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Mathematics of Professor Oka
-a landscape in his mind-

Toshio Nishino

Preface

As a mathematician working in several complex variables, I would
like to share with you the pleasure of being here to attend this marvelous
symposium, held in honor of late Professor Kiyoshi Oka’s 100th birthday.
As one of his students, I would like to express my sincere thanks to you
all for its success.

He was born on 1901/04/19 in Osaka and passed away on 1978/03/01
in Nara. The day of his last breath was, to my memory, a calm day of
early spring. I remember that a thin veil of mist was wandering on the
hills of Saki that day. More than two decades have slipped by since then.

In his carrier Oka published only ten papers, except for three sum-
maries. However, in contrast to this apparent scarceness, influence of
his work is immense. His idea does not stay within the realm of several
complex variables, but extends far beyond, contributing to the develop-
ment of whole mathematics. Such a state of art will surely be credited
by many of the talks that are going to be given here.

On my side, I was first allowed to call him as my teacher in 1956.
Thanks to this opportunity, from the next year I could spend a few years
with him in Nara Women’s University. Actually we sat together desk to

desk in a humble office and I could hear many things then from horse’s
mouth.

Further, by courtesy of his bereaved family, I could read his many
unpublished papers and materials prepared for research. These are
mainly gathered in the volume ’Posthumous Papers’, which is exhibited
in the homepage of the library of Nara Women’s University (http: $//www$ .

lib.nara-wu. $ac.jp/oka/$ ). So there are materials enough for drawing up a
complete picture of Oka’s research style, namely we can see how he ap-
proached each question and from where he viewed the whole landscape
of the research field.

Received March 16,2002.
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To my great pleasure I was asked to give the first talk in this meeting.
What is anticipated for in the talk is, I guess, to describe a sort of
landscape which Oka had in mind. Therefore the purpose of my talk
will be to give you a suggestion how a theory of mathematics grew up
in his mind. I will do it by pursuing the process how he established “the
lifting principle” which I regard, without so much prejudice I hope, his
ultimate achievement.

Such a trial may be justified because, as I have already mentioned,

Oka left many things behind about this topic. For instance, a paper
titled with

“Rappel\’ees du printemps”

written around 1949 presents his research activity historically as a rem-
iniscence. (The word ’printemps’ ought to mean here ’the beginning’.)
In the following, many materials are without mentioning attributed to
this article. Nevertheless my apology is for letting some speculation to
creep in, which is, admittedly I hope, inevitable to accomplish my task.

Oka’s main research purposes

Let me first show you, just as it is, how Ob began the introduction
of Paper I.

Malgr\’e le progr\‘e$s$ r\’ec\’ent de la th\’eorie des fonctions ana-
lytiques de plusieurs variables complexes, diverses choses
importantes restent plus ou moins obscures, notamment :
le type de domaines dans lesquels le th\’eor\‘eme de Runge
ou ceux de M. P. Cousin subsistent, la relation entre la
convexit\’e de M. F. Hartogs et celle de $MM$ . H. Cartan et
P. Thullen; parmi $eux$ il $y$ a des relations intimes. $C$ ’est \‘a

traiter ces probl\‘emes que le pr\’esent m\’emoire et ceux qui
suivront, sont destin\’es.

This is supplemented in the footnote:

Voir POuvrage de $MM$ . H. Behnke et P. Thullen: The-
orie $d$er Funktionen mehrerer komplexer Ver\"anderlichen,
sp\’ecialement aux pages 54, 68, 79.

To solve the problems that had been raised in this book, Oka devoted
most of his life.

Keeping this in mind, let me briefly describe some of the steps made
during his youth, when he had not yet confronted with this task.
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\S 1. Steps to the principal questions

1. In 1919, Oka entered the Third High School in Kyoto, which was one
of the most prestigious high school in Japan at that time. This is today
a part of Kyoto University. I was told that he was then fascinated by
Poincar\’e’s essays ’La Science et l’Hypoth\‘ese’ and ’Science et M\’ethode’

which were both widely read in those days. Later he recalls Poincar\’e’s

influence on his thought as follows.

“I was moved very much by Poincar\’e’s question ’How do
mathematical discoveries come up $?$

’ Since then I have
intended to solve it to the best of my ability.”

It seems that he considered this question not to be pursued just from
curiosity, but to be exactly solved by exploiting all his research activity
as basic data. The same thing can be said for another question ’How do
mathematical researches start?’

The point is that Oka, as a mathematician, sincerely asked how
mathematical researches should be done.

Probably I must admit then that he regarded me as one of the mar-
mots to test his method. Of course you cannot conclude from this mis-
erable example that his method is useless, for the results of experiments
usually depend on the materials.

2. Let me come back to Oka’s mathematics. It was around 1927 that
he started his own research. Really nothing had been done before. He
wrote down the result in French under the title

Fonctions alg\’ebriques permutables avec une fonction
rationnelle non-lin\’eaire

and left it as a typewritten manuscript. This paper was never published
although it was once submitted for publication through G. Julia. Let
me show you only the statement of the result:

Let $R(x)$ be a rational function of degree at least 2, and
let $A(x)$ be an algebraic function. If one substitutes $A(x)$

into $R(x)$ , the composite $R[A(x)]$ is well-defined as an
algebraic function. Conversely, if one substitutes $R(x)$

into $A(x)$ , the composite $A[R(x)]$ splits in general into

several different algebraic functions corresponding to the
branches of $A$ . If one of these algebraic functions happens
to coincide with $R[A(x)]$ , we say that $R(x)$ and $A(x)$ are
permutable.

In this situation the following holds true.
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$<<$If a given algebraic function (of a reduced form in a
suitable sense) is permutable with a rational function of
degree at least 2, it must satisfy an algebraic equation
arising from the multiplication formulae of $e^{z}$ , $\cos z$ or
elliptic functions $.>>$

Clearly this is a continuation of Julia’s $work^{1}$ .

As a paper of Ob, this article is, to my impression, most involved
and most intriguing. Probably he enjoyed himself by writing a puzzling
paper.

Later he wrote that this article might be published as well because
of the following reasons.

1. This is the very ’melody’ of the current of our mathematical
research (indicating something more permanent than the math-
ematical result itself).

2. Without this paper, mutual consistency (or harmony) of later
works would not be clear enough (because it shows the original
form).

It had, however, never been published before his death.

3. To say some words about his surroundings at that time, Oka got a
sabbatical in 1929 to visit France and stayed there for three years. The
work on iteration just mentioned above was carried over in France for
one year, more or less, and written down around 1930.

The reason why Oka wanted to stay in France was probably because
he wanted to get acquainted with Julia, but the biggest motivation for
going abroad was, according to his own word, because he thought “I will
never be able to see a new ground of mathematics that deserves to be
cultivated, as long as I stick to a life in Japan”.

As he expected, soon after he moved to France he found the desired
new ground, the field of several complex variables.

He used to talk about the feeling when he first saw Goursat’s brief
introduction to this field which was written in the middle part of the
second volume of his ‘ Cours $d$

’ Analyse’. He explained it to me by quoting
a haiku:

Kiri nagara Ookina machini Idenikeri (Ichiku)

(The meaning is; I have just arrived at a place, where I see a huge city
in a dense fog.)

1 G. Julia, M\’emoire sur la permutabilit\’e des fractions rationnelles, Annale
de l’Ecole Normale Superieure, 1922.
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After that he set forth to work in the field of several complex vari-
ables, by throwing away at first the affection to the subject of iteration,
on which he had been working for almost 3 years.

There was, according to him, another difficulty in changing the re-
search field. He told me that in several variables, compared to the
case of one variable, things were much more complicated. However, he
could overcome this difficulty by reading Julia’s famous paper2 again

and again. Soon he could obtain several results before going back to
Japan in 1932. These results were published as a summary without
proofs under the title

Note sur les families de fonctions multiformes etc., 1934

which became accordingly his first published paper. Its detail is left as
an unfinished paper, whose manuscript is handwritten in French, and is
approximately 150 pages long. Nevertheless, when it is combined with
another manuscript, which was not totally translated into French, the
paper is more or less in a complete form.

Let me show you main results of this Note. I have chosen two simple
ones among three theorems.

A. Normal family of analytic sets. Let $\mathcal{F}=$ $\{S\}$ be a family of
analytic surfaces in a domain of two complex variables $x$ , $y$ . If
the area of $S$ is uniformly bounded, then 7 is a normal family,
(normality of $\mathcal{F}$ is defined in terms of the defining functions of
$S)$ . In general, the hull of normality for $\mathcal{F}$ is pseudoconvex.

B. Generalization of Hartogs theorem. Let $E$ be a closed subset of a
domain $D$ of $(x, y)-$variables. $E$ is called an $H$-set if $E$ is locally
the complement of a pseudoconvex domain. Let $V$ be the product
of a domain in the $x$-plane and the $y$-plane, and let $E$ be an $H$-set
in V. Suppose that $E(x’):=E\cap\{x=x’\}$ is uniformly bounded
in $x’$ . In this situation, if the set of points $x$ for which $E(x)$

consists of finitely many points has positive logarithmic capacity,

then $E(x)$ consists of finitely many points for all $x$ , and $E$ is then
an analytic surface of V. A similar statement is true when $E(x)$

consists of countably many points.

Some explanation seems to be needed about the motivation of this
research. As the title shows, the purpose of this paper was to study
the convergence of multivalued analytic functions from the viewpoint
of function theory of two variables. As in the first work on iteration,

$2G$ . Julia, Sur les families de fonctions analytiques de plusieurs variables,

Acta Math., 47,1927.
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the problem had been raised by Julia. However, this time, the work is
related to Oka’ $s$ later accomplishment in many aspects.

4. Before describing how Ob did his full-scale works, I would like to
draw your attention, as well as aforementioned Pincar\’e’s problem, to
the following episode.

Ob says “When I need a method to solve a problem, and cannot
get anything in mathematics, I try to find a key to the riddle in other
places”. To carry out this somewhat paradoxical way, he started to
study Basho’s poetry deeply, already when he was staying in France,

because he thought “I must absorb the time-honored culture of Japan
that may help mathematical researches”, according to his words. If I
am allowed to say it in other words, Oka’s style of doing mathematics is
first to bring things in mind closer to his inmost emotion, so that he can
recognize the spiritual melody they play, and next to give some forms
to it, which is the stage of creation.

\S 2. The rise of problems

1. In 1932, soon after the return from Paris, Ob got a position as
an associate professor of Hiroshima Bun-Rika Daigaku ( $=$ Hiroshima
University).

Although he was quite eager to work in the field of several complex
variables, it was still necessary for him to grasp its whole picture before
getting down to a full-scale research.

However, the library of that university, which was still in its infancy,
was useless for that purpose. The lack of information should have dis-
appointed him very much. It was just at that moment that the book of
Behnke-Thullen

Theorie der Funktionen mehrerer komplexer Verinderlichen

was published and brought to his desk.
As he wrote in the introduction of Paper $I$ , Oka could grasp the

central current questions of this field in virtue of Behnke-Thullen’s book.
Later he repeatedly wrote about the benefit of this book, showing his
sincere gratitude.

2. That book, which Oka kept long at hand, finds now its place in the
library of Nara Women’s University. From the notes in the blanks one
knows that he began to read it on January 2 in 1935. When he had read
it through, he said, the problems written in the introduction of Paper I
emerged as ’mountains that separate the future and the past of several
complex variables’.
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By the words that the problems ’separate the future and the past’,
Ob meant that it is impossible to go ahead without conquering them.
From the beginning Ob bore a plan “to cross this mountain pass and to
open a flower garden beyond it”. Exploiting this opportunity I would like
to add that Oka’s Paper $X$ was written as “an example of flower garden
that would be opened beyond the pass”. Once he told me, “Contrary to
my expectation, it took me very long before crossing it.”

\S 3. The lifting principle

1. Soon after the problems were clearly caught in his eyes, Ob set forth
to work on them. What he did was, however, not to attack Cousin’s
first problem on analytic polyhedra. I can say it because, this ’goal’was
almost achieved in the footnote of Oka’s Paper I. Namely Cousin’s first
problem was solved for rationally convex domains by using Weil’s inte-
gral formula similarly as Cousin’s integral. For Oka, this discovery must
not have been too small. In fact, an integral of this kind is used in the
integral equation which plays the key role in solving the inverse problem
of Hartogs.

In Oka’s mind, the problems were connected to each other into one
piece. For instance, in order to see the relation between the convexity
notions of Hartogs and Cartan-Thullen, it is necessary to prove how the
validity of Runge’s theorem and Cousin’s theorem depend on the types

of the domains. In addition, if a solution of the latter question is useless
to solve the former, that solution is meaningless, to put it extremely.

2. Oka read through Behnke-Thullen’s book in a couple of months, and
soon afterwards began to “look for the first move”. In three months
from then, however, he was stuck. He says “After such a period of no
progress, no plan came into my mind any more, no matter how ridiculous
it is”. It is after this point that Oka showed marvelous originality.

Let me explain more concretely how he continued. Oka’s method
was to pursue the problem to a single point. Moreover he did it with a
“pin-point accuracy”. In the above case the point may be described as
follows.

Inside the space of two complex variables $x$ , $y$ , a general domain $D$

can be visualized in the following way.
First, on a sheet of paper you draw the $x$-plane and, to its right

hand side, the $y$-plane. Then you take one point $x’$ in the $x$-plane, and
draw on the $y$-plane the slice $D(x’)$ of $D$ by $x=x’$ . Since $D(x’)$ changes
as $x’$ moves around, you may imagine a family of $D(x’)$ when $x’$ runs
through a part of the $x$-plane.
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The point is then

$<<$To provide a general circumstance for the domains of this kind, in
which one can solve some questions, Cousin’s first problem for instance.7

(To my impression, there was in Oka’s mind influence of Riemann’s
idea, of introducing Riemann surfaces to study multivalued functions.)

Fig. 1

Anyway, if you take several points on the $x$-plane and draw the corre-
sponding domains in the $y$-plane, the picture looks, as above, like the
leaves of trees reflected on the surface of water. Ob called such a figure
“Ryoku-in-zu (projection of green leaves)” and looked them carefully
day after day. He once told me that he had felt like easily walking on
thin ice, which might mean that these days were for him a period of
delightful devotion to a heavenly mission. This ’delight’ is the melody
of his heartstring. (Nothing can be understood by knowledge without
ethos.) In such a situation, where he felt that his idea was exhausted, it
seems that he was grasping something in such a way.

3. This question was settled in the following form:
Let $R_{j}(x)$ $(j=1, \ldots, m)$ be rational functions in $n$ complex vari-

ables $x_{1}$ , $\ldots$ , $x_{n}$ , and let $(\triangle)$ be a bounded closed region in the (x)-space

defined by

$(\triangle)$ $|x_{i}|\leq r_{i}(i=1,2, \ldots, n)$ , $|R_{j}(x)|\leq 1(j=1,2, \ldots, m)$ .

Then, by adding $m$ complex variables $y_{1}$ , $\ldots$ , $y_{m}$ to (x), we consider
in the product of the (x)-space and the $(y)-$space a closed polycylinder

(C) $|x_{i}|\leq r_{i}(i=1,2, \ldots, n)$ , $|y_{j}|\leq 1(j=1,2, \ldots, m)$
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and an analytic subset

$(\Sigma)$ $y_{j}=R_{j}(x)(j=1,2, \ldots, m)$

of (C).

The following expresses the miniatuarized relationship between $(\triangle)$ ,
$(\Sigma)$ and (C).

$((y))$

$))$

$x))$

Fig. 2

In such a geometric situation the result is:

Theorem . Given any holomorphic function $f(x)$ on $(\triangle)\rangle$ one
can finda holomorphic function $F(x, y)$ on (C) satisfying

$f(x)=F[x_{1}, x_{2}, \ldots, x_{n}, R_{1}(x), \ldots, R_{m}(x)]$ .

Oka used to call this theorem ’J\^oku Ik\^o no Genri’ (the lifting prin-
ciple or, more literally, the hovering principle). A foundation was laid
by this principle to study the types of domains on which the theorems
of Cousin and Runge hold true.

August of that year was nearly going when Oka discovered this the-
orem. There is a widespread episode that someone close to Oka nick-
named him “encephalitis lethargica ( $=$ sleeping sickness)” because he
nearly continued to doze every day during the end of that period.

As for the proof of this theorem, it was done by double induction
on the dimensions, and, as a result, Cousin’s first problem was settled
at the same time. Oka wrote about this method in a footnote of Paper
I as
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$\ll$ Je dois 1’idee \‘a M. H. Cartan pour ce mode d’application
du th\’eor\‘eme de M. Cousin. $>>$

and quoted Cartan’s paper

Sur les fonctions de deux variables complexes. Bull. Sci. math. 1930.

When you look at this solution, you will see that the overlapping
leaves in Fig. 1 are lifted to $\Sigma$ , and holomorphic functions on $\triangle$ are
extended holomorphically to the polycylinder above. Probably the lift-
ing principle was already emotionally grasped when he was drawing the
overlapping leaves.

\S 4. Subsequent questions

After ’the first move’ was followed by the discovery of the lifting prin-
ciple for rationally convex domains, several questions naturally arose.

1. In Paper $I$ , the problem was solved for rationally convex domains,
i.e. for those domains which are convex with respect to the family of
rational functions. The gap between the rationally convex domains and
the domains of holomorphy was filled by Paper $II$ :

When 7 $j(x)$ are holomorphic functions defined only on some neigh-
bourhood of $(\triangle)$ , the proof for the rational case does not extend, al-
though the geometric relation between $(\triangle)$ , (C) and $(\Sigma)$ is preserved.
However, you draw now an analytic polyhedron, defined by polynomials,
in any neighbourhood of $(\Sigma)$ . Then, by lifting it again you can solve the
problem.

Paper $II$ , which contains this, has many subtle points for reading.
According to Oka, however, not so much difficulty was left before this
work was finished, because he had already a stock of researches in the
former Note.

2. It became a problem to find a distinction, if any, between the domains
of holomorphy and rationally convex ones. As is well known, there is
no such problem in the one variable case. This was also an important
question on which Oka said “It’s impossible to proceed further without
knowing its solution”.

Oka started from Gronwall’s example which shows that Cousin’s
second problem is not necessarily solvable even on a domain of holomor-
phy.

Like Gronwall’s example, take a domain of holomorphy, say $V$ , such
that there exists an analytic hypersurface $S$ for which there is no holo-
morphic function on $D$ whose zero locus coincides with $S$ , but one has a
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holomorphic function $f$ on a neighbourhood of $S$ satisfying $S=f^{-1}(0)$ .
In this situation, there exists a meromorphic function on $D$ whose prin-
cipal part is $1/f$ . It is expected then, that this meromorphic function
cannot be approximated by a sequence of rational functions uniformly
on compact subsets of $D\backslash S$ , because if it were not the case the denom-
inators of those rational functions would define analytic hypersurfaces
that ’converge’ to $S$ .

To clarify this situation, Oka constructed another simple example of
a domain of holomorphy on which Cousin’s second problem is not nec-
essarily solvable. This shows in particular that a domain of holomorphy
is not necessarily rationally convex.

Fig. 3

Ill-Example, in Japanese, was written only to describe this example.
The published Paper $IV$ amounts to it.

There he classifies the domains into four species:

polycylinders, rationally convex domains,

domains of holomorphy, pseudoconvex domains.

According to this classification, things are stated more in order;

1. Paper I established a method of reducing rationally convex do-
mains to polycylinders.

2. Paper $II$ established a method of reducing domains of holomorphy
to rationally convex ones.

From this viewpoint, it is clearly seen that the fruit of Oka’s researches
was establishment of a method of reducing the domains of arbitrary
shape to standard ones as in the case of Riemann’s mapping theorem.
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3. It must be noted here that, in advance of $IV$ , Cousin’s second problem
had been solved in Paper III. Oka had an opinion that Cousin’s second
problem itself should have been worried about much later if the above
mentioned classification results had nothing to do with it. The reason
is that it was not directly related to the principal questions for Oka.
Nevertheless, solving Cousin’s second problem after the first one may
well be regarded as a quite natural procedure.

4. Once it was known that the domains of holomorphy are not neces-
sarily rationally convex, the condition for the validity of Weil’s integral
formula was to be examined next. It was done as follows, to put it
concisely.

Let $D$ be a domain in the space of two variables $x$ , $y$ , and let
$X_{1}$ , $X_{2}$ , $\ldots$ , $X_{N}$ be $N$ holomorphic functions on $D$ such that the (closed)

domain
$\triangle$ : $|X_{i}(x, y)|\leq 1$ $(i=1,2, \ldots, N)$

is a compact subset of V. Then, letting $S_{i}$ be the set $|X_{i}|=1$ on the
boundary of $D$ , we put $\sigma_{ij}=S_{i}\cap S_{j}$ .

Suppose that one can associate, to each $X_{i}(x, y)$ , two holomorphic
functions $P_{i}(x, y;x_{0}, y_{0})$ , $Q_{i}(x, y;x_{0}, y_{0})$ in $(x, y)\in D$ and $(x_{0}, y_{0})\in D$ ,

in such a way that

(W) $X_{i}(x, y)-X_{i}(x_{0}, y_{0})=(x-x_{0})P_{i}+(y-y_{0})Q_{i}$

holds true.

Then, if we put

$K_{ij}(x, y, x_{0}, y_{0})=\frac{(P_{i}Q_{j}-P_{j}Q_{i})}{[X_{i}(x,y)-X_{i}(x_{0},y_{0})][X_{j}(x,y)-X_{j}(x_{0},y_{0})]}$

any holomorphic function $f(x, y)$ has an integral representation

$f(x_{0}, y_{0})=\frac{-1}{4\pi^{2}}\sum_{(i,j)}\int_{\sigma_{jj}}K_{ij}(x, y, x_{0}, y_{0})f(x, y)dxdy$ ,

which is the celebrated Weil’s integral formula.

At that time, however, the condition (W) was known to hold only
when $X_{i}(x, y)$ are rational functions. Concerning this question, Oka
made a breakthrough by first discovering a fact that

$<<$Every holomorphic function on a domain of holomorphy can be
uniformly approximated on the compact subsets by the branches of al-
gebraic functions $>>$



Mathematics of Professor Oka 29

and deduced from it that Weil’s integral formula holds true on the do-
mains of holomorphy without any essential changes. This is Paper V.
Later it was simplified by H. Hefer and was generalized further after the
introduction of the theory of systems of ideals of undetermined domains.
They are stuffs that arose subsequently after the establishment of the
lifting principle.

He has told me that these things came out very smoothly after the
discovery of the lifting principle. In fact, around October of that year,
the manuscript of Paper I (written in Japanese) was written up almost
in the final form. As for the solvability of Cousin’s second problem, the
so called Oka principle, the discovery, belongs to later periods, to my
speculation.

\S 5. Hartogs inverse problem

The inverse problem of Hartogs was a really difficult question even
after such a preparation, so that Ob had to wait until some point around
1940 to get a solution. This problem was pursued to the following point:

Let $D$ be a bounded domain in the space of two complex variables
$x$ , $y$ , and let $D_{1}$ , $D_{2}$ be respectively the subsets of $D$ defined by $Imx>a_{1}$

and $Imx<a_{2}$ . We assume here that $D_{1}$ and $D_{2}$ are both holomorphi-
cally convex.

$t_{t_{2}}^{1}$

$L_{2}$ : $x_{2}=a_{2}$

$L$ : $x_{2}=0$

$L_{1}$ : $x_{2}=a_{1}$

Fig. 4

In this geometric setting, the point is

$<<$to solve Cousin’s first problem on $D>>$ .
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This was settled in Paper $VI$ by solving an integral equation includ-
ing the Weil integral. He told me that when he was consulting Goursat’s
book, Cours d’Analyse, Volume III, certain integral equation caught his
eyes, which finally led him to the solution of the problem.

Paper $VI$ is written by restricting the situation to the space of two
complex variables. This is probably because Oka planned to replace the
Weil integral by the Cauchy integral, by using the lifting principle as
before.

Oka wanted to do this not just because it is troublesome to apply
Weil’s formula in higher dimensions. He intended, from the beginning,
to generalize the principal questions to the many-sheeted domains. This
plan was completely realized after two years in 1943.

Concluding remarks

Ob called his work through Paper $VI$ ’examination of the shore’. By
this word one may understand that he had encouraged himself further to
cross the river. As you know, a splendid bridge was built later, after the
invention of the theory of systems of ideals of undetermined domains.

The lifting principle, together with its generalization remained Oka’ $s$

lifelong research subject, whereas I could just describe how its most naive
form was created. However I must be contented with it if I succeeded in
describing how a mathematical part of nature had grown in Oka’ $s$ mind.

Thank you very much for your attention.

(Originally written in Japanese and translated by T. Ohsawa.)

1 M\={o}rinagatonishimachi
Momoyama Fushimi-ku
Kyoto 612-0064
Japan
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Uniqueness problem for meromorphic mappings

under conditions on the preimages of divisors

Yoshihiro Aihara

Abstract.

We first give a finiteness theorem for meromorphic mappings.

Next, we give conditions under which two holomorphic mappings
from a finite analytic covering space over the complex $m$-space into
a smooth elliptic curve are algebraically related.

Introduction.

The uniqueness problem of meromorphic mappings under condi-
tion on the preimages of divisors was first studied by G. Polya and
R. Nevanlinna. They proved the following famous five point theorem:
Let $f$ and $g$ be nonconstant meromorphic functions on C. If $f^{-1}(a_{j})=$

$g^{-1}(a_{j})$ for distinct five points $a_{1}$ , $\cdots$ , $a_{5}$ in $\mathbb{P}_{1}(\mathbb{C})$ , then $f$ and $g$ are iden-
tical. So far, many researchers have studied unicity theorems for mero-
morphic functions on $\mathbb{C}$ , as well in the multidimensional case. Among
these, H. Fujimoto has proved a number of remarkable unicity theorems.
For example, he proved the following excellent theorem ([4]):

Theorem (Fujimoto). Let $f$ , $g$ : $\mathbb{C}^{m}\rightarrow \mathbb{P}_{n}(\mathbb{C})$ be nonconstant
meromorphic mappings with the same inverse images of $q$ hyperplanes
in general position.

(1) If$q=3n+1$ , then there exists an automorphism $L$ of $\mathbb{P}_{n}(\mathbb{C})$ such
that $f=L\cdot g$ .

(2) If $q=3n$ $+2$ and either $f$ or $g$ is linearly nondegenerate,
then $f$ and $g$ are identical.

The finiteness theorem for meromorphic mappings was also stud-
ied by H. Cartan and R. Nevanlinna in 1920’s. The finiteness theorem
of Cartan-Nevanlinna states that there exist at most two meromorphic
functions on $\mathbb{C}$ that have the same inverse images with multiplicities
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for distinct three values in $\mathbb{P}_{1}(\mathbb{C})$ . In 1981, H. Fujimoto generalized the
theorem of Cartan-Nevanlinna to the case of meromorphic mappings
of $\mathbb{C}^{m}$ into complex projective spaces $\mathbb{P}_{n}(\mathbb{C})$ by making use of Borel’s
identity ([5]). He proved the finiteness of families of linearly nondegen-
erate meromorphic mappings of $\mathbb{C}^{m}$ into I[ $n(\mathbb{C})$ with the same inverse
images for some hyperplanes. In his results, the number of hyperplanes
in general position is essential and must be larger than a certain num-
ber depending on the dimension of the projective spaces. Note that
an essential problem in the multidimensional case exists in this point.
Namely, in the case where a given divisor is irreducible, what kind of
condition yields the finiteness of families of meromorphic mappings ?

In this paper, we first give a finiteness theorem for meromorphic map-
pings $f$ of $\mathbb{C}^{m}$ into a compact complex manifold $M$ and for an irreducible
divisor $D$ on $M$ . Next, we give some theorems on uniqueness problems
of holomorphic mappings into smooth elliptic curves.

\S 1. Finiteness theorem for meromorphic mappings.

In this section, we give a finiteness theorem. For details, see [1]. To
state our results, we give some definitions. Let $L\rightarrow M$ be a fixed line
bundle over $M$ , and let $\sigma_{1}$ , $\cdots$ , $\sigma_{s}$ be linearly independent holomorphic
sections of $L\rightarrow M$ with $s$ $\geq 2$ . Throughout this paper, we assume
that $(\sigma_{j})=dD_{j}(1\leq j\leq s)$ for some positive integer $d$ , where $D_{j}$ are
effective divisors on $M$ . Set

$\varpi=c_{1}\sigma_{1}+\cdots+c_{s}\sigma_{s}$ ,

where $c_{j}\in \mathbb{C}^{*}$ . Let $D$ be a divisor defined by $\varpi=0$ . We define a
meromorphic mapping $\Psi$ : $M$ $\rightarrow$ I[ $s-1(\mathbb{C})$ by $\Psi=$ $(\sigma_{1}, \cdots, \sigma_{s})$ .

Definition 1.1. Let $p$ be a nonnegative integer. For divisors $Z_{1}$ and
on $\mathbb{C}^{m}$ , we write

$Z_{1}\equiv Z_{2}(mod p)$

if there exists a divisor $Z’$ on $C^{m}$ such that $Z_{1}-Z_{2}=pZ’$ ; in the special
case of $p=0$ , $Z_{1}\equiv Z_{2}(mod 0)$ if and only if $Z_{1}=Z_{2}$ .

Let $Z$ be a nonzero effective divisor on $\mathbb{C}^{m}$ . We denote by

$\mathcal{F}(p;(\mathbb{C}^{m}, Z),$ $(M, D))$

the set of all meromorphic mappings $f$ : $\mathbb{C}^{m}\rightarrow M$ such that

$f^{*}D\equiv Z(mod p)$ .
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Definition 1.2. We say that a meromorphic mapping $f$ : $\mathbb{C}^{m}\rightarrow$

$M$ has the Zariski dense image if $f(\mathbb{C}^{m})$ is not included in any proper
analytic subset of $M$ .

Let
$\mathcal{F}^{*}(p;(\mathbb{C}^{m}, Z),$ $(M, D))$

denote the subset of all $f\in \mathcal{F}(p;(\mathbb{C}^{m}, Z)$ , $(M, D))$ with the Zariski dense
image. The main result of the present article is as follows ([1, Theorem
2.1]):

Theorem 1.3. If rank $\Psi=dimM$ and $d>$ $(s+1)!\{(s+1)!-2\}$ ,

then the number of mappings in $F^{*}$ $(d;(\mathbb{C}^{m}, Z)$ , $(M, D))$ is bounded by
a constant depending only on $D$ .

\S 2. Holomorphic curves into smooth elliptic curves.

In this section, we give some theorems on the uniqueness of holomor-
phic mappings into smooth elliptic curves $E$ . In particular, we consider
the problem to determine the condition which yields $f=\varphi(g)$ for an
endomorphism $\varphi$ of the abelian group $E$ . For details, see [2]. The
uniqueness problem of holomorphic mappings into elliptic curves was
first studied by E. M. Schmid (Math. Z. 23 (1971)). Schmid’s unicity
theorem is the following: Let $f$ , $g$ : $R\rightarrow E$ be nonconstant holomor-
phic mappings, where $R$ is an open Riemann surface of a certain type.
Then there exists a nonnegative integer $d$ depending only on $R$ such
that, if $f^{-1}(a_{j})=g^{-1}(a_{j})$ for distinct $d+5$ points $a_{1}$ , $\cdots$ , $a_{d+5}$ in $E$ ,

then $f$ and $g$ are identical. In the special case $R$ $=\mathbb{C}$ , we have $d=0$ .

However, there have been only few studies on the uniqueness problem
of holomorphic mappings into elliptic curves (cf. [3]).

Let $\pi$ : $X\rightarrow \mathbb{C}^{m}$ be a finite analytic covering space and $s_{0}$ its sheet
number. We denote by $[p]$ the point bundle determined by $p\in E$ and

set $\tilde{F}=\pi_{1}^{*}$ $[p]\otimes\pi_{2}^{*}[p]$ , where $\pi_{j}$ : $E\times E\rightarrow E$ are the natural projections.
Let $f$ , $g$ : $X\rightarrow E$ be nonconstant holomorphic mappings. We denote
by End(E) the ring of endomorphisms of $E$ . If $E$ has no complex mul-
tiplication, it is well-known that End $(E)\cong$ Z. Hence $\varphi(x)=nx$ for
some integer $n$ . We now seek conditions which yield $g=\varphi(f)$ for
some $\varphi\in$ End(E) Let $\varphi\in$ End(E) and consider a curve

$\overline{S}=\{(x, y)\in E\times E;y =\varphi(x)\}$

in $E\times E$ . Let $[\tilde{S}]$ be the line bundle determined by $\tilde{S}$ . Denote by
$\tilde{\gamma}$ the infimum of rational numbers $\gamma$ such that $\gamma\tilde{F}\otimes[\overline{S}]^{-1}$ is ample.
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Then we have $\tilde{\gamma}=deg\varphi+1$ which is proved by T. Katsura (see [2]).
Hence, if $\varphi\in$ End(E) is an endomorphism defined by $\varphi(x)=nx$ ,

then $\tilde{\gamma}=n^{2}+1$ . Let $Z$ be an effective divisor on $X$ , and let $k$ be
either a positive integer or $+\infty$ . If $Z=\sum_{j}\iota/_{j}Z_{j}$ for distinct irreducible
hypersurfaces $Z_{j}$ in $X$ and for nonnegative integers $lJ_{j}$ , then we define
the support of $Z$ with order at most $k$ by Supp $kZ=\bigcup_{0<\iota/_{j}\leq k}Z_{j}$ . We

now have the following:

Theorem 2.1. Let $f$ and $g$ be as above. Let $D_{1}=\{a_{1}, \cdots, a_{d}\}$ be $a$

set of $d$ points and $\varphi$ $a$ en $d$omorphism of E. Set $D_{2}=\varphi(D_{1})$ . Assume
that the number of points in $D_{2}$ is also $d$ . Suppose that Supp$kf^{*}D_{1}=$

Supp $kg^{*}D_{2}$ for some $k$ . If $d>2(deg\varphi+1)+8(s_{0}-1)(1+k^{-1})$ ,

then $g=\varphi(f)$ .

In the above theorem, we assume that the cardinality $\# D_{2}$ of the
point set $D_{2}$ equals $d$ . However, it may happen that $\# D_{2}<d$ . For ex-
ample, if $\varphi(x)=nx(n\in \mathbb{Z})$ and there exists at least one pair $(i, j)$ such
that $a_{i}-a_{j}$ is $n$-torsion point, then $\# D_{2}<d$ . In this case, we have the
following:

Theorem 2.2. Let $f$ , $g$ : $\mathbb{C}^{m}\rightarrow E$ be nonconstant holomorphic
mappings. Let $D_{1}=\{a_{1}, \cdots, a_{d}\}$ be a set of $d$ points and $\varphi\in$ End(E).
Set $D_{2}=\varphi(D_{1})$ . Assume that the number of points in $D_{2}$ is $d’$ . Suppose
that $Supp_{1}$ $f^{*}D_{1}=$ $Supp_{1}$ $g^{*}D_{2}$ . If $dd’>(d+d’)(deg\varphi+1)$ , then $g=$

$\varphi(f)$ .

Corollary 2.3. Let $f$ and $g$ be as in Theorem 2.2. Let $D_{1}=$

$\{a_{1}, \cdots, a_{d}\}$ be a set of $d$ points and set $D_{2}=\{na_{1}, \cdots, na_{d}\}$ for some
integer $n$ . Assume that the number of points in $D_{2}$ is $d’$ . Suppose
that Suppx $f^{*}D_{1}=Supp_{1}$ $g^{*}D_{2}$ . If $dd’>(d+d’)(n^{2}+1)$ , then $g=nf$ .

We do not know whether Theorem 2.2 is sharp or not. However,
if the condition $dd^{/}>(d+d’)(deg\varphi+1)$ is not satisfied, then it is not
necessarily true that $g=\varphi(f)$ .

Example 2.4. Let $\varphi$ be an endomorphism defined by $\varphi(x)=2x$ .

Define $f$ , $g$ : $\mathbb{C}\rightarrow E$ by $f(z)=\overline{\pi}(x)$ and $g(z)=-2\overline{\pi}(x)$ , where $\overline{\pi}$ :
$\mathbb{C}\rightarrow E$ be the universal covering mapping. Let $D_{1}=\{x\in E;4x=0\}$ .

Then $D_{2}=\varphi(D_{1})=2D_{1}$ . It is clear that $Supp_{1}$ $f^{*}D_{1}=Supp_{1}$ $g^{*}D_{2}$ .

In this case, $d=16$ , $d’=4$ and $deg\varphi+1=5$ . Thus we have

$dd’-(d+d’)(deg\varphi+1)=-36<0$
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and $g\neq\varphi(f)$ .

For nonconstant holomorphic mappings $f$ , $g$ : $X\rightarrow E$ , we have the
following unicity theorem, which is a direct conclusion of Theorem 2.1:

Theorem 2.5. Let $a_{1}$ , $\cdots$ , $a_{d}$ be distinct points in E. Suppose
that Supp $kf^{*}a_{j}=$ Supp $kg^{*}a_{j}$ for all $j$ , where $ 1\leq k\leq+\infty$ . If $d>$

$8s_{0}-4+8k^{-1}(s_{0}-1)$ , then $f$ and $g$ are $id$entical.

In the case of $X=\mathbb{C}^{m}$ , we have the following:

Theorem 2.6. Let $a_{1}$ , $\cdots$ , $a_{d}$ be distinct points in E. Suppose
that $X=\mathbb{C}^{m}$ and $Supp_{1}$ $f^{*}a_{j}=$ $Supp_{1}$ $g^{*}a_{j}$ for all $j$ . If $d\geq 5$ ,

then $f$ and $g$ are identical.

We give here the concluding remark. If we choose special points
of $E$ , we obtain an example which yields that Theorem 2.6 is sharp.
Indeed, let $a_{1}$ , $\cdots$ , $a_{4}$ be two-torsion points in $E$ and let $\wp$ be the Weier-
strass $\wp$ function. If $f_{1}^{*}a_{j}=f_{2}^{*}a_{j}$ for $j=1$ , $\cdots$ , 4, it is easy to see
that $\wp\circ f_{1}=\wp\circ f_{2}$ by Nevanlinna’s four points theorem. Hence $f_{1}=$

$f_{2}$ or $f_{1}=-f_{2}$ . Since $p\mapsto-p(p\in E)$ is an automorphism of $E$ , it is
acceptable that $f_{1}$ and $f_{2}$ are essentially identical. In this example, it
seems that the structure of the function field of $E$ affects strongly the
uniqueness problem for holomorphic mappings.
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On the middle dimension cohomology of
$A_{l}$ singularity

Takao Akahori

Abstract.

Let $(V, o)$ be a normal isolated singularity in a complex Euclidean
space $(C^{N}, o)$ . Let $M$ be the intersection of this singularity and the

real hypersphere $s_{\epsilon}^{2N-1}(o)$ , centered at the origin $o$ with an $\epsilon$ radius.
Then, naturally, this link $M$ admits a $CR$ structure, induced from $V$ ,

and the deformation theory of this $CR$ structures has been studied
in [1], $[2],[3]$ . Especially in [3], a particular subspace of the infinitesi-
mal deformation space is found, and we propose to study the relation
between this subspace and simultaneous deformation. We note that:
if the canonical line bundle of the $CR$ structure is trivial, then the
infinitesimal space of the deformation of $CR$ structures is a part of
the middle dimension cohomology. And in this line, we conjecture

that $Z^{1}$ , introduced in [3], might be related to the simultaneous de-
formation of isolated singularity $(V, o)$ (see also [2]). We discuss this
problem for $A_{l}$ singularities.

\S 1. Motivation and $Z^{1}$
- space

Let $(V^{(n)}, o)$ be an isolated singularity in a complex eucliean space
$(C^{N}, o)$ . We consider the intersection

$M=S_{\epsilon}^{2N-1}(o)\cap V$.

Then $M$ is a compact non-singular real $2n-1$ dimensional $C^{\infty}$ manifold,

and a $CR$ structure $(M^{ 0},T^{J/})$ is induced from $V$ , by ;

$0T^{J/}=C\otimes TM\cap T^{JJ}(V-o)$ .

Here $T^{JJ}(V-o)$ means the space consisting of type $(1, 0)$ vectors on $V-o$ .
This pair $(M^{0},T^{JJ})$ is called a $CR$ structure(or a $CR$ manifold). For this
$CR$ structure, the deformation theory, related to the deformation theory
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of isolated singularities $(V, o)$ , is successfully developed by Kuranishi.
After the great work of Kuranishi, we are interested in the mixed Hodge
structure of $CR$ manifolds. We take a supplement vector field $\zeta$ to
$0T//+0T^{J}$ , her$eT0/=\overline{0T/;}$ . For this $CR$ structure with the supplement
vector field $\{(M^{ 0},T^{/\prime}), \zeta\}$ , we can introduce a mixed Hodge structure
which should correspond to the mixed Hodge structure on a tubular
neighborhood $U$ of $M$ in $V$ . Here, we assume that there is a real vector
field ( satisfying:

(t) $(_{p}\not\in 0T_{p}^{JJ}+0T_{p}^{J}$

(2) $[\zeta, \Gamma(M^{ 0},T^{//})]\subset$ $F(M^{ 0},T^{JJ})$ .

While, during our studying deformation theory of $CR$ structures, we
learn that: for Calabi-Yau manifolds, the Kuranishi family is unob-
structed. So, in order to obtain the analogy to isolated singularities, $Z^{1}$

space is found(see [3]).

(3) $Z^{1}=\{u:u\in F^{n-1,1}, d’’u=0, d’u=0\}$ .

In the case complex manifolds, $Z^{1}$ might be translated as follows.
For a tubular neighborhood $U$ of $M$ in $V$ , we set

(4) $\{u:u\in\Gamma(U, \wedge^{n-1}(T’U)^{*}\wedge (T^{JJ}U)^{*}), \overline{\partial}u=0, \partial u=0\}$ .

If $X^{(n)}$ is a compact $n$-dimensional Kaehler manifold, then

(5) { $u$ : $ u\in$ F( $X^{(n)},$ $\wedge^{n-1}(T’X^{(n)})^{*}\wedge(T^{\prime/}X^{(n)})^{*})$ , $\overline{\partial}u=0$ , $\partial u=0$ }.

includes the $\overline{\partial}$-harmonic space consisting of $(n -1,1)$ forms. While,

here, we are treating an open manifold $U$ (tubular neighborhood of $M$ ).
So even if the $(n-1,1)$ Kohn-Rossi cohomology does not vanish(the

existence of a non- trivial $\overline{\partial}-$harmonic space consisting of $(n-1,1)$ forms) ,

the above space might be 0. Here we give a program to obtain a non-
trivial element of (4) from a non- trivial simultaneous deformation.

Let $\tilde{V}$ be the resolution of the isolated singularity with complex
dimension $n$ in $C^{N}$ , $V$ , and $\pi$ is the resolution map $\pi;\tilde{V}\rightarrow V$ . And
consider non-trivial deformations of isolated singularity $(V, o)$ with this

resolution. Namely, $\pi_{t}$ is a resolution map of $V_{t}$ in $C^{N}$ , $\pi_{t}$ ; $\tilde{V}_{t}\rightarrow V_{t}$ ,
$t$ $\in T$ , where $V_{t}$ is a deformation of $V,\tilde{V}_{t}$ is a deformation of $\tilde{V}$ , $T$

is an analytic space with the origin, and at the origin, $\pi_{o}=\pi,\tilde{V}_{o}=$

$\tilde{V}$ , $V_{o}=V$ . Furthermore, we assume that $V_{t}\subset C^{N}$ . Now we take
a $C^{\infty}$ trivialization $i_{t}$ : a tubular neighborhood of $\Lambda I_{o}\rightarrow$ a tubular
neighborhood of $M_{t}$ , which satisfies $i_{t}(M_{o})=JI_{t}$ . In this setting, our
program is as follows.
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$\circ$ ( $\underline{First}$Step) By using the simultaneous resolution, we construct a

non-trivial $(n, 0)$ form $\omega_{t}$ , which is not $d$ exact on $\tilde{V}_{t}$ for a generic
$t$ , and depends on $t$ complex analytically. In general,

$\zeta$

“to give an
$(n, 0)$ form, satisfying a certain condition”, might be easier than
“to give an $(n-1,1)$ form with the corresponding condition”.

$\circ$ ($\underline{Second}$Step) By choosing a proper $C^{\infty}$ trivialization of the si-
multaneous deformation, $i_{t}$ ,

$ i_{t}^{*}\omega_{t}=\omega_{0}+\omega_{1}t+\cdots$ , (expansion with respect to $t$ ).

$\blacksquare$ ( $\underline{Third}$Step) From $d\omega_{t}=0$ , it follows that: du$1=0$ . By the

definition, $\omega_{1}$ isaform of type $(n, O)+(n-1,1)$ on $\tilde{V}_{o}-\pi^{-1}(o)$ ,

we write it by;

$\omega_{1}=\omega_{1}^{(n,0)}+\omega_{1}^{(n-1,1)}$ .

As du$1=0$ , this is equivalent to

$\overline{\partial}\omega_{1}^{(n-1,1)}=0$ ,

$\overline{\partial}\omega_{1}^{(n,0)}+\partial\omega_{1}^{(n-1,1)}=0$ .

The $\overline{\partial}-$cohomology class, determined by $\omega_{1}^{(n-1,1)}$ , is the induced
one by the Kodaira-Spencer class of deformations. So, this must
be non-trivial. In this setting, we would like to construct a non-
trivial element of (4), associated with the given simultaneous de-
formation.

For the Third Step, we have to comment on a crucial point. The
naive answer is that:

$\partial\omega_{1}^{(n-1,1)}=0$ ?

This is too strong. There is an ambiguity to choose the $C^{\infty}$ trivialization,
$i_{t}$ . By changing the $C^{\infty}$ trivialization, $\omega_{1}$ (resp. $\omega_{1}^{(n-1,1)}$ ) is replaced by

$\omega_{1}-$ du(resp. $\omega_{1}^{(n-1,1)}-\overline{\partial}u$ ), where $u$ is an $(n-1,1)$ form. Hence our
problem(to obtain a non-trivial element of (4)) is reduced to that; is

there any $C^{\infty}(n-1,1)$ form $u$ , $satis\mathfrak{h}^{r}ing:\overline{\partial}\omega_{1}^{(n-1,1)}-\partial\overline{\partial}u=0$? This is

so called “ $\partial\overline{\partial}$ lemma”. For a compact Kaehler manifold, by taking the
harmonic part, this is always solvable. However, for an open manifold,

this is not an easy problem. One of our conjecture is that; if $\omega_{1}^{(n-1,1)}$
Is

induced by the simultaneous deformation, then this might be solvable.
In the next section, we study this conjecture in $A_{l}$ singularities.
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\S 2. $A_{l}$ singularities

Let

$X=\{(z_{1}, \ldots, z_{n+1}) : (z_{1}, \ldots, z_{n+1})\in C^{n+1}, z_{1}^{2}+\cdots+z_{n+1}^{l+1}=0\}$ ,

where $l$ is a positive integer. We call this isolated singularity $A_{l}$ singu-
larity. Consider a family of deformations of $X$ ,

$X_{t}=\{(z_{1}, \ldots, z_{n+1}) : (z_{1}, \ldots, z_{n+1})\in C^{n+1}, z_{1}^{2}+\cdots+z_{n+1}^{l+1}=t\}$ .

Let $M=X\cap\{(z_{1}, \ldots, z_{n+1}):|z_{1}|^{2}+\cdots+|z_{n+1}|^{2}=1\}$ . And consider
a $C^{\infty}$ trivialization of this deformation over a neighborhood of $M$ in $X$ .

Let $i_{t}$ : $(z_{1}, \ldots, z_{n+1})\rightarrow(z_{1}(t), \ldots, z_{n+1}(t))$ , where

$z_{1}(t)$ $=$ $z_{1}+\frac{1}{2k(z,\overline{z})}\overline{z}_{1}(1+|z_{n+1}|^{2}+\cdots+|z_{n+1}|^{2l})t$ ,

$z_{n}(t)$ $=$ $z_{n}+\frac{1}{2k(z,\overline{z})}\overline{z}_{n}(1+|z_{n+1}|^{2}+\cdots+|z_{n+1}|^{2l})t$

$z_{n+1}(t)$ $=$ $z_{n+1}+\frac{1}{(l+1)k(z,\overline{z})}\overline{z}_{n+1}^{l}t$

Here

$k(z, \overline{z})=(1+|z_{n+1}|^{2}+\cdots+|z_{n+1}|^{2(l-1)})(|z_{1}|^{2}+\cdots+|z_{n}|^{2})+|z_{n+1}|^{2}l$ .

So, on $M$ , because of $|z_{1}|^{2}+\cdots+|z_{n}|^{2}=1-|z_{n+1}|^{2}$ , $k(z, \overline{z})=1$

holds. And,

$z_{1}(t)^{2}+\cdots+z_{n}(t)^{2}+z_{n+1}(t)^{l+1}$

$=$ $z_{1}^{2}+\cdots+z_{n}^{2}+z_{n+1}^{l+1}$

$+\frac{1}{k(z,\overline{z})}\{(1+|z_{n+1}|^{2}+\cdots+|z_{n+1}|^{2(l-1)})(|z_{1}|^{2}+\cdots+|z_{n}|^{2})$

$+|z_{n+1}|^{2l}\}t+$ higher order term of $t$

$\equiv$
$mod t^{2}$

By adjusting higher order term, we have a $C^{\infty}$ trivialization $i_{t}$ : $X\rightarrow X_{t}$

over a neighborhood of M. However, in this paper, we discuss only
differential forms of type $(n-1, 1)$ . So the above map is enough.

\S 3. An approach to the First Step

In this section, we give a non-trivial holomorphic $(n, 0)$ form on
$ X_{t}\cap$ (a neighborhood of $M$ in $C^{n+1}$ ), which depends on $t$ , complex
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analytically. Let $f=z_{1}^{2}+\cdots+z_{n}^{2}+z_{n+1}^{l+1}$ . Like in [2], we, first, set a
type $(1, 0)$ vector field $Z_{f}$ , defined on a neighborhood of $M$ in the $C^{n+1}$ ,

as follows. Let $\Omega$ be the standard symplectic form.

$\Omega=\sum_{i=1}^{n+1}\sqrt{-1}dz_{i}\wedge d\overline{z}_{i}$ .

By using this metric, we define a $(1, 0)$ vector field $Z_{f}$ on a neighborhood
of $M$ by;

$df(X)=\Omega(X, \overline{Z}_{f})$ , for all $(1, 0)$ vector field $X$ .

This $Z_{f}$ is easily written down as follows.

$Z_{f}$ $=$ $\sqrt{-1}\sum_{i=1}^{n+1}\overline{(\frac{\partial f}{\partial z_{i}})}\frac{\partial}{\partial z_{i}}$

$=$ $\sqrt{-1}\{\sum_{i=1}^{n}2\overline{z}_{i}\frac{\partial}{\partial z_{i}}+(l+1)\overline{z}_{n+1}^{l}\frac{\partial}{\partial z_{n+1}}\}$ .

So,

$Z_{f}(f)$ $=$ $\sqrt{-1}(2^{2}\sum_{i=1}^{n}|z_{i}|^{2}+(l+1)^{2}|z_{n+1}|^{2l})$

$\neq$ 0 on a neighborhood of $M$ .

Let $\omega=dz_{1}\wedge\cdots\wedge dz_{n+1}$ . For $X_{t}$ , we set a holomorphic $(n, 0)$ form
$\omega’(t)$ , which depends on $t$ , complex analytically by ;

$\omega’(t)=Z_{f}\rfloor\omega$ on $X_{t}$ (inner product with vector field $Z_{f}$ ).

And set

$\omega_{t}’=\frac{1}{\sum_{i=1}^{n}2^{2}|z_{i}|^{2}+(l+1)^{2}|z_{n+1}|^{2l}}\omega^{J}(t)$ .

By the type of $\omega$ , our $\omega_{t}^{/}$ is of type $(n, 0)$ on $X_{t}$ . We must show that our
$\omega_{t}’$ is holomorphic on $X_{t}$ . For this, we recall the following lemma.

Lemma 3.1. $\omega=-\sqrt{-1}df\wedge\omega_{t}’$ on a neighborhoo $d$ of $M$ .

We sketch the proof of this lemma. For a point $p$ of a neighborhood
of $M$ in $C^{n+1}$ , $T_{p}’C^{n+1}$ is spanned by $Z_{f}$ and $\{X_{i} (p)\}_{1\leq i\leq n}$ , which satisfy
$X_{i}(p)f=0$ . So, with these vector fields, just by a direct computation,
we have our lemma.
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By this lemma, on $X_{t}$ ,
$d\omega_{t}^{J}=0$ .

We have to see that our $\omega_{o}’$ is not a $d$-exactn on $X_{o}=X$ . But if we
restric $\omega_{t}$ to

$\{(z_{1}, \cdots, z_{n}, z_{n+1}) : z_{1}^{2}+\cdots+z_{n}^{2}+z_{n+1}^{l+1}=0, z_{n+1}=0\}$

a complex $n-1$ dimensional $A_{1}$ singularity, then it gives a non-trivial
$n$ $-1$ dimensional cohomology(by the definition of our $\omega$(, it coincides
with nontrivial element, constructed in [2] $)$ . So, we have a non trivial
form.

\S 4. An approach to the Third Step

By the $C^{\infty}$ trivialization of the simultaneous deformations, $i_{t}$ , con-
structed in Section 2 on a tubular neighborhood of $M$ ,

$ i_{t}^{*}\omega_{t}=\omega_{0}+\omega_{1}t+\cdots$ , (expansion with respect to $t$ ).

We explain a difficulty about this part. For example, we take $A_{1}$

singularity (in our notations, $1=1$ ). Then, in the $C^{\infty}$ isomorphism map,
$i_{t}$ , as a denominator, $k(z, \overline{z})$ appears. Only on the boundary case(CR
case)

$k(z, \overline{z})=1$ on the boundary.

But we are treating the tubular neighborhood case. So, it is not so
valid that there is no extra non-trivial $(n, 0)$ term of $\omega_{1}$ ( we write it by
$\omega_{1}^{(n,0)})$ . Fortunately, for the case $l$ $=1$ ( the case of an ordinary double
point ), $(n, 0)$ term doesn’ $t$ appear(this means that it is not necessary
to change the $C^{\infty}$ trivialization ?. $t$ , constructed in Section 2). So, in

this case, $d\omega_{1}=0$ means that; $\partial\omega_{1}=0$ and $\overline{\partial}\omega_{1}=0$ . For the other 1,
we have to control the difficulty which arises from the term $k(z,$ $\overline{)}$ . In
another paper, we discuss the other case.

For the case $l$ $=1$ , the $C^{\infty}$ isomorphism map is as follows.

$z_{i}(t)=z_{i}+\frac{1}{2\sum_{i=1}^{n+1}|z_{i}|^{2}}\overline{z}_{i}t$ , $i=1$ , $\ldots$ , $n+1$ .

And

$Z_{f}=2(\sum_{i=1}^{n+1}\overline{z}_{i}\frac{\partial}{\partial z_{i}})$ .
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In order to simplify the sketch, we assume $n=2$ . Then,

$Z_{f}=2(\overline{z}_{1}\frac{\partial}{\partial z_{1}}+\overline{z}_{2}\frac{\partial}{\partial z_{2}}+\overline{z}_{3}\frac{\partial}{\partial z_{3}})$

And so,

$Z_{f}\rfloor\omega=2(\overline{z}_{1}dz_{2}\wedge dz_{3}-\overline{z}_{2}dz_{1}\wedge dz_{3}+\overline{z}_{3}dz_{1}\wedge dz_{2})$ ,

$Z_{f}(f)$ $=$ $4(|z_{1}|^{2}+|z_{2}|^{2}+|z_{3}|^{2})$

$=$
$4r^{2}$ .

Here $r^{2}=|z_{1}|^{2}+|z_{2}|^{2}+|z_{3}|^{2}$ . And

$z_{1}(t)$ $=$ $z_{1}+\frac{1}{2}\frac{1}{r^{2}}\overline{z}_{1}t$ ,

$z_{2}(t)$ $=$ $z_{2}+\frac{1}{2}\frac{1}{r^{2}}\overline{z}_{2}t$ ,

$z_{3}(t)$ $=$ $z_{3}+\frac{1}{2}\frac{1}{r^{2}}\overline{z}_{3}t$ .

Now we compute $\omega_{1}$ .

$i_{t}^{*}(\frac{1}{4r^{2}}Z_{f}\rfloor\omega)=\frac{1}{2}i_{t}^{*}(\frac{1}{r^{2}}(\overline{z}_{1}dz_{2}\wedge dz_{3}-\overline{z}_{2}dz_{1}\wedge dz_{3}+\overline{z}_{3}dz_{1}\wedge dz_{2}))$

$=\frac{1}{2}(\frac{\overline {}z_{1}(t)dz_{2}(t)\wedge dz_{3}(t)-\overline{z}_{2}(t)dz_{1}(t)\wedge dz_{3}(t)+\overline{z}_{3}(t)dz_{1}(t)\wedge dz_{2}(t))}{z_{1}(t)\overline{z}_{1}(t)+z_{2}(t)\overline{z}_{2}(t)+z_{3}(t)\overline{z}_{3}(t)})$

$\equiv\frac{1}{2}(\frac{\overline{z}_{1}dz_{2}(t)\wedge dz_{3}(t)-\overline{z}_{2}dz_{1}(t)\wedge dz_{3}(t)+\overline{z}_{3}dz_{1}(t)\wedge dz_{2}(t))}{z_{1}(t)\overline{z}_{1}+z_{2}(t)\overline{z}_{2}+z_{3}(t)\overline{z}_{3}})mod_{1}(t^{2},$
$\overline{t}^{\backslash }$

,

$=\frac{1}{2}(\frac{\overline{z}_{1}dz_{2}(t)\wedge dz_{3}(t)-\overline{z}_{2}dz_{1}(t)\wedge dz_{3}(t)+\overline{z}_{3}dz_{1}(t)\wedge dz_{2}(t))}{z_{1}\overline{z}_{1}+z_{2}\overline{z}_{2}+z_{3}\overline{z}_{3}})$

because of $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0$ .

While

$\overline{z}_{1}dz_{2}(t)\wedge dz_{3}(t)=\overline{z}_{1}(dz_{2}+\frac{1}{2}(d(\frac{1}{r^{2}}))\overline{z}_{2}t+\frac{1}{2}\frac{1}{r^{2}}d\overline{z}_{2}t)\wedge(dz_{3}+\frac{1}{2}(d(\frac{1}{r^{2}}))\overline{z}_{3}t+\frac{1}{2}\frac{1}{r^{2}}d\overline{z}_{3}t)$

$\equiv\overline{z}_{1}dz_{2}\wedge dz_{3}+\{\overline{z}_{1}\frac{1}{2}(d(\frac{1}{r^{2}}))\overline{z}_{2}\wedge dz_{3}+\overline{z}_{1}\frac{1}{2}\frac{1}{r^{2}}d\overline{z}_{2}\wedge dz_{3}$

$+\overline{z}_{1}dz_{2}\wedge\frac{1}{2}(d(\frac{1}{r^{2}}))\overline{z}_{3}+\overline{z}_{1}dz_{2}\frac{1}{2}\frac{1}{r^{2}}d\overline{z}_{3}\}t$ $mod t^{2}$ .

Therefore from this term, $(2, 0)$ part is

$\frac{1}{2}\overline{z}_{1}\overline{z}_{2}\partial(\frac{1}{r^{2}})\wedge dz_{3}+\frac{1}{2}\overline{z}_{1}\overline{z}_{3}dz_{2}\wedge\partial(\frac{1}{r^{2}})$ .
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By the same way, from $-\overline{z}_{2}dz_{1}(t)\wedge dz_{3}(t)$ , as a $(2, 0)$ part,

$-\frac{1}{2}\overline{z}_{1}\overline{z}_{2}\partial(\frac{1}{r^{2}})\wedge dz_{3}-\frac{1}{2}\overline{z}_{2}\overline{z}_{3}dz_{1}\wedge\partial(\frac{1}{r^{2}})$ .

And from $\overline{z}_{3}dz_{1}(t)\wedge dz_{2}(t)$ , $(2, 0)$ part is

$\frac{1}{2}\overline{z}_{1}\overline{z}_{3}\partial(\frac{1}{r^{2}})\wedge dz_{2}+\frac{1}{2}\overline{z}_{2}\overline{z}_{3}dz_{1}\wedge\partial(\frac{1}{r^{2}})$ .

So summing up these three terms, in this case, we see that $(2, 0)$ part
does not appear.
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The exact steepest descent method
–a new steepest descent method based on

the exact WKB analysis

Takashi Aoki1 , Takahiro Kawai2 and Yoshitsugu Takei3

Abstract.

Introducing a new notion of the exact steepest descent path, we
develop a new steepest descent method applicable to general ordinary

differential equations with polynomial coefficients. Its application to

the connection problem for solutions is also discussed.

\S 1. Introduction

In [2] we proposed a new method called the “exact steepest descent
method. It is designed to enlarge the scope of applicability of the
steepest descent method by making use of the exact WKB analysis, i.e.,
WKB analysis based on the Borel resummation technique (cf. [15], [7],
[9] and references cited there). It sheds a new light on some missing link
between microlocal analysis (cf., e.g., [11], [8]) and exact WKB analysis
and, at the same time, it provides us with a new tool in global analysis
of ordinary differential equations with polynomial coefficients. In this
paper we explain what the exact steepest descent method is and how
it is related with microlocal analysis, and discuss its application to the
connection problem of ordinary differential equations.

To help the reader’s understanding of the theory, we first give an
overview of the exact steepest descent method. Let us consider an or-
dinary differential equation with polynomial coefficients of the following
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form:

(1)
$P\psi=0\leq j\leq m\sum_{0\leq k\leq n}a_{jk}x^{k}\eta^{m-j_{\frac{d^{j}\psi}{dx^{j}}}}=0$

,

where $a_{jk}$ is a complex constant and $\eta>0$ is a large parameter. If all
the coefficients are linear polynomials (i.e., $n$ $=1$ ), the Laplace trans-
formation with respect to an independent variable $x$ transforms (1) into
a first order equation. Hence, by solving it explicitly, we can readily
obtain an integral representation of solutions. In this case every Borel
resummed WKB solution of (1) is represented as an integral along a
steepest descent path passing through a saddle point and various con-
nection problems for solutions (such as determination of the monodromy
group, computation of Stokes multipliers, etc.) can be solved by trac-
ing the configuration of such steepest descent paths ( steepest descent
method” ; cf., e.g., [12], [13], [14] $)$ . The exact steepest descent method
allows us to apply this approach to more general equations. That is, to
study (1) when $n$ $\geq 2$ , we consider the inverse Laplace transform

(2) $\int e^{\eta x\xi}\hat{\psi}_{k}(\xi, \eta)d\xi$

of a WKB solution $\hat{\psi}_{k}(1\leq k\leq n)$ of the Laplace transformed equation
$\hat{P}\hat{\psi}=0$ , using the idea of Berk et al. ([5]). We can then observe that
the Borel transform $\hat{\psi}_{k,B}$ of $\hat{\psi}_{k}$ is related with the Borel transform of a
WKB solution of (1) by the quantized Legendre transformation near a
saddle point of the integral (2). Furthermore, if we introduce a sophis-
ticated notion of the “exact steepest descent path” (which reflects the

connection formula for Borel resummed WKB solutions of $\hat{P}\hat{\psi}=0$ ; cf.

\S 3 below for its precise definition), the Borel sum of a WKB solution
of the original equation $P\psi=0$ is represented as the integral (2) along
an exact steepest descent path passing through a saddle point. Hence
the global behavior of solutions of (1) can be analyzed by tracing the
configuration of exact steepest descent paths; this is the “exact steepest
descent method”.

This paper is organized as follows: After reviewing the ordinary
steepest descent method briefly in \S 2, we recall in \S 3 the notion of the
exact steepest descent paths introduced in [2], emphasizing its relevance
to microlocal analysis. In \S 4 we then show how to apply the exact
steepest descent method to the computation of Stokes multipliers (which
is a typical connection problem). Finally in \S 5 we give a summary and
present some open problems.
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\S 2. Review of the ordinary steepest descent method

As is mentioned in \S 1, when all the coefficients are linear polyno-
mials (i.e., $n=1$ ), an integral representation of solutions of (1) can be
readily obtained by employing the Laplace transformation (with a large

parameter $\eta$ ) $\psi(x)\mapsto\hat{\psi}(\xi)$ , i.e.,

(3) $\psi(x)=\int e^{\eta x\xi}\hat{\psi}(\xi)d\xi$ .

Then the steepest descent method applied to the integral representation
provides us with a powerful tool in global analysis of solutions of (1).

Let us illustrate it by the following well-known example.

Example 1. Let us consider the Airy equation:

(4) $P\psi=(\frac{d^{2}}{dx^{2}}-\eta^{2}x)\psi=0$ .

For (4) the integral representation obtained through the Laplace trans-
formation is given by the following:

(5) $\psi(x, \eta)=\int\exp(\eta(x\xi-\frac{\xi^{3}}{3}))d\xi$ .

Let $f(x, \xi)$ denote the phase function $x\xi-\xi^{3}/3$ of (5). To study the
analytic continuation of a solution of (4), we $trace$ the configuration of
steepest descent paths of $Ref$ passing through saddle points of $f$ . (Re-

call that, by definition, a saddle point of $f$ is a point satisfying $\partial f/\partial\xi=0$

and a steepest descent path of $Ref$ is a level curve of $Imf$ on which
$Ref$ decreases monotonically.) In this case there exist two saddle points
$\xi=\xi_{\pm}=\pm\sqrt{x}$ and Fig. 1 describes the configuration of the steepest
descent paths passing through these two saddle points for $\arg x=0$ ,

$\arg x$ $=2\pi/3$ and $\arg x$ $=\pi$ .
From Fig. 1 we can perceive that the integral (5) along a steepest

descent path $C_{-}$ for $\arg x=0$ is analytically continued through the
upper half plane to the sum of the integral along $C_{-}$ and that along
$C_{+}$ for $\arg x=\pi$ . As scaling of the integration variable $\xi$ ensures the
equivalence between the asymptotics of (5) for $\eta\rightarrow\infty$ and that for $|x|\rightarrow$

$\infty$ and further the asymptotics for $\eta\rightarrow\infty$ can be readily computed by
the saddle point method, this implies that the asymptotic solution

(6) $\int_{C_{-}}\exp(\eta(x\xi-\frac{\xi^{3}}{3}))d\xi\sim\frac{i\sqrt{\pi}}{\sqrt{\eta}}x^{-1/4}\exp(-\frac{2}{3}\eta x^{3/2})(1+\cdots)$
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(a)(b)(c)

$\xi=$

$c$ $c$

(for $\arg x=0$ ) (for argx $=2\pi/3$ ) (for argx $=\pi$ )

Fig. 1. Steepest descent paths of (5).

of (4) for $ x\rightarrow+\infty$ is analytically continued to

(7) $\int_{C_{+}}\exp(\eta(x\xi-\frac{\xi^{3}}{3}))d\xi+\int_{C_{-}}\exp($ $\eta(x\xi-\frac{\xi^{3}}{3}))d\xi$

$\frac{2i\sqrt{\pi}}{\sqrt{\eta}}(-x)^{-1/4}\sin(\frac{2}{3}\eta(-x)^{3/2}+\frac{\pi}{4})(1+\cdots)$

for $ x\rightarrow-\infty$ . This is the well-known “Stokes phenomenon” for the
Airy equation. In this way, by the steepest descent method, that is, by
tracing the configuration of steepest descent paths for the integral rep-
resentation, we can solve connection problems for ordinary differential
equations with linear coefficients.

In [13] and [14] some other interesting examples are discussed from this
viewpoint. Note that the steepest descent method is, in a sense, equiva-
lent to the exact WKB analysis for ordinary differential equations with
linear coefficients. See [12] for the precise description of the relation-
ship between these two methods. This approach is also related to the
“hyperasymptotic analysis” of Berry and Howls ([6]).

Our goal is to generalize this method so that it may be applicable
to ordinary differential equations with polynomial coefficients.

\S 3. Exact steepest descent method

In this section we explain the framework of the exact steepest de-
scent method. For the details of the theory we refer the reader to [2].

Now, to generalize the steepest descent method so that it may be
applied to an equation of the form (1), we again apply the Laplace
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transformation (3) to (1) and consider its Laplace transformed equation

(8)
$P\wedge\hat{\psi}=0\leq j\leq m\sum_{0\leq k\leq n}a_{jk}\eta^{m-k}(-\frac{d}{d\xi})^{k}(\xi^{j}\hat{\psi})=0$

.

In case $n$ $\geq 2$ it is difficult to solve (8) explicitly. Instead we use a WKB
solution

(9) $\hat{\psi}_{k}=\eta^{-1/2}\exp(\eta\int^{\xi}(-x_{k}(\xi))d\xi+\cdots)$

of (8) and consider its inverse Laplace transform

(10) $\int e^{\eta x\xi}\hat{\psi}_{k}d\xi=\eta^{-1/2}\int\exp(\eta(x\xi-\int^{\xi}x_{k}(\xi)d\xi)+\cdots)d\xi$ ,

where $x_{k}(\xi)(k=1, \ldots, n)$ denotes a root (with respect to $x$ ) of the
characteristic equation

(11) $p(x, \xi)=\sum defa_{jk}x^{k}\xi^{j}=0$ ,

and $\eta^{-1/2}$ is added to (9) for the sake of convenience in defining its Borel
transform. (Throughout this paper we frequently use the terminologies
in the exact WKB analysis. For their precise meaning see [9] or [1].)

Let $f_{k}(x, \xi)$ denote $x\xi-\int^{\xi}x_{k}$ $(\xi)d\xi$ . Roughly speaking, we apply the
steepest descent method to the integral (10) with regarding $f_{k}(x, \xi)$ as
its phase function. This idea was first presented by Berk et al. ([5]). In
what follows we polish up their idea by examining it from the viewpoint
of the exact WKB analysis.

Let us first fix the path of integration for (10). In parallel with
the case of the Airy equation, we take a steepest descent path of $Ref_{k}$

passing through a saddle point of $f_{k}$ as the path of integration for (10).

Since a saddle point $\overline{\xi}$ of $f_{k}$ satisfies $x=x_{k}(\tilde{\xi}),\tilde{\xi}=\xi_{j}(x)$ holds for some
$j$ $(j=1, \ldots, m)$ , where $\xi_{j}$ $(x)$ denotes a root of (11) with respect to $\xi$ .

If we let $C_{k}^{(j)}$ denote the steepest descent path of $Ref_{k}$ passing through

$\xi_{j}(x)$ , our task is then to relate the integral (10) along $C_{k}^{(j)}$ with a WKB
solution of the original equation (1) of the form

(12) $\psi_{j}=\eta^{-1}\exp(\eta\int^{x}\xi_{j}(x)dx+\cdots)$ ,

where another normalization factor $\eta^{-1}$ is used for later convenience.
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Local correspondence of Borel transformed WKB solutions

In the exact WKB analysis a WKB solution is given its analytic
meaning by the Borel resummation. Hence it follows from the definition
of the Borel sum that the integral we are interested in is

(13) $\int_{C_{k}^{(j)}}e^{\eta x\xi}(\int e^{-\eta z}\hat{\psi}_{k,B}(\xi, z)dz)d\xi$ ,

where $\hat{\psi}_{k,B}$ denotes the Borel transform of $\hat{\psi}_{k}$ and the integration in

$z$-space is performed along the path $z=\int^{\xi}x_{k}(\xi)d\xi+v$ , $v\geq 0$ . Note

that, if we write (9) as (exp( $-\eta\int^{\xi}x_{k}(\xi)d\xi$ )) $\eta^{-1/2}(c_{0}+c_{1}\eta^{-1}+\cdots)$ after

applying the Taylor expansion, the Borel transform $\hat{\psi}_{k,B}$ is, by definition,

given by

(14) $\sum_{l=0}^{\infty}\frac{c\iota}{\Gamma(l+1/2)}(z-\int^{\xi}x_{k}(\xi)d\xi)^{l-1/2}$

Furthermore, introducing a new integration variable $y$ $=z-x\xi$ , we find
that the integral (13) can be rewritten as follows:

(15) $\int\int$ $\exp(-\eta y)\hat{\psi}_{k,B}(\xi, y+x\xi)d\xi dy$ .

Here the path of integration in $y$-space is described by $y=-\int^{x}\xi_{j}(x)dx+$

$w$ , $w$ $\geq 0$ , and the integration in $\xi-$space is performed on the portion
$[\xi^{(-)}, \xi^{(+)}]$ of the steepest descent path $C_{k}^{(j)}$ , where $\xi^{(\pm)}$ is the two dif-

ferent points on $C_{k}^{(j)}$ satisfying $Ref_{k}(x, \xi^{(\pm)})-Ref_{k}(x, \xi_{j}(x))=-w$ for
a fixed pair $(x, w)(w \geq 0)$ . Therefore, the integral (13) can be written
also as

(16) $\int_{y=-\int}$

I
$\xi_{j}(x)dx+w,w\geq 0e^{-\eta y}\chi(x, y)dy$

with

(17) $\chi(x, y)=def\int_{[\xi^{(-)},\xi^{(+)}]}\hat{\psi}_{k,B}(\xi, y+x\xi)d\xi$ .

The form of the integral (16) is the same as that of the Borel sum of
a WKB solution (12), provided that $\chi(x, y)$ is its Borel transform. To
confirm that $\chi(x, y)$ is the Borel transform of (12), we should note that

the corresondence (17) between $\chi$ and $\hat{\psi}_{k,B}$ is given by

(18) $(T\varphi)(x, y)=def\int\varphi(\xi, y+x\xi)d\xi=\int\int\delta(y-z+x\xi)\varphi(\xi, z)d\xi dz$ ,
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which is the so-called “quantized Legendre transformation”, that is, a
quantization of the canonical transformation from $T^{*}\mathbb{C}_{(\xi,z)}^{2}$ to $T^{*}\mathbb{C}_{(x,y)}^{2}$

with a generating function $\Omega(\xi, z, x, y)=y-z+x\xi$ (cf., e.g., [8, Example
4.2.5]). Through the transformation $T$ operators in $(\xi, z)-$space and
those in $(x, y)$ -space correspond in the following manner:

$\xi\mapsto\frac{\partial}{\partial x}(\frac{\partial}{\partial y})^{-1}$ , $z\mapsto y+x\frac{\partial}{\partial x}(\frac{\partial}{\partial y})^{-1}$ ,

(19)

$\frac{\partial}{\partial\xi}\mapsto-x\frac{\partial}{\partial y}$ , $\frac{\partial}{\partial z}\mapsto\frac{\partial}{\partial y}$ .

Having this correspondence in mind, we find

(20) $\sum a_{jk}x^{k}(\frac{\partial}{\partial y})^{m-j}(\frac{\partial}{\partial x})^{j}\chi(x, y)$

$=\sum a_{jk}(\frac{\partial}{\partial y})^{m-k}(x\frac{\partial}{\partial y})^{k}(\frac{\partial}{\partial x}(\frac{\partial}{\partial y})^{-1})^{\gamma}T(\hat{\psi}_{k,B}(\xi, z))$

$=T(\sum a_{jk}(\frac{\partial}{\partial z})^{m-k}(-\frac{\partial}{\partial\xi})^{k}\xi^{j}\hat{\psi}_{k,B}(\xi, z))=0$ .

(The final equality follows from the definition of the Borel transform.)

The differential equation (20) combined with the study of the local be-
havior of $\chi(x, y)$ near its singular point $y=-\int^{x}\xi_{j}(x)dx$ (which can be
done by applying Prop. 4.2.4 in [11, p.422] $)$ then entails that $\chi(x, y)$ is
the Borel transform of (12).

Summing up, the quantized Legendre transformation relates $\hat{\psi}_{k,B}$ to
$\psi_{j,B}$ . This correspondence is valid near the saddle point $\xi_{j}(x)$ , or as far
as no extra singularities appear in the domain of integration of (15). In
this manner the local aspect of the exact steepest descent method, i.e.,

local correspondence of Borel transformed WKB solutions, is governed
by microlocal analysis. (Strictly speaking, the above proof of (20) is
somewhat heuristic as we have not specified the meaning of $(\partial/\partial y)^{-1}$ .

See [2, Sect. III] for its rigorous proof based on the integration by parts.)

Global correspondence of Borel resummed WKB solutions

We have observed so far the local correspondence between $\hat{\psi}_{k,B}$ and
$\psi_{j,B}$ . However, this correspondence is violated when the steepest descent

path $C_{k}^{(j)}$ crosses a Stokes curve of type $(k>k’)$ for $\hat{P}$ given by

(21) $Im\int_{\hat{a}}^{\xi}(x_{k}(\xi)-x_{k’}(\xi))d\xi=0$ $(k’\neq k)$
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at, say, $\xi=\xi_{0}$ . (Cf. Fig. 2. Here \^a denotes a turning point for $\hat{P}$

from which the Stokes curve in question emanates. Note that “of type
$(k>k’)$

” means that $\hat{\psi}_{k}$ is dominant over $\hat{\psi}_{k’}$ along the Stokes curve.)

As a matter of fact, at $\xi=\xi_{0}$ the singularity of $\hat{\psi}_{k,B}(\xi, z)$ located at

$>k’)$

$c_{k}^{(\gamma)}$

\^a

Fig. 2. Crossing of a steepest descent path and a Stokes curve.

$ z=\int^{\xi}x_{k’}(\xi)d\xi$ hits the path of integration in $z$-space for the integral
(13) by the definition of a Stokes curve in the exact WKB analysis (cf.,

e.g., [15] $)$ , and consequently a singular point $\xi=\xi_{*}$ of $\hat{\psi}_{k,B}(\xi, y+x\xi)$

corresponding to the above singularity hits the path of integration in
$\xi$-space for the integral (15) (cf. Fig. 3). This observation implies that,

$\xi_{*}$

$\xi$

$)$

$\rightarrow$

$\xi$

$)$

$\xi_{*}$

(a) (b)

Fig. 3. Singular point $\xi_{*}$ hitting the path of integration.

to get the analytic continuation of $\chi(x, y)$ defined by (17) beyond the
crossing point, we have to take into account the effect of the integral $I_{*}$

obtained by the integration from $\xi_{0}$ to $\xi_{*}$ in Fig. 3 (b).

Then a natural question arises: Where does the integral $I_{*}$ come
from? The answer is quite simple: $I_{*}$ is coincident with the integral

(22) $\alpha_{k’}\int_{C_{k}^{(j)}},e^{\eta x\xi}\hat{\psi}_{k’}d\xi=\alpha_{k’}\int_{C_{k}^{(j)}},e^{\eta x\xi}(\int e^{-\eta z}\hat{\psi}_{k’,B}(\xi, z)dz)d\xi$ ,
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where $C_{k}^{(j)}$, is a steepest descent path of $Ref_{k’}$ emanating from the cross-
ing point $\xi_{0}$ (cf. Fig. 2) and $\alpha_{k’}$ is a constant which appears in the
connection formula

(23) $\psi\wedge k\rightarrow\hat{\psi}_{k}+\alpha_{k’}\hat{\psi}_{k’}$

that the dominant Borel resummed WKB solution $\hat{\psi}_{k}$ satisfies when
crossing the Stokes curve in question. This leads to the conclusion that

(24) $\psi_{j}^{\uparrow}def=\int_{C_{k}^{(j)}}e^{\eta x\xi}\hat{\psi}_{k}d\xi+\alpha_{k’}\int_{C_{k}^{(j)}},e^{\eta x\xi}\hat{\psi}_{k’}d\xi$

gives the Borel sum of a WKB solution (12) of $P\psi=0$ unless the

steepest descent paths $C_{k}^{(j)}$ and $C_{k}^{(j)}$, cross any other Stokes curves for
$\hat{P}$ . See [2, Sect. $IV$ ] for the proof of the coincidence of $I_{*}$ and (22). (In
[2] an additional assumption $n=2$ is imposed. See also \S 5 below.)

We are thus forced to consider not only the steepest descent path
$C_{k}^{(j)}$ of $Ref_{k}$ passing through a saddle point $\xi_{j}(x)$ but also another

steepest descent path $C_{k}^{(j)}$, of $Ref_{k’}$ bifurcated from $C_{k}^{(j)}$ at its crossing

point with a Stokes curve for $\hat{P}$ . In more general situations we should
consider an “exact steepest descent path” which is defined as follows:

Definition. Let $f_{k^{\wedge}}$ denote $ x\xi-\int^{\xi}x_{k}(\xi)d\xi$ , i.e., the phase function
of the inverse Laplace transform (10). An exact steepest descent path
passing through a saddle point $\xi=\xi_{j}(x)$ is, by definition, the union of
portions of steepest descent paths obtained by the following procedure:

Start with a steepest descent path $C_{k}^{(j)}$ of $Ref_{k}$ for some $k$ that

passes through $\xi_{j}(x)$ . If $C_{k}^{(j)}$ crosses a Stokes curve of type $(k>k’)$ for
$\hat{P}$ , consider the steepest descent path $C_{k}^{(j)}$, for $Ref_{k’}$ which starts from

the crossing point. If $C_{k}^{(j)}$, (or $C_{k}^{(j)}$ ) crosses another Stokes curve of type

$(k’>k’’)$ (or $(k>k’’)$ ), consider another steepest descent path $C_{k’}^{(j)}$, for
$Ref_{k’’}$ in the same manner, and so on.

Letting $ C^{(j)}=C_{k}^{(j)}\cup C_{k}^{(j)},\cup C_{k’}^{(j)},\cup\cdots$ denote an exact steepest

descent path in the above sense, we can then expect that

(25)

$\psi_{j}^{\dagger}=\int_{C_{k}^{(\prime)}}e^{\eta x\xi}\hat{\psi}_{k}d\xi+\alpha_{k’}\int_{C_{k}^{(j)}},e^{\eta x\xi}\hat{\psi}_{k’}d\xi+\alpha_{k’’}\int_{C_{k’}^{(j)}},e^{\eta x\xi}\hat{\psi}_{k^{JJ}}d\xi+\cdots$

(where $\alpha_{k’}$ etc. are constants determined by the connection formula)

should coincide with a Borel resummed WKB solution $\psi_{j}$ of (1). In other
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words, (25) should give an integral representation of solutions of (1).
Hence, it can be further expected that we can analyze global behavior
of solutions of (1) by tracing the configuration of exact steepest descent
paths. To use exact steepest descent paths instead of ordinary steepest
descent paths is a key idea of the exact steepest descent method. The
necessity of introducing bifurcated steepest descent paths is an effect of
the connection formula for Borel resummed WKB solutions of $\hat{P}$ . In this
manner the global aspect of the method is governed by the exact WKB
analysis.

Remark 1. As was observed by Berk et al. ([5]), the configuration of
a steepest descent path abruptly changes when it hits a turning point
for $\hat{P}$ . But introduction of exact steepest descent paths resolves this

trouble. For example, when a steepest descent path $C_{k}^{(j)}$ hits a simple
turning point \^a, no topological change occurs for the configuration of

the exact steepest descent path $C_{k}^{(j)}\cup C_{k}^{(j)}$, as is shown in Fig. 4. (In
Fig. 4 a lightfaced line and a wiggly line respectively designate a Stokes
curve and a cut defining the Riemann surface of $x_{k}(\xi).)$ Furthermore,

$ype(k>k’)$

$ty$

type $(k’>k)$

Fig. 4. Change of the configuration of an exact steepest descent
path when it hits a simple turning point \^a.

the integral

(26) $\int_{C_{k}^{(j)}}e^{\eta x\xi}\hat{\psi}_{k}d\xi+\alpha_{k’}\int_{C_{k}^{(\dot{)})}},e^{\eta x\xi}\hat{\psi}_{k’}d\xi$

in Fig. 4 (a) is analytically continued to

(27) $\int_{C_{k}^{(j)}}e^{\eta x\xi}\hat{\psi}_{k}d\xi+\tilde{\alpha}_{k’}\int_{C_{k}^{(j)}},e^{\eta x\xi}\hat{\psi}_{k’}d\xi$

in Fig. 4 (b), since the connection formula near a simple turning point

guarantees that the analytic continuation of $\hat{\psi}_{k}$ on $C_{k}^{(j)}$ (resp. $\alpha_{k’}\hat{\psi}_{k’}$
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on $C_{k}^{(j)},$ ) in Fig. 4 (a) is equal to $\tilde{\alpha}_{k’}\hat{\psi}_{k’}$ on $C_{k}^{(j)}$, (resp. $\hat{\psi}_{k}$ on $C_{k}^{(j)}$ ) in
Fig. 4 (b) (cf. [15, $p.245-p.246]$ ). Hence, in general, the integral (25) is
expected to be analytic even when a steepest descent path hits a turning
point for $\hat{P}$ .

Remark 2. At a crossing point $\xi_{0}$ of $C_{k}^{(j)}$ with a Stokes curve the
steepest descent direction of $Ref_{k}$ and that of $Ref_{k’}$ always lie on the
same side of the Stokes curve. To confirm this it suffices to note that
the steepest descent direction of $Ref_{k}$ and that of $Ref_{k’}$ at $\xi=\xi_{0}$ are
respectively given by $\tilde{v}_{k}=-grad_{(Re\xi}$ , $Im\xi$ )

$Ref_{k}=-\overline{(x-x_{k}(\xi_{0}))}$ and

$\overline{v}_{k’}=-$ $(x-x_{k’}(\xi_{0}))$ and that they satisfy

(28) $i\overline{(x_{k}(\xi_{0})-x_{k’}(\xi_{0}))}\overline{(\tilde{v}_{k}-\overline{v}_{k’})}=i|x_{k}(\xi_{0})-x_{k’}(\xi_{0})|^{2}\in i\mathbb{R}$ ,

where $i(x_{k}$$\overline{(\xi_{0})-x_{k’}(\xi_{0}))}$ is a normal vector of the Stokes curve. Thanks

to this fact the orientation of the integral along $C_{k}^{(j)}$, in (24) (or (25))

is naturally determined by that along $C_{k}^{(j)}$ , that is, if the orientation

along $C_{k}^{(j)}$ is the receding one from (resp. approaching one to) the saddle

point, the orientation along $C_{k}^{(j)}$, is also chosen to be receding (resp.
approaching).

\S 4. An application to the computation of Stokes multipliers

In this section we examine the effectiveness of the exact steepest
descent method by applying it to the computation of Stokes multipliers
of a concrete example.

Example 2. Let us discuss the following equation

(29) $P\psi=(\frac{d^{3}}{dx^{3}}+\eta^{2}\frac{d}{dx}+x^{2}\eta^{3})\psi=0$

with its Laplace transform

(30) $P\wedge\hat{\psi}=\eta(\frac{d^{2}}{d\xi^{2}}+(\xi^{3}+\xi)\eta^{2})\hat{\psi}=0$ .

In this case the characteristic equation is given by

(31) $p(x, \xi)=\xi^{3}+\xi+x^{2}=0$
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and we label its roots $\xi=\xi_{j}(x)(j=0,1,2)$ and $ x=x\pm$ $(\xi)$ as follows:

$\xi_{j}(x)\sim-\omega^{j}x^{2/3}$ (as $ x\rightarrow+\infty$ , where $\omega=e^{2\pi i/3}$ ),
(32)

$x_{\pm}(\xi)=\pm i\sqrt{\xi^{3}+\xi}$ (where $\sqrt{\xi^{3}+\xi}>0$ for $\xi>0$ ).

Using the exact steepest descent method, we now discuss the connec-
tion problem for (29) with the aid of a computer. As a path of analytic
continuation we take $\Gamma$ obtained by slightly deforming the real axis (cf.
Fig. 5, where the ordinary Stokes curves for (29) are also included for
the reference of the reader familiar with the exact WKB analysis). Let

Fig. 5. The path $\Gamma$ of analytic continuation.

us start with $\psi_{0}^{\uparrow}$ , a solution with integral representation (25) along an
exact steepest descent path $C^{(0)}$ passing through a saddle point $\xi_{0}$ , for a
point $x=X_{1}$ on $\Gamma$ (cf. Fig. 6 (a)). First, as is clear from the comparison

between Fig. 6 (a) and (b), the exact steepest descent path $C^{(0)}$ hits an-
other saddle point $\xi_{1}$ between $x=X_{1}$ and $x=X_{2}$ . Hence the analytic

continuation of $\psi_{0}^{\uparrow}$ becomes the sum of $\psi_{0}^{\uparrow}$ and $\psi_{1}^{\uparrow}$ at $x=X_{2}$ , where
$\psi_{1}^{\uparrow}$ is a solution with integral representation along $C^{(1)}$ . Next, between
$x=X_{2}$ and $x=X_{3}C^{(0)}$ hits a turning point for $\hat{P}$ and consequently the
role of the ordinary steepest descent path and that of a bifurcated one
are interchanged. However, as is noted in Remark 1 in \S 3, the solution
$\psi_{0}^{\uparrow}$ is analytic and no abrupt change occurs with $\psi_{0}^{\uparrow}$ there. Instead $\psi_{0}^{\uparrow}$

acquires $\psi_{2}^{\uparrow}$ , a solution with integral representation along $C^{(2)}$ , between



The exact steepest descent method 57

$($ $($

(for $x=X_{1}=1+0.35i$ ) (for $x=X_{2}=0.36+0.35i$ )

$(c$ $($

(for $x=X_{3}=0.315+0.35i$ ) (for $x=X_{4}=0.29+0.35i$ )

Fig. 6. Exact steepest descent paths (designated by boldfaced lines)

for (29); lightfaced lines designate Stokes curves for $\hat{P}$ .

$x=X_{3}$ and $x=X_{4}$ and the solution in question becomes $\psi_{0}^{\uparrow}+\psi_{1}^{\uparrow}+\psi_{2}^{\uparrow}$

at $x=X_{4}$ . This procedure can be easily repeated until we reach the
point $x=X_{8}$ ; our solution is changed into $2\psi_{0}^{\uparrow}+\psi_{1}^{\uparrow}+\psi_{2}^{\uparrow}$ at $x=X_{6}$

and finally into $3\psi_{0}^{\uparrow}+\psi_{1}^{\uparrow}+\psi_{2}^{\uparrow}$ at $x=X_{8}$ . Note that an exact steepest
descent path hits a saddle point exactly on a Stokes curve for $P$ . We

thus conclude that the analytic continuation of $\psi_{0}^{\uparrow}$ along the real axis is

given by $3\psi_{0}^{\dagger}+\psi_{1}^{\uparrow}+\psi_{2}^{\dagger}$ for $ x\rightarrow-\infty$ .

As the asymptotics of each $\psi_{j}^{\uparrow}$ for $\eta\rightarrow\infty$ can be readily computed by
the saddle point method (note that, except for exponentially small terms,

the contribution to the $\eta\rightarrow\infty$ asymptotics comes from the saddle point
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$(e$ $(f$

(for $x=X_{5}=-0.29+0.35i$ ) (for $x=X_{6}=-0.315+0.35i$ )

$(g$ $($

(for $x=X_{7}=-0.36+0.35i$ ) (for $x=X_{8}=-1+0.35i$ )

Fig. 6. (Continued.)

only) and, similarly to the case of the Airy equation, the asymptotics of
(29) for $\eta\rightarrow\infty$ is consistent with that for $|x|\rightarrow\infty$ , the above conclusion
implies that the asymptotic solution

(33) $\psi_{0}^{\uparrow}\sim\frac{2\sqrt{\pi}}{\sqrt{3\eta}}e^{3\pi i/4}x^{-2/3}\exp(\eta(-\frac{3}{5}x^{5/3}+x^{1/3}+\cdots))(1+\cdots)$

of (29) for $ x\rightarrow+\infty$ is analytically continued to

(34) $3\psi_{0}^{\uparrow}+\psi_{1}^{\uparrow}+\psi_{2}^{\uparrow}$
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with

(35) $\psi_{j}^{\uparrow}\sim\frac{2\sqrt{\pi}}{\sqrt{3\eta}}e^{(9-8j)\pi i/12}(-x)^{-2/3}$

$\times\exp(\eta(\frac{3}{5}\omega^{j}(-x)^{5/3}-\omega^{2j}(-x)^{1/3}+\cdots))(1+\cdots)$

$(j=0,1, 2)$ for $ x\rightarrow-\infty$ . Thus by virtue of the exact steepest descent
method we have succeeded in computing a Stokes multiplier of (29)
explicitly.

\S 5. Summary and discussion

As we have observed so far, it is possible to develop a new steepest
descent method applicable to ordinary differential equations with poly-
nomial coefficients. A key point is the introduction of exact steepest
descent paths; not only ordinary steepest descent paths passing through
a saddle point but also bifurcated ones emanating from a crossing point

of a steepest descent path and a Stokes curve for $\hat{P}$ should be taken
into account. The theoretical background of the method is provided by
microlocal analysis for its local aspect and by the exact WKB analysis
for its global aspect.

In ending the paper, we present some open problems. The argument

in [2] is based on the proviso that $\hat{P}$ is of the second order (i.e., $n=2$ ).
This proviso is imposed just because the exact WKB analysis is complete
only for second-order operators; for higher-order operators we have to
introduce new Stokes curves and virtual turning points (cf. [5], [1], [3]).

To clarify the effect of new Stokes curves for $\hat{P}$ in the exact steepest de-
scent method is the first step toward the complete understanding of the
exact steepest descent method when $n$ $>2$ . See [10] for some case study
of this problem. As a related problem, we also note that finding out an
algorithm of describing the complete Stokes geometry for a higher-order
operator $P$ is one of the most important open problems in the exact
WKB analysis. Since the exact steepest descent method explained in
this paper is useful to locate the Stokes curves of $P$ as is emphasized in
[2], it will turn out to be a powerful tool to attack this problem. See [4]
also for some related problems.
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Excursions of a complex analyst

into the realm of dynamical systems

Eric Bedford

\S 0. Introduction

The purpose of this talk is to discuss some connections between dynam-
ics and complex analysis, especially the aspects of dynamical systems
that were sufficiently interesting to me to make me drop what I was
doing several years ago and enter into a long collaboration with John
Smillie. One of the motivations for the work with Smillie has been to
consider the dynamics of a polynomial diffeomorphism $f$ of $C^{2}$ which is

the complexification of a map of $R^{2}$ . In general, the dynamical systems
induced by $f$ on $R^{2}$ an$dC^{2}$ can be considerably different. However, if
the complex Julia set $J\subset C^{2}$ also happens to be a subset of $R^{2}$ , then in
addition to the usual tools of real dynamics, we may also use complex
methods. In the following talk, we will present the approach developed
with Smillie in [BS1-5]. In \S 3, we outline the work $[BD1,2]$ with Jeff
Diller in which this same approach has been applied to a family of bi-
rational maps of the plane. In \S 4 we describe the H\’enon attractor in
$R^{2}$ , for which it has been difficult to actually prove anything. Although
it is speculative, we present the suggestion that this phenomenon might
profitably be investigated in the complex domain, a suggestion that I
think Oka might have found intriguing. Given the constraints of space
and time, I have limited myself to expounding a point of view and have
made no attempt to survey the literature. 1

Received March 11,2002
Revised April 11,2002

$1We$ recommend [MNTU] for an extended introduction to the dynamics of

polynomial diffeomorphisms of $C^{2}$ and Sibony [S] for a unified treatment of

the iteration of rational mappings of $P^{k}$ .
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.$\cdot$

Figure 1. Graph of $\Gamma_{f}$ (on left) and $\Gamma_{f^{i1}}$ intersected with the diagonal

In the study of dynamical systems, we consider a self mapping $f$ :
$X\rightarrow X$ of a space $X$ and describe the behavior of its iterates $f^{n}=$

$f\circ\cdots\circ f$ as $n$ $\rightarrow\infty$ . It is not clear at the outset exactly which connections
this might have with the questions and techniques of analysis. If $f$ : $ X\rightarrow$

$X$ is a d-to-l mapping, then the graph $\Gamma_{f}$ might look like something
going up and down $d$ times; the real analogy to what the complex case
is like is shown on the left hand side of Figure 1. The graph $\Gamma_{f^{\gamma\}}}$ ,

corresponding to $f^{n}$ will oscillate rapidly, going up and down $d^{n}$ times
as in the right hand side of Figure 1. If we focus on the graph of the map,
we are led to consider properties of $\Gamma_{f^{r\}}}$ as $n$ $\rightarrow\infty$ . Such properties might
be: (1) the area (volume) growth of $\Gamma_{f^{rl}}$ as $n$ $\rightarrow\infty$ , or (2) the number of
intersection points in $\Delta\cap\Gamma_{f^{rl}}$ , where $\triangle\subset X\times X$ is the diagonal, which
yields the number of fixed points of $f^{n}$ . Both of these have appeal for
analysts (or algebraic geometers) in the complex case because (1) the
volume of a variety is easy to compute, and (2) intersection theory is
well developed. Here we consider the case where $X=R^{2}$ is the real
plane, and $f$ : $X\rightarrow X$ is rational, i.e. the coordinate functions of $f$ are
rational functions. We let $\tilde{f}$ : $C^{2}\rightarrow C^{2}$ denote the complexification of
$f$ . In fact, for a compactification $\overline{X}$ of $C^{2},\tilde{f}$ induces a meromorphic

map $\overline{f}$ : $\tilde{X}\rightarrow\tilde{X}$ . The $nth$ iterate of a meromorphic map is again
meromorphic, and the complexification commutes with iteration, i.e.
$\overline{(f^{n}})=(\tilde{f})^{n}$ .

In dimension 2, there is a difference between the dynamics of in-
vertible and non-invertible maps. It is typical that a bimeromorphic
map of a complex surface exhibits “saddle type” behavior, whereas a
holomorphic mapping of $P^{2}$ of topological degree $d\geq 2$ typically ex-
hibits “expanding” behavior. Throughout this talk, we assume that $f$

is invertible.

The map $\tilde{f}$ is holomorphic outside a finite set $I$ $=I(f)$ of points of
indeterminacy. The forward iterates $f^{n}$ , $n$ $\geq 1$ are well-defined (single-
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valued) only off of the set $\bigcup_{n\geq 0}f^{-n}I$ . However, the pull-back

$f^{*}$ : $H^{1,1}(\tilde{X})\rightarrow H^{1,1}(\tilde{X})$

is well-defined. Birational maps have a lot in common with invertible
maps. They can fail to be invertible mappings in specific ways: they can
blow curves down and blow up points. We will consider mappings with
the property that if a curve is blown down to a point, the forward orbit
of that point never gets blown up. In other words, $\bigcup_{n\geq 0}f^{-n}I$ contains

no curve. In this case, $(\tilde{f}^{*})^{n}=$ $(\tilde{f}^{n})^{*}$ for all $n\geq 1$ , in which case we say

that this compactification is natural for $H^{1,1}$ . It follows that the area of
$\Gamma_{\overline{f}^{\mathfrak{n}}}\subset\tilde{X}\times\tilde{X}$ grows like $\rho^{n}$ , where $\rho$ is the spectral radiu $s$ of $f^{*}$ . Diller

and Favre [DF] have shown that for any birational map $\tilde{f}$ : $\tilde{X}\rightarrow\overline{X}$

there is a birational equivalence $h$ : $\hat{X}\rightarrow\tilde{X}$ and an induced birational

map $f\wedge=h^{-1}\tilde{f}h:\hat{X}\rightarrow\hat{X}$ such that $(\hat{f},\hat{X})$ is natural for $H^{1,1}$ .

The rate of volume growth of the graph of a complex mapping is
closely related to the entropy of $f$ . It is elementary that the entropy of
the real map is no greater than the entropy of its complexification. By
the estimate of Friedland [F], it follows that

entropy(f) $\leq entropy(\overline{f})\leq\log\rho$

where $\rho$ denotes the spectral radius of $f^{*}$ . Thus one strategy for bound-
ing the entropy of a real rational mapping is to find a complex compact-
ification which is natural for $H^{1,1}$ .

In the sequel we focus on two families of maps. The first is

$h_{a,b}(x, y)=(a-x^{2}-by, x)$ .

for $a$ , $b\in R$ , $b\neq 0$ , which are polynomial automorphisms. This fam-
ily can take many forms under affine conjugacy: under the conjugacy
$(x, y)\mapsto$ $(-y, -x)$ , it becomes

$(x, y)\mapsto(y, y^{2}-a-bx)$ .

Conjugated by $(x, y)\mapsto(ax, ay)$ , $h_{a,b}$ becomes

$(x, y)\mapsto(1-ax^{2}-by, x)$ ,

which is the family introduced and studied numerically by H\’enon [H].

