu_{\Xi}(dx)$ .
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So, for $M=1$ the assertion is proved. If $M\geq 2$ , an elementary calcu-
lation shows that by (2.12) there exists a constant $C(M, \delta)>0$ (only
depending on $M$ and $\delta$) such that

(2.20) $|f_{M,\delta,\kappa}’’(r)|\leq C(M, \delta)r^{2(M-2)}$ , $r\in \mathbb{R}$ .

Hence by (H3), Remark 2.5 and assumption (2.15) we can apply
Lebesgue’s dominated convergence theorem to (2.19) and letting $\kappa\rightarrow 0$

we obtain the assertion. $\square $

Lemma 2.7. Let $M\in \mathbb{N}$ and assume that (2.15) holds if $M$ $\geq 3$ .

(i) We have

$\frac{K}{2}\int_{H}\int_{D}x^{2(M-1)}(\xi)d\xi\mu_{\in}(dx)$

(2.21)

$\geq\int_{H}\int_{D}x^{2(M-1)}(\xi)(\frac{x^{2}(\xi)}{1+x^{2}(\xi)}+\in)|\nabla x(\xi)|^{2}d\xi\mu_{\Xi}(dx)$ .

(ii) If $M\geq 2$ , we have

$\frac{K}{2}\int_{H}\int_{D}(x^{2(M-1)}(\xi)+x^{2(M-2)}(\xi))d\xi\mu_{\in}(dx)$

(2.22) $\geq\int_{H}\int_{D}x^{2(M-1)}(\xi)|\nabla x(\xi)|^{2}d\xi\mu_{\in}(dx)$

$=\frac{1}{M^{2}}\int_{H}\int_{D}|\nabla x^{M}(\xi)|^{2}d\xi\mu_{\Xi}(dx)$ .

(ii)

$\int_{H}\int_{D}|\nabla x(\xi)|^{2}d\xi\mu_{\Xi}(dx)\leq\frac{K}{2\in}$ .

Proof, (i) By (H3) the leffi hand side of (2.16) is dominated by

$\frac{K}{2}\int_{H}\int_{D}f_{M,\delta}^{\prime/}(x(\xi))d\xi\mu_{\in}(dx)$ .

If $M\geq 2$ , by assumption (2.15) and Remark 2.5 we know that

$\int_{H}\int_{D}x^{2(M-1)}(\xi)d\xi\mu_{\Xi}(dx)<\infty$
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which trivially also holds for $M=1$ . So, by (2.11), (2.12) and Lebesgue’s
dominated convergence theorem we obtain that for $M\geq 2$

$\frac{K}{2}\int_{H}\int_{D}2M(2M-1)x^{2(M-1)}(\xi)d\xi\mu_{\Xi}(dx)$

$\geq\lim_{\delta\rightarrow}\inf_{0}\int_{H}\int_{D}f_{M,\delta(x(\xi))\beta_{\Xi}’(x(\xi))|\nabla x(\xi)|^{2}d\xi\mu_{\Xi}(dx)}^{JJ}$ .

Since $f_{M,\delta}^{//}\geq 0$ for $M$ $\geq 2$ and

$\beta_{g}^{/}(r)\geq\frac{r^{2}}{1+r^{2}}+\in\geq 0$ for all $r\in \mathbb{R}$ ,

we can apply Fatou’s lemma to prove the assertion. If $M$ $=1$ we con-
clude in the same way by (2.3) and Lebesgue’s dominated convergence
theorem which applies since $\beta_{\Xi}^{/}$ is bounded and $|f_{1,\delta}^{\prime/}|\leq 6$ for all $\delta\in(0,1]$ .

(ii) Since (2.15) holds for $M$ $=2$ , by H\"older’s inequality (2.15) holds
with $M-1$ replacing $M$ , since by assumption it holds for $M$ . So, the
inequality in (i) also holds with $M$ $-2$ replacing $M$ $-1$ . Estimating
$\in on$ the right hand sides from below by 0 and adding both resulting
inequalities we obtain the inequality in (2.22). The equality in (2.22)
follows by Remark 2.5.

(iii) The assertion follows from (2.21) setting $M=1$ . $\square $

By an induction argument we shall now prove that the integrals in
(2.22) are all finite and at the same time prove the bounds claimed in
Theorem 2.4.

Proof of Theorem 2.4. (i). If $M=2$ , then the leffi hand side of
(2.22) is finite by (2.8) and moreover (2.22) applies, so that by (2.8) we
have
(2.23)

$\int_{H}\int_{D}x^{2}(\xi)|\nabla(x(\xi))|^{2}d\xi\mu_{\Xi}(dx)\leq\frac{K}{2}(\frac{1}{2}rbC+2\int_{D}1d\xi)<\infty$ .

Suppose the left hand side of (2.22) is finite for $M\in \mathbb{N}$ , $M$ $\geq 2$ , and
(2.15) holds. Then (2.22) holds and by Remark 2.5

$\infty>\int_{H}\int_{D}x^{2(M-1)}(\xi)|\nabla(x(\xi))|^{2}d\xi\mu_{\Xi}(dx)$

(2.24) $=\frac{1}{M^{2}}\int_{H}\int_{D}|\nabla(x^{M}(\xi))|^{2}d\xi\mu_{\Xi}(dx)$

$\geq\frac{C(D)^{2}}{M^{2}}\int_{H}\int_{D}x^{2M}(\xi)d\xi\mu_{\Xi}(dx)$ .
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Hence (2.15) holds with $M-1$ replacing $M$ $-2$ and the leffi hand side
of (2.22) is finite for $M+1$ replacing $M$ , hence by induction for all
$M\in \mathbb{N}$ . Furthermore, for all $M$ first applying (2.22) and then applying
(2.24) first with $M$ $-1$ replacing $M$ and then with $M-2$ replacing $M$

respectively we obtain

$\int_{H}\int_{D}x^{2(M-1)}(\xi)|\nabla(x(\xi))|^{2}d\xi\mu_{\Xi}(dx)$

(2.25) $\leq\frac{K}{2}[(\frac{M-1}{C(D)})^{2}\int_{H}\int_{D}x^{2(M-2)}(\xi)|\nabla(x(\xi))|^{2}d\xi\mu_{\epsilon}(dx)$

$+\int_{H}\int_{D}x^{2(M-2)}(\xi)d\xi\mu_{\Xi}(dx)]$

$\leq\frac{K}{2C(D)^{2}}[(M-1)^{2}\int_{H}\int_{D}x^{2(M-2)}(\xi)|\nabla(x(\xi))|^{2}d\xi\mu_{\Xi}(dx)$

(2.26)

$+(M-2)^{2}\int_{H}\int_{D}x^{2(M-3)}(\xi)|\nabla(x(\xi))|^{2}d\xi\mu_{\in}(dx)]$ .

If $M=3$ we cannot use (2.26) since for the second summand we have
no bound which is independent $of\in$ , but from (2.25) we obtain by (2.23)
and (2.8) that

$\int_{H}\int_{D}x^{4}(\xi)|\nabla(x(\xi))|^{2}d\xi\mu_{\Xi}(dx)$

$\leq\frac{K}{2}[(\frac{2}{C(D)})^{2}\frac{K}{2}(\frac{1}{2}EC+2\int_{D}1d\xi)+\frac{1}{2}EC+\int_{D}1d\xi]$ .

Now assertion (i) follows ffom (2.26) by induction.

To prove (ii) we start with the following
Claim: For all $M\in \mathbb{N}$

(2.27) $\Theta_{M}(x):=1_{H_{0,M}^{1}}(x)\int_{D}|\nabla x^{M}(\xi)|^{2}d\xi+\infty\cdot 1_{H\backslash H_{0,M}^{1}}(x)$ , $x\in H$

is a lower semicontinuous function on $H$ .
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Since $\mu$ is a weak limit point of $\{\mu_{g}|\in\in(0,1]\}$ and $\Theta_{M}\geq 0$ , the
claim immediately implies assertion (ii).

To prove the claim let $\alpha>0$ and $x_{n}\in\{\Theta_{M}\leq\alpha\}$ , $n\in \mathbb{N}$ , such
that $x_{n}\rightarrow x$ in $H$ as $ n\rightarrow\infty$ . By Poincar\’e’s inequality $\{x_{n}|n\in \mathbb{N}\}$ is
a bounded set in $L^{2M}(D)$ . So $x_{n}\rightarrow x$ as $ n\rightarrow\infty$ also weakly in $L^{2}(D)$ ,
in particular $x\in L^{2}(D)$ . Since $\{x_{n}^{M}|n\in \mathbb{N}\}$ is bounded in $H_{0}^{1}$ , there
exists a subsequence $(x_{n_{k}}^{M})_{k\in N}$ and $y\in H_{0}^{1}$ such that $x_{n_{k}}^{M}\rightarrow y$ as $ k\rightarrow\infty$

weakly in $H_{0}^{1}$ and

$\int_{D}|\nabla y(\xi)|^{2}d\xi\leq\alpha$ .

Since the embedding $H_{0}^{1}\subset L^{2}(D)$ is compact, $x_{n_{k}}^{M}\rightarrow y$ as $ k\rightarrow\infty$ in
$L^{2}(D)$ . Selecting another subsequence if necessary, this convergence is
$d\xi-a.e.$ , hence

$x_{n_{k}}\rightarrow y^{\frac{1}{M}}$ as $ k\rightarrow\infty$ , $d\xi-a.e$ .

Since (selecting another subsequence if necessary) we also know that the
Cesaro mean of $(x_{n_{k}})_{k\in N}$ has $x$ as an accumulation point in the topology
of $d\xi-a.e$ . convergence, we must have $x^{M}=y$ , so $x\in\{\Theta_{M}\leq\alpha\}$ . $\square $

As a consequence of the previous proof we obtain:

Corollary 2.8. Let $M\in \mathbb{N}$ . Then $\Theta_{M}$ has compact level sets in $H$ .

Proof. We already know ffom the previous proof that $O-_{M}$ is lower
semicontinuous. The relative compactness of their level sets is, however,
clear by Poincar\’e’s inequality since $L^{2M}(D)\subset H$ is compact. $\square $

Since for $M\in \mathbb{N}$ and $x\in H_{0,M}^{1}$

(2.28) $|\triangle x^{M}|_{H}=\int_{D}|\nabla x^{M}(\xi)|^{2}d\xi$ ,

so $\triangle x^{M}\in H$ , we can define the Kolmogorov operator in (1.3) rigorously
for $x\in H_{0,3}^{1}$ . So, for $\varphi\in C_{b}^{2}(H)$

(2.29) $N_{0}\varphi(x):=\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}D^{2}\varphi(x)(e_{k}, e_{k})+D\varphi(x)(\triangle x^{3})$ .

We note that by Theorem 2.4(ii) and (2.28), $N_{0}\varphi\in L^{2}(H, \mu)$ for any
weak limit point $\mu$ of $\{\mu_{\Xi}|\in\in(0,1]\}$ on $H$ . Now we can prove our main
result, namely that any such $\mu$ is an infinitesimally invariant measure
for $N_{0}$ in the sense of [4], i.e. satisfies (1.4).
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Theorem 2.9. Assume that $(H1)-(H3)$ hold. Let $\mu$ be as in Propo-
sition 2.3. Then

$\int_{H}N_{0}\varphi d\mu=0$ for all $\varphi\in C_{b}^{2}(H)$ .

Proof. Let $\varphi\in C_{b}^{2}(H)$ . For $N\in \mathbb{N}$ define $\varphi_{N}:=\varphi\circ P_{N}$ . Then for
$x\in H_{0,3}^{1}$

$N_{0}\varphi_{N}(x)$ $=$ $\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}D^{2}\varphi(P_{N}x)(P_{N}e_{k}, P_{N}e_{k})+D\varphi_{N}(x)(\triangle x^{3})$

$=$ $\frac{1}{2}\sum_{k=1}^{N}\lambda_{k}D^{2}\varphi(P_{N}x)(e_{k}, e_{k})+D\varphi(P_{N}x)(P_{N}(\triangle x^{3}))$ .

If we can prove that

(2.30) $\int_{H}N_{0}\varphi_{N}d\mu=0$ for all $N\in \mathbb{N}$ ,

the same is true for $\varphi$ by Lebesgue’s dominated convergence theorem.
So, fix $N\in \mathbb{N}$ . Then by (2.6)

$\int_{H}N_{0}\varphi_{N}d\mu$ $=$ $\lim_{\in\rightarrow 0}\int_{H}\frac{1}{2}\sum_{k=1}^{\infty}\lambda_{k}D^{2}\varphi_{N}(x)(e_{k}, e_{k})\mu_{\Xi}(dx)$

$+\int_{H}D\varphi_{N}(x)(\triangle x^{3})\mu(dx)$

$=$ - $\lim_{\zeta\rightarrow 0}\int_{H}D\varphi_{N}(x)(\triangle\beta_{\in}(x))\mu_{\Xi}(dx)$

(2.30)
$+\int_{H}D\varphi_{N}(x)(\triangle x^{3})\mu(dx)$

$=$ $\lim_{\in\rightarrow 0}\sum_{i=1}^{N}\int_{H}[D\varphi(P_{N}x)(e_{i})\langle e_{i}, \triangle x^{3}\rangle_{H}\mu(dx)$

$-D\varphi(P_{N}x)(e_{i})\langle e_{i}, \triangle\beta_{\in}(x)\rangle_{H}\mu_{\in}(dx)]$ .
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For $i\in\{1, \ldots, N\}$ fixed we have

$|\int_{H}D\varphi(P_{N}x)(e_{i})\langle e_{i}, \triangle x^{3}\rangle_{H}\mu(dx)$

$-\int_{H}D\varphi(P_{N}x)(e_{i})\langle e_{i}, \triangle\beta_{\Xi}(x)\rangle_{H}\mu_{\in}(dx)|$

(2.32)

$\leq|\int_{H}D\varphi(P_{N}x)(e_{i})\langle e_{i}, \triangle x^{3}\rangle_{H}(\mu-\mu_{\in})(dx)|$

$+|\int_{H}D\varphi(P_{N}x)(e_{i})\langle e_{i}, \triangle(x^{3}-\beta_{\Xi}(x))\rangle_{H}\mu_{\in}(dx)|$ .

The right hand side’s second summand is bounded by
(2.33)

$|e_{i}|_{L^{2}(D)}\sup_{x\in H}|D\varphi(x)|_{H_{0}^{1}}\int_{H}(\int_{D}|x^{3}(\xi)-\beta_{\Xi}(x(\xi))|^{2}d\xi)^{1/2}\mu_{\Xi}(dx)$ .

We have

$|r^{3}-\beta_{\Xi}(r)|=|\frac{\epsilon r^{5}}{1+\in r^{2}}-\in r|\leq\in(|r|^{5}+|r|)$ , $r\in \mathbb{R}$ .

So, the term in (2.33) is dominated by

$\in|e_{i}|_{L^{2}(D)}\sup_{x\in H}|D\varphi(x)|_{H_{O}^{1}}\int_{H}(||x|^{5}|_{L^{2}(D)}+|x|_{L^{2}(D)})\mu_{\Xi}(dx)$

which by Theorem 2.4(i), Remark 2.5 and Poincar\’e’s inequality con-
verges to 0 $as\in\rightarrow 0$ .

Now we estimate the first summand in the right hand side of (2.32).
So, we define

$f(x):=D\varphi(P_{N}x)(e_{i})\langle e_{i}, \triangle x^{3}\rangle_{H}$ .

Then since $\langle e_{i}, \triangle(x^{3})\rangle_{H}=\langle e_{i}, x^{3}\rangle_{L^{2}(D)}$ , it follows by the proof of the
lower semicontinuity $of\ominus_{3}$ that $f$ is continuous on the level sets $of\ominus_{3}$

(with $\Theta_{3}$ defined as in (2.27)). Furthermore, since

$|f(x)|\leq\sup_{x\in H}|D\varphi(x)|_{H_{0}^{1}}|x^{3}|_{L^{2}(D)}$ ,

it follows that

$\lim_{R\rightarrow\infty}\sup_{\{\ominus_{3}\geq R\}}\frac{|f(x)|}{1+\Theta_{3}(x)}=0$ .
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Furthermore, by Corollary 2.8 the function $1+\Theta_{3}$ has compact level
sets. Hence by [8, Theorem 5.1 (ii)], there exist $f_{n}\in C_{b}(H)$ , $n\in \mathbb{N}$ ,
such that

(2.34) $\lim_{n\rightarrow\infty}\sup_{x\in H}\frac{|f(x)-f_{n}((x)|}{1+\Theta_{3}x)}=0$ .

But

$|\int_{H}D\varphi(P_{N}x)(e_{i})\langle e_{i}, \triangle x^{3}\rangle_{H}(\mu-\mu_{\in})(dx)|$

$\leq\int_{H}|f(x)-f_{n}(x)|(\mu+\mu_{\epsilon})(dx)+|\int_{H}f_{n}(x)(\mu-\mu_{\Xi})(dx)|$ .

For fixed $n$ the second summand tends to 0 as $\in\rightarrow 0$ and the first is
dominated by

$\sup_{x\in H}\frac{|f(x)-f_{n}((x)|}{1+\ominus_{3}x)}\sup_{\in>0}\int_{H}(1+\ominus_{3})d(\mu+\mu_{\Xi})$ ,

which in turn by Theorem 2.4 and (2.34) tends to zero as $ n\rightarrow\infty$ . So,
also the first summand in (2.32) tends to zero $as\in\rightarrow 0$ . Hence the right
hand side of (2.31) is zero and (2.30) follows which completes the proof.
$\square $
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Equivariant Diffusions on Principal Bundles

K. David Elworthy, Yves Le Jan and Xue-Mei Li

Let $\pi$ : $P\rightarrow M$ be a smooth principal bundle with structure group $G$ .

This means that there is a $C^{\infty}$ right multiplication $P\times G\rightarrow P$ , $u\mapsto u$ .
$g$

say, of the Lie group $G$ such that $\pi$ identifies the space of orbits of $G$ with the
manifold $M$ and $\pi$ is locally trivial in the sense that each point of $M$ has an
open neighbourhood $U$ with a diffeomorphism

$\tau_{U}$ : $\pi^{-1}(U)$ $U\times G$

$U$

over $U$ , which is equivariant with respect to the right action of $G$ , i.e. if $\tau_{u}(b)=$

$(\pi(b), k)$ then $\tau_{u}(b\cdot g)=(\pi(b), kg)$ . Assume for simplicity that $M$ is compact.
Set $n=dimM$ . The fibres, $\pi^{-1}(x)$ , $x\in M$ are diffeomorphic to $G$ and their
tangent spaces $VT_{u}P(=kerT_{u}\pi)$ , $u\in P$ , are the ’vertical’ tangent spaces
to $P$ . A connection on $P$ , (or on $\pi$) assigns a complementary ’horizontal’
subspace $HT_{u}P$ to VTUP in $T_{u}P$ for each $u$ , giving a smooth horizontal sub-
bundle $HTP$ of the tangent bundle $TP$ to $P$ . Given such a connection it is a
classical result that for any $C^{1}$ curve: $\sigma$ : $[0, T]\rightarrow M$ and $u_{0}\in\pi^{-1}(\sigma(0))$

there is a unique horizontal $\tilde{\sigma}$ : $[0, T]\rightarrow P$ which is a lift of $\sigma$ , i.e. $\pi(\tilde{\sigma}(t))=$

$\sigma(t)$ and has $\tilde{\sigma}(0)=u_{0}$ .

In his startling ICM article [8] It\^o showed how this construction could be
extended to give horizontal lifts of the sample paths of diffusion processes. In
fact he was particularly concemed with the case when $M$ is given a Riemann-
ian metric $\langle, \rangle_{x}$ , $x\in M$ , the diffusion is Brownian motion on $M$ , and $P$ is the

orthonormal frame bundle $\pi$ : $OM\rightarrow M$ . Recall that each $u\in OM$ with
$u\in\pi^{-1}(x)$ can be considered as an isomery $u$ : $\mathbb{R}^{n}\rightarrow T_{x}M$ , $\langle, \rangle_{x}$ and a

Received March 12, 2003.
Research supported by EPSRC grants $GR/NOO845$ and $GR/S40404/01$ , NSF

grant DMS 0072387, and EU grant ERBF MRX $CT$ 960075 A.
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horizontal lift $\tilde{\sigma}$ determines parallel translation of tangent vectors along $\sigma$

$//t\equiv//(\sigma)_{t}$ : $T_{\sigma(\cdot)}M\rightarrow T_{\sigma(t)}M$

$v\mapsto\tilde{\sigma}(t)(\tilde{\sigma}(0))^{-1}v$ .

The resulting parallel translation along Brownian paths extends also to paral-
lel translation of forms and elements $of\wedge^{p}TM$ . This enabled It\^o to use his
construction to obtain a semi-group acting on differential forms

$ P_{t}\phi=E(//t-1)_{*}(\emptyset)=E\phi(//t^{-)}\cdot$

As he pointed out this is not the semi-group generated by the Hodge-Kodaira
Laplacian, $\triangle$ . To obtain that generated by the Hodge-Kodaira Laplacian, $\triangle$ ,

some modification had to be made since the latter contains zero order terms,

the so called Weitzenbock curvature terms. The resulting probabilistic expres-
sion for the heat semi-groups on forms has played a major role in subsequent
development.

In [5] we go in the opposite direction starting with a diffusion with smooth
generator $B$ on $P$ , which is $G$-invariant and so projects to a diffusion generator
$A$ on $M$ . We assume the symbol $\sigma_{A}$ has constant rank so determining a sub-
bundle $E$ of $TM$ , (so $E=TM$ if $A$ is elliptic). We show that this set-up
induces a ’semi-connection’ on $P$ over $E$ (a connection if $E=TM$ ) with
respect to which $\mathcal{B}$ can be decomposed into a horizontal component $A^{H}$ and a
vertical part $\mathcal{B}^{V}$ . Moreover any vertical diffusion operator such as $\mathcal{B}^{V}$ induces
only zero order operators on sections of associated vector bundles.

There are two particularly interesting examples. The first when $\pi:GLM\rightarrow$

$M$ is the full linear frame bundle and we are given a stochastic flow { $\xi_{t}$ : $ 0\leq$

$t<\infty\}$ on $M$ , generator $A$ , inducing the diffusion $\{u_{t} : 0\leq t<\infty\}$ on
GLM by

$u_{t}=T\xi_{t}(u_{0})$ .

Here we can determine the connection on GLM in terms of the LeJan-Watanabe
connection of the flow [12], [1], as defined in [6], [7], in particular giving con-
ditions when it is a Levi-Civita connection. The zero order operators arising
from the vertical components can be identified with generalized Weitzenbock
curvature terms.

The second example slightly extends the above framework by letting $\pi$ :
$P\rightarrow M$ be the evaluation map on the diffeomorphism group DiffffM of $M$

given by $\pi(h):=h(x_{0})$ for a fixed point $x_{0}$ in $M$ . The group $G$ corresponds
to the group of diffeomorphisms fixing $x_{0}$ . Again we take a flow { $\xi_{t}(x)$ : $ x\in$

$M$ , $t\geq 0\}$ on $M$ , but now the process on DiffffM is just the right invariant
process determined by $\{\xi_{t} : 0\leq t<\infty\}$ . In this case the horizontal lift to

the diffeomorphism group of the diffusion $\{\xi_{t}(x_{0}) : 0\leq t<\infty\}$ on $M$ is
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obtained by ’removal of redundant noise’, $c.f$. [7] while the vertical process is
a flow of diffeomorphisms preserving $x_{0}$ , driven by the redundant noise.

Here we report briefly on some of the main results to appear in [5] and give
details of a more probabilistic version Theorem 2.5 below: a skew product
decomposition which, although it has a statement not explicitly mentioning
connections, relates to It\^o’s pioneering work on the existence of horizontal
lifts. The derivative flow example and a simplified version of the stochastic
flow example are described in \S 3.

The decomposition and lifting apply in much more generality than with
the full structure of a principal bundle, for example to certain skew products
and invariant processes on foliated manifolds. This will be reported on later.

Earlier work on such decompositions includes [4] [13].

\S 1. Construction

A. If $A$ is a second order differential operator on a manifold $X$ , denote
by $\sigma^{A}$ : $T^{*}X\rightarrow TX$ its symbol determined by

$df(\sigma^{A}(dg))=\frac{1}{2}A(fg)-\frac{1}{2}A(f)g-\frac{1}{2}fA(g)$ ,

for $C^{2}$ functions $f$ , $g$ . The operator is said to be semi-elliptic if $df$ $(\sigma^{A}(df))\geq 0$

for each $f\in C^{2}(X)$ , and elliptic if the inequality holds strictly. Ellipticity is
equivalent to $\sigma^{A}$ being onto. It is called a diffusion operator if it is semi-elliptic
and annihilates constants, and is smooth if it sends smooth functions to smooth
functions.

Consider a smooth map $p$ : $N\rightarrow M$ between smooth manifolds $M$ and
$N$ . By a lift of a diffusion operator $A$ on $M$ over $p$ we mean a diffusion
operator $B$ on $N$ such that

(1) $\mathcal{B}(fo p)=(Af)\circ p$

for all $C^{2}$ functions $f$ on $M$ . Suppose $A$ is a smooth diffusion operator on $M$

and $B$ is a lift of $A$ .

Lemma 1.1. Let $\sigma^{B}$ and $\sigma^{A}$ be respectively the symbolsfor $B$ and A. The
following diagram is commutative for all $u\in p^{-1}(x)$ , $x\in M$ :

$\sigma_{u}^{B}$

$T_{u}^{*}N$ $T_{u}N$

$(Tp)^{*}|$ $\downarrow Tp$

$T_{x}^{*}M$ $T_{x}M$ .
$\sigma_{x}^{A}$
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B. Semi-connections on principal bundles. Let M be a smooth fi-
nite dimensional manifold and $P(M, G)$ a principal fibre bundle over $M$ with
structure group $G$ a Lie group. Denote by $\pi$ : $P\rightarrow M$ the projection and $R_{a}$

the right translation by $a$ .

Definition 1.2. Let $E$ be a sub-bundle ofTM and $\pi$ : $P\rightarrow M$ a principal
$G$-bundle. An $E$ semi-connection on $\pi$ : $P\rightarrow M$ is a smooth sub-bundle
$H^{E}TP$ of $TP$ such that

(i) $ T_{u}\pi$ maps the fibres $H^{E}T_{u}P$ bijectively onto $E_{\pi(u)}$ for all $u\in P$ .

(ii) $H^{E}TP$ is $G$-invariant.

Notes.
(1) Such a semi-connection determines and is determined by, a smooth hori-
zontal lift:

$h_{u}$ : $E_{\pi(u)}\rightarrow T_{u}P$, $u\in P$

such that

(i) $T_{u}\pi\circ h_{u}(v)=v$ , for all $v\in E_{x}\subset T_{x}M$ ;

(ii) $h_{u\cdot a}=T_{u}R_{a}\circ h_{u}$ .

The horizontal subspace $H^{E}T_{u}P$ at $u$ is then the image at $u$ of $h_{u}$ , and the
composition $h_{u}\circ T_{u}P$ is a projection onto $H^{E}T_{u}P$ .

(2) Let $F=P\times V/\sim be$ an associated vector bundle to $P$ with fibre $V$ . An
element of $F$ is an equivalence class $[(u, e)]$ such that $(ug, g^{-1}e)\sim(u, e)$ .

Set $\overline{u}(e)=[(u, e)]$ . An $E$ semi-connection on $P$ gives a covariant derivative
on $F$ . Let $Z$ be a section of $F$ and $w\in E_{x}\subset TXM$ , the covariant derivative
$\nabla_{w}Z\in F_{x}$ is defined, as usual for connections, by

$\nabla_{w}Z=u(d\tilde{Z}(h_{u}(w)), u\in\pi^{-1}(x)=F_{x}$ .

Here $\tilde{Z}$ : $P\rightarrow V$ is $\tilde{Z}(u)=\tilde{u}^{-1}Z(\pi(u))$ considering $\overline{u}$ as an isomorphism
$\overline{u}$ : $V\rightarrow F_{\pi(u)}$ . This agrees with the ‘semi-connections on $E$

’ defined in
Elworthy-LeJan-Li [7] when $P$ is taken to be the linear frame bundle of $TM$

and $F=TM$ . As described there, any semi-connection can be completed to

a genuine connection, but not canonically.

Consider on $P$ a diffusion generator $B$ , which is equivariant, i.e.

$Bf\circ R_{a}=B(f\circ Ra)$ , $\forall f$ , $g\in C^{2}(P, R)$ , $a$ $\in G$ .

The operator $B$ induces an operator $A$ on the base manifold $M$ by setting

(2) $Af(x)=B$ $(f\circ\pi)(u)$ , $u\in\pi^{-1}(x)$ , $f\in C^{2}(M)$ ,

which is well defined since

$B$ $(f\circ\pi)(u\cdot a)=B((f\circ\pi))(u)$ .
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Let $E_{x}:=Image(\sigma_{x}^{A})\subset T_{x}M$ , the image of $\sigma_{x}^{A}$ . Assume the dimension
of $E_{x}=p$ , independent of $x$ . Set $E=\bigcup_{x}E_{x}$ . Then $\pi$ : $E\rightarrow M$ is a sub-
bundle of $TM$ .

Theorem 1.3. Assume $\sigma^{A}$ has constant rank Then $\sigma^{B}$ gives rise to $a$

semi-connection on the principal bundle $P$ whose horizontal map is given by

(3) $h_{u}(v)=\sigma^{B}((T_{u}\pi)^{*}\alpha)$

where $\alpha\in T_{\pi(u)}^{*}M$ satisfies $\sigma_{x}^{A}(\alpha)=v$ .

Proof. To prove $h_{u}$ is well defined we only need to show $\psi(\sigma^{B}(T_{u}\pi^{*}(\alpha)))=$

$0$ for every 1-form $\psi$ on $P$ and for every $\alpha$ in $ker\sigma_{x}^{A}$ . Now $\sigma^{A}\alpha=0$ implies
by Lemma 1.1 that

$0=\alpha\sigma^{A}(\alpha)=(T\pi)^{*}(\alpha)\sigma^{B}((T\pi)^{*}(\alpha))$ .

Thus $T\pi^{*}(\alpha)\sigma^{B}(T\pi^{*}(\alpha))=0$ . On the other hand we may consider $\sigma^{B}$

as a bilinear form on $T^{*}P$ and then for all $\beta\in T_{u}^{*}P$ ,

$\sigma^{B}(\beta+t(T\pi)^{*}(\alpha), \beta+t(T\pi)^{*}(\alpha))$

$=\sigma^{B}(\beta, \beta)+2t\sigma^{B}(\beta, (T\pi)^{*}(\alpha))+t^{2}\sigma^{B}((T\pi)^{*}\alpha, (T\pi)^{*}\alpha)$

$=\sigma^{B}(\beta, \beta)+2t\sigma^{B}(\beta, (T\pi)^{*}(\alpha))$ .

Suppose $\sigma^{B}(\beta, (T\pi)^{*}(\alpha))\neq 0$ . We can then choose $t$ such that

$\sigma^{B}(\beta+t(T\pi)^{*}(\alpha), \beta+t(T\pi)^{*}(\alpha))<0$ ,

which contradicts the semi-ellipticity of $B$ .
We must verify (i) $T_{u}\pi oh_{u}(v)=v$ , $v\in E_{x}\subset T_{x}M$ and (ii) $h_{u\cdot a}=$

$T_{u}R_{a}o$ $h_{u}$ . The first is immediate by Lemma 1.1 and for the second use the

fact that $ T\pi oTR_{a}=T\pi$ for all $a\in G$ and the equivariance of $\sigma^{B}$ . $\blacksquare$

\S 2. Horizontal lifts of diffusion operators and decompositions of equi-
variant operators

A. Denote by $C^{\infty}\Omega^{p}$ the space of smooth differential $p$-forms on a mani-
fold $M$ . To each diffusion operator $A$ we shall associate a unique operator $\delta^{A}$ .

The horizontal lift of $A$ can be defined to be the unique operator such that the
associated operator $\overline{\delta}$ vanishes on vertical 1-forms and such that $\overline{\delta}$ and $\delta^{A}$ are
intertwined by the lift map $\pi^{*}$ acting on 1-forms.

Proposition 2.1. For each smooth diffusion operator $A$ there is a unique
smooth differential operator $\delta^{A}$ : $C^{\infty}(\Omega^{1})\rightarrow C^{\infty}\Omega^{0}$ such that

(1) $\delta^{A}(f\phi)=df\sigma^{A}(\phi)_{x}+f\cdot\delta^{A}(\phi)$
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(2) $\delta^{A}(df)=A(f)$ .

For example if $A$ has H\"ormander representation

$A=\frac{1}{2}\sum_{j=1}^{m}\mathcal{L}_{X^{j}}\mathcal{L}_{X^{j}}+\mathcal{L}_{A}$

for some $C^{1}$ vector fields $X^{i}$ , $A$ then

$\delta^{A}=\frac{1}{2}\sum_{j=1}^{m}\mathcal{L}_{X^{j}}\iota_{X^{j}}+\iota_{A}$

where $\iota_{A}$ denotes the interior product of the vector field $A$ acting on differential
forms.

Definition 2.2. Let $S$ be a $C^{\infty}$ sub-bundle of $TN$ for some smooth man-

ifold N. A diffusion operator $B$ on $N$ is said to be along $S$ if $\delta^{B}\phi=0$ for
all 1-foms $\phi$ which vanish on $S$ ; it is said to be strongly cohesive if $\sigma^{B}$ has
constant rank and $B$ is along the image of $\sigma^{B}$ .

To be along $S$ implies that any H\"ormander form representation of $B$ uses
only vector fields which are sections of $S$ .

Definition 2.3. When a diffusion operator $B$ on $P$ is along the vertical

foliation $VTP$ of the $\pi$ : $P\rightarrow M$ we say $B$ is vertical, and when the bundle
has a semi-connection and $B$ is along the horizontal distribution we say $B$ is
horizontal.

If $\pi$ : $P\rightarrow M$ has an $E$ semi-connection and $A$ is a smooth diffusion
operator along $E$ it is easy to see that $A$ has a unique horizontal lift $A^{H}$ , i.e.
a smooth diffusion operator $A^{H}$ on $P$ which is horizontal and is a lift of $A$ in
the sense of (1). By uniqueness it is equivariant.

B. The action of $G$ on $P$ induces a homomorphism of the Lie algebra 9 of
$G$ with the algebra of right invariant vector fields on $P$ : if $\alpha\in g$ ,

$A^{\alpha}(u)=\frac{d}{dt}|_{t=0}u\exp(t\alpha)$ ,

and $A^{\alpha}$ is called the fundamental vector field corresponding to $\alpha$ . Take a basis
$A_{1}$ , $\ldots$ , $A_{k}$ of $g$ and denote the corresponding fundamental vector fields by
$\{A_{i}^{*}\}$ .

We can now give one of the main results from [5]:
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Theorem 2.4. Let $\mathcal{B}$ be an equivariant operator on $P$ with A the induced
operator on the base manifold. Assume $A$ is strongly cohesive. Then there is $a$

unique semi-connection on $P$ over $E$ for which $B$ has a decomposition

$B$ $=A^{H}+B^{V}$ ,

where $A^{H}$ is horizontal and $\mathcal{B}^{V}$ is vertical. Furthemore $B^{V}$ has the expres-
sion $\sum\alpha^{ij}\mathcal{L}_{A_{i}^{*}}\mathcal{L}_{A_{j}^{*}}+\sum\beta^{k}\mathcal{L}_{A_{k}^{*}}$ , where $\alpha^{ij}$ and $\beta^{k}$ are smoothfunctions on $P$ ,

given by $\alpha^{k\ell}=\tilde{\omega}^{k}(\sigma^{B}(\tilde{\omega}^{\ell}))$ , and $\beta^{\ell}=\delta^{B}(\tilde{\omega}^{\ell})$ for $\tilde{\omega}$ any connection 1-form
on $P$ which vanishes on the horizontal subspaces of this semi-connection.

We shall only prove the first part of Theorem here. The semi-connection
is the one given by Theorem 1.3, and we define $A^{H}$ to be the horizontal lift of
$A$ . The proof that $\mathcal{B}^{V}:=\mathcal{B}-A^{H}$ is vertical is simplified by using the fact
that a diffusion operator $V$ on $P$ is vertical if and only if for all $C^{2}$ functions
$f_{1}$ on $P$ and $f_{2}$ on $M$

(4) $D(f_{1}(f_{2}o\pi))=(f_{2}o\pi)D(f_{1})$ .

Set $\tilde{f}_{2}=f_{2}\circ\pi$ . Note

$(B -A^{H})(f_{1}\tilde{f}_{2})=\overline{f}_{2}(B-A^{H})f_{1}+f_{1}(B-A^{H})\tilde{f}_{2}+2(df_{1})\sigma^{B-A^{H}}(d\tilde{f}_{2})$ .

Therefore to show $(B -A^{H})$ is vertical we only need to prove

$f_{1}(B-A^{H})\overline{f}_{2}+2(df_{1})\sigma^{B-A^{H}}(d\tilde{f}_{2})=0$ .

Recall Lemma 1.1 and use the natural extension of $\sigma^{A}$ to $\sigma^{A}$ : $E^{*}\rightarrow E$ and
the fact that by (3) $h\circ\sigma_{x}^{A}=\sigma^{B}(T_{u}\pi)^{*}$ to see

$\sigma^{A^{H}}(d\tilde{f}_{2})$
$=$ $(h\circ\sigma^{A}h^{*})(df_{2}\circ T\pi)=h\circ\sigma^{A}df_{2}$

$=$ $\sigma^{B}(df_{2}\circ T\pi)=\sigma^{B}(d\tilde{f}_{2})$ ,

and so $\sigma^{(B-A^{H})}(d\tilde{f}_{2})=0$ . Also by equation (1)

$(B -A^{H})\overline{f}_{2}=Af_{2}-A^{H}\tilde{f}_{2}=0$ .

This shows that $\mathcal{B}-A^{H}$ is vertical. $\blacksquare$

Define $\alpha$ : $P\rightarrow g\otimes g$ and $\beta$ : $P\rightarrow \mathfrak{g}$ by

$\alpha(u)=\sum\alpha^{ij}(u)A_{i}\otimes A_{j}$

$\beta(u)=\sum\beta^{k}(u)A_{k}$ .
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It is easy to see that $B^{V}$ depends only on $\alpha$ , $\beta$ and the expression is independent
of the choice of basis of $g$ . From the invariance of $\mathcal{B}$ we obtain

$\alpha(ug)$ $=$ $(ad(g)\otimes ad(g))\alpha(u)$ ,

$\beta(ug)$ $=$ $ad(g)\beta(u)$

for all $u\in P$ and $g\in G$ .

C. Theorem 2.4 has a more directly probabilistic version. For this let
$\pi$ : $P\rightarrow M$ be as before and for $ 0\leq l<r<\infty$ let $C(l, r;P)$ be the space
of continuous paths $y$ : $[l, r]\rightarrow P$ with its usual Borel $\sigma$-algebra. For such
write $l_{y}=l$ and $r_{y}=r$ . Let $C(*, *;P)$ be the union of such spaces. It has
the standard additive structure under concatenation: if $y$ and $y’$ are two paths
with $r_{y}=l_{y’}$ and $y(r_{y})=y’(l_{y’})$ let $y+y’$ be the corresponding element in
$C(l_{y}, r_{y’} ; P)$ . The basic $\sigma$ -algebra of $C(*, *, P)$ is defined to be the pull back
by $\pi$ of the usual Borel $\sigma$-algebra on $C(*, *;M)$ .

Consider the laws $\{\mathbb{P}_{ti^{r}}^{l} : 0\leq l<r, a\in P\}$ of the process running from
$a$ between times $l$ and $r$ , associated to a smooth diffusion operator $B$ on $P$ .
Assume for simplicity that the diffusion has no explosion. Thus $\{\mathbb{P}^{l}(i^{r}, a\in P\}$

is a kernel from $P$ to $C(l, r;P)$ . The right action $R_{g}$ by $g$ in $G$ extends to

give a right action, also written $R_{g}$ , of $G$ on $C(*, *, P)$ . Equivariance of $B$ is
equivalent to

$\mathbb{P}_{ag}^{l,r}=(R_{g})_{*}\mathbb{P}_{a}^{l,r}$

for all $0\leq l\leq r$ and $a\in P$ . If so $\pi_{*}(\mathbb{P}_{ti^{r})}^{l}$ depends only on $\pi(a)$ , $l$ , $r$ and
gives the law of the induced diffusion $A$ on $M$ . We say that such a diffusion
$B$ is basic if for all $a\in P$ and $ 0\leq l<r<\infty$ the basic $\sigma$-algebra on
$C(l, r;P)$ contains all Borel sets up to $\mathbb{P}_{a}^{l,r}$ negligible sets, i.e. for all $a\in P$

and Borel subsets $B$ of $C(l, r;P)$ there exists a Borel subset $A$ of $C(l, r, M)$

$s.t$ . $\mathbb{P}_{a}(\pi^{-1}(A)\triangle B)=0$ .

For paths in $G$ it is more convenient to consider the space $C_{id}(l, r;G)$ of
continuous $\sigma$ : $[l, r]\rightarrow G$ with $\sigma(l)=id$ for $‘ id’$ the identity element. The
corresponding space $C_{id}(*, *, G)$ has a multiplication

$C_{id}(s, t;G)\times C_{id}(t, u).G)\rightarrow Cid(s, u;G)$

$(g, g’)\mapsto g\times g’$

where $(g\times g’)(r)=g(r)$ for $r\in[s, t]$ and $(g\times g’)(r)=g(t)g’(r)$ for
$r\in[t, u]$ .

Given probability measures $\mathbb{Q}$ , $\mathbb{Q}’$ on $C_{id}(s, t;G)$ and $C_{id}(t, u;G)$ respec-
tively this determines a convolution $\mathbb{Q}*\mathbb{Q}^{J}$ of $\mathbb{Q}$ with $\mathbb{Q}^{/}$ which is a probability
measure on $C_{id}(s, u;G)$ .
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Theorem 2.5. Given the laws $\{\mathbb{P}_{ci^{r}}^{l} : a\in P, 0\leq l<r<\infty\}$ of an equi-
variant diffusion $B$ as above with A strongly cohesive there exist probability
kernels $\{\mathbb{P}_{a}^{H,l,r} : a\in P\}$ from $P$ to $C(l, r;P)$ , $ 0\leq l<r<\infty$ and $\mathbb{Q}_{y}^{l,r}$ ,

defined $\mathbb{P}^{l,r}a.s$ . from $C(l, r, P)$ to $C_{id}(l, r;G)$ such that

(i) $\{\mathbb{P}_{a}^{H,l,r} : a\in P\}$ is equivariant, basic and detemining a strongly
cohesive generator.

(ii) $y\mapsto \mathbb{Q}_{y}^{l,r}$ satisfies

$\mathbb{Q}_{y+y}^{l_{y},r_{y’}},=\mathbb{Q}_{y^{y’ y}}^{lr}*\mathbb{Q}_{y}^{l_{y’},r_{y’}}$,

for $\mathbb{P}^{l_{y},r_{y}}\otimes \mathbb{P}^{l_{y’},r_{y’}}$ almost all $y$ , $y’$ with $r_{y}=l_{y’}$ .
(iii) For $U$ a Borel subset of $C(l, r, P)$ ,

$\mathbb{P}_{ci^{r}}^{l}(U)=\int\int\chi U(y. \cdot g)\mathbb{Q}_{y}^{l,r}(dg)\mathbb{P}_{a}^{H,l,r}(dy)$ .

The kernels $\mathbb{P}_{a}^{H,l,r}$ are uniquely detemined as are the $\{\mathbb{Q}_{y}^{l,r} : y\in \mathbb{R}\}$ , $\mathbb{P}_{a}^{H,l,r}$

$a.s$ . in $y$ for all $a$ in P. Furthemore $\mathbb{Q}_{y}^{l,r}$ depends on $y$ only through its

projection $\pi(y)$ and its initial point $y_{l}$ .

Proof Fix $a$ in $P$ and let $\{b_{t} : l \leq r\leq t\}$ be a process with law $\mathbb{P}_{a}^{l,r}$ . By
Theorem 2.4 we can assume that $b$ is given by an s.d.e. of the form

(5) $db_{t}=\tilde{X}(b_{t})\circ dB_{t}+\tilde{X}^{0}(b_{t})dt+A(b_{t})\circ d\beta_{t}+V(b_{t})dt$

where $\tilde{X}$ : $P\times \mathbb{R}^{p}\rightarrow TP$ is the horizontal lift of some $X$ : $M\times \mathbb{R}^{p}\rightarrow E$ ,
$\tilde{X}^{0}$ is the horizontal lift of a vector field $X^{0}$ on $M$ , while $A$ : $P\times \mathbb{R}^{1}\rightarrow TP$

and the vector field $V$ are vertical and determine $B^{V}$ . Here B. and $\beta$ . are
independent Brownian motions on $\mathbb{R}^{p}$ and $\mathbb{R}^{q}$ respectively, some $q$ , and we are
using the semi-connection on $P$ induced by $B$ as in Theorem 1.3.

Let $\{\tilde{x}_{t} : l \leq t\leq r\}$ satisfy

$d\tilde{x}_{t}=\tilde{X}(\tilde{x}_{t})\circ dB_{t}+\tilde{X}^{0}(\tilde{x}_{t})dt$

(6)
$\tilde{x}_{l}=a$

so $\tilde{x}$ . is the horizontal lift of $\{\pi(b_{t}) : l \leq t\leq r\}$ . Then there is a unique
continuous process $\{g_{t} : l \leq t\leq r\}$ in $G$ with $g_{l}=id$ such that

$\tilde{x}_{t}g_{t}=b_{t}$ .

We have to analyse $\{g_{t} : l \leq t\leq r\}$ . Using local trivialisations of
$\pi$ : $P\rightarrow M$ we see it is a semi-martingale. As in [9], Proposition 3.1 on page
69,

$db_{t}=TR_{9t}(\circ d\tilde{x}_{t})+A^{g_{t}^{-1}od_{9t}}(b_{t})$
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giving
$\overline{\omega}(\circ db_{t})=\tilde{\omega}(A^{g_{t}^{-1}od_{9t}}(b_{t}))=g_{t}^{-1}\circ dg_{t}$

for any smooth connection form $\tilde{\omega}$ : $P\rightarrow g$ on $P$ which vanishes on $H^{E}TP$ .
Thus

$dg_{t}=TL_{9t}\tilde{\omega}(A(\overline{x}_{t}g_{t})\circ d\beta_{t}+V(\overline{x}_{t}g_{t})dt)$

(7)
$g_{l}=id$ , $l$ $\leq t\leq r$ .

For $y\in C(l, r:P)$ let $\{g_{t}^{y} : l \leq t\leq r\}$ be the solution of

$d^{y}g_{t}=TL_{g_{t}^{y}}\tilde{\omega}(A(y_{t}g_{t}^{y})\circ d\beta_{t}+V(y_{t}g_{t}^{y})dt)$

(8)
$g_{l}^{y}=id$

(where the Stratonovich equation is interpreted with $‘ dy_{t}d\beta_{t}=0’$ ). Since $\beta$

and B. and hence $\beta$ and $\tilde{x}$ are independent we see $g=g^{\overline{x}}$ almost surely. For
a discussion of some technicalities conceming skew products, see [16].

For $y$ . in $C(*, *;P)$ let $\{h(y)_{t} : l_{y}\leq t\leq r_{y}\}$ be the horizontal lift of
$\pi(y).$ , starting at $y_{l_{y}}$ . This exists for almost all $y$ as can be seen either by the
extension of It\^o’s result to general principal bundles, e.g. using (6), or by the
existence of measurable sections using the fact that $A^{H}$ is basic. Define $\mathbb{P}_{a}^{H,l,r}$

to be the law of $\tilde{x}$ above and $Q_{y}^{l,r}$ to be that of $g^{h(y)}$ . Clearly conditions (i) is
satisfied.

To check (ii) take $y$ and $y’$ with $r_{y}=l_{y’}$ . Then

$h(y+y^{/})=h(y)+h(y’)(g_{r_{y}}^{h(y)})^{-1}$ ,

writing $y=h(y)g^{h(y)}$ and $y’=h(y’)g^{h(y^{l})}$ . For $r_{y}\leq t\leq r_{y’}$ this shows

$(y+y’)_{t}=h(y^{J})_{t}(g_{r_{y}}^{h(y)})^{-1}g_{t}^{h(y+y’)}$ .

But $(y+y’)_{t}=y_{t}’=h(y’)_{t}g_{t}^{h(y^{J})}$ and so we have $g_{t}^{h(y+y^{J})}=g_{r_{y}}^{h(y)}g_{t}^{h(y^{l})}$ for

$t\geq r_{y}$ , giving $g^{h(y+y^{J})}=g^{h(y)}\times g^{h(y’)}$ almost surely. This proves (ii).

For uniqueness suppose we have another set of probability measures de-

noted $\tilde{\mathbb{Q}}_{y}^{l,r}$ and $\tilde{P}_{a}^{H,l,r}$ which satisfy (i), (ii), (iii). Since $\{\tilde{\mathbb{P}}_{a}^{H,l,r}\}_{a}$ is equivari-
ant and induces $A$ on $M$ we can apply the preceding argument to it in place of
$\{\mathbb{P}_{ti^{r}}^{l}\}_{a}$ . However since it is basic the term involving $\beta$ in the stochastic differ-
ential equation (6) must vanish. Since it is also strongly cohesive the vertical
part $V$ must vanish also and we have $\overline{\mathbb{P}}_{a}^{H,l,r}=\mathbb{P}_{a}^{H,l,r}$ . On the other hand in the

decomposition $b_{t}=\overline{x}_{t}g_{t}^{\overline{x}_{t}}$ the law of $g^{\overline{x}}$

. is determined by those of $b$ . and $\tilde{x}$ . but
$\mathbb{Q}_{y}^{l,r}$ is the conditional law of $g^{\overline{x}}$ given $\tilde{x}=y$ and so is uniquely determined

as described. $\blacksquare$
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In fact $\mathbb{Q}_{y}^{l,r}$ is associated to the time dependent generator which at $g\in G$

and $t\in[l, r]$ is $\sum\alpha^{ij}(h(y)_{t}g)\mathcal{L}_{A_{i}}\mathcal{L}_{A_{j}}+\sum\beta^{k}(h(y)_{t}g)\mathcal{L}_{A_{k}}$ for $\alpha^{ij}$ and $\beta^{k}$

as defined in Theorem 2.4 while $\mathbb{P}^{H,l,r}$ is associated to $A^{H}$ .

\S 3. Stochastic flows and derivative flows

A. Derivative flows. Let $A$ on $M$ be given in H\"ormander form

$A=\frac{1}{2}\sum_{j=1}^{m}\mathcal{L}_{X^{j}}\mathcal{L}_{X^{j}}+\mathcal{L}_{A}$

for some vector fields $X^{1}$ , $\ldots X^{m}$ , $A$ . As before let $E_{x}=span\{X^{1}(x)$ , $\ldots$ ,
$X^{m}(x)\}$ and assume $dimE_{x}$ is constant, $p$ , say, giving a sub-bundle $E\subset TM$ .

$TheX^{1}(x)\underline{\mathbb{R}}^{m}$

, $\ldots$ , $X^{m}(x)$ determine a vector bundle map of the trivial bundle

$X$ : $\underline{\mathbb{R}}^{m}\rightarrow TM$

with $\sigma^{A}=X(x)X(x)^{*}$ . We can, and will, consider $X$ as a map $X$ : $\underline{\mathbb{R}}^{m}\rightarrow E$ .

As such it determines (a) a Riemannian metric $\{\langle, \rangle_{x} : x\in M\}$ on $E$ (the

same as that determined by $\sigma^{A}$ ) and (b) a metric connection $\dot{\nabla}$ on $E$ uniquely
defined by the requirement that for each $x$ in $M$ ,

$\dot{\nabla}_{tJ}X(e)=0$

for all $v\in T_{x}M$ whenever $e$ is orthogonal to the kemel of $T_{x}M$ . Then for any
differentiable section $U$ of $E$ ,

(9) $\nabla\vee vU=Y(x)d(Y(U(\cdot)))(v)$ , $v\in T_{x}M$ ,

where $Y$ is the $\mathbb{R}^{m}$ valued 1-form on $M$ given by

$\langle Y_{x}(v), e\rangle_{\mathbb{R}^{m}}=\langle X(x)(e), v\rangle_{x}$ , $e\in \mathbb{R}^{m}$ , $v\in E_{x}$ , $x\in M$

e.g. [7] where it is referred to as the LeJan-Watanabe connection in this con-
text. By a theorem of Narasimhan and Ramanan [14] all metric connections
on $E$ arise this way, see [15], [7].

For $\{B_{t} : 0\leq t<\infty\}$ a Brownian motion on $\mathbb{R}^{m}$ , the stochastic differen-
tial equation

(10) $dx_{t}=X(x_{t})\circ dB_{t}+A(x_{t})dt$

determines a Markov process with differential generator $A$ . Over each solution
$\{x_{t} : 0\leq t<\rho\}$ , where $\rho$ is the explosion time, there is a ’derivative’ pro-
cess $\{v_{t} : o\leq t<\rho\}$ in $TM$ which we can write as $\{T\xi_{t}(v_{0}) : 0\leq t<\rho\}$
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with $T\xi_{t}$ : $T_{x_{0}}M\rightarrow T_{x_{C}}M$ linear. This would be the derivative of the flow
$\{\xi_{t} : 0\leq t<\rho\}$ of the stochastic differential equation when the stochastic dif-
ferential equation is strongly complete. In general it is given by a stochastic
differential equation on the tangent bundle $TM$ , or equivalently by a covariant
equation along $\{x_{t} : 0\leq t<\rho\}$ :

$Dv_{t}=\nabla X(v_{t})\circ dB_{t}+VA(vt)dt$

with respect to any torsion free connection. Take $P$ to be the linear frame bun-
dle $GL(M)$ of $M$ , treating $u\in GL(M)$ as an isomorphism $u:\mathbb{R}^{n}\rightarrow T_{\pi(u)}M$ .

For $u_{0}\in GLM$ we obtain a process $\{u_{t} : 0\leq t<\rho\}$ on $GLM$ by

$u_{t}=T\xi_{t}ou_{0}$ .

Let $B$ be its differential generator. Clearly it is equivariant and a lift of $A$ .

A proof of the following in the context of stochastic flows, is given later.
For $w\in E_{x}$ , set

(11) $Z^{w}(y)=X(y)Y(x)(w)$ .

Theorem 3.1. The semi-connection $\nabla$ induced by $B$ is the adjoint con-
nection of the LeJan-Watanabe connection $\dot{\nabla}$ detemined by $X$ , as defined by
(9), [7]. Consequently $\nabla_{w}V=L_{Z^{w}}V$ for any vectorfield $V$ and $w\in E$ also
$\nabla_{V(x)}Z^{w}$ vanishes if $w\in E_{x}$ .

In the case of the derivative flow the $\alpha$ , $\beta$ of Theorem 2.4 have an explicit
expression: for $u\in GLM$ ,

(12) $\{$

$\alpha(u)=\frac{1}{2}\sum(u^{-1}(-)\dot{\nabla}_{u(-)}X^{p})\otimes(u^{-1}(-)\dot{\nabla}_{u(-)}X^{p})$

$\beta(u)=-\frac{1}{2}\sum u^{-1}\dot{\nabla}_{\dot{\nabla}_{u(-)}X^{p}}X^{p}-\frac{1}{2}u^{-1}Ric\# u(-)$ .

Here $\check{R}$ is the curvature tensor for $\dot{\nabla}$ and $\dot{R}ic^{\#}$ : $TM\rightarrow E$ the Ricci curvature
defined by $\dot{R}ic^{\neq}(v)=\sum_{j=1}^{p}\dot{R}(v, e^{j})e^{j}$ , $v\in T_{x}M$ .

Equivariant operators on $GLM$ determine operators on associated bun-
dles, such $as\wedge^{q}TM$ . If the original operator was vertical this turns out to be
a zero order operator (as is shown in [5] for general principal bundles) and in
the case $of\wedge^{q}TM$ these operators are the generalized Weitzenbock curvature

operators described in [7]. In particular for differential 1-forms the operator
is $\phi\mapsto\phi(Ric^{\neq}-)$ . To see this, as an illustrative example, given a 1-form $\phi$
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define $\tilde{\phi}$ : $GLM\rightarrow L(\mathbb{R}^{n}; \mathbb{R})$ by $\tilde{\phi}(u)=\phi_{\pi u}u$ so $\tilde{\phi}(ug)=\phi_{\pi u}(ug-)$ . Then

$L_{A_{j}^{*}}(\tilde{\phi})(u)$ $=$ $\frac{d}{dt}\tilde{\phi}(u\cdot e^{A_{j}t})|_{t=0}$

$=$ $\frac{d}{dt}\phi_{\pi u}(u\cdot e^{A_{j}t})|_{t=0}$

$=$ $\phi_{\pi u}(uA_{j}-)=\tilde{\phi}(u)(A_{j}-)$ .

Iterating we have

$\mathcal{B}^{V}(\tilde{\phi})(u)$ $=$
$\sum_{i,j}\alpha^{i,j}(u)\phi_{\pi u}(uA_{j}A_{i}-)+\sum_{k}\beta^{k}(u)\phi_{\pi u}(uA_{k}-)$

1-
$=$ $-\overline{2}\phi(u)(u^{-1}Ric^{\#}(u-))$

as required, by using the map $gl(n)\otimes gl(n)\rightarrow gl(n)$ , $S\otimes T\mapsto S\circ T$ , and
equation (12).

B. Stochastic flows. In fact Theorem 3.1 can be understood in the more
general context of stochastic flows as diffusions on the diffeomorphism groups.
For this assume that $M$ is compact and for $r\in\{1, 2, \ldots\}$ and $s>r+$
$dim(M)/2$ let $D^{s}=D^{s}M$ be the $C^{\infty}$ manifold of diffeomorphisms of $M$ of
Sobolev class $H^{s}$ , (for example see Ebin-Marsden [2] or Elworthy [3].) Alter-
natively we could take the space $D^{\infty}$ of $C^{\infty}$ diffeomorphisms with differen-
tiate structure as in [11]. Fix a base point $x_{0}$ in $M$ and let $\pi$ : $D^{s}\rightarrow M$ be

evaluation at $x_{0}$ . This makes $D^{s}$ into a principal bundle over $M$ with group the
manifold $D_{x_{0}}^{s}$ of $H^{s}$ -diffeomorphisms $\theta$ with $\theta(x_{0})=x_{0}$ , acting on the right
by composition (although the action of $D^{s+r}$ is only $C^{r}$ , for $r=0,1$ , 2, $\ldots$ ).

Let $\{\xi_{t}^{s} : 0\leq s\leq t<\infty\}$ be the flow of (10) starting at time $s$ . Write
$\xi_{t}$ for $\xi_{t}^{0}$ . The more general case allowing for infinite dimensional noise is
given in [5]. We define probability measures $\{\mathbb{P}_{\theta}^{s,t} : \theta\in D^{s}\}$ on $C([s.t];M)$

be letting $\mathbb{P}_{\theta}^{s,t}$ be the law of $\{\xi_{r}^{s}\circ\theta : s\leq r\leq t\}$ (These correspond to the
diffusion process on $D^{s}$ associated to the right-invariant stochastic differential
equation on $D^{s}$ satisfied by $\{\xi_{t} : 0\leq t<\infty\}$ as in [3].) These are equivariant
and project by $\pi$ to the laws given by the stochastic differential equation on $M$ .

Assuming that these give a strongly cohesive diffusion on $M$ we are essentially
in the situation of Theorem 2.5.

Let $K(x)$ : $\mathbb{R}^{m}\rightarrow \mathbb{R}^{m}$ be the orthogonal projection onto the kemel of
$X(x)$ , each $x\in M$ . set $K^{\perp}(x)=id-K(x)$ . Consider the $D^{\infty}$ -valued
process $\{\theta_{t} : 0\leq t<\infty\}$ given by (or as the flow of)

(13) $d\theta_{t}(x)=X(\theta_{t}(x))K^{\perp}(\theta_{t}(x_{0}))\circ dB_{t}+X(\theta_{t}(x))Y(\theta_{t}(x_{0}))A(\theta_{t}(x_{0}))$
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for given $\theta_{0}$ in $D^{\infty}$ and, define a $D_{x_{0}}^{\infty}$ -valued process $\{g_{t} : 0\leq t<\infty\}$ by

(14) $dg_{t}$ $=$ $T\theta_{t}^{-1}\{X(\theta_{t}g_{t}-)K(\theta_{t}x_{0})\circ dB_{t}$

$+A(\theta_{t}g_{t}-)dt-X(\theta_{t}g_{t}-)Y(\theta_{t}x_{0})A(\theta_{t}x_{0})dt\}$

$g_{0}$ $=$ $id$ .

Set $x_{t}^{\theta}=\xi_{t}(\theta_{0}(x_{0}))$ . Note that $\pi(\theta_{t})=\theta_{t}(x_{0})=x_{t}^{\theta}$ since

$X(\theta_{t}(x_{0}))K^{\perp}(\theta_{t}(x_{0}))=X(\theta_{t}(x_{0}))$

and
$X(\theta_{t}(x_{0}))Y(\theta_{t}(x_{0}))A(\theta_{t}(x_{0}))=A(\theta_{t}(x_{0}))$ .

Thus $\{\theta_{t} : 0\leq t<\infty\}$ is alift of $\{x_{t}^{\theta}, 0\leq t<\infty\}$ . It can be considered to

be driven by the ’relevant noise’, (from the point of view of $\xi(\theta_{0}(x_{0}))$ , i.e. by
the Brownian motion $\overline{B}$

. given by

$\tilde{B}_{t}=\int_{0}^{t}\overline{//}(x^{\theta})_{s}^{-1}K^{\perp}(x_{s}^{\theta})dB_{s}$

where $\{\overline{//}(x.\theta ), 0\leq s<\infty\}$ is parallel translation along $x^{\theta}$ with respect to the

connection on the trivial bundle $M\times \mathbb{R}^{m}\rightarrow M$ determined by $K$ and $K^{\perp}$ , so
that

$\overline{//}(x^{\theta})_{s}$ : $\mathbb{R}^{m}\rightarrow \mathbb{R}^{m}$

is orthogonal and maps the kemel of $X(\theta(x_{0}))$ onto the kernel of $X(x_{s}^{\theta})$ for
$ 0\leq s<\infty$ , see $[7](chapter3)$ .

Correspondingly there is the ’redundant noise’, the Brownian motion { $\beta_{t}$ :
$0\leq t<\infty\}$ given by

$\beta_{t}=\int_{0}^{t}//(x^{\theta})_{s}^{-1}K(x_{s}^{\theta})dB_{s}\sim$ .

Then, as shown in $[7](chapter3)$ ,

(i) $\tilde{B}$

. has the same filtration as $\{x_{s}^{\theta} : 0\leq s<\infty\}$

(ii) $\beta$ . and $\tilde{B}$

. are independent
(iii) $dB_{t}=\overline{//}ld\beta_{t}+//\sim td\tilde{B}t$ .

We wish to see how $g$ is driven by $\beta$ . For this observe

$\int_{0}^{t}K(x_{s}^{\theta})\circ dB_{s}=\int_{0}^{t}K(x_{s}^{\theta})dB_{s}+\int_{0}^{t}\Lambda(x_{s}^{\theta})ds$

for $\Lambda$ : $M\rightarrow \mathbb{R}$ given by the Stratonovich correction term. By (iii)

$\int_{0}^{t}K(x_{s}^{\theta})dB_{s}=\int_{0}^{t}//_{s}d\beta_{s}-=\int_{0}^{t}\overline{/}/_{s}\circ d\beta_{s}$
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since//-. is independent of $\beta$ by (i) and (ii). Thus equation (14) for $g$ . can be
written as

$dg_{t}$ $=$ $T\theta_{t}^{-1}\{X(\theta_{t}g_{t}-)//(\theta-.(x_{0}))_{t}\circ d\beta_{t}+X(\theta_{t}g_{t}-)\Lambda(\theta_{t}(x_{0}))dt$

$+A(\theta_{t}g_{t}-)dt-X(\theta_{t}g_{t}-)Y(\theta_{t}x_{0})A(\theta_{t}x_{0})dt\}$

and if we define

$dg_{t}y$ $=$ $Ty_{t}-1\{X(y_{t}g_{t}-)\overline{//}(y.(x_{0}))_{t}\circ d\beta_{t}+X(y_{t}g_{t}-)\Lambda(y_{t}(x_{0}))dt$

$+A(y_{t}g_{t}-)dt-X(y_{t}g_{t}-)Y(y_{t}x_{0})A(y_{t}x_{0})dt\}$

$90$ $=$ $id$

for any continuous $y$ : $[0, \infty)\rightarrow D^{\infty}$ , we see, by the independence of $\beta$ and $\theta$

that $g$ . $=g^{\theta}$

. $\cdot$

By It\^o’s formula on $D^{s}$ , for $x\in M$ ,

$d(\theta_{t}g_{t}(x_{0}))=(\circ d\theta_{t})(g_{t}(x))+T\theta_{t}(\circ dg_{t}\theta(x))$ .

Now

$T\theta_{t}(\circ dg_{t}\theta(x))$ $=$ $\{X(\theta_{t}g_{t}(x))K(\theta_{t}x_{0})\circ dB_{t}$

$+A(\theta_{t}g_{t}(x))dt-X(\theta_{t}g_{t}(x))Y(\theta_{t}x_{0})A(\theta_{t}x_{0})dt\}$

and so by (13) we see that $\theta_{t}g_{t}=\xi_{t}\circ\theta_{0}$ , $a.s$ .

Taking $\theta_{0}=id$ we have

Proposition 3.2. The flow $\xi$ . has the decomposition

$\xi_{t}=\theta_{tg_{t}}^{\theta}$ , $ 0\leq t<\infty$

for $\theta$ and $g^{\theta}$

. $\equiv g$ . given by (13) and (14) above. For almost all $\sigma$ : $[0, \infty)\rightarrow M$

with $\sigma(0)=x_{0}$ and bounded measurable $F:C(0, \infty;D^{\infty})\rightarrow \mathbb{R}$

$E\{F(\xi)|\xi.(x_{0})=\sigma\}=E\{F(\tilde{\sigma}g^{\overline{\sigma}}.)\}$

where $\overline{\sigma}$ : $[0, \infty)\rightarrow D^{\infty}$ is the horizontal lift of $\sigma$ with $\tilde{\sigma}(O)=id$.

To define the ’horizontal lift’ above we can use the fact, from (i) above,

that $\theta$ . has the same filtration as $\xi.(x_{0})$ and so furnishes a lifting map.
In terms of the semi-connection induced on $\pi$ : $D^{s}\rightarrow M$ over $E$ , from

above, by uniqueness or directly, we see the horizontal lift

$h_{\theta}$ : $E_{\theta(x_{0})}\rightarrow T_{\theta}D^{s}$

$h_{\theta}(v)$ : $M\rightarrow TM$
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is given by $h_{\theta}(v)=X(\theta(x))Y(\theta(x_{0}))v$ and the horizontal lift $\overline{\sigma}$ . from $\overline{\sigma}_{0}$ of
a $C^{1}$ curve $\sigma$ on $M$ with $\overline{\sigma}_{0}(x_{0})=\sigma_{0}$ and $\dot{\sigma}(t)\in E_{\sigma(t)}$ , all $t$ , is given by

$\frac{d}{dt}\tilde{\sigma}_{t}=X(\tilde{\sigma}_{t}-)Y(\sigma_{t})\dot{\sigma}_{t}$

for $\overline{\sigma}_{0}=id$ . The lift is the solution flow of the differential equation

$\dot{y}_{t}=Z^{\sigma}(y_{t})$

on $M$ .

For each frame $u$ : $\mathbb{R}^{n}\rightarrow T_{x_{0}}M$ there is a homomorphism of principal
bundles

(15) $ D^{s}\theta$ $\mapsto T_{x_{0}}\theta\circ u\rightarrow GL(M)$

.

This sends $\{\xi_{t} : t\geq 0\}$ to the derivative process $T_{x}\xi_{t}\circ u$ . (If the latter satisfies
the strongly cohesive condition we could apply our analysis to this submersion
$D^{s}\rightarrow GLM$ and get another decomposition of $\xi..$ )

Results in Kobayashi-Nomizu [9] (Proposition 6.1 on page 79) apply to

the homomorphism $D^{s}\rightarrow GL(M)$ of (15). This gives a relationship between

the curvature and holonomy groups of the semi-connection $\hat{\nabla}$ on $GLM$ de-
termined by the derivative flow and those of the connection induced by the

diffusion on $D^{s}\rightarrow\pi M$ . It also shows that the horizontal lift $\{\overline{x}_{t} : t\geq 0\}$

through $u$ of $\{x_{t} : t\geq 0\}$ to $GL\{M$ ) is just $T_{x_{0}}\theta_{t}\circ u$ for $\{\theta_{t} : t\geq 0\}$ the flow
given by (13) with $\theta_{0}=id$ , i.e. the solution flow of the stochastic differential
equation

$dy_{t}=Z^{odx_{t}}(y_{t})$ .

From this and Lemma 1.3.4 of [7] we see that $\hat{\nabla}$ is the adjoint of the LeJan-
Watanabe connection determined by the flow, so proving Theorem 3.1 above.
However the present construction applies with GLM replaced by any natural
bundle over $M$ (e.g. jet bundles, see Kolar-Michor-Slovak [10]), to give semi-
connections on these bundles.
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Monge-Kantorovitch Measure Transportation,
Monge-Amp\‘ere Equation and the It\^o Calculus
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Dedicated to Professor Kiyosi It\^o for his 88th birthday

Abstract.

Let $(W, \mu, H)$ be an abstract Wiener space assume two $l\nearrow i$ , $i=$

$1$ , 2 probabilities on $(W, B(W))$ . Assume that the Wasserstein dis-
tance between $\nu_{1}$ and $\nu_{2}$ with respect to the Cameron-Martin norm

$d_{H}(1/_{1}, \nu_{2})=\{\inf_{\beta}\int_{W\times W}|x-y|_{H}^{2}d\beta(x, y)\}^{1/2}$

is finite, where the infimum is taken on the set of probability measures
$\beta$ on $W\times W$ whose first and second marginals are $\iota/_{1}$ and $\nu_{2}$ and that
$\iota/_{1}$ has regular disintegration along a sequence of finite dimensional
projections. Then there exists a unique (cyclically monotone) map
$T$ $=I_{W}+\xi$ , with $\xi$ : $W\rightarrow H$ , such that $T$ maps $\nu_{1}$ to $\nu_{2}$ and
the measure $\gamma=$ $(I \times T)\nu_{1}$ is the unique solution of the Monge-
Kantorovitch problem. Besides, if $\nu_{2}<<\mu^{1)}$ , then $T$ is stochastically
invertible, i.e., there exists $S$ : $W\rightarrow W$ such that $SoT=I_{W}$

$\nu_{1}a.s$ . and $ToS=I_{W}\nu_{2}a.s$ . If $I/_{1}=\mu$ , then there exists a 1-
convex function $\phi$ in the Gaussian Sobolev space $I\supset_{2,1}$ , such that
$\xi=\nabla\phi$ . These results imply that the quasi-invariant transformations
of the Wiener space with finite Wasserstein distance ffom $\mu$ can be
written as the composition of a transport map $T$ and a rotation,

i.e., a measure preserving map. We give also 1-convex sub-solutions
using by calculating the Gaussian jacobian. Finally the full solutions
of the Monge-Amp\‘ere equation on $W$ are given with the help of the
It\^o calculus.

\S 1. Introduction

In 1781, Gaspard Monge has published his celebrated memoire about
the most economical way of earth-moving [20]. The configurations of

Received March 6, 2003.
1) In fact this hypothesis is too strong, cf. Theorem 4.1.
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excavated earth and remblai were modelized as two measures of equal
mass, say $\rho$ and $\nu$ , that Monge had supposed absolutely continuous with
respect to the volume measure. Later Amp\‘ere has studied an analogous
question about the electricity current in a media with varying conductiv-
ity. In modern language of measure theory we can express the problem
in the following terms: let $W$ be a Polish space on which are given two
positive measures $\rho$ and $\nu$ , of finite, equal mass. Let $c(x, y)$ be a cost
function on $W\times W$ , which is, usually, assumed to be positive. Does
there exist a map $T$ : $W\rightarrow W$ such that $ T\rho=\nu$ and $T$ minimizes the
integral

$\int_{W}c(x, T(x))d\rho(x)$

between all such maps? The problem has been further studied by Appell
$[1, 2]$ and by Kantorovitch [16]. Kantorovitch has succeeded to trans-
form this highly nonlinear problem of Monge into a linear problem by
replacing the search for $T$ with the search of a measure $\gamma$ on $W\times W$

with marginals $\rho$ and $\nu$ such that the integral

$\int_{W\times W}c(x, y)d\gamma(x, y)$

is the minimum of all the integrals

$\int_{W\times W}c(x, y)d\beta(x, y)$

where $\beta$ runs in the set of probability measures on $W\times W$ whose
marginals are $\rho$ and $\nu$ . Since then the problem addressed above is called
the Monge problem and the quest of the optimal measure is called the
Monge-Kantorovitch problem.

In this paper we survey and complete the recent results (cf. [12, 13])
about the Monge-Kantorovitch and the Monge problem in the frame
of an abstract Wiener space with a (infinitesimal) cost function $c$ on
$W\times W$ , which is singular with respect to the natural Fr\’echet topology
of this space. Let us explain all this more rigourously: let $W$ be a
separable Fr\’echet space with its Borel sigma algebra $B(W)$ and assume
that there is a separable Hilbert space $H$ which is injected densely and
continuously into $W$ , thus the topology of $H$ is, in general, stronger than
the topology induced by $W$ . The cost function $c:W\times W\rightarrow R_{+}\cup\{\infty\}$

is defined as
$c(x, y)=|x-y|_{H}^{2}$ ,

we suppose that $ c(x, y)=\infty$ if $x-y$ does not belong to $H$ . Clearly,
this choice of the function $c$ is not arbitrary, in fact it is closely related
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to It\^o Calculus, hence also to the problems originating ffom Physics,
quantum chemistry, large deviations, etc. Since for all the interesting
measures on $W$ , the Cameron-Martin space is a negligeable set, the cost
function will be infinity very ffequently. Let $\Sigma(\rho, \nu)$ denote the set of
probability measures on $W\times W$ with given marginals $\rho$ and $\nu$ . It is
a convex, compact set under the weak topology $\sigma(\Sigma, C_{b}(W\times W))$ . As
explained above, the problem of Monge consists of finding a measurable
map $T$ : $W\rightarrow W$ , called the optimal transport of $\rho$ to $\nu$ , i.e., $T\rho=\nu^{2)}$

which minimizes the total cost

$U\rightarrow\int_{W}|x-U(x)|_{H}^{2}d\rho(x)$ ,

between all the maps $U$ : $W\rightarrow W$ such that $ U\rho=\nu$ . The Monge-
Kantorovitch problem will consist of finding a measure on $W\times W$ , which
minimizes the function $\theta\rightarrow J(\theta)$ , defined by

(1.1) $J(\theta)=\int_{W\times W}|x-y|_{H}^{2}d\theta(x, y)$ ,

where $\theta$ runs in $\Sigma(\rho, \nu)$ . Note that $\inf\{J(\theta) : \theta\in\Sigma(\rho, \nu)\}$ is the square of
Wasserstein metric $d_{H}(\rho, \nu)$ with respect to the Cameron-Martin space
$H$ .

Any solution $\gamma$ of the Monge-Kantorovitch problem will give a solu-
tion to the Monge problem provided that its support is included in the
graph of a map. Hence our work consists of realizing this program. Al-
though in the finite dimensional case this problem is well-studied in the
path-breaking papers of Brenier [4] and McCann $[18, 19]$ , cf. also $[25, 26]$ ,

the things do not come up easily in our setting and the difficulty is due
to the fact that the cost function is not continuous with respect to the
Fr\’echet topology of $W$ , for instance the weak convergence of the prob-
ability measures does not imply the convergence of the integrals of the
cost function. In other words the function $|x-y|_{H}^{2}$ takes the value plus
infinity “very often”. On the other hand the results we obtain seem to
have important applications to several problems of stochastic analysis

that we shall explain while enumerating the contents of the paper.
In Section 2, are given the basic results of functional analysis on

the Wiener space (cf., for instance [10, 28]) and the related probabilistic
theory of convex functions developed in [11]. Section 3 deals with the
derivation of some inequalities which control the Wasserstein distance.

2) We denote the push-forward of $\rho$ by $T$ , i.e., the image of $\rho$ under $T$ , by
$ T\rho$ .
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In particular, with the help of the Girsanov theorem and the It\^o cal-
culus, we give a very simple proof of an inequality, initially discovered
by Talagrand ([24]), some simple applications are $ako$ illustrated. The
facility with which one obtains these results gives an idea about the ef-
ficiency of the infinite dimensional techniques, namely the It\^o calculus
for the Monge-Kantorovitch like problems.

In Section 4 we give the full statement for the existence and the
uniqueness of solution of the Monge problem and the uniqueness of the
solution of the Monge-Kantorovitch problem under the hypothesis that
the Wasserstein distance is finite. We have avoided to give the cor-
responding proofs which are quite technical (cf. [13]), however all the
applications are provided with proofs or explanations in such a way that
the reader can have an idea about how to do it.

Section 5 studies the Monge-Amp\‘ere equation for the measures which
are absolutely continuous with respect to the Wiener measure. First we
define the Alexandrov versions of the Ornstein-Uhlenbeck operator and
the second order Sobolev derivatives for 1-convex Wiener maps. With
the help of these, we write the corresponding Jacobian using the mod-
ified Carleman-Fredholm determinant which is natural in the infinite
dimensional case (cf., [29]). Here we have a major difficulty which origi-
nates from the pathology of the Radon-Nikodym derivatives of the vector
measures with respect to a scalar measure: in fact even if the second
order Sobolev derivative of a Wiener function is a vector measure with
values in the space of Hilbert-Schmidt operators, its absolutely contin-
uous part has no reason to be Hilbert-Schmidt. Hence the Carleman-
Fredholm determinant may not exist, however due to the 1-convexity,
the detereminants of the approximating sequence are all with values in
the interval $[0, 1]$ . Consequently we can construct the subsolutions with
the help of the Fatou lemma.

Last but not the least, in section 6, we remark that all these dif-
ficulties can be overcome thanks to the natural renormalization of the
It\^o stochastic calculus. In fact using the It\^o representation theorem and
the Wiener space analysis extended to the distributions [27], we can give
the explicit solution of the Monge-Amp\‘ere equation. This is a remark-
able result in the sense that such techniques do not exist in the finite
dimensional case.

\S 2. Preliminaries and notations

Let $W$ be a separable Fr\’echet space equipped with a Gaussian
measure $\mu$ of zero mean whose support is the whole space. The cor-
responding Cameron-Martin space is denoted by $H$ . Recall that the
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injection $Hc\rightarrow W$ is compact and its adjoint is the natural injection
$W^{\star}L\rightarrow H^{\star}\subset L^{2}(\mu)$ . The triple $(W, \mu, H)$ is called an abstract Wiener
space. Recall that $W=H$ if and only if $W$ is finite dimensional. A sub-
space $F$ of $H$ is called regular if the corresponding orthogonal projection
has a continuous extension to $W$ , denoted again by the same letter. It is
well-known that there exists an increasing sequence of regular subspaces
$(F_{n}, n\geq 1)$ , called total, such that $\bigcup_{n}F_{n}$ is dense in $H$ and in $W$ . Let
$\sigma(\pi_{F_{n}})^{3)}$ be the $\sigma$-algebra generated by $\pi_{F_{n}}$ , then for any $f\in L^{p}(\mu)$ ,

the martingale sequence $(E[f|\sigma(\pi_{F_{n}})], n \geq 1)$ converges to $f$ (strongly
if $ p<\infty$ ) in $L^{p}(\mu)$ . Observe that the function $f_{n}=E[f|\sigma(\pi_{F_{n}})]$ can
be identified with a function on the finite dimensional abstract Wiener
space $(F_{n}, \mu_{n}, F_{n})$ , where $\mu_{7\iota}=\pi_{n}\mu$ .

Since the translations of $\mu$ with the elements of $H$ induce measures
equivalent to $\mu$ , the G\^ateaux derivative in $H$ direction of the random
variables is a closable operator on $L^{p}(\mu)$-spaces and this closure will be
denoted by $\nabla$ cf., for example $[10, 28]$ . The corresponding Sobolev spaces
(the equivalence classes) of the real random variables will be denoted as
$D_{p,k}$ , where $k\in N$ is the order of differentiability and $p>1$ is the order
of integrability. If the random variables are with values in some separable
Hilbert space, say $\Phi$ , then we shall define similarly the corresponding
Sobolev spaces and they are denoted as $I)_{p,k}(\Phi)$ , $p>1$ , $k\in N$ . Since
$\nabla$ : $D_{p,k}\rightarrow D_{p,k-1}(H)$ isacontinuous and linear operator its adjoint is
a well-defined operator which we represent by $\delta$ . In the case of classical
Wiener space, i.e., when $W=C(1R_{+}, 1R^{d})$ , then $\delta$ coincides with the It\^o

integral of the Lebesgue density of the adapted elements of $FJ_{p,k}(H)$ (cf.
[28] $)$ .

For any $t\geq 0$ and measurable $f$ : $W\rightarrow \mathbb{R}_{+}$ , we note by

$P_{t}f(x)=\int_{W}f(e^{-t}x+\sqrt{1-e^{-2t}}y)\mu(dy)$ ,

it is well-known that $(P_{t}, t\in \mathbb{R}_{+})$ is a hypercontractive semigroup on
$L^{p}(\mu),p>1$ , which is called the Ornstein-Uhlenbeck semigroup (cf.
$[10, 28])$ . Its infinitesimal generator is denoted by $-\mathcal{L}$ and we call $\mathcal{L}$ the
Ornstein-Uhlenbeck operator (sometimes called the number operator by
the physicists). The norms defined by

(2.2) $||\phi||_{p,k}=||(I+\mathcal{L})^{k/2}\phi||_{L^{p}(\mu)}$

are equivalent to the norms defined by the iterates of the Sobolev deriv-
ative $\nabla$ . This observation permits us to identify the duals of the space

3) For the notational simplicity, in the sequel we shall denote it by $\pi F_{n}$ .
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$D_{p,k}(\Phi);p>1$ , $k\in N$ by $D_{q,-k}(\Phi^{/})$ , with $q^{-1}=1-p^{-1}$ , where the
latter space is defined by replacing $k$ in (2.2) by $-k$ , this gives us the
distribution spaces on the Wiener space $W$ (in fact we can take as $k$

any real number). An easy calculation shows that, formally, $\delta o\nabla=\mathcal{L}$ ,

and this permits us to extend the divergence and the derivative op-
erators to the distributions as linear, continuous operators. In fact
$\delta$ : $D_{q,k}(H\otimes\Phi)\rightarrow D_{q,k-1}(\Phi)$ and $\nabla$ : $D_{q,k}(\Phi)\rightarrow D_{q,k-1}(H\otimes\Phi)$

continuously, for any $q>1$ and $k\in \mathbb{R}$ , where $ H\otimes\Phi$ denotes the com-
pleted Hilbert-Schmidt tensor product (cf., for instance [28]).

Let us recall some facts ffom the convex analysis. Let $K$ be a Hilbert
space, a subset $S$ of $K\times K$ is called cyclically monotone if any finite
subset $\{(x_{1}, y_{1}), \ldots, (x_{N}, y_{N})\}$ of $S$ satisfies the following algebraic con-
dition:

$\langle y_{1}, x_{2}-x_{1}\rangle+\langle y_{2}, x_{3}-x_{2}\rangle+\cdots+\langle y_{N-1}, x_{N}-x_{N-1}\rangle+\langle y_{N}, x_{1}-x_{N}\rangle\leq 0$ ,

where $\langle\cdot, \cdot\rangle$ denotes the inner product of K. It turns out that $S$ is
cyclically monotone if and only if

$\sum_{i=1}^{N}(y_{i}, x_{\sigma(i)}-x_{i})\leq 0$ ,

for any permutation $\sigma$ of $\{1, \ldots, N\}$ and for any finite subset { $(x_{i}, y_{i})$ :
$i=1$ , $\ldots$ , $N\}$ of $S$ . Note that $S$ is cyclically monotone if and only if any
translate of it is cyclically monotone. By a theorem of Rockafellar, any
cyclically monotone set is contained in the graph of the subdifferential
of a convex function in the sense of convex analysis ([22]) and even if
the function may not be unique its subdifferential is unique.
Let now $(W, \mu, H)$ be an abstract Wiener space; a measurable function
$f$ : $W\rightarrow 1R\cup\{\infty\}$ is called 1-convex if the map

$h\rightarrow f(x+h)+\frac{1}{2}|h|_{H}^{2}=F(x, h)$

is convex on the Cameron-Martin space $H$ with values in $L^{0}(\mu)$ . Note
that this notion is compatible with the $\mu$-equivalence classes of random
variables thanks to the Cameron-Martin theorem. It is proven in [11]
that this definition is equivalent the following condition: Let $(\pi_{n}, n \geq 1)$

be a sequence of regular, finite dimensional, orthogonal projections of
$H$ , increasing to the identity map $I_{H}$ . Denote also by $\pi_{n}$ its continuous
extension to $W$ and define $\pi_{n}^{\perp}=I_{W}-\pi_{n}$ . For $x\in W$ , let $x_{n}=\pi_{n}x$ and
$x_{n}^{\perp}=\pi_{n}^{\perp}x$ . Then $f$ is 1-convex if and only if

$x_{n}\rightarrow\frac{1}{2}|x_{n}|_{H}^{2}+f(x_{n}+x_{n}^{\perp})$
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is $\pi_{n}^{\perp}\mu$-almost surely convex.

\S 3. Some Inequalities

Definition 3.1. Let $\xi$ and $\eta$ be two probabilities on $(W, B(W))$ .

We say that a probability $\gamma$ on $(W\times W, B(W\times W))$ is a solution of the
Monge-Kantorovitch problem associated to the couple $(\xi, \eta)$ if the fifirst
marginal of $\gamma$ is $\xi$ , the second one is $\eta$ and if

$J(\gamma)=\int_{W\times W}|x-y|_{H}^{2}d\gamma(x, y)$

$=\inf\{\int_{W\times W}|x-y|_{H}^{2}d\beta(x, y)$ : $\beta\in\Sigma(\xi, \eta)\}$ ,

where $\Sigma(\xi, \eta)$ denotes the set of all the probability measures on $W\times W$

whose fifirst and second marginals are respectively $\xi$ and $\eta$ . We shall
denote the Wasserstein distance between $\xi$ and $\eta$ , which is the positive
square-root of this infifimum, with $d_{H}(\xi, \eta)$ .

Remark: By the weak compacteness of probability measures on
$W\times W$ and the lower semi-continuity of the strictly convex cost func-
tion, the infimum in the definition is attained even if the functional $J$ is
identically infinity.
The following result, whose proof is outlined below (cf. also[12, 13]) is an
extension of an inequality due to Talagrand [24] and it gives a sufficient
condition for the Wasserstein distance to be finite:

Theorem 3.1. Let $L\in L\log L(\mu)$ be a positive random variable
with $E[L]=1$ and let $\nu$ be the measure $ d\nu=Ld\mu$ . We then have

(3.3) $d_{H}^{2}(\nu, \mu)\leq 2E[L\log L]$ .

Proof: Let us remark first that we can take $W$ as the classical
Wiener space $W=C_{0}([0,1])$ and, using the stopping techniques of the
martingale theory, we may assume that $L$ is upper and lower bounded
almost surely. Then a classical result of the It\^o calculus implies that $L$

can be represented as an exponential martingale

$L_{t}=\exp\{-\int_{0}^{t}\dot{u}_{\tau}dW_{\tau}-\frac{1}{2}\int_{0}^{t}|\dot{u}_{\tau}|^{2}d\tau\}$ ,

with $L=L_{1}$ . Let us define $u$ : $W\rightarrow H$ as $ u(t, x)=\int_{0}^{t}\dot{u}_{\tau}d\tau$ and
$U$ : $W\rightarrow W$ as $U(x)=x+u(x)$ . The Girsanov theorem implies that
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$x\rightarrow U(x)$ is a Browian motion under $\nu$ , hence $\beta=(U\times I)\nu\in\Sigma(\mu, \nu)$ .
Let $\gamma$ be any optimal measure, then

$J(\gamma)$ $=$ $d_{H}^{2}(\nu, \mu)\leq\int_{W\times W}|x-y|_{H}^{2}d\beta(x, y)$

$=$ $E[|u|_{H}^{2}L]$

$=$ $2E[L\log L]$ ,

where the last equality follows also ffom the Girsanov theorem and the
It\^o stochastic calculus. $\square $

Combining Theorem 3.1 with the triangle inequality for the Wasser-
stein distance gives:

Corollary 3.1. Assume that $\nu_{i}(i=1,2)$ have Radon-Nikodym den-

sities $L_{i}(i=1,2)$ with respect to the Wiener measure $\mu$ which are in
$L\log$L. Then

$ d_{H}(\nu_{1}, \nu_{2})<\infty$ .

Let us give a simple application of the above result in the lines of [17]:

Corollary 3.2. Assume that $A\in B(W)$ is any set of positive
Wiener measure. Defifine the $H$ -gauge function of $A$ as

$q_{A}(x)=\inf(|h|_{H} : h\in(A-x)\cap H)$ .

Then we have

$E[q_{A}^{2}]\leq 2\log\frac{1}{\mu(A)}$ ,

in other words

$\mu(A)\leq\exp\{-\frac{E[q_{A}^{2}]}{2}\}$ .

Similarly if $A$ and $B$ are $H$ -separated, $i.e.$ , if $ A_{\Xi}\cap B=\emptyset$ , for some
$\epsilon>0$ , where $A_{\in}=\{x\in W : q_{A}(x)\leq\in\}$ , then

$\mu(A_{\in}^{c})\leq\frac{1}{\mu(A)}e^{-\epsilon^{2}/4}$

and consequently

$\mu(A)\mu(B)\leq\exp(-\frac{5^{2}}{4})$

Remark 3.1. We already know that, from the 0–1-law, $q_{A}$ is
almost surely fifinite, besides it satisfifies $|q_{A}(x+h)-q_{A}(x)|\leq|h|_{H}$ , hence
$ E[\exp\lambda q_{A}2]<\infty$ for any $\lambda<1/2$ (cf. the Appendix $B.8$ of [29]). In fact
all these assertions can also be proved with the technique used below.
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Proof: Let $\nu_{A}$ be the measure defined by

$ d\nu_{A}=\frac{1}{\mu(A)}1_{A}d\mu$ .

Let $\gamma_{A}$ be the solution of the Monge-Kantorovitch problem, it is easy to
see that the support of $\gamma_{A}$ is included in $W\times A$ , hence

$|x-y|_{H}\geq\inf\{|x-z|_{H} : z\in A\}=q_{A}(x)$ ,

$\gamma_{A}$-almost surely. This implies in particular that $q_{A}$ is almost surely
finite. It follows now from the inequality (3.3)

$E[q_{A}^{2}]\leq-2\log\mu(A)$ ,

hence the proof of the first inequality follows. For the second let $B=$

$A_{\Xi}^{c}$ and let $\gamma AB$ be the solution of the Monge-Kantorovitch problem
corresponding to $\nu_{A}$ , $\nu_{B}$ . Then we have ffom the Corollary 3.1,

$d_{H}^{2}(\nu_{A}, \nu_{B})\leq-4\log\mu(A)\mu(B)$ .

Besides the support of the measure $\gamma AB$ is in $A\times B$ , hence $\gamma AB$ almost
surely $|x-y|_{H}\geq\epsilon$ and the proof follows. $\square $

\S 4. Construction of the transport map

In this section we call optimal every probability $measure^{4)}\gamma$ on
$W\times W$ such that $ J(\gamma)<\infty$ and that $J(\gamma)\leq J(\theta)$ for every other
probability $\theta$ having the same marginals as those of $\gamma$ . We recall that a
finite dimensional subspace $F$ of $W$ is called regular if the corresponding
projection is continuous. Similarly a finite dimensional projection of $H$

is called regular if it has a continuous extension to $W$ .
The proof of the next theorem, for which we refer the reader to [13],

can be done by choosing a proper disintegration of any optimal measure
in such a way that the elements of this disintegration are the solutions of
finite dimensional Monge-Kantorovitch problems. The latter is proven
with the help of the section-selection theorem [6].

Theorem 4.1 (General case). Suppose that $\rho$ and $\nu$ art two prob-
ability measures on $W$ such that

$ d_{H}(\rho, \nu)<\infty$ .

4) In fact the results of this section are essentially true for the bounded,
positive measures.
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Let $(\pi_{n}, n\geq 1)$ be a total increasing sequence of regular projections (of
$H$ , converging to the identity map of $H$). Suppose that, for any $n$ $\geq 1$ ,
the regular conditional probabilities $\rho(\cdot|\pi_{n}^{\perp}=x^{\perp})$ vanish $\pi_{n}^{\perp}\rho$-almost
surely on the subsets of $(\pi_{n}^{\perp})^{-1}(W)$ with Hausdorff dimension $n-1$ .

Then there exists a unique solution of the Monge-Kantorovitch problem,
denoted by $\gamma\in\Sigma(\rho, \nu)$ and $\gamma$ is supported by the graph of a Borel map
$T$ which is the solution of the Monge problem. $T$ : $W\rightarrow W$ is of the
form $ T=I_{W}+\xi$ , where $\xi\in H$ almost surely. Besides we have

$d_{H}^{2}(\rho, \nu)$ $=$ $\int_{W\times W}|T(x)-x|_{H}^{2}d\gamma(x, y)$

$=$ $\int_{W}|T(x)-x|_{H}^{2}d\rho(x)$ ,

and for $\pi_{n}^{\perp}\rho$ -almost almost all $x_{n}^{\perp}$ , the map $u\rightarrow\xi(u+x_{n}^{\perp})$ is cyclically
monotone on $(\pi_{n}^{\perp})^{-1}\{x_{n}^{\perp}\}$ , in the sense that

$\sum_{i=1}^{N}$ ( $u_{i}+\xi(x_{n}^{\perp}+u_{i})$ , $u_{i+1}-u_{i})_{H}\leq 0$

$\pi_{n}^{\perp}\rho$-almost surely, for any cyclic sequence $\{u_{1}, \ldots, u_{N}, u_{N+1}=u_{1}\}$

from $\pi_{n}(W)$ . Finally, if, for any $n\geq 1$ , $\pi_{n}^{\perp}\nu$ -almost surely, $\nu(\cdot|\pi_{n}^{\perp}=$

$y^{\perp})$ also vanishes on the $n-1$ -Hausdorff dimensional subsets of $(\pi_{n}^{\perp})^{-1}(W)$ ,
then $T$ is invertible, $i.e$ , there exists $S$ : $W\rightarrow W$ of the form $ S=I_{W}+\eta$

such that $\eta\in H$ satisfifies a similar cyclic monotononicity property as $\xi$

and that

1 $=$ $\gamma\{(x, y)\in W\times W : ToS(y)=y\}$

$=$ $\gamma\{(x, y)\in W\times W : SoT(x)=x\}$ .

In particular we have

$d_{H}^{2}(\rho, \nu)$ $=$ $\int_{W\times W}|S(y)-y|_{H}^{2}d\gamma(x, y)$

$=$ $\int_{W}|S(y)-y|_{H}^{2}d\nu(y)$ .

Remark 4.1. In particular, for all the measures $\rho$ which $aoe$ ab-
solutely continuous with respect to the Wiener measure $\mu$ , the second
hypothesis is satisfified, $i.e.$ , the measure $\rho(\cdot|\pi_{n}^{\perp}=x_{n}^{\perp})$ vanishes on the
sets of Hausdorff dimension $n-1$ .

The case where one of the measures is the Wiener measure and the
other is absolutely continuous with respect to $\mu$ is the most important
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one for the applications. Consequently we give the related results sepa-
rately in the following theorem where the tools of the Malliavin calculus
give more information about the maps $\xi$ and $\eta$ of Theorem 4.1:

Theorem 4.2 (Gaussian case). Let $\nu$ be the measure $ d\nu=Ld\mu$ ,
where $L$ is a positive random variable, with $E[L]=1$ . Assume that
$ d_{H}(\mu, \nu)<\infty$ (for instance $L\in L\log L$). Then there exists $a$ 1-convex

function $\phi\in D_{2,1}$ , unique upto a constant, such that the map $T=$

$ I_{W}+\nabla\phi$ is the unique solution of the original problem of Monge. More-
over, its graph supports the unique solution of the Monge-Kantorovitch
problem $\gamma$ . Consequently

$(I_{W}\times T)\mu=\gamma$

In particular $T$ maps $\mu$ to $\nu$ and $T$ is almost surely invertible, $i.e.$ , there
exists some $T^{-1}$ such that $ T^{-1}\nu=\mu$ and that

1 $=$ $\mu\{x:T^{-1}\circ T(x)=x\}$

$=$ $\nu\{y\in W : ToT^{-1}(y)=y\}$ .

Remark 4.2. Assume that the operator $\nabla$ is closable with respect
to $\nu$ , then we have $\eta=\nabla\psi$ . In particular, if $\nu$ and $\mu$ are equivalent,
then we have

$ T^{-1}=I_{W}+\nabla\psi$ ,

where is $\psi$ is $a$ 1-convex function.

Remark 4.3. Let $(e_{n}, n\in N)$ be a complete, orthonormal in $H$ ,
denote by $V_{n}$ the sigma algebra generated by $\{\delta e_{1}, \ldots, \delta e_{n}\}$ and let $L_{n}=$

$E[L|V_{n}]$ . If $\phi_{n}\in D_{2,1}$ is the function constructed in Theorem $4\cdot 2$,
corresponding to $L_{n}$ , then, using the inequality (3.3) we can prove that
the sequence $(\phi_{n}, n\in N)$ converges to $\phi$ in $D_{2,1}$ .

Remark 4.4. Assume that $L\in L_{+}^{1}(\mu)$ , with $E[L]=1$ and let
$(D_{k}, k\in N)$ be a measurable partition of $W$ such that on each $D_{k}$ , $L$ is
bounded. Defifine $ d\nu=Ld\mu$ and $\nu_{k}=\nu(\cdot|D_{k})$ . It follows from Theorem
3.1, that $ d_{H}(\mu, \nu_{k})<\infty$ . Let then $T_{k}$ be the map constructed in Theorem
4-2 satisfying $T_{k}\mu=\nu_{k}$ . Defifine $n(dk)$ as the probability distribution on
$N$ given by $n(\{k\})=\nu(D_{k})$ , $k\in N$ . Then we have

$\int_{W}f(y)d\nu(y)=\int_{W\times N}f(T_{k}(x))\mu(dx)n(dk)$ .

A similar result is given in [9], the difference with that of above lies in
the fact that we have a more precise information about the probability
space on which $T$ is defifined.
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Let us give some applications of the above theorem to the factoriza-
tion of the absolutely continuous transformations of the Wiener measure.

Assume that $V=I_{W}+v$ : $W\rightarrow W$ be an absolutely continuous
transformation and let $L\in L_{+}^{1}(\mu)$ be the Radon-Nikodym derivative of
$ V\mu$ with respect to $\mu$ . Let $ T=I_{W}+\nabla\phi$ be the transport map such
that $ T\mu=L.\mu$ . Then it is easy to see that the map $s=T^{-1}oV$ is a
rotation, i.e., $ s\mu=\mu$ (cf. [29]) and it can be represented as $ s=I_{W}+\alpha$ .
In particular we have

(4.4) $\alpha+\nabla\phi\circ s=v$ .

Since $\phi$ is a 1-convex map, we have $h\rightarrow\frac{1}{2}|h|_{H}^{2}+\phi(x+h)$ is almost surely
convex (cf. [11]). Let $s^{/}=I_{W}+\alpha^{/}$ be another rotation with $\alpha^{J}$ : $W\rightarrow H$ .

By the 1-convexity of $\phi$ , we have

$\frac{1}{2}|\alpha’|_{H}^{2}+\phi\circ s^{J}\geq\frac{1}{2}|\alpha|_{H}^{2}+\phi\circ s+$ ( $\alpha+\nabla\phi\circ s$ , $\alpha^{/}-\alpha$) ,

$\mu$-almost surely. Taking the expectation of both sides, using the fact
that $s$ and $s^{J}$ preserve the Wiener measure $\mu$ and the identity (4.4), we
obtain

$E[\frac{1}{2}|\alpha|_{H}^{2}-(v, \alpha)_{H}]\leq E[\frac{1}{2}|\alpha’|_{H}^{2}-(v, \alpha^{/})_{H}]$

Hence we have proven the existence part of the following

Proposition 4.1. Let $\mathcal{R}_{2}$ denote the subset of $L^{2}(\mu, H)$ whose ele-
ments are defifined by the property that $x\rightarrow x+\eta(x)$ is a rotation, $i.e.$ ,

it preserves the Wiener measure. Then $\alpha$ is the unique element of $\mathcal{R}_{2}$

which minimizes the functional

$\eta\rightarrow M_{v}(\eta)=E[\frac{1}{2}|\eta|_{H}^{2}-(v, \eta)_{H}]$

Proof: The only claim to prove is the uniqueness and it follows
easily from Theorem 4.2. $\square $

The following theorem, whose proof is rather easy, gives a better
understanding of the structure of absolutely continuous transformations
of the Wiener measure:

Theorem 4.3. Assume that $U$ : $W\rightarrow W$ be a measurable map and
$L\in L\log L$ a positive random variable with $E[L]=1$ . Assume that the
measure $\nu=L$ .

$\mu$ is a Girsanov measure for $U$ , $i.e.$ , that one has

$E[foUL]=E[f]$ ,
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for any $f\in C_{b}(W)$ . Then there exists a unique map $ T=I_{W}+\nabla\phi$

with $\phi\in D_{2,1}$ is $l$ -convex, and a measure preserving transformation
$R$ : $W\rightarrow W$ such that $ U\circ T=R\mu$-almost surely and $U=R\circ T^{-1}$

$\nu$ -almost surely.

Another version of Theorem 4.3 can be announced as follows:

Theorem 4.4. Assume that $Z$ : $W\rightarrow W$ is a measurable map such
that $ Z\mu\ll\mu$ , with $ d_{H}(Z\mu, \mu)<\infty$ . Then $Z$ can be decomposed as

$Z=T\circ s$ ,

where $T$ is the unique transport map of the Monge-Kantorovitch problem

for $\Sigma(\mu, Z\mu)$ and $s$ is a rotation.

Although the following result is a translation of the results of this
section, it is interesting ffom the point of view of stochastic differential
equations:

Theorem 4.5. Let $(W, \mu, H)$ be the standard Wiener space on $R^{d}$ ,
$i.e.$ , $W=C(1R_{+}, R^{d})$ . Assume that there exists a probability $ P<<\mu$

which is the weak solution of the stochastic differential equation

$dy_{t}=dW_{t}+b(t, y)dt$ ,

such that $ d_{H}(P, \mu)<\infty$ . Then there exists a process $(T_{t}, t\in 1R_{+})$

which is a pathwise solution of some (anticipative) stochastic differential
equation whose law is equal to $P$ .

Proof: Let $T$ be the transport map constructed in Theorem 4.2
corresponding to $ dP/d\mu$ . Then it has an inverse $T^{-1}$ such that $\mu\{T^{-1}\circ$

$T(x)=x\}=1$ . Let $\phi$ be the 1-convex function such that $ T=I_{W}+\nabla\phi$

and denote by $(D_{s}\phi, s\in R_{+})$ the representation of $\nabla\phi$ in $L^{2}(R_{+}, ds)$ .

Define $T_{t}(x)$ as the trajectory $T(x)$ evaluated at $t\in 1R_{+}$ . Then it is easy
to see that $(T_{t}, t\in R_{+})$ satisfies the stochastic differential equation

$T_{t}(x)=W_{t}(x)+\int_{0}^{t}l(s, T(x))ds$ , $t\in 1R_{+}$ ,

where $W_{t}(x)=x(t)$ and $l(s, x)=D_{s}\phi\circ T^{-1}(x)$ if $x\in T(W)$ and zero
otherwise. $\square $
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\S 5. The Monge-Amp\‘ere equation

Assume that $W=R^{n}$ and take a density $ L\in L\log$ L. Let $\phi\in D_{2,1}$

be the 1-convex function such that $ T=I+\nabla\phi$ maps $\mu$ to $L$ .
$\mu$ . Let

$ S=I+\nabla\psi$ be its inverse with $\psi\in D_{2,1}$ . Let now $\nabla_{a}^{2}\phi$ be the second
Alexandrov derivative of $\phi$ , i.e., the Radon-Nikodym derivative of the
absolutely continuous part of the vector measure $\nabla^{2}\phi$ with respect to
the Gaussian measure $\mu$ on ]$R^{n}$ . Since $\phi$ is 1-convex, it follows that
$\nabla^{2}\phi\geq-I_{R^{n}}$ in the sense of the distributions, consequently $\nabla_{a}^{2}\phi\geq$

$-I_{R^{n}}\mu$-almost surely. Define also the Alexandrov version $\mathcal{L}_{a}\phi$ of $\mathcal{L}\phi$ as
the Radon-Nikodym derivative of the absolutely continuous part of the
distribution $\mathcal{L}\phi$ . Since we are in finite dimensional situation, we have
the explicit expression for $\mathcal{L}_{a}\phi$ as

$\mathcal{L}_{a}\phi(x)=(\nabla\phi(x), x)_{R^{n}}-trace(\nabla_{a}^{2}\phi)$

Let $\Lambda$ be the Gaussian Jacobian

$\Lambda=\det_{2}(I_{R^{n}}+\nabla_{a}^{2}\phi)\exp\{-\mathcal{L}_{a}\phi-\frac{1}{2}|\nabla\phi|_{R^{n}}^{2}\}$ .

Remark 5.1. In this expression as well as in the sequel, the notation
$\det_{2}(I_{H}+A)$ denotes the modified Carleman-Fredholm determinant of
the operator $I_{H}+A$ on a Hilbert space $H$ . If $A$ is an operator of finite
rank, then it is defined as

$\det_{2}(I_{H}+A)=\prod_{i=1}^{n}(1+l_{i})e^{-l_{i}}$ ,

where $(l_{i}, i\leq n)$ denotes the eigenvalues of $A$ counted with respect to
their multiplicity. In fact this determinant has an analytic extension to
the space of Hilbert-Schmidt operators on a separable Hilbert space, cf.
[7] and Appendix A.2 of [29]. As explained in [29], the modified deter-
minant exists for the Hilbert-Schmidt operators while the ordinary de-
terminant does not, since the latter requires the existence of the $trace$ of
$A$ . Hence the modified Carleman-Fredholm determinant is particularly
useful when one studies the absolute continuity properties of the image
of a Gaussian measure under non-linear transformations in the setting
of infinite dimensional Banach spaces (cf., [29] for further information).

It follows from the change of variables formula given in Corollary
4.3 of [19], that, for any $f\in C_{b}(R^{n})$ ,

$E[f\circ T\Lambda]=E[f1_{\partial\Phi(M)}]$ ,
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where $M$ is the set of non-degeneracy of $ I_{1R^{n}}+\nabla_{a}^{2}\phi$ ,

$\Phi(x)=\frac{1}{2}|x|^{2}+\phi(x)$

and $\partial\Phi$ denotes the subdifferential of the convex function $\Phi$ . Let us
note that, in case $L>0$ almost surely, $T$ has a global inverse $S$ , i.e.,
$ S\circ T=T\circ S=I_{1R^{n}}\mu$-almost surely and $\mu(\partial\Phi(M))=\mu(S^{-1}(M))$ .
Assume now that $\Lambda>0$ almost surely, i.e., that $\mu(M)=1$ . Then, for
any $f\in C_{b}(1R^{n})$ , we have

$E[f\circ T]$ $=$ $E[f\circ T\frac{\Lambda}{\Lambda oT^{-1}\circ T}]$

$=$ $E[f\frac{1}{\Lambda\circ T^{-1}}1_{\partial\Phi(M)}]$

$=$ $E[fL]$ ,

where $T^{-1}$ denotes the left inverse of $T$ whose existence is guaranteed
by Theorem 4.2. Since $T(x)\in\partial\Phi(M)$ almost surely, it follows from the
above calculations

$\frac{1}{\Lambda}=L\circ T$ ,

almost surely. Take now any $t\in[0,1)$ , the map $x\rightarrow\frac{1}{2}|x|_{H}^{2}+t\phi(x)=$

$\Phi_{t}(x)$ is strictly convex and a simple calculation implies that the map-
ping $ T_{t}=I+t\nabla\phi$ is $(1-t)$-monotone (cf. [29], Chapter 6), consequently
it has a left inverse denoted by $S_{t}$ . Let us denote by $\Psi_{t}$ the Legendre
transformation of $\Phi_{t}$ :

$\Psi_{t}(y)=\sup_{x\in R^{n}}\{(x, y)-\Phi_{t}(x)\}$ .

A simple calculation shows that

$\Psi_{t}(y)$ $=$ $\sup_{x}[(1-t)\{(x, y)-\frac{|x|^{2}}{2}\}+t\{(x, y)-\frac{|x|^{2}}{2}-\phi(x)\}]$

$\leq$ $(1-t)\frac{|y|^{2}}{2}+t\Psi_{1}(y)$ .

Since $\Psi_{1}$ is the Legendre transformation of $\Phi_{1}(x)=|x|^{2}/2+\phi(x)$ and
since $L\in L\log L$ , it is finite on a convex set of full measure, hence it
is finite everywhere. Consequently $\Psi_{t}(y)<\infty$ for any $y\in R^{n}$ . Since
a finite, convex function is almost everywhere differentiable, $\nabla\Psi_{t}$ exists
almost everywhere on and it is equal almost everywhere on $T_{t}(M_{t})$ to the
leffi inverse $T_{t}^{-1}$ , where $M_{t}$ is the set of non-degeneracy of $ I_{R^{n}}+t\nabla_{a}^{2}\phi$ .
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Note that $\mu(M_{t})=1$ . The strict convexity implies that $T_{t}^{-1}$ is Lipschitz
with a Lipschitz constant $\frac{1}{1-t}$ . Let now $\Lambda_{t}$ be the Gaussian Jacobian

$\Lambda_{t}=\det_{2}(I_{R^{n}}+t\nabla_{a}^{2}\phi)\exp\{-t\mathcal{L}_{a}\phi-\frac{t^{2}}{2}|\nabla\phi|_{R^{n}}^{2}\}$ .

Since the domain of $\phi$ is the whole space $R^{n}$ , $\Lambda_{t}>0$ almost surely,
hence, as we have explained above, it follows ffom the change of variables
formula of [19] that $ T_{t}\mu$ is absolutely continuous with respect to $\mu$ and
that

$\frac{1}{\Lambda_{t}}=L_{t}\circ T_{t}$ ,

$\mu$-almost surely.
Let us come back to the infinite dimensional case: we first give an in-
equality which may be useful.

Theorem 5.1. Assume that $(W, \mu, H)$ is an abstract Wiener space,

assume that $K$ , $L\in L_{+}^{1}(\mu)$ with $K>0$ almost surely and denote by
$T$ : $W\rightarrow W$ the transfer map $ T=I_{W}+\nabla\phi$ , which maps the measure
$ Kd\mu$ to the measure $ Ld\mu$ . Then the following inequality holds:

(5.5) $\frac{1}{2}E[|\nabla\phi|_{H}^{2}]\leq E[-\log K+\log LoT]$ .

Proof: Let us define $k$ as $k=K\circ T^{-1}$ , then for any $f\in C_{b}(W)$ ,
we have

$\int_{W}f(y)L(y)d\mu(y)$ $=$ $\int_{W}f\circ T(x)K(x)d\mu(x)$

$=$ $\int_{W}f\circ T(x)k\circ T(x)d\mu(x)$ ,

hence
$ T\mu=\frac{L}{k}.\mu$ .

It then follows from the inequality (3.3) that

$\frac{1}{2}E[|\nabla\phi|_{H}^{2}]$ $\leq$ $E[\frac{L}{k}\log\frac{L}{k}]$

$=$ $E[\log\frac{L\circ T}{k\circ T}]$

$=$ $E[-\log K+\log L\circ T]$ .

$\square $
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In case $K$ and $L$ are given as $e^{-U}$ and $e^{-V}$ we have another inequal-
ity containing the Fisher information (cf. [21] for the finite dimensional
case):

Theorem 5.2. Assume that $U$, $V\in D_{2,1}$ are such that $E[e^{-U}]=$

$E[e^{-V}]=1$ and that $ E[e^{-U}|\nabla U|_{H}^{2}]+E[e^{-V}|\nabla V|_{H}^{2}]<\infty$ . Defifine $d\rho=$

$ e^{-U}d\mu$ and $ d\nu=e^{-V}d\mu$ . Then we have

(5.6) $d_{H}(\rho, \nu)\leq E_{\rho}[|\nabla U|_{H}^{2}]^{1/2}+E_{\nu}[|\nabla V|_{H}^{2}]^{1/2}$

The equation (5.6) can be refifined in the following way: let

$\hslash\pm(U, V)=E_{\rho}[|\nabla U|_{H}^{2}]^{1/2}\pm\{E_{\rho}[|\nabla U|_{H}^{2}]+2(E_{\rho}(U)-E_{\nu}(V))\}^{1/2}$

and let

$\kappa\pm(V, U)=E_{\nu}[|\nabla V|_{H}^{2}]^{1/2}\pm\{E_{\nu}[|\nabla V|_{H}^{2}]+2(E_{\nu}(V)-E_{\rho}(U))\}^{1/2}$

We then have
(5.7)

$\max\{\kappa_{-}(U, V), \kappa_{-}(V, U)\}\leq d_{H}(\rho, \nu)\leq\min\{\kappa_{+}(U, V), \kappa_{+}(V, U)\}$ .

Proof: By taking the conditional expectations with respect to the
sigma algebras generated by a finite number of elements of the first
Wiener chaos and using the Jensen inequality, we can reduce the problem
to the finite dimensional case. Let now $ T=I+\nabla\phi$ be the transport
map sending $\rho$ to $\nu$ , let also $ S=I+\nabla\psi$ be its inverse. As we have seen
before, we can write $\Lambda=\exp(-U+V\circ T)$ as

$\Lambda=\det_{2}(I+\nabla_{a}^{2}\phi)\exp\{-\mathcal{L}_{a}\phi-\frac{1}{2}|\nabla\phi|_{H}^{2}\}$ .

Solving $|\nabla\phi|_{H}^{2}$ ffom this expression and using the fact that $-\mathcal{L}_{a}\phi\leq-\mathcal{L}\phi$

in the sense of the distributions, we obtain

$\frac{1}{2}|\nabla\phi|_{H}^{2}\leq U-VoT-\mathcal{L}\phi$ .

Taking the expectation of both sides of this inequality with respect to
$\rho$ , we obtain

(5.8) $\frac{1}{2}d_{H}^{2}(\rho, \nu)\leq E_{\rho}[U]-E_{\nu}[V]+E_{\rho}[(\nabla\phi, \nabla U)]$ .

Interchanging $T$ and $S$ and $\rho$ and $\nu$ in the inequality (5.8), we obtain
also

(5.9) $\frac{1}{2}d_{H}^{2}(\rho, \nu)\leq E_{\nu}[V]-E_{\rho}[U]+E_{\nu}[(\nabla\psi, \nabla V)]$ .
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Adding (5.8) to (5.9) and using the Cauchy-Schwarz inequality completes
the proof of the first part. For the second, using the inequalities (5.8) and
(5.9), with the help of the Cauchy-Schwarz inequality and the general
expression of solutions of the second order polynomial equation we

$get\square $

the claim at once.

Suppose that $\phi\in D_{2,1}$ is a 1-convex Wiener functional. Let $V_{n}$ be, as
usual, the sigma algebra generated by $\{\delta e_{1}, \ldots, \delta e_{n}\}$ , where $(e_{n}, n\geq 1)$

is an orthonormal basis of the Cameron-Martin space $H$ . Then $\phi_{n}=$

$E[\phi|V_{n}]$ is again 1-convex (cf. [11]), hence $\mathcal{L}\phi_{n}$ is a measure as it can be
easily verified. However the sequence $(\mathcal{L}\phi_{n}, n \geq 1)$ converges to $\mathcal{L}\phi$ only
in $D^{/}$ . Consequently, there is no reason for the limit $\mathcal{L}\phi$ to be a measure.
In case this happens, we shall denote the Radon-Nikodym density with
respect to $\mu$ , of the absolutely continuous part of this measure by $\mathcal{L}_{a}\phi$ .

Lemma 5.1. Let $\phi\in D_{2,1}$ be 1-convex and let $V_{n}$ be defifined as
above and defifine $F_{n}=E[\phi|V_{n}]$ . Then the sequence $(\mathcal{L}_{a}F_{n}, n \geq 1)$ is $a$

submartingale, where $\mathcal{L}_{a}F_{n}$ denotes the $\mu$ absolutely continuous part of
the measure $\mathcal{L}F_{n}$ .

Proof: Note that, due to the 1-convexity, we have $\mathcal{L}_{a}F_{n}\geq \mathcal{L}F_{n}$ for
any $n\in 1N$ . Let $X_{n}=\mathcal{L}_{a}F_{n}$ and $f\in D$ be a positive, $V_{n}$-measurable
test function. Since $\mathcal{L}E[\phi|V_{n}]=E[\mathcal{L}\phi|V_{n}]$ , we have

$E[X_{n+1}f]$ $\geq$ $\langle \mathcal{L}F_{n+1}, f\rangle$

$=$ $\langle \mathcal{L}F_{n}, f\rangle$ ,

where $\langle\cdot, \cdot\rangle$ denotes the duality bracket for the dual pair $(D^{l}, D)$ . Con-
sequently

$ E[fE[X_{n+1}|V_{n}]]\geq\langle \mathcal{L}F_{n}, f\rangle$ ,

for any positive, $V_{n}$-measurable test function $f$ , it follows that the abso-
lutely continuous part of $\mathcal{L}F_{n}$ is also dominated by the same conditional
expectation and this proves the submartingale property. $\square $

Lemma 5.2. Assume that $L\in L\log L$ is a positive random variable
whose expectation is one. Assume further that it is lower bounded by $a$

constant $a>0$ . Let $ T=I_{W}+\nabla\phi$ be the transport map such that
$ T\mu=L.\mu$ and let $ T^{-1}=I_{W}+\nabla\psi$ . Then $\mathcal{L}\psi$ is a Radon measure on
$(W, B(W))$ . If $L$ is upper bounded by $b>0$ , then $\mathcal{L}\phi$ is also a Radon
measure on $(W, B(W))$ .

Proof: Let $L_{n}=E[L|V_{n}]$ , then $L_{n}\geq a$ almost surely. Let $T_{n}=$

$I_{W}+\nabla\phi_{n}$ be the transport map which satisfies $ T_{n}\mu=L_{n}.\mu$ and let
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$T_{n}^{-1}=I_{W}+\nabla\psi_{n}$ be its inverse. We have

$L_{n}=\det_{2}(I_{H}+\nabla_{a}^{2}\psi_{n})\exp[-\mathcal{L}_{a}\psi_{n}-\frac{1}{2}|\nabla\psi_{n}|_{H}^{2}]$

By the hypothesis $-\log L_{n}\leq-\log a$ . Since $\psi_{n}$ is 1-convex, it follows
ffom the finite dimensional results that $\det_{2}(I_{H}+\nabla_{a}^{2}\psi_{n})\in[0,1]$ almost
surely. Therefore we have

$\mathcal{L}_{a}\psi_{n}\leq-\log a$ ,

besides $\mathcal{L}\psi_{n}\leq \mathcal{L}_{a}\psi_{n}$ as distributions, consequently

$\mathcal{L}\psi_{n}\leq-\log a$

as distributions, for any $n\geq 1$ . Since $\lim_{n}\mathcal{L}\psi_{n}=\mathcal{L}\psi$ in $D^{J}$ , we obtain
$\mathcal{L}\psi\leq-\log a$ , hence $-\log a-\mathcal{L}\psi\geq 0$ as a distribution, hence $\mathcal{L}\psi$ is a
Radon measure on $W$ , $c.f.$ , [10], [28]. This proves the first claim. Note
that whenever $L$ is upperbounded, $\Lambda=1/L\circ T$ is lowerbounded, hence
the proof of the second claim is similar to that of the first one. $\square $

Theorem 5.3. Assume that $L$ is a strictly positive bounded random
variable with $E[L]=1$ . Let $\phi\in D_{2,1}$ be the 1-convex Wiener functional
such that

$ T=I_{W}+\nabla\phi$

is the transport map realizing the measure $ L.\mu$ and let $ S=I_{W}+\nabla\psi$ be
its inverse. Defifine $F_{n}=E[\phi|V_{n}]$ , then the submartingale $(\mathcal{L}_{a}F_{n}, n\geq 1)$

converges almost surely to $\mathcal{L}_{a}\phi$ . Let $\lambda(\phi)$ be the random variable defifined
as

$\lambda(\phi)$ $=$
$\lim\inf_{n\rightarrow\infty}\Lambda_{n}$

$=$ $(\lim\inf_{n}\det_{2}(I_{H}+\nabla_{a}^{2}F_{n}))\exp\{-\mathcal{L}_{a}\phi-\frac{1}{2}|\nabla\phi|_{H}^{2}\}$

where

$\Lambda_{n}=\det_{2}(I_{H}+\nabla_{a}^{2}F_{n})\exp\{-\mathcal{L}_{a}F_{n}-\frac{1}{2}|\nabla F_{n}|_{H}^{2}\}$ .

Then it holds true that

(5.10) $E[f\circ T\lambda(\phi)]\leq E[f]$
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for any $f\in C_{b}^{+}(W)$ , in particular $\lambda(\phi)\leq\frac{1}{LoT}$ almost surely. If $E[\lambda(\phi)]=$

$1$ , then the inequality in (5.10) becomes an equality and we also have

$\lambda(\phi)=\frac{1}{L\circ T}$ .