The compactification $\tilde{X}=P^{2}$ is natural for $h$ , but $\tilde{X}=P^{1}\times P^{1}$ is

not. The dimension of $H^{1,1}(P^{2})$ is one, and $\tilde{h}^{*}$ acts on $H^{1,1}(P^{2})$ as
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multiplication by 2. Thus the entropy of the real map $h_{a,b}$ is bounded
above by $\log 2$ (see [FM]). The second family is

$f_{a}(x, y)=(y\frac{x+a}{x-1}, x+a-1)$

for $ a\in$ R. This family was studied extensively from the computational
point of view in $[AABHMI,2,3]$ and $[AABM1,2]$ . The compactification
$\tilde{X}=P^{1}\times P^{1}$ is natural for $f_{a}$ if $a\neq 1/n$ , for $n\geq 1$ and $a\neq n/(n+2)$ ,

for $n\geq-1$ . (On the other hand, the compactification $\tilde{X}=P^{2}$ is not

natural for $f_{a}.$ ) The action of $f^{*}$ on $H^{1,1}(P^{1}\times P^{1})$ is given by $\left(\begin{array}{ll}0 & 1\\1 & 1\end{array}\right)$ .

The spectral radius of $f^{*}$ is $(1+\sqrt{5})/2$ , and so the entropy of $f_{a}$ is no

greater than $\log((1+\sqrt{5})/2)$ .
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Figure 2. Orbit portrait for $h_{a,b}:a=1.4$ , $b=-.3$

\S 1. Polynomial Diffeomorphisms of $R^{2}$

We will compare the real and complex points of view on dynam-
ical systems by contrasting the sorts of computer pictures that may
be drawn. Computer pictures that are well planned and executed have
been a powerful tool for the development of dynamical systems. One fre-
quently drawn picture is that of an orbit portrait: given a point $p\in R^{2}$ ,
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one plots the forward orbit $O^{+}(p)=\{f^{n}p : n\geq 0\}$ . Sometimes an or-
bit portrait $O^{+}(p)$ is interesting and sometimes it is not, as in the case
when $f^{n}p$ converges to a sink (or to infinity) as $ n\rightarrow\infty$ . The pictures in
[H], $[AABHMI,2,3]$ and $[AABMI,2]$ are point orbits, as well as Figure
2, which plots the first 10000 iterates of a point. The large dots are the
two (fixed) saddle points of $h$ . This map will be discussed further in \S 4.

2

$\uparrow.5$

$\rceil$

05

0

-0.5

-1

-15

-1.5 -\rceil -0.5 0 05 $\rceil$ 15 2

Figure 3. $Stable/unstable$ manifolds for upper right hand fixed point: $a=1.4$ , $b=-.3$
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Figure 4. $Stable/unstable$ manifolds for lower left hand fixed point: $a=1.4$ , $b=-.3$



68 E. Bedford

A point $p$ is a saddle fixed point if $h(p)=p$ and the eigenvalues
$\lambda^{s}$ and A $u$ of $h’(p)$ satisfy $0<|$ A $s|<1<|\lambda^{u}|$ . Then there are stable
and unstable manifolds $W^{s}$ $(p)$ and $W^{u}(p)$ passing through $p$ . A useful

computer picture is to show $W^{s/u}(p)$ directly, or more precisely, to draw
a large arc inside $W^{s}(p)$ and a large arc inside $W^{u}(p)$ .

Figure 3 corresponds to the same mapping as Figure 2. We have
chosen $p$ to be the upper right hand saddle point (indicated by the dot),
and we have drawn an arc of length about 40 inside $W^{u}(p)$ . This un-
stable arc closely resembles the orbit portrait in Figure 2. We have also
drawn a considerably longer subarc of $W^{s}(p)$ . While this arc is con-
nected, it is cut off by the viewbox, and the resulting picture resembles
a number of parabolas opening upward.

Figure 5 arises from a horseshoe mapping. The saddle point $p=$

$(-4, -4)$ is indicated by the dot. The pieces of curves which look like
parabolas opening to the left are all part of a (connected) arc of $W^{u}$ $(p)$ ,

which is clipped off by the viewbox. The pieces which resemble parabolas
opening downwards are portions of an arc inside $W^{s}(p)$ . One property
of the horseshoe is that it is hyperbolic; the apparent transverse inter-
section of $W^{s}(p)$ and $W^{u}$ $(p)$ is consistent with this. Another property
is that if $p_{1}$ and $p_{2}$ are saddles, then $W^{s}(p_{1})$ and $W^{s}(p_{2})$ have the same
closures. Thus we do not need to draw $W^{s/u}$ for the other saddle fixed
point.
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Figure 5. Stable and unstable manifolds of $h_{a,b}:a=8$ , $b=1$
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In order to describe pictures in $C^{2}$ we need to first develop some
knowledge about the situation in the complex domain and what we might
hope to see of dynamical significance. Let us define the rate of escape
functions

$G^{\pm}(x, y)=\lim_{n\rightarrow\infty}\frac{1}{2^{n}}\log^{+}|\tilde{h}^{\pm n}(x, y)|$

which give the super-exponential rate of escape to infinity of the orbit
of a point $(x, y)$ in $forward/backward$ time. These functions are $psh$

and continuous on $C^{2}$ , a$ndG^{\pm}$ is pluriharmonic on $\{G^{\pm}>0\}$ . It is

evident that $G^{\pm}$ satisfies $G^{+}\circ\overline{h}=2G^{+}$ an $dG^{-}\circ\overline{h}=\frac{1}{2}G^{-}$ We set
$K^{\pm}=$ $\{G^{\pm}=0\}$ and $K=K^{+}\cap K^{-}$ an$dJ^{\pm}=\partial K^{\pm}$ , and $J=J^{+}\cap J^{-}$

Figure 62 uses the same real viewbox [-2, 2] $\times$ $[-2, 2]$ as Figures 2,

3 and 4. The $white/gray/black$ regions are the sets $\{c_{1}<G^{-}<c_{2}\}$ ,

and under $h$ such a region is mapped in to $\{\frac{c_{1}}{2}<G^{-}<\frac{c_{2}}{2}\}$ . The set
$K^{-}$ has zero area and is not directly visible. It is detected indirectly: to
reach a point of $K^{-}$ , it is necessary to pass through an infinite number
of color transitions.

Figure 6. Level sets of $G^{-}$ in $R^{2}$ closing down on $K^{-}\cap R^{2}$ : $a=1.4$ , $b=-.3$

$2Figure$ $6$ and all the unstable slice pictures were made using the program Frac-
talAsm which was developed by J.H. Hubbard and K. Papadantonakis. This
program and other useful dynamical software is freely available at http $://www$ .
math.$cornell.edu/\sim dynamics$ . The algorithms are explained in detail in [HP].
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We define the currents $\mu^{\pm}=\frac{1}{2\pi}dd^{c}G^{\pm};$ they $satis\mathfrak{h}^{r}\tilde{h}^{*+}\mu=2\mu^{+}$

and $\tilde{h}^{*-}\mu=\frac{1}{2}\mu^{-}$ , and $J^{\pm}=supp(\mu^{\pm})$ . Ruelle and Sullivan [RS] showed

generally that if $h$ is Axiom $A$ , then there are invariant currents $T^{\pm}$

in $R^{2}$ . The family of stable manifolds forms a lamination $\mathcal{W}^{s}$ , and
the current $1+$ is constructed from this laminar structure: it involves
currents of integration over pieces of stable manifolds and a family of
transversal measures to $1\mathcal{W}^{8}$ . In order to turn a manifold into a current
of integration, it is necessary to choose an orientation. In the absence
of some condition like hyperbolicity, the $stable/unstable$ manifolds may
do a lot of “folding”, and choosing an orientation presents a problem.

The $stable/unstable$ manifolds $W^{s/u}(p,\tilde{h})$ of $\tilde{h}$ in $C^{2}$ are Riemann

surfaces which are complexifications of $W^{s/u}(p, h)\subset R^{2}$ . When $\tilde{h}$ is

Axiom $A$ , and $K\subset R^{2}$ , it follows that $\mu^{\pm}$ is the complexification of
$T^{\pm}$ , that is the currents $\mu^{\pm}$ may be constructed the same as $T^{\pm}$ , except

that the currents of integration over pieces of the laminations $\mathcal{W}^{s/u}$ a $re$

replaced by their complexifications.

The following result, which applies to all mappings $\tilde{h}_{a,b}$ , shows that
$\mu^{\pm}$ may be considered in some sense to be the current of integration

defined by $W^{s/u}(p,\tilde{h})$ . It also shows that $W^{s/u}(p,\overline{h})$ are imbedded in
$C^{2}$ in a complicated, non-proper way.

Figure 7. Unstable (complex) slice of $K^{+}$ for the horseshoe $a=8$ , $b=1$
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Figure 8. Level sets for $G^{+}$ for an unstable slic$e:^{3}a=1.4$ , $b=-.3$

Theorem ([BS1]). Let $D^{u}\subset W^{u}(p,\tilde{h})$ denote an open disk con-
taining $p$ such that the current $\mu^{+}$ puts no mass on $\partial D^{u}$ . Then there
is a constant $c>0$ such that the normalized currents of integration
$\frac{1}{21}$, $[f^{n}D^{u}]$ converge to $c\mu^{-}$ as $n$ $\rightarrow\infty$ . It follows that for any saddle

point $p_{\rangle}$ the closure of $W^{u}(p,\overline{h})$ is $ex$actly $J^{-}$

$W^{u}(p,\tilde{h})$ is parametrized by an entire mapping $\psi$ : $C\rightarrow W^{u}(p,\overline{h})\subset$

$C^{2}$ such that $\psi(0)=p$ and $\tilde{h}(\psi(())=\psi(\lambda^{u}()$ for all ( $\in$ C. (See
[MNTU, 6.4].) The mapping $\psi$ may be generated as follows. Let $ v\in$

$R^{2}$ be an unstable eigenvector for $h’(p)$ , and let $L(()=p+(v$ be a
parametrization of the complex line passing through $p$ in the direction
$v$ , and

$\psi(()=\lim_{n\rightarrow\infty}\tilde{h}^{n}(L((\lambda^{u})^{-n}()$ ,

which may be used as a naive algorithm for computing $\psi$ . An object
which is dynamically meaningful is the “unstable slice” $W^{u}$ $(p)\cap K^{+}$ .

Let us define $ g=G^{+}\circ\psi$ which is subharmonic on C. The most useful
computer pictures have been those following an idea suggested by Hub-
bard: Plot the level surfaces of $g$ and its harmonic conjugate $g^{*}$ inside
the plane $C.4$ Note that the set $\{g=0\}$ corresponds to the unstable
slice $W^{u}$ $(p)\cap K^{+}$ . The coloring in the Hubbard picture may be chosen so
that it is self-similar under the multiplication ( $\mapsto$ A $u$ (, since $\{g=c\}$ is

$gation(\mapsto takento\{g\overline{(}becausehhasreal=2c\}.Thepicture$$isalsosymmcoefficients$

.
$etricunderBythe\min$$complexconjuimumprinciple$

for harmonic functions, every compact component of the sub-level set
$\{g\leq c\}$ must intersect $\{g=0\}$ . In contrast, a linear slice such as Figure

$3We$ are grateful to S. Ushiki for giving us a number of pictures of complex

slices of this mapping in 1993.
$4While$ we do not use $g^{*}$ in the pictures below, the use of $g^{*}$ is related to other
interesting structures, in particular “external rays,” see [BS6] and [O].
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6 is not self similar. And for a real linear slice such as Figure 6, $g$ is not
subharmonic.

Figure 9. Detail of Figure 8, with different coloring

An example of such a picture is given in Figure 7. This is the
complexification of Figure 5 inside a (square) complex disk $D$ with $ p\in$

$D\subset W^{u}(p,\overline{h})$ , where $p$ is located at the large dot in Figure 5. The
origin corresponds to $p$ under the map $\psi$ , and the $x$-axis corresponds to
the interval of $W^{u}(p)$ running from about $x=-4.5$ to about $x=-2$ .

That is, $D$ cuts through the left hand legs of all the downward-opening
parabolas. It appears that the points of $K^{+}\cap W^{u}(p)$ lie on the $x$-axis,

which corresponds to the property of the real horseshoe that $K\subset R^{2}$ .

Figure 8 gives the complex slice by the complexification of the un-
stable manifold in Figure 3. The origin is at the exact center of the
picture (the imaginary axis has been drawn in) and the origin corre-
sponds (under $\psi$ ) to $p$ . The $x$-axis in Figure 8 corresponds in Figure
3 to a relatively short arc of $W^{u}(p)$ containing $p$ . An interesting fea-
ture here is that there are “limbs” which rise off of the $z$-axis. This
corresponds to the intersection between the Riemann surface $W^{u}(p,\tilde{h})$

and points of $K^{+}$ lying outside of $R^{2}$ . It is intriguing to know whether
there is any connection between the “limbs” and the $stable/unstable$

intersections in Figure 3.

Figures 9 and 10 give successively more detailed blow-ups of Figure
8. Note that the scheme for coloring the level sets $\{2^{-n-1}<G^{+}<2^{-n}\}$

has been changed, giving a different visual impression of $W^{u}(p)\cap K^{+}$ .

Figures 9 and 10 make it clear that the unstable slice contains a compact
component. By [BS2] this implies that $J\subset C^{2}$ is disconnected.
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Figure 10. Detail of Figure 9

\S 2. Horseshoes and Maps of Maximal Entropy

We say that $h$ has maximal entropy if entropy(h) $=\log 2$ . Real
mappings of maximal entropy are especially well suited for treatment
by complex methods. Recall that by [FM] the entropy is equal to the
exponential rate of growth of periodic points:

entropy(h) $=\lim_{n\rightarrow\infty}(\#\{p\in R^{2} : h^{n}(p)=p\})^{\frac{1}{n}}$

The situation is simpler, or at least more complete, in the complex
domain. By the Bezout Theorem (see [FM]), we have that $\#\{p\in C^{2}$ :
$h^{n}(p)=p\}=2^{n}$ , counting multiplicity. It was shown in [BLS] that $h$

has maximal entropy if and only if $\{p\in C^{2} : h^{n}(p)=p\}\subset R^{2}$ holds for
all $n\geq 1$ .

The Smale horseshoe mapping is an important mapping which arises
in many situations. Let us describe the horseshoe from the topological
point of view. We start with a homeomorphism $f$ : $R^{2}\rightarrow R^{2}$ , and we
suppose that there is a topological box $B\subset R^{2}$ which is mapped across
itself as in the left hand side of Figure 11.

$|$

Figure 11. Topological horseshoe and degeneration
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Let us define

$B_{\infty}=\{p\in B:f^{n}p\in B, \forall n\in Z\}$ .

Thus $f$ : $B_{\infty}\rightarrow B_{\infty}$ is the dynamical system within $B$ that is induced
by $f$ . Let us choose an arbitrary labeling of the the components of
$B\cap fB$ by “0” and “1”. We give the set {0, 1} the discrete topology and
we give the sequence space $\Sigma=\{0,1\}^{Z}$ the infinite product topology.
We let $c$ : $ B_{\infty}\rightarrow\Sigma$ be the coding map where $c(p)$ is the itinerary of
the orbit of $p$ . That is, $ c(p)=\cdots c_{-1}c_{0}c_{1}\cdots$ is an infinite sequence of
0’s and l’s, where the $nth$ symbol is determined by the condition that
$c_{n}=0$ if $f^{n}(p)\in B_{0}$ , and $c_{n}=1$ if $f^{n}(p)\in B_{1}$ . We define the shift
map as $\sigma(c)=c’$ , where $ c’=\cdots c_{-1}’c_{0}’c_{1}’\cdots$ is given by $c_{n}’=c_{n+1}$ . Thus
$\sigma$ induces a dynamical system on $\Sigma$ . It is evident, then, that the map $c$

induces a semi-conjugacy from the dynamical system $(f, B_{\infty})$ to $(\sigma, \Sigma)$ .

The standard treatment of the horseshoe is to assume at this stage
that $f$ is hyperbolic on $B_{\infty}$ , which is to say that there is a splitting
of the tangent space $T_{p}R^{2}=E_{p}^{s}+E_{p}^{u}$ , $p\in B_{\infty}$ into subspaces which

are uniformly $contracted/expanded$ under $f’$ . It follows from the con-
$traction/expansion$ , that the connected components of $B\cap f^{-n}B\cap f^{n}B$

shrink to points as $n$ $\rightarrow\infty$ . Thus the coding map $c$ : $(f, B_{\infty})\rightarrow$ $(\sigma, \Sigma)$

is in fact a conjugacy. The horseshoe map $(f, B_{\infty})$ has an interesting

geometry arising from its imbedding in $R^{2}$ (see Figure 5) and it has a
simple symbolic model, which is the topological analogue of the Bernoulli
shift model of coin flipping.

It was discovered by Hubbard and Oberste-Vorth [HO] (see also
[MNTU, \S 7.4] $)$ that if the map $f=h_{a,b}$ and a square $ B=\{(x, y)\in$

$R^{2}$ : $|x|$ , $|y|<R$ } generate a topological horseshoe, then hyperbolicity
follows automatically (by use of the Poincar\’e metric on a complex neigh-
borhood). The definition of horseshoe given above specifies a method of
construction. Let us give a more general definition in terms of dynamical
properties alone. We say that a mapping $h_{a,b}$ is a complex horseshoe if
$\overline{h}_{a,b}$ is hyperbolic on $K$ , and $(\tilde{h}_{a,b}, K)$ is topologically conjugate to the
2-shift $(\sigma, \Sigma)$ . The complex horseshoes are widespread: Hubbard and

Oberste-Vorth (see [MNTU, 7.4]) showed that $\overline{h}_{a,b}$ generates a com-
plex horseshoe if $|a|>2(1+|b|)^{2}$ .

We would like to use the horseshoes as a starting place to explore
what is happening in parameter space $7^{\supset}=\{(a, b)\in R^{2} : b\neq 0\}$ . A
complex horseshoe is said to be a real horseshoe (or simply a horseshoe)

if $K\subset R^{2}$ . We define the horseshoe locus $lI\subset P$ to be the set of
parameters such that $h_{a,b}$ is a (real) horseshoe. Note that the entropy
of a horseshoe is $\log 2$ , and $(a, b)\mapsto$ entropy $a,b$ ) is a continuous func-
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tion, so that the closure $\overline{H}$ of 7# in 72 consists of mappings of maximal
entropy. If $(a_{0}, b_{0})\in P$ is a parameter for which $f_{a_{0},b_{0}}$ is hyperbolic,
then $(f_{a,b}, J_{a,b})$ is conjugate to $(f_{a_{0},b_{()}}, J_{a_{0},b_{O}})$ for $(a, b)$ sufficiently close
to $(a_{0}, b_{0})$ . If $f_{a_{0},b_{0}}$ is $nt$ hyperbolic, then there is no general statement
about nearby maps.

Let us consider $(a_{0}, b_{0})\in\partial H$ in the boundary of the horseshoe locus.
This mapping is not hyperbolic. There are several possible ways that
hyperbolicity might break down. One of them is that the uniformity
of the expansion or contraction is lost. However, if $h$ is a mapping of
maximal entropy, then every saddle point $p$ of period $n$ is uniformly
hyperbolic: the multipliers of $Dh^{n}(p)$ satisfy $|\lambda^{s}|\leq 2^{-n}$ and $|\lambda^{u}|\geq 2^{n}$ .

(See [BS3] for details.) Thus the uniformity of expansion and contraction
is maintained to the boundary of 7. The way that horseshoes of the
form $h_{a,b}$ can degenerate is pictured in the right hand side of Figure
11: a loop of unstable manifold “pulls through” to create a tangency.
That is, the picture on the left hand side of the triplet corresponds to a
horseshoe; the central picture corresponds to $\partial H$ ; and by the right hand
picture we have completely left $7^{-}$ . This picture is summarized in the
following:

Theorem [BS4]. Suppose that $b>0$ an $dh_{a,b}$ is a mapping of
maximal entropy. Then either $h_{a,b}$ is hyperbolic, or there is a point of
tangential intersection be rween $W^{u}(p_{+})$ and $W^{s}(p_{+}))$ where $p_{+}d$enotes
the unique fixed point such that the eigenvalues of $Df(p_{+})$ are both pos-
$i$tvve.

We can extend this result to a more global description of 7.

Theorem [BS5]. There are real analytic functions $\kappa^{+}$ and $\kappa^{-}$

defined on the interval [ .085, .085] such that
(1) $H\cap\{|b|<.085\}=\{(a, b)\in P:a>\max(\kappa^{+}(b), \kappa^{-}(b))\}$ .

(2)
$1og2Ifa.<\max(\kappa^{+}(b), \kappa^{- }(b))$

, $0<|b|<.085$ , then entropy(h $a,b$ ) $<$

This shows that the horseshoe locus is nicely bounded by two real
analytic curves, at least in the region $|b|<.085$ . The bifurcation situa-
tion on the other side of $\partial H$ is very complicated: some of this complexity
is suggested by the computer picture in El Hamouly and Mira [EM].

\S 3. A Family of Birational Maps

Let us describe the birational map $f_{a}$ of $R^{2}$ to itself. We consider the
complex compactification $P^{1}\times P^{1}$ . Intersecting this with the real points,
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we have $f_{a}$ on the torus $S^{1}\times S^{1}$ . The mapping $f_{a}$ has a rational inverse.
In fact, $f_{a}$ is conjugate to $f_{a}^{-1}$ via the involution $\tau(x, y)=(-y, -x)$ .

However, if $a\neq-1$ , $f_{a}$ is not a diffeomorphism: its critical locus is
$C$ $=\{x=1\}\cup$ $\{x=-a\}$ . The line $\{x=1\}$ is mapped to the point
$(\infty, a)$ . The points of indeterminacy are $(1, 0)$ and $(-a, \infty)$ . One of the
fixed points is $(\infty, \infty)$ , which is parabolic, and so $f_{a}$ is not hyperbolic.
The other fixed point is $p_{a}=((1-a)/2, (a-1)/2)$ . If $a<0$ , $a\neq-1$ ,

then $p_{a}$ is a saddle point. If $a=-2$ , then the saddle point is (3/2, 3/2);
an arc inside its unstable manifold is given in Figure 12. We are working
on the torus, so the bands of curves that exit to the right through the
vertical line $x=20$ continue on in $S^{1}\times S^{1}$ through $\{x=\infty\}\times S^{1}$

and then $re$-enter the picture from the left through $x=-20$ . The two
critical lines are indicated as dotted vertical lines. Let $\Gamma$ denote the
set of all of the arcs which pass between the components of $C$ . Since
$f_{a}(\{x=1\})=$ $(\infty, a)$ , and $f_{a}(\{x=-a\})=(0, -1)$ , it follows that
$f(\Gamma)$ is the topmost band of arcs in Figure 12 running from $(0,$ $-1)$

(where they are pinched together) to $(\infty, a)=$ $(\infty, -2)$ (where they are
also pinched together). This pinching phenomenon does not occur for
diffeomorphism:

The orbit of $(0,$ $-1)$ marches off to infinity: $f^{n}(0, -1)=$ ( $na$ ,$ $na-l).

The “pinched” point $(0,$ $-1)$ and its orbit of pinches $(-2,$ $-3)$ , $(-4,$ $-5)$ ,

etc., are visible in Figure 12. Similarly, the orbit of $(\infty, a)$ goes to $(\infty, \infty)$

along pinch points, alternating between $\{x=\infty\}$ and $\{y =\infty\}$ .

Since $f_{a}$ is conjugate to its inverse via the involution $\tau$ , we could
obtain a picture of the stable manifold by applying $\tau$ to Figure 12, i.e.,
flipping it about the line $y$ $=-x$ .

The approach we have taken in [BD1] is first to work in the cat-
egory of complex dynamics. The map induced on $H^{1,1}$ is given by

$f^{*}=\left(\begin{array}{ll}0 & 1\\1 & 1\end{array}\right)$ , which has A $=(1+\sqrt{5})/2$ as its $sp$ectral- radius. There

are invariant currents $\mu^{\pm}$ with the property that $ f^{*}\mu^{\pm}=\lambda^{\pm 1}\mu\pm$ . The
current $\mu^{-}$ is given by the unstable manifold, and Figure 12 gives a good
picture of what the real slice of $\mu^{-}$ looks like for $a=-2$ .
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Figure 12. Unstable manifold for $f_{a}$ : $a=-2$
We would also like to take the wedge product $\mu:=\mu^{+}\wedge\mu^{-}$ and

obtain an invariant measure. Although the local potentials of $\mu^{+}$ and
$\mu^{-}$ are both unbounded near $(\infty, \infty)$ , the wedge product may be defined
(see [BD2]). Given the laminar structure of $\mu^{+}$ a$nd\mu^{-}$ , the wedge
product coincides with the intersection product. To help visualize the
measure $\mu$ in the case $a=-2$ , we have $re$-drawn $W^{u}(p_{a})$ in Figure 13,
together with $W^{s}(p_{a})$ , which is its “flip” under $\tau:\mu$ is a measure carried
by the intersection of these two sets. Further general properties of $\mu$ are
that it is mixing, and the larger Lyapunov exponent is bounded below
by $\frac{1}{8}\log\lambda>0$ .

The measure $\mu$ plays the same basic role in the dynamics of $\overline{f}_{a}$ that

the measure $\mu$ plays for the mappings $\tilde{h}_{a,b}$ . Our plan is to show that if
$a<0$ , $a\neq-1$ , then $\mu$ puts no mass on $P^{1}\times P^{1}-R^{2}$ . We may obtain
$\mu^{+}$ (resp. $\mu^{-}$ ) by pulling back the current of integration over a vertical
line $L$ (resp. pushing forward the current of integration over a horizontal
line $L$ ):

$\mu^{\pm}=\lim_{n\rightarrow\infty}\frac{1}{\lambda^{n}}f^{\pm n^{*}}[L]=\lim_{n\rightarrow\infty}\frac{1}{\lambda^{n}}[f^{\mp n}L]$

We know that $f^{*}$ is represented by the matrix $\left(\begin{array}{ll}0 & 1\\1 & 1\end{array}\right)$ , and the en-

tries of the $nth$ power of this matrix are the Fibonacci numbers. Thus
we know that the number of complex intersections $f^{n}$ { $y=$ const} $\cap$

$f^{-m}$ { $x=$ const} is given by Fibonacci numbers.
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Now we require that $a<0$ , $a\neq-1$ . We show by a combinato-
$rial/geometric$ argument that for $c_{1}>1$ , $c_{2}<-1$ , the number of points
in $f^{n}\{y=c_{2}\}\cap f^{-m}\{x=c_{1}\}\cap R^{2}$ is given by these same Fibonacci num-
bers. Thus all of the complex intersections $f^{n}\{y=c_{2}\}\cap f^{-m}\{x=c_{1}\}$

are simple and occur already in $R^{2}$ . Using the Lefschetz Index Theo-
rem, we get an exact count of the points of period $n$ , and we conclude
that (except for the point ( $\infty$ , $\infty$ )) the fixed points all lie in $R^{2}$ an $d$ are
saddles.

20
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Figure 13. Intersection of $stable/unstable$ laminations produces invariant measure
Further for almost every $c_{1}>1$ and $c_{2}<-1$ , we have

$\mu=\lim_{n\rightarrow\infty}\frac{1}{\lambda^{2n}}[f^{n}\{y=c_{2}\}\cap f^{-m}\{x=c_{1}\}]$

where the right hand side means that the measure is defined by the sum
of the point masses at the intersection points.

Now let $\Omega\subset R^{2}$ denote the support of $\mu$ . Let $R_{0}$ denote the fourth
quadrant and $R_{1}$ denote the second quadrant. We show that $\Omega\subset R_{0}\cup R_{1}$

and $ f_{a}(R_{1}\cap\Omega)\cap R_{1}=\emptyset$ . Let $\Sigma_{G}$ denote the so called “golden mean”
subshift of $\Sigma$ , which consists of the set of $bi$-infinite symbol sequences
of 0’s and l’s such that 1 is always followed by 0, which is to say that
the word “11” does not appear anywhere in the sequence. The shift
$\sigma$ : $\Sigma_{G}\rightarrow\Sigma_{G}$ defines a dynamical system, and there is a unique invariant
measure $\eta$ of entropy $\log\lambda$ .
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We let $c:\Omega\rightarrow\Sigma_{G}$ be the coding map, which sends a point $p$ to its
itinerary, just as we did in the case of the horseshoe. This coding map is
well-defined outside the zero measure set of points whose orbits contain
the point of indeterminacy $(-a, \infty)$ for $f$ or the point of indeterminacy
$(\infty, a)$ for $f^{-1}$ . It follows that $c$ gives a measure-theoretic equivalence
between $(\Omega, \mu)$ and $(\Sigma_{G}, \eta)$ . Thus the real map $f_{a}$ has maximal entropy
since $(\Sigma_{G}, \eta)$ has entropy $\log\lambda$ .

\S 4. The H\’enon Attractor

H\’enon [H] performed numerical explorations of the family $\{h_{a,b}\}$

from the point of view of finding dynamical phenomena. One mapping
he focused on is $h=h_{a,b}$ with $a=1.4$ and $b=-.3$ . The study of this
mapping has led to “computer phenomena” which have given rise to an
area rich with questions and conjectures. Deep results have been ob-
tained (see Benedicks and Carleson [BC]), but interestingly enough they
seem not to be applicable to these parameters. In fact, it seems unclear
what the phenomena might actually be. Perhaps a reconsideration of
these questions in the complex domain will lead to formulations which
can be understood and proved.

In Figures 2, 3, and 4, we have seen an orbit portrait and pairs
of $stable/unstable$ manifolds for $h$ . Figure 3 suggests that $W^{s}(p)$ and
$W^{u}(p)$ have transverse intersection points, and thus $h$ has positive en-
tropy. Since $h$ has a nonreal periodic point $p\in C^{2}-R^{2}$ (for instance,

there is one of period 3), it follows from [BLS] that the entropy of $h$ is
strictly less than $\log 2$ .

H\’enon showed that there is a quadrilateral $Q\subset R^{2}$ with the prop-
erty that $ h(\overline{Q})\subset$ int(Q). Thus $A:=\bigcap_{n\geq 0}h^{n}(Q)$ is an attractor in the

sense of Conley. (There are several reasonable definitions of “attrac-
tor.”) If we set $B:=\bigcup_{n\geq 0}h^{-n}(Q)$ , then the orbit of every point of $B$

approaches $A$ in forward time in the sense that $\lim_{n\rightarrow\infty}$ dist(h $nq$ , $A$ ) $=0$

for all $q\in B$ . An additional feature that one would like to ask for the
attractor $A$ would be minimality.

Let us use $p_{R}$ (resp. $p_{L}$ ) to denote the upper right hand (resp. lower
left hand) fixed point of $h$ . All unstable manifolds (and their complex-

ifications) are contained in $K^{-}$ , so $\overline{W^{u}(p_{L})}\subset K^{-}\cap R^{2}$ . It is easy to
imagine that $\partial B=W^{s}(p_{L})$ . Since $p_{R}$ is contained in the quadrilateral
$Q$ , it follows that

$\overline{W^{u}(p_{R})}\subset A\subset K\cap R^{2}$ .

Thus $W^{u}(p_{R})$ is contained in the basin $B$ , so $W^{u}(p_{R})$ is contained in

the interior of $K^{+}$ inside $R^{2}$ . On the other hand, saddle points (and in
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particular $p_{R}$ ) never belong to the $C^{2}-$ interior of $K^{+}$ . In Figure 8 we
see that 0 is not even in the interior of the unstable slice (because the
picture is self-similar about 0).

If we remove $p_{L}$ , the unstable manifold splits into two pieces $W^{u}(p_{L})-$

$\{p_{L}\}=\gamma’\cup\gamma’’$ , where $\gamma’$ (resp. $\gamma’’$ ) is the part which leaves $p_{L}$ in the
lower left (resp. upper right) direction. Figure 14, the complex unstable
slice, can be used to prove that $\gamma’\cap K^{+}=\emptyset$ , by showing that $G^{+}$ is
strictly positive in a fundamental region of the negative $x$-axis. On the
other hand Figure 14 is consistent with the idea that $\gamma’’\subset K^{+}$ . Since
$p_{L}\not\in Q$ and $p_{L}$ is fixed, we have $p_{L}\not\in B$ , so

$ W^{u}(p_{L})\cap A=\emptyset$ .

Let us define the $\omega-$ limit set, written $\omega(q)$ , of a point $q$ to be the set of
accumulation points of the forward orbit $O^{+}(q)$ . One device for plotting
a computer picture of $\omega(q)$ is to plot the set $\{h^{j}(q) : n_{1}\leq j\leq n_{2}\}$ .

Choosing $n_{1}$ large would remove extraneous points of $O^{+}(q)$ and allow
$h^{j}(q)$ time to get close to $\omega(q)$ . Choosing $n_{2}$ large would give enough
points to “fill out” $\omega(q)$ . In Figure 2 we chose $q$ rather close to $\omega(q)$ , so
that $O^{+}(q)$ is close to $\omega(q)$ .

An intriguing computer phenomenon discovered in [H] is that for
“every” point $p\in Q$ , the computer picture of $\omega(p)$ looks the same.
This gives computer evidence that there is a compact set $\Omega\subset R^{2}$ such
that $\omega(p)=\Omega$ for almost every $p\in B$ . For the sake of discussion, let us
suppose that such an $\Omega$ exists, and let us write $B’=$ $\{p\in B : \omega(p)=\Omega\}$ .

It is easy to see that

$\Omega\subset A$ , and $ W^{s}(p_{R})\cap B’=\emptyset$ .

In fact, if we draw more and more of $W^{s}(p_{R})$ it starts to look as though
the stable manifold could be dense in $B$ .
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Figure 14. Unstable (complex) slice for lower left saddle point: $a=1.4$ , $b=-.3$

An inspection of Figures 2 and 3 seems to suggest that $\overline{W^{u}(p_{R})}=\Omega$ .

On the other hand, this may be a case where the computer picture is
deceptive: any differences between them may only become visible at a
very small scale. Let us point out that $W^{u}(p_{L})$ also looks very much
like $\Omega$ , but we have $W^{u}(p_{L})\cap\Omega\subset W^{u}(p_{L})\cap A=$ $ C\emptyset$ .

One question that has been studied is whether $A$ contains a sink
orbit (a situation in which $A$ would not be minimal). In fact, it has
not been possible to prove that $\Omega$ itself is not a sink orbit, which would
necessarily have a high period. A celebrated result of Newhouse and
Robinson states that if $f_{t}$ is a family of mappings with a nondegenerate
tangency, then there is an interval $[\alpha, \beta]$ and a residual set $ T\subset$ $[\alpha, \beta]$

such that for $t\in T$ , $f_{t}$ has infinitely many sinks. (The possibility of a
tangency is consistent with Figure 3.) Forna $ss$ and Gavosto $[FG1,2]$ have
shown that the family $g_{t}=h_{1395,t}$ is nondegenerate in a neighborhood
of $t=-.3$ , and so there is such an interval $[\alpha, \beta]$ containing -.3 in its
interior.

Let us note that this region of parameter space is rich with bifurca-
tions, and the point (1.395, -.3) would not be considered to be “close”
to $1.4,$ -.3), in the sense that the dynamical system $h_{1395,-.3}$ is sep-
arated from $h$ by infinite cascades of bifurcations. On the other hand,

the computer phenomenon of the H\’enon attractor is robust in the sense
that $h_{1395,-3}$ generates an attractor with the same appearance as $A$ .

Now suppose that $h$ has an attracting periodic point $q$ . Let $B$ denote
the basin of attraction of $q$ in $C^{2}$ . It is a theorem that $\partial \mathcal{B}=\partial K^{+}$ , a$nd$

$B$ intersects any (complex) algebraic curve. In particular, it intersects
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any complex line. We do not know whether in fact Z3 can exist, but
the various unstable slice pictures indicate that the intersection $W^{u}\cap I3$

must be small.

Figure 15. Detail of Figure 14
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Demailly’s 2-jet negativity of certain hyperbolic

fibrations

Jawher El Goul

Abstract.

We prove here a weak negativity property on Demailly’s 2-jet
bundles of hyperbolic (singular) fibrations on hyperbolic curves with
some restrictions on the singularities of special fibres.

\S 1. Introduction

The concept of $‘‘ k$-jet negativity” was introduced by Demailly in
[2] as a generalization, to higher jets, of the negativity of holomorphic
sectional curvature of Finsler metrics on the tangent bundle. He conjec-
tured that the existence of such a metric of negative curvature (in a weak
sense) on a $/c$-jet bundle he constructed should characterize Kobayashi’s
hyperbolicity for compact manifolds. This notion of negativity, with
some appropriate non-degeneracy conditions, implies the hyperbolicity
by an Ahlfors-Schwarz type lemma. In our case, we consider this con-
jecture only for fibrations on a hyperbolic curve with certain conditions
on the singularities of special fibres. In fact, our method so far only
works up to the 2-jet stage and thus imposes our restrictions on the sin-
gularities. The method is carried out as follows. We use some algebro-
geometric arguments to obtain sections of the jet tautological bundle.
This allows us to construct metrics of negative curvatures with some
degeneracy sets. Then we do the same constructions by considering the
restriction of bundles on the degeneracy sets of metrics and we continue
this process. In this way one obtains a collection of metrics of nega-
tive curvatures which we piece-together to get the desired global metric.
This is done by Demailly’s technique of piecing together plurisubhar-
monic functions.

The author would like to thank warmly Professor J.P. Demailly for
the initiation to this problem and for his constant help and encourage-
ment.
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\S 2. Demailly’s $k$-jet negativity

Let $X$ be a compact complex manifold. For a holomorphic vector
bundle $E$ on $X$ , we denote by $P(E)$ the associated projective bundle of
lines of $E$ . Recall that a Finsler metric on $E$ is a homogenous continuous
function on its total space, smooth outside the zero section. Alterna-
tively we can define a Finsler metric as a hermitian semi-norm on the
tautological line bundle $0_{P(E)}(-1)$ on $P(E)$ .

Now we have the following classical theorem in [7]

Theorem 2.1 (Kobayashi 70). Suppose that $T_{X}$ admits a Finsler
metric of negative holomorphic sectional curvature. Then $X$ is hyper-
bolic.

Remark that the ampleness of $T_{X}^{\star}$ , i.e., the ampleness of $0_{P(T_{X})}(1)$ is
equivalent to the existence of a hermitian metric of negative curvature on
its dual $0_{P(T_{X})}(-1)$ . This implies the hypothesis of Kobayashi’s theorem
but we actually need negativity only in “some important directions” in
this theorem. For this reason, Demailly in [2] introduced the bundle

$V_{1}:=((\pi_{1})_{\star})^{-1}(0_{X_{1}}(-1))\subset T_{X_{1}}$ ,

where $X_{1}:=P(T_{X})$ and $\pi_{1}$ : $X_{1}\rightarrow X$ is the natural projection, and
gave the following definition.

Definition 2.2. We say that $X$ has(or more precisely, can be
given a metric of) negative 1-jet curvature, if, for some smooth hermit-
ian metr $.c$ $h$ on $0_{X_{1}}(-t)$ , there exist $\epsilon>0$ anda smooth hermitian
metric $\omega$ such that,

$\Theta_{h}((9_{X_{1}}(-1))(\xi)\leq-\epsilon||\xi||_{\omega}^{2},$ $\forall\xi\in V_{1}$ .

Remark that if the metric $h$ in the definition above come from an
hermitian metric on $T_{\lambda’}$ , then this negativity is equivalent to the nega-
tivity of holomorphic sectional curvature of $X$ .

Now, we iterate the construction $(X, T_{X})\rightarrow$ $(X_{1}, V_{1})$ to

$(X_{1}, V_{1})\rightarrow(X_{2}:=P(V_{1}), V_{2}:=((\pi_{2})_{\star})^{-1}(0_{X_{2}}(-1))\subset T_{X_{1}})$ ,

where $\pi_{2}$ : $X_{2}\rightarrow X_{1}$ is the natural projection and 0 $X_{2}(-1)$ is the
tautological line bundle associated to $V_{1}$ . We obtain a tower

$X_{k}\rightarrow X_{k-1}\rightarrow\ldots\rightarrow X_{2}\rightarrow X_{1}\rightarrow X$ ,

with the important propriety that every holomorphic germ $f$ : $(\mathbb{C}, 0)\rightarrow$

$X$ can be lifted to a germ $f_{[k]}$ : $(\mathbb{C}, 0)\rightarrow X_{k}$ with $f_{[k]}^{J}(0)\in V_{k}$ . Such a
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holomorphic germ of curve is said to be regular if $f^{/}(0)\neq 0$ . We define
two sets contained in $X_{k}$ :

$\circ X_{k}^{reg}:=$ the set of liftings of regular germs of curves which is an
open set in $X_{k}$ .

$\blacksquare X_{k}^{sing}:=X_{k}\backslash X_{k}^{reg}$ called the set of singular jets of curves.

If we let $D_{j}:=P(TX_{j-1}/X_{j-2})\subset X_{j}$ then it was proved in [2] that
$X_{k}^{sing}=\bigcup_{j=2}^{k}\pi_{k,j}^{-1}(D_{j})$ , where $\pi_{k,j}$ : $X_{k}\rightarrow X_{j}$ is the projection map.

We can define now the negativity of Demailly’s $k$ jets for $k\geq 2$ .

Definition 2.3. Let $h_{k}$ be a metric on ($D_{X_{k}}$ $(-1)$ (possibly singular
with $L_{loc}^{1}$ weight). We say that $h_{k}$ has negative curvature in the sense of
Demailly if there exist $\epsilon>0$ and $\omega_{k}$ a smooth metric on $X_{k}$ such that,

$\ominus_{h_{k}}(0_{X_{k}}(-1))(\xi)\leq-\epsilon||\xi||_{\omega_{k}^{2}}$ , $\forall\xi\in V_{k}$ .

Remark that for $k\geq 2$ , ($J_{X_{k}}(1)$ is not relatively ample with respect
to $X_{k}\rightarrow X$ . Hence we need to allow singularities in the metric $h_{k}$

in the above definition. This notion of negativity implies Kobayashi’s
hyperbolicity as stated in the following theorem in [2].

Theorem 2.4 (Demailly 95). If $X$ has a $k$ -jet metric $h_{k}$ with neg-
ative curvature in the sense of Demailly, then every entire non-constant
curve $f$ : $\mathbb{C}\rightarrow X$ has an image $f_{[k]}(\mathbb{C})\subset\Sigma_{h_{k}}$ , where $\Sigma_{h_{k}}$ is the de-

generacy set of $h_{k}$ . In particular, if $\Sigma_{h_{k}}\subset X_{k}^{sing}$ (in this case we say
that $X$ has nondegenerate negative Demailly’s $k$ -jet curvature), then $X$

is Kobayashi hyperbolic.

Now we have the following conjecture this paper is concerned with.

Conjecture 2.5. A compact complex manifold $X$ is hyperbolic if
and only if $X$ has nondegenerate negative Demailly’s $k$ -jet curvature for
$k$ sufficiently large.

Using a hyperbolic surface fibred over a hyperbolic base, J.-P. De-
mailly showed in [2] that for each $k_{0}>0$ there exists a surface which has
not nondegenerate negative Demailly’s $k_{0}$ -jet curvature. Consequently
the sought jet metric can not be absolutely bounded.

We will now study Conjecture 2.5 for a fibered surface. In the fol-
lowing $X$ will be a compact complex hyperbolic surface fibred over a
hyperbolic base $X\rightarrow B$ . In other words the genera of all components of
fibres and of the base $B$ are at least 2. When the fibres are all smooth,

we can easily construct a hermitian metric of negative holomorphic sec-
tional curvature and then $X$ has a nondegenerate negative Demailly’s
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1-jet curvature. Therefore, in the sequel, we will consider fibrations
which have at least one singular fibre and nonisotrivial, i.e., not locally
trivial outside singular fibres.

\S 3. Almost ampleness on $k$-jets

In this section we prove an algebraic statement for our fibration,
which, in the general case of a projective general type manifold, would
imply the celebrated Green-Griffiths conjecture on degeneration of entire
curves and provides an important step toward the resolution of Conjec-
ture 2.5. We begin with the following definition introduced by S. Lu
in [8] in the 1-jet case (the terminology comes from Miyaoka’s almost
everywhere ampleness in [9] $)$ .

Definition 3.1. Let $d$ be an integer with $1\leq d\leq dimX_{k}$ . We
say that $T_{X}^{\star}$ is almost ample on $k$ -jets in all $d$imensions $\geq d$ , if the
restriction 0 $X_{k}(1)_{|Y}$ is big for every subvariety $Y\subset X_{k}$ such that

$dimY$ $\geq d$ and $dim\pi_{k}(Y)\geq\inf\{d, dimX\}$ ,

where $\pi_{k}$ : $X_{k}\rightarrow X$ is the projection map.

Remark that if in the definition above we take $d=dimX$}, then
this means the same as supposing the tautological line bundle 0 $X_{k}(1)$

to be big. Also, for $d=1$ and $k=1$ , this is equivalent to the ampleness
of the cotangent bundle. Now we have the following fact which is an
application of Theorem 2.4 (or more precisely of its proof).

Fact 3.2. Almost ampleness in all dimensions $\geq d=dimX$ for $a$

manifold $X$ of general type implies the $d$egeneration of entire curves in
$X$ .

This motivates the following conjecture.

Almost ampleness conjecture 3.3. Let $X$ be a projective man-

ifold of general type with stable tangent bundle. Then there exists $k$ such
that the cotangent bundle is almost ample on $k$ -jets in all dimensions
$\geq dimX$ .

We remark that the additional hypothesis of “stable” is necessary
in the above conjecture. In fact, exceptional examples like smooth quo-
tients of the bidisk can not have almost ample cotangent bundle on
$k$-jets in dimensions $\geq 2$ for any $k>0$ . An important example support-
ing this conjecture is the class of surfaces of general type with positive

indices, i.e., with
”

$\frac{c_{1}^{-}-2c_{2}}{3}>0$ . This is due to the work of Y. Miyaoka
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[9] cited above. Another support for this almost ampleness conjecture
is the following.

Theorem 3.4. Let $f$ : $X\rightarrow B$ be a surface of general type fibred
over a hyperbolic curve. Suppose that $f$ is not isotrivial, then $T_{X}^{\star}$ is

almost ample on 1-jets in all dimensions $\geq 2$ .

Proof . – To see that $0_{X_{1}}(1)$ is big, we observe that there is a
generically injective rational map ($9_{P(T_{X}^{\star})}(1)\rightarrow 0_{P(T_{B}^{\star})}(1)$ . We have
also that $T_{X|F}^{\star}$ , where $F$ is a generic fibre, is ample by a criterion of

Gieseker [6]. Then, applying the additivity of Kodaira dimensions of
T. Fujita in [5], we are done. In fact, this is a particular case of Sakai’s
additivity of A-dimensions [10].

Now, let $Y$ be a surface in $X_{1}$ with $\pi_{1}(Y)=X$ . Let $X^{(1)}\subset X_{1}$

the surface containing the liftings of all the fibres of $f$ . We have to
distinguish two cases:

The first is when $Y\neq X^{(1)}$ . Then we have a generically injective
morphism $(\pi_{1}of)^{\star}$ : $T_{B}^{\star}\rightarrow(9_{X_{1}}(1)_{|Y}$ an $d$ we conclude the above (ap-

plying the additivity of Kodaira dimensions).

It remains to consider the case $Y=X^{(1)}$ . Here, $(\pi_{1})_{\star}(0_{X_{1}}(1)_{|Y})=$

$\Omega_{X/B}$ , where $\Omega_{X/B}$ is the sheaf of relative differentials with respect to
$f$ . We will prove that this sheaf is big. Remark that it suffices to
prove this for a semi-stable fibration using the semi-stability reduction
theorem. We assume that $X$ is semi-stable. Then, we blow-up the sin-
gularities of each fiber so that we have an exceptional curve through
each singular point. We use the same notation $X$ for the surface ob-
tained. It suffices to prove that $\Omega_{X/B}$ is big which is equivalent to
proving that 0 $X_{1}(1)_{|Y}$ is big with $Y$ is defined as above. Let $0_{\overline{X}_{1}}(1)$

be the tautological line bundle associated with the logarithmic tangent
bundle along the exceptional curves in $X$ (which form a finite num-

ber). Actually, it suffices to prove that $0_{\overline{X}_{1}}(1)_{1\overline{X}^{(1)}}$ is big with
$\overline{X}^{(1)}$

the associated surface in $\overline{X}_{1}$ . For simplicity, suppose that we have only
one singular point. Let $\overline{X}_{k}$ the $k$-th logarithmic jet-bundle and C) $-\lambda_{k}^{\nearrow}(1)$

the tautological line bundle on it (see [4] for the definitions). Then we
have $0_{\overline{Y_{k}/}}(1)_{1\overline{\lambda’}}(k)=\pi_{k}^{\star}(\omega_{X/B})\otimes 0_{\overline{\lambda’}_{k}}$ $(-E_{k})$ , where $E_{k}$ is an exceptional

curve of the first kind and $\omega_{X/B}=K_{X}\otimes K_{B}^{-1}$ the relative dualizing
sheaf. By a result in [1], this latter bundle is big. Now we can ver-
ify easily that, for large $k$ , the self intersection of the following bundle
$0_{\overline{\lambda’}_{k}}(1)$

$\otimes 0_{\overline{X}_{k-1}}(1)\otimes\ldots\otimes 0_{\overline{X}_{1}}(1)_{1\overline{X}^{(k)}}$ is positive. This implies that

$0_{\overline{X}_{k}}(1)_{1\overline{\lambda}^{(k)}}$, is $kig$ and then $0_{\overline{\lambda’}_{1}}(1)_{1\overline{X}^{(1)}}$ is (actually those last bundles

have the same sections on
$\overline{X}^{(k)}$

). $\square $



90 J. El Goul

Theorem 3.5. Let $f$ : $X\rightarrow B$ be a hyperbolic surface fibred over
a hyperbolic base. Suppose that $f$ is not $isotrivial_{)}$ then there exists
a positive integer $k_{0}$ such that ($9_{X_{k}}$ $(-1)_{|Y}$ has $a$ (singular) metric of
negative $k$ -jets curvature for all $Y\subset X_{k}$ not contained in $X_{k}^{sing}$ for
every $k\geq k_{0}$ .

Proof . – Let $k_{0}$ be the stage where all the liftings of the fibres
of $f$ become smooth (this is possible by Proposition 5.11 in [2]). By
Theorem 3.4, $T_{X}^{\star}$ is almost ample on 1-jets in all dimensions $\geq 2$ . This
implies (see Lemma 7.6 in [2]) that it is also almost ample on $k$-jets in
all dimensions $\geq 2$ . Then, for $k\geq 2$ , we have that 0 $X_{k}(1)_{|Y}$ is big for
all $Y\subset X_{k}$ with $\pi_{k}(Y)=X$ . In addition, using an easy Riemann-Roch
calculation, this is also true if $\pi_{k}(Y)$ is a curve. This implies, using
sections, that we have a metric of negative curvature on ($J_{X_{k}}$ $(-1)_{|Y}$ for
all such $Y$ .

Now take $k\geq k_{0}$ . It remains to consider the case when $Y$ is a curve
(the case when $Y$ projects to a point to $X$ is treated similarly). If a curve
$Y\subset X_{k}$ is not tangent to $V_{k}$ except at a finite set of points, we obtain a
metric of negative $k$-jet curvature on 0 $X_{1}$ $(-1)_{|Y}$ just by taking a smooth
metric which is equal to the Poincar\’e metric in the neighbourhood of
each of those points. If the curve is a lifting of some fibre, then, as
the fibres are hyperbolic and the tangent bundle of such lifting (being

smooth) is negative and isomorphic to 0 $X_{1}$ $(-1)_{|Y}$ , we are done. The
final case is when $Y$ is a lifting of a curve in $X$ which is not a fibre of
$f$ . In this case the existence of a nontrivial sheaf morphism shows that
the negativity of $T_{B}$ implies the negativity of $0_{X_{1}}(-1)_{|Y}$ . $\square $

\S 4. Application to Demailly’s conjecture

Let $L$ be a line bundle on a compact complex manifold and $h_{0}$ a
fixed smooth metric on it. Consider a singular metric $h$ on $L$ . We write
$h=h_{0}$ $\exp(-I)$ , where $\Phi$ is a smooth function outside the singularities
of $h$ . Then we obtain the following relation between curvatures

$\ominus_{h}(L)=\ominus_{h_{o}}(L)+i\partial\overline{\partial}\Phi$ .

This relation permits us to reduce the problem of piecing together met-
rics to piecing together quasi-psh functions (a terminology of J.-P. De-
mailly which means functions locally a sum of plurisubharmonic func-
tions and smooth functions). Now, we have the following two lem-
mas needed for piecing together quasi-psh functions which can be easily
proved using techniques from [3].
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Lemma 4.1. Let $Y$ and $Z$ be two subvarieties of a compact com-
plex manifold X. Let $V$ be a subbundle of $T_{X}$ and let $\omega$ be a smooth
metric on X. Suppose there exist a smooth $(1, 1)$ -form $\alpha$ on $X$ and $a$

smooth function $\Phi_{Y}$ (resp. $\Phi_{Z}$ ) on $Y$ (resp. on $Z$) such that

$\alpha+i\partial\overline{\partial}\Phi_{Y}\geq\epsilon\omega$ on $V\cap T_{Y_{reg}}$ ,

and
$\alpha+i\partial\overline{\partial}\Phi_{Z}\geq\epsilon\omega$ on $V\cap T_{Z_{rcg}}$ .

Then, there exists a smooth function $\Phi_{Y\cup Z}$ on a neighbourhood $U$ of
$Y\cup Z$ such that

$\alpha+i\partial\overline{\partial}\Phi_{Y\cup Z}\geq\frac{\epsilon}{4}\omega$ on $V_{|U}$ .

Lemma 4.2. Let $Y\subset Z$ be two subvarieties of a compact complex

manifold X. Let $V$ be a subbundle of $T_{X}$ and $\omega$ a smooth metric on $X$ .

Suppose there exist a smooth $(1, 1)$ -form $\alpha$ on $X$ an $d$ a smooth function
$\Phi_{Y}$ (resp. $\Phi_{Z\backslash Y}$ ) on $Y$ (resp. on $Z\backslash Y$ locally boun $ded$ from above on
$Y)$ such that

$\alpha+i\partial\overline{\partial}\Phi_{Y}\geq\epsilon\omega$ on $V\cap T_{Y_{reg}}$ ,

and
$\alpha+i\partial\overline{\partial}\Phi_{Z\backslash Y}\geq\epsilon\omega$ on $V\cap T_{Z_{reg}}$ .

Then, there exists a smooth function (I)
$Z$ on $Z$ such that

$\alpha+i\partial\overline{\partial}\Phi_{Z}\geq\frac{\epsilon}{2}\omega$ on $V_{|U}$ .

By Theorem 3.5 we obtain a collection of metrics of negative cur-
vatures on $X_{k}$ for $k\geq k_{0}$ : We start from a metric on $X_{k}$ of negative
$/c$-jet curvature and we consider its base locus which is a finite union of
irreducible proper subvarieties. By the same theorem, the restriction of
($9_{X_{k}}$ $(-1)$ to each of those components (not contained in $X_{k}^{sing}$ ) has a
metric with negative $k$-jet curvature with smaller base locus and so on.
In order to obtain a global metric with non degenerate $/c$-jet curvature
we should piece together these metrics. For a stable fibration (where

singularities of fibres are nodal), we can take $k_{0}=1$ in Theorem 3.5. As
$X_{1}^{sing}$ is empty, we can thus do this piecing together easily using lemmas
4.1 and 4.2 above. We obtain:

Theorem 4.3. Let $X\rightarrow B$ be a stable fibration as in Theorem
3.5. Then $X$ has nondegenerate Demailly’s 1-jet negative curvature.

For $k\geq 2$ the piecing together procedure is complicated because, in

this case, $0_{X_{k}}$ $(1)$ is not relatively $nef$ with respect to $\pi_{2}$ and $X_{k}^{sing}$ is
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nonempty. Nevertheless, using a weaker condition on singularities than
stability, we can achieve the construction for the 2-jet stage. In fact, for
this stage, we have a good alternative tautological bundle $ L_{2}:=0_{X_{2}}(1)\otimes$

$\pi_{2,1}^{\star}(0_{X_{1}}(2))$ which is relatively $nef$ with respect to the projection to $X$

by Proposition 6.16 in [2]. We have the following:

Theorem 4.4. Let $f$ : $X\rightarrow B$ be a fibration as in Theorem 3. 5.
Suppose that $L_{2}$ has positive $d$egree on every lifting to $X_{2}$ of the sin-
gular fibres of $f$ . Then $X$ has nondegenerate Demailly’s 2-jet negative
curvature.

Proof . – By theorem 3.4, the restriction $0_{X_{1}}(1)_{|Y}$ is big for all
$Y\subset X_{1}$ which projects surjectively onto $X$ . As $X_{2}^{sing}=D_{2}$ is equal to
($9_{X_{2}}(1)\otimes 0_{X_{1}}(-1)$ , we have $L_{2}=\pi_{2,1}^{\star}(9_{X_{1}}(3)\otimes 0(D_{2})$ . Consequently,
$L_{2|Y}$ is big for all $Y\subset X_{2}$ not contained in $D_{2}$ and which projects
surjectively onto $X$ . In particular $L_{2}$ is big on $X_{2}$ . This implies that the
line bundle $L_{2}^{\epsilon}:=(9_{X_{2}}(1)\otimes\pi_{2,1}^{\star}(0_{X_{1}}(2+\epsilon))$ , which is relatively ample
with respect to $X_{2}\rightarrow X$ , is also big for small $\epsilon$ .

Let $h_{0}$ be a metric of negative curvature on $(L_{2}^{\epsilon})^{\star}$ , and $\Sigma_{h_{0}}$ its singu-
lar set. Then $\Sigma_{h_{()}}$ is a finite union of subvarieties of $X_{2}$ of dimensions at

most 3. Now, for components $Y$ of $\Sigma_{h_{0}}$ not contained in $X_{2}^{sing}=D_{2}$ and
which projects onto $X$ , the same argument as above shows that $(L_{2}^{\epsilon})_{|Y}^{\star}$

has also a metric of negative curvature (though perhaps for a smaller $\epsilon$

$)$ . This is also true when $Y=D_{2}$ by a Riemann-Roch calculation. This
gives a collection of metrics $h_{j},j=1$ , . $.$ , $s$ (for some integer s) with a fi-
nite union $\bigcup_{j=1,.,s}\Sigma_{j}$ of subvarieties of dimensions at most 2 as singular
loci.

It remains to study the restrictions of $(L_{2}^{\epsilon})^{\star}$ to components $Y$ of
$\bigcup_{j=0}$ , ’

$S\Sigma_{j}$ which projects to a curve in $X$ (the case $Y\subset D_{2}$ projects on
$X$ surjectively is treated similarly). If $Y$ is a curve, the hypothesis and
a similar argument as in the proof of Theorem 3.5 show that $(L_{2}^{\epsilon})_{|Y}^{\star}$

has a metric of negative 2-jet curvature. Suppose now that $Y$ is not a
curve and $\pi_{2}$ $(Y)$ is a curve $C$ in $X$ . Then the intersection of the tangent
sheaf to $Y$ and $V_{2}$ consists of the tangent sheaf of curves contained in
the fibres and of the lifting of $C$ to two jets. As $L_{2}^{\epsilon}$ is relatively ample
and $(L_{2}^{\epsilon})^{\star}$ has negative 2-jet curvature on $C$ , we obtain, using lemma
4.2, that $(L_{2}^{\epsilon})_{|Y}^{\star}$ has a smooth metric of negative 2-jet curvature.

Finally, using lemmas 4.1 and 4.2 we glue together all the metrics
we have now to obtain a smooth metric of negative 2-jet curvature on
$(L_{2}^{\epsilon})^{\star}$ . This gives a non degenerate metric of negative 2-jet curvature on
0 $X_{\underline{9}}(-1)$ by the identity $L_{2}^{\epsilon}=\pi_{2,1}^{\star}(0_{X_{1}}(3+\epsilon))\otimes 0(D_{2})$ . $\square $
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Remark 4.5. Suppose we have a sequence $(L_{k})_{k\in N}$ of relatively
$nef$ line bundles on $X_{k}$ such that, for $k$ sufficiently large, $L_{k}$ has positive
degree on the lifting to $X_{k}$ of each singular fibres of $f$ . Then, using
the same proof as for Theorem $4\cdot 4$ , we can prove Demailly’s conjecture
without $ad$ditional hypothesis for our fibration.
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Short $\mathbb{C}^{k}$

John Erik Fornaess

\S 1. Introduction

One of Oka’s main contributions was to solve the Levi problem.

There are various ways to generalize the Levi Problem. The Union
problem is one: Let $\Omega_{0}\subset\Omega_{1}\subset\cdots\subset\cup\Omega_{n}=\Omega$ . Suppose that each $\Omega_{j}$

is Stein. Is $\Omega$ Stein? To approach the Union Problem, one can try at
first to understand the simplest cases of $\Omega$ .

Example 1.1. Long $\mathbb{C}^{2}$ . Suppose that each $\Omega_{j}$ is biholomorphic

to $\mathbb{C}^{2}$ . Then we call $\Omega$ a long $\mathbb{C}^{2}$ . It is an open question whether all long
$\mathbb{C}^{2}$ are actually biholomorphic to $\mathbb{C}^{2}$ .

Example 1.2. (Forneess, ( $[F$, 1976])) In dimension 3 and higher
it can happen that $\Omega$ is not Stein and that each $\Omega_{n}$ is biholomorphic to
a ball.

This left open the question in dimension 2.

Theorem 1.3. (Fornaess-Sibony, ( $[FS$ , 1981])) Suppose that each
$\Omega_{j}$ is biholomorphic to the unit ball in $\mathbb{C}^{2}$ . If the (infinitesimal) Kobayashi
metric of $\Omega$ is not identically zero, then $\Omega$ is biholomorphic to the ball
or to $\triangle\times \mathbb{C}$ , where $\triangle$ is the unit disc.

Recall that the (infinitesimal) Kobayashi metric of $\Omega$ vanishes identi-
cally if and only if for all $ p\in\Omega$ and any tangent vector $\xi$ to $\Omega$ at $p$ and for
any $R>0$ , there exists a holomorphic map $f$ : $\triangle=\{z\in \mathbb{C};|z|<1\}\rightarrow\Omega$

so that $f(0)=p$ and $ f’(0)=R\xi$ .

This theorem left still open the case when the Kobayashi metric
vanishes identically. The most obvious example of such a case is when
$\Omega=\mathbb{C}^{2}$ . However, the question remaining was whether there was any

Received December 19,2001.
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other possibility (Diederich-Sibony $([DS,1979])$ . In this paper we show
that indeed there are other such $\Omega$ . In fact, such $\Omega s$ occur quite naturally
in dynamics. In random iteration, basins of attraction can be such
domains. Under iteration of fixed maps, they occur as sublevel sets of
Green functions.

Fix an integer $d\geq 2$ . For any $\eta>0$ , let Aut $ d,\eta$ denote the set of

polynomial automorphisms $F$ of $\mathbb{C}^{k}$ , $k\geq 2$ , of the form $F(z_{1}, \ldots, z_{k})=$

$(z_{1}^{d}+P_{1}(z_{1}, \ldots, z_{k}), P_{2}(z_{1}, \ldots, z_{k}), \ldots, P_{k}(z_{1}, \ldots, z_{k}))$ where each $P_{j}$ is
a polynomial of degree at most $d-1$ and where each coefficient is at
most $\eta$ in modulus.

An example is $F(z)=(z_{1}^{d}+\eta z_{k}, \eta z_{1}, \ldots, \eta z_{k-1})$ .

Suppose that $ F_{n}\in$ Aut $d,\eta,$
}
, $\eta_{n}=a_{n}^{d^{rl}}$ , $n=1,2$ , $\ldots$ , $ 1>a_{1}\geq a_{2}\geq$

$\ldots\lim_{n\rightarrow\infty}a_{n}=a_{\infty}\geq 0$ , and set $F(n)=F_{n}\circ\cdots\circ F_{1}$ . Let $\Omega$ denote the

set of points $z=(z_{1}, \ldots, z_{k})\in \mathbb{C}^{k}$ such that $F(n)(z)\rightarrow 0$ as $ n\rightarrow\infty$ .

Theorem 1.4. The set $\Omega$ has the following properties:
(i) $\Omega$ is a nonempty, $ open\rangle$ connected set in $\mathbb{C}^{k}$ ,

(ii) $\Omega=\bigcup_{j=1}^{\infty}\Omega_{j}\supset\cdots\supset\Omega_{\ell}\supset\cdots\supset\Omega_{1}$ . Each $\Omega_{j}$ is biholomorphic to

the unit ball $B^{k}(0,1)$ .

(ii) The infinitesimal Kobayashi metric of $\Omega$ vanishes identically.

(iv) There is a plurisubharmonic function $\psi$ : $\mathbb{C}^{k}\rightarrow[\log a_{\infty}, \infty)$ such
that $\Omega=$ $\{\psi<0\}$ and $\psi$ is nonconstant $t$ on $\Omega$ .

The reason that $\Omega$ fails to be biholomorphic to $\mathbb{C}^{k}$ is that there is
a nonconstant bounded plurisubharmonic function on $\Omega$ . In some sense
this means that $\Omega$ is ” too small” to be all of $\mathbb{C}^{k}$ . So we might call such
an $\Omega$ a short $\mathbb{C}^{k}$ .

Next, we mention some more details about the function $\psi$ .

Theorem 1.5 ( $=$Theorem 3.4). The set $U=\{z\in \mathbb{C}^{k}$ ; $\psi(z)>$
$\log a_{\infty}\}$ is open and $\psi$ is pluriharmonic on $U$.

Theorem 1.6. The function $\psi$ has no critical points on $\{\psi>$

$\log a_{\infty}\}$ .

This shows that the level sets of $\psi$ are foliated by complex hypersurfaces
$\Sigma$ .

Theorem 1.7. Any leaf $\Sigma(z^{0})$ of $\{\psi=c>\log a_{\infty}\}$ can be ex-
hausted by relatively open sets $U$ biholomorphic to $B^{k-1}(0,1)$ . Each

such $U$ is Runge in $\mathbb{C}^{k}$ . Moreover the intrinsic infinitesimal Kobayashi
metric of $\Sigma(z^{0})$ vanishes $id$entically.
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Theorem 1.8. Each leaf $\Sigma(z^{0})$ of $\{\psi=c>\log a_{\infty}\}$ is dense in
$\{\psi=c\}$ .

It is a little harder to get good control on the set $\{\psi=\log a_{\infty}\}$ .

We investigate here only a special case with very rapidly decreasing
coefficients where one can get pluripolar sets with only one singular
point.

Theorem 1.9 ( $=$Theorem 3.10). Let $F_{n}(z, w)=(z^{2}+a_{n}w, a_{n}z)$ .

Suppose that $|a_{n}|\searrow 0$ sufficiently rapid $ly$ . Then $\{\psi=-\infty\}=:P$ has
the following shape: $P\backslash (0)$ is closed in $\mathbb{C}^{2}\backslash (0)$ and is laminated by
Riemann surfaces.

On the contrary, when one lets the coefficients decrease at a slightly
slower pace than in Theorem 1.4, $\Omega$ is biholomorphic to $\mathbb{C}^{2}$ .

Theorem 1.10 ( $=$Theorem 3.11). Let $F_{n}=(z^{2}+a_{n}w, a_{n}z)$ .

Suppose that $0<|a_{n}|<c<1$ and $|a_{n+1}|\geq|a_{n}|^{t}$ for some $1<t<2$ .

Then the basin of attraction of 0 is biholomorphic to $\mathbb{C}^{2}$ .

Theorem 1.11 ( $=$Theorem 3.7). For every $c>\log a_{\infty}$ , the sub-

level sets $\{\psi<c\}$ is a short $\mathbb{C}^{k}$ .

The same result is valid for other maps, such as for example iter-

ations of any given fixed H\’enon map. The next result shows also that
” short” $\mathbb{C}^{k}$ , $\Omega$ , might contain subsets biholomorphic to $\mathbb{C}^{k}$ .

Theorem 1.12 ( $=$Theorem 3.8). Let $H$ be a Hinon map, an $d$ let
$G^{+}$ be the pluricomplex Green function, $G^{+}(z)=\lim_{n\rightarrow\infty}\mathring{\frac{1g|+|H^{\prime l}(z)||}{d^{1}}},$ ,

$d=d$egree H. Then for every $c>0$ , $\{G^{+}<c\}$ is $a$ “short” $\mathbb{C}^{2}$ .

The plan of the paper is to first prove Theorem 1.4 in Section 2.
Then in Section 3 we prove some of the other results above. Due to lack
of space the remaining theorems and also other results in this direction
will be published elsewhere.

The author would like to thank Dror Varolin for many discussions
during the preparation of this talk.

\S 2. Proof of Theorem 1.4.

Proof of Theorem 1.4.
(i): Let $\tau$ denote the maximum possible number of terms of a polynomial

of degree $d-1$ in $k$ variables. Let $\triangle^{k}(0, c)$ denote the polydisc in $\mathbb{C}^{k}$

with center at the origin and polyradius $(c, c, \ldots, c)$ , $c>0$ . Suppose
that $z\in\triangle^{k}(0, c)$ , $0<c<1$ , and assume that $ F\in$ Aut$d,\eta’ F=$ $(z_{1}^{d}+$
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$P_{1}$ , $\ldots$ , $P_{k})$ . Then $|P_{i}(z)|\leq\tau\eta$ , $i=1$ , $\ldots$
$k$ and $|z_{1}^{d}|\leq c^{d}$ . It follows

that $F(\triangle^{k}(0, c))\subset\triangle^{k}(0, c^{d}+\tau\eta)$ . Pick $c$ , $c’$ , $0<c<c’<1$ and set
$c_{\ell}=c(c’)^{\ell}$ . If $\ell\geq 0$ , we have that $d^{\ell}\geq\ell+1$ . We show that if $n\geq n_{0}$ ,

$n_{0}$ large enough and $\ell\geq 0$ , then $F_{n+}\ell(\triangle^{k}(0, c_{\ell}))\subset\triangle^{k}(0, c_{\ell+1})$ :

$\log(\tau\eta_{n+\ell})$ $=$ $\log\tau+d^{n+\ell}\log a_{n+\ell}$

$\leq$ $\log\tau+(\ell+1)d^{n}\log a_{1}$

$=$ $[\log\tau+(\ell+1)\frac{d^{n}}{2}\log a_{1}]+(\ell+1)\frac{d^{n}}{2}\log a_{1}$ .

If $n\geq n_{0}$ :

$\log(\tau\eta_{n+\ell})$ $<$ $\log c(1-c)+(\ell+1)\log c’$ .

$\tau\eta_{n+\ell}$ $<$ $c(1-c)(c’)^{\ell+1}$ .

$\tau\eta_{n+\ell}$ $<$ $c(c’)^{\ell+1}-(c(c’)^{\ell})^{d}$ .

$c_{\ell}^{d}+\tau\eta_{n+\ell}$ $<$
$c_{\ell+1}$ .

It follows that if $n\geq n_{0}$ and $\ell\geq 0$ , then $F_{n+\ell}(\triangle^{k}(0, c_{\ell}))\subset\triangle^{k}(0, c_{\ell+1})$ .

Set $\Omega_{n}:=\{z\in \mathbb{C}^{k}; F(n)(z)\in\triangle^{k}(0, c)\}$ . It follows that if $n\geq n_{0}$ ,
$\Omega_{n}\subset\Omega_{n+1}$ and that $F(n+\ell)(z)\rightarrow 0$ uniformly on $\Omega_{n}$ when $\ell\rightarrow\infty$ .

Hence we have that $\Omega\supset\bigcup_{n\geq n_{0}}\Omega_{n}$ and the union is increasing. Suppose
next that $ z\in\Omega$ . Then $F(n)(z)\rightarrow 0$ and hence $F(n)(z)\in\triangle^{k}(0, c)$ for
some $n\geq n_{0}$ . Hence $z\in\bigcup_{n\geq n_{()}}\Omega_{n}$ . This proves (i).

(ii): We set $U_{n}=\{z\in \mathbb{C}^{k} ; ||F(n)(z)||<c\}$ . Then $U_{n}\subset\Omega_{n}$ . If
$z\in\Omega_{n}$ , $n\geq n_{0}$ , then $F(n+\ell)(z)\in\triangle^{k}(0, c(c’)^{\ell})\subset B(0, c)$ for a fixed
$\ell\geq 1$ , $\forall n\geq n_{0}$ . Hence $\Omega_{n}\subset U_{n+\ell}$ . Therefore $\Omega=\bigcup_{m\geq 0}U_{n_{U}+m\ell}\supset\cdots\supset$

$U_{n_{O}}$ , writing $\Omega$ as an increasing union of balls. This proves (ii).

(iii): Fix $(p, \xi)$ , $ p\in\Omega$ and $\xi$ a tangent vector to $\Omega$ at $p$ . Pick $R>0$ .

Then $p_{n}=F(n)(p)\rightarrow 0$ . Set $F’(n)(\xi)=\xi_{n}$ . Then $\xi_{n}\rightarrow 0$ also. Define
$\zeta_{n}$ : $\triangle=$ $\{\tau\in \mathbb{C};|\tau|<1\}\rightarrow \mathbb{C}^{2}$ , $\zeta_{n}(\tau)=p_{n}+\tau R\xi_{n}$ . If $n$ is large enough,
$\zeta_{n}(\triangle)\subset\triangle^{k}(0, c)$ . This implies that ( $=F(n)^{-1}\circ\zeta_{n}$ : $\triangle\rightarrow\Omega_{n}\subset\Omega$ .

Moreover $\zeta(0)=p$ , $\zeta’(0)=F^{-1}(n)’(R\xi_{n})=R\xi$ . Hence (iii) is proved.

(iv): We use a modification of the Green function construction in-
troduced by Hubbard ([H]). Write $F(n)=(f_{1}^{n}, \ldots, f_{k}^{n})$ .
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We define $\phi_{n}$ ; $\mathbb{C}^{k}\rightarrow R$ by $\phi_{n}(z)=$ $\max\{|f_{1}^{n}|, \ldots, |f_{k}^{n}|, \eta_{n}\}$ . Each
$\phi_{n}$ is a continuous function on $\mathbb{C}^{k}$ .

Lemma 2.1. $\psi_{n}:=\mathring{\frac{1g\phi_{n}}{d^{n}}}\rightarrow\psi_{\rangle}\psi$ plurisubharmonic on $\mathbb{C}^{k}$ .

Proof: We show first that $\phi_{n+1}\leq$ $(\tau+1)\phi_{n}^{d}$ .

(a): $\phi_{n}(z)\leq 1$ :

$\phi_{n+1}(z)$ $=$ $\max\{|(f_{1}^{n})^{d}+P_{1}(f_{1}^{n}, \ldots, f_{k}^{n})|, |P_{2}|, \ldots, |P_{k}|, \eta_{n+1}\}$

$\leq$ $\max\{\phi_{n}^{d}+\tau\eta_{n+1}, \tau\eta_{n+1}, \eta_{n+1}\}$

$\leq$ $\max\{\phi_{n}^{d}+\tau\eta_{n}^{d}, \eta_{n}^{d}\}$

$\leq$ $(\tau+1)\phi_{n}^{d}$ .

(b): $\phi_{n}(z)>1$ :

$\phi_{n+1}(z)$ $=$ $\max\{| (f_{1}^{n})^{d}+P_{1} (f_{1}^{n}, \ldots, f_{k}^{n})|, |P_{2}|, \ldots, |P_{k}|, \eta_{n+1}\}$

$\leq$ $\max\{\phi_{n}^{d}+\tau\eta_{n+1}\phi_{n}^{d-1}, \tau\eta_{n+1}\phi_{n}^{d-1}, \eta_{n+1}\}$

$\leq$ $\max\{\phi_{n}^{d}+\tau\phi_{n}^{d-1},1\}$

$\leq$ $(\tau+1)\phi_{n}^{d}$ .

Hence $\mathring{\frac{1g\phi_{n+1}}{d^{l+1}}},\leq\mathring{\frac{1g(\tau+1)}{d^{r1+1}}}+\mathring{\frac{1g\phi,1}{d1}}$,which implies that the sequence

$\{\frac{1og\phi_{n}}{d^{n}}+\sum_{j>n}\frac{\log(\tau+1)}{d^{j+1}}\}$

is monotonically decreasing and the limit is a plurisubharmonic function
$\psi\geq\log a_{\infty}$ , (a priori it is possible that $\psi\equiv-\infty$ but we will show

that this cannot happen). For simplicity we say that $\{\mathring{\frac{1g\phi,l}{d^{r1}}}\}$ is $\underline{almost}$

monotonically decreasing to the limit $\psi$ .

Lemma 2.2. $\Omega=\{\psi<0\}$ .

Proof of the Lemma: Assume that $\psi(z)<0$ . Then for all large
$n$ and some constant $s<0$ ,

$\frac{\log\phi_{n}(z)}{d^{n}}<s<0$ .
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Hence $\phi_{n}(z)<e^{d^{\prime l}s}$ which implies that $|f_{j}^{n}(z)|<e^{d^{\eta}s}$ , $j=1$ , $\ldots$ , $k$

and hence $F(n)(z)\rightarrow 0$ , so $ z\in\Omega$ .

Next assume that $ z\in\Omega$ . Then $F(n)(z)\in\triangle(0, c)$ for all large $n$ .
This implies that $\psi_{n}(z)<0$ for all large $n$ and hence that $\psi(z)\leq 0$ .

Next, let $z^{n}=F^{-1}(n)(0)$ . So for $n\geq n_{0}$ , $ z^{n}\in\Omega$ . Then $\phi_{n}(z^{n})=\eta_{n}$ .

Therefore

$\psi(z^{n})$ $\leq$

$\frac{\log\phi_{n}(z^{n})}{d^{n}}+\sum_{j>n}\frac{\log(\tau+1)}{d^{j+1}}$

$=$ $\frac{1og\eta_{n}}{d^{n}}+\sum_{j>n}\frac{\log(\tau+1)}{d^{j+1}}$

$=$ $\log a_{n}+\sum_{j>n}\frac{\log(\tau+1)}{d^{j+1}}$

$\leq$
$\log a_{1}+\sum_{j>n}\frac{1_{o_{b}^{\sigma}}(\tau+1)}{d^{j+1}}$

$\leq$ $\log a_{1}+\frac{\log(\tau+1)}{d^{n}}$

$<$ 0

for all large enough $n$ . Since $\psi\leq 0$ on $\Omega$ and $\psi(z)<0$ at some point in
$\Omega$ , it follows from the subaveraging principle that $\psi<0$ everywhere on
$\Omega$ .

It remains only to show the $\psi$ is not constant on $\Omega$ . Suppose that
$\psi_{|\Omega}\equiv\alpha<0$ . First note that $\Omega$ is not all of $\mathbb{C}^{2}$ . For example, it is easy
to estimate that $F(n)(z)$ goes to infinity for any $z=(x, 0, \ldots, 0)$ , $x>>$
$1$ since the $z_{1}$ coordinate of the iterates grows much faster than any
of the other coordinates. Pick a point $ z^{0}\in\Omega$ . Then there exists a
number $R>0$ so that the ball $ B(z^{0}, R)\subset\Omega$ while there is a point
$ p\in\partial B(z^{0}, R)\cap\partial\Omega$ . By the above lemma we know that $\psi(p)\geq 0$ . By the
subaveraging property of plurisubharmonic functions, $\psi(p)$ is bounded
above by the average on any small ball $B(p, \epsilon)$ . Since $\psi=\alpha<0$ on
almost half the ball and since $\psi$ is upper semicontinuous, this leads to
a contradiction when $\epsilon$ is small enough. This contradiction shows that
$\psi$ is nonconstant on $\Omega$ . This proves (iv). (We have also ruled out here
that $\psi\equiv-\infty$ , as promised.)
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\S 3. Proofs of further results.

In this section we study in more detail the properties of $\Omega$ and its
defining function $\psi$ as given in Theorem 1.4. Hubbard ([H]) introduced
a filtration of $\mathbb{C}^{2}$ which has proved very useful in the investigation of
H\’enon maps. We use the natural generalization of this filtration to $\mathbb{C}^{k}$

.

Definition 3.1 (Filtration). Set $R:=2\tau+2$ .

$V$ $:=$ $\triangle(0, R)$

$V^{+}$
$:=$ { $z\in \mathbb{C}^{k}$ ; $|z_{1}|\geq R$ , max{ $|z_{2}|$ , $\ldots$ , $|z_{k}|\}\leq|z_{1}|$ }

$V^{-}$ $:=$ { $z\in \mathbb{C}^{k}$ ; max{ $|z_{2}|$ , $\ldots$ , $|z_{k}|\}\geq R$ , $|z_{1}|\leq$ max{ $|z_{2}|$ , $\ldots$ , $|z_{k}|\}$ }.

The basic properties of this filtration is given in the following Lemma.
Fix any integer $n>n_{0}$ , where $n_{0}$ is large enough. (More precisely, we
will need 3 $\tau\eta_{n0-1}^{d-1}\leq 1$ , $\tau R^{d-2}\eta_{n_{O}}\leq 1$ , $(*).)$ For $z=(z_{1}, \ldots, z_{k})$ , set $z’=$

$(z_{1}’, \ldots, z_{k}’)=F_{n}$ (J. Set $m=$ $\max\{ |z_{2}|, \ldots, |z_{k}|\}$ , $m’=$ $\max\{ |z_{2}’|, \ldots, |z_{k}’|\}$ .

Lemma 3.2. Assume $n>n_{0}$ .

(i) Suppose $z\in V^{+}$ . Then $ z’=F_{n}(z)\in$ int(V $+$ ) and $|z_{1}’|>2|z_{1}|$ .

(ii) If $z\in V$, then $z’\in V\cup V^{+}$ .

(ii) If $z\in V^{-}$ , then $m’\leq\tau m^{d-1}\eta_{n}$ .

(iv) Suppose that $|z_{1}|\geq 2\tau\sigma$ $\max\{m, \eta_{n-1}\}$ for some $\sigma\geq 1$ . Then $|z_{1}’|\geq$

$ 3\tau\sigma$ $\max\{m’, \eta_{n}\}$ and $||z_{1}’|-|z_{1}|^{d}|\leq\tau\eta_{n}\max\{1, |z_{1}|^{d-1}\}$ .

The proof is straightforward and will be omitted.
We show next that no orbit can stay in $V^{-}$ forever.

Lemma 3.3. Suppose that $z\in \mathbb{C}^{k}$ . Then there exists an integer

$n=n(z)$ so that $F(n)(z)\in V\cup V^{+}$ for all $n\geq n(z)$ .

Proof: By Lemma 3.2, (i) and (ii), it suffices to show that for
some $n>n_{0}$ , $F(n)(z)\in V\cup V^{+}$ . Suppose to the contrary that $F(n_{0}+$

$1)(z)=:z^{1}$ , $\ldots$ , $F(n_{0}+\ell)(z)=:z^{\ell}$ , $\cdots\in V^{-}$ for all $\ell\geq 1$ . Let $m_{\ell}:=$

$\max\{ |z_{2}^{\ell}|, \ldots, |z_{k}^{\ell}|\}$ . Then applying Lemma 3.2, (iii), we obtain

$m_{\ell+1}$
$\leq$ $\tau m_{\ell}^{d-1}\eta_{n_{fI}+\ell}$

$\leq$
$\tau m_{\ell}^{d-1}a_{1}^{d^{\ell}}$

$\frac{\log m_{\ell+1}}{d^{\ell+1}}$
$\leq$ $\frac{1og\tau}{d^{\ell+1}}+\frac{\log m_{\ell}}{d^{\ell}}+\log a_{1}$
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It follows that the sequenc $e\mathring{\frac{1gm_{\ell}}{d^{\ell}}}$ will eventually decrease by at least
$\underline{l}og\underline{a_{1}}2$ each step. This implies that eventually $\mathring{\underline{1}}g_{\frac{m_{\ell}}{\ell}}d<0$ which implies
that $m_{\ell}<1$ , contradicting that $m_{\ell}\geq R$ . This proves the Lemma.

$\blacksquare$

Theorem 3.4. The set $U=\{z\in \mathbb{C}^{k}; \psi(z)>\log a_{\infty}\}$ is open and
$\psi$ is pluriharmonic on $U$.

Lemma 3.5. If $\psi(z)>\log a_{\infty}$ then there exists $n$ arbitrarily large
so that $|z_{1}^{n}|>2\tau\max\{|z_{2}^{n}|, \ldots, |z_{k}^{n}|, \eta_{n}\}$ .

Proof of the Lemma: Pick two constants $\alpha$ , $\beta$ , $\min\{\psi(z), 0\}>$

$\log\alpha>\log\beta>\log a_{\infty}$ . There exists a large integer $n_{1}$ so that if $n\geq n_{1}$

then $ a_{n}<\beta$ . Suppose that for some $n_{2}\geq n_{1}$ ,

$|z_{1}^{n}|\leq 2\tau$ Inax $\{|z_{2}^{n}|, \ldots, |z_{k}^{n}|, \eta_{n}\}$ , $\forall n\geq n_{2}$ .

Set $m_{n}:=$ $\max\{|z_{2}^{n}|, \ldots, |z_{k}^{n}|\}$ . Suppose that for some $n\geq n_{2}$ , we
have that $m_{n}\geq 1$ . Then $|P_{j}(z^{n})|\leq\tau\eta_{n+1}(2\tau m_{n})^{d-1}$ . Hence $ m_{n+1}\leq$

$\tau^{d}\beta^{d^{\tau\}+1}}m_{n}^{d}2^{d-1}$ . Therefore,

$\frac{\log m_{n+1}}{d^{n+1}}$ $\leq$ $\frac{1og\tau}{d^{n}}+\log\beta+\frac{\log m_{n}}{d^{n}}+(d-1)\frac{1og2}{d^{n}}$

$\leq$ $\frac{1}{2}\log\beta+\frac{\log m_{n}}{d^{n}}$ if $n_{2}$ is large enough

This easily implies that for some large $n$ , $\log m_{n}<0$ so $m_{n}<1$ .

Now suppose that $n\geq n_{2}$ and that $m_{n}<1$ . Then $|P_{j}(z^{n})|\leq\tau\eta_{n+1}$ .

Hence

$\phi_{n+1}$ $=$ $\max\{|z_{1}^{n+1}|, \ldots, |z_{k}^{n+1}|, \eta_{n+1}\}$

$\leq$ $2\tau\max\{|z_{2}^{n+1}|, \ldots, |z_{k}^{n+1}|, \eta_{n+1}\}$

$\leq$ $2\tau\max\{\tau\eta_{n+1}, \eta_{n+1}\}$

$=$ $2\tau^{2}\eta_{n+1}$

But then $\mathring{\frac{1g\phi_{1+1}}{d^{r1+1}}},\leq\mathring{\frac{1g(2\tau^{2})}{d+1}},,+\log a_{n+1}\leq\mathring{\frac{1g(2\tau^{2})}{d^{l+1}}},+\log\beta$ . This con-
tradicts that $\psi(z)>\log\alpha$ if $n_{2}$ is chosen even larger.
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$\blacksquare$

Proof of the Theorem: Suppose that $\psi(z)>\log a_{\infty}$ . Then by
Lemma 3.5 there exists an arbitrarily large integer $n_{1}$ so that

$|z_{1}^{n_{1}}|>2\tau$ $\max\{|z_{2}^{n_{1}}|, \ldots, |z_{k}^{n_{1}}|, \eta_{n_{1}}\}$ .

By continuity this inequality holds for all $w$ in some neighborhood $V$

of $z$ . But then by Lemma 3.2(iv) this inequality is still true for all $n\geq n_{2}$

on $V$. Hence $\psi_{n}\equiv\log|f_{1}^{n}|$ on $V$. Therefore the $\psi_{n}$ are pluriharmonic on $V$.

Moreover, they converge (almost) monotonically to a limit $\psi$ which has
a finite value at $z$ . Hence the limit is pluriharmonic on $V$. In particular,
$\psi$ is continuous on $V$ so $\{\zeta\in \mathbb{C}^{k} ; \psi(\zeta)>\log a_{\infty}\}$ contains an open
neighborhood of $z$ .

$\blacksquare$

Lemma 3.6. Let $K^{compact}\subset\{\psi<c_{1}\}$ , $\log a_{\infty}<c_{1}<c_{2}$ . Then
there exists for any $\epsilon>0$ an open set $U\subset\{\psi<c_{2}\}$ and an automor-

phism (I of $\mathbb{C}^{k}$ so that $\Phi(U)=B^{k}(0,1)$ , $4D(K)\subset B^{k}(0, \epsilon)$ .

Proof: Since $\psi<c_{1}$ on $K$ , there exists an integer $N$ so that
$\psi_{n}<c_{1}$ for all $n\geq N$ . Hence $\underline{1}og,\phi_{r1}d^{1}$ $<c_{1}$ on $K\forall n\geq N$ . This

implies that $|f_{j}^{n}|<e^{c_{1}d’’}$ on $K$ , $n\geq N$ , $j=1$ , $\ldots$ , $k$ . Suppose next

that $w\in \mathbb{C}^{k}$ an$d|f_{j}^{n}(w)|<Re^{c_{1}d^{r1}}$ for some $n\geq N$ , $j=1$ , $\ldots$ , $k$ .

Then $\phi_{n}(w)=$ $\max\{|f_{1}^{n}|(w), \ldots, |f_{k}^{n}|(w), \eta_{n}\}$ . Hence $\psi_{n}=\mathring{\frac{1g\phi,,(w)}{d^{\gamma l}}}<$

$\max\{ \mathring{\frac{1gRe^{c_{1}d^{\prime 1}}}{d^{r1}}}, \frac{\log a_{l}^{d^{\prime 1}}}{d’ 1}\}$ . We can assume that $\log a_{n}<c_{1}$ . Hence $\psi_{n}(w)<$

$\max\{\mathring{\frac{1gR}{d^{1}}},+c_{1}, c_{1}\}<c_{2}$ , $n$ large. This completes the proof of the Lemma.

$\blacksquare$

Theorem 3.7. For any $c>\log a_{\infty}$ the sublevel set $\{\psi<c\}$ is

connected an $d$ is a short $\mathbb{C}^{k}$ .

Proof: We can write $\{\psi<c\}=\bigcup_{n=1}^{\infty}K_{n}$ , $K_{n}\subset int(K_{n+1})$ .
compact

We next find a sequence of open sets $U_{n}$ , $ K_{n}\subset U_{n}\subset\subset U_{n+1}\subset\subset$

$\{\psi<c\}$ and biholomorphic maps $\Phi_{n}$ : $\mathbb{C}^{k}\rightarrow \mathbb{C}^{k}$ so that $\Phi_{n}(U_{n})=$

$B(0,1)$ , $\Phi_{n+1}(U_{n})\subset B(0, \frac{1}{n})$ . If we have found $U_{n}$ , set $K=\overline{U_{n}}\cup K_{n+1}$ .

Then there exists $\log a_{\infty}<c_{1}<c_{2}<c$ so that $K\subset\{\psi<c_{1}\}$ . We apply
Lemma 3.6 to find $U_{n+1}\subset\{\psi<c_{2}\}$ .
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$\blacksquare$

In the same way we get:

Theorem 3.8. Let $H$ be a H\’enon map, and let $G^{+}([H])$ be the

pluricomplex Green function, $G^{+}(z)=\lim_{n\rightarrow\infty}\mathring{\frac{1g^{+}||H^{n}(z)||}{d^{l}}},$ , $d=d$egree

H. Then for every $c>0$ , $\{G^{+}<c\}$ is $a$ “short” $\mathbb{C}^{2}$ .

Next we discuss the nature of the set $\psi=\log a_{\infty}$ when $a_{\infty}=0$ .
Notice that any $\mathbb{C}^{k}$ contained in a sublevel set $\{\psi<c\}$ must be contained
in $\{\psi=\log a_{\infty}\}$ . Since $\{\psi=-\infty\}$ is a pluripolar set, there is no $\mathbb{C}^{k}$

contained in any sublevel set of $\psi$ in this case.

Lemma 3.9. Let $\delta$ , $\epsilon$ , $R>0$ be given. If $a\in \mathbb{C}$ , $0<|a|$ small

enough, then $|\mathring{\frac{1g|z^{2}+aw|}{2}}-\log|z||<\epsilon$ if $|z|$ , $|w|\leq R$ , $|z|\geq\delta$ . Moreover

$\mathring{\frac{1g|z^{\underline{7}}+aw|}{2}}<\log\delta+1$ on $\{|z|\leq\delta, |w|\leq R\}$ .

Proof:Let $|a|<\frac{\delta^{2}}{R}$ . Then if $(z, w)\in K:=$ $\{\delta\leq|z|\leq R, |w|\leq R\}$ ,

$|z^{2}+aw|\geq|z|^{2}-|aw|>\delta^{2}-|a|R>0$ . We get, for $(z, w)\in K$ ,

$\mathring{\frac{1g|z^{2}+aw|}{2}}-\log|z|=\frac{1}{2}\log|1+a\frac{w}{z^{2}}|$ . Since $|\frac{aw}{z^{2}}|\leq|a|\frac{R}{\delta^{2}}$ we can clearly
choose $|a|$ small enough that $|\log|1+\frac{aw}{z^{2}}||<\epsilon$ . The last part is obvious.

$\blacksquare$

Theorem 3.10. Let $F_{n}(z, w)=(z^{2}+a_{n}w, a_{n}z)$ . Suppose that
$|a_{n}|\searrow 0$ sufficiently rapidly. Then $\{\psi=-\infty\}=:P$ has the following
shape: $P\backslash (0)$ is close $d$ in $\mathbb{C}^{2}\backslash (0)$ and is foliated by Riemann surfaces.

Proof: Suppose that $\{a_{j}\}_{j\leq n}$ have been chosen. Set $F(n)=(f_{1}^{n}, f_{2}^{n})$ .

Let $X_{n}=$ $\{f_{1}^{n}=0\}$ . Then $X_{n}$ is the pole set of $\tilde{\psi}_{n}=\mathring{\frac{1g|f_{1}^{\prime t}|}{2^{1}}},$ . Set
$U_{n}=\{(z, w);\frac{1}{n}\leq\max\{|z|, |w|\}\leq n\}$ . Set $V_{n}=\{(z, w);\tilde{\psi}_{n}<-n\}$ . Let
$\hat{\psi}=$ $\max\{\tilde{\psi}_{n}, -n\}$ . Then $X_{n}\subset V_{n}$ . $F(n)(X_{n})=\{z=0\}$ . If $\delta>0$ is
small enough, then $F(n)(\{\max\{|z|, |w|\}\leq n\})\subset\triangle^{2}(0, R)$ for some $R>$

$0$ and $ F(n)(V_{n})\supset$ $\{|z|\leq\delta, |w|\leq R\}$ . Set $\epsilon=1$ . We apply Lemma 3.9 to
find a constant $a=a_{n+1},0<|a_{n+1}|<<|a_{n}|^{2}$ so that if $F_{n+1}(z, w)=$

$(z^{2}+a_{n+1}w, a_{n+1}z)$ then

$|\frac{\log|z^{2}+a_{n+1}w|}{2}-\log|z||<1$ , $\delta\leq|z|\leq R$ , $|w|\leq R$ .

Moreover, $\log|z^{2}+a_{n+1}w|<\log\delta+1$ on $\{|z|\leq\delta, |w|\leq R\}$ . It
follows that
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$|\frac{\log|f_{1}^{n+1}|}{2^{n+1}}-\frac{\log|f_{1}^{n}|}{2^{n}}|<\frac{1}{2^{n}}$ if $\delta\leq|f_{1}^{n}|\leq R$ , $|f_{2}^{n}|\leq R$ .

and

$\tilde{\psi}_{n+1}<\frac{\log\delta+1}{2^{n+1}}$ on $\{|f_{1}^{n}|\leq\delta, |f_{2}^{n}|\leq R\}$ .

Choosing $\delta$ even smaller, we may assume that $\mathring{\frac{1g\delta+1}{2^{n+1}}}<-n-1$ .

Suppose that $|z|$ , $|w|\leq n$ . Then $|f_{1}^{n}(z, w)|$ , $|f_{2}^{n}(z, w)|\leq R$ .

(i) $|f_{1}^{n}(z, w)|\leq\delta$ . Then $(z, w)\in V_{n}$ and hence $\hat{\psi}_{n}(z, w)=-n$ .

Moreover, $\hat{\psi}_{n+1}(z, w)=\max\{\tilde{\psi}_{n+1}(z, w), -n-1\}=-n-1$ .

(ii) $|f_{1}^{n}(z, w)|\geq\delta$ . Then $|\tilde{\psi}_{n}(z, w)-\tilde{\psi}_{n+1}(z, w)|\leq\frac{1}{21},$ . Hence,

$|\max\{\tilde{\psi}_{n}, -n -1\}-\max\{\tilde{\psi}_{n+1}, -n -1\}|\leq\frac{1}{2^{n}}$ .

Suppose $\hat{\psi}_{n}>-n$ . Then $\tilde{\psi}_{n}>-n$ so $\tilde{\psi}_{n+1}>-n-1$ , so $|\hat{\psi}_{n}-$

$\hat{\psi}_{n+1}|\leq\frac{1}{2^{r1}}$ whenever $\hat{\psi}_{n}>-n$ .

Next observe that $\{z^{2}+a_{n+1}w=0\}$ is a parabola of the form
$w=-,\frac{z^{\underline{0}}}{a_{1+1}}$ . Hence on $U_{n}$ , $X_{n+1}$ consists locally of two graphs over $X_{n}$

and these can be chosen arbitrarily close to $X_{n}$ .

The above shows that $\psi=-\infty$ is the limit in the Hausdorff metric
of $\{X_{n}\}$ and this has the desired laminar structure.

$\blacksquare$

Theorem 3.11. Let $F_{n}=(z^{2}+a_{n}w, a_{n}z)$ .

Suppose that $0<|a_{n}|<c<1$ and $|a_{n+1}|\geq|a_{n}|^{t}$ for some $1<t<2$ .

Then the basin of attraction of 0 is biholomorphic to $\mathbb{C}^{2}$ .

Proof: We first estimate the rate of convergence towards the origin.

So assume that $(z_{0},w_{0})\in K^{compact}\subset\Omega$ . Set $(z_{n},w_{n})=F(n)(z_{0},w_{0})$ , $\delta_{n}=$

$\sup_{(z_{()}w_{()})\in K},\max\{|z_{n}|,|w_{n}|\}$ .

Lemma 3.12. There exists an $n_{0}=n_{0}(z_{0}, z_{0})>0$ an $d$ a constant
$\alpha>0$ so that if $n>n_{0}$ , $\delta_{n+k}\leq|a_{n+k+1}|c^{\alpha k}$ for all $k\geq 0$ .

We omit the details of the proof.
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Set $A_{n}:=F_{n}’(0)$ . Then $A_{n}(z, w)=(a_{n}w, a_{n}z)$ and $A_{n}^{-1}(z, w)=$

$(w/a_{n}, z/a_{n})$ . Hence, $A_{n}^{-1_{\circ}}F_{n}-Id=(\acute{\frac{a_{\iota}z}{a_{r1}}},$ $\frac{z^{2}+a_{n}w}{a_{n}})-(z, w)=(0, z^{2}/a_{n})$ .

Next estimate $A_{1}^{-1}\circ\cdots A_{n+1}^{-1}\circ F_{n+1}\circ\cdots F_{1}$ for large $n$ .

We get $||A_{1}^{-1}\circ\cdots A_{n+1}^{-1}\circ F_{n+1}\circ\cdots F_{1}-A_{1}^{-1}\circ\cdots A_{n}^{-1}\circ F_{n}\circ\cdots F_{1}||=$

$||A_{1}^{-1}\circ\cdots A_{n}^{-1}(A_{n+1}^{-1}\circ F_{n+1}-Id)\circ F_{n}\cdots F_{1}||\leq\frac{1}{|a_{1}|\cdots|a_{l}|},\frac{|\delta_{n}|^{2}}{|a,|+1|}$

Now observe that for $k\geq 0$ we have $\delta_{n+k+1}\leq\delta_{n+k}^{2}+|a_{n+k+1}|\delta_{n+k}\leq$

$\delta_{n+k}|a_{n+k+1}|(c^{\alpha k}+1)$ . Hence, inductively, we have

$\delta_{n+k+1}\leq\delta_{n}|a_{n+k+1}||a_{n+k}|\cdots|a_{n+1}|\pi_{j=0}^{k}(1+c^{\alpha j})$ .

We can also rewrite this estimate as $\delta_{\ell}\leq C_{1}|a_{1}a_{2}$ – $a_{\ell}|$ for a large
constant $C_{1}$ and for all $\ell$ . Notice that by Lemma 3.12 we also have
$\delta_{\ell}\leq C_{2}|a_{\ell+1}|e^{\alpha\ell}$ for all $\ell\geq 0$ .

$||A_{1}^{-1}\circ\cdots A_{n+1}^{-1}\circ F_{n+1}\circ\cdots F_{1}-A_{1}^{-1}\circ\cdots A_{n}^{-1}\circ F_{n}\circ\cdots F_{1}||$

$\leq$ $\frac{\delta_{n}^{2}}{|a_{1}\cdots a_{n+1}|}$

$\leq$ $\frac{\delta_{n}}{|a_{1}\cdots a_{n}|}\frac{\delta_{n}}{|a_{n+1}|}$

$\leq$ $C_{1}C_{2}e^{\alpha n}$

This implies uniform convergence on compact subsets of $\Omega$ . Next we
show that the limit map is a biholomorphic map from $\Omega$ onto $\mathbb{C}^{2}$ .