Proof: Let us remark that, due to the 1-convexity, $0\leq\det_{2}(I_{H}+$

$\nabla_{a}^{2}F_{n})\leq 1$ , hence the $\lim\inf$ exists. Now, Lemma 5.2 implies that $\mathcal{L}\phi$

is a Radon measure. Let $F_{n}=E[\phi|V_{n}]$ , then we know from Lemma
5.1 that $(\mathcal{L}_{a}F_{n}, n\geq 1)$ is a submartingale. Let $\mathcal{L}^{+}\phi$ denote the positive
part of the measure $\mathcal{L}\phi$ . Since $\mathcal{L}^{+}\phi\geq \mathcal{L}\phi$ , we have also $ E[\mathcal{L}^{+}\phi|V_{n}]\geq$

$E[\mathcal{L}\phi|V_{n}]=\mathcal{L}F_{n}$ . This implies that $E[\mathcal{L}^{+}\phi|V_{n}]\geq \mathcal{L}_{a}^{+}F_{n}$ . Hence we find
that

$\sup_{n}E[\mathcal{L}_{a}^{+}F_{n}]<\infty$

and this condition implies that the submartingale $(\mathcal{L}_{a}F_{n}, n\geq 1)$ con-
verges almost surely. We shall now identify the limit of this submartin-
gale. Let $\mathcal{L}_{s}G$ be the singular part of the measure $\mathcal{L}G$ for a Wiener
function $G$ such that $\mathcal{L}G$ is a measure. We have

$E[\mathcal{L}\phi|V_{n}]$ $=$ $E[\mathcal{L}_{a}\phi|V_{n}]+E[\mathcal{L}_{s}\phi|V_{n}]$

$=$ $\mathcal{L}_{a}F_{n}+\mathcal{L}_{s}F_{n}$ ,

hence
$\mathcal{L}_{a}F_{n}=E[\mathcal{L}_{a}\phi|V_{n}]+E[\mathcal{L}_{s}\phi|V_{n}]_{a}$

almost surely, where $E[\mathcal{L}_{s}\phi|V_{n}]_{a}$ denotes the absolutely continuous part
of the measure $E[\mathcal{L}_{s}\phi|V_{n}]$ . Note that, ffom the Theorem of Jessen
(cf., for example Theorem 1.2.1 of [29]), $\lim_{n}E[\mathcal{L}_{s}^{+}\phi|V_{n}]_{a}=0$ and
$\lim_{n}E[\mathcal{L}_{s}^{-}\phi|V_{n}]_{a}=0$ almost surely, hence we have

$\lim_{n}\mathcal{L}_{a}F_{n}=\mathcal{L}_{a}\phi$ ,

$\mu$-almost surely. To complete the proof, an application of the Fatou
lemma implies that

$E[f\circ T\lambda(\phi)]$ $\leq$ $E[f]$

$=$ $E[f\circ T\frac{1}{L\circ T}]$ ,

for any $f\in C_{b}^{+}(W)$ . Since $T$ is invertible, it follows that

$\lambda(\phi)\leq\frac{1}{L\circ T}$
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almost surely. Therefore, in case $E[\lambda(\phi)]=1$ , we have

$\lambda(\phi)=\frac{1}{L\circ T}$ ,

and this completes the proof. $\square $

Corollary 5.1. Assume that $K$ , $L$ are two positive random vari-

ables with values in a bounded interval $[a, b]\subset(0, \infty)$ such that $E[K]=$

$E[L]=1$ . Let $ T=I_{W}+\nabla\phi$ , $\phi\in D_{2,1}$ , be the transport map pushing
$ Kd\mu$ to $ Ld\mu$ , $i.e$ , $ T(Kd\mu)=Ld\mu$ . We then have

$L\circ T\lambda(\phi)\leq K$ ,

$\mu$ -almost surely. In particular, if $E[\lambda(\phi)]=1$ , then $T$ is the solution of
the Monge-Amp\‘ere equation.

Proof: Since $a>0$ ,

$\frac{dT\mu}{d\mu}=\frac{L}{K\circ T}\leq\frac{b}{a}$ .

Hence, Theorem 5.10 implies that

$E[f\circ TL\circ T\lambda(\phi)]$ $\leq$ $E[fL]$

$=$ $E[f\circ TK]$ ,

consequently
$L\circ T\lambda(\phi)\leq K$ ,

the rest of the claim is now obvious. $\square $

For later use we give also the folowing result:

Theorem 5.4. Assume that $L$ is a positive random variable of class
Llog $L$ such that $E[L]=1$ . Let $\phi\in D_{2,1}$ be the 1-convex function
corresponding to the transport map $ T=I_{W}+\nabla\phi$ . Defifine $ T_{t}=I_{W}+t\nabla\phi$ ,

where $t\in[0,1]$ . Then, for any $t\in[0,1]$ , $ T_{t}\mu$ is absolutely continuous

with respect to the Wiener measure $\mu$ .

Proof: Let $\phi_{n}$ be defined as the transport map corresponding to
$L_{n}=E[P_{1/n}L_{n}|V_{n}]$ and define $T_{n}$ as $I_{W}+\nabla\phi_{n}$ . For $t\in[0,1)$ , let
$T_{n,t}=I_{W}+t\nabla\phi_{n}$ . It follows from the finite dimensional results which
are summarized in the beginning of this section, that $ T_{n,t}\mu$ is absolutely
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continuous with respect to $\mu$ . Let $L_{n,t}$ be the corresponding Radon-
Nikodym density and define $\Lambda_{n,t}$ as

$\Lambda_{n,t}=\det_{2}(I_{H}+t\nabla_{a}^{2}\phi_{n})\exp\{-t\mathcal{L}_{a}\phi_{n}-\frac{t^{2}}{2}|\nabla\phi_{n}|_{H}^{2}\}$ .

Besides, for any $t\in[0,1)$ ,

(5.11) $((I_{H}+t\nabla_{a}^{2}\phi_{n})h, h)_{H}>0$ ,

$\mu$-almost surely for any $0\neq h\in H$ . Since $\phi_{n}$ is of finite rank, (5.11) im-
plies that $\Lambda_{n,t}>0\mu$-almost surely and we have shown at the beginning
of this section

$\Lambda_{n,t}=\frac{1}{L_{n,t}oT_{n,t}}$

$\mu$-almost surely. An easy calculation shows that $t\rightarrow\Lambda_{n,t}$ is logarithmi-
cally concave. Consequently

$E[L_{t,n}\log L_{t,n}]$ $=$ $E[\log L_{n,t}\circ T_{n,t}]$

$=$ $-E[\log\Lambda_{t,n}]$

$\leq$ $E[L_{n}\log L_{n}]$

$\leq$ $E[L\log L]$ ,

by the Jensen inequality. Therefore

$\sup_{n}E[L_{n,t}\log L_{n,t}]<\infty$

and this implies that the sequence $(L_{n,t}, n\geq 1)$ is uniformly integrable
for any $t\in[0,1]$ . Consequently it has a subsequence which converges
weakly in $L^{1}(\mu)$ to some $L_{t}$ . Since, ffom Theorem 4.2 and from Remark
4, $\lim_{n}\phi_{n}=\phi$ in $D_{2,1}$ , where $\phi$ is the transport map associated to $L$ ,
for any $f\in C_{b}(W)$ , we have

$E[f\circ T_{t}]$ $=$
$\lim_{k}E[f\circ T_{n_{k},t}]$

$=$ $\lim_{k}E[fL_{n_{k},t}]$

$=$ $E[fL_{t}]$ ,

and this completes the proof. $\square $

Let us give an application of this result:
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Proposition 5.1. Assume that the hypothesis of Theorem 5.4 are
valid. Let $\nu_{t}=T_{t}\mu$ with $\nu_{1}=\nu$ , $t\in[0,1]$ . Then

$d_{H}(\nu_{s}, \nu_{t})=|t-s|d_{H}(\mu, \nu)$ for $s$ , $t$ $\in[0,1]$ .

In particular $T_{t}\circ S_{s}$ is the optimal transport of $\nu_{s}$ to $\nu_{t}$ and the Wiener

functional $\nabla\psi_{s}+t\nabla\phi oS_{s}$ is an exact form.

Proof: It suffices to prove the claim for the case $s=1$ . Let $\nu_{t}=$

$ T_{t}oS\nu$ , then

$d_{H}^{2}(\nu_{t}, \nu)$ $\leq$ $\int|T_{t}\circ S(y)-y|_{H}^{2}d\nu(y)$

$=$ $\int|T_{t}(x)-T(x)|_{H}^{2}d\mu(x)$

$=$ $(1-t)^{2}E[|\nabla\phi|_{H}^{2}]$ ,

which means that

$d_{H}(\nu_{t}, \nu)\leq(1-t)d_{H}(\mu, \nu)$ .

Moreover, from the triangle inequality

$d_{H}(\mu, \nu)$ $\leq$ $d_{H}(\nu, \nu_{t})+d_{H}(\nu_{t}, \mu)$

$=$ $d_{H}(\nu, \nu_{t})+td_{H}(\mu, \nu)$ ,

we obtain that $(1 -t)d_{H}(\mu, \nu)\leq d_{H}(l/, \nu_{t})$ . The rest is obvious ffom
Theorem 4.2. $\square $

\S 6. Solution of the Monge-Amp\‘ere equation with the It\^o cal-
culus

To have a better understanding of what will follow, let us give an
interpretation of the Monge-Amp\‘ere equation. Assume that we are given
two probability densities $K$ and $L$ and we look for a map $T$ : $W\rightarrow W$

such that
$L\circ TJ(T)=K$

almost surely, where $J(T)$ is a kind of Jacobian to be written in terms
of $T$ . In Corollary 5.1, we have shown the existence of some $\lambda(\phi)$ which
gives an inequality instead of the equality. The reason for that originates
from the singularity of the second derivative of the potential function $\phi$ .
Although in the finite dimensional case there are some regularity results
about the transport map (cf., [5]), in the infinite dimensional case such
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techniques do not work. All these difficulties can be circumvented using
the miraculous renormalization of the It\^o calculus. In fact assume that
$K$ and $L$ satisfy the hypothesis of the corollary. First let us indicate
that we can assume $W=C_{0}([0,1], R)$ (cf., [29], Chapter $II$ , to see how
one can pass ffom an abstract Wiener space to the standard one) and
in this case the Cameron-Martin space $H$ becomes $H^{1}([0,1])$ , which
is the space of absolutely continuous functions on $[0, 1]$ , with a square
integrable Sobolev derivative. Let now

$\Lambda=\frac{K}{L\circ T}$ ,

where $T$ is as constructed above. Then $\Lambda.\mu$ is a Girsanov measure for the
map $T$ . This means that the law of the stochastic process $(t, x)\rightarrow T_{t}(x)$

under $\Lambda.\mu$ is equal to the Wiener measure, where $T_{t}(x)$ is defined as
the evaluation of the trajectory $T(x)$ at $t\in[0,1]$ . In other words the
process $(t, x)\rightarrow T_{t}(x)$ is a Brownian motion under the probability $\Lambda.\mu$ .
Let $(\mathcal{F}_{t}^{T}, t\in[0,1])$ be its filtration, the invertibility of $T$ implies that

$\vee \mathcal{F}_{t}^{T}=B(W)$ .

$t\in[0,1]$

$\Lambda$ is upper and lower bounded $\mu$-almost surely, hence also $\Lambda.\mu$-almost
surely. The It\^o representation theorem implies that it can be represented
as

$\Lambda=E[\Lambda^{2}]\exp\{-\int_{0}^{1}\dot{\alpha}_{s}dT_{S}-\frac{1}{2}\int_{0}^{1}|\dot{\alpha}_{s}|^{2}ds\}$ ,

where $\alpha(\cdot)=\int_{0}.\dot{\alpha}_{s}ds$ is an $H$-valued random variable. In fact $\alpha$ can
be calculated explicitly using the It\^o-Clark representation theorem (cf.,
[28] $)$ , and it is given as

(6.12) $\dot{\alpha}_{t}=\frac{E_{\Lambda}[D_{t}\Lambda|F_{t}^{T}]}{E_{\Lambda}[\Lambda|F_{t}^{T}]}$

$ dt\times\Lambda d\mu$-almost surely, where $E_{\Lambda}$ denotes the expectation operator with
respect to $\Lambda.\mu$ and $ D_{t}\Lambda$ is the Lebesgue density of the absolutely con-
tinuous map $t\rightarrow\nabla\Lambda(t, x)$ . From the relation (6.12), it follows that $\alpha$

is a function of $T$ , hence we have obtained the strong solution of the
Monge-Amp\‘ere equation. Let us announce all this as

Theorem 6.1. Assume that $K$ and $L$ are upper and lower bounded
densities, let $T$ be the transport map constructed in Theorem 4 $\cdot$ 1. Then
$T$ is also the strong solution of the Monge-Amp\‘ere equation in the It\^o
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sense, namely

$E[\Lambda^{2}]L\circ T\exp\{-\int_{0}^{1}\dot{\alpha}_{s}dT_{s}-\frac{1}{2}\int_{0}^{1}|\dot{\alpha}_{s}|^{2}ds\}=K$ ,

$\mu$ -almost surely, where $\alpha$ is given with (6.12).
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Function Spaces and Symmetric Markov Processes
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Dedicated to Professor Kiyosi It\^o on the occasion of his 88th
birthday

Abstract.

We exhibit some mutual interactions between potential theory
for concrete function spaces on $\mathbb{R}^{n}$ and the Dirichlet space theory
associated with symmetric Markov processes. Our first concern is
the role of the Dirichlet form version of the capacitary strong type
inequality in the study of the ultracontractivity of the transition semi-
group of time changed symmetric Markov processes. In particular,
we study time changes of symmetric stable processes in relation to
$d$-bounds of measures. We next show how the theory on capacity and
the spectral synthesis for the Dirichlet space can be well inherited to
a general function space with contractive $p$-norm. A link connecting
those two topics is a contractive Besov space over a $d$-set of $\mathbb{R}^{n}$ .

\S 1. Introduction

Since the publication of the seminal work of Beurling and Deny [5],
their axiomatic potential theory of the Dirichlet space $(T, \mathcal{E})$ has been
unified under one roof with the theory of the symmetric Markov process
M. In particular, any $\sigma$-finite positive measure $\mu$ charging no set of
zero capacity can now be studied in relation to the $trace$ Dirichlet space
$(f,\check{\mathcal{E}})$ on the support $F$ of $\mu$ and the time changed process $\check{M}$ on $F$ of
$M$ by means of the positive continuous additive functional associated
with $\mu([13])$ .

In \S 2, we shall see for $\kappa\in(0,1)$ that a simple capacitary isoperimet-
ric inequality

(1) $\mu(K)^{\kappa}\leq\Theta$ Cap(K), $VX(compact)$ ,

Received February 28, 2003.
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is equivalent to the ultracontractivity

(2) $\check{p}_{t}(x, y)\leq(\frac{H}{t})\frac{1}{1-\kappa}$ , $t>0$ ,

of the transition function $\check{p}_{t}$ of $\check{M}$ , with the isoperimetric constant $\Theta$ for
the measure $\mu$ and the heat constant $H$ for the process $\check{M}$ controlling
each other. When the (extended) Dirichlet space is the Riesz potential

space $\dot{L}^{\alpha,2}(\mathbb{R}^{n})$ and $M$ is the symmetric $ 2\alpha$-stable process $(0<\alpha<1)$ ,

we shall also see in \S 3 that the isoperimetric constant can be replaced
by the $d$-bound

(3) $v_{d}(\mu)=\sup_{x\in \mathbb{R}^{n},r>0}\frac{\mu(B(x,r))}{r^{d}}$ ,

of the measure $\mu$ . Detailed proof of theorems in \S 2 and \S 3 can be found
in [16].

An important ingredient in proving the above equivalence is the
capacitary strong type inequality

(4) $\int_{0}^{\infty}$ Cap({x\in X : $|u(x)|\geq t\}$ ) $d(t^{2})\leq 4\mathcal{E}(u, u)$ $\forall u\in F\cap C_{0}(X)$ ,

which readily ensures the equivalence of (1) to a Sobolev type imbed-
ding of the $trace$ Dirichlet space $\check{F}$ . We can then invoke the works by
$Carlen,Kusuoka$ and Stroock[8] and Bakry,$Coulhon,Ledoux$ and Saloff-
Coste[2] to relate (1) and (2).

In the meantime, potential theory have advanced being modelled
on concrete function spaces like Sobolev spaces $W^{r,p}$ , Bessel potential
spaces $L^{\alpha,p}$ , Besov spaces $B_{\alpha}^{p,q}$ and so on. Imbedding theorems and
spectral synthesis have been among important issues in potential theory
([1], [4], [23]).

Actually the capacitary strong type inequality was first established
by Maz’ $ya[22]$ for the Sobolev space $W^{1,p}(\mathbb{R}^{n})$ , $ 1<p<\infty$ . It was then
extended to a large class of function spaces on $\mathbb{R}^{n}$ including the Riesz
and Bessel potential spaces. It has been also proved in [21], [14] for a
general function space with contractive $p$-norm $(1 \leq p<\infty)$

(5) $\{$

$|||u|||_{p}^{p}$ $=\int_{X\times X\backslash d}|u(x)-u(y)|^{p}N(x, dy)m(dx)$

$F_{p}$ $=\{u\in L^{p}(X;m):|||u|||_{p}^{p}<\infty\}$ ,

which include as an important example the contractive Besov space
$B_{\alpha}^{p,p}(F)$ , $ 0<\alpha<1,1\leq p<\infty$ , over a $d$-set $F\subset \mathbb{R}^{n}$ defined as
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$(\{$

6)

$||u;B_{\alpha}^{p,p}(F)||$ $=||u||_{L^{p}(F;\mu)}+(\int\int_{F\times F}\frac{|u(x)-u(y)|^{p}}{|x-y|^{d+\alpha p}}\mu(dx)\mu(dy))^{1/p}$

$B_{\alpha}^{p,p}(F)$ $=$ { $u$ is measurable : $||u;B_{\alpha}^{p,p}(F)||<\infty$ }.

$\mu$ being taken to be the restriction to $F$ of the $d$-dimensional Hausdorff
measure.

Its Dirichlet space version (4) accompanied by the best constant 4
was proved rather recently by $Vondra\check{c}ek[25]$ . [16] provides an alterna-
tive simple proof of (4).

When $p=2$ , the contractive Besov space on a $d$-set is a regular
Dirichlet space on $L^{2}(F;\mu)$ and the properties of the associated jump
type Markov process on $F$ have been studied in [14], [6] and [9]. As we
shall see in \S 3, this space is closely related to the Dirichlet space $(\check{F},\check{\mathcal{E}})$

on $L^{2}(F;\mu)$ of the time changed process of a symmetric stable process on
$\mathbb{R}^{n}$ in the sense that the former is continuously imbedded into the latter,
although these two spaces are generally different because the latter may
involve a killing term in general.

Even when $p\neq 2$ , the function space (5) with contractive $p$-norm
shares with the Dirichlet space a common feature that every normal
contraction operates on it and deserves to be studied on its own light.
We shall see in \S 4 that the well known theory on capacity and spectral
synthesis for the Dirichlet space ([5], [10], [13]) can be well inherited to
the function space (5).

In particular, the spectral synthesis is possible for the contractive
Besov space on a $d$-set $F\subset \mathbb{R}^{n}$ for $ 1<p<\infty$ . As an application, we
shall get in \S 4 the following criterion for an relatively open set $H\subset F$

such that $F\backslash H$ has a locally finite positive $\tilde{d}$-dimensional Hausdorff

measure with $\tilde{d}<d$ :

(7) $B_{\alpha,0}^{p,p}(H)=B_{\alpha}^{p,p}(F)\Leftrightarrow\alpha\leq\frac{d-\overline{d}}{p}$ ,

$B_{\alpha,0}^{p,p}(H)$ being the closure of $B_{\alpha}^{p,p}(F)\cap C_{0}(H)$ in the space $B_{\alpha}^{p,p}(F)$ .
This completes and extends the corresponding results by Caetano

[7] and Farkas and Jacob [11]. When $p=2$ , $d=n$ , $F=\overline{D}$ , $H=D$ , for
an open set $D\subset \mathbb{R}^{n}$ , (7) has been shown by $Bogdan,Burdzy$ and Chen
[6] giving a complete characterization for almost no sample path of the
censored $ 2\alpha$-stable process on $D$ to approach the boundary $\partial D$ in finite
time. Detailed proof of theorems in \S 4 can be found [15].
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\S 2. Capacitary bounds of measures and time changed pro-
cesses

Let $(X, m, \mathcal{E}, F)$ be a regular transient Dirichlet space. By this,
we mean that $X$ is a locally compact separable metric space, $m$ is an
everywhere dense positive Radon measure on $X$ , and that $(\mathcal{E}, F)$ is a
regular transient Dirichlet form on $L^{2}(X;m)$ . The 0-order capacity of a
compact set $K\subset X$ is then defined by

(8) Cap(K) $=\inf\{\mathcal{E}(u, u) : u\in F\cap C_{0}(X), u(x)\geq 1, x\in K\}$

and extended to any subsets of $X$ as a Choquet capacity. $F_{e}$ denotes
the extended Dirichlet space. In what follows, any function $u\in F_{e}$ will
be always taken to be quasi-continuous (cf. [13]).

Owing to $Vondra\check{c}ek[25]$ , we then have the capacitary strong type
inequality (4), which in turn implies the following (cf. [1, 7.2]):

Theorem 1. Let $\mu$ be a Borel measure on $X$ and $\kappa\in(0,1]$ .

(i) If the capacitary isoperimetric inequality (1) holds for some positive
constant $\Theta$ , then $\mu$ is a smooth Radon measure and

(9) $||u||_{L^{2/\kappa}}^{2}(x;\mu)\leq S\mathcal{E}(u, u)$ , $\forall u\in F_{e}$ ,

for some positive constant $ S\leq(4/\kappa)^{\kappa}\Theta$ .

(ii) Conversely, if (9) holds for any $u\in F\cap C_{0}(X)$ and for some positive

constant $S$ , then (1) holds for some positive constant $\Theta\leq S$ .

For a measure $\mu$ on $X$ , we introduce its isoperimetric constant and
Sobolev constant respectively by

(10) $\Theta_{\kappa}(\mu)=\sup_{K}\frac{\mu(K)^{\kappa}}{Cap(K)}$ $\kappa\in(0,1]$ ,

$\underline{||u||_{L^{\eta}(\mu)}^{2}}$

(11) $S_{\eta}(\mu)=$ $\eta\in[2, \infty)$ .
$\sup_{u\in \mathcal{F}_{\cap}C_{0}(X)}\mathcal{E}(u, u)$

The supremum in (11) can be taken for all $u\in F_{e}$ . $S_{2}(\mu)$ may be called
the Poincar\’e constant of $\mu$ . Theorem 1 can be rephrased as follows:

Corollary 1. For a measure $\mu$ on $X$ and for $\kappa\in(0,1]$ , $0<$

$\Theta_{\kappa}(\mu)<\infty$ if and only if $ 0<S_{2/\kappa}(\mu)<\infty$ . Moreover,

(12) $\Theta_{\kappa}(\mu)\leq S_{2/\kappa}(\mu)\leq(4/\kappa)^{\kappa}\Theta_{\kappa}(\mu)$ , $\kappa\in(0,1]$ .
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Let $M=\{X_{t}, P_{x}\}$ be an $m$-symmetric Hunt process on $X$ associated
with the Dirichlet form $\mathcal{E}$ and $A=A_{t}$ be a PCAF of $M$ whose Revuz
measure is a given smooth Radon measure $\mu$ . Denote by $F$ and $\tilde{F}$ the
support of $\mu$ and $A$ respectively. Then $\tilde{F}\subset Fq.e.$ , $\mu(F\backslash \tilde{F})=0$ and

further $\overline{F}$ is a quasi-support of $\mu$ , namely, $if_{-}quasi$-continuous functions
coincide $\mu- a.e.$ , then they coincide $q.e$ . on $F$ . Recall that each element
$u\in F_{e}$ is taken to be quasi-continuous.

We consider the time changed process $\check{M}=(\check{X}_{t}, P_{x})_{x\in\overline{F}}$ defined by

$\check{X}_{t}=X_{\tau_{t}}$ $\tau_{t}=\inf\{s>0:A_{5}>t\}$ .

$\check{M}$ is a $\mu$-symmetric transient right process, whose Dirichlet form $(\check{\mathcal{E}},\check{F})$

on $L^{2}(F;\mu)$ and the extended Dirichlet space $\check{F}_{e}$ can be described as
follows (cf. [13, 6.2]) :

(13) $\check{F}_{e}=\{\varphi=u|_{F}\mu-a.e. : u\in F_{e}\}$ $\check{F}=\check{F}_{e}\cap L^{2}(F;\mu)$

(14) $\check{\mathcal{E}}(\varphi, \varphi)=\mathcal{E}(H_{\overline{F}}u, H_{\overline{F}}u)$ $\varphi=u|_{F}\in\check{F}_{e}$ ,

where
$H_{\overline{F}}u(x)=E_{x}(u(X_{\sigma_{\overline{F}}}))$ $x\in X$ ,

$E_{x}$ denoting the expectation with respect to $P_{x}$ and $\sigma_{\overline{F}}$ being the hitting

time of the set $\tilde{F}$ by the sample path $X_{t}$ . Two elements of $\check{F}_{e}$ are regarded
identical if they coincides $\mu- a.e$ . Since $\tilde{F}$ is a quasi-support of $\mu$ , the
definition (14) of $\check{\mathcal{E}}$ makes sense.

We can restate (14) as follows (the Dirichlet principle):

(15) $\check{\mathcal{E}}(\varphi, \varphi)=\inf$ { $\mathcal{E}(u,$ $u)$ : $u\in F_{e}$ , $u=\varphi\mu- a.e$ . on $F$ }, $\varphi\in\check{F}_{e}$ .

The first half of the next theorem is immediate ffom (9) and (15).

Theorem 2. Suppose a measure $\mu$ satisfies $\ominus_{\kappa}(\mu)\in(0, \infty)$ for
some $\kappa\in(0,1)$ .

Then the following holds for $S=S_{2/\kappa}(\mu)(\in(\Theta_{\kappa}(\mu), (4/\kappa)^{\kappa}\ominus_{\kappa}(\mu)))$ .
(i)

(16) $||\varphi||_{L^{2/\kappa}}^{2}(F;\mu)\leq S\check{\mathcal{E}}(\varphi, \varphi)$
$\forall\varphi\in\check{F}_{e}$ .

(ii) The transition function $\check{p}_{t}$ of the time changed process $\check{M}$ on $F$

satisfies the ultracontractivity (2) for $\mu\times\mu-a.e$ . $(x, y)\in F\times F$, where
$H$ is some positive constant with

(17) $H\leq\frac{1}{1-\kappa}\cdot S$ .
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We know that (1) and (16) are equivalent by Voropoulos [24]. But
we are more concerned with dependence of the isoperimetric constant
$O-_{\kappa}$ and the heat constant $H$ .

Simple mutual dependence of $H$ and the constant $N$ appearing in
the Nash type inequality has been well studied in [8]. The Sobolev
inequality (16) can be readily converted by a H\"older inequality into the
Nash type inequality with $N=S$ and we can get the bound (17) easily.
On the other hand, we know that the Sobolev inequality can be derived
from the Nash type inequality under a certain control of $S$ by $N$ in
view of [2, Cor, 4.4, Cor. 7.3], and we can get the following converse to
Theorem 2.

Theorem 3. Suppose that $\mu$ is a smooth Radon measure with $\sup-$

port $F$ and that the transition function $\check{p}_{t}$ of the time changed process
$\check{M}$ on $F$ with respect to the PCAF with Revuz measure $\mu$ satisfies the
ultracontractivity (2) for some $\kappa\in(0,1)$ , $H>0$ . Then
(i) The Sobolev inequdity (16) holds for some positive constant $S$ with

(18) $S\leq 48e^{2}\frac{1}{\kappa}(\frac{2-\kappa}{1-\kappa})\frac{2-\kappa}{1-\kappa}\cdot H$ .

(ii) $\mu$ admits an isoperimetric constant $\Theta_{\kappa}(\mu)$ with a bound

(19) $(4/\kappa)^{-\kappa}S\leq\Theta_{\kappa}(\mu)\leq S$

by the constant $S$ of (i).

Tierry Coulhon has called author’s attention to the relevance of the
capacitary isoperimetric inequality (1) to the Faber-Krahn inequality.

For an open set $G\subset X$ , we put

$F_{G}=$ {$u\in F:u=0$ $q.e$ . on $X\backslash G$ }.

Due to the spectral synthesis theory for the Dirichlet space, $\mathcal{E}$ with
domain $F_{G}$ can be considered as a regular Dirichlet form on $L^{2}(G;m)$

which is called the part of $(\mathcal{E}, F)$ on $G([13, \S 4.4])$ . For a measure $\mu$ on
$X$ , we let

$\lambda_{1}(\mu;G)=\inf_{u\in \mathcal{F}_{G}}\frac{\mathcal{E}(u,u)}{||u||_{L^{2}(\mu)}^{2}}(=\inf_{u\in F\cap C_{0}(G)}\frac{\mathcal{E}(u,u)}{||u||_{L^{2}(\mu)}^{2}})$ ,

which may be regarded, on account of the Dirichlet principle (15), as

the first eigenvalue for the part of the $trace$ Dirichlet space $(\check{F},\check{\mathcal{E}})$ on the
relatively open sunset $F\cap G$ of $F$. Since $\lambda_{1}(\mu;G)$ is the reciprocal of the
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Poincar\’e constant $S_{2}(\mu;G)$ defined by (11) for the part form $(\mathcal{E}, F_{G})$ ,
we get from (12)

(20) $\frac{1}{\lambda_{1}(\mu,G)}.\leq 4\sup_{K\subset G}\frac{\mu(K)}{Cap(K\cdot G)}$

,
,

where Cap(K; $G$ ) is defined by (8) with $X$ being replaced by $G$ .

Let us assume that $\Theta_{\kappa}(\mu)$ is finite for some $\kappa$ $\in(0,1)$ . Since
Cap(X; $G$ ) $\geq Cap(K)$ for $K\subset G$ , we have

(21) $\frac{1}{Cap(K\cdot G)},\leq\frac{\Theta_{\kappa}(\mu)}{\mu(K)^{\kappa}}$ .

(20) and (21) lead us to

$\frac{1}{\lambda_{1}(\mu\ovalbox{\tt\small REJECT} G)}\leq 4\sup_{K\subset G}\Theta_{\kappa}(\mu)\cdot\mu(K)^{1-\kappa}=4\Theta_{\kappa}(\mu)\cdot\mu(G)^{1-\kappa}$

and

(22) $\lambda_{1}(\mu;G)\geq\frac{1}{4\Theta_{\kappa}(\mu)}$ . $\frac{1}{\mu(G)^{1-\kappa}}$

for any open set $G\subset X$ of finite $\mu$-measure.
(22) is called the Faber-Krahn inequality and the above procedure

of getting (22) from (1) using the capacitary strong type inequality has
been indicated by Grigor’$yan[18]$ . Very intimate relationship among
the Faber-Krahn inequality, ultracontractivity (2) and the Nash type
inequality has been studied in [19]. However, in order to recover the
capacitary isoperimetric inequality (1) ffom the ultracontractivity (2),
one may need to path through Nash type inequality to Sobolev’s one as
being done in this section.

\S 3. Application to time changes of symmetric stable processes
on $d$-sets

In this section, we consider the symmetric $ 2\alpha$-stable process $M=$
$(X_{t}, P_{x})$ on $\mathbb{R}^{n}$ for $0<\alpha\leq 1,2\alpha<n$ . The transition function of $M$ is
a convolution semigroup $\{l/_{t}, t>0\}$ of symmetric probability measures
on $\mathbb{R}^{n}$ with

$\hat{I}J_{t}(x)(=\int_{\mathbb{R}^{n}}e^{i(x,y)}lJ_{t}(dy))=e^{-tc|x|^{2\alpha}}$ ,

$c$ being a fixed positive constant. For simplicity, we take $c=1$ . In case
that $\alpha=1$ , $M$ is the $n$-dimensional Brownian motion with variance of
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$\mu_{t}$ being equal to 2. $M$ is transient. The Dirichlet form $(\mathcal{E}, F)$ of $M$ on
$L^{2}(\mathbb{R}^{n})$ is given by

(23) $\{$

$\mathcal{E}(u, u)$ $=$ $\int_{\mathbb{R}^{n}}\hat{u}(x)\overline{\hat{v}}(x)|x|^{2\alpha}dx$

$F$ $=$ $\{u\in L^{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}}|\hat{u}(x)|^{2}|x|^{2\alpha}dx<\infty\}$ .

The extended Dirichlet space $(F_{e}, \mathcal{E})$ of $M$ can then be identified
with the Riesz potential space $\dot{L}^{\alpha,2}(\mathbb{R}^{n})=\{I_{\alpha}*f : f\in L^{2}(\mathbb{R}^{n})\}$ , where
the Riesz potential of a measure $iJ$ on $\mathbb{R}^{n}$ is defined by

$I_{\alpha}*\iota/(x)=\gamma_{\alpha}\int_{\mathbb{R}^{n}}|x-y|^{-(n-\alpha)}\iota/(dy)$ , $\gamma_{\alpha}=\frac{\Gamma((n-\alpha)/2))}{\pi^{n/2}2^{\alpha}\Gamma(\alpha/2)}$ .

The capacity defined by (8) for the present Dirichlet form coincides with
the Riesz capacity defined for any compact set $K\subset \mathbb{R}^{n}$ by

(24) $\dot{C}_{\alpha,2}(K)=\inf\{||f||_{L^{2}(\mathbb{R}^{n})}^{2} : f\in L_{+}^{2}(\mathbb{R}^{n}), I_{\alpha}*f(x)\geq 1\forall x\in K\}$ .

We call a closed subset $F$ of $\mathbb{R}^{n}$ a (semi global) $d$-set for $0<d\leq n$

if there exists a positive measure $\mu$ supported by $F$ satisfying, for some
constants $0<c_{1}\leq c_{2}$ ,

$c_{1}r^{d}\leq\mu(B(x, r))$ $\forall x\in F$, $\forall r\in(0,1)$

$\mu(B(x, r))\leq c_{2}r^{d}$ $\forall x\in F$, $\forall r\in(0, \infty)$ ,

where $B(x, r)$ denotes the $n$-dimensional ball with center $x$ and radius
$r$ . Such a measure is called a $d$-measure. It is known that the restriction
of the $d$-dimensional Hausdorff measure to a $d$ set $F$ is a $d$ measure
(cf. [20]).

For a $d$ measure $\mu$ , we will be concerned with its $d$-bound defined by
(3). We consider a $d$ measure $\mu$ on a $d$ set $F$ with

$n$ $-2\alpha<d\leq n$ .

Otherwise, $\dot{C}_{\alpha,2}(F)=0$ and $\mu$ can not satisfy the isoperimetric inequal-
ity with respect to the present Dirichlet form. Since

$\dot{C}_{\alpha,2}(B(x, r))=\dot{c}_{\alpha,2}r^{n-2\alpha}$ , $\dot{c}_{\alpha,2}=\dot{C}_{\alpha,2}(B(0,1))$ ,

we can immediately obtain a lower bound of the isoperimetric constant
for $\mu$ by its $d$-bound:

(25) $\dot{c}_{\alpha,2}^{-1}v_{d}(\mu)^{\frac{n-2\alpha}{d}}\leq\Theta_{\frac{n-2\alpha}{d}}(\mu)$ .

We can also obtain an inequality in the opposite direction:
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Theorem 4. For any Radon measure $\mu$ with finite $d$ -bound, it holds
that

(26) $\Theta_{\frac{n-2\alpha}{d}}(\mu)\leq c(n, \alpha, d)v_{d}(\mu)^{\frac{n-2\alpha}{d}}$

for

(27) $c(n, \alpha, d)=\frac{4d^{22}\gamma_{\alpha}v_{n}(n-\alpha)^{2}}{(n-2\alpha)^{2}\{d-(n-2\alpha)\}^{2}}$ ,

where $v_{n}$ is the volume of the $n$ dimensional unit ball.

By setting $\kappa=\frac{n-2\alpha}{d}$ in Corollary 1 and using (25) and (26), we get
the bound of the Sobolev constant $S=S_{\frac{2d}{n-2\alpha}}(\mu)$ for $\mu$ in terms of its
$d$ bound $v_{d}(\mu)$ :

(28) $\dot{c}_{\alpha,2}^{-1}v_{d}(\mu)^{\frac{n-2\alpha}{d}}\leq S\leq(4d/(n-2\alpha))^{\frac{n-2\alpha}{d}}c(n, \alpha, d)v_{d}(\mu)^{\frac{n-2\alpha}{d}}$

for the constant $c(n, \alpha, d)$ of (27).

By setting $\kappa=\frac{n-2\alpha}{d}$ in Theorem 1 and Theorem 2, we have

Theorem 5. Suppose $\mu$ is a $d$ measure on $\mathbb{R}^{n}$ with $n-2\alpha<d\leq n$ .
Then we have the following for $S$ satisfying the bounds (28):
(i)

(29) $||u||^{2}L^{\frac{2d}{n-2\alpha}}(\mathbb{R}^{n};\mu)\leq S\mathcal{E}(u, u)$

$\forall u\in\dot{L}^{\alpha,2}(\mathbb{R}^{n})$ .

(ii) Let $\check{M}$ be the time changed process on the support $F$ of $\mu$ of $M$ by the
PCAF with Revuz measure $\mu$ . Then its transition function $\check{p}_{t}$ satisfies

(30) $\check{p}_{t}(x, y)\leq(\frac{H}{t})\frac{d}{d-(n-2\alpha)}$ , $t>0$ ,

for $\mu\times\mu- a.e$ . $(x, y)\in F\times F$ , where $H$ is some positive constant with

(31) $H\leq\frac{d}{d-(n-2\alpha)}S$ .

Actually inequaHty (29) together with the bounds

$c_{3}v_{d}(\mu)^{\frac{n-2\alpha}{d}}\leq S\leq c_{4}v_{d}(\mu)^{\frac{n-2\alpha}{d}}$
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holding for some positive constants $c_{3}$ , $c_{4}$ independent of $\mu$ goes back to
the work of Adams ([23, 1.4.1]). Here we have made these contants $c_{3}$

and $c_{4}$ more explicit in (28).

We can also derive from Theorem 3 the following converse to The-
orem 4.

Theorem 6. Suppose that $\mu$ is a smooth Radon measure on $\mathbb{R}^{n}$ with
support $F$ and that the transition function $\tilde{p}_{t}$ of the time changed process
$\tilde{M}$ on $F$ with respect to the PCAF with Revuz measure $\mu$ satisfies the
bound (30) for some $d\in(n-2\alpha, n]$ and $H>0$ . Then
(i) The inequality (29) holds for some positive constant $S$ with

(32) $S\leq\frac{48de^{2}}{n-2\alpha}(\frac{2d-(n-2\alpha)}{d-(n-2\alpha)})\frac{2d-(n-2\alpha)}{d-(n-2\alpha)}\cdot H$ .

(ii) $\mu$ is a $d$ measure whose $d$ bound $v_{d}(\mu)$ satisfies

(33) $\frac{n-2\alpha}{4d}(\frac{S}{c(n,\alpha,d)})\frac{d}{n-2\alpha}\leq v_{d}(\mu)\leq(\dot{c}_{\alpha,2}S)^{\frac{d}{n-2\alpha}}$

for the constant $S$ of (i) and for $c(n, \alpha, d)$ of (27).

Let $\mu$ , $F,\check{M}$ be as in Theorem 5 and $(\check{\mathcal{E}},\check{F})$ be the Dirichlet form of
$\check{M}$ on $L^{2}(F;\mu)$ the $trace$ Dirichlet form of (23) on the $d$-set $F$. Put

(34) $\delta=\alpha-\frac{n-d}{2}\in(0,1]$

and consider the Besov space $B_{\delta}^{2,2}(F)$ over $F$ defined by
(35)

$\{$

$(\varphi, \psi)_{B_{\delta}^{2,2}(F)}$ $=$ $\int_{F\times F\backslash d}\frac{(\varphi(x)-\varphi(y))(\psi(x)-\psi(y))}{|x-y|^{d+2\delta}}\mu(dx)\mu(dy)$

$B_{\delta}^{2,2}(F)$ $=$ $\{\varphi\in L^{2}(F;\mu) : (\varphi, \varphi)_{B_{\delta}^{2,2}(F)}<\infty\}$ .

$B_{\delta}^{2,2}(F)$ is a Dirichlet form on $L^{2}(F;\mu)$ equipped with the norm

$||\varphi;B_{\delta}^{2,2}(F)||^{2}=(\varphi, \varphi)_{L^{2}(F;\mu)}+(\varphi, \varphi)_{B_{\delta}^{2,2}(F)}$ .

By virtue of a Jonsson-Wallin $trace$ theorem [20, chap. $V$], this space
is related to the Bessel potential space $L_{\alpha,2}(\mathbb{R}^{n})$ as

(36) $B_{\delta}^{2,2}(F)=L_{\alpha,2}(\mathbb{R}^{n})|_{F}$
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both the restriction and extension operators involved being continuous.
Since the present Dirichlet space (23) equipped with $\mathcal{E}_{1}$ -norm is known to
be equivalent to the Bessel potential space, we are led ffom the Dirichlet
principle (15) and (36) to the following continuous embedding:

(37) $B_{\delta}^{2,2}(F)\subset\check{F}_{e}$ , $\check{\mathcal{E}}(\varphi, \varphi)\leq C||\varphi;B_{\delta}^{2,2}(F)||^{2}$ , $\forall\varphi\in B_{\delta}^{2,2}(F)$ ,

for some positive constant $C$ .

Nevertheless 0-oder forms $\check{\mathcal{E}}$ and $(\cdot, \cdot)_{B_{\delta}^{2,2}(F)}$ are not necessarily equiv-

alent. For instance, let $M$ be the standard Brownian motion on $\mathbb{R}^{n}$ with
$n$ $\geq 3$ , $F$ be the unit sphere $\Sigma$ contered at the origin and $\mu$ be the sur-
face measure $\sigma$ on $\Sigma$ . Then we have the following expression of the $trace$

Dirichlet form $\check{\mathcal{E}}(f, f)$ for $f\in\check{F}([17])$ :
(38)

$\check{\mathcal{E}}(f, f)=\frac{1}{\Omega}\int_{\Sigma\times\Sigma\backslash d}(f(\xi)-f(\eta))^{2}\frac{1}{|\xi-\eta|^{n}}\sigma(d\xi)\sigma(d\eta)+v_{0}\int_{\Sigma}f(\xi)^{2}\sigma(d\xi)$ ,

where $\Omega$ is the area of $\Sigma$ and $v_{0}=\frac{n-2}{2}$ . The first term on the right
hand side correponds to the form (35) for $d=n-1$ , $\delta=1/2$ . But the
additional second term appears due to the transience of the Brownian
motion.

\S 4. Spectral synthesis for contractive -norms and Besov spaces

Let $X$ be a locally compact separable metric space and $m$ a positive
Radon measure on $X$ with $supp[m]=X$ . Let $N(x, dy)$ be a positive ker-
nel on $(X, B(X))$ such that $N(x, \{x\})=0$ , $x\in X$ , and $N(x, dy)m(dx)$

is a symmetric measure over $X\times X-d$ , where $d=\{(x, x) : x\in X\}$ .
For a fixed $ 1\leq p<\infty$ , we introduce the pseudo-norm $|||\cdot|||_{p}$ and the
function space $F_{p}$ by (5). Denoting the norm of the space $L^{p}(X;m)$ by
$||$ . $||_{p}$ , we equip $F_{p}$ with the norm

(39) $|||u|||_{p,1}=|||u|||_{p}+||u||_{p}$ $u\in F_{p}\cap L^{p}(X;m)$ .

We assume the regularity of this space in the sense that $F_{p}\cap C_{0}(X)$ is
dense in $F_{p}$ with norm (39) and in $C_{0}(X)$ with uniform norm.

Denote by $\mathcal{O}$ the family of all open sets in $X$ . We define the $\Psi$

capacity of $A\in \mathcal{O}$ by
(40)
$Cap_{p}(A)=\inf${ $|||u|||_{p}^{p}+||u||_{p}^{p}$ : $u\in F_{p}$ , $u\geq 1$ m-a.e. on $A$ } $A\in \mathcal{O}$ ,

and extend it to any set $B\subset X$ by

$Cap_{p}(B)=\inf\{Cap_{p}(A) : ^{A}\in \mathcal{O}, B\subset A\}$ .
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$‘ q.e$ .’ will mean ’except for a set of zero $p$ -capacity ’. $Cap_{p}$ quasicontinuous
function will be called simply quasicontinuous. In what follows, we also
assume that $ 1<p<\infty$ .

Although the space ($F_{p}$ , $|||$ . $|||_{p,1}$ is slightly more complicated than
the ordinary $L^{p}$ space, we can well adopt the uniform convexity argu-
ment to ensure the unique existence of the equilibrium potential for any
$A\in \mathcal{O}$ with finite $p$-capacity. Thus $Cap_{p}$ on open sets can be seen to en-
joy the continuity along the increasing limit as in [12]. It is also strongly
subadditive as in [21]. Hence $Cap_{p}$ is a Choquet capacity, each element
$u\in F_{p}$ has a quasicontinuous version $\tilde{u}$ , each set of finite $p$-capacity has
a unique equilibrium potential just as in the case of the Dirichlet space.
We $ako$ have the following nice property:
(41)
$u$ is quasi-continuous and $u=0$ ra-a.e. on $G(\in \mathcal{O})\Rightarrow u=0q.e$ . on $G$ .

For $G\in \mathcal{O}$ , we let

(42) $F_{p,0}^{G}=\overline{F_{p}\cap C_{0}(G)}^{|||\cdot|||_{p,1}}$ ,

where $C_{0}(G)$ denotes the family of continuous functions on $X$ whose sup-
port is compact and contained in $G$ . We say that the spectral synthesis
is possible for $G\in \mathcal{O}$ if

(43) $F_{p,0}^{G}=$ { $u\in F_{p}$ : $\tilde{u}=0q.e$ . on $X\backslash G$ }.

Following the method of [1, 9.2] for the space $W^{1,p}(\mathbb{R}^{n})$ and us-
ing the contraction property of the space $F_{p}$ together with the above
mentioned properties of $Cap_{p}$ , we can prove the next theorem.

Theorem 7. (i) The spectral synthesis is possible for $G\in \mathcal{O}$ if
$X\backslash G$ is compact.

(ii) The spectral synthesis is possible for any $G\in \mathcal{O}$ under the next
assumption:
(A) There exist non-negative functions $w_{n}\in C_{0}(X)$ increasing to 1
such that

$\sup_{nx}\sup_{\in X}W_{n}(x)<\infty,\lim_{n\rightarrow\infty}\sup_{x\in K}W_{n}(x)=0$ for any compact $K\subset X$ ,

where

(44) $W_{n}(x)=\int_{X}|w_{n}(x)-w_{n}(y)|^{p}N(x, dy)$ $x\in X$ .
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As a consequence of Theorem 7 (i), the next useful identity holds
for any compact set $K\subset X$ :

(45) $Cap_{p}(K)=\inf${ $|||u|||_{p}^{p}+||u||_{p}^{p}$ : $u\in F_{p}\cap C_{0}(X)$ , $u\geq 1$ on $K$ }.

We now let

$0<d\leq n$ , $<\alpha<1$ , $ 1<p<\infty$ ,

and consider the contractive Besov space $B_{\alpha}^{p,p}(F)$ on a $d$ set $F\subset \mathbb{R}^{n}$

defined by (6). This is a special example of the space $F_{p}$ with contractive
$p$-norm $|||$ . $|||_{p,1}$ . The associated $p$-capacity of a set $A\subset F$ is denoted
by $Cap_{\alpha,p}(A;F)$ . It can be shown that condition A is satisfied by this
space. By Theorem 7, the spectral synthesis is therefore possible for any
relatively open set $H\subset F$ with respect to $B_{\alpha}^{p,p}(F)$ , which immediately
implies the equivalence

(46) $B_{\alpha,0}^{p,p}(H)=B_{\alpha}^{p,p}(F)\Leftrightarrow Cap_{\alpha,p}(F\backslash H;F)=0$ ,

where $B_{\alpha,0}^{p,p}(H)$ denotes the closure of $B_{\alpha}^{p,p}(F)\cap C_{0}(H)$ in the space
$B_{\alpha}^{p,p}(F)$ .

On the other hand, the next implications have been proved in [14]
by making use of the property (45) of $Cap_{\alpha,p}(\cdot;F)$ , a Jonsson-Wallin
$trace$ theorem ([20]) and the metric properties of the Bessel capacity on
$\mathbb{R}^{n}([1])$ :

(47) $Cap_{\alpha,p}(\Lambda;F)=0\Rightarrow\prime\mu_{dim}(\Lambda)\leq d-\alpha p$ ,

(48) $H_{d-\alpha p}(\Lambda)<\infty\Rightarrow Cap_{\alpha,p}(\Lambda;F)=0$ .

Here $\prime H_{dim}$ and $H_{\gamma}$ denote the Hausdorff dimension and $\gamma$-dimensional
Hausdorff measure respectively.

(46),(47) and (48) lead us to the next desired theorem.

Theorem 8. Assume that $H$ is a relatively open subset of $F$ and
that $F\backslash H$ has a locally finite positive $\overline{d}$-dimensional Hausdorff measure

$d-\tilde{d}$

with $\tilde{d}<d$ . Then $B_{\alpha,0}^{p,p}(H)=B_{\alpha}^{p,p}(F)$ if and only if $\alpha\leq\overline{p}$
.
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Gauge Theorems for Stieltjes Exponentials

Ronald Getoor

Abstract.

A gauge theorem for the Stieltjes exponential of a right contin-
uous additive functional satisfying a general Kato type condition is
established. Results for the ordinary exponential are then obtained
as corollaries.

\S 1. Introduction

In a series of recent papers Chen and Song [CS02], [CS03] and
Chen [C02] have made remarkable progress in establishing the gauge
and conditional gauge theorem under quite general hypotheses. The
gauge theorem has the following structure: Given a multiplicative func-
tion $M$ $=(M_{t})$ and a terminal time $\tau$ of a strong Markov process $X$

the gauge function $g(x):=E^{x}(M_{\tau})$ is bounded on $\{g<\infty\}$ under suit-
able hypotheses on $X$ and $M$ . Usually $X$ is assumed to satisfy some
irreducibility hypothesis which then implies that $g$ is either bounded or
identically infinite. Also $M$ usually is of the form $M_{t}=\exp(A_{t})$ where $A$

is an additive functional. See the above cited papers and also the book
of Chung and Zhao [CZ95] for some history of the subject. Before the
above cited papers $A$ was usually assumed to be continuous and often

of the form $A_{t}=\int_{0}^{t}q(X_{s})ds$ where $q$ is a function on the state space of
$X$ . See however [CR88], [So93] and [St91] for notable exceptions.

In their papers Chen and Song and Chen consider both continuous
and a class of discontinuous additive functionals. The arguments in the
two cases are similar in structure but somewhat different in detail. It
turns out that by modiping slightly their approach one can prove a
gauge theorem for arbitrary right continuous additive functionals in a
unified way, assuming only that the underlying process $X$ is a Borel right
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process. The present paper is devoted to spelling this out in some detail.
We obtain a slightly sharper result even in the case considered by Chen
and Song, but our emphasis is the generality and the simplicity of the
result obtained. We work directly with Stieltjes exponentials of additive
functionals obtaining a gauge theorem for such exponentials. Results
for ordinary exponentials then appear as simple corollaries. Our results
are general enough to apply to infinite dimensional processes since we
do not assume any absolute continuity condition.

One of the main purposes of the Chen, Song papers was to prove a
gauge theorem in enough generality that it could be applied to prove a
conditional gauge theorem. A critical hypothesis for their result for a
conditional gauge theorem is that $X$ be in strong duality with another
Borel right process $X$ . Under this duality hypothesis, the hypotheses and
argument in section 3 of [CSOO] can be adapted to prove a conditional
gauge result for Stieltjes exponentials along the lines of this paper. We
leave the precise formulation to the interested reader.

We close this introduction with some words on notation. If $(F, F, \mu)$

is a measure space, then we use $F$ also to denote the class of all $\overline{\mathbb{R}}=$

$[-\infty, \infty]$ valued $\mathcal{F}$ measurable functions. If A{ $\subset F$ , then $b\mathcal{M}$ (resp. $p\mathcal{M}$ )
denotes the class of bounded (resp. [0, $\infty]$ valued) functions in $\mathcal{M}$ . For
$f\in F$ , $\mu(f)$ denotes the integral $\int fd\mu$ . If $(E, \mathcal{E})$ is a second measurable
space and $K=K(x, dy)$ is a kernel ffom $(F, F)$ to $(E, \mathcal{E})(i.e.$ $ x\rightarrow$

$K(x, A)$ is in $\mathcal{F}$ for each $A\in \mathcal{E}$ and $K(x, \cdot)$ is a measure on $(E, \mathcal{E})$ for
each $x\in F$), then we write $\mu K$ for the measure $A\rightarrow\int\mu(dx)K(x, A)$

and $Kf$ for the function $x\rightarrow\int K(x, dy)f(y)$ . The symbol “
$:=$

” stands
for “is defined to be”.

\S 2. Preliminaries

Throughout this paper $(P_{t}, t \geq 0)$ will denote a Borel right semi-
group on a Lusin state space $(E, \mathcal{E})$ , and $X=(X_{t}, P^{x})$ will denote the
canonical realization of $(P_{t})$ as a right continuous strong Markov pro-
cess. A (positive) $\sigma$-finite measure $m$ on $(E, \mathcal{E})$ is excessive provided
$mP_{t}\leq m$ for all $t$ $\geq 0$ . Since $(P_{t})$ is a right semigroup, it follows that
$mP_{t}\uparrow m$ setwise as $t$ $\downarrow 0$ . See [DM87; XII, 36-37]. We fix an exces-
sive measure $m$ to serve as a background measure. In general we shall
use the standard notation for Markov processes without special men-
tion. See, for example, [BG68], [DM87], [S88] and [G90]. In particular,
$U^{q}:=\int_{0}^{\infty}e^{-qt}P_{t}dt$ , $q\geq 0$ , denotes the resolvent and $U:=U^{0}$ the poten-
tial kernel of $(P_{t})$ or $X$ . We assume only that $(P_{t})$ is sub-Markovian and
so a point $\triangle$ is adjoined to $E$ as an isolated point to serve as a cemetary
and $\zeta:=\inf\{t:X_{t}=\triangle\}$ is the lifetime of $X$ and $P^{x}(\zeta>t)=P_{t}1(x)$ .
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As usual a function $f$ on $E$ is extended to $\triangle$ by $f(\triangle)=0$ unless explic-
itly stated otherwise. Thus for example, if $f\geq 0$

$U^{q}f(x)=E^{x}\int_{0}^{\zeta}e^{-qt}f(X_{t})dt=E^{x}\int_{0}^{\infty}e^{-qt}f(X_{t})dt$ .

We shall assume throughout that $X$ is transient or equivalently that $U$

is proper. More precisely we shall assume:

(2.1) Transience Assumption. There exists a function $b\in \mathcal{E}$ , $0<$
$b\leq 1$ with $Ub\leq 1$ ; reducing $b$ if necessary we may also suppose that
$ m(b)<\infty$ .

Recall that a set $B\in \mathcal{E}^{7l}$ is $m$-polar (resp. $m$-semipolar) provided
$\{t : X_{t}\in B\}$ is empty (resp. at most countable) $P^{m}a.s$ . Here $\mathcal{E}^{n}$

denotes the $\sigma$-algebra of nearly Borel sets. A nearly Borel set $N$ is m-
inessential provided it is $m$-polar and $E\backslash N$ is absorbing for $X$ . By $[GS$

$84;(6.12)]$ any $m$-polar set is contained in a Borel $m$ inessential set. A
property or statement $P(x)$ is said to hold quasi-everywhere $(q.e.)$ or
for quasi-every $x$ provided it holds for all $x$ outside some $m$-polar set.
The exceptional set may then be supposed to be $m$-inessential. We also
write $a.e$ . for ra-a. $e$ .

(2.2) Definition. A positive additive functional (PAF) is an $(\mathcal{F}_{t})-$

adapted increasing process $A=(A_{t}; t\geq 0)$ with values in $[0, \infty]$ , for
which there exist a defifining set $\Omega_{A}\in F$ and a Borel $m$ inessential set
$N_{A}$ (called an exceptional set for $A$) such that

(i) $P^{x}(\Omega_{A})=1$ for $dl$ $x\not\in N_{A}$ ;
(ii) $\theta_{t}\Omega_{A}\subset\Omega_{A}$ for all $t\geq 0_{i}$

(iii) For all $\omega\in\Omega_{A}$ the mapping $t\rightarrow A_{t}(\omega)$ is right continuous on
[0, $\infty[,$ fifinite valued on [0, $\zeta(\omega)$ [ with $A_{0}(\omega)=0_{i}$

(iv) For all $\omega\in\Omega_{A}$ and $s$ , $t\geq 0$ , $A_{s+t}(\omega)=A_{t}(\omega)+A_{s}(\theta_{t}\omega)$ ;
(v) For all $t\geq 0$ , $A_{t}([\triangle])=0$ where $[\triangle]$ is the dead path identically

equal to $\triangle$ .
(vi) For $\omega\in\Omega_{A}$ , $A_{t}(\omega)=A_{\zeta(\omega)-}(\omega)$ for $t\geq\zeta(\omega)$ .

We let $\overline{A}^{+}$ denote the class of all PAFs. If in (2.2-iii) right contin-
uous is replaced by continuous, then $A$ is a positive continuous additive

functional (PCAF) and we write $\overline{A}_{c}^{+}$ for the class of such functionals.
Two PAFs $A$ and $B$ are $m$-equivalent provided $P^{m}(A_{t}\neq B_{t})=0$ for
all $t\geq 0$ . One can check that $A$ and $B$ are $m$-equivalent if and only
if they have a common defining set $\Lambda$ and a common exceptional set
$N$ such that $A_{t}(\omega)=B_{t}(\omega)$ for all $t\geq 0$ and $\omega\in\Lambda$ . See the argu-
ment just below Definition 3.1 in $[FG96]$ . Equality between elements
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of $\overline{A}^{+}$ will mean $m$-equivalence unless explicitly mentioned otherwise.
An $A\in\overline{A}^{+}$ may be decomposed as $A=A^{c}+A^{d}$ where $A^{c}$ is a PCAF
and

$A_{t}^{d}=\sum_{0<s\leq t}\triangle A_{s}$
is the sum of the jumps of $A$ , $\triangle A_{s}=A_{s}$ –As-.

Because of (vi), $\triangle A_{\zeta}=0$ on $\Omega_{A}$ . Of course $\Omega_{A}=\Omega$ and $ N_{A}=\phi$ are
allowed in Definition 2.2. By restricting $X$ to the Borel absorbing set
$E\backslash N_{A}$ one may usually reduce to the case in which $N_{A}$ is empty. In
order to keep this exposition as simple possible I will restrict attention
to this case. To be precise we define

(2.3) $A^{+}=\{A\in\overline{A}^{+} : N_{A}=\phi\}$ .

Our results will be stated for $A\in A^{+}$ , but the interested reader should
have no difficulty in formulating them for $A\in\overline{A}^{+}$ . If $A\in A^{+}$ , then
$P^{x}(\Omega_{A})=1$ for all $x$ . Hence $A$ is almost perfect as defined in [S88,
p. 173].

If $A\in A^{+}$ , then its characteristic (Revuz) measure $\mu_{A}$ is defined by

(2.3) $\mu_{A}(f):=\uparrow\lim_{t\rightarrow 0}\frac{1}{t}E^{m}\int_{0}^{t}f(X_{s})dA_{s}$

for $f\in p\mathcal{E}^{n}$ . Moreover $\mu_{A}(f)=\uparrow\lim_{q\rightarrow\infty}q\cdot mU_{A}^{q}f$ where

(2.6) $U_{A}^{q}f(x):=E^{x}\int_{0}^{\zeta}e^{-qt}f(X_{t})dA_{t}$

is the $q$-potential operator of $A$ . As usual $U_{A}:=U_{A}^{0}$ . Clearly $\mu_{A}$ does
not charge $m$-polars.

We shall also need the Stieltjes exponential $Exp(A)$ of $A\in A^{+}:$

(2.6)
$Exp(A_{t}):=e^{A_{t}^{c}}\prod_{0<s\leq t}(1+\triangle A_{s})$

.

Clearly $Exp(A)$ is increasing, right continuous and finite on { $(t, \omega)$ : $ 0\leq$

$t<\zeta(\omega)$ , $\omega\in\Omega_{A}\}$ and $Exp(A_{0})=1$ . On $\Omega_{A}$ the compensated powers
$A^{(n)}$ of $A$ are defined by $A_{t}^{(0)}=1$ and for $ t<\zeta$

$A_{t}^{(n)}=n\int_{]0,t]}A_{s-}^{(n-1)}dA_{S}$ ; $n$ $\geq 1$ .

It is well-known that $Exp(A_{t})=\sum_{n\geq 0}\frac{1}{n!}A_{t}^{(n)}$ , see [DD70, p189]. Recall

that a terminal time $\tau$ for $X$ is a stopping time which satisfies $ t+\tau\circ\theta_{t}=\tau$

on $\{t<\tau\}$ . A straightforward induction argument yields the following
result. See [SSOO] for much more general results.
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(2.7) Lemma. Let $A\in A^{+}$ and let $\sigma$ be either a terminal time or $a$

constant time. Let $\tau=\sigma\wedge\zeta$ . If $E^{x}(A_{\tau-})\leq C<1$ for all $x$ , then
$E^{x}[Exp(A_{\tau-})]\leq(1-C)^{-1}$ for all $x$ .

If $B\in \mathcal{E}^{n}$ , $\tau(B):=\inf\{t>0$ : $X_{t}\not\in B$ ] denotes the exit time ffom
$B$ . Evidently $\tau(B)\leq\zeta$ .

(2.8) Proposition. Let $A\in A^{+}$ and suppose that $A$ has boundedjumps;
that is, there exists $ 0\leq c<\infty$ such that $\sup_{t}\triangle A_{t}\leq ca.s$ . Then there
exists an increasing sequence $(G_{n})$ of fifinely open nearly Borel sets with
$E=\cup G_{n}$ , $\tau(G_{n})\uparrow\zeta a.s$ . and for each $n$ , $\mu_{A}(G_{n})<\infty$ and $ U_{A}1_{G_{n}}\leq$

$(2c+1)n$ .

Proof. Suppose first that $c<1$ . Define

$M_{t}:=Exp(-A_{t})=e^{-A_{t}^{c}}\prod_{0<s\leq t}(1-\triangle A_{s})$
.

Then $a.s.$ , $t\rightarrow M_{t}$ is right continuous and decreasing, $M_{t}>0$ if $ t<\zeta$

and $M_{0}=M_{0+}=1$ . It is well-known and easily verified that $M_{t+s}=$

$M_{t}M_{s}\circ\theta_{t}$ and $d(M_{t}^{-1})=M_{t}^{-1}dA_{t}$ . Define

(2.8) $g(x):=E^{x}\int_{0}^{\zeta}M_{t}b(X_{t})dt$

where $b$ is the function in (2.1). Clearly $g>0$ , and

$U_{A}g$ $=$ E. $\int_{0}^{\zeta}g(X_{t})dA_{t}=E$
.

$\int_{0}^{\zeta}M_{t}^{-1}\int_{t}^{\zeta}M_{s}b(X_{s})dsdA_{t}$

$=$ E. $\int_{0}^{\zeta}M_{s}b(X_{s})\int_{0}^{s}M_{t}^{-1}dA_{t}ds=Ub-g$ .

Hence $0<g\leq Ub$ and $U_{A}g\leq Ub$ . It is easily checked that $g$ is excessive
relative to $(X, M)$ – the $M$ subprocess of $X-$ and consequently $g$ is
nearly Borel and finely continuous. Thus the sets $G_{n}:=\{g>\frac{1}{n}\}$ form
an increasing sequence of finely open nearly Borel subsets of $E$ with
$\cup G_{n}=E$ . Let $\tau_{n}$ be the exit time ffom $G_{n}$ . Since $G_{n}^{c}$ is finely closed,
$g(X_{\tau_{n}})\leq\frac{1}{n}$ , $a.s$ . on $\{\tau_{n}<\zeta\}$ . Hence

$\frac{1}{n}\geq E.[g(X_{\tau_{n}})]=E.[M_{\tau_{n}}^{-1}\int_{\tau_{n}}^{\zeta}M_{t}b(X_{t})dt]\geq E$
.

$[\int_{\tau_{n}}^{\zeta}M_{t}b(X_{t})dt]$ .

But $b>0$ and $M_{t}>0$ on [0, $\zeta[a.s.$ , so we must have $\lim_{n}\tau_{n}=\zeta a.s$ .

Since $U_{A}g\leq Ub$ one has $U_{A}1_{G_{n}}\leq nUb\leq n$ . Therefore $\mu_{A}(G_{n})\leq$

$ n\mu_{A}Ub\leq n\cdot m(b)<\infty$ where the second inequality comes ffom (the
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proof of) the lemma at the bottom of page 508 in $[Re70]$ . This estab-
lishes (2.8) when $c<1$ . If $c\geq 1$ , let $A_{t}^{*}=(2c)^{-1}A_{t}$ so that $A^{*}$ has
jumps bounded by $\frac{1}{2}$ . Let $g$ be defined as in (2.9) but with $A$ replaced

by $A^{*}$ . Since $U_{A}=2cU_{A^{*}}$ and $\mu_{A}=2c\mu_{A^{*}}$ , $G_{n}:=\{g>\frac{1}{n}\}$ has the
desired properties. $\blacksquare$

The proof of (2.8) is easily modified to prove the following:

(2.10) Proposition. Let $A\in\overline{A}^{+}$ and suppose that $\sup_{t}\triangle A_{t}\leq c<\infty$

$a.s$ . $P^{x}$ for $x\in E\backslash N_{A}$ . Then there exists an increasing sequence $(G_{n})$ of
fifinely open nearly Borel sets such that $E\backslash \cup G_{n}$ is $m$ -polar, $\tau(G_{n})\uparrow\zeta a.s$ .
$P^{x}$ for $x\in E\backslash N_{A}$ , and for each $n$ , $\mu_{A}(G_{n})<\infty$ and $U_{A}1_{G_{n}}\leq(2c+1)n$

on $E\backslash N_{A}$ .

From time to time we will spell out the situation when $\overline{A}^{+}$ replaces
$A^{+}$ . Usually it is just a matter of keeping track of the exceptional set
$N_{A}$ as illustrated in (2.10).

\S 3. Kato Classes

In this section we introduce some Kato classes of additive function-
als. The definitions are modifications of those in [C02]. Let $||\cdot||_{\infty}$ denote
the norm in $L^{\infty}(m)$ ; that is for $f\in \mathcal{E}^{n}$ , $||f||_{\infty}=m- ess\sup_{x}|f(x)|$ . We
shall also use the $q.e$ . supremum norm for $f\in \mathcal{E}^{n}$ ; that is $||f||_{qe}=\inf\{\beta$ :
$|f|\leq\beta q.e.\}$ . Clearly $||f||_{qe}\geq||f||_{\infty}$ . Recall that $f\in \mathcal{E}^{n}$ is quasi-finely
continuous (qfc) provided it is finely continuous off an $m$-polar set which
may be assumed to be $m$-inessential. Since an $m$-null finely open set is
$m$-polar, it follows that if $f$ is $qfc$ , then $||f||_{\infty}=||f||_{qe}$ .

(3.1) Definition. Let $ 0<\beta<\infty$ . Then $\overline{K}_{\beta}$ (resp. $\overline{K}_{\beta}^{*}$ ) consists of
those $A\in\overline{A}^{+}$ that have bounded jumps as defifined in (2.10) and such
that there exist a positive measure $iJ$ on $E$ , a set $K\in \mathcal{E}$ with $\nu(K)<\infty$

and $\delta=\delta(\nu, K)>0$ with the following property:

(3.2) If $B\subset \mathcal{E}^{n}$ with $B\subset K$ and $\nu(B)<\delta$ , then

$||U_{A}1_{B\cup K^{c}}||_{\infty}\leq\beta$ (resp. $||E.(A_{\tau(B\cup K^{c})-}||_{qe}\leq\beta)$ .

Remarks. For and $D\in \mathcal{E}^{n}$ , $U_{A}1_{D}$ is excessive for $X$ restricted to
$E\backslash N_{A}$ and hence $qfc$ . But $E.(A_{\tau(D)-})\leq E$

.
$\int 1_{D}(X_{t})dA_{t}=U_{A}1_{D}$ and

therefore $\overline{K}_{\beta}\subset\overline{K}_{\beta}^{*}$ . Replacing $iJ$ by $\iota/|_{K}$ one may suppose that $\iota/$ is finite
when convenient.

Once again to keep the exposition simple we are going to eliminate
the exceptional sets.
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(3.3) Definition. If $ 0<\beta<\infty$ , then $A\in K_{\beta}$ (resp. $K_{\beta}^{*}$ ) provided
$A\in A^{+}$ and has bounded jumps as in (2.8) and there exist $\nu$ , $K$ and $\delta$

as in (3.1) such that $B\subset K$ , $\nu(B)<\delta$ imply

$\sup_{x\in E}U_{A}1_{B\cup K^{c}}(x)\leq\beta$ (resp. $\sup_{x\in E}E^{x}(A_{\tau(B\cup K^{c})-})\leq\beta$).

We are going to work under (3.3) and leave the straightforward ex-
tension to the more general situation to the interested reader. Obviously
if $ 0<\beta<\gamma$ , then $K_{\beta}\subset K_{\gamma}$ and $K_{\beta}^{*}\subset K_{\gamma}^{*}$ . It is convenient to define

(3.4) $K_{0}:=\bigcap_{\beta>0}K_{\beta}$ and $K_{0}^{*}:=\bigcap_{\beta>0}K_{\beta}^{*}$ .

It will turn out that the $K_{\beta}^{*}$ are the appropriate classes for the gauge
theorem. Moreover in an important special case a sufficient condition
that $A\in K_{\beta}^{*}$ is that $A^{p}\in K_{\beta}^{*}$ where $A^{p}$ is the dual predictable pro-

jection of $A$ . We now describe this result. Let $A\in A^{+}$ have bounded
jumps. Then there exists a unique predictable element $A^{p}\in A^{+}-$ the
dual predictable projection of $A-$ such that for any positive predictable
process $(Z_{t})$

(3.5) $E^{x}\int_{0}^{\infty}Z_{t}dA_{t}=E^{x}\int_{0}^{\infty}Z_{t}dA_{t}^{p}$ .

See [S88, 31].

(3.6) Proposition. Let $A\in A^{+}$ have bounded jumps with bound $c$ as in
(2.8). If the dual predictable projection $A^{p}$ of $A$ is continuous, $A^{p}\in K_{\beta}^{*}$

if and only if $A\in K_{\beta}^{*}$ .

Proof. If $T$ is a stopping time, $1_{]0,T]}(t)$ is predictable. Therefore since
$A^{p}$ is continuous

$E^{x}(A_{T})-c\leq E^{x}(A_{T-})\leq E^{x}(A_{T})=E^{x}(A_{T}^{p})=E^{x}(A_{T-}^{p})$ ,

and this establishes (3.6). $\blacksquare$

The next two propositions are taken from [C02]. We give proofs for
the convenience of the reader. For $A\in A^{+}$ , $u_{A}:=U_{A}1=E.(A_{\zeta-})$ is
the potential (function) of $A$ .

(3.7) Proposition. Suppose $A\in K_{\beta}$ , $\beta>0$ . Then $\sup_{x\in E}u_{A}(x)<\infty$ .

Proof. Let $\nu$ , $K\in \mathcal{E}$ and $\delta$ be as in Definition 3.3. Then $K$ contains
at most a finite number of points $\{x_{1}, \ldots, x_{n}\}$ with $\nu(\{x_{j}\})>\delta$ . It
follows ffom a result of Saks (see [DS58, p308]) that $K\backslash \{x_{1}, \ldots x_{n}\}$ can
be written as the disjoint union of a finite number $B_{1}$ , $\ldots$ , $B_{k}$ of sets
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in $\mathcal{E}$ with $\nu(B_{j})\leq\delta$ . Rom (2.8) there exists $(G_{j})$ with $G_{j}\uparrow E$ and
$U_{A}1_{G_{j}}\leq(2j+1)c$ for each $j$ . Let $F=\{x_{1}, \ldots, x_{n}\}$ . Since $E=\cup G_{j}$ ,
there exists an $p$ with $1_{F}\leq 1_{G_{\ell}}$ . Hence

$u_{A}=U_{A}1_{K^{c}}+U_{A}1_{F}+\sum_{j=1}^{k}U_{A}1_{B_{j}}\leq(k+1)\beta+(2\ell+1)c$ . $\blacksquare$

The definition of $K_{\beta}$ depends on what appears to be an arbitrary
choice of the measure $\nu$ . The next proposition gives an intrinsic criterion
for $A$ to be in $K_{\beta}$ , at least when $m$ is a reference measure. If $f$ : $E\rightarrow\overline{\mathbb{R}}$ ,
let $||f||=\sup_{x\in E}|f(x)|$ .

(3.8) Proposition. Le $A\in A^{+}$ and $\beta>0$ . (i) If $A\in K_{\beta}$ , then for
every decreasing sequence $(Dn)\subset \mathcal{E}^{n}with\cap D_{n}=\phi$ , $\lim_{n}||U_{A}1_{D_{n}}||\leq\beta$ .

(ii) If $m$ is a reference measure and if for every decreasing sequence
$(Dn)\subset \mathcal{E}^{n}with\cap D_{n}=\phi$ , $\lim_{n}||U_{A}1_{D_{n}}||<\frac{\beta}{2}$ and $A$ has bounded jumps,

then $A\in K_{\beta}$ .

Proof, (i) Suppose $\beta>0$ and $A\in K_{\beta}$ . Let $ D_{n}\downarrow\phi$ . Then there exists
an $N$ such that $\nu(K\cap D_{n})\leq\delta$ for $n\geq N$ . Thus for $n$ $\geq N$ , $ U_{A}1_{D_{n}}\leq$

$U_{A}1_{(D_{n}\cap K)\cup K^{c}}$ and so $||U_{A}1_{D_{n}}||\leq\beta$ for $n\geq N$ . (ii) Let $A\in A^{+}$ have
bounded jumps. By (2.8) there exists an increasing sequence $(G_{n})$ of
finely open sets in $\mathcal{E}^{n}$ with $\mu_{A}(G_{n})<\infty and\cup G_{n}=E$ . Let $D_{n}=E\backslash G_{n}$ .
$Then\cap D_{n}=\phi$ and so $\lim_{n}||U_{A}1_{D_{n}}||<\frac{\beta}{2}$ . Fix an $n$ with $||U_{A}1_{D_{n}}||<\frac{\beta}{2}$

and put $K=G_{n}$ . We claim that there exists a $\delta>0$ such that if
$B\subset K$ and $\mu_{A}(B)<\delta$ , then $||U_{A}1_{B\cup K^{c}}||\leq\beta$ . Suppose no such $\delta>0$

exists. Then for each $n$ there exists $B_{n}\subset K$ with $\mu_{A}(B_{n})\leq 2^{-n-1}$

and $||U_{A}1_{B_{n}\cup K^{c}}||>\beta$ . Let $F_{n}=\bigcup_{k\geq n}B_{k}$ . Then $(F_{n})$ is a decreasing
sequence with $\mu_{A}(F_{n})\leq 2^{-n}$ . If $F:=\cap F_{n}$ , then $\mu_{A}(F)=0$ . Hence
$0=\mu_{A}(F)=\uparrow\lim qmU_{A}^{q}1_{F}$ and so $mU_{A}^{q}1_{F}=0$ for $q>0$ . Letting

$ q\rightarrow\infty$

$q\downarrow 0$ we see that $U_{A}1_{F}=0a.e$ . $m$ and thus everywhere since $U_{A}1_{F}$ is
excessive and $m$ is a reference measure. Consequently $U_{A}1_{F_{n}}=U_{A}1_{F_{n}\backslash F}$

and since $ F_{n}\backslash F\downarrow\phi$ , $\lim_{n}||U_{A}1_{F_{n}}||<Q2$ . Choose $n$ with $||U_{A}1_{F_{n}}||<\rho 2$ .

Now $B_{n}\subset F_{n}$ so

$\beta<||U_{A}1_{F_{n}\cup K^{c}}||\leq||U_{A}1_{F_{n}}||+||U_{A}1_{K^{c}}||<\beta$

and this contradiction establishes (3.8). $\blacksquare$

Remarks. We emphasize that the measure constructed in the proof of
(3.8) is $\nu=\mu_{A}$ . The only place in the proof that the fact that $m$ is a
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reference measure is used is concluding that $U_{A}1_{F}=0$ ffom $U_{A}1_{F}=0$

$a.e$ . and of course then $q.e$ . Consequently the proof is easily adapted
using (2.10) in place of (2.8) to show:

(3.9) Proposition. Let $A\in\overline{A}^{+}$ have bounded jumps as in (2.10). If for
every decreasing sequence $(D_{n})\subset \mathcal{E}^{n}with\cap D_{n}=\phi$ , $\lim_{n}||U_{A}1_{D_{n}}||_{\infty}<$

$Q2$ , then $A\in\overline{K}_{\beta}$ .

(3.10) Proposition. Suppose $A^{j}\in K_{\beta_{j}}$ (resp. $K_{\beta_{j}}^{*}$ ) for $j=1,2$ . Then
$A^{1}+A^{2}\in K_{\beta_{1}+\beta_{2}}$ (resp. $K_{\beta_{1}+\beta_{2}}^{*}$ ).

Proof. Let $\nu_{j}$ , $K_{j}$ and $\delta_{j}$ serve for $A^{j}\in K_{\beta_{j}},j=1,2$ . We may suppose
that $\nu_{j}$ is carried by $K_{j},j=1,2$ . Define $\nu=\nu_{1}+\nu_{2}$ , $K=K_{1}\cup K_{2}$ and
$\delta=\delta_{1}\wedge\delta_{2}$ . Then

$\nu(K)$ $=$ $\nu(K_{1}\cap K_{2}^{c})+\nu(K_{1}^{c}\cap K_{2})+\nu(K_{1}\cap K_{2})$

$\leq 2[\nu_{1}(K_{1})+\nu_{2}(K_{2})]<\infty$ .

Suppose $B\subset K$ with $\nu(B)<\delta$ . Then $\nu_{j}(B)\leq\delta_{j}$ for $j=1,2$ . Note
that $B\cup K^{c}\subset(B\cap K_{j})\cup K_{j}^{c}$ for $j=1,2$ and so

$U_{A_{1}+A_{2}}1_{B\cup K^{c}}\leq\sum_{j=1}^{2}U_{A_{j}}1_{(B\cap K_{j})\cup K_{j}^{c}}\leq\beta_{1}+\beta_{2}$ .

Of course $A_{1}+A_{2}$ has bounded jumps. The same argument works when
the $K_{\beta}$ are replaced by $K_{\beta}^{*}$ . $\blacksquare$

\S 4. Gauge Theorems

Gauge theorems are usually stated for fluctuating additive function-
als. Formally let $A:=A^{+}-A^{-}$ and introduce the obvious notion of
equality: If $A_{j}=A_{j}^{+}-A_{j}^{-}$ , $A_{j}^{\pm}\in A^{+}$ for $j=1,2$ , then $A_{1}=A_{2}$ pro-

vided $A_{1}^{+}+A_{2}^{-}=A_{1}^{-}+A_{2}^{+}$ in $A^{+}$ . Then it is known that $A\in A$ can
be written uniquely as $A=A^{+}-A^{-}$ with $A^{+}$ , $A^{-}\in A^{+}$ having a com-
mon defining set $\Omega_{A}$ and such that the measures $dA_{t}^{+}(\omega)$ and $dA_{t}^{-}(\omega)$

on [0, $\zeta(\omega)$ [ are orthogonal for $\omega\in\Omega_{A}$ . Actually the only thing that we
shall use is that $a.s.$ , $A^{+}$ and $A^{-}$ have no common discontinuities. Of
course $A\in A$ can be decomposed as $A=A^{c}+A^{d}$ where $A^{c}\in A$ is
continuous and $A^{d}\in A$ is purely discontinuous,

$A_{t}^{d}=\sum_{0<s\leq t}\triangle A_{s}=\sum_{0<s\leq t}\triangle A_{s}^{+}-\sum_{0<s\leq t}\triangle A_{s}^{-}$
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with
$\sum_{0<s\leq t}|\triangle A_{s}|<\infty$

if $ t<\zeta$ . In particular $t\rightarrow A_{t}$ is of bounded

variation on compact intervals in [0, $\zeta[a.s$ . Fix $A=A^{+}-A^{-}\in A$ .
Define for $ t<\zeta$ ,

$L_{t}^{+}:=Exp(A_{t}^{+})$ , $L_{t}^{-}:=Exp(A_{t}^{-})$ .

It turns out that the appropriate multiplicative functional to consider is

(4.1) $L_{t}:=L_{t}^{+}/L_{t}^{-}=e^{A_{t}^{c}}\prod_{0<s\leq t}\frac{(1+\triangle A_{s}^{+})}{(1+\triangle A_{s}^{-})}$ .

Clearly $a.s.$ , $t\rightarrow L_{t}^{\pm}$ is increasing and finite on [0, $\zeta$ [ and $\triangle A_{\zeta}^{\pm}=0$ .

Hence $L_{\zeta-}^{\pm}=L_{\zeta}^{\pm}$ and so $L_{\zeta-}=L_{\zeta}$ where $\infty/\infty=0$ by convention.

Moreover $t\rightarrow L_{t}$ is right continuous on [0, $\zeta[and$ is of bounded variation
on compact subintervals of [0, $\zeta[,$ $a.s$ . Henceforth we shall omit the
qualifier $\zeta‘ a.s$

” in places where it is obviously required such as in the
preceding two sentences. Note that $L_{0}=L_{0+}=1$ . The function

(4.2) $g(x):=E^{x}[L_{\zeta}]=E^{x}[L_{\zeta-}]$

is called the gauge of $A$ (or $L$ ).

(4.3) Proposition. The gauge $g$ is nearly Borel measurable and fifinely
continuous. If $F:=\{g<\infty\}$ , then $F$ is absorbing.

Remark. Since $g$ may take the value $+\infty$ , $g$ is finely continuous as a
map ffom $E$ to $[0, \infty]$ .

Proof. Since $L_{\zeta}\in \mathcal{F}$ , $g$ is universally measurable and because $L$ is a
multiplicative functional, $L_{\zeta}\circ\theta_{t}=L_{\zeta-}\circ\theta_{t}=L_{\zeta-}/L_{t}$ if $ t<\zeta$ . Let
$M_{t}=(L_{t}^{-})^{-1}$ . Then $M$ is a decreasing, right continuous multiplicative
functional that is strictly positive for $ t<\zeta$ . Now

(4.4) $E^{x}[g(X_{t})M_{t}]$ $=$ $E^{x}(M_{t}L_{\zeta-}/L_{t} ; t<\zeta)$

$=$ $E^{x}[L_{\zeta-}/L_{t}^{+}; t<\zeta]\uparrow g(x)$

as $t\downarrow 0$ . Therefore $g$ is excessive relative to $(X, M)-$ the $M$-subprocess
of $X-$ and hence $g$ is nearly Borel and finely continuous. In particular
$F=\{g<\infty\}$ is finely open and nearly Borel. The computation in (4.4),
aside ffom taking the limit as $t\downarrow 0$ , holds with $t$ replaced by a stopping
time $T$ . Hence $Ex(MTg(XT))\leq g\{x$ ) for any stopping time $T$ . Let
$D=\{g=\infty\}=E\backslash F$ . Then $D$ is finely closed and so $ g\circ X_{T(D)}=\infty$

$a.s$ . on $\{T(D)<\zeta\}$ where $T(D):=\inf\{t>0 : X_{t}\in D\}$ is the hitting
time of $D$ . Hence if $x\in F$

$\infty>g(x)\geq E^{x}(M_{T(D)}goX_{T(D);}T(D)<\zeta)$
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and since $M_{T(D)}>0$ on $\{T(D)<\zeta\}$ , this forces $P^{x}(T(D)<\zeta)=0$ .
Hence $F$ is absorbing. $\blacksquare$

Of course $g(x)\leq E^{x}(L_{\zeta}^{+})$ and so we may obtain bounds on $g$ by

estimating $E^{x}(L_{\zeta}^{+})$ . Thus in what follows we are going to assume that
$A\in A^{+}$ . For $A\in A^{+}$ let $c(A)$ denote the infimum of the $c$ such that
$\sup_{t<\zeta}\triangle A_{t}\leq ca.s$ . Then $A\in A^{+}$ has bounded jumps provided $c(A)<$

$\infty$ . We come now to the main result of this section. The proof is
borrowed ffom Chen and Song [CS02].

(4.5) Theorem. Suppose $A\in K_{\beta}^{*}$ with $\beta<1$ . Then the gauge $g(x)=$

$E^{x}(L_{\zeta})$ is bounded on $\{g<\infty\}$ .

Proof. Let $\nu$ , $K$ and $\delta$ be as in (3.3) for $A\in K_{\beta}^{*}$ . Since $\nu(K)<\infty$

we may choose $M$ large enough that $\nu(K\cap\{M<g<\infty\})<\delta$ . Let
$B:=K^{c}\cup\{M<g<\infty\}=K^{c}\cup(K\cap\{M<g<\infty\})$ . Then
E. $(A_{\tau(B)-})\leq\beta$ . Consequently by (2.7)

(4.6) E. $(L_{\tau(B)-})\leq\gamma:=(1-\beta)^{-1}<\infty$ .

Fix an $x$ . Then

$g(x)$ $=$ $E^{x}[L_{\tau(B)-;}\tau(B)=\zeta]+E^{x}[L_{\zeta-;}\tau(B)<\zeta]$

$\leq$ $\gamma+E^{x}[L_{\tau(B)}g(X_{\tau(B)});\tau(B)<\zeta]$ .

Let $F=\{g<\infty\}$ and suppose that $x\in F$ . But $F$ is absorbing and so
$g(X_{t})<\infty a.s$ . $P^{x}$ on [0, $\zeta$ [. Hence $g\circ X_{\tau(B)}\leq M$ on $\{\tau(B)<\zeta\}a.s$ . $P^{x}$

since $g$ is finely continuous. Therefore $g(x)\leq\gamma+ME^{x}[L_{\tau(B)} ; \tau(B)<\zeta]$

on $F$ . Since $a.s.$
)

$L_{\tau(B)}\leq(1+c)L_{\tau(B)-}$ where $c=c(A)$ , we see that
$g\leq\gamma+M\gamma(1+c)$ on $F=\{g<\infty\}$ . $\blacksquare$

$(4.7)$ Remark. If one only assumes that $A\in\overline{K}_{\beta}^{*}$ with $\beta<1$ , then $g$

is only defined on $E\backslash N_{A}$ . It follows that $g$ is finely continuous on $E\backslash N_{A}$

and $g$ is bounded on $\{g<\infty\}\cap(E\backslash N_{A})$ . Under the hypotheses of (4.5),
$\{g=\infty\}=\{g>M\}$ where $M$ $=\sup\{g(x) : g(x)<\infty\}$ . Thus both
$\{g<\infty\}$ and $\{g=\infty\}$ are finely open. Therefore if $E$ cannot be written
as the disjoint union of two finely open nearly Borel sets one of which is
absorbing, in particular if $E$ is finely connected, then $g$ is either bounded
or identically infinite. This is the classical form of a gauge theorem.

(4.8) Corollary. Let $A\in A^{+}$ and defifine $B_{t}:=A_{t}^{c}+\sum_{0<s\leq t}(e^{\triangle A_{s}}-1)$
.

Then $B\in A^{+}$ . If $B\in K_{\beta}^{*}$ for some $\beta<1$ , then $g_{A}(x):=E^{x}(e^{A_{\zeta}})$ is

fifinely continuous and bounded on $\{g_{A}<\infty\}$ .
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Proof. Since
$\sum_{0<s\leq t}\triangle A_{s}<\infty$

on [0, $\zeta$ [ on $\Omega_{A}$ it is clear that B $\in A^{+}$

and has the same defining set as $A$ . Now (4.8) is evident because $e^{A_{t}}=$

$Exp(B_{t})$ . $\blacksquare$

Remark. If $ A=A^{+}-A^{-}\in$ $A$ and one defines $B_{t}^{\pm}:=A_{t}^{\pm c}+$

$\sum_{0<s\leq t}(e^{\triangle A_{s}^{\pm}}-1)$ , then $B_{t}:=B_{t}^{+}-B_{t}^{-}\in A$ and $e^{A_{t}}=Exp(B_{t}^{+})/Exp(B_{t}^{-})$ .

Therefore $g_{A}(x):=E^{x}(e^{A_{\zeta}})$ is nearly Borel, finely continuous and $\{g_{A}<$

$\infty\}$ is absorbing. Here $e^{A_{\zeta}}=e^{A_{\zeta}^{+}}e^{-A_{\zeta}^{-}}$ with $\infty\cdot 0=0$ as customary.
Suppose $A\in A^{+}$ is purely discontinuous $(A=A^{d})$ and all of its

jumps are totally inaccessible. In this $cxe$ the dual predictable projec-
tion $A^{p}$ of $A$ has an especially nice form which we now describe. Let

(4.9) $J:=\{(t, \omega) : X_{t-}(\omega)\neq X_{t}(\omega), X_{t-}(\omega)\in E\}$

be the set of totally inaccessible discontinuities of $X$ . Here $X_{t-}$ denotes
the left limit in the Ray topology. A L\’evy system $(N, H)$ for $X$ consists
of a kernel $N=N(x, dy)$ on $E$ with $N(x, \{x\})=0$ and a PCAF, $H$ ,
with empty exceptional set and bounded one potential such that if $ F\in$

$(\mathcal{E}^{n}\otimes \mathcal{E}^{n})$ with $F\geq 0$ and $Z=(Z_{t})$ with $Z_{t}\geq 0$ is predictable, then

(4.10) $E^{x}\sum_{s\in J}Z_{s}F(X_{s-}, X_{s})=E^{x}\int_{0}^{\infty}Z_{t}NF(X_{t})dH_{t}$

where $NF(x)=\int F(x, y)N(x, dy)$ . If $A\in A^{+}$ is purely discontinuous
with totally inaccessible jumps, then there exists such an $F$ vanishing
on the diagonal such that

(4.11)
$A_{t}=A_{t}^{F}=\sum_{s\in J,s\leq t}F(X_{s-}, X_{s})$

.

See \S 73 of [S88]. If $X$ is a special standard process and $X_{t-}^{0}$ is the left
limit in the original topology of $E$ , then $X_{t-}$ and $X_{t-}^{0}$ are indistinguish-
able on [0, $\zeta$ [ and so $X_{s-}$ may be replaced by $X_{s-}^{0}$ in (4.11) and $s$ is
automatically in $J$ when $X_{s-}(=X_{s-}^{0})\neq X_{s}$ , $ s<\zeta$ . See [S88, (47.10)].

Moreover if $A=A^{F}$ then

$(NF*H)_{t}:=\int_{0}^{t}NF(X_{s})dH_{s}$

is the dual optional projection of $A^{F}$ . Suppose $F$ is bounded. Since
$NF*H$ is continuous, (3.6) implies that $A^{F}\in K_{\beta}^{*}$ whenever $ NF*H\in$

$K_{\beta}^{*}$ . In particular if $NF*H\in K_{\beta}$ . The next proposition treats an
important special case. It is the case considered in [C02]. It is an
immediate consequence of (3.6), (3.10), (4.5) and (4.8).
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(4.12) Proposition. Let $A\in A^{+}$ have the form $A=A^{c}+A^{F}$ where
$A^{c}$ is continuous and $A^{F}$ is as in $(4\cdot 11)$ with $F$ bounded. If $A^{c}\in K_{\beta}^{*}$

and $NF*H\in K_{\gamma}^{*}$ with $\beta+\gamma<1$ , then $g$ is bounded on $\{g<\infty\}$ where

$g$ is defifined in $(4\cdot 2)$ . If $G=e^{F}-1$ and $NG*H\in K_{\gamma}^{*}$ with $\beta+\gamma<1$ ,

then $g_{A}$ is bounded on $\{g_{A}<\infty\}$ where $g_{A}$ is defifined (4-8).

\S 5. Additional Conditions for the Gauge to be Bounded

In this section we develop some conditions that are equivalent to the
boundedness of the gauge function. We follow a well-trodden path that
was originally broken by Chung and Rao [CR88] and explored further by
Chen and Song and Chen in their papers. The direct results using the
Stieltjes exponential appear to be new. In what follows $ A=A^{+}-A^{-}\in$

$A$ as in the beginning of section 4 and $L_{t}$ is defined in (4.1). The gauge
$g$ is defined in (4.2). We begin with the following proposition which is
the part of Lemma 9 in [CR88] and Lemma 7 in [C02] that carries over
to the present situation.

(5.1) Proposition. Suppose that $A^{+}\in K_{\beta}^{*}$ for $\beta<1$ with $ A_{\zeta}^{+}<\infty$

$a.s$ . and that $E.(A_{\zeta}^{-})$ is bounded. Let $\epsilon>0$ . Defifine

$\tau_{n}:=\inf\{t:A_{t}^{+}>n\epsilon\}$ , $n\geq 1$

where as usual the infifimum of the empty set is $+\infty$ . If the gauge $g$ is

bounded, then

$\lim_{n}\sup_{x}E^{x}[L_{\tau_{n} ^{;} }\tau_{n}<\zeta]=0$

Remark. If $A^{+}\in K_{\beta}$ , then E. $(A_{\zeta}^{+})$ is bounded according to (3.7) and

so $ A_{\zeta}^{+}<\infty$ a.s. in this case.

Proof. Since the proof is the same for all $\epsilon>0$ , we shall give it for $\epsilon=1$ ,
which is the only case used later. Let $K$ , $\nu$ , $\delta$ be as in the requirement
that $A^{+}\in K_{\beta}^{*}$ . Thus E. $[A_{\tau(B\cup K^{c})-}^{+}]\leq\beta$ when $B\subset K$ with $\nu(B)<\delta$ .

Since $ A_{\zeta}^{+}<\infty$ it follows that $\{\tau_{n}<\zeta\}\downarrow\phi$ . Here and in the remainder
of this section we omit the qualifier $‘‘ a.s.$

” where it is obviously required.
Therefore by Egorov’s theorem, since $ E^{x}(L_{\zeta})<\infty$ , $E^{x}[L_{\zeta}; \tau_{n}<\zeta]\downarrow 0$

almost uniformly on $K$ with respect to $\nu$ . Recall $\nu(K)<\infty$ . Hence
given $\epsilon>0$ there exists a closed set $D\subset K$ with $\nu(K\backslash D)<\delta$ and an
$N$ such that if $n\geq N$ , then

(5.2) $\sup_{x\in D}E^{x}[L_{\zeta;}\tau_{n}<\zeta]<\epsilon$
.
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Now $D^{c}=K^{c}\cup K\backslash D$ and $\tau(D^{c})=T(D)\wedge\zeta$ where $T(D)$ is the hitting
time of $D$ . But $A_{t}^{+}=A_{\zeta-}^{+}$ if $ t\geq\zeta$ and so $ E.(A_{T(D)-}^{+})=E.(A_{\tau(D^{c})-}^{+})\leq$

$\beta<1$ . Thus by (2.7)

(5.3) E. $[L_{T(D)-}^{+}]\leq(1-\beta)^{-1}<\infty$ .

Define $B_{t}=A_{t}^{+c}+\sum_{0<s\leq t}\log(1+\triangle A_{s}^{+})$ . Note that $e^{B_{t}}=L_{t}^{+}$ and so

$E^{x}[\exp(B_{T(D)-})]\leq(1-\beta)^{-1}$ . Since $A^{+}$ , and hence, $B$ has bounded
jumps, $\sup_{x}E^{x}[\exp(B_{T(D)})]<\infty$ . Consequently it follows ffom Corol-
lary 4.2 in [SSOO] that there exists $p>1$ with $\sup_{x}E^{x}[\exp(pB_{T(D)})]<$

$\infty$ . Finally $e^{pB_{t}}=[Exp(A_{t}^{+})]^{p}=(L_{t}^{+})^{p}$ and so

(5.4) $\sup_{x}E^{x}[(L_{T(D)}^{+})^{p}]=M^{J}<\infty$ .

Let $n$ $>\max(N, c(A^{+}))$ where $c(A^{+})$ is defined in the paragraph
above (4.5). Then

$E^{x}[L_{\zeta} ; \tau_{3n}<\zeta]=E^{x}[L_{\zeta} ; \tau_{n}\leq T(D), \tau_{3n}<\zeta]$

$+E^{x}[L_{\zeta}; T(D)<\tau_{n}, \tau_{3n}<\zeta]=I+II$ .

If $T(D)<\tau_{n}$ , then $T(D)+\tau_{n^{0}}\theta_{T(D)}\leq\tau_{3n}$ since $\sup_{s}\triangle A_{s}^{+}<n$ and
$\tau_{n}<\tau_{3n}$ on $\{\tau_{3n}<\zeta\}$ . Therefore writing $T_{D}=T(D)$ when convenient,

(5.5) $II$ $=$ $E^{x}[L_{\zeta}; T(D)<\tau_{n}<\tau_{3n}<\zeta]$

$\leq$ $E^{x}[L_{T(D)}L_{\zeta^{0}}\theta_{T(D);}T(D)+\tau_{n^{0}}\theta_{T(D)}<\zeta_{)}T(D)<\zeta]$

$=$ $E^{x}[L_{T(D)}E^{X(T_{D})}[L_{\zeta}; \tau_{n}<\zeta];T(D)<\zeta]$ .

Noting that $L_{\zeta}=L_{T(D)}L_{\zeta^{0}}\theta_{T(D)}$ even if $ T(D)\geq\zeta$ because $\zeta\circ\theta_{T(D)}=0$

in that case, and that $L_{T(D)}\leq L_{T(D)}^{+}$ one obtains ffom (5.4),

$I$ $\leq||g||E^{x}[L_{T(D)}^{+ }\leq T(D), ]\leq||g||E^{x}[(L_{T(D)}^{+})^{p}]^{1/p}P^{x}[\tau_{n}\leq T(D)]^{1/q}$

where $1/p+1/q=1$ . Moreover $\{\tau_{n}\leq T(D)\}\subset\{A_{T(D)}^{+}\geq n\}$ and so

$P^{x}[\tau_{n}\leq T(D)]\leq\frac{1}{n}[E^{x}[A_{T(D)-}^{+}]+c(A^{+})]\leq\frac{1}{n}[\beta+c(A^{+})]$ .

Consequently I approaches zero uniformly in $x$ as $n$ $\rightarrow\infty$ . On the
otherhand $X(T_{D})\in D$ on $\{T(D)<\zeta\}$ since $D$ is closed. Thus from
(5.2), (5.3) and (5.5)

$II$ $\leq\epsilon E^{x}[L_{T(D)}^{+}]\leq\epsilon(1-\beta)^{-1}[1+c(A^{+})]$ .
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Combining these estimates we find that

(5.6) $\lim_{n}\sup_{x}E^{x}[L_{\zeta;}\tau_{n}<\zeta]=0$ .

Next observe that $L_{\zeta}\geq(L_{\zeta}^{-})^{-1}\geq e^{-A_{\zeta}^{-}}$ . Therefore if $c=\sup_{x}E^{x}(A_{\zeta}^{-})$ ,

Jensen’s inequality implies that $E^{x}(L_{\zeta})\geq e^{-c}$ . Hence

$E^{x}[L_{\tau_{n}} ; \tau_{n}<(]\leq e^{c}E^{x}[L_{\tau_{n}}E^{X(\tau_{n})}(L_{\zeta});\tau_{n}<\zeta]=e^{c}E^{x}[L_{\zeta}; \tau_{n}<\zeta]$

and combining this with (5.6) completes the proof of Proposition 5.1 $\blacksquare$

We come now to the main result of this section. This should be
compared with Corollary 2.16 in [C02].

(5.7) Theorem. Let $A^{+}$ and $A^{-}$ satisfy the hypotheses of (5.1) and
suppose in addition that $A^{-}$ has bounded jumps. Then the following are
equivalent:

(i) $\sup_{x}E^{x}[L_{\zeta}]<\infty$ ;

(ii) $\sup_{x}E^{x}\int_{0}^{\zeta}L_{t-}dA_{t}^{+}<\infty$ ;

(ii) $\sup_{x}E^{x}\int_{0}^{\zeta}L_{t}dA_{t}^{+}<\infty$ ;
(iv) $\sup_{x}E^{x}[\sup_{t<\zeta}L_{t}]<\infty j$

Proof. Since $L_{t}=L_{t-}(1+\triangle A_{t}^{+})(1+\triangle A_{t}^{-})^{-1}\leq[1+c(A^{+})]L_{t-}$ and
$L_{t-}\leq[1+c(A^{-})]L_{t}$ , the equivalence of (ii) and (iii) is clear. Also
$dL_{t}^{+}=L_{t-}^{+}dA_{t}^{+}$ and so

$\int_{[0,t[}L_{s-}dA_{s}^{+}=\int_{[0,t[}(L_{s-}^{-})^{-1}dL_{s}^{+}\geq(L_{t-}^{-})^{-1}[L_{t-}^{+}-1]\geq[L_{t-}-1]$

for $ t\leq\zeta$ . Taking $ t=\zeta$ , (ii) implies (i). Also taking the supremum over
$t\in[0,$ $\zeta[$ ,

(5.8) $\sup_{t<\zeta}L_{t}=\sup_{t<\zeta}L_{t-}\leq 1+\int_{[0,\zeta[}L_{t-}dA_{t}^{+}$ ,

and so (ii) implies (iv). Clearly (iv) implies (i). Thus it suffices to show
that (i) implies (ii) to complete the proof of (5.7). Therefore suppose
that (i) holds. Using (5.1) with $\epsilon=1$ choose $N>c(A^{+})$ such that

$\lambda$

$:=\sup_{x}E^{x}[L_{\tau_{N} ^{;} }\tau_{N}<\zeta]<1$ .

Define $\tau_{N}^{0}=0$ and $\tau_{N}^{k+1}=\tau_{N}^{k}+\tau_{N_{\mathcal{T}_{N}}^{0\theta k}}$ for $k\geq 0$ . Then using the

strong Markov property, $\sup_{x}E^{x}[L_{\tau_{N}^{k}} ; \tau_{N}^{k}<\zeta]\leq\lambda^{k}$ . We claim that
$\tau_{kN}\leq\tau_{N}^{k}$ and hence $\lim_{k}\tau_{N}^{k}\geq\zeta$ . This is obvious when $k=1$ . Assume
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that it holds for a fixed $k\geq 0$ . Writing $A^{+}(t)=A_{t}^{+}$ for typographical
simplicity we have

$\tau_{N}^{k+1}=\tau_{N}^{k}+\sup\{t:A^{+}(\tau_{N}^{k}+t)-A^{+}(\tau_{N}^{k})>N\}$ .

If $\tau_{kN}\leq\tau_{N}^{k}$ , $A^{+}(\tau_{N}^{k})\geq kN$ and so $\tau_{N}^{k+1}\geq\tau_{(k+1)N}$ . This establishes the
claim. Now

$E^{x}\int_{0}^{\zeta}L_{t-}dA_{t}^{+}=\sum_{k\geq 0}E^{x}\int_{[\tau_{N}^{k},\tau_{N}^{k+1}[}L_{t-}dA_{t}^{+};$
$\tau_{N}^{k}<\zeta]$

$=\sum_{k\geq 0}E^{x}[L_{\tau_{N}^{k}}E^{X(\tau_{N}^{k})}\int_{[0,\tau_{N[}}L_{t-}dA_{t}^{+}; \tau_{N}^{k}<\zeta]$ .

But

$E^{x}\int_{[0,\tau_{N[}}L_{t-}dA_{t}^{+}\leq E^{x}\int_{[0,\tau_{N[}}L_{t-}^{+}dA_{t}^{+}$

$=E^{x}[L_{\tau_{N-}}^{+}-1]\leq E^{x}e^{A^{+}(\tau_{N}-)}\leq e^{N}$ ,

and combining these estimates we obtain

$E^{x}\int_{0}^{\zeta}L_{t-}dA_{t}^{+}\leq e^{N}\sum_{k\geq 0}E^{x}[L_{\tau_{N}^{k }}\tau_{N}^{k}<\zeta]\leq e^{N}(1-\lambda)^{-1}$ .

Hence (i) implies (ii) establishing (5.7). $\blacksquare$

$(5.9)$ Remark. Suppose in addition to the hypotheses in (5.7), that $E$

can not be written as the disjoint union of two finely open sets one of
which is absorbing as in (4.7). Then the condition (5.7-i) is equivalent to
$ E^{x}(L_{\zeta})<\infty$ for at least one $x\in E$ . But in view of (5.8), the remaining
conditions in (5.7) are equivalent to the corresponding condition with
$\sup_{x}$ replaced by for at least one $x\in E$ .

We next give a sufficient condition that the gauge $g$ is bounded.
The integral condition in the following result should be compared to the
conditions in Theorem 5.7.

(5.10) Theorem. Let $A^{+}\in K_{\beta}$ with $\beta<1$ and suppose that $\zeta<\infty$

$a.s$ . If $\sup_{x}E^{x}\int_{0}^{\zeta}L_{t}dt<\infty$ , then $g$ is bounded.

In the course of the proof we shall need the following lemma.

(5.11) Lemma. Let $A\in K_{\beta}$ with $\beta<\infty$ . Then $\lim_{t\downarrow 0}\sup_{x}E^{x}(A_{t})\leq\beta$ .

If $\beta<1$ , then there exist $ C<\infty$ and $\lambda>0$ such that $\sup_{x}E^{x}[L_{t}]\leq$

$Ce^{t\lambda}$ .
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Proof. Proposition 2.3 in [C02] asserts that $\lim\sup_{x}E^{x}\int_{0}^{\infty}e^{-\alpha t}dA_{t}\leq$

$\alpha\rightarrow\infty$

$\beta$ . The proof in [C02] works perfectly well for right continuous $A$ . If
$\eta>0$ ,

$E^{x}\int_{0}^{\infty}e^{-\alpha t}dA_{t}=\alpha E^{x}\int_{0}^{\infty}e^{-\alpha t}A_{t}dt$

$=\int_{0}^{\infty}e^{-t}E^{x}(A_{t/\alpha})dt\geq E^{x}[A_{\eta/\alpha}]e^{-\eta}$ .

This implies that $\lim_{t\rightarrow 0}\sup_{x}E^{x}(A_{t})\leq\beta e^{\eta}$ and letting $\eta$ fall to zero yields

the first assertion in (5.11). If $\beta<1$ , then it follows from (2.7) that there
exists $t>0$ such that $\sup_{x}E^{x}(L_{t})<\infty$ . Since $Q_{t}f(x):=E^{x}[f(X_{t})L_{t}]$

defines a semigroup, it is well-known and easily checked that this implies
the final assertion in (5.11). $\blacksquare$

We now turn to the proof of (5.10). By (5.11), there exist $ C<\infty$

and $\lambda>0$ such that $E^{x}[L_{t}^{+}]\leq Ce^{\lambda t}$ . Since $\zeta<\infty$ ,

$g(x)$ $=$
$\sum_{n\geq 0}E^{x}[L_{\zeta}; n <\zeta\leq n+1]$

$=$
$\sum_{n\geq 0}E^{x}[L_{n}E^{X(n)}[L_{\zeta}; \zeta\leq 1]; ; n<\zeta]$

$\leq$

$\sum_{n\geq 0}E^{x}[L_{n}E^{X(n)}[L_{1}^{+}]; ; n <\zeta]\leq Ce^{\lambda}\sum_{n\geq 0}E^{x}[L_{n}; n<\zeta]$
.

If $n\leq t<n+1$ , then writing $c=Ce^{\lambda}$

$E^{x}[L_{n+1} ; n+1<\zeta]\leq E^{x}[L_{n+1} ; t<\zeta]$

$=E^{x}[L_{t}E^{X(t)}[L_{n+1-t}];t<\zeta]\leq cE^{x}[L_{t}; t<\zeta]$ .

Consequently

$\sum_{n\geq 0}E^{x}[L_{n}; n<\zeta]\leq 1+cE^{x}\int_{0}^{\zeta}L_{t}dt$ ,

and hence $g$ is bounded. $\blacksquare$

Remarks. The proof of (5.10) is just the argument on page 831 of
[CR88]. Under the hypotheses in the first sentence of (5.10), the proof

shows that for $x$ fixed, $ E^{x}\int_{0}^{\zeta}L_{t}dt<\infty$ implies that $ g(x)<\infty$ . Note

that in (5.10) it is not assumed that $E.(A_{\zeta}^{-})$ is bounded. If one assumes

in addition that $E.(\zeta)$ and E. $(A_{\zeta}^{-})$ are bounded, then the proof of The-

orem 6 in [CR88] may be modified to show that $\sup_{x}E^{x}\int_{0}^{\zeta}L_{t-}dt<\infty$
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is necessary for $g$ to be bounded. This requires showing first that
$\lim E^{x}[L_{n};n<\zeta]=0$ uniformly in $x$ , which may be proved by an

$ n\rightarrow\infty$

argument that is similar to, but simpler than, the proof of (5.1). We
leave the details to the interested reader.
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in line with It\^o Calculus
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Abstract.

This note discusses two topics; one is the notion of the multiple
Wiener integral and the other is the L\’evy-It\^o decomposition of a L\’evy

process.
Both have been taken up by Professor K. It\^o showing the sig-

nificance in stochastic analysis. The extensive development of the
stochastic analysis at present largely depends on these discoveries by
him.

It seems to be a good time to remind his profound ideas and to

discuss some of future directions in probability theory.

AMS Subject Classification: $60H40$

\S 1. Introduction

The White Noise Analysis has extensively developed in the last quar-
ter of a century and now it is the time to be in search of further directions
of research which will be still in line with the It\^o’s original contribution
toward stochastic analysis.

Two directions are proposed in this line.

(1) Analysis of white noise functionals parameterized by a contour
or a surface, namely some kinds of random fields.
Those fields are assumed to live in the Hilbert space $(L^{2})$ of
white noise functionals (or of Brownian functionals). In order
to analyze those functionals we shall appeal to the variational
calculus for the random fields, and there is requested to intro-
duce a suitable class of generalized white noise functionals. A
good tool from the stochastic analysis for this purpose is the
direct sum decomposition of the Hilbert space $(L^{2})$ in terms of

Received May 2, 2003.
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the subspaces of multiple Wiener integrals (see [2]) or of those
involving homogeneous chaos.
We then come to introduce classes of generalized white noise
functionals, where we should note that our generalization can
be done for each subspace given by the decomposition men-
tioned above. Representations of those functionals can be given
by the so-called $S$-transform which looks like an infinite dimen-
sional analogue of the Laplace transform.
To discuss a variational calculus for random fields in question
some more probabilistic interpretation is necessary; however
the decomposition of the basic Hilbert space is the milestone
of the further study of random fields formed by white noise
functionals.

(2) Reduction of random complex systems.
Given a random, evolutional complex system, we first try to
obtain the innovation of the system. Under some reasonable
conditions, we may assume that the innovation comes ffom a
L\’evy process. Some concrete results on this topic can be seen
in [5].
Then, we are naturally led to the decomposition of the L\’evy

process established by It\^o (see [1]). The decomposition itself
was obtained earlier, by taking a relaxed view of rigor. When
nonlinear functionals of innovation are considered, finer and
rigorous results on the decomposition are necessary, so that
the results in [1] are quite helpful. This fact can be seen as
soon as we come to the analysis of nonlinear functionals of
Poisson process (which is an elemental process) or of compound
Poisson noise. It is noted that interesting results are obtained
by viewing dissimilarity to the Gaussian case.

\S 2. Topic (1)

2.1. Decomposition of the white noise space

Let $\mu$ be the standard white noise measure on a space $E^{*}$ of gener-
alized functions on $\mathbb{R}$ , and let $L^{2}(E^{*}, \mu)=(L^{2})$ be the space of white
noise functionals. One of the basic tools for the analysis on $(L^{2})$ is the
direct sum decomposition due to It\^o and Wiener:

$(L^{2})=\oplus_{r\iota\geq 0}H_{n}$ ,

where $H_{n}$ is the space of multiple Wiener integrals or homogeneous chaos
of degree $n$ .
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Another tool is the so-called $S$-transform (see e.g. I. Kubo and S.
Takenaka [8] or [4, Chapt. 2] $)$ defined by

$(S\varphi)(\xi)=\exp[-\frac{1}{2}||\xi||^{2}]\int_{E^{*}}\exp[\langle x, \xi\rangle]\varphi(x)d\mu(x)$ ,

where $\varphi$ is an $(L^{2})$ -functional. The $S$-transform gives a nice representa-
tion of white noise functionals. Indeed, the transform plays fundamental
roles in two ways; one is that a visualized representation of $\varphi$ is given,
and the other is that it helps to introduce generalized white noise func-
tionals which are very important in advanced white noise analysis.

2.2. The isomorphism

$H_{n}\cong L^{2}(\mathbb{R}^{n})^{\wedge}$

(up to $\sqrt{n^{I}}.$), where $L^{2}(\mathbb{R}^{n})^{\wedge}$ denotes the subspace of $L^{2}(\mathbb{R}^{n})$ containing
only symmetric functions. This isomorphism extends to

$H_{n}^{-}\cong H^{-\frac{n+1}{2}}(\mathbb{R}^{n})^{\wedge}$ ,

where $H^{m}(\mathbb{R}^{n})^{\wedge}$ is the subspace of the Sobolev space of order $m$ involv-
ing symmetric functions. Define a space $(L^{2})^{-}$ of generalized functionals
by

$(L^{2})^{-}=\oplus c_{n}H_{n}^{-}$ ,

where $c_{n}$ is a certain sequence of positive numbers such that $c_{n}\rightarrow 0$ .

For details, we refer to the literature $[4, Chapt.3.A]$ . It is noted that
the choice of the $\{c_{n}\}$ depends on the singularity of functionals to be
discussed.

Another space $(S)^{*}$ of generalized functional is defined by a Gel’fand
triple

$(S)\subset(L^{2})\subset(S)^{*}$ ,

which is an infinite dimensional analogue of the triple to define the
Schwartz distributions. The Rigorous definition and the properties of
$(S)^{*}$ are found in [4, Chapt.4]. Also see [9, Chapt.4].

The spaces $(L^{2})^{-}$ and $(S)^{*}$ of generalized white noise functionals
are basic concept of the white noise analysis; indeed, the choice of these
spaces is one of the advantages of our analysis. By using these spaces
$(L^{2})^{-}$ and $(S)^{*}$ , we can carry on the analysis of white noise functionals
in sufficiently large class and find significant applications in other fields
like quantum dynamics. Actually, to be surprising enough, we can find
an interesting application to the non-commutative geometry (e.g. [10]).
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\S 3. Topic (2)

3.1. Elemental processes involved in innovation

We shall discuss the analysis of stochastic processes and random
fields. The approach is done in line with

$Reduction\rightarrow Synthesis\rightarrow Analysis$ .

The step of the reduction is realized by taking the innovation for the
random complex phenomena in question. Then, we are given a (Gauss-

ian) white noise $and/or$ a Poisson noise, both of which are elemental
generalized stochastic processes with independent values at every time
point, as is illustrated just below. The two cases have much similarity
in the analysis on $L^{2}$-spaces; however dissimilarity is also interesting.
Hence, they are discussed separately, except those properties in com-
mon.

In the multi-dimensional parameter case, say $\mathbb{R}^{d}$-parameter in gen-
eral, innovations should still be generalized stochastic processes having
independent values at every point in $\mathbb{R}^{d}$ .

To fix the idea, we first take the one-dimensional parameter case.
Then, under mild, and in fact reasonable assumptions, we may assume
that innovation is the time derivative of some L\’evy process with station-
ary independent increments. Let it be denoted by $L(t)$ . We may assume
it has no non-random part. Then, the L\’evy-It\^o decomposition gives us
an expression of the form

$L(t)=cB(t)+X(t)$ ,

where $c$ is a constant, $B(t)$ is a Brownian motion, and $X(t)$ is a com-
pound Poisson process which consists of independent Poisson processes
with different heights of jumps (see [1]). Thus, we can conclude that a
Brownian motion and each Poisson process being a component of the
$X(t)$ are all elemental L\’evy processes.

After the reduction follows the step of synthesis which means the
construction of the functionals of (Gaussian) white noise and Poisson
noises of different heights of jumps. It is, formally speaking, easy to
form a general space of functionals of the innovation, however we need
profound background. Actually rigorous interpretation can be seen e.g.
in [6].

The collection of $S$-transforms of $(L^{2})$ functionals $\{\varphi\}$ forms a Re-
producing Kernel Hilbert space $F$ which is isomorphic to $(L^{2})$ . In short,
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a $\varphi$ has a representation in terms of a functional (indeed, non-random
functional) of a smooth function $\xi$ . We can therefore appeal to the clas-
sical theory of functional analysis in order to carry on the calculus on
$(L^{2})$ .

3.2. Random fields

Coming to random fields, a certain class of them is introduced. Let
$C$ be a class of manifolds $C$ in $\mathbb{R}^{d}$ :

$C=$ { $C$ ; convex, $C^{\infty}$-manifold, $\approx S^{d-1}$ },

$where\approx means$ a diffeomorphism.
The topology is introduced to $C$ by using the Euclidean distance.

Given a random field $X(C)=X(C, x)$ , $x\in E^{*}(\mu)$ , indexed by $ C\in$

C. The $S$-transform is now of the form

$(SX(C))(\xi)=\exp[-\frac{1}{2}||\xi||^{2}]\int_{E^{*}}\exp[\langle x, \xi\rangle]X(C, x)d\mu(x)$ ,

and it defines a $U$ functional

$(SX(C))(\xi)=U(C, \xi)$ , $\xi\in E$ .

Suppose that $X(C)$ is a linear functional of a multiple Wiener inte-
gral of degree $n$ . Then, the associated $U$-functional is expressed in the
form

$U(C, \xi)=\int F(C, u)\xi(u)^{n\otimes}du^{n}$ .

Thus, we are ready to apply the classical theory of calculus of vari-
ations to the functional $U(C, \xi)$ of variable $C$ (see [5, Chapt.6]).

We then come to the case of a Poisson noise.
The case of functionals of a single Poisson process $P(t)$ , we introduce

the $U$-transform following the paper by K. Sait\^o and A. Tsoi [14]. It is
given by the formula

$(U\varphi)(\xi)=C_{P}(\xi)^{-1}\int\exp[i<x, \xi>]\varphi(x)d\mu_{P}(x)$ ,

where $\mu_{P}$ is the probability distribution of Poisson noise $\dot{P}$ , and where
$C_{P}(\xi)$ is the characteristic functional of $\dot{P}$ . Namely,

$C_{P}(\xi)=\exp[\lambda\int(e^{i\xi(u)}-1)du]$ .
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For simplicity, the intensity $\lambda$ is taken to be 1 in this subsection.

Fact. Under the $U$-transform, a discrete chaos (in Wiener’s sense)
$\varphi$ of degree $n$ has a representation of the form

$\int\cdots\int F(u)\Pi_{1}^{n}(e^{i\xi(u_{j})}-1)du^{n}$ ,

where $u=(u_{1}, \cdots, u_{n})$ . (For proof see [14].)

Generalized Poisson noise functionals can be introduced by using
this representation. We can further play a similar game for the analysis
of them to the Gaussian case.

Generalization to the multi-dimensional parameter case is just
straightforward. Also, a random field $X(C)$ of functional of Poisson
noise is defined, and its variation can be discussed in a similar manner
to the Gaussian case.

3.3. Stochastic variational equation

First note that, as a generalization of the infinitesimal equation,
there is given a stochastic variational equation for a random field $X(C)$ :

$\delta X(C)=\Phi(X(C’), C^{/}<C, Y(s), s\in C, C, \delta C)$ ,

where $\{Y(s), s\in C\}$ is the innovation, and where $C’<C$ denotes that
$C^{/}$ lies inside of $C$ .

As was explained before, we apply $S$-transform in the Gaussian case,
and we are given a variational equation for $U$-functional. When we come
back to a random function by using $S^{-1}$ , a difficulty arises. This can be
illustrated as follows.

To fix the idea, we consider a Gaussian random field $X(C)$ which has
a causal representation in terms of white noise. Namely, it is a linear
functional of $x$ expressed in the form:

$X(C)=\int_{(C)}F(C, u)x(u)du^{d}$ ,

where $F(C, u)$ is smooth in $(C, u)$ , and where (C) denotes the domain
enclosed by the ovaloid $C$ . Then, $U$-functional can be expressed as

$U(C, \xi)=\int_{(C)}F(C, u)\xi(u)du^{d}$ .
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The variation of $U$ is easily computed to have

$\delta U(C, \xi)=\int_{C}F(C, s)\xi(s)\delta n(s)ds+\int_{(C)}\delta F(C, u)\xi(u)du^{d}$ ,

where the $\delta F$ is the variation of $F$ in the variable $C$ which is defined in
the classical sense, and where $ds$ is the surface element over $C$ .

In what follows, the representation of $X(C)$ in the above form is
assumed to be canonical. Namely, the sigma-field $B_{C}(X)$ generated by
$X(C’)$ with $C’$ inside of $C$ is equal to the sigma-field $B_{C}(x)$ generated
by $x(u)$ , $u$ being inside of $C$ for every $C$ .

Theorem. The variation $\delta X(C)$ is given by

$\delta X(C)=\int_{C}F(C, s)x(s)\delta n(s)ds+\int_{(C)}\delta F(C, u)x(u)du^{d}$ .

The innovation is obtained from the first term of the right side.

Proof. This result may be thought of as an easy consequence of the
definition of $\delta X(C, x)$ , but not quite. A rigorous proof needs, in addition
to the functional analysis, the following considerations on the restriction
of the parameter and the choice of $C$ . Hence, what follow in Subsection
3.4 are to be included in the proof. For details, see [5].

3.4. Other variations

Restriction of the parameter.

i) Gaussian case.
Given an $\mathbb{R}^{d}$ parameter white noise $(E^{*}, \mu)$ . For $f\in L^{2}(\mathbb{R}^{d})$ the

stochastic bilinear form $\langle x, f\rangle$ , $x\in E^{*}$ , is defined which is subject to a
Gaussian distribution $N(0, ||f||^{2})$ . Take $f$ to be an indicator function
such that

$f_{t}(u)=\chi_{I(t)}(u)$ , $t=(t_{1}, t_{2}, \cdots, t_{d})$ , $I(t)=\Pi_{j}[0, t_{j}]$ .

Then, $ X(I(t))=\langle x, f_{t}\rangle$ is a Brownian sheet, that is,

$E[X(I(t))]=0$ , $E[X(I(t))\cdot X(I(s))]=\Pi_{j}(t_{j}\wedge s_{j})$ .

Set $t_{d}=1$ . Then, we are given an $\mathbb{R}^{d-1}$ -dimensional parameter
Brownian sheet. It is now ready to have an $\mathbb{R}^{d-1}$ -dimensional param-
eter white noise by applying partial derivatives. Similarly, much lower
dimensional parameter Brownian sheet and white noise can be derived.

The idea is the same for the restriction of the parameter to a hyper-
surface $C$ which is a smooth ovaloid.
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Proposition. The restriction of the parameter of white noise can
be done with the help of Brownian sheet.

$ii)$ Poisson case
For the Poisson noise the same trick can be applied as is easily

shown. Just remind that the characteristic functional $C_{P}(\xi)$ of a Poisson
noise with $\mathbb{R}^{d}$ parameter is

$C_{P}(\xi)=\exp[\lambda\int(e^{i\xi(t)}-1)dt^{d}]$ ,

where $\lambda>0$ is the intensity. The associated measure on $E^{*}$ is denoted
by $\mu_{p}$ .

Take $\xi$ to be $I(t)$ as above, and form a stochastic bilinear form
$\langle x, f_{t}\rangle$ , $x\in E^{*}(\mu_{p})$ , which is to be a Poisson sheet. A restriction of
the parameter to a hyperplane defines a lower dimensional parameter
Poisson noise. Also a restriction to a hypersurface is given.

As in the Gaussian case we can state a proposition. Since it is
similar, so that we omit.

It is noted that observation of on a Poisson sheet, we can see in-
variance of Poisson noise under some transformations of the parameter
space. This will be reported later.

Choice of the $C$ .
One may ask why the parameter $C$ for a random field should be

taken to be a smooth ovaloid (convex, closed, without boundary). For
one thing, the deformation of $C$ will be done by members of a known
transformation group acting on $\mathbb{R}^{d}$ . For another reason, a white noise
parameterized by a point in $C$ should be defined. Indeed, as soon as the
variational calculus is applied we are naturally led to define an innovation
or white noise with parameter set $C$ , as we have seen in Subsection 3.3.
For this purpose a Gel’fand triple of functions spaces on $C$ should be
defined. Our assumptions for $C$ guarantees the existence of a Gel’fand
triple to be requested.

With the considerations mentioned above, we can deal with vari-
ational equations, not only for a Gaussian type field reviewed in this
section, but also more general non-Gaussian fields and even in the case
where $X(C)$ is a nonlinear functional of Poisson noise.

The above considerations are more significant if functionals of Pois-
son noise are discussed. For example we take a causal and linear func-
tional of a homogeneous chaos, sample function of which is denoted by
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$x$ . It is expressed in the form

$X(C)=\int_{(C)}F(C, u)x(u)du^{d}$ .

Note that, the canonical property (which is an easy generalization of
the notion on canonical property discussed in $[3, II [8]])$ of the above rep-
resentation follows easily under the assumption that the kernel $F(C, u)$

never vanishes. Hence, the innovation can immediately be obtained.
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Integral Representation of Linear Functionals on
Vector Lattices and its Application to $BV$ Functions

on Wiener Space

Masanori Hino

Abstract.

We consider vector lattices $D$ generalizing quasi-regular Dirichlet
spaces and give a characterization for bounded linear functionals on
$D$ to have a representation by an integral with respect to smooth
measures. Applications to $BV$ functions on Wiener space are also
discussed.

\S 1. Introduction

Let $X$ be a compact Hausdorff space and $C(X)$ the Banach space
of all continuous functions on $X$ with supremum norm. The Riesz rep-
resentation theorem says that every bounded linear operator on $C(X)$

is realized by an integral with respect to a certain finite signed measure
on $X$ . As a variant of this fact, Fukushima [7] proved that, for any
quasi-regular Dirichlet form $(\mathcal{E}, F)$ and for $u$ $\in F$ , $\mathcal{E}(u, \cdot)$ is represented
as an integral by a smooth signed measure if and only if

$|\mathcal{E}(u, v)|\leq C_{k}||v||_{L^{\infty}}$ for all $v\in F_{b,F_{k}}$ , $k\in \mathbb{N}$

holds for some nest $\{F_{k}\}_{k\in N}$ and some constants $C_{k}$ , $k\in \mathbb{N}$ . As its ap-
plications, he gave a characterization for additive functionals of function
type for $(\mathcal{E}, F)$ to be semimartingales, and also proved the smoothness
of the measures associated with $BV$ functions ([7, 8, 9]).

In this paper, we show a corresponding result in the ffamework of
vector lattices generalizing quasi-regular Dirichlet spaces. The proof is
similar to that in [7] but based on a purely analytical argument, unlike
[7] where probabilistic methods are used together. Typical examples
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which lie in this ffamework are first order Sobolev spaces derived ffom a
gradient operator and ffactional order Sobolev spaces by a real interpo-
lation method with differentiability index between 0 and 1. Using such
results, we can improve the smoothness of the measure associated with
$BV$ functions on Wiener space, discussed in $[8, 9]$ .

We can find several studies closely related to this article regarding
the Riesz representation theorem, e.g., in $[22, 14]$ . Their ffameworks are
based on Markovian semigroups and the function spaces are derived ffom
their generators, which seems to be suitable for complex interpolation
spaces. Ours is based on the lattice property instead and fits for real
interpolation spaces.

The organization of this paper is as follows. In Section 2, we give a
general ffamework and preparatory lemmas, which are slight modifica-
tions of what have been developed already in the case of Dirichlet spaces
or in the framework of the nonlinear potential theory. We also give some
examples there. In Section 3, the representation theorems are proved.
In Section 4, we discuss some applications to $BV$ functions on Wiener
space.

\S 2. Framework and main results

Let $X$ be a topological space and $\lambda$ a Borel measure on $X$ . Let $L^{0}(X)$

be the space of all $\lambda$-equivalence classes of real-valued Borel measurable
functions on $X$ . We will adopt a standard notation to describe function
spaces and their norms, such as $L^{p}(X)$ (or simply $L^{p}$ ) and $||$ . $||_{L^{p}}$ .

We suppose that a subspace $D$ of $L^{0}(X)$ equipped with norm $||$ . $||_{D}$

satisfies the following.

(A1) $(D, ||\cdot ||_{D})$ is a separable and uniformly convex Banach space.
(A2) (Consistency condition) If a sequence in $D$ converges to 0 in $D$ ,

then its certain subsequence converges to 0 $\lambda- a.e$ .

Since $D$ is assumed to be uniformly convex, it is reflexive and the Banach-
Saks property holds: every bounded sequence in $D$ has a subsequence
whose arithmetic means converge strongly in $D$ (see [16, 19, 13] for the
proof). The following lemma is proved by a standard argument.

Lemma 2.1. Let $\{f_{n}\}_{n\in N}$ be a sequence bounded in D. Then, there
exists a subsequence $\{f_{n_{k}}\}_{k\in N}$ such that $f_{n_{k}}$ converges to some $f$ weakly

in $D$ and the arithmetic means $(1/k)\sum_{j=1}^{k}f_{n_{j}}$ converge to $f$ strongly in

D. Moreover, $||f||_{D}\leq\lim\inf_{k\rightarrow\infty}||f_{n_{k}}||_{D}$ . If furthermore $f_{n}$ converges
to some $g\lambda- a.e.$ , then it holds that $g\in D$ and $f_{n}$ weakly converges to $g$

in D.
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Proof. By virtue of the Banach-Alaoglu theorem and the reflexivity
of $D$ , $\{f_{n}\}_{n\in N}$ is weakly relatively compact in D. Using the Banach-Saks
property together, we can prove the first claim. The second one follows
ffom the Hahn-Banach theorem. The last one is a consequence of the
consistency condition (A2). Q.E.D.

We further assume the following.

(A3) (Normal contraction property) For every $f\in D,\check{f}:=0\vee f\wedge 1$

belongs to $D$ and $||\check{f}||_{D}\leq||f||_{D}$ .

(A4) For every $f$ in $D_{b}:=D\cap L^{\infty}$ , $f^{2}$ belongs to D. Moreover,
$\sup\{||f^{2}||_{D}|||f||_{D}+||f||_{L^{\infty}}\leq 1\}$ is finite.

The condition (A4) is equivalent to the following:

(A4)’ for every $f$ and $g$ in $D_{b}$ , $fg$ belongs to D. Moreover, $\sup\{||fg||_{D}|$

$||f||_{D}+||f||_{L^{\infty}}\leq 1$ , $||g||_{D}+||g||_{L^{\infty}}\leq 1\}$ is finite.

Indeed, it is clear that (A4)’ implies (A4). To show the converse im-
plication, use the identity $fg=((f+g)/2)^{2}-((f-g)/2)^{2}$ and the
subadditivity of the norm $||$ . $||_{D}$ .

We introduce a sufficient condition for (A3) and (A4).

Lemma 2.2. Under (A1) and (A2), the following condition (C)
implies (A3) and (A4):

(C) when $\chi$ is a bounded and infifinitely differentiate function on $\mathbb{R}$

with $\chi(0)=0$ and $||\chi^{/}||_{\infty}\leq c$ for some $c>0$ , then $\chi\circ v\in D$

and $||\chi ov||_{D}\leq c||v||_{D}$ for every $v\in D$ .

Proof. To show (A3), apply Lemma 2.1 with a sequence $\{\chi_{n}ov\}_{n\in N}$

so that $||\chi_{n}||_{\infty}\leq 1$ and $||\chi_{n}^{J}||_{\infty}\leq 1$ for every $n$ , and $\chi_{n}$ converges
pointwise to $\chi(x)=0\vee x\wedge 1$ . (A4) is similarly proved. Q.E.D.

For $f\in L^{0}(X)$ , we set $f_{+}(z)=f(z)\vee 0$ and $f_{-}(z)=-(f(z)\wedge 0)$ .

Lemma 2.3. Let $f\in D$ . Then $f_{+}\in D$ and $||f_{+}||_{D}\leq||f||_{D}$ .

Proof. Define $f_{n}:=0\vee f\wedge n=n(0\vee(f/n)\wedge 1)$ , $n\in \mathbb{N}$ . Then
$||f_{n}||_{D}\leq n||f/n||D=||f||_{D}$ by (A3) and $f_{n}\rightarrow f_{+}$ pointwise. Lemma 2.1
finishes the proof. Q.E.D.

Lemma 2.4. For every $f\in D$ , $(-a)\vee f\wedge a\rightarrow 0$ weakly in $D$ as
$a\downarrow 0$ and $(-a)\vee f\wedge a\rightarrow f$ weakly in $D$ as $ a\rightarrow\infty$ .

Proof. It is enough to notice that

$||(-a)\vee f\wedge a||_{D}=||0\vee f\wedge a-0\vee(-f)\wedge a||_{D}\leq 2||f||_{D}$ ,

$(-a)\vee f\wedge a\rightarrow 0$ pointwise as $a\downarrow 0$ ,

$(-a)\vee f\wedge a\rightarrow f$ pointwise as $ a\rightarrow\infty$
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and to use Lemma 2.1. Q.E.D.

For a measurable set $A$ , we let $D_{A}:=$ { $f\in D|f=0\lambda- a.e$ . on $X\backslash A$ }
and $D_{b,A}:=D_{A}\cap L^{\infty}$ . A sequence $\{F_{k}\}_{k\in N}$ of increasing sets in $X$ is
called a nest if each $F_{k}$ is closed and $\bigcup_{k=1}^{\infty}D_{F_{k}}$ is dense in D. A nest
$\{F_{k}\}_{k\in N}$ is called $(\lambda-)regular$ if, for all $k$ , any open set $O$ with $\lambda(O\cap F_{k})=$

$0$ satisfies $O\subset X\backslash F_{k}$ . A subset $N$ of $X$ is called exceptional if there is a
nest $\{F_{k}\}_{k\in N}$ such that $N\subset\bigcap_{k=1}^{\infty}(X\backslash F_{k})$ . When $A$ is a subset of $X$ , we
say that a statement depending on $z\in A$ holds quasi everywhere ($q.e$ . in
abbreviation) if it does for every $z\in A\backslash N$ for a certain exceptional set
$N$ . For a nest $\{F_{k}\}_{k\in N}$ , we denote by $C(\{F_{k}\})$ the set of all functions $f$

on $X$ such that $f$ is continuous on each $F_{k}$ . A function $f$ on $X$ is said to
be quasi-continuous if there is a nest $\{F_{k}\}_{k\in N}$ such that $f\in C(\{F_{k}\})$ .
We say that a Borel measure $\mu$ on $X$ is smooth if it does not charge
any exceptional Borel sets and there exists a nest $\{F_{k}\}_{k\in N}$ such that
$\mu(F_{k})<\infty$ for all $k$ . A set function $iJ$ on $X$ which is given by $iJ$ $=\nu_{1}-\iota/_{2}$

for some smooth measures $\nu_{1}$ and $\nu_{2}$ with finite total mass is called a

fifinite signed smooth measure. A signed smooth measure $\iota/$ with attached
nest $\{F_{k}\}_{k\in N}$ is a map ffom $\mathcal{R}:=$ { $A\subset X|$ $A$ is a Borel set of some $F_{k}$ }
to $\mathbb{R}$ such that $\iota/$ is represented as $\iota/(A)=\iota/_{1}(A)-l/_{2}(A)$ , $A\in \mathcal{R}$ , for
some smooth Borel measure $\iota/_{1}$ and $\nu_{2}$ satisfying $\iota/_{i}(F_{k})<\infty$ for each
$i=1,2$ and $k\in \mathbb{N}$ . When we want to emphasize the dependency of $D$ ,

we write $D$-nest, $D$-smooth, and so on.
We further assume the following quasi-regularity conditions.

(QR1) There exists a nest consisting of compact sets.
(QR2) There exists a dense subset of $D$ whose elements have quasi-

continuous $\lambda$-modifications.
(QR3) There exists a countable subset $\{\varphi_{n}\}_{n\in N}$ in $D$ and an ex-

ceptional set $N$ such that each $\varphi_{n}$ has a quasi-continuous $\lambda-$

modification $\tilde{\varphi}_{n}$ and $\{\tilde{\varphi}_{n}\}_{n\in N}$ separates the points of $X\backslash N$ .

Every quasi-regular symmetric Dirichlet form $(\mathcal{E}, F)$ satisfies all con-
ditions $(A1)-(A4)$ and $(QR1)-(QR3)$ (and (C)) when letting $D=F$ and
$||f||_{D}=(\mathcal{E}(f, f)+||f||_{L^{2}}^{2})^{1/2}$ . We give other examples in the last part of
this section.

Lemma 2.5. There exist some $\rho\in D$ and some countable subset
$C$ $=\{h_{n}\}_{n\in N}$ of $D_{b}$ such that $0\leq\rho\leq 1\lambda- a.e.$ , $h_{n}\geq 0\lambda- a.e$ . for all $n$ ,
$C$ $-C:=\{h-\hat{h}|h,\hat{h}\in C\}$ is dense in $D$ , and for each $n\in \mathbb{N}$ , $\rho\geq c_{n}h_{n}$

$\lambda- a.e$ . for some $c_{n}\in(0, \infty)$ .

Proof Let $\{f_{m}\}_{m\in N}$ be a countable dense subset of D. Denote by
$C$ $=\{h_{r\iota}\}_{n\in N}$ the set of all arithmetic means of finite number of functions
in $\{(f_{m})_{+}\wedge M, (f_{m})_{-}\wedge M\}_{m\in N}$ , $M\in N$ . Then $C$ $-C$ is dense in $D$ by
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Lemma 2.4 and the Banach-Saks property. Define

$\rho=\sum_{n=1}^{\infty}\frac{h_{n}}{2^{n}(||h_{n}||_{D}+||h_{n}||_{L^{\infty}}+1)}$ .

Then $\rho$ and Csatisfy the conditions in the claim. Q.E.D.

We will fix $\rho$ and Csatisfying the statement in the lemma above. Note
that we can always take $\rho\equiv 1$ if $1\in D$ .

Take a strictly increasing and right-continuous function $\xi$ : $[0, \infty)\rightarrow$

$[0, \infty)$ with $\xi(0)=0$ . For an open set $O\subset X$ , we define

(1) $cap_{\xi}(O)=\inf${ $\xi(||f||_{D})|f\in D$ and $f\geq\rho\lambda- a.e$ . on $O$ }.

For any subset $A$ of $X$ , we define the capacity of $A$ by

$cap_{\xi}(A)=\inf${ $cap_{\xi}(O)|O\supset A$ , $O$ : open}.

It should be noted that $cap_{\xi}(A)\leq\xi(||\rho||_{D})<\infty$ for every $A\subset X$ .

The following lemma is proved in the same way as in [10].

Lemma 2.6. For every open set $O$ , there exists a unique function
$e_{O}$ in $D$ attaining the infifimum in (1). Moreover, $0\leq e_{O}\leq 1\lambda- a.e$ .

Proof. The uniqueness follows from the uniform convexity of D.
The existence is deduced by the Banach-Saks property and (A2). The
last claim is a consequence of (A3). Q.E.D.

We will discuss some basic properties of the capacity.

Lemma 2.7. Let $\{O_{n}\}_{n\in N}$ be a sequence of open sets such that
$cap_{\xi}(O_{n})\rightarrow 0$ . Then, there exists a sequence $\{n_{k}\}\uparrow\infty$ such that
$e_{O_{n_{k}}}\rightarrow 0\lambda- a.e$ .

Proof. Since $||e_{O_{n}}||_{D}\rightarrow 0$ , the claim is clear from (A2). Q.E.D.

Lemma 2.8. If $cap_{\xi}(A)=0$ , then $A\cap\{\rho>0\}\dot{u}$ a $\lambda$ -null set.

Proof. Take a decreasing open sets $\{O_{n}\}_{n\in N}$ such that $A\subset O_{n}$ and
$cap_{\xi}(O_{n})\rightarrow 0$ . Since $e_{O_{n}}\geq\rho\lambda- a.e$ . on $\bigcap_{k=1}^{\infty}O_{k}$ , we have $\rho=0\lambda- a.e$ . on
$\bigcap_{k=1}^{\infty}O_{k}$ by virtue of Lemma 2.7. This implies the assertion. Q.E.D.

Lemma 2.9. Let $\{A_{k}\}_{k\in N}$ be a sequence of increasing closed sets.
Then the following are equivalent.

(i) $\{A_{k}\}_{k\in N}$ is a nest.
(ii) $\lim_{k\rightarrow\infty}cap_{\xi}(X\backslash A_{k})=0$ .
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Proof. Suppose (i) holds. Take a sequence $\{f_{k}\}_{k\in N}$ in $D$ such that
$f_{k}\in D_{A_{k}}$ and $ f_{k}\rightarrow\rho$ in D. Since $\rho-f_{k}=\rho\lambda- a.e$ . on $X\backslash A_{k}$ , we have
$cap_{\xi}(X\backslash A_{k})\leq\xi(||\rho-f_{k}||_{D})\rightarrow 0$ as $ k\rightarrow\infty$ .

Next, suppose (ii) holds. It suffices to prove that each $h\in C$ can
be approximated in $D$ by functions in $\bigcup_{k}D_{A_{k}}$ . Since $\rho\geq ch\lambda- a.e$ . for
some $c>0$ , it holds that $e_{X\backslash A_{k}}\geq ch\lambda- a.e$ . on $X\backslash A_{k}$ for each $k$ . Let
$f_{k}=(h-c^{-1}e_{X\backslash A_{k}})_{+}\in D_{A_{k}}$ . By Lemma 2.7, there exists a sequence
$\{k^{J}\}$ diverging to infinity such that $e_{X\backslash A_{k’}}\rightarrow 0\lambda- a.e$ . Therefore, $f_{k’}\rightarrow h$

$\lambda- a.e$ . as $ k^{/}\rightarrow\infty$ . On the other hand, $||f_{k}||_{D}\leq||h||_{D}+c^{-1}||e_{X\backslash A_{k}}||_{D}$ ,

which is bounded in $k$ . From Lemma 2.1, we can take arithmetic means
of some subsequence of $\{f_{k’}\}$ , which belong to $\bigcup_{k}D_{A_{k}}$ , so that they
converge to $h$ in D. Q.E.D.

As is seen ffom this lemma, any choices of $C$ , $\rho$ and $\xi$ are consistent with
the notion of nest. From now on, we treat only the case $\xi(t)=t$ and
write cap in place of $cap_{\xi}$ .

Lemma 2.10. For any sequence of subsets $\{A_{k}\}_{k\in N}$ in $X$ , it follows
that cap $(\bigcup_{k=1}^{\infty}A_{k})\leq\sum_{k=1}^{\infty}cap(A_{k})$ .

Proof. When $O_{1},$
$\ldots$ , $O_{k}$ are open sets, it is easy to see the inequal-

ity cap $(\bigcup_{j=1}^{k}O_{j})\leq\sum_{j=1}^{k}cap(O_{j})$ . Indeed, since $\sum_{j=1}^{k}e_{O_{j}}\geq\rho\lambda- a.e$ .

on $\bigcup_{j=1}^{k}O_{j}$ , we have

cap $(\bigcup_{j=1}^{k}O_{j})\leq||\sum_{j=1}^{k}e_{O_{j}}||_{D}\leq\sum_{j=1}^{k}||e_{O_{j}}||_{D}=\sum_{j=1}^{k}cap(O_{j})$ .

Now, let $\in>0$ . Take an open set $O_{k}$ for each $k\in \mathbb{N}$ such that $O_{k}\supset A_{k}$

and $cap(O_{k})<cap(A_{k})+\in 2^{-k}$ . Let $U_{k}=\bigcup_{j=1}^{k}O_{j}$ . Since $||e_{U_{k}}||_{D}\leq$

$||\rho||_{D}<\infty$ , Lemma 2.1 assures the existence of a subsequence $\{e_{U_{k’}}\}$

of $\{e_{U_{k}}\}$ and $e\in D$ such that $e_{U_{k’}}$ converges to $e$ weakly in $D$ and the
arithmetic means of $\{e_{U_{k’}}\}$ converge to $e$ in D. Since $e\geq\rho\lambda- a.e$ . on
$\bigcup_{k=1}^{\infty}O_{k}$ by using (A2), we have

cap $(\bigcup_{k=1}^{\infty}A_{k})$ $\leq$ cap $(\bigcup_{k=1}^{\infty}O_{k})\leq||e||_{D}\leq\lim_{k\rightarrow},\inf_{\infty}||e_{U_{k’}}||_{D}$

$=$ $\lim_{k\rightarrow\infty}cap(U_{k})\leq\lim_{k\rightarrow\infty}\sum_{j=1}^{k}cap(O_{j})\leq\in+\sum_{k=1}^{\infty}cap(A_{k})$ .

Since $\in$ is arbitrary, we obtain the claim. Q.E.D.

The following series of lemmas are now proved in a standard way as in
the case of quasi-regular Dirichlet spaces; see e.g. $[11, 15]$ for the proof.
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Lemma 2.11. Suppose that $f\in D$ has a quasi-continuous $\lambda- modififi-$

cation $\overline{f}$ . Then, we have $cap(\{\tilde{f}>\lambda\})\leq\lambda^{-1}||f||_{D}$ for each $\lambda>0$ .

Lemma 2.12. (i) When $\{f_{n}\}_{n\in N}$ is a sequence of quasi-conti-
nuous functions, there exists a nest $\{F_{k}\}_{k\in N}$ such that $ f_{n}\in$

$C(\{F_{k}\})$ for every $n$ .
(ii) If $f_{n}\in D$ has a quasi-continuous $\lambda- modifification$ $\tilde{f}_{n}$ and con-

verges to $f$ in $D$ as $ n\rightarrow\infty$ , then $f$ has a quasi-continuous
$\lambda- modifification$ $\tilde{f}$ and there exists a sequence $\{n\iota\}\uparrow\infty$ and $a$

nest $\{F_{k}\}_{k\in N}$ such that every $\tilde{f}_{n}$ belongs to $C(\{F_{k}\})$ and $\tilde{f}_{n_{l}}$

converges to $\overline{f}$ uniformly on each $F_{k}$ . In particular, $\tilde{f}_{n_{l}}$ con-
verges to $\tilde{f}q.e$ .

(iii) Every $f\in D$ has a quasi-continuous $\lambda- modifification$
$\tilde{f}$ .

Lemma 2.13. There exists a regular nest $\{K_{k}\}_{k\in N}$ such that $K_{k}$

is a separable and metrizable compact space with respect to the relative
topology for any $k$ .

Lemma 2.14. Suppose that $\{F_{k}\}_{k\in N}$ is a regular nest and $ f\in$

$C(\{F_{k}\})$ . If $f\geq 0\lambda- a.e$ . on an open set $O$ , then $f\geq 0$ on $O\cap\bigcup_{k}F_{k}$ .

Lemma 2.15. If $u_{1}$ and $u_{2}$ are quasi-continuous functions and $u_{1}=$

$u_{2}\lambda- a.e.$ , then $u_{1}=u_{2}q.e$ .

In what follows, $\tilde{f}$ always means a quasi-continuous $\lambda$-modification
of a function $f$ , a particular version of which is sometimes chosen to suit
the context.

We can also prove the next two propositions as in [10] (see also [21,
Section 2]) by using Lemma 3.1 below together, though they are not
used later in this article.

Proposition 2.16. For any subset $A$ of $X$ , there exists a unique
element $e_{A}$ in the set { $f\in D|\tilde{f}\geq\tilde{\rho}q.e$ . on $A$} minimizing the norm
$||f||_{D}$ . Moreover, $0\leq e_{A}\leq 1\lambda- a.e$ . and cap({/ $=||e_{A}||_{D}$ .

Proposition 2.17. cap is a Choquet capacity.

We remark that the assumption (A4) is not necessary so far. The
following are our main theorems, which are stated in [7] in the case of
quasi-regular Dirichlet spaces.

Theorem 2.18. Under $(A1)-(A4)$ and $(QR1)-(QR3)$ , for a bound-

ed linear functional $T$ on $D$ , the next two conditions are equivalent.

(i) There exist a nest $\{F_{k}\}_{k\in N}$ and positive constants $\{C_{k}\}_{k\in N}$

such that for each $k\in \mathbb{N}$ ,

$|T(v)|\leq C_{k}||v||_{L^{\infty}(X)}$ for all $v\in D_{b,F_{k}}$ .
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(ii) There exists a signed smooth measure $\nu$ with some attached
nest $\{F_{k}^{/}\}_{k\in N}$ such that

$T(v)=\int_{X}\tilde{v}(z)\nu(dz)$ for $dl$ $v\in k=1\cup\infty D_{b,F_{k}’}$ .

Moreover, the measure $\nu$ is uniquely determined.

Theorem 2.19. Under $(A1)-(A4)$ and $(QR1)-(QR3)$ , for a bound-
ed linear functional $T$ on $D$ and a positive constant $C$ , the next two
conditions are equivalent.

(i) $|T(v)|\leq C||v||_{L^{\infty}(X)}$ for all $v\in D_{b}$ .

(ii) There exists $a$ fifinite signed smooth measure $\nu$ on $X$ such that
the total variation of $\nu$ is dominated by $C$ and

$T(v)=\int_{X}\tilde{v}(z)\nu(dz)$ for all $v\in D_{b}$ .

In addition, $\nu$ is uniquely determined. Moreover, if (C) in Lemma 2. 2
holds, we may replace $D_{b}$ in (i) by $\mathcal{L}$ that satisfifies the following:

$(\mathcal{L})$
$\mathcal{L}$ is a $D$ -dense subspace of $D_{b}$ such that, for $each\in>0$ , there
is a $C^{\infty}$ function $\chi$ on $\mathbb{R}$ with $|\chi|\leq 1+\in$ , $0\leq\chi^{/}\leq 1$ , $\chi(x)=x$

on [-1, 1], and $\chi\circ v\in \mathcal{L}$ for every $v\in \mathcal{L}$ .

Before ending this section, we give a few examples of $D$ other than
quasi-regular Dirichlet spaces. Suppose that $X$ is a separable Banach
space and $H$ a separable Hilbert space which is continuously and densely
imbedded to $X$ . The inner product and the norm of $H$ will be denoted
by $\langle\cdot, \cdot\rangle_{H}$ and $||\cdot||_{H}$ , respectively. The topological dual $X^{*}$ of $X$ is
identified with a subspace of $H$ . Let $\lambda$ be a finite Borel measure on $X$ .
When $K$ is a separable Hilbert space, we denote by $L^{p}(X\rightarrow K)$ the $L^{p}$

space consisting of $K$-valued functions on the measure space $(X, \lambda)$ .

Define function spaces $FC_{b}^{1}$ and $(FC_{b}^{1})_{X^{*}}$ on $X$ by

$FC_{b}^{1}$ $=$ $\{u:X\rightarrow \mathbb{R}|$ $\ell_{1}u(,z)\ldots=forsom$

’
$\ell_{m}\in X^{*}f(\ell_{1}(z)em\in \mathbb{N}’,\cdots f’\in C_{b}^{1}(\mathbb{R}^{m}) \ell_{m}(z)),\}$ ,

$(FC_{b}^{1})x*$ $=$ $\{G:X\rightarrow X^{*}|$ $\ell_{1}g_{1}G(,’ z.\cdot).\cdot.\cdot=,’\sum_{\ell_{m}\in g_{m}\in}j=1g_{j}(mz)\ell_{j}X^{*}fors’ oFC_{b}^{1}$,

me

$m\in \mathbb{N}\}$ ,

where $C_{b}^{1}(\mathbb{R}^{m})$ is the set of all bounded functions $f$ on $\mathbb{R}^{m}$ that have
bounded and continuous first-order derivatives. Let $u\in FC_{b}^{1}$ and $\ell\in$

$X^{*}\subset H\subset X$ . We define $\partial_{\ell}u$ by $\partial_{\ell}u(z)=\lim_{\epsilon\rightarrow 0}(u(z+\in\ell)-u(z))/\in$ .
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The $H$-derivative $\nabla u$ is a unique map from $X$ to $H$ that satisfies the
relation

$\langle\nabla u(z), \ell\rangle_{H}=\partial_{\ell}u(z)$ , $\ell\in X^{*}\subset H$ .

We assume that, if $u\in FC_{b}^{1}$ and $v\in FC_{b}^{1}$ coincide on a measurable
set $A$ , then $\nabla u=\nabla v\lambda- a.e$ . on $A$ . Let $p\geq 1$ . We also assume that
$(\nabla, FC_{b}^{1})$ is closable as a map from $L^{p}$ to $L^{p}(X\rightarrow H)$ . We denote by
$W^{1,p}$ the domain of the closure of $(\nabla, FC_{b}^{1})$ and extend the domain of
$\nabla$ to $W^{1,p}$ naturally. The space $W^{1,p}$ is a separable Banach space with
norm $||f||_{W^{1,p}}=||f||_{L^{p}}+||\nabla f||_{L^{p}(X\rightarrow H)}$ .

Proposition 2.20. Suppose also $p>1$ . Then, when we regard $W^{1,p}$

as $D$ , the conditions $(A1)-(A4)$ , $(QR1)-(QR3)$ , and (C) are satisfified.

Proof. Prom the results of [21], (A1) and (QR1) hold. Since $X$

is separable, $X^{*}$ is also separable with respect to the weak* topology
(see Corollary after Proposition 8 in Chapter $FV$ of [5] for the proof).
When $\{\ell_{n}\}_{n\in N}$ is a countable dense set of $X^{*}$ , $\varphi_{n}(\cdot)=\arctan\ell_{n}(\cdot)$ and
$ N=\emptyset$ assure the validity of (QR3). The remaining conditions are easily
checked. Q.E.D.

In order to give another example, we introduce real interpolation
spaces. Let $B_{0}$ and $B_{1}$ be separable Banach spaces. We assume that
$B_{0}$ is continuously imbedded to $B_{1}$ for simplicity. For parameters $ q\in$

$(1, \infty)$ and $\theta\in(0,1)$ , we define the space $(B_{0}, B_{1})_{\theta,q}$ by all elements
$f\in B_{1}$ such that there exist some $B_{j}$ -valued measurable functions $u_{j}(t)$

on $[0, \infty)$ $(j=0,1)$ satisfying

(2) $u_{0}(t)+u_{1}(t)=fa.e$ . $t$ , $\int_{0}^{\infty}(t^{j-\theta}||u_{j}(t)||_{B_{j}})^{q}\frac{dt}{t}<\infty(j=0,1)$ .

We set the norm of $f\in(B_{0}, B_{1})_{\theta,q}$ by

$||f||_{(B_{0},B_{1})_{\theta,q}}=\inf_{u_{0},u_{1}}[\max_{j=0,1}(\int_{0}^{\infty}(t^{j-\theta}||u_{j}(t)||_{B_{j}})^{q}\frac{dt}{t})^{1/q}]$ ,

where the infimum is taken over all pairs $u_{0}$ and $u_{1}$ satisfying (2). Rom
the general theory of real interpolation, $(B_{0}, B_{1})_{\theta,q}$ is a Banach space, we
have continuous imbeddings $B_{0}L\rightarrow(B_{0}, B_{1})_{\theta,q}\simeq\rightarrow B_{1}$ , and $B_{0}$ is dense
in $(B_{0}, B_{1})_{\theta,q}$ . Keeping the notation in the previous example, we have
the following proposition.

Proposition 2.21. Let $p\in(1, \infty)$ , $q\in(1, \infty)$ , and $\theta\in(0,1)$ . Then
$D:=(W^{1,p}, L^{p})_{\theta,q}$ satisfifies $(A1)-(A4)$ , $(QR1)-(QR3)$ and (C).
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Proof. In general, we can prove that $(B_{0}, B_{1})_{\theta,q}$ is uniformly convex
if $B_{0}$ or $B_{1}$ is, in the same way as Proposition $V.I$ of [3]. Therefore, $D$ is
uniformly convex. The separability, (QR1) and (QR2) come from those
of $W^{1,p}$ . (QR3) is proved in the same way as the case of $W^{1,p}$ . (A2)
is clearly true. We will prove (C). Let $\chi$ be as in (C) in Lemma 2.2.
Let $f\in D$ and take $u_{0}$ and $u_{1}$ satisfying (2). Set $v_{0}(t)=\chi\circ u_{0}(t)$ and
$v_{1}(t)=\chi\circ f-\chi\circ u_{0}(t)$ . Then $v_{0}(t)+v_{1}(t)=\chi\circ f$ and it is easy to
see that $||v_{0}(t)||_{W^{1,p}}\leq c||u_{0}(t)||_{W^{1,p}}$ and $||v_{1}(t)||_{L^{p}}\leq c||u_{1}(t)||_{L^{p}}$ . This
implies that $\chi\circ f\in D$ and $||\chi\circ f||_{D}\leq c||f||_{D}$ . Q.E.D.

{?}3. Proof of Theorems 2.18 and 2.19

First, we will prove that (ii) implies (i) in Theorem 2.18. We take
$F_{k}=F_{k}^{/}$ and $ C_{k}=|\nu|(F_{k})<\infty$ . Let $v\in D_{b,F_{k}}$ and $M$ $=||v||_{L^{\infty}(X)}$ .

We can take a quasi-continuous $\lambda$-modification $\tilde{v}$ so that $|\tilde{v}|\leq M$ every-
where. Then $|T(v)|\leq M|\nu|(F_{k})=C_{k}M$ . Therefore, (i) holds.

Next, we will prove that (i) implies (ii) in Theorem 2.18. Take a

nest $\{E_{k}^{(1)}\}_{k\in N}$ so that $\tilde{\rho}\in C(\{E_{k}^{(1)}\})$ . Define $E_{k}^{(2)}=E_{k}^{(1)}\cap\{\tilde{\rho}\geq 1/k\}$ .

Lemma 3.1. $\{E_{k}^{(2)}\}_{k\in N}$ is a nest.

Proof. Clearly, $\{E_{k}^{(2)}\}_{k\in N}$ is a sequence of increasing closed sets.
Define $\rho_{k}=\rho\wedge(1/k)$ , $k\in \mathbb{N}$ . Then $\rho_{k}\rightarrow 0$ weakly in $D$ by Lemma 2.4.
Take a sequence $\{k_{j}\}\uparrow\infty$ so that $\hat{\rho}_{m}:=(1/m)\sum_{j=1}^{m}\rho_{k_{j}}$ converges to

0 in $D$ as $ m\rightarrow\infty$ . Since $\hat{\rho}_{m}+e_{X\backslash E_{k_{m}}^{(1)}}\geq\rho\lambda- a.e$ . on $X\backslash E_{k_{m}}^{(2)}$ , we

have $cap(X\backslash E_{k_{m}}^{(2)})\leq||\hat{\rho}_{m}||_{D}+||e_{X\backslash E_{k_{m}}^{(1)}}||_{D}\rightarrow 0$ as $ m\rightarrow\infty$ . Therefore,

$\{E_{k}^{(2)}\}_{k\in N}$ is a nest. Q.E.D.

Define $E_{k}^{(3)}=F_{k}\cap K_{k}\cap E_{k}^{(2)}$ , $k\in \mathbb{N}$ , where $K_{k}$ is what appeared in

Lemma 2.13. Then $\{E_{k}^{(3)}\}_{k\in N}$ is a regular nest consisting of separable
and metrizable compact sets. Given $k\in \mathbb{N}$ , let $\{U_{k,n}\}_{n\in N}$ be a countable

open basis of $E_{k}^{(3)}$ . The totality of every union of finite elements in
$\{U_{k,n}\}_{n\in N}$ will be denoted by $\{V_{k,n}\}_{n\in N}$ . Take a countable family $\mathcal{O}$ of
open sets in $X$ such that for every $k\in \mathbb{N}$ , $n\in \mathbb{N}$ and $\in>0$ , some $O\in \mathcal{O}$

satisfies that $O\supset V_{k,n}$ and cap(O) $<cap(V_{k,n})+\in$ .
Recall the condition (QR3) and set $S$ $=\{(-M)\vee\tilde{\varphi}_{n}\wedge M|n\in$

$\mathbb{N}$ , $M\in \mathbb{N}\}$ . The functions of $S$ separate the points of $X\backslash N$ . Fix a
countable subset $V$ of $D$ such that $\{f\in D|||f||_{L\infty(X)}\leq M\}$ is a dense

set of $\{f\in D|||f||_{L\infty(X)}\leq M\}$ for each $M\in \mathbb{N}$ . Take a nest $\{\hat{F}_{k}\}_{k\in N}$ so

that $\hat{F}_{k}\subset E_{k}^{(3)}$ for each $k$ , $N\subset\bigcap_{k\in N}(X\backslash \hat{F}_{k})$ and the quasi-continuous
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$\lambda$-modifications of all elements in $S\cup D\cup\{e_{O}|O\in \mathcal{O}\}$ belong to
$C(\{\hat{F}_{k}\})$ . Denote by $A$ the algebra generated by $S\cup\{1\wedge M\tilde{\rho}|M \in \mathbb{N}\}$ .

Note that all functions in $A$ and $\tilde{\rho}$ belong to $C(\{\hat{F}_{k}\})$ . From the Stone-

Weierstrass theorem, $\{f|_{\hat{F}_{k}}|f\in A\}$ is dense in $C(\hat{F}_{k})$ with uniform
topology for any $k$ .

Lemma 3.2. There exist a nest $\{F_{k}^{/}\}_{k\in N}$ and functions $\{\psi_{n}\}_{n\in N}$ in
$\bigcup_{k}D_{\hat{F}_{k}}$ satisfying the following:

(i) $F_{k}’\subset\hat{F}_{k}$ for all $k$ ;

(ii) the quasi-continuous $\lambda- modifification$
$\tilde{\psi}_{n}$ belongs to $C(\{F_{k}^{/}\})$ for

all $n$ ;

(iii) $0\leq\psi_{n}\leq 1\lambda- a.e$ . on $X$ and $\tilde{\psi}_{n}=1$ on $F_{n}^{/}$ for all $n$ .

Proof. Take a sequence $\{\eta_{n}\}_{n\in N}\subset\bigcup_{k}D_{\hat{F}_{k}}$ such that $||\eta_{n}-\rho||_{D}<$

$1/(n2^{n+1})$ , $n\in \mathbb{N}$ . By Lemma 2.11, there exists an open set $G_{n}$ so
that $G_{n}\supset\{|\tilde{\eta}_{n}-\tilde{\rho}|>1/(2n)\}$ and $cap(G_{n})<2^{-n}$ for each $n$ . Take

a nest $\{E_{k}\}_{k\in N}$ such that $E_{k}\subset\hat{F}_{k}$ and $\{\overline{\eta}_{n}\}_{n\in N}\subset C(\{E_{k}\})$ . Then
$\overline{\eta}_{n}\geq 1/(2n)$ on $E_{n}\backslash G_{n}$ since $\tilde{\rho}\geq 1/n$ on $E_{n}$ . Define $F_{k}^{J}=E_{k}\backslash \bigcup_{n=k}^{\infty}G_{n}$

and $\psi_{n}=0\vee 2n\eta_{n}\wedge 1$ . Then $\psi_{n}\in\bigcup_{k}D_{\hat{F}_{k}},\overline{\psi}_{n}=1$ on $F_{n}’$ , $\{F_{k}^{J}\}_{k\in N}$

is a sequence of increasing closed sets, and by Lemma 2.10, we have
$cap(X\backslash F_{k}’)\leq cap(X\backslash E_{k})+\sum_{n=k}^{\infty}cap(G_{n})\rightarrow 0$ as $ k\rightarrow\infty$ . Q.E.D.

Now, fix $n\in \mathbb{N}$ and take $m\in \mathbb{N}$ so that $\psi_{n}\in D_{\hat{F}_{m}}$ . Define $T_{n}$ : $D_{b}\rightarrow$

$\mathbb{R}$ by $T_{n}(f)=T(\psi_{n}f)$ . Since $\psi_{n}f\in D_{b,\hat{F}_{m}}\subset D_{b,F_{m}}$ , the statement (i)

of Theorem 2.18 implies $|T_{n}(f)|\leq C_{m}||\psi_{n}f||_{L^{\infty}(X)}\leq C_{m}||f||_{L^{\infty}(X)}$ .

For an arbitrary $f\in C(\hat{F}_{m})$ , we can take $\{f_{j}\}_{j\in N}\subset A$ such that
$\lim_{j\rightarrow\infty}||f_{j}-f||_{C(\hat{F}_{m})}=0$ . Then,

$|T_{n}(f_{i})-T_{n}(f_{j})|\leq C_{m}||\psi_{n}(f_{i}-f_{j})||_{L^{\infty}(X)}\leq C_{m}||f_{i}-f_{j}||_{L^{\infty}(\hat{F}_{m})}\rightarrow 0$

as $ i\geq j\rightarrow\infty$ . The limit of $\{T_{n}(f_{j})\}_{j\in N}$ , denoted by $\hat{T}_{n}(f)$ , satisfies
$|\hat{T}_{n}(f)|\leq C_{m}||f||_{C(\hat{F}_{m})}$ . Therefore, $\hat{T}_{n}$ is a bounded linear functional on
$C(\hat{F}_{m})$ . On account of the Riesz representation theorem, there exists an

associated finite signed measure $\nu_{n}$ on $\hat{F}_{m}$ such that $\hat{T}_{n}(f)=\int_{\hat{F}_{m}}fd\nu_{n}$

for every $f\in C(\hat{F}_{m})$ . We extend $\nu_{n}$ to a measure on $X$ by letting
$\nu_{n}(A):=\nu_{n}(A\cap\hat{F}_{m})$ .

Lemma 3.3. The measure $\nu_{n}$ charges no exceptional sets.

Proof. Since the measure $|\nu_{n}|$ restricted on $\hat{F}_{m}$ is regular, it is

enough to prove that $|\nu_{n}|(K)=0$ for any compact set $K\subset\hat{F}_{m}$ of null
capacity. Take such $K$ . Then we can take a sequence $\{O_{j}\}_{j\in N}$ from $\mathcal{O}$
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so that $K\subset O_{j}$ for all $j$ and $\lim_{j\rightarrow\infty}cap(O_{j})=0$ . Indeed, for each $j$ ,

take an open set $O$ such that $K\subset O$ and cap(O) $<1/j$ . Since $K$ is
compact, there is a set $V$ in $\{V_{k,m}\}_{k\in N}$ such that $K\subset V\subset O$ . Choose
$O_{j}\in \mathcal{O}$ so that $V\subset O_{j}$ and cap(Oj)\leq cap(V)+l/j.

Let $f_{j}:=e_{O_{j}}$ . Since $\{\hat{F}_{k}\}$ is a regular nest, Lemma 2.14 implies

that $\tilde{f}_{j}=1$ on $K\subset O_{j}\cap\hat{F}_{m}$ . We may also assume that $0\leq\overline{f}_{j}\leq 1$

everywhere. Since $\lim_{j\rightarrow\infty}||f_{j}||_{D}=0$ , we can suppose $f_{j}\rightarrow 0\lambda- a.e$ . as
$ j\rightarrow\infty$ by taking a subsequence if necessary. Since $\{\tilde{f_{j}}\}_{j\in N}$ is bounded

in $L^{2}(|\nu_{n}|)$ , the arithmetic means $\{\hat{f}_{j}\}_{j\in N}$ of a further subsequence of
$\{\tilde{f_{j}}\}_{j\in N}$ converge strongly in $L^{2}(|\nu_{n}|)$ . Take a sequence $\{j_{l}\}\uparrow\infty$ such

that $\hat{f}_{j_{1}}$ converges $|\nu_{n}|- a.e$ . as $l$
$\rightarrow\infty$ . Define $f(z)=\lim\inf_{l\rightarrow\infty}\hat{f}_{j_{l}}(z)$ .

Then $0\leq f\leq 1$ on $X$ , $f=1$ on $K$ , and $f=0\lambda- a.e$ . by the way of
construction.

Given $h\in A$ , we have

(3) $\int_{\hat{F}_{m}}\hat{f}_{j_{I}}hd\nu_{n}=\hat{T}_{n}(\hat{f}_{j_{l}}h|_{\hat{F}_{m}})=T_{n}(\hat{f}_{j_{\iota}}h)=T(\psi_{n}\hat{f}_{j_{l}}h)$ .

When $l$ tends to $\infty$ , the left-hand side of (3) converges to $\int_{\hat{F}_{m}}fhd\nu_{n}$ by

the dominated convergence theorem. On the other hand, $\{\psi_{n}\hat{f}_{j_{l}}h\}_{l\in N}$

is bounded in $D$ by (A4)’. Since they converge to 0 $\lambda- a.e.$ , they also
converge weakly to 0 in $D$ by Lemma 2.1. Therefore, the right-hand
side of (3) converges to 0 as $l$

$\rightarrow\infty$ . Namely, $\int_{\hat{F}_{m}}fhd\nu_{n}=0$ . Since

$\{h|_{\hat{F}_{m}}|h\in A\}$ is dense in $C(\hat{F}_{m})$ , we conclude that $fd\nu_{n}=0$ , therefore,
$|\nu_{n}|(K)=0$ . Q.E.D.

Lemma 3.4. For all $f\in D_{b}$ , $T_{n}(f)=\int_{X}\tilde{f}d\nu_{n}$ .

Proof. We can take a sequence $\{f_{j}\}_{j\in N}$ from $D$ so that $\{f_{j}\}_{j\in N}$

is bounded in $L^{\infty}(X)$ , $f_{j}$ converges to $f$ in $D$ and $\tilde{f}_{j}$ converges to $\tilde{f}$

outside some Borel exceptional set $N_{0}$ . Note that $\overline{f}_{j}|_{\hat{F}_{m}}\in C(\hat{F}_{m})$ . Then,
$T_{n}(f_{j})\rightarrow T_{n}(f)$ as $ j\rightarrow\infty$ , while

$T_{n}(f_{j})$ $=$ $\hat{T}_{n}(\tilde{f}_{j}|_{\hat{F}_{m}})=\int_{X}\tilde{f}_{j}d\nu_{n}=\int_{X\backslash N_{0}}\tilde{f}_{j}d\nu_{n}$

$ j\rightarrow\infty\rightarrow$

$\int_{X\backslash N_{0}}\tilde{f}d\nu_{n}=\int_{X}\tilde{f}d\nu_{n}$

by means of the dominated convergence theorem. Q.E.D.

For any $k$ , $l$ $\in \mathbb{N}$ , we have $\tilde{\psi}_{k}d\nu_{l}=\tilde{\psi}_{l}d\nu_{k}$ . Indeed, For $f\in A$ ,

$\int_{X}f\tilde{\psi}_{k}d\nu_{l}=T_{l}(f\psi_{k})=T(\psi_{l}f\psi_{k})=T_{k}(f\psi_{l})=\int_{X}f\tilde{\psi}_{l}d\nu_{k}$ .
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Therefore, we can define a signed smooth measure $\nu$ by $\nu=\nu_{n}$ on $F_{n}^{/}$

$(n=1,2, \ldots)$ , which is well-defined by the fact that $\overline{\psi}_{n}=1$ on $F_{n}’$ . Then
for any $f\in D_{b,F_{k}’}$ , we have $\psi_{k}f=f$ and

$ T(f)=T(\psi_{k}f)=T_{k}(f)=\int_{X}\tilde{f}d\nu_{k}=\int_{X}\overline{f}d\nu$ .

Thus, (ii) holds.
In order to prove the uniqueness of $\nu$ , it is enough to show that $\nu\equiv 0$

if $\int_{X}\tilde{v}d\nu=0$ for all $v\in\bigcup_{k}D_{b,F_{k}}$ , where $\{F_{k}\}_{k\in N}$ is a nest attached
with $\nu$ . Following the same procedure as in the proof of $(i)\Rightarrow(ii)$ , take

the nests $\{\hat{F}_{k}\}_{k\in N}$ and $\{F_{k}^{/}\}_{k\in N}$ , the function space $A$ , and the sequence
of functions $\{\psi_{n}\}_{n\in N}$ . For any $n\in \mathbb{N}$ and $f\in A$ , we have $ f\psi_{n}\in D_{b,\hat{F}_{n}}\subset$

$D_{b,F_{n}}$ , therefore $\int_{X}f\tilde{\psi}_{n}d\nu=0$ . Since $\{f|_{\hat{F}_{n}}|f\in A\}$ is dense in $C(\hat{F}_{n})$ ,

we have $\tilde{\psi}_{n}d\nu=0$ . In particular, $\nu=0$ on $F_{n}^{/}$ because $\tilde{\psi}_{n}=1$ on $F_{n}^{/}$ .
This implies that $\nu\equiv 0$ .

The implication $(ii)\Rightarrow(i)$ of Theorem 2.19 is proved in the same way
as in Theorem 2.18. Because of the result and the proof of $(i)\Rightarrow(ii)$

of Theorem 2.18, Theorem 2.19 (i) implies that there exists a finite
signed smooth measure $\nu$ with some attached nest $\{F_{k}^{J}\}_{k\in N}$ such that
the total variation is dominated by $C$ and $T(v)=\int_{X}\tilde{v}(z)\nu(dz)$ for all
$v\in\bigcup_{k}D_{b,F_{k}’}$ . It is easy to show that this identity holds for all $v\in D_{b}$

by an approximation argument.
The uniqueness of $\nu$ is clear from the corresponding result of Theo-

rem 2.18. The final claim is also deduced by an approximation argument
and the use of Lemma 2.1.

This completes the proof of Theorems 2.18 and 2.19.

\S 4. Application to $BV$ functions on Wiener space

First, we will review some results of [9]. Let $E$ be a separable Banach
space and $H$ a separable Hilbert space which is continuously and densely
imbedded to $E$ . We use the notations in the end of Section 2 with letting
$X=E$ . Define a Gaussian measure $\mu$ on $E$ by the following identity:

$\int_{E}\exp(\sqrt{-1}\ell(z))\mu(dz)=\exp(-||\ell||_{H}^{2}/2)$ , $\ell\in E^{*}\subset H$ .

When $Y$ is a separable Hilbert space and $\rho$ is a nonnegative mea-
surable function on $E$ , we denote by $L^{p}(E\rightarrow Y;\rho)$ in this section the
$L^{p}$ space consisting of $Y$-valued functions on $E$ with underlying mea-
sure $\rho d\mu$ . We omit $E\rightarrow Y$ and $\rho$ from the notation when $Y=\mathbb{R}$ and
$\rho\equiv 1$ , respectively, and write simply $L^{p}$ for $L^{p}(E\rightarrow \mathbb{R};1)$ . We also set
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$L^{\infty-}=\bigcap_{p>1}L^{p}$ and denote by $L_{+}^{p}$ the set of all nonnegative functions
in $IP$ .

If $u\in FC_{b}^{1}$ and $v\in FC_{b}^{1}$ coincide on a measurable set $A$ , then
$\nabla u=\nabla v\mu- a.e$ . on $A$ . See Proposition 1.7.1.4 of [4] for the proof.

For $p\geq 1$ , $Cl_{p}(E)$ denotes the set of all functions $\rho$ in $L_{+}^{1}$ such
that $(\nabla, FC_{b}^{1})$ is closable as a map ffom $L^{p}(\rho)$ to $L^{p}(E\rightarrow H;\rho)$ . A
simple example for such $\rho$ is a function which is uniformly away ffom 0.
Suppose $\rho\in Cl_{p}(E)$ . We write $W^{1,p}(\rho)$ instead of $W^{1,p}$ when regarding
$(E, \rho d\mu)$ as $(X, \lambda)$ in Section 2. When $p>1$ , $W^{1,p}(\rho)$ satisfies all the
conditions $(A1)-(A4)$ , $(QR1)-(QR3)$ and (C).

Let $F^{\rho}$ be the topological support of the measure $\rho d\mu$ . Since $ L^{0}(E\rightarrow$

$Y;\rho)$ is identified with $L^{0}(F^{\rho}\rightarrow Y;\rho)$ , we abuse the notation and
$W^{1,p}(\rho)$ is also regarded as a function space on $F^{\rho}$ . When $\rho\in Cl_{2}(E)$ ,
an associated Dirichlet form $(\mathcal{E}^{\rho}, W^{1,2}(\rho))$ on $L^{2}(F^{\rho};\rho)$ is defined by

$\mathcal{E}^{\rho}(f, g)=\int_{F^{\rho}}\langle\nabla f, \nabla g\rangle_{H}\rho d\mu$ , $f$ , $g\in W^{1,2}(\rho)$ .

This is a quasi-regular Dirichlet form and a finite signed measure $\nu$ on
$F^{\rho}$ is smooth with respect to $\mathcal{E}^{\rho}$ if and only if $\nu$ is $W^{1,2}(\rho)$ smooth

For each $G\in(FC_{b}^{1})_{E^{*}}$ , the (formal) adjoint $\nabla^{*}G$ is defined by the
following identity:

$\int_{E}(\nabla^{*}G)ud\mu=\int_{E}\langle G, \nabla u\rangle_{H}d\mu$ for all $u\in FC_{b}^{1}$ .

Denote by $L(\log L)^{1/2}$ the space of all functions $f$ on $E$ such that
$\Phi\circ|f|\in L^{1}$ , where $\Phi(x)=x((\log x)\vee 0)^{1/2}$ . We say that a real
measurable function $\rho$ on $E$ is of bounded variation $(\rho\in BV(E))$ if
$\rho\in L(\log L)^{1/2}$ and

$ V(\rho):=\sup_{G}\int_{E}(\nabla^{*}G)\rho d\mu<\infty$ ,

where $G$ is taken over all functions in $(FC_{b}^{1})_{E^{*}}$ such that $||G(z)||_{H}\leq 1$

for every $z\in E$ .

Let $\{T_{t}\}_{t>0}$ be the Ornstein-Uhlenbeck semigroup, which is associ-
ated with $\mathcal{E}^{1}$ . It is strongly continuous, analytic and contractive on $L^{p}$

for any $p\in(1, \infty)$ .

We recall some results discussed in [9].

Theorem 4.1. (i) For $\rho\in BV(E)$ , $||\nabla T_{t}\rho||_{L^{1}}\leq V(\rho)$ for
every $t>0$ .

(ii) $BV(E)$ is a vector lattice. Namely, it is a vector space, and

for each $\rho\in BV(E)$ , $\rho_{+}$ also belongs to $BV(E)$ .



Integral representation 135

(iii) A function $\rho$ belongs to $BV(E)$ if and only if $\rho\in L^{1}$ and
there exists a sequence $\{\rho_{n}\}_{n\in N}$ in $W^{1,1}(:=W^{1,1}(1))$ such that
$||\rho_{n}||_{W^{1,1}}$ is bounded in $n$ and $\rho_{n}\rightarrow\rho$ in $L^{1}$ as $ n\rightarrow\infty$ .

(iv) Each $\rho\in BV(E)$ has a unique fifinite Borel measure $\nu$ and $a$

unique $H$ -valued Borel function $\sigma$ on $E$ such that $||\sigma||_{H}=1$

$\nu- a.e$ . and for every $G\in(FC_{b}^{1})_{E^{*}}$ ,

$\int_{E}(\nabla^{*}G)\rho d\mu=\int_{E}\langle G, \sigma\rangle_{H}d\nu$ .

The measure $\nu$ is $W^{1,2}(|\rho|+1)$ -smooth. If moreover $\nu\in Cl_{2}(E)$ ,

then $\nu|_{E\backslash F^{\rho}}=0$ and $\nu$ is $W^{1,2}(\rho)$ -smooth.

In what follows, we will write $\nu_{\rho}$ for $\nu$ in the theorem above. In this
section, we improve the result for the smoothness of $\nu_{\rho}$ . In view of the
proof of Theorem 4.1 (iv) (Theorem 3.9 of [9]), the smoothness of $\nu_{\rho}$ is
derived from the smoothness of $\nu_{\ell}$ for each $\ell\in E^{*}$ , where $\nu_{\ell}$ is a unique
finite signed measure on $E$ satisfying

$\int_{E}\partial_{\ell}u(z)\rho(z)\mu(dz)=-2\int_{E}u(z)\nu_{\ell}(dz)$ , $u\in FC_{b}^{1}$ .

Therefore, applying Theorem 2.19 with $\mathcal{L}=FC_{b}^{1}$ , if we show that the
functional

(4) $I_{\ell}$ : $FC_{b}^{1}\ni u\mapsto\int_{E}\partial_{\ell}u(z)\rho(z)\mu(dz)\in \mathbb{R}$

extends continuously on $D$ , where $D$ satisfies $(A1)-(A4)$ , $(QR1)-(QR3)$ ,
and (C), and has $FC_{b}^{1}$ as a dense set, then we can say that $\nu_{\ell}$ , hence $\nu_{\rho}$ ,
is $D$-smooth. It is obvious that $I_{\ell}$ extends to a continuous functional on
$W^{1,p}(|\rho|+1)$ (and $W^{1,p}(\rho)$ if furthermore $\rho\in Cl_{p}$ ) for every $p\geq 1$ . Also,
if $\rho\in L^{q}$ for some $q\in(1, \infty)$ , then $I_{\ell}$ extends to a continuous functional

on $W^{1,q/(q-1)}(:=W^{1,q/(q-1)}(1))$ by H\"older’s inequality. Therefore, we
have the following results.

Proposition 4.2. Let $\rho\in BV(E)$ . Then, $\nu_{\rho}$ is $W^{1,p}(|\rho|+1)$ -smooth

for every $p>1$ . If moreover $\rho\in Cl_{p}$ , then $\nu$ is $W^{1,p}(\rho)$ -smooth.

Proposition 4.3. Let $\rho\in BV(E)\cap L^{q}$ for some $q\in(1, \infty)$ . Then,
$\nu_{\rho}$ is $W^{1,q/(q-1)}$ -smooth.

In Proposition 4.2, the smaller $p$ is, the stronger the claim is.
Now, we will give other examples of $D$ so that $\nu_{\rho}$ is $D$-smooth. Let

us recall the Sobolev spaces in the context of Malliavin calculus. We
give several notations in somewhat informal way. We refer to [12] for
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precise definitions. Let $ L=-\nabla^{*}\nabla$ be the Ornstein-Uhlenbeck operator,
which is regarded as a generator of $\{T_{t}\}_{t>0}$ . The Sobolev space $D^{\alpha,p}$ ,
$\alpha\in \mathbb{R}$ , $ 1<p<\infty$ , is given by $D^{\alpha,p}=(1-L)^{-\alpha/2}(L^{p})$ . Each $D^{\alpha,p}$ is
a separable Banach space with norm $||f||_{D^{\alpha,p}}:=||(1-L)^{\alpha/2}f||_{L^{p}}$ . The
topological dual of $D^{\alpha,p}$ is identified with $D^{-\alpha,q}$ , $q=p/(p-1)$ . When
$n\in \mathbb{N}$ , by Meyer’s equivalence, $\nabla^{n}$ is defined as a continuous operator
from $D^{n,p}$ to $L^{p}(E\rightarrow H^{\otimes n})$ and $||\cdot||_{L^{p}}+||\nabla^{n}\cdot||_{L^{p}(E\rightarrow H\otimes n}$ ) gives a norm
on $D^{n,p}$ which is equivalent to $||\cdot||_{D^{n,p}}$ . In particular, $W^{1,p}(:=W^{1,p}(1))$

is identical with $D^{1,p}$ as a set and their norms are mutually equivalent.
We define another Sobolev space $E^{\alpha,p}$ , $\alpha\in \mathbb{R}$ , $ 1<p<\infty$ , firstly

introduced in [24], by

$E^{\alpha,p}=\{$

$D^{\alpha,p}$ if $\alpha\in \mathbb{Z}$ ,
$(D^{k+1,p}, D^{k,p})_{k+1-\alpha,p}$ if $k<\alpha<k+1$ , $k\in \mathbb{Z}$ .

The general theory of real interpolation implies that $(E^{\alpha,p})^{*}$ is identified
with $E^{-\alpha,q}$ , where $q=p/(p-1)$ (see also [24]). When $0<\alpha<1$ and
$ 1<p<\infty$ , $E^{\alpha,p}$ satisfies conditions $(A1)-(A4)$ , $(QR1)-(QR3)$ , and (C)
by virtue of Proposition 2.21, if $E^{\alpha,p}$ is equipped with a norm deduced
by $(W^{1,p}, L^{p})_{1-\alpha,p}$ . For such indices, $FC_{b}^{1}$ is dense in $E^{\alpha,p}$ since $W^{1,p}$

is dense in $E^{\alpha,p}$ . For later use, following $[1, 2]$ , we introduce another
equivalent norm on $E^{\alpha,p}$ based on the $K$-method by

$||f||_{E^{\alpha,p}}^{J}=(\int_{0}^{1}(\in\alpha K-(\in, f))^{p}\frac{d\in}{\in})^{1/p}$ ,

where

$K(\in, f)=\inf\{||f_{1}||_{L^{p}}+\in||f_{2}||_{W^{1,p}}|f=f_{1}+f_{2}, f_{1}\in L^{p}, f_{2}\in D^{1,p}\}$ .

The connection between $BV(E)$ and $E^{\alpha,p}$ is given as follows.

Theorem 4.4. Let $q>1$ . The $BV(E)\cap L^{q}\subset E^{\alpha,p}$ if $1<p<q$
and $\alpha<(1/p-1/q)/(1-1/q)$ . Also, this inclusion is continuous when
$BV(E)\cap L^{q}$ is equipped with norm $||f||_{BV(E)\cap L^{q}}=V(f)+||f||_{L^{q}}$ . In
particular, $BV(E)\cap L^{\infty-}\subset E^{\alpha,p}$ if $p>1$ and $\alpha p<1$ .

For the proof, we need the following estimates.

Lemma 4.5. (i) When $\theta/a+(1-\theta)/b=1/p$ with $0<\theta<1$ ,
$a$ , $b$ , $p\geq 1$ , we have $||f||_{L^{p}}\leq||f||_{L^{a}}^{\theta}||f||_{L^{b}}^{1-\theta}$ .

(ii) For each $r\geq 0$ and $p\in(1, \infty)$ , there exists some $C$ such that
$||(1-L)^{r}T_{t}f||_{L^{p}}\leq Ct^{-r}||f||_{L^{p}}$ for every $t\in(0,1]$ and $f\in L^{p}$ .

Proof. The claim (i) follows from a simple application of H\"older’s

inequality. The claim (ii) is a consequence of Theorem 6.13 (c) of Chap-
ter 2 in [18], since $\{T_{t}\}_{t>0}$ is an analytic semigroup on $L^{p}$ . Q.E.D.
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Proof of Theorem $4\cdot 4$ . Let $f\in BV(E)\cap L^{q}$ with $V(f)+||f||_{L^{q}}\leq 1$ .

In the following, $c_{\iota}$ denotes a constant depending only on $p$ and $g$ . By
Theorem 4.1 (i), $||\nabla T_{t}f||_{L^{1}}\leq V(f)\leq 1$ for any $t>0$ . By virtue of
Meyer’s equivalence and Lemma 4.5 (ii), for $t\in(0,1]$ ,

$||\nabla T_{t}f||_{L^{q}}\leq c_{1}||(1-L)^{1/2}T_{t}f||_{L^{q}}\leq c_{2}t^{-1/2}$ .

Applying Lemma 4.5 (i) with $a=1$ and $b=q$ , that is, $\theta=(1/p-$

$1/q)/(1-1/q)$ , we have $||\nabla T_{t}f||_{L^{p}}\leq(c_{2}t^{-1/2})^{1-\theta}$ for $t\in(0,1]$ , therefore,

(5) $||T_{t}f||_{W^{1,p}}\leq c_{3}t^{-(1-\theta)/2}$ .

From the identity

$f-T_{t}f$ $=$ $-\int_{0}^{t}\frac{d}{ds}T_{s}fds=-\int_{0}^{t}LT_{s}fds$

$=$ $\int_{0}^{t}\{((1-L)^{1/2}T_{s/2})^{2}f-T_{s}f\}ds$ ,

we obtain, for $t\in(0,1]$ ,

(6) $||f-T_{t}f||_{L^{p}}$ $\leq$ $\int_{0}^{t}||((1-L)^{1/2}T_{s/2})^{2}f||_{L^{p}}ds+t||f||_{L^{p}}$

$\leq$ $\int_{0}^{t}c_{4}s^{-1/2}||(1-L)^{1/2}T_{s/2}f||_{L^{p}}ds+t$

$\leq$ $\int_{0}^{t}c_{5}s^{-1/2}||T_{s/2}f||_{W^{1,p}}ds+t$

$\leq$ $\int_{0}^{t}c_{6}s^{-1/2}s^{-(1-\theta)/2}ds+t\leq c_{7}t^{\theta/2}$ .

Here we used Lemma 4.5 (ii) in the second line and (5) in the last line.
By combining (5) and (6), for $each\in\in(0,1]$ ,

$K(\in, f)\leq||f-T_{\epsilon^{2}}f||_{L^{p}}+\in||T_{\epsilon^{2}}f||_{W^{1,p}}\leq c_{8}\in^{\theta}$ ,

and, if $\alpha\in(0, \theta)$ ,

$(\int_{0}^{1}(\in\alpha K-(\in, f))^{p}\frac{d\in}{\in})^{1/p}\leq c_{8}\{p(\theta-\alpha)\}^{-1/p}<\infty$ .

This proves the claim. Q.E.D.

Using Theorem 4.4, we obtain the $E^{\alpha,p}$-smoothness of $\nu_{\rho}$ by the following
proposition.



138 M. Hino

Proposition 4.6. Let $\rho\in BV(E)\cap L^{q}$ , $q>1$ . Then the map $I_{\ell}$

in (4) extends continuously on $E^{\alpha,p}$ if $p>q/(q-1)$ and $\alpha p>q/(q-$

$1)$ . Therefore, $\nu_{\rho}$ is $E^{\alpha,p}$ -smooth for such $\alpha$ and $p$ with $\alpha\in(0,1)$ . In
particular, if $\rho\in BV(E)\cap L^{\infty-}$ , then $\nu_{\rho}$ is $E^{\alpha,p}$ -smooth for any $\alpha$ , $p$

with $\alpha\in(0,1)$ and $\alpha p>1$ .

Proof. Due to Meyer’s equivalence, the map $u\mapsto\partial_{\ell}u$ is continuous
from $D^{1,p}$ to $L^{p}$ and from $L^{p}$ to $D^{-1,p}$ , respectively. By the real interpola-
tion theorem, it is continuous ffom $E^{\alpha,p}$ to $E^{\alpha-1,p}$ for any $\alpha\in(0,1)$ . The
claim follows from the fact $(E^{1-\alpha,p/(p-1)})^{*}=E^{\alpha-1,p}$ and $ BV(E)\cap L^{q}\subset$

$E^{1-\alpha,p/(p-1)}$ by the assumption and Theorem 4.4. Q.E.D.

REMARK 4.7. (i) In [24], it is proved that $D^{\alpha+\in,pL}\rightarrow E^{\alpha,p}\simeq\rightarrow$

$D^{\alpha-\in,p}$ for every $\alpha\in \mathbb{R}$ , $ 1<p<\infty$ and $\in>0$ . Therefore,
Theorem 4.4 and Proposition 4.6 remain valid if we replace
$E^{\alpha,p}$ by $D^{\alpha,p}$ .

(ii) When $\rho\in BV(E)$ is an indicator function of some set $A$ , $\nu_{\rho}$ can
be regarded as a surface measure of $A$ . The smoothness of $\nu_{\rho}$

that is proved in the proposition above is consistent with The-
orem 9 of [6] saying that the Hausdorff measure of codimension
$n$ on Wiener space does not charge any set of $(\alpha,p)$-capacity
as long as $p>1$ and $\alpha p>n$ .

Lastly, we give a few nontrivial examples of $BV$ functions, referring
to the work [2]. Note that by combining Theorem 4.8 and Theorem 4.4
we recover a part of the results in [2].

Theorem 4.8. (i) Let $F$ be a function such that $F\in D^{2,p}$

$and||\nabla F||_{H}^{-1}\in L^{q}$ for some $p>1$ and $q>1$ with $1/p+1/q<1$ .

Let $A=\{F<x\}$ with $x\in \mathbb{R}$ . Then $1_{A}\in BV(E)$ .

(ii) Suppose that $(E, H, \mu)$ is a classical Wiener space on $[0, 1]$ .

For $x>0$ , set $A=\{w\in E|\max_{0\leq s\leq 1}|w(s)|<x\}$ . Then
$1_{A}\in BV(E)$ .

Proof. (i): From the assumptions, we have $\nabla^{*}(\nabla F/||\nabla F||_{H})\in L^{a}$

for some $a>1$ . Indeed, keeping in mind the fact $||\nabla F||_{H}$ , $||\nabla^{2}F||_{H\otimes H}\in$

$L^{p}$ due to Meyer’s equivalence, $let\in tend$ to 0 in the identity

$\nabla^{*}(\frac{\nabla F}{\sqrt{||\nabla F||_{H}^{2}+\in}})=-\frac{LF}{\sqrt{||\nabla F||_{H}^{2}+\epsilon}}+\frac{\langle\nabla F\otimes\nabla F,\nabla^{2}F\rangle_{H\otimes H}}{(||\nabla F||_{H}^{2}+\in)^{3/2}}$ .

Now, set $\psi_{n}(y)=n1_{[x-1/n,x]}(y)$ , $\varphi_{n}(y)=\int_{y}^{\infty}\psi_{n}(z)dz$ , and $\rho_{n}=$

$\varphi_{n}(F)$ . Then we have

$||\nabla\rho_{n}||_{L^{1}(E\rightarrow H)}$ $=$ $\int_{E}\psi_{n}(F)||\nabla F||_{H}d\mu$
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$=$ $-\int_{E}\langle\nabla\rho_{n}$ , $\frac{\nabla F}{||\nabla F||_{H}}\rangle_{H}d\mu$

$=$ $-\int_{E}\rho_{n}\nabla^{*}(\frac{\nabla F}{||\nabla F||_{H}})d\mu$

$\leq$ $||\nabla^{*}(\frac{\nabla F}{||\nabla F||_{H}})||_{L^{1}}$ ,

which is bounded in $n$ . Since $\{\rho_{n}\}_{n\in N}$ is uniformly bounded and con-
verges to $1_{A}$ pointwise, Theorem 4.1 (iii) completes the proof.

(ii): Set $\rho_{n}(w)=0\vee n(1-\max_{0\leq s\leq 1}|w(s)|/x)\wedge 1$ , $w\in E$ for each
$n\in \mathbb{N}$ . By the calculation in the proof of Theorem 3.1 of [2], we have
$\rho_{n}\in W^{1,1}$ and $||\rho_{n}||_{W^{1,1}}$ is bounded in $n$ . Since $\{\rho_{n}\}_{n\in N}$ is uniformly
bounded and tends to $1_{A}$ pointwise, Theorem 4.1 (iii) completes the
proof. Q.E.D.
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Abstract.

This paper addresses the problem of approximating random vari-
ables in terms of sums consisting of a real constant and of a stochastic
integral with respect to a given semimartingale $X$ . The criterion is
minimization of $L^{2}-$distance, or “least-squares”. This problem has
a straightforward and well-known solution when $X$ is a Brownian
motion or, more generally, a square-integrable martingale, with re-
spect to the underlying probability measure $P$ . We address the gen-
eral, semimartingale case by means of a duality approach; the adjoint
variables in this duality are signed measures, absolutely continuous
with respect to $P$ , under which $X$ behaves like a martingale. It is
shown that this duality is useful, in that the value of an appropri-
ately formulated dual problem can be computed fairly easily; that it

“has no gap” (i.e., the values of the primal and dual problems coin-
cide); that the signed measure which is optimal for the dual problem
can be easily identified whenever it exists; and that the duality is also
“strong” , in the sense that one can then identify the optimal stochas-
tic integral for the primal problem. In so doing, the theory presented
here both simplifies and extends the extant work on the subject.
It has also natural connections and interpretations in terms of the
theory of “variance-optimal” and “mean-variance efficient” portfo-
lios in Mathematical Finance, pioneered by H. Markowitz and then
greatly extended by H. F\"ollmer, D. Sondermann and most notably
M. Schweizer.
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\S 1. Introduction

Suppose we are given a square-integrable, $d-$dimensional process
$X=\{X(t);0\leq t\leq T\}$ defined on the finite time-horizon $[0, T]$ , which
is a semimartingale on the filtered probability space $(\Omega, F, P)$ , $F=$

$\{F(t)\}_{0\leq t\leq T}$ . How closely can we approximate in the sense of least-
squares a given, square-integrable and $F(T)-$measurable random vari-

able $H$ , by a linear combination of the form $c+\int_{0}^{T}\theta^{l}dX$ ? Here $c$ is a
real number and $\theta$ a predictable $d-$dimensional process for which the

stochastic integral $\int_{0}$

.
$\theta^{l}dX\equiv\sum_{i=1}^{d}\int_{0}$

.
$\theta_{i}dX_{i}$ is well-defined and is itself

a square-integrable semimartingale.
In other words, if we denote by $\Theta$ the space of all such processes $\theta$ ,

how do we compute

(1.1) $V(c)=\triangle\inf_{\theta\in\ominus}E(H-c-\int_{0}^{T}\theta^{l}dX)2$

if $c\in \mathbb{R}$ is given and we have the ffeedom to choose $\theta$ over the class $\Theta$

as above? How do we find

(1.1) $V=\triangle\inf_{(c,\theta)\in \mathbb{R}\times\ominus}E(H-c-\int_{0}^{T}\theta^{J}dX)^{2}=\inf_{c\in \mathbb{R}}V(c)$

when we have the freedom to select both $c$ and $\theta$ ? And how do we
characterize, or even compute, the process $\theta^{(c)}$ and the pair $(\hat{c},\hat{\theta})$ that
attain the infimum in (1.1) and (1.2), respectively, whenever these exist ?

To go one step further: How does one

(1.3) minimize the variance Var $(H-\int_{0}^{T}\theta^{l}dX)$

over all $\theta\in\Theta$ as above? Or even more interestingly, how does one

(1.4) $\{minimizethevarianceVar_{0}(H-\int_{=\theta^{l}dX]\mu}0\theta’TdX)OVe\Gamma\theta\in\Theta withE[\int^{T}\}$

for some given $\mu\in \mathbb{R}$ ?

Questions such as (1.3) and (1.4) can be traced back to the pi-
oneering work of H. Markowitz $(1952, 1959)$ , and have been studied
more recently by F\"ollmer&Sondermann (1986), F\"ollmer&Schweizer
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(1991), Duffie &Richardson (1991), Sch\"al (1992), in the modern con-
text of Mathematical Finance. Most importantly, problems (1.1)-(1.4)
have received an exhaustive and magisterial treatment in a series of
papers by Schweizer $(1992, 1994, 1995.a,b, 1996)$ and his collabora-
tors (cf. Rheinl\"ander &Schweizer (1997), [Ph.R.S.] (1998), [DMSSS]
(1997), as well as Hipp (1993), [G.L.Ph.] (1996), Laurent &Pham
(1999), Grandits (1999), Arai (2002) $)$ . In this context, the compo-
nents $X_{i}(\cdot)$ , $i=1$ , $\ldots$ , $d$ of the semimartingale $X$ are interpreted as the
(discounted) stock-prices in a financial market, and $H$ as a contingent
claim, or liability, that one is trying to replicate as faithfully as possible
at time $T$ , starting with initial capital $c$ and trading in this market. Such
trading is modelled by the predictable portfolio process $\theta$ , whose com-
ponent $\theta_{i}(t)$ represents the number of shares being held at time $t$ in the
$i^{th}$ stock, for $i=1$ , $\ldots$ , $d$ . Then $\int_{0}^{T}\theta^{l}dX\equiv\sum_{i=1}^{d}\int_{0}^{T}\theta_{i}(s)dX_{i}(s)$ cor-
responds to the (discounted) gains fiom trading accrued by the terminal
time $T$ , with which one tries to approximate the contingent claim $H$ , and
one might be interested in minimizing the variance of this approxima-
tion over all admissible portfolio choices (problem of (1.3)), or just over
those portfolios that guarantee a given mean-rate-of-return (problem of
(1.4) $)$ .

It turns out that solving the problem of (1.1) provides the key to
answering all these questions. For instance, if $\theta^{(c)}$ attains the infimum in
(1.1) and $\hat{c}\equiv\arg\min_{c\in \mathbb{R}}V(c)$ , then $\hat{\theta}\equiv\theta^{(\hat{c})}$ is optimal for the problem

of (1.3); the pair $(\hat{c},\hat{\theta})$ is optimal for the problem of (1.2); and the
process $\theta^{(c_{\mu})}$ with $c_{\mu}=(E[\pi(H)]-E(H)+\mu)/(E[\pi(1)]-1)$ is optimal
for the problem of (1.4). Here $\pi$ denotes the projection operator ffom
the Hilbert space $L^{2}(P)$ onto the orthogonal complement of its linear

subspace $\{\int_{0}^{T}\theta^{l}dX/\theta\in\Theta\}$ .

The problem of (1.1) has a very simple solution, if $X$ is a (square-
integrable) martingale; then every $H$ as above has the so-called Kunita-
Watanabe decomposition

$H=E(H)+\int_{0}^{T}(\zeta^{H})’dX+L^{H}(T)$ ,

where $\zeta^{H}\in\Theta$ and $L^{H}(\cdot)$ is a square-integrable martingale strongly

orthogonal to $\int_{0}.\theta^{l}dX$ for every $\theta\in\Theta$ . Then the infimum in (1.1)

is computed as $V(c)=(E[H]-c)^{2}+E(L^{H}(T))^{2}$ and is attained by

$\zeta^{H}\in\Theta$ , which also attains the infimum $V=E(L^{H}(T))^{2}$ in (1.2).

In order to deal with a general semimartingale $X$ we develop a sim-
ple duality approach, which in a sense tries to reduce the problem to
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the “easy” martingale case just described. This approach is the main
contribution of the present paper. The dual or “adjoint” variables in
this duality are signed measures $Q$ , absolutely continuous with respect
to $P$ and with $dQ/dP$ $\in L^{2}(P)$ , under which $X$ behaves like a martin-
gale (Definition 2.1 and Remark 2.2). A simple observation, described
in (3.1)-(3.7), leads to a dual maximization problem. The resulting du-
ality is useful because, as it turns out, the dual problem is relatively
straightforward to solve (Proposition 3.1); its value is easily computed
as $E[\pi^{2}(H-c)]$ and coincides with the value $V(c)$ of the original prob-
lem (1.1), so there is no “duality gap”; and furthermore the duality is

“strong”, in that one can identify the optimal integrand $\theta^{(c)}$ of (1.1)
rather easily, under suitable conditions (Theorem 4.1 and Remark 4.1).
Several examples are presented in Section 5.

We follow closely the notation and the setting of Schweizer (1996),
our great debt to which should be clear to anyone familiar with this
excellent work. Indeed, the present paper can be considered as comple-
menting and extending the results of this work, by means of our simple
duality approach.

\S 2. The Problem

On a given complete probability space $(\Omega, F, P)$ equipped with a
filtration $F=\{F(t) ; 0\leq t\leq T\}$ that satisfies the usual conditions,
consider a process

(2.1) $X(t)=X(0)+M(t)+B(t)$ , $0\leq t\leq T$ ,

defined on the finite time-horizon $[0, T]$ and belonging to the space
$S^{2}\equiv S^{2}(P)$ of square-integrable $d$-dimensional semimartingales. This
means that each $X_{i}(0)$ is in $L^{2}(\Omega, F(0),$ $P)$ ; that each $M_{i}(\cdot)$ belongs to
the space $\mathcal{M}_{0}^{2}(P)$ of square-integrable $F$-martingales with $M_{i}(0)=0$ and
RCLL paths; and that we have $B_{i}(\cdot)=A_{i}^{+}(\cdot)-A_{i}^{-}(\cdot)$ , where $A_{i}^{\pm}(\cdot)$ are
increasing, right-continuous and predictable processes with $A_{i}^{\pm}(0)=0$

and $ E(A_{i}^{\pm}(T))^{2}<\infty$ , for every $i=1$ , $\cdots$ , $d$ . We denote by $\Theta$ the
space of “good integrands” for the square-integrable semimartingale
$X=\{X(t), 0\leq t\leq T\}$ , namely, those $F-$predictable processes whose
stochastic integrals with respect to $X$ are themselves square-integrable
semimartingales:

(2.2) $\Theta=\triangle\{\theta\in \mathcal{L}(X)/G.(\theta)\equiv\int_{0}$

.

$\theta’dX\in S^{2}(P)\}$ .
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Here $\mathcal{L}(X)$ stands for the space of all $\mathbb{R}^{d}$Revalued and predictable pro-
cesses, whose stochastic integrals

(2.3) $G_{t}(\theta)=\triangle\int_{0}^{t}\theta’(s)dX(s)=\sum_{i=1}^{d}\int_{0}^{t}\theta_{i}(s)dX_{i}(s)$ , $o\leq t\leq T$

with respect to $X$ are well-defined.

Suppose now we are given a random variable $H$ in the space $L^{2}(P)\equiv$

$L^{2}$ $(\Omega, F(T)$ , $P)$ . The following problem will occupy us in this paper.

Problem 2.1. Given H $\in L^{2}(P)$ , compute

(2.4) $ V=\triangle$
$\inf$ $E(H-c-G_{T}(\theta))^{2}$

$(c,\theta)\in \mathbb{R}\times\ominus$

and try to find a pair $(\hat{c},\hat{\theta})\in \mathbb{R}\times\Theta$ that attains the infimum, if such $a$

pair exists. $\square $

In other words, we are looking to find the least-squares approximation of
$H$ , as the sum of a constant $c\in \mathbb{R}$ and of the stochastic integral $G_{T}(\theta)$ ,

for some process $\theta\in\Theta$ .
This problem has a rather obvious solution, if it is known that the

random variable $H$ is of the form

(2.5) $H=h+G_{T}(\zeta^{H})$

for some $h\in \mathbb{R}$ and $\zeta^{H}\in\Theta$ ; because then we can take $\hat{c}\equiv h,\hat{\theta}\equiv\zeta^{H}$ ,
and deduce that $V=0$ in (2.4). Now it is a classical result (e.g. Karatzas
&Shreve (1991), pp. 181-185 for a proof) that every $H\in L^{2}(P)$ can be
written in the form (2.5), in fact with $h=E(H)$ , if $X(\cdot)$ is Brownian
motion and if $F$ is the (augmentation of the) filtration $F^{X}$ generated by
$X(\cdot)$ itself. One can then also describe the integrand $\zeta^{H}$ in terms of the
famous Clark (1970) formula, under suitable conditions on the random
variable $H\in L^{2}(P)\equiv L^{2}(\Omega, F^{X}(T),$ $P)$ . Thus, in this special case, we

can take $\hat{c}=E(H),\hat{\theta}=\zeta^{H}$ , and have $V=0$ in (2.4).

A little more generally, suppose that $X(\cdot)\in \mathcal{M}_{0}^{2}(P)$ is a square-
integrable martingale (i.e., $X(0)=0$ and $A(\cdot)\equiv 0$ in (2.1)). Then again
it is well-known that every $H\in L^{2}(P)$ admits the so-called Kunita-
Watanabe (1967) decomposition

(2.6) $H=h+G_{T}(\zeta^{H})+L^{H}(T)$

for $h=E(H)$ , some $\zeta^{H}\in\Theta$ , and some square-integrable martingale
$L^{H}(\cdot)\in \mathcal{M}_{0}^{2}(P)$ which is strongly orthogonal to $G.(\theta)$ for every $\theta\in\Theta$ ;
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in particular,

(2.7) $E[L^{H}(T)\cdot G_{T}(\theta)]=0$ , $\forall\theta\in\Theta$ .

Then

$E(H-c-G_{T}(\theta))^{2}=(h-c)^{2}+E(G_{T}(\zeta^{H}-\theta))^{2}+E(L^{H}(T))^{2}$ ,

and it is clear that Problem 2.1 admits again the solution $\hat{c}=E(H)$ ,
$\hat{\theta}=\zeta^{H}$ , but now with $V=E(L^{H}(T))^{2}$ in (2.4).

What happens for a general, square-integrable semimartingale $ X(\cdot)\in$

$S^{2}(P)$ ? In view of the above discussion it is tempting to try and “re-
duce” this general problem to the case where $X(\cdot)$ is a martingale. This
can be accomplished by absolutely continuous change of the probability
measure $P$ . We formalize this idea as in Schweizer (1996).

Definition 2.1. A signed measure $Q$ on $(\Omega, \mathcal{F})$ is called a signed $\Theta-$

martingole measure, if $Q(\Omega)=1$ , $Q<<P$ with $(dQ/dP)\in L^{2}(P)$ , and

(2.8) $E[\frac{dQ}{dP}\cdot G_{T}(\theta)]$ $=0$ , $\forall\theta\in\Theta$ .

We shall denote by $P_{s}(\Theta)$ the set of all such signed $\Theta$-martingale mea-
sures, and introduce the closed, convex set

(2.8) $D$
$=\triangle$

{ $D\in L^{2}(P)/D=(dQ/dP)$ , some $Q\in P_{s}(\Theta)$ }
$=$ { $D\in L^{2}(P)/E(D)=1$ and $E(DG_{T}(\theta))=0$ , $\forall\theta\in\Theta$ }.

$\square $

We shall assume from now onwards, that

(2.10) $P_{s}(\Theta)\neq\emptyset$ (equivalently $D$ $\neq\emptyset$ ).

Remark 2.1 : The linear subspace $ G_{T}(\Theta)=\triangle\{\int_{0}^{T}\theta’(s)dX(s)/\theta\in$

$\ominus\}$ of the Hilbert space $L^{2}(P)$ is not necessarily closed for a general
semimartingale $X(\cdot)$ (it is, if $B(\cdot)\equiv 0$ in (2.1), or equivalently if $X(\cdot)$

is a square-integrable martingale, since then the stochastic-integral of
(2.3) is an isometry). For a semimartingale $X(\cdot)$ with continuous paths,
necessary and sufficient conditions for the closedness of $G_{T}(\Theta)$ have
been provided by Delbaen, Monat, Schachermayer, Schweizer&Strieker
[DMSSS] (1997); see also Theorem 2 in Rheinl\"ander&Schweizer (1997),
as well as Corollary 4 in Pham, Rheinl\"ander&Schweizer [Ph.R. S.] (1998)
and section 5, equation (5.11) of the present paper, for sufficient con-
ditions. As noted by W. Schachermayer (see Schweizer (1996), p. 210;
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Lemma 4.1 in Schweizer (2001) $)$ , the assumption (2.10) is equivalent to
the requirement that

(2.10)’ $\left\{\begin{array}{lll}the & L^{2}(P)closureinof & G_{T}(\ominus)\\does & notcontainthe & constant1\end{array}\right\}$ .

On the other hand, the orthogonal complement

(2.11) $(G_{T}(O-))^{\perp}=\triangle\{D\in L^{2}(P)/E(DG_{T}(\theta))=0, \forall\theta\in\Theta\}$

of $G_{T}(\Theta)$ is a closed linear subspace of $L^{2}(P)$ , and its orthogonal com-

plement $(G_{T}(\Theta))^{\perp\perp}$ is the smallest closed, linear subspace of $L^{2}(P)$ that

contains $G_{T}(\Theta)$ . Clearly, $(G_{T}(\Theta))^{\perp}$ includes the set $V$ of (2.9), and the
requirement $(2.10)’$ amounts to

(2.10)” $1\not\in(G_{T}(\Theta))^{\perp\perp}$

Remark 2.2 : The notion of signed $\Theta$-martingale measure in Def-
inition 2.1 depends on the space $\Theta$ itself, as well as on the defini-
tion of the stochastic integral $G_{T}(\theta)$ , $\theta\in\Theta$ . In many cases of in-
terest, though, every $Q\in P_{s}(\Theta)$ belongs also to the space $P_{s}^{2}(X)$ of
signed martingale measures for $X$ , namely those signed measures $Q$ on
$(\Omega, F)$ with $Q\ll P$, $dQ/dP$ $\in L^{2}(P)$ , $Q(\Omega)=1$ and

(2.12) $E[\frac{dQ}{dP}.$ $(X(t)-X(s))|F(s)]$ $=0$ , $a.s$ .

for any $0\leq s\leq t\leq T$ . (If $Q$ is a true probability measure, as opposed to
a signed measure with $Q(\Omega)=1$ , then (2.12) amounts to the martingale
property of $X$ under $Q.$ ) See M\"uller (1985), Lemma 12(b) in Schweizer
(1996), as well as conditions (5.1)-(5.4) and the paragraph immediately

following them in the present paper.

In addition to Problem 2.1, it is useful to consider also the following
question, which is interesting in its own right.

Problem 2.2. Given H $\in L^{2}(P)$ and c $\in \mathbb{R}$ , compute

(2.13) $V(c)=\triangle\inf_{\theta\in O-}E(H-c-G_{T}(\theta))^{2}$

and try to find $\theta^{(c)}\in\Theta$ that attains the infimum in (2.13), if such exists.

Clearly, $\inf_{c\in \mathbb{R}}V(c)$ coincides with the quantity $V$ of (2.4); and if this
last infimum is attained by some $\hat{c}\in \mathbb{R}$ , then the pair $(\hat{c}, \theta^{(\hat{c})})$ attains the
infimum in (2.4). In the next Sections we shall try to solve Problems 2.2
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and 2.1 using very elementary duality ideas. In this effort, the elements
of the set $D$ in (2.9) will play the role of adjoint or dual variables. For
the duality methodology to work in any generality it is critical to allow,
as we did in Definition 2.1, for signed measures $Q$ with $Q(\Omega)=1$ , as
opposed to just standard probability measures.

\S 3. The Duality

The duality approach to Problem 2.2 is simple, and is based on the
elementary observation

(3.1) $\min_{x\in \mathbb{R}}[(H-x)^{2}+yx]$ $=$ $(H-(H-y/2))^{2}+y(H-y/2)$

$=$ $yH-y^{2}/4$ , $\forall y\in \mathbb{R}$ .

The key idea now, is to read (3.1) with $x=c+G_{T}(\theta)$ , $y=2kD$ for
given $c\in \mathbb{R}$ and arbitrary $\theta\in O-$ , $D\in D$ as in (2.2) and (2.9), and with
arbitrary $k\in \mathbb{R}$ , to obtain

(3.2) $(H-c -G_{T}(\theta))^{2}+2kD(c+G_{T}(\theta))\geq 2kDH-k^{2}D^{2}$ .

Note also that (3.2) holds as equality for some $\theta\equiv\theta^{(c)}\in\Theta$ , $ D\equiv D^{(c)}\in$

$D$ and $k\equiv k^{(c)}\in \mathbb{R}$ , if and only if

(3.3) $c+G_{T}(\theta^{(c)})=H-k^{(c)}D^{(c)}$ .

Now let us take expectations in (3.2) to obtain, in conjunction with the
properties of (2.9):

(3.4) $E(H-c-G_{T}(\theta))^{2}\geq-k^{2}E(D^{2})+2k[E(DH)-c]$ ,

for every $k\in \mathbb{R}$ , $D\in D$ and $\theta\in\Theta$ . Clearly,

(3.5) $E(D^{2})-1=$ Var(D) $\geq 0$ , $\forall D\in D$

and the mapping $k\mapsto-k^{2}E(D^{2})+2k[E(DH)-c]$ attains over $\mathbb{R}$ its

maximal value $(E(DH)-c)^{2}/E(D^{2})$ at the point

(3.6) $k_{D,c}=\triangle\frac{E(DH)-c}{E(D^{2})}$
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Thus, we obtain from (3.4) the inequality

$V(c)$
$=\triangle$

$\inf_{\theta\in\Theta}E(H-c-G_{T}(\theta))^{2}$

(3.7) $\geq$

$\sup_{D\in D}\sup_{k\in \mathbb{R}}[-k^{2}E(D^{2})+2k(E(DH)-c)]$

$=$ $\sup_{D\in D}\frac{(E(DH)-c)^{2}}{E(D^{2})}=:\tilde{V}(c)$ ,

which is the basis of our duality approach. Here $V(c)$ is the value of our

original $(‘‘ primal’’ )$ optimization Problem 2.2, whereas $\overline{V}(c)$ is the value
of an auxiliary $(‘‘ dual’’ )$ optimization problem.

This kind of duality is useful, only if the dual problem is easier to
solve than the primal Problem 2.2 and if there is no “duality gap” (i.e.,
equality holds in (3.7) $)$ , so that by computing the value of the dual
problem we also compute the value of the primal. Both these features
hold for our setting, as we are about to show. Furthermore, the duality
is “strong”, in the sense that we can identify an optimal $\overline{D}_{c}\in D$ for the
dual problem, namely

(3.8)
$\overline{V}(c)=\frac{(E(\tilde{D}_{c}H)-c)^{2}}{E(\tilde{D}_{c}^{2})}$

for all but a critical value of the parameter $c$ , and then obtain ffom this
an optimal process $\theta^{(c)}$ for the primal problem via (3.3).

In order to make headway with this program, let us start by in-

troducing the projection operator $\pi$ : $L^{2}(P)\rightarrow(G_{T}(\Theta))^{\perp}$ with the
property

(3.9) $E[(H-\pi(H))\cdot D]=0$ , $\forall H\in L^{2}(P)$ , $\forall D\in(G_{T}(\ominus))^{\perp}$

In particular,

(3.9)’ $E[(H_{1}-\pi(H_{1}))\cdot\pi(H_{2})]=0$ , $\forall H_{1}$ , $H_{2}\in L^{2}(P)$ ,

and ffom (3.9)’ and $(2.10)’$ we have

(3.10) $E[\pi(1)]=E[\pi^{2}(1)]>0$ .

Proposition 3.1. The value of the dual problem in (3.7), namely

(3.10) $\overline{V}(c)=\triangle\sup_{D\in D}\frac{(E(DH)-c)^{2}}{E(D^{2})}$ ,
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can be computed as

(3.12) $\tilde{V}(c)=E[\pi^{2}(H-c)]$ , $\forall c\in \mathbb{R}$ .

The supremum in (3.11) is attained by

(3.13) $\tilde{D}_{c}=\triangle\frac{\pi(H-c)}{E[\pi(H-c)]}$ , $\forall c\neq\hat{c}=\triangle\frac{E[\pi(H)]}{E[\pi(1)]}$ ;

it is not attained for $c=\hat{c}$ .

For every $c\neq\hat{c}$ , we shall call the random variable $\tilde{D}_{c}\in D$ of (3.13)
the “density of the dual-optimal signed martingale measure” in $P_{s}(\Theta)$ ,
namely

(3.14) $\tilde{Q}_{c}(A)=\triangle\int_{A}\tilde{D}_{c}dP$ , $A\in F$ .

Remark 3.1 : Suppose that for some $h\in \mathbb{R}$ we have

(3.15) $E(DH)=h$ , $\forall D\in D$ .

(For instance, this is the case when $H$ is of the form (2.5).) Then the
dual value function of (3.11) becomes

(3.16) $\tilde{V}(c)=\frac{(h-c)^{2}}{\inf_{D\in D}E(D^{2})}$

and, for $c\neq h$ , the dual-optimal $\tilde{D}_{c}$ of (3.13) coincides with

(3.17) $\tilde{D}=\triangle\arg\min_{D\in D}E(D^{2})=\frac{\pi(1)}{E[\pi(1)]}=E(\tilde{D}^{2})+R\in D$

for some $R\in(G_{T}(\ominus))^{\perp\perp}$ , and $E(\tilde{D}^{2})=1/E[\pi(1)]\geq 1$ , as we shall
establish below. Following Schweizer (1996), we shall call $\overline{D}$ the “density
of the variance-optimal signed martingale measure”

(3.18) $\tilde{Q}(A)=\triangle\int_{A}\tilde{D}dP$ , $A\in F$

in $P_{s}(\ominus)$ . This terminology should be clear ffom (3.5) and the definition
in (3.17).

$\blacksquare$ Proof of Proposition 3.1 : For every $D\in D$ , we have

$E(DH)-c=E[D(H-c)]=E[D\cdot\pi(H-c)]$
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thanks to (3.9). Thus, from the Cauchy-Schwarz inequality,

$(E(DH)-c)^{2}=(E[D\cdot\pi(H-c)])^{2}\leq E(D^{2})\cdot E[\pi^{2}(H-c)]$ ,

which implies
$\tilde{V}(c)\leq E[\pi^{2}(H-c)]$ .

Now these last two inequalities are valid as equalities, if and only if we
can find $\tilde{D}_{c}\in D$ of the form

(3.13)’ $\overline{D}_{c}=$ const . $\pi(H-c)$ ,

where the constant has to be chosen so that $E(\overline{D}_{c})=1$ . This is impos-
sible to do if $E[\pi(H-c)]=E[\pi(H)-c\cdot\pi(1)]$ is equal to zero, i.e., if
$c=\hat{c}$ as in (3.13); in other words, the supremum of (3.11) cannot be
attained in this case. But for $c\neq\hat{c}$ , the normalizing constant in (3.13)’
can be taken as $1/E[\pi(H-c)]$ , leading to the expression of (3.13) and
to (3.12) as well.

It remains to show that (3.12) holds even for $c=\hat{c}$ . For this, let $ c_{n}=\triangle$

$c-1/n$ , $n\in \mathbb{N}$ and

$\varphi_{n}=\triangle\pi(H-c_{n})$ , $\varphi=\triangle\pi(H-c)$ , $\tilde{D}_{c_{n}}=\frac{\varphi_{n}}{E(\varphi_{n})}\in D$

so that

$\frac{(E(\tilde{D}_{c_{n}}H)-c)^{2}}{E(\overline{D}_{c_{n}}^{2})}=\frac{(E(\tilde{D}_{c_{n}}H)-c_{n}-1/n)^{2}}{E(\overline{D}_{c_{n}}^{2})}$

$=\frac{(E(\tilde{D}_{c_{n}}H)-c_{n})^{2}}{E(\tilde{D}_{c_{n}}^{2})}+\frac{1/n^{2}}{E(\tilde{D}_{c_{n}}^{2})}-\frac{2}{n}.\frac{E[\tilde{D}_{c_{n}}(H-c_{n})]}{E(\tilde{D}_{c_{n}}^{2})}$

$=E[\pi^{2}(H-c_{7\iota})]+\frac{1/n^{2}}{E(\tilde{D}_{c_{n}}^{2})}-\frac{2}{n}E[\pi(H-c_{n})]$

$=E(\varphi_{n}^{2})+\frac{1/n^{2}}{E(\tilde{D}_{c_{n}}^{2})}-\frac{2}{n}E(\varphi_{n})$

$\rightarrow E(\varphi^{2})=E[\pi^{2}(H-c)]$

as $n$ $\rightarrow\infty$ . We have used the inequality $o<1/E(\overline{D}_{c_{n}}^{2})\leq 1$ ; the facts

$\varphi_{7l}-\varphi=\pi(1)/n\rightarrow 0a.s.$ , $|\varphi_{n}|\leq|\varphi|+\pi(1)\in L^{2}(P)$ ; the Dominated
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Convergence Theorem; and the observation that, for $c\neq\hat{c}$ , we have

(3.19)

$\underline{E[\tilde{D}_{c}\cdot(H-c)]}\underline{E[\tilde{D}_{c}\cdot\pi(H-c)]}=$

$E(\tilde{D}_{c}^{2})$ $E(\tilde{D}_{c}^{2})$

$=\frac{E[\pi^{2}(H-c)]}{E[\pi(H-c)]}$ . $\frac{(E[\pi(H-c)])^{2}}{E[\pi^{2}(H-c)]}=E[\pi(H-c)]$

from (3.9)’, (3.13). $\square $

$\blacksquare$ Proof of (3.17) : For any $D\in D$ , we have

1 $=(E(D\cdot 1))^{2}=(E(D\cdot\pi(1)))^{2}\leq E(D^{2})\cdot E[\pi^{2}(1)]$ ,

from (3.9) and the Cauchy-Schwarz inequality. Equality holds if and
only if

$ D=\tilde{D}=\triangle$ const . $\pi(1)$ ,

and the normalizing constant has to be chosen so that $E(\tilde{D})=1$ , namely,

equal to $1/E[\pi(1)]$ . We conclude that $\overline{D}=\pi(1)/E[\pi(1)]$ satisfies

(3.20) $E(D^{2})\geq\frac{1}{E[\pi^{2}(1)]}=\frac{1}{E[\pi(1)]}=E(\tilde{D}^{2})$ , $\forall D\in D$ .

On the other hand, since

(3.21) $ 1=\pi(1)+\eta$ for some $\eta\in(G_{T}(\ominus))^{\perp\perp}$ ,

we have $\tilde{D}=(1-\eta)/E[\pi(1)]=E(\tilde{D}^{2})+R$ , with $R=-\eta/E[\pi(1)]$ . $\square $

Remark 3.2 : If $G_{T}(\ominus)$ is closed in $L^{2}(P)$ , then (3.21) becomes

(3.21)’ 1 $=\pi(1)+G_{T}(\xi^{1})$ , for some $\xi^{1}\in\Theta$

and (3.17), (3.20) give

(3.22) $\tilde{D}=E(\tilde{D}^{2})+G_{T}(\tilde{\xi})$ , with $\tilde{\xi}=\triangle-E(\tilde{D}^{2})\cdot\xi^{1}\in\ominus$ .

\S 4. Results

We are now in a position to use the duality developed in the previous
section in order to provide solutions to Problems 2.1 and 2.2. First, a
lemma from Schweizer (1996), pp. 230-231; we provide the proof for
completeness.
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Lemma 4.1. Suppose that the infimum in (2.13) is attained by some
$\theta^{(c)}\in\Theta$ . Then this process satisfies

(4.1) $E\{$$H-c-G_{T}(\theta^{(c)})]$ $=\frac{E(\tilde{D}H)-c}{E(\tilde{D}^{2})}$ and

(4.2) $E[H-c-G_{T}(\theta^{(c)})]^{2}=\frac{c^{2}-2c\cdot E(DH)}{E(\tilde{D}^{2})}+E[\pi^{2}(H)]$ ,

in the notation of (3.9) and (3.17).

Proof of (4.1) : The assumption implies that, for any given $\xi\in\ominus$ ,

the function

$f(\epsilon)=\triangle E[H-c-G_{T}(\theta^{(c)}+\in\xi)]^{2}$

$=\epsilon^{2}\cdot E[G_{T}^{2}(\xi)]-2\epsilon\cdot E[($$H-c-G_{T}(\theta^{(c)}))\cdot G_{T}(\xi)]+V(c)$

attains its minimum over $\mathbb{R}at\in=0$ . This gives $f’(0)=0$ , or equiva-
lent

(4.3) $E[($$H-c$ $-G_{T}(\theta^{(c)}))\cdot G_{T}(\xi)]$ $=0$ , $\forall\xi\in\Theta$ .

Let us also notice that the mapping

(4.4) $D\mapsto E(\tilde{D}D)$ is constant on $D$ ,

since we have

$E(\tilde{D}^{2})-E(\tilde{D}D)=E[\tilde{D}(\tilde{D}-D)]=E[\pi(1)(\tilde{D}-D)]/E[\pi(1)]$

$=E(\tilde{D}-D)/E[\pi(1)]=0$

thanks to (3.9).

Now denote $\gamma=\triangle E[H-c-G_{T}(\theta^{(c)})]$ . If $\gamma=0$ , then the random
variable

$D_{1}=\triangle\tilde{D}+(H-c-G_{T}(\theta^{(c)}))$

belongs to $D$ by virtue of (4.3), and (4.4) implies

$0=E[\tilde{D}(D_{1}-\tilde{D})]=E[\tilde{D}(H-c-G_{T}(\theta^{(c)}))]=E(\tilde{D}H)-c$ ,
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so that (4.1) holds. If $\gamma\neq 0$ , then $ D_{2}=\triangle[H-c-G_{T}(\theta^{(c)})]/\gamma$ is in $D$ ,

and by (4.4) once again:

$E(\tilde{D}^{2})=E(\tilde{D}D_{2})=\frac{1}{\gamma}(E(\tilde{D}H)-c)$ ,

and so (4.1) holds in this case too. $\square $

$\blacksquare$ Proof of (4.2) : From (4.3), the random variable $H-c-G_{T}(\theta^{(c)})$ be-

longs to the closed subspace $(G_{T}(\ominus))^{\perp}$ of (2.11), so we have

$E[H-c-G_{T}(\theta^{(c)})]^{2}$

$=$ $E([H-c-G_{T}(\theta^{(c)})]\cdot[$$H-\pi(H)+\pi(H)-c-G_{T}(\theta^{(c)})])$

$=$ $E(\{$$H-c-G_{T}(\theta^{(c)})]\cdot[\pi(H)-c])$

$=$ $E[\pi^{2}(H)]-cE[\pi(H)]-c\frac{E(\tilde{D}H)-c}{E(\tilde{D}^{2})}$

thanks to (4.3), (3.9) and (4.1). The equation (4.2) now follows from

(4.5) $E(\tilde{D}H)=E(\tilde{D}^{2})\cdot E[\pi(H)]$ .

In order to check (4.5), recall (3.17), (3.20) and use (3.9)’ repeatedly, to
wit:

(4.6) $\frac{E(\tilde{D}H)}{E(\tilde{D}^{2})}=E[H\pi(1)]=E[\pi(H)\pi(1)]=E[\pi(H)]$ .

$\square $

Theorem 4.1. (i) Suppose that there exists some $\theta^{(c)}\in\ominus which$

attains the infimum in (2.13). Then this $\theta^{(c)}$ satisfies

(4.7) $H-c-G_{T}(\theta^{(c)})$ $=\pi(H-c)$ ,

and there is no duality gap in (3.7), namely

(4.8)

$V(c)=\tilde{V}(c)$ $=$ $E[\pi^{2}(H-c)]$

$(E(\tilde{D}H)-c)^{2}$
.

$=$ $\overline{E(\tilde{D}^{2})}+E[\pi^{2}(H)]-\frac{(E\pi(H))^{2}}{E[\pi(1)]}$ .
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(ii) Conversely, suppose there exists some $\theta^{(c)}\in\ominus that$ sabisfies (4-7);

then this $\theta^{(c)}$ attains the infimum in (2.13), and the equalities of (4-8)

hold.

$\blacksquare$ Proof of (4.8), Part (i) : Under the assumption of (i), we claim that

$V(c)$ $=$ $E(H-c-G_{T}(\theta^{(c)}))^{2}$

(4.9) $=$
$\frac{(E(\tilde{D}H)-c)^{2}}{E(\overline{D}^{2})}+E[\pi^{2}(H)]-(E\pi(H))^{2}\cdot E(\tilde{D}^{2})$

$=$ $E[\pi^{2}(H-c)]=\tilde{V}(c)$ ,

which clearly proves (4.8) in light of the last equality in (3.20). Indeed,
the first equality in (4.9) holds by assumption, whereas the second is a
consequence of (4.2), (4.5). The third equality is a consequence of (4.6),
(3.20) and (4.2), thanks to the simple computation

$E[\pi^{2}(H-c)]$ $=$ $E(\pi(H)-c\cdot\pi(1))^{2}$

$=$ $E[\pi^{2}(H)]+c^{2}\cdot E[\pi^{2}(1)]-2c\cdot E[\pi(1)\pi(H)]$

$=$ $E[\pi^{2}(H)]+\frac{c^{2}-2c\cdot E(\tilde{D}H)}{E(\tilde{D}^{2})}$ .

Finally, the last equality in (4.9) is just (3.12).

$\blacksquare$ Proof of (4.7), Part (i); $c\neq\hat{c}$ : Let us write (3.2) with $\theta\equiv\theta^{(c)}$ ,
$D\equiv\tilde{D}_{c}$ as in (3.13), and

$k\equiv k_{c}=\triangle k_{\overline{D}_{c},c}=\frac{E(\tilde{D}_{c}H)-c}{E(\tilde{D}_{c}^{2})}$

as in (3.6): namely,

(4.10) $(H-c$ $-G_{T}(\theta^{(c)}))^{2}+2k_{c}\tilde{D}_{c}(c+G_{T}(\theta^{(c)}))$

$\geq 2k_{c}\tilde{D}_{c}H-(k_{c}\tilde{D}_{c})^{2}$ , $a.s$ .
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Taking expectations in (4.10), and recalling the optimality of $\theta^{(c)}$ as well
as Proposition 3.1, we obtain

$V(c)$ $=$ $E(H-c-G_{T}(\theta^{(c)}))^{2}$

(4.11) $\geq$ $-k_{c}^{2}E(\tilde{D}_{c}^{2})+2k_{c}(E(\tilde{D}_{c}H)-c)$

$=$
$\frac{(E(\tilde{D}_{c}H)-c)^{2}}{E(\tilde{D}_{c}^{2})}=\tilde{V}(c)$

.

But ffom (4.8) we know that (4.11) actually holds as equality, which
means that the left-hand side and the right-hand side of (4.10) have the
same expectation. In other words, (4.10) must hold as equality, which
we know happens only if (3.3) holds, namely only if

$H-c-G_{T}(\theta^{(c)})=k_{c}\tilde{D}_{c}=\frac{E(\tilde{D}_{c}H)-c}{E(\tilde{D}_{c}^{2})}\frac{\pi(H-c)}{E[\pi(H-c)]}=\pi(H-c)$ ,

holds $a.s.$ , thanks to (3.19).
$\blacksquare$ Proof of (4.7), part (i); $c=\hat{c}$ : In this case we shall need a new kind
of duality, namely with

(4.12) $\mathcal{L}=\triangle\{L\in(G_{T}(\theta))^{\perp}/E(L)=0\}$

replacing the space $D$ of (2.9); the elements of $\mathcal{L}$ will be the dual (adjoint)
variables in this new duality. We begin by writing (3.1) with $x=c+$
$G_{T}(\theta)$ , $y=2L$ for arbitrary $\theta\in\Theta$ , $L\in \mathcal{L}$ :

(4.13) $(H-c-G_{T}(\theta))^{2}+2L(c+G_{T}(\theta))\geq 2LH-L^{2}$ ,

with equality if and only if

(4.14) $H-c-G_{T}(\theta)=L$

holds $a.s$ . Taking expectations in (4.13), we obtain

$E$ $(H-c -G_{T}(\theta))^{2}$ $\geq$ $E[2L(H-c)-L^{2}]$

(4.15) $=$ $E[2L\cdot\pi(H-c)-L^{2}]$

$=$ $E[\pi^{2}(H-c)]-E(L-\pi(H-c))^{2}$

This suggests that we should read (4.13)-(4.15) with $\theta\equiv\theta^{(c)}$ , the el-
ement of $\Theta$ that attains the infimum in (2.13) and is thus optimal for
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Problem 2.2, and $L\equiv\tilde{L}=\triangle\pi(H-c)$ , noting that $E(\overline{L})=0$ since
$c=\hat{c}=E[\pi(H)]/E[\pi(1)]$ . With these choices, the le $ft$-most member
of (4.15) becomes

$E(H-c-G_{T}(\theta^{(c)}))^{2}=V(c)$ ,

whilst its right-most member is $E[\pi^{2}(H-c)]=\tilde{V}(c)$ . From (4.8) we
know that these two quantities are equal, so the two sides of (4.13) have
the same expectation. This means that (4.13) must holds as equality,
which happens only if (4.14) is valid, namely

$H-c-G_{T}(\theta^{(c)})=\pi(H-c)$ , $a.s$ .

$\blacksquare$ Proof of Part (ii) : Suppose there exists some $\theta^{(c)}\in\Theta$ that satisfies
(4.7); then

$E(H-c-G_{T}(\theta^{(c)}))^{2}=E[\pi^{2}(H-c)]=\tilde{V}(c)$

from Proposition 3.1. But we also have

$\tilde{V}(c)\leq V(c)\leq E(H-c-G_{T}(\theta^{(c)}))^{2}$ ,

thanks to (3.7) and (2.13). In other words, these last two inequalities are
valid as equalities, $\theta^{(c)}$ attains the infimum in (2.13), and (4.8) holds.

$\square $

Remark 4-1 : The case of $G_{T}(\ominus)$ closed.
If $G_{T}(\ominus)$ is closed in $L^{2}(P)$ , then the infimum in (2.13) is attained,
as was assumed in Lemma 4.1 and in Theorem 4.1(i). In this case we

have of course $G_{T}(\ominus)=(G_{T}(\ominus))^{\perp\perp}$ , and every $H\in L^{2}(P)$ admits a
decomposition of the form

(4.16) $H=\pi(H)+G_{T}(\xi^{H})$ for some $\xi^{H}\in\Theta$ .

In particular, there exists $\xi^{1}\in\ominus so$ that (3.21) holds, and thus

$H-c-\pi(H-c)=[H-\pi(H)]-c[1-\pi(1)]=G_{T}(\xi^{H}-c\xi^{1})$ .

Comparing this expression with (4.7), we conclude that (4.7) is satisfied
with the choice

(4.17) $\theta^{(c)}=\xi^{H}-c\xi^{1}$ .

According to Theorem 4.1(ii), the process $\theta^{(c)}\in\ominus of(4\cdot 17)$ is then
optimal for Problem 2.2, and $(4\cdot 8)$ holds.
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Example 4.1. F\"ollmer-Schweizer decomposition. The as-
sertion at the end of Remark 4.1 remains valid even if $G_{T}(\Theta)$ is not
closed in $L^{2}(P)$ , provided that (3.21) and (4.16) still hold. Consider,
for example, the case of a semimartingale $X(\cdot)\in S^{2}(P)$ and of a ran-
dom variable $H\in L^{2}(P)$ which admits the so-called “F\"ollmer-Schweizer

decomposition” ; this means that $H$ can be written in the form $H=$

$h+G_{T}(\zeta^{H})+L^{H}(T)$ of (2.6), for $h=E(H)$ , some $\zeta^{H}\in\Theta$ , and some
martingale $L^{H}(\cdot)\in \mathcal{M}_{0}^{2}(P)$ that satisfies the property (2.7).

Suppose that (3.21) is also satisfied; then $\pi(H)=h\pi(1)+L^{H}(T)$

and we have $H-\pi(H)=h(1-\pi(1))+G_{T}(\zeta^{H})=G_{T}(h\xi^{1}+\zeta^{H})$ , so
we may take $\xi^{H}\equiv h\xi^{1}+\zeta^{H}$ in (4.16) and

(4.17)’ $\theta^{(c)}\equiv(h-c)\cdot\xi^{1}+\zeta^{H}$

in (4.7). The process $\theta^{(c)}$ of (4.17)’ is then optimal for the Problem 2.2,
i.e., attains the infimum in (2.13), which can be readily computed as

$V(c)=(h-c)^{2}\cdot E[\pi(1)]+E(L^{H}(T))^{2}$

This simple result may be compared with Theorem 3 and Proposition
18 in Schweizer (1994).

We are now in a position to discuss the solution of Problem 2.1 as
well.

Theorem 4.2. Suppose that $G_{T}(\Theta)$ is closed in $L^{2}(P)$ . Then the
value of Problem 2.1 is given as

(4.18) $V=V(\hat{c})=E[\pi^{2}(H)]-\frac{(E[\pi(H)])^{2}}{E[\pi(1)]}$

with the notation

(4.19) $\hat{c}=\frac{E[\pi(H)]}{E[\pi(1)]}=E(\tilde{D}H)=E(\frac{d\tilde{Q}}{dP}H)$

of (3.13). Furthermore, the infimum in (2.4) is attained by the pair
$(\hat{c},\hat{\theta})$ with $\hat{c}$ as in (4 $\cdot$ 19) and with

(4.20) $\hat{\theta}=\triangle\theta^{(\hat{c})}=\xi^{H}-\hat{c}\xi^{1}$

Proof : Immediate from Theorem 4.1 and Remark 4.1, when it is

$overc\in \mathbb{R}observedt.h$
at the number $\hat{c}$ of (4.19) minimizes the expression of

$(4.8)\square $
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Note that when the signed measure $\overline{Q}$ of (3.8) is a probability mea-
sure (i.e., when $P[\pi(1)\geq 0]=1$ ), the quantity of (4.19) is just the
expectation of the random variable $H$ under the dual-optimal measure
$\tilde{Q}$ . Sufficient conditions are spelled out in the next section.

Remark $4\cdot 2$ : Variance Minimization. If $G_{T}(\Theta)$ is closed in $L^{2}(P)$ ,

then the process $\hat{\theta}$ of (4.20) also

(4.21) minimizes Var $(H-G_{T}(\theta))$ , over all $\theta\in\ominus$ .

This is because for any $\theta\in\ominus$ , and with $c_{\theta}=\triangle E[H-G_{T}(\theta)]$ , we have:

Var $(H-G_{T}(\theta))$ $=$ $E(H-c_{\theta}-G_{T}(\theta))^{2}$

$\geq$ $E(H-\hat{c}-G_{T}(\hat{\theta}))^{2}=Var(H-G_{T}(\hat{\theta}))$ ,

from Theorem 4.2.

More generally, for any given $c\in \mathbb{R}$ , the process $\theta^{(c)}\in O-$ of (4.17)
has the “mean-variance efficiency” property

(4.2

$\{$

2)

Var $(H-G_{T}(\theta^{(c)}))\leq$ Var $(H-G_{T}(\theta))$ , for any
$\theta\in\ominus$ that satisfies

$E[H-G_{T}(\theta)]=E[H-G_{T}(\theta^{(c)})]\}$ .

Indeed, let $\mu_{c}=\triangle E[H-G_{T}(\theta^{(c)})]$ and observe that, for any $\theta\in\Theta$

with $E[H-G_{T}(\theta)]=\mu_{c}$ , we have

Var $(H-G_{T}(\theta))$

$=$ $Var(H-c-G_{T}(\theta))=E(H-c-G_{T}(\theta))^{2}-(\mu_{c}-c)^{2}$

$\geq$ $E(H-c-G_{T}(\theta^{(c)}))^{2}-(E(H-c-G_{T}(\theta^{(c)})))^{2}$

$=$ Var $(H-c-G_{T}(\theta^{(c)}))=Var(H-G_{T}(\theta^{(c)}))$ .

Remark $4\cdot 3$ : Mean-Variance Frontier. Suppose that $G_{T}(\ominus)$ is closed

in $L^{2}(P)$ , that we have $P[\pi(1)\neq E(\pi(1))]>0$ ; this implies $E(\tilde{D}^{2})>1$

in (3.5), hence $E[\pi(1)]<1$ . For some given $m\in \mathbb{R}$ , consider the
following problem:

(4.20) $\{TominimizethevarianceVar(H-G_{T}(\theta))over\theta\in\ominus withE[H-G_{T}(\theta)]=m.’\}$

In view of the property (4.22), it suffices to show that we can find $c\equiv c_{m}$

such that

(4.24) $E[H-G_{T}(\theta^{(c)})]$ $=m$ .
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Then the solution of the problem (4.23) will be given by $\theta^{(c)}\in\Theta$ as
in (4.17), with $c\equiv c_{m}$ . Now ffom (4.1) we have $E[H-G_{T}(\theta^{(c)})]=$

$c+\frac{E(\overline{D}H)-c}{E(\overline{D}^{2})}$ , so that (4.24) amounts to

$c=c_{m}=\triangle\frac{m\cdot E(\tilde{D}^{2})-E(\tilde{D}H)}{E(\tilde{D}^{2})-1}=\frac{m-E[\pi(H)]}{1-E[\pi(1)]}$ ,

thanks to (4.6) and (3.20). We take these two Remarks 4.2, 4.3 ffom
Schweizer $(1994, 1996)$ .

\S 5. A Mathematical Finance Interpretation

The Problems 2.1, 2.2 have an interesting interpretation in the con-
text of Mathematical Finance, when one interprets the components $X_{i}(\cdot)$

of the semimartingale in (2.1) as the (discounted) prices of several risky
assets in a financial market. In this context, $\theta_{i}(t)$ represents the num-
ber of shares in the corresponding $i^{th}$ asset, held by an investor at
time $t$ $\in[0, T]$ . The resulting process $\theta\in\ominus stands$ then for the in-

vestor’s (self-financing) trading strategy, and $G_{t}(\theta)=\int_{0}^{t}\theta’(s)dX(s)=$

$\sum_{i=1}^{d}\int_{0}^{t}\theta_{i}(s)dX_{i}(s)$ for the (discounted) gains-from-trade associated
with the strategy $\theta$ by time $t$ .

Suppose now that the investor faces a contingent claim (liability)
$H$ at the end $T$ of the time-horizon $[0, T]$ . Starting with a given ini-
tial capital $c$ , and using a trading strategy $\theta\in\Theta$ , the investor seeks to
replicate this contingent claim $H$ as faithfully as possible, in the sense of
minimizing the expected squared-error loss $E(H-c-G_{T}(\theta))^{2}$ This
leads us to Problem 2.2. When the determination of the “right” initial
capital $c$ is also part of the problem, one is led naturally to the for-
mulation of Problem 2.1. Similarly, one may consider minimizing the
variance of the discrepancy $H-c$ $-G_{T}(\theta)$ over all trading strategies
$\theta\in\ominus$ (problem of (4.21)), or just over those strategies that guarantee
a given “mean-gains-ffom-trade” level $E[G_{T}(\theta)]=E(H)-m$ (problem
of (4.23) $)$ .

If one decides to stick with this interpretation, it makes sense to
ask whether the model for the financial assets represented by (2.1) ad-
mits arbitrage opportunities; these are trading strategies $\theta\in\ominus with$

$P[G_{T}(\theta)\geq 0]=1$ and $P[G_{T}(\theta)>0]>0$ . To this effect, let $A$

be an increasing, predictable and RCLL process with values in $[0, \infty)$

and $A(0)=0$ , $\langle M\rangle_{i}<<A$ for $i=1$ , $\cdots$ , $d$ , and suppose that the pro-
cesses $M$ $=(M_{1}, \ldots, M_{d})$ and $B=(B_{1}, \ldots, B_{d})$ , in the decomposition
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$X=X(0)+M+B$ of (2.1) for the semimartingale $X=(X_{1, }\ldots, X_{d})$ ,

satisfy

(5.1) $B_{i}(\cdot)$ $<<$ $\langle M\rangle_{i}(\cdot)$

(5.2) $B_{i}(t)$ $=$ $\int_{0}^{t}\gamma_{i}(s)$ dA(s), $o\leq t\leq T$

(5.3) $\langle M_{i}, M_{j}\rangle(t)$ $=$ $\int_{0}^{t}\sigma_{ij}(s)$ dA(s), $o\leq t\leq T$

for $i=1$ , $\cdots$ , $d$ and $j=1$ , $\cdots$ , $d$ . Here $\gamma(\cdot)=(\gamma_{1}(\cdot), \cdots, \gamma_{d}(\cdot))’$ and
$\sigma(\cdot)=\{\sigma_{ij}(\cdot)\}_{1\leq i,j\leq d}$ are suitable predictable processes that satisfy

(5.4) $\sigma(t)\lambda(t)=\gamma(t)$ , $a.e$ . $t$ $\in[0, T]$

almost surely, for some $\lambda(\cdot)=(\lambda_{1}(\cdot), \cdots, \lambda_{d}(\cdot))’$ in the space

(5.5)

$\mathcal{L}^{2}(M)=\triangle\{\theta$ : $[0, T]\rightarrow \mathbb{R}^{d}predictable/$

$E\int_{0}^{T}\theta’(s)\sigma(s)\theta(s)$ dA(s) $=E(\int_{0}^{T}\theta’(s)dM(s))^{2}<\infty\}$ .