First it is clear, since the Jacobian determinant at the origin is
always equal to one and never vanishes for any (I) $ n:=A_{1}^{-1}\circ\cdots A_{n}^{-1}\circ$

$F_{n}\circ\cdots F_{1}$ , that the limit map (I) : $\Omega\rightarrow \mathbb{C}^{2}$ has a Jacobian which never
vanishes. Hence (I is locally one-to-one. To show that (I is globally
one-to-one assume to the contrary that I $(p)=$ I (q), $q\neq p$ . Then two
small neighborhoods of $p$ , $q$ are mapped onto the same neighborhood of
$\Phi(p)$ . By the open mapping theorem it follows that the same holds for
small perturbations of (I and hence for $\Phi_{n}$ for large $n$ . This contradicts
that each $\Phi_{n}$ is one-to-one.

It remains to show that (I) is onto $\mathbb{C}^{2}$ .
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Lemma 3.13. Let $R_{0}>0$ . Then there exists a number $n_{0}$ large
enough so that if $0<R\leq R_{0}$ and $n\geq n_{0}$ , then

$F_{n+1}(\triangle^{2}(0, R|a_{1}\cdots a_{n}|))\supset\triangle^{2}(0, R|a_{1}\cdots a_{n+1}|e^{-2R_{()}c^{n/2}})$ .

Proof: Let $j\geq 0$ be the integer for which $c^{t^{j+1}}<|a_{n+1}|\leq c^{t^{j}}$ .
$O$ne shows at first with a short calculation that $|a_{1}\cdots a_{n}|\leq c^{n/2}|a_{n+1}|$

if $n\geq n_{0}$ .

To complete the proof of the Lemma, we show that if

$(z, w)\in\partial\triangle^{2}(0, R|a_{1}\cdots a_{n}|)$

then $(z’, w’)\in \mathbb{C}^{2}\backslash \triangle^{2}(0, R|a_{1}\cdots a_{n+1}|e^{-2R_{0}c^{\gamma\gamma/2}})$ .

Assume at first that $|z|=R|a_{1}\cdots a_{n}|$ . Then

$|w’|=|a_{n+1}||z|\geq R|a_{1}\cdots a_{n+1}|>R|a_{1}\cdots a_{n+1}|e^{-2R_{()}c^{\prime 1/2}}$

so we are done. Assume next that $|w|=R|a_{1}\cdots a_{n}|$ , $|z|\leq R|a_{1}\cdots a_{n}|$ .

Then

$|z’|$ $=$ $|z^{2}+a_{n+1}w|$

$\geq$ $|a_{n+1}||w|-(R|a_{1}\cdots a_{n}|)^{2}$

$\geq$ $R|a_{1}\cdots a_{n+1}|-R|a_{1}\cdots a_{n}|Rc^{\frac{r1}{2}}|a_{n+1}|$

$\geq$ $R|a_{1}\cdots a_{n+1}|(1-Rc^{\frac{n}{2}})$

$\geq$
$R|a_{1}\cdots a_{n+1}|e^{-2Rc^{\frac{n}{2}}}$ , $n\geq n_{0}$

$\geq$
$R|a_{1}\cdots a_{n+1}|e^{-2R_{0}c^{\frac{\prime i}{2}}}$

$\blacksquare$

Next, fix a number $R_{0}>0$ . We want to prove that $\Phi(\zeta])\supset$

$\triangle^{2}(0, \frac{R_{()}}{2})$ . Fix $n_{0}$ large as in the above Lemma and define $ U:=\{(z, w)\in$

$\mathbb{C}^{2}$ ; $F(n_{0})(z, w)\in\triangle^{2}(0, R_{0}|a_{1}\cdots a_{n_{()}}|)$ . Then $\overline{U}$ is compact in $\Omega$ . Us-
ing the above Lemma, it foll$ows$ for any $n\geq n_{0}$ that $ F(n)(U)\supset$

$\triangle^{2}$ $(0, _{R_{0}|a_{1}} -- a_{n}|e-2R_{o}\Sigma,\prime\geq r’()c^{\frac{l\mathfrak{l}}{2}})\supset\triangle^{2}(0,\mathring{\frac{R}{2}}|a_{1}\cdots|a_{n}|)$ Hence it fol-

lows that $\Phi_{n}(U)\supset\triangle^{2}(0, \frac{R_{()}}{2})$ for all $n\geq n_{0}$ . Hence $\Phi(\Omega)\supset\Phi(\overline{U})\supset$

$\triangle^{2}(0, \frac{R_{()}}{2})$ . Since $R_{0}$ was arbitrary it follows that $\Phi(\Omega)=\mathbb{C}^{2}$ .

$\blacksquare$
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Some constructions of hyperbolic hypersurfaces

in $P^{n}(C)$

Hirotaka Fujimoto

Abstract.

We show some methods of constructing hyperbolic hypersurfaces

in the complex projective space, which gives a hyperbolic hypersur-

face of degree 2 $n$ in $P^{n}(C)$ for every $n$ $\geq 2$ . Moreover, we show that
there are some hyperbolic hypersurfaces of degree $d$ in $P^{n}(C)$ for
every $d\geq 2\times 6^{n}$ for each $n$ $\geq 3$ .

\S 1. Introcution

Since S. Kobayashi asked whether a generic hypersurface of large
degree in $P^{n}(C)$ is hyperbolic or not in [8], many papers were devoted
to constructing various examples of hypersurfaces in $P^{n}(C)$ . In [2], R.
Brody and M. Green gave an example of hyperbolic hypersurface in
$P^{3}(C)$ of even degree $\geq 50$ . Afterwards, new types of hyperbolic hy-
persurfaces of degree $d$ in $P^{3}(C)$ were given by A. Nadel in the case of
$d=6p+3$ for $p\geq 3$ in [10], by J. El Goul for $d\geq 14$ in [7], by J.
P. Demailly and by Y. T. Siu-S. K. Yeung for $d\geq 11$ in 1997 respec-
tively. Moreover, J. P. Demailly-J. El Goul proved that a very generic
hypersurface of degree at least 21 in $P^{3}(C)$ is hyperbolic in [4] and M.
Shirosaki constructed a hyperbolic hypersurface of degree 10 in [11]. On
the other hand, in [9], K. Masuda and J. Noguchi proved that there
exists a hyperbolic hypersurface of every degree $d\geq d(n)$ for a posi-
tive integer $d(n)$ depending only on $n$ and some concrete examples of
hyperbolic hypersurfaces in $P^{n}(C)$ for $n$ $\leq 5$ .

Recently, the author constructed a family of hyperbolic hypersur-
faces of degree 2 $n$ in $P^{n}(C)$ for $n$ $\geq 3$ in [6]. The purpose of this note
is to explain the results in [6] and to give some lower estimate of $d(n)$

in the above-mentioned results given by Masuda-Noguchi. The author
would like to thank J. Noguchi for useful suggestions to this work.
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\S 2. Construction of $H$-polynomials

For convenience’ sake, we introduce the following terminology.

Definition 2.1. We call a homogeneous polynomial $Q(w)$ of degree
$d$ in $w=(w_{0}, w_{1}, \ldots, w_{n})$ an $H$-polynomial if it satisfies the conditions:

(HI) If a holomorphic map $f:=$ $(f_{0} : f_{1} : -- : f_{n})$ of $C$ into $P^{n}(C)$

satisfies the identity $Q(f_{0}, f_{1}, \ldots, f_{n})=cf_{0}^{d}$ for some $c\in C$ , then $f$ is a
constant.

(H2) If a holomorphic map $f:=$ $(f_{1} : -- : f_{n})$ of $C$ into $P^{n-1}(C)$

satisfies the identity $Q(0, f_{1}, \ldots, f_{n})=cf_{n+1}^{d}$ for some $c\in C$ and entire
function $f_{n+1}$ , then $f$ is a constant.

Definition 2.2. We say a complex space $M$ to be Brody hyperbolic
if there is no nonconstant holomorphic map of $C$ into $hl$ .

As was shown by R. Brody in [1], a compact complex manifold
is Brody hyperbolic if and only if it is hyperbolic in the sense of S.
Kobayashi. In the following, a compact hyperbolic space means a com-
pact Brody hyperbolic space.

Proposition 2.3. Let $Q$ be an $H$-polynomial. Then,
(i) $V:=\{(w_{0} : \cdots : w_{n});Q(w_{0}, \ldots, w_{n})=0\}$ is hyperbolic and
(ii) for $W:=\{(w_{1} : \cdots : w_{n});Q(0, w_{1}, \ldots, w_{n})=0\}\subset P^{n-1}(C)$ ,

$P^{n-1}(C)\backslash W$ is Brody hyperbolic.

In fact, (i) is nothing but the case $c=0$ of (HI), and (ii) is a
result of (H2) because we can find an entire function $f_{n+1}$ such that
$Q(0, f_{1}, \ldots, f_{n})=f_{n+1}^{d}$ if $Q(0, f_{1}, \ldots, f_{n})$ has no zeros.

For the case where $n=2$ we have the following:

Theorem 2.4. Let $Q(u_{0}, u_{1}, u_{2})$ be a homogeneous polynomial of
degree $d\geq 4$ and consider the associated inhomogeneous polynomial
$\tilde{Q}(v, w):=Q(1, v, w)$ . Assume that

(C1) the simultaneous equations $\tilde{Q}_{v}(v, w)=\tilde{Q}_{w}$ $(v, w)=0$ have only
finitely many solutions, say $P_{k}:=(v_{k}, w_{k})(1\leq k\leq N)$ ,

(C2) $Q\sim(P_{k})\neq\tilde{Q}(P_{\ell})$ for $1\leq k<\ell\leq N$ ,

(C3) $Q_{u_{()}}(1, v_{k}, w_{k})\neq 0$ for $1\leq k\leq N$ ,

(C1) $\{(u_{1}, u_{2});Q_{u_{i}}(\underline{0}, u_{1}, u_{2})=0, i=0,1, 2\}=\{(0,0)\}$ .

(C5) Hessian $\varphi:=Q_{vv}\tilde{Q}_{ww}-\tilde{Q}_{vw}^{2}\neq 0$ at $(v_{k}, w_{k})$ $(1\leq k\leq N)$ .

Then, $Q$ is an $H$-polynomial.

For the proof, refer to [6].
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Remark. We can show that generic homogeneous polynomials of
degree $d\geq 4$ satisfy the conditions in Theorem 2.4. Here, generic ho-
mogeneous polynomials mean all polynomials in some nonempty Zariski
open set in the space of all homogeneous polynomials of degree $d$ .

For the case $n\geq 3$ , we can prove the following:

Theorem 2.5. Let $Q(u_{0}, u_{1}, \ldots, u_{n})$ be an $H$-polynomial of degree
$d_{0}$ and $P(u_{0}, u_{n+1})$ a homogeneous polynomial of degree $d_{1}$ $(\geq 3)$ such
that $P(u_{0}, u_{n+1})$ and $\tilde{P}(w):=P(1, w)$ satishes the conditions;

(PI) $P(0, u_{n+1})\not\equiv 0$ ,

(P2) $\overline{P}’(w)$ has only simple zeros $\alpha_{1}$ , $\alpha_{2}$ , $\ldots$ , $\alpha_{d_{1}-1}$ ,

(P3) $\tilde{P}(\alpha_{k})\neq\tilde{P}(\alpha_{\ell})$ for $1\leq k<\ell\leq d_{1}-1$ .

For $m\geq 2$ , if $d_{1}:=md_{0}$ and $2/(d_{1}-2)+1/m<1$ , then

$R(u_{0}, u_{1}, \ldots, u_{n}, u_{n+1}):=P(u_{0}, u_{n+1})-Q(u_{0}, u_{1}, \ldots, u_{n})^{m}$

is an $H$-polynomial.

This is a slight improvement of [6, Theorem $II$ ]. We state the outline
of the proof. Consider holomorphic functions $f_{j}$ , some of which are
nonzero, such that $R(f_{0}, \ldots, f_{n+1})=cf_{0}^{d_{1}}$ . If $f_{0}\equiv 0$ , then

$Q(0, f_{1}, \ldots, f_{n})=ef_{n+1}^{d_{()}}$

for some constant $e$ and hence $f$ is a constant by (H2). Otherwise, setting
$\varphi:=f_{n+1}/f_{0}$ and $Q\sim:=Q(1, f_{1}/f_{0}, \ldots, f_{n}/f_{0})$ , we have $P\sim(\varphi)-c=\tilde{Q}^{m}$ .

By the assumption, $\overline{P}(w)-c$ has at least $d_{1}-2$ simple zeros $\beta_{j}$ and
$\varphi$ takes the values $\beta_{j}$ with multiplicities at least $m$ , whence $\Theta_{\varphi}(\beta_{j})\geq$

$1$ $-1/m$ , where $\ominus_{\varphi}(\beta_{j})$ denote the truncated defects of $\beta_{j}$ . By virtue
of the defect relation for meromorphic functions, we can conclude from
the assumption that $f$ is a constant. We can prove that $R$ satisfies (H2)
by the same argument as in the proof of [6, Theorem $II$]. We omit the
details.

By Theorem 2.4 and by using Theorem 2.5 repeatedly, we can easily
conclude the following:

Theorem 2.6. For each $n\geq 2$ there is a hyperbolic hypersurfaces
of degree 2 $n$ in $P^{n}(C)$ and a hypersurface $W$ of degree 2 $n$ in $P^{n-1}(C)$

such that $P^{n-1}(C)\backslash W$ is Brody hyperbolic.

We can also construct many hyperbolic hypersurfaces in the complex
projective space. For example, by Theorem 2.4, we can construct a
hyperbolic hypersurface of degree 5 in $P^{2}(C)$ and, by the use of the case
$m=3$ of Theorem 2.5 repeatedly, hyperbolic hypersurfaces of degree
$5\times 3^{n-2}$ in $P^{n}(C)$ , which are used later.
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\S 3. Hyperbolic hypersurfaces of high degree

In this section, we construct some examples of hyperbolic hypersur-
faces of high degrees. We first give the following:

Theorem 3.1. Take a polynomial $F:=\sum_{i_{1},\ldots,i_{m}}a_{i_{1}}$ . $i_{rr\prime}x_{1}^{i_{1}}\cdots x_{m}^{i_{rr\}}}$

and consider the associated weighted homogeneous polynomial

$F^{*}(x_{0}, x_{1}, \ldots, x_{m}):=\sum_{i_{1},..,i_{7n}}a_{i_{1}}$

$i_{\tau n}x_{0}^{d-i_{1}d_{1}-}$ $-i_{rn}d_{rn}i_{1}x_{1}\cdots x_{m}^{i_{rn}}$

in $(x_{0}, x_{1}, \ldots, x_{n})$ with weights $(1, d_{1}, \ldots, d_{m})$ for some positive integers
$d_{i}$ , where $d:=\max\{i_{1}d_{1}+\cdots+i_{m}d_{m} ; a_{i_{1}}\neq 0\}$ . Assume that

(i) $F^{*}(0, x_{1}, \ldots, x_{m})$ consits of only one monomial,

(ii) if $F(\varphi_{1}, \ldots, \varphi_{m})=0$ for meromorphic functions $\varphi_{i}$ on $C$ , then
at least one of $\varphi_{i}$ ’s is a constant.
Then, for arbitrary $H$-polynomials $Q_{i}$ $(w_{0}, \ldots, w_{n})$ of degree $ d_{i}(1\leq i\leq$

$m)$ , the hypersurface

$V:=\{w=(w_{0} : \ldots : w_{n});w_{0}^{d}F(Q_{1}(w)/w_{0}^{d_{1}}$ , $\ldots$ , $Q_{m}(w)/w_{0}^{d_{rn}})=0\}$

in $P^{n}(C)$ is hyperbolic.

Proof. Consider a holomorphic map $f:=$ $(f_{0} : f_{1} : \cdots : f_{n})$ of
$C$ into $V(\subset P^{n}(C))$ , where $f_{i}$ are entire functions without common
zeros. If $f_{0}\equiv 0$ , then $Q_{i_{()}}(0, f_{1}, \ldots, f_{n})\equiv 0$ for some $i_{0}$ , whence $f$ is a
constant by (HI). Assume that $f_{0}\not\equiv 0$ . Then, $F(\varphi_{1}, \ldots, \varphi_{n})=0$ for

meromorphic functions $\varphi_{i}:=Q_{i}(1, f_{1}, \ldots, f_{n})/f_{0}^{d}’$ . whence some $\varphi_{i_{t)}}$ is
a constant and so $f$ is a constant by (HI). This gives Theorem 3.1.

We give an example satisfying the assumptions of Theorem 3.1.

Proposition 3.2. Set $F(x, y):=x^{p}+y^{p}+x^{r}y^{S}+1$ for positive

integers $p$ , $r$ , $s$ . Assume that

(1) $p<t$ , $6/p+2/t<1$ ,

where $t:=\min(r, s)$ . Then, $F(x, y)$ satisfies the assumptions (i) and (ii)
of Theorem 3.1 for arbitrary positive integers $d_{1}$ and $d_{2}$ .

Proof. Obviously, (i) holds. To see (ii), take nonconstant meromor-
phic functions $\varphi$ , $\psi$ with $F(\varphi, \psi)=0$ . We write $\varphi=f_{1}/f_{0}$ , $\psi=f_{2}/f_{0}$

with entire functions $f_{i}$ such that $f_{1}$ and $f_{2}$ have no common zeros.
Consider the holomorphic map $\Phi$ $:=(f_{0}^{p} : f_{1}^{p} : f_{2}^{p})$ : $C\rightarrow P^{2}(C)$ and hy-
perplanes $H_{j}:=\{w_{j-1}=0\}$ for $j=1,2,3$ and $H_{4}:=$ $\{w_{0}+w_{1}+w_{2}=0\}$ ,

which are in general position. Obviously, the pull-backs $\Phi^{*}(H_{j})$ of $H_{j}$ for
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$j=1,2,3$ , considered as divisors, have no positive multiplicities smaller

than $p$ . Takea point $z_{0}$ in $f^{-1}(H_{4})$ . Since $f_{0}^{p}+f_{1}^{p}+f_{2}^{p}=-f_{1}^{r}f_{2}^{s}f_{0}^{p-(r+s)}$ ,

if $f_{0}(z_{0})\neq 0$ , the multiplicity of $\Phi^{*}(H_{4})$ at $z_{0}$ is at least $t$ . Assume
that $f_{0}(z_{0})=0$ . Then, $f_{1}(z_{0})\neq 0$ and $f_{2}(z_{0})\neq 0$ , because oth-

erwise $\sum_{j=0}^{2}f_{j}(z_{0})^{p}\neq 0$ . This is impossible by the assumption $p<$

$r+s$ . In conclusion, $\Phi^{*}(H_{4})$ has no positive multiplicities smaller than
$t$ . Then, there are constants $c_{0}$ , $c_{1}$ , $c_{2}$ with $(c_{0}, c_{1}, c_{2})\neq(0,0,0)$ such that
$c_{0}\varphi^{p}+c_{1}\psi^{p}+c_{2}=0$ . Because, otherwise, the second main theorem for
holomorphic curves in $P^{n}(C)$ gives 3 $(1-2/p)+(1-2/t)\leq 3$ , which con-
tradicts the assumption(cf., [5, Theorem 3.3.15]). If $c_{2}=0$ , then $\varphi$ and
$\psi$ are obviously constants. Otherwise, we have $c_{0}f_{0}^{p}+c_{1}f_{1}^{p}+c_{2}f_{2}^{p}=0$ .

Since $p\geq 4$ by the assumption, (I is a constant. This gives Proposition
3.2.

By Theorem 3.1 and Proposition 3.2 we have the following:

Proposition 3.3. Let $Q_{i}(w)$ be $H$-polynomials of degree $d_{i}(i=$

$1,2)$ in $n+1$ variables $w=(w_{0}, w_{1}, \ldots, w_{n})$ and $p$ , $r$ , $s$ positive integers
satisfying the condition (1). Then, the zero locus of the polynomial

$R(w):=Q_{1}(w)^{p}w_{0}^{d-pd_{1}}+Q_{2}(w)^{q}w_{0}^{d-pd_{2}}+w_{0}^{d}-Q_{1}(w)^{r}Q_{2}(w)^{s}$

is a hyperbolic hypersurface in $P^{n}(C)$ of degree $d:=rd_{1}+sd_{2}$ .

This improves Masuda-Noguchi’s Theorem as follows:

Theorem 3.4. For each $n\geq 3$ we can take a positive integer
$d(n)$ such that there are hyperbolic hypersurfaces of degree $d$ for every
$d\geq d(n)$ in $P^{n}(C)$ . Here, for example, we can take

(2) $d(n):=9(2^{n}+5\times 3^{n-2})+2^{n}(5\times 3^{n-2}-1)+5\times 3^{n-2}(2^{n}-1)$ .

For the proof of Theorem 3.4, we give the following Lemma:

Lemma 3.5. Let $d_{1}$ and $d_{2}$ be mutually prime positive integers.
For arbitrarily given positive integer $m_{0}$ , every integer $d$ with

$d\geq m_{0}(d_{1}+d_{2})+d_{1}(d_{2}-1)+d_{2}(d_{1}-1)$

can be written as $d=rd_{1}+sd_{2}$ with $r$ , $s\geq m_{0}$ .

This is easily shown by the fact that, for each number $\ell$ with $0\leq\ell<$

$d_{1}$ , we can find integers $r$ , $s$ with $|r|<d_{2}$ , $|s|<d_{1}$ such that $P=rd_{1}+sd_{2}$ .

The proof of Theorem 3.4. To this end, for each $n(\geq 3)$ we
set $d_{1}(n):=2^{n}$ and $d_{2}(n):=5\times 3^{n-2}$ . As is mentioned in the previous
section, we can find $H$-polynomials $Q_{1}$ and $Q_{2}$ of degree $d_{1}(n)$ and $d_{2}(n)$
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respectively. Define $d(n)$ by (2). By Lemma 3.5 we can write every $ d\geq$

$d(n)$ as $d=rd_{1}(n)+sd_{2}(n)$ with $r$ , $s\geq m_{0}:=9$ , because $d_{1}(n)$ and $d_{2}(n)$

are mutually prime. For $p:=8$ and these $r$ , $s$ , which satisfy the condition
(1), we apply Proposition 3.3 to find a homogeneous polynomial $R$ of
degree $d$ such that $V:=$ $\{R=0\}$ is a hyperbolic hypersurface in $P^{n}(C)$ .

References

[1] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math.
Soc, 235(1978), 213–219.

[2] R. Brody and M. Green, A family of smooth hyperbolic hypersurfaces in
$P_{3}$ , Duke Math. J., 44(1977), 873–874.

[3] J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective va-
rieties and jet differentials, Proc. Sympos. Pure Math., Vol. 62, Part 2,
Amer. Math. Soc, Providence, RI, 1997, 285–360.

[4] J.-P. Demaily and J. El Goul, Hyperbolicity of generic surfaces of high
degree in projective 3-space, Amer. J. Math., 122(2000), 515–546.

[5] H. Fujimoto, Value distribution theory of the Gauss map of minimal

surfaces in $R^{m}$ , Aspect of Math. E21, Vieweg, 1993.
[6] H. Fujimoto, A family of hyperbolic hypersurfaces in the complex projec-

tive space, Complex Variables, 43(2001), 273–283.
[7] J. El Goul, Algebraic families of smooth hyperbolic surfaces of low degree

in $P_{C}^{3}$ , manuscripta math., 90(1996), 521–532.
[8] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel

Dekker, 1970.
[9] K. Masuda and J. Noguchi, A construction of hyperbolic hypersurface of

$P^{n}(C)$ , Math. Ann., 304(1996), 339–362.
[10] A. Nadel, Hyperbolic surfaces in $P^{3}$ , Duke. Math. J., 58(1989), 749 -

771.
[11] M. Shirosaki, A hyperbolic hypersurface of degree 10, Kodai Math. J.,

23(2000), 376–379.
[12] Y. T. Siu and S. K. Yeung, Defects for ample divisors of abelian vaarieties,

Schwarz lemma, and hyperbolic hypersurfaces of low degrees,Amer. J.
Math., 119(1997), 1139–1172.

Department of Mathematics
Faculty of Science
Kanazawa University
Kakuma-machi, Kanazawa, 920-1192
Japan



Advanced Studies in Pure Mathematics 42, 2004
Complex Analysis in Several Variables
pp. 115-121

A link between the asymptotic expansions of the
Bergman kernel and the Szeg\"o kernel

Kengo Hirachi

Introduction
Let $\Omega$ be a strictly pseudoconvex domain in $\mathbb{C}^{n}$ . Then the Bergman

kernel $K^{B}$ and the Szeg\"o kernel $K^{S}$ of $\Omega$ have singularities at the bound-
ary diagonal. These singularities admit asymptotic expansions in powers
and $\log$ of the defining function of $\Omega([3], [2])$ and, moreover, the coeffi-
cients of which can be expressed in terms of local invariants of the $CR$

structure of the boundary $\partial\Omega$ as an application of the parabolic invariant
theory developed in [4], [5], [1], [8], [6] and others. While these works
provide a geometric algorithm of expressing the expansion of each ker-
nel, it is not easy to read relations between them from this construction
–for example, we can say very little about the relation between the $\log$

term coefficients of $K^{B}$ and $K^{S}$ , cf. \S 2.
In this note we present a method of relating these asymptotic ex-

pansions. Our strategy is to construct a meromorphic family of kernel
functions $K_{s}$ , $s$

$\in \mathbb{C}$ , such that $K^{B}$ an$dK^{S}$ are realized as special values
of $K_{s}$ . In the case of the unit ball, $\{|z|<1\}$ , such a family is given by

$K_{s}(z)=\pi^{-n}\Gamma(n-s)(1-|z|^{2})^{s-n}$ ,

where $\Gamma(\alpha)$ is the gamma function, and $K_{-1}$ , $K_{0}$ give $K^{B}$ , $K^{S}$ , respec-
tively. Note that, for $s$ $<0$ , $K_{s}$ is characterized as the Bergman kernel
for the weighted $L^{2}$ norm defined by the measure $(1-|z|^{2})^{-s-1}/\Gamma(-s)dV$ ,

see \S 1. For general strictly pseudoconvex domains, we begin by defin-
ing $K_{s}$ for $s$ $<0$ as the weighted Bergman kernel, and then extend to
$s\in \mathbb{C}$ by analytic continuation. Here we only consider the asymptotic
expansion of $K_{s}$ and define the analytic continuation as a meromorphic
family of formal series, see \S 2. We then apply the invariant theory to ex-
press $K_{s}$ in terms of geometric invariants of the boundary (Theorem 2).
In these expansions, all $K_{s}$ contain the same invariants up to universal
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constants depending polynomially on $s$ . These formulae, in particular,
give a relation between $K^{B}=K_{-1}$ and $K^{S}=K_{0}$ .

Note that the kernel functions $K_{s}$ for $s\in \mathbb{Z}$ have been introduced in
Hirachi-Komatsu [7] and the present note is a continuation of that work.
In [7], $K_{s}$ are defined as the solutions of simple holonomic systems, which
naturally arise from Kashiwara’s microlocal analysis of the Bergman
kernel [9]. While this point of view is not given explicitly in this note,

this is also the main tool of the proofs of Theorems 1 and 2; the details
will be given in my forthcoming paper.

\S 1. Weighted Bergman kernels

Let $\Omega\subset \mathbb{C}^{n}$ be a domain with $C^{\infty}$ smooth boundary. Then there is
a function $r\in C^{\infty}(\overline{\Omega})$ , called a $d$efining function, such that $\Omega=\{r>0\}$

and $dr\neq 0$ on $\partial\Omega$ . Fixing such an $r$ , we define for $s<0$ a weighted $L^{2}$

norm on $\Omega$ by

(1) $||f||_{s}^{2}=\int_{\Omega}|f(z)|^{2}\frac{r(z)^{-s-1}}{\Gamma(-s)}dV(z)$ ,

where $dV(z)$ is the standard Lebesgue measure on $\mathbb{C}^{n}$ . Let

$H_{s}(\Omega, r):=$ { $ f\in$ O( $\Omega)$ : $||f||_{s}<\infty$ },

the Hilbert space of weighted $L^{2}$ holomorphic functions on $\Omega$ . If we take
a complete orthonormal system $\{h_{j}\}_{j=0}^{\infty}$ of $H_{s}(\Omega, r)$ , then the series

$K_{s}[r](z, \overline{w}):=\sum_{j}h_{j}(z)\overline{h_{j}(w)}$

converges for $(z, w)\in\Omega\times\Omega$ and define a function, which is shown to be
independent of the choice of $\{h_{j}\}$ . We call $K_{s}[r]$ the weighted Bergman
kernel. Note that the Bergman kernel $K^{B}$ is given by $K_{-1}$ $[r]$ , which is
clearly independent of the choice of $r$ .

In case $s=0$ , the right-hand side of (1) does not make sense because
$\Gamma(-s)$ has simple poles at $s\in \mathbb{N}_{0}=\{0,1,2, \ldots \}$ . However, we may
define $||$ . $||_{0}$ by taking the limit

$\lim_{s\rightarrow-0}||f||_{s}^{2}=\int_{\partial\Omega}|f|^{2}d\sigma(z)$ , $f\in C^{0}(\overline{\Omega})$ ,

where $ d\sigma$ is the volume element on $\partial\Omega$ normalized by the condition

$d\sigma\wedge dr=dV$ on $\partial\Omega$ .
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Thus it is natural to define $H_{0}(\Omega, r):=ker\overline{\partial}_{b}\subset L^{2}(\partial\Omega, d\sigma)$ , where $\overline{\partial}_{b}$ is
the tangential Cauchy-Riemann operator of $\partial\Omega$ . Since each $f\in H_{0}$ $(\Omega, r)$

admits an extension to $f\in \mathcal{O}(\Omega)$ , we may also regard $H_{0}(\Omega, r)\subset O(\Omega)$ .

The Szeg\"o kernel is then defined by $K^{S}[r](z, \overline{w}):=\sum_{j}h_{j}(z)\overline{h_{j}(w)}$ ,

where $\{h_{j}\}_{j}$ is a complete orthonormal system of $H_{0}(\Omega, r)$ .

Model case. In the case of the unit ball $\Omega_{0}$ , we may take $r(z)=$

$1-|z|^{2}$ . Then the monomials of $z$ form a complete orthogonal system
of $H_{s}(\Omega_{0}, r)$ (cf. [7]) and thus

$K_{s}[r](z, \overline{w})=\sum_{\alpha}\frac{z^{\alpha}\overline{w}^{\alpha}}{||z^{\alpha}||_{s}^{2}}=\frac{\Gamma(n-s)}{\pi^{n}}(1-z\cdot\overline{w})^{s-n}$ .

The right-hand side is a meromorphic function of $s\in \mathbb{C}$ (with parameters
$z$ , $w\in\Omega)$ and, thus $K_{s}[r](s<0)$ can be analytically continued to a
meromorphic function of $s\in \mathbb{C}$ , which we also denote by $K_{s}[r]$ . Then,

in particular, $K_{0}[r]$ gives the Szeg\"o kernel $K^{S}[r]$ .

\S 2. Asymptotic expansions of the weighted Bergman kernels

In what follows, we assume that $\Omega$ is strictly pseudoconvex, and
mainly consider the restriction to the diagonal of the kernel functions
$K_{s}[r](z):=K_{s}[r](z, \overline{z})$ .

It is known from the work of Fefferman [3] that the boundary sin-
gularity of the Bergman kernel $K^{B}(z)$ takes the form $\varphi r^{-n-1}+\psi\log r$ ,

where $\varphi$ , $\psi\in C^{\infty}(\overline{\Omega})$ . Based on his analysis, G. Komatsu has shown
that the weighted Bergman kernels $K_{s}[r]$ admit similar expansions.

Theorem ([10]). For $s$ $<0$ , the weighted Bergman kernel $K_{s}[r]$

$ad$mits the following asymptotic expansion at the boundary:

(2) $K_{s}[r]=\{$

$\varphi^{(s)}[r]r^{s-n}+\psi^{(s)}[r]\log r$ if $s\in \mathbb{Z}$ ,

$\varphi^{(s)}[r]r^{s-n}$ if $s$ $\not\in \mathbb{Z}$ ,

where $\varphi^{(s)}[r]$ , $\psi^{(s)}[r]\in C^{\infty}(\overline{\Omega})$ .

If we introduce the functions

$\Phi_{s}[r]=\{$ $\frac{\Gamma(-s)(-1)^{\backslash +1}}{s!}r^{s}\log r^{s}r$
$ifs\in ifs\in \mathbb{C}\backslash \mathbb{N}_{0}\mathbb{N}_{0},$

’

then we may rewrite the expansions (2) in a unified form:

(3) $K_{s}[r](z)=\sum_{j=0}^{\infty}\varphi_{j}^{(s)}[r](z)\Phi_{s-n+j}[r](z)$ , $\varphi_{j}^{(s)}[r]\in C^{\infty}(\overline{\Omega})$ .
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Here the coefficients $\varphi_{j}^{(s)}[r]$ are not uniquely determined because $r$ and
$z$ are not independent.

Our basic result that enables us to define the meromorphic family
$K_{s}[r]$ , $s\in \mathbb{C}$ , is the following

Theorem 1. The coefficients $\varphi_{j}^{(s)}$ $[r]$ of (3) can be chosen so that

$\varphi_{j}^{(s)}[r]=\sum_{k=0}^{2j}a_{j,k}[r]s^{k}$ holds for functions $a_{j,k}$
$[r]\in C^{\infty}(\overline{\Omega})$ that are

independ$ent$ of $s$ .

Taking $\varphi_{j}^{(s)}[r]$ as in the theorem above and then using the relation
$s\Phi_{s+j}$ $[r]=-r\Phi_{s+j-1}$ $[r]-j\Phi_{s+j}$ $[r]$ , we may rewrite (3) in the form

(4) $K_{s}[r]=\sum_{j=-\infty}^{\infty}a_{j}[r]\Phi_{s-n+j}[r]$ ,

where $a_{j}[r]\in C^{\infty}(\overline{\Omega})$ are independent of $s$ and satisfies $a_{j}[r]=O(r^{-2j})$

for $j<0$ (hence the boundary singularity of $a_{j}[r]\Phi_{s-n+j}[r]$ gets weaker
as $|j|\rightarrow\infty$ ). Note that $a_{j}[r]$ modulo $O(r^{\infty})$ is now uniquely determined
by $r$ , and moreover it is shown that map $r\mapsto a_{j}[r]$ is given by a partial
differential operator.

Now we $d$efine $K_{s}[r]$ for $s\in \mathbb{C}\backslash $ $(-\infty, 0)$ by the formula (4), which
is regarded as formal series. Then we can show, in particular, that $K_{0}[r]$

gives the asymptotic expansion of the Szeg\"o kernel $K^{S}[r]$ .

\S 3. Transformation law and an invariant expansion of $K_{s}[r]$

We next examine the transformation law of $a_{j}[r]$ under biholomor-

phic maps $ F:\overline{\Omega}\rightarrow\Omega$ . Recall [3] that $F$ can be extended to a diffeomor-
phism up to the $boundary_{-}.$ So, for a defining function $r$ of $\Omega$ , we may

give a defining function of $\Omega$ by

(5) $\overline{r}:=|\det F^{/}|^{-2/(n+1)}r\circ F$,

where $\det F’$ is the holomorphic Jacobian of $F$ . Now from the definition
of the norm $||$ . $||_{s}$ , we see that the weighted Bergman kernel transforms
according to

(6) $K_{s}[r\neg=|\det F’|^{2(n-s)/(n+1)}K_{s}[r]\circ F$.

Thus, substituting these transformation laws into (4), we get

(7) $a_{j}$
$[r\neg=|\det F’|^{2j/(n+1)}a_{j}[r]\circ F$

by the uniqueness of the expansion (4).
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Our next task is to construct functionals of $r$ that transform like
this under biholomorphic maps – and hopefully express $a_{j}[r]$ in terms
of these functionals. Here we utilize the ambient metric construction of
[4]. Associated to each $r$ , we first define a Lorentz-Kahler metric $g=g[r]$

on a neighborhood of $\mathbb{C}^{*}\times\partial\Omega\subset \mathbb{C}^{*}\times \mathbb{C}^{n}$ by $g[r]=\sum_{j,k=0}^{n}g_{j\overline{k}}dz_{j}d\overline{z}_{k}$ ,

where $g_{j\overline{k}}=\partial^{2}r_{\#}/\partial z_{j}\partial\overline{z}_{k}$ . Let $R$ $=R[r]$ be the curvature of $g$ and
$R^{(p,q)}=\overline{\nabla}^{q-2}\nabla^{p-2}R$ be its iterated covariant derivatives. Then consider
complete contractions of the form

$W_{\#}=$ contr $(R^{(p_{1},q_{1})}\otimes\cdots\otimes R^{(p_{rn},q_{rn})})$ ,

with $\sum p_{l}=\sum q\iota=m+w$ . Such a contraction $W_{\#}$ assigns to each
$r$ a smooth function $W[r]:=W_{\#}[r]|_{z_{O}=0}$ on $\overline{\Omega}$ near $\partial\Omega$ . We call the
functional $r\mapsto W[r]$ a Weyl functional of weight $w$ . If $W$ has weight $w$ ,

then under (5), we have the desired transformation law

$W[\neg r=|\det F’|^{2w/(n+1)}W[r]\circ F$.

It is a natural hope that all $a_{j}$ can be expressed in terms of these
Weyl functionals. However, at this stage, it is hard to deal with the
case of arbitrary $r$ . So we here choose a good class of defining functions
in such a way that we can apply the invariant theory of [4], [1], [6].
To specify a class of defining functions, following [6], we consider the
following complex Monge-Amp\‘e$re$ equation

$(-1)^{n}\det(\partial^{2}U/\partial z^{j}\partial\overline{z}^{k})_{0\leq j,k\leq n}=|z_{0}|^{2n}$

for a function $U(z_{0}, z)$ on $\mathbb{C}^{*}\times\overline{\Omega}$ . This equation admits asymptotic
solutions along $\mathbb{C}^{*}\times\partial\Omega$ of the form

$U=r_{\#}+r_{\#}\sum_{k=1}^{\infty}\eta_{k}\cdot(r^{n+1}\log r_{\#})^{k}$ ,

where $r$ is a $C^{\infty}$ defining function of $\Omega$ , $r_{\#}$
$(z_{0}, z)=|z_{0}|^{2}r(z)$ and $\eta_{k}\in$

$C^{\infty}(\overline{\Omega})$ . For such a solution $U$ , the smooth part $r_{\#}=|z_{0}|^{2}r$ is uniquely
determined. So, for each $\Omega$ , we may define $\mathcal{F}_{\Omega}$ to be the totality of $r$

that arises as the smooth part of an asymptotic solution $U$ . This class
$\mathcal{F}_{\Omega}$ is shown to be preserved under the pull-back (5).

Now we use Weyl functionals to express $K_{s}[r]$ for $r\in \mathcal{F}_{\Omega}$ . The
invariant theory of [6] implies that each $a_{j}$

$[r]$ admits an asymptotic ex-
pansion

(8) $a_{j}[r]=\sum_{k=0}^{\infty}W_{j,k}[r]r^{k}$ , $r\in \mathcal{F}_{\Omega}$ ,
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where $W_{j,k}$ is a linear combination of Weyl functionals of weight $j+k$ .

Hence, using $r\Phi_{s-m}$ $[r]=$ $(m-s)$ I $s-m+1[r]$ to absorb all explicit $r$ in
(8) into other $\Phi_{s-l}[r]$ , we get

Theorem 2. If $r\in \mathcal{F}_{\Omega}$ , then $K_{s}[r]$ admits an expansion

(9) $K_{s}[r]=\sum_{j=0}^{\infty}W_{j}^{(s)}[r]\Phi_{s-n+j}[r]$ ,

where each $W_{j}^{(s)}$ is a linear combination of Weyl functionals of weight
$j$ whose coefficients are polynomials in $s$ of $d$egree $\leq 2j$ .

The first three terms of the expansion are given by

$\pi^{n}K_{s}[r]=\Phi_{s-n}[r]+\frac{1}{24}||R||_{zo=1}^{2}\Phi_{s-n+2}[r]+O(r^{s-n-3})$ .

He $re$ the second term $W_{s-n+1}^{(s)}$ vanishes. Thus we see in particular that
the Bergman and the Szeg\"o kernels have the same expansion in $\Phi_{s}[r]$ up
to this order.
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On the non-existence of smooth Levi-flat
hypersurfaces in $\mathbb{C}\mathbb{P}_{n}$

Andrei Iordan

Abstract.

We prove that there exists no $C^{m}$ Levi-flat real hypersurface in

CIP $n$ for $n$ $\geq 2$ and $m\geq 4$ . This is an improvement of the regularity
in a theorem of Y.-T. Siu who proved this result for $m\geq 8$ .

In [9] $Y$-T. Siu proved the following theorem:

Theorem 1 ([9]). There exists no $C^{m}$ Levi-flat real hypersurface
in $C\mathbb{P}_{n}$ for $n\geq 2$ and $m\geq 8$ .

This theorem answers to a question raised by D. Cerveau [1]. The
real analytic case of Theorem 1 was proved by A. Lins Neto [5] for $n\geq 3$

and by T. Ohsawa [7] for $n\geq 2$ . The case $n\geq 3$ and $m\geq 3n/2+7$ of
Theorem 1 was proved by Siu [8].

The proof of Theorem 1 is based on the following regularity result
for the $\overline{\partial}$-operator:

Theorem 2 ([9]). Let $\Omega$ be a domain with $C^{m+1}$ Levi-flat bound-
ary in $C\mathbb{P}_{22}m\geq 3$ . Let $g$ be a $C^{m+1}\overline{\partial}-$ closed $(0, 1)$ -form on $\Omega$ which
is $C^{m}$ up to the boundary of $\Omega$ . Then there exists $u$ belonging to the
Sobolev space $W^{m}$ $(\Omega)$ such that $\overline{\partial}u=g$ .

A recent paper of G. M. Henkin and the author [4] study the regu-
larity of the $\overline{\partial}$-operator on peudoconcave domains in $C\mathbb{P}_{n}$ .

By using the results of [4] and Theorem 2 we prove in this note that
there exists no $C^{m}$ Levi-flat real hypersurface in CI $n$ for $n\geq 2$ and
$m\geq 4$ . The methods are the same as in [4].

Let $\Omega$ be a domain of CIP $n$ and $E$ a holomorphic hermitian vector
bundle over $\Omega$ . We denote by $W_{(p,q)}^{k}$ $(\Omega;E)$ the $(p, q)-$ forms on $\Omega$ with

coefficients in the Sobolev space $W^{k}(\Omega)$ and values in the bundle $E$

endowed with the Sobolev norm $||\cdot||_{k}$ (or $||\cdot||_{k,\Omega}$ ), $A_{(p,q)}^{\infty}$ $(\Omega;E)$ the set of
$\overline{\partial}-$case $(p, q)-$ forms on $\Omega$ with values in $E$ which have a $C^{\infty}$ extension
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to $\overline{\Omega}$ and $AW_{(p,q)}^{k}$ $(\Omega; ^{E})$ the set of $\overline{\partial}-$closed $(p, q)-$forms contained in

$W_{(p,q)}^{k}(\Omega;E)$ .

Let $\delta(z)$ be the distance from $ z\in\Omega$ to the boundary of $\Omega$ with
respect to the Fubini-Study metric. A theorem of Takeuchi [10] shows
that for every pseudoconvex domain $\Omega$ there exists a positive constant
$\mathcal{K}_{n}\geq 1/3$ such that $ i\partial\overline{\partial}(-\log\delta)\geq \mathcal{K}_{n}\omega$ where $\omega$ is the Kahler form of
the Fubini-Study metric (see also [2], [6]). We denote by $L_{(p,q)}^{2}$ $(\Omega; _{\delta^{k}} ; _{E})$

the set of $E$-valued $(p, q)-$form $f$ on $\Omega$ such that $\delta^{k}f$ is an $L^{2}$ form on
$\Omega$ .

We say that a domain
$\Omega\subset\neq$

CIP $n$ is pseudoconcave if CIP $n\backslash \overline{\Omega}$ is pseu-

doconvex.
Let $\Omega_{-}$ be a pseudoconcave domain in $C\mathbb{P}_{n}$ , $k$ a positive integer and

$f\in W_{(p,n-1)}^{k}(\Omega_{-; ^{O(m))}}$ a $\overline{\partial}-$closed form. We set $\Omega_{+}=$ CI $n\backslash \overline{\Omega_{-}}$ . We

say that$-f$ verifies the moment condition of order $k$ if there exists an ex-

tension $f\in W_{(p,n-1)}^{k}(C\mathbb{P}_{n};O(m))$ of $f$ such that $\overline{\partial}\overline{f}\in L_{(p,n)}^{2}(\Omega_{+};\delta^{-k+1};O(m))$

and $\int_{\Omega_{+}}\overline{\partial}\overline{f}\wedge h=$ Ofor every holomorphic form $h\in L_{(n-p,0)}^{2}(\Omega_{+};\delta^{k-1} ;O(-m))$ .

Every form $f=\overline{\partial}u$ where $u\in W_{(p,n-2)}^{k+1}(\Omega_{-; ^{O(m))}}$ verifies the moment

condition of order $k$ .

We recall here the following consequence of Theorem 7.1 and The-
orem 8.7 of [4]:

Theorem 3 ([4]). Let $\Omega_{-}$ be a pseudoconcave $d$omain with Lips-
chitz boundary in CI $n$ and $k\geq 1$ an integer such that $2(k-1)\mathcal{K}_{n}-m+n+$

$1>0$ . Then for every $\overline{\partial}-$ close $d$ form $f\in C_{(n,n-1)}^{\infty}(\overline{\Omega_{-}};O(m))$ verifying

the moment condition of $ord$er $k$ there exists $u\in W_{(n,n-2)}^{k}$ $(\Omega_{-; ^{O(m))}}\cap$

$C_{(n,n-2)}^{\infty}(\Omega_{-} ; o(m))$ such that $\overline{\partial}u=f$ an $d||u||_{k}\leq C_{k}||f||_{k}$ , where $C_{k}$

is a constant $ind$ependent of $f$ .

We use also the following approximation lemma (Lemma 8.3 of [4]):

Lemma 1 ([4]). Let $\Omega$ be a relatively compact domain with Lips-
chitz boundary in a complex manifold, $E$ a holomorphic bundle on $X$ .
Suppose that there exists a fun $d$amental system of neighborhoods $\{\Omega_{\xi i}\}_{\epsilon>0}$

of $\Omega$ with the following property: for every $\overline{\partial}- ex$act form $\Phi=\overline{\partial}\psi$ with
$\psi\in A_{(p,q)}^{\infty}$ $(\Omega_{\Xi}; ^{E})$ , there exists $0<\in’<\in and$ $\varphi\in W_{(p,q)}^{s}$ ( $\Omega_{\in}\prime $;$ ^{E)}\cap$

$C_{(p,q)}^{\infty}$ ( $\Omega_{\epsilon^{J }}$ such that $\overline{\partial}\varphi=$ (I and $||\varphi||_{s,\Omega_{\epsilon’}}\leq C||$ I $||_{s,\Omega_{\epsilon’}}$ with $C$ in-

dependent of $\Phi$ $ and\in$ . Then, every $f\in AW_{(p,q)}^{s}(\Omega;E)\cap C_{(p,q)}^{\infty}(\Omega;E)$

belongs to the closure of $A_{(p,q)}^{\infty}$ $(\Omega; ^{E})$ in $W_{(p,q)}^{s}$ $(\Omega;E)$ .

From Theorem 3 and Lemma 1 we obtain:
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Proposition 1. Let $\Omega_{-}$ be a pseudoconcave domain with Lipschitz
bound$ary$ of $CIP_{2}$ . Then $A^{\infty}(\Omega_{-} ; O(1))$ is dense in $AW^{3}(\Omega_{-} ; O(1))$ .

Proof. We identify the $O(1)-$valued sections of $A^{\infty}(\Omega_{-} ; O(1))$ with
the (1$O(4)-$valued $(2, 0)-$ form of $A_{(2,0)}^{\infty}$ $(\Omega_{-} ; o(4))$ . Since $\mathcal{K}_{2}\geq 1/3$ , it

follows that $2(k-1)\mathcal{K}_{2}-m+n+1>0$ for $k=3$ and $m=4$ . Let
$\{\Omega_{\Xi}\}_{\in>0}$ be a fundamental neighborhood system $\{\Omega_{\epsilon}\}_{\in>0}$ of $\overline{\Omega_{-}}$ such
that $\Omega_{\Xi}$ is a pseudoconcave domain with Lipschitz boundary of $CIP_{2}$ for
each $\in>0$ . Since every form $f=\overline{\partial}u$ where $u\in A_{(2,0)}^{\infty}$ $(\Omega_{\in}; o(4))$ verifies

the moment condition of order 4, Proposition 1 follows from Theorem 3
and Lemma 1. Q.E.D.

Since

$dimA^{\infty}(\Omega_{-} ; O(1))=dimA_{(2,0)}^{\infty}$ $(\Omega_{-} ; O(4))=3$

(see Proposition 10.1 of [4]), from Proposition 1 we obtain:

Corollary1. dim $AW^{3}(\Omega_{-} $;$ O(1))=3$ .

Theorem 4. There exists no $d$omain with $C^{k}$ Levi-flat bound$ary$

in CI $n$ for $n\geq 2$ an $dk\geq 4$ .

Proof. The proof is done by using Theorem 2 and an extension
argument as in the proof of Proposition 4.3 of [4]. By using projections
it is enough to prove the result for $n=2$ .

Let $\Omega$ be a domain with $C^{4}$ Levi-flat boundary in $C\mathbb{P}_{2}$ , $ a\in\Omega$ and
$b\in \mathbb{C}\mathbb{P}_{2}\backslash \overline{\Omega}$ . We denote by $H$ the complex projectiv line through $a$ and
$b$ and we choose homogeneous coordinates $z=(z_{0}; z_{1} ; z_{2})$ for a point
$[z]\in$ CI2 such that the complex projectiv line through $a$ and $b$ is given

by $H=\{[z]|z_{0}=0\}$ . Let $\Omega’$ be an open neighborhood of $\overline{\Omega}$ which does
not contain the point $b$ and $h\in H^{0,0}(H\cap\Omega’; O(1))$ . By [3] there exists a

Stein neighborhood $V$ of $H\cap\Omega’$ and let $\overline{h}\in H^{0,0}(V;O(1))$ an extension
of $h$ .

Let $\chi$ be a $C^{\infty}$ function on CI2 with support contained in $V$ such
that $\chi\equiv 1$ near $ H\cap\Omega$ . By identifying the sections of $O(1)$ with the 1-

homogeneous functions in homogeneous coordinates, $\frac{\overline{h\partial}\chi}{z_{()}}$ defines a form

$g\in C_{(0\underline{1},)}^{\infty}(\overline{\Omega})$ . By Theorem 2 there exists $u\in W^{3}$ $(\Omega)$ such that $\overline{\partial}u=g$ .

Then $\chi h-z_{0}u$ defines a section $f\in AW^{3}(\Omega;O(1))$ such that $f=h$ on
$ H\cap\Omega$ . This implies that $AW^{3}(\Omega; O(1))$ is infinite dimensional and it
contradicts the Corollary 1. Q.E.D.
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Recent development on Grauert domains

Su-Jen Kan

\S 1. Introduction

The purpose of this article is to give a short survey on the recent
development of a canonical complex structure, the so called $ad$apted
complex structure, on the tangent bundle of a real-analytic Riemannian
manifold.

It was observed by Grauert [G] that a real-analytic manifold $X$

could be embedded in a complex manifold as a maximal totally real
submanifold. One way to see this is to complexify the transition func-
tions defining $X$ . However, this complexification is not unique. In [G-S]
and [L-S], Guillemin-Stenzel and independently Lempert-Sz\"oke encom-
pass certain conditions on the ambient complex structure to make the
complexification canonical for a given real-analytic Riemannian mani-
fold. In short, they were looking for a complex structure, on part of
the cotangent bundle $T^{*}X$ , compatible with the canonical symplectic
structure on $T^{*}X$ . Equivalently, it is to say that there is a unique com-
plex structure, the adapted complex structure, on part of the tangent
bundle of $X$ making the leaves of the Riemannian foliation on $TX$ into
holomorphic curves. The set of tangent vectors of length less than $r$

equipped with the adapted complex structure is called a Grauert tube
$T^{r}X$ . For each $X$ , there corresponds a $r_{\max}(X)\geq 0$ which is the maxi-
mal real number such that the adapted complex structure is defined on
$T^{r}X$ for all $r\leq r_{\max}(X)$ . Though each Grauert tube over the same
Riemannian manifold are diffeomorphic to each other, it was proved in
[K1] and [Szl] that $T^{r}X$ and $T^{s}X$ are biholomorphically nonequivalent
when $r\neq s$ . A domain $D$ in which the adapted complex structure is

defined and $X\subset D\subset TX$ , is called a Grauert $d$omain. The largest one
of such Grauert domains is called the maximal Grauert $d$omain in $TX$ .

In general, the maximal Grauert domain is strictly larger than $T^{r_{rr)aI}}X$ .
They are the same when $X$ is a symmetric space of rank-one. The do-
main of definition depends on the geometry of $X$ . Lempert and Sz\"oke

have the following estimate on the existence of domain of definition.
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Theorem (Lempert-Sz\"oke). If the sectional curvatures of $X$

$ are\geq\lambda$ , $\lambda<0$ and the $ad$apted complex structure exists on $T^{r}X$ then
$r<\frac{\pi}{2\sqrt{-\lambda}}$ .

\S 2. Rigidity of Grauert tubes

Since the adapted complex structure is constructed canonically as-
sociated to the Riemannian metric $g$ of $X$ , the differentials of the isome-
tries of $X$ are automorphisms of $T^{r}X$ . Conversely, it is interesting to
see whether all automorphisms of $T^{r}X$ come from the differentials of
the isometries of $X$ or not. When the answer is affirmative, we say the
Grauert tube is rigid.

With respect to the adapted complex structure, the length square
function $\rho(x, v)=|v|^{2}$ , $v\in T_{x}X$ , is strictly plurisubharmonic. When the
center $X$ is compact, the Grauert tube $T^{r}X$ is exhausted by $\rho$ , hence
is a Stein manifold with smooth strictly pseudoconvex boundary when
the radius is less than the critical one. Applying the existence theorem
of Cheng-Yau, there exists an invariant complete K\"ahler-Einstein met-
ric $g_{\kappa Fa}$ of negative scalar curvature -1. Let $\omega_{KP_{\lrcorner}^{\urcorner}}$ , which is a symplectic
form on $T^{r}X$ , denote the imaginary part of $g_{KFx}$ . Burns and Hind proved
that $(T^{r}X, \omega_{KF_{\lrcorner}^{\urcorner}})$ is symplectomorphic to $(T^{*}X, d(pdq))$ via a symplec-
tomorphism fixing $X$ where $pdq$ is the canonical Liouville 1-form on the
cotangent bundle. Together with the fact that the automorphism group
of $T^{r}X$ is a compact Lie group, they (cf. [B], [B-H]) were able to prove
the following rigidity result for Grauert tubes over compact real-analytic
Riemannian manifolds.

Theorem (Burns-Hind). Any Grauert tube of finite radius over
a compact real-analytic Riemannian manifold is rigid.

When $X$ is non-compact nothing particular is known, not even to
the general existence of a Grauert tube over $X$ , i.e. the $r_{\max}$ could very
well shrink to zero. When $X$ is non-compact, most of the good properties
in the compact cases were lacking since the length square function $\rho$ is
no longer an exhaustion. By now, the only two non-compact cases we
are sure about the existence of Grauert tubes are those over $co$-compact
real-analytic Riemannian manifolds, the Grauert tubes are simply the
lifting of the Grauert tubes over their compact quotients, and Grauert
tubes over real-analytic homogeneous Riemannian manifolds. In [K2],
the author proved the following characterization on Grauert tubes.

Theorem (Kan 1). If a Grauert tube $T^{r}X$ is covere $d$ by the ball,
then $X$ is the real hyperbolic space.
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Using this and an extended version of Wong-Rosay theorem on the
characterization of the unit ball, Kan and Ma (cf. [K-M 1,2] and [K3])
proved the rigidity for Grauert tubes over compact or non-compact lo-
cally symmetric spaces.

Later on, the author generalized the Wong-Rosay characterization
to a general setting in any complex manifold and hence obtained:

Theorem (Kan 2). Let $T^{r}X$ be a Grauert tube over homogeneous
Riemannian manifold of $r<r_{\max}$ . Then $T^{r}X$ is either rigid or the ball.

Here we need the condition $r<r_{\max}$ since the proof heavily relies
on the strictly pseudoconvexity of some good boundary points. We don’ $t$

know whether it is possible to have more general rigidity other than this
since the homogeneous spaces seem to be the best we could expect for
Grauert tubes’ construction to exist.

\S 3. Maximal Grauert domains

It is interesting to see whether the rigidity holds for $T^{r_{rnaI}}X$ when $X$

is not compact. As mentioned in the introduction, the maximal Grauert
domain coincide with $T^{r}’\prime’ aJX$ when $X$ is a symmetric space of rank-
one. In [BHH], the authors considered the maximal Grauert domains
over non-compact symmetric spaces. They showed that such maximal
Grauert domains could be described algebraically which are correspon-
dent to domains defined and studied by Akhiezer and Gindikin in [A-G].
They proved that

Theorem (Burns-Halverscheid-Hind 1).

(1) The maximal Grauert $d$omain over a non-compact symmetric
space is either rigid or Hermitian symmetric.

(2) When $X$ isanon-compact symmetric space of rank-one, $T^{r_{rr\}aI}}X$

is never rigid.

They also verified a conjecture of Akhiezer and Gindikin on the
Steinness of such domains.

Theorem (Burns-Halverscheid-Hind 2). The maximal Grauert
$d$omain over a non-compact symmetric space is Stein.

By now, all examples we know are Stein. It is natural to ask whether
all Grauert tubes or maximal Grauert domains are Stein. Recently
Halverscheid and Iannuzzi [H-I] answer this question negatively. The
example they consider is the 3-dimensional Heisenberg group. Their
calculation works for generalized Heisenberg groups as well.
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Theorem (Halverscheid-Iannuzzi). The maximal Grauert do-
main over a generalized Heisenberg group is neither holomorphically sep-
arable nor holomorphically convex.

\S 4. On the K\"ahler potential and $CR$ invariants

Another characteristic feature of a Grauert tube over a compact
Riemannian manifold is that it is exhausted by a non-negative strictly
plurisubharmonic function whose square root satisfies the complex ho-
mogeneous Monge-Amp\‘e$re$ equation away form the zero section. Em-
phasizing on this Monge-Amp\‘e$re$ equation, some very nice results were
obtained by Aguilar and by Stenzel.

In this section, we ask $X$ to be compact. It is clear from the con-
struction that a Grauert tube $T^{r}X$ , $r<r_{\max}$ is a Stein manifold with
smooth strictly pseudoconvex boundary points. The existence of an in-
variant complete Kihler-Einstein metric of negative scalar curvature -1
was guaranteed. Since the construction of a Grauert tube is decided
by the Monge-Amp\‘e$re$ equation, it was expected that there might be a
chance that this K\"ahler-Einstein metric is completely determined by the
length square function $\rho$ . R. Aguilar established a connection between
potentials for Kahler-Einstein metrics in a neighborhood of $X$ and the
Riemannian density function of $X$ . He proved that this occurs only
when the density function of $X$ depends solely on the geodesic distance
function( such kind of manifold is called a harmonic manifold).

Theorem (Aguilar). Suppose the Grauert tube $T^{r}X$ admits $a$

K\"ahler-Einstein metric with a K\"ahler potential that solely $d$epen $ds$ on $\rho$ .

Then $X$ is a harmonic manifold.

It is clear that the $(2n-1)-$dimensional strictly pseudoconvex bound-
ary $\partial(T^{r}X)$ of the Grauert tube $T^{r}X$ is a $CR$ manifold when $X$ is
compact. The one-form $\theta=-Im\partial\rho$ has provided a pseudohermitian
structure on it. There are two natural families of curves on $\partial(T^{r}X)$ : the
orbits of the geodesic flows coming from the Riemannian metric of $X$

and chains, which are $CR$-invariants used to characterize $CR$ manifolds.
In [St] , Stenzel asked the question that whether the above two kinds

of curves are related. He studied this pseudohermitian structure via
the Fefferman metric and then related the pseudohermitian invariants
of $\partial(T^{r}X)$ to the invariants of the ambient K\"ahler metric and eventually
to the original metric of $X$ .

Theorem (Stenzel).

(1) Suppose there exists a $\delta>0$ such that the orbits of the geodesic
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flows are chains on $\partial(T^{r}X)$ for all $ r<\delta$ . Then $X$ is an Rie-
mannian Einstein manifold.

(2) If $X$ is a harmonic manifold, then the orbits of the geodesic

flows are chains on $\partial(T^{r}X)$ , for all $r<r_{\max}$ .

\S 5. Unbounded Grauert tubes

When $ r=\infty$ , i.e., when the whole tangent bundle $TX$ is a Grauert
tube of infinite radius, the situation is completely different from the cases
of finite radii. In this case, we call $TX$ an unbounded Grauert tube.

One trivial example is by taking $X=S^{2}$ with the standard metric.
The adapted complex structure is defined on the whole tangent bun-
dle, which is biholomorphic to the complex quadric $Q$ $=\{(z_{1}, z_{2}, z_{3})\in$

$\mathbb{C}^{3}|z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=1\}$ . The unbounded Grauert tube $TS^{2}$ is clearly not
rigid.

One interesting question is to ask whether unbounded Grauert tubes
over compact Riemannian manifolds have algebraic embeddings in $\mathbb{C}^{N}$

similar to the above round sphere case. Verifying the existence of a
pair of real-valued exhaustion functions with the growth properties re-
lated to Demailly’s conjecture on the characterization of affine algebraic
manifolds. Aguilar and Burns proved the following

Theorem (Aguilar-Burns 1).

Suppose $\Omega=TX$ is an unbounded Grauert tube over a compact

manifold X. Then $\Omega$ is an affine algebraic manifol $d$ .

They also classify all possible unbounded Grauert tubes $TX$ when
$X$ is of dimension 2.

Theorem (Aguilar-Burns 2).

Suppose $\Omega$ is an unbounded Grauert tube over a compact manifold
$X^{2}$ . Then $\Omega$ is biholomorphic to one of $\mathbb{C}^{*}\times \mathbb{C}^{*}$ , $(\mathbb{C}^{*}x\mathbb{C}^{*})/Z_{2}$ , $Q$ or
$Q/Z_{2}$ .

\S 6. Other applications

There are also some interesting applications to this adapted complex
structure done by R. Sz\"oke in [Sz2] and [Sz3]. In [Sz2], Sz\"oke tried to link
the adapted complex structure over compact rank-one symmetric spaces
to a complex structure $J_{S}$ defined on the punctured tangent bundle.
The latter is preserved by the normalized geodesic flow which makes it
possible to quantize the energy function over the symplectic manifold
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$\mathring{T}X$

. He showed that the limit of the push forward of the adapted
complex structure under an appropriate family of diffeomorphism exists
and agrees with $J_{S}$ .

In [Sz3], Sz\"oke extended the method to treat all compact symmetric
spaces. He proved that after appropriate rescalings, the bundle of $(1,0)$

tangent vectors with respect to the adapted complex structure on $TX$

has a specific limit bundle.

References

[A] R. Aguilar, Canonical Einstein pseudo-Riemannian Einstein K\"ahler

metrics on tangent bundles of harmonic Riemannian manifolds, Q.
J. Math., 51 (2000), 1-17.

[A-B] R. Aguilar and D. Burns, On the algebraicization of certain Stein
manifolds, preprint CV/0010287 v2.

[A-G] D. Akhiezer and S. Gindikin, On Stein extensions of real symmetric
spaces, Math. Ann., 286 (1990), 1-12.

[B] D. Burns, On the uniqueness and characterization of Grauert tubes,
Complex analysis and geometry (Trento, 1993), Lecture Notes in
Pure and Appl. Math., 173, 119-133.

[B-H] D. Burns and R. Hind, Semplectic geometry and the uniqueness of
Grauert tubes, J. Geom. and Funct. Anal., 11 (2001), 1-10.

[BHH] D. Burns, S. Halverscheid and R. Hind, The geometry of Grauert
tubes and complexification of symmetric spaces, (preprint,
CV/0109186 v1).

[G] H. Grauert, On Levi’s problem and the imbedding of real analytic
manifolds, Ann. of Math., 68 (1958), p. 460-472.

[G-S] V. Guillemin and M. Stenzel, Grauert tubes and the homogeneous
Monge-Amp\‘ere equation, J. Diff. Geom., 34 (1991), 561-570.

[H-I] S. Halverscheid and A. Iannuzzi, Maximal complexification of certain
Riemannian homogeneous manifolds, (preprint).

[K1] S.-J. Kan, The asymptotic expansion of a $CR$ invariant and Grauert
tubes, Math. Ann., 304 (1996), 63-92.

[K2] –, On the characterization of Grauert tubes covered by the ball,

Math. Ann., 309 (1997), 71-80.
[K3] –, A note on the rigidity of Grauert tubes, J. reine angew.

Math. (to appear).

[K4] –, On rigidity of Grauert tubes over homogeneous Riemannian
manifolds, (preprint).

[K-M1] S.-J. Kan and D. Ma, On rigidity of Grauert tubes over Riemannian
manifolds of constant curvature, Math. Z., 239 (2002), 353-363.

[K-M2] S.-J. Kan and D. Ma, On rigidity of Grauert tubes over locally sym-
metric spaces, J. reine angew. Math., 524 (2000), 205-225.



Recent development on Grauert domains 133

[L-S] L.Lempert and R.Sz\"oke, Global solutions of the homogeneous com-
plex Monge-Amp\‘ere equations and complex structures on the tan-

gent bundle of Riemannian manifolds, Math. Ann., 290 (1991),

p. 689-712.
[St] M. Stenzel, Orbits of the geodesic flow and chains on the boundary

of a Grauert tube, Math. Ann., 322 (2002), 383-399.
[Sz1] R. Sz\"oke, Automorphisms of certain Stein manifolds, Math. Z., 219

(1995), 357-385.
[Sz2] –, Adapted complex structures and geometric quantization,

Nagoya Math. J., 154 (1999), 171-183.
[Sz3] –, Involutive structures on the tangent bundle of symmetric

spaces, Math. Ann., 319 (2001), 319-348.

Institute of Mathematics
Academia Sinica
Taipei 115
Taiwan
kan@math.sinica.edu.tw



 



Advanced Studies in Pure Mathematics 42, 2004
Complex Analysis in Several Variables
pp. 135-140

Analytic polyhedra with non-compact
automorphism group

Kang-Tae Kim

Abstract.

The main theme of this article concerns the characterization
problem of analytic polyhedra in $C^{n}$ with non-compact automor-
phism group. In particular, we include a proof that every bounded
convex analytic polyhedron in $C^{n}$ is biholomorphic to the product of
a Kobayashi hyperbolic convex cone and a bounded convex domain.
Several related recent developments are also introduced.

\S 1. Introduction

The study of the automorphism groups of domains in $C^{n}$ is one of
the traditional themes in the research of analytic functions in several
complex variables. By an automorphism we mean a biholomorphic self-
mapping of the given domain. They form naturally a topological group,
endowed with the law of composition and the compact-open topology.

This paper concerns the important special collection of domains that
are called the analytic polyhedra. An analytic polyhedron is a bounded
domain $\Omega$ in $C^{n}$ which admits holomorphic functions $f_{1}$ , $\ldots$ , $f_{N}$ defined
on an open neighborhood $U$ of the closure of $\Omega$ such that $\Omega$ is defined
by the set of inequalities

$|f_{1}(z)|<1$ , $\ldots$ , $|f_{N}(z)|<1$ .

The main interest of this article is in the characterization problem
of analytic polyhedra which possess non-compact automorphism groups.
Notice that this line of research is resonant with the widely known the-
orems of Wong [13], Rosay [12], Bedford and Pinchuk [1], Greene and
Krantz [6], Kim [7], Fu and Wong [5] and others. Here, we present
an account of recent developments on the characterization problem of
analytic polyhedra with non-compact automorphism groups.
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\S 2. The Case of Convex Polyhedral Domains

Note that the boundary of an analytic polyhedron is Levi flat wher-
ever the boundary is smooth. Thus, the class of analytic polyhedron is
a subset of the collection of polyhedral domains defined as follows.

We call a bounded domain $D$ in $C^{n}$ polyhed$ral$ , if it admits the real
valued smooth functions $\rho_{1}$ , $\ldots$ , $\rho_{N}$ defined in an open neighborhood $U$

of the closure of $D$ satisfying:

(1) $D$ is defined by the inequalities $\rho_{1}(z)<0$ , $\ldots$ , $\rho_{N}(z)<0$ .

(2) The boundary of $D$ is defined by the relations $\rho_{i_{1}}=\ldots=\rho_{i_{k}}=0$

for a non-empty collection of indices $\{i_{1}, \ldots, i_{k}\}\subset\{1, \ldots, N\}$ .

(3) Each surface defined by $\rho_{j}=0$ in $U$ is $C^{\infty}$ smooth Levi flat, for
$j=1$ , $\ldots$ , $k$ .

Notice that the analytic polyhedra are polyhedral domains. Even if
the choices for the defining system $\rho_{1}$ , $\ldots$ , $\rho_{N}$ are not in general unique
for a polyhedral domain, they are essentially unique in almost all prac-
tical situations.

The typical generic subclass is also commonly considered; we call a
polyhedral domain normal, if the only singularities in the boundary are
produced by a complex normal crossing singularities. Now we introduce
the following theorem, followed by a simpler and descriptive proof.

Theorem 2.1 (Kim [7]). Let $D$ be a convex normal polyhedral do-
main in $C^{n}$ . If the automorphism group $Aut(D)$ is non-compact, then
$D$ is biholomorphic to the product of the unit open disc and a convex
$d$omain in $C^{n-1}$ .

Corollary 2.2. A convex normal polyhedral $d$omain in $C^{2}$ pos-
sesses a non-compact automorphism group if, and only if, it is biholo-
morphic to the bidisc.

Proof We present here a proof of Theorem 2.1 which is simpler
and in fact more general in its implication than the one originally pre-
sented in [7]. Since the automorphism group is non-compact, we have
a sequence $\varphi_{j}\in$ Aut (D), a point $q\in D$ and a boundary point $p\in\partial D$

such that

$\lim_{j\rightarrow\infty}\varphi_{j}(q)=p$ .

Now, let $\rho_{1}$ , $\ldots$ , $\rho_{m}$ be a minimal set of defining functions for $D$ . Then
without loss of generality we may assume that

$\rho_{1}(p)=\ldots=\rho_{k}(p)=0$ and $\rho_{k+1}(p)<0$ , $\ldots$ , $\rho_{m}(p)<0$ ,
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and that the gradient vectors $\nabla\rho_{1}(p)$ , $\ldots$ , $\nabla\rho_{k}(p)$ are linearly indepen-
dent over C. Thus in particular, we have $1\leq k\leq n$ . Now, consider

$\Sigma_{\ell}=\{z|\rho_{\ell}(z)=0\}$

for each $\ell=1$ , $\ldots$ , $m$ . This is a Levi flat surface defined in an open
neighborhood of $\overline{D}$ , and hence is foliated by smooth complex analytic
varieties of complex dimension $n-1$ . But then, due to convexity, the
analytic varieties contained in $\Sigma_{\ell}$ are in fact a linear subvariety. (Con-

vexity and the maximum principle imply that the variety, say $V\subset\Sigma_{\ell}$ is
contained in the real affine linear subspace, say $\tilde{V}$ of $C^{n}$ of real codimen-
sion one. Then, being a complex subvariety of $\tilde{V}$ of real codimension
one, $V$ itself is a linear subvariety, linearly biholomorphic to a domain in
$C^{n-1}.)$ Now let $V_{\ell}$ be the maximal (with respect to the inclusion) vari-
eties though $p$ in $\Sigma_{\ell}$ for each $\ell=1$ , $\ldots$ , $m$ . Then the maximal analytic
variety in $\partial D$ passing through $p$ is in fact

$X=V_{1}\cap\cdots\cap V_{k}$ .

The linear independency condition implies that dime $X=n-k$ .

Now consider the sequence $q_{j}:=\varphi_{j}(q)$ , which we shall call an au-
tomorphism orbit of $g$ , accumulating at $p$ . Then we change coordinates
linearly at $q_{j}$ , by a linear affine biholomorphism $\Psi_{j}$ : $C^{n}\rightarrow C^{n}$ , so that
the new coordinate system $\zeta:=\Psi_{j}(z)$ satisfy:

$\blacksquare\Psi_{j}(q_{j})=0$ for each $j=1,2$ , $\ldots$ .

$\circ d\Psi_{j}|_{q_{j}}(\nabla\rho_{\ell}(p))=(0, \ldots, 0,1, 0, \ldots, 0)$ (the $\ell^{th}$ component is 1)
for $\ell=1$ , $\ldots$ , $k$ .

$o\Psi_{j}(X)=\{\zeta_{1}=\ldots=\zeta_{k}=0\}\cap\partial D$ .

Then we consider the scaling map $L_{j}$ : $C^{n}\rightarrow C^{n}$ defined by

$L_{j}(\zeta_{1}, \ldots, \zeta_{n})=(\frac{\zeta_{1}}{\lambda_{1}^{(j)}},$
$\ldots$ , $\frac{\zeta_{k}}{\lambda_{k}^{(j)}}$ , $\zeta_{k+1}$ , $\ldots$ , $\zeta_{n})$

where $\lambda_{\ell}^{(j)}$ is the distance from the origin to I $j(\Sigma_{\ell})$ . Then we consider
the sequence

$\omega_{j}:=L_{j}o$ I $j\circ\varphi_{j}$ : $D\rightarrow C^{n}$

of holomorphic imbedding maps. First notice that

$\omega_{j}(D)=L_{j}\circ\Psi_{j}(D)$

since $\varphi_{j}(D)=D$ . Then, the closure of $L_{j}o\Psi_{j}(X)$ forms a sequence
that converges, since it is in fact a sequence of closed convex subsets
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of $C^{n}$ . Notice that each member of this sequence is the closure of a
convex domain in a complex affine subspace of codimension $k$ , the limit
set, say $\dot{X}$ is also the closure of the same type. Notice here that $\Psi_{j}$

converges to a non-degenerate complex affine mapping of $C^{n}$ . Therefore,
the definition of $L_{j}\circ\Psi_{j}$ implies that $\dot{X}$ has a non-empty $n-k$ complex
dimensional interior in $\{\zeta\in C^{n}|\zeta_{1}=\ldots=\zeta_{k}=0\}$ . We shall denote

by $\hat{X}$ this interior of $\dot{X}$ .

Finally, we let

$\hat{D}:=\{(\zeta_{1}, \ldots, \zeta_{n})\in C^{n}|$

$\Re\zeta_{1}<1$ , $\ldots$ , $\Re\zeta_{k}<1$ , and

$(0, \ldots, 0, \zeta_{k+1}, \ldots, \zeta_{n})\in\hat{X}\}$ .

Notice that $\hat{D}$ is biholomorphic to $\triangle^{k}\times\hat{X}$ , where $\triangle^{k}$ denotes the k-
dimensional polydisc.

Now, examining the construction so far, one can easily see that for

each compact subset $K\subset\subset D$ , there exists $j_{0}$ such that $\omega_{j}(K)\subset\hat{D}$ for

every $j>j_{0}$ . Moreover, for any compact subset $K’$ of $\hat{D}$ , one can see
that there exists $j_{1}$ such that $K’\subset\omega_{j}(D)$ for every $j>j_{1}$ . Moreover,

observe that $\omega_{j}(q)=0$ for every $j$ , and that the origin 0 is an interior

point of $\hat{D}$ . Altogether, Montel’s theorem now implies that both $\omega_{j}$ and
$\omega_{j}^{-1}$ form convergent normal families. Then, choosing a subsequence and
applying Cartan’s generalization of Schwarz’s lemma, we can conclude
that $D$ is in fact biholomorphic to the domain $\hat{D}$

. This establishes the
theorem as claimed. Q.E.D.

Notice that one of the key roles of convexity of the analytic polyhe-
dron in consideration is that the analytic varieties in the boundary are
necessarily affine linear subsets of $C^{n}$ . In fact, it is true that the nor-
mality condition is not essential in the preceding proof. Therefore, with
a small modification of the preceding arguments regarding the scaling
method part, we arrive at the following slightly more general result.

Theorem2.3. Let $\Omega$ beaconvex analytic polyhed$ron$ in $C^{n}$ . Then,
$\Omega$ is biholomorphic to the product of a Kobayashi hyperbolic convex cone
anda boun$dedd$omain if, and only if, the automorphism group $Aut$ $(\Omega)$

is non-compact.

\S 3. Recent Developments and Concluding Remarks

In light of preceding arguments, the natural direction to study is
obviously on the analytic polyhedra that are not necessarily convex.
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In fact, the case of normal analytic polyhedra in complex dimension
two admitting a non-compact automorphism group has been analyzed
further. We introduce

Theorem 3.1 (Kim-Pagano [10], 2001). If $\Omega\subset C^{2}$ is a normal
analytic polyhedron with a non-compact automorphism group, then the
holomorphic universal covering space of $\Omega$ is biholomorphic to the bidisc.

While this theorem clarifies the situation without the convexity as-
sumption, one aspect in contrast to consider is that the holomorphic
quotients of the bidisc admitting a non-compact automorphism group is
usually quite special. It had been conjectured that the deck transforma-
tion group acts only on one component of the bidisc resulting that the
polyhedron be biholomorphic to the product of the disc and a Riemann
surface. This conjecture was well analyzed recently and answered affir-
matively by the author in a collaboration with S.G. Krantz and $A.F$ .

Spiro.

Theorem 3.2 $(Kim/Krantz/Spiro [9])$ . Let $\Omega\subset C^{2}$ be a normal
analytic polyhedron with a non-compact automorphism orbit accumulat-
ing at a bound$ary$ point $ p\in\partial\Omega$ . Let $V_{p}$ denote the maximal analytic
variety at $p$ in $\partial\Omega$ . Then, $\Omega$ is biholomorphic to the product of $V_{p}$ and
the unit open disc in C.

Since the case of normal analytic polyhedra in $C^{2}$ with a noncom-
pact automorphism group has received such a comprehensive result, the
direction to progress seems pointing to the general analytic polyhedra
without normality assumption.
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Problems related to hyperbolicity of almost complex

structures

Shoshichi Kobayashi

The contents of my talk at this conference are in two papers [4]
and [5]. So the emphasis here is on what I was unable to deliver at the
conference for lack of time.

\S 1. Generic almost complex structures and hyperbolicity

Let $(M, J)$ be an almost complex manifold. Because of paucity of
local holomorphic functions in general, there is no complex function
theory on $(M, J)$ . However, there is an abundant supply of holomorphic
mappings from a disk of $C$ into $(J/I, J)[6]$ , and we can define the intrinsic
pseudo-distance $d_{M}$ and hyperbolicity for an almost complex manifold
$\Lambda^{/}I$ exactly in the same way as in the complex manifold case.

It is obvious that if $M$ is hyperbolic, every holomorphic map $ f:C\rightarrow$

$M$ is constant. Conversely, if $M$ is compact and if there exist no non-
constant holomorphic maps from $C$ into $M$ , then $M$ is hyperbolic. In
order to state the theorem a little more precisely, let $z$ denote the nat-

ural coordinate system in $C$ , and take a length function $E$ on $M$ . We
call a non-constant holomorphic map $f:C\rightarrow M$ a complex line if

$f^{*}E^{2}\leq Cdzd_{\overline{\tilde{4}}}$

for some constant $C$ . If $f(C)$ is contained in a compact subset of $\Lambda I$ ,

then this condition is independent of the choice of $E$ . Let $S$ be a subset
(usually a domain) in $M$ . We say that a complex line $f:C\rightarrow M$ is a
limit complex line coming from $S$ if on each disk $D_{R}=$ $\{|z|<R\}$

of radius $R$ the mapping $f|_{D_{R}}$ is the limit of a sequence of holomorphic
mappings of $D_{R}$ into $S$ . In this case, we have $f(C)\subset\overline{S}$ . Trivially, every
complex line in $M$ is a limit complex line coming from $M$ .

Received March 23,2002.
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The proof for the following Brody’s hyperbolicity criterion is exactly
the same as in the complex case ([3; pp.100-103]).

(1.1) Theorem. If a compact almost complex manifold $M$ is not hyper-
bolic, then there is a complex line $f:C\rightarrow M$ .

The following almost complex version of (3.6.8) in [3; p.106] holds.

(1.2) Theorem. Let $Z$ be an almost complex manifold, and $Y$ a compact
almost complex submanifold of Z. If $Y$ is $hyperboliC_{\rangle}$ there is a relatively
compact neighborhood $U$ of $Y$ which is hyperbolically imbed$ded$ in $Z$ .

(1.3) Corollary. Let $\pi:Z\rightarrow X$ be an almost complex fiber space with
compact fiber. If the fiber $\pi^{-1}(po)$ at a point $p_{0}\in X$ is hyperbolic, then
in a small neighborhood of $p_{0}$ every fiber is hyperbolic.

Remark. The infinitesimal form $F_{M}$ of the pseudo-distance $d_{M}$ can
be defined as in the complex case. As we remarked in [3; p.lOl], for the
proofs of the results above we use only the most basic properties of $F_{X}$

that are obvious from the definition. We need not know whether $F_{X}$ is
upper semi-continuous and $d_{M}$ is the integrated form of $F_{X}$ , although
this is also an interesting question.

In view of (1.3) it seems to be reasonable to conjecture that if $(M, J_{0})$

is a compact hyperbolic almost complex manifold, all nearby almost
complex structures $J$ are hyperbolic. (By ” nearby” we mean the first
and second partial derivatives of $J$ are close to those of $J_{0}$ ). Unlike the
moduli space of complex structures on a compact manifold, the set of
almost complex structures (modulo diffeomorphisms) is huge and has no
nice structures. So, (1.3) by itself does not prove the conjecture.

If ( $M$ , $J_{0}$ , go) is an almost Hermitian manifold with its holomorphic
sectional curvature bounded by a negative constant, then for $J$ suffi-
ciently close to $J_{0}$ and for the Hermitian metric $g$ defined by

$g(u, v)=\frac{1}{2}$ $(g_{0}(u, v)+g_{0}(Ju, Jv))$ ,

the holomorphic sectional curvature remains bounded by a negative con-
stant. On the other hand, as we have shown in [4], an almost Hermitian
manifold with its holomorphic sectional curvature bounded by a nega-
tive constant is hyperbolic. So this is also another supporting evidence
for the conjecture above.

A related question is hyperbolicity of a generic almost complex struc-
ture. Let $(\Lambda I, J_{0})$ be a compact non-hyperbolic almost complex mani-
fold. In view of (1.1) it seems that an arbitrarily small, but suitable
deformation of $J_{0}$ would result in a hyperbolic almost complex struc-
ture.
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\S 2. Automorphisms of almost complex manifolds

Generalizing the old theorem of Bochner for compact complex man-
ifolds, Boothby, Wang and I proved in [1] that the automorphism group
Aut $(M, J)$ of a compact almost complex manifold $(M, J)$ is a Lie group
with Lie algebra $aut(M, J)$ consisting of infinitesimal automorphisms
of $(M, J)$ . The condition that a (real) vector field $u$ is an infinitesimal
automorphism of $(M, J)$ is given by

(2.1) $L_{u}(Jv)=J(L_{u}v)$ for all vector fields $v$ ,

where $L_{u}$ denotes the Lie differentiation with respect to $u$ . Since $L_{u}v=$

$[u, v]$ , the condition above may be written as

(2.2) $[u, Jv]=J[u, v]$ for all vector fields $v$ .

In the complex case, the automorphism group is a complex Lie
group. This is because if $u\in aut(M, J)$ , then $Ju\in aut(M, J)$ . How-
ever this is not the case for almost complex manifolds.

The integrability condition for $J$ is given by vanishing of the Nijen-
huis tensor $N$ defined by

$N(u, v)=[Ju, Jv]-J[Ju, v]+J(J[u, v]-[u, Jv])$ .

So, if $u$ , $ Ju\in$ $aut(M, J)$ , then $N(u, v)=0$ for all $v$ . It is now clear that
we cannot expect to have, in general, a complex Lie group acting on an
almost complex manifold.

Now, if $(\Lambda I, J)$ is a compact hyperbolic almost complex manifold,
Aut $(M, J)$ is compact since it preserves the intrinsic distance $d_{\Lambda\prime I}$ . We
know that for a compact hyperbolic complex manifold (A#, $J$ ), the group
Aut $(M, J)$ is finite. The reason is that if $dim$ Aut $(M, J)>0$ , then
Aut $(M, J)$ has a complex one-parameter subgroup and the action of
this one-parameter subgroup gives rise to nonconstant holomorphic maps
from $C$ into $M$ , in violation of the hyperbolicity. Clearly, this argument
cannot be used in the almost complex case.

However, we can circumvent this obstacle by using a slightly modi-
fied argument. If $u\in aut(M, J)$ , then by (2.2) we have

$[u, Ju]=J[u, u]=0$ .

Hence, the one-parameter groups $e^{su}$ and $e^{tJu}$ commute. Given a point
$p_{0}\in M$ , the map $f:C\rightarrow M$ defined by

$f(s+ti)=e^{su+tJu}(p_{0})$ , $s+ti\in C$
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is holomorphic. For a suitable choice of $p_{0}$ this map is nonconstant,

which proves the following theorem.

(2.3) Theorem. The automorphism group of a compact hyperbolic al-
most complex manifold is finite.

Let $X$ and $Y$ be compact almost complex manifolds, Hol(X, $Y$ ) be
the family of holomorphic maps from $X$ into $Y$ , and Sur $(X, Y)$ the
family of surjective holomorphic maps from $X$ to $Y$ . If $Y$ is hyperbolic,
then Hol(X, $Y$ ) and Sur $(X, Y)$ are compact. If, moreover, $X$ and $Y$

are complex manifolds, then Sur $(X, Y)$ is finite. This has been proved
under various additional assumptions and finally by Noguchi [7] in the
most general form, see also [3; Chapter 6, \S 6]. The natural question is

whether this holds also in the almost complex case.
At the moment, for a complete generalization there are too many

obstacles. However, in some special cases it should be possible to find
arguments avoiding the use of complex structures.

Consider, for example, Urata’s theorem [9] which says that the fam-
ily of surjective holomorphic maps with connected fibers from a compact
complex manifold $X$ to a compact hyperbolic complex manifold $Y$ is

finite. The simplified proof of this theorem by Simha [8] depends on
the following two facts: (i) finiteness of Aut(Y) and (ii) constancy of a
bounded holomorphic function on a compact complex space. The lat-
ter fact is used to show that a holomorphic map from a closed complex
subspace of $X$ into a coordinate neighborhood in $Y$ is constant.

Simha’s proof (which does not make us of the complex analytic struc-
ture of Hol(X, $Y$ ) $)$ seems to be adaptable to the almost complex case.
As we have shown in (2.3) above, we have (i) in the almost complex case
as well. As for (ii), from the elliptic differential equation satisfied by a
holomorphic map between almost complex manifolds (see (2.2) in [1]),
it is not hard to see that a holomorphic map from a compact almost
complex manifold $V$ into a coordinate neighborhood in $Y$ is constant.
However, we need to know this when $V$ is a fiber of a surjective holomor-
phic map from $X$ to $Y$ , which may have singularities. In other words,
we have to consider almost complex spaces (with singularities) whatever
their definition may be.

If a holomorphic map $f:X\rightarrow Y$ from an almost complex manifold
$X$ to a hyperbolic almost complex manifold $Y$ is finite-to-one, then $X$

is also hyperbolic. This is a result in metric space topology, see (1.3.14)
of [3,$\cdot$ 13]. If we can prove something like the Stein factorization theo-
rem for almost complex manifolds, then we would be one step closer to
dropping the assumption of connected fibers from Urata’s theorem.
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\S 3. Local hyperbolicity

One of the sufficient conditions for an almost complex manifold to
be (complete) hyperbolic (in the sense that its intrinsic pseudo-distance
is a (complete) distance) is that it admits a (complete) Hermitian met-
ric with holomorphic sectional curvature bounded above by a negative
constant, (see [4]).

As an application, we proved that every point of an almost com-
plex manifold has a hyperbolic neighborhood. (In real dimension 4, the
existence of a complete hyperbolic neighborhood was established by De-
balme and Ivashkovich [2] by a completely different method.) In [4] I
claimed that it has a complete hyperbolic neighborhood. However, at
this conference it was pointed out by Forstneric

$\vee$

that the neighborhood I
had constructed might not be complete. (The almost Hermitian metric
constructed in [5] is a little simpler although it does not essentially differ
from the one in [4].)

So the problem of constructing a complete hyperbolic neighborhood
is still open.
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Ideals of multipliers

Joseph J. Kohn

Ideals of multipliers were introduced in [8] to find conditions on do-
mains in complex manifolds under which subellipticity of the $\overline{\partial}-$Neumann
problem holds. Similar ideals were used to study subellipticity on of $\Pi_{b}$

on $CR$ manifolds (see [9]). In [10] such ideals are used to study the sit-
uation when subellipticity breaks down but regularity still holds. Ideals
of holomorphic multipliers in a somewhat different context have been
used by Nadel (see [15]) and by Siu (see [16]) to prove global theorems
in algebraic geometry. Here we will be concerned with the ideals that
arise in the study of local regularity. We will briefly explain the use
of subelliptic estimates then we define local and microlocal multipliers
and show how to use them to derive subelliptic estimates. We also dis-
cuss the use of subelliptic multipliers when subellipticity fails. Finally
we show how subelliptic multipliers give rise to invariants of complex
analytic varieties.

\S 1. Definitions

A $CR$ manifold is a compact $C^{\infty}$ manifold $M$ of dimension $2n+1$

endowed with an integrable $CR$ structure which consists of a sub-
bundle $T^{1,0}(iVI)$ of the complexified tangent bundle $\mathbb{C}T(\lambda I)$ satisfying
the following. The complex fiber dimension of $T^{1,0}(M)$ is $n$ ,

$T^{1,0}(M)\cap\overline{T^{1,0}(M)}=\{0\}$ ,

and if $L$ and $L’$ are local sections of $T^{1,0}(M)$ then $[L, L’]=LL’-L’L$

is also a local section of $T^{1,0}(J/[)$ .

Let $A_{b}^{p,q}$ denote the $(p, q)-$forms on $M$ , let

$\overline{\partial}_{b}$ : $A_{b}^{p,q}\rightarrow A_{b}^{p,q+1}$

denote the corresponding exterior derivative, and let $\overline{\partial}_{b}^{*}$ : A $ p,qb\rightarrow$ A$p,q-1b$

denote the $L_{2}$ adjoint of $\overline{\partial}_{b}$ .
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We define the complex energy form $Q_{b}$ on $A_{b}^{p,q}$ by

$Q_{b}(\varphi, \psi)=(\overline{\partial}_{b}\varphi,\overline{\partial}_{b}\psi)+(\overline{\partial}_{b}^{*}\varphi,\overline{\partial}_{b}^{*}\psi)$ ,

where $(, )$ denotes the $L_{2}$ inner product on forms. We define the
complex laplacian

$\Pi_{b}$ : $ A_{b}^{p,q}\rightarrow$ $A_{b}^{p,q}$ by $\Pi_{b}=\overline{\partial}_{b}\overline{\partial}_{b}^{*}+\overline{\partial}_{b}^{*}\overline{\partial}_{b}$ . Let

$\prime\mu_{b}^{p,q}=\{\varphi\in L_{2}^{p,q}|\square _{b}\varphi=0\}$

Note that if $\alpha\perp\prime H_{b}^{p,q}$ and then $\square _{b}\varphi=\alpha$ if and only if $Q_{b}(\varphi, \psi)=$ $(\alpha, \psi)$ ,

for all $\psi$ .

If $u\in C_{0}^{\infty}(\mathbb{R}^{m})$ and if $s$
$\in \mathbb{R}$ we define $||u||_{s}$ the Sobolev $s$-norm of $u$

by

$||u||_{s}^{2}=\int(1+|\xi|^{2})^{s}|i(\xi)|^{2}dV$

If $u\in C^{\infty}(M)$ we define $||u||_{s}$ by choosing a partition of unity $\{(_{\nu}\}$

which is subordinate to a covering by coordinate charts and set $||u||_{s}^{2}=$

$\sum||(_{l/}u||^{2}$ .

\S 2. Subelliptic estimates

If $P\in M$ we say that a subelliptic estimate for $(p, q)-$ form holds
at $P$ if there exists a neighborhood $U$ of $P$ and constants $C$ and $\in$ such
that

$(\blacksquare_{q})$ $||\varphi||_{\in}^{2}\leq C(Q_{b}(\varphi, \varphi)+||\varphi||^{2})$ ,

for all $\varphi\in A_{b}^{p,q}$ with support in $U$ .

The above estimate has the following consequences (see [12]).

1. If $\square _{b}\varphi=\alpha$ and if $\alpha$ is $C^{\infty}$ on $U$ then $\varphi$ is $C^{\infty}$ on $U$ .

2. $\prime H_{b}^{p,q}\subset C^{\infty}(M)$ .

3. If $\alpha$ is a $(p, q)-$ form which is $C^{\infty}$ on $U$ and if $\psi$ is a $(p, q-1)-$ form

orthogonal to $H_{b}^{p,q-1}$ such that $\overline{\partial}_{b}\psi=\alpha$ then $\psi$ is $C^{\infty}$ on $U$ .

4. Let $S_{b}$ : $L_{2}^{p,q-1}\rightarrow N^{p,q-1}(\overline{\partial}_{b})$ , where $N^{p,q-1}$ $(\overline{\partial}_{b})$ denotes the null

space of $\overline{\partial}_{b}$ and $S_{b}$ the orthogonal projection. If $\theta\in L_{2}^{p,q-1}$ with $\theta$ in
$C^{\infty}$ on $U$ then $ S_{b}\theta$ is $C^{\infty}$ on $U$ .

Duality
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Let $\{L_{1}, \ldots, L_{n}\}$ be an orthonormal basis for $(1, 0)$ vector fields on a
neighborhood $U\subset M$ of $P$ and let $\{L_{1}, \ldots, L_{n},\overline{L}_{1}, \ldots,\overline{L}_{n}, T\}$ be a
basis for the complex vector fields on $U$ with $\overline{T}=-T$ . Let $\{\omega_{1}, \ldots, \omega_{n}\}$

be the dual basis of $(1, 0)$ forms. Then if $\varphi\in A_{b}^{0,q}$ with support in $U$ we
have $\varphi=\sum\varphi_{I}\overline{\omega}^{I}$ where I runs through the strictly in creasing $q$-tuples
of integers between 1 and $n$ and where $\overline{\omega}^{I}=\overline{\omega}_{i_{1}}\wedge\cdots\wedge\overline{\omega}_{i_{q}}$ . We define
$F^{q}\varphi\in A^{0,n-q}$ by

$F^{q}\varphi=\sum\epsilon_{I}^{I},\overline{\varphi}_{I}\overline{\omega}^{I’}$

where $I’$ denotes the increasing $(n-q)-$tuple consisting of integers be-
tween 1 and $n$ which are not in $I$ , and $\epsilon_{I}^{I}$ , is defined by

$\epsilon_{I}^{I},\overline{\omega}_{1}\wedge\cdots\wedge\overline{\omega}_{n}=\overline{\omega}^{I}\wedge\overline{\omega}^{I’}$

Then we have:

$\overline{\partial}_{b}F^{q}\varphi=F^{q-1}\overline{\partial}_{b}^{*}\varphi+\sum a_{IJ}\overline{\varphi}_{I}\overline{\omega}^{J}$

and
$\overline{\partial}_{b}^{*}F^{q}\varphi=F^{q+1}\overline{\partial}_{b}\varphi+\sum b_{IJ}\overline{\varphi}_{I}\overline{\omega}^{J}$ .

Hence,
$Q_{b}(\varphi, \varphi)=Q_{b}(F^{q}\varphi, F^{q}\varphi)+0(||\varphi||^{2})$ .

Therefore, since $||\varphi||_{\epsilon}=||F^{q}\varphi||_{\in}$ , we conclude that $(\blacksquare_{q})$ holds if and only
if $(\blacksquare_{n-q})$ holds.

Microlocalization

Let $\{x_{1}, \ldots, x_{2n}, t\}$ be real coordinates on $U$ with origin at $P$ such that

$\frac{\partial}{\partial x_{j}}=\Re(L_{j}|_{P})$ , $\frac{\partial}{\partial x_{j+n}}=\propto s(L_{j}|_{P})$ ,

and $\frac{\partial}{\partial t}=\sqrt{-1}T$ . Let $\{\xi_{1}, \ldots, \xi_{2n+1}\}$ denote the dual coordinates. If $ u\in$

$C_{0}^{\infty}(U)$ we have the microlocal decomposition $u=u^{+}+u^{-}+u^{0}$ , where
$\mathcal{F}u^{+}$ an$dFu^{-}$ have supports in conical neighborhoods of $(0, \ldots, 0, 1)$

and $(0, \ldots, 0, -1)$ , respectively and $Fu^{0}$ is supported in the union of the
unit ball and the complement of the above conical neighborhoods (here
$\mathcal{F}$ denotes the Fourier transform).
Let $U’\supset\overline{U}$ be a small neighborhood and let ( $\in C_{0}^{\infty}(U’)$ with ( $=1$ on
$U$ . Then we have

$(\blacksquare_{q}^{0})$ $||(\varphi^{0}||_{1}^{2}\leq C(Q_{b}((\varphi^{0}, (\varphi^{0})+||\varphi||^{2})$ ,
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for all $\varphi\in C_{0}^{\infty}(U)$ . Thus to prove $\blacksquare_{q}$ it suffices to establish the corre-
sponding estimates $(\blacksquare_{q})+$ and $(\blacksquare_{q}-)$ for $||(\varphi^{+}||_{\Xi}^{2}$ and for $||$ ( $\varphi^{-}||_{\epsilon}^{2}$ , respec-
tively.

Let $\Omega\subset X$ be a domain in a complex manifold $X$ which has a smooth
boundary $M$ and such that $\overline{\Omega}$ is compact. We then say that the $\overline{\partial}-$

Neumann problem for $(p, q)-$forms at $P\in M$ is subelliptic if there exists
a neighborhood $U$ of $P$ and constants $\in$ and $C$ such that

$(\blacksquare\blacksquare_{q})$ $|||\varphi|||_{\Xi}^{2}\leq C(Q(\varphi, \varphi)+|||\varphi|||^{2})$ ,

for all $\varphi\in Dom(\overline{\partial}^{*})\cap A^{p,q}$ with support in $U\cap\overline{\Omega}$ . Here $A^{p,q}$ denotes
the space of $(p, q)$ -forms in $C^{\infty}$ $(\overline{\Omega})$ ,

$Q(\varphi, \varphi)=((\overline{\partial}\varphi,\overline{\partial}\varphi))+((\overline{\partial}^{*}\varphi,\overline{\partial}^{*}\varphi))$ ,

and $||||||$ , $(())$ , $||||||_{\Xi}$ denote the $L_{2}$ norm, the $L_{2}$ inner product, and the
Sobolev $\Xi-$norm on $\overline{\Omega}$ , respectively. The estimate $(\blacksquare\blacksquare_{q})$ has the following
consequences (see [12]).

1. If $\square \varphi=\alpha$ and if $\alpha$ is $C^{\infty}$ on $U\cap\overline{\Omega}$ then $\varphi$ is $C^{\infty}$ on $U\cap\overline{\Omega}$ . Here
$\square =\overline{\partial}\overline{\partial}^{*}+\overline{\partial}^{*}\overline{\partial}$ with domain consisting of $\{\varphi\in Dom(\overline{\partial})\cap Dom(\overline{\partial}^{*})|\overline{\partial}\varphi\in$

$Dom(\overline{\partial}^{*})$ and $\overline{\partial}^{*}\varphi\in Dom(\overline{\partial})\}$ .

2 $.\prime H^{p,q}\subset C^{\infty}(\overline{\Omega})$ , where 7 $p,q$
$=$ $\{\varphi|\square \varphi=0\}$ , is finite dimensional.

3. If $\alpha$ is a $(p, q)-$form which is $C^{\infty}$ on $U\cap\overline{\Omega}$ and if $\psi$ is a $(p, q-1)-$ for
orthogonal to $N^{p,q-1}(\overline{\partial})$ , where $N^{p,q-1}(\overline{\partial})$ denotes the null space of $\overline{\partial}$ ,

such that $\overline{\partial}_{b}\psi=\alpha$ then $\psi$ is $C^{\infty}$ on $U\cap\overline{\Omega}$ .