Following Schweizer (1996), we shall refer to (5.1)-(5.4) as the structure
conditions on the semimartingale $X(\cdot)$ .

Under these conditions, it can be shown that the semimartingale
$X(\cdot)$ does not admit arbitrage opportunities, and that we have equality
$P_{s}(\ominus)=P_{s}^{2}(X)$ in Remark 2.2 (cf. Ansel&Strieker (1992); Schweizer
(1995); and Schweizer (1996), Lemma 12). If, in addition, $X(\cdot)$ has con-
tinuous $p\underline{a}ths$ , then it can be shown that the variance-optimal martingale
measure $Q$ of (3.18) is nonnegative, namely a probability measure:

(5.6) $P[\tilde{D}\geq 0]=1$ and $\tilde{Q}(\Omega)=E(\tilde{D})=1$

in (3.17), (3.18). This $\tilde{Q}$ is in fact equivalent to $P$ (i.e., $P[\pi(1)>0]=1$ ),
under the extra assumption

(5.7) $\{$

$X(\cdot)$ is a $Q-$ local martingale under some
probability measure $Q\sim P$ with

$(dQ/dP)\in L^{2}(P)\}$

(cf. Schweizer (1996), Theorem 13; Delbaen &Schachermayer (1996),
Theorem 1.3). This condition (5.7) also implies that

(5.8) the mapping $\theta\mapsto G_{T}(\theta)$ is injective;
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cf. [DMSSS], Lemma 3.5.

Always under the structure conditions (5.1)-(5.4) on the semimartin-
gale $X(\cdot)$ of (2.1), consider now the so-called mean-variance tradeoff
process

$K(t)=\triangle\int_{0}^{t}\lambda’(s)dB(s)=\int_{0}^{t}\lambda’(s)\sigma(s)\lambda(s)dA(s)=\langle\int\lambda’dM\rangle(t)$ ,

$0\leq t\leq T$ .

If this process is P-a.s. bounded, then

(5.9) $\Theta=\mathcal{L}^{2}(M)$

in the notation of (2.2), (5.5) and

(5.10) $G_{T}(\ominus)$ is closed in $L^{2}(P)$

([Ph.R.S.], Corollary 4 and below; Schweizer (1996), Lemma 12). See
also [DMSSS] where conditions both necessary and sufficient for (5.10)
are presented.

Remark 5.1 : In the one-dimensional case $d=1$ , the structure con-
ditions (5.1)-(5.4) are satisfied if there exists a process $\lambda\in \mathcal{L}^{2}(M)$ with

(5.11) $X(t)=X(0)+M(t)+\int_{0}^{t}\lambda(s)d\langle M\rangle(s)$ , $o\leq t\leq T$ .

In this case, the mean-variance tradeoff process of (5.9) takes the form

(5.12) $K(t)=\int_{0}^{t}\lambda^{2}(s)d\langle M\rangle(s)$ .

Remark 5.2 : Suppose that $X(\cdot)$ has continuous paths, and that
(5.11) and (5.7) hold. If the random variable $H\in L^{2}(P)$ is of the form
$H=h+G_{T}(\zeta^{H})$ in (2.5), then

$H-\pi(H)=G_{T}(h\xi^{1}+\zeta^{H})$

and the injectivity property (5.8) allows us to make the identifications

(5.13) $\xi^{H}=h\xi^{1}+\zeta^{H}$ , $\theta^{(c)}=(h-c)\cdot\xi^{1}+\zeta^{H}$

in (4.16) and (4.17), respectively.

More generally, under the assumptions of Remark 5.2 but now for
any $H\in L^{2}(P)$ , we have the Kunita-Watanabe decomposition under

the variance-optimal probability measure $\tilde{Q}$ of (3.18), namely

(5.14) $\tilde{E}[H|\mathcal{F}(t)]=\overline{h}+G_{t}(\overline{\zeta}^{H})+\tilde{L}^{H}(t)$ , $o\leq t\leq T$
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(cf. Ansel&Strieker (1993), or Theorem 3 in Rheinl\"ander&Schweizer

(1997) $)$ . Here $\tilde{E}$ denotes expectation with respect to the probability

measure $\overline{Q},\tilde{h}=\triangle\overline{E}(H)=E(\tilde{D}H),\tilde{\zeta}^{H}\in\Theta$ , and $\tilde{L}^{H}\in S^{2}(P)$ is a
$\tilde{Q}$-martingale with $\overline{L}^{H}(0)=0$ and

(5.15) $\langle\tilde{L}^{H}$ , $X_{i}\rangle(\cdot)\equiv 0$ , $\forall i=1$ , $\cdots$ , $d$ .

On the other hand, since $\tilde{L}^{H}(T)$ belongs to the space $L^{2}(P)$ , we also
have its decomposition

(5.16) $\tilde{L}^{H}(T)=G_{T}(\tilde{\theta}^{H})+\pi(\overline{L}^{H}(T))$

from the closedness of $G_{T}(\Theta)$ , where $\overline{\theta}^{H}\in\Theta$ is such that

(5.17) $E[(\tilde{L}^{H}(T)-G_{T}(\tilde{\theta}^{H}))\cdot G_{T}(\theta)]=0$ , $\forall\theta\in\ominus$ .

Back in (5.14), this gives $H=\tilde{h}+G_{T}(\tilde{\zeta}^{H}+\tilde{\theta}^{H})+\pi(\tilde{L}^{H}(T))$ , so that

$(H-c)-\pi(H-c)$ $=$ $(\tilde{h}-c)(1-\pi(1))+G_{T}(\overline{\zeta}^{H}+\tilde{\theta}^{H})$

$=$ $G_{T}((\tilde{h}-c)\xi^{1}+\tilde{\zeta}^{H}+\tilde{\theta}^{H})$

from (3.21)’. Again, the injectivity property (5.8) allows us to make the
identification

(5.18) $\theta^{(c)}=(\tilde{h}-c)\xi^{1}+\tilde{\zeta}^{H}+\tilde{\theta}^{H}$

in (4.17). Finally, let us consider the positive $\overline{Q}$-martingale

(5.19) $\tilde{D}(t)$ $=\triangle\tilde{E}[\tilde{D}|\mathcal{F}(t)]$
$=$ $E(\tilde{D}^{2})+G_{t}(\tilde{\xi})$

$=$ $E(\tilde{D}^{2})[1-G_{t}(\xi^{1})]$ , $0\leq t\leq T$

obtained by taking conditional expectations in (3.22) under $\tilde{Q}$ .

We are now in a position to identify the process $\tilde{\theta}^{H}$ appearing in
(5.16), (5.18) and state the following result, which simplifies and gener-
alizes Theorems 5, 6 of Rheinl\"ander&Schweizer (1997).

Theorem 5.1. Suppose that the semimartingale $X(\cdot)\in S^{2}(P)$ has
continuous paths, and that (5.7), (5.11) hold. Then the optimal process
$\theta^{(c)}\in\Theta$ for Problem 2.2 takes the form

(5.20) $\theta^{(c)}=\tilde{\zeta}^{H}+[(E(\tilde{D}H)-c)+E(\tilde{D}^{2})\int_{0}.$ $\frac{d\tilde{L}^{H}(s)}{\tilde{D}(s)}]\cdot\xi^{1}$

in the notation of (5.14), (5.19).
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Sketch of Proof: The $\tilde{Q}$-martingales $\tilde{N}(t)=\triangle\int_{0}^{t}(1/\tilde{D}(s))d\tilde{L}^{H}(s)$ ,
$0\leq t\leq T$ and $\tilde{D}(\cdot)$ of (5.19) are orthogonal, since

$\langle\tilde{N},\tilde{D}\rangle(\cdot)=\sum_{i=1}^{d}\int_{0}$

.

$\frac{\tilde{\xi}_{i}(s)}{\tilde{D}(s)}d\langle\overline{L}^{H}, X_{i}\rangle(s)\equiv 0$

from (5.15) and (5.19). Thus, integration by parts gives

(5.21)

$\tilde{L}^{H}(T)$ $=$ $\int_{0}^{T}\tilde{D}(s)d\tilde{N}(s)=\tilde{D}(T)\tilde{N}(T)-\int_{0}^{T}\tilde{N}(s)\tilde{\xi}’(s)dX(s)$

$=$ $\tilde{D}\tilde{N}(T)-G_{T}(\tilde{N}\tilde{\xi})$ ,

and transforms (5.17) into

(5.22) $E[G_{T}(\overline{\theta}^{H}+\tilde{N}\tilde{\xi})\cdot G_{T}(\theta)]=\tilde{E}[\tilde{N}(T)G_{T}(\theta)]$ , $\forall\theta\in\ominus$ .

But the right-hand-side of (5.22) vanishes, since

$\tilde{E}[\tilde{N}(T)G_{T}(\theta)]$ $=$ $\tilde{E}[\int_{0}^{T}\frac{d\tilde{L}^{H}(s)}{\tilde{D}(s)}\cdot\sum_{i=1}^{d}\int_{0}^{T}\theta_{i}(s)dX_{i}(s)]$

$=$ $\tilde{E}\sum_{i=1}^{d}\int_{0}^{T}\frac{\theta_{i}(s)}{\tilde{D}(s)}d\langle\tilde{L}^{H}, X_{i}\rangle(s)=0$

thanks to (5.15). Thus the left-hand-side of (5.22) also vanishes for every
$\theta\in\ominus$ , which suggests

$\tilde{\theta}^{H}=-\tilde{N}\tilde{\xi}=E(\tilde{D}^{2})\xi^{1}\int_{0}$

.

$\frac{d\tilde{L}^{H}(s)}{\overline{D}(s)}$

and leads to (5.20) after substitution into (5.18). $\square $

In order to justify the legitimacy of the above argument, particularly
the steps leading to (5.22), one needs to show that the random variable

$\sup_{0\leq t\leq T}|\overline{D}(t)\int_{0}^{t}(1/\tilde{D}(s))d\tilde{L}^{H}(s)|$ belongs to $L^{2}(P)$ ; this is carried out

on pp. 1820-1823 of Rheinl\"ander&Schweizer (1997).



Least-squares approximation of random variables by stochastic integrals 165

References

[1] Ansel, J.-P. &STRICKER, C. (1992) Lois de martingale, densit\’es et
d\’ecomposition de F\"ollmer-Schweizer. Ann. Inst. Henri Poincar\’e 28,

375-392.
[2] ARAI, T. (2002) Mean-Variance Hedging for Discontinuous Semimartin-

gales. Tokyo J. Mathematics, to appear.
[3] ARAI, T. (2002) Mean-Variance Hedging for General Semimartingales.

Preprint, Tokyo University of Science.
[4] CLARK, J.M.C. (1970) The representation of functional of Brownian

motion as stochastic integrals. Annals of Mathematical Statistics 41,
1282-1295. Correction, 1778.

[5] DUFFIE, D. & RICHARDSON, H.R. (1991) Mean-variance hedging in con-
tinuous time. Annals of Applied Probability 1, 1-15.

[6] DELBAEN, F., MONAT P., SCHACHERMAYER, W., SCHWEIZER, M. &
STRICKER, C. [DMSSS] (1997) Weighted norm inequalities and hedging
in incomplete markets. Finance Stochastics 1, 181-227.

[7] DELBAEN, F. & SCHACHERMAYER, W. (1996) The variance-optimal mar-
tingale measure for the continuous processes. Bernoulli 2, 81-105.

[8] F\"OLLMER, H. & SCHWEIZER, M. (1991) Hedging of contingent claims
under incomplete information. In Applied Stochastic Analysis (M.H.A.
Davis and R.J. Elliott, eds.), Stochastics Monographs 5, 389-414. Gor-
don&Breach, New York.

[9] F\"OLLMER, H. & SONDERMANN, D. (1986) Hedging of non-redundant con-
tingent claims. In Contributions to Mathematical Economics: Essays in

Honor of G. Debreu (W. Hildenbrand and A. MasColell, eds.), 205-223.
North-Holland, Amsterdam.

[10] GOURI\’EROUX C., LAURENT J.P. & PHAM, H. [G.L.Ph.] (1998) Mean-
Variance Hedging and Num\’eraire. Mathematical Finance 8, 179-200.

[10] GRANDITS, P. (1999) The $p$-optimal martingale measure and its asymp-
totic relation with the minimal-entropy martingale measure. Bernoulli
5, 225-247.

[12] HIPP, C. (1993) Hedging general claims. Proceedings of the 3rd AFIR
Colloquium, Rome 2, 603-613.

[13] KARATZAS, I. &SHREVE, S. E. (1991) Brownian Motion and Stochastic
Calculus. Second Edition, Springer-Verlag, New York.

[14] KUNITA, H. &WATANABE, S. (1967) On square integrable martingales.

Nagoya Mathematical Journal 30, 209-245.
[15] LAURENT, J. &PHAM, H. (1999) Dynamic programming and mean-

variance hedging. Finance Stochastics 3, 83-110.
[16] MARKOWITZ, H. (1952) Portfolio Selection. Journal of Finance 8, 77-91.
[17] MARKOWITZ, H. (1959) Portfolio Selection: Efficient Diversification of

Investment. J. Wiley&Sons, New York. Second Edition by B. Black-
well, Oxford, 1991.



166 C. Hou and I. Karatzas

[18] MONAT, P. &STRICKER, C. (1995) F\"ollmer-Schweizer decomposition
and mean-variance hedging for general claims. Annals of Probability
23, 605-628.

[18] M\"ULLER, S.M. (1985) Arbitrage Pricing of Contingent Claims. Lecture
Notes in Economics and Mathematical Systems 254. Springer-Verlag,
New York.

[20] PHAM, H., RHEINL\"ANDER, T. &SCHWEIZER, M. [Ph.R.S] (1998) Mean-
variance hedging for continuous processes : new proofs and examples.
Finance {?}Stochastics 2, 173-198.

[21] RHEINL\"ANDER, T. &SCHWEIZER, M. (1997) On $L^{2}$-projections on a space
of stochastic integrals, Annals of Probability 25, 1810-1831.

[22] SCH\"AL, M. (1992) On quadratic cost criteria for option hedging. Mathe-
matics of Operations Research 19, 121-131.

[23] SCHWEIZER, M. (1992) Mean-variance hedging for general claims. Annals

of Applied Probability 2, 171-179.
[24] SCHWEIZER, M. (1994) Approximating random variables by stochastic

integrals. Annals of Probability 22, 1536-1575.
[25] SCHWEIZER, M. (1995a) On the minimal martingale measure and the

F\"ollmer-Schweizer decomposition. Stochastic Analysis {?} Applications
13, 573-599.

[26] SCHWEIZER, M. (1995b) Variance-optimal hedging in discrete time. Math-
ematics of Operations Research 20, 1-32.

[27] SCHWEIZER, M. (1996) Approximation pricing and the variance-optimal
martingale measure. Annals of Probability 24, 206-236.

[28] SCHWEIZER, M. (2001) A guided tour through quadratic hedging
approaches. In Handbook of Mathematical Finance: Option Pric-
ing, Interest Rates and Risk Management (E.Jouini, J.Cvitanic and
M.Musiela, eds.), 632-670. Cambridge University Press.

Chunli Hou
Nomura Securities International
2 World Financial Center, Building B
New York, NY 10281
chou@us.nomura.com

Ioannis Karatzas
Departments of Mathematics and Statistics
619 Mathematics Building
Columbia University
New York, NY 10027
ik@math.columbia.edu



Advanced Studies in Pure Mathematics 41, 2004
Stochastic Analysis and Related Topics

pp. 167-187

Quadratic Wiener Functionals, Kalman-Bucy

Filters, and the KdV Equation

Nobuyuki Ikeda and Setsuo Taniguchi

Dedicated to Professor Kiyosi It\^o on his 88th birthday

Abstract.

Soliton solutions and the $tau$ function of the $KdV$ equation are
studied within the stochastic analytic ffamework. A key role is played
by the It\^o formula and the Cameron-Martin transformation.

\S Introduction

In this paper, we investigate the Korteweg-de Vries $(KdV)$ equation
within the ffamework of stochastic analysis. We shall study soliton solu-
tions with the help of the It\^o formula, whose original form was achieved
in 1942 ([9]). The Cameron-Martin transformation, which was estab-
lished in the early 1940’s([2, 3]), also plays a key role.

Let $x>0$ and $\mathcal{W}^{n}$ be the space of $R^{n}$-valued continuous functions
on $[0, x]$ starting at the origin, and let $P$ be the Wiener measure on $\mathcal{W}^{n}$ .

Following the idea of Cameron-Martin [3], we can show that

(1) $I(x, t):=\int_{\mathcal{W}^{1}}\exp[-\frac{a^{2}}{2}\int_{0}^{x}w(y)^{2}dy-\frac{a}{2}\tanh(a^{3}t)w(x)^{2}]P(dw)$

$=(\cosh(a^{3}t))^{1/2}(\cosh(ax+a^{3}t))^{-1/2}$ for any $a>0$ ,

where $w(y)\in R$ denotes the position of $w$
$\in \mathcal{W}^{1}$ at time $y$ (see \S 4 and

[8] $)$ . Then $u(x, t)=-4\partial_{x}^{2}\log I(x, t)$ , where $\partial_{x}=\partial/\partial x$ , is a 1-soliton
solution of the $KdV$ equation

(2) $\frac{\partial u}{\partial t}=\frac{3}{2}u\frac{\partial u}{\partial x}+\frac{1}{4}\frac{\partial^{3}u}{\partial x^{3}}$ .
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$X^{\sigma}\in \mathcal{G}$ ,

A reflectionless potential with scattering data $\eta_{j}$ , $m_{j}>0,1\leq j\leq n$ ,

is by definition a function

(3) $q(x)=-2\frac{d^{2}}{dx^{2}}$ $\log$ $\det(I+A(x )$

where

(4) $A(x)=(\frac{\sqrt{m_{i}m_{j}}}{\eta_{i}+\eta_{j}}e^{-(\eta_{i}+\eta_{j})x})_{1\leq i,j\leq n}$

We denote by $Q_{n}$ the totality of all reflectionless potentials with scat-
tering data consisting of $2n$ positive numbers. Let $\Sigma$ be the set of all
pairs $\sigma=(\sigma_{+}, \sigma_{-})$ of non-negative measures $\sigma\pm on(-\infty, 0]$ such that
$\int_{(-\infty,0]}e^{\lambda\sqrt{-z}}\sigma_{\pm}(dz)<\infty$ for any $\lambda>0$ . For $\sigma\in\Sigma$ , set

$G(u, v; \sigma)=\frac{1}{4}\int_{-\infty}^{0}\frac{1}{\sqrt{-z}}(e^{\sqrt{-z}(u+v)}-e^{\sqrt{-z}|u-v|})\sigma_{+}(dz)$

$+\frac{1}{4}\int_{-\infty}^{0}\frac{1}{\sqrt{-z}}(e^{-\sqrt{-z}|u-v|}-e^{-\sqrt{-z}(u+v)})\sigma_{-}(dz)$ .

We consider a family $\mathcal{G}$ of all Gaussian processes $X^{\sigma}$ with mean 0 and
covariance function $G(u, v;\sigma)$ , $\sigma\in\Sigma$ . We also consider the totality $Q$

of all functions $q^{\sigma}$ , $\sigma\in\Sigma$ , defined by

$q^{\sigma}(x)=-4\frac{d^{2}}{dx^{2}}\log E[\exp(-\frac{1}{2}\int_{0}^{x}|X^{\sigma}(y)|^{2}dy)]$ ,

where $E$ stands for the expectation with respect to the underlying prob-
ability measure. In [12], Kotani showed that $Q$ includes all $Q_{n}$ , $n$ $=$

$1$ , 2, $\ldots$ , and any element of $Q$ is obtained as a limit of reflectionless
potentials in the topology of uniform convergence on compacts.

Furthermore, it is well known that $q(x, t)$ defined by (3) and (4)
with $m_{j}(t)=m_{j}\exp[-2\eta_{j}^{3}t]$ instead of $m_{j}$ , $1\leq j\leq n$ , gives a rise of an
$n$-soliton solution $u(x, t)=-q(x, t)$ of the $KdV$ equation (2).

The facts mentioned above indicate that soliton solutions of the
$KdV$ equation may be represented in terms of Gaussian processes. In
this paper, we shall establish such an expression of $n$ soliton solutions
and the $tau$ function, which plays a fundamental role in the study of the
$KdV$ hierarchy (see [14, 16, 17]), in the Wiener space.

If both components $\sigma\pm of\sigma\in\Sigma$ are discrete measures, then the
corresponding Gaussian process belongs to $\bigcup_{n\in N}\mathcal{G}_{n}$ , where $\mathcal{G}_{n}$ is a set
of Gaussian processes obtained as superpositions of $n$ independent 1-
dimensional Ornstein-Uhlenbeck processes (for the definition of $\mathcal{G}_{n}$ , see
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1.2). In this case, the correspondence between $\mathcal{G}$ and $Q$ is given con-
cretely; for every $n$ $\in N$ , we shall give a mapping ffom $\mathcal{G}_{n}$ to $Q_{n}$ . See \S 2.
Moreover, not only reflectionless potentials but also $n$-soliton solutions
and the $tau$ function of the $KdV$ equation can be represented in terms
of Gaussian processes in $\bigcup_{n\in N}\mathcal{G}_{n}$ . See \S 4. These expressions show that
“a superposition” to make an $n$-soliton solution out of 1-soliton ones
can be realized in the Wiener space. Further, we can explicitly see how
speed parameters of 1-solitons reflect on those of the $n$-solitons obtained
as superpositions. See \S 4.

An exact expression of Wiener integrals of Wiener functionals of the
form $\exp[-(a^{2}/2)\int_{0}^{x}X(y)^{2}dy+R(x)]$ of $X\in\bigcup_{n\in N}\mathcal{G}_{n}$ plays a basic role
in this paper, where $R(x)$ is a Wiener functional which varies according
as we deal with reflectionless potentials, $n$-soliton solutions, and the $tau$

function. Such exact expressions are achieved with the help of the It\^o

formula and the Cameron-Martin transformation. The Cameron-Martin
transformation we deal with is determined by a second order ordinary
differential equation. When a 1-dimensional Wiener process, which is in
$\mathcal{G}_{1}$ , is considered, the equation is the Sturm-Liouville one employed in
[3]. The ordinary differential equations in this paper appear in different
features ffom place to place, while they correspond to the same Wiener
integral. Namely, we encounter several types of $n\times n$-matrix Riccati
equations and second order $n\times n$-matrix and first order $2n\times n$-matrix
linear ordinary differential equations. These different features are unified
in terms of Grassmannians. See 1.1. It should be also mentioned that
the above Riccati equations play an important role in the theory of the
linear filtering problem by Kalman-Bucy. See \S 3.

Before closing this section, we note that the class $\mathcal{G}$ of Gaussian
processes is closely related to the one studied by Hida-Streit [5] and
Okabe [15].

The authors are grateful to Professor S. Kotani for his helpful com-
ments and informing us of his recent achievement privately. They also
thank Professor M. Yor for stimulating discussions with him. The sub-
ject of the paper grew out when the first author was visiting the Math-
ematics Research Centre, the University of Warwick in summer in 2001
at the invitation of Professor K.D. Elworthy, and discussed with Profes-
sor M. Kleptsyna. The second author had a chance to talk about the
prototype of this paper with Professor Elworthy while he visited Japan
in 2001. It is a great pleasure of the authors to thank both of them.
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\S 1. Cameron-Martin transformation –Ornstein-Uhlenbeck
process

1.1. Ordinary differential equations

We first recall several known facts about ordinary differential equa-
tions. For $n\in N$ , we set $A_{n}=\prime \mathcal{P}_{n}\times C_{n}$ , where

$P_{n}=$ {$p=$ ($p_{1}$ , $\ldots,p_{n})\in R^{n}$ : $p_{i}\neq p_{j}$ for $i\neq j$ },
$C_{n}=$ { $c=$ ( $c_{1}$ , $\ldots$ , $c_{n})\in R^{r\iota}$ : $c_{i}>0$ for $1\leq i\leq n$ }.

For $(p, c)\in A_{n}$ and $a>0$ , we define $n\times n$-matrices

$D_{p}=diag[p_{1}, \ldots,p_{n}]$ and $E_{p,c}(a)=D_{p}^{2}+a^{2}c\otimes c$ .

We shall often write simply $D$ and $E(a)$ for $D_{p}$ and $E_{p,c}(a)$ , respectively.
Let $\Phi_{a}(y)$ be a solution of a first order $2n\times n$-matrix ordinary dif-

ferential equation

(5) $\Phi’+M_{p,c,a}\Phi=0$ , where $M_{p,c,a}=\left(\begin{array}{ll}D_{p} & I\\a^{2}c\otimes c & -D_{p}\end{array}\right)$

and $f^{/}$ stands for the derivative of $f$ . For $n$ $\times n$-matrices $A$ and $B$ ,

we often write $\Phi_{a}(y;A, B)$ to emphasize the initial condition $\Phi_{a}(0)=$

$\left(\begin{array}{l}A\\B\end{array}\right)$ . Denote by $\phi_{a}(y)$ and $\psi_{a}(y)$ the upper and the lower half $n\times n-$

submatrices of $\Phi_{a}(y)$ , respectively;

$\Phi_{a}(y)=\left(\begin{array}{l}\phi_{a}(y)\\\psi_{a}(y)\end{array}\right)$ .

Then $\phi_{a}(y)$ obeys a second order ordinary differential equation

(6) $\phi^{JJ}-E(a)\phi=0$ .

In the cases we deal with in this paper, $\phi_{a}(y)$ is always shown to be
invertible for any $y\geq 0$ . Moreover, if $\Phi_{a}(y)=\Phi_{a}(y;I, 0)$ , which is the
case investigated in \S 2 and \S 3, then $\psi_{a}(z)$ is also invertible for $z>0$

(see a paragraph after Theorem 2.1). Hence, in the remainder of this
subsection, we assume that $\phi_{a}(y)$ and $\psi_{a}(z)$ are both invertible for any
$y\geq 0$ and $z>0$ . Then $\Phi_{a}(y)$ determines an $n$-ffame in a $2n$-dimensional
vector space $V(2n)$ over $R$ , and hence gives a rise of a dynamics on
the Grassmannian $GM(n, V(2n))$ consisting of all $n$-dimensional vector
subspaces of $V(2n)$ . Moreover, $\Phi_{a}(y)$ is identified in $GM(n, V(2n))$ with

$\left(\begin{array}{l}I\\\psi_{a}(y)\phi_{a}^{-1}(y)\end{array}\right)=\left(\begin{array}{l}I\\\gamma_{a}(y)\end{array}\right)$ ,
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where $\phi_{a}^{-1}(y)=(\phi_{a}(y))^{-1}$ and $\gamma_{a}(y)=\psi_{a}(y)\phi_{a}^{-1}(y)=-\phi’(y)\phi_{a}^{-1}(y)-$

$D$ . Due to the Cole-Hopf transformation, $\gamma_{a}$ obeys the $n$ $\times n$-matrix
Riccati equation

$\gamma’-\gamma D-D\gamma-\gamma^{2}+a^{2}c\otimes c=0$

(see $[1\underline{8]}$). We next consider an $n$-ffame obtained by reversing the time of
$\Phi_{a}(\cdot);\Phi_{a}(y)=\Phi_{a}\underline{(}x-y)$ . Set $\mu(y)=\gamma_{a}(x-y)$ and $\iota/(y)=\mu(y)^{-1}$ , $y<x$ .

Then, for $y<x$ , $\Phi_{a}(y)$ determines a point in $GM(n, V(2n))$ identified

with $\left(\begin{array}{l}I\\\mu(y)\end{array}\right)$ and $(_{I}^{\nu(y)})$ . Thus a dynamics of $\overline{\Phi}_{a}(y)$ , $y<x$ , in the

Grassmannian is expressed in two different ways by Riccati equations

$\mu’+\mu D+D\mu+\mu^{2}-a^{2}c\otimes c=0$ ,

$lJ’-l/D-D\iota/+\iota/(a^{2}c\otimes c)_{l/}-I=0$ .

The second equation is a Riccati equation which an error matrix appear-
ing in the linear filtering theory obeys (see \S 3 and [1]).

Let $\alpha_{ij}(y)$ be the $(i,j)$-component of the $n$-frame $\Phi_{a}(y)$ , $ 0\leq i\leq$

$2n$ $-1,0\leq j\leq n-1$ . The Pl\"ucker coordinate of $\Phi_{a}(y)$ is given by

$\alpha_{I}(y)=\det[(\alpha_{i_{k}j}(y))_{0\leq k,j\leq n-1}]$ , $I$
$=(i_{0, }\ldots, i_{n-1})\in I$ ,

where I is the totality of $I$ $=(i_{0}, \ldots, i_{n-1})\in Z^{n}$ with $0\leq i_{0}<\cdots<$

$i_{n-1}\leq 2n-1$ . We set $F=\left(\begin{array}{ll}-D & -I\\-a^{2}c\otimes c & D\end{array}\right)$ and define a $\left(\begin{array}{l}2n\\n\end{array}\right)$ $\times$ $\left(\begin{array}{l}2n\\n\end{array}\right)-$

matrix $G$ by

$ G\alpha_{I}=\sum_{k=0}^{n-1}\sum_{j=0}^{2n-1}F_{i_{k}j}\alpha_{i_{0},,i_{k-1},j,i_{k+1},,i_{n-1}}\ldots\ldots$ , $I$
$=(i_{0}, \ldots, i_{n-1})\in I$ ,

where, for $0\leq k_{0}$ , $\ldots$ , $k_{n-1}\leq 2n-1$ , $\alpha_{k_{0}},$ . ’
$k_{n-1}$ is defined in the same

manner as $\alpha_{I}$ . We then have a dynamics on the Grassmannian in terms
of the Pl\"ucker coordinate;

$\frac{d}{dy}(\alpha_{I}(y))_{I\in \mathcal{T}}=G(\alpha_{I}(y))_{I\in I}$ .

It should be mentioned that

$\alpha_{I}(y)=\det\phi_{a}(y)$ for $I$ $=(0,1, \ldots, n -1)$ .

For related results, see also [4].
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1.2. Cameron-Martin transformation

For $p\in P_{n}$ , let $\xi_{p}(y)={}^{t}(\xi_{p}^{1}(y), \ldots, \xi_{p}^{n}(y))$ be the unique solution
of the $R^{n}$-valued stochastic differential equation

(7) $d\xi(y)=dw(y)+D\xi(y)dy$ , $\xi(0)=0$ .

We set $\mathcal{O}\mathcal{U}_{n}=\{\xi_{p} : p\in P_{n}\}$ . For $(p, c)\in A_{n}$ , we define a superposition
of 1-dimensional Ornstein-Uhlenbeck processes $\xi_{p}^{1}(y)$ , $\ldots$ , $\xi_{p}^{n}(y)$ by

$ X_{p,c}(y)=\langle c, \xi_{p}(y)\rangle$ ,

where $\langle\cdot, \cdot\rangle$ denotes the inner product on $R^{n}$ . $X_{p,c}(y)$ , $0\leq y\leq x$ , is a
continuous Gaussian process with mean 0 and covariance function

(8) $R(u, v)=\sum_{j=1}^{n}\frac{c_{j}^{2}}{2p_{j}}(e^{p_{j}(u+v)}-e^{p_{j}|u-v|})$ , $o\leq u$ , $v$ $\leq x$ .

We set

$\mathcal{G}_{n}=\{X_{p,c} : (p, c)\in A_{n}\}=\{\langle c, \xi_{p}\rangle : (p, c)\in A_{n}\}$ .

Obviously, $aX_{p,c}=X_{p,ac}$ for $a>0$ , and hence $\mathcal{G}_{n}$ is closed under
the multiplication by positive numbers. Moreover, $X_{p,c}\in \mathcal{G}_{n}$ is invari-
ant under permutation in the sense that $X_{p’,c’}=X_{p,c}$ if $(p, c)\in A_{n}$ ,
$\sigma$ is a permutation of $\{1, \ldots, n\}$ , and $p’={}^{t}(p_{\sigma(1)}, \ldots,p_{\sigma(n)})$ , $c’=$

${}^{t}(c_{\sigma(1)}, \ldots, c_{\sigma(n)})$ .

Given an $n\times n$-matrix valued $C^{1}$ function $\kappa$ on $[0, x]$ with $\det\kappa(y)\neq$

$0$ for each $y\in[0, x]$ , we define two Cameron-Martin transformations $K$

and $L$ on $\mathcal{W}^{n}$ by

(9) $K[w](y)=w(y)-\int_{0}^{y}\kappa’(u)\kappa^{-1}(u)w(u)du$ ,

(10) $L[w](y)=w(y)-\kappa(y)\int_{0}^{y}(\kappa^{-1})’(u)w(u)du$ , $w$ $\in \mathcal{W}^{n}$ .

By a change of variables formula on $[0, x]$ , we see that

(11) $K[L[w]]=L[K[w]]=w$ for any $w$ $\in \mathcal{W}^{n}$ .

Set $\overline{\theta}(y)=\kappa’(y)\kappa^{-1}(y)$ and let $\hat{\theta}$ be an $n\times n$-matrix valued continuous
function on $[0, x]$ . We then have
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Lemma 1.1. For any measurable $f$ : $\mathcal{W}^{n}\rightarrow[0, \infty)$ , it holds that

(12) $\int_{\mathcal{W}^{n}}f(\xi_{p})\exp[-\frac{a^{2}}{2}\int_{0}^{x}X_{p,c}(y)^{2}dy$

$+\frac{1}{2}\langle(\overline{\theta}(x)-D)\xi_{p}(x), \xi_{p}(x)\rangle-\frac{1}{2}\int_{0}^{x}|\hat{\theta}(y)\xi_{p}(y)|^{2}dy]dP$

$=\int_{\mathcal{W}^{n}}f(w)\exp[-\frac{1}{2}\int_{0}^{x}\langle E(a)w(y), w(y)\rangle dy$

$+\frac{1}{2}\langle\overline{\theta}(x)w(x), w(x)\rangle-\frac{1}{2}\int_{0}^{x}|\hat{\theta}(y)w(y)|^{2}dy]dPe^{-(x/2)trD}$ .

Proof. By using the Maruyama-Girsanov transformation ([8, 13,
19]), we obtain that

the leffi hand side of (12)

$=\int_{\mathcal{W}^{n}}f(w)\exp[-\frac{a^{2}}{2}\int_{0}^{x}\langle c, w(y)\rangle^{2}dy$

$+\frac{1}{2}\langle(\overline{\theta}(x)-D)w(x), w(x)\rangle-\frac{1}{2}\int_{0}^{x}|\hat{\theta}(y)w(y)|^{2}dy$

$+\int_{0}^{x}\langle Dw(y), dw(y)\rangle-\frac{1}{2}\int_{0}^{x}|Dw(y)|^{2}dy]P(dw)$ ,

where the identity may hold as $\infty=\infty$ . Applying the It\^o formula ([8,
13]) to $\langle Dw(x), w(x)\rangle$ , it is easily seen that this implies (12). Q.E.D.

Suppose that a solution $\phi_{a}(y)$ , $y\in[0, x]$ , of the ordinary differential
equation (6) satisfies the condition that $\det\phi_{a}(y)\neq 0,0\leq y\leq x$ , where
the initial condition is not specified. We set

(13) $\beta_{a,x}(y)=-(\phi_{a}’\phi_{a}^{-1})(x-y)$ ,

and denote by $\overline{\beta}_{a,x}(y)$ and $\hat{\beta}_{a,x}(y)$ its symmetric and skew-symmetric
parts, respectively. Let $\kappa_{a,x}(y)$ be the solution of the differential equa-
tion

$\kappa’(y)=\overline{\beta}_{a,x}(y)\kappa(y)$ , $\kappa(x)=I$ ,

and define linear transformations $K_{a,x}$ , $L_{a,x}$ : $\mathcal{W}^{n}\rightarrow \mathcal{W}^{n}$ by (9) and
(10) with $\kappa=\kappa_{a,x}$ .
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Proposition 1.1. For any bounded measurable $f$ : $\mathcal{W}^{n}\rightarrow[0, \infty)$ ,

it holds that

(14) $\int_{\mathcal{W}^{n}}f(\xi_{p})\exp[-\frac{a^{2}}{2}\int_{0}^{x}X_{p,c}(y)^{2}dy$

$+\frac{1}{2}\langle(\overline{\beta}_{a,x}(x)-D)\xi_{p}(x), \xi_{p}(x)\rangle-\frac{1}{2}\int_{0}^{x}|\hat{\beta}_{a,x}(y)\xi_{p}(y)|^{2}dy]dP$

$=(\det\phi_{a}(0))^{1/2}(e^{xtrD}\det\phi_{a}(x))^{-1/2}\int_{\mathcal{W}^{n}}foL_{a,x}dP$.

Proof. For the sake of simplicity, we write $\beta,\overline{\beta}$, and $\hat{\beta}$ for $\beta_{a,x}$ ,
$\overline{\beta}_{a,x}$ , and $\hat{\beta}_{a,x}$ , respectively. It follows ffom (6) that

(15) $\beta’=E(a)-\beta^{2}$ and $\overline{\beta}’=E(a)-\overline{\beta}^{2}-\hat{\beta}^{2}$ .

Since $tr\overline{\beta}=tr\beta$ , by virtue of the It\^o formula, we then have

$\frac{1}{2}\langle\overline{\beta}(x)w(x), w(x)\rangle$

$=\frac{1}{2}\int_{0}^{x}\langle E(a)w(y), w(y)\rangle dy+\frac{1}{2}\int_{0}^{x}|\hat{\beta}(y)w(y)|^{2}dy$

$+\int_{0}^{x}\langle\overline{\beta}(y)w(y), dw(y)\rangle-\frac{1}{2}\int_{0}^{x}|\overline{\beta}(y)w(y)|^{2}dy+\frac{1}{2}\int_{0}^{x}tr\beta(y)dy$ .

Combining this with Lemma 1.1, we have

(16) $\int_{\mathcal{W}^{n}}f(\xi_{p})\exp[-\frac{a^{2}}{2}\int_{0}^{x}X_{p,c}(y)^{2}dy$

$+\frac{1}{2}\langle(\overline{\beta}(x)-D)\xi_{p}(x), \xi_{p}(x)\rangle-\frac{1}{2}\int_{0}^{x}|\hat{\beta}(y)\xi_{p}(y)|^{2}dy]dP$

$=\int_{\mathcal{W}^{n}}f(w)\exp[\int_{0}^{x}\langle\overline{\beta}(y)w(y), dw(y)\rangle-\frac{1}{2}\int_{0}^{x}|\overline{\beta}(y)w(y)|^{2}dy]P(dw)$

$\times\exp[-\frac{x}{2}trD+\frac{1}{2}\int_{0}^{x}tr\beta(y)dy]$ .

Applying the Maruyama-Girsanov transformation to the equation

$dz(y)=dw(y)+\overline{\beta}(y)z(y)dy$ ,
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and noting that $\overline{\beta}=\kappa_{a,x}^{J}\kappa_{a,x}^{-1}$ , we obtain that

(17) $\int_{\mathcal{W}^{n}}(g\circ K_{a,x})(w)\exp[\int_{0}^{x}\langle\overline{\beta}(y)w(y), dw(y)\rangle$

$-\frac{1}{2}\int_{0}^{x}|\overline{\beta}(y)w(y)|^{2}dy]P(dw)=\int_{\mathcal{W}^{n}}gdP$

for any bounded measurable $g$ : $\mathcal{W}^{n}\rightarrow[0, \infty)$ . By the definition of $\beta$ ,

we have

(18) $\exp[\int_{0}^{x}tr\beta(y)dy]=\det\phi_{a}(0)(\det\phi_{a}(x))^{-1}$

By (11), combining (17) and (18) with (16), we obtain (14). Q.E.D.

1.3. Eigenvalues of $E(a)$

Let $(p, c)\in A_{n}$ and $a>0$ . We shall specify the eigenvalues of
$E(a)=E_{p,c}(a)$ . As for $p={}^{t}(p_{1}, \ldots,p_{n})$ , rearranging if necessary, we
may assume that there exist $m$ and $1\leq j(1)<\cdots<j(m)\leq n$ such
that

$|p_{j}|\leq|p_{j+1}|$ for $j=1,2$ , $\ldots$ , $n-1$ , $p_{j(\ell)}>0$ and $p_{j(\ell)+1}=$
$(H)_{m}$

$-p_{j(\ell)}$ for $\ell=1$ , $\ldots$ , $m$ , and $\#\{|p_{1}|, \ldots, |p_{n}|\}=n-m$ .

When $m=0$ , this conditions means that $|p_{1}|<|p_{2}|<\cdots<|p_{n}|$ .
If $n$ $=1$ , then $(H)_{0}$ holds. We define a Herglotz function $h_{p,c,a}$ on
$C^{+}=\{z\in C:Imz>0\}$ by

$h_{p,c,a}(z)=\frac{1}{2}\int_{0}^{\infty}\frac{1}{u-z}\{\sigma_{+}+\sigma_{-}\}(-du)$ ,

where

(19)
$\sigma_{+}(du)=2a^{2}.\sum_{i\cdot p_{i}\geq 0}c_{i}^{2}\delta_{-p_{i}^{2}}$

(du), $\sigma_{-}(du)$
$=2a^{2}.\sum_{i\cdot p_{i}<0}c_{i}^{2}\delta_{-p_{i}^{2}}$

(du)

(cf. [11]). Then $h_{p,c,a}(\lambda+t\sqrt{-1})$ converges to

$h_{p,c,a}(\lambda+0\sqrt{-1})=a^{2}\sum_{j=1}^{n}\frac{c_{j}^{2}}{p_{j}^{2}-\lambda}$ as $t\downarrow 0$ .

Under $(H)_{m}$ , the equation $h_{p,c,a}(r+0\sqrt{-1})=-1$ possesses $n$ $-m$

roots $0<r_{1}<\cdots<r_{n-m}$ such that $r_{j}^{1/2}\not\in\{p_{j(1)}, \ldots,p_{j(m)}\}$ , $j=$

$1$ , $\ldots$ , $n$ $-m$ . Take $\eta_{1}$ , $\ldots$ , $\eta_{n}\in R$ so that

$\{|\eta_{1}|, \ldots, |\eta_{n}|\}=\{p_{j(1)}, \ldots, p_{j(m)}, r_{1}^{1/2}, \ldots, r_{n-m}^{1/2}\}$ .
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Define an $n\times n$ matrix $U=(U_{ij})_{1\leq i,j\leq n}$ by

(20) $U_{ij}=\{$

$\frac{c_{i}}{|(D^{2}-r_{k}I)^{-1}c|(p_{i}^{2}-r_{k})}$ , if $\eta_{j}^{2}=r_{k}$ ,

$\frac{\delta_{i,j(\ell)+1}c_{j(\ell)}-\delta_{i,j(\ell)^{C}j(\ell)+1}}{(c_{j(\ell)}^{2}+c_{j(\ell)+1}^{2})^{1/2}}$ , if $\eta_{j}^{2}=p_{j(\ell)}^{2}$ .

Lemma 1.2. $U\in O(n)$ and it holds that

$E(a)=UR^{2}U^{-1}$ , where $R=diag[\eta_{1}, \ldots, \eta_{n}]$ .

Proof. It is easily checked that $p_{j(\ell)}^{2}$ is an eigenvalue of $E(a)$ with

eigenvector

$u={}^{t}(0,\ldots,0\tilde{j(\ell)-1}, -c_{j(\ell)+1}, c_{j(\ell)}, 0, \ldots, 0)$

.

Noting that $D^{2}-r_{j}I$ is invertible, we see that $r_{j}$ is an eigenvalue with
eigenvector $u=(D^{2}-r_{j}I)^{-1}c$ . Thus we have obtained $n$ distinct eigen-
values of $E(a)$ and the associated eigenvectors. In conjunction with the
symmetry of $E(a)$ , we obtain the desired assertion. Q.E.D.

\S 2. Reflectionless potential

For $(p, c)\in A_{n}$ and $a>0$ , define $\sigma=(\sigma_{+}, \sigma_{-})\in\Sigma$ by (19). Then
$G(u, v;\sigma)$ coincides with $a^{2}R(u, v)$ , the covariance function described in
(8). Hence we can identify $X^{\sigma}$ with $aX_{p,c}$ , and $\mathcal{G}_{n}\subset \mathcal{G}$ . We shall spell
out a correspondence between $\mathcal{G}_{n}$ and $Q_{n}$ .

Assuming $(H)_{m}$ , we define $0<r_{1}<\cdots<r_{n-m}$ as described before
Lemma 1.2. Define $0<\eta_{1}<\cdots<\eta_{n}$ and $m_{1}$ , $\ldots$ , $m_{n}>0$ by

$\{\eta_{1}, \ldots, \eta_{n}\}=\{p_{j(1)}, \ldots,p_{j(m)}, r_{1}^{1/2}, \ldots, r_{n-m}^{1/2}\}$ .

$m_{i}=\{$

$2\eta_{i}\frac{c_{j(\ell)+1}^{2}}{c_{j(\ell)}^{2}}\prod_{k\neq i}\frac{\eta_{k}+\eta_{i}}{\eta_{k}-\eta_{i}}\prod_{k\neq j(\ell),j(\ell)+1}\frac{p_{k}+\eta_{i}}{p_{k}-\eta_{i}}$ , if $i=j(\ell)$ ,

$-2\eta_{i}\prod_{k\neq i}\frac{\eta_{k}+\eta_{i}}{\eta_{k}-\eta_{i}}\prod_{k=1}^{n}\frac{p_{k}+\eta_{i}}{p_{k}-\eta_{i}}$ , otherwise.

Mention that $\eta_{j(\ell)}=p_{j(\ell)}$ , $\ell=1$ , $\ldots$ , $m$ . We set

(21) $I_{p,c,a}(x)=\int_{\mathcal{W}^{n}}\exp[-\frac{a^{2}}{2}\int_{0}^{x}X_{p,c}(y)^{2}dy]dP$.
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Theorem 2.1. Define $A(x)$ by (4) with the above scattering data
$\eta_{i}$ , $m_{i}>0$ , $i=1$ , $\ldots$ , $n$ . Then it holds that

(22) $\log(I_{p,c,a}(x))=-\frac{1}{2}\log\det(I+A(x))$

$+\frac{1}{2}\log\det(I+A(0))-\frac{x}{2}\sum_{i=1}^{n}(p_{i}+\eta_{i})$ .

In particular,

$4\frac{d^{2}}{dx^{2}}\log(I_{p,c,a}(x))=-2\frac{d^{2}}{dx^{2}}\log\det(I+A(x))$ .

Note that $I_{p,c,a}(x)$ is invariant under the permutation of parameters
$(p, c)$ in the sense as stated after (8). Thus, so is the reflectionless
potential associated with $I_{p,c,a}(x)$ .

The proof of the theorem is divided into two steps, each step being
a lemma. In the sequel, we write $R$ for $diag[\eta_{1}, \ldots, \eta_{n}]$ and let $\phi_{a}(y)$ be
the upper half of $\Phi_{a}(y;I, 0)$ . Then

(23) $\phi_{a}(y)=U\{\cosh(yR)-\sinh(yR)R^{-1}U^{-1}DU\}U^{-1}$ ,

where $U\in O(n)$ is defined by (20), and, for $n\times n$-matrix $A$ ,

$\cosh(A)=(e^{A}+e^{-A})/2$ and $\sinh(A)=(e^{A}-e^{-A})/2$ .

By computing the product matrix $\phi_{a}\psi_{a}$ , we see that $\phi_{a}(y)$ and $\psi_{a}(z)$ are
both invertible for $y\geq 0$ , $z>0$ . Then we can define $\beta_{a,x}$ by (13) with
this $\phi_{a}$ . Obviously $\beta_{a,x}(x)=D$ . Since $\beta_{a,x}$ obeys the Riccati equation
(15), it turns out to be symmetric. Applying Proposition 1.1, we obtain

(24) $I_{p,c,a}(x)=(\det\phi_{a}(0))^{1/2}(\det\phi_{a}(x))^{-1/2}e^{-(x/2)trD}$ .

In this expression, for the latter use, we left $\det\phi_{a}(0)$ while it is equal
to one. If $(H)_{0}$ holds, then we set

$X_{ij}=(p_{j}+r_{i}^{1/2})^{-1}$ , $Y_{ij}=(p_{j}-r_{i}^{1/2})^{-1}$ , $1\leq i$ , $j\leq n$ ,

$X=(X_{ij})_{1\leq i,j\leq n}$ , $Y=(Y_{ij})_{1\leq i,j\leq n}$ ,

$V(c)=diag[|(D^{2}-r_{1}I)^{-1}c|^{-1}, \ldots, |(D^{2}-r_{n}I)^{-1}c|^{-1}]$ ,

$\sigma(i)=sgn[\prod_{\beta=1}^{n}(p_{\beta}-\eta_{i})]$ , $b(i)=\sigma(i)\{-2\eta_{i}\frac{\prod_{\alpha\neq i}(\eta_{\alpha}^{2}-\eta_{i}^{2})}{\prod_{\beta=1}^{n}(p_{\beta}^{2}-\eta_{i}^{2})}\}^{1/2}$ ,

and $B=diag[b(1), \ldots, b(n)]$ .
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Lemma 2.1. Suppose that $(H)_{0}$ holds. Then it holds that

(25) $\phi_{a}(y)=-\frac{1}{2}UV(c)R^{-1}B(I+A(y))e^{yR}B^{-1}XC(c)$ ,

where $C(c)=diag[c_{1}, \ldots, c_{n}]$ . Moreover, the identity (22) holds.

Proof. Due to (23), we have

$\phi_{a}(y)=\frac{1}{2}UR^{-1}\{e^{yR}(RU^{-1}-U^{-1}D)+e^{-yR}(RU^{-1}+U^{-1}D)\}$ .

Set $Z=(Z_{ij})_{1\leq i,j\leq n}$ , where

$Z_{ij}=(p_{i}^{2}-r_{j})^{-1}$ , $1\leq i,j\leq n$ .

Then it holds that

$U=C(c)ZV(c)$ , $U^{-1}=V(c){}^{t}ZC(c)$ .

Since $R$ , $D$ , $C(c)$ , and $V(c)$ are all diagonal matrices, we have that

$RU^{-1}-U^{-1}D=-V(c)XC(c)$ , $RU^{-1}+U^{-1}D=V(c)YC(c)$ .

Hence we obtain

(26) $\phi_{a}(y)=-\frac{1}{2}UR^{-1}V(c)\{I-e^{-yR}YX^{-1}e^{-yR}\}e^{yR}XC(c)$ .

We now compute $YX^{-1}$ . Applying Cauchy’s identity (cf. [14])

(27) $\det((\frac{1}{\alpha_{i}+\beta_{j}})_{1\leq i,j\leq n})=\frac{\prod_{1\leq i<j\leq n}(\alpha_{i}-\alpha_{j})(\beta_{i}-\beta_{j})}{\prod_{i,j=1}^{n}(\alpha_{i}+\beta_{j})}$

for $\alpha_{1}$ , $\ldots$ , $\alpha_{n}$ , $\beta_{1}$ , $\ldots$ , $\beta_{n}\in C$ ,

to the cofactor matrix of $X$ , we obtain

$(X^{-1})_{k\ell}=\frac{\prod_{\alpha\neq\ell}(p_{k}+\eta_{\alpha})\prod_{\beta=1}^{n}(p_{\beta}+\eta\ell)}{\prod_{\beta\neq k}(p_{\beta}-p_{k})\prod_{\alpha\neq\ell}(\eta_{\alpha}-\eta_{\ell})}$ , $1\leq k$ , $\ell\leq n$ .

Using Lagrange’s interpolation formula

$\sum_{k=1}^{n}\frac{\prod_{j=1}^{n-1}(a_{k}+b_{j})\prod_{\beta\neq k}(a_{\alpha}-z)}{\prod_{\beta\neq k}(a_{\alpha}-a_{k})}=\prod_{j=1}^{n-1}(z+b_{j})$ , $z\in C$ ,

we have

$(YX^{-1})_{ij}=\frac{\prod_{\alpha\neq i}(\eta_{\alpha}+\eta_{i})}{\prod_{\beta=1}^{n}(p_{\beta}-\eta_{i})}\frac{2\eta_{i}}{\eta_{i}+\eta_{j}}\frac{\prod_{\beta=1}^{n}(p_{\beta}+\eta_{j})}{\prod_{\alpha\neq j}(\eta_{\alpha}-\eta_{j})}$ , $1\leq i,j\leq n$ .
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Since $sgn[(\prod_{\beta=1}^{n}(p_{\beta}+\eta_{i}))/(\prod_{\alpha\neq i}(\eta_{\alpha}-\eta_{i}))]=-\sigma(i)$ , it holds that

$b(i)\sqrt{m_{i}}=2\eta_{i}\frac{\prod_{\alpha\neq i}(\eta_{\alpha}+\eta_{i})}{\prod_{\beta=1}^{n}(p_{\beta}-\eta_{i})}$ , $\frac{\sqrt{m_{i}}}{b(i)}=-\frac{\prod_{\beta=1}^{n}(p_{\beta}+\eta_{i})}{\prod_{\alpha\neq i}(\eta_{\alpha}-\eta_{i})}$ , $1\leq i\leq n$ .

Hence

$(YX^{-1})_{ij}=-\frac{b(i)\sqrt{m_{i}}\sqrt{m_{j}}(b(j))^{-1}}{\eta_{i}+\eta_{j}}$ , $1\leq i,j\leq n$ .

Combining this with (26), we obtain (25).
The identity (25) implies

$\det\phi_{a}(0)(\det\phi_{a}(x))^{-1}=\det(I+A(0))(e^{xtrR}\det(I+A(x)))^{-1}$

Thus the second assertion follows from this and (24). Q.E.D.

Lemma 2.2. Let $m\geq 1$ and suppose that $(H)_{m}$ is satisfied. Then
(22) holds

$Proo/$. $For\in>0$ , set

$p_{i}^{\in}=\{$

$ p_{i}-\in$ , if $i=j(\ell)+1$ for some $\ell$ ,

$p_{i}$ , otherwise,
$1\leq i\leq n$ .

Choosing a sufficiently $sma\square \in>0$ , we may assume that

$|p_{1}^{\Xi}|<|p_{2}^{\Xi}|<\cdots<|p_{n}^{\mathcal{E}}|$ .

Let $0<r_{1}^{\in}<\cdots<r_{n}^{\Xi}$ be roots of $a^{2}\sum_{i=1}^{n}c_{i}^{2}/\{(p_{i}^{\Xi})^{2}-r\}=-1$ . Then it
holds that

(28) $(p_{i}^{\Xi})^{2}<r_{i}^{\in}<(p_{i+1}^{g})^{2}<r_{i+1}^{\epsilon}$ , $i=1,2$ , $\ldots$ , $n-1$ .

Define scattering data $\eta_{i}^{\Xi}$ , $m_{i}^{\Xi}>0$ , $i=1$ , $\ldots$ , $n$ , with these $p_{i}^{\Xi}$ ’s, $r_{i}^{\Xi}$ ’s and
$c_{i}$ ’s as described before Theorem 2.1. By Lemma 2.1, we have

$\log(I_{p^{\epsilon},c,a}(x))=-\frac{1}{2}\log\det(I+A^{\Xi}(x))$

$+\frac{1}{2}\log\det(I+A^{\Xi}(0))-\frac{x}{2}\sum_{i=1}^{n}(p_{i}^{\epsilon}+\eta_{i}^{\Xi})$

where $p^{\Xi}={}^{t}(p_{1}^{\epsilon}, \ldots,p_{n}^{\Xi})$ and $A^{\in}(x)$ is defined by (4) with $\eta_{i}^{\Xi}$ , $m_{i}^{\Xi}$ , $i=$

$1$ , $\ldots$ , $n$ . Since $p_{i}^{\Xi}\rightarrow p_{i}$ as $\in\downarrow 0$ , $i=1$ , $\ldots$ , $n$ , we have that

$\log(I_{p^{\Xi},c,a}(x))\rightarrow\log(I_{p,c,a}(x))$ $as\in\downarrow 0$ .
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Moreover, recalling that $\eta_{i}^{\in}=(r_{i}^{\in})^{1/2}$ , $i=1$ , $\ldots$ , $n$ , it follows ffom (28)
that $\eta_{i}^{\epsilon}\rightarrow\eta_{i}as\in\downarrow 0$ , $i=1$ , $\ldots$ , $n$ . Hence

$\sum_{i=1}^{n}(p_{i}^{\Xi}+\eta^{\Xi})\rightarrow\sum_{i=1}^{n}(p_{i}+\eta_{i})$ , as $\in\downarrow 0$ .

Thus the proof completes once we have shown the convergence of $A^{\in}(y)$

to $A(y)as\in\downarrow 0$ .
To see the convergence of $A^{\Xi}(y)$ , it suffices to show that $m_{i}^{\Xi}$ tends to

$m_{i}$ as $\in\downarrow 0$ for every $i=1$ , $\ldots$ , $n$ . If $i\neq j(\ell)$ for any $\ell$ , then it is easily
seen that $m_{i}^{\in}\rightarrow m_{i}as\in\downarrow 0$ . We now consider the case that $i=j(\ell)$ .

Since $\eta_{j(\ell)}^{\epsilon}\rightarrow\eta_{j(\ell)}=p_{j(\ell)}$ as $\in\downarrow 0$ ,

(29) $\frac{p_{j(\ell)}^{\epsilon}+\eta_{j(\ell)}^{\epsilon}}{p_{j(\ell)+1}^{\in}-\eta_{j(\ell)}^{\in}}\rightarrow-1$ , $as\in\downarrow 0$ .

It follows ffom (28) and the identity $a^{2}\sum_{j=1}^{n}c_{j}^{2}/\{(p_{j}^{\Xi})^{2}-r_{j(\ell)}^{\Xi}\}=-1$

that

$c_{j(\ell)}^{2}\{(p_{j(\ell)}+\in)^{2}-r_{j(\ell)}^{\Xi}\}+c_{j(\ell)+1}^{2}\{p_{j(\ell)}^{2}-r_{j(\ell)}^{\in}\}=O(\in^{2})$ , $as\in\downarrow 0$ .

This yields that

(30) $(p_{j(\ell)}^{\epsilon})^{2}-(\eta_{j(\ell)}^{\Xi})^{2}=\frac{-2p_{j(\ell)}c_{j(\ell)}^{2}}{c_{j(\ell)}^{2}+c_{j(\ell)+1}^{2}}\in+O(\in^{2})$ ,

(31) $(p_{j(\ell)+1}^{\in})^{2}-(\eta_{j(\ell)}^{\Xi})^{2}=\frac{2p_{j(\ell)}c_{j(\ell)+1}^{2}}{c_{j(\ell)}^{2}+c_{j(\ell)+1}^{2}}\in+O(\in^{2})$ , $as\in\downarrow 0$ .

Hence

$\frac{p_{j(\ell)+1}^{\in}+\eta_{j(\ell)}^{\in}}{p_{j(\ell)}^{\in}-\eta_{j(\ell)}^{\Xi}}\rightarrow c_{j(\ell)+1}^{2}c_{j(\ell)}^{-2}$ , $as\in\downarrow 0$ .

Combining this with (29) and the definition of $m_{j(\ell)}^{g}$ , we see that $ m_{j(\ell)}^{\in}\rightarrow$

$m_{j(\ell)}as\in\downarrow 0$ . Q.E.D.

Remark 2.1. (i) The exponent of the integrand in the right hand
side of (21) is a sum of a quadratic Wiener functional and a constant.
Hence the right hand side of (24) can be expressed in terms of the
Carleman-Fredholm determinant of the symmetric Hilbert-Schmidt op-
erator determining the quadratic Wiener functional. Moreover, $\phi_{a}$ is a
solution of the Jacobi equation associated with the Lagrangian related
to the Wiener functional (cf. [6, 7]).
(ii) In Theorem 2.1, for each $n$ $\in N$ , a mapping from $A_{n}$ to the space
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$\{(\eta_{1}\ldots, \eta_{n}, m_{1}\ldots, m_{n}) : 0<\eta_{1}<\cdots<\eta_{n}, m_{1}\ldots, m_{n}>0\}$ of scat-
tering data was established. If $n=2$ , the mapping is invertible.

\S 3. Filtering theory

In this section, we $sha\square $ see that the change of variables formula (24)
relates to the filtering theory. On the $(n+1)$-dimensional Wiener space
$\mathcal{W}^{n+1}$ , consider the following filtering problem.

$d\xi_{p}(y)=dw(y)+D\xi_{p}(y)dy$ , $\xi(0)=0$ , (system),

$dY(y)=db(y)+a\langle c, \xi_{p}(y)\rangle dy$ , $Y(0)=0$ , (observation),

where $(p, c)\in A_{n}$ , $a>0$ and $(w, b)\in \mathcal{W}^{7\iota}\times \mathcal{W}^{1}=\mathcal{W}^{n+1}$ . Let $\mathcal{F}_{y}^{Y}$ be

the $\sigma$-field generated by $Y(u)$ , $u\leq y$ . A solution $\hat{\xi}_{p}(y)$ to the filtering
problem with respect to $Y(u)$ , $u\leq y$ , is realized as a function whose
error matrix is minimal in the space of error matrices of $R^{n}$ -valued
$F_{y}^{Y}$ -measurable functions, where the order is the one inherited from the

non-negative definiteness ([1, Theorem 4.1]). In our case, $\hat{\xi}_{p}(y)$ coincides
with the conditional expectation $E[\xi_{p}(y)|\mathcal{F}_{y}^{Y}]$ of $\xi_{p}(y)$ given $F_{y}^{Y}$ , which
is called the Kalman-Bucy filter. The corresponding error matrix

$P_{a}(y)=\int_{\mathcal{W}^{n+1}}(\xi_{p}(y)-\hat{\xi}_{p}(y))^{t}(\xi_{p}(y)-\hat{\xi}_{p}(y))dP$

obeys the $n\times n$-matrix Riccati equation

$P’=DP+PD-P(a^{2}c\otimes c)P+I$ , $P(0)=0$ ,

which we have already seen as an equation for $\nu(y)$ in 1.1. Let $\rho_{p,c,a}(y)$

be the error variance of $X_{p,c}(y)$ ;

$\rho_{p,c,a}(y)=\int_{\mathcal{W}^{n+1}}|X_{p,c}(y)-E[X_{p,c}(y)|F_{y}^{Y}]|^{2}dP$.

It then holds that

$\rho_{p,c,a}(y)=tr[(c\otimes c)P_{a}(y)]$ .

Let $\Phi_{a}(y;I, 0)=$ $\left(\begin{array}{l}\phi_{a}(y)\\\psi_{a}(y)\end{array}\right)$ . As was seen before (24), $\det\phi_{a}(y)\neq 0$ ,

$y\geq 0$ . We set $\gamma_{a}(y)=\psi_{a}(y)\phi_{a}^{-1}(y)$ and $\gamma_{a,x}(y)=\gamma_{a}(x-y)$ . Note that

$\gamma_{a,x}’=-D\gamma_{a,x}-\gamma_{a,x}D-\gamma_{a,x}^{2}+a^{2}(c\otimes c)$ on $[0, x]$ , $\gamma_{a,x}(x)=0$ .
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Then it holds that

$\{\det(I-\gamma_{a},{}_{xa}P)\}’=(-tr[a^{2}(c\otimes c)P_{a}+\gamma_{a,x}])\det(I-\gamma_{a},{}_{xa}P)$ .

Since $P(0)=\gamma_{a,x}(x)=0$ ,

$1=\det(I-\gamma_{a,x}(x)P_{a}(x))=\exp[-\int_{0}^{x}tr[a^{2}(c\otimes c)P_{a}(y)+\gamma_{a,t}(y)]dy]$ .

Combined with (18), this implies

$\exp[-\int_{0}^{x}tr[a^{2}(c\otimes c)P_{a}(y)]dy]=\frac{e^{-xtrD}}{\det\phi_{a}(x)}$ .

By (24), we obtain

$\int_{\mathcal{W}^{n}}\exp[-\frac{a^{2}}{2}\int_{0}^{x}X_{p,c}(y)^{2}dy]dP=\exp[-\frac{a^{2}}{2}\int_{0}^{x}\rho_{p,c,a}(y)dy]$ ,

which can be also shown by applying the result due to $M.L$ . Kleptsyna
and A. Le Breton [10].

Let $\delta(y, u)$ be the unique solution of the integral equation

(32) $\delta(y, u)=a^{2}R(y, u)-\int_{0}^{y}\delta(y, v)\delta(u, v)dv$ , $o\leq y$ , $u\leq x$ .

In [10], they also have shown that $a^{2}\rho_{p,c,a}(y)$ coincides with $\delta(y, y)$ .

\S 4. $KdV$ equation

Throughout this section, we assume $(H)_{m}$ . Let scattering data $0<$

$\eta_{1}<\cdots<\eta_{n}$ , $m_{1}$ , $\ldots$ , $m_{n}>0$ and $n\times n$-matrices $U$ and $R$ be the ones
stated before and after Theorem 2.1. Set

$T=\{t=(t_{1}, t_{2}, \ldots, ) : t_{j}\in R, \neq\{j : t_{j}\neq 0\}<\infty\}$ .

For $x\in R$ , $t\in T$ , define

$\zeta_{j}(x, t)=x\eta_{j}+\sum_{\alpha=1}^{\infty}t_{\alpha}\eta_{j}^{2\alpha+1}$ , $\zeta(x, t)=diag[\zeta_{1}(x, t), \ldots, \zeta_{n}(x, t)]$ .

The $tau$ function $\tau(x, t)$ of the $KdV$ equation is of the form

(33) $\tau(x, t)=1+\sum_{p=1}^{n}\sum_{1\leq i_{1}<<i_{p}\leq n}\cdots\prod_{j=1}^{p}\frac{m_{i_{j}}}{2\eta_{i_{j}}}\prod_{1\leq j<k\leq p}(\frac{\eta_{i_{j}}-\eta_{i_{k}}}{\eta_{i_{j}}+\eta_{i_{k}}})^{2}$

$\times$ $\exp[-2\sum_{j=1}^{p}\zeta_{i_{j}}(x, t)]$ .
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For details, see $[14, 16]$ . If we set

$A(x, t)=(\frac{\sqrt{m_{i}m_{j}}}{\eta_{i}+\eta_{j}}e^{-\{\zeta_{i}(x,t)+\zeta_{j}(x,t)\})}1\leq i,j\leq n$ ,

then, with the help of Cauchy’s identity (27), we can show that

(34) $\tau(x, t)=\det(I+A(x, t))$ , $x\in R$ , $t\in T$ .

We shall show that $\tau(x, t)$ can be expressed in terms of Wiener
integral. To do this, let

(35) $\phi_{a}(x, t)=U\{\cosh(\zeta(x, t))-\sinh(\zeta(x, t))R^{-1}U^{-1}DU\}U^{-1}$ .

Then, for each $t\in T$ , $\phi_{a}(\cdot, t)$ obeys the differential equation (6) with
initial condition

$\phi_{a}(0)=U\{\cosh(\zeta(0, t))-\sinh(\zeta(0, t))R^{-1}U^{-1}DU\}U^{-1}$ ,

$\phi_{a}’(0)=U\{R\sinh(\zeta(0, t))-\cosh(\zeta(0, t))U^{-1}DU\}U^{-1}$ .

As we shaU see in Lemma 4.1 below, $\det\phi_{a}(x, t)\neq 0$ , and then we can
define

$\beta_{a,x,t}(y)=-((\partial_{x}\phi_{a})\phi_{a}^{-1})(x-y, t)$ .

We shall show that $\beta_{a,x,t}(y)$ is symmetric. To do this, write $\beta(y, t)$ for
$\beta_{a,x,t}(y)$ . For each $k=1,2$ , $\ldots$ , the partial derivative $\partial_{t_{k}}\phi_{a}$ of $\phi_{a}$ with
respect to $t_{k}$ satisfies that

$\partial_{t_{k}}\phi_{a}(x, t)=U\{R^{2k+1}\sinh(\zeta(x, t))-R^{2k}\cosh(\zeta(x, t))U^{-1}DU\}U^{-1}$ .

This implies that

$\partial_{t_{k}}\phi_{a}(x, t)=E(a)^{k}\partial_{x}\phi_{a}(x, t)$ and $\partial_{t_{k}}^{2}\phi_{a}(x, t)=E(a)^{2k+1}\phi_{a}(x, t)$

for any $k=1,2$ , $\ldots$ We then obtain that

(36) $\partial_{t_{k}}\beta(y, t)=-E(a)^{k+1}+\beta(y, t)E(a)^{k}\beta(y, t)$ , $k=1,2$ , $\ldots$

Since $E(a)$ is symmetric, the transpose ${}^{t}\beta(y, t)$ of $\beta(y, t)$ satisfies the
same identities in (36). Hence $\beta(y, t)$ is symmetric if and only if so is
$\beta(y, t[k])$ for some $k=1,2$ , $\ldots$ , where $t[k]$ is obtained ffom $t$ by replacing
$t_{k}$ by 0. As was seen in the paragraph before (24), $\beta(y, 0)$ is symmetric,
where $0=(0, 0, \ldots)\in T$ . In conjunction with the above observation,

this implies that $\beta(y, t)$ is symmetric for $t=(t_{1},0,0, \ldots)$ , $t_{1}\in R$ .

Apply the above observation again, it follows that $\beta(y, t)$ is symmetric
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for $t=(t_{1}, t_{2},0,0, \ldots)$ , $t_{1}$ , $t_{2}\in R$ . Repeating this argument successively,
we can conclude that $\beta(y, t)$ is symmetric for any $(y, t)\in R\times T$ .

We set

$I_{p,c,a}(x, t)=\int_{\mathcal{W}^{n}}\exp[-\frac{a^{2}}{2}\int_{0}^{x}X_{p,c}(y)^{2}dy$

$+\frac{1}{2}\langle(\beta_{a,x,t}(x)-D)\xi_{p}(x), \xi_{p}(x)\rangle]dP$.

To state our result, we introduce a set $J=\{(j(\ell)+1, j(\ell))$ : $\ell=$

$1$ , $\ldots$ , $m\}$ and a quantity

$Z_{m}(p, c)=(-1)^{m}\prod_{i=1}^{n}\frac{c_{i}}{2\eta_{i}}\prod_{1\leq i<j\leq 7b}(p_{i}-p_{j})(\eta_{i}-\eta_{j})\{\prod_{(i,j)\not\in J}(p_{i}+\eta_{j})$

$\times\prod_{k=1}^{n-m}|(D_{p}^{2}-r_{k}I)^{-1}c|\prod_{\ell=1}^{m}\frac{c_{j(\ell)+1}(c_{j(\ell)}^{2}+c_{j(\ell)+1}^{2})^{1/2}}{2p_{j(\ell)^{C}j(\ell)}}\}^{-1}$ ,

where, if $m=0$ , then $ J=\emptyset$ , “
$(i,j)\not\in J$

” means $‘‘ 1\leq i,j\leq n’’$ , and
$\prod_{\ell=1}^{0}(\cdots)=1$ .

Theorem 4.1. (i) It holds that

(37) $\det\phi_{a}(x, t)=\tau(x, t)e^{tr\zeta(x,t)}Z_{m}(p, c)$ ,

(38) $\log(I_{p,c,a}(x, t))=-\frac{1}{2}\log\tau(x, t)+\frac{1}{2}\log\tau(0, t)-\frac{x}{2}\sum_{i=1}^{n}(p_{i}+\eta_{i})$ .

(ii) Let $t=(t, 0, \ldots)$ . We write $t$ for $t$ .
(a) Set

$q_{p,c,a}(x, t)=-4\partial_{x}^{2}\log(I_{p,c,a}(x, t))$ .

Then $q_{p,c,a}(x, t)$ solves the $KdV$ equation (2).

(b) Both $\det\phi_{a}(x, t)$ and $(I_{p,c,a}(x, t))^{-2}$ solve the Hirota equation:

(38) $(4D_{t}D_{x}-D_{x}^{4})u\cdot u=0$ ,

where $(D_{x}, D_{t})$ denotes the Hirota derivatives with respect to the vari-
ables $(x, t)([14])$ .

While $q_{p,c,a}(x, t)$ is defined only on $[0, \infty)\times R$ in our framework, by
virtue of (37), it extends to $R\times R$ so that the extension $ako$ solves the
$KdV$ equation (2).

To prove Theorem 4.1, we first show a relation between $\phi_{a}(x, t)$ and
$A(x, t)$ .
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Lemma 4.1. It holds that

(40) $\det\phi_{a}(y, t)=\det(I+A(y, t))e^{tr\zeta(y,t)}Z_{m}(p, c)$ .

In particular, (37) holds and $\det\phi_{a}(y, t)\neq 0$ , $y\geq 0$ .

Proof. $For\in>0$ , define $p^{\Xi}={}^{t}(p_{1}^{\in}, \ldots,p_{n}^{\epsilon})\in P_{n}$ as in the proof of
Lemma 2.2. For sufficiently small $\in$ , we see that $p^{\Xi}$ satisfies the condition
$(H)_{0}$ . In the sequel, as in the proof of Lemma 2.2, we use the superscript
$\in to$ indicate the dependence on $p^{\Xi}$ ; given a quantity $f$ defined with $p$ ,
we write $f^{\Xi}$ for the same quantity defined with $p^{\in}$ instead of $p$ . Then, in
repetition of the argument employed to prove Lemma 2.1, we can show
that

$\phi_{a}^{\in}(y, t)=-\frac{1}{2}U^{\Xi}(R^{\Xi})^{-1}V^{\epsilon}(c)B^{\in}\{I+A^{\Xi}(y, t)\}(B^{\in})^{-1}e^{\zeta^{\epsilon}(y,t)}X^{\Xi}C(c)$ .

Applying Cauchy’s identity (27) to computing $\det X^{\in}$ and $\det U^{\Xi}$ , we
have

(41) $\det\phi_{a}^{\Xi}(y, t)=\det(I+A^{\Xi}(y, t))e^{tr\zeta^{\epsilon}(y,t)}Z_{0}(p^{\Xi}, c)$ .

As we have already seen in the proof of Lemma 2.2, as $\in\downarrow 0$ , $\eta_{i}^{\epsilon}\rightarrow\eta_{i}$

and $m_{i}^{\Xi}\rightarrow m_{i}$ for $i=1$ , $\ldots$ , $n$ . Moreover, taking the advantage of (30)
and (31), we can show that, $as\in\downarrow 0$ , $U^{\Xi}\rightarrow U$ and $Z_{0}(p^{\in}, c)\rightarrow Z_{m}(p, c)$ .
Hence, letting $\in\downarrow 0$ in (41), we obtain (40).

(37) is an immediate consequence of (34) and (40). The non-singula-
rity of $\phi_{a}(y, t)$ follows ffom that of $I+A(y, t)$ and (40). Q.E.D.

Proof of Theorem 4 $\cdot$ 1. (i) We have already seen (37) in Lemma 4.1.
By the same lemma, $\phi_{a}(y, t)\neq 0$ , $y\geq 0$ . Applying Proposition 1.1 with
$\phi_{a}(y)=\phi_{a}(y, t)$ , we have

$I_{p,c,a}(x, t)=(\det\phi_{a}(0, t))^{1/2}(e^{xtrD}\det\phi_{a}(x, t))^{-1/2}$

By (37), it holds that

$\det\phi_{a}(0, t)(\det\phi_{a}(x, t))^{-1}=\tau(0, t)\tau(x, t)^{-1}\exp[tr\zeta(0, t)-tr\zeta(x, t)]$ .

Since $\zeta(0, t)-\zeta(x, t)=-xR$ , we obtain (38).

(i) (a) The assertion follows form (34) and (38).

(b) It is well known ([14]) that $\tau(x, t)$ solves the Hirota equation (38).

Since $\det\phi_{a}(x, t)$ and $(I_{p,c,a}(x, t))^{-2}$ are both of the form $k(t)e^{cx}\tau(x, t)$

with a constant $c$ and a function $k$ : $R\rightarrow R$ , they also obey the same
Hirota equation (39) that $\tau(x, t)$ does. Q.E.D.
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Homogenization on Finitely Ramified Fractals

Takashi Kumagai

Abstract.

Let $X_{t}$ beacontinuous time Markov chain on some finitely ram-
ified fractal graph given by putting $i.i.d$ . random resistors on each
cell. We prove that under an assumption thata renormalization map
of resistors has a non-degenerate fixed point, $\alpha^{-n}X_{\tau^{n}t}$ converges in

law toanon-degenerate diffusion process on the fractal as $n$ $\rightarrow\infty$ ,

where $\alpha$ is a spatial scale and $\tau$ is a time scale of the fractal. Es-
pecially, when the fixed point of the renormalization map is unique,

the diffusion is a constant time change of Brownian motion on the
fractal. These results improve and extend our former results in[10].

\S 1. Introduction

In this paper, we consider the Homogenization problem on uniform
finitely ramified ffactals, which is a class of finitely ramified Fractals
witha unique spatial scaling rate. We put random resistors on each cell
of the 丘 actal graph and set $X_{t}$ be the corresponding continuous time
Markov chain. Our aim is to show that $\alpha^{-7l}X_{\tau^{n}t}$ converges in law to a
non-degenerate $d$垣 fusion process on the fractal as $n$ $\rightarrow\infty$ . Here $\alpha$ is the
spatial scale and $\tau$ isatime scale of the fractal.

Homogenization ofadiffusion process is interpreted asalimit theo-
rem ofarandom process for changing scales. For $R^{d}$ case, it is discussed
that $\epsilon X_{t/\epsilon^{2}}$ converges to a constant time change of Brownian motion as
$\epsilon\rightarrow 0$ under a condition that $X_{t}$ has random diffusion coefficients or it
moves in some random environment such as random scatterers. (See [8]
for general references on Homogenization of differential operators.) The
martingale method has been well developed for this problem.

For the case of fractals, typical diffusions are sub-diffusive, in the
sense that $E[|B_{t}|]\approx t^{1/d_{w}}$ as $t$

$\rightarrow\infty$ for some $d_{w}>2$ . Those diffusions
are not semi-martingales, thus we need a different approach. In[10], we

Received February 17,2003.
Partially supported by Grant-in-Aid for Scientific Research (C) (2)

14540113.
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developed atheory to be applied for homogenization problem on nested
ffactals, a class of finitely ramified fractals with good symmetries. In
this paper, we inherits the basic approach of[10], which we now explain.

We first consider a Dirichlet form corresponding to the continu-
ous time Markov chain with random resistors which are almost surely
bounded from above and below by some non-degenerate resistor (this
corresponds to the uniform ellipticity condition for the operator)and
the distributions are $i.i.d$ . for each ce垣. As a solution of a variation
problem of the Dirichlet form, we induce a renormalization map $F$ on
the space of matrices, by which we can produce a new form that is a
renormalization of the original one. We assume that there is a non-
degenerate fixed point of the map. Then, what we should prove are the
following:
1) Convergence of the iteration of the renormalization map to afixed
point and convergence of the forms.
2) Convergence of finite dimensional distributions and tightness.

In[10], we prove1) under certain condition for an adjoint of a
Fr\’echet derivative of the renormalization map at afixed point (see Re-
mark 3.61) for details). Unfortunately, the condition is not easy to
check in general and there are examples(even for nested fractals) that
the condition does not hold. On the other hand, the dynamics of the
iteration of the renormalization map has been well studied recently for
the finitely ramified fractals (see [16, 13, 15] etc.). In this paper, we
apply the results to improve our former results in [10]. In Section4, we
will prove 1) under a very mild condition on the renormalization map
(see Assumption2.3). We note that the map $F$ we study is onainfinite
dimensional space since we have infinite number of resistors, whereas the
renormalization map $\hat{F}$ studied in[16, 13, 15] is onafinite dimensional
space. We thus make some effff化$rts$ to show the stability of the map $F$

from that of $ F\wedge$

.

In general, non-degenerate fixed points of the renormalization map
are not necessarily unique. When the uniqueness (up to constant multi-
ples) is guaranteed, we can further show that the diffusion obtained as
the limit is a constant time change of some special diffusion (which can
be called Brownian motion)for the fractal. Especially, when we con-
sider random resistors which are invariant under all reflection maps on
a nested fractal, then the diffusion obtained is a constant time change
of Brownian motion on the fractal.

For the proof of 2), uniform Harnack inequality and uniform heat
kernel estimates of the Markov chains play important roles. Here we can
adopt stability results of parabolic Harnack inequalities and heat kernel
estimates which are actively studied recently for the fractal graph cases
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(see [2,3,4,5]). In this paper, we skip the proof of 2)since we can
apply the same argument as in [10], but note that we can shorten the
proof by applying the results in[5].

The organization of the paper is as follows. In Section 2, we de-
fine uniform finitely ramified ffactals(graphs), renormalization maps of
resistors on them and briefly mention about Dirichlet forms and their
heat kernel estimates on the fractals. In Section3, we give our main
theorem on homogenization. Section 4 is for the proof of 1) above. In
Section 5, we state main propositions concerning 2) above. In Appen-
dix, we give the proof of the stability results of the(finite dimensional)

renormalization map $\hat{F}$ studied in[16,13,15].

\S 2. Uniform finitely ramified graphs and their Dirichlet forms

2.1. Uniform finitely ramified graphs

For $\alpha>1$ and $I$ $=\{1, 2, \cdots, N\}$ , let $\{$重$ i\}_{i\in I}$ be afamily of $\alpha-$

similitudes on $R^{D}$ . An $\alpha$-similitude is a map $\Psi_{i}x=\alpha^{-1}U_{i}x+\gamma i$ , $x$ $\in$

$R^{D}$ where $U_{i}$ isaunitary map and $\gamma_{i}\in R^{D}$ . We will impose several
assumption on this family. First, we assume
(H-O) $\{\Psi_{i}\}_{i\in I}$ satisfies the open set condition,
i.e., there is a non-empty, bounded open set $W$ such that $\{\Psi_{i}(W)\}_{i\in I}$

are disjoint and $\bigcup_{i\in I}\Psi_{i}(W)\subset W$ . As $\{\Psi_{i}\}_{i\in I}$ isafamily of contraction

maps, there existsa unique non-void compact set $ K\wedge$ such that $ K\wedge$

$=$

$\bigcup_{i\in I}\Psi_{i}(\hat{K})$ . We assume
(H-1) $\hat{K}$ is connected.

Let Fix be the set of fixed points of the 重 $i$ ’s, $i\in I$ . Apoint $x\in Fix$

is called an essential fifixed point if there exist $i$ , $j\in I$ , $i\neq j$ and $y\in Fix$

such that $\Psi_{i}(x)=\Psi_{j}(y)$ . Let $I_{F}$ be the set of $i\in I$ for which the fixed

point of $\Psi_{i}$ is an essential fixed point. We write $V\wedge 0$ for the set of essential
fixed points. Denote $\Psi_{i_{1},\ldots,i_{n}}=\Psi_{i_{1}}\circ\cdots\circ\Psi_{i_{n}}$ . We further assume the
following finitely ramified property.
(H-2) If $\{i_{1}, \ldots, i_{n}\}$ , $\{j_{1}, \ldots, j_{n}\}$ are distinct sequences, then

$\Psi_{i_{1},\ldots,i_{n}}(\hat{K})\cap\Psi_{j_{1},\ldots,j_{n}}(\hat{K})=\Psi_{i_{1},\ldots,i_{n}}(\hat{V}_{0})\cap\Psi_{j_{1},\ldots,jn}(\hat{V}_{0})$ .

Definition 2.1. ([5]) $A$ (compact) uniform fifinitely ramifified frac-
tal ($u.f.r$ . fractal for short) $\hat{K}$ is $a$ set determined by $\alpha$ similitudes
$\{\Psi_{i}\}_{i\in I}$ satisfying the assumption(H-0), (H-1), (H-2) and that $Q\hat{V}_{0}\geq 2$ .

If we further assume the following symmetry condition, then $ K\wedge$ is
called a (compact) nested fractals introduced in [12].
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(SYM) If $x$ , $y\in\hat{V}_{0}$ , then the reflection in the hyperplane $ H_{xy}=\{z\in$

$R^{D}$ : $|z-x|=|z-y|$ } maps $V\wedge n$ to itself, where

(2.1) $\hat{V}_{n}=\bigcup_{i_{1},\cdots,i_{n}\in I}\Psi_{i_{1},\ldots,i_{n}}(\hat{V}_{0})$ .

Thus, $u.f.r$ . fractals form a class of fractals which is wider than nested
丘 actals, and is included in the class of p.c.f. self-similar sets ([9]).

For each $n$ $\geq$ $0$ and $i_{1}$ , $\cdots$ , $i_{n}$ $\in$ $I$ , we calla set of the form
$\Psi_{i_{1},\cdots,i_{n}}(\hat{V}_{0})$ an $n$-cell and $\Psi_{i_{1},\cdots,i_{n}}(\hat{K})$ an $n$-complex. For $x$ , $y\in\hat{K}$ ,
$\{x_{0}, \cdots, x_{m}\}$ is called a $n$-chain 丘$omx$ to $y$ if $x0=x$ , $x_{m}=y$ , $xj\in\hat{V}_{n}$

for 1 $\leq j\leq m-1$ and $x_{i}$ , $x_{i+1}$ are in the same $n$-complex for 0 $\leq$

$i\leq m-1$ . We then have the following topological properties of $u.f.r$ .
fractals.

Lemma2.2.
1)Each element in $V\wedge 0$ belongs to only one $n$-cell for each $n$ $\geq 0$ .

2) Any1-cell contains at most one element of $V\wedge 0$ .

3) For each $x\in\hat{V}_{1}$ and $y\in\hat{V}_{0}$ , there exists $a$
$1$ -chain $\{x_{0}, \cdots, x_{m}\}$ from

$x$ to $y$ such that $x_{1}$ , $\cdots$ , $x_{m-1}\not\in\hat{V}_{0}$ .

Proof. 1) and 2) can be proved in the same way as [11] (Lemma 2.8
and Proposition2.9)and [12] (Proposition $IV.13$ and Corollary IVA4).
(They discuss for nested fractals, but the symmetry assumption is not
used there.) For3), we first note that any 1-junction is not an element of
$\hat{V}_{0}$ due to1), where $x\in\hat{V}_{1}$ is calleda1-junction if there exist $i\neq j\in I$

such that $ x\in$ 重 $i(\hat{V}_{0})$ 口重 $j(\hat{V}_{0})$ . Using $(H_{-}1)$ and (H-2), we can choose
a 1-chain $\{x_{0}, \cdots, x_{m}\}$ such that $x_{1}$ , $\cdots$ , $x_{m-1}$ are 1-junctions. Since

1-junction is not an element of $V\wedge 0$ , we obtain the result. $Q.E.D$ .

Next we define unbounded $u.f.r$ . fractals. We assume without loss of
generality that 重 1 $(x)=\alpha_{1}^{-1}x$ and 0 belongs to $V\wedge 0$ . Set $K=\bigcup_{n=1}^{\infty}\alpha^{7\iota}\hat{K}$ .
Then, clearly 重 1 $(K)=K$ . We call $K$ an unbounded uniform finitely

ramffied fractal. Let $V=V_{0}=\bigcup_{n=0}^{\infty}\alpha^{n}\hat{V}_{r\iota}$ and $V_{n}=\alpha^{-r\iota}V$ for $n$ $\in Z$ .

(Note that this labelling is the opposite to the one given in [5]. As $n$

gets bigger, the graph distance between each vertex of $V_{n}$ gets smaller
and $V_{7\iota-1}\subset V$。.)Then, $K=Cl(\bigcup_{n\in Z}V_{n})$ . For $n\in Z$ , we define n-cells
and $n$-complexes similarly as the compact fractals.

We now introduce uniform finitely ramified graphs. These will be
graphs with vertices $V$ and a collection of edges $B$ . In order to define
the edges, we first define $\hat{B}_{0}:=\{\{x, y\} : x\neq y\in\hat{V}_{0}\}$ . Then inside

each0-cell we placea copy of $B\wedge 0$ and we denote by $B$ the set of all
the edges determined in this way. We call the graph $(V, B)$ auniform
finitely ramified $(u.f.r.)$ graph. If we construct the graph starting ffom
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a nested fractal, then it will be called anested fractal graph. Let

$\Omega$ $=$ {
$\omega\in I^{Z}$ : there is an $n\in Z$ such that $\omega k$ $=1$ , $k\geq n$ },

$\Omega_{+}$ $=$ { $\omega\in I^{N}$ : there is an $n\in N$ such that $\omega k$ $=1$ , $k\geq n$ }.

Then, there is a continuous map $\pi$ : $\Omega\rightarrow R^{D}$ such that $\pi(\omega)$ $=$

$\lim_{n\rightarrow\infty}\alpha^{n}\Psi_{\omega_{n}}(\Psi_{\omega_{n-1}}(\cdots(\Psi_{\omega_{-n}}(0))\cdots))$ . It is easy to see $K=\pi(\Omega)$ .

For any $\omega\in\Omega_{+}$ and $i\in I_{F}$ , let $[\omega, i]$ denotes an element of $\Omega$ given by

$[\omega, i](k)=\{$
$\omega_{k}$ , $k\geq 1$

$i$ , $k\leq 0$ .

Then, $V=\{\pi([\omega, i]) : \omega\in\Omega_{+}, i\in I_{F}\}$ .

2.2. Renormalization maps

Let $Q$ be the set of $Q=\{Q_{ij}\in R : i, j\in I_{F}xI_{F}\}$ such that
$Q_{ij}=Q_{ji}$ for any $i$ , $j\in I_{F}$ and that $\sum_{j\in I_{F}}Qij=0$ , $i\in I_{F}$ . $Q$ is $a$

vector space with an inner product $(\cdot, \cdot)Q$ given by

$(Q, Q’)_{Q}=\sum_{j,k\in I_{F}}Q_{jk}Q_{jk}’=\prime baceQ^{t}Q’$
, $Q$ , $Q’\in Q$ .

Fora set $A$ , we denote $l(A)=\{f : A\rightarrow R\}$ . Let $Q_{+}$ be the set of $Q\in Q$

such that $\hat{S}_{Q}$ $(\xi, \xi)\geq 0$ for any $\xi\in l(I_{F})$ , where

$\hat{S}_{Q}$

$(\xi, \xi)=-\sum_{i,j\in I_{F}}Q_{ij}\xi_{i}\xi_{j}=\frac{1}{2}\sum_{i,j\in I_{F}}Q_{ij}(\xi_{i}-\xi_{j})^{2}$ .

Set $||Q||^{2}=\sup_{\xi\in l(I_{F})}\hat{S}_{Q}$ $(\xi, \xi)/(\sum_{i\in I_{F}}\xi_{i}^{2})$ . Note that there exist $c_{2.1}$ ,
$c_{2.2}>0$ such that $ c_{2.1}||Q||^{2}\leq$ $(Q, Q)Q$ $\leq c_{2.2}||Q||^{2}$ for all $ Q\in Q+\cdot$ We

sometimes denote $S\wedge Q$ $(\xi, \xi)$ as $S\wedge Q(\xi)$ . Let $Q_{M}$ be the set of $Q$ $\in Q$ such
that $Q_{ij}\geq 0$ for any $i$ , $j\in I_{F}$ with $i\neq j$ . Also, let $Q_{irr}$ be the set of
$Q\in Q_{M}$ such that $S\wedge Q$ $(\xi, \xi)=0$ if and an $y$ if $\xi$ is constant. Note that
$Q_{irr}\subset Q_{M}\subset Q_{+}$ .

Take $Q_{*}\in Int(Q_{M}):=\{Q\in Q_{M}$ : $Q_{ij}>0$ for any $ i\neq j\in$

$I_{F}\}$ and let $\mathcal{X}_{+}=\{X\in C(\Omega_{+}, Q_{+})$ : there exists $C_{0}>0$ such that
$\hat{S}_{X(\omega)}$ $(\xi, \xi)\leq C_{0}\hat{S}_{Q_{*}}(\xi, \xi)$ for any $\omega\in\Omega_{+}$ and $\xi=(\xi_{j})_{j\in I_{F}}\}$ . Also, let
$\mathcal{X}_{M}=\mathcal{X}_{+}\cap C(\Omega_{+}, Q_{M})$ , $\mathcal{X}_{irr}=\mathcal{X}_{+}$ 口 $C(\Omega_{+}, Q_{irr})$ and $Int(\mathcal{X}_{M})=\mathcal{X}+\cap$

$C$ ( $\Omega_{+}$ , Int $(Q_{M})$ ). Then $\mathcal{X}_{+}$ and $\mathcal{X}_{M}$ are convex cones. For any $X\in \mathcal{X}_{+}$ ,

let $S_{X}$ denote a non-negative definite bilinear form on $L^{2}$
$(V, d\nu_{0})$ given

by

$S_{X}$
$(u, u)=\frac{1}{2}\sum_{\omega\in\Omega_{+}}\hat{S}_{X(\omega)}(u(\pi([\omega, \cdot])), u(\pi([\omega, \cdot])))$

, $u\in L^{2}(V, d\nu_{0})$ .
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Here $\nu_{0}$ isameasure on $V$ so that $\nu_{0}(\{x\})=1/N$ for all $ x\in$ $V$ . If
$X\in \mathcal{X}_{M}$ , then $S_{X}$ is a Dirichlet form on $L^{2}$

$(V, d\nu 0)$ . So there is a
Markov process which we denote by $\{P_{X}^{x} : x\in V\}$ . We introduce an
order relation $\leq in\mathcal{X}_{+}$ as follows.

$X\leq Y$ if $S_{X}$ $(u, u)\leq S_{Y}(u, u)$ for all $u\in L^{2}(V, d\nu_{0})$ .

The norm on $\mathcal{X}_{+}$ is given by $||X||^{2}=\sup_{u\in L_{(V,d\nu_{0})}^{2}}S_{X}$ $(u, u)/||u||_{L^{2}(V,d\nu_{0})}^{2}$ .

For any $X\in \mathcal{X}_{+}$ , let $S_{X}^{\overline{F}}$ : $L^{2}$
$(V, d\nu_{0})\rightarrow[0, \infty)$ be given by

$S_{X}^{\overline{F}}(u)=\inf\{S_{X}(v, v) : v\in L^{2}(V, d\nu_{0}), v(\alpha x)=u(x), x\in V\}$ .

Let $S_{X}^{\overline{F}}$ $(u, v)=\frac{1}{2}(S_{X}^{\overline{F}}(u+v)-S_{X}^{\overline{F}}(u)-S_{X}^{\overline{F}}(v))$ , $u$ , $v\in L^{2}(V, d\nu_{0})$ . Then

we see that $S_{X}^{\overline{F}}$ is a Dirichlet form on $L^{2}$
$(V, d\nu_{0})$ . Moreover, by the self-

similarity of $K$ , we see that there isarenormalization map $F-$ : $\mathcal{X}_{+}\rightarrow \mathcal{X}_{+}$

such that $S_{X}^{\overline{F}}(u)=S_{\overline{F}(X)}(u, u)$ for all $X\in\chi_{+}$ and $u\in L^{2}(V, d\nu_{0})$ . Let
$\iota$ : $Q_{+}\rightarrow\chi_{+}$ be such that $\iota(Q)(\omega)=Q$ for all $\omega\in\Omega_{+}$ and $Q\in Q_{+}$ .

We definea renormalization map $F\sim:$
$Q_{+}\rightarrow Q_{+}$ as $\tilde{F}(Q)=\overline{F}(\iota(Q))(\omega)$

for $\omega\in\Omega_{+}$ (it is independent of the choice of $\omega\in\Omega_{+}$ ). Note that $F-,\tilde{F}$

is in general a non-linear map. By Schauder’sfixed point theorem, we
know that there exists $Q_{*}\in Q_{M}$ (with $(Q_{*})_{ij}>0$ for some $i\neq j$ ) and
$\beta Q_{*}>0$ such that $F\sim(Q_{*})=\rho_{Q_{*}}^{-1}Q_{*}$ . Throughout this paper, we assume
the following.

$Assumption-$ $2.3$ . 1) For each $Q\in Q_{irr}$ , there exists $l$ $=l(Q)\in N$

such that $F^{n}(Q)\in Int(Q_{M})$ for all $n\geq l$ .

2) There exists $Q_{0}\in Int(Q_{M})$ and $\rho Q_{o}>0$ such that $F\sim(Q_{0})=\rho_{Qo}^{-1}Q_{0}$ .

Remark 2.4. 1) By Corollary 6.20 of [1], $\rho_{Q_{o}}$ $>0$ is uniquely

determined, $i.e.$ , if $Q_{1}$ , $Q_{2}\in Q_{irr}$ satisfies $\tilde{F}(Q_{j})=\rho_{Q_{j}}^{-1}Q_{j}(j=1,2)$

with $\rho_{Q_{1}}$ , $\rho_{Q_{2}}>0$ , then $\rho_{Q_{1}}=\rho_{Q_{2}}=\rho_{Q_{0}}$ . In the class of fractal graphs
we consider, we can prove $\rho Q_{0}>1$ (see [9] etc.).
2) $A$ sufficient condition for Assumption2.31) is the following.

(H-3) There exists $l$ $\in N$ such that for each $x$ , $y\in\hat{V}_{0}$ , there is $al$ -chain
$\{x\circ, \cdots, x_{m}\}$ from $x$ to $y$ such that for each1 $\leq i\leq m-2$ , there is $a$

$l$ -cell containing $x_{i}$ and $x_{i+1}$ that does not contain any element of $\hat{V}_{0}$ .
Indeed, if (H-3) holds, it is easy to show $F-n(Q)\in Int(Q_{M})$ for $n$ $\geq l$ ,

$Q\in Q_{irr}$ by observing the corresponding Markov chain on $V\wedge n$ .

3) Every nested fractals satisfy Assumption2.31) and2). Indeed, (H-3)

can be shown for nested fractals using(SYM) and[11] Lemma2.10([12]
Proposition $IV$.垣刀 so that1) holds. 2) is proved in [11] Theorem3.10
and in[12] Theorem $V5$ .
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Set $F=\rho_{Qo}\overline{F}$ : $\mathcal{X}_{+}\rightarrow \mathcal{X}_{+}$ and $S_{X}^{F}(u)=\rho_{Q_{0}}S_{X}^{\overline{F}}(u)$ for $ u\in$

$L^{2}$
$(V, d\nu_{0})$ . Set $F\wedge=\rho_{Qo}\tilde{F}$ in the same way.

2.3. Dirichlet forms and heat kernel estimates

For $u$ , $v\in l(\hat{V}_{n})$ , define

(2.2)
$\hat{\mathcal{E}}_{Q_{0}}^{n}(u, v)=\rho_{Q_{0}}^{n}\sum_{i_{1},\cdots,i_{n}\in I}\hat{S}_{Q_{0}}(u\circ\Psi_{i_{1},\ldots,i_{n}}, v\circ\Psi_{i_{1},\ldots,i_{n}})$

.

Let $\nu\wedge$ be a normalized Hausdorff measure on $K$ . Then, the following is
known(see for example, [6, 9]).

Theorem 2.5. Let $Q_{0}\in Int(Q_{M})$ be as in Assumption2.32), $i.e$ .
$\hat{F}(Q_{0})=Q_{0}$ . Then, there is $a$ local regular Dirichlet form $(\hat{\mathcal{E}},\hat{\mathcal{F}})$ in
$L^{2}$ $(\hat{K}, d\hat{\nu})$ satisfying the following,

ナ $=$ { $u\in C$ ( $\hat{K}$ , R) : $\sup_{n}\hat{\mathcal{E}}_{Q_{o}}^{n}(u,$ $ u)<\infty$ },

$\hat{\mathcal{E}}(u, v)$ $=$ $\lim_{n\rightarrow\infty}\hat{\mathcal{E}}_{Q_{o}}^{n}(u, v)$ for $u$ , $v\in\hat{\mathcal{F}}$ .

For each $m\in N$ , let $K_{m}=\alpha^{m}\hat{K}$ and define $\sigma_{m}$ : $C$ ( $K_{m}$ , R) $\rightarrow$

$C$ ( $\hat{K}$ , R) by $\sigma_{m}u(x)=u(\alpha^{m}x)$ for $ x\in$ $K$ . Set $\mathcal{F}_{<m>}=\sigma_{-m}\hat{\mathcal{F}}$ ,
$\mathcal{E}_{<m>}$ $(u, v)=\rho_{Qo}^{-m}\hat{\mathcal{E}}(\sigma_{m}u, \sigma_{m}v)$ for $u$ , $v\in \mathcal{F}_{<m>}$ . Let $\nu$ beaHausdorff

measure on $K$ such that $\nu|_{\hat{K}}=\hat{\nu}$ and $N\nu=\nu o$ 重 $1-1$ . Now let

$\mathcal{F}$ $=$ { $u\in l(K)$ : $u|_{K_{m}}\in \mathcal{F}_{<m>}$ for all $m\in N$ ,

$\lim_{m\rightarrow\infty}\mathcal{E}$イー $>$
$(u|_{K_{m}}, u|_{K_{m}})<\infty\}$ 口 $L^{2}(K, d\nu)$

$\mathcal{E}(u, v)$ $=$ $\lim_{m\rightarrow\infty}\mathcal{E}_{<m>}(u|_{K_{m}}, v|_{K_{m}})$ for $u$ , $v\in \mathcal{F}$ .

Then the following holds.

Theorem 2.6. $(\mathcal{E}, \mathcal{F})$ is $a$ local regular Dirichlet form on $L^{2}(K, d\nu)$ .
$\mathcal{F}\subset C$ ( $K$ , R) and this form has the following scaling property,

$\mathcal{E}(u, v)=\rho_{Qo}\mathcal{E}(u\circ\Psi_{1}, v\circ\Psi_{1})$ for $u$ , $v\in \mathcal{F}$ .

Finally, we $w$徂 mention heat kernel estimates for Markov chains on
$u.f.r$ . graphs. For $X\in Int(\mathcal{X}_{M})$ and $x\neq y\in V$ , define

$R_{X}$ $(x, y)=(\inf\{S_{X} (u, u) : u\in l(V), u(x)=1, u(y)=0\})^{-1}$ .

Let $R_{X}$ $(x, x)=0$ for $x\in V$ . Then, $R_{X}(\cdot, \cdot)$ isametric which is called a
resistance metric. By simple modifications of the proof of Corollary4.12
in [5], the following holds (note that as we will mention later in Remark
3.64), Assumption2.3of[5] always holds under our Assumption2.3).
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Theorem 2.7. For each $X\in Int(\mathcal{X}_{M})$ , let $p_{k}^{X}(\cdot, \cdot)$ be the heat kernel

of the discrete time Markov chain which is induced from the continuous
time Markov chain corresponding to $(S_{X}, L^{2} (V, dI/_{0}))$ . Then, there exists
$C2.3$ , $\cdots$ , $C2.6>0$ (which depend on $X$) and $0<\gamma_{1}\leq\gamma_{2}$ such that for
each $x$ , $y\in V$ and $k\geq d(x, y)$ ,

$p_{k}^{X}$ $(x, y)$ $\leq$ $c_{2.3}k^{-\frac{s}{S+1}}\exp(-c_{2.4}(\frac{R_{X}(x,y)^{S+1}}{k})^{\gamma_{1}})$ ,

$p_{k}^{X}$ $(x, y)+p_{k+1}^{X}(x, y)$ $\geq$ $c_{2.5}k^{-\frac{s}{S+1}}\exp(-c_{2.6}(\frac{R_{X}(x,y)^{S+1}}{k})^{\gamma 2})$ ,

where $S=\log N/\log\rho Q_{0}$ and $d(\cdot, \cdot)$ is $a$ graph distance.

We note that similar heat kernel estimates for $(\hat{\mathcal{E}},\hat{\mathcal{F}})$ and $(\mathcal{E}, \mathcal{F})$

(given in Theorem 2.5 and 2.6) can be also obtained (cf. [6]).
Let $\beta>0$ . We say $(S_{X}, L^{2} (V, d\nu_{0}))$ satisfies $(PHI(\beta))$ , aparabolic

Harnack inequality of order $\beta$ if whenever $u(n, x)$ $\geq 0$ is defined on
$[0, 4N]$ $\times\overline{B}(y, 2r)$ and satisfies

$u(n+1, x)-u(n, x)=\mathcal{L}u(n, x)$ $(n, x)\in[0,4N]\times B(y, 2r)$ ,

( $\mathcal{L}$ is the corresponding difference operator), then

$N\leq n\leq 2N\max_{x\in B(y,r)}u(n, x)\leq c_{2.7}3$$x\in B(y,r)\min_{N\leq n\leq 4N},(u(n, x)+u(n+1, x))$
,

where $N\geq 2r$ and $c_{2.8}r^{\beta}\leq N\leq c_{2.9}r^{\beta}$ (cf. [2, 3, 4, 5]). By Theorem
2.7 and a standard argument, we can deduce the following.

Proposition2.8.
$(S_{X}, L^{2} (V, d\nu_{0}))$ satisfies $(PHI(S+1))w.r.t$ . the resistance metric.

\S 3. Homogenization

In this section, we will state our main theorem. First, we give some
definition for later use. Let $\hat{V}_{0}=\{a_{i} : i\in I_{F}\}$ . For $ Q^{*}\in$ Int $(Q_{M})$ , we
define a matrix $A_{k,Q^{*}}\in l(\hat{V}_{0})$ , $k\in I$ by

(3.1) $(A_{k,Q^{*}})_{ij}=P_{Q^{*}}^{\Psi_{k}(a_{i})}(w^{1}(\tau_{\hat{V}_{0}})=a_{j})$
フ

where $w^{1}$ isaMarkov chain on $V\wedge 1$ whose transition probability is deter-
mined by $Q^{*}$ and $\tau_{\hat{V}_{0}}=\inf\{n\geq 0 : w_{n}^{1}\in\hat{V}_{0}\}$ . Then, by Lemma2.23),
the following clearly holds for $u.f.r$ . graphs.

Lemma 3.1. $0<(A_{k,Q^{*}})_{ij}<1$ if $k\neq i$ and $(A_{k,Q^{*}})_{kj}=\delta_{kj}$ .
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For any $X\in \mathcal{X}_{+}$ and any $ Q_{*}\in$ Int $(Q_{M})$ with $F\wedge(Q*)=Q*$
’ let

$S_{X}^{H_{Q_{*}}}$ : $L^{2}$
$(V, d\nu_{0})\rightarrow[0, \infty)$ be given by

$S_{X}^{H_{Q_{*}}}(u)=\rho_{Qo}S_{X}(v, v)$ for $u\in L^{2}(V, d\nu_{0})$ ,

where $v\in L^{2}$ $(V, d\nu_{0})$ satisfies $v(\alpha x)=u(x)$ , $x\in V$ , and $v$ is $Q_{*}-$

harmonic on $V\backslash (\alpha^{-1}V)$ , $i.e.$ ,

$v(\pi([\omega\cdot i, j]))=\sum_{k\in I_{F}}(A_{i,Q_{*}})_{jk}u(\pi([\omega, k]))$
for $i\in I$ , $j\in I_{F}$ .

Here $\omega$ . $i\in\Omega_{+}$ is given by $(\omega. i)_{7\iota}=\omega_{n-1}$ , $n\geq 2$ and $(\omega\cdot i)_{1}=$

$i$ . In the same way as we did for $S_{X}^{\overline{F}}$ , we can define a Dirichlet form
$S_{X}^{H_{Q_{*}}}$ $(\cdot, \cdot)$ on $L^{2}(V, d\nu_{0})$ . It is easy to see that $S_{X}^{H_{Q_{*}}}(u)=S_{H_{Q_{*}}}(X)(u, u)$

where $H_{Q_{*}}(X)(\omega)=\rho_{Qo}\sum_{k\in I}{}^{t}A_{k,Q_{*}}X(\omega\cdot k)A_{k,Q_{*}}$ for all $X\in \mathcal{X}_{+}$

and $u\in L^{2}$ $(V, d\nu_{0})$ . We definea map $H\wedge Q$

。: $Q_{+}\rightarrow Q_{+}$ as $\hat{H}Q_{*}(Q)=$

$H_{Q_{*}}(\iota(Q))(\omega)$ for $\omega\in\Omega_{+}$ (it is independent of the choice of $\omega\in\Omega_{+}$ ).

Definition 3.2.
Let $\mu$ be $a$ probability measure on $\mathcal{X}_{M}$ satisfying the following.
1) $\{X(\omega) : \omega\in\Omega_{+}\}$ are independently identically distributed $Q_{M}$ -valued
random variables under $\mu$ .

2) $\mu$ ( $\{X\in \mathcal{X}_{M}$ : $X(\omega)\in Q_{C_{1}Q_{0},C_{2}Q_{0}}$ for all $\omega\in\Omega_{+}\}$ ) $=1$ for some
$C_{1}$ , $C_{2}>0$ , where $Q_{C_{1}Q_{0},C_{2}Q_{0}}:=\{Q\in Q_{M} : C_{1}Qo\leq Q\leq C_{2}Q_{0}\}$ .

The following properties are easy, but important.

Proposition 3.3. Let $Q_{0}$ , $Q_{*}\in Int(Q_{M})$ be as above.
1) $F$ : $\mathcal{X}_{M}\rightarrow \mathcal{X}_{M}$ and $H_{Q_{*}}$ : $\mathcal{X}_{M}\rightarrow \mathcal{X}_{M}$ are continuous maps.
2) $F(\iota(Qo))=\iota(Qo)$ , $F(\iota(Q_{*}))=H_{Q_{*}}(\iota(Q_{*}))=\iota(Q_{*})$ .

3)If $X$ , $Y\in \mathcal{X}_{+}$ and $X\leq Y$ , then $F(X)\leq F(Y)$ and $ HQ_{*}(X)\leq$

$H_{Q_{*}}(Y)$ .

4) $F(X)\leq H_{Q_{*}}(X)$ for all $X\in \mathcal{X}_{+}$ .
5) For any $X$ , $Y\in \mathcal{X}+anda$ , $b\geq 0$ , $F(aX+bY)\geq aF(X)+bF(Y)$ and
$H_{Q_{*}}(aX+bY)=aH_{Q_{*}}(X)+bH_{Q_{*}}(Y)$ .
$\theta)E_{\mu}[F(X)]\leq F(E^{\mu}[X])$ for all $X\in \mathcal{X}_{+}$ .

Note that the same results hold for $\hat{F}$ and $\hat{H}Q_{*}$ .
Let $F^{n}$ be the $n$-th iteration of $F$ . Then we have the following key

theorem.

Theorem 3.4. Under Assumption2.3, there exists $Q_{\mu}\in Int(Q_{M})$

such that for all $\omega\in\Omega+$ ,

(3.2) $Q_{\mu}=\lim_{n\rightarrow\infty}F^{n}(X)(\omega)$ in $L^{1}(Q_{M}, \mu)$ .
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Since $\hat{F}(Q_{\mu})=Q_{\mu}\in Int(Q_{M})$ , we can construct a local regular
Dirichlet form on $K$ using $Q_{\mu}$ (see Theorem 2.6). We denote the corre-
sponding diffusion as $(X_{\mu}, \{P_{\mu}^{x}\}_{x\in K})$ . We now state our main theorem.

Theorem 3.5. Let $\mu$ be the probability measure on $\mathcal{X}_{M}$ as in Def-
inition3.2 and let $\tau Q_{0}:=\rho_{Q_{0}}N$ . Under Assumption2.3; the following
holds.

$E^{P_{X}^{x_{n}}}[f(\alpha^{-n}w(\tau_{Q_{0}}^{n}\cdot))]\rightarrow E^{P_{\mu}^{x}\infty}[f(w(\cdot))]$ as $n$ $\rightarrow\infty$

in probability under $\mu$ , for any $f\in C_{b}(D([0, \infty), K)\rightarrow R)$ and any
sequence $\{x_{n}\}_{n=1}^{\infty}\subset V$ with $\alpha^{-n}x_{n}\rightarrow x_{\infty}\in K$ as $ n\rightarrow\infty$ . Here the
expectations are taken over $\omega\in D([0, \infty)$ , $K)$ .

Further, if there is $a$ convex cone $\mathcal{X}_{sub}\subset \mathcal{X}_{irr}$ such that the following
holds; $a$) $F(\mathcal{X}_{sub})\subset \mathcal{X}_{sub}$ , $b)$ there exists $a$ unique (up to constant
multiples) $Q\in \mathcal{X}_{sub}$ 口 $Int(\mathcal{X}_{M})$ which satisfies $F(Q)=Q$ , $c)$ the support

of $\mu$ is in $\mathcal{X}_{sub}$ . Then $P_{\mu}$ is $a$ constant time change of the diffusion
constructed from $Q$ on $K$ .

Remark 3.6. 1) In [10]; similar statement is given under the as-

sumption that there exists $Q_{1}\in Q_{irr}$ such that $H\wedge Q_{o}*(Q_{1})=Q_{1}$ where
$\hat{H}_{Q_{0}}^{*}$ is an adjoint operator of $H\wedge Q_{0}$ in $Q$ $f[10]$ Assumption3.1). In gen-
eral, it is not easy to check this assumption and there is $a$ example in
nested fractals that this does not hold.
2) Let $I_{I}$ be the set of all bijective maps $\sigma$ on $I$ such that $\sigma(I_{F})=I_{F}$ ,
and let $G$ be $a$ subgroup of $I_{I}$ . Then, as in[10] Section7, we can obtain
similar results for random resistors on $\mathcal{X}_{M}^{G}$ , $a$ subcone of $\mathcal{X}_{M}$ which
consists of $G$ -invariant elements, if $a$), $b$), $c$) in Theorem 3.5holds for
$\mathcal{X}_{M}^{G}$ . Especially, we can prove the following; For nested fractals, let $G_{0}$

be $a$ subgroup of $I_{I}$ generated by all the reflection maps and suppose that
the support of $\mu$ is in $\mathcal{X}_{M}^{G_{0}}$ . Then $P_{\mu}$ in Theorem3.5is $a$ constant time
change of Brownian motion on the nested fractal. (This is because, it
is known that $a$ non-degenerate fifixed point for $G_{0}$ -invariant resistors on
nested fractals is unique up to constant multiples; see [16, 13, 15].)

3) Note that non-degenerate fifixed points of $\hat{F}$ is not necessarily unique
even for nested fractals. In [1] Example6.13, one parameter family of
non-degenerate fixed points on the Vicsek set are given. The homoge-
nization problem for this particular fractal is studied in [7].
4) By Theorem3.4 (or Proposition4 $\cdot$ 1), we see that Assumption2.3 in
[5] always holds under our Assumption2.3.
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\S 4. Convergence of Dirichlet forms

In this section, we will prove Theorem 3.4 and show a convergence
of the corresponding forms (Proposition 4.4).

The next proposition is arestricted version of the result by Peirone
([15]), whose original ideas come from Sabot ([16]). For completeness,
we give the proof in Appendix $A$ .

Proposition 4.1. Under Assumption2.3, for each $M\in Q_{irr}$ , there
exists $Q_{M}\in Int(Q_{M})$ such that

(4.1) $Q_{M}=\lim_{n\rightarrow\infty}\hat{F}^{n}(M)$

For the proof of Theorem 3.4, we use two lemmas in[10]. Let $H_{Q_{*}}^{n}$

be the $n$-th iteration of $H_{Q_{*}}$ .

Lemma 4.2. Assume that $Q_{*}\in Int(Q_{M})$ satisfies $\hat{F}(Q*)=Q*\cdot$

Then, there exist $c_{4.1}>0$ and $0<\epsilon<1$ such that

$E^{\mu}[||H_{Q_{*}}^{n}(X)(\omega)-H_{Q_{*}}^{n}(E^{\mu}[X])(\omega)||^{2}]\leq c_{4.1}(1-\epsilon)^{n}$ , $\forall\omega\in\Omega_{+}$ , $n$ $\geq 1$ .

In particular,

$\lim_{r\iota\rightarrow\infty}||H_{Q_{*}}^{n}(X)(\omega)-H_{Q_{*}}^{n}(E^{\mu}[X])(\omega)||=0$ , $\mu-a.e$ . $X$ , $\forall\omega\in\Omega_{+}$ .

$Proo/$. By the linearity of $HQ_{*}$ , $E^{\mu}[HQ_{*}(X)(\omega)]=HQ_{*}(E^{\mu}[X])(\omega)$ .

Then the proof is basically the same as that of Lemma 4.1 in [10].
$Q$ .E.D.

Lemma 4.3. ([10], Lemma 4.2) Let $\{Y_{n}\}_{n=1}^{\infty}$ be random variables
such that $\sup_{n}E[Y_{n}^{2}]<\infty$ . Let $Y=\lim\sup_{n\rightarrow\infty}Y_{n}$ and assume that
$\lim_{n\rightarrow\infty}E[Y_{n}]=E[Y]$ . Then $\lim_{n\rightarrow\infty}E[|Y-Y_{n}|]=0$ .

Proof of Theorem3.4, Let $R_{m}=E^{\mu}[F^{m}(X)(\omega)](R_{m}$ is independent
of $\omega$ ). By Proposition4.1, for each $m\in N$ , there exists $Q_{m}\in Int(Q_{M})$

such that $\lim_{n\rightarrow\infty}\hat{F}^{n}(R_{m})=Q_{m}$ and $F\wedge(Q_{m})=Q_{m}$ . On the other
hand, by Proposition3.36) we see

(4.2) $\hat{F}^{n}(R_{m})\geq R_{n+m}$ $\forall m$ , $n\in N\cup\{0\}$ ,

so that $Q_{m}\geq Q_{n+m}$ . Denote the limit of $\{Q_{m}\}$ as $Q_{+}$ , then $F\wedge(Q+)=$

$Q_{+}$ . In particular, $Q_{+}\in Int(Q_{M})$ due to Assumption2.3 1). For any
$\epsilon>0$ , there exists $N_{\epsilon}\in N$ such that

(4.3) $(1+\epsilon)Q_{+}\geq R_{m}$ $\forall m\geq N_{\epsilon}$ .
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Indeed, if this does not hold, then because $Q_{(1+\epsilon)Q_{+},C_{2}Q_{0}}$ is compact,
there existsa subsequence $\{l_{j}\}$ such that $R_{l_{j}}\geq(1+\epsilon)Q_{+}$ and $\lim_{j\rightarrow\infty}R_{l_{j}}$

$=:\overline{R}$ exists. On the other hand, by (4.2), we have $\hat{F}^{l_{j’}-l_{j}}(R\iota_{j})\geq R_{\iota_{j’}}$

for all $j’\geq j$ so that $Q_{+}\geq\overline{R}$ , which is a contradiction. By defi-
nition of $\{Q_{m}\}$ , for each $m$ and $\epsilon>0$ , there exists $L_{m,\epsilon}$ such that
$(1 -\epsilon)Q_{m}\leq\hat{F}^{n}(R_{m})$ for all $n$ $\geq L_{m,\epsilon}$ . Combining these facts and

noting $H\wedge Q_{+}n$ (。) $\geq\hat{F}^{n}(R_{m})$ , we have

(4.4) $(1-\epsilon)Q_{+}\leq\hat{H}_{Q}^{n}$

ヤ
$(R_{m})\leq(1+\epsilon)Q_{+}$ $\forall n\geq L_{m,\epsilon}$ , $m\geq N_{\epsilon}$ .

On the other hand, by Lemma4.2, we have

$\lim_{n\rightarrow\infty}||H_{Q_{+}}^{n}(F^{m}(X))(\omega)-H_{Q_{+}}^{n}(\iota(R_{m}))(\omega)||$

$(4.5)$ $=$
$\lim_{n\rightarrow\infty}||H$蝉 $(F^{m}(X))(\omega)-\hat{H}_{Q_{+}}^{n}(R_{m})||=0$

$\mu-a.e$ . $X$ and for all $\omega\in\Omega_{+}$ . Since $H_{Q_{+}}^{n}(F^{m}(X))(\omega)\geq F^{n+m}(X)(\omega)$ ,

we see that the following holds for some $N_{\epsilon,\omega}’\in N$ ,

(4.6) $(1+\epsilon)Q_{+}\geq F^{m}(X)(\omega)$ $\mu- a.e$ . $X$ , $\forall\omega\in\Omega_{+}$ , $m\geq N_{\epsilon,\omega}’$ .

We now consider more about $ H\wedge Q+\cdot$ It is easy to see

$\sup_{n}|||\hat{H}_{Q_{+}}^{n}|||:=\sup_{7l}\sup_{Q\in Q_{M},||Q||=1}||\hat{H}_{Q_{+}}^{n}(Q)||<\infty$

(see Lemma 4.3 in [10]). Using this, we see that the size of each Jordan
cell corresponding to the largest eigenvalue of $H\wedge Q+is1$ . We thus obtain
that there exists an orthogonal projection $P_{0}$ : $Q_{M}\rightarrow Q_{M}$ so that for
each $k\in N$ , there exists $nk\in N$ such that

(4.7) $|||\hat{H}_{Q_{+}}^{n_{k}}-P_{0}|||\leq 2^{-k}$ .

By(4.4) and(4.7), we have $R_{m}\geq P_{0}R_{m}\geq(1-\epsilon)Q_{+}$ for all $m\geq N_{\epsilon}$ .

Together with(4.3), we have

(4.8) $\lim_{n\rightarrow\infty}R_{n}=Q_{+}$ .

Now, by Fatou’s Lemma and (4.8),

(4.9) $E^{\mu}[\lim_{n\rightarrow}\sup_{\infty}\hat{S}_{F^{n}(X)(\omega)}(u, u)]\geq\lim_{n\rightarrow}\sup_{\infty}\hat{S}_{R}$
、

$(u, u)=\hat{S}_{Q_{+}}(u, u)$ ,
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for all $\omega\in\Omega_{+}$ , $u\in l(V_{\omega})$ , where $V_{\omega}:=\{\pi([\omega, i]) : i\in I_{F}\}$ is a O-cell
whose address is $\omega$ . By (4.6) and (4.9), we have

$\lim_{n\rightarrow}\sup_{\infty}\hat{S}_{F^{n}(X)(\omega)}$
$(u, u)=\hat{S}_{Q_{+}}(u, u)$ ,

$\mu-a.e$ . $X$ and for all $\omega\in\Omega_{+}$ , $u\in l(V_{\omega})$ . Applying Lemma 4.3 with
$Y_{n}=\hat{S}_{F^{n}(X)(\omega)}$ $(u, u)$ and $Y=\hat{S}_{Q_{+}}(u, u)$ ( $Y$ is non-random), we have

$\lim_{n\rightarrow\infty}E^{\mu}[|\hat{S}_{F^{n}(X)(\omega)}$ $(u, u)-\hat{S}_{Q_{+}}(u, u)|]=0$ $\forall\omega\in\Omega_{+}$ , $u\in l(V_{\omega})$ .

Since $l(V_{\omega})$ is finite dimensional, we obtain (3.2)where $Q_{\mu}=Q_{+}$ .
Q.E.D.

Using Theorem 3.4, we can prove the convergence of forms.

Proposition 4.4. For all $u\in L^{2}$ $(V, d\nu_{0})$ ,

$\lim_{n\rightarrow\infty}E^{\mu}[|S_{F^{n}(X)} (u, u)-S_{\iota(Q_{\mu})}(u, u)|]\rightarrow 0$ .

Proof. When the support of $u$ is in one 0-cell whose address is $\omega$ ,
then the result is clear by Theorem3.4. 珂 hen $u$ is compactly supported,
we can decompose the form into finite number of forms on O-cells, so the
result still holds. It is thena routine work to show the result for all
$u\in L^{2}$ $(V, d\nu_{0})$ . Q.E.D.

We note here that there are several errors in [10] Section4, where the
proof of the theorem corresponding to our Theorem 3.4 is given. They
can be fixed, but since we have given aproof of the improved theorem,
we omit mentioning where the errors are and how to fix them.

\S 5. Proof of Theorem 3.5

Now that we obtain Proposition 4.4, the proof of Theorem 3.5 is
basically the same as the proof of Theorem3.6 in [10]. Here we will just
state key propositions and briefly comments how to prove them. For
detailed arguments, we refer to Section 5 in [10].

As before, define $K_{m}=\alpha^{m}\hat{K}$ . We consider processes killed at
$\alpha^{m}\hat{V}_{0}\backslash \{0\}$ . Set $\mathcal{F}_{n,m}=\{u\in l(V_{n}) : u|_{K\backslash K_{m}}=0\}$ . For $u$ , $v\in \mathcal{F}$

、, $m$

and $X\in \mathcal{X}_{M}$ , we set $\mathcal{E}_{X}^{n,m}$ $(u, v)=\rho_{Qo}^{n}S_{X}(uo\Psi_{1}^{n}, vo\Psi_{1}^{n})$ . Then,

( $\mathcal{E}_{X}^{n,m}$ , $\mathcal{F}$

、, $m$ ) is a regular Dirichlet form. We denote the corresponding
process $(Y^{X,n,m}, \{P_{X,n,m}^{x}\}_{x\in V_{n}\cap K_{m}})$ and the corresponding generator
$L^{(X,n,m)}$ . Als05 let $(Y^{\mu,m}, \{P_{\mu,m}^{x}\}_{x\in K_{m}})$ denote the process correspond-
$ing$ to $(\mathcal{E}_{Q_{\mu}}, \mathcal{F}_{m})$ , where $\mathcal{E}_{Q_{\mu}}$ isaform constructed from $Q_{\mu}$ in Theorem
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3.4 and $\mathcal{F}_{m}=\{f\in \mathcal{F} : f|_{K\backslash K_{m}}=0\}$ . $L^{(m)}$ is the corresponding
generator.

The first key proposition is the following convergence of finite di-
mensional distribution. This can be obtained by using(H-2), Theorem
2.7and Proposition4.4. See Proposition5.7in [10] for the proof.

Proposition 5.1. Let $\{x_{n}\}_{n=1}^{\infty}\subset V$ be $a$ sequence such that $\alpha^{-n}x_{n}$

$\rightarrow x_{\infty}\in K_{m}$ . Then, for all $0<t_{1}<\cdots<t_{k}$ ,

$E^{P_{X,n,m}^{\alpha x_{n}}}-n[f_{1}(\omega_{t_{1}})\cdots f_{k}(\omega_{t_{k}})]\rightarrow E^{P_{\mu,m}^{x}}\infty[f_{1}(\omega_{t_{1}})\cdots f_{k}(\omega_{t_{k}})]$ ,

in probability under $\mu$ , for any $f_{1}$ , $\cdots$ , $f_{k}\in C(K_{m}, R)$ .

Fora process $Z$ on $K$ let $T_{0}^{r}(Z)=\inf\{t\geq 0 : Z(t)\in V_{r}\}$ and
define inductively $T_{i}^{r}(Z)=\inf\{t>T_{i-1}^{r}(Z) : Z(t)\in V_{r}\backslash Z(T_{i-1}^{r}(Z))\}$

for $i\in N$ . Then the following holds.

Lemma 5.2. Let $\{x_{n}\}_{n}\subset V$ be as in Proposition 5.1. Then there
exist $\gamma$ , $c_{5.1}$ , $c_{5.2}>0$ such that the following holds for $s\geq 0$ , $\mu-a.e$ . $X$ .

$\lim\sup\sup_{in\rightarrow\infty\geq 0}P_{X,n,m}^{\alpha}$

$-nx_{n}(T_{i+1}^{r}(Y^{X,n,m})-T_{i}^{r}(Y^{X,n,m})\leq s)\leq c_{5.1}e^{-c_{5.2}(\tau_{Qo}^{r}s)^{-\gamma}}$

To show this, uniform ( $e$垣 iptic) Harnack inequality for $L^{(X,n,m)}$ is
important (see [10] Lemma 5.8). In our case, we can obtain it easily
by using Proposition 2.8. See [10] Lemma 5.10 for the detailed proof
(thanks to Proposition 2.8, the proof can be shortened).

Using Lemma 5.2, the following tightness is deduced by a standard
argument (see Proposition5.11 in [10]).

Proposition 5.3. Let $\{x_{n}\}_{n}\subset V$ be as in Proposition 5.1. Then
$\{P_{X,n,m}^{\alpha^{-n}x_{n}} ; n \geq 1\}$ is tight(pre-compact)in $D([0, \infty)$ , $K_{m})$ for $\mu- a.e$ . $X$ .

By Proposition 5.1 and Proposition5.3, we have the killed process
version of Theorem 3.5. Using Lemma 5.2 again, it is easy to deduce
the full version of Theorem 3.5.

\S Appendix A. Proof of Proposition 4.1

To start with, we prepare several results for the proof. First, we
define Hilbert’sprojective metric on $Q_{+}$ (cf. [14]). For $X$ , $Y\in Q_{+}$ , let

$h_{+}$ $(X, Y)=\inf\{\alpha>0 : X\leq\alpha Y\}$ , $h_{-}(X, Y)=\sup\{\alpha>0:\alpha Y\leq X\}$ .

Clearly, $h_{-}$ $(X, Y)\leq h_{+}(X, Y)$ . Define

$h(X, Y)=\log\frac{h_{+}(X,Y)}{h_{-}(X,Y)}$ .
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Note that $h$ ($aX$ , bY)=h(X, Y) for all $a$ , $b>0$ and $h(X, Y)=0$ if and
only if $X=aY$ for some $a>0$ , so that $h(\cdot, \cdot)$ is not ametric. But
it is ametric on $\{X\in Q_{+} : ||X||=1\}$ . Using Proposition3.3, it is
easy to prove the following(cf. [13] Section3, [15] Remark3.2and [16]
Proposition3.3).

Proposition A.I.

0 $h_{+}(\hat{F}(X),\hat{F}(Y))\leq h_{+}(X, Y)$ and $h_{-}(\hat{F}(X),\hat{F}(Y))\geq h_{-}(X, Y)$ for
all $X$ , $Y\in Q_{+}$ . In particular, $h(\hat{F}(X),\hat{F}(Y))\leq h(X, Y)$ .

2)If $Q_{*}\in Int(Q_{M})$ satisfifies $F\wedge(Q_{*})=Q_{*}$ , then for each $n\in N\cup\{0\}$

and each $X\in Q_{irr}$ , $h_{-}$ $(X, Q_{*})Q_{*}\leq\hat{F}^{n}(X)\leq h_{+}(X, Q_{*})Q_{*}$ .

For $X$ , $Y\in Q_{+}$ , let $A^{\pm}$ $(X, Y)=\{u\in l(\hat{V}_{0})$ : $u$ is non-constant,
$\hat{S}_{X}$ $(u, u)=h_{\pm}(X, Y)\hat{S}_{Y}(u, u)\}$ . Also, for each $Q\in Q_{irr}$ and $u\in l(\hat{V}_{0})$ ,

define $kl_{n,Q}(u)$ as aunique function on $V\wedge n$ so that

$\hat{S}_{\hat{F}}$

、(Q)
$(u, u)=\hat{\mathcal{E}}_{Q}^{n}(H_{n,Q}(u), \prime\mu_{n,Q}(u))$ ,

where $\mathcal{E}\wedge nQ$ $(\cdot, \cdot)$ is defined in (2.2). In other word, $\prime\kappa_{n,Q}(u)\in l(\hat{V}_{n})$ isaQ-

harmonic extension of $u\in l(\hat{V}_{0})$ . By definition, $A_{j,Q}(u)=H_{1,Q}(u)\circ\Psi j$ .
Thus the following holds for all $m\geq 0$ and $l$ $\geq n\geq 0$ .

(A.1) $\mathcal{H}_{m+n,\hat{F}^{l-n}(Q)}(u)\circ\Psi_{i_{1},\cdots,i_{m},j_{1},\cdots,j_{n}}$

$=$ $A_{j_{n},\hat{F}^{l-n}(Q)}\circ\cdots\circ A_{j_{1},\hat{F}^{1-1}(Q)}(H_{m,\hat{F}^{l}(Q)}(u)\circ\Psi_{i_{1},\cdots,i_{m}})$ .

We have the following(cf. [15] Proposition3.3, [13] Lemma5.8).

Lemma A.2. For $X$ , $Y\in Q_{irr}$ , defifine $h_{\pm},n=h\pm(\hat{F}^{n}(X),\hat{F}^{n}(Y))$ .

Then. for each $0\leq m\leq n$ ,

(A.2) $h_{+,n}\leq h_{+,m}\leq h_{+,0}$ , $h_{-,n}\geq h_{-,m}\geq h_{-,0}$ .

(A.3) There exists $\lim_{n\rightarrow\infty}h_{\pm,n}\in(0, \infty)$ .

Further, if $h_{\pm,n}=h_{\pm,0}$ , then for all $u\in A^{\pm}(\hat{F}^{n}(X),\hat{F}^{n}(Y))$ , we have

(A.4) $\prime\kappa_{n-m,\hat{F}^{m}(X)}(u)\circ\Psi_{i_{1},\ldots,i_{n-m}}$

$=$ $ H_{n-m,\hat{F}^{m}(Y)}(u)\circ$ 重 $i_{1},\ldots,i_{n-m}\in A^{\pm}(\hat{F}^{m}(X),\hat{F}^{m}(Y))$ .

$Proo/$. (A.2) is ffom Proposition A.I 1). (A.3) is a simple conse-
quence of(A.2) and the fact $h_{-}(X, Y)\leq h_{+}(X, Y)$ . Next, if $h_{\pm},7l=h_{\pm,0}$
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and $u\in A^{-}(\hat{F}^{n}(X),\hat{F}^{n}(Y))$ , then we have

$h_{-,0}\hat{S}_{\hat{F}}$

、(Y) (u) $=$ $\hat{S}_{\hat{F}^{n}(X)}(u)=\hat{\mathcal{E}}_{\hat{F}^{m}(X)}^{n-m}(H_{n-m,\hat{F}^{m}(X)}(u))$

$\geq$ $h_{-,m}\hat{\mathcal{E}}_{\hat{F}^{m}(Y)}^{n-m}(H_{n-m,\hat{F}^{m}(X)}(u))$

$\geq$ $h_{-,m}\hat{\mathcal{E}}_{\hat{F}^{m}(Y)}^{n-m}(H_{n-m,\hat{F}^{m}(Y)}(u))$

$=$ $h_{-,m}\hat{S}_{\hat{F}^{n}(Y)}(u)\geq h_{-,0}\hat{S}_{\hat{F}^{n}(Y)}(u)$ .

Thus all the inequalities above are in fact equalities. By the uniqueness
of the harmonic extension, we obtain the $( )$ -version of (A.4). $(+)-$

version of (A.4) can be proved similarly. $Q.E.D$ .

We next mentiona convergence result on positive matrices (cf. [15]
Proposition3.5).

Lemma A.3. Let $B$ be $a$ finite set. Suppose $A_{1}$ , $\cdots$ , $A_{n}$ , $\cdots$ , $A_{\infty}$

are positive matrices from $l(B)$ to itself and suppose there exists $a$ sub-
sequence $\{\sigma(n)\}_{n}$ such that

(A.5) $\lim_{n\rightarrow\infty}(A_{\sigma(n)})_{ij}=(A_{\infty})_{ij}$ for all $i$ , $j\in B$ .

Then, for each family of non-negative non-zero vectors $\{v_{n}\}_{n}\subset l(B)$ ,

(A.6) $\lim_{n\rightarrow\infty}\frac{A_{1}\circ\cdots\circ A_{n}v_{n}}{||A_{1}\circ\cdots\circ A_{n}v_{n}||}$

exists and it is $a$ positive vector.

Proof. For $p$ , $r\geq 0$ , define $T_{p,r}=A_{p+1}\circ\cdots\circ A_{p+r}$ . By (A.5)
and Theorem 3.6 in [17], $\lim_{r\rightarrow\infty}(T_{p,r})_{ij}/(\sum_{s\in B}(T_{p,r})_{is})$ exists for each
$i$ , $j\in B$ , $p\geq 0$ and it is independent of $i$ and $p$ (in [17], such aproperty
is called strongly ergodic). Using Lemma 3.3 in [17], we obtain the
result. $Q.E.D$ .

We now give a key Lemma (cf. [15] Lemma 3.6, [16] Section 5.3).

Lemma A.4. Let $X\in Q_{irr}$ . Then, $F\wedge(X)=X$ if and only if

(A.7) $h(\hat{F}^{n}(X),\hat{F}^{n+1}(X))=h(X,\hat{F}(X))$ for all $n$ $\in N$ .

Proof. We will assume(A.7) and prove $F\wedge(X)=X$ (since the other
direction is clear). First, note that there exist $j\in I_{F}$ anda subsequence
$\{s(n)\}_{n}$ so that we can take $u\pm,n\in A^{\pm}(\hat{F}^{s(n)}(X),\hat{F}^{s(n)+1}(X))$ with
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$u\pm,n(a_{j})=\min_{x}u\pm,n(x)=0$ ( $a_{j}$ is afixed point of $\Psi_{j}$ ). Then by
Lemma A.2,

(A.8) $u\pm,n,m:=H_{s(n)-m,\hat{F}^{m}(X)}(u\pm,n)o\Psi_{j}^{s(n)-m}$

$=$ $7\{s(n)-m,\hat{F}^{m+1}(X)(u\pm,n)o\Psi_{j}^{s(n)-m}\in A^{\pm}(\hat{F}^{m}(X),\hat{F}^{m+1}(X))$ ,

for all $m\leq s(n)$ where $\Psi_{j}^{n}$ isa $n$-th iteration of $\Psi_{j}$ . By $(A.1)$ , we have

(A.9) $u\pm,n,m$ $=$ $A_{j,\hat{F}^{m}(X)}\circ\cdots\circ A_{j,\hat{F}^{s(n)-1}}(x)(u\pm,n)$

$=$ $A_{j,\hat{F}^{m+1}}(x)o\cdots oA_{j,\hat{F}^{\epsilon(n)}}(x)(u\pm,n)$ .

Now choose $N_{0}$ large enough so that $F\wedge m(X)\in Int(Q_{M})$ for all $ m\geq$

$N_{0}$ (we use Assumption2.3 1)here). Using Lemma 3.1, we see that
$\{(A_{j,\hat{F}^{m}(X)})|_{B}\}_{m\geq N_{0}}$ are positive matrices ffom $l(B)$ to itself where $B:=$

$\hat{V}_{0}\backslash \{a_{j}\}$ . Since all the elements of the matrices are less than 1 (due to
Lemma3.1) and $\Downarrow B<\infty$ , we see that(A.5) holds. We can thus apply
Lemma A.3 and obtain that

$\lim_{n\rightarrow\infty}\frac{(u\pm,n,m)1B}{||(u\pm,n,m)|_{B}||}$

exists for $m\geq N_{0}$ . By(A.9), this limit is independent of $m\geq N_{0}$ , we
thus denote it as $ u\pm\cdot$

We now regard $ u\pm$ as a function on $V\wedge 0$ . Then, by the choice of
$u\pm,n’ u\pm(a_{j})=0$ so that $ u\pm$ is non-constant. By (A.8), we see that
$u\pm\in A^{\pm}(\hat{F}^{m}(X),\hat{F}^{m+1}(X))$ for all $m\geq N_{0}$ . Thus, $\hat{S}_{\hat{F}^{m}(X)}(u\pm)=$

$h_{\pm}(\hat{F}^{m}(X),\hat{F}^{m+1}(X))\hat{S}_{\hat{F}^{m+1}}(X)(u\pm)$ . On the other hand, by (A.7),

$h_{+}(\hat{F}^{m}(X),\hat{F}^{m+1}(X))/h_{-}(\hat{F}^{m}(X),\hat{F}^{m+1}(X))\geq 1$ is independent of
$m\geq 0$ which we denote by $\beta$ . Then, we obtain

$\frac{\hat{S}_{\hat{F}^{m+1}}((x)u_{+})}{\hat{S}_{\hat{F}^{m+1}}((x)u_{-})}=\beta^{-1}\frac{\hat{S}_{\hat{F}^{m}(X)}(u_{+})}{\hat{S}_{\hat{F}^{m}(X)}(u_{-})}=\cdots=\beta^{-(m+1-N_{0})}\frac{\hat{S}_{\hat{F}^{N_{0}}(X)}(u_{+})}{\hat{S}_{\hat{F}^{N_{0}}(X)}(u_{-})}$ ,

for all $m\geq N_{0}$ . If $\beta>1$ , it contradicts to Proposition A.l2). So, $\beta=1$

which means $h(X,\hat{F}(X))=0$ (by taking $m=0$ ). Thus, $F\wedge(X)=cX$ for
some $c>0$ . Using Remark2.41), we have $c=1$ . $Q.E.D$ .

Proof of Proposition4 $\cdot$ 1. First, since $c_{1}Q_{0}\leq\hat{F}^{n}(M)\leq c_{2}Q_{0}$ for all
$n\in N$ , there exists asubsequence (which could depend on $M$ ) $\{\sigma(n)\}_{n}$

and $Q_{M}\in Q_{irr}$ such that

(A.10) $\lim_{r\iota\rightarrow\infty}\hat{F}^{\sigma(n)}(M)=Q_{M}$ .
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On the other hand, by Lemma A.2, the following limit exists,

$h_{\pm}:=\lim_{n\rightarrow\infty}h_{\pm}(\hat{F}^{n}(M),\hat{F}^{n+1}(M))\in(0, \infty)$ .

Thus,

$h(\hat{F}^{m}(Q_{M}),\hat{F}^{m+1}(Q_{M}))$

$=$ $\lim_{n\rightarrow\infty}h(\hat{F}^{m+\sigma(n)}(M),\hat{F}^{m+1+\sigma(n)}(M))=\log\frac{h_{+}}{h_{-}}$ ,

for all $m\in N$ . By Lemma A.4, this implies $F\wedge(Q_{M})=Q_{M}$ . In particular,
$Q_{M}\in Int(Q_{M})$ due to Assumption2.3 1). Using Lemma A.2 again,
$\lim_{n\rightarrow\infty}h_{\pm}(Q_{M},\hat{F}^{n}(M))$ exists and the limit is 1 due to (A.1O). By
Proposition A.l 2), this implies (4.1). Q.E.D.
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Abstract.

We study representations of martingales with jumps based on the
filtration generated by a L\’evy process. Two types of representation
theorem are obtained. The first formula is valid for any martingale
and written as the sum of the stochastic integral based on the Brow-
nian motion and that based on the compensated Poisson random
measure. See (0.1). The second formula is valid only for a process
which is a martingale for any equivalent martingale measure. See
(0.2). The latter representation formula is then applied to a prob-

lem in mathematical finance. The upper hedging strategy and the
lower hedging strategy of a contingent claim is obtained through the
representation kernel.

\S 0. Introduction

It is a well known fact that any martingale with respect to the
filtration generated by a Brownian motion can be represented as It\^o’s

stochastic integral based on the Brownian motion. On the other hand,
martingales with respect to the filtration generated by a L\’evy process
are not always represented by It\^o’s stochastic integrals based on the
L\’evy process, even the latter is a martingale. What is known is that
any square integrable martingale with respect to the filtration generated
by a L\’evy process is represented by stochastic integrals based on the
Brownian motion and the compensated Poisson random measure.

In the first half of this paper, we recall these representation theo-
rems following Kunita-Watanabe [6] (Section 1). Let $(F_{t})$ be the fil-
tration generated by a $m$-dimensional L\’evy process. Then every (lo-
$cal)martingale$ $M(t)$ with respect to the filtration $(F_{t})$ is represented

Received April 7, 2003.
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by

(0.1) $M(t)=M(0)+\sum_{i=1}^{m}\int_{0}^{t}\phi_{i}(s)dW^{i}(s)+\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{N}$(dsdz),

where $W(t)=(W^{1}(t), \ldots, W^{m}(t))$ is a standard Brownian motion and
$\overline{N}$ (dsdz) is the compensated Poisson random measure, which appear in

the L\’evy-It\^o decomposition of the L\’evy process. The pair $((\phi_{1}(s),$
$\ldots$ ,

$\phi_{m}(s))$ , $\psi(s, z))$ is a predictable process with parameter $z$ satisfying cer-
tain integrability conditions (See Theorem 1.1). We are particularly in-
terested in the exponential representation of positive martingales (The-
orem 2.1). We apply it to the study of Radon Nikodym density of
equivalent probability measure and extend Girsanov’s theorem to jump
processes (Theorem 2.3).

In the second half of the paper, we apply these representation the-
orems to some problems in mathematical finance. Suppose that we are
given a stochastic process $\xi_{t}=(\xi_{t}^{1}, \ldots, \xi_{t}^{d})$ (e.g., a price process or its
return process in mathematical finance) governed by a L\’evy process. If
the process $\xi_{t}$ has jumps, there are infinitely many equivalent probability
measures with respect to which $\xi_{t}$ is a localmartingale (called equivalent
martingale measures). Now suppose that $M(t)$ is a localmartingale for
any equivalent martingale measure. We will show that under some con-
ditions for $\xi_{t}$ , $M(t)$ is represented by a stochastic integral based on $\xi_{t}$ ,
i.e., it is written as

(0.2) $M(t)=M(0)+\sum_{i=1}^{d}\int_{0}^{t}\varphi_{i}(s)d\xi_{s}^{i}$ .

The difference of these two representations (0.1) and (0.2) are big. We
show further that an adapted process $X(t)$ is a supermartingale for
any equivalent martingale measure if and only if it admits the unique
Doob-Meyer decomposition (not depending on each equivalent martin-
gale measure) and the localmartingle part $M(t)$ is represented as (0.2).
See Theorem 3.4 in Section 3.

At the end of Section 3, we apply the above representation theorem
to determine the upper hedging price and the lower hedging price of a
given contingent claim (Theorem 3.5).

Finally, we mention that there are several works on determing the
upper or the lower hedging prices of contingent claims in the case where
the price processes have jumps. See e.g. Kabanov-Stricker [3] and refer-
ences therein. In these works, more general price processes are studied
in an abstract manner.
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\S 1. Representation of localmartingales

Let $T$ be a positive number and let $Z(t)$ , $t\in[0,T]$ be an $m$ dimensional
L\’evy process such that $Z(0)=0$ . Then it admits the L\’evy-It\^o decom-
position:

(1.1) $Z(t)=\sigma W(t)+bt+\int_{(0,t]}\int_{|z|>1}zN(dsdz)$

$+\int_{(0,t]}\int_{|z|\leq 1}z$ { $N(dsdz)-\hat{N}$ (dsdz)},

where $\sigma$ is an $m\times m$ matrix, $W(t)=(W^{1}(t), \ldots, W^{m}(t))$ is an m-
dimensional standard Brownian motion and $N(dsdz)$ is a Poisson count-

ing measure on $[0, T]\times R^{m}$ with intensity measure $\hat{N}$ (dsdz) $=ds\iota/(dz)$ ,

which is independent of $W(t)$ . In the following, we denote

(1.2) $\tilde{N}$ (dsdz) $=N(dsdz)-\hat{N}$ (dsdz).

Let $(F_{t})$ , $t\in[0, T]$ be the filtration generated by the Brownian
motion $W(t)$ and the Poisson random measure $N(dtdz)$ . Then both
$W(t)$ and $\int_{|z|\leq 1}z\overline{N}$ (dsdz) are martingales adapted to the filtration. Let

$M(t)$ , $t\in[0, T]$ be an $(F_{t})$-adapted cadlag (right continuous with the leffi
hand limits) process. It is called a localmartingale if there exists a non-
decreasing sequence of stopping times $\tau_{n}$ , $n$ $=1,2$ , $\ldots$ with values in $[0, T]$

such that $P(\tau_{n}<T)\rightarrow 0$ as $n$ $\rightarrow\infty$ and the stopped process $M(t\wedge\tau_{n})$ is
a martingale for any $n$ . In particular if we can choose the sequence such
that the stopped process $M(t\wedge\tau_{n})$ is a square integrable martingale for
any $n$ , $M(t)$ is called a locally square integrable martingale. Any contin-
uous localmartingale is a locally square integrable martingale, but it is
not always the case for a localmartingale with jumps. An $(F_{t})$ adapted
cadlag process $X(t)$ is called a semimartingale if it is written as a sum
of a localmartingale and a process of bounded variation. In particular
if the corresponding process of bounded variation is locally integrable,
$X(t)$ is called a special semimartingale. A special semimartingale is de-
composed uniquely to the sum of a localmartingale and a predictable
process of bounded variation.

We denote by $\Phi$ the set of all $m$ dimensional predictable processes
$\phi(t)=(\phi_{1}(t), \ldots, \phi_{m}(t))$ such that $\int_{0}^{T}|\phi(s)|^{2}dt<\infty a.s$ . Then the
stochastic integral based on the $m$-dimensional Brownian motion $W(t)=$

$(W^{1}(t), \ldots, W^{m}(t))$ is well defined for $\phi\in\Phi$ . We use the notation:

(1.3) $\int_{0}^{t}(\phi(s), dW(s))=\sum_{i=1}^{m}\int_{0}^{t}\phi_{i}(s)dW^{i}(s)$
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It is a continuous locally square integrable martingale.
Let $P$ be the predictable $\sigma$-algebra on $[0, T]$ $\times\Omega$ and let $B$ be the

Borel algebra on $R^{m}$ . A functional $\psi(s, z, \omega)$ , $(s, z, \omega)\in[0, T]\times R^{m}\times\Omega$

is called a predictable process if it is $P\times B$-measurable.
We will recall the definition of the stochastic integral of the pre-

dictable process $\psi(s, z)$ based on the compensated Poisson random mea-
sure $\tilde{N}$ (dsdz) following Kunita-Watanabe [6]. Note first that if $E_{1}$ , $\ldots$ , $E_{n}$

are disjoint Borel subsets of $[0, T]\times R^{m}$ such that $\hat{N}(E_{1})<\infty$ , $\ldots,\hat{N}(E_{n})$

$<\infty$ , then $\tilde{N}(E_{1})$ , $\ldots,\tilde{N}(E_{n})$ are independent random variables with

mean 0 and variance $\hat{N}(E_{1})$ , $\ldots,\hat{N}(E_{n})$ , respectively. Now, let $\psi(t, z)$ be
a step process of the form $\sum_{i,j}a_{ij}1_{(t_{i},t_{i+1}]}(t)1_{F_{ij}}(z)$ , where $0=t_{0}<$

$\ldots$ $<t_{N}=T$ and for each $iF_{i1}$ , $\ldots$ , $F_{in}$ are disjoint subsets of $R^{m}$ satis-
ping $\iota/(F_{ij})<\infty,j=1$ , $\ldots$ , $n$ and $a_{ij}$ are bounded $F_{t_{i}}$ -adapted random

variables. We define the stochastic integral of $\psi$ based on $\tilde{N}$ by

(1.4) $\int_{0}^{T}\int_{R^{m}}\psi(t, z)\tilde{N}$ (dtdz)
$=\sum_{i,j}a_{ij}\tilde{N}((t_{i}, t_{i+1}]\times F_{ij})$

.

Then we have

(1.5)

$E[(\int_{0}^{T}\int_{R^{m}}\psi(t, z)\overline{N}(dtdz))^{2}]=\sum_{i}E[(\sum_{j}a_{ij}\hat{N}((t_{i}, t_{i+1}]\times F_{ij}))^{2}]$

$+\sum_{i<k}E[\{\sum_{j}a_{kj}\hat{N}((t_{k}, t_{k+1}]\times F_{kj})\}\{\sum_{j}a_{ij}\hat{N}((t_{i}, t_{i+1}]\times F_{ij})\}]$

Since $\{a_{ij},j=1,2, \ldots\}$ and $\tilde{N}((t_{i}, t_{i+1}]\times F_{ij}),j=1,2_{7}\ldots$ are independent
and the latters are of mean 0, the first term of the left hand side is
computed as

(1.6)
$\sum_{ij}E[a_{ij}^{2}\tilde{N}((t_{i}, t_{i+1}]\times F_{ij})^{2}]=\sum_{ij}E[a_{ij}^{2}\hat{N}((t_{i}, t_{i+1}]\times F_{ij})]$

The last term of (1.5) is 0, since $E[\sum_{j}a_{kj}\tilde{N}((t_{j}, t_{j+1}]\times F_{kj})|F_{t_{i+1}}]=0$ .

Therefore we have
(1.7)

$E[(\int_{0}^{T}\int_{R^{m}}\psi(t, z)\tilde{N}(dtdz))^{2}]=E[\int_{0}^{T}\int_{R^{m}}|\psi(t, z)|^{2}\hat{N}(dtdz)]$ .
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Now suppose that $\psi(t, z)$ is a predictable process satisfying the condi-

tion $ E[\int_{0}^{T}\int_{R^{m}}|\psi(t, z)|^{2}dt\iota/(dz)]<\infty$ . Then we can choose a sequence

$\{\psi_{n}(t,z)\}$ of step processes such that $E[\int_{0}^{T}\int_{R^{m}}|\psi(t, z)-\psi_{n}(t,z)|^{2}dt\iota/(dz)]$

$\rightarrow 0$ , as $ n\rightarrow\infty$ . Denote the stochastic integral of $\psi_{n}$ (formula (1.4))
by $M_{n}$ . Then $M_{n}$ converges in $L^{2}$ . We denote the limit by $M=$
$\int_{0}^{T}\int_{R^{m}}\psi(t, z)\tilde{N}$ (dtdz). Then it satisfies (1.7) again.

The stochastic integral $\int_{0}^{T}1_{(0,t]}(s)\psi(s, z)\tilde{N}$ (dsdz) is denoted by
$\int_{0}^{t}\psi(s, z)\tilde{N}$ (dsdz). It is a cadlag process with time $t$ and in fact is a
square integrable martingale. This fact can be shown directly in the
case where $\psi(t, x)$ is a step process defined above. Then the martingale
property is extended to any $\psi$ such that (1.7) is finite.

We denote by $\Psi_{2}(\hat{N})(\Psi_{1}(\hat{N}))$ the set of all predictable processes
$\psi(t, z)$ which are square integrable (resp. integrable) with respect to

the measure $\hat{N}$ (dtdz) $a.s$ . Then we can define the stochastic integral
$\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{N}$(dsdz) for $\psi\in\Psi_{2}(\hat{N})$ as a locally square integrable

martingale. For $\psi\in\Psi_{1}(\hat{N})$ , we define the stochastic integral by

(1.8) $\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{N}$ (dsdz) $:=\int_{0}^{t}\int_{R^{m}}\psi(s, z)N(dsdz)$

$-\int_{0}^{t}\int_{R^{m}}\psi(s, z)\hat{N}$ (dsdz).

It is a localmartingale. For a general $\psi(t, z)$ , we set $\psi_{1}(t, z)$ $=$

$\psi(t, z)1_{\{|\psi|>1\}}(t, z)$ , $\psi_{2}(t, z)=\psi(t, z)1_{\{\{|\psi|\leq 1\}}(t, z)$ , and we denote by
$\Psi_{1,2}(\hat{N})$ the set of all predictable process $\psi(t, z)$ such that $\psi_{1}\in\Psi_{1}(\hat{N})$

and $\psi_{2}\in\Psi_{2}(\hat{N})$ . Then, for any $\psi\in\Psi_{1,2}(\hat{N})$ , the stochastic integral
is defined as the sum of stochastic integrals of $\psi_{1}$ and $\psi_{2}$ . It is a local-
martingale.

The following notations will be used
(1.9)

$N_{t}(\psi)=\int_{0}^{t}\int_{R^{m}}\psi(s, z)N(dsdz)$ , $\tilde{N}_{t}(\psi)=\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{N}$ (dsdz),

$\hat{N}_{t}(\psi)=\int_{0}^{t}\int_{R^{m}}\psi(s, z)\hat{N}$ (dsdz),

if these are well defined.
Now, we give a representation theorem of localmartingales.

Theorem 1.1. ([6], Example at p.227 and Proposition 5.2) Let

$M(t)$ be a localmartingale. Then there exist $\phi(s)\in\Phi$ , $\psi(s, z)\in\Psi_{1,2}(\hat{N})$ ,
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and $M(t)$ is represented by

(1.10) $M(t)=M(0)+\int_{0}^{t}(\phi(s), dW(s))+\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{N}$ (dsdz).

The representation kernel $(\phi(s), \psi(s, z))$ is uniquely determined from
$M(t),$ $i.e.$ , if $M(t)$ is represented by (1.10) with another $(\phi’(s), \psi’(s, z))$ ,

then we have $\phi(s)=\phi’(s)a.e$ . $\lambda\otimes P$ and $\psi(s, z)=\psi’(s, z)a.e.\hat{N}\otimes P$ ,
where $\lambda$ is the Lebesgue measure on $[0, T]$ .

Proof. In the paper [6], the above theorem is proved for square inte-
grable martingale by using the theory of additive functionals of Markov
processes. Here we give a direct and simpler proof by applying It\^o

[2]. For simplicity we prove the theorem in the case $m=1$ only. Let
$Z=(Z(t))$ be a one dimensional L\’evy process and let (1.1) be the L\’evy-
It\^o decomposition. We introduce a random measure $M(E)$ on $[0, T]\times R$

by

(1.11) $M(E)=\int_{E(0)}dW(t)+\int_{E-E(0)}\frac{z}{1+|z|}\tilde{N}$ (dtdz),

where $E(0)=\{(t, 0)). (t, O)\in E\}$ . Then we have $E[M(E_{1})M(E_{2})]=$

$\mu(E_{1}\cap E_{2})$ , where

$\mu(E)=|E(0)|+\int_{E-E(0)}(\frac{z}{1+|z|})^{2}dt\iota/(dz)$ .

For each positive integer $p$ , we define the multiple Wiener integral by

(1.12) $I_{p}(f)=\int\cdots\int f(\xi_{1}, \ldots, \xi_{p})dM(\xi_{1})\cdots dM(\xi_{p})$ .

Let $H_{Z}$ be the $L^{2}$ space over $(\Omega, \mathcal{F}_{T}, P)$ and let $H_{Z}^{(p)}$ be the closed
linear manifold of $\{I_{p}(f);f\in L_{p}^{2}\}$ , where $L_{p}^{2}$ is the $L^{2}$ space on $R^{p}$ with
the product measure of $\mu$ . Then it is shown in [2] that one has the direct

sum expansion: $H_{Z}=\sum_{p\geq 0}\oplus H_{Z}^{(p)}$ . Note that each $I_{p}(f)$ is written as
the sum of the following terms
(1.13)

$\int\cdot\int_{0\leq t_{1}<<t_{p}\leq T,(z_{1},,z_{p})\in R^{p}}\cdots\ldots f((t_{1},z_{1})$ , $\ldots$ , $(t_{p},z_{p}))dM(t_{1}z_{1})\cdots dM(t_{p}z_{p})$

$=\int_{0}^{T}\int_{R}\varphi(t_{p}, z_{p})dM(t_{p}z_{p})$ ,
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where

$\varphi(t_{p}, z_{p})=\int\cdot\int_{\Lambda(t_{p},z_{p})}f((t_{1}, z_{1}),$ $\ldots$ , $(t_{p}, z_{p}))dM(t_{1}z_{1})\cdots dM(t_{p-1}z_{p-1})$

and $\Lambda(t_{p}, z_{p})=\{0<t_{1}<\cdots<t_{p-1}<t_{p}, (z_{1}, \ldots, z_{p-1}, z_{p})\in R^{p-1}\}$ .

Setting $\phi(t)=\varphi(t, 0)$ and $\psi(t, z)=\varphi(t, z)\frac{1+|z|}{z}(|z|>0)$ , we find that
the above is written as

(1.14) $\int_{0}^{T}\phi(s)dW(s)+\int_{0}^{T}\int_{R}\psi(s, z)\overline{N}$ (dsdz).

Therefore any element of $H_{Z}^{(p)}$ and hence any element $X$ of $H_{Z}$ with
mean 0 is written as the above. Now taking the conditional expecta-
tion of (1.14), we obtain the representation (1.10) for square integrable
martingale $M(t)=E[X|F_{t}]$ .

The extension to locally square integrable martingales will be obvi-
ous. The extension to localmartingales will be discussed after Theorem
2.1 in the next section.

Let $M(t)$ and $N(t)$ be two locally square integrable martingales such
that $M(0)=N(0)=0$ . Then by the Doob-Meyer decomposition of
a supermartingale, there exist adapted continuous increasing processes
$\langle M\rangle_{t}$ , $\langle N\rangle_{t}$ and an adapted continuous process of bounded variations
$\langle M, N\rangle_{t}$ such that $\langle M\rangle_{0}=\langle N\rangle_{0}=\langle M, N\rangle_{0}=0$ and $M(t)^{2}-\langle M\rangle_{t}$ ,
$N(t)^{2}-\langle N\rangle_{t}$ and $M(t)N(t)-\langle M, N\rangle_{t}$ are localmartingales. Such bracket
processes are uniquely determined. Note that $\langle M, M\rangle_{t}=\langle M\rangle_{t}$ by the
definition. If $M(t)$ is represented by (1.10) with $M(0)=0$ and $N(t)$ is

represented with the kernel $(\overline{\phi},\tilde{\psi})$ , then we have the formula

(1.15) $\langle M, N\rangle_{t}=\int_{0}^{t}(\phi(s),\tilde{\phi}(s))ds+\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{\psi}(s, z)\hat{N}$ (dsdz).

We can define the quadratic $c$ -variation of two semimartingales
$X(t)$ and $Y(t)$ by

(1.16) $[X, Y]_{t}=\exists\lim_{|\triangle|\rightarrow 0}\sum_{k=1}^{n}(X(t_{k})-X(t_{k-1}))(Y(t_{k})-Y(t_{k-1}))$ ,

where $\triangle$ are partitions of the time interval $[0, t]$ such that $0=t_{0}<$

$t_{1}<\cdots t_{n}=t$ and $|\triangle|=\max_{1\leq k\leq n}|t_{k}-t_{k-1}|$ . We set $[X]_{t}=[X, X]_{t}$ .
If $M(t)$ and $N(t)$ are continuous localmartingales, it is known that the
bracket process $\langle M, N\rangle_{t}$ and the quadratic $co$-variation coincides, i.e.,
$[M, N]_{t}=\langle M, N\rangle_{t}$ . However if both $M(t)$ , $N(t)$ have jumps, the bracket
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process is not equal to the quadratic variation. In the case where the rep-
resentation kernels of $M(t)$ and $N(t)$ are $(\phi, \psi)$ and $(\overline{\phi},\tilde{\psi})$ , respectively,
we have

(1.17) $[M, N]_{t}=\int_{0}^{t}(\phi(s),\tilde{\phi}(s))ds+\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{\psi}(s, z)N(dsdz)$ .

Two locally square integrable martingales $M(t)$ and $N(t)$ are called
orthogonal if $M(t)N(t)$ is a localmartingale or equivalently, the bracket
process $\langle M, N\rangle_{t}$ is identically 0. By the formula (1.15) we see that the

continuous local martingale $\sum_{i=1}^{m}\int_{0}^{t}\phi_{i}(s)dW^{i}(s)$ and the discontinuous

one $\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{N}$ (dsdz) are orthogonal.
Suppose that $M(t)$ and $N(t)$ are not orthogonal. There exists a

predictable process $\varphi(t)$ such that $\langle M, N\rangle_{t}=\int_{0}^{t}\varphi(s)d\langle N\rangle_{s}$ . We define

new locally square integrable martingales by $M^{1}(t)=\int_{0}^{t}\varphi(s)dN(s)$ and
$M^{2}(t)=M(t)-M^{1}(t)$ . Then $M^{1}(t)$ and $M^{2}(t)$ are orthogonal each
other because of the equality

$\langle M^{1}, M^{2}\rangle_{t}=\langle M^{1}, M\rangle_{t}-\langle M^{1}, M^{1}\rangle_{t}=\int_{0}^{t}\varphi(s)^{2}d\langle N\rangle_{s}-\int_{0}^{t}\varphi(s)^{2}d\langle N\rangle_{s}=0$ .

The locally square integrable martingale $M^{1}(t)$ is called the orthogonal
projection of $M(t)$ to $N(t)$ . In the case where $M(t)$ and $N(t)$ are rep-

resented with kernels $(\phi, \psi)$ and $(\tilde{\phi},\tilde{\psi})$ , respectively, the kernel $\varphi$ of the
orthogonal projection is given by

(1.17) $\varphi(t)=\frac{(\phi(t),\tilde{\phi}(t))+\int_{R^{m}}\psi(t,z)\tilde{\psi}(t,z)_{l/}(dz)}{|\tilde{\phi}(t)|^{2}+\int_{R^{m}}\tilde{\psi}(t,z)^{2}\nu(dz)}$ .

We denote by $\mathcal{M}_{loc}^{2}$ (resp. $\mathcal{M}_{loc}^{1}$ ) the set of all locally square inte-
grable martingales (resp. localmartingales) $M(t)$ with $M(0)=0$ . It is
a vector space. A sequence $\{M_{k}(t), k=1,2, ..\}$ of $\mathcal{M}_{loc}^{2}$ is said to con-
verge to $M(t)$ if there exists a nondecreasing sequence of stopping times
$\tau_{n}$ , $n$ $=1$ , .. such that $P(\tau_{n}<T)\rightarrow 0$ as $ n\rightarrow\infty$ and each sequence
of stopped processes $\{M_{k}^{\tau_{n}}(t):=M_{k}(t\wedge\tau_{n}), k=1,2, \ldots\}$ converges to
$M^{\tau_{n}}(t)$ in $L^{2}$ . Then $\mathcal{M}_{loc}^{2}$ is a complete space by this topology.

For a given $M(t)\in \mathcal{M}_{loc}^{2}$ , we set

(1.19) $\mathcal{L}(M)=\{\int_{0}^{t}\varphi(s)dM(s);\varphi(s)\in\Phi(\langle M\rangle)\}$ ,
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where $\Phi(\langle M\rangle)$ is the set of all predictable processes $\varphi$ such that
$\int_{0}^{T}|\varphi(t)|^{2}d\langle M\rangle_{t}<\infty a.s$ . It is a subset of $\mathcal{M}_{loc}^{2}$ . Let $N$ be a sub-

set of $\mathcal{M}_{loc}^{2}$ . It is called a subspace of $\mathcal{M}_{loc}^{2}$ if it is a closed vector space
including $\mathcal{L}(N)$ whenever $N\in N$ .

Given a subset $N$ of $\mathcal{M}_{loc}^{2}$ , we denote by $\mathcal{L}(N)$ the smallest closed
subspace containing the set $N$ . We denote by $N^{\perp}$ the set of all $ M(t)\in$

$\mathcal{M}_{loc}^{2}$ which is orthogonal to any $N\in N$ . Then $N^{\perp}$ is a closed subspace
of $\mathcal{M}_{loc}^{2}$ . Further, if $N$ is a closed subspace of $\mathcal{M}_{loc}^{2}$ , every $M(t)\in \mathcal{M}_{loc}^{2}$

is decomposed uniquely to the sum of $M^{1}(t)\in N$ and $M^{2}(t)\in N^{\perp}$ . We
have thus the orthogonal decomposition

(1.20) $\mathcal{M}_{loc}^{2}=N\oplus N^{\perp}$ .

\S 2. Exponential representation of positive martingales and
extension of Girsanov’s theorem

We shall consider the exponential representation of a positive lo-
calmartingale. Here a localmartingale $\alpha_{t}$ is called positive if $\alpha_{t}>0$

holds for all $t\in[0, T]a.s$ . For a predictable process $g(t, z)$ , we set
$g_{1}=g1_{|g|>1}$ and $g_{2}=g1_{|g|\leq 1}$ as before. $g(s, z)$ is said to belong to
$\Psi_{e,2}(\hat{N})$ if $e^{g_{1}(t,z)}-1\in\Psi_{1}(\hat{N})$ and $g_{2}\in\Psi_{2}(\hat{N})$ . Then it holds that
$g\in\Psi_{e,2}(\hat{N})$ if and only if $\psi\equiv e^{g}-1\in\Psi_{1,2}(\hat{N})$ .

Theorem 2.1. ($c.f$. [6], Theorem 6.1) Let $\alpha_{t}$ be a positive local-
martingale such that $\alpha_{0}=1$ . Then there exists a pair of predictable
process $f(t)=(f_{1}(t), \ldots, f_{m}(t))$ of $\Phi$ and $g(s, z)$ of $\Psi_{e,2}$ such that the
localmartingale $\alpha_{t}$ is represented by

(2.1)

$\alpha_{t}=\exp\{(\int_{0}^{t}(f(s), dW(s))-\frac{1}{2}\int_{0}^{t}|f(s)|^{2}ds)$

$+(N_{t}(g_{1})-\hat{N}_{t}(e^{g_{1}}-1))+(\overline{N}_{t}(g_{2})-\hat{N}_{t}(e^{g_{2}}-1-g_{2}))\}$ .

Further, the pair $(f, g)$ is uniquely determined from $\alpha_{t}$ .
Conversely let $(f(t), g(t, z))$ be a pair of predictable processes be-

longing to $\Phi$ and $\Psi_{e,2}(\hat{N})$ , respectively. Define $\alpha_{t}$ by (2.1). Then it is $a$

positive localmartingale.

The above $\alpha_{t}$ is characterized as the solution of the following It\^o’s

stochastic differential equation starting from 1 at time 0:

(2.2) $d\alpha_{t}=\alpha_{t-}(f(t), dW(t))+\alpha_{t-}\int_{R^{m}}(e^{g(t,z)}-1)\tilde{N}N\{dtdz)$ .
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In fact, apply It\^o’s formula ([6], Theorem 5.1) to the function $F(x)=e^{x}$

and $X(t)=\log\alpha_{t}$ , where $\alpha_{t}$ is given by (2.1). Note the obvious formula
$e^{g}-1=(e^{g_{1}}-1)+(e^{g_{2}}-1)$ . Then we find that $\alpha_{t}$ satisfies the above
SDE. It is determined by two integrands $f(t)$ and $g(t, z)$ . We denote the
positive localmartingale by $\alpha_{t}=\alpha_{t}(f, g)$ .

The above theorem is proved in [6] in the case where $\alpha_{t}$ is a mul-
tiplicative functional of a Markov process. We give here a direct and
simpler proof.

Lemma 2.2. ($cf[6]$, Lemma 6.1.) Let $f(t)=(f_{1}(t), \ldots, f_{m}(t))$ , $g(t,z)$ ,
$h(t, z)$ be predictable processes such that $ f\in\Phi$ , $h$ is bounded belonging

to $\Psi_{2}(\hat{N})$ , $gh=0$ and $A(t)$ is a right continuous predictable process of
bounded variation. Set

(2.3) $\beta_{t}=\exp\{\int_{0}^{t}(f(s), dW(s))+N_{t}(g)+\tilde{N}_{t}(h)-A(t)\}$ .

Then $\beta_{t}$ is a localmartingale if and only if the following two conditions
are satisfied.

(2.4) $e^{g}-1\in\Psi_{1}(\hat{N})$ ,

(2.5) $A(t)=\frac{1}{2}\int_{0}^{t}|f(s)|^{2}ds+\hat{N}_{t}(e^{g}-1)+\hat{N}_{t}(e^{h}-1-h)$ .

Proof. By It\^o’s formula, we have

$\beta_{t}-1=\int_{0}^{t}\beta_{s-}(f(s), dW(s))+\int_{0}^{t}\int_{R^{m}}\beta_{s-}(e^{g}-1)dN$

$+\int_{0}^{t}\int_{R^{m}}\beta_{s-}(e^{h}-1)d\tilde{N}$

$+\frac{1}{2}\int_{0}^{t}\beta_{s-}|f(s)|^{2}ds+\int_{0}^{t}\int_{R^{m}}\beta_{s-}(e^{h}-1-h)d\hat{N}-\int_{0}^{t}\beta_{s-}dA(s)$ .

Therefore if (2.4) and (2.5) are satisfied, then

$\beta_{t}-1=\int_{0}^{t}\beta_{s-}(f(s), dW(s))+\int_{0}^{t}\int_{R^{m}}\beta_{s-}(e^{g}-1)d\tilde{N}$

$+\int_{0}^{t}\int_{R^{m}}\beta_{s-}(e^{h}-1)d\tilde{N}$ .

Therefore $\beta_{t}$ is a localmartingale.
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Conversely suppose that $\beta_{t}$ is a localmartingale. We want to prove
(2.4). Set $g^{+}=\max\{g, 0\}$ and $g^{-}=\max\{-g, 0\}$ . Then $g=g^{+}-g^{-}$

We shall prove first $e^{-g^{-}}-1\in\Psi_{1}(\hat{N})$ . It holds by It\^o’s formula

$e^{-N_{t}(g^{-})}-1=-\int_{0}^{t}(1-e^{-g^{-}})e^{-N_{s-}(g^{-})}dN$ .

Since $-N_{t}(g^{-})\leq 0$ , the expectation of the above is finite and is equal to
$-E$ [ $\int_{0}^{t}(1-e^{-g^{-}})e^{-N_{s-}(g^{-})}\hat{N}$ (dsdz)]. Therefore, $(1-e^{-g^{-}})e^{-N_{s-}(g^{-})}\in$

$\Phi_{1}(\hat{N})$ and this implies $(1-e^{-g^{-}})\in\Psi_{1}(\hat{N})$ . Next, we have by It\^o’s

formula,

$\int_{0}^{t}\frac{d\beta_{s}}{\beta_{s-}}$ $=$ $\int_{0}^{t}(f(s), dW(s))+N_{t}(e^{g}-1)+\tilde{N}_{t}(e^{h}-1)$

$+\frac{1}{2}\int_{0}^{t}|f(s)|^{2}ds+\hat{N}_{t}(e^{h}-1-h)-A(t)$ .

The left hand side is a localmartingale. All terms except $N_{t}(e^{g}-1)$ of
the right hand side are locally integrable. Further we have $N_{t}(e^{g}-1)=$

$N_{t}(e^{g^{+}}-1)+N_{t}(e^{-g^{-}}-1)$ and the last term is locally integrable. Then
$N_{t}(e^{g+}-1)$ should be locally integrable, which shows that $\int_{0}^{t}(e^{g^{+}}-1)d\hat{N}$

is also locally integrable, proving that $e^{g^{+}}-1\in\Psi_{1}(\hat{N})$ . We have thus
proved (2.4).

Now since (2.4) holds, the bounded variation part of $\beta_{t}-1$ can be
written as

$\frac{1}{2}\int_{0}^{t}\beta_{s-}|f(s)|^{2}ds+\int_{0}^{t}\beta_{s-}(e^{g}-1)d\hat{N}+\int_{0}^{t}\beta_{s-}(e^{h}-1-h))d\hat{N}-\int_{0}^{t}\beta_{s-}$ dA(s).

It should be 0 since $\beta_{t}$ is a localmartingale. This implies (2.5).

Proof of Theorem 2.1. Suppose that $\alpha_{t}$ is a positive localmartin-
gale. Set $X(t)=\log\alpha_{t}$ . It is a semimartingale. Consider

$P^{n}(t)=\sum_{s\leq t,1\leq|\triangle X(s)|\leq n}\triangle X(s)$
, (finite sum).

It is a locally integrable process of bounded variation. There exists a con-
tinuous process of boundecd variation $C^{n}(t)$ such that $M^{n}(t)=P^{n}(t)-$

$C^{n}(t)$ is a locally square integrable martingale by Doob-Meyer decom-

position. Then there exists $\psi_{n}\in\Psi_{2}(\hat{N})$ such that $M^{n}(t)=\tilde{N}(\psi_{n})$ by
Theorem 1.1 (for locally square integrable martingales). Jump parts of
$P^{n}(t)$ and $N_{t}(\psi_{n})$ coincide. Therefore we have $P^{n}(t)=N_{t}(\psi_{n})$ . It holds
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$\psi_{m}=\psi_{n}1_{|\psi_{n}|\leq m}a.e.\hat{N}\times P$ for any $m<n$ . Then there exists $\psi$ such
that $\psi_{n}=\psi 1_{|\psi|\leq n}$ and we have

$N_{t}(\psi)=\sum_{s\leq t,1\leq|\triangle X(s)|<\infty}\triangle X(s)$
, (finite sum).

Now set $Y(t)=X(t)-N_{t}(\psi)$ . It is a semimartingale such that $|\triangle Y(s)|\leq$

$1$ . Therefore it is a special semimartingale. Then it is decomposed
uniquely to the sum of a martingale $M(t)$ and a predictable process
of bounded variation, denoted by $B(t)$ . Further $M(t)$ is locally square

integrable so that it is written as $M(t)=\int_{0}^{t}(f(s), dW(s))+\tilde{N}_{t}(\eta)$ , where

$ f\in\Phi$ and $\eta\in\Psi_{2}(\hat{N})$ . It holds $\psi\eta=0$ since $N_{t}(\psi)$ and $Y(t)$ do not
have common jumps. Then we get the decomposition:

(2.6) $\alpha_{t}=\exp\{\int_{0}^{t}(f(s), dW(s))+N_{t}(\psi)+\tilde{N}_{t}(\eta)+B(t)\}$ .

Since $\alpha_{t}$ is a localmartingale, we have $e^{\psi}-1\in\Psi(\hat{N})$ and

$-B(t)=\frac{1}{2}\int_{0}^{t}|f(s)|^{2}ds+\hat{N}_{t}(e^{\psi}-1)+\hat{N}_{t}(e^{\eta}-1-\eta)$

by the previous lemma. Now set $ g=\psi+\eta$ . Then we have $ g_{1}=\psi$ and
$ g_{2}=\eta$ . Therefore we get the formula (2.1). The proof is complete.

Proof of Theorem 1.1 (continued). Let $M(t)$ be a martingale. We
set $M^{+}=M(T)\vee 0$ and $M^{-}=(-M)\vee 0$ and define $M_{1}(t)=E[M^{+}|F(t)]$

and $M_{2}(t)=E[M^{-}|\mathcal{F}(t)]$ . Then both are nonnegative martingales and
$M(t)=M_{1}(t)-M_{2}(t)$ . We consider positive martingales $M_{i,\epsilon}(t)=$

$M_{i}(t)+\epsilon(\epsilon>0)$ . These are represented by $M_{i,\epsilon}(t)=M_{i,\epsilon}(0)\alpha_{t}^{i}$ , where
$\alpha_{t}^{i}=\alpha_{t}(f_{i}’, g_{i}’)$ are exponential martingales. These satisfy SDE (2.2).

Now set $\phi_{i}(t)=\alpha_{t-}^{i}f_{i}’(t)$ and $\psi_{i}(t, z)=\alpha_{t-}^{i}(e^{g_{i}’(t,z)}-1)$ . Then, since

$\sup_{t}\alpha_{t}<\infty a.s.$ , $\phi_{i}\in\Phi$ and $\psi_{i}\in\Psi_{1,2}(\hat{N})$ . Further, we get the rep-
resentation (1.10) for $M_{i,\epsilon}(t)$ , $i=1,2$ . Thus we get the representation

(1.10) where $\phi\in\Phi$ and $\psi\in\Psi_{1,2}(\hat{N})$ .

Let $\alpha_{t}$ be a positive martingale with mean 1. We can define a
probability measure $Q$ by the formula

(2.7) $Q(A)=\int_{A}\alpha_{T}dP$, $A\in F$ .

Then $((F_{t}), Q)$ and $((F_{t}), P)$ are equivalent (mutually absolutely con-
tinuous). Conversely let $((F_{t}), Q)$ be a probability measure equivalent
to $((F_{t}), P)$ . Let $\alpha_{t}$ be the Radon-Nikodym density of $(\mathcal{F}_{t}, Q)$ with
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respect to $(F_{t}, P)$ . Then the stochastic process $\{\alpha_{t}, t\in[0, T]\}$ is a pos-
itive martingale with respect to $P$ . Therefore it can be represented as
$\alpha_{t}=\alpha_{t}(f, g)$ .

A localmartingale with respect to $((F_{t}), Q)$ is called a Q-
localmartingale. The following is an extension of Girsanov’s theorem.

Theorem 2.3. ($c.f$. [6], Theorem 6.2) With respect to $((F_{t}), Q)$ , we
have
1) $W^{f}(t):=W(t)-\int_{0}^{t}f(s)ds$ is a standard Brownian motion.

2) The compensator of $N$ is $\hat{N}^{g}(dsdz)=e^{g(s,z)}ds\nu(dz)$ , that is $\tilde{N}^{g}(dsdz)$

$:=N(dsdz)-\hat{N}^{g}(dsdz)$ is a martingale measure. Further if $\psi$ belongs

to $\Psi_{1,2}(\hat{N}^{g})$ , the stochastic integral

(2.8) $\tilde{N}_{t}^{g}(\psi):=\int_{0}^{t}\int_{R^{m}}\psi(s, z)\tilde{N}^{g}(dsdz)$

is well defined as a $Q$ localmartingale.
3) Let $X(t)$ be a $Q$ -localmartingde. Then there exists a pair of

predictable processes $(\phi(t), \psi(t, z))$ belonging to $\Phi$ and $\Psi_{1,2}(\hat{N}^{g})$ , respec-
tively and $X(t)$ is represented by

(2.8) $X(t)=X(0)+\int_{0}^{t}(\phi(s), dW^{f}(s))+\tilde{N}_{t}^{g}(\psi)$ .

Remark. 1) $N(dtdz)$ is no longer a Poisson random measure with
respect to $Q$ unless $g$ is a deterministic function.
2) Set $F_{t}(f, g)=\sigma(W_{s}^{f},\tilde{N}^{g}(dsdz);s\leq t)$ . Then it holds $\mathcal{F}_{t}(f, g)\subset \mathcal{F}_{t}$ .
The equality does not hold in general. The representation (2.9) is valid
for localmartingale with respect to the filtration $(\mathcal{F}_{t})$ but it is not clear
if we have the similar representations for localmartingales with respect
to the filtration $(F_{t}(f, g))$ .

Proof. The assertions (1) and (2) are shown in [6] in the case where
$\alpha_{t}$ is a multiplicative functional of a Markov process. We give here an
alternative proof. We first show that $W^{f}(t)$ is a $Q$ localmartingale. Set
$X(t)=W^{f}(t)$ . Then $X(t)$ is a $Q$-localmartingale if and only if the
product $X(t)\alpha_{t}$ is a $P$-localmartingale. Note the equality

(2.10) $X(t)\alpha_{t}=\int_{0}^{t}X(s-)d\alpha_{s}+\int_{0}^{t}\alpha_{s-}dX(s)+[X, \alpha]_{t}$ .

The first term of the right hand side is a $P$ localmartingale. Since
$[X, \alpha]_{t}=\langle X, \alpha\rangle_{t}=\int_{0}^{t}\alpha_{s-}f(s)ds$ , we have $\int_{0}^{t}\alpha_{s-}dX(s)+[X, \alpha_{t}]=$

$\int_{0}^{t}\alpha_{s-}dW(s)$ , which is also a $P$-localmartingale. Therefore $X(t)\alpha_{t}$ is a



222 H. Kunita

$P$-localmartingale or equivalently $X(t)$ is a continuous $Q$-localmartingale.

It holds $[X]_{t}=[W]_{t}=t$ , since the quadratic variation of $\int_{0}^{t}f(s)ds$ is 0.

Hence $X(t)=W^{f}(t)$ is a Brownian motion with respect to $Q$ .
We will next prove (2). Suppose first that $\psi(t, z)$ is bounded and

$\int_{0}^{T}|\psi|d\hat{N}<\infty$ is satisfied. Then it holds valid $\int_{0}^{T}|\psi|e^{g}d\hat{N}<\infty$ , since
$g\in\Psi_{e,2}(\hat{N})$ . Then $X(t):=\tilde{N}_{t}^{g}(\psi)$ is decomposed as $X(t)=\overline{N}_{t}(\psi)-$

$\int_{0}^{t}\int\psi(e^{g}-1)d\hat{N}$ . It holds (2.10) again. We have

$\int_{0}^{t}\alpha_{s-}dX(s)+[X, \alpha]_{t}=\int_{0}^{t}\alpha_{s-}\psi d\tilde{N}$

$-\int_{0}^{t}\int_{R^{m}}\alpha_{s-}\psi(e^{g}-1)d\hat{N}+\int_{0}^{t}\int_{R^{m}}\alpha_{s-}\psi(e^{g}-1)dN$ ,

which is a $P$-localmartingale. Consequently $X(t)\alpha_{t}$ is again a P-
localmartingale, proving that $X(t)=\tilde{N}_{t}^{g}(\psi)$ is a $Q$-localmartingale. It

can be extended to any $\psi\in\Psi_{1,2}(\hat{N}^{g})$ .
We will prove (3). Suppose first that $X(t)$ is a $Q$-localmartingale

such that its jumps are bounded. Then $M(t):=X(t)\alpha_{t}$ is a P-
localmartingale. Since $\alpha_{t}^{-1}$ is a $P$-semimartingale, the product $X(t)=$

$M(t)\alpha_{t}^{-1}$ is a $P$-semimartingale. Note that jumps of $X(t)$ are bounded.
Then $X(t)$ is a $P$ special semimartingale. Then it is decomposed uniquely
as $X(t)-X(0)=N(t)+A(t)$ , where $N(t)$ is a $P$ locally square inte-
grable martingale and $A(t)$ is a right continuous predictable process of
bounded variation. Now, $N(t)$ is represented by $\int\phi dW+\int\psi d\tilde{N}$ , where
$\psi$ is a bounded predictable process. Then we can rewrite $X(t)$ as

(2.11) $X(t)=X(0)+\int_{0}^{t}(\phi(s), dW^{f}(s))+N_{t}^{g}(\psi)$

$+\{\int_{0}^{t}(\phi(s), f(s))ds+\int_{0}^{t}\int_{R^{m}}\psi(e^{g}-1)d\hat{N}+A(t)\}$ .

The first and the second integrals of the right hand side are both Q-
localmartingales. The last term $\{\cdots\}$ is a right continuous predictable
process of bounded variation, which should be 0, since $X(t)$ is a Q-
martingale. Therefore we get the representation of $X(t)$ .

The representation can be extended to any $Q$ locally square in-
tegrable martingale. Finally, the representation is valid for any Q-
localmartingale. This can be verified through getting the exponential
representation of positive $Q$-localmartingale similarly as in Theorem 2.1.



Representation of martingales and mathematical fifinance 223

It is an interesting problem to find a condition for $(f, g)$ which en-
sures that the localmartingale $\alpha_{t}(f, g)$ is a martingale. We give here a
sufficient condition.

Theorem 2.4. Suppose that $ f\in\Phi$ and $g\in\Psi_{e.2}(\hat{N})$ satisfy

(2.12) $E[\exp\{$ $\int_{0}^{T}((1+\epsilon)|f|^{2}$

$+\int_{g^{+}>\delta}e^{2(1+\epsilon)g^{+}}d\nu+2(1+\epsilon)e^{2(1+\epsilon)\delta}\int_{|g|\leq\delta}g^{2}d\nu)ds\}]$

$<\infty$ ,

for some $\epsilon>0$ and $\delta>0$ , where $g^{+}=\max(g, 0)$ . Then $\alpha_{t}(f, g)$ is $a$

martingale.

In particular, $\alpha_{t}(f, g)$ is a martingale if 1) $\int_{0}^{T}|f(s)|^{2}ds$ is bounded

$a.s$ . and 2) $g^{+},\hat{N}(g^{+}>1)$ and $\int_{0}^{T}\int_{|g|\leq 1}|g|^{2}\hat{N}$ (dsdz) are bounded $a.s$ .

Proof. Let $\tau_{n}$ , $n$ $=1$ , 2, $\ldots$ be an increasing sequence of stopping
times such that $P(\tau_{n}<T)\rightarrow 0$ as $n$ $\rightarrow\infty$ and each stopped process
$\alpha_{t\wedge\tau_{n}}$ is a martingale with mean 1. We want to prove that the above
sequence of random variables ( $t$ is fixed) is uniformly integrable. If this
property is verified, the limit process $\alpha_{t}$ is also a martingale. For this
purpose it is sufficient to prove that $\sup_{n}E[\alpha_{t\wedge\tau_{n}}^{p}]<\infty$ holds for some
$p>1$ . By a direct computation we can show that $\sup_{n}E[\alpha_{t\wedge\tau_{n}}^{1+\epsilon}]<\infty$ ,

under the condition (2.12). Details are omitted.

\S 3. Processes with jumps and equivalent martingale measures

Let $\sigma(t)=(\sigma_{j}^{i}(t))$ be a $d\times m$ matrix valued predictable process,
$b(t)=(b^{i}(t))$ be a $d$-vector predictable process and $v(t, z)=(v^{i}(t, z))$ be
a $d$-vector predictable process continuous in $z\in R^{m}$ , which satisfy the
integrability condition

(3.1) $\int_{0}^{T}|\sigma(t)|^{2}+|b(t)|dt<\infty$ , $\int_{0}^{T}\int_{|z|\leq 1}|v(s, z)|^{2}ds\nu(dz)<\infty$ .

We shall consider a $d$-dimensional stochastic process with jumps defined
by

(3.2) $\xi_{t}=\int_{0}^{t}\sigma(t)dW(t)+\int_{0}^{t}b(t)dt$

$+\int_{0}^{t}\int_{|z|\leq 1}v(t, z)\tilde{N}(dtdz)+\int_{0}^{t}\int_{|z|>1}v(t, z)N(dtdz)$ ,
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where $W(t)$ is a $m$-dimensional standard Brownian motion and $N(dtdz)$

is a Poisson counting measure on $[0, T]$ $\times R^{m}$ . To make the problem
simple, we assume $d=m$ in this paper.

An equivalent probability measure $Q$ such that $\xi_{t}$ is a $d$-vector local-
martingale with respect to $((\mathcal{F}_{t}), Q)$ is called an equivalent martingale
measure. We denote by $\Gamma$ the set of all equivalent martingale measures
and by $\overline{\Gamma}$ the set of all $(f, g)$ such that $\alpha_{t}(f, g)dP\in\Gamma$ . We shall charac-
terize all equivalent martingale measures of a given process $\xi_{t}$ by means
of the pair $(f, g)$ .

Theorem 3.1. Let $((F_{t}), Q)$ be an equivalent probability measure
and let $\alpha_{t}(f, g)$ be the density such that $dQ=\alpha_{t}(f, g)dP$ , where $ f\in\Phi$

and $g\in\Psi_{e,2}(\hat{N})$ . Then the stochastic process $\xi_{t}$ defined by (3.2) is $a$

$Q$ -localmartingale if and only if $v(s, z)(e^{g(s,z)}-1_{\{|z|\leq 1\}})\in\Psi_{1}(\hat{N})$ and

(3.3) $b(s)+\sigma(s)f(s)+\int_{R^{m}}v(s, z)(e^{g(s,z)}-1_{\{|z|\leq 1\}})\nu(dz)=0$ ,

$a.e$ . $\lambda\otimes P$ , where $\lambda$ is the Lebesgue measure.

Proof. In vector notation, we have by (2.2) and (3.2),

$\xi_{t}\alpha_{t}$ $=$ $\int_{0}^{t}\xi_{s-}d\alpha_{s}+\int_{0}^{t}\alpha_{s-}d\xi_{s}+[\xi, \alpha]_{t}$

$=$ a $1oca1martinga1e+\int_{0}^{t}\alpha_{s-}b(s)ds+\int_{0}^{t}\alpha_{s-}\sigma(s)f(s)ds$

$+\int_{0}^{t}\int_{R^{m}}\alpha_{s-}v(s, z)(e^{g(s,z)}-1_{\{|z|\leq 1\}})N(dsdz)$ .

If it is a $d$-vector localmartingale, the integrand with respect to $N(dsdz)$

should be integrable with respect to $\hat{N}$(dsdz) and the equality
(3.4)

$\alpha_{s-}b(s)+\alpha_{s-}\sigma(s)f(s)+\alpha_{s-}\int_{R^{m}}v(s, z)(e^{g(s,z)}-1_{\{|z|\leq 1\}})\nu(dz)=0$ ,

holds $a.e$ . (Theorem 1.1). Then we have (3.3), since $\inf_{s}\alpha_{s-}>0a.s$ .

The converse will be shown similarly. The proof is complete.

An equivalent martingale measure $Q^{0}=\alpha_{t}(f^{0}, g^{0})dP$ is said to be
standard if $\xi_{t}$ is a locally square integrable martingale with respect to $Q^{0}$ .
We will show the existence of such an equivalent martingale measure.

Lemma 3.2. Assume that $\sigma(t)$ is invertible and $\sigma(t)^{-1}$ and $b(t)$ are
bounded $a.e$ . $\lambda\otimes P$ . Then there exists a standard equivalent martingale
measure. Further, for any given pair of $\phi\in\Phi$ and $\psi\in\Psi_{1,2}(\hat{N})$ , there
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exists a standard equivalent martingale measure $Q^{0}=\alpha_{t}(f^{0}, g^{0})dP$ such
that

(3.5) $M^{Q^{0}}(t):=\int_{0}^{t}(\phi(s), dW^{f^{o}}(s))+\tilde{N}_{t}^{g^{0}}(\psi)$

is well defined as a locally square integrable martingale with respect to
$Q^{0}$ .

Proof. We will show that there exists a predictable pair $(f^{0}(s), g^{0}(s,z))$

of $\tilde{\Gamma}$ satisfying

(3.6) $\int_{0}^{T}\int_{R^{m}}\{|v(s, z)|^{2}+|\psi(s, z)|^{2}\}e^{g^{0}(s,z)}ds\nu(dz)<\infty$ .

For each $s\in[0, T]$ , set $E(s)=E(s, \omega)=\{z:|\psi(s, z)|>1\}\cup\{|z|>1\}$ .

Then $\int_{0}^{T}i/(E(s))ds$ $<\infty$ . Take first a nonpositive predictable process
$g’(s, z)$ supported by $E(s)$ , $|g’(s, z)|>1$ on $E(s)$ and

$\int_{E(s)}\{1+|v(s, z)|+|v(s, z)|^{2}+|\psi(s, z)|^{2}\}e^{g’(s,z)}\nu(dz)$

is bounded in $(s, \omega)a.e$ . Take next a bounded predictable process $g’’(s, z)$

supported by $E(s)^{c}$ , $|g’’(s, z)|<1$ and $\int_{E(s)^{c}}(1+|v(s, z)|)|g’’(s, z)|\nu(dz)$

is bounded in $(s, \omega)a.e$ . Define $g^{0}=g’1_{E}+g’’1_{E^{c}}$ . Then $g^{0}\in\Psi_{e,2}(\hat{N})$

and

$\int_{0}^{T}\int_{E(s)}(|v|^{2}+|\psi|^{2})e^{g^{O}}ds\nu(dz)<\infty$ , $a.s$ .

Since $\int_{0}^{T}\int_{|z|\leq 1}|v|^{2}ds\nu(dz)<\infty$ and $\int_{0}^{T}\int_{R^{m}}|\psi_{2}|^{2}ds\nu(dz)<\infty$ for $\psi_{2}=$

$\psi 1_{|\psi|\leq 1}$ , we have $\int_{0}^{T}\int_{E(s)^{c}}(|v|^{2}+|\psi|^{2})e^{g^{0}}ds\nu(dz)<\infty$ , $a.s$ . Therefore

(3.6) is satisfied.

The process $a(s)=\int_{R^{m}}v(s, z)(e^{g^{0}(s,z)}-1_{\{|z|\leq 1\}})\nu(dz)$ is well de-
fined since

(3.7)

$|a(s)|\leq\int_{E(s)}|v(s, z)(e^{g’(s,z)}-1_{|z|\leq 1})|\nu(dz)$

$+\int_{E(s)^{c}}|v(s, z)(e^{g^{ll}}-1_{|z|\leq 1})|\nu(dz)$

$\leq\int_{E(s)}|v|e^{g’}\nu(dz)+\int_{E(s)^{c}}|v||g’’|\nu(dz)$ bounded in $(s, \omega)a.e$ .
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Then we can define $f^{0}(s)$ by $b(s)+\sigma(s)f^{0}(s)+a(s)=0$ . The pair
$(f^{0}, g^{0})$ satisfies (3.3). Further, it satisfies conditions $(1),(2)$ of Theorem
2.4. Indeed, we took $g^{0}$ so that it satisfies (2). By the estimation (3.7),
$|a(s)|$ is bounded $a.s$ . Since $|b(s)|$ is bounded and $\sigma(s)\sigma(s)^{T}$ is uniformly
positive definite, $|f^{0}(s)|$ is also bounded $a.s$ . Thus $f^{0}(s)$ satisfies (1) of
the theorem. Then $\alpha_{t}(f^{0}, g^{0})$ is a martingale.

Let $Q^{0}=\alpha_{T}(f^{0}, g^{0})dP$ . We will show that $\xi_{t}$ is a locally square
integrable martingale with respect to $Q^{0}$ . Observe (3.2) and (3.3). Then
$\xi_{t}=(\xi_{t}^{1}, \ldots, \xi_{t}^{d})$ is written as

$\xi_{t}=\int_{0}^{t}\sigma(s)dW^{f^{o}}(s)+\int_{0}^{t}\int_{R^{m}}v(s, z)\tilde{N}^{9^{0}}$ (dsdz).

The bracket process with respect to $Q^{0}$ is given by a $d\times d$ matrix

$(\langle\xi^{i}, \xi^{j}\rangle_{t}^{Q^{0}})=\int_{0}^{t}\sigma(s)\sigma(s)^{T}ds+\int_{0}^{t}\int_{R^{m}}v(s, z)v(s, z)^{T^{0}}\hat{N}^{g}$ (dsdz).

It is finite $a.s$ . This proves that $\xi_{t}$ is a locally square integrable martin-
gale.

Finally, $M^{Q^{O}}(t)$ of (3.5) is well defined as a locally square integrable

martingale, because $\psi\in\Psi_{2}(\hat{N}^{g^{0}})$ by (3.6). The proof is complete.

We will fix the equivalent martingale measure $Q^{0}$ of Lemma 3.2. Set
$\hat{f}=f-f^{0},\hat{g}=g-g^{0}$ . Then $\alpha_{t}(f, g)$ of Theorem 3.1 is decomposed to
the product of two exponential semimartingales;

(3.8) $\alpha_{t}(f, g)=\alpha_{t}(f^{0}, g^{0})\alpha_{t}^{0}(\hat{f},\hat{g})$ ,

(3.9)

$\alpha_{t}^{0}(\hat{f},\hat{g})=\exp\{\int_{0}^{t}(\hat{f}(s), dW^{f^{o}}(s))-\frac{1}{2}\int_{0}^{t}|\hat{f}(s)|^{2}ds$

$+N_{t}(\hat{g}_{1})-\hat{N}_{t}^{g^{0}}(e^{\hat{9}1}-1)+\overline{N}_{t}^{g^{O}}(\hat{g}_{2})-\hat{N}_{t}^{g^{O}}(e^{\hat{g}_{2}}-1-\hat{g}_{2})\}$ .

Since $dQ=\alpha_{T}(f, g)dP$ and $dQ^{0}=\alpha_{T}(f^{0}, g^{0})dP$ , we have $dQ=$
$\alpha_{T}^{0}(\hat{f},\hat{g})dQ^{0}$ . Hence $Q$ is an equivalent martingale measure with re-

spect to $Q^{0}$ and $\alpha_{t}^{0}(\hat{f},\hat{g})$ is its density process. Then $\xi_{t}$ , $\alpha_{t}^{0}(\hat{f},\hat{g})$ and
$\xi_{t}\alpha_{t}^{0}(\hat{f},\hat{g})$ are all localmartingales with respect to $Q^{0}$ .

Conversely if $Q$ is an equivalent martingale measure with respect
$Q^{0}$ . The density process $\alpha_{t}^{0}$ of $Q$ with respect to $Q^{0}$ is represented by

(3.9). We denote by $\hat{\Gamma}^{0}$ the set of all such density processes $\alpha_{t}^{0}$ and by
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$\hat{\Gamma}_{2}^{0}$ is the set of $\alpha_{t}^{0}\in\hat{\Gamma}^{0}$ such that these are all locally square integrable
martingales with respect to $Q^{0}$ .

Let $\mathcal{M}_{loc}^{2}(Q^{0})$ be the set of all locally square integrable martingales
$M(t)$ with $M(0)=0$ with respect to $Q^{0}$ . Then the $d$-vector process $\xi_{t}$

belongs to $\mathcal{M}_{loc}^{2}(Q^{0})$ . Further, $\xi_{t}$ and $\alpha_{t}^{0}-1$ are orthogonal with respect
to $Q^{0}$ , if $\alpha_{t}^{0}$ is locally square integrable with respect to $Q^{0}$ . We claim;

Lemma 3.3. Assume that $\sigma(t)$ is invertible and $\sigma(t)^{-1}$ and $b(t)$ are
bounded $a.e$ . $\lambda\otimes P$ . Let $Q^{0}$ be a standard equivalent martingale mea-
sure. Then, with respect to $Q^{0}$ , we have the orthogonal decomposition of
$\mathcal{M}_{loc}^{2}(Q^{0})$ .

(3.10) $\mathcal{M}_{loc}^{2}(Q^{0})=\mathcal{L}(\xi_{t}^{1}, \ldots, \xi_{t}^{d})\oplus \mathcal{L}(\alpha_{t}^{0}-1;\alpha_{t}^{0}\in\hat{\Gamma}_{2}^{0})$ .

Proof. Let $\mathcal{K}=\mathcal{L}(\xi_{t}^{1}, \ldots, \xi_{t}^{d})^{\perp}$ and let $M$ be any element of $\mathcal{K}$ repre-

sented by $M=\int(\phi, dW^{f^{o}})+\tilde{N}^{g^{O}}(\psi)$ . Since it is orthogonal to $\xi_{t}^{1}$ , $\ldots$ , $\xi_{t}^{d}$

with respect to $Q^{0}$ ,

$\langle\xi^{i}, M\rangle_{t}^{Q_{0}}=\int_{0}^{t}(\sigma^{i}(s), \phi(s))ds+\int_{0}^{t}(\int v^{i}(s, z)\psi(s, z)e^{g^{O}}\nu(dz))ds=0$ ,

$i=1$ , $\ldots$ , $d$ .

Therefore, setting $\phi(t)=(\phi^{1}(t), \ldots, \phi^{d}(t))$ and $v(t,z)=(v^{1}(t,z),$
$\ldots$ , $v^{d}(t,z))$ ,

we get

$\sigma(t)\phi(t)+\int_{R^{d}}\psi(t, z)v(t, z)e^{g^{O}(t,z)}\nu(dz)=0$ , $\forall t$ .

We will show that

$\mathcal{H}:=\{\int(\phi, dW^{f^{o}})+\tilde{N}^{g^{0}}(\psi)\in \mathcal{K};\psi$ are $bounded\}$

is dense in $\mathcal{K}$ . Let $M=\int(\phi, dW^{f^{0}})+\overline{N}^{g^{O}}(\psi)$ be any element of $\mathcal{K}$ .
We define trancated functions by $\psi_{n}=(\psi\wedge n)\vee(-n)$ . Next define d-

vector functions by $\phi_{n}(t)=-\sigma(t)^{-1}\int\psi^{n}(t, z)v(t, z)e^{g^{0}(t,z)}\nu(dz)$ . Then
it holds

$\sigma(t)\phi^{n}(t)+\int\psi^{n}(t, z)v(t, z)e^{g^{O}(t,z)}\nu(dz)=0$ , $\forall t$ .

Therefore $M^{n}=\int(\phi^{n}, dW^{f^{o}})+\overline{N}^{g^{0}}(\psi^{n})$ belongs to $\mathcal{K}$ . Further, since
$\int_{0}^{T}\int|\psi_{n}-\psi|^{2}e^{g^{0}}\nu(dz)ds\rightarrow 0$ holds valid as $ n\rightarrow\infty$ , $\int_{0}^{T}|\phi^{n}-\phi|^{2}ds\rightarrow 0$

as $n$ $\rightarrow\infty$ . Therefore the sequence $\{M^{n}\}$ converges to $M$ with respect
to the topology of $\mathcal{M}_{loc}^{2}(Q^{0})$ . We have thus shown that $\mathcal{H}$ is dense in $\mathcal{K}$ .
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Let $J$ be the set of all $M\in \mathcal{K}$ which is bounded from the below.
Then we have $\mathcal{L}(J)=\mathcal{L}(\alpha_{t}^{0}-1;\alpha_{t}^{0}\in\hat{\Gamma}_{2}^{0}$ } $\cdot$ . Further it holds $\mathcal{L}(J)\supset$

$\mathcal{L}(7\{)$ . Indeed, we have $\{M^{\tau}(t);M\in H\}\subset \mathcal{L}(J)$ , where $\tau$ are stopping
times such that $M^{\tau}(t):=M(t\wedge\tau)$ are bounded localmartingales. We
have thus proved

$\mathcal{L}(\xi_{t}^{1}, \ldots, \xi_{t}^{d})^{\perp}=\mathcal{K}=\mathcal{L}(H)\subset \mathcal{L}(J)=\mathcal{L}(\alpha_{t}^{0}-1;\alpha_{t}^{0}\in\hat{\Gamma}_{2}^{0})$ .

The proof is complete.

We are now in a position of stating a main result of the paper.

Theorem 3.4. Assume that $\sigma(t)$ is invertible and $\sigma(t)^{-1}$ and $b(t)$

are bounded $a.e$ . $\lambda\otimes P$ . If $X(t)$ is a supermartingale for any equivalent
martingale measure $Q$ , then it is represented by

(3.11) $X(t)=X(0)+\int_{0}^{t}(\varphi(s), d\xi_{s})-A(t)$ .

Here, $A(t)$ is a predictable increasing process and $\varphi(s)$ is a predictable

process such that $\sigma(s)\varphi(s)\in\Phi$ and $(\varphi(s), v(s, z))\in\Psi_{1,2}(\hat{N}^{g})$ for any
$(f, g)\in\tilde{\Gamma}$ .

If $X(t)$ is a localmartingale for any equivalent martingale measure,
then it is represented by

(3.12) $X(t)=X(0)+\int_{0}^{t}(\varphi(s), d\xi_{s})$ .

Proof. For each $ Q\in\Gamma$ , the supermartingale $X(t)$ is decomposed
as $X(0)+M^{Q}(t)-A^{Q}(t)$ , where $M^{Q}(t)$ is a $Q$ localmartingale with
$M^{Q}(0)=0$ and $A^{Q}(t)$ is a natural $(=predictable)$ increasing process,
by Doob-Meyer decomposition. The $Q$ localmartingale $M^{Q}(t)$ is repre-

sented by $M^{Q}(t)=\int_{0}^{t}(\phi(s), dW^{f}(s))+\tilde{N}_{t}^{g}(\psi)$ . We will show that the
kernel $(\phi, \psi)$ does not depend on the choice of $Q$ . Let $Q^{*}$ be another
equivalent martingale measure. Then $M^{Q^{*}}$ is represented by $M^{Q^{*}}=$

$\int(\phi^{*}(s), dW^{f^{*}}(s))+\tilde{N}^{g^{*}}(\psi^{*})$ . Since $M^{Q}(t)-A^{Q}(t)=M^{Q^{*}}(t)-A^{Q^{*}}(t)$ ,
we have

$\tilde{N}_{t}^{g^{*}}(\psi^{*})-\tilde{N}_{t}^{g}(\psi)=(\int_{0}^{t}(\phi(s), dW^{f}(s))-\int_{0}^{t}(\phi^{*}(s), dW^{f^{*}}(s)))$

$-(A^{Q}(t)-A^{Q^{*}}(t))$ .

The right hand side is a predictable process, so that it has no common
jumps with the Poisson random measure $N(dtdz)$ . So both sides of the
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or

above can not have jumps. This shows $\psi=\psi^{*}a.e.\hat{N}\otimes P$ . Hence the
right hand side should be a predictable process of bounded variation.

Therefore $\int_{0}^{t}(\phi(s), dW^{f}(s))-\int_{0}^{t}(\phi^{*}(s), dW^{f^{*}}(s))$ is also a predictable
process of bounded variation, which shows $\phi=\phi^{*}a.e$ . $\lambda\otimes P$ . We have
$\phi\in\Phi$ and $\psi\in\Psi_{1,2}(\hat{N}^{g})$ for any $(f, g)\in\tilde{\Gamma}$ .

We want to prove $A^{Q}=A^{Q^{0}}$ in the case where both $Q$ and $Q^{0}$

are standard equivalent martingale measures such that $\psi\in\Psi_{2}(\hat{N}^{g})\cap$

$\Psi_{2}(\hat{N}^{g^{0}})$ . Comparing two equations for $M^{Q}(t)$ and $M^{Q^{0}}(t)$ , $M^{Q^{O}}(t)$ can
be written as

$M^{Q^{O}}(t)=M^{Q}(t)+\int_{0}^{t}(\phi(s),\hat{f}(s))ds$

$+\int_{0}^{t}\int_{R^{m}}\psi(s, z)(e^{\hat{g}(s,z)}-1)e^{g^{O}(s,z)}ds\nu(dz)$ ,

where $\hat{f}=f-f^{0}$ and $\hat{g}=g-g^{0}$ , because $\psi$ , $e^{\hat{g}}-1\in\Psi_{2}(\hat{N}^{g^{0}})$ . Therefore
we have

$A^{Q}(t)=\int_{0}^{t}\{(\phi,\hat{f})+\int_{R^{m}}\psi(e^{\hat{g}}-1)e^{g^{0}}d\nu\}ds+A^{Q^{0}}(t)$ .

We claim

(3.13) $(\phi,\hat{f})+\int_{R^{\mathfrak{m}}}\psi(e^{\hat{g}}-1)e^{g^{0}}d\nu=0$ ,

$a.e$ . $\lambda\otimes P$ , in the case where $g\leq g^{0}$ or equivalently $\hat{g}\leq 0$ . If it is not
the case, then either the set

$F=\{(s, \omega);(\phi,\hat{f})+\int_{R^{m}}\psi(e^{\hat{g}}-1)e^{g^{O}}d\nu>0\}$

$F’=\{(s, \omega);(\phi,\hat{f})+\int_{R^{m}}\psi(e^{\hat{g}}-1)e^{g^{0}}d\nu<0\}$

is of positive measure with respect to $\lambda\otimes P$ . Suppose that $F$ is of positive

measure. We define $(f’, g’)$ by $f’=f^{0}-n\hat{f}1_{F}$ and $g’=g^{0}+\log\{1-$

$n(e^{\hat{g}}-1)1_{F}\}$ . Then it holds $e^{\hat{g}^{l}}-1=-n(e^{\hat{g}}-1)1_{F}$ , where $\hat{g}’=g’-g^{0}$ .

Set $\hat{f}’=f’-f^{0}$ . Then $\alpha_{t}’:=\alpha_{t}^{0}(\hat{f}’,\hat{g}’)$ is a positive localmartingale
with respect to $Q^{0}$ . Further $\xi_{t}\alpha_{t}’$ is a localmartingale with respect to
$Q^{0}$ . Indeed, equalities

$\langle\xi_{t}^{i}, \alpha_{t}’\rangle_{t}^{Q^{0}}=-n\int_{0}^{t}\alpha_{s-}’1_{F}\{(\sigma^{i},\hat{f})+\int_{R^{m}}v^{i}(e^{\hat{g}}-1)e^{g^{0}}\nu(dz)\}ds=0$ ,

$i=1$ , $\ldots$ , $d$
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hold valid since $\xi_{t}^{i}$ and $\alpha_{t}^{0}(\hat{f},\hat{g})$ are orthogonal with respect to $Q^{0}$ .
Let $\{\tau_{k}, k=1,2, \ldots\}$ be an increasing sequence of stopping times such
that $P(\tau_{k}<T)\rightarrow 0$ as $ k\rightarrow\infty$ and each stopped process $\alpha_{t\wedge\tau_{k}}’$ is

a $Q^{0}$ -martingale. Define a sequence of probability measures $Q_{k}’$ by
$dQ_{k}’=\alpha_{\tau_{k}}’dQ^{0}$ . Then each $Q_{k}’$ is an equivalent martingale measure
for the stopped process $\xi_{t\wedge\tau_{k}}$ . Then the stopped process $X(t\wedge\tau_{k})$ is a
supermartingale with respect to $Q_{k}’$ for each $k$ . Its Doob-Meyer decom-
position is represented by

$X(t\wedge\tau_{k})=\int_{0}^{t\wedge\tau_{k}}(\phi(s), dW^{f’})+\tilde{N}_{t\wedge\tau_{k}}^{g’}(\psi)-A^{\alpha’}(t\wedge\tau_{k})$ , $k=1,2$ , $\ldots$

where $A^{\alpha^{l}}(t)$ is a suitable predictable increasing process. It satisfies

$A^{\alpha’}(t)=-n\int_{0}^{t}1_{F}\{(\phi,\hat{f})+\int_{R^{m}}\psi(e^{\hat{g}}-1)e^{g^{0}}d\nu\}ds+A^{Q^{O}}(t)$ .

This makes a contradiction since the right hand side is negative for
sufficiently large $n$ . Therefore we get $A^{Q}(t)=A^{Q^{O}}(t)$ .

Now if $F’$ is of positive measure instead of the set $F$ , interchange
the role of $Q^{0}$ and $Q$ in the above discussion. Then we get the same
conclusion. Further in the case where $g\geq g^{0}$ , we get the same equality
(3.13) by interchanging the role of $Q^{0}$ and $Q$ .

We have thus seen that $M^{Q}(t)=M^{Q^{0}}(t)$ holds for any standard
equivalent martingale measure $Q$ such that its density process $\alpha_{t}^{0}$ with
respect to $Q^{0}$ is a locally square integrable martingale and $g\leq g^{0}$ or
$g\geq g^{0}$ is satisfied. Let $\overline{\Gamma}_{2}^{0}$ be the set of all $\alpha_{t}^{0}(\hat{f},\hat{g})\in\Gamma_{2}^{0}$ such that $Q$

with $dQ=\alpha^{0}(\hat{f},\hat{g})dP^{0}$ is a standard equivalent martingale measure and
$\psi\in\Psi_{2}(\hat{N}^{g})$ . Then $M^{Q^{0}}(t)$ is orthogonal to any element of

$N$ $=\{\alpha_{t}^{0}(\hat{f},\hat{g})-1;\alpha^{0}(\hat{f},\hat{g})\in\tilde{\Gamma}_{2}^{0},\hat{g}\leq 0$ or $\hat{g}\geq 0\}$ ,

with respect to $Q^{0}$ . Observe that $\mathcal{L}(N)=\mathcal{L}(\alpha_{t}^{0}-1;\alpha_{t}^{0}\in\Gamma_{2}^{0})$ . Then

we see that $M^{Q^{0}}(t)$ belongs to $\mathcal{L}(\xi_{t}^{1}, \ldots, \xi_{t}^{d})$ by the decomposition for-

mula (3.10). Then it is represented by $\int_{0}^{t}(\varphi(s), d\xi_{s})$ with respect to
$Q^{0}$ . Setting $A(t)=A^{Q^{O}}(t)$ , we get the decomposition formula (3.11).
Further, representation (3.11) should hold valid for any $Q$ of $\Gamma$ . Then,
comparing this with the representation of Theorem 2.3, $\sigma(s)\varphi(s)\in\Phi$

and $(v(s, z)$ , $\varphi(s))\in\Psi_{1,2}(\hat{N}^{g})$ .

The second assertion of the theorem follows immediately from the
above discussion by setting $A^{Q^{0}}(t)=A^{Q}(t)\equiv 0$ .
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Applications to mathematical finance
We consider a simple market model, where the return process is

given by a stochastic process $\xi_{t}$ of (3.2) and the interest rate $r(t)$ is
identically 0. Let $\pi(t)$ be a predictable process called a strategy or port-

folio and $C_{t}$ be a right continuous predictable increasing process called a
cumulative consumption process. A stochastic process $X(t)=X^{x,\pi,C}(t)$

defined by

$X(t)=x+\int_{0}^{t}(\pi_{s}, d\xi_{s})-C(t)$

is called a wealth process. We introduce admissible classes for pairs of
portofolios and consumptions. Let $x>0$ . We denote by $A^{+}(x)$ the set of
the pair $(\pi, C)$ such that $X^{x,\pi,C}(t)\geq 0$ holds $a.s$ . for any $0\leq t\leq T$ . We
denote by $A^{-}(-x)$ the set of the pair $(\pi, C)$ such that $X^{-x,\pi,C}(t)\leq 0$

for any $0\leq t\leq T$ .

A Europian contingent claim $Y$ is a nonnegative $\mathcal{F}_{T}$-measurable ran-
dom variable. The contingent claim is not always attainable, since the
model is not complete due to jumps of the return process. We shall
study the upper and lower hedging price. The upper hedging price and
lower hedging price of the contingent claim $Y$ are defined respectively
by

$h_{up}=\inf\{x\geq 0$ ;

there exists $(\pi, C)\in A^{+}(x)$ such that $X^{x,\pi,C}(T)\geq Ya.s.\}$

$h_{low}=\sup\{x\geq 0$ ;

there exists $(\pi, C)\in A^{-}(-x)$ such that $X^{-x,\pi,C}(T)\geq-Ya.s.\}$

Theorem 3.5. Assume that $\sigma(t)\sigma(t)^{T}$ is uniformly positive defifinite,
$v(t, z)$ is greater than -1 and $v(t, z)\neq 0a.e$ . $\lambda\times\nu\times P$ . Let $Y$ be an
Europian contingent claim. We have

(3.14) $h_{up}$ $=$
$\sup_{Q\in\Gamma}E_{Q}[Y]=:h$

,

(3.15) $h_{low}$ $=$
$\inf_{Q\in\Gamma}E[Y]=:f$ .

If $h$ is finite (resp. $f$ is positive), there exists a pair $(\pi, C)\in A^{+}(h)$

(resp. ( $\pi’$ , $C’)\in A^{-}(-f)$ ) such that

(3.16) $X^{h,\pi,C}(t)$ $=$
$ess\sup_{Q\in\Gamma}E_{Q}[Y|\mathcal{F}_{t}]$

,

(3.17) $-X^{-f^{\pi’,C’}}’(t)$ $=$
$ess\inf_{Q\in\Gamma}E_{Q}[Y|F_{t}]$ ,
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holds for any $t$ . In particular, $X^{h,\pi,C}(T)=Y$ and $X^{-f,\pi’,C’}(T)=-Y$,
$a.s$ .

Proof. We consider the upper hedging price only. Set $h=$

$\sup_{Q\in\Gamma}E_{Q}[Y]$ . We want to prove $h=h_{up}$ . We first show $h\leq h_{up}$ .
The inequality is obvious if $ h_{up}=\infty$ . If $ h_{up}<\infty$ , let $x$ be an arbitrary
element in the set $\{\cdots\}$ appearing in the defintion of $h_{up}$ . Then there ex-
ists a pair $(\pi, C)$ of $A^{+}(x)$ such that $X^{x,\pi,C}(T)\geq Y$ . Then $X^{x,\pi,C}(t)$ is a
supermartingale for any $ Q\in\Gamma$ . Therefore, $E_{Q}[Y]\leq E_{Q}[X^{x,\pi,C}(T)]\leq x$

holds for any $ Q\in\Gamma$ . Then we have $h\leq x$ , so that we have $h\leq h_{up}$ .

In order to prove the reverse inequality $h\geq h_{up}$ , it is sufficient
to construct $(\pi, C)\in A^{+}(h)$ such that $X^{h,\pi,C}(t)=X(t)$ , where $ X(t)\equiv$

$ess\sup_{Q\in\Gamma}E_{Q}[Y|F_{t}]$ . It is known that the process $X(t)$ is a supermartin-
gale for any $Q$ . We shall apply Theorem 3.4 to the return process $\xi_{t}$ .

Then $X(t)$ admits the decomposition (3.11) by Theorem 3.4. This im-
plies $X(t)=X^{h,\pi,C}(t)$ , by setting $\varphi=\pi$ and $A(t)=C(t)$ . It is clearly
nonnegative $a.s$ . for any $t\in(0, T]$ . Therefore $(\pi, C)$ belongs to $A^{+}(h)$ .
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Stochastic Newton Equation

with Reflecting Boundary Condition

Shigeo Kusuoka

\S 1. Introduction

Let $D$ be a bounded domain in $R^{d}$ with a smooth boundary and
$n(x)$ , $x\in\partial D$ , be an outer normal vector. Let $a^{ij}$ : $R^{d}\rightarrow R$ , $i,j=$

$1$ , $\ldots d$ , be smooth functions such that $a^{ij}(x)=a^{ji}(x)$ , $x\in R^{d}$ . Also,
let $b^{i}$ : $R^{2d}\rightarrow R$ , $i=1$ , $\ldots d$ , be bounded measurable functions. We
assume that there are positive constants $C_{0}$ , $C_{1}$ such that

$C_{0}|\xi|^{2}\leq\sum_{i,j=1}^{d}a^{ij}(x)\xi_{i}\xi_{j}\leq C_{1}|\xi|^{2}$ , $x$ , $\xi\in R^{d}$ .

Let $L_{0}$ be a second order linear differential operator in $R^{2d}$ given by

$L_{0}=\sum_{i=1}^{d}v^{i}\frac{\partial}{\partial x^{i}}+\frac{1}{2}\sum_{i,j=1}^{d}a^{ij}(x)\frac{\partial^{2}}{\partial v^{i}\partial v^{j}}+\sum_{i=1}^{d}b^{i}(x, v)\frac{\partial}{\partial v^{i}}$

Let $\tilde{W}^{d}=C([0, \infty);R^{d})\times D([0, \infty);R^{d})$ . Now let $\Phi$ : $R^{d}\times\partial D\rightarrow R^{d}$

be a smooth map satisfying the following.
(i) $\Phi(\cdot, x)$ : $R^{d}\rightarrow R^{d}$ is linear for all $x\in\partial D$ .

(ii) $\Phi(v, x)=v$ for any $x\in\partial D$ and $v\in T_{x}(\partial D)$ , i.e., $\Phi(v, x)=v$ if
$x\in\partial M$ , $v\in R^{d}$ and $v$ . $n(x)=0$ .
(iii) $\Phi(\Phi(v, x),$ $x)=v$ for all $v\in R^{d}$ and $x\in\partial D$ .
(iv) $\Phi(n(x), x)\neq n(x)$ for any $x\in\partial D$ .

The main theorem in the present paper is the following.

Theorem 1. Let $(x_{0}, v_{0})\in(\overline{D})^{c}\times R^{d}$ . Then there exists a unique

probability measure $\mu$ over $\tilde{W}^{d}$ satisfying the following conditions.
(1) $\mu(w(0)=(x_{0}, v_{0}))=1$ .

(2) $\mu(w(t)\in D^{c}\times R^{d}, t \in[0, \infty))=1$ .

Received April 4, 2003.
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(3) For any $f\in C_{0}^{\infty}((\overline{D})^{c}\times R^{d})$ , $\{f(w(t))-\int_{0}^{t}L_{0}f(w(s))ds;t\geq 0\}$ is
a martingale under $\mu(dw)$ .
(4) $\mu(1_{\partial D}(x(t))(v(t)-\Phi(v(t-), x(t)))=0$ for all $t\in[0, \infty))=1$ .

Here $w(\cdot)=(x(\cdot), v(\cdot))\in\tilde{W}^{d}$ .

Now let us think of the following Stochastic Newton equation

$dX_{t}^{\lambda}$ $=$ $V_{t}^{\lambda}dt$

$dV_{t}^{\lambda}$ $=$ $\sigma(X_{t}^{\lambda})dB(t)+(b(X_{t}^{\lambda}, V_{t}^{\lambda})-\lambda\nabla U(X_{t}^{\lambda}))dt$

$X_{0}^{\lambda}=x_{0}$ , $V_{0}^{\lambda}=v_{0}$ .

Here $B(t)$ is a $d$-dimensional Brownian motion, $\sigma\in C^{\infty}(R^{d};R^{d})$ ,
$b$ : $R^{2d}\rightarrow R^{d}$ is a bounded Lipschitz continuous function, and $ U\in$

$C_{0}^{\infty}(R^{d})$ .

We assume the following also.
(A-1) There are positive constants $C_{0}$ , $C_{1}$ such that

$C_{0}|\xi|^{2}\leq|\sigma(x)\xi|^{2}\leq C_{1}|\xi|^{2}$ , $x$ , $\xi\in R^{d}$ .

(A-2) Let $D=\{x\in R^{d};U(x)>0\}$ . Then there $are\in 0>0$ , $ U_{0}\in$

$C^{\infty}(R^{d};R)$ and a non-increasing $C^{1}-$function $\rho$ : $R\rightarrow R$ satisfying the
following.
(1) $x\in\partial D$ , if and only if $U_{0}(x)=0$ and $dis(x, \partial D)<\in 0$ .
(2) $\nabla U_{0}(x)\neq 0$ , $x\in\partial D$ .

(3) $\rho(t)=0$ , $t\geq 0$ , $\rho(t)>0$ , $t<0$ , and $U(x)=\rho(U_{0}(x))$ for $x\in R^{d}$

with $dis(x, \partial D)<\in 0$ .

(4) $\lim_{t\uparrow 0}\frac{\rho^{/}(t)}{\rho(t)}=-\infty$ .

Now let $d\overline{i}s$ be a metric function on $\tilde{W}^{d}$ given by

$d\overline{i}s(w_{0}, w_{1})$

$=\sum_{n=1}^{\infty}2^{-7l}(1\wedge((\max_{t\in[0,n]}|x_{0}(t)-x_{1}(t)|)+(\int_{0}^{n}|v_{0}(t)-v_{1}(t)|^{n})^{1/7l}))$ ,

for $w_{i}(\cdot)=(x_{i}(\cdot), v_{i}(\cdot))\in\tilde{W}^{d}$ , $i=0,1$ .

Then we will show the following.

Theorem 2. Let $\nu^{\lambda}$ , $\lambda\in[1, \infty)$ , be the probability law of $(X_{t}^{\lambda}, V_{t}^{\lambda})$ ,
$t\in[0, \infty)$ , on $\overline{W}_{0}$ , and $\mu$ be the probability measure given in Theorem 1
in the case when $\Phi(v, x)=v-2(v\cdot n(x))n(x)$ , $v\in R^{d}$ , $x\in\partial D$ . Then
$\nu^{\lambda}$ conveges to $\mu$ weakly as $\lambda\rightarrow\infty$ as probability measures on $(\tilde{W}_{0},\tilde{d}is)$ .
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\S 2. Basic lemmas

Let $(\Omega, F, \{\mathcal{F}_{t}\}_{t\in[0,\infty)}, P)$ be a filtered probability space, and $B(t)=$

$(B^{1}(t), \ldots, B^{d}(t))$ be a $d$-dimensional Brownian motion. Let $B^{0}(t)=t$ ,
$t\in[0, \infty)$ . Let $\sigma_{i}$ : $R^{N}\rightarrow R^{N}$ , $i=0,1$ , $\ldots$ , $d$ , be Lipschitz continuous
functions, and let $X$ : $[0, \infty)$ $\times R^{N}\times\Omega\rightarrow R^{N}$ be the solution to the
following SDE

$X(t, x)=x+\sum_{i=0}^{d}\int_{0}^{t}\sigma_{i}(X(s, x))dB^{i}(s)$ , $t\geq 0$ , $x\in R^{N}$ .

We may assume that $X(t, x)$ is continuous in $(t, x)$ (cf. Kunita [2]).
Then we have the following.

Lemma 3. For any $T>0$ and $p_{0},p_{1}$ , $\ldots,p_{m}\in(1, \infty)$ , $m\geq 1$ , with
$\sum_{k=0}^{m}p_{k}^{-1}=1$ , there is a constant $C>0$ such that

$E[\int_{R^{N}}\prod_{k=0}^{m}|f_{k}(X(t_{k}, x))|dx]\leq C\prod_{k=0}^{m}||f_{k}||_{L^{p_{k}}(R^{N},dx)}$

for all $0=t_{0}<t_{1}<\ldots<t_{m}\leq T$ , and $f_{k}\in C_{0}^{\infty}(R^{N})$ , $k=0,1$ , $\ldots$ , $m$ .

Proof. From the assumption, there is a $C_{0}>0$ such that

$|\sigma_{i}(x)-\sigma_{i}(y)|\leq C_{0}|x-y|$ , $x$ , $y\in R^{N}$ .

Let $\varphi\in C_{0}^{\infty}(R^{N})$ such that $\int_{R^{N}}\varphi(x)dx=1$ . Let $\varphi_{n}(x)=n^{N}\varphi(nx)$ ,

$x\in R^{N}$ , for $n\geq 1$ , and let $\sigma_{i}^{(n)}=\varphi_{n}*\sigma_{i}$ , $i=0$ , $\ldots$ , $d$ . Then $\sigma_{i}^{(n)}\in$

$C^{\infty}(R^{N}; R^{N})$ . Let

$W_{i,k}^{(n),j}(x)=\frac{\partial}{\partial x^{k}}\sigma_{i}^{(n),j}(x)$ ,

$x\in R^{N}$ , $j$ , $ k=1\ldots$ , $N$ , $i=0,1$ , $\ldots$ , $d$ , $n\geq 1$ .

Then we see that $|W_{i,k}^{(n),j}(x)|\leq C_{0}$ , $x\in R^{N}$ . Let $X^{(n)}$ : $[0, \infty)$ $\times R^{N}\times$

$\Omega\rightarrow R^{N}$ be the solution to the following SDE

$X^{(n)}(t, x)=x+\sum_{i=0}^{d}\int_{0}^{t}\sigma_{i}^{(n)}(X^{(n)}(s, x))dB^{i}(s)$ , $t\geq 0$ , $x\in R^{N}$ .

Then we may think that $X^{(n)}(t, \cdot)$ : $R^{N}\rightarrow R^{N}$ is a difTeomorphism

with probability one. Let $J_{k}^{(n),j}(t, x)=\frac{\partial}{\partial x^{k}}X^{(n),j}(t, x)$ . Let $W_{i}^{n}(x)=$
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$(W_{i,k}^{(n),j}(x))_{k,j=1,N}\ldots$, and $ J^{(n)}(t, x)=(J_{k}^{(n),j}(t, x))_{k,j=1,N}\ldots,\cdot$ Then the
$N\times N$-matrix valued process $J^{(n)}(t, x)$ satisfies the following SDE

$J^{(n)}(t, x)=I_{N}+\sum_{i=0}^{d}\int_{0}^{t}W_{i}^{(n)}(X^{(n)}(s, x))J^{(n)}(s, x)dB_{i}(s)$ .

Also, we see th $e$

$J^{(n)}(t, x)^{-1}$

$=I_{N}-\sum_{i=0}^{d}\int_{0}^{t}J^{(n)}(s, x)^{-1}W_{i}^{(n)}(X^{(n)}(s, x))dB_{i}(s)$

$+\frac{1}{2}\sum_{i=1}^{d}\int_{0}^{t}J^{(n)}(s, x)^{-1}W_{i}^{(n)}(X^{(n)}(s, x))^{2}ds$ .

Then we see th $e$

$ C_{T}=\sup\{E[\det J^{(n)}(t, x)^{-po+1}];t\in[0, T], x\in R^{N}, n\geq 1\}<\infty$ .

So we have

$E[\int_{R^{N}}\prod_{k=0}^{n}|f_{k}(X^{(n)}(t_{k}, x))|dx]$

$\leq E[\int_{R^{N}}|f_{0}(x)|_{0}^{p}(\prod_{k=1}^{m}\det J^{(n)}(t_{k}, x)^{-p_{0}/pk})dx]^{1/p0}$

$\times\prod_{k=1}^{m}E[\int_{R^{N}}|f_{k}(X^{(n)}(t_{k}, x))|^{pk}\det J^{(n)}(t_{k}, x)dx]^{1/Pk}$

$\leq C_{T}(\int_{R^{N}}|f(x)|_{0}^{p}dx)^{1/po}\prod_{k=1}^{m}(\int_{R^{N}}|f_{k}(x))|^{pk}dx)^{1/pk}$

Letting $ n\rightarrow\infty$ , we have our assertion. $I$

Now let $D$ be a bounded domain in $R^{N}$ and $F^{j}$ : $R^{N}\rightarrow R$ , $j=1,2$ ,

be $C^{2}$ functions satisfying the following assumptions (F1) , (F2), further-
more.
(F1) For $x\in D$ and $i=1$ , $\ldots$ , $d$ ,

$\sum_{j=1}^{N}\sigma_{i}^{j}(x)\frac{\partial}{\partial x^{j}}F^{1}(x)=0$ .

(F2) $\inf\{\det(\nabla F^{i}(x)\cdot\nabla F^{j}(x))_{i,j=1,2;}x\in D\}>0$ .

Then we have the following
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Lemma 4. For a.e.x,

$P(X(t, x)\in D$ , $F(X(t, x))=0$ for some $t>0$ ) $=0$ .

Here $F=(F^{1}, F^{2})$ : $R^{N}\rightarrow R^{2}$ .

Proof. Let

$\tau(s, x)=\inf\{t\geq s;X(t, x)\in D^{c}\}\wedge(s+1)$ , $x\in R^{N}$ , $s>0$ .

Also, let

$p(x, s)=P(F(X(t, x))=0$ for some $t\in[s,$ $\tau(s, x)))$ , $x\in R^{N}$ , $s>0$ .

Then we see that

$P(X(t, x)\in D$ , $F(X(t, x))=0$ for some $t>0$ )
$\leq\sum_{r\in Q+}p(x, r)$

,

where $Q_{+}$ is the set of positive rational numbers. Let $ V(m)=\{x\in$
$R^{N}$ ; $|x|\leq m$}, $m\geq 1$ . Let us define random variables $Z_{T,m}$ , $T>0$ ,
$m\geq 1$ , and constant $C_{1}$ by

$Z_{T,m}=\sup\{|t-s|^{-1/3}|X(t, x)-X(s, x)|;0\leq s<t\leq T, x\in V(m)\}$ ,

and

$C_{1}=\sup\{|\sigma_{0}(x)||\nabla F^{1}(x)|+\frac{1}{2}\sum_{i=1}^{d}|\nabla^{2}F^{1}(x)||\sigma_{i}(x)|^{2}+|\nabla F^{2}(x)|;x\in\overline{D}\}$ .

Then we see that $P(Z_{T,m}<\infty)=1$ (cf. Kunita[2]). By the assumtion
(F1), we see that

$F^{1}(X(t, x))=F^{1}(x)+\int_{0}^{t}(\sigma_{0}(X(s, x))\nabla F^{1}(X(s, x))$

$+\sum_{i=1}^{d}\frac{1}{2}\nabla^{2}F^{1}(X(s, x))(\sigma_{i}(X(s, x)),$ $\sigma_{i}(X(s, x)))ds$ .

So we see that

$|F^{1}(X(t, x))-F^{1}(X(s, x))|\leq C_{1}|t-s|$ , $t\in[s,$ $\tau(s, x))$ , $s\geq 0$ , $x\in R^{N}$ ,

and

$|F^{2}(X(t, x))-F^{2}(X(s, x))|\leq C_{1}Z_{T,m}|t-s|^{1/3}$ $t$ , $s\in[0, T]$ , $x\in V(m)$ .
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Also, by the assumption (F2), we see that there is a constant $C_{2}>0$

such that

$\int_{D}1_{A}(F(x))dx\leq C_{2}|A|$

for any Borel set $A$ in $R^{2}$ , where $|A|$ denotes the area of $A$ .

Let $\Delta_{\ell,n,k}=[-C_{1}n^{-1}, C_{1}n^{-1}]\times[-\ell C_{1}n^{-1/3}, \ell C_{1}n^{-1/3}]$ , $\ell$ , $n\geq 1$ ,
$k=1$ , $\ldots$ , $n$ . Then we have for any $\ell\geq 1$ ,

$\int_{V(m)}dxP(F(X(t, x))=0$ for some $t\in[s,$ $\tau(s, x))$ , $Z_{s+1,m}\leq\ell)$

$\leq\sum_{k=1}^{n}\int_{V(m)}dxP(X(s, x)\in D,$ $X(s+(k-1)/n, x)\in D$ ,

$F(X(s+(k-1)/n, x))\in\triangle_{\ell,n,k})$

$=\sum_{k=1}^{n}E[\int_{R^{N}}dx1_{V(m)}(x)1_{D}(X(s, x))$

$1_{D}(X(s+(k-1)/n, x))1_{\triangle\ell},n,k(F(X(s+(k-1)/n, x)))]$

$\leq C\sum_{k=1}^{n}|V(m)|^{1/10}|D|^{1/10}(\int_{D}1_{\Delta_{\ell,n,k}}(F(x))dx)^{4/5}$

$\leq CC_{2}n|V(m)|^{1/10}|D|^{1/10}(4C_{1}^{2}\ell n^{-4/3})^{4/5}$ .

Here $C$ is the constant in Lemma 3 for $T=s+1$ , $p_{0}=p_{1}=10$ and
$p_{3}=5/4$ . Since $n\geq 1$ is arbitrary, we see that

$\int_{V(m)}dxP(F(X(t, x))=0$ for some $t\in[s,$
’
$\tau(s, x))$ , $Z_{s+1,m}\leq\ell)=0$ ,

$\ell\geq 1$ .

This implies that $\int_{R^{N}}p(x, s)=0$ , $s>0$ .
Therefore we have our assertion.

Corollary 5. Suppose moreover that $x_{0}\in(\overline{D})^{c}$ , $\sigma_{i}$ , $i=0$ , $\ldots$ , $d$ , are
smooth around $x_{0}$ and that $dimLie[\frac{\partial}{\partial t}-V_{0}, V_{1}, \ldots, V_{d}](0, x_{0})=N+1$ .

Here

$V_{i}(x)=\sum_{j=1}^{d}\sigma_{i}^{j}(x)\frac{\partial}{\partial x^{j}}$ , $i=1$ , $\ldots$ , $d$ ,

and

$V_{0}(x)=\sum_{j=1}^{d}(\sigma_{0}^{J}(x)-\frac{1}{2}\sum_{i=1}^{d}\sum_{k=1}^{N}\sigma_{i}^{k}(x)\frac{\partial\sigma_{i}^{j}}{\partial x^{k}}(x))\frac{\partial}{\partial x^{j}}$ .
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Then

$P(X(t, x_{0})\in D$ , $F(X(t, x_{0}))=0$ for some $t>0$ ) $=0$ .

Proof. Let $U$ be an open neighborhood of $x_{0}$ such that $\sigma_{i}$ , $i,$ $=$

$0$ , $\ldots$ , $d$ , are smooth around $\overline{U}$ and that $\overline{U}\cap\overline{D}=\emptyset$ . Let $\tau=\inf\{t>$

$0;X(t, x_{0})\in U^{c}\}$ . Then we see that

$P(X(t, x_{0})\in D,$ $F(X(t, x_{0}))=0$ for some $t>0$ )

$\leq\sum_{n=1}^{\infty}P(X(t, x_{0})\in D,$ $F(X(t, x_{0}))=0$ for some $t>\frac{1}{n}$ , $\tau>\frac{1}{n}$ )

$\leq\sum_{n=1}^{\infty}\int_{U}P(X(\frac{1}{n}, x_{0})\in dx$ , $\tau>\frac{1}{n})P(X(t, x)\in D,$ $F(X(t, x))=0$

for some $t>0$).

However, by [3], we see that $P(X(\frac{1}{n}, x_{0})\in dx$ , $\tau>\frac{1}{n})$ is absolutely
continuous. So by Lemma 4, we have our assertion. 1

\S 3. Proof of Theorem 1

Since the proof is similar, we prove Theorem 1 in the case that $D=$

$\{x=(x^{1}, \ldots, x^{d})\in R^{d};x^{1}<0\}\subset R^{d}$ , and $\Phi(v, x)=(-v^{1}, v^{2}, \ldots, v^{d})$

for $v=(v^{1}, v^{2}, \ldots, v^{d})$ and $x\in\partial D$ . In general, if we take a double
cover of $D^{c}$ and change the coordinate functions, we can apply a similar
proof. Let $a^{ij}$ : $R^{d}\rightarrow R$ , $i,j=1$ , $\ldots d$ , be bounded Lipschitz continuous
function such that $a^{ij}(x)=a^{ji}(x)$ , $x\in R^{d}$ and that there are positive
constants $C_{0}$ , $C_{1}$ such that

$C_{0}|\xi|^{2}\leq\sum_{i,j}^{d}a^{ij}(x)\xi_{i}\xi_{j}\leq C_{1}|\xi|^{2}$ , $x$ , $\xi\in R^{d}$ .

Let $b$ : $R^{2d}\rightarrow R^{d}$ be a bounded measurable function.
Let $L_{0}$ be a second order linear differential operator in $R^{2d}$ given by

$L_{0}=\sum_{i=1}^{d}v^{i}\frac{\partial}{\partial x^{i}}+\frac{1}{2}\sum_{i,j=1}^{d}a^{ij}(x)\frac{\partial^{2}}{\partial v^{i}\partial v^{j}}+\sum_{i=1}^{d}b^{i}(x, v)\frac{\partial}{\partial v^{i}}$

Then Theorem 1 is somehow equivalent to the following Theorem.
So we prove this Theorem.
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Theorem 6. Let $(x_{0}, v_{0})\in(\overline{D})^{c}\times R^{d}$ , and suppose that $a^{ij}$ , $i,j=$

$1$ , $\ldots$ , $d$ , are smooth around $x_{0}$ . Then there exists a unique probability
measure $\mu$ over $\tilde{W}^{d}$ satisfying the following conditions.
(1) $\mu(w(0)=(x_{0}, v_{0}))=1$ .

(2) $\mu(w(t)\in D^{c}\times R^{d}, t\in[0, \infty))=1$ .

(3) For any $f\in C_{0}^{\infty}((\overline{D})^{c}\times R^{d})$ , $\{f(w(t))-\int_{0}^{t}L_{0}f(w(s))ds;t\geq 0\}$ is
a martingale under $\mu(dw)$ .

(4) $\mu(1_{\{0\}}(x^{1}(t))(v^{1}(t)+v^{1} (t-))=0, t\in[0, \infty))=1$ and

$\mu$ ( $v^{i}(t)$ is continuous in $t\in[0,$ $\infty$ ), $i=2$ , $\ldots$ , $d)=1$ .

Proof. Let $\tilde{a}^{ij}$ : $R^{d}\rightarrow R$ , $i$ , $j=1$ , $\ldots d$ , be given by

$\tilde{a}^{ij}(x)=a^{ij}(|x^{1}|, x^{2}, \ldots, x^{d})$ , $x=(x^{1}, x^{2}, \ldots, x^{d})\in R^{d}$ .

Let $\overline{b}^{i}$ : $R^{2d}\rightarrow R$ , $i=1$ , $\ldots d$ , be given by

$\tilde{b}^{1}(x)=sgn(x^{1})b^{1}(|x^{1}|, x^{2}, \ldots, x^{d})$ ,

and
$\tilde{b}^{i}(x)=b^{i}(|x^{1}|, x^{2}, \ldots, x^{d})$ , $i=2$ , $\ldots$ , $d$

for $x=(x^{1}, x^{2}, \ldots, x^{d})\in R^{d}$ . Let $\tilde{L}_{0}$ be second order linear differential
operators in $R^{2d}$ given by

$\tilde{L}_{0}=\sum_{i=1}^{d}v^{i}\frac{\partial}{\partial x^{i}}+\frac{1}{2}\sum_{i,j=1}^{d}\tilde{a}^{ij}(x)\frac{\partial^{2}}{\partial v^{i}\partial v^{j}}+\sum_{i=1}^{d}\tilde{b}^{i}(x, v)\frac{\partial}{\partial v^{i}}$ .

Then by transformation of drift (cf. Ikeda-Watanabe[l]), we see that
there is a unique probability measure $\nu$ on $C([0, \infty);R^{2d})$ such that

$\nu(w(0)=(x_{0}, v_{0}))=1$ and that $\{f(w(t))-\int_{0}^{t}\tilde{L}_{0}f(w(s))ds;t\geq 0\}$ is a

martingale under $\nu(dw)$ for any $f\in C_{0}^{\infty}(R^{2d})$ .

Let $\tilde{\xi}(w)=\inf\{t>0;x^{1}(t)=0, v^{1} (t-)=0\}$ . Then by Corollary 5

and Girsanov’s transformation, we see that $\nu(\overline{\xi}(w)=\infty)=1$ . Let

$X(t, w)=(|x^{1}(t)|, x^{2}(t),$
$\ldots$ , $x^{d}(t))$ , $t\in[0, \infty)$ ,

and

$V(t, w)=\frac{d^{+}}{dt}X(t, w)$ , $t\in[0, \infty)$ .

Let $\mu$ is the probability law of $(X(\cdot, w)$ , $V(\cdot, w))$ under $\nu$ . Then we see
that $\mu$ satisfies the conditions $(1)-(4)$ . So we see the existence.

Now let us prove the uniqueness. Let $\mu$ be a probability measure as
in Theorem. Let $\xi(w)=\inf\{t>0;x^{1}(t)=0, v^{1} (t-)=0\}$ . Also, let us
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define stopping times $\tau_{k}$ : $\tilde{W}_{0}\rightarrow[0, \infty]$ , $k=0,1$ , 2, $\ldots$ , inductively by
$\tau_{0}(w)=0$ and

$\tau_{k+1}(w)=\inf\{t>\tau_{k}(w);x^{1}(t)=0\}$ , $w\in\tilde{W}^{d}$ , $k=0,1$ , $\ldots$ .

Then we see ffom the assumption (4) that if $\tau_{k}(w)<\xi(w)$ , then $\tau_{k}(w)<$

$\tau_{k+1}(w)$ for $\mu$-a.s.w. Also, it is easy to see that $\xi(w)\leq\sup_{k}\tau_{k}(w)$ ,
$w\in\tilde{W}^{d}$ .

For $any\in>0$ and $k=0,1$ , 2, $\ldots$ , let

$\sigma_{k}^{0}(w)=\inf\{t>\tau_{k}(w);x^{1}(t)>\in\}$ ,

and

$\sigma_{k}^{1}(w)=\inf\{t>\sigma_{k}^{0}(w);x^{1}(t)<\in/2\}$ , $w\in\tilde{W}^{d}$ , $k=0,1$ , $\ldots$ .