4. If $B$ : $L_{2}^{p,q-1}(\Omega)\rightarrow N^{p,q-1}$ $(\overline{\partial})$ is the orthogonal projection and if
$\theta\in L_{2}^{p,q-1}(\Omega)$ with $\theta$ in $C^{\infty}$ on $U$ then $ B\theta$ is $C^{\infty}$ on $U\cap\overline{\Omega}$ .

Denote by $M$ the boundary of $\Omega$ and suppose that in a neighborhood
of $M$ there exists a real valued function $r$ such that $r<0$ in $\Omega$ which on
$\Lambda I$ satisfies $r=0$ and $dr\neq 0$ . Let $\{z_{1}, \ldots, z_{n+1}\}$ be local holomorphic
coordinates with origin at $P\in hI$ such that $r_{z_{j}}$ $(P)=0$ for $i=1$ , $\ldots$ , $n$

and $r_{z,\}+1}(P)=1$ . Let

$L_{i}=\frac{\partial}{\partial z_{i}}-r_{z_{i}}\frac{\partial}{\partial z_{n+1}}$

and
$T=r_{\overline{z}_{n+1}}\frac{\partial}{\partial z_{n+1}}-r_{z,?+1}\frac{\partial}{\partial\overline{z}_{n+1}}$ .

Theorem 2.1. The $\overline{\partial}-$Neumann problem on $\Omega$ is subelliptic for
$(p, q)$ -forms at $P$ , that is $(\blacksquare\blacksquare_{q})$ hold $s$ , if an $d$ only if $(\blacksquare_{q})+$ holds on $M$ .



Ideals of multipliers 151

\S 3. Local and microlocal multipliers

Definition 3.1. If $P\in M$ $a$ subelliptic multiplier for $(p, q)-$

forms at $P$ is a germ of a $C^{\infty}$ function $f$ such that there exists a neigh-
borhood $U$ of $P$ and positive constants $\in and$ $C$ so that

$(*_{q})$ $||f\varphi||_{\epsilon}^{2}\leq C(Q_{b}(\varphi, \varphi)+||\varphi||^{2})$ ,

for all $\varphi\in A_{b}^{p,q}$ with support in U. Note that this estimate is independ$ent$

of $p$ .

Let $I_{q}$ denote the set of subelliptic multipliers. $I_{q}$ satisfies the following.

1. $I_{q}$ is an ideal.

2. $\mathbb{R}\sqrt{I_{q}}\subset I_{q}$ , her $e\sqrt{I_{q}}\mathbb{R}$ denotes the real radical of $I_{q}$ consisting
of all germs $g$ such that there exist $m\in \mathbb{Z}^{+}$ and $f\in I_{q}$ with $|g|^{m}\leq|f|$ .

Analogously we define $I_{q}^{+}$ and $I_{q}^{-}$ by the estimates

$(*_{q})+$ $||f(\varphi^{+}||_{\epsilon}^{2}\leq C(Q_{b}((\varphi^{+}, (\varphi^{+})+||(’\varphi^{+}||^{2})$

and

$(*_{q}-)$ $||f(\varphi^{-}||_{\Xi}^{2}\leq C(Q_{b}((\varphi^{-}, (\varphi^{-})+||(’\varphi^{-}||^{2})$ .

Then $I_{q}$ $=I_{q}^{+}\cap I_{q}^{-}$ and we have that: $(\blacksquare_{q})+$ holds if and only if $1\in I_{q}^{+}$ ,
$(\blacksquare_{q}-)$ holds if and only if $1\in I_{q}^{-}$ , $(\blacksquare_{q})$ holds if and only if $1\in I_{q}$ , and
$(\blacksquare\blacksquare_{q})$ holds if and only if $1\in I_{q}^{+}$ .

These ideals satisfy the following duality property

$I^{+}q=I_{n-q}^{-}$ .

This follows since $||\varphi^{+}||=||(\overline{\varphi})^{-}||$ and

$||f(\varphi^{+}||_{\Xi}=||f((F_{q}\varphi)^{-}||_{\in}+O(||\varphi||)$

and
$Q_{b}((\varphi^{+}, (\varphi^{+})=Q_{b}(((F_{q}\varphi)^{-}, ((F_{q}\varphi)^{-})+O(||\varphi||^{2})$ .

Pseudoconvexity

We define the Levi form in an open set $U\subset M$ to be the hermitian
form $\mathcal{L}_{P}$ on $T_{P}^{1,0}$ , for each $P\in U$ defined as follows. Let $\gamma$ be a real one
form in $U$ such that $\gamma\neq 0$ and $\gamma(L)=0$ for all $L\in T^{1,0}$ . Then we set
$\mathcal{L}(L, L’)=\sqrt{-1}<d\gamma$ , $L\wedge\overline{L}’>$ . Then $M$ is pseudoconvex if it can be
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covered by open sets on which $\mathcal{L}$ is positive semi-definite. In terms of
the above basis we have $\mathcal{L}(L_{i}, L_{j})=c_{ij}$ and

$[L_{i},\overline{L}_{j}]=c_{ij}T$ $mod (L_{1}, \ldots, L_{n},\overline{L}_{1}, \ldots,\overline{L}_{n})$ .

If $M$ is pseudoconvex in a neighborhood of $P$ we will construct a se-
quence of ideals

$I_{q,k}^{+}\subset I_{q,k+1}^{+}\subset I_{q}^{+}$ .

We define the quadratic form $c_{IJ}$ , with $g$-tuples I and $J$ , by

$c_{IJ}=\sum_{i,j,K}\epsilon_{I}^{iK}\epsilon_{J}^{jK}c_{ij}$
,

where $K$ runs over all ordered $(q-1)-$tuples. Each of the coefficients
$\epsilon_{I}^{iK}$ is either 01 or -1 defined as follows. First, if $i\not\in K$ we denote by
$\langle iK\rangle$ the ordered $g$-tuple containing $i$ and the elements of $K$ . Then we
define

$\epsilon_{I}^{iK}=\{$

0 if $i\in K$

0 if $\langle iK\rangle\neq I$

$sgn\langle_{I}^{iK}\rangle$ if $\langle iK\rangle=I$ ,

where $sgn\langle_{I}^{iK}\rangle$ denotes the sign of the permutation $\{i, K\}\rightarrow I$ . We

observe the following.

A. If $(c_{ij})\geq 0$ then $(c_{IJ})\geq 0$ .

B. If $(c_{ij})\geq 0$ then $\mathbb{R}\sqrt{(\det c_{IJ})}$ equals the real radical of the ideal
generated by the $(n-q+1)\times(n-q+1)$ subdeterminants of $(c_{ij})$ .

Integration by parts gives.

$\sum(c_{IJ}T\varphi_{I}, \varphi_{J})+\sum||\overline{L}_{i}\varphi_{I}||^{2}=Q_{b}(\varphi, \varphi)+$ error.

Substituting $ F^{q}\varphi$ for $\varphi$ and conjugating we get

$-\sum(c_{I’J’}T\varphi_{I}, \varphi_{J})+\sum||L_{i}\varphi_{I}||^{2}=Q_{b}(\varphi, \varphi)+$ error.

Substituting ( $\varphi^{+}$ a $nd(\varphi^{-}$ for $\varphi$ in the first and second equation, re-
spectively; we obtain

$||(\det c_{IJ})(\varphi^{+}||_{\frac{21}{2}}\leq C(Q_{b}((\varphi^{+}, (\varphi^{+})+||\varphi||^{2})$

and
$||(\det c_{I’J’})(\varphi^{-}||_{\frac{21}{2}}\leq C(Q_{b}((\varphi^{-}, (\varphi^{-})+||\varphi||^{2})$ .
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Hence the $(n-q+1)\times(n-q+1)$ subdeterminants of $(c_{ij})$ are in $I_{q}^{+}$

and the $(q+1)\times(q+1)$ subdeterminants of $(c_{ij})$ are in $I_{q}^{-}$ .

Given germs of $C^{\infty}$ functions $f_{1}$ , $\ldots$ , $f_{n}$ we define $n\times 2n$ matrix
$M(f_{1}, \ldots, f_{n})$ by

$M(f_{1}, \ldots, f_{n})=[)$ .

Denote by $(Det^{j}M(f_{1}, \ldots, f_{n}))$ the ideal generated by the $j\times j$

subdeterminants of $M(f_{1}, \ldots, f_{n})$ .

Theorem3.2. If the $f_{1},\ldots,f_{n}$ are in $I_{q}^{+}then$ $Det^{n-q+1}M(f_{1},\ldots,f_{n})$

$\subset I_{q}^{+}$ and if the $f_{1}$ , $\ldots$ , $f_{n}$ are in $I_{q}^{-}$ then $D$et $q+1M(f_{1}, \ldots, f_{n})\subset I_{q}^{-}$ .

We define $I_{q,k}^{+}$ by induction on $k$ :

$I_{q,1}^{+}=\sqrt[\mathbb{R}]{(Det^{n-q+1}M(0))}$

and
$I_{q,k+1}^{+}=\sqrt[\mathbb{R}]{(I_{q,k}^{+},D^{n-q+1}(I_{q,k}^{+}))}$ ,

where $D^{n-q+1}(I_{q,k}^{+})$ is the set of all $(n-q+1)\times(n-q+1)$ subdeterminants

of $\Lambda I(f_{1}, \ldots, f_{n})$ for all $n$-tuples $(f_{1}, \ldots, f_{n})$ in $I_{q,k}^{+}$ . Similarly we define

$I_{q,k}^{-}$ by:

$I_{q,1}^{-}=\sqrt[\mathbb{R}]{(Det^{q+1}\Lambda(0)}I)$

and
$I_{q,k+1}^{-}=\sqrt[\mathbb{R}]{(I_{q,k}^{-},D^{q+1}(I_{q,k}^{-}))}$ .

We then have:

$I_{q,k}^{+}\subset I_{q,k+1}^{+}\subset I_{q}^{+}$ ,

$I_{q,k}^{+}\subset$ I$q+1,k+$ , a$nd$

$I_{q,k}^{+}=I_{n-q,k}^{-}$ .
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Hence if we set

$I_{q,k}=I_{q,k}^{+}\cap I_{q,k}^{-}=I_{\min\{q,n-q\},k}^{+}\subset I_{q}$ .

we conclude that if for some $k$

$(**_{q})$ $ 1\in$ $I_{q,k}$

then the subelliptic estimate $(\blacksquare_{q})$ holds. The condition $(**_{q})$ is called
finite ideal $q$-type.

The conjecture is that $(**_{q})$ is a necessary condition for the subel-
liptic estimate $(\blacksquare_{q})$ . Generalizing the work of Greiner (see [7]) this can
be established when $(c_{IJ})$ and $(c_{I’J’})$ are diagonalizable on $U$ . This di-
agonalizability condition implies that it is not necessary to use radicals
in deriving $1\in I_{q,k}^{+}$ . More generally Catlin (see [1]) has shown that

subellipticity for the $\overline{\partial}-$Neumann problem is equivalent to the condition
of $D$ ’Angelo finite $q$-type. The passage from the $\overline{\partial}-$Neumann problem
to $CR$ manifolds is routine. Thus the problem is to prove that finite ideal
$q$-type is equivalent to finite $D$ ’Angelo type (see [4]). It is easy to prove
that finite $D$ ’Angelo $q$-type implies finite ideal $q$-type, so the problem

is to prove the converse. In case the $CR$ manifold is real analytic this
follows by use of methods developed by Diederich and Fornaess (see [5]).

\S 4. When subellipticity fails

The Fedii example in $\mathbb{R}^{2}$ is

$Eu=-\frac{\partial^{2}u}{\partial x^{2}}-a(x)\frac{\partial^{2}u}{\partial t^{2}}=f$ ,

where $a(x)>0$ when $x\neq 0$ (see [F]). This equation is always hypoellip-
tic, it is elliptic if and only if $a(0)>0$ and it is subelliptic if and only if
$a(x)>c|x|^{m}$ . The best way to see this is to note that $a$ is a subelliptic
multiplier in the sense that:

$||$ au $||_{1}^{2}\leq C((\frac{\partial u}{\partial x}, \frac{\partial u}{\partial x})+(a\frac{\partial u}{\partial t}, \frac{\partial u}{\partial t}))=C(Eu, u)$ .

In the Kusuoka and Stroock example (see [13]) in $\mathbb{R}^{3}$

$E=-\frac{\partial^{2}}{\partial x^{2}}-a(x)\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial t^{2}}$

where $a(x)>0$ when $x\neq 0$ , $E$ is hypoelliptic if and only if

$\lim_{x\rightarrow 0}$ xlog $a(x)=0$ .
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Generalization of the Fedii example on $\mathbb{R}$; $\times \mathbb{R}_{t}^{m}$ , $E=E_{1}+c(x, t)E_{2}$ ,

where

$E_{1}=-\sum a_{ij}(x, t)\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}$ ,

$E_{2}=-\sum b_{ij}(x, t)\frac{\partial^{2}}{\partial t_{i}\partial t_{j}}$ ,

$(a_{ij})\geq 0$ , $(b_{ij})\geq 0$ , and the $E_{1}$ and $E_{2}$ are uniformly subelliptic on $\mathbb{R}_{x}^{n}$

and on $\mathbb{R}_{t}^{m}$ , respectively. Then $E$ is hypoelliptic whenever there exists
a manifold $S\subset \mathbb{R}^{n}\times \mathbb{R}^{m}$ which is transversal to $\mathbb{R}_{x}^{n}$ and $c(x, t)>0$

whenever $(x, t)\not\in S$ .

The analogous statement for $\Pi_{b}$ for $(p, q)-$forms would be that $\Pi_{b}$ is
hypoelliptic if there exists $f\in I_{q}$ and a manifold $S\subset M$ of holomorphic
dimension $\leq\min\{n-q-1, q-1\}$ such that $f\neq 0$ outside of $S$ .

Christ (see [3]) has shown this does not hold in general but it does
hold in case $M\subset \mathbb{C}^{n+1}$ given by a defining function $r$ with special
symmetries (see [K4]), such as: $r=\Re(z_{n+1})-F(\sum|z_{i}|^{2})$ .

To find estimates for the $\overline{\partial}-$Neumann problem for pseudoconvex do-
mains in $\mathbb{C}^{2}$ , Christ has used the method of superlogarithmic estimates
(see [2]), developed by Morimoto (see [14]). Christ’s results can easily
be generalized to the study of $\square _{b}$ on $(p, q)-$ forms on pseudo convex $CR$

manifolds when the quadratic forms $c_{IJ}$ and $c_{I’J’}$ are diagonalizable.
More generally the result (prOven in [10]) is:

Theorem 4.1. $\Pi_{b}$ is hypoelliptic if there exists $f\in I_{q}$ and a man-

ifold $S\subset M$ of holomorphic dimension $\leq\min\{n-q-1, q-1\}$ such
that $f\neq 0$ outside of $S$ and

$\lim_{x\rightarrow S}d(x, S)\log|f(x)|=0$ ,

where $d(x, S)d$enotes the distance from $x$ to $S$ .

To prove this theorem in general we need the following localization
lemma.

Lemma 4.2. If $M$ is pseu $d$ convex if $P\in S\subset\Lambda I$ with $S$ a sub-

manifold of holomorphic dimension $\leq\min\{n-q-1, q-1\}$ , Then there
exists a neighborhoo$dU$ of $P$ such that if
$S_{a}=\{Q\in U|$ dist(Q, $S$ ) $\leq a$ then there exists $C>0$ such that

$||\varphi||_{S_{a}}^{2}\leq C(a^{2}Q_{b}(\varphi, \varphi)+||\varphi||_{hI-S_{a}}^{2}+||\varphi||_{-1}^{2})$ ,

for all $\varphi\in A_{b}^{p,q}$ with support in U. Here $||..||_{X}d$enotes the $L_{2}$ -norm
over $X$ .
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\S 5. Multipliers associated with singularities

Let $\{h_{1}, \ldots, h_{m}\}$ be holomorphic functions defined in a neighbor-
hood of the origin in $\mathbb{C}^{n}$ , with $h_{j}(0)=0$ . Let $M\subset \mathbb{C}^{n+1}$ be a pseudo-
convex $CR$ manifold which near the origin is defined by

$\Re(z_{n+1})=\sum|h_{j}(z_{1}, \ldots, z_{n})|^{2}$ .

If ( is an ideal of germs of holomorphic functions in $\mathbb{C}^{n}$ at the origin we
define $B(\mathcal{G})$ to be the set of all $n\times p$ matrices with $p\geq n$

$B(g_{1}, \ldots, g_{p})=\left(\begin{array}{lll}g_{1z_{1}} & \cdots & g_{1z_{r}},\\\vdots & \ddots & \vdots\\ g_{pz_{1}} & \cdots & g_{pz_{\gamma]}}\end{array}\right)$ ,

for all $n$-tuples in $\mathcal{G}$ . Let $D^{j}$
$(B(\mathcal{G}))$ denote the ideal generated by the set

of all $j\times j$ subdeterminants of $B(g_{1}, \ldots, g_{p})$ for all $B(g_{1}, \ldots, g_{p})\in B(\mathcal{G})$ .

Set
$J_{1}^{q}(\mathcal{G})=\sqrt{D^{n-q}(B(\mathcal{G}))}$ .

Inductively we define

$J_{k+1}^{q}(\mathcal{G})=J_{1}^{q}(\mathcal{G}, J_{1}^{q}(\mathcal{G}),$
$\ldots$ , $J_{k}^{q}(\mathcal{G}))$ .

Let $7-/=(h_{1}, \ldots, h_{m})$ , the ideal generated by $h_{1}$ , $\ldots$ , $h_{m}$ . The fol-
lowing result shows how the ideals $J_{k}^{q}(H)$ determine subellipticity on
$M$ .

Proposition 5.1. $1\in J_{k}^{q}(I_{q,k}^{+})$ if and only if $1\in I_{q,k}^{+}$ .

Denoting by $V(H)$ the variety of7# we have

$dimV(H)=q\Leftrightarrow\{$

$1\in J_{k}^{q+1}(H)$ for some $k$

$1\not\in J_{k}^{q}(H)$ for all $k$ .

Suppose $dimV(H)=q$ let $k_{0}$ be the least $k$ for which $1\in J_{k}^{q+1}(H)$ .

Note that $k_{0}=1$ if and only if 0 is not a singular point and that
$V(7\{, J_{1}^{q+1}(H))$ is the singular variety of $V(H)$ . If $q_{1}=dim$ $V(7\{, J_{1}^{q+1}(H))$

we let $k_{1}$ be the least $k$ for which $1\in J_{k}^{q_{1}+1}(H, J_{1}^{q+1}(H))$ . We continue
defining $k_{2}$ , $k_{3}$ , $\ldots$ and these numbers are invariants of the singularity.
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The Bergman kernel of Hartogs domains and
transformation laws for Sobolev-Bergman kernels

Gen Komatsu

Introduction

If we consider the Bergman kernel of strictly pseudoconvex domains,

we can discuss a scalar invariant theory associated with $CR$ geometry of
the boundaries. This is Fefferman’s program proposed in [3] and then
developed in [6], [10], [1], [11], [8] and others. What will happen if
the Bergman kernel is replaced by reproducing kernels associated with
spaces of holomorphic functions contained in $L^{2}$ Sobolev spaces? Let us
restrict ourselves to the case where the Sobolev order is a half integer
$s/2(s\in \mathbb{Z})$ . The case $s$ $=0$ corresponds to the Bergman kernel. The
case $s$ $=1$ corresponds to the Szeg\"o kernel, and the invariant theory
is essentially the same as that of the Bergman kernel ([10], [11]). The
situation changes with the signature of this $s$ . More precisely, it is
at first necessary that the inner product of the Hilbert space which
admits the reproducing kernel must satisfy a transformation law under
biholomorphic mappings. Existence of such an inner product is obvious
when $s$ $\leq 0$ $(s \in \mathbb{R})$ , whereas it is unknown for $s$ $>0$ except for $s$ $=1$ .

Next, boundary invariants will be contained in the singularity of the
reproducing kernel, and if the singularity is of the same type as that of
the Bergman kernel ([3], [2]) then in particular $s\geq 0$ is necessary ([9]).
This fact suggests that the type of the singularities of the reproducing
kernels for $s$ $<0$ are different from that of the Bergman kernel. Is it
possible to avoid considering such new singularities? In what follows, we
shall give an almost affirmative answer by considering Hartogs domains
and Hirachi’s formulation in [8] of a biholomorphic transformation law
for local defining functions of strictly pseudoconvex domains.

Received March 14, 2002
Research partially supported by Grant-in-Aid for Scientific Research, Min-

istry of Education, Science and Culture.
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\S 1. Hartogs domains and biholomorphic transformation laws

Points of $\mathbb{C}^{n+t}=\mathbb{C}^{n}\times \mathbb{C}^{t}(n\geq 2)$ will be denoted by $(z, z_{0})$ , $(w, w_{0})$ ,

etc. Recall that a domain $\Omega\subset \mathbb{C}^{n}$ is said to have $C^{\infty}$ boundary if there

exists a real valued function $\rho\in C^{\infty}(\overline{\Omega})=C^{\infty}(\mathbb{C}^{n})|_{\overline{\Omega}}$ such that

$\Omega=\{z|\rho(z)>0\}$ , $d\rho\neq 0$ on $\partial\Omega$ ;

we then write $\rho\in C_{def}^{\infty}(\overline{\Omega})$ . Given such a defining function $\rho\in C_{def}^{\infty}(\overline{\Omega})$ ,

the Hartogs domain $D=D_{\rho}^{t}\subset \mathbb{C}^{n+t}$ associated with it is defined by

$D:=\{(z, z_{0})|\lambda(z, z_{0})>0\}$ , $\lambda(z, z_{0}):=\rho(z)-|z_{0}|^{2}$ ;

thus $\lambda\in C_{def}^{\infty}(\overline{D})$ which depends on $t\in \mathbb{N}$ and $\rho\in C_{def}^{\infty}(\overline{\Omega})$ .

Remark 1. $D$ is defined even when $\rho\not\in C^{\infty}(\overline{\Omega})$ , but if $\partial\Omega\in C^{\infty}$

then $\partial D\in C^{\infty}$ because $\partial\lambda=\partial\rho-\overline{z}_{0}\cdot dz_{0}$ . If in addition $\partial\Omega$ is strictly
pseudoconvex, so is $\partial D$ on $z_{0}=0$ . If furthermore $-\rho$ is strictly pluri-
subharmonic, so is $-\lambda$ and thus $\partial D$ is everywhere strictly pseudoconvex.

In what follows, we assume $\rho\in C_{def}^{\infty}(\overline{\Omega})$ and consider for simplicity
only strictly pseudoconvex domains $\Omega$ . For subscripts $i=1,2$ , we use
the following notation:

$\rho_{i}\in C_{def}^{\infty}(\overline{\Omega}_{i})$ , $\lambda_{i}=\rho_{i}-|z_{0}|^{2}$ , $D_{i}=D_{\rho_{i}}^{t}\subset \mathbb{C}^{n+t}$ .

By elementary operations on determinants, we have:

Fact 1. The Levi determinants ($i.e$ . the complex Monge-Amp\‘ere
operators) on $\Omega$ and $D$ satisfy

$ J_{\Omega}[\rho]:=(-1)^{n}\det$ $\left(\begin{array}{ll}\rho & r_{\overline{k}}\\\rho_{j} & \rho_{j\overline{k}}\end{array}\right)=J_{D}[\lambda]$ ,

where the subscripts $j,$
$\overline{k}$ stand for differentiation with respect to $z_{j}$ , $\overline{z}_{k}$ .

Recall by Fefferman [4] that if $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ is biholomorphic then
$ J_{\Omega_{1}}[u_{1}]=J_{\Omega_{2}}[u_{2}]\circ\Phi$ with $u_{1}:=|\det\Phi’|^{-2/(n+1)}(u_{2}\circ\Phi)$ for functions
$u_{2}$ in $\Omega_{2}$ , where $\Phi’$ denotes the holomorphic Jacobian matrix of $\Phi$ .

Lemma 1. Givena biholomorphic map $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ , let

$\Psi$ : $(z, z_{0})\mapsto(\Phi(z), m(z)z_{0})$ , $m(z):=[\det\Phi’(z)]^{1/(n+1)}$ .

Then $\Psi$ : $D_{1}\rightarrow D_{2}$ is a biholomorphic lift, provided

(1.1) $\rho_{1}=|\det\Phi’|^{-2/(n+1)}(\rho_{2}\circ\Phi)$ .
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Incidentally,

(1.2) $\det\Psi’(z, z_{0})=[\det\Phi’(z)]^{w(-t)/(n+1)}$ , $w(-t):=n+1+t$ .

Proof. It follows from (1.1) that $\lambda_{2}(\Psi(z, z_{0}))=|m(z)|^{2}\lambda_{1}(z, z_{0})$ so
that $\Psi(D_{1})\subset D_{2}$ , and similarly $\Psi^{-1}(D_{2})\subset D_{1}$ . Now (1.2) is easy.

Remark 2. The lift $\Psi$ is motivated by that of Fefferman [4], [5]:

$\Phi_{\#}$ : $(z_{F}, z)\mapsto(m(z)^{-1}z_{F}, \Phi(z))$ , $z_{F}\in \mathbb{C}^{*}:=\mathbb{C}\backslash \{0\}$ .

The map $\Phi_{\#}$ : $\mathbb{C}^{*}\times\Omega_{1}\rightarrow \mathbb{C}^{*}\times\Omega_{2}$ is biholomorphic. The multiplicative
factor of the variable $z_{F}$ in $\Phi_{\#}$ is the inverse of that in $\Psi$ . Thus it

is natural to consider the Lorentz-K\"ahler potential $|z_{F}|^{2}\rho(z)$ upstairs

(cf. [4], [5]), whereas we consider $\lambda(z, z_{0})=\rho(z)-|z_{0}|^{2}$ in Lemma 1.

Following Hirachi [8], we liffi the Levi determinant $J_{\Omega}[\cdot]$ on $\Omega$ to
Fefferman’s $\mathbb{C}^{*}$ bundle in [4], [5]. That is, we set, for functions $U=$

$U(z_{F}, z)$ in $\mathbb{C}^{*}\times\Omega$ ,

$ J_{\Omega,,,\#}[U]:=(-1)^{n}\det$ $\left(\begin{array}{ll}U_{F\overline{F}} & U_{F\overline{k}}\\U_{j\overline{F}} & U_{j\overline{k}}\end{array}\right)$ ,

where the subscripts $F$ , $\overline{F}$ stand for differentiation with respect to $z_{F}$ ,
$\overline{z}_{F}$ . Then, as in the proof of Fact 1, we have:

Fact 2. Let $\Lambda(z_{F}, z, z_{0}):=U(z_{F}, z)-|z_{F}|^{2}|z_{0}|^{2}$ in $\mathbb{C}^{*}\times D$ for
functions $U=U(z_{F}, z)$ in $\mathbb{C}^{*}\times\Omega$ . Then

$J_{D,,,\#}[\Lambda]:=(-1)^{n+t}\det(_{\Lambda_{0\overline{F}}}^{\Lambda}\Lambda_{j}^{F}\overline{\frac{F}{F}}$ $\Lambda\Lambda_{j}^{F}\overline{\frac{k}{k}}\Lambda_{0\overline{k}}$ $\Lambda_{F}\Lambda_{0}\overline{\frac{\frac {}{}00}{0}}\Lambda_{j})=|z_{F}|^{2t}J_{\Omega,,,\#}[U]$ .

Remark 3. Roughly speaking, there does not exist any natural fam-
ily, in the context of local biholomorphic invariant theory, of $C^{\infty}$ (local)

defining functions which satisfy the transform law (1.1) (cf. Theorem
2 of [9] for a precise statement). That is, (1.1) necessarily contains an
error (cf. [5], [6], [7], [1], [11]). According to Hirachi’s theory in [8],
this difficulty in Fefferman’s program for the invariant theory of the
Bergman kernel can be avoided by considering asymptotic solutions of
the complex Monge-Amp\‘ere equation upstairs

$J_{\Omega,,,\#}[U]=|z_{F}|^{2n}$ & $U>0$ in $\mathbb{C}^{*}\times\Omega$ , $U=0$ on $\mathbb{C}^{*}\times\partial\Omega$ .
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More precisely, asymptotic solutions are of the form

$U=\rho\#+\rho\neq\sum_{k=1}^{\infty}\eta_{k,,,\Omega}(\rho^{n+1}\log\rho_{\#})^{k}$ , $\eta k,\Omega\in C^{\infty}(\overline{\Omega})$ ,

where $\rho\#$ takes the form $\rho\#(z_{F}, z)=|z_{F}|^{2}\rho(z)$ with special $\rho\in C_{def}^{\infty}(\overline{\Omega})$ .

(This $\rho$ involves an ambiguity parameter but transforms by (1.1), because
the class of these $p$ ’s are so chosen and an action is defined on the
ambiguity parameter. See [8] for the detail.) On the other hand, $\Lambda:=$

$U-|z_{F}|^{2}|z_{0}|^{2}$ in Fact 2 formally satisfies

$J_{D,,,\#}[\Lambda]=|z_{F}|^{2n+2t}$ & $\Lambda>0$ in $\mathbb{C}^{*}\times D$ , $\Lambda=0$ on $\mathbb{C}^{*}\times\partial D$ .

It might be interesting to study the role of $\Lambda$ in the framework of
Hirachi’s theory [8].

\S 2. Sobolev-Bergman kernels of $\Omega$ in terms of the Bergman
kernel of $D$

We denote the Bergman kernel of a Hartogs domain $D=D_{\rho}^{t}\subset \mathbb{C}^{n+t}$

by
$K_{D}^{B}$ $((z, z_{0})$ , $(w, w_{0}))$ $((z, z_{0}),$ $(w, w_{0})\in D)$ ,

and the restriction to the diagonal by $K_{D}^{B}((z, z_{0}))=K_{D}^{B}((z, z_{0}),$ $(z, z_{0}))$ .

Lemma 2. If $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ is biholomorphic, then under the
condition (1.1) in Lemma 1,

(2.1) $K_{D_{1}}^{B}((z, 0))=K_{D_{2}}^{B}((\Phi(z), 0))|\det\Phi’(z)|^{2w(-t)/(n+1)}$ .

More precisely, for the lift $\Psi$ : $D_{1}\rightarrow D_{2}$ in Lemma 1,

(2.2) $K_{D_{1}}^{B}((z, z_{0}))=K_{D_{2}}^{B}(\Psi(z, z_{0}))|\det\Phi’(z)|^{2w(-t)/(n+1)}$ .

Proof It follows from the transformation law in general for the
Bergman kernel that if $\Psi$ : $D_{1}\rightarrow D_{2}$ is biholomorphic then

$K_{D_{1}}^{B}((z, z_{0}))=K_{D_{2}}^{B}(\Psi(z, z_{0}))|\det\Psi’(z, z_{0})|^{2}$ .

Thus (2.2) follows from (1.2). Setting $z_{0}=0$ in (2.2), we get (2.1).

This lemma makes sense when it is combined with the following
elementary observation by Ligocka in [12]. Recall by definition that
the Bergman kernel of $D$ is the reproducing kernel associated with the
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Hilbert space $H^{B}(D)=L^{2}(D)\cap O(D)$ , where $O(D)$ denotes the totality
of holomorphic functions in $D$ . Let us set, for $k\in \mathbb{N}_{0}$ ,

(2.3) $g_{k}(z)=g_{k}[\rho](z):=c_{k}(t)\rho(z)^{t+k}$ , $c_{k}(t):=\frac{1}{t+k}\frac{\pi^{t}}{\Gamma(t)}$

and consider the Hilbert space $H^{B}(\Omega, g_{k}):=L^{2}(\Omega, g_{k})\cap \mathcal{O}(\Omega)$ with re-
spect to the measure having each $g_{k}(z)$ as the weight function. Denoting

the reproducing kernel by $K_{g_{k}}^{B}(z, w)$ , we set $K_{g_{k}}^{B}(z)=K_{g_{k}}^{B}(z, z)$ . It will

be sometimes clearer if we factor out the positive constant $c_{k}(t)$ and
consider the following (then $\ell=t+k$ is not necessary):

$H^{B\ell}(\Omega, \rho)=L^{2\ell}(\Omega, \rho)\cap \mathcal{O}(\Omega)$ , $K_{\rho^{\ell}}^{B}(z)=K_{\rho^{p}}^{B}(z, z)$ $(\ell\in \mathbb{N}_{0})$ .

$K_{\rho^{\ell}}^{B}$ is called the Sobolev-Bergman kernel of Sobolev order $-\ell/2$ in [9].

Then, it is shown in Ligocka [12] that

(2.4) $K_{D}^{B}((z, z_{0}),$

$(w, w_{0}))=\sum_{k\in N_{0}}K_{g_{k}}^{B}(z, w)\sum_{|\alpha|=k}z_{0}^{\alpha}\overline{w}_{0}^{\alpha}$
.

Theorem. Given a biholomorphic map $\Phi$ : $\Omega_{1}\rightarrow\Omega_{2}$ , consider the
Hartogs domains $D_{i}=D_{\rho j}^{t}\subset \mathbb{C}^{n+t}(i=1,2)$ defined by $\rho_{i}\in C_{def}^{\infty}(\overline{\Omega}_{i})$

satisfying the condition (1.1) in Lemma 1. Then the reproducing kernel
$K_{g_{k}[\rho]}^{B}(z)$ associated with the Hilbert space $H^{B}(\Omega, g_{k}[\rho])$ defined via the

function $g_{k}=g_{k}[\rho]$ in (2.3) satisfies the following transformation law

(2.5) $K_{g_{k}[\rho_{1}]}^{B}(z)=K_{g_{k}[\rho_{2}]}^{B}(\Phi(z))|\det\Phi’(z)|^{2w(-t-k)/(n+1)}$ .

that is, $K^{B} _{\rho_{1}^{t+k}},(z)=K^{B}\rho_{2}^{t+k}(\Phi(z))|\det\Phi’(z)|^{2w(-t-k)/(n+1)}$ .

Proof. If we set $z_{0}=0$ or $w_{0}=0$ in (2.4), then all terms in the

right vanish except for $\alpha=0$ (i.e. $k=0$ ), so that $K_{D}^{B}((z, 0))=K_{9\cup}^{B}(z)$ .

Thus (2.5) for $k=0$ follows from (2.1) in Lemma 2. The result (2.5) for
general $k\in \mathbb{N}_{0}$ also follows similarly by using (2.2) and Lemma 1.

Remark 4 $\cdot$ Taking $k=0$ , we may write $K_{\rho^{f}}^{B}(z)=c_{0}(t)K_{D}^{B}((z, 0))$

with $c_{0}(t)=\pi^{t}/\Gamma(t+1)$ . Varying the dimension $t$ , we get Sobolev-
Bergman kernels of any negative half-integral order $-t/2(t\in \mathbb{N})$ . On

the other hand, if we take $t=1$ , then we have $g_{k}(z)=c_{k}(1)\rho(z)^{k+1}$

with $c_{k}(1)=\pi/(k+1)$ and

$K_{D}^{B}((z, z_{0}))=\sum_{k=0}^{\infty}K_{9k}^{B}(z)|z_{0}|^{2k}$ $((z, z_{0})\in D\subset \mathbb{C}^{n+1})$ .
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Varying this time the power $k$ of $|z_{0}|^{2}$ , we again get Sobolev-Bergman
kernels of any negative half-integral order $-(k+1)/2(k\in \mathbb{N}_{0})$ .

Remark 5. The singularities of these Sobolev-Bergman kernels of
$\Omega$ are computable from that of the Bergman kernel $K_{D}^{B}$ of the Hartogs
domain $D=D_{\rho}^{t}$ , but there remains a problem of localizing the singu-

larity of $K_{D}^{B}$ . The author expects that the argument here will be used
rather as a heuristics of formulating a local or microlocal version.
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An approach to the Cartan geometry
II : $CR$ manifolds

Masatake Kuranishi

Introduction

One of the prominent features in the post-Oka development of the
several complex variables is the extensive use of the Cauchy-Riemann
partial differential equations. We also note the development of the
$CR$ geometry induced on the boundary. This geometry is introduced
by E. Cartan [3] in low dimensional cases. The general case is devel-
oped by N. Tanaka [9], S.-S. Chern-J. Moser [4], S. Webster [10], and
D. Burns. Jr.-S. Shnider [1]. This geometry will be the vehicle to set the
Cauchy-Riemann equation geometrically.

The $CR$ geometry is a special case of the Cartan geometry, which is
regarded as a deformation of the Klein’s classical geometry. Namely, for
each classical geometry given as a homogenous space $G/H$ we have the
Cartan geometries modeled after $G/H$ . For example, Riemann geometry
is modeled after the euclidean geometry, which is the quotient of the
group of euclidean motions by the orthogonal group. On a space $X$ we
have a Cartan geometry modeled after $G/H$ when we have (1) a principal
$iJ$-bundle $E$ formed by frames, i.e. ways to identify up to equivalence
(infinitesimally up to certain order) its neighborhood with open sets in
$G/H$ . (2) A Cartan connection on $E$ valued in the Lie algebra of $G$ .

$CR$ geometry may be regarded as the case of Cartan geometry when
the homogenous space is the unit ball in complex euclidean space acted
by the group of holomorphic automorphisms. We constructed $CR$ geom-
etry in [6] from the above view point. However, we did not construct the

frame bundle directly. We first construct the bundle of the frames of the
first (infinitesimal) order and then we prolong it to the frame bundle.
In this paper, we construct $CR$ geometry by defining frames directly.
We also write down the normal $CR$ Cartan connections and discuss its
global aspect.

Received July 19,2002
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\S 1. The Homogenous CR manifolds

We fix a non-degenerate hermitian $n\times n$ matrix

U) $(\underline{h}_{\alpha\overline{\beta}})$ , $\alpha$ , $\beta=1$ , $\ldots$ , $n$ .

We consider, as our model, the $CR$-structure on the hypersurface $\mathcal{M}$ in
$C^{n+1}=\{(z^{1}, \ldots, z^{n}, w)\}$ , given by

(2) $\propto sw$ $=\frac{1}{2}\langle z, z\rangle$ , $\langle z, z\rangle=\underline{h}_{\alpha\overline{\beta}}z^{\alpha}\overline{z^{\beta}}$ .

A) We embed $C^{n+1}$ in the complex projective space $CP^{n+1}$ sending
$(z^{1},\ldots, z^{n}, w)$ to the point with the homogenous coordinate $[1, z^{1},\ldots, z^{n}, w]$ .

The subgroup $\mathcal{G}$ of the projective group which preserves the closure $\overline{\mathcal{M}}$

of $\mathcal{M}$ acts transitively on the closure. Thus $\overline{\mathcal{M}}$ is the homogenous space
on which we model our $CR$ geometry.

B) We find that $\mathcal{G}$ decomposes to the product of the translation
group and the isotropy group. Namely,

(3) $\mathcal{G}=\mathcal{L}\cdot H$ ,

(4)

$\mathcal{L}=\{l(z, x)= \left(\begin{array}{lll}1 & 0 & 0\\z & I & 0\\w & iz^{*} & 1\end{array}\right) : z=(z^{1}, \ldots, z^{n})^{tr}, w=x+\frac{i}{2}\langle z, z\rangle\}$

where $(z^{*})_{\alpha}=\underline{h}_{\alpha\overline{\beta}}\overline{z^{\beta}}$ .

7 $=H/center$ , where $H$ is the group of $(n+2)\times(n+2)$ matrixes:

(5) $h=h(a, u, \beta, s)=\left(\begin{array}{lll}a & l^{y^{*}} & b\\0 & & \beta\\ 0 & 0 & 1/\overline{a}\end{array}\right)$ , where

$a$ is a non-zero complex number, $u$ a complex $n\times n-$matrix $\beta$ is a column
complex $n$-vector $\beta$ , and $s$ is a real number satisfying:

(6) $u^{*}u=I$ , $\frac{a}{\overline{a}}\det u=1$ , $\iota/=i\overline{a}u^{*}\beta$ , $\frac{b}{a}=s-\frac{i}{2}\langle\beta, \beta\rangle$ ,

$(u^{*})_{\beta}^{\alpha}=\underline{h}^{\alpha\overline{\gamma}}\underline{h}_{\beta\overline{\sigma}}\overline{u_{\gamma}^{\sigma}}$ , and I is the identity $n\times n-$matrix. The center is the

finite group

(7) $\{h(e^{im’}, e^{im’}I, 0,0) : m’=\frac{m}{n+2}2\pi, m=0,1, \ldots, n+1\}$ .
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C) The Lie algebra $g$ of $\mathcal{G}$ has the grading:

(8) $g=g_{(-2)}+g_{(-1)}+g_{(0)}+g_{(1)}+g_{(2)}$ , where

(9.1) $g_{(-2)}=\{\{\dot{x}\}_{(-2)}=(\frac{d(l(0,s\dot{x}))}{ds})_{s=0} _{:} \dot{x}\in R\}$ ,

(9.2) $g_{(-1)}=\{\{\dot{z}\}_{(-1)}=(\frac{d(l(s\dot{z},0))}{ds})_{s=0} _{:} \dot{z}\in C^{n}\}$ ,

(9.3) $g_{(0)}=R\pi+R\mu+\{su(n)\}$ , where for $u$

.
$\in su(n)$

$\{\dot{u}\}=(\frac{dh(1,e^{su},0,0)}{ds})_{s=0}$ , $\pi=(\frac{dh(e^{s},I,0,0)}{ds})_{s=0}$ ,

(9.4)
$\mu=(\frac{dh(e^{is},e^{-\frac{2}{r1}is}I,0,0)}{s})_{s=0}$ ,

(9.5) $g_{(1)}=\{\{\dot{\beta}\}_{(1)}=(\frac{dh(1,I,s\dot{\beta},0)}{ds})_{s=0} _{:} \dot{\beta}\in R^{m}\}$ ,

(9.6) $g_{(2)}=\{\{\dot{b}\}_{(2)}=(\frac{dh(1,I,0,s\dot{b}))}{ds})_{s=0} _{:} \dot{b}\in R\}$ ,

(9.7) $\dot{u}\in su(n)$ if and only if $\underline{h}_{\sigma\overline{\gamma}}\dot{u}_{\alpha}^{\sigma}+\underline{h}_{\alpha\overline{\sigma}}\overline{\dot{u}_{\gamma}^{\sigma}}=0$ .

(10) $h=g_{(0)}+g_{(1)}+g_{(2)}$ is the Lie algebra of $H$ .

For $\dot{g}\in g$ we set
(11)
$\dot{g}=\{\dot{g}_{[-2]}\}_{(-2)}+\{\dot{g}_{[-1]}\}_{(-1)}+\dot{g}_{\pi}\pi+\dot{g}_{\mu}\mu+\{\dot{g}_{su}\}+\{\dot{g}_{[1]}\}_{(1)}+\{\dot{g}_{[2]}\}_{(2)}$ .

D) In terms of the decomposition (3) the action of $g\in \mathcal{G}$ on
$(z’, w’)\in \mathcal{M}$ is given by
(12)

$T_{l(z,x)}(z’, w’)=(z^{J}+z, w’+w+i\langle z’, z\rangle)$ , where $\langle z’, z\rangle=\underline{h}_{\alpha\overline{\beta}}(z’)^{\alpha}\overline{z^{\beta}}$ .

(13)

$T_{h}(z’, w’)=(\frac{1}{a\lambda}(uz’+w’\beta), \frac{1}{\lambda}\frac{1}{|a|^{2}}w’)$ , where $\lambda=1-i\langle uz’, \beta\rangle+\frac{b}{a}w’$ .
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E) The $\partial_{b^{-}}$operators of the $CR$ structure on $\mathcal{M}$ is generated by

(14) $P^{\alpha}=\frac{\partial}{\partial\overline{z^{\alpha}}}-iz_{*}^{\alpha}\frac{\partial}{\partial\overline{w}}$ , $z_{*}^{\alpha}=\underline{h}_{\beta\overline{\alpha}}z^{\beta}$ .

We have

(15) $[P^{\alpha}, \overline{P^{\beta}}]=i\underline{h}_{\beta\overline{\alpha}}\frac{\partial}{\partial\theta_{A4}}$ , $\frac{\partial}{\partial\theta_{A4}}=\frac{\partial}{\partial w}+\frac{\partial}{\partial\overline{w}}$ .

F) The Maurer-Cartan form $\omega_{G}$ has the expression:

(16) $\omega_{G}=Ad(h^{-1})(\{\theta_{\mathcal{M}}\}_{(-2)}+\{dz\}_{(-1)})+\omega_{H}$ ,

where $\omega_{H}=h^{-1}dh$ is the Maurer-Cartan form of $H$ and

(17) $\theta_{\lambda\Lambda}=dx+\frac{i}{2}\langle z, dz\rangle-\frac{i}{2}\langle dz, z\rangle$ .

It then follows by calculation that using the terminology in (11)

(18) $(\omega_{G})_{[-2]}=|a|^{2}\theta_{\mathcal{M}}$ , $(\omega_{G})_{[-1]}=au^{\star}(dz-\overline{a}\beta\theta_{A4})$ .

Note that for matrix valued 1-forms $\alpha$ and $\beta$

(19) $[\alpha, \beta]=\alpha\wedge\beta+\beta\wedge\alpha$ .

We then find that the structure equation : $d\omega_{G}+[\omega_{G}, \omega_{G}]/2=0$ is
rewritten in terms of the grading (8) as

(20.1) $d(\omega_{G})_{[-2]}-i\langle(\omega_{G})_{[-1]}, (\omega_{G})_{[-1]}\rangle-2(\omega_{G})_{\pi}\wedge(\omega_{G})_{[-2]}=0$ .

$d(\omega c)_{[-1]}+\{(\omega c)_{su}-((\omega c)_{\pi}+\frac{n+2}{n}i(\omega_{G})_{\mu})I\}\wedge(\omega c)[-1]$

$(20.2)$

$+(\omega_{G})_{[1]}\wedge(\omega_{G})_{[-2]}=0$ ,

(20.3) $d(\omega c)_{\pi}-\propto s\langle(\omega c)_{[-1]}, (\omega_{G})_{[1]}\rangle+(\omega c)_{[2]}\wedge(\omega c)_{[-2]}=0$ ,

(20.4) $d(\omega c)_{\mu}+\Re\langle(\omega c)_{[-1]}, (\omega c)_{[1]}\rangle=0$ ,

$d(\omega c)_{su}+(\omega c)_{su}\wedge(\omega c)_{su}+i(\omega c)[1]\wedge(\omega c)^{*}[-1]$

(20.5)
$-i(\omega_{G})_{[-1]}\wedge(\omega_{G})_{[1]}^{*}+\frac{2}{n}i\Re\langle(\omega_{G})_{[-1]}, (\omega_{G})_{[1]}\rangle=0$ ,
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(20.6)

$d(\omega_{G})_{[1]}+((\omega c)_{su}+((\omega_{G})_{\pi}-\frac{n+2}{n}i(\omega c)_{\mu})I)\wedge w_{[1]}^{*}+(\omega_{G})_{[-1]}\wedge(\omega_{G})_{[2]}=0$ ,

(20.7) $d(\omega_{G})_{[2]}+i\langle(\omega_{G})_{[1]}, (\omega_{G})_{[1]}\rangle+2(\omega_{G})_{\pi}\wedge(\omega_{G})_{[2]}=0$ .

G) Note by calculation that for $g=l(z_{0}, w_{0})h$

$\overline{P^{\alpha}}T_{g}^{\gamma}(0)=\frac{1}{a}u_{\alpha}^{\gamma}$ , $\frac{\partial}{\partial\theta_{\lambda 4}}T_{g}^{\alpha}(0)=\frac{1}{a}\beta^{\alpha}$ ,

(21)
$\overline{P^{\alpha}}T_{g}^{0}(0)=\frac{i}{a}\underline{h}_{\gamma\overline{\sigma}}u_{\alpha}^{\gamma}\overline{z_{0}^{\sigma}}$ , $\frac{\partial}{\partial\theta_{A4}}T_{g}^{0}(0)=\frac{1}{|a|^{2}}+\frac{i}{a}\langle\beta, z_{0}\rangle$ .

(22) $\frac{\partial}{\partial\theta_{A4}}\overline{P^{\gamma}}T_{g}^{\alpha}(0)=-\frac{b}{a}\frac{1}{a}u_{\gamma}^{\alpha}+i\underline{h}_{\sigma\overline{\iota/}}u_{\gamma}^{\sigma}\frac{1}{a}\beta^{\alpha}\overline{\beta^{\iota/}}$ .

H) We find by calculation that, setting

(23) Ad(h-1) $(\{\dot{g}\}_{(l)})=A(h,\dot{g}, l)$ , we have

$A(h,\dot{x}, -2)_{[-2]}=|a|^{2}\dot{x}$ , $ A(h,\dot{x}, -2)_{[-1]}=-|a|^{2}\dot{x}u^{*}\beta$ ,

$A(h,\dot{x}, -2)_{\pi}+iA(h,\dot{x}, -2)_{\mu}=-a\overline{b}\dot{x}$ ,

(24.1)
$A(h,\dot{x}, -2)_{[su]}=i|a|^{2}\dot{x}(u^{*}\beta)\otimes(\beta^{*}u)+\frac{2i}{n}A(h,\dot{x}, \mu)I$

$ A(h,\dot{x}, -2)_{[1]}=-\overline{a}b\dot{x}u^{*}\beta$ , $A(h,\dot{x}, -2)_{[2]}=-|b|^{2}\dot{x}$ ,

(24.2)
$A(h,\dot{\tilde{z}}, -1)_{[-2]}=0$ , $A(h,\dot{z}, (-1))_{[-1]}=au^{*}\dot{z}$ ,

$ A(h,\dot{\tilde{\wedge}}, -1)_{\pi}+iA(h,\dot{z}, -1)_{\mu}=ia\langle\dot{z}, \beta\rangle$ ,

$A(h,\dot{z}, -1)_{[su]}=-ia(u^{*}\dot{z})\otimes(\beta^{*}u)-i\overline{a}(u^{*}\beta)\otimes(\dot{z}^{*}u)+\frac{2i}{n}A(h,\dot{z}, \mu)I$ ,

$ A(h,\dot{z}, -1)_{[1]}=bu^{*}\dot{z}-i\overline{a}\langle\beta,\dot{z}\rangle u^{*}\beta$ , $ A(h,\dot{z}, -1)_{[2]}=2\Re ib\langle\dot{z}, \beta\rangle$ ,

(24.3) Ad $(h^{-1})\pi=\pi+$ $\{u^{*}\beta\}_{(1)}+\{2\Re\frac{b}{a}\}_{(2)}$ ,

(24.4) $Ad(h^{-1})\mu=\mu-\{\frac{n+2}{n}iu^{*}\beta\}_{(1)}+\{\frac{n+2}{n}\langle\beta, \beta\rangle\}_{(2)}$ ,



170 M. Kuranishi

(24.5) $Ad(h^{-1})\{\sigma\}=\{u^{*}\sigma u\}+\{u^{*}\sigma\beta\}_{(1)}+\{i\langle\sigma\beta, \beta\rangle\}_{(2)}(\sigma\in su(n))$ ,

(24.6) Ad $(h^{-1})\{\gamma\}_{(1)}=\{\frac{1}{\overline{a}}u^{*}\gamma\}_{(1)}+\{2\Re\frac{i}{a}\langle\gamma, \beta\rangle\}_{(2)}$ $(\gamma\in C^{n})$ ,

(24.7)Ad(h-1) $\{s\}_{(2)}=$ $\{ \frac{s}{|a|^{2}}\}_{(2)}$ .

\S 2. $CR$ coframes of infinitesimal order 1

A) Let $M$ be a $CR$ manifold with non-degenerate Levi-form, given
by a subbundle $T_{b}’’M$ of $\partial_{b}$ differential operators. We may identify $M$

with a hypersurface in $C^{n+1}$ passing the origin $p_{0}$ defined by an equation:

(1) $r=0$ .

We regard $p_{0}$ as the reference point and interested in the local aspect
near $p_{0}$ . Hence we may shrink $M$ if necessary. We consider a chart
$\{(z^{1}, \ldots, z^{n}, w)\}$ of $C^{n+1}$ . By a holomorphic linear change of chart we
may assume

(2) $\frac{\partial r}{\partial w}-\frac{\partial r}{\partial\overline{w}}\neq 0$ at $p_{0}$ , $\frac{\partial r}{\partial z^{\alpha}}=O(1)$ .

We set $r_{\alpha}=\partial/\partial z^{\alpha}$ , $r_{\overline{\alpha}}=\partial/\partial\overline{z^{\alpha}}$ , etc. Our model is the case

(3) $ r=r_{A4}=\frac{1}{i}(w-\overline{w})-\langle z, z\rangle$ .

B) The space $T_{b}^{JJ}M$ of the $\overline{\partial}_{b}$ differential operators of $J/I$ is generated
by

(4) $Q^{\alpha}=\frac{\partial}{\partial_{\wedge}\overline{\sim\alpha}}-\frac{r_{\overline{\alpha}}}{r_{\overline{w}}}\frac{\partial}{\partial\overline{w}}$ . Set

(5) $\frac{\partial}{\partial\theta_{M}}=\frac{2}{r_{w}-r_{\overline{w}}}(r_{w}\frac{\partial}{\partial\overline{w}}-r_{\overline{w}}\frac{\partial}{\partial w})$ .

$\partial/\partial\theta_{l\downarrow I}$ is tangential to M. $Q^{\alpha}$ , $\overline{Q^{\alpha}}$ , $\partial/\partial\theta_{M}$ form a base of the complex
tangent space CTIVL

C) For a differential form A on $C^{n+1}$ we also use the same letter

to denote its restriction to M. $\overline{\partial}_{b}$ operators and their bar generate the
subbundle of complex tangent space $CTM$ defined by

(6) $\theta_{\Lambda I}=0$ , where $\theta_{\Lambda’I}=\frac{1}{2}(dw+d\overline{w}+\frac{r_{\beta}}{r_{w}}dz^{\beta}+\frac{r_{\overline{\beta}}}{r_{\overline{w}}}d\overline{z^{\beta}})$ .
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$dz^{\alpha}$ , $d\overline{z^{\alpha}}$ , $\theta_{M}$ form a base of $CT^{*}M$ dual to the above mentioned base of
$CTM$ . $T_{b}^{JJ}M$ is given by he equation:

(7) $dz^{\alpha}=0$ , $\theta_{M}=0$ .

Since $T^{JJ}M$ is closed under bracket, we see by the expression of $Q^{\alpha}$

in(2)

(8.1) $[Q^{\alpha}, Q^{\beta}]=0$ .

Because of the Definition of the Levi-form we may set

(8.2) $[Q^{\alpha}, \overline{Q^{\beta}}]\equiv ic^{\alpha\overline{\beta}}\frac{\partial}{\partial\theta_{NI}}$ $(mod Q^{\gamma}, \overline{Q^{\gamma}})$ .

In view of (15) \S 1 and (3) we may assume that

(8.3) $c^{\alpha\overline{\beta}}(p_{0})=\underline{h}_{\beta\overline{\alpha}}$ .

Because of the above mentioned duality, when $l$ is a function on $M$ ,

(9) $dl$ $=(\overline{Q^{\alpha}}l)dz^{\alpha}+(Q^{\alpha}l)d\overline{z}^{\alpha}+\frac{\partial l}{\partial\theta_{M}}\theta_{M}$ .

D) Consider a manifold $N$ and a map $f$ : $N\rightarrow M$ . Since $f$ is also
a map into $C^{n+1}$ we have in terms of the standard chart $(z^{1}, \ldots, z^{n}, w)$

the expression $f=(f^{1}, \ldots, f^{n}, f^{0})$ . Note that for any vector field $X$ on
$N$ and a function $l$ on $M$ we have $X(l\circ f)=\langle dl$ ,$ dfX$ of. Therefore
by (9)
(10.1)

$X(lof)=(Xf^{\alpha})(\overline{Q^{\alpha}}l)\circ f+(X\overline{f^{\alpha}})(Q^{\alpha}l)\circ f+(R_{X}f)\frac{\partial l}{\partial\theta_{l\downarrow I}}\circ f$ , where

(10.2) $R_{X}f=\frac{1}{2}$ ( $Xf^{0}+X\overline{f^{0}}+\frac{r_{\alpha}}{r_{w}}$ of $Xf^{\alpha}+\frac{r_{\overline{\alpha}}}{r_{\overline{w}}}\circ fX\overline{f^{\alpha}}$).

Since $dfX$ is tangential to $M$ ,

(10.3) $r_{w}\circ fXf^{0}+r_{\overline{w}}\circ fX\overline{f^{0}}+r_{\alpha}\circ fXf^{\alpha}+r_{\overline{\alpha}}\circ fX\overline{f^{\alpha}}=0$ .

Therefore we also have the expressions:

$R_{X}f=\frac{1}{2}(\frac{r_{\overline{w}}-r_{w}}{r_{\overline{w}}r_{w}}of)\{(r_{w}\circ f)Xf^{0}+(r_{\alpha}\circ f)Xf^{\alpha}\}$

$(10.4)$

$=\frac{1}{2}$ ( $\frac{r_{w}-r_{\overline{w}}}{r_{\overline{w}}r_{w}}$ of){ $(r_{\overline{w}}$ of $)X\overline{f^{0}}+(r_{\overline{\alpha}}\circ f)X\overline{f^{\alpha}}$ }.
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E) Let $f$ : $\mathcal{M}\rightarrow M$ be a map sending the origin 0 to $p_{0}$ . Then by
(6)

(11) $f^{*}\theta_{\Lambda I}=\frac{1}{2}(df^{0}+d\overline{f^{0}}+\frac{r_{\beta}}{r_{w}}\circ fdf^{\beta}+\frac{r_{\overline{\beta}}}{r_{\overline{w}}}\circ fd\overline{f^{\beta}})$ .

Apply (9) to the case $N=M=\mathcal{M}$ and $1=f^{0}$ as well as $l=f^{\beta}$ , $f^{\overline{\beta}}$ .
We then find

$f^{*}\theta_{J\vee l}=C_{f}\theta_{\mathcal{M}}+C_{\alpha f}^{0}dz_{A4}^{\alpha}+C_{\frac{0}{\alpha}f}dz^{\overline{\alpha}_{A4}}$ , where

$C_{f}=\frac{1}{2}(\frac{\partial f^{0}}{\partial\theta_{\mathcal{M}}}+\frac{\partial\overline{f^{0}}}{\partial\theta_{\mathcal{M}}}+\frac{r_{\beta}}{r_{w}}of\frac{\partial f^{\beta}}{\partial\theta_{\lambda 4}}+\frac{r_{\overline{\beta}}}{r_{\overline{w}}}of\frac{\partial\overline{f^{\beta}}}{\partial\theta_{\mathcal{M}}})$ ,

(12.1)
$C_{\alpha f}^{0}=\frac{1}{2}(\overline{P^{\alpha}}f^{0}+\overline{P^{\alpha}f^{0}}+\frac{r_{\beta}}{r_{w}}of\overline{P^{\alpha}}f^{\beta}+\frac{r_{\overline{\beta}}}{r_{\overline{w}}}of\overline{P^{\alpha}}\overline{f^{\beta}})$ ,

$C\frac{0}{\alpha}f=\frac{1}{2}(P^{\alpha}f^{0}+P^{\alpha}\overline{f^{0}}+\frac{r_{\beta}}{r_{w}}\circ fP^{\alpha}f^{\beta}+\frac{r_{\overline{\beta}}}{r_{\overline{w}}}\circ fP^{\alpha}\overline{f^{\beta}})$ .

Similarly, we find

$f^{*}dz^{\gamma}=C_{0f}^{\gamma}\theta_{\mathcal{M}}+C_{\alpha f}^{\gamma}dz_{A4}^{\alpha}+C_{\frac{\gamma}{\alpha}f}dz^{\overline{\alpha}_{\mathcal{M}}}$ ,

(12.2)
$C_{0f}^{\gamma}=\frac{\partial f\gamma}{\partial\theta_{A4}}$ , $C_{\alpha f}^{\gamma}=\overline{P^{\alpha}}f^{\gamma}$ , $C_{\frac{\gamma}{\alpha}f}=P^{\alpha}f^{\gamma}$ .

Since $r\circ f=0$ , we also have

(13.1) $r_{w}\circ f\frac{\partial f^{0}}{\partial\theta_{\mathcal{M}}}+r_{\overline{w}}\circ f\frac{\partial\overline{f^{0}}}{\partial\theta_{\mathcal{M}}}+r_{\beta}\circ f\frac{\partial f^{\beta}}{\partial\theta_{\mathcal{M}}}+r_{\overline{\beta}}\circ f\frac{\partial\overline{f^{\beta}}}{\partial\theta_{\mathcal{M}}}=0$ .

(13.2) $r_{w}\circ fP^{\alpha}f^{0}+r_{\overline{w}}$ of $P^{\alpha}\overline{f^{0}}+r_{\beta}\circ fP^{\alpha}f^{\beta}+r_{\overline{\beta}}\circ fP^{\alpha}\overline{f^{\beta}}=0$ .

Set

(14.1) $W=\frac{\partial f^{0}}{\partial\theta_{A4}}+\frac{r_{\alpha}}{r_{w}}\circ f\frac{\partial f^{\alpha}}{\partial\theta_{A4}}$ .

By the Definition of $C_{f}$ in (12.1) and (13.1) we find that

(14.2) $W+\overline{W}=2C_{f}$ , $r_{w}\circ fW+r_{\overline{w}}\circ f\overline{W}=0$ .

Hence $(r_{\overline{w}}-r_{w})\circ fW=2(r_{\overline{w}}\circ f)C_{f}$ . Therefore

(15) $C_{f}=\frac{r_{\overline{w}}-r_{w}}{2r_{\overline{w}}r_{w}}$ of(r $w$ of $\frac{\partial f^{0}}{\partial\theta_{A4}}+r_{\beta}\circ f\frac{\partial f^{\beta}}{\partial\theta_{A4}}$ ).
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F) We define the $CR$ attaching maps of $M$ as the maps which
preserve infinitesimally the defining equation (7) of our $CR$ structure.
Namely,

(16) Definition. $f$ : $\mathcal{M}\rightarrow M$ is called a $CR$ attaching map of order
$m$ when $f$ is a diffeomorphism near 0 and

(16.1) $C_{\alpha f}^{0}=O(m)$ , $C_{\frac{\gamma}{\alpha}f}=O(m)$ , $C_{f}(0)>0$ .

(17) Proposition. Let f : $\mathcal{M}\rightarrow M$ be a CR attaching map of order
m. Then

(17.1) $P^{\alpha}f^{\gamma}=O(m)$ for $j=0,1$ , $\ldots$ , $n;\alpha=1$ , $\ldots$ , $n$ .

Conversely $f$ : $\mathcal{M}\rightarrow M$ satisfying (17.1) is a $CR$ attaching map of
order $m$ , provided $C_{f}$ given by (15) is positive at the origin. We also
1 $ave$

(17.2) $r_{w}\circ f\overline{P^{\alpha}}f^{0}+r_{\beta}\circ f\overline{P^{\alpha}}f^{\beta}=O(l)$ .

Proof. Set for an arbitrary $f$ : $\mathcal{M}\rightarrow M$

(18.1) $W_{\alpha}^{1}=P^{\alpha}f^{0}+\frac{r_{\beta}}{r_{w}}$ of $P^{\alpha}f^{\beta}$ , $W_{\alpha}^{2}=P^{\alpha}\overline{f^{0}}+\frac{r_{\overline{\beta}}}{r_{\overline{w}}}$ of $P^{\alpha}\overline{f^{\beta}}$ .

We see by (13.2) and (12.1) that

(18.2) $r_{w}ofW_{\alpha}^{1}+r_{\overline{w}}$ of $W_{\alpha}^{2}=0$ , $W_{\alpha}^{1}+W_{\alpha}^{2}=C\frac{0}{\alpha}f$ .

In the case $f$ is a $CR$ attaching map of order $m$ , we have $W_{\alpha}^{1}=$

$O(m)$ , $W_{\alpha}^{2}=O(m)$ . Therefore (17.2) holds. Since $P^{\alpha}f^{\gamma}=O(m)$ by
(16.1) and $W_{\alpha}^{1}=O(m)$ , (17.1) also holds. The converse holds, because
(17.1) implies $W_{\alpha}^{1}=O(m)$ and by the 1st formula in (18.2) we have
$W_{\alpha}^{2}=O(m)$ . Q.E.D.

(19) Proposition. For any $p\in M\subset C^{n+1}$ there is an attaching map
of order 3.
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Proof. We may assume that $p$ is the origin. In view of the theorem
of Chern and Moser we may assume that $M$ is given by the equation:
$r=0$ , where

(20.1) $r=\frac{1}{i}(w-\overline{w})-\langle z, z\rangle-F(w, x^{0})$ , $x^{0}=\frac{1}{2}(w+\overline{w})$

where $F\equiv 0(mod (z,\overline{z})^{4})$ . Then the map

(20.2) $f$ : $\mathcal{M}\ni(z, w)\rightarrow(z,$ $w+iF(z, \frac{1}{2}(w+\overline{w}))$

is a $CR$ attaching map of order 3 because

(20.3) $f^{0}\equiv w$ $(mod (z,\overline{z})^{4})$ , $f^{\alpha}\equiv z^{\alpha}$ $(mod (z,\overline{z})^{4})$ .

Q.E.D.

G) Let $N$ be a manifold. We denote by $J_{0}^{l}(\mathcal{M}, N)$ the space of $l$-jets
at the reference point 0 of maps of $\mathcal{M}$ into $N$ .

(21) Definition. $J\in J_{0}^{l}(\mathcal{M}, M)$ is called a $CR$ $l$ -jet when there is a
$CR$ attaching map $f$ of order $l$ representing J. Denote by $J_{0}^{l}(M)_{CR}$ the
space of $CRl$ -jets.

Since $P^{\alpha}$ , $\overline{P^{\alpha}}$ , $\partial/\partial\theta_{\lambda 4}$ form a base of CTM, $J_{0}^{1}(\mathcal{M}, C^{n+1})$ has

the standard chart $(.., p^{(0)j}, \ldots,p_{\alpha}^{(1)j}, \ldots,p_{\overline{\alpha}}^{(1)j}, \ldots,p_{0}^{(1)j}, \ldots)$ , where $j=$

$0,1$ , $\ldots$ , $n$ . Namely, for $J\in J_{0}^{1}$ (Af, $C^{n+1}$ ) represented by a map $f$ :
$\mathcal{M}\rightarrow C^{n+1}$

$p^{(0)j}(J)=f^{j}(0)$ , $p_{\alpha}^{(1)j}(J)=\overline{P^{\alpha}}f^{j}(0)$ ,

(22)
$p_{\overline{\alpha}}^{(1)j}(J)=P^{\alpha}f^{j}(0)$ , $p_{0}^{(1)j}(J)=\frac{\partial f^{J}}{\partial\theta_{A4}}(0)$ .

$J^{1}(\mathcal{M}, M)\subset J^{1}(\mathcal{M}, C^{n+1})$ is the submanifold defined by

(23.1) $p^{(0)}=(p^{(0)1}, \ldots,p^{(0)n},p^{(0)0})\in M$ ,

(23.2) $\Re(r_{w}(r^{(0)})p_{0}^{(1)0}+r_{\gamma}(p^{(0)})p_{0}^{(1)\gamma})=0$ ,

(23.3) $r_{w}(p^{(0)})p_{\alpha}^{(1)0}+r_{\overline{w}}(p^{(0)})\overline{p_{\overline{\alpha}}^{(1)0}}+r_{\gamma}(p^{(0)})p_{\alpha}^{(1)\gamma}+r_{\overline{\gamma}}(p^{(0)})\overline{p_{\overline{\alpha}}^{(1)\gamma}}=0$ .
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Note that the map
(24)
$J\in J_{0}^{1}(\mathcal{M},C^{n+1})\rightarrow(p^{(0)}(J), \ldots,p^{1)j}\frac{(}{\alpha}(J),$

$\ldots$ , $\Re(r_{w}(p^{(0)}(J))p_{0}^{(1)0}(J)$

$+r_{\overline{\alpha}}(p^{(0)}(J))p_{\alpha}^{(1)0}(J))$ , $\ldots$ , $r_{w}(p^{(0)}(J))p_{\alpha}^{(1)0}(J)+r_{\beta}(p^{(0)}(J))p_{\alpha}^{(1)\beta}(J)$ , $\ldots)$

$\in M\times C^{n(n+1)}\times R\times C^{n}$

is of maximal rank. Note also that $C_{\alpha f}^{0}(0)=0$ is a consequence of

$p_{\alpha}^{(1)j}=0$ and (23.2). In view of (17), it then follows that

(25) Proposition. $J_{0}^{1}(M)_{CR}$ is the subspace of $J_{0}^{1}(\mathcal{M}, M)$ defined by
the equations:

(25.1) $p_{\overline{\alpha}}^{(1)j}=0$ , $C^{(1)}>0$ ,

where $C^{(1)}$ is defined by

(26) $C^{(1)}=\frac{r_{\overline{w}}-r_{w}}{2r_{\overline{w}}r_{w}}(p^{(0)})\{r_{w}(p^{(0)})p_{0}^{(1)0}+r_{\gamma}(p^{(0)})p_{0}^{(1)\gamma}\}$ .

(27) Proposition. For any $p\in M_{\rangle}$ complex numbers $C_{j}^{\gamma}$ ( $\gamma=1,$ $\ldots$ , $n$ ; $j=$

$ 0,1\ldots$ , $n)$ , and $C>0$ there is unique $J\in J_{0}^{1}(M)_{CR}$ such that

$p^{(0)}(J)=p$ , $p_{j}^{(1)\gamma}(J)=C_{j}^{\gamma}$ , $p_{\alpha}^{(1)0}(J)=-\frac{r_{\gamma}}{r_{w}}(p^{(0)})C_{\alpha}^{\gamma}$ ,

(28)
$p_{0}^{(1)0}(J)=\frac{2r_{\overline{w}}}{r_{\overline{w}}-r_{w}}(p(0))C-\frac{r_{\gamma}}{r_{w}}(p(0))p_{0}^{(1)\gamma}(J)$ .

We thus have a chart $(x, \ldots, C_{j}^{\gamma}, \ldots, C)$ of $J_{0}^{1}(M)_{CR}$ , called standard.

H) Because of the duality we have for an attaching map $f$ of order
1 at $x\in M$

$(f_{*}\overline{P^{\alpha}})_{x}=C_{\alpha f}^{\gamma}(0)(\overline{Q^{\gamma}})_{x}$ ,

(29)
$(f_{*}\frac{\partial}{\partial\theta})_{x}\mathcal{M}=C_{0f}^{\gamma}(0)(\overline{Q^{\gamma}})_{x}+\overline{C_{0f}^{\gamma}}(0)(Q^{\gamma})_{x}+C_{f}(0)(\frac{\partial}{\partial\theta})_{x}M$ .

We call $(f_{*}\overline{P^{\alpha}})_{x}$ , $(f_{*}\frac{\partial}{\partial\theta}\lambda 4)_{x}$ the $CR$ frame of order 1 associated to a $CR$

$1$ -jet $J=j_{0}^{1}f$ . The space of $CR$ frame of order 1 is diffeomorphic to
$J_{0}^{1}(M)_{CR}$ . The $CR$ coframe $\ldots$ , $\omega_{J}^{j}$ , $\ldots$ of order 1 associated to $CR1$ -jet
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$J$ at $x\in M$ is defined as the dual to a $CR$ frame of order 1 associated
to $J$ . We then find

(30) $\omega_{J}^{\alpha}=(C^{-1})_{\gamma}^{\alpha}(J)((dz_{\Lambda I}^{\gamma},)_{x}-\frac{C_{0}^{\gamma}(J)}{C(J)}(\theta_{M})_{x})$ , $\omega_{J}^{0}=\frac{1}{C(J)}(\theta_{M})_{x}$ .

where $((C^{-1})_{\gamma}^{\alpha}(J))$ is the inverse matrix of the matrix $(C_{\alpha}^{\gamma} (J))$ .

We may regard $\omega_{J}^{j}$ as a 1-form $\Omega^{j}$ on $J_{0}^{1}(M)_{CR}$ . Hence using the
standard chart

(31) $\Omega^{\alpha}=(C^{-1})_{\gamma}^{\alpha}(dz_{hI}^{\gamma}-\frac{C_{0}^{\gamma}}{C}\theta_{\Lambda\prime I})$ , $\Omega^{0}=\frac{1}{C}\theta_{\Lambda I}$ .

Remark. In the case $M=\mathcal{M}$ we see by (17) $-(18)$ \S 1 that $\Omega^{\alpha}=$

$(\omega_{G})_{[-1]}^{\alpha}$ , $\Omega^{0}=(\omega_{G})_{([-2]}$ .

I) Note that the isotropy group $H$ at 0 acts on $\mathcal{M}$ as a $CR$ isomor-
phism group. Hence, when $f$ is a $CR$ attching map of oder $l$ and $h\in H$ ,
$f\circ T_{h}$ (cf. (13) \S 1) is a $CR$ attaching map of order $l$ . Therefore we have
the action of $h$ on $J_{0}^{1}(M)_{CR}$ , which we denote by $R_{h}$ . We then find by

(21) \S 1 and calculation that for $J\in J_{0}^{1}(M)_{CR}$

(32) $C_{\alpha}^{\gamma}(R_{h}J)=C_{\sigma}^{\gamma}(J)\frac{1}{a}u_{\alpha}^{\sigma}$ , $C_{0}^{\gamma}(R_{h}J)=C_{0}^{\gamma}(J)\frac{1}{|a|^{2}}+C_{\sigma}^{\gamma}(J)\frac{1}{a}\beta^{\sigma}$ ,

(33) $C(R_{h}J)=C(J)\frac{1}{|a|^{2}}$ .

\S 3. $CR$ coframe of infinitesimal order 2

A) Let $f$ : $\mathcal{M}\rightarrow M\subset C^{n+1}$ be a $CR$ attaching map of order $m$ .

Then

(1) $f^{*}\theta_{\Lambda I}=C_{f}\theta_{\mathcal{M}}+O(m)$ . Hence

$f^{*}d\theta_{\Lambda I}=C_{f}d\theta_{\mathcal{M}}+dC_{f}\wedge\theta_{\mathcal{M}}+O(m-1)$

(2)
$=iC_{f}<dz_{A4}$ , $dz_{\mathcal{M}}>+dC_{f}\wedge\theta_{\mathcal{M}}+O(m-1)$ .

Since $f^{*}dz^{\alpha}=C_{\alpha f}^{\gamma}dz_{A4}^{\gamma}+C_{0f}^{\alpha}\theta_{A4}+O(m)$ , we find that

(3) $dz_{\mathcal{M}}^{\gamma}=C_{\alpha}^{\gamma f}\{f^{*}dz^{\alpha}-C_{0f}^{\alpha}\theta_{\lambda\Lambda}\}+O(m)$ ,
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where $(C_{\gamma}^{\alpha f})$ is the inverse matrix of $(C_{\gamma f}^{\alpha})$ . Therefore

$f^{*}d\theta_{M}=\dot{\iota}C_{f}\underline{h}_{\gamma\overline{\sigma}}C_{\alpha}^{\gamma f}\overline{C_{\beta}^{\sigma f}}\{f^{*}dz^{\alpha}\wedge f^{*}\overline{dz^{\beta}}+C_{0f}^{\alpha}f^{*}d\overline{z^{\beta}}$

(4)
$-\overline{C_{0f}^{\beta}}f^{*}dz^{\alpha})\wedge\theta_{\mathcal{M}}\}+dC_{f}\wedge\theta_{\mathcal{M}}+O(m-1)$ .

For a function $l$ on $M$ we have by taking $d$ of (9) \S 2

(5) $\frac{\partial l}{\partial\theta_{M}}d\theta_{M}=-d(\overline{Q^{\alpha}}l)\wedge dz^{\alpha}-d(Q^{\alpha}l)\wedge d\overline{z^{\alpha}}-d\frac{\partial l}{\partial\theta_{\Lambda I}}\wedge\theta_{Nl}$ .

Applying (9) \S 2 again when $l$ is replaced $Q^{\alpha}l$ , etc. we find that

$\frac{\partial l}{\partial\theta_{\Lambda I}}d\theta_{M}=[Q^{\beta}, \overline{Q^{\alpha}}]ldz^{\alpha}\wedge d\overline{z^{\beta}}$

(6)
$-\{[\overline{Q^{\alpha}}, \frac{\partial}{\partial\theta_{\Lambda I}}]ldz^{\alpha}+[Q^{\alpha}, \frac{\partial}{\partial\theta_{\Lambda\prime l}}]ld\overline{z^{\alpha}}\}\wedge\theta_{NI}$ .

Applying the above in the case $l$ $=(w+\overline{w})/2$ , we find by (8.2) \S 2 that

(7) $d\theta_{M}=ic^{\beta\overline{\alpha}}dz^{\alpha}\wedge d\overline{z^{\beta}}+(\overline{c^{\alpha}}dz^{\alpha}+c^{\alpha}d\overline{z^{\alpha}})\wedge\theta_{hI}$ ,

where

(8) $c^{\beta\overline{\alpha}}=\frac{1}{2i}[Q^{\beta}, \overline{Q^{\alpha}}](w+\overline{w})$ , $c^{\alpha}=\frac{1}{2}[\frac{\partial}{\partial\theta_{\Lambda’I}}, Q^{\alpha}](w+\overline{w})$ .

Hence

$f^{*}d\theta_{NI}=ic^{\beta\overline{\alpha}}\circ ff^{*}dz^{\alpha}\wedge f^{*}d\overline{z^{\beta}}$

(9)
$+(\overline{c^{\alpha}}\circ ff^{*}dz^{\alpha}+c^{\alpha}\circ ff^{*}d\overline{z^{\alpha}})\wedge f^{*}\theta_{M}$ .

Comparing the above with (4), we find that

(10) $c^{\beta\overline{\alpha}}\circ f=C_{f}\underline{h}_{\gamma\overline{\sigma}}C_{\alpha}^{\gamma f}\overline{C_{\beta}^{\sigma f}}+O(m-1)$ ,

(11) $C_{f}c^{\alpha}\circ f=ic^{\alpha\overline{\beta}}ofC_{0f}^{\beta}+\overline{C_{\alpha}^{\beta f}}P^{\beta}C_{f}+O(m-1)$ .

B) Denote by $J_{0}^{2}(M)$ the space of 2-jets of maps $f$ of neighborhoods

of 0 in $\mathcal{M}$ into $M$ . When $\tilde{J}=j_{0}^{2}(f)$ , we set
(12)

$p_{\alpha\beta}^{(2)j}(\tilde{J})=\overline{P^{\alpha}}\overline{P^{\beta}}f^{j}(0)$ , $p_{\overline{\alpha}\beta}^{(2)j}(\tilde{J})=P^{\alpha}\overline{P^{\beta}}f^{j}(0)$ , $p_{\alpha 0}^{(2)j}(\overline{J})=\overline{P^{\alpha}}\frac{\partial}{\partial\theta_{\mathcal{M}}}f^{j}(0)$ ,

$p_{00}^{(2)j}(\tilde{J})=\frac{\partial^{2}}{\partial\theta_{A4}^{2}}f(0)$ , $c_{\frac{(}{\alpha}}^{2)}(\tilde{J})=P^{\alpha}C_{f}(0)$ , $C_{\alpha}^{(2)}(\tilde{J})=\overline{P^{\alpha}}C_{f}(0)$ .
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Denote by $J_{0}^{2}(M)_{CR}$ the space of 2-jets of $CR$ attaching map to $M$

of order 2. We set

(13) $E_{1}=\rho_{1}^{2}(J_{0}^{2}(M)_{CR})\subset J_{0}^{1}(M)_{CR}$ .

Let $(c_{\beta\overline{\alpha}})$ be the inverse matrix of $(c^{\beta\overline{\alpha}})$ . We have by (10) $-(11)$

(14) Proposition. For $J=\rho_{1}^{2}(J^{2})\in E_{1}$ with $J^{2}\in J_{0}^{2}(M)_{CR}$

$(15)$ $\frac{1}{C(J)}p_{\gamma}^{(1)\alpha}(J)A^{\gamma\overline{\sigma}}\overline{p_{\sigma}^{(1)\beta}(J)}=c_{\beta\overline{\alpha}}(p^{(0)}(J))$ ,

(16) $C_{\beta}^{(2)}(J^{2})=p_{\beta}^{(1)\sigma}(J)\{ic^{\alpha\overline{\sigma}}(p^{(0)}(J))\overline{p_{0}^{(1)\alpha}(J)}+\overline{c^{\sigma}}(p^{(0)}(J))C(J)\}$ .

The action of $H$ on $J_{0}^{1}(M)_{CR}$ (cf. (35)-(36) \S 2) preserves $E_{1}$ . We
find by (36) \S 2 that $H$ acts transitively on the subspace of $J_{0}^{1}(M)_{CR}$

defined by the equation: In terms of the standard chart $(x, \ldots, C_{j}^{\alpha}, \ldots, C)$

of $J^{1}(M)_{CR}$

(17) $C_{\gamma}^{\alpha}\underline{h}^{\gamma\overline{\sigma}}\overline{C_{\sigma}^{\beta}}=Cc_{\beta\overline{\alpha}}(x)$ .

In view of (16) we conclude that

(18) Proposition. $E_{1}$ is the subspace of $J_{0}^{1}(hI)_{CR}$ defined by the
eqaction (17).

C) We also find that the subgroup $H_{1}$ of $H$ which acts as the identity
transformation is given by

(19) $a=1$ , $u=I$ , $\beta=0$ .

Hence $H_{1}$ is a1 dimensional subgroup parametrized by

(20) $s=\Re\frac{b}{a}$ .

Therefore $E_{1}$ is a principal bundle with the structure group $H/H_{1}$ .

We wish to define the $CR$ frame bundle $E$ by the following diagram:

$J^{1}(M)_{CR}$

$(21)$ $\uparrow$

$E_{1}$

- $\tilde{J}^{2}$

$\downarrow$

$\leftarrow$ $E$



An approach to the Cartan geometry $\Pi$ : CR manifolds 179

wher $e\tilde{J}_{CR}^{2}$ is a suitable subspace of $J^{2}(M)_{CR}$ . (22) \S 1 and (20) suggest
that we use as the above downward arrow the map

(22) $\tilde{\rho}$ : $J^{2}\rightarrow p_{\beta}^{(2)}(J^{2})=-\frac{1}{r\nu}\Re(C^{-1})_{\alpha}^{\gamma}(J)p_{0_{\gamma}}^{(2)\alpha}(J^{2})$ .

D) We justify the above choice.

Since $p_{\beta}^{(2)}$ may be regarded as a small deformation of $\Re(b/a)$ by (22)

\S 1, $\tilde{\rho}$ is a projection. It remains to show that $H$ acts on $E$ making $E$ a
principal if-bundle. We define $\tilde{J}_{CR}^{2}$ a $s$ the space of 2-jets representable

by a $CR$ attaching map of order 3. We need to show that $p_{\beta}^{(2)}(R_{h}\tilde{J})$ is

a function of $p_{\beta}^{(2)}(\tilde{J})$ and of $h$ , provided $\tilde{J}\in\tilde{J}^{2}(M)_{CR}$ .

We find by (16) \S 2 that for $f$ : $\mathcal{M}\rightarrow M$

$\frac{\partial}{\partial\theta_{\mathcal{M}}}\overline{P^{\gamma}}(f^{\alpha}\circ T_{h})(x)=\{\frac{\partial}{\partial\theta_{\sqrt{}}\ovalbox{\tt\small REJECT}\{}(\overline{P^{\gamma}}T_{h}^{\sigma})(x)\}(\overline{P^{\sigma}}f^{\alpha})(T_{h}x)$

(23)
$+(\overline{P^{\gamma}}T_{h}^{\sigma})(x)\frac{\partial}{\partial\theta_{\mathcal{M}}}\{(\overline{P^{\sigma}}f^{\alpha})\circ T_{h}\}(x)$ .

We apply (16) \S 2 to $\frac{\partial}{\partial\theta_{A4}}$ $\{ (\overline{P^{\sigma}}f^{\alpha})\circ T_{h}\}(x)$ in the case $N=M=\mathcal{M}$ and

$(X, l, f)$ is $(\partial/\partial\theta_{\mathcal{M}}, \overline{P^{\sigma}}f^{\alpha}, T_{h})$ . We then find by (21) $-(22)$ \S 2
(24)

$p_{0\gamma}^{(2)\alpha}(R_{h}\tilde{J})=\frac{1}{a}u_{\gamma}^{\sigma}\{\frac{1}{|a|^{2}}p_{0\sigma}^{(2)\alpha}(\tilde{J})+\frac{1}{a}\beta^{\mu}p_{\sigma\mu}^{(2)\alpha}(\tilde{J})+i\underline{h}_{\sigma\overline{\mu}}\frac{1}{\overline{a}}\overline{\beta^{\mu}}C_{0}^{\alpha}(J)\}$

$+\{-\frac{b}{a}\frac{1}{a}u_{\gamma}^{\sigma}+i\underline{h}_{\mu\overline{\iota/}}u_{\gamma}^{\mu}\frac{1}{a}\beta^{\sigma}\overline{\beta^{l/}}\}C_{\sigma}^{\alpha}(J)$ .

Therefo $re$ it is enough to show that $p_{\sigma\gamma}^{(2)\alpha}$
$(\tilde{J})$ is a function on $E_{1}$ , provided

$\tilde{J}$ is represented by an attaching map of order 3.
By (10) we have for a $CR$ attaching map $f$ of order 3

(25) $C_{f}c_{\phi\overline{\alpha}}\circ f=P^{\iota/}\overline{f^{\phi}}\underline{h}^{\gamma\overline{\iota/}}\overline{P^{\gamma}}f^{\alpha}+O(2)$ .

Applying $\overline{P^{\sigma}}$ , we find that
(26)

$(\overline{P^{\sigma}}C_{f})c_{\phi\overline{\alpha}}\circ f+C_{f}\overline{P^{\sigma}}(c_{\phi\overline{\alpha}}\circ f)$

$=(\overline{P^{\sigma}}\overline{P^{\gamma}}f^{\alpha})\underline{h}^{\gamma\overline{\iota/}}(P^{\nu}\overline{f^{\phi}})+(\overline{P^{\gamma}}f^{\alpha})\underline{h}^{\gamma_{\overline{1/}}}(\overline{P^{\sigma}}P^{\iota/}\overline{f^{\phi}})+O(1)$ .

Hence we see by (16)
(27)

$p_{\sigma\gamma}^{(2)\alpha}(\tilde{J})\underline{h}^{\gamma\overline{\nu}}\overline{C_{\iota}^{\phi},}(J)=C_{\sigma}^{(2)}(\overline{J})c_{\phi\overline{\alpha}}(x)+C(J)C_{\sigma}^{\nu}(J)\overline{Q^{\nu}}c_{\phi\overline{\alpha}}(x)+iC_{\sigma}^{\alpha}(J)\overline{C_{0}^{\phi}}(J)$ .
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In view of (16) we now conclude that $p_{\gamma\sigma}^{(2)\alpha}$ is a function on $E_{1}$ and
consequently $H$ acts on the space $E$ .

We write down the formula for the operation of $H$ on $p_{\beta}$

(2). Since
$C_{\gamma}^{\alpha}(R_{h}J)=C_{\sigma}^{\alpha}(J)u_{\gamma}^{\sigma}/a$ , we find

$(C^{-1})_{\alpha}^{\gamma}(R_{h}J)p_{0\gamma}^{(2)\alpha}(R_{h}\tilde{J})=(C^{-1})_{\alpha}^{\gamma}(J)\{\frac{1}{|a|^{2}}p_{0\gamma}^{(2)\alpha}(\overline{J})$

(28)
$+\frac{1}{a}\beta^{\sigma}p_{\gamma\sigma}^{(2)\alpha}(\tilde{J})+i\underline{h}_{\gamma\overline{\sigma}}\frac{1}{\overline{a}}\overline{\beta^{\sigma}}C_{0}^{\alpha}(J)\}-n\frac{b}{a}+i<\beta$ , $\beta>$ .

Since $C(C^{-1})_{\mu}^{\nu}=\underline{h}^{\nu\overline{\gamma}}\overline{C_{\gamma}^{\sigma}}c^{\sigma\overline{\mu}}$ we have on the other hand
(29)

$p_{\gamma\sigma}^{(2)\alpha}(\tilde{J})(C^{-1})_{\alpha}^{\gamma}(J)=\frac{n}{C(J)}C_{\sigma}^{(2)}(\tilde{J})+C_{\sigma}^{\gamma}(J)\{c^{\tau\overline{\alpha}}\overline{Q^{\gamma}}c_{\tau\overline{\alpha}}(x)+i\frac{\overline{C_{0}^{\alpha}}(J)}{C(J)}c^{\alpha\overline{\gamma}}\}$ .

We then find after some cancellation
(30)

$p_{\beta}^{(2)}(R_{h}\tilde{J})=\frac{1}{|a|^{2}}p_{\phi}^{(2)}(\tilde{J})+\Re\frac{b}{a}-\Re\frac{1}{a}\beta^{\alpha}\{\frac{C_{\alpha}^{(2)}(\overline{J})}{C(J)}+\frac{1}{n}C_{\alpha}^{\gamma}(J)(\overline{Q^{\gamma}}c_{\sigma\overline{\mu}}(x))c^{\sigma\overline{\mu}}(x)\}$ .

Therefore

(30) $\underline{p_{Q}^{(2)}}=\frac{1}{|a|^{2}}p_{\#}^{(2)}+\Re\frac{b}{a}-\Re\frac{1}{a}\beta^{\alpha}C_{\alpha}^{\gamma}\{\overline{c^{\gamma}}+ic^{\sigma\overline{\gamma}}\overline{\frac{C_{0}^{\sigma}}{C}}+\frac{1}{n}c^{\sigma\overline{\mu}}(\overline{Q^{\gamma}}c_{\sigma\overline{\mu}})\}$ .

\S 4. The normal $CR$ Cartan Connections

Let $\omega$ : $TE\rightarrow g$ be a Cartan connection on the $CR$ frame bundle
$E$ .

A) $\omega$ is called a $CR$ Cartan connection (cf. (31) \S 2) when

(1) $\omega_{[-1]}^{\alpha}=\Omega^{\alpha}$ , $\omega_{[-2]}=\Omega^{0}$ .

Let $U=\{(x)\}=\{(z, x^{0})\}$ be a chart open set of $M$ . In terms of a
local trivialization $U\times H$ of $E$ we have an expression :

(2) $\omega=Ad(h^{-1})w+\omega_{H}$ ,

where $w$ is a $g$-valued 1-form on $U$ and $\omega_{H}$ is the Maurer-Cartan form of
$H$ regarded as a $h$-valued 1-form. Its curvature form has the expression:

(3) $K=d\Omega+\frac{1}{2}[\Omega, \Omega]=Ad(h^{-1})k$ , where $k=dw+\frac{1}{2}[w, w]$ .
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B) A local trivialization of $E$ over $U$ is given, using a section $J$ :
$U\rightarrow E$ , by

(4) $U\times H\ni(x, h)\rightarrow R_{h}J(x)\in E$ .

We find by (31) \S 2 that $\omega$ in (2) is a $CR$ Cartan connection when
(5)

$w_{[-1]}^{\alpha}(x)=(C^{-1})_{\gamma}^{\alpha}(x)(dz^{\gamma}-\frac{C_{0}^{\gamma}(x)}{C(x)}\theta_{1}\vee I)$ , $w_{[-2]}=\frac{1}{C(x)}\theta_{\Lambda’l}$ , where

(6) $J(x)=(\ldots, C_{j}^{\alpha}(x),$ $\ldots$ , $C(x),p_{Q}^{(2)}(x))$

is the standard chart expression of $J(x)$ . We see by the above that we
have to determine $w_{\pi}$ , $w_{\mu}$ , $w_{su}$ , $w_{[1]}$ , $w_{[2]}(cf(11) \S 1)$ to determine a $CR$

Cartan connection. We put curvature conditions so that we have $CR$

Cartan connections unique up to isomorphism.
C) As we obtained (20) \S 1 we find that $k$ in (3) has the expression:

(7.1) $k_{[-2]}=dw_{[-2]}-i\langle w_{[-1]}, w_{[-1]}\rangle-2w_{\pi}\wedge w_{[-2]}$ .

$k_{[-1]}=dw_{[-1]}+\{w_{su}-(w_{\pi}+\frac{n+2}{n}iw_{\mu})I\}\wedge w_{[-1]}$

$(7.2)$

$+w_{[1]}\wedge w_{[-2]}$ ,

(7.3) $k_{\pi}=dw_{\pi}-\propto s\langle w_{[-1]}, w_{[1]}\rangle+w_{[2]}\wedge w_{[-2]}$ ,

(7.4) $ k_{\mu}=dw_{\mu}+\Re\langle w_{[-1]}, w_{[1]}\rangle$ ,

$k_{su}=dw_{su}+w_{su}\wedge w_{su}+iw_{[1]}\wedge w_{[-1]}^{*}$

(7.5)
$-iw_{[-1]}\wedge w_{[1]}^{*}+\frac{2}{n}i\Re\langle w[-1], w[1]\rangle$ ,

(7.6) $k_{[1]}=dw_{[1]}+i(w_{su}+(w_{\pi}-\frac{n+2}{n}iw_{\mu})I)\wedge w_{[1]}^{*}+w_{[-1]}\wedge w_{[2]}$ ,

(7.7) $k_{[2]}=dw_{[2]}+i<w_{[1]}$ , $w_{[1]}>+2w_{\pi}\wedge w_{[2]}$ .

D) In order to carry out the program mentioned at the end of $B$ ),

we set

(8) $\underline{C}=$ the matrix $(C_{\beta}^{\alpha}(x))$ , $\hat{C}=(\ldots, C_{0}^{\alpha}(x),$ $\ldots)$ .
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We also omit $x$ in $C(x)$ , etc. We see by (7) \S 3, (10) \S 3, and (5) that

(9) $d\theta_{\Lambda^{/}I}=iC\langle w_{[-1]}, w_{[-1]}\rangle-2\Re(ic^{\gamma\overline{\alpha}}C_{0}^{\alpha}-Cc^{\gamma})d\overline{z^{\gamma}}\wedge w_{[-2]}$ .

We then find that
(10)
$dw_{[-2]}-i\langle w_{[-1]}, w_{[-1]}\rangle-q^{0}\wedge w_{[-2]}=0$ , $dw_{[-1]}+q\wedge w_{[-1]}+q_{[1]}\wedge w_{[-2]}=0$ ,

$q^{0}=\Re(-\frac{i}{C}c^{\gamma\overline{\alpha}}C_{0}^{\alpha}+c^{\gamma})d\overline{z^{\gamma}}-\frac{1}{2}d\log C$ ,

(11) $q=\underline{C}^{-1}d\underline{C}-i\underline{C}^{-1}\hat{C}\otimes w_{[-1]}^{*}$ ,

$q_{[1]}=\underline{C}^{-1}\hat{C}2\Re(-\frac{i}{C}c^{\beta\overline{\alpha}}C_{0}^{\alpha}+c^{\beta})d\overline{z^{\beta}}+Cd^{\underline{\underline{C}^{-1}\hat{C}}}C$ .

(12) Lemma. We can $hnd$ a unique set of a complex valued 1-form $b^{0}$ ,

an $su(n)$ valued 1-form $b_{su}$ , a $C^{n}-$valued 1-form $b_{[1]}$ , such that

(13.1) $b^{0}$ , $b_{su}$ , $b_{[1]}\equiv 0$ $(mod w_{[-1]}, \overline{w_{[-1]}})$ ,

$dw_{[-2]}-i\langle w_{[-1]}, w_{[-1]}\rangle-2\Re b^{0}\wedge w_{[-2]}=0$ ,
(13.2)

$dw_{[-1]}+(b_{su}-b^{0}I)\wedge w_{[-1]}+b_{[1]}\wedge w_{[-2]}=0$ .

Proof. By using the type with respect to $w_{[-1]}$ , $\overline{w_{[-1]}}$ , we check the

uniqueness. To show the existence, note by (10) that $d\langle w_{[-1]}, w_{[-1]}\rangle-$

$q^{0}\wedge\langle w_{[-1]}, w_{[-1]}\rangle\equiv 0(mod w_{[-2]})$ . We then find

(14.1) $(dw_{[-1]}^{\alpha})^{(2,0)}-\underline{h}^{\alpha\overline{\beta}}\underline{h}_{\sigma\overline{\gamma}}w_{[-1]}^{\sigma}\wedge\overline{q_{\beta\overline{\mu}}^{\gamma}}w_{[-1]}^{\mu}-$ $(q^{0})^{(1,0)}\wedge w_{[-1]}^{\alpha}=0$ ,

where $(q_{\beta}^{\gamma})^{(0,1)}=q_{\beta\overline{\mu}}^{\gamma}\overline{w_{[-1]}^{\mu}}$ . On the other hand we see by (10) that

(14.2) $(dw_{[-1]}^{\alpha})^{(1,1)}+q_{\sigma\overline{\mu}}^{\alpha}\overline{w_{[-1]}^{\mu}}\wedge w_{[-1]}^{\sigma}=0$ .

Therefore we find that (13) is valid when we set

$(b_{u})_{\gamma}^{\alpha}=q_{\gamma\overline{\sigma}}^{\alpha}\overline{w_{[-1]}^{\sigma}}-\underline{h}^{\alpha\overline{\beta}}\underline{h}_{\gamma\overline{\nu}}q_{\beta\overline{\sigma}}w_{[-1]}^{\sigma}\overline{\nu}$ ,

(15) $(b_{su})_{\beta}^{\alpha}=(b_{u})_{\beta}^{\alpha}-(b_{u})_{\gamma}^{\gamma}\delta_{\beta}^{\alpha}$ , $b^{0}=(q^{0})^{(1,0)}+(b_{u})_{\gamma}^{\gamma}$ ,

$b_{[1]}\equiv q_{[1]}-\frac{1}{C}\underline{C}^{-1}w_{[-1]}\partial\theta_{\Lambda l}\underline{\partial\underline{C}}$ $(mod w_{[-2]})$ .

Q.E.D.
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E) For a differential form $\alpha$ we set

(16) $\alpha=\alpha^{+}+\alpha^{(0)}\wedge w_{[-2]}$ , where $\alpha^{+}$ , $\alpha^{(0)}$ do not contain $w_{[-2]}$ .

By the Lemma we find the followings:

(17) Proposition. $k_{[-2]}=0$ if and only if $w_{\pi}^{+}=\Re b^{0}$ .

(18) Proposition. Assume that $k_{[-2]}=0$ . Then $k_{[-1]}=0$ if and only if

$w_{su}^{+}=b_{su}$ , $w_{\mu}^{+}=\frac{n}{n+2}\propto sb^{0}$ , $w_{[1]}^{+}=b_{[1]}+(b_{su}^{(0)}-(b^{0})^{(0)}I)w_{[-1]}$ .

From now on we consider only $CR$ Cartan connections satisfying the
conditions in (17) and (18). We next examine conditions $k_{\pi}=0$ , $k_{\mu}=0$ .

By taking the exterior derivative of the first equality in (13.2), we
find that

(19) $(d\Re b^{0}-\propto s\langle w_{[-1]}, b_{[1]}\rangle)\wedge w_{[-2]}=0$ .

Therefore, we have the expression:

(20) $d\Re b^{0}-\propto s\langle w_{[-1]}, b_{[1]}\rangle+b_{[2]}\wedge w_{[-2]}=0$ , $b_{[2]}=b_{[2]}^{+}$ .

Hence we find that

$ k_{\pi}=s\langle\propto w_{[-1]}, b_{[1]}-w_{[1]}\rangle+w_{\pi}^{(0)}i\langle w_{[-1]}, w_{[-1]}\rangle$

(21)
$+(dw_{\pi}^{(0)}+w_{[2]}-b_{[2]}+2w_{\pi}^{(0)}\Re b^{0})\wedge w_{[-2]}$ .

(22) Proposition. Assume tlmt $k_{[-2]}=k_{[-1]}=0$ . Then $k_{\pi}=0$ if and
only if

$ w_{[2]}^{+}=b_{[2]}-(dw_{\pi}^{(0)})^{+}-2w_{\pi}^{(0)}\Re b^{0}-s^{\propto}\langle w_{[-1]}, w_{[1]}^{(0)}\rangle$ .

We find
(23)

$ k_{\mu}=\frac{n}{n+2}d(\propto sb^{0})+\Re\langle w_{[-1]}, b_{[1]}+(w_{su}^{(0)}-\frac{n+2}{n}iw_{\mu}^{(0)}I)w_{[-1]}\rangle$

$+iw_{\mu}^{(0)}\langle w_{[-1]}, w_{[-1]}\rangle+(dw_{\mu}^{(0)}+\Re\langle w_{[-1]}, w_{[1]}^{(0)}\rangle+w_{\mu}^{(0)}2\Re b^{0})\wedge w^{[-2]}$ .
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By taking the exterior derivative of the 2nd formula in (13.2), we find
by (20) that
(24)
$\{(db_{su}-id\propto sb^{0}I)^{+\alpha}-s\langle w_{[-1]}, b_{[1]}^{+}\rangle I+b_{su}^{+}\wedge b_{su}^{+}+ib_{[1]}^{+}\otimes w_{[-1]}^{*}\}\wedge w_{[-1]}=0$ .