Then we see ffom the assumption (3) that

$f(x(t\wedge\sigma_{k}^{1}), v(t\wedge\sigma_{k}^{1}))-f(x(t\wedge\sigma_{k}^{0}), v(t\wedge\sigma_{k}^{0}))-\int_{t\wedge\sigma_{k}^{O}}^{t\wedge\sigma_{k}^{1}}L_{0}f(x(s), v(s))ds$

is a bounded continuous martingale for any $f\in C_{0}^{\infty}(R^{2d})$ .

Now let

$\tilde{X}(t, w)$

$=\{$
$x(t)$ , $t\in[\tau_{k}(w),$ $\tau_{k+1}(w))$ , if $k$ is even,

$(-x^{1}(t), x^{2}(t)$ , $\ldots$ , $x^{d}(t))$ , $t\in[\tau_{k}(w),$ $\tau_{k+1}(w))$ , if $k$ is odd,

$\tilde{V}(t, w)$

$=\{$
$v(t)$ , $t\in[\tau_{k}(w),$ $\tau_{k+1}(w))$ , if $k$ is even,

$(-v^{1}(t), v^{2}(t)$ , $\ldots$ , $v^{d}(t))$ , $t\in[\tau_{k}(w),$ $\tau_{k+1}(w))$ , if $k$ is odd.

Then we can see that $(\tilde{X}(t\wedge\xi),\overline{V}(t\wedge\xi))$ is continuous in $t$ for $\mu-a.s.w$ .
Also, we see that

$f(\overline{X}(t\wedge\sigma_{k}^{1}),\tilde{V}(t\wedge\sigma_{k}^{1}))-f(\tilde{X}(t\wedge\sigma_{k}^{0}),\tilde{V}(t\wedge\sigma_{k}^{0}))-\int_{t\wedge\sigma_{k}^{0}}^{t\wedge\sigma_{k}^{1}}\tilde{L}_{0}f(\tilde{X}(s),\tilde{V}(s))ds$

is a continuous martingale for any $f\in C_{0}^{\infty}(R^{2d})$ .
Therefore we see that

$f(\tilde{X}(t\wedge\tau_{k+1}),\tilde{V}(t\wedge\tau_{k+1}))-f(\tilde{X}(t\wedge\tau_{k}),\tilde{V}(t\wedge\tau_{k}))$

$-\int_{t\wedge\tau_{k}}^{t\wedge\tau_{k+1}}\tilde{L}_{0}f(\tilde{X}(s),\tilde{V}(s))ds$
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is a continuous martingale for any $f\in C_{0}^{\infty}(R^{2d})$ . So we can conclude
that

$f(\tilde{X}(t\wedge\xi),\tilde{V}(t\wedge\xi))-\int_{0}^{t\wedge\xi}\tilde{L}_{0}f(\tilde{X}(s),\tilde{V}(s))ds$

is a continuous martingale for any $f\in C_{0}^{\infty}(R^{2d})$ .
Therefore we see that the probability law of $(\tilde{X}(\cdot\wedge\xi),\tilde{V}(\cdot\wedge\xi))$ under

$\mu$ is the same of $w(\cdot\wedge\tilde{\xi})$ under $\nu$ , by the argument of $shift$ of drift and
the fact that a strong solution of stochastic differential equation with
Lipschitz continuous coefficients is unique. So we see that $\mu(\xi(w)=$

$\infty)=1$ . Since we see that

$x(t)=(|\tilde{X}^{1}(t)|,\tilde{X}^{2}(t),$ $\ldots,\tilde{X}^{d}(t))$ , $t\in[0, \xi)$ ,

and

$v(t)=(\frac{d^{+}}{dt}|\overline{X}^{1}(t)|,\tilde{V}^{2}(t),$ $\ldots,\overline{V}^{d}(t))$ , $t\in[0, \xi)$ ,

we see the uniqueness.
This completes the proof.

\S 4. Proof of Theorem 2

We will make some preparations to prove Theorem 2.

Proposition 7. Let $T>0$ . Let $A_{0}$ be the set of $w\in D([0, T);R)$

for which $w(0)=0$ , $w(T-)\leq 1$ , and $w(t)$ is non-decreasing in $t$ . Then
$A_{0}$ is compact in $L^{p}((0, T)$ , $dt)$ , $p\in(1, \infty)$ , and its cluster points are in
$D([0, T);R)$ .

Proof. Suppose that $w_{n}\in A_{0}$ , $n=1$ , 2, $\ldots$ . Then we see that
$w_{n}(t)\in[0,1]$ , $t\in[0, T)$ , $n\geq 1$ . So taking subsequence if necessary, we
may assume that $\{w_{n}(r)\}_{n=1}^{\infty}$ is convergent for any $r\in[0, T)\cap Q$ . Let
$\tilde{w}(r)=\lim_{n\rightarrow\infty}w_{n}(r)$ , $r\in Q$ , and let $w(t)=\lim_{r\downarrow t}\tilde{w}(r)$ , $t\in[0, T)$ , and
$w(T)$ be arbitrary such that $\sup_{t\in[0,T)}w(t)\leq w(T)\leq 1$ . Then we see

that $w\in D([0, T);R)$ and $w$ is non-decreasing, and that $w_{n}(t)\rightarrow w(t)$ ,
$t\in[0, T)$ , if $t$ is a continuous point of $w$ . So we see that $w_{n}\rightarrow w$ , $ n\rightarrow\infty$ ,
in If $((0, T)$ , $dt)$ .

This completes the proof. $I$

We have the following as an easy consequence of Proposition 7.

Corollary 8. Let $T>0$ . Let $A$ be the set of $w\in D([0, T);R^{d})$ for
which $w(0)=0$ and the total variation of $w$ is less than 1. Then $A$ is
compact in $IP((0, T);R^{d}$ , $dt)$ , $p\in(1, \infty)$ , and its cluster points are in
$D([0, T);R^{d})$ .
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Now let us prove Theorem 2. Let

$H_{t}^{\lambda}=\lambda U(X_{t}^{\lambda})+\frac{1}{2}|V_{t}^{\lambda}|^{2}$ , $t\geq 0$ .

Then we have

$H_{t}^{\lambda}=\frac{1}{2}|v_{0}|^{2}+\int_{0}^{t}V_{s}^{\lambda}\cdot\sigma(X_{s}^{\lambda})dB_{s}+\int_{0}^{t}V_{s}^{\lambda}\cdot b(X_{s}^{\lambda}, V_{s}^{\lambda})ds$

$+\frac{1}{2}\int_{0}^{t}trace(\sigma(X_{s}^{\lambda})^{*}\sigma(X_{s}^{\lambda}))ds$ .

So we see that for any $p\in[2, \infty)$ there is a constant $C$ independent
of $\lambda$ such that

$E[\sup_{t\in[0,T]}(H_{t}^{\lambda})^{p}]\leq C(|v_{0}|^{2p}+1+E[\int_{0}^{T}|V_{t}^{\lambda}|^{p}dt])$

$\leq C(|v_{0}|^{2p}+1+2^{p/2}TE[\sup(H_{t}^{\lambda})^{p}]^{1/2})$ .
$t\in[0,T]$

So we see that

(1) $\sup E[\sup(H_{t}^{\lambda})^{p}]<\infty$ , $p\in[1, \infty)$ .
$\lambda>0$ $t\in[0,T]$

Therefore we see that

$\sup_{\lambda>0}E[\sup_{t\in[0,T]}|V_{t}^{\lambda}|^{p}]<\infty$
, $p\in[1, \infty)$ .

So we see that $\{H_{t}^{\lambda}\}_{t\in[0,\infty)}$ , and $\{X_{t}^{\lambda}\}_{t\in[0,\infty)}$ , $\lambda\geq 0$ , are tight in $C$ .

Moreover, we see that

(2)
$E[\sup_{t\in[0,T]}U(X_{t}^{\lambda})^{p}]\rightarrow 0$

, $\lambda\rightarrow\infty$ , $p\in[1, \infty)$ .

Let us take an $\in\in(0, \in_{0})$ such that

$ C_{0}=\sup\{|\nabla U_{0}(x)|^{-1} ; dis(x, \partial D)\leq\in\}<\infty$ .

Let $\varphi\in C_{0}^{\infty}(R^{d})$ , such that $0\leq\varphi\leq 1$ , $\varphi(x)=1$ , if $dis(x, \partial D)<\in/3$ ,
and $\varphi(x)=0$ , if $dzs(z; \partial D)$ $>\in/2$ . Let $D_{0}=\{x\in D;dis(x, \partial D)>\in/4\}$ ,
and let $\tau=\tau^{\lambda}=\inf\{t>0;X_{t}^{\lambda}\in D_{0}\}$ . Then we see by Equation (2)
that

$P(\tau^{\lambda}<T)\rightarrow 0$ , $\lambda\rightarrow\infty$ ,
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for any $T>0$ . Let $A_{t}^{\lambda}$ , $t\geq 0$ be a non-decreasing continuous process
given by

$A_{t}^{\lambda}=-\lambda\int_{0}^{t\wedge\tau^{\lambda}}\varphi(X_{s}^{\lambda})\rho’(U_{0}(X_{s}^{\lambda}))|\nabla U_{0}(X_{s}^{\lambda})|^{2}ds$ , $t\geq 0$ .

Note that $A_{0}^{\lambda}=0$ . Since we have

$\varphi(X_{t\wedge\tau^{\lambda}}^{\lambda})(\nabla U_{0}(X_{t\wedge\tau^{\lambda}}^{\lambda})\cdot V_{t\wedge\tau^{\lambda}}^{\lambda})-\varphi(X_{0}^{\lambda})(\nabla U_{0}(X_{0}^{\lambda})\cdot V_{0}^{\lambda})$

$=A_{t}^{\lambda}+\int_{0}^{t\wedge\tau^{\lambda}}\varphi(X_{s}^{\lambda})\nabla^{2}U_{0}(X_{s}^{\lambda})(V_{s}^{\lambda}, V_{s}^{\lambda})ds$

$+\int_{0}^{t\wedge\tau^{\lambda}}\varphi(X_{s}^{\lambda})(\nabla U_{0}(X_{s}^{\lambda})\cdot b(X_{s}^{\lambda}, V_{s}^{\lambda}))ds$

$+\int_{0}^{t\wedge\tau^{\lambda}}\varphi(X_{s}^{\lambda})(\nabla U_{0}(X_{s}^{\lambda}))^{*}\sigma(X_{s}^{\lambda})dB_{s}$

$+\int_{0}^{t\wedge\tau^{\lambda}}(\nabla\varphi(X_{s}^{\lambda})\cdot V_{s}^{\lambda})(\nabla U_{0}(X_{s}^{\lambda})\cdot V_{s}^{\lambda})ds$ ,

we see that

$\sup_{\lambda>0}E[(A_{T}^{\lambda})^{p}]<\infty$ , $p\in[1, \infty)$ .

Since we have

$\int_{0}^{T\wedge\tau^{\lambda}}\lambda U(X_{t}^{\lambda})dt=\int_{0}^{T\wedge\tau^{\lambda}},\frac{\rho(U_{0}(X_{t}^{\lambda}))}{|\rho(U_{0}(X_{t}^{\lambda}))|}|\nabla U_{0}(X_{t}^{\lambda})|^{-2}dA_{t}^{\lambda}$ ,

we see that

$P(\int_{0}^{T\wedge\tau^{\lambda}}\lambda U(X_{t}^{\lambda})dt>\delta)$

$\leq P(\sup_{t\in[0,T]}U(X_{t}^{\lambda})>\eta)+P(C_{0}^{2}A_{T}^{\lambda}\sup_{\rho^{-1}(\eta)\leq s<0}\frac{\rho(s)}{|\rho(s)|},>\delta)$

for any $\delta$ , $\eta>0$ . So we see that

(3) $P(\int_{0}^{T\wedge\tau^{\lambda}}|H_{t}^{\lambda}-\frac{1}{2}|V_{t}^{\lambda}|^{2}|dt>\delta)\rightarrow 0$ , $\lambda\rightarrow\infty$

for any $\delta>0$ .
Also, we see that

$V_{t\wedge\tau^{\lambda}}^{\lambda}=v_{0}+V_{t}^{\lambda,0}+V_{t}^{\lambda,1}$ ,
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where

$V_{t}^{\lambda,0}=+\int_{0}^{t\wedge\tau^{\lambda}}|\nabla U_{0}(X_{s}^{\lambda}))|^{-2}\nabla U_{0}(X_{s}^{\lambda})dA_{s}^{\lambda}$ ,

and

$V_{t}^{\lambda,1}=\int_{0}^{t\wedge\tau^{\lambda}}\sigma(X_{s}^{\lambda})dB_{s}+\int_{0}^{t\wedge\tau}b(X_{s}^{\lambda}, V_{s}^{\lambda})ds$ .

So we see that the total variation of $V_{t}^{\lambda,0}$ , $t\in[0, T]$ , is dominated by
$C_{0}A_{T}^{\lambda}$ . Also, $\{V_{t}^{\lambda,0}\}_{t\in[0,\infty)}$ is tight in $C$ .

Then by Corollary 8 it is easy to see that $\{V_{t}^{\lambda}\}_{t\in[0,T)}$ is tight in
$L^{p}((0, T);R^{d})$ and its limit process is in $D([0, T);R^{d})$ with probability
one for any $T>0$ and $p\in(1, \infty)$ .

Let $F\in C^{\infty}(R^{d}\times R^{d};R^{d})$ be given by

$F(x, v)=\varphi(x)(v-|\nabla U_{0}(x)|^{-2}(\nabla U_{0}(x)\cdot v)\nabla U_{0}(x))$ , $(x, v)\in R^{d}\times R^{d}$ .

Then by It\^o’s lemma it is easy to see that $\{F(X_{t}^{\lambda}, V_{t}^{\lambda})\}_{t\in[0,\infty)}$ , $\lambda\in$

$(0, \infty)$ , is tight in $C$ , and that $\{f(X_{t}^{\lambda}, V_{t}^{\lambda})-\int_{0}^{t}L_{0}f(X_{s}^{\lambda}, V_{s}^{\lambda})ds\}$ is a

continuous martingale for any $\lambda\in(0, \infty)$ and $f\in C_{0}^{\infty}((\overline{D})^{c}\times R^{d})$ .

So we see that there are stochastic processes $\{(X_{t}, V_{t})\}_{t\in[0,\infty)}$ and
$\{H_{t}\}_{t\in[0,\infty)}$ and a subsequence $\{\lambda_{n}\}_{n=1}^{\infty}$ , $\lambda_{n}\rightarrow\infty$ , $ n\rightarrow\infty$ , such that
$\{((X_{t}^{\lambda_{n}}, V_{t}^{\lambda_{n}}), H_{t}^{\lambda_{n}})\}_{t\in[0,\infty)}$ converges in law to $\{((X_{t}, V_{t}), H_{t})\}_{t\in[0,\infty)}$

in $\tilde{W}^{d}\times C$ with respect the metric function $d\tilde{i}s+dis_{C}$ .

Then we see that $\{f(X_{t}, V_{t})-\int_{0}^{t}L_{0}f(X_{s}, V_{s})ds\}_{t\in[0,\infty)}$ is a continu-

ous martingale for any $f\in C_{0}^{\infty}((\overline{D})^{c}\times R^{d})$ , and that $\{F(X_{t}, V_{t})\}_{t\in[0,\infty)}$

is a continuous process. Also, we see by Equation (3) that

$\int_{0}^{T}|H_{t}-\frac{1}{2}|V_{t}|^{2}|dt=0$ $a.s$ .

for any $T>0$ . So we see that $\{|V_{t}|^{2}\}_{t\in[0,\infty)}$ is a continuous process.
Therefore we have

$P(1_{\partial D}(X_{t})(V_{t}-V_{t-}-2(n(X_{t})\cdot V_{t-})n(X_{t}))=0, t\in[0, \infty))=1$ .

So we see that the probability law of $\{(X_{t}, V_{t})\}_{t\in[0,\infty)}$ in $\tilde{W}$ is $\mu$ in

Theorem 1.
This complets the proof of Theorem 2
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Cubic Schr\"odinger: The Petit Canonical Ensemble

Henry P. McKean

\S 1. Introduction

This report describes some aspects of the Gibbsian petit canonical
ensemble for the cubic Schr\"odinger equation in the space of functions
of period 1, say. \S 2-5 (defocussing case) represent joint work with K.
Vaninskyl). \S 6 is a brief report on the much more difficult focussing
case. The original hope, that the petit ensemble might provide a picture
of the typical solution, is far ffom being achieved.

1.1. $Preliminaries^{2)}$

The mechanical state is a pair $QP$ of nice functions of period 1,

moving according to the defocussing flow:

$\frac{\partial Q}{\partial t}=-\frac{\partial^{2}P}{\partial x^{2}}+(Q^{2}+P^{2})P=\frac{\partial H_{3}}{\partial P}$

$\frac{\partial P}{\partial t}=+\frac{\partial^{2}Q}{\partial x^{2}}-(Q^{2}+P^{2})Q=-\frac{\partial H_{3}}{\partial Q}$

This is a Hamiltonian system, relative to the classical bracket in function
space, with Hamiltonian

$H_{3}=\frac{1}{2}\int_{0}^{1}[(Q^{/})^{2}+(P’)^{2}]+\frac{1}{4}\int_{0}^{1}(Q^{2}+P^{2})$ .

It is integrable in the full technical sense of the word, having an infinite

series of (commuting) constants of motion $H_{1}=\frac{1}{2}\int_{0}^{1}(Q^{2}+P^{2})$ , $H_{2}=$

$\int_{0}^{1}Q^{l}P$ , $H_{3}$ , and so on. The flow is integrated with the help of the Dirac
equation

$M^{/}=[\left(\begin{array}{ll}Q & P\\P & -Q\end{array}\right)$ $+\frac{\lambda}{2}$ $\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)]M$

Received November 4, 2002.
1) McKean-Vaninsky [1997]
2) Manakov et al. [1984] $and/or$ McKean-Vaninsky [1997]
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for the 2 $\times 2$ monodromy matrix $M=[m_{ij} : 1<i,j\leq 2]$ with $M(x=$

$O)=I$ . Introduce the “discriminant” $\triangle(\lambda)=\frac{1}{2}spM(x=1)$ and the

associated “Dirac curve” $\mathfrak{M}$ with points $p=[\lambda,$ $\sqrt{\triangle^{2}(\lambda)-1}]$ . The

latter is a double cover of the complex plane where $\lambda$ lives, ramified over
the roots

$\ldots\lambda_{-1}^{-}\leq\lambda_{-1}^{+}<\lambda_{-1}^{-}\leq\lambda_{-1}^{+}<\lambda_{0}^{-}\leq\lambda_{0}^{+}<\lambda_{1}^{-}\leq\lambda_{1}^{+}<\ldots$ , $\lambda_{n}^{\pm}\simeq 2\pi n$ etc.

of $\triangle(\lambda)=\pm 1$ indicated in the figure. These comprise the periodic/anti-
periodic spectrum of the Dirac equation and may be interpreted as a

$a_{-2}$ $a_{-1}$ $a_{0}$ $a_{1}$

$\dot{\wedge p_{-1}}$ $\cap\bigcup_{P-2}$

$\bigcap_{\cup}^{Po}$

$\bigwedge_{\cup,p_{1}}$

,

$\Delta=+1$

$\lambda$

$\Delta=-1$

complete list of constants of motion, commuting among themselves and
with the prior constants, $H_{1}$ , $H_{2}$ , $H_{3}$ , etc. The cycles $a_{n}$ : $n\in \mathbb{Z}$ seen
in the upper part of the figure are the “real ovals” of $\mathfrak{M}$ covering the
“gaps” $[\lambda_{n}^{-}, \lambda_{n}^{+}]$ , these being all open for $QP$ in general position, as is
mostly assumed below. $QP$ is encoded into a divisor $\mathfrak{P}=[p_{n} : n\in \mathbb{Z}]$ of
$\mathfrak{M}$ having 1 point on each real oval: the numbers $\lambda(p_{n})\equiv\mu_{n}\in[\lambda_{n}^{-}, \lambda_{n}^{+}]$

are the roots of $m_{12}(\mu)=0^{3)}$ and the radical $\sqrt{\triangle^{2}-1}(p_{n})$ is declared
to be $\frac{1}{2}(m_{11}-m_{12})(\mu_{n})^{4)}$ . The map $QP\rightarrow \mathfrak{P}$ is 1 : 1 or to the product

3)
$m_{12}(\lambda)$ looks much like $-\sin(\lambda/2)$ .

4) $\det M(1)=1$ so $m_{11}m_{12}=1$ if $m_{12}=0$ and $ m_{11}+m_{12}=2\triangle$ always,
whence this possibility.



Cubic Schr\"odinger: The petit canonical ensemble 249

of all the ovals. The next actor in the play is the “Abel map” of the
divisor into the (real) Jacobi variety Jac of $\mathfrak{M}$ , determined as follows.
DFK= the “differentials of the first kind” of $\mathfrak{M}$ are of the form $\omega=$

$\phi_{n}(\lambda)d\lambda/\sqrt{\triangle^{2}(\lambda)-1}$ with certain entire functions $\phi$ , and a basis may

be chosen so that $ a_{i}(\omega_{j})=2\pi$ or 0 according as $i=j$ or $not.5$ )
$\mathfrak{P}$ is now

mapped to Jac via the “angles” $\theta_{n}=\sum_{k\in \mathbb{Z}}\int_{o_{k}}^{p_{k}}\omega_{n}$ construed mod $2\pi,6$ )

$i.e$ .
$\sigma p$ $\rightarrow\Theta=[\theta_{n} : n\in \mathbb{Z}]\in(\mathbb{R}/2\pi \mathbb{Z})^{\infty}=Jac$ ,

and this map likewise is 1 : 1 and onto. Now you have the composite
map $QP\rightarrow divisor\rightarrow Jac$ , the point of the whole exercise being that
the (complicated) flow of $QP$ is converted thereby into (simple) straight-
line motion at constant speed in Jac which may be mapped back to the
original (mechanical) variables with the help of a Riemann-like “theta”
function. In this way, the flow is “integrated”.

\S 2. Petit Ensemble at Levels 1 &3

Level 1 is a warm-up for “level 3” to be described below. Intro-
duce the “level 1 actions” $I_{n}=\frac{1}{4\pi}a_{n}(ch^{-1}\triangle, d\lambda)^{7)}$ and note the $trace$

formula $H_{1}=\frac{1}{2}\int(Q^{2}+P^{2})=\sum_{\mathbb{Z}}I_{n}$ . The petit $ensemb1e^{8)}$

$e^{-H_{1}}d^{\infty}Qd^{\infty}P=\frac{e^{-\frac{1}{2}\int_{0}^{1}Q^{2}}}{(2\pi/0_{+})^{\infty/2}}d^{\infty}Q\times\frac{e^{-\frac{1}{2}\int_{0}^{1}P^{2}}}{(2\pi/0_{+})^{\infty/2}}d^{\infty}P$

$=\prod_{\mathbb{Z}}e^{-I_{n}}dI_{n}\times\prod_{\mathbb{Z}}d\theta_{n}/2\pi$
:

is descriptive of 2 independent copies of white noise; line 2 comes from
the $trace$ formula plus the formal identification of the volume elements
$ d^{\infty}Qd^{\infty}P\& d^{\infty}Id^{\infty}\theta/2\pi$ prompted by the fact that actions&angles
are canonically conjugate and together form a full coordinate system in
$QP$-space. Naturally, line 2 requires proof as does the invariance of the
ensemble under the flow, for which see McKean-Vaninsky [1997].

5) I should say differentials of the third kind as they have simple poles at the
2 points of $\mathfrak{M}$ covering $\infty$ , but as they play the role of classical DFK, I keep
the name. $\phi_{n}(\lambda)$ looks much like $m_{12}(\lambda)$ divided by $\lambda-\mu$ , $i.e$ . with 1 root
left out.
6)

$0_{k}=[\lambda_{k}^{-}, 0]$ , some such choice being necessary for the convergence of the

sum.
7) The name will be justified in \S 4.
8) Here and below, I will be ffee and easy with possibly infinite norming

constants.
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Level 3. The petit ensemble at “level 3” :

$e^{-H_{3}}d^{\infty}Qd^{\infty}P=\frac{e^{-\frac{1}{2}\int_{0}^{1}(Q’)^{2}}}{(2\pi 0_{+})^{\infty/2}}d^{\infty}Q\frac{e^{-\frac{1}{2}\int_{0}^{1}(P’)^{2}}}{(2\pi 0_{+})^{\infty/2}}d^{\infty}P\times e^{-\frac{1}{4}\int_{0}^{1}(Q^{2}+P^{2})^{2}}$

is descriptive of 2 independent “circular” Brownian $motions^{9)}$ coupled
by the third factor; it is invariant under the flow as for level 1. To
describe it in $action/angle$ language requires a revision: DFK at level 3
is as before (level 1) but with a new basis $\omega_{n}’$ : $n\in \mathbb{Z}$ normalized as in
$ a_{i}(\lambda^{2}\omega_{j}^{/})=2\pi$ or 0 according as $i=j$ or not. The level 3 actions are
$I_{n}’=\frac{1}{q_{\pi}}a_{n}(\lambda^{2}ch^{-1}\triangle d\lambda)$ and you have the $trace$ formula $H_{3}=\sum_{\mathbb{Z}}I_{n}’$ ,

whence

$e^{-H_{3}}d^{\infty}Qd^{\infty}P=\prod_{\mathbb{Z}}e^{-I_{n}’}\times[d^{\infty}Qd^{\infty}P=d^{\infty}Id^{\infty}\frac{d\theta}{2\pi}$ at level $1]$

$=\prod_{\mathbb{Z}}e^{-I_{n}’}dI_{n}^{/}\prod_{\mathbb{Z}}d\frac{\theta_{n}}{2\pi}\times\det\frac{\partial I}{\partial I}$, ,

in which the third (Jacobian) factor is still to be understood. The level 3
actions are canonically paired to the level 3 $ang1es^{10)}\theta_{n}^{J}=\sum_{r\in \mathbb{Z}}\int_{o_{k}}^{\mathfrak{p}_{k}}\omega_{n}^{/}$ ,
so

$\det\frac{\partial I}{\partial I},$ $=\det\frac{\partial\theta^{/}}{\partial\theta}$

$\det[\omega_{i}^{/}/d\lambda(p_{j})]$

$=\overline{\det[\omega_{i}/d\lambda(p_{j})]}$

$\times\int\frac{\det\prod_{i>j}(\mu_{i}-\mu_{j})}{\prod_{\mathbb{Z}}\sqrt{\triangle^{2}-1(p_{n})}}d^{\infty}\mu$

divided by

$\int\prod_{\mathbb{Z}}\mu^{2}\times$ the same “volume element”.

This rather fanciful expression comes from level 2 in case all but $N$

gaps are closed and making $ N\uparrow\infty$ with an (unpardonable) disregard
of normalizing factors. Now the “volume element” seen in line 3 is

9) CBM is standard Brownian motion, conditioned to end where it began,
with this common displacement distributed over $\mathbb{R}$ by flat Lebesgue measure.
The coupling holds down the total mass so that normalization is possible.
10) These must be construed, not mod $ 2\pi$ , but relative to another, pretty
complicated lattice of periods.
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nothing but an un-normalized expression of the flat (level 1) volume
element $ d^{\infty}\theta/2\pi$ on Jac, written out in the language of the divisor;
also $m_{12}(\lambda)=\frac{1}{2}(\mu_{0}-\lambda)\prod_{\mathbb{Z}}(2\pi n)^{-1}(\mu_{n}-\lambda)$ precisely; and so it is an
educated guess that, after proper normalization, the Jacobian $\det\partial I/\partial I^{J}$

ought to be the reciprocal of $ N=\int_{Jac}m_{12}^{2}(0)d^{\infty}\theta/2\pi$ .

This is correct as far as it $goes^{11)}$ , but what does $N$ really look like?
It is a function of actions alone, so the levell angles are still independent
of them, with the same flat distribution as before. There are 10 integrals
of products of 2 entries of $M(1)$ , and I know 9 relations among them
involving the constants of motion $\triangle$ and $\triangle.$ , but the value of $N$ is not
revealed by these. Too bad! Crude estimates of $N$ can be had but do
not help to describe how the actions couple. I leave the subject in this
unsatisfactory state.

\S 3. Some Tricks

I record here 3 amusing examples of averaging over Jac with re-
spect to $ d^{\infty}\theta/2\pi$ , but first a general principle. Think of the (still to be
normalized) expression

$ d^{\infty}\frac{\theta}{2\pi}=\prod_{i>j}(\mu_{i}-\mu_{j})d^{\infty}\mu$ divided by
$\prod_{\mathbb{Z}}\sqrt{\triangle^{2}-1}(p_{n})$

encountered in \S 3. The top, considered as a function of $\mu_{n}$ , say, is
proportional to $mi_{2}(\mu_{n})$ , so $yu$ have the “splitting rule at $n\in \mathbb{Z}$

” :

$d^{\infty}\frac{\theta}{2\pi}=\frac{mi_{2}(\mu_{n})}{\sqrt{\triangle^{2}-1}(p_{n})}$ on the oval $a_{n}$

$\times a$ volume element on the product of all the other ovals.

This principle is now applied in 3 ways:

Example 1. $m_{12}(\lambda)$ looks like $-\sin(\lambda/2)$ and $\triangle(\lambda)$ like $\cos(\lambda/2)$ ,

so you may expect $ 2\triangle$ .
$-m_{12}$ to be of “degree 1 lower” than $m_{12}$ and

that Lagrange interpolation would apply. This is correct:

$2\triangle.(\lambda)-m_{12}(\lambda)=12)\sum_{\mathbb{Z}}\frac{2\triangle(\mu_{n})}{mi_{2}(\mu_{n})}.\frac{m_{12}(\lambda)}{\lambda-\mu_{n}}$

11) McKean-Vaninsky [1997].
12)

$m_{12}(\mu_{n})=0$ of course.
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Now average over Jac, exchange sum and average, and split the volume
at $n\in \mathbb{Z}$ to produce

$2\triangle.(\lambda)-\int_{Jac}m_{12}(\lambda)\frac{d^{\infty}\theta}{2\pi}=\sum_{\mathbb{Z}}$
$2$

$k\neq n\int_{\times a_{k}},$

$\frac{m_{12}(\lambda)}{\lambda-\mu_{n}}\int_{a_{n}}\frac{\triangle d\mu_{n}}{\sqrt{\triangle^{2}-1}}.=13)0$ ,

$i.e$ . $ 2\triangle$ . $=$ average $m_{12}$ .

Example 2. The numerator $\phi_{n}$ of $\omega_{n}\in$ DFK at level 1 looks like
$m_{12}$ with 1 root factored out, so it, too, should be capable of interpola-
tion:

$\phi_{n}(\lambda)=\sum_{i\in \mathbb{Z}}\frac{\phi(\mu_{i})}{mi_{2}(\mu_{i})}\frac{mi_{2}(\lambda)}{\lambda-\mu_{i}}$

But this object has nothing to do with angles, so an average over Jac
does it no harm, and proceeding as in ex. 1, you find

$\phi_{n}(\lambda)=\sum_{j}\int_{a_{j}}i\in \mathbb{Z}_{\times,,\neq i}\frac{m_{12}(\lambda)}{\lambda-\mu_{i}}\int_{a_{i}}\frac{\phi_{n}(\mu_{i})d\mu_{i}}{\sqrt{\triangle^{2}-1}(p_{i})}$

$=$

$j\neq n\int_{\times a_{j}},$

$\frac{m_{12}(\lambda)}{\lambda-\mu_{n}}\times 2\pi$

$=\int_{\times a_{j}=Jac}$

.

$\frac{m_{12}(\lambda)}{mi_{2}(\mu_{n})(\lambda-\mu_{n})}d^{\infty}\frac{\theta}{2\pi}$

divided by

$\frac{1}{2\pi}\int_{a_{n}}\frac{d\mu}{\sqrt{\triangle^{2}-1}}$
,

$i.e$ .

$\omega_{n}=$ average $\frac{m_{12}(\lambda)}{mi_{2}(\mu_{n})(\lambda-\mu_{n})}$ normalized to have mass $ 2\pi$ on $a_{n}$

This seems to be a new way of writing DFK.

13) $\triangle\cdot/\sqrt{\triangle^{2}-1}=dch^{-1}\triangle$ .
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Example 3 identifies $I_{n}=\frac{1}{4\pi}a_{n}(ch^{-1}\triangle d\lambda)$ with a true mechanical

action, as promised at start of \S 3.14) The physical actions are $A_{n}=$

$(2\pi)^{-1}a_{n}(PdQ)$ : $n\in \mathbb{Z}$ . To implement their evaluation, take the flow
$e^{tX}$ with Hamiltonian $I_{n}$ which carries $p_{n}$ once about its private cycle
$a_{n}$ in time $ 2\pi$ , leaving the rest of the divisor fixed, and equate $A_{n}$ with

$\frac{1}{2\pi}\int_{0}^{2\pi}e^{tX}[\int_{0}^{1}P(x)XQ(x)dx]dt$ .

Now $A_{n}$ has nothing to do with angles, so you can average over Jac, ex-
change this average with the time-average, and use the invariance of the
flat volume under the present flow and the flow of translation produced

by $H_{2}=\int_{0}^{1}Q’P$ to reduce the previous display to $\int_{Jac}P(0)XQ(0)d^{\infty}\theta/2\pi$ .

Here,

$XQ(0)=\frac{1}{4\pi}\int_{a_{n}}(1/2)(m_{12}+m_{21})\frac{d\lambda}{\sqrt{\triangle^{2}-1}}$ ,

$m_{12}-m_{21}$ is invariant under the “phase flow” $Q$
. $=P$ and $P$ . $=-Q$

produced by $H_{1}=\frac{1}{2}\int_{0}^{1}(Q^{2}+P^{2})$ , and the average of $P(0)$ under this
flow is 0, permitting a further reduction to

$A_{n}=\frac{1}{4\pi}\int_{a_{n}}\frac{d\lambda}{\sqrt{\triangle^{2}-1}}\int_{Jac}P(0)[m_{12}(\lambda)-2\triangle.(\lambda)]d^{\infty}\frac{\theta}{2\pi}$

The $trace$ formula $P(0)=15)_{\frac{1}{2}\sum}(\mu_{i}-\lambda_{i})$ and the interpolation of
$ 2\triangle$

.
$-m_{12}$ from example 1 are now inserted under the average, sums

and avarage are exchanged, and the volume element $ d^{\infty}\theta/2\pi$ is split at

14) The level 3 actions have also a mechanical interpretation, but I do not go
into it here.
15)

$\lambda_{n}$

. : $n\in \mathbb{Z}$ are the roots of $\triangle.(\lambda)=0$ .
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$j\in \mathbb{Z}$ , with the result that

$A_{n}=\frac{1}{4\pi}\int_{a_{n}}\frac{d\lambda}{\sqrt{\triangle^{2}-1}}\sum_{i\in \mathbb{Z}}\sum_{j\in \mathbb{Z}}$

$k\neq j\int_{\times a_{k}},$

$\frac{m_{12}}{\lambda-\mu_{j}}\int_{a_{j}}$

$(\lambda_{i}. -\mu_{i})dch^{-1}\triangle(p_{j})$

$=\frac{1}{4\pi}\int_{a_{n}}\frac{d\lambda}{\sqrt{\triangle^{2}-1}}\sum_{k}\int_{i}i\in \mathbb{Z}_{X}\neq^{a_{k}}\frac{m_{12}}{\lambda-\mu_{i}}\int_{a_{n}}ch^{-1}\triangle d\mu_{i}$

$=\frac{1}{2\pi}\int_{a_{n}}\frac{d\lambda}{\sqrt{\triangle^{2}-1}}\sum_{i\in \mathbb{Z}}\{$

$\int_{\times a_{k}=Jac}$

.

$\frac{m_{12}}{mi_{2}(\mu_{i})(\lambda-\mu_{i})}d^{\infty}\frac{\theta}{2\pi}$

divided by
$\frac{1}{2\pi}\int_{a_{i}}\frac{d\mu_{i}}{\sqrt{\triangle^{2}-1}}$

multiplied by
$\frac{1}{4\pi}\int_{a_{i}}ch^{-1}\triangle d\mu_{i}$

$=\frac{1}{2\pi}\int_{a_{n}}\frac{d\lambda}{\sqrt{\triangle^{2}-1}}\sum_{i\in \mathbb{Z}}\phi_{i}I_{i}$

$=I_{n}$ ,

as advertised.

\S 4. Thermodynamic Limit

Now let Q&P have period $L$ and take the large volume limit $ L\uparrow\infty$ .

What happens to the petit ensemble $e^{-H_{3}}d^{\infty}Qd^{\infty}P$? The answer is nice
and simple. Let $\psi$ be the ground state $of-\frac{1}{2}\triangle+\frac{1}{4}r^{4}$ in $\mathbb{R}^{2}$ . Then the
mechanical variables $[Q(x), P(x)]$ : $x$

$\in \mathbb{R}$ tend (in law) to the stationary
diffusion with infinitessimal operator $\frac{1}{2}\triangle+(grad\ell n\psi)\cdot grad$ . This is
even easy to prove.

\S 5. Focussing Case

This is much harder. The Hamiltonian is changed to $\frac{1}{2}\int[(Q^{J})^{2}+(P^{J})^{2}]$

minus $\frac{1}{4}\int(Q^{2}+P^{2})$ and the associated petit ensemble has total mass
$+\infty$ . This prompted Lebowitz-Rose-Speer [1989] to introduce the micro-
canonical ensemble obtained by conditioning upon the value $N$ of the
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constant of motion $H_{1}=\frac{1}{2}\int(Q^{2}+P^{2}).16)$ Their interest was in the
thermodynamic limit: with fixed “density” $D$ , “particle number” $N=$

$DL$ , and $ L\uparrow\infty$ , they found by numerical simulation, that the tempera-
ture dependent ensemble $e^{-H_{3}/T}d^{\infty}Qd^{\infty}P$ favors “solitons” /“radiation”
at $low/high$ temperatures, $i.e$ . some kind of phase change takes place.
Chorin [private communication] used a more sophisticated simulation of
the Brownian motion and found the opposite: no phase change. This
made me curious and, subsequentlyl7), I claimed to prove that the ther-
modynamical limit does not exist, explaining (as I thought) the discrep-
ancy just described. But alas, all the big boys were wrong: in fact,
my student B. $Rider^{18)}$ proved that, at any values of temperature and
density, the whole ensemble collapses onto $Q\equiv 0\& P\equiv 0$ . A pity.
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Risk-sensitive Portfolio Optimization with Full and
Partial Information

Hideo Nagai

Abstract.

We discuss an application of risk-sensitive control to portfolio op-
timization problems for a general factor model, which is considered a
variation of Merton’s intertemporal capital asset pricing model ([18]).
In the model the instantaneous mean returns as well as volatilities of
the security prices are affected by economic factors and the security
prices. The economic factors are assumed to satisfy stocahstic dif-
ferential equations whose coefficients depend on the security prices
as well as themselves. In such general incomplete market models un-
der Markovian setting we consider constructing optimal strategies for
risk-sensitive portfolio optimization problems on a finite time hori-
zon. We study the Bellman equations of parabolic type correspond-
ing to the optimization problems. Through analysis of the Bellman
equations we construct optimal strategies from the solution of the
equation. We further discuss the problem with partial information.
We shall obtain a necessary condition for optimality using backward
stochastic partial differential equations.

\S 1. Introduction

Let us consider a market model with $m+1$ securities $(S_{t}^{0}, S_{t}):=$

$(S_{t}^{0}, S_{t}^{1}, \ldots, S_{t}^{m})^{*}$ and $n$ factors $X_{t}=(X_{t}^{1}, X_{t}^{2}, \ldots, X_{t}^{n})^{*}$ . Here $S^{*}$ stands
for transposed matrix of $S$ . We assume that the set of securities includes
one bond, whose price is defined by the ordinary differential equation:

(1.1) $dS^{0}(t)=r(X_{t}, S_{t})S^{0}(t)dt$ , $S^{0}(0)=s^{0}$ ,

where $r(x, s)$ is a nonnegative function on $R^{n+m}$ . The other secutity
prices $S_{t}^{i}$ , $i=1,2$ , $\ldots$ , $m$ , and the factors $X_{t}$ are assumed to satsN the
following stochastic differential equations:

Received February 28, 2003.
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$dS^{i}(t)=S^{i}(t)\{g^{i}(X_{t}, S_{t})dt+\sum_{k=1}^{n+m}\sigma_{k}^{i}(X_{t}, S_{t})dW_{t}^{k}\}$ ,
(1.2)

$S^{i}(0)=s^{i}$ , $i=1$ , $\ldots$ , $m$

and

$dX_{t}=b(X_{t}, St)dt+\lambda(X_{t}, S_{t})dW_{t}$ ,
(1.3)

$X(0)=x\in R^{n}$ ,

where $W_{t}=(W_{t}^{k})_{k=1,..,(n+m)}$ is an $m+n$ dimensional standard Brownian
motion process defined on a filtered probability space $(\Omega, F, P, \mathcal{F}_{t})$ . Here
$\sigma$ and $\lambda$ are respectively $m\times(m+n)$ , $n\times(m+n)$ matrix valued
functions. Set

$\mathcal{G}_{t}=\sigma(S(u), X(u);u\leq t)$

and let us denote investment strategy to $i$-th security $S^{i}(t)$ by $h^{i}(t)$ ,
$(i=0,1, \ldots, m)$ representing portfolio proportion of the amount of the
$i$-th security to the total wealth $V_{t}$ that the investor possesses, which is
defined as follows:

Definition 1.1. $(h^{0}(t), h(t))\equiv(h^{0}(t), (h^{1}(t), h^{2}(t),$
$\ldots$ , ’

$h^{m}(t))^{*})$ is
said to be an invetment strategy if the following conditions are satisfied

i) $h(t)$ is an $R^{m}$ valued $\mathcal{G}_{t}$ progressively measurable stochastic pro-
cess such that

$\sum_{i=1}^{m}h^{i}(t)+h^{0}(t)=1$

$ii)$ and that

$P(\int_{0}^{T}|h(s)|^{2}ds<\infty)=1$ .

The set of all investment strategies will be denoted by $H(T)$ . When
$(h^{0}(t), h(t)^{*})_{0\leq t\leq T}\in H(T)$ we will often write $h\in H(T)$ for simplicity.
In what follows we always assume that

(1.4) $\sigma\sigma^{*}>0$ .

For given $h\in\gamma\{(T)$ the wealth process $V_{t}=V_{t}(h)$ satisfies

$\frac{dV_{t}}{V_{t}}$ $=$ $\sum_{i=0}^{m}h^{i}(t)\frac{dS^{i}(t)}{S^{i}(t)}$

$=$ $h^{0}(t)r(X_{t}, S_{t})dt+\sum_{i=1}^{m}h^{i}(t)\{g^{i}(X_{t}, S_{t})dt$

$+\sum_{k=1}^{m+n}\sigma_{k}^{i}(X_{t}, S_{t})dW_{t}^{k}\}$

$V_{0}$ $=$
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under the assumption of the self-financing condition. Then, taking i)
above into account it turns out to be the solution of

$\frac{dV_{t}}{V_{t}}=r(X_{t}, S_{t})dt+h(t)^{*}(g(X_{t}, S_{t})-r(X_{t}, S_{t})1)dt+h(t)^{*}\sigma(X_{t}, S_{t})dW_{t}$ ,

$V_{0}=v$ ,

where $1=(1,1, \ldots, 1)^{*}$ .

We first consider the following problem. For a given constant $\mu<$

$1$ , $\mu\neq 0$ maximize the following risk-sensitized expected growth rate up
to time horizon $T$ :

(1.5) $J(v, x;h;T)=\frac{1}{\mu}\log E[e^{\mu\log V_{T}(h)}]=\frac{1}{\mu}\log E[V_{T}(h)^{\mu}]$ ,

where $h$ ranges over the set $A(T)$ of all admissible strategies defined
later. The meaning of the maximization is well understood by looking
at the asymptotics of the criterion as $\mu\rightarrow 0$ :

$\frac{1}{\mu}\log E[e^{\mu\log V_{T}(h)}]\sim E[\log V_{T}(h)]+\frac{\mu}{2}$Var[log $V_{T}(h)$ ] $+O(\mu^{2})$ .

Maximizing (1.5) is a risk-sensitive counterpart of the problem maximiz-
ing the expected growth rate of the investor’s wealth. The case where
$\mu<0$ is called risk averse and $\mu>0$ risk seeking. Concerning this
problem we introduce the Bellman equation corresponding to the value
function and we present the results constructing an optimal strategy
ffom the solution to the equation through its analysis in section 2. Note
that the problem maximizing the criterion $J(v, x;h;T)$ is equivalent to
HARA utility maximization:

$\sup_{h}E[\frac{1}{\mu}V_{T}(h)^{\mu}]=\sup_{h}E[\frac{1}{\mu}e^{\mu\log V_{T}(h)}]$ , $\mu<1$ .

The problems on infinite time horizon maximizing

(1.6) $\lim\inf\underline{1}\log E[e^{\mu\log V_{T}(h)}]$

$T\rightarrow\infty\mu T$

have been considered by several authors e.g. in $[8],[9],[10],[14]$ , in the
case of linear Gaussian factor models since the work by Fleming [7], or
under more general setting in [5] with the assumption that randomness
of security price processes and that of factor processes are independent.
In [23] we have discussed the problem under rather general setting for so
called Merton’s ICAPM ([18]), and the results in section 2 of the present
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paper are its genaralization in the case of finite time horizon. Here by
Merton’s ICAPM, we mean the case that

$r(x, s)=r_{1}(x)$ , $g(x, s)=g_{1}(x)$ , $b(x, s)=b_{1}(x)$ ,
$\sigma(x, s)=\sigma_{1}(x)$ , $\lambda(x, s)=\lambda_{1}(x)$ .

If $r_{1}$ , $g_{1}$ and $b_{1}$ are linear functions and $\sigma_{1}$ and $\lambda_{1}$ are constant matrices
the models are said to be linear Gaussian. In that case the solutions of
the Bellman equations are expressed explicitly as the quadratic functions
of $x$ whose coefficients are determined as the solutions of the matrix
Riccati differential equations and linear differential equations.

We then consider the maximization problem with partial inffoma-
tion. In the above investment strategies are defined as $\mathcal{G}_{t}$ progressively
measurable processes. However, it is not always realistic since economic
factors $X_{t}$ are to be considered implicit and so it might be better to
select our strategies without using all past informations of securities $S_{t}$

and factors $X_{t}$ . Our strategies may be well selected by using only in-
formations of security prices. Rishel [24] has considered the problem on
a finite time horizon in such a way in a particular case, namely for a
linear Gaussian model of one factor and one risky and one riskless assets
under the assumtion that randomness of the factor process and that of
the risky asset are independent. We have also considered the problem
for general linear Gaussian factor models [21] on a finite time horizon
and, by solving two kinds of Riccati differential equations, constructed
an optimal strategy. The results are extended to the case of infinite
time horizon in [22] by studying asymptotics of the solutions of inhomo-
geneous (time dependent) Riccati differential equations as time horizon
goes to infinity. In the present paper we shall consider the maximization
problem in section 3 under more general setting, namely the case where
coefficients of security prices are nonlinearly depend on economic factors.
In that case we don’t have explicit expression of the optimal strategies
but study necessity of optimality. We introduce backward stochastic
partial differential equations (BSPDEs), which are considered to be ad-
joint equations of the problems, and find the necessary condition for
optimality by using the solutions of the BSPDEs under suitable condi-
tions. Such necessary condition is a kind of maximum principle and it
has been studied by A. Bensoussan for stochastic control problems for
partially observed diffusion processes (cf. [1], [2], [26]).

\S 2. Full information case

Let us set
$Y_{t}^{i}=\log S_{t}^{i}$ , $i=0,1$ , 2, $\ldots$ , $m$ ,
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$Y_{t}=(Y_{t}^{1}, Y_{t}^{2}, \ldots, Y_{t}^{m})^{*}$ and $e^{Y}=(e^{Y^{1}}, \ldots, e^{Y^{m}})^{*}$ . Then

$dY_{t}^{0}=r(X_{t}, e^{Y_{t}})dt$

and

(2.1) $dY_{t}=E(Xt, Yt)dt+\Sigma(X_{t}, Y_{t})dW_{t}$ ,

where
$F^{i}(x, y)$ $=$ $g^{i}(x, e^{y})-\frac{1}{2}(\sigma\sigma^{*})^{ii}(x, e^{y})$ ,

$\Sigma_{k}^{i}(x, y)$ $=$ $\sigma_{k}^{i}(x, e^{y})$ .

In the same way, set

$B(x, y)=b(x, e^{y})$ , $\Lambda(x, y)=\lambda(x, e^{y})$ .

Then the factor prosess is described as

(2.2) $dX_{t}=B(X_{t}, Y_{t})dt+\Lambda(X_{t}, Yt)dWu$

So, by setting $Z_{t}=(X_{t}, Y_{t})^{*}$ and

$\beta(z)=(B(x, y),$ $F(x, y))^{*}$ , $\alpha(z)=(\Lambda(x, y),$ $\Sigma(x, y))^{*}$ ,

we have

(2.3) $dZ_{t}=\beta(Z_{t})dt+\alpha(Z_{t})dW_{t}$

Furthermore, by setting $\tilde{g}(z)=g(x, e^{y}),\tilde{r}(z)=r(x, e^{y})$ for simplicity
we have

$\frac{dV_{t}}{V_{t}}=\tilde{r}(Z_{t})dt+h_{t}^{*}(\overline{g}(Z_{t})-\overline{r}(Z_{t})1)dt+h_{t}^{*}\Sigma(Z_{t})dW_{t}$

and so,

$V_{t}^{\mu}=v^{\mu}$ $\exp\{-\mu\int_{0}^{t}\eta(Z_{s}, h_{s})ds+\mu\int_{0}^{t}h_{s}^{*}\Sigma(Z_{s})dW_{s}$

$-\frac{\mu^{2}}{2}\int_{0}^{t}h_{s}^{*}\Sigma\Sigma^{*}(Z_{s})h_{s}ds\}$ ,

where

$\eta(z, h)=\frac{1-\mu}{2}h^{*}\Sigma\Sigma^{*}(z)h-\tilde{r}(z)-h^{*}(\tilde{g}(z)-\tilde{r}(z)1)$
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If a given investment strategy $h$ satisfies

(2.4) $E[e^{\mu}\int^{T}oh_{s}^{*}\Sigma^{*}(Z_{s})dW_{s}-\mu_{-\int_{0}^{T}h_{S}^{*}\Sigma\Sigma^{*}(Z_{s})h_{s}ds}^{2}2]=1$ ,

then we can introduce a probability measure $P^{h}$ given by

$P^{h}(A)=E[e\mu\int o^{T}h_{S}^{*}\Sigma(Z_{s})dW_{s}-L^{2}2\int_{0}^{T}h_{S}^{*}\Sigma\Sigma^{*}(Z_{s})h_{s}ds;A]$

for $A\in F_{T}$ , $T>0$ . By the probability measure $P^{h}$ our criterion
$J(v, x;h;T)$ can be written as follows:

(2.5) $J(v, x;h, T)=\log v+\frac{1}{\mu}\log E^{h}[e^{-\mu\int_{0}^{T}\eta(Z_{s},h_{s})ds}]$ .

On the other hand, under the probability measure

$W_{t}^{h}$ $=$ $W_{t}-\langle W., \mu\int_{\dot{0}}h^{*}(s)\Sigma(Z_{s})dW_{s}\rangle_{t}$

$=$ $W_{t}-\mu\int_{0}^{t}\Sigma^{*}(Z_{s})h(s)ds$

is a standard Brownian motion process, and therefore the factor process
$X_{t}$ satisfies the following stochastic differential equation

$dX_{s}$ $=$ $(B(X_{s}, Y_{s})+\mu\Lambda\Sigma^{*}(X_{s}, Y_{s})h_{s})ds+\Lambda(X_{s}, Y_{s})dW_{s}^{h}$

(2.6)
$dY_{s}$ $=$ $(F(X_{s}, Y_{s})+\mu\Sigma\Sigma^{*}(X_{s}, Y_{s})h_{s})ds+\Sigma(X_{s}, Y_{s})dW_{s}^{h}$ .

And so,

(2.7) $dZ_{t}=\beta_{\mu}(Z_{t}, h_{t})dt+\alpha(Z_{t})dW_{t}^{h}$ ,

where
$\beta_{\mu}(z, h)=\beta(z)+\mu\alpha\Sigma^{*}(z)h$ .

We regard (2.7) as a stochastic differential equation controlled by $h$ and
the criterion function is written by $P^{h}$ as follows:

(2.8) $J(v, x;h;T-t)=\log v+\frac{1}{\mu}\log E^{h}[e^{-\mu\int_{0}^{T-t}\eta(Z_{s},h(s))ds}]$

and the value function

(2.9) $u(t, z)=$ $\sup$ $J(v, z;h;T-t)$ , $0\leq t\leq T$ .
$h\in A(T-t)$



Risk-sensitive portfolio optimization 263

Here we denote by $A(T)$ the set of all investment strategies satisfying
(2.4). Then, according to Bellman’s dynamic programming principle, it
should satisfy the following Bellman equation

$\underline{\partial u}+\sup L^{h}u=0$ ,
(2.10)

$\partial t$

$h\in R^{m}$

$u(T, z)=\log v$ ,

where $L^{h}$ is defined by

$L^{h}u(t, z)=\frac{1}{2}tr(\alpha\alpha^{*}(z)D^{2}u)+\beta_{\mu}(z, h)Du+\frac{\mu}{2}(Du)^{*}\alpha\alpha^{*}(z)Du-\eta(z, h)$ .

Note that $\sup_{h\in R^{m}}L^{h}u$ can be written as

$\sup_{h\in R^{m}}L^{h}u(t, z)=\frac{1}{2}tr(\alpha\alpha^{*}(z)D^{2}u)+\beta(z)^{*}Du+\frac{\mu}{2}(Du)^{*}\alpha\alpha^{*}Du+\tilde{r}$

$+\sup_{h}\{\mu h^{*}\Sigma\alpha^{*}Du+h^{*}(\tilde{g}-\tilde{r}1)-\frac{1-\mu}{2}h^{*}\Sigma\Sigma^{*}h\}$

$=\frac{1}{2}tr(\alpha\alpha^{*}(z)D^{2}u)+\beta(z)^{*}Du+\frac{\mu}{1-\mu}(\tilde{g}-\tilde{r}1)^{*}(\Sigma\Sigma^{*})^{-1}\Sigma\alpha^{*}Du$

$+\frac{\mu}{2}(Du)^{*}\alpha(I+\overline{1}-A\overline{\mu}\Sigma^{*}(\Sigma\Sigma^{*})^{-1}\Sigma)\alpha^{*}Du$

$+\frac{1}{2(1-\mu)}(\overline{g}-\tilde{r}1)^{*}(\Sigma\Sigma^{*})^{-1}(\tilde{g}-\tilde{r}1)+\tilde{r}$

Therefore our Bellman equation (2.10) is written as follows:
(2.11)

$\frac{\partial u}{\partial t}+\frac{1}{2}tr(\alpha\alpha^{*}D^{2}u)+\hat{\beta}_{\mu}^{*}Du+(Du)^{*}\alpha N^{-1}\alpha^{*}Du+U(z)=0$ ,

$u(T, z)=\log v$ ,

where

$\hat{\beta}_{\mu}(z)=\beta(z)+\frac{\mu}{1-\mu}\alpha\Sigma^{*}(\Sigma\Sigma^{*})^{-1}(\tilde{g}-\overline{r}1)$

(2.12) $N^{-1}(z)=\frac{\mu}{2}(I+\frac{\mu}{1-\mu}\Sigma^{*}(\Sigma\Sigma^{*})^{-1}\Sigma(z))$

$U(z)=\frac{1}{2(1-\mu)}(\tilde{g}-\tilde{r}1)^{*}(\Sigma\Sigma^{*})^{-1}(\tilde{g}-\overline{r}1)+\tilde{r}(z)$ .
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As for (2.11) we note that if $\mu<0$ , then

$\frac{\mu}{2(1-\mu)}I\leq N^{-1}\leq\frac{\mu}{2}I$

and therefore we have

$\frac{\mu}{2(1-\mu)}\alpha\alpha^{*}\leq\alpha N^{-1}\alpha^{*}\leq\frac{\mu}{2}\alpha\alpha^{*}<0$ .

On the other hand if $0<\mu<1$ , then

$\frac{\mu}{2}I\leq N^{-1}\leq\frac{\mu}{2(1-\mu)}I$

and therefore we have

$0<\frac{\mu}{2}\alpha\alpha^{*}\leq\alpha N^{-1}\alpha^{*}\leq\frac{\mu}{2(1-\mu)}\alpha\alpha^{*}$ .

In what follows we assume that

$B$ , $F$, $\Lambda$ , $\Sigma$ are locally Lipshitz and that
(2.11)

$\frac{1}{2}||\Sigma\Sigma^{*}||+\frac{1}{2}||\Lambda\Lambda^{*}||+\beta^{*}z\leq c(1+|z|^{2})$ ,

then we have a solution $(X_{t}, Y_{t})$ of (2.1) and (2.2), and so setting

$S_{t}^{i}=e^{Y_{t}^{i}}$ , $i=1,2$ , $\ldots$ , $m$ , $S_{t}^{0}=e^{Y_{t}^{0}}=e^{\log s^{0}+\int_{0}^{t}r(X_{s},e^{Y_{S}})ds}$

we have a market model $(S_{t}^{0}, S_{t})$ satisfying (1.2) and (1.3). Then we
have the following theorem.

Theorem 2.1. Let $u\in C^{1,2}([0, T)\times R^{N})$ be a solution of (2.11).

Define

$\hat{h}_{t}=\hat{h}(t, Z_{t})$

$\hat{h}(t, z)=\frac{1}{1-\mu}(\Sigma\Sigma^{*})^{-1}(\tilde{g}-\tilde{r}1+\mu\Sigma\alpha^{*}Du)(t, z)$ ,

where $Z_{t}$ is the solution of (2.3), then, under the assumption that
(2.14)
$E[e^{-\int_{0}^{T}(2N^{-1}\alpha^{*}Du+2\mu K)^{*}dW_{s}-\frac{1}{2}\int_{0}^{T}(2N^{-1}\alpha^{*}Du+2\mu K)^{*}(2N^{-1}\alpha^{*}Du+2\mu K)ds}]=1$ ,
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with

$K=\frac{1}{2(1-\mu)}\Sigma^{*}(\Sigma\Sigma^{*})^{-1}(\overline{g}-\tilde{r}1)$

$\hat{h}_{t}\in A_{T}$ is an optimal strategy for the portfolio optimization problem of
maximizing the criterion (1.5).

The proof of this theorem is similar to that of Proposition 2.1 in [23]
and we omit it here.

We then consider equation (2.11). Such kinds of equations have been
studied in [20], or [3] in relation to risk-sensitive control problems under
more general settings in the case of $\mu<0$ and in [4] in the case where
$\mu>0$ . Here we consider the case where $\mu<0$ and obtain the following
result along the line [3], Theorem 5.1 with refinement on estimate (2.16).
It is a generalization of Theorem 2.1 in [23].

Theorem 2.2. $i$) $If_{f}$ in addition to (2.13), $\mu<0$ and

(2.15) $\iota/_{r}|\xi|^{2}\leq\xi^{*}\alpha\alpha^{*}(z)\xi\leq\nu_{r}^{/}|\xi|^{2}$ , $r=|z|$ , $lJ_{r}$ , $lJ_{r}^{J}>0$ ,

then we have a solution of (2.11) such that

$u$ , $\frac{\partial u}{\partial t}$ , $D_{k}u$ , $D_{kj}u\in L^{p}(0, T;L_{loc}^{p}(R^{n+m}))$ ,

$\frac{\partial^{2}u}{\partial t^{2}}$ , $\frac{\partial D_{k}u}{\partial t}$ , $\frac{\partial D_{k}u}{\partial t}$ , $D_{kjl}u\in L^{p}(0, T;L_{loc}^{p}(R^{n+m}))$ ,

$u\geq\log v$ , $\frac{\partial u}{\partial t}\leq 0$ .

$ 1<\forall p<\infty$

Furthermore we have the estimate

$|\nabla u|^{2}(t, z)-\frac{c_{0}}{\nu_{r}}\frac{\partial u}{\partial t}(t, z)\leq c_{r}(|\nabla Q|_{2r}^{2}+|Q|_{2r}^{2}$

(2.16)
$+|\nabla(\alpha\alpha^{*})|_{2r}^{2}+|\nabla\beta_{\mu}|_{2r}+|\beta_{\mu}|_{2r}^{2}$

$+|U|_{2r}+|\nabla U|_{2r}^{2}+1)$ , $z\in B_{r}$ , $t\in[0, T)$

where
$Q=\alpha N^{-1}\alpha^{*}$ , $c_{0}=\frac{4(1+c)(1-\mu)}{-\mu}$ , $c>0$

$|\cdot|_{2r}=||\cdot||_{L^{\infty}(B_{2r})}$
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and $c_{r}$ is a positive constant depending on $n$ , $r$ , $\nu_{r}$ , $\nu_{r}^{/}$ and $c$ .

$ii)$ If, in addition to the above conditions,

$\inf_{|z|\geq r}U(z)$ , $r^{2}\frac{1}{\nu_{r}^{/}}\inf_{|z|\geq r}U(z)$ ,
$ r\inf\underline{U(z)}\rightarrow\infty$

$|z|\geq r|\beta_{\mu}(z)|$

as $ r\rightarrow\infty$ , then the above solution $u$ satisfies

$\inf$ $ u(z, t)\rightarrow\infty$ , as $ r\rightarrow\infty$ .
$|z|\geq r,t\in(0,T)$

Moreover, there exists at most one such solution in $L^{\infty}(0, T;W_{loc}^{1,\infty}(R^{n+m}))$

Remark. If

(2.17)
$\underline{1}$

, $\nu_{r}^{/}\leq M(1+r^{m})$ , $\exists m>0$ ,
$\nu_{r}$

then we have
$c_{r}\leq M^{/}(1+r^{m’})$ , $\exists m’$

in estimete (2.16). In particular, if $m=0$ , then $c_{r}$ can be taken inde-
pendent of $r$ .

Corollary 2.1. Condition (2.14) is valid if

$c_{1}|\xi|^{2}\leq\xi^{*}\alpha\alpha^{*}(x)\xi\leq c_{2}|\xi|^{2}$ , $c_{1}$ , $c_{2}>0$
(2.18)

$B$ , $F$, $\Lambda$ , $\Sigma$ are globally Lipshitz.

The proofs of Theorem 2.2 and Corollary 2.1 are similar to those
of Theorem 2.1 and Proposition 2.1 (ii) in [23] and we omit them here.
Instead, we illustrate an example.

Example (Generalized linear Gaussian factor model)
Let us consider the case where $B,\tilde{g}$ , and $\tilde{r}$ are all linear functions

of $z$ and $\Lambda$ and $\Sigma$ are constant matrices, namely

$\beta(z)=\left(\begin{array}{l}B(x,y)\\F(x,y)\end{array}\right)$ $=(A_{1}x+A_{2}y+a-\frac{1}{2}\overline{(\Sigma\Sigma*)}B_{1}x+B_{2}y+b)$

$\overline{g}(x, y)=A_{1}x+A_{2}y+a$ , $\tilde{r}(x, y)=R_{1}^{*}x+R_{2}^{*}y+r$ ,
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where $\overline{(\Sigma\Sigma^{*})}=((\Sigma\Sigma^{*})^{ii})\in R^{m}$ . Then

$\hat{\beta}_{\mu}(z)$ $=$ $\beta(z)+\frac{\mu}{1-\mu}(\Lambda\Sigma^{*}(\Sigma\sum_{\tilde{g}}*)^{-1}(\tilde{g}-r1)-r1)$

$=$ $K_{1}z+L_{1}$

where

$K_{1}=$

$(^{B_{1}}+\frac{\mu}{1-}\Sigma*(\sum_{-\frac{\mu 1\Lambda}{1-\mu}A_{1_{\overline{1}-\overline{\mu}}}^{A}1R_{1}^{*}}\Sigma*)^{-1}(A_{1}-1R_{1}^{*})B_{2}+\frac{\mu}{1-}\Sigma*(\sum_{-\frac{\mu 1\Lambda}{1-\mu}A_{2_{\overline{1}-\overline{\mu}}}^{\lrcorner i}1R_{2}^{*}}\Sigma*)^{-1}(A_{2}-1R_{2}^{*}))$

$L_{1}=(b+\frac{\mu}{1\mu\frac{-1}{2}}(\sum_{+a-\frac{\Lambda\Sigma^{*}}{(\Sigma\Sigma^{*})}}\Sigma*)^{-1}(a-r1)\overline{1}-A\overline{\mu}(a-r1))$ .

Furthermore

$\alpha N^{-1}\alpha^{*}=\frac{\mu}{2}$ ( $\Lambda(I+\frac{\mu}{1-}(\sum_{\Sigma\frac{\mu\sum_{1}*}{1-\mu}\Lambda^{*}}\Sigma*)^{-1}\Sigma)\Lambda^{*}$ $\frac{\frac{1}{1-1\mu}}{1-\mu}\Sigma\Sigma^{*}\Lambda\Sigma*)\equiv\frac{1}{2}K_{0}$ ,

$U(z)=\frac{1}{2}z^{*}K_{2}z+L_{2}z+r+\frac{1}{2(1-\mu)}(a-r1)^{*}(\Sigma\Sigma^{*})^{-1}$ (a-rl),

where

$K_{2}=$

$\frac{1}{1-\mu}(_{(A_{2}-1R_{2}^{*})^{*}}^{(A_{1}-1R_{1}^{*})^{*}(\Sigma\sum_{*})^{-1}(A_{1}-1R_{1}^{*})}(\Sigma\Sigma*)^{-1}(A_{1}-1R_{1}^{*})(A_{2}-1R_{2}^{*})^{*}(A_{1}-1R_{1}^{*})^{*}(\sum_{(\Sigma}\sum_{\Sigma^{*}}*)^{-1}(A_{2}-1R_{2}^{*}))^{-1}(A_{2}-1R_{2}^{*}))$

and

$L_{2}=\frac{1}{1-\mu}((A_{2}(A_{1}--1R_{2}^{*})^{*}()^{-1}(a1R_{1}^{*})^{*}(\sum_{\Sigma}\sum_{\Sigma^{*}}*)^{-1}(a--r1)r1))$ .

In this case the solution to (2.11) has an explicit form such that

$u(t, z)=\frac{1}{2}z^{*}P(t)z+q(t)^{*}z+k(t)$ ,

provided that equation (2.19) below has a solution. Here $P(t)$ , $q(t)$ and
$k(t)$ are the solutions to the following ordinary differential equations:

(2.19) $\dot{P}(t)+K_{1}^{*}P(t)+P(t)K_{1}+P(t)K_{0}P(t)+K_{2}=0$ , $P(T)=0$ ,

(2.20)

$\dot{q}(t)+K_{1}q(t)+P(t)L_{1}+P(t)K_{0}q(t)+$ $\left(\begin{array}{l}R_{1}\\R_{2}\end{array}\right)$ $+L_{2}=0$ , $q(T)=0$
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and
(2.21)

$\dot{k}(t)+\frac{1}{2}tr(\alpha\alpha^{*}P(t))+L_{1}^{*}q(t)+r+\frac{1}{2(1-\mu)}(a-r1)^{*}(\Sigma\Sigma^{*})^{-1}$ (a-rl) $=0$ ,

$k(T)=\log v$ .

Note that if $\mu<0$ , then (2.19) has a unique solution and so do (2.20)
and (2.21).

\S 3. Partial information case

Now we consider a partial information case. Namely, the case where
portfolio strategies are selected by using only past information of secu-
rity prices. In this case the economic factor process $X_{t}$ is considered
unobservable and so we cannot use the information about it to choose
our strategies. Thus the factor process $X_{t}$ defined before by (2.2) may be
reformulated as the solution with the initial condition $X_{0}=x_{0}$ , where
$x_{0}$ is a random variable having a disrtibution density $\pi(x)$ on $R^{n}$ . We
then introduce

$\tilde{\mathcal{G}}_{t}=\sigma(S(u);u\leq t)$

and the admissible strategies are assumed to be $\tilde{\mathcal{G}}_{t}$ measurable. In this
case we consider more specific one than the above, namely we assume
(2.18) and that $\sigma(x, S)=\sigma(S)$ .

Then we consider the problem maximising the criterion (1.5) by

selecting portfolio stratgies which are $\tilde{\mathcal{G}}_{t}$ measurable.
Let us set

(3.1) $I(v;h;T)=E[e^{\mu\log V_{T}(h)}]$ ,

and reformulate the problem as the one of partially observable stochastic
control. Recall that $Y_{t}$ is a solution of

$(2.1)^{/}$ $dY_{t}=F(X_{t}, Y_{t})dt+X(Yt)dWt$ ,

in the present case and we regard it as the SDE defining the observation
process. On the other hand, $X_{t}$ defined by (2.2) with the initial condition
$X_{0}=x_{0}$ is regarded as a system process. System noise $\Lambda(X_{t}, Y_{t})dW_{t}$

and observation noise $\Sigma(Y_{t})dW_{t}$ are correlated in general. $\sigma(Y_{u}$ , ; $ u\leq$

$t)=\sigma(S(u);u\leq t)$ holds since $\log$ is a strictly increasing function, so our
problem is to minimize (or maximize) the criterion (3.1) while looking at

the observation process $Y_{t}$ and choosing a $\sigma(Y_{u}, ; u\leq t)=\tilde{\mathcal{G}}_{t}$ measurable
strategy $h(t)$ . Though there is no control in SDE (2.2) defining the
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system process $X_{t}$ the criterion $I(v;h;T)$ is defined as a functional of the
strategy $h(t)$ measurable with respect to observation and the problem is
the one of stochstic control with partial observation.

In what follows we consider the case where $F(x, y)=F(x)$ , $\Sigma(y)=$

$\Sigma\equiv$ constant, $B(x, y)=B(x)$ , $\Lambda(x, y)=\Lambda(x)$ , $\tilde{r}(x, y)=r(x)$ for
simplicity. Similar arguments are possible for general case as long as $\Sigma$

does not depend on $x$ . Now let us introduce a new probability measure
$\hat{P}$ on $(\Omega, F)$ defined by

$\frac{d\hat{P}}{dP}|_{F_{T}}=\rho_{T}$ ,

where

$\rho_{t}=\exp\{-\int_{0}^{t}F(X_{s})^{*}(\Sigma\Sigma^{*})^{-1}\Sigma dW_{s}$

(3.2)
$-\frac{1}{2}\int_{0}^{t}F(X_{s})^{*}(\Sigma\Sigma^{*})^{-1}F(X_{s})ds\}$ .

We see that $\hat{P}$ is a probability measure since it can be seen by stan-
dard arguments (cf. [1]) that $\rho_{t}$ is a martingale and $E[\rho\tau]=1$ under
assumption (2.18). Moreover, according to Girsanov theorem,

(3.3) $\hat{W}_{t}=W_{t}+\int_{0}^{t}\Sigma^{*}(\Sigma\Sigma^{*})^{-1}F(X_{s})ds$

turns out to be a standard Brownian motion process under the proba-

bility measure $\hat{P}$ and we have

(3.4) $dY_{t}=\Sigma d\hat{W}_{t}$

(3.5) $dX_{t}=\{B(X_{t})-\Lambda(X_{t})\Sigma^{*}(\Sigma\Sigma^{*})^{-1}F(X_{t})\}dt+\Lambda(X_{t})d\hat{W}_{t}$ .

We rewrite our criterion $I(v;h;T)$ by new probability measure $\hat{P}$ .

(3.3) $I(v;h;T)=v^{\mu}\hat{E}$ [ $ E\wedge$ [exp{ $-\mu\int_{0}^{T}\eta(X_{s},$ $h_{s})ds\}\Psi_{T}|\tilde{\mathcal{G}}_{t}]$ ],

where

$\Psi_{t}=\exp\{\int_{0}^{t}Q(X_{s}, h_{s})^{*}dY_{s}-\frac{1}{2}\int_{0}^{t}Q(X_{s}, h_{s})^{*}(\Sigma\Sigma^{*})Q(X_{s}, h_{s})ds\}$

and
$Q(x, h)^{*}$ $=$ $(\Sigma\Sigma^{*})^{-1}F(x)+\mu h$

$=$ $(\Sigma\Sigma^{*})^{-1}\{F(x)+\mu(\Sigma\Sigma^{*})h\}$ .
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Set

(3.7) $q^{h}(t)(\varphi(t))=\hat{E}$ [exp{ $-\mu\int_{0}^{t}\eta(X_{s},$ $h_{s}))ds\}\Psi_{t}\varphi(t$ , $X_{t})|\mathcal{G}_{t}$ ].

Then (3.6) reads

(3.8) $I(v;h;T)=v^{\mu}\hat{E}[q^{h}(T)(1)]$

Hence, if $\mu<0$ (resp. $1>\mu>0$ ) our problem is reduced to minimize
(resp. maximize) I of (3.8) when taking $h$ over $H(T)$ . Let us set

(3.8) $ L\varphi=\frac{1}{2}(\Lambda\Lambda^{*})^{ij}(x)D_{ij}\varphi+B(x)^{i}D_{i}\varphi$ .

Here and in what follows we utilize summation convention. Then, we can
see that $q^{h}(t)$ satisfies a so called modified Zakai equation in a similar
way to deducing Zakai equations as for conditional expectations of dif-
fusion processes with respect to unnormalized conditional probabilities
(cf. [2], [13], [21]). We actually have the following proposition.

Proposition 3.1. Assume (2.18), Then $q(t)(\varphi(t))\equiv q^{h}(t)(\varphi(t))$ sat-

isfies the following stochastic partial differential equation (SPDE):
(3.10)

$q(t)(\varphi(t))=q(0)(\varphi(0))+\int_{0}^{t}q(s)(\frac{\partial\varphi}{\partial t}(s, \cdot)+L\varphi(s, \cdot)+\mu h_{s}^{*}\Sigma\Lambda^{*}(\cdot)D\varphi(s, \cdot)$

$-\mu\eta_{s}(\cdot)\varphi(s, \cdot))ds+\int_{0}^{t}q(s)(\varphi(s, \cdot)Q(\cdot, h_{s}))dY_{s}$

$+\int_{0}^{t}q(s)((D\varphi)^{*}(s, \cdot)\Lambda(\cdot)\Sigma^{*}(\Sigma\Sigma^{*})^{-1})dY_{s}$ ,

where $\eta_{s}(\cdot)=\eta(\cdot, h_{s}))$ .

Let us introduce some notations and describe a strong form of
stochstic partial differential equation (3.10). Set

$L^{0}\varphi=\frac{1}{2}D_{i}(\Lambda\Lambda^{*}(x)^{ij}D_{j}\varphi)$ ,

$\tilde{B}(x)^{i}=B(x)^{i}-\frac{1}{2}D_{j}(\Lambda\Lambda^{*})^{ji}$ .

Then $ L\varphi=L^{0}\varphi+\tilde{B}(x)^{*}D\varphi$ and its formal adjoint $L^{*}$ is written as

$L^{*}\varphi=L^{0}\varphi-D_{i}(\tilde{B}(x)^{i}\phi)$ .

We set

$ G(h)\varphi=-D_{i}(\tilde{B}^{i}(\cdot)\varphi)-\mu h_{s}^{i}D_{j}((\Sigma\Lambda^{*})^{ij}\varphi)-\mu\eta(\cdot, h_{s})\varphi$
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and
$M(h)_{j}\varphi=Q_{j}(\cdot, h_{s})\varphi-D_{i}([\Lambda\Sigma^{*}(\Sigma\Sigma^{*})^{-1}]_{j}^{i}\varphi)$

We define

$\mathcal{L}_{Y}^{2}(0, T;H^{1}(R^{n}))$ $=$ $\{v\in L^{2}(\Omega,$ $F,\hat{P};L^{2}(0, T;H^{1}(R^{n}))$ ,

$v(t)\in L^{2}(\Omega,\tilde{\mathcal{G}}_{t},\hat{P};H^{1}(R^{n}))a.e$ . $t$ }

Then we consider the following stochastic partial differential equation

which has a solution $q(t)$ such that $q_{t}e^{\delta\sqrt{1+|x|^{2}}}\in \mathcal{L}_{Y}([0, T];H^{1})$ .

(3.11) $dq_{t}=(L^{0}q_{t}+G(h)q_{t})dt+M(h)_{j}q_{t}dY_{t}^{j}$ .

Furthermore we assume

(3.12) $\Lambda$ , $ D\Lambda$ , $B$ , $DB$ , $F$, are bounded

and the set of admissible strategies $A_{T}$ is defined as the totality of $\tilde{\mathcal{G}}_{t}$

measurable strategy $h$ satisfying the condition i) of definition 2.1 and
$ h_{t}\in\Gamma$ , $\forall t$ for some convex compact $\Gamma\subset R^{m}$ . Take a positive constant
$\delta>0$ . Then we have the following theorem.

Proposition 3.2. Le us assume (2.18), (3.12), and $\pi e^{\delta\sqrt{1+|x|^{2}}}\in$

$H^{1}$ . Then for each addmissible strategy $h(3.11)$ has a unique solu-

tion $q_{t}=q(t, x)$ such that $q_{t}e^{\delta\sqrt{1+|x|^{2}}}\in \mathcal{L}_{Y}^{2}(0, T;H^{1}(R^{n}))\cap L^{2}(\Omega,$ $\mathcal{F},\hat{P}$ ;
$C(0, T;L^{2}(R^{n}))$ and that $ q_{0}=\pi$ . Furthermore we have $\int q(T,x)\psi(x)dx=$

$q(T)(\psi)$ for all bounded Borel function $\psi$ .

For the proof of this proposition we prepare the following lemma.

Lemma 3.1. Under assumption (2.18)

$\Lambda(I_{n+m}-\Sigma^{*}(\Sigma\Sigma^{*})^{-1}\Sigma)\Lambda^{*}\geq c_{1}I_{n}$

Proof. Note that

(3.11) $(\xi_{1}^{*}, \xi_{2}^{*})$ $\left(\begin{array}{ll}\Lambda\Lambda^{*} & \Lambda\Sigma^{*}\\\Sigma\Lambda^{*} & \Sigma\Sigma^{*}\end{array}\right)\left(\begin{array}{l}\xi_{1}\\\xi_{2}\end{array}\right)\geq c_{1}|\xi|^{2}$ , $\forall\xi=\left(\begin{array}{l}\xi_{1}\\\xi_{2}\end{array}\right)$ .

under assumtion (2.18). Therefore, setting $\zeta=-(\Sigma\Sigma^{*})^{-1}\Sigma\Lambda^{*}\xi_{1}$ for
$\xi_{1}\in R^{n}$ , we see that

$\xi_{1}^{*}\Lambda(I_{n+m}-\Sigma^{*}(\Sigma\Sigma^{*})^{-1}\Sigma)\Lambda^{*}\xi_{1}$

$=\xi_{1}^{*}\Lambda\Lambda^{*}\xi_{1}+\xi_{1}^{*}\Lambda\Sigma^{*}\zeta+\zeta\Sigma\Lambda^{*}\xi_{1}+\zeta\Sigma\Sigma^{*}\zeta$

$\geq c_{1}(|\xi_{1}|^{2}+|\zeta|^{2})\geq c_{1}|\xi_{1}|^{2}$



272 H. Nagai

$\square $

Proof of Proposition 3.2. Set $\tilde{q}_{t}=q_{t}e^{\delta\sqrt{1+|x|^{2}}}$ , $\delta>0$ and
$\nu(x)=\delta\sqrt{1+|x|^{2}}$ . Then (3.11) can be written as

(3.14) $d\tilde{q}_{t}=(L^{0}\overline{q}_{t}+\tilde{G}(h)\tilde{q}_{t})dt+\tilde{M}(h)_{j}\overline{q}_{t}dY_{t}^{j}$ ,

where

$\tilde{G}(h)\tilde{q}=G(h)\tilde{q}+(\Lambda\Lambda)^{ij}D_{j}\nu D_{i}\tilde{q}$

$+\{\frac{1}{2}D_{i}((\Lambda\Lambda)^{ij}D_{j}\nu)+\frac{1}{2}(\Lambda\Lambda^{*})^{ij}D_{i}\nu D_{j}\nu-(\tilde{B}^{i}D_{i}\nu+\mu h^{i}(\Sigma\Lambda^{*})^{ij}D_{j}\nu)\}\tilde{q}$ ,

$\tilde{M}(h)_{j}\overline{q}=\tilde{Q}_{j}\tilde{q}-D_{i}([\Lambda\Sigma^{*}(\Sigma\Sigma^{*})^{-1}]_{j}^{i}\tilde{q})$

and
$\tilde{Q}_{j}=Q_{j}-D_{i}\nu[\Lambda\Sigma^{*}(\Sigma\Sigma^{*})^{-1}]_{j}^{i}$ .

It suffices to check the coercivity condition for (3.14) because of general
theory of stochastic partial differential equarions ([2], [13], [25]):

$-2\langle L^{0}q, q\rangle-2\langle\tilde{G}(h)q, q\rangle+c_{1}||q||_{L^{2}}^{2}\geq c_{0}||q||_{H^{1}}^{2}+\langle\tilde{M}(h)_{j}q, (\Sigma\Sigma^{*})^{jk}\tilde{M}(h)_{k}q\rangle$

Indeed, setting $\hat{Q}_{j}=\tilde{Q}_{j}-D_{i}([\Lambda\Sigma^{*}(\Sigma\Sigma^{*})^{-1}]_{j}^{i})$ we see that

$-2\langle L^{0}q, q\rangle-\langle\tilde{M}(h)_{j}q, (\Sigma\Sigma^{*})^{jk}\tilde{M}(h)_{k}q\rangle$

$=\int(Dq)^{*}\Lambda\Lambda^{*}Dqdx-\int(Dq)^{*}\Lambda\Sigma^{*}(\Sigma\Sigma^{*})^{-1}\Sigma\Lambda^{*}Dqdx$

$-\int(\hat{Q}^{*}\Sigma\Sigma^{*}\hat{Q})q^{2}dx-2\int(Dq)^{*}\Lambda\Sigma^{*}\hat{Q}qdx$

$\geq\int(Dq)^{*}\Lambda(I-\Sigma^{*}(\Sigma\Sigma^{*})^{-1}\Sigma)\Lambda^{*}Dqdx-\int\hat{Q}(\Sigma\Sigma^{*})\hat{Q}q^{2}dx$

$-\epsilon\int|Dq|^{2}dx-\frac{1}{\epsilon}\int|\Lambda\Sigma^{*}\hat{Q}|^{2}q^{2}dx$

$\geq c_{2}\int|Dq|^{2}dx-\epsilon\int|Dq|^{2}dx-c_{3}\int|q|^{2}dx$

for some $c_{2}$ , $c_{3}>0$ and sufficiently small $\epsilon>0$ by using the above
lemma. Since

$|\langle\tilde{G}q, q\rangle|\leq\epsilon_{1}\int|Dq|^{2}dx+(\frac{c_{4}}{\epsilon_{1}}+c_{5})\int|q|^{2}dx$

we can easily see the coercivity condition holds for (3.14).
$\square $
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Lemma 3.2. Let us assume the assumptions of the above proposi-
tion and $h$ , $k$ be admissible strategies, then

(315) $\lim_{\theta\rightarrow 0}.\frac{I(v,h.+\theta k.,T)-I(v\ovalbox{\tt\small REJECT} h.\cdot T)}{\theta}.,=v^{\mu}\hat{E}[<\zeta_{T}(k), 1>]$ ,

where $\zeta_{t}=\zeta_{t}(k)$ is a solution of the following stochastic partial differ-
ential equation
(3.16)

$d\zeta_{t}=(L^{0}\zeta_{t}+G(h)\zeta_{t}+k_{t}^{i}G_{h^{i}}(h)q_{t})dt+(M(h)_{j}\zeta_{t}+k_{t}^{i}M_{h^{i}}(h)_{j}q_{t})dY_{t}^{j}$

$\zeta_{0}=0$ ,

where $q_{t}$ is a solution to (3.11),

$G_{h^{i}}(h)q$ $=$ $-\mu D_{j}((\Sigma\Lambda^{*})^{ij}q)-\mu\frac{\partial\eta}{\partial h^{i}}q$

$=$ $-\mu D_{j}((\Sigma\Lambda^{*})^{ij}q)-\mu[(1-\mu)(\Sigma\Sigma^{*}h)^{i}-(g-r1)^{i}]$

and
$M_{h^{i}}(h)_{j}q=\frac{\partial Q_{j}(\cdot,h)}{\partial h^{i}}q=\mu\delta_{ij}q$ .

Proof. Note that we can see that (3.14) has a unique solution such

that $q_{t}e^{\delta\sqrt{1+|x|^{2}}}\in \mathcal{L}_{Y}^{2}(0, T;H^{1}(R^{n}))\cap L^{2}(\Omega,$ $\mathcal{F},\hat{P};C(0, T;L^{2}(R^{n}))$ in a
similar way to the proof of the above proposition. Let us set

$\overline{q}_{\theta}(t)=\frac{q_{\theta}(t)-q(t)}{\theta}-\zeta$ ,

where $q_{\theta}(t)$ is the solution to :
(3.17)

$dq_{\theta}(t)=\{L^{0}q_{\theta}(t)+G(h+\theta k)q_{\theta}(t)\}dt+M(h+\theta k)_{j}q_{\theta}(t)dY_{t}^{j}$

$ q_{\theta}(0)=\pi$

We define in the same way as above

$\tilde{q}_{\theta}(t)=q_{\theta}(t)e^{\nu(x)}$ , $\tilde{\zeta}=\zeta e^{\nu(x)}$ .

Then in a similar way to $getting_{-}(3.14)$ , we have stochastic partial dif-

ferential equations for $\tilde{q}_{\theta}(t)$ and $\zeta$ . We set

$q_{\theta}(\simeq t)=\frac{\tilde{q}_{\theta}(t)-\tilde{q}(t)}{\theta}-\tilde{\zeta}$ .

Then we can see that

$\sup_{0\leq t\leq T}E[||q_{\theta}(\simeq t)||_{L^{2}}^{2}]\rightarrow 0$
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as $\theta\rightarrow 0$ by using the energy equality for $q_{\theta}(\simeq t)$ . Since

$.\frac{I(v,h.+\theta k.,T)-I(v,h.,T)}{\theta}...-v^{\mu}\hat{E}[\langle\zeta_{T}, 1\rangle]=v^{\mu}\hat{E}[\langle q_{\theta}(\simeq T), e^{-\nu(x)}\rangle]$

we obtain the present proposition.

$\square $

Let us introduce the following backward stochastic partial differen-
tial equation.

$-d\gamma_{t}$ $=$ $(L^{0}\gamma_{t}+\hat{G}(h)\gamma_{t}+\hat{M}(h)R_{t})dt-R_{t}^{*}(\Sigma\Sigma^{*})^{-1}dY_{t}$

(3.18)
$\gamma_{T}$ $=$ 1

where

$\hat{G}(h)\varphi=\tilde{B}^{*}D_{\varphi}+\mu h^{*}\Sigma\Lambda^{*}D\varphi-\mu\eta(\cdot, h)\varphi$

$\hat{M}(h)R=R^{j}Q_{j}(\cdot, h)+[\Lambda\Sigma^{*}(\Sigma\Sigma^{*})^{-1}]_{j}^{i}D_{i}R^{j}$ .

Set

$\check{\gamma}_{t}=e^{-\nu(x)}\gamma_{t}$ , $\check{R}_{t}=e^{-\nu(x)}R_{t}$ .

Then we have the following backward SPDE

$-d\check{\gamma}_{t}$ $=$ $(L^{0}\check{\gamma}_{t}+\check{G}(h)\check{\gamma}_{t}+\check{M}(h)\check{R}_{t})dt-\check{R}_{t}^{*}(\Sigma\Sigma^{*})^{-1}dY_{t}$

(3.19)
$\check{\gamma}_{T}$ $=$

$e^{-\nu(x)}$ ,

where

$\check{G}(h)\varphi=\{(D\nu)^{*}\Lambda\Lambda^{*}+\tilde{B}^{*}+\mu h^{*}\Sigma\Lambda^{*}\}D\varphi$

$+\{L^{0}\nu+\frac{1}{2}(D\nu)^{*}\Lambda\Lambda^{*}D\nu+(\tilde{B}^{*}+\mu h^{*}\Sigma\Lambda^{*})D\nu-\mu\eta(\cdot, h)\}\varphi$

$\equiv G_{1}^{*}D\varphi+G_{2}\varphi$

and

$\check{M}(h)U=\sum_{i,j}[\Lambda\Sigma^{*}(\Sigma\Sigma^{*})^{-1}]_{j}^{i}D_{i}U^{j}$

$+\sum_{j}\{Q_{j}(\cdot, h)+\sum_{i}[\Lambda\Sigma^{*}(\Sigma\Sigma^{*})^{-1}]_{j}^{i}D_{i}\nu\}U^{j}$

$\equiv\sum_{i,j}(M_{1})_{j}^{i}D_{i}U^{j}+\sum_{j}(M_{2})_{j}U^{j}$ .
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Let $\check{\gamma}_{t}$ be a solution to (3.19) with the terminal condition $\check{\gamma}_{T}=0$ and
set $(M_{2}^{J})_{j}=(M_{2})_{j}+D_{j}(G_{1})^{j}$ . We have by It\^o’s formula
(3.20)

$\hat{E}[||\check{\gamma}_{t}||_{L^{2}}^{2}]$

$=\hat{E}[\int_{t}^{T}\{2\langle L^{0}\check{\gamma}_{s}+\check{G}(h)\check{\gamma}_{s}+\check{M}(h)\check{R}_{s},\check{\gamma}_{s}\rangle-(\check{R}_{s}, (\Sigma\Sigma^{*})^{-1}\check{R}_{s})\}ds]$

$=\hat{E}[\int_{t}^{T}\int\{-(D\check{\gamma}_{s})^{*}\Lambda\Lambda^{*}D\check{\gamma}_{s}+G_{1}^{*}D(\check{\gamma}_{s}^{2})+2G_{2\check{\gamma}_{s}}^{2}$

$+2(M_{2}^{J})_{j}\check{R}_{s}^{j}\check{\gamma}_{s}-2\check{R}_{s}^{j}(M_{1})_{j}^{i}D_{i}\check{\gamma}_{s}-\check{R}_{s}^{*}(\Sigma\Sigma^{*})^{-1}\check{R}_{s}\}dxds$

$=\hat{E}[\int_{t}^{T}\int\{-(D\check{\gamma}_{s})\Lambda(I-\Sigma^{*}(\Sigma\Sigma^{*})^{-1}\Sigma)\Lambda^{*}D\check{\gamma}_{s}$

$-[(\Sigma\Sigma^{*})^{-1}\check{R}_{s}+M_{1}^{*}D\check{\gamma}_{s}-(M_{2}^{J})^{*}\gamma_{s}]^{*}(\Sigma\Sigma^{*})[(\Sigma\Sigma^{*})^{-1}\check{R}_{s}$

$+M_{1}^{*}D\check{\gamma}_{s}-(M_{2}’)^{*}\gamma_{s}]$

$+[M_{2}^{/}\Sigma\Sigma^{*}(M_{2}^{J})^{*}+2G_{2}-\sum_{j}D_{j}(G_{1}+M_{1}\Sigma\Sigma^{*}(M_{2}’)^{*})^{j}]\check{\gamma}_{s}^{2}\}dxds$

$\leq C\int_{t}^{T}\hat{E}[||\check{\gamma}_{s}||_{L^{2}}^{2}]ds$

for some constant $C>0$ . By using (3.20) we can obtain the following
lemma.

Lemma 3.3. Under the assumptions of Proposition 3.2 the solu-

tion $(\gamma_{t}, R_{t})$ to (3.18) such that $ e^{-\delta\sqrt{1+|x|^{2}}}\gamma_{t}\in \mathcal{L}_{Y}^{2}(0, T;H^{1}(R^{n}))\cap$

$L^{2}(\Omega,$ $\mathcal{F},\hat{P};C(0, T;L^{2}(R^{n}))$ and $ e^{-\delta\sqrt{1+|x|^{2}}}R^{i}\in \mathcal{L}_{Y}^{2}(0, T;H^{1}(R^{n}))\cap$

$L^{2}(\Omega,$ $F,\hat{P};C(0, T;L^{2}(R^{n}))$ , $i=1,2$ , $\ldots$ , $m$ is unique.

We can also see the existence of the solution to (3.18) in a similar
way to Theorem 8.2.3 [2] through aproximation procedure, or directly
thanks to Chapter 5, Theorem 2.2 in [16].

Lemma 3.4. Under the assumptions of Proposition 3. 2

$\hat{E}[<\zeta_{T}, 1>]=\hat{E}[\int_{0}^{T}\{\langle\gamma_{t}, k_{t}^{i}G_{h^{i}}(h)q_{t}>+<R_{t}^{j}, k_{t}^{i}M_{h^{i}}(h)_{j}q_{t}>\}dt]$ .

Proof. From (3.16) and (3.18) we obtain

$d\langle\zeta_{t}, \gamma_{t}\rangle=\{\langle k_{t}^{i}G_{h^{i}}(h)q_{t}, \gamma_{t}\rangle+\langle k_{t}^{i}M_{h^{i}}(h)_{j}q_{t}, R_{t}^{j}\rangle\}dt$

$+\{\langle M(h)_{j}\zeta_{t}, \gamma_{t}\rangle+\langle k_{t}^{i}M_{h^{i}}(h)_{j}q_{t}, \gamma_{t}\rangle+\langle M(h)_{j}\zeta_{t}, \gamma_{t}\rangle\}dY_{t}^{j}$

and we have the present lemma.
$\square $
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Finally we have the following theorem

Theorem 3.1. We assume the assumptions of Proposition 3.2. If
$h$ is optimal, then it satisfies
(3.21)

$(k-h_{t})^{*}\{-(1-\mu)(\Sigma\Sigma^{*})h_{t}<\gamma_{t}$ , $q_{t}>+<\Sigma\Lambda^{*}D\gamma_{t}$ , $q_{t})>$

$+<(g-r1)\gamma_{t}$ , $q_{t}>+<R_{t}$ , $q_{t}>\}\leq 0$ ,

$a.e$ . $ta.s$ . $\forall k\in\Gamma$ .

Proof. Let $h_{t}$ , $k_{t}$ be admissible atrategies and $h_{t}$ is an optimal one.
Since $\Gamma$ is convex $ h+\theta(k-h)=(1-\theta)h+\theta k\in\Gamma$ , for $h$ , $ k\in\Gamma$ . Thus
we have

$I(v;h. ; T)\geq I(v;h. +\theta(k. -h.);T)$ , $0\leq\forall\theta\leq 1$

if $\mu>0$ . Therefore, because of Lemma 3.2

$\hat{E}[\langle\zeta_{T}(k-h), 1\rangle]\leq 0$ ,

which implies that

(3.22) $\hat{E}[\int_{0}^{T}\{\langle\gamma_{t}, (k_{t}^{i}-h_{t}^{i})G_{h^{i}}(h)q_{t}\rangle+\langle R_{t}^{j}, (k_{t}^{i}-h_{t}^{i})M_{h^{i}}(h)_{j}q_{t}\rangle\}dt]\leq 0$

for all admissible strategy $k_{t}$ by Lemma 3.4. Set

$(U_{t})_{i}=\langle\gamma_{t}, G_{h^{i}}(h)q_{t}\rangle+\langle R_{t}^{j}, M_{h^{i}}(h)_{j}q_{t}\rangle$ .

For each $t_{0}\in[0, T]$ , $\epsilon>0$ , $M>0$ and $\tilde{G}_{t_{0}}$ measurable random variable
$k_{t_{0}}$ , we define

$k_{t}=\{$
$kt_{0}1\{|U_{t}|\leq M\}+h_{t}1_{\{|U_{t}|>M\}}$ , $ t_{0}\leq t\leq t_{0}+\epsilon$

$h_{t}$ , $t\in[t_{0}, t_{0}+\epsilon]^{c}$ .

Then, through limiting procedure as $\epsilon\rightarrow 0$ and $M$ $\rightarrow\infty$ after multilying
(3.22) by $\frac{1}{\epsilon}$ , we see that

$\hat{E}[(k_{t_{0}}-h_{t_{0}})^{i}(U_{t_{0}})_{i}]\leq 0$

for each $t_{0}$ and $\tilde{G}_{t_{0}}$ measurable random variable $k_{t_{O}}$ , which implies that

$(k-h_{t})^{i}\{\langle\gamma_{t}, G_{h^{i}}(h)q_{t}\rangle+\langle R_{t}^{j}, M_{h^{i}}(h)_{j}q\rangle\}\leq 0$ $a.e$ . $ta.s$ .
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for each $ k\in\Gamma$ . Hence
(3.23)

$\mu(k-h_{t})^{*}\{-(1-\mu)(\Sigma\Sigma^{*})h_{t}<\gamma_{t}$ , $q_{t}>+<\Sigma\Lambda^{*}D\gamma_{t}$ , $q_{t})>$

$+<(g-r1)\gamma_{t}$ , $q_{t}>+<R_{t}$ , $q_{t}>\}\leq 0$ .

Since $\mu>0$ we have (3.21).
If $\mu<0$ we obtain the converse inquality of (3.23) and we conclude

the present theorem.

$\square $
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An Approximation for Exponential Hedging

Jun Sekine

Abstract.

An optimization problem in mathematical finance, called the
exponential hedging problem is addressed. First, the relations be-
tween the problem and the backward stochastic differential equation
(abbreviated to BSDE) having a quadratic growth term in the drift
are reviewed. Next, the asymptotic analysis by Davis (2000) for the
problem and the motivation of this paper are stated. Further, with
some extensions, his analysis is reinterpreted by using the asymptotic
expansion of the BSDE with respect to a small parameter, which sug-
gests an alternative approach to the analysis, and the result on an
approximated optimizer is obtained.

\S 1. Introduction

In [7], Rouge and El Karoui treated the following optimization prob-
lem of mathematical finance. For a fixed $T>0$ , let $S:=(S_{t})_{t\in[0,T]}$ ,
$S_{t}:=(S_{t}^{1}, \ldots S_{t}^{n})^{/}$ be the price process of $n$-risky assets defined by the
stochastic differential equation:

$dS_{t}$ $=$ $diag(S_{t})(\sigma_{t}dw_{t}+\mu_{t}dt)$ , $S_{0}\in R_{+}^{n}$ ,

diag $(S_{t})$ $:=$ $\left(\begin{array}{llll}S_{t}^{1} & 0 & \cdots & 0\\0 & S_{t}^{2} & \cdots & 0\\0 & 0 & \cdots & 0\\0 & 0 & \cdots & S_{t}^{n}\end{array}\right)$

on the probability space $(\Omega, F, P)$ with a $d(\geq n)$ -dimensional Brownian
motion $w$ $:=(w_{t})_{t\in[0,T]}$ on it and the augmented Brownian filtration

$(F_{t})_{t\in[0,T]}$ . Here, $\sigma$ is an $n\times d$-matrix-valued left-continuous adapted

process such that $\sigma\sigma’\in L^{\infty}([0, T]\times\Omega, R^{n\times n})$ and that $\sigma_{t}\sigma_{t}^{/}$ is invertible
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for all $t$ $\in[0, T]$ ( $(\cdot)^{/}$ denotes the transpose of a matrix or a vector), $\mu$

is an $n$-dimensional predictable process, and $\lambda$ $:=\sigma^{/}(\sigma\sigma’)^{-1}(\mu-r1)$ is
an element of $L^{\infty}([0, T]\times\Omega, R^{d})$ , where $r(>0)$ is the constant interest
rate and 1 $:=(1, \ldots, 1)^{/}\in R^{n}$ . On the other hand, let $F\in L^{\infty}(\Omega, F_{T})$

be the payoff of a derivative security maturing at time $T$ and consider
a seller of the derivative security, who trades the assets continuously
in self-financing way on the time-interval $[0, T]$ to control the terminal
wealth. The value process of the self-financing portfolio is given by

$dX_{t}^{x,\pi}=\pi_{t}^{/}(diag(S_{t}))^{-1}dS_{t}+(X_{t}^{x,\pi}-\pi_{t}’1)rdt$ , $X_{0}^{x,\pi}=x$ ,

or equivalently,

$X_{t}^{x,\pi}:=e^{rt}\{x+\int_{0}^{t}\pi_{u}^{/}\sigma_{u}(dw_{t}+\lambda_{t}dt)\}$

where $x$ is the initial capital and an $n$-dimensional predictable process $\pi$

is the asset holding strategy. To optimize the terminal wealth $-F+X_{T}^{x,\pi}$

of the seller, the utility maximization problem (called the exponential
hedging problem in this paper, following Delbaen et. $a1$ ; 2002, [2] $)$

(P) $V(x):=\sup_{\pi\in A}E[U_{\gamma}(-F+X_{T}^{x,\pi})]$

with respect to the exponential utility function:

$U_{\gamma}(x):=-\frac{e^{-\gamma x}}{\gamma}$ , $(\gamma>0)$

over an appropriately chosen space $A$ of admissible strategies is consid-
ered.

The importance of this problem is, ffom a viewpoint of mathematical
finance, that it relates to the pricing and hedging problems of derivative
securities in incomplete markets: the quantity called utility indifference
price,

(1) $p(x, F):=\inf_{y\in R}\{V(x+y)\geq\sup_{\pi\in A}E[U_{\gamma}(X_{T}^{x,\pi})]\}$ ,

is proposed as a coherent price of the derivative security in Davis (2000),
[1] and [7], and the optimizer of the problem (P) is focused and studied
to control (hedge) the “risk” of the seller in [1], [2] and [7].

Duality argument is well established for utility maximization (cf.,
Karatzas and Shreve; 1998, [5], for example) and is often used to attack
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this problem, as follows. For example, let us employ the space

$A_{2}:=\{\pi\in \mathcal{L}_{T}^{2,n}$ ; $\pi_{t}\in C$ for all $t$ $\in[0, T]$ , $E[\int_{0}^{T}|\pi_{t}|^{2}dt]<\infty\}$ ,

as the set of admissible strategies, $A$ , where $C\subset R^{n}$ is a fixed closed
convex cone and $\mathcal{L}_{T}^{2,n}$ is the totality of the $n$-dimensional predictable

processes $\pi$ on the time-interval $[0, T]$ such that $\int_{0}^{T}|\pi_{t}|^{2}dt<\infty$ , $a.s$ .

For $f$ , $x\in R$ , and $y>0$ , denote

$u_{\gamma}(x;y, f):=U_{\gamma}(-f+x)-yx$ and $I_{\gamma}(y):=(U_{\gamma}’)^{-1}(y)=-\frac{1}{\gamma}\log(y)$

to see the relation

$\sup_{x\in R}u_{\gamma}(x;y, f)=u_{\gamma}(f+I_{\gamma}(y);y, f)=-y(f-\frac{1+\log y}{\gamma})$ .

Define
$Z^{1/}:=\mathcal{E}(-(\lambda-\iota/)\cdot w)$ and $\overline{Z}_{t}^{\nu}:=e^{-rt}Z_{t}^{\nu}$ ,

where $\iota/is$ an element of

$D:=\{\iota/\in \mathcal{L}_{T}^{2,d}$ ; bounded and $\iota/_{t}\in\overline{(\sigma_{t}’C)}$ for all $t$ $\in[0, T]\}$

and $\overline{(\sigma_{t}^{J}C)}$ is the notation for the negative polar cone of $\sigma_{t}’C$ , i.e.,

$\overline{(\sigma_{t}^{/}C)}(\omega):=$ { $y\in R^{d};xy\leq 0$ for all $x\in\sigma_{t}^{J}(\omega)C$ }.

For $\pi\in A:=A_{2}$ and $\iota/\in D$ , observe that

$e^{-rt}X_{t}^{x,\pi}\leq x+\int_{0}^{t}\pi_{u}^{J}\sigma_{u}\{dw_{u}+(\lambda_{u}-\iota/_{u})du\}$

and that $Z^{\nu}\int\pi^{/}\sigma\{dw+(\lambda-\nu)du\}$ is a martingale since $E[\sup_{t\in[0,T]}|Z_{t}^{\nu}|^{2}]$

$<\infty$ and since

$ E[\sup_{t\in[0,T]}|\int_{0}^{t}\pi_{u}^{/}\sigma_{u}\{dw_{u}+(\lambda_{u}-\iota/_{u})du\}|^{2}]\leq C_{1}E[\int_{0}^{T}|\pi_{u}|^{2}du]<\infty$

ffom Doob’s inequality and the boundedness assumptions of $\sigma\sigma^{J}$ , $\lambda$ and
$lJ$ . Therefore, the relation

$E[\overline{Z}_{T}^{\mathfrak{l}J}X_{T}^{x,\pi}]\leq x$
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follows. Based on the relation, for $\pi\in A$ and $x\in R$ , $y>0$ , we observe
the inequalities

(2) $E[U_{\gamma}(-F+X_{T}^{x,\pi})]-yx$

$\leq$ $\inf_{\nu\in D}E[U_{\gamma}(-F+X_{T}^{x,\pi})-y\overline{Z}_{T}^{\nu}X_{T}^{x,\pi}]$

$\leq$
$\inf_{\nu\in D}\sup_{\pi\in A}E[u_{\gamma}$ ( $X_{T}^{x,\pi}$ ; $y\overline{Z}_{T}^{\nu}$ , $F$) $]$

$\leq$ $\inf_{\nu\in D}E[u_{\gamma}$ ( $F+I_{\gamma}(y\overline{Z}_{T}^{\nu});y\overline{Z}_{T}^{\nu}$ , $F$) $]$ .

The minimization problem

(D) $\hat{V}(y):=\inf_{\nu\in D}E[u_{\gamma}($ $F+I_{\gamma}(y\overline{Z}_{T}^{\nu})$ ; $y\overline{Z}_{T}^{\nu}$ , $F)]$

is called the dual problem of the primal problem (P), and the inequality

(3) $V(x)\leq\inf_{y>0}(\hat{V}(y)+yx)$

is deduced from (2). Indeed, the equality can be established in (3) (i.e.,
there is no “duality-gap”) and the following expression is obtained.

Theorem 1. (Theorem 2.1 of Rouge and $El$ Karoui, [7]) For $A:=$

$A_{2}$ , it holds that

(4) $V(x)=U_{\gamma}(e^{rT}x-\frac{1}{\gamma}\sup_{\nu\in D}\{E^{\nu}[\gamma F]-H(P^{\nu}|P)\})$ ,

where $E^{\nu}[\cdot]$ denotes the expectation with respect to the probability mea-
sure $P^{\nu}$ on $(\Omega, \mathcal{F}_{T})$ defined by

$\frac{dP^{\nu}}{dP}|_{F_{t}}:=Z_{t}^{\nu}$

and

$H(Q|P):=\{$
$E[\frac{dQ}{dP}\log\frac{dQ}{dP}]$ if $Q<<P$ ,

$+\infty$ otherwise

is the relative entropy of $Q$ with respect to $P$ .

Remark 1. The duality relations similar to (4) have been obtained
for more general semimartingale $S$ and for other choices of the set of
admissible strategies $A$ by Delbaen et. al. in [2]. Also, the work by
Kabanov and Strieker (2002), [4], should be referred.

For the computations of the value $V(x)$ and the optimizer, one can
solve the BSDE for the value process of the dual problem, described as
follows.
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Theorem 2 $\cdot$ (Theorem 4 $\cdot$ 1-2 of Rouge and $El$ Karoui, [7]) Denote
$Z_{t,T}^{\nu}:=Z_{T}^{\nu}/Z_{t}^{\nu}$ , $Z_{t,T}^{\nu}:=\overline{Z}_{T}^{\nu}/\overline{Z}_{t}^{\nu}$ , and $\tau:=T-t$ for $0\leq t\leq T$ . Let

$ess\inf_{\nu\in D}E[u_{\gamma}($ $F+I_{\gamma}(y\overline{Z}_{t,T}^{\nu});y\overline{Z}_{t,T}^{\nu}$ , $F)|F_{t}]$

$=$ $\frac{ye^{-r\tau}}{\gamma}\{-ess\sup_{\nu\in D}E^{\nu}[\gamma F-\log Z_{t,T}^{\nu}|F_{t}]+(1+\log y-r\tau)\}$

$=$ : $\frac{ye^{-r7^{-}}}{\gamma}\{-Y_{t}+(1+\log y-r\tau)\}$ .

There exists — $\in H_{T}^{2,d}:=\{f\in \mathcal{L}_{T}^{2,d};E[\int_{0}^{T}|f_{t}|^{2}dt]<\infty\}$ such that

$(Y,---)$ satisfies

(5) $dY_{t}$ $=$ $f(t, ---t)dt+---/tdw_{t}$ , $Y_{T}=\gamma F$,

where $f(t, \xi)$ $:=$ $\lambda_{t}’\Pi_{\sigma_{\acute{t}}C}(\xi+\lambda_{t})-\frac{1}{2}|\xi-\Pi_{\sigma_{t}C},(\xi+\lambda_{t})|^{2}$

and $\Pi_{\sigma_{t}’(\omega)C}$ : $R^{d}\ni x\mapsto\square _{\sigma_{t}’(\omega)C}x\in\sigma_{t}’(\omega)C(\subset R^{d})$ is the projection

operator onto the closed convex cone $\sigma_{t}’(\omega)C$ .
In particular, $\pi^{*}\in A_{2}$ satisfying

(6) $\sigma_{t}^{/}\pi_{t}^{*}:=\frac{e^{-rT}}{\gamma}\Pi_{\sigma_{t}C},(_{-t}^{-}-+\lambda_{t})$ for all $t$ $\in[0, T]$

is an optimizer of the primal problem (P) with $A:=A_{2}$ , and $\nu^{*}:=$

$(I -\Pi_{\sigma’C})(_{-}^{-}-+\lambda)$ attains the infimum of the dual problem (D). Further,

(7) $V(x)=U_{\gamma}(e^{rT}x-\frac{Y_{0}}{\gamma})$

holds.

Remark 2. The existence and the uniqueness of the solution $(Y^{ },---)$

of the quadratic BSDE (5) in the space $H_{T}^{\infty}\times H_{T}^{2,d}$ , where $H_{T}^{\infty}:=$

{ $f\in L^{\infty}$ ([0, $ T]\times\Omega$); predictable} is ensured by the work of Kobylanski
(2000), [6]. Further, utilizing the dynamic programming principle and
the comparison theorems between linear BSDEs and between quadratic
BSDEs in [6], the above theorem is established.

On the other hand, if the model has a Markovian structure, one can
solve a dynamic programming equation to compute the value, which is
suggested in Delbaen et $a1$ (2002), [2], and is employed and studied in
Davis (2000), [1], In particular, in [1], a special but a typical situation
is addressed, which can be stated as follows in our setting.
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(i) Let $d=n=2$ . $\sigma$ is the following constant matrix

(8) $\sigma:=(\sigma_{2}\sqrt{1-\epsilon^{2}}\sigma_{1}$ $\sigma_{2}\epsilon 0)$

with $\sigma_{1}$ , $\sigma_{2}>0$ , $\epsilon\in[-1,1]$ . $\mu=(\mu_{1}, \mu_{2})^{J}$ is also a constant
vector. Further, $\epsilon\neq 0$ , $\epsilon<<1$ is assumed, i.e., two assets $S^{1}$

and $S^{2}$ are closely correlated:

$\frac{d\langle S^{1},S^{2}\rangle}{\sqrt{d\langle S^{1}\rangle d\langle S^{2}\rangle}}=\sqrt{1-\epsilon^{2}}\approx 1$ .

(ii) $F:=h(S_{T}^{1})$ with continuous, piecewise linear $h$ : $R_{+}\mapsto R$

bounded ffom above.
(iii) The constraint of the asset-holding strategy $\pi$ is given by $\pi_{t}\in$

$C:=\{0\}\times R$ : only $S^{2}$ is tradable, and the derivative security
is written on the untradable asset $S^{1}$ .

Recall, in the situation, that the expressions

$\sigma^{/}C=\{kd_{\epsilon}; k\in R\}$ , $D=\{\eta d_{\epsilon}^{\perp};$ $\eta\in \mathcal{L}_{T}^{2,1}$ , $bounded\}$ ,

and

$\lambda^{\epsilon}:=\sigma^{-1}(\mu-r1)=\frac{1}{\epsilon\sigma_{1}\sigma_{2}}(-\sigma_{2}\sqrt{1-\epsilon^{2}}\epsilon\sigma_{2}$ $\sigma_{1}0)$ $\left(\begin{array}{l}\mu_{1}-r\\\mu_{2}-r\end{array}\right)$

hold, where we denote

$d_{\epsilon}:=(\sqrt{1-\epsilon^{2}}$ , $\epsilon$) and $d_{\epsilon}^{\perp}:=(\epsilon,$ $-\sqrt{1-\epsilon^{2}})’$

The dual problem is now, rewritten as

$\inf_{\nu\in D}E[(-y\overline{Z}_{T}^{\nu})\{h(S_{T}^{1})-\frac{1}{\gamma}(1+\log y+\log\overline{Z}_{T}^{\nu})\}]$

$=$ $\frac{ye^{-rT}}{\gamma}\{-\sup_{\nu\in D}E^{\nu}[\gamma h(S_{T}^{1})-\log Z_{T}^{\nu}]+(1+\log y-rT)\}$ .

Since

$\log Z_{T}^{\nu}=-\int_{0}^{T}(\lambda^{\epsilon}-\nu_{t})’dw_{t}^{\nu}+\frac{1}{2}\int_{0}^{T}|\lambda^{\epsilon}-\nu_{t}|^{2}dt$ ,

where $w^{\nu}:=(w_{1}^{\nu}, w_{2}^{\nu})^{/}$ , $w_{t}^{\nu}:=w_{t}+\int_{0}^{t}(\lambda^{\epsilon}-\nu_{u})du$ is a 2-dimensional
$P^{\nu}$ -Brownian motion, it is equivalent to solve the following:

$\sup_{\nu\in D}E^{\nu}[\gamma h(S_{T}^{1})-\frac{1}{2}\int_{0}^{T}|\lambda^{\epsilon}-\nu_{t}|^{2}dt]$ ,
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in which the process $S^{1}$ has the dynamics:

$dS_{t}^{1}$ $=$ $S_{t}^{1}[\sigma_{1}dw_{1}^{\nu}(t)+\{\mu_{1}-\sigma_{1}(\overline{\lambda}^{\epsilon}-\nu_{t}^{1})\}dt]$

$=$ $S_{t}^{1}\{\sigma_{1}dw_{1}^{\nu}(t)+(r-\epsilon\sigma_{1}\eta_{t})dt\}$ ,

where we denote $\nu$
$:=\eta d_{\epsilon}^{\perp}$ with some bounded predictable $\eta$ . For the

value function

$v^{\epsilon}(t, y):=ess\sup_{\nu\in D}E^{\nu}[\gamma h(S_{T}^{1})-\frac{1}{2}\int_{t}^{T}|\lambda^{\epsilon}-\nu_{t}|^{2}dt|S_{t}^{1}=y]$ ,

a dynamic-programming equation is derived and the existence of its
smooth solution is checked in the setting of [1]. Moreover, the following
expressions are obtained.

Theorem 3. (Theorem 6.1, 6.4 and 7.3 of Davis, [I])
1. An optimal strategy of the problem (P) is given by

$\pi_{t}^{*}$ $=$ $\frac{e^{-rT}}{\gamma}(\sigma^{/})^{-1}\Pi_{\sigma’C}\{$ $\left(\begin{array}{l}-\partial_{x}v^{\epsilon}(t,S_{t}^{1})S_{t}^{1}\sigma_{1}\\0\end{array}\right)$ $+\lambda_{t}^{\epsilon}\}$

$=$ $(\frac{e^{-rT}}{\gamma}\{\frac{\mu_{2}-r}{\sigma_{2}^{2}}-\sqrt{1-\epsilon^{2}}^{\sigma}\overline{\sigma}_{2}\perp\partial_{x}v^{\epsilon}(t, S_{t}^{1})S_{t}^{1}0\})$ .

2. For the utility indifference price defined by (1),

$p(x, F)=\frac{e^{-rT}}{\gamma}\{v^{\epsilon}(0, S_{0}^{1})+\frac{T}{2}(\frac{\mu_{2}-r}{\sigma_{2}})^{2}\}$

holds for any $x\in R$ .
3. As $\epsilon\downarrow 0$ , the value function has the expansion

(9) $v^{\epsilon}(t, y)$ $=$ $\gamma E[h(A_{T})|A_{t}=y]-\frac{T-t}{2}(\frac{\mu_{2}-r}{\sigma_{2}})^{2}$

$+\epsilon^{2}\frac{\gamma^{2}}{2}Var[h(A_{T})|A_{t}=y]+O(\epsilon^{4})$ ,

where $Var[*|\cdot]:=E[(*)^{2}|\cdot]-(E[*|\cdot])^{2}$ , $O(\epsilon^{4})$ depends on the value $(t, y)$ ,
and the process $A$ is defined by

$dA_{t}=A_{t}[\sigma_{1}dw_{1}(t)+\{\mu_{1}-\sqrt{1-\epsilon^{2}}\frac{\sigma_{1}(\mu_{2}-r)}{\sigma_{2}}\}dt]$ , $A_{0}=S_{0}^{1}$ .
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In particular, we are interested in the expansion (9). From a prac-
tical viewpoint, it is an effective and useful expansion: it gives nice ap-
proximations of the value of the problem (P) and the utility indifference
price. By using the relation (7),

$\log V^{\epsilon}(x)-\log U_{\gamma}(e^{rT}x-\gamma E[h(A_{T})]-\frac{T}{2}(\frac{\mu_{2}-r}{\sigma_{2}})^{2}$

$-\epsilon^{2}\frac{\gamma^{2}}{2}$Var $[h(A_{T})])=O(\epsilon^{4})$

is observed, where we denote the value by $V^{\epsilon}(x)$ emphasizing $\epsilon$ , and

$p(x, F)=e^{-rT}\{E[h(A_{T})]+\epsilon^{2}\frac{\gamma}{2}Var[h(A_{T})]\}+O(\epsilon^{4})$

holds for any $ x\in$ R. Also, both quantities $E[h(A_{T})|A_{t}=y]$ and
Var $[h(A_{T})|A_{t}=y]$ are fairly “computable”. In [1], it is derived ffom a
clever observation, however, the reason why the second term has $O(\epsilon^{2})$

and the error term has $O(\epsilon^{4})$ seems to be obscure. To see its intrinsic
reason is one of our motivations.

Further, we are interested in the approximation of the optimal strat-
egy (optimizer), which is not mentioned in [1]. It looks natural to deduce

the strategy $\check{\pi}:=(\check{\pi}^{1},\check{\pi}^{2})^{/}$ defined by $\check{\pi}^{1}\equiv 0$ and

$\check{\pi}_{t}^{2}$

$:=$ $\frac{e^{-rT}}{\gamma}[\frac{\mu_{2}-r}{\sigma_{2}^{2}}-\sqrt{1-\epsilon^{2}}\frac{\sigma_{1}}{\sigma_{2}}S_{t}^{1}$

$\times\partial_{y}(\gamma E[h(A_{T})|A_{t}=y]+\epsilon^{2}\frac{\gamma^{2}}{2}Var[h(A_{T})|A_{t}=y])|_{y=S_{t}^{1}}]$

and expect the approximation such that

(10) $\log V^{\epsilon}(x)-\log E[U_{\gamma}(-F+X_{T}^{x,\check{\pi}})]=O(\epsilon^{4})$ ,

for example.
In the next section, using the BSDE in Theorem 2 and its asymptotic

expansion with respect to $\epsilon$ (precisely saying, with respect to $\epsilon’$ , cf., the
BSDE (10) $)$ , we reconstruct the expansions (9-10), which yields an alter-
native approach to the above analysis. The main contribution of this pa-
per is Theorem 4 in the next section, extensions of (9-10) under Assump-
tion 1. It is also suggested that the $i$-th derivatives $(\partial_{\epsilon}i,Y0,\epsilon, \partial_{\epsilon}i,---0,\epsilon)\equiv 0$

for odd numbers $i=1,3,5$ , $\cdots$ (cf., Remark 4).
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\S 2. An approximated optimizer

In this section, the probability space is assumed to be the product of
Wiener spaces: $(\Omega, \mathcal{F}, P):=\prod_{i=1}^{2}(\Omega_{i}, F^{i}, P_{i})$ , where $\Omega_{i}:=C_{0}([0, T], R)$ ,
$F^{i}:=B(\Omega_{i})$ and $P_{i}$ is the Wiener measure, the law of the $i$-th canon-
ical Brownian motion $w^{i}:=(w_{t}^{i})_{t\in[0,T]}$ . The filtration $(\mathcal{F}_{t})_{t\in[0,T]}:=$

$(F_{t}^{1}\times F_{t}^{2})_{t\in[0,T]}$ is the augmented natural filtration. Sometimes a ran-
dom variable $X$ on $(\Omega_{1}, \mathcal{F}^{1}, P_{1})$ is identified with $Xoj_{1}$ on $(\Omega, F, P)$ ,

where $j_{1}$ : $\Omega\ni\omega:=(\omega_{1}, \omega_{2})\mapsto\omega_{1}\in\Omega_{1}$ is the projection onto the first
probability space.

We now impose the following conditions.

(i)’ The volatility matrix of the process $S$ is given by (8). On the
other hand, $\mu=(\mu_{1}, \mu_{2})^{/}$ is a bounded $F_{t}^{1}$ -predictable process,
i.e., $\mu$ : $[0, T]$ $\times\Omega_{1}\ni(t, \omega_{1})\mapsto\mu(t, \omega_{1})\in R^{2}$ is measurable
with respect to the predictable $\sigma$-algebra on $[0, T]$ $\times\Omega_{1}$ .

(ii)’ $F(\omega_{1})=h(S^{1}(\omega_{1}))$ with a bounded measurable function $h$ on
$C([0, T], R_{+})$ .

(iii) The constraint of the strategy $\pi$ is given by $\pi_{t}\in C:=\{O\}\times R$ .

Remark 3. The condition (i)’ is considered as an extension of the con-
stant $\mu$ case employed in (i) in the previous section, though Assumption
1.1 will be added later. On the other hand, the conditoin (ii)’ does not
include the conditon (ii) in the previous section.

Further, we consider the problem (P) over the extended space: $A:=$

$A_{1}$ , where

$A_{1}$ $:=$ $\{\pi\in \mathcal{L}_{T}^{2,2}$ ; $\pi_{t}\in C$ for $\forall t\in[0, T]$ ,

$ E[(\int_{0}^{T}|\pi_{t}|^{2}dt)^{q/2}]<\infty$ for $\exists q>1\}$

and construct an approximated optimizer in $A_{1}$ , not in $A_{2}$ . We first
remark the following.