Then it follows that

(25) $\frac{n}{n+2}(d\propto sb^{0})^{(0,2)}-\frac{1}{2}\langle b_{[1]}^{(0,1)}, w_{[-1]}\rangle=0$ .

Therefore we find the following: Set
(26)

$(d(\propto sb^{0}))^{(1,1)}=(d\propto sb^{0})_{\alpha\overline{\beta}}w_{[-1]}^{\alpha}\wedge\overline{w\beta_{[-1]}}$ , $\Re b^{0}=(\Re b^{0})_{\alpha}w_{[-1]}^{\alpha}+(\Re b^{0})_{\overline{\beta}}\overline{w_{[-1]}^{\beta}}$ ,

$(d\propto sb^{0})^{(0)}=\overline{b}_{\alpha}^{0}w_{[-1]}^{\alpha}+\tilde{b}\frac{0}{\alpha}\overline{w_{[-1]}^{\alpha}}$ , $b_{[1]}^{\alpha}=b_{[1]\gamma}^{\alpha}w_{[-1]}^{\gamma}+b_{[1]\overline{\beta}}^{\alpha}\overline{w_{[-1]}^{\beta}}$ .

(27) Proposition. Assume that $k_{[-2]}=k_{[-1]}=k_{\pi}=0$ . Then $k_{\mu}=0$ if
and only if

$w_{\mu}^{(0)}=\frac{1}{2}\frac{n+2}{n(n+1)}(\propto sb_{[1]})_{\alpha}^{\alpha}+\frac{i}{2(n+1)}\underline{h}^{\alpha\overline{\beta}}(d\propto sb^{0})_{\alpha\overline{\beta}}$ ,

$(w_{su}^{(0)})_{\beta}^{\alpha}=\frac{n}{n+2}\underline{h}^{\alpha\overline{\gamma}}(d\propto sb^{0})If\gamma--\frac{1}{n+2}\underline{h}^{\kappa\overline{\gamma}}(d\propto sb^{0})_{\kappa\overline{\gamma}}\delta_{\beta}^{\alpha}+\frac{1}{2}\underline{h}^{\alpha\overline{\kappa}}\underline{h}_{\beta\overline{\gamma}}\overline{b_{[1]\kappa}^{\gamma}}$

$-\frac{1}{2}b_{[1]]\beta}^{\alpha}+\frac{1}{n}(\propto sb_{[1]})_{\gamma}^{\gamma}\delta_{\beta}^{\alpha}$ ,

with $dw_{\mu}^{(0)}=\tilde{w}_{\mu\alpha}w_{[-1]}^{\alpha}+\tilde{w}_{\mu\overline{\alpha}}\overline{w_{[-1]}^{\alpha}}$ ,

$w_{[1]}^{(0)\alpha}=-2\underline{h}^{\alpha\overline{\beta}}\{\tilde{w}_{\mu\overline{\beta}}+w_{\mu}^{(0)}(\Re b^{0})_{\overline{\beta}}+\frac{1}{2}\tilde{b}\frac{0}{\beta}\}$ .

Finally we put the condition:

(28) $trk_{[2]}=0$ ,

where for a 2-form $\phi$

(29) $tr\phi=\underline{h}^{\alpha\overline{\beta}}\phi_{\alpha\overline{\beta}}$ , $\phi^{(1,1)}=\phi_{\alpha\overline{\beta}}w_{[-1]}^{\alpha}\wedge\overline{w_{[-1]}^{\beta}}$ .

(30) Proposition. $trk_{[2]}=0$ if and only if

$w_{[2]}^{(0)}=\frac{1}{n}\{itrdw_{[2]}^{+}-tr\langle w_{[1]}, w_{[1]}\rangle+2itr(w_{\pi}^{+}\wedge w_{[2]}^{+})\}$ .
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F) Note by (23) $-(24)$ \S 1 that

$k_{[-2]}=k_{[-1]}=k_{\pi}=k_{\mu}=trk_{[2]}=$ Oifand only if
(31)

$K_{[-2]}=K_{[-1]}=K_{\pi}=K_{\mu}=trK_{[2]}=0$ .

(32) Definition. A $CR$ Cartan connection is called normal when its
curvature satisfies the above conditions.

Clearly the normality condition is a globally defined condition. We
also see

(33) Proposition. When we $hx$ a chart $(z, x^{0})$ and a local cross-section

(4), for arbitrary choice of $w_{\pi}^{(0)}$ there is a unique normal $CR$ Cartan con-
nection. The isomorphism class of the normal $CR$ Cartan connections
Is unique.

G) We next discuss the global aspect of the normal $CR$ Cartan
connetions.

Fix a chart $x=(z, x^{0})$ . Beside the local cross-section $J(x)$ given in
(4) $-(6)$ consider a new cross-section

(34) $\underline{J}(x)=R_{h(x)}J(x)$ for a $H$-valued function $h(x)$ .

$\underline{J}(x)$ induces a chart $(x, \underline{h})$ , which is related to the original chart $(x, h)$

by

(35) $h=h(x)\underline{h}$ .

A Cartan connection (2) has the two expressions:

(36) $\omega=$ Ad $(h^{-1})w(x)+h^{-1}dh=$ Ad $(\underline{h}^{-1})\underline{w}(x)+\underline{h}^{-1}d\underline{h}$ .

Therefore

(37) $\underline{w}(x)=$ Ad $(h(x)^{-1})(w(x)+h(x)^{-1}dh(x))$ .

From now we omit (x) for simplicity. By the above and by (23) \S 1
we find that

(38.1) $\underline{w}_{[-2]}=|a|^{2}w_{[-2]}$ .
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(38.2) $\underline{w}_{[-1]}^{\alpha}=a(u^{-1})_{\gamma}^{\alpha}w_{[-1]}^{\gamma}-|a|^{2}(u^{-1}\beta)^{\alpha}w_{[-2]}$ .

(39) $\underline{w}_{\pi}=w_{\pi}+\Re ia\langle w_{[-1]}, \beta\rangle-|a|^{2}sw_{[-2]}+$ dlog $|a|$ .

For a 1-form $\phi$ set

(40) $\phi=\phi_{\alpha}w_{[-1]}^{\alpha}+\phi_{\overline{\alpha}}\overline{w_{[-1]}^{\alpha}}+\phi^{(0)}w_{[-2]}=\tilde{\phi}_{\alpha}\underline{w}_{[-1]}^{\alpha}+\tilde{w}_{\overline{\alpha}}\overline{\underline{w}_{[-1]}^{\alpha}}+\overline{\phi}^{(0)}\underline{w}_{[-2]}$ .

Then

(41) $\tilde{\phi}_{\alpha}=\phi_{\gamma}\frac{1}{a}u_{\alpha}^{\gamma}$ , $\tilde{\phi}^{(0)}=\frac{1}{|a|^{2}}\phi^{(0)}+\phi_{\alpha}\frac{1}{a}\beta^{\alpha}+\phi_{\overline{\alpha}}\frac{1}{\overline{a}}\overline{\beta^{\alpha}}$ .

Setting $\underline{w}_{\pi}^{(0)}=\underline{\overline{w}}_{\pi}^{(0)}$ for simplicity, we then find

$\underline{w}_{\pi}^{(0)}=\frac{1}{|a|^{2}}w_{\pi}^{(0)}-s+2\Re w_{\pi\alpha}\frac{1}{a}\beta^{\alpha}+2\Re\frac{1}{a}\beta^{\alpha}$
$(d\log |a|)_{\alpha}$

(42)
$+\frac{1}{|a|^{2}}(d\log|a|)^{(0)}$ .

On the other hand we see by (30) \S 3, (11), and (17) that

(43) $\underline{p}_{b}^{(2)}=\frac{1}{|a|^{2}}p_{\phi}^{(2)}+s-2\Re\frac{1}{a}\beta^{\alpha}$ { $w_{\pi\alpha}+\frac{1}{2}$ (dlog $C)_{\alpha}+\frac{1}{n}c^{\gamma\overline{\sigma}}\overline{Q^{\alpha}}c_{\gamma\overline{\sigma}}$ }.

Therefore

(44) $\underline{w}_{\pi}^{(0)}+\underline{p}_{\beta}^{(2)}=\frac{1}{|a|^{2}}(w_{\pi}^{(0)}+p_{\phi}^{(2)})+R$ , where

(45)

$R=2\Re\frac{1}{a}\beta^{\alpha}$ { $(d\log|a|)_{\alpha}-\frac{1}{2}$ (dlog $C)_{\alpha}-\frac{1}{n}C_{\alpha}^{\gamma}c^{\nu\overline{\sigma}}\overline{Q^{\gamma}}c_{\nu\overline{\sigma}}$ } $+\frac{1}{|a|^{2}}$ $(d\log |a|)^{(0)}$ .

Note that we have the standard chart $(\underline{C}, \underline{C}_{0}^{\alpha}, \underline{C}_{\gamma}^{\alpha})$ induced by the

local cross-section $\underline{J}$ . We find by (32) $-(33)$ \S 2 and (30) \S 3 that

(46) $\underline{C}=\frac{1}{|a|^{2}}C$ , $\underline{C}_{0}^{\alpha}=\frac{1}{|a|^{2}}C_{0}^{\alpha}+\frac{1}{a}\beta^{\gamma}C_{\gamma}^{\alpha}$ , $\underline{C}_{\gamma}^{\alpha}=\frac{1}{a}C_{\nu}^{\alpha}u_{\gamma}^{\nu}$ .

Set

(47) $U=(d\log C)^{(0)}-C_{0}^{\alpha}c^{\gamma\overline{\sigma}}\overline{Q^{\alpha}}c_{\gamma\overline{\sigma}}$ .
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Then we see by calculation that

(48) $\underline{U}=\frac{1}{|a|^{2}}U-R$ .

Therefore the condition: $w_{\pi}^{0}+p_{\beta}^{(2)}+U=0$ is a globally defined condition.

We conclude

(49) Proposition. When we choose

(50) $w_{\pi}^{(0)}=-p_{\Downarrow}^{(2)}-U$,

the normal $CR$ Cartan connection is globally defined.
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The $\overline{\partial}$ equation in $N$ variables, as $N$ varies

L\’aszl\’o Lempert

\S 1. Introduction

In this work we shall be concerned with solving the $\overline{\partial}$ equation in $N$

dimensional balls, and the emphasis will be on understanding how the
control that we have on the $\sup$ norm of the solution depends on the
number of variables. The primary motivation for this line of research
comes from the infinite dimensional theory of the $\overline{\partial}$ equation. Indeed,

if it turns out that solutions of the $N$ dimensional $\overline{\partial}$ equation can be
estimated independently of $N$ , one should expect that by passing to some
limit a solution of the infinite dimensional $\overline{\partial}$ equation will be obtained
as well. More on this later. However, our topic of the day is also related,

perhaps only in spirit, to other areas of mathematics and beyond, where
one studies systems with a large number $N$ of degrees of freedom and
investigates how properties of the system change as $ N\rightarrow\infty$ . One
example would be statistical physics, another algorithmic complexity.

In the next section of the present work we first review the relevant
estimates for the $\overline{\partial}$ equation available in the literature. None of them is
known to be optimal; on the other hand they all involve $N$ exponentially.
In fact, exponential dependence on the dimension seems to be the rule
in analysis and geometry, even beyond the theory of the $\overline{\partial}$ equation.
This will be discussed at some length in section 2. Nevertheless we
shall find one instance (Theorems 2.1 and 2.2) when the exponentially
diverging estimates can be converted into dimension free estimates. As
a consequence we obtain that on the level of $(0, 1)$ forms the equation
$\overline{\partial}u=f$ is solvable in pseudoconvex open subsets of the Banach space 71
of summable sequences. This was already proved in $[L1,2]$ for local resp.
global solvability. Our treatment here does overlap with that of [LI], but
is simpler. In addition, it gives a stronger result: in Theorem 4.2 the
regularity assumption on $f$ is weaker than H\"older continuity, while [L1]
dealt with Lipschitz continuous $f$ . This stronger result is sharp in that
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in $l^{1}$ mere continuity of $f$ is not sufficient for the solvability of $\overline{\partial}u=f$ ,

see [$LI$ , Theorem 9.1].
Acknowledgement. I am grateful to the referee for his careful reading

of this paper and for helpful suggestions.

\S 2. The estimates

2.1. Rather than studying the $\overline{\partial}$ equation just in Euclidean balls, we fix
$p\in[1, \infty)$ and consider

$B_{N,p}(R)=B_{N}(R)=\{z\in \mathbb{C}^{N} : ||z||_{p}<R\}$ , where

$||z||_{p}=||z||=(,\sum_{\iota=1}^{N}|z_{\nu}|^{p})1/p$ , $z=(z_{\nu})$ .

Given a $k\in[0, \infty)$ , $r\in(0,1]$ and a closed form $f\in C_{0,1}^{k}(B_{N}(1))$ , we
want to solve the equation

(2.1) $\overline{\partial}u=f|B_{N}(r)$

with estimate

(2.2) $|u|_{C^{()}(B_{N}(r))}\leq c_{N}|f|_{C^{k}(B_{N}(1))}$ ,

where $c_{N}$ is independent of $f$ , but may depend on $p$ , $k$ , ithat we think
of as fixed, and of course on $N$ . The norm on the left hand side of
(2.2) is $\sup_{B_{N}(r)}|u|$ . The more general $C^{k}$ norms on the right must be

defined with a little care, since various seemingly natural choices behave
somewhat differently as $ N\rightarrow\infty$ . The correct definition is gotten by
using the Banach space structure of $(\mathbb{C}^{N}, || ||_{p})$ only, ignoring coordi-
nates. Thus, when $(X, || ||)$ is any Banach space and $\Omega\subset X$ is open,
for $0<k<1$ and $u:\Omega\rightarrow \mathbb{C}$ one writes

$|u|_{C^{k}(\Omega)}=\sup_{\Omega}|u|+\sup_{z\neq\zeta\in\Omega}\frac{|u(z)-u(()|}{||z-(||^{k}}$ .

For $k\geq 1$ , $|u|_{C^{k}(\Omega)}$ is defined inductively: one thinks of du as a func-

tion on $\Omega x$ $B$ , $B\subset X$ the unit ball, and sets $|u|_{C^{k}(\Omega)}=\sup_{\Omega}|u|+$

$|$ du $|_{C^{k-1}(\Omega\times B)}$ . Similarly, a 1-form $f$ on $\Omega$ is a function on $\Omega\times B$ , and

the $C^{k}(\Omega\times B)$ norm of this function is what is meant by $|f|_{C^{k}(\Omega)}$ .

Back to (2.1), (2.2), the question is how $c_{N}$ depends on N–the hope
being that it does not. There are various ways to solve (2.1) with esti-
mates: the Hilbert space methods of H\"ormander or, in case of smooth
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boundary, of Kohn; and integral formulas. Integral formulas of Grauert-
Lieb, Henkin, $\emptyset$vrelid, and others directly estimate $|u|_{C^{0}(B_{N}(1))}$ , espe-
cially in the strongly pseudoconvex case $p=2$ , while H\"ormander and
Kohn only estimate the $L^{2}(B_{N}(1))$ norm of a solution, which then has
to be converted into $\sup$ norm on smaller balls $B_{N}(r)$ , $r<1$ . When one
works one’s way through the constants that occur, all the above methods
give $c_{N}\approx\gamma^{N}$ with $\gamma=\gamma(p, k, r)>1$ for $r<1$ . (For infinite dimensional
applications it suffices to consider arbitrarily small but fixed $r>0$ . How-
ever, it is of some interest to see what happens to $\gamma(p, k, r)$ as $r\rightarrow 1$ .

The Hilbert space methods yield $\gamma(p, k, r)$ that blows up as $(1-r)^{-1}$ ,

while integral formulas, at least some of the time, yield $\gamma(p, k, r)$ that is
uniformly bounded. For example one can take $\gamma(p, k, r)=2$ when $p=1$

or 2.)

2.2. Now an exponentially diverging $c_{N}$ is not what we were after, but it
is noteworthy that three different methods and their variants all produce
such constants in (2.2). In fact, looking even beyond the theory of the
$\overline{\partial}$ equation it seems that the natural place for the number of variables
is in the exponent. A host of examples suggests the following general
if vague principle: In geometrical and analytical results the number of
dimensions appears in the exponent, as $c^{N}$ (or not at all, if $c=1$ ).

Here are some instances of this principle.
$1^{o}$ Scaling of volume in $N$ dimensions, probably the source of all

other examples: if $D\subset \mathbb{R}^{N}$ and A $>0$ then $Vol(\lambda D)=\lambda^{N}VolD$ .
$2^{o}$ The singularity of the harmonic Green function in $N$ dimensions

$ G(x, y)\sim$ const $|x-y|^{2-N}$ , $x\rightarrow y$ .

$3^{o}$ Weyl’s law for the number $s(x)$ of eigenvalues $<x$ of the Lapla-
cian on a compact $iV$-dimensional Riemannian manifold: $s(x)$ $\sim$

const $x^{N/2}$ , $ x\rightarrow\infty$ .
$4^{o}$ With $L\rightarrow X$ a holomorphic line bundle over a compact base,

the Euler characteristic $\chi(L^{\otimes m})$ is a polynomial in $m$ of degree $\leq N=$

$dimX$ .

5o Sobolev’s embedding theorem $W^{m,p}$ (IL
$N$

) $\subset C(\mathbb{R}^{N})$ , provided
$m>N/p$ . Here it takes a little arguing to get $N$ in the exponent. For
instance, when $p=2$ , the Sobolev space $W^{m,p}$ for the critical value

$m=N/2$ consists of those $f\in L^{2}(\mathbb{R}^{N})$ whose Fourier transform $\hat{f}$

satisfies

$\int|\hat{f}(\xi)|^{2}(1+|\xi|^{2})^{N/2}d\xi<\infty$ :

$N$ indeed appears exponentially.
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There are many more examples, but counterexamples as well. One
counterexample we have just glossed over occurs in 2o above. Indeed, the
constant there also depends on $N$ : its expression contains $F(N/2-1)$ , in
addition to $N$ in an exponent. This in itself is nothing to seriously worry
about, though. The occurence of $\Gamma(N/2-1)$ has to do with the particular

normalization of the translation invariant measure one uses in $\mathbb{R}^{N}$ , so
that a different normalization would lead to const $\equiv 1$ . This little
manipulation, however, exposes the fact that the ratio of the volumes
of the unit ball and the unit cube in $\mathbb{R}^{N}$ also contains $N$ inside the $\Gamma$

function, an exception to the principle formulated above that should be
taken more seriously.

To sum up: even if the dimension does not always appear in the
exponent, it seems to do so extensively. This phenomenon definitely
deserves some explanation. It indicates that dimensional dependence is
subject to generals laws that should be uncovered and analyzed. The
analysis in the present paper is of this kind, in the context of the $\overline{\partial}$

equation. We shall show that in one instance it is possible to start
with exponentially diverging $c_{N}$ in (2.1), (2.2), and convert this into a
dimension independent estimate by means of some rather soft analysis.

2.3. The main result is

Theorem 2.1. Let $p=1$ . Given $k>0$ there is a number $a$ such
that for any $N$ and any closed $f\in C_{0,1}^{k}$ $(B_{N} (1))$ equation (2.1) has $a$

solution $u$ satisfying

(2.3) $|u|_{C^{()}(B_{N}(r))}\leq a|f|_{C^{k}(B_{N}(1))}$ ,

provided $r=10^{-3}$ .

Once (2.3) is known, it is routine to improve it to a similar estimate
of $|u|_{C^{k}(B_{N}(r))}$ , or even $|u|_{C^{k+1}}(B_{N}(r))$ when $k\not\in \mathbb{N}$ , at the price of scaling
$a$ and $r$ by a dimension independent factor. In some ways Theorem 2.1
is sharp. It would not hold when $k=0$ , nor would it hold for all $k>0$ if
$p>1$ (the proof of $[LI$ , Theorem 9.1] shows both). On the other hand,

it might very well be true for arbitrary $p$ and $ k+1>\lceil p\rceil$ ( $=$ the least
integer $\geq p$ ).

However, there is a norm better suited to the problem than H\"older

norms $C^{k}$ , which we now proceed to define. Let $D\subset \mathbb{C}^{N}$ be a bounded
domain, with $(x, y)\in \mathbb{C}^{N}\times \mathbb{C}^{N}$ associate the map

(2.4) $\varphi_{xy}$ : $\overline{B_{1}(1)}\ni s\mapsto x+sy\in \mathbb{C}^{N}$ ,
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and let $\Omega=\{(x, y) : \varphi_{xy}(\overline{B_{1}(1)})\subset D\}$ . Given $f\in C_{0,1}^{0}(D)$ , for each

$(x, y)\in\Omega$ try to solve the equation $\overline{\partial}v_{xy}=\varphi_{xy}^{*}f$ . If this can be done

with $v_{xy}\in C^{1}(B_{1}(1))$ depending continuously on $x$ , $y$ , put

$[f]_{D}=|f|_{C^{0}(D)}+\inf_{\{v_{1}\}v}\sup\{||y||^{-1}|v_{xy}|_{C^{1}(B_{1}(1)) ^{:} }(x, y)\in\Omega, y \neq 0\}$ ,

the $\inf$ taken over all families $\{v_{xy}\}$ as above. Otherwise define $[f]_{D}=$

$\infty$ . This norm transforms simply under affine maps $\alpha$ : $\mathbb{C}^{n}\rightarrow \mathbb{C}^{N}$ of
form $\alpha(x)=Ax+b$ , $A$ linear and injective:

(2.5) $[\alpha^{*}f]_{\alpha^{-1}D}\leq||A||[f]_{D}$ .

Here $||A||$ is the operator norm of $A$ induced by the $l^{1}$ norms on $\mathbb{C}^{n}$ , $\mathbb{C}^{N}$ .

To verify (2.5) note that $\alpha\circ\varphi_{xy}=\varphi_{\alpha(x),Ay}$ . Hence with the family $v_{xy}$

in the definition of $[f]_{D}$ , $w_{xy}=v_{\alpha(x),Ay}$ will be a corresponding family
for $\alpha^{*}f$ . Since

$||y||^{-1}|w_{xy}|_{C^{1}(B_{1}(1))}\leq||A||||Ay||^{-1}|v_{\alpha(x),Ay}|_{C^{1}(B_{1}(1))}$ ,

and moreover
$|\alpha^{*}f|_{C^{()}(\alpha^{-1}D)}\leq||A|||f|_{C^{()}(D)}$ ,

(2.5) follows. In particular, (2.5) applied with homotheties $\alpha$ shows that
$[f]$ is homogeneous of order 1, i.e. (diam $D$ ) $[f]_{D}$ is scale invariant. The

significance of this norm is that $[\overline{\partial}u]_{D}<\infty$ implies $u$ is (locally) $C^{1}$ ,

as one easily shows using one variable Cauchy representations for the
holomorphic function $\varphi_{xy}^{*}u-v_{xy}$ .

If $f$ is a H\"older continuous form then

$[f]_{B_{N}(R)}\leq$ const $|f|_{C^{k}(B_{N}(R))}$ , $k>0$ ,

with dimension independent constant, since an admissible $v_{xy}$ can be

gotten by taking the Cauchy transform of (a $C^{k}$ extension of) $\varphi_{xy}^{*}f$ .

Therefore Theorem 2.1 follows from

Theorem 2.2. Let $p=1$ . There is a constant $a$ such that for all
closed $f\in C_{0,1}^{0}(B_{N}(1))(2.1)$ has a solution $u$ with

(2.6) $|u|_{C^{\zeta)}(B_{N}(r))}\leq a[f]_{B_{N}(1)}$ , $r=10^{-3}$ .

Moreover, $u$ can be chosen to depend linearly on $f$ .

As explained above, $u$ will be $C^{1}$ when the right hand side of (2.6)

is finite. Conversely, if $\overline{\partial}u=f$ has a solution $u\in C^{1}(B_{N}(1))$ then
$[f]_{B_{N}(1)}<\infty$ : indeed, one can take $v_{xy}=\varphi_{xy}^{*}u-u(x)$ .
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Since from this point on only $C^{0}$ no$rms$ will matter we shall abbre-
viate $|$ $|_{C^{0}(D)}=|$ $|_{D}$ . We shall also drop the superscript from $C^{0}(D)$ ,

$C_{0,1}^{0}(D)$ . Finally, we shall write $B_{N}=B_{N}$ $(1)$ .

\S 3. Proofs

3.1. To prove Theorem 2.2 we shall start with the exponentially diverg-
ing estimate (2.2), where $c_{N}=\gamma^{N}$ , and, as promised, we shall convert
it into a dimension independent estimate. While standard by now, the
proof of (2.2) is not easy: whether derived by Hilbert space techniques

or by Cauchy-Fantappi\‘e formulas, it requires serious analysis. In com-
parison, conversion to a dimension independent estimate will be smooth
sailing, involving some combinatorics and some routine analysis of the
one dimensional $\overline{\partial}$ operator. The only nonstandard analytical compo-
nent concerns a certain property of holomorphic functions in $B_{N}(R)$ , to
which we now turn.

For the rest of the paper, $p=1$ . Let $\#z$ denote the number of
nonzero coordinates of $z\in \mathbb{C}^{N}$ .

Theorem 3.1. Suppose $h\in O(B_{N}(R))$ satisfies $|h(z)|\leq q^{\# z}$ with
some $q>1$ . Then

(3.1) $|h(z)|\leq\frac{R}{R-eq||z||}$ , if $eq||z||<R$ .

It is here that an estimate, exponential in dimension, is turned
into a dimension independent one. Indeed, the assumption means that
$\sup_{P}|h|\leq q^{dimP}$ for each coordinate plane $P$ ; and one concludes that
near 0 $h(z)$ can be bounded irrespective of the dimension of the coordi-
nate plane in which $z$ sits.

Proof. We shall assume $R=1$ ; the general case will then follow by
a substitution $z=Rz’$ . Expand $h$ in a homogeneous series $\sum h_{m}$ , where

$h_{m}(z)=\int_{0}^{1}h(e^{2\pi it}z)e^{-2\pi imt}dt$ , $m=0,1$ , $\ldots$ .

Clearly $|h_{m}(z)|\leq q^{\neq z}$ if $z\in B_{N}$ . With each $h_{m}$ associate the symmetric
$m$-linear form

(3.2) $P_{m}(z^{1}, \ldots, z^{m})=\frac{1}{2^{m}m!}\sum_{\epsilon_{j}=\pm 1}\epsilon_{1}\ldots\epsilon_{m}h_{m}(\sum_{j=1}^{m}\epsilon_{j}z^{j})$ ,
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then $h_{m}(z)=P_{m}(z, \ldots, z)$ . If each $z^{j}$ is a possibly rotated basis vector

of form $(0, \ldots, e^{i\theta}, \ldots, 0)$ and $z=\sum\epsilon_{j}z^{j}$ , then $||z||,$ $\neq z$ $\leq m$ . Hence
$|h_{m}(z)|\leq q^{m}m^{m}$ and (3.2) implies

$|P_{m}(z^{1}, \ldots, z^{m})|\leq q^{m}m^{m}/m^{I}$. $\leq e^{m}q^{m}$ .

The same must hold if each $z^{j}$ is in the convex hull of rotated basis
vectors, i.e. whenever $||z^{j}||\leq 1$ . (It is here that $p=1$ is essential.) This
in turn implies $|h_{m}(z)|\leq e^{m}q^{m}||z||^{m}$ , and (3.1) follows.

The theorem would be outright false if $p>1$ , as $h(z)=\sum z_{\nu}$ shows.

3.2. The point of departure in the proof of Theorem 2.2 is the esti-
mate from [$LI$ , Corollary 3.2], a simple consequence of H\"ormander’s $L^{2}$

estimate [Ho, Theorem 4.4.2].

Proposition 3.2. If $f\in C_{0,1}(B_{n}(R))$ is closed, $\overline{\partial}u=f$ has $a$

solution $u\in C(B_{n}(R))$ that satisfies

$|u(z)|\leq 2(1+2\sqrt{n})R(\frac{R}{R-||z||})^{n}|f|_{B_{l}(R)}$,

$\leq 3R(\frac{2R}{R-||z||})^{n}|f|_{B_{l}(R)},\cdot$

In particular $u$ can be chosen to he the solution with minimal $L^{2}(B_{n}(R))$

norm, in which case it will depend linearly on $f$ .

First we shall improve this to an estimate that is still exponential
but in $\neq z$ rather than in $n$ :

Proposition 3.3. If $f\in C_{0,1}(B_{N}(R))$ is closed, the equation
$\overline{\partial}u=f$ has a solution $u\in C(B_{N}(R))$ that satisfies

(3.2) $|u(z)|\leq 3R(\frac{5R}{R-||z||})^{\# z}|f|_{B_{N}(R)}$ .

Again, $u$ can be chosen to depend linearly on $f$ .

Proof We shall take $R=1$ . For a subset $\prime p$ $\subset\{1, \ldots, N\}$ let
$P=$ { $z\in \mathbb{C}^{N}$ : $z_{\nu}=0$ if $lJ$ $\not\in P$ } denote the corresponding coordinate
plane and $B_{\mathcal{P}},=B_{N}\cap P$ ; and similarly with $Q$ , $Q$ . Let $\pi_{\nu}$ denote the
projection of ($\mathbb{C}^{N}$ on the $l/$ ’th coordinate hyperplane, so that $\prod_{\nu\not\in P}\pi_{\nu}$ is
projection on $P$ .
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By Proposition 3.2 for each $7^{\supset}$ there is a $u_{P}\in C(B_{P})$ solving $\overline{\partial}u_{P}=$

$f|B_{P}$ such that

(3.4) $|u_{P}(z)|\leq 3(\frac{2}{1-||z||})|P||f|_{B_{N}}$ .

If there were a $u\in C(B_{N})$ with $u|B_{P}=u_{P}$ for all 72, this $u$ would
satisfy (3.3). While there is no reason for such a $u$ to exist, there is a
simple way to produce $u$ for which $u|B_{P}\approx u_{P}$ .

Quite generally, suppose we are given a system of $l$-forms $ u_{P}\in$

$C_{l}(B_{P})$ , $P$ $\subset\{1, \ldots, N\}$ . Define

(3.5)
$u=\sum_{P}\prod_{\nu\in P}(1-\pi_{\nu}^{*})(\prod_{\nu\not\in P}\pi_{\nu}^{*})u_{P}\in C_{l}(B_{N})$

.

We shall need the following properties of this operation.
$1^{o}$ If $u_{P}=v|B_{P}$ with some $v\in C_{l}(B_{N})$ then $u=v$ .

$2^{O}$ The operation (3.5) commutes with $\overline{\partial}$

.

$3^{O}$ If $\overline{\partial}u_{P}=f|B_{P}$ with some $f\in C_{l+1}(B_{N})$ then $\overline{\partial}u=f$ .
$4^{o}$ If $Q$ $\subset\{1, \ldots, N\}$ then

$u|B_{Q}=\sum_{P\subset Q}\prod_{\nu\in P}(1-\pi_{\nu}^{*})(\prod_{\nu\not\in P}\pi_{\nu}^{*})u_{P}|B_{Q}$
.

To $veri\infty 1^{o}$ replace $u_{P}$ by $v$ in (3.5) and note that on $C_{l}(B_{N})$

$\sum_{P}\prod_{\nu\in P}(1-\pi_{\nu}^{*})\prod_{\nu\not\in P}\pi_{\nu}^{*}=\prod_{\nu=1}^{N}(1-\pi_{\nu}^{*}+\pi_{\nu}^{*})=1$ .

$2^{o}$ is obvious and 3o follows from 1o and $2^{o}$ . Finally, observe that

$\pi_{\mu}^{*}\prod_{\nu\in P}(1-\pi_{\nu}^{*})=0$
when $\mu\in P$ so that

$(\prod_{\mu\not\in Q}\pi_{\mu}^{*})u=\sum_{P\subset Q}\prod_{\nu\in P}(1-\pi_{\nu}^{*})(\prod_{\nu\not\in P}\pi_{\nu}^{*})u_{P}$
,

which is equivalent to $4^{o}$ .

Now apply (3.5) with our $u_{P}$ initially constructed. By $3^{o}\overline{\partial}u=f$ .

Also, if $z\in B_{N}$ and $Q$ $=\{\iota/:z_{\nu}\neq 0\}$ then one can estimate $u(z)$ using
4o collecting the contributions of $7^{\supset}$ of fixed cardinality $i$ , and applying
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(3.4):

$|u(z)|\leq(\sum_{P\subset Q}\prod_{\nu\in P}(1-\pi_{\nu}^{*})(\prod_{\nu\not\in P}\pi_{\nu}^{*})|u_{P}|)(z)$

$\leq\sum_{i=0}^{|Q|}$
$\left(\begin{array}{l}|Q|\\i\end{array}\right)$

$2^{i}$ . 3 $(\frac{2}{1-||z||})^{i}|f|_{B_{N}}=3(1+\frac{4}{1-||z||})|Q||f|_{B_{N}}$

$\leq 3(\frac{5}{1-||z||})^{\neq z}|f|_{B_{N}}$ ,

as claimed.

If $f$ of Proposition 3.3 vanishes on a hyperplane, one can choose $u$

that also vanishes there:

Proposition 3.4. Let 0 $\leq\rho<R$ and suppose a closed $ g\in$

$C_{0,1}(B_{N}(R))$ vanishes when restricted to the hyperplane $ z_{N}=\rho$ . Then

the equation $\overline{\partial}w=g$ has a solution $w\in C(B_{N}(R))$ that vanishes on the
hyperplane and satisfies

(3.6) $|w(z)|\leq 4R(\frac{5R^{2}}{(R-\rho)(R-||z||})^{\neq z+1}|g|_{B_{N}(R)}$ .

Proof. Again we take $R=1$ . Define

$\pi(z)=\frac{z’}{1-z_{N}}\in \mathbb{C}^{N-1}$ , $z=(z’, z_{N})\in B_{N}$ ,

and check that $||\pi(z)||\leq||z||$ . If $\epsilon$ : $B_{N-l}\rightarrow B_{N}$ denotes the embedding
$\epsilon(z’)=((1-\rho)z’, \rho)$ then $\pi o\epsilon=id$ . By Proposition 3.3 there is a
$v\in C(B_{N})$ that satisfies $\overline{\partial}v=g$ and

$|v(z)|\leq 3(\frac{5}{1-||z|})^{\# z}|g|_{B_{N}}$ .

Now $\partial-\epsilon^{*}v=\epsilon^{*}g=0$ so that $w=v-\pi^{*}\epsilon^{*}v$ also solves $\overline{\partial}w=g$ . In
addition, $w$ vanishes on the hyperplane $ z_{N}=\rho$ . Since

$||\epsilon\pi(z)||=(1-\rho)||\pi(z)||+\rho\leq(1-\rho)||z||+\rho$
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and $\#\epsilon\pi(z)\leq\neq z+1$ , one can estimate $w(z)=v(z)-v(\epsilon\pi(z))$ :

$|w(z)|\leq 3((\frac{5}{1-||z||})^{\# z}+(\frac{5}{(1-\rho)(1-||z||)})^{\# z+1})|g|_{B_{N}}$

$\leq 4(\frac{5}{(1-\rho)(1-||z||)})\# z+1|g|_{B_{N}}$ .

3.3. Propositions 3.2, 3.3, and 3.4 would hold for all $p\geq 1$ , with modified
constants. For the proof of the next, key proposition $p=1$ is essential.

Proposition 3.5. If $f\in C_{0,1}(B_{N})$ is closed and $Z\in B_{N}(1/6)$ ,

the equation $\overline{\partial}U=f|B_{N}(1/6)$ has a solution $U\in C(B_{N}(1/6))$ that

satisfies

(3.7) $|U(z)|\leq c||z-Z||q^{\# z}[f]_{B_{N}}$ , $||z||<1/6$ .

One can take $q=16$ , $c=10^{5}$ .

Proof. The claim is true when $N=0$ ; we shall prove it for general
$N$ by induction. Assume it true with $N$ replaced by $N-1$ , and also
assume without loss of generality that $Z_{N}=\rho\geq 0$ . We shall borrow $\pi$ ,
$\epsilon$ from the previous proof.

The inductive hypothesis applied with $f’=\epsilon^{*}f$ givesa $U’\in B_{N-1}(1/6)$

that satisfies $\overline{\partial}U’=f’|B_{N-1}(1/6)$ and

(3.8) $|U’(z’)|\leq c||z’-\pi(Z)||q^{\# z’}[f’]_{B_{N-1}}$ , $||z’||<1/6$ .

Set $g=f-\pi^{*}f’$ , and apply Proposition 3.4 with $R=5/6$ , to obtain a
solution of $\overline{\partial}w=g|B_{N}(5/6)$ that satisfies $w(\cdot, Z_{N})=0$ and

(3.9) $|w(z)|\leq 65$ . $q^{\# z}|g|_{B_{N}(5/6)}$ , $||z||<1/2$ ,

with $q=16$ . If

(3.10) $U=\pi^{*}U’+w$

then $\overline{\partial}U=\pi^{*}f’+f-\pi^{*}f’=f$ . It remains to estimate $U$ in terms of
$[f]_{B_{N}}$ .

By (2.5) $[f’]_{B_{N-1}}=$ $[\epsilon^{*}f]_{B_{N-1}}\leq(1-Z_{N})[f]_{B_{N}}$ . Also

$||\pi(z)-\pi(()||=||\frac{z’-(’}{1-(_{N}}+\frac{(z_{N}-(_{N})z’}{(1-(_{N})(1-z_{N})}||$

$(3.11)$

$\leq\frac{||_{\tilde{\mathcal{L}}}’-(’||+||z|||z_{N}-(_{N}|}{|1-(_{N}|}$ .
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Hence (3.8) implies

(3.12) $|U’(\pi(z))|\leq c(||z’-Z’||+|z_{N}-Z_{N}|/6)q^{\# z}[f]_{B_{N}}$ ,

for $||z||<1/6$ . Next $|d\pi|_{B_{N}(5/6)}\leq 6$ by (3.11), whence $|\pi^{*}f’|_{B_{N}(5/6)}\leq$

$6|f’|_{B_{N-1}}\leq 6[f]_{B_{N}}$ and $|g|_{B_{N}(5/6)}\leq 7[f]_{B_{N}}$ . Thus by (3.9)

(3.13) $|w(z)|\leq 460q^{\# z}$ $[f]_{B_{N}}$ , $||z||<1/2$ .

This can be refined as follows. If $||z||<1/6$ , consider the map

$\varphi=\varphi_{xy}$ : $\overline{B}_{1}\ni s\mapsto((1-s/4)\pi(z), s/4)\in B_{N}(1/2)$ .

Then $\overline{\partial}\varphi^{*}w=\varphi^{*}g=\varphi^{*}f$ , since $\varphi$ maps into a fiber of $\pi$ . By the
definition of $[f]_{B_{N}}$ , there is a $v=v_{xy}$ such that $\overline{\partial}v=\varphi^{*}f$ and $|v|_{C^{1}(B_{1})}\leq$

$[f]_{B_{N}}$ . Thus $h=\varphi^{*}w-v$ is holomorphic. Since the hyperbolic distance
betwee$n4z_{N}$ , $4Z_{N}\in B_{1}(2/3)\subset B_{1}$ is $\leq 8|z_{N}-Z_{N}|$ , Schwarz’s lemma
implies

$|h(4z_{N})-h(4Z_{N})|\leq 8|z_{N}-Z_{N}||h|_{B_{1}}$

$\leq 8|z_{N}-Z_{N}|(|\varphi^{*}w|_{B_{1}}+|v|_{B_{1}})$ .

Now $v(4z_{N})-v(4Z_{N})$ can also be estimated in terms of $z_{N}-Z_{N}$ , there-
fore

$w(z)=w(\varphi(4z_{N}))-w(\varphi(4Z_{N}))$

$=h(4z_{N})-h(4Z_{N})+v(4z_{N})-v(4Z_{N})$

too. All added up one obtains for $||z||<1/6$

$|w(z)|\leq|z_{N}-Z_{N}|(8|\varphi^{*}w|_{B_{1}}+12|v|_{C^{1}(B_{1})})$

$\leq 7$ . $10^{4}|z_{N}-Z_{N}|q^{\# z}[f]_{B_{N}}$

by (3.13), taking into account that $\#\varphi(s)\leq\# z+1$ . Thus by (3.10),

(3.12)

$|U(Z)|\leq c\{||z’-Z’||+(\frac{1}{6}+\frac{7}{c}10^{4})|z_{N}-Z_{N}|\}q^{\neq z}[f]_{B_{N}}$ ,

and (3.7) follows, provided $c\geq 10^{5}$ .

3.4. Theorem 2.2 is now easily proved.
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We shall verify that $u$ given in Proposition 3.3, with $R=1$ , satisfies
(2.6). Take an arbitrary $Z\in B_{N}(r)$ and construct $U$ as in Proposition
3.5. Then with $h=u-U\in \mathcal{O}(B_{N}(1/6))$ and $z\in B_{N}(1/6)$ we have

$|h(z)|\leq(3\cdot 6^{\# z}+c\cdot 16^{\# z})[f]_{B_{N}}\leq 2c\cdot 16^{\# z}[f]_{B_{N}}$

by (3.3), (3.7). Hence from Theorem 3.1 applied with $R=1/6$

$|u(Z)|=|h(Z)|\leq\frac{2c}{1-96e||Z||}[f]_{B_{N}}\leq 4c[f]_{B_{N}}$ , $||Z||<r$ ,

and (2.6) holds with $a=4\cdot 10^{5}$ .

3.5. Above we have not insisted on sharp constants, and indeed it is
possible to obtain somewhat stronger results. First off, if integral for-
mulas are used rather than $L^{2}$ estimates, it is possible to show that in
Proposition 3.2 the base of the exponential can be taken to be 2. With
a little more care in subsequent estimates in Proposition 3.5 one could
replace 1/6 by an arbitrary $\rho<1$ and $q$ by an arbitrary number $>5$ .

As a consequence, $r$ of Theorem 2.2 can be anything $<1/(5e)$ . It would
be of interest to know whether one can take $r$ arbitrarily close to 1 or
perhaps even equal to 1. I don’ $t$ believe this is possible, even if $[f]_{B_{N}}$ is
replaced by $|f|_{C^{k}(B_{N})}$ , as 1 $ng$ as $k$ is fixed. If I am right, phase transi-

tion would occur in the Cauchy-Riemann equations: there would be a
critical radius $r_{0}\in(0,1)$ such that for closed $f\in C_{0,1}^{k}(B_{N})$ the equation
$\overline{\partial}u=f|B_{N}(r)$ can be solved with dimension independent bounds on $u$

if $r<r_{0}$ , but not if $r>r_{0}$ . In the latter regime $|u|_{B_{N}(r)}$ would diverge
exponentially.

\S 4. Infinite dimensions

Now we shall see what Theorem 2.2 implies about the $\overline{\partial}$ equation in
infinite dimensions. Let $\Gamma$ be an arbitrary set and

$l^{1}(\Gamma)=\{z:\Gamma\rightarrow \mathbb{C}|\sum_{\gamma\in\Gamma}|z(\gamma)|=||z||<\infty\}$
.

Given an open $D\subset l^{1}(\Gamma)$ and $f\in C_{0,1}$ $(D)$ closed we ask if there is a
$u\in C^{1}(D)$ that solves $\overline{\partial}u=f$ . (For basics of $\overline{\partial}$ in Banach spaces see
$[LI,2].)$ In [L1] we showed how to pass from finite dimensional estimates

for $\overline{\partial}$ to infinite dimensional results. This can be done with the improved
estimates of Theorem 2.2, and we obtain the following result. If $x$ , $y$

$\in$

$l^{1}(\Gamma)$ , $s\in\overline{B}_{1}$ , define $\varphi_{xy}$ $(s)=x+sy$ as in (2.4), and $\Omega=\{(x, y)$ :
$\varphi_{xy}(\overline{B}_{1})\subset D\}$ .
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Theorem 4.1. Suppose each $(\xi, \eta)\in\Omega$ has a neighborhood $\Omega_{0}$

such that if $(x, y)\in\Omega_{0}$ , the equation $\overline{\partial}v_{xy}=\varphi_{xy}^{*}f$ can be solve $d$ with
$v_{xy}\in C^{1}(B_{1})$ depending continuously on $x_{)}y$ . Then in a neighborhoo $d$ of
an arbitrary $z\in D$ the equation $\overline{\partial}u=f$ is solvable with $u$ a $C^{1}$ function.

Global solvability can also be obtained:

Theorem 4.2. If $\Gamma$ is countable and $D$ is pseudoconvex then
$\overline{\partial}u=f$ has $a$ so lution $u\in C_{1oc}^{1}(D)$ if an $d$ only if the hypothesis of
Theorem 4 $\cdot$ 1 is satisfied.

Thus solvability or nonsolvability of $\overline{\partial}u=f$ depends only on solv-
ability on one dimensional slices.

Theorem 4.2 follows from Theorem 4.1 and the main result of [L2].
Indeed, if $f$ satisfies the hypothesis then $D$ can be covered by open sets
$V$ so that some $u_{V}\in C^{1}(V)$ solves $\overline{\partial}u_{V}=f|V$ . By [L2, Theorem 0.1]
the holomorphic cocycle $(u_{V}-u_{W})$ is exact, hence of form $(h_{V}-h_{W})$

with $h_{V}\in \mathcal{O}(V)$ . It follows that $u(z)=u_{V}(z)-h_{V}(z)$ if $z\in V$ defines
the required solution $u\in C_{1oc}^{1}(D)$ .

Very little is known about solving the $\overline{\partial}$ equation in Banach spaces
other than 71 or for forms of higher degree. Patyi in [P] gives an example

of a Banach space in which $\overline{\partial}u=f$ is not solvable for some closed $C^{\infty}$

form $f$ . It would be of great interest to explore the solvability of the $\overline{\partial}$

equation in classical Banach spaces such as $l^{p}$ , $L^{p}[0,1]$ , $C[0,1]$ .
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Levi form of logarithmic distance to complex

submanifolds and its application to developability

Kazuko Matsumoto

\S 1. Introduction

Let $M$ be a complex manifold of codimension $q$ defined in an open
subset $U$ of $\mathbb{C}^{n}$ and let $\delta_{Nl}(P)$ be the Euclidean distance from $P\in U$ to
$M$ . Then it is well-known that the function $\varphi:=-\log\delta_{M}$ is, near $M$ ,

weakly $g$-convex i.e., the Levi form $L(\varphi)$ of $\varphi$ has $n$ $-q+1$ nonnegative
eigenvalues. Moreover, $L(\varphi)$ is positive semi-definite in the tangential
direction of dimension $n$ $-q$ to $M$ (cf. [M2]).

The purpose of the present article is to calculate the Levi form $L(\varphi)$

explicitly near $M$ and to give a necessary and sufficient condition for
defining functions of $M$ that $L(\varphi)$ degenerates in the tangential direction
(2, Theorem 1). Such calculation was first done by Matsumoto-Ohsawa
[M-O] to study Levi flat hypersurfaces in complex tori of dimension two.
As its application, by combining it with the theorem of Fischer-Wu [F-
$W]$ , developability of a complex submanifold $M$ $(\subset \mathbb{C}^{n})$ is characterized
by the Levi form of $-\log\delta_{\Lambda’l}$ if $dimM$ $=1,2$ or $n$ $-1$ (3, Theorem 2).

\S 2. Levi form of logarithmic distance

Let $r$ , $q$ and $n$ be integers with $r+q=n$ , $r\geq 1$ and $q\geq 1$ , and let
$M$ be a complex submanifold of dimension $r$ in $\mathbb{C}^{n}$ defined by

$\Lambda I$ $=\{(t, f(t))|t =(t_{1}, \ldots, t_{r})\in V\}$

for open $V\subset \mathbb{C}^{r}$ and holomorphic $f=(f_{1}, \ldots, f_{q})$ : $V\rightarrow \mathbb{C}^{q}$ . Let
$(z, w)=(z_{1}, \ldots, z_{r}; w_{1}, \ldots, w_{q})$ be a (given) coordinate system of $\mathbb{C}^{n}=$

$\mathbb{C}^{r}\times \mathbb{C}^{q}$ . By a translation and a unitary transformation of $(z, w)$ if
necessary we may assume that $0=(0, \ldots, O)\in V$ and

(1) $f_{\mu}(0)=0$ , $\frac{\partial f_{\mu}}{\partial t_{i}}(0)=0$

Received March 19,2002
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for $1\leq i\leq r$ and $1\leq\mu\leq q$ . We denote by $\delta_{M}(z, w)$ the Euclidean
distance from $(z, w)\in \mathbb{C}^{n}$ to $M$ and put $\varphi(z, w):=-\log\delta_{M}(z, w)$ .

We define the $(r, r)-$matrices $\Phi(w)$ and $F_{\mu}(t)$ , $1\leq\mu\leq q$ , by

$\Phi(w):=(\frac{\partial^{2}\varphi}{\partial z_{i}\partial\overline{z}_{j}}(0, w))_{1\leq i,j\leq r}$ , $F_{\mu}(t):=(\frac{\partial^{2}f}{\partial t_{i}\partial tt_{j}}(t))_{1\leq i,j\leq r}$

and put

$\mathcal{F}(w):=\sum_{\mu=1}^{q}\overline{F_{\mu}(0)}w_{\mu}$ .

$F_{\mu}(t)$ and $\mathcal{F}(w)$ are symmetric and ($\Phi(w)$ is Hermitian.
Then we obtain the following (see [M-O], Lemma for $q=r=1$ ).

Theorem 1. There exists $\in>0$ such that

$\Phi(w)=\frac{1}{2||w||^{2}}\overline{F(w)}F(w)[E-\overline{F(w)}\mathcal{F}(w)]^{-1}$

for $ 0<||w||<\in$ , where $||w||^{2}:=\sum_{\mu=1}^{q}|w_{\mu}|^{2}$ and $E$ denotes the identity

matrix. In particular, two matrices $\Phi(w)$ and $\mathcal{F}(w)$ have the same rank

for each $w$ utith $ 0<||w||<\in$ .

Proof. If we put

(2) $\alpha(z, w, t):=\sum_{i=1}^{r}|z_{i}-t_{i}|^{2}+\sum_{\mu=1}^{q}|w_{\mu}-f_{\mu}(t)|^{2}$

for $(z, w)\in \mathbb{C}^{r}\times \mathbb{C}^{q}$ and $t\in V$ , then

(3) $\frac{\partial\alpha}{\partial t_{i}}=\overline{t_{i}-z_{i}}+\sum_{\mu=1}^{q}\frac{\partial f_{\mu}}{\partial t_{i}}\{\overline{f_{\mu}(t)-w_{\mu}}\}$

for $1\leq i\leq r$ . By the implicit function theorem we can find $C^{\omega}-$ function
$t_{k}=t_{k}(z, w)$ , $1\leq k\leq r$ , defined near $(0, 0)\in \mathbb{C}^{r}\times \mathbb{C}^{q}$ such that

(4) $\frac{\partial\alpha}{\partial t_{i}}(z, w, t(z, w))=0$ , $\frac{\partial\alpha}{\partial\overline{t}_{i}}(z, w, t(z, w))=0$

for $1\leq i\leq r$ (cf. [M1]). Then by (1) we have $t_{k}(0, w)=0$ for $1\leq k\leq r$ .

If we put $\beta(z, w):=\alpha(z, w, t(z, w))$ then $\beta(z, w)=\delta_{\Lambda’I}(z, w)^{2}$ near
$(0, 0)\in \mathbb{C}^{r}\times \mathbb{C}^{q}$ . By applying (4) and (2) we have

(5) $\frac{\partial\beta}{\partial\check{e}i}=\frac{\partial\alpha}{\partial\tilde{z}i}$

–

$=z_{i}-t_{i}$ , $\frac{\partial^{2}\beta}{\partial z_{i}\partial\overline{z}_{j}}=\delta_{ij}-\frac{\partial\overline{t}_{i}}{\partial\overline{z}_{j}}$
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for $1\leq i$ , $j\leq r$ . By differentiating (4) we have

(6) $\{$

$\frac{\partial^{2}\alpha}{\partial t_{i}\partial z_{j}}+\sum_{k=1}^{r}(\frac{\partial^{2}\alpha}{\partial t_{i}\partial t_{k}}\frac{\partial t_{k}}{\partial z_{j}}+\frac{\partial^{2}\alpha}{\partial t_{i}\partial\overline{t}_{k}}\frac{\partial\overline{t}_{k}}{\partial z_{j}})=0$

$\frac{\partial^{2}\alpha}{\partial\overline{t}_{i}\partial z_{j}}+\sum_{k=1}^{r}(\frac{\partial^{2}\alpha}{\partial\overline{t}_{i}\partial t_{k}}\frac{\partial t_{k}}{\partial z_{j}}+\frac{\partial^{2}\alpha}{\partial\overline{t}_{i}\partial\overline{t}_{k}}\frac{\partial\overline{t}_{k}}{\partial z_{j}})=0$

and by differentiating (3) we have

$\frac{\partial^{2}\alpha}{\partial t_{i}\partial z_{j}}=0$ , $\frac{\partial^{2}\alpha}{\partial\overline{t}_{i}\partial z_{j}}=-\delta_{ij}$ ,

$\frac{\partial^{2}\alpha}{\partial t_{i}\partial t_{j}}=\sum_{\mu=1}^{q}\frac{\partial^{2}f}{\partial t_{i}\partial tt_{j}}\{\overline{f_{\mu}(t)-w_{\mu}}\}$ , $\frac{\partial^{2}\alpha}{\partial t_{i}\partial\overline{t}_{j}}=\delta_{ij}+\sum_{\mu=1}^{q}\frac{\partial f_{\mu}}{\partial t_{i}}\frac{\partial\overline{f}_{\mu}}{\partial\overline{t}_{j}}$ .

Now if $(z, w)=(0, w)$ then $t(0, w)=0$ and by (1) we have

(7) $\frac{\partial^{2}\alpha}{\partial t_{i}\partial t_{j}}(0, w, 0)=-\sum_{\mu=1}^{q}\frac{\partial^{2}f}{\partial t_{i}\partial tt_{j}}(0)\overline{w}_{\mu}$ , $\frac{\partial^{2}\alpha}{\partial t_{i}\partial\overline{t}_{j}}(0, w, 0)=\delta_{ij}$ .

If we put

(8) $F(w)_{ij}:=\sum_{\mu=1}^{q}\frac{\partial^{2}\overline{f}_{\mu}}{\partial\overline{t}_{i}\partial\overline{t}_{j}}(0)w_{\mu}$

then $F(w)_{ij}$ is the $(i, j)-$component of the symmetric matrix $F(w)$ . By
substituting (7) and (8) for (6) we have

(9) $\{$

$\frac{\partial\overline{t}_{i}}{\partial z_{j}}(0, w)=\sum_{k=1}^{r}\overline{\mathcal{F}(w)}_{ik}\frac{\partial t_{k}}{\partial z_{j}}(0, w)$

$\frac{\partial t_{i}}{\partial z_{j}}(0, w)-\delta_{ij}=\sum_{k=1}^{r}\mathcal{F}(w)_{ik}\frac{\partial\overline{t}_{k}}{\partial_{\angle j}\sim}(0, w)$

and hence

$\frac{\partial t_{i}}{\partial z_{j}}(0, w)-\delta_{ij}=\sum_{k=1}^{r}\mathcal{F}(w)_{ik}\sum_{l=1}^{r}\overline{\mathcal{F}(w)}_{kl}\frac{\partial t_{l}}{\partial z_{j}}(0, w)$ .

Since $F(0)$ is the zero matrix, we thus obtain

$(\partial t_{i}/\partial z_{j}(0, w))_{1\leq i,j\leq r}=[E-F(w)\overline{F(w)}]^{-1}$
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for sufficiently small $w$ and therefore by (5) we have

$(\partial^{2}\beta/\partial z_{i}\partial\overline{z}_{j}(0, w))_{1\leq i,j\leq r}=E-[E-\overline{F(w)}\mathcal{F}(w)]^{-1}$

$=-\overline{F(w)}\mathcal{F}(w)[E-\overline{F(w)}\mathcal{F}(w)]^{-1}$ .

On the other hand, $\beta=\delta_{M}^{2}$ an $d$

$\frac{\partial^{2}(-1og\delta_{\Lambda’I})}{\partial z_{i}\partial\overline{z}_{j}}=\frac{1}{2}(-\frac{1}{\beta}\frac{\partial^{2}\beta}{\partial z_{i}\partial\overline{z}_{j}}+\frac{1}{\beta^{2}}\frac{\partial\beta}{\partial z_{i}}\frac{\partial\beta}{\partial\overline{z}_{j}})$ .

Moreover by (2) and (5) we have $\beta(0, w)=||w||^{2}$ a$nd\partial\beta/\partial z_{i}(0, w)=0$

for $1\leq i\leq r$ . This proves the theorem. Q.E.D.

Remark. The complex Hessian matrix of $\varphi(z, w):=-\log\delta_{M}(z, w)$

at $(z, w)=(0, w)$ , $ 0<||w||<\in$ , is written as

$\left(\begin{array}{ll}(\partial^{2}\varphi/\partial z_{i}\partial\overline{z}_{j}) & (\partial^{2}\varphi/\partial z_{i}\partial\overline{w}_{\iota/})\\(\partial^{2}\varphi/\partial w_{\mu}\partial\overline{z}_{j}) & (\partial^{2}\varphi/\partial w_{\mu}\partial\overline{w}_{\iota/})\end{array}\right)$ $(0, w)=\left(\begin{array}{ll}\Phi(w) & O\\O & \Psi(w)\end{array}\right)$ ,

where $\Phi(w)$ is the $(r, r)-$matrix defined as above and $\Psi(w)$ is the $(q, q)-$

matrix defined by $\Psi(w):=$ $(\partial^{2}(-\log||w||)/\partial w_{\mu}\partial\overline{w}_{\iota/})_{1\leq\mu,\iota/\leq q}$ .

\S 3. Developability of complex submanifolds

Let $M=\{(t, f(t))|t \in V\}$ $(\subset \mathbb{C}^{n})$ be as in \S 2. If we put $J(t):=$

$(F_{1}(t), \ldots, F_{q}(t))$ then ${}^{t}J(t)$ is the Jacobian matrix of the Gauss map

$t-$ ( $\frac{\partial f_{1}}{\partial t_{1}}$ , $\ldots$ , $\frac{\partial f_{1}}{\partial t_{r}}$ , $\ldots$ , $\frac{\partial f_{q}}{\partial t_{1}}$ , $\ldots$ , $\frac{\partial f_{q}}{\partial t_{r}}$).
By Fischer-Wu [F-W] (cf. [F-P]), the complex submanifold $M$ of di-
mension $r$ is developable almost everywhere (i.e., at each point $(t, f(t))$

where rank $J(t)$ is maximal) if and only if rank $J(t)<r$ for all $t$ .

As an application of Theorem 1 we can obtain the following.

Theorem 2. In the case $dimM=1_{)}2$ or $n$ $-1$ , $M$ is $d$evelopable
almost everywhere if and only if the Levi form $of-\log\delta_{M}d$egenerates
in the tangential direction at each point near $M$ .

For the proof we use the following.

Lemma. Let $A_{1}$ , $\ldots$ , $A_{q}$ be complex symmetric matrices of degree
$r$ and let $w=(w_{1}, \ldots, w_{q})\in \mathbb{C}^{q}$ . Then

(i) $\max_{w\in \mathbb{C}^{q}}$ rank $\sum_{\mu=1}^{q}A_{\mu}w_{\mu}\leq$ rank $(A_{1}, \ldots, A_{q})$ .

(ii) The equality holds if $r=1,2$ or if $q=1$ .

(iii) The equality does not hold in general if $r\geq 3$ and $q\geq 2$ .
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Proof, (i) is trivial and (ii) is also trivial if $r=1$ or $q=1$ . (In

these cases the matrices $A_{1}$ , $\ldots$ , $A_{q}$ need not be symmetric.)

If $(2, 2)-$matrices $A_{1}$ , $\ldots$ , $A_{q}$ are symmetric and $\det(\sum_{\mu=1}^{q}A_{\mu}w_{\mu})\equiv$

$0$ then $\det(A_{\mu_{1}}w_{\mu_{1}}+A_{\mu_{2}}w_{\mu_{2}})\equiv 0$ for any pair $(\mu_{1}, \mu_{2})$ with $1\leq\mu_{1}<$

$\mu_{2}\leq q$ , and the coefficients of the polynomial of degree 2 with respect to
$(w_{\mu 1}, w_{\mu_{2}})$ are all zero. From this it is easy to see that rank $(A_{\mu_{1}}, A_{\mu_{\underline{9}}})\leq$

$1$ for all $(\mu_{1}, \mu_{2})$ and hence rank $(A_{1}, \ldots, A_{q})\leq 1$ , which proves (ii).

(iii) follows from the next example. Q.E.D.

$Ex$ample. Consider the real symmetric matrices

$A_{1}=\left(\begin{array}{lll}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 0\end{array}\right)$ , $A_{2}=\left(\begin{array}{lll}0 & 1 & 1\\1 & 0 & 0\\1 & 0 & 0\end{array}\right)$ .

Then rank $(A_{1}, A_{2})=3$ , although $\det(A_{1}w_{1}+A_{2}w_{2})\equiv 0$ . Therefore, if
$M\subset \mathbb{C}^{5}=\mathbb{C}^{3}\times \mathbb{C}^{2}$ is the complex submanifold defined by

$M=\{(z, w)\in \mathbb{C}^{5}|w_{1}=z_{1}z_{2}, w_{2}=z_{1}z_{2}+z_{1}z_{3}\}$

then $-\log\delta_{M}$ degenerates in the tangential direction at $(0, w)$ for all $w$

near $0\in \mathbb{C}^{2}$ , but $M$ is not developable at the origin $(0, O)\in M$ .
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Numerical characterisations of hyperquadrics

Yoichi Miyaoka

Abstract.

Smooth quadric hypersuraces in $\mathbb{P}^{n+1}$
$(\mathbb{C})$ are numerically char-

acterised as the smooth Fano $n$-folds of length $n$ , $i.e.$ , a smooth Fano
$n$-fold $X$ is isomorphic to a hyperquadric if and only if the minimum
of the intersection number $(C, -K_{X})$ is $n$ , where $C$ runs through the
rational curves on $X$ .

Introduction

This article is a supplement to the author’s joint paper [2], where
we characterised projective $n$-space as a unique smooth Fano $n$-fold of
length $n+1$ , the largest value possible. The purpose of this article is to
characterise smooth hyperquadrics as Fano manifolds of the the second
largest length $n$ .

Given a Fano manifold $X$ [resp. a pair $(X, x_{0})$ of a Fano manifold
$X$ and a closed point $x_{0}$ on it], we define the (global) length $l(X)$ of $X$

[resp. the local lenghth $l$ ( $X$ , $x_{0}$ ) of $(X,$ $x_{0})$ ] to be the positive integer

$\min_{C\subset X}\{(c, -K_{X})\}$ ,

where $C$ runs through the set of the rational curves contained in $X$ [resp.

the set of the rational curves such that $x_{0}\in C\subset X$ ].

The local lenght $l(X, x_{0})$ is a lower semiconitinuous function in $x_{0}$

and the global lenghth $l(X)$ is by definition equal to $\inf_{x_{1)}\in X}l(X, x_{0})$ .

For a given closed point $x_{0}\in X$ , it is known that $l(X, x_{0})\leq dimX+1$ ,

the equality holding if and only if $X$ is projective space [2].

In terms of the notions above, our main result is the following

Received August 22, 2002
partially supported by JSPS grant-in-aid #12440006 (‘Complex symplec-

tic manifolds and related topics”
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Theorem 0.1. Let $X$ be a smooth Fano variety of dimension $ n\geq$

3 $d$efine $d$ over an algebraically closed field $k$ of characteristic zero. Then
the following three conditions are equivalent:

(1) $X$ is isomorphic to a smooth hyperquadric $Q_{n}\subset \mathbb{P}^{n+1}$ .

(2) The global length $l(X)$ is $n$ .

(3) $\rho(X)=1$ and $l(X, x_{0})=n$ for a sufficiently general point $ x_{0}\in$

$X$ , where $\rho(X)$ stan $ds$ for the Picard numbe $r.1$

This simple numerical result involves the preceding characterisa-
tions due to Brieskorn [1], Kobayashi-Ochiai [6], and Cho-Sato [3] [4] as
immediate corollaries. Namely

Theorem 0.2. For a smooth $X$ Fano $n$ -fold $(n\geq 3)$ over $\mathbb{C}$ , the
three conditions in (0.1) are also equivalent to the following four:

(4) There is a homotopy equivalence be rween $X$ and $Q_{n}$ such that
the induce $d$cohomology isomorphism $H^{2}(Q_{n}, \mathbb{Z})\rightarrow H^{2}$ $(X, \mathbb{Z})$ iden-

tifies the anticanonical classes.
(5)The anticanonical class $c_{1}$ $(X)$ is divisible by $n$ in Pic(X).

(6)The tangent bundle $\ominus_{X}$ is not ample, $but\wedge^{2}\Theta_{X}$ is ample.2
(7)There is a surjective morphism $Q_{m}\rightarrow X$ , $m\geq n$ , and $ X\not\simeq$ I$t^{n}$ .

Let us briefly outline our strategy to the proof of Theorem 0.1 the
essential part of which is the implication $(3)\Rightarrow(1)$ proved in \S 3.

Assume that a smooth Fano $n$-fold $X$ satisfies the condition (3). Be-
cause smooth Fano 3-folds with Picard number one are completely clas-
sified by Iskovskih [5], we may assume that $n\geq 4$ (this assumption is of
course of purely technical nature). Pick up two general points $x_{+}$ , $ x_{-}\in$

$X$ . We consider an (arbitrary) irreducible component $ W\langle x_{+}, x_{-}\rangle$ of the
closed subset

{$C\subset X|C$ is a connected union of rational curves, $C\supset\{x_{+}$ , $x_{-}\}$ , ( $C,$ $-K_{zY})=2n$}

of the Chow scheme Chow(X).

Under our hypothesis, it is easy to show that $dimW\langle x_{+}, x_{-}\rangle=$

$n-1$ . Each closed point $ w\in W\langle x_{+}, x_{-}\rangle$ represents either an irreducible
rational curve $C\subset X$ or a connected union of two irreducible rational
curves $L_{+}\cup L_{-}\subset X$ with $L_{\pm}\ni x_{\pm}$ , $L_{\pm}\not\simeq x_{\mp}$ .

$1The$ condition on the Picard number is essential; see Remark 4.2 below.
$2A$ differential-geometric analogue of this condition (positivity of the holo-
morphic bisectional curvature with one-dimensional degeneracy) is given in
[8].
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Let $V\langle x_{+}, x_{-}\rangle\subset W\langle x_{+}, x_{-}\rangle\times X$ be the associated incidence variety

with natural surjective projection $pr_{X}$ : $V\langle x_{+}, x_{-}\rangle\rightarrow X$ . Let $\overline{V}\langle x_{+}, x_{-}\rangle$

denote the normalisation of $ V\langle x_{+}, x_{-}\rangle$ and $\overline{pr}_{X}$ : $\overline{V}\langle x_{+}, x_{-}\rangle\rightarrow X$ the
induced projection. The inverse image of $x_{\pm}$ via this projection deter-

mines a distinguished section $\sigma_{\pm}\subset\overline{V}\langle x_{+}, x_{-}\rangle$ over the normalisation
$\overline{W}\langle x_{+}, x_{-}\rangle$ of $ W\langle x_{+}, x_{-}\rangle$ .

Given a smooth curve $T$ and a morphism $ f:T\rightarrow\overline{W}\langle x_{+}, x_{-}\rangle$ , the

fibre product $ T\times_{\overline{W}\langle x+,x_{-}\rangle}\overline{V}\langle x_{1}, x_{2}\rangle$ is a very special conic bundle over
$T$ , the properties of which are studied in \S 2. With the aid of the re-
sults obtained in \S 2, we show that $\overline{pr}_{X}$ lifts to an isomophism between
$\overline{V}\langle x_{+}, x_{-}\rangle$ and the two-point blowup $B1_{\{x,x_{-}\}}X+$ of $X$ , inducing isomor-
phisms

$\overline{W}\langle x_{+}, x_{-}\rangle\simeq\sigma_{\pm}\simeq E_{\pm}\simeq \mathbb{P}^{n-1}$ ,

where $E_{\pm}\subset B1_{\{x_{+},x_{-}\}}X$ is the exceptional divisor over $x_{\pm}\in X$ . The

pullback $\tilde{H}_{0}=pr_{\overline{W}}^{*}L$ of the hyperplane divisor $L\subset\overline{W}\langle x_{+}, x_{-}\rangle\simeq \mathbb{P}^{n-1}$

is a semiample divisor on $\overline{V}\langle x_{+}, x_{-}\rangle\simeq B1_{\{x_{1},x_{2}\}}X$ . Then we show that
$\tilde{H}_{0}$ contracts to an ample divisor $H_{0}$ on $X$ and that the complete linear
system $|H_{0}|$ defines an isomorphism from $X$ to a hyperquadric in $\mathbb{P}^{n+1}$ .

The parameter space $ W\langle x_{+}, x_{-}\rangle$ eventually turns out to be the dual
projective space of the complete liner system $|\mu^{*}H_{0}-E_{+}-E_{-}|\simeq \mathbb{P}^{n-1}$

on $B1_{\{x,x_{-}\}}X+$
’ which is viewed as the sublinear system $|H_{0}(-x_{+}-$

$ x_{-})|\subset|H_{0}|\simeq$
$I\mathbb{P}^{n+1}$ on $X$ . To be more explicit, for each $n-1-$

dimensional linear subspace $\Lambda$ of

$H^{0}(X,I_{x}I_{x_{-}}+(H_{0}))\subset H^{0}(Q_{n}, O(1))$ ,

we associate [C] $\in W\langle x_{+}, x_{-}\rangle$ , where $C$ is the plane conic cut out of $Q_{n}$

by the $n-1$ hyperplanes $\in\Lambda$ through $x_{+}$ , $x_{-}$ .

Convention: In what follows, every scheme is defined over the complex
number field. Schemes are often identified with the set of their complex
points, regarded as analytic spaces with Euclidean topology.

For mathematical notation, we basically follow the convention in [2],
to which we refer the reader for technical details as well.

\S 1. Review of basic facts

In this section, we review several elementary facts and some basic
results of [2] concerning unsplitting family of rational curves.



212 Y. Miyaoka

Given a projective variety $X$ , the Chow scheme Chow(X) and the
Hilbert scheme Hilb(X) are defined as the parameter spaces of effective
cycles and closed subschemes, respectively. They are known to exsist
as disjoint union of projective schemes. An effective cycle (or a closed
subscheme) $\Gamma\subset X$ will be denoted by [F] when viewed as a point in
Chow(X) (or of Hilb(X)).

For two projecive varieties $X$ , $Y$ , the morphisms from $Y$ to $X$ form a
locally closed (and hence quasiprojective) subset $Hom(Y, X)$ of Hilb $(Y\times$

$X)$ . When $X$ is smooth and $Y$ is a curve, we have the local dimension
estimate

$\chi(Y, f^{*}\ominus_{X})\leq dim_{[f]}$ $Hom(Y, X)\leq dimH^{0}(Y, f^{*o-}x)$

at a given closed point $[f]$ . The second inequality becomes equality if
and only if $Hom(Y, X)$ is smooth at $[f]$ .

The following is an immediate consequence of well known Sard’s
theorem.

Proposition 1.1. Let $X$ be a projective variety, $M$ a smooth
scheme of finite type [resp. locally of finite type] an $d$ let $h:M$ $\rightarrow$

$Hom(\mathbb{P}^{1}, X)$ a morphism. Assume that the naturally induced morphism
$\Phi_{h}$ : $ M\times$ I[ $1\rightarrow X$ is dominant ( $i.e$ . the image contains a nonempty open
subset of $X$ ). Choose a general [resp. sufficiently general] nonsingular
closed point $x_{0}\in X_{reg}=X\backslash $ Sing(X) and take an arbitrary closed point
$y\in M$ . Then the natural $\mathbb{C}-$ linear differential map

$\ominus_{\mathcal{V}1l,y}\oplus\Theta_{\mathbb{P}^{1},p}\rightarrow\ominus_{X,x_{11}}$

is surjective at any closed point $(y,p)\in\Phi^{-1}(x_{0})$ . Specifically when $h$

is a locally closed embedding of $\lambda I$ into $Hom(\mathbb{P}^{1}, X)$ with $y=$ $[f]\in$

$Hom(\mathbb{P}^{1}, X)$ , $f$ (I[
$1$

) $\subset X_{reg}$ , the natural evaluation map gives a surjec-

tion $from\ominus_{WI,[f]}\subset H^{0}(\mathbb{P}^{1}, f^{*}\ominus_{X})$ onto $\ominus_{X,x_{()}}$ (under the condition that
$f(\mathbb{P}^{1})$ passes through the (sufficiently) general closed point $x_{0}\in X$ ).

Let $\mathcal{U}\subset$ Chow(X) be a locally closed subset. The incidence variety
attached to $\mathcal{U}$ is the closed subset $\mathcal{G}\subset \mathcal{U}\times X$ defined by

$\mathcal{G}=\{([Y], x)|[Y]\in \mathcal{U}, x\in Y\subset X\}$ .

We let $pr_{\mathcal{U}}$ and $pr_{X}$ denote the natural projections from the incidence
variety to $\mathcal{U}$ and to $X$ , respectively.

Corollary 1.2. Let $A\subset X$ be an arbitrary finite set of closed
points on a smooth projecive variety X. Let $\mathcal{U}\langle A\rangle$ be the locally closed
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subset $\subset$ Chow(X) offinite type consisting of irreducible, reduce $d$ , smooth
rational curves which contain $A$ , and let $\mathcal{G}\langle A\rangle\subset \mathcal{U}\langle A\rangle\times Xd$enote the
associate $d$ inci $d$ence variety. If the projection $pr_{X}$ : ( $\langle A\rangle\rightarrow X$ is domi-
nant and $x_{0}\in X$ is a general close $d$ point, then, for each element $[C]$ of
the closed subset

$\mathcal{U}\langle A, x_{0}\rangle=\{[C]\in \mathcal{U}\langle A\rangle|C\ni x_{0}\}$ ,

the sheaf $\ominus_{X}\otimes_{\mathcal{O}_{X}}O_{C}(-A)$ is generated by global sections.3 In particular,
$\mathcal{U}\langle A, x_{0}\rangle$ is smooth, with Zariski tangent space $H^{0}(C,N_{X/C}(-A-x_{0}))$

at $[C]$ .

Proof. Since $\mathcal{U}\langle A\rangle$ consists of smooth rational curves on $X$ , it is
thought of as a locally closed subscheme of Hilb(X) in an obvious way,
with $\mathcal{G}\langle A\rangle$ being the associated universal family. Its Zariski tangent

space at $[C]$ is naturally identified with $H^{0}(C,N_{C/X}(-A))$ . By assump-
tion, the universal family $\mathcal{G}\langle A\rangle$ dominates $X$ so that the differential
$\Theta_{\mathcal{G}\langle A\rangle}\rightarrow pr_{X}^{*}\ominus_{X}$ is onto at anly point $ p\in \mathcal{G}\langle A\rangle$ over the general point
$x_{0}\in X$ . This differential naturally induces homomorphisms

$\Theta_{\mathcal{G}\langle A\rangle/\mathcal{U}\langle A\rangle}|_{\{[C]\}\times C}\rightarrow O-c$ ,

$pr_{\mathcal{U}\langle A\rangle}^{*}\Theta_{\mathcal{U}\langle A\rangle}|_{\{[C]\}\times C}\rightarrow N_{X/C}$ .

The second homomorphism is generically surjective whenever $C\ni x_{0}$ . In
particular, $H^{0}(C,N_{X/C}(-A))$ generically generates $N_{X/C}(-A)$ , mean-
ing that

$N_{X/C}(-A)\simeq n-1\oplus O(d_{i})i=1’ d_{i}\geq 0$ .

We have therefore

$H^{1}(C,N_{X/C}(-A))=H^{1}(C,N_{Y/C}(\lrcorner-A-x_{0}))=0$

and hence $\mathcal{U}\langle A\rangle$ and $\mathcal{U}\langle A, x\rangle$ are both smooth at $[C]\in \mathcal{U}\langle A, x_{0}\rangle$ .

So far, we have been dealing with general families of rational curves.
From now on, we will exclusively treat rational curves of low degree.

Let $X$ be a smooth, projective, uniruled variety with an ample
divisor $H$ and $x_{0}\in X$ a closed point. Define the minimum degree
Mindeg $(X, x_{0}, H)$ of the rational curves through $x_{0}$ to be the minimum
of the intersection numbers $(C, H)$ , $C$ running through the irreducible

$3Here$ $A$ is viewed as an effective divisor on the nonsingular curve $C$ .
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rational curves containing $x_{0}$ in X. (Of course Mindeg $(X, x_{0}, H)=$

$l(X, x_{0})$ when $X$ is Fano and $H=-K_{X}$ , the case we are interested
in.) If a rational curve $C\ni x_{0}$ satisfies $(C, H)=$ Mindeg $(X, x_{0}, H)$ ,

call $C$ a rational curve of minimum degree through $x_{0}$ . The rational
curves of minimum degree through the base point $x_{0}$ form a closed (and

hence projective) subscheme of finite type of Chow(X), and so does
its arbitrary irreducible component $ S\langle x_{0}\rangle\subset$ Chow(X). The associated
incidence variety

$F\langle x_{0}\rangle=\{([C], x)|[C]\in S\langle x_{0}\rangle, x\in C\subset X\}$

is naturally a closed subscheme of $S\langle x_{0}\rangle\times X$ with two projections $pr_{S}$

and $pr_{X}$ to $ S\langle x_{0}\rangle$ and $X$ .

The family $pr_{S}$ : $ F\langle x_{0}\rangle\rightarrow S\langle x_{0}\rangle$ (of rational curves of minimum
degree through $x_{0}$ ) is an unsplitting family of rational curves, $i.e.$ , every
closed fibre $C=F_{s}$ is a reduced, irreducible rational curve on $X$ .

Proposition 1.3. In the above notation, assume that the base
point $x_{0}$ is general in $X$ and that $dimS\langle x_{0}\rangle\geq 2$ . Let $Y$ be the image
$pr_{X}(F\langle x_{0}\rangle)$ . Let $\overline{S}\langle x_{0}\rangle,$ $\overline{F}\langle x_{0}\rangle$ and $\overline{Y}$ be the normalisations of $ S\langle x_{0}\rangle$ ,
$ F\langle x_{0}\rangle$ and $Y$ , and $d$enote by $\overline{pr}_{\overline{S}}$ : $\overline{F}\langle x_{0}\rangle\rightarrow\overline{S}\langle x_{0}\rangle$ and $\overline{pr}_{\overline{Y}}$ : $\overline{F}\langle x_{0}\rangle\rightarrow\overline{Y}$

the naturally induce $d$ morphism. Then we have

(1) If $[L]\in S\langle x_{0}\rangle$ is a general member, then the rational curve $ L\subset$

$X$ is smooth $I\mathbb{P}^{1}$ an $d$ its normal bundle A $L/X$ in $X$ is isomorphic

to $O(1)^{\oplus r}\oplus(O^{\oplus n-r-1},$ $w$have $2\leq r=dimY-1=(C, -K_{X})-$

$2\leq n-1$ .

(2) Only finitely many members $L$ of $ S\langle x_{0}\rangle$ can have singulrities at
the base point $x_{0}$ .

(3) Only finitely many members $L$ of $ S\langle x_{0}\rangle$ can have cuspidal sin-
gularities and no member has a cuspid $al$ singularity at the base
point $x_{0}$ .

(4) The first projection $\overline{pr}_{\overline{S}}$ : $\overline{F}\langle x_{0}\rangle\rightarrow\overline{S}\langle x_{0}\rangle$ is $a\mathbb{P}^{1}$ -bundle.

(5) The scheme theoretic inverse image $\overline{pr}_{Y}^{*}(x_{0})\subset\overline{F}\langle x_{0}\rangle$ of the

base point $x_{0}$ via the second projection $\overline{pr}_{Y}$ : $\overline{F}\langle x_{0}\rangle$ is a disjoint
union of a specified section $\sigma_{0}$ and $a$ (zero-dimensional) closed
subscheme $\tau$ arvay from $\sigma_{0}$ . In particular, locally around the
Cartier divisor $\sigma_{0}$ , the projection $\overline{pr}_{\overline{Y}}$ naturally lifts to a mor-

phism $\tilde{p}r_{\overline{Y}}$ : $\overline{F}\langle x_{0}\rangle\rightarrow\tilde{Y}$ , where $\tilde{Y}$ is the normalisation of the
one-point blowup $B1_{x_{0}}Y$ of $Y$ at $x_{0}$ .

(6) The secon $d$ projection $\overline{pr}_{\overline{Y}}$ is unramified over $\overline{Y}\backslash (Sing(\overline{Y})\cup$

$\{\overline{y}_{0}\})_{\rangle}$ where $\overline{y}_{0}=\overline{pr}_{\overline{Y}}(\sigma_{0})\in\overline{Y}$ is a point over $x_{0}\in Y$ . In par-
ticular, the induced morphism from a small open neighbourhood
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of $\sigma_{0}$ in $\overline{F}\langle x_{0}\rangle$ to a neighbourhood of the exceptional divisor $E_{xo}$

in $\overline{Y}$ is unramified in codimension one.

Proof. The statements (1) through (5) are proved in [2, \S \S 2--3].
In order to prove (6), we blowup the zero-dimensional subscheme $\tau$ and

eliminate the indeterminacy to get a morphism Bl $\mathcal{T}\overline{F}\langle x_{0}\rangle\rightarrow\overline{Y}$ . (Note

that Bl $\mathcal{T}\overline{F}\langle x_{0}\rangle$ is normal with only $A$-type rational double points as sin-
gularities by [2, 4.2, Step 2].) It is easy to show that the strict transform

of a general member $L$ of $ S\langle x_{0}\rangle$ in $\tilde{Y}$ is a smooth rational curve lying

on the nonsingular locus of $\tilde{Y}$ and has trivial normal bundle. Then we
can photocopy the proof of [2, Theorem 4.2].

\S 2. Conic bundles

While in [2] we relied on special properties of $\mathbb{P}^{1}$ -bundles over curves,
the key ingredient in the present paper is the theory of two-dimensional
conic bundles, $i.e.$ , one-parameter families of plane conies. To be more
precise, a flat projective family $\pi:C$ $\rightarrow T$ over a smooth curve $T$ is said
to be a (two-dimensional) conic bundle if

(1)a general fibre of $\pi$ is a smooth $I\mathbb{P}^{1}$ , an $d$

(2)there exists an \’etale open covering4 $\{p_{\alpha} : U_{\alpha}\rightarrow T\}$ of $T$ and
a family of vector bundles $\mathcal{E}_{\alpha}$ of rank three on $U_{\alpha}$ such that
$C_{\alpha}=U_{\alpha}\times\tau$ (is isomorphic to a hypersurface $\in|2L_{\mathcal{E}_{\alpha}}|$ in the
$\mathbb{P}^{2}$ bundle $\mathbb{P}(\mathcal{E}_{\alpha})$ with tautological line bundle $L_{\mathcal{E}_{\alpha}}$ .

A singular fibre of a conic bundle is either a union of two lines
meeting at a single point or a double line (a non-reduced fibre). The
singular loci of the fibres $C_{t}$ form a closed subset Cr( $()\subset C$ , called the
critical locus.

Let $\hat{\pi}$ : $\hat{C}\rightarrow T$ be a projective morphism from an irreducible (possi-

bly singular) surface onto a smooth curve. Let $C$ denote the normalisa-

tion of $\hat{C}$ , and $\pi:C$ $\rightarrow T$ the morphism naturally induced by $\hat{\pi}$ .

Lemma 2.1. In the above notation, assume that

(a) for each cosed point $t\in T$ , the effective Cartier divisor $\hat{C}_{t}=$

$\hat{\pi}^{*}(t)$ is reduced and contains at most two irreducible compo-
nents, and that

(b) a general fibre $\hat{C}_{t}$ is smooth $\mathbb{P}^{1}$ .

$4alternatively$ , an analytic open covering
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Then

(1)the fibration $\pi:C$ $\rightarrow T$ is a conic bundle without non-reduced
fibres, and

(2) $C$ has at worst $A$ -type Du $Val$ points as singularities. Any sin-
gular point of $C$ is contained in the unique intersection point of
the tuto components of some reducible fibre of $\pi$ .

Proof. Pick up an arbitrary closed point $t\in T$ . Since the base $T$

is smooth and the reduced closed fibre $\hat{C}_{t}$ is smooth outside a finite set
$\Sigma_{t}\subset\hat{C}_{t}$ , we see that $\hat{C}$ is smooth along $\hat{C}_{t}\backslash \Sigma_{t}$ . Therefore $C$ and $\hat{C}$ are
isomorphic in codimension one, so that the closed fibre $C_{t}\subset C$ is also
reduced having at most two irreducible components.

Take the minimal resolution $\mu:\tilde{C}\rightarrow C$ . The smooth surface $\tilde{C}$ is

flat over $T$ , and we have $\tilde{C}_{t}K_{\overline{C}}=-2$ . Furthermore, $\tilde{C}$ is obtained as a
blowup of a suitable I[ 1-bundle over $T$ . Each irreducible component $E$

of $\tilde{C}_{t}$ is thus smooth $I\mathbb{P}^{1}$ with nonpositive self intersection, and $E^{2}=0$ if

and only if $E=\tilde{C}_{t}$ . By the adjunction formula, $EK_{\overline{C}}=-2-E^{2}\geq-1$

unless $E=\tilde{C}_{t}$ . If $E$ is contracted to a point on $C$ , then $EK_{\overline{C}}\geq 0$ because
our resolution is minimal.

We have two cases:

Case 1. $C_{t}$ is irreducible. In this case, we have a unique component
$\tilde{C}_{t}^{0}$ of $\overline{C}_{t}$ which surjects onto $C_{t}$ . Any other component is contracted to

a point and has non-negative intersection with $K_{\overline{C}}$ , while $\overline{C}_{t}K_{\overline{C}}=-2$ .

This implies that $\tilde{C}_{t}^{0}K_{\overline{C}}\leq-2$ , so that $\tilde{C}_{t}^{0}=\tilde{C}_{t}$ or, equivalently, (
$t$ is a

smooth fibre.

Case 2. $C_{t}$ is the union of trvo irreducible components $C_{t\pm}$ . In this
case, there are at most two irreducible components with $EK_{\overline{C}}=-1$ and
all the other compoents have nonnegative intersection with $K_{\overline{C}}$ , while
the sum of the intersection numbers is -2. This means that the two
strict transforms $\tilde{C}_{t\pm}$ of $C_{t\pm}$ are 1)-curves and the other components
are ( 2)-curves. If we write

$\tilde{C}_{t}=\tilde{C}_{t+}+\overline{C}_{t-}+\sum a_{i}E_{i}$ ,

then

$1=-(\tilde{C}_{t+})^{2}=\tilde{C}_{t+}\tilde{C}_{t-}+\sum_{i}a_{i}\tilde{C}_{t+}E_{i}$
,

meaning that $\tilde{C}_{t+}$ meets with a single reduced irreducible component $E_{+}$ .

If $E_{+}$ is $\tilde{C}_{t-}$ , then, by symmetry, $E_{-}=\tilde{C}_{t+}$ is the unique component
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which meets $\tilde{C}_{t-}$ , so that $C_{t}=\tilde{C}_{t}=\tilde{C}_{t+}+\tilde{C}_{t-}$ . If $E_{+}$ is one of the

2)-curves, then the blowdown of $\tilde{C}_{t+}$ affects the single component $E_{+}$

to produce a new (-1)-curve, and we get a similar situation, $\tilde{C}_{t+}$ being
replaced with the image of $E_{+}$ . Reiterating the same process, we arrive

at the situation where $E_{+}=\tilde{C}_{t-}$ . Thus $\tilde{C}_{t}$ is a single chain

$\tilde{C}_{t+}+E_{1}+\cdots+E_{m}+\tilde{C}_{t-}$ ,

of which the two ends are the (-1)-curves. Since the intermediary
curves form a chain of ( 2)-curves, we can contract the chain to an

A $m^{-}$singularity. After contracting all such chains on $\tilde{C}$ , we get a normal

surface $C^{*}$ . By construction, the resolution $\mu:\tilde{C}\rightarrow C$ factors through
$C^{*}$ , which is finite over C. Hence, by Zariski’s Main Theorem, $C^{*}=C$ .

The relative anticanonical divisor $-K_{C/T}$ gives a closed embedding

of $C$ into the projective bundle $\mathbb{P}(pr_{T*}O_{C}(-K_{C/T}))$ , defining a standard
conic bundle structure on C.

When it has an A $m^{-}$singularity (a smooth point is considered as an
A $0^{-}$singularity) on a reducible fibre $C_{t}$ , the normal surface $C$ is locally
defined by the equation $\xi_{1}\xi_{2}=\tau^{m+1}$ in $T\times \mathbb{P}^{2}$ , where $\tau$ is a local
parameter of $T$ and $\xi_{0}$ , $\xi_{1}$ , $\xi_{2}$ are homogeneous coordinates of $\mathbb{P}^{2}$ .

Proposition (2.1) determines the rational N\’eron-Severi group of the
conic bundle C. In fact we have the following

Corollary 2.2. Let the notation and assumptions be as in (2.1).
Let $C^{o}d$enote the non-critical locus $C\backslash $ Cr( $()$ . Then there exists a section
$\sigma:T\rightarrow C^{o}\subset C$ of the projection $\pi$ . The surface $C$ is $\mathbb{Q}$ -factorial, $i.e.$ ,

every Weil divisor is Cartier if multiplied by a suitable positive integer.
The Q-Neron-Severi group $NS(C)_{\mathbb{Q}}=\mathbb{Q}\otimes_{\mathbb{Z}}NS(C)$ is $a\mathbb{Q}$ vector space
freely generated by $\sigma$ , $f=[C_{t}]$ an $d\delta_{i}$ , $i=1$ , $\ldots$ , $r$ , where $\delta_{i}=[C_{t_{j}+}]-$

$[C_{t_{i}-}]$ and the $C_{t_{j}}=C_{t_{1}+}+C_{t_{l}-\rangle}i=1$ , $\ldots$ , $r$ are the decomposition of
the singular fibres such that $\sigma C_{t_{i}+}=1$ . If $C$ has an A $m_{j}^{-}$ singularity at
$C_{t_{j}+}\cap C_{t,-}$ , we have the following intersection table:

$f^{2}=f\delta_{i}=\delta_{i}\delta_{j}=0$ , $i\neq j$ ,

$\delta_{i}^{2}=-\frac{4}{m_{i}+1}$ ,

$\sigma f$ $=\sigma\delta_{i}=1$ .

Proof. Let $\mu:\tilde{C}\rightarrow C$ be the minimal resolution and $E_{ik}$ a $( 2)-$

curve over the singualar point on $C_{t_{j}}$ . Denoting $\tilde{C}_{t_{j}+}$ denote the strict
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transform of $C_{t_{j}+}$ , we can write $\mu^{*}C_{t_{j}+}=\tilde{C}_{t_{j}+}+\sum_{k}a_{k}E_{ik}$ , while $E_{ik\mu}^{*}C_{t_{j}+}$

$=0$ , $k=1$ , $\ldots$ , $m_{i}$ . This determines the coefficients $a_{k}$ , yielding

$\mu^{*}C_{t_{j}+}=\overline{C}_{t_{j}+}+\frac{1}{m_{i}+1}\sum_{k}(m_{i}+1-k)E_{ik}$ .

Then the above intersection table follows from simple computation.

Definition 2.3. Let $\pi:C$ $\rightarrow T$ be a normal conic bundle over a
smooth projective curve $T$ and $B$ a $nef$ and big Cartier divisor on C. The
fibre space $\pi:C$ $\rightarrow T$ (or the total space $C$ , by abuse of terminology)

is said to be an $B$ -symmetric conic bundle if $BC_{t+}=BCt-$ whenever a
closed fibre $C_{t}$ is a union of two components $C_{t+}$ , $C_{t-}$ .

Assume that $\pi:C$ $\rightarrow T$ has two distinct sections $\sigma_{+}$ , $\sigma_{-}$ . The triple
$(C;\sigma_{+}, \sigma_{-})$ is said to be strongly $B$ -symmetric if the following four con-
ditions are satisfied:

(a) $C$ is $B$-symmetric;
(b) $\sigma_{+}$ and $\sigma_{-}$ are mutually disjoint divisors contained in the non-

critical locus $C^{O}=C\backslash $ Cr( $()$ ;
(c) $B\sigma_{+}=B\sigma_{-};$

(d) For any reducible fibre $C_{t}=C_{t+}+C_{t-}$ , we have

$\sigma_{+}C_{t+}=\sigma_{-}C_{t-}=1$ ,

$\sigma_{+}C_{t-}=\sigma_{-}C_{t+}=0$ ,

(possibly after suitable reindexing of the irreducible components
$C_{t\pm})$ .

Proposition 2.4. Let $\pi:C$ $\rightarrow T$ be a normal conic bundle over $a$

smooth projective curve with a $nef$ big divisor $B$ and two sections $\sigma_{+}$ , $\sigma_{-}$ .

Assume that $(C;\sigma_{+}, \sigma_{-})$ is strongly $B$ -symmetric and let $sd$enote the

number of the singular fibres. Let $\mu:\overline{C}\rightarrow C$ be the minimal resolution.
Then we have:

(1) $B\approx d(\sigma_{+}+\sigma_{-})+af$ , $d\in \mathbb{N}$ , $ a\in$ Q.

(2) $\sigma_{-}\approx\sigma_{+}+\sum\frac{m_{j}+1}{2}\delta_{i}$ .

(3) Let $\sigma\subset C$ be a section of $\pi$ and $\tilde{\sigma}\subset\tilde{C}$ its strict transform. Let

$\tilde{C}_{t_{i}}=\sum_{k=0}^{m,+1}E_{ik}=\tilde{C}t_{j}-+E_{i1}+\cdots+E_{im_{j}}+\tilde{C}t_{j}+$

be the irreducible $d$ecomposition of a singular fibre of $\tilde{\pi}:\tilde{C}\rightarrow T$

over $t_{i}$ and let $E_{i\kappa_{j}}$ be the unique component which meets $\tilde{\sigma}$ .
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Then

$\tilde{\sigma}=\mu^{*}\sigma-\sum_{i}(\sum_{k=1}^{\kappa_{j}}\frac{k(m_{i}+1-\kappa_{i})}{m_{i}+1}E_{ik}+\sum_{k=\kappa_{j}+1}^{m_{j}}\frac{(m_{i}+1-k)\kappa_{i}}{m_{i}+1}E_{ik})$ .

(4) $\sigma_{+}^{2}=\sigma_{-}^{2}=-\frac{e}{2}\leq 0$ , there

$e=\sum_{i}(m_{i}+1)$
,

the sum being taken over the the reducible fibres $C_{t_{j}}$ , on which
$C$ has singularities of type A $m_{j}$

(of course we define $m_{i}=0$ if $C$

is nonsingular near $C_{t_{j}}$ ).

(5) If its strict transform $\tilde{\sigma}\subset\tilde{C}$ has negative self intersection, then
a section $\sigma\subset C$ coinci $d$es with one of the two specified sections
$\sigma\pm\cdot$ In particular, $\sigma$ is one of the $\sigma_{\pm}$ once a section $\sigma\subset C$

satisfies $\sigma^{2}<0$ . If $\sigma\neq\sigma\pm$ and its strict transform $\tilde{\sigma}$ satisfies
$\tilde{\sigma}^{2}=0$ , then $\sigma$ is disjoint with $\sigma\pm\cdot$ If, furthermore, $\sigma^{2}=0$ ,

then it is $away$ from Sing $(()$ .

(6) If there are two sections $\sigma_{1}$ , $\sigma_{2}\neq\sigma\pm\subset C$ such that the strict

transforms $\tilde{\sigma}_{1},\tilde{\sigma}_{2}$ are mutually disjoint in $\tilde{C}$ , then $\sigma_{1}\cup\sigma_{2}$ is a nay

from $\sigma_{+}\cup\sigma_{-}$ .

Proof. The first three statements are direct consequences of the
intersection table in (2.2) and we leave the proof to the reader.

Take the minimal resolution $\tilde{C}$ of C. Let $\overline{\sigma}\pm\subset\tilde{C}$ denote the strict

transforms of the sections $\sigma\pm\cdot$ Starting from $\tilde{C}$ , we can find a series of
blowdowns

$\tilde{C}=C_{0}\rightarrow C_{1}\rightarrow\cdots\rightarrow C_{e}$

to reach a $\mathbb{P}^{1}$ bundle $C_{e}$ . The number of the blowdowns is computed by

$e=\sum_{t\in T}$
((the number of the components of $\overline{C}_{t}$ ) $-1$ ) $=\sum_{i=1}^{s}(m_{i}+1)$ .

We denote by $\sigma\pm k$ the image of $\tilde{\sigma}\pm=\sigma\pm 0$ in $C_{k}$ .

The choice of blowdowns is not unique. Our choice is inductively
made in such a way that at each step the (-1)-curve to be contracted
must intersect $\sigma_{+k}$ (or, equivalently, that the (-1)-curve does not touch
$\sigma_{-k})$ . In such a (unique) choice of blowdowns, we can easily see that the
two divisors $\sigma_{\pm e}$ are still disjoint on the I[ 1-bundle $C_{e}$ . A I[ 1-bundle with
two disjoint sections is canonically a projective bundle $\mathbb{P}(\mathcal{L}_{+}\oplus \mathcal{L}_{-})$ , the



220 Y. Miyaoka

two direct summand corresponding to the two sections. Thus we have
$\sigma_{+e}^{2}=-\sigma_{-e}^{2}=deg\mathcal{L}_{+}\mathcal{L}_{-}^{-1}$ . By construction, $\sigma_{-e}^{2}=\tilde{\sigma}_{-}^{2}=\sigma_{-}^{2}=\sigma_{+}^{2}$ ,

while $\sigma_{+e}^{2}\geq\sigma_{+0}=\tilde{\sigma}_{+}^{2}=\sigma_{+}^{2}=\sigma_{-}^{2}$ , the equality holding if and only if

$e=0$ , $C_{e}=\tilde{C}=C$ . Therefore $\sigma_{+}^{2}+e=-\sigma_{-}^{2}=-\sigma_{+}^{2}$ , whence follows (4).

We $trace$ back the blowdown procedure by starting from the $\mathbb{P}^{1}-$

bundle $C_{e}$ with two disjoint sections $\sigma\pm e$ and by successively blowing up

points on the strict transforms $\sigma_{+k}$ on $C_{k}$ , eventually to reach $\overline{C}=C_{0}$ .

Let $\sigma\subset C$ be a section difTerent from $\sigma_{\pm}$ . Its strict transform $\tilde{\sigma}$ in $\tilde{C}$

is mapped to a section $\sigma_{e}$ on the I[bundle $C_{e}$ . Putting $a=\sigma_{e}\sigma_{-e}\geq 0$ ,

we have $\sigma_{e}\sigma_{+e}=e+a\geq e$ , $\sigma_{e}^{2}=e+2a$ . Let $C_{t_{j}e}\simeq \mathbb{P}^{1}$ be the strict
transform in $C_{e}$ of the singular fibre $C_{t_{j}}\subset C$ . Let $\kappa_{i}$ denote the local
intersection number $(\sigma_{e}, \sigma_{+e})_{1oc}$ at the single point $C_{t_{j}e}\cap\sigma_{+e}$ , with the
obvious inequality $\sum_{i=1}^{s}\kappa_{i}\leq\sigma_{e}\sigma_{+e}=e+a$ . By the description of the
blowing up ( $ 0\rightarrow$ (

$e$ ’ the selfintersection $\tilde{\sigma}$ is computed by $e+2a-$
$\sum_{i}\kappa_{i}\geq a\geq 0$ , the equalities are attained if and only if $a=0$ , $\sum\kappa_{i}=$

$e+a=e$ , meaning that $\tilde{\sigma}$ is disjoint with $\overline{\sigma}\pm$ in this case. These facts in
mind, we readily deduce (5) and (6) from the easy inequality $\sigma^{2}\geq\tilde{\sigma}^{2}$ ,

the equality holding if and only if $\sigma$ does not pass through the singular
points.

If none of the two sections $\overline{\sigma}_{1},\tilde{\sigma}_{2}$ coincides with $\overline{\sigma}\pm$ , the both divi-
sors are necessarily $nef$ with non-negative selfintersection. When one of
them has positive self-intersection, they must intersect by Hodge index
theorem. If both have self intersection zero, then they cannot meet $\tilde{\sigma}\pm$

by (6) (recall that $\sigma\pm$ is not affected by the resolution).