Proposition 1. Let $\pi^{*}$ be the process defined by the formula $(\theta)$

and by the solution $(Y_{ },---)\in H_{T}^{\infty}\times H_{7}^{2}i^{2}$ of the BSDE (5). It is also an
optimizer of the problem (P) with $A:=A_{1}$ .

Proof. We first observe that $E[\overline{Z}_{T}^{\nu}X_{T}^{x,\pi}]\leq x$ for all $(\pi, \nu)\in A_{1}\times D$

and $x\in R$ . For the purpose, since

$e^{-rt}X_{t}^{x,\pi}=x+\int_{0}^{t}\pi_{u}^{J}\sigma_{u}dw_{u}^{\nu}$
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holds, to show the martingale property of the process $Z^{\nu}\int\pi^{/}\sigma dw^{\nu}$ is
sufficient, which can be verified by checking

$E[\sup_{t\in[0,T]}|Z_{t}^{\nu}\int_{0}^{t}\pi_{u}’\sigma_{u}dw_{t}^{\nu}|]$

$\leq$ $E[\sup_{t\in[0,T]}|Z_{t}^{\nu}\int_{0}^{t}\pi_{u}^{/}\sigma_{u}dw_{t}|]+E[\sup_{t\in[0,T]}|Z_{t}^{\nu}\int_{0}^{t}\pi_{u}’\sigma_{u}(\lambda_{u}-\nu_{u})du|]$

$\leq$ $E[\sup_{t\in[0,T]}(Z_{t}^{\nu})^{p}]^{1/p}\{E[\sup_{t\in[0,T]}|\int_{0}^{t}\pi_{u}^{/}\sigma_{u}dw_{u}|^{q}]1/q$

$+E[\sup_{t\in[0,T]}|\int_{0}^{t}\pi_{u}’\sigma_{u}(\lambda_{u}-\nu_{u})du|^{q}]1/q\}$

$\leq$
$C_{1}E[\langle Z^{\nu}\rangle_{T}^{p/2}]1/p$

$\times\{C_{2}E[(\int_{0}^{T}|\pi_{u}|^{2}du)^{q/2}]^{1/q}+C_{3}E[(\int_{0}^{T}|\pi_{u}|du)^{q}]^{1/q}\}$

$\leq$ $ C_{4}E[\langle Z^{\nu}\rangle_{T}^{p/2}]^{1/p}E[(\int_{0}^{T}|\pi_{u}|^{2}du)^{q/2}]1/q<\infty$

for $p$ , $q>1$ satisfying $1/p+1/q=1$ by using the H\"older inequality and
the Burkholder-Davis-Gundy inequality. In particular, the inequalities
(2) and

(11) $E[U_{\gamma}(-F+X_{T}^{x,\pi})]-yx\leq\hat{V}(y)$

are deduced for any $\pi\in A_{1}x\in R$ and $y>0$ .
Next, note that the pair $(\pi^{*}, \nu^{*})$ defined by (6) and the formula

$\nu_{t}^{*}:=(I-\Pi_{\sigma_{t}’C})(_{-t}^{-\epsilon}-+\lambda_{t}^{\epsilon})$ satisfies the relation

(12) $\{$

$F+I_{\gamma}(\mathcal{Y}(x)\overline{Z}_{T}^{\nu^{*}})=X_{T}^{x,\pi^{*}}$

with $\mathcal{Y}(x):=\exp(Y_{0}+rT-\gamma e^{rT}x)$ .
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In fact, the solution of the BSDE satisfies

$F$ $=$ $\frac{1}{\gamma}\{Y_{0}+\int_{0}^{T}f(t, ---t)dt+\int_{0}^{T}(_{-t}^{-}-)^{/}dw_{t}\}$

$=$ $\frac{Y_{0}}{\gamma}+\int_{0}^{T}\{e^{rT}(\pi_{t}^{*})^{J}\sigma_{t}\lambda_{t}-\frac{1}{2\gamma}|\lambda_{t}-\nu_{t}^{*}|^{2}\}dt$

$+\int_{0}^{T}\{e^{rT}\sigma_{t}^{/}\pi_{t}^{*}-\frac{1}{\gamma}(\lambda_{t}-\nu_{t}^{*})\}^{/}dw_{t}$

$=$ $\frac{Y_{0}}{\gamma}+X_{T}^{0,\pi^{*}}-I_{\gamma}(Z_{T}^{\nu^{*}})$ ,

which is equivalent to (12). Using (12) and Theorem 2, we observe that

(13) $E[\overline{Z}_{T}^{\nu^{*}}X_{T}^{x,\pi^{*}}]$ $=$ $E[\overline{Z}_{T}^{\nu^{*}}($ $F+I_{\gamma}(\mathcal{Y}(x)\overline{Z}_{T}^{\nu^{*}}))]$

$=$ $\frac{e^{-rT}}{\gamma}\{Y_{0}-\log(\mathcal{Y}(x)e^{-rT})\}=x$ .

Finally, replacing $y$ by $\mathcal{Y}(x)$ in (11) and using Theorem 2 and (12-3), we
deduce that

$E[U_{\gamma}(-F+X_{T}^{x,\pi})]-\mathcal{Y}(x)x$

$\leq$ $E[u_{\gamma}$ ( $F+I_{\gamma}(\mathcal{Y}(x)\overline{Z}_{T}^{\nu^{*}});\mathcal{Y}(x)\overline{Z}_{T}^{\nu^{*}}$ , $F$) $]$

$=$ $E[U_{\gamma}(-F+X_{T}^{x,\pi^{*}})]-\mathcal{Y}(x)x$

for all $\pi\in A_{1}$ , which implies the optimality of $\pi^{*}$ . 1
The BSDE (5) for the optimizer is now rewritten as, in the situation

of this section,

$dY_{t}^{\epsilon}$ $=$ $f(t,---t’\epsilon\epsilon)dt+(_{-t}^{-\epsilon}-)^{J}dw_{t}$ , $Y_{T}^{\epsilon}=\gamma F$,

where $f(t, \xi, \epsilon)$ $:=$
$\frac{1}{2}\{\overline{\lambda}_{t}^{2}-(\xi, d_{\epsilon}^{\perp})^{2}\}+\overline{\lambda}_{t}(\xi, d_{\epsilon})$ ,

$(\cdot, \cdot)$ denotes the standard inner-product in $R^{2}$ and

$\overline{\lambda}:=(\lambda^{\epsilon}, d_{\epsilon})=\frac{\mu_{2}-r}{\sigma_{2}}$ .

Denote

$\overline{w}_{t}^{\epsilon}=(\overline{w}_{1}^{\epsilon}(t), \overline{w}_{2}^{\epsilon}(t))^{J}:=w_{t}+(\int_{0}^{t}\overline{\lambda}_{u}du)d_{\epsilon}$
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to reexpress the solution $(Y^{\epsilon-\epsilon},--)=(Y^{\epsilon,\epsilon-\epsilon,\epsilon},--)$ by using the BSDE:

(14) $dY_{t}^{\epsilon’,\epsilon}$

$=$ $g(t,$ $---t\epsilon’,\epsilon,/\epsilon)dt+(_{-t}^{-\epsilon’,\epsilon}-)^{/}d\overline{w}_{t}^{\epsilon}$ , $Y_{T}^{\epsilon’,\epsilon}=\gamma F$,

where $g(t, \xi, \epsilon^{J})$ $:=$ $\frac{1}{2}\{\overline{\lambda}_{t}^{2}-(\xi, d_{\epsilon}^{\perp},)^{2}\}$ .

We consider the asymptotic expansion of $(Y\epsilon’,\epsilon, ---\epsilon’,\epsilon)$ with respect to $\epsilon^{/}$

at 0. Let $(\partial_{\epsilon}0,Y0,\epsilon, \partial_{\epsilon}0,---0,\epsilon):=(Y0,\epsilon,---0,\epsilon)$ and introduce the BSDEs:

(15) $\{$

$d(\partial_{\epsilon}^{i},Y_{t}^{0,\epsilon})=g_{i}(t,$ $(\partial_{\epsilon t}^{j-0,\epsilon},--)_{j=0,..,i}$ , $0)dt+(\partial_{\epsilon}^{i},---t)^{J}0,\epsilon Fw_{t}^{\epsilon}$ ,

$\partial_{\epsilon}^{i},Y_{T}^{0,\epsilon}=0$ ,

using the functions $g_{i}$ defined inductively

$g_{0}(t, \xi^{0}, \epsilon’)$ $:=$ $g(t, \xi^{0}, \epsilon^{/})$

and $g_{i}$
$(t, (\xi^{j})_{j=0,.,i}$ , $\epsilon^{/})$ $:=$ $\sum_{j=0}^{i-1}(\partial_{\xi^{j}}g_{i-1}(t, (\xi^{k})_{k=0,i-1}\ldots,,$ $\epsilon^{/})$ , $\xi^{j+1})$

$+\partial_{\epsilon’}g_{i-1}$ $(t, (\xi^{k})_{k=0,..,i-1}$ , $\epsilon’)$ .

Formally, it is expected that $(\partial_{\epsilon}i,Y0,\epsilon, \partial_{\epsilon}i,---0,\epsilon)$ is the $i$-th derivative of

$(Y\epsilon’,\epsilon,---\epsilon’,\epsilon)$ with respect to $\epsilon^{/}$ at $\epsilon^{/}=0$ , although we have not been

able to show the property. The standard results on the differentiation of
the solution of BSDE with respect to a parameter (cf., El Karoui et. $a1$

; 1997, [3], for example) cannot be applied to our quadratic BSDE (14).

Define the probability measure $\overline{P}^{\epsilon}$ on $(\Omega, F_{T})$ by

$\frac{d\overline{P}^{\epsilon}}{dP}|_{F_{t}}$ $:=$ $\mathcal{E}_{t}(-\int\overline{\lambda}d_{\epsilon}’dw)=:\overline{Z}_{t}^{\epsilon}$

$=$ $\mathcal{E}_{t}(-\sqrt{1-\epsilon^{2}}\int\overline{\lambda}dw_{1})\mathcal{E}_{t}(-\epsilon\int\overline{\lambda}dw_{2})=:\overline{Z}_{1}^{\epsilon}(t)\overline{Z}_{2}^{\epsilon}(t)$

and the space $H_{T}^{2,2,\epsilon}:=\{f\in \mathcal{L}_{T}^{2,2}$ ; $\int_{0}^{T}|f_{t}|^{2}dt\in L^{1}(\overline{P}^{\epsilon})\}$ to obtain the

expressions for the solution of (15) for $i=0,1$ , 2, 3, as follows.



An approximation for exponential hedging 291

Lemma 1. 1. The solution $(Y^{0,\epsilon},---0,\epsilon)$ in the space $H_{T}^{\infty}\times H_{T}^{2,2}$ has
the expressions:

$Y_{t}^{0,\epsilon}$ $=$ $\overline{E}^{\epsilon}[\gamma F-\frac{1}{2}\int_{t}^{T}\overline{\lambda}_{u}^{2}du|F_{t}]$ ,

$Y_{0}^{0,\epsilon}+\int_{0}^{t}-^{0,\epsilon}--1(u)cT\overline{w}_{1}^{\epsilon}(u)$ $=$ $\overline{E}^{\epsilon}[\gamma F-\frac{1}{2}\int_{0}^{T}\overline{\lambda}_{u}^{2}du|F_{t}]$ ,

and $---02’\epsilon(t)=0$ for all $t\in[0, T]$ , where $\overline{E}^{\epsilon}[\cdot]$ denotes the expectation

with respect to the probability measure $\overline{P}^{\epsilon}$ .
2. $(\partial_{\epsilon}^{i},Y0,\epsilon, \partial_{\epsilon}i,---0,\epsilon)\equiv 0$ for $i=1,3$ .

3. A solution of (15) with $i=2$ exists in $H_{T}^{\infty}\times H_{T}^{2,2,\epsilon}$ and is given by

$\partial_{\epsilon}^{2},Y_{t}^{0,\epsilon}$ $=$ $\overline{E}^{\epsilon}[\int_{t}^{T}(_{-1}^{-0,\epsilon}-(u))^{2}$ du $|F_{t}]$

$=$ $\overline{Var}^{\epsilon}[\gamma F-\frac{1}{2}\int_{t}^{T}\overline{\lambda}_{u}^{2}du|F_{t}]$ ,

$\partial_{\epsilon}^{2},Y_{0}^{0,\epsilon}+\int_{0}^{t}\partial_{\epsilon}^{2},---0,\epsilon(1u)T\overline{w}_{1}^{\epsilon}(u)$ $=$ $\overline{E}^{\epsilon}[\int_{0}^{T}(_{-1}^{-0,\epsilon}-(u))^{2}$ du $|F_{t}]$ ,

and $\partial_{\epsilon 2}^{2-0,\epsilon},--(t)=0$ for all $t\in[0, T]$ , $w/iere$ we denote $\overline{Var}^{\epsilon}[\cdot|F_{t}]:=$

$\overline{E}^{\epsilon}[(\cdot)^{2}|F_{t}]-(\overline{E}^{\epsilon}[\cdot|\mathcal{F}_{t}])^{2}$

Proof. 1. $Suppose---02’\epsilon\equiv 0$ , then

$dY_{t}^{0,\epsilon}=\frac{1}{2}\overline{\lambda}_{t}^{2}dt+--^{0,\epsilon}-1(t)\Gamma w_{1}^{\epsilon}(t)$ , $Y_{T}^{0,\epsilon}=\gamma F$

is observed. 1 is now a consequence of the standard result of linear
BSDE (cf., El Karoui et. $a1$ , [3]) and the result on the uniqueness of the
quadratic BSDE studied in Kobylanski (2000), [6].
2-3. Observe that

$d_{\epsilon}^{\perp}$ $=$ $\left(\begin{array}{l}0\\-1\end{array}\right)$ $+\epsilon$ $\left(\begin{array}{l}1\\0\end{array}\right)$

$+\frac{\epsilon^{2}}{2}$
$\left(\begin{array}{l}0\\1\end{array}\right)$

$+\frac{\epsilon^{3}}{3!}$
$\left(\begin{array}{l}0\\0\end{array}\right)$ $+O(\epsilon^{4})$

$=$ : $d_{0}^{\perp}+\sum_{i=1}^{3}\frac{\epsilon^{i}}{i!}\partial_{\epsilon}^{i},d_{0}^{\perp}+O(\epsilon^{4})$ ,

where $o(\epsilon^{4})\in R^{2}$ is a vector with the norm $|O(\epsilon^{4})|\sim\epsilon^{4}$ .
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(i) Noting that

$g_{1}(t, (\xi^{j})_{j=0,1},0)=-(\xi^{0}, d_{0}^{\perp})\{(\xi^{1}, d_{0}^{\perp})+(\xi^{0}, \partial_{\epsilon’}d_{0}^{\perp})\}$

and that $---02\equiv 0$ , we can deduce

$d(\partial_{\epsilon’}Y_{t}^{0,\epsilon})=\partial_{\epsilon’-t}^{-0,\epsilon}-\Gamma w_{t}^{\epsilon}$ , $\partial_{\epsilon’}Y_{T}^{0,\epsilon}\equiv 0$

and $(\partial_{\epsilon’}Y0,\epsilon, \partial_{\epsilon},--\cup)0,\epsilon\equiv 0$ .

(ii) Observing that

$g_{2}(t, (\xi^{j})_{j=0,1,2},0)$

$=$ $-(\xi^{1}, d_{0}^{\perp})\{(\xi^{1}, d_{0}^{\perp})+(\xi^{0}, \partial_{\epsilon’}d_{0}^{\perp})\}$

$-(\xi^{0}, d_{0}^{\perp})\{(\xi^{2}, d_{0}^{\perp})+(\xi^{1}, \partial_{\epsilon’}d_{0}^{\perp})\}$

$-(\xi^{0}, \partial_{\epsilon’}d_{0}^{\perp})\{(\xi^{1}, d_{0}^{\perp})+(\xi^{0}, \partial_{\epsilon’}d_{0}^{\perp})\}$

$-(\xi^{0}, d_{0}^{\perp})\{(\xi^{1}, \partial_{\epsilon’}d_{0}^{\perp})+(\xi^{0}, \partial_{\epsilon}^{2},d_{0}^{\perp})\}$ ,

we rewrite the BSDE for $(\partial_{\epsilon}^{2},Y0,\epsilon, \partial_{\epsilon}2,---0,\epsilon)$ as

$d(\partial_{\epsilon}^{2},Y_{t}^{0,\epsilon})=-(_{-1}^{-0,\epsilon}-(t))^{2}dt+(\partial_{\epsilon}2,---t0,\epsilon)’\mathcal{F}\overline{w}_{t}^{\epsilon}$ , $\partial_{\epsilon}^{2},Y_{T}^{0,\epsilon}\equiv 0$

since $---02’\epsilon\equiv 0$ and $\partial_{\epsilon^{!-}}^{-0,\epsilon}-\equiv 0$ . Define $\overline{P}^{\epsilon}$-martingales $M$ , $N$ by the
formulas

$M_{t}:=\int_{0}^{t}---01’\epsilon(u)T\overline{w}_{1}^{\epsilon}(u):=-Y_{0}^{0,\epsilon}+\overline{E}^{\epsilon}[\gamma F-\frac{1}{2}\int_{0}^{T}\overline{\lambda}_{u}^{2}du|\mathcal{F}_{t}]$

and $N_{t}:=\overline{E}^{\epsilon}[\langle M\rangle_{T}|F_{t}]$ for $t$ $\in[0, T]$ , respectively. Note that $M$ is

bounded and that $N$ is $\overline{P}^{\epsilon}$ -square integrable:

$\overline{E}^{\epsilon}[N_{t}^{2}]\leq\overline{E}^{\epsilon}[\langle M\rangle_{t}^{2}]=\overline{E}^{\epsilon}[(M_{t}^{2}-M_{0}^{2}-2\int_{0}^{t}M_{u}dM_{u})^{2}]<\infty$ .

The martingale representation theorem implies that $H_{t}:=E[\overline{Z}_{1}^{\epsilon}(T)N_{T}|\mathcal{F}_{t}]$

$=N_{0}+\int_{0}^{t}\phi_{u}dw_{1}(u)$ holds for all $t$ $\in[0, T]$ and for some $\mathcal{F}_{t}^{1}$ -predictable
$\phi$ such that $\int_{0}^{T}\phi_{u}^{2}du<\infty$ . Therefore,

$N_{t}-N_{0}=\int_{0}^{t}d(\frac{\overline{Z}_{1}^{\epsilon}(u)N_{u}}{\overline{Z}_{1}^{\epsilon}(u)})=\int_{0}^{t}\frac{\phi_{u}+\sqrt{1-\epsilon^{2}}H_{u}\overline{\lambda}_{u}}{\overline{Z}_{1}^{\epsilon}(u)}c\Gamma\overline{w}_{1}^{\epsilon}(u)$
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is observed from the It\^o-formula. The solution is now constructed by
setting

$\partial_{\epsilon}^{2},Y_{t}^{0,\epsilon}:=N_{t}-\int_{0}^{t}(_{-1}^{-0,\epsilon}-(u))^{2}$ du, $\partial_{\epsilon 1}^{2-0,\epsilon},--(t):=\frac{\phi_{t}+\sqrt{1-\epsilon^{2}}H_{t}\overline{\lambda}_{t}}{\overline{Z}_{1}^{\epsilon}(t)}$

and $\partial_{\epsilon 2}^{2-0,\epsilon},--\equiv 0$ .
(iii) For $(\xi^{j})_{j=0,1,2,3}$ such that $\xi_{2}^{0}=\xi_{2}^{2}=0$ and $\xi^{1}=0$ , we can check

that
$g_{3}(t, (\xi^{j})_{j=0,1,2,3},0)=0$ ,

so the equation

$d(\partial_{\epsilon}^{3},Y_{t}^{0,\epsilon})=\partial_{\epsilon t}^{3-0,\epsilon},--d\overline{w}_{t}^{\epsilon}$ , $\partial_{\epsilon}^{3},Y_{T}^{0,\epsilon}\equiv 0$

and $(\partial_{\epsilon}^{3},Y^{0,\epsilon}, \partial_{\epsilon}^{3},--^{0,\epsilon}-)\equiv 0$ are deduced. $I$

We are now in the position to state our last theorem, an extension
of Theorem 3.3. We require the conditions:

Assumption 1. 1. The process $\mu_{2}$ is bounded and deterministic.
2. There is a kernel $\partial F$ , finite measures $\partial F(\omega_{1}, \cdot)$ on $B([0, T])$ for each
$\omega_{1}\in\Omega_{1}$ , satisfying

$\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}\{F(\omega_{1}+\epsilon\phi)-F(\omega_{1})\}=\int_{0}^{T}\phi(t)\partial F(\omega_{1}, dt)$

for all $\phi\in C^{1}([0, T])$ and the Clark formula:

$F=E[F]+\int_{0}^{T}E[\partial F(\cdot, (t, T])|F_{t}]dw_{1}(t)$ .

(For sufficient conditions on $F$ and $\partial F$ to ensure the formula, cf., Ap-
pendix $E$ of [5], for example). Moreover, $\partial F(\cdot,$ $(\cdot, T])\in L^{\infty}(\Omega_{1}\times[0, T])$

holds.

For $n$ $=1,2$ , $\ldots$ , define

$\overline{Y}^{\epsilon,n}:=\sum_{i=0}^{n}\partial_{\epsilon}^{2i},Y_{t}^{0,\epsilon}\frac{\epsilon^{2i}}{(2i)!}$ and $=--\epsilon,n:=\sum_{i=0}^{n}\partial_{\epsilon}2,i---t0,\epsilon\frac{\epsilon^{2i}}{(2i)!}$

and introduce the approximated strategy $\overline{\pi}^{\epsilon,n}:=(\overline{\pi}_{t}^{\epsilon,n})_{t\in[0,T]}$ by the

formula

(16) $\overline{\pi}_{t}^{\epsilon,n}$ $:=$ $\frac{e^{-rT}}{\gamma}(\sigma^{/})^{-1}\Pi_{\sigma’C}(_{-t}^{=}-\epsilon,n+\lambda^{\epsilon}(t))$

$=$ $\{$ $\frac{e^{-rT}}{\gamma}\{\sigma_{2}^{-2}(\mu_{2}(t)-r)+0\sqrt{1-\epsilon^{2}}\sigma_{21}^{-1=}--(\epsilon,nt)\})$ .
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Note that $\overline{\pi}^{\epsilon,1}\in A:=A_{1}$ since $ E[\int_{0}^{T}|_{-t}^{-0,\epsilon}-|^{2}dt]<\infty$ and since

$E[(\int_{0}^{T}|\partial_{\epsilon}2,---t0,\epsilon|^{2}dt)^{q/2}]$

$=$
$\overline{E}^{\epsilon}[(\overline{Z}_{T}^{\epsilon})^{-1}(\int_{0}^{T}|\partial_{\epsilon}2,---t0,\epsilon|^{2}dt)^{q/2}]$

$\leq$
$\overline{E}^{\epsilon}[(\overline{Z}_{T}^{\epsilon})^{-\frac{2}{2-q}}]2\overline{E}^{\epsilon}\underline{2}-\Delta[\int_{0}^{T}|\partial_{\epsilon}2,---t0,\epsilon|^{2}dt]q/2<\infty$

for $0<q<2$ . We obtain the following.

Theorem 4. Under Assumption 1, the relations

$||Y^{\epsilon}-\overline{Y}^{\epsilon,1}||_{L^{\infty}([0,T]\times\Omega)}$ $=$ $o(\epsilon^{4})$

and $\log V^{\epsilon}(x)-\log E[U_{\gamma}(-F+X_{T}^{x,\overline{\pi}^{\epsilon,1}})]$ $=$ $o(\epsilon^{4})$

hold as $\epsilon\downarrow 0$ .

Proof. Denote $\Lambda^{\epsilon}(t):=(\int_{0}^{t}\overline{\lambda}_{u}du)d_{\epsilon}$ and define the Wiener functional
and the kernel:

$G(\omega_{1}):=\gamma F(\omega_{1}-\Lambda_{1}^{\epsilon})-\frac{1}{2}\int_{0}^{T}\overline{\lambda}_{u}^{2}du$ , $\partial G(\omega_{1}, dt):=\gamma\partial F(\omega_{1}-\Lambda_{1}^{\epsilon}, dt)$ .

First, we observe the following:

$---01’\epsilon(t, \omega_{1})$ $=$ $E[\partial G(\cdot, (t, T])|\mathcal{F}_{t}](\omega_{1}+\Lambda_{1}^{\epsilon})$ ,

$\partial_{\epsilon 1}^{2-0,\epsilon},--(t, \omega_{1})$ $=$ 2 $\{E[\partial G(\cdot, (t, T])G|\mathcal{F}_{t}]$

$-E[\partial G(\cdot, (t, T])|\mathcal{F}_{t}]E[G|F_{t}]\}(\omega_{1}+\Lambda_{1}^{\epsilon})$ .

In fact, the first expression is a consequence from the Clark formula,

$G(\omega_{1})=E[G]+\int_{0}^{T}E[\partial G(\cdot, (t, T])|\mathcal{F}_{t}](\omega_{1})dw_{1}(t, \omega_{1})$ ,

the Cameron-Martin formula, $\overline{P}^{\epsilon}(\cdot)=P(\cdot+\Lambda^{\epsilon})$ , and the relation $w_{t}(\omega+$

$\Lambda^{\epsilon})=\overline{w}_{t}^{\epsilon}(\omega)$ ,

$G(\omega_{1}+\Lambda_{1}^{\epsilon})$ $=$ $\overline{E}^{\epsilon}[G(\omega_{1}+\Lambda_{1}^{\epsilon})]$

$+\int_{0}^{T}E[\partial G(\cdot, (t, T])|F_{t}](\omega_{1}+\Lambda_{1}^{\epsilon})d\overline{w}_{1}^{\epsilon}(t, \omega_{1})$ .
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The second expression is deduced ffom the relation

$\int_{0}^{T}(_{-1}^{-0,\epsilon}-(t))^{2}dt$

$=$ $(\int_{0}^{T}--^{0,\epsilon}-1(t)d\overline{w}_{1}^{\epsilon}(t))^{2}-2\int_{0}^{T}(\int_{0}^{t}-^{0,\epsilon}--1(u)d\overline{w}_{1}^{\epsilon}(u))---01’(\epsilon t)\mathcal{F}\overline{w}_{1}^{\epsilon}(t)$

$=$ $(G-\overline{E}^{\epsilon}[G])^{2}-2\int_{0}^{T}\{E[G|F_{t}](\cdot+\Lambda^{\epsilon})-E[G]\}_{-1}^{-0,\epsilon}-(t)T\overline{w}_{1}^{\epsilon}(t)$

$=$ $G^{2}-(\overline{E}^{\epsilon}[G])^{2}-2\int_{0}^{T}(E[G|F_{t}]E[\partial G(\cdot, (t, T])|F_{t}])(\cdot+\Lambda_{1}^{\epsilon})d\overline{w}_{1}^{\epsilon}(t)$ ,

the Claxk formula, and the chain rule for differentiation. In particular, it

holds $that---01$
, $\epsilon$

, $\partial_{\epsilon 1}^{2-0,\epsilon},-\cup\in H_{T}^{\infty}$ . Therefore, in the BSDE for $(\overline{Y}^{\epsilon,n},=--)n,\epsilon$ :

(17) $d\overline{Y}_{t}^{\epsilon,n}$

$=$ $\{g(t,$ $=--t’\epsilon)\epsilon,n+R_{t}^{\epsilon,n}\}dt+_{-t}^{=}-\epsilon,nd\overline{w}_{t}^{\epsilon}$ , $\overline{Y}_{T}^{\epsilon,n}=\gamma F$,

where $R_{t}^{\epsilon,n}$ $:=$ $\sum_{i=0}^{2n+1}g_{i}$ ( $t$ , $(\theta_{\epsilon}?,---t0)_{j=0,,i}\ldots$
’

$0$) $\frac{\epsilon^{i}}{i!}-g(t,=--t’\epsilon)\epsilon,n$ ,

$||R^{\epsilon,1}||_{L^{\infty}([0,T],\Omega)}=O(\epsilon^{4})$ is satisfied because of the boundedness of $\lambda^{\epsilon}$ ,
$\partial_{\epsilon}^{i},d_{0}^{\perp}$ , and $\partial_{\epsilon}^{i-0,\epsilon},--(i=0, \ldots, 3)$ .

Next, we introduce the linear BSDE for $(\Delta Y^{\epsilon,n}, \Delta_{-}^{-\epsilon,n}-):=(Y^{\epsilon}-$

$\overline{Y}^{\epsilon,n},---\epsilon-=--\epsilon,n)$ , described as

$\{$

$d\Delta Y_{t}^{\epsilon,n}=\{-\frac{1}{2}$ $(_{-t}^{-\epsilon}-+_{-t}^{=}-\epsilon,n$ , $d_{\epsilon}^{\perp}$ ) $(\Delta_{-t}^{-\epsilon,n}-, d_{\epsilon}^{\perp})-R_{t}^{\epsilon,n}\}dt+\Delta_{-t}^{-\epsilon,n}-d\overline{w}_{t}^{\epsilon}$ ,

$\Delta Y_{T}^{\epsilon,n}\equiv 0$

to observe the expression:

(18) $-\Gamma_{s}\Delta Y_{s}^{\epsilon,n}=-\Gamma_{t}\Delta Y_{t}^{\epsilon,n}-\int_{s}^{t}\Gamma_{u}R_{u}^{\epsilon,n}du+M_{t}-M_{s}$

for $0\leq s\leq t\leq T$ , where $\Gamma:=(\Gamma_{t})_{t\in[0,T]}$ is the solution of the SDE:

$d\Gamma_{t}=\Gamma_{t}\{\frac{1}{2}$ $(_{-t}^{-\epsilon}-+_{-t}^{=}-\epsilon,n$ , $d_{\epsilon}^{\perp}$ ) $(d_{\epsilon}^{\perp})^{l}(\Gamma w_{t}^{\epsilon}\},$ $\Gamma_{0}=1$

and $M:=(M_{t})_{t\in[0,T]}$ is the $\overline{P}^{\epsilon}$ -local-martingale defined by

$M_{t}:=\int_{0}^{t}\Gamma_{u}\{\Delta_{-u}^{-\epsilon,n}-+\frac{1}{2}\Delta Y_{u}^{\epsilon,n}$ $(_{-u}^{-\epsilon}-+=--\epsilon u’ n$ , $d_{\epsilon}^{\perp}$ ) $d_{\epsilon}^{\perp}\}^{J}d\overline{w}_{u}^{\epsilon}$ .
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Let $n=1$ . For a sequence of increasing stopping times $(\tau_{m})_{m\in N}$ , which
localizes the local martingale $M$ , we deduce the relation

$\Gamma_{t\wedge\tau_{m}}|\Delta Y_{t\wedge\tau_{m}}^{\epsilon,1}|\leq\overline{E}^{\epsilon}[\Gamma_{T\wedge 7_{m}^{-}}|\Delta Y_{T\wedge\tau_{m}}^{\epsilon,1}|+\epsilon^{4}C_{1}\int_{t\wedge\tau_{m}}^{T\wedge\tau_{m}}\Gamma_{u}du|F_{t\wedge\tau_{m}}]$

with some constant $C_{1}>0$ ffom (18). The first term of the right-hand-
side is

$\leq\overline{E}^{\epsilon}[\Gamma_{T\wedge\tau_{m}}|F_{t\wedge\tau_{m}}]||\Delta Y_{T\wedge\tau_{m}}^{\epsilon,1}||_{L^{\infty}(\Omega)}\leq\Gamma_{t\wedge\tau_{m}}||\Delta Y_{T\wedge\tau_{m}}^{\epsilon,1}||_{L^{\infty}(\Omega)}\rightarrow 0$

as $ m\rightarrow\infty$ by using the optional stopping theorem, and the second term
of the right-hand-side is

$=\epsilon^{4}C_{1}\overline{E}^{\epsilon}[\int_{t\wedge\tau_{m}}^{T\wedge\tau_{m}}\Gamma_{u}du|\mathcal{F}_{t\wedge\tau_{m}}]\rightarrow\epsilon^{4}C_{1}\overline{E}^{\epsilon}[\int_{t}^{T}\Gamma_{u}du|F_{t}]\leq\epsilon^{4}C_{1}T\Gamma_{t}$

as $ m\rightarrow\infty$ for a continuous version of $\overline{E}^{\epsilon}[\int^{T}.\Gamma_{u}du|\mathcal{F}.]$ by using the

monotone convergence theorem. Therefore, $||\Delta Y^{\epsilon,1}||_{L^{\infty}([0,T]\times\Omega)}=O(\epsilon^{4})$

follows.
Finally, define the process $\overline{\nu}^{\epsilon,n}:=(\overline{\nu}^{\epsilon,n})_{t\in[0,T]}$ by

(19) $\overline{\nu}_{t}^{\epsilon,n}:=(I-\Pi_{\sigma’C})(_{-t}^{=}-^{\epsilon,n}+\lambda_{t}^{\epsilon})$

to deduce

$\gamma F$ $=$ $\overline{Y}_{0}^{\epsilon,n}+\int_{0}^{T}(e^{rT}\gamma\sigma^{J}\overline{\pi}_{t}^{\epsilon,n}-\lambda_{t}^{\epsilon}+\overline{\nu}_{t}^{\epsilon,n})^{/}T\overline{w}_{t}^{\epsilon}$ ,

$+\int_{0}^{T}(\frac{|\lambda_{t}^{\epsilon}|^{2}-|\overline{\nu}_{t}^{\epsilon,n}|^{2}}{2}+R_{t}^{\epsilon,n})dt$

from (16-7) and (19). Therefore, for $x\in R$ , we obtain that

$F+I_{\gamma}(\overline{\mathcal{Y}}^{\epsilon,n}(x)Z_{T}^{\overline{\nu}^{\epsilon,n}})$ $=$ $X_{T}^{x,\overline{\pi}^{\epsilon,n}}+\int_{0}^{T}R_{t}^{\epsilon,n}dt$ ,

where $\overline{\mathcal{Y}}^{\epsilon,n}(x)$

$=$ $\exp(\overline{Y}_{0}^{\epsilon,n}-\gamma e^{rT}x)$ ,
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which implies

$\log E[U_{\gamma}(-F+X_{T}^{x,\overline{\pi}^{\epsilon,1}})]$

$=$ $\log E[U_{\gamma}(I_{\gamma}(\overline{\mathcal{Y}}^{\epsilon,1}(x)Z_{T}^{\overline{\nu}^{\epsilon,1}})-\int_{0}^{T}R_{t}^{\epsilon,1}dt)]$

$=$ $-\frac{1}{\gamma}\overline{\mathcal{Y}}^{\epsilon,1}(x)+O(\epsilon^{4})$

$=$ $\log U_{\gamma}(e^{rT}x-\frac{\overline {}Y_{0}^{\epsilon,1}}{\gamma})+O(\epsilon^{4})$

$=$ $\log U_{\gamma}(e^{rT}x-\frac{Y_{0}^{\epsilon}}{\gamma})+O(\epsilon^{4})$ as $\epsilon\downarrow 0.1$

Remark 4. For the higher order terms, the following is observed, for
example:

$\partial_{\epsilon}^{4}Y_{t}^{0,\epsilon}=-12\overline{E}^{\epsilon}[\int_{t}^{T}---0,\epsilon(u)\partial_{\epsilon}2,--1-0,\epsilon 1(u)du|F_{t}]$ ,

$\partial_{\epsilon}^{4},Y_{0}^{0,\epsilon}-\int_{0}^{t}\partial_{\epsilon}4,---0,\epsilon(1u)f\overline{w}_{1}^{\epsilon}(u)$

$=-12\overline{E}^{\epsilon}[\int_{0}^{T}---01’(u)\partial_{\epsilon}2\epsilon,---0,\epsilon 1(u)du|\mathcal{F}_{t}]$ ,

$\partial_{\epsilon 2}^{4-0,\epsilon},--(t)=0$ , and $\partial_{\epsilon}^{5-0,\epsilon},--(t)=0$ for all $t\in[0, T]$ . So, if we assume
$\partial_{\epsilon}^{4-0,\epsilon},--\in H_{T}^{\infty}$ , then

$||Y^{\epsilon}-\overline{Y}^{\epsilon,2}||_{L^{\infty}([0,T]\times\Omega)}$ $=$ $O(\epsilon^{6})$

and $\log V^{\epsilon}(x)-\log E[U_{\gamma}(-F+X_{T}^{x,\overline{\pi}^{\epsilon,2}})]$ $=$ $O(\epsilon^{6})$

are deduced as $\epsilon\downarrow 0$ .

Example: European put option case. Let $\mu_{1}$ , $\mu_{2}$ be constant and
set F $=(k-S_{T}^{1})^{+}(k>0)$ . Then, Assumption 1 is satisfied, and we
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have that

$Y_{t}^{0,\epsilon}$ $=$
$\gamma\{k\Phi(-c_{t}^{-})-e^{\eta^{\epsilon}(T-t)}S_{t}^{1}\Phi(-c_{t}^{+})\}-\frac{\overline{\lambda}^{2}(T-t)}{2}$ ,

$\partial_{\epsilon}^{2},Y_{t}^{0,\epsilon}$ $=$ $\gamma^{2}\{k^{2}\Phi(-c_{t}^{-})-2ke^{\eta^{\epsilon}(T-t)}S_{t}^{1}\Phi(-c_{t}^{+})$

$+e^{(2\eta^{\epsilon}+\sigma_{1}^{2})(T-t)}(S_{t}^{1})^{2}\Phi(-c_{t}^{++})\}$ ,

$---10,\epsilon(t)$ $=$ $-\gamma\sigma_{1}e^{\eta^{\epsilon}(T-t)}\Phi(-c_{t}^{+})S_{t}^{1}$ ,

$\partial_{\epsilon 1}^{2-0,\epsilon},--(t)$ $=$ $2\gamma^{2}\sigma_{1}\{-ke^{\eta^{\epsilon}(T-t)}S_{t}^{1}\Phi(-c_{t}^{+})$

$+e^{(2\eta^{\epsilon}+\sigma_{1}^{2})(T-t)}(S_{t}^{1})^{2}\Phi(-c_{t}^{++})\}$

$+2\gamma\sigma_{1}e^{\eta^{\epsilon}(T-t)}\Phi(-c_{t}^{+})S_{t}^{1}$

$\times[\gamma\{k\Phi(-c_{t}^{-})-e^{\eta^{\epsilon}(T-t)}S_{t}^{1}\Phi(-c_{t}^{+})\}-\frac{\overline{\lambda}^{2}(T-t)}{2}]$ ,

where

$\eta^{\epsilon}$ $:=$
$\mu_{1}-\sqrt{1-\epsilon^{2}}\sigma_{1}\sigma_{2}^{-1}(\mu_{2}-r)$ ,

$\Phi(d)$ $:=$ $\int_{-\infty}^{d}\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}dx$ ,

$c_{t}^{-}$ $:=$ $\frac{1}{\sigma_{1}\sqrt{T-t}}\{\log(\frac{S_{t}^{1}}{k})+(\eta^{\epsilon}-\frac{\sigma_{1}^{2}}{2})(T-t)\}$ ,

$c_{t}^{+}$ $:=$ $c_{t}^{-}+\sigma_{1}\sqrt{T-t}$ , and $c_{t}^{++}:=c_{t}^{-}+2\sigma_{1}\sqrt{T-t}$ .
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Abstract.

The Meyer equivalence on an abstract Wiener space states that
the $L^{p}$-norm of square root of the Ornstein-Uhlenbeck operator is
equivalent to $L^{p}$-norm of the Malliavin derivative. We prove the
equivalence in the framework of Orlicz space. We also discuss the
logarithmic Sobolev inequality in $L^{p}$ setting and higher order loga-
rithmic Sobolev inequality.

\S 1. Introduction

Let $(B, H, \mu)$ be an abstract Wiener space: $B$ is a separable real
Banach space, $H$ is a separable real Hilbert space which is embedded
densely and continuously in $B$ and $\mu$ is a Gaussian measure with

$\int_{B}\exp\{\sqrt{-1}B^{*}\langle l, x\rangle_{B}\}\mu(dx)=\exp\{-\frac{1}{2}|l|_{H^{*}}^{2}\}$ , $l$ $\in B^{*}\simeq\rightarrow H^{*}$ .

On an abstract Wiener space, the Ornstein-Uhlenbeck semigroup is de-
fined as

(1) $T_{t}f(x)=\int_{B}f(e^{-t}x+\sqrt{1-e^{-2t}}y)\mu(dy)$ .

The generator of the semigroup $\{T_{t}\}$ is called the Ornstein-Uhlenbeck
operator and we denote it by $L$ . Then the following Meyer equivalence
is well-known: for any $ 1<p<\infty$ , there exists positive constants $C_{1}$

and $C_{2}$ such that

(2) $C_{1}\{||Df||_{p}+||f||_{p}\}\leq||\sqrt{1-L}f||_{p}\leq C_{2}\{||Df||_{p}+||f||_{p}\}$ .
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Here $D$ is the Malliavin $H$-derivation and $||||_{p}$ is the $L^{p}$-norm. The
constants $C_{1}$ and $C_{2}$ depend only on $p$ .

In this paper we show that similar inequalities hold in the framework
of Orlicz space, i.e., the above inequalities hold for the Orlicz norm in

place of $L^{p}$-norm. Typical example we are in mind is $IP\log^{\beta}L$ . As an
application, we discuss the logarithmic Sobolev inequality in IF setting
and higher order logarithmic Sobolev inequality.

\S 2. Orlicz space

In this section, we review the Orlicz space (see, e.g., [1] or [8] for
details). First we need the notion of Young function. Young function is
a function $\Phi$ defined as

(3) $\Phi(x)=\int_{0}^{x}\phi(t)dt$ , $x\geq 0$

where $\phi$ is a non-negative, right continuous, non-decreasing function. If,
in addition, $\phi$ satisfies $\phi(0)=0$ , $\phi(t)>0$ for $t>0$ , $\phi(\infty)=\infty$ , then $\Phi$

is called a nice Young function or $N$-function. Define $\psi$ by

$\psi(u)=\inf\{t;\phi(t)>u\}$ .

$\psi$ is right continuous and non-decreasing. The function $\Psi$ defined by

$\Psi(y)=\int_{0}^{y}\psi(u)du$ , $y\geq 0$

is called a complementary function. The following properties are funda-
mental.

(4) $xy\leq\Phi(x)+\Psi(y)$ ,

(5) $x\phi(x)=\Phi(x)+\Psi(\phi(x))$ .

(4) is called the Young inequality.
The Orlicz space associated with $\Phi$ is defined as follows. Let $(M, m)$

be a measure space and $\Phi$ be a nice Young function. Define a norm $||||_{\Phi}$

by

(6) $||f||_{\Phi}:=\inf\{\lambda>0;\int_{M}\Phi(|f|/\lambda)dm\leq 1\}$ .

$L^{\Phi}(m)$ is the set of all measurable functions $f$ which $satis5^{r}||f||_{\Phi}<\infty$ .
We call $L^{\Phi}(m)$ an Orlicz space. It is a Banach space with the norm
$||||_{\Phi}$ . If $\Phi$ satisfies the $\Delta_{2}$ condition, i.e., there exists a constant $C$ such
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that $\Phi(2x)\leq C\Phi(x)$ , then the dual space is identified with $L^{\Psi}(m)$ , $\Psi$

being the complementary function of $\Phi$ .
We introduce some classes of functions.

Definition 2.1. For non-negative constant $\alpha$ , we define a set of
functions $L(\alpha)$ , $U(\alpha)$ as follows:

(i) $\phi\in L(\alpha)\Leftrightarrow def\alpha\phi(t)\leq t\phi’(t)$ , $\forall t>0$ .

(ii) $\phi\in U(\alpha)\Leftrightarrow tdef\phi’(t)\leq\alpha\phi(t)$ , $\forall t>0$ .

The following inequality for semimartingales is important in our
later argument.

Let $(Z_{t})(t\in[0, \infty])$ be a non-negative submartingale. We assume
that $(Z_{t})$ is right continuous and has left hand limits. By the Doob-
Meyer decomposition theorem, $(Z_{t})$ can be decomposed as

$Z_{t}=M_{t}+A_{t}$

where $(M_{t})$ is a martingale and $(A_{t})$ is an increasing process. We assume
that $(A_{t})$ is continuous and $A_{0}=0$ . If $\Phi\in U(\alpha)$ , then the following
inequality holds (see [4, Theorem VI.99]):

(7) $E[\Phi(A_{\infty})]\leq E[\Phi(\alpha Z_{\infty})]$ .

Further, a generalization of the Doob’s inequality also holds. It
is stated as follows (see [4, Chapter $VI$ , Section 3]). We assume that
$\Phi\in L(\alpha)$ for an $\alpha>1$ . Then, setting

$Z_{t}^{*}:=\sup_{s\leq t}Z_{s}$
, it holds that

(8) $E[\Phi(Z_{\infty}^{*})]\leq E[\Phi(\alpha Z_{\infty})]$ .

From this inequality, we can have the following maximal ergodic inequal-
ity.

(9) $\int_{B}\Phi(\sup_{t\geq 0}|T_{t}f(x)|)\mu(dx)\leq\int_{B}\Phi(\alpha|f(x)|)\mu(dx)$ .

Here $\{T_{t}\}$ is the Ornstein-Uhlenbeck semigroup on an abstract Wiener
space $(B, H, \mu)$ .

\S 3. Littlewood-Paley inequality

Let $(B, H, \mu)$ be an abstract Wiener space and $K$ be a separable
Hilbert space. $\{T_{t}\}$ is the Ornstein-Uhlenbeck semigroup on $L^{p}(E, \mu;K)$

defined by (1). For $\alpha>0$ , set

$T_{t}^{(\alpha)}=e^{-\alpha t}T_{t}$ .
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Then the generator of $\{T_{t}^{(\alpha)}\}$ is $ L-\alpha$ . We further define a semigroup
$\{Q_{t}^{(\alpha)}\}$ by subordination as follows:

$Q_{t}^{(\alpha)}=\int_{0}^{\infty}T_{s}^{(\alpha)}\lambda_{t}(ds)=\int_{0}^{\infty}e^{-\alpha s}T_{s}\lambda_{t}(ds)$ .

Here $\lambda_{t}$ is a probability measure on $[0, \infty)$ whose Laplace transform is
given by

$\int_{0}^{\infty}e^{-\gamma s}\lambda_{t}(ds)=e^{-\sqrt{\gamma}t}$ .

When $\alpha=0$ , $Q_{t}^{(0)}$ is simply denoted by $Q_{t}$ and called the Cauchy
semigroup. For $F\in L^{\Phi}(B, \mu;K)$ , it holds that

$||Q_{t}^{(\alpha)}F||_{\Phi}\leq e^{-\sqrt{\alpha}t}||F||_{\Phi}$

and $\{Q_{t}^{(\alpha)}\}$ is a strongly continuous semigroup on $L^{\Phi}$ . The generator
will be denoted by $-\sqrt{\alpha-L}$ .

We denote by $P(K)$ a set of all functions $f:B\rightarrow K$ which can be
expressed as

$f(x)=\sum_{i}p_{i}(\langle l_{1}, x\rangle)$
, $\ldots$ , $\langle l_{n}, x\rangle)k_{i}$

where $p_{i}$ is a polynomial on $\mathbb{R}^{n}$ and $k_{1}$ , $\ldots$ , $k_{n}\in K$ , $l_{1}$ , $\ldots$ , $l_{n}\in B^{*}$ .
For $f\in P(K)$ , define

$g^{\rightarrow}f(x, t)=|\partial_{t}Q_{t}^{(\alpha)}(x, f)|_{K}$ ,

$g^{\uparrow}f(x, t)=|DQ_{t}^{(\alpha)}(x, f)|_{HS}$ ,

$gf(x, t)=\sqrt{g^{\rightarrow}f(x,t)^{2}+g\uparrow f(x,t)^{2}}$ .

Here $Q_{a}^{(\alpha)}(x, f)=Q_{a}^{(\alpha)}f(x)$ and the norm $||_{HS}$ denotes the Hilbert-
Schmidt norm, $g^{\rightarrow}f$ , $g^{\uparrow}f$ , $gf$ all depend on $\alpha$ but we fix it throughout
the argument and suppress it for simplicity. We further define

$G^{\rightarrow}f(x)=\{\int_{0}^{\infty}tg^{\rightarrow}f(x, t)^{2}dt\}^{1/2}$ ,

$G^{\uparrow}f(x)=\{\int_{0}^{\infty}tg^{\uparrow}f(x, t)^{2}dt\}^{1/2}$ ,

$Gf(x)=\{\int_{0}^{\infty}tgf(x, t)^{2}dt\}^{1/2}$

We call them Littlewood-Paley $G$-functions.
Our aim in this section is to prove the following theorem.
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Theorem 3.1. Assume that $\Phi\in L(\alpha)\cap U(\beta)$ for constants $1<$

$\alpha<\beta$ . Further assume that $\phi$ is either convex or concave. Then we
have

(10) $||\Phi(Gf)||_{1}\sim<||\Phi(|f|)||_{1}$ ,

(11) $||\Phi(|f|)||_{1}\leq||\Phi(G^{\rightarrow}f)||_{1}$ .

In the above theorem, $A\sim<B$ stands for $A\leq CB$ for a positive
constant $C$ that is independent of $f$ . We use this convention in the
sequel without mentioning.

We give a probabilistic proof. To do this, we take the Ornstein-
Uhlenbeck process $(X_{t})$ on $B$ , i.e., the diffusion process generated by
$L$ . We also take a process $(B_{t})$ on $\mathbb{R}$ generated by $\frac{d^{2}}{da^{2}}$ . We assume
that the initial distribution of $(X_{t})$ is the stationary measure $\mu$ so that
the process becomes stationary. We denote the starting point of the
Brownian motion $(B_{t})$ by N. $E_{N}$ stands for the integration with respect
to this measure. Later we let $ N\rightarrow\infty$ .

Now, for $f\in P(K)$ , set $u(x, a)=Q_{a}^{(\alpha)}(x, f)$ . Then $u(x, a)$ satisfies

(12) $\{$

$u(x, 0)=f(x)$

$L_{x}u(x, a)+\partial_{a}^{2}u(x, a)-\alpha u(x, a)=0$ .

Define a stopping time $\tau$ by

$\tau=\inf\{t>0|B_{t}=0\}$ .

Then we can think of $u(X_{t}, B_{t})$ for $ t\leq\tau$ . Set

$M_{t}=Q_{B_{t\wedge\tau}}(X_{t\wedge\tau}, f)-\alpha\int_{0}^{t\wedge\tau}Q_{B_{3}}(X_{s}, f)ds$

$=u(X_{t\wedge\tau}, B_{t\wedge\tau})-\alpha\int_{0}^{t\wedge\tau}Q_{B_{s}}(X_{s}, f)ds$ .

Then $(M_{t})$ is a martingale with $M_{0}=Q_{B_{0}}f(X_{0})$ . The quadratic varia-
tion is given as

(13) $\langle M\rangle_{t}=2\int_{0}^{t\wedge\tau}gf^{2}(X_{s}, B_{s})ds$ .

Therefore we have

(14) $ d|u|^{2}=2(u, dM)+2\alpha|u|^{2}dt+\langle dM, dM\rangle$

$=2(u, dM)+(2\alpha|u|^{2}+2gf^{2})dt$
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Now set
$Z_{t}=|u(X_{t\wedge\tau}, B_{t\wedge\tau})|^{2}$ .

$(Z_{t})$ is a non-negative submartingale. To compute $\Phi(\sqrt{Z_{t}})$ , we approx-
imate it as follows. Take $any\in>0$ and set $F(x)=\Phi(\sqrt{x+\in})$ . Recall
that $\phi$ is either convex or concave. We divide into tow cases.

$\frac{(i)\phi isconcave}{Weneedth}.e$

following proposition.

Proposition 3.2. Assume $\Phi\in L(\alpha)(\alpha>1)$ . Then it holds that,

for $u$ , $v\geq 0$ ,

(15) $\Phi(v)\leq\frac{1}{\alpha-1}(\frac{1}{2}\phi’(u)v^{2}+\Phi(u))$ .

Proof From the assumption, $\alpha\Phi(x)\leq x\phi(x)$ holds. Since $\phi$ is
concave, $\Phi(x)\geq\frac{1}{2}x\phi(x)$ which leads to $\alpha\leq 2$ . Hence (15) clearly holds
when $u\geq v$ .

If $v\geq u$ , we have

$|\{(x, y);0\leq x\leq u, \phi(x)\leq y\leq\phi(u)\}|\leq\frac{1}{2}u\phi(u)$

$|\{(x, y);0\leq x\leq u, \phi(u)\leq y\leq\phi(v)\}|\leq u(\phi(v)-\phi(u))\leq u\phi’(u)(v-u)$

$|\{(x, y);u\leq x\leq v, \phi(x)\leq y\leq\phi(v)\}|\leq\frac{1}{2}(v-u)^{2}\phi’(u)$ .

These are easily obtained by observing the graph.
Summing up three terms of the left-hand side and $\Phi(v)$ , we have

$v\phi(v)$ . Therefore

$\frac{1}{2}u\phi(u)+u\phi’(u)(v-u)+\frac{1}{2}(v-u)^{2}\phi’(u)+\Phi(v)\geq v\phi(v)\geq\alpha\Phi(v)$ .

Hence we have

$(\alpha-1)\Phi(v)\leq\frac{1}{2}u\phi(u)+\phi’(u)(v-u)(u+\frac{1}{2}v-\frac{1}{2}u)$

$=\frac{1}{2}u\phi(u)+\frac{1}{2}\phi’(u)(v^{2}-u^{2})$

$\leq\Phi(u)+\frac{1}{2}\phi’(u)v^{2}$

which is the desired result. Q.E.D.

The derivatives of $F(x)=\Phi(\sqrt{x+\in})$ are

$F’(x)=\Phi’(\sqrt{x+\epsilon})\frac{1}{2\sqrt{x+\in}}$ ,
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$F’’(x)=\Phi’’(\sqrt{x+\in})\frac{1}{4(x+\in)}+\Phi’(\sqrt{x+\in})\frac{1}{2}(-\frac{1}{2})\frac{1}{\sqrt{x+\in}^{3}}$ .

By the It\^o formula,

$d\Phi(\sqrt{Z_{t}+\in})=\frac{\Phi’(\sqrt{Z_{t}+\in})}{2\sqrt{Z_{t}+\in}}dZ_{t}$

$+\frac{1}{2}\{\frac{\Phi’’(\sqrt{Z_{t}+\in})}{4(Z_{t}+\in)}-\frac{1}{4}\frac{\Phi’(\sqrt{Z_{t}+\in})}{\sqrt{Z_{t}+\in}^{3}}\}\langle dZ, dZ\rangle$

$=\frac{\phi(\sqrt{|u|^{2}+\in})}{2\sqrt{|u|^{2}+\in}}\{2(u, dM)+2(\alpha|u|^{2}+gf^{2})dt\}$

$+\frac{1}{2}\{\frac{\phi’(\sqrt{|u|^{2}+\in})}{4(|u|^{2}+\in)}-\frac{1}{4}\frac{\phi(\sqrt{|u|^{2}+\in})}{\sqrt{|u|^{2}+\in}^{3}}\}\langle dZ, dZ\rangle$

$=\frac{\phi(\sqrt{|u|^{2}+\in})}{\sqrt{|u|^{2}+\in}}(u, dM)+\frac{\phi(\sqrt{|u|^{2}+\in})}{\sqrt{|u|^{2}+\in}}(\alpha|u|^{2}+gf^{2})dt$

$+\frac{1}{8}\frac{1}{|u|^{2}+\in}\{\phi’(\sqrt{|u|^{2}+\in})-\frac{\phi(\sqrt{|u|^{2}+\in})}{\sqrt{|u|^{2}+\in}}\}\langle dZ, dZ\rangle$ .

Now we note $\langle dZ, dZ\rangle\leq 4|u|^{2}\langle dM, dM\rangle=8|u|^{2}gf^{2}dt$ . Further
$\phi’(t)\leq\phi(t)/t$ since $\phi$ is concave. We therefore have

$\frac{\phi(\sqrt{|u|^{2}+\in})}{\sqrt{|u|^{2}+\in}}gf^{2}dt+\frac{1}{8}\frac{1}{|u|^{2}+\in}\{\phi’(\sqrt{|u|^{2}+\in})-\frac{\phi(\sqrt{|u|^{2}+\in})}{\sqrt{|u|^{2}+\in}}\}\langle dZ, dZ\rangle$

$\geq\frac{\phi(\sqrt{|u|^{2}+\in})}{\sqrt{|u|^{2}+\in}}gf^{2}dt+\{\phi’(\sqrt{|u|^{2}+\in})-\frac{\phi(\sqrt{|u|^{2}+\in})}{\sqrt{|u|^{2}+\in}}\}gf^{2}dt$

$=\phi’(\sqrt{|u|^{2}+\in})gf^{2}dt$ .

Integrating ffom 0 to $\tau$ and taking expectation, we have

(16) $||\Phi(\sqrt{|f|^{2}+\in})||_{1}\geq E_{N}[\int_{0}^{\tau}\phi’(\sqrt{|u|^{2}+\in})gf^{2}dt]$ .

We will give an estimate ffom below of the right-hand side. We note
that $f^{*}(x):=\sup_{t\geq 0}|T_{t}f(x)|\geq\sup_{a\geq 0}|u(x, a)|$ .

$E_{N}[\int_{0}^{\tau}\phi’(\sqrt{|u|^{2}+\in})gf^{2}dt]=||\int_{0}^{\infty}\phi’(\sqrt{|u|^{2}+\in})gf^{2}(\cdot, a)(a\wedge N)da||_{1}$

$\geq||\int_{0}^{\infty}\phi’(\sqrt{f^{*2}+\in})gf^{2}(\cdot, a)(a\Lambda N)da||_{1}$
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( $\cdot.\cdot\phi’$ is non-increasing)

Combining this with (16) and letting $ N\rightarrow\infty$

$||\Phi(\sqrt{|f|^{2}+\in})||_{1}\geq||\int_{0}^{\infty}\phi’(\sqrt{f^{*2}+\in})gf^{2}(\cdot, a)ada||_{1}$

$=||\phi’(\sqrt{f^{*2}+\in})Gf^{2}||_{1}$

Now we use the inequality $\Phi(v)\leq\frac{1}{\alpha-1}(\frac{1}{2}\phi’(u)v^{2}+\Phi(u))$ in Proposi-
tion 3.2 and get

$||\Phi(Gf)||_{1}\sim<||\phi’(\sqrt{f^{*2}+\in})Gf^{2}||_{1}+||\Phi(\sqrt{f^{*2}+\in})||_{1}$

$\leq||\Phi(\sqrt{|f|^{2}+\in})||_{1}+||\Phi(\sqrt{f^{*2}+\in})||_{1}$ .

$Letting\in\rightarrow 0$ and using the maximal ergodic inequality (9), we have

$||\Phi(Gf)||_{1}\sim<||\Phi(|f|)||_{1}+||\Phi(f^{*})||_{1}\sim<||\Phi(|f|)||_{1}$ .

This completes the proof in the case that $\phi$ is concave.

$\underline{(ii)\phi}$is convex.

Set $\tilde{\Phi}(x)=\Phi(\sqrt{x})$ . Then $\tilde{\Phi}$ is convex. In fact, by differentiating,
we have

$\frac{d}{dx}\Phi(\sqrt{x})=\Phi’(\sqrt{x})\frac{1}{2\sqrt{x}}=\frac{\phi(\sqrt{x})}{2\sqrt{x}}$ .

The function is increasing since $\phi$ is convex and so the convexity of $\overline{\Phi}$

follows. Further $\tilde{\Phi}\in U(\alpha/2)$ since

$\frac{x\overline{\Phi}’(x)}{\overline{\Phi}(x)}=\frac{x\Phi’(\sqrt{x})}{2\sqrt{x}\Phi(\sqrt{x})}=\frac{\sqrt{x}\Phi’(\sqrt{x})}{2\Phi(\sqrt{x})}$ .

The submartingale $Z_{t}=|u(X_{t\wedge\tau}, B_{t\wedge\tau})|^{2}$ is decomposed as a sum
of a martingale and an increasing process as in (14). By using (7), we
get

(17) $E_{N}[\overline{\Phi}(\int_{0}^{\tau}gf(X_{s}, B_{s})^{2}ds)]\leq E_{N}[\overline{\Phi}(Z_{\infty})]=E_{N}[\overline{\Phi}(|f(X_{\tau})|^{2})]$

$=E_{N}[\Phi(|f(X_{\tau})|)]=||\Phi(|f|)||_{1}$

Now we introduce $H$-functions as follows.

$H^{\rightarrow}f(x)=\{\int_{0}^{\infty}tQ_{t}g^{\rightarrow}f(x, t)^{2}dt\}^{1/2}$ ,
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$H^{\uparrow}f(x)=\{\int_{0}^{\infty}tQ_{t}g^{\uparrow}f(x, t)^{2}dt\}^{1/2}$ ,

$Hf(x)=\{\int_{0}^{\infty}tQ_{t}gf(x, t)^{2}dt\}^{1/2}$

Then we have

$||\Phi(Hf)||_{1}=||\tilde{\Phi}(Hf^{2})||_{1}$

$=\lim_{N\rightarrow\infty}||\tilde{\Phi}(\int_{0}^{\infty}Q_{a}gf(\cdot, a)^{2}(a\wedge N)da)||_{1}$

$=\lim_{N\rightarrow\infty}\int_{B}\tilde{\Phi}(E_{N}[\int_{0}^{\tau}gf^{2}(X_{t}, B_{t})dt|X_{\tau}=x])\mu(dx)$

$\leq\lim_{N\rightarrow\infty}\int_{B}E_{N}[\overline{\Phi}(\int_{0}^{\tau}gf^{2}(X_{t}, B_{t})dt)|X_{\tau}=x])\mu(dx)$

$\leq\lim_{N\rightarrow\infty}E_{N}[\overline{\Phi}(\int_{0}^{\tau}gf^{2}(X_{t}, B_{t})dt)]$

$\leq||\Phi(|f|)||_{1}$ . $(\cdot.\cdot(17))$

It is well-known that $Gf$ is dominated by $Hf$ (see [7]) and so (10)
follows. (11) can be shown by a standard duality argument. This com-
pletes the proof of Theorem 3.1.

Using this theorem, the Meyer equivalence in Orlicz space, which
is of our main interest, follows easily. In fact, the same proof as in $L^{p}$

setting works (see e.g., [9]).

Theorem 3.3. Assume that $\Phi\in L(\alpha)\cap U(\beta)$ for $ 1<\alpha<\beta$ and
that $\phi$ is either convex or concave. Then there exist positive constants
$C_{1}$ and $C_{2}$ such that

(18) $C_{1}\{||Df||_{\Phi}+||f||_{\Phi}\}\leq||\sqrt{1-L}f||_{\Phi}\leq C_{2}\{||Df||_{\Phi}+||f||_{\Phi}\}$ .

\S 4. Examples

We give some example of nice Young functions that satisfy the con-
dition of Theorem 3.3. For indicies $p>1$ , $\beta\in \mathbb{R}$ , $k\geq 1$ , we set

(19) $\phi_{p,\beta,k}(x)=x^{p-1}\log^{p\beta}(k+x)$ , $x\geq 0$

and define

(20) $\Phi_{p,\beta,k}(x)=\int_{0}^{x}\phi_{p,\beta,k}(y)dy$ .
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We regards this as a Young function. The function does not satisfy the
condition of Young function in general since $\beta$ might be negative. We
see when it is a Young function. To avoid complexity, we simply denote
$\phi$ and $\Phi$ in place of $\phi_{p,\beta,k}$ and $\Phi_{p,\beta,k}$ , respectively. Differentiating $\phi$ , we
have

$\phi’(x)=(p-1)x^{p-2}\log^{p\beta}(k+x)+p\beta x^{p-1}\{\log^{p\beta-1}(k+x)\}\frac{1}{k+x}$

$=x^{p-2}\log^{p\beta}(k+x)\{p-1+p\beta\frac{x}{(k+x)1og(k+x)}\}$ .

We look for the condition so that $\phi’$ is positive. To do this, set

(21) $f(x)=\frac{x}{(k+x)1og(k+x)}$ .

If $k=1$ , $f$ takes its maximum 1 at $x=0$ . If $k>1$ , $f$ takes its maximum
at $ x=\alpha$ where $\alpha$ is the solution of $k\log(k+x)-x=0$ . We can see
that $f(\alpha)\leq\frac{l}{1+1ogk}$ . Therefore, in all cases of $k$ , it holds that

(22) $0\leq\frac{x}{(k+x)1og(k+x)}\leq\frac{1}{1+\log k}$ .

Now it is easy to see that $\Phi$ is a nice Young function if $ p(1+\frac{\beta}{1+\log k})\geq$

$1$ . Further we easily have the following proposition.

Proposition 4.1. $\phi$ satisfies following inequalities:

(23) $(p-1)\phi(x)\leq x\phi’(x)\leq(p-1+\frac{p\beta}{1+1ogk})\phi(x)$ , for $\beta\geq 0$ ,

(24) $(p-1+\frac{p\beta}{1+1ogk})\phi(x)\leq x\phi’(x)\leq(p-1)\phi(x)$ , for $\beta<0$ .

Similar inequalities hold for $\Phi$ . To see this, we need the following
proposition.

Proposition 4.2. For positive constant $\alpha$ , it holds that

(i) if $\phi\in L(\alpha)$ , then $\Phi\in L(\alpha+1)$ ,
(ii) if $\phi\in U(\alpha)$ , then $\Phi\in U(\alpha+1)$ .

Proof. Suppose $\phi\in L(\alpha)$ , i.e., $\alpha\phi(t)\leq t\phi’(t)$ . By integrating both
hands, we have

(25) $\alpha\Phi(x)\leq\int_{0}^{x}t\phi’(t)dt$ .
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On the other hand, since $(t\phi(t))’=\phi(t)+t\phi’(t)$ , we have

$x\phi(x)=\int_{0}^{x}\{\phi(t)+t\phi’(t)\}dt$

and hence

$x\phi(x)-\Phi(x)=\int_{0}^{x}t\phi’(t)dt$ .

This combined with (25) leads

$x\phi(x)\geq(\alpha+1)\Phi(x)$ .

(ii) can be shown similarly. Q.E.D.

Now the following proposition easily follows.

Proposition 4.3. The following inequalities hold:

(26) $p\Phi(x)\leq x\Phi’(x)\leq p(1+\frac{\beta}{1+\log k})\Phi(x)$ , $(\beta\geq 0)$ ,

(27) $p(1+\frac{\beta}{1+\log k})\Phi(x)\leq x\Phi’(x)\leq p\Phi(x)$ , $(\beta<0)$ .

Lastly, we will see the asymptotic behavior of the complementary

function $\Psi$ . We use the notation $f\sim g$ when $\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=1$ holds.

Proposition 4.4. Assume $p>1$ and let $q$ be the conjugate exponent

of $p:\frac{1}{p}+\frac{1}{q}=1$ . The it hold: that

(28) $p\Phi(x)\sim x^{p}\log^{p\beta}x$ ,

(29) $(q-1)^{q\beta}q\Psi(x)\sim x^{q}\log^{-q\beta}x$ .

Proof. By the l’H\^opital theorem, we have

$\lim_{x\rightarrow\infty}\frac{p\Phi(x)}{x^{p}1og^{p\beta}x}=\lim_{x\rightarrow\infty}\frac{p\phi(x)}{px^{p-1}\log^{p\beta}x+x^{p}p\beta(\log^{p\beta}x)/x}$

$=\lim_{x\rightarrow\infty}\mathring{\frac{px^{p-1}1gp\beta(k+x)}{px^{p-1}1og^{p\beta}x+p\beta x^{p-1}1og^{p\beta-1}x}}$

$=\lim_{x\rightarrow\infty}\frac{1og^{p\beta}(k+x)}{\log^{p\beta}x+\beta 1og^{p\beta-1}x}$

$=1$

which shows (28).
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As for $\Psi$ , we have, by the l’H\^opital theorem,

$\lim\underline{q\Psi(x)}$

$x\rightarrow\infty x^{q}\log^{-q\beta}x$

$=\lim_{x\rightarrow\infty}\frac{q\Psi(\phi(x))}{\phi(x)^{q}1og^{-q\beta}\phi(x)}$

$=\lim\underline{q\Psi’(\phi(x))\phi’(x)}$
$x\rightarrow\infty q\phi(x)^{q-1}\phi’(x)\log^{-q\beta}\phi(x)+\phi(x)^{q}(-q\beta)\{\log^{-q\beta-1}\phi(x)\}\phi’(x)/\phi(x)$

$=\lim_{x\rightarrow\infty}\frac{x}{\phi(x)^{q-1}\log^{-q\beta}\phi(x)-\beta\phi(x)^{q-1}\log^{-q\beta-1}\phi(x)}$

$=\lim_{x\rightarrow\infty}\frac{x}{\phi(x)^{q-1}\log^{-q\beta}\phi(x)(1-\beta/\log\phi(x))}$

$=\lim_{x\rightarrow\infty}\frac{x}{\phi(x)^{q-1}1og^{-q\beta}\phi(x)}$

$=\lim_{x\rightarrow\infty}\frac{x}{\{x^{p-1}\log^{p\beta}(k+x)\}^{q-1}1og^{-q\beta}(x^{p-1}\log^{p\beta}(k+x))}$

$=\lim_{x\rightarrow\infty}\frac{x}{x^{(p-1)(q-1)}\log^{p\beta(q-1)}(k+x)\{(p-1)\log x+p\beta\log\log(k+x)\}^{-q\beta}}$

$=\lim_{x\rightarrow\infty}\frac{\{(p-1)1ogx+p\beta 1og\log(k+x)\}^{q\beta}}{\log^{p\beta(q-1)}(k+x)}$ $(\cdot.\cdot(p-1)(q-1)=1)$

$=\lim_{x\rightarrow\infty}\{\frac{\{(p-1)\log x+p\beta 1og\log(k+x)}{1og(k+x)}\}^{q\beta}$ $(\cdot.\cdot q=p(q-1))$

$=(p-1)^{q\beta}$

which shows (29). Q.E.D.

We denotes the Orlicz space $L^{\Phi}$ associated with $\Phi$ by $L^{p}\log^{p\beta}L$ .
We do not specify $k$ since it does not affect the asymptotic behavior at
infinity. Since the Wiener measure is finite, $L^{p}\log^{p\beta}L$ is independent
of $k$ . The above theorem means that the dual space of $L^{p}\log^{p\beta}L$ is
$L^{q}\log^{-q\beta}L$ .

\S 5. Logarithmic Sobolev inequality

The logarithmic Sobolev inequality in $L^{p}$ setting was discussed by
D. Bakry-P. A. Meyer [3] and higher order Logarithmic Sobolev inequal-
ity was discussed by G. F. Feissner [5] and R. A. Adams [2]. They all
used the interpolation theorem. Here we take a different approach.
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The following logarithmic Sobolev inequality holds for the Ornstein-
Uhlenbeck process.

$E[f^{2}\log(f^{2}/||f||_{2}^{2})]\leq 2E[|Df|^{2}]$ .

Here $E[]$ stands for the integration with respect to $\mu$ . Hereafter we
use this notation. Recall that $\int_{B}(Df, Dg)_{H^{*}}d\mu$ is the Dirichlet form
associated with the Ornstein-Uhlenbeck process. We remark that the
following argument works for the diffusion Dirichlet form satisfying the
logarithmic Sobolev inequality if we assume the Dirichlet form is of the
gradient type.

We introduce a new Young function. Set

(30) $\theta(x)=\{x^{2}\log(e+x^{2})\}^{(p-2)/4}\log^{p\beta/4}(k+x^{2}\log(e+x))$

and define

(31) $\Theta(x)=\int_{0}^{x}\theta(y)dy$ .

Then we have the following proposition.

Proposition 5.1. For sufficient large $k$ if necessary, there exists $a$

positive constant $K$ such that

(32) $x^{p}\log^{p/2}(e+x^{2})\log^{p\beta/2}(k+x^{2}\log(e+x^{2}))$

$\leq K\Theta(x)^{2}\log(e+O-(x)^{2})$ .

Proof. We divide the proof into two cases,

(a) $\beta\geq 0$ , $k=1$ .

Let us see the asymptotic behavior as $x\rightarrow 0$ .

$LHS\sim x^{p}\cdot x^{(p\beta/2)2}=x^{p(1+\beta)}$ .

On the other hand,

$\theta(x)\sim x^{(p-2)/2+(p\beta)/2}=x^{p(\beta+1)/2-1}$ .

and hence

$\Theta(x)\sim\frac{2}{p(\beta+1)}x^{p(\beta+1)/2}$

$\Theta(x)^{2}\sim\frac{4}{p^{2}(\beta+1)^{2}}x^{p(\beta+1)}$ .

Thus both hands have the same asymptotic behavior.
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As $ x\rightarrow\infty$ ,

$LHS\sim x^{p}2^{p/2}(\log^{p/2}x)2^{p\beta/2}\log^{p\beta/2}x=2^{p(\beta+1)/2}x^{p}\log^{p(\beta+1)/2}x$ .

On the other hand,

$\theta(x)\sim x^{(p-2)/2}2^{(p-2)/4}(\log^{(p-2)/4}x)2^{p\beta/4}\log^{p\beta/4}x$

$\ominus(x)\sim(2/p)2^{(p+p\beta-2)/4}x^{p/2}\log^{(p+p\beta-2)/4}x$

$\ominus(x)^{2}\log(e+\Theta(x)^{2})\sim p^{-2}2^{(p+p\beta+2)/2}x^{p}(\log^{(p+p\beta-2)/2}x)p\log x$

$=p^{-1}2^{(p+p\beta+2)/2}x^{p}\log^{(p+p\beta)/2}x$ .

Hence they have the same asymptotic behavior,

(b) $\beta<0$ and large $k$ .

The asymptotic behavior at $ x=\infty$ can be obtained similarly as in
the case $\beta\geq 0$ .

As $x\rightarrow 0$ , $LHS\sim x^{p}$ is clear. Further we have

$\theta(x)\sim x^{(p-2)/2}$

$\ominus(x)\sim\frac{2}{p}x^{p/2}$

$\Theta(x)^{2}\log(e+\Theta(x)^{2})\sim\frac{4}{p^{2}}x^{p}$

Thus we have the desired result. Q.E.D.

We recall the following fact. Let $U$ and $V$ be a non-negative func-
tions on a measure space $(M, m)$ . Assume that

$\int_{M}U\phi(U)dm<\infty$ ,

$\int_{M}U\phi(U)dm\leq\int_{M}V\phi(U)dm+C$ .

Then it follows that

(33) $\int_{M}\Phi(U)dm\leq\int_{M}\Phi(V)dm+C$ .

For the proof, see [4, Lemma VI.98]. Now we have the following theorem.
In the sequel, we denote by $\Phi_{p,\beta}$ in place of $\Phi_{p,\beta,k}$ because the index $k$

is not essential.
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Proposition 5.2. For $p>2$ , $\beta\in \mathbb{R}$ , there exists a positive constant
$C$ such that
(34)

$E[\Phi_{p,(\beta+1)/2}(|f|)]\leq CE[\Phi_{p,(1+\beta)/2-(1/p)}(|f|)]+CE[\Phi_{p,\beta/2}(|Df|)]$ .

Proof. Set $g=\sqrt{O(|f|)^{2}+e}$ . Then

$Dg=\frac{2\Theta(|f|)\Theta’(|f|)D|f|}{2\sqrt{O(|f|)^{2}+e}}$

and hence $|Dg|\leq\theta(|f|)|Df|$ . Now, by using the logarithmic Sobolev
inequality

$E[g^{2}\log(g^{2}/||g||_{2}^{2})]\leq 2E[|Dg|^{2}]$ ,

we have

$E[\{\Theta(|f|)^{2}+e\}\log(e+\ominus(|f|)^{2})]$

$\leq E[\Theta(|f|)^{2}+e]\log E[e+\ominus(|f|)^{2}]$

$+2E[|Df|^{2}\{|f|^{2}\log(e+|f|^{2})\}^{(p-2)/2}\log^{p\beta/2}(k+|f|^{2}\log(e+|f|^{2}))]$ ,

and

$E[\Theta(|f|)^{2}\log(e+\ominus(|f|)^{2})]$

$\leq E[\ominus(|f|)^{2}]\log E[e+\Theta(|f|)^{2}]$

$+2E[|Df|^{2}\{|f|^{2}\log(e+|f|^{2})\}^{(p-2)/2}\log^{p\beta/2}(k+|f|^{2}\log(e+|f|^{2}))]$ .

We set

$\phi(x)=\phi_{p/2,\beta,k}(x)=x^{(p/2)-1}\log^{p\beta/2}(k+x)$ ,

$U=|f|^{2}\log(e+|f|^{2})$ .

Then

$U\phi(U)=|f|^{2}\log(e+|f|^{2})$

$\times\{|f|^{2}\log(e+|f|^{2})\}^{(p/2)-1}\log^{p\beta/2}(k+|f|^{2}\log(e+|f|^{2}))$

$=|f|^{p}\log^{p/2}(e+|f|^{2})\log^{p\beta/2}(k+|f|^{2}\log(e+|f|^{2}))$

$\leq K\ominus(|f|)^{2}\log(e+\Theta(|f|)^{2})$ . $(\cdot.\cdot(32))$

Combining this with the previous result, we have

$K^{-1}E[U\phi(U)]\leq E[e+\ominus(|f|)^{2}]\log E[e+\Theta(|f|)^{2}]+2E[|Df|^{2}\phi(U)]$ .
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Now, by (33), it follows that

$E[\Phi(U)]\leq KE[e+\ominus(|f|)^{2}]\log E[e+\Theta(|f|)^{2}]+2KE[\Phi(|Df|^{2})]$ .

Here $\Phi$ is the integral of $\phi$ . Since $\Phi=\Phi_{p/2,\beta}$ ,

$\Phi(x^{2})\leq c_{1}x^{2}\phi(x^{2})$

$\leq c_{1}x^{2}(x^{2})^{(p/2)-1}\log^{p\beta/2}(k+x^{2})$

$\leq c_{1}x^{p}\log^{p\beta/2}(k+x^{2})$

$\leq c_{2}\Phi_{p,\beta/2}(x)$ .

Further

$\Phi(x^{2}\log(e+x^{2}))\geq c_{3}x^{2}\log(e+x^{2})\phi(x^{2}\log(e+x^{2}))$

$=c_{3}x^{2}\log(e+x^{2})\{x^{2}\log(e+x^{2})\}^{(p/2)-1}$

$\times\log^{p\beta/2}(k+x^{2}\log(e+x^{2}))$

$=c_{3}x^{p}\log^{p/2}(e+x^{2})\log^{p\beta/2}(k+x^{2}\log(e+x^{2}))$

$\geq c_{4}x^{p}\log^{p/2}(e+x)\log^{p\beta/2}(k+x)$

$\geq c_{5}x^{p}\log^{p(1+\beta)/2}(k+x)$

$\geq c_{6}\Phi_{p,(\beta+1)/2}(x)$

and

$\ominus(x)^{2}\leq x^{2}\theta(x)^{2}$

$\leq x^{2}\{x^{2}\log(e+x^{2})\}^{(p-2)/2}\log^{p\beta/2}(k+x^{2}\log(e+x))$

$\leq c_{7}x^{p}\log^{(p-2)/2}(e+x)\log^{p\beta/2}(k+x)$

$\leq c_{7}x^{p}\log^{(p+p\beta-2)/2}(k+x)$

$\leq c_{8}\Phi_{p,(1+\beta)/2-(1/p)}(x)$ .

Thus we have eventually obtained

$E[\Phi_{p,(\beta+1)/2}(|f|)]\leq CE[\Phi_{p,(1+\beta)/2-(1/p)}(|f|)]+CE[\Phi_{p,\beta/2}(|Df|)]$ .

This completes the proof. Q.E.D.

If $p=2$ and $\beta\geq 0$ , the above proof works as well in this case. We
only state the result.

Proposition 5.3. For $p=2$ , $\beta\geq 0$ , there exists a positive constant
$C$ such that

(35) $E[\Phi_{2,(\beta+1)/2}(|f|)]\leq CE[\Phi_{2,\beta/2}(|f|)]+CE[\Phi_{p,\beta/2}(|Df|)]$ .
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In Section 3, we showed that the right hand side of (34) is equivalent
to $E[\Phi_{p,\beta/2}(\sqrt{1-L}f)]$ . Therefore we easily get the following theorem.

Theorem 5.4. For $p>1$ , $\beta\geq 0$ , the following map is continuous:

(36) $\sqrt{1-L}^{-1}$ : $L^{p}\log^{p\beta}L\rightarrow L^{p}\log^{p(\beta+1/2)}L$ .

Recall that the dual space of $L^{p}\log^{p\beta}$ is $L^{q}\log^{-q\beta}L$ (see Proposi-
tion 4.4). Hence, when $1<p<2$ , the above equation (36) is shown by

the duality. By iterating the map $\sqrt{1-L}^{-1}$ , we can have the continuity

of $(1-L)^{-1}$ from $L^{p}\log^{p\beta}L$ to $L^{p}\log^{p(\beta+1)}L$ .
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Some Comments about It\^o’s Construction Procedure

Daniel W. Stroock

For K. It\^o on his 88th birthday

Abstract.

This article reviews It\^o’s procedure for constructing the Markov
process generated by variable coefficient L\’evy-Khinchine operators.
In particular, it examines conditions under which It\^o’s procedure suc-
ceeds but more analytic procedures appear to fail.

\S 0 Introduction

In his famous memoir [1], It\^o dealt with the construction of Markov
processes corresponding to variable coefficient L\’evy-Khinchine opera-
tors. His method rests on the ability to represent of the action of L\’evy-

Khinchine operator $L$ with diffusion coefficient $x\sim a(x)$ , driff coefficient
$x$ $\sim b(x)$ , and L\’evy measure $x\sim M(x, \cdot)$ on a $\varphi\in C_{c}^{2}(\mathbb{R}^{7b};\mathbb{R})$ in the
form

$L\varphi(x)=\frac{1}{2}\sum_{i,,,j=1}^{n}(\sigma(x)\sigma(x)^{T})_{ij}\partial_{i}\partial_{j}\varphi(x)+\sum_{i=1}^{n}c(x)_{i}\partial_{i}\varphi(x)$

(0.1) $+\int_{\mathbb{R}^{n}\backslash \{0\}}(\varphi(x+F(x, y))-\varphi(x)$

$-1_{[0,1]}(|y|)(F(x, y),$ $grad_{x}\varphi)_{\mathbb{R}^{n}})M(dy)$ ,

for appropriate functions $\sigma$ : $\mathbb{R}^{n}\rightarrow Hom(\mathbb{R}^{n};\mathbb{R}^{n})$ , $c$ : $\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ ,
$F$ : $\mathbb{R}^{7\iota}\times \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ , and L\’evy measure $M$ . In order for his method to
have a chance of working, these functions must be at least (Borel) mea-
surable, and, in practice, they must be much better than that. Indeed,
apart from refinements (cf. [6]), which are important but of restricted
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applicability, what one needs is that $\sigma$ and $c$ be uniformly Lipschitz
continuous and that $F$ satisfy conditions of the form:

$\lim_{r\searrow 0}\sup_{x\in \mathbb{R}^{n}}\frac{1}{1+|x|^{2}}\int_{0<|y|\leq r}|F(x, y)|^{2}\frac{dy}{|y|^{n+1}}=0$

(0.2) $\sup_{x\in \mathbb{R}^{n}}\frac{1}{1+|x|^{2}}\int_{0<|y|\leq R}|F(x, y)|^{2}\frac{dy}{|y|^{n+1}}<\infty$

$\sup_{x_{2}\neq x_{1}}\frac{1}{|x_{2}-x_{1}|^{2}}\int_{0<|y|\leq R}|F(x_{2}, y)-F(x_{1}, y)|^{2}\frac{dy}{|y|^{n+1}}<\infty$

for each $R\in(0, \infty)$ . Under these conditions it is possible to carry out
(cf. \S 3.1 and \S 4.1 in [3]) It\^o’s procedure for constructing the Markov

process corresponding to $ x\wedge$ $(a(x), b(x)$ , $M(x. \cdot))$ by transforming the
paths of the L\’evy process whose continuous part is standard Brownian
motion and whose L\’evy part is the symmetric Cauchy process whose

L\’evy measure is $M_{0}(dy)=1_{\mathbb{R}^{n}\backslash \{0\}}(y)\frac{dy}{|y|^{n+1}}$ .

Assuming that $x\sim a(x)$ , $x\sim b(x)$ , and $x\sim M(x, \cdot)$ are mea-
surable, it is always possible (cf. 3.2, and especially Theorem 3.2.5, in
[3] $)$ to make measurable choices of $ x\sim\sigma$ and $(x, y)\sim F(x, y)$ so that
(0.1) holds. In addition, it is well-known (cf. 3.2.1 in [3]) that the non-
negative definite, symmetric square root of $x\sim a(x)$ will be uniformly
Lipschitz if either $x\sim a(x)$ is uniformly Lipschitz and uniformly pos-
itive definite or $a$ and its second derivatives $a$ are uniformly bounded.
On the other hand, it is much less clear what smoothness properties of
$x\sim M(x, \cdot)$ will guarantee that $F$ can be chosen so that (0.2) holds.
Because it is the L\’evy term which poses the greatest challenge to tra-
ditional analytic techniques, it may be of interest to investigate how
successful It\^o’s theory is with it, and that is what we will be doing here.

\S 1 Basic Result

In this section we will show how to construct an $F$ satisfying (0.2)
when $x\sim M(x, \cdot)$ can be expressed in the form

(1.1) $M(x, \Gamma)=\omega_{n-1}\int_{S^{n-1}}(\int_{(0,\infty)}1_{\Gamma}(r\omega)\beta(x, \omega, r)dr)$ $\mu(d\omega)$

for $\Gamma\in B_{\mathbb{R}^{n}\backslash \{0\}}$ , where $\omega_{n-1}$ is the area of the unit sphere $S^{n-1}$ in $\mathbb{R}^{n}$ ,
$\mu\in M_{1}(S^{n-1})$ (i.e., $\mu$ is a Borel probability measure on $S^{n-1}$ ), and
$\beta$ : $\mathbb{R}^{n}\times S^{n-1}\times(0, \infty)\rightarrow(0, \infty)$ is a measurable function with the
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properties that

(1.2) $\int_{(0,\infty)}\beta(x, \omega, r)dr=\infty$ for all $(x, \omega)\in \mathbb{R}^{n}\times S^{n-1}$ ,

(1.3) $\inf_{(x,\omega)}\int_{[1,\infty)}\beta(x, \omega, s)ds>0\&\sup_{(x,(v)}\int_{(0,\infty)}\frac{r^{2}\beta(x,\omega,r)}{1+r^{2}}dr<\infty$ ,

(1.4) $\lim_{R\searrow 0}\sup_{(x,\omega)}\int_{(0,R]}r^{2}\beta(x, \omega, r)dr=0=\lim_{R\rightarrow\infty}\sup_{(x,\omega)}\int_{[R,\infty)}\beta(x, \omega, s)ds$ ,

and, for each $(\omega, r)\in S^{n-1}\times(0, \infty)$ , $\beta(\cdot, \omega, r)$ has a continuous deriva-
tive which satisfies

(1.5)
$\sup_{(x,\omega)}\int_{(0,R]}\frac{(\int_{[r,\infty)}|grad_{x}\beta(\cdot,\omega,s)|ds)^{2}}{\beta(x,\omega,r)}dr<\infty$

for each $R\in(0, \infty)$ .

The construction of $F$ in this case can be carried out as follows.
First, one determines $\rho$ : $\mathbb{R}^{n}\times S^{n-1}\times(0, \infty)\rightarrow(0, \infty)$ so that

$\int_{[\rho(x,\pm 1,r),\infty)}\beta(x, \pm 1, s)ds=\frac{2\mu(\{\pm 1\})}{r}$ when $n$ $=1$

and

$\int_{[\rho(x,\omega,r),\infty)}\beta(x, \omega, s)ds=\frac{1}{r}$ when $n$ $\geq 2$ .

Second, $f$ : $S^{n-1}\rightarrow S^{n-1}$ is chosen so that $ f(\omega)=\omega$ when $n$ $=1$ and,
when $n\geq 2$ , $f$ is a measurable map with the property that $f_{*}\lambda_{S^{n-1}}=$

$\omega_{n-1}\mu$ , where $f_{*}\lambda_{S^{n-1}}$ denotes the pushforward under $f$ of the standard
surface measure $\lambda_{S^{n-1}}$ on $S^{n-1}$ . (The existence of such an $f$ is assured by

Theorem 3.2.5 in [3].) Finally, one takes $F(x, r\omega)=\rho(x, f(\omega),$ $r)f(\omega)$ .

To see that this $F$ does the job, begin by observing that, by con-
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struction,

$\int_{\mathbb{R}^{n}\backslash \{0\}}\varphi\circ F(x, y)\frac{dy}{|y|^{n+1}}=\int_{S^{n-1}}(\int_{(0,\infty)}\varphi\circ F(x, r\omega)\frac{dr}{r^{2}})\lambda_{S^{n-1}}(d\omega)$

$=\int_{S^{n-1}}$ ( $\int_{(0,\infty)}\varphi(rf(\omega))\beta(x, f(\omega),$ $r)dr$) $\lambda_{S^{n-1}}(d\omega)$

$=\int_{\mathbb{R}^{n}\backslash \{0\}}\varphi(y)M(x, dy)$

for any $\varphi\in C(\mathbb{R}^{n}\backslash \{0\};[0, \infty))$ . That is,

(1.6) $\int_{\mathbb{R}^{n}\backslash \{0\}}\varphi\circ F(x, y)M_{0}(dy)=\int_{\mathbb{R}^{n}\backslash \{0\}}\varphi(y)M(x, dy)$

for $\varphi\in C(\mathbb{R}^{n}\backslash \{0\};[0, \infty))$ . Thus, if $\psi\in C^{\infty}(B_{\mathbb{R}^{n}}(0,1);\mathbb{R}^{n})$ satisfies
$|\psi(y)-y|\leq C|y|^{2}$ for some $ C<\infty$ and we adopt

(1.7) $K_{M}\varphi(x)=\int_{\mathbb{R}^{n}\backslash \{0\}}(\varphi(x+y)-\varphi(x)-(\psi(y), grad_{x}\varphi)_{\mathbb{R}^{n}})M(x, dy)$

as the operator associated with $x\leftrightarrow M(x, \cdot)$ , then $K_{M}\varphi(x)$ is equal to

$\sum_{i=1}^{n}c_{i}(x)\partial_{i}\varphi(x)+\int_{\mathbb{R}^{n}\backslash \{0\}}(\varphi(x+F(x, y))-\varphi(x)$

-1 $[0,1]$
$(|y|)(F(x, y),$ $grad_{x}\varphi)_{\mathbb{R}^{n}})M_{0}(dy)$

where $c:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ is given by

(1.8) $c(x)=\int_{\mathbb{R}^{n}\backslash \{0\}}(1_{[0,1]}(|y|)F(x, y)-\psi(F(x, y)))M_{0}(dy)$ .

Next, we need to check that $F$ satisfies (0.2) and $c$ is uniformly
Lipschitz. To this end, first observe that, by (1.6),

$\int_{0<|y|\leq r}|F(x, y)|^{2}\frac{dy}{|y|^{n+1}}=\int_{\{y:0<|y|\leq R(r)\}}|y|^{2}M(x, dy)$

$\leq\sup_{\omega}\int_{\{0<|y|\leq R(r)\}}r^{2}\beta(x, \omega, r)dr$ ,

where $R(r)\equiv\sup_{(x,\omega)}\rho(x, \omega, r)$ . Since, by the second part of (1.4),
$ R(r)<\infty$ for all $r\in(0, \infty)$ , we know that the second line of (0.2) holds.
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At the same time, ffom second part of (1.3), we know that $R(r)\searrow 0$ as
$r\backslash 0$ , and so the first line of (0.2) also holds.

Turning to the last line of (0.2), observe that

$\partial_{x}F(\cdot, r\omega)=\frac{\int_{[\rho(x,f(\omega),r),\infty)}\partial_{x}\beta(\cdot,f(\omega),s)ds}{\beta(x,f(\omega),\rho(x,f(\omega),r)}f(\omega)$ ,

and therefore, by (1.6), that

$\int_{0<|y|\leq R}|F(x_{2}, y)-F(x_{1}, y)|^{2}\frac{dy}{|y|^{n+1}}$

$\leq|x_{2}-x_{1}|^{2}\sup_{(x,\omega)}\int_{(0,R(r)]}\frac{(\int_{[r,\infty)}|grad_{x}\beta(\cdot,\omega,s)|ds)^{2}}{\beta(x,\omega,r)}$

dr.

Hence the third line of (0.2) follows ffom (1.5).

Finally, we must check that the $c$ in (1.8) is uniformly Lipschitz
continuous. But, since

$c(x)=\int_{0<|y|\leq 1}(\psi(F(x, y))-F(x, y))M_{0}(dy)+\int_{|y|\geq 1}\psi(F(x, y))M_{0}(dy)$ ,

we can use the first part of (1.3) and the same line of reasoning as above
to see that there is an $r\in(0, \infty)$ and a $ C<\infty$ for which

$|\partial_{x}c|\leq C\sup_{\omega}\int_{(0,r]}\rho(x, \omega, s)|\partial_{x}\rho(\cdot, \omega, s)|\frac{ds}{s^{2}}$

$\leq C\sup_{\omega}\int_{(0,R]}s(\int_{[s,\infty)}|\partial_{x}\beta(\cdot, \omega, \sigma)|d\sigma)ds$

$\leq C\sup_{\omega}\sqrt{\int_{(0,R]}s^{2}\beta(x,\omega,s)ds}$ .

Hence, by the second part of (1.3) and (1.5), it is clear that $c$ is uniformly
Lipschitz.

By the results in \S 3.1 of [3], we can now say that when $M$ is given
by (1.1) with a $\beta$ satisfying (1.2)-(1.5), then It\^o’s construction leads to
a Markov process which corresponds to the operator $K_{M}$ in (1.7) in the
sense that, starting at each $x\in \mathbb{R}^{n}$ , the process solves the martingale
problem (cf. \S 3 below) for $K_{M}$ on $C_{c}^{2}(\mathbb{R}^{n}; \mathbb{R})$ .
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An Example: In order to demonstrate that It\^o’s theory can handle
situations which $de5^{r}$ more analytic methodology, consider the case when

$\beta(x, \omega, r)=\alpha(x, \omega)r^{-1-\lambda(x,\omega)}$ ,

where $\alpha$ : $\mathbb{R}^{n}\times S^{n-1}\rightarrow[\alpha_{1}, \alpha_{2}]$ and $\lambda$ : $\mathbb{R}^{n}\times S^{n-1}\rightarrow[\lambda_{1}, \lambda_{2}]$ are
measurable functions, $ 0<\alpha_{1}\leq\alpha_{2}<\infty$ , and 0 $<\lambda_{1}\leq\lambda_{2}<2$ .
Assuming that $\alpha(\cdot, \omega)$ and $\lambda(\cdot, \omega)$ are continuously differentiable for
each $\omega$ and that $(x, \omega)\sim grad_{x}\alpha(\cdot, \omega)$ and $(x, \omega)\sim grad_{x}\lambda(\cdot, \omega)$ are
bounded, one can easily verify that $\beta$ ’s of this sort $satis\mathfrak{h}^{r}(1.2)-(1.5)$ .
The reason why traditional analytic approaches would have difficulties
with an operator $K_{M}$ of the form in (1.7) when $M$ is given by (1.1)
with these $\beta$ ’s is that, unless $\lambda$ is independent of $x$ , $K_{M}$ will have no
principal part. For this reason, perturbative techniques, like those on
which standard pseudodifferential arguments (cf. [2]) depend, do not
apply.

Remark: It is reasonable to ask whether there is any advantage to be
gained by considering reference L\’evy measures other than $M_{0}(dy)=$

$1_{\mathbb{R}^{n}\backslash \{0\}}\frac{dy}{|y|^{n+1}}$ . However, at least so far as the considerations in this and

the next $sections^{1)}$ are concerned, the answer seems to be no. Indeed,
without any change in the proof, one can show that It\^o’s procedure works
when $M_{0}$ in (0.2) is replaced by any L\’evy measure $M$ and the conditions
there are replaced by

$\lim_{N\rightarrow\infty}\sup_{x\in \mathbb{R}^{n}}\frac{1}{1+|x|^{2}}\int_{\triangle_{N}}|F(x, y)|^{2}M(dy)=0$

(1.9) $\sup_{x\in \mathbb{R}^{n}}\frac{1}{1+|x|^{2}}\int_{\Gamma_{\epsilon}}|F(x, y)|^{2}M(dy)<\infty$

$\sup_{x_{2}\neq x_{1}}\frac{1}{|x_{2}-x_{1}|^{2}}\int_{\Gamma_{\epsilon}}|F(x_{2}, y)-F(x_{1}, y)|^{2}M(dy)<\infty$ ,

where, for each $N\geq 1,0\in\triangle_{N}\in B_{\mathbb{R}^{n}}$ satisfies $ M(\mathbb{R}^{n}\backslash \triangle_{N})<\infty$ ,
and, for each $\epsilon>0$ , $O\in\Gamma_{\epsilon}\in B_{\mathbb{R}^{n}}$ satisfies $ M(\mathbb{R}^{n}\backslash \Gamma_{\epsilon})<\epsilon$ . However,
because one can always find a measurable $f$ : $\mathbb{R}^{n}\backslash \{0\}\rightarrow \mathbb{R}^{n}$ such that
$M$ $=f_{*}M_{0}$ , one can easily check that if $M$ and $F$ satisfies $F(x, \cdot)_{*}M=$

$M(x, \cdot)$ and the conditions in (1.9), then $(x, y)\sim\tilde{F}(x, y)\equiv F(x, f(y))$

will satisfy $\tilde{F}(x, \cdot)_{*}M_{0}=M(x, \cdot)$ and (1.9) with $\overline{F}$ and $M_{0}$ replacing
$F$ and $M$ and $f^{-1}(\Delta_{N})$ and $f^{-1}(\Gamma_{\epsilon})$ replacing $\triangle_{N}$ and $\Gamma_{\epsilon}$ .

1) See the concluding Remark in \S 3 for a consideration in which there is an
advantage to allowing more general reference L\’evy measures.
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\S 2 Some Extensions

It is important to note that there are situations in which it is im-
possible to construct an $F$ which satisfies (1.9) for any choice of L\’evy

measure $M$ , even though $ x\sim$ $M(x, \cdot)$ is as smooth as one could
hope. For example, consider the seemingly trivial case in which $n$ $=1$

and $M(x, dy)=\alpha(x)\delta_{1}(dy)$ , where $\alpha$ : $\mathbb{R}\rightarrow[1, 2]$ is smooth and
$\delta_{1}$ is the unit point mass at 1. Clearly, if $M$ is a L\’evy measure and
$F$ : $\mathbb{R}\times(\mathbb{R}\backslash \{0\})\rightarrow \mathbb{R}$ satisfies $F(x, \cdot)_{*}M=M(x, \cdot)$ , then, for each
$x$ , $F(x, \cdot)\in\{0,1\}$ $M$-almost everywhere and $M(\Gamma(x))=\alpha(x)$ when
$\Gamma(x)\equiv\{y:F(x, y)=1\}$ . Thus, for each $\epsilon>0$ ,

$\int_{\Gamma_{\epsilon}}(F(x_{1}, y)-F(x_{0}, y))^{2}M(dy)\geq\alpha_{\epsilon}(x_{1})+\alpha_{\epsilon}(x_{0})-2\alpha_{\epsilon}(x_{1})\wedge\alpha_{\epsilon}(x_{0})$

$=|\alpha_{\epsilon}(x_{1})-\alpha_{\epsilon}(x_{0})|$ ,

where $\alpha_{\epsilon}(x)\equiv M(\Gamma(x)\cap\Gamma_{\epsilon})\nearrow\alpha(x)$ uniformly as $\epsilon\searrow 0$ . In particular,

the only way that the third line of (1.9) could hold is that $\alpha_{\epsilon}$ be constant
for each $\epsilon>0$ , which means that $\alpha$ itself would have to be constant. Of
course, one can object that this example is a little ridiculous since it is
easy to carry out It\^o’s construction whenever $x\sim M(x, \mathbb{R}^{n})$ is bounded,
even if the third line of (1.9) fails. On the other hand, one can over-
come this objection by considering $M(x, \cdot)=\sum_{m=0}^{\infty}\alpha_{m}(x)\delta_{3^{-m}}$ where

each $\alpha_{m}\in C_{b}^{\infty}(\mathbb{R};(0, \infty))$ satisfies $||\alpha_{m}||_{C_{b}^{1}(\mathbb{R};\mathbb{R})}\leq C8^{m}$ . Proceeding as

before, we know that $M(\Gamma_{m}(x))=\alpha_{m}(x)$ and, $M$-almost everywhere,
$F(x, \cdot)=\sum_{m=0}^{\infty}3^{-m}1_{\Gamma_{m}(x)}$ , where $\Gamma_{m}(x)\equiv\{y : ^{F}(x, y)=3^{-m}\}$ .

Hence, if $M_{\epsilon}(dy)=1_{\Gamma_{\epsilon}}(y)M(dy)$ , then

$\int_{\Gamma_{\epsilon}}|F(x_{1}, y)-F(x_{0}, y)|^{2}M(dy)$

$=\sum 9^{-m}\infty(M_{\epsilon}(\Gamma_{m}(x_{1}))+M_{\epsilon}(\Gamma_{m}(x_{1}))-2M_{\epsilon}(\Gamma_{m}(x_{0})\cap\Gamma_{m}(x_{1})))$

$m=0$

-2 $\sum 3^{-m}\sum\infty 3^{-n}(M_{\epsilon}(\Gamma_{m}(x_{0})\cap\Gamma_{n}(x_{1}))+M_{\epsilon}(\Gamma_{n}(x_{0})\cap\Gamma_{m}(x_{1})))$

$m=0$ $n>m$

$\geq\sum_{m=0}^{\infty}9^{-m}(M_{\epsilon}(\Gamma_{m}(x_{1}))+M_{\epsilon}(\Gamma_{m}(x_{1}))-2M_{\epsilon}(\Gamma_{m}(x_{0})\cap\Gamma_{m}(x_{1})))$

$-\frac{2}{3}\sum_{m=0}^{\infty}9^{-m}(M_{\epsilon}(\Gamma_{m}(x_{0})\cap\Gamma_{m}(x_{1})G)+M_{\epsilon}(\Gamma_{m}(x_{1})\cap\Gamma_{m}(x_{0})G))$
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$=\frac{1}{3}\sum_{m=0}^{\infty}9^{-m}(M_{\epsilon}(\Gamma_{m}(x_{0})\cup\Gamma_{m}(x_{1}))-M_{\epsilon}(\Gamma_{m}(x_{0})\cap\Gamma_{m}(x_{1})))$

$\geq\frac{1}{3}\sum_{m=0}^{\infty}9^{-m}|M_{\epsilon}(\Gamma_{m}(x_{1}))-M_{\epsilon}(\Gamma_{m}(x_{1}))|$ .

Hence, by the same argument as the one just used, the third line of (1.9)
can hold only if each of the $\alpha_{m}$ ’s is constant.

In view of the preceding example, it is interesting to note that the
problems encountered there disappear if the measure has a sufficiently
strong absolutely continuous part. To be more precise, let $\beta$ : $\mathbb{R}^{n}\times$

$S^{n-1}\rightarrow(0, \infty)$ be a function which satisfies the conditions in (1.2)-
(1.4), and suppose that $(x, \omega)\sim\mu(x, \omega, \cdot)$ is a measurable map ffom
$\mathbb{R}^{n}\times S^{n-1}$ into measures on $(0, \infty)$ such that

$\mu(x, \omega, dr)=\beta(x, \omega, r)dr+\iota/(x, \omega, dr)$ where

(2.1)
$\sup_{(x,\omega)}\int_{(0,\infty)}\frac{r^{2}}{1+r^{2}}\nu(x, \omega, dr)<\infty$

$\lim_{R\searrow 0}\sup_{(x,\omega)}\int_{(0,R]}r^{2}\iota/(x, \omega, dr)=0=\lim_{R\rightarrow\infty}\sup_{(x,\omega)}\iota/(x, \omega, [R, \infty))$ .

Further, assume that $x\sim\beta(x, \omega, r)$ and $x\sim\iota/(x, \omega, [r, \infty))$ are con-
tinuously differentiate for each $(x, r)\in \mathbb{R}^{n}\times(0, \infty)$ . Finally, choose
$\eta\in C_{c}^{\infty}((0, \infty);[0, \infty))$ with total integral 1, set

$\beta_{\epsilon}(x, \omega, r)=\beta(x, \omega, r)+\int_{(0,\infty)}\eta_{\epsilon}(s-r)\nu(x, \omega, ds)$ for $\epsilon\in(0,1]$ ,

where $\eta_{\epsilon}(s)\equiv\epsilon^{-1}\eta(\frac{s}{\epsilon})$ , and assume that, for each $R\in(0, \infty)$ ,

(2.2)
$\sup_{(x,\omega)}\int_{(0,R]}\frac{(\int_{[r,\infty)}|grad_{x}\beta_{\epsilon}(\cdot,\omega,s)|ds)^{2}}{\beta(x,\omega,r)}dr<\infty$

.

$\epsilon\in(0,1]$

Next, given a probability measure $\mu$ on $S^{n-1}$ , define $\rho_{\epsilon}$ : $\mathbb{R}^{n}\times S^{n-1}\rightarrow$

$(0, \infty)$ and $F_{\epsilon}$ : $\mathbb{R}^{n}\times \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ relative to $\beta_{\epsilon}$ by the prescription used in

\S 1 (cf. the discussion preceding (1.6)). By the arguments used in \S 1, we
know that, when $F$ and $\beta$ are replaced throughout by $F_{\epsilon}$ and $\beta_{\epsilon}$ , then
everything in (0.2) as well as the Lipschitz continuity of the associated
$c_{\epsilon}$ in (1.8) can be controlled in terms of quantity in (1.5). But clearly the
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quantity in (1.5) is dominated uniformly for $\epsilon\in(0,1]$ by the quantity in
(2.2). At the same time, if

(2.3) $M(x, \Gamma)=\int_{S^{n-1}}(\int_{(0,\infty)}1_{\Gamma}(r\omega)\mu(x, \omega, dr))\mu(d\omega)$ ,

then $F_{\epsilon}\rightarrow F$ where $F(x, \cdot)_{*}M=M(x, \cdot)$ . Hence, when $x\vee M(x, \cdot)$

is given by (2.3) for any $\mu\in M_{1}(S^{n-1})$ and a $(x, \omega)\in \mathbb{R}^{n}\times S^{n-1}\mapsto$

$\mu(x, \omega, \cdot)\in M_{1}((0, \infty))$ which satisfies (2.1) and (2.2), then a choice of
$F$ satisfying (0.2) is available.

\S 3 Uniqueness for the Martingale Problem

Suppose that (cf. (1.7))

(3.1) $L\varphi(x)=\frac{1}{2}\sum_{i,,,j=1}^{n}a(x)_{ij}\partial_{i}\partial_{j}\varphi(x)+\sum_{i=1}^{n}b(x)_{i}+K_{M}\varphi(x)$

for $\varphi\in C_{c}^{2}(\mathbb{R}^{n};\mathbb{R})$ , where $x\vee*a(x)$ and $x\sim b(x)$ are continuous map-
pings into, respectively, non-negative definite, symmetric $n\times n$-matrices
and $\mathbb{R}^{n}$ and $x\sim M(x, \cdot)$ takes its values in L\’evy measures and satisfies

$\sup_{|x|\leq R}\int_{\mathbb{R}^{n}\backslash \{0\}}\frac{|y|^{2}}{1+|y|^{2}}M(x, dy)<\infty$ for all $R\in(0, \infty)$ .

Let $D([0, \infty);\mathbb{R}^{n})$ be the space of right continuous paths $p$ : $[0, \infty)\rightarrow$

$\mathbb{R}^{n}$ which possess a left limit $p(t-)$ at each $t\in(0, \infty)$ , and use $B_{t}$

to denote the $\sigma$-algebra over $D([0, \infty);\mathbb{R}^{n})$ generated by $p\sim p(\tau)$ for
$\tau\in[0, t]$ . We will say that $\mathbb{P}\in M_{1}(D([0, \infty);\mathbb{R}^{n}))$ solves the martingale
problem for $L$ if

( $\varphi(p(t))-\int_{0}^{t}L\varphi(p(\tau))d\tau$ , $B_{t}$ , $\mathbb{P}$) is a martingale

for all $\varphi\in C_{c}^{2}(\mathbb{R}^{n};\mathbb{R})$ . If, in addition, $\mathbb{P}(p(0)=x)=1$ , then we will say
that $\mathbb{P}$ solves the martingale problem for $L$ starting from $x$ .

In 3.1.5 of [3], it is shown that when $L$ admits a representation of
the form in (0.1) with uniformly Lipschitz continuous $\sigma$ and $b$ and an
$x\sim F(x, \cdot)$ satisfying (0.2), It\^o’s construction leads to a solution to the
martingale problem for $L$ starting from $x$ . On the other hand, there are
lots of other ways in which one might go about constructing solutions
to this martingale problem. (In fact, even if one restricts ones attention
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to It\^o’s method, there is are lots of choices of $\sigma$ and $F$ , and each one
gives rise to a different construction.) Thus, it is of some importance to
determine conditions which guarantee that there is only one solution to
the martingale problem for a given $L$ starting $bom$ a given $x$ .

Under the condition that $M$ $=0$ , the problem of determining when
uniqueness holds for the martingale problem was studied systematically
in Chapter 6 of [4]. The methods used there are of two types. Methods
of the first type work by duality and yield (cf. Theorem 6.3.2 in $opcit$)
uniqueness for solutions to the martingale problem as a consequence of
existence of solutions to the evolution equation

(3.2) $\partial_{t}u=Lu$ with $ u(0, \cdot)=\varphi$

for sufficiently many $\varphi$ ’s. This duality method is quite powerful and
leads to the most refined results obtained in [4]. For example, when
$M=0$ and $a$ and $b$ have two bounded, continuous derivatives, it is shown
in \S 3.2 of [4] that (3.2) admits classical solutions for $\varphi\in C_{c}^{2}(\mathbb{R}^{n}; \mathbb{R})$ ,
and this is more than enough to check uniqueness for the associated
martingale problem. In \S 4.2 of [3], this sort of reasoning is extended to
situations with $M\neq 0$ , when the quantities $\sigma$ and $b$ entering (0.1) have
two bounded, continuous derivatives and $x\sim F(x, \cdot)$ has continuous
second derivatives which satisfies appropriate (cf. (H2)2 in $opcit$) mean
square bounds. For example, these conditions are often met by $F$ ’s of
the sort constructed in \S 1. Unfortunately, they seem unlikely to hold for
situations requiring the extension introduced in \S 2.

The second method introduced in [4] is more directly dependent on
It\^o’s theory. Namely, when $M$ $=0$ , it is shown there (cf. Theorem 5.3.2
in $opcit$) that any solution to the martingale problem can be realized as
the solution of an It\^o stochastic integral equation. Thus, when $M$ $=0$

and $\sigma$ and $b$ are Lipschitz continuous, uniqueness for the martingale
problem comes quite easily as a consequence of It\^o’s theory. (This is
the result which was refined in [6].) In this concluding section, we will
examine possible extensions of this line of reasoning to the case when
$M$ $\neq 0$ .

Suppose that $\mathbb{P}$ solves the martingale problem for $L$ starting from $x$ .

Using the techniques developed in \S 1 of [5], one can make an It\^o decom-
postion of the paths $p$ into their “continuous” and “discontinuous parts”
parts. More precisely, given $p\in D([0, \infty);\mathbb{R}^{n})$ , a $\Gamma\in B_{[0,\infty)}\times B_{\mathbb{R}^{n}}$ with
$([0, \infty)\times\{0\})\cap\overline{\Gamma}=\emptyset$ , define $\nu(\Gamma;p)$ to be the number of $\tau\in(0, \infty)$

such that $(\tau,p(\tau)-p(\tau-))\in\Gamma$ . One can then show that there exists

a measurable map $p\in D([0, \infty);\mathbb{R}^{n})\mapsto p_{1}\in D([0, \infty);\mathbb{R}^{n})$ such that
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(cf. (1.7))

(3.4) $p_{1}(t)=\lim_{r\searrow 0}$
$\int\int$ $(y\nu(d\tau\times dy;p)-\psi(y)d\tau\times M(p(\tau), dy))$ ,

$[0,t]\times B_{R^{n}}(0,r)G$

uniformly for $t$ ’s in compacts, in $\mathbb{P}$-probability. Moreover, if $p_{0}=p-p_{1}$ ,
then

(a) $p_{0}\in C([0, \infty);\mathbb{R}^{n})\mathbb{P}$-almost surely,

(b) for each $\varphi\in C_{c}^{2}(\mathbb{R}^{n}; \mathbb{R})$ ,

$(\varphi(p_{0}(t))-\int_{0}^{t}L_{0}\varphi(p(\tau))d\tau$ , $B_{t}$ , $\mathbb{P})$

is a martingale, where

$L_{0}\varphi(x)=\frac{1}{2}\sum_{i,,,j=1}^{n}a(x)_{ij}\partial_{i}\partial_{j}\varphi(x)+\sum_{i=1}^{n}b(x)_{i}\partial_{i}\varphi(x)$ ,

(c) for each $\varphi\in C_{c}^{2}(\mathbb{R}^{n}; \mathbb{R})$ ,

$(\varphi(p_{1}(t))-\int_{0}^{t}K_{M}\varphi(p(\tau))d\tau$ , $B_{t}$ , $\mathbb{P})$

is a martingale.

In spite of the obvious ambiguity in this decomposition, we will call $p_{0}$

and $p_{1}$ the continuous part and the discontinuous part of $p$ .

Given a measurable $x\vee\sigma(x)$ satisfying $a(x)=\sigma(x)\sigma(x)^{T}$ , one can
start from (b) above and, by mimicking the procedure in Theorem 5.3.2
of [4], produce a Brownian motion $\beta$ such that

(3.5) $ p0(t)=x+\int_{0}^{t}\sigma(p(\tau))d\beta(\tau)+\int_{0}^{t}b(p(\tau))d\tau$ , $t\in[0, \infty)$ .

There are technical difficulties which arise when $\sigma$ becomes degenerate,
and these necessitate the introduction of a larger probability space, one
which is big enough to support a full blown Brownian motion. However,
as is explained in the theorem just cited, the resolution of such difficulties
is well understood. On the other hand, it is not so clear how to treat
the analogous difficulties for the discontinuous part $p_{1}$ . Specifically,

given a measurable $F$ : $\mathbb{R}^{n}\times \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ and a L\’evy $measure^{2)}M$ for

2) For reasons which will be explained below in the concluding Remark, it is
best to allow general reference L\’evy measures here rather than always taking
$M_{0}$ .
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which $F(x, \cdot)_{*}M=M(x, \cdot)$ , it is not clear in general how one can
use $F$ to produce a L\’evy process from which $p_{1}$ can be $re$-constructed
via It\^o’s procedure. Nonetheless, when $F$ is non-degenerate in the sense
that, for each $x\in \mathbb{R}^{n}$ , $F(x, \cdot)$ is one-to-one $bom\mathbb{R}^{n}\backslash \{0\}$ onto itself,

then one can construct such a L\’evy process. Namely, take $F^{-1}(x, \cdot)$ to

be the $inverse^{3)}$ of $F(x, \cdot)$ , and set

$q_{r}(t,p)=$ $\int\int$ $\Phi^{-1}(\tau, y;p)(\nu(d\tau\times dy;p)-d\tau\times M(p(\tau), dy))$ ,

$[0,t]\times B_{R^{n}}(0,r)G$

where $\Phi^{-1}(\tau, y;p)\equiv F^{-1}(p(\tau-), y)$ . Then one can show that there

exists a $\{B_{t} : t\geq 0\}$-progressively measurable $ p\in D([0, \infty);\mathbb{R}^{n})\rightarrow$

$q(\cdot,p)\in D([0, \infty);\mathbb{R}^{n})$ such that, as $r\searrow 0$ , $q_{r}(\cdot,p)\rightarrow q(\cdot,p)$ uni-
formly on compacts in $\mathbb{P}$-probability. Moreover, the $\mathbb{P}$-distribution of
$p\sim q(\cdot,p)$ is that of the L\’evy process corresponding to $M$ in the sense
that, for each $\xi\in \mathbb{R}^{n}$ ,

$E\mathbb{P}[e^{\sqrt{-1}(\xi,q(1,p))_{R^{n}}}]$

$=\exp[\int_{\mathbb{R}^{n}\backslash \{0\}}(e^{\sqrt{-1}(\xi,y)_{\mathbb{R}^{n}}}-1-1_{[0,1]}(|y|)(\xi, y)_{\mathbb{R}^{n}})M(dy)]$ .

In addition, it should be clear that, $\mathbb{P}$-almost surely, $\nu$ $(\cdot ; q(\cdot,p))=$

$\Phi^{-1}$
$(\cdot ; p)_{*}\nu(. ; p)$ . In particular, if $\Phi(\tau, y;q)\equiv F(q(\tau-), y)$ , then

$\nu(\cdot ; p)=\Phi(. ; q(\cdot,p))_{*}\nu(. ; q(p))$ $\mathbb{P}$-almost surely,

and so (cf. (3.4)) $p_{1}(t)$ is equal to

$r\searrow 0\lim_{[0,t]\times}\int\int_{(B_{\mathbb{R}^{n}}0,r)}(F(p(\tau-), y)\nu(d\tau\times dy;q(\cdot ^{;} p))$

$-\psi(y)(F(p(\tau), y))_{\mathbb{R}^{n}}d\tau\times M(dy))$ .

Hence, after putting this together with (3.5), the path $p$ can be recovered
via It\^o’s procedure ffom a L\’evy process for which

$\xi\sim\exp[-\frac{|\xi|^{2}}{2}+\int_{\mathbb{R}^{n}\backslash \{0\}}(e^{\sqrt{-1}(\xi,y)_{\mathbb{R}^{n}}}-1-1_{[0,1]}(|y|)(\xi, y)_{\mathbb{R}^{n}})M(dy)]$

3) By a famous theorem due to C. Kuratowski, this inverse will be Borel
measurable with respect to $(x, y)$ .
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is the characteristic function of the distribution at time 1.
These considerations yield the following uniqueness theorem.

Theorem. Suppose that $\sigma$ : $\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ and $b$ : $\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ are
uniformly Lipschitz continuous functions, $M$ is a L\’evy measure, and the
$F$ : $\mathbb{R}^{n}\times \mathbb{R}^{n}\backslash \{0\}\rightarrow \mathbb{R}^{n}\backslash \{0\}$ is a measurable function which satis-

fies the conditions in (1.9). Further, assume that, for each $x\in \mathbb{R}^{n}$ ,
$F(x, \cdot)$ is one-to-one from $\mathbb{R}^{n}\backslash \{0\}$ onto itself Then, for each starting
point, It\^o ’s construction yields the one and only solution to the martin-
gale problem for operator $L$ described in (3.1) when $a(x)=\sigma(x)\sigma(x)^{T}$

and $M(x, \cdot)=F(x, \cdot)_{*}M$ for all $x\in \mathbb{R}^{n}$ .

Remark: As distinguished $bom$ our earlier results, there is an advan-
tage to allowing reference L\’evy measures other than $M_{0}$ when applying
the preceding theorem. For instance, suppose that $(x, \omega, r)\sim\mu(x, \omega, r)$

satisfies the conditions in (2.1) and (2.2), and let $x\vee’ M(x, \cdot)$ be given
by (2.3) for some $\mu\in M_{1}(S^{n-1})$ . Then the function $F$ which was con-
structed so that $M(x, \cdot)=F(x, \cdot)_{*}M_{0}$ need not be one-to-one and onto
because the map $f$ : $S^{n-1}\rightarrow S^{n-1}$ may fail to be. On the other hand,

if we take $M(dy)=\frac{1}{|y|^{n+1}}\mu(dy)$ , then the construction given in \S 1 does

not require the use of $f$ and leads to an $F$ which is one-to-one and onto
and satisfies $M(x, \cdot)=F(x, \cdot)_{*}M$ as well as the conditions in (1.9).
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Criticality of Generalized Schr\"odinger Operators
and Differentiability of Spectral Functions

Masayoshi Takeda and Kaneharu Tsuchida

Abstract.

Let $\mu$ be a positive Radon measure in the Kato class. We consider
the spectral bound $C(\lambda)=-\inf\sigma(H^{\lambda\mu})(\lambda\in \mathbb{R}^{1})$ of a generalized
Schr\"odinger operator $ H^{\lambda\mu}=-\frac{1}{2}\triangle-\lambda\mu$ on $\mathbb{R}^{d}$ , and show that the
spectral bound is differentiable if $d\leq 4$ and $\mu$ is Green-tight.

\S 1. Introduction

Let $(D, H^{1}(\mathbb{R}^{d}))$ be the classical Dirichlet integral and $\mu$ a positive
Radon measure in the Kato class. For a Schr\"odinger operator $H^{\lambda\mu}=$

$-\frac{1}{2}\Delta-\lambda\mu$ , $\lambda\in \mathbb{R}^{1}$ , define the spectral function $C(\lambda)$ by

$C(\lambda)$ $=$ $-\inf\{\theta : \theta\in\sigma(tt^{\lambda\mu})\}$

$=$ $-\inf\{\frac{1}{2}D(u, u)-\lambda\int_{\mathbb{R}^{d}}\tilde{u}^{2}d\mu$ : $u$ $\in H^{1}(\mathbb{R}^{d})$ , $\int_{\mathbb{R}^{d}}u^{2}dx=1\}$ ,

where $\sigma(H^{\lambda\mu})$ is the set of the spectrum of $H^{\lambda\mu}$ and $\tilde{u}$ is a quasi-
continuous version of $u$ . In this paper, we study the differentiability
of the function $C(\lambda)$ .

When the potential $\mu$ is a function in a certain Kato class, Arendt
and Batty [3] proved that the spectral function is differentiable at $\lambda=0$

and its derivative equals to zero ([3, Corollary 2.10]). Using a large de-
viation principle for additive functionals of the Brownian motion, Wu
[27] obtained a necessary and sufficient condition for the spectral func-
tion being differentiable at 0. In [24] one of the authors extended Wu’s
result to measures which may be singular with respect to the Lebesgue
measure. Furthermore, one of the authors showed that if $d\leq 2$ and the
measure $\mu$ is Green-tight (in notation, $\mu\in \mathcal{K}_{d}^{\infty}$ ), the spectral function is
differentiable on $\mathbb{R}^{1}$ . Here the class $\mathcal{K}_{d}^{\infty}$ was introduced in Zhao [29](see
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Definition 2.1 (II) below). A main objective of this paper is to extend
the results in [24] as follows:

Theorem 1.1. If $d\leq 4$ and $\mu\in \mathcal{K}_{d\prime}^{\infty}$ then the spectral function
$C(\lambda)$ is differentia $te$ for all $\lambda\in \mathbb{R}^{1}$ .