Corollary 2.5. Let $X$ be a projective variety with an ample divisor
$H$ and let $\pi:C$ $\rightarrow T$ be a normal conic bundle over a smooth curve. Let
$f:C$ $\rightarrow X$ be a morphism with $rwo$-dimensional image such that its
restriction to each fibre $C_{t}$ is finite. Assume that $\pi ad$mits two sections
$\sigma\pm$ such that

(1) $f(\sigma\pm)$ is a single point $x_{\pm}\in X$ , $x_{+}\neq x_{-}$ ,

(2) $(C_{t}, f^{*}H)=2$ mindeg $(_{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}, x_{1}; H)=2mindeg(X, x_{2}; H)$ for each
closed fibre $C_{t}$ of $\pi$ , and that

(3) no irreducible component of a singlular fibre $C_{t_{i}}$ of $\pi$ simultane-
ously meets both $\sigma_{+}$ and $\sigma_{-}$ .

Then $C$ is a strongly $f^{*}H-$ symmetric conic bun $d$ le and $f$ is finite over
$X\backslash \{x_{+}, x_{-}\}$ .

Proof. The first statement follows from the condition (3) plus the
equalities $\sigma_{\pm}f^{*}H=0$ and $f(C_{t+})H=f(C_{t-})H=$ mindeg) $(X, x_{i}; H)$ for
a reducible fibre $C_{t}=C_{t+}\cup C_{t-}$ . In order to prove the second statement,



Numerical characterisations of hyperquadrics 221

assume that there is a curve $\sigma\subset$ ( which is contracted to a point by $f$ .

By considering a suitable base change if necessary, we may assume that
$\sigma$ is a section without loss of generality. Then, by the equality $\sigma f^{*}H=0$

and the Hodge index theorem, we infer that $\sigma^{2}<0$ , contradicting (2.4).

Proposition 2.6. Let $\pi:C$ $\rightarrow T$ be a two-dimensional normal
conic bundle and $f:C$ $\rightarrow X$ a morphism with two-dimensional image as
in (2.5). Assume that

(1) $C$ is $f^{*}H$ -symmetric, that
(2) There are trvo sections $\sigma\pm$ such that $f(\sigma\pm)$ is a single point

$x_{\pm}\in X$ , $x_{+}\neq x_{-}$ , and that
(3) there is a third section $\sigma\subset C$ such that $f(C_{t})$ has a cuspidal

singularity at $f(\sigma\cap C_{t})$ for each irreducible fibre $C_{t}$ .

Then $\sigma$ is arvay from one of the $\sigma_{\pm}$ .

Proof. Let $I_{\sigma}\subset O_{C}$ denote the ideal sheaf of the closed subscheme
$\sigma\subset C$ . Let $R$ $\subset \mathbb{C}(T)O_{C}\subset \mathbb{C}(C)$ be the $\mathbb{C}(T)-$subalgebra generated by
1, $I_{\sigma}^{2}$ , $I_{\sigma}^{3}$ . We define the $O_{T}$-subalgebra $O_{\mathcal{G}}$ $\subset O_{C}$ by $O_{\mathcal{G}}=R\cap O_{C}$ .
$C)_{\mathcal{G}}$ determines a family $\hat{\pi}$ : $\mathcal{G}\rightarrow T$ of singular rational curves, which
factors $f:C$ $\rightarrow X$ into the natural projection $C$ $\rightarrow \mathcal{G}$ and $g:\mathcal{G}\rightarrow X$ .

Let Pic( $(/T)=\square _{d}Pic^{d}(\mathcal{G}/T)$ be the relative Picard group scheme,

Pic $d(\mathcal{G}/T)$ consisting of the equivalence classes of line bundles of degree
$d$ on each fibre.

If a closed fib $re\mathcal{G}_{t}$ is an irreducible cuspidal curve, then Pi $c^{0}$
$(\mathcal{G}/T)_{t}=$

$Pic\ovalbox{\tt\small REJECT}$

determines a global section of Pic $d(\mathcal{G}/T)\rightarrow T$ , and, at a generic point
$t\in T$ , there is a unique section A such that A $\otimes d\sim O(g^{*}H)$ , determining
a unique rational (and hence holomorphic) section $\sigma^{*}:$ $T\rightarrow C$ such that
$\sigma^{*}(t)\in C_{t}\backslash \sigma(t)\simeq \mathcal{G}_{t}\backslash \sigma(t)$ and that $O(\sigma^{*}(t))\sim\lambda(t)$ for general $t\in T$ .

Take the minimal resolution $\tilde{C}\rightarrow C$ and let $\overline{\sigma},\tilde{\sigma}^{*}$ , etc. be the strict

transforms in $\tilde{C}$ of $\sigma$ , $\sigma^{*}$ , etc. $\subset C$ . Let us check that $\tilde{\sigma}^{*}\subset\overline{C}$ is away
from $\overline{\sigma}$ .

By construction, $\tilde{\sigma}^{*}$ does not meet $\tilde{\sigma}$ outside the singular fibres.

The local structure of $\overline{\sigma}^{*}$ around a singular fibre $\tilde{C}_{t}$

, is also very

simple. Let $\overline{C}_{t_{i}}=\overline{C}_{t_{j}-}+E_{i1}+\cdots+E_{im_{t}}+\tilde{C}_{t+}$ be the irreducible
decomposition of the singular fibre, a chain of smooth $\mathbb{P}^{1}$ ’s. For the

strict transform $\tilde{\sigma}\subset\tilde{C}$ of $\sigma\subset C$ , let $E_{i\kappa_{i}}$ denote the unique component

which meets $\tilde{\sigma}$ (we set $E_{i0}=\tilde{C}_{t_{i}-}$ , $E_{i,m;+1}=\tilde{C}_{t+}$ , by convention). As
we have seen in (2.4.3), there is a unique solution $(y_{ik})\in \mathbb{Q}^{e}$ (actually
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$\in \mathbb{Z}^{e})$ , $e=\sum_{i}(m_{i}+1)$ , which satisfies the linear equations

$(\tilde{f}^{*}H+\sum_{i,k}y_{ik}E_{i+1})E_{ik}=d\delta_{k\kappa_{j}}$
.

Noting that there are two (-1)-curves as two ends of the chain $\tilde{C}_{t_{i}}$ ,

we can blow down $\tilde{C}$ to a smooth It 1-bundle C\dagger in such a way that all

the components of $\tilde{C}_{t_{j}}\backslash E_{i\kappa_{j}}$ are contracted to points. Then the divisor
$\tilde{f}^{*}H+\sum_{i,k}y_{ik}E_{i+1}$ is a pull-back of a divisor H\dagger on $ c\dagger$ . Let $\sigma^{\uparrow}$ denote

the image of $\tilde{\sigma}$ on $ c\dagger$ . Starting from C\dagger an $d\sigma^{\uparrow}$ , we can easily construct
a family of cupidal plane cubics $\mathcal{G}^{\dagger}\rightarrow T$ which coincides with $\mathcal{G}\rightarrow T$

over a general point $t$ . The divisor $H^{\uparrow}$ is a global section of Pic $d(\mathcal{G}^{\uparrow}/T)$

and we find a unique section

$\sigma^{*\dagger}\subset Pic^{1}(\mathcal{G}^{\dagger}/T)\simeq \mathcal{G}^{\dagger}\backslash \sigma^{\uparrow}$

such that $\sigma^{\uparrow\otimes d}\sim H^{\uparrow}$ on $\mathcal{G}_{t}^{\dagger}$ . The section $\overline{\sigma}^{*}$ on $\tilde{C}$ is then the strict

transform of $\sigma^{*\dagger}\subset c\dagger$ , an $d$ in particular is off $\tilde{\sigma}$ , the strict transform of
$\sigma^{\uparrow}$ . If $\tilde{\sigma}^{*}$ is one of the $\tilde{\sigma}\pm$ , say $\overline{\sigma}_{+}$ , then its image $\sigma$ does not meet $\sigma_{+}$

on $C$ (because the resolution $\tilde{C}\rightarrow C$ does not affect $\sigma\pm$ ). If $\tilde{\sigma}^{*}\subset\tilde{C}$ is not
one of the $\overline{\sigma}\pm$ , then, by (2.4.6), $\sigma$ does not intersect $\sigma\pm\cdot$

\S 3. Fano $n$-manifolds with Picard number one and local length
$n$

In this section, we prove the essential part of Theorem 0.1, the
implication $(3)\Rightarrow(1)$ . Recall that Theorem 0.1 is known for Fano 3-
folds.

Throughout the section, we assume:

(a) $X$ is a Fano manifold of dimension $n\geq 4$ with Picard number
one.

(b) The two closed points $x_{+}$ , $x_{-}\in X$ are general.
(c) $l(X, x_{\pm;}-K_{X})=n$ .

Consider an irreducible component $W$ of the closed subset $\mathcal{W}\subset$

Chow(X) which consists of the connected rational curves $C$ with $(C, -K_{zY})$

$=2n$ . Let $pr_{W}$ : $V\rightarrow W$ be the associated incidence variety. Let $D\subset W$

denote the descriminant locus, the locus consisting of the reducible ra-
tional curves and the non-reduced curves. The induced subfamily of
curves over $D$ is denoted by $V_{D}$ .

The symbol $ W\langle x_{+}, x_{-}\rangle$ [resp. $D\langle x_{+}$ , $ x_{-}\rangle$ ] stands for the closed sub-
set of the curves $\in W$ [resp. $\in D$ ] passing through the two points
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$x_{+}$ , $x_{-}$ . The associated incidence varieties are denoted by $ V\langle x_{+}, x_{-}\rangle$

and $ V_{D}\langle x_{+}, x_{-}\rangle$ .

By our construction, the following assertion is immediate.

Proposition 3.1. The fibre of $pr_{W}$ over a point $ w\in D\rangle$ $x_{+}$ , $ x_{-}\subset$

$W$ is either a connected union of trvo irreducible, reduced rational curves
or a non-reduced rational curve of generic multiplicity two. Given $a$

smooth curve $T$ anda non-constant morphism $T\rightarrow W\langle x_{+}, x_{-}\rangle\subset W$ of
which the image is not contained in $ D\langle x_{+}, x_{-}\rangle$ , the normalisation of the
fibre prod$uctT\times_{W}V$ is a symmetric conic bundle over $T$ .

Proposition 3.2. In the above $ notation\rangle$ we have

(1) $dimD\langle x_{+}, x_{-}\rangle=n-2$ and the image of the projection $pr_{X}$ :
$V_{D}\langle x_{+}, x_{-}\rangle\rightarrow X$ is a divisor $Y$ on $X$ .

(2) The divisor $Y$ a union of two divisors $Y_{+}$ , $Y_{-}$ such that $x_{i}$ is
contained in $Y_{j}$ if and only if $i=j$ $(i, j=+, -)$ .

(3) An arbitrary element $[C]\in D\langle x_{+}, x_{-}\rangle$ is a reduced reducible
curve $L_{+}\cup L_{-}$ with $L_{\pm}\ni x_{\pm},$ $L_{\pm}\subset Y_{\pm}\subset X$ .

(4) $dim(Sing(Y_{+})\cap Y_{-})\leq n-3$ anda general member $L_{+}\cup L_{-}$

does not pass through this set.
(5) If $L_{+}\cup L_{-}$ isageneral member of $ D\langle x_{+}, x_{-}\rangle$ , then $L_{\pm}$ is smooth

with normal bundle $\simeq O(1)^{\oplus n-2}\oplus O$ .

(6) A general member $L_{+}\cup L_{-}$ of $ D\langle x_{+}, x_{-}\rangle$ deforms to an irre-
ducible rational curve $C$ such that $C\supset\{x_{+}, x_{-}\}$ . More pre-
cisely, there is a commutative diagram

$C_{0}\rightarrow$ $L_{+}\cup L_{-}$

$\downarrow$ $\downarrow$

$C$ $\rightarrow V\langle x_{+}, x_{-}\rangle$

$\downarrow$ $\downarrow$

$\triangle\rightarrow W\langle x_{+}, x_{-}\rangle$

there

$C$ $=\{((x:y:z), t);xy=t\}\subset$ If 2
$\times\triangle$

is a nonsingular conic bundle over a small disk $\triangle$ utith reducible
central fibre $C_{0}$ .

Proof. The rational curves $L$ with $L(-K_{X})=n$ form a family $F$

parametrised by a variety $S$ of dimension $\geq 2n-3$ . By our assump-
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tion (c), the closed subfamily $ F\langle x\pm\rangle\rightarrow S\langle x_{\pm}\rangle$ consisting of the mem-
bers through a general base point $ x\pm$ is a non-empty unsplitting family
parametrised by $ S\langle x_{\pm}\rangle$ . Then we apply (1.) to a general member $L$ of
$ S\langle x_{\pm}\rangle$ , to deduce that

a)the parameter space $ S\langle x\pm\rangle$ has dimension $n-2$ , that
b)the projection $pr_{X}$ : $F\langle x_{\pm}\rangle\rightarrow X$ is finite over $X\backslash \{x_{\pm}\}$ and that
c) $Y_{\pm}=pr_{X}(F\langle x_{\pm}\rangle)$ is a divisor.

By our genericity condition, $x_{\pm}\in X\backslash Y_{\mp}$ , and so $ S\langle x_{+}\rangle\cap S\langle x_{-}\rangle=\emptyset$ .

In particular, any member of $ D\langle x_{+}, x_{-}\rangle$ is a reduced, reducible curve
$L_{+}\cup L_{-}$ such that $L_{\pm}\ni x_{\pm}$ .

If $[L_{-}]\in S\langle x_{-}\rangle$ , then $L_{-}\not\subset Y_{+}$ and $L_{-}\cap Y_{+}\neq\emptyset\subset X$ because
$\rho(X)=1$ , meaning that we can find a curve $[L_{+}]\in S\langle x_{+}\rangle$ so that $L_{+}$

meets $L_{-}$ , $i.e.$ , $[L_{+}\cup L_{+}]\in D\langle x_{+}, x_{-}\rangle$ . Furthermore, since $L_{-}\cap Y_{+}$

is a finite set, we have only finitely many choices of such $L_{+}$ (because
$ F\langle x_{+}\rangle$ is an unsplitting family of rational curves). Put in another way,
the projection $ D\langle x_{+}, x_{-}\rangle\rightarrow S\langle x_{-}\rangle$ , $[L_{+}\cup L_{-}]\mapsto[L_{-}]$ is surjective and
finite (and so is the other projection $D\langle x_{+}$ , $ x_{-}\rangle\rightarrow S\langle x_{+}\rangle$ by symmetry).

In particular, $dimD\langle x_{+}, x_{-}\rangle=dim$ $S\langle x_{+}\rangle=n-2$ . If $[L_{+}\cup L_{-}]$ is

a general point in $ D\langle x_{+}, x_{-}\rangle$ , then so is $[L_{\pm}]$ in $ S\langle x_{\pm}\rangle$ and

$\ominus_{X}|_{L}\pm\simeq O(2)\oplus O(1)^{\oplus n-2}\oplus O$ .

It is clear that $ Y=pr_{X}(F_{D}\langle x_{+}, x_{-}\rangle$ is the union of the divisors $Y_{\pm}=$

$pr_{X}(F\langle x_{\pm}\rangle)$ .

The members $L_{-}$ that meet Sing $(Y_{+})$ form a closed subset of $ S\langle x_{-}\rangle$ .

Suppose that this subset is the whole space $ S\langle x_{-}\rangle$ . Then it follows that
there is an $n-2$-dimensional irreducible component $\Sigma$ of Sing $(Y_{+})$ such
that every member $L_{-}$ of $ S\langle x_{-}\rangle$ passes through $\Sigma$ . If follows that, for a
general closed point $ x_{0}\in\Sigma$ , there is a member $L_{-}$ of $ S\langle x_{0}, x_{-}\rangle$ . On the
other hand, $dimF\langle x_{0}\rangle$ is $n-1$ near $L_{-}$ , so that $pr_{X}(F\langle x_{0}\rangle)$ is a divisor on
$X$ . If we replace $x_{-}$ by another general point $\not\in pr_{X}(F\langle x_{0}\rangle)$ , we cannot
find $L_{-}$ which connects $x_{0}$ and $x_{-}$ , meaning that $pr_{X}(F\langle x_{-}\rangle)\cap\Sigma\neq\Sigma$

for a generic choice of $x_{-}$ .

We have so far checked the statements (1) $-(5)$ . In order to prove
(6), consider a nonsingular conic bundle

$C$ $=\{((x:y:z), t);xy=t\}\subset \mathbb{P}^{2}\times\triangle$

over a small disk $\triangle$ with reducible central fibre $C_{0}$ . Choose a general
member $L_{+}\cup L_{-}$ of $D$ and fix a birational map $f:C_{0}\rightarrow L_{+}\cup L_{-}\subset X$ .

The graph $\Gamma_{f}$ of this map is a locally complete intersection in $C$ $\times X$

with normal bundle $N$ $\simeq f^{*}\Theta_{X}\oplus O$ . Hence $dimH^{0}(\Gamma_{f},N)=3n+1$ ,
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$H^{1}(\Gamma_{f},N)=0$ . On the other hand, the deformation of $f:C_{0}\rightarrow X$ has
dimension $3n$ by the splitting type of $\Theta_{X}|_{L_{i}}$ . This shows that, locally
around $ D\langle x_{+}, x_{-}\rangle$ , we have the dimension estimate $dimW\geq dimD+1$ .

Recall that $ W\langle x_{+}, x_{-}\rangle$ [resp. $D\langle x_{+}$ , $ x_{-}\rangle$ ] is naturally identified with

the inverse image of $(x_{+}, x_{-})$ via the natural projection $V^{(2)}\rightarrow X\times X$

[resp. $V_{D}^{(2)}\rightarrow X\times X$ ]. Then elementary dimension count gives the
following equalities:

$dimW\langle x_{+}, x_{-}\rangle=dim$ $W+2-2n$ ,

$dimD\langle x_{+}, x_{-}\rangle=dim$ $D+2-2n$ ,

so that $dimW\langle x_{+}, x_{-}\rangle\geq dim$ $D\langle x_{+}, x_{-}\rangle+1$ . In other words, there is an
irreducible member $C\supset\{x_{+}, x_{-}\}$ which is a deformation of $L_{+}\cup L_{-}$ .

The above deformation argument also shows that $W$ is smooth at a
general point of $D$ , and so is $ W\langle x_{+}, x_{-}\rangle$ at a general point of $ D\langle x_{+}, x_{-}\rangle$ .

It is easy to show that $\overline{V}\langle x_{+}, x_{-}\rangle$ is smooth along a general member
$L_{+}\cup L_{-}$ of $ D\langle x_{+}, x_{-}\rangle$ . (Analytically-locally, it looks like $C\times D\langle x_{+}$ , $ x_{-}\rangle$ ).

We list below a few corollaries of Proposition 3.2.

Corollary 3.3. Let $T$ be a smooth curve and $ f:T\rightarrow W\langle x_{+}, x_{-}\rangle$

a non-constant morphism with image not contained in $ D\langle x_{+}, x_{-}\rangle$ . Then
the normalisation of the fibre product $ T\times_{W\langle x_{+},x_{-}\rangle}V\langle x_{+}, x_{-}\rangle$ is a strongly
$pr_{X}^{*}H$ -symmetric conic bundle over $T$ .

Proof. By construction.

Corollary 3.4. Let $V_{t}$ be an arbitrary irreducible fibre of the fam-
$ily$ $ V\langle x_{+}, x_{-}\rangle\rightarrow W\langle x_{+}, x_{-}\rangle$ . Then $C=pr_{X}(V_{t})$ is not containe $d$ in

the divisor $ Y\subset$ X. Given any non-empty irreducible closed subset
$ R\subset W\langle x_{+}, x_{-}\rangle\backslash D\langle x_{+}, x_{-}\rangle$ of dimension $\leq n-2$ and the associated sub-
family $V_{R}\langle x_{+}, x_{-}\rangle\rightarrow R$ , the image $pr_{X}(V_{R}\langle x_{+}, x_{-}\rangle)\subset X$ can neither
contain any irreducible component of $Y_{\pm}$ nor be contained in $Y_{\pm}$ .

Proof. If $C$ is contained in $Y$ , then $C$ must be contained in one
of $Y_{+}$ , $Y_{-}$ because $C$ is irreducible. Then $C$ cannot pass one of the
$x_{\pm}$ , which is absurd. In particular, the irreducible constructible set
$pr_{X}$ $(V_{R}\langle x_{+}, x_{-}\rangle)$ of dimension $\leq n-1$ cannot be contained in any of
the irreducible component of the divisor $Y_{\pm}$ and and so cannot contain
any component of $Y_{\pm}$ .

Consider the fibre product $V^{(3)}=V\times_{W}V\times_{W}V$ with the natural

projection $pr_{\lambda’}^{(3)}$ : $V^{(3)}\rightarrow X\times X\times X$ .
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Corollary 3.5. In the above notation, we have

(1) $dimW=3n-3$ (near $W\langle x_{+}$ , $ x_{-}\rangle$ ). and the projection $pr_{X}^{(3)}$ : $V^{(3)}$

$\rightarrow X\times X\times X$ is dominant.
(2) A general element $[C]\in W$ is irreducible and if $f:\mathbb{P}^{1}\rightarrow C\subset X$

is the normalisation, $f^{*}\ominus_{X}\simeq O(2)^{\oplus n}$ .

Proof Everything is considered around $ W\langle x_{+}, x_{-}\rangle$ .

By the condition $C(-K_{X})=2r?,$ , $[C]\in W$ , we have the inequal-

ity $dimW\geq 3n-3$ , so that $dimV^{(3)}\geq 3n$ . Hence (1) follows if we

check that the inverse image $(pr_{X}^{(3)})^{(-1)}$ $(x_{+}, x_{-}, x_{0})$ of a general point

$(x_{+}, x_{-}, x_{0})$ of $pr_{X}^{(3)}$ $(V^{(3)})$ is finite. The inverse image of $\{(x_{+}, x_{-})\}\times X$

is naturally identified with $ V\langle x_{+}, x_{-}\rangle$ , family of rational curves passing
through $x_{+}$ , $x_{-}$ , parametrised by the closed subset $W\langle x_{+}, x_{-}\rangle\subset W$ . By
(2.5), the projection $V\langle x_{+}, x_{-}\rangle\rightarrow X$ is finite over $X\backslash \{x_{+}, x_{-}\}$ , which
in particular means that the inverse image of $x_{0}$ is finite.

Take a general nonsingular point $[C]\in W\langle x_{+}, x_{-}\rangle$ and let $\overline{V}\langle x_{+}, x_{-}\rangle$

denote the normalisation of $ V\langle x_{+}, x_{-}\rangle$ . $\overline{V}\langle x_{+}, x_{-}\rangle$ is locally a $\mathbb{P}^{1}$ bun-
dle over a small smooth neighbourhood of $[C]$ . Since the projection
$V\langle x_{+}, x_{-}\rangle\rightarrow X$ is dominant, the natural map $\ominus_{\overline{V}\langle x+,x_{-}\rangle}\rightarrow\overline{pr}_{\lambda’}^{*}\ominus_{X}$ is

surjective at a general point of $\overline{C}$ . This means that $H^{0}$ $(\overline{C},$ $f^{*}\ominus_{X}$ $(-x_{+}-$

$x_{-}))$ and $\Theta_{\overline{C}}\simeq$ ($O(2)$ generates a subsheaf of rank $n$ of $f^{*}\Theta_{X}$ . It follows
that the direct sum decomposition $f^{*}\ominus_{X}\simeq\oplus O(d_{i})$ satisfies $d_{i}\geq 2$ ,

while $\sum d_{i}=C(-K_{X})=2n$ , whence follows (2).

Let $\overline{V}\langle x_{+}, x_{-}\rangle$ and $\overline{W}\langle x_{+}, x_{-}\rangle$ denote the normalisation of $ V\langle x_{+}, x_{-}\rangle$

and $ W\langle x_{+}, x_{-}\rangle$ , and let

$\overline{pr}_{\overline{W}}$ : $\overline{V}\langle x_{+}, x_{-}\rangle\rightarrow\overline{W}\langle x_{+}, x_{-}\rangle$ , $\overline{pr}_{X}$ : $\overline{V}\langle x_{+}, x_{-}\rangle\rightarrow X$

be the natural projections. Let $\overline{D}\langle x_{+}, x_{-}\rangle\subset\overline{W}\langle x_{+}, x_{-}\rangle$ denote the

inverse image of $ D\langle x_{+}, x_{-}\rangle$ . It is known that $\overline{V}\langle x_{+}, x_{-}\rangle$ is a $\mathbb{P}^{1}-$bundle
if restricted over the open subset

$\overline{W}^{o}\langle x_{+}, x_{-}\rangle=\overline{W}\langle x_{+}, x_{-}\rangle\backslash \overline{D}\langle x_{+}, x_{-}\rangle$ .

Let $ R\subset\overline{V}^{o}\langle x_{+}, x_{-}\rangle$ be the ramification locus of $\overline{pr}_{X}|_{\overline{V}\langle x_{+},x_{-}\rangle}\circ$ .

The following statement follows from standard deformation theory:

Proposition 3.6. In the notation above, $R$ is the union of $\sigma_{+}$ ,

$\sigma_{-}$ and $\overline{pr}\frac{-1}{W}(B)$ , where $ B\subset\overline{W}^{o}\langle x_{+}, x_{-}\rangle$ is the close $d$ subset

$\{s\in\overline{W}^{O}\langle x_{+}, x_{-}\rangle;\overline{pr}_{x^{-}}^{*o_{X}}|_{\overline{V}_{h}}\not\simeq O(2)^{\oplus n}\}$ .
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Combined with (3.4) and (3.5), this means

Corollary 3.7. The closure of $\overline{pr}_{X}(R)\subset X$ does not contain
$Y_{\pm}=pr_{X}(F\langle x_{\pm}\rangle)$ . In particular, if $[L_{+}\cup L_{-}]$ is a general member

of $ D\langle x_{+}, x_{-}\rangle$ , any closed subset $\Gamma$ of the inverse image $\overline{pr_{x^{1}}}$ $(L_{+})\subset$

$\overline{V}\langle x_{+}, x_{-}\rangle$ is not contained in the closure of $R$ as long as $\Gamma$ surjects
onto $L_{1}$ .

Let $\Gamma\subset\overline{V}\langle x_{+}, x_{-}\rangle$ be an irreducible curve which surjects onto $ L_{+}\subset$

$X$ , where $[L_{+}\cup L_{-}]$ isa general point of $ D\langle x_{+}, x_{-}\rangle$ . There are three
cases:

A. $\Gamma$ is contained in a fibre of $\overline{pr}_{\overline{W}}$ (in this case, $\Gamma$ is simply the
normalisation of the first irreducible component $L_{+}$ of the fibre
$L_{+}\cup L_{-}\subset V\langle x_{+}, x_{-}\rangle)$ .

B. $\overline{pr}_{\overline{W}}(\Gamma)$ is a curve on $\overline{D}\langle x_{+}, x_{-}\rangle$ .

C. $\overline{pr}_{\overline{W}}(\Gamma)$ is a curve not contained in $\overline{D}\langle x_{+}, x_{-}\rangle$ .

Lemma 3.8. In Case $B,$ $\Gamma$ does not intersect $\sigma_{+}$ , $\sigma_{-}$ .

Proof. It is trivial that $\Gamma\geq\sigma_{-}$ because $L_{+}\not\simeq x_{-}$ . The fibre space
$\overline{V}_{D}\langle x_{+}, x_{-}\rangle\rightarrow\overline{D}\langle x_{+}, x_{-}\rangle$ is a union of two irreducible components
$ F^{*}\langle x_{+}\rangle$ and $ F^{*}\langle x_{-}\rangle$ , and $\Gamma$ must be a curve on $ F^{*}\langle x_{+}\rangle$ . $ F^{*}\langle x_{+}\rangle\rightarrow$

$\overline{D}\langle x_{+}, x_{-}\rangle$ is the base change of the fibre space $ F\langle x_{+}\rangle\rightarrow S\langle x_{+}\rangle$ given
by the finite morphism $ D\langle x_{+}, x_{-}\rangle\rightarrow S\langle x_{+}\rangle$ . In particular, $\Gamma\subset F^{*}\langle x_{+}\rangle$

comes from a curve $\Gamma_{0}\subset\overline{F}\langle x_{+}\rangle$ .
$\overline{F}\langle x_{+}\rangle$ is a $\mathbb{P}^{1}$ -bundle over $\overline{S}\langle x_{+}\rangle$ and surjects onto the divisor $Y_{+}$ .

Furthermore $\overline{pr}_{X}(\Gamma_{0})=L_{+}$ passes through a general point of $Y_{+}$ . This
means that the differential homomorphism $\ominus_{\overline{F}\langle x_{+}\rangle}\rightarrow\overline{pr}_{X}^{*}\ominus_{X}$ is of rank

$n-1$ at a general point of $\Gamma_{0}$ .

Put $\triangle=\overline{pr}_{\overline{S}}(\Gamma_{0})\subset\overline{S}\langle x_{+}\rangle$ . Given a finite morphism $\triangle\sim\rightarrow\triangle$ , let
$F$

$\rightarrow\triangle\sim$ denote the induced I[ 1-bundle over $\triangle-$ with the natural finite-to-
one morphisms $h:F$ $\rightarrow\overline{F}\langle x_{+}\rangle$ and generically finite-to-one morphism
$f=\overline{pr}_{X}h:F\rightarrow X$ . $F$ carries the specified section $\overline{\sigma}_{+}=h^{-1}(\sigma_{+})$ . If $\triangle\sim$

is suitably chosen, the inverse image of $\Gamma_{0}$ is a union of sections $\sigma_{i}$ . By
construction,

$\Theta_{F}|_{\sigma_{j}}\subset h^{*}\Theta_{\overline{F}\langle x_{+}}|_{\sigma_{j}}\subset f^{*}\ominus_{X}|_{\sigma_{j}}$ ,

inducing an injection $ N_{\sigma_{t}/F}\leftarrow\rangle$ $f^{*}N_{L_{+}/X}$ .

Recalling the isomorphism $N_{L_{+}/X}\simeq O(1)^{\oplus n-2}\oplus O$ , we infer that

the self intersection number $\sigma_{i}^{2}$ of the effective divisor $\sigma_{i}\subset \mathcal{F}$ is bounded
from above by $a_{i}$ , where $a_{i}$ is the mapping degree of the surjection
$\sigma_{i}\rightarrow L_{+}$ .
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Let $H$ be an ample divisor on $X$ and set $d=L_{+}H$ . Then, for each

fibre $F_{s}$ , $ s\in\triangle\sim$ , we have three equalities $F_{s}f^{*}H=d$ , while $\tilde{\sigma}_{+}f^{*}H=0$ ,
$\sigma_{i}f^{*}H=aid$ . Since the N\’eron-Severi group of $F$ is generated by $\tilde{\sigma}_{+}$

and the fibre $\mathcal{F}_{s}$ , the first two equalities yield the numerical equivalence
$f^{*}H\approx d(\overline{\sigma}_{+}+e_{\backslash }\mathcal{P}_{s})$ , where $e=-\tilde{\sigma}_{+}^{2}>0$ . Similarly, if we put $\sigma_{i}\approx$

$\overline{\sigma}_{+}+a_{i}^{J}F_{s}$ for a suitable integer $a_{i}’$ , the third equality gives

$a_{i}d=\sigma_{i}f^{*}H=$ $(\overline{\sigma}_{+}+a_{i}’\mathcal{F}_{s})f^{*}H=a_{i}’\mathcal{F}_{s}f^{*}H=a_{i}’d$ ,

so that $a_{i}’=a_{i}$ . Then the inequality $\sigma_{i}^{2}\leq a_{i}$ shown above is rewritten
into

$a_{i}\geq\sigma_{i}^{2}=$ $(\tilde{\sigma}_{+}+a_{i}F_{s})^{2}=-e+2a_{i}$ ,

or, equivalently, $a_{i}\leq e$ , and we get the inequality $\sigma_{i}\tilde{\sigma}_{+}=-e+a_{i}\leq 0$ .

By our assumption $\sigma_{i}\neq\tilde{\sigma}_{+}$ , this means that $\sigma_{i}$ does not meet $\tilde{\sigma}_{+}$ for
every $i$ . In other words, $\Gamma$ is off $\sigma_{+}$ .

Lemma 3.9. In Case $C$ , $\Gamma$ does not intersect $\sigma_{+}$ , $\sigma_{-}$ .

Proof. In this case, $\triangle\wedge=\overline{pr}_{\overline{W}}(\Gamma)$ is not contained in $ B\subset W\langle x_{+}, x_{-}\rangle$ ,

where $R=\overline{pr_{\overline{S}}}^{1}(B)$ is the ramification locus of $\overline{pr}_{X}$ . By taking a suitable

covering $\triangle-\rightarrow\triangle\wedge$ , we get a conic bundle $(=\triangle\sim\times_{\overline{W}\langle x_{+},x_{-}\rangle}\overline{V}\langle x_{+}, x_{-}\rangle\rightarrow$

$\triangle\sim$ , on which the inverse image of $\Gamma$ is a union of sections $\Gamma_{i}$ . Let $\tilde{C}\rightarrow C$

be the minimal resolution, $\tilde{\Gamma}_{i}$ and $\tilde{\sigma}_{\pm}$ being the strict transforms of $\Gamma_{i}$

and $\sigma_{\pm}$ . (The $\tilde{\sigma}_{\pm}$ are also the total transforms because $\sigma_{\pm}$ lies on the
nonsingular locus of C.) In this situation, what we have to show is that

the divisor $\tilde{\Gamma}_{i}$ on $\tilde{C}$ is away from the specified sections $\overline{\sigma}\pm\cdot$ By (2.4.5)

and (2.4.6), this will follow from the inequality $\tilde{\Gamma}_{i}^{2}\leq 0$ .

In order to establish this inequality, we start with the following
observation.

Let $ G\supset\Gamma$ be an irreducible component of the closed subset $\overline{pr}_{X}^{-1}(Y_{+})\subset$

$\overline{V}\langle x_{+}, x_{-}\rangle$ . $G$ is a divisor on $\overline{V}\langle x_{+}, x_{-}\rangle$ which surjects onto $\overline{W}\langle x_{+}, x_{-}\rangle$ .

In particular, $G$ is a multi-section of the (generically) conic fibration
$\overline{V}\langle x_{+}, x_{-}\rangle\rightarrow\overline{W}\langle x_{+}, x_{1}\rangle$ . At a general closed point of $\Gamma$ (which is also
a general closed point of $G$ ), we have local isomorphisms

$\ominus_{\overline{V}\langle x_{+},x-\rangle}\simeq\overline{pr}_{\lambda’}^{*}\ominus_{X}$

$\overline{pr}\frac{*}{W}\ominus_{\overline{W}\langle x_{+},x_{-}\rangle}\simeq\ominus_{G}\simeq\overline{pr}_{\lambda’}^{*}\ominus_{Y_{+}}$ ,

implying that the composite of natural homomorphisms

$\ominus_{\overline{V}\langle x_{+},x_{-}\rangle/\overline{W}\langle x_{+},x_{-}\rangle}|_{\Gamma}\rightarrow\Theta_{\overline{V}\langle x_{+},x_{-}\rangle}|r\rightarrow(\overline{pr}_{X}|_{\Gamma})^{*}(\ominus_{X}|_{L_{+}})$

$\rightarrow$ $(\overline{pr}_{X}|_{\Gamma})^{*}$ ( $(\ominus_{X}|_{L}+/(\Omega_{Y_{+}}^{1}|_{L_{+}})^{*})/$ (torsion) $\simeq O_{\Gamma}$
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is non-zero (and hence injective) at a general point of $\Gamma$ . (Here we used
the fact that $\ominus_{X}|_{L}+\simeq O(2)\oplus O(1)^{n-2}\oplus O$ , and its ample part of rank
$n-1$ exactly corresponds to $\Theta_{Y_{+}}$ at a general point of $L_{+}.$ )

Going back to the conic bundle $\tilde{C}\rightarrow\triangle\sim$ with the section $\overline{\Gamma}_{i}$ , this
observation tells us that, at a general point of $\Gamma_{i}$ , the natural ho-
momorphism $N_{\overline{\Gamma}_{j},C}\simeq\Theta_{\overline{C}/\triangle}-|_{\Gamma_{j}}\rightarrow(_{\Gamma}$-j is non-zero. This shows that

$degN_{\overline{\Gamma}_{i}/\overline{C}}=\tilde{\Gamma}_{i}^{2}\leq 0$ .

Lemma 3.10. No member $C$ of $ W\langle x_{+}, x_{-}\rangle$ has a cuspidal singu-
larity at $x_{+}$ or $x_{-}$ .

Proof. Let $ W\langle cusp\rangle$ $\subset W$ denote the closure of the locus of ir-

reducible cuspidal curves. Let $ V\langle cusp\rangle$ be the associated family and
$\Sigma\subset V\langle cusp\rangle$ the locus of the cuspidal points of the fibres. What we are
going to show is that the natural projection $\Sigma\times_{W\langle cusp\rangle}V$ cusp $\rightarrow X\times X$

is not surjective, meaning that there is no member of $W$ which has a
cusp at $x_{+}$ and passes through $x_{-}$ when $(x_{+}, x_{-})$ are general.

For simplicity of the notation, we put

$ Z=V\langle$cusp $X_{W\langle cusp\rangle}V\langle$cusp

$\Sigma_{1}=\Sigma\chi_{W\langle cusp\rangle}V\langle cusp\rangle$

$\Sigma_{2}=V\langle$cusp $\rangle$

$X_{W\langle}cusp\rangle$

$\Sigma$ .

Suppose that $\Sigma_{1}$ and $\Sigma_{2}$ dominate $X\times X$ via the natural projection

$Z\rightarrow X\times X$ . Let $Z\rightarrow Ygh\rightarrow X\times X$ be the Stein factorisation: namely, $h$

is finite and the fibre $Z_{y}$ of $g$ over a general point $y\in Y$ is an irreducible
variety. Our hypothesis amounts to the condition $dim$ $Z_{y}\cap\Sigma_{i}=a\geq 0$ ,

so that $dimZ_{y}=a+1\geq 1$ . Hence we can find an irreducible curve
$f$ ; $ T\rightarrow Z_{y}\subset Z=V\langle cusp\rangle\times_{W\langle cusp\rangle}V\langle cusp\rangle$ such that

(4) $f(T)$ is not contained in $\Sigma_{1}\cup\Sigma_{2}$ but connects these two divisors.

Let $T’$ be the image of $f(T)$ in $ W\langle$cusp $\rangle$ . Every member $C$ of $T’$ con-
tains $\{x_{+}, x_{-}\}$ , where $(x_{+}, x_{-})$ is the image of $y\in Y$ in $X\times X$ . The
condition (4) above says that a general member of $T’$ has no cusp at
$x_{\pm}$ but some member does; thus $ T’\subset W\langle$cusp $\rangle$ defines a nontrivial one-
parameter family of cuspidal curves passing through $x_{+}$ , Ic- $\cdot$ However,
(2.6) asserts that the cupidal locus cannot pass through one of the $x_{\pm}$ ,

which contradicts our construction.

Corollary 3.11. Let $\mathfrak{M}_{x}+\subset O_{X}$ be the maximal ideal which de-

fines $x_{+}$ . Then

(1) $\mathfrak{M}_{x_{\dagger}}O_{\overline{V}\langle x+,x_{-}\rangle}=\tilde{J}(-\sigma_{+})\rangle$ where $\tilde{J}\subset O_{\overline{V}\langle x+,x_{-}\rangle}$ is an ideal
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sheaf of a closed subscheme away from $\sigma_{+}$ .

(2) If $C$ is a general member of $ W\langle x_{+}, x_{-}\rangle$ , then

$\overline{pr_{x^{1}}}C=\sigma_{+}+\sigma_{-}+\overline{V}_{[C]}+B+E$

where $B$ is a union of finitely many curves away from $\sigma_{+}\cup\sigma_{-}$

and $E$ isafinite se $t\subset\overline{V}\langle x_{+}, x_{-}\rangle\backslash (\sigma_{+}\cup\sigma_{-})$ such that $\overline{pr}_{X}(E)\subset$

$\{x_{+}, x_{-}\}$ .

Proof. (1) The statement is a direct consequence of (3.10). In
particular, on an open neighbourhood of the Cartier divisor $\sigma_{+}$ , the

projection $\overline{pr}_{X}$ : $\overline{V}\langle x_{+}, x_{-}\rangle\rightarrow X$ lifts to a morphism $\tilde{p}r_{X}$ to $B1_{x_{+}}(X)$ .

The scheme theoretic inverse image of $C$ in Bl $x_{+}X$ is $I_{\overline{C}}(-E_{+})$ , where
$\tilde{C}$ the strict transform and $E_{+}$ the exceptional divisor.

(2) Since $\overline{pr}_{d}x$ is finite over $X\backslash $ $\{x_{+}, x_{-}\}$ and $C\subset X$ is a locally
complete intersection of codimension $n-1$ , it is clear that there is a
decomposition of the above type and we have only to show that $B$ is away
from $\sigma_{+}\cup\sigma_{-}$ . If it meets $\sigma_{+}\cup\sigma_{-}$ for general $C$ , then the same should
hold for any specialisation of $C$ , which is not the case for $C=L_{+}+L_{-}$

by (3.8) and (3.9).

Corollary 3.12. Take a small open analytic neighbourhood $U^{*}$ of
$x_{+}$ in X. Then $\overline{pr}_{X}^{-1}(U^{*})\subset\overline{V}\langle x_{+}, x_{-}\rangle$ is a disjoint union of a small
open neighbourhood $U$ of $\sigma_{+}$ and an extra open subset $U’$ .

The $X$ -projection $\overline{pr}_{X}$ induces proper bimeromorphic morphisms be-
tween a small analytic neighbourhood $U\rightarrow U^{*}$ finite over $U^{*}\backslash \{x_{+}\}$ and
$U\rightarrow\overline{U}^{*}$ , where $\tilde{U}^{*}\subset B1_{x_{+}}(X)$ is the inverse image of $U^{*}$ . In particular,

the ramification locus of $\overline{pr}_{X}$ has codimension $\geq 2$ on $\overline{V}\langle x_{1}, x_{2}\rangle\backslash $ $(\sigma_{+}\cup$

$\sigma_{-})$ .

Proof. Let $C$ be a general member of $ W\langle x_{+}, x_{-}\rangle$ and $x\in C$ a
closed point sufficiently close to I $+$ but not equal to $ x\pm\cdot$ Then (3.11)

asserts that $\overline{pr_{x^{1}}}(x)\cap U=\{([C], x)\}$ , a single point. Hence $\overline{pr}_{X}$ is a
bimeromorphism on $U$ , finite over $U^{*}\backslash \sigma_{+}$ .

If ramification locus of $\overline{pr}_{X}$ contains an $(n-1)-$dimensional irre-
ducible component $R_{0}\neq\sigma_{\pm}$ , it must be a pull-back $\overline{pr}_{\overline{W}}^{*}B_{0}$ of a divisor

$B_{0}$ on $\overline{W}_{\langle}x_{+}$ , $ x_{-}\rangle$ . However, this contradicts the fact that $\overline{pr}_{X}$ is un-
ramified in codimension one on $U\backslash \sigma_{+}$ .

Corollary 3.13. (1) $\overline{pr}_{\lambda’}$ is birational.

(2) $\overline{V}\langle x_{+}, x_{-}\rangle\backslash (\sigma_{+}\cup\sigma_{-})\simeq X\backslash \{x_{+}, x_{-}\}$ .

(3) $\overline{W}\langle x_{+}, x_{-}\rangle$ is nonsingular.
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(4) There are isomorphisms

$\overline{V}\langle x_{+}, x_{-}\rangle\simeq V\langle x_{+}, x_{-}\rangle\simeq B1_{\{xx_{-}\}}+,(X)$

$\overline{W}\langle x_{+}, x_{-}\rangle\simeq W\langle x_{+}, x_{-}\rangle\simeq E_{\pm}\simeq \mathbb{P}^{n-1}$ .

Proof. Because the Fano manifold $X$ is smooth and simply con-
nected, a generically finite morphism $f:Y\rightarrow X$ with branch locus of
dimension $\leq n-2$ is necessarily birational, whence (1) follows. By
Grothendieck’s version of Zariski’s Main Theorem, the inverse image of
$x_{+}$ in $\overline{V}\langle x_{+}, x_{-}\rangle$ is connected, so that $\mathfrak{M}_{x}O_{\overline{V}\langle x,x_{-}\rangle}\pm+=O(-\sigma\pm)$ . This

shows that $\overline{F}\langle x_{+}, x_{-}\rangle\rightarrow X\backslash $ $\{x_{+}, x_{-}\}$ is a well defined, proper, finite,

birational morphism, and hence an isomorphism.

Since $\overline{pr}_{\overline{W}}|_{\overline{V}\langle x,x_{-}\rangle\backslash (\sigma_{\dagger}\cup\sigma_{-})}+$ has reduced fibres and hence admits

an analytic local section over any closed point $ w\in\overline{W}\langle x_{+}, x_{-}\rangle$ , the
smoothness of the total space implies that of the base space, $i.e.$ , the
assertion (3).

The fibre space $ V\langle x_{+}, x_{-}\rangle$ has fibres smooth near the section $\sigma\pm$ , and

hence the smoothness of the base $\overline{W}\langle x_{+}, x_{-}\rangle$ is inherited by the total

space near $\sigma\pm$ , thereby showing the global smoothness of $\overline{F}\langle x_{+}, x_{-}\rangle$ .
Once the smoothness is established, the purity of ramification loci tells us
that the naturally induced morphism $\overline{pr}_{\overline{X}}$ : $\overline{V}\langle x_{+}, x_{-}\rangle\rightarrow B1_{\{x_{+},x_{-}\}}(X)$ ,

which has ramification of codimension $\geq 2$ , is an isomorphism, thereby
inducing $\sigma\pm\simeq E_{\pm}$ .

We now arrive at the conclusion:

Corollary 3.14. The pullback $pr_{W}^{*}L$ of the hyperplane divisor $L$

on $ W\langle x_{+}, x_{-}\rangle\simeq$ I $n-1$ is linearly equivalent to $pr_{X}^{*}H_{0}-\sigma_{+}-\sigma_{-}$ , where
$H_{0}$ is an ample divisor on $X$ with $H_{0}^{n}=2$ . The linear system $|H_{0}|$ is

free from base $pointS_{\rangle}$ $d$efining an isomorphism $ X\rightarrow Q_{n}\subset$ I$t^{n+1}$ .

Proof. Since $pr_{W}^{*}L$ cuts out a hyperplane from the section $\sigma\pm=$

$\overline{p}r_{X}^{*}E_{\pm}$ , it is linearly equivalent to $pr_{\lambda’}^{*}H_{0}-\sigma_{+}-\sigma_{-}$ . It follows that
$H_{0}^{n}=L^{n}+2=2$ . Noting that $|L|$ is free from base point, we see
that $|H_{0}|$ has no base point outside $\{x_{+}, x_{-}\}$ . On the other hand, since
Pic $(X)\simeq \mathbb{Z}$ is discrete, the linear system $|H_{0}|$ does not depend on the
choice of the general base points $x\pm\in X$ , meaning that it is free from
base points and has dimension $dim|L|+2=n+2$ .

The semiample divisor $H_{0}$ is ample or, equivalently, $(\Gamma, H_{0})>0$

for every irreducible curve $\Gamma\subset X$ . Indeed, for every irreducible curve
$\Gamma\not\subset\sigma_{+}\cup\sigma_{-}$ , we have $(\Gamma,\tilde{p}r_{\lambda’}^{*}H_{0})\geq(\Gamma, pr_{W}^{*}L)$ , the equality holding
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if and only if $\Gamma$ is away from $\sigma\cup\sigma_{2}$ . By construction $(\Gamma, pr_{W}^{*}L)\geq 0$ ,

the equality holding if and only if $\Gamma$ is an irreducible component of the
fibre of $pr_{W}$ . Hence $(\Gamma,\tilde{p}r_{X}^{*}H_{0})\geq$ $(\Gamma, pr_{W}^{*}L)\geq 0$ and at least one of the
inequalities is strict.

Thus $|H_{0}|$ defines a finite morphims $X\rightarrow \mathbb{P}^{n+1}$ onto a non-degenerate
hypersurface of degree $\leq 2$ , which is necessarily an isomorphism onto a
hyperquadric.

\S 4. Proof of main theorems and concluding remarks

Let us complete the proof of (0.1) and (0.2).

In Theorem 0.1 the implications $(1)\Rightarrow(2)$ and $(1)\Rightarrow(3)$ are trivial,
and it suffices to show that $\rho(X)=1$ when the global length $l(X)=n$ .

Lemma 4.1. Let $X$ be a Fano $n$ -fold of dimension $n\geq 3$ . If
$l(X)=n_{\rangle}$ then the Picard number $\rho(X)$ is one.

Proof. Suppose $\rho(X)\geq 2$ . Fix an extremal ray, and we have a
non-trivial extremal contraction $\pi:X\rightarrow Y$ (see, for instance, [7, 3]).
The fibre of a closed point $y\in Y$ is uniruled.

When $\pi$ is birational, take the exceptional locus $E$ of $\pi$ . Let $C\subset E$

be a rational curve which is contracted to a point in $Y$ and suppose that
$(C, -K_{X})$ attains the minimum among such curves. Then any deforma-
tion of the normalisation morphism $f:\mathbb{P}^{1}\rightarrow C$ belongs to $Hom(\mathbb{P}^{1}, E)$ ,

and thanks to [2, Theorem 2.8] we have

$(C,-K_{X})+n\leq dim_{[f]}Hom(\mathbb{P}^{1},X)=dim_{[f]}Hom(\mathbb{P}^{1},E)\leq 2dimE+1\leq 2n-1$ ,

contradicting the inequality $(C, -K_{X})\geq n$ .

In case $X$ is a fibre space over $Y$ , take a rational curve $C$ contained
in a smooth fibre $X_{y}$ , and assume that $(C, -K_{X})$ attains the minimum
among such. Then we have $dimX_{y}+1\geq(C, -K_{X_{y}})=(C, -K_{X})\geq n$ ,

so that $dimX_{y}=n-1$ and $X_{y}\simeq \mathbb{P}^{n-1}$ . Choose another extremal ray
inducing a sectond morphism $\varphi:X\rightarrow Z$ . By what we have seen before,
$\varphi$ defines another fibre space structure on $X$ .

A fibre $X_{y}$ of $\pi$ is $\mathbb{P}^{n-1}\subset X$ which is non-trivially mapped to $Z$ , a
projective variety. The pullback of an ample divisor $H$ on $Z$ is non-trivial
on $X_{y}\simeq \mathbb{P}^{n-1}$ and hence ample, so that $H^{n-1}$ cannot be numerically
trivial on $Z$ . In particular $dimZ\geq n-1$ , and a general fibre $X_{z}$ of $\varphi$

must be $\mathbb{P}^{1}$ with $(X_{z}, -K_{X})=2<n$ , another contradiction.

Remark4.2. In Theorem 0.1, we cannot drop the condition $\rho(X)=$

1 in (3). For instance, let A be a smooth hypersurface of degree d $\leq n$
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of the linear subspace I[ $ n-1=H=\{x_{n}=0\}\subset$ I $n$ and let $\mu:X\rightarrow$ I $n$

be the blowup along A. $X$ is a smooth Fano manifold with $\rho(X)=2$ ,

$-K_{X}=(n+1)\mu^{*}H-E$ , where $E$ stands for the exceptional divisor. If
$x_{0}\in X\backslash H$ , then the local length $l(X, x_{0})$ is $n$ , which is attained by the
strict transforms of the lines connecting $x_{0}$ and $A.5$ In this case, any
curve $C$ with $(C, -K_{X})=-2n$ , $C\ni x_{+}$ , $x_{-}$ is a disjoint union of two
components provided $x_{\pm}$ are general.

In Theorem 0.2, the following implication relations are trivial:

– $(1)\Rightarrow(4)\Rightarrow(5)\Rightarrow(2)$ ,
- $(1)\Rightarrow(6)$ ,
– $(1)\Rightarrow(7)$ ,

while the equivalence between $(1)(2)(3)$ were established by (4.1). Thus
it suffices to check the implications $(6)\Rightarrow(2)$ and $(7)\Rightarrow(3)$ to complete

the proof of (0.2).
The implication $(6)\Rightarrow(3)$ follows from

Lemma 4.3. Let $X$ be a smooth Fano $n$ -fold, $n\geq 3$ . $If\wedge^{2}\ominus_{X}$ is
ample, then $l(X)\geq n$ .

Proof. Let $C$ be an arbitrary rational curve on $X$ and let $iJ$ :I$[$
$ 1\rightarrow$

$C\subset X$ denote a birational map induced by the normalisation of $C$ . Put
$\iota/^{*}O-_{X}\simeq\oplus_{i=1}^{n}O(d_{i})$ , $d_{1}\leq d_{2}\leq\cdots\leq d_{2}$ . Then the condition on $\wedge^{2}\ominus_{X}$

implies that $2d_{2}\geq d_{2}+d_{1}\geq 1$ . If $d_{1}\geq 1$ , then $(C, -K_{X})=\sum_{i}d_{i}\geq n$ .

If $d_{1}=0$ , then $d_{1}+0\geq 1$ , while $d_{n}\geq 2$ thanks to the inclusion $\ominus_{\mathbb{P}^{1}}\simeq$

$O(2)\subset\iota/^{*}\ominus_{X}$ . Suppose that $d_{1}<0$ . Then $d_{2}\geq-d_{1}+1$ so that

$(C, -K_{X})=\sum_{i=1}^{n}d_{i}=d_{1}+\sum_{i=2}^{n}d_{i}\geq d_{1}+(n-1)(-d_{1}+1)=n-1+(n-2)(-d_{1})$ .

Since $n\geq 3$ , we have $(C, -K_{X})\geq n$ whenever $d_{1}<0$ .

Finally we have

Lemma 4.4. Assume that $n\geq 3$ . Let $f:Q_{m}\rightarrow X$ be a surjective
morphism from an smooth hyperquadric in $\mathbb{P}^{m+1}$ to a smooth projective
vaiety of dimension $n$ . Then $X$ is a Fano $n$ -fold with Picard number one
and the local length satisfies $l(X, x_{0})\geq n$ if $x_{0}$ is away from the branch
locus of $f$ .

Proof. Because $\rho(Q_{m})=1$ , $m\geq n\geq 3$ , the pullback $f^{*}H$ of the
hyperplane bundle $H$ on $X$ is ample, implying $m=n$ and the equality

$5The$ global length $l(X)$ is of course 1 attained by the fibres of the $\mathbb{P}^{1}-$bundle
$E$ $\rightarrow A$ .
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$\rho(X)=1$ as well. Because $O(-f^{*}K_{X})$ contains the ample line bundle
$O(-f^{*}K_{Q_{r\}}})$ , $X$ with Picard number one must be Fano.

Let $C\subset X$ be a rational curve passing through $x_{0}$ and $\iota/:\mathbb{P}^{1}\rightarrow$

$C\subset X$ the normalisation morphism. Then $\nu^{*}\ominus_{X}\simeq\sum_{i}O(d_{i})$ , $ d_{1}\leq$

$d_{2}\leq\cdots\leq d_{n}$ , $d_{n}\geq 2$ . Hence $(C, K_{X})\geq n$ follows if we show that
$d_{1}\geq 0$ , $d_{2}\geq 1$ .

Let $\Gamma\subset Q_{n}$ be an irreducible curve which surjects onto $C$ , with

normalisation $lJ^{J}$ : $\tilde{\Gamma}\rightarrow\Gamma\subset Q_{n}$ . Consider the commutative diagram

$\overline{\Gamma}$

$\nu’$

$\Gamma\rightarrow Q_{n}$

$\downarrow\overline{f}_{\Gamma}$ $\downarrow f_{\Gamma}$ $\downarrow f$

$\mathbb{P}^{1}\vec{\iota/}C\rightarrow X$ .

Noticing that the ramification locus of $f$ does not contain $\Gamma$ (which meets
$f^{-1}(x_{0}))$ , we have a natural inclusion

$\iota/^{\prime*}\ominus_{Q_{\gamma\}}}\subset\iota/^{\prime*}f^{*}\ominus_{X}=\tilde{f}_{\Gamma}^{*}(\oplus^{n}O(d_{i}))i=1$ .

Then the semipositivity of $\ominus_{Q_{\gamma\}}}$ gives $d_{1}\geq 0$ , while the ampleness of
$\wedge^{2}\ominus_{Q_{r\}}}$ yields $2d_{2}\geq d_{1}+d_{2}>0$ .

Remark 4.5. In the proof of Theorem 0.1, we used the condition
that $X$ is nonsingular in order to establish the dimension estimates for
$ S\langle x\pm\rangle$ , $ W\langle x_{+}, x_{-}\rangle$ and the birationality (generic one-to-one property)

of $pr_{X}$ . If we relax the smoothness condition into normality, we obtain
the following

THEOREM. Let $X$ be a normal, projective, $\mathbb{Q}$ -factorial, $\mathbb{Q}-$Fano n-

fold with Picard number one $d$efined over the complex numbers. Let $x_{0}$

be a sufficiently general closed point of $X$ and assume that any rational
curve passing through $x_{0}d$eforms in $n-2$ $ind$ependent parameters. Then
$X$ is a finite quotient of a normal hyperquadric $\subset \mathbb{P}^{n+1}$ (possibly with
irreducible singular locus of dimension $\leq n-2$ ) by a finite group action
without divisorial fixed point set. In particular, $X$ is isomorphic to $a$

normal hyperpquad$ric$ if an $d$ only if the open subset $X\backslash $ Sing(X) is simply
connected.

The proof of Theorem 0.1 carries over into this situation without
essential change. The variety $\overline{V}\langle x_{+}, x_{-}\rangle$ is now a two-point blowup of

a normal hyperquadric, while $pr_{X}$ is unramified over $ X\backslash (\{x_{+}, x_{-}\}\cup$

Sing(X) $)$ .
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Remark 4.6. The author does not know if Theorem 0.1 stays true
in positive characteristics. Almost all of our arguments work well re-
gardless of the characteristic. The exceptions are those related to Sard’s
theorem, which, unfortunately, permeate throughout the paper. The
most serious question to be checked is the separability of the projection
$pr_{X}$ : $V\langle x_{+}, x_{-}\rangle\rightarrow X$ .
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Meromorphic mappings and deficiencies

Seiki Mori

Abstract.

In this note, we shall discuss elimination theorems of defects of

hypersurfaces or rational moving targets for a meromorphic mapping
or a holomorphic curve into $P^{n}(C)$ by its small deformation.

\S 1. Introduction.

Value distribution theory is to study how intersects the image of a
mapping to divisors in a target space. Liouville theorem asserts that the
image of a meromorphic function is dense in the projective space $P^{1}(C)$ ,

and also Picard theorem asserts that the image covers all points on
$P^{1}(C)$ except for at most two points. Nevanlinna theory is a quantitative
refinement of Picard theorem. Nevanlinna deficiency $\delta_{f}(a)$ express that
$\delta_{f}(a)=1$ if the image $f(C)$ omits $a$-point and $\delta_{f}(a)>0$ if $f$ covers a
point $a$ relatively few times. For a meromorphic mapping of $C^{m}$ into
$P^{n}(C)$ , Nevanlinna’s defect relations or Crofton’s formulae assert that
Nevanlinna defects or Valiron defects of a mapping are very few.

We shall now discuss on defects for a family of mappings, that is,

elimination theorems of defects of hyperplanes, hypersurfaces or rational
moving targets for a meromorphic mapping or a holomorphic curve into
$P^{n}(C)$ by its small deformation. Here a samll deformation $\overline{f}$ of $f$ means

that the difference of order functions of $\tilde{f}$ and $f$ is relatively small.

\S 2. Preliminaries.

Let $z=(z_{1}, \ldots, z_{m})$ be the natural coordinate system in $C^{m}$ . Set

$\langle z, \xi\rangle=\sum_{j=1}^{m}z_{j}\xi_{j}$ for $\xi=$ $(\xi_{1, }\ldots, \xi_{m})$ , $||z||^{2}=\langle z, \overline{z}\rangle$ , $B(r)=\{z|||z||<r\}$ ,
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$\partial B(r)=\{z|||z||=r\}$ , $\psi=dd^{c}\log||z||^{2}$ a$nd\sigma=d^{c}\log||z||^{2}\wedge\psi^{m-1}$ ,

where $d^{c}=\frac{\sqrt{-1}}{4\pi}(\overline{\partial}-\partial)$ and $\psi^{k}=\psi\wedge\cdots\wedge\psi$ ( $k$-times).

Let $f$ be a nonconstant meromorphic mapping $f$ of $C^{m}$ into $P^{n}(C)$

and $\mathcal{L}=[H^{d}]$ be the line bundle over $P^{n}(C)$ which is determined by
$d$-th tensor power of the hyperplane bundle [H]. A hypersurface $D$ of
degree $d$ in $P^{n}(C)$ is given by the divisor of a holomorphic section $ s\in$

$H^{0}(P^{n}(C), \mathcal{O}(\mathcal{L}))$ which is determined by a homogeneous polynomial
$P(w)$ of degree $d$ . A metric $a=$ $\{a_{\alpha}\}$ on the line bundle $\mathcal{L}$ is given by
a $\alpha=$ $(\sum_{j=0}^{n}|w_{j}/w_{\alpha}|^{2})^{d}$ in a neighborhood $U_{\alpha}=\{w\in P^{n}(C)|w_{\alpha}\neq 0\}$ .

The Nevanlinna’s order function $T_{f}(r, \mathcal{L})$ of $f$ for the line bundle $\mathcal{L}$

is given by:

$T_{f}(r, \mathcal{L}):=\int_{r_{()}}^{r}\frac{dt}{t}\int_{B(t)}f^{*}\omega\Lambda\psi^{m-1}$ ,

where $\omega=\{\omega_{\alpha}\}=dd^{c}\log(\sum_{j=0}^{n}|w_{j}/w_{\alpha}|^{2})^{d}$ in $U_{\alpha}$ . We say that $f$ is

transcendental if $ r\rightarrow\lim_{+\infty}\frac{T_{f}(r,\mathcal{L})}{1ogr}=+\infty$ . Th $e$ norm of a section $s$ is

given by

$||s||^{2}.=\frac{|s_{\alpha}|^{2}}{a_{\alpha}}=\frac{|P(w)|^{2}}{(\sum_{j=0}^{n}|w_{j}|^{2})^{d}}$ .

The proximity function $m_{f}(r, D)$ of $D$ is defined by

$ m_{f}(r, D):=\int_{\partial B}\log\frac{1}{||s_{f}||}\sigma=\int_{\partial B}\log\frac{||f||^{d}}{|P(f)|}\sigma$ .

The Nevanlinna deficiency $\delta_{f}(D)$ and the Valiron deficiency $\triangle_{f}(D)$ of
$D$ for $f$ is defined by

$\delta_{f}(D):=\lim_{r\rightarrow}\inf_{\infty}\frac{m_{f}(r,D)}{T_{f}(r,\mathcal{L})}$ an $d\triangle_{f}(D):=\lim_{r\rightarrow}\sup_{\infty}\frac{m_{f}(r,D)}{T_{f}(r,\mathcal{L})}$ .

Using Stok’s theorem, the Nevanlinna’s order function $T_{f}(r):=T_{f}(r, [H])$

of $f$ for the hyperplane bundle [H] is written as:

$T_{f}(r)=\int_{\partial B(r)}\log(\sum_{j=0}^{n}|f_{j}|^{2})\sigma 1/2+O(1)=\int_{\partial B(r)}\log\sum_{j=0}^{n}|f_{j}|\sigma+O(1)$ .

Let $f$ be a meromorphic mapping of $C^{m}$ into $P^{n}(C)$ , and $\phi$ be a
meromorphic mapping of $C^{m}$ into the dual projective space $P^{n}(C)^{*}$

which is called a moving target for $f$ . Then the proximity function
$m_{f}(r, \phi)$ of a moving target ($\phi$ into $P^{n}(C)^{*}$ is given by:

$ m_{f}(r, \phi):=\int_{\partial B}\log\frac{||f||||\phi||}{|\langle f,\phi\rangle|}\sigma$ .
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The Nevanlinna deficiency $\delta_{f}(\phi)$ and the Valiron deficiency $\triangle_{f}(\phi)$ of a
moving target $\phi$ for $f$ are defined similarly. (See [5])

Let $f$ be a meromorphic mapping of $C^{m}$ into $P^{n}(C)$ . Then $f$ has
a reduced representation $(f_{0} : \ldots : f_{n})$ , and we write $f=$ $(f_{0}, \ldots, f_{n})$

the same letter as the mapping $f$ . Denote $D^{\alpha}f=(D^{\alpha}f_{0}, \ldots, D^{\alpha}f_{n})$ for
a multi-index $\alpha$ , where $D^{\alpha}f_{j}=\partial^{|\alpha|}f_{j}/\partial z_{1}^{\alpha_{1}}\cdots\partial z_{m}^{\alpha_{rn}}$ , $\alpha=(\alpha_{1}, \ldots, \alpha_{m})$

and $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}$ .

Fujimoto [2] defined the generalized Wronskian of $f$ by

$W_{\alpha^{()},\ldots,\alpha^{n}}$
$(f)=\det(D^{\alpha^{k}}f _{:} 0\leq k\leq n)$ ,

for $n+1$ multi-indices $\alpha^{k}=$ $(\alpha_{1}^{k}, \ldots, \alpha_{m}^{k})$ , $(0\leq k\leq n)$ .

\S 2-2. Some Results
Molzon-Shiffman-Sibony [6] defined the projective logarithmic ca-

pacity $C(E)$ of a set $E$ on $P^{n}(C)$ , and they gave a criterion of positivity
of projective logarithmic capacity for a subset of $P^{n}(C)$

Proposition 1 ([3]). Let $f$ be a nonconstant meromorphic map-
ping of $C^{m}$ into $P^{n}(C)$ . Then, for $H\in P^{n}(C)^{*}$ ,

$\lim$
$\underline{m_{f}(r,H)}=0$

,
$ r\rightarrow+\infty$ $T_{f}(r)$

outsid $e$ a set $E\subset P^{n}(C)^{*}$ of projective logarithmic capacity zero.

Proposition 2 ([3]).

$A:=\{(1, a_{1}, \ldots, a_{n}, a_{1}^{2}, a_{1}a_{2}, \ldots, a_{1}^{i_{1}}\cdots a_{n}^{i_{r}}’’ \ldots,\prod_{k=1}^{n}a_{k}^{d})|a_{j}\in C\}$

is of positive projective logarithmic capacity.

\S 3. Elimination of defects of meromorphic mappings.

For a meromorphic mapping $f$ of $C^{m}$ into $P^{n}(C)$ , we can eliminate
all defects by a small deformation of $f$ .

Theorem 1. Let $f$ : $C^{m}\rightarrow P^{n}(C)$ be a given transcendental
meromorphic mapping, and $d$ is a positive integer. Then there exists $a$

regula $r$ matrix $L=(l_{ij})_{0\leq i,j\leq n}$ of the form 1 $i,g$
$=c_{ij}g_{j}+d_{ij}$ , $(c_{ij},$ $ d_{ij}\in$

$C$ : $o\leq i,j\leq n$ ) such that $\det L\neq 0$ and $f\sim=L$ . $f$ : $C^{m}\rightarrow P^{n}(C)$

is a meromorphic mapping without Nevanlinna $d$efects of hypersurfaces
of degree at most $d$, and satisfies $|T_{f}(r)-T_{\overline{f}}(r)|=O(\log r)(r\rightarrow\infty)$ ,

where $g_{j}$ $(j=1, \ldots, n)$ are some monomials on $C^{m}$ .
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Theorem 2. Let $f$ : $C\rightarrow P^{n}(C)$ be a given transcendental holo-
morphic curve. Then there exists a regular matrix $L=(l_{ij})_{0\leq i,j\leq n}$ of the
form $l_{i,j}=c_{ij}g_{j}+d_{ij}$ , $(c_{ij}, d_{ij}\in C ; 0 \leq i, j\leq n)$ such that $\det$ $L\neq 0$

an $d\tilde{f}=L\cdot f$ : $C\rightarrow P^{n}(C)$ is a holomorphic curve without Nevan-
linna defects of rational moving targets and satisfies $|T_{f}(r)-T_{\overline{f}}(r)|=$

$o(T_{f}(r))(r\rightarrow\infty)$ , where $g_{j}$ $(j=1, \ldots, n)$ are some transcendental entire

functions on $C$ satisfying $T_{g_{j}}(r)=o(T_{g_{j+1}}(r))$ , $(j=1, \ldots, n-1)$ and
$T_{g,\prime}(r)=o(T_{f}(r))(r\rightarrow\infty)$ which are constructed by using Edrei-Fuchs ’

theorem [1].

Note that we cannot replace all transcendental entire functions $g_{j}$

by rational functions.

Remark 1. In Theorem 1 and 2 mappings $f$ may be linearly dege-
narate or of infinite order, and also if $f$ is of finite order we can replace
” Nevanlinna deficiency” by ” Valiron deficiency’) in the conclusion.

Remark 2. I first proved Theorem 1 for a meromorphic mapping
$f$ : $C^{m}\rightarrow P^{n}(C)$ and hyperplanes [3], and also for a holomorphic curve
$f$ : $C\rightarrow P^{n}(C)$ and hypersurfaces [4]. The case where $m>1$ in

Theorem 1 is not yet published. Theorem 2 is found in [5].

We now give a very short sketch of the proof of Theorem 1 for $m\geq 1$ .

We need following lemmas.

Lemma 1. There are monomials $g_{1}$ , $\ldots$ , $g_{n}$ in $C^{m}$ such that any $n$

$d$erivatives in $\{D^{\alpha}g:= (D^{\alpha}g_{1}, \ldots, D^{\alpha}g_{n})||\alpha|\leq n+1\}$ are linearly inde-
pendent over the field $\mathcal{M}$ of meromorphic functions on $C^{m}\rangle$ where $\alpha=$

$(\alpha_{1}, \ldots, \alpha_{m})\in z_{\geq 0}$ is a multi-index and $D^{\alpha}g_{k}=\partial^{|\alpha|}g_{k}/\partial z_{1}^{\alpha_{1}}\cdots\partial z_{m}^{\alpha_{r\prime}}’$ .

Lemma 2. Let $h=(h_{0} : h_{1} : \cdots : h_{n})$ be a reduced representation

of a meromorphic mapping of $C^{m}$ into $P^{n}(C)$ and $g_{1}$ , $\ldots$ , $g_{n}$ linearly
independent monomials as in Lemma 1. Then there exists $(\tilde{a}_{1}, \ldots,\tilde{a}_{n})$

such that

$f:=(h_{0} : h_{1}+\overline{a}_{1}g_{1}h_{0} : h_{2}+\overline{a}_{2}g_{2}h_{0} : \cdots : h_{n}+\tilde{a}_{n}g_{n}h_{0})$

is a reduced representation of a linearly nondegenerate meromorphic
mapping of $C^{m}$ into $P^{n}(C)$ .

Sketch of the proof of Theorem1:
There is a regular linear change $L_{1}$ of $P^{n}(C)$ such that $ h:=L_{1}\cdot f\equiv$

$(h_{0} : \cdots : h_{n})$ : $C^{m}\rightarrow P^{n}(C)$ is a reduced representation of the
meromorphic mapping $h$ which satisfies

$m_{h}(r, H_{j})=o(T_{h}(r))$ $(r\rightarrow+\infty)$ , $(j=0,1, .., n)$ ,
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where $H_{j}=\{(w_{0} : \cdots : w_{n})|w_{j}=0\}$ .

Consider the Veronese mapping $v_{d}$ given by monomials of degree $d$ .

We first deform a meromorphic mapping $h$ to $\tilde{h}:=$ ( $h_{0}$ : $h_{1}+\overline{a}_{1}g_{1}h_{0}$ :
$h_{2}+\tilde{a}_{2}g_{2}h_{0}$ : $\cdots$ : $h_{n}+\tilde{a}_{n}g_{n}h_{0}$ ) by using $g_{1}$ , $\ldots$ , $g_{n}$ as in Lemma 1 and

$com_{-}pose$ it to the Veronese mapping $v_{d}$ . We write the composed mapping
as $f=v_{d}\circ\tilde{h}=(\tilde{f}_{0}, \ldots,\tilde{f}_{s})$ .

We next choose a sequence of integers $\{m_{j,i}\}$ with large gaps such

that $m_{j,i}^{(s+1)^{2}}<m_{j,i+1}$ for $(j=1,\ldots,n;i=1,\ldots,m)$ . We consider monomials
$g_{j}=g_{j,1}(z_{1})\cdots g_{j,m}(z_{m})$ , where $g_{j,i}(z_{i})=z_{i}^{m}’ j$ $(j=1,\ldots,n; i=1,\ldots,m)$ .

Then we can prove Lemma 1 and Lemma 2. In the proof of Theorem 1,

the key point is an auxiliary $m\underline{a}pping$
$F$ which is constructed by using

the generalized Wronskian of $f_{0}$ , $\ldots$ , $f_{s}$ . By using Proposition 1 and 2,

we can choose complex numbers $\tilde{a}_{1}$ , $\ldots,\tilde{a}_{n}$ in Lemma 2 such that $F$ is
nonconstant and $\triangle_{F}(H_{a})=0$ for some suitable vector a $\in C^{s+1}\backslash \{0\}$

constructed by using $\tilde{a}_{1}$ , $\ldots,\overline{a}_{n}$ . Another part of the proof is essentially
similar to the method of [3]. Detail is omitted here.

\S 4. A space of meromorphic mappings.

We shall introduce a distance on the space $F$ of meromorphic map-
pings into $P^{n}(C)$ . Let $f=$ $(f_{0} : \ldots : f_{n})$ and $g=(go : \ldots : g_{n})$ be reduced
representations of meromorphic mappings of $C^{m}$ into $P^{n}(C)$ . Then we
define the distance $d(f, g):=d_{1}(f, g)+d_{2}(f, g)$ , where

$d_{1}(f, g):=\sum_{n=1}^{\infty}\frac{1}{2^{n+1}}\int_{n}^{n+1}dt\int_{\partial B(t)}\inf_{\theta}||\frac{f(z)}{||f(_{\tilde{4}})||}-e^{i\theta}\frac{g(z)}{||g(_{\wedge}^{\sim})||}||\sigma\leq 1$ ,

which is a distance and it can not distinguish mappings which are ratio-
nal or transcendental, and

$d_{2}(f, g):=\lim_{\alpha\rightarrow}\inf_{+1}\lim_{r\rightarrow}\sup_{\infty}\{|\frac{T_{f}(r)}{(\log r)^{\alpha}+T_{f}(r)}-\frac{T_{g}(r)}{(\log r)^{\alpha}+T_{g}(r)}|\}$ ,

which is a pseudodistance and it distinguishs mappings which are ratio-

nal or transcendental.
In our case, a small deformation $\tilde{f}$ is represented as a form $\tilde{f}=$

$(h_{0}, h_{1}+a_{1}g_{1}h_{0}:, \ldots, : h_{n}+a_{n}g_{n}h_{0})$ . Also, we can choose $(a_{1}, \ldots, a_{n})$ such
that $||$ a $||:=|a_{1}|+\cdots+|a_{n}|$ is as small as possible. So, we can choose
$\hat{f}:=L_{1}^{-1}\cdot\tilde{f}$ which is also a small deformation without Nevanlinna defects

such that $d(\hat{f}, f)$ is as small as possible. Hence we see meromorphic
mappings without Nevanlinna defects are dense in the subset $\mathcal{F}_{T}\subset \mathcal{F}$

of transcendental meromorphic mappings on this distance.
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Intersection multiplicities of holomorphic and

algebraic curves with divisors

Junjiro Noguchi

Abstract.

Here we discuss the intersection multiplicities of holomorphic and
algebraic curves with divisors on an algebraic variety as an analogue

to the $abc$-Conjecture. We announce some new results.

\S 1. Introduction

We discuss the truncation of counting functions in the second main
theorem (S.M.T.) for holomorphic curves and algebraic ones, that is, the
bound of intersection multiplicities of holomorphic curves with divisors
in transcendental and algebraic cases; the problem has a strong analogue
with the $abc$-Conjecture of Masser-Oesterl\’e.

$abc$-Conjecture. Let $a$ , $b$ , $c\in Z$ be coprime an $d$ satisfy

$a+b+c=0$ .

Then for an arbitrary $\epsilon>0$ , there exists a constant $C(\epsilon)>0$ such that

(1.1) $\max\{|a|, |b|, |c|\}\leqq C(\epsilon)$ $\left(\begin{array}{ll}\Pi & p\\p>1_{I)}ri_{Ill}ep|abc & \end{array}\right)$

$ 1+\epsilon$

It is the key point of the conjecture that the multiplicities of primes
of $a$ , $b$ and $c$ in the right hand side of (1.1) are counted only by “

$ 1+\epsilon$”.
The analogue for holomorphic curves $f$ : $C\rightarrow P^{n}(C)$ is known:

Theorem 1.2. (Nevanlinna-Cartan-Nochka ’83) Let $m$ be the di-
mension of the linear span of $f(C)\subset P^{n}(C)$ . Let $H_{i}$ , $1\leqq i\leqq q$ , be

Received April 15,2002.
Research supported in part by Grant-in-Aid for Scientific Research (A)(1),

13304009.
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hyperplanes in general position. Then,

$(q-2n+m-1)T_{f}(r)\leqq\sum_{i=1}^{q}N_{m}(r, f^{*}H_{i})+S_{f}(r)$ ,

$S_{f}(r)=O(\log r)+$ Jlog $T_{f}(r)||_{E(\delta)}$ , meas $ E(\delta)<\infty$ .

Here we use the notation:

$T_{f}(r)=T_{f}(r;O(1))=\int_{1}^{r}\frac{dt}{t}\int_{|z|<t}f^{*}c_{1}$ $(O(1))$ ,

$N_{k}(r, f^{*}D)=\int_{1}^{\Gamma}\frac{\sum_{|z|<t}\min\{k,ord_{z}f^{*}D\}}{t}dt$ ,

and “
$||_{E(\delta)}$

” means that the estimate holds for $r\not\in E(\delta)$ as $ r\rightarrow\infty$ .

H. Fujimoto ’82 obtained similar estimates for associated curves in
Ahlfors-Weyl-Stoll theory.

\S 2. Lemma on logarithmic differential

Let $\varphi$ be a logarithmic differential on $V$ with $C^{\infty}-$coefficients. For
a meromorphic mapping $g$ : $C^{m}\rightarrow V$ set

$g^{*}\varphi=\sum_{i=1}^{m}\xi_{i}dz_{i}$ .

Let $\gamma$ denote the rotationary invariant probability measure on the sphere
$\{||z||=r\}$ .

Lemma 2.1. (Nog. ’77-) Let the notation be as above. Then we
have

$m(r, \xi_{i}):=\int_{||z||=r}\log^{+}\xi_{i}(z)\gamma(z)=S_{f}(r)$ .

Vitter ’77 proved this for $f$ : $C^{m}\rightarrow P^{1}(C)$ and $\varphi=dw/w$ .

Theorem 2.2. (Griffiths, Carlson, King, Sakai, Shiffman, Stolj
Kodaira, $\ldots$ , Nog.) Let $f$ : $C^{n}\rightarrow V$ be a differentiably non-degenerate
meromorphic mapping to a complex projective algebraic manifold V. Let
$L\rightarrow V$ be a line bundle with complete linear system $|L|$ . Let $D=$

$\sum D_{i}\in|L|$ be a divisor only with simple normal crossings. Then,

$T_{f}(r, L)+T_{f}(r, K_{V})\leqq\sum_{i}N_{1}(r, f^{*}D_{i})+S_{f}(r)$ .
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In stead of the curvature method employed by Griffiths et $a1$ , we
may apply Lemma 2.1 directly to prove Theorem 2.2 where a positivity
assumption for $L$ is not needed.

Fundamental conjecture for holomorphic curves. Let L $\rightarrow V$

be as above and $dimV=n$ . Let $D=\sum D_{i}\in|L|$ . Let $f$ : $C\rightarrow V$ be $a$

Zariski non-degenerate holomorphic curve. Then there exists a number
$k=k(D, n)$ such that

$T_{f}(r, L)+T_{f}(r, K_{V})\leqq\sum N_{k}(r, f^{*}D_{i})+S_{f}(r)$ .

If $D$ has only simple normal crossings, then $k=n$

\S 3. Holomorphic mappings

We call a complex Lie group $hl$ a semi-torus if it admits an exact
sequence:

$0\rightarrow(C^{*})^{t}\rightarrow M\rightarrow M_{0}\rightarrow 0$ ,

where $M_{0}$ is a complex torus. Using the compactification $(P^{1}(C))^{t}\supset$

$(C)^{t}$ , we take a compactification $\overline{M}$ of $M$ , and set $\partial M=l\overline{V}I\backslash M$ . Let
$\overline{D}$ be a reduced divisor on $i\overline{V}I$ such that no irreducible component of $\overline{D}$

is contained in $\partial M$ . If every $l$ irreducible components of $\overline{D}+\partial M$ has
the intersection of pure codimension $l,\overline{D}+\partial M$ is said to be in general
position.

Theorem 3.1. ([NWYOO, NWY02]) Let NI be a $semi- toruS_{)}$ an $d$

let $L\rightarrow\overline{M}$ be a line bundle. Let $\overline{D}\in|L|$ be a divisor without support
in $\partial M$ . If $M$ is not compact) we assume that $\overline{D}+\partial M$ is in general
position. Set $D=\overline{D}\cap M$ . Let $f$ : $C\rightarrow M$ be a holomorphic curve which
is Zariski-nondegenerate as a curve in M. Then we have

$T_{f}(r;L)=N_{k_{()}}(r;f^{*}D)+S_{f}(r)$ .

Here, if the order $\rho_{f}$ of $f$ is finite, $k_{0}=k_{0}(D, \rho_{f})$ ; otherwise, $k_{0}=$

$k_{0}(D, f)$ .

Remark, (i) The assumption for $\overline{D}+\partial\Lambda I$ being in general position
is necessary, by examples.

(ii) By examples of singular $D$ on abelian $M$ , $k_{0}$ must depend on $D$ .

In the case of abelian varieties, Yamanoi lately obtained

$T_{f}(r;L)=N_{1}(r;f^{*}D)+o(T_{f} (r;c_{1}(D)))$ .

There is an application of Theorem 3.1 to the Kobayashi hyperbol-
icity of a covering over abelian varieties, ramified over $D$ .

Using the method of the proof of Theorem 3.1 we have
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Theorem 3.2. Let $f$ : $C^{n}\rightarrow M$ be a differentiably non-degenerate
holomorphic mapping to a semi-torus $M$ of dimension $n$ . Let $L\rightarrow\Lambda^{-}/I$

be a line bundle and $D-\in|L|$ . Set $D=\overline{D}\cap M$ . Then,

$T_{f}(r, L)\leqq N_{n}(r, f^{*}D)+S_{f}(r)$ .

Taking this opportunity, we would like to make some minor correc-
tions to [N98] and [NWY02].

Remark, (i) The statements given in [N98], Proposition (1.8) (ii),

and in [SY96] , Theorem (2.2), are too strong to claim; there were gaps
in both proofs. The proof given in [N98] implies only that

$dim$ St $(X_{k}(f))>0$ .

But this gives no effect to the other part of the paper, in particular to
the proof of the Main Theorem of [M98], for it was not used. If the
holomorphic curve is of finite order, then Proposition (1.8) (ii) in [N98]
will hold, but in general there is a counter-example (cf. $[NW02c]$ ).

(ii) Because of the correction above, in [NWY02] p. 146, $4th-2nd$

lines from below, the space $W_{k}$ is to be defined as the $\pi_{2^{-}}$projection of
the Zariski closure of $J_{k}(f)(C)$ as in [NWYOO].

\S 4. Function fields

Nevanlinna theory is an approximation theory of complex numbers
by meromorphic functions, as the Diophantine approximation is the ap-
proximation of algebraic numbers by rationals or algebraic numbers of
a fixed number field (the inverse of Vojta’s observation). Over algebraic
function fields, one may think the approximation of rational functions
by rational functions.

Let $R$ be an algebraic curve of genus $g$ , and let $L$ be a line bundle
on $R$ with degree $degL$ .

Theorem 4.1. Let $H_{j}$ , $1\leqq j\leqq q$ , be linear forms in general po-
sition on $P^{n}(C)$ with coefficients in $H^{0}(R, L)$ . For an arbitrarily given
$\epsilon>0_{)}$ set

$k(\epsilon)=(n+1)\{\{$ $\{$ $\max\{g+\frac{2n}{\epsilon}$ , $2g-2\}]+2)degL-g+1\}-1$ .

Then for an arbitrary $x$ : $R\rightarrow P^{n}(C)$ , ate have

$(q-2n-\epsilon)ht(x)\leqq\sum_{j=1}^{q}N_{k(\epsilon)}(H_{j}(x))+C(\epsilon, q)$ .
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Here $ht(x)=degx^{*}O(1)$ and $N_{k(\epsilon)}(\cdot)$ is the counting function of
zeros of a linear form with truncation level $k(\epsilon)$ .

In the proof we use the results of Nochka ’83, the method of Stein-
metz ’85-Shirosaki ’91, J. Wang ’00, the author ’97, and the Riemann-
Roch.

Motivated by the similar problem modeled after the $‘‘ abc$-Conjecture”
over abelian varieties and here over function fields, A. Buium ([Bu98])
proved

Theorem 4.2. Let $A$ be an abelian variety, and let $D$ be an ef-
fective divisor on $A$ such that $D$ is hyperbolic. Then there is a con-
stant $N(R, A, D)$ such that for an arbitrary morphism $f$ : $R\rightarrow A$ with
$f(R)\not\subset D$ ,

$ord_{x}f^{*}D\leqq N(R, A, D)$ , $x\in R$ .

A. Buium used a method based on Kolchin’s differential algebra.
He conjectured there should be a proof by standard algebraic geometry,
and the theorem should be valid for ample $D$ . It is indeed true in more
general form:

Theorem 4.3. ([NWOx]) There is a function

$N$ : $N\times N\times N\rightarrow N$

such that the following statement holds: Let $C$ be a smooth compact
curve of genus $g$ , let $A$ be an abelian variety of dimension $n$ , let $D$ be
an ample effective divisor on $A$ with $d=c_{1}(D)^{n}$ , and let $f$ : $C\rightarrow A$ be
a morphism with $f(C)\not\subset D$ . Then

$ord_{x}f^{*}D\leqq N(g, n, d)$ , $x\in C$ .

As an application we have a finiteness

Theorem 4.4. ([NWOx]) Let C’ be an affine algebraic curve, let
$A$ be an abelian variety and let $D$ be an ample effective divisor on $A$ .
$ Then\rangle$ either $\exists f$ : $C’\rightarrow D$ , non-constant, or there are only finitely many
non-constant morphisms from $C’$ to $A\backslash D$ .

Remark. If there is a nonconstant $f$ : $C’\rightarrow D$ , there may be
infinitely many non-constant $g$ : $C’\rightarrow A\backslash D$ , by example.

N.B. The following list of references is not intended to be complete,
but sufficient to $trace$ up the necessary papers by referring their refer-
ences.
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Generalization of a precise $L^{2}$ division theorem

Takeo Ohsawa

\S Introduction

The purpose of this article is to generalize the following.

Theorem 1 (cf. [0-3]). Let $D$ be a bounded pseudoconvex domain
in $C^{n}$ and let $z=(z_{1}, \ldots, z_{n})$ be the coordinate of $C^{n}$ . Then there exists
a constant $C$ depending only on the diameter of $D$ such that, for any
plurisubharmonic function $\varphi$ on $D$ and for any holomorphic function $f$

on $D$ satisfying

(1) $\int_{D}|f(z)|^{2}e^{-\varphi(z)}|z|^{-2n}d\lambda<\infty$

there exists a vector valued holomorphic function $g=(g_{1}, \ldots, g_{n})$ on $D$

satisfying

(2) $f(z)=\sum_{i=1}^{n}z_{i}g_{i}(z)$

with

(3) $\int_{D}|g(z)|^{2}e^{-\varphi(z)}|z|^{-2n+2}d\lambda\leq C\int_{D}|f(z)|^{2}e^{-\varphi(z)}|z|^{-2n}d\lambda$ .

Here $ d\lambda$ denotes the Lebesgue measure.

We generalize this in order to establish an understanding that the
measure $ e^{-\varphi}|z|^{-2n}d\lambda$ in (1) consists of three parts, i.e. $e^{-\varphi(z)}$ for any
plurisubharmonic function $\varphi$ , $|z|^{-2}$ as the quotient fiber metric associ-
ated to the morphism $g\mapsto\sum z_{i}g_{i}$ , and $|z|^{-2n+2}d\lambda$ as the residue of
a volume form on $(D\backslash \{0\})\times P^{n-1}$ with respect to the embedding of
$D\backslash \{0\}$ by $z\mapsto(z, [z])$ , where $[z]=(z_{1} : \cdots : z_{n})$ .

Received May 21, 2002.
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In our generalized circumstance there will be given a complex man-
ifold $M$ and a surjective morphism $\gamma$ : $E\rightarrow Q$ , where $E$ and $Q$ are
holomorphic vector bundles over $M$ .

It was first asked by H. Skoda [S-2] to find an $L^{2}$ surjectivity con-
dition for the morphism induced from $\gamma$ . More precisely speaking, by
specifying a $C^{\infty}$ volume form $dV_{M}$ on $M$ , a $C^{\infty}$ fiber metric $h_{E}$ of $E$ and
the fiber metric $h_{Q}$ of $Q$ induced from $h_{E}$ via $\gamma$ , a surjectivity criterion
was looked for with respect to the induced morphism

$\gamma_{*}$ : $A^{2}(M, E)\rightarrow A^{2}(M, Q)$

where $A^{2}(M, \cdot)(=A^{2}(M, \cdot, dV_{M}))$ denotes the space of $L^{2}$ holomorphic
sections and $\gamma_{*}(g):=\gamma\circ g$ .

Here we shall relax the $L^{2}$ condition by considering another volume
form $dV_{M}’$ on $M$ and ask for a surjectivity condition for the induced
operator

$\gamma_{*}$ : $A^{2}(M, E, dV_{M})\rightarrow A^{2}(M, Q, dV_{M}’)$

where $\gamma_{*}$ is only defined as a map from a linear subspace of $A^{2}(M,E,dV_{M})$ .

To state our main result, let us introduce some notation.
Let $Q^{\vee}$ , $E^{\vee}$ denote the duals of $Q$ , $E$ , let $\gamma^{\vee}$ : $Q^{\vee}\rightarrow E^{\vee}$ be the

dual of $\gamma$ , and let

$P(Q^{\vee})=\prod_{x\in hI}P(Q_{x}^{\vee})$
,

$P(E^{\vee})=\prod_{x\in\Lambda I}P(E_{x}^{\vee})$
,

where $P(Q_{x}^{\vee})=\{Cv|v\in Q_{x}^{\vee}\backslash \{0\}\}$ and $P(E_{x}^{\vee})=\{Cw|w\in E_{x}^{\vee}\backslash \{0\}\}$ .

We shall indentify $P(Q^{\vee})$ as a complex submainfold of $P(E^{\vee})$ via $\gamma^{\vee}$ .

Let us define a line bundle $L(E^{\vee})$ over $P(E^{\vee})$ by

$L(E^{\vee})=\prod_{\xi\in P(E^{\vee})}L(E^{\vee})_{\xi}$

where $ L(E^{\vee})_{\xi}=\xi$ . Then $L(E^{\vee})^{\vee}$ is, as a holomorphic line bundle over
$P(E^{\vee})$ , naturally indentified with

$\prod_{x,\xi}E_{x}/Ker\xi$
$(x\in M, \xi\in P(E_{x}^{\vee}))$

where $Ker\xi:=Ker$ $\alpha$ for any $\alpha\in E_{x}^{\vee}$ with $\xi=C\alpha$ . The line bundle
$(\gamma^{\vee})^{*}L(E^{\vee})^{\vee}$ over $P(Q^{\vee})$ will be naturally indentified with

$\prod_{x,,,\xi}Q_{x}/Ker\xi$

$(x\in M, \xi\in P(Q_{x}^{\vee}))$
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and denoted simply by $L(E^{\vee})^{\vee}|P(Q^{\vee})$ .

Let $\sigma$ : $P(E^{\vee})^{\sim}\rightarrow P(E^{\vee})$ be the monoidal transform of $P(E^{\vee})$

along $P(Q^{\vee})$ . For simplicity we put

$\Sigma=\sigma^{-1}(P(Q^{\vee}))$ .

Let $p=$ rank $E$ and $q=$ rank $Q$ . Then the canonical bundles
$K_{P(E^{\vee})}\sim andK_{P(E^{\vee})}$ are related by a canonical isomorphism

$K_{P(E^{\vee})}\sim\simeq\sigma^{*}K_{P(E^{\vee})}\otimes[\Sigma]^{p-q-1}$ .

Here $\Sigma$ denotes the line bundle associated to the divisor $\Sigma$ . Hence a
volume form $dV_{P(E^{\vee})}\sim onP(E^{\vee})^{\sim}$ is induced from $dV_{M}$ , $h_{E}$ and a fiber
metric of $[\Sigma]$ . There is a canonical fiber metric of $[\Sigma]$ induced from $h_{E}$ ,

but we shall not stick to it for the sake of generality.
For any Hermitian line bundle $L$ , its curvature form is denoted by

$\Theta_{L}$ . For simplicity, the curvature form of the volume form, as a fiber
metric of the anticanonical bundle $K^{\vee}.$ , is denoted by Ric#.

In this situation, a generalization of Theorem 1 is

Theorem 2. Suppose that the following are satisfied.
1. There exists a closed subset $A\subset M$ such that

(1.b) $M\backslash A$ is a Stein mainfold
and

(1.b) For any point $x\in A$ and for any neighborhood $U\ni x$ , all the $L^{2}$

holomorphic finctions on $U\backslash A$ extend holomorphically to $U$ .

2. $[\Sigma]$ admits a fiber metric such that

(2.a) There exists a bounded canonical section, say $s$ , of $[\Sigma]$ .

(2.b) There exists a constant $R_{1}$ such that $ dV_{\Lambda\prime I}\leq R_{1}(\varpi\circ\sigma)_{*}dV_{P(E^{\vee})}\sim$ ,

where $\varpi$ denotes the projection from $P(E^{\vee})$ to $M$ .

(2.c) There exists a positive $number\in 0$ such that

$\sqrt{-1}(\sigma^{*}\ominus_{L(E^{\vee})^{\vee}}+\sigma^{*}Ric_{P(E^{\vee})}-(p-q+\in)\ominus)[\Sigma]\geq 0$ for $all\in\in[0, \in o]$ .

Then the operator $\gamma_{*}$ : $A^{2}(M, E, dV_{M})\rightarrow A^{2}(M, Q, dV_{M}’)$ admits $a$

bounded right inverse if there exists a constant $R_{2}$ such that

$R_{2}dV_{M}’\geq(\pi\circ\sigma)_{*}dV_{\Sigma}$ .

Here $\pi$ denotes the projection from $P(Q^{\vee})$ to $M$ and $dV_{\Sigma}$ denotes the
volume form on $\Sigma$ induced from $dV_{P(E^{\vee})}\sim and$ the fiber metric of $[\Sigma]$ .
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Corollary 3. Let $D$ be a pseudoconvex domain in $C^{n}$ , let $h_{1}$ , $\ldots$ , $h_{p}$

be bounded holomorphic functions on $D$ , whose first order derivatives are
also bounded, let $\varphi$ be a plurisubharmonic function on $D$ and let $f$ be $a$

holomorphic function on $D$ satisfying

$||f||^{2}:=\int_{D}|f|^{2}e^{-\varphi}|h|^{-2}\wedge n\sqrt{-1}\partial\overline{\partial}(|z|^{2}+\log|h|^{2})<\infty$

where $h=(h_{1}, \ldots, h_{p})$ . Then there exist holomorphic functions $g_{1}$ , $\ldots$ , $g_{p}$

on $D$ such that $f=\sum_{i=1}^{p}g_{i}h_{i}$ and

$\int_{D}|g|^{2}e^{-\varphi}d\lambda\leq C||f||^{2}$ .

Here $C$ is a constant depending only on $h$ . Moreover, if the Ricci curva-
ture $of\wedge^{n}\sqrt{-1}\partial\overline{\partial}(|z|^{2}+\log|h|^{2})$ is semipositive, then there exist holo-
morphic functions $l_{1}$ , $\ldots$ , $l_{p}$ on $D$ such that $f=\sum_{i=1}^{p}l_{i}h_{i}$ and

$\int_{D}|l|^{2}e^{-\varphi}\wedge\sqrt{-1}\partial\overline{\partial}(|z|^{2}n+\log|h|^{2})\leq C’||f||^{2}$

where $C’$ is a constant depending only on $h$ .

Obviously the latter part of Corollary 3 contains Theorem 1.

Corollary 4. Let $D$ , $h$ and $\varphi$ be as above. Then, for any holo-
morphic function $f$ on $D$ satisfying

$\int_{D}|f|^{2}e^{-\varphi}|h|^{-2k-2}|dh|^{2k}d\lambda$

where $k=\inf(n,p-1)$ , there exist holomorphic functions $g_{1}$ , $\ldots$ , $g_{p}$ such
that $f=\sum_{i=1}^{p}g_{i}h_{i}$ and

$\int_{D}|g|^{2}e^{-\varphi}d\lambda\leq C^{JJ}\int_{D}|f|^{2}e^{-\varphi}|h|^{-2k-2}|dh|^{2k}d\lambda$

where $C’’$ is a constant depending only on $h$ .

The paper is organized as follows. In Section 1 we briefly review
the $L^{2}$ extension theorem for the reader’s convenience. Theorem 2 will
be proved in Section 2. In Section 3, we shall recall Skoda’s $L^{2}$ division
theorem and its consequence which is weaker than Theorem 1. We dare
to do this because we want to show by a counterexample that a naive
improvement of Skoda’s theorem, from which Theorem 1 would follow
immediately, is false. This may well mean that our formulation of a
generalized $L^{2}$ division theorem gives a new insight into the division
properties of holomorphic functions.
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\S 1. Preliminaries – $L^{2}$ extension theorem

Let $N$ be a complex mainfold of dimension $m$ and let $F\rightarrow N$ be a
holomorphic line bundle with a $C^{\infty}$ fiber metric $h_{F}$ . (The symbols $M$ ,
$n$ , $E$ , $h_{E}$ are reserved for the division theory.)

Let $S\subset N$ be a closed complex submainfold of codimension one,
and let $[S]$ be the holomorphic line bundle defined by a system of tran-
sition functions $e_{\alpha\beta}=s_{\alpha}/s_{\beta}$ , where $s_{\alpha}$ are local defining functions of $S$

associated to some open covering of $N$ . Any holomorphic section $s$ of
$[S]$ is called a canonical section if $S=s^{-1}(0)$ and $ds|S$ is nowhere zero.
Once for all we fix a $C^{\infty}$ fiber metric $b$ of $[S]$ and a canonical section
$s=\{s_{\alpha}\}$ with $s_{\alpha}=e_{\alpha\beta}s_{\beta}$ .

Given any $C^{\infty}$ volume form $dV_{N}$ on $N$ , a volume form $dV_{N,,,b}$ on $S$

is induced from $dV_{N}$ , $s$ and $b$ via the canonical isomorphism

$(K_{M}\otimes[S])|S\simeq K_{S}$

which is given by

$\frac{\omega\wedge ds_{\alpha}}{s_{\alpha}}\mapsto\omega|S$ .

One may write on $S$

$dV_{N,,,b}=\frac{dV_{N}}{\sqrt{-1}b_{\alpha}ds_{\alpha}\wedge d\overline{s}_{\alpha}}$ .

Here the fiber metric $b$ is represented by a system of positive $C^{\infty}$ func-
tions $b_{\alpha}$ satisfying $b_{\alpha}=|e_{\beta\alpha}|^{2}b_{\beta}$ . More explicitly writing, let $x$ be any
point of $S$ and let $(z_{1}, \ldots, z_{n})$ be a holomorphic local coordinate around
$x$ such that $z_{n}=s_{\alpha}$ for some $\alpha$ around $x$ , and such that

$dV_{N}=\sim_{-}1dz_{1}\wedge d\overline{z}_{1}\wedge\ldots dz_{n}\wedge d\overline{z}_{n}$

holds at $x$ . Then, identifying $(z_{1}, \ldots z_{n-1})$ with a local coordinate of $S$

around $x$ , we have

$dV_{N,b}=m_{-}1b_{\alpha}^{-1}dz_{1}-1\wedge d\overline{z}_{1}\wedge\ldots dz_{n-1}\wedge d\overline{z}_{n-1}$

at $x$ .

Besides the induced volume form $dV_{N,b}$ , there is a volume form
associated to the function $\log|s|^{2}$ , which turned out to be more natural
in the $L^{2}$ extension theory. In general, given any continuous function
$\psi$ : $N\rightarrow R\cup\{-\infty\}$ such that $\psi-\log|s|^{2}$ is bounded near every point
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of $S$ , we define a positive Radon measure $dV_{N}[\psi]$ on $S$ by

$\int_{S}fdV_{N}[\psi]=\varlimsup_{t\rightarrow\infty}\frac{1}{\pi}\int_{\psi^{-1}((-t-1,-t))}fe^{-\psi}dV_{N}$ .

Here $f$ runs through compactly supported nonnegative continuous fuc-
tion on $N$ .

However it is easy to see that

(T) $dV_{N}[\log|s|^{2}]=\frac{dV_{N}}{\sqrt{-1}b_{\alpha}ds_{\alpha}\wedge d\overline{s}_{\alpha}}=dV_{N,,,b}$ ,

whose verification is left to the reader.

Let $A^{2}(N, F, h_{F}, dV_{N})$ (resp. $A^{2}$( $S$ , $F$, $h_{F}$ , $dV_{N}[\log|s|^{2}]$ )) be the Hilbert
space of $L^{2}$ holomorphic sections of $F$ over $N$ (resp. over $S$ ) with respect
to $(h_{F}, dV_{N})$ (resp. w.r.t. ( $h_{F}$ , $dV_{N}[\log|s|^{2}]$ )).

Theorem 1.1. Let $N$ , $dV_{N}$ , $F$ , $h_{F},$ $S$ , $b$ and $s$ be as above, and
assume that the following are satisfied.
(1.1) $N$ contains a Stein open subset $N’$ such that

(l.l.a) $N’$ intersects with every connected component of $S$

and
(l.l.b) For any point $x\in N\backslash N’$ and for any neighborhood $U\ni x$ ,

all the $L^{2}$ holomorphic functions on $U\cap N’$ extend holo-
morphically to $U$ .

(1.2) $\sup_{N}|s|<\infty$ .

(1.3) There exists a positive $number\in 0$ such that

$\sqrt{-1}(\ominus_{F}+Ric_{N}-(1+\in)\ominus)[S]\geq 0$ for $all\in\in[0, \in o]$ .

Then there exists a bounded linear operator I from $A^{2}(S,F,h_{F},dV_{N}[\log[s]^{2}])$

to $A^{2}(N,F,h_{F},dV_{N})$ such that $I(f)|S=f$ for any $f\in A^{2}(S,F,h_{F},dV_{N}[\log[s]^{2}])$ .

Here the norm of I is bounded by a constant dependly only on $\sup_{N}|s|$

$and\in 0$ .

This result is essentially contained in [O-2, Theorem 4]. Neverthe-
less we want to prove it here because the curvature assumption (1.3) is
somewhat weaker than that of [O-2].

Let us recall first a basic $L^{2}$ existence theorem for the $\overline{\partial}$-equation
whose proof is contained in [O-2].

Theorem 1.2. Let $(N, g)$ be a complete K\"ahler manifold of di-
mension $m$ , let $\eta$ be a bounded positive $C^{\infty}$ function on $N$ and let $c$ be
a positive continuous function on $(0, \infty)$ such that $c(\eta)$ is bounded. Let



Generalization of a precise $L^{2}$ division theorem 255

$(F, h_{F})$ be a Hermitian holomorphic line bundle over $N$ whose curvature
$form\ominus_{F}$ satisfies

$\kappa$
$:=\sqrt{-1}(\eta\ominus_{F}-\partial\overline{\partial}\eta-c(\eta)^{-1}\partial\eta\wedge\overline{\partial}\eta)\geq 0$ .

Then, for any positive integer $q$ and for any $\overline{\partial}$-closed locally square inte-
grable $F$ -valued $(m, q)$ form $u$ on $N$ satisfying $((\kappa\Lambda_{g})^{-1}u, u)<\infty$ , there
exists a square integrable $F$ -valued $(m, q-1)$ form $v$ such that

$\overline{\partial}(\sqrt{\eta+c(\eta)}v)=u$ and $||v||^{2}\leq((\kappa\Lambda_{g})^{-1}u, u)$ .

Here $\Lambda_{g}$ denotes the adjoint of $ u\mapsto$ ( the fundamental form of $g$ ) $\wedge u$ .

The proof of Theorem 1.2 is a straightforward application of Hahn-
Banach’s theorem. (We note that the boundedness assumption on $\eta$ and
$c(\eta)$ was missing in [0-2]. See alse [0-1].)

Proof of Theorem 1.1. By (1.1) it suffices to prove that, for any rela-
tively compact Stein open subset $\Omega\subset N$ with $C^{2}$ strongly pseudoconvex
boundary, there exists a bounded linear operator

$I_{\Omega}$ : $A^{2}(S, F, h_{F}, dV_{N}[\log|s|^{2}])\rightarrow A^{2}(\Omega, F, h_{F}, dV_{N})$

such that $ I_{\Omega}(f)|S\cap\Omega=f|S\cap\Omega$ for any $f\in A^{2}(S, F, h_{F}, dV_{N}[\log|s|^{2}])$

and that $||I_{\Omega}||$ is bounded by a constant that depends only on $\sup_{N}|s|^{2}$

$and\in 0$ .

Once for all we fix such $\Omega$ and $f$ . Then, by extending $f$ to a neigh-

borhood of $\overline{\Omega\cap S}$ as a holomorphic section of $F$ , say $\tilde{f}$ , we consider a
$C^{\infty}$ extension of $f$ to $\overline{\Omega}$ of the form

$\tilde{f}_{t}=\chi(\log|s|^{2}+t+2)\overline{f}$ $(t>>1)$

where $\chi$ is a $C^{\infty}$ function $R$ satisfying $\chi(x)=1$ for $x<1$ and $\chi(x)=0$

for $x>2$ .

By solving the equation $\overline{\partial}v_{t}=\overline{\partial}\tilde{f}_{t}/s$ on $\Omega$ with an $L^{2}$ norm estimate

and by taking a weak limit of $\tilde{f}_{t}-sv_{t}$ on $\Omega$ , we shall obtain a holomorphic
extension of $f$ with a required $L^{2}$ norm bound.

For that we regard $\overline{\partial}\tilde{f}_{t}/s$ as a $K_{N}^{\vee}\otimes F\otimes[S]^{\vee}$ -valued $(m, 1)$ form
on $\Omega$ , and apply Theorem 1.2 for any complete K\"ahler metric on $\Omega$ .

Note that $\Omega$ carries a complete K\"ahler metric because $\Omega$ is Stein (cf.

[G] $)$ . Multiplying $s$ by a constant if necessary, we may assume that
$\sup_{N}\log|s|<-1$ . Then we put $\Psi=\log|s|^{2}$ , $\Phi=\log(|s|^{2}+e^{-t})$ and

$\eta=\frac{1}{\min(\in_{0},1)}+\log(|s|^{2}+e^{-t})+\log(-\log(|s|^{2}+e^{-t}))$ .
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for $t>>1$ .

By a straightforward computation we obtain

$\partial\overline{\partial}\Phi=e^{-\Phi}|s|^{2}\partial\overline{\partial}\Psi+e^{-2\Phi-t}|s|^{2}\partial|s|^{2}\wedge\overline{\partial}|s|^{2}$ on $\Omega\backslash S$

and

$-\partial\overline{\partial}\eta=(1-\frac{1}{\Phi})^{2}\partial\overline{\partial}\Phi+\Phi^{-2}\partial\Phi\wedge\overline{\partial}\Phi$ .

Let us choose $t_{0}$ so that $\Phi<-2$ if $t>t_{0}$ . Then, for all $t>t_{0}$ we
have

$\sqrt{-1}(\Phi^{-2}\partial\Phi\wedge\overline{\partial}\Phi-\eta^{-3}\partial\eta\wedge\overline{\partial}\eta)$

$=\sqrt{-1}(\Phi^{-2}\partial\Phi\wedge\overline{\partial}\Phi-\frac{1}{(\Phi+\log(-\Phi))^{3}}(1-\frac{1}{\Phi})^{2}\partial\Phi\wedge\overline{\partial}\Phi)$

$\geq\sqrt{-1}(\Phi^{-2}-\Phi^{-3})\partial\Phi\wedge\overline{\partial}\Phi\geq\frac{\sqrt{-1}}{8}\partial\Phi\wedge\overline{\partial}\Phi$ .

Therefore if we put

$\kappa=\sqrt{-1}(\eta\ominus_{F\otimes K_{N}^{\vee}\otimes[S]^{\vee}}-\partial\overline{\partial}\eta-\eta^{-3}\partial\eta\wedge\overline{\partial}\eta)$

$and\in_{1}=\min(\in_{0},1)$ , on $\Omega\backslash S$ we have

$\kappa\geq\frac{1}{\epsilon_{1}}-O_{F\otimes K_{N}^{\vee}\otimes[S]^{\vee}}+(1-\frac{1}{\Phi})^{2}\partial\overline{\partial}\Phi+\frac{\sqrt{-1}}{8}\partial\Phi\wedge\overline{\partial}\Phi$

$\geq\in_{1}\underline{1}(\ominus_{F\otimes K_{N}^{\vee}\otimes[S]^{\vee}}+\in_{1}e^{-\Phi}|s|^{2}\partial\overline{\partial}\Psi)+\frac{\sqrt{-1}}{8}\partial\Phi\wedge\overline{\partial}\Phi$

$\geq\in_{1}\underline{1}(\ominus_{F}+Ric_{N}-(1+\in_{1}e^{-\Phi}|s|^{2})\Theta_{[S]})+\frac{\sqrt{-1}}{8}\partial\Phi\wedge\overline{\partial}\Phi$ .

Since $e^{-\Phi}|s|^{2}<1$ , the first term in the last inequality is semipositive by
assumption. Therefore we obtain

$\kappa\geq\frac{\sqrt{-1}}{8}\partial\Phi\wedge\overline{\partial}\Phi$ on $\Omega$ .

Hence, for any Hermitian metric $g$ on $\Omega$ we obtain

( $(\kappa\Lambda_{g})^{-1}(\frac{\partial f_{t}}{s})$ , $\frac{\partial f_{t}}{s})\leq C_{0}||f||^{2}$ ,

Here the $L^{2}$ norm $||f||$ of $f$ is with respect to $h_{F}$ and $dV_{N}[\log|s|^{2}]$ , the
inner product on the leffi hand side is with respect to $h_{F}$ , $dV_{N}$ and $g$ ,

and $C_{0}$ depends only on $\sup|\chi’|$ .
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Therefore, choosing $g$ to be a complete K\"ahler metric on $\Omega$ , we may
apply Theorem 1.2 and obtain a square integrable $F\otimes K_{N}^{\vee}\otimes[S]^{\vee}$ -valued
$(m, 0)$ form $w$ satisfying

$\overline{\partial}(\sqrt{\eta+\eta^{3}}w)=u$

and

$||w||^{2}\leq C_{0}||f||^{2}$ .

Clearly $\sup_{N}|s\sqrt{\eta+\eta^{3}}|\leq C_{1}$ , where $C_{1}$ depends only in $\sup_{N}|s|$

$and\in 0$ .

Therefore $\sqrt{\eta+\eta^{3}}w(=\sqrt{\eta_{t}+\eta_{t}^{3}}w_{t})$ is a wanted solution to the
$\overline{\partial}$-equation $\overline{\partial}v_{t}=\overline{\partial}\tilde{f}_{t}/s$ .

\S 2. Proof of Theorem 2

Let the notation be as in Theorem 2 and let $\varpi$ be the projection
from $P(E^{\vee})$ to $M$ . Then we have a canonical commutative diagram

$L(E^{\vee})^{\vee}$ – $\varpi^{*}E$ $\rightarrow$ $E$

$\searrow$

$ P(E^{\vee})\downarrow$

$\rightarrow$

$ kl\downarrow$

to which an isomorphism

$A^{2}(M, E, dV_{\Lambda I})\rightarrow A^{2}(\sim P(E^{\vee}), L(E^{\vee})^{\vee})$

$(=A^{2}(P(E^{\vee}), L(E^{\vee})^{\vee},$ $\varpi^{*}dV_{hI}\wedge dV_{FS}))$

is associated, which is an isometry up to multiplication by the volume of
$P^{p-1}$ . Here $dV_{FS}$ denotes the Fubini-Study volume form on the fibers of
$P(E^{\vee})$ . Identifying $L(E^{\vee})^{\vee}|P(E^{\vee})$ with $L(Q^{\vee})^{\vee}$ as in the introduction
we have a commutative diagram

$A^{2}(M, E, dV_{M})$
$\rightarrow\sim$

$A^{2}(P(E^{\vee}), L(E^{\vee})^{\vee})$

$\downarrow\gamma_{*}$ $\downarrow\rho$

$A^{2}(M, Q, dV_{\Lambda l}’,)$
$\rightarrow\sim$

$A^{2}(P(Q^{\vee}), L(Q^{\vee})^{\vee})$

where $\rho$ denotes the natural restriction operator.
Now suppose that $(1.a)-(2.c)$ and $R_{2}dV_{\Lambda\prime I}’\geq(\pi\circ\sigma)_{*}(dV_{\Sigma}/|ds|^{2})$

are satisfied. Then, to prove the existence of the right inverse of $\gamma_{*}$ , it

suffices to prove that the restriction operator

$\tilde{\rho}$ : $A^{2}(P(E^{\vee})^{\sim}, \sigma^{*}L(E^{\vee})^{\vee})\rightarrow A^{2}(\Sigma, \sigma^{*}L(E^{\vee})^{\vee},$ $dV_{\Sigma}/|ds|^{2})$
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admits a bounded right inverse. For that we shall verify the conditions
(1.1)-(1.3) of Theorem 1.1 for $N=P(E^{\vee})^{\sim}$ and $ S=\Sigma$ .

(1.1): Since $M\backslash A$ is Stein and $\varpi^{-1}(M\backslash A)$ is a $P^{p-1}$ -bundle over
$M\backslash A$ , $\varpi^{-1}(M\backslash A)$ admits a positive line bundle, and therefore so is
$\sigma^{-1}(\varpi^{-1}(M\backslash A))$ , too. Hence $\sigma^{-1}(\varpi^{-1}(M\backslash A))$ contains as ample effec-
tive divisor $Z$ which intersects with every component of $\Sigma$ transversally.
One may then put $N’=Z^{c}$ .

(1.2) follows from $(2.a)$ . (1.3) follows from (2.c) because $Ric_{P(E)}\vee\sim=$

$\sigma^{*}Ric_{P(E^{\vee})}-(p-q-1)\ominus[\Sigma]$ by the definition of the volume form $ dV_{P(E^{\vee})}\sim$ .
Hence, by Theorem 1.1, the restriction operator from $A^{2}(P(E^{\vee})^{\sim}$

$\sigma^{*}L(E^{\vee})^{\vee})$ to $A^{2}(\Sigma, \sigma^{*}L(E^{\vee})^{\vee},$ $dV_{P(E^{\vee})}\sim[\log|s|^{2}])$ admits a bounded
right inverse. This completes the proof of Theorem 2 because
$dV_{P(E^{\vee})\sim}[\log|s|^{2}]=dV_{\Sigma}$ by $(\dagger)$ . $\square $

To deduce Corollary 3 from Theorem 2, we put $M=D\backslash h^{-1}(0)$ ,
$E=M\times C^{p}$ , $Q=M\times C$ and $\gamma(z, \zeta)=\sum\zeta_{i}h_{i}(z)$ . then we may
put $A=h_{i}^{-1}(0)$ for any nonzero $h_{i}$ . As for the fiber metric of $[\Sigma]$ , we
may take $|\zeta|^{-2}\sum_{i\neq j}|\zeta_{i}h_{j}-\zeta_{j}h_{i}|^{2}$ as the squared length of the canonical

section $s=\{h_{j}\frac{\zeta_{j}}{\zeta_{j}}-h_{i}\}_{i\neq j}$ where the local expression $h_{j}\frac{\zeta_{j}}{\zeta_{j}}-h_{i}$ is effective

on the completement of the proper transform of the set $\{h_{j}\zeta_{i}-h_{i}\zeta_{j}=0\}$

in $\{\zeta_{j}\neq 0\}$ . Clearly $|s|$ is bounded on $M$ , so what remains is to verify
(2.c) and the estimates for the volume forms.

For that we notice that

$dV\Sigma=\frac{|\zeta|^{2}dV_{P(E)}\vee\sim}{\sqrt{-1}(\sum_{i\neq j}|\zeta_{i}h_{j}-\zeta_{j}h_{i}|^{2})d(h_{l}-\frac{\zeta}{\zeta_{k}}h_{k})\wedge d(\overline{h}_{l}-\overline{h}_{k}\overline{\zeta},)\overline{\overline{\zeta}_{k}}}$,

where

$dV_{P(E^{\vee})}\sim=\frac{|\zeta|^{2p-4}}{(\sum_{i\neq j}|\zeta_{i}h_{j}-\zeta_{j}h_{i}|^{2})^{p-2}}\wedge\sigma^{*}(\sqrt{-1}\partial\overline{\partial}(|z|^{2}n+p-1+\log|\zeta|^{2}))$ .

From this expression of $dV_{P(E^{\vee})\sim}$ it is easy to see that the curvature
condition (2.c) holds true.

To see that the required estimates for $dV_{P(E^{\vee})}\sim anddV_{\Sigma}$ hold, we
consider an embedding

$D\times P^{p-1}$ $c-$, $D\times C^{p}\times P^{p-1}$

$u\rfloor$

$(z, \zeta)$ –

$u\rfloor$

$(z, h(z)$ , $\zeta)$
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and the associated commutative diagram between the blow $ups$

$\iota$ : $(D\times P^{p-1})^{\sim}$ $-\succ$ $D\times(C^{p}\times P^{p-1})^{\sim}$

$\downarrow\sigma_{1}$ $\downarrow\sigma_{2}$

$D\times P^{p-1}$ – $D\times C^{p}\times P^{p-1}$ .

Since $\sup_{D}|dh|<\infty$ by assumption, there exists a constant $C$ such that

$(*)$ $C^{-1}dV_{P(E^{\vee})}\sim<$

$\iota^{*}\{\frac{|\zeta|^{2p-4}}{(\sum_{i\neq j}|\zeta_{i}w_{j}-\zeta_{j}w_{i}|^{2})^{p-2}}\wedge\sigma_{2}^{*}n+p-1(\sqrt{-1}\partial\overline{\partial}(|z|^{2}+|w|^{2}+\log|\zeta|^{2}))\}$

$<CdV_{P(E^{\vee})}\sim$

where $w$ denotes the coordinate of $C^{p}$ .
In particular, $dV_{P(E^{v})}\sim dominates$ the pull back of a bounded $(n+$

$p-1$ , $n+p-1)$ form on $D\times(C^{p}\times P^{p-1})^{\sim}$ , so that

const.
$(\varpi \circ\sigma)_{*}dV_{P(E^{\vee})}\sim\geq\wedge n\sqrt{-1}\partial\overline{\partial}|z|^{2}$

.

$(*)$ also shows that $dV_{\Sigma}$ is quasi-equivalent to the pull back of
$\wedge^{n+p-2}\omega$ for some smooth positive $(1, 1)$ form, say $\omega$ , on the excep-
tional set of $\sigma_{2}$ .

Clearly

$\sigma_{2*}\omega\leq const$ . $\sqrt{-1}\partial\overline{\partial}(|z|^{2}+|w|^{2}+\log|\zeta|^{2})$

in the sense of current, so that

$(\varpi o\sigma)_{*}dV_{\Sigma}\leq const$ .
$\wedge n\sqrt{-1}\partial\overline{\partial}(|z|^{2}+|h(z)|^{2}+\log|h(z)|^{2})$

$n$

$\leq const$ . $\wedge\sqrt{-1}\partial\overline{\partial}(|z|^{2}+\log|h(z)|^{2})$ .

The first part of Corollary 3 follows from this by regarding $e^{-\varphi}$ as an
increasing limit of smooth fiber metrices of $E$ whose curvature forms
are semipositive. To obtain the latter part we have only to set $dV_{M}=$

$\wedge^{n}\sqrt{-1}\partial\overline{\partial}(|z|^{2}+\log|h|^{2})$ . $\square $

Corollary 4 follows imediately from Corollary 3.
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\S 3. A note on Skoda’s division theorem

It might be worthwhile to compare our results with the following
which are due to Skoda [S-2] (see also [D]).

Theorem 3.1. Let $M$ be a complex manifold of dimension $n$ ad-
mitting a Kdhler metric and a plurisubharmonic exhaustion function of
class $C^{2}$ , let $E$ be a holomorphic Hermitian vector bundle of rank $p$ over
$M$ whose curvature form is semipositive in the sense of Griffiths, and
let $\gamma$ : $E\rightarrow Q$ be a surjective morphism to a holomorphic vector bundle
$Q$ of rank $q$ . Then, for any holomorphic Hermitian line bundle $L$ whose
curvature form satisfies

(S) $\sqrt{-1}(\ominus_{L}-\ominus_{\det E}-k\ominus_{\det Q})\geq 0$

for some $k>\inf(n,p-q)$ , the induced linear map

$\gamma_{*}$ : $A^{2}(M, E\otimes K_{\Lambda/I}\otimes L)\rightarrow A^{2}(M, Q\otimes K_{M}\otimes L)$

is surjective.

Corollary 3.2. Let $D$ be a pseudoconvex domain in $C^{n}$, let $h_{1},\ldots,h_{p}$

be holomorphic functions on $D$ , and let $k=\inf(n,p-1)$ . Then, for any
positive $ number\in$ , there exists a constant $C_{\Xi}$ such that, for any plurisub-
harmonic function $\varphi$ on $D$ and for any holomorphic function $f$ on $D$

satisfying

$\int_{D}|f|^{2}e^{-\varphi}|h|^{-2k-2-\in}d\lambda<\infty$

there exist holomorphic functions $g_{1}$ , $\ldots g_{p}$ such that $f=\sum_{i=1}^{p}g_{i}h_{i}$ and

$\int_{D}|g|^{2}e^{-\varphi}|h|^{-2k-\in}d\lambda\leq C_{\xi j}\int_{D}|f|^{2}e^{-\varphi}|h|^{-2k-2-\in}d\lambda$ .

There are two points to be noted here. One point is that Corol-
lary 3.2 is not contained in Corollary 3 because we had to assume the
boundedness of $h$ and its first derivative. The other point is that one
cannot drop the $above\in by$ weaking the inequality $k>\inf(n,p-q)$

in the hypothesis to $k\geq\inf(n,p-q)$ , as the following counterexample
shows.

Let $\mathcal{O}(k)$ denote the holomorphic line bundle of degree $k$ over $P^{1}$

$(\mathcal{O}:=\mathcal{O}(0))$ .

Define a morphism $\iota$ : $\mathcal{O}\rightarrow \mathcal{O}(1)\oplus \mathcal{O}(1)$ by $\iota(z, \zeta)=(z,$ $(z\zeta$ ,

$(z+1)\zeta))$ , and let $0\rightarrow \mathcal{O}\rightarrow\iota \mathcal{O}(1)\oplus \mathcal{O}(1)\rightarrow \mathcal{O}(2)\rightarrow 0$ be the as-
sociated exact sequence. Tensoring $\mathcal{O}(-1)$ to this we have

$0\rightarrow \mathcal{O}(-1)\rightarrow \mathcal{O}\oplus \mathcal{O}\rightarrow \mathcal{O}(1)\rightarrow 0$ .
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Letting $M=P^{1}$ , $E=\mathcal{O}\oplus \mathcal{O}$ , $Q=\mathcal{O}(1)$ , $L=\mathcal{O}(1)$ and $k=\inf(n,p-$

$q)=1$ , we have

$degL=deg(\det E)-kdeg(\det Q)=1-0-1=0$ .

Hence (S) is satisfied, but

$A^{2}(M, K_{M}\otimes E\otimes L)=H^{0}(P^{1}, \mathcal{O}(-1)\oplus \mathcal{O}(-1))=\{0\}$

and

$A^{2}(M, K_{M}\otimes Q\otimes L)=H^{0}(P^{1}, \mathcal{O})\neq\{0\}$ .

Therefore $\gamma_{*}$ is not surjective!

Open Question. Establish a general $L^{2}$ division theory that uni-

fies Theorem 2 and Theorem 3.1.
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Amoebas, convexity

and the volume of integer polytopes

Mikael Passare

Abstract.

To any given Laurent polynomial $f$ on $C_{*}^{n}$ we associate two natu-
ral convex functions $M_{f}$ and $N_{f}$ on $R^{n}$ . We compute the Hessian
of $M_{f}$ and obtain an explicit formula for the volume of the Newton
polytope $\triangle_{f}$ . We also establish asymptotic formulas relating our con-
vex functions to coherent triangulations of $\triangle_{f}$ and to the secondary

polytope.

\S 1.

Let $A\subseteq Z^{n}$ be a finite set and consider a general Laurent polynomial
$f(z)=\sum_{\alpha\in A}a_{\alpha}z^{\alpha}$ , with complex coefficients and $z\in C_{*}^{n}$ . The Newton
polytope $\triangle_{f}$ is defined as the convex hull of $A$ (in $R^{n}\supset Z^{n}$ ), or more
accurately, as the convex hull of those $\alpha$ for which $a_{\alpha}\neq 0$ . The amoeba
$A_{f}$ is defined to be the image of the zero set of $f$ under the mapping
$Log:C_{*}^{n}\rightarrow R^{n}$ given by $(z_{1}, \ldots, z_{n})\mapsto(\log|z_{1}|, \ldots, \log|z_{n}|)$ . In the
sequel we use the notation $|z_{j}|=t_{j}$ and $\log|z_{j}|=x_{j}$ .

We are going to deal with the two functions

$\Lambda l_{f}(x)=\log(\sum_{\alpha\in A}|a_{\alpha}|e^{\langle\alpha,x\rangle})$

and

$N_{f}(x)=\frac{1}{(2\pi)^{n}}\int_{[0,2\pi]^{n}}\log|f(e^{x+i\theta})|d\theta_{1}\wedge\cdots\wedge d\theta_{n}$ .

They are both convex functions in $R^{n}$ with the property that their
gradient mappings map $R^{n}$ to the Newton polytope $\triangle_{f}$ . More pre-
cisely, the mapping $gradM_{f}$ is a diffeomorphism $R^{n}\rightarrow$ int $\triangle_{f}$ , whereas
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$gradN_{f}$ maps $R^{n}$ onto the closed polytope $\triangle_{f}$ with each connected
component of $R^{n}\backslash A_{f}$ being sent to one of the integer vectors $\triangle_{f}\cap Z^{n}$ ,

called the order of that connected component. (See [5] for more on this.)

Introducing the corresponding Monge-Amp\‘e$re$ measures

$HessM_{f}=$ Jac $gradM_{f}$ and $HessN_{f}=$ Jac $grad$ $N_{f}$ ,

we conclude from general facts on convex functions, see [6], that these
are both positive measures with total masses equal to $Vol\triangle_{f}$ .

Let us order the set $A$ as $\{\alpha^{0}, \alpha^{1}, \ldots, \alpha^{N}\}$ , and consider, for any
increasing multi-index $J=$ $\{j_{0}, \ldots, j_{n}\}\in\{0,1, \ldots, N\}^{1+n}$ , the square
matrix $A_{J}$ having the $(1+n)-$vectors $(1, \alpha^{j_{k}})$ as its columns. Observe
that $|\det(A_{J})|$ equals $n!$ times the volume of the simplex $\sigma_{J}$ with vertices
in $\alpha^{j_{()}}$ , $\ldots$ , $\alpha^{j,l}$ . We begin with an explicit computation.

Proposition 1.1 The push-forward of the measure $HessM_{f}$ under the
mapping YEtxp: $R^{n}\rightarrow R_{+}^{n}$ defined by $(x_{1}, \ldots, x_{n})\mapsto(e^{x_{1}}, \ldots, e^{x_{\eta}})$ , is
given by Lebesgue measure times a rational function $h_{f}/F^{1+n}$ , with the
polynomial $h_{f}$ explicitly given by

$h_{f}(t)=\sum_{|J|=1+n}’\det^{2}(A_{J})|a_{\alpha^{i_{()}}}|t^{\alpha^{j_{0}}}\cdots|a_{\alpha^{j,)}}|t^{\alpha^{j}}$

”

Here the summation is over all increasing multi-indices $J$ , and $F$ is

obtained from $f$ by replacing each coefficient $a_{\alpha}$ by $|a_{\alpha}|$ .

Proof: The gradient of $M_{f}$ equals the moment map (cf. [4], 198)

$gradl\mathfrak{l}/I_{f}(x)=\frac{\sum_{\alpha\in A}\alpha|a_{\alpha}|e^{\langle\alpha,x\rangle}}{\sum_{\alpha\in A}|a_{\alpha}|e^{\langle\alpha,x\rangle}}=\frac{\sum_{\alpha\in A}\alpha|a_{\alpha}|t^{\alpha}}{\sum_{\alpha\in A}|a_{\alpha}|t^{\alpha}}$ ,

which means that $HessM_{f}(x)=\det(\partial^{2}M_{f}(x)/\partial x_{j}\partial x_{k})$ is equal to

$|\frac{\sum_{\alpha\in A}\alpha_{j}\alpha_{k}|a_{\alpha}|t^{\alpha}}{\sum_{\alpha\in A}|a_{\alpha}|t^{\alpha}}-\frac{(\sum_{\alpha\in A}\alpha_{j}|a_{\alpha}|t^{\alpha})(\sum_{\alpha\in A}\alpha_{k}|a_{\alpha}|t^{\alpha})}{(\sum_{\alpha\in A}|a_{\alpha}|t^{\alpha})^{2}}|$ ,

and if we introduce the abbreviation $c_{\alpha}=|a_{\alpha}|t^{\alpha}$ we may $re$-write the
above $n\times n$-determinant as the following $(1+n)\times(1+n)$ -determinant:

1

$(\sum c_{\alpha})^{1+n}$

$\sum c_{\alpha}$ $\sum\alpha_{1}c_{\alpha}$
$\ldots$

$\sum\alpha_{n}c_{\alpha}$

$\sum\alpha_{1}c_{\alpha}$ $\sum\alpha_{1}\alpha_{1}c_{\alpha}$
$\ldots$

$\sum\alpha_{1}\alpha_{n}c_{\alpha}$

$\ldots$ $\ldots$

$\ldots$ $\ldots$

$\sum\alpha_{n}c_{\alpha}$ $\sum\alpha_{n}\alpha_{1}c_{\alpha}$
$\ldots$

$\sum\alpha_{n}\alpha_{n}c_{\alpha}$

$(*)$
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Now we consider the $(1+n)\times(1+N)-$matrix

B $=(\alpha_{n}^{0}..\sqrt{c_{\alpha^{0}}}\alpha_{1}^{0}\sqrt{c_{\alpha^{0}}}\sqrt{c_{\alpha^{0}}}\alpha_{n}^{1}.\cdot\sqrt{c_{\alpha^{1}}}\alpha_{1}^{1}\sqrt{c_{\alpha^{1}}}\sqrt{c_{\alpha^{1}}}.\cdot.\cdot..\cdot.\cdot..\cdot.\cdot.$ $\alpha_{n}^{N}..\sqrt{c_{\alpha^{N}}}\alpha_{1}^{N}\sqrt{c_{\alpha^{N}}}\sqrt{c_{\alpha^{N}}})$

and make two observations. First, the determinant $(*)$ is equal to
$\det(BB^{tr})/F(t)^{1+n}$ . Second, the polynomial $h_{f}$ is equal to the sum
of the squares of all the maximal minors of $B$ . The desired identity
$HessM_{f}=h_{f}/F^{1+n}$ therefore follows from the Cauchy-Binet formula,
see [3], which says that the determinant of the product $BB^{tr}$ is indeed
equal to the sum of the squares of the minors of $B$ .

We remark that $h_{f}$ is the non-homogeneous toric Jacobian of the
extended gradient $(F, t_{1}\partial_{1}F, \ldots, t_{n}\partial_{n}F)$ , see [2] and Proposition 1.2 in
[1], where a similar computation was carried out. Combining our Propo-
sition 1.1 with the fact that the total mass of $HessM_{f}$ is equal to $Vol\triangle_{f}$ ,

we obtain the following explicit, elementary, and apparently new formula
for the volume of the Newton polytope.

Theorem 1.2 Tlie volume of the Newton polytope $\triangle_{f}$ can be computed
by means of the closed formula

$Vol\triangle_{f}=\int_{R_{+}^{r1}}\frac{h_{f}(t)}{(F(t))^{1+n}}\frac{dt_{1}\wedge\cdots\wedge dt_{n}}{t_{1}\cdots t_{n}}$ . $(**)$

We knew a priori that this integral should converge, since the measure
$Hess\Lambda^{/}I_{f}$ has a finite mass, but the convergence now also follows from the
obvious fact that the Newton polytope of $h_{f}$ is contained in the interior
of $(1+n)\triangle_{f}$ .

Regarding the function $N_{f}$ , we recall the following result from [5].
Remember that a polyhedral subdivision is a generalized triangulation
whose elements are polyhedra (but not necessarily simplices).

Theorem 1.3 The piecewise linear convex function $\max_{\alpha}(c_{\alpha}+\langle\alpha, x\rangle)$ ,
where $c_{\alpha}+\langle\alpha, x\rangle=N_{f}(x)$ in the component of $R^{n}\backslash A_{f}$ oforder $\alpha$ , defines
a polyhedral subdivision of $R^{n}$ whose $(n -1)-$skeleton is contained in
A $f$ , while its Legendre transform similarly defines a dual polyhedral
subdivision $T_{f}$ of $\triangle_{f}$ . A vector $\alpha$ is a vertex in $T_{f}$ if and only if
$R^{n}\backslash $ A $f$ has a component of order $\alpha$ .
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\S 2.

In this section we shall study the asymptotic behaviour of Theorems 1.2
and 1.3 as the coefficients $a_{\alpha}$ tend to infinity. More precisely, we will
set $a_{\alpha}=$ A $s_{\alpha}$ for some fixed vector $(s_{\alpha})\in R^{A}$ an$dR\ni$ A $\rightarrow\infty$ . We
recall from [4] that the so-called secondary polytope $\Sigma_{A}\subseteq Z^{A}$ has the
property that its vertices are in bijective correspondence with the co-
herent triangulations of $\triangle_{f}$ , and that a triangulation is coherent if it
can be defined by a convex (or concave) piecewise linear function (as in
Theorem 1.3).

For any vertex $v$ of $\Sigma_{A}$ , the normal cone $N_{v}$ , which consists of all
vectors $(s_{\alpha})\in R^{A}$ such that $(s, v)=\max_{w\in\Sigma_{A}}$ $(s, w)$ , has a non-empty
interior. Any vector $(s_{\alpha})$ from int $N_{v}$ , that is, such that $(s, v)>$ $(s, w)$ for
all $w$ $\in\Sigma_{A}$ with $v\neq w$ , can be used to produce the associated coherent
triangulation $T_{v}$ of $\triangle_{f}$ in the following way. Let $g_{s}$ be the piecewise

linear concave function on $\triangle_{f}$ whose graph equals the upper boundary
of the convex hull of the union of half lines $\{(\alpha, y);\alpha\in A, y\leq s_{\alpha}\}$ .

Then $T_{v}$ is obtained by projecting the linear pieces of the graph of $g_{S}$

down to $\triangle_{f}$ . Notice that $-g_{s}$ is the Legendre transform of the piecwise

linear convex function $\max_{\alpha}(s_{\alpha}+\langle\alpha, x\rangle)$ on $R^{n}$ .

The polynomial $h_{f}$ , and hence the whole volume formula in Theo-
rem1.2, contains one term for each subsimplex $\sigma_{J}$ with vertices in $A$ .

Asymptotically, it is only the terms corresponding to the disjoint sim-
plices of a coherent triangulation that survive, as shown by the following
theorem.

Theorem 2.1 Let $v$ be a vertex of the secondary polytope $\Sigma_{A}$ , and
take a vector $(s_{\alpha})\in R^{A}$ in the interior of the normal cone $N_{v}$ . Set
the coefficients $a_{\alpha}$ of $f$ equal to $\lambda^{s_{C1}}$ . Then the term $I_{J}(\lambda)$ in $(**)$

corresponding to the multi-index $J$ satisfies

$\lim_{\lambda\rightarrow\infty}I_{J}(\lambda)=\{$

$Vol\sigma_{J}$ , if $\sigma_{J}\in T_{v}$ ,

0, otherwise .

Proof: Recalling the formula for $h_{f}$ , we see that

$I_{J}(\lambda)=\int_{R_{+}^{r1}}\frac{\det^{2}(A_{J})\lambda^{s}\circ^{J()}t^{\alpha^{j_{0}}}\cdots\lambda^{s}\alpha^{j}r1t^{\alpha^{j,1}}}{(\lambda^{S_{cY}()}t^{\alpha^{()}}+\lambda^{s_{\alpha^{1}}}t^{\alpha^{1}}+\ldots\lambda^{s}\alpha^{N}t^{\alpha^{N}})^{1+n}}\frac{dt_{1}\wedge\cdots\wedge dt_{n}}{t_{1}\cdots t_{n}}$ .
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If we perform the monomial substituion $u_{k}=$ A $s_{\alpha^{j_{k}}}t^{\alpha^{j_{k}}}/\lambda^{s}\alpha^{j_{o}}t^{\alpha^{J0}}$ , for
$k=1$ , $\ldots$ , $n$ , we arrive at

$I_{J}(\lambda)=\int_{R_{+}^{r1}}\frac{|\det(A_{J})|du_{1}\wedge\cdots\wedge du_{n}}{(1+u_{1}+\cdots+u_{n}+\delta(\lambda))^{1+n}}$ ,

where $\delta(\lambda)$ is a finite sum of fractional monomials A $r_{0}u_{1}^{r_{1}}\cdots u_{n}^{r_{\gamma)}}$ , with
$r\in Q^{1+n}$ and $r_{0}\neq 0$ . Now, it is not hard to verify that the simplex
$\sigma_{J}$ belongs to the triangulation $T_{v}$ precisely if all the exponents $r_{0}$ are
negative. In this case the term $\delta(\lambda)$ tends to zero, and since the integral
of du $1\wedge\cdots\wedge du_{n}/(1+u_{1}+\cdots+u_{n})^{1+n}$ over the positive orthant is equal
to $1/n!$ , we conclude that $I_{J}(\lambda)\rightarrow|\det(A_{J})|/n!$ as claimed. Otherwise,
the denominator in the integrand goes to infinity, and the integral $I_{J}(\lambda)$

tends to zero.

The proof of the next result is essentially parallel to that of Theo-
rem9 in [7] and will be omitted.

Theorem 2.2 Let $v$ be a vertex of the secondary polytope $\Sigma_{A}$ , and take
a vector $(s_{\alpha})$ as in Theorem 2.1. Set the coefficients $a_{\alpha}$ of $f$ equal to $\lambda^{s_{\alpha}}$

and denote the new polynomial by $f^{\lambda}$ . For large values of the parameter
A the polyhedral subdivision $T_{f^{\lambda}}$ from Theorem 1.3 will then coincide
with the coherent triangulation $T_{v}$ .

We end with a closer look at a one-dimensional case.

Example 2.3 Consider a one-variable polynomial of the form $f(t)=$

$1+a_{1}t+\cdots+a_{n-1}t^{n-1}+t^{n}$ . For each $m$ $=0,1$ , $\ldots$ , $2n-2$ the so-called
Ostrogradski method for finding the rational part of a primitive function
can be realized with the explicit formula

$\int\frac{t^{m}dt}{f(t)^{2}}=-\frac{P_{m}(t)}{f(t)}+\int\frac{Q_{m}(t)dt}{f(t)}$ ,

where the $P_{m}$ and $Q_{m}$ are polynomials of degrees $n-1$ and $n$ $-2$ re-
spectively. To be specific, one has $P_{m}(t)=\sum_{k=0}^{n-1}A_{m,k}t^{k}$ and $Q_{m}(t)=$

$P_{m}’(t)+\sum_{\ell=0}^{n-2}B_{m,\ell}t^{\ell}$ , with the $(2n-1)\times(2n-1)-$matrix $(B_{m,\ell}, A_{m,k})$ be-
ing the inverse of the standard Sylvester matrix (see [4], p.405) whose de-
terminant equals the discriminant $D_{n}$ of $f$ . Now, if we collect terms in $h_{f}$

and write $t^{-1}h_{f}(t)=\sum_{m=0}^{2n-2}C_{m}t^{m}$ , then it holds that $\sum_{m}A_{m},{}_{k}C_{m}=$

$(n-k)a_{k}$ and $\sum_{m}B_{m,\ell}C_{m}=-(\ell+1)(n-\ell-1)a_{\ell+1}$ . (Here $a_{0}=a_{n}=1.$ )
This implies in particular that if we replace the individual terms

$\int_{0}^{\infty}\frac{(j_{1}-j_{0})^{2}a_{j_{()}}a_{j_{1}}t^{j_{()}+j_{1}-1}dt}{f(t)^{2}}$
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in formula $(**)$ by their principal parts

$-\frac{(j_{1}-j_{0})^{2}a_{j_{0}}a_{j_{1}}P_{j_{()}+j_{1}-1}(t)}{f(t)}|_{0}^{\infty}=(j_{1}-j_{0})^{2}a_{j_{()}}a_{j_{1}}A_{jo+j_{1}-1,0}$

then they still sum to $Vol\triangle_{f}=n$ . In other words, the individual terms
of $(**)$ , which are not themselves rational functions of the coefficients
$a_{j}$ , can be replaced by rational expressions so that the volume formula
still holds true. Since these expressions all have the discriminant $D_{n}$

as their denominator, this means we have in a canonical way associ-
ated polynomials (the numerators) with all subsimplices $[j_{0}, j_{1}]$ so that
their sum is equal to $nD_{n}$ . In fact, the linear form on the vector space
$\langle 1, t, \ldots, t^{2n-2}\rangle$ given by

$t^{m}\mapsto P_{m}(0)$ $(=A_{m,0})$

coincides with the toric residue associated to the mapping $(f, tf’)$ .
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On the decomposition of
holomorphic functions by integrals

and the local $CR$ extension theorem

R. Michael Range

Among the classical and far reaching applications of integrals to the
decomposition of holomorphic functions is P. Cousin’s use of the Cauchy
Integral Formula to obtain the most basic version which underlies the
solution of what is now known as the additive Cousin problem. Con-
cretely, if $L$ is an (oriented) line segment in the complex plane $\mathbb{C}$ , and if
$f$ is holomorphic in a neighborhood of $L$ , then

$F^{\pm}(z)=\frac{1}{2\pi i}\int_{L}\frac{f(()d(}{(-z}$ , $z\not\in L$

defines $F^{+}$ on the left side of $L$ (resp. $F^{-}$ on the right), both $F^{+}$ and $F^{-}$

extend holomorphically across $L$ , and

$f(z)=F^{+}(z)-F^{-}(z)$ on $L$ .

In 1942, K. Oka [O] used a version of this principle with a Bergman-
Weil type integral formula for polyhedra in his solution of the Levi prob-
lem.

Another well known application of this principle arises in the clas-
sical proof of the Hartogs extension theorem by means of the Bochner-
Martinelli formula, discovered independently by E. Martinelli and S.
Bochner in the early $1940s$ . Suitably modified, this principle allows also
a simple natural proof of the corresponding global $CR$ extension theorem
of Severi and Fichera .

In this note I shall discuss an application of this principle to a proof
of a version of the local $CR$ extension theorem, valid under minimal
regularity hypotheses. The main step reduces the question of $CR$ ex-
tension to the classical problem of extension of holomorphic functions.
While versions of this reduction have been known for a long time (see,

Received March 12, 2002.
$lSee$ [R1] for details.
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for example, [AH] $)$ , the techniques used require stronger differentiability
hypotheses, and typically involve some loss of regularity. In contrast, the
Bochner-Martinelli kernel provides a simple mechanism to carry out the
reduction in an optimal way. More precisely, I shall prove the following
result.

Theorem 1. Let $S$ be a closed $C^{1}$ hypersurface in an open set $\Omega\subset$

$\mathbb{C}^{n}$ . Let $ U\subset\subset\Omega$ be a neighborhood of $p\in S$ with $U\backslash S=U^{+}\cup U^{-}$ , where
$U^{+}$ an $dU^{-}$ are disjoint and connected. Suppose $U^{-}$ is not a domain of
holomorphy at $p$ , $i.e_{\rangle}$. every $f\in O(U^{-})ex$tends holomorphically to $p$ .

Then there exists a neighborhood $W$ of $p_{\rangle}$ such that every $CR$ function
$f\in C(U\cap S)$ extends holomorphically to $U^{+}\cap W$ .

The hypothesis at the point $p$ is satisfied, for example, in the classical
situation where $U^{+}$ is strictly pseudoconvex at $p$ . More generally, if $S$

is of class $C^{2}$ , it holds whenever the Levi form of $S$ , viewed as part of
the boundary of $U^{+}$ , has at least one positive eigenvalue. Of course, the
hypothesis on the given function $f$ has to be interpreted in the weak
sense, i.e., $\int_{S}f\overline{\partial}\varphi=0$ for all $C_{(n,n-2)}^{\infty}$ forms with compact support in
$U$ .

Interest in this phenomenon was rekindled by the recent discovery
of a long forgotten 1936 paper by Hellmuth Kneser [K], in which this
theorem was proved for strictly pseudoconvex boundary points in $\mathbb{C}^{2}$ ,

fully 20 years before Hans Lewy’s famous 1956 theorem [H], which for a
long time had been viewed as the first result of this $sort^{2}$ .

Let us briefly recall some basic results about the Bochner-Martinelli
kernel

$K_{BM}=\frac{(n-1)!}{(2\pi i)^{n}}\frac{\sum_{j=1}^{n}(\overline{(_{j}-z_{j}})d(_{j}\wedge(\Lambda_{k\neq j}d\overline{(_{k}}\wedge d(_{k})}{|(-z|^{2n}}$ .

(Complete proofs may be found, for example, in [R1].)
$K_{BJ/I}$ is real analytic in $z$ . So, if $S$ is an oriented $C^{1}$ hypersurface

and $f\in C(S)$ has compact support, the Bochner-Martinelli transform

$T_{S}f(z)=\int_{S}f(()K_{B\Lambda/f}((, z)$

defines a real analytic function on $\mathbb{C}^{n}\backslash S$ . With $U\backslash S=U^{+}\cup U^{-}$ as
in the theorem, one may consider the restrictions $T_{S}^{+}f=T_{S}f|U^{+}$ an $d$

$T_{S}f=T_{S}f|U^{-}$ If $f$ is H\"older continuous of some positive order,

$2The$ reader may find a comprehensive account of the history of the local
and global $CR$ extension phenomena in the author’s article [R2].
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then $T_{S}^{+}f$ and $T_{S}f$ extend continuously to $S$ , and if the orientation of
$S$ agrees with the one it carries as part of the boundary of $U^{+}$ , one has
the “jump formula”

(1) $f(z)=T_{S}^{+}f(z)-T_{S}f(z)$ for $z\in U\cap S$ .

More generally, this formula remains valid for continuous $f$ , whenever
one can prove the continuous extension from at least one of the sides
(continuity from the other side then follows as well).

Since $K_{BM}$ is not holomorphic if $n>1$ , $T_{S}f$ will not be holomorphic
on $\mathbb{C}^{n}\backslash S$ in general. Instead, one has

(2) $\overline{\partial_{z}}K_{B\Lambda\prime I}=-\overline{\partial_{\zeta}}K_{1}$ on $\mathbb{C}^{n}\times \mathbb{C}^{n}\backslash $ $\{(=z\}$ ,

where $K_{1}$ is an explicit double form of type $(0, 1)$ in $z$ and $(n, n-2)$ in $($ .

A simple application of Stokes’ theorem then implies that if $S$ is compact
without boundary, say if $S=bD$ for $D\subset\subset \mathbb{C}$’ and if $f\in \mathcal{O}(S)$ , then
$T_{S}f$ is holomorphic on $\mathbb{C}^{n}\backslash S$ . In fact, only the weaker hypothesis $\overline{\partial_{b}}f=0$

on $S$ is needed for this conclusion.
When $S$ has nonempty boundary, $T_{S}f$ is no longer holomorphic in

general. Instead, one has the following weaker result.

Lemma 2. Suppose $S$ is a $C^{1}$ hypersurface in $\mathbb{C}^{n}$ , and $f\in C(S)$

has compact support in S. Let $U$ be an open set, such that $f$ is weakly
$CR$ on $S\cap U$. Then $\overline{\partial}(T_{S}f)$ extends to a $C^{\infty}(0,1)$ form on $U$.

The important fact is that application of $\overline{\partial}$ eliminates the disconti-
nuity of $T_{S}f$ across $S$ .

Proof. $T_{S}f$ is clearly $C^{\infty}$ outside $S$ . We need to show that $T_{S}f$

extends $C^{\infty}$ to any point $p\in S\cap U$ . Fix $p$ , and choose a neighborhood
$V(p)\subset\subset U$ and $\chi\in C_{0}^{\infty}(U)$ with $\chi\equiv 1$ on $V$. Then

$T_{S}f=\int_{S}f\chi K_{BM}+\int_{S}f(1-\chi)K_{B\Lambda^{/}I}$ ,

where the 2nd integral is clearly $C^{\infty}$ on $V$ (indicated by $+\ldots.$ . in the
following). On $V\backslash S$ one therefore has

$\overline{\partial_{z}}T_{S}f(z)=\int_{S}f(()\chi(()\overline{\partial_{z}}K_{BM}((, z)+\ldots=(by(2))-\int_{S}f\chi\overline{\partial_{\zeta}}K_{1}+\ldots=$

$=-\int_{S}f\overline{\partial_{\zeta}}(\chi K_{1})+\int_{S}f(\overline{\partial_{\zeta}}\chi)K_{1}+\ldots$ .
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In the last equation, the first integral is 0 by the hypothesis on $f3$ , and
hence extends trivially across $S\cap V$ , while the 2nd integral is $C^{\infty}$ on $V$

since $\overline{\partial_{\zeta}}\chi\equiv 0$ on $V$ .

Corollary 3. If $U$ is Stein, there exists $u\in C^{\infty}(U)$ , such that
$H^{\pm}=T_{S}^{\pm}f-u$ is holomorphic on $U^{+}$ (resp. $U^{-}$ ).

Proof. Let $u$ be any solution of $\overline{\partial}u=\overline{\partial}T_{S}f$ on $U$ . Note that if $U$ is
convex with smooth boundary (for example a ball), such solutions can
be found by means of elementary integral formulas.

The proof of the theorem is now very easy. Without loss of generality
we may assume that $U$ is a ball centered at $p$ , and that $f$ has compact
support in $S$ . Consider $T_{S}f$ , and choose $u$ as in the Corollary. By the
hypothesis on $p$ , the function $H^{-}$ extends holomorphically across $p$ , say
to a neighborhood $W$ of $p$ (which depends only on the complex geometry
of $S$ near $p$ , i.e., $W$ can actually be chosen independently of $H^{-}$ and
$f)$ . Since $u$ is $C^{\infty}$ on $U$ , $T_{S}f=H^{-}+u$ extends continuously (in fact
$C^{\infty})$ across $S\cap W$ . Hence $T_{S}^{+}f$ , and then $H^{+}=T_{S}^{+}f-u$ , also extends
continuously from $U^{+}\cap W$ to $S\cap W$ , and the jump formula (1) holds
on $S\cap W$ . It follows that

$f(z)=(T_{S}^{+}f(z)-u)-(T_{S}f(z)-u)=H^{+}(z)-H^{-}(z)$ for $z\in W\cap S$ ,

and thus $H^{+}-H^{-}$ yields the desired holomorphic extension of $f$ to
$U^{+}\cap W$ .

Remark. The proof shows that the extension $H^{+}-H^{-}$ of $f$ is
continuous on $W\cap\overline{U^{+}}$ . In case $f\in C^{1}(S)$ , one easily shows that the

extension is in $C^{1}(W\cap\overline{U^{+}})$ , and that analogous results hold when $S$

and $f$ are differentiable of higher order. The proofs follow by the same
techniques used in the corresponding regularity results for the global $CR$

extension theorem (see [R1] for example).
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The monodromy covering of the versal deformation
of cyclic quotient surface singularities

Oswald Riemenschneider

Abstract.

We give a short survey on some new (and old) results on de-
formations of cyclic quotient surface singularities which are mainly
contained in the doctoral thesis of STEPHAN BROHME.

\S 1. Introduction

By studying the special case of cyclic quotient surface singularities
several general aspects of deformation theory of complex-analytic sin-
gularities have been detected, $e$ . $g$ . the existence of many components of
the base space of the versal deformation (which we also call the versal
base space for short) and their monodromy coverings and the existence
of embedded components. Even more: the (necessarily) smooth reduced
components, the deformations thereon including the discriminant and
the adjacencies and the monodromy coverings can be explicitly described
and are very well understood ( $c.$

$f$ . [4], [5], [6], [7], [8], [11], [16]; see also
[2] $)$ .

The versal base space itself has - in the first interesting case of em-
bedding dimension $e=5-$ quite simple equations ([13], [14]). Later,

ARNDT [1] calculated those equations for embedding dimension 6 and
gave a “quasi-algorithmic” structure theorem for the general case (see

also [9] and [10] for another approach for the much wider classes of ratio-
nal surface singularities with reduced fundamental cycle and sandwiched
singularities). In his dissertation, BROHME [6] proposes an explicit al-
gorithm to produce equations in the cyclic case which are closer related
to the continued fractions than those given in [9] and proves that his
algorithm really leads to correct equations up to embedding dimension
8. It should also be mentioned that MIYAJIMA [12] has done some cal-
culations on the versal deformation space by means of the deformation
theory of $CR$-structures.

Received March 14, 2002.
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However, all these sets of equations are extremely complicated (there-
fore, they are not reproduced here due to lack of space). In particular,
it is almost impossible to draw any geometric conclusions from them.
Despite the beautiful “picture method” of DE JONG and VAN STRATEN,

there was in my opinion a “satisfactory” construction of the versal de-
formation - in the case of cyclic quotients - in terms of combinatorics,
$i$ . $e$ . in terms of the continued fraction associated to such a singularity
still missing. In order to remedy this unpleasant situation, I sketched
in August 1996 an explicit construction of (a finite covering of) the re-
duced versal deformation space (the main idea is already contained in
[15] $)$ . In the following I shall state the result after some preparatory no-
tions and remarks; a proof is contained in [6]. Due to explicit computer
algebra calculations via Singular in small embedding dimensions with
the help of Brohme’s equations, I am convinced that also the embedded
components can successfully be “attached” to this construction.

This work would not have been possible without the pioneering work
of JAN CHRISTOPHERSEN, JAN STEVENS and KURT BEHNKE on the
component structure of the deformation space of the cyclic quotients.

\S 2. Some notions

Recall that a quotient surface singularity is given by natural num-
bers $n$ , $q$ with $1\leq q<n$ and $gcd(n, q)=1$ which determine the
singularity $X_{n,q}$ as the quotient of $\mathbb{C}^{2}$ by the linear action of the group
$C_{n,q}\subset GL(2, \mathbb{C})$ generated by the diagonal matrix diag $(\zeta_{n}, \zeta_{n}^{q})$ where
$\zeta_{n}$ denotes a primitive $n$-th root of unity. It is well-known that all
quotients of $\mathbb{C}^{2}$ by a finite cyclic group are of this form (up to analytic
isomorphism), and $X_{n,q}\cong X_{n,q’}$ if and only if $q=q’$ or $qq’\equiv 1$ .

Moreover, the embedding dimension $e=e_{n,q}=embX_{n,q}$ is equal to

$e_{n,q}=3+\sum_{k=1}^{\ell}(b_{k}-2)$

with the coefficients $b_{k}$ of the Hirzebruch-Jung continued fraction ex-
pansion

$\frac{n}{q}=b_{1}-1 _{2}b-\cdots- 1b_{\ell}$ , $b_{k}\geq 2$

or, resp., $e_{n,q}=r+2$ , $r=r_{n,q}$ the codimension of $X_{n,q}$ , where

$\underline{n}=a_{1}-1 _{2}a-\cdots-1 _{r}a$ , $a_{j}\geq 2$ .
$n-q$

(Note that we changed our notations of [14] in accordance with the work
of JAN CHRISTOPHERSEN [7] and JAN STEVENS [16] $)$ . In other words,
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the system $(a_{1}, \ldots, a_{r})$ of exponents (as well as the system of selfinter-
section numbers $b_{1}$ , $\ldots$ , $b_{\ell}$ ) is an analytic invariant of the singularity
up to reversal of the order.

The $r(r+1)/2$ equations for the singularity $X_{n,q}$ can be written
down with these exponents in quasideterminantal form (see $e$ . $g$ . [15]).
For our construction, the $r$ lead$ing$ equations

$x_{0}x_{2}-x_{1}^{a_{1}}=0$ , $x_{1}x_{3}-x_{2}^{a_{2}}=0$ , $\ldots$ , $x_{r-1}x_{r+1}-x_{r}^{a_{\tau}}=0$

are of special importance as well as the last one:

$x_{0}x_{r+1}-x_{1}^{a_{1}-1}x_{2}^{a_{2}-2}\cdot\ldots\cdot x_{r-1}^{a_{\tau-1}-2}x_{r}^{a_{r}-1}=0$ .

It follows from the work of Christophersen and Stevens that for
fixed $r\geq 2$ there exist only finitely many so-called $r-$chains (rep-
resenting zero) $(k_{1}, \ldots, k_{r})\in \mathbb{N}_{+}^{r}$ such that the reduced components
of the versal deformation space of a cyclic quotient surface singularity
$X_{n,q}$ of codimension $r$ are in 1:1 correspondence to those $r-$chains
$\underline{k}=(k_{1}, \ldots, k_{r})$ satisfying $\underline{k}\leq\underline{a}:=$ $(a_{1}, \ldots, a_{r})$ , $i$ . $e$ .

$k_{j}\leq a_{j}$ , $j=1$ , $\ldots$ , $r$ .

Before we proceed further we recall the definition of $r-$chains $\underline{k}$ by
Christophersen. Define $\alpha_{0}=0$ , $\alpha_{1}=1$ and inductively $\alpha_{j+1}=k_{j}\alpha_{j}-$

$\alpha_{j-1}$ , $j=1$ , $\ldots$ , $r$ . Then $\underline{k}$ is an $r-$chain if $\alpha_{j}\geq 1$ , $j=1$ , $\ldots$ , $r$ , and
$\alpha_{r+1}=0$ . This is equivalent to saying that the continued fraction

$k_{1}- 1k_{2}-\cdots-\propto 1k_{r}$

is well defined and has the value 0. Let us list here all these chains for
the cases $r=2,3,4$ together with their corresponding $\alpha-$series which
are also necessary for understanding the construction.
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We will write $K_{r}$ for the set of $r-$chains; its cardinality is the famous
CATALAN number

$\frac{1}{r}$

$\left(\begin{array}{ll}2(r & -1)\\r & -1\end{array}\right)$

To each $\underline{k}\in K_{r}$ we can associate a certain “cross and circle” dia-
gram $\nabla_{\underline{k}}$ which can be used as a format for a cyclic quotient surface
singularity $X_{n,q}$ of codimension $r$ and exponents $\underline{a}=(a_{1}, \ldots, a_{r})$ :
if $\underline{k}\leq\underline{a}$ holds, then $\nabla_{\underline{k}}$ determines in a completely algorithmic man-

ner a system of equations $P_{ij}^{\nabla_{\underline{k}}}$ , $0\leq i$ , $j\leq r+1$ , $i+1<j$ with

$P_{i-,i+1}^{\nabla_{\frac{k}{1}}}$ , $i=1$ , $\ldots$ , $r$ , always being the leading equations as above
(for more details, see [5] and [15]). The last equation is of the form
$P_{0,r+2}^{\nabla_{\underline{k}}}=x_{0}x_{r}-x_{1}^{\alpha_{1}(a_{1}-k_{1})}\cdot\ldots\cdot x_{r}^{\alpha_{7}}(a_{7}-k, )$ Moreover, for different

$\underline{k}$ , the last equations are also different. The quasideterminantal format
belongs to the $r$-chain $(1, 2, 2, \ldots, 2, 1)$ .

\S 3. The construction

We first describe the main features of our construction in the special
case of cyclic double points and then in general. The situation for the
$A_{n-1}-$singularity is extremely simple. It can be described by the linear
action on $\mathbb{C}^{2}$ of the subgroup $C_{n,n-1}\subset SL$ $(2, \mathbb{C})$ which is generated
by the diagonal matrix diag $(\zeta_{n}, \zeta_{n}^{-1})$ . Since $u^{n}$ , $uv$ , $v^{n}$ are generating
polynomials of the invariant ring $\mathbb{C}[u, v]^{C_{n}}rl-1$ , the singularity is given
by the equation

$x_{0}x_{2}=x_{1}^{n}$ in $\mathbb{C}^{3}$

To find a nice family $\mathcal{Y}\rightarrow T$ we replace the polynomial on the righthand
side with a generic product of linear factors:

$(*)$ $x_{0}x_{2}=(x_{1}+t_{1})\cdot\ldots\cdot(x_{1}+t_{n})$ .

Interpreting this equation as giving a hypersurface $\mathcal{Y}\subset \mathbb{C}^{3}\times \mathbb{C}^{n}$ , the
projection to the second factor $T=\mathbb{C}^{n}$ yields an $n$-parameter defor-
mation $\mathcal{Y}\rightarrow T$ of $X_{n,n-1}$ on which the symmetric group C5 $n$ on $n$

symbols acts. Dividing out the action of $\mathfrak{S}_{n}$ , we get the deformation
$(**)x_{0}x_{2}=x_{1}^{n}+s_{1}x_{1}^{n-1}+\cdots+s_{n}$ , $(s_{1}, \ldots, s_{n})\in S=\mathbb{C}^{n}$

where $s_{j}=s_{j}(t_{1}, \ldots, t_{n})$ denotes the $j^{th}$ elementary symmetric func-
tion in the elements $t_{1}$ , $\ldots$ , $t_{n}$ , $e$ . $g$ . $s_{1}=t_{1}+\cdots+t_{n}$ , $\ldots$ , $s_{n}=$

$t_{1}\cdot\ldots\cdot t_{n}$ . It is well-known that restriction of $(*)$ to the hyper-
plane $H=\{t_{1}+\cdots+t_{n}=0\}$ gives the (minimal) versal deformation
$x_{0}x_{2}=x_{1}^{n}+s_{2}x_{1}^{n-2}+$ – $+s_{n}$ , and it is easily checked that the sta-
bilizer subgroup of C5 $n$ on $H$ is isomorphic to $\mathfrak{S}_{n-1}$ , the Weyl group
of $A_{n-1}$ -type playing here the role of the monodromy group.
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The lesson to be learned by this example is not to try to construct
a minimal family from the beginning. In fact, our base space $T_{n,q}$ for
general cyclic quotients $X_{n,q}$ will be too large; but it is canonically
a product of vector spaces, and minimizing the family means just to
restrict to hyperplanes as above in some or all of these vector spaces.

We now explain our Ansatz. We make the leading equations com-
pletely generic in a fully symmetric way by taking the risk to not getting
the minimal family (former attempts sacrificed the symmetry because
of minimality and got lost in a not manageable mess of unnecessary
conditions). To be more precise, we start with equations of type

$x_{0}(x_{2}+t_{2}^{(r)})=(x_{1}+t_{1}^{(1)}).(x_{1}+t_{1}^{(2)})\cdot\ldots\cdot(x_{1}+t_{1}^{(a_{1})})=:X_{1}^{(a_{1})}$ ,

$(x_{1}+t_{1}^{(\ell)})(x_{3}+t_{3}^{(r)})$ $=$ $(x_{2}+t_{2}^{(1)})\cdot\ldots\cdot(x_{2}+t_{2}^{(a_{2})})=X_{2}^{(a_{2})}$ ,

.$\cdot$

.

$(x_{r-2}+t_{r-2}^{(\ell)})(x_{r}+t_{r}^{(r)})$ $=$
$X_{r-1}^{(a_{\gamma-1})}$ ,

$(x_{r-1}+t_{r-1}^{(\ell)})x_{r+1}$ $=$
$X_{r}^{(a_{\tau})}$

Here, of course, the upper indices (r) and $(\ell)$ are standing for “right”
and “left” (not to be confused with the numbers $r$ and $p$ ). For inductive

reasons one even should $x_{0}$ and $x_{r+1}$ replace by $x_{0}+t_{0}^{(\ell)}$ an$dx_{r+1}+$

$t_{r+1}^{(r)}$ , resp. In order to minimalize we have later to put again $t_{0}^{(\ell)}=$

$t_{r+1}^{(r)}=0$ and $\sum_{k=1}^{a_{j}}t_{j}^{(k)}=0$ , $j=1$ , $\ldots$ , $r$ . Concerning the Weyl
group or monodromy group, we introduce $W:=W_{1}\times\cdots\times W_{r}$ , where
$ W_{j}\cong$ C5

$a_{j}$
denotes the symmetric group on $a_{j}$ elements acting on the

variables $t_{j}^{(1)}$ , $\ldots$ , $t_{j}^{(a_{j})}$ by permutation (and on the others including

$t_{j}^{(r)}$ , $t_{j}^{(\ell)}$ , if existing, trivially).
Our goal is to construct a $W-$invariant deformation of $X_{n,q}$ over a

subspace of the vector space of all $t$-parameters. In order to do so, we
follow formally for all $r$-chains $7\leq\underline{a}$ the “pattern” of the format $\nabla_{\underline{k}}$ .

This leads to meromorphic equations. More precisely, it will turn out
that to each $\underline{k}$ there correspond further $r$-tuples $\underline{\lambda}=$ ( $A_{1}$ , $\ldots$ , A $r$ ), $\underline{\rho}=$

$(\rho_{1}, \ldots, \rho_{r})$ with A$r=0$ , $\rho_{1}=0$ independently of $\underline{a}$ such that the last
equation becomes

$(x_{0}+t_{0}^{(\ell)})(x_{r+1}+t_{r+1}^{(r)})=\frac{X_{1}^{(a_{1})\alpha_{1}}}{(x_{1}+t_{1}^{(\ell)})^{\lambda_{1}}}$ . $\frac{X_{2}^{(a_{2})\alpha_{2}}}{(x_{2}+t_{2}^{(\ell)})^{\lambda_{2}}(x_{2}+t_{2}^{(r)})^{\rho_{2}}}$ .

$X_{r-1}^{(a_{\tau-1})\alpha}’-1$ $X_{r}^{(a,)\alpha_{j}}$

$\ldots$

$\cdot\overline{(x_{r-1}+t_{r-1}^{(\ell)})^{\lambda_{\tau-1}}(x_{r-1}+t_{r-1}^{(r)})^{\rho,-1}}$

.
$\overline{(x_{r}+t_{r}^{(r)})^{\rho},}$
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We now put

$t_{1}^{(\ell)}=t_{1}^{(1)}=\cdots=t_{1}^{(\lambda_{1})}$ and $t_{r}^{(r)}=t_{r}^{(1)}=\cdots=t_{r}^{(\rho_{\Gamma})}$

or correspondingly with all other combinations of equations we get by
the action of $W_{1}\times\cdots\times W_{r}$ on the righthand side. In the middle terms

$2\leq j\leq r-1$ , we set $t_{j}^{(r)}=t_{j}^{(\ell)}=t_{j}^{(1)}=\cdots=t_{j}^{(\lambda_{j}+\rho_{j})}$ or etc. for

$\alpha_{j}=1$ ;for $\alpha_{j}>1$ , we can choose $t_{j}^{(r)}$ an $dt_{j}^{(\ell)}$ independently as
before.

It is easily seen that all equations of type $\nabla_{\underline{k}}$ , not only the last one,

are then in fact holomorphic on the corresponding linear subspaces since
the exponents A $j$ and $\rho_{j}$ satisfy sufficiently good properties.

\S 4. The main result

By the construction of the preceding section, we can attach to any
cyclic quotient surface singularities $X=X_{n,q}$ a (reduced) subspace

$T$ $=T_{n,q}\subset \mathbb{C}^{N}$ $N$ $=N_{n,q}$ ,

consisting of a huge bunch of linear subspaces on which a subgroup
$W=W_{n,q}$ of the symmetric group C5 $N$ acts in a canonical way such
that the following is satisfied (for details, see [6]).

i) On each component $T’$ of $T$ there lives a canonical deformation

1’ of $X$ ;

$ii)$ for two such components $T’$ , $T’’$ these deformations $\mathcal{Y}’$ , $\mathcal{Y}^{JJ}$

coincide on the intersection $T’\cap T^{JJ}$ thus defining a deformation

$\mathcal{Y}=y_{n,q}=\cup \mathcal{Y}’\rightarrow T$ ,

$iii)W$ acts equivariantly in a canonical way on $\mathcal{Y}\rightarrow T$ ;
$iv)$ if $W’=W_{n,q}’$ denotes the stabilizer subgroup of $W$ on a com-

ponent $T’$ of $T$ , then $W’$ acts as a reflection group such that

$S’=T’/W’$

is a smooth component of $S:=T/W$ , and $W’$ acts also on
$\mathcal{Y}’=\mathcal{Y}|T’\rightarrow T’$ equivariantly, inducing a deformation $\mathcal{X}’=$

$\mathcal{Y}’/W’\rightarrow T’/W’=S’$ ;

v) each component $S’$ is a component of the (reduced) base space
of $X_{n,q}$ , and all of these appear precisely once such that $\mathcal{X}\rightarrow$

$S:=T/W$ is the (reduced) versal deformation of $X_{n,q}$ .
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Remarks. 1. If the exponents $a_{j}$ are big enough, the base space of the
versal deformation of $X_{n,q}$ is stable, $i$ . $e$ . a product of a fixed space,
depending only on the embedding dimension, with a smooth factor, as
is well-known by the work of THEO DE JONG and DUCO VAN STRATEN
[10] (the conditions $a_{j}\geq r-1$ , $j=1$ , $\ldots$ , $r$ , should suffice). Hence, in
these cases we have the maximal number of irreducible components.
2. On each component $\mathcal{Y}’$ , the quotient mapping $\mathcal{Y}’\rightarrow \mathcal{Y}’/W’=\mathcal{X}’$ is
the monodromy covering of $\mathcal{X}’$ in the sense of BEHNKE and CHRISTO-
PHERSEN [4]. Hence one may call the family $\mathcal{Y}\rightarrow T$ the monodromy
covering of the versal deformation $\mathcal{X}\rightarrow S$ with mono $d$romy group $W$ .

It is quite unclear to which extend the existence of such a family is a
special feature of the cyclic quotient singularities only.
3. The highly symmetric “Ansatz” which is leading to our family is also
interesting and promising with respect to other aspects of (cyclic) quo-

tient surface singularities. It should, $e$ . $g$ . help to put the toric structures
on the components together in an intelligent manner.

\S 5. Embedded components

With his equations, Brohme was able to carry out some calcula-
tions with Singular; $e$ . $g$ . for $e=7$ and the (generic) exponents
(4, 4, 4, 4, 4), there are 11 extra embedde $d$ components in addition to
the 14 reduced ones, 8 of them “supported” on the Artin component, 3
on other components of highest dimension. For smaller exponents there
are in general fewer embedded components. It turns out that the result
has a combinatorial description, too. One has to regard the following
5-chains:

(2, 2, 2, 2, 2),

(1, 3, 2, 2, 2), (3, 1, 3, 2, 2), (2, 3, 1, 3, 2), (2, 2, 3, 1, 3), (2, 2, 2, 3, 1),

(3, 2, 2, 2, 2), (2, 3, 2, 2, 2), (2, 2, 3, 2, 2), (2, 2, 2, 3, 2), (2, 2, 2, 2, 3).

Then embedded components correspond to chains which are smaller than
the sequence of the $a_{j}$ and are supported (on the monodromy covering)
on easily describable linear subspaces of nonembedded components.
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Moduli as algebraic spaces

Georg Schumacher

Abstract.

We give a general criterion for the existence of a coarse moduli
space as an algebraic space.

\S 1. Introduction

Given the class of inhomogeneously polarized, projective manifolds
over $\mathbb{C}$ , whose Hilbert polynomial is fixed, Matsusaka’s big theorem en-
sures the boundedness of the corresponding moduli functor so that a
coarse moduli space arises from an open subscheme of a certain Hilbert
scheme. Mumford proved in [7, p. 217 $ff.$ ] that a coarse moduli space for
non-uniruled manifolds exists and carries the structure of an algebraic
space over $\mathbb{C}$ under the additional assumption that the automorphism
groups of all objects are finite. Viehweg extended in [16, Theorem 9.16]
the proof that the quotient of a scheme by an equivalence relation is an
algebraic space, to those equivalence relations, whose equivalence classes
are equidimensional. In this note, we show that in moduli theoretic sit-
uations the equidimensionality follows automatically.

\S 2. Fibered groupoids

In this section, we provide the formal framework. We denote by
$p$ : $F\rightarrow$ A a fibered groupoid in the sense of Grothendieck (categorie
cofibr\‘e en groupoides, $[1, 9])$ . In our case A shall denote either the
category A $c$ of complex spaces or the category A $s$ of schemes over $\mathbb{C}$

(separated and of finite type). By definition $ p:F\rightarrow$ A is characterized
by the following properties.

(i) For any morphism $g$ : $R$ $\rightarrow S$ in A and any $a\in Obj(A)$ over
$S$ there is a $g’$ : $b\rightarrow a$ in $F$ with $p(g^{J})=g$ . The object $b$ is
sometimes denoted by $g^{*}a$ or $a\times_{S}R$ .

Received April 17,2002.
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(ii) Let $\alpha$ : $a\rightarrow c$ and $\beta$ : $b\rightarrow c$ be morphisms in $F$ such that there
exists a morphism $\varphi$ : $p(a)\rightarrow p(b)$ in A with $p(\beta)\circ\varphi=p(\alpha)$ .

Then there exists a unique morphism $\gamma$ : $a\rightarrow b$ over $\varphi$ such that
$\beta o\gamma=\alpha$ .

Property (ii) justifies the notation in (i).
Let $S$ be in $Obj(A)$ , then $F(S)$ is by definition the category whose

objects are objects in $F$ , which are mapped to $S$ under $p$ with morphisms
over $id_{S}$ . Passing to direct limits, one can assign to any fibered groupoid
over the category of complex spaces a fibered groupoid over the category
of complex space germs.

For any fibered groupoid there is an induced moduli functor $\mathfrak{M}$ :

A $\rightarrow$ (Sets) where $\mathfrak{M}(S)=\overline{F(S)}$ is the set of isomorphism classes
from $F(S)$ , and where morphisms are defined in the obvious way. It is
necessary in most cases to assign a sheafified moduli functor $\mathcal{M}$ to $\mathfrak{M}$ ,

where the topology is the classical or \’etale topology depending on the
choice of A).

For the category of complex spaces A $c$ a coarse moduli space $M$ is
a morphism of functors

(I:A $\rightarrow M$

with the following property

(i) for any complex space $N$ and any morphism of functors $F$ : $\mathcal{M}\rightarrow$

$N$ there exists a unique morphism $f$ : $J/I\rightarrow N$ such that $f\circ\Phi=$

$F$ .

(ii) the map $\Lambda 4$ (Spec(C))\rightarrow M(Spec(C)) is bijective.

(Here the complex space $j\mathfrak{h}^{/}I$ is identified with $Hom$(-, $M$ )).
If A $=$ A $s$ ’ a coarse moduli space will be an algebraic space over

$\mathbb{C}$ : First to any scheme $X$ the functor $Hom(-, X)$ from the category of
affine schemes to the category of sets is assigned, inducing a sheaf of sets
with respect to the \’etale topology. The latter is by definition a $\mathbb{C}$-space.
An equivalence relation in the latter category is defined for all affine $U$

and defines a quotient presheaf, and the corresponding sheaf is finally
an algebraic space.

Let $ a_{0}\in$ $F(Spec(C))$ be given. Then $F_{a0}$ denotes the induced
fibered groupoid over the category of spaces with base point or space
germs, whose objects are morphisms $a_{0}\rightarrow a$ over $O\rightarrow S$ implying a rela-
tionship to deformation theory: The usual deformation functor $D_{a_{0}}$ from
the category of complex space germs to the category of sets is equal to
$D_{a_{t)}}(S)=F_{a_{()}}$ $(S)$ , where the latter denotes the set of isomorphy classes
of objects from $F_{a_{()}}(S)$ . Such deformation functors satisfy the axioms of
Schlessinger [10] automatically, if the following condition holds (cf. [14,
Lemma 2.6,2.7]):
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(D) For all $ a_{0}\in$ $F(Spec(C))$ there exists a semi-universal object in
$D_{a_{()}}$ over the category of complex spaces germs.

Let A $=$ A $c$ ’ and let $a$ , $ b\in$ $F(5)$ for some complex space $S$ . The
functor Isoms(a,$ b$ ) : (Complex spaces $/S$ ) $\rightarrow$ (Sets) assigns to any
complex space $R$ $\rightarrow S$ the set of isomorphisms $a\times_{S}R\rightarrow b\times_{S}R$ , and
for morphisms in the category of complex spaces over $S$ this functor
is defined in an obvious way. We shall assume below that any such
Isoms(a,$ b$ ) is representable by a complex space over $S$ . At the same
time, we consider the functor $Isom_{S}(a, b)$ for a fibered groupoid over
schemes. Because of the base change property, any such fibered groupoid
defines a fibered groupoid over the category of $\mathbb{C}-$spaces If Isoms(a,$ b$ )

is representable by a $\mathbb{C}-$scheme (for any $a$ , $b$ ), then the induced $\mathbb{C}-$space
represents the induced functor for $\mathbb{C}$-spaces.

Now we come to the typical situation of a fibered groupoid $ p:F\rightarrow$

A $s$ , which is the restriction of a fibered groupoid $p_{c}$ : $F_{c}\rightarrow$ A $c$ with $F$

being a subcategory of $F_{c}$ . Under the assumption that for all Artinian
schemes $S_{0}$ the category $F(S_{0})$ is a full subcategory of $F_{c}(S_{0})$ we call $p_{c}$

a comple $x$ fication of $p$ . Let $S$ be a $\mathbb{C}-$scheme and $a$ , $b\in Obj(F(S))$ and
let $I=Isoms(a, b)\rightarrow S$ represent the isomorphism functor. If follows
easily that the induced morphism of corresponding complex spaces pro-
vides a representation of the isom-functor for $F_{c}$ . We state the following
condition:

(Pr) For any $a$ , $b$ in $F$ with $p(a)=p(b)=S$ the functor $Isom_{S}(a, b)$ is
representable by a scheme $I=Isoms(a, b)\rightarrow S$ proper over $S$ .

Remark1. Let H be a scheme and $a\in F(H)$ , then $\psi$ : IsomHxH {ax
H, $H\times a)\rightarrow H\times H$ defines an equivalence relation on H.

We mention two technical conditions, which will be satisfied in our
applications.

(R1) The morphism $ p_{2}=pr_{2}\circ\psi$ : $Isom_{H\times H}(a\times H, H\times a)\rightarrow H$ is
smooth.

(R2) For $h\in H$ the morphism $\psi_{h}$ : $p_{2}^{-1}$ $(h)\rightarrow H\times$ $\{h\}$ induced by $\psi$

is smooth over its image.

Theorem 1. Let $ p:F\rightarrow$ A $s$ be a fibered groupoi $d$ uiith complexi-

fication $p_{c}$ : $F_{c}\rightarrow$ A $c$ ’ where semi-universal objects exist for the induced
$d$eformation functors. Suppose that the above condition (Pr) holds. As-
sume that for any $ a_{0}\in$ $F(Spec(C))$ there exists an object $a$ over a scheme
$H$ which induces a complete $d$eformation of $a_{0}$ such that also (Rl) and
(R2) hold for $a$ . Then there exists a coarse moduli space in the category

of algebraic spaces over C.
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We first show that $p_{c}$ possesses a coarse moduli space $M_{c}$ (in the
category of complex spaces). Observe that any object $a_{0}$ from $F$ over
Spec(C) is the restriction of some $b$ from $F$ such that the restriction of
$b$ to some classical open set induces a semi-universal deformation. This
fact, together with the representability of the deformation functor is
sufficient for the proof from $[12, 13]$ , (and [14] for the nonreduced case).

Let $ c\in$ $F(5)$ . We write Auts(c)= $Isom_{S}(c, c)$ . Let $S$ be connected,

and denote by $Aut_{S}^{0}(c)$ the connected component, which contains the
identity section.

Proposition1. The fibers of $Aut_{S}^{0}(c)\rightarrow S$ are complex Lie groups

of constant dimension.

Corollary 1. Under the above conditions any semi-universal de-

formation of $ a_{0}\in$ $F(Spec(C))$ is universal.

The proposition and the corollary follow like in [13] and [14, The-
orem 5.1] from the existence of a semi-universal deformation and the
properness assumption.

Now the theorem is a consequence of [16, Thm. 9.1] (cf. [7, App.
$5A.])$ .

\S 3. Applications to polarized varieties

Let $(X, \lambda_{X})$ be a projective manifold equipped with an inhomoge-
neous polarization $\lambda_{X}$ i.e. an ample divisor up to numerical equivalence,
we write A $X$ as $c_{1,\mathbb{R}}(L)$ for some ample line bundle $L$ . Let $ h\in$ $Q[T]$ with
$h(\mathbb{Z})\subset \mathbb{Z}$ , and consider those ( $X$ , A $x$ ) with $\chi(X, \mathcal{O}_{X}(L^{k}))=h(k)$ . Fam-
ilies of polarized projective manifolds with fixed $h$ define a groupoid
$p$ : $F\rightarrow$ A $s$ with complexification. Let $\mathcal{M}_{h}$ : A $ s\rightarrow$ (Sets) be the in-
duced sheafified moduli functor. Let $m>0$ satisfy the statement of
Matsusaka’s theorem [5]: For all such $X$ and $L$ (with given dimension,

and fixed Hilbert polynomial) the $m$-th powers $L^{m}$ are very ample, and
$H^{j}(X, O_{X}(L^{m}))=0$ for all $j>0$ . In particular, the linear system of all
sections of $L^{m}$ provides an embedding of $X$ into $\mathbb{P}_{N}$ , where $N=h(m)-1$ .

Denote by $\prime H$ $\subset Hi1b_{\mathbb{P}_{N}}^{h(mt)}$ the Zariski open subspace of all smooth
$ X\subset$ IF $N$ with Hilbert polynomial $h(m\cdot t)$ such that $\mathcal{O}_{X}(1)$ is divisible by
$m$ in Pic(X). (Assume that $\prime H$ is connected). The induced family $\mathcal{X}c-\rangle$

$\mathbb{P}_{N}\times H\rightarrow H$ over $H$ gives rise to the set-theoretic moduli space $M_{h}$ ,

which always carries a natural topology induced by the classical topology
on $\prime H$ . Let $\psi$ : $Isom_{H\times H}\prime(\mathcal{X}\times\gamma\{, ?\dagger \times \mathcal{X})\rightarrow?t\times H$ be the canonical
map. The necessary Hausdorff condition for $M_{h}$ is the properness of
$Im(\psi)\rightarrow H\times H$ with respect to the classical topology. A slightly stronger
condition is the properness of $\psi$ .
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Theorem 2. Suppose that $\psi$ : $Isom_{\mathcal{H}\times H}(\mathcal{X}\times H, \mathcal{H}\times \mathcal{X})\rightarrow H\times 7\{$

is proper. Then there exists a coarse moduli space, which is art algebraic
space over C.

We verify the assumptions of Theorem 1: The properness of the
isomorphism functor for any two given families of polarized projective
manifolds can be proved easily using Hilbert schemes, and properties
(R1) and (R2) follow like in [7] and [16]: (R1) follows from the Hilbert
scheme construction, and (R2) is essentially Proposition 1 (cf. also [14]).
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Prolongation of holomorphic vector fields
on a tube domain and its applications

Satoru Shimizu

Introduction

In general, in the study of the holomorphic equivalence problem for
complex manifolds, that is to say, the problem of investigating what
happens when two complex manifolds are biholomorphically equivalent,
it is one of standard ways to direct our attention to biholomorphic in-

variant objects. As a typical and good example of such objects, we have
holomorphic automorphism groups. In fact, when Poincar\’e showed that
a ball and a polydisk in $C^{2}$ are not biholomorphically equivalent, he
looked at their holomorphic automorphism groups, and showed that the
dimensions do not coincide. One of the foundations of observations like
this is the pioneer result of H. Cartan that the holomorphic automor-
phism group of a complex bounded domain has the structure of a Lie
group.

Now, when a holomorphic automorphism group has the structure of
a Lie group, what advantage do we have? It seems that one advantage is
that conjugacy theorems in Lie group theory can be applied. The con-
jugacy theorems are very powerful tools, and if they can be applied well,

splendid achievements are produced. But, in order to apply the conju-
gacy theorems, we need to know a lot about the Lie group structure of a
holomorphic automorphism group. So, since Lie algebra provides much
useful information about Lie group, we are led to turning our eyes to the
Lie algebra of complete holomorphic vector fields corresponding to the

Lie algebra of a holomorphic automorphism group. Then, in the process
of investigating such Lie algebras, we often come up against the prob-
lem of completeness, or the fundamental problem of judging whether a
vector field is complete or not. In general, a judgement on the com-
pleteness of a vector field is very difficult to deal with. Actually, given
a vector field, the problem of whether its integral curve is lengthened to

Received March 20, 2002
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infinity or not has complicated aspects as the problem of solutions of au-
tonomous systems in the theory of nonlinear oscillations. But, in some
geometric setting, there is a nice algebraic criterion on the completeness
of a vector field. In this article, we discuss such a criterion in the case
of holomorphic vector fields on a tube domain. Our objects of consid-
eration are polynomial vector fields on a tube domain $T_{\Omega}$ . We give a
method of determining higher degree complete polynomial vector fields
on $T_{\Omega}$ from the data on lower degree complete polynomial vector fields
on $T_{\Omega}$ , which we call prolongation. Furthermore, we give its applications
to the holomorphic equivalence problem for tube domains.

\S 1. Basic concepts and results on tube domains

We first recall some notation and terminology. An automorphism
of a complex manifold $M$ means a biholomorphic mapping of $M$ onto

itself. The group of all automorphisms of $M$ is denoted by Aut(M).

We denote by $GL(n, R)\ltimes C^{n}$ the subgroup of Aut(Cn) consisting of all
transformations of the form

$C^{n}\ni z\mapsto Az+\beta\in C^{n}$ ,

where $A\in GL(n, R)$ and $\beta\in C^{n}$ . Two complex manifolds are said to be
holomorphically equivalent if there is a biholomorphic mapping between
them. For a Lie group $G$ , we denote by $G^{o}$ the identity component of $G$

and by Lie $G$ the Lie algebra of $G$ . If $E=$ $\{\ldots\}$ is a subset of a vector
space $V$ over a field $F$ , the linear subspace of $V$ spanned by $E$ is denoted
by $E_{F}=\{\cdots\}_{F}$ .

We now recall basic concepts and results on tube domains. A tube
domain $T_{\Omega}$ in $C^{n}$ is a domain in $C^{n}$ given by $ T_{\Omega}=R^{n}+\sqrt{-1}\Omega$ , where
$\Omega$ is a domain in $R^{n}$ and is called the base of $T_{\Omega}$ . Clearly, each element
$\xi\in R^{7l}$ gives rise to an automorphism $\sigma_{\xi}\in$ Aut $(T_{\Omega})$ defined by

$\sigma_{\xi}(z)=z+\xi$ for $z\in T_{\Omega}$ .

Write $\Sigma=R^{n}$ . The additive group $\Sigma$ acts as a group of automorphisms
on $T_{\Omega}$ by

$\xi$ . $z=\sigma_{\xi}(z)$ for $\xi\in\Sigma$ and $z\in T_{\Omega}$ .

The subgroup of Aut(T\Omega ) induced by $\Sigma$ is denoted by $\Sigma_{T_{\zeta l}}$ . Note that if
$\varphi\in GL(n, R)\ltimes C^{n}$ , then $\varphi(T_{\Omega})$ is a tube domain in $C^{n}$ , and we have
$\varphi\Sigma_{T_{t1}\varphi}^{-1}=\Sigma_{T-}--$ , where $T---=\varphi(T_{\Omega})$ .

Consider a biholomorphic mapping $\varphi:T_{\Omega_{1}}\rightarrow T_{\Omega_{2}}$ between two tube
domains $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ in $C^{n}$ . Then, by what we have noted above and
[3, Section 1 Proposition], $\varphi$ is given by an element of $GL(n, R)\ltimes C^{n}$
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if and only if $\varphi$ is equivariant with respect to the $\Sigma_{-}$actions. Biholo-
morphic mappings between tube domains equivariant with respect to
the $\Sigma_{-}$actions may be considered as natural isomorphisms in the cate-
gory of tube domains. In view of this observation, we say that two tube
domains $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ in $C^{n}$ are affinely equivalent if there is a biholo-
morphic mapping between them given by an element of $GL(n, R)\ltimes C^{n}$ .

If the convex hull of the base $\Omega$ of a tube domain $T_{\Omega}$ in $C^{n}$ contains
no complete straight lines, then $T_{\Omega}$ is holomorphically equivalent to a
bounded domain in $C^{n}$ and, by a well-known theorem of H. Cartan,
the group Aut $(T_{\Omega})$ of all automorphisms of $T_{\Omega}$ forms a Lie group with
respect to the compact-open topology. The Lie algebra $g(T_{\Omega})$ of the Lie
group Aut $(7_{\Omega})$ can be identified canonically with the finite-dimensional
real Lie algebra consisting of all complete holomorphic vector fields on
$T_{\Omega}$ . Throughout this article, we are concerned with tube domains whose
bases have the convex hulls containing no complete straight lines.

Let $z_{1}$ , $\cdots$ , $z_{n}$ be the complex coordinate functions of $C^{n}$ and, for
$j=1$ , $\cdots$ , $n$ , we write $\partial_{j}=\partial/\partial z_{j}$ . Let $D$ be a domain in $C^{n}$ . Then
every holomorphic vector field $Z$ on $D$ can be written in the form

$Z=\sum_{j=1}^{n}f_{j}(z)\partial_{j}$ ,

where $f_{1}(z)$ , –, $f_{n}(z)$ are holomorphic functions on $D$ . The vector field
$Z$ is called a polynomial vector field if $f_{1}(z)$ , $\cdots$ , $f_{n}(z)$ are polynomials
in $z_{1}$ , $\cdots$ , $z_{n}$ . The maximum value of the degrees of the polynomials
$f_{1}(z)$ , $\cdots$ , $f_{n}(z)$ is called the degree of $Z$ . The following result is funda-
mental in our study.

Structure Theorem ([3, Section 2 Theorem]). To each tube do-
main $T_{\Omega}$ in $C^{n}$ whose base $\Omega$ has the convex hull containing no com-
plete straight lines, there is associated a tube domain $T_{\overline{\Omega}}$ which is affinely
equivalent to $T_{\Omega}$ such that $g(T_{\overline{\Omega}})$ has the direct sum decomposition

$g(T_{\overline{\Omega}})=\mathfrak{p}+t$

for which

$\mathfrak{p}=$ { $X\in g(T_{\overline{\Omega}})|X$ is a polynomial vector field},

$e$ $=\sum_{i=1}^{\Gamma}\{E_{i}^{+}, E_{i}^{-}\}_{R}$ ,

$E_{i}^{\pm}=e^{\pm z_{j}}(\partial_{i}\pm\sum_{j=r+1}^{n}\sqrt{-1}a_{i}^{j}\partial_{j})$ , $i=1$ , $\cdots$ , $r$ ,
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where $r$ is an integer betw een 0 and $n$ and $a_{i}^{J}$ , $i=1$ , $\cdots$ , $r$ , $j=r+$
1, \cdots , n, are real constants.

The integer $r$ is called the exponential rank of the tube domain $T_{\Omega}$ ,

and is denoted by $e(T_{\Omega})$ . This is well-defined, because it is readily veri-
fied that if two tube domains $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are affinely equivalent, then
we have $e(T_{\Omega_{1}})=e(T_{\Omega_{2}})$ . When a tube domain $T_{\Omega}$ satisfies $e(T_{\Omega})=0$ ,

we call $T_{\Omega}$ a tube domain with polynomial infinitesimal automorphisms.
Our main theme in this article is a study of tube domains with

polynomial infinitesimal automorphisms. This is motivated by the holo-
morphic equivalence problem for tube domains, which we will explain
below.

In terms of the notion of the affine equivalence of tube domains, the
holomorphic equivalence problem for tube domains may be formulated
as the problem of studying the connection between the two equivalences
- the holomorphic equivalence and the affine equivalence - of tube do-
mains. It is clear that if two tube domains in $C^{n}$ are affinely equiva-
lent, then they are holomorphically equivalent. What we have to ask is
whether the converse assertion holds or not:

Problem. If two tube domains $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ in $C^{n}$ are holomorphi-
cally equivalent, then are they affinely equivalent?

When $\Omega_{1}$ and $\Omega_{2}$ are convex cones in $R^{n}$ , an affirmative answer
is given (see Matsushima [1]). On the other hand, when $\Omega_{1}$ and $\Omega_{2}$

are arbitrary domains in $R^{n}$ whose convex hulls contain no complete
straight lines, there is a simple counter example. In fact, consider the
upper half plane

$T_{(0,\infty)}=\{x+\sqrt{-1}y\in C|x\in R, y>0\}$

and the strip

$T_{(0,\pi)}=\{x+\sqrt{-1}y\in C|x\in R, 0<y<\pi\}$

in the complex plane. Then the tube domains $T_{(0,\infty)}$ and $T_{(0,\pi)}$ in $C$ are
holomorphically equivalent, but not affinely equivalent. We can clarify
what causes a phenomenon like this by making use of the Structure
Theorem stated above.

Let $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ be tube domains in $C^{n}$ whose bases $\Omega_{1}$ and $\Omega_{2}$

have the convex hulls containing no complete straight lines. Since the
exponential rank of a tube domain is an affine invariant, it is natural to
reformulate the holomorphic equivalence problem for tube domains as
follows:
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Problem $(*)$ . If $e(T_{\Omega_{1}})=e(T_{\Omega_{2}})$ and if $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are holomor-
phically equivalent, then are $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ affinely equivalent?

The counter example shown above corresponds to the case where
$e(T_{\Omega_{1}})\neq e(T_{\Omega_{2}})$ , because $e(T_{(0,\infty)})=0$ and $e(T_{(0,\pi)}.)=1$ . On the
other hand, when $\Omega_{1}$ and $\Omega_{2}$ are bounded domains in $R^{n}$ , it is shown
([5]) that if $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are holomorphically equivalent, then we have
$e(T_{\Omega_{1}})=e(T_{\Omega_{2}})$ , and $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are affinely equivalent.

Specifying Problem $(*)$ , we consider the following problem which
has fundamental importance:

Problem $(**)$ . If $e(T_{\Omega_{1}})=e(T_{\Omega_{2}})=0$ and if $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are
holomorphically equivalent, then are $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ affinely equivalent?

When $\Omega_{1}$ and $\Omega_{2}$ are convex cones in $R^{n}$ , we have $e(T_{\Omega_{1}})=e(T_{\Omega_{2}})=$

$0$ (see [1]), and an affirmative answer to Problem $(**)$ is given, as stated
above. For an attempt to solve Problem $(**)$ in the case where $T_{\Omega_{1}}$

and $T_{\Omega_{2}}$ are arbitrary tube domains with polynomial infinitesimal au-
tomorphisms, we need a further study of the structure of $g(T_{\Omega})$ . The
Prolongation Theorem given in the next section enables us to make a
more detailed analysis of the structure of 9 $(T_{\Omega})$ and, applying this, to-
gether with the classification result in [6] and so on, we can give an
affirmative answer to Problem $(**)$ in various cases [4], [8], [9].

\S 2. Prolongation of complete polynomial vector fields on a
tube domain and tube domains with polynomial infinitesi-
mal automorphisms

Let $T_{\Omega}$ be a tube domain in $C^{n}$ whose base $\Omega$ is a convex domain in
$R^{n}$ containing no complete straight lines. For a polynomial vector field
$Z$ on $T_{\Omega}$ of degree 2 we write

$Z=\sum_{k=0}^{2}(X^{(k)}+\sqrt{-1}Y^{(k)})$ ,

where $X^{(k)}$ , $Y^{(k)}$ are polynomial vector fields whose components with
respect to $\partial_{1}$ , $\cdots$ , $\partial_{n}$ are homogeneous polynomials in $z_{1}$ , $\cdots$ , $z_{n}$ with
real coefficients of degree $k$ , and set

$Z_{[b]}=X^{(2)}+\sqrt{-1}Y^{(1)}$ ,

$Z_{[a]}=X^{(1)}+\sqrt{-1}Y^{(0)}$ ,

$Z_{[s]}=X^{(0)}$ .
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Note that $Z=Z_{[s]}+Z_{[a]}+Z_{[b]}+\sqrt{-1}Y^{(2)}$ . Our criterion on the com-
pleteness of $Z$ is given in the following theorem.

Prolongation Theorem ([7, Section 2, Prolongation Theorem]).
Let $Z$ be a polynomial vector field on $T_{\Omega}$ of degree 2. Then $Z$ is complete
on $T_{\Omega}$ if and only if one has $Y^{(2)}=0$ , and the vector fields $[\partial_{i}, Z]$ , $i=$

$1$ , $\cdots$ , $n$ , and $Z_{[a]}$ are all complete on $T_{\Omega}$ . Consequently, if $Z$ is complete
on $T_{\Omega}$ , then $Z_{[b]}$ is complete on $T_{\Omega}$ . Also, if $Z=Z_{[b]}$ and if the vector

field$s[\partial_{i}, Z]$ , $i=1$ , $\cdots$ , $n$ , are all complete on $T_{\Omega}$ , then $Z$ is complete
on $T_{\Omega}$ .

The proof of this theorem is based on the fact that every infinitesi-
mal isometry on a complete Riemannian manifold is complete. It follows
from this fact that $Z$ is complete on $T_{\Omega}$ if and only if the coefficient func-
tions of $Z$ satisfy the system of certain linear partial differential equa-
tions, and it is represented as the condition stated in the Prolongation
Theorem.

Now, when we are discussing tube domains $T_{\Omega}$ with polynomial
infinitesimal automorphisms, it is one of the key points that a polynomial
gives the Taylor expansion around the origin of the function it represents.
In what follows, we give some fundamental results on 9 $(T_{\Omega})$ obtained by
combining the Prolongation Theorem above with this fact.

2. 1. General observations on an isotropy subalgebra of
$\mathfrak{g}(T_{\Omega})$

Let $T_{\Omega}$ be a tube domain in $C^{n}$ whose base $\Omega$ has the convex hull
containing no complete straight lines. We may assume without loss of
generality that $T_{\Omega}$ contains the origin of $C^{n}$ . Every element $Z$ of $g(T_{\Omega})$

has the Taylor expansion around the origin given as

$Z=\sum_{k=0}^{\infty}Z^{((k))}$ ,

where $Z^{((k))}$ is a polynomial vector field whose components with respect
to $\partial_{1}$ , $\cdots$ , $\partial_{n}$ are homogeneous polynomials in $z_{1}$ , $\cdots$ , $z_{n}$ of degree $k$ . We
write

$Z^{((1))}=\sum_{j=1}^{n}(\sum_{i=1}^{n}c_{ji}(Z)z_{i})\partial_{j}$ ,

where $c_{ji}(Z)$ , $j$ , $i=1$ , $\cdots$ , $n$ , are complex constants. Let $t$ denote the
isotropy subalgebra of $g(T_{\Omega})$ at the origin. Then $\mathfrak{p}$ consists of those

elements $Z$ of 9 $(T_{\Omega})$ which satisfy $Z^{((0))}=0$ . An application of H.
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Cartan’s uniqueness theorem [2, Chapter 5, Proposition 1] yields the
following result.

Lemma 1. If $Z$ is an element of $t$ and if $Z^{((1))}=0$ , then $Z=0$ .

This result implies that the linear representation of $e$ given by

$f$ $\ni Z\mapsto(c_{ji}(Z))\in g((n, C)$

is faithful, where $g\mathfrak{l}(n, C)$ denotes the set of complex $n$ by $n$ matrices
viewed as the Lie algebra of $GL(n, C)$ . We recall here that $T_{\Omega}$ has the
Bergman metric $ds_{T_{l}}^{2}‘$ . Using the invariance of $ds_{T_{fl}}^{2}$ under the action of
$\Sigma_{T_{J1}}$ , after a suitable real linear change of coordinates we may assume
that the holomorphic vector fields $\partial_{1}$ , $\cdots$ , $\partial_{n}$ form an orthonormal basis
at the origin with respect to $ds_{T_{\zeta l}}^{2}$ . Then the matrix $(c_{ji}(Z))$ is a skew-

Hermitian matrix for every element $Z$ of $e$ . Indeed, this follows from the
fact that every automorphism of $T_{\Omega}$ is an isometry with respect to $ds_{T_{\Omega}}^{2}$ .