Define $\lambda^{+}=\inf\{\lambda>0 : C(\lambda)>0\}$ . We then see that $\lambda^{+}=0$

for $d\leq 2$ and $\lambda^{+}>0$ for $d\geq 3$ and the proof of Theorem 1.1 is
reduced to the proof of the differentiability of $C(\lambda)$ at $\lambda=\lambda^{+}$ . In
[24], the differentiablity at $\lambda=0$ is derived from the fact that for $d\leq 2$

the Brownian motion is a Harris recurrent process with infinite invariant
measure, the Lebesgue measure. We will extend this method for $d=3,4$
by applying the criticality theory of Schr\"odinger operators.

We first extend the criticality theory to the generalized Schr\"odinger
operator $\mathcal{H}^{\mu}$ ; we show in Corollary 3.5 below that if $d\geq 3$ , then the oper-

ator $H^{\lambda^{+}\mu}$ is critical, that is, $H^{\lambda^{+}\mu}$ does not admit the minimal positive

Green function but admits a positive continuous $H^{\lambda^{+}\mu}$-harmonic func-
tion. This harmonic function is called a ground state, which is uniquely

determined up to constant multiplication. Moreover, if $d=3,4$ , $H^{\lambda^{+}\mu}$

is null critical, that is, the ground state does not belong to $L^{2}$ . In
fact, denoting by $h$ the ground state, we prove in section 5 that $h(x)$ is
equivalent to the Green function $G(0, x)$ of the Brownian motion on a
neighbourhood of the infinity; there exist positive constants $c$ , $C$ such
that

(1) $\frac{c}{|x|^{d-2}}\leq h(x)\leq\frac{C}{|x|^{d-2}}$ , $|x|>1$ .

The criticality and the null criticality are regarded as extended notions
of recurrence and null recurrence respectively. Using these facts, we see
that if $d=3,4$ , the $h$-transformed process generated by the Markov
semigroup

$P_{t}^{\lambda^{+}\mu,h}f(x)=\frac{1}{h(x)}$
$\exp(-tH^{\lambda^{+}\mu})(hf)(x)$

becomes a Harris recurrent Markov process with infinite invariant mea-
sure $h^{2}dx$ . Furthermore, through the $h$-transformation a functional in-
equality for the critical Schr\"odinger form is derived (Theorem 4.4) ; the
inequality is an extenstion of Oshima’s inequality ([11]) which holds for
the Dirichlet forms generated by symmetric Harris recurrent Markov
processes. We now obtain Theorem 1.1 by applying the argument in
[24] to the transformed process. This is a key idea of the proof of Theo-

rem 1.1. The equation (1) tells us that if $d\geq 5$ , $H^{\lambda^{+}\mu}$ becomes positive
critical, that is, the ground state belongs to $L^{2}$ . Thus we can not use
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our method and have not known yet whether $C(\lambda)$ is difFerentable or
not.

The criticality of Schr\"odinger operators is studied by many people
(M. Murata, Y. Pinchover, R. Pinsky,...). In particular, the equation
(1) was shown by Murata [10] for classical Schr\"odinger operators on $\mathbb{R}^{d}$

and extended by Pinchover [12] to second order elliptic operators in a
domain of $\mathbb{R}^{d}$ .

Our motivation lies in the proof of the large deviation principle for
continuous additive functional $A_{t}^{\mu}$ in the Revuz correspondence with
$\mu$ . The function $C(\lambda)$ is regarded as a logarithmic moment generating

function of the additive functional $A^{\mu}$ (see [21]), and the differentiability
of logarithmic moment generating functions play a crucial role in the
G\"artner-Ellis Theorem (see [7]). In fact, using Theorem 1.1, we can
show the large deviation principle for additive functional $A_{t}^{\mu}$ associated
with $\mu\in \mathcal{K}_{d}^{\infty}$ .

\S 2. Preliminaries

Let $W=(P_{x}, B_{t})$ be a Brownian motion on $\mathbb{R}^{d}(d\geq 3)$ . Let $p(t, x, y)$

be the transition density function of $W$ and $G(x, y)$ its Green function,
$G(x, y)=C(d)|x-y|^{2-d}$ , where $C(d)=(2\pi)^{-1}\Gamma(\frac{d}{2}-1)$ . For a measure
$\mu$ , the 0-potential of $\mu$ is defined by $G\mu(x)=\int_{\mathbb{R}^{d}}G(x, y)\mu(dy)$ . Let $P_{t}$

be the semigroup of $W$ , $P_{t}f(x)=\int_{\mathbb{R}^{d}}p(t, x, y)f(y)dy=E_{x}[f(B_{t})]$ . The

Dirichlet form of $W$ is given by $(1/2D, H^{1}(\mathbb{R}^{d}))$ where $D$ denotes the
classical Dirichlet integral and $H^{1}(\mathbb{R}^{d})$ is the Sobolev space of order 1
([8, Example 4.4.1]). Let $(1/2D, H_{e}^{1}(\mathbb{R}^{d}))$ denote the extended Dirichlet
form of $(1/2D, H^{1}(\mathbb{R}^{d}))$ ( $[8$ , p.36]). Note that $H_{e}^{1}(\mathbb{R}^{d})$ is a Hilbert space
with inner product $D$ because $W$ is transient ([8, Theorem 1.5.3]). Let
$G_{\alpha}(x, y)$ be the $\alpha$-resolvent kernel of W.

Throughout this paper, the Lebesgue measure is denoted by $m$ and
$m(dx)$ is abbriviated to $dx$ . For $r>0$ , we denote by $B(r)$ an open
ball with radius $R$ centered at the origin. We use $c$ , $C$ , $\ldots$ , etc as positive
constants which may be different at different occurrences. We now define
classes of measures which play an important role in this paper.

Definition 2.1. (I) A positive Radon measure $\mu$ on $\mathbb{R}^{d}$ is said to
be in the Kato class ($\mu\in \mathcal{K}_{d} $in$ $notation), if

(2) $\lim_{a\rightarrow 0}\sup_{x\in \mathbb{R}^{d}}\int_{|x-y|\leq a}G(x, y)\mu(dy)=0$ .
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(II) A measure $\mu$ is in $\mathcal{K}_{d}^{\infty}$ if $\mu$ is in $\mathcal{K}_{d}$ and satisfies

(3) $\lim_{R\rightarrow\infty}\sup_{x\in \mathbb{R}^{d}}\int_{|y|>R}G(x, y)\mu(dy)=0$ .

For $\mu\in \mathcal{K}_{d}$ , define a symmetric bilinear form $\mathcal{E}^{\mu}$ by

(4) $\mathcal{E}^{\mu}(u, u)=\frac{1}{2}D(u, u)-\int_{\mathbb{R}^{d}}\overline{u}^{2}d\mu$ , $u\in H^{1}(\mathbb{R}^{d})$ ,

where $\overline{u}$ is a quasi continuous version of $u$ ([8, Theorem 2.1.3]). In the se-
quel, we always assume that every function $u\in H_{e}^{1}(\mathbb{R}^{d})$ is represented by
its quasi continuous version. Since $\mu\in \mathcal{K}_{d}$ charges no set of zero capacity
by [2, Theorem 3.3], the form $\mathcal{E}^{\mu}$ is well defined. We see from [2, Theorem
4.1] that $(\mathcal{E}^{\mu}, H^{1}(\mathbb{R}^{d}))$ becomes a lower semi-bounded closed symmetric
form. We call $(\mathcal{E}^{\mu}, H^{1}(\mathbb{R}^{d}))$ a Schr\"odinger form. Denote by $H^{\mu}$ the self-
adjoint operator generated by $(\mathcal{E}^{\mu}, H^{1}(\mathbb{R}^{d})):\mathcal{E}^{\mu}(u, v)=(H^{\mu}u, v)$ . Let
$P_{t}^{\mu}$ be the $L^{2}$ -semigroup generated by $H^{\mu}$ : $P_{t}^{\mu}=\exp(-tH^{\mu})$ . We see
$bom$ [ $2$ , Theorem 6.3(iv)] that $P_{t}^{\mu}$ admits a symmetric integral kernel
$p^{\mu}(t, x, y)$ which is jointly continuous on $(0, \infty)$ $\times \mathbb{R}^{d}\times \mathbb{R}^{d}$ .

For $\mu\in \mathcal{K}_{d}$ , $A_{t}^{\mu}$ denotes a positive continuous additive functional
which is in the Revuz correspondence with $\mu$ : for any positive Borel
function $f$ and $\gamma$-excessive function $h$ ,

(5) $<h\mu$ , $f>=\lim_{t\rightarrow 0}\frac{1}{t}E_{hm}[\int_{0}^{t}f(B_{s})dA_{s}^{\mu}]$ ,

$as$

( $[8$ , p.188]). By the Feynman-Kac formula, the semigroup $P_{t}^{\mu}$ is written

(6) $P_{t}^{\mu}f(x)=E_{x}[\exp(A_{t}^{\mu})f(B_{t})]$ .

\S 3. Criticality and ground state

Definition 3.1. A real-valued function $h$ is said to be harmonic on
a domain $D$ with respect to $H^{\mu}$ if for any relatively compact open set
$G\subset\overline{G}\subset D_{f}$

(7) $h(x)=E_{x}[\exp(A_{\tau_{G}}^{\mu})h(B_{\tau_{G}})]$ , $x\in G$ ,

where $\tau_{G}$ is the first exit time from $G$ , $\tau_{G}=\inf\{t>0:B_{t}\not\in G\}$ .

We formally write a $H^{\mu_{-}}$harmonic function $h$ as $7\{^{\mu}h=0$ . An
operator $H^{\mu}$ is said to be subcritical if $H^{\mu}$ possesses the minimal positive
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Green function $G^{\mu}(x, y)$ , that is,

$ G^{\mu}(x, y)=\int_{0}^{\infty}p^{\mu}(t, x, y)dt<\infty$ , $x\neq y$ .

The operator $\mathcal{H}^{\mu}$ is said to be critical if $ G^{\mu}(x, y)=\infty$ and a positive
continuous $H^{\mu}$ -harmonic function exists. If the operator $H^{\mu}$ is neither
subcritical nor critical, it is said to be supercritical (see [13, p.145]).

The spectral function $C(\lambda)$ is defined by the bottom of the spectrum
of $H^{\lambda\mu}$ : for $\mu\in \mathcal{K}_{d}^{\infty}$ ,

(8) $C(\lambda)=-\inf\{\mathcal{E}^{\lambda\mu}(u, u)$ ; $u\in H^{1}(\mathbb{R}^{d})$ , $\int_{\mathbb{R}^{d}}u^{2}dx=1\}$ .

Define

$\lambda^{+}$

$=$ $\inf\{\lambda>0:C(\lambda)>0\}$ .

We then see that $C(\lambda)=0$ for $\lambda\leq\lambda^{+}([23])$ .

Lemma 3.1. For $\mu\in \mathcal{K}_{d}^{\infty}$ , $t/iere$ exists a positive continuous func-
tion such that $\mathcal{H}^{\lambda^{+}\mu}h=0$ .

Proof. Let $\lambda_{r\iota}$ be the bottom of spectrum of $\mathcal{H}^{\lambda^{+}\mu}$ for the Dirichlet

problem on $B(n)$ . Since $0=-C(\lambda^{+})<\lambda_{r\iota+1}<\lambda_{7\iota}$ , $H^{\lambda^{+}\mu}$ is subcrit-

ical on $B(n)$ . Let $G^{n}$ denotes the Green operator of $H^{\lambda^{+}\mu}$ on $B(n)$ .
We define a function $h_{n}$ by $h_{n}(x)=c_{n}G^{n+1}I_{A_{n}}(x)$ , where $I_{A_{n}}$ is the
indicator function of $A_{n}(=B(n+1)\backslash B(n))$ and $c_{n}$ is the normalized
constant, $c_{n}=(G^{7l+1}I_{A_{n}}(0))^{-1}$ . Then $h_{n}$ is a harmonic function on
$B(m)$ , $m<n$ . Indeed, for $x\in B(m)$

$E_{x}[\exp(\lambda^{+}A_{\tau_{m}}^{\mu})h_{n}(B_{\tau_{m}})]=c_{n}E_{x}[\exp(\lambda^{+}A_{\tau_{m}}^{\mu})G^{\tau\iota+1}I_{A_{n}}(B_{\tau_{m}})]$

$=c_{n}E_{x}[\exp(\lambda^{+}A_{\tau_{m}}^{\mu})E_{B_{\tau_{m}}}[\int_{0}^{\tau_{n+1}}\exp(\lambda^{+}A_{t}^{\mu})I_{A_{n}}(B_{t})dt]]$ ,

where $\tau_{m}=\inf\{t>0 : B_{t}\not\in B(m)\}$ . By the strong Markov property,
the right hand side is equal to

$c_{n}E_{x}[\int_{0}^{\tau_{n+1}o\theta_{\tau_{m}}}\exp(\lambda^{+}(A_{\tau_{m}}^{\mu}+A_{t}^{\mu}\circ\theta_{\tau_{m}})I_{A_{n}}(B_{t+\tau_{m}})dt]$

$=$ $c_{n}E_{x}[\int_{\tau_{m}}^{\tau_{n+1}o\theta_{\tau_{m}}+\tau_{m}}\exp(\lambda^{+}A_{t}^{\mu})I_{A_{n}}(B_{t})dt]$ .

Noting that $\tau_{n+1}\circ\theta_{\tau_{m}}+\tau_{m}=\tau_{n+1}$ and $\int_{0}^{\tau_{m}}\exp(\lambda^{+}A_{t}^{\mu})I_{A_{n}}(B_{t})dt=0$ ,

we see that the last term is equal to $h_{n}(x)$ . Therefore $h_{n}$ satisfies (7)
for $G=B(m)$ .
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Now by [4, Corollary 7.8], $\{h_{n}\}$ is uniformly bounded and equicon-
tinuous on $B(1)$ , so we can choose a subsequence of $\{h_{n}\}$ which con-

verges uniformly on $B(1)$ . We denote the subsequence by $\{h_{n}^{(1)}\}$ . Next

take a subsequence $\{h_{n}^{(2)}\}$ of $\{h_{n}^{(1)}\}$ so that it converges uniformly on

$B(2)$ . By the same procedure, we take a subsequence $\{h_{n}^{(m+1)}\}$ of
$\{h_{n}^{(m)}\}$ so that it converges uniformly on $B(m+1)$ . Then the function,
$h(x)=\lim_{n\rightarrow\infty}h_{n}^{(n)}(x)$ , is a desired one. Q.E.D.

Lemma 3.2. The following statements are equivalent:

(i) $\inf\{\frac{1}{2}D(u, u)$ : $u\in H^{1}(\mathbb{R}^{d})$ , $\int_{\mathbb{R}^{d}}u^{2}d\mu=1\}<1$ ;

(ii) $\inf\{\mathcal{E}^{\mu}(u, u)$ : $u\in H^{1}(\mathbb{R}^{d})$ , $\int_{\mathbb{R}^{d}}u^{2}dx=1\}<0$ .

Proof. Assume (i). Then there exists a $\varphi_{0}\in C_{0}^{\infty}(\mathbb{R}^{d})$ such that

$\int_{\mathbb{R}^{d}}\varphi_{0}^{2}d\mu=1$ and $1/2D(\varphi_{0}, \varphi_{0})<1$ . Letting $u_{0}=\varphi_{0}/\sqrt{\int_{\mathbb{R}^{d}}\varphi_{0}^{2}dx}$ , we

have $\mathcal{E}^{\mu}(u_{0}, u_{0})<0$ .
$(ii)\Rightarrow(i)$ follows similarly. Q.E.D.

Remark 3.3. We see ffom [25, Lemma 3.5] that if

$\inf\{\frac{1}{2}D(u, u)$ : $\int_{\mathbb{R}^{d}}u^{2}d\mu=1\}\leq 1$ ,

then

$\inf\{\mathcal{E}^{\mu}(u, u)$ : $\int_{\mathbb{R}^{d}}u^{2}dx=1\}\leq 0$ .

However, the converse does not hold in general. Indeed, let $\mu=\sigma_{R}$ ,
the surface measure of the sphere $\partial B(R)$ . Then if $R<\frac{d-2}{2}$ , the first
infimum is greater than 1, while the second infimum is equal to 0 ([25]).

Lemma 3.4. Let $\mu\in \mathcal{K}_{d}^{\infty}$ . Then the number $\lambda^{+}$ is characterized as
a unique positive number such that

(9) $\inf\{\frac{1}{2}D(u, u)$ : $\lambda^{+}\int_{\mathbb{R}^{d}}u^{2}d\mu=1\}=1$ .

Proof. Define

$F(\lambda)=\inf\{\frac{1}{2}D(u, u)$ : $\lambda\int_{\mathbb{R}^{d}}u^{2}(x)\mu(dx)=1\}$ ,

Note that $ F(\lambda)=F(1)/\lambda$ . Then $F(1)$ is nothing but the bottom of
spectrum of the time changed process by the additive functional $A_{t}^{\mu}([22$ ,
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Lemma 3.1]). We see by [23, Lemma 3.1] that 1-resolvent $R_{1}^{\mu}$ of the
time changed process satisfies $R_{1}^{\mu}1\in C_{\infty}(\mathbb{R}^{d})$ . Hence it follows $bom$

[ $17$ , Corollary 3.2] and [23, Corollary 2.2] that $F(1)>0$ . Consequently
we see that $\lambda^{0}=F(1)$ is a unique positive constant such that

$F(\lambda^{0})=1Q.E.D.$

.Lemma 3.2 leads us that $\lambda^{0}=\lambda^{+}$ .

Corollary 3.5. For $\mu\in \mathcal{K}_{d}^{\infty}$ , the operator $H^{\lambda^{+}\mu}$ is critical.

Proof. Let $F(\lambda)$ be the function in the proof of Lemma 3.4. Then
it is known in [25, Theorem 3.9] that the operator $\mathcal{H}^{\lambda\mu}$ is subcritical if

and only if $F(\lambda)>1$ . Hence by Lemma 3.1 and Lemma 3.4, $H^{\lambda^{+}\mu}$ is
critical. Q.E.D.

Lemma 3.6. A positive $H^{\lambda^{+}\mu}$ -harmonic function $h$ satisfies
$P_{t}^{\lambda^{+}\mu}h(x)\leq h(x)$ .

Proof. Let $x\in B(m)$ . By Definition 3.1, $h$ satisfies

$h(x)=E_{x}[\exp(\lambda^{+}A_{\tau_{n}}^{\mu})h(B_{\tau_{n}})]$

for any $n$ $>m$ . Here $\tau_{n}$ is the first exit time from $B(n)$ . It follows $bom$

the Markov property that

$E_{x}[\exp(\lambda^{+}A_{t}^{\mu})h(B_{t});t<\tau_{m}]$

$=$ $E_{x}[\exp(\lambda^{+}A_{t}^{\mu})\exp(\lambda^{+}A_{\tau_{n}}^{\mu}\circ\theta_{t})h(B_{\tau_{n}}\circ\theta_{t});t<\tau_{m}]$

$=$ $E_{x}[\exp(\lambda^{+}A_{\tau_{n}}^{\mu})h(B_{\tau_{n}});t<\tau_{m}]\leq h(x)$ .

Hence we have

$P_{t}^{\lambda^{+}\mu}h(x)=\lim_{m\rightarrow\infty}E_{x}[\exp(\lambda^{+}A_{t}^{\mu})h(B_{t});t<\tau_{m}]\leq h(x)$ .

Q.E.D.

Let $P_{t}$ be a positive semigroup with integral kernel $p(t, x, y)$ . A
positive function $h$ is called $P_{t}$ -excessive if $h$ satisfies $P_{t}h(x)\leq h(x)$ .

For a $P_{t}$-excessive function $h(x)$ , the $h$-transformed semigroup $P_{t}^{h}$ is
defined by

(10) $P_{t}^{h}f(x)=\int_{\mathbb{R}^{d}}\frac{1}{h(x)}p(t, x, y)h(y)f(y)dy$ , $t>0$ , $x$ , $y\in \mathbb{R}^{d}$ .

Then $P_{t}^{h}$ becomes a Markovian semigroup.
Let $h$ be the function defined in Lemma 3.1. We see from Lemma 3.6

that the $h$-transformed semigroup $P_{t}^{\lambda^{+}\mu,h}$ generates a $h^{2}m$-symmetric

Markov process $W^{\lambda^{+}\mu,h}=(P_{x}^{\lambda^{+}\mu,h}, X_{t})$ . Note that $W^{\lambda^{+}\mu,h}$ is recurrent

because of the criticality of $H^{\lambda^{+}\mu}$ .
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Lemma 3.7. Finely continuous $P_{t}^{\lambda^{+}\mu}$ -excessive functions are unique
up to constant multiplication.

Proof. We follow the argument in [13, Theorem 4.3.4]. Let $h$ , $h^{/}$ be

finely continuous $P_{t}^{\lambda^{+}\mu}$-excessive functions. Since

$E_{x}[\exp(\lambda^{+}A_{t}^{\mu})h(B_{t})(\frac{h^{J}}{h})(B_{t})]\leq h\cdot\frac{h^{/}}{h}(x)$ ,

we have

$E_{x}^{\lambda^{+}\mu,h}[\frac{h^{/}}{h}(X_{t})]\leq\frac{h^{/}}{h}(x)$ ,

where $E_{x}^{\lambda^{+}\mu,h}$ is the expectation of $h$-transformed process $W^{\lambda^{+}\mu,h}$ . For
$y\in \mathbb{R}^{d}$ and $\epsilon>0$ , we put $U_{\epsilon}(y)=\{z:|h(z)-h(y)|<\epsilon\}$ . Since $U_{\epsilon}(y)$ is

finely open, $\sigma_{U_{\epsilon}(y)}<\infty$ , $P_{x}^{\lambda^{+}\mu,h}- a.s$ [ $8$ , Problem 4.6.3]. Replacing $t$ by
$\sigma_{\epsilon}$ , we have

(11) $E_{x}^{\lambda^{+}\mu,h}[\frac{h^{/}}{h}(X_{\sigma_{\epsilon}})]\leq\frac{h^{J}}{h}(x)$ .

Note that the left hand side of (11) converges to $\frac{h’}{h}(y)$ as $\epsilon\rightarrow 0$ . We
then have

$\frac{h^{/}}{h}(y)$
$=$ $E_{x}^{\lambda^{+}\mu,h}[\lim_{\epsilon\rightarrow}\inf_{0}\frac{h’}{h}(X_{\sigma_{\epsilon}})]\leq\lim_{\epsilon\rightarrow}\inf_{0}E_{x}^{\lambda^{+}\mu,h}[\frac{h^{J}}{h}(X_{\sigma_{\epsilon}})]$

$\leq$
$\frac{h^{/}}{h}(x)$ .

Since $x$ and $y$ are arbitrary, $h^{J}/h$ is a constant function. Q.E.D.

Now we give known facts on the Kato class.

Theorem 3.8 ([20]). Let $\mu\in \mathcal{K}_{d}$ . Then for any $u\in H^{1}(\mathbb{R}^{d})$

(12) $\int_{\mathbb{R}^{d}}u^{2}(x)\mu(dx)\leq||G_{\alpha}\mu||_{\infty}(D(u, u)+\alpha\int_{\mathbb{R}^{d}}u^{2}(x)dx)$ .

It is known from [1] (also see [28]) that $\mu\in \mathcal{K}_{d}$ if and only if

(13) $\lim_{\alpha\rightarrow\infty}||G_{\alpha}\mu||_{\infty}=0$ .

Therefore we see that for any $\epsilon$ there exists a constant $M(\epsilon)$ such that
for any $u\in H^{1}(\mathbb{R}^{d})$

(14) $\int_{\mathbb{R}^{d}}u^{2}(x)\mu(dx)\leq\epsilon D(u, u)+M(\epsilon)\int_{\mathbb{R}^{d}}u^{2}(x)dx$ .
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For a measure $\mu$ , let $\mu_{R}(\cdot)=\mu(\cdot\cap B(R))$ and $\mu_{R^{c}}=\mu(\cdot\cap B(R)^{c})$ .

Lemma 3.9. If $\mu\in \mathcal{K}_{d}^{\infty}$ , then the embedding of $H_{e}^{1}(\mathbb{R}^{d})$ to $L^{2}(\mu)$

is compact.

Proof. Let $\{u_{n}\}$ be a sequence in $H_{e}^{1}(\mathbb{R}^{d})$ such that

$u_{n}\rightarrow u_{0}\in H_{e}^{1}(\mathbb{R}^{d})$ , $D$-weakly.

Rellich’s theorem says that for any compact set $K\subset \mathbb{R}^{d}$

(15) $u_{n}I_{K}\rightarrow u_{0}I_{K}$ $L^{2}(m)- stroIlgly$ .

Now, for $\varphi\in C_{0}^{\infty}(\mathbb{R}^{d})$ with $\varphi=1$ on $B(R)$

$\int_{\mathbb{R}^{d}}|u_{n}-u_{0}|^{2}\mu_{R}(dx)=\int_{\mathbb{R}^{d}}|u_{n}\varphi-u_{0}\varphi|^{2}\mu_{R}(dx)$

$\leq\epsilon D(u_{n}\varphi-u_{0}\varphi, u_{n}\varphi-u_{0}\varphi)+M(\epsilon)\int_{\mathbb{R}^{d}}|u_{n}\varphi-u_{0}\varphi|^{2}dx$

by (14), and the second term converges to 0 as $ n\rightarrow\infty$ by (15). Since

$\sup_{n}D(u_{n}\varphi-u_{0}\varphi, u_{n}\varphi-u_{0}\varphi)<\infty$

by the principle of uniform boundedness and $\epsilon$ is arbitrary, $u_{n}$ converges
to $u_{0}$ in $L^{2}(\mu_{R})$ . Moreover, since by Theorem 3.8,

$\int_{\mathbb{R}^{d}}|u_{n}-u_{0}|^{2}\mu(dx)=\int_{\mathbb{R}^{d}}|u_{n}-u_{0}|^{2}\mu_{R}(dx)+\int_{\mathbb{R}^{d}}|u_{n}-u_{0}|^{2}\mu_{R^{c}}(dx)$

$\leq\int_{\mathbb{R}^{d}}|u_{n}-u0|^{2}\mu_{R}(dx)+||G\mu_{R^{c}}||_{\infty}D(u_{n}-u_{0}, u_{n}-u_{0})$ ,

$\lim_{n\rightarrow}\sup_{\infty}\int_{\mathbb{R}^{d}}|u_{7\iota}-u_{0}|^{2}\mu(dx)\leq||G\mu_{R^{c}}||_{\infty}\sup_{n}D(u_{n}-u_{0}, u_{n}-u_{0})$ .

Hence according to the definition of $\mathcal{K}_{d}^{\infty}$ the right hand side converges to
0 by letting $R$ to $\infty$ . Therefore $\{u_{n}\}$ is an $L^{2}(\mu)$ -convergent sequence.

Q.E.D.

Assume that $\mathcal{H}^{\mu}$ is subcritical or critical. Let $h$ be a positive $H^{\mu_{-}}$

harmonic function. We denote by $D_{e}(\mathcal{E}^{\mu})$ the family of $m$-measurable
function $u$ on $\mathbb{R}^{d}$ such that $|u|$ $<\infty$ m-a.e. and there exists an $\mathcal{E}^{\mu_{-}}$

Cauchy sequence $\{u_{n}\}$ of functions in $H^{1}(\mathbb{R}^{d})$ such that $\lim_{n\rightarrow\infty}u_{n}=u$

m-a.e. We call $\{u_{n}\}$ as above an approximating sequence for $u\in D_{e}(\mathcal{E}^{\mu})$ .
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Note that the Dirichlet form $(\mathcal{E}^{\mu,h}, D(\mathcal{E}^{\mu,h}))$ associated with the

Markov semigroup $P_{t}^{\mu,h}$ is given by

$\mathcal{E}^{\mu,h}(u, v)$ $=$ $\mathcal{E}^{\mu}(hu, hv)$

$D(\mathcal{E}^{\mu,h})$ $=$ $\{u\in L^{2}(\mathbb{R}^{d};h^{2}dx) : hu\in D(\mathcal{E}^{\mu})\}$ .

Then we see that $u\in D_{e}(\mathcal{E}^{\mu})$ if and only if $u/h\in D_{e}(\mathcal{E}^{\mu,h})$ , where
$D_{e}(\mathcal{E}^{\mu,h})$ is the entended Dirichlet space of $(\mathcal{E}^{\mu,h}, D(\mathcal{E}^{\mu,h}))$ . Conse-
quently, the Schr\"odinger form $\mathcal{E}^{\mu}$ can be well extended to $D_{e}(\mathcal{E}^{\mu})$ as
a symmetric form: for $u\in D_{e}(\mathcal{E}^{\mu})$ and its approximating sequence $\{u_{n}\}$

$(16)$ $\mathcal{E}^{\mu}(u, u)=\lim_{n\rightarrow\infty}\mathcal{E}^{\mu}(u_{n}, u_{n})$ , $u\in D_{e}(\mathcal{E}^{\mu})$

(see [8, p.35]). We call $(\mathcal{E}^{\mu}, D_{e}(\mathcal{E}^{\mu}))$ the extended Schr\"odinger form. We
see from [18, Definition 1.6] that a function $u$ belongs to $D_{e}(\mathcal{E}^{\mu})$ if there
exists a sequence $\{u_{n}\}$ of functions in $H^{1}(\mathbb{R}^{d})$ such that $\lim_{n\rightarrow\infty}u_{n}=u$

ra-a.e. and

$\sup_{n}\mathcal{E}^{\mu}(u_{n}, u_{n})<\infty$ .

If $(\mathcal{E}^{\mu}, H^{1}(\mathbb{R}^{d}))$ is a subcritical Schr\"odinger form, that is, the asso-
ciated operator $H^{\mu}$ be subcritical, then $(\mathcal{E}^{\mu}, D_{e}(\mathcal{E}^{\mu}))$ becomes a Hilbert
space by [8, Lemma 1.5.5]. In particular, a positive $\mathcal{H}^{\mu}$ -harmonic func-
tion $h$ does not belong to $D_{e}(\mathcal{E}^{\mu})$ . If $(\mathcal{E}^{\mu}, H^{1}(\mathbb{R}^{d}))$ is a critical Schr\"odinger
form, that is, the associated operator $H^{\mu}$ be critical, its ground state $h$

belongs to $D_{e}(\mathcal{E}^{\mu})$ on account of [8, Theotem 1.6.3]. Noting that for
$\mu\in \mathcal{K}_{d}^{\infty}$

$\mathcal{E}^{\mu}(u, u)\leq(1/2+||G\mu||_{\infty})D(u, u)$

by Theorem 3.8, we see that $D_{e}(\mathcal{E}^{\mu})$ includes $H_{e}^{1}(\mathbb{R}^{d})$ .
For $w\geq 0\in C_{0}(\mathbb{R}^{d})$ define $iJ$ $=\lambda^{+}\mu-w\cdot m$ . We then see that $H^{\nu}$ is

subcritical. Let $G^{\nu}(x, y)$ be the Green function of $H^{\nu}$ and $G^{\nu}$ the Green
operator,

(17) $G^{\nu}f(x)=\int_{\mathbb{R}^{d}}G^{\nu}(x, y)f(y)dy$ .

By [26, Theorem 3.1], the Green function $G^{\nu}(x, y)$ is equivalent to
$G(x, y)$ : there exist positive constants $c$ , $C$ such that

(18) $cG(x, y)\leq G^{\nu}(x, y)\leq CG(x, y)$ for $x\neq y$ .

Lemma 3.10. For a positive function $\varphi\in C_{0}(\mathbb{R}^{d})$ , $ G^{\nu}\varphi$ belongs to
$D_{e}(\mathcal{E}^{\iota/})$
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Proof Let $G_{\beta}^{\nu}$ be the $\beta$-resolvent associated with $H^{\nu}$ . Then $ G_{\beta}^{\nu}\varphi$

belongs to $H^{1}(\mathbb{R}^{d})$ and $ G_{\beta}^{\nu}\varphi\rightarrow G^{\nu}\varphi$ as $\beta\rightarrow 0$ . Moreover,

$\mathcal{E}^{\nu}(G_{\beta}^{\nu}\varphi, G_{\beta}^{\nu}\varphi)\leq \mathcal{E}_{\beta}^{\nu}(G_{\beta}^{\nu}\varphi, G_{\beta}^{\nu}\varphi)=(\varphi, G_{\beta}^{\nu}\varphi)\leq(\varphi, G^{\nu}\varphi)$

and the right hand side is not greater than $ C(\varphi, G\varphi)<\infty$ by (18).
Q.E.D.

The next theorem is first obtained by Murata [10, Theorem 2.2]
when the potential $\mu$ is absolutely continuous with respect to the
Lebesgue measure.

Theorem 3.11. For $w\in C_{0}(\mathbb{R}^{d})$ with $w\geq 0$ , $w\not\equiv 0$ , let $iJ$ $=$

$\lambda^{+}\mu-w\cdot m$ . The positive continuous $7\{^{\lambda^{+}\mu}$ -ha7monic function $h$ satisfies

(19) $h(x)=\int_{\mathbb{R}^{d}}G^{\nu}(x, y)h(y)w(y)dy$ .

Proof Note that by Lemma 3.9 there exists a function $u_{0}\in H_{e}^{1}(\mathbb{R}^{d})$

such that $u_{0}$ attains the infimum:

$\inf\{\frac{1}{2}D(u, u)$ : $u\in H_{e}^{1}(\mathbb{R}^{d})$ , $\lambda^{+}\int_{\mathbb{R}^{d}}u^{2}d\mu=1\}=1$ .

The function $u_{0}$ then satisfies the following equation:

$\frac{1}{2}D(u_{0}, f)=\lambda^{+}\int_{\mathbb{R}^{d}}u_{0}fd\mu$ for all $f\in H_{e}^{1}(\mathbb{R}^{d})$ ,

and thus by the definition of $iJ$

$\mathcal{E}^{\nu}(u_{0}, f)=\int_{\mathbb{R}^{d}}u_{0}$ fwdx for all $f\in H_{e}^{1}(\mathbb{R}^{d})$ .

On account of the definition of the extended Schr\"odinger form, we see
that the equation above is extended to any $f\in D_{e}(\mathcal{E}^{\nu})$ . Since $ G^{\nu}\varphi\in$

$D_{e}(\mathcal{E}^{\nu})$ for any $\varphi\in C_{0}(\mathbb{R}^{d})$ by Lemma 3.10, we obtain, by substituting
$ G^{\nu}\varphi$ for $f$

$\int_{\mathbb{R}^{d}}u_{0}(x)\varphi(x)dx=\int_{\mathbb{R}^{d}}u_{0}(x)w(x)G^{\nu}\varphi(x)dx=\int_{\mathbb{R}^{d}}G^{\nu}(u_{0}w)(x)\varphi(x)dx$ ,

thus

$u_{0}(x)=\int_{\mathbb{R}^{d}}G^{\nu}(x, y)u_{0}(y)w(y)dy$ , m-a. $e$ .
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Let

$v(x)=E_{x}[\int_{0}^{\infty}\exp(A_{t}^{\nu})u_{0}(B_{t})w(B_{t})dt]$ ,

Then the function $v(x)$ equak to $u_{0}(x)$ m-a.e. and satisfies

$v(x)=\int_{\mathbb{R}^{d}}G^{\nu}(x, y)v(y)w(y)dy$ , m-a.e.

Moreover, $v(x)$ is a finely continuous $P_{t}^{\lambda^{+}\mu}$-excessive function. Indeed,

$v(B_{s})$ $=E_{B_{s}}[\int_{0}^{\infty}\exp(A_{t}^{\nu})u_{0}(B_{t})w(B_{t})dt]$

(20)
$=E_{x}[\int_{0}^{\infty}\exp(A_{t}^{\nu}\circ\theta_{s})u_{0}(B_{t+s})w(B_{t+s})dt|F_{s]}$

$=\exp(-A_{s}^{\nu})E_{x}[\int_{0}^{\infty}\exp(A_{t}^{\nu})u_{0}(B_{t})w(B_{t})dt|F_{s}]$

$-\exp(-A_{s}^{\nu})\int_{0}^{s}\exp(A_{t}^{\nu})u_{0}(B_{t})w(B_{t})dt$ .

and the first term of the last equality is right continuous because of
the right continuity of $\mathcal{F}_{s}$ . Hence $v$ is finely continuous $([10,Theorem$

A.2.7]), and thus $v(x)=u_{0}(x)q.e$ . Consequently

(21) $v(x)=E_{x}[\int_{0}^{\infty}\exp(A_{t}^{\nu})v(B_{t})w(B_{t})dt]$ for any $x$ .

Let $M_{t}=E_{x}[\int_{0}^{\infty}\exp(A_{t}^{\nu})v(B_{t})w(B_{t})dt|F_{s}]$ . Then according to (20) and
(21)

$\exp(A_{t}^{\lambda^{+}\mu})v(B_{t})=\exp(\int_{0}^{t}w(B_{u})du)(\exp(A_{t}^{\nu})v(B_{t}))$

$=$ $v(B_{0})+\int_{0}^{t}\exp(\int_{0}^{s}w(B_{u})du)dM_{s}-\int_{0}^{t}\exp(A_{s}^{\lambda^{+}\mu})v(B_{s})w(B_{s})ds$

$+\int_{0}^{t}\exp(A_{s}^{\nu})v(B_{s})\exp(\int_{0}^{s}w(B_{u})du)w(B_{s})ds$

$=$ $v(B_{0})+\int_{0}^{t}\exp(\int_{0}^{s}w(B_{u})du)dM_{s}$ ,

which implies that

$E_{x}[\exp(A_{t}^{\lambda^{+}\mu})v(B_{t})]\leq v(x)$ .
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Hence $h(x)=cv(x)$ by Lemma 3.7, and thus for aU $x$

(22) $h(x)=\int_{\mathbb{R}^{d}}G^{\nu}(x, y)h(y)w(y)dy$ .

Q.E.D.

\S 4. An extension of Oshima’s inequality

In this section, we extend Oshima’s inequality in [11] to critical
Schr\"odinger forms. The inequality plays a crucial role for the proof of
the differentiability of $C(\lambda)$ .

Lemma 4.1. Let $h$ be a positive continuous $H^{\lambda^{+}\mu}$ -harmonic func-
tion. Then the $h$ -transformed semigroup $P_{t}^{\lambda^{+}\mu,h}$ of $P_{t}^{\lambda^{+}\mu}$ has the strong
Feller property.

Proof. Following the argument in [6, Corollary 5.2.7], we can prove
this lemma. Q.E.D.

Proposition 4.2. For the ground state $h$ , the $h$ -trasformed process
$W^{\lambda^{+}\mu,h}=(P_{x}^{\lambda^{+}\mu,h}, X_{t})$ is Harris recurrent, that is, for a non-negative

function $f$ ,

(23) $\int_{0}^{\infty}f(X_{t})dt=\infty$ , $P_{x}^{\lambda^{+}\mu,h}$ -a. $s$ .

whenever $m(\{x:f(x)>0\})>0$ .

Proof. Since $P_{t}^{\lambda^{+}\mu,h}$ generates the $h^{2}m$-symmetric recurrent Markov
process, we see ffom [8, Theorem 4.6.6] that

(24) $P_{x}[\sigma_{A}\circ\theta_{n}<\infty, \forall n\geq 0]=1$ for $q.e$ . $x\in \mathbb{R}^{d}$ ,

where $A=\{x : f(x)>0\}$ . Moreover, since the Markov process $W^{\lambda^{+}\mu,h}$

has transition density with respect to $h^{2}m$ , (24) holds for all $x\in \mathbb{R}^{d}$

by [8, Problem 4.6.3]. Hence according to [16, Chapter $X$ , Proposition
(3.11) $]$ , we have the equation (23). Q.E.D.

Theorem 4.3. For the form
$\mathcal{E}^{\lambda^{+}\mu}$ and its ground state $h$ , there

exist a positive function $g\in L^{1}(h^{2}m)$ and a function $\psi\in C_{0}(\mathbb{R}^{d})$ with
$\int_{\mathbb{R}^{d}}\psi h^{2}dx=1$ such that for $u\in D(\mathcal{E}^{\lambda^{+}\mu,h})$

(25) $\int_{\mathbb{R}^{d}}|u(x)-h(x)L(\frac{u}{h})|g(x)h(x)dx\leq C\mathcal{E}^{\lambda^{+}\mu}(u, u)^{1/2}$ ,
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where $C$ is a positive constant and

$L(u)=\int_{]R^{d}}u\psi h^{2}dx$ .

Proof. We can apply Oshima’s inequality to the Dirichlet form
$(\mathcal{E}^{\lambda^{+}\mu,h}, D(\mathcal{E}^{\lambda^{+}\mu,h}))satis\mathfrak{h}^{\gamma}ing$ the Harris recurrence condition: there ex-
ist a positive function $g\in L^{1}(h^{2}m)$ and a function $\psi\in C_{0}(\mathbb{R}^{d})$ with
$\int_{\mathbb{R}^{d}}\psi h^{2}dx=1$ such that for any $u$

$\in D(\mathcal{E}^{\lambda^{+}\mu,h})$

(26) $\int_{\mathbb{R}^{d}}|u(x)-L(u)|g(x)h^{2}(x)dx\leq C\mathcal{E}^{\lambda^{+}\mu,h}(u, u)^{1/2}$ ,

where

$L(u)=\int_{\mathbb{R}^{d}}u\psi h^{2}dx$ .

Therefore substituting $v/h$ for $u$ in (26) and noting the relation

$\mathcal{E}^{\lambda^{+}\mu,h}(v, v)=\mathcal{E}^{\lambda^{+}\mu}(hv, hv)$ ,

we obtain the equality (25). Q.E.D.

\S 5. Differentiability of spectral function

Lemma 5.1 ([24, Lemma 4.3]). Let $\mu\in \mathcal{K}_{d}^{\infty}$ . Then for any $\lambda>$

$\lambda^{+}$ , the negative spectrum of $\sigma(\mathcal{E}^{\lambda\mu})$ consists of isolated eigenvalues with

finite multiplicities.

Let $H^{\mu}$ be critical and $h$ its groung state. Then we call $H^{\mu}$ null
critical if the function $h$ does not belong to $L^{2}(m)$ ,

Theorem 5.2. Let $\mu\in \mathcal{K}_{d}^{\infty}$ . If $H^{\lambda^{+}\mu}$ is null $critical_{f}$ then its
spectral function $C(\lambda)$ is diffentiable.

Proof. Note that by Lemma 5.1, for $\lambda>\lambda^{+}$ , $-C(\lambda)$ is the princi-
pal eigenvalue of Schr\"odinger operator $ H^{\lambda\mu}=-\frac{1}{2}\triangle-\lambda\mu$ . By analytic
perturbation theory [9, Chapter VII], we can see that $C(\lambda)$ is differen-
tiable on $\lambda>\lambda^{+}$ . Hence we only need to prove the differentiability of
$C(\lambda)$ at $\lambda=\lambda^{+}$ . Since $C(\lambda)$ is convex, it is enough to prove that there
exists a sequence $\{\lambda_{n}\}$ such that $\lambda_{n}\downarrow\lambda^{+}$ and $dC(\lambda_{n})/d\lambda\downarrow 0$ . By the
perturbation theory [9, p.405, Chapter VII (4.44)], we see

(27) $\frac{dC(\lambda)}{d\lambda}=\int_{\mathbb{R}^{d}}u_{\lambda}^{2}d\mu$ ,
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where $u_{\lambda}$ is the $L^{2}$ -normalized eigenfunction corresponding to $-C(\lambda)$ ,

that is,

(28) $C(\lambda)=\lambda\int_{\mathbb{R}^{d}}u_{\lambda}^{2}d\mu-\frac{1}{2}D(u_{\lambda}, u_{\lambda})$ .

Using (14) and taking $\epsilon>0$ so small that $\lambda_{n}\epsilon<1/2$ , we have

$D(u_{\lambda_{n}}, u_{\lambda_{n}})\leq\frac{-C(\lambda_{n})+\lambda_{n}M(\epsilon)}{1/2-\lambda_{n}\epsilon}$ .

Noting that $C(\lambda_{n})\rightarrow 0$ as $n$ $\rightarrow\infty$ , we see

(29) $\sup_{n}D(u_{\lambda_{n}}, u_{\lambda_{n}})<\infty$ .

Since

$\mathcal{E}^{\lambda^{+}\mu}(u_{\lambda_{n}}, u_{\lambda_{n}})-\mathcal{E}^{\lambda_{n}\mu}(u_{\lambda_{n}}, u_{\lambda_{n}})\leq(\lambda_{n}-\lambda^{+})||G\mu||_{\infty}D(u_{\lambda_{n}}, u_{\lambda_{n}})$

the right hand side converges to 0 as $n$ $\rightarrow\infty$ by (29). Thus we obtain

(30) $\lim_{n\rightarrow\infty}\mathcal{E}^{\lambda^{+}\mu}(u_{\lambda_{n}}, u_{\lambda_{n}})=0$ .

For the ground state $h$ of $H^{\lambda^{+}\mu}$ let $H^{\lambda^{+}\mu,h}$ be the $h$-transformed opera-
tor. For $\psi\in C_{0}(\mathbb{R}^{d})$ with $\int_{\mathbb{R}^{d}}\psi h^{2}dx=1$ , let $L(u)=\int_{\mathbb{R}^{d}}u(x)\psi(x)h^{2}(x)dx$ .

Then we have

$|L(\frac{u_{\lambda_{n}}}{h})|\leq\sqrt{\int_{\mathbb{R}^{d}}u_{\lambda_{n}}^{2}dx}\sqrt{\int_{\mathbb{R}^{d}}\psi^{2}(x)h^{2}(x)dx}<\infty$ .

Hence we can choose a sequence $\{\lambda_{n}\}$ tending to $\lambda^{+}$ such that $L(u_{\lambda_{n}}/h)$

converges to a certain constant $C$ . Noting by Thorem 4.3,

$\int_{\mathbb{R}^{d}}|u_{\lambda_{n}}-Ch|ghdx$

$\leq$ $\int_{\mathbb{R}^{d}}|u_{\lambda_{n}}-hL(\frac{u_{\lambda_{n}}}{h})|ghdx+\int_{\mathbb{R}^{d}}|hL(\frac{u_{\lambda_{n}}}{h})-Ch|ghdx$

$\leq$ $C\mathcal{E}^{\lambda^{+}\mu}(u_{\lambda_{n}}, u_{\lambda_{n}})^{1/2}+\int_{\mathbb{R}^{d}}|L(\frac{u_{\lambda_{n}}}{h})-C|gh^{2}dx\rightarrow 0$ ,

we see $u_{\lambda_{n}}\rightarrow Cha.e$ . by choosing a subsequence if necessary. Since

$1=\lim_{n\rightarrow}\inf_{\infty}\int_{\mathbb{R}^{d}}u_{\lambda_{n}}^{2}dx\geq\int_{\mathbb{R}^{d}}\lim_{n\rightarrow}\inf_{\infty}u_{\lambda_{n}}^{2}dx=C^{2}\int_{\mathbb{R}^{d}}h^{2}dx$ ,
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the constant $C$ must be equal to 0 on account of the null criticality.

Since $C(\lambda_{n})$ is an eigenvalue for $-H^{\lambda_{n}\mu}$ , $u_{\lambda_{n}}=e^{-C(\lambda_{n})t}P_{t}^{\lambda_{n}\mu}u_{\lambda_{n}}$ .

Thus we have by [2, Theorem 6.1 (iii)]

$||u_{\lambda_{n}}||_{\infty}\leq e^{-C(\lambda_{n})t}||P_{t}^{\lambda_{n}\mu}||_{2,\infty}\leq||P_{t}^{\lambda_{1}\mu}||_{2,\infty}<\infty$ .

Also we can assume that $u_{\lambda_{n}}\rightarrow 0q.e$ . as $ k\rightarrow\infty$ by choosing a subse-
quence. Therefore we have

$\lim_{n\rightarrow}\sup_{\infty}\int_{\mathbb{R}^{d}}u_{\lambda_{n}}^{2}d\mu$

$\leq$ $\lim_{n\rightarrow}\sup_{\infty}\int_{\mathbb{R}^{d}}u_{\lambda_{n}}^{2}d\mu_{R}+\lim_{n\rightarrow}\sup_{\infty}||G\mu_{R^{c}}||_{\infty}D(u_{\lambda_{n}}, u_{\lambda_{n}})$

$\leq$ $||G\mu_{R^{c}}||_{\infty}M$ .

By letting $R$ to $\infty$ , we complete the proof. Q.E.D.

Finally we consider the situation in Theorem 5.2. By Theorem 3.11
we have

$c\int_{K}G^{\nu}(x, y)w(y)dy\leq h(x)\leq C\int_{K}G^{\nu}(x, y)w(y)dy$ ,

where $K$ is the support of $w$ . Let $B(R)\supset K$ . Applying the Harnack
inequality to $G^{\nu}(x, \cdot)$ , $x\in B(R)^{c}$ , we see that

Gv $(x, O)\leq h(x)\leq CG^{\nu}(x, 0)$ on $x\in B(R)^{c}$ .

We see from the equation (18) that the ground state $h$ satisfies

(31) $cG(x, O)\leq h(x)\leq CG(x, 0)$ , on $x\in B(R)^{c}$ .

Hence we see that if $d\leq 4$ , $h$ is not in $L^{2}$ , that is, $H^{\lambda^{+}\mu}$ is null critical.
Therefore combining [24, Theorem 4.3] and Theorem 5.2, we obtain
Theorem 1. 1.
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Abstract.

A Harris flow is a stochastic flow on the real line given by SDE
(2.1) below. We study the noise generated by Harris flows, particu-
larly spectra of the noise. Our aim is to understand what lies beyond
the finite order terms in the chaos expansion (the Wiener-It\^o expan-
sion) for nonstrong solutions of SDE (2.1).

\S 1. Definitions and main results

The notion of noises in continuous time (i.e., the case of time $t\in R$)
has been introduced by Tsirelson (cf. $[T1]$ , $[T2]$ , $[T5]$ ):

Definition 1.1. $A$ noise $N=[\{\mathcal{F}_{s,t}\}_{s\leq t}, \{T_{h}\}_{h\in R}]$ is a two param-
eter family of sub $\sigma- fifields$ $\mathcal{F}_{s,t}$ , $s\leq t$ , of events defifined on a probability
space $(\Omega, F, P)$ which is stationary in time and possesses the following
property:

(1.1) $F_{s,u}=F_{s,t}\otimes F_{t,u}$ , $s\leq t\leq u$ ,

that is, $F_{s,t}$ and $F_{t,\tau\iota}$ are independent and generate $\mathcal{F}_{s,\tau\nu}$ , for every $ s\leq$

$t$ $\leq u$ . By the stationarity in time, we mean the existence of a measurable

flflow $\{T_{h}\}$ , $i.e.$ , a measurable one-parameter group of automorphisms, on
$(\Omega, \mathcal{F}_{-\infty,\infty}.--\ovalbox{\tt\small REJECT}_{s\leq t}\mathcal{F}_{s,t})$ , in which $\mathcal{F}_{s,t}$ is sent to $\mathcal{F}_{s+h,t+h}$ by $T_{h}$ .

In this article, it is always assumed that the probability space is complete
and separable and that a sub $\sigma$-field contains all $P$-null sets.

In the discrete time case (i.e., the case of time $n\in Z$), a noise can be
defined similarly but it is essentially equivalent to giving an i.i.d. random
sequence. In the continuous time case, noises generated by increments
of a Wiener process (of finite or countably infinite dimension), a station-
ary Poisson point process, or an independent pair of them, are typical

Received March 31, 2003.
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examples which we call white, linearizable or classical noises. There are
many non-classical noises, however. Every noise $N=\{F_{s,t}\}$ contains a
unique maximal (i.e., the largest) classical subnoise which is denoted by
$N^{lin}=\{\mathcal{F}_{s,t}^{lin}\}$ .

A Harris flflow (as will be defined precisely in Def.1.3 below) is a
stochastic flow on the real line $R$ determined uniquely by giving a real
positive definite function $b(x)$ such that $b(0)=1$ , (cf. [H]). Note that
$b(x)=b(-x)$ . We assume that either $b(x)=1_{\{0\}}(x)$ or $b(x)$ is contin-

uous, $C^{2}$ on $R\backslash \{0\}$ and strictly positive-defifinite in the sense that the
matrix $\{b(x_{i}-x_{j})\}$ is strictly positive-definite for any choice of finite
different points $\{x_{i}\}$ in R. The Harris flow in the discontinuous case of
$b(x)=1_{\{0\}}(x)$ is known as the Arratia flflow ([A]).

Here is a formal definition of stochastic flows on the real line: Let $\mathcal{T}$

be the set of all non-decreasing right-continuous functions $\varphi$ : $ x\in R\mapsto$

$\varphi(x)\in R$ with the metric defined by $\rho(\varphi, \psi)=\sum_{n=1}^{\infty}2^{-n}(\rho_{r\iota}(\varphi, \psi)\wedge 1)$

where

$\rho_{n}(\varphi, \psi)=\inf\{\in>0|\varphi(x-\epsilon)-\in\leq\psi(x)\leq\varphi(x+\in)+\in$

for all $x\in[-n, n]\}$ .

Then $\mathcal{T}$ is a Polish space: The composite $(\varphi, \psi)\in \mathcal{T}\times \mathcal{T}\mapsto\psi\circ\varphi\in \mathcal{T}$ ,
defined by $\psi\circ\varphi(x)=\psi(\varphi(x))$ , and the evaluation map $\mathcal{T}\times R\ni(\varphi, x)\mapsto$

$\varphi(x)\in R$ are all Borel measurable even though they are generally not
continuous.

Definition 1.2. By $a$ stochastic flow on $R$ , we mean a family $X=$

$\{X_{s,t}; s\leq t\}$ of $\mathcal{T}$ -valued random variables $X_{s,t}$ having the following
properties:

(1) (Flow property), $X_{s,u}=X_{t,u}\circ X_{s,t}$ and $X_{t,t}=id$ , $a.s$ . for
every $s\leq t\leq u$ ,

(2) (Independence property), for any sequence $t_{0}\leq t_{1}\leq\cdots\leq t_{n}$ ,
$\mathcal{T}$-valued random variables $X_{t_{k-1},t_{k}}$ , $k=1$ , $\cdots$ , $n$ , are inde-
pendent,

(3) (Stationarity), for any $h>0$ , $X_{s,t}=dX_{s+h,t+h}$ ,
(4) (Stochastic continuity), $X_{0,h}\rightarrow id$ in probability as $h\downarrow 0$ .

Given a stochastic flow $X=\{X_{s,t}\}$ , it generates a noise $N^{X}=[\{F_{s,t}^{X}\}$ ,
$\{T_{h}\}]$ by letting $\mathcal{F}_{s,t}^{X}$ to be the $\sigma$-field generated by $\mathcal{T}$-valued random
variables $X_{u,v}$ , $s\leq u\leq v\leq t$ , and $\{T_{h}\}$ to be a unique one-parameter
family of automorphisms on $(\Omega, \mathcal{F}_{-\infty,\infty}^{X})$ such that $(T_{h})_{*}(X_{u,v}(x))=$

$X_{u+h,v+h}(x)$ , $u\leq v$ , $x\in R$ .

Now we give a formal definition of Harris flows. Generally, for a
given filtration $F=\{\mathcal{F}_{t}\}_{t\geq 0}$ , we denote by $\mathcal{M}_{2}(F)$ the space of all
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locally square-integrable $F$-martingales $M$ $=(M_{t})_{t\geq 0}$ with $M_{0}=0$ and
by $\mathcal{M}_{2}^{c}(F)$ the subspace formed of all continuous elements in $\mathcal{M}_{2}(F)$ .

Definition 1.3. The Harris flow $X=\{X_{s,t}\}$ associated with the
correlation function $b(x)$ is a stochastic flflow on $R$ such that, for every
$x\in R$ , if we defifine the process $M(x)=(M_{t}(x))_{t\geq 0}$ by setting $M_{t}(x)=$

$X_{0,t}(x)-x$ and the fifiltration $F^{X}=\{F_{t}^{X}\}$ by setting $F_{t}^{X}=F_{0,t}^{X}$ , then
$M(x)\in \mathcal{M}_{2}^{c}(F^{X})$ and, for every $x$ , $y\in R$ , we have

(1.2) $\langle M(x), M(y)\rangle_{t}=\int_{0}^{t}b(X_{0,s}(x)-X_{0,s}(y))ds$ .

The law of a Harris flow is uniquely determined under our assumption
on functions $b(x)$ . The existence of Harris flows has been established in
[H] (cf. also $[LR1]$ ). A Harris flow is equivalently given by a stochastic
differential equation (SDE) (2.1) in Section 2.

Let $X=\{X_{s,t}\}$ be a Harris flow associated with the function $b(x)$

and $N^{X}$ be the noise generated by it. Suppose that $b(x)$ is continuous.
Then we can construct a centered Gaussian system $W=\{W(t, x);t\in$

$R$ , $x\in R\}$ contained in $L_{2}(\mathcal{F}_{-\infty,\infty}^{X})$ such that $(T_{h})_{*}[W(t, x)-W(s, x)]=$

$W(t+h, x)-W(s+h, x)$ , $s\leq t$ , $x\in R$ and, if we set $w_{t}(x)=W(t, x)-$

$W(0, x)$ , then $w(x)=(w_{t}(x))_{t\geq 0}\in \mathcal{M}_{2}^{c}(F^{X})$ and, for every $x$ , $y\in R$ , we
have $\langle w(x), w(y)\rangle_{t}=tb(x-y)$ . Indeed, $W(t, x)-W(s, x)$ is the $L_{2}$ -limit
of $M_{\triangle}^{x}(s, t)$ as $|\triangle|\rightarrow 0$ . Here, for a sequence of times $\triangle$ : $s=t_{0}<$

$t_{1}<\cdots<t_{n-1}<t_{n}=t$ and $x\in R$ , $M_{\triangle}^{x}(s, t)=\sum_{k=1}^{n}(X_{t_{k-1},t_{k}}(x)-x)$

and $|\Delta|=\max_{k}|t_{k}-t_{k-1}|$ . $W$ defines a Gaussian white noise $N^{W}=$

$[\{F_{s,t}^{W}\}, \{T_{h}\}]$ where $\mathcal{F}_{s,t}^{W}=\sigma[W(v, x)-W(u, x);s\leq u\leq v\leq t, x\in R]$ .

It is obvious that $N^{W}$ is a subnoise of $N^{X}$ .

Theorem 1.1. Suppose that the function $b(x)$ is continuous. Then,
it holds that $[N^{X}]^{lin}=N^{W}$ . Furthermore, $N^{X}=N^{W}$ holds, that is,

the noise $N^{X}$ generated by the Harris flflow $X$ is classical, if and only if

(1.3) $\int_{0+}^{1}(1-b(x))^{-1}dx=\infty$ .

Hence, the noise $N^{X}$ is nonclassical if and only if

(1.4) $\int_{0+}^{1}(1-b(x))^{-1}dx<\infty$ .

In the case of the Arratia flow, it generates a nonclassical noise:
Tsirelson $[T3]$ (cf. also $[LR2]$ ) showed that this noise is black in the
sense that $(\mathcal{F}_{s,t}^{X})^{lin}=\{\emptyset, \Omega\}$ for every $s\leq t$ .
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Tsirelson $([T2], [T5])$ introduced the notion of spectral measures for
noises which is an invariant under the isomorphism of noises and which
can measure the degree of non-linearity (or sensitivity in the discrete-
time approximation) of noises. Let $C$ be the space formed of all compact
sets in $R$ endowed with the Hausdorff distance and $C^{f}$ be its subclass
formed of all finite sets: $C^{f}=$ $\{ S\in C||S|<\infty\}$ . Here, $|S|$ denotes
the number of elements in $S$ .

Definition 1.4. Let $N=[\{F_{s,t}\}, \{T_{h}\}]$ be a noise. To every $\Phi\in$

$L_{2}(F_{-\infty,\infty})$ , there corresponds a unique fifinite Borel measure $\mu_{\Phi}$ on $C$

such that

(1.5) $\mu_{\Phi}(\{S\in C|S\subset J\})=E[E(\Phi|F(J))^{2}]$

for every elementary set $J\subset R$ . Here, by an elementary set $J$ , we mean
$a$ fifinite union $J=\bigcup_{k}[t_{k}, t_{k+1}]$ of non-overlapping intervals and we set
$F(J)=\ovalbox{\tt\small REJECT}_{k}\mathcal{F}_{t_{k},t_{k+1}}$ . $\mu_{\Phi}$ is called the spectral measure of the noise $N$

associated with $\Phi\in L_{2}(F_{-\infty,\infty})$ .

When $\Phi\in L_{2}(F_{s,t})$ , we have $\mu_{\Phi}(C\backslash C_{[s,t]})=0$ where $C_{[s,t]}=\{S\in$

$C$ $|S\subset[s, t]\}$ , so that $\mu_{\Phi}$ is a measure on $C_{[s,t]}$ . The following is an
important characterization of classical noises due to Tsirelson: a noise
is classical if and only if $\mu_{\Phi}(C\backslash C^{f})=0$ for every $\Phi\in L_{2}(F_{-\infty,\infty})$ .

Set $L_{2}^{us}(F_{s,t})=$ $\{ \Phi\in L_{2}(F_{s,t})|||\Phi||_{2}=1\}$ ; the unit sphere in
$L_{2}(\mathcal{F}_{s,t})$ . If $\Phi\in L_{2}^{us}(\mathcal{F}_{-\infty,\infty})$ , then $\mu_{\Phi}$ is a Borel probability on $C$ so
that we can speak of a $C$-value random variable with the distribution $\mu_{\Phi}$ .

We denote it by $S_{\Phi}$ and call it the spectral set of the noise associated
with $\Phi$ .

We wish to describe the spectral set $S_{\Phi}$ for the noise $N^{X}$ generated
by a Harris flow $X$ when $\Phi=X_{0,1}(0)\in L_{2}^{us}(\mathcal{F}_{0,1}^{X})$ . The random set $S_{\Phi}$

in this case is denoted by $S_{X}$ . We would also obtain some information
on $S_{\Phi}$ for general $\Phi$ . We consider naturally the case when the noise is
nonclassical so that we assume (1.4). Furthermore, we assume that

(1.6) $b(x)$ is non-increasing in $(0, \infty)$ and satisfifies $\lim_{x\rightarrow\infty}b(x)=0$ .

Functions $b(x)=\exp(-c|x|^{\alpha})$ for $c>0$ and $0<\alpha<1$ are typical
examples. Also, $b(x)=1_{\{0\}}(x)$ (the case of the Arratia flow) is another
typical example.

For $S\in C$ , let $S^{acc}$ be the the set of all accumulation points of $S$ ,

so that $ S^{acc}\neq\emptyset$ if and only if $S\not\in C^{f}$ .

Theorem 1.2. Let $X$ be the Harris flflow associated with the function
$b(x)$ which satisfifies (1.4) and (1.6) and let $S_{X}$ be the spectral set $S_{\Phi}$ of
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the noise $N^{X}$ for $\Phi=X_{0,1}(0)$ . Then the random set $S_{X}^{acc}$ has the same

law as the random set $S$ in $[0, 1]$ defifined by

(1.7) $\overline{S}=$ $\{ t|0\leq t\leq\tau,\hat{\xi}^{+}(\tau-t)=0\}$

where $\hat{\xi}^{+}=\{\hat{\xi}^{+}(t)\}_{t\geq 0}$ is the reflflecting diffusion process on $[0, \infty)$ with
the generator

(1.7) $\hat{L}=\frac{d}{dx}(1-b(x))\frac{d}{dx}$

and the initial distribution $\mu(dx):=-db(x)$ . Here, $\tau$ is $a[0,1]$ -valued

and uniformly distributed random variable independent of $\hat{\xi}^{+}$ .

In particular, we have

$P(S_{X}^{acc}\neq\emptyset)=P(|S_{X}|=\infty)=P(\overline{S}\neq\emptyset)=P\{\exists t\in[0, \tau];\hat{\xi}^{+}(t)=0\}$

and this probability is also equal to $E[\int_{0}^{1}(1-b(\xi^{+}(t)))dt]$ where $\xi^{+}=$

$\{\xi^{+}(t)\}_{t\geq 0}$ is the reflecting diffusion process on $[0, \infty)$ with the generator

(1.9) $L=(1-b(x))\frac{d^{2}}{dx^{2}}$

which starts at 0. Still another expression of this probability is given
by the expectation $\frac{1}{2}E[A^{-1}(1)]$ , where $A(t)$ is an additive functional of
the one-dimensional Wiener process $\beta(t)$ with $\beta(0)=0$ , defined by

(1.10) $A(t)=\frac{1}{2}\int_{0}^{t}(1-b(\beta(s)))^{-1}ds$ ,

and $t\rightarrow A^{-1}(t)$ is the inverse function of $t\rightarrow A(t)$ .
In the case of the Arratia flow, $S_{X}^{acc}=S_{X}$ and it is a perfect set,

$a.s.$ . It is described as a zero points set of a (double speed) reflecting
Brownian motion starting at 0 as in the theorem. This recovers a result
of Tsirelson $([T4])$ who obtained it by an approximation by coalescing
random walks.

In the following, we consider the class of Harris flows associated
with the correlation functions $b(x)$ which satisfy (1.4), (1.6) and, for
some $0\leq\alpha<1$ ,

(1.11) $1-b(x)\vee\wedge|x|^{\alpha}$ as $x\rightarrow 0$ .

Again, functions $b(x)=\exp(-c|x|^{\alpha})$ for $c>0$ and $0<\alpha<1$ are
typical examples. Note also that the function $b(x)=1_{\{0\}}(x)$ (the case



356 J. Warren and S. Watanabe

of the Arratia flow) is a typical example of the case when $\alpha=0$ . From
Theorem 1.2, we can obtain the following: Denoting by $dim(S)$ the
Hausdorff dimension of a subset $S$ in $R$ ,

Corollary 1.1. $dim(S_{X}^{acc})=\frac{1-\alpha}{2-\alpha}$ $a.s.$ , under the condition that it
is not empty.

Theorem 1.3. Let $\gamma=\inf\{\beta|dim(S_{\Phi})\leq\beta$ , $a.s$ . for any $\Phi\in$

$L_{2}^{us}(F_{-\infty,\infty}^{X})\}$ . Then

$\gamma=\frac{1-\alpha}{2-\alpha}$ .

The proof of these theorems will be given in the subsequent sections
by appealing to two main tools: joinings of Harris flflows and certain
duality relations between the reflecting (absorbing) $L$-diffusion and the

absorbing (resp. reflecting) $\hat{L}$-diffusion.

\S 2. The joining of Harris flows: The proof of Th. 1.1.

Suppose that the correlation function $b(x)$ of a Harris flow $X$ is
continuous. Let $H(\subset C_{b}(R\rightarrow R))$ be the (real) reproducing kernel
Hilbert space associated with $b(x)$ so that, defining $f_{x}\in H$ by $f_{x}(y)=$

$b(y-x)$ , linear combinations $\sum c_{i}f_{x_{i}}$ are dense in $H$ and $(f_{x}, f_{y})_{H}=$

$b(x-y)$ . The Gaussian system $W$ introduced in Section 1 can be given
equivalently by a Gaussian system $\{W(t, f);t\in R, f\in H\}$ contained in
$L^{2}(F_{-\infty,\infty}^{X})$ such that $(T_{h})_{*}[W(t, f)-W(s, f)]=W(t+h, f)-W(s+$
$h$ , $f)$ , $s\leq t$ , $f\in H$ and, if we set $w_{t}(f)=W(t, f)-W(0, f)$ , then $w(f)=$

$(w_{t}(f))_{t\geq 0}\in \mathcal{M}_{2}^{c}(F^{X})$ and, for every $f$ , $g\in H$ , we have $\langle w(f), w(g)\rangle_{t}=$

$t(f, g)_{H}$ . Indeed, we set $W(t, f)=\sum_{i}c_{i}W(t, x_{i})$ when $f=\sum c_{i}f_{x_{i}}$ and
extend this to general $f\in H$ by routine arguments.

We define an It\^o-type stochastic integral $\int_{0}^{t}\psi_{s}\cdot W(ds, \varphi_{s})$ for $F^{X}-$

predictable processes $\varphi$ and $\psi$ satisfying that $\int_{0}^{t}|\psi_{s}|^{2}ds<\infty$ , $a.s.$ , by

$\int_{0}^{t}\psi_{s}\cdot W(ds, \varphi_{s})=\sum_{k}\int_{0}^{t}\psi_{s}\cdot e_{k}(\varphi_{s})db_{k}(s)$ ,

where $\{e_{k}\}$ is an orthonormal basis (ONB) in $H$ and $b_{k}(t)=W(t, e_{k})$ ,
so that $\{b_{k}(t)\}$ is an independent family of one-dimensional Wiener pro-
cesses. As is easily seen, the definition is independent of a particular
choice of ONB. Note that $\sum_{k}e_{k}(\varphi_{s})e_{k}(\varphi_{s}’)=b(\varphi_{s}-\varphi_{s}’)$ , so that, in
particular, $\sum_{k}|e_{k}(\varphi_{s})|^{2}\equiv 1$ . Now, (1.2) is equivalently given in the
form of SDE for $X_{t}:=X_{0,t}(x)$ :

(2.1) $X_{t}=x+\int_{0}^{t}W(ds, X_{s})=x+\sum_{k}\int_{0}^{t}e_{k}(X_{s})db_{k}(s)$ .
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Since $\sum_{k}|e_{k}(x)-e_{k}(y)|^{2}=2(1-b(x-y))$ , the condition (1.3) implies
the pathwise uniqueness of solutions for SDE (2.1) (cf. [IW], p.182).
Hence, if the function $b$ satisfies the condition (1.3), then $X_{t}$ is a unique

strong solution to SDE (2.1) so that $X_{0,t}(x)$ is $F_{0,t}^{W}$-measurable for every
$x$ . By the stationarity, we see that $X_{s,t}(x)$ is $F_{s,t}^{W}$-measurable for every
$x$ and $s\leq t$ . Therefore, $N^{X}=N^{W}$ holds. Thus, the if part of Th. 1.1
is proved.

To prove the only if part, we first remark the following martingale
representation theorem for Harris flows.

Proposition 2.1. Suppose the correlation function $b(x)$ of the Har-
$ris$ flflow is continuous. Then, $M\in \mathcal{M}_{2}(F^{X})$ if and only if there exists $a$

sequence $\varphi_{k}=(\varphi_{k}(t))$ , $k=1,2$ , $\ldots$ , of $F^{X}$ -predictable processes satis-

fying that $\sum_{k}\int_{0}^{t}\varphi_{k}^{2}(s)ds<\infty$ , $a.s.$ , for each $t>0$ , and

$M(t)=\sum_{k}\int_{0}^{t}\varphi_{k}(s)db_{k}(s)$ .

In particular, it holds that $\mathcal{M}_{2}(F^{X})=\mathcal{M}_{2}^{c}(F^{X})$ .

Proof. Given distinct $x_{1}$ , $x_{2}$ , $\ldots x_{n}\in R$ , any $R^{n}$-valued process
$(X_{t}^{1}, X_{t}^{2}, \ldots X_{t}^{n})$ of which each component $X_{t}^{k}$ solves the SDE (2.1) start-
ing from $x_{k}$ and these components satisfy the coalescing property, has
the same law as the $n$-point motion of the Harris flow $(X_{0,t}(x_{1}), X_{0,t}(x_{2})$

$\ldots$ , $X_{0,t}(x_{n}))$ . Rom this uniqueness in law, it follows by the usual
methods that any $M$ $\in \mathcal{M}_{2}(F^{X})$ that is measurable with respect to
this $n$-point motion is continuous and has the desired representation as
a stochastic integral. The result can then be extended to an arbitrary
$M$ $\in \mathcal{M}_{2}(F^{X})$ using the fact that the set of representable martingales
is closed in this space. $\blacksquare$

From this proposition, we can easily deduce that $[N^{X}]^{lin}=N^{W}$ ,
see also Lemma $6a5$ of $[T5]$ . Indeed, if $N^{W}$ is smaller than $[N^{X}]^{lin}$ ,

then there should exist some martingale in $\mathcal{M}_{2}(F^{X})$ which cannot be
given by a sum of stochastic integrals by $b_{k}$ . Hence, in order to prove
the only if part, it is sufficient to show that (1.4) implies that $N^{W}$ is
strictly smaller than $N^{X}$ . For this, we introduce the following notion.

Definition 2.1. By $a$ joining of a Harris flow, we mean a pair $(X=$

$\{X_{s,t}\}$ , $X’=\{X_{s,t}’\})$ of copies of the Harris flflow defifined on a same prob-
ability space such that the joint process $---=\{_{-s,t}^{-}-=(X_{s,t}, X_{s,t}’);s\leq t\}$

has the independence property (2) in Def. 1.2. Given $0\leq\rho\leq 1$ , it is
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called $a$ $\rho-$-joining if it satisfifies further the following: $X$ and $X’$ are sta-
tionarily correlated in the sense that the joint process — has the stationar-
ity property (3) of Def. 1.2 and, if fili ations $F^{X}=\{\mathcal{F}_{t}^{X}\}$ , $F^{X’}=\{\mathcal{F}_{t}^{X’}\}$

and martingales $M(x)=(M_{t}(x))$ , $M’(x)=(M_{t}’(x))$ are defifined sim-

ilarly as in Def. 1.3 for $X$ and $X^{J}$ , respectively, then $F^{X}$ and $F^{X’}$ are
jointly immersed, $i.e.$ , $\mathcal{M}_{2}(F^{X})\cup \mathcal{M}_{2}(F^{X’})\subset \mathcal{M}_{2}(F^{X}\ovalbox{\tt\small REJECT} F^{X’})$ , and, for
every $x$ , $y\in R$ ,

(2.2) $\langle M(x), M’(y)\rangle_{t}=\int_{0}^{t}\rho\cdot b(X_{0,s}(x)-X_{0,s}’(y))ds$ ,

$b(x)$ being the correlation function of the Harris flflow.

It is obvious that, for a $\rho-$-joining, the corresponding Gaussian noises $W$

and $W’$ are jointly Gaussian and $\rho$ correlated

Lemma 2.1. For $0\leq\rho<1$ , a $\rho$-joining exists and is unique in
law. If, in particular, $\rho=0$ , then it is a pair of independent copies.

This lemma can be deduced from the fact that the following differ-
ential operator $\Lambda$ with variables $x=(x_{1}, \cdots, x_{n})\in R^{n}$ and $x’=$

$(x_{1}’, \cdots, x_{m}’)\in R^{m}$ is non degenerate at all such points $(x, x’)\in R^{n}\times$

$R^{m}$ as all coordinates in $x$ are different and also all coordinates in $x’$

are different:

$\Lambda$ $=$ $\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}b(x_{i}-x_{j})\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}+\frac{1}{2}\sum_{k=1}^{m}\sum_{l=1}^{m}b(x_{k}’-x_{l}’)\frac{\partial^{2}}{\partial x_{k}\partial x_{l}’}$,

$+$ $\rho\sum_{i=1}^{n}\sum_{k=1}^{m}b(x_{i}-x_{k}’)\frac{\partial^{2}}{\partial x_{i}\partial x_{k}’}$ .

Note that, for a $\rho$-joining $(X, X’)$ , the process

$[o, \infty)\ni t\mapsto(X_{0,t}(x_{1}), \cdots, X_{0,t}(x_{n}), X_{0,t}’(x_{1}’), \cdots, X_{0,t}’(x_{m}’))$

is a solution to the $\Lambda$-martingale problem.

We now assume (1.4) and prove that $N^{W}$ is strictly smaller than
$N^{X}$ . Take $p$-joinings $(X^{(\rho)}, X^{\prime(\rho)})$ for $\rho\in[0,1)$ . By (2.2), the process
$\xi^{(\rho)}(t)=X_{0,t}^{(\rho)}(0)-X_{0,t}^{\prime(\rho)}(0)$ is a Feller diffusion on $R$ with the canon-
ical scale $s(x)=x$ and the speed measure $m(dx)=(1-\rho\cdot b(x))^{-1}dx$

which starts from the origin at time 0, (cf. [IM] for a general theory of
Feller diffusions). As $\rho\nearrow 1$ , the processes $\xi^{(\rho)}(t)$ converge to the Feller
diffusion $\xi(t)$ with the canonical scale $s(x)=x$ and the speed measure
$m(dx)=(1-b(x))^{-1}dx$ which starts from the origin 0 at time 0. As is
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well-known, $\xi(t)=\beta(A^{-1}(t))$ for a one-dimensional Wiener process $\beta(t)$

and $A(t)$ is defined by (1.10). Then we have

$\lim_{\rho\nearrow 1}E[|\xi^{(\rho)}(t)|^{2}]=E[|\xi(t)|^{2}]=\frac{1}{2}E[A^{-1}(t)]>0$

for $t>0$ . Suppose $N^{X}\subset N^{W}$ be true. Then $ X_{0,t}^{(\rho)}(0):=\Phi\in$

$L_{2}(\mathcal{F}_{0,t}^{W})$ and $ E[X_{0,t}^{\prime(\rho)}(0)|W]=P_{-\log\rho}\Phi$ where $(P_{s})_{s\geq 0}$ is the Ornstein-

Uhlenbeck semigroup acing on $L_{2}(F_{0,t}^{W})$ . Hence $E[|\xi^{(\rho)}(t)|^{2}]=2(||\Phi||_{2}^{2}$

$-(\Phi, P_{-\log\rho}\Phi)_{2})$ . By the $L^{2}$ -continuity of the Ornstein-Uhlenbeck semi-
group, we have

$\lim_{\rho\nearrow 1}E[|\xi^{(\rho)}(t)|^{2}]=\lim_{\rho\nearrow 1}2(||\Phi||_{2}^{2}-(\Phi, P_{-\log\rho}\Phi)_{2})=0$ .

Thus we have a contradiction and hence we cannot have $N^{X}\subset N^{W}$ .

This proves the only if part of Th. 1.1 so that its proof now is completed.

In the following, we assume that (1.4) holds so that the noise gen-
erated by the Harris flow is nonclassical. In this case, 1-joinings are not
unique. We specify two of them as the $1^{+}$ -joining and the $1^{-}$ -joining.

Definition 2.2. The $1^{+}$ -joining $(X, X’)$ is the identity joining: $i.e.$ ,
$X=X’$ . The $1^{-}$ -joining is the limit in law of the $\rho$-joinings $(X^{(\rho)}, X^{\prime(\rho)})$

as $\rho\nearrow 1$ It is such that $[0, \infty)\ni t\mapsto X_{0,t}(x)-X_{0,t}’(y)$ , for fifixed
$x$ , $y\in R$ , is the Feller diffusion on $R$ with the canonical scale $s(x)=x$

and the speed measure $m(dx)=(1-b(x))^{-1}dx$ which starts at $x-y$ at
time 0.

For $\rho\in[0,1)$ , let $(X, X’)$ be a $p$-joining with corresponding $\rho$-correlated
Gaussian processes $W$ and $W’$ . It is easy to see that the joint law
$\square (d\mathcal{X}d\mathcal{X}’d\mathcal{W}d\mathcal{W}’)$ of $(X, X’, W, W’)$ is given by

$P(X\in d\mathcal{X}|W=\mathcal{W})P(X’\in d\mathcal{X}’|W’=\mathcal{W}’)P(W\in d\mathcal{W}, W’\in d\mathcal{W}’)$ .

From this, we deduce that

$E[\Phi\cdot\pi_{*}(\Psi)]$ $=$ $E[E[\Phi|W]\cdot E[\pi_{*}(\Psi)|W’]]$

$=$ $E[E[\Phi|W]\cdot E(E[\pi_{*}(\Psi)|W’]|W)]$

$=$ $E[E[\Phi|W]\cdot E[\pi_{*}(E(\Psi|W))|W]]$

$=$ $E[E[\Phi|W]\cdot P_{-\log\rho}(E(\Psi|W))]$

whenever $\Phi$ , $\Psi$ $\in L_{2}(F_{-\infty,\infty}^{X})$ . Here, $\pi_{*}$ is the unique isomorphism

$\pi_{*}$ : $L_{0}(\mathcal{F}_{-\infty,\infty}^{X})\rightarrow L_{0}(F_{-\infty,\infty}^{X’})$ such that $\pi_{*}(X_{s,t}(x))=X_{s,t}’(x)$ for
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every $s$ , $t$ and $x$ , and $(P_{s})$ is the Ornstein-Uhlenbeck semigroup act-
ing on $L_{2}(F_{-\infty,\infty}^{W})$ . By the $L^{2}$ -continuity of the Ornstein-Uhlenbeck

semigroup, the above expectation converges to $E[E[\Phi|W]\cdot E[\Psi|W]]$ as
$\rho\nearrow 1$ . This proves existence of the $1^{-}$ -joining as the limit of $\rho$-joinings.
Moreover for a $1^{-}$ -joining $(X, X’)$ the corresponding Gaussian systems
$W$ and $W’$ are equal and $X$ and $X’$ are conditionally independent given
this common Gaussian process.

Remark 2.1. For the Arratia flflow, its $\rho$-joining for $\rho\in[0,1)$ is
independent of $\rho$ and coincides with 0-joining, that is, a pair of inde-
pendent copies of the Arratia flflow. Hence, its $1^{-}$ -joining is also a pair

of independent copies of the Arratia flflow.

Let $F=\bigcup_{k=1}^{n}[t_{2k-2}, t_{2k-1}]$ be an elementary set in $R$ defined for a
sequence $t_{0}<t_{1}<\cdots<t_{2n-2}<t_{2n-1}$ of times. We would introduce
the notion of $(\rho, F)$ -joining $(X, X’)$ of the Harris flow when $\rho\in[0,1)$ ,
which is roughly the $\rho$-joining on $F$ and the identity joining outside
$F$ . To be more precise, set $ t_{-1}=-\infty$ and $ t_{2n}=\infty$ by convention.
Take a $\rho$-joining $(Y, Y’)$ and a $1^{+}$ -joining $(Z, Z’)$ which are mutually
independent. Define $X=[\{X_{s,t}\}_{s\leq t}]$ as follows: First, set $X_{s,t}=Y_{s,t}$ if
$t_{2k-2}\leq s\leq t\leq t_{2k-1}$ , $k=1$ , $\cdots$ , $n$ and $X_{s,t}=Z_{s,t}$ if $ t_{2k-1}\leq s\leq t\leq$

$t_{2k}$ , $k=0$ , $\cdots$ , $n$ . Then, define $X_{s,t}$ for general $s\leq t$ , by

$X_{S},t=Xt_{l},toXt_{1-1},t_{t}o\cdots oXt_{k},t_{k+1}oX_{s,t_{k}}$

when $t_{k-1}<s\leq t_{k}\leq t_{l}\leq t<t_{l+1},0\leq k\leq l\leq 2n-1$ . Define $X’=$

$[\{X_{s,t}’\}_{s\leq t}]$ similarly ffom $Y’$ and $Z’$ . Then $(X, X’)$ defines a joining
of the Harris flow in which, however, $X$ and $X’$ are not stationarily
correlated.

Definition 2.3. The pair $(X, X’)$ defifined above is called the $(\rho, F)-$

joining of the Harris flflow.

Next, take mutually independent $1^{-}$-joining $(Y,Y’)$ and $1^{+}$-joining $(Z,Z’)$

and construct the pair $(X, X’)$ in the same way.

Definition 2.4. The pair $(X, X’)$ defifined above is called the $(1^{-}, F)-$

joining of the Harris flflow

We turn now to the notion of the spectral measure $\mu_{\Phi}$ associated
with some $\Phi\in L_{2}(F_{-\infty,\infty}^{X})$ as defined in Def.1.4. This notion is inti-
mately related to chaos expansions. The spectral measure of a random
variable $\Phi\in L_{2}(F_{-\infty,\infty}^{W})$ , measurable with respect to $W$ , can be ex-
pressed by expanding $\Phi$ as a sum of multiple Wiener-It\^o integrals with
respect to the Brownian motions $b_{k}$ . To be more precise, $\Phi=\sum_{m=1}^{\infty}I_{m}$
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where $L$ is a constant and $I_{m}$ , for $m=1,2$ . $\cdots$ , is given by an iterated
It\^o stochastic integral

$I_{m}=\sum_{(k_{1},,k_{m})}\cdots\int\cdots\int_{-\infty<t_{m}<<t_{1}<\infty}\cdots f_{\Phi}^{(k_{1},,k_{m})}\cdots(t_{1},$
$\cdots$

$\ldots$ , $t_{m})db_{k_{m}}(t_{m})\cdots db_{k_{1}}(t_{1})$ .

$\mu_{\Phi}$ is supported on $C^{f}=\{S\in C:|S|<\infty\}$ and

$\mu_{\Phi}(C^{f})=E(\Phi^{2})=\sum_{m=0}^{\infty}E(|I_{m}|^{2})$

$=$
$\sum_{m=0(k_{1}}^{\infty},\cdot\cdot\sum_{k_{m})}$

.

$,\int\cdots\int_{-\infty<t_{m}<<t_{1}<\infty}\cdots|f_{\Phi}^{(k_{1},,k_{m})}\cdots(t_{1},$
$\cdots$

$\ldots$ , $ t_{m})|^{2}dt_{m}\cdots dt_{1}<\infty$ .

The restriction of $\mu_{\Phi}$ to $\{S\in C : |S|=m\}$ is determined (denoting
$S=\{t_{m}, \cdots, t_{1}\}$ , $-\infty<t_{m}<\cdots<t_{1}<\infty)$ by

$\mu_{\Phi}(dS;|S|=m)=|f_{\Phi}^{(k_{1},,k_{m})}\cdots(t_{1}, \cdots, t_{m})|^{2}dt_{m}\cdots dt_{1}$ .

In particular, $\mu_{\Phi}(|S|=m)=E(|I_{m}|^{2})$ .
For a general $\Phi\in L_{2}(F_{-\infty,\infty}^{X})$ , the chaos expansion of $E[\Phi|W]$

given by $E[\Phi|W]=\sum_{m=0}^{\infty}I_{m}$ , yields in the same fashion the restriction
of $\mu_{\Phi}$ to $C^{f}$ and in particular

$E[E[\Phi|W]^{2}]=\mu_{\Phi}(C^{f})$ .

If $(X, X’)$ is a $\rho$-joining for $\rho\in[0,1)$ and $\Phi’=\pi_{*}(\Phi)$ as above, we
have

$E(E[\Phi’|W’]|W)=P_{-log\rho}(E[\Phi|W])=\sum_{m=0}^{\infty}\rho^{m}I_{m}$ .

As was remarked above, the relation $E(\Phi\Phi’)=E(E[\Phi|W]E[\Phi’|W’])$

holds. Hence,

(2.3) $E(\Phi\Phi’)=\sum_{m=0}^{\infty}\rho^{m}E(|I_{m}|^{2})=\int_{C}\rho^{|S|}\mu_{\Phi}(dS)$ .

In the same way, we deduce for a $1^{-}$ -joining $(X, X’)$ ,

(2.4) $E(\Phi\Phi’)=\mu_{\Phi}(C^{f})$ .
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Example 2.1. Consider the case $\Phi=g(X_{0,1}(x))$ for a bounded
continuous function $g$ on R. Note that $E(\Phi^{2})=\int_{R}p(1, x-y)g(y)^{2}dy$

where

$p(t, x)=\frac{1}{\sqrt{2\pi t}}\exp\{-\frac{x^{2}}{2t}\}$ , $t>0$ , $x\in R$ .

The chaos expansion of $E[\Phi|W]$ was obtained explicitly by Veretennikov
and Krylov (cf. $[VKJ$): By setting

$T_{t}f(x)=\int_{R}p(t, x-y)f(y)dy$ and $Q_{t}^{k}f(x)=e_{k}(x)\frac{\partial}{\partial x}T_{t}f(x)$ ,

we have

$g(X_{0,1}(x))=\sum_{m=0}^{n}I_{m}+R_{n}$ , $I_{0}=T_{1}g(x)=E[\Phi]$ ,

where $I_{m}$ , $m=1$ , $\ldots$ , $n$ , and $R_{n}$ are given by the following iterated It\^o

stochastic integrals:

$I_{m}$ $=$
$\sum_{(k_{1},k_{2},,k_{m})}\cdots\int\cdots\int_{0<t_{m}<t_{m-1}<<t_{2}<t_{1}<1}\cdots[T_{t_{m}}Q_{t_{m-1}-t_{m}}^{k_{m}}\cdots$

$\ldots$ $Q_{t_{1}-t_{2}}^{k_{2}}Q_{1-t_{1}}^{k_{1}}g(x)]db_{k_{m}}(t_{m})db_{k_{m-1}}(t_{m-1})\cdots db_{k_{2}}(t_{2})db_{k_{1}}(t_{1})$ ,

$R_{n}$ $=$
$\cdots\sum_{(k_{1},k_{2},,k_{n},k_{n+1})}\int\cdots$

$\ldots\int_{0<t_{n+1}<t_{n}<<t_{2}<t_{1}<1}\cdots[Q_{t_{n}-t_{n+1}}^{k_{n+1}}Q_{t_{n-1}-t_{n}}^{k_{n}}\cdots$

$\ldots Q_{t_{1}-t_{2}}^{k_{2}}Q_{1-t_{1}}^{k_{1}}g(X_{0,t_{n+1}}(x))]db_{k_{n+1}}(t_{n+1})db_{k_{n}}(t_{n})\cdots$

$\ldots$ $db_{k_{2}}(t_{2})db_{k_{1}}(t_{1})$ .

From this, we obtain that

$E[\Phi|W]=\sum_{m=0}^{\infty}I_{m}$ .

The following is a key lemma for the proof of Theorem 1.2 which
records various generalizations of the identities (2.3) and (2.4). As above,
we denote by $S_{X}$ the spectral set $S_{\Phi}$ when $\Phi=X_{0,1}(0)$ which is a $C_{[0,1]^{-}}$

valued random variable.
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Lemma 2.2. (i) If $(X, X’)$ is $a(\rho, F)$ -joining of the Hanis flflow
for $\rho\in[0,1)$ , then,

(2.5) $E[\rho^{|S_{X}\cap F|]}=E[X_{0,1}(0)X_{0,1}’(0)]$ ,

equivalently,

(2.6) $E[1-\rho^{|S_{X}\cap F|]}=\frac{1}{2}E[|X_{0,1}(0)-X_{0,1}’(0)|^{2}]$ .

(i) If $(X, X’)$ is $a(1^{-}, F)$ -joining of the Harris flflow, then,

(2.7) $P$ $( |S_{X}\cap F|<\infty)=E[X_{0,1}(0)X_{0,1}’(0)]$ ,

equivalently,

(2.8) $P$ $( |S_{X}\cap F|=\infty)=\frac{1}{2}E[|X_{0,1}(0)-X_{0,1}’(0)|^{2}]$ .

(iii) More generally, let $(X, X’)$ be $a(\rho, F)$ -joining for $0\leq\rho<1(a$

$(1^{-}, F)$ -joining) and $\Phi\in L_{2}^{us}(F_{-\infty,\infty}^{X})$ . There is a unique isomorphism

$\pi_{*}$ : $L_{0}(\mathcal{F}_{-\infty,\infty}^{X})\rightarrow L_{0}(F_{-\infty,\infty}^{X’})$ such that $\pi_{*}(X_{s,t}(x))=X_{s,t}’(x)$ for
every $s$ , $t$ and $x$ . Set $\Phi’=\pi_{*}(\Phi)$ . Then we have

(2.8) $E[\rho^{|S_{\Phi}\cap F|}]$ ( resp. $P$ ( $|S_{\Phi}\cap F|<\infty)$ ) $=E[\Phi\Phi’]$ ,

equivalently,

(2.10) $E[1-\rho^{|S_{\Phi}\cap F|}]$ ( resp. $P$ ( $|S_{\Phi}\cap F|=\infty)$ ) $=\frac{1}{2}E[|\Phi-\Phi’|^{2}]$

Proof. In the case when $\Phi\in L_{2}^{us}(F_{s,t}^{X})$ and $F=[s, t]$ , (2.8) is

nothing but (2.3) and (2.4). Rom this, we can deduce (2.9) in the
general case of an elementary set $F=\bigcup_{k=1}^{n}[t_{2k-2}, t_{2k-1}]$ , $t_{-1}=-\infty<$

$ t_{0}<\cdots<t_{2n-1}<t_{2n}=\infty$ , by considering the following $L^{2}$-space
factorization:

$L_{2}(F_{-\infty,\infty}^{X})=\otimes L_{2}(F_{t_{k-1},t_{k}}^{X}k=02n)$ .

We omit the details. $\blacksquare$

\S 3. Duality relations for $L$- and $\hat{L}$-diffusions in the time
reversal: The proof of Th. 1.2.

Let $\{\xi^{+}(t), P_{x}\}$ and $\{\hat{\xi}^{+}(t),\hat{P}_{x}\}$ be the reflecting L- and $\hat{L}$-diffusion
processes on $[0, \infty)$ introduced in Section 1. The associated Markovian
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semigroups of operators acting on the space $B([0, \infty))$ of real bounded
Borel functions are defined by

(3.1) $T_{t}^{+}f(x)=E_{x}[f(\xi^{+}(t))]$ and $\hat{T}_{t}^{+}f(x)=\hat{E}_{x}[f(\xi^{\hat{+}}(t))]$ .

Define also the semigroups for absorbing processes by

(3.2) $T_{t}^{-}f(x)=E_{x}[f(\xi^{+}(t\wedge\sigma_{0}))]$ and $\hat{T}_{t}^{-}f(x)=\hat{E}_{x}[f(\hat{\xi}^{+}(t\wedge\hat{\sigma}_{0}))]$ ,

where $\sigma_{0}$ and $\hat{\sigma}_{0}$ are the first hitting time to 0 of $\xi^{+}(t)$ and $\hat{\xi}^{+}(t)$ ,

respectively. Introduce, further, the semigroups for processes with the
extinction at hitting to 0 by
(3.3)

$T_{t}^{0}f(x)=E_{x}[f(\xi^{+}(t))\cdot 1_{[t<\sigma_{0}]}]$ and $\hat{T}_{t}^{0}f(x)=\hat{E}_{x}[f(\hat{\xi}^{+}(t))\cdot 1_{[t<\hat{\sigma}_{0}]]}$ .

$T_{t}^{-}$ and $\hat{T}_{t}^{-}$ are Markovian semigroups and $T_{t}^{0}$ and $\hat{T_{t}}^{0}$ are sub-Markovian

semigroups. Note $ako$ that $T_{t}^{+},\hat{T_{t}}^{+}$ , $T_{t}^{0}$ and $\hat{T}_{t}^{0}$ have the strong Feller

property but $T_{t}^{-}$ and $\hat{T}_{t}^{-}$ have the Feller property only. It holds that

(3.4) $T_{t}^{0}f=T_{t}^{-}(1_{(0,\infty)}\cdot f)$ and $\hat{T_{t}}^{0}f=\hat{T_{t}}^{-}(1_{(0,\infty)}\cdot f)$ .

We have the following duality relations which form another key
lemma in the proof of Th. 1.2:

Lemma 3.1. For $x$ , $y\in[0, \infty)$ and $t>0$ ,

(3.5) $T_{t}^{+}1_{[0,y]}(x)=\hat{T_{t}}^{0}1_{[x,\infty)}(y)$ and $T_{t}^{-}1_{[0,y]}(x)=\hat{T_{t}}^{+}1_{[x,\infty)}(y)$ .

More generally, for $x$ , $y\in[0, \infty)$ and $0\leq t_{0}<t_{1}<\ldots<t_{2n-1}<t_{2n}<$

$t_{2n+1}$ ,

(3.6) $T_{t_{1}-t_{O}}^{+}T_{t_{2}-t_{1}}^{-}T_{t_{3}-t_{2}}^{+}\cdots T_{t_{2n-1}-t_{2n-2}}^{+}T_{t_{2n}-t_{2n-1}}^{-}1_{[0,y]}(x)$

$=$ $\hat{T}_{t_{2n}-t_{2n-1}}^{+}\hat{T}_{t_{2n-1}-t_{2n-2}}^{0}\cdots\hat{T}_{t_{3}-t_{2}}^{0}\hat{T_{t_{2}-t_{1}}}^{+}\hat{T}_{t_{1}-t_{0}}^{0}1_{[x,\infty)}(y)$ ,

and

(3.7) $T_{t_{1}-t_{0}}^{+}T_{t_{2}-t_{1}}^{-}T_{t_{3}-t_{2}}^{+}\cdots T_{t_{2n-1}-t_{2n-2}}^{+}T_{t_{2n}-t_{2n-1}}^{-}T_{t_{2n+1}-t_{2n}}^{+}1_{[0,y]}(x)$

$=$ $\hat{T_{t_{2n+1}-t_{2n}}}^{0}\hat{T}_{t_{2n}-t_{2n-1}}^{+}\hat{T}_{t_{2n-1}-t_{2n-2}}^{0}\cdots\hat{T}_{t_{3}-t_{2}}^{0}\hat{T_{t_{2}-t_{1}}}^{+}\hat{T_{t_{1}-t_{0}}}^{0}1_{[x,\infty)}(y)$ .

Admitting this lemma for a moment, we now proceed to prove
Th. 1.2.

Proof of Th. 1.2. Let $F=[t_{0}, t_{1}]\cup[t_{2}, t_{3}]\ldots\cup[t_{2n-2}, t_{2n-1}]$ be an
elementary set in $[0, 1]$ and $(X, X’)$ be a $(1^{-}, F)$-coupling of the Harris
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flow. Set $\xi(t)=X_{0,t}(0)-X_{0,t}’(0)$ . Then $|\xi(t)|$ is a time-inhomogeneous
diffusion process which behaves as a reflecting $L$ diffusion when $t\in F$

and as an absorbing $L$-diffusion (i.e., $L$-diffusion with 0 as a trap) when
$t\in[0,1]\backslash F$ . It is known that $P(S_{X}\ni t)=0$ for every $t\in[0,1]$ (cf. $[T$

$2])$ . Then (2.8), combined with this remark, yields that

$P(|S_{X}\cap F|=\infty)=P(S_{X}^{acc}\cap F\neq\emptyset)=\frac{1}{2}E[|\xi(1)|^{2}]$ .

By applying the It\^o formula for $\xi(t)$ on each interval $[t_{k}, t_{k+1}]$ , we have

$\frac{1}{2}E[|\xi(1)|^{2}]=\int_{0}^{1}E[(1-b)(\xi(t))]dt=1-\int_{0}^{1}E[b(\xi(t))]dt$ ,

and hence,

(3.8) $P(S_{X}^{acc}\cap F=\emptyset)=\int_{0}^{1}E[b(\xi(t))]dt$ .

On the other hand,

$E[b(\xi(t))]$

$=\{$

$T_{t_{1}-t_{0}}^{+}T_{t_{2}-t_{1}}^{-}\cdots T_{t_{2k}-t_{2k-1}}^{-}T_{t-t_{2k}}^{+}b(0)$ , if $t_{2k}\leq t<t_{2k+1}$

$T_{t_{1}-t_{0}}^{+}T_{t_{2}-t_{1}}^{-}\cdots T_{t_{2k-1}-t_{2k-2}}^{+}T_{t-t_{2k-1}}^{-}b(0)$ , if $t_{2k-1}\leq t<t_{2k}$

Noting $b(x)=\int_{[0,\infty)}1_{[0,y]}(x)\mu(dy)$ , we have by Lemma 3.1 the following:

$E[b(\xi(t))]$

$=$ $\{$

$\int_{0}^{\infty}\mu(dy)(\hat{T}_{t-t_{2k}}^{0}\hat{T}_{t_{2k}-t_{2k-1}}^{+}\cdots\hat{T_{t_{2}-t_{1}}}^{+}\hat{T}_{t_{1}-t_{0}}^{0}1_{[0,\infty)})(y)$ ,

if $t_{2k}\leq t<t_{2k+1}$

$\int_{0}^{\infty}\mu(dy)(\hat{T}_{t-t_{2k-1}}^{+}\hat{T}_{t_{2k-1}-t_{2k-2}}^{0}\cdots\hat{T_{t_{2}-t_{1}}}^{+}\hat{T_{t_{1}-t_{0}}}^{0}1_{[0,\infty)})(y)$ ,

if $t_{2k-1}\leq t<t_{2k}$

If the random set $\overline{S}$ is defined by (1.7), it is not difficult to deduce,

ffom the last expression of $E[b(\xi(t))]$ , that $\int_{0}^{1}E[b(\xi(t))]dt$ coincides with
$P(\overline{S}\cap F=\emptyset)$ . Then $P(\overline{S}\cap F=\emptyset)=P(S_{X}^{acc}\cap F=\emptyset)$ by (3.8). Since

this holds for every elementary set $F$ , we can conclude that $S_{X}^{acc}=d\overline{S}$ .
$\blacksquare$

Proof of Lemma 3.1. First, we prove (3.5). For $\lambda>0$ , let $U_{\lambda}^{+}$

and $\hat{U}_{\lambda}^{0}$ be the resolvent operators associated with the semigroups $T_{t}^{+}$
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and $\hat{T}_{t}^{0}$ respectively. Let $f$ be continuous and compactly supported in
$(0, \infty)$ . Then $u=U_{\lambda}^{+}f$ solves Poisson’s equation

$Lu-\lambda u=-f$ ,

with the boundary conditions $u’(0+)=u(\infty)=0$ . Define functions $g$

and $v$ via

$g(y)=\int_{0}^{y}\frac{f(x)}{a(x)}dx$ and $v(y)=\int_{0}^{y}\frac{u(x)}{a(x)}dx$ ,

where $a(x)=(1-b(x))$ . Dividing Poisson’s equation through by $a(x)$

and integrating, we obtain

$\hat{L}v-\lambda v=-g$ .

Moreover $v$ and $g$ are bounded and $v(0)=0$ . Thus we must have $v=$

$\hat{U}_{\lambda}^{0}g$ . Letting $f$ approach a delta function we may write the relationship
between $u$ and $v$ as:

$\frac{1}{a(z)}\hat{U}_{\lambda}^{0}1_{[z,\infty)}(y)=\int_{0}^{y}\frac{u_{\lambda}^{+}(x,z)}{a(x)}dx$ ,

where $u_{\lambda}^{+}$ is the continuous version of the resolvent density corresponding
to $U_{\lambda}^{+}$ . Recalling the symmetry relation,

$\frac{1}{a(x)}u_{\lambda}^{+}(x, z)a(z)=u_{\lambda}^{+}(z, x)$ ,

we obtain

$\hat{U}_{\lambda}^{0}1_{[z,\infty)}(y)=\hat{U}_{\lambda}^{+}1_{[0,y]}(z)$ ,

$bom$ which the first equality of (3.5) follows by uniqueness of Laplace
transforms. The second equality may be proved by a similar method.
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(3.6) and (3.7) can be proved by applying (3.5) successively: For
example,

$T_{t_{1}-t_{0}}^{+}$ . $T_{t_{2}-t_{1}}^{-}1_{[0,y]}(x)$ $=$ $\int_{[0,\infty)}T_{t_{1}-t_{O}}^{+}(x, du)T_{t_{2}-t_{1}}^{-}1_{[0,y]}(u)$

$=$ $\int_{[0,\infty)}T_{t_{1}-t_{0}}^{+}(x, du)\hat{T}_{t_{2}-t_{1}}^{+}1_{[u,\infty)}(y)$

$=$ $\int\int_{0\leq u\leq v<\infty}T_{t_{1}-t_{0}}^{+}(x, du)\hat{T}_{t_{2}-t_{1}}^{+}(y, dv)$

$=$ $\int_{[0,\infty)}\hat{T_{t_{2}-t_{1}}}^{+}(y, dv)T_{t_{1}-t_{0}}^{+}1_{[0,v]}(x)$

$=$ $\int_{[0,\infty)}\hat{T_{t_{2}-t_{1}}}^{+}(y, dv)\hat{T}_{t_{1}-t_{O}}^{0}1_{[x,\infty)}(v)$

$=$ $\hat{T}_{t_{2}-t_{1}}^{+}\cdot\hat{T}_{t_{1}-t_{O}}^{0}1_{[x,\infty)}(y)$ .

This proves a particular case of (3.6). In the same way, the general case
can be proved easily by induction. $\blacksquare$

Remark 3.1. We remark that an alternative proof of (3.5) is pos-
sible by means of the time reversal of stochastic flflows on the half line.
A stochastic flflow on the half line $[0, \infty)$ is defifined similarly by replacing
the whole line $R$ by $[0, \infty)$ in (cf. 1.2. A key idea in the proof is to

construct a stochastic flflow $X=(X_{s,t})$ on $[0, \infty)$ whose one-point mo-
tion $t\mapsto X_{0,t}(x)$ , $x\in R$ , is given by the absorbing $L$ -diffusion $\xi^{-}(t)$ ,
$i.e.$ , the diffusion with the semigroup $T_{t}^{-}$ , and then show that its time

reversed flow $\hat{X}=(\hat{X}_{s,t})$ , defifined by $\hat{X}_{s,t}=(X_{-t,-s})^{-1}$ , has the one-

point motion given by the reflflecting $\hat{L}$ -diffusion $\hat{\xi}^{+}(t)$ , $i.e.$ , the diffusion
with the semigroup $\hat{T}_{t}^{+}$ . Here, for a right-continuous and non-decreasing
$\varphi$ : $[0, \infty)$ $\rightarrow[0, \infty)$ such that $\lim_{x\nearrow\infty}\varphi(x)=\infty$ , $\varphi^{-1}$ is the right-
continuous inverse of $\varphi:\varphi^{-1}(x)=\inf\{y|\varphi(y)>x\}$ . This is connected

to the fact that $L$ and $\hat{L}$ , when written in H\"ormander form, differ only
in the sign of the drift term. The corresponding fact in the case of
stochastic flflows of homeomorphisms is well-known (cf. $[K]$ p. 131, [IW]
p. 265).

\S 4. Proof of Th. 1.3.

Consider a Harris flow $Xsatis\mathfrak{h}^{r}ing(1.4)$ , (1.6) and (1.11).

Proof of $Cor$ . 1.1. It is sufficient to show that the set of zeros of
$\hat{L}$-diffusion $\hat{\xi}(t)$ has the Hausdorff dimension $(1-\alpha)/(2-\alpha),\hat{P}_{0}$-almosy
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surely. The set of zeros of $\hat{\xi}(t)$ is the range of the inverse local time $l^{-1}(t)$

at 0 of $\hat{\xi}(t)$ , which is a subordinator with exponent $\Psi(\lambda)=g_{\lambda}(0,0)^{-1}$ :

$E(e^{-\lambda l^{-1}(t)})=e^{-t\Psi(\lambda)}=e^{-t/gx(0,0)}$ .

Here, $g_{\lambda}(x, y)$ is the Green function (resolvent density) with respect to

$thespeedmeasuredxofreflflecting\hat{L}- diffffusionwhere\hat{L}=\frac{d}{dxin}(1-b(x))\frac{d}{\infty)dx}Ifweintroducethescale\xi=\int_{0}^{x}(l-b(y))^{-1}dyasthecoordateof[0,,\cdot$

then $\hat{L}=(1-\overline{b}(\xi))^{-1}\frac{d^{2}}{d^{2}\xi}$ where $\tilde{b}(\xi)=b(x(\xi))$ , so that the speed measure

in the new coordinate is given by $ d\tilde{m}(\xi)=a(\xi)d\xi$ with $a(\xi)=1-\overline{b}(\xi)$ .
It is easy to deduce from (1.11) that $a(\xi)\wedge\vee\xi^{\alpha/(1-\alpha)}$ as $\xi\rightarrow 0$ . Let
$\tilde{g}_{\lambda}(\xi, \eta)$ be the Green function for $\hat{L}$-diffusion with respect to the speed
measure so that $\tilde{g}_{\lambda}(0, O)=g_{\lambda}(0,0)$ . By Th.2.3 in p.243 of [KW], we have

$\Psi(\lambda)=\overline{g}_{\lambda}(0,0)^{-1}\wedge\vee\lambda^{1/(2+\frac{\alpha}{1-\alpha})}=\lambda^{\frac{1-\alpha}{2-\alpha}}$ as $\lambda\rightarrow\infty$ .

Then we can conclude that the range of the subordinator $l^{-1}(t)$ has the
Hausdorff dimension $\frac{1-\alpha}{2-\alpha}$ almost surely, by a result of Blumenthal and
Getoor (cf. [B], p. 94, Th. 16). $\blacksquare$

Now we proceed to prove Th. 1.3. We need several lemmas.

Lemma 4.1. (i) Let $\Phi_{1}$ , $\Phi_{2}\in L_{2}^{us}(\mathcal{F}_{-\infty,\infty}^{X})$ and consider their

linear combination $\Phi=\alpha\Phi_{1}+\beta\Phi_{2}\in L_{2}^{us}(F_{-\infty,\infty}^{X})$ . If $A\in B(C)$ satisfifies
$P(S_{\Phi_{1}}\in A)=P(S_{\Phi_{2}}\in A)=1$ , then it holds that $P(S_{\Phi}\in A)=1$ .

(ii) Let $\Phi_{n}\in L_{2}^{us}(F_{-\infty,\infty}^{X})$ , $n=1,2$ , $\ldots$ , constitute a dense family in
$L_{2}^{us}(\mathcal{F}_{-\infty,\infty}^{X})$ . If $A\in B(C)$ satisfifies $P(S_{\Phi_{n}}\in A)=1$ for all $n$ , then it

holds that $P(S_{\Phi}\in A)=1$ for all $\Phi\in L_{2}^{us}(F_{-\infty,\infty}^{X})$ .

Proof. According to Theorem $3d12$ of $[T5]$ , every $A\in B(C)$ is asso-
ciated with a closed subspace $\prime \mathcal{H}_{A}$ of $L_{2}(F_{-\infty,\infty}^{X})$ such that the spectral
measure $\mu_{\Phi}$ of any $\Phi$ satisfies

$||P_{A}\Phi||^{2}=\mu_{\Phi}(A)$ ,

where $P_{A}$ denotes the orthogonal projection onto $?\{_{A}$ . Both parts of this
lemma are immediate consequences. $\blacksquare$

Lemma 4.2. Let $t_{1}<t_{2}<t_{3}$ and $\Phi=\Phi_{1}\Phi_{2}\in L_{2}^{us}(\mathcal{F}_{t_{1},t_{3}}^{X})$ such

that $\Phi_{1}\in L_{2}^{us}(\mathcal{F}_{t_{1},t_{2}}^{X})$ and $\Phi_{2}\in L_{2}^{us}(\mathcal{F}_{t_{2},t_{3}}^{X})$ . Then

$S_{\Phi}\cap[t_{1}, t_{2}]=dS_{\Phi_{1}}$ , $S_{\Phi}\cap[t_{2}, t_{3}]=dS_{\Phi_{2}}$ .

Furthermore, $S_{\Phi}\cap[t_{1}, t_{2}]$ and $S_{\Phi}\cap[t_{2}, t_{3}]$ ore mutually independent.
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The proof is easy and omitted.

Lemma 4.3. Let $S$ be a $C_{[0,1]^{-}}$valued random variable and assume,

for $0<\beta<1$ and $K>0$ , that

$P(S\cap[t, t+\epsilon]\neq\emptyset)\leq K\epsilon^{\beta}$ for all $0<\epsilon<1$ and $t\in[0,1]$ .

Then, $P(dimS\leq 1-\beta)=1$ .

Proof. For every $ a>1-\beta$ , we have

$E(\sum_{k=1}^{n}1_{\{S\cap[\frac{k-1}{n},\frac{k}{n}]\neq\emptyset\}}\cdot(\frac{1}{n})^{a})$

$=$ $\sum_{k=1}^{n}P$ ( $S\cap[\frac{k-1}{n},$ $\frac{k}{n}]\neq\emptyset$). $(\frac{1}{n})^{a}$

$\leq$
$nK(\frac{1}{n})^{\beta}\cdot(\frac{1}{n})^{a}=K\cdot n^{1-(\beta+a)}\rightarrow 0$ as $ n\rightarrow\infty$ .

Hence, there exists a subsequence $ n_{\nu}\rightarrow\infty$ such that, almost surely,

$\sum_{k=1}^{n_{\nu}}1_{\{S\cap[\frac{k-1}{n_{\nu}},\frac{k}{n_{\nu}}]\neq\emptyset\}}\cdot(\frac{1}{n_{\nu}})^{a}\rightarrow 0$ as $lJ$ $\rightarrow\infty$ .

Let $C_{l/}$ be the collection of intervals $E_{k}=[\frac{k-1}{n_{\nu}}, \frac{k}{n_{\nu}}]$ , $k=1$ , $\ldots$ , $n_{lJ}$ , which
have nonempty intersections with the set $S$ . Then $C_{\nu}$ is a covering of $S$

and

$\sum_{E_{k}\in C_{\nu}}(diam ^{E_{k}})^{a}\rightarrow 0$
$a.s.$ , as $lJ$ $\rightarrow\infty$ .

Hence, $dimS\leq a$ , $a.s.$ , implying that $dimS\leq 1-\beta$ , $a.s$ . $\blacksquare$

Proof of Th. 1.3. It is sufficient to show that

(4.1) $dimS_{\Phi}\leq\frac{1-\alpha}{2-\alpha}$ $a.s$ .

for $\Phi\in L_{2}^{us}(\mathcal{F}_{0,1}^{X})$ . Indeed, if (4.1) is true for $\Phi\in L_{2}^{us}(\mathcal{F}_{0,1}^{X})$ , then by

the stationarity of the flow, it is also true for $\Phi\in L_{2}^{us}(\mathcal{F}_{n,n+1}^{X})$ . By
Lemma 4.2, (4.1) is true for a finite product of such $\Phi$ ’s. Since linear
combinations of such products are dense in $L_{2}(F_{-\infty,\infty}^{X})$ , we can conclude

by Lemma 4.1 that (4.1) is true for any $\Phi\in L_{2}^{us}(\mathcal{F}_{-\infty,\infty}^{X})$ .

First, we consider the case when $\Phi\in L_{2}^{us}(F_{0,1}^{X})$ is given by

$\Phi=f(X_{0,1}(x_{1}), \ldots, X_{0,1}(x_{n}))$ , $x_{1}$ , $\ldots$ , $x_{n}\in R$ ,
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and a function $f$ is uniformly Lipschitz-continuous on $R^{n}$ .
Let $F=[t, t+\epsilon]$ , 0 $\leq t<t+\epsilon\leq 1$ , and let $(X, X’)$ be a

$(1^{-}, F)$-joining. Then we know by Lemma 2.2 that $ 2P(S_{X}^{acc}\cap F\neq$

$\emptyset)=E(|X_{0,1}(0)-X_{0,1}’(0)|^{2})$ and similarly, we have $2P(S_{\Phi}^{acc}\cap F\neq\emptyset)=$

$E(|\Phi-\Phi’|^{2})$ where $\Phi’=f(X_{0,1}’(x_{1}), \ldots, X_{0,1}’(x_{n}))$ . Therefore, noting

that $E(|X_{0,1}(x)-X_{0,1}’(x)|^{2})$ is independent of $x$ , we have

$P(S_{\Phi}^{acc}\cap F\neq\emptyset)=\frac{1}{2}E(|\Phi-\Phi’|^{2})$

(4.2) $\leq$ $KE(|X_{0,1}(0)-X_{0,1}’(0)|^{2})=2KP(S_{X}^{acc}\cap F\neq\emptyset)$

where a constant $K$ depends on $n$ and the Lipschitz constant of $f$ .

Let $\{\hat{\xi}^{+}(t),\hat{P}_{\xi}\}$ be the reflecting $\hat{L}$-diffusion on $[0, \infty)$ . As in the

proof of Cor. 1.1, take a canonical scale $\xi$ as the coordinate so that $\hat{L}=$

$\frac{d^{2}}{a(\xi)d\xi^{2}}$ and we have $ a(\xi)\wedge\xi^{\alpha/(1-\alpha)}\vee$ as $\xi\rightarrow 0$ and $a(\xi)\rightarrow 1$ as $\xi\rightarrow\infty$ .

Let $\mu(d\xi)=da(\xi)$ . By what we have shown above,

$P(S_{X}^{acc}\cap[t, t+\epsilon]\neq\emptyset)=P(\overline{S}\cap[t, t+\epsilon]\neq\emptyset)$

$=$ $\int_{0}^{1}\hat{P}_{\mu}$ ($\hat{\xi}^{+}(u-s)=0$ for some $s$ $\in[0, u]\cap[t, t+\epsilon]$ ) du

$=$ $\int_{t}^{1}\hat{P}_{\mu}$ ( $\hat{\xi}^{+}(\theta)=0$ for some $\theta\in[(u-t -\epsilon)_{+}, u-t]$ ) du

$=$ $o(\epsilon)+\int_{t}^{1}\hat{P}_{\mu}(\hat{\xi}^{+}(\theta)=0$ for some $\theta\in[u-t, u-t+\epsilon])$ du.

We would show
(4.3)

$I(t):=\int_{t}^{1}\hat{P}_{\mu}(\hat{\xi}^{+}(\theta)=0$ for some $\theta\in[u-t, u-t+\epsilon])$ $du=O(\epsilon^{\frac{1}{2-\alpha}})$

as $\epsilon\rightarrow 0$ uniformly in $t\in[0,1]$ . If we can show this, then

$P(S_{X}^{acc}\cap[t, t+\epsilon]\neq\emptyset)=O(\epsilon^{1/(2-\alpha)})$

as $\epsilon\rightarrow 0$ uniformly in $t\in[0,1]$ and, combining this with (4.2), we see
that $P(S_{\Phi}^{acc}\cap[t, t+\epsilon]\neq\emptyset)=O(\epsilon^{1/(2-\alpha)})$ , so that, by Lemma 4.3, we
can conclude that the estimate (4.1) holds for $\Phi$ because 1-1/(2-\mbox{\boldmath $\alpha$})=
$(1-\alpha)/(2-\alpha)$ .
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To obtain (4.3), we estimate

$I(t)\leq\int_{0}^{1}\hat{P}_{\mu}(\hat{\xi}^{+}(\theta)=0$ for some $\theta\in[u, u+\epsilon])$ du

$=$ $\int_{0}^{1}\hat{E}_{\mu}(\hat{P}_{\hat{\xi}(u)}+[\hat{\sigma}_{0}\leq\epsilon])$ $du\leq e\int_{0}^{1}e^{-u}\hat{E}_{\mu}(\hat{P}_{\hat{\xi}(u)}+[\hat{\sigma}_{0}\leq\epsilon])$ du

$\leq$ $e\int_{0}^{\infty}e^{-u}\hat{E}_{\mu}(\hat{P}_{\hat{\xi}(u)}+[\hat{\sigma}_{0}\leq\epsilon])$ du

$=$ $ e\int_{[0,\infty)}\mu(d\xi)\int_{[0,\infty)}\overline{g}_{1}(\xi, \eta)\hat{P}_{\eta}[\hat{\sigma}_{0}\leq\epsilon]a(\eta)d\eta$ ,

where $\hat{\sigma}_{0}$ is the first hitting time of $\hat{\xi}^{+}(t)$ to 0. Since the resolvent density
$\tilde{g}_{1}(\xi, \eta)$ is bounded, we have, for some $C>0$ ,

$ I(t)\leq C\int_{[0,\infty)}\hat{P}_{\eta}[\hat{\sigma}_{0}\leq\epsilon]a(\eta)d\eta$ .

The process $\hat{\xi}^{+}(t)$ under $\hat{P}_{\eta}$ , $\eta>0$ , and in the coordinate $\xi$ , is obtained
from a one-dimensional Brownian motion $B(t)$ with $B(0)=0$ by

$\hat{\xi}^{+}(t)=|\eta+B(A^{-1}(t))|$ where $A(t)=\int_{0}^{t}a(|\eta+B(s)|)ds$ .

Hence,

$\hat{P}_{\eta}(\hat{\sigma}_{0}\leq\epsilon)=P(\int_{0}^{\sigma_{0}}a(|\eta+B(s)|)ds\leq\epsilon)$

where $\sigma_{0}=\min\{s|\eta+B(s)=0\}$ .

and, noting $a(\xi)\geq K^{-1}\cdot\xi^{\alpha/(1-\alpha)}\wedge 1$ for some $K>0$ ,

$\hat{P}_{\eta}(\hat{\sigma}_{0}\leq\epsilon)\leq P(\int_{0}^{\sigma_{0}}(|\eta+B(s)|^{\alpha/(1-\alpha)}\wedge 1)ds\leq K\epsilon)$ .

The scaling property of $B(t)$ combined with an easy inequality $(\epsilon a)\wedge 1\geq$

$\epsilon(a\wedge 1)$ for $a>0$ and $1\geq\epsilon>0$ yields that the RHS is dominated by
$\phi(\epsilon^{-(1-\alpha)/(2-\alpha)}\eta)$ , where

$\phi(\eta)=P(\int_{0}^{\sigma_{0}}(|\eta+B(s)|^{\alpha/(1-\alpha)}\wedge 1)ds\leq K)$ .
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Then,

$ I(t)\leq C\int_{[0,\infty)}\phi(\epsilon^{-(1-\alpha)/(2-\alpha)}\eta)a(\eta)d\eta$

$\leq$ $ K’\int_{[0,\infty)}\phi(\epsilon^{-(1-\alpha)/(2-\alpha)}\eta)\eta^{\alpha/(1-\alpha)}d\eta$

$=$ $ K’\epsilon^{1/(2-\alpha)}\int_{[0,\infty)}\phi(\eta)\eta^{\alpha/(1-\alpha)}d\eta$

and we have otained (4.3).

In the same way, we have the estimate (4.1) for $\Phi=f(X_{s,t}(x_{1}),$ $\ldots$ ,
$X_{s,t}(x_{n}))$ , $x_{1}$ , $\ldots$ , $x_{n}\in R$ , $s$ $<t$ , where $f$ is uniformly Lipschitz con-
tinuous on $R^{n}$ . Then, by Lemma 4.2, we have the estimate (4.1) for
$\Phi=\Phi_{1}\Phi_{2}\cdots\Phi_{m}\in L_{2}^{us}(\mathcal{F}_{0,1}^{X})$ if $t_{0}=0<t_{1}<t_{2}<\cdots<t_{m}=1$ ,

and $\Phi_{k}\in ub[L^{2}(\mathcal{F}_{t_{k-1},t_{k}}^{X})]$ , $k=1,2$ , $\ldots$ , $m$ , is given in the form $\Phi_{k}=$

$f_{k}$ ( $X_{t_{k-1},t_{k}}(x_{1}^{(k)})$ , $\ldots,$

$X_{t_{k-1},t_{k}}(x_{n_{k}}^{(k)})$ ), $x_{1}^{(k)}$ , $\ldots$ , $x_{n_{k}}^{(k)}\in R$ , where $f_{k}$ is

uniformly Lipschitz continuous on $R^{n_{k}}$ . By Lemma 4.1 (i), the estimate
(4.1) still holds for a finite linear combination of such functionals and
this class of functionals is dense in $L_{2}^{us}(F_{0,1}^{X})$ . $\blacksquare$
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