2.2. Consequences of the Prolongation Theorem

Let $T_{\Omega}$ be a tube domain in $C^{n}$ whose base $\Omega$ is a convex domain
in $R^{n}$ containing no complete straight lines, and suppose further that
$e(T_{\Omega})=0$ , or 9 $(T_{\Omega})$ consists of all polynomial vector fields which are
complete on $T_{\Omega}$ . Then every element $Z$ of $g(T_{\Omega})$ can be written in the
form

$(\#)$ $Z=\sum_{k=0}^{\infty}Z^{(k)}$ ,

where $Z^{(k)}$ is a polynomial vector field whose components with respect
to $\partial_{1}$ , $\cdots$ , $\partial_{n}$ are homogeneous polynomials in $z_{1}$ , $\cdots$ , $z_{n}$ of degree $k$ .

Note that, in $(\#)$ , only finitely many $Z^{(k)}$ ’s are not equal to zero. We
may assume without loss of generality that $T_{\Omega}$ contains the origin, and
that $\partial_{1}$ , $\cdots$ , $\partial_{n}$ form an orthonormal basis at the origin with respect to
the Bergman metric $ds_{\tau_{\sigma\iota}}^{2}$ . Then $(\#)$ gives the Taylor expansion of $Z$

around the origin. For $k=0,1$ , 2, $\cdots$ , we write

$Z^{(k)}=X^{(k)}+\sqrt{-1}Y^{(k)}$ ,

where $X^{(k)}$ , $Y^{(k)}$ are polynomial vector fields whose components are ho-
mogeneous polynomials with real coefficients of degree $k$ . We define real
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vector subspaces $q,\epsilon$ , $\sigma_{*}$ , $b$ of $g(T_{\Omega})$ by

$q=\{Z\in g(T_{\Omega})|Z=\sum_{k=0}^{2}Z^{(k)}=\sum_{k=0}^{2}(X^{(k)}+\sqrt{-1}Y^{(k)})\}$ ,

$\epsilon=\{\partial_{1}, \cdots, \partial_{n}\}_{R}$ ,

$\sigma_{*}=\{Z\in g(T_{\Omega})|Z=X^{(1)}+\sqrt{-1}Y^{(0)}\}$ ,

$b$ $=\{Z\in \mathfrak{g}(T_{\Omega})|Z=X^{(2)}+\sqrt{-1}Y^{(1)}\}$ .

The Prolongation Theorem shows that $q$ has the direct sum decomposi-
tion

$q=5+\alpha_{*}+b$ .

Note that $b$ is contained in the isotropy subalgebra $t$ of $g(T_{\Omega})$ at the
origin. The following result on $b$ is useful for a further study of the
structure of $g(T_{\Omega})$ .

Lemma 2 ([7, Section 4, Lemma 4.2]). Let $Z=X^{(2)}+\sqrt{-1}Y^{(1)}$

be an element of $b$ and write

$Y^{(1)}=\sum_{j=1}^{n}(\sum_{i=1}^{n}b_{ji}(Z)z_{i})\partial_{j}$ ,

where $b_{ji}(Z)$ , $j$ , $i=1$ , $\cdots$ , $n$ , are $rea/$ constants. Then the following hold.

i) $X^{(2)}=0$ if and only if $Y^{(1)}=0$ .

$ii)$ The $rea/$ $n$ by $n$ matrix $(b_{ji}(Z))$ is symmetric for every element
$Z$ of $b$ .

As a consequence of $ii$ ) of Lemma 2 it should be observed that,

when $b$ is an abelian subalgebra of $g(T_{\Omega})$ , the matrices $(b_{ji}(Z))$ , $Z\in b$ ,

are simultaneously diagonalizable by a suitable orthogonal change of
coordinates.

\S 3. An application of Lie group theory to the holomorphic
equivalence problem for tube domains

The following result plays an important role in the study of the
equivalence of Siegel domains.

Conjugacy Theorem (cf. Matsushima [1]). Any two maximal
triangular subalgebras of a real Lie algebra are conjugate to each other
under an inner automorphism.
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As a consequence of this result, we obtain a useful observation on an
application of Lie group theory to the holomorphic equivalence problem
for tube domains. Let $\mathfrak{g}_{1}$ and $g_{2}$ be two real Lie algebras. Consider a
subalgebra $\epsilon_{1}$ of $g_{1}$ sucu that $adX$ is nilpotent on $g_{1}$ for every $X\in\sigma_{1}$ .

Then, in view of Engel’s theorem, there exists a maximal triangular
subalgebra $t_{1}$ of $g_{1}$ containing $\epsilon_{1}$ . Similarly, consider a subalgebra $\epsilon_{2}$

of $g_{2}$ sucu that $adX$ is nilpotent on $g_{2}$ for every $X\in\epsilon_{2}$ , and let $t_{2}$

be a maximal triangular subalgebra of $g_{2}$ containing $\epsilon_{2}$ . Note that $\epsilon_{1}$ is
contained in the nilradical $\uparrow 11$ of $t_{1}$ , while $\epsilon_{2}$ is contained in the nilradical
$\mathfrak{n}_{2}$ of $t_{2}$ . Suppose now that there is a Lie algebra isomorphism (I: $g_{1}\rightarrow$

$g_{2}$ between $g_{1}$ and $g_{2}$ . Since $\Phi(t_{1})$ is a maximal triangular subalgebra
of $g_{2}$ , it follows from the Conjugacy Theorem that there exists an inner
automorphism $\sigma$ of $\mathfrak{g}_{2}$ such that $\sigma(\Phi(t_{1}))=t_{2}$ . Since $\sigma(\Phi(11_{1}))=\uparrow 12$ , we
see that $\sigma$ (I $(g_{1})$ ) and $\epsilon_{2}$ are subalgebras of $\iota\tau_{2}$ .

To apply the above observation to our study, let $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ be two
tube domains in $C^{n}$ with polynomial infinitesimal automorphisms, and
set $g_{1}=g(T_{\Omega_{1}})$ and $g_{2}=g(T_{\Omega_{2}})$ . Since $g(T_{\Omega_{1}})$ consists of polynomial
vector fields, it follows that $adX$ is nilpotent on $g(T_{\Omega_{1}})$ for every element
$X$ of the subalgebra Lie $\Sigma_{T_{\Omega_{1}}}$ of $\mathfrak{g}(T_{\Omega_{1}})$ corresponding to $\Sigma_{T_{11_{1}}}$ . Therefore
we can set $\epsilon_{1}=$ Lie $\Sigma_{T_{\zeta 2_{1}}}$ . Similarly, we can set $\epsilon_{2}=$ Lie $\Sigma_{T_{\Omega_{2}}}$ . Suppose

now that $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are holomorphically equivalent. The above obser-
vation shows that we can find a solvable subalgebra $t_{1}$ of $g_{1}$ containing $\mathfrak{s}_{1}$ ,

a solvable subalgebra $t_{2}$ of $g_{2}$ containing $\epsilon_{2}$ , and a biholomorphic map-
ping $\psi$ : $T_{\Omega_{1}}\rightarrow T_{\Omega_{2}}$ between $T_{\Omega_{1}}$ and $T_{\Omega_{\sim}}$, such that $\Psi(t_{1})=t_{2}$ , where
$\Psi$ is a Lie algebra isomorphism of $\mathfrak{g}_{1}$ onto $g_{2}$ given as the differential of
the Lie group isomorphism Aut $(T_{\Omega_{1}})\ni g\mapsto\psi\circ g\circ\psi^{-1}\in$ Aut $(T_{\Omega_{2}})$ .

Note that both $\Psi(g_{1})$ and $\epsilon_{2}$ are $n$-dimensional abelian subalgebras of
the nilradical of the solvable Lie algebra $t_{2}$ , and that if $\Psi(\epsilon_{1})$ and $\epsilon_{2}$

are conjugate under an inner automorphism of $g_{2}$ , then we can conclude
by [3, Section 1, Proposition] that $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are affinely equivalent.

Thus the problem reduces to the investigation of certain solvable Lie
algebras, and, as one direction to complete the story of our study, it
seems to be important to study tube domains with solvable groups of
automorphisms.

\S 4. A class of tube domains with solvable groups of automor-
phisms

Among tube domains with polynomial infinitesimal automorphisms,
tube domains $T_{\Omega}$ whose bases $\Omega$ are convex cones are characteristic in
the point that they have the property that if Aut $(T_{\Omega})$ is solvable, then
the identity component of Aut $(T_{\Omega})$ necessarily consists of affine transfer-
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mations. On the other hand, when $\Omega$ is an arbitrary convex domain in
$R^{n}$ containing no complete straight lines, there is a tube domain $T_{\Omega}$ in
$C^{n}$ such that Aut $(T_{\Omega})$ is solvable, but contains nonaffine automorphism,
as the following theorem shows.

Theorem 1. Let $T_{\Omega}$ be a tube $d$omain in $C^{n}$ whose base $\Omega$ is
a convex $d$omain in $R^{n}$ containing no complete straight lines and let
$n$ $\geq 2$ . Assume that:

i) $T_{\Omega}$ is a tube domain with polynomial infinitesimal automorphisms;
$ii)$ Aut $(T_{\Omega})$ is a solvable Lie group;
$iii)T_{\Omega}$ contains the origin of C’ and the orbit of $G(T_{\Omega})$ through the

origin has dimension $n+1$ , where $G(T_{\Omega})=$ Aut $(T_{\Omega})^{o}$ .

Then, in the notation of Subsection 2.2, $\mathfrak{g}(T_{\Omega})$ coincides with $q$ . More-
over, according to the cases of a) $b$ $\neq\{0\}$ and b) $b$ $=\{0\}$ , the following
hold.

a) One has $n$ $\geq 3$ and, after a real linear change of coordinates in
$C^{n}$ , $\alpha_{*}$ , $b$ and the nilra $d$ical $\mathfrak{n}$ of $g(T_{\Omega})$ are given by

$\sigma_{*}=$
$\{\sqrt{-1}\partial_{1}+2z_{1}\partial_{2}\}_{R}+[\cap$ a $*$ (direct sum),

$b=\{\sqrt{-1}z_{1}\partial_{1}+z_{1}^{2}\partial_{2}\}_{R}$ ,

$\mathfrak{n}=5+\{\sqrt{-1}\partial_{1}+2z_{1}\partial_{2}\}_{R}$ .

Also, any $n$-dimensional abelian subalgebra of $\mathfrak{n}$ is conjugate to 5 by an
inner automorphism of $\mathfrak{g}(T_{\Omega})$ .

b) The nilradical $\mathfrak{n}$ of $g(T_{\Omega})$ has dimension less than or equal to
$n+1$ . Also, any $n$-dimensional abelian subalgebra of $\mathfrak{n}$ coincides with 5.

Combining this structure theorem with the observation given in Sec-
tion 3 we can give an answer to the holomorphic equivalence problem
for a class of tube domains with solvable groups of automorphisms.

Theorem 2. Let $T_{\Omega_{1}}$ an $dT_{\Omega_{2}}$ be two tube $d$omains in $C^{n}$ whose
bases $\Omega_{1}$ and $\Omega_{2}$ are convex $d$omains in $R^{n}$ containing no complete
straight lines and let $n$ $\geq 2$ . Assume that:

i) $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are tube domains with polynomial infinitesimal au-
tomorphisms;

$ii)$ $Aut(T_{\Omega_{1}})$ is a solvable Lie group;
$iii)$ There exists a point $z_{0}$ of $T_{\Omega_{1}}$ such that the orbit of $G(T_{\Omega_{1}})$

through $z_{0}$ has dimension $n+1$ .

Under these assumptions, if $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are holomorphically equivalent,
then they are affinely equivalent.
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Hypersurfaces and uniqueness of
holomorphic mappings

Manabu Shirosaki

Abstract.

–It is possible to determine meromorphic functions on $\mathbb{C}$ by

inverse images of some sets since R. Nevanlinna. However, analogous
problems to holomorphic mappings of $\mathbb{C}$ into I $n(\mathbb{C})$ are complicated.
In this paper some results for such problems are given. –

\S 1. Inroduction

Let $\mathcal{F}$ be a family of nonconstant holomorphic mappings of $\mathbb{C}$ into
I[ $n(\mathbb{C})$ and $S_{1}$ , $\cdots$ , $S_{q}$ hypersurfaces of I[ $n(\mathbb{C})$ . Then, what $S_{j}$ have the
property that $f^{*}S_{J}=g^{*}S_{j}(1\leq j\leq q)$ imply $f=g$ for $f$ , $g\in \mathcal{F}$? Here,

we consider $S_{j}$ as divisors and $f^{*}S_{j}$ are pull-backs. Also, we say that a
hypersurface $S$ has the uniquness property for 7 if $f^{*}S=g^{*}S$ implies
$f=g$ for $f$ , $g\in \mathcal{F}$ .

The origin of this problem is Nevanlinna’s unicity theorems:

Theorem $N.I$ $([N])$ . Let $a_{j}(1\leq j\leq 5)$ be distinct points in C.

If nonconstant meromorphic functions fand $g$ satisfy

$f^{-1}(a_{j})=g^{-1}(a_{j})$ $(1\leq j\leq 5)$ ,

then $f=g$ .

Theorem N.2 ([N]). Let $a_{1}$ , $\cdots$ , $a_{4}$ be $d$istinct points in $\overline{\mathbb{C}}$ such
that the nonharmonic ratio is not-1 in each permutaion. If nonconstant
meromorphic functions fan $dg$ satisfy

$f^{-1}(a_{j})=g^{-1}(a_{j})$ (counting multiplicity) $(1 \leq j\leq 4)$ ,

then $f=g$ .

Received March 19,2002
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\S 2. Uniqueness range sets

A uniqueness range set for entire (meromorphic) functions which

has abbreviation URSE(URSM) is a discrete subset $S\subset\overline{\mathbb{C}}$ which has
the property that entire (meromorphic) functions $f$ and $g$ such that
$f^{*}S=g^{*}S$ are identical. For example, the zero set of $e^{z}+1$ is not a
URSE, but the zero set of $e^{z}+z$ is a URSE.

Theorem $Y.I$ ([Y2]). Let $p$ and $d$ be relatively prime integers
such that $d>2p+4,p\geq 1$ an$da$ , $b$ nonzero complex constant such that
$P(w):=w^{d}+aw^{d-p}+b=0$ has no multiple root. Then, the zero set $S$

of $P(w)$ is a URSE.

The smallest $d$ which satisfies the condition is 7 $(p=1)$ . Therefore,
there is a URSE with seven elements.

Also, Fujimoto showed a clss of URSM and one of URSE in [F3].

\S 3. Hypersurfaces with the uniqueness property

Now we consider hypersurfaces in $\mathbb{P}^{n}(\mathbb{C})$ , and $w_{0}$ , $\cdots$ , $w_{n}$ represent
homogeneous coordinates of the space. Let $ v_{j}=(a_{j0}, \cdots, a_{jn})(0\leq j\leq$

$n+1)$ be vectors in general position. We consider the hypersurface $S$

defined by

$\sum_{j=0}^{n+1}(\sum_{k=0}^{n}a_{jk}w_{k})^{d}=0$ .

We denote by $A_{j}$ the $(n+1)\times(n+1)$ matrix which is obtained by

omitting the row $v_{j}$ from $(n+2)\times(n+1)$ matrix $\left(\begin{array}{l}v_{0}\\\vdots\\ v_{n+1}\end{array}\right)$ , and assume

that

$(\frac{\det A_{j}}{\det A_{k}})^{d}\neq(\frac{\det A_{\mu}}{\det A_{\nu}})^{d}$

for $0\leq j$ , $k$ , $\mu$ , $\nu\leq n+$ lsuch that $j\neq k$ , $\mu\neq l/$ , $(j, k)\neq$ $(\mu, l/)$ .

Theorem S.2([S]). Assume $d\geq(2n+1)^{2}$ . Then the hypersurface
$S$ has the uniqueness property for the family of linearly non-degenerate
holomorphic mappings.

Example. Let $v_{0}=$ $(1, 0, \cdots, 0)$ , $\cdots$ , $v_{n}=(0, \cdots, 0,1)$ , $v_{n+1}=$

$(a_{0}, \cdots, a_{n})$ , where $a_{0}$
– $a_{n}\neq 0$ . Then $\det A_{j}=$ $(-1)^{n-j}a_{j}$ , $\det A_{n+1}$
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$=1$ . If we assume that

$(-1)^{k-j}\frac{a_{j}}{a_{k}}\neq(-1)^{\nu-\mu_{\frac{a_{\mu}}{a_{\nu}}}}$ for $j\neq k$ , $\mu\neq\nu$ , $(j, k)\neq$ $(\mu, \nu)$ ,

then the assumption of the theorem is satisfied, where $a_{n+1}=-1$ . Now
our hypersurface is defined by

$w_{0^{d}}+\cdots+w_{n}^{d}+(a_{0}w_{0}+\cdots+a_{n}w_{n})^{d}=0$ .

Moreover, if $a_{0}\eta_{0}+\cdots+a_{n}\eta_{n}\neq 1$ for any $(d-1)- st$ roots $\eta_{j}$ of $-a_{j}$ , the
hypersurface is non-singular.

\S 4. Some hypersurfaces case

Now the problem of uniqueness by inverse images of some hypersur-
faces are treated.

Let $n$ and $m$ be positive integers and put $w=\exp(2\pi i/n)$ , $u=$

$\exp(2\pi i/m)$ .

Theorem Y.2 ([Y1]). Let $S_{1}=\{a+b, a+bw, \cdots, a+bw^{n-1}\}$

and $S_{2}=$ $\{c\}$ with $n>4$ , $b\neq 0$ , $c\neq a$ , $(c-a)^{2n}\neq b^{2n}$ . If $f^{*}S_{j}=$

$g^{*}S_{j}$ $(j=1,2)$ $/or$ nonconstant entire functions $f$ and $g$ , then $f=g$ .

Theorem Y.3 ([Y1]). Let $S_{1}=\{a_{1}+b_{1}$ , $a_{1}+b_{1}w$ , $\cdots$ , $a_{1}+$

$b_{1}w^{n-1}\}$ and $S_{2}=\{a_{2}+b_{2}, a_{2}+b_{2}u, --, a_{2}+b_{2}u^{m-1}\}$ with $n>4$ , $m>$
$4$ , $b_{1}b_{2}\neq 0$ , $a_{1}\neq a_{2}$ . If $f^{*}S_{j}=g^{*}S_{j}(j=1,2)$ $/or$ nonconstant entire

functions $f$ and $g$ , then $f=g$ .

Let $f$ and $g$ be holomorphic mappings of $\mathbb{C}$ into I[ $n(\mathbb{C})$ and $ H_{j}(1\leq$

$j\leq q)$ hyperplanes in general position in $\mathbb{P}^{n}(\mathbb{C})$ . Assume that

$(*)$ $f^{-1}(H_{j})=g^{-1}(H_{j})$ (counting multiplicity) $(1 \leq j\leq q)$ .

Theorem F.l ([F1]). If $f$ and $g$ are linearly non-degenerate and
$q\geq 3n+2$ , then $f=g$ .

Theorem F.2 ([F2]). If f and g are algebraically non-degenerate
and q $\geq 2n+3$ , then f $=g$ .

Take $(a_{jk})_{0\leq j,k\leq n}\in GL(n+1, \mathbb{C})$ . Let $p_{1}$ and $p_{2}$ be positive integers

and $p$ the least common multiple of them. Consider hypersurfaces

$S_{1}$ : $w_{0^{p1}}+\cdots+w_{n}^{p1}=0$ ,

$S_{2}$ : $\sum_{j=0}^{n}(\sum_{k^{\alpha}=0}^{n}a_{jk}w_{k)^{p2}}=0$ .

As an anologue of Theorem Y.3 we have
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Theorem $SU([SU])$ . Assume that $p_{1}$ , $p_{2}\geq(2n+1)^{2}$ and that
$(a_{jk})^{2p}\neq(a_{\mu\nu})^{2p}$ for any $(j, k)$ and $(\mu, \iota/)$ with $(j, k)\neq$ $(\mu, \iota/)$ .If linearly
non-degenerate holomorphic mappings $f$ and $g$ of $\mathbb{C}$ into $\mathbb{P}^{n}(\mathbb{C})$ satisfy
$f^{*}S_{j}=g^{*}S_{j}$ $(j=1,2))$ then $f=g$ .

Under the same condition of Theorem Fl and Theorem F2, the
following was concluded without the nondegeneracy of $f$ and $g$ but with
the addtional conditions $f(\mathbb{C})\not\subset H_{j}$ , $g(\mathbb{C})\not\subset H_{j}$ :

Theorem F.4 ([F1]). If $q=3n+1$ , then $g=Lf$ by some pro-
jective linear transformation $L$ .

For $n=2$ and any $q\geq 6$ , however, Fujimoto gave an example of
hyperplanes in general position $H_{1}$ , $\cdots$ , $H_{q}$ such that there exist distinct
$f$ and $g$ which satisfy $(*)$ and $f(\mathbb{C})\not\subset H_{j}$ , $g(\mathbb{C})\not\subset H_{j}$ . Of course, $f$ and
$g$ are linearly degenerate, and one is a projective linear transformation
of the other.

Problem. Do there exist hypersurfaces $S_{1}$ , $\cdots$ , $S_{q}$ such that non-
constant holomorphic mapping $f$ , $g$ satisfying $f^{*}S_{j}=g^{*}S_{j}$ $(1\leq j\leq q)$

are identical?

Next, we consider the case that the family $\mathcal{F}$ is the family of non-
constant holomorphic mappings of $\mathbb{C}$ into $\mathbb{P}^{n}(\mathbb{C})$ . We consider the case
of $n=2$ .

Take $v_{j}=(a_{j0}, a_{j1}, a_{j2})\in \mathbb{C}^{3}(1\leq j\leq q)$ . Assume the following
conditions:

(1) $a_{jk}\neq 0$ $(1 \leq j\leq q, 0\leq k\leq 2)$ ;

(2) $v_{1}$ , $\cdots$ , $v_{q}$ are in general position;
(3)for distinct $1\leq j_{1}$ , $j_{2}$ , $j_{3}$ , $j_{4}\leq q$ and $k=0,1,2$ ,

$\frac{a_{j_{1}k}}{a_{j_{2}k}}\neq\frac{\det(^{t}v_{j_{1}},{}^{t}v_{j_{3}},{}^{t}v_{j_{4}})}{\det(^{t}v_{j_{2}},{}^{t}v_{j_{3}},{}^{t}v_{j_{4}})}$ ;

(4) for distinct $1\leq j_{1}$ , $\ldots$ , $j_{6}\leq q$ and distinct $1\leq k_{1}$ , $\cdots$ , $k_{6}\leq q$ ,

and for $d$-th roots of one $\omega_{1}$ , $\cdots$ , $\omega_{6}$ , if

$\det$ $\left(\begin{array}{llllll}a_{j_{1}0} & a_{j_{1}1} & a_{j12} & \omega_{1}a_{k_{1}0} & \omega_{1}a_{k_{1}1} & \omega_{1}a_{k_{1}2}\\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ a_{j_{6}0} & a_{j_{6}1} & a_{j62} & \omega_{6}a_{k_{6}0} & \omega_{1}a_{k_{1}1} & \omega_{1}a_{k_{1}2}\end{array}\right)=0$ ,

then $j_{1}=k_{1}$ , $\cdots$ , $j_{6}=k_{6}$ , $\omega_{1}=\cdots=\omega_{6}$ .
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Moreover we assume $p\geq 4$ , $q\geq 10$ , $d\geq(2q-1)^{2}$ and consider the
hypersurface

$S$ : $\sum_{j=1}^{q}(a_{j0}w_{0^{p}}+a_{j1}w_{1^{p}}+a_{j2}w_{2^{p}})^{d}=0$ .

Theorem S.3. Let $f=$ $(f_{0} : f_{1} : f_{2})$ and $g$ be nonconstant holo-
morphic mappings of $\mathbb{C}$ into $\mathbb{P}^{2}(\mathbb{C})$ . If $f^{*}S=g^{*}S$ , then $g=$ ( $f_{0}$ : $\omega_{1}f_{1}$ :
$\omega_{2}f_{2})$ , where $\omega_{1}$ , $\omega_{2}$ are $d$ -th roots of one.

Corollary S.4. There exist hypersurfaces $S_{1}$ and $S_{2}$ uiith the pro-
prety that nonconstant holomorphic mappings fan $dg$ of $\mathbb{C}$ into I[2 $(\mathbb{C})$

satisfying $f^{*}S_{j}=g^{*}S_{j}$ $(j=1,2)$ are identical.
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Seshadri constants and a criterion for bigness

of pseudo-effective line bundles

Shigeharu Takayama

Abstract.

We state some fundamental properties of the intersection theory
for pseudo-effective line bundles defined by Tsuji, and some applica-

tions of that theory. As one of applications, we generalize Seshadri’s
criterion for ampleness of $nef$ line bundles as a criterion for bigness
of pseudo-effective line bundles.

\S 1. Intersection theory for pseudo-effective line bundles

We consider a smooth complex projective variety $X$ of dimension $n$

and a line bundle $L$ on $X$ . A line bundle $L$ is pseudo-effective if it has
a singular Hermitian metric $h$ with positive curvature: $\Theta_{h}\geq 0$ in the
sense of current, here $\ominus_{h}:=(2\pi)^{-1}\sqrt{-1}\overline{\partial}\partial\log h$ . This is equivalent to
the original algebraic definition of the pseudo-eflectivity, namely the first
Chern class $c_{1}(L)\in\overline{N}_{eff}$ , here $\overline{N}_{eff}$ is the closure of the convex cone
in the (real) N\’eron-Severi group $NS_{R}(X)\subset H^{2}(X, R)$ generated by
first Chern classes of effective $R$-line bundles. By definition, a singular
Hermitian metric $h$ on $L$ is written as $h=e^{-\varphi}h_{0}$ for a smooth Hermitian
metric $h_{0}$ on $L$ and $\varphi\in L_{loc}^{1}(X)$ . The multiplier ideal sheaf

I(h) $=$ $I(X, h)$

of $h=e^{-\varphi}h_{0}$ is defined by the sheaf of germs of holomorphic functions
$f$ such that $|f|^{2}e^{-\varphi}$ is integrable. By a theorem of Nadel (cf. [Dl, 5]),
$I(h)$ is coherent provided $\varphi$ is quasi-plurisubharmonic, i.e., the current
$\sqrt{-1}\partial\overline{\partial}\varphi$ is bounded from below by a smooth real $(1, 1)-$ form on $X$ (in

particular case $\ominus_{h}\geq 0$ ). We sometimes use a variant $I_{+}(h):=I_{+}(e^{-\varphi})$

$:=\lim_{\in\downarrow 0}I(e^{-(1+\in)\varphi})$ . In case $\varphi$ is quasi-plurisubharmonic, we regard
the (complete pluri-)polar set of $\varphi$ as the singular locus of $h$ :

Sing $h:=\{x\in X;\varphi(x)=-\infty\}$ .

Received February 26,2002.
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For a subvariety $Y$ in $X$ (i.e., a closed integral subscheme of $X$ ), we say
that the restriction $h|_{Y}$ is well-defined, if $ Y\not\subset$ Sing $h$ .

Definition 1.1 ( $[T$ , Definition 2.9]). Let $h$ be a singular Hermit-
ian metric on $L$ with $\ominus_{h}\geq 0$ . Let $C$ be an integral (i.e., reduced and
irreducible) curve in $X$ such that $h|c$ is well-defined. The intersection
number $(L, h)$ . $C$ is the real number

$(L, h)\cdot C:=\lim_{m\rightarrow}\sup_{\infty}m^{-1}h^{0}(C, Oc\{mL)\otimes$ $I(h^{m})\cdot O_{C})$ .

The original definition [$T$ , Definition 2.9] is given for a slightly wider
class of curves. The following proposition gives alternative definitions.

Proposition 1.2. Let $C\subset X$ be an integral curve such that $h|c$

is well-defined. Then

$(L, h)$ . $ C=\lim_{m\rightarrow\infty}m^{-1}h^{0}(C, O_{C}(mL)\otimes$ $I(h^{m})\cdot O_{C})$

$=\lim_{m\rightarrow\infty}m^{-1}deg_{C}O_{C}(mL)\otimes I(h^{m})$ .

More precisely we assert that limits exist and they coincide. As for
the last term, we define $deg_{C}O_{C}(mL)\otimes I(h^{m}):=mL\cdot C+deg_{C}$ $I(h^{m})$ ,

and “degc” as follows: Let $iJ$ : $C’\rightarrow C\subset X$ be the normalization of
$C$ , and I $\subset O_{X}$ a coherent ideal sheaf such that $C\not\subset supp$ $O_{X}/I$ . Then
we set $deg_{C}$ I $:=deg_{C’}\iota/-1I\cdot O_{C’}$ as the degree of the invertible sheaf
$\iota/-1I\cdot O_{C’}$ on $C^{J}$ .

By Demailly [D2, 4.1.1], every pseudo-effective line bundle $L$ has
a unique (up to certain equivalence of singularities) class of singular
Hermitian metrics $h_{\min}$ with minimal singularities such that $\ominus_{h_{I11i11}}\geq 0$ .
In case $L$ is semi-ample, we have $I(h_{\min}^{m})=O_{X}$ for every $m\in N$ , and
hence $(L, h_{\min})$ . $C=L\cdot C$ . In case $L$ is big and it admits the so-called
Zariski decomposition $L=P+N$ (i.e., $P$ and $N$ are $Q$-divisors such
that $Pnef$, $N$ effective, and that the natural injection $H^{0}$ $(X, [mP])\rightarrow$

$H^{0}(X, mL)$ is bijective for all $m\in N$ ), $(L, h_{\min})$ . $C=P$ . $C$ holds for
$C\not\subset SBs|L|:=\bigcap_{m\in N}$ Bs $|mL|$ the stable base locus (cf. [Tk2, 2.11]).

In [Tk2], we introduce a variant of the above intersection numbers.
It is defined by using a variant of multiplier ideals due to Ein and
Kawamata (refer [DEL, 1.7], [L] for a systematic treatment). These
are defined algebraically, and therefore they fit into algebraic meth-
ods. In the rest of this section, let us assume the Kodaira-Iitaka di-
mension $\kappa(X, L)\geq 0$ , and denote $h_{\min}$ the singular Hermitian metric
with minimal singularities on $L$ . Let $k$ be a positive integer such that
$H^{0}(X, O_{X}(kL))\neq 0$ . We take a $\log-$resolution $\mu$ : $X^{J}$

– $X$ of the
linear system $|kL|$ such that $\mu^{*}|kL|=|V|+E$ , where $|V|$ is a free linear
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system, $E$ the fixed part, and $E+$ Exc $(\mu)$ has simple normal crossing
support. Given such a $\log-$resolution plus a rational number $c>0$ , we
define $J(c. |kL|)=\mu_{*}O_{X’}(K_{X’/X}-[cE])$ , this is independent of the
choice of $\mu$ . In case $L$ is big, there exists a large $k_{0}\in N$ such that the
family of ideals $\{J(\frac{c}{k}\cdot|kL|)\}_{k>k_{()}}$ has a unique maximal element. We
denote the maximal element by

$J(c. ||L||)=J(X, c\cdot ||L||)$

and call it the asymptotic multiplier ideal sheaf associated to $c$ and $|L|$ .

Even in case $L$ is not big, but still $\kappa(X, L)\geq 0$ , one can modify the
above definition and can define $J(c. ||L||)$ . Let us recall the following
fundamental properties.

Lemma 1.3. (1) $J(||L||)\subset I(h_{\min})$ .

(2) $I_{+}(h_{\min})\subset J(||L||)\subset I(h_{\min})\rangle$ provid$edL$ is big.
(3) The following natural inclusions are isomorphisms for every $m$ :

$ H^{0}(X, O_{X}(mL)\otimes J(||mL||))\rightarrow$

$H^{0}(X, O_{X}(mL)\otimes I(h_{\min}^{m}))\rightarrow H^{0}(X, O_{X}(mL))$ .

Those above mentioned multiplier ideals $J(||mL||)$ , $I(h_{\min}^{m})$ are used
as an important tool in their proofs of the invariance of plurigenera due
to Siu [S] and Kawamata [K]. Using asymptotic multiplier ideals, we
introduce a variant of intersection numbers.

Definition-Proposition 1.4 ([Tk2]). Let $C\subset X$ be an integral
curve such that $C\not\subset SBs|L|$ . Then

(1) the following limit exists:

$||L;C||:=\lim_{m\rightarrow\infty}m^{-1}deg_{C}O_{C}(mL)\otimes J(||mL||)$ .

(2) $0\leq||L;C||\leq(L, h_{\min})$ . $C\leq L\cdot C$ .

(3) $||L;C||=(L, h_{\min})\cdot C$ , provide$dL$ is big.

The middle and the last inequalities in (2) can be strict.

\S 2. Seshadri-type criterion

We generalize the following Seshadri’s criterion.

Definition-Theorem 2.1 (cf. $[H$ , I 7]). Assume $L$ is $nef$. Se-
shadri’s constant of $L$ at $x\in X$ is defined by

$\in(L, x):=\inf_{C\ni x}\frac{L\cdot C}{mu1t_{x}C}$ ,
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where the infimum is taken over all integral curve $C$ passing through $X_{\rangle}$

and multxC is the multiplicity of $C$ at $x$ .

(1) Seshadri’s criterion: $L$ is ample if an $d$ only if the global Se-
shadri’s constant $\in(L):=\inf_{x\in X}\in(L, x)$ is positive.

(2) (cf. [Dl, 7.9]) For every positive $d$-dimensional subvariety $Y$

passing through $X_{\rangle}L^{d}\cdot Y\geq\in(L, x)^{d}mu1t_{x}Y$ holds.

It is suggestive to think of the Seshadri’s constant $\in(L, x)$ as mea-
suring how positive $L$ is locally near $x$ . By means of our intersection
theory, we introduce an invariant to measure a local positivity of pseudo-
effective line bundles.

Definition 2.2. Let $h$ be a singular Hermitian metric on $L$ with
$\Theta_{h}\geq 0$ . Seshadri $\prime s$ constant of $(L, h)$ at $x\in X$ is defined by

$\in((L, h)$ ,
$x):=\inf\underline{(L,h)\cdot C}$ ,

$C\ni x$ $mu1t_{x}C$

where the infimum is taken over all integral curve $C$ passing through $x$

and $h|c$ is well-defined.

One can also define this type of invariant in terms of $||L;C||$ . On
the other hand, we have a global invariant.

Definition 2.3. The volume of $L$ is the real number

$v(L)=v(X, L):=\lim_{m\rightarrow}\sup_{\infty}\frac{n!}{m^{n}}h^{0}(X, O_{X}(mL))$ .

By definition, a line bundle is big if its volume is positive. In case $L$ is
$nef$ , $v(L)=L^{n}$ holds. In case $L$ is big, it has a singular Hermitian metric
$h$ with $\ominus_{h}\geq 0$ such that $\in((L, h)$ , $x)>0$ for every point $x$ outside some
divisor (this is an easy consequence of Kodaira’s lemma). Conversely, as
in Seshadri’s criterion, our criterion guarantees a positivity of the global
volume by means of local positivities.

Theorem 2.4. A line bundle $L$ is big if and only if it has a singu-
lar Hermitian metric $h$ with $O-_{h}\geq 0$ such $that\in((L, h)$ , $x)>0$ for some
point $x\in X-$ Sing $h$ . Moreover in that case

$v(L)\geq\in((L, h),$ $x)^{n}$ .

We also have an analogous statement of Theorem 2.1(2). Theorem
2.4 is proved by using the following approximation result of Seshadri’s
constants, which is an analogue of the approximation theorem of volumes
due to Fujita. In this sense Theorem 2.5 is a local version of Fujita [F]
(see also [DEL, 3.2]): Theorem 2.6 below.
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Theorem 2.5. Let $h$ be a singular Hermitian metr $.c$ on $L$ with
$\ominus_{h}\geq 0$ . Assume $L$ is big, and write $L\equiv A+E$ for an ample $Q$ -divisor
$A$ and an effective $Q$ -divisor $E$ ($Kod$aira’s lemma). Let $\delta$ be a positive
number. Then there exist a birational modification $\mu_{\delta}$ : $X_{\delta}\rightarrow X$ an $d$

a $d$ecomposition $\mu_{\delta}^{*}L\equiv A_{\delta}+E_{\delta}$ with an ample $Q$ -divisor $A_{\delta}$ and an

effective $Q$ -divisor $E_{\delta}$ such that $\mu_{\delta}$ is isomophic over $X-$ (Sing $h\cup E$ ),
$E_{\delta}\subset\mu_{\delta}^{-1}$ (Sing $h\cup E$ )

$\rangle$

and such that

$\in(A_{\delta}^{-1}(x))\geq(1-\delta)\in((L, h),$ $x)$

for every $x\in X-$ (Sing $h\cup E$ ). Moreover $ A_{\delta}^{n}\geq v(L)-\delta$ holds as below.

Theorem 2.6 ([F]). Let $L$ be a big line bundle on X. Given any
$\in>0_{\rangle}$ there exists a birational modification $\mu_{\in}:$

$X_{\in}’\rightarrow X$ and a de-
composition $\mu_{\Xi}^{*}L\equiv A_{\in}+E_{\in\rangle}$ where $E_{\in}is$ en effective $Q$ -divisor and $A_{\Xi}$

is an ample $Q$ -divisor with $ A_{\Xi}^{n}>v(L)-\in$ .
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Subadjunction theorem

Hajime Tsuji

Abstract.

We give a subadjunction theorem which relates the multi-adjoint
linear system of the ambient space and the linear system of the re-
stricted bundle on a subvariety.

\S 1. Introduction

Let $M$ be a complex manifold and $L$ be a line bundle on $M$ and $S$

be a submanifold of $M$ . It is a basic question whether the restriction
map

$H^{0}(M, O_{M}(L))\rightarrow H^{0}$ $(S, \mathcal{O}_{S}(L))$

is surjective.
In this paper we shall consider this question for multi-adjoint type

line bundles under certain geometric conditions.
Let us state our result precisely. Let $M$ be a complex manifold of

dimension $n$ and let $S$ be a closed complex submanifold of $M$ . Then we
consider a class of continuous function $\Psi$ : $M$ $\rightarrow$ $[-\infty, 0)$ such that

1. $\Psi^{-1}(-\infty)\supset S$ ,

2. if $S$ is $fc$-dimensional around a point $x$ , there exists a local coori-
nate $(z_{1}, \ldots, z_{n})$ on a neighbourhood of $x$ such that $z_{k+1}=\cdots=$

$z_{n}=0$ on $S\cap U$ and

$\sup_{U\backslash S}|\Psi(z)-(n-k)\log\sum_{j=k+1}^{n}|z_{j}|^{2}|<\infty$ .

The set of such functions 1 will be denoted by $\#(S)$ .

For each $\Psi\in\#(S)$ , one can associate a positive measure $dV_{M}$ $[\Psi]$

on $S$ as the minimum element of the partially ordered set of positive

Received April 1,2002.
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measueres $ d\mu$ satisfying

$\int_{S_{k}}fd\mu\geq\lim_{t\rightarrow}\sup_{\infty}\frac{2(n-k)}{\sigma_{2n-2k-1}}\int_{\mathcal{N}l}f\cdot e^{-\Psi}\cdot\chi_{R(\Psi,t)}dV_{M}$

for any nonnegative continuous function $f$ with $suppf\subset\subset M$ . Here $S_{k}$

denotes the $/c$-dimensional component of $S$ , $\sigma_{m}$ denotes the volume of
the unit sphere in $R^{m+1}$ , and $\chi_{R(\Psi,t)}$ denotes the characteristic funciton
of the set

$R(\Psi, t)=\{x\in M|-t-1<\Psi(x)<-t\}$ .

Theorem 1.1. Let $M$ be a projective manifold with a continuous
volume form $dV_{JVI}$ , let $L$ be a holomorphic line bundle over $M$ with $a$

$C^{\infty}-$he mitian me rric $h_{L}$ , let $S$ be a compact complex submanifold of
$M$ , let $\Psi$ : $ M\rightarrow$ $[-\infty, 0)$ be a continuous function and let $K_{M}$ be the
canonical bun $d$ le of $M$ .

1. $\Psi\in\beta(S)\cap C^{\infty}(M\backslash S)$ ,
2. $\ominus_{he^{-(1+\epsilon)\Psi}}\geq 0$ for every $\epsilon\in[0, \delta]$ for some $\delta>0$ ,

3. there is a positive line bundle on $M$ .

Then every element of $H^{0}(S, \mathcal{O}_{S}(m(K_{M}+L)))ex$tend $s$ to an element

of $H^{0}(M, \mathcal{O}_{M}(m(K_{M}+L)))$ .

One may think that the assumption on the existence of the function
1 is somewhat technical or restrictive. But as one see in the last section,

this is not the case. In fact one may construct such a function by using
an effective $Q$-divisor on $M$ .

The results in this paper may be considered as a generalization of
[6] to the case of nontrivial normal bundles. We also note that there
exists another type of subadjunction theorem due to Y. Kawamata ([2]).
This is a reserch announcement. The detailed proof will be published
elsewhere.

\S 2. Setch of the proof of Theorem 1.1

Here we shall give a sketch of the proof of Theorem 1.1. Let $M$ , $S$ , $L$

be as in Theorem 1.1. Let $h_{S}$ be a canonical AZD ([8]) of $K_{M}+L|s$ . Let
$A$ be a sufficiently ample line bundle on $M$ . Let us define the singular
hemitian metric on $m(K_{\Lambda I}+L)|s$ by

$h_{m,S}:=K(A+m(K_{M}+L)|_{S}, h_{A}\cdot h_{S\vee I}^{m-1}. dV_{1}^{-1}\cdot h_{L}, d\Psi_{S})^{-1}$

Then as in [8], we see that

$h_{S}:=\lim_{m\rightarrow}\inf_{\infty}m\sqrt{h_{m,S}}$
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holds. Hence $\{ \sqrt[m]{h_{m,S}}\}$ is considered to be an algebraic approximation
of $h_{S}$ . We consider the Bergman kernel

$K(S, A+m(K_{M}+L)|s$ , $h_{A}\cdot h_{S}^{m-1}\cdot dV_{J/I}^{-1}\cdot h_{L}$ , $d\Psi_{S})=\sum_{i}|\sigma_{i}^{(m)}|^{2}$ ,

where $\{\sigma_{i}^{(m)}\}$ is a complete orthonormal basis of $A^{2}(S, A+m(K_{M}+L)|s$

$,$

$h_{A}\cdot h_{S}^{m-1}\cdot dV_{\Lambda^{/}I}^{-1}\cdot h_{L}$ , $d\Psi_{S})$ . We note that (cf. [3, p.46, Proposition
1.4.16])

$K(S, A+m(K_{M}+L)|s$ , $h_{A}\cdot h_{3}^{m-1}\cdot dV_{M}^{-1}\cdot h_{L}$ , $d\Psi_{S})(x)$

$=$ $\sup\{ |\sigma|^{2}(x)|\sigma\in A^{2}(S,A+m(K_{M}+L)|_{S},h_{A}\cdot h_{S}^{m-1}\cdot dV_{M}^{-1}\cdot h_{L},d\Psi_{S}), ||\sigma||=1\}$

holds for every $x\in S$ . We note that there exists a positive constant $C_{0}$

independent of $m$ such that

$h_{m,S}\leq C_{0}\cdot h_{A}\cdot h_{S}^{m}$

holds for every $m\geq 1$ as in [8]. Let $h_{M}$ be a canoncal AZD of $K_{X}+L$

and let $iJ$ denote the numerical Kodaira dimension of $(K_{M}+L, h_{M})$ , i.e.,

$\iota/:=\lim_{m\rightarrow\infty}\frac{\log dimH^{0}(M,O_{M}(A+m(K_{\Lambda l}+L))\otimes I(h_{M}^{m}))}{1ogm}$ .

For simplicity we shall consider the case that $iJ$ is equal to the numerical
Kodaira dimension of $K_{WI}+L$ . Otherwise the proof should be modified
a little bit.

Inductively on $m$ , we extend each

$\sigma\in A^{2}(S, A+m(K_{M}+L)|s,$ $h_{A}\cdot h_{S}^{m-1}\cdot dV_{M}^{-1}\cdot h_{L}$ , $d\Psi_{S})$

to a section

$\overline{\sigma}\in A^{2}(M, A+m(K_{M}+L),$ $dV^{-1}\cdot h_{L}\cdot\tilde{h}_{m-1}$ , $dV)$

with the estimate

$||\tilde{\sigma}||\leq C\cdot m^{-\iota/}||\sigma||$

where $||$ $||$ ’s denote the $L^{2}$ -no$rms$ respectively, $C$ is a positive constant
indpendent of $m$ and we have defined

$\tilde{K}_{m}(x):=$ $\sup\{|\tilde{\sigma}|^{2}(x)|||\overline{\sigma}|_{S}||=1, ||\tilde{\sigma}||\leq C\cdot m^{-\iota/}\}$
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and set

$\overline{h}_{m}=\frac{1}{\tilde{K}_{m}}$ .

If we take $C$ sufficiently large, then $\tilde{h}_{m}$ is well defined for every $m\geq 0$ .

By easy inductive estimates, we see that

$\tilde{h}_{\infty}:=\lim_{m\rightarrow}\inf_{\infty}r\sqrt[\gamma 1]{\overline{h}_{m}}$

exists and gives an extension of $h_{S}$ . Then by [4] for every $m\geq 1$ , we may

extend every element of $A^{2}(m(K_{M}+L)|_{S}, dV_{\Lambda I}^{-1}\cdot h_{L}\cdot h_{S}^{m-1}, dV_{M}[\Psi])$

to $A^{2}(m(K_{M}+L), dV_{\Lambda I}^{-1}\cdot h_{L}\cdot\tilde{h}_{\infty}, dV_{M})$ . This completes the proof of
Theorem 1.1.

\S 3. Generalization of Theorem 1. 1

Let $M$ be a smooth projective variety and let $(L, h_{L})$ be a singlar
hermitian line bundle on $M$ such that $\ominus_{h_{J}},$ $\geq 0$ on $M$ . Let $dV$ be a
$C^{\infty}-$volume form on $M$ . Let $\sigma\in\Gamma(\overline{M}, O_{l}|-(/Im_{0}L)\otimes$ $N(h))$ be a global
section. Let $\alpha$ be a positive rational number $\leq 1$ and let $S$ be an
irreducible subvariety of $M$ such that $(M, \alpha(\sigma))$ is logcanonical but not
KLT(Kawamata $\log-$terminal) on the generic point of $S$ and $(M,$ $(\alpha-$

$\epsilon)(\sigma))$ is KLT on the generic point of $S$ for every $0<\epsilon<<1$ . We set

$\Psi=\alpha\log h_{L}(\sigma, \sigma)$ .

We shall assume that $S$ is not contained in the singular locus of $h$ ,

where the singular locus of $h$ means the set of points where $h$ is $+\infty$ .

For the moment we shall consider the case that $S$ is smooth (when
$S$ is not smooth, we just need to take an embedded resolution of $S$ ). In
this case 1 may not belong to $\beta(S)$ , since 1 may not have the prescribed
singularity along $S$ as in the definition of $\#(S)$ . Then as in Section 2.1,

we may define a (possibly singular measure) $dV[\Psi]$ on $S$ . This can be
viewed as follows. Let $f$ : $N\rightarrow M$ be a logresolution of $(X, \alpha(\sigma))$ .

Then as before we may define the singular volume form $f^{*}dV[f^{*}\Psi]$ on
the divisorial component of $f^{-1}(S)$ . The singular volume form $dV[\Psi]$ is
defined as the fibre integral of $f^{*}dV[f^{*}\Psi]$ .

The proof [4] and hence proof of Theorem 1.1 also works in this
case except a minor difference. The difference is that $dV_{NI}$ $[\Psi]$ (which
is defined similarly as above) may have singularities along some Zariski
closed subset of $S$ . Let $d\mu_{S}$ be a $C^{\infty}-$volume form on $S$ and let $\varphi$ be
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the function on $S$ defined by

$\varphi:=\log\frac{dV[\Psi]}{d\mu_{S}}$ .

Theorem 3.1. Let $ M,S,\Psi$ be as above. Suppose that $S$ is smooth.
Then every element of $A^{2}(S, \mathcal{O}_{S}(m(K_{M}+dL)),$ $e^{-(m-1)\varphi}\cdot dV^{-m}\cdot h_{L}^{m}$ ,
$dV[\Psi])$ extends to an element of

$H^{0}(M, O_{M}(m(K_{M}+dL)))$ .

As we mentioned as above the smoothness assumption on $S$ is just
to make the statement simpler.

As an example of an application, we have :

Corollary 3.1 ([6]). Let $\pi$ : $ X\rightarrow\triangle$ be a semistable $d$egenera-
tion of projective variety over the unit disk. Let $X_{0}=\pi^{-1}(0)=\sum_{i}D_{i}$

be the irreducible decomposition. Then we have that

$\sum P_{m}(D_{i})\leq P_{m}(X_{t})$

hold $s$ where $t$ is any regular value of $\pi$ and $P_{m}d$enotes the m- th pluri-
genus.
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Fixed points of polynomial automorphisms of $C^{n}$

Tetsuo Ueda

Abstract.

We study the fixed point indices of some polynomial automor-
phisms of $C^{n}$ . In particular, it is shown that, for a composition of
generalized H\’enon maps, the sum of the fixed point indices vanishes.
A consequence is that a generic polynomial automorphism of $C^{2}$ has
a saddle fixed point.

\S 1. Statement of the results

A bijective map $F$ of the space of $n$ complex variables $C^{n}$ onto itself
defined by polynomials $f_{1}(x)$ , $\ldots$ , $f_{n}(x)$ , $x=(x_{1}, \ldots, x_{n})$ , is said to be
a polynomial automorphism of $C^{n}$ . The set Aut $(C^{n})$ of all polynomial
automorphisms of $C^{n}$ forms a group under composition. Two maps
$F_{1}$ , $ F_{2}\in$ Aut $(C^{n})$ are conjugate if there exists a map $ G\in$ Aut $(C^{n})$

such that $F_{2}=G^{-1}\circ F_{1}\circ G$ .
For a fixed point of a holomorphic map of $C^{n}$ to itself, holomorphic

Lefschetz index can be defined (see \S 2, also Griffiths-Harris [2]). We
will study the indices for the fixed points of polynomial automorphisms,
since they are important invariants under conjugation.

For the case of two variables, Friedland-Milnor [1] showed that any
map in Aut $(C^{2})$ is conjugate to either (1) an affine map, (2) an ele-
mentary map or (3) a composition $F_{m}\circ\cdots\circ F_{1}$ of generalized H\’enon

maps

$F_{\mu}(x, y)=(y, p_{\mu}(y)-\delta_{\mu}x)$ , $\mu=1$ , $\ldots$ , $m$ ,

where $p_{\mu}(y)$ are polynomials of degree $\geq 2$ and $\delta_{\mu}\neq 0$ .

We denote by $H_{0}$ the set consisting of compositions of generalized
H\’enon maps, and by $H$ the set of all maps conjugate to one of the maps
in $H_{0}$ .

Received April 11,2002.
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Let Fix (F) denote the set of all fixed points of $F$ . It was shown in
[1] that, if $F\in H_{0}$ and $degF=k$ , then $F$ has $k$ fixed points counting

multiplicity, i.e., $\sum$ Mult $(F, a)=k$ .

$ a\in$Fix (F)

Now we have

Theorem 1. If $F\in H_{\rangle}$ then we have

$\sum$ Ind $(F, a)=0$ .

$ a\in$ Fix (F)

We note that the formula fails in general for maps $\not\in H$ . A proof
of this formula for a generalized H\’enon map is given in [3]. A similar
result for holomorphic maps on projective spaces is given in [4].

Corollary 1. Let $F\in H$ and suppose that $F$ has only simple fixe $d$

points $a_{j}$ $(j=1, \cdots, k)$ . Let $\lambda_{j,1}$ , A $j,2$ denote the eigenvalues of $F’(a_{j})$ .

Then we have

$\sum_{j=1}^{k}(\frac{1}{1-\lambda_{j,1}}+\frac{1}{1-\lambda_{j,2}})=k$ ,

Corollary 2. Let $F\in H$ an $d\delta=\det F^{J}$ . Suppose that $|\delta|\neq 1$ or
$\delta=1$ . Then (1) $F$ has either a sad $d$ le fixed point or a multiple fixed
point, and(2) $F$ has infinitely many perio $dic$ points that are either
saddle or multiple.

The condition on $\delta$ cannot be dropped as the following example
shows.

Example Let $F$ be a H\’enon map defined by

$F(x, y)=(y, y^{2}+c-\delta x)$ .

Then $F$ has at least one saddle fixed point if and only if $(\delta, c)\not\in\triangle\cup\Gamma$ ,

where $\triangle=\{(\delta+1)^{2}-4c=0\}$ and

$\Gamma=\{|\delta|=1$ , $\frac{c}{\delta}$ is real and $\sqrt{2(1+Re\delta)}-1\leq\frac{c}{\delta}<\frac{1+Re\delta}{2}\}$ .

We can generalize the index formula to maps of certain class of
polynomial automorphisms of $C^{n}$ :

Theorem 2. Let $F=F_{m}\circ\cdots oF_{1}$ be the composition of shift-like
maps $F_{\mu}$ : $C^{n}\rightarrow C^{n}$ $(\mu=1, \ldots, m)d$efine $d$ by

$F_{\mu}(x_{1}, \ldots, x_{n})=(x_{2}, \ldots, x_{n}, a_{\mu}x_{1}+p_{\mu}(x_{2}, \ldots, x_{n}))$ ,
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where $p_{\mu}$ are polynomials in $n$ $-1$ variables. Suppose that there exist
$lJ$ $(2\leq\iota/\leq n)$ such that

$P_{\mu}(x_{2}, \ldots, x_{n})=c_{\mu}x_{\nu}^{k_{4}}’+$ (lower order terms), $c_{\mu}\neq 0$ .

Then we have $\sum_{a\in Fix(F)}$ Ind $(F, a)=0$ .

We remark that, for general (compositions of) shift-like maps, the
set Fix (F) may be non-isolated. Even if Fix (F) is isolated, the index
formula does not necessarily hold.

Example Consider the map $F$ : $C^{3}\rightarrow C^{3}$ defined by

$F(x, y, z)=(y, z, \delta x+(y-z)^{2})$ .

If $\delta\neq 1$ , then Fix $(F)=\{0\}$ and Ind $(F, 0)=1/(1-\delta)$ . If $\delta=1$ , then
Fix $(F)=$ $\{x=y=z\}$ .

\S 2. Multiplicity and Index

Let $G$ : $C^{n}\rightarrow C^{n}$ be a holomorphic map and suppose that $a$ is an
isolated zero of $G$ . Then there exist neighborhoods $U$ of $a$ and $V$ of
0 such that $G^{-1}(0)\cap U=\{a\}$ and that $G|U$ : $U\rightarrow V$ is a branched
cover. We define the zero multiplicity mult $(G, a)$ of $G$ at $a$ to be the
sheet number of this map $G|U$ . We call that $a$ is a simple zero of $G$ if

mult $(G, a)=1$ , or in other words, if $\det G’(a)\neq 0$ .

If $a$ is a simple zero, we define the zero index by $ind(G, a)=$

$1/\det G’(a)$ . For the general case $ind(G, a)$ is defined as follows: We
set $\omega=dx_{1}\wedge\cdots\wedge dx_{n}$ and

$\eta=\frac{c_{n}}{||x||^{2n}}\sum_{i=1}^{n}(-1)^{i-1}\overline{x}_{i}d\overline{x}_{1}\wedge\cdots\overline{d\overline{x}}_{i}\cdots\wedge d\overline{x}_{n}$

Whe$rec_{n}=m_{-1}^{\underline{9}}(n-1)^{I}./(2\pi)^{n}$ . We define

$ind(G, a)=\int_{\partial B}(G^{*}\eta)\wedge\omega$

where $B$ denotes a ball with center $a$ of sufficiently small radius so that
$a$ is the only zero of $G$ in $B$ .

We will apply the following lemma in the proof of Theorem 2.

Lemma 3. Let $G(x)=(g_{1}(x), \ldots, g_{n}(x))$ be a polynomial map of
$C^{n}$ to $C^{n}$ . Suppose that $g_{l/}$ is of the form
$g_{I/}(x)=c_{\nu}x_{\sigma(\iota/)}^{k_{\nu}}+$ (lower order terms), $k_{\nu}\geq 2$ , $c_{l/}\neq 0$ , $(\iota/=1,\ldots, n)$ .

where $\sigma$ is a permutation of $\{1, \ldots, n\}$ . then $\sum_{a\in G^{-1}(0)}ind(G, a)=0$ .
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To see this, we note that

$\sum_{a\in G^{-1}(0)}ind(G, a)=\int_{\partial B}(G^{*}\eta)\wedge\omega$ ,

where $B$ is a sufficiently large ball in $C^{n}$ . By estimating the integral,
we conclude the lemma.

Now let $F$ : $C^{n}\rightarrow C^{n}$ be a holomorphic map and suppose that $a$

is an isolated fixed point of $F$ . This is equivalent to say that $a$ is an
isolated zero of the map $Id-F$ . We define the fixed point multiplicity
and the fixed point index by

Mult $(F, a)=$ mult (Id-F, $a$ ), Ind $(F, a)=ind$ (Id-F,$ a$ ).

\S 3. Outline of the proof

3.1 To prove Theorem 2, let us first introduce the concept of vectorial
shift-like map. We denote the points in $C^{mn}$ as $(m, n)-$matrices and

also as a row of column vectors: $\hat{\xi}=$ $(\xi_{ij})=$ $(\xi_{1}, \ldots, \xi_{n})$ . A map
$\Phi\in$ Aut $(C^{mn})$ is said to be a vectorial shift-like map if it is of the form

$\Phi(\xi_{1}, \ldots, \xi_{n})=(\xi_{2}, \ldots, \xi_{n}, A\xi_{1}+Q(\xi_{2}, \ldots, \xi_{n}))$

where $A\in GL(m, C)$ and $Q$ is a column vector of polynomials in $m(n-1)$

variables $\xi_{ij}(1\leq i\leq m;2\leq j\leq n)$ .

The fixed points of (I are of the form $\hat{b}=(b, \ldots, b)$ , where $b\in C^{m}$

are the roots of the equation $ A\xi+Q(\xi, \ldots, \xi)=\xi$ . We define a linear
map $L:(\xi_{1}, \ldots, \xi_{n})\mapsto(\eta_{1}, \ldots, \eta_{n})$ by

$\eta_{\nu}=\xi_{\nu}-\xi_{\nu+1}$ $(\iota/=1, -- , n -1)$ and $\eta_{n}=\xi_{n}$ .

Then $(Id -\Phi)\circ L^{-1}$ takes the form $(\eta_{1}, \ldots, \eta_{n})\mapsto$ $(\eta_{1},$
$\ldots$ , $\eta_{n-1}$ , $\eta_{n}-$

$A(\eta_{1}+\cdots+\eta_{n})-Q(\eta_{2}+\cdots+\eta_{n}, \ldots, \eta_{n}))$ . The sum of the zero point
indices of this map is equal to that of the map $\eta\mapsto\eta-A\eta-Q(\eta, \ldots, \eta)$ .

If this satisfies the condition of Lemma 3 then $\sum_{\hat{b}\in Fix}(\Phi)$ Ind $(\Phi,\hat{b})=0$ .

3.2 Let $F_{\mu}$ : $C^{n}\rightarrow C^{n}$ be holomorphic maps $(\mu=1, \ldots, m)$ , and let
$F=F_{m}\circ\cdots\circ F_{1}$ be their composition. To study the fixed points of $F$ ,

we consider the map $\hat{F}$ : $C^{mn}\rightarrow C^{mn}$ defined as follows. We denote the
points in $C^{mn}$ by a $(m, n)-$matrix and also as a column of row vectors :
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$\hat{x}=(x_{ij})={}^{t}(x_{1}, \ldots, x_{m})$ . We define $\hat{F}$ by

$\hat{F}(\hat{x})=\hat{F}$ $\left(\begin{array}{l}x_{1}\\x_{2}\\\vdots\\ x_{m}\end{array}\right)=\left(\begin{array}{l}F_{m}(x_{m})\\F_{1}(x_{1})\\\vdots\\ F_{m-1}(x_{m-1})\end{array}\right)$ .

There is a one-to-one correspondence between the sets Fix (F) and

Fix $(\hat{F})$ . In fact, ifa is in Fix(F), then the point\^a $={}^{t}(a_{1}, \ldots, a_{m})$ with

$a_{1}=a$ , $a_{\mu}=F_{\mu-1}(a_{\mu-1})$ $(\mu=2, \ldots, m)$ is in Fix $(\hat{F})$ . Conversely, if

\^a= ${}^{t}(a_{1}, \ldots, a_{m})$ is in Fix $(\hat{F})$ , then $a_{1}$ is in Fix (F).

Further we can prove that, if $ a\in$ Fix(F) and \^a $\in$ Fix $(\hat{F})$ are
corresponding fixed points, then

Mult $(F, a)=$ Mult $(\hat{F}, \text{{\it \^{a}}})$ , and Ind $(F, a)=$ Ind $(\hat{F}, \text{{\it \^{a}}})$ .

3.3 Now we apply the above obserbations to a composition $ F=F_{m}\circ$

$\ldots oF_{1}$ of shift-like maps $F_{\mu}$ . Then $\hat{F}(\hat{x})$ takes the form

$\{$

$x_{m2}$ $\cdots$ $x_{mn}$ $\delta_{m}x_{m1}+p_{m}(x_{m2}, \ldots, x_{mn})$

$x_{12}$ $\cdots$ $x_{1n}$ $\delta_{1}x_{11}+p_{1}(x_{12}, \ldots, x_{1n})$

$ x_{m-1,2}.\cdot$

.
$.\cdot\cdot..\cdot$

$ x_{m-1,n}.\cdot$
.

$\delta_{m-1}x_{m-1,1}+p_{m-1}(.\cdot.x_{m-1,2}, \ldots, x_{m-1,n}))$

We can reduce $\hat{F}$ to a vectorial shift-like map by conjugation. To see
this, consider the linear map $M$ : $C^{mn}\ni(x_{ij})\mapsto$ $(\xi_{ij})\in C^{mn}$ defined
by $\xi_{ij}=x_{[i-j+1],j}$ where $[\ell]$ denotes the number such that $ 1\leq$ $[\ell]\leq m$

and $[\ell]\equiv\ell mod m$ . Then the conjugate (I $=\Lambda I\circ\hat{F}\circ M^{-1}$ is a vectorial
shift-like map $\Phi(\xi_{1}, \ldots, \xi_{n})=$ $(\xi_{2}, \ldots, \xi_{n}, A\xi_{1}+Q(\xi_{2}, \ldots, \xi_{n}))$ , where

$A\xi_{1}+Q(\xi_{2}, \ldots, \xi_{n})=\left(\begin{array}{lll}\delta_{[1-n]}\xi_{[1-n],1}+p[1-n](\xi_{[2-n],2}\delta_{[2-n]}\xi_{[2-n],1}+p_{[2-n]}(\xi_{[3-n],2}’\cdots & \cdots\cdots & \cdots\cdots,,\xi_{m,n})\xi_{1,n})\\\vdots & & \\\delta_{[m-n]}\xi_{[m-n],1}+p_{[m-n]}(\xi_{[1-n],2} & \cdots & ,\xi_{m-1,n})\end{array}\right)$ .

The map $\eta\mapsto\eta-A\eta-Q(\eta, \ldots, \eta)$ takes the form

$\left(\begin{array}{l}\eta_{1}\\\eta_{2}\\\vdots\\\eta_{m}\end{array}\right)\mapsto\left(\begin{array}{llll}\eta_{1}-\delta_{[1-n]}\eta_{[1-n]}- & p_{[1-n]}(\eta_{[2-n]}, & \cdots & ,\eta_{m})\\\eta_{2}-\delta_{[2-n]}\eta_{[2-n]}- & p_{[2-n]}(\eta_{[3-n]}, & \cdots & ,\eta_{1})\\ & \vdots & & \\\eta_{m}-\delta_{[m-n]}\eta_{[m-n]}- & p_{[m-n]}(\eta_{[1-n]}, & \cdots & ,\eta_{m-1})\end{array}\right)$ .
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Under the condition of Theorem 2 this map satisfies the condition of
Lemma 3. Thus Theorem 2 is proved.
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On Nevanlinna theory for holomorphic curves in
Abelian varieties

Katsutoshi Yamanoi

Abstract.

We give some observations and results on Nevanlinna theory for
holomorphic curves in algebraic varieties.

\S 1. Intersection theory and Nevanlinna theory

In this note, we consider Nevanlinna theory as non-compact, tran-
scendental intersection theory. First we begin with an algebraic inter-
section theory. Let $X$ be a smooth, projective algebraic variety and let
$D\subset X$ be an effective reduced divisor. Let $C$ be a smooth, projective
curve and let $S$ be a finite set of points on $C$ , which will be fixed for
the following discussion. Let $f$ : $C\rightarrow X$ be an algebraic map such that
$f(C)\not\subset suppD$ . Then we have

(1) $x\in\sum_{C\backslash S}ord_{x}f^{*}D+\sum_{x\in S}ord_{x}f^{*}D=\int_{C}f^{*}(c_{1}(D))$ .

The left hand side of (1) is a sum of local intersection numbers between
$f(C)$ and $D$ , while the right hand side is a cohomological invariant which
only depend on $f$ and $O(D)$ .

There is a kind of intersection theory for a holomorphic map $f$ :
$\mathbb{C}\rightarrow X$ which may be transcendental. This is called Nevanlinna’s First
Main Theorem. We want to count a intersection number between $f(\mathbb{C})$

and $D$ . Since this number is infinite in general, we use an exhaustion
$\mathbb{C}=\bigcup_{r>0}\{z\in \mathbb{C};|z|<r\}$ . We define the counting function as

$N(r, f, D)=\int_{1}^{r}(\sum_{|z|<t}ord_{z}f^{*}D)\frac{dt}{t}$ .

Received March 30,2002.
Revised July 23, 2002.
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As in the first term of the left hand side of (1), the counting function
counts intersection numbers just on the non-compact part C. Hence we
need to count intersection number on the boundary of C. This is the
following proximity function which corresponds to the second term of
the left hand side of (1). Let $L(D)$ be the associated line bundle for $D$ .

Let $||$ . $||$ be a Hermitian metric of $L(D)$ and let $s_{D}$ be a section of $L(D)$

such that $D$ is the zero divisor for $s_{D}$ . Then we define the proximity
function of $D$ by

$m(r, f, D)=\int_{0}^{2\pi}\log\frac{1}{||s_{D}\circ f(re^{i\theta})||}\frac{d\theta}{2\pi}$ .

We define an analogue of degree of $f$ with respect to a line bundle
$L$ on $X$ as

$T$ $(r, f, L)=\int_{1}^{r}\frac{dt}{t}\int_{\mathbb{C}(t)}f^{*}c_{1}(L)+O(1)$ $(r\rightarrow\infty)$ ,

which is called the order function. We define the height function of $D$

by $T(r, f, D)=T(r, f, L(D))+O(1)$ . Then the First Main Theorem in
Nevanlinna theory is

(2) $N(r, f, D)+m(r, f, D)=T(r, f, D)+O(1)$ ,

which is an analogue of (1). Here the left hand side depends on external
geometry of $f(\mathbb{C})$ and $D$ in $X$ , while the right hand side only depend on
$f(\mathbb{C})$ and a cohomology class of $D$ .

\S 2. Conjectures

Our Problem is the following;

What happen if we don’ $t$ count intersection multiplicity
in (1) or (2)?

Of course, we can’ $t$ obtain an equality any more, but we hope that there
is some inequality. We motivate this estimate by the following heuristic
and optimal observation for an algebraic map $f$ : $C\rightarrow X$ . Let A4 $f$ be
the connected component of the moduli space of $f$ .

(i) For a generic $f_{0}\in \mathcal{M}_{f}$ , we have $degf_{0}^{*}D=$ $deg(f_{0}^{*}D)_{red}$ . This is
because $f_{0}(C)$ and $D$ would intersect transversely.
(ii) For an integer $k\geq 0$ , put

$\mathcal{M}_{f}^{k}=\{f\in \mathcal{M}_{f}; deg f^{*}D-deg(f^{*}D)_{red}\geq k\}$ .
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Then $\mathcal{M}_{f}^{k}$ is a Zariski closed subset of $\mathcal{M}_{f}$ and form a sequence

$\mathcal{M}_{f}=\mathcal{M}_{f}^{0}\supset \mathcal{M}_{f}^{1}\supset \mathcal{M}_{f}^{2}\supset\cdots$

(iii) We hope that $codim(\mathcal{M}_{f}^{k+1}, \mathcal{M}_{f}^{k})\geq 1$ in general.

(iv) Hence for $ k=dim\mathcal{M}_{f}+\epsilon$ , we have ”
$\mathcal{M}_{f}^{k}=\emptyset‘‘$ .

(v) We hope that $dim\mathcal{M}_{f}=-degf^{*}K_{X}+\epsilon$ for the canonical line
bundle $K_{X}$ .

(vi) We have $deg(f^{*}D)_{red}=deg_{C\backslash S}(f^{*}D)_{red}+O(1)$ where $O(1)$ is a
bounded term independent to $f$ . This is because

(3) $\# S$ $<\infty$ .

Hence we hope that the following conjecture is true (cf. [7]).

Conjecture 1. Let $L$ be an ample line bundle on $X$ and let $\epsilon>0$ .
Then there exists a proper Zariski closed subset $\Lambda=\Lambda(X, D, L, \epsilon)\neq\subset X$

such that

$degf^{*}K_{X}(D)\leq deg_{C\backslash S}(f^{*}D)_{red}+\epsilon degf^{*}L+O_{\epsilon}(1)$

for all algebraic map $f$ : $C\rightarrow X$ with $ f(C)\not\subset\Lambda$ . Here $O_{\epsilon}(1)$ is a
bounded term independent to $f$ but dependent on $\epsilon$ and $L$ .

For a closed subvariety $Z$ of $X$ with $codim(Z, X)\geq 2$ , we put

Vf $fk=$ $\{f\in \mathcal{M}_{f;}degf^{*}Z\geq k\}$ ,

and the same observation makes us to hope

Conjecture 2. There exists a proper Zariski closed subset $\cup--=$

$---(X, Z, L, \epsilon)\subset\neq X$ such that

$degf^{*}Z\leq-degf^{*}K_{X}+\epsilon degf^{*}L+O_{\epsilon}(1)$

for all algebraic map $f$ : $C\rightarrow X$ with $f(C)\not\subset---$ .

There are counterparts in Nevanlinna theory for the above conjec-
tures (cf. [1]). Define the truncated counting function by

$N^{(1)}(r, f, D)=\int_{1}^{r}(\sum_{|z|<t}\min(ordzf^{*}D, 1))\frac{dt}{t}$ .
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Conjecture 3. There exists a proper Zariski closed subset $\Lambda=$

$\Lambda(X, D, L, \epsilon)\neq\subset X$ such that

$T(r, f, K_{X}(D))\leq N^{(1)}(r, f, D)+\epsilon T(r, f, L)||$

for all holomorphic map $f$ : $\mathbb{C}\rightarrow X$ with $ f(\mathbb{C})\not\subset\Lambda$ .

Conjecture 4. There exists a proper Zariski closed subset $---=$

$\cup--(X, Z, L, \epsilon)\subset\neq X$ such that

$N(r, f, Z)\leq-T(r, f, K_{X})+\epsilon T(r, f, L)||$

for all holomorphic map $f$ : $\mathbb{C}\rightarrow X$ with $f(\mathbb{C})\not\subset---$ .

Here the symbol $||$ means that the inequality holds for $r>0$ outside a
set of finite linear measure. In the above, conjectures 3 and 4 correspond
to those of 1 and 2 respectively.

Remark. (1) The counterpart for inequality (3) in Nevanlinna theory
is Nevanlinna’s lemma on logarithmic derivatives for a meromorphic
function $\varphi$ , i.e., $m(r, \varphi^{/}/\varphi, \infty)<O(\log(rT(r, \varphi, \infty)))||$ . To see this,
we note that

$\# S$
$<\infty\Leftrightarrow\sum_{x\in S}ord_{x}(\partial\varphi/\varphi)^{*}$

$(\infty)<O(1)$ for all $\varphi\in \mathbb{C}(C)$ ,

where $\partial$ is a vector field on $C$ and $O(1)$ is a constant independent of $\varphi$ .

(2) To be precise, we need the condition that $D$ is simple normal
crossing in the above conjectures (cf. [6]).

\S 3. The case for curves

When $dimX=1$ , we have the natural morphism between log-
arithmic 1-forms $f^{*}\Omega_{X}^{1}(\log D)\rightarrow\Omega_{C}^{1}(\log(f^{*}D)_{red})$ for algebraic map
$f$ : $C\rightarrow X$ . Hence by taking degrees and using (3), we obtain Conjec-
ture 1 in this case. For the holomorphic case $f$ : $\mathbb{C}\rightarrow X$ , the following
result is classical (R. Nevanlinna, L. Ahlfors).

Theorem 1. Suppose $dimX=1$ . Then Conjecture 3 is true.

Suppose $g(X)\geq 2$ . Since we have $N^{(1)}(r, f, D)\leq T(r, f, D)$ , The-
orem 1 implies the inequality $T(r, f, K_{X})\leq O(1)||$ . But since $K_{X}$ is
ample, this inequality implies that $f$ is constant. Hence we have

Corollary 1. Suppose $g(X)\geq 2$ . Then all holomorphic map $f$ :
$\mathbb{C}\rightarrow X$ is a constant map.
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The higher dimensional version of this corollary is the following con-
jecture (cf. [1]).

Conjecture 5. Let $X$ be a projective variety of general type.
Then there exists a proper Zariski closed subset $Y\neq\subset X$ such that the
image of all non-constant holomorphic map $f$ : $\mathbb{C}\rightarrow X$ is contained in
$Y$ .

A remarkable fact is that Theorem 1 for $X=$ $II1$ implies Corollary
1. Suppose $g(X)\geq 2$ and let $\pi$ : $ X\rightarrow$ IF1 be a ramified covering. Let
$E’\subset X$ be the ramification divisor of $\pi$ and put $D=supp\pi_{*}(E’)$ ,
$E=supp\pi^{*}D$ . Then we have an equality $\pi^{*}K_{\mathbb{P}^{1}}(D)=K_{X}(E)$ . Hence
for a holomorphic map $f$ : $\mathbb{C}\rightarrow X$ , we apply Theorem 1 to $\pi$ of and we
have

$T(r, f, K_{X}(E))=T(r, f, \pi^{*}K_{\mathbb{P}^{1}}(D))=T(r, \pi\circ f, K_{\mathbb{P}^{1}}(D))$

$\leq N^{(1)}(r, \pi\circ f, D)=N^{(1)}(r, f, E)\leq T(r, f, E)$

modulo small term $\epsilon T(r, f, L)||$ . Hence $T(r, f, K_{X})\leq\epsilon T(r, f, L)||$ for
all $\epsilon>0$ , which implies Corollary 1.

Remark. This argument is quite general. And it also works in the
higher dimensional case: Conjecture 3 for $X$ implies Conjecture 5 for $X’$

which is a ramified covering of $X$ .

\S 4. The case of Abelian varieties

In the higher dimensional case, the conjectures in section 2 seem
to be difficult problem. But when $X$ is an Abelian variety, we have
interesting results, (cf. $[2],[3],[4],[5],[8],[9]$ )

Theorem 2. Let $X$ be an Abelian variety. Then Conjectures 3
an $d4$ are true.

Remark This theorem holds without any restriction for the singu-
larities of $D$ .

As corollaries to this theorem, we have

Corollary 2. Let $X$ be a projective variety with irregularity con-
dition $dimH^{0}(X, \Omega_{X}^{1})\geq dim$ X. Then Conjecture 5 is true for $X$ .

The case $dimH^{0}(X, \Omega_{X}^{1})>dimX$ is famous Bloch-Ochiai’s Theo-
rem and our new part is the case $dimH^{0}(X, \Omega_{X}^{1})=dimX$ . To prove this
case, we use the albanese map $ X\rightarrow$ Alb(X) which is a generically finite
map, the argument for the remark in section 3 and the above Theorem
2.



330 K.Yamanoi

The following Corollary is a unicity theorem for elliptic curves.
Though there is a higher dimensional version for general Abelian vari-
eties, we just present an one dimensional case for the sake of simplicity.

Corollary 3. Let $E_{1}$ , $E_{2}$ be elliptic curves and let $O_{i}\in E_{i}(i=$

$1$ , 2) be the points of $id$entities. Let $f_{i}$ : $\mathbb{C}\rightarrow E_{i}(i=1,2)$ be non-
constant holomorphic maps such that $suppf_{1}^{*}(O_{1})=suppf_{2}^{*}(O_{2})$ . Then
there exists an isomorphism $\alpha$ : $E_{1}\rightarrow E_{2}$ such that $f_{2}=\alpha\circ f_{1}$ .

The idea of the proof of this corollary is the following. Consider the
holomorphic map $f_{1}\times f_{2}$ : $\mathbb{C}\rightarrow E_{1}\times E_{2}$ and suppose that the image
$f_{1}\times f_{2}(\mathbb{C})$ is Zariski dense in $E_{1}\times E_{2}$ . Then since $codim(O_{1}\times O_{2},$ $ E_{1}\times$

$E_{2})\geq 2$ , Theorem 2 implies that $N^{(1)}$
$(r, f_{1}\times f_{2}, O_{1}\times O_{2})$ is very small

term. On the other hand the assumption $suppf_{1}^{*}(O_{1})=suppf_{2}^{*}(O_{2})$

implies that $N^{(1)}$ $(r, f_{1}\times f_{2}, O_{1}\times O_{2})=N^{(1)}$ $(r, f_{1}, O_{1})$ but this right
hand side is a big term. These give a contradiction, hence $f_{1}\times f_{2}(\mathbb{C})$ is
not Zariski dense in $E_{1}\times E_{2}$ . By Bloch-Ochiai’s theorem, $f_{1}\times f_{2}(\mathbb{C})$ is
contained in some elliptic curve $F\subset E_{1}\times E_{2}$ and this $F$ gives the graph
of $\alpha$ .

References

[1] P. Griffiths, Holomorphic mappings: Survey of some results and discus-

sion of open problems, Bull. Amer. Math. Soc. 78 (1972), 374-382.
[2] R. Kobayashi, Holomorphic curves in Abelian varieties: The second main

theorem and applications, Japan. J. Math. 26 (2000), no.1, 129-152.
[3] M. McQuillan, Defect relations on semi-Abelian varieties, preprint,1999.
[4] J. Noguchi, J. Winkelmann and K. Yamanoi, The second main theorem

for holomorphic curves into semi-Abelian varieties, Acta Math. 188
(2002),129-161.

[5] Y.T. Siu, S.K. Yeung, Defects for ample divisors of Abelian varieties,

Schwarz lemma, and hyperbolic hypersurfaces of low degrees, Amer. J.
Math. 119 (1997), 743-758.

[6] P. Vojta, On Cartan’s theorem and Cartan’s conjecture, Amer. J. Math.
119 (1997), 1-17.

[7] P. Vojta, A more general abc conjecture, Internat. Math. Res. Notices
(1998) 1103-1116.

[8] K. Yamanoi, Holomorphic curves in Abelian varieties and intersections
with higher codimensional subvarieties, preprint, 2000.

[9] K. Yamanoi, On the truncated second main theorem for holomorphic
curves in Abelian Varieties, preprint, 2002.



On Nevanlinna theory for holomorphic curves 331

Research Institute for Mathematical Sciences
Kyoto University
Oiwake-cho, Sakyo-ku
Kyoto, 606-8502
Japan



 



Advanced Studies in Pure Mathematics 42, 2004

Complex Analysis in Several Variables

pp. 333–338

Numerical characterization for affine varieties be
a cone over nonsingular projective varieties

Stephen S.-T. Yau

This article is not available due to permission restrictions.



334 S. Yau

This article is not available due to permission restrictions.



Numerical characterization for affine varieties 335

This article is not available due to permission restrictions.



336 S. Yau

This article is not available due to permission restrictions.



Numerical characterization for affine varieties 337

This article is not available due to permission restrictions.



338 S. Yau

This article is not available due to permission restrictions.



Advanced Studies in Pure Mathematics 42, 2004
Complex Analysis in Several Variables
pp. 339-345

Nikulin’s $K3$ surfaces, adiabatic limit of equivariant
analytic torsion, and the Borcherds $\Phi$-function

Ken-Ichi Yoshikawa

Abstract.

In this note, we prove that the “adiabatic limit” of the equivari-

ant analytic torsion of a Nikulin’s $K3$ surface converges to the value
of norm of the Borcherds $\Phi-$ function at its period point after a certain
renormalization.

\S 0. Introduction

Let $\pi:M$ $\rightarrow B$ be a submersion of compact Riemannian manifolds.
Let $g_{M}$ and $g_{B}$ be Riemannian metrics on $M$ and $B$ , respectively. For
$ 0<\epsilon<\infty$ , set $g_{M,\epsilon}:=g_{M}+\epsilon^{-1}\pi^{*}g_{B}$ . Let $T(g_{\Lambda/I})$ be a geometric
object depending on the metric $g_{\Lambda}c$ . The limit of $T(g_{\Lambda^{/}l,\epsilon})$ as $\epsilon\rightarrow 0$ is
called the adiabatic limit of $T$ . The adiabatic limits of various geometric
objects have been studied by many authors. In this note, we study a
variant of this problem. (Although we will not discuss here, the work of
Berthomieu-Bismut ([B-B]) seems to be very related to our subject.)

Let $\pi:X\rightarrow$ I1 be an elliptic $K3$ surface. Let $\iota:X\rightarrow X$ be a holo-
morphic involution acting non-trivially on canonical forms on $X$ . Let $\kappa_{X}$

and $\kappa_{\mathbb{P}^{1}}$ be K\"ahler classes on $X$ and $\mathbb{P}^{1}$ , respectively. By Yau ( [Ya] ), the
Kahler class $\kappa_{X,\epsilon}:=\kappa_{X}+\epsilon^{-1}\pi^{*}\kappa_{\mathbb{P}^{1}}$ carries uniquely a Ricci-flat K\"ahler

form $\omega_{\epsilon}$ . We study the equivariant analytic torsion ([Bi]) of $(X, \iota, \omega_{\epsilon})$ as
$\epsilon\rightarrow 0$ in the case where $(X, \iota)$ is a class of $K3$ surfaces studied by Nikulin
([N]). As a result, we recover the Borcherds $\Phi-$ function of dimension 26
restricted to a certain locus of dimension 10.

Although we talked a little about the adiabatic limit of the invariant
introduced in [Yo] at the conference, we will focus on that subject in this
short note.
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\S 1. Nikulin’s $K3$ surfaces

Let $X$ be a $K3$ surface with canonical bundle $K_{X}$ . Let $\eta_{X}\in$

$H^{0}(X, K_{X})$ be a nowhere vanishing holomorphic 2-form on $X$ . Then
$H^{2}(X, \mathbb{Z})$ equipped with the intersection pairing is isometric to the K3-
lattice

(1.2) $L_{K3}:=U\oplus U\oplus U\oplus E_{8}\oplus E_{8}$ ,

where $U=\left(\begin{array}{l}01\\10\end{array}\right)$ and $E_{8}$ is the negative definite lattice associated with

the Cartin matrix of type $E_{8}$ . An isometry $\phi:H^{2}(X, \mathbb{Z})\cong L_{K3}$ is called
a marking of $X$ , and the pair $(X, \phi)$ is called a marked $K3$ surface.

Set

(1.2) $\Omega:=\{[x]\in \mathbb{P}(L_{K3}\otimes \mathbb{C});\langle x, x\rangle=0, \langle x,\overline{x}\rangle>0\}$ .

For a marked $K3$ surface $(X, \phi)$ , the point $[\phi(\eta_{X})]\in \mathbb{P}(L_{K3}\otimes \mathbb{C})$ is
called the period of $(X, \phi)$ . Then one can verify that $[\phi(\eta_{X})]\in\Omega$ .

Definition 1.1. Let $\iota:X\rightarrow X$ beaholomorphic involution acting
non-trivially on $H^{0}(X, K_{X})$ , i.e., $\iota^{*}\eta_{X}=-\eta_{X}$ . The pair $(X, \iota)$ is called
a Nikulin’s $K3$ surface if the $\iota^{*}-$ invariant part of $H^{2}(X, \mathbb{Z})$ is isometric
to the lattice $\Lambda:=U\oplus E_{8}(2)$ . Here $E_{8}(2)$ denotes the lattice of rank 8
whose intersection form is twice of that on $E_{8}$ .

Nikulin’s $K3$ surfaces are constructed as follows:
Let $C_{1}$ , $C_{2}\subset \mathbb{P}^{2}$ be two smooth cubic curves in general position.

Then $C_{1}$ meets $C_{2}$ transversally at 9 points; $C_{1}\cap C_{2}=$ $\{p_{1},p_{2}, \cdots,p_{9}\}$ .

Let $\mathbb{P}^{2}[9]\rightarrow$ I2 be the blowing-up of If 2 at these 9 points. Then If 2 [9] is
the blowing-up of the base points of the pencil spanned by $C_{1}$ , $C_{2}$ .

Fix homogeneous polynomials $f_{1}(z)$ , $f_{2}(z)$ defining $C_{1}$ , $C_{2}$ , respec-
tively. Then $\mathbb{P}^{2}[9]$ admits the elliptic fibration $\pi:\mathbb{P}^{2}[9]\rightarrow$ I[1 with fiber
$\pi^{-1}(s : t)=$ { $[z]\in$ It 2; $sf_{1}(z)+tf_{2}(z)=0$ }. Hence, If $[9]$ is a rational
elliptic surface.

Let $\overline{C}_{1},\overline{C}_{2}\subset \mathbb{P}^{2}[9]$ be the proper transform of $C_{1}$ , $C_{2}$ , respectively.

Then the divisor $\overline{C}_{1}+\overline{C}_{2}$ is the member of the double anti-canonical sys-
tem $|-2K_{\mathbb{P}^{2}[9]}|$ . Let $X_{C_{1}+C_{2}}$ be the double covering of $\mathbb{P}^{2}[9]$ with branch

divisor $\overline{C}_{1}+\overline{C}_{2}$ . Let $\iota_{C_{1}+C_{2}}$ : $X_{C_{1}+C_{2}}\rightarrow X_{C_{1}+C_{2}}$ be the non-trivial cov-
ering transformation. By the canonical bundle formula, $X_{C_{1}+C_{2}}$ is a
$K3$ surface. By the rationality of I[2[9], $\iota_{C_{1}+C_{2}}$ acts non-trivially on
$H^{0}(X_{C_{1}+C_{2}}, K_{X_{C_{1}+C_{2}}})$ . Since the fixed point set of $\iota_{C_{1}+C_{2}}$ is identified
with $C_{1}+C_{2}$ , it follows from Nikulin’s classification of the fixed point
set ( $[N$ , Th. 4.2.2]) that $(X_{C_{1}+C_{2}}, \iota_{C_{1}+C_{2}})$ is a Nikulin’s $K3$ surface.
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Let $\pi_{C_{1}+C_{2}}$ : $X_{C_{1}+C_{2}}\rightarrow \mathbb{P}^{1}$ be the elliptic fibration associated to the

linear system $|\overline{C}_{1}|$ . Since the image of every member of $|\overline{C}_{1}|$ by $\iota_{C_{1}+C_{2}}$

is again a member of $|\overline{C}_{1}|$ , there exists an involution $i_{\mathbb{P}^{1}}$ on $\mathbb{P}^{1}$ such that

$X_{C_{1}+C_{2}}\rightarrow p$ $IFJ)^{2}$
$[9]$

(1.3) $\pi c_{1}+c_{2}\downarrow$ $\downarrow\pi$

$\mathbb{P}^{1}$

$\rightarrow$
$\mathbb{P}^{1}$

is a commutative diagram, where $p:X_{C_{1}+C_{2}}\rightarrow \mathbb{P}^{2}[9]=X_{C_{1}+C_{2}}/\iota_{C_{1}+C_{2}}$

and $q:\mathbb{P}^{1}\rightarrow \mathbb{P}^{1}=\mathbb{P}^{1}/i_{\mathbb{P}^{1}}$ are the natural projections.

\S 2. The moduli space of Nikulin’s $K3$ surfaces

Define an involution $I_{\Lambda}$ on $L_{K3}$ by

(2.1) $I_{\Lambda}(a, b, c, x, y)=(a, -b, -c, y, x)$ $(a, b, c\in U, x, y\in E_{8})$ .

Then $\Lambda$ is the invariant part of $I_{\Lambda}$ . Let $L$ be the anti-invariant part of
$I_{\Lambda}$ . Then $L$ is the orthogonal complement of $\Lambda$ in $L_{K3}$ , and

(2.2) $L=U\oplus U\oplus E_{8}(2)$ .

Let $(X, \iota)$ be a Nikulin’s $K3$ surface. Since the embedding $\Lambda=\rangle$ $[_{K3}$

is unique up to an automorphism of $L_{K3}$ , there exists a marking $\phi$ of
$X$ such that $\phi\circ\iota^{*}\circ\phi^{-1}=I_{\Lambda}$ . A marking with this property is called
a marking of a Nikulin’s $K3$ surface. By Definition 1.1 the period of a
marked Nikulin’s $K3$ surface lies in the following subset of $\Omega$ :

(2.3) $\Omega_{\Lambda}:=$ { $[x]\in$ I[ $(L\otimes \mathbb{C});\langle x$ , $x\rangle=0$ , $\langle x,\overline{x}\rangle>0$ }.

Then $\Omega_{\Lambda}$ consists of two connected components $\Omega_{\Lambda}^{\pm}$ , each of which is
isomorphic to a symmetric bounded domain of type $IV$ of dimension 10.
However, the period mapping omits the divisor $D_{\Lambda}$ of $\Omega_{\Lambda}$ described as
follows: For $l$ $\in L$ with $l^{2}:=\langle l, l\rangle<0$ , set $H_{l}:=\{[x]\in\Omega_{\Lambda}; \langle x, l\rangle=0\}$ .

Let $D_{\Lambda}$ be the discriminant locus of $\Omega_{\Lambda}$ :

(2.4)
$D_{\Lambda}:=d\in L,d^{2}=-2\cup H_{d}$

.

Let $O(L)$ be the isometry group of the lattice $L$ . Then $O(L)$ acts
naturally on $\Omega_{\Lambda}$ and preserves $D_{\Lambda}$ . In [Yo, Th. 1.8], we proved:

Theorem 2.1. The coarse moduli space of Nikulin’s $K3$ surfaces
is isomorphic to the analytic space $\mathcal{M}_{\Lambda}^{0}:=$ $(\Omega_{\Lambda}\backslash D_{\Lambda})/O(L)$ via the period
mapping.
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\S 3. The restriction of the Borcherds $\Phi$-function to $\Omega_{\Lambda}$

In [Bo], Borcherds introduced a remarkable automorphic form on
the 26-dimensional symmetric bounded domain of type $IV$ associated
with the even unimodular lattice $II_{2,26}:=U\oplus U\oplus E_{8}\oplus E_{8}\oplus E_{8}$ . His
automorphic form is called the Borcherds$-function and is denoted by
$\Phi$ . We refer to [Bo, Th. 10.1 and \S 10 Example 2] for more details about
the Borcherds $\Phi$-function.

Since $L\subset II_{2,26}$ , one can restrict the Borcherds $\Phi$-function to $\Omega_{\Lambda}$ .

This automorphic form on $\Omega_{\Lambda}$ is denoted by (I)
$\Lambda$ :

(3.1) $\Phi_{\Lambda}:=\Phi|_{\Omega_{\Lambda}}$ .

Then we proved in [Yo, Lemma 8.5] that (I)
$\Lambda$ is an automorphic form on

$\Omega_{\Lambda}$ of weight 12 with zero divisor $D_{\Lambda}$ .

Fix a vector $P\in L\otimes \mathbb{R}$ such that $\ell^{2}\geq 0$ . The pointwise length of
(I)

$\Lambda$ is defined by

(3.2) $||\Phi_{\Lambda}||^{2}([z]):=(\frac{\langle z,\overline{z}\rangle_{L}}{|\langle z,\ell\rangle_{L}|^{2}})12|\Phi_{\Lambda}([z])|^{2}$ $([z]\in\Omega_{\Lambda})$ .

Then $||\Phi_{\Lambda}||^{2}$ is an $O(L)-$ invariant $C^{\infty}-$ function on $\Omega_{\Lambda}$ and is regarded
as a function on $\mathcal{M}_{\Lambda}^{0}$ .

\S 4. Equivariant analytic torsion of Nikulin’s $K3$ surfaces

In [Bi], Bismut established the foundations of the theory of equiv-
ariant analytic torsion and equivariant Quillen metrics. Here, we recall
his construction in the simplest case. We refer to [Bi] for more details
about equivariant analytic torsion and equivariant Quillen metrics.

Let $Y$ be a compact K\"ahler manifold. Let $\theta:Y\rightarrow Y$ be a holomor-
phic involution. Let 7 $ 2\subset$ Aut(V) be the subgroup generated by $\theta$ . Let
$\gamma_{Y}$ be a $\mathbb{Z}_{2^{-}}$ invariant Kihler metric on $Y$ . Let $\Pi_{q}$ be the $\overline{\partial}-$Laplacian

acting on $(0, q)-$ forms on $Y$ with respect to $\gamma_{Y}$ . Let $\sigma(\Pi_{q})$ be the spec-
trum of $\Pi_{q}$ . For $\lambda\in\sigma(\Pi_{q})$ , let $E_{q}(\lambda)$ be the vector space of eigenforms
of $\Pi_{q}$ with eigenvalue A. Then $\mathbb{Z}_{2}$ preserves $E_{q}(\lambda)$ .

For $g\in \mathbb{Z}_{2}$ and $s\in \mathbb{C}$ , set $\zeta_{q}(g)(s):=\sum_{\lambda\in\sigma(\Pi_{C\prime})\backslash \{0\}}\ulcorner b(g|_{E_{q}(\lambda)})\lambda^{-s}$ .

Classically, $\zeta_{q}(g)(s)$ converges absolutely when $Res$ $>dimF$ , admits a
meromorphic continuation to $\mathbb{C}$ , and is holomorphic at $s=0$ .

Definition 4.1. For $g\in \mathbb{Z}_{2}$ , the Equivariant analytic torsion of
$(Y, \gamma_{Y})$ is defined by

(4.1)
$\log\tau_{\mathbb{Z}_{2}}(Y, \gamma_{Y})(g):=\sum_{q\geq 0}(-1)^{q+1}(_{q}’(g)(0)$

.
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When $g=1$ , $\tau_{\mathbb{Z}_{2}}(Y, \gamma_{Y})(1)$ coincides with the Ray-Singer analytic
torsion of $(Y, \gamma_{Y})$ and is denoted by $\tau(Y, \gamma_{Y})$ .

\S 5. The adiabatic limit of $\tau_{\mathbb{Z}_{2}}$ for Nikulin’s $K3$ surfaces

Let $(X, \iota)$ be a Nikulin’s $K3$ surface. Let $C_{1}+C_{2}$ be the set of
fixed points of $\iota$ . Then $C_{1}$ and $C_{2}$ are mutually disjoint elliptic curves.
Let $[(X, \iota)]\in \mathcal{M}_{\Lambda}^{0}$ be the $O(L)-$orbit of the period of $(X, \iota)$ . By the
$O(L)-$ invariant of $||\Phi_{\Lambda}||$ , the value $||$ I $\Lambda([X, \iota])||$ makes sense.

Let $\pi:X\rightarrow \mathbb{P}^{1}$ be the elliptic fibration associated with the free
linear system $|C_{1}|$ . Then the image of an arbitrary fiber of $\pi$ by $\iota$ is

again a fiber of $\pi$ , and $\iota$ induces an involution $i_{\mathbb{P}^{1}}$ on $\mathbb{P}^{1}$ verifying (1.3).

Let $\kappa_{X}$ be an $\iota-$ invariant K\"ahler class on $X$ . Let $\kappa_{\mathbb{P}^{1}}$ be a K\"ahler

class on $\mathbb{P}^{1}$ . For $ 0<\epsilon<+\infty$ , set

(5.1) $\kappa_{\epsilon}:=\kappa_{X}+\epsilon^{-1}\pi^{*}\kappa_{\mathbb{P}^{1}}$ .

Then $\{\kappa_{\epsilon}\}_{0<\epsilon<+\infty}$ is a family of $\iota-$ invariant Kihler classes on $X$ . Notice
that the Kahler class on the fiber induced from $\kappa_{\epsilon}$ is independent of
$\epsilon$ . By Calabi-Yau ([Ya]), there exists uniquely an $\iota-$ invariant Ricci-flat
Kihler form $\omega_{\epsilon}$ in $\kappa_{\epsilon}$ :

(5.2) $Ric(\omega_{\epsilon})\equiv 0$ , $\iota^{*}\omega_{\epsilon}=\omega_{\epsilon}$ , $[\omega_{\epsilon}]=\kappa_{\epsilon}$ $(0<\epsilon<+\infty)$ .

Let $Vol(X, \omega_{\epsilon}):=\int_{X}\omega_{\epsilon}^{2}/2!$ be the volume of $(X, \omega_{\epsilon})$ . Let $ F\in$

$H_{2}(X, \mathbb{Z})$ be the class of fibers of $\pi:X\rightarrow \mathbb{P}^{1}$ . Set $Vol(F, \kappa|_{F}):=\int_{F}\kappa|_{F}$

and $Vol(\mathbb{P}^{1}, \kappa_{\mathbb{P}^{1}}):=\int_{\mathbb{P}^{1}}\kappa_{\mathbb{P}^{1}}$ . By (5.1) and the projection formula, we get

(5.3) $Vol(X, \omega_{\epsilon})=Vol(X, \kappa)+\epsilon^{-1}Vol(F, \kappa|_{F})Vol(\mathbb{P}^{1}, \kappa_{\mathbb{P}^{1}})$ .

The following is the main result of this note:

Theorem 5.1. There exists a constant $C\neq 0d$epending only on
the lattice $\Lambda$ such that

(5.4) $\epsilon\lim_{\rightarrow 0}\tau_{\mathbb{Z}_{2}}(X, \omega_{\epsilon})(\iota)$
. $Vol(X, \omega_{\epsilon})=C||\Phi_{\Lambda}([(X, \iota)])||^{-\frac{1}{6}}$ .

Proof. For $\tau\in$ IHI, let $\triangle(\tau)=e^{2\pi i\tau}\prod_{n>0}(1-e^{2\pi in\tau})^{24}$ be the

Jacobi-A function. Set $||\triangle(\tau)||^{2}:=(Im\tau)^{12}|\triangle(\tau)|^{2}$ , which is a $SL_{2}(\mathbb{Z})-$

invariant function on $\mathbb{H}$ . Let $[C_{i}]\in \mathbb{H}/SL_{2}(\mathbb{Z})$ be the period of the ellip-
tic curve $C_{i}$ . By the $SL_{2}(\mathbb{Z})-$ invariant of $||\triangle(\tau)||$ , the value $||\triangle([C_{i}])||$

is independent of the choice of a representative of $[C_{i}]$ in $\mathbb{H}$ .
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By [Yo, Th. 5.2 and Th. 8.7], there exists a constant $C_{\Lambda}\neq 0$ depend-
ing only on the lattice $\Lambda$ such that

$\tau_{\mathbb{Z}_{2}}(X, \omega_{\epsilon})(\iota)\cdot Vol(X, \omega_{\epsilon})\prod_{i=1}^{2}\tau(C_{i}, \omega_{\epsilon}|c_{i})\cdot Vol(F, \kappa_{\epsilon}|_{F})$

(5.5)

$=C_{\Lambda}||\Phi_{\Lambda}([(X, \iota)])||^{-\frac{1}{6}}\cdot\prod_{i=1}^{2}||\triangle([C_{i}])||^{-\frac{1}{6}}$ .

By [G-W, Th. 5.6], the family of K\"ahler forms $\{\omega_{\epsilon}|_{C_{j}}\}_{0<\epsilon<1}$ con-
verges in arbitrary $C^{k}-$topology to the flat K\"ahler form $\omega_{C_{i}}$ on $C_{i}$ with
K\"ahler class $\kappa|_{C_{j}}$ . Hence, we deduce from the anomaly formula for
Quillen metrics that

(5.6) $\lim_{\epsilon\rightarrow 0}\tau(C_{i}, \omega_{\epsilon}|_{C_{j}})=\tau(C_{i}, \omega_{C}, )$ , $Vol(F, \kappa_{\epsilon}|_{F})=Vol(C_{i}, \omega_{C_{j}})$ .

Since $\omega_{C_{j}}$ is flat, Kronecker’s limit formula yields that

(5.7) $\tau(C_{i}, \omega_{C_{j}})$ . $Vol(C_{i}, \omega_{C_{i}})=||2^{12}\triangle([C_{i}])||^{-\frac{1}{6}}$ .

The result follows from (5.5), (5.6), (5.7). Q.E.D.
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